

CHEMICAL DURABILITY OF GLASS

Reinhard Conradt Department of Mineral Engineering, RWTH Aachen Univbersity, Germany

Department of Materials Science, Faculty of Science, Chulalongkorn University & Department of Science Service Bangkok 14th September 2010

conradt@ghi.rwth-aachen.de

= load down & read at home

data sources

AQUEOUS SYSTEMS

- •Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions aq. pH-Eh speciation of the entire periodic table of elements
- Iler: The Chemistry of Silica (1979) *more than 2600 references!*
- Baes & Mesmer: The thermodynamics of cation hydrolysis (1981)
- Brinker & Scherer: Sol-Gel Science (1990)
- H.E. Bergna: The colloid Chemistry of Silica (1994)
- G. Sposito: The Environmental Chemistry fo Alumina (1996)

SYSTEMS

Atlas of Electrochemical Equilibria in Aqueous Solutions speciation of the entire periodic table of elements Chemistry of Silica (1979) more than 2600 references!

- Baes & Mesmer: The thermodynamics of cation hydrolysis (1981)
- Brinker & Scherer: Sol-Gel Science (1990)
- H.E. Bergna: The colloid Chemistry of Silica (1994)
- G. Sposito: The Environmental Chemistry fo Alumina (1996)

GLASS CORROSION

- ICG compilation of literature (1972) *almost 1000 references!*
- Holland (1964)
- Besborodow (1972)
- Clark, Pantano & Hench (1979)
- Doremus & Tomozawa (1977-82)
- Scholze (1964-91)
- Paul (1982)
- Clark & Zoitos (1992)

phenomena observed

"soda bloom" on OCEAN-Glas

10 µm

after: E. Rädlein

reaction layer, vertical section

surface underneath top view

standards

s or "SA/V" in cm⁻¹

dynamic tests

$$\dot{c} = q \cdot \dot{s}$$

designed for the family of conventional silicate glasses

ISO standard tests:

ISO 1776 (stability against acidic attack) area $\approx 300 \text{ cm}^2$; boil in 6 m HCl (1.5 l) for 6 h $\Rightarrow <0.7 / 1.5 / 15 / >15 \text{ mg/dm}^2$

ISO 695 (stability against alkaline attack) area 10=15 cm²; boil in 1 m NaOH + 1 m Na₂CO₃ (0.8 l) for 3 h ; \Rightarrow <75 / 175 / >175 mg/dm²

ISO 719 (stability against hydrolytic attack)

powder 315-500 μ m (4x 2 g); expose to 30 ml water in 50 ml flask at 98 °C for 1 h; cool down; fill to 50 ml; titrate 25 ml aliquots by 0.01 m HCl \Rightarrow <0.1 / 0.2 / 0.85 / 2 / 3.5 ml HCl per g glass

ISO 720 (stability against hydrothermal attack)

powder 300-420 μ m (4x 10 g); expose to 50 ml water in 10 ml flask at 121 °C for 0.5 h; cool down; fill to 10 ml; titrate by 0.02 m H₂SO₄ \Rightarrow <0.1 / 0.85 / 1.5 ml H₂SO₄ per g glass

design of glass corrosion experiments

solution: *) pH (free, buffered compensated); salts (e.g., 9 g/l NaCl); organics; redox (e.g., FeCl₂/FeCl₃)

temperature:

37±1 or 98±1 °C

<u>s parameter</u>:

0.1 cm⁻¹

time intervals:

0.5, 1, 2, 4, 8, 16 hours; 1, 3, 7, 14, 28, 60, 120, ... days

similar procedures: see MCC-1, MCC-2 tests

*) no "natural" reference solution for corrosion experiments

0.5, 1, 2, 4, 8, 16 hours; 1, 3, 7, 14, 28, 60, 120, ... days similar procedures: see MCC-1, MCC-2 tests

