A

Acetonitrile covalent-adduct chemical ionization (CACI) MS-MS
Blackie Academic and Professional, New York, 1996.

B

Bacteria. See also Food-borne pathogens; specific bacteria
fast GC for cellular FAME analysis
bacteria used/preparation, 273-274
bacterial identification, 277, 280
chromatographic methods, 274-277
future research opportunities,
future research opportunities,
281-282
GC use, 272-273
microbial identification by FA
analysis, 272
sample preparation, 277, 281
β-glucans, 385-386
Bicyclic endoperoxides, 126
Bile acids, EI-MS and, 55
Biopolymer/fiber-based products, 385-386
Bis(monoacylglycerol)phosphate (BMP), chiral-phase HPLC enantiomeric separation and, 97, 99-100

C

Calcium sulfate, with adsorbent silica gel G, 6-7
Calorie Control council National (1998), 379
Calorie free labeling, 381
Index

Candida antarctica, 94
Capillary exit voltage (CapEx), stereoisomeric lipids and, 80
Capillary gas chromatography (GC). See also Gas chromatography (GC)
foodborne pathogen identification via ATR-FTIR spectroscopy protocol, 295
EI-MS and, 55 LC/MS (recent developments) and, 139, 141 shotgun lipodomics and, 65 Catechin, APPI and, 42 Cavendish Laboratory (University of Cambridge), 29 Cellular lipidomes. See Shotgun lipodomics Celluloses, 385–386 Ceramide phosphorylethanolamines
EI-MS and, 55 FAB-MS and, 36 shotgun lipodomics and, 65 Cerebrosides
dual detection and, 217 low density lipoprotein (LDL), 380 silica gel G and separation of, 6 Cholesteryl esters of FAs
EI-MS and, 55 LC/MS (recent developments), 137–149 supercritical fluid extraction (SFE) and, 17 Choline glycerophospholipid (PD)
EI-MS and, 55 shotgun lipodomics and, 65 Chromarods, 261, 263, 265 Chromatographic methods of lipid analysis counter current chromatography (CCC), 16 gas chromatography (GC), 13–16 high performance liquid chromatography (HPLC), 8–13 size exclusion chromatography (SEC), 16 supercritical fluid chromatography

(SFC thin-layer, Gas chromatography (GC), Gas chrom
Index 435

(SFC), 16–17
thin-layer chromatography (TLC), 6–8
Classical chemical applications of lipid analysis, 5–6
Collisionally induced dissociation (CID)
ESI and, 37
MALDI-TOF MS and, 42
stereoisomeric lipids and, 79–80
Columns
supercritical fluid chromatography
(SFC)
packed vs. capillary, 241–244
PAG/sterols/tocopherols/seed oils,
250–254
TAG/FFA/glyceride mixtures,
245–250
for supercritical fluid extraction (SFE),
17
Concentrated fraction applications
HPSEC
crude/refined oils, 223–224
digestibility coefficients in animals,
226
intact oil samples, 207–208, 218–219
oxidized fats/oils, 224–227
used frying fats/oils, 220–223
Conjugated C18 trienes, acetonitrile CACI
for FAME analysis and, 168, 170
Conjugated linoleic acids (CLAs)
acetonitrile CACI for FAME analysis
and, 168–171
bioactivities of, 158
exclusion from trans-FA methods,
304–306
FT-NIR and, 306–330
quantification with IR spectroscopy
chemometrics, 337–338
experimental
standards/measurements/data
handling, 343–344
general discussion, 335–337
PLS technique of calibration,
338–342
spectra of triglycerides, 344–350
RP-HPLC and, 9
Corn bran/fiber lipid extracts, 31
Cornstarch, 385
Coronao CADo (charged aerosol detector),
39
Counter current chromatography (CCC)
as chromatographic methods of lipid
analysis
general discussion, 16
Coumaroylferuloylputrescine (CFP), 31
Covalent-adduct chemical ionization
(CACI). See also Acetonitrile
covaient-adduct chemical ionization
(CACI) MS-MS
GC/MS for double bond position UFAs
and
FAME analysis of acetonitrile
CACE, 162–166
future applications of conjugated C18
triens (CLnA), 168, 170
homoaalyl/diagnostic ion structures,
163, 167–169
UFA methyl ester isomers and, 162
Crude/refined oils, HPSEC and, 223–224.
See also Fats/oils
CUBO solvent, 19
D
Dairy products, extraction methods and, 4
Databases, GC-MS-EI comparisons and, 33
Densitometric measurement for
quantification of lipid analytes, 7–8
Desorption, development of, 34
Diabetes, metabolic syndrome and, 51
Diacylglycerol isomer determination, 9
Diacylglycerol lipid class (DAG), HPLC-
MS-APCI and, 39–40
Diacylglycerols (DAG)
and 2D identification of individual
species, 59–60
chiral-phase steric analysis of, 91–96
conversion to NEUs or PEUs, 94–95
diastereomeric derivatives of, 76, 78–79
EI-MS and, 55
shotgun lipidomics and, 65
silica gel G and separation of, 6
size exclusion chromatography (SEC)
and, 16
Diastereomers. See also Chiral-phase HPLC
applications
advantages of chiral separation LC/MS and, 73
DAG derivatives, 78–79, 94–95
Diferuloylputrescine (DFP), 31
Dihydroxy FA
chiral-phase steric analysis of, 88–89
steric analysis of, 88–89
Dihydroxyeicosatetraenoic acid (DiHETE),
steric analysis of, 88–89
Dihydroxypropyl propyl ether, as diol phase of HPLC, 8
Dimethyloxazoline (DMOX)
GC/MS for double bond position UFAs and, 160–161
use of derivatives of, 14–15
Dimyristoylphosphatidic acid (DMPA), 366–368
Dimyristoylphosphatidylethanolamine (DMPC-d54), 367
Dioleoylphosphatidylcholine (DOPC)
Dioleoylphosphatidylethanolamine (DOPC-d54), 367
Dipalmitoyl (GroPSer), 101
diradylglycerol
hydroxides/hydroperoxides/isoprostanes/core aldehydes LC/MS (recent developments), 128–131
Direct APPI, 41
Dopant APPI, 41
Dual detection (UV diode-array/refractive), 217
Dyes for visualization, thin-layer chromatography (TLC) and, 6–7

