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In a study of calibration with HPLC data for acetaldehyde-DNPH, we have collected replicate data

(5–11 points each) for 33 samples spanning the range 0.0004–3 mg of detected analyte. Over most of this

range, the data uncertainty is proportional to the signal, implying that weighted least squares is

required to obtain the calibration function, since minimum-variance estimation requires weights

inversely proportional to the data variance. When a variance function derived from an analysis of the

replicate statistics is used to assign weights, wi¼ 1/si
2, the resulting values of c2 for the calibration fit are

too large by a factor of 400. This implies that the method error is dominated by sample preparation

rather than measurement uncertainty, and it means that in the calibration fit, the peak area should be

taken as the independent variable and the amount as the dependent. In this reversed regression, the

generalized LS method (GLS) is used to estimate the total method variance function from the residuals.

The resulting method variance function resembles the instrumental variance, in containing constant

and proportional error terms. The calibration data demand at least a cubic polynomial for adequate

representation, but other response functions are statistically equivalent, with the result that this model

uncertainty is comparable to the directly computed statistical uncertainty of the calibration function. In

these computations, emphasis is placed on the virtues of c2 as a statistical figure of merit over the widely

used R.
Introduction

In routine analytical work the workhorse calibration method is

still classical univariate calibration, usually with assumed linear

response functions, and often with neglect of possible data

heteroscedasticity. The calibration data are fitted by linear least

squares (LLS) to y ¼ a + bx, and the unknown concentration or

amount x0 is obtained from x0 ¼ (y0 � a)/b, where y0 is the
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response measured for it. The uncertainty in x0 is then estimated

from1,2

s 2
x0

¼ s2

b2

"
1

r
þ 1

n
þ ðy0 � �yÞ2

b2Sðxi � �xÞ2

#
; (1)

where n is the number of calibration points, r is the number of

independent measurements averaged to obtain y0, and overbars

denote averages. Here the data uncertainty s is assumed to be

known, e.g. from pooled data from prior similar measurements;

then confidence limits are obtained using the normal distribu-

tion. More often, analysts take the ‘ignorance’ viewpoint about

the data error and estimate it from the calibration fit itself. Then
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s is replaced by its estimate s, which is calculated from the sum of

squared errors S [¼ S(yi � a � bxi)
2] using s2 ¼ S/(n � 2); and

confidence limits are assessed using the t-distribution for n � 2

(h n) degrees of freedom. For relatively imprecise b, small

correction terms are added to the right-hand side of eqn (1).3–5

It is worth recalling the assumptions behind these procedures.

The calibration x values are error-free and the y measurements

are unbiased estimates of their true values, with random normal

(Gaussian) error of constant magnitude. Then the LLS estimates

of a and b are normally distributed about their true values with

standard errors that are known exactly at the outset if s is

known, or are estimated using s if the latter must be taken as an

estimate of s.4,5 On the other hand, x0 is not a linear estimator

and in fact does not even have finite variance.3,5 Thus sx0
in eqn

(1) should be considered an asymptotic approximation; and the

distribution of x0 is inherently non-normal, necessitating the

correction terms mentioned earlier when b is imprecise.

Real data often deviate from these assumptions, especially by

(1) requiring response functions other than linear and (2) having

non-constant uncertainty. One of us has recently described

algorithmic procedures that straightforwardly extend the linear

response, homoscedastic (constant s) case to other response

functions and heteroscedastic data.6,7 In this approach, sx0
is

a computational product of the analysis, valid (in the same

asymptotic sense) for any response function and any data error

structure. However, unless the data are assigned weights

inversely proportional to their variances (i.e. wi f si
�2), eqn (1)

and its equivalent for heteroscedastic data, as well as their

computational counterparts in the algorithmic approach, are

simply wrong.8 Perhaps the most frequent exercise of this error is

in the use of unweighted or ordinary LS (OLS) to analyze

heteroscedastic data.

One assumption that is rarely challenged is the fundamental

one: that x is error-free, dictating the choice of it as the inde-

pendent variable and y as dependent. While some authors have

dealt with the case of error in both variables (which makes the

LS analysis non-linear),9 some uncertainty in x is not a serious

problem as long as x is significantly more precise than y in

a relative sense – say a factor of 3. But many of today’s instru-

ments are so good that they can provide estimates of y that are

much more precise than other aspects of the calibration proce-

dure, especially the preparation of the calibration samples. This

indeed turns out to be true in the present case study, where the

method error dwarfs the instrumental error by a factor of 20.