*) no "natural" reference solution for corrosion experiments

	RIE	00	TR			
oxide composition						
SiO ₂	60.20	72.50	69.30			
ZrO ₂	-	-	1.50			
TiO ₂	-	-	0.60			
AI_2O_3	1.00	1.00	1.00			
B_2O_3	0.70	-	-			
MgO	-	4.11	-			
CaO	-	7.10	4.90			
ZnO	-	-	2.30			
PbO	24.60	-	-			
Na₂O	5.30	14.10	9.10			
K₂O	8.70	-	10.00			
sum	100.50	98.81	98.70			
constitutional composition						
2ZnO-SiO ₂	-	-	3.16			
ZrO ₂ -SiO ₂	-	-	0.90			
CaO-TiO ₂	-	-	2.56			
PbO-SiO ₂	31.35	-	-			
K ₂ O·Al ₂ O ₃ ·6SiO ₂	0.55	-	5.05			
K ₂ O-2SiO2	19.67	-	20.88			
Na ₂ O·Al ₂ O ₃ ·6SiO ₂	-	7.26	5.56			
B_2O_3	0.70	-	-			
MgO·SiO ₂	-	10.32	-			
$Na_2O-2SiO_2$	15.64	31.50	20.72			
Na ₂ O·3CaO·6SiO ₂	-	25.13	13.55			
SiO ₂	32.10	25.80	27.63			
sum	100.00	100.00	100.00			


```
H_2O dest. \rightarrow rapid change of pH takes place (specified by el. conductivity)
```

buffered solutions

 \rightarrow may interfere with the corrosion mechanism

 \rightarrow for specific corrosion scenarios, e.g.,

special corrosion media

- salt brines "Q", "R", ...;
- granitic or clay waters;
- simulated physiological fluids (9 g/l NaCl, Gamble's solution, ...)
- water with dish washing agents

water pre-saturated with glass powder

example:

how to perform a corrosion test under conditions "close to saturation"

corrosion test under saturation conditions

pre-saturation

example: buffered solutions

citrate bu	ffers			
pН	$C_6H_8O_7 \cdot H_2O[g]$	NaCl [g]	Zusa	tz *) [ml]
2	6.43	3.58	8.2	HCI
3	8.47	3.49	20.6	NaOH
4	11.75	2.57	68.0	NaOH
5	20.26	-	196.4	NaOH
6	12.53	-	159.6	NaOH

*) concentration 1 mol/l

Is a buffered constant pH solution a good reference medium for corrosion tests?

NO WAY!

Citrate buffers, for example, destablize the otherwise very stable alumina. Thus, very corrosion resistant glasses may appear to be very weak in a solution buffered with a citrate buffer.

surface pre-treatment:

- cut by a low-speed saw in petroleum;
- cut, ground, polished, etched in HF-HNO₃
- as received from the production process
- fire polished
- blown glass foils

etc. etc.

empirical knowledge

"the network modifiers are leached preferentially, the network formers are left behind as a scaffold dissolving slowly" is misleading.

The covalent / ionic nature of the metal-oxygen bond has almost <u>**nothing**</u> to do with its stability against aqueous attack. Think of Si-O vs. P-O! Think of pure P_2O_5 vs. natural bones. How would a MgO-B₂O₃ glass behave?

misleading view: network modifiers are depleted, network formers are enriched Mo <u>correct view</u>: Sr, Ba an incongruent dissolution process takess place; the glass components are Li, K enriched or depleted according to their solubility in the aqueous system

Let us learn from metallurgy:

corrosion resistance =

(thermodynamic stability, layer formation, passivation)

metals

the elementary process of metal corrosion is *electron transfer* (redox reactions):

in air	2Fe ⁰	\rightarrow	2Fe ²⁺ + 4e ⁻	
	O ₂ + 4e⁻	\rightarrow	20 ²⁻	
	2Fe ⁰ + O ₂	\rightarrow	2FeO	
in water	2Fe ⁰	\rightarrow	2Fe²+ + 4e⁻	
	2H ₂ O + 4e⁻	\rightarrow	2H ₂ + 4 OH⁻	
	2Fe ⁰ + 2H ₂ O	\rightarrow	2Fe(OH) ₂ (aq) + 2	2H ₂
in a slag	2Fe ⁰	\rightarrow	2Fe ²⁺ + 4e ⁻	
	O ₂ + 4e ⁻	\rightarrow	20 ²⁻	
	2Fe ⁰ + O ₂	\rightarrow	2FeO(slag)	

The layer must

- be an effective diffusion barrier
- adhere well to the metal
- passivate the metal (forestall the e⁻ transfer)

The layer must

- be an effective diffusion barrier
- adhere well to the residual glass
- passivate the glass (forestall the H⁺ transfer)

the driving force of glass corrosion

species	-G ^f e (kJ/mol)
H ₂ O(I)	237.180
H⁺(aq)	0.000
H ₂ O – OH⁻(aq) =H⁺(aq)	79.880
OH-(aq)	157.300
HO ₂ -(aq)	67.362
$H_2O_2(I)$	134.097
H ₂ (aq)	-17.573
$O_2(aq)$	-16.318
H ₂ (g)	0.000
$O_2(g)$	0.000

The state "dissolved in water" is a state like the states "solid", "liquid", and "gas". It is denoted by (aq).