Electrical properties of analytes
EI-MS and, 53–56
and quantitation of lipid molecular species, 63–64
Electrochemical detection devices
analyte detection after HPLC using, 10
Electron impact (EI)
hard GC-MS-EI/LC-MS-EI and, 30–33
steryl esters and, 124
Electron multiplier, ion detection and, 46
Electrospray ionization mass spectrometry (ESI-MS)
2D identification of lipid molecular species, 59–63
2D quantitation of lipid molecular species, 63–65
advantages of, 52
biological applications of, 65–67
intrasource separation of lipids and, 55–58
intrasource separation of lipid classes (shotgun lipidomics), 53–59
Electrospray ionization mass spectrometry (ESI-MS-MS)
analyte detection after HPLC using, 10–12
development of, 34–35
soft ionization via, 37–38
Elution order
silver-ion HPLC and temperatures, 179, 181–183
trans-18:1 FA analysis by silver ion HPLC and, 195, 197–199
Enantiomers. See also Chiral-phase HPLC applications
advantages of chiral separation LC/MS and, 73
derivitization of DAGs/MAGs, 75–76
derivitization of enantiomeric DAGs/MAGs, 75–76
derivitization of enantiomeric hydroxy FA, 75
epoxide chiral separation, 77
glycerolipid chiral separation, 77–78
glycerophospholipid chiral separation, 79
hydroxy FA chiral separation, 76–77
Epoxy FA, chiral-phase steric analysis of, 89
Epoxyeicosatetraenoic acids (EETs), 77, 89
Erythro-DHET/E, 89
ESA Inc., 39
ESI-MS-MS. See Tandem electrospray ionization (ESI-MS-MS)
Ester value of waxes, 423
Esterified propoxylated glycerols (EPGs), as fat replacers, 382
Ethanolamine glycerophospholipid (PE)
EI-MS and, 55
shotgun lipomics and, 65
Ether, extraction methods and, 3
Evaporative light scattering detector (ELSD), analyte detection after HPLC using, 10
Extraction methods, 3–5