This is actually a ‘good news’ result: When y can be taken as

the independent variable, with regression of x upon y, the esti-

mator of x0 becomes linear, hence unbiased and normal provided

that x has random normal error. Further, since y is now

considered error-free, the only statistical error in x0 is often the

easily computed contribution from the calibration fit.

In the present work, we illustrate these considerations through

a case study of calibration with precise but strongly hetero-

scedastic HPLC data for acetaldehyde-2,4-dinitrophenylhy-

drazone (acetaldehyde-DNPH) solutions spanning four orders of

magnitude in the analyte. The data are weighted using an esti-

mated variance function derived from an analysis of replicate

data10 and are fitted to polynomials of varying order in the search

for an optimal response function. A cubic is judged best, but the

resulting value of c2 is a factor of 400 too large, showing that
1650 | Analyst, 2008, 133, 1649–1655
other sources of error are dominant. Those sources can only

involve the preparation of the calibration solutions (x), which

means that the instrumental measurement of peak areas (y) is

actually more precise. Accordingly, we reverse the regression.

The replicate measurements cannot be used to assess the uncer-

tainty in x, so we turn to generalized least squares (GLS),

estimating the method variance function from the residuals

themselves.11–13 This function is found to have constant and

proportional components, mirroring similar contributions to the

instrumental variance function.

In the quest for a proper calibration response function, we

emphasize c2 as a figure of merit for the LS fits and show how the

popular R is less useful for this purpose.
Least-squares summary

The method of least squares is described in detail in many places,

and the key computational relations were given in matrix nota-

tion in a recent study of heteroscedasticity and its neglect.8

Accordingly these relations will not be reproduced here and

indeed are not needed, since the computations described in this

paper are all carried out with a data analysis program. We do

need to emphasize that for a data set containing n points, the

LS solution minimizes S¼ S widi
2 with respect to the p adjustable

parameters, where the residuals di ¼ yi � f(xi) represent the

differences between the measured values of the dependent

variable and their calculated values for the response function

f(x). For minimum-variance estimation of the adjustable

parameters, the weights wi must be inversely proportional to the

variances si
2. If all si are the same, we have OLS and can use

wi ¼ 1; if not, we have weighted least squares (WLS). Clearly,

knowledge of si is key to the analysis. In particular, incorrect

weighting leads to incorrect estimates of the parameter errors, as

already noted. The extent of the damage from incorrect

weighting in calibration depends upon factors like the x structure

of the data, the range of their wi, and the location of the unknown

relative to the calibrants.8

The parameter estimates obtained from an LS fit are generally

correlated, so to compute the statistical error in a function

of those parameters, we need the full expression for error

propagation,

sf
2 ¼ gTVg, (2)

where V is the variance-covariance matrix and the elements of

the vector g are the derivatives of f with respect to the parame-

ters. Here we are interested in the calibration function itself.

Anticipating results below, we note that for a cubic polynomial,

gT ¼ (1 x x2 x3).
c2 and R2

For LS fits in which the data are weighted wi ¼ 1/si
2 and the

fit model is correct, the sum of weighted, squared residuals,

S ¼ S(di/si)
2, follows the chi-square (c2) distribution, which has

an average value n (¼ n � p) and variance 2n. Accordingly, S/n

follows the reduced c2 distribution, which has an average 1 and

variance 2/n. It follows that in OLS of homoscedastic data, s2 (¼
S/n) is distributed as a scaled c2 variate; thus it and the estimated
This journal is ª The Royal Society of Chemistry 2008
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parameter variances have relative standard deviation (RSD)

(2/n)½, and the estimated parameter standard errors have RSD

(2n)�½. The latter, for example, shows that around 50 points are

needed to yield estimated parameter uncertainties that are good to

10%; many routine calibrations employ as few as six points, giving

uncertainties that are themselves uncertain by 35% in the

customary approach of using the calibration fit itself to estimates2.

Since estimated variances have uncertainty proportional to

their magnitude, any fitting of variance-like quantities should

employ weights inversely proportional to the squares of the

fitted quantities.14 This applies in particular to the estimation of

variance functions from residuals, discussed below.

