Index

Note: The letters ‘f’ and ‘t’ following the locators refer to figures and tables respectively.

A
Accelerated Shelf Life Testing (ASLT), 35, 351
Acetic acid bacteria, 251, 254, 258, 263, 265, 266, 268, 269
Acid system process, 311
Acidified specialty products
detection of microorganisms, 297
MEA/TGYA, 297
economic loss, 286
factors affecting spoilage, 287–289
headspace oxygen content, 289
pasteurization, 288
pH and type of acidulant, 287–288, 288f
preservatives and partition coefficient, 288–289
refrigeration, 289
water activity, 288
French dressing, 293, 294f
growth of acetic-tolerant spoilage microorganisms, 297f
ketchup, 295
mayonnaise, 287–289
mustard, 296
pourable salad dressings, requirements, 293–295
spoilage defects, 290
spoilage microorganisms, 286–287
spoonable salad dressings, 291–293, 292f
vinegar, 296–297, 297f
yeasts from low-pH products, 287f
Acidophiles, 8, 10
Acid’s dissociation constant (pKa), 18
Aciduric flat sour sporeformers, 212
“Acidurics,” tolerate low pH values, 8, 275
Acinetobacter, 9, 23t, 77, 79, 129, 155, 229, 247
Actinomycetes, 4, 247
5-A-Day Challenge, 136
Aerobic microorganisms, 7, 20, 22, 75, 80, 91, 94, 161, 231, 237, 286
Aerobic plate counts (APC), 163
procedures, 34, 35
Aerobic psychrotrophic bacteria, 163
Aged, ripened cheeses, 51
Alicyclobacillus, 9, 10, 32, 33, 212, 262, 277f, 278, 279f
American Meat Institute, 76
Amylolytic enzymes, 12
Anastomosing fibers, 125, 126
Antagonisms, 13
Antimicrobial process, 238
Application of appropriate pasteurization, 270–271
APP technology, see Aseptic processing and packaging (APP) technology
Art of Preserving All Kinds of Animal and Vegetable Substances for Several Years, The, 185
Aseptic process, 24, 204, 206, 274
Aseptic processing and packaging (APP) technology, 274
ASLT, see Accelerated Shelf Life Testing (ASLT)
Atmospheric steam pasteurization, 25
Auto-sparging systems, 274
Autosterilization, 202, 205
See also Canned foods
Awareness of common CSD contamination vectors, 254
B
Bacillus, 9, 10, 16t, 17t, 22, 23t, 26t, 45, 46, 95t, 99t, 129, 140t, 197, 202, 206, 207t, 209, 212, 213, 225t, 235, 240, 277, 295, 303, 305t, 307t, 310, 315t, 331
Bacon, 77–78
BacT/Alert® 205

Bacteria

Acinetobacter, 9, 23r, 77, 79, 129, 155, 229, 247

Alicyclobacillus, 9, 10, 32, 212, 262, 277r, 278, 279r

Bacillus, 9, 10, 16r, 17r, 22, 23r, 26r, 45, 46, 95r, 99r, 129, 140r, 197, 202l, 206, 207r, 209, 212, 231, 225r, 235, 240, 277, 295, 303, 305r, 307r, 310, 315r, 331

Clostridium, 9, 10, 17r, 23r, 26r, 46, 46r, 47, 75, 101, 140r, 160, 186, 199, 207r, 209, 211, 214, 215, 225r, 237, 240, 249, 262, 306, 307r

coryneforms, 9, 72, 94, 95r, 98r

Erwinia, 9, 11, 138r, 140r, 141, 153, 160, 161r, 305r, 307r

Escherichia, 9, 23r, 77, 79, 129, 155, 229, 249

gram positive, 8, 13, 28, 50, 94, 109, 126r, 129, 153, 155, 160

Lactobacillus, 9, 17r, 44, 47, 72, 74, 76, 81r, 90r, 91, 104, 105r, 106, 155, 170, 172, 197, 225r, 234, 236, 251, 263, 264r, 286, 296, 297, 304, 305, 306, 308

Lecucomitococcus, 9, 54, 90r, 153, 225r, 236, 251, 264r, 266, 269, 305r, 307r, 308

Pseudomonas, 9, 14, 17r, 23r, 26r, 48, 90r, 93, 95r, 97, 99r, 122r, 129, 138r, 140r, 143, 153, 154, 249, 305r, 307r, 310, 315r

