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Most chemists, whether biochemists, organic chemists, pharmaceutical or clinical
chemists and most medical doctors, pharmacists, and biologists who apply a chem-
ical discipline need to carry out chemical determinations, i.e. perform chemical
analysis. This book is addressed to all those scientists.
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analyzing chemical data.
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mation theory, systems theory, and operations research and more to time series, cor-
relation, and transformation methods, filtering, smoothing, etc. The authors’ aim
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didactical texts, too many references are irritating, citations appear in the text only
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Editorial

The 3rd International Conference on Chemometrics in Analytical Chemistry
was held in Lerici (Italy) during May 26—29, 1986. On the one hand, the
conference indicated significant progress in this general area. Chemometrics
is no longer a synonym for the dilettante application of sophisticated statis-
tical methods to chemical problems, but has grown into a recognized branch
of analytical chemistry. On the other hand, many of the over 150 participants
were probably made well aware of a fundamental problem of the field.
Chemometrics has tended to become an autonomous discipline developing
its own language, which is often hardly understood by the average analytical
chemist. By publishing a selection of the papers presented at this conference
in a journal devoted to all branches of analytical chemistry, the editors of
Analytica Chimica Acta hope to make the general analytical chemist more
aware of the new concepts that are being developed by chemometricians and
to give the chemometrician a better perception of the problems that general
analytical chemists have to solve in their everyday work,

dJ. T. Clerc

A. M. G. Macdonald
H. L. Pardue

A. Townshend
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SUPERVISED PATTERN RECOGNITION: THE IDEAL METHOD?

M. P. DERDE and D. L. MASSART ‘
Pharmaceutical Institute, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090
Brussels (Belgium)

(Received 11th July 1986)

SUMMARY

The different criteria that should be considered in selecting a supervised pattern
recognition technique for a particular application are discussed. An overview is given of
the most important and most frequently-used supervised techniques and the extent to
which they meet these criteria. The possibilities of two rule-building expert systems are
also discussed.

Supervised pattern recognition covers many different techniques, and can
be applied in many fields of scientific research. This paper deals first with the
different criteria that should be kept in mind in order to select the pattern
recognition techniques to be used for a given application. Next, an overview
is given of the most important and most frequently-used supervised tech-
niques and the extent to which they meet the selection criteria is discussed.

SELECTION CRITERIA

The classification rules derived should enable as correct as possible classi-
fication decisions to be made and should be easy to apply in daily practice.
Obviously, the criteria are two-fold: technical (mathematical) aspects and
practical aspects.

Technical aspects

Optimal boundaries. The general aim of supervised pattern recognition is to
develop rules for the classification of samples of unknown origin, on the
basis of a group of samples with known classification which have been char-
acterized by a number of measurements (parameters, features). The success
of classification depends on whether the classification rules are optimal for
the problems under study. Optimal rules mean optimal boundaries. In multi-
variate data analysis, each object can be seen as a point in a multidimensional
pattern space, the axes coinciding with the different variables. If the vari-
ables used in the classification problem are appropriately chosen, then
objects belonging to different classes are situated in separate subspaces of the
pattern space. The classification rules developed by supervised methods

0003-2670/86/$03.50 © 1986 Elsevier Science Publishers B, V.,
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correspond to boundaries that implicitly or explicitly divide the pattern space
into several subspaces.

Optimal boundaries can be obtained only if the situation of the different
classes in the pattern space is exactly known. This is only possible if the
shape of the distribution of the population in the pattern space is known,
and if the distribution parameters of the population are known. Theoreti-
cally, then, optimal boundaries can be obtained only if each class is represen-
ted by an infinite number of samples, which is of course impossible. In prac-
tice, the population distribution and distribution parameters are estimated
on the basis of a sample of restricted size. It is clear that this sample should
be representative of the classes and that the sample size should be suf-
ficiently large because the estimation of the population parameters becomes
more accurate as larger samples are taken.

A first distinction can be made between techniques that take account of
information on the population distribution and those that do not. The
non-parametric techniques (e.g., KNN, ALLOC, PRIMA) make no assump-
tions on the population distribution (i.e., do not take information on the
population distribution into account) while parametric techniques (e.g.,
LDA, UNEQ, SIMCA) do. The parametric techniques are based on a well
defined distribution. LDA and UNEQ), for instance, are based on the assump-
tion that the population distributions are multivariate normally distributed.
Consequently they yield optimal boundaries only if the populations are
indeed multinormal. If information is available on the shape of the distri-
butions and on the distribution parameters, it is advisable to make use of a
technique that takes this information into account. The efficiency of para-
metric techniques is greater than that of non-parametric techniques,
especially when only small samples are used.

If no such information is present or no technique exists that takes account
of the particular distribution of the population, then non-parametric tech-
niques should be used. But when parametric techniques are applied to cases
in which there are large deviations from the assumptions made about the
population distribution, the boundaries obtained will be far from optimal.

Overlapping regions. As stressed above, an appropriate choice of the para-
meters used in the classification is necessary to obtain good results. If one
wants to discriminate groups that resemble each other closely, it becomes
impossible to find a combination of parameters that allows complete dis-
crimination. In this case, the subspaces in the pattern space where the indi-
vidual classes are situated overlap. An example is the classification of South
Italian olive oils according to the region from which they derive, on the
basis of their percentage distribution of 8 fatty acids [1, 2]. Visualization
of the data set (consisting of 117 olive oil samples originating from three
different regions in Italy) by means of a LDA display (Fig. 1a) indicates that
some of these classes are discriminated (e.g., Calabria and North Apulia),
while others overlap (e.g., Sicily and Calabria).

The classification rules derived with discriminating techniques correspond
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Fig. 1. (a) LDA display of 117 samples of olive oils originating from three different
regions in Italy and characterized by their percentage distribution of 8 fatty acids. The
straight lines are the decision boundaries obtained with LDA; they are situated halfway
between the centroids of the classes (indicated by *). (b) Illustration of a class-modelling
approach: for each class separately, a class box is defined that surrounds the location of
the class in the pattern space by a closed boundary. Test object k falls outside all class
boxes, and so will be classified as an outlier, i.e., not belonging to one of the three train-
ing classes. (c) With discriminating techniques, probabilistic classifications are obtained
by using Bayes’ theorem;stating that the empirically-established probability must at least
equal a predefined threshold value (e.g., 0.95) corresponds to the creation of regions of
doubt around the boundaries. (d) DNustration of discriminating boundaries as obtained
with QDA.

to boundaries that subdivide the pattern space in as many regions as there
are classes in the training set (e.g., KNN, LDA and ALLOC). For a three-
group problem, for example, the pattern space is divided into three sub-
spaces. When a discriminating technique is used for the classification of
objects into overlapping classes, the decision boundary is forced through
the overlapping region, so that some samples are misclassified. An illustra-
tion is given in Fig. 1(a).

The emphasis in class-modelling techniques lies on the modelling of each
of the classes of the training set on the basis of the similarities between the
objects within a class (e.g., UNEQ, SIMCA and PRIMA). The decision rules
defined by these techniques are closed boundaries, one for each of the train-
ing classes separately. They envelop the class subspaces, thus defining a
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‘class box’ for each of the classes. An illustration is given in Fig. 1(b). The
construction of a class box for a particular class involves two steps. Based on
the training objects for that class, the class is first modelled by a representa-
tive point or interval (M). This estimates the location of the class population
in the pattern space. The data for each training object (Xp) belonging to
the class, can thus be split into a part explained by the model (M), and a
residual, unexplained, part (Ex): Xp = M + Ep. The residuals measure the
degree of dispersion of the class around the class model. They are used to
construct class boundaries around the class model. This involves the con-
struction of some kind of a confidence interval. If classes overlap, so will
their class boxes. When a test object falls inside the overlapping region of the
class boxes, the classification decision will be that there is not sufficient
evidence to clasify it unambiguously. Thus, for applications where classes
resemble each other closely, a modelling technique should be preferred to
a discriminating one because it recognizes overlapping regions.

Estimation of the degree of certainty of a classification. A third possible
distinction between techniques is based on their deterministic (e.g., KNN
and PRIMA) or probabilistic character (e.g., UNEQ and SIMCA). With a
deterministic technique an object is classified in one and only one of the
training classes and the degree of reliability of this decision is not measured.
Probabilistic techniques provide an estimate of the reliability of the classifi-
cation decision.

Probabilistic properties are introduced in different ways for discriminating
techniques and modelling techniques. Probabilistic discriminating techniques
make use of Bayes’ theorem. Once an object k has been classified into a
class (Qg), the posterior probability of class membership is estimated on the
basis of the Bayes equation.

P(Qq/Xy) = [P(xk/Qq) P(Q, )] /'[é P(Xk/Ql)P(Qz)} (1)

where P(Q;) is the prior probability of class Qj, P(X,/Q;) the probability
density of class Q; in position Xp, and r the number of classes in the training
set. On the basis of the posterior class membership probabilities, P(Qq/X}),
regions of doubt can be constructed around the boundaries (Fig. 1c), they
can consist, for example, of those regions where the posterior probability
for any class is less than 0.95.

In probabilistic modelling techniques, the boundaries of the class box
correspond to confidence limits defined on a statistical basis. They are con-
structed in such a way that a predefined fraction (1 — «) of the class falls
inside the boundaries of the class box. These methods are based on the
assumption that the distance towards the class model of objects belonging
to this class, follows a known distribution (e.g., a x2-distribution). On the
basis of this known distribution, the probability density of the class in X
can be estimated; [1 — P(Xr/Qq)] is a measure of class membership of the
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concerned object and can thus be used as a measure of the probability of
correct classification.

QOutlier detection. An important shortcoming of discriminating techniques
is that the whole measurement space is completely assigned to the classes
of the training set, so that an object cannot belong to a class not included in
the training set. The aberrant object must be classified in one of the training
classes. This is illustrated by object k in Fig. 1(c). Though this object is
assigned to the class of Calabrian oils, it really is an outlier.

In many applications, it is impossible to include training objects for all
possible classes in the training set. Furthermore, with real data, outliers
occur through faulty experiments. To detect such errors, it is necessary to
use methods that are able to detect outliers. When, with a modelling tech-
nique, an object is situated within none of the class boxes (e.g., object k in
Fig. 1(b)), this object can be suspected of being an outlier. With a discrimi-
nating approach, using only Bayes’ theorem, it is not possible to detect out-
liers. The probability density of the Calabrian class in the position of object
k is very small, but the probability densities of the other classes in this point
will be even smaller. The resulting posterior probability of each of the classes
in point £ will thus be in favour of Calabria, i.e., will be larger than the pre-
defined level of confidence (e.g., 95%). Outlier detection becomes possible,
however, if one states that the probability density of the class in which an
object is classified should, in the position of the object, at least be equal to
a predefined threshold value (e.g., 0.05). In this way, modelling aspects are
given to basically discriminating techniques. In contrast, modelling tech-
niques obtain discriminating characteristics when, for the classification of
an object situated in an overlap region, Bayes’ theorem is used in order to
derive to which of the overlapping classes it is most similar.

In general, the distinctions that have been made between modelling and
discriminating techniques on the one hand and probabilistic and determin-
istic on the other hand, and their resulting suitability for outlier detection or
use with overlapping regions, are only first and rough approximations. As
shown below, modifications of most existing techniques are possible such
that they show both modelling as well as discriminating aspects. Still, when
the accent is on discrimination or modelling, it is preferable to use a tech-
nique originally developed for that purpose. In the same way, methods
developed on a probabilistic basis are to be preferred when one desires
results in terms of probabilities.

Practical aspects

The following enumeration of practical aspects that should be considered
in selecting a technique is not limitative. The list merely points out some of
the most important general practical aspects.

Updates. In selecting a technique, one should wonder whether it is poss-
ible that new training classes will be added later to the training set. In that
case, it is advisable to use a modelling technique. Modelling techniques are
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disjoint techniques which means that the decision rules for each class are
independent from the other classes in the training set. This avoids repeating
the learning process for all the training classes each time a new group is
introduced. When it is possible that the training set will be updated with new
objects, it is preferable to use a technique (such as the nearest-neighbour
methods) in which classification is performed on the basis of a direct com-
parison of the pattern vector to be classified with those of the training
objects.

Variables of mixed type. In most applications, in analytical chemistry,
only continuous variables are used. However, there are applications where
nominal or ordinal data may also be interesting. In medical decision-making,
for example, important information may be included in the patient’s symp-
tom record. For such applications, techniques should be used that allow the
use of variables of mixed types.

Irrelevant parameters. It may be that not all of the parameters measured
are necessary for the classification problem under study. Moreover, in
general, the reliability of the classification functions decreases when
irrelevant parameters are introduced or when too many parameters are used.
Indeed, the reliability usually increases with an increasing ratio of number of
objects in the training classes to the number of parameters used. For LDA,
this has been discussed in more detail by Lachenbruch [3]. This implies that
for a given sample size the reliability is inversely proportional to the number
of parameters. It is therefore advisable to eliminate irrelevant parameters.

Ease of use. People applying the decision rule in practice are not neces-
sarily experts in the field of pattern recognition. Therefore, the decision
rules should be easy to handle and the methods used to derive them should
not be too sophisticated, at least in concept, so that the user understands
how they work.

SUPERVISED TECHNIQUES — AN OVERVIEW

In this section, an overview is given of the most frequently used supervised
pattern-recognition techniques in analytical chemistry and the extent to
which they meet the criteria enumerated in the previous section. Extensive
information on the mathematical background of the methods can be found
in the references given for each of the methods.

Discriminating techniques
The most important discriminating techniques are discriminant analysis,
the nearest-neighbour methods and the potential function classifiers.
Discriminant analysis [3]. Discriminant analysis, i.e., LDA (linear dis-
criminant analysis) and QDA (quadratic discriminant analysis) are probably
the best known and most extensively used supervised pattern-recognition
techniques. They both are parametric probabilistic discriminating tech-
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niques. They are parametric because they make assumptions about the
population distributions. The assumptions made by LDA are that the classes
are multivariate normally distributed and have equal variance/covariance
matrices, i.e., that the internal dispersion of all the classes is identical. Both
requirements are not absolute but should be considered as conditions for
achieving optimal boundaries.

