

WORKSHOP ON OPTIMIZING GLASS MELTING

Reinhard Conradt Department of Mineral Engineering, RWTH Aachen Univbersity, Germany

Department of Materials Science, Faculty of Science, Chulalongkorn University & Department of Science Service Bangkok 14th September 2010

conradt@ghi.rwth-aachen.de

fundamentals

power station and heat exchanger

chemical reactor

radiative heat exchange

THE HEAT BALANCE

the heat balance describes:

$$Q_{12} = \Delta H = H_2 - H_1$$

it does not describe the "values" of the individual energy terms:

$$\frac{Q_{12}}{T} \le \Delta S = S_2 - S_1$$

total installation: furnace:

heat exchanger: combustion space:

melting tank:

$$Q_{in} = H_{ex} + Q_{wu} + Q_{wo} + Q_{stack} + Q_{wx}$$

$$Q_{sf} = Q_{in} + Q_{re} = H_{ex} + Q_{wu} + Q_{wo} + Q_{off}$$

$$Q_{in} = H_{ex} + Q_{wu} + Q_{wo} + Q_{off} \cdot (1 - h_{re})$$

$$Q_{off} = Q_{re} + Q_{stack} + Q_{wx}$$

$$Q_{sf} = Q_{in} + Q_{re} = Q_{ht} + Q_{wo} + Q_{off}$$

$$Q_{in} = Q_{ht} + Q_{wo} + Q_{off} \cdot (1 - h_{re})$$

$$Q_{ht} = H_{ex} + Q_{wu}$$

melting tank:

 $Q_{ht} = H_{ex} + Q_{wu}$

via combustion calculations and batch-to-melt calculations $batch, glass, y_C, T_{ex}$ P $H_{ex} = (1 - y_C) \cdot DH^{\circ}_{chem} + DH(T_{ex})$

total installation: furnace:

heat exchanger: combustion space:

melting tank:

 $Q_{in} = H_{ex} + Q_{wu} + Q_{wo} + Q_{stack} + Q_{wx}$ $Q_{sf} = Q_{in} + Q_{re} = H_{ex} + Q_{wu} + Q_{wo} + Q_{off}$ $Q_{in} = H_{ex} + Q_{wu} + Q_{wo} + Q_{off} \cdot (1 - h_{re})$ $Q_{off} = Q_{re} + Q_{stack} + Q_{wx}$ $Q_{sf} = Q_{in} + Q_{re} = Q_{ht} + Q_{wo} + Q_{off}$ $Q_{in} = Q_{ht} + Q_{wo} + Q_{off} \cdot (1 - h_{re})$ $Q_{ht} = H_{ex} + Q_{wu}$

assessible by difference:

 $Q_{sf} = Q_{in} + Q_{re}$ $Q_{wx} = Q_{off} - Q_{re} - Q_{stack}$ $Q_{wu} + Q_{wo} = Q_{in} + Q_{re} - Q_{off} - H_{ex}$ not directly assessible: Q_{wu}, Q_{wo}, Q_{ht} by heat transfer calcn. only

total installation: furnace:

heat exchanger: combustion space:

melting tank:

$$Q_{in} = H_{ex} + Q_{wu} + Q_{wo} + Q_{stack} + Q_{wx}$$

$$Q_{sf} = Q_{in} + Q_{re} = H_{ex} + Q_{wu} + Q_{wo} + Q_{off}$$

$$Q_{in} = H_{ex} + Q_{wu} + Q_{wo} + Q_{off} \cdot (1 - h_{re})$$

$$Q_{off} = Q_{re} + Q_{stack} + Q_{wx}$$

$$Q_{sf} = Q_{in} + Q_{re} = Q_{ht} + Q_{wo} + Q_{off}$$

$$Q_{in} = Q_{ht} + Q_{wo} + Q_{off} \cdot (1 - h_{re})$$

$$Q_{ht} = H_{ex} + Q_{wu}$$

HEAT TRANSFER

- Heat can be transferred over any infinitesimally small temperature difference $T_H T_L$.
- The problem is the transfer rate achieved: $\dot{Q} = A \cdot \mathbf{a}_{ht} \cdot (T_H - T_L), \ \dot{Q} \ in \ kW$
- With a given transfer coeff. \mathbf{a}_{ht} and transfer area A, a temperature difference $T_H T_L$ of a certain size is required to sustain the transfer rate \dot{Q} .

heat transfer problem:

heat transfer problem:

$$\frac{q_{ht}}{q_{in}} = \frac{\dot{m} \cdot c_P \cdot (T_{H,in} - T_{H,out})}{\dot{m} \cdot c_P \cdot (T_{H,in} - T_L)} = \frac{(T_{ad} - T_{off})}{(T_{ad} - T_0)} = 1 - \frac{\Delta T_{off}}{\Delta T_{ad}}$$

