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Kirkwood’s dielectric theory, applied to dilute solutions, is developed in terms of a parameter p2,app, called 
the apparent dipole moment of the solute. g‘2;app2 can be calculated directly from experimental data and 
equals goR-r + Ci°pi2 (dgi/dc2); g\, p2 denote intrinsic dipole moments, g i, g2 dipole correlation factors, and 
Ci, c2 concentrations of solvent and solute species, respectively. A chemical model is introduced which as­
sumes that dipole correlation between solute and solvent is considerable only in case of molecular complex 
formation. As a consequence, ju2, app2 — PT is dissected neatly into additive contributions from (1) solvation 
of the solute; (2) transfer of solvent molecules into solvation shells from the bulk solvent; and (3) change in 
dipole correlation in the bulk solvent.

Introduction to Series of Papers

The effects of solutes on hydrogen bonding in hydroxylic 
solvents are so intricate that experimental probes all too often 
tell us only whether a given solute is “ structure-making” or 
“ structure-breaking” . The dielectric constant, when inter­
preted in terms of Kirkwood’s dielectric theory,2 gives infor­
mation about dipole alignment and hence can elucidate the 
specific geometrical structure of hydrogen-bonded complexes. 
The sharpness of the resulting picture can be further improved 
if the dielectric measurements are complemented by spec­
troscopic and other data.

In this series we are developing an approach, centered on 
dielectric measurements, for deducing specific hydrogen- 
bonded structure in solutions in hydroxylic solvents. Although 
our measurements include a variety of hydrogen-bond donors 
and acceptors and solvents ranging from nonpolar to polar to 
polar-hydroxylic, the primary substrate will be 1 -octanol. The 
choice of 1 -octanol was attractive because (1 ) the conductivity 
of the pure liquid is low enough to permit precise measure­
ments of dielectric increments for dilute solutions; (2) di­
electric and other properties of the pure liquid are accurately 
known3 and indicate molecular interactions conforming ap­
proximately to the model of a freely rotating hydrogen-bonded

t Present address: Department of Chemistry, Tamkang College of 
Arts and Science, Tamsui, Taiwan 251, Republic of China.

chain;3 4 (3) the study is readily extended to isomeric liquid 
octanols whose dielectric properties are quite different.3

Kirkwood’s exact dielectric theory is so general that, unless 
the information we seek is already available, simplifying as­
sumptions must be introduced before the theory can be ap­
plied. In this paper (part 1 of the series}, we shall formulate 
the theory for convenient application to dilute solutions and 
introduce a simplifying assumption which we call the chemical 
model. In part 2, we shall apply this formulation to examine 
the structure of complexes resulting from the interaction of 
1 -octanol with various donors and acceptors in nonhydroxylic 
solvents. In part 3, we shall examine the effects of non-hy- 
drogen-bonding solutes on the dielectric constants of several 
hydroxylic solvents. In part 4, we shall report data for dilute 
solutions of various hydrogen-bonding solutes in 1-octanol. 
Finally, in part 5, we shah analyze the data obtained in part 
4 and deduce specific hydrogen-bond structural information 
for solvent and solute.

Terminology and Definitions

When Kirkwood’s theory is applied to one-component 
liquids A 7 the dipole alignment is accounted for by means of 
the correlation factor g, whose definition is as follows. Let p 
be the (scalar) molecular dipole moment, p the corresponding 
molecular dipole vector and p the vector sum (Figure 1) of p 
and the net dipole moment of the surrounding sphere of

2929
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Figure 1. (a) g and localized dipoles around it. (b) g is the vector sum 
of g and all molecular dipoles around it. In practice, only those dipoles 
within the effective range of interaction from the central molecule need 
be considered.

molecules, whose radius in theory approaches infinity. Letji-g 
denote the scalar product, and let {g-g) denote the statistical 
average, taken over all molecules of the given species. Then 
g is defined by

g = {g-g)/g2 (1 -1 )

When there is more than one component,8 it is instructive 
to introduce a separate factor g, for each component, as fol­
lows:

gi = (gt-gt)/gt 2 (1 -2)

g, now denotes the vector sum of gi, the dipole vector of the 
ith molecule, and the net dipole moment of the surrounding 
sphere of molecules, which comprises molecules of all species. 
This formulation enables us to express the polarization of the 
liquid solution as a sum of additive terms for the individual 
components:2

f(e) = U ~  l)(2e + l)/9e = £c;P , (l-3a)

Pi = ~ TrN0[oti + gi*fii2/ZkT] (l-3b)
O

Here t denotes dielectric constant of the liquid solution, c, 
concentration, P, molar polarization, a, molecular polariz­
ability, and ■¿g, the molecular dipole moment of the ith species 
of molecules in the given solution.

In general, 'fg, is somewhat greater than the intrinsic mo­
ment g, of the isolated molecule. The ratio, g,/*>,-, may be 
calculated from Onsager’s reaction field9 strictly only if all g, ’s 
are unity, and even then may require ad hoc assumptions 
about molecular size and shape.10 We decided to adopt the 
relation

h = gi/*gi = 1 -  [(n°- -  l)/(n2 + 2)] • 2(e -  l ) /(2e + 1 )
(1-4)

which is one of the possibilities suggested by Kirkwood2 and 
has also been used by others.8-10 (In (1-4), p denotes the re­
fractive index of the solution.) Equation 1-4 can be derived 
by applying Onsager’s reaction field to a dipole imbedded in 
a polarizable cavity whose properties are those of the macro­
scopic solution.2 It has been shown in previous work,11 and will 
be shown in the present series, that eq 1-4 is reasonably ac­
curate in practical applications.

A valid relationship between ĝ, and g, is necessary in order 
to calculate gi, and thence to deduce structural information. 
However, the relationship should be based entirely on ex­
perimental data and should not require the making of arbi­
trary assumptions about microscopic or structural parameters. 
Equation 1-4 satisfies this criterion.

Application to Dilute Solutions
Let component 1 be the solvent and 2 be the solute. Let Vi 

denote the molar volume of the pure solvent, V2 the apparent 
molar volume of the solute, and Cj = (1 — c2V2)/Vi the solvent 
concentration. In this notation, (l-3a) becomes

f(i) = P\!VX + C2[P2 -  (V2P1/V 1)] (1-5)

where Pi and P2 are functions of c2.
To obtain an expression that is accurate up to terms of first 

order in c2l we write (t = 1 , 2)P, = Pi0 + c2(dPi/dc2)c2=o, f(«) 
= f(i0) + c2[(df/de)(dc/dc2)]i.3=o, f(eo) = Pi°/V\, and 
(df/dc),. =0 = (2<o2 + l)/9«o2 Equation 1-5 thus reduces to

(2c02 + II /  d
( - p )  = P 2° - V 2f(e0) +  ^ ( ^ )  '\dc2/<-2=o Vi \dc2/ c 2=o

(1 -6)
It should be noted that P i0 denotes the molar polarization of 
the pure solventjflvitite/L0 denotes the molar polarization of 
the solute ir_ an infinitely dilute solution. To solve for (dPi/ 
dc2)C2=o, we introduce (l-3b) and (1-4). The quantities a, and 
gi are constant, by definition, but g],g2, and h(n,t) are func­
tions of c2. In writing11 the final result (1-7), it is convenient 
to use the following parameters: ci° = 1 / V1; ip = (n2 — 1 )/(n2 
+ 2) for the solution; <po = (n02 — 1 )/(n02 + 2) for the pure 
solvent; R\ = 47rA10ai/3 = <poV 1; R2 = 47r/Voa2/ 3; ho = 1 — 
2(ft)(io — l)/( 2c0 + 1). In principle, P i is the molar '^fraction 
of the solvent and P 2 is the apparent molar refractipn of the 
dilute solute. In practice we shall use molar refractions of the 
pure substances obtained at the sodium D line.

M22 = m T h 02/47rNo) df /2 eq2 + 1 12y50[f(e0) — <A)]l

+ V2f(eQ) -  R2 -

ldc2 V 9t02 

4[f(e0) — <A)](P2 ■
ho(2 t0 + l)2
y>ot/ 2)(Eo ~ 1)

(2to + l)Po 
-  [g22(g2 -  1) + c i V i 2 (dgi/dc2)] (1-7)

Note that the right-hand side of (1-7) separates terms without 
g factors, which can be obtained experimentally, from terms 
with g factors, which can be used to probe molecular inter­
actions. Because of this, it is useful to introduce a parameter 
M2,app> which will be called apparent dipole moment.

Apparent Dipole Moment
M2,app is defined as follows:

M2,app2

= (9 kTko2/4 irN0) f-^1 ( 2e° 2 + 1 -  Higoh
ldc2 V 9fo2 ho(2eo + l )2 /

+ Vf ( -  ) - f i  — ~ ~ iPo^Kto — 1)|
2 t0 2 (2t0 +  l ) / i 0 I

(1 -8)

Note that Mz.app is a function solely of experimental quantities. 
On substituting in (1-7) and rearranging, we obtain

M2,app2 = #2M22 + ClVl2(dgl/dc2)C2=o (1-9)
The apparent dipole moment defined here should not be 
confused with the term “apparent dipole moment” as used in 
the older literature.12 The older term is simply the dipole 
moment measured in nonpolar solvents and calculated by 
Debye’s second method.12 The present usage is analogous to 
such familiar usage as “apparent molar volume” or “ apparent 
solvation number” . In the absence of dipole correlation, g, =

The Journal o f Physical Chemistry, Vol. 80, No. 27, 1976
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g2 = 1  and dgi/dc2 = 0. It can then be seen from (1-9) that, 
under such conditions, /¿2,app reduces to g2. When there is di­
pole correlation, ¿r2,app may deviate greatly from u2. Indeed, 
M2,app2 may be a negative quantity!

Chemical Model
The definition of the correlation factor g, is so general that, 

in order to deduce specific structural information, one has to 
introduce additional assumptions. We shall assume that di­
pole correlation between solute and solvent is considerable 
only if there is molecular complex formation between the two 
kinds of molecules, and that the relative concentrations of 
complexed and uncomplexed species conform to the laws of 
mass action and thermodynamics. We shall call this as­
sumption the chemical model.

Thus the solute molecules may be divided into two groups: 
a fraction 1 — f remains uncomplexed, with correlation factor 
= 1 ; and a fraction f forms complexes with solvent molecules, 
with correlation factor g2a■ The overall average g2 is given
by

g2 = fg 2 a  + ( ! - / )  (MO)
Similarly, the solvent molecules may be divided into two 

groups: those that remain in the bulk solvent (correlation 
factor gn), and those that exist in solute-solvent complexes 
(correlation factor g 12). Let c\ and c2 denote the concentra­
tions of tile formal components, regardless of complexing, and 
let m denote the average solvation number of the solvent- 
solute complexes. Then the fraction of all solvent molecules 
combined in solvent-solute complexes is mfc2/c 1, and the 
overall average g\ is given by

gi = (1 -  mfc2/ci)gu + {rnfc2lci)gi2 (1 -H )
In principle, g\ 1 and g i2 are functions of c2. On expanding 

in Taylor’s series about C2 = 0 (i.e.,gn = gn° + c2 (dgn/dc2) 
+ . . . )  and neglecting higher order terms in c2, we obtain

g 1 = gn 0 + (£12° -  gn°)(mfc2/ci)
+ c2(dgii/dc2)c2=o (1-12)

Finally, we take the derivative of (1-12), evaluate at c2 = 0, and 
substitute in (1-9):

Ai'2 ,app2 -  M22 = fig2a ~  l W  +  m f ( g VP  -  gn°)P-P
+ a W  (dgn/dc2)(.,=0 (1-13)

Equation 1-13 neatly dissects /u2,app2 — M22 into three addi­
tive contributions: hi2 with its associated change of correlation 
factor; m2 with the associated change of correlation factor as 
a fraction (/mc2/c 1) of the solvent molecules becomes asso­
ciated with solute molecules; and a term comprising the so­
lute-induced changes in dipole correlation in the bulk solvent. 
We shall call the third term the solute-induced medium effect 
(SIME).

(M2,app2 ~ M22) and dt/dc2 are both indications of the change 
of polarity. However, a positive M2,app2 ~ M22 means that the 
overall interaction makes the system became more polar than 
it was before interaction, while a positive d«/dc2 means that 
the system with solute is more polar than that without so­
lute.

To examine the structure of solvent-solute complexes, we 
need to know the interdependent parameters g2, g 12°, f, and 
^.'Equation 1-13 shows that these parameters are accessible 
only if the solute-induced medium effect (proportional to 
dgn/dc2) is known or can be predicted: the SIME is the key. 
We shall examine SIME’s in hydroxylic solvents in parts 3 and
5.
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Association constants (K,j) and electric dipole moments (p,j) of 1:1 hydrogen-bonded complexes of 1-octanol 
with alseries of ligands were measured in benzene, and apparent dipole moments (Mc.app) of some of these 
complexes were measured with 1-octanol being the solute ar d the pure ligand being the solvent. Results for 
hydrogen bonding of 1-octanol in benzene at 25 °C are (ligand, K,, (M 1), p )̂: dimethyl sulfoxide, 7.5, 4.56 
D; acetone, 1.1, 4.07 D; benzaldehyde, 0.75, 4.14 D; pyridine, 2.5, 3.73 D; chloroform, 0.85, 2.63 D; methyl iso­
butyl ketone (MIK), 1.1, 3.94 D. Results, for 1:1 octanol-solvent complexes at 25 °C are (solvent, dielectric 
constant, /rc app): pyridine, 12.4, 3.62 0 ; chloroform, 4.81, 2.68 D; MIK, 13.11, 3.99 D. In each case, pCjapp ~ pij 
in benzene, suggesting that the structure of these complexes is quite insensitive to the dielectric constant of 
the solvent. The values of ptJ in benzene conform rather well to amiodeA of free rotation about the hydrogen- 
bond axis and negligible charge transfer on complex formation.

Before considering dielectric data for solutions of hydro­
gen-bonding ligands in liquid 1 -octanol, we wish to examine 
the nature of the interaction of 1 -octanol with these and 
similar ligands in nonhydroxylic solvents of varying polarity.
Dipole moments for hydrogen-bonded complexes were mea­
sured in benzene solution, as well as under conditions where 
1 -octanol is a dilute solute and the other hydrogen-bonding 
ligand is the solvent.

Hydrogen-Bonded Complexes in Benzene
Experimental results needed for the calculation of electric 

dipole moments are listed in Table I. The measurements were 
made under conditions where self-association of 1 -octanol is 
negligible. Association constants (K:J) of 1-octanol (OctOH) 
with dimethyl sulfoxide (DMSO), acetone, benzaldehyde, 
pyridine, and methyl isobutyl ketone (MIK) were measured 
spectrophotometrically, using the first overtone2 of the mo­
nomer OH stretching band of 1-octanol at 1430 nm. In each 
case a benzene solution of OctOH and the other ligand was 
compared with an otherwise identical solution containing 
OctOD in place of OctOH, thus compensating for absorption 
other than that assignable to the OH group.3 The data for each 
system are reproduced adequately by the assumption of 1:1 
complex formation,' although for the interaction of DMSO 
with OctOH the formation of 1:2 complexes cannot be clearly 
ruled out. The standard errors of precision of the association 
constants are on the order of 20%; the resulting errors in dipole 
moments for the complexes are within 0.1 D.

For CCDH-OctOH, the 1:1 association constant was ob­
tained by fitting the dielectric data.

Dielectric constants were measured for dilute solutions of 
the ligands alone and in combination. In each case, the dif­
ference Ac between the dielectric constant of the solution and 
that of the pure solvent was a linear function of molar con­
centrations,

Ac = 5ociOH[0ct0H] '+ S l[L] + SoctOH-L[OctOH-L]
(2-1 )

Si denotes the molar dielectric increment (dc/dc, ) of the ; th 
species. SoctOH and Si, were obtained from experiments using 
these solutes alone. S oton  -i. was obtained by analysis of Ac 
for solutions containing both solutes, using the values of 
SociOH. S l, and K,j.

For the calculation of dipole moments one also needs ap­
parent molar volumes (V,) and molar refractions (R,). Values 
of V7, obtained for the uncomplexed ligands are listed in Table 
I. For R, we used the molar refractions of the pure liquids at 
the sodium B line. For the complexes we assumed that VtJ = 
V: + Vj and that R,j = R, + R,.

As shown in Table I, dipole moments calculated in the 
standard way by Debye’s second method5 are in substantial 
agreement with apparent dipole moments according to eq 1-8, 
as expected for a nonpolar solvent. It is worth noting, however, 
that the latter values are consistently ~Q.l D greater than the 
former. In the following we shall use the values obtained by 
Debye’s method, in order that our results be comparable with 
the previous literature.

Structure o: Hydrogen-Bonded Complexes
The final column of Table I lists predicted dipole moments 

of the complexes, based on a model which assumes a linear 
hydrogen bond with “ free” rotation5 about the hydrogen-bond 
axis, and which neglects any dipole enhancement owing to 
hydrogen bonding.7 On that basis p,j for the complex is given 
by eq 2-2, where a denotes the angle between the hydrogen- 
bond axis and m, and /? denotes the angle between the hy­
drogen-bond axis and pj (see Figure 1).

My2 = Mi2 + Pj2 + ZpiPj cos a cos /3 (2-2)

For OctOH, on the basis of bond moments,8 an angle of 43° 
was adopted when this ligand acts as H-bond donor in the 
presence of carbonyl compounds, DMSO, and pyridine, and 
of 55.5° when it acts as H-bond acceptor toward CC13H. For 
carbonyl compounds and DMSO, the angle was 60°; for pyr­
idine and CCI3H, it was 0°. Values of Pi and pj for the free li­
gands were taken from our own measurements (Table I).

On the whole, agreement between prediction based on this 
free rotation model and experiment is quite satisfactory. The 
mean of gy(exptl) — g,; (pred) is 0.05 D, with a mean deviation 
of 0.15 D.

Hydrogen Bonding in Polar Nonhydroxylic Solvents
We now wish to consider the hydrogen-bonded complexes 

that are formed when 1-octanol exists as a dilute solute in the 
solvents pyridine, MIK, or chloroform. At 25 °C, dielectric 
constants of these solvents range from 4.8 to 13.1, and dipole
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TABLE I: Experimental Results and Calculated Dipole Moments in Benzene at 25.0 °C

Substrate S;, Sij, Vif Vtj, K,Jt ßij, Mi,app> w;
(i, ij) M~] cnvVmol M-> D° u 6 H-ij, app (free rot.)c

Octanol 0.340 164 1.76 1.88
DMSO 1.91 66.0 3.91 4.08
OctOH-DMSO 2.50 230 7.5 4.56 4.73 4.84
Acetone €.93 74.8 2.80 2.90
OctOH-acetone 1.94 239 1.1 4.07 4.22 3.81
PhCHO 1.14 101 3.04 3.17
OctOH-PhCHO 2.06 265 0.75 4.14 4.31 4.03
Pyridine 0.612 81.1 2.23 2.33 -,
OctOH-pyridine 1.65 245 2.5 3.73 3.88 ' 3.72
CHCl-i C.173 81.0 1.24 1.32
OctOH-CHCls 0.780 245 0.85 2.63 2.76 2.67
Methyl isobutyl

ketone (MIK) 0.84 127 2.69 2.79
OctOH-MIK 1.80 291 i.i *■ 3.94 4.09 3.72

" Calculated from experimental data IwjPebye’s method. b Calculated from experimental data using eq 1-8 of part 1 . ' Predicted
according to eq 2-2. &y- i\

TABLE II: Hydrogen Bonding of 1-Octanol in Polar Nonhydroxylic Solvents at 25 °C

SoctOH, V bv C> ÍÍ b Mc,app5 U C,C
Solvent i() gn° M-> cnfVmol D D

Pyridine 12.4 1.009" -0.52 239 3.62 3.73
HCCU 4.81 1.125° 0.30 238 2.68 2.63
MIK 13.11 1.347° -0.90 284 3.99 3.94

° Calculated according to eq 1-3 and 1-4 and intrinsic dipole moments as listed in Table I. b For 1:1 solute-solvent complex; in applying 
eq 1 -8, Vo becomes Vc = V2 + Vi; R2 becomes Rc = R2 + R1. ' Measured in benzene. Denoted by in Table I.

Figure 1. Model for prediction of fi,¡, illustrated for complex formation 
between 1-octanol and a ketone. Angles a and d are drawn as described 
in the text.

correlation factors range from 1.0 for pyridine to 1.35 for MIK9 
(Table II). Using association constants listed in Table I, we 
reckon that at least 90% of the OctOH molecules form H- 
bonded complexes with solvent molecules. The actual frac­
tions are probably even closer to unity, because Ap2 > 0 and 
hence K,; is expected to increase with the dielectric con­
stant.10

In the following, we shall assume that each OctOH molecule 
is hydrogen bonded to one solvent molecule. On that basis it 
turns out that apparent dipole moments for the octanol 
complexes in the polar solvents are remarkably close to dipole 
moments for the same complexes obtained in benzene.

Results are listed in Table II, where the subscript c denotes 
the 1:1 octanol- solvent complex. Apparent dipole moments 
(Pc.app) were calculated according to eq 1 -8, by letting the 
properties of the solute species be those of the 1:1 complex; 
that is, the apparent molar volume of the solute is Vc = V:i +
V], and its molar refraction is R2 + R i -11

There are various ways of interpreting the remarkably close 
agreement between p c .a p p  in the polar solvents and pc in ben­
zene for the complexes described in Table II. On the one hand, 
one may argue that pc in the polar solvents and pc in benzene 
should be equal. It then follows that pc,app = Me in the polar 
solvents, so that the introduction of the solute produces no 
dipole correlation effects other than those inherent in the 
formation of the 1:1 complex. This is a plausible conclusion 
for nonhydroxylic solvents. Alternatively, the premise and 
conclusion of the preceding argument may be reversed. Fi­
nally, one may adopt both premises and accept the agreement 
as evidence for the validity of the theory leading to eq 1-8. In 
view of the wide range of dielectric properties of the solvents, 
and of donor-acceptor and dipolar properties of the solutes 
(Table II), we believe that all three interpretations are at least 
approximately valid.

Experimental Section

Materials. Reagent-grade commercial samples of solvents 
and solutes were further purified by drying and double dis­
tillation, under reduced pressure if necessary.12 Octanol-O-d 
was prepared by isotopic exchange, by twice stirring with a 
large molar excess of D20. The octanol-rich phase was sepa­
rated, dried over molecular sieves, and distilled at reduced 
pressure. The NMR spectrum of the final product showed no 
OH-proton resonance.

Dielectric Measurements. Cells and measuring techniques 
described in earlier publications from this laboratory were 
used.13 However, the basic measuring apparatus was simpli­
fied and improved by elimination of the external Gertsch ratio 
transformer for conductance balancing, expansion of the 
conductance measuring range of the General Radio Type 
1615A capacitance bridge, and use of a phase-sensitive de-
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tector with matched oscillator (General Radio Type 1238 and 
1316).

The conductance measuring range of the General Radio 
Type 1615A bridge was expanded to 10 îmhos (110 ¿¿mhos 
with external standard of 100 /jmhos) by essentially the 
method of Addison and Stalinski,14 but omitting the new ex­
ternal switch described by these authors. We merely substi­
tuted a matched pair of 9096-ohm resistors for R245 and 
R246,15 thus generating measuring ranges of ±10 /¿mhos and 
± 1 ¿¿mho, with resolutions of 1 and 0.1 nmho, respectively. As 
a result of this modification, the relationship between bridge 
reading and conductance becomes nonlinear, as described in 
the Instruction Manual,15 but that is a trivial inconvenience. 
Less trivial is the fact that the conductance-balancing network 
now has a significant equivalent capacitance, Ceq, which must 
be added to the reading of the capacitance-balancing nefwork 
if accurate results are to be obtained. In determining this ca­
pacitance, Ceq, as a function of conductance reading, we used 
as primary standard a carefully mounted and shielded 
100.027-M.mho resistor whose effective capacitance had been 
determined by Dr. John Hersh of the General Radio Stan­
dards Laboratory, and independently by ourselves, to be 0.14 
±  0.05 pF at 10 kHz. The equivalent circuit for reproducing 
Ceq as a function of R n , the bridge resistance in ohms as de­
fined in the Instruction Manual,15 is more complicated than 
suggested by Addison and Stalinski.14 We used the empirical 
equation,

Ceq(pF) = 4.12 X 10-5Rn -  3.11 X 1 0 - W
+ 0.017 X (decimal part of Rn/100) (2-3)

which reproduced the calibration data with a standard de­
viation of 0.003 pF.

Specific conductivities (in ohm“ 1 cm“ 1) of the solvents 
were: <1 X 10“ 12 for benzene, 8 X 10“ 11 for CHCI3, ~1.8 X 
10“ 9 for methyl isobutyl ketone (MIK), and 3.6 X 10“ 8 for 
pyridine. Although in CHCI3, and especially in MIK, the 
conductivity increased considerably with 1 -octanol concen­
tration, the effect of the free ions on Ac16’17 was estimated to 
be less than 2% of the experimental At in every case.

Plots of Ae vs. Co for 1-octanol in the three polar solvents 
were straight lines through the origin over the entire experi­
mental range, up to ~1.8 M. Values of SoctOH = de/dc2 in 
Table II are based on no less than six concentrations.

Near-Infrared Spectrophotometry. Spectra were taken at 
room temperature (~23 °C) with a Perkin-Elmer Hitachi 
Model 323 spectrophotometer. Tightly stoppered, 0.5-cm 
matched cells were used. By comparing otherwise identical 
solutions of OctOH and OctOD, all absorbances except for the 
OH absorbance were compensated in the region ~1430 nm. 
Under the experimental conditions (<0.2 M 1-octanol in 
benzene), the first overtone of the OH stretching band of 
OctOH monomer was a sharp peak. OH stretching absorbance 
due to hydrogen-bonded complexes was relatively weak, as 
expected.2 Concentrations of the hydrogen-bond acceptor 
ligands were usually 0.3-0.7 times those of OctOH.
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Dielectric constants have been measured for dilute solutions of the solutes benzene, 1,4-di-tert-butylben- 
zene, chlorobenzene, nitrobenzene, benzonitrile, and CC14 in the solvents 1-octanol, 5-methylheptanol-3, 
and acetic acid. Apparent dipole moments of the solutes differ considerably from intrinsic dipole moments: 

. values of M2,app2 — M22 range from + 11  to —10 D2. Results are reproduced by the empirical equation, M2,app2
'•> -  P22 = A V2 + Bp22, in which the parameters A and¿3 are found to vary greatly with the solvent: A <  0 < B.

The results reflect solute-induced changes in hydrogen-bonded solvent structure; for non-hydrogen-bonding 
solutes, juz.app2 — M 2 2  = s£ i ^ a i 2 (dgn/dc2), where g n  is the dipole correlation factor of the solvent molecules. 
Mechanisms by which the addition of a solute may modify gn  are discussed.

Introduction
Apparent dipole moments of non-hydrogen-bonding solutes 

such as chlorobenzene, CC14, or 1,4-di-terf-butylbenzene, in 
hydroxylic solvents such as 1 -octanol or acetic acid, often 
differ considerably from intrinsic dipole moments. Solutes 
such as these are not likely to form discrete solvation com­
plexes. Thus, in terms of the chemical model (part l ),2 f  = 0 
and eq 1-13 reduces to

M2,app2 _  M22 = Ci°Ml2 (dgn/dC2)c2=0,/=0 (3-1)

According to (3-1), when /  = 0, any significant difference be­
tween M2,app2 and po~ implies a nonzero dgn/dc2 and is 
therefore a solute-induced medium effect.

We visualize the following mechanisms by which the ad­
dition of a non-hydrogen-bonding solute may modify the av­
erage dipole correlation among the solvent molecules in a 
hydroxylic solvent. (1) The addition of solute causes a dilution 
of the solvent. By the law of mass action, this shifts the equi­
librium among the solvent complexes so as to favor solvent 
species with lower association numbers. (2) The addition of 
solute causes a change in the dielectric constant (e) and in 
other macroscopic measures of polar character. The change 
in polar character in turn affects the equilibrium constants 
for solvent-solvent complex formation, so that an increase in 
polar character will favor the formation of more polar com­
plexes. (3) Hydrogen bonding among hydroxylic molecules 
often leads to the formation of substantial chains or three- 
dimensional molecular networks. The addition of solute 
molecules, of characteristic size and shape, may interfere with 
the preferred packing or freedom of motion of such solvent 
polymers.

In this paper, solute-induced medium effects will be ex­
amined in three hydroxylic solvents of widely different 
properties: 1-octanol (OctOH, 6o = 10.01 at 25 °C), 5-meth- 
ylheptanol-3 (5-MH3, e0 = 3.88 at 25 °C), and acetic acid 
(HAc, to = 6.265 at 25 °C). Solutes include benzene (PhH),
1,4-di-feri-butyl benzene (DTB), CC14, chlorobenzene (PhCl), 
benzonitrile (PhCN), and nitrobenzene (PhN02). These so­
lutes are aprotic substances whose hydrogen-bond acceptor 
affinity may be neglected. Because of a recent claim that the 
acceptor affinity of the nitro group in p-nitroaniline is sig­
nificant,3 we measured the spectral absorption of benzene

TABLE I: Dielectric Measurements for Non-Hydrogen- 
Bonding Solutes in Hydroxylic Solvents

Solvent“
ho) Solute“

Highest
c2, M

s 2,
M" 1

M2 ,app2 
-  M2 2, 
D2 6

dgn/
dc2,

M“ 1

OctOH PhNOz 0.31 0.89 -4.04 - 0.21
(10.01) PhCl 0.38 -1.07 -4.22 - 0.22

PhH 0.23 -1.45 -4.49 -0.23
DTB 0.044 -3.41 -9.88 -0.51

5-MH3 PI1NO9 0.30 3.58 11.0 0.62
(3.88) PhCl 0.32 0.32 1.04 0.058

PhH 0.28 -0.15 0.14 0.008
DTB 0.063 -0.57 -0.96 -0.054

HAc PhNOa 0.13 1.90 0.24 0.005
(6.265) PhCN 0.06 2.02 1.12 0.023

PhCl 0.24 -0.54 -3.44 -0.070
PhH 0.22 -0.82 -3.13 -0.064
DTB 0.25 -1.98 -7.34 -0.15
CC14 0.10 - 1.11 -4.70 -0.096

“ OctOH = 1-octanol; 5-MH3 = 5-methylheptanol-3; HAc = 
acetic acid; Ph = CrHs; DTB = 1,4-di-feri-butylbenzene. h Values 
o f  m i , M2, and other properties used in the calculations are listed 
in Table II. c' Eq 3-1.

solutions of OctOH and PhN02 in the first overtone region 
of the OH stretching band around 1430 nm, without obtaining 
any evidence for OctOH-PhN02 hydrogen-bond complex 
formation.

Results
Experimental plots of dielectric constant c vs. c2 were linear 

or, in a few cases, showed slight curvature. Initial slopes S 2 = 
(di/dc2)C2=o and other relevant data are listed in Table I. The 
calculation of M 2 ,a p p 2 is based on eq 1 - 8 ,  using physical prop­
erties as listed in Table II. The calculation of dgu/Ac > is based 
on eq 3 - 1 .

The accuracy of S2 is within 0.1 (M-1). The corresponding 
error in M 2 ,a p p 2  —  M 22  is ~  0.5 D2, while actual values range from 
+11 to —10. It is clear that the differences between M 2 ,a p p 2 and 
M 2 2 are real.

On comparing M 2 ,a p p 2  —  M 22  in a given solvent (Table I) with 
physical properties of the solutes (Table II), certain trends
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TABLE II: Physical Properties (25 °C) Used in 
Calculation of Apparent Dipole Moments

Solute or 
solvent“

V2, Vu 
cm3/mol

R2, Rt,
cm3/mol

M2 , M l, 
D

PhNO, 105.0 33.42 3.93
PhCl 102.2 31.16 1.58
PhH 89.4 26.2 0
DTB 221 63.8 0
PhCN 103.1 31.70 3.93
CCLj 97.1 26.46 0
HAc . 57.54 13.01 1.68
OctOH 158.4 40.71 1.76
5-MH3 158.6 40.32 1.68

n For definition of abbreviations, see footnote in Table I.

TABLE III: Least-Squares Data Fitting According twfiq
3-2 ' 'M

A, Std dev,
- f Jy

Correlation
Solvent“ D2 cm- 3 B D2 b coeff

OctOH -0.0451 0.0477 0.38 0.982
5-MH3 -0.0041 0.736 0.45 0.993
HAc -0.0362 0.286 0.77 0.939

(-0.0344)' (0.273)c 0.51 0.977

" OctOH = 1-octanol; 5-MH3 = 5-methylheptanol-3; HAc = 
acetic acid. b By comparison, the experimental error is ~0.5 D2.
' Exclude CCI4 .

may be noted: for nonpolar solutes the values of (M2 ,app2  ~  M2 2) 

decrease with increasing V2, while, for polar solutes of com­
parable V2, the values increase with /x2. A negative value in­
dicates that dgn/dc2 is negative; i.e., the added solute causes 
the solvent to become less polar.4

Discussion

In principle the values of dgii/dc2 are predictable, but the 
required model of hydrogen-bonded solvent structure and of 
solvent-solute interaction must be quite detailed. In the ab­
sence of such information, we searched for an appropriate 
empirical function for fitting the experimental values of Mz.app2 
—  M2 2 . Equation 3 - 2 ,  in which A and B are parameters char­
acteristic of the solvent, is adequately successful.

M2,app2 -  M22 = AV2 + Bm22 (3-2)
Least-squares adjusted values of A and B, and measures of 

quality of fit, for the present solvents are listed in Table III. 
The standard deviations of fit are compatible with the ex­
perimental error. A and B are of opposite sign; the magnitudes 
of A and B vary greatly, each by more than an order of mag­
nitude; and there is a consistent trend for —A to decrease when 
B increases.5

The choice of V2 and M22 as independent variables in an 
empirical correlation is at least partly suggested by theory. Of 
the three mechanisms for solute-induced medium effects 
considered in the Introduction, the effect of a decrease in 
solvent concentration, per molar solute, is proportional to V2. 
The change in polar character of the solution, per molar solute, 
depends primarily on mz2- Steric interference with the hy­
drogen-bonded solvent structure, per molar solute, should be 
more specific. However, the underlying interactions are van 
der Waals interactions, for which various mathematical 
models are available.6 Thus it is not implausible for interac­
tions which depend specifically on the solute’s polarizability

to produce effects which, in dilute solution, vary approxi­
mately as V2 and are thus gathered up by the term AV2. 
Specific polar effects should vary approximately as M2 (rather 
than n2z). However, the fit of the relation, M2,app2 — M22 = A'V2 
+ B 'm2. is distinctly inferior to that of (3-2).

Experimental Section

Materials. Reagent-grade acetic acid was further purified 
by recrystallization, as described previously.7 The conduc­
tivity of the pure liquid was 40-50 nmhos/cm.

1-Octanol (Fisher certified reagent) was distilled twice 
under nitrogen at reduced pressure: density, 0.821 g/cm3 at 
25 °C; to = 10.01 at 24.9 °C: conductivity, 0.4-0.8 nmho/ 
cm.

5-Methylheptanol-3 (J. T. Baker Chemical Co.) was puri- 
fied by double distillation under nitrogen at reduced pressure. 
The structural formula of this alcohol contains two asym­
metric carbon atoms, hence permits two diastereomeric d,l 
pairs. The solvent actually used in this work was a somewhat 
variable m xttiVe, protiably of the two diastereomers, because 
the dielectric constant of different batches varied over a 3% 
range. However, dielectric increments were always measured 
using solvent from the same batch. In one experiment, a small 
batch was especially purified by careful vacuum fractionation 
with a spinning-band column. The near-infrared spectrum 
and So for chlorobenzene, measured using this batch, were 
practically indistinguishable from properties measured with 
a batch resulting from normal double-vacuum distillation: 
n 25 D  1 . 4 2 2 2 ;  p 2 5  0 . 8 2 1 .

Nitrobenzene (Fisher certified reagent) was recrystallized 
twice and then distilled twice under nitrogen at reduced 
pressure. The conductivity of the purified liquid was about 
5 nmhos/cm and the dielectric constant 34.68 at 24.9 °C.

Chlorobenzene (Fisher certified reagent) was dried over 
phosphorus pentoxide and then distilled twice under nitrogen 
at atmospheric pressure.

1,4-Di-ierf-butylbenzene (Aldrich), mp 77.9 °C, was re­
crystallized three times from ethanol and dried under vacu­
um.

Benzene (Eastman Organic Chemicals spectrograde) was 
distilled twice under nitrogen at atmospheric pressure.

Benzonitrile (Eastman White Label) was distilled, bp 90 
°C (31 mm).

Carbon tetrachloride (reagent grade) was used without 
further purification.

Dielectric measurements were made over a period of several 
years, during which the instrumentation was gradually im­
proved. Most of the data were obtained using the apparatus 
described by Grunwald and Effio;8 some of the results re­
ported for OctOH and 5-MH3 were checked or obtained using 
the apparatus described in part 2. Measurements in acetic acid 
were somewhat less precise than in the alcohol solvents, owing 
to the higher conductivity.

Solutions were prepared quantitatively under anhydrous 
conditions, using a glove box flushed with dry nitrogen. 
Near-infrared spectra were measured as described in part 
2.

References and Notes
(1) (a) Acknowledgment is made to the donors of the Petroleum Research Fund, 

administered by the American Chemical Society, for partial support of this 
work. Grateful acknowledgment Is also made to the National Science 
Foundation for support of this work In the initial stages; (b) John Simon 
Guggenheim Memorial Fellow, 1975-1976.

(2) Parts 1 and 2 of this series are Immediately preceding papers in this issue. 
Equations beginning with 1 or 2 (e g., eq 1-8) will be found in those pa­
pers.

(3) M. J. Kamlet and R. W. Taft, J. Am. Chem. Soc., 9 8 ,3 77  (1976); see espe-

The Journal o f Physical Chemistry, Vol. 80, No. 27, 1976



Effect of Hydrogen-Bonding Solutes on Dielectric Constant 2937

dally the discussion following eq 18.
(4) The use of the parameter M2,app2 in the examination of dg1/d c2 may be 

avoided by letting dp i/dc2 =  (dg t/de) (dt/dc2) +  (à g i/à c ^ ld c d d c z ), and 
evaluating the partial derivatives from eq 1-3.

(5) These empirical conclusions do not apply generally to hydroxylic solvents. 
For instance, in octanoic acid (e0 =  2.46) u2,app2 — /u22 is close to zero for

a wide range of solutes: T.-P. I and E. Grunwald, J. Am. Chem. Soc., 98,1351  
(1976).

(6) See, for example, J. H. Hildebrand and R. L. Scott, “The Solubility of Non­
electrolytes”, Reinhold, New York, N.Y., 1950.

(7) M. R. Crampton and E. Grunwald, J. Am. Chem. Soc., 93, 2987 (1971).
(8) E. Grunwald and A. Effio, J. Solution Chem.. 2, 373 (1973).

Hydrogen Bonding in Polar Liquid Solutions. 4. Effect of Hydrogen-Bonding Solutes on 
Dielectric Constant and Solvent Structure in 1-Octanol1a

Ernest G runw a ld ,*10 Kee-Chuan Pan, and Adan Efff©

Department o f Chemistry, Brandéis University, Waltham, Massachusetts 02154 (Received June 23, 1976) 

Publication costs assisted by the Petroleum Research Fund

Dielectric constant (c) was measured as a function of concentration at 24.9 °C for the following hydrogen­
bonding solutes in 1-octanol: benzaldehyde, acetone, (f-Bu)2CO, (i-Bu)COCH:i, (CH3)2SO, pyridine (Py),
2,4- and 2-6-(i-Bu)2Py, 2-(i-Pr)-6-(i-Bu)Py, CHC13, and (C2H5)3COH. Molar dielectric increments (de/dc2 
at c2 = 0) were generally negative even though t for the majority of the pure liquid solutes is greater than < 
for 1-octanol. Solute-induced medium effects differed considerably from the relationship established for 
non-hydrogen-bonding solutes. Adopting a hydrogen-bonded chain model for 1-octanol, the mean chain 
length was found, by near-infrared spectroscopy, to be 27.7 at 25 °C. Adopting a model for sitewise equilibri­
um between free OH-donor sites, free O-acceptor sites, and OH-O hydrogen-bonded sites, the sitewise asso­
ciation constant K  = 117 (M_1) at 25 °C; AH° = —8.58 kcal, AS° = —19.3 gibbs/mol of hydrogen bonds. The 
sitewise equilibrium model predicts a marked breakdown of hydrogen-bonded solvent structure in the pres­
ence of hydrogen-bonding solutes.

In part 3 we considered the effects of non-hydrogen- 
bonding solutes on dipole correlation in hydroxylic solvents.2 
We shall now consider the effects of hydrogen-bonding so­
lutes, which according to our data are even more complicated. 
For illustration, Figure 1 shows dielectric constant < as a 
function of c2 for dimethyl sulfoxide (DMSO, /t2 = 3.91 D) in 
1-octanol (OctOH, ¿q = 1.76 D). If DMSO were a non-hydro­
gen-bonding solute, with solute-induced medium effects given 
by eq 3-2, the relation between e and c2 would follow the 
dashed line in Figure 1, whose slope is positive. If DMSO and 
OctOH were forming a 1:1 complex whose dipole moment, as 
reported in part 2, is 4.56 D, and if solute-induced medium 
effects were again given by (3-2), the slope would be ap­
proximately zero. By contrast, the experimental slope at low 
concentrations is negative!

Pure DMSO (eo = 46.7)3 is much more polar than OctOH 
( t 0 = 10.01). Thus the slope of e vs. c 2 cannot remain negative 
indefinitely. As shown in Figure 1, de/dc2 changes sign at c2 
«  0.24 M.