Analytical chemists commonly use R2 (R) to judge the quality

of calibration fits. R2 and S are related by15

R2 ¼ 1 � S

Swiðyi � �ywÞ2
; (3)

where �yw is the weighted average of the dependent variable, �yw ¼
Swiyi/Swi. Eqn (3) can be derived from the more specific defini-

tion of R for a straight-line fit and is commonly used by data

analysis programs to produce R2 values for fits to other func-

tions. While it is customary to look for the value of R2 closest to

unity for the ‘best’ fit, the theoretical value of R2 for a properly

weighted fit should be less than 1, since the average of S (¼ c2) ¼
n in a properly weighted fit.

Through eqn (3) R2 and S contain equivalent information

about the quality of the fit, and if nothing is known a priori about

the data error, either can be used as a figure of merit: minimizing

S (i.e. minimizing the estimated variance) is equivalent to making

R2 as close as possible to 1.

However, significant changes in S can be squeezed into

surprisingly small changes in R2, making the latter harder to

‘read’ in this context – a limitation among others that have been

noted before.16–20 When the data error is known a priori and the

weights wi are taken as si
�2, c2 becomes a much more powerful

tool for assessing the fit quality. The expected value of n for S is

easily remembered and deviations from the expected value can be

subjected to a c2 test to assess their significance. In the simplest

sense, when S exceeds n by a given factor, it means that the

apparent LS data variances exceed their prior estimates by this

same factor. At the same time, values of R2 are not only

compressed into a small range near 1; they also have no simple

predicted value, because of the denominator in the second term

in eqn (3).

Generalized least squares

In the GLS method,11–13 both the data variance function and

the fit parameters are determined, through an iterative boot-

strapping process in which the data are fitted, yielding residuals

that are then analyzed to estimate the variance function. The

latter is used to reassess the weights and the process is repeated,

with adequate convergence typically coming in three to five

cycles. Since the residuals are both positive and negative, their

squares or absolute values are fitted in the variance function

estimation (VFE) step. Here we fit the squared residuals, which

itself requires weighting, since the squared residuals, like the

variance, have the statistical properties of c2. We represent the

method variance function, smeth
2, as
This journal is ª The Royal Society of Chemistry 2008
smeth
2 ¼ s2h2(vars,q), (4)

where h2 is a function expressing the dependence on the variables

and parameters (q), and s2 is its scale.11 From the properties of c2

discussed above, the standard deviation in smeth
2 is proportional

to h2, meaning that the weights in the VFE fit should be

proportional to h�4. At the same time, the weights in the data fit

are proportional to h�2. Both sets of weights are reassessed in

each cycle, as h2 evolves toward its final form.

Actually, the LS residuals, though they track the variance, do

not all have the same scale. Rather, the ith residual has variance

(1�Hii)si
2, whereHii is from the ‘hat’ matrix.8,11 It is customary to

correct this scale difference by fitting the squares of di/(1 � Hii)
½,

called ‘Studentized residuals’. In the present case (n ¼ 33), Hii is

nearly constant except for the few points near each end of the

range. Since SHii ¼ the number of adjustable parameters p, the

main effect of this correction is to scaleSup by the factor n/(n� p).

We use only polynomials of varying order as response func-

tions, in both the OLS and the GLS computations. Fits to

polynomials are LLS, so all the guarantees of LLS apply. We do

use non-linear fitting in the VFE stage of the GLS calculations.

Although the statistical properties of estimated variance func-

tions are unusual, Monte Carlo computations have confirmed

that VFE yields near-optimal calibration functions from

surprisingly few data points (<20).8,14

All LS fitting was done with the KaleidaGraph program

(Synergy Software), using methods similar to those described in

related earlier works and their supplements in this journal.6–8,14

Materials and methods

Chemicals and reagents

Acetaldehyde-2,4-dinitrophenylhydrazone (acetaldehyde-

DNPH) solution (1025.94 mg acetaldehyde/mL in acetonitrile)

was purchased from Supelco (Bellefonte, PA). The calibration

samples were prepared from the standard by serial dilution

with a 50% aqueous solution of HPLC-grade acetonitrile in 18

MU cm deionized water (EASYpure� UV, Barnstead Thermo-

lyne Corp., Dubuque, IA). The dilutions were carried out with

small volumetric flasks (10–25 mL, Kimble) and pipettes,

including Gilson Microman Pipettes M1000 and M100. The

resulting calibration samples contained acetaldehyde in the

concentration range 0.01–100 mg mL�1.

