the journal of Organic Chemistry

Published biweekly by the American Chemical Society at 20th and Northampton Streets, Easton, Pennsylvania

EDITOR-IN-CHIEF: FREDERICK D. GREENE
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

SENIOR EDITORS

Werner Herz
Florida State University
Tallahassee, Florida

James A. Moore
Newark, Delaware

Martin A. Schwartz
Plorida State University

ASSISTANT EDITOR: Theodora W. Greene
 BOARD OF EDITORS

Ronald C. D. Breslow
Joseph F. Bunnett
Clifford A. Bunton
Michael P. Cava
Orville L. Chapman
Gerhard L. Closs
James A. Marshall
James C. Martin
George A. Olah
Leo A. Paquette
Howard E. Simmons
Edward C. Taylor
David J. Trecker
Edwin F. Ullman
Edgar W. Warnhoff
Kenneth B. Wiberg

EX-OFFICIO MEMBERS: George H. Coleman, Wayne State University
Jeremiah P. Freeman, University of Notre Dame (Secretary-Treasurer of the Division of Organic Chemistry of the American Chemical Society)

MANAGER, EDITORIAL PRODUCTION: Charles R. Bertsch
Editorial Production Office, American Chemical Society, 20th and Northamplon Sts., Easton, Pennsylvania 18042

© Copyright, 1972, by the American Chemical Society. Published biweekly by the American Chemical Society at 20th and Northampton Sts., Easton, Pa. 18042. Secondclass postage paid at Washington, D. C., and at additional mailing offices.

Production Staff: Manager, Editorial Production, Charles R. Bertsch; Production Editor, Eileen Segal; Assistant Editor, Fern S. Jackson; Editorial Assistants, Andrew J. D’Amelio and Deborah K. Miller.

Advertising Office: Centcom, Ltd. (formerly Century Communication Corporation), 142 East Ave., Norwalk, Conn. 06851.

The American Chemical Society and the Editors of The Journal of Organic Chemistry assume no responsibility for the statements and opinions advanced by contributors.

Business and Subscription Information

Correspondence concerning business matters should be sent to the Subscription Service Department, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036 .

Claims for missing numbers will not be allowed (1) if received more than 60 days from date of issue plus time normally required for postal delivery of journal and claim; (2) if loss was due to failure to notify the Subscription Service Department of a change of address; or (3) if the reason for the claim is that a copy is "missing from files."

Change of address: Notify Subscription Service Department, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036. Such notification should include both old and new addresses and postal ZIP number. Please send an old address label, if possible. Allow 4 weeks for change.

Subscriptions should be renewed promptly, to avoid a break in your series. Orders should be sent to the Subscription Service Department, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036.

Subscription rates for 1972: $\$ 20.00$ per volume to members of the ACS and $\$ 60.00$ per volume to all others. Those interested in becoming members should write to the Admissions Department, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036. Add $\$ 5.00$ per subscription for Canada and countries belonging to the Postal Union, and $\$ 6.00$ for all other countries.

Single copies for current year: $\$ 3.00$. Postage, single copies: to Canada and countries in the Pan-American Union, $\$ 0.15$; all other countries, $\$ 0.20$. Rates for back issues from Volume 20 to date are available from the Special Issues Sales Department, 1155 Sixteenth St., N.W., Washington, D. C. 20036.
This publication and the other ACS periodical publications are now available on microfilm. For information write to MICROFILM, Special Issues Sales Department, 1155 Sixteenth St., N.W., Washington, D. C. 20036.

Notice to Authors last printed in the issue of August 11, 1972

John K Crum
Director

Joseph H. Kuney
Head, Business Operations Department

Ruth Reynard
Assistant to the Director

men seaxu ax Organic Chemistry

Volume 37, Number 17
August 25, 1972

Donald S. Noyce* and Joseph A. Virgilio	2643	The Synthesis and Solvolysis of 1-Phenylethyl Disubstituted Phosphinates
Jack W. Hausser* and Michael J. Grubber	2648	Solvolysis of Cylopropyl Halides. II. 2-Phenylcyclopropyl Bromides
I. W. Serfaty, T. Hodgins, and E. T. McBee*	2651	Halogen-Containing Substituents. II. The Methoxy System. Reactivity Parameters. Charge Distribution and Conformation of the Anisoles
Fillmore Freeman* and Kennetr W. Arledge	2656	Chromyl Chloride Oxidations. VII. Kinetics and Mechanism of the Electrophilic Addition to Cycloalkenes
Donald R. Dimmel,* Charles A. Wileie,* and Francisco Ramon	2662	Silation of Dichloromethyllithium in the Presence of Excess n-Butyllithium
Donald R. Dimmel,* Charles A. Wilkie, and Francisco Ramon	2665	Mass Spectra of Silanes. Multiple Rearrangements and Bonding to Silicon
Tetsuo Tsuda, Yo Isegawa, and Takeo Saegusa*	2670	Carbonylation of Amines by Carbon Monoxide and Silver Acetate
Stanley J. Padegimas and Peter Kovacic*	2672	endo-7-Aminomethylbicyclo[3.3.1]nonan-3-ones from Rearrangement of $1-\mathrm{N}$-Substituted N -Haloadamantanamines by Aluminum Chloride
Mikio Takeda,* Hirozumi Inoue, Mikihiko Konda, Seifchi Saito, and Hiroshi Kugita	2677	An Improved Synthesis of a 9-Oxo-6,7-benzomorphan and Its Homolog. A Novel Rearrangement of Heterocyclic Enamines via Bromination
Haruo Ogura* and Katsuko Kiruchi	2679	Studies on Heterocyclic Compounds. XI. 1,3-Dipolar Cycloaddition of Benzimidazolium Ylide with Acetylenic Compounds
Alfred Hassner,* A. S. Miller, and M. J. Haddadin	2682	The Cycloaddition of Vinyl Azides to Ketenes
Sidney D. Nelson, Jr., Douglas J. Kasparian, and William F. Trager*	2686	The Reaction of α-Nitro Ketones with the Ketene-Generating Compounds, Isopropenyl Acetate and α-Acetoxystyrene. Synthesis of 3-Acetyl- and 3-Benzoyl-5-Substituted Isoxazoles
M. Furlan, B. Stanounik, and M. Tišler*	2689	Pyridazines. L. Methylations and Methyl Group Migrations of Some Imidazo [1,2-b]pyridazines
Henry J. Shine,* Juana J. Silber, Robert J. Bussey, and Tadashi Okuyama	2691	Ion Radicals. XXV. The Reactions of Thianthrene and Phenothiazine Perchlorates with Nitrite Ion, Pyridine, and Other Nucleophiles
Betty R. Lowry and Alain C. Huitric*	2697	7,8,9-Trimethoxy-1,2,3,4,4a,5,6,10b-octahydro- and 7,8,9-Trimethoxy-1,2,3,4,4a,10b-hexahydrophenanthridines. Synthesis and Stereochemistry of Certain 6-Substituted and 5,6-Disubstituted Derivatives
Richard N. McDonald* and Robert R. Reitz	27C3	Nonbenzenoid Aromatic Systems. VI. pKa Values of Azuloic Acids
R. A. Abramovitch,* S. R. Challand, and E. F. V. Scriven	2705	Intermolecular Aromatic Substitution by Aryl Nitrenes
Lamar Field* and Yong H. Khim	2710	Organic Disulfides and Related Substances. 34. Synthesis and Reactions of Some Substituted Cyclic Disulfides and Corresponding S-Oxides
Yong H. Khim and Lamar Field*	2714	Organic Disulfides and Related Substances. 35. Preparation of Unsymmetrical Disulfides Containing Carboxylate Moieties and Neighboring-Group Effects of Sulfinate and Carboxylate Moieties on Disproportionation
Charles Kissel, Robert J. Holland, and Marjorie C. Caserio*	2720	Electron-Accepting Through-Conjugation Effects in Organosulfur Compounds

Designed for the potential scientist in your family...

Chemistry

For the high school or college student whose curiosity of chemistry extends beyond required course work.

Eleven issues a year, including a special Summer issue, bring the reader
... experimental projects and investigations
. . . news items on recent research developments
. . . feature articles on theoretical and applied science
. . . book reviews
... chemical puzzles
. . . reader's column

All adding up to an exciting opportunity to see chemistry in action-out of the textbook and in the real laboratory.
magazine


```
Yes-start a subscription to CHEMISTRY at the low yearly rate of \$6.
\(\square\) Canada, PUAS \(\$ 7.00\)
\(\square\) Foreign \(\$ 7.50\)
```

Payment must be made in U.S. currency, by international money order, UNESCO coupons, or U.S. bank dratt; or order through your book dealer.
Send CHEMISTRY to:
Name
Address
City_ \qquad State \qquad $2 i 0$ \qquad
Recipient is a \square student. \square teacher. \square other
\square Check enclosed (payable to American
\square Send bill to
Chemical Society)
Name
Address
City
State \qquad Zip
American Chemical Society
1155 Sixteenth Street, N.W
Washington, D.C. 20036
C. S. Tsai* and C. Reyes-Zamora

Malcolm R. Bell,* John A. Carlson,
and Rudolf Oesterlin
J. W. Huffman

Raymond W. Doskotch,* Charles D. Hufford, and Farouk S. El-Feraly

Richard A. Kretchmer

Richard A. Kretchmer
Benjamin Ortiz, Pedro Villanueva,
and Fernando Walls*
alan R. Hochstetler* and Garry C. Kitchens

Arlen W. Frank* and George L. Drake, Jr.

Jeremiah P. Freeman,* Edmund G. Duthie, Michael J. O’Hare, and John F. Hansen Robert A. Ellison, * Warren D. Woessner, and Craig C. Williams

Boris Franzus,* Stephen Wu, W. C. Baird, Jr., and Monte L. Scheinbaum

Paul L. Johnson and John P. Schaefer*
Hans S. Posselt

William J. Gottstein, Peter F. Misco, and Lee C. Cheney*
A. Peter Kurtz and Charles R. Dawson*

Peter E. Manni, Gary A. Howie, Barry Katz, and John M. Cassady*

Richard H. S. Wang
M. A. Smith,* W. D. Boswell, Jr., K. G. Henzel, and D. G. Miller
R. D. Haugwitz* and V. L. Narayanan

Robert A. Bauman
James W. Wilt* and Thomas P. Malloy

Jean-Marie Surzur,* Claude Dupuy, Michèle Paula Bertrand, and Robert Nouguier
H. Hirschmann* and Kenneth R. Hanson*

2725 Mechanisms of Alkaline Hydrolysis of p-Nitrophenyl Glucopyranosides
2730 Total Dealkylation of Esters of Trivalent Phosphorus and Promotion of Anhydride Formation by $N, N, N^{\prime}, N^{\prime}$-Tetramethylchloroformamidinium Chloride
2733 Degradation of Penicillin G Methyl Ester with Trifluoroacetic Acid

2736 Attempted Duplication of the Methyl Shift in Eremophilane Biosynthesis
2740 Further Studies on the Sesquiterpene Lactones Tulipinolide and Epitulipinolide from Liriodendron tulipifera L.

2744 1,4 Addition of Organometallic Reagents to α, β-Unsaturated Ketones in the Presence of (-)-Sparteine

NOTES

2747 The Reaction of Benzalacetophenone with Methylmagnesium Iodide. A Novel Grignard Reaction
2748 Silver(II) Oxide as a Reagent. Reactions with Aromatic Amines and Miscellaneous Related Compounds

The Hydrochlorination of Thujopsene

2752 Aniline Derivatives of Tetrakis(hydroxymethyl)phosphonium Chloride
2756 A Novel Ring Expansion
of a Diazacyclopentadienone Dioxide

2757 New Synthetic Methods from Dithianes A Convenient Oxidation of Aldehydes to Acids and Esters

2759 A Nuclear Magnetic Resonance Technique for Distinguishing Isomers of 3,5-Disubstituted Nortricyclenes

2762 Structure of 1,3-Dicyanobicyclo [1.1.0]butane Using X-Ray Analysis
2763 Buffered Permanganate Reactions. Effect of Calcium on the Rate of Disproportionation of Manganate(VI)

Conversion of Hetacillin into Cephalexin

2767 Synthesis of Compounds Structurally Related to Poison Ivy
Urushiol. V. A Novel Synthesis of
$3-n$-($1^{\prime}, 2^{\prime}$-Dehydro) pentadecylcatechol (3 β-Alkylvinylcatechols) via Dehydration of a Bis(trimethylsilyl) Intermediate
2769 Simplification of Epoxide and Lactone
Proton Magnetic Resonance Spectra Using
Tris(dipivalomethanato) europium Shift Reagent
2771 Photolysis of 2,6-Di-tert-butyl-4-alkylphenols with Polyhalomethanes
2774 The Chemistry of Flavandiones. Reaction with Diazomethane

2776
2-Thiocyanobenzimidazoles. The Synthesis of $13 H$ - [1,3,5]Thiadiazino [3,2-a:5,6- a^{\prime}]bisbenzimidazole-13-thiones
2777 Quaternary Ammonium Salts and Betaines of Thionocarbamic Esters
2781 Solvolysis of 1-Bromomethyltriptycene. An Unusually Unreactive Bromide

2782
Intramolecular Addition of 4-Alkynyloxy Radicals

Michael Mokotoff*
and Bharat S. Parikh
George R. Pettit* and William R. Jones

George R. Pettit,* Ronald J. Quinn, Thomas H. Smith, Peter Brown, C. C. Cheng, Darrell E. O'Brien, William J. Haggerty, and O. L. Salerni

Abul F. M. Iqbal

Bradford P. Mundy,* Kauo-Rong Sun, and Rodney D. Otzenberger

2786 Potential Inhibitors of L-Asparagine Biosynthesis. I. β-Elimination Reactions with β-Hydroxyaspartic Acid Derivatives

2788 Reaction of 3β-Acetoxy- $8 \alpha, 9 \alpha$-oxido- 5α-lanostane with Grignard Reagents

2789
The Camptothecin δ-Lactone

2791 Catalytic Deoxygenqtion of Organic Compounds by Carbon Monoxide. II. Direct Synthesis of Schiff Bases from Aromatic Nitro Derivatives, Aldehydes, and Carbon Monoxide
2793
Conformational Preference of cis-8-Oxabicyclo[4.3.0]non-3-ene

COMMUNICATIONS

Otis S. Rothenberger and James A. Moore*

Edward C. Taylor,* Roger L. Robey, and Alexander McKillop

Heterocyclic Studies. 36. Acyldiazepinium Intermediates in Thermal Reactions of Diazabicyclo[3.2.0]heptenones
2797 Thallium in Organic Synthesis. XXXVI. A New Synthesis of Allenic Esters

AUTHOR INDEX

Jones, W. R., 2788

Kasparian, D. J., 2686
Katz, B., 2769
Khim, Y. H., 2710, 2714 Oesterlin, R., 2733
Kikuchi, K., 2679 Ogura, H., 2679
Kissel, C., $2720 \quad$ O'Hare, M. J., 2756
Kitchens, G. C., 2750 Okuyama, T., 2691
Konda, M., 2677 Ortiz, B., 2748
Kovacic, P., 2672 Otzenberger, R. D.,
Kretchmer, R. A., 2744, 2793
2747
Kugita, H., 2677 Padegimas, S. J., 2672
Kurtz, A. P., 2767
Lowry, B. R., 2697
Malloy, T. P., 2781
Manni, P. E., 2769
McBee, E. T., 2651
Monald, R. N., 2703 Reitz, R. R., 2703
McKillop, A., 2797
Miller, A. S., 2682
Miller, D. G., 2774
Misco, P. F., 2765
Mokotoff, M., 2786
Moore, J. A., 2796
Mundy, B. P., 2793

Johnson, P. L., 2762 Nelson, S. D., Jr., 2686 Scheinbaum, M. L.,

O’Brien, D. E., 2789

Ramon, F., 2662, 2665

Saito, S., 2677
Salerni, O. L., 2789
Salerni, O. L., 2789
Schaefer, J. P., 2762
Nouguier, R., 27822759
Scriven, E. F. V., 2705
Serfaty, I. W., 2651
Shine, H. J., 2691
Silber, J. J., 2691
Smith, M. A., 2774
Smith, T. H., 2789
Stanovnik, B., 2689
Sun, K.-R., 2793
Surzur, J.-M., 2782
Takeda, M., 2677
Taylor, E. C., 2797
Tissler, M., 2689
Pettit, G. R., 2788, 2789 Trager, W. F., 2686
Posselt, H. S., 2763 Tsai, C. S., 2725
Tsuda, T., 2670
Villanueva, P., 2748
Virgilio, J. A., 2643
Reyes-Zamora, C., 2725 Walls, F., 2748
Robey, R. L., 2797 Wang, R. H. S., 2771
Rothenberger, O. S., Wilkie, C. A., 2662, 2796
2796
,

2665
Williams, C. C., 2757
Wilson, J. D., 2730
Wilt, J. W., 2781
Woessner, W. D., 2757
Wu, S., 2759

In papers with more than one author the name of the author to whom inquiries about
the paper should be addressed is marked with an asterisk in the by-line

THE JOURNAL OF
 Organic Chemistry์

The Synthesis and Solvolysis of 1-Phenylethyl Disubstituted Phosphinates ${ }^{1}$

Donald S. Noyce* and Joseph A. Virgilio
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720

Received January 25, 1972

Abstract

A series of 1-phenylethyl esters of phosphinic acids has been prepared ard their mode of solvolysis studied. Correlation of the rate constants for the solvolysis of 1-arylethyl diphenylph sphinates in 80% ethanol-water at 75° with σ^{+}constants gave a ρ of -5.10 , demonstrating that alkyl-oxygen fission occurs. This value is compared with the value obtained from other 1 -arylethyl esters and chlorides. The rate data for the solvolysis of 1-phenylethyl esters: diphenylphosphinate (1), phenylphosphinate (2), methylphenylphosphinate (3), bis $(m$ nitrophenyl)phosphinate (4), diisopropylohosphinate (5), and dimethylphosphinate (6) are compared to the rates of other 1-phenylethyl esters and halides under the same conditions. Products from the solvolysis of 2 are compared to the products obtained from 1-pienylethyl chloride (7) under the same conditions (80% ethanol-water, 75°). The solvolysis of 5 showed an acid-catalyzed component. The products from the solvolysis of 1,2 , and 5 in 25% ethanol-water at 75° were 3 \% styrene, 12% 1-phenylethyl ethyl ether, and 85% 1-phenylethanol, which agrees well with the conclusion that a common carbonium ion is formed in each case and forms products independent of the phosphinate from which it originated.

Although there are a large number of leaving groups in solvolysis reactions, there has been little attention focused on the development of leaving groups whose reactivity is intermediate between p-nitrobenzoates (PNB) and chlorides. In measuring the rates of a series of compounds undergoing solvolysis there may be a tremendous range of reactivity and it would be very desirable to have a reasonably spaced range of reactivity of leaving groups available. Gaps in the present series are conveniently filled by phosphinate esters.
In order to investigate the relative rates of solvolysis of phosphinate leaving groups with respect to other leaving groups, various esters of 1-phenylethanol were synthesized. This system was chosen so that the solvolytic reactivity could be studied under mild conditions. The literature also contains aburdant rate data on a variety of 1-phenylethyl chlorides, bromides, nitrates, acetates, tosylates, and p-nitrobenzoates which can be compared to the solvolysis rates for the phosphinates.

Correlation of the rates of solvolysis of the 1-arylethyl diphenylphosphinates with the σ^{+}electrophilic substituent constants of Brown and Okamota ${ }^{2}$ provide the desired evidence to demonstrate alkyl-oxygen fission.

Results and Discussion

The 1-arylethyl esters of diphenylphosphinic acid were prepared by the reaction of chlorodiphenylphosphine with the appropriate alcohol followed by oxida-

[^0]tion of the phosphorus from the trivalent to the pentavalent state. The substituent groups in the alcohol moiety were p-methyl, p-chloro, m-chloro, and p-nitro. The rates of so volysis of these esters are presented in Table I. The fact that the rates of formation of the phosphinic acid showed good first-order kinetics and that the rates of solvolysis correlate very well with σ^{+} with a ρ value of -5.10 substantiate the premise that alkyl-oxygen fission with formation of a carbonium ion is occurring.

The values of ρ obtained for other 1-phenylethyl systems are presented in Table II. The large negative ρ values indicate that a substantial positive charge is formed in the transition state of each of the solvolysis reactions. The large negative ρ value for substituted 1 -phenylethyl chlorides agrees well with the conclusion drawn by Shiner ${ }^{3}$ from deuterium isotope effects that the more reactive chlorides solvolyze by an $\mathrm{S}_{\mathrm{N}} 1$ mechanism with very little nucleophilic participation by solvent.

Based on the observation from Table II that even the very slow solvolysis of 1-phenylethyl acetates remains Sn_{1} in mechanism, the various other phosphinates can be presumed to solvolyze by the same mechanism.

With two exceptions all the phosphinates studied showed excellent first-order behavior. The rate of hydrolysis of 1-phenylethyl phenylphosphinate (2) was found to be sersitive to the addition of base. Competing SN1 solvolysis and a basic hydrolysis mechanism have been identified in the reaction of 24^{4} a pH

[^1]Table I
The Rates of Solvolysis of 1-Phenylethyl Esters and Halides in Ethanol-Water Mixtures (v/v)

${ }^{a}$ Calculated from previous data using the Grunwald-Winstein correlation. ${ }^{b} m=0.58$. ${ }^{c}$ Measured at constant pH (7.0). ${ }^{d} \mathrm{Mea-}$ sured at constant $\mathrm{pH}(7.5)$. e This rate constant is slightly too fast due to acid catalysis. ${ }^{\prime} m=1.0$. \quad A. H. Fainberg and S . Winstein, J. Amer. Chem. Soc., 79, 1597 (1957). ${ }^{h}$ Reference 3. ${ }^{i} m=0.91 .{ }^{i}$ Calculated from previous data, $E_{\mathrm{a}}=26.5$.

Table II

The Value of ρ for the Solvolysis of 1-Phenylethyl Esters and Halides

${ }^{a}$ E. A. Hill, M. L. Gross, M. Stasiewicz, and M. Manion, J. Amer. Chem. Soc., 91, 7381 (1969). ${ }^{b}$ Registry number: 93-92-5.
study has demonstrated that in acidic solution the predominant mechanism is Sn 1 while in basic solution (above a pH of 9) the predominant mechanism is attack of hydroxide ion at phosphorus.
The solvolysis of 5 at a constant pH of 7.5 follows good first-order kinetics. In unbuffered solutions, the rate of solvolysis of $\mathbf{5}$ is not strictly first order but shows a weak autocatalytic component. The incursion of an
acid-catalyzed path for 5 was not completely unexpected. In a homologous series of phosphinates in which the alkyl group is varied, the basicity of the phosphoryl oxygen should increase as the inductive effect of the alkyl groups increase. Thus in 5 the basicity of the phosphoryl oxygen has been increased by the two isopropyl groups to a point where it will be more readily protonated in acidic media.

The solvolytic reaction of 5 can be represented by Scheme I.

Scheme I

The rate expression for this scheme can be expressed by eq 1 .

$$
\begin{equation*}
\text { Rate }=k_{2} K\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OR}\right]\left[\mathrm{H}^{+}\right]+k_{2}^{\prime}\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OR}\right] \tag{1}
\end{equation*}
$$

Since one of the kinetic runs was carried out at the constant pH of 7.5 , the value of $k_{2}{ }^{\prime}$ in water at 75° was determined to be $4.24 \times 10^{-5} \mathrm{sec}^{-1}$. The value of $k_{2} K$ was calculated from the rate of reaction at 60% completion to approximately equal 1.7×10^{-1}.
In view of the acid-catalyzed component observed for 5, the products from the solvolysis of 1-phenylethyl diphenylphosphinate (1), of 2, of 5, and of 1-phenylethyl chloride (7) were analyzed to ensure that 5 was not solvolyzing by an abnormal mechanism. The Sn1 solvolysis products for 2 in 80% ethanol-water at 75° consist of 60% 1-phenylethyl ethyl ether and 40% 1-phenylethanol, in close correspondence to the products observed for 7 under the same reaction conditions (53% ether and 47% alcohol). The products of the solvolysis of 5 in 25% ethanol-water at 75° were compared to the products obtained from 1 and 2 , which solvolyze by a SN1 mechanism under these conditions. The products from the solvolysis of 1,2 , and 5 were 3% styrene, 12% 1-phenylethyl ethyl ether, and 85% 1phenylethanol. This agrees well with the conclusion that a common carbonium ion is formed in each case and forms products independent of the phosphinate from which it originated. Since the leaving group in the case of 5 is to some extent diisopropylphosphinic acid rather than the anion, the product distribution is not very sensitive to the change in charge type of the leaving group.

Several of the phosphinate esters, 1-phenylethyl methylphenylphosphinate (3) and 2, are mixtures of diastereoisomers. However, a comparison of the nmr spectrum of the initial phosphinate and the phosphinate after 50% reaction for 2 showed that, within experimental accuracy, the ratio of diastereoisomers was unchanged. This implies that the two diastereoisomers are reacting at the same rate or that an equilibrium amount (through possible equilibrium of the trivalent species) is maintained.

Table III lists the relative rates of a large variety of leaving groups obtained from the solvolysis of the 1phenylethyl system. Estimated rates are clearly labeled and should be used with caution, since they are derived from other systems and involve substantial extrapolation. Table III shows that the availability of leaving groups is quite diverse and extends over a range of reactivity of $10 .{ }^{14}$

As Table III shows, the phosphinate leaving groups are important in that they provide a graded reactivity series between the p-nitrobenzoate and chloride leaving group. In terms of availability, the diphenyl-, mono-phenyl-, and methylphenylphosphinates are easily prepared in high yield, ${ }^{4}$ using dicyclohexylcarbodiimide.

There have been a number of studies on the rates of solvolysis of other phosphinate esters. ${ }^{5-9}$ However,
(5) V. E. Bel'skii, G. Z. Motygullin, V. N. Eliseenkov, and N. I. Rizpolozhenskii, Izv. Akad. Nauk SSSR, Ser. Khim., 565 (1970); Bull. Acad. Sci. USSR, Div. Chem. Sci., 520 (1970).
(6) V. E. Bel'skii, M. V. Efremova, I. M. Shermergorn, and A. N. Pudovik, Izv. Akad. Nauk SSSR, Ser. Khim., 307 (1969); Bull. Acad. Sci. USSR, Div. Chem. Sci., 263 (1969).
(7) V. E. Bel'skii, M. V. Efremova, and Z. V. Lustina, Izv. Akad. Nauk SSSR, Ser. Khim., 1293 (1969), Bull. Acad. Sci. USSR, Div. Chem. Sci., 1192 (1969).
(8) V. E. Bel'skii, M. V. Efremova, and I. M. Shermergorn, Izv. Akad. Nauk SSSR, Ser. Khim., 1654 (1966); Bull. Acad. Sci. USSR, Div. Chem. Sci., 1597 (1966).
(9) V. E. Bel'skii, M. V. Efremova, and A. R. Panteleeva, Izv. Akad. Nauk SSSR, Ser. Khim., 2278 (1968); Bull. Acad. Sci. USSR, Div. Chem. Sci., 2154 (1968).

Table III

The Relative Rates of Solvolysis of 1-Phenylethyl Esters and Halides in 80% Ethanol-Water at 75°

$\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{X} \\ \mathrm{X}= \end{gathered}$	k, $\mathbf{s e c}^{-1}$	Relative rate	Footnotes
$\mathrm{CH}_{3} \mathrm{COO}$	3.1×10^{-9}	1.4×10^{-6}	a
$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COO}$	1.2×10^{-8}	5.5×10^{-6}	b
F	2×10^{-8}	9×10^{-6}	c
$\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{POO}$	2.3×10^{-8}	1.0×10^{-5}	This work
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{POO}$	1.03×10^{-6}	4.7×10^{-4}	This work
$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right) \mathrm{POO}$	3.08×10^{-6}	1.4×10^{-3}	This work
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{POO}$	8.32×10^{-6}	3.8×10^{-3}	This work
$\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{H}) \mathrm{POO}$	5.73×10^{-5}	2.6×10^{-2}	This work
$\left(m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{POO}$	1.52×10^{-3}	6.9×10^{-1}	This work
Cl	2.20×10^{-3}	1.0	This work
$\mathrm{CF}_{3} \mathrm{COO}$	5.54×10^{-3}	2.5	This work
$\mathrm{O}_{2} \mathrm{NO}$	1.59×10^{-2}	7.2	d
Br	3.13×10^{-2}	14	e
I	2×10^{-1}	91	b
2,4,6-($\left.\mathrm{NO}_{2}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}$	1.2	5.5×10^{2}	f
Tetra(1-phenyl-ethyl)pyrophosphate	2.0	9.1×10^{2}	g
$\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O})_{2} \mathrm{O}$	6.7×10	3.0×10^{4}	h
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}(\mathrm{O})_{2} \mathrm{O}$	8.1×10	3.7×10^{4}	i
$p-\mathrm{NO}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~S}(\mathrm{O})_{2} \mathrm{O}$	9.7×10^{2}	4.4×10^{5}	j
$\mathrm{CF}_{3} \mathrm{~S}(\mathrm{O})_{2} \mathrm{O}$	3.0×10^{5}	1.4×10^{8}	k

${ }^{a}$ Estimated from the ratio of rates for 1 -phenylethyl acetate [E. A. Hill, et al., J. Amer. Chem. Soc., 91, 7381 (1969)] and 1phenylethyl phenylphosphinate in 30% ethanol-water and the rate of 1-phenylethyl phenylphosphinate in 80% ethanol-water. ${ }^{b}$ Estimated from data for $1-p$-anisylethyl p-nitrobenzoate in 70% acetone-water [H. L. Goering, R. G. Briody, and G. Sandrock, J. Amer. Chem. Soc., 92, 7401 (1970)] and in 80% ethanolwater [D. S. Noyce and G. V. Kaiser, J. Org. Chem., 34, 1008 (1969)]. © Estimated rate obtained from A. Streitwieser, Jr., "Solvolytic Displacement Reactions," McGraw-Hill, New York, N. Y., 1962, p 82 . A Cl / F ratio of 10^{5} and a Cl / I ratio of 10^{-2} were used to obtain the specific rates. ${ }^{d}$ Calculated from data of Baker and Heggs [J. W. Baker and T. G. Heggs, J. Chem. Soc., 616 (1955)]. e Calculated from data at other temperatures [A. H. Fainberg and S. Winstein, J. Amer. Chem. Soc., 79, 1602 (1957)]. ' Estimated from data of M. L. Sinnott and M. C. Whiting, Chem. Commun., 1917 (1968), using a tosylate/picrate ratio of 8.5. $\quad \theta$ Estimated from data of G. O. Dudek and F. H. Westheimer, J. Amer. Chem. Soc., 81, 2641 (1959); 10^{3} benzyl. ${ }^{h}$ Estimated from data of P. K. Crossland, S. R. Hartshorn, and V. J. Shiner, Jr., Abstracts, 161st National Meeting of the American Chemical Society, Los Angeles, Calif., March 29, 1971, \#40, using a ratio of 3×10^{4} for mesylate $/ \mathrm{Cl}$ ratio. ${ }^{i}$ Estimated from data of H. M. R. Hoffman, J. Chem. Soc., 6753, 6762 (1965). ${ }^{j}$ Estimated from typical tosylate/nosylate ratios. ${ }^{k}$ Estimated from data of T. M. Su, N. F. Sliwinski, and P. v. R. Schleyer, J. Amer. Chem. Soc., 91, 5386 (1969), using a OTF/OTOS ratio of 3×10^{4}.
conclusive mechanism studies are often incomplete. In the homologous series of esters which have been studied, the compounds that solvolyze by an $\mathrm{SN}_{1} 1$ mechanism can be easily detected, for they have an unusually rapid rate and a lower (less negative) entropy value. By these criteria tert-butyl ethylphosphinate, sec-butyl bis(chloromethyl)phosphinate, ${ }^{6}$ and allyl bis(chloromethyl)phosphinate ${ }^{7}$ definitely solvolyze by an Snl mechanism. The substitution of two chloromethyl groups in phosphinates promotes $\mathrm{S}_{\mathrm{N}} \mathrm{l}$ reactions by making the phosphinate leaving group a much weaker base.

Further evidence for carbonium ion formation in heterolysis is shown in the very recent studies by Haake and Diebert ${ }^{10}$ on pyrolysis of phosphinate esters.
(10) P. Haake and C. E. Dịebert, J. Amer. Chem. Soc., 93, 6931 (1971).

They found that tert-butyl diphenylphosphinate suffered pyrolysis 7000 times more rapidly than isopropyl diphenylphosphinate, and suggested a carbonium ion intermediate for the pyrolysis.

Thus, carbon-oxygen heterolysis is a reasonably prevalent mode of reaction for phosphinate esters, particularly in structural situations where the alkyl moiety provides a modest stabilization for the carbonium ion.

Experimental Section ${ }^{11}$

Materials.-Chlorodiphenylphosphine, dichlorophenylphosphine, phenylphosphinic acid, and 1-phenylethanol are commercially available. The appropriately substituted 1-phenylethanols were synthesized from the corresponding acetcphenone by sodium borohydride reduction. Substituted 1-phenylethyl chlorides were obtained from the corresponding alcohol by reaction with thionyl chloride or phosphorus chlorides.

1-Phenylethyl Diphenylphosphinate (1).-To a stirred solution of $5.0 \mathrm{~g}(0.023 \mathrm{~mol})$ of chlorodiphenylphosphine (Aldrich) and pyridine ($1.8 \mathrm{~g}, 0.023 \mathrm{~mol}$) in 300 ml of anhydrous ether was added $2.8 \mathrm{~g}(0.023 \mathrm{~mol})$ of 1-phenylethanol (Aldrich). After refluxing for 1 hr , the solution was allowed to cool for 30 min and $10.0 \mathrm{~g}(0.023 \mathrm{~mol})$ of lead tetraacetate (Matheson Coleman and Bell) was added in small portions. The mixture was refluxed for 1 hr and after cooling to room temperature the solution was filtered. The filtrate was washed with $2 \times 200 \mathrm{ml}$ of water and the resulting colorless oil was crystallized from mixed hexanesether, giving $3.50 \mathrm{~g}(49 \%)$ of ester 1 , $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.5(\mathrm{~m}, 15)$, $5.5(2 \mathrm{q}, 1)$, and $1.65(\mathrm{~d}, 3)$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 74.60 ; \mathrm{H}, 5.90 ; \mathrm{P}, 9.62$. Found: C, 74.46; H, ј.94; P, 9.58.

1-(p-Methylphenyl)ethyl Diphenylphospinate (8).-Ester 8 was synthesized by the same method as 1 using 1 -(p-methylphenyl)ethanol. The ester was isolated as a colorless oil after chromatography, nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.6$ (m, 10), 7.1 (s, 4), $\mathbf{5} . \overline{\mathrm{j}}$ and $5.41(2 \mathrm{q}, 1), 2.23(\mathrm{~s}, 3), 1.60(\mathrm{~d}, 3)$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{P}$: $\mathrm{C}, 74.99 ; \mathrm{H}, 6.29 ; \mathrm{P}, 9.21$. Found: C, 74.84; H,6.15; P, 9.06.

1-(p-Chlorophenyl)ethyl Diphenylphospinate (9).-Similarly, from 1 -(p-chlorophenyl)ethanol and chlorodiphenylphosphine, ester 9 was obtained in 40% yield, $\mathrm{mp} 68.5-70^{\circ}, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ $7.6(\mathrm{~m}, 10), 7.2(\mathrm{~s}, 4), 5.57$ and $5.42(2 \mathrm{q}, 1), 1.60(\mathrm{~d}, 3)$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClO}_{2} \mathrm{P}$: $\mathrm{C}, 67.33 ; \mathrm{H}, 5.08 ; \mathrm{Cl}, 9.94$; $\mathrm{P}, 8.68$. Found: $\mathrm{C}, 67.14 ; \mathrm{H}, 4.9 . \mathrm{j} ; \mathrm{Cl}, 9.90 ; \mathrm{P}, 8.53$.

1 -(m-Chlorophenyl)ethyl Diphenylphosphinate (10).- n-Butyllithium ($12.4 \mathrm{ml}, 1.6 \mathrm{M}$ in n-hexane, 0.0178 mol , Foote Mineral) was added dropwise to a stirred solution of $1-(m$-chlorophenyl $)$ ethanol ($3.0 \mathrm{~g}, 0.019 \mathrm{~mol}$) in 200 ml of anhydrous diethyl ether under nitrogen in a Dry Ice-acetone bath. After the addition was complete, chlorodiphenylphosphine ($4.32 \mathrm{~g}, 0.0191 \mathrm{~mol}$) was added dropwise and the solution was warmed to room temperature. After 30 min the solution was concentrated and the slurry was dissolved in 200 ml of ether. The solution was washed with a solution of 10 ml of hydrogen peroxide (30%) in 200 ml of water, followed by $2 \times 200 \mathrm{ml}$ of water. The ether extract was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to yield $6.63 \mathrm{~g}(97 \%)$ of ester 10, nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.5(\mathrm{~m}, 14), 5.61$ and $5.46(2 \mathrm{q}, 1)$, and $1.32(\mathrm{~d}, 3)$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClO}_{2} \mathrm{P}: \mathrm{C}, 67.33 ; \mathrm{H}, \mathbf{5 . 0 8} ; \mathrm{Cl}, 9.94$; P,8.68. Found: C, $67.24 ; \mathrm{H}, 4.98 ; \mathrm{Cl}, 9.89 ; \mathrm{P}, 8.58$.

1-(p-Nitrophenyl)ethyl Diphenylphosphinate (11).-Ester 11 was synthesized by the same method as 1 using 1-(p-nitrophenyl)ethanol. The resulting colorless oil was purified by crystallization from mixed hexanes to yield 58% of ester $11, \mathrm{mp} 101.5-$ $102.5^{\circ}, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.7(\mathrm{~m}, 14), 5.70$ and $5.50(2 \mathrm{q}, 1)$, and 1.65 (d, 3).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}{ }_{4} \mathrm{P}: \mathrm{C}, 65.40 ; \mathrm{H}, 4.94 ; \mathrm{N}, 3.81$; P, 8.43. Found: $\mathrm{C}, 6 \overline{5} .15 ; \mathrm{H}, 4.98 ; \mathrm{N}, 3.97 ; \mathrm{P}, 8.40$.

Bis(m-nitrophenyl)phosphinic Acid (12).-The method of Dorken ${ }^{12}$ was used with modifications. Chlorodiphenylphosphine

[^2]$(10 \mathrm{~g}, 0.046 \mathrm{~mol})$ was added very cautiously to 20 ml of concentrated sulfuric acid at 0°. After the vigorous oxidation had subsided, 20 ml of 90% nitric acid was added dropwise over a period of 30 min . After stirring at room temperature for 2 hr the solution was poured onto an ice-water mixture. The white solid was filtered and dried to yield $4.5 \mathrm{~g}(4.5 \%)$ of bis(m-nitrophenyl)phosphinic acid, mp 260-270 ${ }^{\circ}$. Recrystallization from glacial acetic acid yielded 4.0 g of $\operatorname{bis}(m$-nitrophenyl $)$ phosphinic acid,

1-Phenylethyl Bis(m-nitrophenyl)phosphinate (13).-A solution of bis(m-nitrophenyl)phosphinic acid ($5.0 \mathrm{~g}, 0.016 \mathrm{~mol}$), N, N^{\prime}-dicyclohexylcarbodiimide ($3.3 \mathrm{~g}, 0.016 \mathrm{~mol}$), and 1phenylethanol ($1.95 \mathrm{~g}, 0.016 \mathrm{~mol}$) in 200 ml of anhydrous benzene was refluxed for 18 hr . After the solution had cooled to room temperature, the N, N^{\prime}-dicyclohexylurea was removed by filtration and the benzene was removed on a rotary evaporator. The colorless oil was dissolved in 100 ml of diethyl ether and a small amount of solid material was removed by filtration. The ether was removed on a rotary evaporator to yield $4.0 \mathrm{~g}(66 \%)$ of ester 13: mp 97-100 ${ }^{\circ}$ nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.7(\mathrm{~m}, 8), 7.5(\mathrm{~m}, 5)$, 5.65 ($\mathrm{m}, 1$), and $1.75(\mathrm{~d}, 3)$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$: C, 58.26; $\mathrm{H}, 4.15 ; \mathrm{N}, 6.79$; P,7.52. Found: C, 58.37 ; H, 4.21; N, 6.83; P, 7.64.

1-Phenylethyl Phenylphosphinate $(14)^{4}$.-Ester 14 was synthesized in the same manner as ester 13 , yield 99%.

Methylphenylphosphinyl Chloride.-The method of Mislow ${ }^{14}$ was used without modification.

1-Phenylethyl Methylphenylphosphinate (15).-1-Phenylethanol $(3.6 \mathrm{~g}, 0.029 \mathrm{~mol})$, methylphenylphosphinyl chloride ($5.0 \mathrm{~g}, 0.029 \mathrm{~mol}$), and pyridine $(2.4 \mathrm{~g}, 0.03 \mathrm{~mol})$ were dissolved in 100 ml of dry diethyl ether and the solution was refluxed for 1 hr . After the solution cooled, the pyridine hydrochloride was removed by filtration and the ether was removed on a rotary evaporator. The resulting colorless oil was passed through a silica gel column first using mixed hexanes followed by a solution of 50% ether-mixed hexanes which eluted 3.5 g (4.5.5\%) of 1 phenylethyl methylphenylphosphinate (15), nmr (CDCl_{3}) δ $7.5(\mathrm{~m}, 10), 5.4(\mathrm{~m}, 1), 1.5(\mathrm{~m}, 6)$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{P}$: C, 69.22; $\mathrm{H}, 6.59 ; \mathrm{P}, 11.90$. Found: C, 69.39; H,6.41; P, 11.99.
Tetramethyldiphosphine Disulfide.-The method of Pollart and Harwood ${ }^{15}$ was used without modification.

Dimethylphosphinyl Chloride.-The method of Pollart and Harwood ${ }^{15}$ was used with modifications. Tetramethyldiphosphine sulfide ($31.5 \mathrm{~g}, 0.17 \mathrm{~mol}$) was suspended in 500 ml of methylene chloride and thionyl chloride ($71.4 \mathrm{~g}, 0.60 \mathrm{~mol}$) was added dropwise over a period of 1 hr . After the addition was complete, the solution was stirred for 1 hr . The solution was filtered, concentrated, and distilled to yield $23.0 \mathrm{~g}(60 \%)$ of dimethylphosphinyl chloride: bp $95^{\circ}(20 \mathrm{~mm})$; mp 66-68 ${ }^{\circ}$; highly hydroscopic solid (lit. ${ }^{16} \mathrm{mp} 66.8-68.4^{\circ}$, bp 202-204 ${ }^{\circ}$); $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 2.08\left(\mathrm{~d}, J_{\mathrm{CH}_{3} \mathrm{P}}=14 \mathrm{~Hz}\right)$.

1-Phenylethyl Dimethylphosphinate (16).-To a stirred solution of 1-phenylethanol ($6.23 \mathrm{~g}, 0.0 .50 \mathrm{~mol}$) in 200 ml of anhydrous diethyl ether under nitrogen in a Dry Ice-acetone bath was added dropwise over 15 min 32 ml of n-butyllithium (1.6 M in n-hexane, 0.10 mol , Foote Mineral). After the addition was complete, dimethylphosphinyl chloride ($5.75 \mathrm{~g}, 0.051 \mathrm{~mol}$) was added dropwise and the solution was stirred for 30 min . The solution was warmed to room temperature and the ether was removed on a rotary evaporator. The residue was dissolved in 100 ml of methylene chloride, the solution was filtered and concentrated, and the residual oil was passed through a silica gel column using mixed hexanes, 20% ether-mixed hexanes, 40% ether-mixed hexanes, 60% ether-mixed hexanes, 80% ethermixed hexanes, ether, and finally 20% methylene chloride-ether, which eluted $1.8 \mathrm{~g}(18 \%)$ of ester $16, \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 7.37$ (s, 5), 5.64 and $5.54(2 \mathrm{q}, 1), 1.83(\mathrm{~d}, 3), 1.10\left(\mathrm{~d}, 3, J=14 \mathrm{~Hz}, \mathrm{PCH}_{3}\right)$ and $1.10\left(\mathrm{~d}, 3, J=14 \mathrm{~Hz}, \mathrm{PCH}_{3}\right)$. Ester 16 adhered to the column much more tenaciously than any of the previous phosphinates or the alkylaryl phosphinates.

[^3]Diisopropylphosphine Oxide.-The method of Crofts and Kosolopof ${ }^{17}$ was used with modifications. Magnesium (97.2 g , 4.0 mol) was placed in 1500 ml of dry diethyl ether under nitrogen and isopropyl bromide ($492.0 \mathrm{~g}, 4.0 \mathrm{~mol}$) was added dropwise at such a rate as to maintain a constant reflux of ether. After the addition was complete and visible reaction had ceased, diethyl phosphonate ($160.0 \mathrm{~g}, 1.16 \mathrm{~mol}$, Aldrich) was added over a period of 4 hr . The mixture was stirred for 12 hr and then refluxed for 1 hr . After the addition of a saturated solution of ammonium chloride (500 ml), the ether layer was separated and the aqueous phase was extracted with $3 \times 500 \mathrm{ml}$ of methylene chloride. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated, and the colorless oil was distilled to yield 97.0 g (63%) of diisopropylphosphine oxide: bp 188° (30 mm) [lit. ${ }^{18} \mathrm{bp} 54-55^{\circ}(1.5 \mathrm{~mm})$]; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.1(\mathrm{~m}, 12), 2.0(\mathrm{~m}$, 2), and two triplets at 2.7 and 11.6 (total $1 \mathrm{H}, J=633 \mathrm{~Hz}$, PH , and $J=3 \mathrm{~Hz}, \mathrm{PH}, \mathrm{CH}$).
Diisopropylphosphinic Acid.-The method of Crofts and Kosolopoff ${ }^{17}$ was used with modifications. Hydrogen peroxide ($30 \%, 14 \mathrm{ml}$) was added cautiously with stirring to diisopropylphosphine oxide ($10.0 \mathrm{~g}, 0.075 \mathrm{~mol}$). Since the reaction was not very exothermic the solution was placed in an oil bath at 75° for 24 hr . The colorless oil was dissolved in 200 ml of diethyl ether, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to yield 9.7 g (87%) of diisopropylphosphinic acid: $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.07$ and 1.29 $\left(2 \mathrm{~d}, 12, J=16 \mathrm{~Hz}, \mathrm{PCH}_{3}\right), 1.88$ (m, 2), and 13.95 (s, 1). The acid was used without further purification.

Diisopropylphosphinyl Chloride. A.-Phosphorus pentachloride ($13.5 \mathrm{~g}, 0.065 \mathrm{~mol}$) was added in small portions to a solution of diisopropylphosphinic acid ($9.7 \mathrm{~g}, 0.065 \mathrm{~mol}$) in 200 ml of methylene chloride. After the addition was complete, the solution was stirred for 1 hr and the solution was concentrated. The yellow oil was distilled to yield $9.0 \mathrm{~g}(83 \%)$ of diisopropylphosphinyl chloride: bp $65^{\circ}(0.2 \mathrm{~mm})$ [lit. ${ }^{19} \mathrm{bp} 77^{\circ}(3 \mathrm{~mm})$]; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.14$ and $1.45(2 \mathrm{~d}, 12$, showing some fine splitting of about 2 cycles, $J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}$ and $J=18 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{P}$), and $2.20(\mathrm{~m}, 2)$.
B.-Diisopropylphosphine oxide ($10.0 \mathrm{~g}, 0.075 \mathrm{~mol}$) was dissolved in 200 ml of diethyl ether, and thionyl chloride $(25.0 \mathrm{~g}$, 0.15 mol) was added dropwise (caution: a very vigorous reaction occurs). After the addition was complete, the solution was stirred for 5 min and the ether and excess thionyl chloride were removed on a rotary evaporator. The yellow oil was distilled to yield $10.4 \mathrm{~g}(84 \%)$ of diisopropylphosphinyl chloride. The product is identical with that in part A.

1-Phenylethyl Diisopropylphosphinate (17).-To a stirred solution of 1-phenylethanol ($2.20 \mathrm{~g}, 0.0178 \mathrm{~mol}$) in 200 ml of anhydrous diethyl ether under nitrogen in a Dry Ice-acetone bath was added dropwise over 5 min 11 ml of n-butyllithium (1.6 M in n-hexane, 0.0178 mol , Foote Mineral). After the addition was complete, diisopropylphosphinyl chloride (3.0 g ,

[^4]0.0178 mol) was added dropwise and the solution was warmed to room temperature. The solution was concentrated, and the slurry was dissolved in ether. The solution was filtered and concentrated, and the residual oil ($4.0 \mathrm{~g}, 90 \%$ yield) was purified by chromatography on a silica gel column using mixed hexanes, 10% ether-mixed hexanes, 20% ether-mixed hexanes, 10% ether-mixed hexanes, 50% ether-mixed hexanes, 60% ethermixed hexanes, 80% ether-mixed hexanes, ether, 10% methylene chloride-ether, and finally 20% methylene chloride-ether, which eluted $1.2 \mathrm{~g}(27 \%)$ of ester $17, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.3(\mathrm{~s}, 5), 5.55$ $(\mathrm{m}, 1), 1.8(\mathrm{~m}, 2)$, and $1.2(\mathrm{~m}, 15)$. The methyl region was resolved on the HA-100 nmr $\left(\mathrm{CDCl}_{3}\right)$ of methyl region $\delta 1.23,1.07$, 0.94 , and $0.78(4 \mathrm{~d}, 12)$ and $1.52(\mathrm{~d}, 3)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$: C, 66.12; $\mathrm{H}, 9.12 ; \mathrm{P}, 12.19$. Found: C, 65.94; H, 9.10; P, 12.04.

1-Phenylethyl Trifluoroacetate (18).-A solution of trifluoroacetic anhydride ($21.0 \mathrm{~g}, 0.10 \mathrm{~mol}$) in 100 ml of diethyl ether was added dropwise over a period of 1 hr to a solution of pyridine $(7.9 \mathrm{~g}, 0.10 \mathrm{~mol})$ and 1-phenylethanol ($12.2 \mathrm{~g}, 0.10 \mathrm{~mol}$) in 100 ml of ether. The reaction mixture was maintained at 0° by an ice-water bath. After the addition was complete and the solution had warmed to room temperature, the pyridinium trifluoroacetate was removed by filtration, and the ether was removed on a rotary evaporator. The clear oil was distilled to yield $16 \mathrm{~g}(78 \%)$ of ester 18: bp $32^{\circ}(0.5 \mathrm{~mm})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.60(\mathrm{~d}, 3), 5.99(\mathrm{q}, 1)$, and $7.32(\mathrm{~s}, 5)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$: C, $55.04 ; \mathrm{H}, 4.17$. Found: C, 54.98 ; H, 4.36 .

Kinetic Methods.-The procedures for the solvolysis rate measurements at nonconstant pH have been described. ${ }^{20}$

For kinetic measurements at constant pH the kinetic samples were prepared by weighing 0.0006 mol of phosphinate ester into a $.50-\mathrm{ml}$ vessel. To the vessel was added 50 ml of aqueous ethanol, and the entire vessel was suspended in the constant-temperature bath. If the run was unusually fast, the solvent was equilibrated to the appropriate temperature and the phosphinate in several milliliters of solvent was added. The acid produced was monitored by a pH-Stat (Radiometer Corp.) which consisted of a TTT 1c automatic titrator, a ABU 1c autoburette (with a 2.5 ml burette), a TTA 3 c titrator assembly, and a 2 c recorder.

The solution was maintained at the appropriate pH by the addition of 0.30 M potassium hydroxide in aqueous ethanol.

Product Analysis.-The analysis of products was carried out according to the glpc procedure of Buckson and Smith, ${ }^{21}$ who analyzed the ethanolysis products from phenyldimethylcarbinyl chloride and phenyldimethylcarbinyl p-nitrobenzoate.

The peaks were identified by comparing retention times to those of dichloromethane solutions of pure samples. The molar responses of 1-phenylethyl ethyl ether, 1-phenylethyl alcohol, and styrene relative to that of 1-phenylethyl chloride, a convenient standard, were determined in separate experiments. In separate experiments it was shown that the alcohol, ether, and styrene were stable under the reaction conditions for ca. 10 half-lives.
(20) D. S. Noyce and G. V. Kaiser, J. Org. Chem., 34, 1008 (1969).
(21) R. L. Buckson and S. G. Smith, ibid., 32, 634 (1967).

Solvolysis of Cyclopropyl Halides.
 II. 2-Phenylcyclopropyl Bromides ${ }^{1}$

Jack W. Hausser* and Michael J. Grubber ${ }^{2}$
Department of Chemistry, Duquesne University, Pittsburgh, Pennsylvania 15219

Received October 26, 1971

Abstract

cis- and trans-2-phenylcyclopropyl bromide and 2,2-diphenylcyclopropyl bromide have been prepared and solvolyzed in acetic acid. The sole product of solvolysis in each case is the corresponding ring-opened allylic acetate. The first-order rate constants and the activation parameters have been determined. The reaction is considered in terms of the effect of the leaving group on the ring-opening process.

The solvolyses of cyclopropyl derivatives proceed very slowly ${ }^{3}$ with the product of solvolysis in all but a few cases ${ }^{4}$ being the ring-opened allylic derivative resulting from cleavage of the 2,3 bond. Studies concerned with the effect of substituents have demonstrated that the reaction proceeds in a concerted mancer with appreciable buildup of positive charge on the 2 - and 3 -carbon atoms. ${ }^{5-8}$

The geometrical requirements for the concerted ringopening process necessitate rotation about the 1,2 and 1,3 bonds in order to approach the planar allylic cation. A stereochemical differentiation of the ring-opening processes may be made by considering the process as an electrocyclic transformation as proposed by Woodward and Hoffmann. ${ }^{9}$ Experimental evidence of a kinetic nature ${ }^{5-7}$ and by direct observation of products ${ }^{10}$ has supported these predictions.

The cyclopropyl bromides reported here have been studied in order to evaluate the effect of the leaving group on the ring-opening process.

Results and Discussion

cis-2-Phenylcyclopropyl bromide (1) and trans-2phenylcyclopropyl bromide (2) were prepared by the addition of dibromocarbene to styrene followed by partial reduction with tri- n-butyltin hydride. The resulting isomeric mixture of 1 and 2 was separated by preparative glpc. The structures were assigned on the basis of their nmr spectra. The chemical shist of the proton on the bromine-bearing carbon is 0.25 ppm higher field when it is located cis to the phenyl group. ${ }^{5,6}$ 2,2-Diphenylcyclopropyl bromide (3) was prepared in a similar manner.

[^5]The solvolyses of the bromides 1,2 , and 3 were carried out in anhydrous acetic acid in the presence of a slight excess of sodium acetate. The sole product of solvolysis of 1 and 2 was shown to be the thermodynamically stable trans-cinnamyl acetate. The sole product from the solvolysis of 3 was shown to be α phenylcinnamyl acetate.

Control experiments revealed no isomerization of the starting bromides during the course of the reaction.

The kinetics of solvolyses were followed by titration of remaining acetate ion. The rate constants in all cases were first order in starting cyclopropyl bromide concentration. The rate constants, relative rates at 119.4°, and activation parameters are listed in Table I.

Table I
Kinetics of the Solvolysis of Cyclopropyl Bromides

Compd	$\begin{aligned} & \text { Temp, } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	k_{1}, sec^{-1}	$\underset{k_{\text {rel }}}{\Delta H^{\neq}, ~} \Delta S^{\neq 1},$		
Cyclopropyl bromide	160.3	$6.92 \pm 0.20 \times 10^{-7}$			
cis-2-Phenylcyclo-	119.4	$1.46 \pm 0.06 \times 10^{-5}$	1.0	28.9	-9 9
propyl bromide (1)	140.8	$4.58 \pm 0.08 \times 10^{-5}$			
	139.9	$9.64 \pm 0.04 \times 10^{-5}$			
trans-2-Phenyl-	108.1	$2.15 \pm 0.04 \times 10^{-5}$			
cyclopropyl bro-	119.4	$6.31 \pm 0.39 \times 10^{-5}$	4.3	31.4	+1.7
mide (2)	130.8	$2.33 \pm 0.38 \times 10^{-4}$			
2,2-Diphenylcyclo-	98.4	$2.33 \pm 0.02 \times 10^{-5}$			
propyl bromide (3)	108.4	$6.65 \pm 0.11 \times 10^{-5}$			
	119.4	$1.99 \pm 0.10 \times 10^{-4}$	13.6		-10

The results of the bromide solvolysis along with the corresponding chloride ${ }^{5}$ and tosylate ${ }^{6}$ provide a series on which leaving group effects may be considered. Table II presents the relative rates as a function of leaving group. ${ }^{11,12}$

The effect of the stereochemistry of the leaving group is qualitatively in agreement with previously observed effects in other systems ${ }^{5,6,8}$ and with the WoodwardHoffmann proposals. ${ }^{9}$ The solvolysis rates of cyclo-
(11) A. Streitweiser, Jr., "Solvolytic Displacement Reactions," McGrawHill, New York, N. Y., 1962, p 81.
(12) J. L. Fry, C. J. Lancelot, L. K. M. Lam, J. M. Harris, R. C. Bingham, D. J. Raber, R. E. Hall, and P. v. R. Schleyer, J. Amer. Chem. Soc., 92, 2538 (1970).

Table II
Relative Rates of Solvolysis of α-Phenyl-Substituted Cyclopropyl Derivatives in Anhydrous Acetic Acid

Structure	Temp, $^{\circ} \mathrm{C}$	Chloride a $k_{\text {rel }}$	Bromide $k_{\text {rel }}$	Tosylate l $k_{\text {rel }}$
Cyclopropyl	160.3		1.0	29
cis-2-Phenylcyclo- propyl	150.1	1.0	39	21
trans-2-Phenyl- cyclopropyl	150.1	1.0	42	57
2,2-Diphenyl- cyclopropyl	150.1	1.0	39	
Isopropylc	100.1	1.0	25	13,000
2-Adamantyld	25		1.0	16,000

${ }^{a}$ Reference 5. ${ }^{b}$ Extrapolated from data in reference 6. ${ }^{c}$ Extrapolated and estimated values based on data in reference 11 . ${ }^{d}$ Reference 12.
propyl halides are greatly enhanced by the presence of a β-phenyl substituent, but there is only a minor dependence of the rates on whether the substituent is cis or trans to the leaving group. The presence of a second phenyl group on the same carbon has little effect.

If the ring is opening by the predicted disrotatory mode shown in eq 1 , the trans substituent (R_{1}) would

rotate outwardly and would provide conjugative stabilization for the developing positive charge. The substituent cis to the leaving group $\left(\mathrm{R}_{2}\right)$ would rotate inwardly with the possible buildup of steric strain as the substituent assumes a cis-allylic configuration.

The fact that the rates of the cis compounds $\left(\mathrm{R}_{1}=H\right.$, $\mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5}$) are very close to the rates of the trans compounds ($\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{H}$) suggests that the ground-state compression strain between the phenyl group and the leaving group cis to it nearly compensates for the strain resulting from the phenyl group moving inwardly. ${ }^{13}$
The importance of this ground-state strain in the acceleration of solvolysis rates gains support from a consideration of the relative solvolysis rates of the cisand trans-2-phenylcyclopropyl series. The order for solvolysis of trans-2-phenylcyclopropyl derivatives is $\mathrm{Cl}<\mathrm{Br}<\mathrm{OTs}$, which is the order of leaving-group abilities, whereas the order for cis-2-phenylcyclopropyl derivatives is $\mathrm{Cl}<\mathrm{OTs}<\mathrm{Br}$. The departure of the cis series from the order of leaving group abilities suggests that the size of the leaving group exerts a controlling influence on the relative rates by raising the ground-state energies.

The effect of the leaving group on the solvolysis of aliphatic derivatives is generally very large. 2 Adamantyl derivatives, which have been suggested ${ }^{12}$ as models for the pure solvolysis reaction, solvolyze with a tosylate/bromine ratio of 16,000 . In contrast

[^6]to the 2-adamantyl derivatives, the cyclopropyl derivatives listed in Table II show surprisingly small variations in solvolysis rates associated with changes in the leaving group. This behavior is typical of β-substituted cyclopropyl derivatives in which the β substituent is capable of stabilizing the developing positive charge. ${ }^{8}$ The "normal" aliphatic dependence of solvolysis rate on leaving group is observed for cyclopropyl systems in which stabilization is provided by α substitution. ${ }^{8}$ Thus, the small leaving group dependence for β-substituted cyclopropyl derivatives is associated with the site of stabilization, and not with any unusual characteristics of the bonding between the cyclopropyl ring and the leaving group.

An interpretation of the small effect associated with changes in the leaving group of β-substituted cyclopropyl derivatives requires a consideration of the internal nucleophilic assisfance to the leaving group provided by the ring-opening process. The transition state involving appreciable ring opening with dispersal of positive charge to the 2 and 3 carbon atoms may be classed as a k_{Δ} solvolysis. ${ }^{14}$ Isopropyl derivatives are strongly solvent assisted and may be classed as a k_{s} type solvolysis, while 2 -adamantyl derivatives are assumed to undergo solvolysis without solvent assistance or anchimeric assistance and may be classed as a k_{c} type solvolysis. As can be seen in Table II, isopropyl derivatives have a much lower tosylate/bromide solvolysis ratio (470) than 2 -adamantyl derivatives $(16,000)$. The deemphasis of the role of the leaving group in the isopropyl solvolyses is attributed to the charge dispersal to solvent in the transition state. Since the cyclopropyl ring is not expected to undergo bimolecular nulceophilic attack by solvent, the even smaller effect of the leaving groups must be associated with the dispersal of charge provided by the anchimeric assistance of the ring opening.

A more detailed interpretation of the similarity in rates with different leaving groups is possible by postulating an inverse relationship between leaving group ability and the extent of ring opening in the transition state. A relatively poor leaving group such as chloride ion requires considerable internal assistance to its departure, resulting in greater ring opening in the transition state and a large enhancement in rate provided by the β-phenyl substituents. With the tosylate, a much better leaving group, the transition state may be occurring much earlier in the reaction sequence with less ring opening and correspondingly less phenyl stabilization.

In a recent consideration of steric effects in the solvolysis of β-methyl substituted cyclopropyl derivatives, ${ }^{8}$ the idea of varied degrees of ring opening was rejected in favor of a ccnstant amount of ring opening in the transition state with varied amounts of bond breaking between the ring and the leaving group. The transition states involving poorer leaving groups would develop considerably more charge on the ring. The inductive effect of the methyl groups can stabilize the additional charge and account for the greater effect of β-methyl substituents without additional ring opening. These conclusions are based on the fact that the solvolysis rate factor for the steric relief of strain between the cis methyl groups of trans,trans-2,3-dimethylcyclo-
(14) P. v. R. Schleyer, J. L. Fry, L. K. M. Lam, and C. J. Lancelot, ibid., 92, 2542 (1970), and references cited therein.
propyl bromide and tosylate is nearly the same in both cases.

While this interpretation ${ }^{8}$ explains the leaving group effects and the rate enhancements provided by β-methyl substituents, it does not exclude the initial interpretation set forth. It is reasonable to assume that the steric crowding between the cis methyl groups is greatly reduced in the early stages of ring opening, since both the $2,1,3$ bond angle is increasing and the rotation about the 2,1 and 3,1 bonds moves the trans β substituents away from each other. If in fact the bulk of the strain is relieved very early in reaction sequence, then the actual transition states can occur with varied amounts of the ring opening at any subsequent time. The rates would not show any difference in the amount of strain relieved. Furthermore, in the case of β-phenyl substitution a constant amount of ring opening with the resulting variation in charge on the ring would be expected to emphasize the rate-retarding inductive effect of the phenyl groups. This would counteract the delocalizing stabilization and result in a greater dependence of rate on leaving group abilities. On this basis, a compensating amount of ring opening in the transition state to provide internal assistance for poorer leaving groups best accounts for the behavior of β-phenylcyclopropyl derivatives.

Experimental Section

1,1-Dibromo-2-phenylcyclopropane.-To a 3-1. flask equipped with condenser, stirrer, and addition funnel and containing 72.0 $\mathrm{g}(0.64 \mathrm{~mol})$ of potassium tert-butoxide and 200 ml of petroleum ether (bp $60-71^{\circ}$) was added at $0^{\circ} 183.7 \mathrm{~g}(1.76 \mathrm{~mol})$ of styrene in 100 ml of petroleum ether. After thorough mixing, 162.4 g $(0.65 \mathrm{~mol})$ of bromoform was added over 3 hr . After 12 hr the reaction mixture was hydrolyzed with 200 ml of water and the organic layer was separated, washed with saturated sodium chloride solution, and dried (MgSO_{4}). On concentration and distillation, $50.9 \mathrm{~g}(28.9 \%)$ of 1,1-dibromo-2-phenylcyclopropane was obtained: bp $82-84^{\circ}(0.55-0.60 \mathrm{~mm}) ; n^{27} \mathrm{D} 1.5960$ (lit. ${ }^{15}$ $\left.\left.\mathrm{bp} 97^{\circ}(1.0 \mathrm{~mm}) ; n^{22} \mathrm{D} 1.5988\right)\right] ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.66-2.10(\mathrm{~m}, 2)$, $2.86(m, 1), 7.34(m, 5)$.
cis- and trans-2-Phenylcyclopropyl Bromide.-To a $300-\mathrm{ml}$ flask equipped with a stirrer, condenser, and an addition funnel, containing $151.9 \mathrm{~g}(0.547 \mathrm{~mol})$ of 1,1 -dibromo-2-phenylcyclopropane, was added $101.8 \mathrm{~g}(0.35 \mathrm{~mol})$ of freshly distilled tri- n butyltin hydride ${ }^{16}$ over 90 min . The temperature was kept below 40° during the addition. Distillation afforded $53.0 \mathrm{~g}(77.2 \%)$ of the isomeric monobromides in the ratio of 1.4:1.0 (cis:trans),

[^7]bp 46-52 ${ }^{\circ}(0.30-0.33 \mathrm{~mm}), n^{27} \mathrm{D} 1.5716$ [lit. ${ }^{17} \mathrm{bp} 48-50$ (0.15 $\mathrm{mm}), n^{25_{\mathrm{D}}} 1.5696$].

The isomers were separated by preparative glpe techniques to give greater than 98% isomeric purity. cis-2-Phenylcyclopropyl bromide (1) had bp 60-62 ${ }^{\circ}$ (0.8 mm); $n^{24} \mathrm{D} 1.5688$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ $\delta 1.31$ (2 , assigned to methylene protons), 2.16 (1 , benzylic proton), 3.14 (1 , proton on bromine-bearing carbon), and 7.16 (5, aromatic protons).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Br}$: C, 54.85 ; $\mathrm{H}, 4.60$; $\mathrm{Br}, 40.55$. Found (cis isomer): C,54.59; H,4.54; Br, 40.55.
trans-2-Phenylcyclopropyl bromide (2) had bp 56-57 ${ }^{\circ}$ (0.8 $\mathrm{mm}) ;{ }^{24} \mathrm{D} 1.5596 ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.30$ (2, assigned to methylene protons), 2.20 (1 , benzylic proton), 2.89 (1 , proton on brominebearing carbon), 6.78-7.35 (5, aromatic protons).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Br}$: C, $54.85 ; \mathrm{H}, 4.60 ; \mathrm{Br}, 40.55$. Found (trans isomer): C,54.79; H,4.60; Br, 40.71.

1,1-Dibromo-2,2-diphenylcyclopropane.-In a procedure similar to that described above, dibromocarbene generated from $50.0 \mathrm{~g}(0.45 \mathrm{~mol})$ of potassium tert-butoxide and $127.3 \mathrm{~g}(0.504$ mol) of bromoform was added to $191.7 \mathrm{~g}(1.06 \mathrm{~mol})$ of $1,1-$ diphenylethylene. On hydrolysis solid 1,1-dibromo-2,2-diphenylcyclopropane separated: 114.6 g (72.4%); mp 150$154^{\circ}$ (lit..$^{18} \mathrm{mp} \mathrm{151-152}{ }^{\circ}$); nmr (CCl_{4}) $\delta 2.44(\mathrm{~s}, 2), 7.34-7.80$ ($\mathrm{m}, 10$).

2,2-Diphenylcyclopropyl Bromide (3).-To a 300-ml flask equipped with a stirrer, a condenser, and an addition funnel, containing 35.2 g (0.1 mol) of 1,1-dibromo-2,2-diphenylcyclopropane in 200 ml of petroleum ether (bp 65-79 ${ }^{\circ}$), was added $29.1 \mathrm{~g}(0.1 \mathrm{~mol})$ of freshly distilled tri- n-butyltin hydride ${ }^{12}$ over a period of 1 hr . The temperature was maintained at 20°. After concentration and recrystallization (petroleum ether), $8.0 \mathrm{~g}(30.0 \%)$ of 2,2-diphenylcyclopropyl bromide was obtained: $\mathrm{mp} 79.5-81.5^{\circ}$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ \& 1.79 (d, 2), 3.61 (t, 1), 7.16-7.28 ($\mathrm{m}, 10$).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Br}$: C, 65.95; $\mathrm{H}, 4.80 ; \mathrm{Br}, 29.26$. Found: C, 65.82; H, 4.88; Br, 29.55.
Kinetic Procedure.-The general kinetic method employed was that reported by Young, et al. ${ }^{19}$ The starting bromide concentration ranged from 0.01 M to 0.02 M in anhydrous acetic acid containing 0.04 M sodium acetate. Individual aliquots were sealed in ampoules and heated in a constant-temperature bath regulated to $\pm 0.1^{\circ}$. The concentration of remaining acetate was determined by adding excess p-toluenesulfonic acid and back titrating with standard acetate using bromphenol blue as the indicator. The first-order rate constants were determined by the method of least squares.

