References to figures are given in *italic* type. References to tables are given in **bold** type.

```
abrasive dehullers, 103
                                         alcohols as hexane alternative, 156-7,
acidity of rapeseed oil, 106
acrolein production from
                                         alkanes
  glycerol, 178, 181
                                           production of, 192-3
activated carbon, purifying glycerol
                                            in straw waxes, 79
  with, 173-4
                                           straw yields, 78
acylglycerols, 182
                                         alkyd resin production, 1, 2-3
                                         alkyl benzene sulfonate
adaptations to existing mills,
  151 - 61
                                           alternatives, 2
  alcohols as hexane
                                         almond oil, 36
     alternative, 156-7
                                         alperujo (olive waste)
  anaerobic digestion, 159-60
                                           valorisation, 123-4
  cold pressing, 154
                                         Alternaria spp., 58
  dehulling, 151-4
                                         Amberlite, purifying glycerol
  gas-assisted oil pressing, 156
                                           with, 170
  gum recovery, 160
                                         amino acids. see also protein and
  integrated scheme, 160-1
                                           amino acid isolation
  marc hexane retention
                                           chemicals derived from, 139-41,
     reduction, 154-5
  oleosome isolation, 158-9
                                           extraction process, 135-41, 136-7
  supercritical CO<sub>2</sub>
                                            fractionation of, 139
     extraction, 155-6
                                         anaerobic digestion. see also biogas
  transesterification and
                                            biogas production with, 81–4
     extraction, 157-8
                                           integrating into existing
  water extraction, 159
                                              plant, 159-60
                                           SWOT analysis, 160
adjacency matrices, 291
advanced oil crops
                                           wet vs. dry, 82
  biorefineries, 20-3. see also
                                         annealing algorithm, 206-7
  biorefineries
                                         aqueous extraction, 131-2, 137-9
agent-based model (ABM)
                                           advantages of, 137
  design, 292-5
                                           of sunflower oil, 90-3, 126-7
```

Argan oil, 39	low-temperature behaviour, 29
aspartic acid, 9	lubricity of, 187, 189, 190
Aspen Plus, 205	Biofine process, 147–9
_	biofuels
barley straw, 77	glycerol incorporation, 189-92
beeswax, 78	legislation promoting, 29
Berber's gold (Argan oil), 39	lipase production, 189–92
biodiesel manufacturing	producing via microbial
byproducts, utilising, 3	biotechnology, 193
capital costs for, 212	biogas. see also anaerobic digestion
in conventional refineries, 192-3	anaerobic digestion production
cost analysis model, 210-4	of, 81–4
economic optimisation, 223-7, 242	applications for, 83
environmental	benefits of, 84
optimisation, 240–9, 242	combustion reaction, 256
enzyme catalysis for, 187-8	composition of, 216-7
Fischer-Tropsch synthesis	cost analysis model, 215-8
(FTS), 176, 194–6	definition of, 81
flowsheet for, 28, 210	digestate split, 233
glycerol incorporation, 187-97	economic considerations, 84
green methods, 2	economic optimisation, 232-4, 256
holistic assessment of process	emissions, 256–7
options, 263–7	environmental
Hydro Thermal Upgrading	optimisation, 255–7
(HTU), 196	input and output flowrates, 233
input and output flowrates, 224	multi-objective optimisation, 257,
materials and utility prices, 212-3	258
multi-objective optimisation, 249	parameter ranges for production,
oils commonly used for, 28	216
production process, 28	plants for, 81–2
purified glycerol co-production	process flowsheet for, 215, 232,
optimisation, 227–9, 249–55	256
pyrolysis for, 193–4	purification of, 83
rapeseed oil for, 29	rapeseed hull production of, 109
recycled greases for, 28	vs. supercritical CO ₂
second-generation	production, 270–3, 271
technologies, 193–7	sustainability of, 83
succinic acid co-production	biolubricants, 2
vs. crude glycerol	biomass
production, 266–7	CO_2 extraction of, 71–2
optimisation of, 213-4, 229-32	component extraction, economic
sunflower oil for, 31	considerations of, 3