HPLC experiments

The HPLC measurements were done with an Agilent 1100 series

HPLC system equipped with a diode array detector. Separation

was performed on a Phenomenex Luna C18 (2) column (250 �
4.6 mm, 5 mm) at 30 �C. The mobile phase was composed of 55%

acetonitrile and 45% deionized water, and the flow rate was

1 mL min�1. Acetaldehyde-DNPH was monitored at 360 nm.

Multiple measurements (5–11) were carried out on each

sample using a fixed injection volume. The volume was 30 mL for

most samples, but a few experiments employed volumes as low as

1.0 mL and as high as 90 mL. Peak areas were obtained from the

autointegration routine in the instrument software. Independent

checks of some of these peak areas by numerical integration of

the raw chromatograms showed good consistency.
Analyst, 2008, 133, 1649–1655 | 1651
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Fig. 1 Estimated % standard deviation (RSD � 100%), displayed as

a function of signal and injection volume (legend). Error bars show

uncertainty based on the experimental estimates, taken as si/(2n)½ and

displayed as symmetric.
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Results and discussion

Instrumental variance

The current calibration data set consists of 33 averaged peak

areas spanning injected acetaldehyde amounts from 0.004 to 3 mg

(Table 1). The estimated data variance function is derived from

the replicate measurements of these points, augmented by addi-

tional measurements made later and analyzed in a comparison

study of four HPLC analytes.10 Fig. 1 illustrates the % standard

deviations from Table 1, showing that proportional data error

(si f yi, leading to constant % error) dominates at large signal.

This dependence is frequently observed in chromatographic

data,13,21–25 but the more complex behavior over large dynamic

range is less widely appreciated.

Our full analysis of the s2 estimates yielded the estimated

variance function,10

s2 ¼ a2 + (by)2 + cy + (sv/v)
2y2, (5)

as a function of the peak area y (as output from the peak inte-

gration software, units as in Table 1), with a¼ 0.20, b¼ 0.0018, c

¼ 0.0043, and sv (the uncertainty in the injected volume) ¼ 0.0079

mL. The structure of this variance function is like that expected
Table 1 HPLC calibration data for acetaldehyde-DNPH, showing for
each point: amount of acetaldehyde, number of replicates, injection
volume, average HPLC peak area, and relative standard deviation in
peak area

m/mga No. v/mL Area (arb.)a RSD (%)

3.700 (�4) 6 30.0 1.420 (1) 2.18
3.730 (�3) 11 30.0 8.700 (1) 1.11
9.230 (�3) 6 30.0 2.377 (2) 0.43
1.524 (�2) 10 30.0 3.751 (2) 0.20
1.537 (�2) 10 90.0 3.713 (2) 0.12
1.539 (�2) 11 30.0 3.736 (2) 0.31
1.539 (�2) 11 3.0 3.755 (2) 0.40
1.539 (�2) 11 1.0 3.875 (2) 0.67
1.539 (�2) 10 10.0 3.793 (2) 0.23
1.539 (�2) 11 90.0 3.718 (2) 0.29
1.539 (�2) 10 1.0 3.903 (2) 1.22
1.693 (�2) 5 1.1 4.320 (2) 0.43
3.078 (�2) 10 30.0 7.744 (2) 0.25
3.078 (�2) 10 30.0 7.697 (2) 0.32
3.950 (�2) 6 35.0 9.676 (2) 0.43
7.633 (�2) 5 30.0 2.007 (3) 0.24
7.694 (�2) 5 30.0 1.955 (3) 0.23
1.539 (�1) 5 30.0 3.893 (3) 0.27
1.539 (�1) 5 30.0 3.974 (3) 0.14
3.080 (�1) 5 30.0 7.808 (3) 0.19
3.080 (�1) 5 30.0 7.800 (3) 0.29
6.156 (�1) 10 30.0 1.601 (4) 0.14
6.156 (�1) 10 30.0 1.557 (4) 0.17
1.231 (0) 5 30.0 3.138 (4) 0.27
1.231 (0) 5 30.0 3.094 (4) 0.20
1.538 (0) 5 30.0 4.130 (4) 0.06
1.539 (0) 5 30.0 4.062 (4) 0.10
1.847 (0) 5 30.0 4.717 (4) 0.40
1.847 (0) 5 30.0 4.830 (4) 0.17
2.462 (0) 5 30.0 6.130 (4) 0.12
2.462 (0) 5 30.0 6.223 (4) 0.20
3.078 (0) 10 30.0 7.436 (4) 0.21
3.078 (0) 10 30.0 7.401 (4) 0.24

a Figures in parentheses are multiplier powers of ten.