Registry No. -1, 32523-76-5; 2, 32523-77-6; 3, 32812-52-5; cyclopropyl bromide, 4333-56-6.

Acknowledgment.-Support of this work by the National Science Foundation, Grant No. GP-7348, is gratefully acknowledged.
(17) D. Seyferth, H. Yamazaki, and D. L. Alleston, J. Org. Chem., 28, 703 (1963).
(18) P. S. Skell and A. Y. Garner, J. Amer. Chem. Soc., 78, 5430 (1956).
(19) W. G. Young, S. Winstein, and H. L. Goering, ibid., 73, 1958 (1951).

Halogen-Containing Substituents. II. The Methoxy System. Reactivity Parameters. Charge Distribution and Conformation of the Anisoles ${ }^{1}$

I. W. Serfaty, T. Hodgins, and E. T. McBee*
Department of Chemistry, Purdue University, Lafayette, Indiana 4~907

Received January 7, 1972

Abstract

The side-chain halogenated anisoles $\mathrm{ArOCH}_{2} \mathrm{X}, \mathrm{ArOCHX}_{2}$, and $\mathrm{ArOCX}{ }_{3}$, with $\mathrm{Ar}=\mathrm{Ph}, m-\mathrm{FPh}$, and $p-\mathrm{FPh}$ and $\mathrm{X}=\mathrm{F}$ and Cl , were studied in order to elucidate both the substituent parameters of the side-chain groups and their electronic distributions; the latter were calculated by the CNDO/2 method. Analysis of the results gave an estimation of the apparent conformation of the anisoles with respect to the angle by which the halogenated methyl group is twisted out of the benzene plane.

In the first paper of this series, ${ }^{1}$ a study of the electronic properties of halogen-containing methyl groups was presented. With these results established firmly, we are now repcrting a study of halogen-containing (F, Cl) methoxy groups, where the primary objective was a systematic evaluation of their electronic properties in terms of the experimental parameters, σ_{I} and $\sigma_{\mathrm{R}}{ }^{\circ}$. In addition, it was anticipated that comparison of the data for the methyl and methoxy series would provide valuable insight into the factors controlling the electronic behavior of the oxygen linking atom.

The most highly developed method for obtaining such information is Taft's treatment ${ }^{2,3}$ of the Hammett equation, which involves examination of the appropriately substituted phenyl system. This treatment ascribes the effect of a substituent to the sum of two independent contributions resulting from inductive and resonance interactions. Such a separation, which has been examined critically by Ehrenson, ${ }^{4}$ has found application, among others, in studies of the electronic transmission modes, ${ }^{5}$ of the role of $\pi(\mathrm{p}-\mathrm{d})$ conjugation in suitable systems, ${ }^{6}$ and recently in the correlation between the empirical and a theoretically calculated scale of resonance. ${ }^{7}$
In the course of determining the ground-state charge distributions for the anisoles by Pople's CNDO/2 method, ${ }^{8}$ the question of the precise conformation of the substrates became important. A limited amount of data is available; for example, X-ray analysis has shown that p-dimethoxybenzene adopts a trans-planar conformation in the crystal ${ }^{9}$ and dipole moment and

[^8] Chem. Soc., 93, 5711 (1971)
(2) R. W. Taft, E. Price, I. R. Fox, I. C. Lewis, K. K. Andersen, and G. T. Davis, J. Amer. Chem. Soc., 85, 709 (1963).
(3) (a) R. W. Taft, E. Price, I. R. Fox, I. C. Lewis, K. K. Andersen, and G. T. Davis, ibid., 85, 3146 (1963). A refined treatment of σ_{I} and $\sigma_{R}{ }^{\circ}$ parameters of substituents in the benzene system is forthcoming (see ref 14 cited in P. R. Wells, S. Ehrenson, and R. W. Taft, in "Progress in Physical Organic Chemstry," Vol. 6, A. Streitwieser, Jr., and R. W. Taft, Ed., Interscience, New York, N. Y., 1968, p 147). These resulte are not expected to affect the conclusions of this study. (b) R. Pollet, R. Van Pouke, and A. De Cat, Bull. Soc. Chim. Belg., 75, 40 (1966). These authors measured substituent constants for the OCHF_{2} group.
(4) S. Ehrenson in "Progress in Physical Organic Chemistry," Vol. 2, S. Cohen, A. Streitwieser, Jr., and R. W. Taft, Ed., Interscience, New York, N. Y., 1964, p 195, and references cited therein.
(5) W. A. Sheppard, Trans. N. Y. Acad. Sci., 29, 700 (1967).
(6) R. W. Taft and J. W. Rakshys, J. Amer. Chem. Soc., 87, 4387 (1965).
(7) R. T. C. Brownlee and R. W. Taft, ibid., 90, 6537 (1968); 92, 7007 (1970).
(8) (a) J. A. Pople and M. Gordon, ibid., 89, 4253 (1967); (b) J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory," McGraw-Hill, New York, N. Y., 1970; (c) J. A. Pople, Accourts Chem. Res., 3, 217 (1970).
(9) T. H. Gcodwin, M. Pr2ybylska, and J. M. Robertson, Acta Crystallogr., 3, 278 (1950).

Kerr constant measurements ${ }^{10}$ have shown that in para-substituted anisoles the methyl group is apparently twisted out of the plane of the benzene ring. However, information concerning side-chain substituted anisoles is not available; hence, we have used the CNDO/ 2 results in conjunction with the experimental parameters to explore new methods for determining conformations in these molecules.

Results and Discussion

The series of anisoles $\mathrm{ArOCH}_{2} \mathrm{X}, \mathrm{ArOCHX} 2, \mathrm{Ar}-$ OCX_{3}, with $\mathrm{X}=\mathrm{F}, \mathrm{Cl}$, and $\mathrm{Ar}=\mathrm{Ph}, m-\mathrm{FPh}, p-\mathrm{FPh}$ (excepting $\mathrm{ArOCH}_{2} \mathrm{~F}$), were prepared as described in the Experimental Section. The substituent parameters of the groups were determined using both the ${ }^{19} \mathrm{~F} \mathrm{nmr}$ and the infrared methods. Thus, chemical shifts (δ) of the meta and para fluorines in the fluorophenyl compounds ${ }^{2,3}$ were measured and are recorded in Table I together with the σ_{I} and $\sigma_{R}{ }^{\circ}$ parameters derived from the equations

$$
\begin{gather*}
\delta_{\mathrm{m}}=-7.1 \sigma_{\mathrm{I}}+0.60 \tag{1}\\
\delta_{\mathrm{P}}-\delta_{\mathrm{m}}=-29.5 \sigma_{\mathrm{R}}{ }^{\circ} \tag{2}
\end{gather*}
$$

The resonance parameters were also obtained using Katritzky's ${ }^{1,11}$ infrared method, in which the square root of the intensities of the $1600-\mathrm{cm}^{-1}$ ring-stretching vibrations, $A^{1 / 2}$, of the appropriate monosubstituted benzene was calculated and the corresponding $\sigma_{\mathrm{R}}{ }^{\circ}$ value was derived from the equation

$$
\begin{equation*}
\sigma_{\mathrm{R}}{ }^{\circ}=0.0079 A^{1 / 2}-0.027 \tag{3}
\end{equation*}
$$

These values are also given in Table I. Good agreement between the ${ }^{19} \mathrm{~F}$ and infrared methods is noteworthy and serves to increase confidence in their application and reliability.

All attempts to prepare the α-fluoroanisoles required for this study were unsuccessful; however, the substituent constants for $\mathrm{OCH}_{2} \mathrm{~F}$ were obtained by linear interpolation of the plots (not given) of σ_{I} or $\sigma_{\mathrm{R}}{ }^{\circ}$ values $v s$. the number of fluorine atoms in $\mathrm{OCH}_{3-n} \mathrm{~F}_{n}$ ($n=0-3$). In similar plots for the chlorine series, a slight damping effect reminiscent of that for the hal-ogen-containing methyl series ${ }^{1}$ was observed and, although this effect was less pronounced here, it is ratio-

[^9]Table I
Scales of Substituent Effects Derived from ${ }^{19} \mathrm{~F}$ Nmr and Infrared Measurements and from MO Calcolations

Substituent					- $\mathrm{I}^{\text {b }}$		$\triangle q_{\pi^{4}} \quad \mathrm{MO}$		m
	$\delta_{\text {m }}$	δ^{p}	${ }^{\circ}$	$\sigma_{\mathrm{R}}{ }^{\circ}$	$A^{1 / 2}$	$\pm \sigma \mathrm{R}^{\circ}$			
$\mathrm{OCH}_{3}{ }^{\text {d }}$	-1.05	11.45	0.29	-0.425	57.7	0.430	-396	-647	2
$\mathrm{OCH}_{2} \mathrm{~F}$			0.37	-0.350		0.310	-320	-505	5
OCHF_{2}	-2.62	4.32	0.45	-0.269	32.1	0.227	-241	-403	9
$\mathrm{OCF}_{3}{ }^{\text {e }}$	-3.20	2.21	0.53	-0.183	27.8	0.193^{\prime}	-187	-383	12
$\mathrm{OCH}_{2} \mathrm{Cl}$	-2.28	7.36	0.41	-0.327	45.2	0.330	-301	-489	16
OCHCl_{2}	-2.95	3.98	0.49	-0.230	35.6	0.255	-211	-354	20
OCCl_{3}	-3.04	1.65	0.51	-0.165	27.5	0.195	-196	-309	21

a Shifts are given in parts per million relative to fluorobenzene (probable error ± 0.07). Probable errors are ± 0.01 in σ_{I} and ± 0.004 in $\sigma_{R}{ }^{\circ}$. ${ }^{b} \sigma_{\mathrm{R}}{ }^{\circ}$ values derived from eq 3. ${ }^{c}$ The excess π charge at the para carbon, $\Delta q^{4}{ }^{4}$, and on the ring, $\Sigma \Delta q_{\pi}$, given in 10^{-4} electron, for the chosen conformation, taken from Table II. ${ }^{d}{ }^{19} \mathrm{~F} \mathrm{nmr}$ shifts from ref 2 and 3 a . See also ref 3 b . ${ }^{e} \sigma_{\mathrm{I}}=0.55$ (ref 2) and $\sigma_{\mathrm{R}}{ }^{\circ}=$ -0.18 (ref 3). ${ }^{\prime} \pm \sigma_{\mathrm{R}}{ }^{\circ}=0.250$ (ref 11 b) is probably in error.
nalized as arising from important pairwise interactions ${ }^{12}$ between the chlorine atoms.

The quantitative results given in Table I achieve the principal objective of this investigation. The general trends with increasing halogen substitution of the methoxy group, namely, a decrease in resonance donor capacity and an increase in the magnitude of the inductive effect, are observed. As it happened, the resonance and inductive parameters for this methoxy series are correlated by the simple equation

$$
\begin{equation*}
\sigma_{\mathrm{I}}=\sigma_{\mathrm{R}}{ }^{\circ}+0.72 \tag{4}
\end{equation*}
$$

Other workers ${ }^{13}$ have noted similar correlations for substituents containing oxygen as the linking atom. These results are analogous to those for Taft's "united-atom-like-first-row-pair donor" (UAFPD) theory ${ }^{3 \mathrm{a}}$ and, although differing in behavior from that found for true UAFPD substituents, suggest that the oxygen atom is exerting the dominant influence in controlling the substituent parameters in the oxygen family. Both Taft ${ }^{3}$ and Ehrenson ${ }^{4}$ have analyzed this point in detail.

A comparison of the results for the methoxy (OY) with the corresponding methyl ${ }^{1}$ (Y) series shows the inductive parameters to be linearly proportional according to the following equation. This result would

$$
\begin{equation*}
\sigma_{\mathrm{I}}(\mathrm{OY})=0.53 \sigma_{\mathrm{I}}(\mathrm{Y})+0.32 \tag{5}
\end{equation*}
$$

not be readily anticipated by an inductive theory based primarily on a direct electrostatic interaction between the substituent and a suitable probe (field effect ${ }^{2}$) but is more indicative of inductive transmission through the bonds with the oxygen atom attenuating, by a factor of approximately one-half, the effect of the halogen-containing methyl group. However, the complex nature of σ_{I}, as noted earlier, ${ }^{1}$ obviates a more refined treatment at this time. No such simple relationship was found between the $\sigma_{\mathrm{R}}{ }^{\circ}$ values of the two series, for reasons developed in the following section.

Conformation of Halogenated Anisoles.-The position of a methoxy group relative to an attached benzene

[^10]moiety is defined by the angles $\alpha\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}-\mathrm{C}_{\mathrm{Me}}\right)$ and β (the angle by which the methyl group is twisted out of the benzene plane). For those anisoles whose geometry

has been discussed, angles of α are usually reported ${ }^{9.14}$ around $118-120^{\circ}$. This value is close to that expected for an oxygen bonding via sp^{2} hybridized orbitals to both carbon atoms, which places the oxygen p_{2} orbital in perfect location for resonance interaction with the ring, ${ }^{15}$ and the degree of conjugation of this orbital with the ring is determined by β. However, molecular polarizability measurements have shown ${ }^{10}$ that the angle β can vary within the range of possible values, from 0° in p-cyanoanisole to 90° in $2,4,6$-tri-X-substituted anisoles ($\mathrm{X}=\mathrm{CH}_{3}, \mathrm{Cl}, \mathrm{Br}$). The twisting of the methyl group out of the benzene plane results therefore from the balance of the two opposing effects. The first is the electron demand by the aryl system, as evidenced by Figure 1, which was constructed from literature values ${ }^{3 \mathrm{a}, 10}$ and shows the approximate linear correlation between the angle β and the $\sigma_{\mathrm{R}}{ }^{\circ}$ of the substituent in para-substituted anisoles. This effect tends to place the OCH_{3} group coplanar with the ring so as to maximize overlap of the π system with the p_{z} orbital of oxygen. The second and counteracting effect forces the methyl group out of the benzene plane and has been attributed ${ }^{16}$ to steric repulsion between the ortho and side-chain substituents. Another contributing factor, not considered previously, is the repulsion between the oxygen lone pair and the benzene ring, which would be greatest and most destabilizing for an eclipsed conformation ($\beta=0^{\circ}$). The barrier to rotation for the methoxy group in anisole has been estimated ${ }^{17}$ to be
(14) (a) C. Romers and B. Hespers, Acta Crystallogr., 20, 162 (1966); (b) J. Toussaint, Bull. Soc. Roy. Sci. Liege, 13, 111 (1944).
(15) Relatively little discussion of the hybridization of oxygen appears in the literature. Ground-state oxygen (2 s$)^{2}\left(2 \mathrm{p}_{x}\right)^{2}\left(2 \mathrm{p}_{y}\right)\left(2 \mathrm{p}_{z}\right)$ can undergo reorganization without electron promotion to $\left(s^{2}\right)^{2}(p)^{2}\left(s^{2} p\right)^{2}$. Some justification for this type of hybridization based on MO theory is given by C. Trindle and O. Sinanoǧlu, J. Amer. Chem. Soc., 91, 853 (1969).
(16) M. Horak, E. R. Lippincott, and R. Khanna, Spectrochim. Acta, Part A, 23, 1111 (1967). In addition, references in this paper support the contention that $0^{\circ}<\beta<90^{\circ}$; however, others ${ }^{17}$ have advocated a planar model, $\beta=0^{\circ}$.
(17) N. L. Owen and R. E. Hester, ibid., 25, 343 (1969).
about $6 \mathrm{kcal} / \mathrm{mol}$ and also has been detected by other methods. ${ }^{18}$
The resonance donor properties of the halogen-containing anisoles are clearly related to their apparent conformation, and consequently an estimation of the angle β was required for each compound. A new approach to this problem was found in the application of the CNDO/ 2 method, ${ }^{8}$ which calculates the electronic distribution in the compounds from their molecular geometry. Modified versions ${ }^{19}$ of QCPE Computer Programs No. 91 and 141 were used for molecules containing first-row and second-row elements, respectively. Unfortunately, the lack of experimental dipole moment data for these compounds generally precluded their use as evidence supporting the accuracy of the calculations. As before, ${ }^{1}$ the benzene ring was taken as a regular hexagon with $\mathrm{C}-\mathrm{C}=1.397 \AA$ and $\mathrm{C}-\mathrm{H}=1.08 \AA$. For the substituent, values of $\mathrm{C}-\mathrm{H}=1.09 \AA, \mathrm{C}-\mathrm{F}=1.32$ \AA, and $\mathrm{C}-\mathrm{Cl}=1.76 \AA$ were used throughout. In all cases, the phenyl $\mathrm{C}-\mathrm{O}$ and the methyl $\mathrm{C}-\mathrm{O}$ bonds were taken equal to 1.36 and $1.37 \AA$, respectively, and the angle α was 118° unless otherwise noted; the angle β was varied between 0° and 90° corresponding to the conformations m, which together with the calculated charge distributions are given in Tables II, III, and IV.

Table II

π Charge Density ($\times 10^{4}$) on the Ring Carbons of Halogenated Anisoles for Various Conformations ${ }^{a}$

Substituent	m	$\Delta q \pi^{1}$	Δq^{2}	$\Delta q \pi^{3}$	Δq^{4}	$\Delta q \pi^{5}$	$\Delta q \pi^{6}$	$\Sigma \Delta q_{\pi}$	α	β
OCH_{3}	1	482	-651	266	-404	250	-619	-676	118	0
	2	486	-636	262	-396	248	-611	-647	118	18
	3	478	-509	209	-325	209	-509	-447	118	90
$\mathrm{OCH}_{2} \mathrm{~F}$	4	435	-637	269	-365	252	-581	-627	118	18
	5	424	-551	233	-320	231	-522	-505	118	56
	6	387	-497	198	-281	211	-441	-423	118	90
OCHF_{2}	7	350	-554	267	-321	233	-561	-586	118	18
	8	302	-429	206	-246	198	-446	-415	120	75
	9	302	-432	200	-241	200	-432	-403	118	90
	10	417	-585	256	-359	252	-608	-627	160	90
OCF_{3}	11	261	-529	274	-268	239	-526	-549	118	18
	12	298	-403	206	-187	206	-403	-383	118	90
	13	205	-407	211	-190	206	-412	-387	115	80
	14	321	-559	255	-303	255	-559	-590	160	90
$\mathrm{OCH}_{2} \mathrm{Cl}$	15	394	-578	258	-343	242	-582	-609	118	0
	16	393	-536	236	-301	233	-514	-489	118	45
	17	386	-518	225	-287	227	-488	-455	118	55
	18	379	-503	214	-274	220	-463	-427	118	65
	19	363	-489	198	-259	210	-421	-398	118	90
OCHCl_{2}	20	283	-410	197	-211	197	-410	-354	118	90
OCCl_{3}	21	283	-385	185	-176	195	-385	-329	118	90

${ }^{a}$ The substituent is attached to the 1 position. Each conformation m is defined by the angles $\alpha\left(\mathrm{C}_{\left.\mathrm{Ar}_{r}-\mathrm{O}-\mathrm{C}\right) \text { and } \beta \text { (angle by }}\right.$ which the group $\mathrm{CH}_{3-n} \mathrm{X}_{n}$ is twisted out of the benzene plane). The excess π charge is $1.0000-\Delta q_{\pi}$ and the sum of these values over each ring position (1-6) is given by $\Sigma \Delta q_{\pi}$.

Although differences within a few degrees for the angle α undoubtedly occur depending on the molecule under examination, practical considerations prohibited taking them into account and hence restricted this study primarily to the results obtained from varying only β.
The CNDO/ 2 method has been applied previously to a representative set of substituents attached to a phenyl
(18) (a) S. K. Garg and C. P. Smyth, J. Chem. Phys., 46, 373 (1967); (b) R. W. Crecely, K. W. McCracken, and J. H. Goldstein, Tetrahedron, 25, 877 (1969). Other workers have obtained similar evidence in orthodisubstituted anisoles [K. S. Dhami and J. B. Stothers, Can. J. Chem., 44, 2855 (1966)] and ethers [H. Kessler, A. Rieker, and W. Rundel, Chem. Commun., 8, 475 (1968)].
(19) (a) G. A. Segal, Quantum Chemistry Program Exchange, Program 91, Indiana University, 1966; (b) P. A. Dobosh, Quantum Chemistry Program Exctange, Program 141, Indiana University, 1969.

Figure 1.-Correlation between the angle β in para-substituted anisoles and the resonance parameter of the substituent.

Table III
σ Charge Densities ($\times 10^{4}$) on the Ring Carbons and Hydrogens of Halogenated Anisoles in Various Conformations m^{a}

Substituent									
Y	\boldsymbol{m}	$\Delta q \sigma^{\mathbf{1}}$	$\Delta q \sigma^{2}$	$\Delta \Omega \sigma^{3}$	$\Delta q \sigma^{4}$	$\Delta q \sigma^{6}$	$\Delta q \sigma^{6}$	$\Sigma \Delta q \sigma^{\mathrm{C}}$	$\Sigma \Delta q^{H}$
OCH_{3}	1	1396	54	11	198	21	109	1789	1
	2	1393	41	12	194	20	103	1763	4
	3	1397	10	27	159	27	10	1630	15
$\mathrm{OCH}_{2} \mathrm{~F}$	4	1459	32	21	183	19	98	1812	64
	5	1457	-3	32	163	25	50	1724	75
	6	1509	4	41	142	26	-3	1719	115
OCHF_{2}	7	1554	-87	26	162	29	95	1779	276
	8	1622	-30	36	127	40	13	1808	217
	9	1611	-5	39	125	39	-6	1803	206
	10	1937	1	35	172	39	8	2192	199
OCF_{3}	11	1674	-85	31	138	32	105	1895	412
	12	1687	-19	43	107	43	-19	1842	342
	13	1663	-30	41	109	42	2	1827	346
	14	2090	-6	43	147	42	-6	2310	362
$\mathrm{OCH}_{2} \mathrm{Cl}^{2}$	15	1509	43	18	169	27	109	1875	238
	16	1509	22	33	158	29	70	1821	113
	17	1511	13	36	151	30	53	1794	116
	18	1513	5	40	146	32	37	1773	175
	19	1513	5	43	138	32	0	1731	169
OCHCl_{2}	20	1607	-2	45	119	44	-2	1811	287
OCCl_{3}	21	1651	-4	52	109	53	-4	1857	334

${ }^{a}$ See footnote a in Table II. The σ charge on the ring carbons is $3.0000-\Delta q_{\sigma}$. The sum of the excess charge on the phenyl ring hydrogens is given by $\Sigma \Delta q^{\mathrm{H}}$.
ring: two linear relationships have been established ${ }^{1,7}$ between the $\sigma_{R}{ }^{\circ}$ values for these substituents and the corresponding calculated values of either the excess π charge at the para carbon, $\Delta q_{\pi}{ }^{4}$, or the total excess π charge, $\Sigma \Delta q_{\pi}$, in the phenyl system. These two relationships are given by the lines in Figures 2 and 3, respectively. A similar analysis of the CNDO/2 calculations performed on the side-chain halogenated anisoles gave data for the varying m conformations, which are plotted also in Figures 2 and 3. The important finding was that one conformation for each molecule existed, the results from which fitted best both of the original ${ }^{1,7}$ lines simultaneously. Consequently, these results, which are summarized in Table I, were chosen to represent the apparent conformation of the appropriate anisole. It is emphasized here that the apparent conformation of the appropriate methoxy group refers to its time-averaged position, which de-

Figure 2.-Correlation between the excess π charge density on the ring of the halogen-containing anisoles and the $\sigma_{\mathrm{R}}{ }^{\circ}$ values of the substituents $\mathrm{OCH}_{3-n} \mathrm{X}_{n}$. Points in the same vertical correspond to various conformations (m) of the same sujstituent.

Table IV
Charge Densities ($\times 10^{4}$) on $\mathrm{OCH}_{3-n} \mathrm{X}_{n}$ of Groups of Halogenated Anisoles in Various Conformations m^{a}

Substituent	m	Δq^{X}	Δq^{H}	Δq^{C}	Δq^{o}
OCH_{3}	1		-173	1540	-2133
	2		-171	1534	-2144
	3		-180	1573	-2230
$\mathrm{OCH}_{2} \mathrm{~F}$	4	-1281	-1027	4680	-2594
	5	-1272	-1040	4700	-2435
	6	-2099	-322	3767	-2647
OCHF_{2}	7	-1936	-1299	6442	-2742
	8	-2192	-328	5716	-2615
	9	-2193	-330	5713	-2604
	10	-1918	-1287	6820	-3463
OCF_{3}	11	-2211		7519	-2644
	12	-2210		7537	-2708
	13	-2213		7531	-2682
	14	-2204		7910	-3387
$\mathrm{OCH}_{2} \mathrm{Cl}$	15	-1722	80	2053	-1990
	16	-1666	99	2057	-2043
	17	-1672	97	2078	-2058
	18	-1677	95	2088	-2078
	19	-2084	88	2097	-2084
OCHCl_{2}	20	-1363	362	2585	-1965
OCCl_{3}	21	-1105		3074	-1880

${ }^{a}$ See footnote in Table II. $\Delta q^{\mathbf{x}}$ represents the average excess charge on the halogen. Analogous values for the other atom in the substituent are referenced by the element in the superscript.
pends on the energy differences of all the available conformations.

The value of $\beta=18^{\circ}$ found for anisole (conformation $m=2$ in Table II) is precisely that derived by LeFevre ${ }^{10}$ from dipole moment measurements. ${ }^{20}$ The α-haloanisoles had $\beta=56^{\circ}\left(\mathrm{OCH}_{2} \mathrm{~F}\right)$ and 45° $\left(\mathrm{OCH}_{2} \mathrm{Cl}\right)$; the remaining compounds, OCHX_{2} and OCX_{3}, gave $\beta=90^{\circ}$, indicating that the dihalo and

[^11]

Figure 3.-Correlation between the excess π charge density at the para carbon of anisoles and the $\sigma_{\mathrm{R}}{ }^{\circ}$ values of the substituents $\mathrm{OCH}_{3-n} \mathrm{X}_{n}$. Points in the same vertical correspond to various conformations (m) of the same substituent.
trihalo groups are perpendicular to the benzene plane, a situation that is consistent with important steric interactions ${ }^{16}$ with the ortho hydrogen atom and results in placing the p electrons of the oxygen orthogonal with the benzene π system where overlap is forbidden by symmetry. Rather unexpected experimental support of the latter contention for OCF_{3} may be inferred from the results of molecular photoelectron spectroscopy. ${ }^{21}$ The largest deviations were found in the case of the OCX_{3} groups, which for all conformations studied gave points below the line. However, the calculations showed that even with $\beta=90^{\circ}(m=12$ and 21$)$, resonance transfer of charge ${ }^{1}$ to the ring π system was occurring, which is in agreement with the experimental values of $\sigma_{R}{ }^{\circ}$, and supports the simple model of oxygen hybridization presented herein. Incidently, the apparent conformation derived for OCF_{3} differs from those proposed previously ${ }^{22}$ and calculations on the latter ($m=11$ and 14) disagreed with expectation values deduced from Figures 2 and 3.
Charge Distribution in the Benzene Ring.-The CNDO/ 2 results can be interpreted at various levels, ${ }^{1,7,8 \mathrm{a}}$ but some caution should be exercised. ${ }^{23}$ Our results, given in Tables II, III, and IV, are self-explanatory; however, the following trends are noteworthy. (i) The π charges alternate around the ring in a manner predicted by VB theory for ortho, para-directing donor
(21) A. D. Baker, D. P. May, and D. W. Turner, J. Chem. Soc. B, 22 (1968).
(22) W. A. Sheppard, J. Amer. Chem. Soc., 85, 1314 (1963). The experimental dipole moment for OCF_{8} reported in this paper is $\mu=2.36 \mathrm{D}$, which may be compared to the value of 2.06 D calculated in this work.
(23) See, for example, the results given by M. E. Schwartz, C. A. Coulson, and L. C. Allen, ibid., 92, 447 (1970). This contention was reinforced by a referee.
substituents. ${ }^{24}$ (ii) The charge on the meta carbons ($\Delta q_{\pi}{ }^{3}, \Delta q_{\pi}{ }^{5}$) is relatively insensitive to any variation of the substituent. (iii) The electron deficiency in the σ framework of the benzene ring ($\left.\Sigma \Delta \dot{q}_{\sigma}\right)$ is dominated by the large positive value of $\Delta q_{\sigma}{ }^{1}$ resulting from the adjacent oxygen atom. ${ }^{25}$ (iv) The difference in π charge at various positions, in particular $\Delta q_{\pi}{ }^{1}-\Delta q_{\pi}{ }^{2}$, is larger in magnitude than the resonance transfer of charge $\Sigma \Delta q_{\pi}$ and results from reorganization of charge. This latter feature, which was defined previously in an operational manner ${ }^{1}$ as a π-inductive effect, makes some contribution to the σ_{I} inductive parameter.

Experimental Section

Elemental analyses were performed by the staff of Dr. C. S. Yeh, Purdue University Microanalytical Laboratory. Vapor phase chromatographic (glpc) separations were carried out on a Varian Aerograph 200, using an $8 \mathrm{ft} \times 0.375 \mathrm{in}$. aluminum column packed with 20% QF-1 60/80 Chromosorb W (column I) and an $8 \mathrm{ft} \times 0.375 \mathrm{in}$. aluminum column packed with 25% SE-30 on $60 / 80$ Chromosorb W (column II). Proton magnetic resonance (nmr) spectra were recorded on a Varian A-60A spectrophotometer using CCl_{4} as a solvent and tetramethylsilane as the standard. Ir spectra were measured on a Perkin-Elmer 421.
${ }^{19} \mathrm{~F}$ Nmr Calibrations.-All measurements were made as previously reported. ${ }^{1-3}$

Infrared Measurements.-The infrared intensities of the 1600-cm^{-1} stretching vibrations of the anisoles in CCl_{4} and cyclohexane solution were measured as reported previously ${ }^{1,11}$ and the average values of $A^{1 / 2}$ derived from five different measurements are recorded in Table I.

Materials.-m- and p-fluorophenols were purchased from Pierce Chemical Co.

Aryl Chloromethyl Ethers.-These compounds were prepared by a two-step synthesis as described by Barber. ${ }^{26}$ The appropriate sodium phenolate was treated with a solution of sodium chloromethane sulfonate, prepared according to the procedure of Schoellkopf, ${ }^{27}$ and the resulting sodium aryloxymethane sulfonate was treated further with PCl_{5}. The resulting oily mixture was poured into ice water, extracted with ether, washed with 1 N NaOH solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and distilled to give pure products. Phenyl chloromethyl ether was obtained in 74% yield: bp $57^{\circ}(0.5 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.5368$ [lit. ${ }^{28 \mathrm{~b}} \mathrm{bp} 88-90^{\circ}(15 \mathrm{~mm}), n^{20} \mathrm{D}$ 1.5362); rmr $\delta 5.60\left(\mathrm{~s}, J_{\mathrm{CH}}=176.0 \mathrm{~Hz}\right)$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClO}: \mathrm{C}, 59.00 ; \mathrm{H}, 4.90 ; \mathrm{Cl}, 24.90$. Found: C, 58.85; H, 4.95; Cl, 24.77.

The m - and p-fluorophenyl chloromethyl ethers were obtained in 29 and 21% yield, respectively: $\mathrm{bp} 66^{\circ}(4 \mathrm{~mm})$ and 65° $(4 \mathrm{~mm}), n^{20} \mathrm{D} 1.5122$ and 1.5210 , and $\mathrm{nmr} \delta 5.72$ and 5.72 (s, CH_{2}), respectively.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClFO}: \mathrm{C}, 52.35 ; \mathrm{H}, 3.74 ; \mathrm{Cl}, 22.10$; F, 11.84. Found for meta: C, $52.59 ; \mathrm{H}, 3.85$; $\mathrm{Cl}, 21.83$; F, 11.71. Found for para: C, 52.43; H, 3.74; Cl, 22.33; F, 11.99 .

Aryl Dichloromethyl Ethers.-The three ethers were prepared by a two-step synthesis adapted from that descibed by Lato and Lehtonen. ${ }^{28}$ The appropriate phenol was converted into the aryl formate, which was further treated with PCl_{5} to give the corresponding aryl dichloromethyl ether in $95-100 \%$ yield. The samples were purified by glpc at 180° using column II.

[^12]Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}: ~ \mathrm{C}, 47.41 ; \mathrm{H}, 3.50 ; \mathrm{Cl}, 40.20$. Found: C, 47.41; H, 3.19; Cl, 40.22 .
Phenyl dichloromethyl ether had $n^{20} \mathrm{D} 1.5362$ (lit. ${ }^{28} n^{20} \mathrm{D} 1.5361$) and $\mathrm{nmr} \delta 7.50\left(\leqslant, J_{\text {CH }}=209.5 \mathrm{~Hz}\right)$.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{FO}: \mathrm{C}, 43.10 ; \mathrm{H}, 2.56 ; \mathrm{Cl}, 36.42$; F, 9.75. Founc for para: C, 43.37; H, 2.67; Cl, 36.62; F, 9.74 .

The m - and p-fluorophenyl dichloromethyl ethers had n^{20} D 1.5133 and 1.5132 , respectively, and $\mathrm{nmr} \delta 7.28$ and 7.28 (s, OCHCl_{2}).
Aryl Trichloromethyl Ethers.-These ethers were prepared from their corresponding phenols by a two-step synthesis according to the procedure described by Iarovenko and Vasileva. ${ }^{29}$ The aryl chlorothioformate, ${ }^{30}$ prepared by the reaction of thiophosgene with the appropriate phenol, was treated with chlorine at $45-50^{\circ}$. Phenyl trichloromethyl ether was obtained in 90% yield: $n^{20} \mathrm{D} 1.5415$ (lit. ${ }^{29} n^{20} \mathrm{D} 1.5395$); bp 92° (10 mm); nmr $\delta 7.19$ (s).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}$: C, $39.81 ; \mathrm{H}, 2.37 \mathrm{Cl}, 50.00$. Found: C,39.64; H, 2.53; Cl, 49.20.
The m - and p-fluorophenyl trichloromethyl ethers were obtained in 96 and 82% yield, respectively: bp $70^{\circ}(3 \mathrm{~mm})$ and $60^{\circ}(2 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.5191$ and 1.5191 (lit. ${ }^{31} n^{20} \mathrm{D} 1.5191$ for para), respectively.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{Cl}_{3} \mathrm{FO}: \mathrm{C}, 36.60 ; \mathrm{H}, 1.74 ; \mathrm{Cl}, 46.40$; F, 8.27. Found for meta: C, 36.81 ; H, 1.55; Cl, 46.24; F, 8.20. Found for para: C, $36.86 ; \mathrm{H}, 1.96 ; \mathrm{Cl}, 46.29 ; \mathrm{F}, 8.50$.

Aryl Difluoromethyl Ethers.-According to the procedure of Miller and Thariassi, ${ }^{32}$ the appropriate phenols were converted into the title compounds by their reaction with chlorodifluoromethane. Purification of the products was carried out by glpc on column I at 100°. Phenyl difluoromethyl ether had n^{20} D 1.4497 (lit. ${ }^{32} n^{20} \mathrm{E} 1.4473$), nmr (neat) $\delta 6.32$ ($\mathrm{t}, J_{\mathrm{HF}}=75.0 \mathrm{~Hz}$).

The m - and p-fluorophenyl difluoromethyl ethers were obtained in 45 and 13% yield, respectively, and had $n^{20} \mathrm{D} 1.4347$ and 1.4350 , $\mathrm{nmr} \delta 6.40$ and $6.38\left(\mathrm{t}, J_{\mathrm{HF}}=73.5 \mathrm{~Hz}\right)$, respectively.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}$: C, $51.80 ; \mathrm{H}, 3.08$; F, 35.11. Found for meta: C, 51.89; H, 3.26; F, 35.22. Found for para: C, 51.76 ; H, 3.33; F, 34.81 .
Aryl Trifluoromethyl ethers.-The reaction of the corresponding aryl trichloromethyl ether ${ }^{31}$ with SbF_{3} (mixed with 10% SbCl_{3}) followed by glpc purification at 12.5° on column II afforded the title compounds in $c a .70 \%$ yield. Phenyl trifluoromethyl ether had $n^{20} \mathrm{D} 1.4070$ (lit. ${ }^{31} n^{20} \mathrm{D} 1.4073$).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}: \mathrm{C}, 51.80 ; \mathrm{H}, 3.0$; ; F, 35.11. Found: C, $52.00 ; \mathrm{H}, 3.20 ; \mathrm{F}, 34.89$.
The m - and p-fluorophenyl trifluoromethyl ethers had $n^{20}{ }_{\mathrm{D}}$) 1.3950 and 1.3951 (lit. ${ }^{33} n^{26} \mathrm{D} 1.3914$ and 1.3912).

Registry No.-Phenyl chloromethyl ether, 6707-01-3; m-fluorophenyl chloromethyl ether, 34888-01-2; p-fluorophenyl chloromethyl ether, 34888-02-3; phenyl dichloromethy ether, 1195-43-3; m-fluorophenyl dichloromethyl ether, 34888-04-5; p-fluorophenyl dichloromethyl ether, 34917-96-9; phenyl trichloromethyl ether, 34888-05-6; m-fluorophenyl trichloromethyl ether, 34888-06-7; p-fluorophenyl trichloromethyl ether 407-13-6; m-fluorophenyl difluoromethyl ether, 34888-08-9; p-fluorophenyl difluoromethyl ether, 34888-09-0; phenyl trifluoromethyl ether, 456-55-3; m-fluorophenyl trifluoromethyl ether, 1077-01-6; p-fluorophenyl trifluoromethyl ether, 352-67-0.
(29) N. N. Iarovenko and A. S. Vasileva, J. Gen. Chem. USSR, 28, 2539 (1958).
(30) M. Miyazaki and K. Nakanishi, Bull. Chem. Soc. Jap., 1322 (1957): Chem. Abstr., 52, 4684 (1958).
(31) L. M. Yagupolskii, Dokl. Akad. Nauk SSSR, 105, 100 (1955): Chem. Abstr., 50, 11270 (1956).
(32) T. G. Miller and J. W. Thanassi, J. Org. Chem., 25, 2009 (1960).
(33) W. A. Sheppard, ibid., 29, 1 (1964).

Chromyl Chloride Oxidations. VII. Kinetics and Mechanism of the Electrophilic Addition to Cycloalkenes ${ }^{1-3}$

Fillmore Freeman* and Kenneth W. Arledge
Department of Chemistry, California State University, Long Beach, Long Beach, California 90801

Received January 12, 1972

Abstract

The rapid oxidation of cyclopentene, 1-methyl- and 1,2-dimethylcyclopentene, cyclohexene, 1-, 3-, and 4methylcyclohexene, 1,3-and 1,4-dimethylcyclohexene, 1-acetylcyclohexene, cycloheptene, 1-methylcycloheptene, cyclooctene, cyclododecene, and bicyclo[2.2.1] hept-2-ene by chromyl chloride has been studied kinetically by means of a spectrophotometric stopped-flow system. The kinetics, which measure the rate of formation of the 1:1 chromyl chloride-cycloalkene adduct, follow the second-order rate law: $\nu=k\left[\mathrm{CrO}_{2} \mathrm{Cl}_{2}\right][$ cycloalkene]. The rate of oxidation increases with the increasing number of methyl groups at the carbon-carbon double bond. The relative rate of oxidation of 1-methylcyclohexene in carbon tetrachloride, chloroform, and methylene chloride is 1.00:4.05: 17.4. Large negative entropies of activation ($\Delta S^{\ddagger}=-23.5$ to -42.7 eu) and low enthalpies of activation ($\Delta H^{\ddagger}=3.21-10.6 \mathrm{kcal} / \mathrm{mol}$) are observed. A consideration of the effects of strain energies, stereochemistry, and ionization potentials on the rates is presented. Comparisons of the relative reactivities of chromyl chloride oxidations with other reactions involving symmetrical and unsymmetrical cyclic activated complexes suggest that the rate-limiting step involves a partially positively charged unsymmetrical three-membered cyclic activated complex. This conclusion does not necessarily hold for bicyclic systems.

The proposed mechanisms and observed products for the chromyl chloride oxidation of carbon-carbon single and double bonds have generated considerable controversy for many years. ${ }^{4-26}$ Styrenes have been postulated as intermediates in the chromyl chloride oxidation of arylalkanes (Etard reaction), ${ }^{17-27}$ and cycloalkenes have been suggested as intermediates in the oxidation of cycloalkanes. ${ }^{12,14}$ Chromyl chloride reacts rapidly with alkenes, ${ }^{4-11}$ cycloalkenes, ${ }^{11-15,24}$ and styrenes ${ }^{1,5,8,12,16-23}$ to give $1: 1$ chromyl chloride-unsatu-
(1) Previous paper in series: F. Freeman and N. J. Yamachika, J. Amer. Chem. Soc., 94, 1214 (1972).
(2) Presented in part at the Symposium on the Reactivity of Olefins, Nice, France, Sept 29, 1971, and the Pacific Conference on Chemistry and Spectroscopy, Anaheim, Calif., Oct 18, 1971.
(3) Abstracted in part from the M.S. thesis of K. W. Arledge, California State College, Long Beach, Calif., 1971.
(4) W. H. Hartford and M. Darren, Chem. Rev., 58, 1 (1958).
(5) K. B. Wiberg, "Oxidation in Organic Chemistry," Part A, Academic Press, New York, N. Y., 1965, p 69.
(6) S. J. Cristol and K. R. Eilar, J. Amer. Chem. Soc., 72, 4353 (1950)
(7) F. Freeman, P. J. Cameron, and R. H. DuBois, J. Org. Chem., 33, 3970 (1968).
(8) F. Freeman, R. H. DuBois, and T. G. McLaughlin, Org. Syn., 51, 4 (1971).
(9) F. Freeman, P. D. McCart, and N. J. Yamachika, J. Amer. Chem. Soc., 92, 4621 (1970).
(10) R. A. Stairs, Can. J. Chem., 38, 2028 (1960); R. A. Stairs, D. G. M. Diaper, and A. L. Gatzke, ibid., 41, 1059 (1963).
(11) F. Freeman and N. J. Yamachika, Tetrahedron Lett., 3615 (1969).
(12) C. N. Rentea, I. Necsoiu, M. Rentea, A. Ghenciulescu, and C. D. Nenitzescu, Tetrahedron, 22, 3501 (1966).
(13) V. Psemetchi, I. Necsoiu, M. Rentea, and C. D. Nenitzescu, Rev. Chim. (Bucharest), 14, 1567 (1969).
(14) C. D. Nenitzescu, Bull. Soc. Chim. Fr., 1349 (1968)
(15) L. V. Sulima and I. P. Gragerov, J. Gen. Chem. USSR, 29, 3787 (1959).
(16) F. Freeman, R. H. DuBois, and N. J. Yamachika, Tetrahedron, 25, 3441 (1969).
(17) K. B. Wiberg, B. Marshall, and G. Foster, Tetrahedron Lett., 345 (1962).
(18) C. N. Rentea, M. Rentea, I. Necsoiu, and C. D. Nenitzescu, Rev. Chim. (Bucharest), 12, 1495 (1967).
(19) I. Necsoiu, A. Ghenciulescu, M. Rentea, C. N. Rentea, and C. D. Nenitzescu, ibid., 12, 1503 (1967).
(20) F. Freeman and N. J. Yamachika, J. Amer. Chem. Soc., 92, 3730 (1970).
(21) G. G. Henderson and T. Gray, J. Chem. Soc., 85, 1041 (1904).
(22) A. L. Gatzke, R. A. Stairs, and D. G. M. Diaper, Can. J. Chem., 46, 3695 (1968).
(23) A. Ghenciulescu, I. Necsoiu, M. Rentea, and C. D. Nenitzescu, Rev. Chim. (Bucharest), 14, 1543 (1969).
(24) D. H. R. Barton, P. J. L. Daniels, J. F. McGhie, and P. J. Palmer, J. Chem. Soc., 3675 (1963).
(25) H. C. Duffin and R. B. Tucker, Tetrahedron, 24, 389 (1968).
(26) O. H. Wheeler, Can. J. Chem., 36, 667 (1958).
(27) A. Etard, C. R. Acad. Sci., 84, 127 (1877).
rate adducts 1 which can be converted to aldehydes and/or ketones in good to excellent yields by reduc-

tive hydrolysis with finely powdered zinc dust or with nascent sulfur dioxide. ${ }^{7,8,28}$ For example, 2,4,4-tri-methyl-1-pentene and 4,4-dimethyl-2-neopentyl-1-pentene are oxidized to $2,4,4$-trimethylpentanal and 4,4-dimethyl-2-neopentylpentanal in 75.8 and 80.8% yields, respectively. ${ }^{7,8,16}$ Table I shows the products from the chromyl chloride oxidation of some endocyclic and exocyclic cycloalkenes. ${ }^{28}$

Structure 2 has been suggested for the adduct 1,6,11-14

and structures 3 and 4 have been proposed as possible cyclic activated complexes for the rate-determining step in the chromyl chloride oxidation of styrenes. ${ }^{1,20}$ Kinetic data from the oxidation of alkenes favor the unsymmetrical three-membered cyclic activated complex 4. ${ }^{9}$ Also, preliminary oxidation studies with cyclopentene, cyclohexene, and bicyclo[2.2.2]hept-2-ene suggested that the activated complex could resemble structure 3,4 , or $5 .{ }^{11}$

In an attempt to further elucidate the mechanism of the chromyl chloride oxidation of cycloalkenes, we have examined the kinetics of chromyl chloride addition
(28) Isolation and/or nonreductive hydrolysis of the hygroscopic and amorphous organometallic complex 1 give(s) rise to a variety of side reactions including chlorination, isomerization, oxidation of the initial product. and carbon-carbon double bond cleavage. ${ }^{7,8,15}$

Table I
Products of the Chromyl Chloride Oxidation of Cycloalkenes

Endocyclic cycloalkene	Overall yield, \%	(\% Yield) Products (\% Yield)	Overall yield, \%	Exocyclic cycloalkene
	56^{a}	(84.6) 2-Methylcyclopentanone (72.0) (1.4) Cyclopentanecarboxaldehyde (17.5) (4.2) 2-Chloro-2-methylcyclopentanone (4.7) (9.9) 2-Methylcyclopentan-3-one (5.8)	$\} 40^{a}$	
	$68^{\text {b }}$	(52.5) 2-Methylcyclohexanone (29.1)a Cyclohexanecarboxaldehyde (47.1) ${ }^{a}$ (38.5) 1-Methylcyclopentanecarboxaldehyde (23.8) a (9.3) 2-Chloro-2-methylcyclohexanone		
	$60^{a}\{$	(52.8) 2-Methylcycloheptanone (31.5) (3.9) Cycloheptanecarboxaldehyde (28.3) (26.4) 1-Methylcyclohexanecarboxaldehyde (25.3) (11.1) 2-Methylcyclohepten-3-one (5.7) 2-Chloro-2-methylcycloheptanone Cycloheptanone (12.4) Cyclooctanone (2.5)	$\} 68^{a}$	

${ }^{a}$ Reference 12. ${ }^{b}$ Reference 11.

to (oxidation of) carbon-carbon double bonds in a variety of cycloalkenes. The kinetics, which measure the rate of formation of the chromyl chloride-cycloalkene adduct 1 , were determined in a spectrophotometric stopped-flow system owing to the very fast rates of oxidation. ${ }^{1,9,20,29}$

Experimental Section

Solutions of cycloalkene and chromyl chloride, in specially purified solvents, ${ }^{9}$ were prepared immediately prior to use.
Cycloalkenes.-The cycloalkenes were obtained commercially: cyclopentene, ${ }^{30}$ 1-methylcyclopentene, ${ }^{30}$ 1,2-dimethylcyclopentene, ${ }^{31}$ cyclohexene, ${ }^{32}$ 1-methylcyclohexene, ${ }^{33}$ 3-methylcyclohexene, ${ }^{30} 4$-methylcyclohexene, ${ }^{30} 1,3$-dimethylcy clohexene, ${ }^{31} 1,4$ dimethylcyclohexene, ${ }^{31} 1$-acetylcyclohexene, ${ }^{30}$ cycloheptene, ${ }^{30} 1$ methylcycloheptene, ${ }^{30}$ cyclooctene, ${ }^{34}$ cyclododecene (mixture of cis and trans isomers), ${ }^{34}$ and bicyclo[2.2.1]hept-2-ene. ${ }^{30}$ The cycloalkenes were refluxed for at least 2 hr with $\mathrm{LiAlH}_{4},{ }^{35}$ in order to remove any peroxides, before distillation.
Solvent Purification.-Carbon tetrachloride, ${ }^{36}$ chloroform, ${ }^{36}$ and methylene chloride ${ }^{36}$ were purified as previously described. ${ }^{9}$

[^13]Chromyl chloride (Alfa Inorganics, Inc.) was distilled and the middle fraction, bp 114.5-115.5 ${ }^{\circ}$, was used.
Kinetic Measurements.-The rapid rate of oxidation was followed by observing the disappearance of chromyl chloride in a stopped flow reactor ${ }^{1,9,11,20,29}$ at 415 and $440 \mathrm{~m} \mu^{37,38}$ under pseudo-first-order conditions (large excess of cycloalkene). Some runs with bicyclo $[2.2 .1]$ hept-2-ene were also performed under secondorder conditions owing to the extremely fast rate of reaction. The pseudo-first-order rate constants (k_{ψ}) were obtained from the slopes of plots of $-\ln \left[\log \left(T_{\infty} / T\right)\right]$ vs. time. T_{∞} is the per cent transmission at a point just before the chromyl chloridecycloalkene adduct 1 begins to precipitate. All rate constants given in the tables are the average of two or more determinations, and were calculated on a CDC 3300 computer ${ }^{39}$ A Forma Model 2095-2 refrigerated and heated bath circulator was used to maintain constant temperature ($\pm 0.02^{\circ}$).

Results

Table II summarizes the kinetic data for the chromyl

Table II
Kinetic Data for the Chromyl Chloride
Oxidation of Cyclohexene at 10.0° a

$[\mathrm{Cyclohexene}]$, $\times 10^{3} M$	$\left[\mathrm{CrO}_{2} \mathrm{Cl}_{2}\right]$, $\times 10^{d} M$	$k \downarrow, b$ sec^{-1}	$k_{2},{ }^{c} M^{-1}$ sec^{-1}
4.9	4.5	0.006	1.20
9.9	4.5	0.011	1.10
14.8	4.5	0.016	1.09
24.7	4.5	0.020	1.05
29.6	4.5	0.031	1.02
34.6	4.5	0.037	1.20
39.5	4.5	0.048	1.21
39.5^{d}	3.9	0.041	1.05
39.5^{d}	5.9	0.041	1.02
39.5^{d}	7.9	0.046	1.18
39.5^{d}	9.9	0.052	1.31
39.5^{d}	11.8	0.053	1.35

${ }^{a}$ Carbon tetrachloride solvent, $\lambda=415 \mathrm{~m} \mu$. ${ }^{b}$ Pseudo-firstorder rate constant. ${ }^{c}$ Second-order rate constant $=k_{\psi} /$ [cyclohexene]. ${ }^{d} \lambda=440 \mathrm{~m} \mu$.
chloride addition to (oxidation of) cyclohexene to give the cycloalkene-chromyl chloride adduct 1. The
(37) O. H. Wheeler, Can. J. Chem., 38, 2137 (1960).
(38) A. Bartecki, Rocz. Chem., 38, 1455 (1964).
(39) K. B. Wiberg, "Computer Programming for Chemists," W. A. Benjamin, New York, N. Y., 1965, p 165.

Figure 1.-First-order plot for the reaction of 1-methylcyclohexene with chromyl chloride in carbon tetrachloride; $\left[\mathrm{CrO}_{2} \mathrm{Cl}_{2}\right]$ $=4 . \bar{i} \times 10^{-4} \mathrm{M},[1$-methylcyclohexene $]=4.2 \times 10^{-3} \mathrm{M}, \mathrm{\lambda}=$ $415 \mathrm{~m} \mu, T=0^{\circ}$.

Figure 2.-Effect of cyclohexene concentration on the pseudo-first-order rate constants (k_{ψ}) for the chromyl chloride oxidation of cyclohexene in CCl_{4} at 10.0°.
constancy of the value of the second-order rate constant ($k_{2}=k_{\psi} /$ [cyclohexene]), at constant chromyl chloride concentration, over an eightfold range of cyclohexenc concentration suggests a first-order dependence on the cycloalkene. It is also seen from Table II that at constant cyclohexene concentration, the pseudo-first-order rate constant $\left(k_{\psi}\right)$ does not alter appreciably over a threefold range of chromyl chloride concentration at $440 \mathrm{~m} \mu$. With a tenfold excess of 1-methylcyclohexene good first-order plotswereobtained (Figure 1). Thus, further support is given for the firstorder dependence on chromyl chloride. Additional support for the first-order dependence on cycloalkene is seen in a plot of k_{ψ} against cyclohexene concentration (Figure 2) or 1-methylcyclohexene concertration (Figure 3) which gives a straight line that passes through the origin. These data suggest the following rate law.

$$
\begin{equation*}
\frac{-\mathrm{d}\left[\mathrm{CrO}_{2} \mathrm{Cl}_{2}\right]}{\mathrm{d} t}=k[\text { cycloalkene }]\left[\mathrm{CrO}_{2} \mathrm{Cl}_{2}\right] \tag{2}
\end{equation*}
$$

Effect of Solvents on Rates.-Table III shows the effects of carbon tetrachloride, chloroform, and methylene chloride on the rate of chromyl chloride oxidation of 1 -methyleyclohexene at 10.0°. Several empirical parameters for estimating solvent polarity are also presented.

Effect of Strain Energies on Rates. -The effects of strain energy on the chromyl chloride oxidation of the lower cycloalkenes are presented in Table IV.

Figure 3.-The linear dependence of the pseudo-first-order rate constants on increasing concentration of l-methylcyclohexene at constant chromyl chloride concentration in CCl_{4} at 10.0°.

Figure 4.-Relations between rate constants and substitution of methyl groups at carbon-carbon double bonds of cyclopentene and cyclohexene.

Table III

Effect of Solvents on the Rate of Chromyl Chloride Oxidation of l-Methylcyclohexenfa ${ }^{a}$

Solvent	$\begin{gathered} k_{2 .}{ }^{b} \\ M^{-1} \\ \mathrm{sec}^{-1} \end{gathered}$	Relative rate	$\mu^{\text {c,d }}$	$\epsilon^{\text {d,e }}$	$E T T^{\prime}$	z^{0}	S^{h}
$\mathrm{CCl}_{4}{ }^{\text {i }}$	12.1	1.00	0.00	2.24	32.5	52.4	-0.24.5
$\mathrm{CHCl}_{3}{ }^{\text {j }}$	49.1	4.05	1.15	4.81	39.2	63.2	-0.200
$\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\text {k }}$	211	17.4	1.\%)	9.08	41.1	64.2	-0.189

${ }^{a}\left[\mathrm{CrO}_{2} \mathrm{Cl}_{2}\right]=4.0 .5 \times 10^{-4} \mathrm{M}, \lambda=415 \mathrm{~m} \mu, T=10.0^{\circ}$. ${ }^{b}$ Second-order rate constant $=k_{\psi} /[1$-methylcyclohexene]. ${ }^{c}$ Dipole moment. ${ }^{d}$ J. A. Riddick and E. Toops, Jr., "Organic Solvents," Vol. VII of "Techniques of Organic Chemistry," A. Weissberger, Ed., Interscience, New York, N. Y., 1965. e Dielectric constant. ' K. Dimroth, C. Reichardt, T. Siepman, and F. Bohlmann, Justus Liebigs Ann. Chem., 661, 1 (1963). ${ }^{\circ}$ E. M. Kosower, J. Amer. Chem. Soc., 80, 32.53 (19.58). ${ }^{h}$ S. Brownstein, Can. J. Chem., 38, 1590 (1960). '[1-Methylcyclohexene] $=42.1 \times 10^{-8} \mathrm{M}$. ; $[1-$ Methylcyclohexene $]=93.0 \times$ $10^{-4} \mathrm{M} .{ }^{k}\left[1-\right.$ Methylcyclohexene] $=21.9 \times 10^{-4} \mathrm{M}$.

Thermodynamic Parameters and Relative Rates.The rates of the chromyl chloride oxidation of 15 cycloalkenes were determined at several temperatures. Table V summarizes the data for the activation parameters and the relative rates (to cyclohexene) of oxidation, and Figure 4 shows the relation between rates and substitution of methyl groups at the carbon-carbon double bonds of cyclopentene and cyclohexene.
Relation between Rates of Oxidation and Ionization Potentials. - A correlation between ionization potentials and logarithm of relative rates (to 1-hexene) for the

Table IV
Effect of Strain Energies on the Chromyl Chloride Oxidation of Cycloalkenes

Cycloalkane	$\begin{gathered} -\Delta H_{i}^{a} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	Total ${ }^{\text {b }}$ atrain, kcal/mol	$\begin{gathered} -\Delta H_{c^{c}} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{gathered} k_{2,}{ }^{d} \\ M^{-1} \sec ^{-1} \end{gathered}$	Cycloalkene
Cyclopentane	793.52°	6.5	25.78	4.51	Cyclopentene
Cyclohexane	$944.48^{\text {e }}$	0.0	27.10^{5}	1.10	Cyclohexene
Cycloheptane	$1108.2^{\text {e }}$	6.3	$25.85{ }^{\text {f }}$	4.72	Cycloheptene
Cyclooctane	$1269.2^{\text {e }}$	9.6	23.62^{\prime}	4.84	cis-Cyclooctene
Cyclododecane	$1884.2{ }^{e, 0}$	$3.4{ }^{\text {h }}$	20.67^{\prime}	$1.25{ }^{\text {i }}$	cis-Cyclododecene

${ }^{a}$ Heat of combustion for gaseous hydrocarbons to give liquid water at $25.0^{\circ} .{ }^{b}$ Calculated by subtracting (number of CH_{2} groups \times 157.4) from the observed heat of formation. ${ }^{c}$ Heat of hydrogenation in acetic acid solution at 25.0°. ${ }^{d}$ Second-order rate constant for chromyl chloride oxidation at $10.0^{\circ}{ }^{\circ}$ S. Kaarsemaker, and J. Coops, Recl. Trav. Chim. Pays-Bas, 71, 261 (1952); J. Coops, H. van Kamp, W. A. Lambgrets, B. J. Visser, and H. Dekker, ibid., 79, 1226 (1960). ${ }^{\prime}$ R. B. Turner and W. R. Meador, J. Amer. Chem.

Table V
Relative Rates and Thermodynamic Parameters for the Chromyl Chloride
Oxidation of Some Cycloalkenes ${ }^{a}$

$\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$	Cycloalkene	$\begin{gathered} k_{2}, b \\ M^{-1} \sec ^{-1} \end{gathered}$	Relative rate	$\begin{gathered} \Delta H^{\neq} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{gathered} -\Delta S^{\neq} \\ \text {eu } \end{gathered}$	$\begin{gathered} \Delta G^{\neq} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$
110-83-8	Cyclohexene	1.10	1.0	10.1	23.6	16.5
591-49-1	1-Methylcyclohexene	12.1	11	3.21	42.2	14.9
591-48-0	3-Methylcyclohexene	3.95	3.6	9.90	20.7	15.7
591-47-9	4-Methylcyclohexene	1.35	1.2			
2808-76-6	1,3-Dimethylcyclohexene	36.1	32.8	10.6	14.0	14.5
2808-79:9	1,4-Dimethylcyclohexene	15.1	13.7	7.80	25.5	14.9
932-66-1	1-Acetylcyclohexene	0.15	0.14	8.50	32.1	17.4
142-29-0	Cyclopentene	4.51	$4.1{ }^{\text {c,d }}$	$8.90{ }^{\text {d }}$	$23.5{ }^{\text {d }}$	
693-89-0	1-Methylcyclopentene	48.6	44.2	5.07	32.8	14.2
765-47-9	1,2-Dimethylcyclopentene	299	273	4.39	31.5	13.2
628-92-2	Cycloheptene	4.72	4.3	6.69	31.7	15.5
1453-25-4	1-Methylcycloheptene	182	165			
931-88-4	Cyclooctene	4.84	4.4	3.55	42.7	15.4
1501-82-2 ${ }^{\text {e }}$	Cyclododecene	$1.25{ }^{\circ}$	1.1	8.26	28.8	16.3
498-66-8	Bicyclo[2.2.1]hept-2-ene	562	511			

${ }^{a}$ Carbon tetrachloride solvent, $T=10.0^{\circ}, \lambda=415 \mathrm{~m} \mu$. ${ }^{b}$ Second-order rate constant $=k_{\psi} /$ [cycloalkene]. ${ }^{c}$ Relative rates at 5.0° and $15.0^{\circ}=4.9$ and 4.5 , respectively. ${ }^{d}$ Reference $11 .{ }^{e}$ Mixture of cis and trans isomers.

Table VI
Ionization Potentials and Log Relative Rates (to 1-Hexene) for ghe Chromyl Chloride Oxidation of Siome Unsaturated Hydrocarbons

Unsaturate	$\begin{gathered} k_{2},^{c} \\ M^{-1} \sec ^{-1} \end{gathered}$	$\begin{gathered} k_{2} / \\ k_{2}(1 \text {-hexene })^{b} \end{gathered}$	$\underset{k_{2}{ }_{\mathrm{rel}^{c}}^{\log }}{ }$	Ionization potential, eV
2,3-Dimethyl-2-butene	287.5	4107	3.613	$8.30,{ }^{e} 8.4,{ }^{f}>8.5^{8}$
Bicyclo[2.2.1]hept-2-ene	$562{ }^{\text {h }}$	8028.6	3.904	$8.83,{ }^{i} 8.95,{ }^{j} 9.20^{k}$
Styrene	$26.9{ }^{\text {d }}$	384.3	2.584	$8.43,{ }^{l} 8.47{ }^{\text {m }}$
Cyclopentene	$4.51{ }^{\text {h }}$	$64.4{ }^{\text {h }}$	1.809	9.01, ${ }^{m} 9.00,{ }^{2} 9.3{ }^{\prime}$
Cyclohexene	1.22^{h}	17.43^{h}	1.241	8.72,n $9.2{ }^{\text {f }}$
1-Pentene	$0.09{ }^{\text {d }}$	1.29	0.110	$9.50{ }^{\text {m }}$
cis-2-Pentene	$1.11^{\text {d }}$	15.86	1.200	9.11°
trans-2-Pentene	$1.01^{\text {d }}$	14.43	1.159	$9.06{ }^{\circ}$
1-Hexene	$0.07{ }^{\text {d }}$	1.00	0.000	$9.45{ }^{\circ}$

${ }^{\text {a }}$ Second-order rate constant $=k_{\psi} /[>\mathrm{C}=\mathrm{C}<]$ at 10.0°. ${ }^{b}$ Second-order rate constant for oxidation of 1-hexene ${ }^{c}$ Relative to 1-hexene. ${ }^{d}$ References 3 and 9. ${ }^{-}$R. Bralsford, P. V. Harris, and W. C. Price, Proc. Roy. Soc. Ser. A, 258, 459 (1960). ${ }^{\prime}$ J. L. Charlton, C. C. Liao, and P. de Mayo, J. Amer. Chem. Soc., 93, 2463 (1971). ${ }^{\text {o R. J. Cvetanovic, J. Chem. Phys., 30, }}$ 19 (1959). ${ }^{h}$ This work. ${ }^{i}$ N. Bodor, M. J. S. Dewar, and S. D. Worley, J. Amer. Chem. Soc., 92, 19 (1970). i W. C. Steele, B. H. Jennings, G. L. Botyos, and G. O. Dudek, J. Irg. Chem., 30, 2886 (1965). ${ }^{k}$ D. A. Demeo and A. J. Yencha, J. Chem. Phys., 53, 4536 (1970). ${ }^{\iota}$ M. J. S. Dewar and S. D. Worley, J. Chem. Phys., 50, 654 (1969). ${ }^{m}$ K. Watanabe, T. Nakayama, and J. Mottl, J. Quant. Spectrosc. Radiat. Transfer, 2, 369 (1962). ${ }^{n}$ M. I. Al-Joboury and D. W. Turner, J. Chem. Soc., 4434 (1964). © J. Collin and F. P. Lossing, J. Amer. Chem. Soc., 81, 2064 (1959).
chromyl chloride oxidation of nine unsaturated hydrocarbons is shown in Table VI and Figure 5.
Comparison of the Ratio of Relative Reactivities.Table VII shows a comparison of the ratio of relative reactivities for reactions proceeding via three-membered and five-membered cyclic activated complexes.

Discussion

The kinetic data above clearly show that the chromyl chloride oxidation of cycloalkenes is first order with respect to reductant and to oxidant. This also is consistent with the observed second-order rate law for the chromyl

Figure 5.-Relation between log relative rate of chromyl chloride oxidation (to 1-hexene) and ionization potentials. The unsaturated compounds for the number points are as follows: 1, 2,3-dimethyl-2-butene; 2, styrene; 3, bicyclo[2.2.1]hept-2ene; 4, cyclopentene; 5, trans-2-pentene; 6, cis-2-pentene; 7, cyclohexene; 8, 1-hexene; 9, 1-pentene.
chloride oxidation of alkenes ${ }^{9}$ and styrenes. ${ }^{1,20}$ Since structurally rearranged products are obtained from the oxidation of unsaturated hydrocarbons, it is reasonable to assume that positively charged product-determining intermediates are formed after the rate-determining steps. These intermediates could resemble 2 or they could be the corresponding epoxides. ${ }^{1,40-45}$ Rearrangement of the epoxide 7 under the hydrolytic conditions would lead to the observed aldehydes and ketones. ${ }^{7}$

Although the intermediacy of epoxides 7 in the chromyl chloride oxidation of carbon-carbon double bonds remains to be demonstrated, it is possible that they could be formed from the proposed cyclic activated complexes $3-6$, from a cyclic chromium(IV) ester 8 (Scheme I), or from an intermediate carbonium ion 9 (Scheme II).

Scheme I

If the addition of chromyl chloride to cycloalkenes is expected to be electrophilic in nature, then an increase of electron availability in the carbon-carbon double bond should increase the rate of reaction. Table

[^14]

Reaction	Temp, ${ }^{\circ} \mathrm{C}$	Size of cyclic activd complex	A	$\begin{gathered} -12, M^{-1} \min ^{-1} \\ \mathrm{~B} \end{gathered}$	C	A/B	Δ^{a}	Ratio of C/B	rat=ะ Δ^{a}	C/A	Δ^{a}
Chromyl chloride oxidation	$10^{\text {b,c }}$	$3^{\text {b }}$	$4.51{ }^{\text {d }}$	$1.10^{\text {d }}$	-362 ${ }^{\text {d }}$	4.1	1.0	511	1.0	125	1.0
Chromic acid oxidation	25°	3	0.931	0.724	3.97	1.3	3.1	5.5	93	4.3	29
Epoxidation	$25.88^{8.0}$	3	$0.185-0.195^{\circ}$	0.129°		1.5	2.7				
	25) ${ }^{\text {h }}$	3		$0.0192^{\text {d,h }}$	$0.0228^{d, h}$			1.2	426		
Bromine addition	25^{i}	3	0.040	0.030		1.3	3.1				
Dibromocarbene addition		3				$1.25{ }^{j}$	3.3				
Silver complex formation	40^{k}	3	7.3	3.6	62	2.0	2.0	17	30	8.5	14.7
Diphenylnitrilimine cycloaddition	$\sim 80^{t, m}$	5				~ 12	0.34	284	1.8	~ 24	5.2
Benzonitrile oxide cycloaddition	20^{n}	5				19	0.22	1800	0.28	93	1.3
Phenyl azide cycloaddition	$25^{\text {d,o }}$	5	1.86×10^{-7}	0.033×10^{-7}	188×10^{-7}	57	0.07	5700	0.09	101	1.2
	$25^{d, p}$	5	1.83×10^{-7}	$\left(3.3 \times 10^{-9}\right)^{\text {d.0.q }}$	2.15×10^{-5}	56	0.07	6500	0.08	115	1.1
Picryl azide cycloaddition	$25^{d, p}$	5	1.08×10^{-4}	2.55×10^{-6}	2.04×10^{-2}	42	0.1	8000	0.06	190	0.6

bid., $84,4697(1962) . \quad{ }^{k}$ Boiling benzene solvent except for York, N. Y., 1964, p 819 m m A. Eckell, R. Huisgen, R. Sustmann, G. Wallron, 17, 3 (1962). ${ }^{n}$ Ether solvent. Table VII, ref $l, ~ p 826$.
Bailey and J. E. White, J. Chem. Soc. B, 819 (1966). ${ }^{\circ}$ Carbon tetrachloride solvent. R. Huisgen, L. Möbus, G. Muller, H. Stangl, G. Szeimies, and J. M. Vernon, Chem. Ber., 98, 3992 (1965).

