International Sugar Journal

When you think of sugar machinery...

Unit Equipment for every station of the factory.

MILL SPARES AND REPLACEMENTS

COMPLETE ROLLERS SHELLS RE~SHELLING SERVICE

...think of

If you're ready for BIG filters, Dorr-Oliver is ready for you.

these days, so that some sugar processors need bigger filters. As you might suspect, Dorr-Oliver is keeping pace with the industry's needs. Our jumbo filters today are available in sizes to 13' diameter and 32' length.

It has been 50 years since we supplied the first cane mud filter for Oahu Sugar in Hawaii. Ever since, Dorr-Oliver has been the acknowledged leader in cane mud filtration. Now, our jumbo filters are not only bigger, but more reliable, efficient and productive than ever. They offer new features that deliver bigger profits: Sectionalized scraper assembly for easier operation.
Standard nonmore accessible and easily replaced after useful life. T Full length overflow for uniform mud distribution and easy observation. T Full length, multiple point internal piping, with two filtrate valves on larger sizes for greater filtration efficiency. D Partly buoyant agitator with extra heavy torsion bearings.

But if you are not ready for big filters yet, Dorr-Oliver still is ready for you. We offer a complete range of sizes in 8' and 10' diameter, with lengths for 8' to 20'. Regardless of size, each unit offers all of Dorr-Oliver's traditional advantages in workmanship service design

Sugar operations are bigger than ever integral drive and agitator motors are and performance. Outstanding features that produce such important benefits as higher sugar recovery . . . a dryer, more uniform cake . . . labor savings because of continuous automatic operation . . . and longer service life and low maintenance costs because components are constructed in stainless steel and polypropylene materials.

> Dorr-Oliver filters have a lot to offer any sugar processor, big or small. Get all the facts. Write Larry Engel, Sugar Division, Dorr-Oliver Incorporated, 77 Havemeyer Lane, Stamford, Conn. 06904 U.S.A.

Now! Solid State Centrifugal Control

Already, in many sugar producing countries, the logic circuitry on Western States Automatic Batch Centrifugal Control Panels uses SOLID STATE control instead of electromechanical devices. Advantages: No moving parts, drastically reduced maintenance, higher reliability and the state of the circuit is displayed with indicating lights.

Argentina • Australia • Barbados • Brazil • Canada • Colombia Dominican Republic • Guatemala • Haiti • Jamaica • Panama • Philippines • Thailand • USA—Mainland and Hawaii • Venezuela

> MACHINE COMPANY Hamilton, Ohio 45012 U.S.A. ROBERTS CENTRIFUGALS

ATES

Another "First" From

50L

HE WESTERN ST

This name stands for an automatic sugar polarimeter which has proven its superior performance in many sugar factories throughout the world:

sucromat®

1-K

sucromat

In beet and cane testing laboratories, in factory laboratories, and with process control applications.

DR. WOLFGANG KERNCHEN OPTIK-ELEKTRONIK-AUTOMATION D-3011 LETTER-HANNOVER WEST-GERMANY

modernization or extension of a sugar mill and especially the construction of a new factory are not conceivable without taking into consideration 1) the technology developments 2) a better research of rentability

The new conception of the continuous maceration process

guarantees through a simple and sturdy equipment:

- · a complete reliability
- · a totally automatic operation
- · a better extraction compared to a 18-roll mill tandem, giving a mixed juice of high purity

A GREAT SAVING OF POWER

Africa, SATURNE diffe Mouritius URNE diffusers are in operation in Mauritius bry Coast, soon in India and many other sug Ivo king any decision on your extra ing seriously the advantages of nte

SATURNE.

free brochures upon demand

Department I

18. Av. Matignon - 75008 PARIS - FRANCE Phone : 266.92.22 - Télex : 290017 (SUCATLAN-PARIS) - Cables : SUCATLAN-PARIS

he new cane sugar factory of FERKESSEDOUGOU (IVORY COAST) 5000 Tc/Day equipped with the modern extraction process THE_SATURNE DIFFUSER (French-batent SUCATLAN). 15

G

Square Frère Orban, 7, B–1040 Brussels (Belgium). Phone: (02) 513 84 90. Telex: 22 328 ABRENG B.

The A.B.R. silo with fully automatic storage and removal system ensures: – perfect and hygienic sugar preservation,

- power and heating saving of 65 % compared with other systems.

would you like a centrifugal with minimum "dead times"?

There is a way to improve your production by reducing "dead times" and Bosco was capable to attain this goal by own "B3" and "B7" discontinuous type centrifugals.

Because of their advanced design and employment of high quality materials, these machines provide extremely high levels of production. The main technical features of these contrifuence

The main technical features of these centrifugals are in fact:

- basket designed to permit a high filtering capacity: consequently the real loading capacity is remarkably greater than its volumetric one;
- special mechanisms which enable to load and unload at high speed (300 rpm);
- d.c. electric motor monitored by a "thyristors" type control equipment, which provide shorter speed up and braking times, adjustement of operating speeds and minimum power consumption.

Thanks to what above, the "B3" (with basket by 48" x 30") and "B7" (with basket by 48" x 44") centrifugals achieve greater production capacities than those of the corresponding centrifugals of competition with 1000 and 1500 Kgs nominal load. Our centrifugals are despatched fully tested and assembled and, due to their harmonious self-bearing structure, they start cutting down costs since time of their installation.

bosco: an active presence in the sugar industry

industrie meccaniche s.p.a. - terni PIAZZALE A. BOSCO, 3 - 05100 TERNI - ITALY - TEL. 66032 - TELEF. (0744) 55341

ALLEN GWYNNES TOP NAMES IN THE WORLD OF SUGAR FOR POWER GENERATION & PUMPING PLANT

A 3000 kW Allen steam turbo-alternator set installed in a Mexican Sugar Mill.

ALLEN STEAM TURBINE POWER PLANT

A comprehensive range of steam turbines with power outputs up to 20 MW. Backpressure, Condensing and Pass-out types available.

ALLEN GWYNNES PUMPING

Designed and engineered to ensure the reliability and efficiency demanded by the requirements of modern pumping installations for irrigation in the field or processing in the factory.

W. H. ALLEN SONS & COMPANY LTD QUEENS ENGINEERING WORKS, BEDFORD MK40 4JB, ENGLAND Telephone: Bedford 67400 Telex: 82486 Telegrams: Apeng Bedford Telex.

ALLEN GWYNNES

ALLEN GWYNNES PUMPS LTD QUEENS ENGINEERING WORKS, BEDFORD MK40 4JB, ENGLAND Telephone: Bedford 67400 Telex: 82486 Telegrams: Apeng Bedford Telex.

An Allen Gwynnes suspended axial-flow pump.

An Allen Gwynnes standard single-entry pump.

SUBSIDIARY COMPANIES OF AMALGAMATED POWER ENGINEERING LTD. A73

The show must go on...

In the harvesting season your factory is in for a hectic time. Work has to go on night and day. This calls for a maximum effort on the part of all your personnel. But their effort is wasted, unless the machinery is reliable. A break-down of a vital part may result in a financial catastrophe! We have no miracles in stock to prevent such disasters. But the excellence of our machinery provides a good platform for your show to go on!

sugar industry engineers

X

HENGELO (OV.) THE NETHERLANDS P.O.BOX 147 MEMBER OF THE VMF GROUP

AT LOWER OVERALL COST?

The economics of a weed-free sugar cane crop mean more than just the cost of a weedkiller. Will the control programme deal with *all* the offending weeds? How many applications will be necessary throughout the season? Will there be yield loss from chemical action? How much hand-weeding will be needed when the weedkiller stops working?

A programme of treatment with 'Asulox' 40 and 'Actril' DS provides the answers: the widest spectrum of broad-leaved weed and grass control in sugar cane; fewer applications; maximum crop safety assuring optimum yield; no hand-weeding. All of which means maximum weed control at lower overall cost! USE THE PROGRAMME THAT COMBINES THE IDEAL WITH THE PRACTICAL

ASULOX 40 ACTRIL DS

the most advanced broad-leaved weed and grass killers for sugar cane

M&B May&Baker

'Asulox' and 'Actril' are trade marks of May & Baker Ltd Dagenham Essex RM10 7XS England

To: May & Baker Ltd Dagenham Essex RM10 7XS England Please send me full details of 'Asulox' 40/ 'Actril' DS for weed control in sugar cane Name Address

HA 5636

with the Fives-Cail Babcock self-setting cane mill

- **Easy** pre-setting of the feed/discharge opening ratio.
- Constant opening ratio during operation.
- Easy lifting of top roller (rotating) motion).
- Improved extraction.
- Increased capacity.
- Reduction of power peaks.

The originality of this system lies in the fact that the top roller does not move in a vertical slide, as in all the conventional mills, but is supported by a hinged upper half housing forming a lever arm. The result of it is, on the one hand, a constan-ue not be provided by the fact and discharts cy in the ratio of the feed and discharge openings and, on the other hand, a very easy lift of the top roller, involving an improved efficiency.

BIGGEST IN THE WORD

n of five 2300×1150 mm self-setting cane mills intended for Ingenio Az

VES-CAIL BABCOCK

7. rue Montalivet - PARIS 8º 2 : 265-22.01 and 742-21.19

Cables : FIVCAIL-PARIS - Telex : FIVCAIL 650328

xiii

Tate & Lyle Engineeringthe complete agro-industrial package.

Creating a complete new sugar project requires Tate & Lyle Engineering's unique agro-industrial package of skills, know-how and hardware.

Tate & Lyle Engineering can provide invaluable help at every single stage.

Preliminary surveys and feasibility studies. Cane cultivation, land clearance and irrigation. Civil engineering. Erection and commissioning of terminals, factories, refineries or distilleries. The manufacture and installation of plant. The provision and recruitment of management. The training of staff. Advanced products and electronic controls to maximise process efficiency. A continuing advisory service to monitor the project's technical and commercial progress. The promotion of loans and investments on your behalf. The supply of goods and services on medium/long-term credit at competitive rates of interest.

No other company has Tate & Lyle Engineering's experience. No other company has Tate & Lyle Engineering's complete package. You can use the total service or select those parts of it which you most need.

TATE & LYLE ENGINEERING LTD., Cosmos House, Bromley BR2 9NA, Kent, England. Telephone: 01-464 6556. Telex: 896368 tatelyle BROMLY. Cables: TECSERVE Bromley.

Editor and Manager:

D. LEIGHTON, B.Sc., F.R.I.C.

Assistant Editor:

M. G. COPE, M.I.L.

. .

Panel of Referees

A. CARRUTHERS, Consultant and former Director of Research. British Sugar Corporation Ltd.

- K. DOUWES DEKKER, Consultant and former Director, Sugar Milling Research Institute, South Africa.
- H. EVANS, O.B.E., Director, Bookers Agricultural and Technical Services Ltd.
- M. MATIC, Director, Sugar Milling Research Institute, South Africa.

T. RODGERS, Production Director, British Sugar Corporation Ltd.

S. STACHENKO.

Vice-President, Redpath Industries Ltd.

Published by The International Sugar Journal Ltd., 23a Easton Street, High Wycombe, Bucks., England, Telephone: High Wycombe 29408 Cable: Sugaphilos, High Wycombe Telex: 21792 REF 869

Advertisement Sales Representatives

- Australia: J. J. Hindmarsh, 24-26 Kent Street, Sydney 2000. Tel.: 241-2471. Cable: Hindmarshad.
- G. Arnold Teesing B.V., Benelux: Den Brielstraat 12, Amsterdam 1015, Holland. Tel.: 020-828585. Cable: Mediarep. Telex: 13441.
- MaG-Watt International. France: 4 rue de Castiglione, 75001 Paris. Tel.: 260-88-78.
- Douglas Kenrick (Far East) Ltd., Japan: Kowa Daisan Building, 11-45 1-chome Akasaka, Minato-ku, Tokyo. Tel.: (582) 0951-5. Cable: Kenrick Tokyo.
- U.S.A.-New England and mid-Atlantic states: Sherwood H. Leavitt Company, Suite 2707, 220 East 42nd Street, New York, NY 10017. Tel.: (212) 661-0088.
- U.S.A.-Southern states: Herbert Martin Company, 2325 Old Rocky Ridge Road, Birmingham, AL 35216.

Tel.: (205) 822-7371.

U.S.A.-Western States, incl. Hawaii: Roy McDonald Associates Inc., 3540 South Poplar Street, Denver, CO 80237. Tel.: (303) 758-3325. Merel Story . (Duf)

International Sugar Journal

December 1976

Contents

Notes and Comments	353
* * *	
Physico-chemical properties of Egyptian sugar By Mostafa A. Mohamed, Kamal A. Ham- mady and Salah H. Abou-el-Hawa	355
Post-harvest inversion in different cane varieties By R. S. Kanwar and J. K. Kapur	358
Corrections at high temperatures to the refractive index of sucrose solutions By Doy Basker	359
Milling-cum-centrifuging of sugar cane for higher extraction	361
Part II	
* * *	
Sugar cane agriculture	365

Sugar cane agriculture	• •	••	••	, · ·	••	• •	305
Sugar beet agriculture	••	••	••	•••	••		371
Cane sugar manufacture	••	••	••	••	••	•••	372
Beet sugar manufacture	•••	••	••	••	••		375
Laboratory methods and	Che	mica	l rep	orts	••	••	379
By-products	••	••	••	••	••	••	381
World sugar production	estin	nates	197	6/77	••	••	383
Philippines sugar expor	ts	•••	••	•••		••	384
Trinidad sugar exports	•••	• •	••			••	384
Brevities						364,	384

Annual Subscription: \$15.00 post free Single Copies: \$1.80 post free

> . . UK ISSN 0020-8841

murminany

17 5.9.2520

*

PAGE

ZUSAMMENFASSUNGEN SOMMAIRES SUMARIOS : :

Propriétés physico-chimiques du sucre égyptien. M. A. MOHAMED, K. A. HAMMADY et S. H. ABOU-EL-HAWA.

On donne un bref compte rendu d'études sur les propriétés physico-chimiques d'échantillons de sucre blanc et de sucre raffiné égyptien et on discute les résultats. Alors que la qualité du sucre raffiné es comparable à celle du sucre raffiné produit dans d'autres pays, la qualité du sucre blanc est assez mauvaise. On mentionne les facteurs qu'il faut considérer pour établir les standards du sucre en Egypte; on considère que le spectre d'absorption en ultra-violet du sucre est un critère important dans l'évaluation de la qualité.

Inversion aprés récolte dans différentes variétés de canne. R. S. KANWAR et J. K. KAPUR.

On a déterminé les variations moyennes de la teneur en sucre, de la pureté, de la teneur en sucres réducteurs et du poids au cours d'un stockage allant jusqu'à neuf jours pour quatre variétés à la station de Recherches sur la Canne à Sucre de l'université agricole de Punjab. On discute les résultats présentés dans des tableaux.

Corrections de l'indice de réfraction des solutions de saccharose à hautes températures. D. BASKER. p. 359-360

On donne une méthode pour ajuster les valeurs de l'indice de réfraction de solutions de saccharose à 5-90% poids/poids, obtenues à des températures de 30-90°C, aux valeurs correspondantes à une température standard de 20°C. On donne un exemple qui illustre la méthode utilisée pour le calcul.

Broyage et centrifugation de la canne à sucre pour une meilleure extraction. Ilème Partie. M. STERZINGER et J. ZDARSKY. p. 361-364

On décrit l'évaluation biologique de la rupture des cellules de la bagasse par un moulin n° 1 suivant ou précédant un défibreur et/ou un "Gorator" plus une centrifugeuse. On discute les résultats obtenus. On a trouvé que le procédé d'extraction à froid avec broyage et centrifugation était prometteur malgré des imperfections dans l'équipement de l'installation pilote.

Physikalisch-chemische Eigenschaften des ägyptischen Zuckers. M. A. MOHAMED, K. A. HAMMADY und S. H. ABOU-EL-HAWA

Untersuchungen über die physikalisch-chemischen Eigenschaften an Proben von ägyptischem Weisszucker und ägyptischer Raffinade werden beschrieben und die erhaltenen Ergebnisse diskutiert. Während gefunden wurde, dass die Qualität der Raffinade der in anderen Ländern vergleichbar ist, war die Qualität des Weisszuckers relativ gering. Es werden die Faktoren aufgeführt, die bei der Aufstellung von Standards für Zucker in Ägypten zu berücksichtigen sind. Das ultraviolette Absorptionsspektrum des Zuckers wird als wichtiges Kriterium für die Qualitätsbestimmung angesehen.

Inversion bei verschiedenen Zuckerrohrsorten nach der Ernte. R. S. KANWAR und J. K. KAPUR.

Die Autoren haben in der Zuckerrohr-Versuchsstation der Landwirtschaftlichen Hochschule Punjab für vier Zuckerrohrsorten die Durchschnittswerte für Zuckergehalt, Reinheit, Gehalt an reduzierenden Zuckern und Gewicht nach Lagerung bis zu einem Zeitrum von 9 Tagen bestimmt. Die in Tabellen zusammengestellten Resultate werden diskutiert. *

*

Korrektur des Brechungsindex von Saccharoselösungen bei hohen Temperaturen. D. BASKER. S. 359–360 Der Verfasser gibt eine Methode zur Angleichung der bei Temperaturen von 30 bis 90°C erhaltenen Brechungsindizes von Lösungen mit 5 bis 90 Gew.—% Saccharose an die entsprechenden Werte bei einer Standardtemperatur von 20°C an. An einem Beispiel wird die zur Berechnung benutzte Methode aufgezeigt. *

Kombiniertes Mahlen und Zentrifugieren des Zuckerrohrs zum Zweck der besseren Extraktion. Teil II. M. STERZINGER und J. ZDARSKY. S. 361-364

Die Verfasser beschreiben die biologische Bewertung der zerstörten Zellen nach dem Durchgang des Zuckerrohrs durch die Mühle Nr. 1, der ein Shredder nach oder vorgeschaltet ist, und/oder durch den "Gorator" und eine Zentrifuge. Die Ergebnisse der Untersuchungen werden diskutiert. Es wurde gefunden, dass die kalte Extraktion durch kombiniertes Mahlen und Zentrifugieren trotz aufgetretener Störungen in der Versuchsanlage Erfolge verspricht.

Propriedades fisicoquímicas de azúcar del Egipto. H. A. MOHAMED, K. A. HAMMADY y S. H. ABOU-EL-HAWA. Pág. 355-357

Se describen investigaciones de las propriedades fisicoquímicas de muestras de azúcar Egipciano refinado y blanco, y las resultas se discuten. Aunque la calidad del azúcar refinado se halló comparable con ésa de azúcar producido en otros países, la calidad del azúcar blanca fué bastante baja. Se mencionan factores que tienen que considerarse en el establecimiento de normas para azúcar en el Egipto; es considerado que el espectro de adsorción ultra-violeta es un criterio importante en el evaluación de calidad. *

Inversión después de la cosecha en diferentes variedades de caña. R. S. KANWAR y J. K. KAPUR. Pág. 358-359

Los medios cambios en contenido de sacarosa, pureza, contenido de azucares reductoers y peso se determinaron para alamacenaje hasta nueve días de cuatro variedades de caña a la Estación Experimental de Caña de Azúcar de la Punjab Agricultural University. Las resultas tabuladas se discuten.

Correcciones para temperaturas altas al indice de refracción de soluciones de sacarosa. D. BASKER.

Se presenta un método para arreglar valores del indice de refracción de soluciones de sacarosa de 5-90% peso/peso, obtenido a temperaturas en la gama 30 a 90°C, a los valores corespondiente a una temperatura normal de 20°C. Por medio de un ejemplo, se demuestra el método usado para calcular la corrección. *

Molienda-con-centrifugación de caña de azúcar para extracción. Parte II. M. STERZINGER y J. ZDARSKY.

Evaluación biológica de la ruptura de células del bagazo en un primer molino después o antes de un desmenuzaóora y/o un "Gorator" más una centrífuga se describe y resultas de las investigaciones se discuten. Es considerado que el proceso de extracción en el frío por molienda-con-centrifugación tiene promesa a despecho de defectos en el equipo de la planta pilota.

xvi

S. 358-359

S. 355-357

Pág. 359-360

Pág. 361-364

p. 358-359

p. 355-357

INTERNATIONAL SUGAR JOURNAL

VOL. LXXVIII

DECEMBER 1976

No. 936

Notes & Comments

World sugar production estimates, 1976/77

Their first estimates of world sugar production in the current crop year have been published by F. O. Licht KG¹. Their information suggests that 1976/77 world sugar crops may be 6 million tons or 7.5% larger than the record 81.8 million tons of 1975/76, despite the drought in some European countries. The estimated total will certainly result in a considerable production surplus if sugar consumption does not improve drastically-which does not seem very likely, however.

Western Europe's rainfall in recent weeks has given rise to improved prospects, particularly in France, and Licht's latest estimate is for an increase of almost 470,000 tons more than in 1975/76. The figures for East Europe are unchanged from the earlier estimate² although it is recognised that that for the USSR may well be subject to amendment, depending on frost damage. Most other beet areas are much the same as in 1975/76 but a 300,000-tons fall is expected in the US crop.

Most of the increase in production is expected to be cane sugar; this contrasts with 1975/76 when the increase in production was mainly the result of a larger beet area. Good crops are forecast for many areas, although drought has caused serious damage in Cuba while the Brazilian figure, although 20% up on 1975/76 at 7.4 million tons, is less than the originally anticipated bumper crop of 8.1 million tons as a result of heavy rains.

After the frost-affected crop of 1975/76, Argentina's sugar production is expected to return to its normal level, as is the Mauritius crop which was last year devastated by cyclone damage. In South Africa production is expected to recover from the low level of 1975/76 and to exceed the high output level of 1974/75. In India output is expected to recover from the reduced crop of last year but not to reach the peak of two years ago. Good weather and expanded area are expected to provide Australia with a record crop in 1976/77, nearly 16% above that of the previous season.

* *

International Sugar Organization

A meeting of the Committee called to advise the ISO Executive Director of the further preparations for a new International Sugar Agreement was held in London at the beginning of October. According to C. Czarnikow Ltd.³, representatives of the EEC and the USA took part for the first time in these discussions of the bases and framework of a new

Agreement. If the delegates have been successful their discussions will form the basis on which a new Agreement can be negotiated in Geneva next year. The Executive Director was to report the outcome of his discussions to the Consultative Committee at its meeting scheduled for 18th-19th November.

One particular aspect which the committee examined was the role which must be played by stocks in the context of a new Agreement.

C. Czarnikow Ltd. comment⁴, in this respect, "In any new Agreement it would be most valuable to have the active participation of the United States of America. Indeed, if her future sugar arrangements enable her still to take her supplies as a part of the world market the very size of the tonnage required would make it necessary for her to be a member of the International Sugar Agreement if the latter were to be a feasible proposition. Even if the USA reverted to the old type of Sugar Act under which her supplies were considered to be a special arrangement and thereby precluded from the world market, her active participation in a new International Agreement would certainly ensure that suppliers to her market also adhered to the Agreement.

"For this reason it is particularly interesting to note that the US Assistant Treasury for International Affairs is reported to have stated recently that the US will refuse to join any international commodity agreement which fixes prices or sustains them above the level of the market and that furthermore the USA does not believe that the common buffer stock fund proposed by UNCTAD is necessary. If this is, indeed, the position of the USA on this subject there would seem to be very little likelihood of the possibility of including buffer stock arrangements within a new International Sugar Agreement."

World sugar prices

Sales on the New York market at the beginning of October left most of the immediately available sugar in the hands of one dealer who was anticipated to have customers since delivery is required within 75 days. This gave a buoyancy to the markets and the LDP rose from ± 118 to ± 130 per ton. Little interest was shown during the remainder of the month, however, and prices eroded slowly with a small rise at the end of the month which was due to

International Sugar Rpt., 1976, 108, (29), 1–4.
 I.S.J., 1976, 78, 321.
 Sugar Review, 1976, (1304), 163.
 ibid., (1306), 174.

Notes and comments

weakening of sterling, to reach £118 again on the last trading day of October.

The white sugar market was not affected appreciably by the earlier effects on the raw sugar market and the LDP(W) rose only from £162 per ton to £171 during the first two weeks of October. Thereafter it slipped back to £162 in the next week while the weakness of sterling brought about a rise to £167, although the lack of demand produced a renewed fall to £161 by the end of the month.

¥

Sugar consumption in the EEC

F. O. Licht KG recently published¹ tables of monthly consumption data for individual countries and all-Community data for October/September periods in 1972/73 to 1975/76. The figures for July-September 1976 are preliminary and so subject to amendment; nevertheless, they show that from March 1976 offtake has been consistently higher than a year earlier in contrast to the figures from February 1975 which had been consistently lower than the corresponding figures of a year before. Total consumption for the period October 1975-September 1976 is set at 9,587,500 metric tons, white value, compared with 9.475.800 tons in 1974/75, 10,279,100 tons in 1973/74 and 9,840,900 tons in 1972/73.

Thus, in spite of an increase of 111,700 tons or 1.18% by comparison with 1974/75 the latest figures are still below those of 1972/73. The 1973/74 figures showed a then-normal increase of 4.45%, but the high prices and shortages of the following period brought about a fall of 7.8%. The figures for March-September 1976 show an increase of 17.8% over the corresponding period of 1975; Licht notes that it is certainly not to be expected that such a high rate of increase will persist even during the near future but that the figures are indicative of a good increase in sugar consumption. Licht also points out that an increase of more than 7% will be necessary to reach the consumption level of 1973/74.

British Sugar Corporation expansion and modernization

The British Sugar Corporation has announced that £26 million will be spent in 1977 on factory expansion and modernization as part of the five-year £100 million expansion plan announced last year.

The aim is to increase home-grown sugar production in a normal year to 1,250,000 metric tons by 1980. making the UK at least 50% self-sufficient for sugar.

During the twelve months beginning September 1976 work on capacity increase will take place at Brigg, Bury, Cantley, Ipswich, Kidderminster, King's Lynn, Newark and Wissington. A total of £7,500,000 will be spent on the completion of the massive reconstruction of Newark factory. This will increase the slice from 1750 to 6100 metric tons a day, making Newark one of the most modern beet sugar plants in the world. The factory will not operate during the 1976/77 campaign to allow the reconstruction to proceed without interruption. Work is to be completed by September 1977 in time for the 1977/78 campaign.

More than £4 million has been earmarked for work at Cantley where a capacity increase from 5000 to 6350 tons per day will be completed for the 1978/79 campaign.

At Wissington £3,250,000 will be spent to increase capacity and almost £2 million will be spent to boost Bury's slice rate. Smaller increases will be completed at Ipswich and Kidderminster.

More than £1 million will be spent on improving beet reception facilities at Bardney, King's Lynn and Spalding. This will include the provision of long platform weighbridges to accommodate larger lorries, new automatic beet sampling units and, in some cases, new road systems to provide a faster turn-round of vehicles. Provision has also been made for smaller projects which are initiated by factories to assist their general running and improve their efficiency.

US sugar import duty

The recent trebling of import duty on sugar² was modified on the 5th October when President FORD declared exemption from the increase for any sugar on its way to the United States or which had left the warehouse in its country of origin by 21st September and was to arrive by the 8th November. This met the protests of suppliers some of whom had sugar in ships on their way to US ports and, under the terms of their contracts, were responsible for paying all duty.

The International Trade Commission, which has been charged by the President to determine whether sugar is being imported into the country in such quantities as to threaten the domestic industry, was scheduled to commence its hearings in the first week of November, with further hearings later in the month. C. Czarnikow Ltd. note³ that the Committee has been asked to act speedily but meantime there is a great deal of uncertainty and this is acting as a damper on buying interest.

Sugar exporters' meeting⁴

The Latin American and Caribbean sugar exporters group, GEPLACEA, met in Mexico City in September and, according to informed sources, tried to agree on a minimum price for sugar exports. A minimum price of 12 cents per pound was mentioned (which compares with the actual ISO range of 7.55 to 9.25 cents/lb during September) but no decision was reached. The Group between them supply more than 60% of all sugar finding its way to the world market and has tried for some time to stabilize world market prices to protect export revenues. Although the actions of the Group had some success earlier this year they could not prevent the recent drastic fall in world prices. However, it is understood that the delegates came to the decision that they should refrain from making further sales until prices improve. This will be difficult, however, in view of the fact that some member countries are expecting good crops which might cause storage problems if the cautious selling policy is continued over a longer period.

¹ International Sugar Rpt., 1976, 108, (28), 1-6.

² I.S.J., 1976, **78**, 322. ³ Sugar Review, 1976, (1307), 180. ⁴ F. O. Licht, International Sugar Rpt., 1976, **108**, (26), 14.

Physico-chemical properties of Egyptian sugar

By MOSTAFA A. MOHAMED, KAMAL A. HAMMADY and SALAH H. ABOU-EL-HAWA

(Dept. of Food Technology, Faculty of Agriculture, Assiut University)

Introduction

Up to the present, little information is available in the literature concerning the physico-chemical pro-perties of Egyptian sugar. The investigation described herein was therefore planned to evaluate the gross physico-chemical properties of this sugar. Such analysis will furnish enough data to establish stand-Such ards and general specifications for sugar. The values obtained in this work may also be of use in improving the quality of sugar produced in Egypt.

Materials and methods

Sampling: Gross samples of 100 kg of both refined and white granulated sugar were obtained at random from the local market. These gross samples were thoroughly mixed and reduced by the standard method of quartering to give a final sample of 3 kg, termed sugar A and sugar B, respectively. In the same manner, a final sample (sugar C) was prepared from the white granulated sugar, obtained from the market by ration card. (In Egypt sugar is obtained with a ration card and also from the free market.)

Methods of analysis: Determinations, using methods described in the literature^{1, 2, 3}, were run in duplicate and results reported as the mean of the two runs. The following properties were studied: bulk density (as poured, and after compacting); hardness of setting; pH value; reduced buffer power; colour using Bottlers standards; insoluble matter; crystal purity; % moisture; polarization; % sucrose; % reducing sugars; % ash and % sulphates. Sodium, K and Ca contents

were also estimated applying the method described by JACKSON⁴. Waxes, starch, iron and SO₂ contents were studied using the methods described by PLEWS² and MARCHENKO⁵.

The U.V. absorption spectra for aqueous solutions of sugar under study were measured using a "Unicam IV" spectrophotometer.

Results and discussion

In Table I are presented the physicochemical properties of the sugars investigated. Remarkable differences in the studied properties could be noticed between the three groups of sugar. Data show that sugar A and sugar Bwere hardened much less than sugar C. DEKKER, WEBSTER and others⁶ found that with higher invert percentage the tendency to harden was greater than

with lower invert percentage. Our results agreed with these findings. At any rate, there are other factors affecting the hardness of setting for sugars, such as: sugar quality; temperature at bagging; weather and climatic conditions and storage conditions. The values obtained have a practical importance, since there is very close relation between hardness of setting and keeping quality of sugar.

Fig. 1 shows the buffer power of the investigated sugar. It will be noted that the buffer power of sugars B and C was respectively 1.5 and 5 times higher than

and a signed and a signed a si	Fable I.	Physico-chemical	properties	of	Egyptian	sugar
--	-----------------	------------------	------------	----	----------	-------

	Sugar	Sugar	Sugar
Properties	A*	B*	C*
Bulk density as poured, lb.ft ⁻³ Bulk density after compacting.	57.2	60.3	55.6
lb.ft ⁻³	60.7	63.0	60.4
Hardness of setting, g	200†	200 [±]	500†
pH value	6.55	6.25	6.30
Reduced buffer power,			
cm ³ 0·1N HCl	3.80	5.70	18.50
Colour (reference basis colour)	80	170	410
Mean aperture, mm	0.85	1.01	0.70
Coefficient of variation	35.3	47.5	27.9
Crystal regularity in quantitat-			
ive terms, %	73.2	69.0	78.7
Insoluble matter, mg/100 g	100§	95§	100§
Crystal purity	99.78	99.68	99.61
Moisture, %	0.052	0.215	0.534
Polarization	99.75	99.12	98 .16
Sucrose, %	99.82	99.27	98.41
Reducing sugars, %	0.04	0.110	0.380
Carbonated ash, %	0.020	0.135	0.283
Fe, mg/100 g	0.107	0.180	0.280
Na, mg/100 g	2.098	9.252	16.258
K, mg/100 g	5.246	26.092	38.665
Ca, mg/100 g	13.080	48.356	68.269
Waxes, %	0.015	0.048	0.081
Starch, mg/100 g	2.00	2.00	2.500
Sulphates, % SO ₂	0.019	0.038	0.078
SO ₂ , ppm	20.8	20.8	94.1
Safety factor	0.208	0.244	0.290

* Sugar A = refined granulated sugar; Sugar B = white granulated sugar; Sugar C = white granulated sugar obtained under ration.

within first minute

within second minute.

§ sugar not clean.

Fig. 1. Buffer power of sugars A, B and C

- PAYNE: "Sugar cane factory analytical control". (Elsevier, Amsterdam), 1968, pp. 81-89.
 PLEWS: "Analytical methods used in sugar refining". (Elsevier, Amsterdam), 1970, pp. 63-79, 84-88, 215-217.
 DE WHALLEY: "ICUMSA methods of sugar analysis". (Elsevier, Amsterdam), 1964, pp. 7-13, 36-45, 84-97.
 "Soil chemical analysis". (Prentice-Hall, London), 1964, p. 285.

- p. 285. ⁵ "Photometric determination of elements". (Moscow), 1971,

⁶ MEADE: "Cane sugar handbook". (Wiley, New York), 1959, pp. 238-239, 266-278, 418-450, 540-555.

Physico-chemical properties of Egyptian sugar

the buffer power of sugar A; this is probably due to variations in invert sugar, colloids, coloured matter and other sugar constituents, which may have a buffering action. Attention should be directed to the colour of the sugar under study in Table I. Sugar such as sugar C, with a high content of coloured matter, may not be stored or handled for long periods without deterioration. Production of white sugar of such intensive colour indicates that the conditions of manufacture were unsatisfactory.

Among characteristics studied was the size distribution of sugar as a measure of its quality. Data obtained are illustrated in Fig. 2. It was observed that the Egyptian sugar has a mean aperture (M.A.) ranging from 0.85 to 1.01 mm. The high values of coefficient of variation (C.V.) in Table I show the lack of homogeneous crystals in sugar produced in Egypt.

It is agreed that the regularity of crystal form is an important consideration in an estimate of the quality of granulated sugar. The method employed

herein provided a means of expressing crystal regularity in quantitative terms (Table I). Photographs of sugar crystals, prepared by the methods described by PLEws², are illustrated in Fig. 3. As shown in this figure, the crystals are not perfectly even. There are some twins and a few conglomerates. It was found that sugar B contained a large proportion of twins, and sugar A comprised a few irregular crystals with excessive proportion of conglomerates, these

Fig. 2. Size distribution of sugars A, B and C

considerations being reflected on expression of crystal regularity in quantitative terms as shown in Table I. It is important here to point out that regularity of crystals has a great influence on the keeping quality of sugar.

Fig. 4 illustrates the U.V. absorption spectra for aqueous solutions of the sugar under study. A shoulder may be clearly observed in the optical absorption curves for sugar B and C in the wavelength

Fig. 3. Crystal regularity of sugar A_1 , B_1 and C_1 —crystals coarser than mean aperture A_2 , B_2 and C_2 —crystals smaller than mean aperture

The line between profit and loss

Excess moisture is expensivethe high price of fuel for drying could be costing you more than necessary. A one percent reduction in moisture content before drying will show a dramatic reduction in drving costs. The answer is more efficient

filtration. The use of correctly engineered filter fabrics can show appreciable benefits in reducing

moisture content-lower drying costs. Don't devalue your operation by skimping on filter cloths-talk to P &S. We have the knowledge, facilities and experience of your industry to offer positive advice. You have everything to gain, including improved efficiency, better product quality, lower costs.

We do the research-you get the benefits

P & S TEXTILES LTD.,

England BB4 6312 dustrial Fabrics Division of Scapa Group Ltc

ino, (Milano). 362) 95266-7 Telex: 38354

A. (Pty.) Ltd., vsens 2016, Transvaal TEXTILES I TD 11 24 Gc thenburg, (155) 031 177760 Telex: 20062 xviii

Plan big. Hitachi Zosen has the project capabilities to match.

In sugar plant construction, Hitachi Zosen is all the company you need.

You want a large-capacity, highly automated integrated sugar plant. Hitachi Zosen will deliver it. Complete.

Our team is your team

For each project, we form a project management team of experts in sugar plant construction. This team is your team. To see that your objectives are met completely.

The team brings Hitachi Zosen's entire engineering and construction capabilities to your project: feasibility studies, basic design, procurement, fabrication, construction, and guidance for start-up, operation and maintenance. For all types of sugar plants — cane raw sugar, cane plantation white and refined sugar, beet sugar, glucose factories and sugar refineries.

Advanced processes and equipment, high-capacity fabrication

Your project will benefit not only from installation of the latest, most advanced processes and equipment, but from Hitachi Zosen's high-capacity fabrication capabilities as well.

Sophisticated processes and equipment mean higher product yield, greater production efficiency and minimum operating costs. Hitachi Zosen plants provide them. With De Smet diffusers, automatic centrifuges, automatic vacuum pans, combustion control bagasse boilers and other equipment. We also supply by-product processing plants such as bagasse pulp & paper plants, alcohol and other plants.

Other factors vital to project success are quick delivery and maximum equipment service life. We give you both. Our highcapacity fabrication facilities allow us to to deliver all equipment in the

shortest time, built to the highest technical levels. As has been demonstrated consistently with ontime completion of many 4,000 metric ton/day class cane sugar plants in Southeast Asia.

Hitachi Zosen's total sugar plant project capabilities can build just the plant you want, when you want it. No matter how big the plan. Contact our Plant and Machinery Export Department for all the details.

1-1-1, Hitotsubashi, Chiyoda-ku, Tokyo 100, Japan

Overseas Offices and Subsidiaries: London/New York/Düsseldorf/Hong Kong/Oslo/Singapore/Greece/Houston/Rio de Janeiro

range 265-270 nm, this shoulder being more obvious in the case of sugar C. It is attributed to the presence of coloured matter in sugar crystals, since coloured products from the alkaline degradation of reducing sugars show an absorption peak in the same wave-length range⁷. The absence of any shoulder in the case of sugar A, which showed the lowest value in colour, confirms our conclusion. This may justify the using of U.V. absorption spectra of sugar as a measure of its quality in Egypt.

With reference to Table I, special significance has to be attached to the chemical analysis of Egyptian sugar. In general, significant differences were observed between the three groups of sugar. It

Physico-chemical properties of Egyptian sugar

(2) Certain other factors have also to be taken into account when establishing general specifications for sugar in Egypt; these factors comprise crystal regularity in quantitative terms, size distribution, buffer power and colour.

(3) The U.V. absorption spectrum of sugar is an important consideration for estimating of its quality.

Summary

An investigation has been carried out to furnish enough data to set up standards and general specifications for Egyptian sugar and to be of use in improving its quality. Representative samples of white and refined granulated sugar were obtained from the

Fig. 4. U.V. absorption spectra of sugar solutions

should be mentioned that the values of insoluble matter, moisture content, reducing sugars, ash content and SO_2 in sugar B and C were considerably higher than the corresponding values recorded for sugar produced in other countries^{8,9,10,11}. This could be attributed to the conditions prevailing in Egyptian sugar factories and also to the handling of sugar in our market. Thus, it seems improbable that sugar with such analysis could be kept for long periods without deterioration.

The relationship between the percentages of water and non-sucrose (safety factor) was calculated for the sugars under study, and recorded in Table I. According to FRIML's chart of safety factor¹¹, both sugar A and B fall within the safety zone, while sugar C falls in the zone of deterioration. From the above discussion it can be concluded that:

(1) The quality of Egyptian sugar is rather low except for refined granulated sugar, which has a good quality comparable to that produced in other, countries.

local market and their physico-chemical properties studied. The results obtained lead to the following conclusions:

(1) The quality of Egyptian sugar is rather low, except for refined granulated sugar which has a good quality comparable to that produced in other countries.

(2) Certain other factors have also to be taken into account when setting up general specification standards for sugar in Egypt.

(3) The U.V. absorption spectrum of sugar is an important consideration in an estimation of its quality.

 ⁷ PREY et al.: Zeitsch. Zuckerind., 1966, 91, 379–385.
 ⁸ BECKER: "Principles of sugar technology", Vol. III. Ed. P. HONTG. (Elsevier, Amsterdam), 1964, pp. 453–472.

CARPENTER & BICHSEL: J. Amer. Soc. Sugar Beet Tech., 1969, 15, 369-378.

 ¹⁰ CHEN: Sugar J., 1969, 32, (4), 9–15.
 ¹¹ FRIML: CubaAzúcar, 1969, (March/April), 24–28, 50–54.

Post-harvest inversion in different cane varieties

By R. S. KANWAR and J. K. KAPUR

(Punjab Agricultural University, Sugarcane Research Station, Jullundur, Punjab, India)

Introduction

UCH stale cane giving low recoveries is crushed by Indian sugar factories, cane being left in the field as a result of transport constraints as well as factory hold-ups. During this period the cane declines in quality. LAURITZEN & BALCH1, SAYED2 and RIZK3 reported inversion of sucrose within a few hours after cutting and diminution in the available sugar (rendement)4.

Variety, climatic conditions after harvest, stage of maturity and cane quality at harvest affect the rate of deterioration. Mean losses reported by previous investigators were as follows:

GUILBEAU et al. ⁵ , Louisiana (1956)	12-50% after 14 days
BONETA GARCÍA & LUGO LÓPEZ ⁷ ,	0 0 /0 por day
Puerto Rico (1962)	0.127-0.373% per day

RAMAMOORTHY et al.⁸, India (1975) 2.0-3.2% over 96 hours The present studies were made to measure losses under Punjab conditions.

loss of sucrose was in Co 1148, followed by CoJ 46, CoJ 64 and CoJ 67, respectively, after nine days storage.

Daily losses were as follows:

CoJ 67	0.31%
CoJ 64	0.38%
CoJ 46	0.46%
Co 1148	0.48%

Losses were lowest in CoJ 67 although CoJ 64 was earlier-maturing and had a slightly higher initial quality. Other authors^{6,7} have reported daily pol losses up to 0.5%.

The difference is attributed to the thinner canes of CoJ 67 variety; its cross-sectional area of the cut stalk is smaller than for the thicker variety CoJ 64, resulting in a smaller moisture loss and sucrose inversion in the latter variety. This view would be in accordance with the work of HALL⁹ who found

Table I.	Mean changes in sucrose	purity.	reducing sugars and	weight los	is (al	l in	percentage) as	a result	t of	stali	ing.
----------	-------------------------	---------	---------------------	------------	--------	------	------------	------	----------	------	-------	------

						Days of s	torage -				
Quality constituent	Variety	0	1	2	3	4	5	6	7	8	9
Sucrose %	CoJ 64	19·58	18·90	18·79	18·41	17·93	17·36	17·20	17·43	17.00	16·20
	CoJ 67	19·34	18·93	18·79	18·36	17·83	17·12	17·16	16·61	16.56	16·58
	CoJ 46	16·80	16·61	15·17	14·95	14·57	14·18	13·35	13·91	13.65	12·87
	Co 1148	17·74	17·29	15·86	15·43	14·94	14·67	13·78	13·57	13.63	13·30
Purity coefficient	CoJ 64	89·4	84·2	81·7	80·7	77·3	75·2	71·4	73·9	71.9	70·0
	CoJ 67	87·9	86·5	82·0	80·5	78·3	74·8	71·3	70·7	71.0	70·0
	CoJ 46	83·8	79·2	77·2	75·5	68·6	65·0	64·7	64·7	64.1	64·1
	Co 1148	81·7	79·0	77·6	75·0	69·6	67·8	63·9	63·8	63.5	62·6
Reducing sugars %	CoJ 64	0·19	0·26	0·39	0.60	1.90	2·10	2·40	2.80	2.80	3·20
	CoJ 67	0·18	0·23	0·56	0.80	1.50	2·40	2·40	2.60	2.90	3·00
	CoJ 46	0·71	0·68	1·10	1.65	2.50	3·15	3·20	3.50	3.70	3·75
	Co 1148	0·53	0·64	1·09	1.55	2.45	2·95	3·15	3.10	3.45	3·55
Weight loss %	CoJ 64 CoJ 67 CoJ 46 Co 1148	0 0 0	3·9 1·3 2·4 3·7	4·7 2·3 5·6 4·2	4·7 3·0 5·9 6·1	9·3 5·4 7·1 7·3	9·3 6·8 8·6 9·4	10·1 6·8 10·2 11·4	11.8 8.1 10.4 11.9	12·0 9·0 11·8 13·8	13·6 9·5 13·9 16·3

Materials and methods

The investigation was carried out at the Jullundur Research Station in March 1975 and March 1976. During the period, the maximum temperature varied from 21° to 27°C and the minimum from 11° to 15°C. The mean relative humidity was 65%. Four varieties were used: CoJ 64 (early-maturing), CoJ 67 (midseason), CoJ 46 (moderately late) and Co 1148 (latematuring). Cane from each variety was topped, cut and stored separately in heaps under natural conditions, i.e. exposed to the sun as usual in farmers' fields. Ten stalks from each variety were crushed daily for nine days after cutting and the expressed juice analysed for Brix, pol % and reducing sugars % and the purity derived. Weight loss was calculated from the daily weight of cane stored separately under similar conditions.

Results

Examination of the data in Table I indicates that CoJ 64 had the maximum sucrose at sampling on Day 0, followed by CoJ 67, Co 1148 and CoJ 46. Sucrose content decreased as the time of storage (staling) increased, regardless of variety. Maximum that inversion in Java and Argentina varieties was correlated with the thickness and, therefore, crosssectional area of the cut ends. Between the late varieties CoJ 46 and Co 1148 the above view would explain the relative rates of loss of sucrose.

The net losses of sucrose for 0-3 days, 3-6 days and 6-9 days are presented below in Table II.

Fal	ble II. Mea Variety	n changes in 0-3 days	% sucrose 3-6 days	during the s 6-9 days	torage period Total drop
	CoJ 64	1.17	1.21	1.00	3.38
s e	CoJ 67	0.98	1.20	0.58	2.76
	CoJ 46	2.05	1.60	0.48	4.13
	Co 1148	2.31	1.65	0.48	4.44
	CoJ 46 Co 1148	2·05 2·31	1.60 1.65	0·48 0·48	4·13 4·44

¹ U.S.D.A. Tech. Bull., 1934, (449).

² M.Sc. Thesis, College of Agriculture Library, University of Assiut.

³ Ph.D. Thesis, Louisiana State University Library, 1967.

⁸ Ph.D. Thesis, Louisiana State University Library, 1967.
 ⁸ SAvED et al: Research Bull. (Egyptian Sugar & Distillation Co., Sugar Cane Dept.), 1972, (38).
 ⁶ Sugar J., 1960, 22, (8), 15.
 ⁷ J. Agric. (Univ. Puerto Rico), 1962, 46, (3), 189–194.
 ⁸ Sugar News (India), 1975, 7, (4), 5–10.
 ⁸ Rev. Ind. Agric. (Tucumán), 1913, 4, (4), 148–150.

Loss in fresh weight was positively correlated with the loss in sucrose as is evident when sucrose losses (Table II) are compared with weight loss in Table III below.

Table III. Mean weight changes by drying during the storage period

Variety	0-3 days	3-6 days	6–9 days	Total drop
CoJ 64	4.7	5.4	3.5	12.6
CoJ 67	3.0	3.8	2.7	9.5
CoJ 46	5.9	4.3	3.7	13.9
Co 1148	6.1	5.3	4.9	16.3

These observations are in accordance with those reported by ALEXANDER¹⁰ and SRINIVASAN et al.¹¹

Mean changes in percentage purity are presented in Table IV. The fall in purity was maximal during the first three days, substantial in the period from the 3rd to 6th day, and much less during the last three days of storage.

The sequence of changes in reducing sugars content for 0–3, 3–6 and 6–9 days are presented in Table V.

Table IV. Mean changes in purity during the storage period

Variety	0-3 days	3-6 days	6-9 days	Total drop
CoJ 64	7.70	9.30	1.40	18.40
CoJ 67	7.40	9.20	1.30	17.90
CoJ 46	7.30	11.80	0.60	19.70
Co 1148	6.75	11.10	0.90	18.75

Table V. Mean changes in reducing sugars % during the storage

periou								
Variety	0-3 days	3-6 days	6–9 days	increase				
CoJ 64	0.41	1.80	0.80	3.01				
CoJ 67	0.62	1.60	0.60	3.02				
CoJ 46	0.94	1.55	0.55	3.04				
Co 1148	1.02	1.60	0.45	3.07				

Those varieties which were mature as indicated by high sucrose and low reducing sugars at the beginning of the trial showed the lowest increase over the first three days of storage; thereafter losses were as high or higher. (Cf. CoJ 64 and CoJ 67 with CoJ 46 and Co 1148).

¹⁰ "Sugar cane physiology" (Elsevier, Amsterdam), 1973.
 ¹¹ Sugar News (India), 1975, 7, (5), 14–15.

Corrections at high temperatures to the refractive index of sucrose solutions*

By DOV BASKER

(Division of Food Technology, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel)

Introduction

ANY industrial processes are followed and controlled with in-line instruments, of which the refractometer is an example^{1,2}. In particular, the concentration of solutions, such as fruit juices, by evaporation under vacuum, is typically followed refractometrically, using an instrument graduated in °Brix, equivalent to % by weight of sucrose³. It is known that the refractive index is strongly temperature-dependent^{4, 5}, and that industrial processes are frequently carried out at elevated temperatures. However, no tables appear to be available for correcting refractive index readings obtained at temperatures above 30°C, to standard temperature (20°C).

Discussion

In a previous paper⁵, a method was discussed for the determination of density of solutions at various temperatures, as a function of the refractive index. This relationship may also be employed to calculate the refractive index when the density is known. Using subscripts to refer to different temperatures, we have⁵:

where D = density of solution, R = refractive index of solution, a = refractive index of solvent, and thus

 $R_{2} - a_{2} = D_{2} (R_{1} - a_{1}) / D_{1} \dots \dots$..(2) The density of aqueous sucrose solutions of different concentrations is known at various temperatures up to 95°C⁶. The refractive index of water is also known⁷ and thus R_2 may be calculated.

The experimental data of THIELE⁶ were obtained on solutions the concentrations of which were not integral percentages by weight. In order to interpolate and to construct a table based on integral % w/w, the linear relationship between $(R_t - a_t)$ and concentration by weight per unit volume (w/v)⁸ may be used at each experimental temperature⁶ (see Appendix). The regression equations (see Table I) were solved for selected integral concentrations w/w, converting to concentrations w/v according to the specific gravities at $20/20^{\circ}C^{\circ}$. R_t was calculated and converted to Brix units³ where applicable, and is detailed in Table II; in some instances the values are off the Brix scale (see Appendix).

On theoretical grounds⁸ it would appear more appropriate10 to calculate the regression equations through the points a_t ; the constant terms in Table I would then be zero, and the variable terms would have slightly greater factors. However, small in-

- Contribution from the Agricultural Research Organization, Volcani Center, Bet Dagan, Israel. 1975 Series, No. 177-E.
 ¹ FEINERG: "Food Processing Operations". Ed. JOSLYN & HEID. (Avi Publishing Co. Inc., Westport) 1964, p. 331.
 ² MALEY: Food Technol., 1963, 17, 25.
 ³ "Official Methods of Analysis", 12th edn. (AOAC, Washing-ton), 1975, Sec. 52.012.
 ⁴ ibid., Sec. 52.015.
 ⁵ BASKER: J. Assoc. Off. Anal. Chem., 1975, 58, 618-619.
 ⁶ Zeitsch. Zuckerind., 1962, 87, 424-434.
 ⁷ WEAST: "Handbook of Chemistry and Physics", 52nd edn., (Chemical Rubber Co., Cleveland), 1971, p. E-203.
 ⁸ GLOVER & GOULDEN: Nature, 1963, 200, 1165-1166.
 ⁹ "Official Methods of Analysis", 12th edn. (AOAC, Washing-ton), 1975, Sec. 52.008.
 ¹⁰ BROWNLEE: "Statistical Theory and Methodology" (Wiley, New York) 1965. New York) 1965.

Table J. Regression of refractive index (minus refractive index of water) at various temperatures, on concentration by volume at 20°C

7

Regression of refractive index
$0.000373 + 0.001395262 \times \%$ sucrose w/v
$0.000377 + 0.001389421 \times \%$ sucrose w/v
$0.000356 + 0.001383514 \times \%$ sucrose w/v
$0.000355 + 0.001377686 \times \%$ sucrose w/v
$0.000346 + 0.001370875 \times \%$ sucrose w/v
$0.000313 + 0.001364511 \times \%$ sucrose w/v
$0.000294 + 0.001357968 \times \%$ sucrose w/v
$0.000269 + 0.001355363 \times \%$ sucrose w/v

accuracies are present11 in the reference table of refractive index³ and/or of specific gravity⁹; in consequence, the residual standard deviations due to the regression lines given in Table I are lower (decreasing from 0.00052 refractive index units at 30°C to 0.00039 at 95°C) than those through the points a_t (decreasing from 0.00057 refractive index units at 30°C to 0.00043 at 95°C); the former are therefore preferred. In terms of sucrose, the values of the residuals vary somewhat with temperature, but principally with concentration, being equivalent to approximately 0.3% w/w at concentrations below 45% w/w and approximately 0.2% w/w at higher concentrations.

Table II. Refractive index of aqueous sucrose solutions at various temperatures (Brix scale)

Cumana				1 emper	ature,	C		
Sucrose, % w/w	30	40	50	60	70	80	90	95
5	4.4	3.5	2.4	1.1				-
10	9.3	8.4	7.3	6.1	4.6	3.1	1.3	0.4
15	14.3	13.3	12.2	11.1	9.6	8.1	6.4	5.6
20	19.2	18.3	17.3	16.1	14.6	13.2	11.5	10.7
25	24.2	23.3	22.2	21.1	19.7	18.2	16.6	15.8
30	29.2	28.3	27.2	26.2	24.7	23.3	21.8	20.9
35	34.1	33.2	32.2	31.2	29.8	28.4	26.9	26.1
40	39.1	38.2	37.2	36.2	34.8	33.5	32.0	31.3
45	44.1	43.2	42.3	41.3	39.9	38.6	37.2	36.4
50	49.1	48.3	47.3	46.3	45.0	43.7	42.3	41.6
55	54.2	53.4	52.4	51.4	50.2	48.9	47.5	46.8
60	59.3	58.4	57.5	56.5	55.3	54.1	52.7	52.0
65	64.4	63.5	62.6	61.7	60.5	59.3	57.9	57.2
70	69.5	68.7	67.8	66.8	65.6	64.4	63.2	62.5
75	74.6	73.8	72.9	72.0	70.8	69.7	68.4	67.7
80	79.8	79.0	78.1	77.2	76.1	74.9	73.6	73.0
85	85.0	84.2	83.4	82.5	81.3	80.2	78.9	78.3
90	_	7 2				85.5	84.2	83.6

In industrial practice, the differences between Table II and the true Brix provide a more convenient manner of applying these results; the differences are detailed in Table III. To obtain the true Brix of aqueous sucrose solutions, therefore, the corrections

Table III. Corrections to be added for determining the percentage of sucrose in sugar solutions by a refractometer

3			Ter	mperatu	ire, °C			
Sucrose,	10000							
% w/w	30	40	50	60	70	80	90	95
5	0.6	1.5	2.6	3.9			\rightarrow	
10	0.7	1.6	2.7	3.9	5.4	6.9	8.7	9.6
15	0.7	1.7	2.8	3.9	5.4	6.9	8.6	9.4
20	0.8	1.7	2.7	3.9	5.4	6.8	8.5	9.3
25	0.8	1.7	2.8	3.9	5.3	6.8	8.4	9.2
30	0.8	1.7	2.8	3.8	5.3	6.7	8.2	9.1
35	0.9	1.8	2.8	3.8	5.2	6.6	8.1	8.9
40	0.9	1.8	2.8	3.8	5.2	6.5	8.0	8.7
45	0.9	1.8	2.7	3.7	5.1	6.4	7.8	8.6
50	0.9	1.7	2.7	3.7	5.0	6.3	7.7	8.4
55	0.8	1.6	2.6	3.6	4.8	6.1	7.5	8.2
60	0.7	1.6	2.5	3.5	4.7	5.9	7.3	8.0
65	0.6	1.5	2.4	3.3	4.5	5.7	7.1	7.8
70	0.5	1.3	2.2	3.2	4.4	5.6	6.8	7.5
75	0.4	1.2	2.1	3.0	4.2	5.3	6.6	7.3
80	0.2	1.0	1.9	2.8	3.9	5.1	6.4	7.0
85	0.0	0.8	1.6	2.5	3.7	4.8	6.1	6.7
90	_	_				4.5	5.8	6.4

Table IV. Example: Data for calculating regression of refractive index at 60°C on concentration by volume at 20°C

Concentration, % w/v	$R_{60} \circ c - a_{60} \circ c$
0.0	0.0000
1.000	0.0014
2.000	0.0029
3.000	0.0042
4.000	0.0056
5.000	0.0070
10.000	0.0141
20.000	0.0281
30.000	0.0420
40.000	0.0560
50.000	0.0698
60.000	0.0836
70.000	0.0972
80.000	0.1109
88.676	0.1226
96.108	0.1327
122.860	0.1684

(Table III) must be added to the refractometer readings.

The figures now calculated for 30°C differ slightly from those of the International Temperature Correction Table4, and are therefore considered to be approximate and tentative only.

Considerable similarity is noted between Table III and the table of temperature corrections to the readings of Brix hydrometers12.

APPENDIX

An example is given in order to illustrate the method of calculation.

At 60°C, the refractive index of a solution the concentration of which at 20°C is 5.000% w/v (4.91%w/w) is given by [raw data from (6) and (7)]:

$$R^{4.91\%}_{60^{\circ}C} - 1.3272 = 1.002117 (1.3401 - 1.3330)_{00^{\circ}C} - 1.017509 \dots (3)_{00^{\circ}C} = 0.0070;$$

i.e.

$$R^{4.91}_{60^{\circ}0^{\circ}} = 1.3342 \dots (4)$$
$$= R^{0.85}_{23^{\circ}0^{\circ}} \dots (5)$$

The remaining data for 60°C are calculated similarly, and can be set up as in Table IV.

The regression equation of refractive index (minus the refractive index of water) can then be obtained, and is given in Table I, together with the regression equations at the other experimental temperatures. Thus, the refractive index at 60° C of a solution of concentration 5.0% w/w (5.09825% w/v at 20°C) is given by:

i.e., R

.(7)

while

$$R_{70^{\circ}C}^{5\cdot6\%} = 1.3324 \dots (9) < R_{20^{\circ}C}^{0\cdot0\%} \dots (10)$$

Summary

Corrections have been calculated to the refractive index of sucrose solutions at various temperatures up to 95°C. These corrections are expressed on the Brix scale, where applicable.

 ¹¹ BASKER: J. Food Sci., 1976, 41, (in press).
 ¹² KRAMER & TWIGG: "Quality Control for the Food Industry" Vol. 2, 3rd edn. (Avi Publishing Co. Inc., Westport), 1973, p. 540.

sugar-centrifugal screens

all over the world continuous sugar-centrifugals of all types are equipped with Veco pure nickel chromeplated perforated sheets

technical data:

material nickel; also obtainable with chromium plating (900 DPN).

mirror smooth face

conical perforation, which means that Veco-segments feature a high discharge efficiency.

dimensions in accordance with specifications of centrifugal manufacturers.

veco zeefplatenfabriek b.v. eerbeek-holland · phone 08338-9100 · telex 45415

8

introduce the

AA-10 AUTOMATIC DIGITAL POLARIMETER

Tate & Lyle Engineering through its TALO Products & Process Division are proud to be associated with OPTICAL ACTIVITY in introducing to the Sugar Industry the most advanced all-purpose POLARIMETER yet produced.

The compact design combines the following features:

- * accuracy to \pm 0.02° for path lengths up to 200 mm—allows the use of existing quartz plates.
- * simple to use-no knobs or dials to adjust-push button zero-digital display in ICUMSA units.
- * small size and needing no dark-room allows siting on open laboratory bench. Light weight (8.5 kg).
- * total modular electronic construction allows simple on-site maintenance.
- * adaptable to flow through measurement.
- * reads turbid samples.
- * stabilised to withstand normal factory voltage fluctuations. Can operate on battery supply available as optional extra,
- * already proven in the Sugar Industry.

No other POLARIMETER combines all the above features in such a small package so economically.

Enquiries should be addressed to:

Sales Manager, TALO Products & Processes Division, Tate & Lyle Engineering Limited,

Cosmos House, Bromley Common, Bromley BR2 9NA, Kent, England.

Telephone: 01-464 6556 Telex: 896689

Milling-cum-centrifuging of sugar cane for higher extraction

By M. STERZINGER* and J. ZDARSKY†

PART II

BIOLOGICAL EVALUATION Material and method

Defibrated cane or bagasse (2 kg) was sampled from each processing operation. For subsequent treatment the moist material was stored in the drying cupboard for 4-5 hours at a temperature of $65-70^{\circ}$ C. After drying the sample could be transported. The rupture of individual cells in the bagasse was determined by using a maceration technique^{3,4}.

The bagasse is placed in 20% nitric acid and 5% chromic acid for 5–12 hours according to the ambient temperature, the higher the temperature the shorter the maceration period. If necessary, moderate heating is applied at the end of the maceration. Acids are removed by washing in water. The fibrous mat is stained with methylene blue or safranin (dilute solution); the former gives a blue or blue-green colour and the latter a red or yellowish-red. Excess stain is removed and the mat placed in glycerine, preferably 99%. The fibrous mat is unravelled by gently teasing with a needle mounted on a slide and covered with a cover glass. The samples thus prepared can be stored in Petri dishes for later research.

Bagasse cells are basically made up of three groups. The first and smallest in number are the epidermis cells; these are subjected to longer maceration. The second group is formed by the pith cells, which are subjected to a medium maceration time; the third group is formed of vascular bundle cells and reinforcing fibres which are the easiest and quickest to macerate.

Investigation of the condition, type and number of macerated cells was carried out informatively at a magnification of 100× and definitively at 450×. About 300 cells were counted on each slide and the numbers of ruptured and non-ruptured cells expressed in percentages.

Counts for each slide were made in duplicate, while each process operation comprised 10 duplicate tests.

For calculation of the ruptured cells we used pith cells which fill the space between the epidermis and the vascular bundles. Results were evaluated statistically⁵. The arithmetic mean \bar{x} was calculated from Equn. (1), the standard deviation s from Equn. (2), the standard deviation of the mean $s_{\bar{x}}$ from Equn. (3) and the coefficient of variation v from Equn. (4):

Symbols used: $\Sigma(x) = \text{total of all values (variants)},$ = number of values, $\Sigma(x)^2 = \text{sum of squares, and}$ N =degrees of freedom (= n - 1).

Microscopy of the ruptured cells is a direct method; it can be considered as basic but is time-consuming. In practice indirect determination methods do exist⁶⁻⁹ and involve as a first step the ratio between extraction and pol or pol in juice and in between cane. To the number of ruptured cells is added the cells of all types of fibrous matting. We assume that only pith cells should be considered since they contain most sucrose.

Experimental part and discussion

For the purposes of this work we will define bagasse as the waste after milling (hence, bagasse proper) and chopped, not completely extracted, cane before ex-traction. From the physical viewpoint, bagasse occurs at various stages of maceration, where individual portions may even have a size measurable in dm. Bagasse is a complex of more or less ruptured cells. The majority are ruptured pith cells which have characteristically the thinnest walls.

Bagasse cells are firmly attached to one another by so-called intermediate lamellae; if these are chemically dissolved, the cells separate-they macerate. Examples are shown in Figs. 7 and 8 and results are given in Table II.

The minimum number of ruptured cells was found in bagasse from the shredder (67.69 \pm 1.71%) and the maximum was found with use of the No. 1 mill + shredder + centrifugal (92.38 \pm 1.56%). The ruptured cell walls varied considerably for individual cells in both size and form.

- ³ PRÁT: "Rostlina pod drobnohledem" (The plant under the microscope), (Praha), 1952.
 ⁴ SHAH et al.: Phytomorphology, 1968, 18, (1), 102-105.
 ⁵ HRUBÝ & KONVIČKA: "Polni pokusy, jejich zakládání a hdonocení" (Field tests, their completion and evaluation), (Olomouc), 1954.
 ⁶ ALDRICH & RAYNER: Proc. 11th Congr. I.S.S.C.T., 1962, 1004.1013.
- 1004-1013.
- SAXENA & AGARWAL: Proc. 22nd Conv. Deccan Sugar Tech. Assoc. (India), 1967, (1), 17–43.
 GUETA et al.: Proc. 33rd Ann. Conv. Sugar Tech. Assoc. India, December 2014
- 1965, 1-10. ⁹ KHAINOVSKY: Proc. 3rd Congr. I.S.S.C.T., 1929, 457-479.

Table II

Survey of cell rupture for individual technological operations (values in %)

Operation:	\bar{x}	5	SX	v
Shredder	67.69	1.71	0.54	2.53
1st mill	74.43	1.85	0.58	2.48
Shredder + 1st mill	78.16	1.41	0.45	1.81
1st mill + shredder	84.29	4.20	1.33	4.98
1st mill + "Gorator" + centrifugal	81.71	2.08	0.66	2.55
1st mill + shredder + "Gorator" & centrifugal	92.38	1.56	0.49	1.69
Last (6th) mill_control	83.30	1.71	0.54	2.05

From the results we can endeavour to obtain more information on the characteristics of certain operations. If we assess only the shredder, we find that the extent to which it increased cell rupture depended on the arrangement, i.e.:

Shredder followed by 1st mill 1st mill alone	78·16% 74·43%
Cell rupture due to shredder	3.73%
1st mill followed by shredder	84·29%
Cell rupture due to shredder	9.86%

Similarly, the cell rupture due to the 1st mill is 10.47% when it follows the shredder and 16.60% when it precedes the shredder; nevertheless it may be seen that the 1st mill exerts greater cell-rupturing effect than does the shredder:

Shredder followed by 1st mill	78·16%
Shredder alone	67·69%
Cell rupture due to 1st mill	10.47%
1st mill followed by shredder	84·29%
Shredder alone	67·69%
Cell rupture due to 1st mill	16.60%

The difference between cell rupture values for the 1st mill following and preceding the shredder is surprising but statistically proven. From further combinations, the "Gorator"-plus-centrifugal is shown to give a 7.28% or 8.09% increase in the number of ruptured cells depending on whether they follow a mill alone or mill-plus-shredder combination.

1st mill + "Gorator" and centrifugal 1st mill alone	81·71% 74·43%
Cell rupture due to "Gorator" and centrifugal	7.28%
1st mill + shredder + "Gorator" and centrifugal 1st mill + shredder	92·38% 84·29%
Cell rupture due to "Gorator" and centrifugal	8.09%

Our results for number of ruptured cells may be compared with values in the literature:

Equipment	GUPTA et al.8	SAXENA & AGARWAL
Crusher	48-68	· · · · · ·
1st mill	75-82	55.64-80.62
2nd mill	82-90	60.80-82.25
3rd mill	91-93	66.95-87.12
4th mill	94-96	87.27-88.24
5th mill	96.5-98.5	91.70-91.40
6th mill		92.80

Operational information

Operation of the equipment provided much new information and useful experience. The "Gorator" came up to full expectation and carried out the functions of disintegration, simultaneously rinsing the contents of the mechanically ruptured cells, and of conveying. The cane residence time in the "Gorator" governed the degree of defibration. A positive effect on extraction was exerted by two-stage passage through the "Gorator" with gradual reduction in concentration of the transport medium as tested and (A).

Having found the answer to the question of suitable means for feeding the cane-circulation juice mixture to the first stage of the KO 1000/4 centrifugal and after connecting up and testing all the imbibition circuits, we found it impossible to overcome certain problems directly associated with the centrifugal construction. Its four stages (200, 140, 160 and 100 mm) were too short. Mixing of the juice below the screen and in the distributor was not uniform; as a result, the imbibition pump at the 2nd and 3rd centrifugal stages transferred juice of the same concentration. Imbibition at the 1st stage was provided by cold water. The juice from the first three centrifugal stages was discharged at about the same concentration because the juice was mixed in the basket before entering the distributor.

The end faces of the individual stages entrained juice in the direction of movement of the bagasse, which favoured non-uniform counterflow in the centrifugal. For this reason a multi-stage centrifugal with short stages will not be suitable for future tests. Even with a short bagasse retention in the last (4th) stage (about 4 sec), a good bagasse moisture level was achieved (70-74%), permitting further dewatering in the mills. The peripheral speed of the centrifugal was excessive even after reduction of the main shaft speed to the lowest possible, i.e. 668 rpm. Surging of the spun juice in the basket caused it to foam in the distributor tank. Layer displacement at 60 doublestrokes per min took 15 sec at a basket length of 600 mm.

The centrifugal operated on indirect extraction of cane or bagasse at the rate of 10-15 tch (average processing in Variant (D) was 12.27 tch or 5.95 tons bagasse per hr). For a sugar factory processing 1000 tons of cane per day this would mean increasing the centrifugal capacity by approximately 400%, which would present no problems when the merits and demerits of the equipment are considered. Should the centrifugal basket screens deteriorate because of sand, they can be replaced.

Conclusions

Comparison of the individual test variants from the technological viewpoint is shown in a simplified form in Table III. The laboratory tests showed that the

Table III. Comparison of alternative tests

Ш
E%
63-71 59-
Laborato 85-84 84-25
2.
Pile

363

Fig. 9

process is very promising, although there were misgivings about the juice purity at the individual stages. It must be remembered, however, that the laboratory tests were carried out during the inter-campaign period when the cane quality was low and the juice (from the laboratory mill) quality poor (see Variant A-average 74.32% and Variant B-73.18%). The results were also affected by the prolonged period of operation and evaluation of the individual phases in A and B. On the other hand, pilot-plant operation showed that there was some entrainment of impurities from the juice to the bagasse layer in the centrifugal Table III, Variants C and D, shows that basket. there was no great drop in purity between juice from the cane and from the centrifugal or between juice from the centrifugal and from the final No. 2 mill. Cold extraction and lack of increase in the juice nonsugars also led to a low drop in purity (primary juice -mixed juice). The bagasse retention time in the extractor was about 15 sec, so that the juice passed through the process in a very much shorter time than in other types of extractor.

According to the results in Table III, extraction on a pilot-plant scale was on average lower than in the laboratory tests. The tests for individual variants were compared, and the results obtained as follows: (a) tests on variant C were comparable with laboratory tests for Variant A. It was found that a 4-stage centrifugal having short stages does not meet the requirements of stepwise juice-bagasse counter-flow and only permits use of single-stage imbibition with water (cf. extraction $E_{\rm A} = 87.73\%$ and $E_c = 62.69\%$). The final mills were unable to reduce the sugar content in the final bagasse sufficiently for RE_c (91·17%) to reach the 97.35% of $RE_{\rm A}$. The final bagasse moisture content was about the same in both cases. For full-scale operation a centrifugal must be designed which would meet the conditions of the arrangement in Variant A, shown schematically in Fig. 9.

(b) The test for Variant D demonstrated the suitability of bagasse extraction as regards the centrifugal dimensions. Where primary extraction is about 75% as in Variant B, or where primary extraction is that such as obtained with the DDS diffuser at Phaltan^{2,3}, total extraction could be greater than 97%. For pilot-plant tests the 1st mill of the tandem was used for primary extraction, and according to the table an

extraction of $68{\cdot}01\,\%$ and a reduced extraction of $68{\cdot}99\,\%$ were achieved.

(c) Laboratory tests showed that the processes in Variants A and B are technologically practically the same and that with good primary extraction in the mills it would be possible to carry out the process using one single centrifugal and thus reduce production costs with full-scale operations.

Despite the shortcomings in the equipment used for the pilot-plant tests, the results for Variants C and D are good and the new method of cold extraction (milling + centrifuging) can be regarded as promising and encouraging for future full-scale operation.

* *

Louisiana cane variety programme,—Scientists at the USDA Sugar Cane Laboratory at Houma, La., will study cane variety improvement and weed control under a trust fund cooperative agreement with the American Sugar Cane League of the U.S.A. Inc. The League will provide USDA's Agricultural Research Service with \$40,000 for the research. The expanded variety improvement programme will include crossing, screening for disease resistance and testing for high sucrose, yielding ability and processing qualities. Intended to provide superior varieties adapted to Louisiana, the research will be planned cooperatively by ARS and the League. It will also include investigations on controlling cane weeds. Dr. JAMES E. IRVINE, Director of the U.S. Sugar Cane Laboratory, is the ARS representative, and GILBERT J. DURBIN is the League representative in New Orleans, La.

