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A weighted partial least squares (PLS) regression method for multivariate calibration of near infrared

(NIR) spectra is proposed. In the method, the spectra are split into groups of variables according to the

statistic values of variables, i.e., the stability, which has been used to evaluate the importance of

variables in a calibration model. Because the stability reflects the relative importance of the variables

for modeling, these groups present different spectral information for construction of PLS models.

Therefore, if a weight which is proportional to the stability is assigned to each sub-model built with

different group variables, a combined model can be built by a weighted combination of the sub-models.

This method is different from the commonly used variable selection strategies, making full use of the

variables according to their importance, instead of only the important ones. To validate the

performance of the proposed method, it was applied to two different NIR spectral data sets. Results

show that the proposed method can effectively utilize all variables in the spectra and enhance the

prediction ability of the PLS model.
Introduction

As a simple, rapid and non-destructive analytical technique,

near-infrared (NIR) spectroscopy has been widely used in the

analysis of complex samples, e.g., foods, agricultural products,

Chinese traditional medicines and even bio-samples.1–4 It is also

seen as a promising tool for process analytical technology (PAT)

in pharmaceutical production.5 For example, in the process

analysis of an industrial production, it is hard to conduct an on-

line analysis by using the conventional methods based on wet

analysis. NIR spectroscopy, however, provides a powerful tool

for process control. Nevertheless, most NIR spectra typically

consist of broad, weak, non-specific and overlapping bands.

Therefore, chemometric techniques are generally used to

construct calibration models for the quantitative analysis of NIR

spectroscopy. Among the chemometric techniques, partial least

squares (PLS) regression is the most commonly used calibration

method.6–8 Furthermore, to obtain a satisfactory result for

complex sample analysis, pretreatment techniques have been

proposed to remove the background and noise in the spectra,

e.g., multiplicative scattering correction (MSC),9,10 the standard

normal variate (SNV),11,12 orthogonal signal correction (OSC),13

and wavelet transform (WT).14–18

Another technique for improving the PLS modeling is to deal

with the redundant variable. Generally, NIR data sets may have

thousands of wavelengths, sometimes from hundreds or thous-

ands of samples. Not all wavelengths in a spectrum, however,

contain equivalent information relevant to the component of

interest. Variable selection is a common way to gather wave-

lengths that do contain relevant information. Many variable

selection methods have been developed, such as genetic
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algorithms (GA),19,20 uninformative variable elimination by PLS

(UVE-PLS),21–25 interval PLS (iPLS),26,27 variable selection based

on randomization test for PLS (RT-PLS),28 and variable selection

based on truncation of weight vectors in PLS.29 In our previous

works, an integration of the Monte Carlo (MC) technique and

UVE was proposed and named as MC-UVE.25 These methods

can significantly improve the performance of the calibration

techniques by removing the irrelevant variables. On the other

hand, some approaches have been proposed to extract the useful

information from all variables regardless the relevancy.30,31

Because, in the spectra of complex samples, some useful infor-

mation may be embedded in the background and noise compo-

nents, it is therefore difficult to determine the relevancy of

a variable.31,32 These approaches try to improve the quality of the

calibration model by weighting all the variables instead of dis-

carding some of them as done in wavelength selection methods.

In this study, a combined PLS model with variable grouping

based on stability for multivariate calibration of NIR spectra is

proposed. In the proposed method, all variables (wavelengths)

are grouped by their stability and sub-models are built with the

grouped variables. The same way as in MC-UVE25 is adopted to

calculate the stability for each variable. The objective is to

construct a model with good prediction performance by keeping

all wavelengths and making the best use of the information from

all variables. In order to demonstrate the performance of the

method, two NIR spectral data sets are investigated. The results

indicate that the proposed method is a feasible way to enhance

the prediction quality of the PLS model.