Scheme II

rearranged
product

V shows that 1-methylcyclohexene is oxidized 12 times as fast as cyclohexene. In contrast, the electronattracting acetyl group on the cyclohexene ring slows the rate by a factor of approximately seven. It is also seen that 1-methylcyclopentene and 1,2-dimethylcyclopentene are approximately 11 and 66 times as reactive as cyclopentene. In these respects the chromyl chloride oxidation closely resembles electrophilic reactions (e.g., bromine addition, chromic acid oxidation, epoxidation) which involve three-membered cyclic activated complexes.
It is of interest to note that 3-methyl- and 4-methylcyclohexene (10,11) are oxidized slightly faster than

10

11
cyclohexene. In contrast, remote alkyl substituents retard the rates of epoxidation with m-chloroperbenzoic acid ${ }^{46}$ and the addition of 2,4-dinitrobenzenesulfenyl chloride ${ }^{47}$ to various cyclohexene derivatives. The similarity in the rates of oxidation among cyclohexene, 10 , and 11 precludes an evaluation of the contribution of conformation, inductive, and steric effects. Inductive effects at the carbon-carbon double bond are indeed important, as is shown in the linear free energy of $\log k v s . \Sigma \sigma$ (Figure 4), ${ }^{48,49}$ and the steric and conformation factors in 10 and 11 could be small, since the methyl groups are probably in the equatorial positions. ${ }^{9,50}$ The lesser enhancing effect of the methyl group in the four position is also seen when the rates of oxidation for $1,3-$ dimethyl- and 1,4-dimethylcyclohexene are compared.

[^15]The relations between rate constants and substitution of methyl groups at the carbon-carbon double bonds of cyclopentene and cyclohexene are shown in Figure 4. A ρ^{*} of -2.04 is obtained from the twopoint line for cyclohexene and 1-methylcyclohexene, and a ρ^{*} of $-1.88(r=0.997, s=0.093)$ is obtained for 1-methyl- and 1,2-dimethylcyclopentene. ${ }^{49.50}$ These values are comparable to those reported for the chromyl chloride oxidation of alkenes ($\rho^{*}=-2.63$) ${ }^{9}$ and styrenes ($\rho^{+}=-1.99$), ${ }^{20}$ and are compatible with activated complexes with a small degree of carbonium ion character. ${ }^{20,51}$ Consequently, the observed ρ^{*} values for the chromyl chloride oxidation of cycloalkenes are not inconsistent with the formulation of unsymmetrical 3 or 4 as the activated complex.

A plot of ionization potential, which is a measure of electron availability, vs. $\log k_{\text {rel (1-bexane) }}$ (Figure 5 and Table VI) is also compatible with an electrophilic attack of chromyl chloride at the carbon-carbon double bond. In qualitative terms, cyclopentene, cyclohexene, and bicyclo [2.2.1]hept-2-ene might not be expected to give an excellent fit to the line owing to torsional strain, bond angle bending strain, and nonbonding interactions. However, it is seen that only the bicyclic system shows a large deviation from the line. Consequently, the possibility of a change in mechanism for the oxidation of bicyclo[2.2.1]hept-2-ene must also be considered.

In Table III it is noted that solvents which are empirically regarded as having higher polarity cause an increase in the rate of oxidation. This result is consistent with the development of a partially charged cyclic activated complex (3 or 4) in the transition state region from initially neutral cycloalkene and chromyl chloride.

Table IV shows the complex relation between strain energies and rate constants in the chromyl chloride oxidation of cycloalkenes. Since the heat of hydrogenation reflect strain energies in both the unsaturated and saturated compounds, interpretation of these data must be done with care. Garbisch and coworkers ${ }^{52}$ have calculated that cyclopentene and bicyclo[2.2.1]-hept-2-ene are more strained than cyclohexene by approximately 3.7 and $9.7 \mathrm{kcal} / \mathrm{mol}$, respectively. A considerable amount of this strain is relieved in reactions involving cyclic four-, five-, or six-membered activated complexes. ${ }^{53}$ Therefore, the comparable rate constants for oxidation of cyclopentene and cyclohexene suggest that there is not a significant relief of strain and that the activated complex probably shows a close resemblance to 4. Alternatively, the very small rate difference may be due to an activated complex which closely resembles the reactants. ${ }^{54,55}$

An examination of the relative rates and the ratios of reactivities in Table VII reveals that the chromyl chloride oxidation of cyclopentene and cyclohexene is remarkably similar to other reactions leading to cyclic three-membered activated complexes. In contrast, the bicyclo[2.2.1]hept-2-ene-cyclohexene ratio appears

[^16]to suggest a five-membered cyclic activated complex (3 or 6) for the bicyclic system. ${ }^{53}$
$3,4,5$, or 6 would require the large negative entropies of activation (-23.5 to -42.7 eu) tabulated in Table V. ΔS^{\mp} values of this magnitude have been observed for reactions, e.g., epoxidation, 1,3-dipolar cycloadditions, with rigid orientation requirements in the activated complex.

We conclude from the kinetic studies and the comparative rate data that the activated complex for the chromyl chloride oxidation of cycloalkenes can be represented by the partially charged unsymmetrical structure $4 .{ }^{56} 4$ is consistent with the rapid rate of oxidation in solvents of low polarity and with the ρ^{*} of approximately -2.0 . In this postulated mechanism, which is similar to the one proposed by Bartlett ${ }^{57-59}$ for epoxidation, oxygen transfer from chromyl

[^17]chloride occurs by a concerted process. That is, as the two new σ bonds are being formed, the oxygenchromium bond is being broken. ${ }^{60}$ After the ratedetermining step, this mechanism could lead to a prod-uct-determining epoxide intermediate (Scheme II). Activated complexes similar to 4 and 5 have also been proposed for the chromic acid ${ }^{44}$ and chromyl acetate ${ }^{42}$ oxidation of carbon-carbon double bonds. ${ }^{40,56}$

The limited comparative rate data suggest that the activated complex for the chromyl chloride oxidation of bicyclo [2.2.1]hept-2-ene probably has a close resemblance to 3 or 6 . Additional studies on more bicyclic systems are in process in order to fully elucidate the mechanism.

Registry No.-Chromyl chloride, 7791-14-2.
Acknowledgment.-We express our thanks to the donors of the Petroleum Research Fund administered by the American Chemical Society and the Long Beach California State College Foundation for support of this work.
(60) Concerted closure of the two incipient o bonds does not necessarily mean that the development of the bonds has proceeded to the same degree in the activated complex. Any difference between the bond-making rates during the activation process would lead to a partial charge at the more substituted carbon atom.

Silation of Dichloromethyllithium in the Presence of Excess \boldsymbol{n}-Butyllithium

Donald R. Dimmel,* Charles A. Wilkie,* and Francisco Ramon
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233
Received May 10, 1971

Abstract

The silation of a -100° solution of 2 equiv of n-butyllithium and 1 equiv of methylene chloride in THF-hexane with trimethylchlorosilane leads to a complex product mixture of butyltrimethylsilane (3), dichloro(trimethylsilyl)methane (1), bis(trimethylsilyl)chloromethane (4), bis(trimethylsilyl)dichloromethane (2), tris(trimethylsilyl)methane (5), 1,1-di(trimethylsilyl)-1-chloropentane (6), and tris(trimethylsilyl)chlorosilane (7). Experimental evidence is presented that indicates that successive silation of monolithio intermediates is occurring rather than production of dilithiodichloromethane.

It has been reported ${ }^{1}$ that additions of n-butyllithium to cold $\left(-100^{\circ}\right)$ solutions of methylene chloride and trimethylchlorosilane. in tetrahydrofuran (THF) give respectable yields of dichloro(trimethylsilyl)methane (1) and bis(trimethylsilyl)dichloromethane (2), depending on the quantity of reagents used (eq 1 and 2). In repeating this second reaction, we found it

$$
\begin{gather*}
1 \mathrm{Me}_{3} \mathrm{SiCl}+1 \mathrm{CH}_{2} \mathrm{Cl}_{2}+1 \mathrm{BuLi} \xrightarrow[51 \%]{\mathrm{THF},-100^{\circ}} \mathrm{Me}_{3} \mathrm{SiCHCl}_{2} \tag{1}\\
2 \mathrm{Me}_{3} \mathrm{SiCl}+1 \mathrm{CH}_{2} \mathrm{Cl}_{2}+2 \mathrm{BuLi} \xrightarrow[40 \%]{\mathrm{THF},-100^{\circ}} \mathrm{Me}_{3} \mathrm{SiCCl}_{2} \mathrm{SiMe}_{3}
\end{gather*}
$$

to be quite complex, regardless of whether the reaction was done in situ as Bamford and Pant describe or if the intermediate, dichloromethyllithium $\left(\mathrm{LiCHCl}_{2}\right)$, was preformed prior to addition of trimethylchlorosilane.
When trimethylchlorosilane was added last to a cold solution of 2 equiv of n-butyllithium to 1 equiv of methylene chloride in THF as the solvent, compound 2 was formed in approximately 50% yield (based on vpc).
(1) W. R. Bamford and B. C. Pant, J. Chem. Soc. C, 1470 (1967).

The other 50% of the reaction products was composed of compounds 1 and 3-7. The silated products were isolated by preparative gas chromatography and characterized by infrared, nmr, and mass spectra, ${ }^{2}$ elemental analysis, and comparisons to previously reported properties ${ }^{1,3-7}$ (see Experimental Section for details and relative amounts). Additional structure proof of compound 2 was provided by its hydride reduction to a mixture of 4 and bis(trimethylsilyl)methane (8). ${ }^{3}$ (Compound 4, unlike 2, reduces only very slowly with lithium aluminum hydride.)

[^18] (1972).
(3) R. L. Merker and M. J. Scott, J. Organometal. Chem., 4, 98 (1965).
(4) R. Maller and G. Seitz, Chem. Ber., 91, 22 (1958).
(5) R. Mueller and S. Reichel, ibid., 99, 793 (1966).
(6) G. Fritz and J. Grobe, Z. A norg. Allg. Chem., s09, 77 (1961).
(7) V. F. Mironov and N. A. Pogonkina, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 182 (1955); Chem. Abstr., 50, 1574d (1956).

A probable mechanism which might account for the variety of products found when methylene chloride is silated is presented in Scheme I. The evidence supporting Scheme I is the following.

Scheme I

(1) Silyl groups are known to enhance the reactivity of an α carbon toward further reactions with base 8 and, consequently, polysilation can occur. The reaction of methylene chloride with varying amounts of n-butyllithium supports this premise. With 1 equiv of n-butylithium, the major product was the monosilated compound 1, with 2 equiv it was 2, with 3 equiv it was the trisilated compound 7 , and with 4.5 equiv it was the tetrasilated product 9 . The consecutive silations could be lessened to some extent by the inverse addition of the cold $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{BuLi}$ solutions to cold $\mathrm{Me}_{3} \mathrm{SiCl}$; here the product composition was 74% 2, $14 \% 7,10 \% 4$, and $2 \% 6$.
(2) An equal molar mixture of bis(trimethylsilyl)dichloromethane (2) and trimethylchlorosilane in THF was treated with 1 equiv of BuLi at -100° to afford products 7 and 3 in a $15: 1$ ratio. Thus, at these low temperatures, the reaction between n-butyllithium and trimethylchlorosilane is quite slow relative to reaction of the base with a silyl activated methylene, an observation also made by Bamford and Pant. ${ }^{1}$
(3) Verification that halogen exchange reactions, ${ }^{9}$ such as $1 \rightarrow 12,2 \rightarrow 13$, etc., are plausible steps in these transformations was provided by the observation that a sample of 2 could be converted, via its lithium derivative 13, to either 7 or 4 (eq 3). The results (eq 3) also

$$
\begin{equation*}
2+\mathrm{BuLi} \xrightarrow[-100^{\circ}]{\text { THF }} 6+\underset{4}{\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{CClLi}^{13} \mathrm{H}_{2} \mathrm{O} \searrow_{4}\right.} \tag{3}
\end{equation*}
$$

indicate that 2 is the likely precursor of 6 and that hydrolysis (or proton abstraction) of lithio intermediates 11,13 , and 15 could account for some or all of the observed products 1,4 , and 5.
(4) If the reaction described by eq 2 was performed on a vacuum line, 1 equiv of butane was collected prior

[^19]to silation and 0.5 equiv was collected after silation [in this case ineffective mixing led to more than the usual amount of butyltrimethylsilane (3)]. Butyl chloride was also detected as a by-product. In like manner, only 1 equiv of isobutane was collected when 2 equiv of tert-butyllithium was treated with 1 equiv of methylene chloride (eq 4). These results rule out di-
\[

$$
\begin{equation*}
\mathrm{CH}_{2} \mathrm{Cl}_{2}+2 t \text { - } \mathrm{BuLi} \xrightarrow[-100^{\circ}]{\mathrm{THF}} \mathrm{LiCHCl}_{2}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}+t \text { - } \mathrm{BuLi} \tag{4}
\end{equation*}
$$

\]

chloromethyllithium $\left(\mathrm{Li}_{2} \mathrm{CCl}_{2}\right)$ as an intermediate in these reactions since its formation would lead to 2 equiv of butane prior to silation.
If the silations were done according to the procedure of Bamford and Pant, ${ }^{2}$ namely, the n-butyllithium added last to a cold solution of trimethylchlorosilane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in solvent, a mixture of products was also obtained. Using an excess of $\mathrm{Me}_{3} \mathrm{SiCl}$ and THF as the solvent, the predominant product was the trisilated compound 7 and not 2 (eq 5). With a solvent mixture

$$
3 \mathrm{Me}_{3} \mathrm{SiCl}+1 \mathrm{CH}_{2} \mathrm{Cl}_{2}+2 \mathrm{BuLi} \xrightarrow{\substack{-100^{\circ}}} \stackrel{\text { THF }}{2} \mathrm{C}+\underset{12 \%}{4}+\underset{9 \%}{6}+\underset{52 \%}{7}
$$

of 5 parts THF/5 parts hexane/ 1 part ether and a stoichiometric amount of $\mathrm{Me}_{3} \mathrm{SiCl}$, a 65% yield (vpc) of 2 was obtained (eq 6).

$$
\begin{align*}
& 2 \mathrm{Me}_{3} \mathrm{SiCl}+1 \mathrm{CH}_{2} \mathrm{Cl}_{2}+2 \mathrm{BuLi} \xrightarrow[-100^{\circ}]{\text { THF/hexane/ether }} \\
& \underset{65 \%}{2}+\underset{19 \%}{4}+\underset{9 \%}{6}+\underset{7 \%}{7} \tag{6}
\end{align*}
$$

To summarize, the silation of methylene chloride in the presence of excess n-butyllithium, no matter how the reaction is done, gives several products. These products apparently result because the reaction of trimethylchlorosilane with n-butyllithium is quite slow at -100° relative to n-butyllithium reacting with silylactivated α protons or chlorines. The reaction does not appear to be a useful preparative reaction unless one has a very gcod fractionating column or preparative yas chromatograph. The exceptions to this generalized statement are 7 and 9 , which can be sublimed from the reaction mixtures and obtained in fairly pure states and decent quantities.

Experimental Section

All the n-butyllithium reactions were conducted in flame-dried $500-\mathrm{ml}$ four-neck round-bottom flasks fitted with a dropping funnel, tru-bore stirrer, thermometer, and drying tube. The reactions were done under an atmosphere of nitrogen; temperature control was achieved using liquid nitrogen. The methylene chloride and THF were freshly distilled prior to use, the former from $\mathrm{P}_{2} \mathrm{O}_{5}$, the latter from sodium-potassium alloy. The n butyllithium and tert-butyllithium in hexane solvent were purchased from Alfa Incrganics.

Nuclear magnetic resonance spectra were obtained on a Varian A-60A spectrometer, using TMS as the internal standard and CCl_{4} as the solvent. Infrared spectra were recorded on a Beckman IR-12 spectrometer. Mass spectra were obtained using a CEC 21-104 mass spectrometer. Gas chromatographic analyses were performed on a $6 \mathrm{ft} \times 0.25 \mathrm{in}$. aluminum column packed with SE-30 on 60-80 mesh Chromosorb W using a F \& M Model 700 gas chromatograph. Preparative work was done on $8 \mathrm{ft} \times$ 0.75 in. stainless steel columns packed with SE-30 on Chromosorb W using a F \& M Model 770 preparative gas chromatograph.

Boiling points were determined by the capillary method. All boiling points and melting points are uncorrected.

Silation of Methylene Chloride.-To a stirred solution of 8.85 g (0.104 mol) of methylene chloride in about 200 ml of THF, cooled to about -90°, was slowly added $90 \mathrm{ml}(0.214 \mathrm{~mol})$ of $2.37 M n$-butyllithium in hexane. After complete addition and additional stirring for $3 \mathrm{hr}, 24.7 \mathrm{~g}(0.229 \mathrm{~mol})$ of trimethylchlorosilane in 50 ml of THF was added over a $2-\mathrm{hr}$ period. The reaction was then allowed to gradually warm to room temperature Much of the THF was distilled off; then water and e-her were added to the residue. The organic layer was separated and the aqueous layer was extracted twice with fresh ether. The combined ether extracts were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and distilled. Four fractions ranging in boiling points of $35-145^{\circ}$ were collected at atmospheric pressure using a Vigreux column. Another five fractions, bp $50-170^{\circ}$ (15 mm), were collected using a short-path distillation column.

The various fractions were analyzed by gas chromatography (SE-30) and percentages of each component were calculated by the triangle method. From the percentages and quantities of each, the rough composition of product mixture was determined to be $20 \% 1,48 \% 2,12 \% 3,5 \% 4,9 \% 5,1 \% 6$, and $4 \% 7$. The various components were then separated by preparative gas chromatography (SE-30). The properties of the collected compounds (listed in increasing retention time) were the following.

Butyltrimethylsilane (3) was identical with a sample prepared by the reaction of n-butyllithium with trimethylchlorosilane, bp $115-116^{\circ}$ (lit. ${ }^{10}$ bp 116.0-116.5 ${ }^{\circ}$).
Dichloro(trimethylsilyl)methane (1) had bp 134° (lit. ${ }^{1} \mathrm{bp}$ $\left.132-134^{\circ}\right) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.22$ (s, $\left.9, \mathrm{Me}_{3} \mathrm{Si}\right)$ and $5.24(\mathrm{~s}, 1, \mathrm{CH})$; ir (neat) 850 (s) and 1258 (s) (CSi), 633, 690, 717 (s), 763, 781, and $872 \mathrm{~cm}^{-1}$ (s); mass spectrum (70 eV) molecular :on at m / e 156,158 , and 160 (two chlorines). ${ }^{11}$
Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{SiCl}_{2}$: C, 30.58; H, 6.42. Found: C, 30.80; H, 6.31.
Bis(trimethylsilyl)chloromethane (4) had bp 175° [lit. ${ }^{7} \mathrm{bp}$ $177-8.5^{\circ}$); $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.12\left(\mathrm{~s}, 18, \mathrm{Me}_{3} \mathrm{Si}\right)$ and $2.35(\mathrm{~s}, 1, \mathrm{CH})$; ir (neat) 850 (s) and 1260 (s) (CSi), 619, 632, 698, 713, 770, and $1145 \mathrm{~cm}^{-1}(\mathrm{~s})$; mass spectrum (70 eV) molecular ion at m / e 194 and 196 (3: 1 patterns, weak, monochloro). ${ }^{11}$
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{Si}_{2} \mathrm{Cl}: \mathrm{C}, 43.15 ; \mathrm{H}, 9.83 ; \mathrm{Cl}, 18.19$. Found: C, 42.27; H, 9.59 ; Cl, 18.19.
Bis(trimethylsilyl)dichloromethane (2) had bp 204° [lit. ${ }^{1} \mathrm{bp}$ $\left.125-127^{\circ}(60 \mathrm{~mm})\right] ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.23\left(\mathrm{~s}, \mathrm{Me}_{3} \mathrm{Si}\right)$; ir (neat) 851 (s) and 1266 (s) (CSi), 632, 649, 703 (s), 747, 768, 810 (s), and $878 \mathrm{~cm}^{-1}(\mathrm{~s})$; mass spectrum (70 eV) molecular ion at m / e 228,230 , and 232 (weak, dichloro). ${ }^{11}$
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{Si}_{2} \mathrm{Cl}_{2}$: C, $36.67 ; \mathrm{H}, 7.91 ; \mathrm{Cl}, 30.92$. Found: C, 36.82; H, 7.61; C, 30.79.
Tris(trimethylsilyl)methane (5) had $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.10$ (s, 27, $\mathrm{Me}_{3} \mathrm{Si}$) and -0.78 (s, 1, CH) [lit. ${ }^{11} \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.11\left(\mathrm{Me}_{3}-\right.$ $\mathrm{Si}-)$ and $-0.79(\mathrm{CH})$; ir (neat) $850(\mathrm{~s})$ and 1256 (s) (CSi), 680, 690 , and $1010 \mathrm{~cm}^{-1}(\mathrm{~s})$; mass spectrum (70 eV) no molecular ion, base peak at $m / e 217(\mathrm{M}-15) .{ }^{11}$

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{Si}_{3}$: C, 51.64; $\mathrm{H}, 12.13$. Found: C, $51.50 ; \mathrm{H}, 12.08$.

1,1-Di(trimethylsilyl)-1-chloropentane (6) had nmr $\left(\mathrm{CCl}_{4}\right) \delta$ 0.13 (s, 18, $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 0.95\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right)$, and $1.1-2.0\left[\mathrm{~m}, 6,-\left(\mathrm{CH}_{2}\right)_{3}-\right]$; ir (neat) 850 (s) and 1254 (s) (CSi), 625, 695, and $765 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) no molecular ion, base peak at $m / e 73$ $\left(\mathrm{Me}_{3} \mathrm{Si}^{+}\right) .^{11}$ A satisfactory analysis could not be obtained due to a small impurity of 7 which was difficult to remove. The primary basis of the structural assignment relied heavily on the nmr spectrum.

Tris(trimethylsilyl)chloromethane (7) had mp 125-126 ${ }^{\circ}$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.19$ (s, $\mathrm{Me}_{3} \mathrm{Si}$); ir (Nujol mull) 865 (s), 1259 (s) and $1267(\mathrm{~s})(\mathrm{CSi}), 690$ and $705 \mathrm{~cm}^{-1}$; mass spectrum (70 eV), molecular ions at $m / e 266$ and 268 (3: 1 ratio, weak, monochloro). ${ }^{11}$

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{27} \mathrm{Si}_{3} \mathrm{Cl}: ~ \mathrm{C}, 44.98 ; \mathrm{H}, 10.19 ; \mathrm{Cl}, 13.28$. Found: C, 44.83; H, 9.89; Cl, 13.23.

The experiment was repeated in the exact same manner except that trimethylchlorosilane was added to the reaction mixture very rapidly. The product distribution is this case was $2 \% 1$, $52 \% 2,9 \% 3,4 \% 4,0.5 \% 5,2 \% 6$, and $21 \% 7$.

The experiment was repeated a third time using 4.0 g (0.0486 $\mathrm{mol})$ of methylene chloride and $100 \mathrm{ml}(0.23 \mathrm{~mol})$ of 2.3 M n butyllithium and quenching with $40 \mathrm{ml}(0.321 \mathrm{~mol})$ of trimethyl-

[^20]chlorosilane. Distillation removed the solvent and low-boiling products, leaving a solid mass. The latter was added to pentane and filtered to remove the inorganic salts. Removal of the pentane by distillation and sublimation of the residue gave 5.3 g (36%) of tetrakis(trimethylsilyl)methane (9): mp>300 (lit. ${ }^{12}$ $\mathrm{mp} 408-410^{\circ}$); nmr $\left(\mathrm{CCl}_{4}\right) \delta 0.23$ (s, Me ${ }_{3} \mathrm{Si}$) (lit. ${ }^{3}$ single peak at $\delta 0.2$; ir (Nujol) 840 (s), 865 (s), and 1265 (s) (CSi), 330, 621, 678 (s), and $730 \mathrm{~cm}^{-1}$; mass spectrum (70 eV), no molecular ion, base peak at $m / e 289(\mathrm{M}-15){ }^{11}$
Hydride Reduction of Bis(trimethylsilyl)dichloromethane (2). -To a stirred suspension of $0.6 \mathrm{~g}(16 \mathrm{mmol})$ of lithium aluminum hydride in about 40 ml of anhydrous ether was added, over a $10-\mathrm{min}$ period, 2.3 g (10 mmol) of a sample containing (vpc) 80% 2, 14% tris(trimethylsilyl)methane (5), 3% bis(trimethylsilyl)chloromethane (4), and 3% tris(trimethylsilyl)chloromethane (7) dissolved in 20 ml of ether. The reaction mixture was stirred at reflux for 3 hr and at room temperature for 21 hr . The reaction was quenched by adding 0.5 ml of saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution. The salts were filtered and washed several times with ether. The combined ether washings were dried $\left(\mathrm{MgSO}_{4}\right)$ and distilled to remove the solvent. Analysis of the crude residue by vpc indicated incomplete reaction.

The residue was then placed in anhydrous ether, refluxed overnight with a large excess of lithium aluminum hydride, and worked up as before. Analysis of the crude product by vpc (SE-30, 120°) showed $20 \% 5,50 \% 4$, and 30% of a new low retention time component. The main starting material, 2, was completely gone. The three components of the mixture were isolated by preparative vpc; compounds 4 and 5 were identical with previously characterized samples. The third, low retention time, component was bis(trimethylsilyl)methane (8): $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ $\delta 0.02$ (s, 18, $\mathrm{Me}_{3} \mathrm{Si}$) and $-0.29\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right)$ [lit. ${ }^{3} \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta$ $0.02\left(\mathrm{Me}_{3} \mathrm{Si}-\right)$ and $\left.-0.28\left(\mathrm{CH}_{2}\right)\right]$; ir (neat) 845 (s) and 1257 (s) (CSi), 692 and $1058 \mathrm{~cm}^{-1}$ (lit. ${ }^{13}$ identical match); mass spectrum (70 eV) molecular ion at $m / e 160$, base peak at $m / e 145 .{ }^{11}$
Hydrolysis of Bis(trimethylsilyl)dichloromethane (2) via Its Lithium Derivative.-A sample ($2.1 \mathrm{~g}, 9.2 \mathrm{mmol}$) which was known (by vpc) to contain 80% 2, 14% tris(trimethylsilyl)methane (5), 3% bis(trimethylsilyl)chloromethane (4), and 3% tris(trimethylsilyl)chloromethane (7) was dissolved in 20 ml of THF and cooled to -100°. To this stirred solution was slowly added 5 ml (11.5 mmol) of $2.3 M n$-butyllithium in hexane. After the solution was stirred for $1 \mathrm{hr}, 5 \mathrm{ml}$ of water in 25 ml of THF was added and the solution was allowed to warm to room temperature. The reaction mixture was distilled to remove much of the THF. Ether was added, the water was separated, and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Analysis of the crude product by vpc (SE-30, 150°) showed the following composition: $70 \% 4,13 \% 5$, and 17% 1,1-di(trimethyl-silyl)-1-chloropentane (6). Besides vpc comparisons, the compounds were collected by preparative vpc and compared (ir and nmr) to previously characterized samples.

Silation of Bis(trimethylsilyl)dichloromethane (2) via Its Lithium Derivative.-A sample ($1 \mathrm{~g}, 0.0436 \mathrm{~mol}$) which was known (by vpc) to contain 80% 2, 9% bis(trimethylsilyl)chloromethane (4), and 11% tris(trimethylsilyl)chloromethane (7), was dissolved in 40 ml of THF and cooled to -100°. To this stirred solution was slowly added $2 \mathrm{ml}(0.046 \mathrm{mmol})$ of 2.3 M n-butyllithium. After the solution was stirred for $1 \mathrm{hr}, 2 \mathrm{ml}$ (excess) of trimethylchlorosilane was added and the solution was allowed to warm to room temperature. Water was added and the organic layer was separated. The aqueous phase was extracted with fresh ether and the combined organic extracts were dried over MgSO_{4}. Distillation at 1 -atm pressure and under water aspirator pressure removed the low-boiling solvents and compounds, leaving a solid residue (0.3 g). Spectral and vpc analysis indicated that the solid mass was $77 \% 7,15 \%$ tetrakis(trimethylsilyl)methane (9), 3\% 1,1-di(trimethylsilyl)-1chloropentane (6), 2.5% tris(trimethylsilyl)methane (5), 2% 4 , and $0.5 \% 2$.
Inverse Silation of Methylene Chloride.-The procedure was as before except that the reaction mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{BuLi}$ in 200 ml at -100° was rapidly transferred under nitrogen to a tenfold excess of trimethylchlorosilane dissolved in THF cooled to -100°. Work-up as before and analysis by vpc (SE-30,

[^21] 1 (1954).
135°) gave a product composition of $74 \% 2,14 \% 7,10 \% 4$, and $2 \% 6$.
Competitive Silation of 2 and Trimethylchlorosilane.-To a cooled (-100°), stirred solution of $0.57 \mathrm{~g}(2.5 \mathrm{mmol})$ of bis(trimethylsilyl)dichloromethane (2) and $0.269 \mathrm{~g}(2.5 \mathrm{mmol})$ of trimethylchlorosilane in 40 ml of THF was slowly added $1 \mathrm{ml}(2.3$ mmol) of $2.3 \mathrm{M} n$-butyllithium in hexane. After stirring for 1 hr , the solution was allowed to warm to room temperature. Most of the solvent was then distilled off. The crude sample was then analyzed by vpe (SE-30, programmed from 60° to 135°), showing that most of the starting material, 2, had reacted and that the ratio of tris(trimethylsilyl)chloromethane (7) to trimethyljutylsilane (3) was approximately $15: 1$. In the absence of 2 , the reaction between n-butyllithium and trimethylchlorosilane was shown to proceed cleanly at -100° to give 3 .
Vacuum Line Metalation of Methylene Chloride.-Five milliliters (11 mmol) of $2.3 M n$-butyllithium was placed in a $100-\mathrm{ml}$ round-bottom flask and pumped on to remove the hydrocarbon solvent. Methylene chloride ($0.46 \mathrm{~g}, 5.5 \mathrm{mmol}$) and 20 ml of THF were condensed into the flask, and the solution was warmed to -100 (methanol slush) and allowed to stand for 3 hr in a closed system. Butane is volatile at -100° and was removed by pumping through a -100° bath to liquid nitrogen. After repeated pumping, 0.35 g of butane (1 equiv $=0.32 \mathrm{~g}$) was collected in the liquid nitrogen trap; THF was in the -100° trap. These were both identified by infrared and mass spectral analysis. There was a trace of THF mixed with the butane.
While still cold, 10 ml of trimethylchlorosilane was distilled in the reaction flask. The mixture was allowed to slowly warm to room temperature overnight. Pumping through -78°,
-100°, and liquid nitrogen, as before, afforded about 0.15 g (0.5 equiv) of butane. The black reaction mixture was worked up similarly to the other silation reactions. Analysis of the crude product by vpc $\left(\mathrm{SE}-30,100^{\circ}\right.$) showed the same products as previous silations of methylene chloride except that there was a larger amount of monosilated products; i.e., trimethylsilyldichloromethane (1) and butyltrimethylsilane (3). The changes in product composition may be a result of changes in this particular reaction, namely less solvent, pure THF solvent, no mechanical mixing, and the apparent decomposition. The reaction was repeated to give the same overall results: 1 equiv of butane prior to silane, 0.5 equiv after silation and, relatively, the same product mixture.
The reaction as described was repeated except that 10 ml (23 mmol) of 2.3 M terl-butyllithium was combined with 0.8 g (10 mmol) of methylene chloride and 25 ml of THF. No silation was performed; however, 0.54 g (0.93 equiv) of isobutane was collected. The isobutane was analyzed by infrared spectroscopy. If the tert-butyllithium reaction was done as described except that no methylene chloride was present, isobutane was not observed in the $3-\mathrm{hr}$ reaction time.

Registry No.-1, 5926-38-5; 2, 15951-41-4; 4, 5926-35-2; 5, 1068-69-5; 6, 27484-06-6; 7, 27484-03-3; 9, 1066-64-4; methylene chloride, 75-09-2; dichloromethyllithium, 2146-67-0.

Acknowledgment.-We wish to thank Research Corporation for their support of this research.

Mass Spectra of Silanes. Multiple Rearrangements and Bonding to Silicon ${ }^{1}$

Donald R. Dimmel,* Charles A. Wilkie, and Francisco Ramon

Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233
Received May 10, 1971

Abstract

The mass spectra of mono-, bis-, tris-, and tetrakis(trimethylsilyl)methanes and chloromethanes have been compared. All of the major ions in the spectra, except possibly $m / e 43$, appear to be siliconium ions. The spectra of the silanes show little or no molecular ion and a base peak corresponding to loss of a methyl group. The α-chlorinated silanes all exhibit a base peak of the $m / e 73$ ($\mathrm{Me}_{3} \mathrm{Si}$), in addition to fragments which contain $\mathrm{Cl}-\mathrm{Si}$ bonds. A rearrangement process involving a chlorine migration from carbon to silicon and a methyl migration from silicon to carbon is proposed. Three such rearrangements occur in the fragmentation of trichloro(trimethylsilyl)methane (11). Several allyl type siliconium ions appear to be present. Mechanisms are proposed for the various fragmentation reactions.

In connection with our studies on the silation of lithiodichioromethane, ${ }^{2}$ we have had the opportunity to obtain the mass spectra of a variety of silanes and α-chlorosilanes. Molecular weight determination was our primary interest; however, many of the compounds did not display a molecular ion and, consequently, fragmentation ions had to be relied upon for structural information. Mass spectral studies on methylsilanes, ${ }^{3}$ alkylsilanes, ${ }^{4}$ bis(trimethylsilyl)methanes, ${ }^{5}$ and other di- and trisilanes (alicyclic and cyclic) ${ }^{5,6}$ have been reported, but the interpretations in most cases are
(1) Taken in part from the Master's Thesis of F. Ramon, Marquette University, 1972.
(2) D. R. Dimmel, C. A. Wilkie, and F. Ramon, J. Oro. Chem., 37, 2662 (1972).
(3) G. P. van der Kelen, O. Volders, H. van Onckelen, and Z. Eeckhaut, Z. Anorg. Allo. Chem., ss8, 106 (1965).
(4) N. Ya. Chernyak, R. A. Khmelnitakii, T. V. Dýakova, and V. M. Vdovin, Zh. Obshch. Khim., 36, 89 (1966); J. Gen. Chem. LSSR. 36, 93 (1966).
(5) (a) G. Fritz, H. Buhl, J. Grobe, F. Aulinger, and W. Reering. Z. Anorg. Allo. Chem., 312, 201 (1961): (b) F. Aulinger and W. Reering, Z. Anal. Chem., 197, 24 (1963); (c) F. Aulinger and W. Reering, Collog. Spectrosc. Int., 9th, 1961, 3, 556 (1962); (d) G. Fritz, J. Grobe, and D. Kummer Advan. Inorg. Chem. Radiochem., 7, 348 (1965).
(6) N. Ya. Chernyah, R. A. Khmelńitskii, T. V. Dýakova, K. S. Pushchevaya, and V. M. Vdovin, Zh. Obshch. Khim., 37, 917 (1967): J. Gen. Chem. USSR, 37, 867 (1967).
either brief or ambiguous and, therefore, of little help. This paper reports our observations concerning the mass spectra of some selected silanes. The spectra of tris- and tetrakis(trimethylsilyl)methane and the α chlorosilanes have not been previously described.

Interpretation of the elemental composition of fragment ions was generally quite simple since the compounds studied were composed of only $\mathrm{C}, \mathrm{H}, \mathrm{Si}$, and possibly Cl . For example, the $m / e 73$ peak must be $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{Si}$, since $\mathrm{C}_{5} \mathrm{H}_{13}$ is an impossible composition. In some cases, the isotope pattern of chlorine was clearly evident. ${ }^{7}$ It should be pointed out, however, that there is a certain element of risk involved with assigning compositions without high-resolution spectra to corroborate the findings. Unfortunately, we did not have a high-resolution instrument at our disposal. All our spectra were obtained with a CEC $21-103$ mass spectrometer, at an ionizing voltage of 70 eV , with an inlet temperature of about 180° and a source temperature of 250°.

Compounds.-Most of the compounds studied were
(7) The normal isotope ratio of ${ }^{35} \mathrm{Cl}$ to ${ }^{57} \mathrm{Cl}$ is $3: 1$ and, consequently, a monochloro fragment should show a $3: 1$ pattern, a dichloro fragment a 1:0.67:0.1 pattern, and a trichloro fragment a $1: 1: 0.33: 0.03$ pattern.
obtained from the reaction of methylene chloride with varying amounts of n-butyllithium (eq 1). ${ }^{2}$ (The symbol Σ represents a trimethylsilyl group, $\mathrm{Me}_{3} \mathrm{Si}-$.)

Trimethylsilylchloromethane (9) ${ }^{8}$ and tetramethylsilane (10) were commercially available. Trimethylsilyltrichloromethane (11) was synthesized by adding trimethylchlorosilane to a mixture of carbon tetrachloride and 1 equiv of n-butyllithium at $-100^{\circ} .{ }^{9}$ $\mathrm{Bis}($ trimethylsilyl)methane (12) was obtained by hy-

$$
\begin{array}{cccc}
\Sigma \mathrm{CH}_{2} \mathrm{Cl} & \Sigma \mathrm{CH}_{3} & \Sigma \mathrm{CCl}_{3} & \Sigma_{2} \mathrm{CH}_{2} \\
9 & 10 & 11 & 12
\end{array}
$$

dride reduction of $3 .{ }^{2}$ All of the compounds gave suitable chemical analysis and were consistent with the properties already recorded in the literature. ${ }^{2,9.10}$

Results

The Silanes.-The unsubstituted silanes 5, 7, 8, 10 , and 12 are characterized by having no molecular ion, or at best a very weak one, and an intense M - 15 peak (see Table I). The weakness of the molecular ion was not unexpected, since, by analogy, branched hydrocarbons and groups possessing strong ion stabilizing powers, like alcohols, also show very weak molecular ions. ${ }^{11}$ The loss of a methyl group results in the most intense peak in the spectra of all the simple silanes, except butyltrimethylsilane (8) which loses the butyl group in preference to the methyl by a factor of $5: 1$ (compare $m / e 73$ to $m / e 115$). In the bis-, tris-, and tetrakis(trimethylsilyl)methanes (12, 5, and 7), loss of the substituted methane fragment can also occur, producing a trimethylsilyl ion (14) (eq 2).

The exact origin of $m / e 59,45$, and 31 (not shown in Table I but a weak peak in all spectra) is not clear. Zemany and Price, ${ }^{12}$ in their study of the mass spectrum of tetramethylsilane, assigned the molecular formulas of $\mathrm{Me}_{2} \mathrm{SiH}, \mathrm{MeSiH}_{2}$, and SiH_{3} for peaks 59,45 , and 31 . Metastable studies ${ }^{3}$ have indicated that the $m / e 45$ peak arises by loss of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ by a rearrangement process from ion 14 . The $m / e 59$ fragment must also arise by a rearrangement process. Since the m / e 59 peak is virtually absent ($<1 \%$) in the spectra of the monosilated compounds 1,10 , and 11 and weak in 9 , it would appear that ion 13 is the precursor of $m / e 59$

[^22]
and that R must be greater that one carbon in length. The strength of the $m / e 59$ ion in the spectra of butyltrimethylsilane (8) and ethyltrimethylsilane ${ }^{4}$ suggests a process indicated by eq 3 . The fact that bis and other higher silanes also display moderately intense $m / e 59$ peaks would seem to indicate that δ hydrogens can be transferred in the rearrangement which gives rise to this fragment (eq 4).

The $m / e 43$ peak, which could be $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cr} \mathrm{CH}_{3} \mathrm{Si}$ or both, is present in all spectra. The appearance of a metastable peak at $m / e 41.1(45 \rightarrow 43)$ indicates that at least some of the $m / e 43$ peak is due to a silicon fragment. ${ }^{13}$
The $m / e 65$ peak of bis(trimethylsilyl)methane (12) is probably due to the doubly charged species $15 .{ }^{5 b}$ The mass spectrum of hexamethyldisiloxane (16) also shows a strong doubly charged ion at $m / e 66 \quad 17 .{ }^{14}$

$$
\begin{aligned}
& \mathrm{Me}_{2} \stackrel{+}{\mathrm{SiCH}}{ }_{2} \stackrel{+}{\mathrm{SiMe}_{2}} \quad \mathrm{Me}_{3} \mathrm{SiOSiMe}_{3} \quad \mathrm{Me}_{2} \stackrel{+}{\mathrm{SiOSiMe}}{ }_{\mathrm{S}}^{+} \\
& 15 \\
& 16 \\
& 17
\end{aligned}
$$

Both bis- and tris(trimethylsilyl)methane (12 and 5) show a peak at $m / e 129$, which is attributed to the allyl ion 18. Similarly, the allyl ion 19 is probably responsible for the peak at $m / e 201$ in the spectra of 5 and 7. Equation 5 indicates a way in which these allyl

ions might arise. Another allyl ion, $m / e 85$, is present in the spectra of the unsubstituted silanes and will be discussed later. The mass spectrum of tris(trimethylsilyl)methane is shown in Figure 1. ${ }^{15 \mathrm{a}}$

The α-Chlorosilanes. -The base peak in the spectra of all the α-chlorosilanes is at $m / e 73$. Assuming that the initial ionization is predominantly the removal of

[^23]a nonbonded electron of chlorine, then the strong production of the trimethylsiliconium ion can be explained by an α-clearage mechanism (eq 6). The fact that

the $M-15$ peak is relatively weak in the chlorosilanes spectra also supports the initial ionization being at chlorine and nct at the $\mathrm{C}-\mathrm{Si}$ bond.

Another characteristic feature of the chlorosilane spectra is the eppearance of silicon-chlorine containing fragments that can be best explained as arising via a rearrangement process producing $\mathrm{Si}-\mathrm{Cl}$ units. For example, dichloro(trimethylsilyl)methane ${ }^{15 \mathrm{a}}$ exhibits a substantial peak at $m / e 113$, which on the basis of the accompanying peaks at $m / e 115$ and 117 (approximate rates of $1: 0.67: 0.1$) is assigned the elemental composition and structure of $\mathrm{CH}_{3} \mathrm{SiCl}_{2}$. There are also significant peaks at $m / e 93,79,65$, and 63 , which all contain one chlorine atom. ${ }^{16}$ The rationale by which these chlorinated fragments arise is presented in Schemes I and II.

Two pathways are proposed in Scheme I to account for the formation of the $m / e 113$ ion. To decide which of the two pathways was correct, trichloro(trimethylsilyl)methane (11) was synthesized and its spectrum recorded. Examination of Table I shows that the spectrum of 11 is practically identical with that of 1 . Path A can accommodate these similarities, if it is assumed that 1 loses a hydrogen atom to give the m / e 155 fragment and 11 loses a chlorine atom to give the same fragment (eq 7). Both compounds exhibit a weak $m / e 155$ peak. The appearance of metastable peaks at $m / e 82.4(155 \rightarrow 113)$ and $84.2(157 \rightarrow 115)$ in the spectrum of 11 further supports the proposed fragmentation given in eq 7 .

In addition to the above evidence for pathway A, the ionic intermediates 20 and 21 would seem to be adequate presursors of the other chloro fragments (Scheme II). It is difficult to rationalize a reasonable process by which the $m / e 93,79$, and 63 fragments could form from the ionic intermediates of path B, namely, 22 and 23. In fact, a pathway similar to B may not even be responsible for the small amount of $m / e 133$ ion observed for compound 11. Metastable ions in the regions of $m / e 119.5$ and 121.5 suggest that the precursor of the SiCl_{3} fragment is $\mathrm{CH}_{3} \mathrm{SiCl}_{3}$ (m / e 148, 150,152 , and 154).
It is interesting that the spectrum of bis(trimethylsilyl)dichlorometane (3) is quite different from that of 1 and 11. The primary fragmentation of 3 must not
(16) The $3: 1$ pattern indicative o: one chlorine atom is quite evident for the $m / e 93 / 95$ and $79 / 81$ peaks. The $m / e 63$ and 65 fragments were assumed to be monochloro because (a) other elemental compositions do not make sense and (b) if $1 / 8$ of the $m / e 53$ intensity is subtracted from the m / e 65 intensity, the remaining $m / e 65$ to 67 ratio is exactly $3: 1$. Other spectra containing $m / e 63,65$, and 67 peaksalso showed a similar pattern.

be loss of a trimethylsilyl group to give the $m / e 155$ fragment, but rather loss of a chlorine atom and eventual production of a monochloro fragment, $m / e 93$. Similarly, the differences in the spectra of 2 and 3 mean that they do not initially fragment to a common intermediate.

Allyl ions are also present in the α-chlorosilane spectra. The $m / e 85$ fragment would seem to be such an ion. Inspection of Table I reveals that the $m / e 85$ peak is absent in the spectra of the monosilated compounds, but present in all others. The fragment does not contain chlorine, as indicated by the lack of a substantial peak at $m / e 87$. Fritz, et al., ${ }^{5 a}$ have proposed several structures to account for the $m / e 85$ peak. For example, they suggested structures 27 or 28 in the breakdown of 24,27 coming from 25 and 29 arising by loss of a methyl from 26. Of these suggested structures, the last one seems the most reasonable ($m / e 85$ is the dominant peak in the spectrum of 26). We are of the opinion that, regardless of the structures of the silanes, the $m / e 85$ fragment is best represented as 29 , even

$\left(\mathrm{Me}_{3} \mathrm{Si}-\right)_{2} \mathrm{CHCH}_{3}$	$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{Me}_{3} \mathrm{SiCH}=\mathrm{CH}_{2}$
24	25	26
$\mathrm{Me}_{2} \mathrm{SiCCH}_{3}$	$\mathrm{Me}_{3} \mathrm{SiC}$	$\mathrm{Me}_{2}{ }_{2}^{+} \mathrm{SiCH}=\mathrm{CH}_{2}$
27	28	29

though several rearrangements may have to be proposed to achieve this structure.
Besides the $m / e 85$ ion, there are other apparent allyl ions in the spectra. The butylated derivative 4 shows a pair of strong peaks, $m / e 99$ and 127 , which appear to be homologs of $m / e 85$. Possible structures of these ions are 30 and 31. Bis(trimethylsilyl)dichloromethane shows as a relatively strong peak at $m / e 105$, containing chlorine, which is probably due to the allyl ion 32. ${ }^{\text {15b }}$

Finally, contrary to most of the spectra, tris(trimethylsilyl)chloromethane (6) ${ }^{15 \text { a }}$ shows several relatively abundant high molecular weight fragments, some of even mass, which lend support to the conclusion that carbon-silicon double bonds are present. ${ }^{15 \mathrm{c}}$

Conclusions

The major fragmentation site of the nonchlorinated silanes is at a $\mathrm{C}-\mathrm{Si}$ bond, resulting in the formation of a tertiary siliconium ion. The direction of fragmentation by silicon can be explained by the low electronegativity of silicon; thus, silicon can accommodate a positive charge much better than carbon. ${ }^{17}$ The presence of a trimethylsilyl group in a hydrocarbon is indicated by the homologous series of $m / e 73,59,45$, and 31 peaks in its mass spectrum. ${ }^{4-6,14,18}$ The $m / e 59$ peak may, however, be very weak if there are no β, γ, \ldots hydrogens available for back donation to the siliconium ion as is the case for the four-carbon silanes 1 and 9-11.

Both the polysilated hydrocarbons and alkyl chlo-

[^24]rides showed several peaks indicative of allyl ions of the following type.

$\mathbf{R}=\mathrm{Me} ; \mathrm{R}^{\prime}=\mathrm{H} m / e 85$
$\mathbf{R}=\mathbf{R}^{\prime}=\mathrm{Me} m / e 99$
$\mathbf{R}=\mathbf{M e} ; \mathrm{R}^{\prime}=\operatorname{Pr} m / e 127$
$\mathbf{R}=\mathbf{C l} ; \mathbf{R}^{\prime}=\mathrm{H} m / e 105,103$

$\mathbf{R}=\mathrm{H} m / e 129$
$\mathbf{R}=\Sigma m / e 201$
$\mathbf{R}=\mathbf{C l} m / e 163,161$

Production of allyl ions was unexpected, since multiple bonding between carbon and silicon is rare. ${ }^{19}$ Recently, Freeburger, et al., ${ }^{20}$ reported that the mass spectra of arylsilanes (33) and substituted benzylsilanes (34) displayed fragmentation patterns that were characteristic by lacking in the generation of carbonsilicon double bonds, like the one represented by structure 35.

If it is assumed that the intensities of certain ions in a mass spectrum are related to their stabilities (and steric factors to formation), then it may be possible to explain the differences observed by Freeburger and ourselves. The aryl-substituted silanes may be able to fragment in such a way as to avoid $-\mathrm{C}=\mathrm{Si}-$ situations and still give stable ions. However, allyl ions containing silicon may be moderately stable ions and reasonable postulates in the fragmentations of aliphatic silanes which have no strong cation-stabilizing groups other than silicon. Based on our results, these simple silanes are apparently good models for observing car-bon-silicon multiple bonding.

Besides displaying fragments similar to the hydrocarbon silanes, the α-chlorinated silanes show multiple rearrangements which eventually bring the silicon and chlorine together (i.e., $m / e 133,113,93,79$, and 65).
(19) V. G. Fritz and J. Grobe [Z. Anorg. Allo. Chem., 311, 325 (1961)] have reported the formation of $\mathrm{Me}_{2} \mathrm{Si}=\mathrm{CHSiMe}_{3}$ in the pyrolysis of tetramethylsilane. The base peak in the mass spectrum of this compound is at $m / e 129$, which probably is best represented by the allyl ion 18, although Fritz, et al., ${ }^{\mathrm{Ba}}$ propose the structure $\mathrm{MeSi}=\mathrm{CHSiMe}$.
(20) M. E. Freeburger, B. M. Hughes, G. R. Buell, T. O. Tiernan, and L. Spialter, J. Org. Chem., 36, 933 (1971).

The driving force of these rearrangements would appear to be the gain (approximately 18 kcal) in bond energies associated mainly with the strong $\mathrm{Si}-\mathrm{Cl}$ bond (eq 8). ${ }^{17}$ It is well known that chlorine can stabilize

carbonium ions by $3 p-2 p$ orbital resonance; however, a chlorine should be able to stabilize a siliconium ion to even greater extent because of the more favorable $3 p-3$ p orbital overlap. This latter fact may also account for the tendency to form chlorosiliconium ions.

Our proposal of chloro-methyl interchanges in the mass spectra of α-chlorosilanes is analogous to the ground state reaction of 9 with aluminum chloride as reported by Whitmore, Sommer, and Gould (eq 9).. ${ }^{21}$

There have also been some recent reports of halogen rearrangements in the mass spectra of related silanes. Silicon-halogen fragments have been observed in the mass spectra of 33 and 34 ($\mathrm{X}=$ halogen), ${ }^{20}$ halomethylsilanes (36) and disilanes (37), ${ }^{22}$ and silated alcohols (38) and acids (39). ${ }^{23}$ Besides halogen, phenyl ${ }^{24}$ and
$\mathrm{XCH}_{2} \mathrm{SiH}_{3} \mathrm{XCH}_{2} \mathrm{SiH}_{2} \mathrm{SiH}_{3} \quad \mathrm{X}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OSiMe}_{3} \mathrm{X}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CO}_{2} \mathrm{SiMe}_{3}$ $\begin{array}{llll}36 & 37 & 38 & 39\end{array}$
oxygen ${ }^{21}$ rearrangements to silicon are known. It appears, however, that nitrogen and sulfur show little tendency to rearrange to silicon. ${ }^{25}$ Our spectra are the first to show multiple rearrangements to silicon.

Registry No. $-1,5926-38-5 ; 2,5926-35-2 ; 3,15951-$ 41-4; 4, 27484-06-6; 5, 1068-69-5; 6, 27484-03-3; 7, $1066-64-4 ; 8,1000-49-3 ; 9,2344-80-1$; 10, 75-76-3; 11,5936-98-1; 12,2117-28-4.
Acknowledgments. -We would like to thank Research Corporation for supplying funds to purchase the CEC 21-103C mass spectrometer used in this study. The assistance of Dr. T. C. Ehlert and Mr. J. Steskal was also greatly appreciated.

[^25]
Carbonylation of Amines with Carbon Monoxide and Silver Acetate ${ }^{1}$

Tetsuo Tsuda, Yo Isegawa, and Takeo Saegusa*
Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan

Received February 15, 1972

Abstract

Facile and almost quantitative carbonylation of primary and secondary amines was performed at room temperature with a combination of carbon monoxide and silver acetate. The carbonylation product obtained depended upon the structure of the amine. Primary amines gave the corresponding N, N^{\prime}-dialkylureas and secondary amines gave $N, N, N^{\prime}, N^{\prime}$-tetraalkyloxamides. Carbamoylsilver derivatives, $\mathrm{AgC}(=0) \mathrm{NR}_{1} \mathrm{R}_{2}$, resulting from carbon monoxide insertion into transiently formed silver-nitrogen bonds have been proposed as intermediates in the reaction.

Although the affinity of carbon monoxide to group Ib metal atoms (Cu, Ag, and Au) has been demonstrated by the formation of metal halide carbonyls, e.g., $\mathrm{CuCl}(\mathrm{CO}),{ }^{2}$ little attention has been paid to the carbonylation of organic compound using group Ib metal compound. Recently, several interesting carbonylation reactions of copper compounds involving carbon monoxide insertion and subsequent ligand coupling have been reported by us. These include carbonate ${ }^{3}$ and oxamide ${ }^{4}$ formation by carbonylation of cupric alkoxides and cuprous amide, respectively. Symmetrical ketone formation by the carbonylation of organocopper complex is another example. ${ }^{5}$ As for the carbonylation by silver compound, our previous communication ${ }^{1}$ has reported $N, N, N^{\prime}, N^{\prime}$-tetraethyloxamide formation by the carbonylation of diethylamine with carbon monoxide and silver acetate. However, the yield of oxamide was not high in this report. The present report is concerned with the facile and quantitative carbonylation of primary and secondary amines with a combination of carbon monoxide and silver acetate.

Results and Discussion

Primary and secondary amines underwent facile and quantitative carbonylation with a combination of carbon monoxide and silver acetate at room temperature (Table I). It is important to note that two carbonylation products were formed depending upon the structure of the amine.

Primary amines gave predominantly the corresponding N, N^{\prime}-dialkylureas, whereas secondary amines produced tetraalkyloxamides. Formamides were formed in small amounts; e.g., in the carbonylation of diethylamine, N, N-diethylformamide was produced in a yield of 5% and N-butylformamide was detected in a yield of 3% in the case of n-butylamine.

Several variables of the reaction conditions were examined in the carbonylation of diethylamine. The re-

[^26]sults combined with the previous ones are summarized as follows.
(i) The amine/silver acetate ratio was important to the oxamide yield. Although the best yield of oxamide was only 40% in the ratio of $1: 1,{ }^{1}$ an almost quantitative yield was obtained by increasing this ratio to 10:1.
(ii) Among the silver salts used ($\mathrm{AgOAc}, \mathrm{AgNO}_{3}$, $\mathrm{AgCl}, \mathrm{AgCN}$, and AgSCN), silver acetate was the most effective. ${ }^{1}$
(iii) Other metal acetates such as $\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{Zn}$ $(\mathrm{OAc})_{2}, \mathrm{Cd}(\mathrm{OAc})_{2}, \mathrm{Co}(\mathrm{OAc})_{2}$, and $\mathrm{Ni}(\mathrm{OAc})_{2}$ were ineffective. $\mathrm{Pd}(\mathrm{OAc})_{2}$ showed a slight activity.
(iv) High carbon monoxide pressure was not necessary. Carbonylation took place at a carbon monoxide pressure as low as $5 \mathrm{~kg} / \mathrm{cm}^{2}$.
(v) Lower reaction temperature ($0^{\circ} \sim$ room temperature) was favorable for the oxamide formation and higher reaction temperature ($100-160^{\circ}$) diminished the yield of oxamide. ${ }^{1}$
(vi) Triethylamine, tetrahydrofuran, and 1,2-dimethoxyethane could be used as a reaction solvent, but pyridine and $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine reduced the yield of oxamide remarkably. ${ }^{1}$

Examples of carbonylation reactions using transition metal compounds in which two carbonyl groups are coupled together are rare ${ }^{6}$ and the transition metals used have been limited to group VIII. Thus, it is particularly interesting that oxamide is produced quantitatively by silver acetate under mild reaction conditions.

The determination of the stoichiometry of the reaction has provided insight into the mechanism. In the carbonylation of n-butylamine and diethylamine with carbon monoxide-silver acetate, metallic silver and acetic acid were formed together with the respective carbonylation products (Table II).

The yields of silver metal and acetic acid were in good agreement with those of the carbonylation products calculated on the basis of the following equations.

(6) N. L. Bauld, Tetrahedron Lett., 1841 (1963); G. Booth and J. Chatt, J. Chem. Soc. A, 634 (1966); J. Tsuji and N. Iwamoto, Chem. Commun., 380 (1966); S. Fukuoka, M. Ryang, and S. Tsutsumi, J. Org. Chem., 3s, 2973 (1968).

Table I

Silver salt (mmol)	Registry no.	Amine (mmol)	Solvent (ml)	$\underset{\mathrm{kg} / \mathrm{cm}^{2}}{\mathrm{CO}}$	Time. hr	Yields of urea	cts, \% ${ }^{\text {b }}$ oxamide
AgOAc (10)	109-73-9	$n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}(50)$	$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}(7)$	85	15.5	~ 100	
AgOAc (10)	107-11-9	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}$ (50)	$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}(7)$	85	15.5	73	
$\mathrm{AgNO}_{3}(10)$		$n-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NH}_{2}$ (100)		80	9.5	68	3
$\mathrm{AgNO}_{3}(10)$		$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}(100)$		80	6	60	Trace
AgOAc (10)	124-40-3	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}(50)$	$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}(7)$	80	33	Trace	~ 100
AgOAc (20)	109-89-7	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}(200)$	$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}(20)$	100	19.5		91
AgOAc (10)	111-92-2	$\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{NH}(50)$		55	19.5	Trace	82

${ }^{a}$ The reaction was carried out at room temperature in a stainless steel tube with mechanical shaking. ${ }^{b}$ The yield is based on silver salt. About the reaction stoichiometry; see the text.

Table II
Stoichiometry of Carbonylation of Amine ${ }^{a}$

$\begin{gathered} \text { AgOAc, } \\ \text { mmol } \end{gathered}$	Amine (mmol)	$\underset{\mathrm{kg} / \mathrm{cm}^{2}}{\mathrm{CO}}$	Time, hr	Oxamide	Urea	elds of products, $\%^{b}$ Acetic acid	Silver metal
10	$n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}(100)$	55	19.5		91	93	92
20	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}(200)$	100	5	90		Not determined	89
20	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ (100)	90	7	74		72	Not determined

${ }^{3}$ The reaction was carried out at room temperature in a stainless steel tube with mechanical stirring. ${ }^{b}$ The yield is based on silver acetate.

Although different carbonylation products were obtained from each, primary and secondary amines showed the same stoichiometry. This fact suggests that a commom intermediate is formed in these reactions.

It is significant to note here that mercuric acetate reacts with secondary amines in the presence of carbon monoxide to form stable carbamoylmercuric compounds with the release of acetic acid. ${ }^{7}$

Carbamoylsilver may be the key reaction intermediate of the present study. In the carbonylation of secondary amines, the carbon monoxide insertion into a transient silver-nitrogen bond could give rise to a carbamoylsilver derivative with the liberation of acetic acid. In the N, N-dialkylcarbamoylsilver complexes, the nitrogen atom has no abstractable hydrogen and therefore the coupling of the two carbamoyl groups occurs to give oxamide and metallic silver.

In the case of primary amines, the nitrogen atom of the carbamoylsilver species has one hydrogen atom. The abstraction of the hydrogen and the scission of the carbon-silver bond in carbamoylsilver may take place simultaneously to produce the corresponding alkyl isocyanate. Then the isocyanate would react rapidly with another molecule of primary amine to give the urea. In the carbonylation of primary amines with carbon monoxide-silver nitrate, a small amount of N,-

[^27]N^{\prime}-dialkyloxamide was formed, which was probably derived from coupling of the carbamoylsilver species.

The carbonylation of an equimolar mixture of n butylamine and diethylamine is compatible with an isocyanate intermediate.

N, N^{\prime}-Di- n-butylurea and N - n-butyl- N^{\prime}, N^{\prime}-diethylurea were found, but $N, N, N^{\prime}, N^{\prime}$-tetracthylurea could not be detected. These facts exclude the possibility of urea formation by the attack of amine on carbamoylsilver. n-Butylamine apparently reacts with silver acetate faster than it does with diethylamine to give n butyl isocyanate, which then is attacked by the unreacted diethylamine to produce the unsymmetrical urea as the main product. The formation of $N, N, N^{\prime},-$ N^{\prime}-tetraethyloxamide indicates the intermediacy of diethylcarbamoylsilver. However, because of its inability to give an isocyanate intermediate, $N, N, N^{\prime}, N^{\prime}$ tetraethylurea formation is impossible.

The carbonylation of an equimolar mixture of silver acetate, diethylamine, and organic halide such as cthyl bromide and allyl chloride did not change the yield of oxamide, and N, N-diethylpropionamide and N, N-diethylvinylacetamide were not detected. This result suggests that the carbonylation reaction may occur very rapidly in the silver acetate-amine complex.

Experimental Section

Reagents.-Silver acetate and other metal acetates were commercial reagents and were used without further purification. Commercial metal acetates which contain the water of hydration were dehydrated by heating in vacuo. Amines except dimethylamine were refluxed and distilled over KOH . Dimethylamine was generated by adding its aqueous solution to anhydrous
calcium carbonate, and was dried by passing through NaOH pellets and condensed at Dry Ice temperature. Carbon monoxide was obtained from a commercial cyclinder.

General Procedure of Carbonylation.-Silver salt, amine, and solvent, if used, were placed in a $50-\mathrm{ml}$ stainless steel tube under nitrogen, into which carbon monoxide gas was compressed at room temperature. The tube was closed and heated. After reaction, carbon monoxide was released, and the organic layer was separated from the precipitated silver metal by centrifugation. The silver metal was washed several times with ether. The organic layer, combined with the ether washings, was concentrated and analyzed by glpc ($9-\mathrm{ft}$ column of Silicon DC 200 on Celite 545). Urea and oxamide were identified by comparison of ir spectra and glpc retention times with those of authentic samples. The authentic samples of oxamides were prepared from oxalyl chloride and amine. The authentic symmetrical ureas
were obtained by the reaction of phosgene and amine. The authentic unsymmetrical ureas were synthesized from carbamoyl chloride and amine.

Stoichiometry of the Carbonylation Reaction. Determination of Silver Metal Deposited and Acetic Acid Liberated.-After reaction, the precipitated silver metal was separated by centrifugation and washed several times with the amine used in the reaction. Then silver metal was oxidized to silver nitrate by concentrated nitric acid and titrated with ammonium thiocyanate using ferric ammonium sulfate as an indicator. The acetic acid liberated in the reaction was determined by glpc analysis of the separated organic layer combined with the amine washings ($9-\mathrm{ft}$ column of PEG 20 M on Celite 545).

Registry No.-CO, 630-08-0; AgOAc, 563-63-3; $\mathrm{AgNO}_{3}, 7761-88$-8.

endo-7-Aminomethylbicyclo[3.3.1]nonan-3-ones from Rearrangement of 1-N-Substituted \boldsymbol{N}-Haloadamantanamines by Aluminum Chloride ${ }^{1}$

Stanley J. Padegimas ${ }^{2}$ and Peter Kovacic*
Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201

Received March 9, 1972

Abstract

Treatment of N-chloro- N-ethyl-1-adamantanamine (3) with aluminum chloride afforded rearranged product which was isolated as endo- N-ethyl-7-aminomethylbicyclo[3.3.1]nonan-3-one (4) after acid hydrolysis. The configurational and conformational aspects of the isomeric alcohols obtained by hydride reduction are treated. The response of 3-methoxy-4-azahomoadamantanes to hydrolysis and hydride reduction was investigated. Rearrangement of N -chloro- and N, N-dibromo-1-adamantanamines yielded endo-7-aminomethylbicyclo[3.3.1]-nonan-3-one (2). Evidence is presented concerning the nature of the carbinolamine-amino ketone equilibrium for 2 and 4.

Several rearrangements of N-haloamines have been characterized. ${ }^{3}$ Most noted is the Hofmann-Löffler cyclization via an amminium radical. ${ }^{4} \quad \alpha$-Amino ketones are generated by the action of base on N, N-di-chloro-sec-alkylamines, presumably by a pathway analogous to the Neber rearrangement. ${ }^{5}$ Nitrenium ions have been proposed as intermediates in the Stieglitz rearrangement of N -halo- and N, N-dihalotritylamines. ${ }^{6}$

Evidence for the existence of a discrete electrondeficient nitrogen of this type was obtained ${ }^{6}$ through studies of N-chloroalkylamine rearrangements in the presence of silver salts. Gassman's group, ${ }^{6}$ as well as other investigators, ${ }^{7}$ found that alkyl migration to nitrogen occurred with a strained ring system whose carbon analog is known to undergo carbonium ion rearrangement quite readily. Similar transformations of primary N-haloamines in the presence of aluminum chloride were observed when nitrogen was adjacent to a bicyclic ${ }^{8}$ or tricyclic ${ }^{9}$ ring system. For example, N, N-dichloro-1-adamantanamine (1) was converted to 7-aminomethylbicyclo[3.3.1]nonan-3-one (2b) by

[^28]rearrangement followed by hydrolysis. ${ }^{9}$ The postulated mechanism is depicted in eq 1. An analogous

rearrangement was recently reported for N-acetyl-N-chloro-1-adamantanamine. ${ }^{10}$

The objective of the present work was to determine the effect of variation in the substitutent on rearrangement of $1-\mathrm{N}$-substituted N -haloadamantanamines. The chemical behavior of various compounds obtained in this study was examined. In addition, carbinol-amine-ketoamine equilibria and stereochemical aspects were investigated.

Results and Discussion

Most of our attention was devoted to the rearrangement of N-chloro- N-ethyl-1-adamantanamine (3). Synthesis of 3 was accomplished by hydride reduction of
(10) T. Sasaki, S. Eguchi, T. Kiriyama, and H. Suzuki, $S_{y n}$. Commun., 1, 267 (1971).
N-acetyl-1-adamantanamine followed by chlorination with calcium hypochlorite. Since the reduction process generated a minor amount of 1-adamantanamine, through a side reaction characteristic of hindered amides, ${ }^{11}$ there was slight contamination ($<5 \%$) of 3 by 1. When 3 was exposed to conditions similar to those used with 1 , endo- N-ethyl-7-aminomethylbicy-clo[3.3.1]nonan-3-one (4) was isolated as the major product (65% yield), eq 2 . The N-ethylamino ketone

4 is apparently formed in a manner analogous to the conversion of 1 to 2 . The remainder of 3 was mostly accounted for by isolation of N-ethyl-1-adamantanamine which could possibly arise either from acid hydrolysis of unchanged 3 or from an intermediate nitrenium ion. Gassman has demonstrated ${ }^{6}$ that electrondeficient singlet nitrogen is able to convert to the triplet state, which can abstract hydrogen as a competing process. Structure 4, assigned by analogy to 2, was supported by spectral data and elemental analysis. The ir spectrum clearly showed the presence of a keto group and a secondary amine. The amine functionality was also evident from the nmr spectrum in that one proton exchanged with $\mathrm{D}_{2} \mathrm{O}$; the triplet of the N-ethyl group was distinct. In addition, confirmation was obtained by independent synthesis, eq 3 . The conversion of 2

to 3 -methoxy-4-azahomoadamantane (5) has been reported, ${ }^{9}$ as well as the hydrolytic reverse. Acylation of 5 yielded acetamide 6 , which was then reduced with LiAlH, to the tertiary amine 7. On acid hydrolysis, 7 readily underwent ring cleavage to afford 4 . In addition to acceptable elemental analyses, the intermediates displayed ir and nmr spectra in accord with the assigned structures.

Acid hydrolysis of α-amino ethers is reported ${ }^{12}$ to proceed through formation of an iminium ion, $\mathrm{R}_{2} \mathrm{~N}=$ $\mathrm{CH}_{2}{ }^{+}$. However, for 5 and 7 delocalization in this manner would introduce double-bond character at the

[^29]bridgehead position. Indeed, the resistance of 2-methoxy-1-azabicyclo [3.2.1]octane (8) to acid hydrolysis was rationalized ${ }^{13}$ on this basis. In contrast, Reed and Lwowski ${ }^{14}$ were able to effect hydrolysis of 1 -methoxy-2-azabicyclo[3.2.1]octane (9) and 1-methoxy-2-azabicyclo[2.2.2]octane (10) by prolonged heating with acid. Although 9 could conceivably accommodate a strained double bond at the bridgehead, ${ }^{14}$ as is also the case perhaps with 5 and 7, compounds 8 and 10 are

8

9

10
much less prone to do so because little, if any, overlap would occur between the π orbitals of C and N. ${ }^{14}$

As previously discussed, ${ }^{14}$ an alternate path appears to be available for hydrolysis of 9 and 10, and possibly for 5 and 7. Initial protonation on nitrogen and subsequent ring cleavage would give a resonance-stabilized, carbonium-oxonium ion which could serve as precursor of the amino ketone.

Various aspects of the chemical behavior of 4 were examined. LiAlH_{4} reduction provided the isomeric N ethylamino alcohols 11 and 12.

As predicted on the basis of steric factors, glpe analysis showed that the endo isomer predominated by a ratio of 4:1. Each of the isomeric alcohols gave satisfactory spectral and elemental analyses. In addition, similar reducing conditions applied to amide 13^{15}

13
yielded the same isomeric amino alcohols (11 and 12) with an endo: exo ratio of $3: 2$.

