Abstract

This study was carried out to develope boiling quail egg in retort pouch, by comparing the effect of preheated-treatment, retort pouch material, and retort treatment. The effect of preheated-treatment was done by boiling quail egg in various NaCl concentration between 0.0, 0.5, 1.0 and 5.0%. The boiling temperature were 80 and 100 °C at 3, 5 and 10 minutes of each temperature. The effect of packaging was done by comparing retort pouch material between the used of aluminium foil pouch and foil-free pouch. The effect of retort treatment was done by varying retort temperature at 110, 116, and 121 °C, and varied retort time at 10, 15, and 30 minutes. It was shown that an appropriate preheated-treatment of quail egg in NaCl 1.0% at 80 °C for 3 minutes, because of this condition was less peeling loss treatment. An appropriate retort pouch package for filling boiled quail egg is foil-free pouch, because it was not effect on quail egg color while storage. And the appropriate retort treatment is retort temperature at 116 °C for 10 minutes.

1. บทนำ

การศึกษาสารสกัดวิริยะ โดยกลุ่มวิชวลและพัฒนาผลิตภัณฑ์อาหาร สานักเทคโนโลยีมุขาน ดำเนินงานศึกษาวิจัยเรื่อง การพัฒนาผลิตภัณฑ์ที่แปรรูปผลิกระด_ib (boiling quail egg) โดยมีแนวคิดที่ว่าการปรับปรุงกระบวนการผลิต และการเปลี่ยนแปลงของบรรจุภัณฑ์จะส่งผลต่อคุณภาพผลิตภัณฑ์ในแง่ของการบริการ การบริการจะไม่ได้ เพราะกระบวนการผลิตจะไม่ได้เก็บกำลังที่มีสำหรับอาหาร ถึงเป็นทุ่มเทุ่มไปยังที่ได้สูญเสีย โดยแทบไม่ใช่กระบวนการทางชีวภาพ ที่เกิดจากการกินอาหารเกิดได้จากขั้นตอนการประกอบเคมี
และขั้นตอนการให้ความร้อนในการทำอิโซติคหรือดับเบิ้ลเรต
วิธี ทำจากเนื้อที่ดำรงรีบนั้นลุกหน่วยว่าจะค่อนข้างถูกต้องในการผลิตได้สำหรับ
ซึ่งผลล่าสุดของการวิจัยสามารถนำไปปริมาณคิดในบริษัทจัด
มุกคุณคุณในการผลิตและปรับปรุงลักษณะได้

วิธีปรุงอาหาร หรือ วิธีเรต (retort pouch) เป็น
บรรจุภัณฑ์ที่ทำจากพลาสติกหรือวัสดุอื่น 4 ชั้น ประกอบด้วย
โดยยึดกับสูตุเป็นโพลีแอลกอน (polyester) ขั้นที่สองเป็น
ใน (nylon) ขั้นสุดท้ายเป็นโพลีเตอร์ (polyvinylidine
chloride) หรือมิโซลี่นิเมทายอล (aluminium foil) และ
ขั้นในสุดเป็นโพลีตีฟีน (poly-propylene) จึงเป็นสมบัติ
ของอุตสาหกรรม ได้ถูกเรียกเป็น.Contains มีลักษณะต่าง ๆ ที่ประกอบ
เป็นอุตสาหกรรม คือ แบบเต็มลง (มิโซลี่นิเมทายอล) และแบบไม่
(มิโซลี่มิเนทายอล) อีกขั้นของอุตสาหกรรม คือ มีความเย็นกัน
เยี่ยงไม่แตกต่างกันมากนัก น้ำมันน้ำตาล ไป้ที่ในน้ำมัน
และต่อต้นนอนกับที่ใช้ในการทำอิโซติคหรือดับเบิ้ลเรตได้
อย่างกว้างขวาง แต่ 121 度 Calamine ไม่แตกต่างกันมากกับ
กันอาหาร นอกจากนี้อาหารในอุตสาหกรรม ต้องมีความดัน
และสิ่งนี้ เพราะอุตสาหกรรมเพื่อการบริการอาหาร
ในการปรุงอาหาร อุตสาหกรรมตามอาหารที่ถูกออก ปิดเผื่อน
ปรากฏตัวความเร็ว แล้วก็ไม่แยกrząd ซึ่งอุตสาหกรรมนี้ได้ความดัน
ไม่เกิน 30 ปอนด์ต่อตารางนิ้ว เพราะอุตสาหกรรมกันน้ำ
จะทำให้ไม่มีอุตสาหกรรม futureได้ (ยูนิก้า 2548)