F

FAME applications
HPSEC, 218
FAME, 219–221
Faraday cup, ion detection and, 46
Fast atom bombardment (FAB) development of, 34–35
mechanism of, 36–37
FAST methods of GC. See Bacteria
Fat free labeling, 381
Fat replacers
chemistry
alkyl glycosides FA esters, 383–384
carbohydrate FA esters, 382–383
EPGs, 382
PFPS, 382
protein-based fat substitutes, 386–388
reduced-calorie fat-based fat replacers, 388–389
SPE-Olestra (Olean), 383
starch-based fat replacers, 384–386
food applications, 389–391
health issues
general discussion, 379–381
labeling, 381
toxicology, 391–392
Fats/oils
HPSEC
crude/refined oils, 223–224
fats/oils replacers, 214–216
fish oils, 212–213
minor lipid compounds, 216–217
oxidized fats/oils, 224–225
partial glycerides, 213–214
pesticide analysis, 217–218
used frying oils, 211–213
replacers
HPSEC and, 214–216
Fatty acid esters (alkyl glycosides), as fat replacers, 383–384
Fatty acid esters (carbohydrate), as fat replacers, 382–383
Fatty acid methyl esters (FAME) acetonitrile CACI for, 162–166
effects on lipid elution (silver-ion HPLC) and, 179–183
with fast GC for bacteria analysis
bacteria used/preparation, 273–274
bacterial identification, 277, 280
chromatographic methods, 274–277
future research opportunities, 281–282
GC use, 272–273
microbial identification by FA analysis, 272
sample preparation, 277, 281
FTIR method for identification of, 15–16
GC determination of, 5, 13–16
hard GC-MS-EI/LC-MS-EI and, 30–31
HPSEC applications, 207
HPSEC and, 218–223
nuclear magnetic resonance spectroscopy (NMR) and, 19
RP-HPLC and, 9
silver-ion HPLC and temperatures, 183–186
trans-18:1 FA analysis and, 191
tran-s-18:1 FA separation as, 192–194
Fatty acid partially esterified polysaccharide (PEP), as fat replacers, 382
Fatty acids (FAs)
α-oxidation and, 67
cellular. See Capillary gas chromatography (GC)
EI-MS and, 55
enantiomeric hydroxy, 75
extraction methods and, 3
shotgun lipomics and, 65
supercritical fluid extraction (SFE) and, 17
tran-s monoethylenic, 13–14
UV-VIS detection of, 9
Ferricytochrome c interaction with DMPA, 366–368
Field desorption, 34
Fish. See Meat/fish
Fish oils, HPSEC and, 212–213. See also Fats/oils
crude/refined oils, 223–224

digestibility coefficients in animals, 226

intact oil samples, 218–219

oxidized fats/oils, 224–227

used frying fats/oils, 220–223

Fractionation, trans-18:1 FA analysis by silver ion HPLC and, 195, 200–201

Fragmentation, ESI and, 37

Frankia, EI-MS and, 32

Free fatty acids (FFAs)

classical applications and, 5

Fourier transform infrared spectroscopy (FTIR) and, 17

packed-column-SFC and, 245–250

RP-HPLC and, 9

silica gel G and separation of, 6

size exclusion chromatography (SEC) and, 16

Free sterols, size exclusion chromatography (SEC) and, 16

Frying oils. See Fats/oils

G

Gallotetraebrosides, shotgun lipodomics and, 65–66

γ-linolenic acid

EI fragmentation of fatty acid esters of, 32

Gas chromatography (GC)
as chromatographic methods of lipid analysis
general discussion, 13–16

elution orders of FAME/TAG standards, 177

FAME analysis of bacteria and. See Bacteria

foodborne pathogen identification via ATR-FTIR spectroscopy

multivariate statistical analysis of IR spectra, 296–297

protocol, 295

foodborne pathogen identification with FTIR spectroscopy

cultivation of cells, 289–290

fatty acid structures in cellular lipids,
Hg-HPLC. See Silver-ion chromatography
High performance liquid chromatography (HPLC). See also Silver-ion chromatography
as chromatographic methods of lipid analysis
general discussion, 8–13 emergence of, 29
High performance size-exclusion chromatography (HPSEC)

Iatroscan, 261–262, 267–268
Induced protein-lipid complexes, 355–356. See also Protein-lipid interactions
Infrared spectroscopy. See also Fourier transform infrared spectroscopy (FTIR)

J
Journal of...

K
King Mida...

L
Labeling of
Laser desorption
Less fat label
Light food
Lignins, 31
Linoleic acid, 75
Lipid analysis and automation chromatographic coupling (CC)
gas high efficiency size chromatography (HES)
Capillary gas chromatography (CGC)

Index

29–30
Ion separation methods, 44–46
Ion trap, chiral-phase HPLC enantiomeric separation and, 84
Ion trap (MS²), 37, 46
Ionization of mass spectrometer, 29–30. See also Mass spectrometry
Irish potato famine, 36
Isobaric species analysis, 61, 63, 66
Isomer identification, GC-FTIR and, 15–16
Isoprostanes
diradylglycerol hydroxides/hydroperoxides and, 128–131
glycerophospholipids and, 137–149
prostaglandins and, 119–124
steryl esters and, 124–128
TAGs/hydroperoxides and, 131–137