A high degree of stereoselectivity was obtained ${ }^{15}$ when 13 was reduced with the less reactive sodium borohydride. The resulting amide alcohol 14 was

14

[^30]essentially the endo isomer, since subsequent conversion of the amide functionality with LiAlH_{4} yielded N ethylamino alcohol which was greater than 98% endo. Confirmation of the stereospecificity of the NaBH_{4} reduction was provided by hydrolysis ${ }^{15}$ of 14 to the endo amino alcohol 15 . None of the exo isomer 16 could be

detected by glpc analysis. The NaBH_{4} reduction of 2 in ethanol has been found ${ }^{15}$ to afford 15 and 16 with an endo: exo ratio of $3: 1$. Analogous stereospecificity pertains in the hydride reduction of camphor. ${ }^{16 \mathrm{a}}$

Endo and exo assignment of isomers was based on spectral and chemical evidence. The parent hydrocarbon, bicyclo[3.3.1]nonane, is known to exist in the chair-chair conformation. ${ }^{17}$ However, when an endo substituent is introduced at either C_{3} or C_{7}, the substituted ring prefers the boat form. ${ }^{17,18}$ An exo substituent maintains the chair-chair relationship. With the N-ethylamino alcohols, the aminomethyl group must be in the endo position. For both isomers, the most stable conformation will result when the amino-methyl-substituted ring is in the boat conformation, e.g., 11c. Distinction between isomeric alcohols can

then be obtained from the vicinal splitting of the carbinyl proton in the nmr. ${ }^{18 \mathrm{~b}}$. As expected, the minor isomer 12 showed a larger vicinal coupling constant than did the endo. Similar observations ${ }^{15}$ were obtained for 15 and 16. Amino alcohols 15 and 11 must have the same configurations since both are produced from 14. In other studies mass spectral analysis has been used ${ }^{19}$ to distinguish between the 3 -endo- and 3 -exo-bicyclo[3.3.1]nonanols, and oxidation is also re-

[^31]ported ${ }^{18 \mathrm{~b}}$ as a means of differentiating between endo and exo isomers. In contrast to the LiAlH_{4} reduction of the N-ethyl derivative 4, parent 2 is known ${ }^{9}$ to yield azahomoadamantane (17).

17
Attention was also devoted to the carbinolamineketoamine equilibrium situation for 2 and 4 . The ir spectrum of 2 in solution $\left(\mathrm{CHCl}_{3}\right)$ shows a carbonyl band of medium intensity at $1700 \mathrm{~cm}^{-1}$, which is comparatively weak for this functional group. In the solid state (Nujol or KBr), the spectrum displays very weak absorption at $1650 \mathrm{~cm}^{-1}$, indicating that the compound has little carbonyl characteristics in this physical form; the spectrum also shows strong absorption bands at 3300 and $3480 \mathrm{~cm}^{-1}$ which can be assigned either to NH_{2} of 2 b or to the OH and NH of 2 a . However, from the weak carbonyl absorption observed, it is apparent that there is significant interaction between the carbonyl and amine functionalities, which can be described as an equilibrium between amino ketone 2 b and carbinolamine 2a or as intimate complexing (hydrogen bonding or nucleophilic-electrophilic attraction) of the two groups. In any case, the interaction is carried to its full extent when 2 is converted to its hydrochloride salt. The ir spectrum of this derivative in the solid state is completely devoid of any carbonyl absorption.

Intramolecular interaction between amine and carbonyl groups has been noted by a number of prior investigators. In relation to the carbinolamine-amino ketone isomers, it is claimed ${ }^{20}$ that when the ring is larger than five members the open-chain form is favored in certain heterocyclic series. Evidence indicates 21 that for compounds of type 18 some members

R $=\mathrm{H}$, alkyl
18

19
assume this form both in the solid state and in solution, whereas others exist as the cyclic structure in the solid phase and as a tautomeric mixture in solution. Leonard and coworkers have studied ${ }^{22}$ compounds such as 19 in which transannular interaction occurs between nitrogen and carbonyl carbon. Indeed, for the salt form a transannular covalent bond is apparently established.

In contrast, N-ethylamino ketone 4 shows strong carbonyl absorption in the ir for both the free amine and its hydrochloride salt, indicating little, if any, binding between amino and carbonyl. This situation can be ascribed to steric interference resulting from the ethyl group. Hence, the keto of 4 behaves typically in the LiAlH_{4} reduction.

[^32]In the reaction ${ }^{9}$ of 2 with LiAlH_{4}, the reducing agent may shift the equilibrium in favor of the carbinolamine structure by Lewis acid coordination ${ }^{14}$ with carbonyl oxygen or by conversion of the primary amine to the more nucleophilic amide anion form. ${ }^{9}$ Subsequent generation of anion 20 could result in displacement ${ }^{9}$ of oxygen to form azahomoadamantene (21) which would be converted with ease to 17 , eq 4.

A related pathway has been postulated ${ }^{14}$ in the LiAlH_{4} reduction of 9 . The inertness ${ }^{13,14}$ of 8 and 10 is presumably due to the reluctance of the bridgehead to assume double bond character. Reed and Lwowski suggested ${ }^{14}$ that either the lone pair on nitrogen or the anion form could expel the adjacent oxygen. We believe, however, that involvement of the anion is necessary for formation of a bridgehead double bond. Although 2 and 5 were readily converted to 17 , the tertamino ether 7 resisted reduction. Indeed, 7 was prepared in high yield by treating 6 with a large excess of LiAlH_{4}.

Since electron-deficient nitrogen appears to be involved in the rearrangement of 3 to 4 , we explored the behavior of 3 on exposure to silver salts according to the procedure of Gassman. ${ }^{6}$ However, only a 5% yield of 4 was obtained with silver perchlorate. On prolonged heating with silver nitrate, the yield of 4 was increased to 22%. In both cases the majority of $\mathbf{3}$ was isolated as N -ethyl-1-adamantanamine. Similar reduced yields of 2 were noted when 1 was treated with silver salts. The reason for the greater effectiveness of aluminum chloride remains obscure.
N, N-Dibromo-1-adamantanamine (22) underwent facile rearrangement. With aluminum bromide catalyst, 2 was isolated in yields comparable tc those obtained from 1. N-Chloro-1-adamantanamine (23) afforded 2 in only 10% yield. The presence of an ethyl or halogen ${ }^{23}$ substituent on the nitrenium ion would be expected to exert a favorable influence on ease of formation, and hence can rationalize the improved yields from rearrangements involving 1,3 , and 22.

Experimental Section

Melting points and boiling points are uncorrected. Infrared spectra were obtained with a Beckman IR-8 spectrophotometer (calibrated with the $1601-\mathrm{cm}^{-1}$ band of polystyrene). Varian T-60 and HA-100 instruments were used to obtain nmr data, which are reported in parts per million relative to tetramethyl-

[^33]silane as interna. standard. Gas chromatography was carried out with a Varian Aerograph instrument (A-90-P or 1700) with a $15 \mathrm{ft} \times 0.25 \mathrm{in}$. column of 15% Carbowax 20 M and 10% sodium hydroxide on Chromosorb P (30/60).

Positive halogen in N-haloamines was determined by standard iodometric titration methods. ${ }^{3}$ Microanalyses were performed by Micro-Tech Laboratories, Skokie, Ill., and by Mr. A. Gasiecki.
N-Ethyl-1-adamantanamine.-A sample of $19.33 \mathrm{~g}(0.1 \mathrm{~mol})$ of N-acetyl-1-adamantanamine (Aldrich Chemical Co.) was placed in a Soxhlet apparatus and continuously extracted into a suspension of $10.32 \mathrm{~g}(0.272 \mathrm{~mol})$ of lithium aluminum hydride in 800 ml of dry ether. After the extraction had continued for 72 hr , the mixture was cooled in an ice bath as 10 ml of water was slowly added, followed by 10 ml of 15% sodium hydroxide, and then by an additional 20 ml of water. The resulting mixture was filtered. The filtrate was dried over sodium sulfate and then evaporated to yield 18.2 g of the crude amine as a yellow oil. Distillation afforded $14.82 \mathrm{~g}(83 \%)$ of N-ethyl-1-adamantanamine, bp 57-59 ${ }^{c}(0.1 \mathrm{~mm})$ [lit. ${ }^{24} \mathrm{bp} 101-102.5^{\circ}(7 \mathrm{~mm})$, lit. ${ }^{25}$ $\operatorname{mp} 28^{\circ}$.
N-Chloro- N-etryl-1-adamantanamine (3).-To a mixture of 20.4 g of HTH [0.1 mol of $\mathrm{Ca}(\mathrm{OCl})_{2}$] and 250 ml of water was added a solution of $11.01 \mathrm{~g}(0.0614 \mathrm{~mol})$ of N-ethyl-1-adamantanamine in 100 ml of methylene chloride below 5°. After being stirred at $0-5^{\circ}$ for 4.5 hr , the mixture was filtered and the layers were separated. The aqueous solution was extracted with four $100-\mathrm{ml}$ portions of methylene chloride. The combined organic solution was dried over sodium sulfate and evaporated to yield $10.05 \mathrm{~g}(79 \%)$ of $3, \mathrm{mp} 45-51^{\circ}$, as a pale yellow solid; a sample of 3 titrated for the theoretical amount of chlorine.
Rearrangement of $\mathbf{3}$.-A solution of 35 mmol of 3 in 100 ml of methylene chloride was chilled to -30°. Aluminum chloride $(11.1 \mathrm{~g}, 82 \mathrm{mmol})$ was added in one portion, and the mixture was then allowed to warm to 0°. After the mixture was stirred for 1.5 hr under a nitrogen sweep at $0^{\circ}, 175 \mathrm{ml}$ of concentrated hydrochloric acid was slowly added below 3°. The mixture was then stirred at room temperature for 2 hr and diluted with 200 ml of water, and the layers were separated. The methylene chloride phase was extracted with two $30-\mathrm{ml}$ portions of concentrated hydroctloric acid and then with 60 ml of water. The aqueous solution was slowly added to 300 ml of 50% sodium hydroxide solution below 20°. The resulting suspension was extracted with two $200-\mathrm{ml}$ portions of methylene chloride which was washed with 100 ml of water, dried over sodium sulfate, and then evaporated to yield 6.3 g of an orange oil. Glpc analysis showed that 4 was formed in 65% yield and N-ethyl-1-adamantanamine in 24% yield, in addition to several minor components. Distillation of the mixture afforded a pure sample of $4, \mathrm{bp} 83-85^{\circ}$ $(0.05 \mathrm{~mm})$, which changed on standing to a white solid: mp $44-46^{\circ}$; ir (neat) $3320(\mathrm{NH})$ and $1700 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 0.87\left(\mathrm{~s}, 1, \mathrm{NH}\right.$, exchangeable), $1.06\left(\mathrm{t}, 3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $2.17\left(\mathrm{~m}, 17, \mathrm{CH}, \mathrm{CH}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 73.80 ; \mathrm{H}, 10.84 ; \mathrm{N}, 7.17$. Found: C, 74.06; H, 10.73; N, 7.15.
N-Acetyl-3-methoxy-4-azatricyclo[4.3.1.1 ${ }^{3,8}$] undecane (6).-A solution of $2 \mathrm{ml}(28 \mathrm{mmol})$ of acetyl chloride in 5 ml of benzene and 5 ml of pyridine was slowiy added to a solution of 1.27 g (7 mmol) of 5^{θ} in 10 ml of benzene and 10 ml of pyridine. After the mixture was stirred for 30 min at room temperature, it was poured into 100 ml of water. The benzene layer was separated and the aqueous layer was extracted with 25 ml of benzene. The combined benzene solution was washed with 25 ml of 5% sodium bicarbonate, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and then evaporated to yield $1.21 \mathrm{~g}(78 \%)$ of $6, \mathrm{mp} 92-94^{\circ}$. Recrystallization from petroleum ether (bp 40-60 ${ }^{\circ}$) gave prismatic plates: mp 97-99 ${ }^{\circ}$; ir $\left(\mathrm{CCl}_{4}\right)$ $1620(\mathrm{C}=\mathrm{O}), 1063$ and $1080 \mathrm{~cm}^{-1}(\mathrm{COC}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.92$ $\left(\mathrm{m}, 13, \mathrm{CH}, \mathrm{CH}_{2}\right), 2.28\left[\mathrm{~s}, 3,(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{3}\right], 3.16\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, and 3.83 (d, $2, \mathrm{NCH}_{2}$).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 69.92; $\mathrm{H}, 9.48 ; \mathrm{N}, 6.27$. Found: C, 70.20: H, 9.22 ; N, 6.23.
N-Ethyl-3-methoxy-4-azatricyclo[4.3.1.1 $\left.1^{3,8}\right]$ undecane (7).-A solution of $0.62 \mathrm{~g}(2.8 \mathrm{mmol})$ of 6 in 50 ml of ether was slowly added to a mixture of $0.5 \mathrm{~g}(13 \mathrm{mmol})$ of lithium aluminum hydride in 75 ml of ether so as to maintain a gentle reflux. After
(24) E. I. du Pont de Nemours and Co., Belgian Patent 646.581 (1964); Chem. Abstr., 63, 14726 (1965).
(25) E. Gottwald and H. Machoczek, German Patent 1,294,371 (1969); Chem. Abstr., 71, $384 \leq 4$ (1969).
being refluxed for 40 hr , the mixture was cooled in an ice bath while 0.5 ml of water was slowly added followed by 0.5 ml of 15% sodium hydroxide, and then by an additional 1 ml of water. The mixture was filtered and the filtrate was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to yield $0.51 \mathrm{~g}(88 \%)$ of 7 as a pale yellow oil: glpc indicated a purity greater than 98%; ir (neat) 1040 and 1070 $\mathrm{cm}^{-1}(\mathrm{COC}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.03\left(\mathrm{t}, 3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.80(\mathrm{~m}, 13$, $\left.\mathrm{CH}, \mathrm{CH}_{2}\right), 2.76\left(\mathrm{~m}, 4, \mathrm{NCH}_{2}\right)$, and $3.13\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 74.59 ; \mathrm{H}, 11.08 ; \mathrm{N}, 6.69$ Found: C, 74.72; H, 10.91; N, 6.80.
N-Ethyl-7-aminomethylbicyclo[3.3.1]nonan-3-one (4) from 7. -A $0.913-\mathrm{g}$ (0.924 mmol) sample of 7 was dissolved in 10 ml of 18% hydrochloric acid. After standing at room temperature for 16 hr , the solution was poured into 30 ml of 15% sodium hydroxide. The resulting suspension was extracted with two $25-\mathrm{ml}$ portions of ether. The combined ether extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then evaporated to yield $0.172 \mathrm{~g}(95 \%)$ of 4 ; ir and nmr spectra were identical with those of a sample of 4 prepared from 3 .
N, N-Dibromo-1-adamantanamine (22).-To a solution of 9.6 $\mathrm{g}(0.24 \mathrm{~mol})$ of sodium hydroxide in 75 ml of water, $6.8 \mathrm{ml}(0.12$ mol) of bromine was added below 0°. A solution of $5 \mathrm{~g}(0.033$ mol) of 1-adamantanamine in 75 ml of methylene chloride was introduced below 0°. After the mixture was stirred at $0-5^{\circ}$ for 6.5 hr , the layers were separated, and the aqueous portion was extracted with two $25-\mathrm{ml}$ portions of methylene chloride. The combined organic solution was dried over sodium sulfate and evaporated to yield $8.16 \mathrm{~g}(80 \%)$ of $22, \mathrm{mp} 63-66^{\circ} \mathrm{dec}$, which titrated for 89% of the theoretical amount of bromine. Sublimation afforded an analytical sample of $22, \mathrm{mp} 67-67.5^{\circ}$, which titrated for 99.8% of the theoretical amount of bromine.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NBr}_{2}$: C, $38.86 ; \mathrm{H}, 4.89 ; \mathrm{N}, 4.53$ Found: C, 39.01; H, 4.87; N, 4.58.

Rearrangement of 22.-A solution of 0.0262 mol of 22 in 230 ml of methylene chloride was chilled to -30°. Aluminum bromide ($16 \mathrm{~g}, 0.06 \mathrm{~mol}$) was then added in one portion, and the reaction temperature was allowed to rise to 0°. The mixture was stirred under a nitrogen sweep for 1.5 hr at 0°. Hydrochloric acid (18%) (200 ml) was slowly added below 3°. After the mixture was allowed to warm to room temperature, stirring was maintained for 2 hr . The layers were separated and the methylene chloride phase was extracted with two $50-\mathrm{ml}$ portions of 18% hydrochloric acid. The combined acid solution was slowly added to 200 ml of 50% sodium hydroxide below 10°. The white solid which separated was collected, washed with water, and recrystallized from 95% ethanol to yield $3.15 \mathrm{~g}(72 \%)$ of $2, \mathrm{mp}$ $165-167^{\circ}$ (lit. ${ }^{9} \mathrm{mp} 166.5-167.5^{\circ}$)
N-Chloro-1-adamantanamine (23).-The preparation was according to the previously reported procedure. ${ }^{26}$ Extension of the reaction time to 1 hr afforded a 74% yield.

Treatment of N-Chloro-1-adamantanamine (23) with Aluminum Chloride.-A solution of $3.01 \mathrm{~g}(16.4 \mathrm{mmol})$ of 23 in 150 ml of methylene chloride was chilled to -30°. After aluminum chloride ($4.6 \mathrm{~g}, 34.6 \mathrm{mmol}$) was added in one portion, the mixture was allowed to warm to 0°. The mixture was stirred at 0° under a nitrogen sweep for 1.5 hr . Concentrated hydrochloric acid $(35 \mathrm{ml})$ was slowly added below 3°. After the mixture was allowed to warm to room temperature, 40 ml of water was added to dissolve the suspended solid, the mixture was then stirred for 2 hr , and then the layers were separated. The organic layer was extracted with two $25-\mathrm{ml}$ portions of concentrated hydrochloric
(26) P. Kovacic and P. D. Roskos, J. Amer. Chem. Soc., 91, 6457 (1969).
acid. The combined acidic solution was slowly added to 125 m of 50% sodium hydroxide below 5°. The white solid which separated was collected, washed with water, and recrystallized from 95% ethanol to yield $0.41 \mathrm{~g}(15 \%)$ of $2, \mathrm{mp} 166-167^{\circ}$ (lit. ${ }^{9}$ mp 166.5-167.5 ${ }^{\circ}$).
LiAlH_{4} Reduction. General Procedure.-An ethereal solution of the compound to be reduced was slowly added to a suspension of $\mathrm{LiAlH}_{4}(x \mathrm{~g})$ in ether. After the mixture had refluxed for 24 hr it was cooled in an ice bath as $x \mathrm{ml}$ of water followed by $x \mathrm{ml}$ of 15% sodium hydroxide and an additional $2 x \mathrm{ml}$ of water were slowly added. The mixture was filtered; the filtrate was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to yield the designated products.

11 and 12 from 13 .-A sample of $210 \mathrm{mg}(1.0 \mathrm{mmol})$ of 13 was reduced with 130 mg (3.4 mmol) of LiAlH_{4} to yield a mixture (174 $\mathrm{mg}, 88 \%$) of 11 and 12 . Glpc analysis showed 62% of 11 and 38% of 12 .

Alcohol 11 had mp $110-111^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 3200(\mathrm{NH}, \mathrm{OH})$ and $1110 \mathrm{~cm}^{-1}(\mathrm{COH})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 4.09\left(\mathrm{~m}, 1, J_{\mathrm{Ax}} \cong J_{\mathrm{BX}}\right.$ $=3 \mathrm{~Hz}, \mathrm{CHOH}), 2.58\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{3}\right), 1.90(\mathrm{~m}, 15, \mathrm{CH}$, $\left.\mathrm{CH}_{2}, \mathrm{NH}, \mathrm{OH}\right), 1.09\left(\mathrm{t}, 3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 197 (49), 79 (12), 58 (100), 30 (31).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 73.04 ; \mathrm{H}, 11.75 ; \mathrm{N}, 7.10$. Found: C, 72.78; H, 11.85 ; N, 7.02

12 had mp 131.5-133 ; ir $\left(\mathrm{CHCl}_{3}\right) 3200(\mathrm{NH}, \mathrm{OH})$ and 1100 $\mathrm{cm}^{-1}(\mathrm{COH}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.92\left(\mathrm{~m}, 1, J_{\mathrm{Ax}}=5, J_{\mathrm{BX}}=15 \mathrm{~Hz}\right.$, CHOH), 2.54 (m, $4, \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{3}$), 1.86 (m, 11, one exchangeable proton), 1.10 ($\mathrm{m}, 7$, one exchangeable proton); mass spectrum m / e (rel intensity) 197 (20), 95 (29), 58 (100), 46 (50), 30 (25)

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 73.04 ; \mathrm{H}, 11.75 ; \mathrm{N}, 7.10$. Found: C, $73.18 ; \mathrm{H}, 12.04$; N, 6.97

11 and 12 from $4 .-4(195 \mathrm{mg}, 1.0 \mathrm{mmol})$ was reduced with 100 mg (2.6 mmol) of LiAlH_{4} to yield a mixture ($160 \mathrm{mg}, 82 \%$) of 11 and 12; glpc analysis showed 82% of 11 and 18% of 12 .

11 and 12 from $14 .-14(214 \mathrm{mg}, 1.0 \mathrm{mmol})$ was reduced with $110 \mathrm{mg}(2.9 \mathrm{mmol})$ of LiAlH_{4} to yield a mixture ($149 \mathrm{mg}, 76 \%$) of 11 and 12 ; glpc analysis showed 98% of 11 and 2% of 12 .

17 from 5.-A sample of $525 \mathrm{mg}(2.9 \mathrm{mmol})$ of 5 was reduced with 300 mg (7.9 mmol) of LiAlH_{4} to yield $390 \mathrm{mg}(90 \%)$ of 17 , identified by comparison to an authentic sample. ${ }^{9}$
2 HCl and 4 HCl .-Hydrogen chloride gas was passed through an ethereal solution of the amine until precipitation ceased; 2 HCl had $\mathrm{mp} 192-193^{\circ}$ dec.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NOCl}: \mathrm{C}, 58.96 ; \mathrm{H}, 8.91 ; \mathrm{N}, 6.88$. Found: C, 58.86; H, 8.69; N, 6.87.

4 HCl had $\mathrm{mp} 221-224^{\circ}$ dec.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NOCl}: \mathrm{C}, 62.18 ; \mathrm{H}, 9.56 ; \mathrm{N}, 6.04$. Found: C, 61.89; H, 9.43; N, 6.15.

Registry No.-2a HCl, 34934-77-5; 2b, 34650-78-7; 3, 34913-37-6; 4, 34913-38-7; $4 \mathrm{HCl}, 34913-39-8$; 6, 34913-40-1; 7, 34913-41-2; 11, 34913-42-3; 12, 34913-43-4; 22, 34913-44-5.

Acknowledgment. - We are grateful to the National Science Foundation for support of this work, and to Dr. J. A. Tonnis for his cooperation. The assistance of Mr. A. Gasiecki with some of the microanalyses is acknowledged with pleasure. We thank Dr. E. M. Levi for aid in obtaining the mass spectral data.

An Improved Synthesis of a 9-Oxo-6,7-benzomorphan and Its Homolog. A Novel Rearrangement of Heterocyclic Enamines via Bromination ${ }^{1}$

Mikio Takeda,* Hirozumi Inode, Mikihiko Konda, Seitchi Saito, and Hiroshi Kugita
Organic Chemistry Research Laboratory, Tanabe Seiyaku Co. Ltd., Toda, Saitama, Japan

Received January 29, 1972

Abstract

A new synthesis of 2^{\prime}-methoxy-2,5-dimethyl-9-oxo-6,7-benzomorphan (3b) and its homolog (3a) is described. The key step involves bromination of 4,10b-dimethyl-9-methoxy-1,2,3,4,6,10b-hexahydrobenzo[f] quinoline (7a) and 3,9b-dimethyl-8-methoxy- $\mathbf{y}, 9 \mathrm{~b}$-dihydrobenz[e]indoline (7b). Upon alkalinization with aqueous ammonium hydroxide, the bromination products ($8 \mathrm{a}, \mathrm{b}$) easily underwent rearrangement to $3 \mathrm{a}, \mathrm{b}$, respectively. A possible mechanism of this sequence of reactions is presented.

In our previous paper, ${ }^{2} 2^{\prime}$-methoxy-2,6-dimethyl-10-oxo-7,8-homobenzomorphan ${ }^{3}$ (3a), a key ir.termediate for the synthesis of homobenzomorphan analgesics, was prepared by cyclization of the bromo ketone la followed by pyrolysis. Since the elimination product 4 a was concurrently formed in both steps, 3a was obtained in rather low yield. A similar observation has been reported in the benzomorphan series ${ }^{4}(\mathbf{l b} \rightarrow 3 \mathrm{~b})$.
We now wish to report a more practical synthesis of 3a as well as the benzomorphan analog 3b by a novel rearrangement of the heterocyclic enamines $7 \mathrm{a}, \mathrm{b}$ via bromination (Scheme I).

[^34]Treatment of 1-(3-dimethylaminopropyl)-7-me-thoxy-1-methyl-3,4-dihydro-2(1H)-naphthalenone (5a) ${ }^{2}$ with ethyl chloroformate in benzene ${ }^{5}$ yielded the N-carbethoxy derivative 6a in 90% yield, which in turn was heated with potassium hydroxide in 1-butanol to afford the hexahydrobenzo[f]quinoline derivative 7 a in 58% yield. The presence of an unsaturated amine absorption at $1655 \mathrm{~cm}^{-1}$ and vinyl proton resonance at $\delta 4.75$ (t, $1 \mathrm{H}, J=4 \mathrm{~Hz}$) confirmed the heterocyclic enamine structure of 7a.
When the enamine 7a was brominated in methylene chloride ${ }^{6}$ and the reaction mixture was treated with aqueous ammonium hydroxide at room temperature, the 10 -oxohomobenzomorphan 3a was obtained in 81% yield.

This new method appeared to be useful also for the synthesis of the benzomorphan analog 3b. Thus, the dihydrobenz $[e]$ indoline derivative 7 b was similarly prepared from 5 b in 48% overall yield. Conversion of 7 b into the 9 -oxobenzomorphan 3 b proceeded in 60% yield, without isolation of the intermediate bromo iminium bromide. In another run, this intermediate was isolated in 83% yield; spectral data and elemental analysis (given in the Experimental Section) were compatible with the structure $\mathbf{8 b}$.
Treatment of $\mathbf{8 b}$ with aqueous ammonium hydroxide gave 3b in 65% yield. Substitution of anhydrous triethylamine for aqueous ammonium hydroxide in the reaction, however, did not give 3b. This indicates that hydroxide is essential for the rearrangement.
Sodium borohydride reduction of $\mathbf{8 b}$ gave the saturated bromo amine derivative 9 . Treatment of 9 with aqueous ammonium hydroxide resulted in a quantitative recovery of the material. Upon treating the bromination product 8 a with ethereal methylmagnesium iodide, followed by quenching the Grignard mixture with aqueous ammonium chloride-ammonium hydroxide, the elimination product 10 and the reduction product ${ }^{7} 11$ were obtained. Structural assignments for 10 and 11 were made from their nmr spectra.

Thus, no skeletal rearrangement could be observed by saturation of the iminium double bond in 8 .
Although extensive use of enamine halogenations has been reported in the synthesis of α-halo ketones, ${ }^{8}$
(5) V. Seidolová and M. Provita, Collect. Czech. Chem. Commun., 32, 2826 (1967).
(6) M. E. Kuehne, J. Amer. Chem. Soc., 89, 1492 (1961).
(7) The reductive removal of halogen has been reported in the addition of Grignard reagents to α-bromo iminium salts. See A. Kirrmann, E. Elkik, and P. Vaudescal, C. R. Acad. Sci., Ser. C, 262, 1268 (1966).
(8) M. E. Kuehne in "Enamines; Synthesis, Structure and Reactions," A. G. Cook, Ed., Marcel Dekker, New York and London, 1969, p 415.
no reports have appeared on this sort of bromo enamine rearrangement.

A possible mechanism of the present reaction may be represented by the sequence of reactions shown in Scheme II.

Scheme II

Attack of OH^{-}to the initially formed bromo iminium bromide 8 would give intermediate A , which may undergo, presumably in a concerted manner, rearrangement to 3. ${ }^{9}$

Experimental Section ${ }^{10}$

1-[3-(N-Carbethoxy- N-methylamino) propyl]-7-methoxy-1-methyl-3,4-dihydro-2($1 H$)-naphthalenone (6a).-A solution of $5 \mathrm{a}^{2}(3.84 \mathrm{~g})$ in benzene (20 ml) was added to a solution of ethyl chloroformate (4.55 g) in benzene (20 ml) at room temperature. The mixture was refluxed for 2 hr , washed with $5 \% \mathrm{HCl}$ and then with water, dried, and evaporated. The residue was distilled to give $6 \mathrm{a}\left(4.2 \mathrm{~g}, 90 \%\right.$): bp $185^{\circ}(0.5 \mathrm{~mm})$; ir (liquid) 1700 cm^{-1}; nmr $\delta 1.38\left(\mathrm{~s}, 3, \mathrm{CCH}_{3}\right), 1.19\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.72\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 3.79\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 4.16(\mathrm{q}, 2, J=7 \mathrm{~Hz}$, OCH_{2}).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}$: $\mathrm{C}, 68.44 ; \mathrm{H}, 8.16 ; \mathrm{N}, 4.20$. Found: C, 68.21; H, 7.89; N, 3.99.

1-[2-(N-Carbethoxy- N-methylamino)ethyl]-7-methoxy-1-methyl-3,4-dihydro-2-($1 H$)-naphthalenone (6 b). -This compound was prepared in 83% yield from $5 b^{4}$ in the same manner as that described above: bp $170^{\circ}(0.2 \mathrm{~mm})$; ir (liquid) $1700 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4}$: $\mathrm{C}, 67.69 ; \mathrm{H}, 7.89 ; \mathrm{N}, 4.39$. Found: C, 67.41; H, 7.61; N, 4.28.

4,10b-Dimethyl-9-methoxy-1,2,3,4,6,10b-hexahydrobenzo[f]quinoline (7a) Picrate.-A mixture of $6 \mathrm{a}(1.67 \mathrm{~g}), \mathrm{KOH}(2 \mathrm{~g})$, and 1-butanol (28 ml) was refluxed for 18 hr and evaporated. The residue was taken up in ether and extracted with $10 \% \mathrm{HCl}$. The aqueous layer was made basic with NH, OH and extracted with ether. Removal of solvent from the dried extracts gave an air-sensitive oil (7a), converted into its picrate. Recrystallization from ethanol-acetone gave yellow pillars ($1.37 \mathrm{~g}, 58 \%$), mp $158-160^{\circ}$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{8}$: C, $55.93 ; \mathrm{H}, 5.12 ; \mathrm{N}, 11.86$. Found: C, 55.92 ; H, 5.03 ; N, 12.17 .
(9) One of the referee of this journal suggests that 3 could also arise from the bromo amino ketone (B), which may be in equilibrium with A.

B
However, the reaction of α-halo ketones with a secondary amine has been recently reported to give β-halo enamines rather than α-amino ketones. See D. Cantacuzène and M. Torieux, Tetrahedron Lett., 4807 (1971).

The higher yield of 3 a than that of $\mathbf{8 b}$, revealed in this rearrangement, may be also inconsistent with the mechanism involving an intermediate B. For instance, in cyclizing $1 a, b$ and the related compounds, six-membered amino ketone derivatives have been alivays obtained more readily than the corresponding seven-membered analogs. See E. L. May, J. Org. Chem., 21, 223 (1956), and ref 2.
(10) All melting points were determined in an open capillary tube and are uncorrected. Ir spectra were measured in Nujol and nmr spectra were taken in $\mathrm{CDCl}_{\text {(}}$ (containing $\mathrm{Me}_{4} \mathrm{Si}$ at $\delta 0.00$ as internal standard) at 60 MHz . unless otherwise stated. The organic solutions were dried over sodium sulfate and all evaporations were carried out in vacuo.

The free base was regenerated from the picrate (lithium hydroxide-chloroform): ir (liquid) $1655 \mathrm{~cm}^{-1} ; \mathrm{nmr} \delta 1.40$ (s, 3, CCH_{3}), $2.54\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 3.78\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 4.75(\mathrm{t}, 1, J=4$ $\mathrm{Hz}, \mathrm{NC}=\mathrm{CH}$). The perchlorate was crystallized from acetone ether: mp 160-162 ; ir $1685 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{Cl}: ~ \mathrm{C}, 55.89 ; \mathrm{H}, 6.45 ; \mathrm{N}, 4.08$. Found: C, 56.02; H, 6.62; N, 4.11

3,9b-Dimethyl-8-methoxy-5,9b-dihydrobenz[e] indoline (7b) Picrate.-This compound was prepared from 6 b in 56% yield by the method described above: $\mathrm{mp} 133-136^{\circ}$ (from ethanolacetone).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8}: \mathrm{C}, 55.02 ; \mathrm{H}, 4.84 ; \mathrm{N}, 12.22$. Found: C, 55.14; H, 4.77; N, 12.31.

The free base was highly air-sensitive. The perchlorate was crystallized from ethanol-ether: $\mathrm{mp} 148-150^{\circ} \mathrm{dec}$; ir $1683 \mathrm{~cm}^{-1}$

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{Cl}: \mathrm{C}, 54.62 ; \mathrm{H}, 6.12 ; \mathrm{N}, 4.25$. Found: C, $54.58 ; \mathrm{H}, 6.00 ; \mathrm{N}, 4.16$.

2'-Methoxy-2,6-dimethyl-10-oxo-7,8-homobenzomorphan (3a). -To a solution of 7 a (regenerated from 2.36 g of the picrate) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added $\mathrm{Br}_{2}(0.8 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at -30 to -35° and stirred at the same temperature for 30 min ; then the bath was removed to raise the temperature to 0°. Water (10 ml) was added and the mixture was stirred at $5-10^{\circ}$ for 2 hr , made basic with 3% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ (14 ml), stirred at $5-10^{\circ}$ for 2 hr , and then allowed to stand at room temperature overnight. The organic layer was separated and the aqueous phase was extracted with chloroform. The combined organic phase was washed with water, dried, and evaporated to give 3a (1.05 g , 81%), mp 79-83 ${ }^{\circ}$. Recrystallization from ethanol gave plates, $\mathrm{mp} 82-84^{\circ}$, which proved to be identical with an authentic specimen. ${ }^{2}$

2'-Methoxy-2,5-dimethyl-9-oxo-6,7-benzomorphan (3b) Hydro-chloride.-To a solution of 7 b (regenerated from 1.83 g of the picrate) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added $\mathrm{Br}_{2}(0.64 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 ml) at -30 to -35° and stirred at the same temperature for 1 hr. ${ }^{11}$ Addition of water (10 ml) and stirring for 2 hr at $5-10^{\circ}$ caused precipitation of a crystalline solid (8 b , vide infra). A solution of 3% aqueous $\mathrm{NH}_{4} \mathrm{OH}(12 \mathrm{ml})$ was added ${ }^{12}$ and the mixture was stirred at $5-10^{\circ}$ for 2 hr and then at room temperature overnight. Work-up as above gave an oil which was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ and eluted with benzene. Conversion of the eluate into the hydrochloride and recrystallization from ethanol-ether gave rods ($0.675 \mathrm{~g}, 60 \%$), mp 130-132 ${ }^{\circ}$ (lit. ${ }^{4}$ $\mathrm{mp} 130-132^{\circ}$). The methobromide was crystallized from ethanol, $\operatorname{mp} 216-218^{\circ}$, identical with an authentic sample. ${ }^{13}$

In another run, the precipitated solid was collected from the brominated mixture and recrystallized from acetone-ethanol to give 4-bromo-9b-methyl-8-methoxy-2,4,5,9b-tetrahydro-1 H benz[e]indole methobromide ($8 \mathrm{~b}, 1.32 \mathrm{~g}, 83 \%$): mp $124-125^{\circ}$; ir $1673,3380 \mathrm{~cm}^{-1}$ (hydrate $\mathrm{H}_{2} \mathrm{O}$); nmr $\delta 1.75$ (s, 3, CCH_{3}), $3.87\left(\mathrm{~s}, 3,=\mathrm{N}^{+} \mathrm{CH}_{3}\right), 4.00\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right) ; m / e 309,307\left(\mathrm{M}^{+}\right), 213$ (base).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NOBr}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 45.24 ; \mathrm{H}, 5.06$; $\mathrm{N}, 3.54$; $\mathrm{Br}, 40.13$. Found: $\mathrm{C}, 45.49 ; \mathrm{H}, 4.80$; $\mathrm{N}, 3.42$; $\mathrm{Br}, 39.98$.

Treatment of $\mathbf{8 b}$ with 3% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave $\mathbf{3 b}$ in 65% yield.

4-Bromo-3,9b-dimethyl-8-methoxy-2,3,3a ,4,5,9b-hexahydro$1 H$-benz [e]indole (9) Perchlorate. -To a solution of $8 \mathrm{~b}(0.2 \mathrm{~g})$ in methanol (13 ml) and water (3 ml) was added sodium borohydride $(0.04 \mathrm{~g})$ at $5-10^{\circ}$. The mixture was stirred at room temperature for 2 hr and evaporated. The residue was taken in ether, washed with water, dried, and evaporated. The residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ and eluted with benzene. The eluate was converted into the perchlorate and recrystallized from
 nmr (free base) $1.33\left(\mathrm{~s}, 3, \mathrm{CCH}_{3}\right), 2.61\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 3.80(\mathrm{~s}, 3$, OCH_{3}), $4.65(\mathrm{~m}, 1, \mathrm{CHBr})$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{ClBr}: \mathrm{C}, 43.86 ; \mathrm{H}, 5.15 ; \mathrm{N}$, 3.41. Found: C, 44.15; H, 5.21; N, 3.55.
(11) Treatment of this mixture with triethylamine (at 0° for 2 hr , then at room temperature overnight) gave a multicomponent mixture which did not include 3b (by tlc).
(12) Direct addition of aqueous $\mathrm{NH}_{4} \mathrm{OH}$ to the brominated mixture also gave $\mathbf{3 b}$ in a comparable yield. Thus, it is unnecessary to add water prior to alkalinization.
(13) The authors thank Dr. Everette L. May, National Institutes of Health, for providing us with the sample of $\mathbf{s b}$ methobromide.

Treatment of 9 with 5% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature overnight resulted in a quantitative recovery of the material.
9-Methory-4,4a, 10b-trimethyl-1, 2, 3,4,4a, 10b-herahydrobenzo[f]quinoline (10) Hydrobromide.-7a (regenerated from 2.92 g of the picrate) was brominated as described previously. Evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gave 8a as an amorphous powder. Ethereal methylmagnesium iodide (100 ml of 0.43 M) was added to a suspension of 8 a in ether (70 ml) and refluxed for 15 hr . The cooled mixture was poured into ice-water containing $\mathrm{NH}_{4} \mathrm{Cl}$, basified with $\mathrm{NH}_{4} \mathrm{OH}$, and extracted with ether. Evaporation of the dried extracts gave the residue which was chromatographed over silica gel (80 g) and eluted with chloroform-methanol ($95: 5$). Conversion of the eluate into the hydrobromide and recrystallization from acetone-methanolether gave 10 hydrobromide ($0.38 \mathrm{~g}, 18 \%$): mp 254-256 ${ }^{\circ}$ dec; uv $\max (\mathrm{MeOH}) 282 \mathrm{~m} \mu(\epsilon 14,500) ; \mathrm{nmr}\left(\mathrm{D}_{2} \mathrm{O}\right) 1.39(\mathrm{~s}, 3$, CCH_{3}), $1.44\left(\mathrm{~s}, 3, \mathrm{CCH}_{3}\right), 3.05\left(\mathrm{~s}, 3, \mathrm{~N}^{+} \mathrm{CH}_{3}\right), 3.95\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, $6.24\left(\mathrm{~d}, 1, J=10 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}\right), 6.75\left(\mathrm{~d}, 1, J=10 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NOBr}: \mathrm{C}, 60.36 ; \mathrm{H}, 7.15 ; \mathrm{N}, 4.15$; $\mathrm{Br}, 23.66$. Found: C, $60.15 ; \mathrm{H}, 7.26 ; \mathrm{N}, 4.09 ; \mathrm{Br}, 23.52$.
Elution with chloroform-methanol (9:1) and conversion of the eluate into the hydrochloride gave 9-methory-4,4a,10b-trimethyl-1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinoline (11) hydrochloride $(0.28 \mathrm{~g}, 13 \%): \mathrm{mp} 227-230^{\circ} \mathrm{dec}$; needles from acetone-
methanol-ether; ir $3380,3440 \mathrm{~cm}^{-1}$ (hydrate $\mathrm{H}_{2} \mathrm{O}$); nmr ($\mathrm{D}_{2} \mathrm{O}$) $1.37\left(\mathrm{~s}, 3, \mathrm{CCH}_{3}\right), 1.54\left(\mathrm{~s}, 3, \mathrm{CCH}_{3}\right), 3.08\left(\mathrm{~s}, 3, \mathrm{~N}^{+} \mathrm{CH}_{3}\right), 4.05$ (s, $3, \mathrm{OCH}_{3}$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NOCl} \cdot \mathrm{H}_{2} \mathrm{O}$: $\mathrm{C}, 65.15 ; \mathrm{H}, 8.99$; N 4.46. Found: C, 65.41; H, 8.95; N, 4.52.

Reaction of 7a perchlorate with ethereal methylmagnesium iodide also gave 11 in 40% yield.

Registry No.-3a, 28360-42-1; 3b hydrochloride, 34887-93-9; 6a, 34887-94-0; 6b, 34887-95-1; 7a, 34887-96-2; 7a picrate, 34887-97-3; 7a perchlorate, 34917-95-8; 7b picrate, 34887-98-4; 7b perchlorate, 34887-99-5; 8b, 34887-61-1; 9 perchlorate, 34887-62-2; 10 hydrobromide, 34887-63-3; 11 hydrochloride, 34887-64-4.

Acknowledgment.-The authors express their gratitude to Director Michio Yamazaki of this laboratory and Professor Emeritus S. Sugasawa of the Tokyo University for their interest and encouragement. Thanks are also extended to the staff of the analytical section presided over by Dr. K. Kotera for elemental and spectral analyses.

Studies on Heterocyclic Compounds. XI. 1,3-Dipolar Cycloaddition of Benzimidazolium Ylide with Acetylenic Compounds

Haruo Ogura* and Katsuko Kikuchi
School of Pharmaceutical Sciences, Kitasalo University, Shirogane, Minato-ku, Tokyo 108, Japan

Received February 23, 1972

Abstract

1,3-Dipolar cycloaddition of 3 -substituted 1-alkylbenzimidazolium ylides with ethyl propiolate gave 3-substituted 9-alkyl-1-ethoxycarbonylpyrrolo[1,2-a]benzimidazoles. Reaction of 1-alkyl-3-phenacylbenzimidazolium ylides with dimethyl acetylenedicarboxylate afforded 4-alkyl-2,3-bis(methoxy carbonyl)-1-phenacylpyrrolo[1,2-a]benzimidazole (7) and an open-chain compound (8). On the other hand, reaction of 1-alkyl-3-methoxycarbonylmethylbenzimidazolium ylides with dimethyl acetylenedicarboxylate gave 4-alkyl-1,2,3-tris(methoxycarbonyl)-pyrrolo[1,2-a] benzimidazole (9) and 5-alkyl-3,4-bis(methoxycarbonyl)-1-oxopyrido[1,2-a]benzimidazole (10).

For the purpose of obtaining potential physiologically active compounds, we synthesized compounds of the tricyclic azole system, such as thiazolo [3,2-a]benzimidazoles, ${ }^{1}$ thiazolo [2,3-b] benzothiazoles, ${ }^{2}$ imidazo [2,1-b]benzothiazoles, ${ }^{3}$ imidazo[2,1- b]benzoxazoles, ${ }^{4}$ pyrimido-[1,2-a]benzazoles, ${ }^{5}$ and imidazo [1,2-a]benzimidazoles. ${ }^{6}$ In our previous report, ${ }^{7}$ 9-alkylamino-2-arylimidazo-[1,2-a]benzimidazole showed a strong analgesic activity. We also suggested that pyrrolo [1,2-a]benzimidazole systems would have potential physiological activities.

Recently, Boekelheide and coworkers ${ }^{8}$ prepared pyrrocoline (2) by the reaction of pyridinium ylide (1) and methyl acetylenedicarboxylate, and they found that 3 -phenacylimidazolium ylide (3) reacted with ethyl propiolate to yield 4-benzoyl-6-ethoxycarbonyl-1-methyl-1,3a-diazapentalene ${ }^{9}$ (4). These facts suggest

[^35]

1

3

2

4
that the reaction of benzimidazolium ylide with acetylenic compounds might offer a useful synthesis for pyr-rolo[1,2-a]benzimidazoles. ${ }^{10}$

Reaction of 3 -substituted 1-alkylbenzimidazolium ylides, which were prepared from bromides 5, with ethyl propiolate gave 1 -substituted 4 -alkyl-3-ethoxy-carbonyl-4 H -pyrrolo [1,2-a]benzimidazoles (6) (Chart I). Their strustures were confirmed by the ir and nmr spectra. The chemical shift of the C-8 proton in $6 \mathrm{a}-\mathrm{f}$ is summarized in Table I, and the values show the para-
(10) H. Ogura, T. Itoh, K. Kikuchi, and H. Sekine, Abstracts of Papers, 91at Annual Meeting of the Pharmaceutical Society of Japan, 1971, p 670.

Chart I

5a, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}$

7, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}$
8, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}$ $\overline{\mathrm{Br}}$

Table I
Nmr Data of the C-8 Proton in 6

6	R	R^{\prime}	δ, ppm (CDCl)
a	Me	$\mathrm{C}_{6} \mathrm{H}_{5}$	8.90
b	Me	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Br}(p)$	9.80
c	Me	OMe^{2}	8.13
d	Et	$\mathrm{C}_{6} \mathrm{H}_{5}$	8.90
e	Et	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(p)$	9.10
f	Et	OMe	8.21

magnetic anisotropic effect of the carbonyl group in the C-1 position. Moreover, there is no nuclear Overhauser effect between the N^{4}-methyl group and the proton at the $\mathrm{C}-2$ position in $6 \mathrm{a}\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}\right.$). Although there is a possibility of cyclization in another direction, the product in that case should have a nuclear Overhauser effect (ca. 15\%), from the distance between protons in the N^{4}-methyl group and in the C-3 position (3). ${ }^{11}$

The reaction of dimethyl acetylenedicarboxylate with 1-methyl-3-phenacylbenzimidazolium ylide, pre-
(11) R. A. Bell and J. K. Saunders, Can. J. Chem., 48, 1114 (1970).
pared from the corresponding bromide (5a), gave a normal 1,3-dipolar cycloaddition product ($7,11 \%$) and an open-chain 1-methyl-2-[1,2-bis(methoxycarbonyl)3 -benzoyl-2-propenylidene]benzimidazoline ($8 \mathrm{a}, 6 \%$). The reaction of 1-alkyl-3-methoxycarbonylmethylbenzimidazolium ylide (5 c,f) and dimethyl acetylenedicarboxylate afforded 5-alkyl-3,4-bis(methoxycarbonyl)-1-oxo-1,5(2H)pyrido[1,2-a]benzimidazole (10a,b; both 6%) besides the normal product ($9 \mathrm{a}, \mathrm{b}$; 7 and 2%, respectively). Structures of these compounds were determined by nmr, mass, and ir spectra. The ir spectrum of 8 a showed an NH band at $3432 \mathrm{~cm}^{-1}$ ($10^{-4} \mathrm{~mol}$ in CCl_{4}), and the nmr spectrum of $3,4-$ bis(methoxycarbonyl)-5-methyl-1-oxo-1,5(2H)-pyrido-[1,2-a]benzimidazole ($10 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{3}$) showed two ester methyl groups at $3.91(\mathrm{~s}, 3 \mathrm{H})$ and $4.04 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$.

The mechanisms of these reaction may be represented by the sequence shown in Chart II. The initial 1,3-

dipolar addition product a was oxidized by excess reagent to normal 1,3-addition products (7, 9), but another possible route may proceed to a ring opening to yield the second intermediate b. In the compound $5 c, f$ with $\mathrm{R}^{\prime}=\mathrm{OCH}_{3}$, cyclization occurred in a manner similar to the reaction of 2-aminobenzazole with acetylenic compounds. ${ }^{5}$ In the case of $\mathrm{R}^{\prime}=$ phenyl ($5 \mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}$), the second intermediate b was not cyclized. Further cyclization was not effected even on heating 8 in polyphosphoric acid. This result is similar to that of the reaction of dimethyl acetylenedicarboxylate and 1-methyl-3-imidazolium dicyanomethylide. ${ }^{9}$

Experimental Section

Temperatures are uncorrected. Nmr spectra were measured in CDCl_{3} with a Varian T- 60 spectrometer with $\mathrm{Me}{ }_{4} \mathrm{Si}$ as an internal standard. Mass spectra were measured with JEOL-01S spectrometer by a direct inlet system at 75 eV . Elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) of the compounds gave values corresponding to their formula within $\pm 0.4 \%$: Ed.

Table II
1-Substituted 3-Alkylbenzimidazolium Bromides (5a-f)

No.	R	R^{\prime}	Solvent	$\begin{gathered} \mathrm{Mp},{ }^{\circ} \mathrm{C} \\ \text { form } \end{gathered}$	Yield, \%	Ir ${ }^{\mathrm{LCO}} \mathrm{KBr}, \mathrm{cm}^{-1}$
5a	CH_{3}	$\mathrm{C}_{8} \mathrm{H}_{5}$	Dichloromethane	205	78	1690
				white needles (EtOH)		
5b	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(p)$	$\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}$	241	91	1685
				white needles (MeOH)		
5c	CH_{3}	OCH_{3}	$\mathrm{Et}_{2} \mathrm{O}$	109	88	1740
				white needles (EtOH)		
5d	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	Dichloromethane	119	98	1685
				white prisms (EtOH)		
5 e	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Br}(p)$	$\mathrm{Me}_{2} \mathrm{CO}$	139	90	1685
				white needles (MeOH)		
$5 f$	$\mathrm{C}_{2} \mathrm{H}_{5}$	OCH_{8}	$\mathrm{Et}_{2} \mathrm{O}$	129	84	1745
				white needles		
				(EtOH)		

Table III
1-BENZOYL-3-ETHOXYCARBONYL-4-METHYL-4H-PYRROLO[1,2-a] BENZIMIDAZOLES (6a-f)

No.	R	R^{\prime}	Mp, ${ }^{\circ} \mathrm{C}$	Yield, \%	Ir ${ }^{\text {Co }}{ }^{\mathrm{KBr}}, \mathrm{cm}^{-1}$	$\underset{(\log \epsilon)}{\mathrm{Uv} \lambda_{\max }^{\mathrm{EtOH}}, \mathrm{~nm}}$	$\begin{gathered} \text { Mass } m / e \\ \left(\mathrm{M}^{+}\right) \end{gathered}$
6a	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	164	4	1690, 1920		346
6b	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(p)$	224	5	1685, 1610	227 (4.41)	425
						333 (3.77)	
6 c	CH_{3}	OCH_{3}	185	5	1705, 1650	246 (4.73)	300
						313 (4.07)	
						326 (4.02)	
6d	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	155-157	4	1695, 1620		360
6e	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(p)$	186	4	1680, 1610	228 (4.42)	439
						332 (3.81)	
6f	$\mathrm{C}_{2} \mathrm{H}_{5}$	OCH_{3}	160	2	1675, 1650	246 (4.63)	314
						294 (4.18)	
						313 (4.10)	
						327 (4.17)	

Table V
1-ALKYL-2-[1,2-bis(METHOXYCARBONYL)-3-BENZOYL-2-PROPENYLIDENE]BENZimidazolines (8a,b,d,e)

No.	$\mathrm{R}^{\text {Co}}$	R^{\prime}	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Yield, \%	Ir ${ }^{\text {c }}{ }^{\mathrm{COPr}}, \mathrm{cm}^{-1}$	$\underset{(\log \epsilon)}{\mathrm{Uv}_{\mathrm{i}}^{\mathrm{E} \text { EIOH}}, \mathrm{nm}}$	Mass m / e (M^{+})
8a	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{6}$	184	6	1730, 1680	234 (4.63)	392
			(white prisms)				
8b	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}(p)$	233	9	$\begin{gathered} 1740,1735 \\ 1675 \end{gathered}$	233 (4.59)	469
			(white prisms)			325 (3.87)	
8d	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	229	4	1720, 1690	235 (4.87)	406
			(white prisms)			332 (4.22)	
8 e	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}(p)$	199	12	1730, 1670	234 (4.60)	483
			(white needles)			333 (3.89)	

General Procedure for 1-Substituted 3-Alkylbenzimidazolium Bromides (5a-f) (Table II).-To a solution of 1 -alkylbenzimidazole (0.03 mol) in a suitable organic solvent (50-100 ml), acyl bromide (0.04 mol) was added. After standing for $2-3$ days at room temperature, the mixture deposited white crystals. Recrystallization from alcohol gave white needles.

Reaction of 1-Substituted 3-Alkylbenzimidazolium Bromide and Ethyl Propiolate (Table III).-To an orange-red solution of the ylide prepared from 1 -substituted 3-alkylbenzimidazolium bromide ($5 \mathrm{a}-\mathrm{f}$) (3 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{mmol})$ in dimethylformamide ($40-50 \mathrm{ml}$), ethyl propiolate (6 mmol) was added at room temperature and the mixture stood for 2 days. After filtration, the organic solvent was removed under reduced pressure. Addition of EtOH gave 6a-f as white needles after recrystallization from the same solvent.

Reaction of 3-Alkyl-1-phenacylbenzimidazolium Ylides and Dimethyl Acetylenedicarboxylate (Table IV).-To an orangered solution of the ylide prepared from 3-alkyl-1-phenacylbenz-
imidazolium bromide ($5 \mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}$) (3 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{mmol}$) in dimethylformamide $(40-50 \mathrm{ml})$, dimethyl acetylenedicarboxylate (6 mmol) was added at room temperature and the mixture was allowed to stand for 3 days. After filtration, the organic solvent was evaporated under reduced pressure. The residue was extracted with $\mathrm{Me}_{2} \mathrm{CO}$ and the solvent was evaporated from the extract to obtain the open-chain compound 8 as white crystals after recrystallization from EtOH .

Chromatography of the $\mathrm{Me}_{2} \mathrm{CO}$-insoluble part of 8 a on silica gel afforded 1-benzoyl-2,3-bis(methoxycarbonyl)-4-methyl-4Hpyrrolo [1,2-a] benzimidazole (7) in 11% yield as white needles: $\mathrm{mp} 130-131^{\circ}$; ir (KBr) $1735\left(\mathrm{COOCH}_{3}\right), 1685 \mathrm{~cm}^{-1}(\mathrm{CO})$; uv $\lambda_{\max }^{\mathrm{EtOH}} 234 \mathrm{~nm}(\log \epsilon 4.51)$, 330 (3.83); nmr $\delta 2.90$ (singlet, NCH_{3}), 3.76, 3.83 [singlet, $\left(\mathrm{COOCH}_{3}\right)_{2}$], 7.23 (multiplet, aromatic protons), 7.73 ppm (singlet, $5-\mathrm{H}$); mass spectrum m / e $390\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Reaction of 1-Methoxycarbonylmethyl-3-methylbenzimidazolium Ylide with Dimethyl Acetylenedicarboxylate.-To a yellow
solution of the ylide prepared from 1-methoxycarbonylmethyl-3methylbenzimidazolium bromide (5 c) (3 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 mmol) in dimethylformamide (50 ml), dimethyl acetylenedicarboxylate (6 mmol) was added at room temperature and the mixture was stirred for 3 days. The black reaction mixture was filtered, and the filtrate was evaporated under reduced pressure. The residue was extracted with acetone and the extract was evaporated to obtain 5 -methyl-3,4-bis(methoxycarbonyl)-1-oxo$1,5(2 H)$-pyrido [1,2-a|benzimidazole (10a) in 6% yield as white prisms: mp $255^{\circ}(\mathrm{EtOH})$; ir (KBr) 1740, $1710\left(\mathrm{COOCH}_{3}\right)$, $1655 \mathrm{~cm}^{-1}(\mathrm{CO})$; uv $\lambda_{\max }^{\mathrm{EtOH}} 243 \mathrm{~nm}(\log \epsilon 4.23), 314$ (3.71), 328 (3.62); nmr $\delta 3.64$ (singlet, NCH_{3}), 3.91, 4.04 [singlet, (CO$\left.\mathrm{OCH}_{3}\right)_{2}$], 7.42 (singlet, 3-H), 7.50 (multiplet, aromatic protons), 8.21 (doublet, $6-\mathrm{H})$; mass spectrum $m / e 314\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$: $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Chromatography of the acetone-insoluble part of 10a on silica gel afforded 1,2,3-tris(methoxycarbonyl)-4-methyl-4Hpyrrolo [1,2-a]benzimidazole (9a) in 7\% yield as white prisms: $\mathrm{mp} 177-178^{\circ}(\mathrm{EtOH})$; ir (KBr) 1742, 1690, $1655 \mathrm{~cm}^{-1}$ (COOCH_{3}); uv $\lambda_{\max }^{\varepsilon_{\operatorname{EnH}}} 247 \mathrm{~nm}(\log \epsilon 449), 292$ (4.29), 331 (4.22); $\mathrm{nmr} \delta 3.86,3.93,4.00$ [singlet, $\left(\mathrm{COOCH}_{3}\right)_{3}$], 4.23 (singlet, NCH_{3}), 7.36 (multiplet, aromatic protons), 3.40 (doublet, $8-\mathrm{H}$); mass spectrum $m / e 344\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, H, N.

Reaction of 3-Ethyl-1-methoxycarbonylmethylbenzimidazolium Ylide with Dimethyl Acetylenedicarboxylate.-A similar reaction
occurred with the N-ethyl compound. 5-Methyl-3,4-bis(me-thoxycarbonyl)-1-oxo-1,5(2H)-pyrido[1,2-a] benzimidazole (10b) was obtained in 6% yield as white leaflets (EtOH): mp 202$203^{\circ}$; ir (KBr) 1740, $1710\left(\mathrm{COOCH}_{3}\right), 1655 \mathrm{~cm}^{-1}(\mathrm{CO})$; uv $\lambda_{\text {max }}^{\text {EiOH }} 243 \mathrm{~nm}(\log \in 4.72), 312$ (4.09), $325(3.99) ; \mathrm{nmr} \delta 1.31$ (triplet, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.88,4.05$ [singlet, $\left(\mathrm{COOCH}_{3}\right)_{2}$], 4.36 (quartet, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$), 7.36 (singlet, $3-\mathrm{H}$), 7.50 (multiplet, aromatic protons), 8.12 (doublet, $6-\mathrm{H}$); mass spectrum m / e $328\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}: \quad \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Ethyl-1,2,3-tris(methoxycarbonyl)-4H-pyrrolo[1,2-a] benzimidazole (9b) was obtained as white prisms (2% yield): mp $134-135^{\circ}(\mathrm{EtOH})$; ir $(\mathrm{KBr}) 1740,1710,1690 \mathrm{~cm}^{-1}\left(\mathrm{COOCH}_{3}\right)$; uv $\lambda_{\max }^{\text {EtOH }} 215 \mathrm{~nm}(\log \in 4.43), 247$ (4.48), 292 (4.38), 331 (4.31); $\mathrm{nmr} \delta 1.43$ (triplet, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$), $3.90,3.95,4.02$ [singlet, $\left(\mathrm{COOCH}_{3}\right)_{3}$], 4.76 (quartet, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$), 7.33 (multiplet, aromatic protons), 8.40 (doublet, $8-\mathrm{H}$); mass spectrum $m / e 358\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$: $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Registry No.-5a, 34910-61-7; 5b, 34910-62-8; 5c, 34910-63-9; 5d, 34910-64-0; 5e, 34910-65-1; 5f, $34910-66-2$; 6a, 34910-67-3; 6b, 34934-78-6; 6c, 34910-68-4; 6d, 34910-69-5; 6e, 34910-70-8; 6f, 34910-$71-9$; 7, 34910-72-0; 8a, 34910-73-1; 8b, 34910-74-2; 8d, 34910-75-3; 8e, 34910-76-4; 9a, 14882-70-3; 9b, 34910-78-6; 10a, 34910-79-7; 10b, 34915-98-5.

The Cycloaddition of Vinyl Azides to Ketenes ${ }^{1}$

Alfred Hassner,* A. S. Miller, and M. J. Haddadin

Department of Chemistry, University of Colorado, Boulder, Colorado 80302
Received February 15, 1972
Vinyl azides undergo slow cycloaddition with diphenylketene (2) leading to five-membered ring enamino ketones 6 with loss of N_{2}. The reaction appears to involve nucleophilic attack of the β carbon from the vinyl azide upon the ketene. A substantial improvement in yield of 6 is achieved by generating 2 in situ from a diazo ketone in solution. Treatment of the enamino ketones with phosphorus pentachloride or chlorine leads to α chlorination. In the case of 2-azido-1-hexene, cycloaddition with 2 proceeds with formation of cyclobutanones.

The azide group represents a versatile function which can act as a nucleophile, electrophile, or 1,3 dipole. ${ }^{2}$ An adjacent $\mathrm{C}=\mathrm{C}$, as in vinyl azides, accentuates or modifies the chemical behavior of this functional group. ${ }^{3}$ Thus, vinyl azides exhibit a markedly greater reactivity than alkyl azides in cycloadditions with acetylenes. ${ }^{4}$ Although the reaction of ketenes with olefins and imines has received a great deal of attention, ${ }^{5}$ there appears to be no report of their interaction with azides. ${ }^{6 \mathrm{a}}$ If one considers the cycloaddition of vinyl azides 1 to ketenes (e.g., 2) leading primarily to $1: 1$ adducts, one can envisage products of type 3-7 that might arise via a concerted or stepwise pathway.

Furthermore, in protonation and bromination of vinyl azides 1 it is difficult to distinguish whether the electrophile attacks one of the nitrogens or the β carbon of the unsaturated azide. ${ }^{3}$ A product analysis of the reaction of 1 with ketenes offers the opportunity to
(1) Cycloadditions. VIII. For previous paper in the series see ref 7.
(2) G. L'abbé, Chem. Rev., 69, 345 (1969).
(3) See, for instance, (a) A. Hassner, E. S. Ferdinandi, and R. J. Isbister, J. Amer. Chem. Soc., 92, 1672 (1970); (b) A. Hassner and A. B. Levy, ibid., 93, 5469 (1971).
(4) G. L'abbé, J. E. Galle, and A. Hassner, Tetrahedron Lett., 303 (1970); G. L'abbé and A. Hassner, Bull. Soc. Chim. Belg., 80, 209 (1971).
(5) See, for instance, (a) W. T. Brady, Synthesis, 415 (1971); R. Huisgen, B. A. Davis, and M. Morikan, Angew. Chem., Int. Ed. Enol., 7, 826 (1968); (b) J. C. Martin, K. C. Brannock, R. D. Burpitt, P. G. Gott, and V. A. Hoyle, Jr., J. Org. Chem., 96, 2211 (1971).
(6) (a) Only the intramolecular decomposition of azido ketenes has been described: A. Hassner, R. J. Isbister, R. B. Greenwald, J. T. Klug, and E. C. Taylor, Tetrahedron, 25, 1637 (1969). (b) A. Hassner and F. W. Fowler, J. Amer. Chem. Soc., 90, 2869 (1968).
establish any regiochemical preference in the cycloaddition (for instance preferential formation of 3 vs. 4 or 6 vs. 7).

Results and Discussion

α-Azidostyrene ($1, \mathrm{R}=\mathrm{Ph}$) undergoes a slow reaction with diphenylketene (2) in ether at room temperature producing a $1: 1$ adduct with loss of N_{2}. Although the yield of this adduct was only 7% after a 3 -day reaction, no other product was detected and a considerable amount of starting vinyl azide was present, together
with some polymeric material. Heating of the reaction mixture did not lead to higher yields of cycloadduct but instead caused polymerization and conversion of the vinyl azide into 2 -phenylazirine, ${ }^{\text {bb }}$ which in turn reacted ${ }^{7}$ with diphenylketene to produce a bicyclic aziridine ($1: 2$ adduct). To avoid the presence of large amounts of diphenylketene (2), which undergoes polymerization, we generated 2 in situ by refluxing a solution of 1a and α-diazo- α-phenylacetophenone in benzene. In this manner the yield of the adduct increased to 50%.

Structure 6a was established for the $1: 1$ adduct, mp 300°, on the basis of the following spectral data and chemical reactions. The ir spectrum of $\mathbf{6 a}$ contains NH absorptions at 3200 and $1580 \mathrm{~cm}^{-1}$ which shift on deuterium exchange, as well as a carbonyl band at 1620 cm^{-1}, typical of enamino ketones (vinylogous amides). ${ }^{8}$ The compound exhibits a vinyl proton at $\tau 4.45$ and NH (exchangeable with $\mathrm{D}_{2} \mathrm{O}$) at 0.77 in the nmr (in DM-SO- d_{6}). The uv spectrum indicates extensive conjugation at $248 \mathrm{~nm}(\epsilon 22,500)$ and $351(8000)$. The molecular ion appears at $m / e 311$ in the mass spectrum with the base peak at $m / e 282\left(\mathrm{M}^{+}-\mathrm{HCO}\right)$. The possibility that the adduct possessed structure 7 was dismissed on the basis of comparison with an authentic sample of $7 .{ }^{9}$

As a vinylogous amide, 6a did not form an oxime derivative on refluxing with $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}-$ pyridine. It was also unreactive toward LiAlH_{4}, apparently because of the resistance of the primarily formed anion to further attack by hydride. Whereas vinylogous amides of type 9 were reported to give 9a on heating with $\mathrm{PCl}_{5},{ }^{10}$ reaction of 6 a with PCl_{5} in refluxing benzene led to the dichloro derivative 8 in 57% yield. In this

8

reaction, chlorination of the enamine carbon is favored over that of the carbonyl carbon ${ }^{10}$ by two factors: (a) the steric effect imposed by the phenyl groups;
(7) A. Hassner, A. S. Miller and M. J. Haddadin, Tetrahedron Lett., 1353 (1972).
(8) N. H. Cromwell, F. A. Miller, A. R. Johnson, R. L. Frank, and D. J. Wallace, J. Amer. Chem. Soc., 71, 3337 (1949); A. I. Meyers, A. H. Reine and R. Gault, J. Org. Chem., 34, 698 (1969).
(9) F. R. Japp and F. Klingemann, J. Chem. Soc., 67, 662 (1890).
(10) G. H. Alt and A. J. Speziale, J. Org. Chem., 29, 794 (1964).
(b) a possible higher nucleophilicity of the enamine carbon.
The same product 8 was obtained in quantitative yield on chlorination of $6 a$ in benzene. The ir spectrum of 8 shows carbonyl absorption, typical of a dichlorocyclopentanone, at $1780 \mathrm{~cm}^{-1}$ and conjugated $\mathrm{C}=\mathrm{N}$ at $1605 \mathrm{~cm}^{-1} . \mathrm{NH}$ absorptions were absent. The uv maximum at $254 \mathrm{~nm}(\epsilon 14,500)$ is similar to that of benzalmethylamine at $247 \mathrm{~nm}(\epsilon 15,900)$.
p-Methoxy- α-azidostyrene ($\mathbf{l b}$) reacted with diphenylketene (2) to produce an analogous adduct $6 \mathbf{b}$. The cycloaddition proceeded faster than with la, indicating a stajilizing effect in the transition state by virtue of the contribution of the p-methoxy group to the nucleophilicity of the β carbon in 1 (see $1+2 \rightarrow 13$ below). The spectral and chemical properties of enamino ketore 6 b were similar to those of 6 a .

An analogous cycloadduct 11 was formed from 1 -azidoindene (10) and 2. This vinyl azide was chosen because of its known reluctance to form an azirine on heating; ${ }^{7}$ hence, heating of the reaction mixture is expected to lead to an improved yield of 11. Indeed the

yield increased from 7% in ether and 11% in DMF at 25° to 35% in refluxing THF. The spectral properties of 11 [NH at 3250 and $1580 \mathrm{~cm}^{-1}$, $\mathrm{C}=0$ at $1625 \mathrm{~cm}^{-1}$, CH_{2} singlet at $\tau 6.56$, NH at $\tau 0.65$, uv absorption at 248,345 , and $362 \mathrm{~nm}(\epsilon 16,400,5700$, and 5800 , respectively)] are consistent with its structure. Reaction of 11 with PCl_{5} permits only monochlorination and led to 3-chloro-5,5-diphenylindeno [1,2-b]-1-pyrolin-4one (12) in 34% yield.

1 -Azidoindene (10) was the only β-substituted vinyl azide that was found to react with diphenylketene. 1-Azido-cis-1-phenylpropene, α-azido-trans-stilbene, and 1-azido-2-iert-butylethene gave no adducts with 2. In one case an azirine-ketene adduct ${ }^{7}$ was isolated. These data indicate a steric effect at the β carbon of the vinyl azide during the cycloaddition and are reminiscent of the decrease in rate of dipolar cycloadditions observed upon increased hindrance in the olefin. ${ }^{11}$

The presented results can be rationalized by an ionic mechanism ($1 \rightarrow 13 \rightarrow 6$) whereby a nucleophilic attack

[^36]by the β carbon of 1 upon the $\mathrm{C}=0$ of the ketene is facilitated by electron donation from nitrogen. Such a pathway is analogous to that of the reaction of enamines with ketene. ${ }^{12}$ The process resembles the mechanism observed in bromination of vinyl azides ($14 \rightarrow 15$), ${ }^{3 \mathrm{~b}}$ where nucleophilic attack through carbon

was postulated. In the reaction with ketene 2, isolation of products 6 rather than of the regioisomeric 7 indicates that nucleophilic attack by C is preferred to attack by N. In the cases reported here ring closure with loss of N_{2}, as shown in 13, is followed by tautomerization to the enamino ketone 6 .