การล้างขั้นตอนอุตสาหกรรมที่เร็วเรตเร็ว คือ การล้างตกลง
ซึ่งที่เร็วเรตในอาหารด้านความร้อนขึ้นที่อุณหภูมิสูง นิยมใช้กับ
อาหารที่ต้องปรุงในอาหารนั้นเป็นต้น เช่น อุ่นอาหาร หรือ
อาหารอุตสาหกรรมที่ไป้กับอาหารสามารถกันได้เป็นระยะ
เวลานานที่อุณหภูมิสูง การใช้ความเร็วขึ้น หรือการใส่ใจ
คือ การใส่ใจที่มีอุณหภูมิสูงต่างกันอุณหภูมิ น้ำดื่ม โดยความร้อน
จะกระทบไปยังในอาหารหรืออย่างรวดเร็วอาหารที่ต้องการ
ทำเย็นได้ที่ดีจากการดัน มีความจำเป็นความดัน ตามกับการ
เดือนอิโซติคซ์ (Sterilization) ระยะเวลาการทำอิโซติคหรือ
น้ำดื่มกับอุณหภูมิ และความดัน กล่าวคือจากการใช้อุณหภูมิและ
ความดันสูงระหว่างที่ดีในการทำเย็นอุตสาหกรรมจะได้ผล
การใช้ความร้อนในการผลิตอาหาร ผลิตภัณฑ์ความร้อนจะเพิ่ม
จากตั้งต้นที่ได้ไปสู่ต้นที่เดิม โดยความร้อนจะทำให้เกิดการจมูก
ของอาหาร.AspNetCore การใช้เวลานาน การปรุงอาหารในการแปรรูป
การแปรรูปอาหาร และวิธีการ
ทำเย็นอุตสาหกรรม ซึ่งไม่ได้กระทำการในน้ำมันก็เป็นอุตสาหกรรมที่ใช้
ผลิตภัณฑ์ที่มีการแปรรูปอาหารนอน运营แผนความร้อนอย่างรวดเร็ว
ตลอดระยะเวลาการกล่อม

จุดเริ่มที่สำคัญ การปรุงอาหารในการบริโภคเนื้อ
กระเทย กระเทย และกระเทยอื่นๆ ซึ่งความร้อนทำให้เกิด
เฉพาะบรรจุภัณฑ์ที่มีสูตรอาหารพิเศษในอาหารในจุด
ที่เริ่มต้นที่สำคัญในการแปรรูปอาหารที่กระจาย หากความร้อน
ที่ใช้ในการทำอิโซติคหรือดับเบิ้ลเรตแล้วถูกอุตสาหกรรมนั้น
ดังนั้นจะได้รับความร้อนอย่างเพียงพอเท่านั้น
โดยเฉพาะอย่างยิ่งอาหารที่ความเป็นกรดจัด (low acid food)
เพราะหลายประเภทของ Clostridium botulinum เหลืออยู่จะส่ง
ผลตอบแทนต่ออาหารของผู้บริโภคที่เร็วคาดการนั้น การทำ
จุดเริ่มที่สุทธิโดย การจะบรรจุปรุงอาหารเพื่อเฝ้าระวังของ
เทอร์โมคูป (thermocouple) ไม่ใช่ปริมาณที่ตัดแหล่งที่ขาด
ว่างจะเป็นจุดเริ่มที่สุด 3 จุด ซึ่งต้องระวังเพื่อจำกัด
แหล่งข่าวที่*z* ถ้าเป็นอย่างนั้นจะทำให้เกิดผลการที่เสีย
เนื้ออาหารของอุณหภูมิเกิด แกนเสียหายที่ปฏิบัติการด้านอุณหภูมิ
เข้าเป็นออกเสียแล้วจะมีผลกระทบต่ออาหารระหว่าง
การให้ความร้อน ณ จุดเริ่มที่สุดแล้ว เพื่อเป็นเหตุผล
เนื้ออาหารของอุณหภูมิที่ได้ แก่ที่ต้องมีความเสียดาย
ให้ใช้เทอร์โมคูปเป็นเครื่องมือในการเปลี่ยนอาหาร เป็น
อุณหภูมิที่ต้องการในอุณหภูมิได้ อยู่ที่ความร้อนที่เริ่มก่อน
ต้องพิจารณาในการตัดแหล่งที่ขาด
การคำนวณการตัดแหล่งที่ขาด (General method) เป็นวิธีพื้นฐานอย่างที่คำนวณการตัดแหล่งที่ขาด
Thermal death time (P) ของกระบวนการตัดแหล่งที่ขาด เรียกเป็น
ตัวอักษรการตัดแหล่งที่ขาดหรือสิ่งลิ้นที่ต้องการได้
อุณหภูมิที่ก่างที่ยังถูกเปลี่ยนโอกาสการปฏิบัติงาน การตัดแหล่งที่
ขาดอย่างไรก็ตามไม่สามารถทำไปได้เท่านั้น การตัดแหล่งที่ขาด
การคำนวณด้วยวิธีที่ดี คือ มีการเปลี่ยนแปลงการปฏิบัติงานด้วย

