

CU BKK 2009

WORKSHOP ON ENERGY CALCULATION IN THE GLASS INDUSTRY

Reinhard Conradt Department of Mineral Engineering, RWTH Aachen Univbersity, Germany

Department of Materials Science, Faculty of Science, Chulalongkorn University & Department of Science Service Bangkok 8th September 2009

G H Contraction of the second second

conradt@ghi.rwth-aachen.de

the heat balance

$Q_{12} = \Delta H = H_2 - H_1$

two types of heat:

$$Q_{r} = H_{products}^{\circ} - H_{educts}^{\circ} | T = 25^{\circ}C$$

$$Q_{T} = H_{products} (T_{2}) - H_{products} (T_{1})$$

$$Q_{r} + Q_{T} = H_{ex}$$

excursion H_{ex}

the glass & the melt

$$H_{glass}^{\circ} = \sum_{k} n_{k} \cdot (H_{k}^{\circ} + H_{k}^{vit})$$

$$H_{1673,liq}^{\circ} = \sum_{k} n_{k} \cdot H_{1673,liq,k}^{\circ}$$

$$c_{P,liq} = \sum_{k} n_{k} \cdot c_{P,liq,k}$$

$$H_{T,liq} = H_{1673,liq}^{\circ} + c_{P,liq} \cdot (T - 1673)$$

$$\Delta H_{T,liq} = H_{T,liq} - H_{glass}^{\circ}$$

k for the soda-lime based mass glasses

Na ₂ O·Al ₂ O ₃ ·6SiO ₂	=
$K_2O \cdot Al_2O_3 \cdot 6SiO_2$	=
FeO·Fe ₂ O ₃	=
Feo·SiO ₂	=
Mgo⋅SiO ₂	=
Na ₂ O·3CaO·6SiO ₂	=
Na ₂ O·2SiO ₂	=

SiO₂ =

- $5.1440 \cdot AI_2O_3 5.5697 \cdot K_2O$
- 5.9102 ·K₂O
- 0.6 ·Fe₂O₃
- 0.7345 ·Fe₂O₃
- 2.4907 ·MgO
- 3.5112 ·CaO
- 2.9386 ·Na₂O + 1.9346 ·K₂O
- $-\ 1.7867 \cdot AI_2O_3 1.0824 \cdot CaO$

rest to the total mass.

oxide amounts in wt. %

Table 1. Thermodynamic data of compounds k employed to represent the crystalline reference systems (c.r.s.) of industrial glasses; enthalpies H in kJ/mol, entropies S and heat capacities c_P in J/(mol·K); superscripts: ° = standard state at 298.15 K, 1 bar; ^{vit} = vitrification; subscripts: $_{liq}$ = liquid state; $_{1673}$ = 1673.15 K

k	-H°	S°	H^{vit}	S ^{vit}	-H _{1673,liq}	S _{1673,liq}	c _{P,liq}
P_2O_5 ·3CaO	4117.1	236.0	135.1	51.5	3417.1	898.7	324.3
P_2O_5	1504.9	114.4	18.2	9.5	1151.5	586.6	181.6
Fe ₂ O ₃	823.4	87.4	45.2	17.2	550.2	370.3	142.3
FeO·Fe ₂ O ₃	1108.8	151.0	82.8	31.4	677.8	579.9	213.4
FeO·SiO ₂	1196.2	92.8	36.7	13.8	962.3	342.7	139.7
2FeO·SiO ₂	1471.1	145.2	55.2	20.5	1118.8	512.1	240.6
MnO-SiO ₂	1320.9	102.5	40.2	15.1	1085.3	345.2	151.5
$2ZnO\cdot SiO_2$	1643.1	131.4	82.4	31.4	1261.1	494.5	174.5
$ZrO_2 \cdot SiO_2$	2034.7	84.5	86.6	32.6	1686.2	381.2	149.4
$CaO TiO_2$	1660.6	93.7	67.4	25.5	1365.7	360.2	124.7
TiO ₂	938.7	49.9	44.8	10.5	766.0	200.7	87.9