In discriminant analysis, the decision rules are defined in a reduced space,
the axes of which are obtained by optimizing the criterion so that in this
space as much of the discrimination between the different classes will be
preserved. This corresponds to the optimization of the ratio of between-
classes to within-classes dispersion as observed in this reduced space. The
dimension of the reduced space (given by the discriminant axes or canon-
ical variables) is one less than the number of classes in the training set, or
equal to the number of variables, whichever is smaller. In the computation
of the canonical variables, stepwise selection criteria can be used in order to
include only those variables that are relevant for the discrimination. Dis-
criminant analysis thus offers the possibility of eliminating redundant param-
eters. In LDA, the boundaries between the different classes are situated half-
way between the centroids of the classes. This is rarely optimal in practice.
In medical decision-making, for instance, where the classification often con-
cerns the discrimination between healthy and ill people, the healthy group
is often much more condensed than the ill group. The decision rule obtained
with LDA is then situated too near to the more heterogeneous class so that
some objects are classified erroneously in the most condensed class. The use
of QDA in which there is no requirement for equal dispersion of the classes
is then to be preferred (Fig. 1d).

Both methods are of the probabilistic type. Using Bayes’ theorem, the
posterior probability may be used in order to estimate the degree of relia-
bility of the classification. As these techniques are of the discriminating
type, outlier detection is not directly possible. However, it becomes possible
if one states that the probability density for the class at the location of a
test object, may not be less than a predefined threshold value.

Because the decision rules are based on all the classes in the training set,
updating with new objects and/or new classes requires that the classification
rules be completely redetermined. As it is assumed that the classes are multi-
variate normally distributed, only variables measured on an interval or ratio
scale can be used in the classification problem.

The KNN method [4—6]. The simplest KNN method classifies a test
object in the learning class to which the majority of the K training objects
which are closest to the test object belong (Fig. 2). The appropriate K value
can be selected by means of the leave-one-out procedure. Usually, the
euclidian distance (on the raw data, on autoscaled data or on range-scaled
data) is used as the distance measure. However, other measures of distance
can also be used. If the objects are characterized by parameters of mixed types,
a distance measure can be used which combines mixed-type variables [7].
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Fig. 2. 3-NN classification: object k is classified in class @ because, from its 3 nearest
neighbours, two belong to this class.

Fig. 3. Illustration of the ALLOC method for a two-dimensional classification problem.
The lines correspond to the decision boundaries between the three classes (adapted
from [111).

In its simplest form, KNN is non-parametric (no assumptions on the
shape of the population distribution or on the distribution parameters),
deterministic and discriminating. As classification is done by direct com-
parison of the pattern vector of a test object with the pattern vectors of the
training objects, the boundaries that subdivide the pattern space are not
explicitly formulated by means of a set of mathematical functions. There-
fore, updating with new training objects or training classes is easy. This,
together with its mathematical simplicity, is the major advantage of this
technique.

Many modifications of these methods have been proposed that make
them more attractive. In order to detect overlapping regions, the following
approach can be used: an object is classified in a class if out of its K neigh-
bours at least L (with L > K/2) belong to that class. Otherwise it is assigned
to a region of doubt. Extensions of the basic version of KNN in order to
give the method probabilistic properties have been proposed by Loftsgaarden
and Quesenberry [8] and by Coomans and Massart [5, 6]. As for all dis-
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criminating techniques, this probabilistic character is obtained by using
Bayes’ theorem (Eqgn. 1). As KNN is a non-parametric technique, the proba-
bility density of the different classes for test object &, P(X3/Q)), is not based
on any assumption about the population distribution, but is estimated
directly by means of the training set.

This leaves the problem of outlier detection. Again one can think of modi-
fications to give the method possibilities for outlier detection. In a 1-NN
classifier, for instance, this could be achieved by comparing the distance of
the test object to its nearest neighbour, d(k,1-NN), with the distribution of
the distances observed between each training object and its nearest neigh-
bour belonging to that class. If d(k,1-NN) appears to be much larger than
the largest distance observed between the training objects of any particular
class, then the object can be suspected of being an outlier.

Potential function classifiers — ALLOC [9, 10]. The potential function
methods, of which the best known in analytical chemistry is ALLOC, can
be considered as generalizations of the KNN methods. In ALLOC each
object of the learning set is considered as a point in the pattern space sur-
rounded by a potential field. The highest potential is observed at the
position of the object and the potential decreases with the distance from the
object. The classification of an object from the test set into one of the
learning classes is determined by means of the cumulative potential of the
learning class in the position of the test object. The cumulative potential
is obtained by adding up the individual potentials developed by the objects
of the learning class in the position of the test object. The test object is
classified into the class which gives rise to the largest cumulative potential.
The boundary between two classes thus coincides with the positions where
the cumulative potentials caused by the learning classes have the same value.
ALLOC therefore belongs to the group of discriminating techniques (see
Fig. 3).

ALLOC is designed to perform classifications in a probabilistic way. Using
Bayes’ theorem (Eqn. 1), the posterior probability that the test object
belongs to a class can be calculated. This probability is not based on an
assumption on the shape of the distribution of the population as in LDA,
but on the basis of the mean potential of training objects of class @; in
the position k. "

ALLOC is a non-parametric technique. As different types of functions
can be used to create a potential field around the training objects, functions
can be applied which allow the combined use of variables expressed on
different types of scales [10]}. Used as such, ALLOC does not allow
detection of outliers. However, as with LDA, outlier detection becomes
possible if one states that an object may only be classified into a class if
the probability density of that class in the position of the test object exceeds
a given threshold value, as defined on the basis of the training objects of that
class. Because ALLOC performs the classification of a test object in a direct
way, updating of the training set with new examples is easy to perform.

As illustrated by Coomans et al. [11], potential function classifiers
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are sensitive to irrelevant parameters. Therefore a feature-selection pro-
cedure, such as the one included in the ALLOC package which is based on
the concept of potential functions, should be used in the training procedure.
Besides the ‘pure’ potential function classifiers as described above, associ-
ations with other supervised techniques such as LDA [12] and SIMCA [13,
14] also seem to be promising.

Modelling techniques

UNEQ® [15]. As said before, the construction of the class box for a class
(Qq) involves two steps. First, the class is modelled. In UNEQ, the class
model consists of a single point, the class centroid. The distance of samples
towards the class centroid is measured as the generalized distance d(k My):
d(k, M) ={d*(ng =P —2)Ing — (p/ng) |'*
with d? = (X — Xg)' Sp' (X — Xg); X, is the pattern vector of object k,
Xq the mean vector of class Qq, S, the sample variance/covariance matrix
of class Qg4, p the number of variables used to construct the model, and
ng the number of training objects in class Q.

One of the interesting properties of this distance is that it takes the corre-
lations between the variables into account in the computation of the dis-
tance between an individual sample and the centroid.

In UNEQ class models are developed for each class of the training set
separately, thus the training classes may have different dispersions, i.e.,
different variance/covariance matrices. UNEQ therefore stands for UNEQual
dispersed classes. UNEQ is a parametrical technique. It assumes that the
classes are multivariate normally distributed. If this assumption applies, then
the square of the generalized distance of objects belonging to the class follows
a x-square distribution with p degrees of freedom. The class boundary around
the class model coincides with a confidence interval developed at a pre-
defined a% significance level. Mathematically, the boundary is defined by a
value d,; d2 is the value for which the probability is (1 — «) that a x-square
distributed variable has a value less than d?,,. Geometrically, a UNEQ class
box thus coincides with a (hyper)-ellipsoid with the population mean as its
centroid and its size defined by d.,;, (Fig. 4). Although UNEQ is parametri-
cal and needs multivariate normally distributed data, the requirements are
less drastic than for LDA. This is due to the disjoint character of the
method.

UNEQ is a probabilistic technique. If the distribution of d? is known, it is
also possible to associate with each value of d> (k,Mg) the probability P[xp
d? (k,My)]. This is the probability that an object that belongs to the popula-
tion is s1tuated nearer to the populatlon mean than the object k; 1 —P[xp
d*(k,M q)] is the degree of class membership.

SIMCA [16]. In SIMCA, each class of the training set is modelled by a
principal component (PC) model. The number of significant components for
class Qg4, a4, can be defined on the basis of several criteria. In SIMCA, the
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Fig. 4. Geometrical illustration of the shape of class boxes obtained with the UNEQ
method.

Fig. 5. Geometrical illustration of the shape of class boxes obtained with the SIMCA
method. Class Q is described by a 2-PC model (ag = 2), and class R by a 1-PC model
(ar=1).

cross-validation procedure is recommended for this purpose. The combina-
tion of the a, significant PC’s defines an a, dimensional plane in the pattern
space. The situation of the class model in this plane is further defined by
the range of the scores of the training objects along each of the significant
PC’s. According to the number of components used to model a class, the
shape of the class model can be a point (a, = 0), a line segment (a, = 1),
a rectangle (¢, = 2), and so on. The distance between an object and the
class model is given by sp(g) (residual standard deviation for object k
towards the class model of class Q).

p
k(@)= T efr/(p—aq)
J=1

sx(q) is a measure of how well object k is explained by the class model.
Geometrically it corresponds to the orthogonal distance between the object
and the plane defined by the significant components.

SIMCA is a parametric technique. It assumes that the residuals are nor-
mally distributed. Therefore, the ratio sfe(q)/s% (@)[= Fr(q)] for objects
belonging to class Q, is expected to follow an F-distribution, with (p — a,)
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and (p — a,)(n, — a, — 1) degrees of freedom; so(g) measures the mean dis-
tance between objects belonging to the class and the class model. This makes
it possible to define which is the largest value that F may have (say F.,ii)
in order that an object will be classified in that class. F,,;, is the value for
which (1 — «)% of the objects belonging to the class have an F value less
than F,,;;. From F,,, the value s.;; can be derived, i.e., the distance
defining the boundaries of the class box:

Serit = [Fcrit 8(2) (q)] 2

Geometrically, the structure of the class box obtained with SIMCA depends
on the number of components used to define the class model (Fig. 5).

SIMCA is also a probabilistic technique. On the basis of the F distribution,
it is possible to associate with each Fj ratio the probability P[F < Fj(q)]
that an object belonging to the class is situated nearer to the class model
than the classified object k; 1 — P[F < Fp(q)] is again the degree of class
membership of object &.

At first sight one may have the impression that UNEQ and SIMCA use
completely different approaches but there are some points of resemblance.
As will be explained in detail at a later date, it can be proven that in case
of uncorrelated variables with equal standard deviation, classes are spherical
and will thus with SIMCA be modelled by a single point, namely the class
centroid. In this situation, there is a simple relationship existing between the
distance of an object towards the SIMCA model and the distance of that
object towards the UNEQ model. In case of correlated variables, SIMCA
models a class by at least one principal component, thus yielding differently
shaped models compared with UNEQ. However, the PC’s computed with
SIMCA coincide with the major axes of the (hyper)-ellipsoid that defines the
UNEQ class boundaries. In fact, UNEQ is intrinsically based on principal
components analysis (PCA) while PCA is used explicitly in SIMCA. This
implies that both methods not only enable classifications to be performed
but also allow the relationship between the variables in each class to be
explored, by interpreting the loadings of the variables on the significant PC’s
and to define important directions within each class. This makes them par-
ticularly useful for some specific analytical applications in which it is import-
ant to have an idea about the direction within the classes. One type of classi-
fication problem in food research for instance concerns the identification of
adulteration, e.g., the adulteration of orange juice by cheaper products such
as apple juice. For such an application, the training set will consist of samples
of pure orange juice prepared with oranges having a specific origin, Though
the origin of the fruit will influence the class model, the use of mixtures of
oranges from different origins is legally allowed (at least in Belgium). There-
fore when different classes of orange juice, each with a specific origin, are
modelled, the fact that a test sample falls outside all class models does not
necessarily mean that it is not a pure juice but can also indicate that the
sample is a mixture. Information on the direction in which this sample is
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outlying, i.e., the position of the sample on the PC’s can reveal whether the
sample is situated far away from all ‘pure’ orange juice classes, in which case
it probably is adulterated, or situated somewhere between the ‘pure’ classes
in which case it may be a mixture. Another example in which the interpre-
tation of the directions within the classes is important concerns medical
diagnosis. Indeed, the degree of illness of patients generally coincides with
one of the main directions in the disease class [17]. When a patient is classi-
fied into a disease class, it is important to know where he is placed along
this direction.

PRIMA [18]. As in UNEQ, PRIMA models the classes by the class cen-
troid. The spread of the class around this modelling point is measured by the
dispersion of the individual parameters, i.e., by their standard deviation. The
resemblance between an object and the class model for class Q, is measured
as the euclidian distance calculated on the autoscaled variables:

p 1/2
aMe) = T Ten— 5@/ (@]
1 =1
In contrast to UNEQ, correlations between the parameters are thus not
taken into account. The class boxes defined with PRIMA therefore have a
spherical shape around the class centroid (Fig. 6). The radius of these spheres
is defined by a value d.,. As stated by Juricskay and Veress [18], d .y
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Fig. 6. Geometrical illustration of the shape of class boxes obtained with the PRIMA
method. The class box for class R is less suitable as the variables are strongly correlated
This problem can be overcome by decorrelating the variables by means of PCA.
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should be a suitably selected limiting value, evaluated iteratively on the basis
of the recognition rate. This means that a value should be sought such that
an optimal recognition ability is obtained for all the training classes under
consideration. This is an essential difference from UNEQ and SIMCA in
which the class boundaries are defined on the basis of an underlying distri-
bution. Therefore, PRIMA is a non-parametric method. It also is a determin-
istic method as no information is obtained on the reliability of the classifi-
cation decision.

Another essential difference is that PRIMA ignores the correlations
between the variables. The PRIMA class boxes might therefore be less suit-
able when some of the variables are strongly correlated. This problem can
however easily be overcome by applying PRIMA on decorrelated variables,
obtained by an orthogonal transformation of the original variables (i.e., on
the principal component scores) rather than on the original variables. In con-
trast to UNEQ and SIMCA which, because of the assumptions they are
based on, can only be used with continuous variables, PRIMA can also be
used with mixed-type variables, provided that a suitable measure of distance
is used.