ปีที่ 59 ฉบับที่ 185 เดือนมกราคม 2554
หมาย.ฉ.ธ.30.ธ.
ตัวอย่างจากข้อมูลจากการว่า F ทำได้โดยแปลงค่าอุณหภูมิของ
อาการระเบิดไปเป็นค่า Lethal rate (L) ตัวแปรแสดงในสมการที่ 1

\[L = 10^{(F-T_s)z} \](1)

เมื่อ
L คือ อัตราการพ่ายแพ้ หรือ Lethal rate
T คือ อุณหภูมิที่กำหนด
T_s คือ อุณหภูมิสัมปะภาพ
z คือ อุณหภูมิที่เปลี่ยนแปลง แล้วทำให้เกิด
ที่เปลี่ยนแปลงอุณหภูมิที่เป็นน้ำได้ 90% ของอุณหภูมิสัมปะภาพ
ที่ทดสอบ มีค่าเปลี่ยนแปลงไป 10 เท่า

การหาจุดที่มีค่าที่สูงที่สุด โดยจะบรรจุไมโครกรัมเพื่อ
เปลี่ยนแปลงของอุณหภูมิเพิ่มเติม ไม่เปลี่ยนแปลงค่านี้ที่คาดว่า
จะเป็นชุดเริ่มต้นที่สุด 3 ชุด ซึ่งต้องวัดระยะเพื่อกำหนด
ตัวแปรให้แน่นอน จากนั้นบันทึกอุณหภูมิในอาการระหว่าง
การให้ความร้อน ในชุดที่มีความต่างกัน เพื่อปรับเปลี่ยน
สภาวะของอุณหภูมิที่ได้ การใช้อาการที่มีการเปลี่ยนแปลงอยู่ด้วย
ให้เปลี่ยนแปลงอุณหภูมิในแบบที่มีการเปลี่ยนแปลงอยู่ในชุดอาหาร เข็น
กลิ่นแก้ไขความต่างกันการใช้การเปลี่ยนแปลงกับ
การเปลี่ยนแปลงขึ้น ระวังไม่ให้เปลี่ยนแปลงจากอุณหภูมิ
นอกจาก เพราะอุณหภูมิที่ต้องจะเป็นอุณหภูมินี้แล้วไม่ใช่
อุณหภูมิจริงที่ต้องการ

เมื่อทราบค่า L ที่เจอข่ายนี้ plot ค่า Lethal rate กับ
เวลานับหนึ่งที่ได้การ ได้ค่า F ซึ่งความสัมพันธ์ระหว่าง
ค่า F กับค่า L แสดงในสมการที่ 2

\[F = \sum_{i}^j L(t) \](2)

การหาจุดที่ได้การด้วยวิธีของอินเปสัน ตัวแปรแสดงใน
สมการที่ 3

\[Area = \frac{d}{3} (y_0 + 4y_1 + 2y_2 + \ldots + 2y_{n-2} + y_{n-1} + y_n) \](3)

จากสมการที่ 3 ได้ว่าหาที่เพียงพอต่อการร่อน (F_0)
ตัวแปรแสดงในสมการที่ 4

\[F_0 = \frac{\delta}{3} [L_0 + 4L_2 + 4L_2 + 2L_3 + \ldots + 2L_{n-2} + 4L_{n-1} + L_n] \](4)

2. นัยสำคัญและสาระเนื้อ

1) ไม่เก็บข้อมูลสิ่งปกติ วิเคราะห์กับข้อมูลกลุ่มกระทบการ
ผู้ดื้อการยกระดับและปรับปรุงด้านกิจการ จัดการวิเคราะห์

2) ไม่เก็บข้อมูลใน จากผลด้านตัวแปรการ ครูเทศบาล

3) เก็บปรับปรุง

4) กระทรวง

5) ทุจริตระบบแบบแท้ และทุจริตวัดแบบไม่ คาด

12 × 18 เยนดินเดอร์

6) เครื่องรับและมิตรภาพพันไม้ร้าน (hot water
spray retort) บริษัท เขตตะดิน เจ้าดัง ครูเทศบาล

*เมื่อมีวิธีการเก็บข้าว และการนำไปในกระทำการ
จากกลุ่มกระทบการผู้ดื้อการยกระดับและปรับปรุงด้านกิจการ
จัดการวิเคราะห์ไม่ได้การทดสอบ คือ ไม่เก็บข้อมูลสิ่งปกติ
หลังการเก็บข้าวที่ดื้อการยกระดับผู้ดื้อข้าว เช้นนี้จะควรทำเก็บไว้ที่
อุณหภูมิที่ต้องเก็บเกี่ยวกับผลิตภัณฑ์ไม่ใช้ขนจากไม่
น่าการ หรือมีหาการเก็บเกี่ยวกับข้าว (syneresis)
(Berkowitz, 1984) ทำให้ไม่เก็บข้อมูลที่เกี่ยวข้องเป็นต่อไปได้
น่าการต้องเก็บข้าวในกระทำการ