k	-H°	S°	H ^{vit}	Svit	-H _{1673,liq}	S _{1673,liq}	c _{P,liq}
$BaO·Al_2O_3·2SiO_2$	4222.1	236.8	130.5	95.4	3454.3	1198.3	473.2
$BaO \cdot 2SiO_2$	2553.1	154.0	81.6	26.8	2171.1	533.5	241.4
BaO·SiO ₂	1618.0	104.6	56.5	41.0	1349.8	361.1	146.4
$Li_2O \cdot Al_2O_3 \cdot 4SiO_2$	6036.7	308.8	184.1	12.1	5235.4	1173.2	498.7
$Li_2O·SiO_2$	1648.5	79.9	16.7	6.3	1416.7	339.7	167.4
$K_2O \cdot Al_2O_3 \cdot 6SiO_2$	7914.0	439.3	106.3	29.3	6924.9	1559.4	765.7
$K_2O \cdot Al_2O_3 \cdot 2SiO_2$	4217.1	266.1	80.4	22.1	3903.7	666.5	517.6
$K_2O-4SiO_2$	4315.8	265.7	26.4	21.3	3697.8	983.7	410.0
$K_2O-2SiO_2$	2508.7	190.6	12.6	23.9	2153.1	595.4	275.3
$Na_2O \cdot Al_2O_3 \cdot 6SiO_2$	7841.2	420.1	125.0	28.4	6870.1	1512.5	648.1
$Na_2O \cdot Al_2O_3 \cdot 2SiO_2$	4163.5	248.5	92.0	27.9	3614.1	856.9	423.8
B_2O_3	1273.5	54.0	18.2	11.3	1088.7	271.1	129.7
$Na_2O \cdot B_2O_3 \cdot 4SiO_2$	5710.9	270.0	42.7	21.1	4988.0	1090.2	637.6
$Na_2O·4B_2O_3$	5902.8	276.1	58.3	40.1	4986.7	1275.5	704.2
$Na_2O\cdot 2B_2O_3$	3284.9	189.5	48.8	26.6	2735.9	780.3	444.8
$Na_2O \cdot B_2O_3$	1958.1	147.1	43.6	19.5	1585.7	538.7	292.9

k	-H°	S°	H ^{vit}	S ^{vit}	-H _{1673,liq}	S _{1673,liq}	c _{P,liq}
$2MgO \cdot 2Al_2O_3 \cdot 5SiO_2$	9113.2	407.1	135.8	41.4	7994.8	1606.2	1031.8
MgO·SiO ₂	1548.5	67.8	46.6	13.6	1318.0	296.2	146.4
2MgO·SiO ₂	2176.9	95.4	61.4	11.0	1876.1	402.9	205.0
CaO·MgO·2SiO ₂	3202.4	143.1	92.3	25.7	2733.4	621.7	355.6
$2CaO \cdot MgO \cdot 2SiO_2$	3876.9	209.2	106.7	32.0	3319.2	775.3	426.8
$CaO \cdot Al_2O_3 \cdot 2SiO_2$	4223.7	202.5	103.0	37.7	3628.8	791.2	380.7
$2CaO \cdot Al_2O_3 \cdot SiO_2$	3989.4	198.3	129.9	49.4	3374.0	787.8	299.2
$3Al_2O_3 \cdot 2SiO_2$	6820.8	274.9	188.3	71.5	5816.2	1231.8	523.4
$CaO·SiO_2$	1635.1	83.1	49.8	18.8	1382.0	329.7	146.4
$2CaO\cdot SiO_2$	2328.4	120.5	101.3	38.5	1868.2	509.2	174.5
$Na_2O \cdot 2SiO_2$	2473.6	164.4	29.3	13.2	2102.5	588.7	261.1
Na_2OSiO_2	1563.1	113.8	37.7	9.8	1288.3	415.1	179.1
$Na_2O \cdot 3CaO \cdot 6SiO_2$	8363.8	461.9	77.3	20.5	7372.6	1555.6	786.6
$Na_2O \cdot 2CaO \cdot 3SiO_2$	4883.6	277.8	57.7	13.4	4240.9	990.4	470.3
$2Na_2O\cdot CaO\cdot 3SiO_2$	4763.0	309.6	87.0	22.6	4029.6	1107.9	501.2
SiO ₂	908.3	43.5	6.9	4.0	809.6	157.3	86.2