EXPERT SYSTEMS

Appropriate selection of a technique for a given application is not easy for
non-experts in this field. The use of expert systems might therefore be an
attractive alternative. Expert systems are software products that incorporate
the knowledge of the expert and try to make consistent decisions on the
basis of this knowledge. An expert system consists of two parts: the
knowledge base and the inference machine that makes decisions on the basis
of the content of the knowledge base. In the so-called rule-building expert
systems, the knowledge can be entered as examples, i.e., as a data base con-
sisting of a set of observations made on several objects with a known *‘deci-
sion”, i.e., a known classification.

Typically, this is the kind of information one starts from in a supervised
application. As the final purpose of supervised pattern-recognition tech-
niques and the rule-building expert systems is the same, namely a classifi-
cation, the performance of two such commercially available systems, EX-
TRAN (J. Perrone and Associates, San Francisco, CA 94114; 1985) and
TIMM (General Research, Santa Barbara, CA 93105; 1985), was investigated.
Both systems were compared for their performance on a data set to which
several pattern-recognition techniques had already been applied, i.e., the
classification of olive oils characterized by the percentage distribution. of
fatty acids and originating from different regions in Italy. Full detail will be
given at a later date, but some general conclusions can be summarized.

EX-TRAN. EX-TRAN is an expert system that generates a decision-tree
set of rules. The program searches the variables one at a time to identify the
one with which it can best separate one class from another. The choice is
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based on an information theoretical measure. The program splits the training
set into a number of subgroups on the basis of this parameter. Objects with a
parameter value less than the value midway between the two closest objects
of the subgroups are assigned to one subgroup and those greater than or
equal to the threshold value are assigned to the other. For each subgroup
separately, this procedure is repeated until all objects within a subgroup belong
to the same class. Thus EX-TRAN is a sequential univariate classification
method. EX-TRAN clearly belongs to the group of discriminating tech-
niques. It creates, piecewise, linear boundaries with the directions of the
different parts of the boundaries orthogonal to the variable axes. As an illus-
tration, Fig. 7 gives the decision rule obtained for the discrimination
between East and West Ligurian olive oils. As no indication is obtained on
the probability of having made the correct classification decision, EX-TRAN
only allows a ‘“‘black/white’’ classification. Outlier detection is not directly
possible.

The fact that this system clearly belongs to the group of non-parametric
deterministic discriminating techniques, makes it appropriate only for classi-
fication problems in which there is little noise in the data set, i.e., for appli-
cations where the classes are separable to a high degree. EX-TRAN has some
attractive practical advantages: as it is designed for use by non-experts, it is
extremely user-friendly; variables of mixed types can be used; and it uses
only as many variables as necessary in order to define the boundaries. This
indicates that it contains a built-in feature-reduction procedure.

TIMM. The user manual of TIMM is much less clear about the algorithm
used to derive the decision rules. The fact that this program is presented as a
black box is a serious disadvantage. TIMM uses some kind of nearest neigh-
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Fig. 7. (a) Decision tree sets of rules derived with EX-TRAN for the discrimination
between East and West Ligurian olive oils. (b) The training set, consisting of 33 East and
34 West Ligurian oils is split stepwise into subgroups until all of splinter groups contain
only samples from the same origin. Though the samples are characterized by 8 fatty acids,
only three are used for the discrimination.
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bour algorithm with the euclidian distance based on range-scaled variables as
distance measure. After the objects have been classified, a reliability value is
given to the classification. Again, insufficient information is given on how
this reliability is computed. Anyway, this parameter seems to have no statis-
tical background. Like EX-TRAN, TIMM thus belongs to the group of non-
parametric deterministic discriminating techniques. As TIMM basically uses a
nearest neighbour approach, it has the same advantages and disadvantages:
features of mixed types can be used (nominal, ordinal, numeric); updating is
easy; and the program is easy to use and to understand.

Conclusion

The commercially available rule-building expert systems appear to be
extremely user-friendly, which is an important advantage, but the algorithms
used in order to derive the decision rules are not optimal for all applications.
Very powerful supervised techniques are available, such as the probabilistic
modelling techniques. Thus a combination of the advantages of both, namely
the incorporation of modelling algorithms into an expert system framework,
would yield very attractive and powerful tools for most supervised appli-
cations.

The authors thank the Fonds voor Geneeskundig en Wetenschappelijk
Onderzoek and Lotto for financial support.
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SUMMARY

In multivariate data analysis such as principal components analysis (PCA) and projec-
tions to latent structures (PLS), it is essential that the training set systems (objects) are
selected to provide data with substantial information for model parametrization, and to
represent properly any future situations where the multivariate model is used for predic-
tions. In the framework of multivariate projections (PCA, SIMCA and PLS), elementary
concepts of statistical design (fractional factorials and composite designs) can be used
with the latent variables (PC or PLS scores) as design variables. The plan of action thus
becomes: (1) problem formulation (specify aim and model, make a conceptual division of
the investigated system into subsystems); (2) collection of multivariate data on a range of
subsystems; (3) estimation of the practical dimensionality of the data for each type of
subsystems by PC or PLS analysis; (4) use of the PC or PLS scores () as design variables
in the combination of subsystems to systems in the training set; (5) measurement of res-
ponses (Y); (6) analysis of data by PCA or PLS; (7) interpretation of results with possible
feedback to steps 1, 2 or 3. The procedures are illustrated by two problems: a structure/
activity relationship for a family of peptides, and optimization of an organic synthesis
with respect to system variables (solvent, substrate, co-reactant) and process variables
(temperature, reactant concentrations).

Chemists have only recently realized that it is inefficient to change one
“factor’ at a time when investigating a system by a series of experiments [1].
As an illustration, consider a simple process influenced by only two factors
(Fig. 1). By changing all variables simultaneously by factorial or fractional
designs [1] or simplex designs [2], the experimental domain can be scanned
efficiently and the real optimum reached. In this way, the optimum is reached
with fewer experiments than are usually needed with the ‘‘one variable at a
time” (OVAT) approach [1].

A second area where OVAT has been shown to be inefficient is in multi-
variate analysis, i.e., the anglysis of data tables. The essence of multivariate
analysis is to look at all data simultaneously, e.g., as points in a space with as
many dimensions as there are variables (see Fig. 5, below). With more than
three variables, projections of the multidimensional space give patterns, views
of the data, which display the essential information in the data [3]. A conse-
quence of the superior information content of multivariate data is that any

0003-2670/86/$03.50 © 1986 Elsevier Science Publishers B.V.
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‘Fig. 1. A simple process influenced by only two variables. Making experiments by chang-
ing one variable at a time (OVAT) leads to a false optimum, +, far from the real optimum.
When the first variable is changed, one finds the ridge, but when thereafter the second
variable is changed, one falls off the ridge again. This is because it is necessary to have a step
length which is large enough to allow noticeable differences in response between the
experiments. Only by changing both variables simultaneously with, for instance, a fac-
torial design, can the real optimum be reached. This is because such designs give informa-
tion about favourable directions in any angle to the coordinate axes. The upper right in
figure contains a factorial design, a square in the case of two variables.

chemical “effect’ or response should be described, quantified, characterized,
by a multitude of variables. The projection of this multitude of measurements
will provide a better response variable than a single measurement [4—6].

In the construction of a training set for a data analytical projection, it is
essential that this set of objects spans the pertinent experimental region
properly. If not, the resulting model will give bad predictions in parts of the
region; i.e., the training set must be selected according to a statistical design.
In the context of multivariate analysis, this training set selection is usually
not as easy as an ordinal statistical design. What can be experimentally man-
ipulated is often a change of subsystems; e.g., change between different sol-
vents and catalysts, or the change of a substituent in a reactant. These changes
often do not correspond directly to the individual factors of the problem,
but involve the simultaneous change of several factors. Thus, for instance,
the change of solvent in a synthesis may involve the change of polarity,
hydrogen-bonding ability, charge-transfer complexing ability and still other
factors. It is difficult to make a change so that only one of these factors
changes and the others remain constant.

With multivariate projection methods, however, one can see a solution to
this problem of multivariate design, namely a design in terms of the latent
variables resulting from an initial projection of a multivariate characterization
of the involved subsystems. This is the aim of the present paper. The
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illustrations given include: (i) the design of series of compounds for the
development of structure/activity relationships; and (ii) the design of series
of experiments for the optimization of a chemical synthesis with respect to
the choice of solvent, coreactant and substrate.

STATISTICAL DESIGN

Beginning with the pioneering work of Fisher [7], it has become clear
that in the experimental investigation of a system, all variables influencing
the system must be changed simultaneously in order to make the measured
data contain information about the position of the system optimum. Figure 1
above is a geometrical demonstration of this well known fact.

The simultaneous change of all variables demands a strict mathematical
protocol in order not to lose experimental control. For this purpose, Yates
[8], Finney [9], Plackett and Burman [10], and Box and Wilson [11]
developed the protocols of factorial designs, fractional factorial designs, and
composite designs. Several good text books present the methodology in detail
(1,12, 13].

Two-level factorial designs form the basis for these schemes. Each variable
that is changed (pH and T in Fig. 1) is changed between two and only two
levels, denoted by + and — (high and low). A complete factorial design (CFD)
in two variables is given by the four experiments ++, +— —+ and ——. In
general, with K variables, 2% experiments are made in a CFD. These can be
visualized as the corners of a K-dimensional super-cube. Figure 2 shows this
design for three variables. In a composite design, the factorial design is
expanded with experiments on the variable axes, such as (0, 0, 0), (0, 0, 1.3),

X3

¢
s

Fig. 2. The eight experiments in a 2° complete factorial design (CFD) are performed in
the corners of a cube. In p variables, the CFD is a hypercube in p dimensions.

Fig. 3. A composite design is a factorial design expanded with additional experiments on
the variable axes.
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(0, 1.3, 0) and (1.3, 0, 0), (0, 0, —1.3), . ... for the case with three dimen-
sions (Fig. 3).

With many variables, however, the 2% CFD and its composite extension
correspond to an impossibly large number of experiments. For K = 10, for
instance, 2'° equals 1024, which might need years of experimentation. For
this case, the fractional factorial designs (FFD) provide relief.

If it can be assumed that part of the variables, regardless of which, has
only slight influence on the studied process, it is sufficient to make a frac-
tion of the experiments of a CFD and still get almost the same information
(Fig. 4). For multidimensional designs, this can lead to an enormous reduc-
tion in the number of experiments. Instead of making 1024 experiments in a
219 CFD, a FFD with 16 carefully selected experiments may give sufficient
information.

Box and Meyer [14] have recently reviewed the application of FFD and
found that a reduction factor of about 0.20 is typical in practice. Thus only
about a fifth of the variables has substantial influence on a typical process
and therefore a large reduction is usually possible, i.e., using 2X¥ ~7 FFDs.

Houw to apply statistical designs in multivariate modelling

The basic difficulty in applying statistical designs in multivariate analysis
is that the factors that the investigator can manipulate separately are often
not the same as those thought to influence the investigated system.

In peptides, for instance, the investigator can with some difficulty change
one amino acid to another in a given compound. But the factors believed to

Vard

Fig. 4. A fractional factorial design, FFD (here half factorial) in three variables,

Fig. 5. A 3-space with a swarm of points approximated by a one-dimensional PC model (a
straight line). The direction coefficients of the line comprise the loading vector p, and the
coordinates of the projections of the points down on this line comprise the score vector t.
The values of the latter are measured from the middle point of the data so that t; is zero
in this middle point as indicated in the figure. In one direction from the middle point, ¢;
is positive and, in the other direction, ¢; is negative. Spaces with more than three dimen-
sions have fundamentally the same properties as a 3-space with respect to such geometrical
concepts as points, lines, planes, angles, and distances. Hence, 3-spaces can be used as con-
ceptual models for M-spaces with 4, 5, 8, or any finite number of dimensions.
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influence the biological properties of the peptide are lipophilicity, size, elec-
tronic inductive effect, hydrogen bonding, etc. And when the amino acid at
one position is changed, all these factors change. It is more or less impossible
to make a structural change in a peptide so that only one factor, say lipo-
philicity, is varied.

Similarly, in the second example discussed below, that of organic synthesis,
the change of solvent or substrate involves the simultaneous change of a
number of microscopic factors such as polarity, hydrogen bonding, solubility,
ete., factors that cannot be individually manipulated in experiments.

A solution to these difficulties in applying statistical designs to multi-
variate problems has been outlined by Hellberg et al. [15] and Carlson and
co-workers [16, 17]. The subsystems that can be changed in the experiments
(amino acids in the peptide structure or the solvent and reactants in the syn-
thesis) are characterized by a broad range of multivariate data. These multi-
variate data are then projected down on few-dimensional subspaces, separately
for each type of subsystems. Thereafter, the coordinates in these subspaces
(the latent variables, here called ‘‘principal properties’) are used as design
variables. Indeed, this gives a plan which works in practice as will be seen
below, but first we shall briefly rehearse this approach to multivariate analysis.

It should be noted, however, that there are important applications of
multivariate analysis in chemistry where the involved factors can be directly
controlled and manipulated and where consequently ordinary designs in
these variables can be used. Multivariate calibration in analytical chemistry
is an example of this case. The concentrations of the analytes can be set to
any desired value in the standard samples. A design, say a composite design,
in these analyte concentrations will provide a good and informative calibra-
tion set. The only slightly unusual point in this calibration situation is that
the design is made on the Y matrix instead of on the X matrix, but thisis a
natural consequence of the use of the inverse calibration approach.

MULTIVARIATE ANALYSIS

As discussed by Wold and co-workers [5, 6], all common problems in
multivariate data analysis, i.e., the analysis of data tables, can be approached
by means of projections. Different types of problem correspond to different
projections.

Principal components analysis (PCA) provides the basic projection of a
data table with the aim to get an overview and a good approximation of the
table. Principal components analysis can be regarded geometrically as finding
the linear structure (line, plane or hyperplane) that adequately approximates
the swarm of data points in the K-dimensional measurement space (M-space).
Though an M-space with more than three dimensions cannot be directly
visualized, 3-spaces serve as good models of higher-dimensional spaces, in
that all basic concepts such as points, lines, planes, angles, and distances have
the same properties in both 3-spaces and M-spaces with any finite number of
dimensions.
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Although the PC model is a linear geometrical structure, it is capable of
good approximation of non-linear data structures. Thus, for instance, a curve
in M-space is well approximated locally by a plane. The PC model is a local
linearization of arbitrarily complex data structures which is powerful as long
as the data structures can be seen as generated by a continuous and differen-
tiable process. In this way PC and PLS models (see below) of data matrices
correspond to polynomial expansions of bivariate (x, y) data. In M-space,
each object (row in the data table) is represented as a point and hence the
data table is a swarm of points and the PC model is a line or plane or hyper-
plane (Fig. 5).