1652 | Analyst, 2008, 133, 1649–1655
and observed for spectrophotometric detection,26,27 with the

addition of the last term for the injection from the syringe. It is

noteworthy that the last term exceeds the second term when the

injected volume is less than 4 mL. It is also important to recognize

that eqn (5) represents just the instrumental data variance

function, as it was obtained by injecting a given volume of each

sample solution into the instrument multiple times. This must

represent the minimum variance for an analytical procedure

using this instrument on this analyte.
Determining the calibration function

We next fit the calibration data from Table 1 to the response

function using eqn (5) to compute the weights. Since each value is

a mean of r ¼ 5–11 measurements, these means are fitted, with

weights taken as r/s2, i.e. as the inverse variances in the mean. A

linear response function is inadequate, so we expand the fitting to

polynomials of increasing order. Fig. 2 shows results for two

goodness-of-fit indicators, c2/n and R, as functions of the poly-

nomial order.

Naive use of the R values in Fig. 2 as the figure of merit for this

calibration might induce an analyst to stop with the linear

response function, since even this is better than ‘three nines’.
Fig. 2 Reduced c2 and R (scale right) for weighted fits of the calibration

mean peak areas to polynomials of varying order, from linear (p ¼ 2) to

eighth order.

This journal is ª The Royal Society of Chemistry 2008
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However, the cn
2 values tell a different story. First, these drop

sharply until p¼ 4, then rise slightly before dropping again at p¼
7. From the standpoint of ad hoc trial-and-error fitting, we might

conclude that p¼ 7 is ‘best.’ However, the three extra parameters

give only a 5.5% reduction in cn
2, at the cost of reduced extrap-

olating ability and the possible introduction of unphysical

‘wiggles.’ We pick p¼ 4 as a safer and simpler choice, reasonably

close to minimum variance.

The scale of the cn
2 values reveals a problem: if the data were

truly limited by the instrumental error, cn
2 should be ca. 1. Thus

the true or method error here must be larger than the instru-

mental error by a factor of ca. 20. We see this in a different way in

the residuals plot of Fig. 3, which shows a spread of normalized

residuals about 20 times expected. The method error must

involve the preparation of the calibration solutions from the

stock standard, since there is no other operation involved in the

experiments.

We emphasize that this information is not obvious from the R

values. As noted earlier, the expected or ideal result for R is

<1.00, but the precise value is not as simply predicted as that for

c2, making R and R2 of little value as quantitative figures of merit

for the calibration fit.
Reversing the regression

The results in Fig. 2 and Fig. 3 imply that we should be fitting x

as a function of y, since the latter is much more precisely deter-

mined. (Because the relative uncertainty in x is so much greater

than that in y, the alternative approach of treating both as

uncertain will yield virtually identical results.) The lack of any

strong systematic trends in the residuals plot (Fig. 3) provides

several pieces of information that are useful for this reversed

regression. First, although solution preparation errors are

fundamentally systematic in nature, they appear to have been

largely randomized over the 33-point data set under study here;

thus they can be treated like random statistical errors in the

analysis. Second, the data variance function must be at least

qualitatively correct; otherwise we might expect to see clear

differences in the spread of residuals at the two ends of the range.

Third, the cubic response function will probably suffice for the

reversed regression. Regarding the second of these, we expect

terms like the first two in eqn (5) and perhaps the third, but not
Fig. 3 Normalized fit residuals from fit to cubic response function (p ¼
4) of Fig. 2.

This journal is ª The Royal Society of Chemistry 2008
the fourth, because the choice of injection volume affected the

dilution scheme in only a complex indirect way. Also, our ability

to define a variance function from just the 33 residuals in the

GLS treatment is limited relative to that from the >300 replicate

measurements that led to eqn (5). The efficacy of the cubic

response function can be tested in the same trial-and-error

procedure used to generate Fig. 2, after we have a handle on the

effective data error for the reversed regression.