- (1) Take the glass composition in wt. %..
- (2) Calculate the glass composition in n(j) = mol per 1 kg of glass:
 n(j) = 10 × wt. % (j) × M(j)
- (3) Find the compounds k.
- (4) Calculate the mass of k.
- (5) Sum up to get H^o(glass) and H_T(melt).

the raw materials

sand and feldspar at 25° C

H° in MJ/kg; oxide amounts in wt. %

 $-H^{\circ} = 15.174 \cdot \text{SiO}_2 + 17.100 \cdot \text{Al}_2\text{O}_3 + 4.633 \cdot \text{Fe}_2\text{O}_3$ $+ 15.030 \cdot \text{MgO}$ $+ 12.035 \cdot \text{CaO}$ $+ 10.52 \cdot \text{Na}_2\text{O} + 7.639 \cdot \text{K}_2\text{O}$

dolomite and limestone

dolomite grain

dolomite grain

calcite grain

dolomite lamellae

forsterite grain

dolomite and limestone at 25° C

$$H_{\text{dolomite}}^{o} = \frac{-2413.8 - 9.97 \cdot (1 - x)}{184.411 + 15.768 \cdot x + 31.535 \cdot y \cdot (1 - x)}$$
$$H_{\text{limestone}}^{o} = \frac{-2314.2 + 129.4 \cdot x + 74.0 \cdot y}{184.411 + 15.768 \cdot x + 31.535 \cdot y \cdot (1 - x)}$$

H° in MJ/kg; x, y, as calculated before

chemical grade raw materials at 25° C

		– H° in MJ/kg
sulfate	Na ₂ SO ₄	9.783
Chili saltpeter	NaNO ₃	5.509
coal	С	0.000
soda ash	Na ₂ CO ₃	10.659
potash	K ₂ CO ₃	8.343
	BaCO ₃	6.169
	PbO	0.983
	Pb ₃ O ₄	1.048

the batch gases

batch gases at 25° C

	– H° in MJ/kg
CO ₂	2.482
H ₂ O	3.728
O ₂	0.000
N ₂	0.000
SO ₂	1.287

$$\mathbf{DH}_{\mathsf{T}}(\mathsf{gl}) = \mathsf{C}_{\mathsf{P}}(\mathsf{gl}) \cdot (\mathsf{T}_{\mathsf{ex}} - 25 \, ^{\circ}\mathsf{C})$$

 $C_P(gI)$ in kWh/(t·K) = 1.163 ·(T·S A_j·y_j + S C_j y_j)/(1 + 1.46·T)

oxide j	Aj	Cj	oxide j	Aj	Cj
SiO ₂	0.468	0.1657	MnO	0.294	0.1498
Al ₂ O ₃	0.453	0.1765	ZnO	0.486	0.2020
B ₂ O ₃	0.598	0.1935	PbO	0.013	0.0490
Fe ₂ O ₃	0.380	0.1449	Li ₂ O	1.183	0.2665
MgO	0.514	0.2142	Na ₂ O	0.829	0.2992
CaO	0.410	0.1707	K ₂ O	0.455	0.1756
BaO	0.300	0.1251	SO ₃	0.830	0.1890
L					

practice

#GLASS.xls #SAND & FELDSPAR.xls #DOLOMITE & LIMESTONE.xls #SODA & BORATES & KAOLIN.xls

excursion combustion

fuels, air demand, offgas volume

 $C_x H_y O_z + \left(x + \frac{y}{4} - \frac{z}{2}\right) \cdot O_2 = x \cdot CO_2 + \frac{y}{2} \cdot H_2 O$
DH