Because DMSO is known to be an efficient hydrogen-bond 
acceptor,4 we expect the formation of solvation complexes of 
the general formula DMSO-(OctOH)m. The solvation number 
m may be an integer or an average for a distribution, and m 
may vary with c2. If this is granted, then the negative initial 
slope allows of two interpretations: (1) Solvation complexes 
of DMSO in OctOH are markedly less polar than expected 
from the structure of the 1:1 complex in benzene. (2) Hydrogen 
bonding between DMSO and OctOH couples the DMSO 
molecules to the hydrogen-bonded solvent structure and

thereby introduces a new kind of solute-induced medium ef­
fect that lowers the dielectric constant. Having found in part 
2 that dipole moments of OctOH-L complexes, for typical 
ligands L, are quite insensitive to the solvent medium, we 
consider the first interpretation to be less probable.

In this paper we shall report dielectric constants for a va­
riety of hydrogen-bonding solutes in 1-octanol and show that 
the behavior of DMSO is part of a perplexing general pattern. 
We shall then consider the hydrogen-bonded structure of the 
solvent and show, by straightforward application of principles 
of chemical equilibrium, that hydrogen bonding to a solute 
greatly reduces the average aggregation number. In 1-octanol, 
such “ structure breaking” of the solvent is attended by a de­
crease in the dielectric constant. In part 5 we shall develop 
these concepts into a quantitative theory.

Experimental Dielectric Constants
Typical plots of A« = e — £0 vs. c2 for hydrogen-bonding 

solutes in 1-octanol are shown in Figures 1-3. Results for all 
solutes are listed in Table I.

Because the pyridine solutes ionize as bases in water, it is 
worth noting that ionization according to

Py + HOOct PyH+-OOct~ ^  PyH+ + OOdr

was found to be negligible. The evidence for this is that the 
conductivity of the solutions remained in all cases essentially 
the same as that of the solvent, about 0.4-0.8 nmho/cm. 
Free-ion concentrations as small as 10-5 M could have been 
detected easily. Ion-pair dissociation constants for hydro-
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Figure 1. Plot of Ae vs. c2 for dimethyl sulfoxide in 1-octanol a f ^ .9  
°C: solid circles, data of KCP; lined circles, data of AE. Dashed line 
shows the relationship for a non-hydrogen-bonding solute with the same 
M2, V2, and R2 as dimethyl sulfoxide.

Figure 2. Ae vs. c2 for (a) pyridine; (b) acetone (ordinate on right) in 
1-octanol at 25 °C: solid circles, data of KCP; lined circles, data of 
AE.

Figure 3. Ae vs. c2 for (a) 2,4-di-ferf-butylpyrldine; (b) di-fert-butyl ke­
tone, in 1-octanol at 24.9 °C.

gen-bonded ion pairs such as PyH+-X_ in 1-octanol are in the 
range 10~6-10-5 M.5

Plots of Ae vs. c2 are of three types: (A) Ae = S2c2; (B) Ae = 
S2C2 + Jgc21 (J2C22 is relatively small); (C) Ae vs. C2 shows 
marked, characteristic curvature and passes through a mini­
mum. In cases A and B the initial slopes S2, as listed in Table 
I, are accurate to 0.1 M-1 or better; in case C the standard 
errors of So are greater, but should be within 0.3 M-1.

If one may generalize from the results in Table I, the type 
of relationship between Ae and c2 depends on the magnitude 
of V2. Solutes with relatively large V2 (>170 cm3/mol) show 
linear or nearly linear plots, as illustrated in Figure 3, while 
solutes with small V2 (<110 cm3/mol) show curved plots, as 
illustrated in Figures 1 and 2.

Table I also lists various derived quantities. Except for the 
solute triethylcarbinol, which acts both as hydrogen-bond 
donor and acceptor, values of g2>app2 -  M22 are uniformly 
negative. Correction for solute-induced medium effects ac­
cording to (3-2) raise  ̂the values, as shown in the right-hand 
column, but in iribst cases leaves statistically significant, large 
deviations from zero. (For non-hydrogen-bonding solutes in 
1-octanol, the standard deviation, after correction according 
to (3-2), was 0.4 D2.)

Solvent Structure

Judging by the relatively high dielectric constant6 and 
viscosity,3 liquid 1-octanol consists largely of linear hydro­
gen-bonded chains, (ROH)„. The Kirkwood correlation factor 
g i° for the pure liquid is 2.805 (based on eo = 10.01 and mi =
1.76 D), while the method of Kirkwood and Oster7 predicts 
a value of 2.25 for linear alcohol chains with free rotation 
around the hydrogen bonds but excluding OH-O bending. The 
viscosity of 1-octanol, 0.076 P at 25 °C, is about ten times 
greater than that of the non-hydrogen-bonded isomorph, 
n-nonane.

In the following, we shall adopt a hydrogen-bonded chain 
model, as indicated in (4-1). The average chain length n can

then be obtained by measuring the concentration of (OH)d 
terminal groups. This can be done approximately by analyzing 
the first overtone of the OH stretching band of liquid OctOH. 
In the overtone, the absorption band due to “ free” OH groups 
(in which the H atom is not hydrogen-bonded to another 
atom) is relatively strong and can be resolved even in the 
presence of considerably greater concentrations of OH-O 
groups.3

Figure 4 shows the first-overtone OH-stretching absorption 
of liquid OctOH, referenced against liquid OctOD, at 25 °C. 
The sharp prominence, whose Amax of «1430 nm virtually 
coincides with Amax of octanol monomer in benzene, is assigned 
to the terminal “ free” OH groups [(OH)d in (4-l)].8~10 The 
remaining broad absorption is assigned to OH-O groups. To 
estimate actual concentrations, we measured the optical 
density of the sharp prominence, interpolating the broad 
absorption as a baseline, and used the molar extinction coef­
ficient of octanol monomer at the 1430 nm maximum in ben­
zene. Results obtained in this way at various temperatures are 
listed in Table II. The average chain length n = C|°/ 
[(OH)d],

Stepwise association constants for chain formation will be 
defined as follows.
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TABLE I: Dielectric Constants of Solutions of Hydrogen-Bonding Solutes in 1-Octanol at 24.9 °C

Solute"
Highest
C-2, M

Type6 
of plot

s 2,
w Rf

M2,
D

M2,app̂  M2" ?
D2 d

M2,app" A V  2
- ( l + £ W e

C6HftCHO 1.01 C -0.43 101.7 32.05 3.04 - 7.2 - 3.0
(CH:!)2CO 2.0 C -0.39 74.0 16.18 2.80 - 5.8 - 2.8
(í-Bu)2CO 0.59 A -1.17 173.4 43.61 2.79 - 5.3 2.1
MIK 2.0 C -0.68 127 30.05 2.69 - 4.1 1.3
(CH;,)2SO 0.49 C -0.63 71.3 20.16 3.91 -15.5 -13.0
Py 0.80 c -0.02 80.9 24.09 2.23 -1.2 2.3
2,6-(f-Bu)2Py 0.71 A -2.61 220' 61.72 1.326 -6.5 3.3
2,4-(i-Bu)2Py
2-(i-Pr)-

0.49 B -1.36f 220 61.7 2.32* -2.4 7.2

6-(f-Bu)Py 0.50 B -2.36« 203' 57.1 1.5 -6.4 2.7
CHClj 1.0 A -1.12 81.0 21.38 1.24 -4.5 -0.9
(C2Hr,);iCOH 0.88 B -0.476 139.2 35.8 1.6 2.2 8.4

° MIK = methyl isobutyl ketone; Py = pyridine. 6 A: At = S2c2; B: At = S2c2 + J2c22; C: At vs. c2 goes through a minimum in the 
experimental range. c In cm3/mol; from data in ref 3, unless otherwise indicated. d Equation 1-8. ’’ Corrected for solute-induced medium 
effects according to eq 3-2; for 1-octanol, A = -0.0451, B = 0.0477. f J2 = 0.170. « J 2 = 0.200. h = —0.099. ' Estimated from known 
effect of ieri-butyl or isopropyl substitUent’on V2 or R > of benzene. 2 nD from H. C. Brown and B. Kanner, J. Am. CheYn. Soc., 88, 
986 (1966). h Measured in benzene solution by Barry Knishkowy, Brandeis University.

TABLE II: (OH)d Terminal Group Concentration of 
1-Octanol Chains, Based on “Sharp-Band” Intensity 
at 1430 nm, and Derived Stepwise Association Constant

Temp, [(OH)d], K,a
°C M ñ M“ 1

25 0.23 27.7 117
39 0.30 21.1 67
80 0.74 8.5 10.2
88 0.81 7.8 8.4

a Equation 4-7.

Figure 4. Near-infrared absorption spectrum of pure liquid 1-octanol 
(OctOH) vs. OctOD in the first overtone region of the OH-stretching vi­
bration at 25 °C.

ROH + (ROH)„_! (ROH)„ (4-2)

Kn = [(ROH)„]/[ROH][(ROH)n_i] (4-3)

Because of the high average chain length (Table II), it is both 
plausible and mathematically convenient to assume that the 
stepwise association constants are all equal.

Kn = K; n = 2,3, . . .  (4-4)

Let x = [(OH)p] and Ci = formal alcohol concentration. 
Then,

x = [ROH](l + K[ ROH] + K 2[ROH]2 +  :.-.) 
x = [R O H ]/(l-K [R O H ])

Cl = [ROH](l + 2K[ROH] + 3K2[ROH]2 + . . . )  
ci = [R O H ]/(l-K [R O H ])2

On solving these equations for K , we obtain

K = (ci — x)/x2 (4-7)

Values of K were calculated from the (OH)o-terminal group 
concentrations derived from the infrared spectra. Results are 
included in Table II. From the linear plot of log K vs. T~1 we 
obtain AH° = —8.58 kcal; AS° = —19.3 gibbs/mol (molar 
standard states). AH° is comparable to values obtained 
calorimetrically for other strong OH-O bonds.48 On the other 
hand, K is at least 20 times greater than stepwise association 
constants K2, K 2, and K4 reported for dilute solutions of oc­
tanol in CCI4. Geiseler et al.11 report that (in our notation) K > 
= 1.1, Kn = 5.4, K4 = 4.6 (M_1) at 30 °C, while Coggeshall and 
Saier12 report that K 2 = 1.4 and that the average association 
constant for nearby higher oligomers is about 3 (M-1)- The 
relatively high value of K for stepwise association in the pure 
liquid may be due to electrostatic stabilization of the polar 
chains by the higher dielectric constant.

Solvent Structure Breaking by Hydrogen-Bonding 
Solutes

Although eq 4-7 was derived by summing over molar con­
centrations, K is in fact a sitewise association constant. Re­
ferring again to (4-1), let x = [(OH)p], the concentration of free 
hydrogen-bond donor sites, as before; let y  = [Ox], the con­
centration of free acceptor sites, and z = [OH-O], the con­
centration of hydrogen bonds. Then, for the sitewise equi­
librium, (O H )d + 0\ OH-O,

K = z/{xy) (4-8)

In the pure solvent, x = y and z = — x; hence (4-8) reduces
to (4-7). We now wish to show that (4-8) remains valid in the 
presence of hydrogen-bond acceptor or donor solutes, and that 
it implies solvent structure breaking.
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For definiteness, consider a hydrogen-bond acceptor solute
X. For consistency with the above, we shall assume that the 
(OH)d-X association constants are independent of chain 
length

(ROH)„ + X  (ROH)n-X (4-9)

K x.n =  [(ROH)„-X]/[X][(ROH)„] (4-10)

K x,n = K x ;n = 1, 2, 3 , . . .  (4-11)

Stoichiometry and eq 4-3, 4-4, 4-10, and 4-11 then lead to the 
following expressions for ci, y, and the OH-X hydrogen-bond 
concentration y — x.

d  =  [ROH] + 2[(ROH)z] + 3[(ROH)3] + . . .
+ [ROH-X] + 2[(ROH)2-X] + . . .  (4-12) 

ci =  [ROH](l + K x [X ])/(l -  X[ROH])2

y = [ROH] + [(ROH),] + [(ROH)3] + . . .
4- [ROH-X] + [(ROH),-X] + . . .  (4-13)

y  =  [ROHJO + K x[X ])/(l -  K[ROH])
[OH-X]t(,tai = (y -  x) -  [ROH-X] + [(ROH)2-X] + . . .

(y-x) =  Xx[X][ROH]/(l -  i f  [ROH]) (4-14)

From (4-13) and (4-14), it follows that

x = [ROH]/(l -  i f  [ROH]) (4-15)

i f  = (ci -  y)/(xy) (4-16)

Recalling that X  is the only solute present, it follows that y 
is equal to the total concentration of chains ](ROH)„ and 
(ROH)n-X]. The average chain length « x  in the presence of 
X is therefore given by

nx = c jy  (4-17)

Similarly, (ci — y) is equal to the total concentration z of 
OH-O hydrogen bonds. Thus (4-16) is equivalent to (4-8).

The preceding approach is readily extended to solute 
species (D) that function as hydrogen-bond donors (in that 
case, itD = c i/x) and to mixed solutes, provided that the solute 
molecules attach themselves only to the terminal groups of 
the alcohol chains. Bifunctional solute molecules, such as 
triethylcarbinol in the present study, can enter the solvent 
chains and produce qualitatively different effects.

Returning to the simpler problem of a single hydrogen-bond 
acceptor solute X, eq 4-16 and 4-17 indicate a marked 
breakdown in solvent structure as X is added. For example, 
pure OctOH at 25 °C has an average chain length n of 27.7. 
When to this solvent, 0.3 M of a solute X is added for which 
K\ = 50 M“ 1, the average chain length nx becomes 16.1, 
about 40% smaller than in the original solvent! This marked 
breakdown of solvent structure is a simple consequence of a 
shift in the sitewise equilibrium (OH)d + Ox «=* OH-O. The 
addition of X causes formation of OH-X hydrogen bonds. This

leads to a reduction in the concentration x of free (OH)d ter­
minal groups and a concomitant increase in y and decrease 
in n, in accordance with (4-16) and (4-17). In the following 
paper we shall consider the effect of the breakdown in solvent 
structure on gi and on the dielectric constant.

Experimental Section
Details of dielectric and near-infrared spectral measure­

ments have been described in part 2. Details of 1-octanol pu­
rification have been described in part 3.

Dimethyl sulfoxide (Baker Analyzed Reagent) was re­
crystallized once and then distilled twice under nitrogen at 
a reduced pressure at which the boiling point was less than 90 
°C.

Acetone (Baker spectrophotometric grade) was dried over 
magnesium sulfate and then distilled twice under nitrogen at 
atmospheric pressure. 2,2,4,4-Tetramethyl-3-pentanone 
(di-ieri-butyl ketone, Chemical Samples Co.) was dried over 
magnesium sulfate and then distilled under nitrogen at re­
duced pressure.

Benzaldehyde (Fisher certified reagent) was distilled twice 
under nitrogen at reduced pressure, care being taken to pro­
tect the distillate from exposure to bright light.

Pyridine (Fisher certified reagent) was dried over KOH and 
then distilled twice under nitrogen at atmospheric pres­
sure.

2,4- and 2,6-di-teri-butylpyridine and 2-isopropyl-6-fert- 
butylpyridine (Chemical Samples Co.) were distilled under 
nitrogen at reduced pressure.

3-Ethyl-3-pentanol (Et;)COH, Baker analyzed reagent) was 
distilled twice under nitrogen at reduced pressure.

Chloroform and methyl isobutyl ketone (both reagent 
grade) were purified by drying and double distillation.
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Assuming a freely rotating hydrogen-bonded chain structure for the solvent, with solute molecules hydro­
gen-bonded to the chain terminals, and equilibrium constants conforming to the model of sitewise equilibri­
um, expressions are obtained for dipole correlation factors of solvent and solute and for the solute-induced 
medium effect, at c-> = 0. The theory is used to analyze dielectric constant data for the following solutes in 
1-octanol: acetone, methyl isobutyl ketone, benzaldehyde, dimethyl sulfoxide, pyridine, and chloroform. The 
theory leads to values of the pairwise dipole moment mj2 (which is analogous to the dipole moment for a 1:1 
complex) which are in quite reasonable agreement (10% discrepancy) with dipole moments for the corre­
sponding 1:1 complexes measured in benzene. . —:

For definiteness, consider a dilute solution of a hydrogen- 
bond acceptor solute (X) in a hydrogen-bond, chain-associ­
ated alcohol solvent (ROH). Let n denote the mean number 
of solvent molecules per chain. Let /  denote the fraction of 
solute molecules that are associated with solvent chain ter­
minals, and g 2 a denote the dipole correlation factor of these 
molecules. For the complementary fraction 1 — /  of unsolvated 
X molecules, g2u — L by hypothesis of the chemical model.2 
Let g 12° and g 11° denote the dipole correlation factors of sol­
vent molecules in chains with and without terminal X mole­
cules, respectively. Equation 1-13 then takes the form,2

M2 .app2  -  M2 2 =  f i g 2 a  ~  f W  +  n f i g y , 0

- £ h°)mi2 + Ci(Vi2 (dgn /dc2)£;2=0 (5-1)

Dipole Correlation Factors
In this section we shall express g2a, gi2, andgn as sums of 

pairwise dipole correlations, first for a general chain model, 
then for chain models in which specific interactions are lim­
ited to nearest neighbors, or to nearest as well as next-nearest 
neighbors. The scheme for labeling chain sites is shown in 
Figure 1. The chains are of variable length, the chain-length 
u following a probability distribution function p,, such that

t  P, = 1

We shall use primed symbols if the chain contains a terminal 
X molecule, and unprimed symbols if it does not.

On applying the general definition (1-2), we then write for 
solute molecules attached to chains of i> links,

g-2a W  =  ( m /  ‘  ( W  +  t  M>/) )  / M22 ( 5 - 2 )

The average g->a for the solute is given by g2a = 2 „p /g 2a1"’- 
Introducing (5-2), we obtain:

g2a = (  (  M2' • (/»2' + t  M2:')  )  )  /M 22 (5-3)

where < ( )) denotes an ensemble average over both chain 
conformation and chain length.

To obtain gy> for the solvent molecules in chains termi­
nating in X, we need a double summation. L etg12(") denote

the average dipole correlation factor for the v solvent mole­
cules in chains of v links.

g r / " ] =  r - 1 (  t  Ml/  • ( m2'  +  t  M i / )  )  / Mi2  (5-4)

The average gr2 for the ensemble is ( S,,p , ,V g i2 (l'l/2,.</p / ) ,  and 
is obtained from (5-4), recalling that S„rp/ = n'.

g v i  =  (  (  t  M i /  • ( m /  +  t  M i / )  )  )  / n 'n i 2 ( 5 - 5 )

The average g n  for solvent chains not terminating in X is 
obtained similarly. The result is,

g u =  (  ( t  ( m u - t  M i , ) )  ) / « M i 2  (5-6)

For the general chain model, the distribution function p,, may 
be different from p,/, and dipole correlations such as <</ti<* 
Hu)) may change upon addition of X.

A great simplification results if it is assumed that specific 
interactions within the chain are limited to nearest neighbors. 
Such a model is consistent with two explicit features of the 
forthcoming calculations: (1) Stepwise association constants 
are independent of chain length, as expressed in (4-4) and 
(4-11), with the result that a sitewise equilibrium formulation 
becomes valid. (2) Each hydrogen-bond strength is indepen­
dent of the state of the adjacent hydrogen bonds, so that free 
rotation about hydrogen bonds is permitted. Consequences 
are that p,, and p / ,  n and n', and solvent-solvent dipole cor­
relations ( m i ,-Mn) and ( m i / ' M i / )  between any pair of sites in 
chains of any length, all become equal.

On introducing these consequences into (5-3), (5-5), and 
(5-6), one obtains for the ‘ nearest-neighbor” model

(<?2 a — 1 )m22 =  n i g i i  ~  g n ) M r  ~  ß /  ■ i f ,  M i/  )  )

(5-7)

Substituting this result in (5-1) leads to 

M2,app2  “  M22 = D 2/  ̂ ^ ha ■ it Ml/ )  )

+ C!°mi2 (dgn/dc2) l  (5-8) 
J<’2 = 0
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Figure 1. Notation for hydrogen-bonding sites.

Equation 5-8 becomes useful if /  and dg n/dc2 can be evaluated 
independently.

In order to account for the properties of covalent chain 
polymers, it is necessary to consider specifically not only 
nearest- but also next-nearest-neighbor interactions.3 For 
hydrogen-bonded chain polymers, it is likely that next-near­
est-neighbor interaction will also have to be considered spe­
cifically in order to achieve broad scope. We are currently 
applying Flory’s rotational isomeric state approximation and 
statistical formalism3 to liquid alcohols and find that this 
approach can reproduce nearly all of the perplexing features 
of the dielectric constant of the isomeric octanols.4

From the present point of view, the introduction of specific 
next-nearest-neighbor interactions requires the following 
formal changés. (1) The sitewise equilibrium model is no 
longer rigorously correct. Equation 4-4 must be changed so 
that Kn = K for rr> 3 but if 2 ^  K; (4-11) must be changed so. 
t hat K\,„ = Kx for n > 2 but Kx,i K\- However, chemical 
considerations require that neither K 2 and K, nor K\, 1 and 
K\, will be greatly different. Thus, unless n is near unity, the 
sitewise equilibrium model should continue to be an accept­
able approximation. (2) In (5-8), the first term on the right 
must be expanded to allow for specific differences in inter­
actions with the a site, as follows:

M2 ,app2 -  M22 = 12/ (  ( (1x2 + f i l l ,' )  • t  fill' ) )

-  (  (fin,- t u n ) )  ]  + ClW (d g u /d c 2) ]c2=o (5-8a)

Solute-Induced Medium Effect
The term c , 'V r  (dgn/dc2) in (5-8) represents the solute- 

induced medium effect (SIME). As shown previously, the 
SIME may be dissected into a general component, represented 
for non-hydrogen-bonding solutes by the empirical relation 
AV-2 + Bfi22 (part 3), and (for hydrogen-bonding solutes) an 
additional solvent structure-breaking component (part 4). In 
this section we shall combine the two components to obtain 
the total SIME.

Let us admit at once that by using the empirical relation 
AV2 + Bfi22, we are introducing an extratheoretical element 
into a purportedly theoretical calculation. This introduces no 
logical inconsistency, because we are not mixing imcompatible 
models, but it does introduce some risk of error, because we 
are obliged to apply the empirical relation outside its most 
narrowly defined domain. We see no way of avoiding this 
risk.

We reckon the general component of the SIME as fol­
lows:
For the unsolvated fraction (AV2 + Bfi22)(l — f)
For the solvated fraction (AV2 + Bfi22)f(Z — 1 )/Z
Total (AV2 + Bfi22)(l - f /Z )

In the above, Z is the coordination number of the liquid 
quasi-lattice surrounding an unsolvated solute molecule. The 
factor (Z — 1 )/Z appearing in the expression for the solvated

fraction allows for the fact that one of the Z lattice sites is 
hydrogen-bonded to a solvent chain terminal and thus is 
precluded from producing an SIME.

We obtain the solvent structure-breaking (SB) component 
of the SIME on the basis of (5-9).

(SIME)sb = [mi2ci° (dgn/dn) • (dn/dc2)SB]ca=o (5-9)
To obtain dgn/dh in this expression, we need an explicit 
structural model of the solvent chains. To obtain (dh/de2)sB, 
we use the sitewise equilibrium model of part 4. We express 
the free OH site concentration x first in terms of stoichiome­
try, then in terms of (4-16) and (4-17).

x — y — [OH • X] = Cl/h 

x = (n — 1 )/K

fc 2 (5-10a)

(5-10b)

Eliminating x and differentiating:
dn
dc2

1 ci\ _  df 1 dc,
+  zrf,) -  ~  C2 ~ ----1-1:3— "  (5-11)ni/ dc2 -n dc?

1 dei
dc9

Equation 5-11 may besimplified because (1) dh/dc2 is re­
quired at c2 = 0; (2) the term containing dci/dc2 represents 
the effect of dilution of the solvent by the added solute. This 
is a general effect, independent of f, and thus is already in­
cluded in the general component of the SIME. On introducing 
the simplified expression into (5-9) and adding it to the ex­
pression for the general component, we obtain for the total 
SIME:

/>

gi2fKci°n2 /dgn 
KCl° +

n/j /d g n \ -
n 2 V dh /  c 2=0

(5-12)

Explicit Model for Solvent Chains
Oster and Kirkwood5 have shown that a model of OH-O 

hydrogen-bonded chains, with free rotation around the hy­
drogen-bond axis but excluding OH-O bending, comes close 
to fitting experimental g factors for a series of normal alcohols. 
We shall adopt this model, but introduce an adjustable pa­
rameter to ootain precise agreement with g , for pure 1 -octanol 
at the experimental temperature of 25 °C.

Structural features of the model are shown in Figure 2. As 
in part 2, a and 0 are the angles between the hydrogen-bond 
axis and the molecular dipole axis of donor and acceptor 
molecule, respectively. On applying bond moments tabulated 
by Smyth,6 for 1-octanol a = 43° and 0 = 55.5°. (7r — 7 ), the 
angle between adjacent hydrogen bonds, should be near the 
tetrahedral angle. However, we shall treat 7  as an adjustable 
parameter. Using this model, the average g factor for the 
molecules ir. a chain of n units is given by

„ . 2 cos a cos 3 ,, ,
gn -  1 + ----------------- [(n — 1 ) + (n — 2) cos 7

g n  -  1 +

+ (rc — 3) cos3 7  + . . . + (cos 7 ) 
2 cos a cos 0  /  ̂  1 —n cos" 7

n — z

(1 — cos 7 )
(  1 — n cos" 7 \

n (l — cos 7 ) / (5-13)

For fairly long chains such as we are considering, n cos" 7  «  
1 and may be neglected, leaving a linear relationship between 
gn and l/n. The ensemble average ofg„ thus is a linear func­
tion of the ensemble average of l/n, which for a sitewise 
equilibrium ensemble is practically equal to l/n. 7 We thus 
obtain, for the ensemble average,
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Figure 2. Explanation of angles used in the explicit model.

" +n\v~>

Figure 3. Explanation of angles near the site of the solute.

8n = 1 +
2 cos a cos 0 

(1 — cös 7 )
1 > 

r:(l — cos y)/
(5-14)

On introducing the numerical values a — 43°, 0 = 55.5°, n =
27.7, and = 2.805 at 25 °C, we find that cos 7  = 0.5807. Thus 
for 1 -octanol at 25 °C,

= 2-.976 -  4.712/n (5-15)

The value of the parameter cos 7  leads to ir — 7  = 125.5°, 
significantly greater than the expected near-tetrahedral value. 
This indicates that the free-rotation model is adequate only 
in first approximation. Equation 5-15 will be used in the cal- 
culationof the solvent structure-breaking component of the 
SIME. .

Next we wish to obtain an explicit expression for the sol­
vent-solute dipole correlation term in (5-8). We shall again 
consider a model of free rotation about the hydrogen-bond 
axes, and a solute X which is a hydrogen-bond acceptor. 
Notation for vectors and angles is indicated in Figure 3. For 
convenience, we shall regard n\J as fixed and the other dipoles 
in the chain as rotating about their respective hydrogen bond 
axes. On that basis, the average vector (mu' + . . .  + mJ) for 
the chain is directed along the hydrogen-bond axis joining the 
la  and Id sites. Also, in computing (n2 ‘^Hu') for the chain, 
we may first find the average component of 2 m 1/  along the 
OH-X hydrogen-bond axis, and then multiply by M2 cos ft 2-

Thus, for a solute X attached to a chain of n solvent mole­
cules,

M2 cos ßo(ßi cos a

T" t- T Mil/ / 1 )
■ ¿¿2 cos ßo Mi cos a (1 + cos 7  4- cos2 7  + . . .  +  cos n~1y)

MlM2 COS a COS 02 

(1 — COS 7 )
(1 — cos "7 ) (5-16)

For chains of the length we are considering, cos* 7  is negligible 
compared to unity. Thus the result, (5-16), is practically in­
dependent of chain length and expresses also the ensemble 
average. On introducing this result into (5-8), expressing the 
SIME according to (5-12) and dgn/dn according to (5-15), and 
introducing numerical values for i-octanol at 25 °C, we ob­
tain

M2,ap|i2 “  M22 = 4.77/>iM2 COS a COS ft2
+ (AV2 + Bn22)(1 -  f/Z) -  7.16/ (5-17)

For hydrogen-bond donor solutes such as CHCI3, the factor 
cos a cos 09 is replaced by cos 0 cos « 9 .  As reported in part 3, 
4  = —0.0451 D2 cm-;l mol and B = 0.0477 for 1-octanol at 25 
°C. The lattice coordination number Z is relatively unim­
portant to the final result; we shall arbitrarily adopt the value 
Z = 6. Thus the only remaining unknown is the solvated 
fraction f.

For the solutes that we shall consider, the hydrogen­
bonding affinity in nonpolar solvents is comparable to, or 
greater than, that of 1-octanol (part 2). It is reasonable to 
expect that relative association constants will not vary greatly 
with the solvent. For 1-octanol, the statistically corrected 
sitewise association constant in the pure liquid at 25 °C 
is '¿417, or 58 (M~'). By comparison, if K\ were as small as 
20 (M ~ '),/ would be 0.82. If K\ > 58, /  > 0.93. Judging that 
f will be close to unity, we shall simply adopt a uniform value 
o f / = l .

Application

An analysis of experimental data in terms of the present 
theory is shown in Table I. Values of H2,aPP2 ~  M22 in 1-octanol 
were taken from part 4. Only those solutes are listed for which 
association constants, and dipole moments, for 1:1 complexes 
with 1 -octanol in benzene are known (part 2).8

Values of the SIME, listed in the next column of Table I, 
are generally quite negative. The solvent structure-breaking 
component (—7.16/ in eq 5-17, or =»—7.16 D2) accounts for 
nearly three-fourths of the total and thus is quite impor­
tant.

TABLE I: Analysis of Apparent Dipole Moments for Hydrogen-Bonding Solutes in 1-Octanol at 25 “C

Solute
M2,app2 ~  M22,

D2 °
SIME,
D2 b

2miM2cos a cos 09 M12, D
OctOH1 Benzene^ OctOH' Benzene^

Acetone -5.8 -9.6 1.6 5.6 3.5 4.07
MIK -4.1 - 11.6 3.1 5.2 3.7 3.94
CfiHr,CHO -7.2 - 10.6 1.4 4.8 3.7 4.14
(CH:1)vSO -15.5 -9.2 - 2.6 2.6 4.0 4.56
Pyridine - 1.2 - 10.0 3.7 5.8 3.4 3.73
CHCl.t -4.5 - 10.1 2.4 2.3 2.7 2.63

"  From part 4. 6 (AV2 + Bn22)(1 ~f/Z) — 7.16/; /  = 1 throughout. ( (M2,app~' "- M22 -  SIMEK1 - cos 7 ); cos 7 = 0.581. d mi22- mi2
-  M22; see eq 2-2. e Equation 5-18. 1 From part 2.
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The next column lists values of 2miM2 cos a cos $2 (for 
CHC1;!, 2^1112 cos /3 cos « 2)7 calculated from the experimental 
( p 2 ,a'pp2 — M22) and the theoretical SIME according to (5-17). 
These values should be comparable to (M122 — Mi2 — M22) 
measured in benzene, since the dipole moments of the com­
plexes conform fairly well to a free-rotation model (eq 2-2). 
This comparison places great demands on the present theory, 
requiring simultaneous adherence to sitewise equilibrium and 
free-rotation models. Bearing this in mind, the results are 
encouraging. Except for DMSO, values calculated from the 
1-octanol data via (5-17) are positive and of the same order 
of magnitude as those in benzene.

A more familiar, and perhaps more realistic, comparison 
is. that of H12, calculated according to

M12 = (mi2 + M22 + 2miM2 cos a cos ^2)1/2 (5-18)
Values thus calculated from the 1-octanol data shouldibe 
comparable to measured dipole moments for the 1:1 com­
plexes in benzene. As shown in the final columns of Table I, 
agreement of the two sets.of dipole moments is better than 
semiquantitative. Discrepancies range from 2 to 15% and av­
erage about 10%. If we recall the perplexing aspects of the 
original data, that polar solutes such as acetone or DMSO 
added at low concentrations to 1-octanol actually lower the 
dielectric constant, it becomes clear that the present approach

goes a long way toward accounting for this complex phe­
nomenon.
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Phase Transitions of the Anion Radical Salts of 
[(C 6H5)3PCH3] 1_ ,+ [(C 6H5)3AsCH3] , + (TCNO)2- -  (0 <  X  <  1). 
The Thermodynamic Properties of the Solid Solutions
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The thermodynamic properties of the solid-state phase transitions were investigated with anion radical salts 
containing mixed cations represented by [(C6H5):!PCH;!]I_ I+[(CBHr>);!AsCH:i].v+(TCNQ)2--  (0 < x < 1 ). The 
properties of Gibbs free energy and entropy were examined for the solid solutions of these TCNQ anion radi­
cal salts. The experimental relations of the magnitude of the heat of transition and the entropy change asso­
ciated with the phase transition to the composition parameter were explained by applying a thermodynami­
cal theory of the ideal solid-solution model. In this case, the solid solutions have four possible phases (ay, 
0y , ad, and /3<> phases). The phase transitions of those TCNQ anion radical salts observed at 1 atm pressure 
were assigned to the ay » f3y transition.

Introduction

Much attention has been paid to the solid anion radical 
salts of 7,7,8,8-tetracyanoquinodimethane (TCNQ) because 
of their prominent electronic properties.1-16 In particular, the 
anion radical salt of methyltriphenylphosphonium, 
[(C(;H.-)):!PCH:i]+(TCNQ)2'“ , is known to undergo a phase 
transition at 315.7 K under 1 atm pressure in the solid 
state.4-12 Heat-capacity measurements of this phase transition 
have been made by Kosaki et al.8 The transition has thus been 
found to be first order. The enthalpy and the total entropy 
change associated with the phase transition were experi­

mentally determined to be 485.18 cal/mol and 1.7206 cal/deg 
mol, respectively.8 On the other hand, the methyltriphen- 
ylarsonium salt, [(CfiHsJiAsCHalQTCNQ)?-- , although it 
exhibits electronic properties almost identical with those of 
the phosphonium salt, is known to have no such phase tran­
sition up to the decomposition temperature of about 480 K 
under 1 atm pressure.5,7,10-12

One can prepare the anion radical salts containing the 
mixed cations represented by [(CfiHf));iPCH:)] 1- J(+[(CBHf,);r 
AsCH:!] v+(TCNQ)2-_ (0 < x < l).4 For these solid solutions, 
we investigated in a previous paper the effect of the chemical 
composition upon the phase transition phenomenon with a
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differential scanning calorimeter (DSC).10 It was found that 
the transition temperature, Tc, is increased, while the mag­
nitude of the heat of the transition, AH, is decreased pro­
gressively with an increase in the composition parameter, x , 
and that the phase transition disappears with x = 1.00. These 
thermodynamic behaviors vs. the composition parameter are 
illustrated in Figure 1. Figure 2 shows the relation of the 
magnitude of the molar entropy change estimated for the 
phase transition, AS, to the composition parameter. It is in­
teresting to see that AS decreases almost linearly with an in­
crease of x, converging to zero at x = 1.00.

In the present paper, a thermodynamical theory of solid 
solution was applied to the anion radical salts of [(CcH.Qa- 
PCH;f], - x+[(C6H5),jAsCH3]x +(TCNQ)2-~ (0 < * < 1) in order 
to understand these experimental results of the thermody­
namic properties. The relations of the magnitude of the heat 
of transition and the entropy change associated with the phase 
transition to the composition parameter.were well explained 
by using an ideal solid solution approximation. These theo­
retical considerations are quite useful for investigating the 
mechanism of the phase transitions of those TCNQ anion 
radical salts.

Theoretical

First, let us consider the crystal structures of the component 
anion radical salts of [(C6H5)3PCH3]+(TCNQ)2-_ and 
[(CfiHshjAsCHal+CTCNQh-- . We define the phases of 
[(C(;H5);iPCH3]+(TCNQ)2-- below and above the transition 
temperature as a and 0 phases, respectively. According to the 
X-ray diffraction studies by McPhail et al.,13_the crystal 
structure of the a phase is triclinic (space group PI), consisting 
of tetrads of TCNQ molecules and methyltriphenylphos- 
phonium cations. The unit cell data are a = 9.01 A, b = 12.82, 
c = 18.02, a = 121.48°, 0 = 90.80°, y = 97.52°, and Z = 2 with 
unit cell volume of 1751 A3. On the other hand, the crystal 
structure of the 0 phase has been determined by Konno and 
Saito.14 It is also triclinic, and the lattice constants are very 
much similar to those of the a phase. The volume of the unit 
cell of the 0 phase is less than that of the a phase by 4.2 A3.17 
Because of this very small change in cell dimensions, a single 
crystal specimen transforms into the 0 phase without any 
breaking. The structure of the 0 phase is closely related to that 
of the a phase, but a difference was found in the conformation 
of the methyltriphenylphosphonium cation with respect to 
the intramolecular rotation of the phenyl groups.14

The crystals of the [(CfiH5)3AsCH3]+(TCNQ)2-~ anion 
radical salt do not undergo phase transition at 1 atm pressure. 
We define the phase of this salt at 1 atm pressure as the y 
phase. The crystal structure of the y phase is also triclinic 
(space group P i) and isomorphous to the a phase of the 
phosphonium salt.13 The unit cell data of the y phase are a = 
9.01 k,b = 12.89, c = 18.18, a = 121.80°, 0 = 90.58°, 7  = 
97.30°, and Z = 2 with a unit cell volume of 1772 A3.13 Al­
though there is no phase transition at 1 atm pressure, the 
[(C,;H.d;iAsCH:1j4 (TCNQ)2- salt undergoes phase transition 
when one applies a pressure.7 We define the high-pressure 
phase of this salt as the 5 phase. By the use of the observed 
p-T  phase diagram, Merkl et al. estimated the unit cell vol­
ume of the <5 phase to be 1760.3 A3, which is smaller than that 
of the 7  phase by 11.7 A3.7

These crystal data show very slight difference in the crystal 
structures among the four phases of the component anion 
radical salts. Moreover, the methyltriphenylphosphonium 
cation is very similar to the methyltriphenylarsonium cation, 
and the ion radii of both cations are much alike.13 For the salts

Composition parameter, x
-3

Figure 1. Experimental relations of the transition temperature, Tc, arid 
bf the magnitude of the heat of the phase transition, AH, to the com­
position parameter, x, in' [(C6H5)3PCH3]T-x+lfCeHsbAsChUl + 
(TCNQ)r -  (0 < x <■ 1).

0.0 0.2  0.4 0 6  0.8 t.O

C om position  param e te r, x

Figure 2. The relation of the total entropy change at the phase transition, 
AS, to the composition parameter, x, in [(C6H5)3PCH3] 1- x + [(C6H5)3- 
AsCH3] x+(TCNQ)2-“  (0 <  x <  1). The open circles indicate the ob­
served values, while the solid line represents the theoretical relation 
estimated from eq 4 and 9. See text.

of [(C,iHn);0>CH;,]I_x+[(C6H5)3AsCH!1]x+(TCNQ)2.-, we can 
obtain solid solutions in the whole range from x = 0.00 to 1.00. 
On the basis of these facts, our solid solutions will be of sub­
stitutional type, and both cations seem to be randomly ar­
ranged in the solid solutions. Thus, we can assume the ideal 
mixing of the two component anion radical salts. To a first 
approximation, an ideal solid solution model is applicable to 
our system. For the phase transition of solid solutions, we can 
further expect that the phase transition does not change the 
manner of ideal mixing, because the methyltriphenylphos­
phonium and methyltriphenylarsonium cations are so bulky 
that we cannot expect the cation exchange in the phase tran­
sition. In this respect, it is important to note that the phase 
transition of our system is not the usual order-disorder phase 
transition with respect to the mixing of two components. On 
the basis of these considerations, there are four possible phases 
(« 7 , 0y, ab, and 05) for solid solutions of [(CgHsl.-iP- 
CH;i] 1 +[(C(;Hr,);jAsCH.i]x +(TCNQ)2-- (0 < x < 1 ). Here­
after, we denote the Gibbs free energies per mol for the a and 
0 phases of the pure phosphonium salt as Gi"(T,p) and 
Gil1(T,p), respectively, while those for the 7  and 5 phases of 
the pure arsonium salt as G2T(T,p) and G23(T,p), respectively. 
They are functions of the temperature, T, and the pressure,
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p. Then, the Gibbs free energies of the solid solution per mol 
for the ay, By, ah, and fto phases can be expressed by

G‘J(T,p) = M]Gp(T,p) + n2G.J(T,p)
+ RT(ri]  In « i  + n2 In n2) (i = a, ¡3; j = y, 5) (1)

where nl afid n2 (ni + n2 = 1 ) are the mole fractions of com­
ponent [(C6Hr,):iPCH:!]+(TCNQ)2- and [(CeH5);iAsCH:j]+- 
(TCNQ)2-_ , respectively.

For the solid solutions where 0 < x <1, the phase below the 
transition temperature at 1 atm can be firmly assigned to the 
ay phase, because this phase forms a uniform phase and faces 
the «  phase at x = 0.00 and the y phase at x = 1.00 (see Figure 
1 ). On the other hand, the phase above the transition tem­
perature of the solid solutions at 1 atm also forms a uniform 
phase. However, there are two possible candidates for this 
high-temperature phase, that is, the By phase or the ¡38 phase. 
In order to determine the character of the high-temperature 
phase, we can use the relations of the magnitude of the heat 
of transition and the entropy change associated with the phase 
transition to the composition parameter of the solid solu­
tions.

