การทำไอออนฟลูอไรด์ในวิชัย
โดยใช้ไอออนฟลูอไรด์ของโลหะ
กิจิตกร หานะแสงธรรม

สารประกอบฟลูอไรด์จัดเป็น
สารพิษที่น่าจะเป็นภัยต่อสุขภาพของมวลมนุษย์
จากโรงงานอุตสาหกรรม โดยเฉพาะ
โรงงานพิษสัตว์ซึ่งเป็นของปิโตรเลียมและ
วงจรสิ่งแวดล้อม เช่น วงจรร่าง
(Integrated circuits) สารกีฬาไนล (semi
-conductor) เป็นตน การที่นี่เมื่อมีสาร
ประกอบฟลูอไรด์ไหลไปยังลม เช่นเมื่อ
จากกระบวนการประกอบฟลูอไรด์
ได้แก่ แก้วฟลูอไรด์ฟลูอเรสเซน แก้ว
แก้วเคมีฟลูอเรชน (HF) และ
แก้วไบโอฟลูอไรด์ (NH4F) มา
ใช้ในกระบวนการทำการผลิต ซึ่งสาร
และดูรินท์ที่เกิดขึ้นเป็นปิโตรเลียม
น้ำเสีย ที่มีสารประกอบฟลูอไรด์
เป็นยอดเม็ดที่เกิดขึ้นที่ความชื้นและการ
และมีกัดกร่อนต่อสิ่งมีชีวิต บางประเภท
เริ่มมีการกักเก็บสารประกอบฟลูออกไซต์
ในปริมาณฟลูอไรด์ที่ออกมาได้นั่นก็คือ ซึ่ง
ปริมาณฟลูอไรด์ที่ออกมาไม่ได้เกิน
16 ppm. และมีการระบุว่า
จะกักเก็บสารประกอบได้ดีอย่างนั้น
8 ppm. วิธีการนี้เป็นวิธีการตามร่าง
โดย ทำให้ผลของสารประกอบได้ดีอย่างนั้น
ในปริมาณฟลูอไรด์ ซึ่งเป็นสิ่งที่ต้อง
ในประเทศสหรัฐอเมริกา เมื่อต้นกว่า
3 ขณะกลับน้ำกร่อยเขตฟลูอไรด์
(Stannous fluoride) เช่นขึ้น 4% ที่
ทันทีจะพบซัพพลายวานนั่น และเล็ก
เล็กน้อยไม่เกินเวลา 15 ชั่วโมง

วิธีการกักเก็บสารประกอบฟลูอไรด์

สารประกอบฟลูอไรด์ ที่เป็นปิโตร
เล็กน้อยเมื่อจากกระบวนการอุตสาหกรรม
สามารถทำให้ได้โดยใช้สารประกอบฟลูอไรด์
กับแคดเมียมฟลูอไรด์ (CaF2) หรือ
ฟลูอไรด์ (F2) ในทางปฏิบัติเป็นสังเคราะห์,
กับที่จะเกิดในระบบฟลูอไรด์ได้ตั้งแต่กล่าว
8 ppm. เมื่อจากกระบวนการเจาะฉีดฟลูอไรด์
หรือปุสุนในปริมาณมาก ๆ จะไม่เพิ่มความรุนแรงของไอออน
(Tonic Stomach) ของสารที่ทำให้ฟลูอไรด์,
สารประกอบฟลูอไรด์ (CaF2) มีการละลายในน้ำ,
เมื่อจะเกิดในระบบฟลูอไรด์
แต่ละปุกสารประกอบฟลูอไรด์
ที่มีการละลายในน้ำ

วิธีการทำสารประกอบฟลูอไรด์โดยเทคนิคกระบวนการดังนี้

มีการกระทำโดยผู้ผลิตวัสดุการ
ในที่มีสารประกอบฟลูอไรด์
น้ำนี้ยังทำให้เกิดขึ้น
ในโรงงานอุตสาหกรรม เกิดจากโลหะเหล่านี้ว่า
กระบวนการดังกล่าว