Staphylococcus, 9, 23r, 76, 78, 191, 229, 239, 240, 291, 316r

Streptococcus, 9, 17r, 44, 74, 199, 234, 236, 306

See also Microbiological spoilage

Bacterial diseases of plants, diagnosis of, 147

Bactofugation, 55

Baked eggs, 132

Bakery products, 225–234

factors influencing spoilage, 227–228

food types and properties, 225–226

microbial sources and effects, 227

mold and yeast spoilage, 226–227

mycotoxin-induced health problems, 227

mycotoxins, categories, see Mycotoxins

white, filamentous, or “fuzzy” colonies, 226

mold-free shelf life of, 231f

preservatives permitted, 230r

prevention and control of spoilage, 228–232

deep freezing, refrigeration, hot storage, 232

food irradiation, 229

good manufacturing practices/excellent sanitation programs, 228

heat-resistant laminated films, 228

heat treatments or ultraviolet (UV) irradiation, 229

humectants, to reduce water activity, 230

ionizing radiation or “cold pasteurization,” 229

MAP, 231

modification of headspace composition, 231

packaging in sterile atmosphere, 229

wrapping materials, 229

rope spoilage, 233

characteristics, 233

environment for rope bacteria, 233

milling procedures, 233

ropiness, 233

types and numbers of microorganisms, 233

sour spoilage, 234

bacterial metabolism of carbohydrates, 234

control and prevention, 234

treatments to prevent mold growth, 232f

See also Cereal products

Baking process, 132, 231, 233, 240

Barrel-salted lumpfish roe, 106

Basic Plant Pathology Methods, 147

BAX®, 205

Beef sugar processing

flow diagram, 307f

microorganisms associated, 307r

Bergey’s Manual of Systematic Bacteriology, 276

Beverages

bottled water, 246

detection/isolation of microorganisms, 249

factors affecting spoilage, 248

types and sources of microorganisms, 247–248

carbonated beverages

Cold-filled preserved CSDs, 250–258

thermally processed non-preserved CSDs, 258–260

NCBs

ambient fruit juices, 276–279

chilled fruit and vegetable juices, 260–276

Bleaching processes, 272

“Bone taint,” see Meat products

Bottled water (drinking water), 246
categories of, 246

detection/isolation of microorganisms, 247–248

factors affecting spoilage, 248

visible mold spoilage, 249

treatments, 246–247

types and sources of microorganisms, 247–248

See also Beverages

Bottlers

granulated sugar

mesophilic bacteria/molds/yeasts, 308r

liquid sugar

mesophilic bacteria/molds/yeasts, 309r

“12D botulinum cook,” 23

Brine chill systems, 74

Brined cheeses, 51

Brown or soft sugar, 304

“Buffer” or “poise,” 22

Butterfield’s buffer, 146

Butyric acid anaerobes, 211–212

C

Camembert and blue-veined cheeses, 51

Cane sugar processing

flow diagram, 306f

microorganisms associated, 305r

Canned food regulation (CFR), 23, 24

Canned foods

autosterilization, 202, 205

cause of spoilage, 202–206

heating curves for thermal processes, 204f

heat shocking, 203

microbial characterization tools, 205

pH of any subculture media, 203

process establishment procedures, 206f

factors, contributing to cause of spoilage, 189r

growth of acid-tolerant spore-forming microorganisms, 200–201

inadequate thermal processing, 198–200

“flat sour spoilage,” 199

reasons, 199
cold-filled preserved CSDs, 250–258
thermally processed non-preserved
CSDs, 258–260
NCBs
ambient fruit juices, 276–279
chilled fruit and vegetable juices,
260–276
Bleaching processes, 272
“Bone taint,” see Meat products
Bottled water (drinking water), 246
categories of, 246
detection/isolation of microorganisms, 249
factors affecting spoilage, 248
visible mold spoilage, 249
treatments, 246–247
types and sources of microorganisms,
247–248
See also Beverages
Bottlers
granulated sugar
mesophilic bacteria/molds/yeasts, 308
liquid sugar
mesophilic bacteria/molds/yeasts, 309
“12D botulinum cook,” 23
Brine chill systems, 74
Brined cheeses, 51
Brown or soft sugar, 304
“Buffer” or “poise,” 22
Butterfield’s buffer, 146
Butyric acid anaerobes, 211–212
C
Camembert and blue-veined cheeses, 51
Cane sugar processing
flow diagram, 306f
microorganisms associated, 305f
Canned food regulation (CFR), 23, 24
Canned foods
autosterilization, 202, 205
cause of spoilage, 202–206
heating curves for thermal processes,
204f
heat shocking, 203
microbial characterization tools, 205
pH of any subculture media, 203
process establishment procedures, 204
factors, contributing to cause of spoilage,
189f
growth of acid-tolerant spore-forming
microorganisms, 200–201
inadequate thermal processing, 198–200
“flat sour spoilage,” 199
reasons, 199
incipient spoilage (spoilage before
processing), 190–192
non-microbial spoilage, 201–202
corrosion inside plain tinplate
containers, 201
post-process contamination (leakage
spoilage), 192–198
causes, 192–195
characteristics of, 195–196
control and prevention, 198
public health significance, 196–198
thermal process
products, causes for spoilage, 189–190
steps in establishment, 187f
thermophilic spoilage, 200
types of microorganisms
aciduric flat sour sporeformers, 212
heat-resistant molds, 216–217
mesophilic aerobic sporeformers,
206–209
mesophilic anaerobic sporeformers,
209–212
non-sporeformers, 217–218
presterilization, 213
thermal resistance, pH, and temperature
requirements, 207f–208f
thermophilic anaerobic sporeformers,
214–216
thermophilic flat sour sporeformers,
213–214
water activity (a_w), 188
Canning, 2, 82, 110, 148, 185, 186, 198, 200,
209, 214, 295
Carbonated soft drinks or CSDs, 249, 250,
251, 252, 253f, 254, 255, 256, 257,
258, 259
Carcass decontamination, 72
Catsup, see Ketchup
Caviar, 106, 107
Cephalopods, 97–98
Cereal products, 223–241
bakery products, 225–234
factors influencing spoilage, 227–228
microbial sources and effects, 227
mold and yeast spoilage, 226–227
mold-free shelf life of, 231f
preservatives permitted, 230f
prevention and control of spoilage,
228–232
rope spoilage, 233
sour spoilage, 234
treatments to prevent mold growth,
232f
Cereal products (cont.)
types of foods and general properties, 225–226
compound cereal products, 240–241
food types and properties, 240
spoilage and influential factors, 240
spoilage prevention and control, 241
dried cereal products, 237–239
food types and properties, 237–238
spoilage and influential factors, 238–239
spoilage prevention and control, 239
economic impact of spoilage, 223–225
shelf life of bread/cereal/pastry foods, 225
methods for determination, 241–242
microbes involved in spoilage of, 225
refrigerated dough and pasta products, 234–237
food types and properties, 234–235
spoilage and influential factors, 235–236
spoilage prevention and control, 236–237
Cheddar cheese, 51
Chemical oxidation-reduction (O/R), 7
Chemical pasteurization, 291
Chocolates
cocoa beans, 302
composition, 302
contamination, 304
critical control point (CCP) step, 302
examples of salmonellosis associated with, 303t
milk and dark, 302
pathogens, Salmonella, 303
post-thermal processing (post-roasting), 303
production, with processing steps, 303
CIP systems, 250, 257, 271
Citric buffer, 270
Clean-out-of-place (COP) cleaning, 274
Clostridium, 9, 10, 17t, 23t, 26t, 46, 46f, 47t, 75, 101, 140t, 160, 186, 199, 207t, 209, 211, 214, 215, 225t, 237, 240, 249, 262, 306, 307t
Cocoa
derived and composed of, 327
factors influencing, 340
microorganisms, types of, 335–336
fermentation process, 335
off-color and off-flavors, 336
potential vectors for contamination, 335
spoiled by molds, 336
sun drying and artificial drying, 336
prevention and control of spoilage, 344
production, 327
Codex Alimentarius Commission (Codex), 203, 246
Coffee, 327–328
cherries, 328
peaberry, 328
factors influencing spoilage, 340
grown in Tropic of Cancer/Tropic of Capricorn, 327
microorganisms, types of
carcinogenic ochratoxin A, 336–338
dry processing, 336
earthy/musty/phenolic taints, 338
fermentation process, 337
fruity flavor and sour coffee, 338
onion flavor and rio flavor, 338
over-fermentation, "stinker beans," 337
parchment coffee, 337
wet processing, 337
prevention and control of spoilage, 344
species for commercial use
robusto or canephora/arabica or arunga, 328
Cold-filled preserved CSDs, 250–258
carbonated soft drink production, 255f
carbonation tolerance, 252
detection/isolation of microorganisms, 258
factors affecting spoilage, 251–254
acetic acid bacteria, 254
lactic acid bacteria, 254
by yeasts, 251–254
fermentative yeasts causing spoilage of CSDs, 253t
prevention and control of spoilage, 254–257
ingredient and beverage properties, 254–256
pasteurization, 257
processing and manufacturing conditions, 256–257
returnable glass bottles (RGB), 257
types/sources of microorganisms, 250–251
lactic acid/acetate bacteria, 251
yeasts, 250
See also Beverages
Cold pasteurization, 25, 229
Cold-smoked fish products, 102–104
Cold smoking, 102, 103, 109
Cold sterilization, 25, 229
Coliform bacteria, 4, 9, 14, 41, 42f, 43, 47t, 51, 54, 56, 81, 83, 146, 151, 152, 169, 241, 249, 342
Colonial counting procedures, 275
Color Atlas of Post-Harvest Diseases and Disorders of Fruits and Vegetable, A, 147
Commercial egg processing, 127
Commercially sterile foods, 52, 185, 186, 187, 188, 189, 192, 200, 202, 210, 211
Commercial sterilty, 23, 82, 83, 186, 187, 188, 192, 259, 276
"Compatible solutes," 16
Compendium of methods for the microbiological examination of foods, 123, 203, 204, 207t, 214, 215, 217, 242, 331, 346
Composting techniques, 83
Compound cereal products, 240–241
food types and properties, 240
influential factors of spoilage
high-moisture fillings or toppings, 240
refrigeration and shelf life control, 241
prevention and control of spoilage, 241
See also Cereal products
Contamination
direct/indirect, 4
sources of
ecology of microbiological spoilage, 4
human contamination of foods, 5
postharvest contamination, 5
preharvest contamination, water/soil, 5
Cooked eggs, 130–131
CO2 packaging of fish, 101
Corn starch processing
steeping, enzymatic degradation step, 311
wet milling, in liquid cyclone, 311
Corn syrup or products, 313
Coryneforms, 9, 72, 94, 95t, 98t
Cosmetic corrosion, 201
Cottage cheese, 51
Crab products, 109
Custardes, 97
CSD production process, 254
Cultured dairy products
prevention and control of spoilage, 54–55
bactofugation, 55
cheesemakers, 54
"green" or yogurt-like flavor, 54
lactococci and leuconostocs, 54–55
MAP of cheeses, 55
pasteurization, 54
 proteolysis, 54
solubilization of surfaces, 54
Coliform bacteria, 4, 9, 14, 41, 42r, 43, 47r, 50, 51, 54, 56, 81, 83, 146, 151, 152, 169, 241, 249, 342