Theory and algorithm

Monte Carlo combined with uninformative variable elimination

(MC-UVE)

MC-UVE is a method that combines Monte Carlo and unin-

formative variable elimination (UVE). It has been used for
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variable selection in NIR spectral modeling.23,25 The method

builds a large number of models with randomly selected cali-

bration spectra by Monte Carlo technique at first, then stability

of each variable is calculated by using the coefficients of these

models, and each variable is evaluated with the stability. Vari-

ables with poor stability are known as uninformative ones and

eliminated. The final PLS model for prediction of unknown

samples is built by using the retained variables.25

Weighted PLS with variable grouping (VG-PLS)

Stability is used in UVE method as a measurement of the reli-

ability of variables for calibration. For UVE method, variables

with high stabilities are used and other ones are deleted. In this

work, stability is used to decompose the spectra into different

groups, in this way these groups present different spectral

information for construction of PLS models. Thus, it may be

a good idea to build a PLS model by using all the variables with

a suitable weighting strategy.

In order to use full spectral information in a calibration model,

a method of weighted PLS with variable grouping for NIR

spectra analysis is proposed in this study and named as variable

grouping (VG)-PLS. VG-PLS model is a combination of the sub-

models of the grouped variables. If w is used to denote the weight

of a sub-model, the linear combination of the sub-models can be

represented as:

ŷ ¼ [ŷ1,ŷ2,ŷ3.ŷn]w (1)

where n is the number of sub-models, and ŷi is a vector repre-

senting the prediction of the ith sub-model. The weight vector w

is determined by the importance of each sub-model to the final

prediction. Considering that the stability of each variable shows

its reliability for modeling, the weight of the ith sub-models is

defined as:

wi ¼ mean

 X
j

�
cj

�m

!
(2)

where i and j represent the index of groups and the index of

variables in each group, respectively, and cj is the stability of each

variable. m is a factor to adjust the contribution of each variable

to the weight and to balance the weights of different groups.

The detail procedures of the VG-PLS can be described as

follows:

(1) By using Monte Carlo technique like in MC-UVE,25 the

stability of the variables are calculated and will be used for

grouping variables and deciding the weights of groups in the

following steps.

(2) The variables in the spectra are ranked in a descending

order of their stability.

(3) The variables are split into n groups. Each group contains

almost the same number of variables following the order, and

sub-models are built with the groups.

(4) The contribution of the sub-models to the combined

model, i.e., the weights, is calculated by (2).

(5) The predictions of the prediction set are performed using

the combined model, i.e., the variables of the validation spectra

are split into n groups in the same order of step (3), then the n

prediction values are produced by the n models, and finally
290 | Anal. Methods, 2010, 2, 289–294
a prediction is made by the weighted sum of the n values as

shown in (1).

Clearly, m and n are two important parameters of the

combined model, which will be discussed in the following

sections. A validation set was used for optimization of the two

parameters.

Experimental and calculations

Two NIR spectral data sets were used in this study. Data set 1

was downloaded from http://software.eigenvector.com/Data/

Corn/index.html, which consists of NIR spectra, measured with

three spectrometers, and the moisture, oil, protein and starch

values of 80 corn samples. The spectra were measured on mp5

NIR spectrometer and the starch values are used in this study.

Each spectrum was recorded in the wavelength range 2498–

1100 nm (4003–9091 cm�1) with the digitization interval 2 nm.

Each spectrum is composed of 700 data points.

Data set 2 is supplied by a tobacco corporation, including the

NIR spectra of 2199 tobacco lamina samples and the contents of

sugar and nicotine. The spectra were measured on an MPA FT-

NIR spectrometer (Bruker, Germany), sugar and nicotine

contents were measured on an Auto Analyzer III (Bran +

Luebbe, Germany) following the procedures of industrial stan-

dard method. Each spectrum is recorded in the wavelength range

3999.7–11995.3 cm�1 (2500.2–833.7 nm) with the digitization

interval ca. 3.86 cm�1. Each spectrum is composed of 2074 data

points.