Mathematically, PCA corresponds to the decomposition of the data matrix
X into a mean vector plus a score matrix T times a loading matrix P’ plus
residuals E.

X=1x+ TP + E

The dimensionality of the PC model, A, corresponds to the number of
columns in T and rows in P'. It can be shown that, provided that the objects
represented in the data matrix X are similar to each other, the dimensionality
A is small [18]. A good way to establish an adequate dimensionality for a
given data set is cross-validation [19, 20]. This gives the dimensionality that
corresponds to the best predictions of data elements deleted from the matrix.

The loading matrix P is a projection matrix with orthogonal columns that
projects X on a hyperplane giving the projection coordinates T. The score
matrix T also has orthogonal columns. This projection can be considered as
constructing a window with A dimensions in M-space and looking at the data
through this window. Plotting the columns in T against each other gives the
view through this window (see Figs. 7 and 8 below).

In the present context PCA is used to reduce the dimensionality of data
matrices characterizing the changing subsystems of an investigated system.
The score vectors t are few and orthogonal and summarize the properties of
the subsystems. Hence, these ¢-scales can be used as design variables governing
how the subsystems should be combined to give an informative training set
of systems.

Example 1. Principal components analysis of a property matrix for 20 amino
acids

To get an idea of the complexity involved when one amino acid is changed
to another in a protein orin a peptide, Hellberg et al. [15] collected a matrix
of 29 physical and chemical measurements such as pK,, pI, 1*C-n.m.r. of the
a-carbon and the carboxyl carbon, 'H-n.m.r. of the a-hydrogen, and various
hydrophilicity scales, for the 20 amino acids coded by RNA in the amino
acid synthesis.

A PC model with three significant dimensions (cross-validation) was
obtained, explaining together about 60% of the variance of the data. The three
score vectors (t, — t; in Table 1) can be regarded as “principal properties”’
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TABLE 1

Values of the principal properties ¢,, ¢, and t,, resulting as scores from a principal com-
ponents analysis of a data matrix of 29 variables for the twenty ‘‘natural’”’ amino acids.
These scales are tentatively interpreted as hydrophilicity (negative lipophilicity), bulk and
electronic effect, respectively

Amino t, t, t, Amino t, t, t,
acid acid

Ala A 0.07 —1.73 0.09 His H 2.41 1.74 1.11
Val Vv —2.69 —2.63 —1.29 Gly G 2.23 —5.36 0.30
Leu L —4.19 —1.03 —0.98 Ser S 1.96 —1.63 0.57
TleI —4.44 —1.68 —1.03 Thr T 0.92 —2.09 —1.40
Pro P —1.22 0.88 2.23 CysC 0.71 —0.97 4.13
Phe F —4.92 1.30 0.45 TyrY —1.39 2.32 0.01
Trp W —4.75 3.65 0.85 Asn N 3.22 1.45 0.84
Met M —2.49 —0.27 —0.41 Gln Q 2.18 0.53 —1.14
LysK 2.84 1.41 —3.14 Asp D 3.64 1.13 2.36
ArgR 2.88 2.52 —3.44 Glu E 3.08 0.39 —0.07

of the amino acids, i.e., principal properties that summarize most properties
of the amino acids. Thus most measurements on an amino acid are fairly well
described as linear combinations of these three scales.

FPartial least-squares projections. With PC projections, it was possible to
obtain a representation of the variation in the matrix X as TP’ with the only
aim that this would provide a good approximation of X. This PC projection
is useful for getting a representation of X and also for obtaining models of
separate classes of objects when the aim is classification or discrimination
between classes of objects (the SIMCA method [5, 6]).

A common problem in multivariate data analysis is to search for correla-
tions between batteries, blocks, of variables with the scope either to predict
one block from the other or to seek any joint information in the blocks.

Optimization is a typical PLS application, where a block of X-variables is
manijpulated experimentally to change the performance of a system and a
block of Y-variables measure the response of the system with respect to
properties of interest, e.g., the biological effect of a compound, or the yield
of a synthesis. A model predicting Y from X then gives information on how
to change X to improve Y.

The appropriate projection methodology for these problems was developed
by H. Wold [21] and is called PLS (partial least-squares modelling in latent
variables, or projections to latent structures). Splitting the data matrix Z
variable-wise into the two blocks X and Y, the PLS method projects each of
the blocks onto a model of the same form as the PC model:

X=1x+ TP + E
Y=1y+UQ +F
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In the case for which the Y block consists of a single variable (corresponding
to multiple regression), Y is not projected but U is identical to Y. When the
aim is to predict Y from X (predictive PLS or PPLS), there is also an inner
predictive relation for each pair (dimension index a) of column vectors in U
and T: u, = b,t, + h,. Here h, is a vector of residuals and b, is a regression
coefficient.

For correlative PLS, also called consensus PLS (CPLS), each pair of column
vectors in U and T are instead modelled by a common component v (g, and
h, are vectors of residuals and b, and c, are loading coefficients): t, = b,v, +
g, and u, = ¢,v, + h,. As for PCA, the appropriate dimensionality of PLS
models can be established by cross-validation.

Example 2. A structure/activity relationship for a peptide family

For a family of N = 15 pentapeptides, Ufkes et al. [22] measured the
bradykinin potentiating activity. Hellberg et al. [15] parametrized the pep-
tide structure by describing each amino acid position by the three principal
property scales (see Example 1). Thus, the structure of each peptide is quan-
tified in terms of fifteen numbers (5 positions X three scales).

A PLS model between the (15 X 15) structure matrix X and the (15 X 1)
biological activity matrix Y gave two significant dimensions explaining 97%
of the variance in Y. The resulting model was used to predict the bradykinin
potentiating activity for another set of pentapeptides [22] as shown in Fig. 6.
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Fig. 6. Predicted activity plotted against observed activity for the pentapeptides of Ufkes
etal, {22]: (o) the 15 compounds included in the development of the PLS model (training
set); (o) prediction set of compounds not included in the model development.



25

Model dimensions, factors, latent variables. In Example 1, the score vectors
(columns in T) were seen as new variables that were latent (hidden) in the
original set of variables, X. A projection by PCA or PLS of a property matrix
uncovers these latent variables and gives them a quantitative meaning. In a
way, these latent variables, often also called factors, can be regarded as more
fundamental than the original measured variables; they represent the under-
lying structure of the investigated system.

The latent variables have the interesting property of being fairly indepen-
dent of the number of original variables. With an increasing number of
measured variables, K, the latent variables t, become better determined. The
only change with K is that for some large K values, minor latent variables can
become statistically significant.

The design problem. If a set of penta-peptides were to be constructed for
investigating a structure/activity relationship, then the initial prototype
would not be, say, Ala-Ala-Ala-Ala-Ala and one amino acid position at a time
would not be changed among a set of possibilities, to give for instance:

1. Ala-Ala-Ala-Ala-Ala 2. Leu-Ala-Ala-Ala-Ala
3. Ser-Ala-Ala-Ala-Ala 4. Glu-Ala-Ala-Ala-Ala
5. Phe-Ala-Ala-Ala-Ala 6. Ala-Leu-Ala-Ala-Ala
7. Ala-Ser-Ala-Ala-Ala 8. Ala-Glu-Ala-Ala-Ala
9. Ala-Phe-Ala-Ala-Ala 10. Ala-Ala-Leu-Ala-Ala
11. Ala-Ala-Ser-Ala-Ala 12. Ala-Ala-Glu-Ala-Ala
13. Ala-Ala-Phe-Ala-Ala 14. Ala-Ala-Ala-Leu-Ala
15. Ala-Ala-Ala-Ser-Ala 16. Ala-Ala-Ala-Glu-Ala
17. Ala-Ala-Ala-Phe-Ala 18, Ala-Ala-Ala-Ala-Leu
19. Ala-Ala-Ala-Ala-Ser 20. Ala-Ala-Ala-Ala-Glu

21. Ala-Ala-Ala-Ala-Phe

This “‘design” (or rather lack of design) is obviously a variant of the old
OVAT approach. It is also easy to see that this set of peptides has the same
problem as the OVAT “design’ in Fig. 1, i.e., it lacks information about the
direction leading to higher response, here biological activity Y. If, for instance,
Glu-Phe-Ala-Leu-Ser is the ““best’ peptide, this cannot be inferred from data
measured on the above set of 21 members.

The deplorable design exemplified above may be christened the COST
design (change one substituent at a time). Yet, this COST design has surpris-
ingly been recommended for the investigation of peptides and proteins [23,
24]. The frequent use of the COST design for constructing compound sets
for structure/activity investigations is a probable reason for the common lack
of success in this area.

The use of latent variables as design variables. Once some idea has been
obtained as to what is changing when one amino acid is replaced by another,
i.e., the three principal properties t,—t;, a better design would be obtained
by the following procedure.

(a) Use the principal properties t,—¢; as design variables. This gives 15
variables for the set of penta-peptides.
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(b) Make a fractional factorial design (FFD) in these variables. This design
must have a minimum of 16 members because there are 15 variables. The
FFD is generated in the standard way [1]:

O U o k SE SR S S O S
ttt —tt —t— —F— ———
e i S
tt— —— ——— +—— +++

F—t =t +—— —— t——
=t ——+ ——F ——F —++
Fm— t—— tt— —t— —F+
Fm— ——— —tt

PRNeo kL

9. —++ +— —++ +— —+—
10, —++ —— ++— —+ +—+
11, —4— +—+ —+ —+— +—+
12, —+— —+ +—— +4++ —+—
18, —+ 4++— ——— +4++ ——+
14, ——+ —4+— 4+—+ —+— ++—
15, —— +4+ —F— ——+ ++—
16, —— —++ +++ +—— ——+

Thereafter columns 1—3 are identified with the amino acid in position one,
columns 4—6 with position two, etc., and the amino acid with the most
similar sign pattern in t is selected from the table of ¢ values (Table 1). In
this similarity, ¢; is more important than ¢, which, in turn, supersedes t,.
This gives for peptide no. 1, for instance, Asp-His-Asn-His-Asp, and for pep-
tide no. 2, Asp-Trp-Tyr-Tyr-Val.

(¢) Include a centre point (here a peptide with amino acids with ¢ values
near zero, say Ala-Ala-Ala-Ala-Ala) plus some randomly generated numbers
to account for the fact that the latent variables may not be a complete des-
cription of the peptide structural change.

This set of penta-peptides with around 20 members will give dramatically
more information about the relation between structural change and change
in biological activity than the COST set of 21 peptides in the preceding
section. The development of ‘“‘principal properties’ of amino acids and the
following design of informative sets of peptides is very recent, and therefore
the third step, the essential one, has not yet been taken. So far, nobody has
made such a designed set of peptides and analyzed its information content
with respect to a biological test system.

THE INTEGRATED MULTIVARIATE APPROACH: MV?=MVC x MVD X MVA

With the amino acid/peptide example in mind, the following conclusion
can be drawn. To investigate complicated systems like the relationship
between structure and activity, or the influence of solvent and substrate on a
chemical synthesis (see below), there are three concepts that should be
approached multivariately. These are multivariate characterization (MVC),
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multivariate design (MVD), and multivariate analysis (MVA). Each of these
forms a cornerstone in the MV?3 approach and each is critically dependent on
the other two; they form a triangle rather than a ladder.

A further example will serve as an illustration to this approach.

Example 3. Optimization of the Willgerodt-Kindler reaction

This example seems to be the first complete application of the MV?3
strategy to a chemical problem. The Willgerodt-Kindler reaction is a com-
plicated heterogeneous reaction with no well established mechanism, where
an aromatic ketone in the presence of sulphur reacts with an amine and
rearranges to a carboxylic acid thioamide. For a given selection of solvent,
ketone and amine, the reaction is influenced by the continuous variables
temperature (T'), amount of sulphur (S) and the ratio amine/ketone (R).

Multivariate characterization (MVC)

Chemical structure, biological activity, solvent influence, substrate proper-
ties and other complicated issues cannot be quantified in terms of a single
variable. Rather, as many relevant measurements as possible should be used
for this characterization, to provide a possibility for multivariate analysis to
extract stable latent variables, ‘“‘principal properties’ for the actual systems.

The scope of a multivariate characterization may be regarded as quantify-
ing analogy. It can be shown that any variable measured on an ensemble of
similar objects (e.g., peptides in a structural family or synthetic runs which
are modifications of the same ‘“‘prototype synthesis”) is correlated to any
other variable measured on the same ensemble according to a simple factor
structure [18]. Hence, if (a) the investigated system is conceptually divided
into subsystems, and (b) a sufficiently broad multivariate characterization of
these subsystems is produced, then the battery of variables comprising the
characterization will contain ‘‘all essential factors”, including those influenc-
ing the response variables Y (biological activity of the peptides or the yield
of the synthesis).

For the characterization of the amino acids 20 measured variables were
initially used, but the inclusion of additional carefully selected and measured
properties indeed made the latent variables more stable [15]. To include the
choice of solvent and co-reagent as design variables for a given substrate in
the Willgerodt-Kindler reaction, a multivariate characterization of 82 solvents
by 10 variables and of 29 co-reagents (amines) by 8 variables was first made.
The PCA of the two resulting matrices gave two significant principal proper-
ties in both cases (Figs. 7 and 8).

The substrates were of four types depending on the para-substituent in the
aromatic ring (alkyl, donor, acceptor or halogen). A few representatives of
each of the four types of substrates were first subjected to a series of pilot
experiments to study the feasibility of the approach. It was found that when
the para-substituent was an acceptor, the reaction took a completely different
route giving another type of product. The other three types of substrates
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Fig. 7. Principal components projection of the ten variables characterizing 82 solvents
commonly used in organic synthesis. The resulting scores (latent variables) ¢, and ¢, can
be seen as ‘““principal properties” of the solvents and can be used to select solvents that
well span the range of interest. In the Willgerodt-Kindler application, the four circled
solvents 7 (triethylene glycol), 10 (ethanol), 51 (quinoline) and 72 (benzene) were chosen
as design points. Because the latent variables ¢, and f, are orthogonal, any four points
spanning the plane of these variables are good design points.