Vellow wilt-resistant beet research.—A search for sugar beet varieties resistant to yellow wilt, a virus disease, will be accelerated under a cooperative agreement between the Beet Sugar Development Foundation, Fort Collins, Colo., and the U.S. Department of Agriculture (USDA). Yellow wilt stunts, wilts and eventually kills beet plants. It is comparable to severe curly top virus. Because of the wilt, sugar beet production in Argentina has been abandoned. Wilt is now causing damage in Chile, and the agreement is designed to give U.S. beet producers a head start on control if and when the disease strikes the U.S.A. Yellow wilt threatens sugar production in the eastern states where climatic and ecological conditions provide a favourable habitat for leafhoppers, the insect carrier of the disease. Under the two-and-a-half-year \$50,000 agreement with USDA's Agricultural Research Service (ARS), a scientist, will evaluate varieties and parental lines for tolerance to the disease. They will also select and breed for resistance and study the nature of the organism that causes the disease. While econnical methods of control are unknown, previous research has shown that there is a possibility of breeding tolerance into the plants. J.H.FISCHER is the principal investigator for the foundation and Dr. J. S. MCFARLANE, Salinas, Calif., is the ARS representative.

Sugar cane agriculture

Cane agriculture in Réunion. ANON. Rpt. Centre d'Essai de Recherche et de Formation (La Bretagne), 1975, 117 pp.-Among aspects of cane agriculture treated in this report are: the setting-up in 1976 of seed cane farms, using setts treated against RSD; mechanical harvesting, with mention of the various types of harvesters and loaders in use and to be introduced: results obtained with the Doucet stone collector which has shown promise, though costs have not been calculated-it is stated that collecting and transporting stones from a field are economically justified only when the quantity is below 100 tons per ha. Otherwise, it is more economical to discharge the stones on hillocks created by bulldozers at the sides of the Gas-liquid chromatography was used to fields. compare the sugar content in burnt standing and burnt chopped cane. Losses were found to be higher than indicated by polarimetry, e.g. 18% in standing burnt cane after 9 days as given by GLC compared with 9% found by polarimetry. On the other hand, GLC is considered too time- and labour-consuming for use as an industrial routine method, and is only recommended as a reference method. Enzymatic analysis for determination of sugar losses in cane is to be tested. Because of the new regulations banning the use of mercurial compounds, "Benomyl" is recommended for the control of pineapple disease, and has proved more effective than "Aretan" in this. A summary is presented of the disease situation in Réunion. Varietal susceptibility to smut has been determined in several regional trials. Cephalosporium sacchari (wilt) has occurred in varietal trials and in commercial fields in various regions, but at present it offers no obvious risk to the crop. The reappearance of the pest Pulvinaria icervi is reported. Results are given of herbicide trials, particular mention being made of tests to control *Rottboellia exaltata* (rice grass), which has spread rapidly and is becoming a serious problem. While pre-emergence control is difficult, post-emergence control is possible with "Roundup" at 6 litres.ha⁻¹ for field perimeter treat-ment, and "Karmex" + "Hyvar X" + "Gramoxone" (3 kg + 1 kg + 3 litres per ha) for infield treatment when the cane is sufficiently developed. Full details are given of varietal trials in the different parts of the island. Interesting photographs depict intercropping with onion and with tobacco plus beans.

A study on ripening of sugar cane plants. I. The growth pattern of sugar cane and the accumulation of sugar in the ripening period. T. T. YANG and T. S. HSIEH. *Rpt. Taiwan Sugar Research Inst.*, 1975, (69), 9-17.—The effects of N, P and K deficiency on cane quality and growth were determined in greenhouse tests with plants of variety F 160. As control, cane was treated with an adequacy of all three nutrients in a mixture, while other samples were treated with only two out of the three nutrients. Results after 72 days showed

that the juice quality (expresse d by Brix, purity, re ducing sugar content and pol) for both mother stalks and tillers was highest in the N-deficient cane, followed by the P-deficient cane, control and K-deficient cane in that order. As regards accumulated growth, the maximum was achieved by the control, followed by K-deficient cane, P-deficient cane and finally Ndeficient cane which had a growth index less than half that of the control. These results demonstrate that the amount of sugar produced in the growing cane can accumulate in the stalk as growth stops, so that the daily growth pattern of N-deficient cane is of value as a guide for cane ripening control. Similar results to the greenhouse experiments were obtained in field-grown irrigated and unirrigated cane.

Cane breeding in Louisiana. L. L. LAUDEN. Sugar Bull., 1976, 54, (14), 10–11.—The cane breeding programme in Louisiana and the parts played by Louisiana State University, the US Dept. of Agriculture and the American Sugar Cane League are outlined.

Sugar cane technology in the past half-century in India. I. Sugar cane production. S. THANGAVELU and K. SUNDARESAN. Indian Sugar, 1976, 25, 779–783.—Information is given on the cane area, cane production and yield per acre in India from 1923 to 1974; the proportion of the area under Co canes and the actual area involved are also given up to 1946. Although the proportion of cane not processed (but used as seed cane or for chewing) has tended to fall during the period investigated, the authors consider that the amount (16-5 million tons in 1974) should be drastically reduced so as to increase sugar output.

The role of Co 449 in the evolution of newer sugar cane varieties. N. BALASUNDARAM, S. THANGAVELU and K. SUNDARESAN. *Indian Sugar*, 1976, 25, 785–790.—The role played by Co 449 (obtained from POJ 2878 \times Co 331) as genetic stock is examined. Lists are given of varieties having Co 449 or its progeny as a parent. A total of 249 varieties can trace their ancestry to Co 449.

×

+ + +

Yellowing disease of sugar cane and its control. K. N. GOYAL and R. N. S. TYAGI. Indian Sugar, 1976, 25, 791.—Yellowing disease, a severe problem in Rajasthan, causes stunted growth and yellowing of the leaves, which finally die; eventually the entire clump withers. Tests have shown that it is not caused by viruses or nematodes. Application of 1% ferrous sulphate containing citric acid, tartaric acid or an imli fruit extract has proved successful in restoring the green colour to the leaves. A 1% solution of ferrous sulphate containing 2.5 g.litre⁻¹ citric acid is more effective and cheaper than sulphur dust.

Sugar cane agriculture

A chemical ripener for sugar cane. ANON. S. African Sugar J., 1976, 60, 205–207.—"Ethrel", a product of Industrial Chemical Products Ltd., has been registered by the South African Government for use as a cane ripener after 5 years of field tests. "Polaris" has not proved as successful as "Ethrel" under South African conditions, similar results being obtained only when 4 times as much "Polaris" as "Ethrel" was applied. Results have indicated a sugar yield increase averaging 0.7 tons.ha⁻¹ following application of 2 litres.ha⁻¹ "Ethrel"; tests are under way to see if 1 litre.ha⁻¹ would be as effective. Advice is given on optimum conditions for application of the ripener, and the economic effects of chemical ripening are briefly discussed.

* *

×

×

Cane trailer braking systems. ANON. Producers' Rev., 1976, 66, (4), 11–13.—Under new regulations in Australia which were to come into force on 1st July 1976, cane trailers used on roads must be provided with brakes. Details are given of the regulations and possible exemptions. Photographs are given of some of the types of cane trailers used by farmers in Queensland.

* *

Aerated steam as heat source for control of stunting disease. L. L. LAUDEN. Sugar Bull., 1976, 54, (13), 8.—Advantages of steam over hot air for cane sett treatment against RSD include the removal of need for hand stripping, greater adaptability to mechanical handling, a shorter treatment period (4 instead of 8 hours), and greater uniformity of temperature during the last 3 hours of treatment. Good control of the disease is obtained by treatment at 51°C; the setts should be stacked in mats not more than 15 inches tall with a 3-inch gap between the mats. It is emphasized, however, that growers who do not care to use steam but have hot air units should use these, since the virus will still be destroyed and falls in cane yield thus prevented.

Suggested use of "Asulam" ("Asulox") in Louisiana sugar cane. ANON. Sugar Bull., 1976, 54, (13), 15. Advice is given on ground or aerial application of "Asulox" post-emergence herbicide to control rhizome Johnson grass in ratoon cane in cases where the level of infestation is moderate-to-high.

*

¥

Controlling Johnson grass, Raoul grass (itch grass) and Equisetum ("popping" weed) in the Louisiana sugar cane areas. D. T. LOUPE and L. L. MCCORMICK. Sugar Bull., 1976, 54, (15), 10, 14.—Advice is given on chemical control of the three weeds named in the title. It is pointed out that the type of vegetation which will grow on ditch banks after control of Johnson grass is governed by the herbicide used, treatment with MSMA usually being followed by an invasion of Bermuda grass, while "Dalapon" treatment is generally followed by growth of various broadleaved weeds and vines; of the two types of weeds, Bermuda grass is considered as probably more effective in reducing soil erosion and in limiting reinfestation by Johnson grass seedlings. On the other hand, if Bermuda grass is invading cane fields from ditch banks, alternation of MSMA and "Dalapon" treatment is recommended.

* *

Stalk height and number as components of sugar cane yield. J. A. MARIOTTI and I. A. TUROWSKI. *Rev.* Agron. Noroeste Argentino, 1975, **12**, (1/2), 7–24.—As a sufficiently varied group, 126 clones from 5 hybrid progenies bred at Tucumán Experiment Station were studied over a 6-month period. At monthly intervals 5-stalk samples were measured for height, average stalk weight, cane yield by weight and juice sucrose content. Different traits were shown by groups of certain characteristics within the total population, and the heights and stalk numbers in each control strongly determined these characteristics in the following period. On the other hand, no associations were detected between the patterns of increase in height and decrease in stalk number. The final heights and cane yields were strongly affected by the elongation pattern during the ripening period April–June.

* *

Response of sugar cane genotypes to natural and induced environmental stimuli. J. A. MARIOTTI, D. L. PLOPER, E. S. OYARZABAL, A. R. BULACIO, I. A. TUROWSKI, J. M. OSA, M. T. DIVIZIA and R. A. AVELLANEDA. Rev. Agron. Noroeste Argentino, 1975, 12, (1/2), 25-44. The effects on 100 clones of different planting sites, different levels of N fertilization and variable weed competition were examined and the response graded between values of +5 and -5. It was concluded that the scale could be used satisfactorily for the purpose; that the clones responded differently to variation in the environmental stimuli, showing a wide range of interactions; and that this provided a possibility of identifying valuable varietal material. The stability of the clone characteristics in the populations investigated is associated with phenotypes of the same characteristics under certain environmental levels, and the reactions to environmental stimuli shown by several yield components appear not to be interassociated.

* * *

Studies of clonal selection of sugar cane in conditions of competition with natural weed communities. J. A. MARIOTTI, I. A. TUROWSKI, D. L. PLOPER and E. S. OYARZABAL. Rev. Agron. Noroeste Argentino, 1975, 12, (1/2), 45–64.—The effect of weed competition over a 45- and 90-day period on the yield and quality characteristics of a group of 100 clones was examined. The data were analysed, estimating heritability, phenotype and genotype correlations and selection efficiency. Absence of weed competition induced a smaller clonal discrimination for characteristics such as stalk number and weight. Efficiency of indirect selection by environment was 80% of that with greater competition. It was evident that increasing weed competition affects the yield structure, and selection criteria should therefore be modified to relate to normal commercial practice.

* * ·

Studies of clonal selection in sugar cane at different levels of nitrogen fertilization. J. A. MARIOTTI and O. GIMÉNEZ L. Rev. Agron. Noroeste Argentino, 1975, 12, (1/2), 65-78.—A total of 100 clones were grown in replicated plots having 0, 60 and 120 kg N per hectare applied, and the yield and cane quality data obtained were analysed for repeatabilities, heritabilities and phenotype and genotype correlations. Estimations were also made of theoretical efficiency of cross-selection from a control environment. The bulk of the population investigated showed a response to N similar to that in highly selected commercial varieties. Levels of N did not greatly affect estimates of repeatabilities or heritabilities of most traits,
although the latter were higher for some characteristics with the 120 g N level, and associations were low at the 60 kg N level.

* *

Genetic variability studies of isoperoxidases and morphological characters in sugar cane sub-clones obtained by means of "in vitro" cultivation. A. M. FRIAS DE F., H. J. ANTONI and M. E. LOZZIA DE C. Rev. Agron. Noroeste Argentino, 1975, **12**, (1/2), 79–91.—The genetic variation connected with peroxidase isoenzyme was studied as well as some morphological variations which were found in 46 sugar cane clones. These clones were obtained by tissue culture from a commercial variety, NA 56-79. The difference between clones—checked by a statistical test—were in the range of 10-30% of the controls. Morphological features of ligule and auricule showed differences, although no significant correlation was observed between enzymatic and morphological variations. Factors possibly reponsible for such variations are also discussed.

* * *

Sugar cane weed species in the Argentine Republic. R. A. AREVALO. Rev. Agron. Noroeste Argentino, 1975, 12, (1/2), 95–105.—A list of 194 weed species observed during the past ten years is presented, classified by family, genus and whether annual or perennial. The most important are Sorghum halepense (L.) Pers., Cynodon dactylon (L.) Pers., Panicum maximum Jacq., Brachiaria plantaginea (Link) Hitchc., Setaria leiantha Hackel, Cyperus rotundus L., Eryngium ebracteatum Lam, Cucurbitella duriaei (Nand.) Cogn., Sicyos polyacanthus Cogniaux and Ageratum conizoides L.

×

Fiji disease and boron. O. W. STURGESS. Australian Sugar J., 1976, 68, 72.—In answer to a suggestion that boron deficiency gives symptoms similar to those of Fiji disease, and that possibly cane which is destroyed because of Fiji disease infection is in fact not diseased, it is pointed out that all the evidence of infection is irrefutable. Virus particles have been found in infected cane and the leafhopper vector; disease has been transmitted to uninfected canes only when leafhoppers have been placed on them but not otherwise (even when infected and healthy canes are growing side by side); Fiji disease was controlled years ago by systematic measures but has reappeared in the same areas, despite non-boron fertilization under both disease and disease-free conditions; and boron application to healthy and Fiji-disease infected cane had no effect on the disease in investigations. Mention is made of two varieties which have proved to be resistant to Fiji disease in field tests and may help to contain the disease.

* *

Plant-parasitic nematodes associated with sugar cane in Barbados. C. W. D. BRATHWATTE. Plant Disease Reporter, 1976, 60, 294-295.—Of 20 genera of plantparasitic nematodes found in soil and root samples from 45 cane fields in scattered areas of Barbados, the most widely distributed were: Aphelenchus spp. (89% occurrence), Helicotylenchus spp. (77%), Pratylenchus spp. (64%), Tylenchus spp. (61%), Rotylenchus spp. (25%), Criconemoides spp. (30%), Meloidogyne spp. (27%), Trophurus spp. (25%), Tylenchorhynchus spp. (16%), Aphelenchoides spp. (14%), Ditylenchus spp. (11%) and Trichodorus spp. (9%). Important species identified were: Aphelenchus avenae, Helicotylenchus curvatus, H. concavus, H. dihystera, Pratylenchus zeae, Hemicriconemoides cocophilus, Rotylenchus reniformis, Boleodorus thylactus and Paratrophorus loofi. The high frequency and high densities of lesion nematodes (Pratylenchus spp.), which cause dark brown-to-black lesions on buttress roots and were particularly numerous in older crops, suggest that they may contribute to yield decline, although spiral nematodes (Helicotylenchus spp.) may also play a part. Leaf chlorosis and poor cane growth were observed in areas of high spiral and lesion nematode densities; these areas also suffered from low rainfall. It is suggested that nematode infestation may affect the ability of roots to absorb water under moisture stress conditions. Root-knot nematodes (Meloidogyne spp.) were less abundant than lesion or spiral nematodes, but did occur at high densities in some areas, although severe galling of roots was generally not obvious.

* * *

The development of farming mechanization on TSC plantations. ANON. *Taiwan Sugar*, 1976, 23, 49–52. Developments in mechanical cane planting and harvesting on farms of the Taiwan Sugar Corporation during the 30 years of the Corporation's existence are surveyed.

Switching to road transportation. ANON. Taiwan Sugar, 1976, 23, 63–66.—The gradual changeover from rail to road transportation of cane and other factory raw materials in Taiwan is discussed and future developments indicated.

* *

* *

Sugar cane breeding (between 1946 and 1976). I. S. SHEN. *Taiwan Sugar*, 1976, 23, 83–86.—A survey is presented of 30 years of cane breeding at the Taiwan Sugar Research Institute, which up to 1975 had resulted in the release of 43 varieties in the F series, which are now grown on 98% of the total cane area of Taiwan. Developments in breeding techniques, the characteristics of certain F varieties, and mutation breeding are discussed.

* * *

Thirty years' research and development in sugar cane cultivation. S. J. YANG. *Taiwan Sugar*, 1976, 23, 89–92.—Work conducted at the Dept. of Agronomy, Taiwan Sugar Research Institute, is described, covering establishment of the special nursery system for cane cuttings, ratooning, paddy sugar cane growing, intercropping, field mechanization, cane ripeners, irrigation and drainage, weed control and the agricultural meteorological service.

* * *

Research progress in plant protection. Y. S. PAN. *Taiwan Sugar*, 1976, 23, 93–96.—The author describes disease and disease control research in Taiwan, work on cane entomology, and chemical control of soilinhabiting insects and rats.

* *

Our groundwater research. Y. CHU. Taiwan Sugar, 1976, 23, 101–103.—The irrigation well construction programme in Taiwan is surveyed. It is pointed out that 75% of the combined agricultural and industrial water requirement in the sugar industry is met by groundwater.

Agro-industrial characteristics of some commercial varieties. A. I. BASSINELLO. Brasil Açuc., 1976, 87, 320–322.—Descriptions are given of the varieties CB 41–76, IAC 51/205, IAC 52/150, NA 56–62, CB 46–47, CB 56–126, CB 40–69, IAC 48/65, IAC 51/201, CO 40–77, CB 61–80 and CB 47–89.

×

¥

Contribution to the study of the system of mechanized harvesting of sugar cane. T. C. RIPOLI and L. A. BALASTREIRE. Brasil Açuc., 1976, 87, 323–329. Equations are developed by means of which a number of factors are taken into account in assessing the minimum number of transport vehicles to be used in conjunction with a single cane harvester.

* *

Effect of growth regulators on growth, juice quality and yield of sugar cane in CoJ 64. G. SINGH and K. SAREEN. Indian Sugar, 1976, 25, 911–915.—Investigations were made of the effect of gibberellic acid (GA) and of ascorbic acid (AA) on stalk formation, tillering, number of millable canes and juice quality of CoJ 64 cane. Tabulated results showed that GA applied at 75 and 100 ppm in the pre-monsoon period caused significant stalk elongation, while lower concentrations were less effective. However, GA had no beneficial effect on stalk length in the monsoon and postmonsoon periods, but rather inhibited growth. AA had no effect on stalk elongation at any time, and neither GA nor AA affected the other factors studied.

* +

Influence of foliar application of potassic fertilizer on chemical composition of sugar cane foliage. S. SITHAN-ANTHAM, T. K. SRINIVASAN and T. K. G. RAO. Indian Sugar, 1976, 25, 917-918.—Spraying with 3% KCl solution three times at 3-week intervals starting 35 days after planting (giving a total of 33.75 kg.ha⁻¹) caused a reduction in leaf P, Na, Si and total sugars contents compared with the controls (spraved only with water), while N, K, Ca and Mg were increased. When 0.1% "Endrin" was applied with the KCl, the P and Na contents were increased by comparison with the controls, while the Ca content fell. The decrease in total sugars and Si was markedly reduced by the "Endrin", while the increases in N and Mg contents were greater than with KCl alone. "Endrin" had been found earlier to have growth-promoting effects on cane. The increase in N content caused by the insecticide may also add to the borer-controlling effects of "Endrin"

* *

Drip up-date. W. S. HAINES. Rpts. 1975 Meeting Hawaiian Sugar Tech., 19-28.—Progress made with drip irrigation in Hawaii since its introduction on test plots in 1970 is surveyed. To prevent plugging of the orifices in the plastic piping, sterilization with chlorine is used as well as periodical flushing-it was found that small particles were agglomerating, probably as a result of bacterial growth in the water. Damage by pests has proved to be insignificant as a consequence of the use of insecticide and rodent bait. The possibility of incorporating repellents in future tube materials is suggested. Capital costs of drip irrigation systems have varied widely; variables affecting costs are listed. While harvest data for 1974 and 1975 indicate that sugar yields should be as high with drip irrigation as with furrow irrigation used previously, there is insufficient material to indicate water utilization efficiency.

Harvesting up-date: Amfac concepts. A. S. HALL. Rpts. 1975 Meeting Hawaiian Sugar Tech., 29–30. Examination of the cane material in a push-raked windrow showed that about two-thirds of the extraneous matter occurred in the bottom third of the pile, so that delivery of cane from the top two-thirds of the pile would reduce the extraneous matter transported as well as halve the waste at present removed (and needing disposal) by cleaning plant. On rocky, flat land tests were conducted on the use of highpressure water to cut cane; a system using 100 gal.hr⁻¹ at a pressure of 45,000 psi is suggested, and further tests are, it is hoped, to be carried out. Cane cutting with a flail was also tested. The cut was not sufficiently clean, so that stalk material was lost, although the leaves were easily removed without stalk damage. However, there is potential danger from flying stones when a flail is used, and power requirements are probably much higher than for a sharp blade. A Thomson-Duncaña two-row cut-windrow harvester has shown promise.

Mechanical harvesting up-date. C. C. MONTGOMERY. *Rpts.*1975 *Meeting Hawaiian Sugar Tech.*, 31–33.—The author describes the system used by the Hawaiian Sugar Co. in whole-stalk harvesting and cleaning. Chopped cane harvesting has been abandoned because of certain problems, particularly the inability to take the cane trailers into the field and the high costs resulting from this.

* * *

Sub-surface irrigation-engineering research. S. LANTING. Rpts. 1975 Meeting Hawaiian Sugar Tech., 57-62.-Research on sub-surface drip irrigation at the HSPA Experiment Station is reported. An experi-mental "plough injector" for insertion of piping at a required depth in a furrow has given good results in well-prepared soil; a packing wheel helps to firm the disturbed soil. Large stones must be avoided, and a method must be found for maintenance of an adequate tube depth at field ends, where access to the tube is required. Interruption of flow of flushing water through the tubing was caused by pinching where tube depth had not been maintained, although irrigation flow may not be affected by pinching. After seed cane harvesting, pinching was found in 22 out of 24 laterals, but after several weeks of operation and a short period with increased water pressure, pinching nearly disappeared and germination of the ratoon crop was excellent.

* * *

Single-chamber drip irrigation laterals on various field slopes and contours. U. BUI and W. GIBSON. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 63–68.—Advantages and disadvantages of the dual-chamber distribution tube, as used on most of the Hawaiian cane land under drip irrigation, are discussed. The principal defect is its proneness to orifice plugging, which has been found to be reduced in single-chamber tubes. While unplugging can be easily accomplished by increasing water pressure and single-chamber tubes are cheaper than the dual-chamber types, problems arise with the uneven contours on the downhill slopes which are typical of the irrigated cane land in Hawaii. The single-chamber tubing has been adopted by several plantations on land with low and generally uniform slopes, and investigations are under way with a computerized model to see if water distribution and

EDWARD L. BATEMAN LIMITED, a leading South African design and project engineering company, in association with the best South African sugar technologists, offer you the following services for New Sugar Factories and Modernisation and Extension of Existing Factories.

日日二四百姓的 二十八日 百日田 四日日日

FEASIBILITY STUDIES (INCLUDING AGRONOMIC STUDIES)

ATTRACTIVE SOUTH AFRICAN PRICES

ADEQUATE CREDIT FACILITIES

DESIGN AND ENGINEERING

INCORPORATION OF EQUIPMENT OF YOUR CHOICE

PROJECT MANAGEMENT

COMMISSIONING AND INITIAL OPERATION OF FACTORY

TURNKEY PROJECTS

c

ELB

TRAINING OF STAFF

EDWARD L. BATEMAN Bartlett Road Boksburg North B Transvaal Telegra South Africa Tel: 892-2020 T

MAN LIMITED P.O. Box 565 Boksburg. 1460 Telegrams "Founders" Telex: SA 8-7880 0

65111

xxii

Here are some of the more than 250 projects F. C. Schaffer has completed in 20 years of agricultural, environmental and consulting engineering service to the sugar and process industries. A testimony to the proficiency of our past. And the capability for the future.

Complete Factory Bryant Sugar House United States Sugar Corporation Clewiston, Florida Complete Factory

Glades Sugar House Sugar Cane Growers Cooperative of Florida

Belle Glade, Florida Complete Factory

Great Abaco Sugar Factory Owens-Illinois, Inc. Toledo, Ohio

Complete Factory W.R. Cowley Sugar House Rio Grande Valley Sugar Growers, Inc. Santa Rosa, Texas

Feasibility Study Immokalee Sugar Cane Growers, Inc. Immokalee, Florida

Expansion & Modernization Project Glades County Sugar Growers Cooperative Assn. Moore Haven, Florida Refined Sugar Storage Silo

С.

.

Moore Haven Sugar House Rum Distillery Modernization Carta Vieja

David, Panama

Pollution Control Study St. James Sugar Cooperative St. James, Louisiana

Consulting Services Ministry of Commerce & Industry Panama City, Republic of Panama Panela Plant Project

Plantaciones Azucar y Derivados Tequcigalpa, Honduras Sorghum Sugar Pliot Plant United States Department of Agriculture Weslaco. Texas

Aqui hay parte de más de 250 proyectos que F. C. Schaffer ha completato en 20 años en agricultura, ambiente y consultoria de ingenieria en servicios para los produtores de azúcar e industrias de proceso. Un testimonio de nuestra habilidad en el pasado. Y la capacidad para el futuro.

Factoria Completa

Bryant Sugar House United States Sugar Corporation Clewiston, Florida Factoria Completa Glades Sugar House Sugar Cane Growers Cooperative of Florida

Belle Glade, Florida Factoria Completa Great Abaco Sugar Factory Owens-Illinois, Inc.

Toledo, Ohio Factoria Completa W.R. Cowley Sugar House Rio Grande Valley Sugar Growers, Inc. Santa Rosa, Texas

Estudios De Factibilidad Immokalee Sugar Cane Growers, Inc. Immokalee, Florida

Proyecto De Expansion y Modernizacion Glades County Sugar Growers Cooperative Assn. Moore Haven, Florida

Almacenaje De Azucar Refinada en Silos

Moore Haven Sugar House Modernizacion en Destileria De Ron Carta Vieja

David, Panama Estudio En El Control De Contaminacion St. James Sugar Cooperative St. James, Louisiana

Servicios De Consultoria Ministry of Commerce & Industry Panama City, Republic of Panama

Proyecto En Planta De Panela Plantaciones Azucar y Derivados Tequcigalpa, Honduras

Planta Piloto De Sorgo United States Department of Agriculture Westlaco. Texas

SCHAFFER

ASSOCIATES, INC.

F. C. Schaffer & Associates, Inc. 1020 Florida St. Baton Rouge, La. 70802 U.S.A. (504) 343-9262 Telex 58-6486, Cable "ARKEL"

Over 250 projects since 1959. And the capability for the future.

vigorous tube flushing can be obtained with such tubing under the more adverse conditions of variable gradients and irregular contours.

* *

Flushing valve for drip irrigation tubes. W. GIBSON and U. BUI. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 69–72.—Information is given on a special valve developed by the HSPA and manufactured under licence by Wisdom Industries, Honolulu, which is intended for flushing drip irrigation tubing with water and chlorine. Details are given of the procedure used in installation and operation of the valves.

* * *

Recommendations for avoiding plugging of drip irrigation tubing. R. BELEW. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 73–74.—A list of recommendations is given for prevention of plugging of drip irrigation tubing.

* *

Drip irrigation: problems and solutions on the island of Hawaii. R. M. BADER. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 75–78.—Experience with drip irrigation on two cane plantations, one owned by Ka'u Sugar Co. and the other by Honokaa Sugar Co., is reported. The Ka'u plantation plans to use sub-surface drip irrigation for all of its seed cane, while the Honokaa system has shown considerable improvements on the previous sprinkler system despite a number of problems.

* * *

Drip irrigation—problems and solutions. McBryde's experience. G. WILLIAMS. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 79–82.—Experience with drip irrigation on cane land belonging to McBryde Sugar Co. Ltd. is discussed. Despite a number of problems mentioned, the company planned to increase the area under drip irrigation to 1076 acres by the end of 1976. Brief mention is made of ratooning in drip-irrigated fields.

+ * *

"Polaris" response in 1975. L. OUDMAN. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 87–92.—From examination of the results of a number of block trials with "Polaris" as cane ripener, it is concluded that the poor result (an increase of only 0·11 tons of sugar per acre over that from untreated cane) was the outcome of harvesting during heavy rain and that such results are unreliable where the difference between the rainfall in the area of treated cane and that in the control area exceeds 2 inches.

+ * *

Basic cane growing at Gay & Robinson. W. S. ROBIN-SON. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 96–100.—The agricultural techniques used on the smallest cane plantation in Hawaii (consisting of 2800 acres) are described.

* * *

Basic cane growing at Waialua. M. UEHARA. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 101–105.—Cane agriculture on the 15,000 acres of land owned by the Waialua Sugar Co. is described.

* *

How drip irrigation affects cultural practices at Oahu Sugar Company. S. M. TUTTON. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 106–108.—The type and quantity of equipment required for drip irrigation as it is being gradually extended over all the cane land owned by Oahu Sugar Co. are indicated for each year of expansion, and the costs are shown.

* *

The effect of drip irrigation on cultural practices and equipment on Maui. C. T. FISHER. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 109–112.—The effect of drip irrigation on cane agricultural practices on the three plantations owned by Hawaiian Commercial and Sugar Co. is examined, with particular mention of soil preparation, replanting and ratooning, but also with briefer references to problems associated with other aspects of cane growing.

* * ÷

Cultural practices for drip irrigation for Kauai. J. B. THOMSON. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 113–114.—Information is given on the agricultural practices used in conjunction with drip irrigation on cane plantations on the island of Kauai.

×

Sugar cane harvester and transport developments in Florida, Texas and Louisiana. J. E. CLAYTON and B. R. EILAND. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 115–121.—A survey is presented of progress with mechanical cane harvesting and transporting in the three US mainland cane-growing states.

*

Methods of removing trash from sugar cane on chopper harvesters. J. E. CLAYTON, B. R. EILAND and G. N. FRANKS. Rpts. 1975 Meeting Hawaiian Sugar Tech., 1975, 122-127.-After discussing the effect of the chopping system on cane cleaning, the authors examine the role of spiked-tooth cylinders (found to give good preparation of the cane for pneumatic cleaning) and then discuss cane losses caused by suction fans used to remove extraneous matter. Tests are reported, and research on fan blade design is described. Mention is made of experiments to screen trash before it enters the fan blades so as to reduce cane losses. A device for separating trash from air comprised an open-mesh conveyor belt 3 ft below the fan blade; trash on the belt passed through the fan housing and was released when the suction was reduced. Anv light trash on the returning section of the belt (which was closer to the fan blade than the outgoing section) was "lifted" through the blade. A small quantity of unburnt cane was still held by the trash and discharged with it, giving a loss of 1-2% cane; this loss would be lower in the case of burnt cane. The trash was discharged by a chute to a point beside the harvester but at a level at which it would not blow onto the cane transport. A rotary perforated disc is being tested for trash screening; the advantage would be a reduction of the number and complexity of the moving parts.

* * *

The use of rubber-tyred four-wheel drive tractors in sugar cane operations. J. LYONS. *Rpts.* 1975 *Meeting Hawaiian Sugar Tech.*, 191–195.—A representative of Steiger Tractor Inc. discusses the advantages of the title tractors in cane field operations.

* * *

Dactyloctenium aegyptiacum, an additional host of sugar cane mosaic virus. S. SINGH. Sugarcane Pathologists' Newsletter, 1976, (15/16), 1-2.--D. aegyptiacum growing in the vicinity of cane fields in Coimbatore, India, has revealed symptoms of mosaic. (See also SINGH & BHARGAVA: I.S.J., 1976, 78, 143.)

*)

Current status of sugar cane mosaic virus strains in Louisiana sugar cane fields. H. KOKE. Sugarcane Pathologists' Newsletter, 1976, (15/16), 3-5.—Surveys of the mosaic strains in Louisiana have shown that strain H predominates, infecting 75-97% of the cane in three areas. The incidence of strain I has varied during the past 8 years, but does not appear to have increased. This strain is more severe in its effects on stands and yields than is strain H.

* * *

Association of unusual symptoms with smut of sugar cane in the Sudan. I. A. NASR. Sugarcane Pathologists' Newsletter, 1976, (15/16), 6-8.—The author reports unusual symptoms of culmicolous smut on N:Co 310 cane in the Sudan. The symptoms took the form of flower derangement; the flower had seven glumes which were converted into green foliar structures, while the stamens were either suppressed or absent. The gynoecium terminated in a miniature curved or convoluted whip 1:5-8:0 cm long. The symptoms were found on many stalks in different parts of the same field.

* * *

Fodder sorghums as hosts of Perkinsiella saccharicida. R. OUTRIDGE and D. S. TEAKLE. Sugarcane Pathologists' Newsletter, 1976, (15/16), 9-10.-P. saccharicida adults were caged with wild and cultivated seedlings of Sorghum sudanense and S. bicolor in greenhouse tests, and the numbers of the leafhopper (a vector of Fiji disease) were counted after 11 and 56 days. Most of the 15 adults added to each seedling pot died within 11 days, but oviposition sites were clearly visible in the midribs of the leaves, and small numbers of first instar nymphs were seen. Counts after 56 days showed that on three of the sorghums some nymphs had reached adult stage. To determine if field-grown sorghum might support the leafhopper, a number of plants were collected and investigated. Although many insects hatched from oviposition sites in the plants, only one nymph from a cultivated fodder sorghum proved to be P. saccharicida.

*

Nature of the bacterium associated with ratoon stunting disease of sugar cane. A. G. GILLASPIE, R. E. DAVIS and J. F. WORLEY. Sugarcane Pathologists' Newsletter, 1976, (15/16), 11-15.-It is stated that, while most workers agree that the RSD agent is probably a bacterium, the exact nature of the organism and its size remain controversial. Ultrafiltration and phasecontrast, dark-field and electron microscopy have been used to increase the knowledge on the pathogen, and it is concluded that it is a non-motile coryneform bacterium measuring approximately 0.3–0.4 μ m \times Regarding reports that Xanthomonas 3-10 µm. albilineans or X. vasculorum is the agent, the authors point out that these pathogens do produce symptoms which are similar to RSD in certain stages.

* * *

A sclerotial disease of the basal stem and root in sugar cane. K. C. ALEXANDER. Sugarcane Pathologists' Newsletter, 1976, (15/16), 16–17.—A fungal disease found on Co 419 cane in 1972-74 caused complete stunting of the stools, while the cane stalks were pale, shrunk and dying in many cases. In earlier stages of infection, the plants appeared to be wilted during late afternoon, but the leaves regained turgor during the cooler hours. In advanced stages, the stalks were dead, and the roots were found to be completely infected and stubby, while no young roots were found. Lower sheaths, wherever present, were shredded and easily removed. Diseased stools were easily pulled out of the ground; white mycelia covered the underground parts and up to 6 internodes above ground, while sclerotia were formed on dead roots just below ground level. Affected stalks, when split open longitudinally, revealed light brown, water-soaked sunken lesions which later turned dry. The pathogen is a basidiomycete with white mycelium having clamp connexions; no sporophore was noticed, and attempts to induce any were unsuccessful. The disease was reproduced with all the symptoms in pot culture studies; it was controlled by drenching with 0.25%"Ceresan" followed by copious irrigation. The fungus did not appear to belong to the Marasmius genus.

* * *

Digitaria adscendens Henrand—a natural host of sugar cane mosaic virus in the Bhabhar belt of Nainital District (of India). R. D. JOSHI and U. P. GUPTA. Sugarcane Pathologists' Newsletter, 1976, (15/16), 18–19.—D. adscendens, an important fodder grass in the title area, has been found to be a natural host of cane mosaic. Symptoms of the disease and transmission tests involving a large number of different plants are reported.

Bacterium associated with ratoon stunting disease in Louisiana. K. E. DAMANN and K. S. DERRICK. Sugarcane Pathologists' Newsletter, 1976, (15/16), 20–22.—Details are given of two techniques used to obtain bacterial extracts from RSD-infected cane for use in electron microscopy. A bacterium having distinctive morphological features was found, while healthy cane yielded no such bacterium. From the evidence, it is concluded that the bacterium is the same as that described by GILLASPIE et al.¹. Staining with phosphotungstate revealed the presence of mesosomes, whereas Xanthomonas spp., associated by some authors with RSD, should not exhibit meso-some structure when stained.

+ * *

Anti-fungal property of mosaic virus-affected sugar cane leaf extracts. L. N. DUBEY and R. D. JOSHI. Sugarcane Pathologists' Newsletter, 1976, (15/16), 23-25.—Investigations to determine if extracts of cane mosaic-infected leaves inhibited germination of spores of Colletotrichum falcatum (the red rot pathogen) and Ustilago scitaminea (smut pathogen) are reported, details being given of the technique used. Results showed that the leaf sap from the infected cane significantly inhibited spore germination, the effect on U. scitaminea being greater. Strain B of the mosaic virus had the greatest effect on germination of C. falcatum, followed by strains A, F and D; strain A of the virus had the greatest effect on U. scitaminea, followed by strains B, D and F.

¹ I.S.J., 1976, 78, 370.

Sugar beet agriculture

Variety tests pinpoint the best hybrids. R. C. ZIELKE. Sugar Beet J., 1976, 39, (3), 5–7.—The beet characteristics determined in varietal trials as conducted in the USA are listed, and details are given of the various types of trials conducted. Results obtained in 1975 are briefly discussed, and general trends for the future are indicated.

* *

Increased information from Saginaw Valley Research Farm. D. R. CHRISTENSON. Sugar Beet J., 1976, 39, (3), 8-10.-Results of experiments obtained at the Saginaw Valley Bean and Sugar Beet Research Farm in Michigan are reported. Comparison of beet yields in four 3- and 4-year rotation systems showed that maximum was achieved with a corn-corn-beet system, followed by beans-beans-beet and corn-corn-beansbeet, although corn-corn-beet yielded the lowest of all systems; while oats-beans-beet gave the lowest beet yield of the 3-crop systems, oats-alfafa-beans-beet gave the second highest yield of the 4-crop systems. Rhizoctonia crown rot was found to be affected by crop rotation and was 4 times greater when beans were grown immediately before the beet crop. The organism survives on bean residue but not on corn stalks, although the incidence of the disease is so small that it has not affected yields. Beet and sugar yields per acre were greater with 19-inch row spacing than with a 14-inch spacing, while results for a 28-inch spacing were the poorest of the three. Moreover, beet quality tended to be better with the narrower rows. While broadcast application of 200 lb diammonium phosphate plus banding of 100 lb gave the highest beet yield of the various combinations tested (all based on a total application of 300 lb), increase in the amount applied by banding caused a general fall in yield, but the lowest yield was given by broadcast application of all 300 lb. Beet and sugar yield were higher when 60 lb N was carried over from a previous corn crop, and 80 lb was applied to the beet, than when 160 lb N was carried over. On the other hand, 160 lb N carried over plus 40 lb applied gave the highest sugar yield per acre. However, juice purity fell with the quantity of N carried over and/or applied. The extent of N carry-over depends on the type of previous crop.

* * *

A long look at sugar beet quality at harvest. M. G. FRAKES. Sugar Beet J., 1976, 39, (3), 11–15.—The growth stages of the sugar beet are described, with particular attention focused on the physiological processes taking place at maturation, when the cell walls harden and sugar is accumulated. Agronomic and climatic factors affecting beet growth and quality are discussed, and recommendations are given on how the grower can achieve maximum results by optimizing soil condition, nitrogen application and harvest time.

Trials of commercial varieties of sugar beet. D. S. KIMBER and S. F. H. MCCULLAGH. British Sugar Beet Rev., 1976, 44, (2), 8–9.—Details are given of beet varietal trials conducted by the National Institute of Agricultural Botany (NIAB) in 1973–75. Data for 10 varieties include root number and yield, sugar content, sugar yield, clarified juice impurities content, and bolter percentage. A new variety, "Amber", has been added to the list of recommended varieties, since it has higher than average sugar content and low impurities content, gives above-average sugar yield and suffers from only a low incidence of bolting. "Sharpes Klein E", more widely grown than any other variety in the UK during the past 40 years, has suffered from a drop in performance in recent years and has been removed from the recommended list.

* *

Group harvesting. D. CHARLESWORTH. British Sugar Beet Rev., 1976, 44, (2), 11–13.—Information is given on three farmers' groups in Suffolk, made up of 5, 5 and 6 members, who pool labour resources and equipment for beet harvesting and transportation to Ipswich sugar factory. The pattern of operation in each group is explained and advantages of the system are indicated.

Effective subsoiling. G. SPOOR. British Sugar Beet Rev., 1976, 44, (2), 28–29.—In a discussion of subsoiling, it is pointed out that there is a critical depth, below which operation of a subsoiler may cause compaction rather than the desired loosening of the soil. The critical depth can be increased by widening the share point on the subsoiler or by loosening the surface layers before subsoiling, the second method being regarded as the more efficient. Various aspects of subsoiler operation are discussed, and a number of points listed, consideration of which is recommended so as to ensure that the maximum effect of subsoiling is obtained for the large amount of energy expended.

* * *

The wild beet danger—bolters must be removed. ANON. *Die Zuckerrübe*, 1976, 25, (4), 13.—The problem of "wild" beet and the need to eliminate these bolters are briefly discussed. Best remedial means is considered to be removal of the flower heads. Advantages of bolter removal are indicated.

* * +

Straw—what is to be done with it? ANON. Die Zuckerrübe, 1976, 25, (4), 13.—Where cattle breeding is not practised or stubble not burnt (because of discouragement by local authorities), the question of what to do with straw is important. Its incorporation in the soil is one answer, but a number of measures need to be carried out in this case, and these are discussed.

Cane sugar manufacture

Pulverized coal firing of small boiler plant. A. G. HURTER. S. African Sugar J., 1976, **60**, 217–229. See I.S.J., 1976, **78**, 183.

* *

Classified crystal recycle with continuous pans. A. D. Chassing Cystal recycle with continuous pairs in 2. RANDOLPH and E. T. WHITE. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 179–181. Of major concern in continuous boiling is the crystal size distribution, which tends to increase as a result of the differences in residence times. While the usual approach is to use a large number of units in series or a multi-compartmented vessel, and thereby give a residence time distribution approaching that of a batch pan, such multiple units are costly to construct and pose certain operational problems. An alternative solution is to pass the final product through a classifier which would remove the large crystals as product and recycle the under-sized crystals for further growth. Advantages of such a scheme are discussed, and mention is made of a computer programme developed for calculation of continuous boiling parameters where classified crystal recycle is used. The model was used to compare two systems, one with and the other without classified crystal recycle; the classifier was found to permit considerable reduction in the coefficient of variation. Use of the model to examine other variables, such as the effect of crystal breakage on steady-state operation, and seeding rate, is also mentioned.

Sugar crystallization: a pan stage advisory scheme. J. A. FREW and P. G. WRIGHT. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 191–198. The application of a mini-computer and visual display at Racecourse factory to decision making in the pan station is reported. Two out of four levels of generally increasing complexity into which the decision system is divided were implemented in 1975. In the first level, the cycle is largely pre-determined and all the advice is based on measurements available at the time of decision, so that no prediction is involved. The starting procedure is divided into requirements which are mandatory and those that are recommended. The recommendations relate to the level in the feed tanks; while values of the parameters are selected to maintain the stage in balance and to minimize pan idling, when the level in any one tank falls below a minimum, the advice is given to place all the pans fed by that tank on idle. Advice on the rate of pan feeding is handled in a similar way, the rate being directly related to the level in the feed tank. If the level in a pan exceeds the normal value when full (plus a tolerance) and is continuing to rise, warning is given to terminate the feeding period and start heavying-up. Advice on centrifugal operation is on a first-come, first-served basis. The second level extends the recommendations for starting of the pans by replacing the feed tank level parameter with

a prediction of feed requirements and supplies over the feeding period, which involves forecasting centrifugal operation and the likely pan dropping time. Results obtained from 4 months of operation are discussed. The Level 1 starting advice was only of help when pan operation was according to plan, and, while it could be useful in eliminating some erratic behaviour, it did not consider enough of the factors to be of assistance when abnormal conditions arose. The Level 2 scheme was a considerable improvement in this respect and could match the supervisors over a much wider range of conditions. However, its shortcomings lay in the determination of the massecuite receiver and centrifugal status, since the system assumed a fixed boiling cycle with maximum feeding, whereas the station at Racecourse allows for considerable flexibility in the boiling cycle arrangement.

Final actuators—there is a choice. P. J. PIETILA. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 199–203.—Of importance in a control loop is the final actuator, which provides motive power for operation of valve, damper, etc. Desirable features of an actuator are listed, and the basic types of final actuators described. Advantages and disadvantages of each type (pneumatic, electric and hydraulic) are indicated.

Control of a clarification station. R. L. MULLER. *Proc.* 43*rd Conf. Queensland Soc. Sugar Cane Tech.*, 1976, 215–218.—At Millaquin, the mud level in the clarifier is controlled by ultrasonic interface probes, signals from which are transmitted to pre-set timers controlling the draw-off valve, so that flow rate can be increased or decreased or maintained constant (for which the timers are adjustable) according to requirements. The mud flows by gravity to a receiver and thence to a positive-displacement air pump which transfers it to a surge tank mounted above the bagacillo mixer. From this mixer, the mud gravitates to the mud filter. Possible future controls are also briefly discussed.

Flocculant: juice ratio control. D. J. HALE and B. PARTRIDGE. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 219-225.—For control of the flocculant: juice ratio in a clarifier, a Fischer & Porter magnetic flowmeter in the juice line transmitted signals to a flow recorder and to a Foxboro ratio station which in turn fed signals to a variable-speed drive unit controlling the pump used to transfer the stock solution of flocculant to the juice line. The open loop system used operated satisfactorily in tests within a range of 1.6–4.0 ppm flocculant at an average clarifier feed rate of 250 m⁸ per hour with fluctuations of \pm 50 m⁸.hr⁻¹. Costs are briefly discussed. Clarification of cane juice between inclined surfaces. G. A. BROTHERTON. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 227-234.—Experiments on juice clarification in inclined tubes are reported, in which it was found that the same efficiency could be attained as in a vertical tube at a much higher upward flow velocity. It was subsequently found that inclined surfaces could give the same effect as tubes, and a test unit was set up having a slope of 60° to the horizontal (at which angle the greatest increase in upflow rate was achieved compared with vertical surfaces). Results showed a similar performance to vertical surfaces but at a 100% increase in flow rate. However, a commercial unit would need a number of tubes or surfaces, and the distribution of feed in such equipment has yet to be examined. The question of mud blockage also requires more investigation.

+ * *

Improved mud centrifuge performance at Mossman. P. N. STEWART, A. G. NOBLE and G. A. BROTHERTON. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 235-240.—Investigations of cane mud treat-ment in the "MercoBowl 22 L" centrifuge at Mossman¹ showed that cane treatment by a new shredder installed at the factory provided finer bagacillo and thus improved centrifuge performance, particularly when the shredder speed was raised from 750 to 900 rpm. The pol loss and mud retention compared favourably with the results obtained with a filter. Wax and nitrogen removal was also the same in the centrifuge as in the filter. While mud solids retention was improved by adding dilution water to the feedline. this was at the expense of an increased pol loss, and it is therefore preferable to add all or most of the wash water in the bowl. While the centrifuge is easier to operate and there is less ancillary equipment needed, the economics still do not favour the centrifuge because of its limited capacity, although future availability of larger machines could alter the situation.

* * *

Characteristics of a louvre-type bagacillo separator. P. C. IVIN and R. N. CULLEN. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 241–247. Tests on a pilot-scale louvred bagacillo separator, such as is being used in South Africa, are reported. Bagasse is fed across a louvre screen by means of a metering roll which controls feed rate. The bagacillo is sucked through an adjustable gap between the louvres and is conveyed pneumatically to a cyclone. At an optimum louvre pivot angle of 80°, a gap of 38 mm between louvres and a drum speed of 2 rpm (corresponding to a bagasse feed rate of about 77 kg.min⁻¹.m⁻¹), 98% of the bagacillo obtained was of 14 mesh size. If the air capacity was increased and hence the collection rate (from 550 to 1300 kg.hr⁻¹.m⁻¹), the proportion of 14:mesh bagacillo was reduced to 92%. Reduction in the number of louvres from 8 to 6 reduced bagacillo quality and considerably decreased recovery.

* *

Residence time of crystals in a continuous centrifugal. R. J. SWINDELLS and E. T. WHITE. *Proc.* 43rd Conf. *Queensland Soc. Sugar Cane Tech.*, 1976, 249–253. So as to improve the accuracy with which estimation is made of the massecuite layer thickness on the wall of a continuous centrifugal basket, measurements were made of the velocity of the layer by means of a cine camera filming at stroboscopic speed (i.e. one exposure per revolution); this enabled a picture to be taken each time the basket rotated through one revolution, so that the same crystal could be captured on a number of frames and its motion up the basket traced. Velocities were plotted for a massecuite throughput of 5–8 tons.hr⁻¹; wide scattering occurred (reasons for this are suggested), and only 60% of the basket height could be photographed because of the stroboscope light dimness and the presence of steam. Velocity did not seem greatly affected by crystal position on the screen, so that extrapolation for the whole basket was considered valid. From the crystal velocity profile, both layer thickness and residence time can be estimated by means of an expression which is given. Calculation showed that at a mean crystal size of 0.35 mm, the layer varied from 17 crystals thick at the bottom of the screen to 7 crystals thick at discharge, i.e. an approximate ratio of 2.5:1.

* * *

Massecuite heating by finned tubes. L. K. KIRBY, J. N. NESS and E. J. STEWART. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 255-262. Experiments with a finned-tube massecuite reheater of 75 m² heating surface are reported in which massecuite temperature was raised from 41.3-51.1°C to 54.8-62.3°C at a throughput averaging 5.55 tons per hour. The overall molasses purity rose by 1.08 units from unheated massecuite to centrifugal discharge. The results are tabulated from 27 trials. Possible applications include a single-stage scheme in which massecuite is heated in individual units, one per centrifugal, from 38° to 55°C, and a two-stage system in which the cold massecuite is first heated in a common finned-tube heater and then in individual heaters; the authors favour the single-stage system. Also suggested is the installation of a finned-tube heater just after the crystallizer to raise the temperature to 45°C before existing resistance heaters. The results also indicate the possibility of raising the temperatures in the centrifugals so as to gain the advantage of reduced molasses purity with higher loading.

Effect of crystal on the viscosity of massecuites. M. AWANG and E. T. WHITE. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 263-270.—The effects of crystal properties (amount, size range and shape) and properties of the mother-liquor (total solids, purity and type of impurities) as well as temperature and shear rate on the apparent viscosity of a massecuite were investigated; the importance of each variable is indicated by the increase required to cause a 20% drop in viscosity, showing that temperature, molasses total solids content and crystal content are the major variables. Correlations between the last two parameters and viscosity were established and plotted for molasses from various sources, but it is stated that they are based on limited data and apply to deaerated samples; air bubbles have marked effects on results.

Comparisons of a reciprocating-element crystallizer with a coil-type crystallizer. J. N. NESS and E. J. STEWART. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 271–282.—Comparative tests were

¹ STEWART et al.: I.S.J., 1976, 78, 85.

Cane sugar manufacture

conducted on a new, patented crystallizer with reciprocating element, designed and manufactured by the Bundaberg Foundry Co. Ltd., and a Burnett crystallizer with rotating coil. While comparison of the crystallizers cooling the same massecuite was possible, assessment of the relative performance of the same crystallizer from test to test was more difficult because of the effects of uncontrolled variables, principally the change in massecuite properties. The new crystallizer gave substantially higher cooling rates than did the Burnett crystallizer, chiefly because of the greater surface area per unit volume, but an increase in the heat transfer coefficient was also established. The quantitative effects of the speed of reciprocation and of water flow rate on the coefficient could not be measured because of other uncontrolled variables. The new crystallizer also provided a greater molasses purity drop, viz. a 1.5 units decrease after 8 hours, compared with the Burnett crystallizer.

¥ ÷

Rapid "dextrans" formation in stale cane and its processing consequences. W. D. WELLS and G. P. JAMES. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 287-293.—The situation at South Johnstone, where a mill breakdown lasting some 29 hours caused a 3400% increase in cane dextran content and a c.c.s. loss greater than 14%, is described. Since the 5400 tons of cane affected could not be processed efficiently, a loss of \$A1800 per hour was estimated. In view of this, enzymatic removal of dextran is recommended for such cases of rapid juice deterioration.

* *

Dextranase. II. Practical application of the enzyme to sugar mills. P. A. INKERMAN and G. P. JAMES. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 307-315.—The use of "Glucanase D-1" enzyme to hydrolyse dextran was tested at South Johnstone and Babinda. Full details are given of the investigations. Results indicated a 95-97% removal of dextran, leading to major improvements in factory performance and sugar quality despite the crushing of seriously deteriorated cane. However, it is stressed that the process is not to be recommended for general use because of the high cost of the enzyme and the possible introduction of inefficiency into harvesting, but it is of value where mill breakdowns or unavoidable delays occur. Complete removal of dextran is not considered essential in order to obtain major benefits.

* * *

Treatment of sugar mill waste by shallow ponding. J. F. BOND and K. E. MCNEIL. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 317-318. The scheme used at Pleystowe for treatment of effluent consists of five shallow ponds (1 m deep) of 15.31 ha total surface area; waste water (containing oil, grease and large quantities of fly-ash as well as the normal impurities) of 300-1200 mg.litre⁻¹ BOD₅ is discharged to the ponds at a maximum rate of 90 m3.hr-1, while at the weekend a maximum of 227 m3 of effluent of 5000 mg.litre⁻¹ BOD₅ is also transferred, the ponds taking 1-3 weeks to fill. In 1975, the longest treatment period was 9 weeks, and the temperature was 20-27°C. Anaerobic treatment lasted for the first 3 weeks, during which 70-90% of the BOD was removed, after which aerobic treatment took place, with growth of algae. The BOD,

of the treated effluent was below 26 mg.litre⁻¹, while the dissolved oxygen content of the emptied ponds was 1–9 mg.litre⁻¹; however, the oil and grease contents as measured at three discharges were above the permitted level, so that traps to prevent these substances entering the ponds are necessary. Mechanical aeration was found necessary for some ponds to cope with the load; otherwise, for a factory of 400 t.c.h. capacity and producing 140 m³.hr⁻¹ effluent, the minimum total pond surface area should be almost double that at Pleystowe.

* •

The water cycle in a sugar mill. K. A. STUART. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 319–321.—A typical hot water balance for a factory crushing 100 t.c.h. is presented and means of reducing water outflow are examined. Since the major source of effluent is excess hot water, the logical approach is to cool this water and recycle it where possible, thus reducing outflow and decreasing cold water requirements.

What every sugar mill owner should know—and is afraid to ask. A. L. WEBRE. Sugar J., 1976, 38, (12), 15–16.—The two cane sugar factory processes where there is greatest scope for increasing efficiency, i.e. milling (with its effect on bagasse losses) and sugarhouse work (with its effect on molasses losses) are

milling (with its effect on bagasse losses) and sugarhouse work (with its effect on molasses losses) are examined. Failure of cane mill top rollers to float may be an indication of too rapid a throughput, leading to reduced extraction, or of excessive hydraulic pressure, which may also reduce extraction by compressing the bagasse and causing reabsorption. The author advocates that all mills be fitted with float indicators, and also recommends restricting the speed of the rollers to 5-6 rpm as is generally considered advisable. The value of the glucose:ash ratio as a criterion of molasses exhaustibility is discussed. Where final molasses purity is too high, attention should be paid to boiling, crystallization and centrifugal performance. Determining the molasses purity in the massecuite after the crystallizers but before spinning, and comparing the result with the purity of molasses discharged from the centrifugal, is recommended as a means of deciding whether centrifugal operation is responsible for poor results. Possible causes of inefficiency in boiling and cooling are briefly mentioned.

The progress of TSC's engineering. ANON. Taiwan Sugar, 1976, 23, 55–60.—Modernization of Taiwan Sugar Corporation's sugar factories in the 10-year period starting in 1958 is discussed, with details given of the number of new pieces of equipment installed. The crushing capacities of certain mills in 1967 are compared with 1976 figures, and the fuel consumption and surplus bagasse over the 30 years of TSC's existence are given. Improvements in processing techniques and control are indicated, and other measures introduced to increase efficiency are discussed.

Thirty years' research achievements of the Sugar Technology Department. C. J. LU. Taiwan Sugar, 1976, 23, 105–106.—The research and development work undertaken by the Department of Sugar Technology at the Taiwan Sugar Research Institute is surveyed.

Purity determination by on-line method in sugar factories. J. PONANT and G. WINDAL. Papers presented at 23rd Tech. Conf., British Sugar Corporation Ltd., 1976, 14 pp.-From investigations of factors governing conductivity of sugar solutions, it has been found that a linear relationship between temperature and conductivity is valid for only a limited temperature range, since temperature rise is accompanied by a rise in the Brix at which conductivity is maximum. As temperature rises, it increases the ionic dissociation and ionic mobility, so that the viscosity falls and affects the conductivity measurement at temperatures far greater than 20°C but not yet approaching boiling point. The increase in conductivity is not proportional to the rise in Brix, however, because of the associated decrease in ionic dissociation and mobility (viscosity being linked to Brix). However, conductivity increases with fall in purity, and purity P is related to the maximum conductivity y_{max} thus: P = 100 - 100 ky_{max} , where k is a constant. (Tabulated values of k obtained by continuous measurements at 10 factories during the 1975/76 campaign showed that the value changes only slowly.) Formulae have been derived which relate conductivity to Brix and purity at a given temperature as well as to the non-sugars:water ratio, including an exponential term to cover ionic dissociation and viscosity. The expressions apply to a wide range of sugar factory products.

Purity determination in sugar factories. Realization of an on-line measuring device. G. WINDAL. Papers presented at 23rd Tech. Conf., British Sugar Corporation Ltd., 1976, 16 pp.-The studies reported in the preceding abstract were applied to investigation of a method for purity determination based on the relationship between purity and maximum conductivity. Since a change in Brix causes the conductivity to pass through a comparatively "flat" maximum, a type of "landing" being reached when the temperature is fairly high, measurement of the conductivity "landing" was selected as being simple and inexpensive. The equipment consisted of an electronic box (containing conductimeters and temperature and speed controllers) connected to 1-3 hydraulic boxes, each containing two pumps for controlled dilution to give a Brix of 30° (at which variation in conductivity is minimal), a preheater, decanter, measuring cell and rinsing device. Eleven sets were installed in sugar factories for the 1975/76 campaign. Results were completely satisfactory, with an indication accuracy usually greater than 0.5 units. Some improvements have been made to the equipment and are briefly described.

* *

Patterns of work—factory operations. P. M. S. DIXON. Papers presented at 23rd Tech. Conf., British Sugar Corporation Ltd., 1976, 13 pp.—The social aspects of sugar factory work are discussed, and trends in staffing requirements and in employee demands under the effect of modern developments in equipment and processing are indicated.

* * *

Micro-processor control of sugar boiling. R. J. BASS and J. DONOVAN. Papers presented at 23rd Tech. Conf., British Sugar Corporation Ltd., 1976, 17 pp. The use of mini-computers using direct digital control techniques for vacuum pan operation is discussed. It is stated that the cost of an installation was so high as to make its use for one pan economically unjustifiable, but that the mini-computer had the potential to control many pans and would, in addition, offer the service of logging factory process parameters and provide alarm monitoring throughout the factory. For such a task, the computer needed a relatively large memory, a comprehensive plant interface system and an extensive network of interconnecting cable; the design, construction, installation and commissioning of such a project is a major undertaking. The hardware and software used for the system introduced at Bury St. Edmunds to control a C-massecuite pan on the basis of conductivity measurement is explained. Centred around an Intel 8080 micro-processor, the system monitors all the measurements from the pan every 100 milliseconds, checks interlocks and calculates the new outputs. The memory device is a programmable read only memory (PROM) which is erasable by ultra-violet light. Electrons are injected into a floating gate and the charge held until it is irradiated with U.V. light, resulting in a flow of photo-current from the floating gate and return of the memory to its original unprogrammed state. The system has achieved very good control of pan boiling, as demonstrated by a trace of massecuite level, conductivity and absolute pressure.

* * *

Schemes for mechanization of loading, unloading, conveying and storage operations with basic goods at sugar factories. N. M. KICHIGIN, N. A. EMEL'YANOV, I. B. SOMOROV, A. V. BALAKAN and A. A. KOZYARE-VICH. *Trudy Vsesoyuz. Nauch.-Issled. Inst. Sakhar. Prom.*, 1974, 22, 3–22.—A survey is presented of the present level of and future trends in development of mechanical schemes for handling beet, pulp, limestone and sugar at factories in the USSR, and a number of suggestions are put forward on the basis of technical and economic analysis.

* *

Determination of the level of loading, unloading, conveying and storage mechanization at sugar factories. N. A. EMEL'YANOV. *Trudy Vsesoyuz. Nauch.-Issled. Inst. Sakhar. Prom.*, 1974, 22, 22–27.—A mathematical method for determination of the level of mechanization in the title operations is explained. **Present-day technical and technological requirements of beet pilers.** I. A. MAROCHKO, L. A. KUZNETSOVA and V. A. NOVIKOV. *Trudy Vsesoyuz. Nauch-Issled. Inst. Sakhar. Prom.*, 1974, **22**, 28-43.—The desirable features of modern beet piling systems, as used in the USSR, are discussed, and results are given of trials to evaluate the extent to which the values of given parameters approach theoretical values.

×

Determination of the optimum distance of beet delivery by pneumatic-tyred front-end loaders. I. B. ROMASHKE-VICH and V. A. NOVIKOV. *Trudy Vsesoyuz. Nauch.-Issled. Inst. Sakhar. Prom.*, 1974, 22, 43-47.—The economics of beet recovery and loading by front-end loaders and tipper trucks are briefly discussed.

* * •

An improved mechanization scheme and equipment for bagged sugar storage. V. I. VASIL'EV et al. Trudy Vsesoyuz. Nauch.-Issled. Inst. Sakhar. Prom., 1974, 22, 47-59.—The present state of mechanization in bagged sugar storage is described and details are given of a modern scheme for conveying the sugar in bags and stacking it in the warehouse.

* *

Pneumatic conveying of white sugar. T. K. VASIL'EVA. *Trudy Vsesoyuz. Nauch-Issled. Inst. Sakhar. Prom.*, 1974, **22**, 59–68,—A survey is presented of pneumatic conveying of white sugar to and from transporters, and recommendations are given on the basis of results achieved in various countries.

* * *

Examination of pneumatic conveying of white sugar at high air mixture concentrations in an experimental pilot-scale unit. T. K. VASIL'EVA, A. F. ZABORSIN, A. P. FEDOROV and N. F. KOSOGOR. *Trudy Vsesoyuz. Nauch.-Issled. Inst. Sakhar. Prom.*, 1974, 22, 69–77. Details are given of an experimental pneumatic conveying unit for transferring white sugar at a sugar: air weight ratio greater than 10:1. Trials showed that crystal breakage over a distance of 150 m was within the limits corresponding to attrition in modern dryers.

*

White sugar bulk carriers. N. M. KICHIGIN, I. I. NOVOGURSKII, V. A. PROSTIBOZHENKO and V. I. GRUSHCHENKO. *Trudy Vsesoyuz. Nauch-Issled. Inst. Sakhar. Prom.*, 1974, 22, 78–84.—The design of a road carrier for bulk white sugar with gravitation discharge is described and some tests are reported.

* *

Adsorption of colorants during carbonatation of sugarlime solutions. S. Z. IVANOV, M. V. GONCHARUK and N. P. KOZEL'TSOVA. *Izv. Vuzov, Pishch. Tekh.*, 1976, (2), 17–21.—In studies of colorant adsorption by CaCO₃, aqueous solutions of caramels, melanoidins and reducing sugar alkaline decomposition products were added separately to a 2% CaO solution with and without the presence of sucrose. The solutions were heated to 80°C and subjected to controlled laboratory carbonatation. Results showed that at a pH corresponding to 11–12 at 20°C, the presence of sucrose greatly increased adsorption compared with the lime solution alone; increase in the sucrose concentration from 10% to 20% affected only caramel adsorption, which rose by 25–30%, but, since 98% of carbonatation juice colour is caused by the other colorants investigated, this effect is considered unimportant. Adsorption of melanoidins and caramels was not affected by addition of 1-2% pure CaCO₃ before gassing; only at 3% did the carbonate cause a drop in adsorption, while reducing sugar alkaline decomposition products remained unaffected. Addition of washed recirculated carbonate mud caused a 15-20% fall in caramel adsorption and a 3-5% fall in adsorption of the other colorants; absence of washing led to even less effect on adsorption, which was thus confirmed as practically irreversible, so that juice and mud can be recycled with the aim of improving filtration. Oversaturation (to a pH below 11 at 20°C) led to an increase in optical density, indicating colorant desorption and pointing to the need to maintain the 1st carbonatation pH at optimum. The mechanism of colorant adsorption during carbonatation for 20-22 minutes is explained for each colorant with the aid of curves showing the progress of decolorization and alkalinity. Wide fluctuation in colorant adsorption was observed, maximum effect being achieved at greatest accumulation of colloidal CaCO₃

* *

Method of controlling continuous centrifugals. G. M. CHUDAKOV, V. A. MASLIKOV and V. I. PUGACHEV. *Izv. Vuzov, Pishch. Tekh.*, 1976, (2), 96–99.—In an investigation of the possibility of stabilizing low-grade sugar quality in a continuous blade-type centrifugal similar to that described earlier¹, the weight ratio between the 1st and 2nd run-offs was used as control parameter, with two slit-type flowmeters acting as ratio-regulating means by altering massecuite feed under the effect of an electronic control linked to a differential manometer measuring system. Mathematical expressions are written for the various relationships involved in control under non-steady conditions, viz. mother-liquor viscosity and effective sugar crystal size, and run-off level in the collector.

* *

Mathematical simulation of continuous multi-compartmented vacuum pans. I. S. GULYI, I. M. FEDOTKIN and E. M. BRUSILOVSKAYA. *Izv. Vuzov, Pishch. Tekh.*, 1976, (2), 114–118.—Response curves were plotted for the continuous vacuum pan at Gnivan with the aim of establishing the effect of the number of crystal growth chambers (up to 10) on boiling of *A*- and refined massecuites. The mathematical simulation method used was based on the Markov circuit theory whereby each compartment is represented as a nonideal mixing vessel definable by a stochastic mixing model. Each compartment is sub-divided into ideal mixing zones and it is assumed that the residence times of a marked particle in each zone will be identical. Three variants were calculated by computer. The probability matrices for each are given. Calculated and experimental results were in agreement.

* +

Statistical method of establishing optimum conditions for intensification of heat transfer to sugar solutions of high concentration. S. M. KONSTANTINOV and N. N. BEZPAL'KO. Izv. Vuzov, Pishch. Tekh., 1976, (2), 119–123.—Investigations were conducted with a single-tube circulation circuit in which steam was injected into 70°Bx sugar solution in order to increase heat transfer. The tube was separated into 8 equal sections, and the amount of condensate formed on the tube wall during 20 minutes' heating was deter-

¹ Oplt & Přidal: I.S.J., 1976, 78, 312.

FONTAINE

Fontaine can handle your filtering problems

FONTAINE Screens have conical holes or slots that prevent downtime by clogging. Less downtime means less production cost.

FONTAINE Screens are available in stainless steel, copper, brass, and chrome-plated nickel for batch and continuous machines of all makes and sizes.

When you are thinking of screens, think of FONTAINE.

Fontaine & Co. GmbH. · 51 Aachen/W.-Germany · Tel. 0241/21233 · Telex 832558

SUGAR NEWS

A MONTHLY JOURNAL DEVOTED TO THE INTERESTS OF THE PHILIPPINE SUGAR INDUSTRY

FEATURES

Results of research and experiments in fields and mills, and other important developments in the Philippine sugar industry of interest both to technical men and laymen; sugar production, prices, and market news and statistics; write-ups on other important and allied industries in the Philippines, etc.

> Annual Subscription U.S. \$10.00 post free (12 monthly issues)

Write for a free specimen copy and for advertising rates.

Also Available: PHILIPPINE SUGAR HANDBOOK Editions: 1961, 1964, 1966, 1968 and 1970 at \$15.00 each

Published by: THE SUGAR NEWS PRESS, INC. P.O. Box 514, Manila, Philippines

BRASIL AÇUCAREIRO

Published by Information Division, INSTITUTO DO AÇUCAR E DO ÁLCOOL

(Sugar and Alcohol Institute) Av. Presidente Vargas 417-A-6° andar Caixa Postal 420 Rio de Janeiro BRASIL

Telephone: 224.8577 (Extensions 29 and 33)

A MONTHLY MAGAZINE containing complete news and specialized contributions on Brazilian and international sugar agriculture and industry.

Annual Subscription:

Brazil	 Cr\$ 200.00
Single copies	 . Cr\$ 20.00
Foreign Countries	 US\$ 25.00
Airmail	US\$ 30.00

Remittances must be made in the name of

BRASIL ACUCAREIRO

I.S.J.

SUGAR BOOK DEPARTMENT

Most books reviewed in this *Journal* may be obtained through our Sugar Book Department. Where no inclusive price is quoted in our review, \$1.30 should be added to cover the cost of packing and postage. Prices given below are approximate and subject to alteration without notice owing to fluctuations in currency exchange rates.

1	Check yo	ur personal	library	against
×	the list of	basic book	s given	below:

AUSTRALIAN SUGAR YEARBOOK 1976	(1976)	\$15.70
THE SUGAR CANE (2nd ed.): Barnes	(1974)	\$23.30
MANUFACTURE OF SUGAR FROM SUGAR CANE: Perk	(1974)	\$7.70
SUGAR CANE PHYSIOLOGY: Alexander	(1973)	\$77.30
LICHT'S INTERNATIONAL SUGAR ECONOMIC YEARBOOK & DIRECTORY	(1976)	\$38.00
SUGAR BEET NUTRITION: Draycott	(1972)	\$16.00
HANDBOOK OF CANE SUGAR ENGINEERING: Hugot transl. Jenkins	(1972)	\$117.40
BEET SUGAR TECHNOLOGY (2nd ed.): McGinnis	(1971)	\$25.60
SYSTEM OF CANE SUGAR FACTORY CONTROL (3rd ed.): International Society of Sugar Cane Technologists	(1971)	\$4.20
PROCEEDINGS 15th SESSION ICUMSA	(1970)	\$9.00
,, 16th ,, ,,	(1974)	\$13.00
ANALYTICAL METHODS USED IN SUGAR REFINING: Plews	(1970)	\$15.00
SUCROSE CHEMICALS: Kollonitsch	(1970)	\$14.00
LABORATORY MANUAL FOR QUEENSLAND SUGAR MILLS (5th ed.): Bureau of Sugar Experiment Stations	(1970)	\$8.40
PESTS OF SUGAR CANE: Williams, Metcalfe, Mungomery & Mathes	(1969)	\$ 43.60
BY-PRODUCTS OF THE CANE SUGAR INDUSTRY: Paturau	(1969)	\$35.90
SUGAR CANE FACTORY ANALYTICAL CONTROL: Payne	(1968)	\$ 26.30
THE MECHANICS OF CRUSHING SUGAR CANE: Murry and Holt	(1967)	\$20.00
INTRODUCTION TO CANE SUGAR TECHNOLOGY: Jenkins	(1966)	\$35.90
GENETICS AND BREEDING OF SUGAR CANE: Stevenson	(1965)	\$ 13.00
MANUAL OF CANE GROWING: King, Mungomery and Hughes	(1965)	\$30.00
SUGAR CANE DISEASES OF THE WORLD (Vol. II): Hughes, Abbott and Wismer	(1964)	\$30.20

The above prices include postage and packing.

Terms are strictly cash in advance.

Our Bankers are: Barclays Bank Ltd., 3 Great Tower Street, London E.C.3.

SUGAR BOOK DEPARTMENT

International Sugar Journal Ltd.

23a Easton Street, High Wycombe, Bucks., England

mined as well as temperature of solution, tube wall and reheat steam, and steam pressure. The effect of steam injection on heat transfer was evaluated statistically and a regression equation developed which was found to describe the relationship sufficiently accurately.