The cycloaddition of diphenylketene (2) with vinyl azide 1c, which contains an aliphatic substituent at the azido carbon, proceeded in a different manner. The major product (30% by nmr) was the azidocyclobutanone 16. Cyclobutenone 17 and a $3: 1$ adduct

(not further characterized) were also formed. ${ }^{13}$ The structure of 16 was apparent from its spectral and chemical properties. The ir absorption at $1780 \mathrm{~cm}^{-1}$ is characteristic of cyclobutanones and the bands at 2110 and $1200 \mathrm{~cm}^{-1}$ of an azide group. The methylene hydrogens in the cyclobutanone ring appear in the nmr as two doublets at $\tau 7.03$ and $6.68(J=17.7 \mathrm{~Hz})$, with the latter further split into a quartet ($J=0.9 \mathrm{~Hz}$). This is attributable to long-range coupling (W effect) between H_{M} of the n-butyl group and the trans ring proton H_{A} (deshielded by the cis azide function) in the sterically preferred conformation 16a. The reaction product is not likely to possess the regioisomeric structure 18 , since such a product would not be expected to eliminate HN_{3} with ease. Moreover, structure 16 is consistent with the above behavior of vinyl azides 1 where the β carbon is the nucleophilic site in the reactant. ${ }^{14}$
(12) R. H. Hasek and J. C. Martin. J. Org. Chem., 28, 1468 (1963).
(13) $3: 1$ adducta from the reaction of ketene with ensmines have been reported (ref 12).
(14) The possibility that the reaction product of $1 \mathrm{c}+2$ might be 18 was raised by one of the referees.

Cyclobutenone 17 was shown to be a secondary product in the reaction, as evidenced by its formation from 16 on stirring with Merck alumina for 1.5 days. 17 shows absorption at $1750(\mathrm{C}=0)$ and $1580 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C})$. In the nmr the vinyl proton absorption at $\tau 3.75$ appears as a multiplet due to long-range coupling with the allylic hydrogens in the side chain. The latter absorb as a broad triplet at $\tau 7.35$. Catalytic hydrogenation of 17 proceeds rapidly to furnish 3 - n-butyl- 2,2 diphenylcyclobutanone (19) (ir $1775 \mathrm{~cm}^{-1}$) in 73% yield.

If one considers intermediate 13 as the first step in the reaction, the formation of a five-membered ring vs. a four-membered ring adduct from 1 la and lb can be rationalized on the basis of an inductive effect by the aryl group which promotes nucleophilic attack at N. It is unlikely that azidocyclobutanones are precursors of 6 and 11 because pyrolysis of 16 does not lead to any detectable amounts of $6\left(\mathrm{R}=n-\mathrm{C}_{4} \mathrm{H}_{9}\right)$. Whether the formation of cyclobutanone 16 proceeds by a concerted ${ }_{\pi} 2_{\mathrm{s}}+{ }_{\mathrm{x}}^{\mathrm{s}}$ cycloaddition or by a stepwise process remains to be established.

Experimental Section ${ }^{15}$

2,5,5-Triphenyl-2-pyrrolin-4-one (6a).-To 0.55 g (3.8 mmol) of α-azidostyrene (1a) dissolved in 40 ml of anhydrous diethyl ether was added 0.80 g (4.1 mmol) of diphenylketene (2). ${ }^{16}$ The reaction mixture was stirred for 3 days and the solid $(0.13 \mathrm{~g}$, 12%) was filtered, washed with cold ether, and recrystallized from benzene. The yield of pure 6 a was $0.08 \mathrm{~g}(7 \%): \mathrm{mp} 300^{\circ}$; ir (KBr) 3200 (after exchange with $\mathrm{D}_{2} \mathrm{O}, 2340$), 1620, 1599, 1580 , $1540 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\right.$ DMSO- $\left.\mathrm{d}_{6}, 60^{\circ}, \mathrm{HA}-100\right) \tau 4.45(\mathrm{~s}, 1, \mathrm{C}=\mathrm{CH})$, $1.85-3.19$ ($\mathrm{m}, 15$, phenyl hydrogens), -0.77 (s, broad, NH, exchangeable with $\mathrm{D}_{2} \mathrm{O}$); uv max (p-dioxane) 333 nm ($\epsilon 5900$), $247(17,700)$; uv ($95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) $351 \mathrm{~nm}(\epsilon 8000)$, $248(22,500)$; mass spectrum (70 eV) m / e (rel intensity) 311 ($54, \mathrm{M}^{+}$), 282 (100), 206 (26), 204 (30), $180(22), 178(30), 165$ (26).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 84.86 ; \mathrm{H}, 5.50 ; \mathrm{N}, 4.50$. Found: C, 85.06; H, 5.43; N, 4.34.

An nmr spectrum of the remaining reaction mixture shows the presence of a considerable amount of vinyl azide but no cyclobutanone.

In an alternate procedure a solution of 1.4 g of la in 20 ml of benzene containing 2.2 g of α-diazo- α-phenylacetophenone ${ }^{17}$ was heated on a steam bath for 1 hr . 6a precipitated during the reaction. The slurry was cooled and 6 a was filtered off (1.6 g , 51% yield).
Enamino ketone 6a was recovered unchanged (86-100\%) upon exposure to LiAlH_{4} in THF for 24 hr or upon heating with $\mathrm{NH}_{2}-$ $\mathrm{OH} \cdot \mathrm{HCl}$ and pyridine for 19 hr .

3,3-Dichloro-2,5,5-triphenyl-1-pyrrolin-4-one (8).-To 0.5 g (1.6 mmol) of 6 a in 50 ml of dry benzene was added 1 g (4.8

[^37]mmol) of PCl_{5}. The solution was refluxed for 3 hr . After the solution had cooled, 5 ml of $\mathrm{H}_{2} \mathrm{O}$ was added with stirring. The organic layer was separated and the solvent was evaporated. The residue (0.47 g , composed of $100 \% 8$ as determined by nmr) was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(50: 50)$ to give $0.38 \mathrm{~g}(57 \%)$ of 8: mp 171-172 ${ }^{\circ}$; ir (KBr) 1780, 1605, $1500 \mathrm{~cm}^{-1}$; nmr $\left(\mathrm{DCCl}_{3}\right) \tau 2.35-3.90$ ($\mathrm{m}, 13$, phenyl hydrogens), 1.45-1.90 (m, 2,2-phenyl ortho hydrogens); uv $\max \left(95 \% \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{OH}\right) 254 \mathrm{~nm}$ ($\epsilon 14,500$); mass spectrum (70 eV) m/e (rel intensity) 383:381: $379\left(\mathrm{M}^{+}\right)$in a ratio of $1: 5: 7$ (very weak), 317 (59), 165 (100).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}: \mathrm{C}, 69.48 ; \mathrm{H}, 3.98$. Found: C, 69.31; H, 4.13.

The same product 8 was obtained in quantitative yield by bubbling excess Cl_{2} into a slurry of 6 a in benzene and subsequent evaporation of the benzene.
p-Methoxy- α-azidostyrene (1b).-The synthesis of 1 lb from p-methoxystyrene and iodine azide was modeled after that described for styrene. ${ }^{13}$ DBN was used as the base in the elimination of HI from the iodine azide adduct. The vinyl azide 1 b was purified by dissolving the solid in a minimum amount of pentane and passing the solution through a disposable pipette filled with neutral alumina: $\mathrm{mp} 31-32^{\circ}$; ir $\left(\mathrm{CCl}_{4}\right) 2830,2140$, $2100,1610 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \tau 2.65(\mathrm{~d}, 2, J=9 \mathrm{~Hz}$, aromatic hydrogens), 3.32 (d, $2, J=9 \mathrm{~Hz}$, aromatic hydrogens), 4.33 (d, $1, J=2 \mathrm{~Hz}$, olefinic hydrogen), $5.30(\mathrm{~d}, 1, J=2 \mathrm{~Hz}$, olefinic hydrogen', $6.38\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$.

2-(p-Methoxyphenyl)-5,5-diphenyl-2-pyrrolin-4-one (6b).From the reaction of $0.5 \mathrm{~g}(2.8 \mathrm{mmol})$ of p-methoxy- α-azidostyrene (1 b) and $0.6 \mathrm{~g}(3.1 \mathrm{mmol})$ of diphenylketene (2) for 3 days as described for 6 a , there was obtained 0.3 g of a very insoluble compound. Purification was accomplished by absorbing 0.1 g of the sol:d on 2 g of silica gel and eluting the absorbed compound over 20 g of silica gel with benzene-ether ($80: 20$). In this manner $0.66 \mathrm{~g}(16 \%)$ of 6 b was obtained: $\mathrm{mp}>300^{\circ}$; ir $(\mathrm{KBr}) 3200,1625,1600,1580,1560 \mathrm{~cm}^{-1}$; nmr (DMSO- d_{6}, 100°, HA-100) $\tau 1.02\left(\mathrm{~s}, 1, \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.02-$ $3.34(\mathrm{~m}, 14$, phenyl hydrogens), $4.61(\mathrm{~s}, 1, \mathrm{C}=\mathrm{CH})$; uv max $\left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 282 \mathrm{~nm}(\epsilon 20,000), 352(12,000)$; mass spectrum (70 eV) m/e (rel intensity) 341 ($82, \mathrm{M}^{+}$), 312 (100), 208 (26), 132 (26).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 80.91; H, 5.61. Found: C, 80.67; H, 5.58.

An nmr spectrum of the remaining reaction mixture shows the presence o: 40% starting vinyl azide.

When the reaction was carried out by heating 0.85 g of lb with 1.1 g of α-diazo- α-phenylacetophenone in benzene at reflux for $15 \mathrm{~min}, 6 \mathrm{~b}$, which precipitated during heating, was obtained in 45% yield (0.8 g).

5,5-Diphenylindeno[1.2-b]-2-pyrrolin-4-one (11).-From 8.1 g (52 mmol) of 1-azidoindene (10) in 100 ml of diethyl ether and 10 g (56 mmol) of diphenylketene (2) at 25° for 3 days there was obtained a powdery yellow solid. Recrystallization from benzene furnished 0.6 g of $11: \mathrm{mp}>300^{\circ}$; ir $(\mathrm{KBr}) 3260,1625$, $1605,1540 \mathrm{~cm}^{-1}$; nmr (DMSO- $d_{6}, 100^{\circ}$, HA-100) - $0.65(\mathrm{~s}, 1$, NH , exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 2.14 (d, 1, hydrogen on indene), 2.48-2.18 (m, 13, phenyl hydrogens), $6.56\left(\mathrm{~s}, 2,-\mathrm{CH}_{2}-\right.$); uv \max (dimethylformamide) $364 \mathrm{~nm}(\epsilon 9100), 299$ (3800), 285 (3500); uv (p-dioxane) 362 nm ($\operatorname{5800}$), 299 (4000), 289 (3900); mass specirum (70 eV) m/e (rel intensity) 323 ($56, \mathrm{M}^{+}$), 295 (32), 294 (100), 178 (32), 105 (50).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 85.42$; $\mathrm{H}, 5.30$. Found: C, 85.25; H, 5.31.

An nmr spectrum of the remaining reaction mixture shows mainly the presence of vinyl azide 10.

When the reaction was carried out in DMF solution a tarry material coagulated on the side of the flask. It was dissolved in 50 ml of hot DMF, and the solution was filtered, cooled, and diluted with 50 ml of ether to precipitate $0.5 \mathrm{~g}(11 \%)$ of 11 .

From $10 \mathrm{~g}(64 \mathrm{mmol})$ of the vinyl azide 10 and 12.5 g (65 mmol) of the ketene 2 in 100 ml of THF under reflux for 3 days there was obtained $7.2 \mathrm{~g}(35 \%)$ of 11 .

3-Chloro-5,5-diphenylindeno [1,2-b]-1-pyrrolin-4-one (12).-A solution of $0.62 \mathrm{~g}(1.9 \mathrm{mmol})$ of 11 and $1.2 \mathrm{~g}(5.7 \mathrm{mmol})$ of PCl_{5} in 50 ml of benzene was refluxed for 6 hr . Work-up as for 8
gave 0.57 g of crude 12. Crystallization from $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ furnished $0.83 \mathrm{~g} \mathrm{(34} \mathrm{\%)}$) of 12: mp 128-129 ${ }^{\circ}$; ir (KBr) 1770, $1640,1500 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{DCCl}_{3}\right)$ т 6.65 (s, broad, $2,-\mathrm{CH}_{2}-$), 2.00-2.83 (m, 14, phenyl hydrogens); uv $\max \left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ $251 \mathrm{~nm}(\epsilon 14,100)$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{ClNO}$ C, 77.19; $\mathrm{H}, 4.51$. Found: C, 76.98; H, 4.37.

3-Azido-2,2-diphenyl-3- n-butylcyclobutanone (16).-To 0.5 g (4 mmol) of 2-azido-1-hexene (1c) in 30 ml of anhydrous ether was added $1 \mathrm{~g}(5.1 \mathrm{mmol})$ of diphenylketene (2). The reaction mixture was stirred for 3 days. The precipitate, representing a 3:1 adduct, was filtered and weighed $0.06 \mathrm{~g}(4 \%)$, recrystallized from $95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$: $\mathrm{mp} 218-218.5^{\circ}$; ir (KBr) 3260, 1740, $1640,1130 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{DCCl}_{3}\right)$ т $2.73-3.12(\mathrm{~m}, 30$, phenyl hydrogens), 4.13 (broad, s, 1), 5.04 (s, 1), 7.50-7.90 (broad, s, 2), 8.67-9.50 (m, 9, aliphatic hydrogens); mass spectrum (70 eV) m / e (rel intensity) 681 (very weak), 439 (45), 318 (24), 212 (19), 167 (100), 166 (33), 165 (84).
The solvent was evaporated from the filtrate, yielding an oil $(1.35 \mathrm{~g})$. Chromatography on 50 g of silica gel with Skellysolve B as eluent afforced $0.27 \mathrm{~g}(21 \%)$ of 16 as an oil: ir $\left(\mathrm{CCl}_{4}\right) 2110$, $1775,1490,145 \mathrm{C}, 1260 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \tau 2.32-3.03(\mathrm{~m}, 10$, phenyl hydrogens), 6.68 (d, $1, J=17 \mathrm{~Hz}, 0 \mathrm{OCCH}$ trans to n-butyl), 7.03 (d, $1, J=17 \mathrm{~Hz}, \mathrm{O}=\mathrm{CCH}$ cis to n-butyl), $7.91-$ $9.50\left(\mathrm{~m}, 9,-\mathrm{C}_{4} \mathrm{H}_{9}\right)$.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 75.21 ; \mathrm{H}, 6.63$. Found: C, 75.02; H, 6.78 .
An nmr spectrum of the crude reaction mixture (before chromatography) showed it to consist of 30% cyclobutanone 16 and 70% vinyl azide $1 c$.

When the reaction was allowed to proceed for a week, 2% of 17 was also found among the products.

3-n-Butyl-4,4-diphenyl-2-cyclobutenone (17).-Crude azido ketone $16(2.89 \mathrm{~g})$ was dissolved in 100 ml of ether and added to Merck alumina, and the mixture was stirred for 1.5 days. The ether was decanted and the alumina was washed several times with small portions of ether. The ether washes were combined and the ether was evaporated. The oil (1.2 g) was crystallized from 2 ml of ethyl acetate-pentane ($40: 60$). The white needles of 17 , weighing $0.3 \mathrm{~g}(25 \%)$, were filtered and dried: $\mathrm{mp} \mathrm{73-75}$; ir $\left(\mathrm{CCl}_{4}\right) 1750,1.580,1490,1440 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{DCCl}_{3}\right) \tau 2.70$ (s 10, phenyl hydrogens), 3.75 ($\mathrm{t}, 1, \mathrm{C}=\mathrm{CHC}=\mathrm{O}$), 7.45 ($\mathrm{t}, 2$, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), 8.08-9.30 ($\mathrm{m}, 7, \mathrm{C}_{3} \mathrm{H}_{7}$); uv (p-dioxane) shoulders on end absorption at $345 \mathrm{~nm}(\epsilon 5800), 362(5800)$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 86.92 ; \mathrm{H}, 7.29$. Found: C, 86.79 ; H, 7.33 .

3- n-Butyl-2,2-diphenylcyclobutanone (19).-To 0.026 g (0.09 mmol) of the cyclobutanone 17 was added 0.053 g of $\mathrm{Pd} / \mathrm{C}(5 \%)$ and 20 ml of th:ophene-free benzene. After the solution was flushed with nitrogen, hydrogen was bubbled through for 25 min at a rate of approximately $0.1 \mathrm{cc} / \mathrm{sec}$. Nitrogen was again bubbled through the solution and the catalyst was filtered. The product was purified by chromatography on a 2 -mm silica gel plate using benzene-Skellysolve B (50:50) as eluent, yielding $0.019 \mathrm{~g}(73 \%)$ of 19 recrystallized from pentane: $\mathrm{mp} \mathrm{46-49}^{\circ}$; ir (KBr) $1770 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{DCCl}_{8}\right) \tau 2.53-3.08$ (m, 10, phenyl hydrogens), 6.47-7.36 (m, 3, $\mathrm{C}_{4} \mathrm{CHCH}_{2} \mathrm{C}=\mathrm{O}$), 8.29-9.45 (m, 7, $n-\mathrm{C}_{3} \mathrm{H}_{7}$).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 86.28 ; \mathrm{H}, 7.9$. Found: C, 86.52; H, 8.05.

Registry No.-1a, 16717-64-9; 1b, 34910-42-4; 1c, $34910-43-5 ; 2,525-06-4$; 6a, 34910-44-6; 6b, $34910-45-7$; 8, $34910-46-8 ; \quad 10,16719-57-6$; 11, $34910-48-0 ; 12,34910-49-1$; 16, 34910-50-4; 17, 34910-51-5; 19, 24242-42-0; 2-azido-1-hexene-diphenyl ketene adduct ($1: 3$), 34910-53-7.

Acknowledgment. -Support of this research by a grant from the National Science Foundation is gratefully acknowledged.

The Reaction of α-Nitro Ketones with the Ketene-Generating Compounds, Isopropenyl Acetate and α-Acetoxystyrene. Synthesis of 3-Acetyl- and 3-Benzoyl-5-Substituted Isoxazoles ${ }^{19}$

Sidney D. Nelson, Jr., ${ }^{\text {1b }}$ Douglas J. Kasparian, ${ }^{\text {1c }}$ and William F. Trager*id
Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94122

Received February 15, 1972

Abstract

Reaction of α-nitroacetophenone (1a) with isopropenyl acetate (IPA) under acid-catalyzed conditions produced 3-benzoyl-5-methylisoxazole (2a) in 62% yield. A similar reaction with α-nitroacetone ($\mathbf{1 b}$) gave isoxazole 2b although in much poorer yield ($\sim 5 \%$ by glc analysis). Reactions of la and lb with α-acetoxystyrene (3) also produced the corresponding isoxazoles 4 a and 4 b in low but isolable yields (24 and 3%, respectively). A possible mechanism is suggested based on a study of the reaction of la with IPA. Infrared, nmr, uv, and mass spectral data of the isoxazoles are reported.

As a possible facile entry into cyclopropyl analogs of the hormonal amines, epinephrine and norephrine, we envisaged a general route utilizing α-acetoxy- β-nitrostyrene as the key intermediate. Subsequent steps in the sequence were to involve formation of the cyclopropyl ring via condensation with dimethylsulfonium methylide ${ }^{2}$ and reduction of the resultant nitrocyclopropane to the corresponding amine ${ }^{3}$ followed by hydrolysis. In an attempt to prepare this intermediate by an acid-catalyzed enol acetate exchange reaction of α-nitroacetophenone (1a) with isopropenyl acetate (IPA), a solid product was obtained in reasonable yield which proved not to be the desired compound. This was demonstrated by the lack of asymmetric and symmetric ir stretching frequencies characteristic of a nitro group. The nmr spectrum showed the presence of five aromatic protons, a one-proton singlet at 6.42 ppm , and a three-proton singlet at 2.44 ppm . Highresolution mass measurement of the parent ion and combustion analysis showed that the compound had a molecular formula of $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$. Analysis of the major peaks in the mass spectrum soon revealed that the compound was the isoxazole 2a. Conclusive evidence for the proposed structure came from an independent synthesis of the isoxazole by the method of Ajello and Cusmano. ${ }^{4}$

Since the synthesis of isoxazoles by this method appeared to be novel, we decided to investigate whether the reaction was applicable to aliphatic nitro ketones. The reaction of α-nitroacetone (1b) and IPA did indeed produce the corresponding 3 -acetyl-5-methylisoxazole (2b) (refer to Scheme I), although in very low yield and from consistently tarry reaction mixtures, an observation which will be discussed later in the text.

To further investigate the scope of the reaction the synthesis was extended by reacting the already prepared α-nitro ketones with an aromatic enol acetate, α acetoxystyrene (3). As shown in Scheme I, the corresponding isoxazoles were isolated in both cases. Although the yields were poor, the isoxazoles formed were isomerically pure in contrast to the normal synthesis of

[^38]

3 -keto 5 -substituted isoxazoles using β diketones and nitric acid. ${ }^{4 \mathrm{a}, \mathrm{b}}$

In recent years ${ }^{5} 3$-arylisoxazoles have been conveniently synthesized by a 1,3 -dipolar cycloaddition of an aromatic nitrile oxide with some vinyl compound containing a leaving group. The reaction has been postulated ${ }^{6}$ to proceed through a Δ^{2}-isoxazoline intermediate and recently Micetich ${ }^{7}$ has in certain cases isolated such intermediates from the reactions between vinyl acetate or IPA and various nitrile oxides. The Δ^{2}-isoxazolines so obtained deacetylate to the corresponding isoxazoles upon heating or in the presence of acid.

Observation of a weak ir absorption ${ }^{8}$ at $2260 \mathrm{~cm}^{-1}$ from a solution of 0.0003 mol of 1 a in 0.003 mol of IPA supports the postulated nitrile oxide intermediate. The intensity of this $2260-\mathrm{cm}^{-1}$ peak increased when p-TSA was added to the solution, and an absorption at $1830 \mathrm{~cm}^{-1}$ also appeared suggesting the formation of acetic anhydride. This later observation was confirmed by isolation of acetic anhydride from the reaction mixture and is evidence for the formation of ketene under the reaction conditions. ${ }^{9}$

The formation of the nitrile oxide from the α-nitro ketone via Scheme II is consistent with these experimental data.
(5) (a) N. K. Kochetkov and S. D. Solokov in "Advances in Heterocyclic Chemistry." Vol. 2, Academic Press, New York, N. Y., 1963, p 375; (b) R. Scarpati, C. Santocroce, and D. Sica, Gazz. Chim. Ital., 93, 1706 (1963); (c) P. Rajagopalan and C. N. Talaty, Tetrahedron Lett., No. 38, 4537 (1966).
(6) P. Grunanger and S. Mangiapan, Gazz. Chim. Ital., 88, 149 (1958).
(7) (a) R. G. Micetich, Can. J. Chem., 48, 467 (1970): (b) ibid., 48, 3753 (1970).
(8) (a) S. Califano, R. Moccia, R. Scarpati, and G. Speroni, J. Chem. Phys., 26, 1777 (1957). (b) The $\mathrm{C}=\mathrm{N}$ stretching of the α-ketonitrile oxide would be expected to occur at a lower frequency than the reported absorption at $2300 \mathrm{~cm}^{-1}$.
(9) The production of ketene without the addition of p-TSA can be justified since 1 a itself is a fairly strong acid with a $\mathrm{p} K_{\mathrm{a}}{ }^{\text {nitro }} \sim 5$ and $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{aci}} \sim 2$. See "The Chemistry of Functional Groups-The Chemistry of Nitro and Nitroso Groups," Part 1, H. Feuer, Ed., Interscience, New York, N. Y., 1969. pp 374-376.

Work by other groups would seem to support the mechanism outlined. Nenitzescu and Isacescu ${ }^{10 \mathrm{~s}}$ and Urbanski and Gurzynska ${ }^{10 \mathrm{~b}}$ have synthesized stable nitronic acid anhydrides from nitro compounds and ketene similar to the nitronic acid anhydride intermediate 6. Work by Noland and coworkers ${ }^{11 \mathrm{a}}$ and by Simmons and Kreuz ${ }^{11 \mathrm{~b}}$ has shown that certain nitrile oxides similar to intermediate 7 are formed from nitro compounds in acid solution, while synthesis of benzoylnitrile oxide (7) by another route has recent-y been proposed by two independent research groups. ${ }^{12 \mathrm{a}, \mathrm{b}}$
Two pathways are presented in Scheme II for the formation of an intermediate nitronic anhydride 6. One involves prior formation of α-acetoxy- β-nitrostyrene (2) followed by an acyl exchange reaction from the enol oxygen to the nitro group oxygen via a sixmembered ring transition state. The second pathway involves prior tautomerization to the acinitro compound 5 , which reacts with ketene continously being generated from IPA. The intermediate nitronic anhydride 6 could then eliminate acetic acid to form the nitrile oxide 7. Although attempts were made to isolate and characterize the nitrile oxide, none were successful. Consequently, Scheme II can only be considered as a reasonable estimate of the reaction sequence.

Little change occurred in the reaction after 48 hr at room temperature; however, upon heating the solution for a few minutes the ir peak at $2260 \mathrm{~cm}^{-1}$ disappeared while two new singlets appeared in the nmr spectrum at 2.54 and 6.68 ppm . These singlets represent the methyl group hydrogens and the C-4 proton of the newly formed isoxazole 2 a , respectively. As expected, the two peaks integrated in a $3: 1$ ratio.

[^39]The reaction mixture was then allowed to stand at room temperature for 24 hr . Once again the ir showed an intense absorption peak at $2260 \mathrm{~cm}^{-1}$. The procedure of alternate heating and cooling was continued with the same zesults as noted before, that is, the loss of absorption in the ir at $2260 \mathrm{~cm}^{-1}$ upon heating, with a corresponding increase in formation of the isoxazole as noted by nmr.
Scheme III depicts the final steps of the reaction.

Scheme III

The nitrile oxide 7 can undergo a 1,3-dipolar cycloaddition reaction with the enol acetate to form an intermediate $\Delta-2$ isoxazoline 8 which can then eliminate acetic acid to form the product isoxazole $2 a$.

However, no evidence could be found in the nmr spectrum for the Δ^{2}-isoxazoline intermediate 8 . Apparently, the slow step in the reaction sequence involves formation of the isoxazoline with a fast deacetylation to yield the isoxazole. The proposed sequence does help to explain why α-nitroacetone (1 b) gives such poor yields, since it is well known that nonaromatic stabilized nitrile oxides spontaneously dimerize to furoxans, ${ }^{13 \mathrm{a}}$ which may undergo further degradation or polymerization. ${ }^{13 \mathrm{~b}}$

Experimental Section

General.-Me'ting points were taken by capillary using a Thomas-Hoover Jni-Melt instrument and are corrected. Boiling points are uncorrected. Infrared spectra were determined on a Perkin-Elmer 457 spectrophotometer, uv spectra with a Cary II spectrophotometer, and nmr in deuteriochloroform on a Varian A-60A with tetramethylsilane as an internal standard. Vpc analyses were performed on a Varian Model 90-P with thermal detectors or Varian Model 2100-A with flame-ionization detectors. Mass spectra were obtained on an AEl Model MS-902 mass spectromeer. Elemental analyses were performed by Berkeley Microanalytical Laboratories.
α-Nitroacetoptenone (1a).-This compound was prepared by the method of Bachman and Hokama ${ }^{14}$ in 70% yield, mp 105$106^{\circ}$.
(13) (a) C. Grundman and J. M. Dean, J. Org. Chem., 30, 2809 (1965); (b) A. Quilico and G. Speroni in "Heterocyclic Compounds-Five- and SixMembered Compounds with Nitrogen and Oxygen," R. H. Wiley, Ed., Interscience, New York, N. Y., 1962, p 295 ff.
(14) G. B. Bachman and T. Hokama, J. Amer. Chem. Soc., 81, 4882 (1959).
α-Nitroacetone (lb).-This ketone was prepared by oxidation of 1 -nitro-2-propanol ${ }^{15 a}$ by the method of Brown and Garg, ${ }^{156}$ $\operatorname{mp} 48-50^{\circ}$ (lit. ${ }^{15 \mathrm{c}} \mathrm{mp} 49-50^{\circ}$).
3-Benzoyl-5-methylisoxazole (2a).-A solution of 14.0 g $(0.085 \mathrm{~mol})$ of la and $p-$ TSA $(140 \mathrm{mg})$ in IPA $(60 \mathrm{ml})$ was refluxed in an atmosphere of dry nitrogen for 24 hr , during which period acetone was continuously distilled over and collected in a Dean-Stark trap. The clear, dark-brown reaction mixture was cooled and excess IPA was removed by rotary evaporation under reduced pressure. The black residue was taken up in ether $(150 \mathrm{ml})$ and washed with 10% sodium carbonate solution followed by water, filtered through anhydrous sodium sulfate, and dried further over drierite.

Purification by distillation under reduced pressure, bp 102$110^{\circ}(0.1 \mathrm{~mm})$, followed by recrystallization yielded 9.86 g of white crystals from hexane: mp 43.0-44.5 ${ }^{\circ}$ (lit. ${ }^{16} \mathrm{mp} 50^{\circ}$); ir $\nu_{\max }(\mathrm{KBr}) 1665(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{N}$ ring stretching $), 1450$ and 1425 (N-O ring stretch), 1270,1215 , and $895 \mathrm{~cm}^{-1}$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 8.2$ (m, 2, o-aroyl), 7.48 ($\mathrm{m}, 3, m$ - and p-aroyl), 6.42 (s, 1, C-4), $2.44(\mathrm{~s}, 3, \mathrm{C}-5 \mathrm{Me}) ; \lambda_{\text {max }}^{\mathrm{EtOH}} 260 \mathrm{~nm}(\log \epsilon 4.40)$; mass spectrum $m / e 187\left(\mathrm{M}^{+}\right)$, (base peak), 105, other major peaks 77, $58,51,43,28$; high resolution mass measurement of $\mathrm{M}^{+}, 187.0639$ (calcd 187.0633).

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$: $\mathrm{C}, 70.58 ; \mathrm{H}, 4.85 ; \mathrm{N}, 7.48$. Found: C, 70.55; H, 4.86; N, 7.47.
3-Acetyl-5-methylisoxazole (2b).-A solution of 1.03 g (0.01 $\mathrm{mol})$ of lb and $p-$ TSA $(10 \mathrm{mg})$ in $20.0 \mathrm{~g}(0.10 \mathrm{~mol})$ of IPA was refluxed under nitrogen for 15 hr , during which period acetone was collected in a Dean-Stark trap. The clear dark-brown reaction mixture was worked up as described for 2a. Gle analysis of the partially purified reaction mixture on a $10 \mathrm{ft} \times 0.125 \mathrm{in}$. Versamid column operated at 100° in a Varian Aerograph Model $90-\mathrm{P}$ showed the presence of a peak ($\sim 5 \%$ of the mixture) with a retention time of 7.1 min , identical with that of an authentic sample of 2a synthesized by the method of Schmidt and Widmann. ${ }^{17}$ The crude material was partially purified by distillation (10 mm), yield a few drops of a pale yellow liquid which contained $\sim 50 \%$ of 2 b as determined by gle analysis. A small sample of the pure isoxazole was obtained by preparative glc and found to be identical with the known compound by comparative ir $\nu_{\max }^{\text {neat }} 1701(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{N}$ ring stretch $), 1450$ and 1425 (N-O ring stretch), 1355, 1260, 1180, and $950 \mathrm{~cm}^{-1} ; \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 6.40(\mathrm{~s}, 1, \mathrm{C}-4), 2.64(\mathrm{~s}, 3, \mathrm{OC} \mathrm{Me}), 2.50(\mathrm{~s}, 3, \mathrm{C}-5$ Me); $\lambda_{\max }^{\text {EtoN }} 249 \mathrm{~nm}(\log \epsilon 3.60)$; mass spectrum $m / e 125\left(\mathrm{M}^{+}\right)$, 43 (base peak), other major peaks $110(\mathrm{M}-15), 69,58,31$, and 28.
α-Acetoxystyrene (or 1-Phenylethenol Acetate) (3).-A solution of $50.0 \mathrm{~g}(0.417 \mathrm{~mol})$ of acetophenone and $4.0 \mathrm{~g}(0.021 \mathrm{~mol})$ of p-TSA in IPA (200 ml) was stirred at reflux temperature under dry nitrogen for 16 hr . Acetone was collected in a DeanStark trap as the reaction proceeded. After the reflux period, the reddish-brown solution was poured into distilled water (250 ml) and extracted with three $100-\mathrm{ml}$ portions of ether. The combined extracts were washed with $5 \% \mathrm{NaHCO}_{3}$, followed by water, filtered through anhydrous sodium sulfate, and dried further over Drierite. Evaporation of the solvent gave 105.2 g of a dark-brown, foul-smelling liquid which was purified by distillation: yield 47.5 g of clear liquid; bp $100-103^{\circ}(10 \mathrm{~mm})$; ir $\nu_{\text {max }}^{\text {neat }} 1780(\mathrm{C}=\mathrm{O}), 1655(\mathrm{C}=\mathrm{C}$ vinyl stretch), $1205(\mathrm{C}-\mathrm{O}$ stretch of enol acetate), 955 and $880 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.31$ (m, 5, aromatic), 5.39 (d, $1, J=2 \mathrm{~Hz}$, vinyl), 4.98 (d, $1, J=$ 2 Hz , vinyl), 2.19 ($\mathrm{s}, 3, \mathrm{Me}$); mass spectrum $m / e 162\left(\mathrm{M}^{+}\right)$, 105 (base peak), other major peaks 134 ($\mathrm{M}-\mathrm{CO}$), 120 (M -

[^40]ketene), $91,77,51$, and 43 ; high resolution mass measurement of $\mathrm{M}^{+}, 162.0669$ (calcd, 162.0681).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 74.06; $\mathrm{H}, 6.21$. Found: 73.78 ; H, 5.98.

3-Benzoyl-5-phenylisoxazole (4a).-A solution of 1.65 g (0.01 $\mathrm{mol})$ of $1 \mathrm{a}, p$-TSA $(10 \mathrm{mg})$, and $4.87 \mathrm{~g}(0.03 \mathrm{~mol})$ of 3 was heated at 110° in a dry nitrogen atmosphere for 12 hr . The clear darkbrown reaction mixture was cooled, taken up in ether (75 ml), washed successively with $5 \% \mathrm{NaHCO}_{3}$ and water, and dried (Drierite). After rotary evaporation of the ether under reduced pressure, the residual liquid was distilled under reduced pressure, yielding 2.4 g of acetophenone as determined by comparative ir with an authentic sample.

Glc analysis of the black distillation residue on a $6 \mathrm{ft} \times 0.125$ in. 3% OV-1 column operated at 130° using a Varian 2100 analyzer showed small amounts of acetophenone and 3 plus other minor impurities, as well as a relatively large peak with a retention time of 8.7 min . Tlc on Eastman silica gel GF chromograms developed in hexane- $\mathrm{EtOAc}-\mathrm{MeOH}(2: 2: 1)$ and visualized with uv light showed a bright spot, $R_{\mathrm{f}} 0.64$, running behind acetophenone, $R_{\mathrm{f}} 0.74$, and $3, R_{\mathrm{f}} 0.68$

The residue was chromatographed on a $20-\mathrm{g}$ silica gel column (E. Merck, 30-70 mesh) using hexane-EtOAc (9:1) as eluent. Fractions (10 ml) were collected using an ISCO Model 327 automatic collector. Glc analysis showed that fractions 7-16 were primarily the desired product. Two recrystallizations of the crude material from hexane gave 590 mg of white solid: mp $85.0-86.5^{\circ}\left(\right.$ lit..$\left.^{18} \mathrm{mp} 89^{\circ}\right)$; ir $\nu_{\max }^{\mathrm{KBr}} 1665(\mathrm{C}=\mathrm{O}), 1590(\mathrm{C}=\mathrm{N}$ ring stretch), 1460 and 1430 ($\mathrm{N}-\mathrm{O}$ ring stretch), 1240 and $895 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~m}, 2$, ortho aroyl), 7.94 ($\mathrm{m}, 2$, ortho aryl), 7.62 ($\mathrm{m}, 6$, meta and para aroyl and aryl), and 7.15 ($\mathrm{s}, 1, \mathrm{C}-4$); $\lambda_{\max }^{\text {E.OH }} 264 \mathrm{~nm}(\log \epsilon 4.55)$; mass spectrum $m / e 249\left(\mathrm{M}^{+}\right), 105$ (base peak), other major peaks $189,146,116,111,89,77,63$, 51 , and 28.

3-Acetyl-5-phenylisoxazole (4b).-A solution of 1.03 g (0.01 $\mathrm{mol})$ of $1 \mathrm{~b}, p-$ TSA $(10 \mathrm{mg})$, and $4.87 \mathrm{~g}(0.03 \mathrm{~mol})$ of 3 was heated at 70° in a dry nitrogen atmosphere for 4 hr . The resulting black, tarry reaction mixture was worked up and distilled to remove acetophenone as described for 4 a .

Glc analysis of the distillation residue on a $6 \mathrm{ft} \times 0.125 \mathrm{in} .3 \%$ OV-1 column operated at 125° using a Varian Aerograph Model 2100 with flame ionization detectors showed the residue to consist largely of unreacted 3 , approximately 10% of 4 b with a retention time of 8.3 min , and many minor unresolved products.
The isoxazole 4b was isolated by column chromatography on a $15-\mathrm{g}$ silica gel G column (E. Merck, 100 mesh) using hexaneether ($9: 1$) as eluent. Fractions (10 ml) were collected using an ISCO Model 327 automatic collector. Glc analysis showed that fractions $9-12$ were primarily the desired product. Three recrystallizations of the crude material from hexane gave 56 mg of pure $4 \mathrm{~b}, \mathrm{mp} 98-99^{\circ}$ (lit. ${ }^{18} \mathrm{mp} 105^{\circ}$ and $98-99^{\circ}$). Comparative ir, nmr, and a mixture melting point showed the product to be identical with that isolated by fractional recrystallization from the reaction mixture produced in the synthesis outlined by Ajello and Cusmano: $:^{2 \mathrm{a}, \mathrm{b}}$ ir $\nu_{\max }^{\mathrm{KBr}} 1701(\mathrm{C}=\mathrm{O}), 1580(\mathrm{C}=\mathrm{N}$ ring stretch $)$, 1440 and 1430 ($\mathrm{N}-\mathrm{O}$ ring stretch), 1355, 1220, and $940 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.71$ (m, 2, ortho aryl), 7.40 ($\mathrm{m}, 3$, meta and para aryl), $6.80(\mathrm{~s}, 1, \mathrm{C}-4), 2.65\left(\mathrm{~s}, 3, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{3}\right) ; \lambda_{\max }^{\text {EtOH }} 250 \mathrm{~nm}$ ($\log \epsilon 4.18$); mass spectrum $m / e 187\left(\mathrm{M}^{+}\right), 43$ (base peak), other major peaks $172(\mathrm{M}-15), 145(\mathrm{M}-42), 105,77,51$, and 28.

Registry No.-1a, 614-21-1; 1b, 10230-68-9; 2a, $34671-15-3$; 2b, 24068-54-0; 3, 2206-94-2; 4a, 3672-49-9; 4b, 7063-98-1; isopropenyl acetate, 108-22-5.
(18) T. Ajello, Gazz. Chim. Ital., 67, 728 (1937).
(19) The melting point reported by Ajello and Cusmano ${ }^{28,0}$ is in error. Our corrected melting point agrees with that of Kano and coworkers: H. Kano, I. Adachi, R. Kido, and K. Hirose, J. Med. Chem., 10, 417 (1967).

Pyridazines. L. Methylations and Methyl Group Migrations of Some Imidazo[1,2-b]pyridazines

M. Furlan, B. Stanovnik, and M. Tišler*
Department of Chemistry, University of Ljubljana, 61000 Ljubljana, Yugoslavia

Received February 22, 1972

Abstract

Methylation studies on different imidazo[1,2-b]pyridazines have been conducted and at elevated temperatures the methylated compounds undergo methyl group migrations. The methyl groups can be transposed from oxygen at C_{6} to N_{5} or N_{1} and demethylation at N_{1} or N_{5} has been observed.

Our previous observation that quaternized s-tri-azolo[4,3-b]pyridazines may undergo methyl group transposition in the five-membered ring ${ }^{1}$ prompted us to investigate this phenomenon in the imidazo [1,2-b]pyridazine series.

It has been reported ${ }^{2}$ that methylation of 2-phenylimidazo [1,2-b] pyridazin-6(5H)-one with methyl iodide afforded the corresponding 5 -methyl derivative 3. We have repeated this experiment and have found that the product is in fact a mixture of the 6-methoxy compound $2(40 \%)$ and the 5 -methyl compound 3 (52%) accompanied by a small amount of the starting material (8\%).
On the other hand, 6-chloro-1-methyl-2-phenylimidazo [$1,2-b$] pyridazin-4-ium iodide (4), when treated with sodium methylate, afforded 5 . In a similar experiment with aqueous potassium hydroxide, however, the anhydro salt 6 was formed. Upon methylation, this anhydro salt was transformed into a mixture of the 1,5-dimethyl derivative 7 and the 6 -methoxy compound 5 in a ratio of about $1: 5$. Moreover, compound 7 is formed also from 2 at $150-155^{\circ}$ under pressure, and here again an almost equal amount of 5 was formed. Pure 7 could be obtained by thermal rearrangement of 5 when this compound was heated over its melting point (203°) or by quaternization of compound 3 with methyl iodide at about 160°. Although the 1,5 -dimethyl derivative 7 on hand of these experiments appears to be the thermodynamically most stable compound, heating under high vacuum at 240° for 2 hr caused some demethylation to give 3 and a small amount of the anhydro salt 6 accompanying the unchanged starting material.

Migration of the methyl group from the methoxy compound 2 could be observed upon heating this compound at 240°, whereupon a mixture of three compounds could be separated by chromatography. There were present the starting compound, the N-methyl derivative 3, and the anhydro salt 6 in the ratio of about 25:61:14. Evidently, this process involved migration not only to the neighboring N atom $\left(\mathrm{N}_{5}\right)$, but in considerable extent also to the nitrogen in the fivemembered ring (N_{1}). In order to obtain evidence as to whether in the case of the above-mentioned transformation of 5 into 7 only methyl group migration from the methoxy group occurred or whether also the N_{1-} methyl group may participate in this process, the deuterated compound 8 was used as starting material. Nmr spectral evidence, which allowed distinction between the N_{1}-methyl and N_{5}-methyl groups in 7, showed
(1) M. Japelj, B. Stanovnik, and M. Tisler, J. Heterocycl. Chem., 6, 559 (1969)
(2) F. Yoneda. T. Otaka, and Y. Nitta, Chem. Pharm. Bull., 12, 1351 (1964).
that the rearranged product 9 retained the CD_{3} group at the N_{5} atom and that no interchange of methyl groups was detected. As with other related systems, the migration of the methyl group is most probably intermolecular. ${ }^{\text {. }}$ The driving force for these $\mathrm{OMe} \rightarrow$ NMe rearrangements is certainly the greater stability of the amido structures, a feature which has been observed with several monocyclic heterocycles and which we have recently observed also in the s-triazolo [4,3-a]-$1,3,5$-triazine series. ${ }^{4}$ On the other hand, it is well known that such rearrangements are promoted in the presence of small amounts of an alkyl halide. ${ }^{3}$

Except for an isolated example which we have described before, ${ }^{5}$ the formation of anhydro salts of the type 6 represents the first case in this series. There are, however, several examples of anhydro salt formation with other heterocycles, in particular with cinnolines ${ }^{6,7}$ and phthalazines. ${ }^{8,9}$ The formation of 10 could be therefore accomplished similarly from 6-chloro-1methylimidazo $[1,2-b]$ pyridazin-4-ium iodide, and this undergoes also a smooth displacement of the chlorine atom with hydrazine hydrate to give 11.

Experimental Section

Melting points were taken on a Kofler micro hot stage. Infrared spectra were recorded on a Perkin-Elmer 137 Infracord as KBr disks, nm - spectra were taken on a JEOL JNM-C-60HL spectrometer (tetramethylsilane as internal standard), and mass spectra were obtained on a CEC 21-110C instrument.

Methylation of 2-Phenylimidazo[1,2-b]pyridazin-6(5H)-one.A solution of $1,{ }^{2} 0.65 \mathrm{~g}, \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \tau 1.66\left(\mathrm{~s}, \mathrm{H}_{3}\right), 3.36(\mathrm{~d}$, $\left.\mathrm{H}_{7}\right), 2.25\left(\mathrm{~d}, \mathrm{H}_{8}\right), 2.75,2.20(\mathrm{~m}, \mathrm{Ph}), J_{7.8}=9.5 \mathrm{~Hz}$, in methanolic $\mathrm{KOH}(0.21 \mathrm{~g}$ of KOH in 20 ml of MeOH$)$ was treated with MeI $(1.03 \mathrm{~g})$ and the mixture was heated under reflux for 2 hr . The solvent was evaporated, the residue was treated with water (5 ml), and the precipitate was filtered off. Upon recrystallization from 65% EtOH the crystals (0.7 g) had mp 120-123 ${ }^{\circ}$; 30 mg was separated by tlc (DC Fertigplatten Kieselgel F-254, Merck) with a mixture of CHCl_{3} and $\mathrm{MeOH}(30: 1)$. Each of the separated three spots was eluted with MeOH . There were obtained 10 mg of 2 [$R_{f} 0.81 ; \mathrm{nmr}$ (DMSO- $d_{6}, 93^{\circ}$) $\tau 1.70$ $\left(\mathrm{d}, \mathrm{H}_{8}\right), 3.31\left(\mathrm{~d}, \mathrm{H}_{7}\right), 2.21\left(\mathrm{dd}, \mathrm{H}_{8}\right), 2.75,2.20(\mathrm{~m}, \mathrm{Ph}), 6.06$ (s, OMe), $J_{3,8}=0.6, J_{7,8}=9.5 \mathrm{~Hz}$; mass spectrum m/e 225 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 69.32 ; \mathrm{H}, 4.92 ; \mathrm{N}$, 18.66. Found: C, 69.64; H, 4.87 ; N, 18.32 .], 13 mg of 3 [mp 153 ${ }^{\circ}$; $R_{\mathrm{f}} 0.52$; mass spectrum $m / e 225\left(\mathrm{M}^{+}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\tau 2.40\left(\mathrm{~d}, \mathrm{H}_{3}\right), 3.42\left(\mathrm{~d}, \mathrm{H}_{7}\right), 2.24\left(\mathrm{dd}, \mathrm{H}_{8}\right), 2.7,2.3(\mathrm{~m}, \mathrm{Ph}), 6.20$ $(\mathrm{s}, \mathrm{NMe}), J_{3.8}=0.6, J_{7.8}=9.5 \mathrm{~Hz}$; ir $(\mathrm{KBr}) 1656 \mathrm{~cm}^{-1}$ (CO). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$: C, $69.32 ; \mathrm{H}, 4.92$; $\mathrm{N}, 18.66$. Found: $\mathrm{C}, 69.54 ; \mathrm{H}, 5.21$; $\mathrm{N}, 19.00$.], and the starting compound 1 ($2 \mathrm{mg}, R_{\mathrm{f}} 0.23$).
(3) J. W. Schulenberg and S. Archer, $O_{r g}$. React., 14, 24 (1965).
(4) J. Kobe, B. Stanovnik, and M. Tis̄ler, Tetrahedron, 26, 3357 (1970).
(5) S. Ostroversunik, B. Stanovnik, and M. Tis̆ler, Croat. Chem. Acta, 41, 135 (1969).
(6) D. E. Ames, J. Chem. Soc., 1763 (1964).
(7) D. E. Ames and H. Z. Kucharaka, ibid., 4924 (1963).
(8) A. T. Peters, F. M. Rowe, and C. I. Brodrick, ibid., 1249 (1948)
(9) T. Ikeda, S. Kanahara, and K. Aoki, Yakugaku Zasshi, 88, 521 (1968); Chem. Abstr., 69, $86 \cdot 334$ (1968).

6-Chloro-1-methyl-2-phenylimidazo[1,2-b] pyridazin-4-ium Iodide (4).-A suspension of 6 -chloro-2-phenylimidazo [1,2-b]pyridazine ${ }^{10}\left[2.30 \mathrm{~g} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 1.92\left(\mathrm{~d}, \mathrm{H}_{3}\right), 3.11\left(\mathrm{~d}, \mathrm{H}_{7}\right)\right.$, $\left.2.25\left(\mathrm{dd}, \mathrm{H}_{8}\right), 2.75,2.20(\mathrm{~m}, \mathrm{Ph}), J_{3.8}=0.6, J_{7.8}=9.3 \mathrm{~Hz}\right]$ in $\mathrm{EtOH}(80 \mathrm{ml})$ was treated with $\mathrm{MeI}(2.84 \mathrm{~g})$ and the mixture was heated in an autoclave at 160° for 5 hr . The separated product was filtered off ($2.9 \mathrm{~g}, 78 \%$) and upon recrystallization from EtOH it had mp 260-262 ${ }^{\circ}$; nmr (DMSO- d_{6}) $\tau 1.10\left(\mathrm{~d}, \mathrm{H}_{3}\right)$, $1.96\left(\mathrm{~d}, \mathrm{H}_{7}\right), 1.12\left(\mathrm{dd}, \mathrm{H}_{8}\right), 2.40(\mathrm{~m}, \mathrm{Ph}), 5.93(\mathrm{~s}, \mathrm{Me}), J_{3.8}=$ $0.6, J_{7,8}=9.6 \mathrm{~Hz}$.
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClIN}_{3}$: $\mathrm{C}, 42.01 ; \mathrm{H}, 2.98 ; \mathrm{N}, 11.31$. Found: C, 42.22; H, 3.44; N, 11.26.

6-Methoxy-1-methyl-2-phenylimidazo [1,2-b] pyridazin-4-ium Iodide (5).-A suspension of $4(1.86 \mathrm{~g})$ in a solution of sodium methylate in MeOH (prepared from 0.12 g of sodium in 20 ml of MeOH) was heated under reflux for 2 hr . The solvent was evaporated to dryness, ice water (5 ml) was added, and the residue was filtered off and crystallized from $\mathrm{EtOH}(1.1 \mathrm{~g}, 60 \%$): the product melted at 203°; the melt solidified at atout 205° and melted again at $249-250^{\circ}$; mass spectrum $m / e 225$ ($\mathrm{M}^{+}-$ $\mathrm{MeI}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.16\left(\mathrm{~d}, \mathrm{H}_{3}\right), 2.80\left(\mathrm{~d}, \mathrm{H}_{7}\right), 1.18\left(\mathrm{dd}, \mathrm{H}_{8}\right)$, $5.98(\mathrm{~s}, \mathrm{OMe}), 5.85(\mathrm{~s}, \mathrm{NMe}), 2.53(\mathrm{~m}, \mathrm{Ph}), J_{3.8}=0.6, J_{7.8}=$ 9.6 Hz .

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{IN}_{3} \mathrm{O}: ~ \mathrm{C}, 45.80 ; \mathrm{H}, 3.85 ; \mathrm{N}, 11.45$. Found: C, 45.60; H, 3.90; N, 11.46.

6-Trideuteriomethoxy-1-methyl-2-phenyl-3,7,8-trideuterio-imidazo[1,2-b]pyridazin-4-ium iodide (8) was prepared in the same manner as 5 , but using $\mathrm{CD}_{3} \mathrm{OD}$: mp 203°; mass spectrum $231\left(\mathrm{M}^{+}-\mathrm{MeI}\right)$; nmr $\left(\mathrm{CDCl}_{3}\right)$ 〒 5.85 ($\left.\mathrm{s}, \mathrm{NMe}\right)$, $2.52(\mathrm{~m}, \mathrm{Ph})$.
(10) B. Stanovnik and M. Tišler, Tetrahedron, 23, 2739 (1967).

10

11

6-Hydroxy-1-methyl-2-phenylimidazo [1,2-b] pyridazin-4-ium Anhydro Salt (6).-A suspension of $4(3.72 \mathrm{~g})$ in aqueous KOH $(20 \mathrm{ml}$ of 10% solution) was heated under reflux for 10 min . Upon cooling the separated product was filtered off, washed with ice water until neutral, and crystallized from $\mathrm{EtOH}(1.77 \mathrm{~g}$, 78%): mp 272-273 ${ }^{\circ}$; mass spectrum m/e $225\left(\mathrm{M}^{+}\right)$; nmr $\left(\right.$ DMSO- $\left.d_{6}\right) \tau 2.30\left(\mathrm{~s}, \mathrm{H}_{3}\right), 3.40\left(\mathrm{~d}, \mathrm{H}_{7}\right), 2.40\left(\mathrm{~d}, \mathrm{H}_{8}\right), 2.48(\mathrm{~m}$, $\mathrm{Ph}), 6.28(\mathrm{~s}, \mathrm{NMe}), J_{7.8}=9.6 \mathrm{~Hz}$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$: C, 69.32; $\mathrm{H}, 4.92 ; \mathrm{N}, 18.66$. Found: C, 68.99; H,4.62; N, 18.58.

Methylation of 6-Hydroxy-1-methyl-2-phenylimidazo[1,2-b]-pyridazin-4-ium Anhydro Salt.-A solution of the anhydro salt $6(0.9 \mathrm{~g})$ in $\mathrm{EtOH}(10 \mathrm{ml})$ was treated with $\mathrm{MeI}(1 \mathrm{~g})$ and the mixture was heated under reflux for 1 hr . Upon complete evaporation to dryness, $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ was added and after thorough mixing the solid was filtered off. The residue was crystallized from EtOH and had $\mathrm{mp} 249-250^{\circ}(0.2 \mathrm{~g})$. The compound was identified as 1,5 -dimethyl-2-phenylimidazo $[1,2-b]$ -pyridazin-6(5 H)-on-4-ium iodide (7), mixture melting point undepressed with an authentic specimen prepared from 3. The filtrate was evaporated to dryness and crystallized from EtOH to give 6-methoxy-1-methyl-2-phenylimidazo[1,2-b] pyrid-azin-4-ium iodide ($5,1.0 \mathrm{~g}$), mp 203° (after solidification of the melt, $\mathrm{mp} 249-250^{\circ}$) and mixture melting point with an authentic specimen undepressed.

Methylation of 6-Methoxy-2-phenylimidazo[1,2-b]pyridazine.A mixture of $2(1.12 \mathrm{~g})$, $\mathrm{MeI}(2.0 \mathrm{~g})$, and $\mathrm{MeOH}(80 \mathrm{ml})$ was heated in an autoclave at $150-155^{\circ}$ for 3 hr . Upon evaporation to dryness, $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ was added and the residue was filtered off. Crystallization from EtOH gave the pure 7 (0.4 g), mp $249-250^{\circ}$. The filtrate was evaporated and the residue was crystallized from EtOH to give $5(0.31 \mathrm{~g}), \mathrm{mp} 203^{\circ}$.

1,5-Dimethyl-2-phenylimidazo [1,2-b]pyridazin-6(5H)-on-4ium Iodide (7). A.-Compound 5 (50 mg) was heated just above its melting point in a sublimation tube for 5 min . Thereafter the tube was connected to vacuum (0.1 mm) and the temperature was raised to 240° to sublime off traces of the demethylated products. The residue (46 mg) was pure 7: mp 249-250 ${ }^{\circ}$; mass spectrum $m / e 225\left(\mathrm{M}^{+}-\mathrm{MeI}\right)$; ir (KBr) $1672 \mathrm{~cm}^{-1}$ (CO); $\mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \tau 1.26\left(\mathrm{~s}, \mathrm{H}_{8}\right), 2.94\left(\mathrm{~d}, \mathrm{H}_{7}\right), 1.68\left(\mathrm{~d}, \mathrm{H}_{8}\right), 2.46$ $(\mathrm{m}, \mathrm{Ph}), 6.04(\mathrm{~s}, 1-\mathrm{Me}), 6.22(\mathrm{~s}, 5-\mathrm{Me}), J_{7.8}=9.9 \mathrm{~Hz}$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{IN}_{3} \mathrm{O}$: C, 45.80; H, 3.85; N, 11.45. Found: C, 45.65; H, 3.81; N, 11.80 .
B.-A mixture of $3(0.45 \mathrm{~g}), \mathrm{MeOH}(30 \mathrm{ml})$, and $\mathrm{MeI}(0.5 \mathrm{~g})$ was heated in an autoclave at 160° for 3 hr . The solvent was evaporated and the residue was crystallized from $\mathrm{EtOH}(0.35 \mathrm{~g}$, 48%) , mp 249-250 ${ }^{\circ}$. The compound was identical with the product obtained as described under A.

1-Methyl-2-phenyl-5-trideuteriomethyl-3,7,8-trideuterioimidazo [1,2-b] pyridazin-6(5H)-on-4-ium iodide (9) was obtained from 8 in the same manner as described for the nondeuterated compound 7 under A: mp 249-250 ${ }^{\circ}$; mass spectrum $m / e 231$ $\left(\mathrm{M}^{+}-\mathrm{MeI}\right), 228\left(\mathrm{M}^{+}-\mathrm{CD}_{3} \mathrm{I}\right) ; \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) ~+6.03(\mathrm{~s}$, 1-Me), 2.44 (m, Ph).

Demethylation of 1,5-Dimethyl-2-phenylimidazo [1,2-b] pyrid-azin- $6(5 H)$-on-4-ium Iodide.-The compound $7(183 \mathrm{mg})$ was heated in a sublimation tube at $240^{\circ}(0.1 \mathrm{~mm})$ for 2 hr . The sublimate (28 mg) was identified as 5 -methyl-2-phenylimidazo-[1,2-b]pyridazin-6 $(5 H)$-one (3). The residue was composed of the starting material as the main component and a small amount of 6-hydroxy-1-methyl-2-phenylimidazo [1,2-b]pyridazin-4-ium anhydro salt (6) as shown by thin layer chromatography (DC Fertigplatten Kieselgel F-254, Merck, MeOH as solvent).

Rearrangement of 6-Methoxy-2-phenylimidazo[1,2-b] pyrid-azine.-The methoxy compound $2(225 \mathrm{mg}$) was heated in a sealed tube at 240° for 2 hr . The dark residue was treated with MeOH (5 ml) and purified by column chromatography (column diameter 18 mm , length 10 cm , filled with alumina type 507 C Fluka, for elution MeOH was used). The purified solution was evaporated to dryness and the residue (150 mg) was a mixture of three compounds.
A solution of this mixture (30 mg) in $\mathrm{MeOH}(2 \mathrm{ml})$ was submitted to tle (PSC Fertigplatten Kieselgel F-254, MeOH and $\mathrm{CHCl}_{3}, 1: 30$, as solvent) and the spots were separated and eluted
with MeOH . L pon evaporation of each solution there were obtained the starting compound $2(7 \mathrm{mg})$ and 5 -methyl-2-phenylimidazo [1,2-b] pyridazin-6(5H)-one (3) (17 mg).

When the same tlc procedure was applied, but MeOH was used as solvent, the spot with $R_{f} 0.48$ afforded after elution with MeOH pure 6-hydroxy-1-methyl-2-phenylimidazo[1,2-b]pyrid-azin-4-ium anhydro salt (6) (4 mg), identified by its melting point and ir spec:rum when they were compared with those of an authentic specimen.

6-Hydroxy-1-methylimidazo[1,2-b] pyridazin-4-ium Anhydro Salt (10).-A suspension of 6-chloro-1-methylimidazo [1,2-b]-pyridazin-4-ium :odide ${ }^{1}$ [1.95 g; nmr (DMSO- d_{6}) $+1.32\left(\mathrm{~d}, \mathrm{H}_{2}\right)$, 1.08 (dd, H_{3}), 1.73 (d, H_{7}), 0.92 (dd, H_{8}), 5.75 (s, NMe), $J_{2.3}=$ $2.1, J_{3,8}=0.6 J_{7.8}=9.6 \mathrm{~Hz}$) in aqueous $\mathrm{KOH}(1.12 \mathrm{~g}$ of KOH in 7 ml of water) was heated under reflux for about 10 min until a complete dissolution was achieved. After cooling, neutralization with concentrated hydrochloric acid, and evaporation to dryness, the residue was sublimed at $220^{\circ}(0.1 \mathrm{~mm})(0.7 \mathrm{~g}, 47 \%): \mathrm{mp}$ $125-127^{\circ}$; mass spectrum $m / e 149\left(\mathrm{M}^{+}\right)$; nmr (DMSO- d_{6}) τ $2.25\left(\mathrm{~d}, \mathrm{H}_{2}\right), 2.06\left(\mathrm{dd}, \mathrm{H}_{3}\right), 3.53\left(\mathrm{~d}, \mathrm{H}_{7}\right), 2.30\left(\mathrm{dd}, \mathrm{H}_{8}\right), 6.30$ (s, NMe), $J_{2.3}=2.0, J_{3,8}=0.6, J_{7.8}=9.5 \mathrm{~Hz}$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 56.37 ; \mathrm{H}, 4.73 ; \mathrm{N}, 28.18$. Found: C, 56.43; H, 4.85; N, 27.87.

6-Hydrazino-1-methylimidazo[1,2-b]pyridazin-4-ium Iodide (11).-A mixture of 6-chloro-1-methylimidazo $1,2-b]$ pyridazin-4-ium iodide ${ }^{1}(1.48 \mathrm{~g})$ and hydrazine hydrate ($5 \mathrm{ml}, 80 \%$) was heated under reflux for 10 min . Upon cooling the separated product was filtered off, washed with water, and crystallized from $\mathrm{EtOH}(0.8 \mathrm{~g}, 54 \%), \mathrm{mp} 260^{\circ}$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{IN}_{5}$: C, 28.88; H, 3.46; N, 24.07. Found: C, 28.87; H, 3.70; N, 24.51.

Registry No. -1, 34876-76-1; 2, 1844-61-7; 3, 1845-04-1; 4, 34876-79-4; 5, 34876-80-7; 6, 34876-$81-8 ; 7,34876-82-9 ; 8,34876-83-0 ; 9,34876-84-1$; $10,34876-85-2$; 11, 34876-86-3.

Acknowledgment.-We are indebted to Dr. V. Kramer and Dr. J. Marsel, Institute J. Stefan, for recording the mess spectra.

Ion Radicals. XXV. The Reactions of Thianthrene and Phenothiazine Perchlorates with Nitrite Ion, Pyridine, and Other Nucleophiles ${ }^{1}$

Henry J. Shine, ${ }^{*}$ Juana J. Silber, ${ }^{2}$ Robert J. Bussey, ${ }^{ }$and Tadashi Okuyama ${ }^{3}$
Department of Chemistry, Texas Tech University, Lubbock, Texas 79409

Received February 4, 1972

Abstract

Reaction of thianthrene perchlorate (1) with sodium nitrite in nitromethane solution gave thianthrene 5-oxide (2) and nitric oxide, each in greater than 90% yield. Reaction with ${ }^{18} \mathrm{O}$-labeled nitrite ion showed that the oxygen in 2 came from the nitrite ion. Reaction of 1 with sodium nitrate gave 2 ($92,98 \%$) and nitrogen dioxide $(71,75 \%)$. Reaction of 1 with pyridine in nitromethane solution gave 73% of N-(2 -thianthrenyl)pyridinium perchlorate (3) and 90% of thianthrene (4), the yields being calculated after compensation for the reaction of 1 with residual water in the pyridine. Reaction of solid 1 with neat pyridine was violent and was accompanied by explosion and flame unless carried out with small amounts of 1 , in which case the products were again 3 and 4. Attempts to prepare 3 directly by the oxidation of 4 with iodine and silver perchlorate in the presence of pyridine failed. Reaction of phenothiazine perchlorate (5) with nitrite ion gave 3-nitrophenothiazine (96%) and phenothiazine (6) (100%). Oxidation of 6 with iodine and silver nitrite in acetonitrile solution gave 3-nitrophenothiazine in 70% yield. Reaction of 5 with pyridine gave N-(3-phenothiazinyl)pyridinium perchlorate (7) (78, 84%), $6\left(72,80 \%\right.$), and $3,10^{\prime}$-biphenothiazine (8) ($2.1,9 \%$). Attempts to כrepare 7 directly by the oxidation of 6 with iodine and silver perchlorate in the presence of pyridine gave mixtures of 7 and unidentified green solids whose separation was too difficult to achieve. Reaction of 5 with chloride and bromide ion gave the 3- and 3,7dihalogenophenothiazines in approximately 75 and 8% yields, respectively, and, in each case, 6 in $8.5-90 \%$ yield. Reaction of 5 with fluoride ion gave only $6(38 \%), 8(17 \%)$, and an unidentified green solid.

In earlier publications, we have described the reactions of thianthrene perchlorate (1) with water, ${ }^{4}$
(1) (a) Part XXIV: H. J. Shine and J. J. Silber, J. Amer. Chem. Soc., 94, 1026 (1972). (b) Part XXIII: C. V. Ristagno and H. J. Shine, J. Org Chem., 36, 4050 (1971). Supported by the National Science Foundation, Grant No. GP-25989X.
(2) Taken in part from the Ph.D. dissertation of Juana J. Silber, Texas Tech University, Jan 1972.
electron-rich aromatics, ${ }^{5}$ and dry ammonia. ${ }^{18}$ In each of these reactions the nucleophile attacked the thianthrene ring at sulfur (the 5 position) to form a 5 -sub-

[^41]stituted thianthrene. In each case thianthrene was also formed. Kinetic data in two cases ${ }^{4,5}$ allowed us to propose that the reactions involved the thianthrene dication which was formed by disproportionation of the cation radical when 1 was placed in solution. These reactions are illustrated with eq $1-3$, in which only the 5 position of the thianthrene ring is shown.

Equation 4 illustrates the reaction with ammonia in which the heteroatom analog of the allylic cation is formed as part of the union of two thianthrene rings. The equations show that thianthrene is always an essential product of reaction.

The reaction of pyridine with aromatic hydrocarbons undergoing chemical ${ }^{6}$ and anodic ${ }^{7-10}$ oxidation has received quite a lot of attention. We have reported on the reaction between perylene perchlorate and pyridine, ${ }^{1 \mathrm{~b}}$ and have now studied the analogous reactions of 1 and phenothiazine perchlorate (5) with pyridine.

Reactions of cation radicals with nitrite and nitrate ions are not as well known. Oxidation of phenothiazine by ferric chloride in the presence of nitrite ion gave 3-nitrophenothiazine in good yield, and the reaction is thought to involve the phenazothionium ion. ${ }^{11}$ Reaction of perylene perchlorate with nitrite ion gave good yields of 3 -nitroperylene. The reaction can be carried out with in situ formation of the cation radical by using solutions of perylene, iodine, and silver nitrite. ${ }^{12}$

Anodic nitration, in which the involvement of cation radicals might be assumed, seems to have been confined to the oxidation of aromatics in nitric acid solution. ${ }^{13,14}$

Since 2 -nitrothianthrene is not readily prepared, ${ }^{15}$ we thought that reaction of 1 with nitrite ion might be a convenient way of making that compound. We found this not to be the case, and our findings led also to a study of the reaction of 1 with nitrate ion. Reactions of phenothiazine perchlorate (5) with nitrite ion, halide ions, water, and hydroxide ion were also studied.

[^42]
Results and Discussion

Reactions of Thianthrene Perchlorate (1).-Reaction of pyridine with 1 was very rapid. When carried out in solution (nitromethane) the color of 1 was discharged within seconds. Reaction of 1 with neat pyridine was violent and accompanied on one occasion by flame and explosion. Controlled reaction of 1 with neat pyridine was achieved by adding small amounts of 1 to swirling pyridine, and led, as with reaction in solution, to essentially equimolar amounts of N -(2thianthrenyl)pyridinium perchlorate (3) and thianthrene (4). We do not have kinetic evidence on which to base a mechanism for this reaction, since reaction was too fast to be adapted to kinetic study by the spectrophotometric technique used earlier. ${ }^{4,5}$ By analogy with the earlier work we would recognize reaction as occurring with the dication formed by dispropor-

tionation of the cation radical (Scheme I), although we cannot rule out the stepwise sequence of Scheme II.

Scheme II

Marcoux has shown recently that anodic pyridination of 9,10 -diphenylanthracene via the disproportionation route is not unreasonable. ${ }^{10}$

The identity of 3 was established by analysis and Zincke degradation to known 2 -aminothianthrene. Substitution at nitrogen rather than at ring carbon of pyridine is consistent with our findings of the electrophilic nature of the earlier reactions, which, in fact, involve the thianthrene dication. ${ }^{4,5}$ One would anticipate therefore that in the pyridination reaction the dication would not readily attack the 3 position of pyridine. The reaction we observe is very fast. There-
fore, we can understand that a pyridinyl carbon atom is not involved in bonding with the thianthrene ring. It is necessary to stress also that N-pyridinyl bonding occurs at the 2 and not the 5 position of the thianthrene ring. In all of our earlier reactions with other nucleophiles the contrary occurred. ${ }^{4,5}$ The reason, we believe, is that in the earlier reactions the dicationic intermediate (depicted as 9-11), formed in the first step of

reaction of the nucleophile with the thianthrene dication, can easily lose either one or two protons and form a stable product. This is not the case if pyridination occurs at the 5 position. The product (12) would re-

main dicationic and for this reason its formation is likely to be reversible. In contrast, attack of pyridine at the 2 position of the thianthrene dicaticn would be followed by proton loss (eq 5) and give the monocationic product, 3.