Fig. 8. Principal components projection of the eight variables characterizing 29 possible
Willgerodt-Kindler co-reactants (amines). The resulting latent variables £, and ¢, were used
to select amines fully spanning the amine “domain”. The four amines 3 (isopropylamine),
15 (diethylamine), 22 (dipentylamine) and 28 (morpholine) were chosen as design points.

with alkyl, halide and donor substituents in the para-position gave normal
products. These substituents were thereafter described by the two system
variables o; (inductive effect) and n (lipophilicity). Altogether, this resulted
in the use of six system variables describing the qualitative change of solvent,
co-reagent (amine) and substrate (para-substituted aromatic ketone).

In the peptide example, the response, the biological activity, was expressed
as a single variable. This is an inefficient reminiscence from the old days
when multivariate data were computationally intractable, but today there is
no reason to limit the response to one variable.

Multiple responses provide the possibility to obtain essential information
about the homogeneity of the objects, i.e., if the peptides are active accord-
ing to the same biological mechanism. In addition, multiple responses give an
independent estimate of how much of the variation in the data is systematic.
This can then be compared with how much is “explained” by the model X —
Y, which gives indications of where model deficiencies should be sought
(25, 26]. In the chemical synthesis example, where the experiments were
under proper control, the response was indeed multivariate with four mea-
surements describing yield and the coordinates of the optimal conditions in
R, Sand T.
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Multivariate design (MVD)

The use of latent variables as design variables is an obvious approach if the
latent variables can be accepted as describing the fundamental structure of
the investigated system. As shown by Carlson, Lundstedt and co-workers
[16, 17], this indeed works in practice. Because, for complicated systems,
measured properties usually vary collinearly to each other, a design in the"
measured variables is intractable. In particular, for variables that cannot be
manipulated, but just measured, a design is impossible. The design in terms
of latent variables solves these problems in a simple and straightforward way.

However, the design in latent variables is not always easily and rapidly
achieved. One must first collect a relevant data set to estimate the latent
variables; for both the amino acids, solvents and substrates this has taken a
long time and much effort, and the work is not yet complete. The presently
used ‘‘principal properties” of these systems may have to be extended to
more ‘‘factors” and their numerical values may change slightly when more
precise and possibly more relevant variables are included in the data matrices.

In the synthesis example, a 2 FFD was constructed in the six-system
variables for solvent, substrate (ketone) and co-reactant (amine). Thus totally
eight (2%) design points were constructed. For each design point, a response
surface optimization [1] was based on a composite design in the three con-
tinuous variables R, S and T.

Multivariate analysis (MVA)

The role of multivariate analysis in terms of projections is central in the
MV?3 approach. First, the principal properties are estimated from the sub-
system property matrices. Secondly, multivariate models are formulated
between the designed set of objects (peptides or synthetic runs) and the
measured responses Y, and are thereafter estimated by PLS. The ability of
multivariate projection methods such as PCA and PLS to operate regardless
of the number of variables in relation to the number of objects is essential.
This was demonstrated above in the peptide QSAR (Example 2). Also, the
simple and stable handling of missing data in these methods is an advantage
because real data sets are never quite complete.

In the synthesis optimization, the multivariate analysis was used in three
stages. First, the principal properties, latent variables, were calculated for the
solvents and co-reactants by PCA (see Figs. 7 and 8). Secondly, a response
surface model in the continuous variables R, S and T was calculated by PLS
for each design point in the system variables. This gave the coordinates for
optimum yield for the variables R, S, and T, which was also confirmed by
experiment. Thirdly, modelling of the influence of the system variables on
yield and the position of the optimum was modelled by PLS. This produced,
among other things, optimum conditions for both system and continuous
variables, which were again confirmed by experiments. The results were
highly satisfactory. High yields were obtained for each substrate, but for
different values of R, S and T and with different solvents and co-reagents
(Table 2).
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TABLE 2

Optimal conditions for the Willgerodt-Kindler reaction as a result of the MV? investigation
of Carlson, Lundstedt and co-workers [16, 17]

Reaction system Optimum conditions
Substrate Amine Solvent Molar ratio T(°C) Yield
Sulphur/ketone Amine/ketone (%)
p-Cl (15) DEA (7) TEG 8.4 5.3 123 89
p-H (3) iPr (51) Quin. 10.25 4,75 133 89
p-MeO (3)iPr (10) EtOH 3.8 6.61 80 91
p-Phenoxy (15) DEA (72) Benzene 9.6 5.8 80 85
p-Cl (22) DPe (72) Benzene 13.6 8.5 80 68
p-H (28)Mor  (10) EtOH 3.7 13.4 80 86
p-MeO (28) Mor (51) Quin. 9.3 8.9 130 100
p-Phenoxy (22) DPe (7) TEG 13.0 8.3 118 73

One conclusion is that the common practice of evaluating the feasibility
of an organic synthesis under so-called standardized conditions easily leads
to wrong conclusions; each variant of the synthesis must be optimized both
with respect to qualitative system variables and quantitative continuous
variables if the results are to have any value in decision-making. And because
there are strong interactions between the variables influencing the synthesis,
the optimizations must be based on statistical designs.

Summary of MV?

The general outline of MV? exemplified by peptide family and synthesis,
is as follows.

(1) Problem formulation: varying subsystems (amino acids, solvents, sub-
strates, . . .).

(2) Characterization of subsystems: ‘“model” reactions, properties, . ..
(analogy concept); multivariate data, span latent variable (factor) space, e.g.,
amino acids in each varied position, solvents, substrates, or co-reactants.

(3) First projection (PCA — principal properties).

(4) Design in principal properties gives the X matrix (FFD + centre point
+ a few random).

(5) Experiment, measurements (responses Y).

(6) Data analysis (second projection): PLS gives relation between X and Y;
number of factors estimated; any points grossly deviating found (indications
of more dimensions, change in mechanism, . . .); plots (grouping in score plot,
etc.).

(7) Interpretation, feedback, predictions, etc.
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CONCLUSIONS

The combination of multivariate characterization, analysis and design
provides a handle on complexity. The characterization is made of subsystems
of the studied process, subsystems that should be chosen to be fairly large
“chunks” of the total system. Thus amino acids are subsystems of peptides,
but not the only ones; dipeptides and selected tripeptides may be better can-
didates, but unfortunately less available and with very little literature data.

By projecting the data matrix resulting from the multivariate characteriza-
tion by PCA, ‘“‘principal properties” of the subsystems are obtained. These
principal properties can then be used as ordinary continuous design variables
to get objects that broadly span the abstract space of the studied process.

A basic difficulty is that the real latent variables in an application may be
unrepresented in the characterization ‘“‘battery’ or appear far down in the
sequence of PCs [27]. Then the design does not span all relevant factors and
an incomplete model results in the last stage of the analysis. Therefore the
inclusion of randomly chosen objects in the training set is recommended, to
guard at least to some extent against these problems.

An approximation to this strategy of multivariate characterization followed
by the calculation of ‘‘principal properties by PCA, may be to use a few care-
fully selected properties as design variables; for solvents, refractive index and
dielectric constant may suffice, and for the amines, their pK, and solubility
in water. If these properties are well chosen, they may approximately span
the same subspace as the principal properties and thus lead to a good design.

The difference between the design stage and the data analysis stage must
be emphasized with respect to the system description. In the design stage, a
few latent variables are used for the selection of systems. In the data analysis
stage, numerous variables are used to get a rich description of the systems in
the X matrix; only practicalities like the size of computer memory limit the
number of X-variables at this stage.

The number of possible applications in chemistry of the MV? approach is
large; the investigation or optimization of any complex system with respect
to any desirable property can be approached in this way. A short list of
systems would include polymers, proteins, complicated products such as
paints, mixed wines, blended whisky and food, syntheses, structure/property
relationships, quality control, and process optimization.

We are grateful for support from the Swedish Natural Science Research
Council (NFR), the Swedish Board for Technical Development (STU), and
the Swedish Council for Planning and Coordination of Research (FRN).
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SUMMARY

Multivariate classification methods are needed to assist in extracting information from
analytical data. The most appropriate method for each problem must be chosen. The
applicability of a method mainly depends on the distributional characteristics of the data
population (normality, correlations between variables, separation of classes, nature of
variables) and on the characteristics of the data sample available (numbers of objects,
variables and classes, missing values, measurement errors). The CLAS program is designed
to combine classification methods with evaluation of their performance, for batch data
processing. It incorporates two-group linear discriminant analysis (SLDA), independent
class modelling with principal components (SIMCA), kernel density estimation (ALLOC),
and principal component class modelling with kernel density estimation (CLASSY). Most
of these methods are implemented so as to give probabilistic classifications. Multiple linear
regression is provided for, and other methods are scheduled. CLAS evaluates the classifica-
tion method using the training set data (resubstitution), independent test data, and
pseudo test data (leave-one-out method). This last method is optimized for faster computa-
tion. Criteria for classification performance and reliability of the given probabilities, etc.
are determined. The package contains flexible possibilities for data manipulation, variable
transformation and missing data handling.

Analytical chemical and especially clinical chemical laboratories have seen
major changes in assay techniques, including the introduction of highly
sophisticated instrumentation and automation. The voluminous data flow
thus obtained has to be processed and reduced to useful information, so that
there has been accompanying growth in data-handling techniques. Many of
those techniques are based on multivariate statistical methods, including
multiple regression (linear and nonlinear), cluster analysis, construction of
multidimensional reference areas, principal components analysis, etc.

Distinctions between two or more groups of samples are often important,
e.g., samples from different diagnostic groups or classes of chemical com-
pounds or wines from different regions. Many methods are available for such
classifications into a priori defined groups. All these multivariate classification

0003-2670/86/$03.50 © 1986 Elsevier Science Publishers B.V,
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methods require a training set of data, which consists of a matrix of n objects,
each with p measured variables, and each of known class. The training set
must contain all classes that are to be distinguished. Some classification rule
constructed on the basis of this training set is then used to classify new objects
of unknown class (the test set).

For an individual problem, it is often difficult to choose the best classifica-
tion method. Rather than looking for the best method for general use,
attempts should be made to establish the method best equipped for the
problem at hand, because the applicability of a multivariate classification
method depends mainly on two data aspects. First, distributional character-
istics of the data population are important. Some methods require that the
population underlying the data is normal; others require independence
between the variables. The degree to which the classes are separated from each
other always governs the classification results to a large extent, but some
methods are more sensitive than others. Most methods require quantitative
numerical variables; qualitative variables then have to be coded numerically
(dummy variables), which endangers any assumption about distribution.
Secondly, the characteristics of the available training sample must be con-
sidered. A large sample size (many objects) usually yields better results than
a small training set. However, most methods become very time-consuming
with growing sample size, because of extensive calculations. The optimum
sample size, as well as the optimum ratio of number of objects to number of
variables (the n/p ratio) may differ between multivariate methods. Most of
these methods do not allow missing values in either training or test set. The
degree of precision with which the variables are measured may favour a partic-
ular method.

A totally different aspect of the choice of method is whether probabilistic
classification is needed or not. Especially if one is interested in each individual
object, as a physician is in every patient, probabilistic classification is prefer-
able. To a physician it makes a large difference whether the probability of a
diagnosis is 100% or 51%, although the chosen diagnosis (the classification)
itself remains the same. If one is interested in classification of a group as a
whole, individual probabilities may be of less importance, and non-probabil-
istic classification (just choosing the most probable group) will do. Not all
multivariate methods yield a probabilistic classification.

To choose the best method for a certain classification problem, compara-
tive evaluation of the results is needed. Criteria for classification performance
have been derived by Hilden et al. [1]. They distinguish discriminatory ability
(whether the objects are classified into the right group) from sharpness of
classification (sharpness is obtained when the attached probabilities differ
greatly). In a classification method that is trustworthy, there should be
agreement between the number of classification errors made and the degree
of certainty (i.e., attached probabilities) of the system. A reliability score
can be derived from the discriminatory ability and sharpness scores. In a
practical situation, one can choose the most appropriate multivariate method
by comparing the criteria calculated for different methods. One can evaluate
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the classification rule obtained by applying it to the training data. This evalua-
tion method (resubstitution), which is very popular, can sometimes be strongly
biased if used with small samples [2, 3], but it is very simple to apply as no
additional sampling is needed. The most objective evaluation is accomplished
by application of the classification rule to newly sampled data, the test set.
As data sampling is often costly, it is tempting to add the extra samples to
the training set, so that the classification rule is based on more data, but the
independence of the test data is then lost. Randomly splitting the available
data into training and test sets offers the possibility of real test data evalua-
tion, but leaves fewer data for model construction.

An intermediate solution to this evaluation problem is given by the leave-
part-out algorithm. This algorithm splits the data set into k parts and uses
a rotating scheme; in every cycle, a different part of the data is used as test
set while the other parts constitute the training set. The disadvantage of this
method is the fact that every cycle uses a different training set, and so a dif-
ferent classification rule. If only one object is used as test set in every cycle,
n cycles are needed to complete the leave-one-out scheme, and the training
sets differ only slightly. However, in principle, a full classification including the
classification rule construction must be repeated n times, which is very time-
consuming. Lachenbruch [3] showed that this leave-one-out method (LOOM)
is almost unbiased, while it requires no extra data sampling.

Many computer programs for multivariate analysis are available today.
The Statistical Package for the Social Sciences (SPSS) [4], and the BMDP
Biomedical Computer Programs [5] are almost classical, but offer few multi-
variate classification methods, mainly statistical linear discriminant analysis
(SLDA). The ARTHUR program [6] offers many multivariate techniques,
but is difficult to operate and lacks probabilistic techniques. For separate
multivariate methods, programs have been written, such as SIMCA-3B for
independent principal components class modelling {7], and ALLOC-80 for
kernel density estimation [8]. Other programs, like MASLOC for cluster
analysis [9], and DPP for processing of analytical data [10], cover fields of
multivariate data analysis other than classification. Evaluation criteria and
LOOM are seldom offered.