biodiesels	composition of, 7, 139
distilling, modelling for cost	cost considerations, 12, 17
analysis, 212–3	economic dependence on, 4
glycerol in, 188-9	efficient utilisation of, 6

as feedstock, 139–41 green, 17 hydrothermal conversion of, 197 pelletising, 73–5 photosynthetic reaction, 5 preservation methods, 17 product flowchart, 10 production of, 5 products based on, 5 pyrolysis, 193–4 separation of, 11	cellulose hydrolysation of, 8 plant fibre composition of, 86 as precursor, 12 uses for, 3 centrifugal propellers for dehulling, 103 centrifugation systems, 120-1, 123-4 cereal fractionation, 14-5. see also Whole Crop Biorefinery CGE (Computable General
similarity to petroleum, 6-7 types of, 5	Equilibrium) models, 299–307 applying to biofuels, 299–300
waste of, 4, 5	for bio-based economy, 300-7
biomethane. see biogas	commodity market block, 306-7
BIOPOL, 6	consumer structure, 304
biopol production, 15	environment block, 306
biorefineries. see also advanced oil	government module, 306
crops biorefineries	hybrid nature of, 300
compared to petroleum-refineries,	model main closure rules, 307
6–7	production structure, 301-4
design of, 11	trade structure, 304–6
efficiency improvements with, 2	charcoal rot, 58-9
integrated process for, 160-1	chromatography, purifying glycerol
biorefinery systems	with, 173–4
green biorefineries, 17–9	citric acid, producing with
Lignocellulosic Feedstock	glycerol, 182 3
(LCF), 11–4, <i>12</i>	CLEARFIELD sunflowers, 63
two-platform concept, 19–20	CO ₂
Whole Crop Biorefinery, 14–7	as extraction solvent, 68–70. see
biosorption, 88–90	also supercritical CO ₂ extraction
broomrape, 58, 65–6	phase diagram, 69
building blocks, 9	cognitive maps, 290. see also fuzzy cognitive maps (FCMs)
cake meal, 93–6	cold pressing
canola oil. see also rapeseed oil	cost analysis model, 220
area harvested, 35	vs. hexane extraction, 269-70
definition of, 27	integrating into existing plant, 154
glucosinolate levels, 49	rapeseed, 106
origin of term, 49	SWOT analysis for, 154
capital costs for equipment, 212,	combined heat and power (CHP)
216, 224	engines
carbon sequestration via straw	biogas conversion, 83
incorporation, 75	modelling for cost analysis, 217
carnauba palm, 78–9	commodity market block of CGE
castor oil, 37–8	models, 306-7

commodity oils. see also specific oils	of biodiesel and purified glycerol
cottonseed oil, 31-2	production, 249-55
groundnut oil, 32	of biodiesel production, 240-9
linseed oil, 34	of biogas production, 255-7
olive oil, 32–4	of supercritical CO ₂
rapeseed oil, 26-8	extraction, 257-63
sesame oil, 32	holistic assessment of process
soybean oil, 29–30	options, 263–76
sunflower oil, 30–1	of biodiesel production, 263-7
tall oil, 34-6	economic comparison, 274-5
Common Agricultural Policy	environmental impact, 275-6
(CAP), 23	of oil extraction, 267-70
communication relations, 287–8	small-scale, 274
composting sunflower hulls, 114	of straw consumption, 270–3
coniferous trees, producing tall oil	methodology for, 205-23
from, 34–6	life cycle analysis, 207–8
consumer structure of CGE	multi-objective
model, 304	optimisation, 208–9
corn	optimisation methods, 205-7
as feedstock, 6	simulation software, 205
products yielded from, 16	overview of, 203-5
stalk composition, 86	cottonseed oil
wet-milling, 16–7	area harvested, 35
cost analysis of biorefineries, 203–77	demand for, 32
biorefinery schemes analyzed	world production of, 31
in, 209–23	crambe oil, 38
biodiesel production, 210–4	crop rotation
biogas production, 215–8	of rapeseed, 52–3
levulinic acid production, 222–3	of sunflowers, 61
oil extraction, 220–1	Crude Sulfate Turpentine (CST)
protein extraction, 219	distillation, 35
supercritical CO ₂	crude tall oil (CTO), 34-6
extraction, 218–9	
thermomoulding, 221	Data Envelopment Analysis
conclusions of, 276–7	(DEA), 296–7
economic optimisation, 223-39	degumming, 160
of biodiesel and purified glycerol	dehulling, 103–15
production, 227–9	economic evaluation of, 107
of biodiesel and succinic acid	equipment for, 103-4
production, 229–32	hull separation after, 105
of biodiesel production, 223-7	integrating into existing
of biogas production, 232-4	plant, 151–4
of supercritical CO ₂	rapeseed, 103-10
extraction, 234-9	sunflower seeds, 104, 110–4
environmental and multi-objective	SWOT analysis for, 151–4
optimisation, 240–63	dehydrations of glycerol, 178

•	
densification of straws, 73–5 deterministic optimisation	from supercritical CO ₂ extraction, 259–63
method, 206–7	energy costs, 208
digestate recycling, modelling for cost analysis, 217–8	environment block of CGE models, 306
dihydroxyacetone (DHA), 181	environmental and multi-objective
direct thresh of rapeseed, 21	optimisation, 208 , 240–63, 275 .