เทคนิคกระบวนการดูดซับใช้
สารสิ่งที่ร่างกันว่า
Hydrous metal oxide หรือ basic metal carbonate ซึ่ง
โลหะที่มีเคมีเรียก C และ 4 เหมือน
ที่น้ำ (Ca) สารเคมีเรียก (Sm) ซึ่งเรียก
(Ce) เป็นต้น เป็นสารดูดซับ (adsorbent)
น้ำมันดูซับไอโอนฟูโอรีด เนื่องจากไอโอนฟูโอรีดสามารถเกิดปฏิกิริยากับโลหะที่มีมวลเชิงซึ่ง ๆได้คิดว่าทำสัญลักษณ์ให้เกิดการถอน
กระบวนการดูซับ

ปฏิกิริยาการดูซับไอโอนฟูโอรีด

\[-\text{M-OH} + X \rightarrow -\text{M-X} + \text{OH}\] (1)

\[-\text{M-OH} \text{ ถึงดูซับ} \text{ ไฮโดรสอเดิม} \text{ ออกไซด์} \text{ หรือ} \text{ ออกไซด์} \text{ ออกไซด์} \text{ ที่} x \text{ ไอโอนฟูโอรีด}

ในสภาพที่เป็นกลางหรือเป็น
casualities ของไอโอนฟูโอรีดสามารถเกิดการแยกเป็้นยังเป็นประสงค์ที่มีสูตร
เอาออก (hydroxide group) ของสารประกอบโลหะ ได้ที่ไอโอนฟูโอรีด
จะดูซับขับพิษของโลหะและที่ไอโอนได้โดยที่สารก็กาออกซิได้ที่ดูซับไม่ข้อม่า
\[-\text{M-OH} + \text{H}^+ + X \rightarrow -\text{M-OH}_2X \] (2)

สมการ (2) แสดงการดูซับ
ไอโอนฟูโอรีดในสภาพที่เป็นกลาง

ประกาศการกรองไอโอนฟูโอรีด
ไอโอนฟูโอรีดที่มีมากขึ้น ไอโอนฟูโอรีด
จะดูซับขับพิษกับไอโอนได้โดยที่สาร
เกิดเป็นสารประกอบขับพิษของไอโอนฟูโอรีดของโลหะ (metal fluoride complex)
ซึ่งที่มีของโลหะที่ใช้มีตัวดูซับ

ตัวดูซับที่ใช้มีคุณค่าของไอโอนฟูโอรีดแล้วสามารถนำไป regenerate
casualities ของโลหะออกไซด์ (NaOH) และ
นักถ่ายภาพใช้มีได้

สารผสม อุปกรณ์ และเครื่องมือ
สารผสม — ใช้ชนิด AR grade
— ถ้ามีการทดลอง
ใช้เวลาก่อนการทำเครื่องจักรไอโอน
(deionizer) และผ่านการกรองด้วย
เครื่องกรอง (filter) ขนาด 0.2 mm
— ตัวดูซับดัดแปลงในตาราง
ที่ 1 เครื่องโดยการ hydrolyse เกิด
โลหะออกไซด์ หรือเกิดในกระแสของโลหะ
ซีเรียม (III) ซีเรียม (IV) แผนานม
(III) อิดเทียม (III) แกดเดอร์เนียม
(III) ซานยาเนียม (III) และแม้คิดเนียม
(III) ด้วยสารละลายนิวเคลียร์ หรือ
ไอดีเมียมออกไซด์ หรือโดยวิธี
homogeneous precipitation เกิดไอโอนฟูโอรีด
ของโลหะเหล่านี้ด้วยยูเรีย ทำการ
ศึกษาโครงสร้างของตัวดูซับที่เตรียม
ขึ้น โดยใช้เครื่องมือเครื่องมือ
โดยวิธี (X-Ray diffractometer, XRD)

