Index

Absorption, 65	Aerated lagoon, 114, 116
Activated energy, 107:	Aerobic conditions:
Arrhenius correlation, 107	in aquatic systems, 189
temperature dependence of reaction	in pond systems, 159
rates, 107–8	wetland systems, 182
Activated sludge, 6, 12, 31, 33–6, 38, 52,	Aerobic ponds, 159
57, 116, 118, 121, 125, 158,	Agricultural crops:
160–161, 197–203, 249:	function of, 166
characteristics of, 196	in overland flow management of, 166
types of, 196	Agricultural recycling and reuse, 231,
design of, 110–114	234 (see also recoverable products)
Adsorption, 2, 12, 58, 59, 63, 65:	Air stripping:
adsorbate, 65	of ammonia, 135
adsorbent, 65	of VOCs, 71
breakthrough curves, 68	Algae, 29, 30, 34, 35, 115, 148, 237
capacities, 66	Alkalinity, 4, 141, 165, 209
chemical adsorption, 65	Alum:
definition, 65	flocculant 61
factors influencing, 67–8	for phosphate removal, 131, 141, 143
Freundlich, 66–7,	sludge with, 196, 208
isotherms,66	Ammonia, 39–41, 134–7
kinetics, batch reactors, 25	Anaerobic conditions:
kinetics, flow reactors, 68	in aquatic systems, 183, 188
langmuir, 66-7	in biological process, 31, 36, 103, 114,
linear, 66–7	126–131, 138–40
physical processes, 65	in pond systems, 160–161
rates, 67	in wetland systems, 183
system design, 68–9	Anaerobic digesters for sludge
unfavorable, 66	stabilization, 203–4
van der Waals forces, 59	Application methods:
Aeration, 34, 121, 124, 156, 203, 209:	in hyacinth systems, 186
diffuse air, 159	in duckweed systems, 188
mechanical devices, 157	in land systems, 167

Application range of floating plants, 191 Application rates of wastewaters: for land treatment, 169 for overland flow, 176 for rapid infiltration, 180 slow rate, 172 for sludge systems, 165, 218–219	Coagulation, 57: coagulant, 58–63, 142, 196, 208 coagulant aid, 60 (see also polyelectrolyte) colloid, 60, 65 destabilization of colloidal dispersion, 60
Aquatic systems: description of, 185 design considerations, 189, 190	jar test, 61 polyelectrolytes, 60 processes, 58–9
organic removal, 186 nitrogen removal, 186 phosphorus removal, 186	sludges, 57–60 Completely stirred tank reactor (CSTR), 26
temperature effects, 191 ATP:	Conservation of mass (material balance), 19, 26
structure of, 37 synthesis of, 38–9	Conventional processes, 143, 249 Contactor, 104, 116, 119–25 Corrosion, 78, 143
Bacteria, 9, 15, 30–34, 105: in anaerobic contact processes,128 in biological phosphorus removal, 138 in land treatment systems,176 in stabilization pond systems,115 in sludge treatment, 203 in trickling filters or biofilters, 117 in wetland systems, 182 Bacterial kinetics, 22, 40	Darcy's law, 64 Denitrification, 33, 41–2, 134–6, 140 Desal process, 99 Design, 36, 139, 145, 155–65, 176–80, 184–91, 198, 199–200, 206, 213, 247–54 Diatomaceous earth, 63 Diffusion:
Biodiesel, 228, 237–9 Biogas, 227, 235–9 Biological nutrient removal, 135, 137 Biological processes, 114–31	diffusivity, 77 diffusive mass transfer, 63, 77, 146 in filtration, 63 membranes, 73
Biomass, 106, 108, 115, 118, 124, 127, 131, 154, 157, 166, 187 Bioethanol, 238–9 Bioresource utilization, 228 Bulking, 206	Discrete settling, 52–3, 55 Disease, 188 Disinfectants: calcium hypochlorite (ca(ocl) ₂), 148 chemical disinfectants, 148
Catalyst, 16, 20, 22, 31, 142, 175 Chemical coagulants, 58–61 Chemical oxidation, 6, 16, 70–71 Chemical potential, 81, 146	chlorine, 148 chlorine dioxide, 148 hydrogen peroxide, 148–9 ozone, 148
Chemical precipitation, 59, 141, 143, 180 Chick's law, 149 Chlorination, 8, 71, 137 Chlorine, 8, 137, 147–8	Electrical double layer, 58–60 Electrical neutrality, 59 Electrode, 80 Electrodialysis:

applications, 72, 79-80	membrane separation, 74, 75, 76,
boundary layer, 81	82
Electrostatic forces (interactions), 63, 57	solvent (water), 74, 76
Energy, activation, 22:	Freundlich:
electrochemical, 74	isotherm (equation), 67
Enthalpy, 85	linearization, 67–8
Equilibrium, 22, 59, 65, 67, 70, 81, 147	
E. Coli, 32	Gas transfer (oxygen):
	applications, 31–3, 37, 41, 203, 205,
Faraday's constant, 80	220
Faraday's law, 80	biological systems, 114, 116, 119,
Fenton reaction, 210	139, 149
Ferric and ferrous iron, 61–2	rates, 127
Filter:	Gas transfer systems:
filter cake, 63–5, 208	compressed air, 217
filter media, 63, 144	mechanical, 114, 119
filter press, 210–214	Granular sand filtration, 45
process, 62	
sand, 45, 62	Hagen-Poiseuille relationship, 76
vacuum, 62–3	Head loss, 64
Filtration:	Heavy metal, 134, 186–8, 190, 196–7,
application, 45, 57, 62	204-6, 240-241
Kozeny-Carmen equation, 78	HRAP, 157
Darcy's law, 64	Hydrogen, peroxide:
mathematical models, 64	chemical disinfection, 148
mechanisms, 62–3	decomposition, 149
precoat, 63–4	Hydrogen, sulfide, 122–3, 127
sludge dewatering, 209–14	Hydrophobic interaction, 66
underdrainage system, 63	Hydrophobic membrane, 84–5
vacuum (see also vacuum filter)	Hyperfiltration (see also reverse osmosis)
First order reaction:	
application, 109	Incineration, 217
rate equation, 21	Ion Exchange:
reactions, 21	applications, 80, 93, 135, 137
reversible reactions, 21	chemical properties, 93, 95, 97
Flocculation:	design, 97–8
collision efficiency, 58	equilibria, 94
definition, 56	system, 99 (see also DESAL)
jar test, 61	ion exchange materials, 97
transport of colloidal particles, 58	membranes, 137
Flow reactors, 20	methods of operations, 98–9
Fluidized bed reactors, 216, 220–221	reactions, 98
Flux:	regeneration, 98–9
diffusive mass transfer, 75, 81, 85,	synthetic materials, 97
867, 89	water demineralization, 98

Ion exchange resins:	reverse osmosis, 72, 75, 78
Description, 96	separation processes, 74
exchange capacity	solute rejection, 74
regenerations, 94–5	ultrafiltration, 78, 144, 230
strong acidic, 95	Michaelis-Menten kinetics, 22–3
strong basic, 95	Microalgae, 237–9
weakly acidic, 96	Microorganisms:
weakly basic, 96	classifications, 30–35
Ion exchange systems:	denitrification, 41
DESAL process, 99	Monod model, 109
design efficiency, 98	nitrification, 39
•	nutrient requirements, 36
Kinetics of reactions, 20–24	role of, 35
Kozeny-Carmen equation, 78	
	Nitrate:
Langmuir equation, adsorption:	removal by biological processes,
isotherm, 66	135–6
linearization, 67	removal by electrodialysis, 80
Lévêque's correlation, 83	removal by ion exchange, 93
Lime:	removal by physicochemical
oxidation, 70	processes, 136–7
sludge conditioning, 199, 201–2, 208	Nitrite:
regenerate zeolites, 137	conversion of, 40
removal of nitrogen, 137	PAOs, 140
removal of phosphate, 141	removal by biological processes, 136
Material balances:	Odor, 14
conservation of mass, 18	Organic matters:
enzymatic reactions, 23	removal by adsorption (see
reaction rates, 19	Adsorption)
reactors, 25	removal by aeration (see Aeration)
Membranes:	removal by bioconversion (see
concentration polarization, 74-5, 78,	Biological processes)
81, 83, 92–3, 145–6	removal by coagulation (see
flux, 76, 81–2, 85, 146	Coagulation)
fouling, 92	removal by oxidation (see Chemical
ion selective, 137	oxidation)
microfiltration, 77	sludge (see Sludge)
modeling, 77–8	BOD or BOD ₅ (Biological Oxygen
modules, 145	Demand), 14–15
nanofiltration, 78	COD (Chemical Oxygen Demand), 16
permeability, 64, 74–5	Osmosis:
permselective, 81	Reverse (see Membrane)
pervaporation, 81	Osmotic pressure difference, 74
retention, 73	Oxidizing agents, 148