J
Journal of Agriculture and Food Chemistry, 388

K
King Midas (Phrygia-700 B.C.), 38–39

L
Labeling of fat replacers, 381
Laser desorption, 34
Less fat labeling, 381
Light food labeling, 381
Lignins, 385–386
Linoleic acid, HETE/HODE synthesis and, 75, 85
Lipid analysis
automation of, 5
chromatographic methods
counter current chromatography (CCC), 16
gas chromatography (GC), 13–16
high performance liquid chromatography (HPLC), 8–13
size exclusion chromatography (SEC), 16
supercritical fluid chromatography (SFC), 16–17
thin-layer chromatography (TLC), 6–8
classical applications, 5–6
extraction methods, 3–5
influential MS ionization methods, 33–34
mass spectrometry
future applications, 46
hard GC-MS-EI/LC-MS-EI, 30–33
high resolution/accurate mass FAB and ESI methods, 44
modern instrumental separation/detection approaches, 44–46
soft ionization methods (large biomolecules/intact lipids), 33–35
soft ionization methods via APCI, 38–40
soft ionization methods via APPI, 40–42
soft ionization methods via ESI, 37–38
soft ionization methods via FAB-MS, 36–37
soft ionization methods via MALDI-TOF, 42–43
minor lipid compounds
HPSEC and, 216–217
spectroscopic methods
Fourier transform infrared spectroscopy (FTIR), 17–18
near infrared spectroscopy (NIR), 18
nuclear magnetic resonance spectroscopy (NMR), 18–19
structural identification using FAB, 44
Lipidome, 51–52
Lipidomics. See also Shotgun lipodomics
ESI-MS-MS and, 37–38
Lipids
common characteristics of, 3
roles of, 51
Lipoproteins, extraction methods and, 3
Liquid chromatography (LC)-MS advantages of, 10
of PtdCho (with ESI), 139–140
Liquid chromatography (LC)-MS (recent
developments)
materials/methods
oxo-F Alcholesteryl esters/TAGs/glycerophospholipids, 109–114
results/discussion
diradylglycerol hydroxides/hydroperoxides/isoprostanes/core aldehydes, 128–131
glycerophospholipid hydroxides/hydroperoxides/isoprostanes/core aldehydes, 137–149
hydroxy/hydroperoxy FA, 114–119
prostaglandins/isoprostanes, 119–124
steryl ester hydroxides/hydroperoxides/isoprostanes/core aldehydes, 124–128
TAG hydroxides/hydroperoxides/isoprostanes/core aldehydes, 131–137
Low calorie labeling, 381
Low density lipoprotein (LDL) cholesterol, 380
Low fat labeling, 381
Lycadex, 384
LysoPE
EI-MS and, 55
shotgun lipodomics and, 65
Lysoospholipids, EI-MS and, 55

