Index

A

Acetone, 42 Acetylene, 42 Airborne releases, travel and dispersal of, 11, 45, 48, 68-69 Air changes per hour (ACH), 61 Air coolers, 57-58 Air inlet detectors, 62 Air speed/velocity, 40, 46, 62. See also Environmental conditions; Weather conditions; Wind Alarm: activation of, 62, 67-68 audible, 62, 71 internal relays, 71 management strategies, 7, 9, 13, 23, 27 parameters, 1 placement of, 67 set points, 23-24, 26-27, 70-72, 74 silence procedures, 73 threshold level, 72 visible, 62, 71 Alcohols, 41 Alkanes, 55 Ambient conditions, 71 American Petroleum Institute (API), 14-15 Amines, 42 Ammonia, 25, 41-42 Argon, 18, 25, 42 Aromatic compounds, 41-42 Atmospheric conditions, impact of, 10, 19. See also Environmental conditions; Weather conditions; Wind conditions

Authority-having jurisdiction (AHJ),74-75 Auto-ignition temperature, 19 Automatic release control systems, 7 Auto shutdown, 26-27

В

Beam detection/detectors, 23, 50, 54. See also Laser beam detectors Benzene, 42
Best practices, 13-16

Blockage, 55, 57-59 Boron trichloride/trifluoride, 25 Butane, 42

\mathbf{C}

Calibration, significance of, 40-41, 43, 67, 71, 74 Carbon dioxide, 25, 42 Carbon monoxide (CO), 17, 25, 41 Catalytic bead sensors, 33, 39-41 Change management guidelines, 8, Chemical industries/plants, 9, 19, 21 Chemical mixtures, 39-40 Chlorine, 25, 41-42 Circuitry, 27 Colorimetry, 34, 42 Combustible gas detection/detector, 10-11, 18-20, 43, 50-51, 59, 63, 66, 67 Compressed Gas Association Inc., 16 Compressors, 12, 47-48

Condensation, 40	Distributed control system (DCS),
Congestion, 55, 59	71-72
Containment, 12	Documentation guidelines, 46, 74, 76
Contaminants, see specific types of	Downtime, 28, 75
<u>chemicals/substances</u>	Drawings of system, 74-75
alarm level criteria, 24	Dry environments, 39
minimum concentration of,	Ducts:
39	detector placement in, 62
Continuous detection/monitoring	exhaust, 61
system, 20-29, 67, 71	extractive, 40
Corporate leadership, 2	
Cryogenic materials, 69	Dust, impact of, 39, 42
Cyclical analysis, 28	•
Cylinder valves, 21	E
D	Electrochemical sensors, 32, 39-41
	Emergency procedures, 1, 9
Data:	Emergency response personnel, 2
acquisition, 71	Emergency Response Teams (ERT),
tracking, 72	73
Dead air space, 66	Employee training programs, 40, 47.
Depressurizing system, 6	See also Training programs
sepressureing system, o	Enclosed buildings, 50, 56-57
Depth dispersion, 53	Enclosure monitoring:
Design parameters, 1, 12	applications, 29, 48
Detector placement and	exposure to external release
configuration:	sources, 66-68
detector set points and	for flammables, 63-66
monitoring, 71-72	for toxics, 60-63
-	· · · · · · · · · · · · · · · · · · ·
enclosure monitoring, 45, 48, 60-68	Engineering standards, 2, 12, 48
	Enculfment gudden 61 66
guidelines for, 45-47	Engulfment, sudden, 61, 66
for path of travel and target	Entering toxic atmosphere, 5
receptor monitoring, 45, 48, 68-69	Entry points, detector placement
for perimeter monitoring, 45, 51,	guidelines, 68
69-71	Environmental conditions,
source monitoring, 45, 48, 51-53	significance of, 5, 7
volumetric monitoring, 45, 51,	Environmental evaluation, 40
53-60	Environmental regulations, 1
Diborane, 25	Equipment failures, 9-10
Dichlorosilane, 25	Erroneous readings, 39-40
Diffusion furnaces, 22	Ethane, 42
Difluoromethane, 25	Ethanol, 42
Dirt, impact of, 39	Ethers, 41
Dispersion modeling, 69	Ethylene oxide, 16
	Evacuation, 7, 27, 68