 $C_xH_yO_z + \frac{1}{4} \cdot (4 \cdot x + y - 2 \cdot z) O_2 \otimes x \cdot CO_2 + \frac{1}{2} \cdot y \cdot H_2O$

fuels

fuels

 $C_xH_yO_z + \frac{1}{4} \cdot (4 \cdot x + y - 2 \cdot z) O_2 \otimes x \cdot CO_2 + \frac{1}{2} \cdot y \cdot H_2O$

DH

V^F(air), V^F(off) in m³_{NTP} per m³ fuel density d in kg/m³

V^F(air), V^F(off) in m³_{NTP} per kg fuel

 $\iint m_F = \text{fuel demand in kg per t glass}$

V(air), V(off) in m_{NTP}^3 per t glass V(air) = $m_{F^*}V^F$ (air) V(off) = $m_{F^*}V^F$ (off)

horizontal projection

vertical projection (longitudinal axis)

composition of different fuels:

gas:

volume fractions of all species C_xH_y and CO_2 , N_2 are provided by the supplier

 \Rightarrow Vol. % C_xH_y

oil:

wt. fractions of elements C, H, O, S are provided by the supplier; conversion to $[CH_2]$ und C_6H_6 required:

$$\Rightarrow \qquad m_{CH2} = -1.1678 \cdot m_{C} + 13.916 \cdot m_{H} m_{C6H6} = 2.1678 \cdot m_{C} - 12.916 \cdot m_{H}$$

coal:

wt. fractions of elements C, H, O, S and humidity are provided by the supplier

heat capacities of air and offgas:

 $C_P \text{ in Wh}/(m_{NTP}^3 \cdot K) = S X_k \cdot v_k + (S Y_k \cdot v_k) T + (S Z_k \cdot v_k)/T^2$

calculation according to the				fast calculation				
actual gas composition								
k	Xk	Yk	Zk	k	Xk	Yk	Zk	
O ₂	0.3357	0.0468	-0.00187	air	0.3398	0.0323	-0.00249	
N ₂	0.3409	0.0285	-0.00266	gas-off	0.3546	0.0528	-0.00274	
	0.4946	0.1013	-0.00957	oil-EL-off	0.3606	0.0499	-0.00318	
H ₂ O	0.3362	0.1199	0.00037	oil-S-off	0.3609	0.0497	-0.00320	

<u>example: air at 1200 °C (1473 K)</u> :

 $C_{P} = 0.3398 + 0.0323 \cdot 1.473 - 0.00249 \cdot 1.473^{-2}$ = 0.382 Wh/(m³_{NTP}·K)

air:
$$0.21 O_2 + 0.79 N_2$$
 resp. $1 O_2 + 3.76 N_2$
air excess $I = 1.08$
 $1 CH_4 + I \cdot 2 O_2 + I \cdot 7.52 N_2 = 1 CO_2 + 2 H_2O + I \cdot 7.52 N_2 + (I-1) O_2$
 $7.52 N_2 + (I-1) O_2$
 $8.9 \% CO_2$
 $17.7 \% H_2O$
 $72.0 \% N_2$
 $0.14 \% O_2$

batch gases V_b [m^3/t glass]: $V_h \gg 0.269 \cdot dolo + 0.248 \cdot lime$ $+ 0.234 \cdot soda [kg/t glass]$ » $0.6 \cdot (m_{batch} - 1000)$ $V(air) = m_F \cdot \mathbf{l} \cdot V^F(air)$ $V(off) = m_F \cdot (V^F(off) + (\mathbf{1} - 1) V^{\circ}(air)) + V_b$ $\frac{V^{F}(dry) + V_{b} / m_{F}}{V^{F}(air)} \cdot \frac{P_{O2}}{0.21 - P_{O2}}$

density d_k at 298 K, partial NCV h_k and volumes of oxygen, air, and offgas components for fuel species from the system C-H-O-S