M
MALDI. See Matrix-assisted laser desorption/ionization (MALDI) technique
MALDI-TOF MS
emergence of, 29–30
future applications to lipid chemistry/biochemistry of, 46
hard GC-MS-EI/LC-MS-EI, 30–33
high resolution/accurate mass FAB and ESI methods, 44
modern instrumental separation/detection approaches, 44–46
soft ionization methods
large biomolecules/intact lipids, 33–35. See also High performance size-exclusion chromatography (HPSEC)
Matrix extraction methods and, 3–5
Matrix-assisted laser desorption/ionization (MALDI) technique, 8
development of, 34–35
with time-of-flight mass spectrometry. See MALDI-TOF MS
Meat/fish, Weibull-Stoldt extraction method and, 4
Membrane properties of phospholipids. See Phospholipids
Metabolic syndrome, 51
Methyl esters. See also Fatty acid methyl esters (FAME)
chiral-phase HPLC enantiomeric separation and, 77
conversion to PFB esters, 75
supercritical fluid extraction (SFE) and, 17
Micelle formation and quantitation of lipid molecular species, 64
Microparticulation, 387
Microrod TLC technology for quantification of lipid analytes, 8
Midas, King (Phrygia-700 B.C.), 38–39
Monoacylglycerol (MAG)
and 20 identification of individual species, 59–60
basic components of, 29–30
future applications to lipid chemistry/biochemistry of, 46
hard GC-MS-EI/LC-MS-EI, 30–33
high resolution/accurate mass FAB and ESI methods, 44
modern instrumental separation/detection approaches, 44–46
soft ionization methods
large biomolecules/intact lipids, 33–35. See also High performance size-exclusion chromatography (HPSEC)
Naphthyl diastereomers, 8
Near infrared, 8
Nobel Prize, 20
N-Oil, 4
Nonpolo, 65
Nuclear magnetic resonance (NMR), 20
2D ideographs
Nuclear magnetic
Nutricol, 25
O
Ostri: μ-137, 37, 386
Obes: μ-137, 37, 386
Octa
Octy
chiral-phase HPLC enantiomeric separation and, 77–78
chiral-phase steric analysis of, 89–91
Monoacylglycerols, size exclusion chromatography (SEC) and, 16
Monoalcohol FA, chiral-phase steric analysis of, 81–88
Monoinsaturated fatty acids, α-oxidation and, 67
MSn, 37, 46
Mycobacteria, long-chain FA in, 271
N
Naphthylethyl urethane
diastereomeric DAG derivatives and, 80–81
Near infrared spectroscopy (NIR) as spectroscopic method of lipid analysis general discussion, 18
Nitrogen fixing, EI-MS and, 32
Nitrogen ions. See Atmospheric pressure chemical ionization (APCI)
Nobel Prize, 29, 37
N-Oil, 384
Non-methylene-interrupted PUFA (NM-PUFA), 158, 168
Nonpolar solvents, extraction methods and, 3
Nuclear magnetic resonance (NMR) spectrometry
2D identification of individual species and, 61
Nuclear magnetic resonance spectroscopy (NMR) as spectroscopic method of lipid analysis general discussion, 18–19
Nutricol, 386
Nutro-P-fiber, 386
O
Oatrim, 386
Obesity. See also Fat replacers global, 379–380
metabolic syndrome and, 51
Octadecylsilane, RP-HPLC and, 8–9
Octylsilane, RP-HPLC and, 8–9
Oils
Fourier transform infrared spectroscopy (FTIR) and, 18
nuclear magnetic resonance spectroscopy (NMR) and, 18–19
packed-column-SFC and, 250–254
Weibull-Stoldt extraction method and, 4
Olestra, 214–215, 381, 390
Olestra (Olean), 383
Oomycetes, high-resolution FAB and, 44
Oxo-FA, LC/MS (recent developments) and, 109–114
Oxysterols, 426–427
P
P-150 c/P-285 F, 386
Partial glycerides
HPSEC and, 213–215
Partial least square (PLS) calibration or regression quantification of trans/CLAs chemometrics, 337–338 experimental standards/measurements/data handling, 343–344 general discussion, 335–337 spectra of triglycerides, 344–350 technique, 338–342
Partially esterified polysaccharide (PEP), as fat replacers, 382
Partially hydrogenated vegetable oils (PHVO), trans-18:1 FA analysis and, 191
Partition chromatography, 8–9
Paselli SA2, 384
p-Coumaroylferuloylputrescine (CFP), 31
Pectins, 385–386
Pentafluorobenzyl (PFB) esters chiral-phase HPLC enantiomeric separation and, 77 methyl ester conversion to, 75
Peptide bonds, infrared bands of, 359
Peroxide value (PV), 5–6
Pesticide analysis, HPSEC and, 217–218
Petrochemicals, HPSEC and, 217–218
pH conditions -
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>fat replacers and</td>
<td>389</td>
</tr>
<tr>
<td>lipid classifications and</td>
<td>55–56</td>
</tr>
<tr>
<td>Phosphatidic acid, EI-MS and</td>
<td>55</td>
</tr>
<tr>
<td>Phosphatidic acid, shotgun lipodomics and</td>
<td>65</td>
</tr>
<tr>