* *

Split separation of crystals with low-grade massecuite working-trials in the 1975 campaign. F. AMDING. Zucker, 1976, 29, 317-319.-The effect of crystal content on low-grade massecuite viscosity is discussed, wherein it is shown that an increase from 40% to 45 in crystal content at 50°C causes the same rise in viscosity as does a reduction in the temperature from 75° to 50°C. Since the aim is to reduce viscosity and increase sugar recovery, tests were conducted at Munzel in 1975 in which the contents of four low-grade pans were discharged to the first of a series of six crystallizers. The massecuite from the last crystallizer was transferred to four continuous centrifugals. About 35% of the total massecuite was withdrawn from the first crystallizer and spun in a separate centrifugal. The sugar was then mixed with that from the other four centrifugals and dissolved in thin juice for boiling together with thick juice; the molasses from the four continuous machines was transferred to a storage tank, while that from the separate machine was pumped via a feed tank to the second crystallizer in the series. The process, which has reduced massecuite viscosity considerably and thus contributed to improved molasses exhaustion, was incorporated in the normal factory scheme during the second half of the campaign.

+ * *

The development of the Greek sugar industry in the last 15 years. D. HADIJANTONIOU. Zucker, 1976, 29, 325-330.—A survey is presented of the Greek sugar industry, including beet and sugar production data from 1961 to 1975, descriptions of the factories (with mention of equipment and products), average performance data from the five campaigns up to and including 1975/76, and future prospects.

* *

Scaling of sugar factory evaporators during the 1975-76 campaign. P. DEVILLERS, R. DETAVERNIER and M. GROULT. Sucr. Franc., 1976, 117, 245-249.—Weekly measurements were made by atomic absorption spectrometry of the calcium and silicon contents of juice before and after evaporation at 18 factories. Results are tabulated, showing that in only 4 cases was there no calcium deposit on the tubes and in only 1 case was there no silicon deposit. The effects of scale inhibitors at selected factories were also determined, but it is stressed that the effectiveness of these will vary according to conditions. The silicon content can be reduced by careful attention to 1st carbonatation juice filtration and by maintenance of as high a pH as possible during 1st carbonatation.

* +

Reverse osmosis in the sugar industry. A. BALOH. Sugar J., 1976, **38**, (12), 19–25.—See I.S.J., 1976, **78**, 122.

* * *

Iodophores for beet disinfection. F. X. KAMMERER. Zeitsch. Zuckerind., 1976, 101, 409-411.—Reasons for increased usage of formalin in beet diffusion are discussed, and disadvantages and limitations of this

and other disinfectants indicated. The use of iodophores is explained; these contain complexes of iodine with a surface-active agent, so that the active ingredient is made water-soluble and does not have the corrosive effect that iodine has on its own. A list is presented of commercial brands manufactured by firms in a number of countries, and a typical composition is given. The concentration recommended for most purposes lies in the range 15-300 ppm a.i. For beet treatment after washing, 40 kg of iodophore per 10,000 tons of beet is adequate for disinfection. Although at 5-35°C the iodophore is independent of temperature, above 35°C volatilization takes place with rapid decomposition of the complex. Addition of 1.5 litres of "Webco" (manufactured by Biesterfeld-Chemietechnik KG) per hour to beet at the rate of 36 litres per 10,000 tons (at a concentration of 50-100 ppm) plus 1000 litres of formalin, coupled with spraying of the beets with 30 m³ condenser water per hour, reduced the thermophile population from about 4 million to about 27,000 per cm³. The economics are briefly discussed; despite the relatively high cost of iodophores, the overall disinfection costs are reduced by one-third through the decrease in formalin consumption.

* *

Qualitative classification of 14 limestones of Greek origin for their use in the Greek sugar industry. K. M. SIPITANOU and D. S. MITKA. *Hellenic Sugar Ind. Quarterly Bull.*, 1976, (25), 67–101.—Limestone samples from the six different regions of northern Greece from which the sugar factories draw their supplies were analysed for settling rate, available CaO and thermal reactivity of the lime produced. Results are given in graph form, and photomicrographs, showing the surface structure of each type are reproduced.

* *

The (Greek) sugar industry and the energy crisis. P. HRISTODOULOU. Hellenic Sugar Ind. Quarterly Bull., 1976, (25), 119-127.—Details are given of the boilers, turbo-generators and evaporators at the five Greek sugar factories (Larissa, Platy, Serrai, Xanthi and Orestias); oil consumption for steam generation and pulp drying, and coke consumption for lime kiln operation at the factories in 1975 and at all but Orestias in 1972-74 are also tabulated, showing a progressive improvement with each campaign. Best performance has been achieved at Platy, where average fuel consumption in 1975 was 3% on beet, compared with a rated consumption of 42% on beet guaranteed by the factory suppliers. A heat flow scheme for Platy factory is presented.

* *

Reduce beet handling losses. J. B. FITTS. Sugar Beet J, 1976, 39, (3), 2-4.—Comparison between the sugar recovery from beet at the Monitor Sugar Co. in 1975 and 1973 shows that the results were better for the earlier years, whereas the 1975 figures should have been better, judged on the basis of average beet sugar content as delivered to the factory. The resultant loss in 1975 was calculated to be over \$800,000. The losses were mainly attributed to injury caused to the beet by mechanical handling from harvesting to piling, and to increased respiration rates during storage when temperatures rose to 20°C or higher. The company has introduced means of cushioning the fall of beet into road trucks and pilers.

Sugar factory quantities. M. FRIML. Listy Cukr., 1976, 92, 102-106.—Formulae are given for calculation of chemical control parameters under the SI system.

* * *

Sugar beet and sugar cane in Spain. ANON. Die Zuckerrübe, 1976, 25, (4), 23.—A short survey is given of beet and cane agriculture in Spain, with brief mention of factory processing.

* *

Experience in operation of Zhabinka sugar factory. G. I. BEL'KO, N. A. SHUT, N. B. SHESTAK and L. G. BELOSTOTSKII. *Sakhar. Prom.*, 1976, (6), 23–27. Information is given on equipment and processes at this Soviet factory, performance of which in October-December of the 1975/76 campaign was better than rated.

+ * *

More about biological treatment of sugar factory waste waters. B. M. SHAKHNOVICH. Sakhar. Prom., 1976, (6), 28–30.—The chief reason for failure to introduce biological treatment of effluent in factory schemes in the USSR is considered to be the large land requirements, which have been put at 100–150 ha for a factory of 3000 tons daily slice. However, there are a number of factors which need examination, and these are discussed. The question of mechanical treatment and subsequent use of the treated water for irrigation of crops is also examined.

* *

Treatment of sugar factory waste waters for irrigation of agricultural crops. V. T. DODOLINA. Sakhar. Prom., 1976, (6), 30–33.—The use of Class III effluent as irrigation water, after suitable treatment to reduce the contents of bicarbonates, suspended matter and organic matter, is discussed and the contents of valuable nutrients in effluent from a number of Soviet factories are indicated.

* * *

Provision of beet pilers with sprayers for treatment of beet roots with liquid preparations during piling. N. M. IGNATOV and M. F. KINYAKIN. Sakhar. Prom., 1976, (6), 48–52.—Full details are given of the layout and operation of a spray system for application of e.g. milk-of-lime to beets as they are being piled.

* *

Control of calcined lime and wash water feed to the slaker. A. A. VIL'SHANSKII, K. F. GERBUT and B. A. EREMENKO. Sakhar. Prom., 1976, (6), 52–56.—A description is given of an automatic control scheme for maintenance of desired quantity and density of milk-of-lime according to factory requirements.

* *

The level of modern slicer technology—design and features, economics and trends in development. H. KOETHKE. Zucker, 1976, 29, 368–377.—The history of beet slicer development is surveyed, starting from the three basic types from which present-day machines have evolved. Slicer àrrangements for factories of given daily slice are discussed, as are the capital, running and repair costs of modern slicers. Types of drive as used in slicers manufactured by H. Putsch & Comp. are examined, and slicer performance evaluation is explained.

The centrifugal in the sugar industry and its development. P. H. PITHOIS and A. MERCIER. Ind. Alim. Agric., 1976, 93, 535-541.-After a résumé of the role of the centrifugal in crystal sugar recovery, the authors examine the development of the batch and continuous machine. While the batch centrifugal has reached its zenith in the form of the fully-automatic machine, the continuous centrifugal, having appeared much later, is still undergoing development. Advantages and disadvantages of continuous machines are considered. and operational conditions under which optimum performance can be achieved are explained. While little progress was made in improvement of continuous centrifugal performance for some time after the machines were first introduced in the sugar industry, more recently major developments have been brought about, e.g. increase in basket diameter, steam treatment of massecuite before it is fed into the centrifugal, and means of maintaining desired crystal size by reducing the fines content.

Recent progress in electrodialysis. P. PIERRARD. Ind. Alim. Agric., 1976, 93, 569–581.—The principle of electrodialysis, its use on an industrial scale and its fields of application are discussed. Among the processes described is demineralization of *B*-massecuite run-off and beet molasses to recover sugar. Tests by Raffinerie Tirlemontoise S.A. have shown that up to 38 kg of sugar per m³ can be recovered at a daily throughput of 1000 m³ and a demineralization efficiency of only 25.6%. The $20-30^{\circ}$ Bx molasses is treated at a temperature of $40-50^{\circ}$ C, which gives the best compromise between conductivity and viscosity.

Flocculation processes for clarifier underflow in beet sugar factories. V. M. JESIC. Zeitsch. Zuckerind., 1976, 101, 457–459.—Experiments were conducted on a modification of the "Rapi-Floc" process for use in beet sugar factories, in which clarifier mud was adjusted to the pH of 1st carbonatation juice and 5–6 ppm flocculant added before the vacuum filter. Lime salts content, colour content, filter cake sugar losses and sweet-water purity were determined. The filtrate was clear and of sufficient purity to be sent direct to 2nd carbonatation. Advantages of the process are indicated.

The effect of limestone and coke particle size on the quality of lime and carbon dioxide produced. F. SOBEK. Zeitsch. Zuckerind., 1976, **101**, 463–464.—The author discusses the effect of limestone and coke grain size on lime and CO_2 quality, and recommends the following for uniform calcination and optimum waste gas CO_2 concentration: a limestone size within narrow tolerances of 60–80 or 80–120 mm (but not 60–120 mm), and a slow-reacting coke in the size ratio coke:limestone of 0.5–0.76:1. Such coke can be smaller than high-reacting coke.

Protection of extraction juices in beet sugar factories by bacteriostat "I 32". M. VELINGS. Zeitsch. Zuckerind., 1976, 101, 464-465.—The author, representing Sopura S.A., gives information on "I 32", a bacteriostat containing 35% iodoacetone, which is stable as a 0.1% solution for 24 hours and has proved effective in reducing inversion in beet diffusion.

Laboratory methods & Chemical reports

Dextranase. I. Characterization of the enzyme for use in sugar mills. R. P. FULCHER and P. A. INKERMAN. Proc. 43rd Conf. Queensland Soc. Sugar Cane Tech., 1976, 295-305.—The effects of dextran, dextranase and sucrose concentration, temperature and pH on the hydrolysis of dextrans by two commercial enzymes were investigated with dextran 2000, as were the hydrolysis rates, substrate specificities and choice of enzyme addition point. Results, in the form of graphs, showed: that the percentage of dextran hydrolysed fell with rise in dextran concentration above 4000 ppm; that for each enzyme there is a temperature at which activity is maximum; that the amount of dextran hydrolysed was directly proportional to enzyme concentration and to time of incubation; that maximum activity occurred at a specific pH or within a narrow pH band; that dextranases had maximum activity in the absence of sucrose, while low concentrations had only limited effect on the hydrolysis rate, although high concentrations caused a considerable fall in activity; that the hydrolysis rate for cane dextran is lower than for dextran 2000; that the catalytic action of the enzyme was of a specific nature; and that the enzyme is best added to mixed juice. Of the two enzymes, "Glucanase D-1" is more suitable, since it may be added to the juice without major modifications to normal processing, while "Talozyme D" is unsuitable because of the low temperature (45°C) at which activity is maximum. The specificity of the enzymes is considered to limit their usefulness.

Study on the influence of sucrose and other constituents of molasses on the extraction of its free acids by organic solvents. O. I. BELOVA and T. BEGALIEV. Trudy Frunzensk. Politekhnich. Inst., 1973, 63, 157–160; through S.I.A., 1976, 38, Abs. 76-613.—Tests on multiple extraction of lower fatty acids from 50°Bx solutions of (beet) molasses or sucrose are reported with tabulated results. Extraction with acetone: ether (1:1) was eventually more complete than extraction with acetone, although acetone gave higher initial extraction. Removals of acetic and formic acids were 98 and 95·2%, respectively, when 50 g model solution was extracted with three 100-ml portions of mixed solvent; similar extraction removed only $91\cdot5\%$ of added formic acid from previously extracted molasses solution. Thus, while the sucrose in molasses does not impair extraction, the nonsucrose does.

+ * *

Chemical composition of vinasses from alcohol and yeast manufacture. V. G. KOVAL', A. A. MALASHKEVICH and O. I. SYCH. Trudy Ukr. Nauch.-Issled. Inst. Spirt. Likero-Vodoch. Prom., 1973, 15, 156–159; through S.I.A., 1976, 38, Abs. 76-619.—Ranges of contents of the major organic and inorganic components (% on dry solids) and 14 trace elements (mg per 100 g dry solids) in vinasses from 7 alcohol-fodder yeast combines are tabulated and compared. Growth of *Candida* or *Trichosporon* on vinasses used up mainly carboxylic acids, glycerol and added N compounds; the main trace elements present were B, Ba, Mn, Cu, Ti and Ni.

* * *

Trace elements in dried pulp. D. HIBBERT, R. T. PHILLIPSON and W. WOODWARK. Papers presented at 23rd Tech. Conf., British Sugar Corporation Ltd., 1976, 23 pp.-Maximum levels of certain elements in animal fodder permitted under UK and EEC legislation are indicated, and the nature of the toxic effects of some of them is indicated. Details are given of the quantities of arsenic, lead, mercury, copper, fluorine, cobalt, manganese and vanadium in composite samples of molassed dried pulp from BSC factories. Although the molassed pulp conformed to the regulations, arsenic caused some concern. As with the other elements (with exception of vanadium), its average content was greater when coal firing was used than when gas or oil was used as fuel. Vanadium was increased by use of oil firing, while the contents of the other elements with gas and oil firing were about the same. The arsenic content of hard coal was greater than that of brown coal. Higher arsenic and mercury concentrations occurred in the pulp dust fractions, while disproportionately high levels of arsenic, copper and mercury were found in fly-ash taken from the dryer inlet; the relatively high volatility of arsenic and mercury is also considered to be of great importance. While the copper content was increased to a certain extent when coal was used, most of the element was introduced with the beet, while contact with copper or brass in the factory also contributed. The copper content of the molasses, and hence of the molassed pulp, was markedly influ-enced by the incidence of copper alloys in the 1st and 2nd evaporator effects.

* * *

Reaction partners in the carbonyl-amino reaction in technical sugar juices. E. REINEFELD, K. M. BLIESENER and A. REINEFELD. Zucker, 1976, 29, 287-292.-Six different carbonyl components were reacted, individually, with each of four amino-acids at a 1:1 molar ratio. The reactants were heated in a phosphate buffer solution of pH 8 for 24 hours to 95°C, after which the yield, extinction coefficient and C, H and N contents of the high-molecular browning product were determined. Highest yields were obtained from glyceraldehyde, dihydroxyacetone and invert sugar, while lowest yield occurred with hydroxyacetone; glycolaldehyde and acetaldehyde gave intermediate yields. In all cases, γ -aminobutyric acid gave the highest yield of the four amino-acids, followed by lysine; sometimes glutamic acid was next as regards yield, sometimes alanine. The pattern of the extinction coefficients was similar to that of the yields. Infra-

Laboratory methods and Chemical reports

red spectra for dihydroxyacetone and acetaldehyde with each of two amino-acids were identical. Gas chromatography revealed differences between the various reactants as regards amino-acid liberation after acid hydrolysis. Further investigations in which 2-deoxyglucose and 2-O-methyl glucose were reacted, individually, with butyric acid showed that browning products were formed under the severe test conditions despite the unavailability of a free hydroxyl in α position, although the reactivity of the carbonyl components was much lower than of the previous group, so that colour formation was slower. Possible methods of obtaining Maillard reaction intermediates as a contribution to further study of their structures are discussed.

* *

Some aspects of the theory and practice of sugar crystallization. D. SCHLIEPHAKE and K. AUSTMEYER. Zucker, 1976, 29, 293–301.—The effect of hydrodynamic conditions on crystal growth in boiling is discussed from the viewpoint of mass transfer and resistance to this. The theory of mass transfer resistance is examined in detail, mathematical expressions being derived to define various relationships and reference being made to earlier experiments involving both sucrose and potassium alum crystallization, results of which are compared. For Reynolds' numbers greater than 10⁻², a Frössling equation for calculation of the rate coefficient of mass transfer for given supersaturated solution parameters was found to give values in close agreement with experimental data. This permits a relationship between Reynolds' number and crystallization resistance to be established, as demonstrated graphically. Limitations imposed on white sugar crystallization by reduced flow conditions were demonstrated by comparing simulated processes in a bubble tube and a suspended bed vessel. While use of a circulator in a batch pan has been found to improve performance, inadequate mass transfer rates result from the unsuitability of the heating surface area which is too great for the first stage of boiling (because of a high evaporation rate) but is insufficient for optimization of the second main stage. These problems can only be resolved, it is stated, by use of continuous boiling in which the heating surface area can be adjusted to the process requirements and the massecuite level maintained constantly at an optimum value. By contrast, in the batch pan the crystal sedimentation path continues to increase during the main boiling stage, while the circulation rate is reduced by the pressure exerted by the column of massecuite. Hence, the chief aim in improving boiling is to reduce the hydrostatic head of the massecuite column, reduce the superheat zones in the calandria and thus restrict massecuite consistency.

+ + +

Investigations of diffusion in pure and technical sucrose solutions. II. Diffusion of sucrose and non-sucrose compounds in multi-component systems. A. EMMERICH, D. FINKE, N. PANITZ and H. RIECK. Zucker, 1976, 29, 302–307.—The earlier described capillary method¹ was used in an investigation of the auto-diffusion of sucrose and three non-sugars obtained from molasses: lactic acid (representing organic hydroxy acids), glutamic acid (representing amino-acids) and pyrrolidone carboxylic acid (as main component of nitrogenous acids in purified sugar solutions). Results showed that sucrose diffused at a faster rate in the molasses solution than in pure solution of the same dry solids content, while each of the non-sugars in highly diluted pure solutions had almost the same diffusion rates as did sucrose, whereas in technical solutions the rates were considerably higher. Reasons for the findings are suggested. As regards the factory diffusion process, the non-sugars would not be expected to exert much influence because of their low concentration in the cell juice, nor do they accumulate on the surface of the growing sucrose crystal, since their back-diffusion is more rapid than is the forward diffusion of the sucrose.

* * •

The determination of invert sugar in technical sugar juices. I. New photometric method with 4-amino-3hydrazino-5-mercapto-1,2,4-triazole as colour reagent. E. REINEFELD, K. M. BLIESENER, H. VAN MALLAND and C. REICHEL. Zucker, 1976, 29, 308-316 .- Details are given of a method for determination of invert sugar in juices in which the fructose moiety is split into trioses at 80°C in highly alkaline medium; the title reagent reacts only with the glyceraldehyde to form a reddish-violet colour which is measured spectrophotometrically at 535 nm against a blank or is compared visually with one of three named colour solutions. The method was applied in tests to beet factory juices (including thick juice) and to press juice after clarification with lead acetate. Comparison with results obtained for thick juice by SPENGLER et al. using Müller's solution showed close agreement. Two variants of the new method are described: in one, the reagent is dissolved in NaOH, while in the other it is dissolved in basic lead acetate solution. At an invert sugar concentration up to 200 μ g, the relative error was 1.5–10% (a standard deviation of \pm 2.4 $\mu g.cm^{-8}$). The method can be adapted to measurement of glucose separately.

* * *

Problems of the sugar laboratory. Performance of the disintegrator element adapted for the Brazilian digester for cane analysis. J. P. STUPIELLO, E. R. DE OLIVEIRA and L. U. SILVA. Brasil Açuc., 1976, 87, 342–346. The standard disintegrator used for direct analysis of cane in Brazil employs a goblet of 4-5 litres capacity and a blade as disintegrator element. Experiments were made using a bar of 10 mm square steel, 75 mm long and with tips chamfered to 3 mm. Disintegration was equally efficient and the new element should be adopted, since it will last much longer than the blade, so reducing maintenance requirements.

* *

Determination of lead, cadmium and zinc in sugar. N. M. MORRIS, M. A. CLARKE, V. W. TRIPP and F. G. CARPENTER. J. Agric. Food Chem., 1976, 24, (1), 45-47; through Anal. Abs., 1976, 31, (1), Abs. 1F5.—A graphite furnace was used for flameless atomic absorption spectrophotometry on samples that had previously been fermented with yeast at pH 4·5– 5·0 to eliminate matrix interference by the sugar. After fermentation, the solutions were centrifuged to remove yeast, then evaporated, and the residues were charred at $<500^{\circ}$ C and atomized in the furnace. Recoveries of Pb, Cd and Zn added before fermentation were $97\pm7\%$.

¹ SCHNEIDER et al.: I.S.J., 1976, 78, 347.

reader inquiry service

Please arrange for me to receive without obligation further details of the products referred to below

which are advertised in your 19 issue.

reader inquiry service

If you wish to receive further information on the products and services mentioned in the advertisements please fill in the inquiry section of this card and post it to us.

Å	Advertiser	Product	Page
به مر می میں محمد			
	-	Signature	I
	(NAME	Dat	:e
Block	Position		
Letters	Firm		

photocopy service

19

Author(s)

issue.

Address

your.

Page

Please supply one photocopy of each of the following original papers, abstracts of which appeared in

photocopy service

We are able to supply one photocopy, for research or private study purposes, of most of the original papers abstracted in this journal. It should be noted that these are not translations but are in the original language of publication, which may not be English. The charge of 20 cents or 10p per page includes surface mail; airmail costs extra and depends on weight and destination.

			6 <u>8 </u>
4 .11.0	ail	Signature	
mail/Sea m			
Maii/Sea M	NAME		Date
Block	NAME Position		Date
Block Letters	(NAME Position Firm		Date

additional subscription order

Please send a further copy of your journal each month to the address below, starting with the issue

·	
ſ	
6	
Biock Letters	
(
	Signature

additional subscriptions

To receive additional copies of The International Sugar Journal all you need do is to complete the card with details of the subscription required, and return it with your remittance of U.S. \$15.00 for supply by surface mail.

Date_____

Title

Reader Inquiry Service, The International Sugar Journal Ltd., 23a Easton Street, High Wycombe, Bucks. England.

Photocopies Dept., The International Sugar Journal Ltd., 23a Easton Street, High Wycombe, Bucks, England.

Subscriptions Dept., The International Sugar Journal Ltd., 23a Easton Street, High Wycombe, Bucks., England.

By-products

era era politika era

Pelletizing offers new options for food waste recovery profits. L. E. SLATER. Food Eng., 1975, 47, (10), 58, 61; through S.I.A., 1976, 38, Abs. 76-353.—The manufacture of bagasse pellets at Clewiston factory, Florida, is described. Bagasse is dried to a moisture content of 5% in two rotary drum dryers, passed through a hammer mill, and pneumatically conveyed to the supply bin for the pellet mills; the extruded pellets are cooled and screened to remove fines. Output was 10 tons.hr⁻¹ during the 1974/75 grinding season. When fed to dairy cattle, the pellets provide valuable roughage.

* * *

Utilization of sugar factory filter cake. G. VERNOIS. Die Lebensmittelind., 1976, 23, 133–134.—Possible uses of filter cake which are briefly discussed include its application as fodder, as a soil conditioner and as a raw material for cement manufacture. Recovery of the lime for re-use in the factory is also considered, and suitable drying means for scattering on soil are described.

* *

Pilot plant scale trials on the treatment of distillery effluents. S. C. GUPTA and K. A. PRABHU. Sharkara, 1974, 13, 7-10.—Large-scale trials were conducted on distillery effluent treatment with an acclimatized culture of ammonifying bacteria¹. The COD of a $3\cdot5^{\circ}$ Bx diluted spent wash was reduced by $86\cdot8^{\circ}_{\circ}_{\circ}$ (from 50,237 ppm) in 96 hours; BOD reduction was about $80^{\circ}_{\circ}_{\circ}$, although a 92–93% decrease is considered possible, and the pH was raised from $5\cdot2$ to $7\cdot3-7\cdot5$. Daily treatment of 12,000–15,000 gal of spent wash of 30,000–40,000 ppm initial COD proved possible. Urea added with superphosphate every other day as N source could be replaced with yeast sludge (dried or as slurry), it was found.

* *

A new potential product from sucrose: microbial gum. W. P. CHEN and C. H. TSOU. *Taiwan Sugar*, 1976, 23, 14–16.—See *I.S.J.*, 1975, 77, 158.

* *

Plant for the production of fine alcohol and potable spirits in Thailand. ANON. BMA Information, 1975, (14), 24–25.—Information is given on the Mahaguna distillery in Bangkok which produces alcohol from cane molasses and rice.

×

Possibilities and limits of use of sugar-containing cattle fodder. E. PFEFFER. *Die Zuckerrübe*, 1976, 25, (3), 31-34.—See *I.S.J.*, 1974, 76, 382.

* *

Alcohol from molasses as a possible fuel and the economics of distillery effluent treatment. P. KUJALA, R. HULL, F. ENGSTRÖM and E. JACKMAN. Sugar y Azúcar, 1976, 71, (3), 28-39.—The economics of molasses alcohol production are discussed and the

possible use of ethanol as a motor fuel examined. While the Melle-Boinet method of fermentation is rapid but gives a relatively high alcohol yield, the molasses must first be pasteurized and pre-treated to remove Ca salts, gums and sludges which tend to have an adverse effect on yeast clarification. However, since the pasteurization permits a cleaner alcohol to be produced, the purifying column needs fewer stoppages for descaling, while there is reduced sludge accumulation in the boiling column, and the effluent from the stills is cleaner. The question of distillery waste disposal is discussed at some length, and indications are given of the high BOD₅ values occurring in various countries. The molasses distillery waste is wholly liquid, so that its treatment for use as animal fodder is restricted. However, various methods of treatment are described whereby the BOD₅ can be reduced to an acceptable level. While evaporation to a syrup for use as animal fodder is one possibility discussed, it is pointed out that the product has a high ash content, particularly K, Mg and Na salts (which have a laxative effect on animals), so that dilution with molasses is recommended, thus reducing the feed value of the syrup. An alternative is to recover the potash by incineration. Methods which have been used for crude potash recovery on a commercial scale are described, and details are given of a process for refined K salt recovery. Torula yeast manufacture from distillery waste as used in Taiwan is also discussed. Finally, it is stressed that economics of distillery waste treatment must first be worked out, since the capital and operating costs are high; refined K salt (KCl and K2SO4) manufacture appears to be the most profitable of the systems described, although this will be governed by price movements in these chemicals. Local market conditions and the suitability of a given system of waste treatment for the individual distillery should be assessed before any process is introduced.

* * *

A thought on sugar by-product, molasses. A. C. CHATTERJEE and B. M. DUTT. Sugar News (India), 1976, 7, (10), 5-6.—The potential for production of alcohol from cane molasses in India is discussed, including possible markets, molasses quality and transport, and distillery capacity, fuel (preferably coal and bagasse rather than oil) and power consumption.

* *

Storage of dried and pelleted sugar beet pulp in silos. H. SCHNELLE. Zucker, 1976, 29, 238-240.—The tendency towards storage of pelleted pulp in cylindrical silos of 20,000 tons capacity and a maximum discharge height of 40 m is accompanied by the need for greater care to prevent fires resulting from spontaneous combustion. Tests in the US have shown that pellets of only 7% moisture content but containing 30-40% fines decompose rapidly at 50°C and 100%

¹ PRABHU & PRAKASH: I.S.J., 1974, 76, 90.

By-products

R.H. and quickly reach a temperature at which spontaneous combustion occurs; similar results occur where there are no fires but the moisture content is at least 15%. On the other hand, a pulp having a moisture content of 7% but very little fines content will not readily decompose, even at an ambient temperature of 70°C. Hence, there is need for removal of fines before storage and for adequate air conditioning; continuous checking of pulp temperature by means of distance thermometers linked to the conditioning controls ensures rapid increase in the cold air feed should the temperature rise. However, it is pointed out that such a system is not always proof against local hot spots which could be shielded because of the heat insulation properties of the pulp, so that there would be a time lag before the thermometer actuated the conditioning system. Should this break down, the silo would have to be emptied as quickly as possible. The question of discharge rate is discussed, and mention made of an emergency entrance provided in the wall of modern silos for use of a front-end loader to supplement the conventional discharge conveyors.

New sucrose epoxy resins. H. JACQUES and L. LE-BLANC. Sucr. Belge, 1976, 95, 179-187.-Experiments are reported in which an attempt was made to use oxyalkylated sucrose derivatives as internal plasticizers of epoxy resins. Tricomponent systems (epoxy resin-oxyalkylated sucrose-curing agent) were tested in order to obtain improved curing; with water-free materials, hard products having no tackiness were obtained in yields up to 55% (by weight) on oxyalkylated sucrose. Suppleness of the product was found to increase with increase in sucrose derivative quantity. With the aim of increasing the compatibility of the sucrose derivatives with resins, oxyalkylated sucrose was reacted with epichlorhydrin in the presence of KOH as catalyst. Infra-red spectroscopic investigations revealed that the resultant resins had absorption bands of the oxirane cycle. Hardening tests on the resins mixed with bisphenol-A epoxy resin yielded well-cured, supple, transparent products having excellent compatibility with epoxy resins.

* *

×

Use of sulphonol as antiseptic for molasses in alcohol manufacture. E. R. ALIEVA-VITUKEVICH. Trudy Ukr. Nauch.-Issled. Inst. Spirt. Likero-Vodoch. Prom., 1973, 15, 67-72; through S.I.A., 1976, 38, Abs. 76-617. Molasses containing 375 million bacterial cells per g was treated with 17-113 g Na dodecylbenzenesulphonate per metric ton (as 20-150 g crude powder, paste or liquid of various origins), and kept for 15 days at 20°Bx; acidity increase was usually delayed 10 days by doses greater than 50 g.ton⁻¹. Such doses had beneficial effects on alcohol yield and residual sugars content in fermentation by yeast.

* *

Energy conservation in beet pulp dryers. B. HUTCHIN-SON et al. Papers presented at 23rd Tech. Conf., British Sugar Corporation Ltd., 1976, 48 pp.—Tests are reported for determining the effect of a number of factors, including savings in energy resulting from recirculation of exhaust gases from the dryer outlet to the combustion end for dilution of fresh incoming gas; other effects determined were those of recirculation on emissions to the atmosphere, on dried pulp combustion and throughput, and the effects of modi-

fications to the outfall equipment on product and dust carry-over to the cyclones. Results indicated a 5-6% saving in fuel; while the potential saving increased with increase in the gas outlet temperature, there is a simultaneous reduction in the chances of achieving the savings in practice. There was negligible effect on emissions and on pulp combustion and throughput, although it is emphasized that the effects on throughput and fuel consumption would depend on the heat transfer capacity of the individual dryer. Grit and dust carry-over to the cyclones varied directly as the flue gas volume and inversely as the moisture content of the dried pulp, the flue gas volume being the more significant factor. Removal of the centre sections of alternate volutes had little or no effect on retention time or pulp drying; it is important that the volutes should overlap, although their length is not necessarily significant. A number of other factors which could be evaluated in further tests are listed.

* * *

Studies on the fermentative production of citric acid. II. Screening of the yeasts producing citric acid from cane molasses. Y. T. LIU. *Rpt. Taiwan Sugar Research Inst.*, 1975, (68), 55–66.—Details are given of tests on citric acid production from molasses and glucose, respectively, using various yeast strains. Yields of the anhydrous product ranged from 20 to 70% where three particular strains were applied. An increase in yield is thought to be possible. The isolated yeasts appeared to be *Candida* species.

* * -

Economy in sugar industry by-products. A. CHATTER-JEE and B. M. DUTT. Sugar y Azúcar, 1976, 71, (4), 18-19.-The economic aspects of cane by-products utilization are discussed and potential availability of each by-product as a percentage of processed cane is indicated. The value of molasses alcohol fermentation is discussed, among other things, in relation to world petrol shortage; production of bagasse paper in a central mill supplied with the raw material from a number of sugar factories is recommended, since it is stressed that only the surplus bagasse should be used; as regards furfural manufacture, the plant cost is so high that the process would be economically viable only if there were an adjacent sugar factory and distillery to utilize the surplus steam, the fermentable sugar-containing liquor and the residual products (recommended as boiler fuel). Mention is also made of particle board manufacture from bagasse, wax recovery from filter cake, and use of boiler ash as fertilizer and, in the building industry, together with cement.

* * *

Studies on industrial gum production by fermentation. II. Cultivation conditions in the laboratory. W. P. CHEN, S. L. CHENG and C. L. LAI. *Rpt. Taiwan Sugar Research Inst.*, 1975, (69), 45–52.—Investigations of gum production by Xanthomonas manihotis (obtained from the cassava tree) showed that the best medium contained 4% sucrose, 0.2% KCl and 2% defatted soybean powder extract with 0.45% K₂HPO₄ solution. Inoculation of 100 ml of this medium and cultivation on a rotary shaker for 3 days at 28°C yielded 51% industrial gum (on initial sucrose concentration) of 2.17% concentration. The broth culture viscosity was 34,000 cP.

World sugar production estimates $1976/77^{1}$

BEET SUGAR	1976/77	1975/76	1974/75
EUROPE	(m	etric tons, raw	value)———
Belgium/Luxembourg	652,000	711,000	607,000
Denmark	440,000	. 423,000	415,000
France	2,800,000	3,230,000	2,947,000
Germany, West	2,600,000	2,534,000	2,439,000
Holland	924,000	914,000	145,000
Ireland	1 650,000	1 442 000	145,000
United Kingdom	790,000	697,000	601,000
Total FEC	10.059.000	10 154 000	8 944 000
Austria	400,000	512 000	304.000
Finland	95,000	88,000	82,000
Greece	315,000	307.000	187,000
Spain	1,300,000	917,000	572,000
Sweden	308,000	277,000	305,000
Switzerland	71,000	65,000	72,000
Turkey	1,149,000	986,000	834,000
i ugosiavia		483,000	
Total West Europe	14,257,000	13,789,000	11,946,000
Albania	20,000	18,000	16,000
Bulgaria	240,000	157,000	200,000
Czechoslovakia	700,000	800,000	/50,000
Germany, East	393,000	331,000	338,000
Poland	1 960 000	1 840 000	1 589 000
Rumania	760.000	600,000	620,000
USSR	9,400,000	7,700,000	7,800,000
Total East Europe	14,085,000	12,111,000	11,968,000
Total Europe	28,342,000	25,900,000	23,914,000
OTHER CONTINENTS			
Afghanistan	15,000	15,000	9,000
Algeria	20,000	18,000	14,000
Azores	7,000	7,000	7,000
Canada	140,000	133,000	210,000
Chile	326,000	320,000	219,000
Iran	625,000	615,000	565,000
Irag	80.000	75,000	50,000
Israel	40,000	38,000	31,000
Japan	224,000	244,000	280,000
Lebanon	5,000	18,000	9,000
Morocco	270,000	257,000	264,000
Pakistan	24,000	22,000	18,000
Syria	11,000	23,000	7,000
United States	3.400.000	3.719.000	2.726.000
Uruguay	110,000	116,000	85,000
Total Other	< 107 000	((11 000	£ 350 000
Continents	6,307,000	6,611,000	5,359,000
TOTAL BEET SUGAR	34,649,000	32,511,000	29,273,000
CANE SUGAR			
Smain	20 000	10 000	26 000
Spain	20,000	19,000	20,000
NORTH & CENTRAL AME	RICA	22.121.1	
Belize	92,000	63,000	85,000
Costa Rica	200,000	191,000	179,000
Dominican Penublic	1,200,000	1 250 000	1 234 000
Guadeloupe	95,000	96,000	88.000
Guatemala	530,000	515,000	381,000
Haiti	55,000	56,000	58,000
Honduras	103,000	88,000	77,000
Martinique	15,000	14,000	16,000
Micarama	2,750,000	2,125,000	196,000
Panama	196,000	164,000	134,000
Puerto Rico	307.000	279,000	271,000
El Salvador	290,000	256,000	273,000
USA-Mainland	1,640,000	1,657,000	1,334,000
Hawaii	1,001,000	969,000	1,004,000
west Indies-Barbados	365,000	368 000	366,000

St. Kitts Trinidad	37,000 225,000	37,000 205,000	26,000 163,000
Total N. & C. America	15,470,000	14,981,000	15,131,000
SOUTH AMERICA			
Argentina	1 592 000	1 353 000	1 532 000
Bolivia	263,000	210,000	165,000
Brazil	7,400,000	6,180,000	6,985,000
Colombia	1,036,000	959,000	970,000
Ecuador	328,000	305,000	273,000
Paraguay	65,000	55,000	77,000
Peru	984,000	950,000	990,000
Surinam	11,000	11,000	10,000
Venezuela	32,000 544,000	29,000 478,000	23,000 527,000
Total South America	12,617,000	10,901,000	11,863,000
AFRICA			
Angola	50.000	40.000	49,000
Cameroun	32,000	30,000	29,000
Congo (Brazzaville)	46,000	32,000	29,000
Egypt	680,000	626,000	550,000
Ghana	18,000	18 000	12 000
Ivory Coast	38,000	23,000	5,000
Kenya	185,000	177,000	174,000
Madeira	3,000	2,000	3,000
Malagasy Republic	95,000	127,000	123,000
Mali	15,000	14.000	15,000
Mauritius	725,000	496,000	738,000
Morocco	5,000	4,000	0
Mozamolque	270,000	233,000	272,000
Réunion	240,000	226,000	228,000
Rhodesia	250,000	260,000	250,000
Somalia	39,000	30,000	36,000
South Africa	2,150,000	1,928,000	2,033,000
Swaziland	222,000	224 000	207,000
Tanzania	120,000	112,000	110,000
Uganda	25,000	22,000	34,000
Zaire	70,000	69,000	68,000
Zamola	100,000		
Total Africa	5,862,000	5,168,000	5,415,000
Asia			
Bangladesh	115,000	95,000	108,000
Burma	2 800,000	2 700 000	2 600,000
India excl. khandsari	4,900,000	4,630,000	5,212,000
Indonesia	1,300,000	1,258,000	1,137,000
Iran	90,000	85,000	83,000
Iraq	213,000	223,000	192,000
Malaysia	80,000	70,000	50,000
Nepal	15,000	12,000	0
Pakistan	500,000	565,000	514,000
Philippines	2,850,000	2,735,000	2,471,000
Taiwan	860,000	817,000	751,000
Thailand	1,714,000	1,665,000	1,216,000
Total Asia	15,625,000	15,029,000	14,476,000
OCEANIA			
Australia	3,400.000	2,933.000	2,921,000
Fiji	318,000	281,000	273,000
Total Oceania	3,718,000	3,214,000	3,194,000
TOTAL CANE SUGAR TOTAL BEET SUGAR	53,312,000 34,649,000	49,312,000 32,511,000	50,105,000 29,273,000
Total Sugar Production	87,961,000	81,823,000	79,378,000
	1919 mil		

¹ F. O. Licht, International Sugar Rpt., 1976, 108, (29), 1-4.

Philippines sugar exports

	1975	1974	1973				
	(m	(metric tons, raw value)-					
China	11.016	0	0				
Finland	0	32,315	0				
France	0	23,817	0				
Iran	57.031	0	0				
Japan	377.039	214.846	29.063				
Korea, South	0	0	13,630				
Malaysia	0	0	12,391				
Morocco	27,909	0	0				
Portugal	11.376	Ó	0				
Switzerland	0	5.613	Ō				
UK	182.882	32,315	0				
USA	339,411	1.347.686	1.389,186				
Vietnam, South	0	0	10,754				
	1,005,664	1,635,637	1,455,024				

A/S De Danske Sukkerfabrikker 1975/76 report.--With revision of the EEC sugar policy the 1975/76 Danish A-sugar guota was increased from 290,000 to 328,000 metric tons of which the DDS share was 282,491 tons. New acreage tons of which the DDS share was 282,491 tons. New accreage was contracted and a production target of 410,000 tons was set for the campaign. However, cold and windy weather in early June damaged the young beet plants and growth was severely hampered during the rest of the summer by drought. Rain came in September so that the roots started to develop new Rain came in September so that the roots started to develop new tops instead of the normal increasing of root volume and sugar content. As a result the beet crop reached only 2,580,000 tons to give 336,000 tons of sugar. The factories operated satis-factorily and Saxkjöbing also refined about 27,000 tons of cane raws for export to Norway. Assens factory has been expanded, a similar project has been under way for the Nakskov factory for the 1976 campaign, and Stege will be expanded for the 1977, campaign The company is investing heavily. In the 1977 campaign. The company is investing heavily in measures against environmental pollution, particularly for recycling of beet transport and wash water. The 1976 target sugar production has been set at 381,000 tons. Sales of beet seed have increased particularly in Italy and Spain, while sugar production machinery sales have been a record, with outlets in the USSR, France and Yugoslavia, as well as the first DDS cane diffuser in Argentina.

Brazil's largest cane mill tandem.—On 24th September 1976 the largest milling tandem to be built and installed in Brazil was inaugurated at Usina da Barra, Barra Bonita, São Paulo. Designed and manufactured by M. Dedini S.A. Metaldurgica, the tandem has rollers measuring 42 in × 84 in and a crushing exercit to 12 000 team ere day. Each erit lu new four callers with separate drives to the inlet roller and discharge rollers. The two lower rollers are close, requiring only a narrow turn-

plate, while the hydraulic head acts on the top roller at an angle of 15° corresponding to the angle of the resultant of forces exerted on the roller. The mill bearings are of solid bronze, water-cooled. Each mill is individually driven by a 1000 hp steam turbine operating at up to 4600 rpm with gear reducers and a final spur and pinion gearing, all built by Dedini. The new mill represents the latest achievement by the Dedini Group which built its first small mill in 1929.

Trinidad sugar exports^{*}

	1975	1974	1973
	(metr	ic tons, raw va	lue)
Canada	0	2,458	0
France	0	14,567	0
Holland	0	1,528	0
Japan	0	11.004	0
Tunisia	0	7,888	0
UK	74.022	69,142	133,180
USA	22,313	27,596	8,603
Venezuela	14,013	0	0
	110,348	138,783	141,783

South American beet sugar technologists meeting.—The beet sugar technologists of Uruguay have formed an organization (Asociación Nacional de Técnicos en Remolacha Azuction (Asociación Nacional de Técnicos en Remolacha Azuc-arera) which is cooperating with the technologists of Chile to form a Latin American Association of Beet Sugar Technol-ogists (ALTER) which is holding its inaugural Congress at Bella Vista, 90 km east of Montevideo during the 28th Novem-ber—5th December 1976. A number of papers on agricultural subjects are to be presented and visits have been arranged to sugar factories and experimental field sites. Both the Chilean at Justice and experimental field sites. Both the Chilean and Uruguay associations are non-Governmental institutions and are under the patronage of the Uruguay Ministry of Agriculture and Fisheries, the F.A.O. and the Interamerican Institute of Agricultural Sciences.

Corrigendum.—In a recent item³ we referred to Fives-Cail Babcock sugar factories for Yugoslavia. We have now been advised by ABR Engineering of Brussels, Belgium, that they advised by ABK Englievening of Brusses, Beighan, dia diey are responsible for the whole contract as leaders of a Belgian-French group associated with a Yugoslav company in the undertaking. ABR Engineering will provide complete design engineering and detailed designs, delivery of machinery and equipment (some to be obtained from Fives-Cail Babcock), and engineering and enterpane for erroriton and complications. and technical assistance for erection and commissioning. The factories are to be built at Bac, Zabalj, Kovacida, Pecinci and Nova Crnja and are scheduled for commissioning for the 1978 campaign.

*

EEC import quota reductions for three ACP countries⁴. Article 25 of the Lomé covers the procedure followed when a supplier fails to provide his full quota of sugar to the EEC. For the period 1st July 1975 to 30th June 1976 this applied in the case of Mauritius, Uganda, the Congo Republic and Fiji who all claimed that the deficiency was caused by *force majeure*. In the case of Mauritius the EEC Commission agreed the validity of this claim since the island had had it is user the validity of this claim since the island had had its sugar crop bally damaged by a cyclone which reduced exports to the EEC from the forecast 487,200 metric tons to 421,200 tons. Uganda had supplied only 3000 tons against its 5000-ton quota but the Commission rejected the claims that this was due to difficulties of reorganization and transport, noting that production had fallen continually since 1968 so that it could not be expected that Uganda would meet its higher commitment; the quota was consequently reduced to 3200 tons. The reasons put forward by the Congo for non-delivery of its 10,000-tons quota (incendiarism, interruption of fuel and supplies for one quota (incendiarism, interruption of the and supplies for one enterprise) were also rejected and the quota cancelled com-pletely. In the case of Fiji, which had delivered 137,000 tons against a 163,000-tons quota, the Commission did not consider that the floods which had affected the cane fields were sufficient reasons since Fiji had suffered continually falling crops since 1968 and, in addition, had signed long-term contracts with other customers; as a consequence the quota was reduced to 142,900 tons.

Bagasse paper in South Africa .- The September 1976 issue Bagasse paper in South Africa.—The September 1976 issue of the South African Sugar Journal was a special issue in that it was printed for the first time on coated paper made by Stanger Pulp & Paper (Pty.) Ltd. at Gledhow, Natal. This new R60m project came on stream recently and is the first paper mill in the world to use bagasse for the making of coated paper of the glossy art type. The mill will eventually produce 34,000 metric tons of fine paper a year and an extension by the end of 1976 will make it possible to produce 17,000 tons per annum of bagasse from the Gledhow sugar factory.

I.S.O. Stat. Bull., 1976, 35, (5), 84.
 ibid., (4), 105.
 I.S.J., 1976, 78, 286.
 Le Betteravier, October 1976, 13, 19.

SHOWING SHREDDER SECTOR ADJUSTMENT

REAR VIEW INDICATING SHREDDED CANE EXIT

THIS IS OUR LATEST HEAVY DUTY CANE SHREDDER. IT IS OF ALL STEEL CONSTRUCTION, WITH HEAVY CAST STEEL HAMMERS, AND AN ADJUSTABLE SHREDDING SECTOR. THE DIAMETER OVER THE TIPS OF THE HAMMERS IS 60 in. AND THE HAMMERS COVER AN AXIAL LENGTH OF 84 in. CELL RUPTURES OF UP TO 90% HAVE BEEN ACHIEVED WITH THIS TYPE OF SHREDDER.

CONSULT US ON YOUR SHREDDER PROBLEMS

WALKERS LIMITED CONSULTANTS DESIGNERS ENGINEERS P.O. BOX 211, MARYBOROUGH, QUEENSLAND, AUSTRALIA Telex: 49718

Index to Advertisers

								PAGE
ABR Engineering W. H. Allen, Sons & Co	 . Ltd.		 		 	 	ій. на	vi ix
Edward L. Bateman Ltd			**					xxi
Brasil Acucareiro	 	 						xxiii
Braunschweigische Masc	hinen	bau	anstal	lt	•••	•••		vii
Brill Equipment Co	 	 d	••	••	••	••	••	xxvi :
Peter Brotherhood Ltd.					••	••	••	xiii
Dorr-Oliver Inc	•••		••		•••		••	ü
Fives-Cail Babcock								xii
Fletcher and Stewart Ltd	. Insid	le F	ront (Cove	er, In	side	Back	Cover
Fontaine & Co. GmbH	• •	••	11	••	••		•••	xxiii
Hitachi Zosen	•:•:	a.	••		••	••		xviii
Dr. Wolfgang Kernchen	Opti	k-E	lektro	nik-	Auto	omati	ion	iv
May & Baker Ltd	••		••	•••		•••	•••	xi
Optical Activity Ltd					••	••	••	XX
P & S Textiles Ltd	•2•0	•••	••		••			xvii
F. C. Schaffer & Associa	tes Ir	ıc.	•••	•	•••		1992 • C	xxii
Stork-Werkspoor Sugar	B.V.	••••	•••	•••	••	••	••	x
Sucatlan Engineering	 		 T +d	•		 	 Daale	V
Sugar News				••				xxiii
Tate & Lyle Engineering	Ltd.	••	. .	••	••		••	xiv, xx
Veco Zeefplatenfabriek I	3.V.	•••	•••	•••	••	••		xix
Wabash Power Equipme	nt Co		••	••			•••	xxvi
Walkers Ltd Western States Machine	 Co.							xxv iii
		0.0	0.00	100.00	12115	0.00	10.000	

COMPLETE SUGAR FACTORY, 2200/2500 TPD: Modern Equipment installed 1955 to 1966, with Turbine Driven Mills, Mill building with 17 ton Travelling Crane, complete Cane Yard Equipment with overhead 22 ton Crane, and all equipment and accessories. Other Sugar Factories: 750, 1200, 2000, 3500 TPD. MILLING TANDEMS: 4.3 Roll, 24 in. x 42 in.; 9 and 12 Roll, 34 in. x 60 in.; 14 Roll, 34 in. x 66 in. Steel housing and gears; 00 context with or 100 psi, reducer and steel gearing to 6 rpm. FILTERS: 2 Olive, 160 psi, reducer and steel gearing to 6 rpm. CARTRIFUGALS: High Grave and steel gearing to 6 rpm. CHARIFICATION: 18 ft. and 20 ft. dia. Graver and Dorr Clariflers; 500, 650, 1180 ag. ft. Juice Heaters. CALANDRIA VACUUM PANS: from 600 cu.ft. to 2000 cu.ft.; 600 sq.ft. 93000 sq.ft. 20000 sq.ft. 24(000 sq.ft. 3700 sq.ft., 15,000 sq.ft. 20000 sq.ft. 24(000 sq.ft. 3600 sq.ft. SUGAR DRYERS: Link Beit Roto Louvre, 5ft. 2 in. x 20 ft. 7 ft.5 in. x 24 ft. 8 to 20 TDH. TURBINE GENERATORS, Non-condensing: 1000 kW, 1250 kW, 2000 kW, 2500 kW, 4000 kW, from 150 psi to 600 psi, BOILERS: 40,000, 70,000, 125,000, 200,000, 330,000 lb./hr. TURBINES: 600 hp., 150 psi, reducer, 480 rpm; 350 h.p., 150 psi, reducer, 500 rpm; others from 200 to 3500 h.p. 50 years service to the sugar Industry / BRILL EQUIPMENT COMPANY

I.S.J. BOUND VOLUMES

for 1975 are available at a price of \$25.30. Volumes for 1966-74 and certain previous years are also available at a price of \$20.25 per volume, these prices including 2nd class surface postage.

1st class surface or airmail postage costs will be charged extra if they are required.

FOR SALE

turbine generators

non-condensing

750 kW Westinghouse 150/200 psig, 15/25 psig bp, 3/60/2300-440V 1000 kW Worthington 150/200 psig, 15/25 psig bp, 3/60/2300-4160-480V

1250 kW G.E. 200/250 psig, 15/25 psig bp, 3/60/2300-460V 1500 kW Westinghouse 250/300 psig, 15/25 psig bp, 3/60/460V 2000 kW G.E. 250/300 psig, 15/35 psig bp, 3/60/2300-480V (2) 2000 kW Allis Chalmers 150/200 psig, 15/20 psig bp, 3/60/480 V 2500 kW G.E. 250/330 psig, 15/35 psig bp, 3/60/2300-480V 4160-480V

bagasse boilers

2-200,000 lb/hr., 400 psig at 650°F, 21,740 aq.ft. 2-150,000 lb/hr., 300 psig at 500°F, 18,832 qq.ft. 1-140,000 lb/hr., 550 psig at 8325°F, bagasse stoker, 1971 1-125,000 lb/hr., 250 psig at 450°F, 17,840 sq.ft. 4-60,000 lb/hr., 250 psig at 400°F, 6,400 sq.ft.

diesel generator sets

175 kW-2500 kW All Voltages: 3/60/240-480-2300-4160V

turbine & gears

100 HP to 3000 HP

Complete stock of power plant auxiliary equipment. Cable WAPECO or mail your requirements for immediate response.

wabashpower equipment co.

444 Carpenter Avenue -Wheeling, Illinois 60090 (312) 541-5600 Cable WAPECO Telex No. 28-2556 The Wissington sugar factory

(Photo: British Sugar Corporation Ltd.)

THE INTERNATIONAL SUGAR JOURNAL

A TECHNICAL AND COMMERCIAL PERIODICAL DEVOTED ENTIRELY TO THE SUGAR INDUSTRY

EDITED BY : D. LEIGHTON, B.Sc., F.R.I.C. M. G. COPE, M.I.L.

JANUARY TO DECEMBER

1976

VOLUME LXXVIII

PUBLISHED AT 23a EASTON STREET HIGH WYCOMBE BUCKS. ENGLAND 1976

PANEL OF REFEREES

A. CARRUTHERS,

Consultant and former Director of Research, British Sugar Corporation Ltd.

K. DOUWES DEKKER,

Consultant and former Director, Sugar Milling Research Institute, South Africa.