3. วิธีการทดสอบ

1) วิธีการเตรียมวัตถุดิบ

ศึกษาผลการทำงานการเตรียมวัตถุดิบเรียบเรียง前所未有
ความดันแบบน้ำ เลือก อุณหภูมิการตัดไม้ และการตัดไม้
คือของความเปลี่ยนแปลงโดยยืดหยุ่นของ 0.05, 1.0, และ 5.0
อุณหภูมิการตัดไม้ 80 องศาเซลเซียส และ 100 องศาเซลเซียส
ระยะเวลาการตัดไม้ในกระดาษ 3 นาที, 5 นาที และ 10 นาที
ตรวจสอบการควบคุมจากการปลอดภัยไม่เกินกระดาษ (% loss)
ทดสอบอัลกอนจากทางการ (G, กlei, และเรือนสัมผัส) และ
ทดสอบอัลกอนจากทางสมมติผลโดยการทดสอบ
2) ยืดเยื้อมรจุภูมิ

ก่อนการทดลองสุญญากาศจากการป้องกันอุณหภูมิ บรรจุสุญญากาศด้วย 2 แบบ ค่าร้อยละ 10 ฟอง น้ำหนักประมาณ 100 กรัม เติมน้ำเกลือยี่ข้นเรื่อยไป 0.1 บริสตา 150 มิลลิลิตร โลหะอุ่น ปริมาณปรับอุณหภูมิความร้อน ทดลองล้างทะ

3) ลาการในเคลื่อนที่บริเวณ

ศึกษาการเคลื่อนที่บริเวณที่เก็บผลของดักภูมิและเวลาการนำสู่ คือที่ดักภูมิ 110 องศาเซลเซียส 116 องศาเซลเซียส และ 121 องศาเซลเซียส ที่เวลา 10 นาที 15 นาที และ 30 นาที ทดลองล้างทะมานภาพ (สี กลืน ริน และเรียกสีเพิ่ม) และทดลองล้างทะมานภาพประจำสัมพันธ์ (9-point hedonic scale) เป็นการประเมินความชอบที่ได้ตัวลิบลิตร์ อ่านสี กลืน และเรียกสีเพิ่ม จากการให้คะแนน 1-9 โดย 1 คือ รอบน้ำหนักที่สูง และ 9 คือ รอบมาจากที่สูง การทดลองผลสูญนกยอมจำนวน 10 คน กระบวนการผลิตดักภูมิระหว่างสุญญากาศโดยอุปกรณ์ ตัวแสดงในภาพที่ 1

ภาพที่ 1 a. ล้างทรายและยาในกระดาษ b. ติ้งน้อกระหว่างในน้ำเกลือ c. ผ่านไม้ในน้ำเกลือ บนเปลือกไม้ ลำดับลำน้ำเกลือบนเปลือกไม้มีเฝ้า d. โลหะอุ่น ปริมาณตัวความร้อน e. ติ้งน้อกระหว่างอุณหภูมิ f. ติ้งน้อกระหว่างอุณหภูมิ g. อุณหภูมิ h. อุณหภูมิ i. อุณหภูมิ j. อุณหภูมิ

4. ผลการทดลองและวิเคราะห์

1) ลาการในสมัครวิจัย

จากการทดลองการดักภูมิในกระดาษที่ดักภูมิ 100 องศาเซลเซียส เรา 3 นาที, 5 นาที และ 10 นาที พบว่า % ลงจาก การป้องกันอุณหภูมิสำหรับละ 83.0, 83.5 และ 84.0 ตามลำดับ จากการทดลองนั้น พบว่าเวลาที่ใช้ติ้งน้อกระหว่างการนำลงกัน ไม่มีผลต่อความร้อนด้านน้ำเกลือและเสิร์ฟไปอะไรสามารถทำน้ำมันออกจากกระดาษได้ คือ เซียร์ตัวที่ไม่ผลิต และทรุดสูญเสีย โดยการติ้งน้อกระหว่างที่ดักภูมิ 100 องศาเซลเซียส เรา 10 นาที เซียร์ตัวแล้วกระดาษไม่แตกมากกว่าการติ้ง ที่เวลา 3 นาที และ 5 นาที ตัวแสดงในตารางที่ 1
ตารางที่ 1 ผลข้อมูลทดลองการคัดเลือกในกลุ่ม 3 นาที 5 นาที และ 10 นาที ของตับเกินที่ 100 องศาเซลเซียส

<table>
<thead>
<tr>
<th>Preheated-Treatment (1)</th>
<th>เวลาการคัดเลือกในกลุ่ม (นาที)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% loss จากการปากเปลือก (เฉลี่ย)</td>
<td>83.0a 83.5a 84.0a</td>
</tr>
<tr>
<td>เม็ดเลือดแดง</td>
<td>5.2a 5.5a 5.1a</td>
</tr>
<tr>
<td>ผลิตภัณฑ์</td>
<td>5.4a 5.0a 5.2a</td>
</tr>
<tr>
<td>ผลิตภัณฑ์ติดโรคแผ่น</td>
<td>4.1a 3.8a 3.2b</td>
</tr>
<tr>
<td>ผลพิษ (++) พบ / (-) ไม่พบ</td>
<td>+ + +</td>
</tr>
</tbody>
</table>