Colony counting procedures, 275

Commercial egg processing, 127
Commercially sterile foods, 52, 185, 186, 187r, 188, 189r, 192, 200, 202, 210, 212
Commercial sterility, 23, 82, 83, 186, 187, 188, 259, 276

"Compatible solutes," 16

Compendium of methods for the microbiological examination of foods, 123, 203, 214, 215, 217, 242, 331, 346

Compositing techniques, 83

Compound cereal products, 240–241
food types and properties, 240
influential factors of spoilage
high-moisture fillings or toppings, 240
refrigeration and shelf life control, 240
prevention and control of spoilage, 241

See also Cereal products

Contamination
direct/indirect, 4
sources of
ecology of microbiological spoilage, 6
human contamination of foods, 5
postharvest contamination, 5
preharvest contamination, water/soil, 4

Cooked eggs, 130–131

CO2 packaging of fish, 101

Corn starch processing
steeping, enzymatic degradation step, 311
wet milling, in liquid cyclone, 311

Corn syrup or products, 313

Coryneforms, 9, 72, 94, 95r, 98r

Cosmetic corrosion, 201

Cottage cheese, 51

Crab products, 109

Crustaceans, 97

CSD production process, 254

Cultured dairy products
prevention and control of spoilage, 54–55
bactofugation, 55
cheesemakers, 54
“green” or yogurt-like flavor, 54
lactococci and leuconostocs, 54–55
MAP of cheeses, 55
pasteurization, 54
proteolysis, 54
solubilization of surfaces, 54
sorbates and natamycin, 55

Cut fruits and vegetables
changes in fresh-cut lettuce, 150
characteristics of microorganisms, 153–157
gram-negative spoilage microbe, 155
molds are fungi, 156–157
visible mold growth on cut strawberry, 157
detection and isolation, 168–169
impact of microbiological spoilage, 149–150
intrinsic and extrinsic factors, 157–161
discoloration, 159f
factors of spoilage, 161r
pectolytic fluorescent pseudomonads, 160
storage temperature and modified atmosphere, 159

MAP, 147
microbial populations and varieties, 152–153
microbiological spoilage, 162–165
aerobic bacterial populations, 163
colony formation or visible microbial growth, 162, 162f
formation of organic acids, 164
pectolytic enzymes, 164
prevention and control of spoilage, 165–168
chemical technologies, 166
cold chain temperature management, 168
GMPs, 167
nonthermal processing technologies, 166
other factors, 166
packaging, 167–168
processing techniques, 166
thermal processing, 165
processing of, 147
shelf life, 148–149
sources of contamination, 150–152
changes in mesophilic aerobic bacterial (TPC) and yeast, 152f
“machinery mold” (Geotrichum candidum), 152

Cuticle, 123–124, 125, 137, 144

Czapek malt agar (CMA), 168

D
Dairy products, 41–62
consumption, survey of, 42
detection and isolation, 56–61
Dairy products (cont.)

American Public Health Association, 56
fungi, conventional plating media, 61
Grade A pasteurized milk ordinance standard plate count limit, 56
LATA or DRCM medium, 61
MRS agar and APT agar, 61
PCR-based detection methods, 61
PCR-denaturing gradient gel electrophoresis, 61
rapid genomic subtyping methods, RAPD/RFLP/AFLP, 61
in RCM-lactate or BBMB-lactate medium, 61
factors affecting spoilage, 50-51
cheeses, types, 51
fluid milk products, 51
heat treatment standards in different countries, 53
increase in teat canal of milking cow, 49
methods for testing of, 60
microorganisms, see Microorganisms, in dairy products
prevention and control of spoilage, 52-56
bacatergation, 55
carbonation, 52
cheesemakers, 54
cultured dairy products, 54-55
Grade A Pasteurized Milk Ordinance, 52
high hydrostatic pressure treatments, 53
in milk, 52-54
milk production in less sanitary conditions, 52
in other dairy products, 55-56
pasteurization, 54
proteolysis, 54
rapid cooling and quick use of raw milk, 52
removal of CO2 before pasteurization, 53
treatments for pasteurization of milk, 54
Ultra-high-temperature (UHT) treatment, 52
Ultra-pasteurized milk products, 52
types of, 41-42
cheese production, 42
factors influencing spoilage, 42
global dairy industry, 41
survey of consumption, 42
world milk production, 41

and types of microorganisms, 42
DALs see Food defect action levels (DALs)
“Dead ends,” 212
“Defect rate,” 272, 273, 274
Diacytel reductase, 43
Dichloran rose bengal chloramphenicol (DRBC) agar, 346
DNA sequencing, 276
Double sean, 192-196, 193f, 194, 195, 196, 198
DRBC agar, see Dichloran rose bengal chloramphenicol (DRBC) agar
Dried cereal products
food types and properties, 237-238
grain-based snack foods, 237
prepared dry mixes, 238
ready-to-eat grain-based foods, 237
“scratch” method, 238
spoilage and influential factors, 238-239
allergen-related ingredients, 238
baking or cooking process, 238
drying process, 239
flaking/puffing/extrusion, 238
ingredients used to manufacture, 238
raw cereal grains, 239
snack food industry, 238
sorbic acid, cake mixes, 239
spoilage prevention and control, 239
See also Cereal products
Dried eggs, 132
Dried fish, 110-111
Drum or tote filling systems, 268
Dry salting process, 172
DuPont RiboPrinter®, 205

E
Economic impact of spoilage
“low-carb” diets, 224
shelf life of bread, cereal, and pastry foods, 225
staling of bread, 224
Economic Research Service (ERS), 2
Eggs and egg products
handling and storage conditions, 131
bacteria in liquid whole egg samples, 129
cholesterol-free egg, 128
pasteurization processes, 129-130
processed
baked eggs, 132
cooked eggs, 130-131
dried eggs, 132

Index

recommended egg and egg product handling and storage conditions, 131
shell eggs
albumen, 125-126
bacatergation with various types of egg spoilage or rot, 122
chitosan coating, 128
cuticle, 123-124
egg handling, 127-128
egg structure, parts of an egg, 123, 123f
membranes, 125
methods for detection, 123
microbial species from unwashed shell eggs, 122
pasteurization, 128
shell, 124-125
sources and types of microorganisms, 122-123
vitelmine membrane, 126
yolk, 126

Electronic nose technology (e-nose), 32
Embden Meyerhof-Parnas (EMP), 252
EMP, see Embden Meyerhof-Parnas (EMP)
“Enteric” bacteria, 4, 9, 11, 12, 14, 16, 17, 18, 80, 81, 267, 269
See also Microbiological spoilage
Enterobacteriaceae, 9, 42, 58, 71, 72, 75, 77, 79, 90, 97, 99, 102, 103, 106, 112, 153, 155, 169, 212, 267, 304
Enzymatic degradation, dairy products, 47-48
enzyme-substrate interactions, 48
extracellular proteases, 47
residual heat-stable microbial lipase, 48
thermally resistant proteases, 47
Equilibrium relative humidity (ERH), 15
ERS, see Economic Research Service (ERS)
Erwinia, 9, 11, 138, 140f, 141, 153, 160, 161, 305f, 307f
Escherichia, 9, 23f, 77, 79, 129, 155, 229, 241
ESL bottle treatment systems, 273
European Community’s Egg Marketing Regulations, 122
European Union (EU), 246
Evisceration, 72
“Extremophiles,” 10
Extrinsic factors to control spoilage
food plant sanitation, 30-31
modified atmosphere packaging, 29-30
nonthermal processes, 25-27
filtration, 27
high hydrostatic pressure, 26
recommended egg and egg product handling and storage conditions, 131

shell eggs
albumen, 125–126
bacteria associated with various types of egg spoilage or rot, 122
chitosan coating, 128
cuticle, 123–124
egg handling, 127–128
egg structure, parts of an egg, 123, 123f
membranes, 125
methods for detection, 123
microbial species from unwashed shell eggs, 122
pasteurization, 128
shell, 124–125
sources and types of microorganisms, 122–123
vitelline membrane, 126
yolk, 126