For the solid solution with a composition of ri\ and n2, if the 
high-temperature phase is the (38 phase, that is, if the phase 
transition is described in terms of the ay -* ¡38 process, the 
entropy change per mol, AS(TC), and the heat of transition 
per mol, AH, at transition temperature, Tc, are given from eq 
1 as

rd(G'w -G " > ) l  , 
AS(T<) = - [  0T L WndT

AH = n\AH\ + n2AH2

,AS,(TC)

■h n2AS2(TC) (2)

(3)

where AS](TC) = Sp*(Tc) -  Sy(Tc) is the entropy difference 
per mol between the ¡3 and a phases of the phosphonium salt; 
AS2(Tc) = S / ’(TC) — S2y(Tc) is that between the 8 and y 
phases of the arsonium salt; AH] = Hp1 — Hp* and AH2 = H>° 
— H y  are the entalpy differences per mol for each phases. 
Similarly, if the high-temperature phase of the solid solution 
is the /3y phase and the phase transition is of the ay -* f3y 
process, AS(TC) and AH are given by

AS (T c) = rc,AS,(Ti:) (4)

A H = ri]àH] (5)

Let us compare these relations with the experimental re­
sults of Figures 1 and 2, which show that, for the phase tran­
sition of [(CsHr,);jPCH:i]+(TCNQ)2-_ where ri] = 1 and n2 =
0, AS(TC) = ASi(Tc) = 1.7206 cal/deg mol and AH = AH\ =
485.18 cal/mol at Tc = 315.7 K. For the solid solution, if the 
phase transition is ay —► By and if AS] (Tv) remains constant, 
eq 4 clearly shows that the entropy change per mol, AS(TC), 
will decrease linearly with a decrease of n \, converging to zero 
at pure [(CeHr1):]AsCH;!]+(TCNQ)2--  where ni = 0 and n2 =
1. This theoretical prediction agrees well with the experi­
mental results given in Figure 2. Moreover, eq 5 shows that 
the AH of the solid solution is the greatest at « ]  = 1.00 and 
decreases progressively with the decrease of converging 
to zero at ni = 0 . This also explains well the experimental 
result of Figure 1.

On the other hand, if the phase transition of the solid so­
lution is ay — ¡38, eq 2 and 3 clearly show that, when the 
composition parameter goes to ri\ = 0  and n2 = 1, AS(TC) and 
AH will not converge to zero but have the values of AS(TC) = 
AS2(Tc) and AH = AH2. These AS2(TC) = S2:'(T,) -  Sy(Tc)

and AH2 = HG1 — Ho1 values should be large, because there 
exists a significant unit-cell volume difference of 11.7 A;! be­
tween the 8 and y phases of [(CfiHri):1AsCH:!]+(TCNQ)2- . 
Thus, the mechanism of ay —► (38 phase transition cannot 
explain our experimental results of Figures 1 and 2. On the 
basis of these considerations, for solid solutions of [(CoHr,)]- 
PCH,,]1- ,  + [(C6H5):iAsCH;!]x+(TCNQ)2.-  (0 < x < 1) the 
high-temperature phase at 1 atm is found to be the ¡3y phase, 
and the phase transition is assigned to the ay —► f3y pro­
cess.

Discussion

We have to note that the value of AS](TC) = Si'TTV) — 
S i"(Tc) in eq 4 does not necessarily remain constant in 0 < n i 
< 1, because — Sp' = 1.7206 cal/deg mol is the value at T(l 
= 315.7 K, and the S]rf — Si" value in eq 4 is the value at the 
Tc temperature of the phase transition of the solid solution, 
where T.. is always higher than T() as is shown in Figure 1. 
These situations are schematically demonstrated in Figure 
3, which illustrated the relations of Gy' and G /  in pure 
[(C6H5):iPCH3]+(TCNQ)2*_ and of G" 1 and G'L ¡n the solid 
solution to the temperature under a constant pressure of 1 
atm. In Figure 3, — Si" = 1.7206 cal/deg mol is related to
the slope values of G^  and Gi" with respect to the tempera­
ture at To = 315.7 K, where the G y  and G^  curves intersect. 
On the other hand, for the solid solution, the S/  — S y  value 
in eq 4 is related to the slope values of G/ and G y  with re­
spect to the temperature at Tc, where the G" 1 and Gliy curves 
intersect but the G p' and Gpf curves no longer intersect. One 
can express the S y  and S , >! values at Tc by the use of Taylor 
expansion around T() = 315.7 K:

Sy(Tc) = Sy(T0) + Sy'(T0)(Tc -  T0)

+ ^ S y " ( T 0)(Tc - T o )2 + . . .  (6) 

SA T,) = S A T ,)  + SpJ,(T())(Tc -  T0)

+ ^ S A ' ( T 0)(TC — T 0 ) 2  + . . .  (7)

so that we have

S A T , ) -  Sy(T c) = S A T ,)  -  Sy(T 0)
+ (SA(T0) -  Sy\T 0))(Tc -  T0)

+ (SA'(T0) -  Sy"(T 0))(Tc -  T0)2 + . . .  (8)

where Spj(To) -  Sp'(To) = 1.7206 cal/deg mol and S'(T0), 
S"{T0), etc. indicate the derivatives with respect to temper­
ature at T0.

The experimental fact that the AS value decreases linearly 
with a decrease of U], as is shown in Figure 2, means that 
Si'HTc) -  Sy(Tc) remains practically constant even though 
Tc varies from T0. This evidently indicates that, although both 
Sy(Tc) and Sp^Tc) are, in general, functions including 
higher-order terms of Tc, for Sy{Tc) -  Sy(Tc) these 
higher-order terms almost cancel with each other and only the 
constant term remains. Then we have from eq 8

S A T C) -  Sy(Tc) «  S A T ,)  -  Sy(T0)
= 1.7206 cal/deg mol

SA(T0) -  Sy'(T0) »  C

SA'(T,) — Sy"(To) ~ 0 (9)
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Figure 3. Schematic representation of the relation of the Gibbs free 
energy to the temperature, 7", under a constant pressure of 1 atm in 
[(C6H6)3PCH3] 1_x+ [(C6H5)3AsCH3] <+(TCNQ)2. -  (0 <  x <  1). G ," and 
G /  indicate the Gibbs free energies for pure [(C6H5)3PCH3] +(TCNQ)2- , 
while and G1' , those for the solid solution. The G," and G/  vs. 
Tcurves intersect at T0 -  315.7 K, but the GT and G13 vs. Tcurves 
intersect at the Tc temperature.

On the basis of these theoretical considerations, we can well 
understand the experimental relation of Figure 2 for solid
solutions of [(C6H5)3PCH3]i-x+[(C6H5)3AsCH3]I+(TCNQ)2-- 
(0 < x < 1).

Another thing we have to note is that eq 5 shows a linear 
relationship between AH and n j, while the experimental 
relation between them has a slight hump as is shown in Figure 
1 . One reason for this is that we used the ideal solid-solution 
model to derive eq 5 and ignored the effect of heat of mixing 
between the two components. Therefore, the deviation of eq 
5 from the experimental result may be due to the difference 
of heat of mixing between the ay and 0y phases. However, 
since this effect becomes negligibly small at the two extremes 
of n i = 1.00 and of no = 1 .00, our assignment of the ay -* 0y 
phase transition is still valid for the phase transition of our 
solid solutions.

Concluding Remarks
The mechanism of the ay — ,3y phase transition of 

[(C6H5)3PCH:i]1_ ,+[(C6H,5):!AsCH;i;x+(TCNQ)2-- (0 < x < 
1 ) solid solutions means that only the phase change of a -*  f} 
of the phosphonium salt is involved and the 7  phase of the

arsonium salt does not vary through the phase transition. This 
implies that, for the phase transition of the solid solutions, a 
significant structural change (especially the intramolecular 
rotation of the phenyl groups) will take place in the methyl- 
triphenylphosphonium part, while no change will be found 
in the methyltriphenylarsonium cations. In this'respect, we 
have to note the significance of eq 8. If we investigate only the 
phase transition of pure [(C(;Hr,):iPCH:iJ't (TCNQ)2-_ where 
«1 = 1, information is quite limited to the term of S i;i(7’(1) — 
Si"(To) at T0 = 315.7 K. However, studies of the phase tran­
sitions of solid solutions provide us with valuable knowledge 
on the entropy change of the a and 0 phases of [(C6Hs):i- 
PCH;J+(TCNQ)2-” , Si/:i(Tc) — .SYTT,,), at temperatures other 
than T0 = 315.7 K. This kind of information is also useful fçr- 
investigating the behaviors of the Gibbs free energies for the 
a and 0 phases of [(CfiH5};,PCH:!]+(TCNQ)2--, G Y and G Y, 
at temperatures other than T0 = 315.7 K.

References and Notes
(1) D. B. Chesnut and W. D. Ph ilips, J. Chem. Phys., 35, 1002 <196*1).
(2) M. T. Jones and D. B. Chesnut, J. Chem. Phys., 38, 1311 (1963).
(3) W. J. Slemons, P. E. Bierstedt, and R. G. Kepler, J. Chem. Phys.', 39, 3523 

(1963).
(4) L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson, and W.

E. Mochel, J. Am. Chem. Soc., 84, 3374 (1962).
(5) R. G. Kepler, J. Chem. Phys., 39, 3528 (1963).
(6) Y. Ilda, M. Klnoshita, M. Sano, and H. Akamatu, Bull. Chem. Soc. Jpn., 37, 

428(1964).
(7) A. W. Merkl, R. C. Hughes, L. J. Berliner, and H. M. McConnell, J. Chem. 

Phys., 43, 953 (1965).
(8) A. Kosakl, Y. Ilda, M. Soral, H. Suga, and S. Sekl, Bull. Chem. Soc. Jpn., 

43, 2280(1970).
(9) Y. Ilda, Bull. Chem. Soc. Jpn., 44, 3344 (1971).

(10) Y. Ilda, Bull. Chem. Soc. Jpn., 43, 578, 3685 (1970).
(11) Y. lida, J. Phys. Soc. Jpn., 30, 583 (1971); J. Chem. Phys., 59, 1607 

(1973).
(12) Y. Suzuki and Y. lida, Bull. Chem. Soc. Jpn., 46, 683 (1973).
(13) A. T. McPhall, G. M. Semeniuk, and D. B. Chesnut, J. Chem. Soc. A, 2174 

(1971).
(14) M. Konno and Y. Salto, Acta Crystallogr., Sect. B, 29, 2815 (1973).
(15) A. J. Epstein, S. Etemad, A. F. Garito, and A. J. Heeger, Phys. Rev. B, 5, 

952(1972).
(16) E. Ehrenfreund, E. F. Rybaczewski, A. F. Garito, and A. J. Heeger, Phys. 

Rev. Lett., 28, 873 (1972).
(17) We used the experimental results on the pressure effect on the phase 

transition of the phosphonium salt performed by Goll and Phillips (J. Chem. 
Phys., 43, 1076 (1965)), who reported the pressure coefficient to be 
(dTJdp) =  —0.02 K/atm. Ey applying Clapeyron-Clausius equation and 
using the AHand Tc values of the phase transition, which are taken from 
ref 8, we have (d TJdp) =  TJ.V1 — V ')/AH , where V1 and V" are crystal 
volumes of the 0 and «  phases, respectively. This equation leads to W1 
— V" =  —4.2 A3/unlt cell. On the other hand, Konno and Saito (ref 14) 
reported the V1 — V"  value as —2.2 A3/unit cell by X-ray analyses.

The Journal o f Physical Chemistry, Vol. 80, No. 27, 1976



2948 H. Gaus and W. Lutze

Equilibrium Studies with Ca/Sr Zeolite A

H. Gaus* and W. Lutze

Hahn-Meitner-Institut für Kernforschung Berlin GmbH, Bereich Kernchemie und Reaktor, 1 Berlin 39, West Germany 

(Received June 2, 1976)

Publication costs assisted by Hahn-Meitner-Institut für Kernforschung Berlin GmbH

The Sr/Ca.ion exchange isotherm as well as the related water content in zeolite A is described by a model 
based on the number of configurations for a certain composition of the unit cell. When these compositions 
and arrangements are described by ideal mass action laws, for the total system there results an overall activi­
ty, which depends on the composition. Fitting the constants of the ideal mass action laws to the experimental 
curve shows that these constants do not deviate from unity when the change of cell composition is accompa­
nied by a change in water content. It is likely that configuration effects cause the deviations. As to the uptake 
of water, the data are best described by assuming a successive uptake of three water molecules along with the 
first three strontium ions.

A

Introduction Theoretical Treatment

We present an investigation to study ion-exchange equi­
libria in the system Sr/Ca zeolite A, based on measurements 
by Fischbach.1 Many inorganic ion-exchangers show selec­
tivity phenomena. In some cases it was possible to relate 
pronounced selectivity of mineral ion-exchangers to structural 
changes2 ciceurring at critical ionic ratios in the solid. However, 
in the zeolite A system there is no evidence for structural 
changes of the framework when charging the original sodium 
form with either strontium or calcium or both species. There 
is also no ion sieve effect to be expected. Both ions are small 
enough to fit into the large cavities, these having a window 
width of 4.2 A. Nevertheless, varying arrangements or local 
accommodation of the respective cations on energetically 
different sites in the cavities of the unit cell as discussed by 
other authors3'4 could lead to ion selectivity, and varying water 
content could also have a certain effect. Therefore, Fischbach 
measured the equilibrium isotherm for the Ca/Sr ion exchange 
along with the water content of the zeolite as a function of the 
Ca/Sr ratio.

The Na ions in Na-A were replaced by other ions at 95 °C 
by using 1 N solutions of the appropriate chlorides labeled 
with radioactive isotopes. Various Sr/Ca compositions of the 
zeolite were obtained by contacting it with mixed alkaline 
earth salt solutions. The composition of the exchanger phase 
was determined by measuring the radioactivity either in the 
solid or in the liquid. The water content of the crystals was 
derived from weight losses after heating the crystals up to 
about 550 °C. Table I gives the water content of the unit cell 
for various Ca/Sr-charged forms of zeolite A.

Figure 1 shows the equilibrium isotherm for Sr/Ca at 95 °C. 
It can be seen that the zeolite exhibits a slight selectivity for 
Sr in the range of Sr fractions above 0.2 in the solution. It can 
be seen from Table I that the selectivity for Sr is accompanied 
by an increased water content in the solid. This is opposite to 
what can be expected from ion hydration in aqueous salt so­
lutions. There Sr is less hydrated than Ca and a decreasing 
water content in the zeolite with increasing Sr would not be 
surprising.

A model has been developed on the basis of the law of mass 
action to describe the shape of the exchange isotherm for the 
respective ions and the related water content.

In this section we try to describe the slight selectivity for 
Sr and the variation of the water content using the mass action 
law. We treat the crystallographic microcell with six cations 
(Sr or Ca) at definite locations as a “ molecule” . Such a mole­
cule with a certain number of Sr and of Ca ions may form an­
other molecule of different composition by means of a 
“ chemical reaction” , namely, ion and water exchange with its 
environment. In addition we assume that at equilibrium each 
“ molecule” contains a definite number of water molecules 
which depends on the ionic species present. One would assume 
that in a microcell with, for example, two Sr and four Ca ions 
a certain configuration is favored energetically, e.g., the Sr ions 
on opposite places. However, as there is only a slight selectivity 
and as we wish to keep the description as simple as possible, 
we assume at first that with a fixed number of Sr and Ca ions 
any configuration is equally probable. This means if a “mol­
ecule” passes into another configuration by a unimolecular 
reaction, the constant of the mass action law is unity. The 
microcells are considered to be fixed in the lattice. Therefore, 
we have different configurations not only concerning the po­
sitions of the Sr and Ca ions relative to each other within one 
cell but also relative to the coordinates of the lattice. That is, 
denoting the number of Ca and Sr ions in the cell as ri\ and n2, 
respectively, and assuming N possible locations for the cations 
(N > n i + n2) there are

z(n1n2)
________ N\________
nilnJ.(N — ni — « 2)!

possible configurations. Assuming

R-i + n.2 — 6 (1 )

we may eliminate n2 and write
, , 6! N lz(nin2) = -------------------------------

- 6 )\

- O C - e )
Now we consider a given quantity of solid zeolite in equilib­
rium with an aqueous salt solution containing Ca and Sr ions. 
We denote the z(«i,n2) different configurations with a,
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TABLE I: Equilibrium Unit Cell Content of 
Sr/Ca-Loaded Zeolites A at 95 °C

Ionic fraction,
C Sr

Water 
content of 
unit cell

0 30.4 H20
0.35 31.9 H20
0.68 33.2 H20
0.86 33.5 H20
1 33.4 H20
Commercial form 28.0 H20

Figure 1. Equilibrium isotherm for Sr zeolite +  Ca2+ =  Ca zeolite +  
Sr2+ at 95 °C: curve 1, according to eq 7a with k =  2.5; curve 2, ac­
cording to eq 7a with « = 3; curve 3, according to eq 7b.

the number of cells with (nhn2) composition in a certain 
configuration a by *„(ni,n2), and the quotient (number of Sr 
ions):(number of Ca ions) in the liquid and in the solid by f  
and J, respectively. Then our assumption is that the amounts 
of the x„(rti,rc2) are given by the law of mass action. Relating 
these amounts to x,,(6,0) as a common factor we get

* „ ( 5 , 1 )  =  Cx , ( 6 , 0 ) k !

*f)(4,2) = ) k 2

x7(3,3) = C:!x ,(6,0)k3 

*«(2,4) = f4x,(6,0)*4 

*<(1,5) = fsx ,(6,0)/r5

*,>(0,6) = (%,(6,0)«6 (3)

Here the k, are the appropriate equilibrium constants of the 
mass action law including eventually a quotient corresponding 
to the exchange of one or more water molecules. Further the 
k, contain a quotient o f the four activity factors if necessary 
as the x and f  refer to concentrations and not to activities. 
However, it seems that these factors cancel, because one may 
use simple concentration-independent values for the k  s ; see 
eq 7 below. Nevertheless, for the total solid one overall activity 
will result relative to the solution. The derivation of this 
overall activity is the purport of the present section.

As mentioned, we assume the «, also independent of the 
configuration a, i.e.

* „ ( « i ,n2) = xpinunz) (4)

also for a = 0. Then the total number x(ni,n2) of cells with 
(ni,n2) composition is

x(nt,n2) = z(ni,n2)x(Y(ni,n2)

According to this relation one may also write eq 3 for the total 
x(nltn2) replacing *,„ . . . .  *,> by the corresponding x/z. 
Physically this means to consider the configurations as un­
known and the z factors then appearing in (3) as resulting 
from an entropy term exp[ixS/k) belonging to the equilibrium 
constants k with S = k log z.

Our aim is to determine f  as a function of f. To this end 
according to (4) we multiply the eq 3 with thejcorresponding 
frequencies (2) and \yith the corresponding n2 and add up the 
terms to obtain the number of Sr ions in the solid. The same 
procedure with n i yields the number of Ca ions. By division 
we gèt f. Dividing by f  we obtain after simplification

K1 + 5 f«2 + 10 s'2«;} + 10C',K4 + 5f4«s + f®K6
(5)

f  1 +  + T 0 f 2 /c2 +  i p f 3 «g +  5 ^ k4 +  f * K 5

For alhx, = 1 there is.f = (". The right-side contains the men­
tioned total activity of the solid, i.e», a fraction of activity 
factors, in the notation of Ekedahl, Hogfeldt, and Sillen5

f  _  J, y if 2
— —  A  91 -----------

f  . 72/1
(6)

where y and /  refer to the solid and liquid, respectively. In eq 
5 a concentration dependence of this activity may result with 
constant k  s . It is caused by the variation of the frequencies 
z{n\n2) with changing concentration.

Now we try to get evidence about the k ’ s  from the empirical 
plot. By trial and error it turns out rather safely that one has 
to put

«1 = K2 = «3 = 1 , «4 = K, K5 >> «2. «6 -  K/C5

with k ~ 2-3. For instance

« 4  =  K, « 5  =  K «6 = K3, k = 2. 5 or 3

(7)

(7a)

reproduces the measurements fairly well. From the additional 
water content (see below) one could take into consideration, 
that the last three k, are the frequencies to put three water 
molecules on i places; however, only the half of these values 
fit the plot

« 4
- i O - *  - Ï Ô - *  - Ï © - 10 (7b)

In Figure 1 there is plotted

C S r =
i + r

as a function of C$r = f /( l  + f) for some values of «, .
Concerning the water contents the measurements show (see 

Figure 2) that passing from the (6,0) composition (Ca only) 
to the (0,6) form (Sr only) three water molecules per cell are 
accommodated additionally. They further suggest that this 
is finished before the (0,6) composition is reached, already the 
(2,4) form should contain the three waters. Then the most 
simple assumption is that the additional-water case coincides 
with Ki = 1 and the no-additional-water case with «, ^  1 . 
Then, together with the first three Sr ions, there is respectively 
one water molecule brought into the cell; i.e., up to n2 = 3 there 
are n2 additional water molecules.

For the total amount y of additional water per cell of the 
solid one gets in this case and with (7a)
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CSr
Figure 2. Addition of water molecules: curve 1, successive uptake of 
three waters with the first three Sr’s; curve 2, uptake of one water with 
every second Sr; curve 3: uptake of three waters with the third Sr.

,.!'V
_ = 1.6f + 2.15f2 + 3(20f3 + 15f>« + 6 i?K2 +  ^x3) (g 
V 1 + 6f  + 15f2 + 20f3 + 15fbc + 6f5/c2 + f V

For other assumptions the form of the corresponding ex­
pression for y is obvious. Formulas like (8) are not very sen­
sitive against a variation of the value of k. In Figure 2 y is 
plotted as a function of f /( l  + f).

Discussion
The foregoing treatment is based on the assumption of a 

crystalline structure with cells being occupied by six ex­
changeable cations, which in the cell may form different 
configurations formally described by the occupation of N > 
6 different places. Fluctuations in the occupation numbers of 
the cells are not taken into account explicitly. Such a strong 
crystalline structure (possibly N = 6) may be favored ener­
getically by local electroneutrality. It is in accordance with the 
measurements of Barrer6 and Hoinkis.7 On the other hand 
Fischbach concluded from his investigations a structure with
6.5 ions per cell. Then one has to assume at least cells with six 
and cells with seven ions or even larger deviations from the

mean value, which means a weaker crystalline structure of the 
cations. Concerning the above calculation it seems rather sure 
that one may get similar results also for n1 + n? = 7 in eq 1. 
However, it is only worth going into further calculations if a 
more detailed knowledge of the structure of Ca- and Sr- 
charged zeolite A is available. In this case also one may con­
sider eventually more detailed schemes, e.g., different num­
bers of possible locations for the species 1 and 2. It was pointed 
out to us, that such an effect possibly causes the change of the 
water content. Here we do not try to explain the assumed 
water input with the first three Sr’s.

Concerning the values of the k s a possible explanation of 
eq 7 arises if one may distinguish between free water in the 
solid and water’s belonging to the cell “ molecule” . Denoting, 
e.g., [511] as a cell configuration with 5 Cs, 1 Sr, and 1 addi­
tional water, one gets, from the first equation and the last two 
equation of (3), eliminating f

- .  >[153]|5111 
[063] [600]/ r 1

This is a mass action law, the constant of which is unity, for 
the corresponding reaction in the solid if *_1 is the number of 
free water molecules per cell inside the solid. According to 
Table I with k' 1 = 2.5' 1 = 0.4 one gets 30 for the water content 
of a [600] cell. However, in view of the mentioned possible 
deviations from a fixed cell composition and in view of the 
experimental inaccuracy we consider this interpretation only 
as compatible with the measurements.
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I3C chemical shifts of 1 - and 2-butenes adsorbed on alumina have been measured and compared with those 
obtained for other adsorbents. Isomerization of butenes has been studied using samples with different sur­
face pretreatment. The catalytic activity was found to be affected by surface OH concentration and the 
method of sample preparation. _

"•t

Introduction

This study is part of a research program in which 13C NMR 
observations have been made of various molecules adsorbed 
on SiOa, AI0O3, and SiOa-A^O.) surfaces.1-3 Previous exper­
iments with adsorbed butenes showed definite chemical shift 
differences between free and adsorbed molecules.

The kinetics and product distribution of the isomerization 
of butenes on alumina are well documented.4 More recently 
investigations have focused on the surface mechanism for 
these reactions and the interpretation of results arising from 
different experimental methods.5-7 A direct analysis by 13C 
NMR spectroscopy can be used to monitor such reactions, 
provided the time necessary to collect one spectrum is short 
enough compared with the time in which the reactions reach 
equilibrium. This method has the benefit of permitting the 
observation of the adsorbed region rather than free reactants 
or products and possesses the potential to indicate the state 
of adsorbed intermediates.

We have examined in this way the isomerization of 1 -butene 
and cis-trans interconversions of 2-butenes on alumina 
samples with different surface pretreatment.

Experimental Section

As in the previous work2 spectra were measured at 25.2 
MHz with a Varian XL-100 spectrometer incorporating a TTI 
Fourier transform modification, using an external 19F lock. 
Several proton-decoupled spectra were obtained successively 
to follow the reaction change. Each spectrum was accumulated 
from 2000 scans by applying approximately it/3 pulses at 1.2-s 
intervals. Preliminary experiments showed that spin-lattice 
relaxation times (T1) could be expected in the 0.2- 1 -s range. 
Samples were prepared by vacuum degassing of the adsorbate 
followed by adsorption of butene from the gas phase.1 Samples 
were degassed for 48 ±  2 h at various temperatures ranging 
from 150 to 500 °C. In a separate experiment the mass of an 
alumina sample was measured as a function of degassing 
temperature using a vacuum microbalance.8

Surface areas and coverages were obtained by BET mea­
surements as previously described.2 Adsorption measure­
ments and spectrum accumulations were performed at 32 ± 
1 °C.

Materials. The first alumina (A) was prepared by adding 
an excess of a 20% ammonium hydroxide solution to a 20% 
aluminum nitrate solution at room temperature. The pre­
cipitate was washed with distilled water several times. The

second alumina (B) was prepared by room-temperature hy­
drolysis with a small excess of water of a saturated solution 
of aluminum isopropoxide in isopropyl alcohol. Resulting 
precipitates were dried ar.d ignited in air at 600 and 700 °C, 
respectively, cooled, and allowed to rehydrate in air. Surface 
areas of the two aluminas were 195 and 108 m2/g, respective­
ly-

The butenes used were CP grade from Matheson of Canada 
Ltd. and were vacuum-distilled before storing and before 
adsorption.

Results

Chemical Shifts. Average 13C chemical shifts observed for 
cis- and trans-2-butenes and for 1 -butene on our alumina 
samples are presented in Table I. Shifts are relative to the lines 
in pure liquids and are not corrected for differing diamagnetic 
susceptibilities. These corrections would amount to —0.5 ppm 
in all cases.2 Blanks have been inserted in Table I where some 
shifts were not determined with precision due to low signal 
to noise ratios. A systematic investigation of the dependence 
of these shifts upon degassing temperature and coverage has 
not been attempted; however, it appears from Table I that a 
downfield shift for =C H  groups in butenes is larger when 
higher degassing temperatures are used.

The relative shifts of the -CH 3 groups in trans-2-butene 
and cis-2-butene seem to remain unchanged upon adsorption 
on our alumina samples. The = C H - group of the cis isomer 
shows a relatively larger shift to lower field than that of the 
trans isomer since the separation between the two lines nar­
rowed from 1.2 ppm for the pure liquids to 0.6 ppm for the 
adsorbed molecules. This separation was measured from 
spectra taken during the reaction of cis-2-butene where 
= C H - lines for both butenes were resolved.

Isomerization. Sets of spectra for the isomerization of 1- 
butene (Figure 1) and cis-2-butene (Figure 2) illustrate the 
manner in which these reactions were monitored. Although 
all lines for the liquid 1 -butene and 2-butenes were resolved, 
overlapping of -CH:! lines in 1-butene and cis-2-butene and 
= C H - lines in the 2-butenes was usual for the adsorbed bu­
tenes due to line broadening.

Peak heights of individual spectra were compared with 
those for the equilibrium state to estimate the degree of con­
version at the time the spectrum was taken. Then first-order 
rate constants were calculated to obtain parameters of cata­
lytic activity. These are collected in Table II for the surfaces
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TABLE I

(a) ,:IC Chemical Shifts (ppm ± 0.2) of 1-Butene Adsorbed on 
Alumina Relative to Liquid 1-Butene“

Sample 
(% coverage)

Degassing 
temp, °C =CH-- =CH 2 --CH2-  - c h 3

A (75) 150 -1.7 0.1 0.4 1.1
A (50) 200 - 1.6 0.2 0.5 1.1
A (80) 250 - 2.0 0.2 0 0.7
A (45) 320 - 2.8 0.4 0.5 1.4
B (95) 420 - 2.8 0.2 0 1.2
A (55) 500 -4 0.9

(b) 1SC Chemical Shifts (ppm ± 0.2) of cis- and trans- 2-
Butenes Adsorbed on Alumina Relative to the Liquids“

Sample Degassing CH- c h :!
(% coverage) temp, °C Cis Trans Cis Trans

A (50) 200 - 1.0
B (90) 250 -1.3 - 0.6 1.1 1.0
A (45) 320 - 1.2 0.9
B (95) 420 - 1.6 0.8 0.6
A (55) 500 -2 -0.9 1.4 1.2
A (25) 500 -1.9 0.5 1.0

“ Chemical shifts of the pure liquid butenes relative to tetra- 
methylsilane may be found in ref 2 and 11 .

c - 2 - b u t e n e  \ = C H -  - C H 3

t - 2 - b u t e n e  = ' t H -  . - C H 3

Figure 2. 13C spectra monitoring cis-2-C4Fl8 isomerization on Al20 3-B 
degassed at 250 °C. Numbers on left indicate time in hours elapsed 
since sample preparation.

3 2

9 . 8

6 .7

3 . 8

2 . 7

0 . 5

5 0  ppm

I I I
\AVtv
I I»-..

1- b u t e n e c h 2 = C H - - c h - ;  - 'c h 3

c - 2 - b u t e n e = CH- - CÓ

t - 2  -  b u t e n e = C H-
JC H 3

Figure 1. 13C spectra monitoring 1-C4H8 isomerization on Al20 3-A 
degassed at 400 °C. Numbers on left indicate time in hours elapsed 
since sample preparation.

degassed at different temperatures. Errors in values of the rate 
constants fell in the range of 5-20% for each experiment and 
the constants therefore offered sufficiently accurate param­
eters of activity considering the large differences caused by 
surface pretreatment.

The decrease in mass of our AI2O3-A sample with increasing 
outgassing temperature is shown in Figure 3. Similar diagrams

for 7 -alumina samples were obtained elsewhere9 and it can 
be estimated by comparison that monolayer OH coverage 
should drop to about 60% at 500 °C and reach 100% in the 
vicinity of 200 °C, where some adsorbed water is also possibly 
present.

Discussion

It was pointed out previously2 that 13C chemical shifts of 
various isomeric butenes adsorbed on pure Si02 showed trends 
parallel to those observed for Na Y zeolite. Surface treat­
ments of Si02 such as Na addition or OH removal caused only 
small deviations from the shifts on pure Si02. It was therefore 
concluded that the observed shift pattern arises from inter­
action with some other species, possibly O atoms of the lattice. 
Further support for this hypothesis is given by the present 
observations. The chemical shifts of butenes adsorbed on 
ALO3 show the same trends as those observed on Si02; in fact, 
values of the shifts for the two oxides do not differ appreciably. 
The characteristic trend is a downfield shift for the = C H - 
group carbon and an upfield shift for the -CH 3 group of ad­
sorbed 1-butene and 2-butenes relative to the liquid. The 
downfield shift of = C H - in 1-butene appears to be enhanced 
by OH removal from the alumina surface prior to adsorption. 
This is in contrast to the case of Si02, where dehydroxylation 
causes the = C H 2 line to move downfield with little effect on 
= C H -

The above trend in chemical shifts on adsorption with re­
spect to liquids is however not common to all adsorbents. In 
two separate samples with adsorbed 1 - and 2-butenes on 
charcoal (surface area 512 m2/g, degassing temperature 400 
°C, and coverage 40%) we observed upfield shifts of about 5 
ppm for all carbons. Values of these shifts were less accurate 
(±0.5 ppm) because of extensive line broadening; however, 
the change in the shift pattern with respect to adsorbed bu­
tenes on oxides is quite notable.
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TABLE II: Rates of Isomerization

1-Butene cis-2-Butene

Sample Degassing k, Sample Degassing k,
(% coverage) temp, °C h-1 (% coverage) temp, °C- h-1

A (50) 500 0.3
A (60) 400 0.2
A (50) 340 0.1
A (25) 310 0.08
A (70) 260 0.01
A (50) 200 0.00

B(95) 420 0.16
B (90) 350 0.05
B (100) 250 0.00

Figure 3. Mass of Al20 3 -A and estimated OH concentration vs. de­
gassing temperature. Individual readings were at least 24 h apart.

Spectra in Figures 1 and 2 follow isomerization in the ad­
sorbed phase in which the concentration exceeded that in the 
gas phase by a large factor (more than 50 times). The equi­
librium fractional concentrations of 1 - and cis-2-butene are 
about 3% and 20%,4 respectively, and as can be seen from the 
spectra, the equilibrium concentration of 1 -butene was too low 
to produce a detectable signal. It is assumed that the presence 
of lines corresponding to possible reaction intermediates was 
not observed for similar reasons. The strong dependence of 
the rate of isomerization upon the temperature of surface 
degassing prior to adsorption is notable. While isomerization 
reached equilibrium in a few hours after degassing at 500 °C, 
no observable change was recorded within 1 month after 
treatment at 200 °C. The rates of 1-butene isomerization in­
creased by more than an order of magnitude by raising the 
degassing temperature from 250 to 400 °C. The effect on 
isomerization of c is -2-butene was similar when AI2O3-A was 
used; however, the activity of the ADO3-B sample with a 
smaller surface area appeared to be relatively higher. The large 
differences in activity can be linked to OH coverage of the 
surface. It has been suggested earlier4 that surface hydroxyl 
protons do not participate in butene isomerization and it 
appears that 1 -butene molecules undergo hydrogen transfer 
on sites unoccupied by hydroxyls. The difference in selective 
activity of our two alumina samples, notably between the rates 
of 1 -butene relative to 2-butene isomerization, suggests that

A (50) 400 0.3
A (70) 350 0.15
A (60) 340 0.15
A (60) 325 0.1
A (50) 260 0.01

B (95) 350 0.35
B (90) 250 0.13
B (95) 180 0.00

other factors resulting from different preparation and pre­
treatment are involved. Existence of sites with different ac­
tivity has been demonstrated on the surface of y-alumina6 and 
it is possible that the relative concentration of these sites de­
pends on sample preparation.

The present work, in comparison with that in ref 2, shows 
that the chemical shift pattern of adsorbed butenes displays 
only slight differences from one oxide adsorbent to another. 
This is somewhat in contrast to the results of Michel and co­
workers,10 who found that rather large effects can be produced 
in zeolite adsorbents by variation of the exchangeable cation. 
It may be that our present and previous2 work with pure ox­
ides produced shifts which would be characteristic of the Si- 
A l-0  framework of zeolites, on top of which may be super­
imposed specific effects due to substituent cations. It should 
be noted, however, that Na+ on SiC>22 does not produce the 
large effect found10 in zeolite and Si02-A l203 catalysts doped 
with Na.+ This is in agreement with the lack of effect of Na+ 
in solution, in contrast to Ag+.10 It may be that the observed 
effects in zeolites and mixed-oxide catalysts arise from some 
interaction of Na+ with the effective negative charge of A1 in 
these mixed-oxide systems. Isomerization of 1 -butene on 
alumina was found to proceed on sites unoccupied by OH 
groups. The surface-selective activity of alumina for isomer­
ization apparently depends on the method of preparation and 
pretreatment. We have been unable to observe any unstable 
intermediates in these reactions, and our sensitivity is such 
that this implies a concentration of less than 5% and/or very 
broad lines due to immobility.
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The ESR spectra of C1F6, BrFg, and IFg in solid SF6 have been reexamined. The observation of formally for­
bidden or “ NMR” transitions for the latter two radicals has permitted the precise determination of their 
ESR parameters, hitherto known only approximately. Analysis of anisotropic spectra observed at 27 K clear­
ly shows that the halogen hexafluorides possess Oh symmetry. In these radicals the unpaired electron oc­
cupies an antibonding aig orbital consisting primarily of central-atom ns and fluorine 2p„ atomic orbitals. 
Temperature dependences noted for the line widths and hyperfine interactions are indicative of the presence 
of a very low-frequency deformation mode in these molecules. The results of INDO calculations for ClFr, are 
in essential agreement with the experimental findings.

Introduction

Since the publication of preliminary data on the ESR 
spectra of the halogen hexafluorides from this laboratory3 and 
elsewhere4-5 we have given consideration to the proper de­
termination of the spectral parameters of these species. Al­
though a reasonably complete analysis of the spectrum of C1F6 
has been carried out, those of BrF6 and IF6 were not properly 
analyzed because only a single ESR transition was available 
for each isotopic species. As has been shown elsewhere,6 this 
is a situation which arises when a hyperfine interaction (in 
these cases, that of the central atom) exceeds v/(I + '/¿) MHz, 
where v is the microwave frequency of the spectrometer and 
I is the spin of the nucleus concerned.

An examination of the appropriate energy level diagram has 
revealed that formally forbidden or “ NMR” transitions are 
available at X-band frequencies for both BrF6 and IF6. This 
report presents data on these transitions, a determination of 
the hyperfine parameters, and a discussion of the structure 
of the halogen hexafluoride radicals.

Experimental Section

The raw materials were ClFa (Matheson), BrF5 (Allied 
Chemical), IF7 (PCR Inc.), SF6 (Matheson), and TeFe 
(Ozark-Mahoning). The CIF3 was converted to CIF5 by fluo- 
rination over CsF;7 BrF5 was purified by bubbling fluorine 
through it immediately prior to use; SFfi and IF7 were used as 
received. Liquid neon was obtained from Canadian Liquid 
Air Ltd., Montreal.

Samples containing ~5% halogen fluoride in SFfi were 
thoroughly degassed and sealed into quartz ESR tubes. 
Spectra of ClF(i and BrF6 were obtained from samples of 
ClF.r,:SF6 and BrFs:SF6, respectively, which had been 7  irra­
diated at 77 K for 1 h in a 9000-Ci 60Co source. The spectrum 
of IFe was obtained by UV photolysis of IF7:SF6 with a 
Schoeffel 1000-W Xe-Hg lamp. Samples with TeFfi as a ma­
trix were prepared in a similar fashion to those with SFg.

The ESR spectra were obtained with a Varian E-12 spec­
trometer fitted with a low-temperature accessory operating 
in the range 100-200 K; spectra could also be obtained at 27 
and 77 K. A cylindrical microwave choke served as a light-pipe 
for UV photolyses and also enabled us to lower the resonant 
frequency of the cavity to 8.5 GHz by the introduction of a 
short length of quartz tubing.

The microwave frequency was measured with a Systron-

Donner Type 6057 frequency counter, which also monitored 
the magnetic field strength via a Varian F-8A proton-deu- 
teron magnetometer.

Results

The appearance of the ESR spectra of these radicals is de­
termined by the large hyperfine interactions of the central 
atoms. At 110 K in SFg isotropic spectra were obtained, con­
sisting of a number of transitions each showing an intensity 
pattern characteristic of six equivalent spins % As the tem­
perature was lowered, each such pattern changed to that of 
a strong central line accompanied by weaker features attrib­
utable to anisotropic interactions with six 19F nuclei equiva­
lent in pairs for all directions of the magnetic field.

Isotropic Spectra. The 35C1 (/ = %) nucleus in C1F6 gives 
rise to a hyperfine quartet whose components are centered at 
1870 G (m/ = %), 2447 G (mi = %), and 4220 G (mi = —%) with 
a microwave frequency of 9019.2 MHz (Table I). The mi = — % 
transition falls in the g = 2 region where it is masked by the 
powerful spectra of the sulfur fluorides.3 At 110 K, the six 
equivalent 1£F nuclei of C1F6 contribute a seven-line manifold 
of binomial intensity to each component.3-4

In the case of BrFfi, the two bromine isotopes 79Br and 81Br 
(I = %) have quite large hyperfine interactions, and their m/ 
= — % transitions overlap near 7150 G.3-6 The six 19F nuclei 
are equivalent and have hyperfine interactions of 88.5 G. A 
determination of the g value and bromine hyperfine interac­
tions cannot be made, however, without measurements on 
another transition. In such situations it is useful to construct 
a graph such as that shown in Figure 1, in which the resonance 
field (H) of various transitions in the I = % system is plotted 
against hyperfine interaction (A ).6 Both A and H are di­
mensionless being expressed as multiples of v /g (S . The m i  =  
±% transitions may be plotted with the aid of the equa­
tions

A = ±(2 — 2H)/(A — H ( (la,b)

which are exact except for the neglect of the 7 HT term in the 
Hamiltonian. More complex expressions may be derived for 
the m/ = ±  >/2 transitions, but more important here is the 
transition given by

H = (4A -  2)/(2 — A) (2)

This transition is between the mi = - y 2 and m: = —% levels
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TABLE I: Spectral Data and ESR Parameters for ClFf„ BrF6, and IF6 in SF6a

Magnetic field, G
Radical K v, MHz m/ =i I m/ = I — 1 mi = - I NMR g öm'G ap, G

:,r’ClFR 110 9019.2h 1870.4 2446.8 4229.8 2.0181 775 89.6
•'«CIF« 27 9093.3 1885.4 2468.5 4271.8 2.0154 783.7
:17C1F6 27 9093.4 2133.3 2650.1 4114.0 2.0152 653.4
79BrFR no 9210.9 7077.0 13 986" 2.0158 4160 88.5
79BrFfi 27 9188.1 Site A 7076.7 14 220" 2.0147 4175
79BrFfi 27 9188.1 Site B 7085.4 14 410" 2.0148 4191
79BrFfid 27 9191.0 7068.5 14 016'' 2.0148 4158
81BrFfi 110 9210.9 7254.0 18 330" 2.0158 4485 88.5
81BrFe 27 9188.1 Site A 7253.2 18 685" 2.0147 4501
8lBrFfi 27 9188.1 Site B 7262.4 18 967r 2.0148 4519
8lBrFf,rf 27 9191.0 7244.9 18 388'- 2.0149 4483
l27IFfi n o 8798.5 10879 18 569" / 2.0098 6140 150.2
I27IFfi 27 8807.5 Site A 10944 18 251" 2.0105 6237

18 379/ 2.0104 6236
I27IFr 27 8807.5 Site B 10956 18 204" 2.0105 6256

18 33U 2.0104 6255
127IFfid 27 8820.6 10940 18 357" 2.0108 6215

18 494/ 2.0106 6214
n Except as otherwise indicated. h Precision ±1 in the last significant figure. " NMR 1. d In TeFe. " NMR 2'. /  NMR 2".