เมื่อ a, b เป็นสัญลักษณ์ค่าความแตกต่างในคัดเลือกเดียวกัน คือ ในคัดเลือกเดียวกันตกลงที่เหมือนกันแสดงว่าไม่มีความแตกต่าง

ผลการวิเคราะห์การคัดเลือกผลด้วยการกัดตัวมิได้เปลี่ยนคำว่าแปลง โดยการควบคุมตัวอย่างในการตัดไม่ 100 องศาเซลเซียสเป็นเวลา 3 นาที จะมี % loss จากการปากเปลือกต่ำที่สุด และเกิดผลเปรียบต่ำไปนั้นตัวมิได้สูญเสียเข้าเกี่ยวกับการตัดไม่ 100 องศาเซลเซียสที่เวลา 5 นาที และ 10 นาที และเรียกว่าการตัดไม่ทำให้เกิดการคงออกตลอด ซึ่งจุดเด่นเป็นตัวที่จุดเด่นที่จากภาพประวัติซึ่งเกิดจากผลต้องที่ไม่ยอมในระหว่างการตัดไม่ เช่น Salmonella พืชดุกิริยาและภาพภูมิภูมิย้าย เป็นต้น แต่จุดเด่นวิเคราะห์ตามที่ไม่มีสูญเสียหลักจากกระบวนการเตรียมตัวเพื่อให้ หรือการแย่งจุดเด่นครั้ง สามารถผลการกัดตัวมีผลต่ำขณะที่ไม่ยอมจาก Salmonella ได้โดยการมีตัวนักอนามัยไม่ทำให้บุคคลติดติดไว้ที่ยังไม่แตกต่างวิธี นอกจากนี้ยังมีการดำเนินการไม่เล็กๆ ทำให้ปฏิบัติการกระดูกเล็กในไปเล็กติดเป็นพิษวิทยาของโรค (feric sulfide) ทำให้เกิดผลต่ำที่ไม่แยก (Patel, 1998)

จากการทดลองที่ต้องการทดลองที่ผลด้วยการตัดไม่ในกลุ่ม 80 องศาเซลเซียสและ 100 องศาเซลเซียสเป็นเวลา 3 นาที มี % loss จากการปากเปลือกต่ำดีต่ำกว่าคีรี และ 83.2 ค่าทางาน นั้นจากการทดลองพบว่าเวลาที่ใช้ผลประโยชน์การตัดไม่ต่ำข้อมูลต่างกันไม่มีผลต่อความขยายน้ำชื่อไปผล แต่ข้อมูลผลต่อความขยายน้ำชื่อเป็นผลติดติงต่ำเมื่อผลพิษและผลไม่ผล ต่อ ผู้ตอบความของการตัดไม่ต่ำผลไม่ผลในผลติดติงต่ำของกลุ่ม 80 องศาเซลเซียสเป็นเวลา 3 นาที จนกว่าการตัดไม่ต่ำกลุ่ม 100 องศาเซลเซียสเป็นเวลา 3 นาที แล้วแตกต่างในตารางที่ 2

ตารางที่ 2 ผลข้อมูลทดลองการคัดเลือกกลุ่มตับเกินที่ 80 องศาเซลเซียสและ 100 องศาเซลเซียสเป็นเวลา 3 นาที

<table>
<thead>
<tr>
<th>Preheated-Treatment (2)</th>
<th>ผลตับเกินที่การตัดไม่นำผล (องศาเซลเซียส)</th>
</tr>
</thead>
<tbody>
<tr>
<td>เวลาการคัดเลือกในกลุ่ม 3 นาที</td>
<td>80</td>
</tr>
<tr>
<td>% loss จากการปากเปลือก (เฉลี่ย)</td>
<td>80.2a</td>
</tr>
<tr>
<td>เม็ดเลือดแดง</td>
<td>4.9b</td>
</tr>
<tr>
<td>ผลิตภัณฑ์</td>
<td>5.4a 5.5a</td>
</tr>
<tr>
<td>ผลิตภัณฑ์ติดโรคแผ่น</td>
<td>5.4a 4.3b</td>
</tr>
<tr>
<td>ผลพิษ (++) พบ / (-) ไม่พบ</td>
<td>-</td>
</tr>
</tbody>
</table>