H.	EX	7A	NS.	0	BE
~~~	~ .				

Director, B	lookers Agricultural	and Technical	Services Ltd.
-------------	----------------------	---------------	---------------

M. MATIC, Director, Sugar Milling Research Institute, South Africa.

T. RODGERS, Production Director, British Sugar Corporation Ltd.

S. STACHENKO, Vice-President, Redpath Industries Ltd.

#### ERRATA AND CORRIGENDA

Page 27.	Line 27 of Column 1.	Read "SVOBODOVÁ" for "SVOBODÁ"
Page 56.	Line 13 of Column 2.	Read "(5), 16-21; (6), 10-15" for "(6), 10-15, 16-21".
Page 76.	Line 35 of Column 2.	Read "wilt" for "red rot".
Page 119.	Line 35 of Column 2.	Read "118-120" for "118-119".
Page 124.	Line 4 of Column 1.	Read "60" for "29".
Page 125.	Line 42 of Column 1.	Read "I.S.J., 1973, 75, 3-6, 44-46" for "I.S.J., 1973, 75, 44-46".
Page 126.	Line 40 of Column 1.	Read "L. GONRY" for "I. GONRY".
Page 150.	Line 37 of Column 1.	Read "1973, 75, 116" for "1974, 76, 84".
Page 182.	Line 2 of Column 1.	Read "MCMASTER" for "MCMASTEY".
Page 183.	Lines 36 and 37 of Col	lumn 1. Read "Proc. 1973 Meetings Amer. Soc. Sugar Cane Tech." for "Proc. 49th Congr. S. African Sugar Tech. Assoc.".
Page 218.	Line 4 of Column 1.	Read "factory" for "vapour".
Page 247.	Line 57 of Column 1.	Read "26" for "27".
Page 248.	Line 2 of Column 2.	Read "217" for "215".
Page 285.	Line 35 of Column 2.	Read "KRASNOPOL'SKII" for "KRANSNOPOL'SKII".
Page 286.	Line 47 of Column 2.	Read "ABR" for "Fives-Cail Babcock".
Page 306.	Line 12 of Column 2.	Read "J.F." for "F.J.".
Page 308.	Line 13 of Column 1.	Read "KALASWAD" for "KALSWAD".
Page 315.	Line 49 of Column 1.	Read "V. S." for "H. S.".

MADE AND PRINTED IN ENGLAND BY JOHN ROBERTS & SONS SALFORD MANCHESTER

### INDEX TO VOLUME LXXVIII

#### SOME REMARKS ON ITS USE

In using this Index it should be noted that the principal entries cover the several stages of production: CULTIVATION (see Beet; Cane; Diseases; Fertilizers; Irrigation; Mechanization; Pests; Soils; Transport; Varieties; Weeds, etc.); SUGAR PROCESSING (see Bagasse; Boilers; Boiling; Carbonatation; Centrifugals; Clarification; Crystallization; Diffusion; Evaporators; Filters; Massecuite; Milling; Mills; Molasses; Pans, Vacuum; Scale; Sucrose; Sugar; Sulphitation; Water, etc.); REFINING (see Bone Char; Carbon; Refining; etc.); and BY-PRODUCTS (see Alcohol; Animal Fodder; By-Products; Fermentation; Paper; Pulp; Yeast, etc.).

Subjects covered separately include Ash; Bulk handling and storage; Colour; Control, Automatic and Chemical; Countries; Ion exchange; Juice; Micro-organisms; pH; Polarization; Transport; Weighing, etc. Glucose and Fructose are to be found under Dextrose and Levulose. Obituaries, Statistics and Trade Nnotices are collected together under those headings. "Sucrose" implies the pure chemical; "Sugar" the commercial product; and "Sugars" the chemical family, rather than grades of sugar. When looking under the author's name, it should be remembered that the surname may be the penultimate in Spanish. Names starting with "Mc" are treated as if they start with "MAC", and the next letter in the name after the "C" will determine the position in the author index. Where a name includes the prefix "AL", "EL", "D", "DA", "DE", "DEL", "EL", "LA", "VAN" or "VON" it is indexed under A, E, D, L or V, respectively. Where a name begins with the abbreviation "ST." or "STO." it is indexed as if this were spelt in full. in full.

(Abs.) indicates Abstract; (Brev.), Brevity; (Corr.), Correspondence; (N.B.), New Books; (N.C.), Note and Comment; (Stat.), Statistics; (T.N.), Trade Notice.

#### SUBJECT MATTER

	PAGE	1	PAGE	1	PAGE
Affination: S. A. Brenman et al. (Abs.) control by chloride ion-selective	314	Animal fodder: cane stalk and top yield and compo-		Ash: heavy metals determination in raw	
Pommez. (Abs.)	283	You Cheong. (Abs.)	158	sugar. P. Pomez and R. Cormier sugar. N. M. Morris <i>et al</i>	283 380
Air pollution: boiler and beet pulp dryer emission reduction. H. Smidt	184	- tops. G. K. Chetty. (Abs.) and molasses. F. M. Pate and	309	mercury determination in beet pulp	990
reduction. A. Szabó. (Abs.) Alcohol: in condensate, effect of cane	90	S. W. Coleman. (Abs.) distillery waste P. Kujala et al.	221 381	molasses content. M. Munir	100
deterioration. J. D. Blake	131	filter cake. G. Vernois. (Abs.)	381	phosphorus determination. N.	92
- ammonia removal. Anon. (Abs.)	94	Gonry. (Abs.)	190	potassium, calcium and chloride	124
- in Brazil. Anon. (N.B.)	222 58	and Yeast		contents in cane varieties. R. P. DeStefano, (Abs.)	178
- from molasses. Anon. (Abs.) A. C. Chatterjee and B. M. Dutt	381	Argentina: bagasse paper factory cane breeding. O. Giménez L. and E.	351	- removal from cane juice. S. Mukh-	110
(Abs.) 252, 349, 38	1,382 381	Pérez A. (Abs.)	302 32	- and sodium in beet, effect of topp-	1 105
A. Ramalingam and R. K. Finn	61	- mechanical harvesting study	288	variety. E. Bornscheuer.	, 195
V. F. Sukhodol et al. (Abs.).	158	sugar statistics. (Stat.)	160	et al. (Abs.)	, 189
W. E. Trevelyan. (Abs.)	126	Ascorbic acid: cane growth regulation.	367	<ul> <li>– and chloride in beet, effect of harvest date and nitrogen.</li> </ul>	
and cane juice. (Brev.) effect of antiseptic. E. R.	191	G. Singh and K. Sareen. (Abs.) – sett germination. J. R. Kakde	368	R. C. Zielke and F. W. Snyder	125
Alieva-Vitukevich. (Abs.)	382	et al. (Abs.)	16	and L. Batterman. (Abs.).	92
tial. V. N. Shvets et al	252	and corrosion. P. Devillers et al.	56	W. Kernchen. (Abs.)	316
Shvets et al. (Abs.)	285	kovskii et al. (Abs.)	246	M. Burba <i>et al.</i> (Abs.) salts effect on sucrose solubility.	60
synthetic alcohol additive deter- mination. J. Guérain and S.		F. Teschner and R. Krämer. (Abs.)	28	S. Z. Ivanov et al. (Abs.)	93
Tourlière. (Abs.)	221	<ul> <li>and potassium melassigenic co- efficients, V. A. Golybin et al.</li> </ul>	27	Silina. (Abs.)	91
Monteiro. (Abs.)	308	- effect on beet sugar discharge. J.	990	bility criterion. A. L. Webre	374
Blake et al.	291	- salts in beet juice and syrup. L. G.	150	- reducing sugars and molasses ex- haustion. G. F. Fundora. (Abs.)	151
on ethanol-water vapour-liquid		cane molasses exhaustibility. M. A.	199	removal by electrodialysis. J. Houssian and R. Pieck. (Abs.).	313
equilibrium. D. Mondeja G. (Abs.) see also Distillery and Fermentation	190	Mohamed <i>et al.</i> (Abs.) carbonate, sulphite and nitrite in	318	P. Pierrard. (Abs.)	378
Algeria sugar imports. (Brev.) Amino-acids: in beet effect of barvest	32	beet juice, effect of ion exchange treatment H D Wallenstein and		Bobrovnik et al. (Abs.)	313
date and nitrogen. R. C. Zielke	195	H. Egler. (Abs.)	27	cessing. M. A. Clarke. (Abs.)	283
- leaf blades, petioles and root. V.	125	asses. Anon. (Abs.)	213	<ul> <li>and phosphate effect on raw sugar filtrability. M. Shafiq and R.</li> </ul>	
- molasses. M. Munir	100	al. (Abs.)	27	Samaniego. (Abs.)	27
behaviour in carbonatation. N. Kub- adinow and W. Hampel. (Abs.)6(	0,220	content in beet, effect of ecology. V. Stehlik and L. Schmidt. (Abs.).	242	et al.	326
beverage floc composition. E. J.	283	fertilizer uptake, U. Beiss	148	D. Hibbert et al. (Abs.)	379
determination. M. Burba and B.	200	irrigation. I. al-Windi and	140	tion; Furnaces, Bagasse; Ion ex-	
Maillard reaction colour formation.	040	root, crown and collar. K.	140	change; Ion exclusion and Pulp, Beet	
<ul> <li>E. Reinefeld et al. (Abs.)</li> <li>– reactivities. E. Reinefeld et al. 29</li> </ul>	379 3, 157	- cane juice, sugar and molasses.	188	Australia: Bureau of Sugar Experiment	50
molasses formation. G. P. Voloshan- enko et al. (Abs.)	346	L. K. Kirby, (Abs.)	92	bulk storage expansion. (Brev.)	64
see also Betaine; Glutamic acid and		P. O. Osuji. (Abs.)	349	cane disease and pest control re- search. Anon. (Abs.)	47
Animal fodder: bagasse and bagacillo.	050	- J. Ždárský and A. Svoboda.	245	<ul> <li>mill and factory sizes. A. C. Chatteriee, (Abs.)</li> </ul>	22
- cane molasses. H. L. Chapman.	253	- white sugar and moisture absorp-	5/9	- planting in Southern Queens-	17
- $-$ C. H. Liu. (Abs.) - pelletizing. L. E. Slater. (Abs.)	$258 \\ 381$	tion. V. Maurandi and G. Man- tovani. (Abs.)	55	- varieties. C. A. Rehbein and M. J.	47
beet. E. Pfeffer. (Abs.) - tons. (T.N.)	381 350	determination in beet brei, effect of aluminium salt. M. Burba and		T. G. Willcox. (Abs.)	209
D. Charlesworth. (Abs.)	252	W. Puscz. (Abs.)	346	Beattie. (Abs.)	49
E. W. Hart. (Abs.)	252	corrosion. P. Devillers et al.	120	Isis Land Use Scheme, C. D. Jones	17 47
w. D. Knowles. (Abs.) F. Onalan. (Abs.)	253	- cane molasses. A. C. Morriss and W. M. Nicol. (Abs.)	251	private cane and disease risk. C.	971
A. Vigoureux. (Abs.) cane. D. Fielding. (Abs.)	$149 \\ 221$	<ul> <li>sugar and syrup. R. Lees. (N.B.)</li> <li>temperature corrections. E. R. de</li> </ul>	282	River Improvement Trusts. E. F.	211
- by-products. M. J. Kort. (N.B.)	58 61	Oliveira and J. P. Stupiello.	249	soil monitoring stations. A. Ford.	271
- consultancy firm in Barbados	159	Carrazana R. et al. (Abs.)	251	- properties. N. R. Maclean. (Abs.)	51

	PAGE
Australia: sugar exports. (Stat.)	288 , 224
duction 1976. (N.C.)	65     155
<ul> <li>– 1975/76. (N.C.)</li> <li>– Research Institute computer, Anon. (Abs.).</li> </ul>	162 213
<ul> <li>year book 1976. W. P. Kerr. (N.B.)</li> <li>Tully experiment station. C. R.</li> <li>Nalder. (Abs.).</li> </ul>	345 78
weather and irrigation. K. C. Lever- ington and D. R. Ridge. (Abs.)	49
Western Australia pilot cane farm. Austria: beet varietal trials. A. Graf sugar production 1975/76	$288 \\ 274 \\ 256$
Bag: counting automatic control.	
k. A. Nekrasov. (Abs.) handling equipment. (T.N.)	90 62
and P. C. Martín. (Abs.)	253
N. L. C. Suzor. (Abs.) clarification mud filtration. J. J.	309
Seip and F. L. Gayle. (Abs.) pressing. E. del Valle. (Abs.)	$150 \\ 150$
Bagasse: active carbon manufacture.	373
animal fodder. Anon. (Abs.)	222
- H. L. Chapman. (Abs.) Y. Chen <i>et al.</i> (Abs.)	221 61
C. H. Liu. (Abs.) S. C. Mai and T. H. Wu. (Abs.)	$158 \\ 61$
– manufacture. Anon. (Abs.)	$\frac{320}{126}$
H. Frers. (Abs.) - properties. R. Hesch. (Abs.) cellulose manufacture. G. Ocampo	233 94 126
in Paraguay. (Brev.)	256 151
drying. E. W. Kerr. (Abs.) fire in Taiwan. (Brev.)	86 64
furfural and board manufacture. A. C. Chatterjee and B. M. Dutt – factory in Mexico. (Brev.)	$\frac{382}{288}$
- and levulinc acid manufacture. C. I. Nee and W. F. Yse. (Abs.) humus. R. P. Humbert. (Abs.) 94, 190	$158 \\ 253$
hydrolysis. H. Kollner and R. Lopez P. (Abs.)	222
levulinic and formic acids manufac- ture. R. A. Schraufnagel and R. K.	200
Finn. (Abs.) lignins. O. Y. Mansour and M. S. cl-Dien. (Abs.)	61 222
moisture determination. B. Partridge and S. R. Reichard. (Abs.)	92
pelletizing. L. E. Slater. (Abs.) pressing. J. Engolio and J. G. Spinoso and imbibition. M. Basuvisaga	381 119 183
soil mulching and cane quality. J. C. P. Chen and R. W. Picou.	150
Johnson grass control. J. F. Parr et al. (Abs.)	144
storage. Anon. (Abs.) sugar content, effect of cane burning.	158
tramp iron removal. (T.N.)	62 350
- as fuel, J. C. Hudson. (Abs.)208 weighing. B. D. Ravnö et al. (Abs.)	, 273
see also By-products; Furnaces; Paper and Pulp	020
trials. Anon. (Abs.)	239
- production. (Brev.)	96 287
Bearings: cane mill. U. J. Ackeus G. D. Jacklin et al. (Abs.)	54 54
torque requirements. D. Macey and J. A. McGinn. (Abs.)	54
Beet: agriculture in Belgium. L. van Stevvoort. (Abs.)	243
- vs. cane in Morocco. G. Schmidt - crop rotation. J. Baldwin. (Abs.)	82 276
- demonstrations in UK. (Brev.) - in Finland. W. C. von Kessel	254 149
- India. R. S. Kanwar et al. (Abs.) - D. S. Oberoi and R. Singh. (Abs.) - Moreceo Anon (Abs.)	83 83
- research in France. Anon. (Abs.) - station open day in UK. (Brey.)	116 255
– in Rumania. Anon. (Abs.) – Spain. Anon. (Abs.)	149 378
- USSR. (Brev.) alcohol manufacture in France.	287
amino-acids determination. M.	280
analysis. J. Hobbis and L. Batter- man. (Abs.).	92
ash content, effect of drilling date. V. Stehlik and L. Schmidt. (Abs.)	242
and C. Winner. (Abs.) biochemistry. L. Lásztity. (Abs.)	148 274

	PAGE
Beet: breeding W Oltmann and T	
Sedlmayr. (Abs.)	275
- R. K. Oldemeyer. (Abs.)	307 242
<ul> <li>polyploid monogerm seed produc- tion. J. Christmann. (Abs.).</li> </ul>	181
- seed isolation chambers. R. J. Hecker and J. O. Gaskill (Abs)	949
- selection and nematode resistance.	444
- for stalk blight resistance. J. D.	21
MacDonald <i>et al.</i> (Abs.) brei clarification with aluminium salt.	337
M. Burba and W. Puscz. (Abs.)	346
M. Burba et al. (Abs.)	, 124
Westfall and M. Barnes. (Abs.)	19
- sugar determination. I. A. Prikhod'ko. (Abs.)	156
campaign length and thick juice viscosity and sucrose diffusion co-	
efficient. M. N. Dadenkova et al.	156
composition, effect of harvest date	10
F. W. Snyder. (Abs.)	125
- and juice purity and sugar yield predictions. P. Devillers et al. 60	189
crown yield, sugar content and qual-	90
damage by falling. V. I. Vasil'ev	
- by herbicides. R. Vanstallen	339
- and losses. R. de Vletter and W. van Gils. (Abs.)	281
- - F. Kapol. (Abs.)	122
dirt tare and processing difficulties.	140
disinfection. B. P. Kuz'menko	24
izer. I. Gutmański. (Abs.)	181
<ul> <li>pesticides. W. R. Schäufele and C. Winner. (Abs.)</li> </ul>	19
soil salinity and temperature.	10
enzymes and juice colour formation.	19
extraneous matter. Anon. (Abs.)217	, 248
pressing. (T.N.) field headlands. Anon. (Abs.)	$\frac{350}{275}$
flume accident prevention. R.	949
- cleaning. V. Lochman. (Abs.)	88
extraneous matter. O. Böhm	184
- parameters calculation. V. N. Shchegolev and A. P. Parkho-	
mets. (Abs.) – sand trap. M. I. Yanitskii. (Abs.)	$121 \\ 185$
galacturonic acid determination. F. Perschak. (Abs.) 60	124
growth and quality. M. G. Frakes	371
J. Christmann. (Abs.)	211
A. H. Freytag. (Abs.)	19
– and sugar content, effect of inor-	92
ganic constituents. G. K. Ryser et al. (Abs.)	212
temperature and drought. H.	919
intercropping with cane. J. S. Garg	011
- P. P. Singh. (Abs.)	15
acids. V. Švachula and P. Vrátný	27
- catcher water level control. F. Hruška. (Abs.)	310
- incorporation in soil. W. Czeratzki	115
- injury by ozone. H. A. Menser	116
nitrogen application. L.	
mechanical properties and slicing.	274
K. Vukov. (Abs.)	187
inow. (Abs.)	284
plant population, effect of inter-row spacing, E. Bornscheuer and H.	
Meinecke. (Abs.)	276
and seed spacing. S. Machla-	
optimization. J. E. Hull. (Abs.)	305
- quality. M. Z. Khelemskii et al.	280 52
effect of agronomic factors. M. Martens, (Abs.)	83
evaluation. M. Burba. (Abs.)	347
- I. B. Somorov. (Abs.)	88
mann. (Abs.)	211
root, crown and collar composition. K. Fábián and J. Kollár. (Abs.)	188
- sugar accumulation. J. Guern	339
A. E. Popov and S. K. Mezentsev	124

1	PAGE
Beet: seed coating Apon (Abs.)	205
- dressing and germination. R.	305
- drilling, J. Pichenez, (Abs.)	115
effect of soil preparation. M. T.	049
and plant population. S. Mach-	240
speed. A. S. Kennedy and J. V.	274
Topper. (Abs.) – germination effect of water F W	243
Snyder and R. C. Zielke. (Abs.)	20
- X-ray analysis Grimm. (Abs.)	83 211
- yield, effect of plant spacing. S. S. Saini <i>et al.</i> (Abs.)	83
seedbed preparation. J. D. Burne	148
- - L. S. Robertson and D. M. van	18
– – W. C. von Kessel. (Abs.)	$\frac{306}{275}$
– – and drilling. J. Crow. (Abs.) – – P. H. Verstracte. (Abs.)	304 276
by rotary tillers. S. R. Simmons	200
slicers. H. Koethke. (Abs.)	378
<ul> <li>hopper level control. I. Ergün.</li> <li>knife treatment. A. D. Baglynk</li> </ul>	310 89
R. Hies. (Abs.).	90
wear reduction. Y. F. Tsyukalo	343
slicing, V. N. Shchegolev et al. (Abs.)	90 87
sugar content, effect of topping.	105
and juice purity. W. C. McGuffey	195
- determination. K. Malec <i>et al.</i> 188, K. W. R. Schoenrock and D.	347
– Developments Ltd.	347 237
<ul> <li>differentiation from cane sugar.</li> <li>J. Bricout and J. C. Fontes</li> </ul>	92
- yield, effect of irrigation. I. al-	20
quality, reception and storage.	148
tarehouse laboratory. W. Kernchen	87 316
temperature measurement. N. A.	991
unloader. S. Dušek. (Abs.)	185
flume water liming. H. Schiweck	278
washers. J. N. Doucerain. (Abs.)	215
- R. Sebastian. (Abs.)	248
requirements. F. Kastner. (Abs.)	217
- separator. Z. Burczyński and R. Wiśniowski. (Abs.)	186
- - E. T. Koval' <i>et al.</i> (Abs.) vield H Laby (Abs.)	56
- effect of drought. J. Hobohm and	
late weeds. W. C. von Kessel.	18
plant population. H. Strube	$\frac{275}{338}$
<ul> <li>– seed spacing. J. M. Nelson.</li> <li>– harvesting and processing effect.</li> </ul>	116
of weeds. H. Neururer. (Abs.)	306
factors. H. D. Fuehring and	
- $-$ I. Gutmański. (Abs.)	276
M. K. Nicholson <i>et al.</i> (Abs.) drilling date. H. Feltz. (Abs.)	$\frac{116}{244}$
growth retardants. P. R. Hepler, (Abs.).	20
harvest date and irrigation	
Singh. (Abs.)	338
– – – inter-row spacing and nitrogen. J. N. Carter <i>et al.</i> (Abs.).	242
nitrogen. W. A. Dickinson.	180
et al. (Abs.)	181
- C. Winner <i>et al.</i> (Abs.)	243
- rotation. D. R. Christenson vs. monoculture. N. A.	371
Al'dekov and N. F. Kostin – – – seed spacing. F. J. Hills	212 19
temperature. G. K. Ryser	307
prediction. J. O. Reuss et al.	115
Diffusion; Diseases; Factory; Fertil-	
asses; Payment; Pectin; Pests;	
Pulp; Soil; Storage; Transport; Varieties: Water, Waste and	
Weather Boliver hert and the T	
Steyvoort. (Abs.) 18,	243
- varietal trials. N. Roussel et al. (Abs.) 82.244.	339
sugar factory closures. (Brev.) Belgium/Luxembourg: sugar imports	287

PAGE

	PAGE
Betaine: content in beet, effect of	
Zielke and F. W. Snyder. (Abs.)	125
K. J. Nix. (Abs.)	62 85
computer simulation. J. M. Steward	05
emission. H. Smidt. (Abs.)	184
order from Philippines. (T.N.)	286
Scale; Steam and Water	
V. R. R. Bhonsale, (Abs.)	$119 \\ 183$
K. Hangyál. (Abs.)	186
W. Lekawski and A. Bober. (Abs.)	120
D. Schliephake and K. Austmeyer.	25 380
J. G. Ziegler. (Abs.)	56
R. J. Bass and J. Donovan	375
- - L. Bates <i>et al.</i> (Abs.)	54 85
- E. Gierada and A. Tobola. (Abs.)	280
C. J. Lu. (Abs.)	277
J. P. Merle. (Abs.)	$\frac{86}{246}$
V. I. Tuzhilkin <i>et al.</i> (Abs.).	344
Reichard and T. L. Vidler	85
– – massecute Brix. P. J. Fernan- dez. (Abs.)	214
rheological properties. D. Schlienhake and K Aust.	
meyer. (Abs.)	, 187
R. D. Archibald and I. A. Smith	182
colour formation, V. Prey and H. Wesner (Abs.)	1 03
L. Wieninger and N. Kubadinow	55
and P. G. Wright. (Abs.)	372
- I S Gulvi et al. (Abs.)	$341 \\ 153$
- H. G. Köppen. (Abs.)	312
- R. J. Steindl et al. (Abs.) - classified crystal recycling. A. D.	84
Randolph and E. T. White	372
Gulyi et al. (Abs.)	376
foot and E. T. White. (Abs.).	84
Carrazana R. and A. P. Koziavkin	124
effect of juice liming. V. A.	190
effect of clarification with magnesium	120
- pineapple disease. S. K. Manzo	143
- steam pressure and massecuite temperature fluctuations. V. O.	
Shtangeev <i>et al.</i> (Abs.)	217
relative initial charge and masse-	159
- transfer. V. T. Garyazha and B. G.	100
isohydric conditions. I. G. Bazhal	152
et al. (Abs.) losses, effect of pH and temperature.	122
S. A. Brenman et al. (Abs.)	249
Batterham. (Abs.).	85
hard et al. (Abs.)	341
Valter. (Abs.)	343
- – increase by air/steam injection.	214
V. T. Garvazha <i>et al.</i> (Abs.)	185
and J. E. A. Rich. (Abs.)	87
Player. (Abs.)	84
- layer thickness and flow rate measurement. B. G. Didushko	
and V. T. Garyazha. (Abs.)	313
tion. V. I. Tuzhilkin and L. M.	000
measurement. P. Metzing and	200
– surface-active additives. K. Číž	218
et al. (Abs.)	218 88
and raw sugar yield and colour.	900
- viscosity. G. Aleman. (Abs.)	150
- yield, effect of molasses raffinose	210
mathematical model. T. Díaz and	121
P. Friedman. (Abs.)	245 151
A. L. Webre. (Abs.)	374
nucleation. R. J. Batterham et al.	84
bodová. (Abs.)	27
parameters calculation. V. I. Pavelko and V. T. Garyazha. (Abs.)	313
- effect of circulation ratio. V. P.	159
(AUD./	4.117

Boiling:	
wicz and W. Lekawski. (Abs.).	186
refinery liquor colour removal. D. F.	125
seed preparation. E. Corona and J.	283
Castañeda. (Abs.) seeding, seed slurry purity. P. Mari-	277
muthu. (Abs.)	309
S. M. Konstantinov and N. N. Beznal'ko (Abs.)	376
syrup purity and molasses yield	978
temperature periodical alteration and	100
two-vs. three-massecuite system. H.	100
white sugar scheme. C. R. Sriramulu	20
see also Crystallization, Massecuite	508
Bolivia sugar exports. (Brev.)	269
Bone char: kiln in Colombia. (Brev.) refinery liquor colour removal. D. F.	286
Charles. (Abs.)	283
phate. C. C. Chou. (Abs.) sweetening-off. C. R. Brown and P.	314
Pommez. (Abs.)	283
- S. Z. Ivanov et al. (Abs.)	219
csts nationalization. (N.C.)98	, 226
Brazil: Abraham Lincoln sugar factory. Anon. (Abs.)	213
alcohol manufacture from cane juice and molasses. (Brev.)	191
bulk handling terminal. (Brev.)	$256 \\ 22$
cane agriculture. N. Coutinho. (Abs.)	208
- mill. (Brev.)	384
- research. G. M. Azzl. (N.B.) - varieties. A.I. Bassinello. (Abs.) 210.	$\frac{282}{368}$
trials. M. M. de Melo and J. A. C. M. de Souza. (Abs.)	270
fertilizer recommendations. J. O. Filho. (Abs.)	270
<ul> <li>trials. M. L. Marinho et al. (Abs.)</li> <li>new sugar factory. (Brev.)</li></ul>	$270 \\ 2, 63$
sugar exports	159
<ul> <li>industry, Anon. (N.B.).</li> <li>British Sugar Corporation Ltd.: factory</li> </ul>	58
expansion and modernization 23rd Technical Conference	354
Brix: automatic control in boiling. T.	200
P. J. Fernandez. (Abs.)	214
M. Webber. (Abs.)	84
and J. W. deCelis. (Abs.)	315 87
beet juice, measurement. M. Friml	104
cane juice, effect of burning.	124
- - deterioration after harvesting.	302
J. E. Irvine and B. L.	238
N. Ramamoorthy et al. (Abs.)	$\frac{146}{220}$
extraneous matter. S. el-N. A. Hemaida <i>et al.</i> (Abs.)	308
frost. J. D. Miller and G. J. Gascho. (Abs.)	220
measurement. A. L. Fors. (Abs.) mud separation by polyelec-	92
selection criterion. C. A.Richard	188
- molasses measurement. P. Mellet	$     \frac{145}{93} $
carbonatation juice, effect of mag-	125
effect on cane molasses viscosity. L.	342
Carrazana R. et al. (Abs.) - dextran reduction by enzyme. P.	251
Hidi and R. Staker. (Abs.) - sugar analysis by gas-liquid chrom-	85
atography. M. A. Godshall and E. J. Roberts. (Abs.)	283
<ul> <li>- solution viscosity, etc. D. E. Sinat-Radchenko and V. D.</li> </ul>	
Popov. (Abs.) massecuite and heat transfer in boil-	157
ing. V. T. Garyazha and B. G. Didushko. (Abs.)	152
Measurement. I. A. Prikhod'ko and K. V. Ukrainets. (Abs.)	220
- sugar factory products. A. Y. Zagorul'ko et al. (Abs.)	316
- temperature control. M. Randabel	251
meter. S. Bouček and V. Valter.	218
Khvalkovskij et al. (Abs.) 120,	246
see also Control, Chemical; Density	90
while invaporators	

	PAGE
Bulgaria: factory equipment. D. Babew	313
Bulk handling. N. A. Emel'yanov	375
N. M. Kichigin <i>et al.</i> (Abs.) sugar weigher, Anon. (Abs.)	375
see also Conveyors Bulk storage: migro organisms and	
sugar deterioration. M. T. Hern-	1210
andez and N. Herrera. (Abs.) sugar. E. Cardet <i>et al.</i> (Abs.)	22 245
- silo. A. Baudelocque. (Abs.)	25
- M. H. Caplin. (Abs.)	119
– Brazil. (Brev.)	64 256
Anon. (N.B.)	58
- Cuba. (Brev.).	64
- Taiwan, H. Y. Chen. (Abs.) very high pol sugar, Z. J. Kimmerling	$\frac{23}{182}$
white sugar conditioning. V. Maur-	7 949
Burma sugar industry. (Brev.)	32
- M. J. Kort. (N.B.)	309 58
see also individual by-products	
Coloine an take Lines Colonate the	
and Clarification	
Cameroun sugar industry finance from France	287
Canada: Sugar Industry Technologists	0.007
- production 1975. (Brev.)	, 235
Vancouver refinery. K. M. Foo Cane: age and juice clarification. P. M.	57
Fabregat and L. Gomez R. (Abs.)	86
Zillich. (Abs.).	302
- in Brazil. N. Coutinho. (Abs.).	208
J. A. G. C. Sousa. (Abs.) - consultancy firm in Barbados	$\frac{110}{159}$
- crop data utilization. A. B. Tucker	175
Fisher. (Abs.)	369
- on flat land. M. O. Isherwood.	80
- In Hawall. W. S. Robinson. (Abs.) - $-$ M. Uehara. (Abs.)	$\frac{369}{369}$
<ul> <li>for increased sugar yield. E. L. del Rosario, (Abs.)</li> </ul>	15
- in India. Anon. (Abs.)	,272
esan. (Abs.).	365
P. G. C. Brett. (Abs.)	301
- Manaysia, R. F. In. (Abs.)	176
- - C. Passos. (Abs.)	48
- Philippines. A. Balcells. (Abs.) - research in Argentina. Anon	$\frac{111}{51}$
- - Australia. Anon. (N.B.) C. R. Nalder. (Abs.)	58 78
Brazil. G. M. Azzi. (N.B.)	282
T. R. Srinivasan and Y. B.	901
- Taiwan, S. J. Yang. (Abs.).	367
- Reunion. Anon. (Abs.)	$\frac{365}{378}$
alpha-amylase activity. G. el-K. Saved et al. (Abs.)	157
analysis, disintegrator. J. P. Stup-	280
animal fodder. D. Fielding. (Abs.)	221
L. and E. Pérez A. (Abs.)	302
G. M. Azzi. (Abs.)	303
- in Brazil. Anon. (N.B.) - eye spot resistance. J. L. Dean	58
and J. D. Miller. (Abs.)	179
- for mosaic resistance. R. D.	170
R. D. Breaux and P. H. Dun-	110
- programme area requirement. R.	145
- programming calculator applica-	241
tion. J. D. Miller and N. I. James – in Réunion, Anon, (Abs.)	$\frac{112}{76}$
- selection. R. D. Breaux. (Abs.).	113
- in South Africa. Anon. (N.B)	59
G. D. Thompson. (Abs.)	15
- US. (Brev.)	364
<ul> <li>P. H. Dunckelman. (Abs.)</li> <li>P. H. Dunckelman and M. A.</li> </ul>	145
Blanchard. (Abs.) C. E. Freeman and R. L. Walker	207 114
- L. L. Lauden. (Abs.)	365
- for yellow wilt resistance. (Brev.)	364
and transport. J. R. Orsenigo.	179
cleaner. C. J. Daigle. (Abs.) clone enzyme and morphology vari-	151
ations. A. M. Frias de F. et al	367

	PAGE
Cane: crops effect on soil nutrients. H. J.	01
F. A. Fogliata. (Abs.)	79
Willis. (Abs.)	81
Agarwal.	109
processing. H. A. Naqvi and S. M.	
Alam. and juice acidity. J. C. P.	202
- harvesting. G. J. Gascho et al	$188 \\ 150$
<ul> <li>- R. G. Hoekstra. (Abs.)</li> <li>- J. E. Irvine and B. L. Legendre</li> </ul>	$151 \\ 146$
<ul> <li>G. el-K. Sayed et al. (Abs.)</li> <li>T. R. Srinivasan et al. (Abs.).</li> </ul>	157 210
C. R. Toca. (Abs.)	119
Blake.	131
reduction. Anon. (Abs.)	110
drying-off. J. E. Lonsdale. (Abs.)	174
D. Gross and J. Coombs	69
draught fan wear, Y. H. Kuo	277
D. P. Viator, (Abs.)	146
F. and M. A. Vázquez G	253
mechanical harvesting. J. E.	140
- as fuel. J. C. Hudson. (Abs.).	208
et al. (Abs.)	308
mill feeding. A. Vigil. (Abs.).	53
gendre and J. E. Irvine. (Abs.)	183
A. L. Fors. (Abs.)	, 220
field measurement. E. M. Pointing	333
- induction. P. G. C. Brett et al 175,	,239, $302$
Blanchard. (Abs.)	178
E. D. Panatseas. (Abs.)	$, 145 \\ 272$
- and quality. F. A. Fognata and D. M. Morin. (Abs.)	303
Downs. (Abs.)	78
- simulation by computer. T. A.	1/0
harvesting data processing. R. F.	142
- effect of burning. Anon. (Abs.)	77
- with water. A. S. Hall. (Abs.).	368
- K. Kar et al. (Abs.)	111
- with beet. J. S. Garg and M. P.	911
- - P. P. Singh. (Abs.)	15
- cotton. N. P. Wankhede and K. S. Parashar (Abs)	438
- potatoes, effect of blight control.	206
- wheat. B. S. Mathur. (Abs.)	272
leaf analysis. J. O. Filho and H. de	500
- J. H. Meyer. (Abs.)	239
Filho et al. (Abs.)	205
J. O. Filho and H. de Campos - desiccant application J. W	16
Beardsley. (Abs.)	179
Irvine. (Abs.)	113
<ul> <li>herbicide and ripener retention.</li> <li>H. W. Hilton et al. (Abs.)</li> </ul>	81
- nitrogen determination. V. C. Bittencourt et al. (Abs.)	318
- phosphorus and potassium con- tents. R. Brunet and S. P.	20.0
- sheaths and axillary bud germina-	238
- zinc critical content. G. D. Thomp-	15
lodging effect on quality. F. A.	19
mutation by irradiation. Anon. (Abs.)	239
A. L. Fors. (Abs.).	49
- in Australia. C. L. Toohey. (Abs.)	17
- single vs. double drills. R. C.	
- skip method. J. W. Beardsley.	145
- in US, spring vs. autumn. H. P. Fanguy and G. T. A. Benda.	77

	PAGE
Cane: preparation. G. N. Nurick. (Abs.) quality, effect of bagasse mulching.	214
J. C. P. Chen and R. W. Picou - burning. S. el-N. A. Hemaida	150
et al. (Abs.)	302
reception. H. T. E. Smith. (Abs.).	$147 \\ 79$
and H. E. Childs. (Abs.)	340
- and sampling. R. L. Muller (Abs)	340 54
computer application. D. B. Batstone. (Abs.)	119
replanting. F. Y. Hsai. (Abs.) ripening with chemicals. Anon. 206, 24	76 0,366
J. J. Chen and J. C. P. Chen D. Eastwood. (Abs.)	177 111
A. L. Fors. (Abs.)	$\begin{array}{c} 49\\144\end{array}$
L. L. Lauden. (Abs.)11	4, 176
L. G. Nickell and D. T. Taka- hashi. (Abs.) 79. 8	1, 176
J. R. Orsenigo and S. L. Hooks L. Oudman. (Abs.)	144 369
K. C. Rao <i>et al.</i> (Abs.)27 H. Rostron. (Abs.)	$3, 331 \\ 174$
- - G. Singh <i>et al.</i> L. G. Vallance. (Abs.)	$295 \\ 241$
residues. H. W. Hilton et al effect of age. H. Muñiz et al. (Abs.)	$\frac{81}{16}$
Usher. (Abs.)	209
L. E. Golden, (Abs.)	145
Seip. (Abs.) - E. R. de Oliveira et al. (Abs.)	188     16
- J. J. Seip and F. L. Gayle. (Abs.) - and analysis. H. S. Birkett and	150
J. J. Seip. (Abs.)	$\frac{220}{347}$
Lauden. (Abs.)	238
I. Yonemitsu. (Abs.)	81 81
- material. M. Lakshmikantham sett germination, effect of chemicals.	176
D. Eastwood. (Abs.) growth regulators. P. R. C.	111
Castro <i>et al.</i> (Abs.) pre-treatment. J. R. Kakde	110
- $        -$	16 17
<ul> <li>spacing and fertilizer requirements.</li> <li>E. A. Panjagua U (Abs)</li> </ul>	10
specific heat. T. B. Dale. (Abs.) standover, I. J. Stewart. (Abs.)	220 47
starch components and iodine com- plex spectra. E. Whayman and	
A. L. Willersdorf - isolation and iodine affinity. J. C.	67
steam treatment and colour formation	44
sugar content correlation with stool	259
Henderson, (Abs.)	145
temperature. K. Venugopal and T. P. Palaniappan.	144
<ul> <li>differentiation from beet sugar. J. Bricout and J. C. Fontes. (Abs.)</li> </ul>	28
- yield and pol. E. Rodriguez C. et al. (Abs.)	118
tops as animal fodder. S. C. Mai and T. H. Wu. (Abs.)	213
tramp iron removal. (T.N.). utilization as fuel. R. W. Graham	61 62
yield correlation with sugar content and c.c.s. B. K. Sahi and K. A.	51
Patel. (Abs.) - effect of contouring. J. D. Veur-	300
man. (Abs.). cultivations. R. J. Matherne.	77 179
environmental factors. J. A. Mariotti et al. (Abs.)	366
H. H. Hagihara. (Abs.)	80
K. Sareen. (Abs.)	368
inter-row spacing. Anon. (Abs.) R. J. Matherne. (Abs.) 114 145	206
B. T. Roach. (Abs.)	335
B. K. Mathur. (Abs.) leaf canopy. R. P. Humbert	239 208
<ul> <li>- pesticide. R. S. Kanwar. (Abs.)</li> <li>- soil erosion. J. D. Veurman</li> </ul>	272 48
salinity reduction. W. T. Su K. W. Yao. (Abs.)	112 112
water table. C. E. Carter and	179
stalk height and number. J. A.	177
manothand I. A. Turowski.	366

	PAGE
Cane:	
et al. (Abs.)	366
- and quality, effect of age and	
J. M. Gosnell. (Abs.)	175
drying-off. J. M. Gosnell and J. E. Lonsdale	7
moisture stress. M. V. Rao	
see also Animal fodder; By-products;	300
Diffusers; Diffusion; Diseases; Fac- tory: Fertilizers, Irrigation; Juige;	
Mechanization; Molasses; Payment;	
Wax and Weather	
Carbon, Active: colour adsorption.	
granular vs. powdered for refinery	57
C. J. Bernard, (Abs.)	910
manufacture from bagasse. G.	100
- clarification mud. R. Cetina et al.	221
<ul> <li>paddy husk. B. G. Krishnamurti multiple elution. J. Dobrzycki</li> </ul>	315
refinery liquor colour removal. D. F.	200
M. R. Irimia. (Abs.)	283 123
regeneration kiln. Y. O. Kravets <i>et al.</i> selection, A. Y. Hyndshaw, (Abs.)	123
sugar recovery improvement in boil-	07
sweetening-off control. C. R. Brown	80
and P. Pommez, (Abs.) see also Refining	283
Carbonatation. T. Caldemaisous. (Abs.)	187
A. P. Lapin et al. (Abs.)	216
A. S. Okolot and M. S. Kozlo. (Abs.) H. Schiweck. (Abs.)	88
T. Y. Shalimova et al. (Abs.)	185
K. D. Zhura and S. P. Olyanskaya	$\frac{248}{152}$
inow and W. Hampel, (Abs.)	. 220
automatic control. J. F. T. Oldfield	, 220
colorants adsorption. S. Z. Ivanov	87
$et \ al. \ (Abs.) \dots 26. 246.$	376
compared with sulphitation for white	010
et al. (Abs.)	117
effect of starch. J. B. Alexander and	309
M. Matic. (Abs.)	314
dorf	99
juice additive and mud coagulation.	210
- colour formation, effect of oxygen.	248
H. Schiweck. (Abs.)	246
pectin. S. P. Olyanskaya et al.	24
- and mud analysis. G. Pollach	284
pre-carbonatation mud removal.	105
- optimum alkalinity and evapora-	100
Reva. (Abs.)	152
- pH and silicon content. P. De- villers et al. (Abs)	977
lime consumption and distribution	101
liming. V. A. Golybin and S. Z.	121
- with air injection for colour re-	120
duction. E. Reinefeld. (Abs.).	120
rock et al. (Abs.)	56
<ul> <li>– J. Studnický et al. (Abs.)</li></ul>	342 312
mud addition to flume water. K.	010
soil. J. C. Remy et al. (Abs.)	218
- $        -$	211 216
- filtration, effect of dextran. J.F.T.	26
- recirculation calculation. J. Cepe-	20
- rheological properties. Z. Kem-	247
phosphate addition. Anon. (Abs.)	28 150
refinery liquor. I. Galbán. (Abs.).	314
Zagorul'ko. (Abs.)	219
J. F. Murray and F. M. Runggas T. Yamane and H. Asai. (Abs.)	$219 \\ 154$
<ul> <li>– regenerated lime application. S.</li> <li>Omori. (Abs.)</li> </ul>	154
vs. sulphitation. L. D. Bobrov-	150
saccharinic acids formation. L. Skála	102
and M. Friml. (Abs.)	220 342
- scale. A. T. Bogorosh et al. (Abs.)	247
Caroni Ltd. nationalization bid. (Brev.)	255
Mercier. (Abs.)	378

	PAGE
Centrifugals:	
L. Gandia. (Abs.)	$150 \\ 150$
- western States. A. O. Maylott and J. W. deCelis. (Abs.)	315
- blade-type. V. Oplt and J. Přidal - massecuite feed control. G. M.	$\frac{213}{312}$
Chudakov et al. (Abs.) - BMA balancing. D. Macey. (Abs.) - capacity increase M A J	$\begin{array}{c} 376\\ 341 \end{array}$
McEvoy and R. D. Archibald water addition. I. N. Akindinov	182
et al. (Abs.) – feeder height_and molasses separ-	217
ation. V. F. Kolomiets <i>et al</i> - FVI1-106.1N-1. G. M. Chudakov	248
- high-speed photography applica-	945
<ul> <li>massecuite layer thickness and crystal residence time estimation.</li> </ul>	210
- performance. L. K. Kirby and P. G. Atherton, (Abs.)	213
- screens. Anon. (Abs.) - sugar crystal movement. R. J.	312
Swindells and E. T. White. (Abs.) - throughput, effect of screen perfor-	85
ations. D. Haeckel. (Abs.) filter cake dewatering. A. B. Ravnö	53
molasses exhaustion. A. L. Webre	374
- from Mexico. (Brev.) push-type plus cane milling. M.	159
Sterzinger and J. Zdarsky323 wash water feed costs. T. Cronewitz	, 361
et al. (Abs.). Centrifuge: beet juice fine pulp removal.	342
clarifier mud treatment, Anon. (Abs.)	278
way. (Abs.). P. N. Stewart et al. (Abs.)85	$, \frac{86}{373}$
floc formation prevention. E. J. Roberts <i>et al.</i>	326
G. el-K. Sayed <i>et al.</i> (Abs.) Chains. (T.N.).	$   \begin{array}{r}     150 \\     286   \end{array} $
L. de Jahn. (Abs.) R. W. Ebly. (Abs.)	$214 \\ 86$
C. G. Wildsmith. (Abs.) Chile: joint beet sugar technologists	182
sugar imports. (Stat.)	96 46
- statistics. (Stat.) China: sugar statistics. (Brev.)	351 46
trade agreement with Guyana	$^{63}_{1, 287}$
Chromatography, Column: saccharinic acids separation. L. Skála and M.	990
Chromatography, Gas-liquid. M. Kiely and M. O'Sulliyan, (Abs.)	317
acids determination in beet juice. E. Reinefeld et al. (Abs.)	250
and molasses. E. Reinefeld et al. (Abs.)	, 157
glucaric acid determination. V. Prey et al. (Abs.)	250
dinow. (Abs.)	284
E. J. Roberts. (Abs.) – determination in beet juices. G. W.	283
Maag and G. H. Sisler. (Abs.) cane. Anon. (Abs.)	250 365
Steffen filtrate. J. Karr and L. W. Norman. (Abs.)	125
sugars determination. S. E. Kharin et al. (Abs.)	125
<ul> <li>– D. Nurok and T. J. Reardon</li> <li>– in molasses. A. Borys and S. J.</li> </ul>	189
Kubacki. (Abs.). Chromatography, Gel: colorants separ-	157
sugars separation. J. C. Linden Chromatography. Liquid: molasses	28
sugar extraction. M. Munir Chromatography, Paper: juice, molasses and syrup analysis. M. Kiely and	100
M. O'Sullivan. (Abs.). organic acids determination. G. P.	317
chenko. (Abs.)	156
Skála and M. Friml. (Abs.) Chromatography, Thin-layer: lactic	220
acid determination. M. Kiely and M. O'Sullivan. (Abs.)	317
A. Z. Usmentseva <i>et al.</i> (Abs.). 93 saccharinic acids separation. L.	, 347
Skála and M. Friml. (Abs.) sugars determination. S. A. Hansen	220 157
- separation. 1. 1. Gavrilyuk. (Abs.) - M. Hoton-Dorge. (Abs.) Citric acid: effect on best juice pH	188 348
Teschner and R. Krämer. (Abs.) factory in Greece. (Brev.)	279 352

1	PAGE
Citric acid: manufacture from cane juice, effect	
of methanol and groundnut oil.	13
- molasses. H. S. Dhankhar et al	253
L. Vanossi. (Abs.)	126
solution pH, effect of calcium. F.	99
Clarification. G. J. Labat. (Abs.)	151
F. G. Carpenter and M. A. Clarke	123
cane juice liming. A. L. Webre	118
ation. R. W. Kuhlmann et al.	53
Viscosity. G. Aleman. (Abs.) effect of cane age, fertilization and	190
Gomez R. (Abs.)	86
damage by frost. J. C. P. Chen and J. J. J. Chen. (Abs.)	53
- on raw sugar colour. N. L. C. Suzor	309
L. Rosenberg et al.	263
with flocculation aid. (T.N.)	$\frac{309}{286}$
Anon. (Abs.) M. C. Bennett. (Abs.)	$\frac{213}{315}$
- - K. M. Bhardwaj et al. (Abs.). A. C. Chatterjee et al. (Abs.).	$340 \\ 309$
J. C. P. Chen. (Abs.) J. A. Duenas. (Abs.)	$\frac{214}{314}$
<ul> <li>– S. Morales and P. M. Flores.</li> <li>– V. Morris. (Abs.)</li> </ul>	$\frac{23}{118}$
<ul> <li>J. P. Murray and G. S.Shephard.</li> <li>(Abs.), 182</li> </ul>	340
<ul> <li>E. Whayman and O. L. Crees.</li> <li>effect of calcium chloride ad-</li> </ul>	245
dition. J. McFarlane. (Abs.) – – juice:flocculant ratio control.	118
D. J. Hale and B. Partridge inclined surface effect. G. A. Brother-	372
ton. (Abs.) with magnesium oxide. J. J. Zwaar-	373
demaker. (Abs.) mud activated carbon manufacture.	118
R. Cetina et al. (Abs.) – filtration. J. J. Seip and F. L.	221
Gayle. (Abs.)	150
Chen and R. W. Picou. (Abs.) – level automatic control. R. L.	119
Muller. (Abs.)	$\frac{372}{308}$
- pumps. D. R. Paddock and P. B. Quinan, (Abs.)	84
- sweetening-off. (T.N.) - treatment by centrifuge. Anon.	$\frac{286}{22}$
S. C. Grimley and R. A. All- away. (Abs.)	86
P. N. Stewart et al. (Abs.) 85 with flocculation aid. V. M.	, 373
Jesic. (Abs.) phosphate addition. P. L. Apte and	378
B. R. Math. (Abs.)	213 96
- - (T.N.)	286 283
see also Clariflers and Juice, Cane Clariflers. (T.N.)	286
Eis Rapid. (Brev.) in Europe. L. Rosenberg et al.	$\frac{127}{263}$
see also Clarification Colombia: bone char kiln. (Brev.)	286
cane damage by flooding. (Brev.) new sugar factories. (Brev.)	$\begin{array}{r} 64 \\ 256 \end{array}$
sugar exports 1975. (Brev.) Colour: beet juice, effect of air injection	191
in liming. E. Reinefeld. (Abs.) – – – diffusion water electrolysis.	120
A. Y. Romanyuk <i>et al</i> fine pulp removal. H. Schi-	281
weck. (Abs.) liming. V. A. Golybin and	278
S. Z. Ivanov. (Abs.) pectin. S. P. Olyanskaya et al.	$\frac{120}{24}$
<ul> <li>– and sugar, effect of diffusion water treatment. P. T.</li> </ul>	
Dunaev et al. (Abs.) – molasses, effect on citric acid	279
manufacture. J. Kovats and Z. Niestrawski. (Abs.)	285
cane molasses exhaustibility corre- lation. M. A. Mohamed et al. (Abs.)	318
carbonatation juice, effect of mag- nesium oxide. J. Studnický et al.	342
colorants adsorption by calcium carbonate. S. Z. Ivanov et al	376
K. Vukov. (Abs.)26, 246 - in beet molasses. V. Prey and H.	, 316
Andres. (Abs.)	346
- cane juice, raw and refined sugar.	252
F. G. Carpenter and M. A. Clarke – formation in refining. F. G. Car-	123
penter and E. J. Roberts. (Abs.) – molasses properties. V. N. Shvets	251
et al. (Abs.)	317
V. Prey and H. Andres. (Abs.)	318

Colour:	
removal. A. Y. Zagorul'ko and	910
- in sugar, effect of membrane filter	250
formation in beet and cane juices,	200
J. Coombs	106
effect of flocculation aid. V. Prev et al. (Abs.) 55	90
saccharate treatment. J. Degeest et al. (Abs.)	55
<ul> <li>- thick juice and molasses. L.</li> <li>Wigninger and N. Kubadinow 55.</li> </ul>	217
<ul> <li>boiling. V. Prey and H. Wesner91</li> <li>- effect of circulation ratio. V. P.</li> </ul>	, 93
Troino et al. (Abs.)	153
feed rate. I. S. Gulyi <i>et al.</i> reduction by air/steam injection.	153
V. T. Garyazha et al. (Abs.) - cane juice and raw sugar, effect of	185
cane steam treatment. W. H. Smith	259
<ul> <li>– carbonatation. J. Buriánek et al.</li> <li>– N. Kubadinow and W. Hampel</li> </ul>	248 60
N. D. Tantsyura and Y. A. Kaufman. (Abs.)	248
<ul> <li>– effect of oxygen. H. Schiweck 26,</li> <li>– from degraded dextrose. S. Fujii</li> </ul>	246
et al. (Abs.) – in evaporation. K. N. Paul. (Abs.)	$\frac{123}{308}$
<ul> <li>– effect of beet juice optimum alkalinity. M. K. Likhitskii</li> </ul>	
and L. P. Reva. (Abs.) reduction. B. I. Kats. (Abs.)	$\frac{152}{24}$
<ul> <li>by Maillard reaction. E. Reinefeld et al. (Abs.)</li></ul>	379
effect of ammonia. P. Devillers et al. (Abs.)	24
- and prevention. A. R. Sapronov et al. (Abs.)	60
- in stored beet thick juice. T. P. Khvalkovskii et al. (Abs.)	88
raw sugar, prevention. L. Bob- rovnik et al. (Abs.)	245
- in thick juice, effect of sodium sul- phite. L. I. Ryazantseva and	
gur. B. Singh et al. (Abs.)	278 92
Silverio R. (Abs.).	125
- cane molasses. L. Carrazana R. and I. Machado L. (Abs.)	125
- sugar and syrup. R. Lees. (N.B.) - white sugar. J. C. P. Chen. (Abs.)	282 318
ing resin, effect of pH. G. A.	07
molasses, effect on electrodialysis. J.	27
raw sugar, effect of clarification and	919
Suzor. (Abs.)	309
and properties. J. C. Williams.	91
ation. I. F. Bugaenko. (Abs.). removal with active carbon. R.	93
Cetina et al. (Abs.)	221
Selemenev. (Abs.)	57 219
A. Y. Hyndshaw. (Abs.) B. G. Krishnamurti. (Abs.)	57 315
- adsorbent resin. D. Hervé. (Abs.) M. Y. Mazov et al. (Abs.).	56 315
J. J. Ungar and R. Lumbroso T. Yamane and H. Asai, (Abs.)	215 154
– – – and multiple elution. J. Dobrzycki	139
<ul> <li>– – regeneration. K. Číž and V. Čejková. (Abs.)</li> </ul>	57
waste water. F. Onda <i>et al.</i> - agent. (T.N.)	$154 \\ 286$
<ul> <li>with bone char, effect of phosphate.</li> <li>C. C. Chou. (Abs.)</li> </ul>	314
<ul> <li>by carbonatation. L. D. Bobrovnik and L. P. Kotel'nikova. (Abs.)</li> </ul>	152
<ul> <li>– I. Galbán. (Abs.)</li> <li>– K. D. Zhura and S. P. Olyan-</li> </ul>	314
skaya. (Abs.) – refinery liquor. (T.N.)	$152 \\ 286$
D. F. Charles. (Abs.) - syrup, losses. S. A. Brenman et al.	283 249
kovskii et al. (Abs.).	120
resin and bone char. S. Z. Ivanov	010
white sugar, reduction by factory	219
see also Bone char; Carbon, Active	308
Commission Internationale Technique	
Proceedings. Anon. (N.B.)	155
Computers: applications. D. B. Bat-	110
<ul> <li>boiling. R. J. Bass and J. Donovan</li> <li>J. Buriánek and M. Kmínek.</li> </ul>	375 311

PAGE

	PAGE
Computers: applications in boiling J. A. Frew and P. G. Wright. (Abs.)	372
I. S. Gulyi et al. (Abs.)	$376 \\ 372$
V. I. Tuzhilkin and L. M. Bochko	280
- J. Uherek and V. Valter. (Abs.) V. P. Zubchenko <i>et al.</i> (Abs.).	$\frac{343}{153}$
- refining. Anon	235
cesses and accounting. S. C. Grim-	90
bagasse hydrolysis evaluation. H.	00
beet analysis. W. Kernchen. (Abs.)	316
- diffusion loss calculation. P. W. van der Poel. (Abs.)	56
cane data processing. R. M. Hebert	$\frac{347}{214}$
R. F. Sutherland. (Abs.)	54
et al. (Abs.)	22
Maclean and D. B. Batstone.	340
Muller. (Abs.)	54
- train running simulation. E. E. Shepherd. (Abs.)	51
calculation. R. J. Swindells and	
E. T. White, (Abs.) factory data processing. A. Kubasie-	85
wicz and W. Lekawski. (Abs.) and accounting. U. Bauern-	186
feind. (Abs.)	$\frac{25}{213}$
- equipment design and construction.	312
- refinery and distillery process	
Fernandes. (Abs.)	190
calculation. A. L. Antonovich and	949
polarimeter error evaluation. R. S.	240
power house automatic control. R. A.	040
rainfall probabilities calculation. G.	340
refinery melt house control. A. O.	334
Maylott and J. W. deCells. (Abs.) simulation of bagasse boiler. J. M.	315
- cane growth. T. A. Bull and D. A.	85
Tovey. (Abs.) steam utilization optimization. A.	142
Kubasiewicz <i>et al.</i> (Abs.) system for sugar brokers. (Brev.)	$122 \\ 194$
G. Aleman et al. (Abs.)	286
G. Windal. (Abs.)	186 279
bag counting and level. K. A. Ne- krasov, (Abs.)	90
boiling. Anon. (Abs.)	$\frac{312}{375}$
- L. Bates et al. (Abs.)	54 85
- E. Gierada and A. Tobola. (Abs.)	280
- H. Kemter. (Abs.)	277
- J. P. Merle. (Abs.)	86 246
- V. I. Tuzhilkin et al. (Abs.)	344
- conductivity electrode. S. R.	
- massecuite rheological properties	85
and K. Austmeyer. (Abs.)5	5, 187
<ul> <li>mathematical model. T. Díaz and P. Friedman. (Abs.)</li> </ul>	245
- pan vapour line valves. E. Batule	308
cane carrier speed. A. J. Hussey	118
- reception. R. E. Bickle and H. E. Childs. (Abs.)	340
G. D. Maclean and D. B. Bat- stone. (Abs.)	340
and sampling. R. L. Muller carbonatation. J. F. T. Oldfield <i>et al.</i>	54 87
centrifugals. A. L. Ballard and L. Gandia. (Abs.)	150
- A. L. Ballard <i>et al.</i> (Abs.)	150
et al. (Abs.)	376
D. J. Hale and B. Partridge. (Abs.)	372
- man level. R. L. Muller. (Abs.) condenser. V. N. Gorokh <i>et al.</i> (Abs.)	89 89
evaporation. C. D. Clarke and M.	313
- R. Wasmund. (Abs.)	$\frac{84}{343}$
factory central control room. N. A. Nielsen and B. McEachran. (Abs.)	54
filter mud suspension level. V. I. Osokin and A. I. Yamshanov	121
filter-thickeners. K. Andersen. (Abs.) final actuators. P. J. Pietila. (Abs.)	215 372
Iran sugar factory. (Brev.)	63

	PAGE
Control, Automatic: milk-of-lime feed. M. P. Klenal'-	
chenko. (Abs.)	311
Vil'shanskii <i>et al.</i> (Abs.) power house. R. A. Allaway and	378
C. R. Graves. (Abs.) raw sugar pol. J. H. King. (Abs.)	340 92
refinery melt house processes. A. O. Maylott and J. W. deCelis. (Abs.)	315
- melter Brix and temperature. Anon. (Abs.)	25
- processes. Anon self-synchronizing motors. R. C.	235
Sharma. (Abs.) syrup Brix and temperature. S.	245
Bouček and V. Valter. (Abs.) see also Computers and Instruments	87
beet analysis. J. Hobbis and L.	125
Batterman. (Abs.) - brei clarification with aluminium	92
- – freezing, storage and prepara-	346
sugar determination. I. A.	124
- juice purity determination. M.	100
and sugar yield prediction.	124
- processing quality evaluation. M.	247
- sampling and analysis. Anon	215
A. E. Popov and S. K. Mez-	124
- tarehouse laboratory. W. Kern-	316
boiling house balance establishment.	343
cane analysis disintegrator. J. P. Stuniello <i>et al.</i> (Abs)	380
<ul> <li>juice sampling. L. Kelso and S. Beichard, (Abs.)</li> </ul>	340
<ul> <li>milling performance calculation.</li> <li>G. Arceneaux, (Abs.)</li> </ul>	86
<ul> <li>moisture and fibre determination.</li> <li>A. L. Fors. (Abs.)</li></ul>	. 220
<ul> <li>molasses purity determination.</li> <li>J. P. Stupiello et al. (Abs.)</li> </ul>	125
<ul> <li>sampling. H. S. Birkett and J. J. Seip. (Abs.)</li> </ul>	188
<ul> <li>– R. L. Muller. (Abs.)</li> <li>– J. J. Seip and F. L. Gayle. (Abs.)</li> </ul>	$54 \\ 150$
<ul> <li>J. C. Skinner</li> <li>– and analysis. H. S. Birkett and</li> </ul>	227
J. J. Seip. (Abs.) R. M. Hebert. (Abs.)	$\frac{220}{347}$
computer application. D. B. Batstone. (Abs.)	119
- sugar yield calculation. B. L. Legendre and M. T. Henderson	119
et al. (Abs.).	23
Anon. (N.B.)	59
M. Friml and J. Pucherna. (Abs.)	27
tion. M. Friml and S. Pochylá	$247 \\ 151$
	180
- - M. A. Mohamed <i>et al.</i> (Abs.)	318
A. L. Webre. (Abs.)	374
I. A. Prikhod'ko and K. V. Ukrainets. (Abs.)	220
<ul> <li>sugar determination. E. C. Vignes</li> <li>yield and sugar content calculation.</li> </ul>	220
A. L. Antonovich and V. S. Petrik. (Abs.)	248
parameters calculation. M. Friml purity determination. J. Ponant and	378
G. Windal. (Abs.) G. Windal. (Abs.)	$375 \\ 375$
raw sugar quality evaluation. F. H. C. Kelly	199
sugar and molasses balance calcula-	314
Lekawski. (Abs.)	186
- yield and pol calculation. E. Rodríguez C. et al. (Abs.)	118
Invert sugar; Losses; Polarization;	
Water and Weighing	075
bagasse. A. I. Guidry. (Abs.).	375
beet elevator operation, effect of extraneous matter O Böhm	0/0 184
- pulp, limestone and sugar. N. M. Kichigin <i>et al.</i> (Abs.)	375
cane. (T.N.) chains, L. de Jahn. (Abs.)	350
<ul> <li>- R. W. Ebly. (Abs.).</li> <li>- C. G. Wildsmith. (Abs.).</li> </ul>	86 182
- pin corrosion. J. H. Shuler et al. magnetic separators. (T.N.).	119 62
stored beet bucket wheel. M. Barre	280

	PAGE
Conveyors: white sugar, pneumatic. T. K.	
Vasil'eva, (Abs.). – – – T. K. Vasil'eva et al. (Abs.)	$376 \\ 376$
A. F. Zaborsin and T. K. Vasil'eva. (Abs.)	344
Coolers: fluidized bed. L. Neužil and	010
L. A. Orlov and N. A. Buzykin Corrosion: conveyor chain pins. R. W.	$\frac{218}{281}$
Ebly (Abs.). J. H. Shuler <i>et al.</i> (Abs.).	$\begin{array}{r} 86 \\ 119 \end{array}$
and G. A. Preis. (Abs.)	285
effect of ammonia. P. Devillers et al. evaporator tubes. E. P. Díaz G. et al.	24 22
G. Vernois. (Abs.)	279
reduction. P. Devillers et al	$120^{-50}$
illery waste. Anon. (Abs.)	222
H. J. Heppner. (Abs.)	218
- E. Kolmerer. (Abs.)	312
et al. (Abs)	$\frac{310}{153}$
Costa Rica: Puerto Rico sugar factory re-erection. (Brey.)	288
sugar industry. A. Viton. (Abs.) Crystallization Massecuite G Aleman	119
J. Genotelle. (Abs.)	90 5 218
- H. Reyes L. (Abs.)	23
crystallizer comparison. J. N. Ness	373
in fluidized bed. E. E. Shumskaya	184
molasses exhaustion. G. F. Fundora	151
- A. Y. Zagorul'ko <i>et al.</i> (Abs.).	278
Crystallization, Sucrose. V. M. Kharin	317
convective mass transfer. V. M. Kharin and A. L. Zharkoy. (Abs.)	251
effect of crystal size. I. G. Bazhal et al. (Abs.)	251
- dextran. G. Mantovani <i>et al.</i> (Abs.) 9 - dextrin. A. I. Byval'tsev and	1, 346
A. V. Zubchenko. (Abs.) - temperature change frequency.	250
rate determination. J. Malczewski 249	135 316
cooling element. P. F. Triviz. (Abs.)	119
Gromkovskii <i>et al.</i> (Abs.) Cuba: bulk handling terminals. (Brev.)	89 64
cane mechanical harvesting and irri- gation. (Brev.)	191
herbicide order. (Brev.) soils and fertilizer research. J. Alomá	159
and I. Cuellar. (Abs.) sugar expansion. (Brev.)	208 63
<ul> <li>exports. (Stat.)</li> <li>industry aid from USSR. (Brev.)</li> </ul>	$254 \\ 127$
- production. (N.C.)	$161 \\ 255$
<ul> <li>technical cooperation agreement with Philippines. (Brev.)</li> </ul>	63
- trade agreement with Japan weather and cane harvest 1976	$255 \\ 224$
Cube sugar, see Tablet sugar Czechoslovakia: beet varietal trials. L.	049
= - L. Schmidt <i>et al.</i> (Abs.)5	2,305
D	
Denmark: sugar production 1975/76. 16 see also Europe, EEC	0, 384
Density: sucrose solution calculation. D. E. Sinat-Radchenko and V. D.	100
effect of potassium chloride.	107
see also Brix	910
of deterioration. G. J. Gascho et al.	150
Gascho. (Abs.)	220
D. H. Foster. (Abs.) - processing difficulties. W. D.	333
Wells and G. P. James. (Abs.) determination in beet juice. A. Borys	$374 \\ 284$
enect on cane molasses viscosity. L. Carrazana R. et al. (Abs.)	251
- carbonaution mud mitration. J. F. T. Oldfield <i>et al.</i> (Abs.)	26
tovani et al. (Abs.)	, 346
and P. A. Inkerman. (Abs.) – P. Hidi and R. Staker. (Abs.).	379 85

P. Hidi and R. Staker. (Abs.).
 Solution - P. A. Inkerman and G. P. James
 Bextrin effect on sucrose nucleation.
 A. I. Byval'tsev and A. V. Zubchenko. (Abs.).

	PAGE
Dextrose: adsorption by ion exchange resin. S. Fujii et al. (Abs.) alkaline decomposition products col-	123
Andres. (Abs.)	318
ers et al. (Abs.)	249 382
contentin cane, effect of deterioration after harvesting. G. el-K. Sayed	157
decomposition, effect of pH and temperature. A. R. Sapronov and	107
determination. J. Sagel. (Abs.)	317
- J. P. Sullivan <i>et al.</i> (Abs.) - in beet juice. E. Reinefeld <i>et al.</i>	$317 \\ 380$
polarization. G. W. Maag and	
G. H. Sisier. (Abs.) gluconic acid manufacture. L. Van-	200
hydration number. L. P. Zhmyrya	318
melt composition, effect of heat. W. Mauch and S. Asseily (Abs.)	249
ratio to ash as molasses exhaustibility criterion. A. L. Webre. (Abs.)	374
<ul> <li>levulose in cane, effect of burning.</li> <li>S. el-N. A. Hemaida et al. (Abs.)</li> </ul>	302
solubility, effect of sucrose. V. I. Buravleva et al. (Abs.)	316
see also Invert sugar; Reducing sugars and Sugars	
Diffusers, Beet: A1-PDS-20. A. S. Derzhavets et al. (Abs.)	87
et al. (Abs.)	310
et al. (Abs.).	25
DDS. A. F. Andersen. (Abs.)	56
A. S. Teshev <i>et al.</i> (Abs.)	247
and E. Ozer. (Abs.)	344 344
level measurement. M. E. Furer and V. R. Tsygura. (Abs.)	216
see also Diffusion, Beet Diffusers, Cane: BMA, Anon. (Abs.).	309
- H. J. Delavier. (Abs.) De Smet. L. Rivas L. (Abs.)	277 53
"Rotocel". R. H. Good. (Abs.) see also Diffusion, Cane.	23
Diffusion, Beet. G. V. Genie. 25, 248 BMA diffuser performance. E. Reine-	, 312
feld. (Abs.). calcium chloride addition and juice	120
pH. F. Teschner and R. Kramer condensate application. A. I. Shapiro	279 246
Genie. (Abs.)	343
A. H. Freytag and J. C. Linden.	218 87
heat and mass balances. Anon - parameters calculation. A. A.	312
Knyazev and V. N. Gorokh - transfer. A. Kubasiewicz and W.	216
– – A. Sokolowski and A. Lamprecht	25 186
juice draft optimization and loss. J. Blok and P. W. van der Poel 26, 248,	313
A. P. Parkhod'ko. (Abs.)	313
et al. (Abs.)	87 247
<ul> <li>– G. F. Tyazhelova. (Abs.)</li> <li>– effect of weather on invertase. I.</li> </ul>	313
Januszewicz et al. (Abs.) magnesium carbonate and phosphoric	306
acid addition. J. Buriánek et al. microbiological control. J. Herčík	278
and V. Dachovsky. (Abs.) F. X. Kammerer. (Abs.)	90 377
- - N. V. Kulinich <i>et al.</i> (Abs.)	216
micro-organisms determination. K. A.	910
P. W. van der Poel. (Abs.) scroll-type diffuser operation. G. I.	56
Staseev. (Abs.) simulation. N. Marignetti <i>et al.</i> 25	$313 \ 310$
skii et al. (Abs.)	89
ner and Z. Pochylý. (Abs.)	24 90
- pH effects. K. Číž et al. (Abs.) - treatment with aluminium sul-	217
P. T. Dunaev et al. (Abs.).	62 279
electrolysis. A. Y. Romanyuk	2/9
electromagnets. S. I. Tkachenko et al. (Abs.)	217
and formalin activity. F. Hollaus. (Abs.)	152
<ul> <li>- juice purity. S. Zagrodzki 26, 216,</li> <li>- pulp quantity. H. Zaorska26,</li> </ul>	246 218

	PAGE
Diffusion, Beet: water treatment and	
et al. (Abs.)	90
Diffusers, Beet; Factory and Losses	
Diffusion, Cane. M. Beauvisage. (Abs.) E. Cardet. (Abs.)	183 277
J. C. P. Chen. (Abs.)	53
S. Gurumurthy and M. S. Sivaswamy	118
BMA diffuser performances. H. J. Delavier. (Abs.)	277
compared with milling. R. Schaer	53
materials balance. J. Palaci. (Abs.)	309
formation. L. McMaster and A. B.	
Ravnö. (Abs.)182 see also Diffusers. Cane	, 214
Diseases, Beet. Anon. (Abs.)	338
black leg. Anon. (Abs.)	275
effect of herbicides. H. Bötger and C. Winner. (Abs.)	305
<ul> <li>root effect on yield, photographic estimation</li> <li>C. L. Schneider and</li> </ul>	
G. R. Safir. (Abs.)	181
- effect on beet storage and process-	62
ing quality. M. Martens. (Abs.)	83
cals. W. Hartley. (Abs.)	18
curly top vector release. D. L. Mum-	307
effect of rotation vs. monoculture.	115
N. A. Al'dekov and N. F. Kostin fungal disease control C. L. Schneider	212
fungicides. N. B. Davis. (Abs.)	304
leaf spot control. L. Lukács and J.	52
Zana. (Abs.)	211
Weighing. (Abs.)	20
d'Ambra et al. (Abs.)	181
Phoma betae in stored beet extrane-	, 337
ous matter. W. M. Bugbee. (Abs.)	82 52
control. F. J. Hills et al. (Abs.)	148
A. O. Paulus <i>et al.</i> (Abs.)	305 148
I. O. Skoyen et al. (Abs.)	116 18
root rot control. C. L. Schneider and	110
stalk blight in US. J. D. MacDonald	110
stored beet rot control. A. M. Elagin	337
et al. (Abs.) in US. C. L. Schneider and L. S.	311
Robertson. (Abs.)	19
W. R. Schäufele. (Abs.)	307
- - In Beigium. Anon. (Abs.) L. van Steyvoort. (Abs.)	149 149
control. Anon. (Abs.)337,	339
R. A. Dunning and G. H.	204
E. Seutin and L. van Stey-	304
voort. (Abs.) – – spread by beet tops as animal	306
fodder. G. H. Francis. (Abs.)	126
Rímsa et al. (Abs.)	52
yellow wilt. (Brev.)	149 364
<ul> <li>– C. Urbina-Vidal and H. Hirumi vellowing causes, E. Dalleinne, (Abs.)</li> </ul>	$\frac{180}{244}$
Diseases, Cane: bacterial sun spot. N.	149
basal stem and root rot. H. L. Boyle	47
chlorosis, effect of soil factors. U.S.	282
Singh and P. D. Bajpai. (Abs.) chlorotic streak spread. A. Matthews	48
control. (T.N.)	62
- in India. T. Somu et al. (Abs.).	301
- research in Australia. Anon. (Abs.) copper deficiency. Anon. (Abs.).	47 332
eye spot. C. McAleese. (Abs.)	270
and J. D. Miller. (Abs.)	179
susceptibility. G. A. Strobel	79
G. A. Strobel and K. D. Hapner, (Abs.)	77
G. A. Strobel and W. M. Hess	48
Fiji disease. B. T. Egan. (Abs.)	334
<ul> <li>– O. W. Sturgess. (Abs.)</li> <li>– control. B. T. Egan. (Abs.)</li> </ul>	367 78
vector hosts. R. Outridge and	370
fungal rot. Anon. (Abs.)	48
S. M. Yang. (Abs.)	145
fungicides and cane yield. J. P. Singh et al. (Abs.).	273
- cane sett germination. Anon	240
et al. (Abs.)	17

	PAGE
grassy shoot control. K. Kar. (Abs.)	206
virus alternative host. A. Jha	239
physical properties. A. Jha	114
in India. S. M. P. Khurana and S.	114
leaf freckle, effect of calcium silicate.	143
L. G. Vallance. (Abs.)47 - scald. G. J. Persley. (Abs.)47	111
G. J. Persley and C. C. Ryan	335
A. G. Gillaspie and H. Koike. (Abs.)	113
mosaic. H. Koike and A. G. Gillaspie – alternative host. R. D. Joshi and	272
U. P. Gupta. (Abs.)	370
Bhargava. (Abs.)	143
- effect of planting rate. R. J. Steib	309
and S. J. P. Chilton. (Abs.) – and maize dwarf-mosaic mixtures.	145
H. Koike. (Abs.) – ratoon stunting control. G. T. A.	145
Benda. (Abs.)	114
R. D. Breaux. (Abs.)	178
Dunckelman. (Abs.)	145
- shoot recovery. G. T. A. Benda - transmission. H. Koike and L. J.	145
- in US. H. Koike. (Abs.)	$\frac{113}{370}$
<ul> <li>varietal resistance testing. S.</li> <li>Matsucka and A. K. Dodson</li> </ul>	77
susceptibility. N. Rishi et al	137
orange freckle. W. A. Webb and N. Clarke. (Abs.)	78
pineapple disease. M. A. Hethering- ton. (Abs.)	47
S. K. Manzo. (Abs.)	143
- - C. Ricaud <i>et al.</i> (Abs.)	79
plant source compulsory inspection.	271
B. T. Egan. (Abs.) ratoon stunting and cane bacteria.	209
C. T. Chen <i>et al.</i> (Abs.)	143 113
- - control. Anon. (Abs.)	208
L. L. Lauden. (Abs.) 16	366
- hot water additive and tiller	200
diagnosis. C. Ricaud. (Abs.).	$\frac{144}{273}$
D. R. L. Steindl. (Abs.)332 D. S. Teakle <i>et al.</i> (Abs.)	, 334 50
indicator plant. G. D. Thompson and mosaic control. G. T. A.	15
Benda. (Abs.)	178
K. S. Derrick. (Abs.)	370
Worley. (Abs.)	178
A. G. Gillaspie et al. (Abs.) 176, resistance. D. S. Teakle et al.	144
screening. (Brev.) red rot. B. N. S. Tyagi and K. N.	224
Goyal. (Abs.).	272