In this paper, the CLAS computer program is discussed. This program runs
on a Control Data Cyber 170/760 mainframe computer under the NOS
operating system. It is written in Pascal, using some Pascal 6000 [11] exten-
sions that have analogs in most other Pascal versions. It is being adapted for
use on a IBM-PC or IBM-AT microcomputer of moderate size, using IBM
Pascal, to bring its facilities within wider reaches. CLAS performs some major
multivariate classification techniques and is able to evaluate them, by using
LOOM.

THEORY

There are three main purposes of the CLAS programming project. First, the
CLAS computer program is meant to enable the suitability of a multivariate
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classification method to be judged when applied to a certain data set; there-
fore, the incorporation of all major multivariate classification techniques is
desirable. Secondly, probabilistic classification should be available in the
program, and the resulting probabilities should be used in the evaluation
procedure. And thirdly, the leave-one-out technique being very suitable for
evaluation, should be provided. Further requirements are that CLAS should
primarily be suitable for research; thus it should be easily adaptable and ex-
tendable (open-ended) to allow incorporation of newly developed methods.
It should also include effective means for handling missing data, and its opera-
tion should be as simple as possible, whilst versatility is retained and output
is compact, user-selectable, and self-explanatory.

Highly structured source code was considered to be essential for future
extension and maintenance of the program. The programming language Pascal
was chosen because of its structure-promoting qualities combined with its
efficient code. To compensate for minor deficiencies of standard Pascal, some
Pascal 6000 extensions were used; their analogies are supported by most
compilers, thus the implementation on other computer systems should not
pose too many problems. Because of the high computational demands of
some classification and evaluation procedures, a batch system was chosen (see
below). Output is in standard ASCII on a output file that may be previewed
or printed separately. For the microcomputer version that is currently being
prepared, the CLAS source is adapted to IBM-Pascal, which is a modular
Pascal version.

Program structure

CLAS consists of a main program that serves as a driver for the various
functions that are selected by the user. Almost every function is represented
by its own Pascal main procedure. These main procedures comprise the pro-
cedures necessary to process the options pertaining exclusively to them.
Utilities used in many procedures are declared in a global utility section. In
the microcomputer version, every main procedure will fit in a module, and
the utilities will be grouped into modules.

Currently CLAS can handle 250 objects, 35 variables and 10 classes, but
these values can easily be adapted as required subject to the limitations of
the computer system.

Command syntax

CLAS reads its input from an input file in which the user specifies every
required function by a command. The command syntax is depicted in Fig. 1.
The command consists of the command name and an optional set of function-
dependent options enclosed in parentheses. The total command may cover
several lines. The format of the command is free, provided that the set of
options, if present, is enclosed in parentheses, and that all words and numbers
are separated by separators. Separators include the end-of-line marker and all
characters except letters, digits and some special characters. Commands, or
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command

-l command name }‘

|l 2]

option

keyword

keyword H argument list of fixed length

heyword varisble argument list

Fig. 1. Command syntax diagram of CLAS.

parts of commands, can be temporarily omitted by inserting the double quote
(”’) character. The rest of the input line involved is ignored by CLAS. In this
way, comments may be inserted as well.

Options can basically consist of one of four structures: (1) a keyword (e.g.,
LOOM for evaluation by the leave-one-out method); (2) a keyword followed
by a fixed number of arguments (e.g., NAME=DATASET, to attach a name
to a data set); (3) a keyword followed by an argument list of variable length
which must be enclosed in parentheses [e.g., PRINT (EVALUATION,
HORNSTEST, POSTERIOR): print evaluation output, results from Horn’s
test, and posterior probabilities] ; and (4) a keyword followed by an option
[e.g., SELECT VAR (1—38): selection of the variables 1, 2 and 3].

Only the first four letters of keywords are meaningful to CLAS. Names
given to the data set, classes, objects and variables may contain up to ten
significant characters. These names must start with a letter and may incorpo-
rate letters, digits, the plus (+), minus (—), asterisk (*), solidus (/), hat (") and
dash (') characters, as well as the underline (), which represents a blank.
Characters that cannot be interpreted by CLAS are skipped.

Data-base structure

The data base is contained in two Pascal variables (one for the training set
and one for a test set) of the Pascal type ‘‘data type” which is a declared
Pascal record composed of two parts. The first part is a heading of data-set
name (user specified), number of objects (determined by CLAS), number of
variables (determined by CLAS), identification of each variable (user speci-
fied), number of classes (determined by CLAS), identification of each class
(user specified), size of each class (determined by CLAS), an indicator for
the presence of missing data (determined by CLAS), and the number of times
each variable is present in the data set (determined by CLAS). All parts in
the heading that can be specified by the user are defaulted by CLAS.

The second part of the data-type record consists of a file of objects of the
Pascal type “object type” which is a declared Pascal record consisting of object
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index number (user specified), object name (user specified), number of mea-
sured variables (determined by CLAS), class index (only used internally,
linked to user-specified class identification), and the measured variable values
(user specified, not defaulted). Except for the measured variable values,
defaults are provided for all user specified values.

Auvailable functions

CLAS contains several functions; they are summarized in Table 1 and are
discussed briefly below.

INPUT. In this procedure, the number of lines that is occupied by the first
object in the data set must be specified to CLAS if it exceeds the default value
of one. This enables the program to count the number of variables, and,
assuming a constant order of the data for each object throughout the input
file, to read all objects and count them. Except for the ordering of the object
data and the constancy of the number of variables, there are no formatting
requirements. Further, the data set, class and variable names can be specified
for easy reference, the width (in columns) of the printed output and the
number representing a missing value can be chosen. If the name of a variable
is CLASS, the program assumes this variable to contain the class number, but
any variable can be specified as such using the CLASS VARIABLE option.

INPUT reorders the objects to contiguous class number, if necessary. A test
set may be created using the CHANGE function (see below). As an alternative,
data may be read from a system file that has been prepared before (see LIST).

LIST. The function LIST is able to produce a complete listing of the data,
including the names given to variables and classes. If desired, a listing in scien-
tific notation can be given for maximum accuracy. LIST can also print line-
printer plots of any variable versus any other, including the class number.
These plots can be fully specified by the user and can have any size and resolu-
tion. Large plots will be printed in parts. As these plots are ASCII-coded, they
can be printed by any printer. Another option of LIST is to prepare a system
file that can be saved for later use (see INPUT). This system file is a fully legi-
ble, documented ASCII file.

NOISEDATA. This procedure is included in CLAS in order to have the
possibility for simulation studies. Many aspects of the simulated data can be
varied, such as number of objects, number of variables, number of classes,
position of the centroids of the classes, and standard deviation of the simulated
values. The construction of low-dimensional class models that are submerged
in higher-dimensional data spaces is possible. In this case, one can choose the
dimensionality of the class models and the ratio between the standard devia-
tions of the class model dimensions and the overall noise. The algorithms im-
plemented for generating random numbers are those described by Forsythe
et al. [12] for uniform numbers and Brent [13] for Gaussian numbers.

CHANGE. The CHANGE procedure allows extensive data manipulation.
Not only can part of the data set be deleted, but also a test set can be created
from part of the data. Furthermore, variables can be transformed or renamed.
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TABLE 1

Available CLAS functions

Input/output Data manipulation MCMa Other
INPUT CHANGE ALLOC STATISTICS
LIST MISVAL SIMCA MLR

SCALE CLASSY

NOISEDATA SLDA

aMultivariate classification methods.

Transformations include addition, subtraction, division, multiplication, raising
to a power, conditional substitution, natural and common logarithm, ex-
ponentiation, and absolute value. The value added to the variable(s) can be a
constant number or the value of another variable. In the former case, a plus
is added to the name of the variable. In the latter case, an extra variable with
a new name, consisting of part of both the names of both variables separated
by a plus, is formed. Analogous procedures are followed with subtraction,
division, multiplication and raising to a power. The value of a variable can be
substituted by another value if it equals a certain constant, or is greater or
smaller than a constant. All transformations are adequately reflected in the
new name of the variable name. Last, but not least, new variables can be
created from existing ones, using the transformations mentioned above.

MISVAL. This function enables data gaps to be removed by either filling
them with estimates or deleting the variables and/or objects that contain
them. By now, a missing value can be estimated as the mean of the variable,
this mean being based on the class from which the incomplete object stems
or on the entire data set. Other methods of removing data gaps that are imple-
mented are deletion of all variables or all objects that contain gaps, and step-
wise deletion. Stepwise deletion [14] deletes some objects and some vari-
ables, retaining as many data-set values as possible and simultaneously sparing
small classes. A minium n/p ratio can be specified.

SCALE. This procedure performs user-specified scaling of the data. Origin
displacement as well as scaling factor can be independently chosen by the
user in many different ways. They can be user-specified or calculated from
the data in a user-specified way. Autoscaling (scaling all variables to an over-
all mean of zero and an overall standard deviation of one) and class scaling
(autoscaling executed for every class separately) are available. If the intrinsic
variability of the variables is known, reproducibility scaling can be applied.

STATISTICS. This procedure calculates simple univariate statistics on the
training data: number of values, number of missing values (if any), minimum,
maximum, median and mean value, standard deviation, relative standard
deviation and variance, coefficients of skewness and kurtosis. These statistics
are calculated on all selected objects, for every selected class separately and for
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all together, for each variable. Furthermore, a correlation matrix of the
selected classes, objects and variables can be produced, along with confidence
intervals and tail probability values.

LINREG. This function performs (multiple) linear regression (MLR). A
MLR case with only two different values for the dependent variable is recog-
nized as a two-class linear discriminant analysis (SLDA) case and the typical
SLDA output is added automatically. The significance of the regression and
an ANOVA table are printed. For evaluation purposes, the LOOM and resi-
duals output are available. The LOOM is implemented with computational
efficiency. After LOOM calculations, the prediction sum of squares (PRESS)
[15] is printed. It is possible to calculate a model without intercept. This
may be of use in special cases like the analysis of mixture design models [16].

ALLOC. Classification by kernel density estimation is done by the ALLOC
function. ALLOC constructs a model for every class by placing a gaussian
density function around every training set point. The cumulated densities of
all training points yield a sort of field strength at every point in the data space.
At the coordinates of every test point, the field strengths of all class models
are compared and the point is classified into the class with the highest strength.

The width of the elementary gaussian distribution (the smoothness param-
eter) is of major importance for the classification. In CLAS it can be specified
by the user. The method is computationally equivalent to the implementation
in the ALLOC-80 programs [8].

User-specified output, including evaluation results, probability densities,
and posterior probabilities, are available for training and test set. Real LOOM
evaluation is possible, in contrast to the ALLOC-80 programs in which only
the smoothness parameter is chosen leaving-one-out.

SIMCA. Wold’s SIMCA method {7}, in which a principal component
model is fitted for every class separately, is performed by the SIMCA function
in CLAS. SIMCA is adapted especially for CLAS to perform probabilistic
classification, as will be described elsewhere. User-specified output is available
including LOOM evaluation results, probability densities, eigenvector matrices,
Horn’s test [17] for the number of principal components to be retained, and
many more. For the LOOM evaluation, the principal component models are
updated, if possible, by an efficient algorithm described by Bunch et al. [18].

The implementation is meant to produce the same non-probabilistic out-
put as the SIMCA-3B programs [7], but the numerical results are sometimes
different for two reasons. Firstly, the SIMCA-3B programs are written in a
version of BASIC that does not provide enough numerical accuracy. Secondly,
CLAS performs principal component analysis by applying singular value de-
composition as in the algorithm of Householder described by Wilkinson and
Reinsch [19]. This algorithm converges faster than the partial least-squares
algorithm used in SIMCA-3B, and thus reduces rounding errors. As SIMCA-3B
limits the maximum number of iterations to 20, the desired accuracy is not
always attained.
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CLASSY. The CLASSY method [20], which is a combination of SIMCA
and ALLOC, is implemented in CLAS, too. The user-specified output is ana-
logous to that from SIMCA and ALLOC.

RESULTS AND DISCUSSION

Figure 2 shows the printed output from an example data set in a sample
run. All values and names are fictitious. The input file used is given in Table 2.
Figure 2A shows the output from INPUT. If reordering is necessary to obtain
contiguous classes, it is executed and reported. The data set structure is
analysed and names and numbers of classes and variables are checked for
duplication; if there is, changes are made automatically and a warning is
issued. Every procedure ends with the CPU time used. The way CLAS lists
a data set is depicted in Fig. 2B. The numbers of missing values per variable
and per object are given only if the data set is incomplete. The output of the
MISVAL (DELETE BOTH) command is shown in Fig. 2C. Figure 2D shows
the default output of STATISTICS; univariate statistics (including the
median) are given for each class as well as for the entire training set). The
correlation matrix contains both confidence interval and tail probability for
every correlation. As an example of the evaluation output of a classification
method, the CLASSY print is shown using LOOM. The output contains not
only relevant CLASSY model statistics but also posterior probabilities for all
objects and all classes, by using resubstitution as well as LOOM. The command
given was CLASSY (4=2, LOOM).

To compare the computational efficiency of CLAS with the SPSS and
ARTHUR programs, some CLAS functions were selected that have almost
equivalent counterparts in the other programs. The results are shown in
Table 3. Comparisons like these, however, are always difficult to interpret, as
procedures in different programs are not exactly the same and as not every-
thing that is done by the program is shown in the output. SPSS differs so
fundamentally in the way of processing the data that only a very gross com-
parison is justified. Notwithstanding this fact, CLAS seems to perform at
least as well as the other programs. The strongest points of CLAS lie in evalua-
tion, especially in its use of the LOOM. Performance comparison of CLAS
with the other programs in this respect is not possible because SPSS and
ARTHUR do not offer LOOM.

Examples of the LOOM evaluation capacity in CLAS are shown in Table 4.
As the data set used contains 42 objects, and as LOOM evaluation yields not
only the results per object but also the resubstitution results, the computing
time should increase by a factor of 43 (neglecting some overhead). Clearly,
the time needed for LOOM evaluation is far less than proportional. This
improvement is reached partly by optimizing the necessary iterations, avoid-
ing overhead as much as possible, and partly by applying algorithms that
update intermediate statistics rather than recalculating them.