H
Figure 1. Position of transitions (H) as a function of hyperfine interaction 
(A), for spin / =  % . Both Hand A are in multiples of v/gfi.

of m„ = - and (since it involves no change in ms) may rea­
sonably be described as an “NMR” transition. At 9018 MHz, 
the mi = —% transition of 79BrFfi was centered at 6975 G.3 
Assuming g = 2.00, this corresponds to H — 2.165 and, from 
Figure 1 or eq lb, A = 1.27. Similarly it may be calculated from 
the same transition of 81BrFR that its A is 1.37. It may be 
predicted from Figure 1 or eq 2 that “ NMR 1” transitions for 
79BrFfi and 81BrF6 should be detectable near H = 4.22 and 
5.52, respectively. Assuming g =; 2.00, these values correspond 
to 13.6 and 17.8 kG, respectively. A search in these regions 
revealed these two transitions (Figure 2), both of which were, 
however, quite broad (AH ^  200 G) and lacked 19F hyperfine 
structure. The experimental data are reported in Table I.

The 127I hyperfine interaction in IF,; is even larger than the 
bromine interactions in BrFg and, moreover, the situation is 
exacerbated by the higher spin (%) of 127I. At 9020 MHz the 
m/ = — % transition, consisting of a 148-G septet of binomial 
intensity distribution, was centered at 11 053 G.:! Assuming 
a g value of 2.00, this magnetic field corresponds to H = 3.43 
(in v/gfi units). Use of the equation

A = (2H -  2)/(6 -  H )

yields an approximate value of 1.89 for A, and examination 
of Figure 3 shows that the NMR 1 transition lies at a com­
pletely inaccessible magnetic field. However, with the aid of

Figure 2. ESR and NMR 1 transitions of 79BrF6 and 81BrF6 in SF6 at 9.2 
GHz, obtained with identical spectrometer gain.

the Breit Rabi equations,9 the other five “ NMR” transitions 
of the I = % system were plotted, and it was found that one 
of them (NMR 2) should lie at an accessible magnetic field 
(Figure 3), provided the microwave frequency was below 8.8 
GHz. A broad (AH ~  500 G) transition, also lacking 19F hy­
perfine structure, was detected at 18 569 G using a microwave 
frequency of 8798 MHz (Table I).

Anisotropic Spectra. At 27 K the spectra were character­
ized by sharp central lines accompanied to higher and lower 
fields by weak features typical of a polycrystalline spectrum 
(Figure 4). In the cases of BrFR and IF6 in SFR, the spectra at 
27 K were interpreted in terms of two sites for these species.10 
In Figure 5a are shown the central portions of the m/ = —% 
and NMR 2 transitions of IFR in SFR. In this case one site (B) 
was characterized by a narrower line width and was populated 
to about half the extent of the other site. When TeFR was used 
as the matrix, only one site was observed for IFfi, as shown in 
Figure 5b. BrF(i in TeF<; also showed only one site.

Discussion

Determination of Spectral Parameters, (a) Isotropic 
Spectra. The spectral parameters of C1F6, obtained by di­
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HOOG-̂

a

SITE A [| SITE B 

ESRot,  =-%
| SITE A | 

NMR2' NMR2"

Figure 5. Central portions of the ESR and NMR’transitions observed for 
IF6 at 27 K: a, in SF6; b, in TeF6. Field positions are given in Table I.

Figure 3. Position of transitions (H) as a function of hyperfine interaction 
(A), for spin / =  %. Both H and A are in multiples of i>/gf}.

Figure 4. (a) Part of the ESR spectrum of CIF6 at 27 K, showing the 07/ 
=  % transitions of 35CI and 37C1. (b) A simulation of same using a||(F) 
=  292Gandaj_(F) =  -1 2 G .

agonalization11 of the spin matrix, are given in Table I. Owing 
to the complexity of the 19F hyperfine structure the ,T7C1 hy­
perfine interaction could not be determined at 110 K.

For BrFfi the spectral parameters were obtained from the 
m/ = — % ESR transition and the NMR 1 transition for each 
isotope. These transitions were more readily handled by it­
erative solution of the Breit-Rabi equations.9 At 110 K the 
ratio agi/a^g for BrFfi was found to be 1.078, in exact agree­
ment with expectation.

In the case of IFe two complications arise, one concerning

the 127I hyperfine interaction and th'e other involving the 19F 
hyperfine interactions. The 127I hyperfine interaction 0127 was 
determined from the positions (Table I) of the m/ = — % and 
NMR 2 transitions (Figure 3) with the aid of the Breit-Rabi 
equations. When the 7  ITT term is included in these equa­
tions,12 it is seen that NMR 2 (unlike NMR 1 of BrFe) is an 
unresolved doublet, its components arising from the different 
(±%) m,< states. Either of the transitions'NMR 2' (ms = —1f>) 
or NMR 2" (ms = +%) may be combined with the mi = % 
transition to yield values of a 127 and g. Figure 6 was obtained 
by varying the position of NMR 2' and 2” near 18 550 G and 
plotting the values of a 127 and g so obtained against the 
magnetic field. Since we know the unresolved transition to be 
centered at 18 569 G, Figure 6 reveals that its two components 
are 136 G apart, 0127 = 6140 G, and g = 2.0098.

The second complication is a consequence of the large value 
of ai27, which results in an incomplete Paschen-Back effect, 
even at 11 kG. The 19F hyperfine interaction obtained by exact 
diagonalization (Table II) exceeds the observed splittings3 by 
~2 G.

(b) Anisotropic Spectra. At 27 K the halogen hexafluoride 
radicals are no longer tumbling and anisotropic spectra are 
obtained. We attribute the strong central lines to the p> = 
0 components of each transition. Their positions are deter­
mined by hyperfine interaction with the central nucleus alone, 
an interaction which is evidently isotropic. There was, fur­
thermore, no indication (within the limits imposed by the line 
width) of anisotropy in the g factor of these species. The iso­
tropic g values and central-atom hyperfine interactions may 
thus be determined by the methods used above.

For ClFfi at 27 K the two isotopic species are readily dis­
tinguished (Figure 4) and the parameters are given in Table
I. The ratio of the two chlorine hyperfine interactions 035/037 
is 1.199, in reasonable agreement with the expected value of 
1 .201.

For BrF6 there are two sites in SF{; and the parameters for 
these as well as for BrF<j in TeF6 are reported in Table I.

The spectra of IFp at 27 K clearly show the separation 
predicted above of the transitions NMR 2' and NMR 2". In 
Figure 5 the central lines of each of these transitions are clearly 
resolved. In Table I the isotropic g  values and central-atom 
hyperfine interactions are reported for IFfi in SF6 (both sites) 
as well as in TeFg.
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Figure 6 .1Z7I hyperfine interaction (a) and g  factor of IF6 as functions 
of the positions (H) of NMR 2' and NMR 2", obtained using the m, =  — % 
transition at 10 879 G(v =  8798.5 MHz), jä *■?$%

TABLE II: 19F Hypdrfine Tensors (Gauss)

P« spin
Radical a || a _ L Ö iso Ba density

CIF,; 292 (10)‘ -12 (lO'O 90 102 0.19
BrFfi 296 (10)' -18 (2) 87p 105 0.19
IFr 342 (10> 52 (5) 149e 97 0.18
" B = ajS(, — a j_. '(Estimated using B0 = 540 G for I9F. c The 

numbers in parentheses are estimated errors. d Perpendicular 
features not detected; a± estimated from ais„ at 110 K. p aiso = 
(a n + 2ax)/3.

The anisotropic 19F hyperfine structure accompanying each 
transition of C1F6 at 27 K was remarkably simple (Figure 4a). 
Three absorptions were detected on either side of each central 
peak whose separations from the latter were approximately 
in the ratio l:2 1/2:31/z. This observation is most readily inter­
preted in terms of interaction of the unpaired electron with 
an octahedral arrangement of six 19F nuclei, each of which has 
a tensor component along the bond (a |) which is much greater 
than the components perpendicular to the bond (a I ). Pro­
nounced features in the anisotropic spectrum would be ex­
pected when the magnetic field lies along a bond, along a bi­
sector of two bonds, or along a C:i axis. By neglecting nuclear 
Zeeman and second and higher order effects, these features 
are displaced from the central m/(F) = 0 line by a||, (2an2 + 
2ax 2)1/2, and (3a n2 + 6aj_2)1/2, respectively. Thus i f ax «  a ||, 
the observed anisotropic hyperfine pattern of C1F6 is ac­
counted for. In Figure 4b are shown the simulated spectra13 
generated by six equivalent I = 1f? nuclei in an octahedral ar­
rangement, each having a n = 292 G. The value of a j_ used in 
the simulation was obtained from the relation ais„ = (a || + 
2a j_)/3.

For BrFfi and IF6 additional transitions observed in their 
,9F anisotropic hyperfine patterns were associated with re­
solved contributions from the perpendicular components of 
the hyperfine tensors. The perpendicular features adjacent 
to the central line of each transition (Figure 5) were very 
clearly defined and were used to obtain values of a x for these 
radicals. The components of the 19F hyperfine tensors for the 
halogen hexafluorides are given in Table II.

The Semioccupied Orbital. As far as can be inferred from 
their ESR spectra, the halogen hexafluorides are octahedral 
radicals (Oh symmetry). No evidence has been found either

at 110 K or at 27 K to indicate a lower symmetry. On the 
contrary, the observation at 27 K of sharp, intense lines at the 
center of each transition confirms the high symmetry of the 
radicals. We attribute these to the m/(F) = 0 components of 
the transitions, whose resonant fields are orientation inde­
pendent. This implies that the frozen-in radical has fluorine 
nuclei which are equivalent in pairs (giving ah /(F) = 0 com­
ponent) for every direction of the magnetic field. In other 
words, the F(2p) contributions to the semioccupied orbital 
must point toward each other and toward the central atom. 
This conclusion, together with the fact that thè transitions 
observed at 27 K show no evidence of central-atom or g-factor 
anisotropy, indicates that the halogen hexafluoride radicals 
have octahedral symmetry. The good agreement between the 
measured and simulated spectra of C1F6 (Figure 4) supports 
this conclusion. .

The orbital of the unpaired electron, must have a totally 
symmetric representation (Algin Oh) in order to accommo­
date the exceedingly large central-atom hyperfine interac­
tions. INDO calculations14 which we have carried out for ClFfi 
and the isoelectronic radical SFfi~ in Oh symmetry8 (Table III) 
show that the semioccupied orbital is an antibonding combi­
nation of central atom (M) ns and fluorine 2p„ atomic orbitals 
(the latter point toward the central atom). While F(2s) atomic 

, orbitals may in principle contribute directly to the aig mo­
lecular orbital, the observed (and predicted) small positive 
spin density in F(2s) probably arises largely from spin-po­
larization effects. Spin polarization of F-M bonds by the 
F(2p„) orbitals would be expected to generate a small positive 
spin density in F(2s) and a small negative spin density in 
central-atom atomic orbitals.15

The results of INDO calculations summarized in Table III 
imply that in ClFfi, as compared to SFr~, there is (a) less un­
paired spin in the 3s atomic orbital of the central atom, (b) 
more unpaired spin in the F(2p„) atomic orbitals, and (c) less 
unpaired spin in F(2s) atomic orbitals.

In view of results (a) and (b), which may be predicted from 
electronegativity considerations, the last result is somewhat 
surprising. Indeed, we have noted that the isotropic 19F hy­
perfine interactions in anion radicals are invariably greater 
than those of the isoelectronic, neutral radicals. Many ex­
amples of this effect can be cited: OPFs-  (69, 340 G),16 OSF3 
(51,252 G);17 SiF4~ (81,310 G),18 PF4 (59, 282 G);19 PF.<r (207 
G),20 SFs (143 G);21 AsF5-  (187 G),20 SeF5 (118 G);8 SF6-  (195 
G),8 C1F6 (90 G); SeF<r (173 G),8 BrFR (89 G); TeFg~ (212 G),8 
IF6 (150 G).

We are inclined to regard this phenomenon as Coulombic. 
These pairs of radicals are isoelectronic, there being lower 
central nuclear charge in the anionic species. As compared to 
its neutral analogue, the negative ion will have weaker, and 
hence more polarizable, bonds. This contention supports our 
hypothesis that in all of these polyatomic fluorine-containing 
radicals (neutral and charged) the isotropic 19F hyperfine 
interactions arise solely via polarization and not via direct 
F(2s) contributions to the semioccupied molecular orbital.

In order to convert the observed hyperfine interactions into 
unpaired spin densities it is necessary to use the factors A0 = 
( 8 i r / 3 ) 7 e 7 M ’/ 'n s 2 ( 0 )  and B0 = %7 e7 M<r-3} as measures of unit 
central-atom ns and unit fluorine 2p spin densities, respec­
tively. Unfortunately, these conversion factors are not known 
with any certainty. In a preliminary note3 we estimated cen­
tral-atom ns spin densities of 0.46, 0.46, and 0.54 for ClFg, 
BrFg, and IF6, respectively, using A0 values derived from 
Froese’s wave function22 and corrected according to the em­
pirical method of Mackey and Wood.23 Taking Bg = 540 G for
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TABLE III: Results of INDO I Calculations for ClF(i and contribution to tlg means that i, = L/> d = 1-4) or 0 (i = 5, 6). 
SF(r  in O^symmetry Hence

'Bond
length, Unpaired spin densities

Radical : * 4 M(3s) M(3p.v,v,j) F (2s) F(2p„)

:,:iSFg- 1.73 0.326 -0.077 0.0074 0.150
:ir>ClFg 1.63 0.244 -0.092 0.0037 0.177

fluorine,22 we deduce individual F(2p„) spin densities of 0.19, 
0.19, and 0.18 for ClFg, BrFg, and IFg, respectively, from their 
anisotropic 19F hyperfine tensors (Table II). With total pos­
itive spin densities thus considerably in excess of unity for all 
three species we are forced to conclude either that there is 
considerable negative spin density in certain atomic orbitals 
or that the conversion factors A() and/or Bo are in error. The 
excellent agreement of the F(2p„) spin densities derived from 
the anisotropic 19F hyperfine tensor of ClFg with that obtained 
from the INDO calculations suggests that Bo, at least, is not 
seriously in error. The INDO calculations confirm the pres­
ence of considerable negative spin density, mainly in the 
central atom npx y z orbitals (Table III).

The g Factors of the Hexafluorides. In Oh symmetry the 
spin-orbit operator will mix the Aig ground state with a T ig 
state. Promotion of an electron with spin opposed to that of 
the unpaired electron from a nearby filled tig orbital into the 
semioccupied aig orbital will result in a positive g shift. The 
triply degenerate tig orbital is composed of F(2p7r) atomic 
orbitals only, no contribution (either s or p) from the central 
atom being permitted. The g shift, which is determined by the 
product of atomic orbital coefficients for the ajg and the tig 
molecular orbitals, summed over all atoms, is therefore en­
tirely determined by the fluorine contributions. The central 
atom, whose contribution to aig is entirely ns (no effect on g), 
need not be included in the summation. Shown in I are the aig 
semioccupied orbital and one of the three degenerate tiK or­
bitals contributing to the g shift.

I

Since the three principal axes are equivalent

where X is the spin-orbit coupling constant for fluorine (~270 
cm-1), the a, are the coefficients of the F(2p„) atomic orbitals 
in the LCAO description of the semioccupied orbital (aIg), the 
ti are the coefficients for the F(2p„) contributions to the tig 
molecular orbital, and AE is the energy separation of the 
ground and excited states.24 The absence of any central atom

A -  ^ X  r „  i n  _  8 X

êis" A £ [2a,] " A E ar

since the a, are equal. Using the estimate of 0.19 for the F(2p„) 
spin densities (a,2) in ClFg together with Agiso(ClFg) = 0.016 
and X = 270 cm-1, the excitation energy AE is calculated to 
be ~25 650 cm-1, or approximately 3 eV.

The decrease in Ag;so along the series ClFg, BrFg, IFg is due 
to a decrease in the factor a,-2/AE. Since the anisotropic 19F 
hyperfine interactions (Table II) indicate no significant de­
crease in a,2, we presume the effect is primarily due to an in­
crease in AE.

Temperature Dependence of Hyperfine Interactions and 
Line Widths. It may be observed from Table I that the central 
atom hyperfine interactions of the halogen hexafluorides are 
lower at 110 K than at .27 K. Further measurements at 77 K 
and in the isotropic region (up to 120 K for ClFg and to 140 K 
for BrFg and IFg) confirmed this observation. It was found 
that in all three instances the central-atom hyperfine inter­
action decreased monotonically with increasing temperature. 
In BrFg, for example, the 79Br hyperfine interaction decreased 
by 10 G between 110 and 133 K.

The decrease in the central-atom hyperfine interaction with 
temperature is accompanied by an increase in the line widths. 
For IFg in SFg, for example, the central components of both 
the ESR and NMR lines have line widths at 27 K of 10 G for 
the sharp site and 20 G for the broad site. At 110 K the line 
width of the ESR transition increased to ~100 G and that of 
the NMR transition to the point where the 19F hyperfine 
structure was no longer resolved. This broadening trend 
continued up to 140 K and was also observed for BrFg.

A possible explanation for the observed temperature de­
pendence of both the hyperfine interactions and the line 
widths lies in the “ pseudo” or “ second-order” Jahn-Teller 
effect.25 This has been invoked26’27 for the analogous molecule 
XeFg where the proximity of a T ju excited state to the Alg 
ground state results in a very “soft” tu, deformation mode. It 
has been suggested4 that in the hexafluorides this mixing of 
states could lead to enhanced spin-lattice relaxation. How­
ever, while this might explain the line widths of ClFg and of 
the ESR transitions of BrFg and IFg, it fails to account for the 
much larger line widths of the NMR transitions of the latter 
radicals.

We feel that modulation of the central-atom hyperfine in­
teraction by the very low frequency deformation may well 
account for both the large line widths of the latter transitions 
and the observed temperature dependence of the line widths 
and hyperfine interactions. The contribution of such a 
mechanism to line broadening should be proportional to 
dH/dA, that is, to the inverse slope of the A vs. H curves 
(Figures 1, 3). For both BrFg and IFg, dH/dA is considerably 
larger for the NMR transition than for the ESR transition so 
that one would expect a greater line width for the former 
(Figure 2). With increasing temperature and population of 
excited levels of the tiu vibration, the average amplitude of 
the deformation will increase, resulting in a greater line width 
and a larger departure of the hyperfine interactions from their 
values at absolute zero. The observation that the central-atom 
hyperfine interactions decrease with increasing temperature 
is not surprising since the excited 2T lu state admixed into the 
ground 2A)g state by the t u, deformation will unquestionably 
have very small central-atom s character.
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Electron Spin Resonance Investigations of the Triplet Spectra of Rhodamine Dyes and 
Their Aggregates

Hartmut Schm idt

Institute o f  P hysica l B ioch em istry  o f  th e J. W. G o e th e  University, D -6 0 0 0  Frankfurt am  Main, W es t G erm any ■ (R ece iv ed  July 19, 1976)

The dependence of the ESR spectra of some rhodamine dyes (rhodamine 6G, rhodamine B, sulforhodamine 
B, rhodamine 110, and acridine red) in their lowest excited triplet states upon the concentration has been in­
vestigated in methanol-water solutions at 90 K. The different spectra have been assigned to monomers and 
dimers (and/or association polymers). Using triplet exciton theory from the spectra it has to be concluded 
that the molecules within the aggregates are oriented in a translationallv nonequivalent manner (twisted 
sandwich structures). The twisting angles have been calculated.

Introduction

In tunable dye lasers rhodamine compounds are very often 
used as active media. Consequently during recent years much 
attention has been focused on their spectroscopic properties. 
As intersystem crossing to the triplet state of the dyes causes 
a depopulation of the corresponding excited singlet levels, 
detrimental to laser action, some investigations concerning 
these states were carried out by ESR spectroscopy.1 5 From 
the ESR spectra the corresponding zero-field splitting (zfs) 
parameters X, Y, Z6 were calculated.

However, the authors did not take into consideration that 
the zfs can depend strongly on the stare of aggregation of the 
compounds if the triplet energy is delocalized within the dye 
aggregates (triplet excitons).7 10 We have observed such ef­
fects for various acridine1011 and cyanine dyes.12

On the other hand, because of theoretical reasons10 the 
zero-field splitting parameters of the aggregate triplets differ 
from those of the monomers only if the molecules within the 
aggregates are oriented in a nontranslationally equivalent 
manner. Thus from the concentration dependence of the ESR

spectra conclusions can be drawn concerning the structure of 
the dye aggregates. This will be discussed in the present 
publication.

Theoretical Section

When the triplet energy is delocalized within the dye ag­
gregate (triplet exciton) the spin-Hamiltonian H* of the di­
mers (describing the interaction between the magnetic field 
and the two triplet electrons as well as their dipole-dipole 
interaction610) is the average of the Hamiltonians of the 
identical dye molecules A and B

H* = '/>(Ha + Hb) (1)

Due to the dimer model of rhodamine B suggested from ab­
sorption spectroscopy by Gal, Kelly, and Kurucsev " (twisted 
sandwich structure), it is reasonable to consider the mathe­
matically simplest case that the magnetical principal axes x 
in both molecules within an aggregate are oriented parallel to 
each other (XA = X B = X*). Thus the angle between the
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Figure 1. ESR triplet spectra (Am =  1) of rhodamine 6G in methanol/ 
water = 8/2 (w/w); temperature 90 K: (a) 5 X 10-5 M, (b) 1 X 10-4 M, 
(c) 2 X 10“ 4 M, (d) 5 X 10“ 4 M.

other axes of neighboring molecules MyA^B) = v?(za,zb)) is 
calculated10 by

cos(2^) = 2l ( z _ y)f  - 1  (2)

X, Y, Z are the zero-field splitting energies of the dye mono­
mers and X*, Y*, Z* are the corresponding parameters of the 
dimers.

Equation 2 can also be used for higher aggregates with an 
even number of molecules when there are not more than two 
differently oriented molecules within the aggregate unit cell. 
For aggregates with an odd number of molecules the results 
differ slightly from the dimer case.10

Results and Discussion
For rhodamine 6G two different ESR triplet spectra have 

been observed depending on the dye concentration (Figure 
1 ). (The zero-field splitting calculated from the spectra (Table
I) agrees reasonably with that measured by other authors1“3
under comparable conditions.) The spectra at low and high
concentrations can be ascribed to monomers and dimers
(and/or association polymers), respectively. With the pa­
rameters given in Table I an angle of <p= 17° or (180° — <p) = 
163° is calculated from eq 2. Magnetophotoselection experi­
ments6 show that the axis parallel for all molecules within the 
aggregates is the short axis of the xanthene ring system or 
(more probably from energy reasons) the axis perpendicular 
to the xanthene plane. (It was assumed that the optical tran­
sition moment is oriented parallel to the long axis of the 
xanthene ring.13) The results are consistent with the dimer 
model of Gal et al.13

Similar results have been obtained for most of the other 
rhodamine dyes as shown in Table I. For these dyes the cor-

TABLE I: Zero-Field Splitting Energies (cm 1 he)"

Compd Concn5 *\z\ ± m ±|X| <P, deg T

Rhodamine 2 X 10“ 5 (0.0391) 0.0380 0.0011
6G

1 X 10“ 4 (0.0391) 0.0380 0.0011
(0.0374) 0.0363 0.0011 17 1.4

1 X 10“ 3 (0.0366) 0.0352 0.0014 21
1 X 10“ * 1 (0.0337) 0.0328 0.0009 30

Rhodamine B 2 X 10“ 5 (0.0392) 0.0376 0.0016
1 X 10“4 (0.0394) 0.0375 0.0019 1.3
1 X 10“2 (0.0376) 0.0360 0.0016 16
1 X 10 "1 (0.0372) 0.0356 0.0016 18

Sulforhodam- 1 X 10“4 0.0379 0.0365 0.0017 0.9
ine B

1 X 10“ 3 0.0373 0.0365 0.0017
Rhodamine 1 X 10“4 0.0429 0.0401 0.0020 1.2

110
1 X 10“ 3 0.0426 0.0400 0.0026
1-XHÜ' 2 0.0417 0.0392 0.0021 13

Acridine red 3 X 10“ 5 (0.0378) 0.0371 0.0007
1 X 10"4 (0.0380) 0.0367 0.0013 1.5
1 X 10“ 3 (0.0364) 0.0351 0.0013 17
1 X 10“ 2 (0.0361) 0.0347 0.0014 19

" Experimental error: 0.0005 cm“ 1 he, in parentheses; calcu­
lated from X + Y + Z = 0; decay times r (s); twisting angle ip 
(equivalent to 180° — ¡p) of the rhodamine dyes; concentration,
M.

responding zfs parameters (again with the exception of X) 
depend also on the dye concentration. However, in contrast 
to rhodamine 6G described above, only one spectrum could 
be resolved independent of dye concentration. Obviously in 
these cases the monomer and aggregate spectra do not differ 
very much. Consequently only small changes in the stationary 
resonance fields are observed instead of two discrete spec­
tra.

In principle for all these dyes, the results of the ESR mea­
surements are consistent with the dimer model of twisted 
sandwich structures described above. The twisting angle 
varies for the different dyes and depends slightly on the con­
centration. However, in contrast to the assumption of Gal et 
al.13 it seems more probable from thermodynamic data that 
the carboxyphenyl substituents of the two molecules within 
the dimer are in contact with each other. Only then can it be 
explained that dimerization of rhodamine dyes is associated 
with a strong increase of dimerization entropy AS° 14 (AH° 
t  0) opposite to other dyes without 9-phenyl substituents.
E.g., for acridine15’16 and thiazine dyes17’18 the standard di­
merization enthalpy is strongly negative while the entropy 
change AS0 even gives a small positive contribution to AG°. 
The simplest explanation for this effect is the stronger sol­
vophobic interaction in the case of rhodamine dyes caused by 
the carboxyphenyl groups touching each other in the 
dimer.

Experimental Section
The ESR spectra were obtained using a Varian E 12 X-band 

spectrometer with standard equipment. The microwave fre­
quency was measured with a Systron + Donner counter 1037 
and transfer oscillator 1292. The static magnetic field was 
determined by means of a proton resonance gauss meter. 
Samples were illuminated by a high-pressure xenon lamp 
(Osram XBO 1600 W) at about 90 K in a glassy methanol 
(Merck: p.A.)/water (triple distilled) mixture (80% w/w). All
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measurements were carried out in the presence of oxygen. 
Sharp cut filters (Schott & Gen.) were used to cut off short- 
wavelength light. To prevent heating of the samples a water 
cell (15 cm pathlength) and two IR reflecting filters (Schott 
& Gen., type Tempax 112 and 116) were employed.

Most of the dyes (Eastman Kodak, best commercial grades) 
were used without further purification. Rhodamine 6G was 
recrystallized from methanol. The ESR spectra of the purified 
and unpurified product did not differ.

Acknowledgments. This work was supported by the 
Deutsche Forschungsgemeinschaft. The author wishes to 
thank Professor J. Stauff for the continuous encouragement 
of his work. The technical assistance of Mr. D. Bhandarkar 
is gratefully acknowledged.

References and Notes
(1) I. H. Leaver, Photochem. Photcbiol., 19, 309 (1974).
(2) M. Yamashita and H. Kashiwagi, J. Chem. Phys., 59, 2156 (1973).
(3) M. Yamashita, H. Ikeda, and H. Kashiwagi, J. Chem. Phys , 63, 1127 

(1975).
(4) M. Yamashita and H. Kashiwagi, J. Phys. Chem., 78, 2006 (1974).
(5) F. R. Antonucci and L. G. Tollev, J. Phys. Chem., 77, 2712 (1973).
(6) S. P. McGIynn, T. Azumi, and M. Kinoshita, “ Molecular Spectroscopy of 

the Triplet State", Prentice-Hall, Englewood Cliffs, N.J., 1969.
(7) H. Sternlicht and H. M. McConnel, J. Chem. Phys., 35, 1793 (1961).
(8) M. Schwoerer and H. C. Wolf, Mol. Cryst., 3, 177 (1967).
(9) D. Haarer and H. C. Wolf, Mol. Cryst Liq. Cryst., 10, 359 (1970).

(10) H. Schmidt and R. Zellhofer, Z. Phys. Chem. (Frankfurt am Main), 91, 204 
(1974).

(11) H. Schmidt, Z. Phys. Chem. (Frankfurt am Main), 97, 189 (1975),
(12) H. Rôdder, Thesis, Frankfurt, 1976.
(13) M. E. Gàl, G. R. Kelly, and T. Kurucsev. J. Chem. Soc., Faraday Trans. 2, 

69, 395 (1973).
(14) M. M. Wong and Z. A. Schelly, J. Phys. Chem., 78, 1891 (1974).
(15) V. Zanker, Z. Phys. Chem. (Leipzig), 199, 225 (1952).
(16) G. R. Haugen and W. H. Melhuish, Trans. Faraday Soc., 60, 386 (1964).
(17) E. Rabinowitsch and L. F. Epstein, J. Am. Chem. Soc., 63, 69 (1941).
(18) P. Mukerjee and A. K. Ghosh, J. Am. Chem. Soc., 92, 6419 ¡1970).

Mechanical and Photoelastic Properties of Ethylene-Propylene 
Copolymers Related to Chain Microstructure
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Napoli, Italy (Received June 1, 1976)

In the present paper the mechanical and photoelastic behavior of two ethylene-propylene copolymers are in­
vestigated. The two samples differ in the ethylene amount and in the distribution law of monomeric units. 
The different molecular microstructure gives rise to different physical properties. Results are discussed in 
terms of chain-chain interactions.

Introduction
Ethylene-propylene copolymers1 are widely used as elas­

tomers in many technological applications. However, the in­
terest in this class of polymers is related not only to techno­
logical aspects but also to some implications at a fundamental 
level. In particular the chain microstructure can be changed 
within a large interval, changing the relative amount of the 
two monomers and the distribution law. The influence of 
different microstructures on the physical behavior gives in­
formations about the relations between micro- and ma­
croproperties and therefore can be used to investigate at the 
molecular level some aspects of the mechanical behavior of 
rubberlike materials. The aspect that attracts our attention 
is the effect that supramolecular interactions or aggregations 
can have on the mechanical behavior. The use of the ethyl­
ene-propylene copolymers is suggested by the consideration 
that a different tendency to give rise to interaction phenomena 
is surely related to a different ethylene amount and to a dif­
ferent distribution law.

In the present paper the elastic and photoelastic behavior 
of two ethylene-propylene copolymers has been investigated.

The two samples differ in the molar ethylene amount and in 
the distribution law.

Experimental Section
Materials. In Table I the main characteristics of the ana­

lyzed samples are reported. The M c value was given by the 
first Mooney-Rivlin constant obtained from a stress-strain 
plot of swollen samples.2’3 The ethylene amount was obtained 
by infrared analysis.4 The distribution law is alternanting-like 
for sample A and blocklike for sample B, respectively. Infor­
mation about the distribution of the two monomer units in the 
chain is given by the knowledge of the catalytic system and 
of the polymerization conditions.5 Anyway it was confirmed 
by NMR and ir analysis.5

Dynamic Mechanical Behavior
Viscoelastic spectra of the two samples were recorded using 

a vibrational viscoelastometer (Vibron-Toyo Instruments); 
the working frequency was 110 Hz. The complex modulus E* 
and the loss term tan ò were reported as function of the tem­
perature in the temperature range 130-280 K. The physical
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TABLE I:

Ethylene Vulcan Vulcan Vulcan
Sample content initiator :emp, °C time, min M,

A' 0.52 Dicumyl peroxide 5% 130 80 24 000
B- 0.78 Dicumyl peroxide 5% 115 80 22 000

significance of the terms E* and tan 5 is well known.15 Obtained 
results are shown in Figures 1 and 2.

The main transition that is characterized by a strong 
maximum in tan 5 and by a large decrease in E* is the glass 
transition Tp„ that'in spite of the different composition of the 
two samples, occrfr&.at 240 and 241 K for samples A and B, 
respectively. A second transition at about 173 K is visible in 
the two spectra; this transition temperature, indicated in the 
literature aS' Ty ,6-7 is associated to local movements of po- 
lymethylenic sequences and requires sequences not shorter 
than three or four methylenic units. However the feature we 
want to point out, and that is very important for the problem 
examined, regards the behavior of E* at Tr,. As is clear from 
Figures 1 and 2, the decrease of E* for sample A is sharp and 
without any element of discontinuity, while for sample B the 
decrease is retarded on the temperature scale, discontinuity 
appearsdn the slope that gives rise to a harplike shape, as ev­
idenced by the dashed lines.

This behavior can be ascribed to paracrystallinity or crys­
tallinity phenomena, or, more generally, to pronounced in­
teraction phenomena.8

Elastic Behavior

Elastic behavior of samples A and B was analyzed in terms 
of the Mooney-Rivlin equation

r = 2Ci(a — a-2) + 2 C-j(« — a~~) — (1)
a

where r is the force on the cross-section unit, a the strain ratio, 
and 2C| and 2C2 are two constants. Stress-strain measure­
ments were carried out by stretching the sample step-by-step 
and measuring the stress with 5-min intervals between two 
successive strain values. The work temperature was 25 °C. For 
each stress-strain plot Mooney-Rivlin constants were cal­
culated. While for sample A our results indicate no significant 
effects originating from the mechanical history of the sample, 
stress-strain data obtained on sample B indicate the presence 
of very strong and interesting effects connected with the 
mechanical and thermal history of the examined specimen. 
All results are summarized in Table II.

Data of Table II were obtained on the same specimen with 
various thermal and mechanical histories. Group I corre­
sponds to the mechanical responses of the sample without any 
thermal history after vulcanization. The letters a, b, c, d, and 
e refer to different successive stress-strain plots. In particular 
a is the first plot, b the second after 30 min of relaxation at zero 
load, c the third after 48 h; in a, b, and c the maximum strain 
value was a = 2, in d and e it was 2.5 and it was measured with 
30-min intervals. After the mechanical treatments summa­
rized in group I, the sample was kept 1 h at 50 °C and thus 
showed the mechanical behavior reported in group II of Table 
II. Finally the data of group III correspond to the mechanical 
response after a thermal treatment at 135 °C for 15 min. a, b, 
and c in groups II and III indicate a sequence of mechanical 
treatments as in group I. The corresponding plots, summa­
rized in terms of the Mooney-Rivlin constants in Table II, are 
reported in Figures 3-5.

E*dyne/cm2 tan if

Figure 1. Dyramic-mechanical viscoelastic spectrum of sample A (110 
Hz).

Figure 2. Dynamic-mechanical viscoelastic spectrum of sample B (110 
Hz).

Elastic and Photoelastic Hysteretic Behavior

The photoelastic hysteretic behavior of samples A and B 
was also investigated. Birefringence measurements were 
carried out using the Senarmont method9 to detect the re­
tardation angle, while the stress was obtained by a force 
transducer All measurements were performed at 25 °C. The 
sample was deformed step-by-step in a cyclic way going 
through the maximum strain value a = 2; retardation angle
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TABLE II: Mechanical Data Obtained on Sample B “

I II III
2 C, 2 C-2 2C[ 2 C2 2Ci 2 C2

a 0.94 1.50 0.56 1.00 0.13 1.74
b 1.22 0.48 0.89 0.54 0.79 0.74
c 1.34 0.00 1.00 0.24 0.78 0.48
d 1.35 0.00
e 1.22 0.00

" 2Cj and 2C2 are reported in kg/cm2.

Figure 3. Mooney-Rivlin plots obtained for sample B. From bottom to 
top la, lb, Ic, Id, le.

Figure 5. Mooney-Rivlin plots obtained for sample B. From bottom to 
top Ilia, lllb, lllc.

An-io4

Figure 6 . Photoelastic plot of sample A. The birefringence is reported 
as a function of the true stress.

Figure 4. Mooney-Rivlin plots obtained for sample B. From bottom to 
top lla, lib, lie.

and stress were detected at each strain value with 5-min in­
tervals between two successive points. Experimental data were 
reported in terms of birefringence An vs. the true stress ra.

In Figure 6 results obtained on sample A are shown. In 
Figure 7 we report the photoelastic hysteretic plots observed 
on sample B. The significance of the symbols la, l b , .. . , Ha, 
. . . , IIIc is the same as in Table II.

As is clear from Figures 6 and 7, for sample A the An vs. ra 
plot is reversible on stretching and relaxing, whereas sample 
B shows very strong hysteretic effects. For sample B me­
chanical hysteresis loops were detected, and results are re­
ported in Figure 8. Numerical treatment of the plots of Figures 
7 and 8 are collected in Table III. The degree of irreversibility 
in the two kinds of hysteretic plots is reported in terms of the 
functions 4>sn and <j>T defined as follows:

A n  d r a  — C , _An d™ ] / £ /

[ £ £ Tda- £ J Tda\ /  £ J t

An dra

d a
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Figure 7. Photoelastic hysteretic plots of sample B. For each plot an indication about the sample history is given.

Figure 8. Elastic hysteretic plots of sample B. For each plot an indication about the sample history is given.

Discussion

As stated in the Introduction the main purpose of the 
present work was to analyze the relationships between the 
microstructure and the physical behavior for ethylene-pro­
pylene samples. The two analyzed samples differ in the eth­
ylene amount, and in the distribution law. This microstruc­
tural difference induces very different physical behaviors. In 
particular the different composition acts directly on the 
chain-chain interaction or aggregation phenomena. This is 
clearly supported by the viscoelastic data of Figures 1 and 2 
where the shape of the modulus curve at Tq indicates for 
sample B the presence of some hardening effect that is related 
to physical crosslinks, such as chain aggregation or para- 
crystallinity, or crystallinity zones in the sample.8 In other 
words the two samples differ in the different tendency to give 
rise to molecular organization phenomena. This difference has 
as its main effect that the physical behavior of the sample B 
is strongly hysteretic when compared with that of sample A. 
All experimental data obtained in this paper clearly point out 
this feature. In fact as a starting point we can discuss the in­
dications given by the photoelastic analysis that is summa­
rized in Figures 6 and 7 and in Table III. On the time scale of

the experiment, sample A shows a reversible behavior, while 
for sample B a strong hysteretic photoelastic trend is ob­
servable. The trend of Figure 7 indicates that on relaxing the 
birefringence An is reinforced with respect to the true stress 
ra, that is. the anisotropy of the sample, for equal values of 
the stress, is greater on relaxing than on stretching. Moreover, 
the degree of such an irreversibility, that is reported in a 
quantitative way in Table III, is closely related to the me­
chanical and thermal history of the sample. It is evident that 
the term 6 ±n decreases when successive mechanical treat­
ments are carried out on the sample (see the sequence la—Id); 
on the other hand, thermal treatment restores practically all 
of the first photoelastic response, as is clear when la, Ila, and 
Ilia are compared.

In other words, the degree of irreversibility of the photoe­
lastic behavior must be related to a mechanism consistent with 
this observation, i.e., mechanical treatment can be memorized 
by the sample, while thermal treatment can cancel this me­
chanical memory.

A phenomenon such as chain aggregation or paracrystalli- 
zation induced by strain, irreversible even if the sample is 
relaxed at zero load for a long time, can be consistent with this 
picture.
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TABLE III: Hysteretic Behavior of Sample B

Sample
history <t>An 4>r

la 0.211 0.429
lb 0.198 0.415
Ic 0.166 0.347
Id 0.159 0.473
Ie 0.165 0.471

Ha 0.192 0.453
lib 0.123 0.401
lie 0.129 0.400

Ilia 0.228 0.487
,,, IHb 0.200 0.457

IIIc 0.164 0.395

The difference A<f>yn between successive mechanical
treatments takes into account the contribution of this irre­
versible aggregation phenomenon to the hysteretic behavior 
of the sample. Moreover; this phenomenon contributes to the 
total number of cross-link points, in fact physical aggregation 
behaves at mechanical levels in a way not too different from 
a chemical cross link.

This hardening effect, on one hand, is supported by the 
viscoelastic behavior, as previously discussed, and, on the 
other hand, by the quantitative values of the term 2C\ of the 
Mooney equation. In fact in Table II an increase of the 2C\ 
term as a function of the mechanical history of the sample is 
observable, while the thermal treatment, by a mechanism of 
aggregation zone melting, produces a decrease of the 2Ct 
value. The relationship between the Cj term and the cross- 
linking density is well known,5 and does not require any ex­
planation. This overall picture is further supported by the 
data on the <j>T term. The hysteretic mechanical behavior is 
consistent in the same way with the mechanism proposed for 
the term 4>\n. The apparent disagreement in the data between 
the values for Ic and Ie is due to the different value of the 
maximum strain that is 2.5 in cycle e instead of 2 in cycle c.

Up to this point we have discussed in terms of simple 
aggregation or paracrystallization and not in terms of large 
crystallization phenomena. This restriction is supported by 
much experimental evidence. The first is the good macro­
scopic reversibility of sample deformation. In other words, the 
mechanical behavior of the sample at the macroscopic level 
does not give any evidence of plastic behavior that could be 
consistent with a diffuse and extended crystallization phe­
nomenon. Moreover, when the deformation produces a diffuse 
crystallization phenomenon, generally a drastic plot upturn 
appears in the Mooney-Rivlin data, where the Co term goes 
from positive to negative values.2 Such a behavior is not ob­
served in our experiments, as it is clear in Figures 3-5. On the 
other hand, if these experimental elements can exclude a high 
degree of crystallization, the thermograms carried out with 
a differential scanning calorimeter (DSC II, Perkin-Elmer), 
analyzing stretched and unstretched samples under all the 
experimental conditions of Tables II and III, do not give any 
appreciable evidence of enthalpic change. Taking into account 
that from the thermograms, in the sensitivity range used (up 
to 5 mcal/s), also a small amount of crystallinity can be de­
tected, it seems that also a low degree of crystallization can 
be excluded, and that the observed hysteretic effects are 
connected with interchains phenomena at a low degree of 
organizations, or with a very low amount of crystallinity, under 
the limit of the sensitivity of our measurements.