control. S. M. Yang and F.	179
isolate pathogenicity. D. B.	110
pathogen, effect of freezing.	113
R. J. Steib. (Abs.) and smut pathogens, effect of	143
mosaic. L. N. Dubey and R. D. Joshi. (Abs.)	370
varietal resistance. L. N. Pandey	208
research in Australia. Anon. (N.B.)	58
- controlled-environment chambers. C. C. Ryan. (Abs.)	332
- Mauritius, Anon. (Abs.) - South Africa, Anon. (N.B.)	206 59
- Taiwan, Y. S. Pan, (Abs.)	367
root fungi. C. C. Chao and M. M. H.	000
- M. M. Wu et al. (Abs.)	336
- protection. J. F. Usher. (Abs.) sett heat treatment. M. L. Agarwal	209
and S. C. Gupta. (Abs.) smut. Anon. (Abs.)	$\frac{239}{303}$
- K. N. Goyal and R. N. S. Tyagi - I. A. Nasr. (Abs.)	$273 \\ 370$
- G. Thompson. (Abs.)	79 142
- in Guyana. G. Arceneaux. (Abs.)	176
- varietal resistance. S. Muthusamy	000
and S. Sithanantham. (Abs.) - $- K$ . J. Nuss. (Abs.)	$142 \\ 175$
S. S. Sandhu et al. (Abs.).	273
Simmonds	329
susceptibility. S. Muthusamy et al.	207
soil fungi and cane growth. S. M. Yang. (Abs.)	113
Е

Е

Б

Е

E

R

	PAGE
Diseases, Cane: stem and root fungus. K. C. Alexander. (Abs.)	370
transmission prevention by equip-	110
<ul> <li>ment cleaning. J. F. Usher. (Abs.)</li> <li>by private cane. C. Chardon. (Abs.)</li> </ul>	$271^{78}$
- volunteer cane. E. A. Pembroke	333
white leaf. C. T. Chen and M. J. Chen	208
damage in Thailand. (Brev.)	
Roach. (Abs.)	50
yellowing disease control. K. N.	143
Goyal and R. N. S. Tyagi. (Abs.)	365
computer programmes. H. L.	100
column scale composition. L. G. de	190
Souza et al. (Abs.)	349
Piñol. (Abs.)	285
in France. Anon. (Abs.)	285
fusel oil composition. A. C. Chatter-	221
in Guyana. (Brev.)	32
Thailand. Anon. (Abs.)	381
vat corrosion. N. I. Krasnopol'skii	285
waste chemical composition. V. G.	070
- as fertilizer. N. A. da Glória. (Abs.)	253
J. C. Remy et al. (Abs.)	222
rosion. Anon. (Abs.)	222
- soil phosphate solubilization. N. A. da Glória and M. E. Mattiazzo	301
- treatment. A. K. Basu and E.	285
S. C. Gupta and K. A. Prabhu	381
W. H. Kampen. (Abs.)	381
C. E. Monteiro. (Abs.)	308
Luchev et al. (Abs.)	190
- yeast manufacture. Anon. (Abs.) - $-$ J. T. Aguinaldo. (Abs.)	252
Zambia order. (Brev.)	30
Dominican Republic: cane varieties.	000
raw sugar price and sales policy.	193
sugar production 1975. (Brev.)	256 287
Drives: beet slicers. H. Koethke. (Abs.)	378
Ray. (Abs.)	214
chains. L. de Jahn. (Abs.) fluid couplings. G. E. St. John. (Abs.)	214 117
hydrostatic. J. R. Marshall. (Abs.)	81
sugar. W. Stankiewicz et al. (Abs.)	342
- E. W. Kerr. (Abs.)	86
- R. Velazquez R. (Abs.)	53
- B. Hutchinson et al. (Abs.)	382
M. Rychkun. (Abs.)	184
explosion hazard. G. T. Dirkx	310
lou. (Abs.)	377
cube sugar. F. X. Kammerer. (Abs.)	343
fluidized bed, white sugar. A. F. Zaborsin et al. (Abs.)	88
and refined sugar. L. Neužil	218
Dust: burning in beet pulp dryer. R.	210
emission control. H. Smidt. (Abs.)	184
explosion prevention. G. Schneider	246
Cronewitz et al. (Abs.)126, 15	8, 349
- stored sugar. Z. J. Kimmerling.	182
separation. A. K. Strautnieks and	62
Y. Y. Lazhe. (Abs.)	216
see also Air; Boilers and Furnaces,	00
Bagasse	
F	
Egypt: cane equipment order. (Brev.)	351 286
- flowering. K. S. Dobbs. (Abs.)	272
M. A. Mohamed et al.	355
- production 1974/75. (Brev.)	64 59
Electrodialysis: beet thick juice treat-	20
itaconic acid manufacture from mol-	09
asses. M. Nakagawa et al. (Abs.)	252

9 247 313 378 et al. (Abs.) expansion. M. Barré and H. Duret

E

1

mathematical model. L. A. Fedoren-ohenko et al. (Abs.)... molasses treatment. J. Housslau and R. Pieck. (Abs.)... – P. Pierrard. (Abs.)... – efficiency determination. L. D. Bobrovnik et al. (Abs.)... 313

	PAGE
lectrodialysis: organic acids determination. G. P. Voloshanenko and A. M. Shev-	
chenko. (Abs.)	156
ing. R. J. Batterham. (Abs.)	85
tion from sugar solution. F. G. Carpenter and E. J. Roberts. (Abs.)	251
ntrainment: effect on condenser per- formance. R. V. Koren' et al	344
vacuum pans. L. Bates et al. (Abs.)	54
1974/75. (Brev.)	288
urope: beet area 1976129, 160	127
- sugar production 1976/77. (N.C.) EEC. ACP raw sugar price talks.	321
$(\tilde{N.C.})$ 98, 161, 220 - beet price recommendations, $(N.C.)$	3, 258
sugar symposium. (N.C.)	194
- high-fructose corn syrup produc-	7 321
- raw sugar import quota restrictions	384
- margin. (Brev.)	64
industries. K. Dankowski et al.	59
sugar production 1977. (N.C.)	193
automatic control. C. D. Clarke and	281
M. Webber. (Abs.) N. A. Nielsen and B. McEachran	84 54
R. Wasmund. (Abs.)	343
Blake et al.	291
- removal. V. I. Dovgopol et al	342
- A. E. Kutsenko. (Abs.)	89 121
<ul> <li>K. N. Savchuk. (Abs.)</li> <li>N. Y. Tobilevich <i>et al.</i> (Abs.)</li> </ul>	$\frac{311}{311}$
effect arrangement optimization. E.	161
experimental. J. Dornier. (Abs.)	151
- pump application. A. Fényes.	246
- surfaces. A. A. Knyazev and V. N. Gorokh. (Abs.)	311
horizontal thin-film. A. Kubasiewicz and W. Lekawski, (Abs.)	121
incondensable gas removal. S. Srinivesen (Abs.)	86
juice colour formation reduction. B. I. Kats. (Abs.).	24
and lime salts content. M. K. Likhitskii and L. P. Reva.	152
- deficiency and water supply. F. Nowak. (Abs.)	90
sulphite. L. I. Ryazantseva and	979
losses. I. M. Fedotkin et al. (Abs.)	152
- K. N. Paul. (Abs.)	$\frac{308}{213}$
- evaluation. A. Kubasiewicz and W. Lekawski. (Abs.)	186
steam requirements and heat transfer	84
syrup starch elimination. (T.N.)	286
triple-effect performance. K. Mosich	343
densable gases. V. N. Gorokh and	
k. O. Shtangeev. (Abs.) vapour condensation. R. V. Koren'	342
et al. (Abs.) see also Control, Automatic; Corro-	344
sion; Entrainment and Scale	117
prevention. G. T. Dirkx. (Abs.)	310
- G. Schneider. (Abs.)	240
actory: air compressors D. C. Hard-	
aker. (Abs.)	341
cane crushing capacities. A. C.	200
concrete and equipment protection.	22
- protection. F. M. Depke. (Abs.)	312 310
construction service, (T.N.)	350 86
data processing. U. Bauernfeind.	25
awski. (Abs.)	186
- V. E. Popov. (Abs.).	88
energy consumption. M. Rychkun	57 377
equipment in Bulgaria. D. Babew - component strain hardening B M	313
Zinko. (Abs.)	184
gramme. W. A. Greenwood	54
- metallization. F. Diaz D. (Abs.)	277 53
<ul> <li>modernization. J. Sanches A</li> <li>noise and vibration. T. Bogumil</li> </ul>	53

Factory: loading, unloading, conveying and storage mechanization. N. A. motifications and white sugar im-provement, G. S. Jain. (Abs.). operation, effect of lime kiln fuel. I. Sué. (Abs.).
T. Sué. (Abs.).
Trivastava. (Abs.).
C. Sobiezzak. (Abs.).
C. Sobiezzak. (Abs.).
C. Sobiezzak. (Abs.).
C. Sobiezzak. (Abs.).
Parsing S. Z. Ivanov et al. (Abs.).
plastic piping. K. J. Sutod plastic piping. K. B. Rudod
Abs.)
Promotic programmes. H. L. Fernandes. (Abs.).
automatic control. G. Windal...
evaluation by computers. J.
Turwanek and M. Kninck. (Abs.) PAGE 375 308 55 308 216 120 312 309 

х

	PAGE
Fertilizers: filter cake effect on soil nutrients and cane yield. H. H.	
Hagihara. (Abs.)	80
fly ash. A. C. Chatterjee and B. M.	337
- and filter cake, N. R. Maclean foliar application to beet. Anon.	335
- and soil application. S. C. Yang green manure application and beet	336
pests. W. Renius. (Abs.) cultivation. R. Vanstallen	$\frac{115}{211}$
and soil fungi. C. C. Chao and M. M. H. Wu. (Abs.)	336
cane. H. S. Ibrahim liquid and farmvard manure effects.	165
L. Truyens et al. (Abs.) magnesium. Anon. (Abs.)	306 19
micronutrients and cane yield and quality. S. A. Ahmed <i>et al.</i> (Abs.)	272
- effect on cane yield and quality. B. S. Mathur, (Abs.)	210
nitrogen. Anon. (Abs.) - M. A. C. dos Santos. (Abs.)	18 301
- I. J. Stewart. (Abs.)	78
- application rate. Anon. (Abs.).	206
1. Gutmański. (Abs.)	276
trials. G. Gallarate. (Abs.). - and beet ash content. V. Stehlik	115
and L. Schmidt. (Abs.) brei nitrate. D. G. Westfall and	242
M. Barnes. (Abs.) composition. R. C. Zielke and	19
- crown yield and quality. R. C. Zielke. (Abs.)	20
growth and quality. M. G. Frakes. (Abs.)	371
petiole nitrate content. D. D. Analogide. (Abs.)	339
quality. w. C. McGuffey. (Abs.) and sugar content. L. Wik- licky. (Abs.)	19 911
requirement determination. C. Winner. (Abs.)	181
and yield determination. J. N. Carter et al. (Abs.)	242
sugar and N contents W A	92
Dickinson. (Abs.) yield. A. von Müller and C.	180
Winner. (Abs.)	$338 \\ 371$
<ul> <li>de Fraisse. (Abs.)</li> <li>– cane ripening. L. G. Vallance</li> </ul>	17 $241$
sugar content and juice quality. U. S. Singh. (Abs.)	111
varietal response. J. A. Mariotti and O. Giménez L. (Abs.)	302
- $        -$	114
- economics. M. K. Nicholson <i>et al.</i> - green manure effects on cane. N.	116
- irrigation effects on beet. J. N.	301
cane yield. B. K. Mathur and K. B. Tripathi (Abs.)	337 979
G. Singh et al. (Abs.) - late application and beet leaf yield.	272
- nematode development. E. D.	274
<ul> <li>phosphorus application in irriga- tion water. D. W. James (Abs)</li> </ul>	18
- plant population effects on beet yield and sugar content. J. N.	
- slow-release urea. R. S. Uchida	242
- surface nitrate accumulation. S. R. Winter (Abs)	81 887
<ul> <li>trace elements. H. J. Müller</li> <li>trials in Australia. I. T. Fresh-</li> </ul>	274
India. D. S. Deol and R. S.	47
Réunion. R. Dadant and C. H. de Fraisse. (Abs.)	304
G. Loynet and C. de H. Fraisse - urea application. O. P. Engelstad	17
and R. D. Hauck. (Abs.) trials in Argentina. R. Fér-	241
white fly control. A. N. Kalra	200
- utilization by cane, effect of nitri-	940
- weed competition. E. A. Cerrizuela	240 70
- zinc effects on beet yield and quality. H. D. Fuebring and	10
R. E. Finkner. (Abs.)	21

-	PAGE
Fertilizers: phosphorus. I. J. Stewart. (Abs.) – application rate. A. P. Dravcott	209
and M. J. Durrant. (Abs.) - beet requirement determination.	339
S. Barker. (Abs.)	$\frac{21}{112}$
- potassium. A. W. Ford. (Abs.). - application. N. Roussel. (Abs.)	78 149
potassium. I. J. Stewart. (Abs.) - G. K. Zende. (Abs.)	$\begin{array}{c} 271 \\ 300 \end{array}$
<ul> <li>beet yield and quality. Y. Bilgin</li> <li>calcium and chloride contents in</li> <li>cance B B Destations (Abs.)</li> </ul>	179
- can leaf composition. S. Sithanan- tham et al. (Abs.)	368
orange freckle. W. A. Webb and N. Clarke. (Abs.)	78
<ul> <li>recovery from cane juice. S. Mukherjee and S. K. Srivastava trials in Mauritius. Anon. (Abs.)</li> </ul>	119
programme for beet. Anon. (Abs.) recommendations for Brazil. J. O.	181
Filho. (Abs.)	270
- West Germany. Anon. (Abs.) requirements and cane response.	307
research in Brazil. G. M. Azzi. (N.B.) - India. T. R. Srinivasan and Y. B.	282
Morachan. (Abs.) - South Africa. Anon. (N.B.)	301 59
- and trials in Cuba. J. Aloma and I. Cuellar. (Abs.)	208
J. D. Veurman. (Abs.)	77 275
trials in Brazil. M. L. Marinho et al. – India. S. N. L. Srivastava et al.	$270 \\ 305$
tillage. N. Rozeff. (Abs.)	80
vinasse. N. A. da Glória. (Abs.) – carbonatation mud. J. C. Remy	253
et al. (Abs.) - soil phosphate solubilization. N. A.	222
waste water nutrients. V. T. Dodol- ina. (Abs)	301
zinc sulphate. T. C. Juang et al see also Beet; Cane; Lime and Soil	335
Fiji sugar statistics. (Stat.) Filter ald. (T.N.).	$288 \\ 286$
filtration. J. J. Seip and F. L. Gayle. (Abs.)	150
utilization. F. Heitz. (Abs.) Filter cake: application to soil. R. P.	247
Humbert. (Abs.)	, 253
orange freckle. W. A. Webb and N. Clarke, (Abs.)	78
costs. L. V. Gentil. (N.B.)	58
– – salinity. W. T. Su. (Abs.) compressibility. F. Heitz. (Abs.)	$\frac{80}{112}$
fertilizer. N. R. Maclean. (Abs.) – A. Vigoureux and T. Vreven. (Abs.)	335 337
specific resistance and porosity deter- mination. P. M. Fabregat P. and	00
sweetening-off. V. A. Burov <i>et al.</i> N, G. Lila <i>et al.</i> (Abs.)	88 281
control. C. R. Brown and P. Pommez. (Abs.)	283
- G. Vernois. (Abs.)	350 381
Ravnö and G. R. E. Lionnet. (Abs.) wax recovery. A. C. Chatterjee and	151
B. M. Dutt. (Abs.) Filters. (T.N.)	382 62
- V. Nosikova. (Abs.)	88
fication mud treatment. P. N. Stewart et al. (Abs.)	85
disc, leakage prevention. N. A. Kavun. (Abs.)	344
filter-thickeners. K. Andersen. (Abs.) membrane porosity and sugar colour	215
mud suspension level automatic	250
Yamshanov. (Abs.)	121 123
vacuum. P. S. Maksimuk et al. (Abs.) see also Filtration	185
Filtrability. F. Heitz. (Abs.) raw sugar, effect of amylopectin. E.	247
Whayman and A. L. Willersdorf impurities. M. Shafiq and R.	99
samaniego. (Abs.)	27
silica. M. A. Clarke. (Abs.).	$\frac{314}{283}$
tion. J. P. Murray and F. M. Runggas. (Abs.)	219

Filtration. F. Heitz. (Abs.)	247
automatic control. L. S. Taranenko	919
beet juice, effect of beet dirt tare.	010
diffusion water pH. K. Mag-	120
– – – magnesium oxide. J. Štud-	90
nický <i>et al.</i> (Abs.) – – silicon reduction, P. Devillers	55
et al. (Abs.)	377
carbonatation juice improvement.	122
- mud, effect of dextran. J. F. T.	88
clarification mud. V. M. Jesic, (Abs.)	26 378
<ul> <li>– J. J. Seip and F. L. Gayle. (Abs.)</li> <li>– effect of flocculants. J. P.</li> </ul>	150
Murray and G. S. Shephard. 18	82,340
Chen and R. W. Picou.	119
Anikeev. (Abs.)	217
Roberts $\epsilon t$ al	326
press performance. D. P. Goel and V. M. Bhalwar. (Abs.).	213
rotary filter performance. Anon	213
improvement in boiling. R. J.	05
Finland: beet agriculture. W. C. von	89
Kessel. (Abs.)	$\frac{149}{192}$
- production 1975/76. (Brev.) Flow: beet thick juice, pipeline loss	192
calculation. E. Manzke and S.	970
cane juice automatic control. N. A.	210
measurement. A. L. Webie	118 118
<ul> <li>molasses rheological properties and pumping data calculation. D. V.</li> </ul>	
Boger and C. Tiu. (Abs.) carbonatation mud rheological prop-	245
erties. Z. Kemblowski et al. (Abs.)	28
I. M. Fedotkin and I. V.	200
massecuite fricticn losses. Y. G.	281
- measurement in boiling. B. G.	184
Didushko and V. T. Garyazha – rheological properties. K. Čiž	$313 \\ 348$
determination. D. Schliep- hake and K. Austmeyer.	55
- air flow rate. Y. G. Artukhov and	184
sugar solution measurement. V. P.	104
waste water quantity measurement.	90
Foam: formation, effect of carbonata-	280
and F. M. Runggas. (Abs.)	219
<ul> <li>flume-wash water, effect of saponin.</li> <li>A. G. Kirichenko et al. (Abs.)</li> </ul>	342
reduction in beet diffusion. V. N. Borzdaya et al. (Abs.)	87
- surface-active agents. K. Čiž et al.	218
the United Nations commodity	001
Formic acid production from sucrose.	321
France: beet mechanization exhibition.	61
Anon. (Abs.) – – research. Anon. (Abs.)	$305 \\ 116$
Connantre sugar factory. Anon distillery. Anon. (Abs.)	$\frac{312}{285}$
finance for Ivory Coast and Cameroun sugar developments. (Brey.)	287
new sugar factory. (Brev.)	96
weather and beet agriculture. (Brev.)	191
French West Indies: Guadeloupe cane	
sugar production 1975. (Brev.)	63
Fructose, see Levulose Furfural: manufacture from bagasse.	
A. C. Chatterjee and B. M. Dutt C. I. Nee and W. F. Yse. (Abs.)	382 158
in Mexico. (Brev.)	288
air pollution reduction. F. A. Grillot	150
bagasse burning. V. J. Bailliet (Abs.)	214
Velazquez R. (Abs.)	53
- moisture content. W. P. Boulet emission particulate analysis. C. C.	214
watson. (Abs.) explosions. T. Ikehara. (Abs.)	$151 \\ 117$
fly ash as fertilizer. N. R. Maclean 	335
and R. N. Cullen. (Abs.)	85
al. (Abs.).	341
B. M. Dutt. (Abs.)	382

	PAGE
Furnaces, Bagasse: pulverized coal firing and bagasse	
pneumatic firing. A. G. Hurter. (Abs.) 18	3. 372
	-,
Gears: cane mill. (T.N.)	62
Germany, East: beet variety. (Brev.) sugar industry plans. (Brev.)	64 127
Germany, West: beet production 1975.	244
campaign 1974/75. E. Reinefeld.	120
new sugar factory. (Brev.)	352
1975/76. (Brev.)	$155 \\ 160$
loads. E. Reinefeld. (Abs.).	120
treatment and legislation. H. P. Hoffmann-Walbeck and A.	
Pellegrini. (Abs.) see also Europe, EEC	186
Ghana: sugar factory performance. J. P. Sto. Domingo. (Abs.)	977
- production 1974. (N.C.)	34
1975. (Brev.).	288
Anon. (Abs.)	206
- growth regulation. G. Singh and K. Sareen. (Abs.).	368
Gilmore Louisiana-Florida-Texas- Hawaii-Puerto Rico sugar manual	
1975. C. M. McKay. (N.B.) Glucaric acid determination. V. Prev	155
et al. (Abs.) Glucose, see Dextrose	250
Glutamic acid: auto-diffusion. A.	280
Maillard reaction. E. Reinefeld et al.	379
yellows tolerance. V. Rímsa et al.	52
sugar factory fuel consumption. P.	352
- imports. (Stat.)	377 352
<ul> <li>industry. D. Hadjiantoniou. (Abs.)</li> <li>Xanthi sugar factory. Z. Nitschke</li> </ul>	377 120
Guatemala: clarifier pilot plant. (Brev.) earthquake and drought. (Brev.).	127 128
new sugar factory. (Brev.)	351
- industry, A. Viton. (Abs.)	119
ing. J. E. Irvine and B. L. Legen-	140
effect on raw sugar filtrability. M.	140
see also Polysaccharides	27
et al. (Abs.)	23
<ul> <li>J. Zdarsky and A. Svoboda. (Abs.)</li> <li>clarification. K. M. Bhardwaj et al.</li> </ul>	245 340
<ul> <li>in India. S. K. Ojha et al. (Abs.)</li> <li>suitable cane varieties. D. N.</li> </ul>	238
Gupta and R. Singh. (Abs.) physico-chemical properties. B.	271
Singh et al. (Abs.) see also Jaggery	92
Guyana: Booker interests nationaliza-	996
cane land expansion. (Brev.)	63
sugar industry expansion. (Brev.)	32
trade agreement with China. (Brev.)	254 63
Hawaii: cane agriculture. W. S.	
– – M. Uehara. (Abs.)	369 369
Eleele factory closure and Koloa expansion. E. S. P. Smith. (Abs.)	117
Honokaa factory continuous opera- tion. B. G. Ross. (Abs.)	86
expansion. C. A. Rowsell. (Abs.) sugar industry. C. M. McKay. (N.B.)	117
- production. G. B. Hagelberg	155
weather and irrigation. K. C. Lever-	40
see also United States of America	40
lation. A. A. Knyazev and V. N.	
conduction and capacity calculation	216
Radchenko and V. D. Popov	157
consumption reduction by beet juice reverse osmosis vs. evaporation.	
T. Baloh. (Abs.) economy in Greece. P. Hristodoulou	122
effect on cane juice colour and tur- bidity. N. L. C. Suzor. (Abs)	309
- sugar melt composition. W. Mauch	240
exchanger scale removal. R. S. Patterson (Abs)	199
thickness determination. I. V.	120
extraction from bagasse, effect of	511
factory process balances Anon	312 312

	PAGE
Heat: insulation of refinery equipment. A. N. Dul'dier and D. K. Dunaev-	100
liberation in sugar factories. A. A.	89
losses in condensers. N. Y. Tobilevich et al. (Abs.)	311
pump and evaporator steam heat upgrading. A. Fényes. (Abs.).	246
- beet diffusion. A. Kubasiewicz and	122
A. Sokolowski and A. Lam- precht. (Abs.)	186
pulp drying. T. Cronewitz et al. (Abs.)	3, 349
- boiling. V. T. Garyazha and B. G. Didushko. (Abs.)	152
<ul> <li>- effect of circulation ratio. V. P.</li> <li>Troino et al. (Abs.)</li> </ul>	153
- calculation. A. Kubasiewicz and W. Lekawski. (Abs.)	186
- condensate to process water. A. I. Khomenko et al. (Abs.)	123
- effect of all in steam. R. wasmund - pulsed flow. I. M. Fedotkin and I. V. Kosminskii (Abs)	248
steam injection. S. M. Konstan- tinov and N. N. Bezpal'ko	376
- evaporators, calculation. P. G. Wright. (Abs.).	84
- - effect of scale. K. Mosich. (Abs.) ultrasonics. I. M. Fedotkin et al. (Abs.)	343 88
- massecuite reheaters. J. P. Mukh- erji et al. (Abs.)	183
E. E. A. Rouillard. (Abs.) - through scaled surfaces, effect of	182
see also Steam Folland: sugar imports and exports	280
see also Europe, EEC Honduras: new sugar factory. (Brev.) 63	. 351
sugar expansion. (Brev.) Hong Kong: sugar imports and exports	256 160
Trading and Commodities Exchange Hungary: beet varietal trials. L. Lukács	30
new sugar factory. (Brev.)	, 256
cing sugar classification in fluidized bed. L. Neužil and L. Brož. (Abs.)	246
India: bagasse paper manufacture. P. J. M. Bao. (Abs.)	349
beet agriculture. J. S. Garg and M. P. Azad. (Abs.)	211
<ul> <li>- Rajasthan, D. S. Oberoi and R. Singh. (Abs.)</li> </ul>	83
- diseases. K. Singh <i>et al.</i> (Abs.) - varietal trials. K. S. Parashar	$52 \\ 116$
Rajasthan. Anon. (Abs.)	81
S. Singh. (Abs.). – pests. S. N. Banerjee and D. K.	143
Butani. (Abs.) and diseases. T. Somu et al	300 301
<ul> <li>production. S. Thangavelu and K. Sundaresan. (Abs.)</li> <li>research Apon (Abs.)</li> </ul>	365
- T. R. Srinivasan and Y. B. Morachan, (Abs.)	301
- varietal trials. K. S. Parashar fertilizer trials. S. N. L. Srivastava	333
et al. (Abs.) new sugar factories. (Brev.)	$305 \\ 320$
Kanwar. (Abs.). refined sugar standard. A. C. Chatt-	304
erjee. (Abs.) sugar expansion incentives. (Brev.)	317 254
- exports. (Stat.) - industry development incentives	256 98
- machinery manufacture. (Brev.) - production 1975/76. (Brev.) - statistics. (N.C.)	288 352 33
Uttar Pradesh soils, weather and cane varieties. S. K. Ojha et al	238
Vuyyuru sugar factory. P. J. M. Rao West Bengal sugar industry. (Brev.) Indonesia: clariflor pilot plant. (Brev.)	340 96
new sugar factories. 63, 64, 192, 350, "Unigrator" orders. (Brev.)	352 127
Instruments: laboratory apparatus standardization. M. Friml and J.	
Pucherna. (Abs.). see also Brix; Colour, Control, Auto- matia: Flour, Loval, all, Bolavia	27
tion; Viscosity; Water; etc.	
Methods of Sugar Analysis 16th Session Proceedings. (N.B.)	59
International Society of Sugar Cane Technologists 16th Congress 1977	951
International Sugar Agreement 1, 128, 225, 200	353
US participation	161
and directory 1975. H. Ahlfeld	59

	PAGE
International Sugar Journal Panel of Referees. (N.C.)	193
International Sugar Organization: council meeting. (N.C.)	225
Malagasy Republic, Mauritius and South Africa sugar industry survey	159
year book 1974. Anon. (N.B.) International Sugar Research Founda-	59
tion annual meeting 1976. (Brev.)	352
Invert sugar: browning product form-	0.00
content in beet, effect of topping.	379
root, crown and collar. K.	7, 195
- cane, effect of frost. J. C. P. Chen	188
- carbonatation juice, effect of mag-	3, 188
nesium oxide. J. Studnický et al. decomposition in carbonatation.	342
effect of oxygen. H. Schiweck. 20 – effect of pH and temperature.	3, 246
A. R. Sapronov and R. A. Kolcheva, (Abs.)	60
- occurrence of carbonyl components. E. Reinefeld et al. (Abs.) 29	8 157
determination in beet juice. E. Reinefeld et al (Abs)	990
effect on sucrose determination. J.	217
melassigenic coefficient. V. A. Goly-	317
syrups. M. R. Irimia. (Abs.)	$123^{27}$
and J. F. Dowling. (Abs.)	284
sugars; Sucrose inversion and	
Sugars Ion exchange. D. Hervé. (Abs.)	56
J. J. Ungar and R. Lumbroso. (Abs.) beet juice acids determination. H. D.	215
Wallenstein and H. Egler. (Abs.) separation. E. Reinefeld <i>et al.</i>	$27 \\ 250$
floc formation prevention. E. J. Roberts et al.	326
levulinic and formic acids manufac- ture from sucrose. R. A. Schrauf-	0-0
nagel and H. F. Rase. (Abs.)	61
gnetti. (Abs.)	219
Voloshanenko and A. M. Shev-	156
resins. (T.N.).	62
- multiple elution. J. Dobrzycki	139
and V. F. Selemenev. (Abs.).	315
ing. R. J. Batterham. (Abs.)	85
K. Magyar. (Abs.)	90
Julce. T. Caldemaisous. (Abs.) E. Gryllus and H. J. Delavier.	187
(Abs.) 185 V. Gryllus. (Abs.)	, 187 , 281
<ul> <li>– molasses. K. W. R. Schoenrock</li> <li>– cane juice and potassium recovery.</li> </ul>	87
S. Mukherjee and S. K. Sriva- stava. (Abs.)	119
<ul> <li>molasses. M. Munir</li> <li>refinery liquor. S. Fujii et al. (Abs.)</li> </ul>	100 123
- water. P. Devillers et al. (Abs.) see also Colour and Juice	24
Ion exclusion: sugar recovery improve- ment in boiling. R. J. Batterbam	85
treatment of beet molasses. E. Reine- feld. (Abs.)	120
Iran: beet sugar industry. J. E. Maudru cane harvester and transporter order	152 286
new sugar factory. (Brev.)	288
- factory process controls. (Brev.)	63
Mosul sugar complex. J. Molenda	190
Irrigation. K. C. Leverington and	120
in Australia. D. W. Beattie. (Abs.)	49
- R. R. Moller and L. S. Chapman 49	, 110
benefits and cost factors. G. A. Fer-	244
cane borer control. A. Schaaf. (Abs.) 50	110
- arying-on. J. E. Lonsdale. (Abs.) - land planning. A. I. Linedale.	78
- water requirements. P. J. Nielsen determination. G. Kingston	209
and G. J. Ham. (Abs.) - utilization, effect of drving-off	49
J. M. Gosnell and J. E. Lons- dale.	7
in Cuba. (Brev.). drip. R. M. Bader (Abs)	191
- W. Gibson. (Abs.).	80
- J. F. Usher. (Abs.)	331
	000

	PAGE
Irrigation: drip, flushing valve. W.	
Gibson and U. Bui. (Abs.)	369
and cane yield. R. Scardua and	00
J. A. G. C. Sousa. (Abs.)	331
Bui and W. Gibson, (Abs.)	368
- soil erosion prevention. M. C.	
- sub-surface, W. Gibson 4	0.111
S. Lanting. (Abs.)	368
- system design. I. P. Wu. (Abs.).	51
Belew. (Abs.)	369
B. McElhoe and W. Gibson	80
effect on beet processing quality. I.	110
al-Windi and L. Schmidt. (Abs.)	148
ring and R. E. Finkner. (Abs.)	21
- cane yield. B. K. Mathur. (Abs.)	239
- fertilization. F. A. Fogliata. (Abs.)	111
- nematode development. E. D.	80
- nitrate accumulation in beet fields.	20
S. R. Winter. (Abs.)	337
sugar content. J. N. Carter et al.	337
- topped beet yield. P. J. Last et al. 16	7, 195
illery waste pH. Anon. (Abs.)	222
fertilizers application. D. W. James	18
Reimers. (Abs.).	78
furrow. Anon. (Abs.)	177
<ul> <li>soli conservation. R. Kane. (Abs.)</li> <li>water utilization. O. W. Sturgess</li> </ul>	18
large-scale project economic assess-	
ment. D. Wesney and R. F. Wool- cock. (Abs.)	50
in Morocco. G. Schmidt. (Abs.)	82
Singh et al. (Abs.)	272
number and beet yield. K. Singh et al.	211
- J. A. G. C. Sousa. (Abs.)	19
in Peru. A. Hoekstra. (Abs.)	301
rainwater storage dams, P. R. Downs	331
and L. K. Izatt. (Abs.)	209
- South Africa, Anon, (N.B.)	282
- Taiwan, S. J. Yang. (Abs.)	367
Vallance. (Abs.)	241
scheduling. P. Y. Chan and L. Li Pi	000
- G. Kingston and L. S. Chapman 49	238
- and beet yield and sugar content.	990
- nitrogen effects on cane and sugar	999
yield. B. K. Mathur and K. B.	070
- rainfall quantity estimation. G.	414
Kingston. (Abs.)	334
sewage effluent. E. Y. Hirata. (Abs.)	81
solid-set sprinkler system, G. Kings-	995
underground water quality. G. J.	222
Ham. (Abs.)	47
length. Y. T. Fang et al. (Abs.).	76
- quality. D. R. Ridge and G. J. Kelly. (Abs.)	50
I. Risseeuw. (Abs.)	301
- salinity, effect on cane nutrient	941
well construction in Taiwan. Y. Chu	367
see also Water Israel sugar industry J Rosenberg	90
Itaconic acid manufacture from mol-	00
asses. M. Nakagawa <i>et al.</i> (Abs.)	252
- imports. (Brev.).	64
- industry. G. de Andre. (Abs.)	279
see also Europe, EEC	100
from France. (Brev.).	287
- project. (Brev.)	256
Jaggery: colour removal with active	
carbon. B.G. Krishnamurti. (Abs.) see also Gur	315
Jamaica: cane varieties, Anon, (Abs.)	239

Jamaica: cane varieties. Anon. (Abs.)	239
trials. Anon. (Abs.)	240
sugar statistics. (Stat.)	352
Japan: cane agriculture. G. D. Thomp-	
son and P. G. C. Brett. (Abs.)	301
- production 1975/76. (Brev.)	352
refinery closure. (Brev.)	127
sugar company rationalization	64
- imports 1975. (Brev.)	192
<ul> <li>– from Australia</li></ul>	224
- trade agreement with Cuba. (Brev.)	255
South Africa. (Abs.)	64

	PAGE
Juice, Beet: acids determination. H. D. Wallenstein and H. Egler. (Abs.)	27
active alkalinity. K. Vukov. (Abs.) amino-acids determination. M. Burba	217
and B. Georgi. (Abs.) ammonia determination and removal.	348
P. Devillers et al. (Abs.) analysis. G. Pollach. (Abs.)	24 284
ash determination as evaporator scale and corrosion guide. P.	
Devillers et al. (Abs.) calcium and silicon contents and	120
colour formation. K. Vukov. (Abs.)	377 278
effect of enzymes. D. Gross and J. Coombs	106
nocculation and. V. Prey et al. 56 and lime salts, effect of treat-	5, 90
Degeest et al. (Abs.)	55
Kats. (Abs.) dextran determination. A. Borys.	$\frac{24}{284}$
effect of diffusion water electrolysis. A. Y. Romanyuk <i>et al.</i> (Abs.)	281
fine pulp removal by centrifuge. H. Schiweck, (Abs.)	278
galacturonic acid determination. F. Perschak, (Abs.)	. 124
heater corrosion. H. J. Heppner - and pipeline scale, aragonite effect.	218
A. T. Bogorosh et al. (Abs.) - scale thickness determination. I. V.	247
Kosminskii <i>et al.</i> (Abs.) invert sugar determination. E.	311
ion exchange treatment. T. Calde-	380
E. Gryllus and H. J. Delavier.	187
(Abs.) 185, V. Gryllus. (Abs.)	187
J. J. Ungar and R. Lumbroso	$\frac{56}{215}$
tion. M. Kiely and M. O'Sullivan	317
Kalinenko. (Abs.)	156
et al. (Abs.)	217
euzi et al. (Abs.)	247
Reinefeld et al. (Abs.)	157
Reinefeld <i>et al.</i> (Abs.)	250
pH, effect of calcium addition. F.	156
- temperature. L. P. Reva and	28
phosphoric and organic acids deter-	195
properties, effect of diffusion water pH. K. Magyar. (Abs.)	90
purification with magnesium carbon- ate and phosphoric acid. J.	
Buriánek <i>et al.</i> (Abs.) purity determination. M. Friml and	278
B. Tichá. (Abs.) - and lime salts, effect of diffusion	124
water treatment with aluminium sulphate. B. I. Pogorzhel'skii	
et al. (Abs.) - prediction. P. Devillers et al. (Abs.)	279 60
J. Hobbis and L. Batterman - and sugar content, effect of ethyl-	92
and J. C. Linden. (Abs.)	218
K. Fábián and J. Kollár. (Abs.)	188
sugar decomposition in evaporation. I. M. Fedotkin <i>et al.</i> (Abs.)	152
- determination. P. Devillers et al. G. W. Maag and G. H. Sisler.	348 250
sulphite determination, effect of nitrite, R. B. Lew. (Abs.)	250
thermal stability, effect of sodium sulphite. L. I. Ryazantseva and	
A. Y. Gadzhiev. (Abs.) thick juice colour formation, effect	278
N. Kubadinow. (Abs.)	217
electrodialysis. P. P. Zagorodnyi et al. (Abs.)	89
Khvalkovskii <i>et al.</i>	246
M. Moore and J. Karr. (Abs.)	56
- - M. Rychkun. (Abs.)	57
<ul> <li>pipeline pressure loss calculation.</li> <li>E. Manzke and S. Lier. (Abs.)</li> </ul>	279
<ul> <li>- storage tank. Anon. (Abs.)</li> <li>- viscosity and sucrose diffusion</li> </ul>	186
coefficient, effect of campaign length. M. N. Dadenkova et	
al. (Abs.) see also Carbonatation; Filtration	156
and Sulphitation	

	PAGE
Juice, Cane: alcohol beverage manufac-	000
- manufacture. (Brev.)	191
ash and reducing sugars contents.	92
Brix and level automatic control in evaporation. C. D. Clarke and	01
M. Webber. (Abs.)	84
polyelectrolyte. W. Stewart	188
tion. W. C. Cheng et al. (Abs.)	346
methanol and groundnut oil. K.	
colorants. F. G. Carpenter and M. A.	13
Clarke, (Abs.)	123
steam treatment. N. H. Smith	259
Coombs	. 106
- turbidity, effect of lime, bagacillo	,
and heat. N. L. C. Suzor. (Abs.) dextran hydrolysis. R. P. Fulcher	309
and P. A. Inkerman. (Abs.)	379
P. Hidi and R. Staker. (Abs.).	85
- temperature and pH automatic	118
control. N. A. Nielsen and B.	
McEachran. (Abs.)	54
del Valle (Abs)	161
ion exchange treatment and potass-	101
S K Srivastava (Abc)	110
pH. J. C. P. Chen and R. W. Picou	150
et al. (Abs.)	188
<ul> <li>sugar recovery, effect of cane deterioration, G. J. Gascho et al.</li> </ul>	150
phosphate determination. N. Morffi	194
properties, effect of cane burning. S.	14
extraneous matter. S. el-N. A.	302
Hemaida <i>et al.</i> (Abs.) $\dots$ – – frost on cane. J. D. Miller and	308
G. J. Gascho. (Abs.)	220
purity and boiling house capacity.	202
R. D. Archibald and I. A. Smith	182
- drop in evaporation. K. N. Paul	308
milling. P. D. Smith. (Abs.).	118
silicon effect on processing. M. A.	340
Clarke. (Abs.)	283
starch elimination. Anon. (Abs.)	213
G. el-K. Saved et al. (Abs.) 150	157
- measurement. G. el-K. Sayed et al.	157
trace metals determination. S. L.	0.40
treatment with flocculation aids. S.	346
Morales and P. M. Flores. (Abs.)	23
Juice, Sorghum, see Sorghum	

Kestose, see Sugars

Lactic acid: auto-diffusion. A. Emmer-	
ich et al. (Abs.)	380
determination in beet juice and	
van (Abs)	917
fermentation suppression. V. N.	911
Shvets et al. (Abs.)	285
Vanossi, (Abs.)	196
as microbial infection criterion in	120
beet diffusion. P. W. van der Poel	56
cane diffusion. L. McMaster	014
Level: heet diffusion measurement	214
M. E. Furer and V. R. Tsygura	216
clarification mud automatic control.	
R. L. Muller. (Abs.)	372
Control in beet slicer hoppers. I.	010
Ergun. (Abs.)	310
- measurement. K. A. Negrasov filter mud suspension automatic	90
Vamshanov (Abs)	191
juice automatic control in evanora-	141
tion. C. D. Clarke and M. Webber	84
massecuite and heat surface utiliza-	2.20
tion in boiling. V. P. Troino et al.	153
hagasse C I Nee and W F Vee	159
- sucrose. R. A. Schraufnagel and	100
H. F. Rase. (Abs.)	61
Levulose: content in cane, effect of	
post-narvest deterioration. G. el-	
high-fructose corn surup production	197
in EEC. (N.C.)	321
melt composition, effect of heat.	
W. Mauch and S. Asseily. (Abs.) .	249
see also Invert sugar; Reducing sugars	
Liberia sugar factory (Brev.)	32
Libya sugar imports 1975. (Brev.)	192

			P.	AGE
F.		0 F	Licht's International Sugar	
т.		19	975. H. Ahlfeld. (N.B.)	59
	-	-	R. Vanstallen. (Abs.)	211
	-	_	R. Vanstallen. (Abs.)	83
		-	Webb and N. Clarke. (Abs.)	78
	-	-	and M. M. H. Wu. (Abs.)	336
	-	Ξ	Bowen. (Abs.).	210
	-	_	Kessel. (Abs.)	115
	fr	ee	etermination. N. P. Tabunshchi-	
	ki	k	ov and L. D. Shevtsov. (Abs.)	$   \begin{array}{c}     281 \\     121   \end{array} $
	_	ch fu	harging. K. N. Savchuk. (Abs.) 1el, design and operation. I. Sué 55,	$90 \\ 185$
	 Jin	oi me	il or gas firing. F. Sobek. (Abs.) estone handling. N. M. Kichigin	25
	_	et DI	al. (Abs.)	375
	m	ill	D. S. Mitka. (Abs.)	377
	_	K	. Skalski. (Abs.)25, 90, 186, - and beet volatile acids and	218
	_	91	anions, H. Schiweck, (Abs.)	278
	-	aj	pplication to stored beet. N. M.	378
	-	de	oser. Z. Somora. (Abs.)	87
	2	10	chenko. (Abs.)	311
	-	sc	prayer for beet. A. M. Elagin et al.	311
	q	si	ze. F. Sobek. (Abs.)	378
	re se	e ge	also Carbonatation and Clariff-	154
Li	qı	ca id	ation l sugar: manufacture. D. Hervé	56
	-	M N	. R. Irimia. (Abs.)	$123 \\ 219$
	p	M	liki. (Abs.)	156
L	U	S i	exports to Canada. (N.C.) s: bagasse and molasses sugar.	98
	be	A	. L. Webre. (Abs.) t brei sugar and nitrate content.	374
	_	D	. G. Westfall and M. Barnes amage. R. de Vletter and W. van	19
	_	_	Gils. (Abs.) W. C. von Kessel. (Abs.)	$281 \\ 149$
	-	-	and fluming. F. Kapol. (Abs.)	122
			V. I. Vasil'ev and N. M. Kichigin, (Abs.)	121
	-	di -	iffusion. A. K. Buryma et al	87
	-	2	J. C. Giorgi and B. Richard	247
	-	-	effect of weather on beet invert-	206
	-	-	infection determination. P. W.	5.6
	-	-	reduction. J. Blok and P. W.	919
	-		- N. V. Kulinich et al. (Abs.)	216
	-	ha	- A. P. Parkhod Ko et al. (Abs.) andling and storage. J. B. Fitts	344
	2	su wa	ashing and conveying. J. N.	121
	_	w	ater separation. E. T. Koval' et	215
	bo	oili	al. (Abs.). ing, reduction. G. Aleman. (Abs.)	56 214
	ca	H	e burning effect. S. el-N. A. emaida <i>et al.</i> (Abs.)	302
	-	de	Miller and G. J. Gascho. (Abs.)	220
	-	2	harvesting. Anon. (Abs.)238, - G. J. Gascho et al. (Abs.)	$365 \\ 150$
	-	-	- J. E. Irvine and B. L. Legendre - B. S. Kanwar and J. K. Kapur	$\frac{146}{358}$
	-	-	- N. Ramamoorthy et al. (Abs.)	220
	-	-	- W. D. Wells and G. P. James	374
			el-K. Sayed et al. (Abs.).	157
	_		Blake	131
		-	Inkerman and G. P. James	374
	-	-	R. G. Hoekstra. (Abs.)	151
			Chen. (Abs.)	188
	_	_	- Juce composition. G. el-K. Sayed et al. (Abs.)	157
	-	-	- processing and molasses ex- haustion. C. R. Toca. (Abs.)	119
	-	-	- reduction. Anon. (Abs.)	110
	-	di	- H. T. E. Smith. (Abs.) ffusion. L. McMaster and A. B.	79
	-	ha	Ravnö. (Abs.)	214 146
	cla	iri	L. L. Lauden. (Abs.)	238
	de	te: in	rmination. P. Devillers et al. 91, 93, 5 molasses. V. A. Golybin et al	548 92

Losses:	
S. el-N. A. Hemaida <i>et al.</i> (Abs.)	308
B. L. Legendre. (Abs.)	177
- K. N. Paul. (Abs.)	308
- determination. Anon. (Abs.)	213
Ryazantseva and A. Y. Gad-	070
filter cake. N. G. Lila et al. (Abs.)	278
pol and filtration evaluation.	
Kharakoz. (Abs.)	23
Nagvi and S. M. Alam	202
raffinose effect on polarization. P.	940
reduction by microbiological control.	240
B. P. Kuz'menko. (Abs.)	24 26
- in refinery by equipment modifi-	
Ltd. (Abs.)	57
in refining. A. Rossi. (Abs.)	314 319
W. Trzciński and E. Bakowska	279
effect of extraneous matter. Anon. (Abs.)	. 248
rotation vs. monoculture. N. A.	919
topping. W. R. Akeson et al.	180
- - prediction. M. G. Barnes <i>et al.</i> reduction. W. R. Akeson and	181
S. D. Fox. (Abs.)	180
- $ -$ A. M. Elagin <i>et al.</i> (Abs.)	311
A. H. Freytag. (Abs.) M. Z. Khelemskii <i>et al.</i> (Abs.) 82	19
- thick juice. T. P. Khvalkovskii	, 011
- M. Moore and J. Karr. (Abs.)	88 56
O. I. Shepel'skii et al. (Abs.)	217
nández and N. Herrera. (Abs.)	22
resin, G. A. Chikin and V. F.	
Selemenev. (Abs.)	315
R. A. Kolcheva. (Abs.)	60
<ul> <li>decomposition, effect of silicon.</li> <li>M. A. Clarke, (Abs.).</li> </ul>	283
in syrup decolorization and boiling,	
S. A. Brenman <i>et al.</i> (Abs.)	249
white sugar manufacture. S. Ortega	150
cake; Molasses; Pests; Pulp, Beet	
cake; Molasses; Pests; Pulp, Beet and Weather Lubrication; cane mill roller bearings.	
cake; Molasses; Pests; Pulp, Beet and Weather Lubrication: cane mill roller bearings. U. J. Ackeus. (Abs.)	54
cake; Molasses; Pistavs; Intel cake; Molasses; Pistavs; Intel and Weather Lubrication: cane mill roller bearings. U. J. Ackeus. (Abs.) G. D. Jacklin et al. (Abs.) centralized. A. Y. Volokhov. (Abs.)	$54 \\ 54 \\ 344$
<ul> <li>cake: Molasser, Dets: Pulp, Beet and Weather</li> <li>Lubrication: cane mill roller bearings.</li> <li>U. J. Ackeus. (Abs.)</li></ul>	$54 \\ 54 \\ 344$
We alter Molasses, Discards, Inc. at cake Molasses; Pestis, Pulp, Beet ad Weather Lubrication: cane mill roller bearings. U. J. Ackens. (Abs.)	$54 \\ 54 \\ 344$
<ul> <li>and Weather</li> <li>Lubrication: cane mill roller bearings.</li> <li>U. J. Ackeus. (Abs.)</li> <li> G. D. Jackline <i>d.</i> (Abs.)</li> <li>centralized. A. Y. Volokhov. (Abs.)</li> </ul>	54 54 344
<ul> <li>cake: Molasses, Posts, Pulp, Beet and Weather</li> <li>Lubrication: cane mill roller bearings.</li> <li>U. J. Ackeus. (Abs.)</li></ul>	54 54 344
<ul> <li>Cake: Molasses, Posts; Pulp, Beet and Weather</li> <li>Lubrication: cane mill roller bearings.</li> <li>U. J. Ackeus. (Abs.)</li> <li></li></ul>	54 54 344 18 159
<ul> <li>Molasses, Dets, Parly, Beet and Weather</li> <li>Lubrication: cane mill roller bearings.</li> <li>U. J. Ackeus. (Abs.)</li></ul>	54 54 344 18 159 2 320
<ul> <li>Maintenance of beet drills, W. Hartley Malagasy Republic sugar industry.</li> <li>Maintenance of beet drills, W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 18 159 2 320 154 77
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar features. (J. J. Ackeus. (Abs.)</li></ul>	54 54 344 18 159 2 320 154 77
<ul> <li>Cake: Molasser, Dets, Pulp, Beet and Weather</li> <li>Lubrication: cane mill roller bearings.</li> <li>U. J. Ackeus. (Abs.)</li></ul>	54 54 344 18 159 2 320 154 77 316
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	$54 \\ 54 \\ 344 \\ 18 \\ 159 \\ 22 \\ 320 \\ 154 \\ 77 \\ 316 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125$
<ul> <li>Maintenance of beet drills. W. Hartley Maintenance of beet drills. Maintenance drills. Hartley Maintenance of beet drills. Maintenance drills. Hartley Maintenance of beet drills. Maintenance drills. Maintenance drills. Maintenance drills. Maintenance dritenance drills. Hartley drills. Maintenance drills. Maintenance</li></ul>	54 54 344 188 159 2 320 154 77 316 125 157
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry. (Job 2019)</li> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry (Job 2019)</li> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry Malawi sugar development. (N.C.). Malaysia: bagase board factory. (Brev.) refining. T. Yamane and H. Asai sugar industry. K. Y. Li (Abs.).</li> <li>colour measurement. M. Muro M. and too sugar development. (Massecutic: Brix and sugar determination. A. Y. Zagorul'ke et al. (Abs.).</li> <li>colour measurement. M. Muro M. and crystal size analysis. D. Toningerová and K. (Amplová. (Abs.)</li></ul>	54 54 344 18 159 2 3200 154 77 316 125 157
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry. Massent development. (NC). Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry. Malavi sugar development. (NC). Malavi sugar industry. Malavi sugar industry. Malavi sugar development. (NC). Malavi sugar industry. Malavi sugar development. (NC). Malavi sugar development. (NC). Massecuite: Brix and sugar determina- tion. A. Y. Zagorul'ko et al. (Abs.). colour measurement. M. Muro M. and C. Silverio R. (Abs.). colour measurement. M. Muro M. and C. Silverio R. (Abs.). colour industry. D. Toningeroxia and K. Hampiová. (Abs.). </li></ul>	54 54 344 159 2 320 154 77 316 125 157 215
<ul> <li>Maintenance of beet drills. W. Hartley Malageay Republic sugar industry</li></ul>	54 54 344 159 2 320 154 77 316 125 157 215
<ul> <li>Cake: Molasses, Pots, Pulp, Beet and Weather</li> <li>Lubrication: cane mill roller bearings.</li> <li>U. J. Ackeus. (Abs.)</li></ul>	54 54 344 159 2 320 154 77 316 125 157 215 248 837
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 18 159 2 320 154 77 316 125 157 215 248 8373
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 18 159 2 320 154 77 316 125 157 215 248 373 182
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 159 2 2320 154 77 316 125 157 215 248 373 182 183 348
<ul> <li>Cake: Molasses, Petss, Pulp, Beet and Weather</li> <li>Lubrication: cane mill roller bearings.</li> <li>U. J. Ackeus. (Abs.)</li></ul>	54 54 344 189 22 310 154 77 316 125 157 215 248 373 182 183 348
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 189 220 154 77 316 125 157 215 248 373 182 183 348 184
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 189 320 154 77 316 125 157 215 248 373 182 183 348 184
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 189 2 320 154 125 157 215 248 8373 182 248 8373 182 183 348 184 873
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 159 2 320 154 77 316 125 157 215 248 373 182 183 348 184 348 348
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 159 2 820 0 157 215 248 373 182 183 348 184 373 377 205
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 189 22 3200 154 77 316 125 157 215 248 373 182 183 348 184 973 377 206
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 159 22 320 154 125 157 215 248 373 182 348 183 348 184 373 206 183 357
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 189 25 3200 154 77 3166 125 248 873 182 183 348 184 873 348 184 873 348 184 973 206 183 159 159
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 189 22 320 154 125 157 215 215 215 215 8373 182 183 348 184 373 377 206 183 357 206 183 155 66 254
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry</li></ul>	54 54 344 189 22 320 154 125 157 215 248 373 348 182 183 348 184 373 377 206 183 184 377 206 254
<ul> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry, a centralized. A. Y. Volokhov. (Abs.), centralized. A. Y. Volokhov. (Abs.), centralized. A. Y. Volokhov. (Abs.)</li> <li>Maintenance of beet drills. W. Hartley Malagasy Republic sugar industry, Malawi sugar development. (NC.), Malayisia: bagasse board factory. (Brev.) refining. T. Yamane and H. Asai, sugar industry. K. Y. Li. (Abs.), contralized. A. Y. Colokhov. (Abs.) of the second secon</li></ul>	54 54 54 344 18 159 2320 157 215 248 373 182 183 184 373 377 206 183 377 206 183 184 848 848 848 848 848 848 848 848 848

	PAGE
Mechanization, Beet: harvesters, Anon. (Abs.)	149
- D. R. Brisbourne and H. T. Breay	243
- A. Vigoureux. (Abs.)	211
- accidents. Anon. (Abs.)	149
- and loaders. Anon. (Abs.) - performances. W. Stieger. (Abs.)	$\frac{243}{244}$
harvesting and beet damage minim- ization. F. B. Russell. (Abs.)	212
- groups. D. Charlesworth. (Abs.) - losses. W. C. von Kessel. (Abs.)	371
hoeing. A. Vigoureux. (Abs.)	21
- A. Vigoureux. (Abs.)	274
maintenance. W. Hartley	18
- drilling. G. L. Maughan. (Abs.) effect of soil profile. C. de	243
Zanche and G. Baraldi. (Abs.) – – speed and emergence. A. S.	305
Kennedy and J. V. Topper	243 18
steerage hoe knives and beet field	10
top harvester trials. Anon. (Abs.).	244
topping. Anon. (Abs.)	180
- A. Vigoureux. (Abs.) - J. A. Wayman $\epsilon t \ al.$ (Abs.)	181
- and beet yield and quality. P. J. Last et al	, 195
<ul> <li>effect on beet storage and process- ing quality, W. B. Akeson et al.</li> </ul>	180
<ul> <li>harvesting. J. Pichenez. (Abs.)</li> <li>height and heet processing quality</li> </ul>	244
M. Z. Khelemskii <i>et al.</i> (Abs.).	52
tractor tyre size and beet row spacing.	00
UK demonstrations. (Brev.)	254
Mechanization, Cane: cleaner. C. W.	82
Hart. (Abs.) - D. L. Roberts. (Abs.)	79 114
cleaning. J. E. Clayton and D. B. Churchill. (Abs.)	113
costs. L. V. Gentil. (N.B.)	58
Beer. (Abs.)	4, 302
- purchasing vs. contracting. P. J.	200
extraneous matter and cane damage.	002
field layout requirements. O. P.	51
harvesters. (T.N.)	i, 303 350
- Anon. (Abs.) - R. Fanjul and I. Schexnayder	$177 \\ 114$
<ul> <li>R. F. Spargo and S. W. D. Baxter</li> <li>base-cutters, V. Ablikov and G. B.</li> </ul>	210
Rivas. (Abs.)	300 365
- order from Iran. (Brev.)	286
and J. Abreu C. (Abs.)	48
- L. V. Gentil. (Abs.)	336
- R. C. Hodson and B. Legendre.	16
<ul> <li>C. C. Montgomery. (Abs.)</li> <li>J. J. Seip and J. A. Salazar. (Abs.)</li> </ul>	$\frac{368}{147}$
- H. T. E. Smith. (Abs.) - G. Thomas. (Abs.)	79 179
<ul> <li>- R. B. V. Toledo. (Abs.)</li> <li>- cane deterioration reduction, Anon</li> </ul>	80 110
<ul> <li>– – D. H. Foster. (Abs.)</li> <li>– extraneous matter. F. N. Bolton</li> </ul>	$333 \\ 147$
J. E. Clayton et al. (Abs.)	146
properties. J. A. Silveira. (Abs.)	16
G. A. Zepp and J. E. Clayton.	146
- in Cuba. (Brev.) - cut-chop vs. whole-stalk cane.	191
- effect of cane burning. Anon	205
<ul> <li>– double drilling. H. Willett</li> <li>– rain. R. P. Vickers et al. (Abs.)</li> </ul>	$\frac{205}{333}$
<ul> <li>factory processing. J. Castro and J. J. Balerdi. (Abs.)</li> </ul>	144
C. K. Lu. (Abs.)	277 206
<ul> <li>photographic analysis. J. E. Clayton (Abs.) 142</li> </ul>	179
- scheduling. L. S. Chapman and	292
rainfall quantity estimation.	994
- seed cane. S. Inazu. (Abs.)	81
- in South Africa. S. W. D. Baxter G. Thompson. (Abs.)	240
<ul> <li>study in Argentina. (Brev.)</li> <li>transport vehicle number. T. C.</li> </ul>	288
Ripoli and L. A. Balastreire – in US. J. E. Clayton and B. R.	368
Eiland. (Abs.)	$369 \\ 144$
hydrostatic drive equipment. J. R. Marshall (Abs)	81
land levelling and forming machinery.	320
Anon. (Aus.)	004

Marken Course	PAGE
loader. A. G. de Beer. (Abs.)	302
- capacity, effect of green cane.	179
- and dirt tare. J. C. van Groenigen	111
planter. Anon. (Abs.)4	8, 273
- W. S. Boots. (Abs.)	$\frac{179}{271}$
- L. G. Fowler. (Abs.).	114
- N. S. L. Srivastava. (Abs.)	17
- and harvesters. Anon. (Abs.) - time control. D. Thompson. (Abs.)	303
planting and harvesting. Anon	367
- Taiwan. S. J. Yang. (Abs.)	367
stalk chopper. G. Dodgen. (Abs.).	144
tillage reduction. N. Rozeff. (Abs.) tractor. (T.N.)	80 350
<ul> <li>J. Lyons. (Abs.)</li> <li>four-wheel-drive vs. tracks. L. M.</li> </ul>	369
Hummel. (Abs.)	81
R. L. Krolak. (Abs.)	80
two-drill planting. S. Rodrigue	179
wet harvesting and ration crop yield.	191
R. P. Vickers et al. (Abs.)	334
- - Anon. (Abs.)	221
cane agriculture. Anon. (Abs.)	349
centrifugal order. (Brev.) new sugar factories. (Brev.)59, 22-	159
raw sugar manufacture from crude	277
sugar commission. (Brev.)	159
- industry. Anon. (Abs.)	183
S. Flores C. (Abs.)	48 48
Micro-organisms: beet biochemical pro-	274
- diffusion, determination. K. A.	80
effect of aluminium sulphate.	050
water treatment on formalin	279
infection determination. P. W.	5,152
– flume-wash water. V. A. Lagoda	56
et al. (Abs.) disaccharide formation. W. Mauch	124
and F. el Aama. (Abs.) juice clarification and scale formation.	284
R. W. Kuhlmann <i>et al.</i> (Abs.) molasses sterilization. E. R. Alieva-	53
Vitukevich. (Abs.)	382
Matison. (Abs.)	349
C. T. Chen et al. (Abs.)	143
Worley. (Abs.)	178
- in beet diffusion. F. X. Kammerer	377
- N. V. Kulinich <i>et al.</i> (Abs.)	216
D. Matteuzzi <i>et al.</i> (Abs.)2 M. Velings. (Abs.)	$6,247 \\ 378$
– – – and press water. J. Herčík and V. Dachovský. (Abs.)	90
- cane milling. (T.N.)	286
Anon. (Abs.).	240
Khvalkovskii et al. (Abs.)8	8, 120
nández and N. Herrera. (Abs.)	22
L. McMaster and A. B. Ravnö.	182
ophilus. G. Pollach. (Abs.)	60
Losses; Water, Waste and indi-	
widual fermentation products Milling, Cane. M. Beauvisage. (Abs.)	183
G. Ramachandran. (Abs.)	308
B. McEachran. (Abs.)	54
Legendre. (Abs.)	177
- quality determination. L. F. Hebert. (Abs.)	112
dextran reduction. P. Hidi and R.	00
effect on subsequent diffusion. J. H.	170
extraction calculation. P. F. Jain.	309
Henderson. (Abs.)	119
M. J. H. Lim. (Abs.)	9, 249
P. O. Skinner. (Abs.) adjustment for varietal differ-	125
ences. G. Arceneaux. (Abs.) L. Payan et al. (Abs.)	86 23
- effect of extraneous matter. J. Castro and J. J. Balerdi. (Abs.)	144
and an and an another the of the	000

M	liling Cane:	PAGE
	imbibition water addition. S. Viego	53
	juice purity drop. P.D. Smith. (Abs.)	118
	materials balance calculation. L.	110
	Hernandez C. et al. (Abs.)	117
	micro-organisms reduction. (T.N.).	280
	J Zdarsky 323	361
	simulation, F. Szklaruk et al. (Abs.)	22
	see also Mills, Cane	
M	ills, Cane: in Brazil. (Brev.)	384
	feeding. A. Vigil. (Abs.)	53
	- automatic control. A. J. Hussey.	118
	budraulic motors T R Ray (Abs)	214
	Mozambique order (T N)	350
	roller bearings. U. J. Ackeus. (Abs.)	54
	G. D. Jacklin et al. (Abs.)	54
	and torque requirements. D.	
	Macey and J. A. McGinn	54
	- noat indicators and speed restric-	374
	- grooving, S. Viego, (Abs.)	53
	- setting calculation. G. R. Swamy	213
	shredder. (T.N.)	350
	- balancing, D. Macey. (Abs.)	341
	- hammer failure. S. G. Clarke and	941
	D. C. H. Matthews. (Abs.)	197
	size, A. C. Chatteriee, (Abs.)	22
	turnplates. A. H. Chancellor and	
	J. S. Glass. (Abs.)	340
	- R. van Wijk. (Abs.)	86
	see also Milling, Cane	
M	olasses: alcohol manufacture. P.	901
	A Ramalingam and R K Finn	81
	= -V F Sukhodol <i>et al.</i> (Abs.)	158
	colorants effect on yeast zeta-	-00
	potential. V. N. Shvets et al.	252
	effect of antiseptic. E. R.	-
	Alleva-Vitukevich. (Abs.)	382
	- lactic acid bacteria. v. N.	005
	calcium, potassium and invert sugar	200
	formation. V. A. Golybin et al	27
	colorants. V. Prey and H. Andres	346
	– separation. V. Prey and H. Andres	318
	components mass and molar concen-	
	trations. D. E. Sinat-Radchenko	946
	composition properties and use	940
	B. P. Baker. (N.B.)	155
	fermentation. L. Vanossi. (Abs.)	126
	- carotene. E. V. Stabnikova et al.	61
	- yeast. L. Vanossi. (Abs.)	94
	Khyalkovskii and T V Zakharova	950
	reducing sugars determination. J.	200
	Lenczewski. (Abs.)	124
	formation. V. A. Golybin et al. 92	, 249
	separation in centrifugals, effect of	
	decder neight. V. F. Kolomiets et	040
	standard purity determination I A	240
	Prikhod'ko and K. V. Ukrainets.	220
	sterilization by electromagnetic field.	
	A. M. Ostapenkov and V. A. Matison	349
	sucrose and non-sugars auto-diffusion.	990
	sugars determination A Borys and	380
	S. J. Kubacki. (Abs.)	157
	utilization. (T.N.)	350
M	olasses, Beet: amino-acids. M. Munir	100
- 015	- determination. M. Burba and B.	
	Georgi. (Abs.)	348
	animal lodder. Anon. (Abs.)	222
	L. E. Dolgoruchenko. (Abs.)	61
	J. Freivalds. (Abs.)	190
	E. Pfeffer. (Abs.)	381
	L. Thompson. (Abs.)	61
	and W. Lekawski (Abs)	186
	Brix and sugar determination. A. Y.	200
	Zagorul'ko. (Abs.)	316
	citric acid manufacture in Greece	352
	colorants and properties. V. N.	917
	colour. L. Wieninger and N Kubad-	911
	inow. (Abs.)	, 217
	components mass and molar con-	
	centrations. D. E. Sinat-Rad-	0
	cnenko et al. (Abs.)	346
	ul'ko et al. (Abs.)	250
	determination of galacturonic acid.	200
	F. Perschak. (Abs.)60	, 124
	- organic acids. G. P. Voloshanenko	
	and A. M. Snevchenko. (Abs.).	156
	J. F. T. Oldfield <i>et al</i> (Abs)	195
	- sucrose, G. Pollach. (Abs.)	60
	dextrose, raffinose and sugar con-	00
	tents. P. Devillers et al. (Abs.)	249
	electrodialysis. J. Houssiau and R.	0.10
	Pieck. (Abs.)	313
	Bobrovnik et al (Abe)	319
	exhaustibility determination. M.	010
	Friml and S. Pochylá. (Abs.)	247
	exhaustion, effect of massecuite	
	cooling time. A. Y. Zagorul'ko	970
	pre-centrifugalling F Amding	377
	bee commendering. To multing	~ • • •

3	PAGE
Molasses, Beet: fatty acid extraction O I Belova	
and T. Begaliev. (Abs.)	379
- effect of amino-acids and peptides.	100
G. P. Voloshanenko <i>et al.</i> (Abs.) – – salts. N. P. Silina, (Abs.)	346 91
galactinol determination. F. Hollaus	284
Schoenrock. (Abs.)	87
– – – J. J. Ungar and R. Lumbroso lactic acid determination. M. Kiely	215
and M. O'Sullivan. (Abs.)	317
Niestrawski. (Abs.)	285
and P. A. Semenets. (Abs.)	285
mercury determination. P. B. Koster <i>et al.</i> (Abs.)	, 220
non-sugars and Maillard reaction. E.	95
pH, effectof temperature. L. P. Reva	1.50
phosphate determination. T. P.	190
Khvalkovskii and T. V. Zakharova nulp mixture briquetting, coefficients	250
of friction. M. G. Parfenopulo and	959
purity, effect of massecuite heating	201
Genotelle. (Abs.)	215
- reduction, effect of magnesium oxide, K. W. R. Schoenrock	
et al. (Abs.)	50
silage preservative. Anon. (Abs.).	222
storage. A. D. Kovalenko. (Abs.)	190
sugar content, effect of diffusion water treatment with aluminium	
sulphate. B. I. Pogorzhel'skii et al.	279
- G. W. Maag and G. H. Sisler	250
- extraction. J. Degeest et al. (Abs.) 55 M. Munir	100
– – P. Pierrard. (Abs.)	378
I. Salánki. (Abs.)	210
R. A. McGinnis. (Abs.)	121
ation. J. Karr and L. W.	
Norman. (Abs.) – – waste water as animal fodder	125
additive. L. Gonry. (Abs.)	120
trace elements. D. Hibbert et al	379
N. A. Al'dekov and N. F. Kostin	212
- optimization, effect of syrup purity. V. A. Pugachev <i>et al.</i> (Abs.)	278
Molasses, Cane: addition and raw sugar	05
- to vinasse for yeast manufacture.	070
analysis. L. Carrazana R. and I.	252
Machado L. (Abs.) animal fodder. B. M. Baustad. (Abs.)	125
- H. L. Chapman. (Abs.)	221 61
J. Freivalds. (Abs.)	190
- - C. H. Liu. (Abs.)	158
- S. C. Mai and T. H. Wu. (Abs.) F. M. Pate and S. W. Coleman	221
- E. F. Unsworth and P. O. Osuji ash and reducing sugars contents.	349
L. K. Kirby. (Abs.)	92 58
determination of Brix. P. Mellet	93
and phosphate. W. C. Cheng et	210
- chromium. W. Wolf et al. (Abs.)	346
- purity. J. P. Stupiello et al. (Abs.) - starch, G. el-K. Saved et al. (Abs.)	125
dextran reduction. P. Hidi and R.	8
electrodialysis. J. Houssiau and R.	010
exhaustibility determination. Anon	213
G. R. E. Lionnet and D. Fal- coner. (Abs.)	189
<ul> <li>- T. Moritsugu et al. (Abs.)</li> <li>effect of clarification with mag-</li> </ul>	318
nesium oxide. J. J. Zwaarde-	110
colour and ash. M. A. Mohamed	010
exhaustion. A. L. Webre. (Abs.).	318
<ul> <li>– calculation. G. F. Fundora. (Abs.)</li> <li>– effect of continuous crystallization.</li> </ul>	151
V. R. R. Bhonsale. (Abs.)	188
Toca. (Abs.)	119
instability and spontaneous destruc-	100
losses, effect of extraneous matter.	23
S. el-N. A. Hemaida <i>et al.</i> (Abs.) manufacture of alcohol (Brev.)	308
Anon. (Abs.)	381

	PAGE
Molasses, Cane: manufacture of alcohol	61
W. E. Trevelyan. (Abs.)	190
- - J. Kovats and Z. Niestrawski	235
Y. T. Liu. (Abs.)	382 252
- rum. W. H. Kampen. (Abs.)	190
determination. A. C. Morriss and	251
reducing sugars determination. S.	02
rheological properties and pumping	011
C. Tiu. (Abs.)	245
sugar determination. M. Kort et al.	189
E. C. Vignes. (Abs.)	100
trace metals determination. S. L. Sang et al. (Abs.)	346
viscosity, effect of non-sugars. L. Carrazana R. et al. (Abs.)	251
yield, effect of filtrate clarification.	309
see also By-products Molasses Refinery: colorants fraction-	
ation. I. F. Bugaenko. (Abs.)	93
Miki. (Abs.)	156
- campaign 1974. Anon. (Abs.).	90
- sugar production 1975. (Brev.).	30
new sugar factory. (Brev.)	127
sugar production 1975/76. (Brev.) Mozambique cane mill order. (T.N.)	352 350
Nonel new sugar factory (Brey)	859
New Zealand beet sugar industry poss-	100
Nicaragua sugar factory loan. (Brev.)	192
tablet sugar price. (N.C.)	66
ration stunting control and cane	144
amino-nitrogen in beet, determina-	144
W. Kernchen. (Abs.)	316
ments. H. J. Müller. (Abs.)	274
plant population. L. Schmidt	181
variety. E. Bornscheuer	21
- root, crown and collar. K. Fábián and J. Kollár. (Abs.)	188
- frozen and fresh beet brei. M. Burba et al. (Abs.)	60
in beet, effect of fertilizers. W. A. Dickinson. (Abs.)	180
<ul> <li>- rotation vs. monoculture. N. A. Al'dekov and N. F. Kostin</li> </ul>	212
<ul> <li>– sulphur dust. J. E. Hull. (Abs.)</li> <li>– juice, effect of pre-carbonatation</li> </ul>	305
mud removal. K. P. Zakharov et al. (Abs.)	185
- thick juice, determination. N. Kubadinow. (Abs.)	284
cane leaves, determination. V. C. Bittencourt et al. (Abs.)	318
compounds in beet molasses, effect on citric acid manufacture. J. Kovats	
and Z. Niestrawski. (Abs.) stored beet thick juice. T. P. Khval-	285
kovskii et al. (Abs.) waste water deficiency and treatment	120
with condensate. A. Simonart et al. see also Amino-acids; Betaine; Fertil-	56
izers; Glutamic acid and Soil Norway sugar imports. (Stat.)	224
Obituary: J. Vašátko	224
Packaging: refined sugar. A. Rossi.	314
bility. (Brev.).	192
new sugar factories. (Brev.)	54, 287
- production. (N.C.)	256
"Unigrator" sales. (Brev.) Pans, Vacuum. M. Andux. (Abs.)	127 53
circulation area ratio effects on boil- ing. V. P. Troino et al. (Abs.)	153
condensate removal. V. I. Dovgopol et al. (Abs.)	342
condensers. V. I. Dovgopol et al - V. N. Gorokh et al. (Abs.)	216 89
- A. E. Kutsenko. (Abs.) - K. N. Savchuk. (Abs.)	121 311
<ul> <li>N. Y. Tobilevich et al. (Abs.)</li> <li>J. G. Ziegler. (Abs.)</li> </ul>	$\frac{311}{309}$
continuous. I. S. Gulyi et al. (Abs.) - mathematical model. V. P. Zub-	153
chenko et al. (Abs.)	153

A. P. Koziavkin. (Abs.),..... 124

	PAGE
Pans, Vacuum:	
effects on boiling V P. Troino	
et al. (Abs.)	217
vacuum creation. M. L. Vaisman.	278
et al (Abs)	344
- consumption fluctuation reduction.	
K. Mosich. (Abs.)	343
- line valve automatic control. E. Batule and A. Rodriguez, (Abs.)	308
- re-utilization. M. L. Vaisman et al.	217
see also Boiling; Crystallization;	
and Scale	
Paper, Bagasse: factory in Argentina	351
- Iraq. (Brev.)	320
- Mexico. (Brev.)	221
- Paraguay. (Brev.)	256
- Peru. (Brev.).	256
- possibility in Pakistan. (Brev.)	256
manufacture. A. C. Chatterjee and	5.25
B. M. Dutt. (Abs.)	382
- P I M Bao (Abs.)	349
- South Africa. (Brev.)3	2,384
see also Pulp, Bagasse	
Paraguay: bagasse paper and cellulose	95.0