One of the main purposes of CLAS is assisting in the choice between
multivariate classification techniques for a certain data set. The following
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TABLE 2

Command file for CLAS used to give the output of Fig. 2

INPUT (NAME: DEMONSTRATION; VAR NAMES: (CLASS, CREATININE,
LACTATEDEHYDROGENASE); CLASS NAMES: (LIVER, KIDNEY)
MISSING= — 99)

LIST

MISVAL (DELETE BOTH)

STATISTICS

CLASSY (A=2; LOOM)

TABLE 3

Comparison between different programs

Procedure CPU time required (ms)a
ARTHUR SPSS-Xb CLAS
Input 488 200 270
Variable deletion 131 — 30
Listing 75 110 156
Missing data handling 244 — 40
(class mean substitution)
Variable transformation 146 — 66
(In, exp, adding a variable)
Autoscaling 92 — 15
Univariate statistics 217 410 526
Correlation matrix 333 230 258
Linear regression 337 270 144
including plot of residuals
Whole run 2063 — 15056

a2 All times measured with the program running on a CDC Cyber 170/760 computer. The
data set consisted of 42 objects, 3 classes and 27 variables. PThe way in which SPSS-X
processes data differs from that of the other programs so that a timable SPSS-X analog
could not be found for every procedure.

example serves to illustrate such an evaluation. The IRIS data set [21] con-
tains two classes of 50 objects each, with four measured vairables. The data
are class-scaled. SIMCA and CLASSY models of three components are fitted
to each class. ALLOC models are also constructed. LOOM evaluation using
the CLAS program yields the results given in Table 5. It can be seen that, in
this case, the CLASSY and ALLOC methods discriminate about equally well,
i.e., the quadratic scores (@3;) are almost the same [21] whereas discrimination
with the SIMCA model is considerably worse. The seeming overconfidence of
SIMCA and ALLOC (Qs negative [1]) and the diffidence found for CLASSY
(®s positive) are not significant (reliability (Qs) is between —1.96 and +1.96).

It must be stressed that CLAS is not yet finished. Extensions and modifi-
cations are installed regularly. The microcomputer version is far from definite.
Although the batch structure is considered to be mainly an advantage, freeing
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TABLE 4

Comparison between resubstitution and LOOM

Procedure CPU time required (ms)a
Resubstitution LOOM Factorb

Linear regression 146 354 2.4
(n=42, p=27)

SIMCA 597 4697 7.9
(n=42, p=13, ¢=3)

ALLOC 651 3961 6.1
(n=42, p=13, ¢=3)

CLASSY 935 7819 8.4

(n=42, p=13, ¢=3)

aAll times measured with the program running on a CDC Cyber 170/760 computer. bIf
the leave-one-out algorithm is implemented as a straightforward repetition of the proce-
dure, a factor of about 43 is expected.

TABLE 5

Example of evaluation

Procedure Number of errors  Quadratic score (Q,,) Reliability (Q;)
SIMCA (A=3) 20 0.873 —1.30
CLASSY (A=3) 4 0.971 +0.47
ALLOC 5 0.957 —1.17

the user from irritating waiting, it is clear that simple syntax errors may be
recognized only after much calculation has been done. To compensate for this
drawback, a procedure is planned that will allow interactive creation of the
input file. This will prevent syntax errors and fully utilize the microcomputer
capabilities of user friendliness. Some major techniques are still absent in
CLAS. Multiclass SLDA will hopefully be implemented, as well as the K-
nearest-neighbour method. Many procedures will be extended to increase
flexibility and plotting output will be available from more procedures. Other
aspects requiring attention are outlier detection and variable selection.
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SUMMARY

Probabilistic classification (i.e., classification of individuals into one of several groups
by assigning probabilities of classification to each individual) is desirable when the main
interest is in individuals rather than the whole group. The evaluation of probabilistic
assignments is described in detail, including statistical features such as measures for the
sharpness of the classification, the predictive ability and the reliability of the probability
values. In a simulation study, the influence of the objects—variable ratio and the interclass
distance on the results was examined for the training data themselves (resubstitution
method), an independent test set, and a pseudo-independent test set created from the
training set (leave-one-out method). The results indicate that the leave-one-out method
can often be used instead of an independent test set. In many cases, the assignments cited
as probabilities are not probabilities at all, because the classification system is too over-
confident.

Pattern recognition deals with situations where a class structure is assumed
to be present in the problem investigated. This series of papers considers
supervised pattern recognition, i.e., methods designed to classify objects
from an unknown class into one of a number of previously defined classes.
More specifically, it deals only with those methods that are able to give
classification probabilities. When an object of unknown origin is examined
by such a probabilistic method, the results can be presented as a set of state-
ments of the form: “This object belongs to class ¢ with probability P,
where c varies over all classes that were previously defined.

There are many multivariate classification methods (MCM’s) capable of
producing probabilistic results. An optimal choice between them requires
suitable criteria. Hilden et al. [1, 2] have described such criteria, but these
seem to be not well known in chemometrics. Some of these criteria and also

2Present address: Agricultural Statistics Department, TNO Institute of Applied Computer
Science (iTi-TNO), PO Box 100, NL-6700 AC Wageningen, The Netherlands.
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the important concepts of discriminatory ability and reliability are discussed
in this paper. The results obtained by applying these criteria to practical data
sets have raised several questions. One of the problems concerns the method
of evaluation: Lachenbruch’s leave-one-out method (see below) is often used
when no independent test data are available, but “there is little theory to
justify its use, insofar as performance criteria other than percentage correct
answers are concerned” [3]. Another problem is exemplified by a statement
of Templeton et al. [4], who used a simple method based on Bayes’ formula
for medical diagnosis and concluded from a reliability evaluation that ‘‘the
numbers assigned by Bayesian diagnosis are not probabilities at all”’. Similar
results have been reported by other researchers using more sophisticated
MCM’s [1, 3, 5, 6]. These and other problems suggested a study of prob-
abilistic methods and their detailed evaluation by means of a Monte Carlo
study. The design of this simulation study is described and some useful
insights that have been acquired about the applicability of the evaluation
methods and criteria are discussed.

THEORY

The need for evaluation of probabilistic classification

The need for probabilistic classification itself is best illustrated by an
example. Table 1 shows how two wine samples, which are only part of a data
set of 58 wine samples, are classified by the probabilistic method SLDA
(statistical linear discriminant analysis). The classification rule gives prob-
abilities for each of the three classes, that were represented in the training
set, in this case the three possible regions of origin, Beaujolais, Bourgogne
and Bordeaux. For both wine samples, the highest probability is given to the
Bourgogne class, and as this is indeed the real origin of both, a non-prob-
abilistic approach would consider both samples as correctly classified. But
this approach would not disclose that the Bourgogne Pinot sample is classified
with almost complete certainty, but that the Puligny Montrachet is a border
case, a Bourgogne wine which is close in its characteristics to the Beaujolais
samples. In fact, without knowing the real class of the wines, one could not
exclude the possibility that the latter wine comes from the Beaujolais region.

TABLE 1

Probabilistic classification by SLDA of two French wine samples originating from the
Bourgogne class (leave-one-out classification based on a data set of 58 French wines)

Wine sample Probability for:
Beaujolais Bourgogne Bordeaux
Bourgogne Pinot 1979 0.0002 0.9998 0.0000

Puligny Montrachet 1973 0.3961 0.6039 0.0000
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Doubt classification [7, 8] will not be discussed here but it should be noted
that probabilistic methods are essential whenever the classification of the
individual objects is important. If only the overall class separability is impor-
tant, non-probabilistic methods may suffice.

It is necessary to evaluate probabilistic methods in practical situations.
Although many people seem to think that one should try to find one classi-
fication method that is optimal in all situations, there are many factors that
govern whether or not a particular method will perform well in a practical
problem. Some of these factors are the number and type of chemical mea-
surements made, the number of classes that are to be distinguished, the
number of training objects that can reasonably be collected for each class,
the appearance of missing values in the data matrix, the necessity for outlier
detection, etc. The appropriateness of any particular classification method
depends to a large extent on these factors, some of which will be known
(although different for each problem) and some unknown (e.g., the statistical
distribution of the variables or the amount of correlation between variables).
Thus evaluation is not an academic problem, but a necessary step for anyone
who wishes to apply pattern recognition techniques to a specific problem.
The importance of this separate evaluation for each new problem should be
stressed although a kind of evolutionary evaluation develops with experience,

Methods for evaluation

There are many different probabilistic MCM’s that could be applied to a
problem. Some of the more important are SLDA {9], ALLOC [10—12],
SIMCA [13, 14] (made probabilistic {15]) and CLASSY [15]. Other
methods were discussed by Coomans et al. [16], Titterington et al. [17] and
Aitchison et al. [18]. In practical situations, there is plenty of choice, but
this can also be dangerous, as pointed out by Wold et al. [19] who warned
against applying different pattern recognition methods and then selecting
the results that “look best””. Not the best results, but the best method should
be selected. There are two possible ways in which the best method can be
selected. One way is to select a method or eliminate another for theoretical
reasons without looking at empirical results. The method of centroid classifi-
cation [20], for example, takes no account of the covariance structure of
the classes and therefore seems a poor candidate for a good classification
method. However, there are plenty of MCM’s, which all are theoretically
appealing, in different ways. The other way to select the best method without
regard to the ‘“‘best resuits” is to include a separate evaluation step in the
process. As shown in Fig. 1a, the total pattern recognition process consists of
an initial part (choice of data and MCM) and a routine part in which newly
sampled data are presented to the MCM and new results are obtained. The
extra step shown in Fig. 1(b) involves comparative evaluation in order to
select the best method. At this stage, one certainly looks at the best results,
but the evaluation is not a routine part of the process. Once the most appro-
priate method has been chosen for the particular problem and type of data,
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Fig. 1. Schematic representation of the application of pattern recognition. (a) Basic
scheme; the routine part of the process is enclosed by a dashed line. (b) As (a) with a
separate evaluation step added.

this method should be applied to all data sampled in the routine process. The
rest of this paper is devoted to the evaluation step.

The best way to evaluate an MCM is to test the correctness of its predic-
tions. For this purpose, there should ideally be enough data for both a train-
ing set and a test set. The test set is a collection of objects for which the real
class membership is known to the evaluator, but not to the MCM. The fraction
of correctly classified objects is called the non-error rate (NER). Unfor-
tunately, it is often difficult to collect enough data for both a training and a
test set. In such cases all available objects will be used to construct the classi-
fier. Evaluation hasthen to be done on the objects of the training set itself. If
this is done without further thought, the procedure is known as the resubsti-
tution method for evaluation [21]. However, the results tend to give an over-
optimistic view of the classificatory ability, because the classification rule
was optimized for the training objects and newly sampled objects will gener-
ally not have exactly the same measurement values as the training objects.

An alternative way for evaluation is to delete one object from the training
set, and then to classify this one object with a classification rule based on the
remaining training objects. The disadvantage that the evaluation set consists
of only one object can be removed by repeating the whole procedure N times,
each time with a different object deleted from the training set. This is appro-
priately called the leave-one-out method and was introduced by Lachenbruch
[21, 22]. Other names for this procedure are the hold-one-out method [23,
24], the leave-current-patient-out method (in medical statistics [3]), cross-
validation [17, 25] and jack-knifing [7] (although the latter two terms are
also used for other schemes). A more recent development in evaluation
methods is Efron’s bootstrap method [25—27]. Although this is a very inter-
esting technique, it was not applied in the present study.
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Criteria for evaluation

The most commonly used criterion for evaluation is the non-error rate
{(NER), the number of correctly classified objects divided by the total number
of evaluation objects. The NER has the draw-back that it does not take into
account that classification is done with probabilities. Thus one does not really
evaluate in a probabilistic manner, but instead all methods are judged as if
they were non-probabilistic.

Hilden et al. {1, 2] introduced criteria especially for the evaluation of
probabilistic classification methods. Their work has its roots in the theory of
subjective probability [28] : they consider the MCM as a black box producing
numbers that are meant to be probabilities, even in situations where the
objective definition of probability (i.e., as a frequency) cannot be applied
directly. It is important to distinguish between two different aspects of the
performance of classification methods: discriminatory ability and reliability.
The distinction can be clarified by some artificial examples. The results of a
probabilistic classification can always be displayed in a probability matrix.
Table 2 shows the results of hypothetical classifications where six evaluation
objects had to be classified in two classes. The real origin of the first 3 objects
(unknown to the MCM) was class 1, the real origin of the last 3 objects was
class 2. This is emphasized in the Table by underlining the entries for the
correct class. Table 2(I) shows almost ideal results: all objects are classified
correctly and with high probabilities. The results of Table 2(II) are less
favourable: the objects B, C and E have the highest probability assignment
for the wrong class, so that half the objects are misclassified, i.e., the dis-
criminatory ability of the MCM is low. This lack of discrimination is reflected
in the probability values themselves: they are all near 50%. In fact, the classi-
fication method can be said to have little confidence in its own discriminatory
power; in this case it is right and the method is called reliable or well-calibrated
[29]. Good reliability means that the discriminatory ability of the method

TABLE 2
Examples of probability matrices: (I) good discrimination and good reliability; (II) bad

discrimination and good reliability; (III) bad discrimination and bad reliability (over-
confidence); (IV) good discrimination and bad reliability (under-confidence)

Object Matrix I Matrix I1 Matrix 111 Matrix IV
Class Class Class Class
1 2 1 2 1 2 1 2
A 0.99 0.01 .52 0.48 0.99 0.01 0.52 0.48
B 0.99 0.01 0.4 0.57 .02 0.98 0.57 0.43
C 0.98 0.02 0.49 0.51 0.01 0.99 .55 0.45
D 0.00 1.00 0.49 0.51 0.00 1.00 0.30 0.70
E 0.01 0.99 0.60 0.40 0.94 0.06 0.45 0.55
F 0.01 0.99 0.44 0.56 0.02 0.98 0.47 0.53
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should be reflected in the individual probability values, i.e., the numbers in
the classification table can be regarded as real probabilities. Examples of
classification that cannot be regarded as real probabilities are shown in
Table 2(III) and (IV). Table 2(1II) again shows a low discriminatory ability
with 3 out of 6 objects misclassified but, if the real classes of the objects
were unknown, the probability values would give the impression of a very
secure classification, as all values are near 100% or 0%. This is called a sharp
classification, as in the case of 2(I); in both cases, the classification method
appears to be self-confident but in case 2(III) the self-confidence is clearly
not justified and the method is called over-confident rather than reliable: the
values are too sharp for real probabilities. Table 2(IV) shows another poss-
ibility: all objects are classified correctly, but the method hesitates, with
probabilities all near 50%, and so is termed under-confident or diffident.