This last point is important, because in the GLS method the

VFE step is perforce tied to the calibration step and hence

dependent upon the assumed response function. We start with

the cubic function and then check it in the end. In support of this

procedure, the residuals shown in Fig. 3 do not change much as

the fit order is increased beyond third order.

We first conducted the VFE fitting with neglect of the stu-

dentization correction of the residuals. The computations indi-

cated that only two VF parameters could be statistically justified,

so we chose the first two terms in eqn (5), rewritten in the form of

eqn (4), as

smeth
2 ¼ s2[1 + (dy)2], (6)

and obtained adequate convergence in three cycles. The resulting

value of d was 0.0030(12), with s ¼ 2.2(7) � 10�4 mg. The second

term in brackets exceeds the first beyond y¼ 300, confirming that

proportional error dominates the method variance over most of

the data range.

This analysis expresses the error in the amount m as a function

of the mean peak area. Since it is m that is uncertain, we may

expect its variance function to depend upon m rather than upon

its related peak area, so we repeated the analysis taking m as the

independent variable in the VFE computations. Results are

shown in Fig. 4. Using these results to compute the needed

elements Hii, we then checked the importance of studentizing the

residuals. This resulted in only small changes in s and d, well

within their stated uncertainties, and no significant change in the

calibration function itself, shown in Fig. 5.

Fig. 6 shows the statistical error in the calibration function.

Although the use of eqn (2) for this computation is straightfor-

ward, it is not easily implemented in many spreadsheet and data

analysis programs. For polynomials there is a simple trick that
Fig. 4 Squared residuals from cubic calibration fit in converged GLS

analysis. The fitted curve is s2[1 + (dm)2], with s ¼ 2.3(8) � 10�4 mg and

d ¼ 81(34) mg�1.
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Fig. 5 Reversed calibration function, from weighted fit to a cubic

function of the peak area using weights computed from the variance

function given in Fig. 4. The fitted values of the parameters are (units mg)

c0 ¼ 0.00012(13), c1 ¼ 3.987(30) � 10�5, c2 ¼ �9.6(2.3) � 10�11, and c3 ¼
1.56(33) � 10�15, with c2 ¼ 33.0. On the scale of this plot, the error bars

show for only the first point.

Fig. 6 Standard error (absolute and %) in the calibration function, as

a function of the analyte amount and the corresponding peak area (top).

The small-scale variability reflects the varying density of calibration

points across the range of m.

Fig. 7 Calibration function model error. D is the difference between the

alternative fit model and the cubic polynomial of Fig. 5, and sf is the

statistical error in the latter, from Fig. 6. The solid (orange) line is for

a quartic polynomial missing the quadratic term; the fine-dashed (blue)

line is for a cubic with c0 ¼ 0; the broad-dashed (black) line is for a sixth-

order polynomial with c0 ¼ 0. The broken curve with points (red) is for an

unweighted fit to a linear response function, scaled by a factor of 1/10 for

display purposes.
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permits one to compute the error bands without resorting to

these matrix expressions: refit to the same polynomial in (x� xc),

where xc is any chosen value of x.8 Fits to a polynomial in (x �
xc) are statistically equivalent for all xc. Since this function is

centered at xc, the constant c0 is its value at xc, and the standard

error in c0 is the desired sf at xc. By varying xc, one can thus

compute the error bands over any desired range of x.†

Next we check the effect of altering the response function.

Adding a term in x4 increases cn
2 and renders both c2 and c3

statistically insignificant (i.e. zero within their standard errors).

Dropping the less significant of these terms (c2x
2) does produce
† Dropping internal terms from a polynomial in (x � xc) makes the fits
for different xc inequivalent, requiring use of eqn (2) for rigorous error
band computations in place of the simpler recentering approach.
However, in practice this inequivalence is weak across the range of the
calibration data, so the recentering-based estimates remain good
approximations of the correct quantities.
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a four-parameter fit having marginally lower c2 (31.7) than that

in Fig. 5. Alternatively, we can reduce cn
2 by dropping the

constant term in the calibration function of Fig. 5 (since it is

within 1s of zero). As a third possibility, we find a significant

drop in cn
2 for a sixth-order polynomial, with only c0 insignifi-

cant; dropping it gives a six-parameter function with lowest cn
2.