Electronic nose technology (e-nose), 32
Embden Meyerhof-Parnas (EMP), 252
EMP, see Embden Meyerhof-Parnas (EMP)
“Enteric” bacteria, 4, 9, 11, 12, 14, 16, 17, 79, 80, 81, 267, 269
See also Microbiological spoilage
Enterobacteriaceae, 9, 42, 58t, 71, 72, 75, 76, 79, 90t, 97, 99t, 102, 103, 106, 129, 153, 155, 169, 212, 267, 304
Enzymatic degradation, dairy products, 47–48
enzyme–substrate interactions, 48
extracellular proteases, 47
residual heat-stable microbial lipase, 48
thermally resistant proteases, 47
Equilibrium relative humidity (ERH), 15
ERS, see Economic Research Service (ERS)
Erwinia, 9, 11, 138t, 140t, 141, 153, 160, 161t, 305t, 307t
Escherichia, 9, 23t, 77, 79, 129, 155, 229, 249
ESL bottle treatment systems, 273
European Community’s Egg Marketing Regulations, 122
European Union (EU), 246
Evisceration, 72
“Extremophiles,” 10
Extrinsic factors to control spoilage
food plant sanitation, 30–31
modified atmosphere packaging, 29–30
nonthermal processes, 25–27
filtration, 27
high hydrostatic pressure, 26
high-intensity ultrasound, 26–27
ionizing irradiation, 25–26
pulsed electric fields, 26
sterilizing gases, 27
ultraviolet irradiation, 27
refrigeration, 27–29
by frozen storage, 28–29
by refrigerated storage, 28
thermal processes, 22–25, 23r
pasteurization, 24–25
sterilization, 23–24
thermal destruction of microorganisms, 22–23
vacuum packaging, 29

F
“Father of Canning” (Appert, Nicolas), 185
FDA, see Food and Drug Administration (FDA)
Fermentation process, 335, 337
Fermentative metabolism, 7
Fermentative yeasts, 8, 11, 33, 161, 252, 253t, 261, 263, 264, 267, 276, 279
Fermented and acidified vegetable products
low pH/presence of organic acids, 169
microbiological and nonmicrobial spoilage, 171–172
cabbage, 171
cucumbers, 171
sauerkraut and kimchi, 172
prevention and control of spoilage, 173–173
Filling process, 263
“Film yeasts,” 8, 78, 171, 287
Filtration, 27, 263, 268
membrane, 258
Finfish, 98
Fish and seafood products
bacteria, raw finfish and crustaceans, 95
global fish production from wild fish catches and from aquaculture (FAO), 88f
product categories and spoilage
cured seafood, 95–102, 102–108
heated seafood products, 108–110
raw, fresh seafood, 95–102
See also Sea product categories and spoilage
raw materials for seafood products, 87
spoilage concepts, 88
amino acids/biogenic amines due to bacterial degradation, 92r
“belly burst,” 89
Fish and seafood products (cont.)
chill storage fish spoilage, microorganisms, 93
fish muscle press juice inoculated with fish spoilage bacterium, 93f
fish substrates, 91-93
substrates and spoilage products/organisms, 90f
taxonomy of spoilage bacteria, 93-94
utilization of fish catches, 88f
Flat bottle, 217
Flat sour spoilage, 196, 197, 199, 200, 207f,
211, 213, 214, 308, 331, 342
"Flavor scalping." 272
Fluid milk products, factors affecting spoilage
extrinsic factors to control microbiological development of spoilage control measures
detection of microbiological spoilage
intrinsic factors to control spoilage
food loss data

Fungi
Fruits and vegetables
fermented and acidified, see Fermented and acidified vegetable products
fresh cut, see Cut fruits and vegetables
fresh whole, see Whole fruits and vegetables
future needs, 173-174
Fruit-washing or sanitizing, 269

G
GAPs see Good Agricultural Practices (GAPs)
Gas chromatography, 32
Gassiness in cheese, causes of, 47f
Gassy Swiss cheese, 46f
Genetics-based instrument, 206
Germ theory, 185
GHPs, see Good Hygienic Practices (GHPs)
Global dairy industry, 41
Glucose syrup, 309, 311
GMPS, see Good Manufacturing Practices (GMPs)
Good Agricultural Practices (GAPs), 136, 330
Good Hygienic Practices (GHPs), 2, 167, 314
Good Manufacturing Practices (GMPs), 2, 330
Grade A Pasteurized Milk Ordinance, 52
Gram negative bacteria, 8, 13, 28, 41, 56, 70,
73, 79, 95, 102, 104, 105, 106,
Gram positive bacteria, 8, 13, 28, 50, 94, 10
126f, 129, 153, 155, 160
Grinding process, 346
Guide to Minimize Microbial Food Safety
Hazards for Fresh Fruits and Vegetables, 136

H
HACCP, see Hazard analysis and critical control point (HACCP)
HACCP system, functions, 2
"Halophile," 7
Hazard Analysis and Critical Control Point (HACCP), 2, 319
Health Canada, 246
Heat-resistant molds, 200, 216-217, 258, 267, 277
Henderson-Hasselbalch equation, 19
HHP, see High hydrostatic pressure (HHP)
HHP, on dry foods, 26
High glucose/fructose/maltose syrup, 311
High hydrostatic pressure (HHP), 130
High-intensity ultrasound, 26-27
High-sugar products, 301-319
chocolates, 302-304
confectionery, 317-319, 318f
honey, 314-317
sugars, 304-309
syrups, 309-314
See also individual
High temperature, short time (HTST), 318
Honey
antibacterial activity, 317
American Academy of Pediatrics, 314
bacteriostatic/bactericidal factors, 317
composition, 314
"foul brood" or "American plague" disease of bees, 314
French, 314
Italian, 316
liquid and crystallized (granulated), 314
microbiological specifications for, 316f
microorganisms isolated from, 315f
osmophilic yeasts, 314
other microbes detected, 314-316
post-process contamination, 317
sterilization, 314
Hot-fill-hold process, 276
Hot-smoked fish, 109
HTST, see High temperature, short time (HTST)
Index

Gram positive bacteria, 8, 13, 28, 50, 94, 109, 126, 129, 153, 155, 160

Grinding process, 346

Guaiacol, 32

Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables, 136

H

HACCP, see Hazard analysis and critical control point (HACCP)

HACCP system, functions, 2

“Halophile,” 7

Hazard Analysis and Critical Control Point (HACCP), 2, 319

Health Canada, 246

Heat-resistant molds, 200, 216–217, 258, 262, 276, 277

Henderson-Hasselbalch equation, 19

HHP, see High hydrostatic pressure (HHP)

HHP, on dry foods, 26

High glucose/fructose/maltose syrup, 311

High hydrostatic pressure (HHP), 130

High-intensity ultrasound, 26–27

High-sugar products, 301–319

chocolates, 302–304

confectionery, 317–319, 318

honey, 314–317

sugars, 304–309

syrups, 309–314

See also individual

High temperature, short time (HTST), 318

Honey

antibacterial activity, 317

American Academy of Pediatrics, 314

bacteriostatic/bactericidal factors, 317

composition, 314

“foul brood” or “American plague” disease of bees, 314

French, 314

Italian, 316

liquid and crystallized (granulated), 314

microbiological specifications for, 316

microorganisms isolated from, 315

osmophilic yeasts, 314

other microbes detected, 314–316

post-process contamination, 317

sterilization, 314

Hot-fill-hold process, 276

Hot-smoked fish, 109

HTST, see High temperature, short time (HTST)