\checkmark

Spezies	-G' _e (kJ/mol)	Spezies	-G'e (kJ/mol)	Spezies	-G' _e (kJ/mol)	Spezies	-G' _e (kJ/mol)
CO ₂ (g)	394.570	F ₂ (g)	0.000	MgO(s)	569.840	PbO(s)	188.489
CO ₂ (aq)	386.016	F^{-}	279.993	Mg ²⁺	455.261	Pb ²⁺	24.393
HCO3 ⁻	586.848	HF(aq)	298.110	MgOH⁺	638.064	PbOH⁺	226.354
CO3 ²⁻	527.895	HF_2^-	581.492	Mg(OH) ₂ (aq)	769.438	Pb(OH) ₂ (aq)	400.827
				Mg(OH) ₂ (s)	833.746	Pb(OH) ₃ ⁻	575.718
SiO ₂ (s)	854.910	$P_2O_5(s)$	1349.570	MgCO ₃ (aq)	1002.486		
SiO ₂ (aq)	1307.760	H ₃ PO ₄ (aq)	1142.650	MgCO ₃ (s)	1012.110	BaO(s)	528.690
$H_3SiO_4^-$	1251.990	$H_2PO_4^-$	1130.391	MgHCO₃ [−]	1050.602	Ba ²⁺	547.518
$H_2SiO_4^{2-}$	1185.460	HPO4 ²⁻	1089.263				
HSiO ₄ ³⁻	1116.547	PO4 ³⁻	1018.804	CaO(s)	604.460	Li₂O(s)	561.760
SiO4 ⁴⁻	1048.230	$H_4P_2O_7(aq)$	2032.160	Ca ²⁺	552.706	Li ⁺	292.629
$H_6[H_2SiO_4]_4^{2-}$	5153.236	$H_{3}P_{2}O_{7}^{-}$	2026.830	CaOH⁺	716.970		
$H_4[H_2SiO_4]_4^{4-}$	5025.951	$H_2P_2O_7^{2-}$	2003.410	Ca(OH) ₂ (aq)	868.138	Na₂O(s)	376.740
$HSiO_3^-$	1005.46	HP ₂ O ₇ ³⁻	1961.710	Ca(OH) ₂ (s)	897.008	Na⁺	262.211
SiO_3^{2-}	938.51	$P_2 O_7^{4-}$	1919.200	CaCO ₃ (aq)	1081.438		
		$H_5P_3O_{10}(aq)$	2921.670	CaCO ₃ (s)	1128.760	K ₂ O(s)	322.200
$AI_2O_3(s)$	1583.150	$H_4P_3O_{10}^{-}$	2923.190	CaHCO ₃ ⁻	1145.035	K +	282.671
Al ³⁺	492.000	$H_3P_3O_{10}^{2-}$	2917.480				