The photoelastic data, discussed in terms of the photoelastic 
coefficient, seem to point in the same direction. As is well 
known2 the slope of the An vs. ra plot is directly related to the 
molecular and structural nature of the material aijd therefore 
can be used to obtain information about the presence of a 
crystalline phase. For ethylene-propylene copolymers, in 
particular, a quantitative treatment of the photoelastic data 
was reported,10 where the contributions of the amorphous and 
crystalline regions to the photoelastic behavior are reported. 
This means that a structural change, such as a different 
amount of the crystalline phase, affects thé numerical value 
of the photoelastic coefficient In our experiments, as it is clear 
from Figure 7, this value, calculated from the data obtained 
by stretching the sample, is practically independent of the 
mechanical and thermal history of the sample, with the ex­
clusion of cycles Id and Ie, where the maximum at rain is in­
creased and where we can observe a drastic distorsion of the 
curve indicating drastic structural changes. To sum up on this 
point we can exclud'd the.piresence of diffuse crystallization 
phenomenon during the deformation as a direct cause of the 
memorization of the mechanical history, while, as previously 
pointed out, we must believe that the last is related to inter­
chain interactions, not very organized at a structural level, or 
to a very low degree of crystallization. The last point we want 
to discuss is another interesting experimental observation that 
regards the Co term of the Mooney equation.

As evidenced by Figures '3T5, even if the shape of the 
Mooney plots is not regular, a tendency tc give rise to a null 
value for Co, in large strain intervals, is observable as a func­
tion of the mechanical history of the sample.

This is reported in a quantitative way in Table II, where the 
effect of the thermal treatment on Co is; also evident. This 
result, once again, supports the general point of view that the 
term Co is related to chain-chain phenomena in amorphous 
materials. 11

Particularly surprising is the direction in which the change 
of the Co value takes place. In fact, the apparent result is that 
the ideality of the behavior5 (Co = 0) increases when the ide­
ality of the sample topology5 (chain-chain interactions = 0) 
decreases.

An explanation could be put forward only if the mechanism 
of the ordering phenomena on Co were known. A possible 
suggestion could be a relation between Co and organization 
phenomena that takes place during the deformation; but such 
an hypothesis is purely speculative. Another possible corre­
lation could be with the physical cross linking induced by the 
strain, and that, therefore, takes place in an oriented system. 
In fact in the past it was found that Co decreases when some 
degree of cross linking is introduced in the strained material.12 
Anyway, the point stressed by this paper is the existence of 
relations between the second Mooney constant and inter­
chains phenomena, and more generally between mechanical 
behavior, interchain phenomena, and chain microstructure.
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The magnetic and dynamic properties of the lowest excited triplet (Tj) state of xanthone trap and xanthone 
in diphenylmethane and 9,10-dihydroanthracene host crystals were investigated at 1.2 K using the optically 
detected magnetic resonance (ODMR) technique and phosphorescence emission and excitation spectrosco­
py. It is unambiguously shown that the T] state of xanthone studied here is :imr* state, but in xanthone and 
diphenylmethane crystals there are two triplet species with different magnetic properties. The total and 
radiative decay rates from spin sublevels and the sublevel phosphorescence spectra were obtained. The re­
sults were discussed in terms of the possible mechanisms o: radiative and radiationless transitions. It is sug­
gested that the main radiative mechanism is spin-orbit vibronic involving 'nîr*, virir* (1Ba) states and bi vi­
brations. The relationship between the present results and those reported by other workers is discussed.

Introduction

The spectroscopic, photochemical, and magnetic properties 
of the lowest excited triplet states of aromatic carbonyls have 
been the topics of much interest in recent years.1-45 Optically 
detected magnetic resonance (ODMR) studies at zero field 
have revealed a number of interesting features concerning the 
magnetic and dynamic properties of the Tj states of these 
molecules.35"38,40-46 It was shown that the radiative properties 
of the :iirir* aromatic carbonyls depend on many factors such 
as molecular structure, energy separation between :!n?r* and 
:,7i-7r* states (A£'['t), and the nature of environments.45 The 
main radiative mechanism differs markedly depending on 
these factors within -Vir* aromatic carbonyls.45 Here, we have 
investigated the Ti state of xanthone and related molecules 
in order to clarify the main radiative mechanism and to obtain 
more information about the relationships between structures 
and radiative properties of aromatic carbonyls. The main 
motives of the present study are the following.

(1) In case of Ainr* aromatic carbonyls of the benzaldehyde 
type with small A/iTT it was found that the vibronic and 
configurational mixing between 3nx* and 3irir* states is the 
important source of radiative activity.45 However, different 
from benzaldehydes the carbonyl group is rigidly held to the 
planar 7r-electron system in xanthone. This may make the 
radiative property of the state xanthone very different

* Address correspondence to this author at the Department of 
Chemistry, Faculty of Science, Kyoto University.

from those of the other :Vir* carbonyls. Comparison between 
the radiative property of xanthone with those of the other 
aromatic carbonyls appears to be useful in understanding 
structure-dynamic property relationship.

(2) It is known that xanthone shows dual phosphorescence 
emissions n rigid glass at 77 K .47 The nature of the phos­
phorescing species as well as the origin of the dual emission 
is still not well established despite wide interest in this phe­
nomenon.6’10'20:!0-47 52 It was recently suggested that the Ti 
state of xanthone in 3-methylpentane at 2 K might have a very 
distorted structure52 but definitive evidence seems to be 
lacking. It was hoped that the zero field ODMR studies would 
help to answer some of these questions.

In this work we have made detailed ODMR studies of 
xanthone in various single crystal systems. The S0 — T! ab­
sorption studies were also made to supplement ODMR 
studies.

Experimental Section

(1 ) Sample Preparations. Xanthone was studied in pure 
crystals (traps), diphenylmethane (DPM), and 9,10-dihy­
droanthracene (DHA) hosts. Benzophenone and 4-amino- 
benzophenone were studied in a DPM host. The 4,4'-di- 
methoxybenzophenone trap was also studied. Molecular 
structure and the axis systems used here are given in Figure 
1. All chemicals except diphenylmethane were recrystallized 
and zone refined extensively prior to use. Diphenylmethane 
was purified by repeated distillation.
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A B

Figure 1. Molecular structure, axis system, and energies of the triplet 
sublevels.

The single.crystals of these systems were grown by the 
standard Bridgman method. The guest concentration in the 
initial host-guest mixture was normally about 1% but the 
actual concentrations in the mixed crystals were considered 
to be very low, because the solubility of xanthone in DHA and 
DPM host is rather low.

(2) ODMR Experiments. The experimental setup for the 
present zero field ODMR experiment is essentially the same 
as that previously reported.53 A crystalline sample held in a 
microwave Helix at liquid helium temperature was excited by 
the light from an Osram 500w/2 high-pressure mercury arc 
lamp, filtered through a NiS04 + C0SO4 solution, and a 
Corning uv transmitting filter. The microwave was supplied 
to the helix through a coaxial cable with a Hewlett-Packard 
8690 sweeper. The desired phosphorescence peak was selected 
with an Eng’is 60-cm monochromator. We have made the 
following three types of ODMR experiments at 1.5~1.2 K.

(A) Steady State Zero Field ODMR Measurements. The 
phosphorescence emission was obtained with an ordinary 
phosphoroscope using a sector which chops the emission at 
720 Hz. The signal was detected with an EMI 6256B photo­
multiplier and a PAR HR8 lock-in amplifier. The microwave 
was repeatedly swept through the frequencies corresponding 
to the zero field transitions and the changes in the phospho­
rescence emission were stored and accumulated on a Varían 
C-1024.

(B) Microwave Induced Delayed Phosphorescence (MIDP) 
Experiments. The total decay rate (kf), relative radiative 
decay rate (kf), and populating rate (Pf) of each spin sublevel 
were determined at 1.2 K by the standard MIDP tech­
nique.5455 The vibronic level dependence of kf was studied 
by determining kf at selected vibronic bands. The chopper 
module was replaced by a shutter module which opens and 
closes excitation and emission lights synchronously. The ex­
perimental procedures and the methods of data analyses are 
similar to those given in the literature53-56 and are not re­
peated here.

(C) Microwave Modulated and Sublevel Phosphorescence 
Spectra. In order to study the radiative mechanisms in detail 
it is desirable to obtain phosphorescence spectra from dif­
ferent sublevels separately. We have attempted to do this in 
the following way.

(1) Rapid Passage Microwave Modulated Phosphorescence 
Spectra. The commonly used method to obtain the vibronic 
band dependence of the phosphorescence spectra is AM 
modulated PMDR method.57-59 However, when the line width 
of the resonance signal is rather broad, AM modulation can 
cause the microwave transition of only a small fraction of 
triplet state molecules. In such systems, much larger changes 
in phosphorescence intensities can be obtained by rapidly

sweeping the microwave repetitively over the entire region of 
resonance frequencies.53’60’61 We swept microwave repetitively 
at the rate of 3 s~1 and detected the produced changes with 
a lock-in amplifier.

The change in phosphorescence intensity (Afyr) produced 
by the rapid passage of microwave transition^between i and 
j spin sublevels under steady state condition is given by61

A/jj = A(kf — kf)(nj — nf) (1 )

where kf and kf are the radiative decay rates, and n, and nt 
are the populations of the sublevels i and j at the time of .mi­
crowave sweep. Since we only detect A/ ¡ j ,  the spectrum ob­
tained gives kf — kf as a function of emission wavelength. 
When kf «  kf the obtained spectrum gives the phosphores­
cence spectrum from the radiatively dominant sublevël.

(2) Phosphorescence Sublevel Spectra62 Obtained under 
Microwave Saturation. When only one sublevel is decaying 
rapidly and the spin-lattice relaxation time is very slow 
compared to the decay rates, phosphorescence emission of the 
slowly decaying sublevels may be separated conveniently by 
combining microwave saturation and appropriate delay of the 
shutter facing to the monochromator.45 For example, in order 
to obtain the y sublevel spectrum of xanthone x •*-»■ z transition 
was saturated by continuous sweep of microwave at 500 s-'1 
and the opening of the emission shutter was delayed by 0.4 s 
so that most of the population in the x and z sublevels decayed 
before the shutter was open. Under constant saturation of 
microwave, the populations in the x and z sublevels decay with 
the decay rate constant ka = l /2(kx + kf). Hence, in order to 
separate the y sublevel -spectrum of xanthone completely, it 
is necessary to use a shutter delay of longer than 0.5 s. Under 
our experimental conditions, it was not possible to eliminate 
the contribution from the z sublevel emission entirely from 
the y and x sublevel emissions. Nevertheless, the spectra ob­
tained under microwave saturation and shutter delay are very 
different from those obtained without them.

(3) Phosphorescence Excitation Spectra. The phospho­
rescence excitation spectra63 64 were obtained in order to de­
termine the exact locations of the 37nr*, 3nir*, ^ir*, and V i*  
states of xanthone in pure crystal and diphenylmethane. Our 
ODMR setup was modified so that an Engis 60-cm mono­
chromator became the excitation monochromator which an­
alyzes the output of the Osram 1000-W xenon lamp. The total 
phosphorescence emission of the sample was chopped at 720 
s_1 and detected with an EMI 6256B PM tube and amplified 
with a PAR HR-8 lock-in amplifier.

Experimental Results

(1) Phosphorescence Excitation Spectra and Locations of 
the 3mr*, 1nir*, and 1irir* States. The phosphorescence ex­
citation spectra of xanthone are shown in Figure 2. The exci­
tation spectrum of xanthone crystal starts at 25 230 cm-1, 
which is 180 cm-1  higher than that of the origin of the phos­
phorescence spectrum of the crystal at 4.2 K. This difference 
is reasonable, since the phosphorescence of the crystal is 
considered to originate from shallow traps. There are two 
strong absorption bands starting at 26 700 and 27 700 cm-1. 
In the diphenylmethane host the absorption at 25 200 cm- 1 
is not observable, but the other two absorption bands are very 
clear. Comparing the intensity changes in going from the pure 
crystal to the mixed crystal we assign the absorption starting 
at 27 700 cm-1 as the So —*■ 4nir* (1A2) absorption, although 
the peak is about 500 cm-1  blue shifted compared to the same 
absorption determined in 3-MP glass.47 Then absorptions
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Figure 2. Phosphorescence excitation spectra: (1) pure xanthone 
crystal, (2) xanthone in diphenylmethane. Vertical dotted lines indicate 
the locations of the 0 -0  bands of phosphorescence spectra.

TABLE I: Energies of the States (cm-1)

Xanthone Xanthone Xanthone Xanthone 
crystal trap in DPM° in 3-MP‘

Figure 3. Phosphorescence spectra of xanthone in various hosts at 1.5 
K: (1) xanthone trap in xanthone crystal; (2) xanthone in diphenyl­
methane; (3) xanthone in 9,10-dihydroanthracene. •  and O indicate 
the vibronic bands belonging to the spectra of different triplet
species

37r7r*('!A|) 25 230 25 050 h 25 020 6 25 906 (?)
3mr*(3A2) 26 700 26 700 7

27 700 27 700 27 050
l7T7r*(1A]) 29 450
1 7T7T* C B2) 35 280
AEtt 1 470 1 680 Very small
AEst 2 470 2 680 1 144
A E (W - :W ) 1 000 1 000 ?

" DPM represents diphenylmethane. b Obtained from the 
phosphorescence spectra. Others were determined from either 
excitation or absorption spectra. ' Obtained by Huber et al. (ref 
47).

starting at 26 700 and 25 230 cm-1 are assigned as the So -*■ 
3nir* and Sy -*■ :!rrrr* absorptions, respectively.

The 0-0 band of the So * :br7r* absorption is very weak, but 
the vibronic bands gradually gain intensity as they approach 
the origin of the :inrr* state as shown in Figure 2. This indicates 
that the radiative transition probability of the So -* 37nr* 
absorption is very small at the 0-0 band, but it gains more 
intensity through vibronic coupling with the 3nir* state, as the 
So 37T7r* transition approaches the 0-0 of the 3n7r* state. 
Such a change of the intensity of the vibronic band is known 
in the cases of conjugative enones23 and many 3ir7r* substi­
tuted benzaldehydes26’65 and is consistent with the sinr* as­
signment of the 25 230-cm_1 band. The excitation spectrum 
of xanthone in diphenylmethane does not show the So —*■ 3ir7r* 
absorption, but clearly show the So -* 3n-7r* absorption. The 
location of the peak is almost identical with the case of pure 
crystal. The locations of the 3irir*, 3n7r*, and 1nir* states de­
termined here are tabulated in Table I and are compared with 
the data given by Pownal and Huber obtained in rigid ma­
trices.47

(A) (B)

Figure 4. Typical steady state zero field ODMR spectra of a xanthone 
trap. The spectra were taken by sweeping microwave about 250 times 
repetitively over 0.3-~0.5 GHz in 2.5 s and accumulating the signals on 
a CAT. id) and (2) are the signals of A species. (3) and (4) are the signals 
of B species.

(2) Phosphorescence Spectra. The phosphorescence 
spectra of xanthone obtained in various hosts are shown in 
Figure 3. In all three hosts the spectra are rather broad. Al­
though the vibrational structures appear to be different de­
pending on the host, this is primarily due to the superposition 
of the t wo spectra coming from the two different triplet species 
as shown in a later section. In all cases the 0-0 bands of the 
phosphorescence spectra are weak indicating that the main 
radiative mechanism is possibly vibronic. This is in striking 
contrast to the cases of many 37r7r* aromatic carbonyls of the 
benzaldehyde type.42’45

(3) ODMR Results. The MIDP results show that the decay
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TABLE II: Vibrational Structures of the Phosphorescence Spectra

Xanthone trap (A) Xanthone trap (B) Xanthone in 3-MP (2 K)°

ir, cm 1 A v, cm 1 v, cm 1 An, cm 1 v, cm“ 1 An, cm-1

25 050 24 882 25 650
24 760 290 24 590 292 25 350 300
24 360 690 24 230 652 24 980 670
23 720 1330 23 580 1302 24 290 1360
23 392 1658 23 256 1626 23 490 1660
23 100 1658 + 292 22 960 1626 + 296 23 690 1660 + 300
22 717 1658 + 675 22 589 1626 + 667 23 320 1660 + 670

" Taken from the data by Pownall, Connors, and Huber (ref 52).

TABLE III: ZFS and Dynamic Properties of the :!7r7r* State of Xanthone • *

O O ZFS,° Pj(relative) k{, s 1 &ir(relative)
cm 1 cm-1 x y z x y z Band X Y Z

Xanthone A 25 050 D = -0.1345 0.73 2.2 18.5 0-0 - 1 1
trap E = +0.0181 0-290 0.065 1

0-670 0.048 1
B 24 882 D = -0.1103 0.45 1.75 16.0 0-0 0.11 ~ 0.6 1

E = +0.0186 0-270 0.040 0.30 1
0-670 0.033 0.15 1

Xanthone A 25 020 D = -0.1352 0.07 1 0.73 2.4 17.7 0-0 ~I 1
in DPM E = +0.0173 0-290 0.05 1

0-670 0.03 1
B 24 895 D = -0.1105 0.04 0.2 1 0.50 1.95 16.0 0-0 -0.7 1

E = +0.0201 0-290 0.06 -0.4 1
0-670 0.04 - 0.2 1

Xanthone in 25 000 D = -0.1095 0.03 0.05 1 0.74 1.7 20 0-0 - 1 1
9,10-DHA E = +0.0195 0-670 0.18 1

" Note that D is negative because of the choice of our axis system.

rate from either the top or the bottom spin sublevel is the 
largest one. In view of the results of the other 3inr* aromatic 
carbonyls so far studied35“37’42'44-45 we assume that the bottom 
spin sublevel is the slowest decaying one and the x sublevel. 
The z sublevel is assumed to be the fastest decaying top sub- 
level as in all other 37T7t* aromatic carbonyls. Then kz »  k v > 
h x-

The ODMR results clearly indicate that in xanthone and 
diphenylmethane hosts there are two different triplet species 
(we call A and B) characterized by the two different sets of 
ZFS (Figures 1 and 4). The transition frequencies for the A 
species are 4.578 and 3.490 GHz in the xanthone crystal, and
4.58 and 3.55 GHz in diphenylmethane.66 For the B species 
they are 3.87 and 2.75 GHz in the xanthone crystal and 3.81 
and 2.77 GHz in diphenylmethane. These yield D and E 
values given in Table III. The E values of the two species are 
similar, but their D values are somewhat different. Their 
decay rates are also similar. In the case of xanthone in 9,10- 
dihydroanthracene the properties of the triplet state are 
similar to those of B species.

Since there are two distinct emitting species, the phos­
phorescence spectra consist of the superposition of those of 
two species. However, the spectra which belong to different 
species can be separated conveniently by taking rapid passage 
spectra corresponding to the microwave resonance frequencies 
of the A and B species. These spectra are shown in Figure
5.

The rapid passage spectra clearly show that the spectra of 
the individual species A and B are similar. The main vibra-

Figure 5. Rapid passage microwave modulated phosphorescence 
spectra of xanthone trap: (1) modulated by the 4.58-GHz x ■*-*• z transition 
of the A species; (2) modulated by the 3.87-GHz x * *  z transition of the 
B species; (3) modulated by the 3.50-GHz y ■*-* z transition of the A 
species; (4) modulated by the 2.753-GHz y ■++ z transition of the B 
species.
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tional frequencies obtained from the rapid passage spectra are 
~290 and 670 cm“ 1 for both species. These vibrational 
frequencies are also very similar to those obtained for xan- 
thone in 3-MP glass at 2 K studied by Pownall, Connors, and 
Huber52 (Table III), indicating that the nature of the species 
responsible for the phosphorescence emission obtained by 
them in 3-MP at 2 K is likely to be similar to those studied 
here. In pure xanthone and diphenylmethane the 0-0 of the 
A and B species are separated by about 160 cm-1.

The rapid passage phosphorescence spectra obtained by the 
z y and x ■*-»■ z transitions are similar, indicating that the 
main features of the spectra are determined by kzT. The in­
tensities of the 0-0 bands of the rapid passage spectra are weak 
indicating that kzr is small at the 0-0 bands. However, k7J — 
kyT of the B species seems to be somewhat larger than that of 
the A species. Although kzT > kyr and k / > k / were found for 
all vibronic bands, kzT/kyT varies considerably depending on 
the vibronic bands as shown in Table II.

In Figure 6 the phosphorescence spectra of xanthone ob­
tained under the continuous microwave saturation and shutter 
delay are shown. These spectra are likely to be contaminated 
by the z sublevel emission and do not represent the true x and 
y sublevel spectra. Nevertheless it is clear that the 0-0 and
0-1660 cm-1 peaks are relatively much stronger and 0-290 and
0-670 cm-1 peaks are weaker in the y sublevel spectrum. 
These spectra also indicate that the weakness of the 0-0 band 
is not due to the small Franck-Condon factor caused by dis­
tortion.

Discussions

(A) Nature of the Triplet States and ZFS. The experi­
mental results presented here leave little doubt about the 3x7t* 
assignment of the xanthone triplet state studied here. In fact* 
AA’'[-'r(:W *- :!7nr*) ~  1450 cm“ 1 for the present system is quite 
large. At present we have no experimental data to decide the 
origin of the two triplet species, but they may be due to the two 
types of xanthone molecules occupying the two different sites 
in crystals. Guest triplet states occupying multiple sites are 
quite common in mixed crystal systems.67“70 Although the 
decay properties of the A and B species are very similar, D 
values are considerably different.

In the present systems AETT(3nx*-37nr*) and AEsTGnx*- 
37T7t*) are about 1450 and 2500 cm“ 1, respectively. Although 
we do not know the exact values of AEtt  and AEst for the A 
and B species, we may assume similar values. Then, if the 
spin-orbit coupling matrix element 3G = (-Vx* |.5¥so|3nx*) 
is large, D should be affected strongly by the second-order 
effect of spin-orbit coupling.8’38-39-71 It was found that this is 
the case in conjugated enones,41 and aromatic carbonyls of the 
benzaldehyde type.26-42-46 For a series of aromatic carbonyls 
of the benzaldehyde type 3G was estimated empirically to be 
~ 9  cm“ 1.26-42-46 When AEtt  = 1400 cm“ 1 this value of 3G 
predicts that the spin-orbit contribution to D is about 0.08 
cm“ 1.

In the xanthone triplet states studied here the observed D 
are rather small and it is likely that the spin-orbit contribution 
to ZFS is much smaller than in the cases of benzaldehydes. 
However, the difference in D of A and B species could be, at 
least partly, due to the difference in the contribution of 
spin-orbit coupling to ZFS.

In order to see whether the spin-orbit contribution to ZFS 
is large in the aromatic carbonyls containing two phenyl rings 
such as xanthone and substituted benzophenones we have 
further studied several systems with very different values of 
AEt t - The results are shown in Table IV. In spite of large

Figure 6. The phosphorescence spectra of a xanthone trap obtained 
with a time delay of the shutter opening and microwave saturation: ( 1 ) 
microwave saturation of the x ** z transitions of the A and B species; 
(2) microwave saturation of the y -*-* z transitions of the A and B 
species.

differences in AEtt and the changes in the nature of Ti state, 
the variations in ZFS are not very large. This situation is very 
different from benzaldehydes and acetophenones in which \D | 
ranges from 0.1 to 0.5 cm“ 1.26-42-46 The above observation also 
seems to indicate that the spin-orbit contribution to ZFS in 
xanthone and substituted benzophenones are likely to be 
much smaller than in benzaldehydes.

In the matrix element 3G the integration is taken over both 
electronic and nuclear coordinates. Hence, 3G is affected by 
the changes of electronic wave functions as well as by 
Franck-Condon factor. Franck-Condon factor could be im­
portant in reducing 3G in the present systems.

(B) Total and Nonradiatiue Decay Rates. k z ^  16 s“ 1 is 
much larger than the sublevel decay rates of the 37T7t* aromatic 
hydrocarbons. Thus, the presence of the C = 0  group must be 
the cause of the relatively large decay rates. The Boltzmann 
average of kz, ky, andkx gives a lifetime of -~150 ms. This value 
is similar to the lifetime of the long-lived xanthone observed 
by Pownall et al.47-52 kz »  ky, kx follow the general decay 
pattern of the 3xx* aromatic carbonyls so far investigated. As 
seen from the values given in Table III, k j k y »  k zr/k/ .  
Therefore, k z should have a large nonradiative decay com­
ponent as in many other 3xx* aromatic carbonyls with rela­
tively large AEt t -46

In the present xanthone AEtt  is rather large and the mixing 
with the 3nir* state is not likely to be important in determining 
kz. Therefore, as in the other 3xx* aromatic carbonyl with 
relatively large AEtt , spin-orbit mixing with the 'nx* state 
is considered as the main cause for the nonradiative decay 
from the z sublevel.46 However, kz obtained for xanthone here 
is much smaller than those obtained for substituted benzal­
dehydes with the similar value of AEgT. In the case of para- 
substituted benzaldehyde we have obtained k z ~  50 s“ 1 for 
the systems with AEst = 2500 cm“ 1. Rather small value of k z 
in xanthone may also be due to the small value of spin-orbit 
matrix element, lG = (iTnr*\Ti&0\lmr*).

The value of k y is similar to those of many other 3xx* aro­
matic carbonyls. The mixing with the Vir*, state is
considered to be the main cause of the y sublevel decay as in 
other aromatic carbonyls.
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TABLE IV: ZFS and Decay Properties of the Related Molecules

poo, _____ ZFS, cm 1 Total decay rate, s-1
cm 1 D E X Y Z Character

Xanthone trap (B) 24 882 -0.1103 +0.0186 0.45 1.75 16.0 37T7T*
4-Aminobenzophenone (DPM) 21 690 -0.0704 +0.0304 1.7 17 37T7T*
4,4'-Dimethoxybenzophenone 24 470 —0.0965“ +0.0321“ 51 310 3nir* (?)
Benzophenone* (DPM) 23 780 -0.1410 +0.0426 45 42 750 3nir*

“ Taken from the data by Batley.and Bramley (ref 39). * ZFS for benzophenone obtained in DPM are somewhat different from 
those obtained in other hosts; Chan and Schmidt, Symp. Faraday Soc., 3,156 (1969); Winscon and Maki, Chem. Phys. Lett., 12,264
(1971); Shain and Sharnoff, J. Chem. Phys., 59, 2335 (1973); Hochstrasser, Scott, and Zewail (ref 40).

The value of kx is, on the other hand, considerably smaller 
than those of substituted benzaldehydes. This observation 
is consistent with the planar structures of xanthone.

(C) Si —*■ Ti Intersystem Crossing. In the case of xanthone 
in diphenylmethane and 9,10-dihydroanthracene the popu­
lating rates represent the relative populating rates via Si —►
Ti intersystem crossings. In these systems the general selec­
tion rule for the intersystem crossing in %rr* aromatic car­
bonyls, Pz »  Px, Py, also holds.

(D) Radiative Properties. While the pattern of the total 
decay rates from the sublevels of xanthone is similar to those 
of other 3ir7r* aromatic carbonyls, the radiative properties are 
quite different from the 37nr* aromatic carbonyls of benzal- 
dehyde type. First, the intensity of the 0-0 band is weak. 
Second, the carbonyl stretching mode is not the prominent 
vibrational band. In the following we analyze the obtained 
data based on the C2u symmetry. The direct spin-orbit cou­
pling scheme under C2u symmetry is given in Table V.

(1) Radiative Decay from the z Sublevel. There has been 
much discussion about the radiative mechanisms of the 3irir* 
aromatic carbonyls.1-3'9'11"1318"42’44'45 The suggested main * 
mechanisms include spin-orbit mixing with the 'nir* state9’14 
and direct configurational and vibronic mixing with the 3nir* 
state.14-16’23’42’45 In the case of aromatic carbonyl of the 
benzaldehyde type, the following three mechanisms were 
found to be important, although the relative importance of 
the different mechanisms depends considerably on the sys­
tem:42’45 (a) Spin-orbit mixing with *nr* state

so
W O V )  W

(b) Direct configurational mixing with 3mr* state
electr SO

:W ( T i z) 3nir*(T2z) Ai)

(c) Vibronic mixing with 3n7r* state
vibr SO

W f T j 2) 3nir*(T2z) -*-*■ W jM n )

Although part of the z sublevel radiative decay may be due 
to the above mechanisms, xanthone in the present study is 
unique in that none of the above mechanisms are the main one 
for the following reasons.

First, the z sublevel emits only weakly at the 0-0 bands. 
Hence mechanism a or b cannot be the main one. The im­
portance of mechanism a depends on AEst, 1G, and the os­
cillator strength for the 'n7r* -*■ S0 transition. The importance 
of mechanism b depends on A£tt and the deviation from the 
planarity which allows the direct mixing of 3nir* and 3irir* 
states. The relatively large AETt , the rigid planar structure 
of xanthone, and the small value of ]G are probably factors 
which are not in favor of mechanisms a and b.

Although the major part of the z sublevel emission is vi-

TABLE V: Routes of Direct Spin-Orbit Coupling (C2v 
Symmetry)

Triplet
states

Spin states and total 
symmetry

Mixing singlet state and 
state symmetry

lJT7T*(:1Al) TZ(3A2) hlTT*!^)
Ty(3Bd 1<rx*(1Bi)
Tx(3B2) 1n<r*(1B2)

ln7r*(3A2) TZ(3A!) 1tt*(1AJ
Ty(3B2) W O B a)
TX(3B!) W P B j) -

bronic (Herzberg-Teller mechanisms) mechanism c also 
cannot be the main one here, since this mechanism is incom­
patible with the phosphorescence polarization data by Pow- 
nall and Huber.47 These authors found that the polarization 
of the phosphorescence of the long lived <~120 ms) xanthone 
triplet state is negatively polarized with respect to the So —*■ 
17T7r*(1Ai) absorption at the vibronic bands indicating that the 
17T7t*(1Ai) state is not the main mixing singlet state. Their 
work suggests that the main mixing singlet state is likely to 
be 17rir*(1B2) state. If this is the case the possible vibronic 
spin-orbit mechanism should be

SO vibr(bi)
W e A z I ^  W T iA a ) ^  W O B a )

The vibrations most active in the vibronic mixing are 290 and 
670 cm-1. If the above mechanism is correct these vibrations 
should be bi vibrations.

Thus the radiative property of xanthone is strikingly 
different from those of many other 3irir* aromatic carbonyls 
in that both vibronic and configurational mixings between 
'■’’mr* and :tmr* states are rather ineffective in producing 
radiative activity of the z sublevel. This is probably because 
in xanthone the C = 0  group is rigidly held to the planar ring 
system and the carbon atoms next to the carbonyl group are 
fixed to rings.

(2) y Sublevel Emissions. The y sublevel emission of the 
3-tnr* aromatic carbonyl was ascribed to the direct mixing with
the 1<r7r(I7ro’*) state.18’42’46

so
3ir7ry*(3B1) -«-► W *, ^ - ( i B O

Strong 0-0 and 1660-cm-1 bands of the y sublevel emission 
of xanthone indicate the importance of the direct mechanism 
and are consistent with the above mechanism. The fact that 
k7r/kyr ~  1 at the 0-0 band indicates that direct spin-orbit 
mixing with the lair*(1Tra* ) state is at least as effective as that 
with the lnir* state in producing radiative decay at the 0-0 
band in spite of the large energy difference between 3?rir* and 
1<T7T*(1Tr<T*) states.
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(3) x Sublevel Emission. The emission from the x sublevel 
is the weakest. k.,r/kxr was found to be ~30. This value is 
similar to that obtained in the 3irir* azaaromatics such as 
quinoxaline studied by Anteunis et al.72 The small value of 
fexr is consistent with the planar structure of xanthone in the 
37T7t* state.

(E) Connection with the Other Related Work. It is known 
that xanthone exhibits dual phosphorescence:47 one short­
lived with the lifetime of ~25 ms and the other long-lived with 
an ~120 ms lifetime. The short-lived one has been considered 
as arising from the 3rur* state, while the long-lived one appears 
to originate from the 3inr* state. However, it was suggested 
that the dual emission in rigid media may arise from two dif­
ferent conformations of the 3n7r* state.52 The long-lived (rp 
~  120 ms) species in 3-MP was ascribed to 3mr* state xan­
thone which has a distorted structure. As. we have shown here 
the long-lived xanthone triplet state observed by Pownall et 
al. in 3-MP at 2 K is likely to be similar in character to 3ttk* 
state xanthone studied here and there seems little doubt about 
the 37r~* assignment to the long-lived xanthone. Our ODMR 
data also do not support the suggestion that long-lived xan­
thone has a very distorted structure.

The short-lived xanthone species (r ~  25 ms) has a strong 
emission at the 0-0 band with positive polarization with re­
spect to So -*• 37T7r*(1Ai) absorption. The phosphorescence 
spectrum is also characterized by a strong progression of the 
C = 0  stretching frequency. These properties have been gen­
erally thought of as indications of a 3nx* nature.1’2 However, 
it has been shown that these properties also appear in the 3mr* 
carbonyls, if the energy separation between them is small and 
direct mixing between 3mr* and 3rr~* states due to distortion 
from planarity is the main source of the radiative activity.46 
In our xanthone systems the energy separation between the 
singlet and triplet n7r* states was found to be ~1000 cm-1. On 
the other hand, in the short-lived xanthone triplet state in
3-MP the separation between the Ti state and 1 ntr* was es­
timated to be 1144 cm-1 47 which is still ~150 cm-1 larger than 
the 1nir*-3mr* separation determined in our system. Hence, 
it is possible that the short-lived species is also a state 
with very small AEtt  (on the order of 100 cm-1). In the 3inr* 
states with such a small AEtt  the radiative properties may 
resemble those of the 3mr* states as in the case of numerous 
37tx* aromatic carbonyls of the benzaldehyde type with rela­
tively small AEtt -42’46 Since the carbonyl group is rigidly held 
to the planar molecule in xanthone distortion from planarity 
in 3mr* and 37r7r* states would be smaller than in benzalde­
hyde. Nevertheless such a mixing may be significant when 
AEtt is very small. A lifetime of 25 ms is also consistent with 
the 3ttk* assignment of the short-lived species. It was found 
that the total decay rate of a series of 3mr* aromatic carbonyl 
is approximately proportional to 1/AEst2-46 Since AEst for 
the short-lived species is about half that for the long-lived 
xanthone studied here, their lifetime is predicted to be about 
25 ms, if a similar correlation between the total decay rate and 
AEst holds for xanthone.

In summary all spectroscopic data on the short-lived xan­
thone can be rationalized on the basis of the dominant :Vx* 
character, although we have no direct evidence in favor of such 
an assignment. When we compare ~25-ms lifetime of xan­
thone with those of 3nir* benzophenone (~5 ms)1 and an- 
throne (2 ms)13 the lifetime of short-lived xanthone also ap­
pears to be in favor of a 3mr* assignment.
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The autoxidation of tetralin with lead dioxide has been studied at 291-323 K. The application of electron 
spin resonance (ESR) to this reaction has enabled the tetralin peroxy radical (a chain propagating agent) to 
be detected during the reaction. By measuring simultaneously the concentration of tetralin peroxy radical 
and the rate of oxygen absorption, the rate expressions for both the radical concentration and oxygen ab­
sorption have been determined under the same conditions. A reaction mechanism has been proposed such 
that the chain initiation involves the formation of the peroxy radical from the hydroperoxide over the cata­
lyst surface and their desorption into the homogeneous phase, where the chain propagation and the chain 
termination proceed. The simultaneous measurements of the radical concentration and the rate of oxygen 
absorption have made the accurate determination of the absolute rate constants of the propagation and the 
termination possible.

Introduction

The oxidation of organic compounds is usually carried out 
in the gaseous phase with heterogeneous catalysts or in the 
liquid phase with homogeneous catalysts. Recently, however, 
the autoxidation of liquid hydrocarbons with heterogeneous 
catalysts has been studied by several investigators.1*11 In our 
previous works,9*11 we have studied the autoxidation of cu­
mene as well as the decomposition of cumene hydroperoxide 
with lead dioxide and the application of electron spin reso­
nance (ESR) to these reactions has enabled cumylperoxy 
radical (a chain propagating agent) to be detected in the 
reactant solutions. The ESR and kinetic results have lead to 
the conclusion that the autoxidation of cumene with lead 
dioxide is a radical chain reaction in which the chain initiation 
involves the formation of cumylperoxy radicals by the de­
composition of the hydroperoxide over the catalyst surface 
and their desorption into the homogeneous phase, where the 
chain propagation and the chain termination proceed.9 The 
termination process has been considered to be the first-order 
decay of cumylperoxy radicals.10

However, with regard to primary or secondary hydrocar­
bons, the autoxidation with heterogeneous catalysts has not 
been studied as extensively as that of the tertiaries, such as

cumene, although the autoxidation with homogeneous cata­
lysts has been studied extensively, especially in the case of 
tetralin,12*16 which is a typical secondary hydrocarbon. The 
autoxidation of tetralin with manganese dioxide has been 
considered to be a radical chain reaction,8 but the reaction 
mechanism has not been elucidated in detail and the presence 
of peroxy radical has not been confirmed so far either.

In the present work, we have studied the autoxidation of 
tetralin with lead dioxide by measuring both the concentration 
of tetralin peroxy radical with ESR and the rate of oxygen 
absorption and by examining the product distribution. A re­
action mechanism, composed of elementary reactions analo­
gous to those proposed in the autoxidation of cumene 
with lead dioxide9 except for the termination step, will be 
proposed. The absolute rate constants and the Arrhenius 
parameters for the propagation and the termination reactions 
can be determined directly by measuring the radical concen­
tration and the rate of oxygen absorption simultaneously.

Experimental Section

Materials. Tetralin (reagent grade), obtained from com­
mercial sources, was distilled and percolated through an ac­
tivated aluminum column prior to use. The surface area of
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lead dioxide, obtained from Maeda Chemicals, was 17.6 m2/g 
as determined by the BET method.

Apparatus. The apparatus has been described in detail 
elsewhere.9-11 The autoxidation of tetralin with lead dioxide 
was carried out in a standard sample tube (0.8 cm i.d.) placed 
in an ESR cavity at 291 K. Oxygen gas was bubbled through 
the solution by use of a capillary inserted in the sample tube 
in order to put the catalyst powder in a uniformly suspended 
state. On adding lead dioxide powder to the tetralin solution 
using CC14 as a diluent, the ESR signal was registered with use 
of a JEOL-X-band spectrometer (JEOL-PE-lX) with 100- 
kHz magnetic modulation. The radical concentration was 
determined by comparing the absorption area of the radical 
and that of l,l-diphenyl-2-picrylhydrazyl (DPPH) in ben­
zene.

The simultaneous measurements of both the radical con­
centration and the rate of oxygen absorptipn were also carried 
out at 291-323 K, as follows. The autoxidation reaction was 
carried out in a 50- or 100-cm3 flask immersed in a tempera­
ture-controlled bath, the solution was stirred magnetically, 
and the flash was attached to a wet-gasometer with which the 
rate of oxygen absorption was measured. At the same time, 
the part of the solution involving the catalyst powder was 
circulated with use of a roller pump through the ESR cavity. 
The intensity of the ESR signal was confirmed to be inde­
pendent of the circulating rate over a range of 50-200 cm3/  
min.

Analytical Procedure. The concentrations of the hydro­
peroxides and the other products were determined as follows. 
When the reaction was stopped, the solution involving the 
catalyst powder was filtered immediately and then part of the 
sample was titrated for hydroperoxide by the' iodometric' 
method.17 Then, part of the filtered solution was treated with 
a sufficient amount of triphenylphosphine to convert the 
hydroperoxide into tetralol quantitatively.18 The treated: 
sample was then analyzed for tetralol and tetralone by chro­
matographic methods.

Results

Steady Concentration of Tetralin Peroxy Radical. When 
lead dioxide powder was added to the tetralin solution, the 
ESR spectrum of tetralin peroxy radical was observed at 291
K. The ESR spectrum consisted of a symmetric single line 
with no detectable hyperfine structure; the isotropic g factor 
of 2.0149 ±  0.0002 is in good agreement with the literature 
values.19 ‘- 1 The line width (A /imsi, distance between points 
of maximum slope) was 0.98 ±  0.03 mT. No ESR signal was 
observed unless lead dioxide powder was added to a tetralin 
solution. The concentration of tetralin peroxy radical was 
almost constant with reaction time for several hours. The ef­
fects of the concentration of tetralin and the catalyst 
weight-to-liquid volume ratio on the steady radical concen­
tration were investigated at 291 K. The radical concentration 
was found to be independent of the catalyst weight-to-liquid 
volume ratio over a range of 40-120 g/1. and to be proportional 
to the concentration of tetralin, as shown in Figures 1 and 2, 
respectively, and eq 1 :

[RO2.] = fea[RH][PbO2]0 (1)
where ka is the constant at 291 K as (2.33 ±  0.04) X 10~7
l-/g-

Rate of Oxygen Absorption. The absorption of oxygen is 
observed when lead dioxide powder is added to a tetralin so­
lution and the rate of oxygen absorption was constant with 
time for several hours. The absorption of oxygen did not occur

x10~6

(PbCh), g /i

Figure 1. Steady concentration of tetralin percxy radical as a function 
of initial catalyst weight-to-liquid volume ratio for the autoxidation of 
tetralin with lead dioxide at 291 K.

x1CT6

(RH), M

Figure 2. Steady concentration of tetralin peroxy radical as a function 
of-initial concentration of tetralin for the autoxidation of tetralin with lead 
dioxide at 291 K.

unless lead dioxide powder was added to a tetralin solution. 
The effects of the catalyst weight-to-liquid volume ratio and 
the tetralin concentration on the steady rate of oxygen ab­
sorption were investigated at 291 K. Figure 3 shows the rela­
tion between the steady rate of oxygen absorption and the 
catalyst ratio for various concentrations of tetralin. Like the 
radical concentration, the rate of oxygen absorption is found 
to be independent of the catalyst ratio over the same range in 
Figure 1. In Figure 4, the square root of the rate of oxygen 
absorption is plotted against the initial concentration of tet­
ralin. The square root of the rate of oxygen absorption is found 
to be proportional to the tetralin concentration. Thus, the rate 
of oxygen absorption is expressed as:

- (d [ 0 2]/dt) = fcb[RH]2[PbO2]0 (2)

where ky, is the constant as (5.40 ±  0.10) X 10~7 l.2 g_1 mol-1 
s_1 at 291 K, and [RH] is the initial concentration of tetralin 
which is almost constant during the reaction because of low 
conversion in our experimental conditions.