Attempts to prepare 3 by oxidation of thianthrene (4) with iodine and silver perchlorate in the presence of pyridine failed. Iodine-silver perchlorate in nitromethane in the absence of pyridine oxidzed 4 only slowly. Purple solutions were obtained, characteristic of the cation radical, and these gave, finally, thianthrene 5 -oxide (2) as product, apparently from reaction with the residual water in the solvent. ${ }^{4}$ Although oxidation was slow, silver iodide precipitated early in reaction, presumably from reaction of iodine with silver perchlorate. ${ }^{16}$ If carried on long enough, reaction led to almost total oxidation of 4 to 2 . On the other hand, only 4 was recovered from reactions of 4 with iodinesilver perchlorate in the presence of pyridine. We
believe that the iodine becomes complexed by pyridine ${ }^{17}$ and is no longer available for oxidation of thianthrene. These reactions were not pursued further.

Reaction of nitrite ion with 1 is quite unlike the analogous reactions with perylene ${ }^{12}$ and phenothiazine (see later) perchlorates. These lead to ring nitration. In contrast, 1 is converted into thianthrene 5 -oxide (2). The same occurs in reaction of 1 with nitrate ion. Furthermore, reaction of 1 with ${ }^{18} 0$-labeled nitrite ion (1.6 atom $\%$) gave 2 with an ${ }^{18} \mathrm{O}$ content (1.3 atom \%) that could have come only from the nitrite ion. We propose that these reactions involve the cation radical (Scheme III). Our reasons for so doing are

deductive because once again reactions were too fast for kinetic study by our spectrophotometric technique. ${ }^{4,5}$ Scheme III designates reaction via the negatively charged oxygen of the ambident nitrite ion at a position of high positive charge density, which is in accord with the way in which this nucleophile is understood to react. An intermediate radical (13) is formed, which can decompose into a stable product (2) and a stable radical (nitric oxide). The intermediate 14 in the nitrate reaction is shown to decompose analogously, the stable radical being nitrogen dioxide. If the reaction were to involve the dication rather than the cation radical (see eq 1) the nitrosonium ion (eq 6) and nitro-

nium ion (eq 8) would be formed, and these would have to undergo slibsequent reduction by thianthrene (eq 7 and 9) to account for the products. The cation
(17) R. Foster, ' Organic Charge-Transfer Complexes,'" Academic Press, New York, N. Y., 1969, p 276.
radical formed also (eq 7 and 9) would have to reenter into disproportionation (eq 1). While we cannot rule out these sequences (eq 1,6 , and 7 ; eq 1,8 , and 9), we feel that the two electrophiles, NO^{+}and $\mathrm{NO}_{2}{ }^{+}$, would not be limited to the oxidation reactions of eq 7 and 9 , but would also attack the thianthrene ring. However, no ring-substituted products were obtained, the only organic product detected by tle being 2 .
Yet another route to product formation needs to be considered. Thianthrene (4) ${ }^{18}$ and other organic sulfides ${ }^{19,20}$ are oxidized to sulfoxides by dinitrogen tetroxide. If electron exchange between the cation radical and nitrite ion were to occur (eq 10) the two

$$
\begin{equation*}
\stackrel{+}{\mathrm{S}}+\mathrm{NO}_{2}-\ddot{\mathrm{S}}+\mathrm{NO}_{2} \tag{10}
\end{equation*}
$$

products (4 and nitrogen dioxide) would be available for whatever oxidation pathway dinitrogen tetroxide and 4 engage in. We do not believe that this (eq 10) is the way in which nitrite ion and 1 react, however. In none of our work have we been able to detect the formation of 4 . If reaction were to occur according to eq 10 we might expect some 4 to survive. Further, when nitrogen was bubbled through a solution while 1 reacted with nitrite ion there was no fall in yieids of 2 and nitric oxide, and again no sign of formation of 4. If electron exchange (eq 10) preceded oxidation we would anticipate that some nitrogen dioxide would be carried out of solution by the nitrogen-gas carrier. Thianthrene was not detected (tlc) in reactions of 1 with nitrate ion and, in analogy with the reasoning given above, we feel that electron exchange between cation radical and nitrate ion (to give 4 and NO_{3}) does not take place either. Thus, we feel that Scheme III best describes our results.

Reactions of Phenothiazine Perchlorate (5). -In contrast with 1, phenothiazine perchlorate does not undergo nucleophilic reactions at sulfur. ${ }^{11}$ Reaction with nitrite ion, pyridine, chloride, and bromide ion led to phenothiazine and a 3 -substituted phenothiazine according to the following stoichiometry (eq 11).

2

In the case of pyridine, of course, appropriate changes in eq 11 are necessary. We do not know yet the mechanisms of these reactions. The possibilities oither direct reaction with the cation radical or reaction with the dication formed in disproportionation need to be considered and solved by kinetic work. Reaction of 5 with chloride and bromide ion may involve electron exchange first, followed by halogenation by molecular halogen. Chlorination and bromination of pheno-

[^43]thiazine occur very readily, ${ }^{21}$ although ordinarily polyhalogenated phenothiazines are formed. Preparation of monochloro- and monobromophenothiazine is usually achieved by reductive halogenation of the 5 -oxide (see Experimental Section). In the reaction of 5 with bromide ion, the yields of products were not affected much when nitrogen was bubbled through the solution while reaction was occurring. The formation of both 3,7-dichloro- and 3,7-dibromophenothiazine in our reactions suggests that the reactions are not simple nucleophilic substitutions and mechanistic exploration of the reactions is needed.

Iodide ion, if used in excess, reduces 5 completely. Iodine will oxidize phenothiazine and, depending on the conditions, phenazothionium periodide ${ }^{21}$ or $3,10^{\prime}$ biphenothiazine (8) ${ }^{22}$ are obtained. We have used iodine as the oxidant in the direct "nitration" of phenothiazine by nitrite ion. Obviously, therefore, phenothiazine and iodine form an easily reversible redox system, and it is understandable that reduction of the cation radical by iodide ion could be achieved only by using an excess of iodide ion. We encounter also the same experience with iodide ion and 5 as with iodide and 1^{4} and perylene perchlorate, ${ }^{1 \mathrm{~b}}$ namely, that, although iodide ion is a good nucleophile, it is too easily oxidized by the cation radical to permit nucleophilic substitution in the ring.

Nucleophilic substitution by fluoride ion did not occur even though oxidation of fluoride ion by the cation radical is not possible. Apparently, fluoride ion is not sufficiently nucleophilic, as was discovered in the perylene perchlorate case. ${ }^{16}$ Fluorination of aromatics by xenon fluoride was once thought to involve reaction between the aromatic cation radical and fluoride ion, but this is now believed not to be the case. ${ }^{23}$

Reaction of 5 with fluoride ion systems gave phenothiazine (6), 3,10'-biphenothiazine (8), and an unidentified green solid (or solids). ${ }^{24}$ The same behavior was observed in reactions of 5 with water and hydroxide ion solutions. These are not unexpected results. The dimer 8 appears to be formed from the phenothiazine cation radical in basic or weakly acidic solutions. Tsujino has reported that the dimer is a major product of reaction of phenothiazine in 90% sulfuric acid, and represents the cation radical as undergoing deprotonation in that medium. ${ }^{25}$ We feel that this cannot be correct since the esr spectrum of the cation radical is so well established, not only in acid solutions. ${ }^{26,27}$ but also in acetonitrile, ${ }^{26,28}$ and the cation radical is stable even in acetic acid solution. ${ }^{27}$ Furthermore, we have found that solutions of 5 in acetonitrile obey Beer's law at the maxima 437 and 515 nm over the concentrations tested, namely $1.6-15.2 \times 10^{-4} M$. Deprotonation and dimerization would certainly be encouraged in these circumstances (acetic acid and acetonitrile) as com-
(21) C. Bodea and I. Silberg, Advan. Heterocycl. Chem., 9, 321 (1968).
(22) (a) Y. Tsujino, Tetrahedron Lett., 2545 (1968); (b) Nippon Kagaku Zasshi, 90, 490 (1969).
(23) M. J. Shaw, H. H. Hyman, and R. Filler, J. Org. Chem., 36, 2917 (1971).
(24) The nature of green solid(s) from phenothiazine reactions is discussed by Bodea and Silberg, ref 21, p 377.
(25) Y. Tsujino, Nippon Kagaku Zasshi, 90, 809 (1969). We thank Professor Kimio Ohno for translating this article.
(26) J.-P. Billon, G. Cauquis, and J. Combrisson, J. Chim. Phys., 61, 374 (1964).
(27) H. J. Shine and E. E. Mach, J. Org. Chem., 30, 2130 (1965).
(28) S. Odiot and F. Tonnard, J. Chim. Phys., 61, 382 (1964).
pared with solution in 90% sulfuric acid. Therefore, we feel that dimerization occurs when 5 reacts with bases, and this is what has complicated the reactions with most of the nucleophiles used by us, i.e., pyridine, fluoride ion, water, and hydroxide ion. These reactions may be complicated further because the dimer 8 is easily oxidized ${ }^{22,25}$ giving rise to the so-called green products.

Deprotonation, dimerization, and oxidation of the dimer are undoubtedly the cause of the complexity of the reaction of phenothiazine with iodine, silver perchlorate, and pyridine. Instead of the pyridinium compound (7) a mixture of colored solids was obtained in which 7 was present but could not be separated cleanly. Phenothiazine, its dimer 8, and 7 have now been found to undergo anodic oxidation in acetonitrile at closely similar potentials, and both oxidized 8 and oxidized 7 appear to react with pyridine. ${ }^{23}$ It is not surprising, therefore that our attempt at the pyridination of 6 in the presence of excess of iodine-silver perchlorate should have given a mixture of products.
Reaction of 5 with nitrite ion was clean and gave an excellent yield of 3 -nitrophenothiazine. Until recently this compound was not easily made. Direct reaction either by the ferric chloride-nitrite ion ${ }^{11}$ or our iodine-silver nitrite method now gives 3 -nitrophenothiazine in good yield. Reaction of 6 with nitrite ion in acidic media is described as giving colored prod$u^{u c t s}{ }^{30}$ while reaction in acetic acid-chloroform gave pure 3,7-dinitrophenothiazine. ${ }^{31}$

Experimental Section

Acetonitrile was Eastman anhydrous grade ($<001 \%$ water). Nitromethane and methylene chloride were Eastman Spectro Grade and were redistilled over phosphorous pentaxide. Each solvent was stored over molecular sieve in a septum-capped bottle and removed by syringe when needed.
Phenothiazine was crystallized from butanol, phenothiazine 5 -oxide from ethanol, and thianthrene from acetone.
Thianthrene perchlorate (1) was prepared by the oxidation of thianthrene with perchloric acid. ${ }^{4}$ Iodimetric assay gave $98-100 \%$ cation radical content consistently.
Phenothiazine perchlorate (5) was prepared either from disproportionation of an equimolar mixture of phencthiazine and phenothiazine 5 -oxide in 70% perchloric acid (Billon's methods ${ }^{32}$) or by the oxidation of phenothiazine with iodine, as follows. A solution of 420 mg (2 mmol) of silver perchlorate in 3 ml of acetonitrile was added to a solution of $400 \mathrm{mg}(2 \mathrm{mmol})$ of phenothiazine and 270 mg (1 mmol) of iodine in 40 ml of methylene chloride. After 30 min of stirring the precipitate was filtered off and the filtrate was poured into 180 ml of dry ether. The green-black crystalline precipitate was filtered on glass paper and dried under vacuum, and gave $210 \mathrm{mg}(35 \%)$ of 5 .
A sample of 5 prepared by Billon's method was analyzed. ${ }^{33}$
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{4} \mathrm{SCl}: \mathrm{C}, 48.48 ; \mathrm{H}, 3.17 ; \mathrm{N}, 4.70$; S, 10.94; Cl, 12.02. Found: C, 48.24; H, 3.C4; N, 4.69; S, 10.73; Cl, 11.87 .
Thereafter, 5 samples were assayed iodimetrically A weighed amount of 5 was dissolved in a solution of tetrabutylammoniun iodide (TBAI) in acetonitrile. The liberated iodine was titrated potentiometrically with sodium thiosulfate after adding a small amount of water. ${ }^{\text {bb }}$ Phenothiazine is oxidized by iodine. Therefore, iodimetric assay was successful only if a severalfold excess of TBAI was used. Analyses were consistently in the range of $95-98 \%$ cation radical content. After titration, the

[^44]solution was extracted with benzene, placed on a column of silica, and eluted with benzene to give phenothiazine in 90% and better yield.

Solutions of 5 , prepared in a sealed apparatus under vacuum in acetonitrile which had been degassed by the freeze-thaw technique, obeyed Beer's law over the range of concentrations used, namely $1.6-15.2 \times 10^{-4} M$, at $437 \mathrm{~nm}(\epsilon 6020)$ and 515 $(10,300)$, the two maxima in the visible spectrum of the phenothiazine cation radical. ${ }^{27}$
Halogenophenothiazines.-Authentic samples were prepared for spectroscopic characterization by reductive halogenation of phenothiazine 5-oxide. ${ }^{34}$ Each pair of mono- and dihalogenophenthiazines was separated by column chromatography [silica gel, petroleum ether (bp 30-60 ${ }^{\circ}$)-ethyl ether, $2: 1$]. 3-Chlorophenothiazine, $\mathrm{mp} 200-202^{\circ}$ (benzene) (lit. ${ }^{35} \mathrm{mp} 201-201.5^{\circ}$), had $\lambda_{\max }$ (methylene chloride) at $320 \mathrm{~nm}\left(\epsilon 4.13 \times 10^{3}\right.$) and 258 $\left(3.85 \times 10^{4}\right)$. 3,7-Dichlorophenothiazine, mp 220-221 ${ }^{\circ}$ (benzene) (lit. ${ }^{22 \mathrm{~b}} \mathrm{mp} \mathrm{219-220}^{\circ}$), had $\lambda_{\max }$ (methylene chloride) at $322 \mathrm{~nm}\left(\epsilon 5.45 \times 10^{3}\right)$ and $260\left(4.6 \times 10^{4}\right)$. 3-Bromophenothiazine, mp 182-183 ${ }^{\circ}$ (benzene) (lit. ${ }^{36} \mathrm{mp} 181.5^{\circ}$), had $\lambda_{\max }$ (methylene chloride) at $320 \mathrm{~nm}\left(\epsilon 5.0 \times 10^{3}\right)$ and $258.5(4.7 \times$ 104). 3,7-Dibromophenothiazine, $\mathrm{mp} 199-200^{\circ} \mathrm{dec}$ (lit. ${ }^{77} \mathrm{mp}$ $206-207^{\circ} \mathrm{dec}$), had $\lambda_{\max }$ (methylene chloride) at $324 \mathrm{~nm}(\epsilon 6.7 \times$ 10^{3}) and $261\left(5.9 \times 10^{4}\right)$.
Reaction of 1 with Nitrite Ion.-To stirred solution of 33.9 mg (0.107 mmol) of 1 in 20 ml of dry nitromethane was added an excess ($500 \mathrm{mg}, 6.6 \mathrm{mmol}$) of solid, dry sodium nitrite. Some sodium nitrite remained undissolved. The purple color of the solution turned a yellowish-brown immediately, and slowly became colorless. (When a similar reaction was carried out under nitrogen the yellow-brown color was not observed, indicating that it was caused by the air oxidation of nitric oxide to nitrogen dioxide.) Tle of the filtered colorless solution gave only one spot identified as thianthrene 5 -oxide (2). Column chromatography (10% ether in benzene on a silica column) gave 2, mp 143° (ethanol). Spectroscopic assay in acetonitrile at $242 \mathrm{~nm}\left(\epsilon 1.67 \times 10^{4}\right)$ gave a yield of 88%. Similar experiments gave yields of 95 and 100%.

Quantitative Assay of Nitric Oxide.-Reaction of 1 with nitrite ion gave nitric oxide as the second product. This was assayed twice in separate experiments. The experiments were carried out under a stream of nitrogen in an apparatus and gas-bottle chain which had been flushed with dry nitrogen for 4 hr previously. The nitric oxide formed in the reaction was carried into a series of two bottles, each containing 100 ml of sulfuric acid and 2 ml of nitric acid. At the end of the reaction the nitrosylsulfuric acid in the absorption bottles was determined by the permanganate-ferrous ammonium sulfate method. ${ }^{38}$ The two experiments beginning with 85.2 and 78.3 mg of 1 , respectively, gave 96 and 90% of theoretical nitric oxide and 91 and 89% of theoretical 2.

Reaction of 1 with ${ }^{18} \mathrm{O}$-Nitrite Ion.-Labeled nitrite ion was prepared with the use of 1.6% enriched ${ }^{18} O$ water. ${ }^{39}$ Reaction with 1 was carried out, and mass spectrometry showed that the ${ }^{18} \mathrm{O}$ content of the isolated 2 was 1.3 atom $\%$.

Reaction of 1 with Nitrate Ion.-Sodium nitrate was used as described for sodium nitrite. The purple color of the solution of 1 changed to brown even under a nitrogen atmosphere, indicating the formation of nitrogen dioxide. Thianthrene 5-oxide was determined as described above. Nitrogen dioxide was determined by absorption in sulfuric acid and titration by the permanganate-ferrous ammonium sulfate method. ${ }^{38}$ Two experiments beginning with 70.9 and 74.6 mg of 1 gave 73 and 84% of nitrogen dioxide and 92 and 98% of 2 .

Reaction of 5 with Nitrite Ion.-A solution of 90 mg (0.301 mmol) of 5 in 10 ml of acetonitrile was added dropwise to a suspension of 1 g of sodium nitrite in 10 ml of acetonitrile. The
(34) H. Gilman and J. Eisch, J. Amer. Chem. Soc., 77, 3862 (1955).
(35) E. A. Nodiff and M. Hausmann, J. Org. Chem., 29, 2453 (1964).
(36) J. Cymerman-Craig, W. P. Rogers, and G. P. Warwick, Aust. J. Chem., 8, 252 (1955).
(37) S. Bodea and M. Raileanu, Justus Liebigs Ann. Chem., 631, 194 (1960).
(38) G. C. Whitmarck, C. J. Holdord, E. St. Clair Gantz, and G. B. L. Smith, Anal. Chem., 23, 464 (1951).
(39) C. A. Bunton, D. R. Llewellyn, and G. Stedman, J. Chem. Soc., 563 (1959).
orange solution was diluted with 20 ml of benzene, washed with $0.1 M$ sodium hydroxide and water, and evaporated to dryness under vacuum. The residue, 65 mg , was chromatographed on a silica column. Elution with benzene gave $31 \mathrm{mg}(0.15 \overline{\mathrm{mmol}}$,
 ether gave 35 mg ($0.143 \mathrm{mmol}, 96 \%$) of deep violet 3-nitrophenothiazine, $\mathrm{mp} 210-211^{\circ}$ (lit. ${ }^{11} \mathrm{mp} 212^{\circ}$), $\lambda_{\max }$ (ethanol) 454, 309, and 246 nm . Continued elution with ether gave 2 mg of unidentified orange solid.

Elemental analysis ${ }^{33}$ of the 3-nitrophenothiazine was in excellent agreement with required values.
Reaction of Phenothiazine with Iodine and Silver Nitrite.To a solution of 1.0 g (5 mmol) of phenothiazine and 635 mg (2.5 mmol) of iodine in 100 ml of acetonitrile was added 770 mg (5 mmol) of silver nitrite in 20 ml of acetonitrile. Silver iodide was filtered off and the solvent was removed under vacuum, giving 1.16 g of black residue. Chromatography on a silica column gave 854 mg ($3.5 \mathrm{mmol}, 70 \%$) of crude 3 -nit-ophenothiazine, mp 198-199 ${ }^{\circ}$. Crystallization from benzene gave mp 210°.
Reaction of 1 with Pyridine.-Reaction was carried out either in neat pyridine or in nitromethane solution. Reaction in neat pyridine is violent and may be hazardous. On one occasion the mixture burst into flames. No trouble was encountered with the use of small amounts of 1 and rapid swirling of the mixture. Addition of pyridine to a solution of 1 in nitromethane caused rapid change from a purple to a yellow solution. When nitromethane was used pyridinium perchlorate precipitated and was filtered off before proceeding further. The disadvantage to using nitromethane was that, although the solvent was dried, residual water reacted with the 1 and gave more thianthrene 5 -oxide than was obtained with the use of dry, neat pyridine. When 1 reacts with water, both thianthrene 5 -oxide and thianthrene are formed. ${ }^{4} \quad$ When 1 reacts with pyridine, both N-(2-thianthrenyl)pyridinium perchlorate (3) and thianthrene are formed. Therefore, all reactions gave four products: thianthrene, thianthrene 5 -oxide, 3, and pyridinium perchlorate. These were separated and assayed as follows. The solution (whether in pyridine alone or in nitromethane-pyridine) was evaporated to dryness under vacuum to remove excess pyridine. Solid pyridinium perchlorate, if present, was filtered off before evaporation. The dry residue was dissolved in nitromethane and extracted with small amounts of cyclohexane until tlc of the nitromethane solution showed absence of thianthrene and its 5 -oxide. The cyclohexane portions were combined and evaporated to dryness. The residue was dissolved in acetonitrile and analyzed spectroscopically for thianthrene and the 5 -oxide.

The nitromethane solution, containing 3 and pyridinium perchlorate, was evaporated to dryness. The residue was washed with water to remove pyridinium perchlorate, and repeatedly with benzene or cyclohexane to remove traces of thianthrene and thianthrene 5-oxide. Crystallization from aqueous methanol gave yellow 3, mp 206-207 ${ }^{\circ}$, $\lambda_{\max }$ (acetonitrile) $255 \mathrm{~nm}(\epsilon 2.3$ $\times 10^{4}$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{4} \mathrm{~S}_{2} \mathrm{Cl}: \mathrm{C}, 51.84 ; \mathrm{H}, 3.04 ; \mathrm{N}$, 3.60 ; S, 16.28; Cl, 9.00. Found: C, $51.94 ; \mathrm{H}, 2.86$; N, 3.84 ; S, 16.31; Cl, 8.87.

Quantitative assay of 3 , before the washed and dried solid residue was crystallized, was made spectroscopically in acetonitrile at 255 nm . A typical reaction of $1(53.7 \mathrm{mg}, 0.170 \mathrm{mmol})$ with Eastman Spectro Grade pyridine (not dried further) gave 19.4 mg (0.089 mmol) of thianthrene, 11.2 mg (0.048 mmol) of thianthrene 5 -oxide, and $12.5 \mathrm{mg}(0.032 \mathrm{mmol})$ of 3 . A typical reaction of $1(90.8 \mathrm{mg}, 0.287 \mathrm{mmol})$ in nitromethane solution gave 30.3 mg (0.140 mmol) of thianthrene, 25.2 mg (0.108 mmol) of thianthrene 5 -oxide, and 10.3 mg (0.026 mmol) of 3. After compensating for reaction with water these results correspond with 87 and 73% yields of 3 , respectively.

Degradation of $\mathbf{3}$ into 2 -Aminothianthrene.-Aqueous sodium hydroxide ($15 \%, 5 \mathrm{ml}$) was added to a solution of 27.5 mg of 3 in 30 ml of methanol under a nitrogen atmosphere. A red precipitate and solution formed during 3 hr of stirring. These were extracted with benzene, the benzene was removed under vacuum, and the red residue was dissolved in 5 ml of methanol To this was added 15 ml of concentrated hydrochloric acid, and the mixture was stirred for 15 hr . The yellow solution was made alkaline and extracted with benzene. Tle showed 2 aminothianthrene and one other spot ($R_{\mathrm{f}} 0$) only. Column chromatography (benzene on silica gel) gave 43% of 2 -amino-
thianthrene, mp 255-256 ${ }^{\circ}$ (ethanol), shown to be identical with an authentic sample. ${ }^{40}$

Reaction of 5 with Pyridine.-To a stirred solution of 1.21 g (4.05 mmol) of 5 in acetonitrile was added $0.4 \mathrm{ml}(4.9 \mathrm{mmol})$ of pyridine. The solution became green immediately but turned orange-red over a period of 5 hr . Evaporation of the solvent and extraction of the residue with benzene left a dark residue. The benzene-soluble portion was evaporated, giving 467 mg of a green solid. Chromatography of this solid on a silica column gave 290 mg (72%, based on the stoichiometry of the reaction) of phenothiazine, $\mathrm{mp} 185-186^{\circ}$, and 50 mg ($0.126 \mathrm{mmol}, 2.1 \%$) of $3,10^{\prime}$-biphenothiazine (8), mp 196-198 ${ }^{\circ}$ (acetonitrile) (lit. ${ }^{22}$ $\mathrm{mp} 199-200^{\circ}$), nmr spectrum in agreement with nmr of authentic compound, $\lambda_{\text {max }}$ (methylene chloride) $319 \mathrm{~nm}\left(\epsilon 0.95 \times 10^{4}\right.$) and 259 (1.04×10^{5}). Crystallization of the dark residue gave 600 mg ($1.59 \mathrm{mmol}, 78 \%$) of brick-red N-(3-phenothiazinyl)pyridinium perchlorate (7), mp 260-261 ${ }^{\circ}$ (aqueous ethanol).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SCl}$: C, $54.2 ; \mathrm{H}, 3.48 ; \mathrm{N}$, 7.43; S, 8.51; Cl, 9.41. Found: C, 54.1 ; $\mathrm{H}, 3.73$; $\mathrm{N}, 7.98$; S, 8.58; Cl, 9.80.

Compound 7 had $\lambda_{\max }$ (acetonitrile) at $412 \mathrm{~nm}\left(\epsilon 4.4 \times 10^{3}\right)$, $282\left(1.07 \times 10^{4}\right)$, and $252\left(3.75 \times 10^{4}\right)$.

In a similar experiment employing 154 mg of 5 and $50 \mu \mathrm{l}$ of pyridine, the products were separated by tlc, removed from the tlc plate, and assayed spectroscopically, giving 80% of phenothiazine, 84% of 7 , and 9% of 8 .

Reaction of 5 with Chloride Ion.-A solution of 400 mg (1.44 mmol) of tetrabutylammonium chloride in 10 ml of acetonitrile was added to a stirred solution of 362 mg (1.21 mmol) of 5 in acetonitrile. After 3 hr the green solution was evaporated and the residue was extracted with benzene. The washed and dried benzene solution was evaporated to give 265 mg of brown residue. This was placed on a silica column and eluted with benzene to give 261 mg of yellow solid. Weighed samples of the solid were streaked on a silica gel tle plate and developed with 2:1 petroleum ether-ether. The three tlc bands were removed and assayed spectrophotometrically, giving, in two separate assays, 42 and 43% of phenothiazine, 35 and 32% of 3 -chlorophenothiazine, and 4.8 and 4.3% of 3,7-dichlorophenothiazine.

Reaction of 5 with Bromide Ion. A.-The procedure was the same as above, with the use of 446 mg of 5 and 1.0 g of potassium bromide. Two separate assays of tlc bands gave 46 and 48% of phenothiazine, 40 and 37% of 3 -bromophenothiazine, and 4.2 and 4.1% of 3,7 -dibromophenothiazine.
B.-A sample of 65 mg of 5 was treated with potassium bromide as above while a stream of nitrogen passed through the solution. Assay of products gave 50% of phenothiazine, 37% of 3-bromophenothiazine, and 4.1% of 3,7-dibromophenothiazine.

Reaction of 5 with Fluoride Ion.-Potassium fluoride and 5 (157 mg) were used as above. A green benzene solution was obtained, portions of which, by tlc separation ($2: 1$ petroleum ether-ether) and spectroscopic analysis (methylene chloride) gave 38% of phenothiazine and 17% of $3,10^{\prime}$-biphenothiazine. A green band remained at the base of the tlc plate. On the upper edge of the green band was another, small band, light pink in color. These were not identified. They did not correspond with phenothiazine 5 -oxide. The pink band may have been 3 phenothiazone.

Treatment of the green benzene solution with 1% aqueous sodium hydroxide caused the green color to disappear. The light brown solution was streaked on a silica plate and developed as earlier. The phenothiazine (19%) and $3,10^{\prime}$-biphenothiazine (35%) bands were followed by a series of three or four overlapping bands, and no attempt was made to separate and identify them.

Reaction of 5 with Water.-Water (2 ml) was added to a stirred solution of 157 mg (0.503 mmol) of 5 in 20 ml of acetonitrile. The solution became green. Work-up as in the fluoride ion reaction gave 33% of phenothiazine and 25% of $3,10^{\prime}$-biphenothiazine. The base of the tlc plate contained the green and pink bands observed in the fluoride ion reaction. Treatment of the benzene solution with 1% aqueous sodium hydroxide and work-up as in the fluoride ion case gave an identical chromatogram, consisting of the phenothiazine (19%) and $3,10^{\prime}$-biphenothiazine (45%) bands followed by the overlapping group of three or four bands.

[^45]Reaction of 5 with Hydroxide Ion.-Aqueous sodium hydroxide ($1 \%, 50 \mathrm{ml}$) was added to a solution of $2.62 \mathrm{~g}(8.78 \mathrm{mmol})$ of 5 in 100 ml of acetonitrile. The solution became green and a green solid precipitated. Extraction with chloroform and repeated chromatography of the chloroform soluble material on silica columns gave 300 mg ($1.5 \mathrm{mmol}, 17 \%$) of phenothiazine, 210 mg ($0.53 \mathrm{mmol}, 6 \%$) of $3,10^{\prime}$-biphenothiazine, and 24 mg
($0.11 \mathrm{mmol}, 1.3 \%$) of 3 -phenothiazone. At least four other products were present but were not identified.

Registry No.-1, 21299-20-7; 2, 2362-50-7; 3, 34874-72-1; 5, 34874-73-2; 7, 34874-74-3; phenothiazine, 92-84-2.

7,8,9-Trimethoxy-1,2,3,4,4a,5,6,10b-octahydro- and

7,8,9-Trimethoxy-1,2,3,4,4a,10b-hexahydrophenanthridines. Synthesis and

 Stereochemistry of Certain 6-Substituted and 5,6-Disubstituted Derivatives ${ }^{1}$Betty R. Lowry and Alain C. Huitric*
College of Pharmacy, University of Washington, Seattle, Washington 98105

Received February 28, 1972

Abstract

The diastereomers of 6 -methyl and of 6 -o-hydroxyphenyl derivatives of $7,8,9$-trimethoxy-4a, 10b-trans-1,2,3,4,4a, $5,6,10 \mathrm{~b}$-octahydrophenanthridine, obtained by the Pictet-Spengler reaction, were characterized by nmr. 7,8,9-Trimethoxy-4a, 10b-trans-1,2,3,4,4a,10b-hexahydrophenanthridine (7), its 6 -methyl derivative 9 , and the $4 \mathrm{a}, 10 \mathrm{~b}$-cis isomer 8 and its methyl derivative 10 were prepared by the Bischler-Napieralski reaction from the appropriate amides $\mathbf{3 - 6}$. Conformations of $\mathbf{8}$ and 10 were established by nmr in deuteriochloroform and rotational isomerism of the amides is discussed. Catalytic hydrogenation of 9 and 10 yielded only the isomer having the methyl group trans to H-4a in each case, compounds 11 and 15, respectively. The conformation of the cis compound 15 was established by nmr. Epimerization studies of the hydrochloride salts of the N-methyl derivatives of 11 and 12 (compounds 16 and 17, respectively) in formic acid showed that for 16 the equilibrium is essentially in the direction of a single epimer having the two methyl groups trans to each other, while at equilibrium 17 shows a mixture with at least 75% of the epimer having the methyl groups trans.

In a preceding paper ${ }^{2}$ we have discussed the stereochemistry and epimerization of salts of N -substituted 7,8,9-trimethoxy-4a,10b-trans- and -4a,10b-cis-1,2,3,4,-4a,5,6,10b-octahydrophenanthridines prepared from trans- (1) and cis-2-(3,4,5-trimethoxyphenyl)cyclohexylamine 3 (2) via the Pictet-Spengler reaction. The present paper deals with the stereochemistry of 6substituted and 5,6 -disubstituted derivatives and their preparation by the same route and by the BischlerNapieralski cyclodehydration of the appropriate amides of 1 and 2. The 7,8,9-trimethoxy-1,2,3,4,4a,10bhexahydrophenanthridine intermediates of the Bisch-ler-Napieralski reaction were of interest from a pharmacological standpoint in addition to being potential sources of specific stereoisomers of the 6 -substituted octahydro series because of probable stereoselectivity in the catalytic hydrogenation step, as was actually shown to be the case (vide infra).

Results and Discussion

7,8,9-Trimethoxy-4a,10b-trans- and -4a,10b-cis-1,2,-3,4,4a,10b-hexahydrophenanthridines and 6-Methyl Derivatives. - A wide variety of condensing agents and solvents have been used in the Bischler-Napieralski reaction. ${ }^{4}$ In the present study yields of better than 90% of the hydrochloride salts of $7,8,9$, and 10 were obtained by use of phosphorus oxychloride in chlorobenzene with the appropriate amides 3-6.
The nmr spectra of amides 3,4 , and 6 show the presence of amide $\mathrm{C}-\mathrm{N}$ bond rotational isomers, but no evidence of two isomers was found in 5. The ratio of

[^46]

3, $\mathrm{R}=\mathrm{H}$
5, $\mathrm{R}=\mathrm{CH}_{3}$

$7, \mathrm{R}=\mathrm{H}$
$9, \mathrm{R}=\mathrm{CH}_{3}$

4, $\mathrm{R}=\mathrm{H}$
6, $\mathrm{R}=\mathrm{CH}_{3}$

8, $R=H$
10, $\mathrm{R}=\mathrm{CH}_{3}$
isomers, estimated from the integration of the signals of the aromatic hydrogens which give a singlet for each isomer, was found to be about $6: 1$ for $3,5: 4$ for 4 , and $7: 1$, or more, for 6. Published data on isomerism of secondary amides ${ }^{5}$ indicate a usual predominance of the isomer having a trans orientation of the N substituents and the R or H on the carbonyl carbon. Our results are in agreement with this. In the formamides 3 and 4 the signal of the formyl hydrogen of the major isomer in each case gives a doublet with a coupling constant of 2 Hz between the formyl and NH protons, while the doublet for the minor isomer has a coupling constant of 12 Hz , consistent with a trans orientation of the coupled hydrogens in the minor isomer. This assignment is also supported by the fact that the signal of the formyl hydrogen, or the acyl methyl group, of the minor isomer is at higher field than that of the major isomer in each case. Molecular models in-

[^47]Scheme I

$$
10 \mathrm{HCl}+\mathrm{H}_{2} \xrightarrow{\mathrm{Pd} / \mathrm{C}}
$$

15
dicate that these groups should experience a greater shielding effect from the magnetic anisotropy of the aromatic ring when the groups have a cis orientation to the N substituent.

There is more conformational mobility in the cishexahydrophenanthridines 8 and 10 , where inversion of the cyclohexane ring is possible, than in the trans isomers 7 and 9 where only one chair form of the cyclohexane ring is possible. The nmr data indicate that in deuteriochloroform the cis compounds 8 and 10, as well as their hydrochloride salts, have a predominance of that chair conformation of the cyclohexane ring in which $\mathrm{H}-4 \mathrm{a}$ has an axial orientation and $\mathrm{H}-10 \mathrm{~b}$ is equatorial. This conclusion is based on a comparison of the spectra of the cis compounds with those of the corresponding trans isomers. For any of the cis compounds in the conformation where $\mathrm{H}-4 \mathrm{a}$ is axial and $\mathrm{H}-10 \mathrm{~b}$ is equatorial the hydrogen $\mathrm{H}-10 \mathrm{~b}$ has the asme relative position to the aromatic ring as in the trans isomer, but $\mathrm{H}-4 \mathrm{a}$ lies essentially in the plane, and in the deshielding region, of the imine double bond and the aromatic ring. In the inverted chair conformation it is $\mathrm{H}-4 \mathrm{a}$ that has the same relative position to the imine and aromatic groups as in the trans isomer while $\mathrm{H}-10 \mathrm{~b}$ now lies in the deshielding region of the aromatic ring. For every cis compound the chemical shift of H-4a is from 0.6 to 0.7 ppm downfield from the position for the corresponding trans isomer, while the chemical shift of $\mathrm{H}-10 \mathrm{~b}$ is downfield by about 0.1 to 0.3 ppm compared to the trans isomer. The patterns of the signals of the methylene hydrogens of the cyclohexane ring for the cis compounds are also consistent with a predominance of the conformation having $\mathrm{H}-4 \mathrm{a}$ axial and H-10b equatorial. The signals of these hydrogens give a fairly narrow envelope ($W_{1 / 2} \cong 15-19 \mathrm{~Hz}$) accounting for seven protons which is centered at $\tau 8.5$ for the free bases 8 and 10 and at $\tau 8.3$ for their hydrochloride salts, and in each case there is a downfield
signal accounting for one hydrogen in the region of τ 7.8-7.9 for the free bases and slightly lower for the salts. This downfield signal is attributed to the equatorial proton on $\mathrm{C}-1$, which in the proposed conformation falls in the deshielding region of the aromatic ring. In the trans isomers both protons on $\mathrm{C}-1$ experience a deshielding effect from the aromatic ring and the signal of the remaining six methylene protons give a broad envelope spread over a region of about 50 Hz .

Allylic coupling of about 3 Hz occurs between H-6 and $\mathrm{H}-4 \mathrm{a}$ in 7 and 8, and of about 2 Hz in their hydrochloride salts. Homoallylic coupling ${ }^{6}$ of about 2 Hz is seen between $\mathrm{H}-4 \mathrm{a}$ and the C-6 methyl protons in 9 and 10 , and of about 1.8 Hz in the salts following deuterium exchange with $\mathrm{D}_{2} \mathrm{O}$.
7,8,9-Trimethoxy-4a,10b-trans- and -4a,10b-cis-1,2,3,-4,4a,5,6,10b-octahydrophenanthridines and Derivatives. -In the preparation of 7,8,9-trimethoxy-4a,10b-transand $-4 \mathrm{a}, 10 \mathrm{~b}$-cis $-1,2,3,4,4 \mathrm{a}, 5,6,10 \mathrm{~b}$ - octahydrophenanthridines, good yields were obtained by refluxing the hydrochloride salts of 1 and 2 with formaldehyde in ethanol. ${ }^{2}$ This method was not so successful with other aldehydes. The best yields of the cyclization product of 1 with acetaldehyde, and salicylaldehyde, were obtained by preformation of the imines followed by treatment with acid. With acetaldehyde the ratio of H-6,4a-cis and H-6,4a-trans isomers varied with temperature. Treatment of the imine with 20% aqueous sulfuric acid at room temperature yielded 11 and 12 in ratio of about $2: 1$, while at 80° about equal amount of the two isomers was obtained (Scheme I). With salicylaldehyde, heating the imine to reflux in 10% sulfuric acid in 50% aqueous methanol gave 13 and 14 in a ratio of about $17: 2$. The ratio of 11 and 12 was estimated from the intensities of the nmr C-6 methyl
(6) L. M. Jackman and S. Sternhell, "Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, New York, N. Y., 1969, pp 326, 327.
signals of the free bases which, in pyridine in the presence of slight amount of $\mathrm{D}_{2} \mathrm{O}$, appear as doublets at $\tau 8.40$ for 11 and $\tau 8.46$ for 12 . In the absence of $\mathrm{D}_{2} \mathrm{O}$ the two signals overlap at τ 8.46. Since the signals appear in the region of the cyclohexane envelope absorption, only an estimate of the ratio of isomers is possible.
Separation of 11 and 12 was accomplished by fractional crystallization of the p-toluenesulfonate salts from methanol. Progress of the separation was followed by melting points and by nmr in 1:1 formic acid-deuterium oxide solution. The head fraction (12) was characterized by higher melting point and higher field $6-\mathrm{CH}_{3}$ doublet, $\tau 8.30$ compared to $\tau 8.27$ for isomer 11 enriched in the mother liquors.

The assignment of configurations to 11 and 12 is based on the nmr spectra of the hydrochloride salts in deuteriochloroform and supported by the fact that catalytic hydrogenation of 9 yielded almost exclusively 11. The nmr spectra of the hydrochloride salts of 11 and 12 differ mostly in the chemical shifts of the C-6 methyl signals and the ammonium prozons. The chemical shift of H-6 is essentially the same in both isomers. The chemical shift of $6-\mathrm{CH}_{3}$ is at lower field (τ 8.10) for 11 than for 12 ($\tau 8.24$). In view of the long-range effects of the magnetic anisotropy of the aromatic ring, ${ }^{7}$ and assuming that the half-chair is the predominant conformation of the heterocyclic ring, the data are consistent with a pseudoequator al orientation of the methyl group in 11 and a pseudoaxial orientation in 12. This assignment is supported by the chemical shifts of the ammonium protons which are equivalent at $\tau 0.00$ in the hydrochloride salt 12 but are at $\tau-0.50$ and +0.63 in the hydrochloride 11 . The chemical shifts of the ammonium protons in 12 remained equivalent upon addition of trifuoroacetic acid, showing that the equivalence in 12 is not the result of a more rapid proton exchange than in 11. The effect of a methyl group on C-6 will be to shield the H-5 proton cis to the methyl, ${ }^{2}$ causing an upfield shift of the axial $\mathrm{H}-5$ in 11 and thus causing an increase in the difference between the chemical shifts of these two protons. In 12 the effect is to shield the equatorial ammonium proton and thus decrease the difference between the chemical shifts of the two protons.

Separation of 13 and 14 was accomplished by taking advantage of a significant solubility of the hydrochloride salt of 14 in benzene. The assignment of configuration is based on the difference of the nmr signals of the methoxy groups in the two isomers. The spectrum of the free base of the minor isomer 14 in deuteriochloroform shows the overlapping of the signals of two methoxy groups at $\tau 6.11$ and the signal of the third group at $\tau 6.20$. Under the same conditions there is a considerable upfield shift of the signal of one of the methoxy groups in the spectrum of the major isomer 13, where the chemical shifts of the methoxy groups are $\tau 6.16$, 6.20 , and 6.62 . In the parent compound, ${ }^{2}$ unsubstituted at C-6, two of the signals overlap at $\tau 6.15$ and the third is at $\tau 6.17$. Infrared studies of chloroform and carbon tetrachloride solutions showed intramolecular hydrogen bonding of the phenolic hydrogen in both isomers. Molecular models indicate that for intramolecularly hydrogen bonded conformations, a greater

[^48]shielding of the C-7 methoxy group by the phenolic atomatic ring is expected in isomer 13 than in isomer 14.

Catalytic reductive alkylation ${ }^{2}$ of 11 with formaldehyde yielded 5,6 -dimethyl-7,8,9-trimethoxy-H6,4a-cis4a, 10b-trans-1,2,3,4,4a,5,6-10b-octahydrophen anthridine (16), and, correspondingly, 12 gave 5,6 -dimethyl-7,8,9-trimethoxy-H6,4a-trans-4a,10b-trans-1,2,3,4,4a,5,-6,10b-octahydrophenanthridine (17), both in good yields. It was of interest to compare the epimerization of the salts of the tertiary amines 16 and 17 with the results obtained by nmr with the 6 -nor analogs ${ }^{2}$ under conditions of slow proton exchange. The results indicate that the hydrochloride salts of 16 and 17 , obtained from crystallization from a mixture of ethyl acetate and 2-propanol, each had crystallized in a single epimeric 末orm.

The nmr spectrum of the hydrochloride salt of 16 in formic acid exhibits a single NCH_{3} signal which appears as a doublet $\left(J_{\mathrm{NHCH}_{2}}=5 \mathrm{~Hz}\right)$ at $\tau 6.83$, and a single C-6 methyl signal which appears as a doublet $\left(J_{\mathrm{CHCH}_{3}}=6.6 \mathrm{~Hz}\right)$ at $\tau 8.22$. Addition of sodium formate to catalyze the equilibration of N epimers did not cause the appearance of either a second NCH_{3} doublet, as was the case with the 6 -nor analog, ${ }^{2}$ nor a second $6-\mathrm{CH}_{2}$ signal. This indicates that in formic acid the thermodynamic equilibrium for protonated 16 is far in the direction of a single epimer. From steric consideration this is expected to be the isomer with the methyl groups trans to each other (structure 11 with an equatorial NCH_{3} group). In this epimer the NCH_{3} group is gauche to only two groups, the C-6 methyl and C-4 methylene groups, while in the other epimer it is gauche to four groups and experiences 1,3 -diaxial repu sion from the $\mathrm{C}-4$ and $\mathrm{C}-10 \mathrm{~b}$ hydrogens. This assignment is substantiated by the chemical shift of the NCH_{3} signal, which is identical with that of the NCH_{3} group of the epimer of the 6 -nor analog having the equatorial NCH_{3} in formic acid. ${ }^{2}$ The coupling between $\mathrm{H}-6$ and NH, as measured from the signal of $\mathrm{H}-6$, is only about 4 Hz , while a value of at least 8 Hz is expected between the pseudoaxial CH and adjacent axial NH protons. This suggests a reduction of the dihedral angle which could result from a deformation of the half-chair conformation due to repulsion of the adjacent methyl groups, or it could result from an equilibrium between the half-chair and a boat conformation.

The nmr spectrum of the hydrochloride salt of 17 in formic acid exhibits a single NCH_{3} signal as a doublet ($J_{\mathrm{NHCH}_{2}} \cong 5 \mathrm{~Hz}$) at $\tau 7.02$, and a single C- 6 methyl signal as a doublet ($\left.\mathrm{CHCH}_{3}=6.6 \mathrm{~Hz}\right)$ at τ 8.18. There was no sign of epimerization after standing for 2 days, but the addition of sodium formate caused the gradual appearance of a second NCH_{3} doublet at $\tau 6.91$ and a second C-6 me-hyl doublet at $\tau 8.33$. Equilibration appeared complete within 6 hr . An accurate estimate of the ratio of epimers was not possible because the doublets overlap other signals, but at equilibrium there appeared to be at least 75% of the original epimer. Prior to equilibration the signal of H-6 appears as a quartet $\left(J_{\mathrm{CHCH}_{3}}=6.6 \mathrm{~Hz}\right)$. There is no evidence of coupling between $\mathrm{H}-6$ and the adjacent NH. This implies a dihedral angle of about 90° between $\mathrm{H}-6$ and NH. This is approximately what is expected for a structure with the hetero ring in a half-chair confor-
mation and with the C-6 methyl in a pseudoaxial orientation and the NCH_{3} group in an axial orientation. The downfield position of the NCH_{3} signal of the minor epimer implies an isomerization from an axial to an equatorial position. The upfield position of the $6-\mathrm{CH}_{3}$ signal in the minor epimer could result from repulsion between the cis methyl groups causing the $6-\mathrm{CH}_{8}$ group to be further out of the plane of the aromatic ring.

Catalytic hydrogenation of the hydrochloride salt of 10 yielded only one product. Cis addition to the imine double bond is expected to give the H-6,4a-cis isomer 15. This structure is supported by nmr data of the hydrochloride salt in deuteriochloroform. The chemical shift of the C-6 methyl group and the nonequivalence and patterns of the signals of the ammonium protons are consistent with the half-chair, chair conformation shown by structure 15 where the C-6 methyl group has a pseudoequatorial orientation. In this conformation $\mathrm{H}-4 \mathrm{a}$ and $\mathrm{H}-10 \mathrm{~b}$ have equatorial and axial orientations, respectively, in relation to the cyclohexane ring. The $6-\mathrm{CH}_{3}$ signal appears as a doublet at $\tau 7.92$. The chemical shift implies a similar orientation of the methyl group to the aromatic ring as in 11. The signal of one of the ammonium protons is at $\tau-1.10$ and the other at $\tau 1.47$. This large difference in chemical shifts supports structure 15 where the effect of the C-6 methyl group is to shield the axial $\mathrm{H}-5$ proton cis to the methyl, thus increasing the difference in chemical shifts between the equatorial and axial NH protons. The upper field signal is considerably broader than the signal at $\tau-1.10$, and this is consistent with the signal at $\tau 1.47$ belonging to axial H-5 coupled with axial H-4a and pseudoaxial H-6. In the spectrum of the free base in deuteriochloroform the signal of $\mathrm{H}-4 \mathrm{a}$ occurs as a fairly narrow, unresolved multiplet, $W_{1 / 2}=8 \mathrm{~Hz}$, at $\tau 6.99$ and the signal of $\mathrm{H}-10 \mathrm{~b}$ occurs at $\tau 7.62$ as a much broader signal. This implies an equatorial orientation of $\mathrm{H}-4 \mathrm{a}$ and an axial orientation of $\mathrm{H}-10 \mathrm{~b}$ in relationship to the cyclohexane ring, and the same predominant conformation in chloroform as for the hydrochloride salt.

Experimental Section

Microanalyses were performed by Alfred Berhardt, Mulheim, Germany, and Huffman Laboratories, Wheatridge, Colo. Melting points were determined on a Kofler hot stage unless otherwise indicated. Heat sensitivity of most of the salts necessitated placement of samples on the hot stage within about $5-10^{\circ}$ of the melting point for most consistent results.

Nuclear magnetic resonance spectra were recorded in the presence of an internal tetramethylsilane standard on Varian A-60 or T-60 spectrometers operating at temperatures of about $33-35^{\circ}$. Infrared spectra of solids and neat liquids were determined on a Beckman IR-5a spectrophotometer and solution spectra were recorded on a Beckman IR-20 spectrophotometer. Matched cells (0.1 and 1 mm) were used for solution spectra in chloroform. The dilute sample of 13 in carbon tetrachloride was determined using a Beckman variable path cell at 3 mm , without reference cell. Spectral grade solvents were used.
trans-2-(3,4,5-Trimethoxyphenyl)cyclohexylformamide (3).A mixture of $531 \mathrm{mg}(2.0 \mathrm{mmol})$ of $1,1.00 \mathrm{~g}$ (ca. 22 mmol$)$ of 99% formic acid, and 35 ml of benzene was heated under gentle reflux for 21 hr . Water azeotrope was collected as formed in a water separator. After cooling, an additional 20 ml of benzene was added and the unreacted amine was removed by extraction with $5 \% \mathrm{HCl}$ (15 ml in two portions). Upon work-up, these acid extracts produced $60 \mathrm{mg}(11 \%)$. The benzene solution was washed neutral with $5 \% \mathrm{NaHCO}_{3}$ and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. The viscous crude
product, 0.50 g , was chromatographed on 15 g of silica gel using dry column technique starting with ethyl ether and progressing to a 3:1 ether-acetone mixture. Product fractions were combined and crystallized from ethyl ether with gradual addition of hexane at room temperature, yielding 432 mg (74%) of formamide 3 as colorless cubes: mp 101-102 ${ }^{\circ}$; ir (solid, KBr) $3360(\mathrm{NH})$, $1660 \mathrm{~cm}^{-1}(\mathrm{C}=0) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.10(\mathrm{~d},<1, J=2 \mathrm{~Hz}, \mathrm{CHO}$, major), 2.33 ($\mathrm{d},<1, J=12 \mathrm{~Hz}, \mathrm{CHO}$, minor), 3.55 (s, $<2, \mathrm{ArH}$, major), 3.61 (s, $<2, \mathrm{ArH}$, minor), 4.33 (m, $<1, \mathrm{NH}$, major), $\sim 6.2(\mathrm{~m},<1, \mathrm{H}-1$, major $), \sim 7.7(\mathrm{~m}, \sim 1, \mathrm{H}-2)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}: \mathrm{C}, 65.51 ; \mathrm{H}, 7.90 ; \mathrm{N}, 4.78$. Found: C,65.40; H, 7.75; N,4.74.
cis-2-(3,4,5-Trimethoxyphenyl)cyclohexylformamide (4).Application of the above formylation procedure to 2 regenerated from $2.11 \mathrm{~g}(7.00 \mathrm{mmol})$ of the hydrochloride, with the reflux period extended to 60 hr , gave crude crystalline product directly upon evaporation of the benzene solution. Recrystallization from benzene yielded $1.833 \mathrm{~g}(89 \%)$ of 4 as colorless crystals, mp $177.5-180.5^{\circ}$. A sample recrystallized from acetone for analysis gave colorless cubes: mp 176.5-179 ${ }^{\circ}$; ir (KBr , solid) 3240 (NH), $1680 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) ~+2.00(\mathrm{~d},<1, J=$ $2 \mathrm{~Hz}, \mathrm{CHO}$, major), 2.60 (d, $<1, J=12 \mathrm{~Hz}, \mathrm{CHO}$, major), 3.53 (s, <2, ArH, major), 3.60 (s, <2, ArH, minor), ~ 2.9 ($\mathrm{m},<1$, NH, minor), 3.86 ($\mathrm{m},<1, \mathrm{NH}$, major), 5.5 ($\mathrm{m},<1$, $\mathrm{H}-1), 6.3(\mathrm{~m},<1, \mathrm{H}-1), 7.2(\mathrm{~m}, \sim 1, \mathrm{H}-2)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}$: C, 65.51; H, 7.90; $\mathrm{N}, 4.78$. Found: C,65.58; H, 8.00; N,5.12.
trans-2-(3,4,5-Trimethoxyphenyl) cyclohexylacetamide (5).-A cold solution of $1.061 \mathrm{~g}(4.00 \mathrm{mmol})$ of 1 in 20 ml of pyridine was treated with $1.0 \mathrm{~g}(10 \mathrm{mmol})$ of acetic anhydride with stirring, and then the reaction flask was protected with a drying tube and left at room temperature for 91 hr . After the reaction mixture was rechilled and treated with 5 ml of methanol to destroy excess acetic anhydride, it was evaporated under reduced pressure. The residue was dissolved in 100 ml of benzene and the resulting solution was washed successively with $5 \% \mathrm{HCl}$, water, 5% NaHCO_{3} solution, and water to neutrality, then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated. Crystallization of the residue from benzene afforded $1.213 \mathrm{~g}(98 \%)$ of 5 as fine, colorless needles: $\mathrm{mp} 141-$ 141.5°; ir (KBr, solid) $3320(\mathrm{NH}), 1640 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; nmr $\left(\mathrm{CDCl}_{3}\right) \tau 3.57(\mathrm{~s}, 2, \mathrm{ArH}), 4.37(\mathrm{~d}, 1, J=8 \mathrm{~Hz}, \mathrm{NH}), 6.0(\mathrm{~m}$, $1, \mathrm{H}-1), 7.6(\mathrm{~m}, 1, \mathrm{H}-2), 8.28\left(\mathrm{~s}, 3, \mathrm{COCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}$: C, 66.42; H, 8.20; N, 4.56. Found: C,66.18; H, 8.10; N, 4.71.
cis-2-(3,4,5-Trimethoxyphenyl)cyclohexylacetamide (6).- N Acetylation of 2, as described above, followed by crystallization from benzene, gave 94% of acetamide 6: mp 157.5-159.5 ${ }^{\circ}$; ir (solid, KBr$) 3320(\mathrm{NH}), 1630 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\tau 3.51$ (s, <2, ArH, major), 3.58 (s, <2, ArH, minor), 3.85 (d, $<1, J=8 \mathrm{~Hz}, \mathrm{NH}$, major), 5.65 (m, $<1, \mathrm{H}-1$, major), $\sim 7.2(\mathrm{~m}, \sim 1, \mathrm{H}-2), 8.17\left(\mathrm{~s},<3, \mathrm{COCH}_{3}\right.$, major $), 8.53(\mathrm{~s},<3$, COCH_{3}, minor).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}: \mathrm{C}, 66.42 ; \mathrm{H}, 8.20 ; \mathrm{N}, 4.56$. Found: C, 66.15; H, 8.13; N,4.60.

Bischler-Napieralski Cyclization of cis- and trans-2-(3,4,5-Trimethoxyphenyl)cyclohexylamides.-Reagent grade chlorobenzene and phosphorus oxychloride were used without purification. Removal of traces of moisture from the apparatus, solvent, and starting amide was accomplished simultaneously by distillation of a few milliliters of the chlorobenzene. The resulting dry amide-chlorobenzene solution was then cooled prior to POCl_{3} addition. The operations described below for 7 are typical of procedures applied in all cases. In cognate preparations, reaction times of $2-3 \mathrm{hr}$ were allowed, although the vigorous HCl evolution during the initial heating period suggested that cyclization is quite rapid. A large excess (7-9 equiv) of POCl_{3} was used in all instances.

7,8,9-Trimethoxy-4a,10b-trans-1,2,3,4,4a-10b-hexahydrophenanthridine (7) Hydrochloride.-With stirring at room temperature, 3.0 ml (ca. 33 mmol) of POCl_{3} was added to a dry solution of $1.027 \mathrm{~g}(3.50 \mathrm{mmol})$ of 3 in 40 ml of chlorobenzene. The stirred mixture was slowly heated to gentle reflux for 3 hr . After cooling, the mixture was treated dropwise with 10 ml of water at a rate slow enough to prevent vigorous exothermic reaction with excess POCl_{3}. The resulting warm two-phase system was cooled, the aqueous layer was separated, and the chlorobenzene solution was extracted with two $5-\mathrm{ml}$ portions of $5 \% \mathrm{HCl}$ solution. The combined aqueous acid extracts were washed with three 10ml portions of carbon tetrachloride and cooled in an ice bath. With stirring, the solution was made basic with KOH and the
hexahydrophenanthridine was extracted with a total of 125 ml of benzene. The benzene solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to about 25 ml , diluted with 100 ml of petroleum ether (bp $30-60^{\circ}$), and saturated with HCl gas. Removal of solvents under reduced pressure and crystallization of the residue from 2-propanol-ethyl acetate gave $987 \mathrm{mg}(90 \%)$ of the hydrochloride of 7 as nearly colorless crystals: mp 184-185 ${ }^{\circ}$ dec (with gas evolution); ir (solid, KBr) 2670, broad (NH^{+}), 1640 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{N}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), 7 \mathrm{HCl}, \tau-4.5(1, \mathrm{NH}), 1.18$ (dd, $1, \mathrm{H}-6, J \cong 8.5$ and 2 Hz), 3.22 (s, $1, \mathrm{H}-10$), $5.87\left(\mathrm{~s}, 6, \mathrm{OCH}_{3}\right)$, 6.11 (s, 3, OCH_{3}), ~ 6.4 (m, 1, H-4a), $\sim 7.2-7.3$ (m, 3, H-10b and $\mathrm{H}-1$); free base 7, $\tau 1.48$ (d, $1, \mathrm{H}-6, J \cong 3 \mathrm{~Hz}$), $3.38(\mathrm{~s}, 1$, $\mathrm{H}-10), 6.03\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.08\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.13\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, ~ 7.0 ($\mathrm{m}, 1, \mathrm{H}-4 \mathrm{a}$) ~ 7.6 (m, 3, H-10b and H-1).
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{NCl}: \mathrm{C}, 61.63 ; \mathrm{H}, 7.11 ; \mathrm{N}$, 4.49. Found: C,61.58; H, 7.23; N, 4.55.

7,8,9-Trimethoxy-4a,10b-cis-1,2,3,4,4a,10b-hexahydrophenanthridine (8) Hydrochloride.-The hydrochloride of 8 was obtained in 95.1% yield as long plates, $\mathrm{mp} 177.5-178^{\circ} \mathrm{dec}$ (with gas evolution), after crystallization from 2-propanol-ethyl acetate: ir (solid, KBr), 2670, broad (NH^{+}), $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), 8 \mathrm{HCl}, \tau-4.4(1, \mathrm{NH}), 1.13$ (dd, $1, \mathrm{H}-6, J \cong$ 7.5 and 2 Hz), $3.15(\mathrm{~s}, 1, \mathrm{H}-10), 5.85\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 5.88(\mathrm{~s}, 3$, $\left.\mathrm{OCH}_{3}\right), 6.10\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), \sim 5.85(\mathrm{~m}, 1, \mathrm{H}-4 \mathrm{a}), \sim 6.9(\mathrm{~m}, 1$, H-10b), ~ 7.5 (m, 1, H-1); free base 8, $\tau 1.33$ (d, 1, H-6, $J \cong$ 3 Hz), $3.53(\mathrm{~s}, 1, \mathrm{H}-10), 6.03\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.10\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, $6.14\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), \sim 6.3(\mathrm{~m}, 1, \mathrm{H}-4 \mathrm{a}), \sim 7.4(\mathrm{~m}, 1, \mathrm{H}-10 \mathrm{~b})$, $\sim 7.8(\mathrm{~m}, 1, \mathrm{H}-1)$.
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{NCl}$: C, 61.63; $\mathrm{H}, 7.11 ; \mathrm{N}$, 4.49. Found: C, 61.39; H, 7.08; N, 4.76.

6-Methyl-7,8,9-trimethoxy-4a,10b-trans-1,2,3,4,4a,10b-hexahydrophenanthridine (9) Hydrochloride.-2-Propanol-ethyl acetate crystallization of the Bischler-Napieralski cyclization product of 5 gave the hydrochloride of 9 in 94% yield: $\mathrm{mp} 182.5-$ $183.5^{\circ} \mathrm{dec}$; ir (KBr , solid) 2680, broad (NH^{+}), $1630 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \tau-4.13$ (1, NH), 3.22 ($\mathrm{s}, 1, \mathrm{H}-10$), $5.95\left(\mathrm{~s}, 6, \mathrm{OCH}_{3}\right), 6.15\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), \sim 6.7(\mathrm{~m}, 1, \mathrm{H}-4 \mathrm{a}), 6.97$ (b s, $3,6-\mathrm{CH}_{3}$), $\sim 7.3(\mathrm{~m}, 3, \mathrm{H}-10 \mathrm{~b}$ and $\mathrm{H}-1$).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{NCl}: ~ \mathrm{C}, 62.66 \mathrm{H}, 7.42 \mathrm{~N}, 4.30$. Found: C, 62.47; H, 7.44 ; N, 4.40 .
The free amine 9 , obtained from base treatment of the hydrochloride salt, was crystallized from hexane: mp 113-115 ${ }^{\circ}$ ir (solid, KBr) $1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \tau 3.38(\mathrm{~s}, 1$, $\mathrm{H}-10), 6.10\left(\mathrm{~s}, 6, \mathrm{OCH}_{3}\right), 6.15\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 7.55\left(\mathrm{~d}, 3,6 \mathrm{CH}_{3}\right.$, $J \cong 1.7 \mathrm{~Hz}), 7.3(\mathrm{~m}, 1, \mathrm{H}-4 \mathrm{a}), \sim 7.6(\mathrm{~m}, 3, \mathrm{H}-10 \mathrm{~b}$ and $\mathrm{H}-1)$.

6-Methyl-7,8,9-trimethoxy-4a ,10b-cis-1 ,2,3,4,4a, 10b-hexahydrophenanthridine (10) Hydrochloride.-Bischler-Napieralski cyclization of 6 produced the hydrochloride of $10, \mathrm{mp} 173-175^{\circ}$ (Fisher-Johns), in 94% yield upon crystallization from 2-pro-panol-benzene. Recrystallization from 2-propanol-ethyl acetate gave small cubes: mp 171-172 ${ }^{\circ}$ dec (with gas evolution); ir (solid, KBr) 2720, broad (NH^{+}), $1630 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; nmr $\left(\mathrm{CDCl}_{3}\right), \tau-4.4,(1, \mathrm{NH}), 3.22$ (s, 1, H-10), 5.93 (s, 6, OCH_{3}), $6.13\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), \sim 6.0(\mathrm{~m}, 1, \mathrm{H}-4 \mathrm{a}), 6.92\left(\mathrm{~d}, 3,6-\mathrm{CH}_{3}, J \sim\right.$ $1.8 \mathrm{~Hz}), \sim 7.2(\mathrm{~m}, 2, \mathrm{H}-10 \mathrm{~b}$ and $\mathrm{H}-1)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{NCl}$: C, $62.66 \mathrm{H}, 7.42 ; \mathrm{N}, 4.30$. Found: C, 62.64; H,7.52; N, 4.58.
A sample of the amine 10 , prepared by base treatment of its hydrochloride salt, and recrystallization from hexane, had mp $97-98^{\circ}$; ir (solid, KBr$) 1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \tau 3.50$ (s, 1, H-10), $6.10\left(\mathrm{~s}, 6, \mathrm{OCH}_{3}\right), 6.17\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.65(\mathrm{~m}, 1$, $\mathrm{H}-4 \mathrm{a}), 7.52\left(\mathrm{~d}, 3,6-\mathrm{CH}_{3}, J \cong 2.2 \mathrm{~Hz}\right), \sim 7.6(\mathrm{~m}, 1, \mathrm{H}-10 \mathrm{~b})$, $\sim 7.9(\mathrm{~m}, \mathrm{1}, \mathrm{H}-1)$

6-Methyl-7,8,9-trimethoxy-4a-6H-cis- and -4a,6H-trans-4a,10b trans-1,2,3,4,4a,5,6,10b-octahydrophenanthridines (11 and 12).-Excess acetaldehyde was bubbled through a stirred solution of $5.31 \mathrm{~g}(20.0 \mathrm{mmol})$ of 1 in 100 ml of benzene under nitrogen. The solution became turbid, then water separated. When no turbidity remained, the benzene solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The azomethine produced was a nearly colorless oil. This intermediate was cooled in an ice bath and dissolved in 50 ml of $20 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ After 4 days at room temperature partial crystallization occurred from the aqueous mixture. The sulfate salts were extracted with chloroform (200 ml in three portions), and the chloroform extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was redissolved in 25 ml of water and washed with CCl_{4} and benzene to remove any nonbasic impurities The free base mixture was regenerated by treatment of the cold stirred aqueous solution with excess KOH , and was extracted with
benzene (175 ml in four portions). Drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation to constant weight gave $5.56 \mathrm{~g}(95 \%)$ of a crude liquid mixture of 11 and 12 . This material, upon examination by nmr in pyridine containing a small amount of $\mathrm{D}_{2} \mathrm{O}$, exhibited two doublets at $\tau 8.40$ and 8.46 (6 -methyl) in a ratio of about $2: 1$.

Separation of 11 and 12 via p-Toluenesulfonic Acid Salts.-A cooled solution of the crude mixture of 11 and 12 free bases was treated with a methanolic solution of $3.80 \mathrm{~g}(20 \mathrm{mmol})$ of p-toluenesulfonic acid hydrate. The resulting acidic solution was evaporated under reduced pressure. Crystallization of the residue from methanol and water, followed by filtration, washing of the crystals with water to remove excess p-toluenesulfonic acid, and drying, afforded a quantitative yield of impure salts The nmr of this mixture in $1: 1$ formic acid-deuterium oxide exhibited two 6-methyl doublets at $\tau 8.27$ and 8.30 in an approximate ratio of $2: 1$. Recrystallization from methanol gave 6.7 g of a mixture of crystalline 11 and $12 p$-toluenesulfonates, a 73% yield based on 1. Extensive fractional crystallization from methanol with periodic recovery of the more soluble isomer from mother liquors with ethyl acetate afforded 1.76 g of $12 p$-toluenesulfonate as head fractions, $\mathrm{mp}>260^{\circ}$ (Fisher-Johns), 1.41 g of $11 p$-toluenesulfonate as tail fraction, $\mathrm{mp}>204^{\circ}-206^{\circ}$ (FisherJohns), and 1.94 g of intermediate crystalline fractions in various stages of separation. Crystallization was continued to constant melting point for each isomer. Examination of separated p-toluenesulfonates of 11 and 12 by nmr in $1: 1$ formic aciddeuterium oxide in the $\tau 8.3$ region indicated no contamination. By this separation procedure, the 11 isomer predominating in the Pictet-Spengler reaction was isolated in smaller amounts than 12 due to losses resulting from its markedly greater solubility in crystallization solvents.

6-Methyl-7,8,9-trimethoxy-4a, 6 H -trans-4a,10b-trans-1,2,3,4, 4a,5,6,10b-octahydrophenanthridine (12).-An analytical sample of $12 p$-toluenesulfonate crystallized from methanol gave rocklike crystals, $\mathrm{mp} 264.5-266.5^{\circ}$ dec.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{6}$ NS: C, 62.18; H, 7.18; N, 3.20 Found: C, 62.04; H, 7.12; N, 3.17.

Amines were recovered from the respective p-toluenesulfonates by passage over a base-treated ion exchange column. A large excess of Amberlite IRA-401 was placed in a column with methanol. Excess methanolic KOH was passed over the resin, which was then washed with methanol until no longer basic to phenolphthalein.

A methanolic solution of $12 p$-toluenesulfonate was passed over a column prepared as described above followed by methanol until no more product eluted. Evaporation, resolubilization in benzene, drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and reevaporation gave a quantitative yield of the liquid amine 12: ir (liquid, neat) $3310 \mathrm{~cm}^{-1}(\mathrm{NH})$; $\mathrm{nmr}\left(\right.$ pyridine $\left.+\mathrm{D}_{2} \mathrm{O}\right) \tau 8.46\left(\mathrm{~d}, 3,6-\mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}\right)$.

The hydrochloride of 12 was prepared in 93% yield by passage of a methanolic solution of $12 p$-toluenesulfonate over a large excess of Amberlite IRA-401 ion exchange resin. The column was washed with methanol until no more material eluted Addition of a small amount of HCl to the methanol solution improved the yield. Evaporation of the methanol solution and crystallization of the residue from methanol and ethyl acetate afforded 12 hydrochloride which was identical with a sample prepared from the amine 12: mp 281-282.5 ${ }^{\circ} \mathrm{dec}$; ir (solid, $\mathrm{KBr}) c a .2745 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}^{+}\right)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 0.0\left(2, \mathrm{NH}_{2}{ }^{+}\right)$, 3.43 (s, 1, H-10), 5.25 (m, 1, H-6), 6.03 (s, 3, OCH_{3}), 6.17 (s, 6, $\left.\mathrm{OCH}_{3}\right), 8.24\left(\mathrm{~d}, 3,6-\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right)$.

6-Methyl-7,8,9-trimethoxy-4a,6H-cis-4a,10b-trans-1,2,3,4,4a,$5,6,10 \mathrm{~b}$-octahydrophenanthridine (11).-Pure 11 p-toluenesulfonate crystallized from methanol as plates: mp 204-205.5 dec; ir (solid, KBr) ca. $2800 \mathrm{~cm}^{-1}$ (broad, $\mathrm{NH}_{2}{ }^{+}$).