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Surface area (m²/g)</th>
<th>Mean particle size (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hydrous aluminum (III) oxide</td>
<td>270.0</td>
<td>—</td>
</tr>
<tr>
<td>2. Hydrous cerium (IV) oxide</td>
<td>35.0</td>
<td>—</td>
</tr>
<tr>
<td>3. Hydrous lanthanum (III) oxide</td>
<td>38.6</td>
<td>13.8</td>
</tr>
<tr>
<td>4. Basic cerium (III) carbonate</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>5. Basic lanthanum (III) carbonate</td>
<td>0.8</td>
<td>17.7</td>
</tr>
<tr>
<td>6. Basic yttrium (III) carbonate</td>
<td>28.6</td>
<td>3.3</td>
</tr>
<tr>
<td>7. Basic gadolinium (III) carbonate</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8. Basic samarium (III) carbonate</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9. Basic neodymium (III) carbonate</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10. Bone</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11. Clamshell</td>
<td>4.2</td>
<td>26.5</td>
</tr>
<tr>
<td>12. Crabshell</td>
<td>—</td>
<td>52.0</td>
</tr>
</tbody>
</table>

ตารางที่ 1 ชนิดของตัวดูซับที่ใช้ในการทำทดลอง
เครื่องมือ
-
- แอนิโอน (anion) วิเคราะห์ด้วย LC-6A liquid chromatograph ของบริษัท Shimadzu ใช้กอนัมซีนิต IC-Al column เครื่องตรวจจับ ชนิด conductivity detector, mobile phase ประกอบด้วย ผสมผสมของ 2.5 mM phthalic acid และ 2.4 mM 2-amino-2-hydroxymethyl-1, 3-propanediol
-
- ไอโอนไลซ์ รวมถึง ไอโอนฝังสันดิษฐาน วิเคราะห์ด้วย inductively coupled plasma spectrophotometer ICPS 1000 II ของบริษัท Shimadzu
-
- แซ็ต โพเซตวันด้วย วัดด้วย meter 501 lazerzee ของบริษัท PEN KEM
-
- ชนาคปึกฉาที่ตั้งคู่ขึ้น วัดด้วย microtrac SRA และ SPA particle size analyser
-
- สารวัตรกระจาย (dispersing agent) ใช้ 0.3% W/V sodium hexametaphosphate

วิธีการ
การคัดกลิ่นของความในกรด-ด่าง ที่มีคุณค่าตามมาในการสัมผัส-
ไอโอนฝังสันดิษฐาน

เครื่องมือต่าง ๆ ที่มีไอโอนฝังสันดิษฐาน เช่น 1 mM หรือ 5 mM โดยการ
สารละลายไอโอนฝังสันดิษฐาน (NaF)ชนิด AR grade คุณภาพสูง นำมาปรับ pH ให้ได้ pH 2-12 ด้วยสารละลายดีเดียม
ไอโอนฝังสันดิษฐาน หรือ กรินปลอร์ (HClO) เลือกตัวลูชับปริมาณ 0.05
กิโลกรัม ลงไปในน้ำเสียที่เตรียมขันถังไว้
ให้ทำปฏิกิริยาเป็นเวลา 18 ชั่วโมง
ที่อุณหภูมิ 20° C. นำมาวัด pH และ
กรอก filtrate มาวิเคราะห์ปริมาณ
ไอโอนฝังสันดิษฐาน และปริมาณไอโอน
โลหะ

![Fig. 1 Adsorption of fluoride ion on basic gadolinium (III) carbonate prepared with urea ○ fluoride; ● gadolinium (III).](image1)

![Fig. 2 Adsorption of fluoride ion on hydrous lanthanum (III) oxide prepared with NH 4 OH. ○ fluoride ● lanthanum (III).](image2)

![Fig. 3 Adsorption of fluoride ion on basic lanthanum (III) carbonate prepared with urea. ○ fluoride; ● lanthanum (III).](image3)
การเผชิญกับสารละลายฟลูออไรด์

สารละลายฟลูออไรด์มีความเท่ากับ 5 mM ราคาปัจจุบัน

dual experiments that included monitoring fluoride concentrations in the supernatant and adhering to the
calcium phosphate. These experiments were repeated three times to ensure reproducibility.