diseases. see also pest and disease	see also emissions
control	of biodiesel and purified glycerol
of rapeseed, 51–2	production, 249–55
of sunflowers, 58–60	of biodiesel production, 240–9,
DMC-Biod, 191	242
downy mildew, 59	of biogas production, 255–7,
dry-milling whole cereal crops, 14.	258
see also Whole Crop Biorefinery	overview of, 275–6
see also whole Crop Biotennery	of supercritical CO ₂
Ecodiesel, 191	extraction, 257–63, 259 , 262
economic analysis of biorefineries.	environmental impact, 207–8. see
see cost analysis of biorefineries	also emissions
economic optimisation, 223–39, 275	enzymatic pre-treatment, 118
of biodiesel and purified glycerol	of rapeseed, 125
production, 227–9	of sunflower seeds, 127
of biodiesel and succinic acid	error function (EF) in
production, 229–32	simulations, 206
of biodiesel production, 223–7, 242	erucamide production, 26
of biogas production, 232–4, 256	esterifications of glycerol, 179 ethanol
of levulinic acid production,	glycerol production of, 177,
274–5	180-1
of protein extraction, 274–5	uses for, 13
of supercritical CO ₂	via biomass-nylon-process, 13
extraction, 234-9, 259	etherifications of glycerol, 179
of thermomoulding, 274–5	EU Biofuel Directive, 29,
electrostatic hull separation, 105	299–300
emissions. see also environmental and	evening primrose oil, 37
multi-objective optimisation	expeller presses, 127–8
calculating, 207–8	extraction, oil. see oil recovery
comparison of, 275	extraction, straw. see supercritical
economic and environmental	CO ₂ extraction
optimisation of, 241–9	extrusion extraction, 91, 126-7,
greenhouse gas, 75	128–9
methanol feed and, 247, 264-6,	
265	falling film evaporators, 169, 171
vs. profits, 275–7	fats, historic importance of, 23.
recycle fraction effect on, 256–7	see also plant oils
from straw processing, 270–3	fatty acid methyl ester (FAME), 24

fatty acids	fructose, 144–5
in Argan oil, 39	Fuel Quality Directive, 29
effect on biodiesel at low	fumaric acid, 9
temperature, 29	fungicides
in jatropha oil, 38	efficacy of, 52
in lallemantia oil, 37	for Phomopsis stem canker, 61
in rapeseed oil, 27	2,5-furan dicarboxylic acid, 9
in safflower oil, 37	furfural, 13
in sunflower oil, 31	furfuryl alcohol, preparing levulinic
in tall oil, 35–6	acid via, 143–4
feed-in-tariff remuneration	fuzzy cognitive maps (FCMs), 290-1
system, 84	
feedstocks	Gas Assisted Mechanical Expression
biogas production potential of, 81	(GAME), 129–30, 132
biomass as, 139-41	gas-assisted oil pressing, 129-30
carbohydrates as, 5-6	integrating into existing plant, 156
cost considerations, 12	SWOT analysis for, 156
flowchart for, 10	genetically modified (GM) crops
lignocellulosic. see lignocellulosic	rapeseed, 54–5
feedstock	sunflowers, 66–7
fertilisers, 60	Gliperol, 191
Fischer-Tropsch synthesis	glucaric acid, 9
(FTS), 176, 194–6	glucose
flaking seeds, 115	isomerisation into fructose, 144–5
flaxseed oil, 34	products accessible by, 8
flowrates	versatility of, 7
for biodiesel production, 224	glucosinolates
for biogas production, 233	in canola oil, 49
effect on profit, 231	extraction from rape meal, 3
for supercritical CO ₂	glutamic acid, 9
extraction, 235	glycerol
Fluid Catalytic Cracker (FCC), 24	applications of, 166-87
Foggia case study, 297-8	aqueous phase reforming
food-feed-fuel conflicts,	(APR), 176
minimising, 6	in biodiesel
foodprocessing residues, 6	manufacturing, 187-97
fractionation	biofuels incorporating, 189-92
of amino acids, 139	biotransformations, 180
of cereals, 14–5	as building block, 9, 174–87
of green biomass, 17-8	chemicals derived from, 180-5
of oilseeds, 22	commodity chemicals derived
overview of process, 8	from, 176
of sunflower plants, 92-6	composition of, 168
free fatty acids (FFA), removing from	continuous concentration of, 171