distillery (Brey.)	352
sugar production 1975. (Brev.)	160
Payment, Beet: computerized system.	95
EEC 1976/77. (N.C.)	130
- recommendations. (N.C.)	33
UK. (N.C.)	287
- M. N. Barko and F. I. Khamaza	52
see also Beet analysis; Beet sampling	
and Polarization	
D. B. Batstone. (Abs.)	119
D. Spooner. (Abs.)	214
R. F. Sutherland. (Abs.)	54
F. A. Martin et al. (Abs.)	189
in US. H. S. Birkett and J. J. Seip	188
see also Cane analysis; Cane sampling	
Pectin. Beet: in beet juice, effect of	
pre-carbonatation mud removal.	105
<u>K. P. Zakharov et al.</u> (Abs.)	185
S. P. Olyanskaya et al. (Abs.)	24
manufacture. G. V. Buzina and V. V.	985
- beet pulp. V. V. Parfenenko et al.	285
Peru: bagasse paper factory. (Brev.)	256
irrigation. A. Hockstra. (Abs.)	301
Pests, Beet, Anon, (Abs.)	338
aphids and beet fly control. Anon.	338
- in Beigium. L. van Steyvoort	7. 339
N. B. Davis. (Abs.)	242
R. A. Dunning and G. H. Winder	304
- as virus vellows vectors. G. Becker	18
beet damage in France. (Brev.)	191
in Belgium. L. van Steyvoort. (ADS.)	18
- - 0, Schreier. (Abs.)	274
black fly control. L. van Steyvoort	52
- W R Schäufele and C. Winner	19
- E. Seutin and L. van Steyvoort	243
- W. C. von Kessel. (Abs.)	275
ing quality. M. Martens. (Abs.)	83
- micro-granulators. Anon. (Abs.)	276
W. R. Schaufele and H. Schai-	274
feed rates. R. Vanstallen. (Abs.)	274
- operator protection against chem-	10
- spray equipment, W. Garburg.	307
insects. R. F. Ruppel. (Abs.)	83
leaf miner. M. Kubacka-Szmidtgal	276
and G. D. Griffin. (Abs.)	20
- release for curly top induction.	110
mangold fly and black bean aphid.	119
H. Bernardová et al. (Abs.)	52
- G D Griffin (Abs.)	116
- and beet yellowing. E. Dalleinne	244
- control. Anon. (Abs.)	275
<ul> <li>development, effect of agronomic factors, E. D. Whitney and</li> </ul>	
D. L. Doney. (Abs.)	20
- beet resistance determination.	91
- and springtails, effect of green	21
manuring. W. Renius. (Abs.)	115
- determination in raw sugar and	304
refinery molasses. T. Miki	156
sugar. M. Kiely and M. O'Sulli-	817
A. Z. Usmentseva et al. (Abs.)	3, 347

		PAGE
	Pests, Beet:	
	Kubacka-Szmidtgal. (Abs.)	212
	root maggot. A. Keller and J. D.	
	Stallings. (Abs.)	305
	Pests, Cane: aleurodid feeding and cane	100
	aphid control. B. R. Díaz. (Abs.)	48
	in Australia. C. R. Nalder. (Abs.)	271
	borers. S. Kumar. (Abs.)	174
	- G. Thompson. (Abs.)	142
	cropping with wheat. A. N.	
	Kalra et al. (Abs.)	300
ľ	- in Brazil. H. D. de Souza and M. F. da Silva (Abs.)	303
	- control. Anon. (Abs.)	6, 240
	G. M. Azzi. (Abs.)	303
	- - M. D. Padmanabhan <i>et al.</i> (Abs.)	300
ŀ.	H N Vaday and S. P. Sharma	301
ľ	by topping. S. Kumar. (Abs.)	239
	- damage and parasites. A. J. M.	000
	- incidence effect of planting time	208
l	S. Sithanantham et al. (Abs.)	48
	sett treatment. B. K. Mathur	
	et al. (Abs.)	17
ł	- parasites. Anon. (Abs.)	241
	J. Etienne. (Abs.)	17
L	- C. E. F. Pereira <i>et al.</i> (Abs.).	331
l	T. E. Summers and R. D. Jack-	209
	son. (Abs.)	112
	H. T. Tseng. (Abs.)	207
	n. C. Iunan and C. S. Bindra and predators. W. Y. Cheng	207
L	- rearing. R. D. Jackson. (Abs.).	146
	– – N. Macedo et al. (Abs.)	302
l	A. varma et al. (Abs.)	207
L	- in South Africa. Anon. (Abs.).	17
l	- US. S. J. Viator. (Abs.)	179
	- varietal susceptibility and control.	333
1	effect of notassium G K	000
ł	Zende, (Abs.)	300
	in Brazil. G. M. Azzi. (N.B.)	282
ŀ	- K Blasherg (Abs)	62
I.	- and cane root protection. J. F.	
	Usher. (Abs.)	209
I.	- in India. T. Somu et al. (Abs.).	301
L	froghopper varietal resistance testing.	
Ì.	E. J. Marques. (Abs.)	210
	fulgoroid and mosaic transmission.	119
ŀ	fungal parasites. Z. N. Wang and	110
l	L. S. Leu. (Abs.)	208
	grub damage. J. F. Reimers. (Aos.)	146
	Guatemala, V. Sanchesviesca G	49
l	Icerya pilosa control. R. A. Singh	0.0.1
ļ	et al. (Abs.)	301
l	insects in India. S. N. Banerjee and	
l	D. K. Butani. (Abs.)	300
l	leafhopper. Anon. (Abs.)	81
l	- Fiii disease vector. B. T. Egan.	334
ł	- hosts. R. Outridge and D. S.	
l	Teakle. (Abs.)	370
	- C. W. Chardon, (Abs.)	79
1	- B. E. Hitchcock. (Abs.)	208
	- control. D. J. Williams. (Abs.)	334
	- J. Dick and R. H. G. Harris. (Abs.)	142
	- A. A. Razjivin et al. (Abs.)	114
	- L. G. Vallance. (Abs.)	238
	- control. S. Rau and P. K. Moberly.	001
	(Abs.) 1	4, 241
	G. D. Thompson. (Abs.)	15
	Harris, (Abs.)	174
	parasites and hosts. J. R. Williams	81
ł	pesticide determination in raw sugar	156
ł	- effect on cane leaf composition.	100
	S. Sithanantham et al. (Abs.)	368
	yield. R. S. Kanwar. (Abs.)	272
	- residues in molasses. A. C. Morriss	300
1	and W. M. Nicol. (Abs.)	251
	pig control, electric fence costs. R. E. Kerkwyk (Abs)	339
1	- damage. R. McLennan. (Abs.)	272
	rats. L. Walsh. (Abs.)	273
	- control. L. M. Blaquier. (Abs.)	241
I	Kerkwyk. (Abs.)	50
	R. E. Kerkwyk. (Abs.)	78
	- Mauritius Apon (Abs.)	207
	- South Africa. Anon. (N.B.)	59
	- Taiwan. Y. S. Pan. (Abs.)	367
1	scale insect. U. S. Rao. (Abs.)	208
l	O. W. D. Myatt. (Abs.)	209
	soldier fly. D. Bull. (Abs.)	271
1	damage. J. Wright. (Abs.)	47

PAGE

	PAGE
Pests, Cane: termite control. Anon.	240
ment cleaning. J. F. Usher. (Abs.) varietal resistance testing. R. Cesnik wallahy damaga R. F. Karkwyk	78 210
white fly control with urea. A. N. Kalra and M. C. Gupta. (Abs.).	300
S. R. Johnson. (Abs.)	112
pH: beet diffusion water. K. Číž et al. - juice, effect of ammonia. P.	217
of calcium addition. F. Teschner and R. Krämer	24
optimization and evaporation. M. K. Likhitskii and L. P.	150
- sugar factory products, effect of temperature. L. P. Reva and	152
N. L. Izbinskaya. (Abs.) cane juice automatic control. N. A.	156
Nielsen and B. McEachran - behaviour in evaporation. K. N.	54 909
effect of cane deterioration. J. C. P. Chen and J. J. J.	308
G. J. Gascho et al. (Abs.).	150
J. D. Miller and G. J. Gascho H. A. Naqvi and S. L. Alam	$\frac{220}{202}$
and R. W. Picou. (Abs.) citric acid manufacture from mol-	150
asses. J. Kovats and Z. Niestraw- ski, (Abs.)	285
clarification mud filtration. J. J. Seip and F. L. Gayle. (Abs.)	150
colour sensitivity and measurement. D. F. Charles. (Abs.)	283
dextran hydrolysis. R. P. Fulcher and P. A. Inkerman. (Abs.)	379
- reduction by enzyme. P. Hidi and R. Staker. (Abs.).	85
ment corrosion. Anon. (Abs.)	222
Guern. (Abs.)	339
tion. S. Z. Ivanov et al. (Abs.) – melanoidin adsorption by decolor-	376
V. F. Selemenev. (Abs.) - organic acids determination in	27
sugar. M. A. Godshall and E. J. Roberts. (Abs.)	283
water decolorization. F. Onda et al. irrigation water quality. I. Risseeuw measurement of sugar and syrup.	$\begin{array}{c} 154 \\ 301 \end{array}$
R. Lees. (N.B.). reduction in clarification and juice	282
quality. V. Morris. (Abs.) refinery liquor carbonatation. J. P.	118
- decolorization. C. C. Chou. (Abs.) soil and beet yield and sugar content.	314
R. Vanstallen. (Abs.) - "effect of lime and phosphate. L. E.	83
- trace element effect on beet yield	112
stored beet thick juice. T. P. Khval- kovskij <i>et al.</i> (Abs.)	274
sugar colour determination. J. A. Weber, (Abs.).	250
sugars behaviour in invert syrup. V. S. Velasco and J. F. Dowling.	284
and R. A. Kolcheva. (Abs.).	60
losses. S. A. Brenman <i>et al.</i> (Abs.) waste water. E. Reinefeld. (Abs.)	249 120
K. Skalski. (Abs.). water and diffusion juice supervision.	90
see also Carbonatation; Clarification and Sulphitation	24
Philippines: bagasse furnace order	286
<ul> <li>varieties. (Brev.)</li> <li>L. T. Empig and M. C. Esquerra</li> </ul>	320 111
clarifier pilot plant. (Brev.) La Carlota Sugar Central annual	127
report 1974/75. (Brev.) new sugar factory. (Brev.)12	287 7, 288
power grid supply by sugar factories.	294
refinery expansion. (Brev.)	254
- industry. J. C. Dacanay. (Abs.)	86
- technical cooperation agreement with Cuba. (Rrev)	69
"Unigrator" sales. (Brev.) Phosphatation. P. L. Apte and B. R.	127
Math. (Abs.) beet juice pre-treatment with floccu-	213
lation aid. V. Prey et al. (Abs.) starch effect. J. B. Alexander and	55
Photosynthesis: International Congress	255

Poland: new sugar factory (Brey)	359
sugar exports (Stat)	20
factory exports (Drey) 109 954	95.6
- factory exports. (Brev.). 192, 254,	200
- Industry. w. Goralczyk. (Abs.)	00
Polarization: automatic polarimeters.	286
P. C. Ivin et al. (Abs.)	92
– – evaluation. C. C. Chou and	
K. R. Hanson. (Abs.)	318
beet juice sugar determination. M.	
Friml and B. Tichá (Abs.)	194
- sugar determination K Malec	
- sugar determination. R. Marce	947
	041
calcium and invert sugar melassigenic	0.7
coemcients. v. A. Golyoin et al.	27
cane molasses sugar determination.	
J. P. Stupiello et al. (Abs.)	125
- sugar yield. E. Rodriguez C. et al.	118
comparison with gas-liquid chrom-	
atography for sucrose determina-	
tion. G. W. Maag and G. H. Sisler	250
polarimeter errors, R. S. Watts	348
- sample tubes (T N)	350
angen determination P Devillere	000
sugar determination. 1. Detiners	940
arrore M Roche (Abc)	100
citors. M. Rocal (Abs.)	917
- mixtures. J. Sagei. (Abs.)	011
temperature control. M. Randabel	251
see also Control, Chemical	
Polvelectrolyte: cane juice mud separ-	
ation for Brix measurement. W	
Stewart (Abs)	188
Polyengeharides: acid heverage flog	100
E I Dobarte et al	990
E. J. Roberts & al	040
composition. E. J. Roberts	000
and F. G. Carpenter. (Abs.)	283
cane arabinogalactan isolation and	
composition. E. J. Roberts et al.	163
see also Dextran; Gums and Starch	
Powdered sugar, see Icing sugar	
Power: auxiliary supplies. R. J.	
McIntyre. (Abs.)	340
consumption by crystallizers calcu-	
lation A I Gromkovskii et al	90
factory and refinery M Duchkun	60
- factory and fennery. M. Rychkun	54
- vacuum pans, use of priming	
pumps. M. L. Valsman. (Abs.)	278
factor. K. S. Arnold. (Abs.)	309
flow control in tie-lines. R. J.	
McIntyre. (Abs.)	54
generation efficiency, E. G. Clarke	57
- by excess hagasse hurning A M	
Hain (Abs)	991
atoom turbines S V Wildman	221
- steam turbines. b. v. whuman	00
and I. J. Goldsmith. (Abs.).	00
- turbo-generators in Greece. P.	
Hristodoulou. (Abs.)	377
house automatic control. R. A. All-	
away and C. R. Graves. (Abs.).	340
N. A. Nielsen and B. McEach-	
	24
ran. (Abs.)	04
pump requirements calculation for	54
pump requirements calculation for cane molasses transfer. D. V.	54
pump requirements calculation for cane molasses transfer. D. V. Boger and C. Tiu. (Abs.)	245
ran. (ADS.) pump requirements calculation for cane molasses transfer. D. V. Boger and C. Tiu. (Abs.) transmission chains. C. G. Wild-	54 245
ran. (A0S.) pump requirements calculation for cane molasses transfer. D. V. Boger and C. Tiu. (Abs.) transmission chains. C. G. Wild- smith. (Abs.).	245 182
ran. (A0s.) pump requirements calculation for cane molasses transfer. D. V. Boger and C. Tiu. (Abs.) transmission chains. C. G. Wild- smith. (Abs.) utilization in refinery. J. D. Ryan	245 182 57
ran. (A08.) pump requirements calculation for cane molasses transfer. D. V. Boger and C. Tiu. (Abs.) transmission chains. C. G. Wild- smith. (Abs.) utilization in refinery. J. D. Ryan Prices: raw sugar and Dominican	245 182 57
ran. (A08.). pump requirements calculation for cane molasses transfer. D. V. Boger and G. Tiu. (Abs.) transmission chains. C. G. Wild- smith. (Abs.) tillization in refinery. J. D. Ryan Prices. raw sugar and Dominican	245 182 57
ran. (A08.). pump requirements calculation for cane molasses transfer. D. V. Boger and C. Tiu. (Abs.) transmission chains. C. G. Wild- smith. (Abs.) utilization in refinery. J. D. Ryan Prices: raw sugar and Dominican Republic selling policy. (N.C.).	245 182 57 193
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and G. Tiu. (Abs.)</li></ul>	245 182 57 193
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cane most stransform. D. V.</li> <li>ransmission chains. C. G. Wild- smith. (Abs).</li> <li>rans sugar and Dominican Republic selling policy. (N.C.).</li> <li>- EEC negotiations with ACP countries. (N.C.)., 98, 161, 226,</li> </ul>	245 182 57 193 258
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and C. Tiu. (Abs.)</li></ul>	245 182 57 193 258 354
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cance molasses transfer. D. V.</li> <li>Bosnisher C. (2000)</li> <li>transfer C. (2000)</li> <li>transfer</li></ul>	245 182 57 193 258 354 66
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and C. Tiu. (Abs.)</li> <li>transmission chains. C. G. Wild- smith. (Abs.)</li> <li>utilization in refinery. J. D. Ryan</li> <li>Prices: raw sugar and Dominican Republic selling policy. (N.C.)</li> <li>- EEC negotiations with ACP countries. (N.C.)98, 161, 226,</li> <li>- exporters' meetings.(N.C.)130, 258, tablet sugar in Nigeria. (N.C.)</li> </ul>	245 182 57 193 258 354 66 127
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and C. Thu. (Abs.)</li> <li>transmission chains. C. G. Wild.</li> <li>transmission chains. C. G. Wild.</li> <li>utilization in refinery. J. D. Ryan</li> <li>Prices: raw sugar and Dominican</li> <li>Republic selling policy. (N.C.)</li> <li>- EEC negotiations with ACP countries. (N.C.)98, 161, 226,</li> <li>- exporters' meetings. (N.C.).130, 258,</li> <li>tablet sugar in Nigeria. (N.C)</li> <li>sugar (N.C)</li></ul>	245 182 57 193 258 354 66 127 194
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and C. Tiu. (Abs.)</li> <li>transmission chains. C. G. Wild- smith. (Abs.)</li> <li>utilization in refinery. J. D. Ryan</li> <li>Prices: raw sugar and Dominican Republic selling policy. (N.C.)</li> <li>- EEC negotiations with ACP countries. (N.C.)98, 161, 226, countries. (N.C.)98, 161, 226, tablet sugar in Nigeria. (M.C.)</li> <li>sugar. (N.C.)</li></ul>	245 182 57 193 258 354 66 127 194 353
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and C. Thu. (Abs.)</li> <li>transmission chains. C. G. Wild- smith. (Abs.)</li> <li>transmission chains. C. G. Wild- net chains. C. G. Wild- smith. (Abs.).</li> <li>Regular the chains. C. G. M. (Abs.).</li> <li>EEC negotiations with ACP - EEC negotiations with ACP - exporters (N.C.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321
<ul> <li>ran. (A08.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and G. Tiu. (Abs.)</li> <li>transmission chains. C. G. Wild-smith. (Abs.)</li> <li>transmission chains. C. G. Wild-smith. (Abs.)</li> <li>transmission chains. C. G. Wild-smith. (Abs.).</li> <li>transmission chains. C. G. Wild-smith. (Abs.).</li> <li>rese: raw sugar and Dominican Republic selfing policy.</li> <li>E. Ecountries. (N.C.). 98, 161, 226, 162, 266, 262, 262, 262, 262</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224
<ul> <li>ran. (A08.)</li></ul>	245 182 57 193 258 4 66 127 194 353 321 224
<ul> <li>ran. (A0s.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and G. Tiu. (Abs.)</li> <li>transmission chains. C. G. Wild-smith. (Abs.).</li> <li>e EEC megotiations with AC.</li> <li>e eEC megotiations with AC.</li> <li>e countries. (N.C.).</li> <li>stability and the signal chart. (Brev.).</li> <li>world raw sugar (Act.).</li> <li>stabilization. (N.C.).</li> <li>and US raw sugar chart. (Brev.).</li> <li>e also Payment</li> <li>Puerto Rico: sugar (actory re-erection in Costa Rica. (Brev.).</li> </ul>	245 182 57 193 258 354 66 127 194 353 321 224 288
<ul> <li>ran. (A08.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288
<ul> <li>ran. (A0s.).</li> <li>ran. (A0s.).</li> <li>ran. requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and G. Tiu. (Abs.)</li> <li>transmission chains. C. G. Wild-smith. (Abs.).</li> <li>e EEC megotiations with ACP countries. (N.C.).</li> <li>countries. (N.C.).</li> <li>e at the sugar in Nigeria. (N.C.).</li> <li>world raw sugar chart. (Brey.).</li> <li>e at Usar (N.C.).</li> <li>and US raw sugar chart. (Brey.).</li> <li>e and US raw sugar factory re-erection in Costs Rica. (Brey.).</li> <li>in dustry. C. M. McKay. (N.B.).</li> <li>Pub. Ragasse: bagass and cane tracb</li> </ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155
<ul> <li>ran. (A08.)</li></ul>	245 182 57 193 2588 354 66 127 194 353 321 224 2888 155
<ul> <li>ran. (A08.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and C. Thu. (Abs.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155
<ul> <li>ran. (A08.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94
<ul> <li>ran. (A08.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and C. Thu. (Abs.)</li> <li>transmission chains. C. G. Wild-smith. (Abs.).</li> <li>transmission chains. C. G. Wild-smith. (Abs.).</li> <li>transmission chains. C. G. Wild-smith. (Abs.).</li> <li>tailitation in reiner and D. Thyan</li> <li>pricescrabic selling policy. (N.C.).</li> <li>R. EEC negotiations with ACP</li> <li>- exporters 'meetings. (N.C.). 130, 258, tablet sugar in Nigeria. (N.C.).</li> <li>sugar. (N.C.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94 94
<ul> <li>ran. (A08.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94 94
<ul> <li>ran. (A08.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94 94 94 222
<ul> <li>ran. (A08.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94 94 222 61
<ul> <li>ran. (A08.)</li></ul>	245 182257 193258 35466 127 194353321 224 288155 25394 94 222261 190
<ul> <li>ran. (A08.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94 94 222 61 190
<ul> <li>ran, (Aos.),</li></ul>	245 182 57 193 258 354 66 127 194 253 321 224 288 155 253 94 94 222 61 190 190
<ul> <li>ran, (A0s.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and C. Thu. (Abs.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94 94 222 61 190 221 190 221
<ul> <li>ran, (Abs.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boga and chains. C. G. Wild.</li> <li>tramith. (Abs.).</li> <li>tramith. (Abs.).</li> <li>transfer. J. D. Ryan</li> <li>Prices: raw sugar and Dominican</li> <li>Republic selling policy. (N.C.).</li> <li>- EEC negotiations with ACP countries. (N.C.). 98, 161, 226, - exporters' meetings. (N.C.).130, 256, tablet sugar in Nigeria. (N.C.)</li> <li>sugar (N.C.) 2, 98, 130, - sugar. (N.C.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94 94 222 61 190 221 253 94
<ul> <li>ran, (A08.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 224 228 155 2253 94 94 2222 61 190 190 190 190 221 2253 381
<ul> <li>ran, (A0s.).</li> <li>pump requirements calculation for cane molasses transfer. D. V.</li> <li>Boger and o. Diu. (Abs.).</li> <li>Boger and o. Diu. (Abs.).</li> <li>Boger and o. Diu. (Abs.).</li> <li>tramiths: (Abs.).</li> <li>tramiths: (Abs.).</li> <li>tramiths: (Abs.).</li> <li>the selling policy. (N.C.).</li> <li>- Exc negotiations with ACP countries. (N.C.).</li> <li>- EEC negotiations with ACP countries. (N.C.).</li> <li>- EEC negotiations with ACP countries. (N.C.).</li> <li>- exporters' meetings. (N.C.)130, 256, tablet sugar in Nigeria. (N.C.)</li> <li>- sugar. (N.C.)</li></ul>	245 182 57 193 258 354 66 127 194 853 321 224 288 155 253 94 94 94 222 61 190 221 190 2253 381 225
<ul> <li>ran. (Abs.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94 94 222 61 190 221 253 381 1 90 190 221 253 381 1 94 94 268 199 225 258 258 258 258 258 258 258 258 258
<ul> <li>ran, (Aos.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94 94 222 61 190 190 221 190 190 221 61
<ul> <li>ran, (Aos.)</li></ul>	245 182 57 193 2588 354 666 127 194 353 321 224 2888 155 253 94 94 222 61 190 221 253 381 221 61
<ul> <li>ran, (Aos.)</li></ul>	245 182 57 193 258 354 66 6127 194 353 321 224 288 155 223 94 94 222 61 190 190 190 190 221 253 381 225 4 94 225 8 31 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 193 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 8 195 225 195 195 225 195 195 195 195 195 195 195 195 195 19
<ul> <li>ran, (Abs.).</li> <li>ran, ranking and rankin</li></ul>	245 182 57 193 258 354 666 127 194 353 321 224 288 155 253 944 94 222 61 190 221 253 381 221 61 252 3349
<ul> <li>ran, (Abs.)</li></ul>	245 182 57 193 258 354 66 6127 194 353 321 224 288 155 253 321 224 288 155 253 321 224 94 222 61 190 190 190 190 221 253 381 66 61 27 193 321 258 321 258 321 321 258 321 321 321 321 321 321 321 321 321 321
<ul> <li>ran, (Aos.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 94 94 222 61 190 221 253 381 225 381 225 381 225 381 225 8 36 4 94 94 222 61 90 221 8 8 5 7 94 94 94 222 8 8 8 5 7 94 94 94 94 94 94 94 94 94 94 94 94 94
<ul> <li>ran. (Abs.)</li></ul>	245 182 57 193 258 354 66 127 194 353 321 224 288 155 253 321 224 94 94 222 61 190 221 252 381 221 61 190 252 349 184 9382
<ul> <li>ran, (Aos.)</li></ul>	245 1827 193 258 354 66 127 194 353 321 224 288 155 253 94 94 222 190 190 221 253 381 2224 190 221 253 381 2224 57
<ul> <li>ran, (Abs.)</li></ul>	245 1825 57 193 258 354 66 127 194 353 321 224 288 155 253 94 222 61 1900 1900 1900 1900 1900 1900 1900 1
<ul> <li>ran, (Aos.)</li></ul>	245 18257 1938354 66 127 194 353321 224 57 3258 354 66 127 294 288 155 253394 94 222 610 1900 2211 1900 2213 610 1900 2213 610 2523381 2252 3381 2252 3494 2257 610 1900 221 887 57 887 57 57 57 57 57 57 57 57 57 57 57 57 57
<ul> <li>ran, (Abs.).</li> <li>ran, randing and random and random</li></ul>	245 1822 57 193 258 354 66 127 194 353 321 224 288 155 245 245 224 288 155 245 245 224 288 155 224 224 288 195 224 224 288 195 224 224 224 224 224 224 224 22
<ul> <li>ran, (Abs.)</li></ul>	245 1822 57 193 2583 354 66 127 194 353 321 288 155 245 288 125 288 125 288 125 288 125 288 125 288 125 288 193 225 288 194 225 257 194 253 225 267 267 257 257 257 257 257 257 257 25
<ul> <li>ran, (Aos.).</li> <li>ran, range calculation for cane molases transfer. D. V.</li> <li>Boger and ohnin. (Abs.).</li> <li>Boger and ohnin. (Abs.).</li> <li>Boger and ohnin. (Abs.).</li> <li>transith. (Abs.).</li> <li>transith. (Abs.).</li> <li>transith. (Abs.).</li> <li>the selling policy. (N.C.).</li> <li>- EEC negotiations with ACP countries. (N.C.).</li> <li>- EEC negotiations with ACP countries. (N.C.).</li> <li>- exporters' meetings. (N.C.).130, 256, 126, 226, 226, 226, 228, 222, 200, 225, 256, 258, 322, 200, 225, 256, 258, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 322, 200, 225, 256, 259, 222, 200, 250, 250, 250, 250, 250, 250</li></ul>	2455 182257 193258 3544 666 1277 2288 1555 2533 944 922 261 1900 1900 1900 1900 1900 1900 1900 19
<ul> <li>ran. (Abs.)</li></ul>	245 182257 193258 258366 1277 19435321 2588 155 253324 245 253324 245 253324 245 253 253 253 253 253 253 253 25
<ul> <li>ran, (Aos.)</li></ul>	245 182257 193258 354 666 127 258 354 666 129 194 353 321 224 288 155 253 94 92 226 1900 1900 1900 1900 1900 1900 1901 201 201 201 201 201 201 201 201 201 2
<ul> <li>ran, (Aos.)</li></ul>	245 182257 193 258 354 66 6127 194 353 354 6127 194 353 321 224 258 354 6127 194 2258 354 94 2258 354 94 2258 354 94 2258 354 94 2258 321 2258 321 224 258 354 66 66 27 193 224 258 354 66 66 27 193 224 258 354 66 66 27 193 224 258 354 66 66 27 194 2258 354 66 66 27 194 2258 354 66 66 27 194 2258 354 66 66 27 194 2258 354 66 66 27 194 2258 354 1957 224 258 354 1957 224 2258 354 1957 224 2258 354 1957 224 258 354 1957 224 258 354 1957 224 258 354 1957 224 258 354 1957 224 258 354 1957 224 258 354 1957 224 2453 244 2453 244 2453 244 2453 244 2453 244 2453 244 2453 244 2453 244 2453 244 2453 244 2453 244 2453 244 2453 244 2453 244 2453 244 244 257 233 211 224 245 257 2353 221 221 221 221 223 2357 2357 224 245 221 221 221 221 221 223 2357 221 221 221 221 221 221 221 221 221 22
<ul> <li>ran, (Aos.)</li></ul>	245 18257 193 258 354 6127 194 353 321 224 288 155 253 321 224 288 155 253 94 94 222 61 1900 221 2253 381 61 252 253 381 61 257 222 61 257 222 61 257 222 61 257 222 88 225 8 225 8 222 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 225 8 25 8 2 25 8 2 25 2 2 225 8 2 25 2 2 2 2
<ul> <li>ran, (Abs.)</li></ul>	245 182257 193258 354 666 127 1943321 2288 354 66 6127 194 353321 224 2583 351 224 2583 321 224 2583 321 224 2583 321 224 258 354 66 60 221 8 4 94 222 61 00 221 8 4 94 222 61 00 221 8 3351 224 228 321 224 228 354 66 66 60 27 194 3553 321 224 2288 354 1057 228 20 8 20 8 20 8 20 8 20 8 20 8 20 8

	PAGE
Pulp, Beet:	
pectin preparation. V. V. Parfenenko	005
press. (T.N.)	285
pressing. M. Demaux. (Abs.)	253
- Y. D. Golovnyak et al. (Abs.)	87
storage. H. Schnelle. (Abs.)	381
trace elements. D. Hibbert et al	379
and N E Karaulov (Abs)	61
yield calculation. F. Kastner and	01
Z. Pochylý. (Abs.)	24
aqueous ammonia. Anon. (Abs.).	286
beet. S. F. Timoshenko and G. I.	
- effect of extraneous matter O	121
Böhm. (Abs.)	184
A I Slyn'ko et al (Abs)	153
clarifier mud transfer. D.R. Paddock	100
priming for pan vacuum creation.	84
M. L. Vaisman. (Abs.)	278
usion, A. Emmerich et al. (Abs.)	380
asion: II. Emmorich & u. (Abs.)	000
Raffinose: in beet, effect of harvest	
date and nitrogen. R. C. Zielke	
and F. W. Snyder. (Abs.)	125
Büsching. (Abs.)	28
effect on beet sugar determination.	
Costesso. (Abs.)	347
- cane processing and molasses ex-	110
- molasses sugar extraction. J.	119
Degeest et al. (Abs.)	5, 121
tion. P. Devillers et al. (Abs.)	249
G. W. Maag and G. H. Sisler	250
- and molasses sugar extraction.	347
R. A. McGinnis. (Abs.)	121
Raw sugar: analysis. R. Lees. (N.B.)	282
M. Muro M. (Abs.)	124
chromium determination. W. Wolf	97
colorants. F. G. Carpenter and	21
M. A. Clarke. (Abs.) and colour. effect of clarification and	123
non-sugars recirculation. N. L. C.	000
- formation, effect of cane steam	309
treatment. N. H. Smith	259
- prevention. L. Bobrovnik et al. - measurement. M. Muro M. and C.	245
Silverio R. (Abs.)	125
(N.C.) 98, 161, 226	3, 258
quota reductions. (Brev.).	384
Shafiq and R. Samaniego. (Abs.)	27
phosphate and alcoholinsolubles.	314
heavy metals determination. P.	0.07
Pommez and R. Cormier. (Abs.) itaconic acid manufacture. M	283
Nakagawa et al. (Abs.)	252
production from crude sugar in	196
Mexico. B. A. Smith et al. (Abs.)	277
refining quality. J. Bruin. (Abs.).	23
F. H. C. Kelly	199
J. C. P. Chen and J. J. J.	
Chen. (Abs.)	3, 188
reflectance measurement and pol	104
control. J. H. King. (Abs.)	92
M. Matic. (Abs.)	314
- determination. G. el-K. Sayed et	157
UK imports. (N.C.)	66
us import duty. (N.C.)	2, 354
Charles. (Abs.)	283
world prices. (N.C.) 2, 98, 130, 194 258, 289, 325	, 225, 2, 353
chart. (Brev.)	127
and Dominican Republic selling policy. (N.C.)	193
- and US prices chart. (Brev.)	224
handling; Bulk storage: Colour:	
Control, Chemical; Crystallization;	
arization; Refinerv and Sugar	
Reducing sugars: cane deterioration	090
N. Ramamoorthy et al. (Abs.)	220
G. el-K. Saved et al. (Abs.).	157

	PAGE
Reducing sugars: content in beet, effect of harvest	
date and nitrogen. R. C. Zielke and F. W. Snyder. (Abs.)	125
juice, effect of liming. V. A. Golybin and S. Z. Ivanov	120
- cane, effect of lodging. F. A. Fogliata and D. M. Morin. (Abs.)	303
<ul> <li>– juice, sugar and molasses. L. K. Kirby. (Abs.)</li> </ul>	92
- molasses. A. Acosta. (Abs.) - $-$ E. F. Unsworth and P. O.	188
- reduction. S. Bose <i>et al.</i> (Abs.)	$\begin{array}{c} 349 \\ 302 \end{array}$
- gur. B. Singh <i>et al.</i> (Abs.) - stored beet thick juice. T. P.	92
degradation and colour formation.	, 120
- in evaporation. K. N. Paul. (Abs.) determination S. Honda <i>et al.</i> (Abs.)	308
- R. Lees. (N.B.).	282 92
J. Lenczewski. (Abs.) effect on carbonatation juice purity.	124
P. Henneton. (Abs.) – molasses formation. V. A. Golybin	187
et al. (Abs.)	, 249 251
ratio to ash and molasses exhaustion. G. F. Fundora. (Abs.)	151
see also Dextrose; Invert sugar; Levulose and Sugars	000
chromium determination. W. Wolf	282
colorants. F. G. Carpenter and M. A.	199
colour measurement. M. Muro M.	125
<ul> <li>prediction from raw sugar colour.</li> <li>D. F. Charles. (Abs.).</li> </ul>	283
crystal growth. J. Malczewski. (Abs.) - length and width dissolution rates.	249
L. Carrazana R. et al. (Abs.) – size control. R. Esparza. (Abs.).	$\frac{124}{219}$
floc determination. J. R. Johnson – formation. E. J. Roberts <i>et al</i>	$91 \\ 326$
fluidized bed treatment. L. Neužil and E. Kostelková. (Abs.)	218
pesticide residue determination. T. Miki. (Abs.).	156
M. A. Mohamed et al.	355
uses. M. J. Kort. (N.B.)	58
Tablet sugar and White sugar	000
in Canada. Anon	280 235 197
- US. (Brev.).	256
V. Valter. (Abs.) energy consumption. M. Rychkun	$123 \\ 57$
equipment heat insulation. A. N. Dul'dier and D. K. Dunaevskii	123
- modifications. Technical Staff, CSR Ltd. (Abs.)	57
in Iraq. J. Molenda and W. Lekawski pan vacuum creation. M. L. Vaisman	$\frac{120}{278}$
process algorithm construction for	254
Fernandes. (Abs.)	190
raw sugar weighers. W. L. Reed	57
Clarke. (Abs.) – – utilization. J. D. Rvan. (Abs.)	57 57
strikes in Canada. (N.C.) Sudan project. (Brev.)	98 237
US. Anon. (Abs.)valves. Anon. (Abs.)	$123 \\ 214$
waste water treatment. K. Kashi- mura and Y. Yoshida. (Abs.)	154
- $        -$	154
cane sugar in UK vs. beet sugar	314
chloride ion-selective electrode appli-	194
Pommez. (Abs.)	283
F. G. Carpenter and E. J. Rob- erts. (Abs.)	251
defeco-melt phosflotation. A. C. Chatterjee. (Abs.)	317
effect of silicon. M. A. Clarke. (Abs.) liquor carbonatation. I. Galbán	$283 \\ 314$
R. T. Mishchuk and A. Y. Zagorul'ko. (Abs.)	219
<ul> <li>J. P. Murray and F. M. Runggas</li> <li>and decolorization. T. Yamane</li> </ul>	219
effect of starch. E. Whayman	154
- regenerated lime. S. Omori	154
M. A. Clarke. (Abs.)	$\frac{123}{314}$
and decolorization. (T.N.) flocculation aid	286 6, 96

	PAGE
Refining: liquor clarification with flocculation aid. M. C. Bennett.	315
<ul> <li>colour determination, A. Y. Zag- orul'ko and L. A. Korobeinikova</li> <li>and fluorescence reduction D. F.</li> </ul>	316
Charles. (Abs.)	$\frac{283}{315}$
- ion exchange treatment. S. Fujii et al. (Abs.)	123
- treatment. M. R. Irimia. (Abs.) losses in syrup decolorization and boiling, effect of pH and tempera-	123
ture. S. A. Brenman et al. (Abs.) melt house process control. A. O.	249
Maylott and J. W. deCelis. (Abs.) phosphate effect and removal. C. C. (thou, (Abs.)	315
starch occurrence, effect and elim- ination. J. B. Alexander and M.	014
Matic. (Abs.) sugar melting. V. Urban. (Abs.)	314 219
in UK. F. Lewis. (N.B.)	345 7, 322
in USSR. Y. Y. Lazhe. (Abs.) see also Affination; Bone char; Carbon,	123
and Syrup Réunion: cane agriculture. Anon	365
<ul> <li>breeding, Anon. (Abs.)</li></ul>	$\frac{76}{3,254}$
- mechanical narvesting. Anon - varietal trials. Anon. (Abs.) C. H. de Fraisse. (Abs.)	77 77 17
fertilizer trials. R. Dadent and C. H. de Fraisse. (Abs.)	17
<ul> <li>- C. H. de Fraisse. (Abs.)</li> <li>- G. Loynet and C. H. de Fraisse</li> <li>Bhodesia: cane varietal trials C. J.</li> </ul>	$17 \\ 17$
James. (Abs.)	$\frac{175}{320}$
weather and irrigation. K. C. Leverington and D. R. Ridge	49
J. Navarro and J. Piñol. (Abs.) manufacture, W. H. Kampen (Abs.)	$285 \\ 190$
Rumania: beet agriculture. Anon new sugar factories. (Brev.)	$\begin{array}{r}149\\64\end{array}$
Salvador: new sugar factory. (N.C.)	34
- industry. A. Viton. (Abs.) "Unigrator" sales. (Brev.)	$128 \\ 119 \\ 127$
Saponin: floc determination in refined sugar solution. J. R. Johnson	91
flume-wash water foaming. A. G. Kirichenko et al. (Abs.)	342
in boilers, reduction. E. D. Yarmilko distillation columns, composition.	247
L. G. de Souza <i>et al.</i> (Abs.) evaporators, composition and reduc-	349
- effect on heat transfer. K. Mosich formation, effect of juice micro-organ-	343
isms and clarification. R. W. Kuhlmann et al. (Abs.)	53
<ul> <li>evaporators. P. Deviners et al</li> <li>effect of juice ash components.</li> <li>P Devillers et al. (Abs.)</li> </ul>	377
<ul> <li>and heat transfer. T. Baloh. (Abs.)</li> <li>irrigation equipment. D. R. Ridge</li> </ul>	280
juice heater, thickness determination.	50 311
reduction in distillery columns. J. Navarro and J. Piñol. (Abs.)	285
- evaporators. P. Devillers et al I. M. Fedotkin et al. (Abs.) S. L. Tkrachenko et al. (Abs.)	120 88 917
<ul> <li>- G. Vernois. (Abs.)</li> <li>- clarification with magnesium</li> </ul>	247
oxide. K. W. R. Schoenrock et al. (Abs.)	56
<ul> <li> J. J. Zwaardemaker. (Abs.)</li> <li>- and distillation columns. E. Villamil and J. A. Casey</li> </ul>	23
removal. (T.N.). - R. S. Patterson. (Abs.)	$350 \\ 123 \\ 101$
- evaporators. Anon. (Abs.) and pans. B. M. Rodriguez Screens. L. Pálfalvai. (Abs.)	$\frac{121}{119}$ 246
see also Centrifugals Singapore sugar imports 1975. (Brev.)	192
encies. R. Vanstallen. (Abs.) air, moisture and temperature effects	82
on cane roots. J. F. Usher. (Abs.) analysis. M. L. Agarwal et al. (Abs.)	$\begin{array}{c} 209 \\ 300 \end{array}$
bagasse furnace emission. C. C. Watson. (Abs.) beet nematodes incidence Anon	151
- processing quality. M. Z. Khelem- skii et al. (Abs.)	52
<ul> <li>virus yellows control. Anon. (Abs.)</li> <li>yield and quality. M. Mortazavi et al. (Abs.)</li> </ul>	149 21

	PAGE
Soil: cane chlorosis. U. S. Singh and P. D. Bajpai. (Abs.)	48
- land levelling. J. F. Reimers.	78
Anon. (Abs.) planning. A. I. Linedale. (Abs.)	332 78
for mechanization and drain- age. O. P. Landrey et al. 17	4, 303
preparation. L. L. Lauden	175
- root and stubble yields. L. E. Golden, (Abs.)	145
compaction, effect of cane loaders and cultivation, N. R. Maclean	335
conditions and beet growth. W. Czeratzki and E. Ruhm. (Abs.)	115
quality. M. G. Frakes. (Abs.) conservation, structure and drain	371
maintenance. C. R. Henkel. (Abs.) in Cuba. J. Alomá and J. Cuellar.	332 208
cultivation. C. Kester and F. Kirk8 - E. Meyer and A. G. de Beer 17	3,305 4,302
- costs. L. V. Gentil. (N.B.) - number and cane yield. R. J.	58
Matherne. (Abs.) – and properties. A. A. Casagrande	179
et al. (Abs.) deep ripping and gypsum effects on	77
cane. H. S. Ibrahim drainage. R. H. Belcher. (Abs.).	$     165 \\     176   $
<ul> <li>C.R. Camp and C. E. Carter. (Abs.)</li> <li>A. I. Linedale. (Abs.)</li> </ul>	$177 \\ 334$
- A. A. Mactal. (Abs.) - pipes. G. Kingston. (Abs.)	$\frac{301}{270}$
<ul> <li>– sand removal. C. C. Ho. (Abs.)</li> <li>– research in Taiwan. S. J. Yang</li> </ul>	$\frac{112}{367}$
- and salinity reduction. W. T. Su - $ K$ . W. Yao. (Abs.)	$\frac{112}{112}$
erosion. G. D. Jacklin. (Abs.) – prevention. E. F. Copley. (Abs.)	49 78
– – R. P. Humbert. (Abs.) – – T. Linedale. (Abs.)	300 270
H. S. Pink. (Abs.)	0,272
zenko. (Abs.)	$337 \\ 48,77$
J. Wright, (Abs.). effect of drip irrigation. M. C.	331
Tulang and J. W. Bedish with rye. W. J. A. Ascroft-Leigh	80 242
conductivity. M. A. Johnston.	174
H. J. Müller. (Abs.).	274
fungi. M. M. H. Wu et al. (Abs.).	381
- and cane growth. S. M. Yang - effect of lime and green manure.	113
hardpan. P. Lefevre. (Abs.)	304
liming and beet yield and sugar con-	200
- effect on cane, L. E. Golden, (Abs.)	112
micro-organisms and nitrification,	210
monitoring stations in Australia. A.	240
in Morocco. G. Schmidt. (Abs.)	82
quality, J. C. P. Chen and R. W. Picou, (Abs.).	150
<ul> <li>polyethylene. S. Rau and E. W.</li> <li>Millard. (Abs.)</li> </ul>	175
- trash and cane borer damage. Anon. (Abs.)	240
incidence. A. Schaaf. (Abs.) yield. B. K. Mathur. (Abs.)	$\frac{110}{239}$
– – and nutrients. H. H. Hagihara nutrient availability and determina-	80
– – effect of filter cake. L. E. Golden	$\frac{21}{114}$
<ul> <li>– – lime. C. von Kessel. (Abs.)</li> <li>– extraction by cane. H. J. Andreis</li> </ul>	115 91
– – – F. A. Fogliata (Abs.) particles and drip irrigation tube	79
Gibson. (Abs.)	80
G. D. Thompson. (Abs.)	272 15
- and potassium determination. w. Köster. (Abs.)	307
preparation and cane extraneous	90
properties and beet yield. I. Gutm-	147
- effect of cane agriculture. N. R.	276
continuous cane cropping. Anon.	206
neroscide performance. D. Traveller and J. E. Hull	305
- South Africa. Anon. (N.B.)	58 59
K. D. Beatty and C. F. Ehlig.	19
sandy land and cane yield. G.	170
silicon and beet tops quality. G. H.	110

	PAGE
Soil: straw incorporation. Anon. (Abs.)	371
O. Bolten. (Abs.) structure and cane growth. P. R. Downs. (Abs.)	115 78
<ul> <li>potassium, calcium and chloride contents. R. P. DeStefano</li> </ul>	178
subsoiling. G. Spoor. (Abs.) surface irregularities and beet plant-	371
ing. C. de Zanche and G. Baraldi tidal land reclamation in Taiwan. J. F. Williams (Abs.)	305 336
tillage reduction effects. N. Rozeff type and nematode development.	80
water and beet leaf miner incidence. M. Kubacka-Szmidtgal. (Abs.).	276
<ul> <li>- seed germination. P. Kolago</li> <li>- herbicide performance. Anon</li> <li>bolding capacity. P. V. Chan and</li> </ul>	$\frac{306}{276}$
<ul> <li>L. Li Pi Shan. (Abs.)</li> <li>reduction and cane yield and quality M V Bao and S H</li> </ul>	238
Rao. (Abs.). – table height and cane yield. C. E.	300
Carter and J. M. Floyd. (Abs.) zinc extraction. M. M. Kao and T. C. Juang (Abs.)	177
see also Fertilizers; Irrigation and Pests	10
Sorghum: leafhopper hosts. R. Out- ridge and D. S. Teakle. (Abs.)	370
gnetti. (Abs.)	219
ture. (Brev.)	$2,384 \\ 175$
<ul> <li>mechanical harvesting. S. W. D.</li> <li>Baxter. (Abs.)</li> <li> and new varieties. G. Thomp-</li> </ul>	240
son. (Abs.). – varietal trials. D. B. Hellmann.	$\begin{array}{r} 79 \\ 175 \\ \end{array}$
Sugar Association Experiment Sta- tion. Anon. (N.B.)	23 59
- industry. (Brev.) - production. G. B. Hagelberg	$159 \\ 155$
<ul> <li>statistics. (Stat.)</li> <li>vear book 1974-75. Anon. (N.B.)</li> </ul>	$\frac{320}{282}$
Tongaat Group Ltd. report 1976 trade agreement with Japan. (Brev.)	320 64
ington and D. R. Ridge. (Abs.).	49
sugar production. (N.C.)	258
Starch: components and iodine complex spectra. E. Whayman and A. L.	192
Willersdorf. content and alpha-amylase activity	67
- in cane, effect of deterioration after harvesting. G. el-K. Sayed	107
et al. (Abs.) determination in cane sugar factory	157
- in condensate. Y. Takatori <i>et al.</i> effect on carbonatation. E. Whay-	157
man and A. L. Willersdorf - raw sugar filtrability. C. C. Chou M. Shafig and R. Samaniego	99     314     27
elimination. (T.N.)	$286 \\ 213$
G. el-K. Sayed <i>et al.</i> (Abs.). isolation from cane and iodine affinity.	150
occurrence, effect and elimination. J. B. Alexander and M. Matic	314
Statistics: Argentina sugar Australia sugar exports	$160 \\ 288$
Barbados sugar Belgium/Luxembourg sugar imports	287
Brazil sugar exports Chile sugar	$159 \\ 351$
imports Cuba sugar exports	96 254
Europe beet area 1976	160 288
Finland sugar imports and exports Greece sugar imports	192 352
Guatemala sugar exports Holland sugar imports and exports	96 255 197
India sugar exports	256 352
Mauritius sugar Norway sugar imports	$\begin{array}{c} 254 \\ 224 \end{array}$
Poland sugar exports	384 32
South Africa sugar	320 256
Thailand sugar exports	$4,159 \\ 384$
UK sugar imports and exports Uruguay sugar	$\substack{128\\63}$
US sugar imports	$\frac{191}{320}$
1976/77	$3, 319 \\ 383$

I	PAGE
Steam: air content and heat transfer. R. Wasmund. (Abs.)	248
ing disease control. L. L. Lauden	16
juice and sugar. N. H. Smith condensate entrainment reduction.	259
V. I. Dovgopol et al. (Abs.) consumption in alcohol manufacture.	342
A. C. Chatterjee and B. M. Dutt - in factory and refinery. M. Rych-	349
kun. (Abs.). - white sugar manufacture. S.	57
evaporator requirements calculation.	190
factory requirements. M. L. Vais-	84 917
generation efficiency. E. G. Clarke – effect of Green's economizer.	57
R. P. Mittal. (Abs.) - oil consumption. P. Hristodoulou	$\frac{214}{377}$
heat upgrading for evaporation. A. Fényes. (Abs.)	246
vacuum. V. N. Gorokh and K. O.	349
injection in boiling and massecuite circulation. G. Aleman. (Abs.).	214
- centrifugals. D. Ahari and J. Genotelle. (Abs.)	215
<ul> <li>sugar solution heat transfer. S. M. Konstantinov and N. N. Bezpal'-</li> </ul>	
ko. (Abs.) output of bagasse boiler. J. M.	376
Steward and W. B. Crawford premelter feed automatic control.	85
A. O. Maylott and J. W. dettells pressure effect on crystallization in boiling V. O. Shtangeau et al	315
stripping still for condensate alcohol removal J. D. Blake <i>et al.</i>	291
traps. A. I. Khomenko. (Abs.) turbine failures. R. S. Shukla. (Abs.)	247
- power generation. S. V. Wildman and T. J. Goldsmith. (Abs.).	86
turbo-alternator governing and power flow control. R. J. McIntyre	54
utilization optimization. A. Kub- asiewicz et al. (Abs.)	122
- in rennery, J. D. Ryan. (Aos.) see also Boilers; Furnaces, Bagasse;	97
Storage: bagasse. Anon. (Abs.)	158
- pulp. H. Schnelle. (Abs.)	381 158
<ul> <li>bin capacity calculation. M. G.</li> <li>Parfenopulo and N. E. Kara-</li> </ul>	
and sugar explosion hazards.	61
- thick juice. Anon. (Abs.)	186
M. Moore and J. Karr. (Abs.) E. Reinefeld, (Abs.)	56 120
- $        -$	$57 \\ 217$
pipeline pressure loss calcu- lation. E. Manzke and S.	0.00
properties. T. P.Khvalkovskii	279
cane molasses Brix variation. P.	40
- syrup. F. Cordovez Z. (Abs.) mechanization N A Emel'vanoy	213 375
molasses degradation. A. D. Kova- lenko. (Abs.)	190
<ul> <li>effect on citric acid manufacture.</li> <li>J. Kovats and Z. Niestrawski.</li> </ul>	285
tion. L. Bobrovnik et al. (Abs.).	245
sugar. V. I. Vasil'ev et al. (Abs.)	376
Kichigin et al. (Abs.)	375 375
J. Orlowska. (Abs.) beet cooling rate. F. W. Bakker-	25
Arkema et al. (Abs.)	24
and losses. R. de Vletter and W yan Gils (Abs.)	121
F. Kapol. (Abs.)	122
Hobbis and L. Batterman. (Abs.) effect of agronomic factors. M.	92
Martens. (Abs.)	83
economics. I. B. Romashkevich	280
effect on beet sugar yield. Y. D.	010
- extraneous matter. Anon. (Abs.) 217, field clamp cover. D. Charlesworth	248
protection against frost. A. Vigoureux. (Abs.)	181
siting and loading. M. Mawby in France. J. N. Doucerain. (Abs.)	82 215

	PAGE
Storage, Beet: lime application. N. M. Ignatov	970
- sprayer. A. M. Elagin <i>et al.</i> losses J. B. Fitts. (Abs.)	311 377
- W. Trzciński and E. Bakowska - effect of rotation vs. monoculture.	279
N. A. Al'dekov and N. F. Kostin - topping. W. R. Akeson et al	212 180
- prediction. M. G. Barnes et al - reduction with chemicals. M. Z. Kholomekii et al. (Abs.)	181
- by growth regulator. A. H. Freytag. (Abs.)	19
pile covering. W. R. Akeson and S. D. Fox. (Abs.)	180
W. R. Akeson et al. (Abs.) Phoma betae in extraneous matter.	180
pile mangold fly and black bean aphid numbers. H. Bernardová et al	52
- ventilation. R. A. Fogg. (Abs.) and moistening. M. Z. Khelem-	212
skii et al. (Abs.)	311 376
- N. A. Emel'yanov et al. (Abs.).	312
resin. S. Fujii et al. (Abs.)	$123 \\ 63$
chemistry developments. M. J. Kort. (N.B.)	58
crystal length and width dissolution rates. L. Carrazana R. et al. (Abs.)	124
decomposition, effect of pH and temperature. A. R. Sapronov and P. A. Kolcheva (Abs)	60
- and molasses formation. V. A. Golybin <i>et al.</i> (Abs.).	92
determination. J. Bruijn. (Abs.) - P. Devillers et al. (Abs.)91, 93	23 3, 348
- G. Pollach. (Abs.) - J. Sagel. (Abs.)	60 317 2 247
- In beet. K. Male et al. (Abs.). For - K. W. R. Schoenrock and D. Costesso. (Abs.)	347
<ul> <li>cane molasses. M. Kort et al. (Abs.)</li> <li>Steffen filtrate. J. Karr and L. W.</li> </ul>	189
Norman. (Abs.) diffusion. M. N. Dadenkova et al	125 318
- A. Emmerich et al. (Abs.) - F. Schneider et al. (Abs.)	347
campaign length. M. N. Daden- kova et al. (Abs.)	156
dissociation constants. F. Coccioli and M. Vicedomini. (Abs.)	249
and L. Leblanc. (Abs.)	382
Nishimoto. (Abs.)	$\frac{190}{252}$
gum manufacture. W. P. Chen and C. H. Tsou. (Abs.)	381
W. P. Chen <i>et al.</i> (Abs.) interaction with salts and molasses	382 91
inversion, effect of hydroxy acid salts. S. Z. Ivanov et al. (Abs.)	250
- in evaporation. K. N. Paul levulinic and formic acids manu-	308
H. F. Rase. (Abs.)	61 251
melt composition, effect of heat. W. Mauch and S. Asseily. (Abs.)	249
solubility, effect of dextrose. V. I. Buravleva et al. (Abs.)	316
and sulphite. S. Z. Ivanov	93
solution density and refractive index, effect of potassium chloride. M. I.	
Daishev and N. V. Orlova. (Abs.) - free water specific volume and	316
and N. V. Orlova. (Abs.)	$\frac{125}{28}$
- refractive index temperature adjustments, D. Basker	359
- wetting angle. K. Ciž. (Abs.) transfer in electrodialysis, mathe-	220
chenko et al. (Abs.).	247
Polarization; Sugar and Sugars Sudan: deep ripping and gypsum effects	
on cane yield. H. S. Ibrahim sugar factory and refinery project.	165 237
- industry expansion plans. (N.C.) Sugar: accumulation in beet. J. Guern	34 339 218
ash and reducing sugars contents. L. K. Kirby, (Abs.)	92
y Azúcar Yearbook 1975. D. Smith balance calculation. A. Kubasiewicz	58
and W. Lekawski. (Abs.) beet and cane differentiation. J. Bricout and J. C. Fontes (Abs.)	186 98
brown sugar manufacture, effect of pineapple disease. S. K. Manzo.	143
buffer stocks financing. (N.C.) chloride and phosphate determina-	290

PAGE

	PAGE
Sugar: classification in fluidized bed. L. Neužil and L. Brož. (Abs.)	246
colorants. V. Prey and H. Wesner consumption in EEC. (N.C.)	91, 93 354
content in beet root, crown and collar. K. Fábián and J. Kollár. (Abs.)	188
- cane molasses. E. F. Unsworth and P. O. Osuji. (Abs.)	349
- condensate. J. D. Blake	131
L. Carrazana R. and A. P. Koz-	051
- size analysis. D. Toningerová and	201
crystallization in fluidized bed. E. E.	157
determination in beet brei. I. A.	153
effect of raffinose. P. Devillers	156
- cane molasses. E. C. Vignes. (Abs.)	249 220
- factory products. A. Y. Zagorul'ko et al. (Abs.)	316
dryer. W. Stankiewicz et al. (Abs.) economic pocket book 1975/76. K.	342
Dankowski et al. (N.B.) effect on human diet and health.	59
Anon. (N.B.) explosions, G. T. Dirkx, (Abs.)	282 310
exporters' meetings. (N.C.). 130, 255 handling, N.M. Kichigin <i>et al.</i> (Abs.)	8, 354
heavy metals determination. N. M.	380
Industry Technologists Inc. meet-	7 995
international economic yearbook and	50
loss calculation. A. R. Sapronov	59
market in Hong Kong. (Brev.)	30
– automatic Brix control. Anon	$\frac{119}{25}$
melting. V. Urban. (Abs.) minor constituents determination.	219
M. A. Godshall and E. J. Roberts moisture determination. F. Schneider	283
et al. (Abs.)	3, 249
Kiely and M. O'Sullivan. (Abs.).	317
quick-dissolving sugar manufacture.	280
solution colorant extraction. F. G.	200
- crystal content and crystallization	251
- fermentation and alcohol manu-	316
R. K. Finn. (Abs.)	61
and F. G. Carpenter. (Abs.).	283
- now measurement. V. P. Klochkov et al. (Abs.)	93
- heat transfer, effect of pulsed flow. I. M. Fedotkin and I. V. Kos-	101111
- molar concentration calculation.	281
D. E. Sinat-Radchenko <i>et al</i> – rheological properties. K. Číž	346 348
<ul> <li>thermo-physical properties calcu- lation. D. E. Sinat-Radchenko</li> </ul>	
and V. D. Popov. (Abs.) storage. V. I. Vasil'ev et al. (Abs.).	157 376
surface-active agent manufacture	66
Barbados. (Brev.)	159
Sang et al. (Abs.)	346
- demand. (N.C.)	, 290 321
- expansion plans. H. Ahlfeld	345 282
- production. G. B. Hagelberg 1975/76. 1, 31, 65, 95, 194, 223, 289	155, 319
year book 1974. Anon. (N.B.)	, 383 59
Devillers et al. (Abs.)	60
- and pol calculation. E. Rodriguez C. et al. (Abs.)	118
see also Bulk handling; Bulk storage; Crystallization; Liquid sugar;	
Polarization; Prices; Raw sugar; Refined sugar; Sucrose and White	
sugar Sugars: behaviour in invert surup	
V. S. Velasco and J. F. Dowling.	284
determination. S. A. Hansen. (Abs.)	157
- S. E. Kharin et al. (Abs.)	125
- D. Nurok and J. T. Reardon. (Abs.)	28 189
man. (Abs.)	92
- molasses. A. Borys and S. J.	156
dextrose isomerization. S. Fujii et al.	157 123
disaccharide formation by micro- organism. W. Mauch and F. el	
Aama. (Abs.)	284

Sugars: kestose effect on sugar deter-	
Maag and G. H. Sisler. (Abs.)	250
<ul> <li>preparation and analysis. J. Bruijn</li> </ul>	23
asse hydrolysis. H. Kollner and	
R. Lopez P. (Abs.)	222
ratio and acid beverage floc forma-	
tion. E. J. Roberts et al.	326
- M. Hoton-Dorge. (Abs.)	348
see also Dextrose; Fermentation;	
saccharides; Raffinose; Reducing	
sugars and Sucrose	
tion for white sugar manufacture.	
L. D. Bobrovnik and L. P. Kotel'-	159
M. Cordoves et al. (Abs.)	117
juice sulphite determination, effect	950
white sugar manufactore. S. Ortega	150
Surface-active agents: in boiling. K.	918
- Y. G. Ropotenko et al. (Abs.)	88
- and raw sugar yield and colour.	200
foam reduction in beet diffusion.	303
V. N. Borzdaya <i>et al.</i> (Abs.) manufacture from sugar (NC)	87
Surinam new sugar factories. (Brev.) 19	1, 256
Sweden: sugar imports 1975 (Brev.)	162
- production 1975/76. (Brev.)	98
tablet sugar manufacture. Anon	232
Switzerland: sugar imports 1975. (Brev.)	192
- production 1975/76. (Brev.) Syria new sugar factory (Brev.)	192
Syrup: analysis. M. Kiely and M.	04
- R. Lees. (N.B.)	317 282
back-boiling control by chloride	
Brown and P. Pommez. (Abs.).	283
Brix and temperature automatic con-	200
colour measurement. M. Muro M.	87
and C. Silverio R. (Abs.)	125
- removal. D. Herve. (Abs.)	56 215
sucrose losses. S. A. Brenman	
dextran reduction. P. Hidi and R.	249
Staker. (Abs.)	85
in EEC. (N.C.)	7. 321
invert, sugars behaviour. V. S.	.,
lime salts determination. L. G.	284
Kalinenko. (Abs.)	156
- molasses yield optimization. V. A.	
Pugachev et al. (Abs.)	278
et al. (Abs.)	157
storage. F. Cordovez Z. (Abs.)	213
Sevryuk. (Abs.)	248
The provide the second	191
see also Invert sugar; Juice, Beet;	, 141
Liquid sugar and Refining	
Tablet sugar: manufacture. Anon.	232
- A. Birch-Iensen. (Abs.)	311
- F. A. Kammerer. (Abs.)	343
Taiwan: bagasse fire. (Brev.)	64
cane agricultural research. S. J.	23
Yang. (Abs.)	367
- mechanical planting and harvest-	367
ing. Anon. (Abs.)	367
- pest and disease research. 1. S. Pan. (Abs.)	367
- transport. Anon. (Abs.)	367
effective rainfall H Chu et al (Abs)	127
chective rannati. Ar. end te at. (Abb.)	76
irrigation well construction. Y. Chu	76 367 254
irrigation well construction. Y. Chu sugar exports. (Stat.)	76 367 256 374
irrigation well construction. Y. Chu sugar exports. (Stat.) - factories. Anon. (Abs.) - research and development. C. J. Ju (Abs.)	76 367 256 374
<ul> <li>irrigation well construction. Y. Chu sugar exports. (Stat.)</li> <li>- factories. Anon. (Abs.).</li> <li>- research and development. C. J. Lu. (Abs.)</li> <li>tidal jand reclamation. J. F. Williams</li> </ul>	76 367 256 374 374 336
irrigation well construction. Y. Chu sugar exports. (Stat). - factories. Anon. (Abs.) - research and development. C. J. Lu. (Abs.) tidal land reclamation. J. F. Williams Tanzania: Msolwa sugar factory pro- duction 1974/75. N 0.	76 367 256 374 374 336
irrigation well construction. Y. Chu sugar exports. (Stat.) - factories. Anon. (Abs.) - research and development. C. J. tida. (Abs.) - tidaland reclamation. J. F. Williams Tanzania: Molwa sugar factory pro- duction 1974/75. (N.C.) sugar pians. (Brev.)	76 367 256 374 374 336 34 351
irrigation well construction. Y. Chu sugar exports. (Stat.)	76 367 256 374 374 336 34 351 288
irrigation well construction. Y. Chu sugar exports. (Stat.) - factories. Anon. (Abs.) - research and development. C. J. Lu. (Abs.) - tidal land reclamation. J. F. Williams Tanzania: Msolwa sugar factory pro- duction 1974/75. (N.C.) - werangde HVA.Mij. N.V. report 1975. (Brev.). Tate & Jyle Lid.; acquisition of Manbré	76 367 256 374 374 336 34 351 288
irrigation well construction. Y. Chu sugar exports. (Stat). - factories. Anon. (Abs.) - research and development. C. J. Lu. (Abs.). tidal land reclamation. J. F. Williams Tanzania: Msolwa sugar factory pro- duction 1974/75. (N.C.) sugar plans. (Brev.) Verenigde HVA.Mij. N.V. report 1975. (Brev.)	76 367 256 374 374 336 34 351 288 322

	PAGE
Thailand: sugar exports. (Stat.)6	64, 159
Suksupha	6, 297
- production 1975/76. (Brev.)	226
white leaf-resistant cane variety	64
Togo sugar project. (Brev.) Tongaat Group Ltd report 1976	59
Trade Notices: Alumina Co. Ltd.	62
Babcock	62
Claas Maschinenfabrik GmbH	350
Ewart Chambelt Co. Ltd28 Fabcon International Inc	6, 350
J & L/Honiron Engineering Co. Inc.	350
May & Baker Ltd	62 350
Arthur G. McKee & Co.	350
Poly Filters Inc	6, 350 62
Sartorius-Membranfilter GmbH	62
Scaleaway Tools & Equipment Ltd.	62 350
Stord Bartz Industri A/S.	350
Stork-Amsterdam B.V.	62 350
Tate & Lyle Engineering Ltd	350
Thames Packaging Equipment Co	286
Unice Machine Co	62
Transport: beet pulp, effect of vibra-	62
tions. M. G. Parfenopulo and	01
molasses. A. C. Chatterjee and M. B.	01
Dutt. (Abs.)	381
noise reduction. G. Navarre. (Abs.)	117
sugar bulk carriers. N. M. Kichigin	105
- containerization. Anon. (Abs.)	277
syrup. E. E. Belokon' and V. K. Sevryuk (Abs.)	248
white sugar carrier. N. M. Kichigin	240
Transport, Beet, C. Heller, (Abs.)	376
automatic tailgate openers. G. A.	~~~
effect on beet storage and processing	211
quality. M. Martens. (Abs.)	83
loading. M. Mawby. (Abs.)	82
- A. Vigoureux. (Abs.) - unloading and beet damage. V. I.	149
Vasil'ev and N. M. Kichigin.	121
losses, F. Kapol. (Abs.)	122
Transport, Cane. H. T. E. Smith. (Abs.)	79
R. B. V. Toledo. (Abs.)	80
cane land planning. A. I. Linedale	78
- J. Giardina. (Abs.)	177
delays, R. G. Hoekstra, (Abs.)	114 151
green cane. J. R. Orsenigo. (Abs.).	179
Marshall. (Abs.)	81
infield, order from Iran. (Brev.)	286
railway maintenance "sled". G. B.	99
standards B N Cullen and B A	335
James. (Abs.)	335
- train handling. W. A. Greenwood and J. B. Haves. (Abs.)	51
running simulation. E. E.	
simulation and cost analysis. B. J.	91
Cochran and R. W. Whaney	208
trailer. A. G. de Beer. (Abs.)	302
- brakes. Anon. (Abs.)	366
in US. J. E. Clayton and B. R.	47
Eiland. (Abs.)	369
culation. T. C. Ripoli and L. A.	
Trinidad: cane varieties. Anon. (Abs.)	368 239
Caroni Ltd. nationalization. (Brev.)	255
sugar exports. (Stat.)	384
Turbidity: cane juice, effect of surface-	900
- molasses Brix determination. P.	909
Mellet. (Abs.)	93
A. Borys. (Abs.)	284
A. Y. Zagorul'ko and L. A. Koro-	
beinikova. (Abs.)	316

....

Union of Soviet Socialist Republics; aid	
to Cuban sugar industry. (Brev.)	127
beet agriculture and delivery im-	
provements. (Brev.)	287

PAGE

:	PAGE
Union of Soviet Socialist Republics:	
beet payment. M. N. Barko and F. I. Khamaza. (Abs.)	52
- production 1974. (N.C.)	33
plans. (Brev.)	191
refining. Y. Y. Lazhe. (Abs.)	123
sugar imports. (N.C.)	130 320
- industry, J. Moraghan. (Abs.).	90
et al. (Abs.)	378
- demonstrations. (Brev.)	254
- price 1977. (N.C.)	322
- sugar producers vs. cane sugar	101
- varietal trials. D. S. Kimber and	194
S. F. H. McCullagh. (Abs.) L. A. Willey and S. F. H.	371
McCullagh. (Abs.)	82
refining rationalization. (N.C.)257	, 322
Sugar Board annual report 1974	33
dissolution. (Brev.)	32
- imports and exports	, 128
- industry, F. Lewis, (N.B.)	128
1976/77. (Brev.)	352
Ltd.; Europe, EEC and Tate &	
United States of America: Association	
meeting 1976. (Brev.)	127
- sugar production. R. C. Zielke	150
- varietal trials. R. C. Zielke. (Abs.)	$371 \\ 364$
cane mechanical harvesting and	003
Eiland. (Abs.)	369
Colorado sugar factory closure flocculation aid use in refining. (Brev.)	288
Florida cane breeding. (Brev.)	320
Walker. (Abs.)	114
mechanical harvesting. J. E. Clayton and W. C. Hedick.	144
- - varieties. B. J. Bourne. (Abs.)	$\frac{112}{142}$
- sugar industry. P. J. Thielen	119
Georgia Savannah refinery. Anon	12:
Gilmore sugar manual. C. M. McKay International Sugar Agreement part-	155
icipation. (N.C.)	$, 353 \\ 364$
R. D. Breaux. (Abs.)	$113 \\ 145$
P. H. Dunckelman and M. A.	005
$= L. L. Lauden. (Abs.) \dots$	365
harvesting. R. C. Hodson and B. Legendre. (Abs.)	16
payment. H. S. Birkett and	188
varieties. Anon. (Abs.)	176
- $        -$	208
– – – testing. H. P. Fanguy and M. J. Giamalva. (Abs.)	113
C. A. Richard and M. J. Giamalya (Abs.)	176
- fertilizer recommendations. Anon. 16	, 302
- St. James factory performance. F. A. Graugnard. (Abs.)	150
- sugar factory closure. (Brev.)	$191 \\ 191$
research. J. J. Seip and F. L.	150
Maine sugar factory re-opening	351
Gillaspie and C. C. McKnew. (Abs.)	142
Minnesota new sugar factories56 New York refinery closure. (Brev.)	, 127
North Dakota Hillsboro and Wahpe-	310
raw sugar import duty. (N.C.)322	, 354
sugar exports. (Brev.)	, 191
- machinery company. (Brev.)	191
Texas cane damage by frost. K. A.	140
and world raw sugar prices chart	224
see also Hawaii Uruguay: beet sugar technologists	
meeting. (Brev.)	384
- statistics. (Stat.)	63
	1.000000
Values Anon (Abg.)	214

Valves, Anon. (Abs.)	214
and U. Bui. (Abs.)	369
Klepal'chenko. (Abs.)	311
E. Batule and A. Rodriguez. (Abs.)	308

Varieties, Beet: ash content. V. Stehlík and L. Schmidt. (Abs.)
blackroot resistance and yield assess-ment by photography. C. L. Schneider and G. R. Sain. (Abs.)
Bast Germany. (Brev.)
fruit properties, effect of immaturity and molecture adsorption. F. W.
performance assessment. C. Winner processing quality. M. Z. Khelemskii seed germination, effect of moisture. P. Kolago. (Abs.)
seed germination, effect of moisture. Sordiarn, potassium and amino-N contents. E. Bornscheuer. (Abs.)
swing time, irrigation and yield. K. Singh et al. (Abs.).
storage losses. W. Trzciński and E. Italia in Ameria Ja, Graf. (Abs.)
Belgium. N. Roussel et al. (Abs.)
Belgium. N. Roussel et al. (Abs.)
Sz, 24.  $\frac{116}{276}$ 82, 244 

	PAGE
Water: absorption by white sugar,	
and G. Mantovani. (Abs.)	55
P. Devillers et al. (Abs.)	24
beet diffusion balance calculation.	94
condensate. A. I. Shapiro. (Abs.)	246
<ul> <li>– disinfection. J. Herčík and V.</li> <li>Dachovský, (Abs.)</li> </ul>	90
effect on juice. K. Magyar	90
treatment. P. T. Dunaev et al.	279
- $-$ N. V. Kulinich <i>et al.</i> (Abs.) - $-$ B. I. Pogorzhel'skii <i>et al.</i>	216 279
A. Y. Romanyuk et al. (Abs.)	281
- - K. Wagnerowski <i>et al.</i> (Abs.)	90
and formalin activity. F. Hollaus. (Abs.)	5, 152
juice purity. S. Zagrodzki (Abs.) 26 210	8. 246
pulp quantity. H. Zaorska. 2	6, 218
condensate complexing properties.	184
E. D. Yarmilko. (Abs.)	247
Beattie. (Abs.)	49
W. P. Boulet. (Abs.)	214
- and beet pulp decomposition in storage. H. Schnelle. (Abs.)	381
- cane, effect of deterioration after	
et al. (Abs.)	210
determination in bagasse. B. Part-	94
ridge and S. R. Reichard. (Abs.)	92 9 920
- sugar. F. Schneider et al. (Abs.) 9	3, 249
effect on beet seed germination. P.	282
Kolago. (Abs.)	306 20
- cane specific heat. T. B. Dale.	220
factory consumption reduction.	00
- I. G. Chugunov. (Abs.)	310