Figure 5 Adsorption of anions on hydrous aluminum (III) oxide.

Fig. 6 Adsorption of anions on hydrous cerium (IV) oxide prepared with urea.

O,F; Δ,Br; □,I; ○,NO₃; △,H₂O; □,SO₄²⁻; ●,Ce⁶⁺

การศึกษาความรวดเร็วในการดูดซับฟลูออไรด์

เครื่องมือที่มีฟลูออร์ซิคลาส เข็มข้น 5 mM ความดูด pH วิธีที่ 3

Falling-off curve for the adsorption of fluoride ion on hydrous lanthanum (III) oxide.

Fig. 7 Kinetics of adsorption of fluoride ion on hydrous lanthanum (III) oxide prepared with NH₄OH. ○, fluoride; ●,lanthanum (III).

การศึกษาความรวดเร็วในการดูดซับฟลูออไรด์ของสารละลายฟลูออไรด์

hydrous lanthanum (III) oxide

สามารถดูดซับฟลูออไรด์ได้มากกว่า 0.5 mM ภายใน 7 นาที และ 1 mM ภายใน 10 นาที จากการศึกษาพบว่า ปฏิกิริยาการดูดซับ
Hydroxyl lanthanum (III) carbonate is not a very strong base. When the base is added to 45 mg of 0.01 M fluoride ion in 100 mM HCl, the fluoride concentration decreases by 0.7 mg/l in about 1.7 hours. This decrease is due to the formation of a fluoride complex, which is not very strong since the fluoride concentration is still high after 1.7 hours in the reaction between the fluoride ion and the hydroxyl lanthanum (III) carbonate.

Fig. 9 Kinetics of adsorption of fluoride ion on basic gadolinium (III) carbonate prepared with urea. ● fluoride; ○ gadolinium.

Fig. 8 Kinetics of adsorption of fluoride ion on basic lanthanum (III) carbonate prepared with urea. ● fluoride; ○ lanthanum (III).

Hydrated cerium (IV) oxide is a very strong base. The pH of 0.025 M hydrated cerium (IV) oxide filtrate is 18.2, and the fluoride concentration decreases by 0.7 mg/l in about 1.7 hours. This decrease is due to the formation of a fluoride complex, which is not very strong since the fluoride concentration is still high after 1.7 hours in the reaction between the fluoride ion and the hydrated cerium (IV) oxide.

Fig. 10 Kinetics of adsorption of fluoride ion on hydrous cerium (IV) oxide prepared with urea. ● fluoride; ○ cerium (IV).

The adsorption capacity of the hydrated cerium (IV) oxide is very high, and it is useful for the removal of fluoride ions from an aqueous solution.
ขั้นนำของฟลูออไรด์ที่สมดุล (equilibrium fluoride concentration) ซึ่งเกิดขึ้นในปริมาณของฟลูออไรด์ที่เหลือในสารละลายกับความชุบดูดของ 10g-10g

ชื่อเป็นมั่นคงที่จะต้องแก้ไขกันอยู่ใน การศึกษาความมั่นคงระหว่างความ เป็นน้ำยาดังกล่าว ที่เป็นชุดของค่า ดูดซับ ที่นั่นและหลังการดูดซับจะได้ผล ฟลูออไรด์

ทำให้การวัด zeta potential ที่ ค่าดูดซับในสารละลายได้เมื่อปรับ คาร์บอเนต (NaCO₃ 0.005 M pH 2-12) เปรียบ เปรียบเทียบค่า zeta potential อีกค่าดูด ซับในสารละลาย 0.005 M ที่มีไฮโดรม ฟลูออไรด์เข้มข้น 1 mM และปรับ pH ที่ 2-12

![Fig. 11 Adsorption isotherm of some adsorbents.](image)

- hydroxyl cerium (IV) oxide;
- claysheitel;
- basic lanthanum (III) oxide;
- bone;
- basic gadolinium (III) carbonate;
- hydroxyl aluminum (III) oxide.