glycerol, 168-9	continuous distillation of, 172
Friolex process, 159	co-production with biodiesel, 227-9

crude, utilisation of, 186	government module of CGE
crude vs. purified econon	
comparison, 264-6	gravimetric hull separators, 105
dehydrations, 178	green biomass fractionation, 17-8
esterifications, 179	green biorefineries, 17-9
ethanol production from	
etherifications, 179	system, 84
Fischer-Tropsch synthesi	
(FTS), 176	emissions; environmental impact
food applications, 175	green juice production, 18
future market of, 186-7	green solvents, 186
gel permeation, 174, 175	greenhouse gas (GHG) emissions, 75
generation of, 167	groundnut oil
global production of, 17	
as green solvent, 186	uses for, 32
halogenations, 177–8	world production of, 32
oxidations, 179	gum recovery, 160
price of, 189	•
purification technologies.	, 167–74, halogenations of glycerol, 177–8
213	harvest index for sunflowers,
catalyst removal, 240	57-8, 65
chromatography and	harvesting olives, 33-4
regenerative column	
adsorption, 173-4	health effects
conventional processes	s, of high oleic sunflower oil
169–70	(HOSO), 31
economic optimisation	of olive oil, 32–3
environmental	HEAR (High Erucic Acid
optimisation, 240-5	
modelling for cost	heating seeds as pre-treatment. see
analysis, 212-3	thermal pre-treatment of seeds
recent developments in	n, 170–3 hemicellulose/polyoses
separation units, 241	plant fibre composition of, 86
soap splitting, 168–9	as precursor, 12
pyrolysis of, 179–80	hemp oil, 37
selective reductions, 177	herbicides, 63. see also pest and
succinic acid conversion,	
vs. succinic acid, in biodi	lesel hexane extraction
production, 266–7	vs. cold pressing, 269–70
transforming into	cost analysis model, 220-1
products, 174–87	of rapeseed oil, 22
glycerol tertiary butyl ether	
(GTBE), 182	hexoses, producing levulinic acid
GM crops	from, 144–8
rapeseed, 54–5	high oleic sunflower oil (HOSO), 31
sunflowers 66–7	HIPLEX system 156

hot-pressing sunflower cake meal, 93–6 hulls, valorising. <i>see</i> dehulling hulls boiler, 112 Hydro Thermal Upgrading (HTU), 196 hydrogen, producing with glycerol, 180 hydrolysis of proteins, 134–5 3-hydroxy propionic acid, 9 3-hydroxybutyrolactone, 9	lallemantia oil, 37 landscape, in policy scenario modelling, 282 LCF (lignocellulosic feedstock). see lignocellulosic feedstock LEAR (Low Erucic Acid Rape), 27 levulinic acid as building block, 9 formation of, from fructose, 144–5 history of development, 142–3 properties of, 141–2 uses for, 142
innovation niches, 282–4 assessing development status, 286–91 behavioural rules for, 293–5 questionnaire for investigating, 288	levulinic acid production, 18, 21, 141–50, 142 Biofine process, 148–9 cost analysis model, 222–3 economic optimisation, 274–5
insecticides, 61. see also pest and disease control	from hexoses, 144-8 at high temperature, 147-8
integrated scheme biorefinery, 160–1	history of development, 142–3 from lignocellulosic
integrating biorefinery technology, 151–61 alcohols as hexane alternative, 156–7 anaerobic digestion, 159–60 cold pressing, 154 dehulling, 151–4 gas-assisted oil pressing, 156 gum recovery, 160 marc hexane retention reduction, 154–5 oleosome isolation, 158–9 supercritical CO ₂ extraction, 155–6 water extraction, 159 ion exclusion chromatography, 169 irradiation as seed pre- treatment, 117–8, 125	feedstock, 149–50 at low temperature, 146–7 material prices, 222 preparation routes, 143–4 process flowsheet for, 222 from rapeseed, 21 reaction for, 223 life cycle analysis (LCA), 207–8 lignin plant fibre composition of, 86 as precursor, 12 in sunflower seeds, 113 uses for, 3–4 lignocellulosic feedstock, 9 biofuel production from, 196 levulinic acid production from, 149–50 treating for biogas production, 82