“Hurdle effect,” 21

Hygienic package filling systems, 272

I

Inadequate thermal processing, 198–200

Incipient spoilage, 189, 190–192, 191, 202, 266, 267, 270, 291

blending, 191

degree of, 190

spoilage pattern, 191

Infrared techniques

bulbs, 25

Fourier transform infrared spectroscopy, 33

heat treatment, 229

processing, 54

International Code of Hygienic Practice For Tree Nuts, 343

International Commission on Microbiological Specifications for Foods, 334, 335, 339, 341, 345, 346

Intrinsic factors to control microbiological spoilage

chemical preservatives, 18–21

benzoic acid, 20

carbon dioxide, 20

dimethyl dicarbonate, 21

“hurdle effect,” 21

methyl and propyl parabens, 20

nisin, 20

potassium lactate and sodium diacetate, 20–21

propionic acid, 20

sodium bisulfite, 21

sodium nitrite, 20

sorbic acid, 19–20

spices and essential oils, 21

chemical properties of organic acids, 18–19

nonperishable or shelf stable, 15

oxidation-reduction potential (O/R potential or the Eh of the food), 21–22

perishable/semiperishable, 15

pH, 17–18

food pH values, 18

influence of acidulant on minimum pH for growth of *Salmonella*, 18

microbial pH range for growth, 17

properties and typical usage levels, 19

water activity (a_w) value, 15–17

influence of solute type, 17

minimum a_w values to support growth of microorganisms, 16

values of foods, 16
360

Invert syrup, inversion techniques, 310
Ionizing irradiation, 25–26
“cold sterilization” or “cold pasteurization,” 25
ionizing irradiation d values of representative organisms, 26
rad (unit of radiation energy), 25
Irradiation process
electron beam, 54
gamma, 154, 341, 342
ionizing, 25–26
See also Ionizing irradiation
ultraviolet, 24, 27, 229, 247, 313
K
Ketchup, 286, 288, 295
See also Acidified specialty products
Koch’s postulates, 34
L
LAB, see Lactic acid bacteria (LAB)
Laboratory Guide for Identification of Plant Pathogenic Bacteria, 147
Lactic acid bacteria, 43–44, 251
buttermilk/sour cream, 43
catabolism in amino acids in cheese, 43
cheddar and colby cheeses, 44
facultative Lactobacilli, 43
heterofermentative lactic acid bacteria, 43
Lactobacilli and Leuconostoc, 43
off-flavors and gas in ripened cheeses, 43
residual galactose in cheese, 43
Lactococci, 43
metabolism of tyrosine, Lactobacilli, 44
Lactic acid bacteria (LAB), 169
Lactobacillus, 9, 17, 44, 47, 72, 74, 76, 81t, 90t, 91, 104, 105t, 106, 155, 170, 172, 197, 225, 234, 236, 251, 263, 264t, 286, 296, 297, 304, 305, 306, 308
Leakage spoilage, 189, 190, 192, 195, 196
Leuconostoc, 9, 54, 90t, 153, 225, 236, 251, 264t, 266, 269, 305t, 307t, 308
Liquid egg products, 128–129
bacteria in liquid whole egg samples, 129
cholesterol-free egg, 128
pasteurization processes, 129–130
conventional, 129
egg yolks, 130
pulsed electric fields (PEFs), 130
thermal processing, 130
“ultrapasteurization,” 129
Liquid sugar, 310
Low-acid foods, 186

M
Microautophagy, 252
Malt Extract Agar (MEA), 297
Man, Rogosa and Sharpe (MRS)
agar, 168
Maple sap, spoilage defects
green/milk/red/ropy sap, 310
Maple syrups, 309
MAP see Modified Atmosphere Packaging (MAP)
Mayonnaise, 287–289
See also Acidified specialty products
Meat products, 70
bacon, 77–78
canned meat products, 75
“leaker” spoilage, 75
cured and uncured ready-to-eat products, 73–74
additional agents, 73
brine chill systems, 74
“heterofermentative,” 73
“homofermentative,” 74
fermented and dried products, 76–77
fresh, refrigerated raw meat products, 71–72
raw/fi n t a c t, shelf life, 71, 72
raw/refrigerated ground/minced, shelf life of, 72
meat spoilage microflora, 70
microbiological testing methods, 83
mitigating factors against spoilage, 69–70
molecular genetic techniques, 83
organic meat products, 78
perishable salted and cured meat products, 72–73
vacuum and modified atmosphere-packaged products, 75–76
variety meat products (offal), 78–79
Mechanical refrigeration systems, 2
Mechanisms, food spoilage, 10–12
amylolytic enzymes, 12
digestion of complex carbohydrates, 11
guaiacol production, 12
lipolysis, 12
oxidation of organic acids and alcohol s, 12
protein hydrolysis, 11
spoilage characteristics, 11
sugar fermentation
with acid production, 11

Index
with gas production, 11
surface growth, 12
Mesophilic anaerobic sporeformers, 209–212
butyric acid anaerobes, 211–212
putrefactive anaerobes, 209–211
Metabolism, 13, 14, 104, 197
Methods for the Diagnosis of Bacterial Diseases of Plants, 147
Microaerophilic, 7
Microbiological spoilage
associations between groups
antagonisms, 13
metabolism, 13, 14, 104, 197
synergisms, 13–14
means to characterize and differentiate, 6–8
ability to form endospores, 7
gram stain, 6–7
“halophile,” 7
morphology, 6
“osmophile,” 7
oxygen relationships, 7
pH relations, acidophiles/acidurics, 8
temperature relationships, 7
type of metabolism, fermentative/oxidative, 7
water relations, xerotrophic/osmotolerant, 8
microorganisms involved in
Alicyclobacillus species, 10
Bacillus species, 10
Clostridium species, 10
coryneform s, 9
Enterobacteriaceae, 9
“film yeasts,” 8
lactic acid bacteria, 9
means to characterize and differentiate, 6–8
Micrococaceae, 9
molds, 8
Neisseriaceae, 9
Pseudomonadaceae, 9
spore-forming bacilli, 9–10
yeasts, fermentative/oxidative, 8
Micrococcaceae, 9
Micro-ID®, 205
Microorganisms, in dairy products
Enterococcus faecalis subsp. liquefaciens
spoilage in Swiss cheese, 47
Eubacterium sp., a facultative anaerobe
spoilage in gassiness in Cheddar cheese, 47
sources of, 48–50
Index

with gas production, 11
surface growth, 12
Mesophilic anaerobic sporeformers, 209–212
butyric acid anaerobes, 211–212
putrefactive anaerobes, 209–211

Metabolism, 13, 14, 104, 197
Methods for the Diagnosis of Bacterial Diseases of Plants, 147
Microaerophilic, 7

Microbiological spoilage
associations between groups
antagonisms, 13
metabiosis, 13, 14, 104, 197
synergisms, 13–14
means to characterize and differentiate, 6–8
ability to form endospores, 7
gram stain, 6–7
“halophile,” 7
morphology, 6
“osmophile,” 7
oxygen relationships, 7
pH relations, acidophiles/acidurics, 8
temperature relationships, 7
type of metabolism, fermentative/oxidative, 7
water relations,
xerotrophic/osmotolerant, 8

Microorganisms involved in
Alicyclobacillus species, 10
Bacillus species, 10
Clostridium species, 10
coryneforms, 9
Enterobacteriaceae, 9
“film yeasts,” 8
lactic acid bacteria, 9
means to characterize and differentiate, 6–8
Micrococcaceae, 9
molds, 8
Neisseriaceae, 9
pseudomonadaceae, 9
spore-forming bacilli, 9–10
yeasts, fermentative/oxidative, 8
Micrococcaceae, 9
Micro-ID®, 205

Microorganisms, in dairy products
Enterococcus faecalis subsp. liquefaciens
spoilage in Swiss cheese, 47
Eubacterium sp., a facultative anaerobe
spoilage in gassiness in Cheddar cheese, 47
sources of, 48–50
contamination of dairy products, 50
carbonation, 52
removal of CO₂ before pasteurization, 53
ultra-high-temperature (UHT) treatment, 52
ultra-pasteurized milk products, 52
Milling process, 233