F. Kastner. (Abs.)	217 89
by condensate use. V. G.	99
M. Singh and R. K. Varma.	22
- wall deterioration reduction. V. I.	22
fume water foam formation. A. G.	24
<u>Kirichenko et al.</u> (Abs.)	342
acids and anions. H. Schiweck	278 123
level maintenance in beet leaf	
movement in cane and ration stunt-	310
ing resistance. D. S. Teakle et al.	144
B. P. Kuz'menko. (Abs.)	24
press water galacturonic acid deter-	
mination. F. Perschak. (Abs.)6 quality. I. Risseeuw. (Abs.)	301
- protection. G. J. Hain. (Abs.)	47
haustion. G. F. Fundora. (Abs.)	151
Ziegler. (Abs.)	309
and R. Wiśniowski. (Abs.)	186
- E. T. Koval' et al. (Abs.) in soil and cane root growth. J. F.	56
Usher. (Abs.)	209
L. Li Pi Shan. (Abs.)	238
humidity. Z. J. Kimmerling	182
treatment. (T.N.)	2, 350 275
see also Brix; Centrifugals; Drying; Irrigation: Milling, Cane: Soil:	
Water, Waste and Weather	
ation, colour removal. F. Onda	
et al. (Abs.)	153
Gonry. (Abs.)	6, 190
Chatterjee et al. (Abs.)	308
condensate composition. J. D. Blake - economy, V. I. Dovgopol et al	131 342
- sugars determination. Y. Takatori	156
- treatment for ethanol removal.	901
flume-wash water mud particle size.	291
A. P. Parkhomets et al. (Abs.) foam formation. A. G. Kirichenko	185
et al. (Abs.)	342
K. A. Stuart. (Abs.)	374
tion. M. Kiely and M. O'Sullivan	317

1	AGE
Water, Waste: micro-organisms determination V A	
Lagoda et al. (Abs.) pollution reduction. F. A. Grillot.	$124 \\ 150$
quantity measurement. A. P. Par- khomets et al. (Abs.)	280
- reduction. P. S. Maksimuk. (Abs.) treatment. (T.N.)	89 62
<ul> <li>G. Bertolani and E. Gavioli. (Abs.)</li> <li>N. I. Besedovskii and I. D. Koval-</li> </ul>	122
enko. (Abs.) – J. Bočko et al. (Abs.)	$\frac{344}{280}$
<ul> <li>J. F. Bond and K. E. McNeil.</li> <li>J. Bruijn. (Abs.)</li></ul>	$374 \\ 151$
<ul> <li>V. A. Burov <i>et al.</i> (Abs.)</li> <li>R. G. Camurungan. (Abs.)</li> </ul>	88 22
- V. T. Dodolina. (Abs.)	378 187
- H. F. Honmann-Waldeck and A. Pellegrini. (Abs.)	186
- R. L. Knecht et al. (Abs.) 57,	123
- J. P. Merle. (Abs.)	117
- C. E. Monteiro. (Abs.)	308
- J. P. Rideau <i>et al.</i> (Abs.)	280 310
- J. J. Seip and F. L. Gayle. (Abs.) - B. M. Shakhovich (Abs.)	150
<ul> <li>K. Skalski. (Abs.)25, 90, 186,</li> <li>S. Tanigaki et al. (Abs.)</li> </ul>	218
- R. Wellner. (Abs.)	245
Vletter and E. Wind. (Abs.). 55, - with condensate. A. Simonart et al.	280
(Abs.) 56, 310	, 311
feld. (Abs.)	120
- USSR. B. K. Kubrak and N. A. Ronskava (Abs)	344
utilization for irrigation. V. T. Dodolina et al. (Abs.).	343
K. Z. Piven'. (Abs.) Wax. Cane: effect on raw sugar filtra-	344
bility. M. Shafiq and R. Samaniego extraction from filter cake. A. C.	27
Chatterjee and B. M. Dutt. (Abs.) Weather: in Australia, Hawaii, Bhod-	382
esia and South Africa. K. C. Leverington and D. R. Ridge	49
beet agriculture in France. (Brev.) in Belgium. L. van Steyvoort18	191, 243
Cuba cane harvest. (Brev.) cyclone damage to cane in Mauritius	224 66
drought and beet ash content. V. Stehlik and L. Schmidt. (Abs.)	242
yield. J. Hobohm and H. G. Tiedge. (Abs.)	244
- cane failure probability evaluation. J. F. Willis. (Abs.)	81
and O. P. Godoy. (Abs.)	210
Kessel. (Abs.)	244
processing quality. M. Z. Khel-	19
varietal performance. A. Graf.	274
yield. E. Bornscheuer. (Abs.)	21
and quality. M. Mortazavi et al. (Aba)	21
- cane borer incidence. S. Sithanan- tham et al. (Abs.)	48
dextran content. D. H. Foster growth. U. S. Singh. (Abs.)	$333 \\ 175$
<ul> <li>– photosynthesis. A. L. Fors</li> <li>– potassium, calcium and chloride</li> </ul>	49
content. R. P. DeStefano yield. R. Julien <i>et al.</i> (Abs.)	178 79
<ul> <li>herbicide performance. E. G. Spry</li> <li>invertase and beet diffusion losses.</li> </ul>	332
I. Januszewicz et al. (Abs.) – leaf scald spread. G. J. Persley	306
and C. C. Ryan. (Abs.) – mangold fly and black bean aphid.	335
H. Bernardová et al. (Abs.) flooding and cane damage in Colom-	52
bia. (Brev.). frost and cane deterioration. J. C. P.	64
Chen and J. J. J. Chen. (Abs.)53 J. C. P. Chen <i>et al.</i> (Abs.)	188 $188$
gendre. (Abs.)	146
F. A. Martin et al. (Abs.). J. D. Miller and G. J. Gascho	189 220
- H. Koblenaux. (Abs.)	76 146
in Argentina. (Brev.) processing. H. A. Naqvi and	32
varietal resistance. O. Brinholi	202
J. D. Miller. (Abs.)	303
- protection of beet clamps. A. Vigoureux. (Abs.)	181
- red rot pathogen survival. R. J. Steib. (Abs.)	143

I	AGE
Weather: in India. Anon. (Abs.) - S. K. Ojha et al. (Abs.)	$\frac{81}{238}$
S. J. Yang. (Abs.)	367
rain and beet leaf growth and plant	82 975
- cane chemical ripener effect. L. Oudman, (Abs.).	369
<ul> <li>– crop failure. Anon. (Abs.)</li> <li>– extraneous matter. D. P. Viator</li> </ul>	$\frac{48}{146}$
<ul> <li>– harvesting. R. P. Vickers et al.</li> <li>– herbicide performance. Anon.</li> </ul>	$333 \\ 276$
- quantity estimation. G. Kingston - soilerosion. R. P. Humbert. (Abs.)	334 300
<ul> <li>In Talwan, H. Chu et al. (Abs.).</li> <li>temperature effects on beet yield and quality. H. Laby. (Abs.)</li> </ul>	76 243
research in Brazil. G. M. Azzi. (N.B.) temperature and beet seedling emer- gence. K. D. Beatty and C. F.	282
Éhlig. (Abs.) yield and sugar content. G. K.	19
- cane sugar content. K. Venugopal	307
- and drought effects on beet growth	219
- effect on fertilizer efficiency. F. A. Fogliata. (Abs.)	111
<ul> <li>– herbicide performance. D. Traveller and J. E. Hull. (Abs.)</li> </ul>	305
<ul> <li>moisture effects on beet leaf miner incidence. M. Kubacka-Szmidt- gel (Abs.)</li> </ul>	276
and trace elements effect on beet yield and quality. H. J. Müller.	274
wind and soil erosion. S. R. Simmons and A. D. Dotzenko. (Abs.)	337
Weeds: in Argentina. R. A. Arevalo Borrerig sp. control W A C. Webb	367 209
bolted beet elimination. Anon	371
J. Krzywon. (Abs.)	307
eux. (Abs.) chemical control. (T.N.)	339 62
Anon. (Abs.) 16, 76, 176, 207, 240, 275, 276, 306, 307,	274, 366
J. M. Belien <i>et al.</i> (Abs.) 274, J. M. Belien <i>et al.</i> (Abs.)148,	$\frac{306}{243}$
– – K. Blasberg. (Abs.) – – N. B. Davis. (Abs.)	$\frac{48}{304}$
- - G. Ebers <i>et al.</i> (Abs.) M. Eddowes. (Abs.)	275 304
- - G. A. Iggo. (Abs.)	147 82
- J. E. Lonsdale. (Abs.) - D. T. Loupe and L. L. McCor-	147
mick. (Abs.) W. F. Meggitt. (Abs.)	366 83
<ul> <li>– R. W. Millhollon. (Abs.)</li> <li>– G. Peeters. (Abs.)</li></ul>	$\frac{112}{276}$
- A. Rudd. (Abs.) - D. J. C. Singh and K. M. Gupta	270 301
- E. R. Stamper. (Abs.) - E. F. Sullivan. (Abs.)	205
- L. G. W. Tilley. (Abs.) - N. V. Turner. (Abs.)	209 304
W. A. C. Webb. (Abs.) economics. E. P. Weller. (Abs.)	110
enect of weather. E. G. Spry equipment. W. Garburg. (Abs.)	307
effects on beet. L. Lásztity	274
	275
ity. M. Martens. (Abs.) cane. H. L. Boyle. (Abs.).	$\begin{array}{r} 83 \\ 209 \end{array}$
W. L. Madden and E. M. Christie. (Abs.)	110 241
fertilizer efficiency. B. Debreczeni and K. Kovács	83
F. A. Fogliata. (Abs.). hazards. C. Ricaud. (Abs.)	$\frac{111}{300}$
operator protection. W.	147
Hartley. (Abs.) – – order from Cuba. (Brev.) – – performance D Traveller	18 159
and J. E. Hull. (Abs.) residues. H. W. Hilton et al.	305 81
wetting compound. Anon and hoeing. A. Vigoureux. (Abs.)	$\frac{21}{21}$
planning. C. Kester. (Abs.) research and field operations.	306
B. B. Fischer et al. (Abs.) in UK. W. E. Bray. (Abs.) underleaf spraving Apon	$\frac{180}{243}$
in US. P. B. Brimhall and R. C. Bond. (Abs.)	212
D. T. Loupe. (Abs.) competition and cane yield. J. A.	241
Mariotti et al. (Abs.) - effect of nitrogen. E. A. Cerrizuela et al. (Abs.)	366

	PAGE
Weeds: control. A. Fleury, (Abs	82
- R. P. Humbert. (Abs.)	17
- A. Vigoureux. (Abs.)	149
- by cultivation. C. Kester and F.	
Kirk. (Abs.)83	, 305
- R. J. Matherne. (Abs.)	179
- - E. Meyer and A. G. de Beer. 174.	, 302
- effect of reduced tillage. N. Rozeff	80
- machine. D. Charlesworth. (Abs.)	82
- methods comparison. R. P. Cossio	900
B B Cossio et al (Abs.)	302
R. F. Cossio et al. (Abs.)	303
- research in faiwan. S. J. Lang.	307
and W Hachenne (Abs)	115
dodder control K Doby (Abs.)	18
effects on beet yield harvesting and	10
processing, H. Neururer, (Abs.).	306
grasses control. Anon. (Abs.)	303
S. Y. Peng et al. (Abs.)	241
Johnson grass control. J. F. Parr	
et al. (Abs.)	144
E. R. Stamper. (Abs.)	144
late weeds and beet yield. W. C. von	
Kessel. (Abs.)	18
Napier grass control. H. H. Samol	205
para grass control. J. A. Currie	78
research in South Africa. Anon	59
rice grass control. Anon. (Abs.)	365
transmission prevention by cane	-
equipment cleaning. J. F. Usher	18
n US. L. L. Lauden. (Abs.)	222
wild boot T S MaFarlana (Abs)	000
A Vigoureux (Abs.)	206
A Vigoureux and R. Van-	300
stallen, (Abs.)	337
Weighers: raw sugar. W. L. Reed.	57
sugar. Anon. (Abs.)	117
Weighing bagasse. B. D. Ravnö et al.	150
West Indies: Antigua and St. Vincent	
sugar industry revival plans	192
cane breeding. Anon. (Abs.)	238
<ul> <li>smut varietal resistance and crop</li> </ul>	
profitability. N. W. Simmonds	329
St. Kitts sugar production 1975	254
St. Vincent sugar plan. (Brev.)	351
see also Barbados; Guyana; Jamaica	
ana Trinidad	

Annual and a set of a	PAGE
ABBOTT, J. P. and RICH, J. E. A. Pan	
massecuite stirrers. (Abs.)	87
ABDEL HAFEZ, O. M., see FAHMY, Y.	
ABDULBHAN, P. and SUKSUPHA, K.	
Thailand sugar industry26	6, 297
ABLIKOV, V. and RIVAS, G. B. Cane	1000
harvester base-cutters. (Abs.)	300
ABOU-EL-HAWA, S. H., see MOHAMED,	
M. A.	
ABREU C., J., see BRITO M., J.	
ACCORSI, C. A., see MANTOVANI, G.	
ACKEUS, U. J. Cane mill roller bearings	54
ACOSTA, A. Cane molasses exhaustion	
evaluation. (Abs.)	188
Sugar melter. (Abs.)	119
AGARWAL, G. D. Water consumption	
reduction by recycling. (Abs.).	22
AGARWAL M. L. and GUPTA S. C. Cane	
sett heat treatment. (Abs.)	239
et al Soil analysis. (Abs.)	300
AGARWAL R. A Aleurodid feeding and	000
cane damage	109
AGARWAT S K D et al Gur manu-	100
facture (Abg)	93
ACNIHOTEL V D sas SINCH V	20
AGRINITING T T Vosst manufacture	
from distillary waste (Aba)	959
Among D and Convolution T Contin	202
AHARI, D. and GENOTELLE, J. COntin-	015
uous centrilugais. (Abs.)	215
AHLFELD, H. F. O. Lichts Internation-	
ales Zuckerwirtschaltliches und	
Adressbuch 1975. (N.B.)	59
World sugar expansion plans. (N.B.)	282
AHMED, S. A. et al. Micronutrients and	
cane yield and quality. (Abs.)	272
see also RAMAMOORTHY, N.	
AKERMARK, N. Waste water treatment	10000
in Sweden. (Abs.)	248
AKESON, W. R. and FOX, S. D. Loss	
reduction in stored beet. (Abs.)	180
et al. Beet topping effect on storage	
losses and processing quality	180
- Loss reduction in stored beet	180
see also BARNES, M. G.	
AKIBA, F., see CASTRO, P. R. C.	
AKINDINOV, I. N. et al. Water addition	
in continuous centrifugals. (Abs.)	217
AKYAR, O. C. and OZER, E. Laboratory	
DDS beet diffuser. (Abs.)	344
ALAM, S. M., see NAOVI, H. A.	
ALAYÓN, M., see CARDET, E.	
AL'DEKOV N. A. and KOSTIN, N. F.	
Monoculture effect on beet yield	
and quality (Abs)	212
ATEINING OV 840 DUNARY P T	212
ATEVSPENDO F D cos DENNAN S A	
ATENIN C. Couses of increased vie.	
ADEMAN, G. Causes of increased vis-	150

 Massecuite colling. (Abs.).
 Massecuite colling. (Abs.).
 Massecuite cooling. (Abs.).
 et al. Automatic control in cane sugar factory. (Abs.). 150 214 151 151

	PAGE
White sugar: ash determination. G.	
Plá R. and M. Muro M. (Abs.)	124
boiling. D. Schliephake and K.	
Austmeyer. (Abs.)	380
- C. R. Sriramulu et al. (Abs.)	308
bulk carrier. N. M. Kichigin et al	376
colour determination. J. C. P. Chen	318
- effect of remelt liquor carbonata-	
tion. L. D. Bobrovnik and L. P.	
Kotel'nikova. (Abs.)	152
conditioning. v. Maurandi and G.	- 040
mantovani. (Abs.)	1, 044
Cooler. D. A. Orlov and N. A. Buzykin	201
dryer dust separator. A. F. Zaborsin	00
EE(0, ADS.)	120
effect of beat W Mauch and S	190
Asseily (Abs)	240
fluidized bed treatment. L. Neužil	
and E. Kostelková. (Abs.)	218
improvement by factory modifica-	
tions. G. S. Jain. (Abs.)	308
manufacture. I. Galbán. (Abs.)	314
- J. J. Ungar and R. Lumbroso	215
- carbonatation vs. supplication. M.	117
continuous conformation S I	117
Sang et al (Abs)	900
- in Cuba S Ortega (Abs)	150
- vs. raw sugar A C Chattergee	308
melting for transport, E. E. Belokon'	000
and V. K. Sevryuk. (Abs.)	248
moisture determination. F.Schneider	
et al. (Abs.)	249
Paris market. (N.C.)	.2, 66
physico-chemical properties in Egypt.	121
M. A. Mohamed et al.	355
pneumatic conveying. T. K. Vasil'-	0.00
eva. (Abs.)	376
I. K. Vasil eva et al. (Abs.)	910
eva (Abs)	344
quality effect of thick juice heating	0.14
and colour formation I. Wieninger	
and N. Kubadinow. (Abs.)	55
storage, T. P. Khyalkovskii	00
et al. (Abs.)	88
silo, M. Braeckman, (Abs.)	311

### NAMES

PAGE

	PAGE
ALEXANDER, J. B. and MATIC, M.	
Cane starch. (Abs.)	314
ALEXANDER, K. C. Cane stem and root	
fungus. (Abs.)	370
ALIEVA-VITUKEVICH, E. R. Antiseptic	
effect on alcohol manufacture from	000
molasses. (Abs.)	382
ALIMOV, T. K. Molasses as animal	
Iodder. (Abs.)	94
ALLAWAY, R. A. and GRAVES, C. R.	940
Automatic power nouse control	040
ALOMA J and CUELLAR J Soils and	
fertilization research in Cuba (Abs)	208
AL-WINDI, I. and SCHMIDT, L. Irriga-	200
tion effect on beet. (Abs.)	148
AMADUCCI, M. T. et al. Soil preparation	
and beet planting uniformity	243
AMDING, F. Massecuite pre-centri-	
fugalling. (Abs.)	377
AMIET, P. J. Locusts. (Abs.)	334
AMORIM, A. DE L. C., see MARINHO,	
M. L.	
ANALOGIDE, D. D. Nitrogen and beet	000
petiole nitrate-N. (Abs.)	339
ANDERSEN, A. F. DDS Deet diffuser	015
ANDRESSEN, K. FILTER-UNICKEILERS. (ADS.)	215
ANDREEV, V. G., see ROLOMIEIS, V. F.	
nutrients (Abs)	91
ANDRES. H., see PREY. V.	
ANDUX, M. Vacuum pan design. (Abs.)	53
ANIKEEV, Y. V. Filter-thickener per-	
formance. (Abs.)	217
ANTONI, H. J., see FRIAS DE F., A. M.	
ANTONOVICH, A. L. and PETRIK, V. S.	
Molasses yield and sugar content	
calculation by computer. (Abs.)	248
APASOV, V. E., see GROMKOVSKII, A. I.	
AFTE, F. L. and MATH, B. R. Phos-	010
APCENEARY G Cane smut in Guyana	178
Cane varietal correction factor and	110
milling performance calculation	86
ARCEO, L. M. Cane harvesting time	00
optimization. (Abs.)	111
ARCHIBALD, R. D. and SMITH, I. A.	
Cane juice purity drop and boiling	
house capacity. (Abs.)	182
see also MCEVOY, M. A. J.	
AREVALO, R. A. Weeds in Argentina	367
see also CERRIZUELA, E. A.	
ARKHIPOVICH, N. A. et al. Beet tem-	001
perature measurement. (ADS.)	281
APNOID K S Power factor (Abg)	200
ARTYUKHOV V G and GARVAZHA	209
V. T. Air flow rate in massecuite	

I	AGE
White sugar:	
solution colour determination. A. Y. Zagorul'ko and L. A. Korobeinik-	
ova. (Abs.)	316
standards. A. C. Chatterjee. (Abs.)	317
world prices. (N.C.) 2, 98, 130, 194.	225
258 289 322	353
vield effect of beet as monoculture	000
N A Al'dekoy and N F Kostin	919
prediction M Durba (Aba)	947
and also Joing angen Defined augen	041
See also rollig sugar, iteliled sugar;	
Sugar and Tablet sugar	105
world: raw sugar price chart. (Brev.)	127
sugar balance 1975/70. (N.C.) 97, 225,	290
- demand. (N.C.)	321
~ economy. G. B. Hagelberg. (N.B.)	345
– expansion plans. H. Ahlfeld	282
- prices. (N.C.)	225,
258, 289, 322,	353
- production. G. B. Hagelberg	155
1975/76 1, 31, 65, 95, 194, 223, 289,	319
1976/77	383
and US raw sugar prices chart	224
see also International	
Yasst: animal fodder Anon (Abs)	999
D S Matuonko and D A	444
F. S. Matveenko and F. A.	995
composition and nutritional value. T	200
Vapossi (Aba)	0.4
anossi, (Abs.)	94
growth on vinasse and chemical	
et al (Aba)	970
et at. (ADS.)	100
manufacture from vinasse. Anon	120
= - J. T. Aguinaldo. (Abs.)	202
P. Kujala et al. (Abs.)	381
molasses colorant enects. V. N.	000
Shvets et al. (Abs.)	292
see also Alconol and Micro-organisms	
rugoslavia; new sugar lactories.	001
(Brev.) 64, 286,	384
sugar production 1975. (Brev.)	96
Zoing guess project (Prov.) 101	007
Zaire sugar project. (Brev.)191,	401
Zampia: sugar factory expansion	-00U

Zambia: sugar factory expansion – and distillery orders. (Brev.) – production 1975	$350 \\ 30 \\ 127$
	PAGE
ASCROFT-LEIGH, W. J. A. Soil erosion prevention with rve. (Abs.)	242
ASSEILY, S., see MAUCH, W.	
AULAKH, M. S., see KANWAR, R. S.	
AUTREY, J. C., see RICAUD, C.	
AVASTHY, P. N., see VARMA, A. AVELLANEDA, R. A., see MARIOTTI, J. A.	
AWANG, M. and WHITE, E. T. Crystal and mother-liquor properties and	
massecuite viscosity. (Abs.)	373
ATAIS, 0. D., 800 TATAN, D.	

AZAD, M. P., see GARG, J. S.	
Azzi, G. M. Cane agricultural research	000
in Brazil. (N.B.)	282
Cane borer control. (Abs.)	303

RABEW D Bulgarian factory equin-	
ment (Abs)	919
DADU C N and SINCH T D and	010
DADU, U. M., see SINGH, J. I. unu	
Dinon, D. M. Dela lada the (Ala)	000
BADER, R. M. Drip Irrigation. (Abs.)	369
BAENA, H., see KUHLMANN, R. W.	
BAGLYUR, A. D. Beet knife treatment	89
BAHULEKAR, V. G. Water consumption	
reduction by condensate use. (Abs.)	22
BAILLIET, V. J. Bagasse burning as fuel	214
BAJPAI, P. D., see SINGH, U. S.	
BAKER, B. P. Molasses composition.	
properties and use. (N.B.)	155
BAKKER-ARKEMA, F. W. et al. Beet	
cooling rate. (Abs.)	24
BAROWSKA E. see TRZCIŃSKI W	
BALAWAN A V See KICHIGIN N M	
BALASTREIPE L A see RIPOLL T C	
BALASHNDARAM N et al Co 440 cone	
DALASONDARAM, N. et al. 00 448 cane	OPE
Directory (ADS.)	305
BALCELLS, A. Cane agriculture in	
Philippines. (Abs.)	111
BALDWIN, J. Beet and crop rotation	276
BALERDI, J. J. Boiling schemes. (Abs.)	119
see also CASTRO, J.	
BALLARD, A. L. and GANDIA, L. Auto-	
matic centrifugal control. (Abs.)	150
et al. Automatic centrifugal control	150
BALOH, T. Beet juice reverse osmosis 122,	377
Flow effect on heat transfer through	
scaled surfaces. (Abs.)	280

PAGE

DAGE

	TAGE
BAMBANASTE, R., see GUTIÉRREZ, L. BANAS, V. F., see POGORZHEL'SKII, B. I.	
BANERJEE, S. N. and BUTANI, D. K. Cane insect pests in India. (Abs.)	300
BARALDI, G., see AMADUCCI, M. T. and DE ZANCHE, C.	
BARCUDI, R., see COSSIO, R. P. BARKER, S. Beet phosphorus require-	
ment determination. (Abs.) BARKO, M. N. and KHAMAZA, F. I. Beet	21
payment in USSR. (Abs.) BARNES, M. G. et al. Beet storage losses	52
prediction. (Abs.) see also WESTFALL, D. G.	181
BARRÉ, M. Bucket wheel for piled beet reclamation. (Abs.)	280
expansion. (Abs.)	215
BARKARAN, T. L., see MUTHUSAMY, S.	
index adjustments	359
matic boiling control. (Abs.) BASSINELLO, A. I. Cane varieties in	375
Brazil. (Abs.)	0,368
waste treatment. (Abs.) BATAGLIA, O. C., see FILHO, J. O.	285
BATALOV, K. K., see ARKHIPOVICH, N. A. BATES, L. et al. Automatic boiling	
BATSTONE, D. B. Computer applica-	54
see also MACLEAN, G. D.	119
low-grade boiling. (Abs.)	85 84
BATTERMAN, L., see HOBBIS, J. BATTLLE E and RODRIGUEZ A Auto-	04
matic pan vapour line valve con- trol. (Abs.).	308
BAUDELOCQUE, A. Sugar silo. (Abs.) BAUERNFEIND, U. Computerized data	25
processing and accounting. (Abs.) BAUSTAD, B. M. Molasses as animal	25
fodder. (Abs.) BAXTER, S. W. D. Mechanical cane	94
harvesting in South Africa. (Abs.) see also SPARGO, R. F.	240
on growth and dissolution rate	251
see also SHTANGEEV, V. O. BAZLOV V. N. See BUROV V. A.	144
BEARDSLEY, J. W. Cane skip planting "Paraquat" as cane leaf desiccant	$145 \\ 179$
BEATTIE, D. W. Irrigation in Australia BEATTY, K. D. and EHLIG, C. F. Soil	49
salinity and temperature effects on beet. (Abs.)	19
BEAUFILS, E. R., see SUMNER, M. E. BEAUVISAGE, M. Cane sugar extraction	183
BECKER, G. Beet virus yellows. (ADS.) BEDISH, J. W., see TULANG, M. C.	18
BEISS, U. and WINNER, C. Fertilizer	148
BELCHER, R. H. Cane land drainage	176
prevention. (Abs.) BELIEN, J. M. and HAQUENNE, W.	369
Couch grass control. (Abs.) and SALEMBIER, J. F. Chemical weed	115
control. (Abs.)	14,306 18,243
BEL'KO, G. I. et al. Zhabinka sugar factory. (Abs.)	378
Transport of white sugar melt	248
BELOSTOTSKII, L. G., see BEL'KO, G. I. and GOLOVNYAK, Y. D.	
BELOVA, O. I. and BEGALIEV, T. Beet molasses fatty acids extraction	379
BENDA, G. T. A. Cane leaf sheaths and axillary bud germination. (Abs.)	146
Cane mosaic and ratoon stunting control. (Abs.)	14, 178
Cane recovery from mosaic (Abs.) Ratoon stunting disease and cane	145
shoot growth. (ADS.) see also FANGUY, H.P.	113
polymer flocculants. (Abs.).	315
BERNARD, C. J., see FORET, J. N. BERNARDOVÁ, H. et al. Mangold fly	
and black bean aphid. (Abs.) BERTOLANI, G. and GAVIOLI, E. Waste	52
water treatment. (Abs.) BESEDOVSKII, N. I. and KOVALENKO,	122
I. D. Waste water treatment BEZPAL'KO, N. N., see KONSTANTINOV,	344
S. M. BHADAURIA, V. S., see MATHUR, B. K.	
BHALWAR, V. M., see GOEL, D. P. BHARDWAJ, K. M. et al. Clarification	040
BHARGAVA, K. S., see RISHI, N. and	340

SINGH, C. A. K. BHONSALE, V. R. R. Continuous vs. batch crystallization. (Abs.)... Factory water consumption. (Abs.) 22 BLANCHARD, M. A., see DUNCKELMAN, P. H.
BLAQUIER, L. M. Rat control. (Abs.)
BLASBERG, K. Cane pests, diseases and weed control. (Abs.).
BLIESENER, K. M., see REINEFELD, E.
BLOK, J. and VAN DER POEL, P. W. Heet diffusion julee draft and loss optimization. (Abs.).
BOAS, A. M. V., see FEREIRA, C. E. F.
BOAST, M. R. Herbicide mixing and application. (Abs.).
Horbicker, L. D. and KOTEL'NKOVA, L. P. Remelt liquor decolorization in by carbonatation res. subplitation 152 et al. Molasses electrodialysis effici-ency determination. (Abs.).
Raw sugar colour formation pre-see which (Abs.).
BAW Sugar Colour formation pre-see (Abs.).
BOSK, A., see TURHENG, L. S. SAP-RONY, A. R. and ZAGORODNYI, P. OPCHEN, L. M., see TURHENN, V. I.
BOMENG, L. M., see TURHENN, V. I. RONOV, A. R. and ZAGORODNYI, P. P. BOCKO, J. et al. Flume water treatment BOCKOSH, A. T. et al. Aragonite and scale formation. (Abs.). BOCOMML, T. et al. Aragonite and scale formation. (Abs.). BOCDYREV, A. P., see IdAS)....... BOLDYREV, A. P., see IVANOV, S. Z. BOLDYREV, S. Cane Detaction in South Artica. (Abs.)...... BOND, R. C., see BRIMMALL, P. B. BOND, R. S. Cane Delanter. (Abs.). BOND, R. S. Cane planter. (Abs.). BONT, S. C. Cane planter. (Abs.). BONT, S. C. Are Dilanter. (Abs.). BORTS, W. S. Cane planter. (Abs.). BORTS, V. Y. V. See SHANADERY BORTS, V. Y. See SHANADERY BORTANERY, V. Y., see SHANADERY BORTANERS WATERANERY  $\begin{array}{r}
 115 \\
 147
 \end{array}$  $175 \\ 179$  BOOTS, W. S. Clane planter. (ADS.).
 BORIESKO, V. Y., see SHTAKOEEV, V. O.
 BORNSCHERDE, E. Weather and beet BORNSCHERHEI differences. (Abs.).
 and MEINEREE, H. Reet seed spacing and plant population. (Abs.).
 BORNOTO, M., see CARRAJANA R. J. DORYS, A. Dextran determination in beet juice. (Abs.).
 BORZDATA, V. N. et al. Foam reduction in beet diffusion. (Abs.).
 BORZDATA, V. N. et al. Cane deterioration reduction. (Abs.).
 BORZDATA, V. N. et al. Cons deterioration reduction. (Abs.).
 BORZDATA, V. N. et al. Const determination in beet diffusion. (Abs.).
 BORZDATA, N. M. et al. Cane deterioration reduction. (Abs.).
 BORZDATA, W. N. et al. Cane deterioration from molasses. (Abs.).
 BORDA, S. M., see CARTER, J. N. BOFTER, H. and WICHER, C. Herbieddes Syrup Brix and temperature control - Brix meter. (Abs.). BOUČER, S. and VALTER, V. Automatic syrup Brix and temperature control - Brix meter. (Abs.).....
 Continuous melter. (Abs.).....
 BOULET, W. P. Bagaase moisture content and fuel efficiency. (Abs.)
 BOULET, P. see DEVILLERS, P.
 BOURNE, J. E. Cane unicronutrient dedicate. (Abs Unicos), J. C.
 BOURNE, J. E. Cane micronutrient dedicate. (Abs.)
 Constance, (Abs.).
 Context, M. Cane basal stem and root rot. (Abs.).
 RRAECKMAN, M. White sugar silo. (Abs.).
 BRAITHWAITE, M. J., see REHEDEN, C. A.
 BRANDT, M. and MALEC, J. Beet storage in USSR. (Abs.).
 BRAITHWAITE, C. W. D. Nematodes in Barlades. (Abs.).
 BRAITHWAITE, C. W. D. Nematodes in Barlades. (Abs.).
 BRAITHWAITE, C. M. D. See REHEDEN, C. A.
 BRAUT, W. E. Chemical weed control in UK. (Abs.).
 BRAZUX, R. D. Cane varietal selection Intradiation and cane mossic resist-and DUNCKEIMAN, P. H. Cane breeding for mosaic resistance. 

	PAGE
BREAY, H. T., see BRISBOURNE, D. R. BRENMAN, S. A. et al. Affination	314
losses. (Abs.).	249
M. Nucleation in boiling. (Abs.)	27
induction. (Abs.)	5,302
BRICOUT, J. and FONTES, J. C. Beet and cane sugar differentiation. (Abs.)	28
Chemical weed control in US	212
varietal drought resistance. (Abs.) et al. Cane varietal frost resistance.	$\frac{210}{241}$
BRISBOURNE, D. R. Nitrogen fertilizer rate optimization. (Abs.)	149
and BREAY, H. T. Beet harvesters BRITO M., J. and ABREU C., J. Cane	243
BROADFOOT, R. and WHITE, E. T. Continuous pan performance pre-	48
diction. (Abs.) et al. Continuous boiling. (Abs.).	$\frac{84}{341}$
see also BLAKE, J. D. and STEINDL, R. J.	
BROTHERTON, G. A. Clarification between inclined surfaces. (Abs.) see also STEWART P. N.	373
BROUGHTON, N. W., see OLDFIELD, J. F. T.	
BROWN, C. R. and POMMEZ, P. Chloride ion-selective electrode applications	283
BRUHNS, G., see DANKOWSKI, K. BRUHNS, J. Research at SMRI (Abs.)	93
Waste water treatment. (Abs.) BRUNET, R. and MAUREE, S. P. Cane	151
leaf phosphorus and potassium contents. (Abs.)	238
BRUSILOVSKAYA, E. M., see FEDOTKIN, I. M. and GULYI, I. S.	
colorants fractionation. (Abs.).	93
storage extraneous matter. (Abs.)	82
tubes. (Abs.)	368
BULACIO, A. R., see MARIOTTI, J. A. BULL, D. Soldier fly. (Abs.)	271
BULL, T. A. and TOVEY, D. A. Cane growth simulation. (Abs.)	142
BURAVLEVA, V. I. et al. Sucrose and dextrose solubilities. (Abs.)	316
BURBA, M. Beet processing quality evaluation. (Abs.)	347
and GEORGI, B. Amino-acids deter-	219
and Puscz, W. Beet brei clarification	010
et al. Beet brei freezing, storage and	340
BURCZYŃSKI, Z. and WIŚNIOWSKI, R.	50, 124
Burda, V. S., see Chudakov, G. M.	186
BURDUKOVA, R. S., see DADENKOVA, M. N. and ZHMYRYA, L. P.	
BURIÁNEK, J. and KMÍNEK, M. Factory	911
et al. Carbonatation with magnesium	311
- Carbonatation with mud coagulant	248
BURNE, J. D. Beet seed bed prepara- tion. (Abs.).	148
BURNS, R. R., see BALLARD, A. L. BUROV, V. A. et al. Waste water treatment and filter cale swater.	
BURTCH, L. M., see FISCHER, B. B.	88
BURYMÁ, A. K. et al. Beet diffusion loss determination. (Abs.)	87
see also BORZDAYA, V. N. BÜSCHING, L., see SCHIWECK, H.	
BUTANI, D. K., see BANERJEE, S. N. BUZINA, G. V. and PARFENENKO, V. V.	0.05
see also PARFENENKO, V. V.	285
BYTHER, R. S., see LADD, S. L.	
BYVAL'TSEV, A. I. and ZUBCHENKO, A. V. Dartzin effort	
nucleation. (Abs.)	250

Comments A and Manmin B C	
Bagasse and bagacillo as animal	
fodder. (Abs.)	253
CALDEMAISOUS, T. Juice purification	187
CAMP, C. R. and CARTER, C. E. Soil drainage. (Abs.)	177
CAMURUNGAN, R. G. Waste water treatment. (Abs.)	22
CAPLIN, M. H. Bulk sugar silo. (Abs.)	119
CARDET, E. Cane diffusion. (Abs.) et al. Bulk sugar storage. (Abs.)	277 245

CARNEGIE, A. J. M. Cane borer damage and parasites (Abs.)..... 

	PAGE
CARPENTER, F. G. and CLARKE, M. A. Colorants and calcium phosphate	
and ROBERTS, E. J. Colorant forma- tion in sugar solution (Abs.)	123
see also MORRIS, N. M. and ROBERTS, E. J.	201
CARRAZANA R., L. and KOZYAVKIN, A. P. Laboratory vacuum pan and	
- Sugar crystal granulometry deter-	124
and MACHADO L., I. Cane molasses	251
et al. Cane molasses viscosity. (Abs.) - Sugar crystal length and width	251
dissolution rates. (Abs.) CARROLL, B. R., see PARR, J. F.	124
CARTER, C. E. and FLOYD, J. M. Water table height and canc yield. (Abs.) see also CAMP, C. R.	177
CARTER, J. N. et al. Beet nitrogen re- quirements and yield determination – Inter-row spacing and nitrogen	242
effects on beet yield and sugar content. (Abs.)	242
- Infigution and mitogen encets on beet. (Abs.)	337
CARVER, S. E. Roller bearings. (Abs.) CASAGRANDE, A. A. et al. Fertilizers	309
and cultivation effects on soil CASEY, J. A., see VILLAMIL, E.	77
CASTANEDA, J., see CORONA, E. CASTRO, J. and BALERDI, J. J. Mech- anical cane baryesting and factory	
operations. (Abs.) CASTRO, P. R. C. et al. Growth regu-	144
lators and cane germination. (Abs.) CATROUX, G., see RIDEAU, J. P.	110
CAVALCANTI, G. A., see MARINHO, M. L. CEJKOVÁ, V., see CÍZ, K.	
cepeLak, J. and OsvaLD, R. Carbon- atation mud recirculation calcula- tions (Abs)	947
CEPERO, I., see GUTIÉRREZ, L. CERRIZUELA, E. A. et al. Nitrogen and	
weed competition. (Abs.) CESAR, M. A. A., see DE OLIVEIRA, E. R.	79
CESNIK, R. Cane breeding programme area requirement. (Abs.)	241
sistance testing. (Abs.)	210
facture from clarification mud CHAN, P. Y. and LI PI SHAN, L. Soil	221
tion scheduling. (Abs.)	238
CHANCELLOR, A. H. and GLASS, J. S. Cane mill turnplates. (Abs.)	340
CHANG, Y. C., see CHEN, Y. CHANG, Y. H., see FANG, Y. T.	
CHAO, C. C. and WU, M. M. H. Lime and green manure effects on soil	004
see also WU, M. M. H.	336
CHAO, O., see CETINA, R. CHAPMAN, H. L. Bagasse and cane molasses as animal fodder (Abs)	991
CHAPMAN, L. S. and LEVERINGTON, K. C. Cane harvesting scheduling	333
see also HAYSOM, M. B. C., KINGSTON, G. and MOLLER, R. B.	
disease risk in Australia. (Abs.)	271
CHARLES, D. F. Refinery liquor colour and fluorescence. (Abs.)	283
CHARLESWORTH, D. Beet clamp cover Beet tops as animal fodder. (Abs.)	$\frac{148}{252}$
ation. (Abs.)	371 82
CHARPENTIER, L. J., see KOIKE, H. CHATTERGEE, A. C. Raw sugar vs.	1000
white sugar production. (Abs.) CHATTERJEE, A. C. Sugar factory	308
White and refined sugar standards, . and DUTT, B. M. Alcohol manufac-	317
ture from molasses. (Abs.). 252, 349 - Cane by-products utilization	381 382
- Fusel oil composition from mol- asses, (Abs.)	221
- Waste water composition and treatment. (Abs.)	309
see also MUKHERJI, J. P. CHATURVEDI, P. P. Clarification mud	
Level reduction. (Abs.) CHEN, C. H., see SANG, S. L.	308
white leaf. (Abs.)	208
cane bacteria. (Abs.) CHEN, H. Y. Taiwan bulk handling	143
terminal. (Abs.) CHEN, J. C. P. Cane diffusion. (Abs.) Clarification with flocculants (Abs.)	23 53 214

	PAGE
CHEN, J. C. P. and PICOU, R. W. Bagasse applica-	
- Floceulants and clarification mud	150
et al. Determination of cane damage by frost (Abs.)	188
see also CHEN, J. J. J. CHEN, J. J. J. and CHEN, J. C. P. Cane	100
ripening with chemicals. (Abs.) see also CHEN, J. C. P.	177
CHEN, M. J., see CHEN, C. T. CHEN, W. P. and TSOU, C. H. Gum	981
et al. Gum manufacture from sucrose CHEN, Y. et al. Bagasse and molasses	382
as animal fodder. (Abs.) CHENG, H. T., see CHENG, W. C. and	61
CHENG, S. L., see CHEN, W. P.	
phate determination. (Abs.)	346
CHENG, W. Y. Cane borer parasites and predators. (Abs.)	207
Cane borer sex attractant. (Abs.) CHENG, Y., see CHEN, Y.	76
CHERKAS, I. S., see KRIVCHUN, A. N. CHERNENKO, V. F., see BAZHAL, I. G.	
CHERNIKINA, V. G., see GOLYBIN, V. A. CHERNYI, A. A. and PETRASH, V. D.	
liberation. (Abs.)	89 309
CHIASSON, D. J., see FONTENOT, D. B. CHIKIN, G. A. and SELEMENEV, V. F.	
- pH and melanoidin adsorption by	57
- Sugar adsorption by ion exchange resin (Abs.)	315
CHILDS, H. E., see BICKLE, R. E. CHILTON, S. J. P., see GORONEL, M. and	0.0
STEÍB, R. J. CHOD, J., see RÍMSA, V.	
CHOU, C. C. Phosphates in refining. and HANSON, K. R. Automatic	314
CHRISTENSON, D. R. Inter-row spacing, rotation and nitrogen effects on	318
CHRISTIE, E. M., see MADDAN, W. L.	371
CHRISTMANN, J. Beet growth regulators and chemical ripeners. (Abs.)	211
Child monogerm beet seed pro- duction. (Abs.)	181
CHU, H. et al. Effective rainfall in Taiwan. (Abs.)	76
CHU, Y. Irrigation well construction in Taiwan. (Abs.)	367
CHUDAKOV, G. M. et al. Centrilugal massecuite feed control. (Abs.) FV11 106 1N-1 controlucions centri-	376
fugal. (Abs.) CHUGUNOV, I. G. Factory water con-	121
sumption reduction. (Abs.) CHURCHILL, D. B., see CLAYTON, J. E.	310
CHYOU, M. S., see CHU, H. CIFUENTES, O. M., see COCHRAN, B. J.	
CIHALIK, J., see MORFFI, N. CIVERRA, G. L., see MATTEUZZI, D.	
perties. (Abs.). Sucrose solution wetting angle. (Abs.)	$\frac{348}{220}$
and ČEJKOVÁ, V. Decolorizing resin regeneration. (Ags.)	57
- Boiling with massecuite surface-	217
CLARKE, C. D. and WEBBER, M. Auto- matic evaporation control. (Abs.)	84
CLARKE, E. G. Steam and power generation efficiency. (Abs.)	57
CLARKE, M. A. Silicon effect on sugar manufacture and refining. (Abs.)	283
see also CARPENTER, F. G., MORRIS, N. M. and ROBERTS, E. J.	
CLARKE, S. G. and MATTHEWS, B. C. H. Shredder hammer failure. (Abs.)	341
CLAYTON, J. E. Cane harvesting photo- graphic analysis. (Abs.)142	, 179
Cane planter. (Abs.). and CHURCHILL, D. B. Cane cleaning	$\frac{271}{113}$
harvesting and transport in US and HEDICK, W. C. Mechanical cane	369
harvesting in Florida. (Abs.) et al. Mechanical cane harvesting	144
- Mechanical vs. manual harvesting	369
content. (Abs.)	146
COCCIOLI, F. and VICEDOMINI, M. Sucrose dissociation constants	249
COCHRAN, B. J. and HADDEN, W. A. Mechanical cane harvesting and	
extraneous matter. (Abs.)	51

	PAGE
COLEMAN, S. W., see PATE, F. M.	
control. (Abs.)	85
COMSTOCK, J. C., see LADD, S. L. CONTIN, M., see PAYAN, L.	
COOMBS, J., see GROSS, D. COONS, G. H. Beet hybridization. (Abs.)	307
COPLEY, E. F. River Improvement Trusts. (Abs.)	78
CORDOVES, M. et al. Carbonatation vs.	
facture. (Abs.)	117
CORMIER, R., see POMMEZ, P.	213
preparation for boiling. (Abs.)	277
COSSIO, R. P. and HINOJO, J. M. Weed	k. Contraction
et al. Weed control methods com-	) 302
parison. (Abs.) Costesso, D., see Schoenrock.	303
K. W. R. COUTINHO, N. Cane development in	
Brazil. (Abs.)	208
CREES, O. L., see WHAYMAN, E. CREES, O. L., see WHAYMAN, E.	
(Abs.) 126, 12	58, 349
CROW, J. Beet seedbed preparation	342
CUELLAR, I., see ALOMÁ, J.	304
CUELLAR R., C., see HERNANDEZ C., L. CUERVO, L., see CETINA, R.	
CULLEN, R. N. and JAMES, R. A. Cane railway standards. (Abs.)	335
see also IVIN, P. C. and SAWYER, G. M. CURRIE, J. A. Para grass control. (Abs.	) 78
CZERATZKI, W. and RUHM, E. Soil conditions and beet growth. (Abs.)	115
DABROWSKI, C., see WAGNEROWSKI, K.	
DACANAY, J. C. Philippine sugar in- dustry. (Abs.)	86
DACHOVSKÝ, V., see HERČÍK, J. DADANT B and DE FRAISSE C H.	
Nitrogen trials in Réunion. (Abs.)	17
length effect on thick juice viscosity	158
- Sucrose diffusion coefficient. (Abs.)	318
DA GLÓRIA, N. A. Distillery waste as	050
and MATTIAZZO, M. E. Vinasse and	253
soil phosphate solubilization. (Abs.) DAIGLE, C. J. Cane cleaner. (Abs.)	$301 \\ 151$
DAISHEV, M. I. and ORLOVA, N. V. KCl effect on sucrose solution	
density and refractive index. (Abs.) – Sucrose solution free water specific	316
volume and refractive index DALE, T. B. Cane specific heat. (Abs.)	$\frac{125}{220}$
DALLEINNE, E. Beet yellowing. (Abs.) DAMANN K E. and DEBRICK K. S.	244
Ratoon stunting disease pathogen	370
resistance to "Benomyl". (Abs.)	181
DANDAR, A., see STUDNICKI, J. DANIELSON, R. E., see Nicholson,	
DANILEIKO, V. M., see DADENKOVA,	
M. N. ana ZHMYRYA, L. P. DANKOWSKI, K. et al. Sugar economic	
DA SILVA, J. G. Na 56-62 cane variety	59 110
DA SILVA, M. F., see DE SOUZA, H. D. DATSENKO, N. M., see KOVAL', E. T.	
DAVIS, N. B. Aphid control. (Abs.) Approved fungicides, herbicides and	242
pesticides. (Abs.) DAVIS, R. E., see GILLASPIE. A. G.	304
DEAN, J. L. and MILLER, J. D. Cane spot resistance testing. (Abs)	179
DE ANDRE, G. Italian sugar industry DE BEER, A. G. Cane loader and trailer	279 302

PAGE

	PAGE
DEL VALLE, E. Bagacillo pressing	150
ment optimization. (Abs.)	$151 \\ 253$
DEMBICKI, H. et al. DC-6 beet diffuser	120
J. A. C. M. Cane varietal trials in Brazil (Abs)	270
DE MORAES, R. S., see STUPIELLO, J. P.	210
and KANWAR, R. S. Nitrogen trials	304
DE OLIVEIRA, E. R. and STUPIELLO,	001
ash determination. (Abs.) et al. Infield cane sampling. (Abs.)	249 16
see also STUPIELLO, J. P. DEPKE, F. M. Concrete protection	310
DEREVYANCHENKO, V. T., see FEDOR- ENCHENKO, L. A. and FEDOTKIN,	
I. M. DERRICK, K. S., see DAMANN, K. E.	
DERZHAVETS, A. S. et al. Al-PDS-20 beet diffuser. (Abs.)	87
DE SOUZA, H. D. and DA SILVA, M. F. Cane borers in Brazil. (Abs.)	303
DE SOUZA, J. A. C. M., see DE MELO, M. M.	
DE SOUZA, L. G. et al. Distillation column scale composition. (Abs.)	349
D'ESPAIGNET, J. T. Mauritius sugar factory performances. (Abs.)	183
DESPRADEL, O., see PAYAN, L. DESTEFANO, R. P. Potassium, calcium	1000
and chloride in cane. (Abs.) DETAVERNIER, R., see DEVILLERS, P.	178
DETROUX, L., see BELIEN, J. M. DEVILLE, J. and WONG YOU CHEONG, Y.	
Cane stalk and top yield and com- position. (Abs.)	158
DEVILLERS, P. et al. Ammonia in beet sugar manufacture. (Abs.)	24
- Beet composition and juice purity and sugar yield predictions	0,189
- Evaporator scale formation. (Abs.) - Juice ash components and evap-	377
- Rafinose effect on beet sugar	940 P
- Sucrose determination. (Abs.) 91, 93	3, 348
Sugar losses in damaged beet	281
and COD determination. (Abs.) 55 DE ZANCHE, C. and BARALDI, G. Soil	5, 280
profile and beet planting. (Abs.) see also AMADUCCI, M. T.	305
DHANKHAR, H. S. et al. Citric acid manufacture from molasses. (Abs.)	253
DIAZ, B. R. Yellow aphid control. (Abs.) DIAZ, G., See CARRAZANA R., L.	48
Díaz, T. and FRIEDMAN, P. Boiling mathematical model. (Abs.)	245
DIAZ D., F. "Rototec" metallization DIAZ G., E. P. et al. Evaporator tube	53
DICK, J. and HARRIS, R. H. G. Nema-	149
DICKINSON. W. A. Nitrogen effect on	192
DICKS, H. G. Factory equipment	54
DIDUSHKO, B. G. and GARYAZHA, V. T.	01
rate measurement in boiling. (Abs.)	313
DIEGO R., G., see HERNÁNDEZ C., L.	
DIRKX, G. T. Explosion hazards and	910
DIVIZIA, M. T., see MARIOTTI, J. A.	010
OJHA, S. K.	
DIXIT, R. S., see KAR, K. DIXON, P. M. S. Factory work patterns	375
DOBBS, K. S. Cane flowering in Egypt	272
partial recycle	139
Cane yield on sandy land. (Abs.).	179
et al. Irrigation with waste water.	378 343
DODSON, A. K., see MATSUOKA, S. DOLGOBUCHENKO, L. E. Beet molasses	
and pulp as animal fodder. (Abs.) DONEY, D. L. and WHITNEY, E. D.	61
Beet nematode resistance deter- mination. (Abs.)	21
see also WHITNEY, E. D. DONOVAN, J., see BASS, R. J.	
DOOLAN, B. J., see JACKLIN, G. D. DORICHENKO, G. P., see PARKHOMETS,	
A. P. DORNIER, J. Experimental evaporator	151
DOS SANTOS, M. A. C. Nitrogen iertiliz- ation. (Abs.)	301
DOTZENKO, A. D., see SIMMONS, S. R. DOUCERAIN, J. N. Beet storage and	015
DOUVAL, C., see CARRAZANA R., L.	215

78 09 18 39 70 14 23 79 45
78 09 18 48 39 70 14 23 79 45
09 18 48 39 70 14 23 79 45
18 48 39 70 14 23 79 45
48 39 70 14 23 79 45
39 70 14 23 79 15
70 14 23 79 15
70 14 23 79 15
70 14 23 79 15
14 23 79 45
23 79 15
23 79 15
79 15
79 45
15
)7
78
)4
35
11
11
36
)4 )0
34
86 11
75
75 12
75 12 30
75 12 30
75 12 30 11 41
75 12 30 11 41
75 12 30 11 41 19
75 12 30 11 41 19
75 12 30 11 41 19
75 12 30 11 41 19 10
75 12 30 11 41 19 10
75 12 30 11 41 19 10 19
75 12 30 11 41 19 10 19
75 12 30 11 41 19 10 19
1

FAADE E., J., see FERNÁNDEZ DE U., R. FÁBIÁN, K. and KOLLÁR, J. Beet root, crown and collar composition

	PAGE
FOX, S. D., see AKESON, W. R.	
FRAKES, M. G. Beet growth and	0.84
FRANCIS G H Beet tons as animal	371
fodder. (Abs.)	126
FRANKS, G. N., see CLAYTON, J. E.	
FREEMAN, C. E. and WALKER, R. L.	114
FREEMAN K C see ZUMMO N	114
FREIVALDS, J. Molasses and beet pulp	
as animal fodder. (Abs.)	190
FRERS, H. Bagasse board manufacture	253
Australia (Abs)	991
Nitrogen trials in Australia, (Abs.).	47
FREW, J. A. and WRIGHT, P. G. Boiling	372
FREYTAG, A. H. Beet growth regulators	19
diffusion (Abs.)	919
FRIAS DE F., A. M. et al. Enzyme and	210
morphology variations in cane	
clones. (Abs.)	367
FRIEDMAN, P., see DIAZ, T.	10
FRIML, M. Chemical control parameters	19
calculation. (Abs.)	378
and POCHYLÁ, S. Molasses exhaust-	
ibility determination. (Abs.)	247
aratus standardization (Abs)	27
and STENGL, R. Continuous crystall-	
ization. (Abs.)	,218
and TICHA, B. Beet juice purity	194
see also SKALA. L.	124
FRONTERA, A. R. et al. Cane molasses	
as animal fodder. (Abs.)	158
FROST, K. R. Chemical cane ripening	144
Agronomic factors and beet yield	
and quality. (Abs.)	21
FUJII, S. et al. Refinery liquor ion	
exchange treatment. (Abs.)	123
Dextran hydrolysis. (Abs.)	379
FUNDORA, G. F. Cane molasses ex-	
haustion calculation. (Abs.)	151
Sugar factory layout. (Abs.)	277
Level measurement in beet diffuser	216
FURSOV, V. M., see GROMKOVSKII, A. I.	
GADZHIEV. A. Y., see RYAZANTSEVA.	
L. I.	
GALBAN, I. White sugar manufacture GALLARATE, G. Aqueous ammonia	314

GALLARATE, G. Aqueous ammonia	
fertilizer trials. (Abs.)	115
GANDIA, L., see BALLARD, A. L.	
GANGAVATI, S. S., see MUKHERJI, J. P.	
GARBURG, W. Field spray equipment	307
GARCIA M. A. See SEIP. J. J.	
GARG J S and AZAD M P. Beet	
growing in Uttar Pradesh (Abs)	911
GARVATUA V T and DIDUSHKO B G	
Heat transfer in hoiling (Abs)	159
at al Massecuite circulation increase	102
in boiling by sir/steam injection	195
and dea Appy UVHOV V C. DIDUSH	100
TO D C and DAVELYO V I	
CLEONO CI T at al Cana datarioration	
offen hervesting (the)	150
after harvesting. (Abs.)	190
Sec also MILLER, J. D.	
GASKILL, J. U., see HECKER, R. J.	
GATLEY, I. W., SEE JACKLIN, G. D.	
GAVIOLI, E., see BERTULANI, G.	
GAVRILYUK, I. I. Sugars separation by	100
thin-layer chromatography. (Abs.)	188
GAYLE, F. L., see SEIP, J. J.	
GEBLER, J., see CIZ, K.	
GELABERT, O., see TRIANA, G.	
GENIE, G. V. Beet diffusion. (Abs.)	
25, 248, 312,	343
Cane diffusion. (Corr.)	269
GENOTELLE, J. Losses in beet sugar	-
manufacture. (Abs.)	121
Massecuite crystallization. (Abs.)	90
see also AHARI, D.	
GENTIL, L. V. Cane mechanization and	
transport costs and performance.	58
Mechanical cane harvesting. (Abs.)	336
GENTRY, J. P., see GASCHO, G. J.	
GEORGI, B., see BURBA, M.	
GEPKE, S. T., see TROINO, V. P.	
GERASIMOVA, R. Y., see SHALIMOVA,	
T. Y.	
GERBUT, K. F., see VIL'SHANSKII, A. A.	
GIAMALVA, M. J., see FANGUY, H. P.,	
FONTENOT, D. B., MARTIN, F. A.	
and RICHARD, C. A.	
GIARDINA, J. Cane containerization	177
GIBSON, W. Drip irrigation. (Abs.)	80
Subsurface and drip irrigation40,	111
and BUI, U. Irrigation tube flushing	
valve. (Abs.)	369
see also BUI, U. and MCELHOE, B.	
GIERADA, E. and TOBOLA, A. Auto-	
matic boiling control. (Abs.)	280

	PAGE	
GILES, J. F., see REUSS, J. O. GILLASPIE, A. G. and KOIKE, H. Cane		
susceptibility to maize dwarf mosaic virus. (Abs.)	113	I
and MCKNEW, C. C. Cane quarantine in_US. (Abs.)	142	
and WORLEY, J. F. Ratoon stunting disease pathogen. (Abs.)	178	t
et al. Ration stunting disease path- ogen. (Abs.)	6, 370	1
see also KOIKE, H. GIMÉNEZ L., O. and PÉREZ A., E. Cane		ł
see also MARIOTTI, J. A.	302	
cesses and equipment. (Abs.) and RICHARD, B. Beet diffusion loss	56	
calculation. (Abs.) GLADKII, V. N., see TROINO, V. P.	247	
GLASS, J. S., see CHANCELLOR, A. H. GODOY, O. P., see BRINHOLI, O. and		
CASAGRANDE, A. A. GODSHALL, M. A. and ROBERTS, E. J.		
atography. (Abs.)	283	
GOEL, D. P. and BHALWAR, V. M.		
ance. (Abs.).	213	
on cane root and stubble yields Filter cake effect on cane (Abs)	145	
Lime and phosphate effects on cane GOLDSMITH, T. J., see WILDMAN, S. V.	112	
GOLOVNYAK, Y. D. et al. Beet quality, reception and storage effects on		
sugar yield. (Abs.) see also KRAVETS, Y. O.	87	
GOLYBIN, V. A. and IVANOV, S. Z. Beet juice reducing matter and	100	
et al. Calcium, potassium and invert	120	
- Reducing sugars and molasses	21	
see also IVANOV, S. Z.	., 210	
GOMANYUK, D. G., see KHELEMSKII M. Z.		
GOMEZ R., L., see FABREGAT P., P. M. GONCHARENKO, B. I., see KIRICHENKO,		
A. G. GONCHARUK, M. V., see IVANOV, S. Z. CONPUL. Saccharate process waste		
water as animal fodder additive 126 GONZÁLEZ, M., see TRIANA, G.	, 190	
GONZÁLEZ F., M. D. and VÁZQUEZ G., M. A. Bagasse and cane trash fibre		
properties. (Abs.) GONZÁLEZ G., F., see RODRÍGUEZ C., E.	253	
GOODE NOUGH, P. W. and PLAYER, M. R. Bolling with massequite forced	23	
circulation. (Abs.)	84	
GORALCZYK, W. Polish sugar industry GOROKH, V. N. and SHTANGEEV, K. O.	88	
Condenser incondensable gases and evaporator vacuum. (Abs.)	342	
et al. Condenser. (Abs.)	89 281	
see also KNYAZEV, A. A., KOSMINSKII, I. V. and VAISMAN, M. L.		
GORONEL, M. et al. L 60-14 cane variety GORTZ, K., see EBERS, G.	146	
GORY, P., see DEVILLERS, P. GOSNELL, J. M. and LONSDALE, J. E.		
quality	7	
GOTTHARD, D. et al. Low head vacuum pan performance. (Abs.)	341	
GOYAL, K. N. and TYAGI, R. N. S. Cane ovariicolous smut. (Abs.)	273	
- Cane vellowing disease control see also TYAGI, R. N. S.	365	
GRAF, A. Beet varietal trials in Austria GRAHAM, R. W. Cane utilization as fuel	274 51	
GRAVES, C. R., see ALLAWAY, R. A	150	
GREENWOOD, W. A. Factory equipment installation and re-location pro-		
gramme. (Abs.) and HAYES, J. B. Cane train	54	
handling at Racecourse. (Abs.) GREULICH, E. Waste water treatment	51 187	
GRIFFIN, G. D. Beet nematodes. (Abs.) see also MUMFORD, D. L. CRUITOR F. A. Air sud matter collution	116	
reduction. (Abs.)	150	
Clarification mud treatment by centrifuge. (Abs.)	86	
- Computerized process control GRIMM, Beet seed X-ray analysis	86 211	
GRINBERG, T. A., see STABNIKOVA, E. V. GROISMAN, A. M., see DERZHAVETS, A.S.		
GROMKOVSKII, A. 1. et al. Crystallizer		

		TAGE
	GROULT, M., see DEVILLERS, P. GRUBER, H., see PREY, V.	
	GRUSCHCHENKO, V. I., see KICHIGIN, N. M.	
	Beet juice ion exchange treatment (Abs.) 18	5, 187
	GRYLLUS, V. Beet juice ion exchange treatment. (Abs.)	8, 281
	GUÉRAIN, J. and TOURLIÈRE, S. Syn- thetic alcohol determination in	
	mixture. (Abs.) GUERN, J. Beet sugar accumulation	221 339
	GUERRA D., J. Calcium phosphate precipitation in clarification3,	35, 73
	GUIDRY, A. I. Bagasse conveying GUILLOTTE, P., see SHULER, J. H. GUIXI I. S. et al. Continuous boiling	151
	and massecuite colour. (Abs.) - Continuous vacuum pan. (Abs.)	$153 \\ 153$
	- Mathematical simulation of con- tinuous boiling. (Abs.)	376
	and sucrose crystallization	153
	A. T., SHTANGEEV, V. O. and ZUBCHENKO, V. P.	
- 1	GUPTA, D. N. and SINGH, R. Cane varieties for gur manufacture	271
	GUPTA, K. M., see SINGH, D. J. C. GUPTA, M. C., see KALRA, A. N.	
	GUPTA, R. C., see AGARWAL, S. K. D. GUPTA, S. C. and PRABHU, K. A.	0.01
	Distillery waste treatment. (Abs.) see also AGARWAL, M. L. GUPTA U. P. see JOSHI R. D.	381
	GUPTHA, S. N., see SRIRAMULU, C. R. GURUMURTHY, S. and SIVASWAMY,	
,	M. S. Cane milling-cum-diffusion GUTIÉRREZ, L. et al. Bagasse pulp	118
1	GUTMAŃSKI, I. Beet planting and vield. (Abs.)	276
	Excessive fertilizer application rates	181
1	HADDEN W. A. SEE COCHBAN, B. J.	
1	HADDOCK, J. L., see RYSER, G. K. HADJIANTONIOU, D. Greek sugar in-	
1	dustry. (Abs.) HAECKEL, D. Screen perforations and	377
)	HAGELBERG, G. B. World sugar economy. (N.B.)	345
1	World sugar production. (N.B.) HAGIHARA, H. H. Filter cake and	155
3	and cane yield. (Abs.)	80
1	for power production. (Abs.) HAINES, W. S. Drip irrigation. (Abs.)	$\frac{221}{368}$
2	HALE, D.'J. and PARTRIDGE, B. Clari- fication juice: flocculant ratio con- trol (Abs)	372
]	HALL, A. S. Cane harvesting. (Abs.) HALL, D. H., see HILLS, F. J.	368
1	HAM, G. J. Underground water quality see also KINGSTON, G.	47
Î	HAMPADI, K. A., see MURADINOW, N. HAMPEL, W., see KUBADINOW, N. HAMPLOVÁ, K., see TONINGEROVÁ, D.	
I	HAMPSON, R. J., see FERGUSON, G. A. HANGYÁL, K. Magma boiling. (Abs.)	186
I	ANSEN, G. B. Cane railway sied ANSEN, S. A. Sugars determination	335 157
H	HANSON, K. R., see CHOU, C. C. HANUS, H., see MORTAZAVI, M.	
H	LAPNER, K. D., see STROBEL, G. A. HAQUENNE, W., see BELIEN, J. M.	341
Ì	HARDARER, D. C. All Complexition HARDING, R., see BRETT, P. G. C. HARPER, R., see SHULER, J. H.	011
I	HARRIS, R. H. G. Soil nematode vertical distribution. (Abs.)	174
Į	ART, C. W. Cane harvester-cleaner	79
E	fodder. (Abs.) IARTL, H. Fertilizers and beet juice	252
E	quality. (Abs.)	21
E	chemicals. (Abs.)	18
H H	IAUCK, R. D., see ENGELSTAD, O. P. IAUFE, W., see BURBA, M.	149
H	IAYES, J. B., see GREENWOOD, W. A. IAYSOM, M. B. C. and CHAPMAN, L. S.	110
	Available silicon determination in soil and calcium silicate applica-	50
E	LION. (ADS.) IAYWARD, A. C., see TEAKLE, D. S. IEBERT, L. P. Cape milling quality	90
н	assessment. (Abs.) IEBERT, R. M. Cane sampling and	112
В	analysis. (Abs.) IECKER, R. J. and GASKILL, J. O. Isolation chambers for beet seed	347
	production (Abs.)	242

DIGE

	PAGE
HEDICK, W. C., see CLAYTON, J. E. HEGDE, R. K., see SULLADMATH, V. V.	
HEINZ, D. J., see LADD, S. L. HEITZ, F. Filtration. (Abs.)	247
Sucrose solution properties. (Abs.) HELLER, C. Beet harvesters and trans-	28
port. (Abs.). HELLMANN, D. B. Cane varietal trials	175
HEMAIDA, S. EL-N. A. et al. Cane burn-	175
sugar yield. (Abs.)	$\frac{302}{308}$
HENDERSON, M. T., see LEGENDRE, B L. RICHARD, C. A. and VIATOR.	000
H. P. HENDRICK, L. W. et al. Chemical weed	
control. (Abs.) HENKEL, C. R. Soil conservation	149
structure and drain maintenance Tractor three-point linkage. (Abs.)	332 78
HENNETON, P. Carbonatation. (Abs.) HENZE, R. Beet pulp dryer. (Abs.).	349
effects on sugar content and yield	20
evaporator tube corrosion. (Abs.) HERČIK, J. and DACHOVSKÝ, V. Dis-	218
infectant. (Abs.) HERNÁNDEZ, M. T. and HERRERA, N.	90
Micro-organisms and stored sugar deterioration. (Abs.)	22
HERNÁNDEZ C., L. et al. Cane milling materials balance calculation	117
HERRERA, N., see HERRARDEE, M. I. HERVÉ, D. Ion exchange. (Abs.)	56 94
HESS, W. M., see STROBEL, G. A. HETHERINGTON, M. A. Pineapple	
disease. (Abs.)	47
trace elements. (Abs.) see also KOSTER, P. B.	379
HIDI, P. and STAKER, R. Dextran reduction. (Abs.)	85
HIES, R. Beet knile treatment. (Abs.) HILLS, F. J. Beet spacing effect on	10
et al. Beet powdery mildew control	148
HILTON, H. W. et al. Cane ripener and herbicide residues. (Abs.)	81
HINOJO, J. M., see COSSIO, R. P. HIRATA, E. Y. Irrigation with sewage	1074
effluent. (Abs.) HIRUMI, H., see URBINA-VIDAL, C.	81
HITCHCOCK, B. E. Locusts. (ADS.) and KERKWYK, R. E. Rat control	208
removal. (Abs.)	$   \begin{array}{r}     112 \\     49   \end{array} $
HOBBIS, J. and BATTERMAN, L. Beet analysis and storage properties	92
HOBÍKOVÁ, V., see Cíž, K. HOBOHM, J. and TIEDGE, H. G. Drought	044
and beet crop in West Germany HODEN, A., see JOURNET, M.	244
drills. (Abs.)	205
harvesting. (Abs.)	$\begin{array}{c} 16 \\ 301 \end{array}$
HOEKSTRA, R. G. Cane harvesting- crushing delays. (Abs.)	151
HOFFMANN-WALBECK, H. P. and PELLEGRINI, A. Waste water	100
HOLLAUS, F. Beet diffusion water	5 152
Galactinol determination in beet molasses (Abs.)	284
HONDA, S. et al. Reducing sugars de- termination. (Abs.)	157
HOOKS, S. L., see ORSENIGO, J. R. HOTON-DORGE, M. Sugars separation	
by thin-layer chromatography HOUSSIAU, J. and PIECK, R. Molasses	348
electrodialysis. (ADS.) see also DEGEEST, J.	919
fuel consumption. (Abs.)	377
level maintenance. (Abs.) HSIA, F. Y. Cane replanting and yield	$310 \\ 76$
HSIEH, T. S., see YANG, T. T. HUANG, Y. Y., see CHEN, Y.	
HUDSON, J. C. Cane sugar industry energy consumption. (Abs.)20	8,273
et al. Green cane harvesting. (Abs.) HULL, J. E. Beet seedbed preparation	18
Powdery mildew control. (Abs.)	305
HULL, R., see KUJALA, P. and LAST, P. J.	
HUMBERT, R. P. Cane leaf canopy and yield. (Abs.)	208
Filter cake-bagasse humus	300
Weed control. (Abs.) HUMMEL, L. M. Four-wheel-drive vs.	81
urach uype uractors. (Aus.)	

HURTER,	A.	G. Pur	verizeu c	joar m	шg	
and	bag	asse pn	eumatic	firing	of	
furn	ace.	(Abs.)			.183,	372

	PAGE
HUSSEIN, M. A., see HEMAIDA, S. EL-	
HUSSEY, A. J. Automatic cane carrier	21032400
speed control. (Abs.)	118
HWANG, D. Z., see FANG, Y. T.	502
HYNDSHAW, A. Y. Active carbon	57
actection. (Abs.)	01
BRAHIM, H. S. Deep ripping and gyp- sum effects on cane yield	165
IGGO, G. A. Chemical weed control	147
IGNAT'EV, L. P., see DOVGOPOL, V. I. IGNATOV, N. M. and KINYAKIN, M. F.	
Lime application to stored beet	378
plosions. (Abs.)	117
IL'CHENKO, N. B., see TSYUKALO, Y. F.	
cutting. (Abs.)	81
INKERMAN, P. A. and JAMES, G. P.	974
see also FULCHER, R. P.	014
IRIMIA, M. R. Liquid sugar manufac-	123
Refinery liquor treatment. (Abs.)	123
IRUTHAYARAJ, M. R., see SRINIVASAN, T. R.	
IRVINE, J. E. Cane canopy develop-	110
Cane leaf dew sugars. (Abs.)	177
Cane total leaf area determination	146
ation after harvesting. (Abs.)	146
see also LEGENDRE, B. L.	
flat land. (Abs.)	80
ITO, H., See ONDA, M. IVANISHENKO, E. K. See ZAGORUL'KO	
A. Y.	
IVANOV, S. Z. et al. Beet sugar factory planning. (Abs.).	216
- Colorants adsorption in carbonat-	070
- Hydroxy acid salts and sucrose	370
inversion. (Abs.).	250
- Ion exchange resin and bone char desorption. (Abs.)	219
<ul> <li>Potassium and sodium carbonate</li> <li>and subplite affects on success</li> </ul>	
solubility. (Abs.)	93
see also GOLYBIN, V. A. IVANOV V. P. see KLOCHKOV, V. P.	
IVIN, P. C. and CULLEN, R. N. Baga-	
et al. Automatic polarimeters. (Abs.)	373 92
IZATT, L. K., see DOWNS, P. R.	
IZBINSKAYA, N. L., see REVA, L. P.	
diaman ( D Rollangton (Aba)	10
et al. Spherical roller bearing cane	49
mill. (Abs.)	54
JACKSON, R. D. Mass borer rearing.	146
see also SUMMERS, T. E. LACOUES H and LEBLANC L. SUCROSE	
epoxy resin manufacture. (Abs.)	382
white sugar improvements. (Abs.)	308
JAIN, P. F. Cane mill performance	200
Molasses spontaneous destruction.	22
JAKEL, W., see CRONEWITZ, T.	
in irrigation water. (Abs.)	18
JAMES, G. L. Cane varietal trials in Rhodesia. (Abs.)	175
Effect of nitrogen in hot water for	
lation. (Abs.)	144
Smut in Guyana and Martinique.	336
WELLS, W. D.	
JAMES, N. I. and MILLER, J. D. Cane selection (Abs.)	178
see also MILLER, J. D.	1000.00
JAMES, R. A., see CULLEN, R. N. JANUSZEWICZ, I. et al. Weather effect	
on invertase and beet diffusion	206
JAROŠ, J., see SCHMIDT, L.	000
JENSEN, M. E., see CARTER, J. N. JERMVN M A Sugars determination	817
JESIC, V. M. Clarification mud treat-	070
JHA, A. et al. Grassy shoot virus	3/8
alternative host, (Abs.)	239
<ul> <li>Grassy shoot virus physical pro- perties. (Abs.)</li> </ul>	114
JILKOVÁ, M., see RÍMSA, V.	
refined sugar solution. (Abs.).	91
JOHNSON, S. R., see SAMOL, H. H. JOHNSTON, M. A. Soil exchangeable	
sodium and hydraulic conductivity	174
JOHNSTON, N. A., see LANDREY, O. P. JONES, C. D. Irrigation nump and	
motor shed. (Abs.)	331
Lolo Lallu Use Scheme. (ADS.)	11

370 221 335 176 79 KARDE, J. R. et al. Cane sett pre-treatment and germination. (Abs.) KAKIMOTO, K., see HONDA, S. KALASWAD, S. R., see CHATTERJEE, NARDE, J. R. et al. Came set: pre-treatment and germination. (Abs.)
16
KARIMOTO, K., see HONDA, S.
KALAWAD, S. R., see CHATERDEL, AKALAWAD, S. R., see CHATERDEL, KALINAN, S. N., see HORDA, S.
KALAWAD, S. R., see CHATERDEL, AKALNEN, J. G. Beet juice and syrup soluble lime saits determin-ation. (Abs.).
156
KARA, A. N. and GUPTA, M. C. White fly control by urea splaying. (Abs.)
and pest problems. (Abs.).
if and pest problems. (Abs.).
and pest problems. (Abs.).
if and pest problems.
if and pest problems.
if and structure (Abs.).
if and SINGH, S. CoJ 64 cane variety 16
if and SINGH, S. CoJ 64 cane variety 16
if and SINGH, S. CoJ 64 cane variety 16
if and SINGH, S. CoJ 64 cane variety 16
if and SINGH, S. Col 64 cane variety 16
if and SINGH, S. Col 64 cane variety 16
if and SINGH, C. Could zho
if and SINGH, C. Sould zho</ 16 KATEOKHA, I. M., See TARABUMBAUN, A. P.
 KATS, B. I. Evaporator juice colour formation reduction. (Abs)....
 KAUVIN, N. A. Dise filter leakage pre-vention. (Abs).
 KAUVIN, N. A. Dise filter leakage pre-vention. (Abs).
 KAUMARY, H., see FUJII, S.
 KAZMIROV, R. K., see EMELYANOV, N A. 24 344 

	PAGE
KHAMAZA, F. I., see BARKO, M. N. KHARAKOZ, V., see FABREGAT P., P. M.	
KHARIN, S. E. et al. Sugars determina- tion. (Abs.).	125
and ZHARKOV, A. L. Sucrose crystall- ization (Abs.)	93
KHARITONOVA, R. I., see IVANOV, S. Z. KHELEMSKII, M. Z. et al. Beet process-	., •
ing quality. (Abs.) - Loss reduction in stored beet.	52 87
- Stored beet ventilation and moist- ening. (Abs.)	311
see also GOLOVNYAK, Y. D. KHELEMSKII, S. M., see RAFAL'SKII,	
KHILINSKAYA, E. Y., see LAPIN, A. P. KHOMENKO, A. L. Steam trans. (Abs.)	247
et al. Water heating with condensate see also DOVGOPOL, V. I. and GOROKH,	123
V. N. KHOMENKO, N. D., see KOVAL', E. T. KHOMENKO, V. S. see PARKHOD'KO	1
A. P. KHURANA, S. M. P. and SINGH, S.	
Cane diseases in India. (Abs.) KHVALKOVSKII, T. P. Beet thick juice	143
and ZAKHAROVA, T. V. Phosphate	88
et al. Beet thick juice storage	, 246
KICHIGIN, N. M. et al. Beet, pulp, limestone and sugar handling.	375
- Bulk sugar carrier. (Abs.)185 see also EMEL'YANOV, N. A. and	5, 376
VASIL'EV, V. I. KIELY, M. and O'SULLIVAN, M. Chrom-	
atography applications. (Abs.) KIMBER, D. S. and MCCULLAGH, S. F. H.	317
KIMMERLING, Z. J. Very high pol sugar	371
KING, J. H. Raw sugar reflectance measurement and pol control	92
KINGSTON, G. Rainfall probabilities calculation. (Abs.)	334
Soil drainage pipes. (Abs.) and CHAPMAN, L. S. Irrigation	270
scheduling trials. (Abs.)	9, 110
and REHBEIN, R. E. Solid-set	335
KINYAKIN, M. F., see IGNATOV, N. M. KURY I. K. Cane juice sugar and	000
molasses ash and reducing sugars contents. (Abs.)	92
and ATHERTON, P. G. Continuous centrifugal performance. (Abs.).	213
et al. Finned-tube massecuite re- heater. (Abs.).	373
ation in flume-wash water. (Abs.)	342
KISELEVA, N. I., see USMENTSEVA, A. Z.	
KLEPAL'CHENKO, M. P. Milk-of-lime feed control valve. (Abs.)	311
KLISENKO, M. A., see USMENTSEVA, A. Z.	
KLOCHKOV, V. P. et al. Sugar solution flow measurement. (Abs.)	93
KNECHT, R. L. et al. Refinery waste water treatment. (Abs.)	. 123
KNOGOTKOVA, E. I., see SHVETS, V. N. KNOWLES, W. D. Beet tops as animal	
todder. (Abs.) KNYAZEV, A. A. and GOROKH, V. N.	126
calculation. (Abs.)	216
optimum evaporation rate KNYAZEV. V. A., see ARKHIPOVICH.	311
N. A. KOBAYASHI, T., see NAKAGAWA. M.	
KOETHKE, H. Beet slicers. (Abs.) KOIKE, H. Cane mosaic in Louisiana	378 370
Cane mosaic and maize dwarf mosaic mixtures. (Abs.).	145
and cane mosaic transmission	113
see also GILLASPIE, A. G. KOJIMA, T. and NISHIMOTO, S. Sucrose	
ester synthesis. (Abs.) KOLAGO, P. Moisture and beet seed	190
germination. (Abs.) KOLCHEVA, R. A., see SAPRONOV, A. R.	306
KOLLAR, J., see FÁBIÁN. K. KOLLNER, H. and LOPEZ P., R. Bagasse	000
KOLMERER, E. Surface protection in factories. (Abs.)	312
KOLOMIETS, V. F. et al. Continuous centrifugal feeder height and	012
molasses separation. (Abs.)	248

KOMOTO, M., see FUJII, S. KONSTANTINOV, S. M. and BFZPAL'KO, N. N. Steam injection and sugar solution heat transfer. (Abs.).... 