irrigation, 60, 63–4 itaconic acid, 9	Lignocellulosic Feedstock (LCF) biorefinery, 11–4, 12 linoleic sunflower oil. see sunflower oil
jatropha oil, 38–9 jojoba, 78–9	linseed oil area harvested, 35
Kraft pulping, 34–5	uses for, 34 world production of, 34

lipases, and biofuel	assessing niche development
production, 189–92	status, 286–91
Low Erucic Acid Rape (LEAR), 27	evaluating policy actions, 295–7
macadamia nut oil, 36	microwave and radio
macro-economic policy	pre-treatment, 117-8, 125
modelling, 299307	microwave pyrolysis, 4
CGE model application,	Miscella production, 22
299–300	modelling biorefinery schemes for
CGE model for bio-based	cost analysis, 209-23
economy, 300-7	biodiesel production, 210-4
overview of, 307	biogas production, 215–8
MacSharry reforms, 24	levulinic acid production, 222-3
nalic acid, 9	oil extraction, 220-1
narc hexane retention	protein extraction, 219
reduction, 154-5	supercritical CO ₂ extraction, 218–9
naterials and utility prices, 212-3	thermomoulding, 221
Mcgyan Process, 2	modelling policy scenarios. see policy
nethanation of biomass, 159-60	scenario models
nethanol recovery, 169	mono- (MAG) and di-acylglycerol
crude glycerol vs. purified glycerol	(DAG), 182
analysis, 264–6	multi-level approach (MLA) for
distillation column for, 212	micro-economic policy
emissions effect, 264-6, 265	modelling, 282
energy requirements for, 243-4,	
250–1	network indices, 291
modelling for cost analysis,	niches, in policy scenario modelling.
225–6, 228	see innovation niches
nethodology for cost	nitrogen fertiliser, 51
analysis, 205–23	NuSun sunflower oil, 31
life cycle analysis, 207–8	nylon production, 13
multi-objective	
optimisation, 208–9	oil bodies in seeds (oleosomes), 116,
optimisation methods, 205–7	158-9
simulation software, 205	oil cake. see press cake
nicrodiesel biosynthesis, 193	oil crops. see also specific oils
nicro-economic policy	area harvested, 35
modelling, 281–99	climatic requirements for, 25
application of, 297–9	economic potential of, 25–6
Data Envelopment Analysis	European cultivation of, 24–6
(DEA), 296–7	historic importance of, 23
theoretical framework, 281–5	world production of, 24
three-steps methodology, 285–97	oil of dragonhead (lallemantia oil), 37
agent-based model (ABM)	**
• • • • • • • • • • • • • • • • • • • •	oil pressing processes. see pressing
design, 292–5	processes

oil recovery, 119–33. see also	optimisation methods in cost
specific oils	analysis, 205–7
cold pressing vs. hexane	deterministic and
extraction, 269-70	stochastic, 206–7
cost analysis model, 211, 220-1	identifying parameters for, 205
flake water content, effect on, 117	multi-objective
holistic assessment of process	optimisation, 208-9
options, 267–70	objective function,
from olives, 121-4	constructing, 205-6
pressing processes, 127–30	organic solvent extraction, 130
process overview, 119	organosolv process, 3-4
from rapeseed, 124–5	Orobanche cumana, 58
residual, 132	oxidations of glycerol, 179
simultaneous with protein	
extraction, 137–9, 158	palm oil production, 24
solvent extraction, 130-2	peanut oil (groundnut oil)
from sunflower seed, 125-7	area harvested, 35
oilseed rape. see rapeseed; rapeseed oil	uses for, 32
oleiferous crops. see oil crops	world production of, 32
oleochemical industry, 2	pectins, extracting from sunflower
oleosomes, 116, 158–9	stalks, 88
olive cake, 122–4	pelletising straw, 73–5
olive leaves, 122	peptide bonds, 134
olive oil	peptide extraction process, 135-41
area harvested, 35	pest and disease control. see also
centrifugation process, 120-1	diseases
culinary uses for, 32-3	birds and game animals, 62
extraction process, 121-4	fungicides, 61
harvest of, 33-4	GM modifications for, 54-5, 66
historic importance of, 23	insecticides, 61