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{NS}: \mathrm{C}, 62.18 ; \mathrm{H}, 7.18 ; \mathrm{N}, 3.02$. Found: C, 62.34; H, 7.25; N, 2.95.

Passage of $11 p$-toluenesulfonate over basic ion exchange resin as described for 12 also afforded 11 in high yield by the ionexchange method described for 12 hydrochloride. This product and a sample prepared from the amine gave identical nmr spectra and melting points upon crystallization from methanol and ethyl acetate: mp 257-258.5 ${ }^{\circ}$ dec; ir (solid, KBr) ca. $2780 \mathrm{~cm}^{-1}$ (broad, $\mathrm{NH}_{2}{ }^{+}$); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \tau-0.50\left(1,5-\mathrm{H}_{\mathrm{e}}\right), 0.63\left(1,5-\mathrm{H}_{\mathrm{a}}\right)$, 3.40 (s, 1, H-10), 5.25 (m, 1, H-6), 6.10 ($\mathrm{s}, 3, \mathrm{OCH}_{3}$), 6.15 (s, 6, $\left.\mathrm{OCH}_{3}\right), 8.10\left(\mathrm{~d}, 3,6-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right)$.
5,6-Dimethyl-7,8,9-trimethoxy-4a,6H-trans-4a,10b-trans-1,2,3,-4,4a,5,6,10b-octahydrophenanthridine (17).-A solution of 12 prepared from $1.39 \mathrm{~g}(3.00 \mathrm{mmol})$ of $12 p$-toluenesulfonate by ion exchange was dissolved in 75 ml of ethanol and treated with a
large excess ($c a .35 \mathrm{mmol}$) of 37% formaldehyde. This solution was hydrogenated at room temperature in the presence of 300 mg of 10% palladium on carbon at an initial hydrogen pressure of 30 psi . Hydrogen uptake was rapid for about 15 min , and no uptake was observed after 3 hr . The filtrate was acidified with glacial acetic acid and evaporated under reduced pressure. The residue was dissolved in 5 ml of water and the crude amine 17 was regenerated with excess KOH with cooling and stirring. Extraction with benzene, drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporation gave crude 17 as a nearly colorless oil. Preparation of the hydrochloride and crystallization from ethyl acetate and 2-propanol yielded $929 \mathrm{mg}(90 \%)$ of 17 hydrochloride, $\mathrm{mp} 245-256^{\circ}$ dec with rapid sublimation. A sample recrystallized from 2-propanol gave mp 236-238 ${ }^{\circ}$ dec; ir (solid, KBr) $2480 \mathrm{~cm}^{-1}$ (broad, NH^{+}) $\mathrm{nmr}(\mathrm{HCOOH}) \tau 3.16(\mathrm{~s}, 1, \mathrm{H}-10), 5.27(\mathrm{q}, 1, \mathrm{H}-6, J=6.6$ $\mathrm{Hz}), 6.00\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.08\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.10\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, $7.02\left(\mathrm{~d}, 3, \mathrm{NCH}_{3}, J=5.2 \mathrm{~Hz}\right), 8.18\left(\mathrm{~d}, 3,6-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right)$. After equilibration, doublets of the minor epimer appeared at $\tau 6.91$ and 8.33 for the NCH_{3} and $6-\mathrm{CH}_{3}$ groups, respectively.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NCl}: \quad \mathrm{C}, 63.24 ; \mathrm{H}, 8.26 ; \mathrm{N}, 4.10$ Found: C, 63.24; H, 8.13; N, 4.08 .

5,6-Dimethyl-7,8,9-trimethoxy-4a, 6 H -cis-4a,10b-trans-1,2,3,-4,4a,5,6,10b-octahydrophenanthridine (16).-Compound 11 prepared from $1.39 \mathrm{~g}(3.00 \mathrm{mmol})$ of $11 p$-toluenesulfonate by ion exchange was methylated according to the catalytic reductive alkylation procedure described for 17. Conversion of the crude 16 product to the hydrochloride and crystallization from ethyl acetate and 2-propanol gave 830 mg (81%) of 16 hydrochloride: $\mathrm{mp} 191-193.5^{\circ}$ dec with sublimation; ir (solid, KBr) 2610 $\mathrm{cm}^{-1}\left(\mathrm{NH}^{+}\right) ; \mathrm{nmr}(\mathrm{HCOOH}) \tau 3.17$ (s, 1, H-10), 5.23 (dq, 1, $\mathrm{H}-6, J=6.6$ and 4.0 Hz$), 6.02\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.08\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, $6.10\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.83\left(\mathrm{~d}, 3, \mathrm{NCH}_{3}, J=5.0 \mathrm{~Hz}\right), 8.22(\mathrm{~d}, 3$ $6-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}$).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NCl}: \mathrm{C}, 63.24 ; \mathrm{H}, 8.26 ; \mathrm{N}, 4.10$. Found: C, 63.27; H,8.23; N, 4.06.

Catalytic Hydrogenation of 6-Methyl-7,8,9-trimethoxy-4a,10b-trans-1,2,3,4,4a,10b-hexahydrophenanthridine (9).-A solution of $200 \mathrm{mg}(0.691 \mathrm{mmol})$ of $9, \mathrm{mp} 113-115^{\circ}$, in 30 ml of ethanol was hydrogenated in the presence of 100 mg of 10% palladium on carbon at an initial pressure of 25 psi at room temperature. Hy drogen uptake slowed after about 20 min . After 1.5 hr , catalyst was filtered and washed with methanol. Evaporation of the filtrate under reduced pressure, addition of toluene, and reevaporation gave 189 mg of a slightly discolored oil. The nmr of this material in pyridine was identical with that of 11 and indicated the presence essentially of only one isomer, p-toluenesulfonate salt, $\mathrm{mp} 200-204^{\circ}$.

6-Methyl-7,8,9-trimethoxy-4a , 6 H -cis-4a, 10b-cis-1 ,2,3,4,4a, 5 ,$6,10 \mathrm{~b}$-octahydrophenanthridine (15).-A solution of 180 mg of the hydrochloride salt of 10 in 20 ml of ethanol was hydrogenated in the presence of 60 mg of 5% palladium on carbon for 45 min at an initial pressure of 25 psi at room temperature. The product was crystallized from absolute ethanol acidified with HCl gas, and then from absolute ethanol: $\mathrm{mp} 235-238^{\circ}$ dec; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau-1.10\left(1,5-\mathrm{H}_{\mathrm{e}}\right), 1.47\left(1,5-\mathrm{H}_{\mathrm{a}}\right), 3.57(\mathrm{~s}, 1$, $\mathrm{H}-10), 5.23(\mathrm{~m}, 1, \mathrm{H}-6), 6.11\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.17\left(\mathrm{~s}, 6, \mathrm{OCH}_{3}\right)$, $7.92\left(\mathrm{~d}, 3,6 \cdot \mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{NCl}: \mathrm{C}, 62.28 ; \mathrm{H}, 8.00 ; \mathrm{N}, 4.27$. Found: C, 62.11; H, 8.12; N,4.29.

6-(o-Hydroxyphenyl)-7,8,9-trimethoxy-4a, 6 H -cis- and $-4 \mathrm{a}, 6 \mathrm{H}$ -trans-4a,10b-trans-1,2,3,4,4a,5,6,10b-octahydrophenanthridines. -A nitrogen atmosphere was maintained throughout the preparation of 13 and 14 . A mixture of $1.061 \mathrm{~g}(4.00 \mathrm{mmol})$ of 1 and $0.743 \mathrm{~g}(6.08 \mathrm{mmol})$ of redistilled salicylaldehyde was stirred and heated without solvent for 30 min , then 5 ml of benzene was added and distilled to azeotrope the water and drive the azomethine formation to completion. The resulting bright yellow residue was diluted with methanol $(20 \mathrm{ml})$ and treated with

30 ml of 20% sulfuric acid. Addition of acid caused a rapid loss of the characteristic color. After 1 hr at reflux, the mixture had become essentially colorless. Heating was continued for a total of 24 hr . The reaction mixture was evaporated under reduced pressure until excess salicylaldehyde azeotroped. The concentrated solution partially crystallized on cooling, and was extracted with 60 ml of $5: 1$ chloroform and methanol, diluted with water (20 ml), and reextracted with chloroform. The crude salt of 1 (95 mg) was recovered from the aqueous phase. The combined chloroform extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was redissolved in 30 ml of hot water, filtered, cooled, and washed with petroleum ether. The resulting aqueous solution was saturated with sodium carbonate, then extracted with benzene. Drying and evaporation gave 1.251 g of a cream-colored crystalline residue. A homogeneous sample of this material in deuteriochloroform was examined by nmr . After $\mathrm{D}_{2} \mathrm{O}$ exchange, integration of signals for H-6 (13, 14), total methoxy protons (1, 13, 14), and shielded methoxy (13) protons indicated 87% of cyclized products 13 and 14 in a ratio of 17:2. The proportion of cyclized products to 1 in the mixture, estimated from H-6 and the total aromatic proton signals, was in good agreement (86%) with that above, as was the estimation (85%) based on integrals for aromatic protons of 1 which are shielded with respect to all aromatic protons in 13 and 14.

Crystallization of the mixture from benzene removed the more soluble starting material 1 and yielded $1.02 \mathrm{~g}(69 \%)$ of a mixture of 13 and 14. The hydrochloride salts were prepared by bubbling HCl gas in a solution of the amines in benzene. The higher solubility of the hydrochloride of 14 in benzene allowed good separation of the two isomers.

The free base 13 was obtained from the hydrochloride salt and recrystallized from methanol and from a benzene-hexane mixture, to yield long, fine, colorless needles: mp 172-174 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right.$, $0.03 M$) $3320(\mathrm{NH}), \sim 3100 \mathrm{~cm}^{-1}$ (broad) (bonded OH); ir ($\left.\mathrm{CCl}_{4}, 0.01 M\right) 3320(\mathrm{NH}), \sim 3040 \mathrm{~cm}^{-1}$ (broad) (bonded OH); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 4.38$ (s, 1, H-6), 6.16 (s, 3, OCH_{3}), 6.20 ($\mathrm{s}, 3$, $\left.\mathrm{OCH}_{3}\right), 6.62\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}$: C, 71.52; H, 7.37; N, 3.79. Found: C, 71.46; H, 7.38; N, 3.99.
The hydrochloride of 13 , crystallized from a 2-propanolbenzene mixture, had mp $244-246^{\circ}$ dec, and p-toluenesulfonate, crystallized from a methanol-water mixture, had mp 230-232 ${ }^{\circ}$ dec.
The free base of 14 , crystallized from benzene, gave colorless, dense crystals: mp 231-233 ${ }^{\circ}$ ir $\left(\mathrm{CHCl}_{3}, 0.015-0.03 \mathrm{M}\right), 3300$ $(\mathrm{NH}), \sim 3080 \mathrm{~cm}^{-1}$ (bonded OH$) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 4.41(\mathrm{~s}, 1$, $\mathrm{H}-6), 6.11\left(\mathrm{~s}, 6, \mathrm{OCH}_{3}\right), 6.20\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}: \mathrm{C}, 71.52 ; \mathrm{H}, 7.37 ; \mathrm{N}, 3.79$. Found: C,71.40; H,7.36; N, 3.76.
The p-toluenesulfonate of 14 , crystallized from a benzenehexane mixture, had mp $234-236^{\circ}$ dec.

Registry No. $-3,34913-46-7$; 4, 34913-47-8; 5, $34913-48-9 ; 6,34913-49-0 ; 7 \mathrm{HCl}, 34910-03-7 ; 8 \mathrm{HCl}$, $34910-04-8$; $9,34910-05-9 ; 9 \mathrm{HCl}, 34910-06-0 ; 10$, $34910-07-1$; $10 \mathrm{HCl}, 34910-08-2$; 11, 34910-09-3; 11 p-toluenesulfonate, $34910-10-6$; 12, 34910-11-7; 12 $\mathrm{HCl}, 34910-12-8 ; 12 p$-toluenesulfonate, 34910-13-9; 13, 34910-14-0; $13 \mathrm{HCl}, 34910-15-1$; $13 p$-toluenesulfonate, $34910-16-2$; $14,34910-17-3 ; 14 p$-toluenesulfonate, $34910-18-4 ; 15 \mathrm{HCl}, 34910-19-5 ; 16 \mathrm{HCl}$, 34910-20-8; $17 \mathrm{HCl}, 34910-21-9$; 7,8,9-trimethoxy$1,2,3,4,4 \mathrm{a}, 5,6,10 \mathrm{~b}$-octahydrophenanthridine, 34910-220 ; 7,8,9-trimethoxy-1,2,3,4,4a,10b-hexahydrophenanthridine, 34910-23-1.

Nonbenzenoid Aromatic Systems. VI. ${ }^{1 \mathrm{a}} \quad \mathbf{p} K_{\mathrm{a}}$ Values of Azuloic Acids

Richard N. McDonald* and Robert R. Reitz ${ }^{\text {1b }}$
Department of Chemistry, Kansas State University, Manhattan, Kansas 66502

Received January 18, 1972

Abstract

The thermodynamic $\mathrm{p} K_{\mathrm{a}}$ values of $1-, 2$-, 5 -, and 6 -azuloic acids, 1 -, 4 -, and 6 -azulylacetic acids, and azulene1,2 -dicarboxylic acid were determined in 50% aqueous ethanol (v / v) at 25°. The relative acidities of the azuloic acids ($1<2<5<6$) were consistent with decreasing π-electron density at these positions in the order of $1>$ $2>5>6$.

While experimental and theoretical results agree that the 1 position of azulene is the site of largest π-electron density and the site of ready electrophilic substitution, there is disagreement in both types of results as to whether the 2 or 5 position is the second most electronrich ring site. Experimentally, Vilsmier formylation of 1,3-dimethylazulene reportedly gave the 2 -carboxaldehyde while 1,3 -di-tert-butylazulene produced only the corresponding 5 -carboxaldehyde probably due to steric control in the substitution. ${ }^{2}$ However, acylation and halogenation of 1,3-dihaloazulenes ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) and 1,3-dibenzoyloxyazulene produced only the products of 5 substitution. ${ }^{3}$ The molecular orbital π-electron density calculations commonly referred to in this chemistry ${ }^{4-6}$ likewise disagree in the ordering of these two positions.
The above experimental results involve 1,3 -disubstituted azulenes which offer electronic perturbations and steric effects in the reactions examined. Further, these electrophilic substitution reactions would not necessarily reflect the ground state of the unperturbed azulene molecule.

Our approach to this question was to determine the thermodynamic $\mathrm{p} K_{\mathrm{a}}$'s of the azuloic acids where steric factors should not be important and the electronic perturbation caused by the carboxylic acid and its conjugate base should be reduced compared to electrophilic substitution and be more constant at each of the nonequivalent ring positions. The $\mathrm{p} K_{\mathrm{a}}$'s for four of the possible five azuloic acids are given in Table I. The previous nonthermodynamic $\mathrm{p} K_{\mathrm{a}}$ value for 1-azuloic acid is in good agreement with the present result, but reported values for 5 - and 6-azuloic acids are shown to be incorrect.?

Of significance is the increasing acidity order of these four acids, $1-<2-<5-<6$-azuloic acid. While it is recognized that the carboxylic acid and carboxylate anion groups surely perturb the electron densities at these nonequivalent azulene ring positions, we suggest that such perturbations are not sufficient to cause re-

[^49]TABLE I
p K_{a} 's of Azuloic Acids in 50% Aqueous Ethanol (v/v) at 25.0°

Acid	${ }_{\mathrm{p}} K_{\mathrm{a}}$	Lit. $\mathrm{p} K_{\mathrm{s}}{ }^{a}$
1-Azuloic	6.992 ± 0.004^{b}	7.01
2-Azuloic	5.855 ± 0.016	
5-Azuloic	5.682 ± 0.017	6.25
6-Azuloic	5.206 ± 0.013	6.09

${ }_{a}$ These literature values are corrected by adjusting the $\mathrm{p} K_{\mathrm{a}}$ given for benzoic acid to 5.80 ; lit. $\mathrm{p} K_{\mathrm{n}}+0.34 .{ }^{7}{ }^{b}$ Standard deviations.
versal of the relative electron densities at these positions $(1>2>5>6)$ and that the above acidity order gives a truer reflection of these relative electron densities than previous experimental results. ${ }^{7 a}$

It is interesting that plotting these $\mathrm{p} K_{\mathrm{a}}$'s $v s$. the charge densities of azulene listed by Streitwieser, ${ }^{4}$ the results of the HMO, with or without ω technique, and the VESCF methods give reasonably linear correlations while the correlations from the nonempirical SCF and Pariser-Parr values are poorer. The VESCF correlation predicts that 4 -azuloic acid would have a $\mathrm{p} K_{\mathrm{a}}$ of about 4.8 in this medium. The acidity of 4 -azuloic acid may decrease somewhat if hydrogen bonding to the electron-rich 3 position occurs in the acid which we believe accounts for the observed order of the $\mathrm{p} K_{\mathrm{a}}$'s of $1-\left(\mathrm{p} K_{\mathrm{a}}=5.987 \pm 0.006\right), 4-\left(\mathrm{p} K_{\mathrm{a}}=5.596 \pm 0.010\right)$, and 6 -azulylacetic $\operatorname{acid}\left(\mathrm{p} K_{\mathrm{a}}=5.508 \pm 0.032\right)$, the latter two being inverted from the order expected. It is our hope that these $\mathrm{p} K_{\mathrm{a}}$ results will be helpful to those applying these and more advanced $M O$ methods to azulene.
We have also determined the $\mathrm{p} K_{\mathrm{a}}$'s of azulene-1,2dicarboxylic acid (1); $\mathrm{p} K_{\mathrm{a}}{ }^{1}=3.352 \pm 0.015, \mathrm{p} K_{\mathrm{a}}{ }^{2}=$ 10.459 ± 0.008. The K_{1} / K_{2} ratio of $10^{7.1}$ is very large compared to that of phthalic acid in water, $K_{1} / K_{2}=$ $288 .{ }^{8 \mathrm{~B}}$ This shows that there is a larger distance separating the carboxylic acid groups on the five-membered ring of 1 approaching an optimum distance for hydrogen bonding in the half-neutralized 1 compared to the acid groups in phthalic acid (six-membered ring attachments). ${ }^{86,9}$ We were unable to determine the $\mathrm{p} K_{\mathrm{a}}$'s of azulene-5,6-dicarboxylic acid (2) ${ }^{10}$ because of

[^50]ready anhydride formation; this requires the acid functions to be quite close, probably closer than those in phthalic acid. These findings agree with the expectation that groups on adjacent carbons of the five-membered ring of azulene are more distant from one another than those on the seven-membered ring.

Experimental Section

1-Azuloic Acid.-Methyl 1-azuloate ${ }^{11}$ ($110 \mathrm{mg}, 0.68 \mathrm{mmol}$) [mp 59-60 ${ }^{\circ}$; $\lambda_{\max }\left(\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}\right) 544 \mathrm{~nm}$ (lit. ${ }^{12} \mathrm{mp} 56-57^{\circ}$); $\lambda_{\max } 544$ $\mathrm{nm})$] was hydrolyzed with 0.3 g of potassium hydroxide in 50% methanol. Chromatography of the acid product on silica gel and recrystallization from ether-hexane gave 60 mg of lavender crystals of 1 -azuloic acid, $\mathrm{mp} \mathrm{183-184}^{\circ}$ (lit. ${ }^{13} \mathrm{mp} \mathrm{181-182}^{\circ}$).

2-Azuloic Acid.-Methyl 2-azuloate ${ }^{11}$ ($90 \mathrm{mg}, 0.56 \mathrm{mmol}$) [mp 109-110 ${ }^{\circ}$; $\lambda_{\max }\left(\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}\right) 654 \mathrm{~nm}$ (lit. ${ }^{14} \mathrm{mp} \mathrm{110-111}^{\circ}$; $\left.\lambda_{\max } 656 \mathrm{~nm}\right)$] was hydrolyzed and purified as above giving 50 mg of green crystals of 2 -azuloic acid, $\mathrm{mp} 205-210^{\circ}$ dec [lit. ${ }^{14,15}$ $\mathrm{mp} 200-203^{\circ} \mathrm{dec} ; 218-220^{\circ} \mathrm{dec}$.

5- and 6-Azuloic Acids.-A slightly modified procedure described by Plattner, et al., ${ }^{16}$ for the ethyl diazoacetate ring enlargement of indan was employed. ${ }^{11 a}$ After dehydrogenation with chloranil in refluxing benzene, the resulting blue oil was dissolved in a small quantity of hexane and extracted with 70% sulfuric acid which was again washed with hexane. Careful dilution of the acid layer with water and extraction with hexane gave a mixture (460 mg) of ethyl 5 - and 6 -azuloates in a $3: 1$ ratio (nmr), respectively, contaminated with only trace amounts of benzenoids. Separation of these isomers was achieved by saponifying this mixture in 100 ml of 1% methanolic potassium hydroxide. After standing for 48 hr , water was added and the mixture was extracted with ether. The aqueous layer was acidified with 5% hydrochloric acid and extracted with ether. The ether solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a green residue which when sublimed at $75^{\circ}(0.25 \mathrm{~mm})$ yielded a dark gray-black sublimate. When the temperature was raised to 125°, a green solid sublimed.
Each of these sublimates was treated with ethereal diazomethane and chromatographed on basic, activity I alumina. The first sublimate, after recrystallization from hexane at -25°, yielded 70 mg of green needles of methyl 6 -azuloate, $\mathrm{mp} 112-113^{\circ}$, $\lambda_{\max }\left(\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}\right) 634 \mathrm{~nm}$ (lit. ${ }^{18} \mathrm{mp} 112.5-113^{\circ}, \lambda_{\max } 635 \mathrm{~nm}$). The second sublimate, after similar recrystallization, gave 270 mg of deep blue plates of methyl 5 -azuloate, $\mathrm{mp} 38-40^{\circ}$, $\lambda_{\max }$ (c$\mathrm{C}_{6} \mathrm{H}_{12}$) 567 nm (lit. ${ }^{16} \mathrm{mp} 40-41^{\circ}, \lambda_{\max } 565 \mathrm{~nm}$).

A sample of methyl 5 -azuloate was hydrolyzed as above for the other acids. Silica gel chromatography and recrystallization from ether-hexane gave the bluish-gray solid acid, mp 203-205 ${ }^{\circ}$ (lit. ${ }^{16} \mathrm{mp} \mathrm{206-207}{ }^{\circ}$).
Similar hydrolysis of methyl 6-azuloate and purification of the resulting acid gave 6 -azuloic acid as green crystals, mp 208$212^{\circ}$ dec (lit. ${ }^{16} \mathrm{mp} 225-227^{\circ} \mathrm{dec}$). While we presently do not understand this discrepancy in melting points, we hasten to add that we have obtained 6 -azuloic acid from a completely different route and find its decomposition point to again be as we have recorded it.
4- and 6-Azulylacetic Acids.-Both acids were prepared by the procedure of Hafner, et al., ${ }^{17}$ for the synthesis of 6 -azulylacetic acid. Chromatography on silica gel and recrystallization from ether-hexane gave blue crystals of 4 -azulylacetic acid: mp $123-125^{\circ} \mathrm{dec}$; ir (KBr) 3000-2820 (OH) and $1690 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; nmr (DMSO- d_{6}, internal TMS) $\tau-2-0$ ($\mathrm{s}, \mathrm{OH}, 1$), $1.2-3.0$ (m,
(11) The esters used to obtain the acids in this investigation resulted from the studies of (a) H. E. Petty and (b) N. L. Wolfe. Their contribution to the present results is gratefully acknowledged.
(12) A. G. Anderson and J. J. Tazuma, J. Amer. Chem. Soc., 75, 4979 (1953).
(13) A. G. Anderson and R. G. Anderson, J. Org. Chem., 27, 3578 (1962).
(14) T. Nozoe, S. Seto, and S. Matsumura, Bull. Chem. Soc. Jap., 35, 1990 (1962).
(15) W. Triebs, Chem. Ber., 92, 2152 (1959).
(16) P. A. Plattner, A. Furst, A. Muller, and A. R. Somerville, Helv. Chim. Acta, 34, 971 (1951).
(17) K. Hafner, H. Pelster, and H. Patzett, Justus Liebios Ann. Chem., 650, 80 (1961).

Az H's, 7), and $5.74\left(\mathrm{~s}, \mathrm{CH}_{2}, 2\right)$; visible-uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 677 \mathrm{~nm}$ ($\log \epsilon 2.08$), 617 (2.52), 575 (2.60), 356 (3.14), 343 (3.68), 329 (3.54), 286 (4.67), and $280(4.68)$; mass spectrum (70 eV , direct insertion) m / e (rel intensity) $186\left(\mathrm{M}^{+}, 100\right)$ and 142 (19).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 77.40; $\mathrm{H}, 5.41$. Found: $\mathrm{C}, 77.15 ; \mathrm{H}, 5.33$.
Similarly, 6-methylazulene gave blue-green crystals of 6azulylacetic acid, mp 130-131 ${ }^{\circ}$ dec (lit. $.^{17} \mathrm{mp} 126-127^{\circ} \mathrm{dec}$).
1-Azulylacetic Acid.-This was prepared according to the procedure of Anderson, et al. ${ }^{18}$ Chromatography on silica gel and recrystallization from ether-hexane gave blue needles of 1azulylacetic acid, $\mathrm{mp} 91-92^{\circ}$ (lit. ${ }^{18} \mathrm{mp} 92-93^{\circ}$).

Azulene-1,2-dicarboxylic Acid.-Dimethyl azulene-1,2-dicarboxylate [mp 46.5-47.5 ${ }^{\circ}$, $\lambda_{\max }\left(\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}\right) 578 \mathrm{~nm}$] ${ }^{11,19,20}$ was hydrolyzed as above to give the diacid which was recrystallized from aqueous ethanol: $\mathrm{mp} 205-215^{\circ} \mathrm{dec} ; \lambda_{\max }(95 \% \mathrm{EtOH})$ $573 \mathrm{~nm}(\log \epsilon 2.87), 368$ (3.86), 346 (3.98), 308 (4.72), and 298 (4.71).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{4}$: C, 66.67; $\mathrm{H}, 3.73$. Found: C, 66.95; H, 3.91.

Determination of Dissociation Constants.-A $25-\mathrm{ml}$, jacketed, round-bottomed titration cell was maintained at $25.00 \pm 0.01^{\circ}$. The cell stopper was fitted with glass (half of a Metrohm EA 147X combination electrode) and calomel (Radiometer K 100) electrodes, and the tip of a microburet. Solutions of the acids (0.003 M) were stirred magnetically using a micromagnetic stirring bar encased in Teflon and were titrated with 0.03 N NaOH in 50% aqueous ethanol (v / v).

The microburet (Koch type) was constructed from a threeway Teflon stopcock, a $1-\mathrm{ml}$ pipet calibrated in $0.01-\mathrm{ml}$ divisions, and a $25-\mathrm{ml}$ reservoir. The buret was connected to the cell by means of Teflon microtubing fitted at the end with a capillary glass tube constricted halfway closed at its tip. The tip was placed 0.5 cm below the surface of the solution during titrations. ${ }^{21}$

The pH of the cell was determined with a Metrohm Herisau E 436 recording potentiograph. Scale expansion in this instrument allowed pH readings to ± 0.001.

Standardization of the pH scale was based on the thermodynamic $\mathrm{p} K_{\mathrm{a}}$ of benzoic acid, 5.80 ± 0.01, in 50% ethanol. ${ }^{22}$ A $0.003 M$ solution of zone-refined benzoic acid (Fisher Certified Reagent Zone Refined) in 50% ethanol was titrated to halfneutralization with 0.03 N NaOH in 50% ethanol. The pH of the cell was adjusted to read 5.750, which is the theoretical, "apparent" pH of benzoic acid at half-neutralization under these concentration and solvent conditions. ${ }^{22}$ The calculated $\mathrm{p} K_{\mathrm{a}}$ of benzoic acid was then found to be 5.799 ± 0.009. The pH of 0.02 M potassium hydrogen phthalate in 50% ethanol was then 5.415 and was used as a secondary reference buffer. Before and after each titration the pH of the secondary reference was determined; any run that gave readings differing by 0.005 pH units was rejected.

The solution of acid was transferred to the cell by means of a $10-\mathrm{ml}$ pipet. The stopper holding the electrodes, which were rinsed with 50% ethanol, was set in place in the cell. The titrant inlet glass capillary tube was inserted through a hole in the stopper and placed with its tip below the solution's surface. The pH values were recorded on the chart paper at 9-10 stages between 25 and 75% neutralization of the acid. After each addition of a volume of base titrant, magnetic stirring was continued for ca. 1 min and then the stirrer was shut off to record the pH . Complete neutralization was assumed at $\mathrm{pH} c a .10$ in this solvent system and was used to verify the original acid concentration.
(18) A. G. Anderson, R. G. Anderson, and T. S. Fujita, J. Org. Chem., 27, 4535 (1962).
(19) This is one of the products obtained from carbonation of the adduct formed from reaction of lithium dicyclohexylamide and azulene followed by acidification and reaction with diazomethane. The results of this reaction will be given elsewhere: R. N. McDonald, H. E. Petty, and N. L. Wolfe, unpublished results.
(20) W. v. E. Doering and D. W. Wilye. Tetrahedron, 11, 183 (1960), reported the preparation of what appears to be impure dimethyl azulene-1,2dicarboxylate.
(21) C. F. Wilcox and C. Leung, J. Amer. Chem. Soc., 90, 336 (1968).
(22) C. F. Wilcox and J. S. McIntyre, J. Org. Chem., 30, 777 (1965) ; J. D. Roberts and W. T. Moreland, J. Amer. Chem. Soc., 75, 2167 (1953).

The $\mathrm{p} K_{\mathrm{a}}$ values for these monocarboxylic acids were calculated using the computer program of Leung. ${ }^{21,23,24}$
The water used was distilled water which was passed slowly through a Barnstead Mixed Bed Demineralizer Cartridge (\#8902) and redistilled. The ethanol was twice distilled 95% ethanol.
(23) C. Leung, Ph.D. Thesis, Cornell University, Ithaca, N. Y., 1967.
(24) R. R. Reitz, Ph.D. Thesis, Kansas State University. Manhattan, Kans., 1971.

Registry No.-4-Azulylacetic acid, 26157-13-1; azulene-1,2-dicarboxylic acid, 34906-10-0.

Acknowledgment. - We wish to thank the National Science Founcation (GP-10691) for research support and Kansas State University for computer time.

Intermolecular Aromatic Substitution by Aryl Nitrenes

R. A. Abramovitch,* S. R. Challand, and E. F. V. Scriven
Department of Chemistry, University of Alabama, University, Alabama 35486

Received March 22, 1972

Abstract

Thermally generated aryl nitrenes have been shown to undergo intermolecular aromatic substitutions provided that the nitrene is made sufficiently electrophilic by the introduction of an eleatron-withdrawing substituent in the aromatic nucleus and the aromatic substrate is sufficiently nucleophilic. The nitrenes were generated both by the thermolysis of aryl azides and from monomeric nitrosobenzenes and triethyl phosphite. The rate of firstorder decomposition of p-cyanophenyl azide was found to be independent of the presence of N, N-dimethylaniline or of its concentration. The formation of a number of by-products is discussed.

The intermediacy of nitrenes in the thermolysis and photolysis of aryl azides is well documented. ${ }^{1-3}$ Evidence for the involvement of nitrenes in deoxygenation reactions of nitro and nitroso compounds ${ }^{4}$ is good in some cases but more tenuous in others, and depends largely upon analogy of the products of these reactions with those of the corresponding azide reactions. In particular, aryl nitrenes (or their rearrangement products) generated by thermolysis or photolysis of aryl azides or by deoxygenation of nitroso compounds have been trapped by nucleophiles, such as aniline, ${ }^{5}$ diethylamine, ${ }^{6}$ and carbon monoxide. ${ }^{7}$
Singlet aryl nitrenes generated thermally drop readily to the triplet ground state, so that these species can exhibit reactions typical of both singlet (intramolecular substitution ${ }^{1}$ and rearrangement ${ }^{2}$) and triplet states ($\mathrm{C}-\mathrm{H}$ insertion and hydrogen abstraction ${ }^{8}$). Intramolecular electrophilic aromatic substitution has been extensively studied; the thermal ${ }^{1}$ and photolytic ${ }^{2,9}$ conversion of o-azidobiphenyls to carbazoles involves free nitrenes except in those cases where there is a phenylazo, nitro, acetyl, or benzoyl group ortho to the azido function. Kinetic studies have indicated that there is a concerted loss of nitrogen and cyclization in these cases. ${ }^{10}$ Cadogan and Todd ${ }^{11}$ have cyclized a number of substituted o-nitrobiphenyls to carbazoles with phosphorus reagents. Nitrenes appeared to be

[^51]involved, but the possibility of a concerted loss of phosphate could not be ruled out, though easy cyclization onto both electron-rich and electron-poor rings make this last rather unlikely. Products of intramolecular aromatic substitution have also been observed from the thermolysis of o-azidodiphenyl sulfides, ${ }^{12}$ and the deoxygenation of o-nitro- N -acetyldiphenylamines. ${ }^{13}$

In contrast to the ready intramolecular aromatic substitutions by aryl nitrenes, the corresponding intermolecular reactions are relatively unknown. The decomposition of phenyl azide in aromatic solvents did not yield any diphenylamines. In benzene, only azobenzene and ariline were formed ${ }^{14}$ even when 1000 -fold excess of benzene was present. ${ }^{15}$ On the other hand, intermolecular attack of an aromatic nucleus by ethoxy-carbonyl-, ${ }^{16}$ cyano-, ${ }^{17}$ and sulfonylnitrenes ${ }^{18}$ is well known. The absence of intermolecular aromatic substitution by aryl nitrenes could be attributed to rapid decay of the thermally generated singlet nitrene to the triplet ${ }^{8}$ before substitution could take place, but could also be due to the possibility that, unlike the above nitrenes, phenylnitrene was insufficiently electrophilic to substitute into benzene. If the latter is true, then it should be possible to increase the electrophilic character of the aryl nitrene by the introduction of electron-withdrawing substituents into the aromatic ring, which would have the effect of decreasing the contribution of 1 lb to the structure of the singlet

[^52]Table I
Thermolysis of Aryl Azides in Aromatic Solvents

nitrene 1. This, indeed, has now been found to be the case.

Thermolysis of p-cyano-, p-nitro-, or p-trifluoromethylphenyl azide in benzene at 140° gave no products of intermolecular aromatic substitution, the only compounds isolated being the azo compound and the primary amine, both probably arising from the triplet aryl nitrene. Similarly, no diphenylamines were obtained by the tricthyl phosphite deoxygenation of the corrcsponding nitrosobenzenes in benzene. Thermolysis of p-cyanophenyl azide (2) in the more nucleo-

philic anisole and p-dimethoxybenzene also failed to reveal any aromatic substitution products. On the other hand, when 2 was decomposed in N, N-dimethylaniline, mesitylene, or sym-trimethoxybenzene the desired diphenylamines were obtained. Thus, 2 and N, N-dimethylaniline yielded a mixture of 4-cyano-2'(3) (25.1%) and 4 -cyano-4'-(N, N-dimethylamino)diphenylamine (4) (3.4\%), together with the hydrogenabstraction product $5(20.3 \%)$. The orientation of the diphenylamines was assigned on the basis of their infrared and nmr spectra and confirmed by unambiguous synthesis from N, N-dimethyl-o- and - p-phenylenediamine and the appropriate aryl halide. The decomposition of p-nitrophenyl and p-trifluoromethylphenyl azide in dimethylaniline and sym-trimethoxybenzene also gave the products of intermolecular aromatic substitution. The results are summarized in Table I.

The possibility had to be considered that, since aromatic substitution was only observed between highly nucleophilic substrate and an aryl azide bearing an elec-tron-attracting group, a change of mechanism-from the stepwise nitrene intermediate mechanism (eq 2) to a concerted nucleophilic attack (say by the tertiary
amine nitrogen) on the azide followed by nitrogen elimination (eq 1)-had occurred to account for the for-

mation of the substitution products. This was discounted readily by studying the kinetics of the decomposition of p-cyanophenyl azide in chlorobenzene solution at 132° in the presence of varying amounts of N, N-dimethylaniline (from none to a fivefold excess over azide concentration) which showed that the rate of the first-order decomposition of the azide was unaffected by the presence of the amine, thus confirming the partial mechanism given in eq 2 .

From the decomposition of 2 in mesitylene (as in all other cases as well) the hydrogen-abstraction product 5 was isolated. In addition $3,3^{\prime}, 5,5^{\prime}$ '-tetramethylbibenzyl was obtained in 23% yield. This undoubtedly arises by hydrogen abstraction by the triplet aryl nitrene to give a benzyl radical which dimerizes. In both the decompositions of p-nitrophenyl azide and p-trifluoromethylphenyl azide in N, N-dimethylaniline, 4,4'-methylenebis(N, N-dimethylaniline) (6) was ob-

6

7
tained. The same product has been obtained from the decomposition of benzenesulfonyl azide in dimethylaniline, ${ }^{19}$ and it has been suggested that it arises from formaldehyde (formed during aqueous work-up) and the aniline. ${ }^{20}$
(19) T. Curtius and J. Rissoni, J. Prakt. Chem., 125, 311 (1930).
(20) D. S. Breslow in "Nitrenes," W. Lwowski, Ed., Interscience, New York, N. Y., 1970, p 276.

Table II
Deoxygenation of Nitrosobenzenes in Aromatic Solvents

Registry no.	Nitrosobenzene	Solvent
31125-07-2	p-CN	N, N-Dimethylaniline
		Anisole
		Mesitylene
		1,3,5-Trimethoxybenzene
448:-08-9	$p-\mathrm{NO}_{2}$	N, N-Dimethylaniline
		Mesitylene
34913-26-3	$p-\mathrm{CF}_{3}$	N, N-Dimethylaniline
		Mesitylene

Ortho substitution	Para substitution	Azoxy	Amine	Other
17.5	7.6	16.8	6.9	2.4^{a}
		26.6	7.6	
		40.0	2.6	
2.5		40.0	4.2	
19.7	6.1	2.8	5.7	
		51.0	13.4	
6.2	4.3	16.0		1.5^{b}
		30.6		

In the present case no aqueous work-up was used so that either formaldehyde was formed by the accidental intrusion of atmospheric moisture or a formaldehyde precursor, e.g., $\operatorname{PhN}(\mathrm{Me}) \mathrm{CH}_{2} \cdot$, was the active condensing agent.

The decomposition of p-nitrophenyl azide in 1,3,5trimethoxybenzene gave, in addition to substitution and hydrogen-abstraction products, a small amount (3.4\%) of 2,4,6-trimethoxy-4'-nitrobiphenyl (7). It seems likely that 7 arises from the homolytic cleavage of $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{3} \rightarrow p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \cdot+\mathrm{N}_{3} \cdot$, followed by arylation of the sym-trimethoxybenzene by the p-nitrophenyl radical. There is some precedent for the homolysis of $\mathrm{C}-\mathrm{N}_{3}$ bonds. Thus, thermolysis of ferrocenyl azide in benzene gave ferrocene and phenylferrocene together with nitrene products. ${ }^{21}$ Similarly, cleavage of the $\mathrm{C}-\mathrm{N}$ bond in tertiary alkyl azides has been reported on photolysis ${ }^{22}$ and thermolysis. ${ }^{23}$
Similar results have been obtained by gencration of the aryl nitrene from the corresponding nitrosobenzene and triethyl phosphitc in nucleophilic aromatic solvents (Table II). In dimethylaniline and $1,3,5$-trimethoxybenzene the nitrosobenzene appears to be mainly monomeric, but in mesitylene the solutions are a light yellow, indicating that the nitroso dimer is present. This would account for the fact that, unlike the thermolysis of 2 in mesitylene, deoxygenation of p-cyanonitrosobenzene (and of the other nitroso compounds) in that solvent does not give any diphenylamine derivative, the major product being the azoxy compound. The latter probably arises from the deoxygenation of the nitroso dimer in these cases, though in those examples where the monomeric nitroso compound exists in solution it can arise by a trapping of the aryl nitrene by the nitrosobenzene. ${ }^{24}$ Some azo compound is also formed in some of the reactions in which substitution is observed, while the primary amine hydrogen abstraction product is obtained in most cases, except with p-trifluoromethylnitrosobenzene. As expected,

[^53]the nitroso function in p-nitronitrosobenzene is deoxygenated much more readily than is the nitro group.

The main question remaining to be answered is that of the mechanism of formation of the substitution products. Two pathways appear possible for the intermolecular attack of an aromatic nucleus by an aryl nitrene.

Reaction via the benzaziridine intermediate 8 would

8 J

9
be analogous to the behavior of sulfonyl-, ${ }^{18}$ cthoxycar-bonyl-, ${ }^{16}$ and cyanonitrene, ${ }^{17}$ and would readily account for the preferred ortho/para orientation obscrved. On the other hand, no N-arylazepines, which could arise by an electrocyclic ring opening of 8, were observed in this work, but this could be due to thermodynamic control obtaining and favoring ring opening to 9 with irreversible formation of the diarylamine. It is not possible to decide between the alternative pathways on the basis of the present results.

A comment may be appropriate concerning the predominant (if not exclusive) ortho substitution in the reactions of the aryl nitrenes (generated from the azides) and dimethylaniline. This could either be due to the reaction proceeding by one of the above routes, with attack at C_{2} (or upon the $\mathrm{C}_{1}-\mathrm{C}_{2}$ or $\mathrm{C}_{2}-\mathrm{C}_{3}$ double bond) being favored over attack at C_{4} (or at the $\mathrm{C}_{3}-\mathrm{C}_{4}$ double bond), as is the case, say with phenylsulfonylnitrene and anisole, ${ }^{25}$ or the nitrene once formed could attack the tertiary nitrogen atom to form an ylide 10

[^54]which could then rearrange thermally to give mainly the ortho-substituted aminodiphenylamine.
Such an attack by a nitrene at an aniline nitrogen atom has been observed with carbethoxynitrene ${ }^{26}$ and cyanonitrene, ${ }^{27}$ and at a pyridine nitrogen atom by a sulfonylnitrene. ${ }^{28}$ The isomer ratio observed with aryl nitrene generated by deoxygenation of the nitrosobenzene at low temperatures is appreciably different, with much more para isomer being formed (Table II). This could be accommodated in an addition-ring-opening pathway in which the azepine (formed under kinetic control) leading (under thermodynamic control) to the p phenylenediamine was less stable at higher temperatures than that leading to the ortho isomer, and went to by-product more readily. On the other hand, the ratio of products observed could just be a reflection of the effect of temperature upon the relative rates of the two substitution processes.

A comparison of the percentage of substitution of 1,3,5-trimethoxybenzene as a function of the position of the nitrile group in the three cyanophenylnitrenes indicated (Table I) that, as expected, the most electrophilic species, $o-\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{~N}$, gives most substitution, while the meta isomer gives the least.

After our work on the aryl azide decomposition was completed, Huisgen and von Fraunberg ${ }^{29}$ reported intramolecular aromatic substitutions by 2-pyridyl- and 4,6-dimethyl-2-pyrimidylnitrene into activated substrates. Their results fit well with the concept of the electrophilicity requirement for aryl nitrenes to undergo such reaction.

Experimental Section

General-Melting points are uncorrected. Infrared spectra were determined on a Perkin-Elmer 2:77 spectrophotometer. Nmr spectra were measured on a Varian HA-100 spectrometer, and mass spectra were determined at 70 eV on a CEC 21-104 mass spectrometer. For column chromatography, Alcoa chromatographic alumina $\mathrm{F}-20$ was used, and Merck silica gel PF_{254} was used for thin layer chromatography. Light petroleum ether refers to the fraction of bp 30-60 .
Starting Materials.-Azides were synthesized from the corresponding amine by diazotization, followed by treatment of the diazonium salt with sodium azide. Thus prepared were p azidobenzonitrile, $\mathrm{mp} 70^{\circ}$ (lit. ${ }^{30} \mathrm{mp} 70^{\circ}$), m-azidobenzonitrile, $\mathrm{mp} 57-58^{\circ}$ (lit. ${ }^{31} \mathrm{mp} 57^{\circ}$), o-azidobenzonitrile, $\mathrm{mp} 55^{\circ}$ (lit. ${ }^{32}$ $\mathrm{mp} 58^{\circ}$), p-nitrophenylazide, $\mathrm{mp} 71-72^{\circ}$ (lit. ${ }^{33} \mathrm{mp} 74^{\circ}$), and p-trifluoromethylphenyl azide, bp 66° (15 mm), $n \mathrm{D} 1.4850$ (lit. ${ }^{34}$ n D 1.4570). p-Nitrosobenzonitrile, mp 136-137 ${ }^{\circ}$, was prepared by Caro's acid oxidation of p-aminobenzonitrile according to the method of Ashley and Berg. ${ }^{33}$ Similarly prepared were p nitrosonitrobenzene, $\mathrm{mp} 119-120^{\circ}$ (lit. ${ }^{58} \mathrm{mp} 118-119^{\circ}$), and p trifluoromethylnitrosobenzene, $\mathrm{mp} 51-53^{\circ}$ (sublimed in vacuo).
Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{NO}$: C, $48.00 ; \mathrm{H}, 3.28$. Found: C, 47.85; H, 2.34 .

4-Cyano-2' N, N-dimethylaminodiphenylamine. $-N, N$. Di-methyl-o-phenylenediamine (0.61 g), p-bromobenzonitrile (1.82

[^55]g), potassium carbonate (1.38 g), and powdered copper (100 mg) were intimately mixed and heated at 140° for 36 hr . The cooled residue was extracted with chloroform and purified by chromatography on alumina and elution with benzene. The product $(0.20 \mathrm{~g}, 19 \%), \mathrm{mp} 123^{\circ}$, was recrystallized from light petroleum ether-chloroform: ir (KBr) $335.5(\mathrm{NH}), 2200(\mathrm{C} \equiv \mathrm{N}), 760 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.44-6.96 (m, 4 H), 6.78 (b s, 1 H , exchanges with $\mathrm{D}_{2} \mathrm{O}$), 2.47 ($\mathrm{s}, 6 \mathrm{H}$); mass spectrum m / e (rel intensity) 237 (100), 222 (47), 206 (24), 205 (64), 133 (17), 121 (18), 119 (25), 94 (15), 92 (20), 91 (17), 77 (22), 69 (17), 65 (23).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3}$: C, 75.95; $\mathrm{H}, 6.34$. Found: C, $7.5 .82 ; \mathrm{H}, 6.52$.
The following diphenylamines were prepared similarly.
4-Cyano-4'-N, N-dimethylaminodiphenylamine (6%) had mp 164-16.5 (from light petroleum ether-chloroform); ir (KBr) $3213(\mathrm{NH}), 2216(\mathrm{C} \equiv \mathrm{N}), 818,803 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.40$ (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=9$ $\mathrm{Hz}, 4 \mathrm{H}$), 5.93 (b s, 1 H , exchanges with $\mathrm{D}_{2} \mathrm{O}$), 3.98 (s, 6 H); mass spectrum m / e (rel intensity) 237 (100), 236 (23), 222 (43), 221 (18), 192 (17), 118 (39), 65 (16).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3}$: C, 75.9\%; $\mathrm{H}, 6.34$. Found: C, 75.93; H, 6.54 .
2-(N, N-Dimethylamino)-4'-trifluoromethyldiphenylamine (7%) had $\mathrm{mp} 48-49^{\circ}$ (from hexane); ir (KBr) 3350 (NH), 1325 (CF), $840,765 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ $(\mathrm{d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-6.85(\mathrm{~m}, 4 \mathrm{H}), 6.65$ (b s, 1 H , exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.61$ (s, 6 H); mass spectrum m / e (rel intensity) 280 (100), 265 (28), 248 (40), 196 (20), 180 (22), 133 (14), 119 (19), 92 (13), 91 (14), 77 (20). 65 (17), 44 (22), 42 (18).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$: C, 64.28; $\mathrm{H}, \mathrm{i} .36$. Found: C, 63.95; H, 5.51.

4-(N, N-Dimethylamino)-4'-trifluoromethyldiphenylamine (5\%) had mp 112-114 ${ }^{\circ}$ (from light petroleum ether); ir (KBr) $3400(\mathrm{NH}), 1324$ (CF), $830 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 280 (62), 279 (12), 265 (20), 235 (4), 140 (5), 125 (5), 87 (12), 85 (73), 83 (100), 47 (37).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$: $\mathrm{C}, 64.28 ; \mathrm{H}, 5.36$. Found: C, 64.54; H, 5.48.

4, 4^{\prime}-Bis(trifluoromethyl)azobenzene.-4, 4^{\prime}-Bis(trifluoromethyl)azoxybenzene (1.0 g) (from the performic acid oxidation of $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$) and triethyl phosphite (0.5 g) were heated at $160-170^{\circ}$ for 18 hr , after which the mixture was cooled and chromatographed on silica gel ($10 \times 4 \mathrm{~cm}$). Elution with benzenelight petroleum ether ($3: 1, \mathrm{v} / \mathrm{v}$) gave $4,4^{\prime}$-bis(trifluoromethyl)azobenzene ($0.79 \mathrm{~g}, 83 \%$): mp 101-102 ${ }^{\circ}$ (light petroleum ether); ir (KBr) $1609,1320,1170-1100,1061,852 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity)) 318 (19), 299 (8), 173 (20), 145 (100).

Anal. Calcd for $\mathrm{C}_{1} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}$: C, $52.84 ; \mathrm{H}, 2.52$. Found: C, 52.84; H, 2.57.

Thermolysis of p-Azidobenzonitrile in N, N-Dimethylaniline.-p-Azidobenzonitrile (0.5 g) was heated in N, N-dimethylaniline $(10 \mathrm{ml})$ at 130° for 48 hr under nitrogen. The reaction mixture was chromatographed on alumina ($30 \times 3 \mathrm{~cm}$). Elution with light petroleum ether gave N, N-dimethylaniline. Elution with benzene gave p-azidobenzonitrile ($80 \mathrm{mg}, 15 \%$), mp 67° (from water) (lit. ${ }^{29} \mathrm{mp} \mathrm{70}$). Elution with ether-benzene ($1: 3, \mathrm{v} / \mathrm{v}$) gave 4-cyano-2'-(N^{N}, N-dimethylamino) diphenylamine (180 mg , $2.5 .1 \%$), mp 123° (from light petroleum ether), ir (KBr) 3355 (NH) , $2200(\mathrm{C} \equiv \mathrm{N}), 760 \mathrm{~cm}^{-1}$, identical with an authentic sample. Elution with ether-benzene ($3: 1, \mathrm{v} / \mathrm{v}$) gave 4 -cyano- $4^{\prime}-(N, N$ dimethylamino)diphenylamine ($24 \mathrm{mg}, 3.4 \%$), mp 163-164 ${ }^{\circ}$ (from EtOH), ir (KBr) $3325(\mathrm{NH}), 2200(\mathrm{C} \equiv \mathrm{N}), 810,800 \mathrm{~cm}^{-1}$, identical with an authentic sample. Elution with ether gave p-aminobenzonitrile ($144 \mathrm{mg}, 20.3 \%$), $\mathrm{mp} 86-87^{\circ}$ (from water) (lit. ${ }^{37} \mathrm{mp} \mathrm{86}{ }^{\circ}$).

Thermolysis of p-Azidobenzonitrile in sym-Trimethoxyben-zene.- p-Azidobenzonitrile ($0 . \overline{\mathrm{F}} \mathrm{g}$) was heated in sym-trimethoxybenzene (3 g) at 130° for 50 hr under nitrogen. The reaction mixture was chromatographed on alumina ($30 \times 3 \mathrm{~cm}$). Light petroleum ether-benzene ($1: 3, \mathrm{v} / \mathrm{v}$) gave sym-trimethoxybenzene. Elution with benzene gave p-azidobenzonitrile $(43 \mathrm{mg}$, 8.5%), $\mathrm{mp} 67-70^{\circ}$ (from water). Elution with ether-benzene ($1: 3, \mathrm{v} / \mathrm{v}$) gave $4,4^{\prime}$-dicyanoazobenzene ($7 \mathrm{mg}, 2.3 \%$), mp 272° (from EtOII) (lit. ${ }^{38} \mathrm{mp} \mathrm{270}{ }^{\circ}$). Elution with ether-benzene
(37) M. T. Bogertand E. Wise, J. Amer. Chem. Sos., 34, 693 (1912).
(38) J. N. Ashley, H. J. Barber, A. J. Ewins, G. Newberry, and A. P. H. Self, J. Chem. Soc., 103 (1942)
(3:1, v/v) gave 4-cyano- $2^{\prime}, 4^{\prime}, 6^{\prime}$-trimethoxydiphenylamine (176 $\mathrm{mg}, 19.2 \%$): mp 159° (from EtOH); ir (KBr) 3325 (NH), $2205(\mathrm{C} \equiv \mathrm{N}), 840 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8 \mathrm{~Hz} .2 \mathrm{H})$, 6.57 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.22(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (s, 6 H); mass spectrum m / e (rel intensity) 284 (100), 269 (54), 241 (32), 226 (15), 142 (20), 69 (12).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.60; $\mathrm{H}, 5.63$. Found: C, $67.65 ; \mathrm{H}, 5.87$.
Further elution with ether gave p-aminobenzonitrile $(56 \mathrm{mg}$, $13.6 \%), \operatorname{mp} 86^{\circ}$.
Similar reaction conditions were used in the thermolyses of $p-\mathrm{N}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}$ in p-dimethoxybenzene and in mesitylene (see below).
Thermolysis of p-Azidobenzonitrile in p-Dimethoxybenzene.Chromatography of the reaction mixture gave 4,4'-dicyanoazobenzene (5.4%), $\mathrm{mp} 265^{\circ}$ (from EtOH), and p-aminobenzonitrile (41%), $\mathrm{mp} 84^{\circ}$.

Thermolysis of p-Azidobenzonitrile in Mesitylene.-Chromatography of the reaction mixture over alumina gave $3,3^{\prime} 5,5^{\prime}$ tetramethylbibenzyl (23%), mp 70° (from EtOH) (lit. ${ }^{39} \mathrm{mp}$ 72°), and 4-cyano- $2^{\prime}, 4^{\prime}, 6^{\prime}$-trimethyldiphenylamine (13.2%): bp $175-180^{\circ}(0.5 \mathrm{~mm})$; ir (film) $3360(\mathrm{NH}), 2215$ (C $\equiv \mathrm{E} \mathrm{N}$), $830 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 7.34(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~b}$ s, $2 \mathrm{H}), 6.46(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.19$ (b s, 1 H , exchanges with $\mathrm{D}_{2} \mathrm{O}$), $2.24(\mathrm{~s}, 6 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$; mass spectrum m / e (rel intensity) 236 (1.1), 152 (3.3), 148 (2.9), 133 (4.1), 119 (26), 118 (100), 113 (12), 91 (63), 90 (13), 81 (21), 65 (17), 63 (17), 55 (17), 43 (50).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}$: C, 81.26; $\mathrm{H}, 6.79$. Found: C, 81.15; H, 6.96.
Further elution gave p-aminobenzonitrile (25.2%), $\mathrm{mp} 86^{\circ}$.
Thermolysis of p-Azidobenzonitrile in Benzene.- p-Azidobenzonitrile (0.5 g) was heated in a bomb in benzene (10 ml) at 140° for 45 hr . Only $4,4^{\prime}$-dicyanoazobenzene ($75 \mathrm{mg}, 25.2 \%$), $\mathrm{mp} 268-270^{\circ}$, and p-aminobenzonitrile ($20 \mathrm{mg}, 4.9 \%$), mp 85$87^{\circ}$, were detected.
Deoxygenation of p-Nitrosobenzonitrile in N, N-Dimethyl-aniline.-Triethyl phosphite (435 mg) in N, N-dimethylaniline (5 ml) was added dropwise at 0° to a stirred solution of p-nitrosobenzonitrile (346 mg) in N, N-dimethylaniline (15 ml). After 30 min the mixture was diluted with light petroleum ether and chromatographed on alumina $(20 \times 5 \mathrm{~cm})$. Elution with light petroleum ether gave N, N-dimethylaniline. Benzene-light petroleum ether ($3: 1, \mathrm{v} / \mathrm{v}$) eluted 4-cyano-2'-(N, N-dimethylamino)diphenylamine ($104 \mathrm{mg}, 17.5 \%$), mp 121° (from light petroleum ether). Elution with benzene gave $4,4^{\prime}$-dicyanoazobenzene ($7 \mathrm{mg}, 2.4 \%$), mp 271-274 ${ }^{\circ}$. Further elution with benzene gave $4,4^{\prime}$-dicyanoazoxybenzene ($53 \mathrm{mg}, 16.8 \%$), mp $226-228^{\circ}$ (from CHCl_{3}) (lit. ${ }^{35} \mathrm{mp} 228^{\circ}$), and 4-cyano-4'-($N, N-$ dimethylaminodiphenylamine ($46 \mathrm{mg}, 7.6 \%$), mp 159-162 . Elution with ether-benzene ($1: 4, \mathrm{v} / \mathrm{v}$) gave p-aminobenzonitrile ($21 \mathrm{mg}, 6.9 \%$).

Similar reaction conditions were used in the deoxygenation of p-nitrosonitrobenzene and p-nitrosotrifluoromethylbenzene in dimethylaniline (see below)

Thermolysis of p-Azidonitrobenzene in N, N-Dimethylaniline. -The following were isolated by chromatography of the reaction mixture: p-azidonitrobenzene (2.5%), mp 71-73 ${ }^{\circ}$; 4,4'$\operatorname{bis}\left(N, N\right.$-dimethylamino)diphenylmethane (23.7%), mp 90° (from light petroleum ether, bp $60-110^{\circ}$) (lit. ${ }^{40} \mathrm{mp} \mathrm{90}{ }^{\circ}$); 4,4'dinitroazobenzene (1.0%), mp 223-225 (from light petroleum ether, bp $60-110^{\circ}$) (lit. $3^{35} \mathrm{mp} 222-223^{\circ}$); 2-(N, N-dimethyl-amino)-4'-nitrodiphenylamine (13.5%): $\mathrm{mp} 121^{\circ}$ (from CHCl_{3}); ir (KBr) $3315(\mathrm{NH}), 752 \mathrm{~cm}^{-1} ; \mathrm{nmr}(\mathrm{CDCl})_{3} \delta 8.04(\mathrm{~d}, J=$ $9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~m}, 6 \mathrm{H}), 2.59(\mathrm{~s}, 6 \mathrm{H})$; mass spectrum m / e (rel intensity) 257 (100), 242 (20), 196 (23), 195 (29), 181 (17), 180 (23), 179 (20), 133 (15), 77 (16).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $65.37 ; \mathrm{H}, 5.84$. Found: C, 65.47; H, 5.86.

Elution with ether-benzene (3:1, v/v) gave p-nitroaniline (18.3%), mp 145-147 ${ }^{\circ}$.

Thermolysis of p-Azidonitrobenzene in sym-Trimethoxyben-zene.- p-Azidonitrobenzene (1.0 g) in sym-trimethoxybenzene $(6.0 \mathrm{~g})$ was heated at 130° for 50 hr under nitrogen. The reac-
(39) E. Matwui, J. Soc. Chem. Ind., Jap., 45, 300 (1942); Chem. Abstr., 44, 7580d (1942).
(40) B. R. Brown and A. M. S. White, J. Chem. Soc., 3755 (1957)
tion mixture was chromatographed on alumina. Elution with benzene gave sym-trimethoxybenzene. Elution with etherbenzene ($1: 3, \mathrm{v} / \mathrm{v}$) gave 4 -nitro- $2^{\prime}, 4^{\prime}, 6^{\prime}$-trimethoxybiphenyl ($60 \mathrm{mg}, 3.4 \%$): mp 170° (from EtOH); ir (KBr) 1590, 1490 , 1320, $850 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ $\left(\mathrm{d}, J=9 \mathrm{~Hz}_{2}, 2 \mathrm{H}\right), 6.29(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}) ;$ mass spectrum m / e (rel intensity) 288 (15), 287 (100), 227 (13), 212 (8), 113 (7).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{5}$: C, 62.28; $\mathrm{H}, 5.19$. Found: C, 62.37; H, 5.38.

Elution with ether-benzene ($3: 1, \mathrm{v} / \mathrm{v}$) gave 4 -nitro- $\mathrm{D}^{\prime} \mathrm{A}^{\prime}, 6^{\prime}$ trimethoxydiphenylamine ($350 \mathrm{mg}, 18.9 \%$): mp 145° (from light petroleum ether); ir 3380 (NH), 1580, 1490, 1375, 835 $\mathrm{cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=$ $9 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 2 \mathrm{H}), 5.87\left(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}\right.$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H})$; mass spectrum m / e (rel intensity) 305 (19), 304 (100), 288 (32), 261 (18), 243 (22).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{0}$: C, $59.21 ; \mathrm{H}, 5.26$. Found: C, 59.28; H, 5.36.

Elution with ether gave p-nitroaniline ($50 \mathrm{mg}, 16.8 \%$).
Deoxygenatior of p-Nitrosonitrobenzene in N, N-Dimethyl-aniline.-Chromatography of the reaction mixture gave 4,4'dinitroazoxybenzene (2.8%), mp 190-191 ${ }^{\circ}$ (lit. ${ }^{41} \mathrm{mp} 193^{\circ}$); 2 -(N, N-dimethylamino)-4'-nitrodiphenylamine (19.7%), mp 119° (from CHCl_{3}) undepressed on admixture with an authentic sample; 4-(N, N-dimethylamino)-4'-nitrodiphenylamine (6.1%), $\mathrm{mp} 148-150^{\circ}$ (from CHCl_{3}) (lit. ${ }^{42} 152^{\circ}$); and p-nitroaniline (5.7\%).

Deoxygenation of p-Nitrosotrifluoromethylbenzene in N, N -Dimethylaniline.-The reaction mixture was chromatographed over silica gel ($25 \times 5 \mathrm{~cm}$). Elution with light petroleum ether gave N, N-dimethylaniline and three other compounds as an unresolved mixture. The N, N-dimethylaniline was evaporated under reduced pressure and the residue was subjected to preparative tlc. Elution with benzene-light petroleum ether ($1: 3$, v / v) gave $4,4^{\prime}$-bis(trifluoromethyl)azobenzene (1.5%), mp 101$102^{\circ}$ (light petroleum ether), identical with an authentic sample; and 4,4'-bis(trifluoromethyl)azoxybenzene (16.0%): mp 106$108^{\circ}$ (from light petroleum); ir (KBr) 1611, 1320, 1160-1100, $849 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 334 (25), 318 (13), 299 (5), 173 (19), 145 (100).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 50.30 ; \mathrm{H}, 2.40$. Found: $\mathrm{C}, 50.62 ; \mathrm{H}, 2.55$.

Further elution gave 2 -(N, N-dimethylamino)-4'-trifluoromethyldiphenylamine (6.2%), $\mathrm{mp} 46-48^{\circ}$, ir $(\mathrm{NaCl}) 3358$, $1328,760 \mathrm{~cm}^{-1}$, identical with an authentic sample.

Thermolysis of o-Azidobenzonitrile in sym-Trimethoxyben-zene.-o-Azidobenzonitrile (0.5 g) in sym-trimethoxybenzene $(3 \mathrm{~g})$ was heated at 130° for 60 hr under nitrogen. The reaction mixture was chromatographed on alumina ($3 \times 3 \overline{\mathrm{c}} \mathrm{cm}$). Elution with benzene gave sym-trimethoxybenzene. Elution with etherbenzene ($1: 3, \mathrm{v} / \mathrm{v}$) gave 2-cyano- $2^{\prime}, 4^{\prime}, 6^{\prime}$-trimethoxydiphenylamine ($380 \mathrm{mg}, 38.6 \%$): mp $12 \overline{5}-126^{\circ}$ (from light petroleum ether); ir (KBri $3330(\mathrm{NH}), 2215(\mathrm{C}=\mathrm{N}), 1290,1230,1210$, $1160,1130,810,770,760 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \delta 7.74-7.40(\mathrm{~m}$, $2 \mathrm{H}), 6.92(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (b s, 1 H , exchanges with $\mathrm{D}_{2} \mathrm{O}$), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H})$; mass spectrum m / e (rel intensity) 284 (100), 268 (36), 241 (46), 226 (12), 198 (12), 155 (15), 142 (21), 141 (16), 129 (19), 102 (24), 76 (14), 75 (13), 69 (37), 66 (12), 59 (15), 55 (18), 39 (32).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.60; $\mathrm{H}, 5.63$. Found: C, 67.67; H, 5.8.
Elution with ether gave o-aminobenzonitrile ($10 \mathrm{mg}, 4.0 \%$), $\mathrm{mp} 49-50^{\circ}$ (lit. ${ }^{43} \mathrm{mp} 51^{\circ}$).
Thermolysis of m-Azidobenzonitrile in sym-Trimethoxyben-zene.-The reaction was carried out as for the ortho isomer to give 3-cyano- $2^{\prime}, 4^{\prime}, 6^{\prime}$-trimethoxydiphenylamine (8.4%): mp 78$80^{\circ}$ (from EtOF); ir (KBr) $3360(\mathrm{NH}), 2230(\mathrm{C} \equiv \mathrm{N}), 1330$, $1300,1230,1210,1160,1130,790 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.24-$ $6.70(\mathrm{~m}, 4 \mathrm{H}), 6.19(\mathrm{~s}, 2 \mathrm{H}), 5.38\left(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}\right.$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H})$; mass spectrum m / e (rel intensity) 284 (29), 269 (22), 147 (13), 142 (14), 129 (64), 125 (16), 118 (40), $112(23),-02(20), 97(21), 91(20), 83(34), 71(63), 69$
(41) E. Bamberger and R. Hubner, Ber., 36, 3808, 3810 (1903).
(42) G. Modena, Boll. Sci. Fac. Ind. Bologna, 17, 45 (1959); Chem. Abstr., 54, 12773 (1960).
(43) A. Reissert and F. Grube, Ber., 42, 3710 (1909)
(55), 57 (100), 55 (71), 43 (79). m-Aminobenzonitrile (7.3%), $\mathrm{mp} 52-54^{\circ}, \mathrm{mmp} 52-54^{\circ}$ (lit. ${ }^{44} \mathrm{mp} 53-54^{\circ}$), was also obtained.
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: $\mathrm{C}, 67.60 ; \mathrm{H}, 5.63$. Found: C, 67.39; H, 5.68 .
Kinetics of the Thermal Decomposition of p-Azidobenzonitrile in the Presence of N, N-Dimethylaniline.- p-Azidobenzonitrile was thermolyzed in chlorobenzene solution at 132° in the presence of varying amounts of N, N-dimethylaniline. During the thermolyses, portions were removed at regular intervals with a syringe, diluted fourfold with chlorobenzene, and assayed by measuring the area of the asymmetric azide st retching band in the infrared (2160 and $2110 \mathrm{~cm}^{-1}$). Concentrations of azide were obtained from a previously prepared calibration curve,s and rate constants for the disappearance of azide were obtained from the slopes of plots of \log [azide] vs. time. The results are summarized below.
(44) A. Fricke, Ber. 7, 1321 (1874).
(45) The variation of the area of thia band with concentration deviated from linearity above 0.05 M , suggesting possible association of the azide in solution.
$\left.\begin{array}{ccc}\text { [} p \text {-Cyanophenyl azide]. } & \begin{array}{c}\text { [} N, N \text {-dimethylaniline]. } \\ M\end{array} & M\end{array} \begin{array}{c}\text { Rate constant } \\ \left(\times 10^{8}\right) . \mathrm{sec}^{-1}\end{array}\right]$

Registry No. -2, 18523-41-6; 3, 29547-82-8; 4, 29547-83-9; 7, 34915-93-0; 2-(N, N-dimethylamino)-4'-trifluoromethyldiphenylamine, 29547-88-4; 4-(N, N -dimethylamino)-4'-trifluoromethyldiphenylamine, 34913-28-5; 4,4'-bis(trifluoromethyl) azobenzene, 34913-29-6; 4-cyano-2', $4^{\prime}, 6^{\prime}$-trimethoxydiphenylamine, 29547-84-0; 4-cyano- $2^{\prime}, 4^{\prime}, 6^{\prime}$-trimethyldiphenylamine, 29547-85-1; 2-(N, N-dimethylamino)-4'-nitrodiphenylamine, 29547-86-2; 4-nitro-2 ${ }^{\prime}, 4^{\prime}, 6^{\prime}$-trimethoxydiphenylamine, 29547-87-3; 4,4'-bis(trifluoromethyl) azoxybenzene, 34913-34-3; 2-cyano-2', $4^{\prime}, 6^{\prime}$-trimethoxydiphenylamine, $\quad 34913-35-4 ; \quad 3$-cyano- $2^{\prime}, 4^{\prime}, 6^{\prime}$-trimethoxydiphenylamine, 34913-36-5.

Organic Disulfides and Related Substances. 34. Synthesis and Reactions of Some Substituted Cyclic Disulfides and Corresponding S-Oxides ${ }^{1}$

Lamar Field* and Yong H. Khim
Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235

Received February 14, 1972

Abstract

Functionally substituted 1,2-dithianes, 1,2-dithiolanes, and S-oxides were sought for study of their properties and reactions and for testing as antiradiation drugs. Oxidation of trans- and cis-1,2-dithiane-4, - -diol diacetate (6 and 7) gave the 1 -monoxides 8 and 9 . Oxidation of 6 and 7 to the trans and cis 1,1 -dioxides 10 and 11 failed with numerous agents but finally was accomplished using potassium metaperiodate in aqueous 2 -propanol with iodine as an effective catalyst as the best means. A thiolate ion cleaved the 1,1 -dioxide 10 , giving a disulfide sulfinate (14), but amines did not cleave 1,2-dithiane 1,1-dioxide (12). Procedures are compared for the synthesis of 1,2-dithiolane-4-carboxylic acid (16), and syntheses of some other dithiolanes are discussed.