“Minimum public health” process, see Canned foods
Modified Atmosphere Packaging (MAP), 55, 75–76, 80, 81t. 147, 148, 149, 150, 153, 154, 156, 160, 161t. 164, 167, 173, 174, 231

Molds
Alternaria, 142t, 262, 339
Aspergillus, 266, 315t, 330, 336
Fusarium, 139t, 142t, 225t, 226, 262, 329
Geotrichum, 44, 139t, 142t, 152, 262, 268
heat-resistant, 216–217
methods for identifying, 217
soil and dust, 217
Mucor, 139, 268
Penicillium, 45, 50, 55, 108t, 139t, 141, 225t, 262, 263, 264t, 287, 297t, 315
Rhizopus, 139t, 142t, 225t, 262, 339

Molecular genetic methods, 83
Mollusks, 95
Mucilage, 328, 337, 338, 340, 344
Mushroom wash systems, 145
Mustard, 296
Mycoderma, see Oxidative yeast

Mycotoxins
in cereal products
aflatoxin, 226
DON, or vomitoxin, 226
fumonisins, 226
other fungal toxins, 226
See also Bakery products
N
NACMCF, see National Advisory Committee on Microbiological Criteria for Foods (NACMCF)
National Advisory Committee on Microbiological Criteria for Foods (NACMCF), 188
National Cancer Institute, 136
National Canner’s Association, 214
National Food Processors, 195
NCBs, prevention and control of spoilage, 269–275
application of pasteurization processes, 270–271
high-quality juice ingredients, selection/use, 269–270
hygienic package filling systems, 272–274
pasteurized juice delivery systems, 271
refrigeration of packaged juice, 274–275
sanitary packaging materials, 271–272
Nectar harvested by bees, 314
Neisseriaceae, 9
Nisin, 214
Non-carbonated beverages (NCBs)
ambient fruit juices, 270–279
additional tests for presence of Alicyclobacilli, 277, 279
Alicyclobacilli, characteristics, 277–279, 277r
heat-resistant molds, 277
methods for detection/identification of microorganisms, 275–276
chilled fruit and vegetable juices, 260–276
APP technology, 274
factors affecting juice spoilage potential/rates, 261–269
gable-top cartons, criteria for, 271
juice-packaging materials, 263
mold genera responsible for spoilage, 262
pH values and the naturally occurring organic acids of fruit juices, 261
prevention and control of spoilage, 269–275
spoilage defects in chilled juices, 264–265, 268r
types and sources of microorganisms, 261–267
See also Beverages
Non-sporeformers, 217–218
Normal corrosion, 201
Nuts, 326–327
cultivation, 326
enhancement and improvement of quality, 327
factors influencing, 339–340
International Programme on Chemical Safety, 339
nut crop damage directly or indirectly, 339
thermal or nonthermal process, 340
microorganisms, types of, 334–335
chopping and slicing, 334
field/mold/bacterial contamination, 334
hazelnuts, 335
International Commission on Microbiological Specifications for Foods, 334
mechanical methods of drying, 334
mold decomposition/growth, 335
predominant mold, 335
prevention and control of spoilage, 343–344
dry roasting, oil roasting, and blanching, 343
International Code of Hygienic Practice For Tree Nuts, 343
thermal and nonthermal treatments, 343
tree nuts and peanuts, 326

O
"Obligate aerobe," 7
See also Microbiological spoilage
"Obligate anaerobe," 7, 8, 10, 28, 108, 215, 287, 289
Organoleptic methods for spoilage detection
odor, 31
taste, 32
visual, 31–32
"Osmophile", 7
Osmophilic yeasts and molds, 8, 16, 42cr, 235, 236, 239, 256, 267, 289, 301, 313, 314, 316, 317
"Osmotolerant," 8, 9, 10, 16, 227, 228, 239, 241
Oxidation–Reduction Potential, 7, 21–22, 267
Oxidative metabolism, 7, 8
Oxidative yeast, 8, 12, 14, 289, 290, 291
Oxygen transmission rate (OTR), 154, 157, 162