Exhaust system, dampers/plenums, 29, 67	G
Explosion hazard, 21, 54-55	Gas and vapor detection
Exposure, see specific types of	management program development,
chemicals/substances	3
	Gas cloud, spherical, 56, 59
enclosed buildings, 66-68	Gas sensors, 1
implications of, 7	Gas source cabinets, 29
limit standards, 1, 15-17,	Gas/vapor mixtures, 39
44, 71	GE Global Asset Protection Services
time weighted average	15
(TWA), 72	Germane, 25
Exterior alarms, 61	Germanium tetrafluoride, 25
T.	Grade level detection, 67-68
F	Grid detection, 46
Facility management responsibilities, 69	Н
Failed detection, 71, 74	Halon, 42
False alarms, 24, 38, 40, 68, 71, 74	Hazard analysis, 9
False readings, 39-40	Hazardous gas monitoring:
False trips, 7	alarm set points, 23-24, 26-
Fast response technology, 67	27, 70-72, 74
Fault tree analysis, 12, 48	response protocols, 26-27
Fin-fan air coolers, 57-58	sample points, 28-29
Fire:	sampling, 24
flash, 23, 50, 54	system features, 27-28
protection risk, 9	Hazardous production material
Fixed gas detection, 12-13, 47, 69	gases, 16
Fixed point detector, 53-54	HAZOPs, 9
Flame ionization sensor/detector, 41-	Heavier-than-air gases, 46, 49-50,
42	53, 60-61, 64, 67-70
Flammable and Combustible Liquids	Height of detectors, 49-50, 67-68, 70
Code, 14	Helium, 42
Flammable detection, general	Hexane, 42
guidance for, 50-51 Flammable	High/high-high alarms, 71-72
	High level detection, 27
gases/liquids/compounds/vapors 9,	Highly toxic, defined, 17
19, 26, 38, 42, 55, 66, 70	High temperature detection, 12
Flooding, 40	High-vapor pressure materials, 19
Fluorine, 25	TT: 4 . 1 . 1
FM Global, 15	Historical perspectives, 1-2
Formaldehyde, 42	Horizontal releases, 52
Freon, 42	Hot environments, 39
	HSE (Health, safety, and
	environmental) professionals, 2

Humidity, impact of, 40, 72	(LOPA), 12, 48
HVAC system, 61-62, 66-67	Leak indicators, 13, 22, 43
Hydgrogen chloride, 25	Legal compliance, 14
Hydrazines, 42	Life safety systems, 27
Hydrides, 42	Lighter-than-air releases, 57, 61, 63-
Hydrocarbons, 41	65, 67
Hydrogen gases:	Line management responsibilities, 2
bromide, 25	Liquefied natural gas (LNG), 19, 58,
characteristics of, 25, 39, 41-	60
42	Liquefied petroleum gases (LPGs),
chloride, 42	19-20, 23-24
fluoride, 25, 42	Liquid(s), generally:
sulfide (H ₂ 0), 17-18, 22-23,	concentrations, 43
39, 41-42	detection technologies, 12-
,	13
I	level detection, 13, 43, 49
	Localized detection, 69-70
IDLH (immediately dangerous to life	Locations, see Detector placement
or health), 15-16, 26	and configuration
Ignition sources, 18, 20, 67-69	monitoring, 28
Industry standards, 7, 14	sample point, 29
Inert gases, 18	Long-term entrainment, 66-67
Infrared (IR) detectors/sensors, 23-	Lower Flammable Limit (LFL), 29,
24, 32, 40-41, 46, 53, 55, 70	44, 71
Inspection program, 40	Low-level detection/detectors, 27,
Intereference, 28, 39-40, 42	60, 71
International Code Institute, 16	Low temperature detection, 12, 43
International Fire Code (IFC), 13, 75	
Inventory transfer system, 6	M
Ion implanters, 22	
Isocyanates, 42	Maintenance programs, 27-28, 40,
Isolation, release response, 6-7, 9-10,	48, 67, 73-76
23	Make-up dampers, 67
	Manufacturing facilities, 9, 20-22
K	Mass release rate, 10
	Measurement range, 39
Ketones, 41	Mechanically-ventilated structures,
Krypton, 25	64-66
	Methane, 25, 41-42
L	Methanol, 42
Laser beam detectors, 46, 53, 70	Methyl chloride, 25
Laser detection, 70	Methyl fluoride, 25
Laser gas analyzer open path	Migration hazard, 58
detection, 34-35	Mineral acids, 42
Laser gas detection, 42	MOCVD reactors, 22
Lavers of protection analysis	Mortality rates 1