quality definitions for, 33	prophylactic methods, 65
subsidisation of, 34	with wheat wax extracts, 79
uses for, 32–3	petroleum-refineries, compared to
world production of, 32, 122	biorefineries, 6–7
olives	phenols, extracting from olive
anatomical parts of, 121-2	waste, 124
byproducts of, 122-4	Phoma black stem, 59
composition of, 133	Phomopsis stem canker, 59, 61
mill wastewater, 123	phosphorus, cooking, 116
oil content of, 121, 122	pig pancreatic lipase (PPL), biofuel
waste valorisation, 123-4	production with, 190
optimisation, economic. see economic	pith, sunflower, 87
optimisation	plant oils. see also specific oils
optimisation, environmental. see	European production of,
environmental and multi-objective	24–6, 25
optimisation	historic importance of, 23

Shojeer much	
polymer production with, 2-3 uses for, 24	pulsed electric field, 118 thermal, 115–8, 124–5
plant waxes, 75–80	processing oil-bearing plants,
in sunflower oil, 110–1	102–61
supercritical CO ₂ extraction	biorefinery integration in existing
optimisation, 234–9	plants, 151–61
platform chemicals, 16. see also	alcohols as hexane
levulinic acid	alternative, 156–7
policy scenario models, 280–308	anaerobic digestion, 159–60
macro-economic	cold pressing, 154
approach, 299–307	dehulling, 151–4
CGE model application,	gas-assisted oil pressing, 156
299–300	gum recovery, 160
CGE model for bio-based	integrated scheme, 160–1
economy, 300–7	marc hexane retention
overview of, 307	reduction, 154-5
micro-economic approach, 281–99	oleosome isolation, 158–9
application of, 297–9	supercritical CO ₂
theoretical framework, 281-5	extraction, 155-6
three-steps methodology,	transesterification and
285–97	extraction, 157-8
poly-3-hydroxybutyricacid	water extraction, 159
production, 15	levulinic acid production,
polycosanols in straw waxes, 79	141–50
polymers, green production of, 2–3	Biofine process, 148–9
polytrimethylenterephthalate	from hexoses, 144–8
(PTT), 13	history of development,
pomace olive oil, 33. see also olive oil	142–3
precursors, 7, 9	LCF conversion
press cake	process, 149–50
amino acid extraction from, 137	oil recovery processes, 119–33
from aqueous extraction of	from olives, 121–4
sunflower oil, 93-6	pressing processes, 127-30
fibre extraction from, 22-3	from rapeseed, 124–5
production of, 18	residual oil recovery, 132
residual oil recovery from, 132	solvent extraction, 130-2
pressing processes, 127–30	from sunflower seeds, 125-7
cold pressing. see cold pressing	pre-treatment processes, 103-18
extrusion, 128–9	dehulling, 103–15
gas-assisted oil pressing, 129-30	enzymatic, 118, 125, 127
screw pressing, 127–8	microwave and radio
pre-treatment processes, 103–18	frequency, 117-8
dehulling, 103–15	pulsed electric field, 118
enzymatic, 118, 125, 127	thermal, 115–7
microwave and radio	protein and amino acid
frequency, 117-8, 125	isolation, 133–41

processing oil-bearing plants	pyrolysis
(continued)	of biomass, 193-4
peptide and amino acid	of glycerol, 179–80
extraction, 135-41	microwave, 4
protein hydrolysis, 134-5	
waste stream valorisation, 119-33	quantitative trait locus (QTL), 66
product flowchart, 10	
production structure of CGE	radiation interception of rapeseed, 53
model, 301-4	radio pre-treatment. see microwave
profit analysis. see cost analysis of	and radio pre-treatment
biorefineries	rape straw
propan-1,2,3-triol. see glycerol	alkane yields from, 78
1,3-propanediol, 13, 81	composition of, 51, 215
propylene glycol production, 13, 181	yields, 51
proteases, protein hydrolysis	rapeseed
with, 134	aqueous extraction of, 138
protein and amino acid	biogas production with hulls, 109
isolation, 133–41, <i>138</i>	climatic hardiness of, 26, 50
after oil recovery, 136–7	cold pressing, 106
cost analysis model, 219	composition of, 105-6, 133, 210
