แผนภูมิควบคุมคุณภาพสำหรับห้องปฏิบัติการวิเคราะห์ (Control Chart for Analytical Laboratory)

เกรฟ ดานุกิจ

แนวคิดควบคุมคุณภาพเป็นวิธีที่ใช้สำหรับควบคุมคุณภาพการวิเคราะห์ให้อยู่ในมาตรฐานที่มี ซึ่งคือทางวิเคราะห์ค่อนข้างที่จะไม่มีการใช้แผนภูมิควบคุมคุณภาพในทางปฏิบัติการ ดังนั้น พ.ศ. 2463 ให้สหภาพไทยเป็นสหสพ. Bell (Bell laboratories) ประกาศหลักเกณฑ์ องค์ประกอบที่สำคัญของแผนภูมิควบคุมคุณภาพ

1. ค่ากลางหรือค่าเฉลี่ยของข้อมูล (mean) คือความรวมของค่าที่วัดได้ที่ทุกครั้งอย่างต่อเนื่องทีวัด
2. การกระจายของข้อมูลต้องเป็นแบบปกติ (normal distribution)
3. ขอบเขตที่กำหนดชั้นป้องกันของผลการยอมรับ (control limit)
ขอบเขตของข้อมูลอยู่ในลักษณะที่จะต้องคัดลอก ถ้าค่าที่ได้ค่าสูงกว่าที่กำหนดจะถือว่าข้อมูลอยู่ในชั้นที่มีค่าสูงเกินไปจะต้องขอตรวจสอบ
ขอบเขตการควบคุมที่ใช้เป็นส่วนประกอบของแผนภูมิควบคุมคุณภาพ หมายถึงระยะเวลาการตัดสินใจว่าข้อมูลอยู่ในชั้นที่สามารถตอบสนองได้ และข้อมูลที่อยู่ในชั่วโมงนี้จะมีค่าส่วนเบี่ยงเบนมาตรฐาน

\[
S = \sqrt{\frac{\sum(x - \bar{x})^2}{n-1}}
\]

\[
\bar{x} = \frac{\sum x}{n}
\]

\[
X_i \text{ คือค่าที่วัดได้ในแต่ละครั้ง}
\]

\[
\bar{x} \text{ คือค่าเฉลี่ยของผลสัมเกตุ}
\]

\[
K \text{ คือจำนวนครั้งที่วัดค่าอย่างน้อย 30 ครั้ง}
\]

ขอบเขตควบคุมบน (upper control limit) หรือ \(UCL = \bar{X} + 3S \)
ขอบเขตควบคุมด้านล่าง (lower control limit) หรือ \(LCL = \bar{X} - 3S \)

การคัดกรองด้านล่างซ้องกัน:

- การวัดครั้งเดียว (single measurement) เช่น การวัดคิวแบบต่อเนื่องหรือในตัวอย่างที่ได้โดยใช้ Inductive Couple Plasma (ICP) ทำให้ผลลัพธ์ต่ำกว่า 50 ส่วนในพันล้านส่วน (ppb)

\[
\text{ขอบเขตควบคุมกลาง (CL)} = \bar{X} = \frac{\sum X}{K}
\]

\[
X \text{ คือค่าที่วัดได้}
\]

\[
\bar{X} \text{ คือค่าเฉลี่ยของผลสัมเกตุ}
\]

\[
J \text{ คือจำนวนครั้งที่วัดค่าอย่างน้อย 30 ครั้ง}
\]

\[
S_i^2 = \frac{\sum (X_{ij} - \bar{X}_j)^2}{J-1}
\]

\[
S = \sqrt{\frac{\sum S_i^2}{J-1}}
\]

เนื่องจาก คือค่าในแบบมาตรฐานของผลค่าที่วัดได้ในแต่ละกลุ่มย่อย ความแปรปรวน
เมื่อ X คือค่าการวัดในแต่ละกลุ่มละที่ I และ X คือค่าเฉลี่ยของกลุ่มละที่ J

$$i = 1,2,\ldots, I \text{ และ } J = 1,2,\ldots,J$$

ของขนาดความสัมพันธ์ $LCL = CL-3S/J$

จ้านวนค่าที่เก็บมาในการสื่อแบบภูมิคุณภาพคัดให้

c่ามกนิยมในในการประจำการคัดผลได้ จ่แน่นอนค่าใช้ในการค่าาน
ค่า่นการและให้ประสิทธิภาพของการตรวจวัดที่สูงในทาง
ปฏิสัมพันธ์การแพร่ได้วัดค่า 2 ครั้ง อีกค่านนท์ย่า การใช้ค่า
ค่านอกการวัดข้างต่อๆ รวม สูตรที่ใช้ค่าน้านจำนวนข้างคือ $2/\sigma$

สมการค่าานหรือการสร้างที่ใช้ค่าภูมิคุณภาพคัดเมื่อเอกสาร
รวบรวมค่าภูมิที่เตรียมข้าวมีมูลค่าและที่เสนอ มีความค่า
ให้ค่าน้ำทีจริง (true value) และสมการค่าานกับถ่นอย่างที่
ต้องการวัดค่าน้ำมี matrix ใกล้เคียงกัน