(no heat recovery, no wall losses q_{wo})

heat transfer problem:

 T_0 , glass

DWELL TIME

$$q_{ht} = (H_{ex} \cdot r + q_{wu} \cdot i) \Longrightarrow q_{in} = (H_{ex} \cdot r + q_0 \cdot i) \approx a + b \cdot r$$

utilization of reactor space:

$$\frac{V_{eff}}{V_{geo}} = u \in \left\{0, 1\right\}$$

relative dwell time:

$$\frac{\boldsymbol{t}}{\boldsymbol{t}_{ref}} = n \in \{0, \infty\}$$

process intensity:

$$i = n / u$$

SUMMARY:

FURNACE BEHAVIOR

Today, most furnaces have reached and optimum state as thermal reactors.

There is a large potential to optimize glass melting by optimizing the intrinsic process, i.e., the batch-to-melt conversion.

Optimization may focus on

- the intrinsic heat demand,
- the turnover temperature,
- favorable reaction paths,
- the turnover rate.

experimental methods to investigate the batch-to-melt concersion

Experiment

TG-DTA

Experiment

THERMOOPTICS &

OBSERVATION FURNACE

SODA SAND SCHERBE

Observation Furnace

Experimental parameter:	
Target temperature	: 1400 °C
Sample	: 30 gr
Heating rate	: 10 K/min.
Dwell time	: 4 hour

Experiment

BATCH-FREE-TIME

experimental parameters:

T _{melt}	=	1400 °C
t _{hold}	=	10 und 15 min
T _{anneal}	=	550 °C
q _{cool}	=	-2 K/min

no. 6 no. 5 no. 4

batch-free time tests

black-white contrast; black = clear melt

re-evaluation of free surface by black-white contrast image analysis;

calibration area = 100 %

stereo microscopy

stereograph microscopy

Experiment

CONDUCTOMETRY

KCI solid-liquid-aqueous

glass batch

Experiment

THERMAL DIFFUSIVITY

heat pulse:

• runtime $\Delta t_{exp} \Rightarrow$ thermal diffusivity *a*

• peak height $\Delta T_{max} \propto \Delta Q = U \cdot I \cdot \Delta t_{PULSE}$ \Rightarrow heat conductivity λ

Experiment

10 kg SCALE TESTS

optimization of the batch-to-melt conversion

optimal reaction paths

DH_{chem} does not tell the whole story!

quartz:H°= 910.9 kJ/molsilica glass:H°= 901.4 kJ/mol \mathbf{DH}_{chem} = 9.5 kJ/mol= 43.9 kWh/t

As $\mathbf{D}\mathbf{H}_{chem}$ for a conventional batch is approx. 140 kWh/t, is adding quartz sand a good way to save energy? OF COURSE NOT! Slow quartz dissolution is a main reason for late fining, long dwell times, high energy consumption.

DESIGN LOW RESIDUAL SILICA GLASS FORMULAE!

raw material i	kg/t	oxide j	kg/t	phase k	kg/t
sand	666.96	SiO ₂	720.00	SiO ₂	227.05
feldspar	77.15	Al ₂ O ₃	15.00	Na ₂ O·Al ₂ O ₃ ·6SiO ₂	77.15
dolomite	182.98	MgO	40.00	MgO·SiO ₂	99.62
limestone	34.54	CaO	75.00	Na ₂ O·3CaO·6SiO ₂	263.34
soda ash	240.91	Na ₂ O	150.00	Na ₂ O·2SiO ₂	332.84
		CO ₂	202.54		
sum	1202.54		1202.54		1000.00

H°(batch)	= 4589.5 kWh
H°(gl)	= 3942.3 kWh
H°(gas)	= 503.0 kWh;
DH ° _{chem}	= 144.2 kWh
DH⊤(gl)	= 404.1 kWh, T = 25 to 1200 °C
DH⊤(gas)	= 90.2 kWh, T = 25 to 1400 °C

raw material i	kg/t	oxide j	kg/t	phase k	\frown	kg/t
sand	666.96	SiO ₂	720.00	SiO ₂		227.05
feldspar	77.15	Al ₂ O ₃	15.00	Na ₂ O·Al ₂ O ₃ ·6	SiO ₂	77.15
dolomite	182.98	MgO	40.00	MgO-SiO ₂		99.62
limestone	34.54	CaO	75.00	Na ₂ O·3CaO·6	SiO ₂	263.34
soda ash	240.91	Na ₂ O	150.00	Na ₂ O-2SiO ₂		332.84
		CO ₂	202.54			
sum	1202.54		1202.54			1000.00