Effect of Temperature on Radical Concentration and on 
Rate of Oxygen Absorption. The simultaneous measurements 
of the radical concentration and the rate of oxygen absorption 
were carried out in the temperature range of 291-323 K. The 
results are shown in Figure 5. In each case, experiments were 
started with the same initial hydroperoxide and tetralin 
concentrations and the same catalyst weight-to-liquid volume 
ratio. By assuming the same kinetics as in eq 1 and 2 are op-
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Figure 3. Rate of oxygen absorbed as a function of initial catalyst 
weight-to-liquid volume ratio for different initial concentrations of tetralin 
at 291 K.

x10"3

Figure 4. Square root of rate of oxygen absorbed plotted against initial 
concentration of tetralin at 291 K.

erative throughout the temperature range, the activation 
energies for ka and k\, were determined as 0.0 and 23 kJ/mol, 
respectively.

Hydroperoxide Concentration during the Reaction. The 
concentrations of tetralin hydroperoxide during the reaction 
were determined at various reaction times at 291 K. The hy­
droperoxide concentration was almost constant with time for 
several 10-min periods. The steady concentration of the hy­
droperoxide during the reaction was found to be independent 
of the initial concentration of the hydroperoxide added before 
the reaction. These results are the same as those obtained in 
the autoxidation of cumene reported previously.9 The effects 
of the tetralin concentration and the catalyst weight-to-liquid 
volume ratio on the steady hydroperoxide concentration were 
investigated at 291 K. The results are summarized in Figure 
6 where the steady hydroperoxide concentration is plotted 
against [RH]2/[PbC>2]. The steady hydroperoxide concen­
tration is found to be proportional to the square of tetralin 
concentration and inversely proportional to the catalyst ratio. 
Then, the steady concentration of tetralin hydroperoxide 
during the reaction is expressed as:

Figure 5. Steady concentration of tetralin hydroperoxide plotted aaainst 
[RH]2/[P b02] at 291 K.

Figure 6. Arrhenius plots of the rate of oxygen absorbed and the steady 
concentration of tetralin peroxy radical.

[ROOH]„ = fec[RH]2/[Pb02] (3)

where kc is the constant as 5.0 X 10-3 g/mol.
Product Distribution. The product distribution for the 

autoxidation of tetralin with lead dioxide was investigated at 
291 K. The results are summarized in Table I, where the 
amount of oxygen absorption is also presented. The reaction 
products are found to be tetralol and tetralone as well as the 
hydroperoxide. The yield of tetralol is always greater them that 
of tetralone, irrespective of the catalyst weight-to-liquid 
volume ratio and the concentration of tetralin. Then, the ratio 
of tetralol to tetralone can be denoted as:

[R0H ]/[R 'C=0] = 1 + a (4)

The value of a, given in Table I as 0.72 ± 0.04, is almost con­
stant, irrespective of the catalyst ratio and the tetralin con-
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TABLE I: Product Distribution of Tetralin Oxidation with Lead Dioxide
([ROH]

[RH]o,
M

[PbO2]0,
g/1-

[ROH],
M

[R'C=0],
M

[0 2],
mol/1.

+ [R 'C=0])/ 
[O2] a

' 7.36 71 0.151 0.086 0.144 1.64 0.76
7.36 60 0.065 0.035 0.051 1.96 0.86
7.36 51 0.158 0.084 0.144 1.68 0.88
7.36 50 0.250 0.150 0.255 1.56 0.68
7.36 40 0.045 0.024 0.038 1.82 0.88
7.36 33 0.108 0.068 0.070 2.52 0.60
7.36 25 0.156 0.105 0.143 1.82 0.50
5.88 25 0.131 0.080 0.089 2.38 0.64
4.91 67 0.071 0.040 0.056 1.98 0.78
4.91 40 0.060 0.033 0.043 2.16 0.82
3.68 80 " 0-1)68 0.040 0.053 2.04 0.70
2.45 80 0.058 0.037 0.052 1.82 0.58

centration. The ratio of the sum of tetralol and tetralone, 
[ROH] + [R 'C=0], to the amount of oxygen absorption, [02], 
is 2.0 (mean value) as seen in Table I. It should be noted that 
the ratio is the same as that of the concentration of dimeth- 
ylphenylcarbinol to the amount of oxygen absorption in the 
autoxidation of cumene with lead dioxide.9

R2CHOOOOHCR2 
^  ?

i  O— '0v,

;

CHRj

Discussion RjCHOH +  R ,C =0 +  0, (9)
Reaction Mechanism. From eq 1 and 2, the relation be­

tween the rate of oxygen absorption and the concentration of 
tetralin peroxy radical is given as:

-(d [O d /d f) = fec[RH][R02-] (5)

where k c is equal to ky,/ka. Equation 5 indicates that the fol­
lowing chain propagation reactions proceed (eq 6 and 7) by 
which oxygen is absorbed.

R 0 2- + R H ^ W R 0 0 H  + R. (6)

R* + 0 2 — ^  RO‘2* (7)

(B) The self-reaction of secondary peroxy radicals gives two 
secondary alkoxy raicals followed by their rapid dispropor­
tionation while still in the solvent cage, which is analogous to 
the case of the tertiaries:25’26

R2CHOOOOHCR2 — (R2CHO- + 0 2 + -OHCRaicage
— R2CHOH + R2C = 0  + 0 2 (10)

According to the Russell mechanism (A), the self-reaction of 
the peroxy radicals should yield equal amounts of alcohol and 
ketone, while, according to mechanism B, a certain fraction 
of the alkoxy radicals may escape from the cage and more al­
cohol will be formed than ketone via the following reaction:

As in the previous study on the autoxidation of cumene with 
lead dioxide,9 it can be well assumed that the initiation step 
of the autoxidation is the formation of peroxy radicals from 
the hydroperoxide decomposition on the catalyst surface. The 
propagation steps are given as eq 6 and 7, described above. As 
far as the termination step with regard to a secondary hy­
drocarbon such as tetralin is considered, the following bi- 
molecular termination of secondary peroxy radicals which 
have an a hydrogen has frequently been postulated in the 
past:22

2R2CHOO- ^  (R2CHOOOOHCR2)
— R2CHOH + R2C = 0  + 0 2 (8)

The self-reaction of secondary peroxy radicals proceeds 
through a tetroxide intermediate and yields alcohol, ketone, 
and oxygen. Though the presence of a tetroxide intermediate 
has been confirmed in the self-reaction of secondary peroxy 
radicals, as well as in the reactions of the tertiaries,22 there 
have been reported two different mechanisms for the forma­
tion of alcohol, ketone, and oxygen,23 as discussed below.

(A) The self-reaction of secondary peroxy radicals proceeds 
via a highly oriented tetroxide decomposing through a cyclic 
transition state, a process first advanced by Russell,24 which 
is not available to the tertiaries.

R O  + ROOH -*• ROH + R 02- (1 1 )

In the present case, a greater amount of tetralol than tetralone 
was formed and the ratio of tetralol to tetralone was constant, 
irrespective of the catalyst weight-to-liquid volume ratio and 
the tetralin concentration, as seen in Table I. Similar results 
(that more alcohol is formed than ketone) have been obtained 
in the studies on pulse radiolysis of cyclohexane saturated with 
oxygen27-30 and on the decomposition of cyclohexenyl hy­
droperoxide in cyclohexene with manganese dioxide.31 Thus, 
it is concluded in the present case that the termination step 
is the self-reaction of tetralin peroxy radicals which proceeds 
via mechanism B. The Arrhenius parameters for the rate of 
the self-reaction of the peroxy radicals determined in this 
study also indicate that mechanism B is operative in the 
present case, as will be discussed later.

On the basis of the above discussion, the whole reaction 
mechanism can be written as shown in eq 12-17.
Initiation

R 00H  + Pb02- ^ R 0 2- (12)

Propagation

R 02- + R H -^ -R . + ROOH (13)

The Journal o f Physical Chemistry, Vol. 80, No. 27, 1976



ESR Studies on Autoxidation of Tetralin 2977

R- + O2 — *■ R 02- (14)

RO- + ROOH — W ROH + R 0 2- (15)

R 02- + R 0 2- 2RO- + 0 2 (16)

Termination

R 0 2- + R 0 2- ROH + R 'C = 0  + 0 2 (17)

Here, we have denoted the rate of the hydroperoxide decom­
position on the solid surface by R\. Tetralin peroxy radicals 
are formed by the decomposition of the hydroperoxide on the 
catalyst surface and desorb into the homogeneous phase (eq
12), wherevthe chain propagation (eq 13-16) and the chain 
terminatidfe-leq 17) proceed. According to this mechanism, 
the following rate equations will be given:

—(d[0 2]/dt)A= fe 4[R-] [02] -  fee[R02-]2 (18)

(d[ROOH]/di) = fe3[R02-][RH] + Rx -  fe5[RO-][ROOH]
(19)

where fe6 -  feBp + fe6t. Applying the steady-state approxima­
tion with respect to [R02-] and [R-], eq 19 can be rewritten
as:

(d[ROOH]/di) = ka[ROr ] [RH] -  2fe6[R02-]2 (20)

The concentration of the hydroperoxide during the reaction 
was found to be steady. Then:

(d[ROOH]/dt) = 0 (21)

From eq 20 and 21, the steady concentration of tetralin peroxy 
radical is given as:

[R02-] = fe3[RH]/2fe6 (22)

Equation 22 is consistent with the experimental observations 
that the radical concentration is proportional to the tetralin 
concentration but independent of the catalyst weight-to-liquid 
volume ratio, eq 1. The rate of oxygen absorption, eq 18, can 
be rewritten as follows using eq 22:

- (d [0 2]/df) = fe3[R02-][RH] -  fe6[R02-]2

= fe32[RH]2/4fe6 (23)

Equation 23 also agrees with the experimental observations 
that the rate of oxygen absorption is proportional to the square 
of [RH] and independent of the [Pb02], eq 2.

Product Distribution. The proposed reaction mechanism 
can also explain the product distribution. The reaction 
products were tetralol and tetralone as well as the hydroper­
oxide, and the ratio of tetralol to tetralone, eq 4, was constant 
at 1.72, irrespective of [Pb02] and [RH]. According to our 
reaction mechanism, the free alkoxy radicals which escape 
from the cage, eq 16, react with the hydroperoxide, eq 15, to 
yield more tetralol than tetralone. With steady-state ap­
proximation with respect to [RO-], the rate of the formation 
of tetralol and tetralone is given as:

(d[ROH]/dt) = M R 0 2-]2 + fe5[RO-][ROOH]

' = (k6t + 2fe6p)[R 02-]2 (24)

(d[R 'C =0]/d i) = fe6t[R02-]2 (25)

From eq 24 and 25, one obtains the ratio of tetralol to tetral­
one:

(d[R0H ]/d[R 'C=0]) = 1 + 2(fe6p/fe6t) ' (26)

Equation 26 agrees with the experimental observations, that 
the ratio of tetralol to tetralone is greater than 1 , and is inde­
pendent of [Pb02] and [RH], eq 4. Comparing eq 26 with the 
experimental one (eq 4), one obtains:

a = 2fe6p/fe6t (27)

From eq 22 and 23, the rate of oxygen absorption is rewritten
as:

(d[02]/d£) = fe6[R02-]2 (28)
X'1 ' : i'.

Then, from eq 24, 25, and 27, eq 29 is obtained. Equation 29 
also agrees with the experimental observations in Table I that 
the ratio of [ROH] + [R 'C =0] to [0 2] is 2.0.

d([ROH] + [R 'C = 0 ]) /-d [0 2] = 2 (29)

Using eq 22, the rate of the hydroperoxide formation, eq 19, 
can be rewritten as:

(d[ROOH]/d£) = (fe32k6t/ 2/z62)[RH]2 -  R; (30)

It is well assumed that the rate of the hydroperoxide decom­
position on the solid surface, R,. can be expressed as a function 
of [Pb02] and [ROOH] as follows:

R-, = fe_[R00H][Pb02] (31)

where k 1 is the rate constant. Then, from eq 21, 30, and 31, the 
steady concentration of the hydroperoxide during the reaction 
is given as:

[ROOH] k^ket [RH]2 

2k^kx [Pb02] (32)

Equation 32 is also consistent with the experimental obser­
vations in Figure 6 that the steady hydroperoxide concen­
tration is proportional to the square of the tetralin concen­
tration and inversely proportional to the catalyst ratio.

Absolute Rate Constants for Tetralin Oxidation. The el­
ementary reactions involved in the autoxidation of hydro­
carbons have received considerable attention and the values 
of the rate constants for the elementary reactions have been 
reported.22 In order to elucidate the reaction mechanism for 
the elementary reactions, more precise values of “ absolute” 
rate constants and their temperature coefficients under var­
ious experimental conditions are required. In the present 
study, the simultaneous measurements of the concentration 
of tetralin peroxy radical and the rate of oxygen absorption 
have permitted easy and direct evaluation of the absolute rate 
constants for the autoxidation of tetralin. Comparing the 
experimental observations, eq 1 and 2, with eq 22 and 23, one 
obtains the values of the propagation rate constant, fe3, and 
the self-reaction of the peroxy radicals, fee, at 291 K as:

fe3 = 2feb/fea = 4 .6 ± 0 .2 M - 1s - 1 (33)

2fe6 = 2feb/fea2 = (2.0 ±  0.1) X 107 IVU1 s“ 1 (34)

From eq 27, 33, and the value of a in Table I, one obtains the 
values of the termination rate constant feet and the rate con­
stant fefip at 291 K given in eq 35 and 36.

2fest = 2(1 + a/2 )-1fe6 = (1.5 ±  0.2) X 107 M“ 1 s“ 1 (35)

2fefip = 2(1 + 2/ « ( " ‘ fee = (5.3 ±  0.8) X 106 M-1 s“ 1 (36)

The apparent activation energy for fea and feb obtained from
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TABLE II: Activation Parameters for Tetralin Oxidation

Log E% Log E&,
Aa/M^1 s^1 kj/mol 2/V M - ' s_1 kJ/mol Ref

4.74 23 11.3 23 This study
4.4 19 7.6 1.7 28
6.75 35 9.6 18 29

10.0 19 ± 4 30
5.3“ 30“ 10.9“ 30“ 9

“ Activation parameters for cumene oxidation determined by
the same method.

Figure 5 leads to the activation parameters of the propagation 
rate constant,-£3, and. the self-reaction of tetralin peroxy 
radical, k6. The values are shown in Table II, together with the 
literature values.28̂ 30 The reported literature values of £3 were 
determined from the relation23 £3 = £ 0  — ( l /2)£i + ( l /2)£ 6, 
where £ o is the overall activation energy and E, is the acti­
vation energy for chain initiation, and vary over a wide range 
of 19-35 kJ/mol. The reported values of £3 were considered 
to be inaccurate because they should reflect the errors in­
volved in the various methods23 used to determine E6, £;, and 
Eq. In this study, the activation parameters of £3 and ke have 
been determined directly under the same conditions as de­
scribed above.

The parameters in the autoxidation of cumene are also 
listed in Table II. It should be noted that the frequency factors 
for the self-reaction of tetralin peroxy radicals and cumyl- 
peroxy radicals are quite similar. This suggests that the 
mechanism of the self-reaction of teralin peroxy radicals is the 
same as that of cumylperoxy radicals. Thus, it is concluded 
that mechanism B, not mechanism A, is also operative for the 
self-reaction of tetralin peroxy radicals.
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The kinetics and mechanism of oxidation of a series of quinols with hexaehloroiridate(IV).have been investi­
gated by means of a stopped-flow technique. The reaction rate showed first-order dependence on both reac­
tants and a small effect of acidity and temperature was assessed. The data are in agreement with the Marcus 
theory, and a ^organizational parameter, X, of 26 kcal mol-1  is derived; this value supports that the rate-de­
termining step is a simple electron transfer. The intrinsic and extrinsic parameters for the oxidation of this 
class of reversible redox organic systems have been estimated.

Introduction

Relationships between free energies of activation and the 
corresponding free energies of reaction have provided useful 
information in the elucidation of redox reaction mechanisms.1 
A successful quantitative treatment has been achieved but 
confined almost entirely to reactions involving metal-ion 
complexes. In this laboratory the possibility of extension of 
similar relationships to organic redox systems in aqueous 
solution, when reacting with oxidizing aquometal ions 
(Mn(III), Co(III), Fe(III), Tl(III), V(V)),2 has been investi­
gated. Owing to the interest of such organic systems, the re­
actions of a series o f substituted quinols with hexachloroir- 
idate(IV) have been investigated. In such systems, the inter­
actions between the reactive centers are probably small 
(outer-sphere mechanism) so that examination of the collected 
data can suggest useful criteria to distinguish between dif­
ferent possible mechanisms, such as electron-transfer or hy­
drogen atom transfer.

Experimental Section

Reagents. Sodium hexachloroiridate(IV) was supplied by 
Merck and the spectrum of fresh solutions agreed with liter­
ature data.3 The quinols (K & K or Merck) were purified, 
when necessary, by recrystallization and the solutions were 
prepared daily. The following quinols have been investigated: 
benzene-1,4-diol (1), 2-methylbenzene-l,4-diol (2), 2-chlo- 
robenzene-l,4-diol (3), 2,5-dihydroxybenzoic acid (4), 2,5- 
dihydroxybenzenesulphonic acid (5), 2,5-dihydroxy-l,4- 
disulphonic acid (6), 2,3-dicyanobenzene-l,4-diol (7).

Procedure. The reactions were followed with a Durrum- 
Gibson stopped-flow spectrophotometer at X 487 nm (eir(iv) 
4070 M ' cm ').:! Kinetic runs were performed with [Ir(IV)] 
= 1.0 X 10-5 M and excess organic substrate in the range
1.0-20 X 10~4 M. Measurements were carried out at [HCIO4] 
= 1.00 M, n — 1.0 M, and at different temperatures. Other 
measurements were performed at [HCIO4] = 0.50 M (p. = 1.0 
M with LiC104 addition) and the observed rate constants 
showed very slight differences.

A series of kinetic runs was also carried out in the presence 
of sodium hexachloroiridate(III) in concentration of up to 12 
times the initial concentration of Ir(IV); no kinetic effect was 
observed, thus the effect of any reverse reaction effect was 
neglected.

The rate constants were evaluated with a weighted least- 
squares method (based on the deviation of the single points 
of each run) and the other kinetic parameters were derived 
by assigning the weights on the basis of standard devia­
tions.

The formal reduction potentials, E°, of the couples qui- 
none | quinol, for the different derivatives, were evaluated with 
a Metrohm E388 potentiometer, equipped with a saturated 
KCl-calomel electrode (saturated NaCl bridge) and a plati­
num electrode. A solution of quinol derivative, at [HCIO4] =
1.00 M, p = 1.0 M, and 25.0 °C, was partially oxidized (25,50, 
75%) by addition of thallium(III) perchlorate (which rapidly 
reacts with 1:1 stoichiometry, giving the corresponding qui- 
none),4 and the formal potentials (compared with quinol 
value, 0.699 V)5 were estimated from the emf readings.

Results

Potentiometric Data. The following reduction formal po­
tentials were determined (literature data are reported in pa­
rentheses, when available ):5 2, 0.644 (0.645); 3, 0.712 (0.712); 
4, 0.769; 5, 0.787; 6, 0.851; 7,0.910 (0.971) V.

Stoichiometry. By means of spectrophotometric mea­
surements with Ir(IV) in excess, the following overall equation 
has been derived

2Ir(IV) + H2Q — 2Ir(III) + Q + 2H+ (1)

where H2Q represents the quinol and Q the corresponding 
quinone. The values of the potentials for the couples Ir(IV)
|Ir(III) (0.957 V, in 1 M acid, HCIO4 and H2SO4; 22 °C)6b and 
Q|H2Q show that all the reactions go to completion.

Kinetic Data. Plots of In (At — A „), where At and A „ rep­
resent the absorbance at time t and at equilibrium, against 
time, were found linear for at least two half-lives. The ob­
served rate constants also showed linear dependence on the 
concentration of the organic substrates. Thus

—d[Ir(IV)]/df = MIr(IV)][H 2Q] (2)

The kp values, concerning the different substrates, permit an 
estimation of the values of the specific rate constants collected 
in Table I, together with the activation parameters (obtained 
from kinetic measurements at 10.0 and 25.0 °C).
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TABLE I: Kinetic Parameters for the Reactions of Quinols with IrCl« 2 at 25.0 °C, [HCIO4 ] -  1-00 M, n -  1.0 M

Compd ‘ A S3*d’e (AG°)ghe (AG*3)CKpt6 (AG*9)calcd6'l (AG*—slexpt6'* (A G*-9)calcdt>-l

1 7.3 X IP4 4.4 - 2 1 .4 4.1.5 8.3,5 8.7 4.2 4.6
2 2.5 X 105 4.3 -18.4 2.6 7 . 6 7.9 5.0 5.2s
3 1.8 X 104 4.9 -22.5 4.5.5 9 . 2 9.0 4 . 6 5 4.45
4 2.2g X 103 5.5 -24.8 6.3 10.4 10.0s 4.1 3.7
5 1.9 X 103 2.2 -36.3 6.8 10.3.5 10.3s 3.5S 3.5S
6 27 4.7 -36.5 8.9 13.0.5 11.7 4.1s 2.8
7 32 4.7 -35.7 10.5.5 12.9s 12.85 2.4 2.3

" M-1 s-1; the errof is ±3-5%. bkcal mol-1. c ‘The error is ±0.7-1.2 kcal mol !. d cal mol 1 deg the error is ±2.4-4.0 cal mol
deg-1. '' Calculated by assuming K ksq> = 10 M for the unsubstituted quinol. 1 Calculated from eq 7 with A = 26 kcal mol L g (AG°)g
— (AG*s)expt — (AG*_3)expt.

Discussion

Since Ir(IV) is a well-known one-electron oxidant, the 
present noncomplementary oxidation takes place through two

e-electron steps, as follows
fc 3

Ir(IV) + H2Q Ir(III) + SQ (3)

Ir(IV) + S Q -^ I r (I I I )  + Q (4)

where SQ represents the semiquinone radical, irrespective of 
its protonated form (the protons are omitted). If the steady- 
state condition is applied to the semiquinone radical, the 
following equation is obtained

d[Ir(IV)] 2fc3fe4[Ir(IV)P[H2Q] 
dt 6 - a[Ir(iri)] +  MIr(IV)J

The observed first-order plots of In (At — A«,) vs. time, and 
the absence of Ir(III) effect, suggest that feJIrilV)] »  fc-s- 
[Ir(III)], hence

—d[Ir(IV)]/df = 2fe3[Ir(IV)][H2Q] (6)

Thus, ko = 2/23.
Comparison of the kinetic constants and of the activation 

parameters with those involving displacement of a chloride 
ion in the coordination sphere of the hexachloroiridate(IV) 
anion8 supports the conclusion that the first oxidation step 
follows an outer-sphere mechanism. A similar mechanism has 
been found to occur in the oxidation of phenol,63 cyclohexa­
none,fih and in the oxidation of organolead compounds60 by 
means of the same oxidizing agent. When this mechanism is 
operating, a relation between the rates of reaction and the 
overall free energies involved is expected. A theoretical model, 
which relates these quantities, has been developed by Mar­
cus1-7 and the approximate equations (neglecting the small 
work terms to bring reactants and products together in the
transition state) are

A G * i2 = Xi2(l +  A G ° i 2/ X i 2) 2/4 for | A(7°12| ^ X12 (7a)

A G * i 2 = 0 for AG° 12 ^ X12 (7b)

AG*12 = AG°12 for AG°i2 À12 (7c)

where k = Z exp(—AG*yJRT), Z being the collision frequency 
in solution (1011 M-1 s-1); X]2 is defined as 2(AG*n + AG*22), 
(where AG * 11 and AG * 22 refer to the self-exchange reactions 
of the reagents) and is approximately equal to 4AG*0 (that is 
the value of AG*i2 at AG°i2 = 0).

These simple relations, derived originally for weakly over­
lapping electron transfers, have found a wide applicability also

Scheme I

for atom or proton transfers and for strong overlapping elec­
tron transfers.7 Besides, Marcus and Sutin have also recently 
extended these conclusions to reactions involving large neg­
ative activation entropy variations, as in the present experi­
ments.8 Equations 7b and 7c apply to reactions in solution 
when most of the reorganization comes from the bonds being 
broken and formed, rather than from all the other coordinates. 
Inspection of eq 7a shows that an approximately linear rela­
tionship between AG*12 and AG°i2 can be observed with slope
0. 5(1 + AG0i2/2Xi2), which reduces to 0.50 if (AG°I2/2Ai2) «
1. Jn order to discuss the present systems with reference to the 
Marcus theory, the standard free energies of the rate-deter­
mining step must be evaluated; this can be performed with an 
estimation of the standard redox potentials of SQ|H2Q cou­
ples. Scheme I collects the possible species involved in the 
quinone| quinol system.

The rate-determining step (eq 3) can give rise to a semi­
quinone radical in the form HQ-, if one electron and one pro­
ton are released in the same step, or in the form H2Q-+, if a 
simple electron abstraction takes place; eq 3 can be alterna­
tively represented as

Ir(IV) + H2Q *  Ir(III) + HQ- + H+ (8)

or

Ir(IV) + H2Q Ir(III) + H2Q.+ (9)

Thus

K8 = K9Kn SQ) (10)

For evaluation of Kg, literature data concerning repropor- 
tionation of the semiquinone anion,9 that is

*SQA =  [Q’- ] 2/((Q][Q2-])

must be used, combined with the acid dissociation constants 
K kh2Q), If2(h2Q)> and K2(SQ)-

We have graphed (see Figure 1) the literature data for the 
investigated quinols, concerning the pK’s which correspond
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Figure 1. P lots o f pK^H^p, (a), pXT1(H?Q) (b), and p K 2(SQ) (c), as a  fu n c tio n  
o f  the  re duction  p o te n tia t e? . The  co m poun ds  a re  num bered  as in  Table 
I; 8 , 2 ,5 -d im e th y lb e n z e n e -1 ,4 -d io l;  9 , 2 ,3 -d im e th y lb e n z e n e -1 ,4 -d io i; 
10, 2 ,6 -d im e th y lb e n z e n e -1 ,4 -d io l;  11, 2 ,3 ,5 -tr im e th y lb e n z e n e -1 ,4 - 
d io l; 12, 2 ,3 ,5 ,6 -te tra m e th y lb e n z e n e -1 ,4 -d io l.

Figure 2. P lo ts  o f th e  lo g a rith m  o f e q u ilib r iu m  c o n s ta n ts  K Sq a  ( • )  and 
KSq (O )  as  a fu n c tio n  o f £ ° .

to the above dissociation constants,910 as a function of E° 
values; the points lie reasonably well on straight lines of similar 
slopes. Besides, Figure 2 shows the values of log Ksqa and log 
KSq (defined as Ksq = [HQ-]2/([H 2Q][Q])), calculated from

K SQ =  -KsQA#l(H2Q)^2(H 2Q)(if2(SQ ) ) - 2  d U

as a function of E°. The values of /iofSQ) have been estimated, 
when necessary, from the straight line (c) of Figure 1. It is 
noteworthy that substantial constancy for i f  s q a  as well as for 
Ksq is shown from the redox couples taken into consideration, 
in spite of their different reduction potentials.11 The knowl­
edge of If sq permits an estimation of the reduction potentials 
(F ° i )h and (F 0 2 ) h - In  fact

RT
(E°i)h -  (£ °2)h =  —  InlfsQ d2)

and

(£ ° i)h +  ( £ ° 2) h =  2 £ °  (13)

Figure 3. P lo t o f  AG*expt a s  a  fu n c tio n  o f  (AG°js. V a lu e s  w ith  AG° >  
0 p e rta in  to  re a c tio n  8 and th o s e  w ith  AG° <  0 to  re a c tio n  —8.

Figure 4. P lo t o f  AG*expt a s  a fu n c tio n  o f (AG°)9. The I ne  w a s  d ra w n  
acco rd in g  to  eq  7a and X =  26 k c a l m o l“ 1. V a lu e s  w ith  AG° >  0 pe rta in  
to  re a c tio n  9 and th o s e  w ith  AG° <  0 to  re a c tio n  —9.

From the data reported in Figure 2, the value of ( £ !,, ) h — 
(E°2)h can reasonably be assumed constant for different 
substrates, around —0.76 V. Then a potential of 1.08 V should 
be assigned to HQ-|H2Q couple for the unsubstituted quinol, 
in agreement with other kinetic observations.12 Then, the free 
energies for the rate-determining step (eq 8) can be calculated, 
for the different compounds, according to

(A G °)8 =-RT\n  (I fjlfsq )1/2 (14)

where K\ refers to the equilibrium constant for the stoichio­
metric eq 1 .

The dependence of AG* on (AG°)8, both for direct and re­
verse reaction, is depicted in Figure 3; the plot is represented 
by a broken line with different slopes for AG° > 0 (ca. 0.95) 
and for AG° < 0 (ca. 0.05). A similar situation has been found 
to occur in reactions of a series of quinones with 0 2-“ , and of 
anion radicals with aromatic hydrocarbons,13 having slope ca. 
1 for reactions with AG° > 0, and ca. 0 for AG° < 0. The au­
thors attributed this feature to the failure of the Marcus 
theory for these reactions. The achievement, at least in some 
cases, of conditions 7b and 7c could account for the above 
dependences. This is not the case in the present experiments 
(in fact AG*o — 6, and then X ^  24 kcal mol“ 1) so that the 
possibility that the rate-determining step is reaction 9 should 
be discussed.

No information about the stability of the protcnated form 
of semiquinone, H2Q-+, is available. It has been reported that
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no spectral change in parent semiquinone takes place in so­
lution when the acidity is increased;14 thus a value >10 M has 
been suggested for K i (SQ). If, according to Figure 1 , a depen­
dence of pK i (sq) on the reduction potential E° is assumed 
analogous to line c for the series of quinols (and taking if  k s q ) 

= 10 M for the unsubstituted quinol), the values of K9 can be 
estimated and consequently (AG°)9 (see Table I). Figure 4 
collects the experimental data with a line drawn according to 
eq ?a assuming X = 26 kcal m ol"1.

Notwithstanding the approximations and assumptions 
made for the estimation of (AG°)g, the data seem to agree with 
the Marcus theory, suggesting that reaction 9 could be the 
rate-determining step. The similarity with phenol oxidation,63 
where a small isotopic effect suggested an electron abstraction 
rather than the rupture of an O-H bond, provides further 
support to the proposed mechanism. Moreover, since the X 
value is ftow known (and assuming AG* of self-exchange of 
Ir(IV) |Ii-(III) to be 8.5 kcal mol-1, that is feexch — 105 M-1 
s- 1 )15 AG* of the couple HQ-+| H>Q can be estimated to be ca.
4.5 kcal mol-1, that is /eexch ^ 5 X 1 07 M-1 s-1; this value falls 
in the range of the observed self-exchange rate constants of 
radicals with the corresponding reduced species (107-109 M-1 
s-1) (ref 13 and 16). A relevant discrepancy in Figure 4 can be 
observed for the disulfonic derivative: this could arise from 
the large unfavorable entropy of activation connected with 
the fact .that both reacting species bear a double negative 
charge. In the c.ase of the monosulfonic derivative, which does 
not deviate from the expected behavior, the effect of its neg­
ative charge could be somewhat depressed by proper orien­
tation of the reagents in the act of transition complex forma­
tion.

It must be noted that the rates of the reverse reactions k ..:i 
have values ranging from 107 to 109 M -1 s-1 and therefore in 
agreement with the experimental findings &4[Ir(IV)] »  
fc_:([Ir(III)] for which k4 should have values very close to the 
diffusion-controlled limit (ca. 1010 M -1 s-1); this should be 
due to the large favorable free energy variations involved in 
step 4.

It is noteworthy that the previously assessed validity of the 
Marcus relationship for reactions of organic substrates with 
aquometal ions (Mnaq'i+ with catechols and Coaq3+ with qui-

nols and catechols)2 implies that the rate-determining step 
in such reactions is probably the oxidation of H2Q to HQ-.

In conclusion, the above considerations seem to indicate 
that the Marcus concepts can be very useful in the suggestion 
of reaction mechanisms in cases where no direct experimental 
evidence can be drawn about the rate-determining step or the 
choice among different kinetically undistinguishable paths, 
and for an estimate of intrinsic (X parameter) and extrinsic 
(standard potentials of intermediate species) parameters in 
the redox reactions involving these important classes of or­
ganic substrates.
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Xylenes and trimethylbenzenes were isomerized in the gaseous phase using as protonating agents D3+ and 
HeT+ ion, obtained by 7  radiolysis of D2, and by T 2 fi decay, respectively.'Experiments with HeT+ ions con­
firmed that methylbenzenes undergo isomerization by intramolecular l ,2Tmethyl shifts. A protodemethyla- 

' tion reaction was also observed and was ascribed to the relatively High energy of the reactant. The use of the
less energetic D3+ ions shows that the gas phase isomerization results are qualitatively in agreement with so­

i ls  lution isomerization data, p-Xylene and 0-xylene isomerize faster than m-xylene; m-xylene rearranges fast­
er to p-xylene than to o-xylene. Mesitylene does not undergo isomerization, while hemimellitene isomerizes 
to pseudocumene which, more slowly, rearranges to give mesitylene. A reaction scheme is suggested and its 
kinetjsg.studied. , <5

Vii • •> >•)

Introduction

In strongly acid solvents, such as HF-BF3 or HF-SbFs, 
nuclear magnetic resonance spectra of arenium ions appear;1 
the stability of an arenium ion is correlated to its resistance 
toward isomerization, transalkylation, and dealkylation 
reactions, and to its basicity. Cations of less basic isomers 
undergo isomerization to the more stable cations so that the 
o-xylenium and the‘p-xylenium ions, as well as the cations of 
pseudocumene and hemimellitene, isomerize to the more 
stable isomeric cation of m- xylene and mesitylene, respec­
tively. Overall rearrangement reactions taking xylenium and 
trimethylbenzenium ions as the most stable cation of each of 
the methylbenzenes are

In the course of NMR spectrome*ric studies of the di- 
methylbenzenium and trimethylbenzenium ions,2 the spectra 
of ions I and IV were found to change, irreversibly, into those 
of II and VI, respectively. Quenching the solutions, Brouwer3 
measured the ionic compositions as a function of time. As was 
expected both I and III gave II, while IV gave V which, more 
slowly, isomerized to ion VI. Disproportion products were not 
formed to confirm results obtained by other authors.4-9 Kil­
patrick and Luborsky10 did not find any appreciable isomer­
ization of the xylenes and trimethylbenzenes, following this 
process by the increase in conductance of the solutions. The 
methylbenzenium ion rearrangements proceed by successive
1 ,2-hydrogen and 1 ,2-methyl shifts with the methyl shifts as 
the rate-determining step. The activation energies of the 
methyl migration process1-3 have been reported; according to 
their large values, Olah and Mo11 did not find any xylene

isomerization when the reaction temperature was below 0 °C. 
Determining the equilibrium constants for a proton transfer 
reaction Chong and Franklin12 measured the proton affinities 
of xylenes in gas phase. Even if there is no precise quantitative 
agreement, the results are in the same order that would be 
expected from studies of the basicity of the xylenes as deter­
mined in solution.

In the gas phase arene alkylation, alkyl group migrations- 
were observed13,14 so that it seems possible to study arene 
isomerization by the method introduced by Ausloos and 
Lias:1S16 H3+ ions, produced by irradiating H2, are allowed 
to transfer a proton to relatively small concentrations of 
substrate.

In a previous communication17 the gas phase reactions 
between the isomeric xylenes and the HeT+ ions from T 2 (i 
decay were studied.

The results confirmed that the substrate undergoes isom­
erization by an intramolecular 1,2-methyl shift. In the present 
paper the reactions of the D3+ ions produced by irradiating 
D2 in the presence of the relatively small concentrations of 
xylenes and trimethylbenzenes are discussed.

Experimental Section

Materials. Tritium was purchased from CEA (France) and 
its purity, corresponding to a minimum T 2 content of 94%, was 
determined by radio-gas-solid chromatography, as described 
by Cacace and Caronna.18

Xylenes and trimethylbenzenes (C. Erba, Italy) were ana­
lyzed by gas-liquid chromatography, and the impurities were 
less than 0.2% for each isomer. Deuterium, oxygen, and the 
other chemicals were commercial Research Grade products 
and were used without further purification.

Procedure. In T 2 (3 decay runs a measured amount of xylene 
was introduced into a 300-ml Pyrex vessel and stored at 150 
°C for 2 months.17,18 Weighed carrier amounts were added 
before proceeding to the analysis of each sample. The labeled 
arenes were separated and collected by preparative gas 
chromatography on a 5-m didecylphthalate column heated 
at 95 °C with a helium flow rate of 2.17 1/h, and on a 4-m 
Bentone 34 column (80 °C, 1.281 of He/h) to resolve p-xylene 
from m-xylene. The gas-chromatographic separation of each 
compound was repeated until a constant specific radioactivity
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value was reached, as measured with a Nuclear Chicago Mark 
I liquid scintillation spectrometer.

The toluene tritium distribution was determined as de­
scribed elsewhere.19 In the D2 y radiolysis experiments 
weighed amounts of aromatic hydrocarbon were sealed into 
capillary Pyrex tubes. Each tube was introduced in a 500-ml 
Pyrex vessel. The vessels, connected to a vacuum line, were 
outgassed and then, after addition of oxygen (3 Torr), were 
filled with deuterium up to a pressure of 500 Torr. In some 
runs, the D2 pressure was varied as reported in the next sec­
tion.

The samples were irradiated with 60Co y rays at 40 ±  5 °C 
in a 220 Gamma cell (Atomic Energy of Canada) with a dose 
ranging from 4.84 X 102° to 1.21 X l 62,1leV g' 1 of deuterium 
at a dose rate of 4.3 X 10s rads hr1, as measured by Fricke 
dosimetry.

After the irradiation a fraction of the reaction mixture was 
analyzed by a F30 Perkin-Elmer gas chromatograph equipped 
with a flame ionization detector. A 5-m Bentone 34-didecyl- 
phthalate (3:4) column operating with a nitrogen flow rate of 
50 cm3/min resolved the xylenes and the trimethylbenzenes 
at 55 and 65 °C, respectively.

The radiation damage runs on mixtures of methylbenzenes 
in the presence of helium were performed by filling the am­
poules with 500 Torr of helium and irradiating them with 1.21 
X 1021 eV g_1 of He. As reported by Verdin,20 the G values for 
toluene formation and substrate isomerization in the y radi­
olysis of xylenes are very low. In order to approximate to the 
same energy transfer processes of the systems arene- deute­
rium the ampoules were filled with helium. The results con­
firm the relatively high stability of methylbenzenes toward 
7  radiations: the overall demethylation and isomerization G 
values referred to absorbed dose by helium were found in the 
range 1 X 10_:i to 6 X 10-3.

Results and Discussion
Arene plus HeT+ Ions. In a previous experiment17 HeT+ 

ions, produced during the T2 fS decay,21'22 were allowed to react 
with the xylenes and the radioactivity of the aromatic reaction 
products measured by the isotopic dilution method.

The relative tritium content recovered in the labeled arenes 
is reported in Table I.

The fraction of the total radioactivity of the HeT+ ions from 
the T 2 IS decay recovered in the products was 0.35 ±  0.04 for 
each isomer.

Since the analysis of the gaseous products did not show any 
detectable amount of the lighter hydrocarbons and the ra­
dioactivity measurements of unpurified mixtures did not 
prove any presence of polymeric substances, owing to the fact 
that the measured activity did not exceed the tritium content 
found in the identified reaction products after the purification, 
it seems likely that all the tritium from the HeT+ ions, not 
incorporated in the arenes, was present in the gaseous phase 
as HT.

A comparison between our yields and the results obtained 
in the reaction of HeT+ ions with toluene18 supports the idea 
that the fundamental reaction is a hydride ion extraction from 
a methyl group. The hydrogen tritide is not measurable since 
it is present as a relatively abundant impurity in the T2 used 
to produce the HeT+ ions; but the observed yields decrease 
from 60-70% to 30-40%, when the methyl groups are doubled, 
and this fact can be reasonably explained as an extraction of 
a hydride ion from a methyl group.

The statistical m-xylene isomerization as well as the xylene 
protodemethylation were ascribed to the protonating agent

TABLE I: Tritium Percent in the Aromatic Hydrocarbons
after the Reaction between HeT+ Ions and Xylenes“

Substrate

Aromatic tritium percent in

Toluene o-Xylene m-Xylene p-Xylene

o-Xylene 19.5 74.3 5.2 <0.1
m-Xylene 8.2 2.5 83.7 2.5
p-Xylene 10.0 <0.1 6.7 83.5

" Substrate pressure 500 Torr.

energy. As a matter of fact the AH0 of the HeT+ ion is 323 
kcal/mol.23 Furthermore, the absence of any p-xylene from
o-xylene and vice versa, and the tritium presence in the iso- 
merized substrate confirmed the intramolecular 1 ,2 -methyl 
shift.

The tritium distribution in the toluene produced by pro­
todemethylation of m-xylene was determined. The radioac­
tivity was found essentially in the ortho and para position of 
the methyl group to confirm the electrophilic attack of the 
HeT+ ions18’24“26 and the relatively rapid 1 ,2-hydrogen 
shift.

The relatively high substrate pressure, ca. 500 Torr, used 
in the experiments to avoid the radiation damage toward the 
labeled products, did not allow the xylenium ion to survive 
enough for two subsequent methyl shifts.

Additional experiments have been carried out to show that 
as the substrate pressure is lowered, a second methyl shift can 
be observed as well as higher isomerization and protode­
methylation, but the dramatic reduction of the recovered 
tritium in the arenes, reported in Table II, probably due to the 
radiolysis of the labe'ed products, makes ’ hese results slightly 
useful for quantitative discussions.

