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aids such as nitric acid [5-7], magnesium nitrate [5, 6, 8-10], sulphuric
acid [5-8, 11] and potassium hydrogensulphate [12-14] or by careful
manipulation of the ashing temperature [5, 6, 8].

Lead and cadmium are two of the elements for which differing approaches
to dry ashing methods for biological materials have been described. Seiser
et al. [11], Dalton and Malanoski [9], Usher [15] and Friend et al. [16]
showed that the use of ashing aids provided quantitative recoveries of lead
and cadmium from foods and other biological materials. Abson and Lipscomb
[8] and Gorsuch [5, 6] demonstrated that complete recovery of both ele
ments could be achieved by careful manipulation of the ashing temperature.
The effect of ashing temperature is now well known and there is widespread
acceptance of 500°C and 450°C for dry ashing with and without ashing aid,
respectively. Although it is possible to use higher ashing temperatures in
the presence of an ashing aid, the recovery of lead can be significantly
affected at temperatures >550°C [5,6].

Despite the successful establishment of the conditions best suited for
dry ashing, it is still necessary to evaluate these methods for any new
materials or when the method is used in conjunction with a new technique
for quantifying trace elements. Some dry ashing methods have been evaluated
for techniques such as atomic absorption spectrometry [15-17], spectro
photometry and colorimetry [8, 18] and radiochemical and neutron activa
tion techniques [5, 6] to ensure that the adopted method is the most
satisfactory for the determination of trace elements in the material con
sidered. However, with stripping voltammetric techniques, dry ashing
procedures have been adopted, in a few cases [1-3], without any endeavour
to evaluate and select the procedure most adequate for the analyte(s) and/or
sample material considered. Unlike techniques such as atomic absorption
spectrometry which relies on atomisation of the element from solution and
which is not so prone to organic interferences, the evaluation of dry ashing
methods for anodic stripping voltammetry (a.s.v.) and cathodic stripping
voltammetry (c.s.v.) needs to be more comprehensive because organic
residues from incomplete decomposition can foul up the electrode by
blockage or interference mechanisms of the adsorption type. Adsorption
of organic residue may inhibit the electrode process and distort the response
by catalysis of hydrogen evolution [19-21]. Hence the precision and
accuracy of the results obtained by stripping voltammetry for biological
materials will be more dependent on how well the sample is decomposed
than with many other analytical techniques.

In the present study, several dry ashing methods have been evaluated for
the simultaneous determination of cadmium and lead in biological materials
by anodic stripping voltammetry. The methods considered are (1) direct
dry ashing, (2) dry ashing with nitric acid as ashing aid, and (3) dry ashing
with sulphuric acid as ashing aid. Magnesium nitrate was not tested as an
ashing aid because purification of this reagent is often necessary for accurate
determination of trace elements [1]. Bovine liver was chosen as the test
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