Before calculation, multiplicative scattering correction

(MSC)9,10 is applied to the spectra to reduce the difference in light

scatter between samples. The spectra are divided into calibration,

validation and prediction sets by the Kennard-Stone (KS)

method.33 For the first data set, 50 and 15 samples are used as the

calibration and validation sets, respectively, the left 15 samples

are used as the prediction set. For the second data set, 1100 and

550 samples are used as the calibration and validation sets,

respectively, and the other 549 samples are used as the prediction

set. The calibration set is used for building the PLS model, the

validation set is used for parameter optimization, and the

prediction set is used for external validation of the method. In

addition, it is worth noting that different latent variable (LV)

numbers are used for the sub-models, because different groups

may contain different information. MCCV with Osten’s F

criterion34 is used for determination of the LV number.

Results and discussion

Weights of the sub-models

It is obvious that the weights (w) are key parameters to combine

the sub-models for producing a satisfactory prediction. They

reflect the relative importance of the sub-models in the combined

model. The sub-model with big weight means a big contribution

of the sub-model to the final prediction, and vice versa. As

mentioned above, variables in sub-models are selected based on

the rank of the stabilities. Since the stability of each variable

shows its reliability for modeling, the sub-model built by the

variables with higher stabilities should be given a bigger weight.

In order to assign an optimal weight for each sub-model,

parameter m in (2) is investigated. A series of combined models
This journal is ª The Royal Society of Chemistry 2010



Fig. 3 Distribution of the weights of the sub-models for data set 1.
are constructed with different number of sub-models, and used to

predict the validation set, respectively. Fig. 1, 2(a) and 2(b) show

the variation of the root mean square error of prediction

(RMSEP) of the validation set along with the parameter m for

prediction of starch, sugar and nicotine, respectively. It is clear

that both figures show a similar variation trend. When m is 2, the

RMSEPs reach at a minimum, and thereafter, the RMSEPs

increase gradually. Thus m ¼ 2 is used in this study.

Moreover, with m ¼ 2 and eight sub-models, the weights w of

the sub-models for data set 1 is shown in Fig. 3. In the figure, it is

obvious that the weights decrease along the order of the sub-

models. The results mean that variables with big stabilities have

large contributions to the model. This is consistent with the

results obtained with the stability-based methods.21–25 On the

other hand, results in the figure also indicate that the variables

with small stabilities also have contributions to the model, even

relatively less than those variables with big stabilities. Therefore,
Fig. 1 Variation of the mean RMSEPs and standard deviation with the

value of parameter m for data set 1.

Fig. 2 Variation of the mean RMSEPs and standard deviation with the

value of parameter m for data set 2 of sugar (a) and nicotine (b).
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VG-PLS, which uses all the variables, should have an advantage

in prediction ability.

As for data set 2, the weights w of the sub-models for the sugar

and nicotine are shown in Fig. 4(a) and (b), respectively. It can be

seen that the distribution of weights for each sub-model is

different from that of data set 1. In Fig. 4, it is obvious that the

sub-model constructed by the first variable group has a big

weight, the next three sub-models have relatively small weights,

and other sub-models have very small weights. This may be

accounted for by the large number of variables in data set 2, and

the variables are sorted according to their importance to the

model. Except the first four sub-models, the left sub-models

mainly consist of the less relevant variables. This also indicates

that reasonable weights are calculated for the sub-models, thus

the prediction ability of the combined model can be improved

with the advantage of using all the variables in the spectra.
The number of sub-models

The number of sub-models (n) is also a key parameter in the

proposed method. In order to investigate the influence of n on the
Fig. 4 Distribution of the weights of the sub-models for data set 2 of

sugar (a) and nicotine (b).
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Fig. 5 Variation of the mean RMSEPs and standard deviation with

different number of groups (n) for data set 1.