species k d _k		h _k	volumes V ^F in m ³ NTP per kg species							
	kg/m ³	kWh/kg								
			air	off	dry	O2	N 2	CO ₂	H ₂ O	
CO gas	1.130	2.81	2.11	2.55	2.55	0.44	1.66	0.88	0.00	
H ₂ gas	0.081	33.32	29.26	35.42	23.10	6.15	23.13	0.00	12.30	
CH ₄ gas	0.647	13.89	14.71	16.26	13.17	3.09	11.63	1.55	3.09	
C ₂ H ₆ gas	1.213	13.19	13.74	14.97	12.50	2.89	10.85	1.65	2.47	
C₃H ₈ gas	1.779	12.88	13.38	14.51	12.26	2.81	10.57	1.69	2.25	
C ₄ H ₁₀ gas	2.345	12.70	13.20	14.26	12.13	2.77	10.43	1.71	2.13	
C₅H ₁₂ gas	2.911	12.60	13.09	14.12	12.06	2,75	10.34	1.72	2.06	
C ₆ H ₁₄ gas	3.477	12.53	13.01	14.02	12.00	2.73	10.28	1.73	2.01	
C₅H ₁₂ liq	626.2	12.49	13.09	14.12	12.06	2.75	10.34	1.72	2.06	
C ₆ H ₁₄ liq	659.4	12.43	13.01	14.02	12.00	2.73	10.28	1.73	2.01	
[CH ₂] liq	780.0	12.14	12.62	13.51	11.74	2.65	9.97	1.77	1.77	
C ₆ H ₆ liq	873.7	11.15	11.33	11.81	10.86	2.38	8.95	1.90	0.95	
S ¹⁾ diss.	≈1920	2.57	3.68	3.68	3.68	0.77	2.91	0.00	0.00	
C solid	≈1800	9.10	9.83	9.83	9.83	2.06	7.76	2.06	0.00	

¹⁾ dissolved sulfur generates 0.77 m³ SO₂ per kg S

species k	d _k kg/m ³	h _k kWh/ka	volumes V ^F in m ³ NTP per kg of species						
		Ŭ	air	off	dry	O 2	N 2	CO ₂	H ₂ O
generator gases					_				
CO gas	1.130	2.81	2.11	2.55	2.55	0.44	1.66	0.88	0.00
H ₂ gas	0.081	33.32	29.26	35.42	23.10	6.15	23.13	0.00	12.30
mineral gases									
CH ₄ gas	0.647	13.89	14.71	16.26	13.17	3.09	11.63	1.55	3.09
:	:	:	:	:	:	:	:	:	:
C ₆ H ₁₄ gas	3.477	12.53	13.01	14.02	12.00	2.73	10.28	1.73	2.01
mineral oils									
[CH ₂] liq	780.0	12.14	12.62	13.51	11.74	2.65	9.97	1.77	1.77
C ₆ H ₆ liq	873.7	11.15	11.33	11.81	10.86	2.38	8.95	1.90	0.95

$$\square$$

$$H^{F}_{u} = S \times_{k} h_{k} \times d_{k} \qquad V^{F}(air) = S \times_{k} d_{k} \cdot V_{k}(air)$$

 $V^{F}(off) = S x_{k} d_{k} V_{k}(off) \qquad V^{F}(dry) = S x_{k} d_{k} V_{k}(dry)$