AI(OH) ²⁺	700.653	$H_2P_3O_{10}^{3-}$	2094.550	SrO(s)	562.680	Cs ₂ O(s)	308.300
AI(OH) ₂ ⁺	907.384	$HP_{3}O_{10}^{4-}$	2872.550	Sr ²⁺	571.451	Cs⁺	292.001
Al(OH) ₃ (aq)	1111.061	$P_3O_{10}^{5-}$	2821.490	SrOH⁺	733.455		
Al(OH) ₃ (am)	1137.630			Sr(OH)₂(aq)	871.109	Nd ₂ O ₃ (s)	1721.700
AI(OH) ₄ ⁻	1305.410	B_2O_3	1194.270	Sr(OH) ₂ (s)	881.987	Nd ³⁺	671.532
		H ₃ BO ₃ (aq)	968.638	SrCO ₂ (aq)	1087.338	Nd ₂ (OH) ₂ ⁴⁺	1738.230
Fe ₂ O ₃ (s)	739.960	$H_2BO_3^-$	917.564	SrCO ₃ (s)	1140.140	Nd(OH) ²⁺	863.126
Fe ³⁺	17.866	HBO ₃ ^{2–}	845.695			Nd(OH) ₃ (s)	1259.221
FeOH ²⁺	240.413	BO_{3}^{3-}	769.182	MnO(s)	363.340	$Nd(OH)_4^-$	1407.096
Fe(OH) ₂ ⁺	457.228			Mn ²⁺	229.953		
Fe(OH) ₃ (aq)	670.695	TiO ₂	889.940	MnOH⁺	406.685	MoO ₃ (s)	655.778
Fe(OH) ₃ (s)	696.636	TiO ²⁺	577.392	Mn(OH) ₂ (s)	615.048	MoO_2^{2+}	411.287
Fe(OH) ₄ ⁻	841.821	TiO₂OH [−]	467.353	$Mn(OH)_3^-$	746.426	$MoO_2(OH)^+$	645.884
		TiO(OH) ₂ s	1058.552			H ₂ MoO ₄ (aq)	877.134
FeO	250.990			ZnO(s)	318.470	HMoO ₄ ⁻	866.632
Fe ²⁺	92.257	ZrO ₂	1036.870	Zn ²⁺	147.193	MoO ₄ ²⁻	838.055
FeOH⁺	279.951	Zr ⁴⁺	594.128	ZnOH⁺	333.256		
Fe(OH) ₂ (aq)	457.102	ZrO ²⁺	843.076	Zn(OH) ₂ (aq)	535.385	$Nb_2O_5(s)$	1765.82
Fe(OH) ₂ (s)	486.599	ZrO₂OH [−]	1203.737	Zn(OH) ₃ ⁻	704.711	Nb(OH)₅(aq)	1448.50
Fe(OH) ₃ ⁻	619.232	ZrO(OH) ₂ s	1303.316	$Zn(OH)_4^{2-}$	871.276	NbO_3^-	932.20