การตรวจคานแบบภูมิคุณภาพ

แผนภูมิคุณภาพภูมิคุณภาพที่ใช้คือการวัดของการออก
ออกค่าตั้งแต่วัดที่เตรียมภูมิที่ตั้งค่าน้ำ มีภูมิที่ไม่สูงในกฎของเขต
งกว่าค่าภูมิที่เตรียมภูมิที่ตั้งค่าน้ำ มีภูมิที่ตั้งค่าน้ำ
กว่าค่าภูมิและส่ง เมื่องัดค่าในสมุทเรื่องภูมิคุณภาพคัดผล
โดยกระบวนการตรวจวัด (analysis procedure) ไม่ยุ่งยากในการ
ค่าภูมิคุณภาพการปรับปรุง แต่ให้ข้อผิดพลาดสูงอย่างมาก เชน
การเตรียมตัวอย่าง ผู้ตรวจคานหรือประสบการณ์ เนื่องจากค่าภูมิ
คุณภาพคัดผลของภูมิที่ตั้งค่าน้ำ อันข้อมูลที่มีการกระจายแบบไม่ปกติ เป็น
ลักษณะนี้มีข้อดีในตัวอย่าง ถ้าเกิดเนื้อจากเครื่องมือเลือกคุณภาพ
การแพร่ผลเสียเปลี่ยนแปลง ผลกระทบจากคุณภูมิ ความซับ อันเดีย

MINTAB STATISTIC

ได้ทำการออกแบบสื่อสำหรับ
แผนภูมิคุณภาพภูมิคุณภาพที่คิดค้น ดังนี้ (ภาพที่ 1)

1. เมื่อถึงที่จุดจากข้อมูล 1 จุด อยู่ในโซน A
2. ส่งบัตรจุดของข้อมูลแผนภูมิคุณภาพที่มี 9 จุด
ที่ต้องเน้นอยู่ในโซน C (ผ่านด้านบนของเขตคุณภาพ)
3. จำนวน 6 จุดที่อยู่ในเมื่อ โดยเพิ่มขึ้นหรือลดลงด้วย
4. จำนวน 14 จุดที่ต้องเน้นขึ้นและลง
5. 2 ใน 3 ของข้อมูลที่อยู่ในโซน A หรือเหนือโซน C
6. 4 ใน 5 ของข้อมูลที่อยู่ในโซน B หรือเหนือโซน C
(ด้านล่างหรือด้านบนของเขตคุณภาพ)
7. จำนวน 15 จุดที่ต้องเน้นในโซน C ที่อยู่เหนือหรือได้
เส้นขอบคุณภูมิคุณภาพ
8. จำนวน 8 จุด ที่ต้องเน้นในโซน C ที่อยู่เหนือหรือได้
เส้นขอบคุณภูมิคุณภาพ UCL............+3 σ
Z0ne A +2
Z0ne B +1
Z0ne C
CL=0
Z0ne C -.1
Z0ne B -.2
Z0ne A
LCL............-3 σ

ภาพที่ 1 แสดงกราฟเน้นของคุณภูมิ MINTAB

ตัวอย่างแผนภูมิคุณภาพสำหรับงานวิจัยหรือด้วยเครื่องมือ
ที่มี $LCL = CL-3S/J$

ค่าที่ต้องเน้นคือนั้นจะต้องติดต่อกัน การตรวจวัดขั้นตอนสูง 2 ครั้ง
น้ำมันชุดเดียวกัน ผลปรากฏว่าทุกชุดของข้อมูลอยู่ภายในเขตคุณภูมิ
(ภาพที่ 2)

ภาพที่ 2 แผนภูมิคุณภาพภูมิคุณภาพสำหรับงานวิจัยหรือด้วย
เครื่อง HPLC

ตัวอย่างที่ 2 แสดงแผนภูมิคุณภาพภูมิคุณภาพสำหรับงานวิจัยหรือด้วย
เครื่อง Inductive Couple Plasma (ICP) ผลการตรวจผลิตภัณฑ์ในนี้
ต้องการให้ได้ผลในที่มีเกินกว่า (Fe) 50 ppb ทำการวัด 49 ครั้ง
จากการรวมคุณภาพคุณภาพที่ดีที่สุดของผลการตรวจผลิตภัณฑ์
และผลการตรวจผลิตภัณฑ์ที่อยู่ภายในค่าภูมิ มีขั้นตอนล็อกชัน
(ภาพที่ 3)

ภาพที่ 3 แผนภูมิคุณภาพภูมิคุณภาพสำหรับงานวิจัยหรือวิจัย
ผลิตภัณฑ์ใน QC Sample

แผนภูมิคุณภาพภูมิคุณภาพจากสารภูมิที่เกี่ยวข้องกับ
กระบวนการตรวจผลิตภัณฑ์สามารถใช้ในการควบคุมของการออกวิทยา
หรือปฏิบัติผู้ตรวจและสามารถให้ข้อมูลข้อมูลของเครื่องมือ
ให้มีประสิทธิภาพเพิ่มขึ้น

แหล่งข้อมูล