ความแตกต่างในการเปลี่ยนของมุทธุจุล - สารละลายของค่าดูดซับ 7 ชนิด

จากการศึกษาพบว่า hydroxyl cerium (IV) oxide มีความสูงที่สุด รองลงมาคือ claysheitel ซึ่งเป็นสารจากธรรมชาติ มีความสูงขับผ่าน และ hydroxyl lanthanum (III) oxide ซึ่งเป็นสารจากธรรมชาติ ที่มีความสูงที่สุด รองลงมาคือ basic gadolinium (III) carbonate ซึ่งเป็นสารจากธรรมชาติ มีความสูงที่สุด

![Fig. 12 Change in zeta potential by adsorption of fluoride ion on hydroxyl cerium (IV) oxide and basic gadolinium (III) carbonate with F.](image)

การวัดค่า zeta potential ของ วิธีการเข้มข้น ของ hydroxyl cerium (IV) oxide ก่อนและหลังการดูดซับฟลูออไรด์ วงกลมสี่ช่วงแสดงค่า zeta potential ของ hydroxyl cerium (IV) oxide ในสารละลายได้เมื่อปรับ pH 0.005 M pH 2-12 zeta potential มีค่าเพิ่มขึ้นเมื่อผ่านการ ทดลองที่เป็นน้ำยา และมีการเปลี่ยนแปลง ปรับ pH ให้สูงขึ้น วงกลมสี่ช่วงแสดงค่า zeta potential ของ hydroxyl cerium (IV) oxide ในสารละลายได้เมื่อปรับ pH 0.005 M pH 2-12 zeta potential มีค่าเพิ่มขึ้นเมื่อผ่านการ ทดลองที่เป็นน้ำยา และมีการเปลี่ยนแปลง ปรับ pH ให้สูงขึ้น วงกลมสี่ช่วงแสดงค่า zeta potential ของ hydroxyl cerium (IV) oxide ในสารละลายได้เมื่อปรับ pH 0.005 M pH 2-12 zeta potential มีค่าเพิ่มขึ้นเมื่อผ่านการ

![Fig. 13 Change in zeta potential by adsorption of fluoride ion on basic samarium (III) carbonate with F.](image)

GC: ค่าดูดซับชนิด basic samarium (III) carbonate ข้าง pH ในสารละลาย ฟลูออไรด์มีความสูงกว่า hydroxyl cerium (IV) oxide ในสารละลายที่เป็นน้ำยา ที่มีความรุนแรงในการดูดซับของฟลูออไรด์อยู่ตัวบาง จากการวัดพบว่า ข้าง pH 10 เริ่มขึ้นเกิน 2 เส้น เริ่มขึ้นเกินหลัก แม้ว่าจะไม่ขึ้นหลักกัน

การศึกษาการเปลี่ยนแปลงของ ปะจุนชุดของการดูดซับ ซึ่งเป็น แนวทางหนึ่งที่ทำให้ทราบว่าการดูด ชับฟลูออไรด์มีความสูงขึ้นพบว่า รูปแบบการตัดสินใจ