So far, the discussion of MCM performance has been qualitative. Some
quantitative criteria discussed by Hilden et al. [1, 2] are summarized in
Table 3. Some useful considerations about these criteria have been published
[5,16,30—33]. Among the criteria for the discriminating ability are the non-
error rate (which does not use the probabilistic information) and the average
probability assigned to the proper class @,, which is easily computed as the
average of all underscored values in any of the classification matrices shown

TABLE 3

Summary of some important criteria for the probabilistic evaluation of classification [1,
2]. Notation: P;, is the assigned probability that object i belongs to class k; d(i) is the real
class of i. The number of evaluation objects is N, the number of classes is K. I is the indic-
ator function: 1 if condition is true, 0 otherwise

Criteria for discriminatory ability Range
Non-error rate [0,1]
NER = Q, = (1/N) £;I{P;4¢;) = max;, Py}

Average probability for the proper class [0, 1]
Q, = (1/N) £;Paqy

Brier score (quadratic score) fo, 21
Q@30 = (1/N) Z; [(1 — Piag))” + Zi = ayPir]

Modified Brier score [0, 1]
Q=1 —0Q,/2=Q,—Q,/2+ 1/2=(Q, + Q,)/2 + 1/2

Criteria for sharpness and reliability Range
Sharpness (self-confidence) [1/K, 1}
Q, =(1/N) Z;2, P}

Reliability score (calibration score) [—1, (K— 1)/(4K)]
Q3 = Ql - Qz

Standardized reliability score
Q; = Q,/{Z; Tk [Pi(Pir, — ThPH)* 1}
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in Table 2. Although @, has a clear interpretation, it should not be used as a
guide to find the optimal discriminating method because it is also influenced
by the reliability of the results. In fact, as long as the majority of all objects
is classified into the proper class, the criterion value increases whenever the
probability values become sharper. So @, as a criterion for discriminatory
ability favours over-confident methods and is called a non-proper scoring
rule [2].

Brier {34] introduced a criterion that can be shown to be a strictly proper
scoring rule [2], implying that it attains an optimal value if the values given
by a classifying person or computer program are equal to the real (although
unknown) probabilities. This criterion has been extensively used in meteor-
ology to assess the quality of weather predictions [35]. The Brier score, here
designated by Qs,, is in essence a quadratic distance measure, so that O repre-
sents the optimal result. To bring it into the same range as @, and the NER,
Hilden et al. [2] applied a simple rescaling and obtained the modified Brier
score @;,, which equals 1 — @34/2. It can also be expressed as a linear com-
bination of the simple criterion @, and the reliability measure @; (see below)
in such a way that the favouring of over-confident methods by @, is cor-
rected for.

A numerical measure for the sharpness of probabilistic predictions is @,
(see Table 3). This is again an average over the N evaluation objects, where
for each object the contribution is the sum of the squared probabilities.
Therefore, if the MCM has assigned 100% probability to one class (which
may be right or wrong) the contribution to @, is 1 for that object. The
minimal value of @, is obtained when all probability mass is distributed
equally over the classes.

Sharpness can be regarded as the MCM’s opinion of its own discriminatory
ability (see above). For a measure of reliability, this can be contrasted with
an expression for the real discriminatory ability. Taking @, for the latter, it
can be derived that the difference @ — @, should be approximately zero for
an absolutely reliable system [1]. In more technical terms, @, can be shown
to be the expectation of @, for a fixed probability matrix under the null
hypothesis that the values in the table are real probabilities. The difference
@, — @, is termed @; and it is easily seen that over-confidence (too sharp
probabilities) leads to negative values of @3, while under-confidence produces
a positive reliability score. It is even possible to calculate the variance of @;
under the null hypothesis, so that by scaling one obtains a criterion, termed
@s, that follows approximately a standard normal distribution [1].

Applications of the criteria discussed above, mainly to medical data sets,
have been described in the literature [5, 6, 16, 17, 32, 33, 36].

In previous work [6], disturbing results were obtained with the reliability
criteria. Over-confidence was commonly observed but it seemed to depend
more on the data set investigated than on the classification method used.
Inspection of the results both from that study and from the literature
suggested some important factors that could be responsible for the appear-
ance of over-confident predictions: especially the ratio between the number
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of objects per class (n) and the number of measured (independent) variables
(p) seemed to be important. To study this in more detail, the simulation
study described below was planned.

EXPERIMENTAL

A simulation study was performed by using a Gaussian pseudo-random
number generating algorithm [37] to construct data tables. Each data table
consisted of N = 2n rows, representing equal numbers of objects from two
classes, and p columns, representing the measured variables. The number of
objects per class (n) was varied systematically over the values 3, 5, 10, 20
and 40. The number of variables (p) was varied systematically over the
values 1, 2, 5, 10 and 20. The distribution of the random numbers was
Gaussian, so that the distance between the class centres could be quantified
by the Mahalanobis distance A2. In the simulations, the covariance matrix of
the variables was taken equal to the identity matrix, so A was equal to the
Euclidean distance. For a data matrix with p variables, the population cen-
troids of the two classes were set at (0, 0, ..., 0) and [(A%/p)'?, (A%Yp)YV?,

.., (A%¥p)Y?], respectively. The population value A was varied systematically
from 5 (standing for a reasonable separation between the two classes) via 2
and 1 down to O (i.e., no difference between the classes). Each of the poss-
ible combinations of n, p and A produced a data table that was used as a
training set for multivariate classification. All results presented below were
obtained with the ALLOC method.

The evaluation of the probabilistic classification results was done in three
ways. Each generated data table with training objects was accompanied by
another data table of the same dimensions, so that test set evaluation became
possible. The training objects themselves were used for resubstitution evalua-
tion and leave-one-out evaluation,

To reduce the variability of the results arising from the random numbers
used, the whole classification and evaluation procedure was repeated 30
times for each combination of n, p and A. This also allowed the computa-
tion of empirical standard deviations in the calculated criteria. These criteria
included the NER, @,, @3, and @j, for the evaluation of discriminatory
ability, and @,, @3 and Qs for evaluation of sharpness and reliability.

All computations (simulation, classification and evaluation) were done
with the CLAS program, which is designed especially for the comparative
evaluation of probabilistic MCM’s [38]. One of the features of this program
is that it greatly reduces the computational costs of the otherwise time-
consuming leave-one-out method.

RESULTS AND DISCUSSION
It is not possible in the present context to give details of all results from

the experiments. Tables with the means and standard deviations of all criteria
for the three evaluation methods and for each n — p — A combination are
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available from the authors on request. Some of the more interesting results
are presented here graphically and discussed in relation to the problems that
motivated this study, namely, the regular occurrence of over-confidence and
the relative merits of the resubstitution and leave-one-out methods of evalua-
tion compared to the test-set method.

Reliability of the probabilities

Only results obtained with the test-set method are considered here. Figure
2 shows the reliability score @, as a function of the dimensionality ratio n/p.
The n/p axis is logarithmic so that the whole range of dimensionality ratios
from 0.15 to 40 can be neatly shown. Each point is the average @, score for
30 simulation runs. The results for A = 1 have been omitted for clarity. It
can be seen that the reliability score is effectively zero when n/p is large
enough. According to the theory of Hilden et al., a classification method is
only reliable if @, is effectively zero. However, the lines diverge to over-
confidence for low n/p ratios. This effect is most pronounced when the
separation between the classes is bad. For A = 0, the over-confidence is
always significant in this study; for A = 2, over-confidence is significant
below a dimensionality ratio of about 5, and for A = 5 this is so below n/p =
1 (a = 0.05). Significance was detected by computing a ¢ statistic for each
point using the empirical standard deviations.

The reliability score @; is thus very often significantly negative. At first
sight, it may be tempting to conclude that the multivariate classification
method ALLOC is therefore often not reliable, but experience with other
methods, both on practical data sets and in preliminary simulation experi-
ments, suggest that the pattern is the same: all probabilistic MCM’s seem to
be over-confident in certain difficult situations. Reliability can be otherwise
formulated as the trustworthiness of the probability values. Thus, if a method
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Fig. 2. Reliability score @, as a function of the dimensionality ratio n/p for different A
values: (o) 0;(e) 2;(0) 5.

Fig. 3. Average probability assigned to the proper class @, as a function of the dimen-
sionality ratio n/p for different A values. Symbols as in Fig. 2.



56

is found unreliable, this means that the values given in' the output of the
computer program cannot be trusted as being real probabilities. Therefore
over-confidence seems to indicate that probabilistic classification is not poss-
ible. This will occur when the n/p ratio and the interclass distance are both
small, i.e., when there is insufficient discriminatory information available in
the data.

It is of interest to look at @, and Q,, the elements from which the reli-
ability score is constructed (see Figs. 3 and 4). It should be recalled that
sharpness can be considered as the expected value of €, under the null hypo-
thesis of reliability. For high n/p ratios, @, and @, are indeed approximately
equal to each other and also to the NER. The limiting value, known as the
optimal non-error rate, depends on the separation of the two populations.
For Gaussian populations it has the value ®(A/2), where & represents the
cumulative standard normal distribution [39, 40].

For A = 0, @, is close to the theoretically expected value of 50% over the
whole range of n/p ratios. The sharpness @,, however, deviates sharply from
this value for low dimensionality ratios, and this accounts for the observed
over-confidence. The problem here is that the interpretation of sharpness as
the expected value of @, is valid only for a fixed probability matrix: it does
not take into account the variations that can normally be expected with any
classifier that makes use of the data. This kind of variation is the same as the
observer variation discussed by Lindberg [33]. An example may clarify why
probabilities are always too sharp in the case A = 0. Table 4 contains two
matrices with classification probabilities for the same kind of problem as
Table 2. Elementary calculations show that the unrealistic results of Table 4
(Matrix I) with all values exactly equal to 0.50 is the only way to obtain a
reliability score @; of zero. With any random fluctuation in the probability
values (e.g., Table 4 (Matrix II)), the sharpness increases and exceeds 0.5.
Consequently, the reliability score becomes negative (@; = —0.045 for the
data given). Symmetric fluctuations in the probability values (which can be

1.0
FB aa go 8 Dnuumg o8 o o
0.9 — .8
o L]
e0 .
0.8 |- 2 . ® Y
9] L4 . °
07 8 o *, . o
o ©
(o]
0 |t 80 °
6 o o
8
a8
OSL (o]
0.4 5 L 11:1111]1 1 llnllnllm L [
N/P —->

Fig. 4. Sharpness @, as a function of the dimensionality ratio n/p for different A values.
Symbols as in Fig. 2.



TABLE 4

Examples of probability matrices

Object Matrix 12 Matrix II°
Class 1 Class 2 Class 1 Class 2

A 0.50 0.50 0.42 0.58
B 0.50 0.50 0.74 0.26
C 0.50 0.50 0.48 0.52
D 0.50 0.50 0.73 0.27
E 0.50 0.50 0.37 0.63
F 0.50 0.50 0.54 0.46

2Without random fluctuations around 0.50. @, = 0.50, @, = 0.50, @, = 0.00. ®With ran-
dom fluctuations around 0.50. @, = 0.50, Q, = 0.545, Q, = —0.045.

expected if the classification is based on randomly sampled data) do not lead
to symmetric fluctuations in the reliability, but always to negative values of
Qs.

When the classes are reasonably well separated (A = 5), the graphs of @,
and @, are somewhat different: @, is always very high in this case, and it is
not increased sharpness that is primarily responsible for the observed over-
confidence, but a decline in the average probability for the proper class at
low n/p ratios. For intermediate values of the interclass distance, such as A =
2, both effects occur: as n/p is lowered, @, decreases and @, increases.

Comparison of evaluation methods

In order to decide how satisfactory the leave-one-out and the resubstitu-
tion methods are as substitutes for the test-set method, all the different
evaluation criteria could be considered individually. As the trend appears to
be the same for NER, Q,, @;; and @;, however, only one of them (Q,) is
presented below. For one criterion, the sharpness @,, very little difference
was found between the three evaluation methods. In fact, this explains the
similar behaviour of @;, &, (which equals @, — @,) and @3, (which equals
Q1 - Qz/2 + 1/2)-

Figure 5 shows for the cases A =0, A = 2 and A = 5, respectively, the signi-
ficance of the differences between the resubstitution and test-set methods,
and between the leave-one-out and test-set methods. The t statistics based on
the 30 individual differencesin @, for each n—p— A combination are shown.
Generally, there is a clear trend in the results: the resubstitution method
tends to produce higher @, scores than the test-set method (positive t statis-
tics) and the leave-one-out method gives on average somewhat lower values
than the test set method (negative ¢ statistics). The latter result does not
confirm the impression of Coomans [41] that the leave-one-out method
would tend in some cases to give too optimistic a picture of the classificatory
ability of a pattern recognition technique. On the contrary, while the resub-
stitution method suffers from optimistic bias, the leave-one-out method for
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Fig. 5. Deviations of resubstitution and leave-one-out results from the test-set results for
different values of A: (A) A = 0;(B) A = 2;(C) A = 5. The ¢ statistics (29 degrees of free-
dom) for the significance of the differences in @, are shown. (o) Resubstitution—test; (®)
leave-one-out—test. (——) 95% confidence limits around zero; (---) results from experi-
ments with n = 3,

evaluation shows, if anything, a pessimistic bias. Both effects increase when
the n/p ratio is lowered. The over-optimism of the resubstitution method also
depends on the inter-class distance: when the classes are closer to one another,
the over-optimism of evaluation by resubstitution increases. Figure 5 shows
that for A = 0 the optimistic bias of the resubstitution method is very often
statistically significant (a = 0.05), even for dimensionality ratios as high as
n/p = 20. For A = 5, this opt