<td>Phosphatidylcholines, 12, 36</td>
<td></td>
</tr>
<tr>
<td>Phosphatidylglycerol (PtdGros), 55–58, 65,</td>
<td>95, 97–98</td>
</tr>
<tr>
<td>Phosphatidylinositol, EI-MS and</td>
<td>55</td>
</tr>
<tr>
<td>shotgun lipodomics and</td>
<td>65</td>
</tr>
<tr>
<td>Phosphatidylserine, EI-MS and</td>
<td>55</td>
</tr>
<tr>
<td>shotgun lipodomics and</td>
<td>65</td>
</tr>
<tr>
<td>Phosphatidylserines (PtdSers), 99–101</td>
<td></td>
</tr>
<tr>
<td>Phosphoacylglycerols (PAG), packed-column-SFC and</td>
<td>250–254</td>
</tr>
<tr>
<td>Phospholipids</td>
<td></td>
</tr>
<tr>
<td>bilayer/membrane properties</td>
<td></td>
</tr>
<tr>
<td>curvature/stress/surface tension, 406</td>
<td></td>
</tr>
<tr>
<td>dipole potential, 406–407</td>
<td></td>
</tr>
<tr>
<td>fluidity/diffusion/transbilayer movement,</td>
<td>402</td>
</tr>
<tr>
<td>heat capacity, 403–404</td>
<td></td>
</tr>
<tr>
<td>miscibility/solubility, 404–405</td>
<td></td>
</tr>
<tr>
<td>permeability, 405–406</td>
<td></td>
</tr>
<tr>
<td>phase transitions, 402–403</td>
<td></td>
</tr>
<tr>
<td>chemical modification</td>
<td></td>
</tr>
<tr>
<td>complexation to cholesterol, 411–412</td>
<td></td>
</tr>
<tr>
<td>complexation to ions, 411</td>
<td></td>
</tr>
<tr>
<td>conjugation, 414</td>
<td></td>
</tr>
<tr>
<td>hydration, 409–411</td>
<td></td>
</tr>
<tr>
<td>hydrogenation, 407–408</td>
<td></td>
</tr>
<tr>
<td>hydrolysis, 408–409</td>
<td></td>
</tr>
<tr>
<td>hydroxylation, 408</td>
<td></td>
</tr>
<tr>
<td>oxidation, 412–414</td>
<td></td>
</tr>
<tr>
<td>chemical structures, 399–401</td>
<td></td>
</tr>
<tr>
<td>ELSD and, 10–12</td>
<td></td>
</tr>
<tr>
<td>ESI-MS-MS and, 37</td>
<td></td>
</tr>
<tr>
<td>extraction methods and, 3</td>
<td></td>
</tr>
<tr>
<td>initial ESI-MS studies of, 53</td>
<td></td>
</tr>
<tr>
<td>physical modification by external forces,</td>
<td>407</td>
</tr>
<tr>
<td>physical structures, 401–402</td>
<td></td>
</tr>
<tr>
<td>silica gel G and separation of, 6–7</td>
<td></td>
</tr>
<tr>
<td>Photodiode array detector (PDA), HPLC and,</td>
<td>9</td>
</tr>
<tr>
<td>Photoionization. See Atmospheric pressure photoionization (APPI)</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Psoriatic skin scales, chiral-phase HPLC enantiomeric separation and, 81–83</td>
<td></td>
</tr>
<tr>
<td>PdCho, 139–140, 143–144</td>
<td></td>
</tr>
<tr>
<td>Quadrupole ion trap mass analyzers, 44–46</td>
<td></td>
</tr>
<tr>
<td>2D identification of individual species and, 61</td>
<td></td>
</tr>
<tr>
<td>acetonitrile CACI for FAME analysis and, 162–163</td>
<td></td>
</tr>
<tr>
<td>Quantification of lipid analytes, 7–8</td>
<td></td>
</tr>
<tr>
<td>Quantitation of lipid species by 2D MS, 63–65</td>
<td></td>
</tr>
<tr>
<td>Racemic glycerolipids, chiral-phase HPLC and, 73–74</td>
<td></td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td></td>
</tr>
<tr>
<td>history/development of, 363–365 vs. IR, 362–363</td>
<td></td>
</tr>
<tr>
<td>protein-lipid applications</td>
<td></td>
</tr>
<tr>
<td>edible oils, 365, 367</td>
<td></td>
</tr>
<tr>
<td>food proteins, 365–366</td>
<td></td>
</tr>
<tr>
<td>Reduced calorie labeling, 381</td>
<td></td>
</tr>
<tr>
<td>Reduced fat labeling, 381</td>
<td></td>
</tr>
<tr>
<td>Reduced-calorie fat-based fat replacers, 388–389</td>
<td></td>
</tr>
<tr>
<td>Reflectron time-of-flight (RTOF) analyzer, 46</td>
<td></td>
</tr>
<tr>
<td>Refractive indexes, analyte detection after HPLC using, 9</td>
<td></td>
</tr>
<tr>
<td>Regiospecific lipid identification, 61, 63</td>
<td></td>
</tr>
<tr>
<td>Reproducibility of ESI-MS, 52</td>
<td></td>
</tr>
<tr>
<td>Reversed-phase HPLC</td>
<td></td>
</tr>
<tr>
<td>chiral-phase HPLC enantiomeric separation and, 82–85</td>
<td></td>
</tr>
<tr>
<td>TAGs/hydroperoxides/isoprostanes/core aldehydes and, 131–137</td>
<td></td>
</tr>
<tr>
<td>Reversed-phase HPLC (RP-HPLC), 8–9, 38</td>
<td></td>
</tr>
<tr>
<td>Rhizomucor miehei, 94</td>
<td></td>
</tr>
<tr>
<td>Rhizopus niveus, 97</td>
<td></td>
</tr>
<tr>
<td>Salatrim, 388</td>
<td></td>
</tr>
<tr>
<td>Saponification value (SV)</td>
<td></td>
</tr>
<tr>
<td>determination of, 5</td>
<td></td>
</tr>
<tr>
<td>of waxes, 423</td>
<td></td>
</tr>
<tr>
<td>Saturated fatty acids, α-oxidation and, 67</td>
<td></td>
</tr>
<tr>
<td>Selected ion monitoring (SIM)-mode of GC, 14</td>
<td></td>
</tr>
<tr>