P
Packed, fresh fish, 101–102
Partition coefficient (PC), 19, 20, 289
Pasteurization, 24, 45, 46, 50, 52, 53r, 55, 56, 147, 170, 172, 258, 259, 261, 262, 268, 269, 273, 275, 277, 279, 294, 298, 302
acidified specialty products, 288
atmospheric steam pasteurization in container, 25
bakeery products, 229
chemical, 291
cold-filled preserved CSDs, 257
combinations of time and temperature required for the pasteurization of milk, 24r
dairy products, 54
eggs and egg products, 129–130
hot-fill processes, 24
milk, 24r, 54
NCBs, 270–271
shell egg, 128
Pasteurized juice delivery systems, 271
Pasteurized Milk Ordinance, 24
PCAC, see Plate count agar with chloramphenicol (PCAC)
PCR-based detection methods, 61
Pectin methyl esterase (PME), 269
PEFs, see Pulsed electric fields (PEFs)
PET, see Polyethylene terephthalate (PET)
Pinking, 108, 149, 150
Pitting corrosion, 201–202
Plant defense responses, 174
Plant pathology methods, 147
Plate count agar (PCA), 168
Plate count agar with chloramphenicol (PCAC), 346
Plating methods, 61, 217
conventional laboratory, 61
PME, see Pectin methyl esterase (PME)
Polyethylene terephthalate (PET), 278
Post-process contamination, 192–198, 218, 227, 317
Poultry and poultry products
cooked RTE cured and uncured, 82–83
factors, mitigate against bacterial spoilage, 69–70
further processed poultry, 81–82
mechanically deboned, 81
generic process flow, 80f
microbiological profiles of refrigerated r-products, 79–81
microbiological testing methods, 83
microorganisms in spoiled refrigerated pack, 80
microorganisms isolated from chicken carcasses, 80r
Pasteurization. 24, 45, 46, 50, 52, 53r, 55, 56, 147, 170, 172, 238, 259, 261, 262, 268, 269, 273, 275, 277, 294, 295
acidified specialty products, 288
atmospheric steam pasteurization in
container, 25
bakery products, 229
cold-filled preserved CSDs, 257
combinations of time and temperature
required for the pasteurization of
milk, 24r
dairy products, 54
eggs and egg products, 129–130
hot-fill processes, 24
milk, 24r, 54
NCBs, 270–271
shell egg, 128
Pasteurized juice delivery systems, 271
Pasteurized Milk Ordinance, 24
PCAC, see Plate count agar with chloramphenicol (PCAC)
PCR-based detection methods, 61
Pectin methyl esterase (PME), 269
PEFs, see Pulsed electric fields (PEFs)
PET, see Polyethylene terephthalate (PET)
Pitting, 108, 149, 150
Plant defense responses, 174
Plant pathology methods, 147
Plate count agar (PCA), 168
Plate count agar with chloramphenicol
(PCAC), 346
Plating methods, 61, 217
conventional laboratory, 61
PME, see Pectin methyl esterase (PME)
Polyethylene terephthalate (PET), 278
Post-process contamination, 192–198, 218, 227, 317
Poultry and poultry products
cooked RTE cured and uncured, 82–83
factors, mitigate against bacterial spoilage, 69–70
further processed poultry, 81–82
mechanically deboned, 81
generic process flow, 80f
microbiological profiles of refrigerated raw
products, 79–81
microbiological testing methods, 83
microorganisms in spoiled refrigerated
pack, 80r
microorganisms isolated from chicken
carcasses, 80r
molecular genetic techniques, 83
Pourable salad dressings, requirements, 293–295
See also Acidified specialty products
Predictive microbiology, 36
Preharvest contamination, 4
Pressure balancing systems, 263
Presterilization, 213
Profile of selected imported and domestic
spices, 332–333r
Pseudomonads, 4
See also Contamination, sources of
Pseudomonas, 9, 14, 171, 23r, 26r, 48, 90r, 95r, 97, 99r, 122r, 129, 138r, 140r, 143, 153, 154, 249, 305r, 307r, 310, 315r
Psychrotrophs, 7, 7, 42–43, 42r, 47, 59r, 72
bacteria in raw milk, 42
gram-negative psychrotrophic bacteria, in
cottage cheese, 43
limit the shelf of cottage cheese, 43
See also Microbiological spoilage
Pulsed electric fields (PEFs), 26, 130
Purified water, 246
Putrefactive anaerobes, 209–211
Q
Quorum sensing, 12–13
N-Acylhomoserine lactones (AHLs), 13
R
Rad (unit of radiation energy), 25
Rapid chilling, 72
Rapid detinning, 201
Raw milk pasta filata cheeses, 51
Ready-to-drink (RTD) beverages, 245
Recommended international code of hygienic
practice for low and acidified low
acid canned foods, 203
Red meat, predominant microflora of, 71
Refrigerated dough and pasta products,
234–237
food types and properties, 234–235
chemically leavened refrigerated
doughs, 235
proliferation of packaged refrigerated
dough product, 235
refrigerated distribution methods, 235
prevention and control of spoilage, 236–237
gas-impermeable containers, 237
Refrigerated dough and pasta products (cont.)
lactic spoilage of refrigerated doughs, 236
refigerated cookie dough, 236
spoilage and influential factors, 235–236
alcoholic/fruity/acetone, 235
fruit-filled products, 235
heterofermentative (gas producing), 236
homofermentative (non-gas producing), 236
ingredients, 235
See also Bakery products; Cereal products
Refrigeration food preservation
by frozen storage, 28–29
formation of ice crystals during freezing, 28
vegetables, 29
Regulatory standards for indicator organisms in different countries, 57–59
Riboprinter®, 205, 206
"Rio flavor:" 338
Ripening, 43, 48, 51, 54, 55, 77, 97, 97, 107, 144, 166
Roasting, 302–304, 336–338, 343
Salad dressing formulation, 292, 292
See also Acidified specialty products
Salmonella, 18t, 23t, 26t, 122, 127, 128, 129, 130, 131, 151, 188, 196, 229, 239, 270, 291, 302, 303, 315, 316t, 346
Salted, cold-smoked fish, 102–104
Salted fish, fungal spoilage of, 108
Sanitation in Food Processing (Second ed.), 31
Sauerkraut, 9, 14, 169, 171, 172, 286
Sea product categories and spoilage
giogenic amines of bacteria isolated from spoiled cold-smoked salmon, 105
Cured seafood
caviar, 106, 107
fungal spoilage of heavily salted fish, 107–108, 108
other lightly preserved seafood products, 104–106
pinked anchovies, 108
ripened anchovies, 106
salted, cold-smoked fish, 102–104
semi-preserved seafood products, 106–107
Heated seafood products
crab products, 109
fully canned products, 110
hot-smoked fish, 109
sous vide-cooked fish, 109
miscellaneous
dried fish, 110–111
frozen fish, 110
surimi, 110
raw, fresh seafood
bivalve mollusks, 95
cephalopods, 97–98
changes in composition of microflora during storage, 99
CO2 packaging, 101
crustaceans, 97
finfish, 98
indole formation in shrimp/prawns, 98
packed, fresh fish, 101–102
shelf lives of seafood products, 96
Seltzer, 246
Semipreserved seafood products, 106–107
Sequential synergisms, 14
Shelf-stable salted, 77
Shell eggs
albumen, 125–126
bacteria associated with egg spoilage or rot, 122
chitosan coating, 128
cuticle, 123–124
detection of spoilage, 123
egg handling, 127–128
egg structure, parts of an egg, 123, 123
membranes, 125
microbial species from unwashed shell eggs, 122
shell, 124–125
sources and types of microorganisms, 122–123
tvitelline membrane, 126
yolk, 126
Shrimp/prawns, indole formation in, 98
Siderophores, 13, 143
Slime (dextran) formation, 71, 74, 81, 88, 307, 318
Soda water, 246
Sodium metabisulfite (H2S2O5), 21
Soft drinks, 246, 249, 250, 252, 254, 255
Soft or unripened cheese, 42, 43, 51, 55, 58, 61
Soft-rot, 149, 154, 159, 160, 162, 164, 165
bacteria, 141, 338
Erwinia, 143
occlusion, 155
"Sous vide" (under vacuum) technology, 109
Sparkling water, 246, 247, 248, 250
Index
Index
SPC, see Standard plate counts (SPC)
Spices, 325–326
derived from, 325
factors influencing, 338–339
maximum moisture levels, 329
prevention and control of spoilage, 340–342
Code of Hygienic Practice for Spices and Dried Aromatic Plants, 340
Codex Alimentarius Commission, 341
irradiation with gamma rays, 341
Transport Information Service, guidelines, 341
US Environmental Protection Agency, 342
top twelve spices consumed in the US in 2000, 326
Types of microorganisms, 325–326
bacterial spoilage, 330
field fungi, 329, 330
GAPs/GMPs, 330
lactic acid bacteria, 331
storage molds, 329, 330
thermophilic sporeformers, aerobic/anaerobic, 331
treatment options, 334
yeasts like molds, 330
See also Spices/nuts/cocafcoffee, spoilage detection methods
Spices/nuts/cocafcoffee, spoilage detection methods, 345–346
macroanalytical examination, 345
DALs, 345
in-shell and shelled nuts, 345
microbiological examination, 345–346
Compendium of Methods for the Microbiological Examination of Foods, 346
Dichloran 18% glycerol (DG18) agar, 346
DRBC agar, 346
International Commission on Microbiological Specifications for Foods, 345
PCAC, 346
TGVC agar, 346
US Food and Drug Administration’s Bacteriological Analytical Manual, 346
Spoilage control measures, development of isolation of microorganisms in spoilage
incidents, 33–34
Koch’s postulates, 34
Index