Oxygen:	Radicals, 71
chemical oxidation (see Chemical	Rapid mixing, 58, 61
oxidation)	Rate constant, 20-22, 88
oxidation-reduction (see Redox	Rates of reaction, 20, 22
reaction)	Reaction rates, see rates of reactions
Ozone:	Reactions:
decomposition, 148	biochemical, 103, 105
disinfection, 147-8	chemical, 20-22, 70, 142-9, 210
	enzymatic, 23-4, 105
Packed bed reactors, 68–70	Reactors:
Pathogens, 147–8	batch, 25
Permeability:	CSTR, 26
coefficient of, 64	design, 25, 86
membranes (see Membrane)	in series, 104
solute, 75	membrane separation, 88-91 (see also
water/solvent, 74	membrane module)
Pervaporation (see Membrane):	sedimentation (see also sedimentation
applications, 12, 72, 81, 232–3, 235	tank)
boundary layer, 82	sludge thickeners, 198-9
separation factor, 82	trickling filters, 117
Permselective:	redox reaction, 38, 70
membranes (see Membrane)	residence time, 27, 53-4, 125
Phenol:	Reverse osmosis:
chemical oxidation, 70	applications, 73, 75, 78
from protein degradation, 32	module types, 88
Phosphate:	osmotic pressure, 74, 76
removal by biological processes, 137	separation factor, 73
removal by coagulation, 142	solute rejection, 74
removal by ion exchange (see Ion exchange)	Reynolds number, 76
removal by physicochemical	Sand filtration (saa Filtration)
processes, 141–6	Sand, filtration (<i>see</i> Filtration) Sedimentation:
removal by precipitation, 142–3	type-I, 53
Polarization, concentration (see Membrane)	type-II, 55 coagulation, 57
•	
Polyelectrolyte:	compression, 57
coagulation (see Coagulation)	sedimentation tank, 53–5
sludge conditioning, 198, 210	sludge, 60
Pore size, 74, 77–8, 84	terminal velocity, 54–5
Porosity, 64 Porous solids:	zone settling, 53
	Silver, 16
membranes separation principle, 72	Selectivity, ion exchange (see Ion
silica, 63	Exchange)
composting, 205	Selectivity, membranes (see Membrane)
Process design, 18–19, 26, 86	Settling (see Sedimentation)
Pyrolysis, 241	Settling velocity, 53, 55, 57

Sherwood number correlations, 76	Sterilization:
Sludge:	heat, 149
characteristics, 196	irradiation, 149
chemical properties, 197	Stoichiometry, 18
dewatering properties, 196	Stoke's law, 57
fuel values, 219-21	Sulfite, ion exchange, 95
land applications, 166	Surface area, 78, 84, 89, 114, 121, 125,
specific gravity, 197–8	162, 177-8, 184-5, 191-2, 204
Sludge treatment:	Suspended solids, 1, 3, 9, 12–13, 45, 48,
aerobic digestion, 203	50, 52, 55, 57
anaerobic digestion, 203-4	
centrifugation, 210	Temperature, parameter of
chemical conditioning, 208	physicochemical treatment, 13
combustion, 219	Terminal settling velocity, 57
conditioning, 208	Thermodynamics:
dewatering, 209	reactions, 24
disposal	Tortuosity, 78
by land applications, 166, 218–219	TSS (Total Suspended Solid), 9
to surface, 218–219	The Charles
drying, 216	Ultrafiltration:
filter pressing, 210, 212–213	applications, 71, 144–5
flash drying, 216	concentration polarization, 74–5,
flotation, 197	145-6
fluidized bed, 216	definition, 78
freezing, 214	design, 86
gravity thickening, 196, 198–9	membrane properties, 72
heat treatment, 208–9	(Hagen-)Poiseuille relationship, 77
lagooning, 195	(see also microfiltration)
multiple hearth incineration, 216, 220	retention, 72–3
polymers, 208	ultraviolet irradiation, 149
rotary dryer, 216	Underdrain systems, 63
sludge management, 195, 219	Van der Waals attraction:
thickening (concentration), 197	coagulation, 59, 66
vacuum filtration, 209	Viruses, 30, 133, 204, 240
Sodium hypochlorite, 148	Viruses, 50, 155, 204, 240
Softening, 93, 96	Water permeability, 74
Solubility, 87, 135	Water recovery, 228
Solute permeability, 75	Whey protein recovery, 229–30
Solute rejection, 74	, ney protein recovery, 225
Sorption, 65, 93	Zeolites:
Stability of colloids, 58	ion exchange, membranes, 93
Steady state:	adsorption, 66
determination of rate parameters, 75	Zero discharge, 228
reactors, 20, 22–3, 26, 113–114	Zeta potential, 58
reactors, 20, 22-3, 20, 113-114	*