<td>Shotgun lipodomics</td>
<td></td>
</tr>
<tr>
<td>2D identification of lipid molecular species, 59–63</td>
<td></td>
</tr>
<tr>
<td>2D quantitation of lipid molecular species, 63–65</td>
<td></td>
</tr>
<tr>
<td>biological applications of, 65–67</td>
<td></td>
</tr>
<tr>
<td>intrasource separation of lipid classes (shotgun lipodomics), 53–59</td>
<td></td>
</tr>
<tr>
<td>Signal-to-noise ratio, ESI-MS and, 52</td>
<td></td>
</tr>
<tr>
<td>Silanes, RP-HPLC and, 8–9</td>
<td></td>
</tr>
<tr>
<td>Silica gel G as adsorbent in TLC, 6–7</td>
<td></td>
</tr>
<tr>
<td>Silica-based matrices, 52–53</td>
<td></td>
</tr>
<tr>
<td>Silver nitrate with adsorbent silica gel G, 6</td>
<td></td>
</tr>
<tr>
<td>TLC-FID and, 263</td>
<td></td>
</tr>
<tr>
<td>Silver-ion chromatography</td>
<td></td>
</tr>
<tr>
<td>advantages of, 9</td>
<td></td>
</tr>
<tr>
<td>general discussion, 175–176</td>
<td></td>
</tr>
<tr>
<td>temperature effects on lipid elution discussion, 183–186</td>
<td></td>
</tr>
<tr>
<td>HPLC methodology, 176–179</td>
<td></td>
</tr>
<tr>
<td>TAG/FAME separations, 179–183</td>
<td></td>
</tr>
<tr>
<td>trans-18:1 FA analysis</td>
<td></td>
</tr>
<tr>
<td>elution order, 195, 197–199</td>
<td></td>
</tr>
<tr>
<td>fractionation, 195, 200–201</td>
<td></td>
</tr>
<tr>
<td>history, 191–192</td>
<td></td>
</tr>
<tr>
<td>internal standard for separations, 194–196</td>
<td></td>
</tr>
<tr>
<td>separation as FAME, 192–194</td>
<td></td>
</tr>
<tr>
<td>triacylglycerol isomer determination and, 9</td>
<td></td>
</tr>
<tr>
<td>Simplesse, 387, 390–391</td>
<td></td>
</tr>
<tr>
<td>Size exclusion chromatography (SEC) as chromatographic methods of lipid analysis with CCC, 16</td>
<td></td>
</tr>
<tr>
<td>general discussion, 16</td>
<td></td>
</tr>
<tr>
<td>Soft ionization methods</td>
<td></td>
</tr>
<tr>
<td>large biomolecules/intact lipids, 33–35 via APCI, 38–40</td>
<td></td>
</tr>
<tr>
<td>via APPI, 40–42</td>
<td></td>
</tr>
<tr>
<td>via ESI, 37–38</td>
<td></td>
</tr>
</tbody>
</table>
via FAB-MS, 36-37
via MALDI-TOF, 42-43
Software, GC-MS-EI comparisons and, 33
Solid phase extraction (SPE) methods, 3, 219
Solids in fats determination, FTIR and, 17-18
Solvents
CUBO, 19
extraction methods and, 3
fish lipid extraction and, 4
lipid solubility in nonpolar, 3
Soxhlet-apparatus, Weibull-Stoldt extraction method and, 4
Spectroscopic methods of lipid analysis. See also Mass spectrometry
Fourier transform infrared spectroscopy (FTIR), 17-18
near infrared spectroscopy (NIR), 18
nuclear magnetic resonance spectroscopy (NMR), 18-19
SPE-Olestra (Olean). See Olestra
Sphingolipids
ESI-MS-MS and, 37
FAB-MS and, 36
Sphingomyelin analysis
EI-MS and, 55
ESI-MS-MS and, 12
Sphingosine-based lipids. See also specific sphingosine, i.e. Sphingomyelin
Sphingosine-based lipids, and 2D identification of individual species, 59-60
Standards and quantitation of lipid molecular species, 63-65
trans-18:1 FA analysis by silver ion HPLC and, 194-196
Starch-based fat replacers, 384-386
StaSlim, 385
Stellar, 385
S. maltophilia, 277, 279-280
Stereoisomers
bis(monoacylglycerol)phosphate (BMP), 97
LC/ESI-MS and MS/MS of, 79-81
Stereoisomers
Steroids (anabolic), APPI and, 42
Sterols
analysis/characterization of, 428-431
packed-column-SFC and, 250-254
structure, 424-428
Steryl ester hydroxides/hydroperoxides/isoprostanes/core aldehydes, LC/MS and, 124-128
S. septatus, 97-98
Stoke, metabolic syndrome and, 51
Subcritical fluid chromatography (SFC), 245
Sucrose polyesters, 215-216, 390-391
as fat replacers
SPE-Olestra (Olean), 214-215, 381, 383, 390
Sulfatide
EI-MS and, 55
shotgun lipodomics and, 65
Supercritical carbon dioxide extraction methods and, 3
Supercritical fluid chromatography (SFC) as chromatographic methods of lipid analysis
general discussion, 16-17
general discussion, 239-241
manufacturers of, 242
modifiers, 244-245
packed column applications of lipids
PAG/stereols/tocopherols/seed oils, 250-254
TAG/FFA/glyceride mixtures, 245-250
packed column applications of saccharides, 250
packed vs. capillary columns, 241-244
subcritical fluid chromatography and, 245
Supercritical fluid extraction (SFE), advantages of, 4-5
T
TAG hydroxides/hydroperoxides/isoprostanes/core aldehydes, LC/MS and, 131-137
Tandem electrospray ionization
(ESI-MS-MS). See also Acetonitrile
covalent-adduct chemical ionization
(CACI)-MS-MS