	Vj	dj	Huj	Hoj	O ₂	air	off	dry
species	%	kg/m3	kWh/kg	kWh/kg	m3/kg	m3/kg	m3/kg	m3/kg
CH4	86.33	0.647	13.89	15.42	3.09	14.72	16.26	13.17
C2H6	5.73	1.213	13.19	14.41	2.89	13.74	14.98	12.50
C3H8	1.05	1.779	12.88	13.98	2.81	13.38	14.51	12.26
C4H10	0.43	2.345	12.70	13.75	2.77	13.20	14.27	12.13
C5H12	0.10	2.911	12.60	13.61	2.75	13.09	14.12	12.06
C6H14	0.07	3.477	12.53	13.52	2.73	13.01	14.02	12.01
N2	1.72	1.130	0	0	0	0	0.88	0.88
CO2	4.57	1.775	0	0	0	0	0.56	0.56
		v _j d _j			v _j d	_i Z _j		
		kg m3	kWh/m3	kWh/m3	m3/m3	m3/m3	m3/m3	m3/m3
CH4	86.33	0.559	7.76	8.61	1.73	8.22	9.09	7.36
C2H6	5.73	0.070	0.92	1.00	0.20	0.95	1.04	0.87
C3H8	1.05	0.019	0.24	0.26	0.05	0.25	0.27	0.23
C4H10	0.43	0.010	0.13	0.14	0.03	0.13	0.14	0.12
C5H12	0.10	0.003	0.04	0.04	0.01	0.04	0.04	0.04
C6H14	0.07	0.002	0.03	0.03	0.01	0.03	0.03	0.03
N2	1.72	0.019	0.00	0.00	0.00	0.00	0.02	0.02
CO2	4.57	0.081	0.00	0.00	0.00	0.00	0.05	0.05
S1 S2	100.00 93.71	0.763	9.11	10.09 10.76	2.02	9.63	10.68	8.71

heat transfer, adiabatic flame temperature

$\frac{Q_{12}}{T} = \Delta S = S_2 - S_1$

Heat Q is not "consumed". When transferre from T_H to $T_{L,}$ it is devaluated.

- Heat can be transferred over any infinitesimally small temperature difference $T_H T_{L,}$.
- The problem is the transfer rate achieved:

$$\dot{Q} = A \cdot \boldsymbol{a}_{ht} \cdot (T_H - T_L), \ \dot{Q} \ in \ kW$$

With a given transfer coeff. \mathbf{a}_{ht} and area A, T_H - T_L is fixed by the required power \dot{Q} .

flame radiation \Leftrightarrow oszillation and rotation of molecules with dipoles (i.e., H₂O, CO₂; rest is athermic; no black radiation!)

mineral gas flame, d = 1.0 m, $P_{CO2} \approx 0.1$ bar, $P_{H2O} \approx 0.2$ bar $\epsilon = \epsilon_{CO2} + \epsilon_{H2O} = 0.05 + 0.075 = 0.125$

$$\Delta H_{ad} = H_{NCV} + \mathbf{I} \cdot n_{O_2} \cdot \left(H_{O_2}(T) + 3.76 \cdot H_{N_2}(T_0) \right) \begin{vmatrix} T = T_{re} \\ T = T_0 \end{vmatrix}$$

$$\Delta H_{ad} = \left(n_{CO_2} \cdot H_{CO_2}(T) + n_{H_2O} \cdot H_{H_2O}(T) \right) + n_{O_2} \cdot \left((I - 1) \cdot H_{O_2}(T) + I \cdot 3.76 \cdot H_{N_2}(T) \right) \begin{vmatrix} T = T_{ad} \\ T = T_0 \end{vmatrix}$$

Vary T in the second line until the ΔH_{ad} value maches with the ΔH_{ad} value of the first line. Due to the complicated $c_P(T)$ functions, a straight-forward calculation is not possible.

	air-fuel,	air-fuel,	oxy-fuel
	298 K	1500 K	
λ = 1.02	2303	3102	4718
λ = 1.08	2221	3036	4634

practice

#FUELTAB-1.xls
#FUELTAB-2.xls
#FUELTAB-3.xls
#THDYN-GAS.xls
#COMBUSTION.xls
#HEAT IN GASES.xls

the glass furnace a thermochemical reactor

heat transfer problem:

T₀, batch

T₀, glass

heat transfer problem:

T₀, batch

 T_0 , glass

$$H_{in} - (H_{off} - H_{re}) = m_F \cdot H_{NCV}^F - (1 - \mathbf{h}_{re}) \cdot H_{off} = H_{wu+wo} + H_{ex}$$

$$(V^F(off) \cdot c_{P,off} + (1 - 1) \cdot V^F(air) \cdot c_{P,air}) \cdot \Delta T_{off}$$

$$resolve for m_F$$

$$m_{F} = \frac{H_{wu+wo} + H_{ex}}{H_{NCV}^{F} - (1 - \boldsymbol{h}_{re}) \cdot \left(V^{F}(off) \cdot c_{P,off} + (\boldsymbol{l} - 1) \cdot V^{F}(air) \cdot c_{P,air}\right) \cdot \Delta T_{off}}$$

$$\boldsymbol{h}_{re} = \left(\frac{V^{F}(air)}{V^{F}(off)}\right) \cdot \left(\frac{c_{P,air}}{c_{P,off}}\right) \cdot \frac{\Delta T_{re}}{\Delta T_{off}} \cdot \frac{1}{1+B} \leq 0.8 \cdot \Delta T_{re} / \Delta T_{off}$$

 $\boldsymbol{h}_{re} \approx 60 - 65\%$

thermochemical recuperator

BATCH PREHEATER

- 100 km/h = 62 mph
- z liters per 100 km correspond to 235.2 / z miles per US gallon

2nd theorem treatment, "finite-time heat thermodynamics"

Main influences:

The compiled influences may be attributed to three areas:

physics & chemistry (basics): nos. 1 - 3, no. 4

product & market: nos. 5 - 6

technical realization: nos. 7 - 8

1	1. H _{BATCH + CULLET}	$= (1 - y_{\rm C}) \cdot \Delta H_{chem}^0$
	2. H _{HEAT CAPACITY}	$= \Delta H_T, at T = T_{ex}$
	3. H _{EXPLOITATION}	$=H_{ex}$
	4. H _{heat transfer}	$\propto \frac{1}{1 - \sqrt{\frac{T_0}{T_H}}}$
	5. H _{glass quality}	$\propto K_Q, \ 1 \le K_Q \propto \frac{1}{1 - \mathbf{x}}$
1	6. H _{UTILIZATION OF CAPACITY}	$\propto \frac{q}{r}$, q in kW/m ² , r in t/(m ² · h)
	7. H _{AGE OF AGGREGATE}	$\propto (1 + \boldsymbol{a} \cdot t)$
,	8. H _{TECHNICAL CONSTRAINTS}	

large furnaces with small heat leak show a point of minimum heat demand per t of produced glass

for a small furnace with high heat leak, the minimum is not observed

H_{in} in kWh/t

a plot of $H_{in} \cdot r$ versus r yields a straight line:

$$q_{in} = q_0 + H_0 \cdot r$$

and
$$q_{in} = H_{in} \cdot r$$

$$\Rightarrow$$

$$H_{in} = H_0 + \frac{q_0}{r} \propto \frac{1}{r}$$

q in kW/m2

practice

#furnace data.XLS

#heat balance.xls

DH_{chem} does not tell the whole story!

As **D**H_{chem} for a conventional batch is approx. 140 kWh/t, is adding quartz sand a good way to save energy? OF COURSE NOT! Slow quartz dissolution is a main reason for late fining, long dwell times, high energy consumption.

DESIGN LOW RESIDAL SILICA BATCHES!

raw material i	kg/t	oxide j	kg/t	phase k	kg/t
sand	666.96	SiO ₂	720.00	SiO ₂	227.05
feldspar	77.15	Al ₂ O ₃	15.00	Na ₂ O·Al ₂ O ₃ ·6SiO ₂	77.15
dolomite	182.98	MgO	40.00	MgO-SiO ₂	99.62
limestone	34.54	CaO	75.00	Na ₂ O·3CaO·6SiO ₂	263.34
soda ash	240.91	Na ₂ O	150.00	Na ₂ O·2SiO ₂	332.84
		CO ₂	202.54		
sum	1202.54		1202.54		1000.00