economic optimisation, 274-5	cost analysis model for biogas
peptide and amino acid	production, 215–8
extraction, 135-41	crude fibre extraction, 22–3
protein hydrolysis, 134–5	cultivars, breeding for yield, 53-4
simultaneous with oil	cultivars of, 49
extraction, 137–9	cultivation problems, 50
pulsed electric field	dehulling, 103–10
pre-treatment, 118	diseases affecting, 51–2
pumpkin seed oil, 36	enzymatic pre-treatment, 125
punctual indices, 291	European production of, 50
purification of glycerol, 167–74, 213	flaking, 115
with activated carbon, 173–4	GM cultivars of, 54–5
adsorption techniques, 173–4	growing conditions for, 49
catalyst removal, 240	harvest of, 20–1
chromatography and regenerative	HEAR (High Erucic Acid
column adsorption, 173–4	Rape), 26–7
conventional processes, 169–70	hull utilisation, 108–10
vs. crude glycerol, 264–6	hybrids, yield from, 54
economic optimisation, 249	LEAR (Low Erucic Acid
environmental	Rape), 27
optimisation, 240–9	microwave and radio
modelling for cost analysis,	pre-treatment, 125
212–3	oil content of, 121, 122
recent developments in, 170–3	oil recovery, temperature effect on,
separation units, 241	116
soan splitting 168-9	protein extraction 219

quantity of straw production, 20 rotational breaks for, 52-3	socio-technical regime (ST-regime), 282
sulfur, effect on, 51	solid state fermentation of
SWOT analysis for	alperujo, 124
dehulling, 151–4, 152	solvent extraction of oils, 130–2
thermal pre-treatment, 124–5	levulinic acid recovery with, 150
world production of, 49	with organic solvents, 130
yields from, 22, 29, 50–6	with organic solvents, 130—1
rapeseed oil	with supercritical finds, 150 1 with water (aqueous
acidity of, 106	extraction), 131–2
area harvested, 35	sorbitol, 9
as biodiesel source, 29	sorghum composition, 86
decentralised production of,	soybean oil
22–3	area harvested, 35
extraction process, 124–5	European production of, 30
fatty acid composition, 27	uses for, 30
fractionation of, 22	world production of, 24
levulinic acid production, 21	yields from, 30
predicted consumption of, 29	speciality oils, 36
uses for, 27–8	sterols in straw waxes, 79
world production of, 24	stochastic optimisation
refining glycerol. see purification of	method, 206-7
glycerol	straws. see also specific straws
Renewable Energy Directive, 29	component extraction, economic
residual oil recovery, 132	considerations of, 3
roll dehullers, 103–4	defined, 14
, .	densification of, 73-5
safflower oil, 37	holistic assessment of process
sclerotinia, 65, 66	options, 270–3
screw pressing, 127–8	levulinic acid production
Sequential Quadratic Programming	from, 141–50
(SQP), 206-7, 226, 230	nutrient value, 75
sesame oil	pelletising, 73-5
area harvested, 35	unutilised amount of, 75
growing conditions for, 32	waxes from, 75-80
uses for, 32	succinic acid
world production of, 32	as building block, 9
simulated annealing (SA), 206–7,	vs. crude glycerol in biodiesel
226, 230	production, 266–7
simulation software for cost	glycerol production of, 180, 214
analysis, 205	glycerol production of, modelling
soap splitting, as glycerol	for cost analysis, 213-4, 229-32
pre-treatment, 168-9	sugar platform interaction with
social circles, 287	syngas platform, 19-20
social network analysis (SNA),	sulfur levels, effect on rapeseed
286–9	yield, 51

SUNFLO model for sunflower	fertiliser for, 60
planting, 64–5	fibre composition, 86
sunflower oil	GM and, 66-7
aqueous extraction, 90-3, 126-7	growing conditions for, 30-1, 58
area harvested, 35	harvest index, 57-8
European production of, 30-1	historic cultivation of, 57
extraction process, 125–7	hulls, uses for, 113-4
extrusion extraction, 126-7	irrigation of, 60, 63–4
fatty acid composition, 31, 57	physical characteristics of, 56–7