To judge whether these changes in the response function are

significant, we benchmark them against the statistical error in

Fig. 7, which also includes results for OLS. We see that the four

weighted calibration models, which are arguably equivalent, do

differ in their predictions by amounts comparable to the statis-

tical error; in contrast, the unweighted fit to a linear response

function is systematically low by ca. 70s over the first three

decades of peak area – a dramatic consequence of the neglected

weights. Lacking solid reasons for choosing one weighted model

over another, we might reasonably elect to scale up the statistical

error in Fig. 6 to roughly reflect this model uncertainty for the

region of interest.

If the unknown samples are used directly, without any pre-

processing, the errors in Fig. 6, perhaps expanded to include

model error, would represent the standard deviation for a single

determination using these calibration data. If the unknowns

must be treated beforehand, using procedures like those used to

prepare the calibration samples, each unknown would have

a statistical variance comparable to the derived variance function

in Fig. 4. The uncertainty of an unknown would then be esti-

mated as the square root of the sum of this ‘preparation’ variance

and the calibration variance.

Our initial target in this study was the instrumental variance

function, so we paid little attention to the solution preparation

procedures that are now found to dominate the method variance.

In retrospect, the errors can be attributed largely to the volu-

metric instruments used in the dilution sequences. For example,

even the volume uncertainty for the 10 mL volumetric flasks

(many different ones of which were used) is 0.2%, which equals

the dominant instrumental error for most of our samples. The
This journal is ª The Royal Society of Chemistry 2008
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Gilson micropipettes are a greater source of uncertainty: at

delivery volumes of 100 mL the M1000 can have systematic error

as large as 3% and random error up to 1.6%. With the knowledge

we now have of the instrumental error, we could devise solution

preparation procedures that would significantly reduce the

method error, if that were desirable.
Conclusion

Precise HPLC data for acetaldehyde are used to obtain a cali-

bration curve spanning four orders of magnitude in the analyte.

Over this broad range, the data exhibit strong heteroscedasticity,

dominated by proportional error at large signal and constant at

small error. When the calibration data are fitted using weights

based on the instrumental data variance function, the c2 values

are too large by a factor of 400, leading to the conclusion that

uncertainty in sample preparation greatly exceeds that of

measurement. The implication of this result is that the regression

should be reversed. By contrast, the widely used R statistic

provides little guidance here.

For the reversed regression, the GLS method is used to esti-

mate the method variance function, which is represented as a sum

of a constant term and a proportional error (2%) that dominates

over most of the calibration range. The calibration data require

a polynomial of order three for adequate representation.

Comparison of predictions from this model and other, higher-

order models of similar statistical quality show that the depen-

dence on model choice can exceed the statistical uncertainty of

calibration.

The method variance derived here is dominated by volumetric

procedural uncertainties. Given the high precision with which

many modern instruments operate, it is probably not rare to find

the measurement error much smaller than other sources of

uncertainty, which means that the reverse regression approach

we have illustrated here should see wider use. Of course,

knowledge of the instrumental error is required to make this

decision. Then, excessively large values of c2 for weighted cali-

bration fits signal the presence of other, larger sources of

uncertainty.

When sample preparation is the main source of uncertainty in

calibration, it will typically require more operator effort to

characterize the method uncertainty. Here 33 samples sufficed to

determine two variance function parameters to only about 40%

RSD, but 33 is many more than obtained in typical calibration

efforts. The use of sample replicates might help in estimating the

method variance function, but then one must take care that the

replications are truly random in their sampling of the procedures

(e.g. that they effectively randomize the systematic errors in
This journal is ª The Royal Society of Chemistry 2008
volumetric equipment). One possibility in this regard is the use of

accumulated data from procedures used repeatedly in day-to-day

routine work.7,8

Routine univariate calibration often requires much less than

the 0.2% limiting instrumental uncertainty of the present study,

and many of the present results might seem academic for such

work. Indeed, weights can be neglected with little precision loss if

the calibration data are structured to approximately center the

unknown.8 However, there are many situations in which the

inherent precision is much less than 0.2%; and when a calibration

function is desired over a wide operating range, approaches like

those discussed here can be important for realizing the full

potential of the analysis method.
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