H°(batch)	= 4589.5 kWh
H°(gl)	= 3942.3 kWh
H°(gas)	= 503.0 kWh;
DH ° _{chem}	= 144.2 kWh
DH⊤(gl)	= 404.1 kWh, T = 25 to 1200 °C
DH⊤(gas)	= 90.2 kWh, T = 25 to 1400 °C

residual amount of crystalline SiO₂: >23 %, dissolved by diffusion, not by chem. reaction

laboratory melts	for round	robin liqu	idus expe	eriments	
			•		
composition	F1		F2		F6
wt. %					
SiO2	72.6		72.6		72.0
TiO2	0.2		0.0		0.0
MgO	4.4		4.1		4.0
Na2O	13.5		14.0		13.5
CaO	8.4		8.8		8.5
K2O	0.2		0.0		0.7
Fe2O3	0.1		0.1		0.1
AI2O3	0.5		0.1		1.1
SO3	0.2		0.2		0.2

compound	F1	F2	F6
	wt. %	wt. %	wt. %
CaO ·TiO ₂	0.34	-	-
SiO ₂	26.65	26.61	24.25
FeO-Fe ₂ O ₃	0.09	0.09	0.09
MgO ·SiO ₂	10.97	10.24	9.97
Na ₂ O 3CaO 6SiO ₂	29.03	30.99	29.88
K ₂ O Al ₂ O ₃ 6SiO ₂	1.18	-	4.14
FeO SiO ₂	0.02	0.02	0.02
$Na_2O AI_2O_3 SIO_2$	1.46	0.52	1.76
$Na_2O - 2SiO_2$	30.26	31.53	29.89
sum	100.00	100.00	100.00

phase content in wt. %

low enthalpy batches

dolomite, 0.34 m²/g (BET)

10 µm

half burnt dolomite, 3.38 m²/g (BET)

	H°	D _r H°	DrH° per [MgO]		4 % MgO
	kJ/mol	kJ/mol	MJ/kg	kWh/kg	kWh/t
					glass
dolomite	2314.2	290.7	7.21	2.00	80
half-burnt	1808.5	178.5	4.43	1.23	49
difference		112.2	2.78	0.77	31

depending on hex (30 – 55 %) 1 → 60 – 105 kWh (0 % cullet) 43 – 80 kWh (25 %)

different lime and dolomite based raw materials

energy demand, calculated for batches with different boron oxide carriers (yielding identical glass composition)

times required to complete the endothermic batch reactions and temperature homogeneity after 1 h of melting

fast conversion rate batches

silicate formation reactions

	Ţ	⁻ in °C	T in K	-H°(T)	S°(T)	-G°(T)	
		256		kJ/mol	J/(mol K)	kJ/mol	
0:00			500	000 F	70.0	020 5	
5102	quartz		529	898.5	72.0	930.5	
Na2CO3	soda ash		529	1100.3	207.1	1209.8	
CaCO3	limestone		529	1184.5	147.8	1262.6	
CO2(g)			529	383.7	237.8	509.5	
Na20 ·SiO2			529	1533.1	187.4	1632.3	
Na20 ·2SiO2	2		529	2430.5	270.1	2573.4	
2Na2O CaO	·3SiO2		529	4680.3	513.5	4952.0	
reaction						dG	Teq in °C
Na2CO3 + S	SiO2		<===>	Na2O ·SiO2 + CO)2	0.0	287
Na2CO3 + 2	2SiO2		<===>	Na2O ·2SiO2 + C	02	0.0	256
2Na2CO3 +	CaCO3 + 3S	iO2	<===>	2Na2O ·CaO ·3SiC	D2 +3CO2	0.0	281

innovation potential —

reactions gain turnover as soon as a liquid phase occurs

- grain size,
- grain-to-grain contact,
- *humidity*,
- *temperature*

transfer to the industrial scale

analysis of furnace behavior

verification by melt campaigns

time	р	T01	Т03	T05	B1	B2	B3
d	kg/h	°C	°C	°C	Nm3/h	Nm3/h	Nm3/h
0.00	5855.2	1444	1586	1629	261.6	65.2	225.0
0.25	5510.8	1445	1586	1624	260.8	65.2	224.4
0.50	5855.2	1441	1581	1619	260.3	65.3	223.8
0.75	6199.7	1442	1580	1619	260.5	65.2	224.1
1.00	5855.2	1443	1580	1619	261.7	65.1	225.0
1.25	6199.7	1448	1590	1625	261.6	64.9	225.0
1.50	5510.8	1447	1585	1624	261.2	65.3	224.7
1.75	5855.2	1442	1584	1621	260.2	65.1	223.8
2.00	6199.7	1441	1578	1619	260.2	65.1	223.8
2.25	6199.7	1443	1581	1618	260.7	65.2	224.3
2.50	5855.2	1443	1581	1618	261.7	65.5	225.1
2.75	6199.7	1442	1578	1618	261.8	65.4	225.2
3.00	5855.2	1446	1586	1622	265.5	66.3	228.2
3.25	5855.2	1450	1596	1629	266.5	66.6	229.2
3.50	5855.2	1455	1598	1632	263.9	66.1	227.0
3.75	5855.2	1450	1589	1624	259.7	65.0	223.3
4.00	5855.2	1446	1585	1621	258.1	64.5	222.0
4.25	5855.2	1445	1587	1621	256.6	64.1	220.6
4.50	6199.7	1442	1584	1618	255.4	63.9	219.6
4.75	5510.8	1442	1581	1617	255.3	63.9	219.6