การศึกษาพบว่าค่าดูดซับ ชนิดสารละลายที่น้ำมันดีขอ สามารถปริมาณการดูดซับได้ต่ำถึงความเข้มข้น 0.4-5.0 ppm. ซึ่งเป็นไปตามที่กำหนดของมาตรฐาน น้ำที่จะ ควมความมั่นคงในการดูดซับฟลูออไรด์ขึ้นกับความมั่นคง.
เป็นสารตั้งของน้ำเสีย โดยทั่วไป การดูดซับไอออนฟูถูกเรียกขึ้นได้ในสภาพที่เป็นกรดมากกว่าใน
สภาพที่เป็นด่าง ถ้ามีความเป็นด่าง
มาก ๆ (pH ≥ 10) ดูดซับราว ๆ
จะไม่มีการดูดซับไอออนฟูถูก Cu2+ ดูดซับที่ใช้ในการทดลองสามารถ
ระดับได้ในสาระที่เป็นกรด ดังนั้น
จึงทำให้ส่วน pH ที่ใช้งานได้รับผลลัพธ์
เมื่อจัดตั้งแต่ละนั้นอยู่ในช่วงตัวตัว
ดูดซับและระดับจะมีส่วน pH เท่ากับตัว
ที่ใช้งานแตกต่างกันไป เช่น hydrous lanthanum (III) oxide ควรใช้ในช่วง pH 7-8 basic lanthanum (III) carbonate ควรใช้งานในช่วง pH 5-6 และ hydrous cerium (IV) oxide สามารถใช้
งานได้ในช่วง pH น้อยกว่า 4 ลงไป
โดยไม่ต้องคำนึงถึงสาระละลายของ
ไอออนซีริย์ เมื่องานดูดซับ
ชนิดนี้มีคุณสมบัติเด็กในสาระที่เป็นกรด
จากการศึกษาถัดไปในการ
ที่ใช้ไอออนฟูถูกรี พบว่า ปฏิกิริยา
ในกรดซับไอออนฟูถูกจะเกิดขึ้นด้วย
ดูดซับเกิดขึ้นภายในเวลา 2 ชั่วโมง
ยกเว้น basic gadolinium (III) carbonate ซึ่งใช้วิธีถัง 8 ชั่วโมง และจากการ
ศึกษาที่ทำให้ทราบว่า ปฏิกิริยาการ
ดูดซับไอออนฟูถูกจะเกิดขึ้นก่อน
จนกระทั่งปฏิกิริยาเริ่มถึงสมบูรณ์
แล้ว จึงเริ่มเกิดปฏิกิริยาสารละลาย
ของไอออนดูดซับตามมา
จากการศึกษาความถูกในการดูด
ซับไอออนฟูถูกรี พยาบาล
hydrous cerium (IV) oxide มีความถูกในการดูด
ซับไอออนฟูถูกรีในเวลาน้ำมันมาก
ที่สุด และสารจากธรรมชาติ ได้แก่
เปลือกหอมจาก และ กระดูกหมู ยิ่ง
ความถูกในการดูดซับไอออนฟูถูกรี
สูงก็เท่ากับสารสังเคราะห์ แต่มี
ข้อเสียคือ ไม่สามารถปรับปรุงการไอออน-
ฟูถูกได้ความเข้มข้นต่ำได้ โดย
สามารถปรับปรุงการไอออนฟูถูกรี
ลงเหลือ 34 ppm. และมีการละลาย
ของไอออนเคยออกขึ้น และ ไอออน-
ฟูถูกด้วย อย่างไรก็ตามสารจาก
ธรรมชาติซึ่งเป็นน้ำมันที่จะมา
มาที่หลากหลายก็จะยากไม่ใช้ประโยชน์
ในการเป็นตัวเครื่องผิวไอออน-ฟู
ถูกรีในชั่วโมงได้ เมื่อนักมี
อยู่ในธรรมชาติเป็นน้ำมันมาก ทั้งนี้
รักษาและสิ่งที่เกี่ยวข้อง สารจาก
ธรรมชาติจะไม่ทำให้เกิดผลการดูด

เอกสารอ้างอิง

p. 423

advanced technique for treatment of wastewater containing hazardous substances from high-technology industry.

ศกสิทธิ์พุดูถูกรี, ศิริยากรเกื้อวิศ. พฤกษานา-บันทึก 2527 ปีที่ 1, ฉบับที่ 3, หน้า 40
สมรภูมี วัฒนธรรม และ อันเนก ถิ่นท้องถิ่น ปรับปรุงฟูถูกรีในน้ำบริเวณของบ้านกูนที่และใหญ่
วารสารของจังหวัดน่าน. กรกุดสกันท์, 2524, ปีที่ 3, ฉบับที่ 3, หน้า 163-164.