Arenes plus D.G Ions. In the D2 radiolysis experiments the 
arenes pressure was kept low to minimize direct radiation 
effects; it is then also possible to observe a second methyl shift. 
Moreover, since the AH0 of the D3+ ion, ca. 256 kcal/mol,27"29 
is lower than the AHo of the HeT+ ions, no toluene formation 
and a higher selectivity in the isomerization processes can be 
observed, as shown in Table III. According to the 1,2-methyl 
shift model, proposed in the Introduction, o-xylene and p- 
xylene isomerize to m-xylene. A second methyl shift can be 
observed in the isomerization of o-xylene. m-Xylene, as ob­
served in solution experiments,4 undergoes isomerization to 
p-xylene more rapidly than to o-xylene. Owing to the fact that 
some products are formed in very small amounts, experi­
mental errors in their determination could be significant. 
Consequently, specific runs were performed with a higher 
absorbed dose; the results, reported in Table IV, show that 
m-xylene isomerizes to p-xylene and to o-xylene as well. 
Similarly the isomerization data of the trimethylbenzenes are 
reported in Table V. Hemimellitene isomerizes to pseudocu­
mene, which, more slowly, rearranges further to give mesity- 
lene. Pseudocumene gives mesitylene as the only detectable 
product. The absence of any measurable mesitylene isomer­
ization can be ascribed to the relatively high stability of the 
mesitylene ion.3

In Figures 1 and 2 the initial substrate concentration, [S], 
is plotted against the concentration of its isomerization 
products, [P], Figures 1 and 2 refer to different absorbed 
doses.

The slopes can be explained as competitive reactions for 
D:i+ ions. These ions are produced during the y radiolysis of 
J32;2i,22,30 their formation occurs via the following pro­
cesses29
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TABLE II: Fraction of Radioactivity Recovered and Its Distribution in the Arenes after Reaction between p-Xylene and 
HeT+ Ions

Substrate Yield of tritiated Percent tritium distribution
pressure, mm aromatic compounds Toluene 0-•Xylene m-Xylene p-Xylehe

708 0.38 7.2 <0.1 6.9 85.9
580 0.36 8.9 <0.1 7.0 84.1
500 0.37 10.0 <0.1 6.7 83.5
395 0.29 9.9 0.3 7.6 82.3
186 0.19 11.1 1.8 8.2 78.9
19 0.10 13.3 4.7 24.2 57.8

TABLE III: Xylenes + Deuterium Ions“ TABLE V: Trimethylbenzenes + Deuterium Ions“

Final isomer composition *, 'Y. ■ Final isomer composition
Concn, (mol %) Concn, (mol %)

Substrate ¿¿M Ortho Meta Para Substrate mM 1,2,3 1,2,4 1,3,5

o-Xylene

m-Xylene

p-Xylene

2.06
2.52
3.77
5.65
8.70
9.51

12.00
14.25 
18.00 
31.30 
55.57

105.59
2.76

10.36
13.32
16.01
32.97 
42.38 
59.34

162.00
1.52 
2.40 
2.83 
3.17 
3.73 
7.21 
7.54

10.83
15.25
21.66
48.98 
64.66

98.17
98.23
98.20
98.41
98.36
98.40
98.54
98.46
98.48
98.60
99.00
99.27
0.31
0.28
0.25
0.27

<0.20
<0.20
<0.20
<0.20

0.40
0.29
0.29
0.30
0.21
0.20
0.20

<0.20
<0.20
<0.20
<0.20
<0.20

1.77
1.73
1.76
1.52 
1.62 
1.58 
1.46 
1.54
1.52 
1.40 
1.00 
0.73

98.69 
98.99 
98.94 
99.20 
99.50 
99.58 
99.61
99.69 
2.24 
1.92 
1.88 
1.82 
1.65 
1.57 
1.44 
1.35 
1.30 
1.15 
1.05 
1.00

0.24
0.22
0.22
0.25
0.20
0.20

<0.20
<0.20
<0.20
<0.20
<0.20
<0.20

1.00
0.73
0.81
0.53
0.50
0.42
0.39
0.31

97.36 
97.79 
97.83 
97.88 
98.14 
98.23
98.36 
98.65 
98.70 
98.85 
98.95 
99.00

“ Absorbed dose 4.84 X IO20 eV g 1 referred to deuterium.

TABLE IV: Xylenes +  Deuterium Ions“

1,2,3-
Trimethyl-
benzene

1,2,4-
Trimethyl-
benzene

1,3,5-
Trimethyl-
benzene

4.70
7.07

18.50
45.90
5.48
8.35

18.58
38.88
45.52
71.21
5.15

17.15
22.75
38.28

94.2
95.1
96.5
98.4

5.2
4.4 
3.1
1.4

98.0 
98.3
98.5
99.1
99.2
99.6
0.3
0.1

<0.1
<0.1

“ Absorbed dose 6.09 X IO20 eV g 1 of deuterium.

0.6
0.5
0.4
0.2

2.0 
' 1.7 
■ 1.5 
0.9 
0.8 
0.6

99.7
99.9

100.0
100.0

Figure 1. Variation of xylene isomerization products vs. substrate 
concentration.

Final isomer composition (mol %) 
Substrate Para Meta Ortho

p- Xylene 93.8 4.96 0.64
o-Xylene 0.42 4.67 94.61
m-Xylene 3.23 95.59 1.18

“ Absorbed dose 1.07 X 1021 eV g-1. Dose rate 2 X 105 rads h~l. 
Deuterium pressure 700 Torr.

D2 'vvv-* D2+ + e— (la)

D2+ + D2 — >- D3+ + D (lb)

The first step of the arene isomerization process is an exo­
thermic deuteron transfer from D3+ to the arene, while the 
deuterium atoms are removed from the system by a low con­
centration of oxygen, which is a radical scavenger relatively 
inert toward hydrocarbons16 and D3+ 31 ions.

The excited methylbenzenium ions can subsequently un­
dergo isomerization, followed by a proton transfer to a base 
present in the system, or it can be collisionally stabilized and 
transfer a proton to a proton acceptor, B, whose nature is not 
well known. It can be the substrate itself or a more basic 
substance present in the system as impurity. Such a base acts 
as a quencher for the D3+ ions. Consequently the suggested 
reactions scheme is the following
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Figure 2. Variation of trimethylbenzene isomerization products vs.
substrate concentration.

d2
d 2^ d 3+

k\
(l)

d 3+ ^ s d +
k2

(2)

d 3+ - ^ b d +
*3

(3)

B
S D + - ^ S

k4
(4)

SD+— >-PD+
kb

(5)

B
PD+ — (6)

*6

D3+ + P — PD+ + D2 (7)

PD+ — SD+ (8)

where S and P refer to the substrate and the isomerized arene, 
respectively, and SD+ and PD+ to their deuterated ions.

For low conversions, as reported in Tables III and V, the 
substrate and the deuterium concentrations can be considered 
constant and the amount of the isomerization produced by 
consecutive reactions 7 and 8 can be neglected.

Therefore, under steady state conditions the following 
equations can be developed:

d[P; _  fe2fe5[S] feL[P2p  
df k5 + * 4[B] k2[S] + k3[B]

At a given absorbed dose, it can be written in a simpler
way:

1/[P] = a + 01/|S] (10)
where

_ k 5 +  &4[B] 
M 6[D2]2

(1 1 )

and
„ k3 * 6[B] + M B ]2 

p k2k5 m d 2]2
(12)

1/(P ]
l/p m o le 30

20

10

0
0 100 200 300 400 500

1/[S ] 1/m m ole

Figure 3. Xylene isomerization: plot of 1 /[product] vs. 1 /[substrate].

i/[p] 
l/u m o le

15

10

o
0 50 100 150 200 250

1 /[S } l/m m ole

Figure 4. Trimethylbenzene isomerization: po t of 1/[product] vs. 
1 /[substrate].

Plotting 1/[S] against 1/[P] the straight lines, reported in 
Figures 3 and 4, are obtained.
Conclusions

A qualitative comparison between the isomerization rates 
of the xylenes, as well as the trimethylbenzenes, is possible. 
As in solution, o-xylene and p-xylene isomerize faster than 
m-xylene.

A discrepancy exists with the results obtained in the liquid 
phase, where it has been reported that p-xylene undergoes 
isomerization four times faster than o-xylene.1-3 Allen and 
Yats found that the more basic formed m-xylene competed 
for the catalyst, lowering the isomerization rate of p-xylene. 
From this point of view these results can be explained since
o-xylene is three times as basic as p-xylene.32

Qualitatively the trimethylbenzenes isomerization data 
confirm the results obtained by Brouwer,1-3 since the basicity 
of the 1,2,3, and 1,2,4 isomers are very close.1

The intramolecular, rate-determining step, 1,2-methyl shift 
in the isomerization of the methylbenzenes has been con­
firmed by HeT+ ions experiments.

For a quantitative interpretation of the data new experi­
ments will be performed in order to establish the fraction of 
excited methylbenzenium ions undergoing isomerization. 
Furthermore, the effects of the addition of known amounts 
of D:,+ ions quenchers to the system will be studied.
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Spectroscopic Studies of Bicyclo[2.2.2]octa-2,5,7-triene. 2. 
An Interpretation of the Vibrational Spectra of Barrelene1’2

F. A. V an-Catledge* and C. E. M cBride, Jr.

Department o f Chemistry, University o f Minnesota, Minneapolis, Minnesota 55455 (Received November 11, 1975)

Infrared spectra of gaseous, liquid, and polycrystalline barrelene (bicyclo[2.2.2]octa-2,5,7-triene) were re­
corded from 380 to 4000 cm-1. Raman spectra for the liquid were measured from 100 to 4000 cm“ 1. Vibra­
tional assignments were made, based on group frequency correlations, ir-Raman activity, and Raman depo­
larization ratios. Of the 28 expected fundamental frequencies 5 were assigned by recourse to exploratory nor­
mal coordinate calculations. A 37-parameter potential function is reported which reproduces the observed 
frequencies with ar. average error of ±2.0 cm“ 1. The possible significance of the force constant values with 
regard to the strain and rigidity of barrelene is discussed.

Bicyclo[2.2.2]octa-2,5,7-triene (barrelene, 1), first pre­
pared by Zimmerman et al.,3 has stimulated considerable in- 
terestla'3a'4 "12 regarding its electronic structure and properties 
due to the unique arrangement of p orbitals inherent in its 
structure. While the photoelectron spectrum of 1 seems fairly 
well understood,11,12 the details of its electronic spectrum have 
yet to be completely unraveled.

The emphasis on electronic excited states has overshadowed 
the unique position of 1 as a rigid, strained bicyclic polyolefin 
of high symmetry (713/,). Best estimates of its strain energy 
are 23-27 keal/mol,13 vs. 29 keal/mol for bicyclo[2.2.1]hepta-

2 3 4

2.5- diene (3).14b Hydrogenation of 1 to bicyclo[2.2.2]octa-
2.5- diene (2) proceeds with the release of 37.57 keal/mol,14 one 
of the largest heats of hydrogenation known for a carbon- 
carbon double bond. This is to be compared with 34.98 kcal/ 
mol for hydrogenation of the more highly strained 3 to bicy- 
clo[2.2.1]heptene (4).14 Thus we have at the outset an inter­
esting role-reversal for 1 and 3, depending upon which ther­
modynamic property one examines.

The foregoing data are but a small sample of the type of 
information one would like to obtain for strained systems. The 
alternatives available are (1 ) to conduct extensive thermo­
chemical experiments, or (2) to develop some methodology 
for estimating heats of formation, strain energies, etc. Con­
siderable effort has been devoted in recent years to the latter 
approach, particularly the calculations commonly described 
as molecular mechanics calculations. In this method, mini­
mum energy configurations and conformations of molecules 
are calculated via methods relating to the theory of small vi­
brations.15 Usually empirical force fields are parameterized 
to reproduce the structures and energies of small acyclic 
molecules, and then used for predicting properties of more 
complex systems. A measure of the state of the art may be
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Figure 1. The infrared spectrum of liquid bicyclo[2.2.2]octa-2,5,7-triene.

Figure 2. The infrared spectrum of gaseous bicyclo[2.2.2]octa-2,5,7-triene.

gained by considering the empirical force field results for 1 and 
3.15d Calculated strain energies are 25.6 and 31.6 kcal/mol, 
respectively, which compare reasonably well with experiment. 
On the other hand, this same force field fails to accurately 
reproduce the stepwise heats of hydrogenation for 1. Clearly, 
then, the potential functions currently employed are somehow 
deficient.

It is important to increase our understanding of vibrations 
of rigid, strained molecules in order that the details of po­
tential functions appropriate for badly deformed bond angles, 
bond lengths, etc., may be deduced. While such investigations 
have usually focused on small molecules, e.g., cyclopropane,16 
cyclopropenone,17 recently some medium-sized, strained bi- 
cyclic systems have been studied, albeit in a preliminary 
fashion for some. (One potential drawback may be the diffi­
culty associated with obtaining deuterated samples of such 
molecules.) For example, 318’19 and its saturated analogue 
bicyclo[2.2.1]heptane18'20 have been examined. Also studies 
of bicyclo[2.1 .0]pentane21 and bicyclo[l.l.l]pentane22 have 
appeared, the latter including normal coordinate calculations. 
It would seem most profitable to attempt to analyze the vi­
brational spectrum of 1 in view of the simplifications inherent 
in its symmetry. In particular, a relatively small number of 
unique force constants would be required for a normal coor­
dinate analysis. Thus 1 may serve as a good source of initial 
force constant values for less symmetrical molecules, e.g., 2, 
3, and 4.

Experimental Section
Bicyclo[2.2.2]octa-2,5,7-triene (1 ) was prepared by a mod­

ification23 of the method of Zimmerman et al.3 Vapor phase

chromatography (VPC) accomplished clean separation of 1 
from the usual contaminant, benzene. Preparative separations 
were carried out on a Prepmaster Jr. Model 776 instrument 
fitted with an 80 in. X 1 in. column, 15% Apiezon L on acid- 
washed Chromosorb P. Spectroscopic samples were purified 
by distillation and analytical VPC on a 200 cm X 0.65 cm 
column with the same packing used for preparative VPC. We 
estimate from VPC experiments that the lower limit of purity 
for these samples is 99.9%.

Infrared spectra were recorded on a Perkin-Elmer Model 
521 double-beam grating spectrophotometer. The ir spectrum 
of liquid 1 (Figure 1) was recorded using KBr plates in the 
region 380-4000 cm-1. Csl plates were used for the region 
200-500 cm-1. Since no noteworthy features were observed 
below 400 cm-1, further use of Csl windows was felt to be 
unwarranted. Spectra of gaseous 1 were recorded in a 7.5-cm 
cell fitted with KBr windows over a pressure range of 10-60 
Torr. Since pressure broadening was barely evident at 60 Torr, 
all working spectra were recorded at 30 Torr. The full scan for 
the gas phase is recorded in Figure 2. Polycrystalline films of 
1 were examined at liquid nitrogen temperatures using a 
modified Wagner-Homing cell24 equipped with KBr windows. 
The solid smple was repeatedly annealed until no further 
changes occurred in the spectrum (Figure 3).

The Raman spectrum of liquid 1 (Figures 4 and 5) was ex­
cited with 250 mW (measured at sample) of 488.0-nm radia­
tion from a Coherent Radiation Laboratory Model 52 Ar+ 
laser and recorded on a Japanese Electron Optics Laboratory 
Model JRS-Sl spectrometer.

The light collection system samples light scattered at an 
angle of 90° relative to the incident beam. The scattered light
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Figure 3. The infrared spectrum of polycrystalline bicyclo[2.2.2]octa-2,5,7-triene.

Figure 4. The Raman spectrum of liquid bicyclo[2.2.2]octatriene, /(||) observed (see Experimental Section).

passes through condensing optics and a fixed polarizer per­
mitting passage only of light with its electric vector parallel 
to that of the incident beam. The polarizer is followed by a 
polarization scrambler through which the light passes prior 
to determination of the intensity, 7(||). Determination of de­
polarization ratios, P = 7(_L)//(||), is accomplished by passing 
the laser beam through a Porro-prism followed by a Glans- 
Thompson prism prior to sample irradiation. The electric 
vector of the incident light is thus rotated through an angle 
of 90°, and analysis of the scattered light as indicated above 
constitutes determination of 7(_L). Narrow regions of the 
spectrum (100-200 cm-1) were scanned several times in both 
modes. Depolarization ratios were calculated by equating peak 
height to peak intensity. Samples were examined in pyrex 
capillaries previously calibrated with CCI4. We consider these 
ratios to be of only semiquantitative significance.

Both instruments were calibrated using indene, camphor, 
and cyclohexanone as frequency standards.25 All frequencies 
are considered accurate to ±2 cm-1. The spectral data are 
summarized in Table I.

Assignments

The internal coordinates for barrelene are depicted in 
Figure 6. No experimental determination of the structural 
parameters of 1 has been reported. The structural parameters 
we have used are obtained via molecular mechanics calcula­
tions.26 While the method employed may have deficiencies, 
the molecular geometry thus obtained is more realistic than 
one obtained from molecular models. Further, the history of 
the method suggests that the true geometry is unlikely to 
differ severely. The structural parameters are D = 1.3416 A; 
T = 1.5149 A; d = 1.0989 A; l = 1.0934 A; 0 = c = 113.50°; 0 = 
123.58°; co = 102.97°. (While five significant figures may seem 
excessive, these structural parameters will reproduce exactly 
the final cartesian coordinates obtained.26) The moments of 
inertia resulting from these parameters are 7|[ = 72 = 283.84 
X 10~~4° g cm2; I ± = Ix = Iy = 295.68 X 10_4° g cm2. Though 
barrelene is formally a prolate symmetric top, the asymmetry 
factor26

0 = IVz/Ix) -  1] = -0.04 (1)
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TABLE I: Vibrational Assignment o f Bicyclo[2.2.2] octa-2,5,7-triene
Ir,

Raman," neat, Ir, neat, polycrystalline, Ir, vapor,
cm-1 cm" 1 cm-1 cm.“ 1 Assignment

[ 402 w P
418(0:76,46) 413 m 411 w Q M E ’)

l 421 w R
f28(E")485(0.79,130)

613 w F18(E')-F8(A ,")6
640(0.03,65) f6(A/ )
684(0.7,4)

686 sP

p21(E ")

698(0.91,4) 693 ys 698 s 697 s Q 
. 707 S R

f2„(E')

802 m ?
811 s 811 w 812 m Q f14(A2” )

821 m R
870(0.02,1000) 87 0 vw

895 m QP
f5(A,')

893.5(0.44,46) 898 s 897 w
906 m QR

f19(E’ )

910(0.9,11) 913 sh
1012 sh P

f26(E")

1016 s 1016 s 1020 s Q ^!3(^2 )
1026 sh

1083(0.69,15) . 1081 m 1078 w 1084" Q Fi8(E') 1
1116 w *',6(E 'H '8(A1")&

1128(0.53,122) 1129 w 1137 w h(A ,'), v2S(E ")
1169(0.4,4) 1166 vw 1189 w

1216s QP
p28(E") + f, 7(E” )

1213(0.7,23) 1215s 1215 m -- .P „(E ')
1221 s QR

1228(0.7,80) »»(E ")
1258(0.8,57) - 1262 w 1264 vw - f23(E'')
1275(0.92,23) 1276 vw 1279 w Ps(A,') + f21(E')

1328 vs P
1331 s 1328 vs 1338 vs Q 

1349 vs R
1̂ 2(^2 )

1386 vw
' • 1480 w P

2f20(E')

1498 w 1488 w 1490 w Q 
1500 w R

p.3(A2") + P„(A ,")b

1554 sh 1562 w * Ple(E') + Pa(A,")b
1573 s P

1572 s *•
1585(0.13,34) 1578 vs

1578 s
1583 s Q P..(E')

1591s R
1611(0.03,38) 1612 w f3(A,'), FR with

2^ 4(A2")
1637(0.03,164) 1642 vw 

1652 vw p6(A,') + p13(A2")
2985(0.20,126)

2989 s P
2987 s 2984 s 2998 s Q 

3006 s R 
3075 sh P(?) 
3079 sP(?)

Pi ,(A2'')

3068 s 3065 s 3086 s Q 
3093 s R

3072(0.15,580) p.(A,'), p22{E")
3146(0.09,46) 3151 w 2f16(E')

a Following the Raman frequencies in parentheses are listed the depolarization ratios and relative intensities, respectively. 
The Raman intensities are normalized for the most intense peak. b The assignments for these sum and difference combina­
tion bands are predicated upon the value Pt6 = 470 cm-1, substantially higher than the predicted value (see Table III). It 
should be noted, on the other hand, that the combination bands Pl6 + = 2053, and Pi3 — l \  = 550 are not observed. These
assignments are therefore tenuous, at best. "Not resolved.

reveals that the molecule is a near-spherical top. Consider- shows that, although K remains a “ good” quantum number, 
ation of the rotational energy levels we can expect little difference in the appearance of the parallel

and perpendicular bands in the ir spectrum of the gaseous 
E j ^ cm-1) = 0.094 66J(J + 1) + 0.003 95K 2 (2) molecule. PR separations are calculated27 to be 23.5 and 24.2
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Figure 5. The Raman spectrum of liquid bicyclo[2.2.2]octatriene, /{JL) observed (see Experimental Section). *

Figure 6. The internal coordinates (excluding torsions) employed for 
the normal coordinate analysis of bicyclo[2.2.2]octa-2,5,7-triene.

cm-1, respectively. As a consequence assignments must be 
made without resort to band shape considerations. We have 
relied primarily, therefore, on ir-Raman activity and Raman 
depolarization values in making most of our assignments. 
Some few, though, required the aid of normal coordinate 
calculations.

The 42 normal modes of barrelene transform as

Tvibtf^) = 6A f + 1A2' + 7E' + 2 A ," + 5A2"  + 7E"

We anticipate, therefore, 6 polarized (Ax') and 14 depolarized 
(E' and E") Raman lines. Seven Raman lines should have ir 
counterparts (E'), while 5 lines will be active in the ir only 
(A2"). Three normal modes (A2' and Ax") will be inactive.

a. C-H Stretching Assignments. The structure of the rep­
resentation formed by the olefinic C-H stretching modes is 
Ax' + E' + A2"  + E". Due to the isolation among the two- 
carbon bridges, we anticipated little separation between

modes of A and E symmetry. We did feel that in-phase (') and 
out-of-phase (") motions on a given two-carbon bridge would 
give rise to observable splittings in the spectrum. Examination 
of the vapor phase ir spectrum (Figure 7a) shows only one 
strong band above 3000 cm-1  centered at 3086 cm-1. A 
shoulder does appear on the P branch, however, leading us to 
conclude that the two modes, A2"  and E', have nearly the same 
energy. Similar overlapping appears to occur in the Raman 
spectrum (Figure 7b). Only one line is observed (3072 cm-1) 
and it is polarized, leading us to associate it with the Ax' mode. 
Two features are worthy of note. First, the band (/(¡|) ob­
served) shows distinct asymmetry. Second, the liquid phase 
ir band appears at 3068 cm-1. The possible rationales recon­
ciling these observations are as follows: (1) the Ax' and E" 
appear close together in the Raman spectrum; (2) the asym­
metry of the Raman line arises from the E' mode at 3068 cm-1;
(3) both (1) and (2) are true. In the absence of additional in­
formation we have assigned both the E" and Ax' modes to the 
3072-cm_1 Raman line. Similar coincidences have been noted 
in the CH2 stretching modes of bicyclo[l.l.l]pentane.22

The question of the splitting of the symmetric and an­
tisymmetric C-H stretching modes is not yet resolved for (Z , 
cis) olefins. (Z)Butene-2 exhibits only one Raman line in this 
region,28 though both modes should be Raman active. (By way 
of contrast, an 18-cm“ 1 splitting is reported for (E, trans)- 
butene-2.29) A substantial splitting, 38 cm-1, is observed for 
cyclohexene,30 but not for cycloheptene.31 Conversely cyclo- 
hexadiene32 reportedly shows no splitting in the vapor phase, 
but cyclopentadiene33 is reported to show four peaks spanning 
a range of 70 cm-1. As the splitting seems to be dependent 
upon the molecule under study, we feel justified in making the 
assignments outlined above.

The representation formed by the bridgehead C-H 
stretches is Ax' + A2". These modes should appear below 3000 
cm-1. The band observed at 2998 cm-1  in the ir vapor phase 
spectrum is clearly the A2"  mode while the Raman band at 
2985 cm-1  may be taken to correspond to the Ax' mode. These 
frequencies are somewhat high relative to unstrained alicyclic 
systems, but are consistent with observations for strained
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Figure 7. The vibrational spectra of bicyc!o[2.2.2]octa-2,5,7-triene 
in the region 3150-2950 cm-1 : (a) gaseous infrared spectrum; (b) liquid 
Raman spectrum.

bicyclic systems, e.g., norbornane,19,20 norbornadiene,18'19 and 
the bicyclopentanes.21,22

The only remaining feature in this region occurs at 3151 
cm-1  (ir, vapor) and 3146 cm-1 (Raman, liquid). We have 
taken this to be the overtone of the E' C =C  stretching mode 
appearing at 1583 cm-1  in the vapor phase ir spectrum.

b. C =C  Stretching Assignments. Group frequency con­
siderations predict the C =C  stretching modes to lie in the 
region 1575-1650 cm-1. It is not unusual in strained molecules 
to find these vibrational modes at lower frequencies,17,19 but 
barrelene appears to be “normal” in this regard. Modes of Aj' 
and E' symmetry are predicted. The latter is found in the 
vapor phase ir spectrum at 1583 cm-1  with a corresponding

Raman band at 1585 cm-1. The totally symmetric mode ap­
pears in the Raman spectrum at 1637 cm“ 1, with a companion 
peak at 1611 cm-1. As these two lines have (within experi­
mental error) identical depolarization ratios, we postulate that 
these two features result from Fermi resonance interaction 
of the Ai' C =C  stretching mode with the overtone of the 
fundamental at 812 cm“ 1 (A2", vide infra). In the absence of 
more detailed information we have assigned the “ true” C=C 
stretching mode as the mean value, 1624 cm-1. By way of 
comparison, the totally symmetric C-C stretching mode for 
norbornadiene, 3, is reported to appear at 1572 cm- 1 .19

c. A\ Assignments. The remaining three A f  modes should 
be associated with olefinic C-H in-plar.e bending, and the 
framework deformation modes corresponding primarily to 
C-C stretching and bridgehead C-C-C angle bending. There 
are two Raman lines with exceedingly low depolarization ra­
tios (<0.05) at 870 and 640 cm-1. We tentatively associate 
them, respectively, with the framework deformations just 
mentioned. We could not with confidence make an assignment 
at this point for the remaining A f  mode. Hence this assign­
ment-will be discussed at the end of this section.

d. E' Assignments. The remaining five E' modes are ex­
pected to be both ir and Raman active. The basic modes to be 
accounted for may be described as olefinic C-H in-plane and 
out-of-plane bending, bridgehead hydrogen bending, and 
carbon framework deformation modes involving bridgehead 
C-C-C angle bending and C-C stretching. Three intense 
vapor phase ir bands have weak Raman counterparts with 
high depolarization ratios. The 1218-, 697-, and 411-cm"1 
bands are associated by us with bridgehead C-H bending, 
olefinic C-H out-of-plane deformations, and framework de­
formations (angle bending), respectively. A fourth vapor phase 
ir band (900 cm "1) exhibits medium intensity, but its Raman 
counterpart (893 cm“ 1) has a somewhat low depolarization 
ratio. Nonetheless, the liquid phase ir band (898 cm "1) is in­
tense, and we consider this to be the C-C stretching mode. We 
chose to defer assigning the olefinic C-H in-plane bending 
mode at this point as there are a number of bands in the region 
1000-1200 cm" 1 to be sorted out.

e. A 2"  Assignments. The three remaining A2"  modes are 
ir-active only and associated with olefinic C-H in-plane 
bending, and framework deformation modes best described 
as bridgehead angle bending and C-C stretching. The lines 
corresponding to these modes are assigned as 1338,1024, and 
812 cm "1, respectively.

f. E" Assignments. The six remaining E" modes correspond 
to olefinic C-H in-plane and out-of-plane sending, bridgehead 
hydrogen bending, and the framework deformations encom­
passing C-C stretching, angle bending, and torsions. These 
assignments were the most difficult to make since only three 
of the Raman lines not already assigned are clearly depolarized 
and have no ir counterpart. We associate the 1228-cm"1 line 
with in-plane bending, the 684-cm"1 line with framework 
angle bending, and the 485-cm"1 line with torsional defor­
mations. Since all other unassigned Raman lines had ir 
counterparts we felt obliged to defer the remaining 3 E" as­
signments.

g. Deferred Assignments. In order to make the remaining 
assignments it was necessary to begin carrying out a normal 
coordinate analysis. A small force field (26 force constants) 
was employed for this preliminary work. The unassigned 
normal modes may be represented as Ai' + E' + 3E". The 
bands as yet unassigned appear in the Raman spectrum at 910, 
1083,1128,1169,1258, and 1275 cm "1. We were able to assign 
the E' mode to the 1083-cm"1 line since this is the only one of
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these bands having substantial intensity in the liquid phase 
ir spectrum. The E" modes were best assigned as 910, 1128, 
and 1258 cm-1, while the 1275-cm_1 line is felt to arise as a 
combination band, 870 (A /) + 411 (E') = 1281 (E'). The re­
maining A]/ mode was originally assigned to the 1169-cm_1 
line, but attempts to refine the force constants clearly indi­
cated that this value was too large by 30-50 cm-1. The A /  
mode was, therefore, assigned to the 1128-cm_1 line, along 
with the E" mode. This assignment helps to rationalize the 
low depolarization ratio observed for this line. The 1169-cm_1 
line may then also be a combination band, 684 (E") + 485 (E") 
= 1169 (A]/ + A2' + E').

Before we conclude this section, it would be appropriate to 
comment on the depolarization ratios associated with some 
of the nontotally symmetric vibrations. The theoretical value, 
p = 0.75, holds rigorously only for gas phase measurements 
and we have made no attempt to apply refractive index cor­
rections to our liquid phase intensity measurements. Further, 
the optical system of the instrument employed is likely to 
introduce errors in this quantity.34 Nonetheless, most of the 
large deviations in p are readily understood. Depolarization 
ratio determinations for weak bands are hampered by the 
noise content of the spectrum, particularly in determining 
/ ( J_) (see Figure 7b). We ascribe the p values observed for the 
698, 910, and 1275 cm-1 to this difficulty. In the case of the 
band at 893 cm-1  we feel the low p value arises from en­
hancement of 7(||) by its proximity to the 870-cm_1 line, the 
most intense Raman line. We are unable, on the other hand, 
to satisfactorily account for the exceedingly low p value as­
sociated with the 1585-cm_1 line. The E' assignment seems 
appropriate, however, in view of its strong counterpart in the 
infrared.

The assignment outlined above, along with the overtone, 
combination, and difference band assignments indicated in 
Table I, accounts for all observed features in the ir and Raman 
spectra of barrelene.

Normal Coordinate Analysis
Several general valence force fields (GVFF), only one of 

which will be reported in detail, were generated for barrelene. 
The particular computational scheme employed was originally 
outlined by Overend and Scherer.35 The current versions of 
these programs36 employ the W  matrix variant37 of the Wilson 
GF formalism.38 An important feature of the current system 
is the transformation to the intrinsic force constant space for 
which the force constant error matrix is diagonal.39 This fa­
cilitates identification of ill-determined force constant values 
in the original force constant space.

The internal coordinates utilized as a basis for the normal 
coordinate calculations include all those indicated in Figure 
6 plus all possible framework torsions (Figure 8). This leads 
to an overcomplete set of 68 internal coordinates. Of the 26 
redundancies contained therein, 8 are angle bending in nature, 
2 arising at the sp3 bridgehead carbons, and 6 arising at the 
sp2 carbons. A kinematically complete set generated by the 
Decius40 prescription would eliminate these. The bridgehead 
redundancies are retained for reasons of symmetry, while the 
Cgp2 redundancies are retained in the hope of maximizing 
transferability. The Decius set of internal coordinates contains 
1 torsion for each nonterminal carbon-carbon bond (9 total) 
and 12 cyclic redundancies. Our set, again from symmetry 
considerations, contains 15 torsions. Hence our set of internal 
coordinates introduces 6 additional local redundancies. (A 
crude, but useful rationale is that this outcome results from 
considering such bicyclic systems as consisting of three rather

Figure 8. The torsional internal coordinates employed in the normal 
coordinate analysis of bicyclo[2.2.2]octa-2,5,7-triene.

than two rings.) Due to the computer methods employed (vide 
supra), no difficulty arises as a consequence of the redundant 
symmetry coordinates derived from these internal coordi­
nates.

The several trial potential functions were generated without 
constraining any force constant values.41 Convergence was 
obtained by always refining the <E’s in two subsets constructed 
so as to avoid divergence problems, e.g., H,, H,t„ and could 
not be included in the same subset (see Figure 6). Care was 
taken to ensure that, apart from linear dependencies (vide 
supra), the various force fields corresponded to true conver­
gence. These last tests were crucial since no more than 19 force 
constant values were refined in a given cycle. First a 26-pa- 
rameter potential function was used to finalize the vibrational 
assignment. Then a more general 37-parameter potential 
function was subsequently developed which could also be 
refined satisfactorily, based on the complete vibrational as­
signment. It was noted, on the other hand, that several force 
constants in the latter potential function had relative dis­
persions >80% of the force constant value. We thus generated 
our final potential function by bringing to bear all possible 
considerations in rendering it statistically meaningful.

The selection of a final force constant set was cause for some 
reflection. Few GVFF calculations are truly “ general” . The 
internal coordinate set requires no more than 12 principal 
force constants, while the data set (28 frequencies) imposed 
on upper bound on the number of parameters that could be 
varied in a given cycle. We were concerned lest our set be too 
small, thereby limiting transferability. For this reason the 26 
parameter potential function employed for finalizing the vi­
brational assignment was felt to be too restricted. We arrived 
at a 37-parameter potential function built up as follows: (1) 
Stretch-stretch interactions are included for all pairs of car­
bon-carbon bonds having a common atom. (2) Stretch-bend 
interactions are included for all angles with apices at one of
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Chart I

the termini of the carbon-carbon bond in question. (3) 
Bend-bend interactions are included for all angles about the 
nearest-neighbor carbon atoms where the bond is a common 
side for the angles in question. (4) No interaction force con­
stants involving the C-H stretches, torsions, or out-of-plane 
bends were included. (This is consistent with the force fields 
used in studies of cyclohexene30 and cycloheptene.31) (5) No 
next-nearest-neighbor interactions were included. It seems 
clear that, at least for saturated hydrocarbons,42 these inter­
action force constants are exceedingly small. The force field 
thus obtained possesses nomenclature problems in that sev­
eral interaction force constants have the same nominal des­
ignation. The ambiguities arising for the interaction force 
constants are clarified in Chart I.

The cyclohexene force field of Neto et al.30 was the principal 
source of our zero-order force constants We considered 
using those reported by Levin and Harris19 for norbornadiene,
3. One noteworthy feature of this force field is a C==C 
stretching force constant ( K b  in our notation) of 6.61 mdyn/A.' 
Our exploratory work with the 26-parameter potential func-. 
tion showed that there were two different solutions to the 
problem, depending upon the starting value for Kb- 41 (This 
problem is well-known with regard to ethylene.43) Since most 
olefin force fields lead to a value of ~8-8.5 mdyn/A we chose 
to use the cyclohexene data. Some few zero-order force con­
stants were taken from the standard hydrocarbon force field.42 
There are two interaction constants, F'tu and F^, for which 
we were unable to find reasonable starting values.

Prior to the refinement of the force constants it was nec­
essary to impose some constraints upon the potential function 
with regard to the Csp2 carbon angles. It is possible to construct 
a set of three bending coordinates in such a manner that the 
principal and interaction force constants for one of the three 
will be indeterminant. We have chosen, in the interests of 
retaining transferability, to retain the primitive bending 
coordinates and constrain the associated <b, ’s in the following 
manner. Since the angle <j> (Figure 6) resembles closely a 
“ normal”  Csp2-C sp2-H  angle, H,,, was fixed at the cyclohexene 
value. For stretch-bend interactions we felt it important to 
permit variational freedom in those cases where the bond in 
question also defines the angle involved. Hence F04, and F t $ 
were likewise held constant. Finally, for bend-bend interac­
tions, since H  ̂ is fixed, the relationship of deformations in t 
and to 0 must be accommodated. Hence Fi<t> and F ^  were 
permitted to vary while Fvp was fixed. During the refinement 
of the force constants, ill-determined intrinsic force constants 
indicated that several other interaction force constants would 
also have to be fixed for meaningful results to be obtained. 
Based on these considerations, Fq ,̂ F to, F t F ’ to, Ftw, Fa ,̂ 
F q,, and F’ul, were fixed at the cyclohexene values.

F. A. Van-Catledge and C. E. McBride, Jr.

TABLE II: Zero Order and Refined Force Constants for 
Bicyclo[ 2.2.2 ] octa-2,5,7-trienea

Force
i constant <J>.° b 0(<I>,R)
1 k d 8.700 8.126 0.034"
2 k t 4.384 4.017 0.039#
3 K , 5.068 5.148 0.005"
4 K d 4.588e 4.851 0.009#
5 H0J 1.084c 0.975 0.028#
6 He 0.657e 0.634 0.005#
7 He 0.917 1.061 0.016#
8 H(i> 0.504 0.504 d
9 H\p 0.477 0.698 0.006"

10 H r 0.221 0.270 0.003"
11 td 0.222 0.458 0.041#
12 tt 0.020 0.258 0.021#
13 f Dt 0.098 0.027 0.033#
14 F rf ,j y 0.10 1e 0.357 0.036'
15 FDe 0.423 0.514 0.046#
16 FD<p 0.365 0.365 e
17 FDii 0.077 0.077 d
18 F Tlo 0.417c 0.508 0.032"
19 F to 0.360 0.360 e
20 F  Te 0.423 0.938 0.021#
21 F t î 0.319 0.319 e
22 F'tu> f 0.414 0.035"
23 F' T8 0.048 0.048 • e
24 F T<p 0.077 0.077 d
25 Fe* f 0.133 0.002"
26 Fe<p ■ -0 .043 0.251 0.015"
27 Fe* *' -0 .043 -0 .043  - d
28  ̂dxt> * 0.122 0.006 0.004"
29 0.033 0.170 0.003#
30 Fee -0.017 -0 .337  . 0.035"
31 Fojlo —0.041f . —0.078 0.017"
32 F u>e -0 .034 -0 .207 0.0 11#
33 Feco 0.017 0.017 e
34 Feoi, 0.062 0.062 e
35 Foe 0.012e 0.022 0.004"
36 Fee -0 .032 —0.032 e
37 F’e<t> 0.062 0.062 e

a Stretching constants are in units of mdyn/A; stretch- 
bend interaction constants in units of mdyn/radian, and 
bending constants in units of mdyn A/radian2. * From ref 
30, unless otherwise noted. e From ref 42. d These force 
constants were not varied in order to deal with Csp2 angle 
bending redundancy. e These force constants were not 
varied due to large contributions to ill-determined intrinsic 
force constants. / No reasonably similar force constants 
were found in the literature, #These force constants were 
refined together as set A. " These force constants were 
refined together as set B. ‘ This force constant was varied in 
both sets. The dispersion reported is the larger of the two 
values.

Several of the refined force constants are found to differ 
substantially from their zero-order values (changes of 50% or 
more). We shall attempt to relate these changes to structural 
features of 1 that are absent in cyclohexene. The zero-order 
and refined force constant values are summarized in Table II.

Among the principal force constants, td, and tt are 
most significantly altered. For H^ we believe the increase 
(~47%) is associated with the forced eclipsing of the olefinic 
and aliphatic C-H bonds. This arrangement is absent in cy­
clohexene, and does not generally arise in simple olefinic 
systems. The increase in rp (~100%) and t T  (~1200%) clearly 
reflect the rigidity of the cage structure of 1. The fact that the 
refined value for tt exceeds the zero-order value for tq serves 
to illustrate the powerful constraints inherent in such mole­
cules.

It is intuitively obvious that vibrational motions in mole-
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TABLE III: Comparison of Calculated and Observed Frequencies and Potential Energy Distribution of 
Bicyclo[2.2.2 ] octa-2,5,7-trienea

G>bsd> Galcd-
N cm-1 cm-1 PED

a ;

A

E'

E"

G 3072 3083
G 2985 2991
G 1624 1624
G 1128 1126
G 870 872
G 640 639

G Not active 980
G Not active 415

G Not active 685

Go 3086 3080
Gi 2998 2992
Ga 1338 1339
Go 1020 1024

G. 812 810

G 5 3086 3080
G 6 1583 1583
G 7 1218 1219
G» 1084 1085

G, 900 899

Go 697 698
Gi 411 411

Ga 3072 3076
Ga 1258 1258
Go 1228 1226
Gs 1128 1127
Go 910 910
G , 684 682
Gs 485 485

0.99K,
0.99 Kd
0.72Kd + 0.10Kt + 0 . 1 9 - 0 . 1 0 Foó
0.18 Kd + O.S&Hfp + O.57//0 + 0.13FD t p  ' 0.26 F,<Hi
0.1 OKq  + 0.64 K j' + 0.1 lF j ’y’ 0 .15F rf l̂  + 0 .12/'y-e 
0.12KT + 0.26Hw + 0.13He + 0.22He -  O.24//0 + 0.12rr  + 0.18Frw 

- 0 . 1 5 ^ - 0 . 1 5 ^  + 0 . 1 9 ^
0 . 6 7 / i p  +  0 . 1 9 7 / }  +  0 . 1 5 t t  

0 . 3 3  Hr + 0 . 3 7 r D  +  0 . 3 Qtt

1.00 Hr

0.98 K,
0.98 Kd
0.19H0 + 0.57Hp - 0 .1 9 F00
0.39Hg + 0.66//0 + 0.20ÍG -  0.15i>e -  O ^ F ^  -  0.21 F00 

+ 0.12 Fee
O.OOKj' + 0.1 OF tt — 0.23 F f^  — 0.22Fj-e
0.99K,
0.83Kd + 0.lOKj' + 0.11 Hp -  0.09FD(>
0.52H g + 0.21/L, + 0.29Hp + O.15F00 -  0 .14F00 
0.44K r  + 0.58Hg + O.15H0 + 0.29H0 - 0 . 2 3 F Te + 0 .14F™

— O.16Fa0 — O.12F00
0.16Kd + 0.44Fr  + 0.21 H0 + O.I6 /4  + 0 .12//r + 0.09F™, -  

0.10Fre — O.IOFjm, — O.1OF00 
0.27KT + 0.70Hr
0.61 H w  + 0.16//r + 0.15 t t  + 0.10Fr ^
0.99F,
0.27Kt + 0 . 1 4 +  0 .27 /4  + 0.197/5 + 0.22rr  -  0.10FTu}
0.37Hg + 0.32H0 + O.43//0 + O.16Fa0 -  0.21 F00 
0.74He + 0.25m  + 0 .41 /4  -  0.22Fa0 -  0.18FL,
0.91Kr  + 0 .31 /4  + O.13//0 + 0.16Hr + 0A8FTe -  O.14Fe0 + 0.10Fee 
0A2Hg + O.2 3 /4  + 0.11//r + 0.1AFTe -  0.22Fe0 + 0.13Fee 
0.46//r + 0.137/5 + 0.27rr

a Average percent error = 0.13. Average error = 2.0 cm ‘ .

cules such as 1 are likely to be more strongly coupled than in 
simple acyclic or monocyclic systems. A good measure of this 
coupling is the magnitudes of the interaction force constants. 
Thus, the refined interaction force constants relating the in­
ternal coordinates D, T, t, and a> should exceed substantially 
the cyclohexene values. We find that F t t , F t , , and F,, are 
indeed larger by at least an order of magnitude. Smaller, but 
significant increases are noted for F ^  and F̂ o- We also find 
increased values for Ft0 and F00, but we do not ascribe great 
physical significance to these changes. These latter values 
most probably reflect our particular choices for handling the 
Csp2 angle bending redundancy. Finally, we are unable to offer 
a rationale for the exceedingly small value of F00.