H°(batch)	= 4589.5 kWh
H°(gl)	= 3942.3 kWh
H°(gas)	= 503.0 kWh;
DH ° _{chem}	= 144.2 kWh
DH⊤(gl)	= 404.1 kWh, T = 25 to 1200 °C
DH _⊤ (gas)	= 90.2 kWh, T = 25 to 1400 °C

raw material i	kg/t	oxide j	kg/t	phase k	\frown	kg/t
sand	666.96	SiO ₂	720.00	SiO ₂		227.05
feldspar	77.15	Al ₂ O ₃	15.00	Na ₂ O·Al ₂ O ₃ ·6	SiO ₂	77.15
dolomite	182.98	MgO	40.00	MgO-SiO ₂		99.62
limestone	34.54	CaO	75.00	Na ₂ O·3CaO·6	SiO ₂	263.34
soda ash	240.91	Na ₂ O	150.00	Na ₂ O-2SiO ₂		332.84
		CO ₂	202.54			
sum	1202.54		1202.54			1000.00

H°(batch)	= 4589.5 kWh	
H°(gl)	= 3942.3 kWh	regidual amount of
H°(gas)	= 503.0 kWh;	residual amount of
DH ° _{chem}	= 144.2 kWh	crystalline SiO ₂ : >23 %,
DH⊤(gl)	= 404.1 kWh, T = 25 to 1200 °C	dissolved by diffusion,
DH⊤(gas)	= 90.2 kWh, T = 25 to 1400 °C	not by chem reaction

NOTE: Each raw material by itself is a multioxide mineral system.

dolomite, 0.34 m²/g (BET)

10 µm

half burnt dolomite, 3.38 m²/g (BET)

	H°	D rH°	DrH° per [MgO]		4 % MgO	
	kJ/mol	kJ/mol	MJ/kg	kWh/kg	kWh/t glass	
dolomite	2314.2	290.7	7.21	2.00	80	
half-burnt	1808.5	178.5	4.43	1.23	49	
difference		112.2	2.78	0.77	31	

depending on **h**ex $(30 - 55\%) \ge 60 - 105$ kWh (0 % cullet) 43 - 80 kWh (25%)

Normalized composition of theoretical and real raw materials							
	NB_2H_5	NB_2H_{10}	tincal	$C_2B_3H_5$	colemanite	$NC_2B_5H_{16}$	ulexite
	penta	deca	real		real		real
oxide content in kg per kg of raw material							
SiO ₂			0.0220		0.0370		0.0290
TiO ₂			0.0001		0.0001		
Al ₂ O ₃			0.0016		0.0014		0.0008
B ₂ O ₃	0.4780	0.3651	0.4830	0.5081	0.4310	0.4295	0.3770
Fe ₂ O ₃			0.0006		0.0006		0.0030
MgO			0.0242		0.0161		0.0142
CaO			0.0289	0.2728	0.2670	0.1384	0.1670
SrO			0.0027		0.0095		0.0061
Na ₂ O	0.2128	0.1625	0.2220		0.0008	0.0765	0.0636
K ₂ O			0.0011		0.0005		0.0003
released gas	ses in kg per l	kg of raw mat	erial				
$CO_2(g)$					0.0455		0.0340
$H_2O(g)$	0.3092	0.4724	0.2126	0.2191	0.1859	0.3556	0.3043
SO ₂ (g)			0.0010		0.0026		0.0006
O ₂ (g)			0.0002		0.0021		0.0001
balance in kg per kg raw material							
sum	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
glass	0.6908	0.5276	0.7862	0.7809	0.7640	0.6444	0.6610
gases	0.3092	0.4724	0.2138	0.2191	0.2360	0.3556	0.3390
heat of formation in kWh per kg of raw material							
H° _{raw mat}	4.5676	4.5625	4.4834	4.6891	4.5453	4.6353	4.5145

 H_{ex} for T_{ex} = 1300 °C (no cullet)

energy demand, calculated from real raw material composition

Due to the manager's impatience, no significant difference was found ...

time in documentation units

Same type of batches in a different factory.

Evaluating the mass and power pulled from the furnace speaks a different language!

%

225

%

%

%

Thank you for your kind attention!