PAGE KONTAXIS, D. G., see HILLS, F. J. KOONER, B. S. et al. Cane borer varietal susceptibility and control. (Abs.) – Stalk borer incidence in Punjab KOPEW, M. A., see Maxov, M. Y. KÖEPER, H. G. Continuous boiling... KOEN, K. V. et al. Vapour condensa-KOEN, K. See CLONEWITZ, T. KORDENIKOVA, L. A., see ZaGORUL'KO, A. Y. KORDICINE E. see LANISZEWICZ I assium determination. (Abs.).... Kortin, N. F., see ALDEKOV, N. A. KORTI, NIKOYA, L. P., see BOBROVNIK, L. D. and SAFRONOV, A. R. V. F. KOVACS, K., see DEBERECZNI, B. KOVAL, E. T. et al. Beet water separ-ators. (Abs.) KOVALY, V. G. et al. Vinasse chemical composition. (Abs.) KOVALS, V. G. et al. Vinasse chemical composition. (Abs.) KOVALSWOR, A. D. Molasses storage and degradation. (Abs.)...... KOVALSWOR, I. D., see BESEDOVSKII, N. I. KOVALSWOR, I. K., see LILA. N. G. KOVALENOK, I. D., see LILA, N. G. KOVALENOK, J. and NIESTRAWSKI, Z. Citric acid manufacture from molasses. (Abs.). KOZLO, M. S., see OKOLOT, A. S. KOZLO, M. S., see OKOLOT, A. S. KOZYAREVICH, A. A., see KICHIGIN, N. M. KOZYAVKIN, A. P., see CARRAZANA R., L. 174 

	PAGE
KURBET, T. A., see KHELEMSKII, M. Z. KUROWSKI, W., see BOGUMIL, T.	
KUTS, A. M., see SUKHODOL, V. F. KUTSENKO, A. E. Barometric con- denser. (Abs.)	121
<ul> <li>KUZ'MENKO, B. P. Microbiological con- trol in beet sugar factory. (Abs.)</li> <li>KUZNETSOVA, L. A., see MAROCHKO, I. A.</li> </ul>	24
LABAT, G. J. Clarification at Green-	151
LABY, H. Beet yield and composition LADD, S. L. et al. Cane smut resistance	243
LAGODA, V. A. et al. Beet flume-wash water micro-organisms determin-	148
LAI, C. L., see CHEN, W. P. LAKSHMIKANTHAM, L. Cane seed	124
material. (Abs.) LAL, R., see SINGH, K. LALITHA, E., see RAO, K. C.	176
LALL, S. B., see KAKDE, J. R. LAMPRECHT, A., see SOKOLOWSKI, A. LANDI, S., see MARIGNETTI, N.	
LANDREY, O. P. <i>et al.</i> Cane field layout and mechanization. (Abs.)174 LANG, H., see TRIANA, G.	, 303
LANGEN, A., see THIELE, H. LANTING, S. Sub-surface drip irrigation LAPIN, A. P. et al. Carbonatation. (Abs.)	368 216
see also KOVAL', E. T. LA SERNA, N., see OCAMPO, G. LAST, P. J. et al. Beet topping, popula-	
tion and irrigation effects on yield and quality167, LASTRA, J., see OCAMPO, G.	, 195
LASZTITY, L. Beet biochemistry. (Abs.) LAUDEN, L. L. Cane breeding in Louisi- ana. (Abs.)	274 365
Cane land preparation and planting Cane ripening with "Polaris". (Abs.) Ratoon stunting disease control 16	175
Scrappable cane determination US cane varieties and chemical cane rinening. (Abs.)	238 114
Weeds in Louisiana. (Abs.) LAZHE, Y. Y. Refining in USSR. (Abs.) see also STRAUTNIERS, A. K.	76 123
LEACH, L. D., see MACDONALD, J. D. LEBLANC, L., see JACQUES, H. LECLERC, E., see BASU, A. K.	
LEE, S. M., see CHEN, C. T. LEES, R. Food analysis. (N.B.) LEFEVRE P. Hardpan. (Abs.)	282 304
LEGENDRE, B. L. Cane mud and sugar yield. (Abs.)	177
and HENDERSON, M. T. Cane sugar yield calculation. (Abs.)	119
processing quality. (Abs.) see also Hodson, R. C. and IRVINE, J. E.	183
LEKAWSKI, W. and BOBER, A. Boiling scheme. (Abs.)	120
ENDA, J. LENCZEWSKI, J. Reducing sugars de- termination in molasses. (Abs.)	124
LENTS, P. I., see POGORZHEL'SKII, B. I. LESCURE, J. P., see DEVILLERS, P. LEU, L. S., see WANG, Z. N.	
LEVERINGTON, K. C. and RIDGE, D. R. Irrigation. (Abs.) see also CHAPMAN, L. S.	49
LEW, R. B. Sulphite determination in beet juice. (Abs.) LEWANDOWSKI, W., see STANKIEWICZ,	250
W. LEWELLEN, R. T., see SKOYEN, I. O. LEWIS, F. Essex and sugar. (N.B.).	345
LI, K. Y. Malaysian sugar industry LIER, S., see MANZKE, E. LIKHACHEV. B. L. see ELAGIN. A. M.	77
LIKHITSKII, M. K. and REVA, L. P. Carbonatation juice optimum alka- linity and evaporation (Abs)	152
LILA, N. G. and EIBOZHENKO, B. I. Belt filter. (Abs.)	88
LIM, M. J. H. Cane mill extraction calculation. (Abs.).	117
LIMA, C. N., see Chu, H. LIN, C. N., see Chu, H. LINDEN, J. C. Sugars determination.	28
LINEDALE, A. I. Cane land planning Drainage in Australia. (Abs.)	78 334
LIONNET, G. R. E. and FALCONER, D. Nutsch homb. (Abs.)	189
see also KAVNO, A. B. LIPETS, A. A., see LYSYANSKII, V. M., POGORZHEL'SKII, B. I. and ROMAN- YUK, A. Y.	
LI PI SHAN, L., see CHAN, P. Y. LIPSMAN, V. S., see KOSMINSKII, I. V. LISTOPAD, G. I., see KOREN', R. V.	

LITVINOV, A. M., see TSSHEV, A. S. LITVINOV, E. V., see SHCHEGOLEV, V. N. LIU, C. H. Bagasse and cane molasses as animal fodder. (Abs.).....

	PAGE
LIU, C. L., see WU, M. M. H. LIU, Y. T. Citric acid manufacture	000
LLERENA, G., see OCAMPO, G. LLISTÓ, A. M. S. M., see DE SOUZA, L. G. LOCHMAN, V. Beet flume cleaning LODOS, J., see CORDVES, M.	88
LOILIER, M., see DEVILLERS, P. LOKAN, R. Bagasse furnaces. (Abs.)	213
LONSDALE, J. E. Cane drying-off. (Abs.)	174
and GOSNELL, J. M. Age and harvest	.111
quality. (Abs.)	175
LOOP, W., see PIECK, R. LOPEZ P., R., see KOLLNER, H. LORENZ, W., see PREY, V.	
LOSEVA, V. A., see IVANOV, S. Z. LOUPE, D. T. Chemical weed control	
in Louisiana. (Abs.) and McCormick, L. L. Chemical	241
weed control. (Abs.) see also MATHERNE, R. J.	366
LOYNET, G. and DE FRAISSE, C. H. Nitrogen trials in Béunion. (Abs.)	17
LOZZIA DE C., M. E., see FRIAS DE F., A. M.	
LU, C. J. Automatic boiling control	277
Taiwan. (Abs.)	374
and factory processing. (Abs.).	277
triploid beet. (Abs.)	338
facture from vinasse. (Abs.)	<b>19</b> 0
LUDWICK, A. E., see REUSS, J. O. LUKÁCS, L. and ZANA, J. Beet leaf	
- Beet varietal trials in Hungary.	$211 \\ 244$
LUMBROSO, R., see UNGAR, J. J. LUTSENKO, O. K., see PARFENENKO.	
V. V. LYONS, J. Four-wheel drive tractors	369
LYSIKÓ, B. P., see KOVAL', E. T. LYSYANSKII, V. M. et al. Beet diffusion variables calculation. (Abs.)	89
MAAG, G. W. and SISLER, G. H. Sucrose determination by polarization vs. cashicuid obsenatorscoper	850
MCALEESE, C. Q 101 and eye spot	200
MCCORMICK, L. L., see LOUPE, D. T. MCCULLAGH, S. F. H., see KIMBER, D. S. and WILLEY, L. A.	270
MACDONALD, J. D. et al. Beet stalk blight. (Abs.)	337
MCDOUGALL, E. E. et al. Fly-ash	941
see also BATES, L. MCEACHBAN B see NIEISEN N A	011
MACEDO, N. et al. Cane borer rearing	302
irrigation tube plugging prevention	80
R. D. Continuous centrifugal	100
MACEY, D. Centrifugal, shredder and	102
and MCGINN, J. A. Cane mill roller	241
MACFARLANE, J. Calcium chloride	54
flocculants. (Abs.).	118
see also MACDONALD, J. D. and	242
MCGINN, J. A., see MACEY, D.	
and beet molasses sugar extraction	121
MACHADO, J. R., see BRINHOLI, O.	19
MACHADO L., I., see CARRAZANA R., L. MACHLAJEWSKI, S. Beet seed and inter-	07.
row spacing effects on population MCINTYRE, R. J. Auxiliary power	274
supply. (Abs.) Turbo-alternator and power flow	340
control. (Abs.) MCKAY, C. M. Gilmore Louisiana-	54
Florida-Texas-Hawaii-Puerto Rico sugar manual 1975. (N.B.)	155
MCKNEW, C. C., see GILLASPIE, A. G. MACLEAN, G. D. and BATSTONE. D. B.	24.540
Automatic cane reception control MACLEAN, N. R. Cane agriculture and	340

	PAGE
MAGYAR, K. Beet diffusion water effect on juice properties. (Abs.)	90
MAHAMUNI, I., see RAMAMOORTHY, N. MAI, S. C. and WU, T. H. Cane, bagasse and molasses as animal fodder. (Abs.) MARSHUE P. S. Water consumption	61
and waste water quantity reduc- tion. (Abs.)	89
et al. Vacuum filter modifications MALASHKEVICH, A. A., see KOVAL', V. G.	185
growth. (Abs.)	249
Crystallization rate. (Abs.) MALEC, J., see BRANDT, M.	316
ation. (Abs.)	, 347
MANE, V. S. Co 791 cane variety. (Abs.) MANN, Q., see Číž, K.	111
MANSOUR, O. Y. and EL-DIEN, M. S. Bagasse lignins. (Abs.)	222
sucrose crystallization. (Abs.). 91 see also MARIGNETTI, N., MATTEUZZI, D. and MAURANDI, V.	, 346
MANZKE, E. and LIER, S. Beet thick juice pipeline pressure loss calcu-	070
MANZO, S. K. Pineapple disease in	2/9
MARCONDES D. A. S., see BRINHOLI,	140
MARIGNETTI, N. Liquid sugar manu- facture. (Abs.)	219
et al. Beet diffusion simulation25 MARIMUTHAMMAL, S., see RAO, K. C.	, 310
MARIMUTHU, P. Seed shurry purity MARIN-LAFLECHE, A., see REMY, J. C.	309
MARINHO, M. L. et al. Fertilizer trials in Brazil. (Abs.)	270
- Nitrogen effect on cane. (Abs.).	302 366
and TUROWSKI, I. A. Cane stalk height and number effects on yield	366
et al. Environmental factors and cane yield. (Abs.)	366 366
MAROCHKO, I. A. et al. Beet pilers MARQUES, E. J. Cane varietal frog-	376
hopper resistance testing. (Abs.) MARSHALL, J. R. Hydrostatic drives	$210 \\ 81$
MARTENS, M. Agronomic factors and beet storage and processing quality MARTIN, F. A. et al. Cane deterioration	83
after frost. (Abs.) MARTÍN, P. C., see CABELLO, A.	189
MARTIROSOVA, S. P., see SHALIMOVA, T. Y. MASIRONI, B., see WOLF, W.	
MASLIKOV, V. A., see CHUDAKOV, G. M. MASUDA, Y., see CASTRO, P. R. C.	
MATH, B. R., see APTE, P. L. and CHATTERJEE, A. C.	
spacing and yield. (Abs.). 114, 145, Cane varietal sugar yields. (Abs.).	205
Cultivation number and cane yield et al. Cane varieties in Louisiana.	179 208
MATHLOUTHI, M. Sucrose lyophiliza- tion. (Abs.).	251
Irrigation and trash mulching effects on cane yield. (Abs.).	239
and RAM, H. H. CoS 659 cane variety and TRIPATHI, K. B. Irrigation and nitrogen effects on cane and sugar	271
yield. (Abs.) et al. Cane sett pre-treatment effect	272
on germination and yield. (Abs.) MATHUR, B. S. Cane intercropping with	17
Co 6613 cane variety. (Abs.) Micronutrients effect on cane vield	272 208
and quality. (Abs.) MATHUR, K. K., see AGARWAL, S. K. D.	207
MATHUR, R. B. L. Cane sugar tech- nology handbook. (N.B.)	282
KORT, M. J. MATISON, V. A., see OSTAPENKOV, A. M.	
MATSUOKA, S. and DODSON, A. K. Cane varietal mosaic resistance.	77
biological control. (Abs.)	247
MATTHEWS, B. C. H., see CLARKE, S. G. MATTIAZZO, M. E., see DA GLÓRIA, N. A.	
MATUSIEWICZ, H., see BOCKO, J. MATVEENKO, P. S. and SEMENETS, P. A.	
Yeast manufacture from beet molasses. (Abs.)	285
MATVIENKO, B. A., see TOBILEVICH, N. Y. MAUCH, W. and ASSEILY, S. Heat	

MAUCH, W. and ASSELLY, S. Heat effect on melt composition. (Abs.) 249 and EL AAMA, F. Disaccharide formation by micro-organism ... 284 MAUDRU, J.E. Iran heet sugarindustry 152 MAUGHAN, G. L. Beet seed drill speed 243

	PAGE
MAURANDI, V. Boiling. (Abs.) and MANTOVANI, G. White sugar	25
and silo conditioning. (Abs.) 55, 217 MAUREE, S. P., see BRUNET, R.	, 342
MAYANSKII, M. T., see MAKSIMUK, P. S.	82
MAYEAUX, M. M., see PARR, J. F. MAYEUX, M. M., see COOHRAN, B. J. MAYEUTT A O and DECRUS	
Refnery melt house computer MAZOV. M. Y. et al. Syrup decoloriza.	315
tion with adsorbent resin. (Abs.) MECHIAS, B., see SCHLIEPHAKE, D.	315
MEEK, V., see PAULUS, A. O. MEGGITT, W. F. Chemical weed control	83
MEHAN, V. K., see SANDHU, S. S.	
MELLET, P. Cane molasses Brix de-	0.0
see also KORT, M. J. MEL'NIK, A. N., see SHVETS V N	93
MENDES, A. DE C., see MACEDO, N. MENSER, H. A. Ozone and beet leaf	
injury. (Abs.). MERCIER, A., see PITHOIS, P. H.	116
MERKEL, D. Sodium as fertilizer. (Abs.) MERKES, R., see WINNER, C.	275
Waste water treatment. (Abs.)	117
MESSITER, G. M., see MCDOUGALL, E. E. METZ, K. Waste water treatment.	187
METZING, P. and SCHLAG, K. F. Massecuite supersaturation meas-	
MEYER, E. and DE BEER, A. G. Culti-	218
MEYER, H. K., see LADD, S. L. MEYER J. H. Cane foliar analysis 145	, 302
MEZENTSEV, S. K., see POPOV, A. E. MIKHALINIK A T See CHURANOV	, 239
G. M. and TESHEV, A. S. MIKI, T. Polychlorinated binbenyls	
and organochlorine pesticides resi- due in sugar. (Abs.)	156
see also ONDA, F. MIL'KOVA, Z. A., see IVANOV, S. Z.	
MILLARD, E. W., see RAU, S. MILLER, J. D. Cane eye spot varietal	
cane varietal frost tolerance. (Abs.)	$145 \\ 303$
tion after frost. (Abs.)	220
culator application in cane breed- ing. (Abs.)	112
see also DEAN, J. L. and JAMES, N. I. MILLER, K. F., see BROADFOOT, R. and	
STEINDL, R. J. MILLHOLLON, R. W. Chemical weed	1.101-0.00
MILYUKIN, M. V., see KHARIN, S. E.	112
MIROSHNICHENKO, B. P., see ELAGIN, A. M.	
MISCHAN, M. M., see DE SOUZA, L. G. MISHCHUK, R. T. Carbonatation lime	101
and ZAGORUL'KO, A. Y. Liquor re-	121 910
MISHRA. B., see JHA, A. MITKA, D. S., see SIPITANOU, K. M.	210
MITTAL, R. P. Green's economizer and steam generation. (Abs.)	214
MOBERLY, P. K., see RAU, S. MOHAMED, M. A. et al. Cane molasses	
- Sugar physico-chemical properties	318
MOHAMED, M. S., see SAYED, G. EL-K. MOLENDA, J. and LEKAWSKI, W.	000
Mosul sugar complex. (Abs.) MOLLER, R. B. and CHAPMAN, L. S.	120
Irrigation in Australia. (Abs.). 49 MONDEJA G., D. Sodium and calcium	, 110
liquid equilibrium. (Abs.)	190
factory effluent treatment. (Abs.) MONTGOMERY. C. C. Mechanical cane	308
harvesting. (Abs.)	368
juice storage. (Abs.) MORACHAN, Y. B., see SRINIVASAN,	56
T. R. MORAGHAN, J. USSR sugar industry	90
MORALES, K., see TRIANA, G. MORALES, S. and FLORES, P. M. Cane	0.9
MORFAUX, J. N., see RIDEAU, J. P. MORFFI, N. et al. Phosphorus determin-	23
ation. (Abs.) MORIN, D. M., see FOGLIATA, F. A.	124
MORITSUGU, T. et al. Molasses exhaust- ibility calculation. (Abs.)	318
MORKIS, N. M. et al. Heavy metals determination in sugar. (Abs.)	380
tion aids. (Abs.)	118

MORRISS, A. C. and NICOL, W. M. Pesticide and trace constituents determination in cane molasses... 251

1	PAGE
MORTAZAVI, M. et al. Soil, weather and fertilizer effects on beet yield and quality. (Abs.)	21
MOSICH, K. Triple-effect evaporator performance. (Abs.) MOSSAKOWSKA, K., see JANUSZEWICZ, I. MOTYLEWSKI, J., see BOGUMIL, T. MOTYLEWSKI, J., see SUKHOOOL, V. F.	343
MOVERN, I. D., see Dekioford Moyer, C. E. Cane molasses instability and spontaneous destruction MRACKOVA, D., see SOHMIDT, L. MUNUTER S and SPIVARAVA S K	23
Cane juice ion exchange treatment and potassium recovery. (Abs.) see also BOSE, S.	119
MUKHERJEE, S. R., see SAHI, B. P. MUKHERJI, J. P. et al. Massecuite re- heating with evaporator vapour MUKHOPADHYAY, S. K., see SAMUI, B. C. SAMUI,	183
MULLER, A., see JOURNET, M. MULLER, G., see CRONEWITZ, T. MULLER, H. J. Nitrogen and trace	
elements effects on beet yield and quality. (Abs.) MULLER, R. L. Automatic clarification	274
Cane reception and sampling. (Abs.)	872 54
MUMFORD, D. L. Beet leathopper release for curly top induction	115
and GRIFFIN, G. D. Beet leathopper control. (Abs.)	20
see also RUPPEL, E. G. MUNIR, M. Molasses sugar extraction MUSRZ, H. et al. Cane age and ripening MURAWSKI, S., see WAGNEROWSKI, K.	100 16
MURO M., M. and SILVERIO R., C. Colour measurement. (Abs.) see also PLA R., G.	125
MURRAY, J. P. and KUNGGAS, F. M. Refinery liquor carbonatation and SHEPHARD, G. S. Flocculant effect on clarification and filtration	219
(Abs.) 182, MUTHUSAMY, S. and SITHANANTHAM, S.	, 340
Cane varietal smut resistance	142
bility. (Abs.)	207
MUTTU, S., See D Ambar, V. MYATT, O. W. D. Pests in standover cane. (Abs.)	209
NAKAGAWA, J., see BRINHOLI, O.	
MARAGAWA, M. H. Hatomic acid manufacture. (Abs.) NAKAMURA, I., 866 NAKAGAWA, M. NAKANO, O., 866 MACEDO, N.	252
NAKHODKINA, V. Z., see KULINICH, N. V.	271
Tully experiment station. (Abs.) see also VICKERS, R. P.	78

PAGE OBEROI, D. S. and SINGH, R. Beet agriculture in Rajasthan. (Abs.) OCAMPO, G. Bagasse cellulose manu-facture. (Abs.) et al. Active carbon manufacture from bagasse. (Abs.) ODER, R. see Sectors, K. ODER, R. See Barley, R. M. ODER, R. See Barley, R. M. ODER, M. S. A. ODOGHERY, M. J., see WAYMAN, J. A. OGORODNICHUK, L. V., see BRENMAN, S. A. OLEINM, I. A., see ARKARDOR, N. A., POGORMEL'SKII, B. I. and ROMAN-POGORMEL'SKII, B. I. and ROMAN-OLEINKO, A. Y., see BURAVLEVA, V. I.
 OLEINKO, A. Y., see BURAVLEVA, V. I.
 OLYANSKAY, S. P. et al. Pectin effect on juice colour and lime salts... see also ZUIRA, K. D.
 OMEL'CHENKO, A. V., see TROINO, V. P. OMORI, S. Lime regeneration in refinery ONIARY, F. Beet wastes as animal-ond the salts... or and the 347 

PADDOCK, D. R. and QUINAN, P. B. Clarification mud pumps. (Abs.) PADMANABRAN, M. D. et al. Cane borer control. (Abs.) PATR, C. H., see CARTER, J. N. PAL, G. Carbonatation mud conveying 

PALACI, J. Cane diffusion materials balance. (Abs.)	309
PALANIAPPAN, T. P., see VENUGOPAL, K. PÁLFALVAI, L. Milk-of-lime screening	246
PALIATSEAS, E. D. Cane flowering induction. (Abs.)	145
PAN, Y. S. Cane pest and disease re- search in Taiwan. (Abs.)	367
PANDEY, B. N., see SINGH, R. A. PANDEY, L. N. et al. Cane red rot	000
PANIAGUA U., E. A. Cane spacing and	208
PANITZ, N., see EMMERICH, A. and	49
PARAKHIN, N. E. Waste water treat-	040
PARASHAR, K. S. Beet varietal trials	116
Cane varietal trials in India. (Abs.)	333
PARFENENKO, V. V. et al. Pectin preparation from beet pulp. (Abs.)	285
see also BUZINA, G. V. PARFENOPULO, M. G. and KARAULOV,	
N. E. Beet pulp coefficients of friction in briquetting. (Abs.)	252
- Beet pulp vibration effect. (Abs.) PARKHOD'KO, A. P. KDA-30-66 beet	61
diffuser performance. (Abs.) et al. KDA-15-58 beet diffuser. (Abs.)	$313 \\ 344$
wash water mud particle size.	185
- waste water quantity determina- tion. (Abs.)	280
PARR, J. F. et al. Johnson grass control PARSIOW & see OLDFIELD, J. F. T.	144
PARTRIDGE, B. and REICHARD, S. R. Bagasse moisture determination.	92
see also HALE, D. J. PASSOS, C. Mexican sugar industry	48
PASTEGA, L. A., see IVIN, P. C. PATE, F. M. and COLEMAN, S. W. Cane	
tops as animal fodder. (Abs.) PATEL, K., see SULLIVAN, J. P.	221
PATEL, K. A., see SAHI, B. K. PATTERSON, R. S. Factory equipment	
Cleaning. (Abs.). PAUL, K. N. Purity fall in evaporator	123
Juice. (Abs.) PAULUS, A. O. et al. Beet powdery	308
PAVELKO, V. I. and GARYAZHA, V. T.	919
see also TOBLEVICH, N. Y. PAVLENKO, V. S., see MAZOV, M. Y.	010
PAXTON, J. G., see BRETT, P. G. C. PAYAN, L. et al. Cane varietal yield	
estimation. (Abs.) PAYNE, J. H. Cane diffusion vs. milling-	23
PEETERS, G. Chemical weed control211,	$170 \\ 276$
PELLEGRINI, A., see HOFFMANN-WAL- BECK, H. P.	
PELTS, M. L., see KHELEMSKII, M. Z. PEMBROKE, E. A. Supplementary	270
Volunteer cane. (Abs.)	333
PENG, S. Y. Cane herbicide tolerance testing, (Abs.)	241
et al. Chemical control of grasses PENNER, D., see HENDRICK, L. W.	241
PERDOMO, R., see PAYAN, L. PEREIRA, C. E. F. et al. Cane borer	001
PÉREZ A., E., see GIMÉNEZ L., O.	331
PÉREZ, F., see MUNIZ, H. PEREZ, J. R., see RAZJIVIN, A. A.	
termination. (Abs.)	$124 \\ 144$
and RyAN, C. C. Cane leaf scald.	335
PETRAK, Z., see RIMSA, V. PETRASH, V. D., see CHERNYI, A. A.	
CHENKO, D. E. PETRICHENKO, D. E.	
PFEFFER, E. Beet, molasses and pulp as animal fodder. (Abs.)	381
PHILLIPS, M. E., see RAVNÖ, B. D.	
PHILLIPSON, R. T., see HIBBERT, D.	
PHILLIPSON, R. T., see HIBBERT, D. and KOSTER, P. B. PICHENEZ, J. Beet planting and har-	
PHILIPSON, R. T., see HIBBERT, D. and KOSTER, P. B. PICHENEZ, J. Beet planting and har- vesting (Abs.) PICOL, R. W., see CHEN, J. C. P.	244
PHILIPSON, K. T., see HIBBERT, D. and KOSTER, P. B. PICHENEZ, J. Beet planting and har- vesting. (Abs.) PICOU, R. W., see CHEN, J. C. P. PIECK, R. and LOOP, W. RT4 beet diffusor. (Abs.) See also DEPERSON J. HOUSEVILY J.	244 25
PHILIPSON, R. T., see HIBERET, D. and KOSTER, P. B. PICHENEZ, J. Geet planting and har- vesting. (Abs.). PICOU, R. W., see CHEN, J. C. P. PIECK, R. and LOOP, W. RT4 beet diffuser. (Abs.). see also DEGERET, J., HOTSSIAU, J. and SIMONART, A. PIERRARD, P. Molasses electrodialvsis	244 25 378
PHILIPSON, R. T., see HIBERET, D. and KOSTER, P. B. PICHENEZ, J. Beet planting and har- vesting. (Abs.) PICOU, R. W., see CHEN, J. C. P. PIECK, R. and LOOP, W. RT4 beet diffuser. (Abs.). DEGEREN, J., HOUSSIAU, J. and SIMONART, A. PIERRARD, P. Molasses electrodialysis PIETLA, P. J. Final actuators. (Abs.) PIETRAK, M. Beet sampling and	244 25 378 372
PHILIPSON, R. T., see HIBERT, D. and KOTER, P. B. PrOTENEZ, J. Beet planting and har- vesting (Abs.). PICOU, R. W., see CHEN, J. C. P. PICOU, R. W., see CHEN, J. C. P. PICOU, R. W., see CHEN, J. C. P. PIECK, R. and LOOP, W. RT4 beet diffuser. (Abs.). and SIMONART, A. PIERRARD, F. Molasses electrodialysis PIETRIA, P. Molasses electrodialysis PIETRIA, M. Beet sampling and analysis. (Abs.). Quick-dissolving sugar manufacture	244 25 378 372 124 280

PAGE

- PIÑOL, J., see NAVARRO, J. PITROIS, P. H. and MERCIER, A. Centrifugals. (Abs.) PIVEN', K. Z. Waste water application to soil. (Abs.).....

PAGE

	PAGE
PLÁ R., G. and MURO M., M. Raw and white sugar ash determination PLAYER, M. R., see GOODENOUGH, P. W. PLOPER, D. L., see MARIOTTI, J. A.	124
POCHVIÁ, S., see FRIMI, M. POCHVIÝ, Z., see KASTNER, F. PODVORCHANVI, G. I., see TIMOSHENKO,	
POEDINOK, N. T., see KHELEMSKII, M. Z. POGORELOVA, N. V., see SHCHEGOLEV, V. N.	
POGORZHEL'SKII, B. I. et al. Diffusion water treatment with aluminium sulphate. (Abs.)	279
POHLE, G. Boiler feedwater treatment POINTING, E. M. Cane field measure-	184
POKRASS, N. N., see OLYANSKAYA, S. P. POLÁK, J., see RÍMSA, V.	000
suspension and milk-of-lime analy- sis. (Abs.)	284
Sucrose determination with <i>B.</i> stearothermophilus. (Abs.) POLYANSKII, K. K., see KHARIN, S. E. POWBO, <i>B.</i> see OCAMPO, G.	60
POMMEZ, P. and CORMIER, R. Heavy metals determination in raw sugar	283
see also BROWN, C. R. PONANT, J. and WINDAL, G. Purity determination. (Abs.)	375
POPOV, A. E. and MEZENTSEV, S. K. Beet sampling and analysis. (Abs.)	124
SKAYA, E. E., SINAT-RADCHENKO, D. E. and ZUBCHENKO, V. P. POPOV, V. E. Sugar factory designing	88
POTTER, H. S., see SCHNEIDER, C. L. PRABHU, K. A., see GUPTA, S. C. PRASAD, H. C., see JHA, A.	
PRASAD, J. C., see JHA, A. PRASED, M., see SAHI, B. P. PRESE, A. see KRASNOPOL'SKII, N. L.	
and SLYN'KO, A. I. PREY, V. and ANDRES, H. Colorants	
(Abs.)	8, 346
ants. (Abs.) et al. Beet juice treatment with flocculant and colour formation	91, 93 55, 90
- Glucaric acid determination. (Abs.) PAIDAL, J., see OPLT, V.	250
determination. (Abs.) and UKRAINETS, K. V. Laboratory	156
constant-temperature unit. (Abs.) see also VOLOSHANENKO, G. P. PROSTIBOZHENKO, V. A., see KICHIGIN, N. M.	220
PUCHERNA, J., see FRIML, M. PUGACHEV, V. A. et al. Syrup purity and molasses yield optimization. PUGACHEV, V. I., see CHUDAKOV, G. M.	278
PUSCZ, W., see BURBA, M. PYTEL, I., see BOOKO, J.	
QUAIYOOM, S. A., see KUHLMANN, R. W.	
QUINAN, P. B., see PADDOCK, D. R.	
RAAB, A. H. K. F., see ROSENBERG, L. RAATS, P., see KOSTER, P. B.	
corrosion prevention. (Abs.) see also SPIRIDONOVA, I. M.	310
RAIS, J., see BURIANEK, J. RAJAN, S. D., see AHMED, S. A. and RAMAMOORTHY, N.	
RAJU, K., see SOMU, T. RAM, H. H., see MATHUR, B. K. RAM, R. S., see SANDHU, S. S.	
RAMACHANDRAN, G. Cane milling BAMALINGAM, A. and FINN, R. K.	308
RAMAMOORTHY, N. et al. Cane deter-	61
ioration after harvesting. (Abs.) see also AHMED, S. A. RAMASWAMY, C., see SRINIVASAN, T. R.	220
RANDABEL, M. Temperature control in polarimetry and refractometry RANDOLPH, A. D. and WHITE, E. T.	251
Classified crystal recycling in continuous boiling. (Abs.) RAO, C. S. Scale insect. (Abs.)	372 208
<ul> <li>RAO, K. C. et al. Cane ripping with sodium metasilicate. (Abs.)</li> <li>Vanadium sulphate effect on cane</li> </ul>	273 331
RAO, M. V. and RAO, S. H. Moisture stress effect on cane yield and quality. (Abs.)	800
RAO, P. J. M. Bagasse paper manu- facture. (Abs.)	349
RAO, S. H., see RAO, M. V. RAO, T. K. G., see SITHANANTHAM, S.	340
RASE, H. F., see SCHRAUFNAGEL, R. A. RASKIN, Y. V., see PARKHOMETS, A. P. RASTOGI, K. B., see SAINI, S. S.	
RATHI, K. S. Cane intercropping. (Abs.)	300

RAU, S. and MILLARD, E. W. Poly-	
ethylene mulching. (Abs.)	175
control. (Abs.)	241
RAVNO, A. B. and LIONNET, G. R. E. Filter cake dewatering. (Abs.) see also MCMASTER. L.	151
RAVNÖ, B. D. et al. Continuous bagasse	150
RAY, T. R. Cane mill hydraulic motors	214
RAZJIVIN, A. A. et al. Nematodes. (Abs.) REARDON, T. J., see NUROK, D. REBOLA, J. L., see FRONTERA, A. R.	114
REED, W. L. Raw sugar weighers	57
M. J. Cane varieties in Australia REHBEIN, R. E., see KINGSTON, G.	47
Massecuite conductivity electrode see also KELSO, L. and PARTEIDGE, B.	85
REICHEL, C., see REINEFELD, E. REIMERS, J. F. Cane damage by	
grubs. (Abs.) Cane land levelling. (Abs.)	47 78
culation. (Abs.)	249
REINEFELD, A., see REINEFELD, E. REINEFELD, E. West German beet campaign 1974/75. (Abs.)	120
et al. Beet juice invert sugar deter-	380
- Colour formation by Maillard	000
– Non-sugars behaviour in beet	379
juice. (Ab3.)	157
beet juice. (Abs.)	250
REMESAR, J. C., see SZKLARUK, F.	
REMY, J. C. et al. Vinasse and carbon- atation mud as fertilizer (Abs)	999
RENIUS, W. Green manuring and beet	
nematode and springtall incidence RENS. G., see DEGREST. J.	155
RENS, M., see DEEGEST, J.	
yield and sugar content prediction	115
REVA, L. P. and IZBINSKAYA, N. L. Temperature effect on pH of	
factory products. (Abs.)	156
see also LIKHITSKII, M. K.	342
REXILIUS, L., see REINEFELD, E. REVES L., H. Two-massecuite boiling	
scheme and continuous crystalliz-	00
REYNALDOS, C., see ALEMAN, G.	20
hazards. (Abs.)	300
Ratoon stunting disease diagnosis et al. Pineapple disease control. (Abs.)	273
RICE, E. R. Cane varietal ripening	177
RICH, J. E. A., see ABBOTT, J. P.	111
RICHARD, B., see GIORGI, J. C. RICHARD, C. A. and GIAMALVA, M. J.	
Cane varietal trials in US. (Abs.) and HENDERSON, M. T. Stool Brix	176
and cane sugar content. (Abs.)	145
RICHEY, P., see SCHOENROCK, K. W. R.	
RIDDEL, L., see IVIN, P. C. RIDEAU J. P. et al. Waste water treat.	
ability prediction. (Abs.)	280
gation_water quality. (Abs.)	50
see also LEVERINGTON, K. C. RIECK, H., see EMMERICH, A.	
RIESSELMAN, J. H. and WEIGHING, J. L.	20
RÍMSA, V. et al. Beet virus yellows	40
RIPOLI, T. C. and BALASTREIRE, L. A.	52
Cane transport requirements cal- culation. (Abs.).	368
RISHI, N. et al. Cane varietal mosaic	197
RISSEBUW, I. Irrigation water quality	301
RIVAS, G. B., see ABLIKOV, V. RIVAS L., L. De Smet cane diffuser.	53
resistance. (Abs.)	50
ROBERTS, D. L. Cane cleaner. (Abs.)	335 114
ROBERTS, E. J. and CARPENTER, F. G. Acid beverage floc	283
et al. Acid beverage floc	326
and composition	163
see also CARPENTER, F. G. and GODSHALL, M. A.	
ROBERTSON, L. S. and VAN DOREN,	00.2
see also SCHNEIDER, C. L.	306
ROBINSON, W. S. Cane agriculture in	76
( the )	000

 Roshioux, ..., Coale agriculture in Hawking Errors, issued thermina-tion by polarization. (Abernina-Robutouz, S. Two-drill cane planting Robatouz, S. Two-drill cane planting Robatouzz, B. M. Evaporator and pan scale removal. (Abs.)..... 179 

	PAGE
RODRÍGUEZ, R., see CARDET, E.	
RODRIGUEZ, W., see CARRAZANA R., L. RODRÍGUEZ C., E. et al. Cane sugar yield and pol calculation. (Abs.)	118
ROELANTS, W., see ROUSSEL, N. ROGER, J., see DEVILLERS, P.	
ROMANYUK, A. Y. et al. Beet diffusion water electrolysis. (Abs.) ROMASHKEVICH, I. B. and NOVIKOV,	281
V. A. Stored beet recovery econ- omics. (Abs.)	376
and SPIRIDONOVA, I. M. RONSKAVA, N. A., see KUBRAK, B. K.	
ROPOTENKO, Y. G. et al. Boiling with surface-active additive. (Abs.) ROSENAU, J. R., see BAKKER-ARKEMA,	88
F. W. ROSENBERG, L. Beet sugar technology	280
et al. Enviro-Clear clarifier	263
ous operation. (Abs.)	86 314
ROSTRON, H. Chemical cane ripening ROUILLARD, E. E. A. Heat transfer	174
and friction loss in massecuite reheater. (Abs.)	182
ROUSSEL, N. Phosphorus and potas- sium fertilization of beet. (Abs.).	149
et al. Beet varietal trials in Belgium. (Abs.)	, 339
expansion. (Abs.)	117
RUD', V. T., see TSYUKALO, Y. F. RUDD, A. V. Chemical weed control.	270
Fertilizer requirements and cane response. (Abs.)	78
RUDENKO-GRITSYUK, G. E., see VOLO- SHANENKO, G. P.	
RUHM, E., see CZERATZKI, W. RUNGGAS, F. M., see MURRAY, J. P.	
mildew in US. (Abs.)	52
RUSO, R., see BOBROVNIK, L. D. RUSSELL F B. Beet damage minimiza-	00
ation in mechanical harvesting. BUTSINSKAYA, A. D., see IVANOV, S. Z.	212
RUTTERT, K. H. Plastic piping. (Abs.) RYAN, C. C. Controlled-environment	312
chambers for cane disease research see also PERSLEY, G. J.	332
RYAN, J. D. Refinery steam and power utilization. (Abs.)	57
RYAZANTSEV, S. N., see ELAGIN, A. M. RYAZANTSEVA, L. I. and GADZHIEV,	
and thick juice thermal stability.	278
energy consumption. (Abs.) RyDEL, S., see MALEC, K.	57
RYSER, G. K. Temperature effect on beet yield and sugar content. (Abs.)	307
et al. Inorganic constituents and beet growth, yield and sugar content	212
RYUSHENKOVA, M. L., see KRAVETS, Y. O.	
SAFIR, G. R., see Schneider, C. L. Šafránková, J., see Bernardová, H.	
SAFROVÁ, I., see BURIÁNEK, J. SAGEL, J. Sucrose, dextrose and invert	
SAHI, B. K. and PATEL, K. A. Cane	317
and c.c.s. (Abs.)	300
fixation. (Abs.)	272
SAINI, S. S. et al. Plant spacing and beet seed yield. (Abs.)	83
ST. JOHN, G. E. Fluid couplings. (Abs.) SAIVARAJ, K., see PADMANABHAN, M. D.	117
SAKA, Y., see TANIGAKI, S. SAKAL, R., see PANDEY, L. N.	
ing. (Abs.).	80
(Abs.)	, 310
traction. (Abs.)	216
SALEH, T. M., see FAHMY, Y. SALEMBIER, J. F., see BELIEN, J. M.	
SAMANIEGO, R., see SHAFIQ, M. SAMOL, H. H. Napier grass control.	205
and JOHNSON, S. R. Wireworm control. (Abs.)	112
Boron and molybdenum effects on beet and sugar vield (Aba)	22
SANCHES A., J. Cane mill modern-	00

- SANCHES A., J. Cane mill modernization. (Abs.)
   SANCHESVIESCA G., V. Cane pests in Guatemala. (Abs.)
   SANDHU, J. S. et al. Leasthopper control be also KANWAR, R. S. and KOONER, B. S.
   SANDHU, S. S. et al. Cane smut varietal resistance. (Abs.) 331

	PAGE
SANDULYAK, A. V., see TKACHENKO,	
S. I. SANFORD, B. F. Air pollution reduction SANG, S. L. et al. Continuous carbonat-	150
ation. (Abs.) – Trace metals determination. (Abs.) SANGUINA, A., see CASTRO, P. R. C.	$\begin{array}{c} 309\\ 346 \end{array}$
STO. DOMINGO, J. P. Ghana sugar factory performances. (Abs.) SAPOZHNIKOVA, I. R., see KHELEMSKII,	277
SAPRONOV, A. R. and KOLCHEVA, R. A. Sugars decomposition. (Abs.)	60
tion. (Abs.) see also BOBROVNIK, L. D.	60
SAREEN, K., see SINGH, B. and SINGH, G.	
SARRIS, J., sce RIDEAU, J. P. SAUER, G. A. Automatic tailgate	211
SAVCHUK, K. N. Carbonatation gas scrubbing. (Abs.)	216
Lime kiln charging. (Abs.) SAWYER, G. M. and CULLEN, R. N.	90
Fly-ash slurry dewatering. (Abs.) see also MCDOUGALL, E. E. SAVED G EL-K et al. Cane alpha-	85
amylase activity. (Abs.) - Cane deterioration after harvesting	157
- Starch determination. (Abs.) - Starch removal from cane juice	157 157 150
see also HEMAIDA, S. EL-N. A. SCARDUA, R. and SOUSA, J. A. G. C.	
cane yield. (Abs.) SCHAAF, A. Cane borer control. (Abs.)	$\begin{array}{c} 331\\110 \end{array}$
SCHAER, R. Cane diffusion vs. mining costs. (Abs.) SCHAFMAYER, H., see SCHÄUFELE, W. R.	53
SCHÄUFELE, W. R. Beet virus yellows and SCHAFMAYER, H. Micro-granu- lators (Abs)	307 274
and WINNER, C. Pest control and beet emergence. (Abs.)	19
SCHELLEROVÁ, E., see BERNARDOVÁ, H. SCHEXNAYDER, 1., see FANJUL, R. SCHIWECK, H. Carbonatation, (Abs.)	278
Oxygen application and colour form- ation in carbonatation. (Abs.)2	6, 246
mination. (Abs.)	28
SCHLAG, K. F., see METZING, P. SCHLIEPHAKE, D. and AUSTMEYER, K. Rolling (Abs.)	380
<ul> <li>Massecuite rheological properties determination and automatic beiling control (Abs)</li> </ul>	5 197
et al. Cossette transport in diffusion SCHMEHL, W. R., see REUSS, J. O.	25
in Morocco. (Abs.)	82 274
slovakia. (Abs.)	2, 305
and sugar yield. (Abs.) see also AL-WINDI, I. and STEHLIK, V.	181
SCHNEIDER, C. L. Fungal beet disease control. (Abs.)	306
and POTTER, H. S. Beet root rot control. (Abs.)	116
in US. (Abs.) and SAFIR, G. R. Photographic esti- mation of beet yield under affect	19
of blackroot. (Åbs.). SCHNEIDER, F. et al. Sucrose diffusion	181
- Sugar moisture determination. (Abs.) SCHNEIDER, G. Dust explosion pre-	93, 249
SCHNELLE, H. Beet pulp storage. (Abs.) SCHNIDEROVÁ, Z., see BURIÁNEK, J.	246 381
SCHOENROCK, K. W. R. Beet molasses ion exchange treatment. (Abs.) and COSTESSO, D. Beet sucrose	87
determination. (Abs.) et al. Carbonatation with magnesium	347
SCHRAUFNAGEL, R. A. and RASE, H. F. Levulinic and formic acids manu-	61
SCHREIER, O. Beet damage by birds. SCOTT, D. A., see HUDSON, J. C.	274
SCULLY, P. C., see RAVNÖ, B. D. SEABERG, F., see YANG, S. M. SEBASTIAN R. Beet washer (Abs)	948
SEDIMAYR, T., see Oltmann, W. SEETHARAMAN, R. N., see Somu, T.	210
SEIP, J. J. and GAYLE, F. L. Factory research in US. (Abs.) and SALAZAR, J. A. Mechanical cane	150
harvesting. (Abs.) et al. Cut-chop vs. whole-stalk cane barvesting (Aba)	147 205
see also BIPKETT H S	

PAGE Corrosion. (Abs.)
 Fluidized bed crystallization... 153, 184
 SHUJSKAYA, E. E. and POPOY, V. D. Fluidized bed crystallization... 153, 184
 SHUT, N. A., see BETKO, G. I.
 SHYERS, V. N. et al. Lactic acid bacteria effect on molasses alcohol manu-facture. (Abs.)
 Molasses colorants and yreast zeta-bolasses colorants and yreast zeta-sita and the set of the set of the set of the set of the mechanical harvesting. (Abs.)
 SILYA, J. M. P. SLONGO Fraction With mechanical harvesting. (Abs.)
 SILYA, J. U., see STUPIELO, J. P.
 SILYARIN, M. P. SLONGO Fraction With mechanical harvesting. (Abs.)
 SILYARIN, S. R. and DOTZENKO, A. D. SOI erosion prevention by rotary utilizage. (Abs.)
 SINART, A. G. MOTZENKO, A. D. SOI erosion prevention by rotary utilizage. (Abs.)
 SINART, A. M. d. demsate. (Abs.) 56, 310, 311
 SINART, A. M. d. demsate. (Abs.) 56, 310, 311
 SINART, A. & Gue physico-chemical properties. (Abs.).
 SINOH, A., see MATHUR, B. K. and SINOH, R. A.
 SINOH, R. A. K. and Grant, K. S. (Abrum V. C. and GUTZE, K. M. S. (Abrum V. C. and GUTZE, K. M. S. (Abrum V. C. and GUTZE, K. M. S. (Abrum V. G. and GUTZE, K. M. S. (Abrum Care and Mathematics).
 SINOH, G. A. K. and Burkhost, K. Cane growth regulator effects. (Abs.).
 SINOH, G. and KAREEN, K. Cane growth regulator effects. (Abs.).
 SINOH, G. A. K. and GUTZE, K. M. SINOH, G. and KAREEN, K. Cane growth regulator effects. (Abs.).
 SINOH, C. et al. Gut offects on cane yield. (Abs.).
 SINOH, K. et al. Beet discossin inda growth regulator effects. (Abs.).
 SINOH, K. et al. Beet discossin inda growth regulator effects. (Abs.).
 SINOH, K. et al. Beet discossin inda growth regulator effects. (Abs.).
 <l

	PAGE
SINCH L. See BOSE S	
SINGH, M. and VARMA, R. K. Con-	
cesses. (Abs.)	22
see also BHARDWAJ, K. M.	239
see also SRIVASTAVA, S. N. L.	200
cane. (Abs.)	15
SINGH, R., see GUPTA, D. N., OBEROI,	
SINGH, R. A. et al. Icerya pilosa control	301
SINGH, R. P., see PANDEY, L. N. SINGH, S. Cane mosaic alternative host	369
et al. Sowing and harvesting dates	
content. (Abs.)	181
S. M. P.	
SINGH, S. P., see SINGH, Y.	
(Abs.)	1, 114
Weather and cane growth. (Abs.) and BAJPAI. P. D. Soil factors and	175
cane chlorosis. (Abs.)	48
date and irrigation interval effects	
on beet. (Abs.) SINGLA. M. L., see KOONER, B. S.	338
SIPITANOU, K. M. and MITKA, D. S.	377
SIRENKO, S. I., see GULYI, I. S.	5/1
SIROTENKO, A. M., see GULYI, I. S.	
OSWEILER, K. A.	
time and borer incidence. (Abs.).	48
- Potassium and pesticide effects on	368
see also MUTHUSAMY, S.	000
SIVASWAMY, M. S., see GURUMURTHY, S. SKÁLA, L. and FRIML, M. Saccharinic	
acids. (Abs.)	220
(Abs.)	6, 218
SKINNER, J. C. Cane sampling SKINNER, P. O. Chemical control. (Abs.)	125
SKOYEN, I. O. et al. Beet powdery mildew control (Abs.)	116
SKRIPLEV, V. E., see BORZDAYA, V. N.	901
SLATER, L. E. Bagasse penetizing SLAVVANSKII, A. A., see PUGACHEV.	201
V. A.	
SLOANE, G. E., see Monistor, 1. SLYN'KO, A. I. et al. Centrifugal pump	
erosion and corrosion. (Abs.) SLVUSABENKO, T. P., see SHVETS, V. N.	153
and STABNIKOVA, E. V.	
emission. (Abs.)	184
facture from crude sugar in Mexico	277
see also SUND, K. A.	
1975. (N.B.)	58
and Koloa expansion. (Abs.)	117
SMITH, H. T. E. Mechanical cane har- vesting. (Abs.)	79
SMITH, I. A., see ARCHIBALD, R. D.	
and colour formation in juice and	oro
smith, P. D. Juice purity drop in cane	209
milling. (Abs.)	118
SNYDER, F. W. Beet seedling leaf and	019
Immaturity and water absorption	
and ZIELKE, R. C. Water and beet	110
seed germination. (Abs.)	20
SOBER, F. Effect of limestone and coke	979
Lime kiln firing. (Abs.)	25
SOBIESZAK, C. Automatic factory	186
Sugar factory planning. (Abs.)	120
SOBOL, P. A., see LILA, N. G. SOKOLOWSKI, A. and LAMPRECHT, A.	
Heat transfer in beet diffusion	186
SOLDATI, A. A., see CERRIZUELA, E. A.	
cutting. (Abs.)	81
SOLOGUB, N. A., see SLYN'KO, A. I. SOLVANIK, A. O., see LYSYANSKII, V. M.	
SOMERA, B. J., see MORITSUGU, T.	) 87
SOMOROV, I. B. Beet reception. (Abs.	5 88
see also KICHIGIN, N. M. SOMU, T. et al. Cane pests and diseases	8
in India. (Abs.).	. 301
SOROKIN, A. I., see PARKHOMETS, A. P.	
SOUSA, J. A. G. C. Cane agriculture in Brazil. (Abs.)	. 110
Overhead irrigation. (Abs.)	238
see also SCARDUA, R.	
Cane harvester. (Abs.)	210

	PAGE
SPINOSO, J. G., see ENGOLIO, J.	
knife treatment	343
computer. (Abs.)	214
SPRY, E. G. Weather effect on herbi-	332
SRIDHARAN, D. Alcohol manufacture	61
SRINIVASAN, T. K., see SITHANANTHAM,	01
SRINIVASAN, T. R. and MORACHAN,	301
et al. Cane deterioration after har-	210
SRINIVESEN, S. Evaporator incondens-	86
SRIRAMULU, C. R. et al. White sugar	308
SRIVASTAVA, N. S. L. Cane planter.	17
SRIVASTAVA, R. L. Factory perform-	308
SRIVASTAVA, S. K., see MUKHERJEE, S.	000
SRIVASTAVA, S. N. L. et al. Fertilizer	305
SRIVASTAVA, T. N., see KALRA, A. N.	
SRIVASTAVA, U. P., see SINGH, J. P. STADUKOVA E V et al. Carotene	
production from molasses. (Abs.)	61
STADLER, F., see CROREWILZ, I. STAKER, R., see HIDI, P.	
STALLINGS, J. D., see KELLER, A. STAMPER, E. R. Chemical weed control.	4 905
(A05.) STANKIEWICZ, W. et al. Sugar dryer.	342
operation. (Abs.)	313
content. (Abs.)	242
rot pathogen. (Abs.)	143
effect on cane mosaic and yield	145
Stein, F., see Fowler, L. G.	
disease diagnosis. (Abs.)	32, 334
STEINDL, R. J. et al. Continuous boiling	84
STEINER, G. W., see LADD, S. L.	
STEINLE, G., see KOSTER, F. D. STENGL, R., see FRIML, M.	
STERLINGER, M. and ZDARSKY, J. Cane	23 361
STEVENSON, J. C. and WHAYMAN, E.	
affinity	44
Bagasse boiler simulation. (Abs.)	85
NESS, J. N.	
STEWART, G. A., see VICKERS, R. F. STEWART, I. J. Nitrogen. (Abs.)	78
Potassium. (Abs.)	271
STEWART, P. N. et al. Clarification mud	5 979
STEWART, W. Cane juice mud separa-	5, 510
measurement. (Abs.)	188
ances. (Abs.)	244
STOUT, E. L., see AKESON, W. R. STRASHEVSKII, E. L., see TKACHENKO,	
S. I. STRATIENKO, O. V., see LYSYANSKII,	
V. M. STRAUTNIEKS, A. K. and LAZHE, Y. Y.	010
Dust separation cyclone. (Abs.) STROBEL, G. A. Cane eye spot suscepti-	216
and HAPNER, K. D. Toxin-binding	79
ibility. (Abs.)	77
binding protein. (Abs.)	48
STUART, K. A. Hot water cooling and	974
ŠTUDNICKÝ, J. et al. Carbonatation	5 949
STUPIELLO, J. P. et al. Cane disinte-	990
- Cane molasses purity determina-	195
tion. (ADS.) see also DE OLIVEIRA, E. R.	120
Furrow irrigation water utilization	111
SUAREZ, S., see SZKLARUK F.	112
SUDO, S., see CASTRO, P. R. C. SUDO, S., see CASTRO, P. R. C.	
were to think many wought white	

	PAGE
SUKSUPHA, K., see ABDULBHAN, P. SULLADMATH, V. V. et al. Pineapple	
disease control. (Abs.) SULLIVAN, E. F. Chemical weed control SULLIVAN, J. P. et al. Dextrose deter-	271 20
mination. (Abs.) SULLIVAN, S., see RICAUD, C.	317 146
and JACKSON, R. D. Cane borer parasite. (Abs.)	112
SUMNER, M. E. and BEAUFILS, E. R. Cane nutrient requirements deter-	147
SUND, K. A. and SMITH, B. A. Cane damage by frost in US. (Abs.)	146
SUNDARESAN, K., see BALASUNDARAM, N. and THANGAVELU, S.	
SUNDER, C. S., see MUKHERJI, J. P. SUPRUNCHUK, V. K., see CORDOVES, M. SUTHERLAND, R. F. Cane harvesting	
data processing by computer SUZOR, N. L. C. Clarification and non-	54
sugars effect on juice and raw sugar colour. (Abs.)	309
ŠVACHULA, V. and VRÁTNÝ, P. Amino- acids in beet leaf blades, petioles	
and root. (Abs.) SVOBODA, A., see ŽDÁRSKÝ, J.	27
SWAMY, G. R. Cane mill roller setting calculation. (Abs.)	213
SWAYAMPRAKASAM, S., see AHMED, S. A. SWEETT, F., see BATTERHAM, R. J.	
Crystal movement in continuous centrifugals. (Abs.)	85
<ul> <li>Massecuite layer thickness and crystal residence time in centri-</li> </ul>	050
SYCH, O. I., see KOVAL', V. G. SYCH, N. A., see BURYMA, A. K.	373
SYMES, R. T. Cane transport. (Abs.) SZABÓ, A. Pollution prevention. (Abs.)	$210 \\ 90$
SZABO, Z., see UJHIDY, A. SZE, W. B., see PENG, S. Y. SZÉPVÖLGYI I. see UJHIDY A	
SZKLARUK, F. et al. Cane milling simu- lation. (Abs.)	22
SZUCHNIK, A., see MALEC, K.	
TABUNSHCHIKOV, N. P. and SHEVTSOV, L. D. Free calcium and magnesium	
oxides determination in lime TARAHASHI, D. T., see NICKELL, L. G.	281
tion in condensate. (Abs.) TAKEZAKI, T., see TAKATORI, Y.	156
TAMAYO B., O., see DÍAZ G., E. P. TANIGAKI, S. et al. Refinery waste	154
TANTSYURA, N. D. and KAUFMAN, Y. A. Carbonatation. (Abs.)	248
TARENKO, L. S. et al. Automatic disc filter control. (Abs.)	313
L. S. TARASENKO, V. E., see KIRICHENKO,	
A. G. TÁTRAY, G. Beet inter-row spacing	011
TAVARES, P. Maceió bulk handling terminal. (Abs.)	211 22
TAWARE, V. B., see CHATTERJEE, A. C. TAYGUN, N. Water feedline scale	810
TAYLOR, R. N., see BATTERHAM, R. J. TRAGUE, H. J., see OLDFIELD, J. F. T.	310
TEAKLE, D. S. et al. Ratoon stunting disease diagnosis. (Abs.)	50
- Ratoon stunting disease resistance see also OUTRIDGE, R. TECHNICAL STAFF, CSR LTD, Refinery	144
equipment modifications. (Abs.) TEICHMANN, R., see WINNER, C.	57
TESCHNER, F. and KRAMER, R. Calcium chloride addition and beet juice pH (Abs.) 2	8 279
TESHEV, A. S. et al. DDS beet diffuser dismantling and reassembling	247
THANGAVELU, S. and SUNDARESAN, K. Cane production in India. (Abs.)	365
K. C. THEURER, J. C., see RYSER, G. K.	
THIELE, H. and LANGEN, A. Auto- matic boiling control. (Abs.)	246
industry. (Abs.) THIER, E. Beet pulp as animal fodder	119 221
THOMAS, G. Mechanical cane harvest- ing. (Abs.).	179
Control. (Abs.)	81
South Africa. (Abs.) Eldana borer and cane smut. (Abs.)	15, 79 142
in Japan. (Abs.) THOMPSON, K. J. Beet seed drill modi-	301
fications. (Abs.) THOMPSON, L. Beet pulp, tops and	304
molasses as animal londer. (Abs.)	01

7	
	PAGE
<ul> <li>THOMSON, J. B. Drip irrigation and cane agriculture. (Abs.)</li></ul>	369
TICMANIS, U., see SCHNEIDER, F. TIEDGE, H. G., see HOBOHM, J. TIEDMANN, W. E., see VICKERS, R. P.	
TIMOSHENKO, F. T., see KOSMINSKII,	$271 \\ 209$
I. V. TIMOSHENKO, S. F. and PODVORCHANYI, G. I. Beet pumps. (Abs.) see also KICHIGIN, N. M.	121
TIU, C., see BOGER, D. V. TKACHENKO, N. M. Beet pulp pressing and storage. (Abs.)	158
TOBILEVICH, N. Y. et al. Condensers.	$\begin{array}{c} 217\\ 311 \end{array}$
TOCA, C. R. Cane quality and staleness effects on processing and molasses exhaustion (Abs)	119
TODD, E. H. Cane varieties in Florida TOLEDO, R. B. V. Mechanical cane harvesting and transport. (Abs.)	142 80
TONG, J. F., see SANG, S. L. TONINGEROVÁ, D. and HAMPLOVÁ, K. Sugar and massecuite crystal size	
analysis. (Abs.) TOOHEY, C. L. Q 87 cane variety. (Abs.) "Spring" planting in Australia. (Abs.) TOPPER, J. V. see, KENNEDY, A. S.	157 209 17
TOURLIÈRE, S., see GUÉRAIN, J. TOUZEL, J. P., see RIDEAU, J. P. TOVBIN, L. I., see KOLOMIETS, V. F.	
TOYANA, R., see TAKATORI, Y. TRAVELLER, D. and HULL, J. E. Herb- icide performance. (Abs.)	305
D. E. TREBIN, L. I., see BAZHAL, I. G. TREVELYAN, W. E. Alcohol manufact-	100
TRIANA, G. et al. Bagasse hydrolysis TRIFONOVA, E. A., see ZAGORUL'KO, A. Y.	253
TRIPATHI, G. M., see SANDHU, J. S. TRIPATHI, K. B., see MATHUR, B. K. TRIPP, V. W., see MORRIS, N. M. TRIVIZ, P. F. Crystallizer cooling ele- ment. (Abs.).	119
TROFIMOV, V. A., see CHUDAKOV, G. M. TROINO, V. P. et al. Circulation ratio and heat transfer in boiling. (Abs.)	153
<ul> <li>Optimum pan relative charge</li> <li>Vacuum pan tube length and tube plate angle effects. (Abs.)</li> </ul>	$153 \\ 217$
TRULL T., H., see DIAZ G., E. P. TRUYENS, L. et al. Liquid and farm- yard manure effects. (Abs.)	306
TRZCINSKI, W. and DAROWSKA, E. Losses in stored beet. (Abs.) TSENG, H. T. Cane borer parasite TSOU, C. H., see CHEN, W. P.	279 207
TSYGANKOV, P. S., see KRIVCHUN, A. N. TSYGURA, V. R., see FURER, M. E. TSYUKALO, Y. F. et al. Beet slicer wear	00
see also DOVGOPOL, V. I., KHOMENKO, A. I. and KRIVCHUN, A. N.	50
tion. (Abs.). TUHAN, N. C. and BINDRA, O. S. Borer parasite. (Abs.).	175 207
TULANG, M. C. and BEDISH, J. W. Drip irrigation and soil erosion prevention. (Abs.)	80
TURNER, N. V. Chemical weed control TUROWSKI, I. A., see MARIOTTI, J. A. TUTTON, S. M. Drip irrigation equip-	304
ment. (Abs.) TUZHILKIN, V. I. and BOCHKO, L. M. Massecuite supersaturation co-	369
et al. Automatic boiling control Twu, L. T., see PENG, S. Y.	344
Cane red rot. (Abs.) see also GOYAL, K. N.	272
TYCHININA, A. P., see PUGACHEV, V. A. TYCHININA, A. P., see PUGACHEV, V. A. TYUGANOVA, M. A., see MAZOV, M. Y.	313
TYULYAKOVA, R. I., see IVANOV, S. Z.	
UCHIDA, R. S. et al. Slow-release urea UEHARA, M. Cane agriculture in Hawaii	81 369
UHEREK, J. and VALTER, V. Bolling house balance establishment. (Abs.)	343

house balance establishment. (Abs.) Junity, A. et al. Sucrose ester manu-facture: (Abs.). UKRAINETS, K. V. see BRENMAN, S. A. and PRIRHOYKO, I. A. UNGAR, J. J. and LUMBROSO, R. Ion exchange: (Abs.). UNSWORTH, E. F. and OSCU, F. O. Cane molasses as animal fodder. URBAN, V. Sugar melting. (Abs.)... 252

215

- 349 219

78

	PAGE
URBANIEC, K., see KUBASIEWICZ, A.	
Beet yellow wilt. (Abs.)	180
USHER, J. F. Cane root system main- tenance. (Abs.)	209
Drip irrigation. (Abs.)	331
ing. (Abs.)	78
cide determination. (Abs.)95	3, 347
USYCHENKO, V. N., see DOVOGPOL, V. I.	
VACCARI, G., see MANTOVANI, G. and	
MATTEUZZI, D. VAISMAN M. L. Vacuum creation in	
pans. (Abs.)	278
ments. (Abs.)	217
see also TROINO, V. P. VAKULKO, P. S., see MAKSIMUK, P. S.	
VALLANCE, L. G. Calcium silicate effect on cane. (Abs.)	111
Cane harvest date and yield. (Abs.)	$273 \\ 241$
Nematodes. (Abs.).	238
VALSECHI, U., See BOUČEK, S. and	
VALY, E. L., see FRONTERA, A. R.	
VAN DER POEL, P. W. Beet diffusion infection determination. (Abs.)	56
see also BLOK, J.	
VAN DOREN, D. M., see ROBERTSON,	
VAN GILS, W., see DE VLETTER, R.	
loading and dirt tare. (Abs.)	111
VAN MALLAND, H., see REINEFELD, E. VANOSSI, L. Dextrose and molasses	
fermentation processes. (Abs.) Veast composition and nutritional	126
value. (Abs.)	94
encies. (Abs.)	2,337
Farmyard and liquid manure applica-	115
tion. (Abs.)	149 339
Micro-granulator feed rates. (Abs.) Soil liming effect on beet yield and	274
sugar content. (Abs.)	83 211
and VIGOUREUX, A. Bolted beet	220
see also ROUSSEL, N., TRUYENS, L.	000
VAN STEYVOORT, L. Beet agriculture	0.040
in Belgium. (Abs.) Black fly control. (Abs.)	8, 243 52
see also SEUTIN, E.	86
VARDHARAJAN, G., see PADMANABHAN,	
VARMA, A. et al. Cane borer rearing.	207
VARMA, R. K., see Singh, M.	
VASATKO, J., see STUDNICKY, J. VASIL'EV, V. I. and KICHIGIN, N. M.	
and piling. (Abs.)	121
et al. Sugar storage. (Abs.) VASIL'EVA. T. K. White sugar pneu-	376
matic conveying. (Abs.)	376
veying. (Abs.).	376
VAVRINECZ, G. Beet molasses formation	188
VÁZQUEZ G., M. A., see GONZÁLEZ F.,	114
M. D. VELASCO, V. S. and DOWLING, J. F.	
Sugars behaviour in invert syrup VELAZOUEZ R., R. Bagasse drving and	284
heat utilization. (Abs.)	53 378
VENTURI, G., see AMADUCCI, M. T.	(5.8.5)
T. P. Temperature and cane sugar	144
VERNOIS, G. Evaporator scale re-	144
Evaporator tube scaling and corro-	247
sion. (Abs.) Filter cake utilization. (Abs.)	279 381
VERSTRAETE, P. H. Pre-sowing work	276
VEURMAN, J. D. Contouring effect	77
Soil conservation. (Abs.)	48
VIATOR, D. P. Cane trash contents VIATOR, H. P. and HENDERSON, M. T.	146
Cane varietal lodging resistance evaluation. (Abs.)	178
VIATOR, S. J. Cane borers in Louisiana VICEDOMINI, M., see COCCIOLI, F	179
VICKERS, R. P. et al. Wet weather cane	33 994
VIDLER, T. L., see REICHARD, S. R.	50, 001 E0
Imbibition water addition point	53
visit, A. Cane mill feeding. (Abs.)	53

PAGE	1	PAGE
H	VIGNES, E. C. Cane molasses sugar determination. (Abs.)	220
180 n-	VIGOUREUX, A. Beet field operations Beet harvesters. (Abs.)	149 211
209	Beet loader. (Abs.) Beet topping and clamp protection	274
n- 	against frost. (Abs.) Chemical weed control and hoeing	$     \begin{array}{c}       181 \\       21     \end{array} $
ti- 93, 347	Wild beet control. (Abs.) and VANSTALLEN, R. Wild beet	306
I. '	control. (Abs.)	, 337
	farmyard manure as fertilizer see also VANSTALLEN, R.	337
nd	VILELA, E., see CASTRO, P. R. C. VILLAMIL, E. and CASEY, J. A. Evap-	
in 978	orator and distillation column scale reduction. (Abs.)	23
re- 217	VIL'SHANSKII, A. A. et al. Automatic milk-of-lime quantity and density	
	VITON, A. Costa Rica, Guatemala and	378
te 111	VLASSAK, K., see TRUYENS, L.	119
s.) 273 s.) 241	VOITKEVICH, V. G., see BOGOROSH, A. T. VOLOKHOV, A. Y. Centralized lubri-	944
238 R.	VOLOSHANENKO, G. P. and SHEVCHEN-	944
nd	ation. (Abs.)	156
on	melassigenesis. (Abs.)	346
56	in Finland. (Abs.)	149
N,	Beet harvesters. (Abs.)	212
	Beet machinery. (Abs.)	306
ne 111	Late weeds and beet yield. (Abs.)	18
E. ses	VON MULLER, A. and WINNER, C. Nitrogen and plant density effects	
nal 01	on beet yield and quality. (Abs.) VRATNÝ, P., see SVACHULA, V.	338
ci-	VREVEN, T., see ROUSSEL, N. and VIGOUREUX, A.	
115	VUKOV, K. Beet juice active alkalinity Beet properties and slicing. (Abs.)	217 187
149	Colorants adsorption by calcium carbonate. (Abs.)	, 316
s.) 274	Colour formation in beet juice. (Abs.) VYAS, S. R., see DHANKHAR, H. S.	278
eet 339		
L.	10/	
are 18, 243	VV AGNEROWSKI, K. Massecuite vis- cosity in boiling. (Abs.)	216
52	et al. Beet diffusion water treatment WALERIANCZY, E., see MALEC, K. and	90
os.) 86 AN,	WALKER, R. L. Mechanical cane har-	114
g 207	see also FREEMAN, C. E.	114
	WALLACE, G. A., see BAIES, L. WALLENSTEIN, H. D. and EGLER, H.	97
M.	WALSH, L. Rats and cane damage	273
121	fungal parasites. (Abs.)	208
eu-	Cane intercropping with cotton WASTLEWSKI, J. C., see SULLIVAN, J. P.	51
on- 376	WASMUND, R. Automatic evaporator control. (Abs.)	343
ion 188	Steam air content and heat transfer WATSON, C. C. Bagasse furnace emis-	248
a 114 F.,	sion analysis. (Abs.)	$     151 \\     348 $
F.	WAYMAN, J. A. et al. Beet topping WEARNE, R. C., see GOTTHARD, D.	148
rup 284 and	WEBB, W. A. C. Borreria sp. control Chemical weed control. (Abs.)	331
53 ant 378	and CLARKE, N. Orange freckle WEBBER, M., see CLARKE, C. D.	78
AN,	WEBER, J. A. Sugar colour determina- tion. (Abs.)	250
gar 144	webre, A. L. Cane juice infing and continuous flow measurement	118
re- 247	encies. (Abs.).	374
279	WEIGHING, J. D., see RESSELEAR, S. H. WELLER, E. P. Chemical weed control	110
ork 976	WELLNER, R. Waste water treatment WELLS W. D. and JAMES. G. P. Dex-	24
fect d	tran and cane processing difficulties WESNER, H., see PREY, V.	374
48	WESNEY, D. and WOOLCOCK, R. F. Large-scale irrigation economic	
T.	assessment. (Abs.)	50
178 ana 179	WESTFALL, D. G. and BARNES, M. Beet brei nitrate and sugar contents	1
ane	WHAYMAN, E. and CREES, O. L. Clarification with flocculant. (Abs.)	24
333, 334 R.	and WILLERSDORF, A. L. Starch components and iodine complex	-
a 59	spectra	6

	PAGE
WHITE, E. T., see AWANG, M., BROAD- FOOT, R., RANDOLPH, A. D. and	
SWINDELLS, R. J. WHITNEY, E. D. and DONEY, D. L. Agronomic factors and nematode development. (Abs.)	20
860 diso DONEY, D. L. WHITNEY, R. W., see COCHRAN, B. J. WIENINGER, L. and KUBADINOW, N. Beet thick juice heating and colour formation. (Abs.)	55. 217
WIKLICKY, L. Nitrogen effect on beet quality and sugar content. (Abs.) WILDWAN S. V. and GOLDSMITH. T. J.	211
Steam turbines for power genera- tion. (Abs.)	86
transmission chains. (Abs.) WILLCOX, T. G. Cane varieties in Australia (Abs.)	182 209
WILLERSDORF, A. L., see WHAYMAN, E. WILLETT, H. Double drilling and machanical cane baryesting (Abs.)	205
WILLEY, L.A. and MCCULLAGH, S.F.H. Beet varietal trials in UK. (Abs.)	82
WILLIAMS, E. L., see OLDFIELD, J. F. T. WILLIAMS, G. Drip irrigation. (Abs.)	369
WILLIAMS, J. C. Reducing sugars degradation and colorant properties WILLIAMS J. F. Tidal land reclamation	s 91
in Taiwan. (Abs.)	336
and hosts. (Abs.) WILLIS, J. F. Cane crop failure proba-	. 81
WIND, E., see DE VLETTER, R. WIND, G. Factory process automatic	81
Purity determination. (Abs.)	279 375
WINDER, G. H., see DUNNING, R. A. WINNER, C. Beet nitrogen requirement	t 101
Beet varietal performance assessment and MERKES, R. Beet population	t 276
effect on yield and quality. (Abs. et al. Population and inter-row spacing effects on beet yield and	) 243
quality. (Abs.) see also BEISS, U., BÖTGER, H. SCHÄUFELE, W. R. and VON MÜLLER	. 244 ,
WINTER, S. R. Irrigation and nitrate-N accumulation in beet fields. (Abs. WIŚNIOWSKI, R., see BURCZYŃSKI, Z.	) 337
WOLF, W. et al. Chromium determina tion. (Abs.) WONG YOU CHEONG, Y., see DEVILLE, J	27
WOODWARK, W., see HIBBERT, D. WOOLCOCK, R. F., see WESNEY, D. WORLEY, J. F., see GILLASPIE, A. G.	
fly. (Abs.) Contour banks. (Abs.)	47 331
requirement and heat transfe calculation. (Abs.)	r . 84
J. A. WU, I. P. Drip irrigation system	, n
design. (Abs.) Wu, M. M. H. et al. Cane field soi	i 51 336
see also Chao, C. C. WU, T. H., see Mai, S. C. WUSTEMANN, R., see EBERS, G.	
YADAV, H. N. and SHARMA, S. P. Can borer control. (Abs.) VADAV. S. Y., see SINGH. O. P.	e . 301
YALUMOV, R., see LUCHEV, I. S. YAMANE, T. and ASAI, H. Refining i	n 154
YAMSHANOV, A. I., see OSOKIN, V. I. VANG S. C. Foliar and soil fertilize	. 154
Application. (Abs.)	. 336 h
in Taiwan. (Abs.) YANG, S. M. Fungi and cane varieta	. 367 al
Soil fungi and cane growth. (Abs.)	.) 145
and pineapple disease control YANG, T. T. and HSIEH, T. S. Fertilize	. 178 er
YANTSKI, M. I. Beet flume sand tra VANTSKI, M. I. Beet flume sand tra	. 365 p 185
YAO, K. W. Soil drainage and salinit reduction. (Abs.)	y . 112
YARMILKO, E. D. Boiler feed condem- ate complexing properties. (Abs	s- .) 247
BURYMA, A. K., KOVAL', E. J and KULINICH, N. V.	Ľ. V
N. A. YAUGER, W. L., see HILTON, H. W.	•,
YEH, H. J., see PENG, S. Y. YONEMITSU, I. Seed cane growing.	81

- asurement ar house effici-SSELMAN, J. H.
- 245
- rater treatment ES, G. P. Dex-ssing difficulties , V.
- blcock, R. F. tion economic

- spectra ..... Starch effect on carbonatation... see also STEVENSON, J. C.

r	¥	¥	v	
•	~	~		

 $145 \\ 113$ 

185

PAGE	PAGE
ζ.	ZAGRODZKI, S. Beet diffusion water treatment and juice purity. (Abs.) 26, 216, 246
	ZAKHAROV, K. P. et al. Pre-carbonata- tion mud removal and juice nitrogen and pectin contents. (Abs.) 185
	ZAKHAROVA, I. V., see KHVALKOVSKII, T. P.
s,	ZAKHAROVA, T. V., see KHVALKOVSKII, T. P. ZAMBELLO E see BITTENCOURT V. C.
C. ng 344 	ZARA, J., see LUKÁCS, L. ZAN'KO, N. A., see PARKHOMETS, A. P. ZAORSKA, H. Beet diffusion water treatment and pulp quantity26, 218
л, ос т, а,	ZARECHANSKII, E. L., see TROINO, V. P. ZDANOVICH, I. L., see BRENMAN, S. A. ZDÁRSKÝ, J. and SVOBODA, A. Gur manufacture and analysis. (Abs.) 245 see also STREZINGER, M.
ck 89 K-	ZELAZNY, K., see JANUSZEWICZ, I. ZELEZNY, R., see SCHMIDT, L. ZEMLYANSKII, V. M., see KLOCHKOV,
316	V. P. ZENDE, G. K. Potassium as fertilizer 300
250	ZEPP, G. A. and CLAYTON, J. E. Mech- anical cane harvesting costs. (Abs.) 146 see also CLAYTON, J. E.
278	ZHARKOV, A. L. Convective mass

ZHARKOV, A. L. Convective mass transfer in sucrose crystallization see also KHARIN, V. M. 251

	PAGE
ZHIZHINA, R. G., see ZAKHAROV, K. P.	
ZHMYRYA L P et al Dextrose hydra-	
tion number (Abs)	318
and gleo DADENKOVA M N	010
Zwwwy K D and OININGVINI S D	
ZHURA, K. D. and OLYANSKAYA, S. F.	170
Carbonatation. (Abs.)	152
see also OLYANSKAYA, S. P.	
ZHURBITSKII, M. A., see PARKHOD'KO,	
A. P.	
ZIEGLER, J. G. Barometric condensers	309
Boiling, (Abs.)	56
ZIELKE, R. C. Beet characteristics	18
Beet crown yield sugar content and	
quality (Abs)	20
Post good production in US (Abg)	89
Beet seed production in US (Abs.)	971
Beet valletal tilais in US. (Abs.).	0/1
and SNYDER, F. W. Beet crown and	107
root impurities. (Abs.)	125
see also SNYDER, F. W.	
ZILLICH, E., see NELSON, P. H.	
ZINKO, B. M. Factory equipment com-	
ponents strain hardening. (Abs.)	184
ZODE, N. P., see KAKDE, J. R.	
ZOZULYA, S. A., see DOVGOPOL, V. I.	
ZUDCHENKO A V 200 BUDAVLEVA	

ZUBCHEFKO, A. V., see BURAVLEVA, V. I. and BYNAI'FSRV, A. I. ZURCHEFKO, V. P. et al. Continuous vacuum pan mathematical model ZUMMO, N. and FREEMAN, K. C. Cane bacterial sun spot. (Abs.)..... ZWAARDEMAKER, J. J. Clarification with magnesium oxide. (Abs.)..... ZYUKIN, M. A., see DERZHAVETS, A. S.

- 153 143
- 118

YOSHIDA, Y., see KASHIMURA, K. YOUNG, C. J., see UCHIDA, R. S. YOUNG, R. A., see NICHOLSON, M. YSE, W. F., see NEE, C. I.

xxxvi

# When you think of sugar machinery.....

# think of

# The S.R.I. Subsider

LOW INITIAL COST ECONOMY OF SPACE IMPROVED CLARIFICATION REDUCED RETENTION TIME LOW HEAT LOSS MAXIMUM FILTRATION EASIER LIQUIDATION FASTER START UP

FS design and construct complete factories and refineries, and supply a fully comprehensive range of unit equipment and spares for the sugar industry.







Telephone: Derby 40261

 D261
 Telex:
 37514
 Telegrams:

 A Member of the Booker McConnell Group of Companies

Telegrams: Amarilla Derby Telex of Companies H1

# - Suma Products

# **REDUCING SUGAR ESTIMATION**

This electrometric end point detector is battery operated and embodies an on/off switch, a potentiometer which permits a range of mV potentials to be applied across two electrode terminals, a sensitive galvanometer with centre zero and a knob for checking the battery output. The electrode system comprises a copper rod which connects to the positive terminal and a platinum wire electrode to the negative terminal. Titrations are complete when the meter needle returns to zero. (See also *I.S.J.*, 1966, **68**, 173–174)



## SUGAR MOISTURE MEASUREMENT

For the rapid estimation of moisture in sugars, the oven (left) is fitted with a thermostat which gives a temperature control of  $\pm 0.25$ °C over a range of 60°C from a central adjusted temperature. Results can be obtained in about 15 minutes. This type of oven must be used in conjunction with a vacuum pump or factory vacuum line for drawing the air over the heating element, through the sample and into the vacuum line or pump trap. A timing device can be supplied as an extra.

The sensitive infra-red balance (right) is designed for direct indication of moisture in refined sugars containing up to 0.25% water. A 20-g sample is dried by means of a 150W i.r. lamp and the loss in weight indicated continuously by the pointer on a 50-division scale where each division is equivalent to 1 mg. Reproducibility is to within half a division.



# The Sugar Manufacturers' Supply Co. Ltd. 196-204 BERMONDSEY STREET, LONDON, SEI 3TP, ENGLAND

Telephone: 01 - 407 5422

Cables: "Sumasuco, London S.E.1"

Printed by JOHN ROBERTS & SONS, Salford, Manchester; and published by the Proprietors, THE INTERNATIONAL SUGAR JOURNAL LTD., at 23a Easton Street, High Wycombe, Bucks. Entered at the New York Post Office as Second-Class Matter. PRINTED IN GREAT BRITAIN.