Fig. 6 Variation of the mean RMSEPs and standard deviation with

different number of groups (n) for data set 2 of sugar (a) and nicotine (b).

Fig. 7 The mean spectrum of calibration set and the wavelengths

distribution in different groups for data set 1.
prediction ability, the variation of the RMSEPs of the validation

set versus the number of sub-models is investigated.

For data set 1, the variation of the RMSEPs of the validation

set versus the number of sub-models is plotted in Fig. 5. Each

point in the figure is the average value of the RMSEPs over 100

runs and the error bar across the points is the standard deviation

(s). From Fig. 5, it seems when n is 3, the RMSEP reaches the

minimal. As a comparison, the variation of the RMSEP of the

validation set for the data set by MC-UVE-PLS, where only

the variables of the first sub-model are used, is also plotted in the

figure. From the figure, it seems that when the number of sub-

models is small, the mean value and the standard deviation of

VG-PLS and MC-UVE are almost the same. When the number

of sub-models increases, however, the mean value and the stan-

dard deviation of VG-PLS is obviously smaller than the results of

MC-UVE. The result reveals that the model built by VG-PLS is

improved with better stability than MC-UVE.

As in the same way done for data set 1, the variation of the

RMSEPs of the validation set versus the number of sub-models

for data set 2 is plotted in Fig. 6, in which (a) and (b) correspond

to the sugar and nicotine, respectively. From Fig. 6(a), it appears

that, at the beginning, both the mean value and the standard

deviation are comparatively large. With the increase of n,

however, the mean RMSEP decreases gradually and reaches

a minimum at n ¼ 8. This indicates that, when the combined

model is built with 8 sub-models, the prediction ability of the

model is best. Obviously, if fewer sub-models are built, e.g., 2 or

3, the advantage of grouping can not be seen because each group

includes the variables with different stability. On the other hand,

if more sub-models are used, fewer variables will be included in

each sub-model, which may make the sub-models not predict-

able. Fig. 6(b) shows the variation of the RMSEPs of the vali-

dation set with the number of sub-models for the nicotine

content of data set 2. It is clear that when n is 10, the RMSEP

reaches a minimum. The number is slightly bigger than that in

the sugar model, because the number of variables relevant to

nicotine is relatively less compared with sugar.23,25 Therefore, n¼
8 and 10 is used as the number of sub-models for the sugar and

nicotine model of data set 2.
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When compared with MC-UVE-PLS, it can be seen from the

two curves in both Fig. 6(a) and (b) that the mean RMSEP of

VG-PLS is slightly smaller than that of MC-UVE-PLS. The

result reveals that, for data set 2, which is a data set of real

complex samples, VG-PLS can obtain better results by making

use of all variables with a suitable weighting strategy.
Distribution of the variables in sub-models

In order to further investigate the contribution of the variables in

sub-models, the mean spectrum and the distribution of wave-

lengths in sub-models are plotted in Fig. 7 and 8 for the two data

sets, respectively. In the figures, the wavelengths in each sub-

model are labeled with a vertical short bar. It appears that for

data set 1, the variables in the first group, which have main

contribution to the model, are located in eight regions, and the

two broad regions lie in the wavelength 4000–6000 cm�1.

Although it is generally difficult to interpret an NIR spectrum

with chemical structure, these wavelengths correspond well with

the NIR spectrum of starch, containing the first overtone and the

combinations of O–H around 7000 and 5000 cm�1.
This journal is ª The Royal Society of Chemistry 2010



Fig. 8 The mean spectrum of calibration set and the wavelengths

distribution in different groups for data set 2 of sugar (a) and nicotine (b).
Fig. 8(a) and (b) show the mean spectrum of the calibration set

and the distribution of the wavelengths in different groups for

data set 2 of the sugar and nicotine model, respectively. Due to the
Table 1 A comparison of the results obtained by different models