1							
Spezies	-G ^f e (kJ/mol)	Spezies	-G ^f e (kJ/mol)	Spezies	-G ^f e (kJ/mol)	Spezies	-G ^f e (kJ/mol)
$CO_2(q)$	394.570	$F_2(q)$	0.000	MaO(s)	569.840	PbO(s)	188.489
CO ₂ (aq)	386.016	F ⁻	279.993	Mg ²⁺	455.261	Pb ²⁺	24.393
HCO ₃ ⁻	586.848	HF(ag)	298.110	MaOH ⁺	638.064	PbOH⁺	226.354
CO_3^{2-}	527.895	HF_2^-	581,492	Mg(OH) ₂ (ag)	769.438	Pb(OH) ₂ (ag)	400.827
				Mg(OH) ₂ (s)	833.746	Pb(OH) ₃ ⁻	575.718
SiO ₂ (s)	854.910	$P_2O_5(s)$	1349.570	MgCO ₃ (aq)	1002.486		
SiO ₂ (aq)	1307.760	$H_3PO_4(aq)$	1142.650	MgCO ₃ (s)	1012.110	BaO(s)	528.690
$H_3SiO_4^-$	1251.990	$H_2PO_4^-$	1130.391	MgHCO₃ [−]	1050.602	Ba ²⁺	547.518
$H_2SiO_4^{2-}$	1185.460	HPO4 ²⁻	1089.263				
$HSiO_4^{3-}$	1116.547	PO4 ³⁻	1018.804	CaO(s)	604.460	Li ₂ O(s)	561.760
SiO ₄ ^{4–}	1048.230	$H_4P_2O_7(aq)$	2032.160	Ca ²⁺	552.706	Li ⁺	292.629
$H_6[H_2SiO_4]_4^{2-}$	5153.236	$H_3P_2O_7^-$	2026.830	CaOH⁺	716.970		
$H_4[H_2SiO_4]_4^{4-}$	5025.951	$H_2P_2O_7^{2-}$	2003.410	Ca(OH) ₂ (aq)	868.138	Na₂O(s)	376.740
$HSiO_3^-$	1005.46	$HP_{2}O_{7}^{3-}$	1961.710	Ca(OH) ₂ (s)	897.008	Na⁺	262.211
SiO_3^{2-}	938.51	P ₂ O ₇ ^{4–}	1919.200	CaCO ₃ (aq)	1081.438		
		H₅P₃O ₁₀ (aq)	2921.670	CaCO ₃ (s)	1128.760	K ₂ O(s)	322.200
$Al_2O_3(s)$	1583.150	$H_4P_3O_{10}^{-1}$	2923.190	CaHCO ₃ ⁻	1145.035	K +	282.671
Al ³⁺	492.000	$H_3P_3O_{10}^{2-}$	2917.480				
AI(OH) ²⁺	700.653	$H_2P_3O_{10}^{3-}$	2094.550	SrO(s)	562.680	Cs ₂ O(s)	308.300
AI(OH) ₂ ⁺	907.384	HP ₃ O ₁₀ ^{4–}	2872.550	Sr ²⁺	571.451	Cs⁺	292.001
Al(OH)₃(aq)	1111.061	P ₃ O ₁₀ ⁵⁻	2821.490	SrOH ⁺	733.455		
Al(OH)₃(am)	1137.630			Sr(OH) ₂ (aq)	871.109	Nd ₂ O ₃ (s)	1721.700
N(OH)₄ [−]	1305.410	B_2O_3	1194.270	Sr(OH) ₂ (s)	881.987	Nd ³⁺	671.532
		H₃BO₃(aq)	968.638	SrCO ₂ (aq)	1087.338	Nd ₂ (OH) ₂ ⁴⁺	1738.230
Fe ₂ O ₃ (s)	739.960	$H_2BO_3^-$	917.564	SrCO ₃ (s)	1140.140	Nd(OH) ²⁺	863.126
Fe ³⁺	17.866	HBO ₃ ²⁻	845.695			Nd(OH) ₃ (s)	1259.221
FeOH ²⁺	240.413	BO ₃ ³⁻	769.182	MnO(s)	363.340	Nd(OH) ₄ ⁻	1407.096
Fe(OH) ₂ +	457.228			Mn ²⁺	229.953		
Fe(OH)₃(aq)	670.695	TiO ₂	889.940	MnOH⁺	406.685	MoO ₃ (s)	655.778
Fe(OH) ₃ (s)	696.636	TiO ²⁺	577.392	Mn(OH) ₂ (s)	615.048	MoO ₂ ²⁺	411.287
Fe(OH) ₄ ⁻	841.821	TiO₂OH [−]	467.353	Mn(OH) ₃ ⁻	746.426	MoO ₂ (OH) ⁺	645.884
		TiO(OH)₂ s	1058.552			H ₂ MoO ₄ (aq)	877.134
FeO	250.990			ZnO(s)	318.470	HMoO ₄ -	866.632
Fe ²⁺	92.257	ZrO_2	1036.870	Zn ²⁺	147.193	MoO4 ²⁻	838.055
FeOH ⁺	279.951		594.128	ZnOH ⁺	333.256		
Fe(OH) ₂ (aq)	457.102	ZrO⁴⁺	843.076	Zn(OH)₂(aq)	535.385	$Nb_2O_5(s)$	1765.82
Fe(OH) ₂ (s)	486.599	ZrO ₂ OH ⁻	1203.737	$Zn(OH)_3^-$	704.711	Nb(OH)₅(aq)	1448.50
Fe(OH) ₃ ⁻	619.232	ZrO(OH) ₂ s	1303.316	Zn(OH) ₄ ^{2–}	871.276	NbO ₃ ⁻	932.20