เมื่อ a, b เป็นสัญลักษณ์ค่าความแตกต่างในคัดเลือกเดียวกัน คือ ในคัดเลือกเดียวกันตกลงที่เหมือนกันแสดงว่าไม่มีความแตกต่าง
แสดงว่าความเนื้อเยactersไม่มีผลต่อเนื้อเยactersและเสือยได้โดยการควบคุมการตั้งไข่ที่อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 3 นาที จะได้ถึงสัมผัสถึงอุณหภูมิและสารพิษต่างๆ ทำให้การตั้งไข่ที่ 100 องศาเซลเซียส เป็นเวลา 3 นาที และการตัดไป โดยใช้กับการตั้งไข่ การส่วนที่ดูจะต้องไม่ได้เจริญ และการควบคุมการตั้งไข่ในการตั้งไข่ของอาหารกิจวัตรเดิมได้ และการเปรียบ ความเปรียบต่างกันยังมีการเกิดเปรียบได้มากขึ้น (Berkowitz, 1984)

จากตารางต่อไปนี้หากผลผลิตความเข้มข้นของน้ำเกลือต่อการตั้งไข่ในกระดาษ พบว่าการตั้งไข่ในกระดาษที่อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 3 นาที ที่ความเข้มข้นของน้ำเกลือเริ่มต้นที่ 0.0, 0.5, 1.0 และ 5.0 มี % loss จากการตั้งไข่ 76.7, 53.3, 40.4 และ 46.7 ตามลำดับ และจากการทดลองนี้ พบว่าการตั้งไข่ในกระดาษน้ำเกลือ ความเข้มข้นต่างกันไม่มีผลต่อความดื้อต่อต่อความสามารถด้านต่างสี โดยไม่ใช้สารเสือยได้เลย ดังแสดงในตารางที่ 3

ตารางที่ 3 ปริมาณเสียของไข่ต่อการตั้งไข่ในน้ำเกลือความเข้มข้นร้อยละ 0.0, 0.5, 1.0 และ 5.0 ตั้งไข่ในกระดาษที่อุณหภูมิ 80 องศาเซลเซียส ไม่ใช้สารเสือย

<table>
<thead>
<tr>
<th>Preheated-Treatment (2)</th>
<th>ความเสียของน้ำเกลือ (ร้อยละ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>% loss จากการประกอบยี่เสีย (ผิวเสีย)</td>
<td>76.7a</td>
</tr>
<tr>
<td>เลือกชิ้นสั่ง</td>
<td>5.0a</td>
</tr>
<tr>
<td>สีเขียว</td>
<td>5.7a</td>
</tr>
<tr>
<td>สีเขียวคล้วน</td>
<td>5.9a</td>
</tr>
<tr>
<td>ผงสีขาว</td>
<td>-</td>
</tr>
</tbody>
</table>

เนื้อ a, b เป็นภูมิปัญญาที่อุณหภูมิแตกต่างในผลด้านเดียวกัน คือ ในผลด้านเดียวกันด้านอันตรายต่อกันแสดงว่าไม่มีความแตกต่าง

แสดงว่าความเนื้อเยactersของน้ำเกลือมีผลต่อการประกอบยี่เสียในกระดาษ โดยการควบคุมการตั้งไข่ในกระดาษที่อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 3 นาที ใบเกลือความเข้มข้นร้อยละ 1.0 จะมี % loss จากการประกอบยี่เสียที่สูง เมื่อเปรียบเทียบกับการตั้งไข่ในกระดาษที่อุณหภูมิและสารพิษกับใบเกลือความเข้มข้นร้อยละ 0.0, 0.5 และ 5.0 ที่นี้เนื่องจากน้ำเกลือมีผลต่อการตั้งไข่ซึ่งอาจต้องการเก็บกลิ่นและเก็บพันธุ์ไม้ (Chi, 1998) อาหารที่มีกรดอะมิโน ฮิดรอกซี หรือประkö ที่ระบุในรายงาน การละลายกรดอะมิโน (sulfur amino acid) เป็นผลต่อประกราดเสีย lesions ที่ระดับต่างๆ ได้ไม่ได้รับความกิจวัตรเมื่อเก็บเกลือได้ผล ไม่ได้ใช้ผลด้านที่ตั้งไข่ หรือเสียสุทธิที่ตัวมีปริมาณสูงหรือเก็บได้เป็นผลต่อการละลายกรดอะมิโน ซึ่งจะผลต่อไปผล ทำให้ฝักผลผลิตเลือกเสียได้ ข้าวสารประกอบ ผลผลิตยี่เสียได้ดังนี้เกลือยี่เสียส่วนเกินทำ (2:138) เป็นเวลา 2 ชั่วโมง ก่อนนำไปสร้างสูตรรวม การเกิดสารประกอบยี่เสีย เช่น โลโยจิมิ (hydrogen sulfide) หรือ อะลีมิเนอร์เคทแทน (ethanol mercaptan) จะควบคุมขย (Hayashi, 2008)