hexane extraction, 126	pith, application for, 88, 89
supercritical CO ₂ extraction, 126	pith composition, 87
thermomoulding, 221	rotational breaks for, 61
uses for, 31	water availability, adapting
waxes in, 110-1	practices to, 64–5
world production of, 24	weed control, 61, 63
sunflower seeds	yield increase, 60–7
composition of, 110–1, 113, 133	supercritical CO ₂ extraction
crude fibre extraction, 23	vs. biogas production, 270–3, 271
dehulling, 104, 110–4	CO_2 density, 70
enzymatic pre-treatment, 127	co-solvents, 70
hullability of, 111	cost analysis model, 218–9
oil content of, 121, 122	economic considerations, 71–3
SWOT analysis for	economic optimisation, 234–9, 25 9
dehulling, 151–4	energy requirements for, 260
yield from, 64	environmental
sunflower stalks	optimisation, 257–63, 259
applications for, 88–90	equipment components, 71
biosorption with, 88–90	extraction time considerations, 69
composition of, 85–7, 88	extractor arrangements, 70–1
pectin extraction, 88	input and output flowrates, 235
pith/straw separation, 87-8	integrating into existing
potential harvest size, 85	plant, 155–6
pulp production with, 90	multi-objective optimisation, 262
structure of, 85–6	operating costs, 73, 236
sunflower straw	process flowsheet for, 218, 235,
alkane yields from, 78	258
separation from pith, 87–8	raw material costs, 75
sunflowers	as solvent, 130–1
breeding for disease resistance, 66	straw densification for, 73-5
cake meal composition, 94	straw extractives from, 75–8
composition of, 85, 94	of sunflower oil, 126
disease control, 61	SWOT analysis for, 155
diseases of, 58-60	surfactant production, 2
European production of, 57	surplus reduction, 24
farming practices vs.	sustainability, and biomass
recommendations, 62	increase, 48

SUSTOIL project policy	trypsin, 134, 135
objectives, 281	twin-screw extruder, 91
swath thresh of rapeseed, 21	two-platform concept, 19-20
SWOT analysis	
for alcohols as hexane alternatives,	vacuum flash evaporators, 170
157	vegetable oils. see plant oils
for anaerobic digestion, 160	virgin olive oils, 33. see also olive oil
for cold pressing, 154	viscosity, 188
for dehulling strategies, 151–4	
for gas-assisted oil pressing, 156	walnut oil, 36
for marc hexane retention, 155	waste biomass, 4–6
for oleosome isolation, 158	waste stream valorisation, 119-33
for simultaneous extraction and	wastewater from olive mills, 123
transesterification, 158	water conservation, 63–4
for supercritical CO ₂ extraction,	water extraction, 159
155	waxes from plants, 75–80
for water extraction, 159	in sunflower oil, 110-1
syngas	supercritical CO ₂ extraction
production of, 18, 20, 195-6	optimisation, 234–9
via pyrolysis, 14	weed control, in sunflower crops,
syngas platform, interaction with	61, 63
sugar platform, 19–20	wet-milling whole cereal crops,
	16-7. see also Whole Crop
tail-end separation, for dehulling, 104	Biorefinery
tall oil, 34–6	wheat straw
tall oil fatty acids (TOFA), 35-6	fibre composition, 86
thermal pre-treatment of	wax composition, 77
seeds, 115–8, 124–5	wax extraction
thermomoulding	economic optimisation
cost analysis model, 221	of, 234–9
economic optimisation, 274-5	environmental optimisation
thermoplastic extrusion, 131–2	of, 257–63
thin film distillation, 170	process flowsheet for, 258
trade structure of CGE	wax extracts, pest reduction
models, 304-6	with, 79
transesterification and extraction	wax fraction, 77
integrating into existing	yields from, 55
plant, 157–8	Whole Crop Biorefinery, 14-7
modelling for cost analysis, 211-2	
triglycerides	xylitol/arabinitol, 9
as biofuels, 187	
processing in oil-refining	yield increase
plants, 192–3	average per annum, 55
transesterification reaction, 167	for rapeseed, 50–6
trombin, specificity of, 135	for sunflowers, 57–8, 60–7