$AI_2O_3(s)$	1583.150
Al ³⁺	492.000
AI(OH) ²⁺	700.653
AI(OH) ₂ ⁺	907.384
AI(OH) ₃ (aq)	1111.061
AI(OH) ₃ (am)	1137.630
AI(OH) ₄ ⁻	1305.410

AI_2O_3	+ 6 H⁺	ightarrow 2 Al ³⁺ + 3 H ₂ O
	+ 4 H+	\rightarrow 2 AIOH ²⁺ + H ₂ O
	+ 2 H+ + H ₂ O	\rightarrow 2 AI(OH) ₂ +
	+ 3 H ₂ O	\rightarrow 2 AI(OH) ₃
	+ 5 H ₂ O	\rightarrow 2 AI(OH) ₄ - + 2 H ⁺

The state "dissolved in water" is a state like the states "solid", "liquid", and "gas". It is denoted by (aq). $SiO_2(aq) = silica dissolved in water.$

We may a glass like a "state" - although it is not an equilibrium state like: $SiO_2(gl) = silica glass.$

Let us discuss a glass like $[74SiO_2 + 10CaO + 16 Na_2O](gl)$

What state corresponds to $[74SiO_2 + 10CaO + 16Na_2O](aq)$?

- (1) oxides + aqueous solution \rightarrow aqueous species = oxides \rightarrow aqueous species - aqueous solution \Rightarrow ? Gaq
- (2) equilibrium compounds \rightarrow oxides $\Rightarrow -?Gs$
- (3) glass \rightarrow equilibrium compounds $\Rightarrow -G^{vit}$

(4) glass + aqueous solution \rightarrow aqueous species \Rightarrow ? Ghydr

stability fingerprints of different glasses

рΗ

reaction path modeling

How to model the reaction path

[composition](gl)
[composition](aq) ?

reaction product layer (vertical section);

surface of the residual glass after removal of the reaction product layer (top view)

partially crystalline, partially amorphous layer of reaction products on top of the residual glass

G. Malow, W. Lutze, R.C. Ewing; Stracchan; Chick & Pederson

analcime crystals: Na₂O·Al₂O₃·4SiO₂·2H2O

corrosion rate $r \rightarrow r_0$ (1)

$$\frac{C_{ppt}}{Cs}$$

- c_s = metastable solubility limit of the glass; c_{ppt} = solubility limit of the final crystal
- formed along the reaction path $c_s > c_{ppt} \Rightarrow r$ cannot reach zero

 in many cases, the layer can be removed easily (like ice from a car windshield)

saturation with respect to the glass is a transient stage in most cases

own work

"soda bloom" on OCEAN-Glas

10 µm

stage 1: due to large SA/V, $pH \rightarrow pH_s$ and $c \rightarrow c_s$; $r_s = r_0 \cdot (1 - c / c_s) \rightarrow 0$

stage 2: eventually, a local ppt forms with solubility $c_{ppt} < c_s$; the rate in the vicinity of ppt is $r = r_0 \cdot (1 - c_{ppt} / c_s) > 0$. Thus, a "local element" is generated.

water film on glass surface

the nature of the sub-surface zone and the rate determining step

proton transfer! H⁺ is not an ion, but an elementary particle

adsorption of proton by hydrogen:

ionization (dissociation) of water:

 $H_20 + H_20 \implies H_30^+ + 0H^-$

F.M.Ersnberger: The Nonconformist Ion. J. Am. Ceram. Soc. 66(1983)747-750. adsorption of proton by water molecule:

adsorption of proton by hydroxyl ion:

Grotthuss proton transfer:

surface HO-Si≢ equilibrium Boksay 1980 Baucke 1996 H⁺ -O-Si≢

rate control by fluid film diffusion: $E_A \approx 20 \text{ kJ/mol}$

$$r = \mathbf{b} \cdot (c_s - 0) \cdot \left(1 - \frac{c}{cs}\right) \mathbf{b} = f(\mathbf{v}, \mathbf{r}, \mathbf{h}, L)_{FLUID}$$

$$r_0$$

rate control by activated surface complex: $E_A \approx 70\text{--}80 \text{ kJ/mol}$

Gibbs free energy

— reaction coordinate ξ

after Grambow -

reaction velocity:

$$r = r_{+} - r_{-} \propto exp\left(\frac{-?G^{\#}}{RT}\right) - exp\left(\frac{-?G^{\#} - ?Ghydr}{RT}\right)$$
$$\propto exp\left(\frac{-?G^{\#}}{RT}\right) \cdot \left[1 - exp\left(\frac{-?Ghydr}{RT}\right)\right] \approx exp\left(\frac{-?G^{\#}}{RT}\right) \cdot \left[1 - \frac{c}{c_{s}}\right]$$

linear free energy relationship (LFER):

$$?G^{\#} \propto ?Ghydr$$

after Grambow -

---- reaction coordinate ξ

thermochemical rate equation

Corrosion rates at high water excess (low s parameter) : "Multiply" the stability fingerprint or solubility (left graph) with the surface coverage (right graph) ...

... and obtain a prediction of the dissolution rate as f(pH).

Interaction between organic components and glass – a key to applications in medicine and biotechnology

two key mechanisms:

- influence on the solubility,
- influence on the surface equilibrium.

Ganor & Lasaga 1998, Gross & Dahlmann 2003

Thank you for your kind attention!