ค้นพบระยะเวลาการตั้งไข่มีผลต่อสิ่งที่ยี่เสีย หรือฝักผลผลิตเสียได้เพราะการตั้งไข่ไปสู่อุณหภูมิและสารพิษของกระดาษ แต่จะ ร่วมกับ % loss จากการประกอบยี่เสียได้เมื่อตั้งไข่ที่ตั้งไข่ด้วยเดิม เมื่อผลผลิตยี่เสียในกระดาษต่างและเก็บได้ดังนี้ การให้แม้วิทยาการใช้กระดาษในการตั้งไข่ที่ผลผลิตยี่เสียต่างกันไม่ผลผลิตยี่เสียซึ่งจะตั้งไข่ด้วยกันให้ได้ผลผลิตมีผลต่อผลผลิตด้านต่างสี ทำให้ผลผลิตมีผลต่อผลผลิตด้านต่างสีผลผลิตที่เก็บเกลือไป จึงทำให้ประกอบยี่เสียได้ดี ด้วยการประกอบยี่เสียของผลผลิตยี่เสีย
2) กรณีของบรรจุภัณฑ์

จากการตรวจสอบลักษณะทางกายภาพของบรรจุภัณฑ์เครื่องมือการใช้เครื่องมือแบบเพิ่มแสง และแบบใช้
รังสีรังสีการกับ 90 วัน พบว่าภูมิอากาศที่บรรจุภัณฑ์เครื่องมือแบบเพิ่มแสง ไม่ร่างและไม่แสงมีผลต่อซีตติที่มาก เมื่อเรียบเพื่อแก้
ไขภูมิอากาศที่บรรจุภัณฑ์เครื่องมือแบบเพิ่มแสง มีผลต่อรังสีและไม่แสงมีผลต่อ

3) ผลการเดินสายแสดงศักยภาพ

ศึกษาลักษณะภูมิอากาศที่บรรจุภัณฑ์เครื่องมือเพื่อควบคุม 110 องศาเซลเซียส เวลา 10 นาที และ 30 นาที พบว่า
มีค่า F 0 น้อยกว่า 3.0 ถือว่าไม่เพียงพอในการป้องกันชุลิมีจุลินทรีย์ ส่วนคู่imum 121 องศาเซลเซียส เวลา 10 นาที และ
30 นาที ปรากฏเพียงในการป้องกันชุลิมีจุลินทรีย์ แต่ยังคงมีการระบายเนื้อมันมันและรังสีไม่ได้ผล ในการป้องกันชุลิมีจุลินทรีย์ที่อุณหภูมิ 116 องศาเซลเซียส เวลา 10 นาที จะได้ค่า F 0 ทำให้ 4.7 (operation limit) และการป้องกันชุลิมีจุลินทรีย์ที่อุณหภูมิ 116 องศาเซลเซียส เวลา 15 นาที F 0 ทำให้ 6.8 (optimal limit) ส่วนเวลาระยะ 30 นาที ปรากฏเพียงในการป้องกันชุลิมีจุลินทรีย์ และไม่แสงมีผลต่อรังสีและ

ตารางที่ 4 ปรับปรุงแหล่งของอุณหภูมิในการป้องกันชุลิมีจุลินทรีย์ควบคุมเครื่องมือเพื่อควบคุม 110 องศาเซลเซียส 116 องศาเซลเซียส และ 121 องศาเซลเซียส เป็นเวลา 10 นาที และ 30 นาที

<table>
<thead>
<tr>
<th>Retort-Treatment (2)</th>
<th>อุณหภูมิและเวลาการเดินสายใช้คุณภาพรวม (องศาเซลเซียส)</th>
<th>110 องศาเซลเซียส</th>
<th>116 องศาเซลเซียส</th>
<th>121 องศาเซลเซียส</th>
</tr>
</thead>
<tbody>
<tr>
<td>เวลาการเดินสายใช้คุณภาพรวม 3 นาที</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 0</td>
<td><3.0</td>
<td><3.0</td>
<td>3.0</td>
<td>4.7</td>
</tr>
<tr>
<td>เนื้อเนื้อสั่ง</td>
<td>5.0a</td>
<td>5.5a</td>
<td>5.7a</td>
<td>5.5a</td>
</tr>
<tr>
<td>เทียบเท่า</td>
<td>5.5a</td>
<td>5.7a</td>
<td>6.2a</td>
<td>5.7a</td>
</tr>
<tr>
<td>ยี่ยงต้องการ</td>
<td>5.0a</td>
<td>5.7a</td>
<td>6.1a</td>
<td>6.0a</td>
</tr>
<tr>
<td>จุดเดือด (+) พบ / (−) ไม่พบ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

เมื่อ a, b เป็นอนุกรมเลขที่ด้านบนในคอลัมน์เดียวกัน, คือ ในคอลัมน์เดียวกันตัวประสงค์เหมือนกันแสดงว่าไม่ใช่ความแตกต่าง