SPC, see Standard plate counts (SPC)
Spices, 325–326
 derived from, 325
 factors influencing, 338–339
 maximum moisture levels, 329
 prevention and control of spoilage, 340–342
 Code of Hygienic Practice for Spices and Dried Aromatic Plants, 340
 Codex Alimentarius Commission, 340
 irradiation with gamma rays, 341
 Transport Information Service, guidelines, 341
 US Environmental Protection Agency, 342
 top twelve spices consumed in the US in 2000, 326
 types of microorganisms, 325–326
 bacterial spoilage, 330
 field fungi, 329, 330
 GAPS/GMPs, 330
 lactic acid bacteria, 331
 storage molds, 329, 330
 thermophilic sporeformers, aerobic/anaerobic, 331
 treatment options, 334
 yeasts like molds, 330
 See also Spices/nuts/cocoa/coffee, spoilage detection methods
 Spices/nuts/cocoa/coffee, spoilage detection methods, 345–346
 macroanalytical examination, 345
 DALs, 345
 in-shell and shelled nuts, 345
 microbiological examination, 345–346
 Compendium of Methods for the Microbiological Examination of Foods, 346
 Dichloran 18% glycerol (DG18) agar, 346
 DRBC agar, 346
 International Commission on Microbiological Specifications for Foods, 345
 PCAC, 346
 TGVC agar, 346
 US Food and Drug Administration’s Bacteriological Analytical Manual, 346
 Spoilage control measures, development of isolation of microorganisms in spoilage incidents, 33–34
 Koch’s postulates, 34
 predictive microbiology, 36
 product challenge testing, 34–35
 Accelerated Shelf Life Testing (ASLT), 35, 35r
 inoculation of test samples, 34–35
 predictive microbiology, 36
 temperature monitoring during commercial distribution, 36
 time-temperature indicators (TTIs), 36
 Spoonable salad dressings, 291–293, 292
 See also Acidified specialty products
 Spore-forming bacteria in dairy products, 45–47
 “flat sour” defect in canned milk products, 46
 gassing, Swiss cheese, 46
 thermiduric and thermophilic, 46
 Spring water, 245, 246
 Staining, 6, 147, 202
 “Staling,” 224, 226, 232
 Standard methods agar (SMA), 168
 Standard plate counts (SPC), 342
 for ETO-treated and -untreated spices, 342
 Staphylococcus, 9, 23r, 76, 78, 191, 229, 239, 240, 291, 316
 Starch-based syrups, 311
 acid-enzyme process, 311
 acid process, 311
 multi-enzyme process, 311
 Sterile food systems, 89
 Sterilization, 148, 199, 215, 271, 273, 276, 297, 314
 concept of commercial sterility, 23
 “12D botulinum cook,” 23
 low-acid canned food regulation (CFR), 23, 24
 sterile foods, 24
 UHT-sterilized food, 24
 Sterilizing gases, 27
 Streptococcus, 9, 17r, 44, 74, 199, 234, 236, 306
 Sugar
 “bottlers” granulated sugar
 mesophilic bacteria/molds/yeasts, 308
 “bottlers” liquid sugar, 308–309
 mesophilic bacteria/molds/yeasts, 309
 brown or soft sugar, 304, 313
 confectionery products
 control of microbial contaminants, 319
 HACCP program, 319
 HTST, 318
 source of microorganisms, 319
 dextrose or D-glucose, 304
Sugar (cont.)
imidodisulfonate cocrystallization, 308
National Canners Association, 308
purified crystallized sucrose, 304
slime (dextran) formation, 307
spoilage microorganisms detected in, 313
from starch
steps associated with product of, 312
sugar beets, 304, 305, 306
sugarcane, 304
syrups
liquid sugar, 309
starch-based syrups, 309
tree saps, 309
Sugar beets (Beta vulgaris), 304, 305, 306
Sugarcane (Saccharum officinarum), 304, 305
Sulfide stinker spoilage, 214
Surimi, 96, 110
Synergisms, 13-14
Synergisms, 13-14
Syrups
corn starch processing
steeping, 311
wet milling, in liquid cyclone, 311
corn syrup or products, 313
glucose syrup, 309
high fructose/glucose/maltose syrup, 311
invert syrup, inversion techniques, 310
liquid sugar, 310
maple sap, 310
maple syrups, 309
osmophilic yeasts and molds, 313
post-thermal processing, 311
prevention and control of spoilage, 313, 314
sanitizing processing equipment, 310
starch-based syrups, 311
acid-enzyme process, 311
acid process, 311
multi-enzyme process, 311
sugar syrups
liquid sugar, 309
starch-based syrups, 309
tree saps, 309
UV irradiation, 313
T
Tetra Pak Processing Systems, 269
TGYC agar, see Tryptone glucose yeast extract chloramphenicol (TGYC) agar
Thermally processed non-preserved CSDs, 258-260
detection/isolation of microorganisms, 259-260
factors affecting spoilage, 259
prevention and control of spoilage, 259
types and sources of microorganisms, 258-259
See also Beverages
Thermal processes, 22, 25, 165, 186, 187, 188, 200, 204, 209, 210
Thermal resistance, pH, and temperature requirements, 207-208
Thermophilic anaerobic sporeformers, 214-216
non-H2S gas producers, 215-216
sulfide “stinkers,” 214-215
Thermophilic flat sour sporeformers, 213-214
ThermoSafe system, 165
Tonic water, 246
Tory Research Station, 93
“Total acidurics,” 275
Tree nuts, 3, 326, 339
Triggering host defense systems, 13
Tryptone Glucose Yeast Extract Agar (TGYA), 297
Tryptone glucose yeast extract chloramphenicol (TGYC) agar, 346
U
UHT, see Ultrahigh temperatures (UHT)
UHT-sterilized food, 24
Ultrahigh temperatures (UHT), 24, 47, 48, 52, 53, 58, 59, 209
“Ultrapasteurization,” 129
Ultrasound, high-intensity, 26-27
Ultraviolet irradiation, 24, 27
United States Department of Agriculture (USDA), 2, 186
USDA, see United States Department of Agriculture (USDA)
USDA Food Safety and Inspection Service (USDA-FSIS), 78, 186
USFDA, see US Food and Drug Administration (USFDA)
USFDA Bacteriological analytical manual, 203
US Food and Drug Administration (USFDA), 246
UV installations in ventilation, 27
V
Vacuum and modified atmosphere packaging, 29-30, 55, 75, 77, 79, 161
“Vascular wilt,” 155
Vegetable(s), see Fruits and vegetables
products, fermented and acidified, see Fermented and acidified vegetable products
Ventilation systems in food processing plants, 6
Vinegar, 296-297, 297
See also Acidified specialty products
Vitek®, 205
W
“Weibull hazard analysis,” 36
Well water, 195, 246, 255
Wet process, 336, 337
Whole fruits and vegetables, 135-137
characteristics of microorganisms, 137-143
bacterial fruit pathogens, 138
bacterial vegetable pathogens, 140
extensive blue mold infestation on apples, 141
external damage, 138
fungal fruit pathogens, 139
fungal vegetable pathogens, 142
GAP, biochemical tools required, 136-137
soft-rot bacteria, 141
“soft-rot erwinia,” 143
detection/isolation of microorganisms, 145-147
agitation by a wrist-action shaker, 146
Basic Plant Pathology Methods, 147
blending the sample, 146
Index

products, fermented and acidified, see Fermented and acidified vegetable products
Ventilation systems in food processing plants, 6
Vinegar, 296–297, 297t
See also Acidified specialty products
Vitek®, 205

W
Water activity (a_w) value, 6, 7, 8, 9, 10, 14,
15–17, 21, 35, 36, 41, 51, 56, 61,
71, 72, 89, 110, 130, 132, 154, 167,
172, 185, 186, 188, 217, 224, 226,
228, 230, 231, 233, 235, 236, 238,
239, 240, 241, 256, 267, 268t, 270,
277t, 288, 289, 292, 313, 314, 316,
317, 328, 330, 334, 335, 338, 339,
340, 343, 344, 346
“Weibull hazard analysis,” 36
Well water, 195, 246, 255
Wet process, 336, 337
Whole fruits and vegetables, 135–137
characteristics of microorganisms, 137–143
bacterial fruit pathogens, 138
bacterial vegetable pathogens, 140
extensive blue mold infestation on
apples, 141f
external damage, 138
fungal fruit pathogens, 139
fungal vegetable pathogens, 142f
GAP, biochemical tools required,
136–137
soft-rot bacteria, 141
“soft-rot erwinia,” 143
detection/isolation of microorganisms,
145–147
agitation by a wrist-action shaker, 146
Basic Plant Pathology Methods, 147
blending the sample, 146
Laboratory Guide for Identification of
Plant Pathogenic Bacteria, 147
Methods for the Diagnosis of Bacterial
Diseases of Plants, 147
pulsifier, 146
sterile, deionized water, 146
GAPs, categories, 136–137
prevention and control of spoilage
aerial fungicide applications, 144
forced air refrigeration, 145
immersion in ice, 145
methods for monitoring sanitizer
concentration, 145
minimizing wounds and bruising, 144
postharvest factors, 145
preharvest and harvest factors, 143–144
sanitizing chemical in produce industry,
145
vacuum cooling, ice, 145
Wind-borne mold spores, 4
World Health Organization (WHO), 4, 246,
248
World milk production, 41

X
“Xerotrophic,” 8, 16t

Y
Yeast, 17t, 42t, 47t, 71, 76, 80t, 156, 161t, 227,
250, 251, 297t, 308, 309, 315, 316,
332t, 333t
fermentative, 8, 11, 33, 161, 252, 253t, 261,
263, 264t, 267, 276, 279
fermented fruit juices, 296
osmophilic, 314
oxidative, 8, 12, 14, 289, 290, 291

Z
“Zapatera” spoilage, 171