Data set Contents Model Numb

1 Starch PLS 1
MSC + PLS 1
MSC + MC-UVE-1b (v ¼ 236) 1
MSC + MC-UVE-2 (v ¼ 233) 1
MSC + VG-PLS 3

2 Sugar PLS 1
MSC + PLS 1
MSC + MC-UVE-1b (v ¼ 360) 1
MSC + MC-UVE-2 (v ¼ 259) 1
MSC + VG-PLS 8

Nicotine PLS 1
MSC + PLS 1
MSC + MC-UVE-1 (v ¼ 215) 1
MSC + MC-UVE-2 (v ¼ 207) 1
MSC + VG-PLS 10

a RMSEP is the average value and s is the standard deviation of the 100 RM
stochastic factor is involved in the algorithms. b MC-UVE-1 means the MC-U
by searching the minimal RMSEPs at different number of variables, whereas
used for comparison. v is the number of retained wavelengths by MC-UVE.
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complexity of the samples and the large number of groups, the

distribution seems complicated. However, for both the two

models, the variables in the first group are mainly located in 4000–

6000 cm�1.This result has good consistency with that obtained in

our previous works by using MC-UVE25 and RT28 methods.

Therefore, there is no essential difference between the wavelength

selection and the variable grouping strategies. The former uses

only the variables which are considered to be important, and the

latter adjust the importance of the variables by the weights.
Predictive validation

For data set 1, with n ¼ 3, the RMSEPs of the prediction set (15

samples) for predicting the starch content by using the VG-PLS

model are summarized in Table 1. For data set 2, with n ¼ 8 and

10, respectively, the RMSEPs of the prediction set (549 samples)

for predicting the sugar and nicotine contents by using the VG-

PLS model are summarized in the table too. In Table 1, the mean

RMSEPs and their standard deviation (s) over 100 independent

runs are listed. As comparisons, the mean RMSEPs obtained by

ordinary PLS and MC-UVE-PLS using the raw and pre-

processed spectra are also listed. From the table, it is clear that

MSC can improve the prediction, and as a wavelength selection

method, MC-UVE produces better prediction than the ordinary

PLS. However, the efficiency of VG-PLS seems superior to MC-

UVE-PLS, e.g., for data set 1, the mean RMSEP of VG-PLS is as

small as that of MC-UVE-PLS, while the standard deviation of

VG-PLS is smaller than that of MC-UVE-PLS. For data set 2,

both the mean RMSEP and the standard deviation are improved

by VG-PLS. Such results indicate that both the predictive ability

and the stability of the model can be improved by using the

weighted combined model.
Conclusions

A combined model with new variable grouping strategy is

proposed and applied to the modeling of NIR spectra of complex
er of groups Latent variables number (LV) RMSEP(s)a

6 1.142
6 0.552
6 0.515 (0.049)
6 0.520 (0.041)
6 6 5 0.535 (0.029)

13 1.99
13 1.71
13 1.61 (0.0056)
13 1.63 (0.0019)
13 12 11 10 10 8 8 7 1.60 (0.0009)
13 0.312
13 0.303
13 0.290 (0.0012)
13 0.291 (0.0013)
13 13 13 12 10 8 8 7 7 7 0.290 (0.0012)

SEPs. The RMSEP without s is calculated with only one run because no
VE reported in literature25 and the number of retained variables is found

in MC-UVE-2, the same variables as in the first sub-model of VG-PLS is

Anal. Methods, 2010, 2, 289–294 | 293



samples. The NIR spectra are split into different variable groups

representing different spectral information based on stability,

then sub-models are constructed by the grouped variables, and

a combined model is finally built by a weighted combination of

the sub-models. The proposed method is different from the

variable selection methods, in which only the important variables

are used, it makes a full use of the variables in NIR spectra for

modeling. With two NIR data sets of corn and tobacco lamina

samples, it was proved that the proposed method can effectively

utilize all the variables with a suitable weighting for building

a high performance PLS model.
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