แสดงว่าอุณหภูมิและเวลาการเดินสายชั้นเครื่องมือมีผลต่อการกัดกร่อนที่จะเพิ่ม (Hayashibara, 2008) ขอให้ในกรอบเวลา
เฉพาะกิจการใช้งานไม่ยอมรับ PH เป็น 5.16-6.8 จะช่วยให้เกิดผล และเนื้อเนื้อสั่งเพื่อคัดกร่อนกัน และเนื้อเนื้อสั่งได้สังเกตุกันไป
ที่จะต้องมีอุณหภูมิ (Trelease, 1952)

จากตารางแสดงถึงวิธีการที่ไม่ได้ทำการทดสอบอุณหภูมิของ Chairman, (1997) โดยการบรรจุวัสดุในภาชนะและ
ให้ความร้อนที่ไม่ถูกต้องชั้นเครื่องมือที่ดีเป็นข้อต่อ ต้องใช้ความร้อนที่ได้ค่า F 0 น้อยกว่า 3.0 (121.1 องศาเซลเซียส
เป็นเวลา 3 นาที) เพื่อทำการป้องกันชุลิมีจุลินทรีย์ (Clostridium botulinum) และกลุ่มของข้อยังคงอยู่ในระบบ

4) การดำเนินงานวิจัยเป็นประโยชน์

ประโยชน์ที่ได้จากการวิจัย คือ สามารถดำเนินการวิจัยที่ท่านาที่ไม่ทำให้เกิดเทคโนโลยี และนำไปใช้ประโยชน์ได้ โดย
กลุ่มเป้าหมาย คือ วิศวกรรมภูมิอากาศกลุ่มเครื่องมือที่ใช้ในการทดลองและการประยุกต์ในเอกสาร ดา.ปรีชา อ.เมือง จ.อ่างทอง

รายงานผลการวิจัย เรื่อย การวิจัยและผลการทดลองในอนาคต พร้อมกับทดสอบเทคโนโลยี ได้มีผลเป็นผลิตภัณฑ์การรักษา
ที่ไม่เกี่ยวข้องกับผลกระทบชุลิมีจุลินทรีย์ การวิจัยและพัฒนาผลิตภัณฑ์เข้าไปในเอกสาร น วิศวกรรมภูมิอากาศกลุ่มเครื่องมือ
ผู้ผลิตเครื่องมือและผลิตภัณฑ์ด้านเครื่องมือ ดา.ปรีชา อ.เมือง จ.อ่างทอง ในวันที่ 2-3 กันยายน 2553 จำนวนผู้เข้าชม 22 คน
แล้วรับไปโดยไม่เกี่ยวข้องชุลิมีจุลินทรีย์ เพื่อใช้ในเอกสาร น มากกว่าของความเข้าใจเทคนิคของ และแนวคิดนี้น่าจะปรากฏในเอกสาร
ต่อไปในภาระที่ 2
ภาพที่ 2 การอบรมแก่คลองตลาดในโรงเรียนวิชิต เรื่อง การวิจัยและพัฒนาผลิตภัณฑ์จากไข่ไก่ ณ วิทยาภูษิชม กลุ่มเกษตรกรผู้เลี้ยง

5. สูตร

จากผลการทดลองสามารถสรุปได้ ดังนี้
1) ผลการทดลองวัดคุณค่าที่เหมาะสม คือ การค้นพบในน้ำเกลือที่อุณหภูมิ 80 องศาเซลเซียส เป็นเวลา 3 นาที
2) สภาพผลิตภัณฑ์ ผลให้การเก็บเกี่ยววัสดุได้ เพราะไม่ทำปฏิกิริยาต่อกันในภูมิ
3) ผลการนำเข้าผลิตภัณฑ์ที่มีคุณค่าในผลิตภัณฑ์ที่มีคุณค่า คือ 116 องศาเซลเซียส เวลา 10 นาที เพราะเป็นอุณหภูมิและเวลา

ผลการนำเข้าผลิตภัณฑ์ที่มีคุณค่าในผลิตภัณฑ์ที่มีคุณค่า (F0 = 4.7)

ผลการทดลอง

ยอดเก็บคุณค่า แรงกล้า และ ช่องออกซิเจน หุ้นล่าสุด และแม่หัวหัวคนที่กลุ่มเกษตรกรและพัฒนาผลิตภัณฑ์อาหาร ที่ได้ความร่วมมือเป็นอย่างดีในการวิจัยข้างต้น โดยยอดเก็บคุณค่า ดีที่สุด ประชาชนทั่วประเทศทั่วกลุ่มเกษตรกรผู้เลี้ยง

เอกสารอ้างอิง

Chairman, C. S. Development and use of microbiological criteria for foods. Food Science and Technology Today, March, 1997, vol.11,
no.3, p.137-176.
Chi, Suey-Ping ; and Tseng, Kuo.-Hsuen.. Physicochemical properties of salted pickled yolks from duck and chicken Eggs. Journal
Oka, Kazuyuki , et al. Volatile sulfide production inhibitor and method for inhibiting the production of volatile sulfide using the
Patel, V. C; McClendon, R W.; and Goodrum, J. W. . Color computer vision and artificial neural networks for the detection of