MSDS (material safety data sheets),	Outdoor environments/locations, 40,
47	57-58
Multiple point monitors, 28	Oxides, 41 Oxidizers, 21
N	Oxygen requirements, 26, 38-39, 41 Ozone, 26, 41
National Fire Protection Association,	Ozone, 20, 11
functions of, 9, 15-16. See	
also NFPA standards	
Neon gases, 25, 42	
Neutrally buoyant gases, 57-58, 68-	P
69	
NFPA standards:	Parking area, 68
69, "Standard on Explosive	Pentane, 42
Prevention System," 56	Perflurobutadiene, 26
72, "National Fire Alarm	Perfluroopropane, 26
Code®, 63-64, 67	Performance standards, 7
318, "Standard for the	Perimeter monitoring, 23-24, 45, 51,
Protection of Semiconductor	59, 69-71
Fabrication Facilities, 14	Permissible Exposure Limits (PELs)
NIOSH regulations, 15. See also	15-16, 44, 71
IDLH (immediately dangerous to life	Personal detectors, 48-49
or health)	Personal Protection Equipment
Nitrogen, 18, 26, 41-42	(PPE), 73
Nitrous oxide, 26	Personnel:
Nuisance alarms, 70-72	managerial responsibilities,
	2, 69
0	risks, 5-6, 9
	safety, 7, 10
Obstructions. See Blockage	training, <u>see</u> Employee
Occupational Exposure Limit (OEL),	training; Training programs
17	Phosgene, 42
Octrafluorocyclobutane, 26	Phosphine, 26
Octafluorocyclo-pentene, 26	Photoionization detector (PID), 33,
Octafluorotetrahydro-furan, 26	40, 42
Odor detection 22	Placement of detector. <u>See</u> Detector
Oil on water detection, 13, 43	placement and configuration
Open path detectors, 38	Plasma etch process, 22
Open volumes, 59	Portable detectors, 48-49
Operating environment, 39	Pressure:
Operating parameters, 1	pulse, 57
Operating procedures, 1	relief safety systems, 21
Operating range, 39	Process controls, automatic, 47
O-rings, 48	Process equipment, 61
OSHA, Permissible Exposure Limits	Process hazard analysis methods, 12,
1 E E J S L 1 3= 1 O 44 7	40

Process safety management (PSM)	large releases, 55
risk matrix, 9	minor releases, 47-49, 62
Process safety methodologies, 8-9	probability of, 9, 12
Project managers, responsibilities of,	severity of consequences,
2	10
Propane, 42	Reliabile systems, significance of, 1
Property damage, 7	Remotely located locations, 67-69
Protection analysis, 9	Renovations, 76
Protective equipment, 7. <u>See</u>	Replacement cost, 40
also Personal protective equipment	Response speed, 38
(PPE)	Risk assessment, 9-11, 26, 28
Public health issues, 15	Risk management programs, 8
Puddling, 53	Risk reduction evaluation, 9
Purpose of detection system, 4-5	Risk review, 9-10
	Risk tolerance, 9
	Roadways/highways, vapor clouds,
Q	23, 68
	Rotating equipment:
Quality control, 63	safeguards for, 48
	safety standards, 12
R	
	S
Radon gas, 34	0.1
Range/span of detection, 39, 72	Sabotage, 9
Rate-of-change alarms, 71	Selection of detector, 7, 35-38, 41-42
Raw material, in manufacturing	Semiconductor industry, 24-26
process guidelines:	Semi-enclosed buildings, 56
end form of	Semi-enclosed volumes, 58-59
product/packaging and shipment, 21-	Senior management responsibilities 2
22	Sensitivity, in sensor selection, 39
processing, 20-21	Sensor technology:
reaction/product generation,	calibration, 40, 43
21-22	catalytic bead sensors, 33,
receiving/sorting/storing,	40
20-21 Passarias 0, 10, 22, 23	colorimetry, 34
Refineries, 9, 19, 22-23	electrochemical sensors, 32
Refrigerated materials, 69	infrared (IR) sensors, 32,
Release control program:	40-41, 46, 53, 55
requirements, 7, 14	laser gas analyzer open path
response to release, 6-7	detection, 34-35
Release likelihood, 49	life span of sensors, 40
Release scenario, see specific	performance variables, 38-40, 43
chemicals/compounds accidental, 71	photoionization detector
	(PID), 33
flammable, 9 horizontal, 52	(PID), 33 radon gas, 34
nonzoniai, J2	144011 848, 24