2D identification of individual species
and, 61–62

epoxy FAs and, 89

and quantification of lipid molecular
species, 65

Tandem mass spectrometry. See MS^n

Temperature

chiral-phase HPLC and, 73

effects on lipid elution (silver-ion
HPLC)

discussion, 183–186

general discussion, 183–186

HPLC methodology, 176–179

TAG/FAME separations, 179–183

for HPLC, 13

ThermaBeam MS, 31, 44

Thermobable analytes

HPLC and, 13

supercritical fluid extraction (SFE)
and, 16–17

Thermospray, 34

Thin-layer chromatography (TLC)

as chromatographic methods of lipid
analysis

general discussion, 6–8

with flame ionization detector (FID)

general discussion, 261–262

principles, 262–263

quantification/applications, 263–268

trans-18:1 FA analysis and, 191, 195,
200

Thomson, Joseph John, 29

Three-DHETErE, 88–89

Time-of-flight (TOF) analyzer, 44–46

Tocopherols, packed-column-SFC
and, 250–254

Total fat content, 4. See also Lipid analysis

Toxicology of fat replacers, 391–392

Trans fatty acids (TFAs). See also
Trans-18:1 FA analysis

exclusion of CLA for, 304–306

formation of, 158

Fourier transform infrared spectroscopy
(FTIR) and, 17

quantification with IR spectroscopy
chemometrics, 337–338

experimental
standards/measurements/data

handling, 343–344

general discussion, 335–337

PLS technique of calibration,
338–342

spectra of triglycerides, 344–350

use of FT-NIR for determination
applications, 306–307

development of FT-NIR
quantification model, 321–325

FA quantification, 320

FT-NIR classification of fats/oils,
314–318

FT-NIR classification of fats/oils
(typical report), 318–320

FT-NIR spectral measurements,
309–312

FT-NIR/FTIR differences, 312–314

future applications, 328–329

GC procedures, 307–309

GC separation of FAME/CLA
isomers, 325–328

official FTIR methods for TFA,
305–306d

official GC methods for TFA,
304–305

reasoning for use of GC
as primary/FT-NIR as
secondary, 320–321

TFA issues, 303–304

Trans monoeythlenic fatty acids
GC determination of, 13–14

Trans-18:1 FA analysis

silver-ion chromatography
elution order, 195, 197–199

fractionation, 195, 200–201

history, 191–192

internal standard for separations,
194–196

separations as FAME, 192–194

Transesterification reactions, HPSEC and,
214, 226

Triacylglycerol isomer determination
Index

448

RP-HPLC and, 9
silver-ion HPLC and, 9
Triacylglycerols (TAGs) and 2D identification of individual species, 59–60
diastereomeric derivatives of, 76
effects on lipid elution (silver-ion HPLC) and, 179–183
EI-MS and, 55
GC determination of, 13
HPLC-MS-APCI and, 39–40
LC/MS (recent developments), 109–114
LC/MS (recent developments) and, 131–137
long-chain FA in, 388
NEU/PEU derivatives and, 95
packed-column-SFC and, 245–250
short-chain FA in, 388
shotgun lipodomics and, 65–67
silver-ion HPLC and temperatures, 182–186
size exclusion chromatography (SEC) and, 16
supercritical fluid extraction (SFE) and, 17
Two-dimensional identification of lipid molecular species, shotgun lipodomics and, 59–63
Two-dimensional quantitation of lipid molecular species, shotgun lipodomics and, 63–65

U

Ultraviolet detectability
HPLC and, 9
HPSEC and, 206
MALDI-TOF MS and, 42
Unsaturated fatty acid (UFA) methyl ester isomers
acetonitrile covalent-adduct chemical ionization (CACL) MS-MS
acetonitrile CACL for FAME analysis, 162–170
characterization of UFA double bond position, 158–162
covalement adduct chemical ionization (CACL), 162
Unsaturated fatty acids (UFAs), configurations/classes of, 157–158
Urine (human)
HETE/HODE synthesis and, 85–87

V

Vibrational spectroscopy
protein-lipid interactions
general discussion, 355–357
history/development of IR spectroscopy, 357–358
IR spectroscopy applications, 358–362
principles, 357
Raman spectroscopy, 362–371

W

Waters Corporation, 31
Waxes
analysis/characterization of, 422–424
structure, 421–422
Weibull-Stoldt method, 3–4
Whey protein concentrates, 387
Wijs method for IV determination, 5, 423
World Health Organization (WHO), on obesity, 379–380

X

Xylenol orange method, determination of peroxide value (PV) by, 6

Z

Zymomonas mobilis, FAB-MS and, 36–37