Furnace data, collected over 6 weeks; melting area = 40 m ²													
no.	date	р	r	r	gas	gas	Hin	1/r	qin	Tex	Toff	Tre	Tstack
		t/d	t/m² ⋅d	t/m² ⋅h	Nm3/h	Nm3/d	kwh/kg	m² ·h/t	kW/m2				
1	1	81.0	2.03	0.0844	480	11520	1.209	11.85	0.102				
2	2	81.0	2.03	0.0844	490	11760	1.234	11.85	0.104				
3	3	85.2	2.13	0.0888	500	12000	1.197	11.27	0.106				
4	4	94.2	2.36	0.0981	540	12960	1.169	10.19	0.115				
5	5	94.2	2.36	0.0981	540	12960	1.169	10.19	0.115				
6	6	115.7	2.89	0.1205	610	14640	1.076	8.30	0.130				
7	7	116.4	2.91	0.1213	620	14880	1.087	8.25	0.132				
8	8	95.8	2.40	0.0998	540	12960	1.150	10.02	0.115				
9	9	89.2	2.23	0.0929	500	12000	1.143	10.76	0.106				
10	10	95.0	2.38	0.0990	520	12480	1.117	10.11	0.111				
11	11	95.0	2.38	0.0990	530	12720	1.138	10.11	0.113				
12	12	95.0	2.38	0.0990	540	12960	1.160	10.11	0.115				
13	13	116.1	2.90	0.1209	610	14640	1.072	8.27	0.130				
14	14	116.5	2.91	0.1214	610	14640	1.068	8.24	0.130				
15	15	116.5	2.91	0.1214	610	14640	1.068	8.24	0.130				
16	16	110.4	2.76	0.1150	580	13920	1.072	8.70	0.123				
17	17	110.4	2.76	0.1150	590	14160	1.090	8.70	0.125				
18	18	110.4	2.76	0.1150	590	14160	1.090	8.70	0.125				
19	19	98.8	2.47	0.1029	540	12960	1.115	9.72	0.115				
20	20	98.8	2.47	0.1029	520	12480	1.074	9.72	0.111				
21	21	95.8	2.40	0.0998	520	12480	1.107	10.02	0.111				
22	22	95.8	2.40	0.0998	525	12600	1.118	10.02	0.112				
23	23	94.0	2.35	0.0979	510	12240	1.107	10.21	0.108				
24	24	94.0	2.35	0.0979	525	12600	1.139	10.21	0.112				
25	25	94.0	2.35	0.0979	520	12480	1.129	10.21	0.111				

production p in t/d

gas consumption in m³ per h

energy input H(in) in kWh per t of glass

t in days

$H(in) \propto 1/r$

 $H(in) \cdot r = q(in) \propto r$

industrial case studies

CASE 1: Can the pull be increased by using a low-H batch? case study: tank 1

CASE 2: Can energy be saved by using half-burnt lime?

	H°	D _r H°	DrH° per	[·] [MgO]	4 % MgO
	kJ/mol	kJ/mol	MJ/kg	kWh/kg	kWh/t
					glass
dolomite	2314.2	290.7	7.21	2.00	80
half-burnt	1808.5	178.5	4.43	1.23	49
difference		112.2	2.78	0.77	31

depending on hex (30 – 55 %) 1 → 60 – 105 kWh (0 % cullet) 43 – 80 kWh (25 %) $H(in) \cdot r = q(in) \propto r$

CASE 3:

Can energy be saved by an intelligently designed fast conversion batch ("instant coffee batch")?

time in s

Due to the manager's impatience, no significant difference was found ...

... although the new batch quickly makes the furnace more stable.

Same type of batches in a different factory.

Evaluating the mass and power pulled from the furnace speaks a different language!

CASE 5: When furnace control and

furnace characteristics counteract the effects of an optimized melting process.

variation of power in kW

case study: tank 5

case study: tank 5

a novel service to the glass industry

step 1: retrospective analysis: heat & power balance; casting into a model

step 2: retrospective analysis: reactor (dwell time) behavior; on-line actualization of model

sketch of a float glass production

step 6: realization: structuring of the processes

step 7: factory test and evaluation

Thank you for your kind attention!