One principal force constant, Z4 , does not conform to our 
expectations in that it is slightly smaller than the zero-order 
value. Force field calculations for norbornadiene, 3, yield 
values of 1.3219 or 1.542 mdyn A/radian2 for the analogous 
angle. The best estimates of the geometry of 344 indicate that 
the equilibrium bond angles are within ~4° of each other and, 
presumably, strained to roughly the same extent. The dif­
ference in H„, therefore, is inexplicable on the usual grounds. 
The origin of this apparent anomaly may lie in a special 
“ electronic” effect that has been previously discussed. It is 
well-known that, in 7r-electron approximation, no net stabi­
lization accrues from the interaction of the three double bonds 
in 1 in calculations neglecting overlap.3-5 8’45 This is a conse­
quence of the facts that (a) the tt MO’s of 1 are symmetry de­

termined, and (b) all bond order terms between pir orbitals 
on different bridges are identically zero. Goldstein and 
Hoffmann46 have pointed out that, when overlap is included, 
this lack of stabilization actually corresponds to net destabi­
lization. Hence a net repulsion among the ethylenic units is 
predicted in one-electron approximation. (This result has been 
recently employed in a discussion of the variation with con­
formation of the one-electron energy for vicinal lone pairs.47) 
Hence the low value obtained for / / „  may be the first experi­
mental evidence for the operation of this effect in barrelene. 
If this is true, then the difficulties noted in accounting for the 
heats of hydrogenation for 1 via molecular mechanics1511 reflect 
pecularities of the molecule more than deficiencies in the 
potential function. It is unlikely that molecular mechanics 
calculations would be able to incorporate such an effect in a 
satisfactory manner.

A comparison of the observed and calculated frequencies 
is presented in Table III, along with the potential energy 
distributions from this force field. The average errors indicate 
the goodness of fit. The largest values of | //,obsd — iycalcd| are 
associated with the C- H stretching assignments. Since an- 
harmonic corrections were not applied this is felt to be of small 
consequence. Examination of the PED’s bears out our crude 
assignments with certain notable exceptions. As anticipated, 
the low-frequency modes clearly do not conform to the simple 
group frequency picture. The most obvious examples are vis, 
¡Us. v\2, and V23-
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Concluding Remarks
We have presented what we consider to be a reasonable and 

internally consistent vibrational assignment for barrelene, 1. 
The normal coordinate analysis supports this assignment in 
that force constants differing significantly from those found 
for the simple cycloalkenes30’31 are readily explicable in terms 
of the strain and rigidity of i. We feel that these force con­
stants, with the exception noted, represent a better starting 
set for normal coordinate analysis of strained bicyclic olefins 
than has heretofore been available. A study of norbornadiene, 
3, which supports this view has been completed2 and will be 
reported later.
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ADDITIONS AND CORRECTIONS

1975, Volume 79

Hsin-Chou Chiang and Aaron Lukton: Interaction of 
Sodium Dodecyl Sulfate with the Hydrophobic Fluorescent 
Probe, 2-p-Toluidinylnaphthalene-6-sulfonate.

We have to correct some of our data which was published 
in ref 1 as follows:

(1) The AH = —3.245 kcal/mol should be changed to AH 
= -3.245 kcal/mol X 2.303 = -7.473 kcal/mol.* 2 Thus, the 
original AS values of Table II should be corrected as fol­
lows:

Ionic strength of added salt 
Temp, ---------------------------------- «ir----------------

°C 0 .. 0.05 0.10

15 - -10.10 . . -9.049 -7.753
25 -10.10 ... ' -8.963 -7.503
35 -9.946 -8.893 -7.685

Therefore, the SDS micelle-TNS interaction is exothermic 
and involves a negative entropy change. However, an increase 
in NaCl concentration increases the association constant for 
the interaction by increasing the positive entropy change, that 
is, as noted in the corrected Table II, that salt makes the AS 
value less negative. The conclusion that the SDS micelle-TNS 
interaction should be hydrophobic in nature is still valid. A 
similar AS value change has been observed for the interaction 
of TNS with phosphatidylcholine vesicle.3

(2) If cmc/[M]t<itai > 5%, then eq 4 in ref 1 should be changed 
to

[Mntotal] = -  ([M]tota] -  cmc) 
n

with the result that the [M]t„tai term of eq 7 in ref 1 should be 
changed to (|M]totai ~ cmc). Thus, the points of I at 1/SDS =
29.5 in Figure 5a-c (without NaCl) now fall on the lines. The 
([M] total -  cmc) = [M] total can be assumed when [M]totai is very 
large, which was the case in the experiments of Figure 5a-e 
or when the cmc is very small so that the ratio is cmc/[M]t„tai 
< 5%.

(3) Some of the cmc values in Table I are significantly 
smaller than the literature data cited, as noted in Birdi’s 
comment in this issue of the Journal. Our results show that 
the higher the salt concentration, in the range 0.033-0.10 M, 
the greater the deviation of cmc values obtained by TNS 
fluorescent measurement as compared to other methods. One 
possible explanation is that at these ionic strengths, TNS may 
induce SDS oligomer formation resulting in SDS oligomer- 
TNS complexes, which show TNS fluorescence enhancement 
at the SDS concentrations lower than literature cmc values. 
However, SDS oligomer-TNS complexes do not represent 
SDS micelle-TNS complex. Higher salt concentrations may
facilitate SDS oligomer formation by the effect of increasing
the hydrophobic interaction of SDS monomer and TNS. The
results would show larger deviations of the cmc values 
reaching a maximum effect at ionic strengths higher than 0.2
M.

In our study of TNS interacting with dodecyltrimeth- 
ylammonium chloride (DoTAC) (unpublished data), we found 
that TNS could induce the formation of DoTAC oligomer- 
TNS complex and that DoTAC oligomer induced by TNS 
could be composed of more than three monomers: It should 
be noted here that TNS has been found to induce self-asso­
ciation of human luteinizing hormone4 and human chorionic 
gonadotropin5 respectively at the concentration ranging from 
1.0 X 10~5 to 8.0 X 10~4 M. We find that the absorbance of 
TNS in the concentration range 1 X 10-5 to 1.2 X 10-4 M in 
0.5 M NaCl still follows Beer’s law (366 nm, e 4.1 X 103)6 and 
that there is no eximei formation detectable. Therefore, the 
possible formation of ground state or excited state dimer of 
TNS can be ruled out.
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1976, Volume 80

Eli Grushka, E. J. Kikta, Jr., and H. T. Cullinan, Jr.:
Binary Liquid Diffusion Prediction in Infinitely Diluted 
Systems Using the Ultimate Volume Approach.

Page 757. The data for octaphenone were omitted from 
Table II, causing a transposition of data between octaphenone 
data and heptaphenone. Also, the correlation coefficient for 
nonaphenone is in error. The corrected table should read as 
follows:

TABLE II: Data from the Linear Regression D\-}/ R T  Vs.
( p  —  p o) Forced through the Origin

Corr 10 1B
Compound 1015S coef F test Cl ij

Acetophenone —8.'71 0.992 251 5.17
Propiophenone -8.11 0.993 274 5.56
n-Butyrophenone -7.63 0.986 177 5.90
Isobutyrophenone -6.96 0.995 438 6.47
Valerophenone -6.96 0.993 278 6.47
Isovalerophenone -6.51 0.996 531 6.92
Hexaphenone -6.64 0.994 351 6.78
Heptaphenone -6.41 0.997 580 7.08
Octaphenone -6.18 0.998 917 7.29
Nonaphenone -5.94 0.998 1140 7.58
Decaphenone -5.74 0.996 450 7.85
Myristophenone -5.53 0.996 558 8.15
Benzene -16.04 0.999 1491 2.81

It should be noted that the headings in Tables II and III 
which read 1016aij should read 10—iea¡j.
—Edward J. Kikta, Jr.
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E. J. Hamilton, Jr., and C. A. Naleway: Theoretical 
Calculation of Strong Complex Formation by the H 02 Radi­
cal: H 02-H20  and H 02-NH3.

Page 2038. In the left-hand column, line 7, substitute “ 
on the H atom .. for . . on the atom . .
—E. J. Hamilton, Jr.
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Hydrocarbon adsorption potential interface 

water 394
Hydrocarbon afom complex uric acid NMR 

279
Hydrocarbon carbonium hydride transfer 

2848
Hydrocarbon fluorinated oxygen excited 

reaction 1837

Hydrocarbon fluorocarbon mixt surfactant 
micelle 1388

Hydrochloric acid extn amine 1283 
Hydrochloric acid molal vol 1566 
Hydrocyanic acid proton transfer 2919 
Hydrodesulfurization catalyst nickel tungsten 

2094
Hydrogen abstraction anisole radical cation 

1642
Hydrogen atom ice ESR 2400 
Hydrogen atom reaction hydrobromic acid 

1519
Hydrogen atom silane decompn 2811 
Hydrogen atomic butene kinetics 1657 
Hydrogen bond amine complex thioacetate 

611Hydrogen bond aq urea 1346 
Hydrogen bond chloroalkane mixt 1005 
Hydrogen bond chloroform surfactant 64 
Hydrogen bond phenol pyridine 811 
Hydrogen bond quinoline luminescence 

2243
Hydrogen bonded systems solvation effects 

thermodyn 2716
Hydrogen bonding ale NMR IR 2448 
Hydrogen bonding methanol hexane 131 
Hydrogen bromide aq IR 1640 
Hydrogen carbon monoxide reaction 1878 
Hydrogen charge acetylene 2004 
Hydrogen chloride heat transfer 2381 
Hydrogen deuteride water exchange 1068 
Hydrogen dissocn rate theor 922 
Hydrogen elimination cyclohexadiene me?

chartism 1398 ^ 1
Hydrogen ethane hot atom reaction 2063 ; _ 
Hydrogen exchange alkane mechanism 

2900
Hydrogen fluoride org complex enthalpy 

362
Hydrogen lithium heat exchange 1302 
Hydrogen permeation palladium chromium 

alloy 308
Hydrogen peroxide oxidn ethylene 1645 
Hydrogen peroxide photoredn hydrogen •

223
Hydrogen photoredn-hydrogen peroxide 

223 . ;
Hydrogen profile water oxidized silicon 

2471
Hydrogen reaction cyanide kinetics 1549 
Hydrogen shift ethyl radical 1400 
Hydrogen soly uranium alloy 375 
Hydrogen sulfide adsorption interface water 

1714
Hydrogen sulfide anthracene radical cation 

reaction 1011
Hydrogen sulfide EPR magnesia 2015 
Hydrogen sulfide radiolysis sensitized 1035 
Hydrogen sulfide sulfurization molybdenum 

1700
Hydrogen water partition deuterium 1064 
Hydrogenation pyridine mechanism 2107 
Hydrogenation pyridine molybdenum oxide 

2103
Hydrogenolysis alkane mechanism 2900 
Hydrolysis kinetics ethyl oxalate anion 

1418
Hydronium benzophenone triplet interaction 

800
Hydroperoxo reaction nitrogen oxide 1 
Hydroperoxo water complex MO 2037 
Hydrophilic effect water structure 1346 
Hydrophobic bonding Pfeiffer effect 649 
Hydrophobic effect water structure 1346 
Hydrophobic fluorescent probe 2977 
Hydrophobic nonpolar solute transfer 999 
Hydrophobic salt water structure 2620 
Hydrophobic surface zeolite aluminum silicon 

60
Hydrophobicity amino acid 249 
Hydrophobicity nonpolar solute transfer 

359Hydrophobicity water structure alkylammo  ̂
nium 1120

Hydroxide solid acidity function 1723 
Hydroxy phosphate calcium crystn 40 
Hydroxyapatite crystn dil soln 40 
Hydroxycarboxylates vanadyl electron par= 

amagnetic resonance 778 
Hydroxycyclopropane ion mol reaction 795 
Hydroxyl alkene reaction kinetics 789 
Hydroxyl cyanide reaction kinetics 1549 
Hydroxyl radical ethylene kinetics 1645 
Hydroxyl radical oxidn disulfide 2426 
Hydroxyl radical reaction 1635 
Hydroxyl reaction nitrogen oxide 1 
Hydroxylation carcinogen liver chemilu0 

minescence 2296
Hydroxymethylphenyl triazine amino proton 

transfer 2070
Hydroxynaphthaleneacetic fluorescence 

decay 898

Hydroxyvanadate aq structure ESR 541 
Hyperfine splitting dithiooxalato iron 1601 
Hyperfine splitting ion pair 182 
Hysteresis microstructure EP rubber 2961 
Ice ESR hydrogen atom 2400 
Indole fluorescence charge transfer 482 
Indole fluorescence quenching 974 
Indole micelle fluorescence quenching 486 
Inorg electronic process energy transfer 

2143
Inorg ion reaction polaron kinetics 2635 
Insertion methylene cyclobutane 1393 
Insertion methylene propane 2623 
Insertion singlet methylene cycloalkene 

1653
Integral equation generalized classical fluid 

1321
Integral second virial coeff 129 
Interaction energy chloropropene 598 
Interaction vibronic phosphorescence anthra— 

quinone 2170
Interatomic distance ealen 1187 
Interatomic potential virial coeff 129 
Intercalate montmorillcnite rubeanato cop^1 

per 1780
Interelectronic intramol energy transfer 

2166
Interface elec current adsorption surfactant 

1573 < ;
Interface emulsion copper coordination 

dodecanoylhistidinol -1708 
Interface potential water-hydrocarbon vapor 

394 ; -
■ Inletfacial tension hydrogen sulfide water 
, 1714
Interfactal tension 3 liq ,phase 1719 
Intermol parameter heat mixing 2732 
Interstitial diffusion quantum model 375 
Intersystem crossing chromium ruthenium 

complex 2499
Intersystem crossing methylene reversibility 

2623
Intramol interelectronic energy transfer 
, 2166
Iodide antimony sulfide Raman 1208 
Iodide butyammonium mixt melt viscosity 

291. ^
Iodide cesium adsorption lifetime nickel 

1484
Iodide mercury 1 aq 1049 
Iodide pulse radiolysis 2325 
Iodide transition solvent effect 2503 
Iodine alkyl halide UV 891 
Iodine argon radiolysis kinetics luminescence 

2138
Iodine atom excited deactivation 437 
Iodine charge transfer complex 2609 
Iodine heterocycle complex 1809 
Iodine kinetics acetylene 1411 
Iodoallene IR Raman 1262 
Ion alkali metal hydration structure 673 
Ion assocn methanol 753 
Ion assocn model polyacrylate 1513 
Ion binding maleic copolymer 2564 
Ion cyclotron resonance fluoropropane 575 
Ion exchange diffusion coeff 2041 
Ion exchanger Donnan potential detn polem^ 

ic 2432 2433
Ion hydration polarizability 2084 
Ion inorg reaction polaron kinetics 2635 
Ion mol hydrocyanic acid 2919 
Ion mol reaction borazine 2818 
Ion mol reaction carbon benzene 2904 
Ion mol reaction cyclopropane 795 
Ion mol reaction kinetics 1739 
Ion NMR zeolite water 1350 
Ion pair alkali metal anion 2117 
Ion pair alkali solvation 679 
Ion pair assocn 2603 
Ion pair benzoquinone formation kinetics 

69
Ion pair complex ESR 182 
Ion pair dissocn ESR 861 
Ion pair ethylene glycol 2700 
Ion pair methiodide charge transfer 2111 
Ion pair octylamine chloride 1283 
Ion pair phenyl ether 767 
Ion pair propylene carbonate IR 850 
Ion pair solvent effect 1113 
Ion polarizability 2078 
Ion radical naphthalene pyrene IR 1445 
Ion sodium diffusion polyelectrolyte 297 
Ion solvation ale NMR 417 
Ion solvation methylurea transference 351 
Ion transport membrane water ionization 

1616
Ionic photodissocn pyrene quencher 33 
Ionic strength dil soln activity 89 
Ionic transport mechanism resin 2041 
Ionization benzoate phenol substituent sol  ̂

vent 1306
Ionization halo aldehyde hydrate 154



KEYWORD INDEX J. Phys. Chem., Vol. 80, 1976 3023

Ionization mechanism hydroxynaphthalenea  ̂
cetic acid 898

Ionization neopentane gas 1664 
Ionization potential MO 1928 
Ionization pyrene photochem 713 
Ionization water ion transport membrane 

1616
IR adsorbed carbon monoxide ruthenium 

1731
IR adsorbed nitrous oxide zeolite 1922 
IR adsorbed pyridine thiophene 606 
IR ale hydrogen bonding 2448 
IR amide frequency shift 1247 
IR ammonia adsorbed halide 2530 
IR ammonia adsorbed zinc oxide 471 
IR bond interaction 1217 
IR crystal ammonium symmetry 1212 
IR dehydroxylated silica 1995 1998 
IR dibenzoylaziridine assocn alkali metal 

25IR ethyl cyanide deuterium 1129 
IR ethylene ozonide 1238 
IR fluorescence laser excited 1596 
IR intensity acetylene 2004 
IR intensity polar tensor 2521 
IR ion pair propylene carbonate 850 
IR iron carbonyl 1248 
IR ketone probe Lewis acidity 1502 
IR naphthalene pyrene ion radical 1445 
IR nitrate'aq structure 501 
IR overtone local mode 2160 
IR particulate cloud 1195 
IR quinhydrone phenoquinone phonon

1367 ~ •
IR Raman bicyclooctatriene 2987 
IR Raman phosphine isopropyl 2493 T 
IR silver thionamide 2384 
IR strong acid base 1640 
IR sulfur fluoride 1203 
IR surfactant chloroform assocn 64 
IR synthetic tephroite 1226 
IR tetrahaloallene 1262 
IR thioacetate amine complex 611 
IR vinyldifluoroborane 1188 
IR water structure 1346 
IR water structure electrolyte 1950 
IR zeolite adsorbed mol 1917 
Iron complex ESR relaxation 1601 
Iron complex vibrational spectra 1248 
Iron manganese Mytilus shell 1362 
Iron redox thallium 2 2543 
Iron salt photoredox reaction 579 
Iron sulfide solvolysis thermodn 1844 
Iron valence stabilization Moessbauer 529 
Irradn benzene carbene ion 1852 
Irradn UV acridinium phenyl 2614 
Isobutene maleic acid copolymer 2564 
Isobutylene addn atomic triplet oxygen 779 
Isocyanate metal complex photolysis 949 
Isomerism chloropropene solvent effect 598 
Isomerism ethyl methyl disulfide 618 
Isomerism rotational disulfide 625 
Isomerism rotational Raman cystine 1812 
Isomerization 1400 
Isomerization butenyl kinetics 8 
Isomerization methylbenzene 2983 
Isomerization studies shock tube 778 
Isooctane cracking magnesium zeolite 2366 
Isooctane cracking zeolite carbon dioxide 

1335
Isopentanol electrocapillarity mercury 370 
Isoquinoline hydrogen bond luminescence 

2243Isotope effect activity hexane methanol 131 
Isotope effect cadmium electron scavenging 

1054
Isotope effect oxygen addn isobutylene 779 
Isotope effect pulse radiolysis sulfate 2320 
Isotope effect quenching indole fluorescence 

974
Isotope sepn deuterium 1064 1068 
Isotope sepn photochem microwave 2710 
Ketoacetal cyclic diamagnetic susceptibility 

2047
Ketone anion radical UV 2724 
Ketone probe Lewis acidity oxide 1502 
Ketone reaction hydroxyl radical 1635 
Ketone vibration relaxation luminescence 

244
Ketyl diphenyl ESR 429 
Ketyl radical benzophenone 2724 
Kinetic adsorption ethylene zinc oxide 1870 
Kinetic law entropy production 143 
Kinetic mechanism oxygen exchange 229 
Kinetic oxygen reaction amidogen 433 
Kinetics adsorption frequency response 

1867
Kinetics amine reaction haloalkane 2473 
Kinetics amino acid decay 46 
Kinetics atomic hydrogen butene 1657 
Kinetics bifunctional proton transfer 1425 
Kinetics complexation positronium benzo= 

quinone 451

Kinetics cycloalkene singlet methylene 
1653Kinetics decay semiquinone radical anion 
2671

Kinetics deexcitation electronically excited 
bismuth 217

Kinetics dehydrogenation piperidine 2107 
Kinetics disproportionation benzaldehyde 

electroredn 2740
Kinetics electrocatalyzed reaction 1011 
Kinetics electron exchange acridinyl 2614 
Kinetics electroredn chromium complex 

1861
Kinetics formation ion pair benzoquinone 

69Kinetics fragmentation fluoropropane 575 
Kinetics fragmentation mass spectra 2825 
Kinetics hydrolysis ethyl oxalate anion 

1418
Kinetics hydroxyl cyanide reaction 1549 
Kinetics hydroxyl radical 1635 
Kinetics hydroxyl radical ethylene 1645 
Kinetics iodine acetylene 1411 
Kinetics ion mol reaction 1739 
Kinetics luminescence radiolysis iodine 

argon 2138
Kinetics manganese ion aq soln 1840 
Kinetics mechanism pyrolysis tertbutyl 

cyanide 546
Kinetics micellizaton theor 905 
Kinetics oxidn isobutylene 779 
Kinetics ozonation fluoroethane 571 
Kinetics ozone rSactiori fluoroethene 2313 
Kinetics photolysis solid reflectance mea­

surement 1592 ’■
Kinetics polaron reaction inorg ion 2635 
Kinetics proton transfer amino acid 1422 
Kinetics pyrolysis carbonium ion 2865 
Kinetics pyrolysis mechanism deuterioethane 

1400
Kinetics quenching excited tin 91 

* Kinetics radiolysis aq cytosine 112 
Kinetics radiolysis nitroperoxy benzoic acid 

1274 >
Kinetics radiolytic oxidn molybdenum cya= 

i nate 2316
Kinetics reaction hydroxyl alkene 789 
Kinetics reaction krypton ion methane 

2911
Kinetics reaction oxygen dicyanoacetylene 

557
Kinetics reaction peroxy radical 1558 
Kinetics tetracenide disproportionation 

equil 1690
Kinetics thermodn electrode reaction 2645 
Kinetics thermolysis ethylene dimethylamino 

1025
Kinetics thermolysis methyldiimide 559 
Kinetics thermolysis polysulfide trityl 213 
Krafft point fluorinated surfactant 2468 
Krafft point melting alkanoate surfactant 

1987
Krypton ion reaction methane kinetics 

2911
Krypton virial coeff potential 129 
Kynurenine formyl deriv luminescence 

1804
Lanthanum chloride activity dil aq 89 
Lanthanum nickel catalyst 1878 
Lanthanum 139 longitudinal relaxation 

protein 1357
Laplace transform sedimentation equil 

1071
Laser actinometry photooxidn tetramethyle0 

thylene 2248
Laser carbon dioxide 1234 
Laser excited IR fluorescence 1596 
Laser fluorescence anthracene naphthalene 

2200
Laser photolysis borane phosphorous fluoride 

1405
Laser photolysis cyclobutanone 1833 
Laser photolysis phenyl hydrazine 2155 
Laser Raman adsorbed mol film 382 
Laser temp jump kinetics 313 
Laticauda neurotoxin Raman spectrum 

1153
Lattice energy alkane ammonia 52 
Laurate potentiometry cesium lithium 366 
Lead sulfate elec potential 2863 
Lennard Jones pair potential parameter 

1697
Leucite ferrisilicate aluminosilicate structure 

1612
Level energy crystal field 1373 
Lewis acid site dehydroxylated silica 1995 
Lewis acidity detn oxide surface 1502 
Lewis base ammonium cation complex 2488 
Lewis base chloroalkane adduct 1005 
Lifetime triplet benzophenone 800 
Ligand binding detn NMR 161 
Ligand field excitation complex photolysis 

949

Ligand field 5 coordinated complex 2126 
Light satn Chlorella fluorescence photosyn= 

thesis 2306
Light scattering methyl sulfoxide 2780 
Limonene reaction hydroxyl radical 1635 
Linear dependence test complexing 690 
Lippmann equation dielec const 2363 
Liq ammonia radiolysis spectra 1101 
Liq atom recombination picosecond timescale 

1544Liq crystal alkali decyl sulfate 174 
Liq crystal chiral alkanoate 1310 
Liq crystal lithium palmitate 1753 
Liq crystal micelle EPR vanadyl 1892 
Liq crystal transition ethoxycycloalkanecarb  ̂

onyloxyazobenzene 944 
Liq diffusion binary diluted systems 2997 
Liq mixt binary diffustefa 757 
Liq phase sepn temp jump 1952 
Lithium acrylate polymn mechanism 1057 
Lithium cation exchange zirconium phosp  ̂

hate 1296
Lithium cesium laurate potentiometry 366 
Lithium chloride heat transfer 2381 
Lithium fluorenyl 1090 
Lithium halide thermodn transfer ale 2451 
Lithium hydrogen heat exchange 1302 
Lithium nitrate aq structure 501 
Lithium nitrate pyrophosphate pyrolysis 

236
Lithium palmitate polymorphism 1753 
Lithium tetrafluoroberyllate melt fluorine 

selfdiffusion 1628
Liver hydroxylation carcinogen chemilu0 

minescence 2296
Local mode poly at overtone spectra 2160 
Lone pair interaction mol vibration 1217 
Lumiflavin photoionization pH effect 341 
Luminescence electrochemi silicon 459 
Luminescence formyl kynurenine deriv 

1804
Luminescence hydrogen bond quinoline

224S
Luminescence ketone vibration relaxation 

244
Luminescence kinetics radiolysis iodine 

argon 2138
Luminescence mixed ligand complex 2206 
Luminescence porphyrin complex 2389 
Luminescence quenching ruthenium bipyri= 

dine complex 97
Luminescence transition metal complex 

2232
Luminescence tribo sugar 248 
Luminescencee magnetic circular polarized 

2228
Lutetium porphyrin complex luminescence 

2389
Lyotropic nematic alkali decyl sulfate 174 
Lysine bifunctional proton transfer 1425 
Lysozyme crystal water NMR 412 
Macromol heterogeneous assocn sedimenta= 

tion 1980
Macromol lanthanum 139 binding equil 

135̂
Madelung potassium chloroplatinate type 

1608
Magnesia EPR hydrogen sulfide 2015 
Magnesium oxide oxosulfide formation 635 
Magnesium oxide particulate IR 1195 
Magnesium perchlorate ale solvation 417 
Magnesium salt aq NMR 552 
Magnesium sulflate Brillouin spectra aq 

775
Magnesium zeolite isooctane cracking 2366 
Magnetic CD ferrocene 717 
Magnetic circular polarized luminescencee 

2228
Magnetic relaxation methylaryl 1783 
Magnetic relaxation micelle surfactant phos= 

pholipid 1746
Magnetic relaxation solute interaction 1908 
Maleic anhydride irradn ESR 728 
Maleic copolymer ion binding 2564 
Malic acid oscillating reaction 2548 
Malonic acid chelation nickel 239 
Manganese chloride ale solvation 417 
Manganese iron Mytilus shell 1362 
Manganese perchlorate soln pulse radiolysis 

1843
Manganese selective broadening NMR 161 
Manning model rodlike polyelectrolyte 

1626
Mannitol water enthalpy transfer 431 
Mass spectra acetylacetonate complex 2834 
Mass spectra alkyl carboxylate 2855 
Mass spectra carbon ion benzene 2904 
Mass spectra difluorocarbene 1042 
Mass spectra hexadiyne 2825 
Mass spectra proton transfer 2845 
Mass spectrometry bacteria heat degrdn 

2839
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Mass spectrometry radiolysis oxygen 1676 
Mass spectrometry sulfur 524 
Material balance chromatog finite concn 

2656
Mech property EP rubber 2961 
Mechanism alkane hydrogenolysis 2900 
Mechanism amine reaction haloalkane 2473 
Mechanism biphenyl anion photobleaching 

1278
Mechanism dehydrogenation piperidine 

2107
Mechanism elimination hydrogen cyclohexa- 

diene 1398
Mechanism ethylene dimethylamino thermos 

lysis 1025
Mechanism hydroxyl radical ethylene 1645 
Mechanism ion mol reaction 1739 
Mechanism ionization. hydroxynaphthalenea= 

cetic acid 898
Mechanism kinetic oxygen exchange 229 
Mechanism kinetics pyrolysis tertbutyl cyan=

• ide 546
Mechanism nonradiative transition duraldeh= 

yde 2201 - , u»
Mechanism oxidn isobutylene 779 
Mechanism photodecompn thermolysis me3 

thyldiimide 559
Mechanism pyrolysis l̂lene propyne 2437 
Mechanism pyrolysis kinetics deuterioethane 

1400
Mechanism thermal decompn 425 
Melamine formaldehyde equil thermodn 

1456
Melt glass forming transport property 291 

. Melting crystallite polymer soln 824 
Melting Krafft point alkanoate surfactant 

1987
Membrane'ion transport water ionization 

1616
Membrane methoxychlor sepn water 761 
Mercury electrocapillarity ale acid 370 
Mercury electrode sorption butanol 1761 
Mercury 1 halide aq 1049 
Mesitylene complex positron annihilation 

1693
Mesophase chiral alkanoate thermodn 1310 
Mesophase lithium palmitate 1753 
Metal alkali acrylate polymn 1057 
Metal atom cluster quantum mechanics 

1504
Metal ion pulse radiolysis ammonia 2635 
Metal octaethylporphyrin Raman spectra 

1181
Metalloporphine Zeeman effect 2253 
Methacryloyloxyethylpyridinovinylethoxyph = 

enolate vinyl polymer polarity 694 702 
Methane flame reaction difluorocarbene 

1042
Methane overtone spectra 2160 
Methane protonation carbon dioxide 2845 
Methane reaction krypton ion kinetics 2911 
Methanol alk earth chloride cond 753 
Methanol dielec relaxation ealen 1381 
Methanol ethanol radiolysis radical ESR 

854
Methanol hexane activity 131 
Methanol hydrogen fluoride complex 362 
Methanol neodymium nitrate assocn water 

1451
Methanol radiolysis peroxy radical 1558 
Methoxychlor reverse osmosis membrane 

water ethanol 761
Methoxychlor reverse osmosis water ethanol 

761
Methyl borazine ion mol reaction 2818 
Methyl disulfide electron diffraction 618 
Methyl disulfide Raman spectra 625 
Methyl radical acetate ELDOR 1885 
Methyl sulfoxide light scattering 2780 
Methylbenzene complex positron annihilation 

1693
Methylbenzene isomerization 2983 
Methylcyclobutane excited collisional deacti= 

vation 1393
Methylcysteine bifunctional proton transfer 

1425
Methyldiimide kinetics thermolysis 559 
Methylene chloride overtone spectra 2160 
Methylene diphenyl spin orientation 2167 
Methylene insertion cyclobutane 1393 
Methylene intersystem crossing reversibility 

2623
Methylene noble gas interaction 2881 
Methylene singlet cycloalkene kinetics 1653 
Methylene singlet triplet transition 2881 
Methylmalonic acid deaquation nickel 239 
Methylpentane liq photobromination me0 

chanism 2629
Methylsilane photolysis mechanism 2531 
Methyltetrahydrofuran adamantane radioly= 

sis radical 1435
Methyltetrahydrofuran radiolysis ESR 592

Methyltetrahydrothiophene adamantane 
radiolysis radical 1435 

Methyltetrahydrothiophene glass radiolysis 
photolysis 2072

Methylurea ion solvation transference 351 
Micellar antiacetylcholine drug assocn 1984 
Micelle conformation surfactant Raman 

1462
Micelle cyclodextrin colloidal electrolyte 

2661
Micelle fluorinated surfactant 2468 
Micelle indole fluorescence quenching 486 
Micelle liq crystal EPR vanadyl 1892 
Micelle mixt fluorocarbon hydrocarbon 

surfactant 1388
Micelle nonionic surfactant phospholipid 

1746
Micelle nonylammonium bromide NMR 

2124
Micelle sodium dodecylsulfate sodium chlo^ 

ride 1075
Micellizaton kinetics equil thermodn theor 

905
Michael Kasha tribute 3a 
Microenvironment polarity pyridinium copo= 

lymer 694
Microenvironment polarity solvatochromic 

polymer 702
Microstructure property EP rubber 2961 
Microwave photochem isotope sepn 2710 
Microwave silacyclopentane mol structure 

1199
Microwave spectra tetrahydropyridine 114  ̂
Microwave vinyldifluoroborane \ 1188 >*
Migratory aptitude oxidn 779 
Mixing heat intermol parameter 2732 
Mixing heat polystyrenesulfonate sodium 

chloride 808
Mixing thermodn binary soln 1317 
Mixing thermodn hexane heptamethylnonane 

2435
Mixt liq binary diffusion 757 
Mixt surface tension monolayer model 1880 
MO amine cation 76 
MO ammonia thioacetate complex 611 
MO ealen chiral benzene deriv 2686 
MO ealen dipeptide transition 1798 
MO. carbon monoxide nickel 385 
MO electron distribution 283 
MO haloethane 2923 
MO hydroperoxo ammonia water complex 

2037
MO ionization potential 1928 
MO irradiated maleic anhydride 728 
MO metal cluster 1504 
MO nitrogen dioxide peroxy isomer 2035 
MO NMR ethanol arabinonucleoside 324 
MO phenylazonaphthol hydrazone protona= 

tion 2694
MO positron positronium mol bond 2507 
MO PPP borepinodithiophene 287 
MO PPP phenylnaphthylamine 1094 
MO propellane photoelectron spectra 2212 
MO theory fractional charge model 2675 
Mobility cation sulfonated polystyrene 

2041
Model DNA 2028 
Model ion assocn polyacrylate 1513 
Model phase transition latex 1473 
Moessbauer iron valence stabilization 529 
Moessbauer solvation tin halide 1314 
Mol assocn trimethylpentanol 2560 
Mol charge transfer theory 992 
Mol colvol sphere ellipsoid combination 648 
Mol complex positron annihilation 1693 
Mol electron attachment elec field 2556 
Mol excited relaxation photochem 2259 
Mol ion borazine reaction 2818 
Mol ion reaction cyclopropane 795 
Mol motion methylnonadecane 1106 
Mol positron positronium bond MO 2507 
Mol structure amine cation 76 
Mol structure charge distribution cavity 

2580
Mol structure cystine hydrochloride copper 

203
Mol structure methyl disulfide 618 
Mol structure microwave silacyclopentane 

1199
Mol structure perfluorotertbutyl iodide 73 
Mol theory fluid 2352 
Mol tumbling adsorbed nitroxide ESR 842 
Mol vibration disulfide 625 
Mol vibration lone pair interaction 1217 
Mol vibration methylene 2881 
Mol wt fluid mol theory 2352 
Molal vol aq amine 138 
Molal vol azoniaspiroalkane bromide 466 
Molal vol hydrochloric acid 1566 
Molal vol hydrophobic salt 2620 
Molar vol partition coeff 996 
Molybdena catalyst redn sulfurization 1700 
Molybdenum alumina adsorbed pyridine 

thiophene 606

Molybdenum cyanate radiolytic oxidn kinet  ̂
ics 2316

Molybdenum EPR alumina temp 2431 
Molybdenum oxide adsorption hydrogenation 

pyridine 2103
Molybdenum uranium hydrogen soly 375 
Momentum balance chromatog finite concn 

2656
Monolayer model surface tension mixt 1880 
Montmorillonite intercalate rubeanato cop^ 

per 1780
Mooney const EP rubber 2961 
Motion chymotrypsin crystal 2592 
Mytilus shell EPR 1362 
NADH Raman charge polemic 1127 
Naphthalene excitor. percolation 2191 
Naphthalene laser fluorescence 2200 
Naphthalene pyrene ion radical IR 1445 
Naphthalene spectra 2149 
Naphthylamine phenyl MO PPP 1094 
Nematic lyotropic alkali decyl sulfate 174 
Nematic transition cholesteryl acrylate 88 
Neodymium nitrate assocn water methanol 

1451
Neon virial coeff potential 129 
Neopentane electron impact 1664 
Neptunium perchlorate radiolysis 1684 
Neurophysin spin labeled peptide 1123 „ 
Neurotoxin Laticauda Raman spectrum 

1153
Neutralization amine thermodyn 1937 
Nickel adsorption lifetime cesium chloride 

1477
Nickel adsorption lifetime cesium iodide 

1484
Nickel binding maleic copolymer 2564 

* Nickel chemisorption carbon monoxide 385 
Nickel deaquation alkylmalonic acid 239 
Nickel DMSO ethylenediamine NMR 83 
Nickel monocarboxylate complex laser ultra= 

sound 313
‘ Nickel oxide chemisorption desorption oxy^ 

gen 1989
Nickel perylene complex magnetism 1912 
Nickel titanium oxide cond 666 
Nickel tungsten alumina catalyst 2094 
Ninhydrin anion radical assocn ESR 1113 
Nitrate aq structure IR 501 
Nitrate calcium hydrate cobalt chloride 

1929Nitrate chlorine concn stratosphere 2713 
Nitrate chlorine formation stratosphere 

2711 '
< Nitrate copper glycol ultrasound 2700 
Nitrate lithium pyrophosphate pyrolysis 

236
Nitrate neodymium assocn water methanol 

1451
Nitric oxide cadmium energy transfer 1955 
Nitric oxide chemisorption palladium zeolite 

2371Nitric oxide reaction amidogen 433 
Nitric oxide redn ammonia copper 2664 
Nitric oxide redn catalysis ammonia 430 
Nitric oxide zinc energy transfer 1963 
Nitrile radiolysis 2330 
Nitro arom anion radical ESR 2018 
Nitroarom radical anion ESR substituent 

519
Nitrobenzaldehyde electroredn sulfolane 

2740
Nitrobenzene anion potassium assocn 861 
Nitrobenzene complex positron annihilation 

1693
Nitrobenzene interface elec adsorption sur= 

factant 1573
Nitrobenzenediol spectra pH 722 
Nitrobenzoate redn kinetics 2018 
Nitrogen dioxide peroxy isomer MO 2035 
Nitrogen heterocycle radical anion UV 980 
Nitrogen oxide alkane photooxidn. 1948 
Nitrogen oxide equil const 847 
Nitrogen oxide hydreperoxo reaction 1 
Nitrogen oxide water thermodn 402 
Nitrogen proton transfer amino acid 1422 
Nitrogen silicon compd NQR 193 
Nitrogen sulfide fluoride ESR 409 
Nitroperoxybenzoic acid radiolysis 1274 
Nitrophenol protonation tertiary amine 

1854
Nitrophenol relaxation dielec loss 303 
Nitrophenol structure 651 
Nitrosalicylic acid ethylenediamine protona= 

tion 157
Nitrous oxide adsorbed zeolite potential 

. 1922
Nitrous oxide electron attachment 2556 
Nitroxide adsorbed mol tumbling ESR 842 
Nitroxide butyl group interaction 1908 
Nitroxide ESR smectite surface cation 196 
Nitroxide Tempone phase 5 1490 
NMR adsorbed pyridine thiophene 606
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NMR adsorbed water zeolite 186 
NMR ale hydrogen bonding 2448 
NMR alkali fluoroacetate ion pair 850 
NMR aluminum solvation acetonitrile 2394 
NMR amphiphile aggregation conformation 

2124
NMR aq magnesium salt 552 
NMR borepinodithiophene MO PPP 287 
NMR carbon 13 benzene 2023 
NMR carbon 13 cycloalkanone 2410 
NMR complex arom hydrocarbon uric acid 

279
NMR coupling amino acid conformation 

741NMR dibenzoylaziridine assocn alkali metal 
25

NMR dynamic ether 643 
NMR ethylenediamine complex exchange 

83
NMR fluorine polarization cyclic alkane 

olefin 320
NMR ion solvation ale 417 
NMR ion zeolite water 1350 
NMR lysozyme crystal water 412 
NMR manganese selective broadening 161 
NMR micelle surfactant phospholipid 1746 
NMR MO ethanol arabinonucleoside 324 
NMR phosphorus 31 dithiaphosphorinane 

2417
NMR stereodynamics butyl diphosphine 

2598
NMR thioacetate amine complex 611 
Noble gas virial coeff 129 y
Nonadecane methyl spin lattice relaxation 

1106
Nonpolar solute thermodn transfer 359 
Nonpolar solvent polar dipolar 2783 
Nonstoichiometry effect soly product 2707 

2708Nonylammonium bromide micelle NMR 
2124Normal coordinate analysis ethylene ozonide 
1238

Normal coordinate analysis methyl disulfide 
618

NQR nitrogen silicon compd 193 
Nucleation hydroxyapatite 40 
Nucleoside arabino NMR MO. 324 
Nucleoside assocn 2462 
Nucleotide dinucleoside phosphate radiolysis 

electron 353
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