replacement cost, 40	training, 73, 76
sensor selection	
factors/matrix, 35-38, 41-42	T
sensor verification, 28	T 1 'C' ' ' 17
temperature monitoring, 21-	Task-specific monitoring, 47
22	TD
thermal conductivity (TC)	Temperature conditions, significance
gas detectors, 34	of, 10, 12, 19, 21-22, 39-40, 43, 72
Set back distances, 47, 52-53	Terrorism, 9
Set points. See Alarm, set points	Testing:
Shutdown:	guidelines, 75-77
automatic, 47, 62, 68	life safety hazardous
initiation of, 50	system, 28
procedures, 22, 26, 48	Thermal conductivity (TC) gas
spurious, 64, 68	detectors, 34, 40, 42
system design, 6-7, 12, 19,	Threshold level, 72
23	Threshold Limit Value (TLV), 1
Signal transmission, 71	Time-delayed alarms, 71
Silane, 16, 26	Time weighted average (TWA)
Silicon tetrachloride, 26	exposure, 44, 72
Silicon tetrafluoride, 26	Tool gas boxes, 29
Site managers responsibilities, 2	Topography, significance of, 46, 70.
Small buildings, 56	See also Grade level detection
Snow cover, 40, 50, 70	Toxic(s):
Society of Fire Protection Engineers,	defined, 17
9	response time, 27
0.1 11.71 70	substances, 38
Solar radiation, 72	Toxic gas detection/detectors:
Sonic leak detection, 13, 43	characteristics of, 10-11,
Source monitoring, 45, 48, 51-53	60-63, 69
Space limitations, 53	control requirement
Standard procedures, 7, 14. See	examples, 25-26
also Industry standards	general guidance for, 47-50
Steady state conditions, 9	Training programs, 46, 73, 76
STEL (Short Term Exposure Limit),	Travel path, 11, 45, 48,52, 68-69
1, 15	Trend analysis, 71-72
16	Troubleshooting programs, 72-73, 76
Sulfur dioxide, 26, 39, 41-42	Tungsten hexafluoride, 26
Sulfur hexafluoride, 26	24-hour security station, 27
Supervised systems and circuits, 27	* T
System management:	U
authority-having	II.'C E' O 1 12.14
jurisdiction (AHJ), 74-75	Uniform Fire Code, 13-14
change management, 75-76	UV/IR detection, 16
documentation, 74, 76	V
maintenance //L/h	N/

```
Valve(s):
         cylinder, 21
         manifold boxes, 29
Vapor(s):
         cloud dispersions, 52
         clouds, 23
         detection system, 16
         mitigation/dispersion
systems, 6-7
         pressure, 10, 13
Ventilation system:
         enclosed buildings, 56
         exhaust, 46, 64
Vibration monitoring system, 48
Volumetric monitoring:
         applications, generally, 45,
51
         characteristics of, 53-56
         enclosed building, 50, 56-57
         heavier-than-air releases, 60
         liquid-phase applications,
60
         open volumes, 59
         outdoor locations, 57-58
         semi-enclosed volumes, 58-
59
Voted detection system, 19
W
Warning properties, 17
Water vapor, 42
Weather conditions, significance of,
40, 45-46, 50, 52, 63
Wind conditions, significance of, 45-
46, 53-54
Work practices, 47
X
Xenon, 26, 42
```