This paper reports some syntheses and reactions of substituted five and six-membered cyclic disulfides and of the corresponding S-oxides. There were two motivations for the work. One was to permit testing of representative compounds as antiradiation drugs, since trans-1,2-dithiane-4,5-diol (3) has been said to be active in this respect; ${ }^{2}$ such activity would be of considerable interest because most antiradiation drugs contain nitrogen functions that may have much to do with their toxicity. A second motivation was to begin an extension to substituted systems of earlier studies of unsubstituted cyclic disulfides and their S-oxides. ${ }^{3}$

In Scheme I, conversion of dithiothreitol (1) to trans-1,2-dithiane-4,5-diol (3) and of dithioerythritol (2) to the cis isomer 4 proceeded by standard methods ($70-75 \%$ yield); recrystallization provided a convenient purification. Although 1,2 -dithiane can be oxidized to the 1,1 -dioxide by hydrogen peroxide or potassium metaperiodate $\left(\mathrm{KlO}_{4}\right)$ in $66-68 \%$ yield, ${ }^{3 \mathrm{a}}$ the dihydroxydithiane 3 gave only intractable oil with no indication of the dioxide 5 (ir); cleavage of 3 to sulfonic acids evidently predominated, since the prod-

[^56]
ucts were strongly acidic, probably complicated by cleavage at the glycol moiety.

It seemed likely that adverse reactions of the glycol moiety could be prevented by prior acetylation. Both of the diols 3 and 4 have been acetylated by means of acetic anhydride and pyridine but, since the diacetates 6 and 7 were desired for nmr studies, few other details were given. ${ }^{4}$ Acetyl chloride gave the trans diacetate 6 and cis diacetate 7 in yields of $74-82 \%$ (Scheme I).

Oxidation of the diacetates 6 and 7 to the 1 -monoxides 8 and 9 occurred, but oxidation to the 1,1-dioxides

[^57]10 and 11 proved far more difficult than had been anticipated from studies with 1,2-dithiane under similar or less vigorous conditions (cf. ref 3 a). Thus with the trans diacetate 6 , hydrogen peroxide at 25° gave the monoxide 8 (64%), not the expected dioxide 10 , and longer times or higher temperatures led only to cleavage into presumed sulfonic acids (the pH dropped to $1-2$). Similarly, a large excess of KIO_{4} in aqueous acetone gave ony 8 (85% yield). Other agents with 6 also gave only cleavage or monoxide 8 , with no indication through ir spectra of the dioxide 10 ; these agents included potassium permanganate in acetone (38% of 8), chromium trioxide in acetone (low yield of 8), m chloroperbenzoic acid, and ceric ammonium nitrate. The monoxide 8 itself was submitted to oxidation but was equally refractory. For example, under conditions that finally were made vigorous enough to destroy most of the 8 (e.g., 5 days at 60°), aqueous KIO_{4} led only to cleavage of 8 . Use of hydrogen peroxidetungsten trioxide-sulfuric acid in dioxane-acetic acid, a combination useful for oxidizing another refractory disulfide to a dioxide, ${ }^{5}$ also led mainly to cleavage (10% recovery of 8 after 48 hr at 25°, with no indication of 10). With the cis diacetate 7, fewer experiments were done because of the greater expense of 2 but, again, resistance to oxidation seemed marked. With KIO_{4}, the monoxide 9 was obtained in 80% yield from 7 , but various efforts to prepare the dioxide 11 were largely unavailing. On one occasion, KIO_{4} in aqueous acetone did convert 7 to the dioxide 11 in 66% yield. The 11 thus could be characterized, but this preparation could not be repeated (see Experimental Section). The conditions required for the one successful preparation of $11\left(40^{\circ}, 50 \mathrm{hr}\right)$, and particularly the failure of other efforts, seem to contrast sufficiently with those for oxidation of 1,2 -dithiane to the dioxide $\left(\sim 25^{\circ}, 4\right.$ days) ${ }^{38}$ to suggest that the cis diacetate 7 parallels the trans diacetate 6 in intransigence.

It is noteworthy that neither the monoxide 8 nor 9 seems to be particularly unstable (the molting point of 8 was unchanged after 20 months). In stability 8 and 9 resemble 2,4,6-triisopropylphenyl 2,4,6-triisopropylbenzenethiolsulfinate, which seems considerably more stable than is usual for thiolsulinates and which could not be oxidized to the dioxice; the corresponding 2,4,6-triisopropylphenyl disulfide resembled 6 and 7 in resisting oxidation (cf. ref 5). These characteristics in the triisopropylphenyl series were attributed to steric factors. The resistance of 6-9 toward oxidation to 1,1-dioxides probably has its explanation in steric or conformational factors also (perhaps, for example, to resistance to a necessary ring inversion of conformers during the two-stage oxidation).

A report that sodium metaperiodate in methanol will oxidize a sulfide to a sulfone ultimately proved the key to successful preparation of the 1,1 -dioxide $10,{ }^{6}$ and in initial studies 10 was obtained in fairly good yield (60%) by using aqueous 2-propanol as solvent for the reaction of 6 with potassium metaperiodate $\left(80^{\circ}\right.$, 49 hr ; the ir peak for $-\mathrm{SO}-$ persisted at 30 hr). With aqueous methanol, 6 was oxidized to 10 but in only 28% yield (40 hr); with a short reaction time (3 hr), the
(5) L. Field and T. F. Parsons, J. Org. Chem., 30, 657 (1965)
(6) L. L. Replogle and J. R. Maynard, J. Org. Chem., 32, 1909 (1967).
yield of 10 was 48%. Potassium metaperiodate rather than the sodium salt was used because it had given better results with 1,2-dithiane. ${ }^{3 \mathrm{a}} \mathrm{Nmr}$, ir, and mass spectra and elemental analyses met expectation for 10

During the successful oxidation of 6 to 10 in aqueous 2-propanol, the mixture slowly became brown. Loss of the color when the product was washed with aqueous sulfite suggested that iodine was responsible for the color and led to the suspicion that the reaction might have bcen autocatalytic, with the iodine generated serving as a catalyst. This suspicion was confirmed by estimating the amounts of monoxide 8 and dioxide 10 present as a function of time when increasing amounts of iodine were used (see Experimental Section). The time required for complete loss of ir absorption attributable to the -SO- moiety (and for appearance of that of the $-\mathrm{SO}_{2^{-}}$moiety) varied with the molar proportion of iodine (in parentheses) as follows: 33 (0), 16 (0.02), $9(0.04)$, and $6.5 \mathrm{hr}(0.08)$. Hence I_{2} is indeed quite effective as a catalyst. This usefulness of alcohols and iodine under vigorous conditions in a periodate oxidation appears to be an exciting lead. Further exploration of the combination $\mathrm{KIO}_{4}-i-\mathrm{PrOH}-$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{I}_{2}$ as a tool for oxidizing -S - moieties of both sulfides and disulfides to $-\mathrm{SO}_{2}-$ moieties seems called for, and it scems likely that studies of the mechanism also would lead to rewarding results. When iodine catalysis was used preparatively with potassium metaperiodate to oxidize 6 in i - $\mathrm{FrOH}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 10$ was obtained in a yield of 67% after 7 hr of reflux (0.02 mol of $\mathrm{I}_{2} / \mathrm{mol}$ of 6).

Earlier work on the cleavage of 1,2-dithiane 1,1dioxide (12) by nucleophiles revealed that such "oxodisulfide" cleavages can lead to useful syntheses of disulfides terminated with the moieties $-\mathrm{SO}_{2}{ }^{-},-\mathrm{SO}_{3}{ }^{-}$, $-\mathrm{SO}_{2} \mathrm{R}$, and $-\mathrm{SO}_{2} \mathrm{SR} .{ }^{3 b}$ In further studies of the generality of cleavage, hydride and halide ion cleavages were found to be unpromising in the solvents tried. ${ }^{13}$ Similarly, we have now been unable to see that morpholine or piperidine effect any useful degree of cleavage, even though amines are known to cleave certain acyclic thiolsulfonates. ${ }^{7}$ Thus when 12 was heated under reflux in benzene, methylene chloride, or tetrahydrofuran with these amines for 21-24 hr it was recovered quantitatively in each instance; presumably, under the conditions used, the equilibrium constant for cleavage was quite unfavorable ($c f$. ref 7). On the other hand, the sodium salt o: 2-acetamidoethanethiol (13) smoothly cleaved the dioxide 10 to give the disulfide sulfinate 14 in 73% yield (eq 1). Nmr and ir spectra are consistent

$$
\underset{13}{\mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SH}} \xrightarrow[\substack{\mathrm{EtOH}-\mathrm{Me}, \mathrm{CO},\left.\right|_{2} \\-10^{\circ}}]{\mathrm{NaOEt}} \operatorname{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SNa}
$$

$\mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SSCH}_{2} \mathrm{CH}(\mathrm{OAc}) \mathrm{CH}(\mathrm{OAc}) \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Na}$
14
with the formulation of product as 14, as is the analogy of a similar reaction with 1,2-dithiane 1,1-dioxide (12). ${ }^{1 \mathrm{a}, 3 \mathrm{~b}}$

Scheme II shows the results of studies with 1,2 dithiolanes. The dithiol 15 was oxidized previously to 1,2-dithiolane-4-carboxylic acid (16) by use of oxygen and ferric chloride (overall yield from β, β^{\prime}-diiodoiso-

[^58]Scheme II

butyric acid, $17 \%)^{8}$ 1,2-Dithiolane itself has been synthesized in good yield by adding the thiol and hydrogen peroxide simultaneously but separately to acetic acid containing a little KI at $75^{\circ},^{3 \mathrm{a}}$ and use of this procedure with 15 gave 16 in yields of $57-85 \%$. Use of $\mathrm{I}_{2}-\mathrm{Et}_{3} \mathrm{~N}$, which often gives good results in cyclization of α, ω-dithiols, ${ }^{33.9}$ led to 16 in 40% yield, and use of potassium ferricyanide, which was effective for synthesis of the dithianes 3 and $4,{ }^{10}$ gave 16 in 32% yield. We were able to confirm the experience of Lindberg and Bergson in being able to convert the dithiolane 16 to the monoxide 17 (72% yield; 63% repcrted). ${ }^{11}$ Unfortunately, we also confirmed their experience in being unable to obtain the 1,1-dioxide of 16 ; the hydrogen peroxide-tungsten trioxide procedure, ${ }^{5}$ as well as KIO_{4} in $\mathrm{H}_{2} \mathrm{O}$ or aqueous 2-propanol (with 16 or its sodium salt), seemed to lead only to cleavage to sulfonic acids ($\mathrm{pH} \sim 1-2$) and to polymerization.
Lindberg and Bergson succeeded in oxidizing 4,4-bis(hydroxymethyl)-1,2-dithiolane to the 1,1-dioxide by the use of hydrogen peroxide. ${ }^{11}$ Although the gemmethylol moieties may well have stabilized this dioxide, in common with frequently observed effects of groups on otherwise unstable ring systems, we considered the sequence of $18 \rightarrow 19 \rightarrow 20$ a worth exploration (Scheme II). The acid 15 therefore was reduced to the carbinol 18 (70% yield), which was oxidized to a liquid that polymerized readily but was presumed from spectra to be largely 19 ($\sim 70 \%$ yield). Oxidation of a sample of 19 without delay did seem to give a dioxide, but spectra indicated that the product was the acetate 20b rather than the carbinol 20a (see Experimental Section); if the assignment of structure 20b to the product is correct, esterification of 20a to 20 b is understandable, since reaction of acetic acid used as solvent with the carbinol 20a could have been catalyzed by sulfonic acids produced by cleavage of the ring. This reaction was not investigated further because it was not very clean and because the yield was low.

Results available thus far for compounds tested as

[^59]antiradiation drugs are unpromising. ${ }^{12}$ Compounds, $\mathrm{LD}_{50}(\mathrm{mg} / \mathrm{kg})$, doses ($\mathrm{mg} / \mathrm{kg}$), per cent of survival of mice after 30 days, and antiradiation ratings, respectively, were as follows: $3,450,250,0$, inactive; 6 , 750, 200, 13 (17-day survival), slight; 8, 120, 2.--50, 7-13, slight.

Experimental Section ${ }^{13}$

Starting Materials.-Commercial dithiothreitol (1) and dithioerythritol (2) (N. B. C. Research Biochemicals) were used after checking them by ir and nmr, and 2-mercaptomethyl-3mercaptopropionic acid (15) was kindly supplied by Dr. D. L. Klayman of the Walter Reed Army Institute of Research, Washington, D. C. 2-Acetamidoethanethiol (13) was prepared as reported. ${ }^{14}$
1,2. Dithiane-4,5-diols, trans- (3) and cis- (4), were prepared by oxidizing 1 and 2 , respectively, with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{10}$ and recrystallizing the products from EtOAc; yield of $3,7 \pi$, $\mathrm{ic}, \mathrm{mp} 133-1: 34^{\circ}$ (lit. ${ }^{10} \mathrm{mp} \mathrm{132} 2^{\circ}$); yield of $4,70^{\circ} / \mathrm{C}, \mathrm{mp} 132-133^{\circ}$ (lit. ${ }^{10} \mathrm{mp} 132^{\circ}$).
1,2-Dithiane-4,5-diol Diacetate, trans- (6) and cis- (7).-Well dried and powdered trans diol 3 ($15.0 \mathrm{~g}, 0.0987 \mathrm{~mol}$) was added slowly to acetyl chloride ($23.4 \mathrm{~g}, 0.298 \mathrm{~mol}$) with good stirring at $0-5^{\circ}$. The mixture boiled spontaneously during the first part of the reaction. After stirring had been continued for 3 hr at $\sim 25^{\circ}$, clear liquid resulted. $\mathrm{CHCl}_{3}(200 \mathrm{ml})$ then was added, and the solution was poured into 100 ml of water containing 200 g of ice. The organic layer was well shaken with 100 ml of iced saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and then with cold $\mathrm{H}_{2} \mathrm{O}$ until it was neutral. It was dried and concentrated to 22.0 g (94%) of oil, which gradually solidified at 0°. Recrystallization by dissolution in $\mathrm{Et}_{2} \mathrm{O}$ at 25°, addition of n-hexane to incipient turbidity, and chilling at 0° gave $19.0 \mathrm{~g}\left(\mathrm{~S}_{\mathrm{F}}^{\mathrm{c}} \mathrm{c}\right)$ of $6 \mathrm{mp} 43-49^{\circ}$. Further recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ gave 6 as white plates: mp
 $3.03\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 5.15-4.90(\mathrm{~m}, \mathrm{OCH})$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 40.70; $\mathrm{H}, 5.09 ; \mathrm{S}, 27.19$. Found: C, 40.92; H, 5.10; S, 27.3.5.

Essentially by the same procedure, cis-1,2-dithiane-4,5-diol $(4,0.65 \mathrm{~g}, 4.27 \mathrm{mmol})$ and $\mathrm{AcCl}(1.00 \mathrm{~g}, 12.50 \mathrm{mmol})$ gave the cis diacetate 7 ($0.75 \mathrm{~g}, 74 \mathrm{C}$) : mp 73-74 ${ }^{\circ}$ (lit. ${ }^{4} \mathrm{mp} 74-75^{\circ}$); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.03\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.22-2.9 .5\left(\mathrm{~m},-\mathrm{CH}_{2}-\right)$, i.1.54.96 (m, OCH).
trans-1,2-Dithiane-4,5-diol Diacetate 1-Monoxide (8). A. Via Potassium Metaperiodate (KIO_{4}).-The diacetate 6 (10.0 $\mathrm{g}, 42.4 \mathrm{mmol}$) in 100 ml of $\mathrm{Me}_{2} \mathrm{CO}$ was added to a solution of KIO $(40.0 \mathrm{~g}, 174.0 \mathrm{mmol})$ in 300 ml of $\mathrm{H}_{2} \mathrm{O}$. After this heterogencous reaction mixture had been stirred for in days, it was heated at 60° for 4 hr and was filtered to remove KIO_{4}.

The filtrate was concentrated to 100 ml and then extracted with CHCl_{3} three times. The CHCl_{3} extract was washed with cold $\mathrm{H}_{2} \mathrm{O}$ and concentrated to give $9.1 \mathrm{~g}(85 \%)$ of crude $8, \mathrm{mp}$ $110-145^{\circ}$. Recrystallization by dissolution in benzene at $\sim 40^{\circ}$ addition of n-hexane to incipient turbidity, and standing at $25^{\circ}{ }^{\circ}$ overnight, and then further recrystallization from benzene, gave 8 as white plates of constant mp 1.50-151 ${ }^{\circ}$: nmr $\left(\mathrm{ClOCl}_{3}\right) \delta$ 2.04 ($\mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$), 2.11 ($\mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$), $3.98-2.80\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 6.02$ $5.03(\mathrm{~m}, \mathrm{CH})$; ir $1750,137.5,1250,1240,1060$ and $1030 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 43 (100), 70 (45), S4 (45), 112 (3.5), 132 (8), 150 (4), 172 (6), 2.52 (3)

[^60]Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, 38.08; H, 4.77; S, 25.41; mol wt, 252. Found: C, 38.38 ; H, 4.84; S, 24.98; mol wt, 252 (mass spectrum).
B. Via Hydrogen Peroxide.-A solution of $\sim 30 \% \quad \mathrm{H}_{2} \mathrm{O}_{2}$ $(2.5 \mathrm{mmol})$ in glacial $\mathrm{AcOH}(2 \mathrm{ml})$ was added to $6(0.44 \mathrm{~g}, 1.87$ mmol) in glacial $\mathrm{AcOH}(2 \mathrm{ml})$ with stirring at 25°. Stirring was continued for 3 hr at 25°. After removal of solvent, addition cf cold $\mathrm{H}_{2} \mathrm{O}$ resulted in white crystals. Filtration gave 0.30
 to those of 8 from A.
C. Via Potassium Permanganate.-A solution of KMnO_{4} $(0.20 \mathrm{~g}, 1.27 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(10 \mathrm{ml})$ was added to $6(0.100 \mathrm{~g}$, 0.43 mmcl) in $\mathrm{Me}_{2} \mathrm{CO}(5 \mathrm{ml})$. The mixture was heated under reflux for 5 hr and then was allowed to stand for 10 hr at $\sim 25^{\circ}$. Removal of solvent and extraction of the residue with CHCl_{3} gave $0.04 \mathrm{~g}(38 \%)$ of $8, \mathrm{mp} \mathrm{150-151}{ }^{\circ}$.
D. Via Chromium Trioxide.-A solution of $\mathrm{CrO}_{3}(2.1 \mathrm{mmol})$ in $\sim 8 \mathrm{NH}_{2} \mathrm{SO}_{4}$ was added to $6(0.11 \mathrm{~g}, 0.47 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}$ $(10 \mathrm{ml})$. The heterogeneous mixture was stirred for 18 hr at $\sim 25^{\circ}$ and then was diluted with CHCl_{3}. Insoluble solid was removed, and the CHCl_{3} layer was washed with cold $\mathrm{H}_{2} \mathrm{O}$, dried, and concentrated, leaving a mixture $(0.08 \mathrm{~g})$ of disulfide 6 and monoxide 8.
cis-1,2-Dithiane-4,5-diol Diacetate 1-Monoxide (9).—The cis diacetate $7(0.70 \mathrm{~g}, 2.96 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(60 \mathrm{ml})$ was added to a solution of $\mathrm{KIO}_{4}(3.10 \mathrm{~g}, 13.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(120 \mathrm{ml})$. After this heterogeneous mixture had been stirred for $6 \varepsilon \mathrm{hr}$ at $\sim 25^{\circ}$, the volume was reduced to about 10 ml , and the mixture was extracted with benzene. The extract was dried ard evaporated to give $9,0.60 \mathrm{~g}(80 \%), \mathrm{mp} 112-114^{\circ}$. Recrystallization from n-hexane and then from benzene gave 9 as white crystals of constant mp 113-114 ${ }^{\circ}: \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.11$ (s, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 2.21$ (s, $\left.-\mathrm{CH}_{3} \mathrm{CO}\right), 4.20-3.26\left(\mathrm{~m},-\mathrm{CH}_{2}-\right), 5.93-5.41(\mathrm{~m}, \mathrm{OCH})$; ir $1745,1370,1240,1200,1065,1045,1030 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 43 (100), $70(45), 84$ (35), 112 (40), 132 (4), 150 (4), 172 (7), 252 (3).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, 38.08; H, 4.77; S, 25.41; mol wt, 252. Found: C, 37.90 ; H, 4.75 ; S, 25.80 ; mol wt, 252 (mass spectrum).
trans-1,2-Dithiane-4,5-diol Diacetate 1,1-Dioxide (10). A. Via KIO_{4} in i-PrOH.-A solution of the trans diacetate 6 (6.4 $\mathrm{g}, 27.1 \mathrm{mmol})$ in $i-\mathrm{PrOH}(500 \mathrm{ml})$ was added to $\mathrm{KIO}_{4}(18.57 \mathrm{~g}, 80.6$ mmol) in $\mathrm{H}_{2} \mathrm{O}$ (140 mmol). After the heterogeneous reaction mixture has been heated at $80-82^{\circ}$ for 30 hr with good stirring, a small portion of solution was withdrawn to check for complete oxidation to the dioxide 10 by ir; the monoxide peak at $1060 \mathrm{~cm}^{-1}$ still remained. After 49 hr , the mixture had become brown and showed only strong dioxide-peak absorption at 1310 and 1110 cm^{-1}, with no peak at $1060 \mathrm{~cm}^{-1}$. After removal of the $i-\mathrm{PrOH}$ and $\mathrm{H}_{2} \mathrm{O}$, the residue was extracted with CHCl_{3} three times. The extract then was washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution to remove I_{2}. The extract was washed again with $\mathrm{H}_{2} \mathrm{O}$, dried, and evaporated to give 10 , yield $4.4 \mathrm{~g}(60 \%)$, mp $133-139^{\circ}$. Recrystallization from benzene gave 10 as white needles having a constant mp of $140-142^{\circ}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.18$ ($\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $2.22\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.90-3.51\left(\mathrm{~m},-\mathrm{CH}_{2}\right), 5.60-5.08(\mathrm{~m}, \mathrm{OCH})$ ir $2980,1740,1720,1360,1310,1220,1110,1030,860,760 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 43 (100), 84 i33), 101 (8), 148 (3), 208 (1).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, 35.82; H, 4.48; S, 23.85. Found: $\mathrm{C}, 35.79 ; \mathrm{H}, 4.52 ; \mathrm{S}, 23.68$. In another experiment, a $24-\mathrm{hr}$ reflux period led to 10 in 69% yield.
B. Via KIO_{4} in MeOH .-From the reaction of $6(0.128 \mathrm{~g}$, $0.54 \mathrm{mmol})$ in 10 ml of MeOH with $\mathrm{KIO}_{4}(0.36 \mathrm{~g}, 1.56 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ at 80° for $40 \mathrm{hr}, 10$ was obtained (a=ter recrystallization from benzene) as white needles, $0.040 \mathrm{~g}(28 \%), \mathrm{mp} 140-$ 142°. Experiments like those described in C with $i-\mathrm{PrOH}$ showed that only 3 hr actually was necessary for ccmplete loss of the -SO- peak, and a shorter reaction period of 3 hr gave 10 in 48% yield.
C. Via KIO, in i - $\mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}$ Containing I_{2}. -In order to learn whether I_{2} was an effective catalyst, experiments were done using the different amounts of I_{2} shown in Table I. For example, a mixture of $6(177 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $i-\mathrm{PrOH}(16 \mathrm{ml})$ with KIO_{4} ($540 \mathrm{mg}, 2.34 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was heated at $80-82^{\circ}$ with good stirring. From time to time, $\sim 1.5 \mathrm{ml}$ of solution was withdrawn and was concentrated and extracted with CHCl_{3}. After the extract had been dried and the CHCl_{3} removed, the residue was used directly as an ir sample. The percentages of the dioxide 10 and monoxide 8 were approximated by com-

Table I

Oxidation of trans-1,2-Dithiane-4,5-diol Diacetate (6) with KIO_{4} in Aqueous i - PrOH at $\sim 80^{\circ}$

$\frac{\text { Mol of } I_{2}}{\text { Mol of } 6}$	Time, hr	Estimated composition of ——products, $\%$ ——	
		8	10
0	12	95	5
	16	80	20
	21	55	45
	26	25	75
	33	0	100
0.02	5	90	10
	6	60	40
	8	50	50
	11	10	90
	16	0	100
0.04	3	90	10
	5	60	40
	8	10	90
	9	0	100
0.08	1	75	25
	3	55	45
	5	5	95
	6.5	0	100

paring intensities at 1110 and $1060 \mathrm{~cm}^{-1}$, respectively, with those of authentic samples (by use of a plot for 8 and another for 10 in which intensity had been normalized to a constant value for $-\mathrm{CHO}-$ at $1030 \mathrm{~cm}^{-1}$ and then plotted $v s$. per cent of 8 and 10). The results are shown in Table I; concentrations and amounts were the same in all experiments as those given above, except for I_{2}.

In a preparative experiment, a mixture of 18.0 g of $6,52.6 \mathrm{~g}$ of $\mathrm{KIO}_{4}, 0.386 \mathrm{~g}$ of $\mathrm{I}_{2}, 200 \mathrm{ml}$ of $i-\mathrm{PrOH}, 100 \mathrm{ml}$ of MeOH , and 300 ml of $\mathrm{H}_{2} \mathrm{O}$ was heated at 80° with good stirring for 7 hr . The yield of 10 , isolated as a white solid of $\mathrm{mp} 133-139^{\circ}$, was $13.6 \mathrm{~g}(67 \%)$.
cis-1,2-Dithiane-4,5-diol Diacetate 1,1-Dioxide (11). ${ }^{15}$-A mixture of the dithiane $7(0.20 \mathrm{~g}, 0.8: 5 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}$ (20 $\mathrm{ml})$ and of $\mathrm{KIO}_{4}(0.80 \mathrm{~g}, 3.48 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$ was kept at 40° for 50 hr and then was let stand at $\sim 25^{\circ}$ for 24 hr . A CHCl ${ }_{3}$ extract gave $0.15 \mathrm{~g}(66 \%)$ of $11, \mathrm{mp} \mathrm{145-1:50}^{\circ}$. Recrystallization from benzen egave 11 of constant $\mathrm{mp} 153-1.54^{\circ}: \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\delta 2.11\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.21\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.86-3.48\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 5.35-$ 5.66 (m, OCH); ir $1750,1370,1320,1220,1200,1120,1040$, 955 , and $775 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 43 (100), 84 (55), 101 (15), 148 (5), 208 (2).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, $35.82 ; \mathrm{H}, 4.48 ; \mathrm{S}, 23.85$. Found: C, 35.72 ; H, 4.49; S, 24.00 .

Sodium 4-(2-Acetamidoethyldithio)butane-2,3-diol-1-sulfinate Diacetate (14). ${ }^{16}$-A 0.5 N solution of $\mathrm{NaOEt}(40.0 \mathrm{ml}, 20.0$ mmol) was added to the thiol $13(2.44 \mathrm{~g}, 20.5 \mathrm{mmol})$ in EtOH $(20 \mathrm{ml})$ at 0° (the pH then was ~ 8). This solution of the thiolate was added during $\sim 1 \mathrm{hr}$ to a solution of 10 ($5.36 \mathrm{~g}, 20 \mathrm{mmol}$) in a mixture of $\mathrm{Me}_{2} \mathrm{CO}(50 \mathrm{ml})$ and $\mathrm{EtOH}(20 \mathrm{ml})$ at $\sim-10^{\circ}$ with stirring ($\mathrm{pH} \sim 6.5$). Dry $\mathrm{Et}_{2} \mathrm{O}(700 \mathrm{ml})$ then was added until no more precipitate appeared, and the mixture was kept at 0° for 5 hr . Most of the solvent was decanted, and the precipitate was dried at $25^{\circ}(0.1 \mathrm{~mm})$. The dry white 14 was dissolved in $\mathrm{Me}_{2} \mathrm{CO}$. A small amount of insoluble solid was removed by centrifugation, and $\mathrm{Et}_{2} \mathrm{O}$ was added to precipitate 14 $\mathrm{Et}_{2} \mathrm{O}$ was decanted, and residue was dried at $25^{\circ}(0.1 \mathrm{~mm})$ for 10 hr ; yield of $14,6.0 \mathrm{~g}(73 \%), \mathrm{mp} \sim 99^{\circ}$ dec. Similarly prepared 14 (identical ir spectrum) was characterized: $\mathrm{nmr}\left(\mathrm{D}_{2} \mathrm{O}\right)$ $\delta 2.15-2.31\left(\mathrm{CH}_{2} \mathrm{CO}\right), 2.60-3.66\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 5.33-5.65(\mathrm{~m}, \mathrm{OCH})$; ir 3260 (broad) $1730,1640,1540,1430,1375,1220,1020,950$ cm^{-1}.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NNaO}_{7} \mathrm{~S}_{3}: ~ \mathrm{C}, 35.20 ; \mathrm{H}, 4.91 ; \mathrm{N}$,
(15) This reaction succeeded only once. Use of the same conditions twice more resulted in no 11. It seems likely, however, that one of the procedures that later gave the trans isomer (10) will succeed. Synthesis of the trans dioxide $\mathbf{1 0}$ sufficed at present for chemical and biological studies and, unless biological results warrant, we plan no further studies with the cis isomer 11.
(16) This procedure was based on one for the reaction of the salt of 13 with 1,2 -dithiane 1,1 -dioxide (12), sb but it includes important modifications discussed in ref 1a.
3.42; S, 23.48. Found: C, 35.37; H, $5.40 ; \mathrm{N}, 3.25$; S, 23.28 .

Compounds Related to 1,2-Dithiolane-4-carboxylic Acid (16). ${ }^{17}$ A. 16 via $\mathrm{H}_{2} \mathrm{O}_{2}$. -The acid $15(15.2 \mathrm{~g}, 0.10 \mathrm{~mol})$ in $\mathrm{AcOH}(150 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(11.5 \mathrm{~g}$ of $30 \%, 0.1 \mathrm{~mol})$ in AcOH (150 ml) were added simultaneously from two dropping funnels to $\mathrm{AcOH}(100 \mathrm{ml})$ containing $\mathrm{KI}(0.418 \mathrm{~g}, 0.00251 \mathrm{~mol}$; as a catalyst) at 75° during 3 hr . After 10 min at 25° (starch-KI test negative), most of the AcOH and $\mathrm{H}_{2} \mathrm{O}$ were removed at 40° (20 $\mathrm{mm})$. The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and benzene. The extracts were combined, dried, and evaporated to a greasy solid, yield $10.2 \mathrm{~g}(68 \%), \mathrm{mp} 63-70^{\circ}$. This solid was extracted carefully with benzene at 25°. Removal of benzene gave yellow, crystalline 16: yield $8 . \overline{\mathrm{g}}$ (57%; yields up to 85% were obtained on a smaller scale); mp 75-76 ${ }^{\circ}$ (lit. ${ }^{8} \mathrm{mp} 76.5-77.5^{\circ}$); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 3.5\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$ and CH$), 12.3\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}\right)$.
B. 16 via $\mathrm{I}_{2}-\mathrm{Et}_{3} \mathrm{~N}$.-A solution of $15(0.76 \mathrm{~g}, 5.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.04 \mathrm{~g}, 10.3 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{ml})$ was added to one of $\mathrm{I}_{2}(1.28 \mathrm{~g}, 5.0 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{ml})$ at 25° during 10 min . Benzene (180 ml) then was added immediately. The organic layer was washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution to remove I_{2}, then with a little cold $\mathrm{H}_{2} \mathrm{O}$, and was dried. Removal of benzene left $0.30 \mathrm{~g}(40 \%)$ of yellow $16, \mathrm{mp} \mathrm{76-78}{ }^{\circ}$.
C. 16 via $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$.-Aqueous solutions of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ $(16.6 \mathrm{ml}$ of $1 N)$ and of $\mathrm{KOH}(6.5 \mathrm{ml}$ of $2 N)$ were added to the sodium salt of $15(1.0 \mathrm{~g}, 6.58 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$; the pH was kept at ~ 7 ($c f$. ref 10). The mixture then was acidified with 2% aqueous HCl and was extracted with benzene. Removal of benzene left $0.32 \mathrm{~g}(32 \%)$ of yellow $16, \mathrm{mp} 73-75^{\circ}$.
D. 1-Monoxide (17) of 16 .-A solution of $\mathrm{H}_{2} \mathrm{O}_{2}(0.113 \mathrm{~g}$ of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 1.0 \mathrm{mmol}$) in 1 ml of $\mathrm{H}_{2} \mathrm{O}$ was added slowly to 16 $(0.15 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ at 5°, and the mixture was kept at 25° for 16 hr ; a starch-KI test then was negative. Removal of $\mathrm{H}_{2} \mathrm{O}$ by freeze drying left white 17: yield 0.12 g
 $\mathrm{cm}^{-1}(\mathrm{CO})$.
E. Study of the Carbinol (19) Corresponding to Acid 16. 2-Mercaptomethyl-3-mercaptopropanol (18) first was prepared by heating a mixture of the acid $15(7.6 \mathrm{~g}, 50.0 \mathrm{mmol})$ in THF $(700 \mathrm{ml})$ with $\mathrm{LiAlH}_{4}(7.6 \mathrm{~g}, 200 \mathrm{mmol})$ in THF (100 ml) under reflux for 26 hr and then carefully hydrolyzing with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$ by heating for 2 hr . The mixture then was acidified with 5% aqueous HCl , and 18 was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Drying and

[^61]removal of solvent gave liquid 18. Distillation gave $4.8 \mathrm{~g}(70 \%)$ of 18: bp $90-91^{\circ}(0.6 \mathrm{~mm})$; $n^{25} \mathrm{D} 1.5606 ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ 1.43 (t, SH), 1.89 (m, CH), $2.70\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{SH}\right), 3.04(\mathrm{~s}, \mathrm{OH})$, 3.72 (d, OCH_{2}); ir (neat) $3360,2900,2520,1430,1015 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{OS}_{2}$: C, $34.75 ; \mathrm{H}, 7.25 ; \mathrm{S}, 46.35$. Found: C, 35.00, H, 7.17 S, 46.19.

For conversion of 18 to 4-hydroxymethyl-1,2-dithiolane (19), solutions of $18(0.55 \mathrm{~g}, 4.0 \mathrm{mmol})$ and of $\mathrm{H}_{2} \mathrm{O}_{2}(0.45 \mathrm{~g}, 30 \%, 4.0$ mmol) in AcOH (14 ml) were added simultaneously from separate dropping funnels to $\mathrm{AcOH}(\$ \mathrm{ml})-\mathrm{H}_{2} \mathrm{O}(12 \mathrm{ml})$ containing KI $(17 \mathrm{mg})$ at 75° during 10 min with stirring (a starch-KI test then was negative). A benzene extract of the concentrated mixture was washed with 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and then with $\mathrm{H}_{2} \mathrm{O}$, dried, and concentrated; yield of presumed (impure) liquid $19,0.38 \mathrm{~g}(70 \%)$. Ir spectra were consistent with the assignment of structure 19 (the pale yellow benzene-soluble product polymerized to a gum, insoluble in benzene, in ~ 10 hr and began to polymerize even in $\sim 2-3 \mathrm{hr}$ at 25°): ir (neat) $3480,2920,1470,1410,1250,1035$, and $670 \mathrm{~cm}^{-1}$ (no SH absorption at $2520 \mathrm{~cm}^{-1}$; the ir spectrum of 19 resembled that of 18 and did not have the flattened-out appearance expected of a polymer ($c f$. ref 11)].

Since 19 polymerized so readily, in the attempt to convert it to 1,2-dithiolanyl-4-carbinol 1,1-dioxide (20a), 0.38 g (2.80 mmol) of 19 immediately after its preparation was allowed to react with $\mathrm{H}_{2} \mathrm{O}_{2}(0.77 \mathrm{~g}, 30 \%, 6.8 \mathrm{mmol})$ in aqueous $\mathrm{AcOH}\left(\mathrm{H}_{2} \mathrm{O}, 10 \mathrm{ml}\right.$; $\mathrm{AcOH}, 10 \mathrm{ml}$) at 75° for 20 hr with stirring. The mixture was concentrated and then extracted with CHCl_{3}. The removal of CHCl_{3} after drying gave $0.10 \mathrm{~g}(16 \%$, for 20b not 20a): ir 1740 (ester $\mathrm{C}=\mathrm{O}),{ }^{18} 1430\left(\mathrm{CH}_{3}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{CO}\right){ }^{18} 1300\left(-\mathrm{SO}_{2}-\right), 1230$ (AcO) ${ }^{18} 1125\left(-\mathrm{SO}_{2}-\right.$), and $1050 \mathrm{~cm}^{-1}(-\mathrm{CO}-)$ (slight absorption, relative to 19 , at $3450 \mathrm{~cm}^{-1}$ was attributed to an ester overtone and suggested little if any -OH$)^{18} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.12\left[\mathrm{~s}, \mathrm{CH}_{3}-\right.$ $\mathrm{C}(\mathrm{O})]^{18} 3.7-2.7\left(\mathrm{~m},-\mathrm{CH}_{2-}\right.$ and $\left.-\mathrm{CH}-\right)$, 4.4-4.2 (m, $-\mathrm{CH}_{2}-$) (no OH peak was observed). ${ }^{18}$

Registry No. -6, 34910-57-1; 7, 34910-58-2; 8, 34910-59-3; 9, 34910-60-6; 10, 34915-74-7; 11, 34915-$75-8$; 14, 34915-76-9; 16, 2224-02-4; 17, 3083-96-3; 18, 34915-79-2; 20b, 34934-76-4.
(18) These observations support the formulation of the product isolated as 20b but are inconsistent with formulation as 20a. The ir spectrum of the product impressed us as the type expected for a monomer, rather than the flattened-out type expected for a polymer (cf. ref 11).

Organic Disulfides and Related Substances. 35. Preparation of Unsymmetrical Disulfides Containing Carboxylate Moieties and Neighboring-Group Effects of Sulfinate and Carboxylate Moieties on Disproportionation ${ }^{1 \mathrm{a}, \mathrm{b}}$

Yong H. Khim and Lamar Field*
Department of Chemistry, Vanderbilt University, Nashville, 'Tennessee .37235

Received February 14, 1972
The sulfinate salt $\mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SO}_{2} \mathrm{Na}$ (2), upon disproportionation, reaches equilibrium with the two possible symmetrical disulfide products in $\sim 0.5 \mathrm{hr}$ in water at $61^{\circ}(K \cong 3-6)$. The sulfone analog (AcNH$\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Ph}(5)\right]$ and sulfonate analog $\mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SO}_{3} \mathrm{Na}$ (6)] do not disproportionate under these conditions. The marked acceleration with 2 vis-à-vis 5 and 6 is attributed to a neighboring-group effect of the $-\mathrm{SO}_{2}{ }^{-}$moiety, which was further indicated by slower reaction of 2 in methanol (attributed to a tight ion pair) and by isolation of 1,2-dithiane 1,1-dioxide ($8,39 \%$ yield) in the presence of a thiol trap. Carboxylate analogs, $\mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SS}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CO}_{2} \mathrm{H}(11-14, n=1-4)$, were best prepared by thioalkylating ω-mercapto acids with a thiolsulfonate (these analogs proved to be only slightly protective against ionizing radiation). The acids $11-14$ resisted disproportionation. The salts $11^{\prime}-14^{\prime}$ disproportionated fairly readily, but ($n=4$) less readily than 2 by a factor of ~ 300. Neighboring-group acceleration of disproportionation in the carboxylate series is indicated by the difference in behavior of the salts $11^{\prime}-14^{\prime}$ and the acids $11-14$, by a marked dependence of rapidity on the pH near neutrality, and by variations in rapidity from $n=1$ (fastest) to $n=2,3$, or 4 (slower and comparable).

Earlier work showed that the aminosulfone salt 1 was among the most stable disulfides we have studied

[^62]in resistance to disproportionation to two symmetrical disulfides (79% disproportionation at 100° in water after 72 hr. ${ }^{2}$ To our surprise, sodium 4-(2-acetamidoethyldithio)butanesulfinate (2) disproportionated far
(2) L. Field and R. B. Barbee. J. Org. Chem., 34, 1792 (1969).

$\mathrm{Cl}-\mathrm{H}_{3} \mathrm{~N}^{+}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SS}\left(\mathrm{CH}_{2}\right) \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$

 1more rapidly ($\sim 50 \%, 61^{\circ}$, water, 0.5 hr); the reaction appeared to reach equilibrium after $\sim 55 \%$ disproportionation. ${ }^{3}$ It seems likely that a neighboring-group effect of the sulfinate moiety $\left(-\mathrm{SO}_{2}-\right)$ is responsible for this marked acceleration. This paper considers this matter and related ones. Similar increases with other disulfides have been attributed to neighboring-group participation of amino, acetamido, o-carboxylate, and perhaps to some extent other functional groups. ${ }^{4}$

Equation 1 shows the disproportionation of the sul-
$2 \mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SS}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SO}_{2} \mathrm{Na} \xrightarrow{\mathrm{H}_{2} \mathrm{O} \text { or } \mathrm{MeOH}}$
2

$$
\begin{equation*}
\underset{3}{\left[\mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}\right]_{2}}+\underset{4}{\left[\mathrm{NaO}_{2} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~S}\right]_{2}} \tag{1}
\end{equation*}
$$

finate 2 to form the two symmetrical disulfides, 2acetamidoethyl disulfide (3) and disodium 4, 4^{\prime}-dithiobis(butanesulfinate) (4). After the disproportionation of 2 in methanol, 3 was isolated in 50% yield; as previously reported, ${ }^{3}$ several equilibrations with removal of 3 each time forced the reaction, giving what could only be 4 (consistent spectra); 4 could not be obtained entirely free of 3 , but elemental analyses revertheless were satisfactory (C, H, S, and Na). ${ }^{3}$

In much of our earlier work, disproportionation of unsymmetrical disulfides has been nearly complete (for reasons such as virtual insolubility of one product) instead of reaching the usual equilibrium. ${ }^{5}$ Since 2,3 , and 4 are soluble in water or methanol, however, it is not surprising that eq 1 represents an equilibrium.

Figure 1 shows that the per cent of disproportionation of 2 in water or methanol rises to $\sim 510-55 \%$ and then remains constant. If $\sim 53 \%$ is assumed to be the equilibrium value, the usual reverse sense of $3+$ $4 \rightleftarrows 2(2)$ would give $K \cong 3$ for eq 1 , a value close to the statistical one of $4 .{ }^{6}$ The reversibility of eq 1 was confirmed by equilibrating 3 and 4 and determining the amount of 2 by tlc. Table I shows then an equi-

Table I
Formation of the Unsymmetrical Disulfide 2 by Equilibration of the Symmetrical

Disulfides 3 and $4\left(61^{\circ}\right)$

Time, h:	Formation of $2, \%$	Time, hr	Formation of $2, \%$
$0.5{ }^{\text {a }}$	~ 50	0.5	~ 0
7	~ 55	$7^{\text {a }}$	~ 50
19	~ 50	19	~ 55
28	~ 55	28	~ 55

${ }^{a}$ Equilibration time first reached. At this time, the tle spot for 2 had an area which did not increase significantly thereafter and which corresponded to a yield of $\sim 50-55 \%$ for 2.
librium value of $50-55 \%$ of 2 resulted after $\sim 0.5 \mathrm{hr}$ in water or $\sim 7 \mathrm{hr}$ in methanol and was unchanged thereafter. The assumption that 55% of 2 is present at equilibrium results in $K \cong 6$.

[^63]

Figure 1.-Disproportionation of 2 under various conditions (61°): curve $1, \bullet$, in $\mathrm{H}_{2} \mathrm{O}$; curve $2, \Delta$, in MeOH containing NaOMe equal to mol of 2 ; curve 3 , ๓, in MeOH ; curve 4 , \uparrow, dry solid.

Comparison of the rapidity with which equilibrium was achieved under various circumstances was desirable in order to assess better the importance of $-\mathrm{SO}_{2}-$ in accelerating disproportionation. Fortunately, 2, 3, and 4 could be separated cleanly by tle, and good calibration curves were possible by correlating spot areas with known amounts of 2,3 , and 4 . Since this method is not highly precise, it is appropriate to discuss results in terms of the more cautious word "rapidity" rather than of "rates." Nevertheless, use of the tle corrclations for analysis of test mixtures showed the results to be within about $\pm 5 \%$ (this method was used in determining the data for Table I and Figure 1).

If disproportionation of 2 is in fact accelcrated by a neighboring-group effect of $-\mathrm{SO}_{2}^{-}$on the disulfide linkage, the rapidity would be expected to be significantly greater for 2 than for 1 , the amide of 1 (5), or the sulfonate analog of 2 (6), since 1,5 , and 6 contain no $-\mathrm{SO}_{2}{ }^{-}$moiety; solvent effects also might be anticipated with 2 , corrcsponding to variable tightness of ion pairs. The results of experiments that bear on these points are summarized in Figure 1 and Table II.

Further assurance as to the reliability of the conclusions from tle was provided by a check isolation of 3 from the disproportionation of 2 at a point where the results indicated equilibrium had been reached; the two results agreed well (50% of 3 isolated after 8 hr for 2 in methanol; curve 3 of Figure 1 predicts 50%).

When the relative rapidity of the disproportionation of 2 in water and methanol are compared, disproportionation in water is seen to be about 21 times faster from Table II and clearly more rapid from Figure 1 (curve 1 vs . curve 3). It seems likely that $-\mathrm{SO}_{2} \mathrm{Na}$ is a much tighter ion pair in methanol than in water, so that $-\mathrm{SO}_{2}{ }^{-}$is less able to assist cleavage of the $\mathrm{S}-\mathrm{S}$ bond. The fact that the rapidity of disproportionation was negligibly affected by a tenfold increase in concentration seems more consistent with an intra- than an intermolecular effect (Table II, 0.4 vs .0 .5 hr). There is little increase of rapidity in going from methanol to a methanol-methoxide mixture (curve 2, Figure 1; relative rapidity of ~ 1.4 from Table II). Hence the possibility that the $-\mathrm{SO}_{2}-$ functions significantly as a weak base can be disregarded, and the slight acceleration seen can be attributed to attack of methoxide ion on the -SS- bond (or on a proton α to it) to generate

Table II

Compd	Solvent	Time of reaction, hr	Disproportionation, \%	$k_{\text {approx, }}{ }^{\text {a }}$, ${ }^{\text {ec }}{ }^{-1}$	Relative rapidity
2	MeOH	$8{ }^{\text {b }}$	$\sim 50^{\text {b }}$	$1.5 \times 10^{-6}{ }^{6}$	1
2	$\mathrm{H}_{2} \mathrm{O}$	$0.5{ }^{\text {c }}$	$\sim 50-55^{\text {c }}$	$3.1 \times 10^{-4 c}$	21
2	$\mathrm{H}_{2} \mathrm{O}$	$\sim 0.4{ }^{\text {d }}$	$\sim 55^{\text {d }}$		
2	$\mathrm{MeOH}-\mathrm{NaOMe}$	$6.5{ }^{\text {a }}$	$\sim 50^{\text {e }}$	2.1×10^{-5}	1.4
2	None	72^{\prime}	Trace		
1	MeOH	8	0		
1	$\mathrm{H}_{2} \mathrm{O}^{\text {a }}$	72°	79°		h
1	$\mathrm{H}_{2} \mathrm{O}$	8	Trace		
5	MeOH	8	0		
6	$\mathrm{H}_{2} \mathrm{O}$	1.5	0		
6	$\mathrm{H}_{2} \mathrm{O}$	96	Trace		

${ }^{\text {a }}$ Apparently first order, as seen with several other disproportionations (cf. ref 9, especially footnotes 6 and 7). ${ }^{\text {b }} C f$. Figure 1 , curve 3 . ${ }^{c} C f$. Figure 1, curve 1. ${ }^{d}$ The concentration of 2 was ten times that for Figure 1, curve 1; ~ 0.4 and 0.5 are considered essentially the same, within experimental error, but because small amounts of 2 had to be used, calculation of $k_{\text {approx }}$ was not justified. e $C f$. Figure 1, curve 2. The reaction was done as it was in MeOH but with a molar amount present of NaOMe equal to that of 2 . ${ }^{\prime} \mathrm{Cf}$. Figure 1, curve 4. ${ }^{\circ}$ Done at 100° (see ref 2). ${ }^{\wedge}$ Relative rapidity unknown but clearly much less than for 2.
thiolate ion as a catalyst. The sulfinate 2 resists disproportionation as a solid. When it was heated dry at 61° for 25 hr it was stable; even after 72 hr , tle indicated only slight disproportionation. The results of Table II are highly significant in that 1,5 , and 6 , which contain no- $\mathrm{SO}_{2}{ }^{-}$moiety but otherwise are close counterparts of 2 , are stable under conditions that result in disproportionation of $2(c f$. eq $2 v$ s. eq 1$) .^{7}$

$1, \mathrm{X}=\mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{Cl}^{-}$;
5, $\mathrm{X}=\mathrm{AcNH}$.
$\mathrm{Y}=\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{Y}=\mathrm{SO}_{3} \mathrm{Na}$
The facts above thus support the probability that the disproportionation of 2 is initiated by a neighboringgroup attack of $-\mathrm{SO}_{2}{ }^{-}$on the -SS- bond, probably with 2-acetamidoethanethiolate ion (7) as a leaving group, as shown in Scheme I. Thiolate ion 7 then

[^64]could catalyze the disproportionation of $2 .{ }^{8 a}$ Scheme I illustrates reactions in which the thiolate 7 and 1,2 dithiane 1,1-dioxide (8) could be engendered and in which the other possible sulfinate ion 9 then could be formed to serve as a catalyst like 7. Such equilibria could lead to the mixture of 2,3 , and 4 summarized at the outset by eq 1 . Scheme I has much in common with similar ones that are believed to involve neighbor-ing-group effects of amino ${ }^{8 b}$ or o-carboxylate moieties, ${ }^{9}$ although the earlier ones were less complex since they went essentially to completion and could not be significantly reversed.

It was possible in the o-carboxylate series to show that a cyclic intermediate like 8 was feasible. ${ }^{9}$ It was satisfying to be able to confirm neighboring-group attack directly in the present instance by isolating the stable dioxide 8 (39% yicld) after heating an aqueous solution of 2 in the presence of N-cthylmaleimide as a trap for the thiolate 7 and of benzene to remove the dioxide 8 from the sphere of the reaction. The isolation of 8 has the further important implication that $-\mathrm{SO}_{2}{ }^{-}$exerts its effect through the proposed intrarather than an intermolecular attack, since formation of 8 in the presence of a thiol trap is hard to envision by an intermolecular process.
One wonders whether the ambident $-\mathrm{SO}_{2}{ }^{-}$ion exerts its effect by attack of an unshared pair of electrons of the oxygen atom, or of the sulfur atom as in Scheme I. The formation of the dioxide 8 strongly supports the view of attack by an electron pair of the sulfur atom; so, too, does failure of the sulfonate 6 to disproportionate nearly so readily as the sulfinate 2. Also consistent is the finding of Meek and Fowler that the ambident sulfinate ion gives sulfones (cf. 8) with "soft" alkylating agents 'cf. the soft sulfur atom at which attack is suggested in Scheme I) but sulfinate esters preferentially with "hard" alkylating agents. ${ }^{10}$ It should be noted that neighboring-group participation by sulfinyl oxygen in solvolysis of chloroalkyl sulfoxides greatly exceeds any such effect by sulfides (or

[^65]sulfones), ${ }^{11 a}$ and that it can be involved also in other reactions at electrophilic carbon atoms. ${ }^{11 t}$ However, this difference of the functioning of oxygen rather than sulfur is not surprising, since a carbon center should be much harder than a sulfur center (solvation also may be a factor; cf. ref 11a). The six-membered ring of 8 no doubt favors lone-pair participation of sulfur in 2, however, so that in homologs of 2 lone-pair participation of oxygen conceivably might become important.
In summary, the main points that support neighbor-ing-group assistance of $-\mathrm{SO}_{2}^{-}$to disproyortionation are these. (1) The $-\mathrm{SO}_{2}{ }^{-}$moiety is far more effective than $-\mathrm{SO}_{2} \mathrm{R}$ or $-\mathrm{SO}_{3}{ }^{-}$. (2) Reaction is faster in water than in methanol, and the reaction seems to be first order. (3) A tenfold increase in concentration had little effect on the rapidity of disproportionation. (4) 8 was isolated.

It was of considerable interest to compare neighbor-ing-group participation of carboxylate ion with that of sulfinate (carboxylate groups were the first used in studying neighboring-group participation). ${ }^{12}$ Two other features of carboxylates also were attractive. (1) For a study of variable effects in homologs, RSS$\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}$, synthesis promised to be easier with $\mathrm{X}=$ $\mathrm{CO}_{2}-$ than with $\mathrm{X}=\mathrm{SO}_{2}^{-}$(a study of homologs with $\mathrm{R}=\mathrm{Ac}$ and $\mathrm{X}=\mathrm{CO}_{2}{ }^{-}$failed because of the lability of Ac to agents used to convert the carboxylic acids to the salts). ${ }^{4 \mathrm{~b}}$ (2) Although 2 is a promising antiradiation drug, ${ }^{2.3}$ quite possibly because of the anchimeric effect of $-\mathrm{SO}_{2}{ }^{-}$, its ease of disproportionation in solution and its redox properties might present problems in its practical use. Carboxylates offered a prospective compromise in ease of handling and stability with neighboring-group induced activity as antiradiation drugs.
Three methods to prepare 12 were examined. Only from the reaction of the thiolsulfonate 10 with 3 -mercaptopropionic acid in alkaline media could 12 be obtained successfully in good yield (eq 3). The method

$$
\begin{gathered}
\mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SSO}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHAc}+\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CO}_{2} \mathrm{H} \xrightarrow{\mathrm{NaOH} .0-10^{\circ}} \\
\mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SS}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CO}_{2} \mathrm{H}+\mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2} \mathrm{Na} \\
\begin{array}{cl}
11, n=1 \\
12, n=2 & 13, n=3 \\
n=2 & 14, n=4
\end{array} \\
\end{gathered}
$$

of eq 3 then was used also to prepare the homologs 11, 13, and 14. The buffering action of the carboxylate ion doubtless led to sufficient thiolate ion to provide a rapid reaction. (2-Acetamido)ethanesulfinic acid, the strongest acid species present, formed as the salt (presumably), leaving 11-14 as extractable free acids (yields, $77-97 \%$). Nmr, ir, and mass spectra and elemental analyses met expectation. The activity of 11-14 as antiradiation drugs proved to be minimal ($\mathrm{ALD}_{50} \sim 175-480 \mathrm{mg} / \mathrm{kg} ; 13-27 \%$ survival 30 days after irradiation of mice dosed with $\sim 1 / 2$ the ALD_{50}). ${ }^{13}$
(11) (a) M. Cinquini, S. Colonna, and F. Montanari, Tetrahedron Lett., 3181 (1966); (b) M. Cinquini, S. Colonna, and F. Montanari, J. Chem. Soc. C. 572 (1970).
(12) For a review, see E. S. Gould. "Mechanism and Strceture in Organic Chemistry," Holt, Reinhart and Winston, New York, N. Y., 1959, p 561 f.
(13) For details on methods, see ref 3 . We are indebted for these results to T. R. Sweeney, D. L. Klayman, and (especially) M. N. Grenan of the Walter Reed Army Institute of Research, Washington, D. C.

The reacticn of diethyl azodicarboxylate with two different thiols, ${ }^{14}$ as appropriate for 11 and 12 , was unsuccessful; the main products were the symmetrical disulfides. An effort also failed to prepare 11 by conversion of either thiol to its sulfenyl chloride at -20°, for reaction with the other thiol; only polymers were obtained.

The acids 11-14 resisted disproportionation at 61° in methanol or water. Tle showed no change after 3 days, and no acetamidocthyl disulfide (3) was detected in confirming experiments; each acid also was isolated quantitatively after 3 days.

On the other hand, the salts of the acids disproportionated fairly readily in water. Similar observations were made for 2 -(phenyldithio) benzoic acid (15) and its salt 15^{\prime}; the more rapid disproportionation of 15^{\prime} was attributed to anchimeric assistance by the ortho $\mathrm{CO}_{2}{ }^{-}$moiety in a scheme resembling Scheme I. ${ }^{9}$ Such observations are not surprising, since "when the carboxylate group is converted by protonation to the carboxyl group, -COOH , it becomes very much less nucleophilic and loses a great deal of its effectiveness as a participant." ${ }^{12}$

As with 2, disproportionation of 11-14 as the salts ($11^{\prime}-14^{\prime}$; from 11-14 using NaOH at $\mathrm{pH} \sim 7-8$) gave the symmetrical disulfide 3. The yields of $\mathbf{3}$ isolated appear to represent near-equilibrium values, since Table III shows that disproportionation of 13^{\prime} and

Table III
Equilibrium in the Disproportionation of Salts 13^{\prime} and 14^{\prime}

			me.		
	2	3	4	5	9
13', disproportionation, \%	37	41	4.)	43	44
14', disproportionation, \%	38	44	42	43	46

${ }^{a}$ Determined after heating 13 or 14 in the presence of ~ 1 equiv of NaOH in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH} 8)$ at 61° and isolating 3 (see Experimental Section).
14^{\prime} reached values of $\sim 44 \%$ in $\sim 2-3 \mathrm{hr}$ at latest and then remained constant. Since the disproportionation thus appears to be reversible, the equilibria of eq 4 seem to be the best way to represent the reactions.

The fact that both 13^{\prime} and 14^{\prime} required about the same length of time to reach equilibrium (Tables III and IV), even though the presumed anchimeric effect of oxygen on the nearest sulfur atom would involve a six- and a (less favorable) seven-membered ring, respectively, is surprising; this similarity may even argue against an anchimeric effect as the sole accelerating factor. Perhaps this apparent similarity in reactions has its basis in simultaneous involvement of direct attack of hydroxyl ion on the -SS- bond or of subtle

[^66]Table IV

Disproportionation of 11-14 and of 11'-14' in $\mathrm{H}_{2} \mathrm{O}$						
Expt	Compd	Base	Molar ratio, compd: base	pH	Temp, ${ }^{\circ} \mathrm{C}$	Time to equilibrium point, $\min ^{a}$
1	11			2.5	61	Slow ${ }^{\text {b }}$
2	12, 13, 14			3.2, 3.5, 3.5	61	Very slow ${ }^{\text {c }}$
3	11	NaOH	1:1.04	8	25	Very fast ${ }^{\text {d }}$
4	12, 13, 14	NaOH	1:1.04	8	40	110
5	12, 13, 14	NaOH	1:1.04	8	61	10
6	14	NaOH	1:2	~ 13	40	5^{e}
7	2			6.8	40	90
8	14^{\prime}	NEt_{3}	1:2	~ 12	40	$240{ }^{\text {e }}$
9	11^{\prime}			6.6	61	~ 465
10	12^{\prime}			6.6	61	~ 7200
11	13^{\prime}			6.8	61	~ 8600
12	14^{\prime}			6.8	61	~ 8880
13	2			6.8	61	30

${ }^{a}$ I.e., the time at which the tlc spot area of 3 became constant. ${ }^{b}$ Began to disproportionate after 4 days. ${ }^{c}$ Began to disproportionate after 16 days. ${ }^{d}$ Compound 11 disproportionated immediately at pH 8 at 25°. e At these high values of pH , direct attack of OH^{-}on $-\mathrm{SS}-$ or $-\mathrm{CH}_{2} \mathrm{~S}$ - is probable.
changes in amounts of catalytic thiolate species as a function of pH .
For further studies, the salts $11^{\prime}-14^{\prime}$ were prepared by precipitation from methanol. Tle analyses for 3 could be used to follow their reactions and those of 11-14 approximately, much as with 2 . Table IV shows times required for attainment of equilibrium of 11-14 and 11'-14' under various conditions. There are three notable points. (1) As was the case with 2 -(phenyldithio) benzoic acid (15), ${ }^{9}$ the rapidity of disproportionation is highly sensitive to pH (cf. expt 1 vs. 3 and 2 vs. 5,6). (2) The salt with $n=1$ (11') disproportionates far more rapidly than those with n $=2-4\left(12^{\prime}-14^{\prime}\right) ; c f$. expt 3 vs. 5 and 9 vs. 10, 11, and 12); compounds $12^{\prime}-14^{\prime}$ seem roughly comparable (cf. expt 4 or 5 and also 10-12). Analogy with Scheme I suggests involvement of 16 a for participation of $-\mathrm{CO}_{2}{ }^{-}$ in disproportionation. ${ }^{15}$

16a

16b

There is little basis at present for speculation, however, as to why 11^{\prime} disproportionates so much more rapidly than $12^{\prime}-14^{\prime}$ or why $12^{\prime}-14^{\prime}$ are comparable. It may be that, in generation of thiolate ion catalyst from 11^{\prime}, a four-membered ring ($16 \mathrm{a}, n=1$) is unexpectedly effective, or that 16 b becomes important, or that the greater acidity of the methylene group in 11^{\prime} (flanked both by $-\mathrm{S}-$ and $-\mathrm{CO}_{2}^{-}$) leads to loss of $\mathrm{AcNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}^{-}$by α elimination. (3) The salfinate 2 disproportionates faster than the comparable carboxylate 14^{\prime} by a factor of ~ 300 ($c f$. cxpt $12 v s .13$).

Although a neighboring-group effect seems much more clear-cut for $-\mathrm{SO}_{2}{ }^{-}$than for $-\mathrm{CO}_{2}{ }^{-}$, points that support ncighboring-group acceleration by $-\mathrm{CO}_{2}{ }^{-}$ can be summarized as follows. (a) Although the frec acids 11-14 strongly resist disproportionation, the

[^67]salts do not. (b) The rapidity of disproportionation is highly dependent on pH near the ncutral point, presumably increasing as the amount of $-\mathrm{CO}_{2}{ }^{-}$increases.
(c) Variation of the distance scparating the carboxylate and disulfide functions has a marked effect, even though its meaning is not clear at present.

Overall, the general conclusions seem justified that neighboring-group effects of both 4 -sulfinate and ω carboxylate moieties accelerate disproportionation of disulfides, although the effect with carboxylate is considerably more speculative, less effective, and more complex in its interaction.

Experimental Section ${ }^{16}$

Materials.-Compounds $2,{ }^{3} 3,{ }^{17} 4,{ }^{3} 8,{ }^{18} 10,{ }^{19}$ and 2-acetamidoethanethiol ${ }^{20}$ were prepared using the procedures cited. The aminosulfone 1, the acetamidosulfone 5, and the acetamidosulfonate 6 were available from the work of Barbee. ${ }^{2}$ Commercial mercaptoacetic acid ($\mathrm{H}_{2} \mathrm{O}$ solution, dried to an oil at 0.1 mm), 3 -mercaptopropionic acid, and 4-mercaptobutyric acid (Distil lation Products Industries) were used after checking them by ir and nmr. All other materials were commercial products used as received.

Disproportionation of Sodium 4-(Acetamidoethyldithio)butanesulfinate (2). A. Isolation of 2-Acetamidoethyl Disulfide (3) and Disodium 4,4'-Dithiobis(butanesulfinate) (4).-Details were reported earlier for isolation of 3 and 4. ${ }^{3}$ Briefly, after 2 has been heated in MeOH ($8 \mathrm{hr}, 61^{\circ}$), evaporation and extraction gave 3 in 50% yield, which was characterized by melting point and ir. A similarly heated methanolic solution was treated with $\mathrm{Me}_{2} \mathrm{CO}$ to precipitate 2 and 4 ; the precipitate then was reheated in MeOH and reprecipitation was carried out until 4 resulted that contained only a trace of 2 by ir or tlc and no 3 ; the yield of 4 was 42%, and analyses were satisfactory (C, H, $\mathrm{Na}, \mathrm{S})$. This analytically pure 4 was used for the tlc calibration curves described in section C .
B. Reversibility of Eq 1.-Solutions of $3(4.00 \mathrm{mg}, 0.017$ $\mathrm{mmol})$ and $4(6.0 \mathrm{mg}, 0.017 \mathrm{mmol})$ in 1 ml each of $\mathrm{H}_{2} \mathrm{O}$ and MeOH

[^68]were heated at 61° in a constant-temperature oil bath. From time to time, $10 \mu \mathrm{l}$ of the solution was withdrawn and spotted on a silica-gel layer. The amount of 2 present was obtained by tlc as described in section C. The results are shown in Table I.
C. Rapidity of Disproportionation.-Tlc on silica gel ${ }^{16}$ with $1: 2 \mathrm{MeOH}-\mathrm{Me}_{2} \mathrm{CO}$ was used to separate $2\left(R_{\mathrm{f}} 0.66\right), 3\left(R_{\mathrm{f}} 0.84\right)$, and $4\left(R_{f} 0.33\right)$; the starting point for spots was 2.5 cm from the bottom of the tle plate and the final solvent front was ~ 12 cm . Cailibration curves for semiquantitative analysis were obtained by measuring the spot areas (by counting squares on a spot of equivalent size on graph paper) of 2,3 , and 4 , corresponding to known weights, using usual methods; ${ }^{21}$ in constructing the curve, five mixtures of 2,3 , and 4 were used in which the respective amounts and proportions were varied; for example, a solution (30% disproportionation supposed) containing $2(21.0 \mathrm{mg}), 3(3.6 \mathrm{mg})$, and $4(5.4 \mathrm{mg})$ was spotted on three silica-gel plates as described above and then areas of the spots of 2 and 4 were measured and the average value was calculated. In such chromatography the square root of the spot area (A) is proportional to the logarithm of the amount of substances (W), so that $\sqrt{A}=m \log W+c .^{21} \quad$ Hence a graph prepared by plotting \sqrt{A} as a function of $\log W$ (using $1.8-9.0 \mathrm{mg}$ of 4 in solution) could be used to estimate the amount present of 4 , and similarly for 2 ; m and c, constants, were 0.40 and 0.67 , respectively. This method gave, for example, the amounts of 4 in mixtures of 2,3 , and 4 within about $\pm 5 \%$ as evidenced by comparisons of percentages of 4 in prepared mixtures with percentages found (in parentheses): $10(8,12), 20(18,15), 30$ (26, 35), $40(37,43), 50(56)$.
In a typical experiment on the rapidity of disproportionation of 2 to give 3 and 4, a solution of $2(30 \mathrm{mg}, 0.102 \mathrm{mmol})$ in $\mathrm{MeOH}(.5 \mathrm{ml})$ was heated at $60.8 \pm 0.2^{\circ}$ in a constant-temperature oil bath. From time to time 10μ of the reaction solution was withdrawn using a microsyringe and was spotted on a silica gel layer. Comparison of the spot areas of 4 with those of the calibration curves gave the amounts of 4 . All of the reactions summarized in Figure 1 and Table II were done under essentially the same conditions, and no solid was present in any of the solutions. Values of $k_{\text {approx }}$ (Table II) were calculated by converting the mass of 4 from the tle plot to moles, considering C_{0} based on 0.102 mmol , subtracting twice the moles of 4 at time t from 0.102 to get C, plotting $\log (0.102 / C)$ vs. t (min), taking the slope, and multiplying by 2.303 . The disproportionation per cent (Table II and Figure 1) was calculated as (100)(2). (mmoles of 4)/ (0.102).
D. Isolation of 1,2-Dithiane 1,1-Dioxide (8). N-Ethylmaleimide ($0.214 \mathrm{~g}, 1.71 \mathrm{mmol}$) was added slowly to a mixture of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ and benzene $(1.5 \mathrm{ml})$ containing $2(0.500 \mathrm{~g}, 1.71$ mmol) at 0°. After the reaction mixture had been heated at 60° for .50 min with good stirring, the $\mathrm{H}_{2} \mathrm{O}$ layer was separated and was washed with benzene. The combined benzene layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude 8 obtained ($0.100 \mathrm{~g}, 39 \%$) had mp $45-49^{\circ}$. Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$-hexane gave $8, \mathrm{mp}$ and $\mathrm{mmp} 52-53^{\circ}$ (lit. ${ }^{18}$ $\mathrm{mp} 54.5-55^{\circ}$), which had an ir spectrum identical with that of authentic $8 .{ }^{18}$
(2-Acetamidoethyldithio)ethanoic Acid (11).-A solution of $\mathrm{NaOH}(4.21 \mathrm{~g}, 0.105 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$ was added slowly ($\sim 0.5 \mathrm{hr}$) to mercaptoacetic acid ($9.65 \mathrm{~g}, 0.105 \mathrm{~mol}$) in MeOH $(40 \mathrm{ml})$ at 0°. The resulting solution was kept at 0° and was added ($\sim 2 \mathrm{hr}$) to $10(26.8 \mathrm{~g}, 0.100 \mathrm{~mol})$ in $\mathrm{MeOH}(100 \mathrm{ml})$ at $\sim 0^{\circ}$ with good stirring during $\sim 2 \mathrm{hr}$. Tle then showed no spot on alumina corresponding to 10 . The solution was carefully concentrated to about 40 ml at 2.5° (rotary evaporator, condenser at 0°), saturated with NaCl , and extracted with several $150-\mathrm{ml}$ portions of CHCl_{3}. The extract, dried (MgSO_{4}) and concentrated at $\sim 25^{\circ}$, gave $17.0 \mathrm{~g}(81 \%)$ of white $11, \mathrm{mp} 85-88^{\circ}$. Recrystallization by dissolution in $\mathrm{Me}_{2} \mathrm{CO}$ at $\sim 25^{\circ}$, addition of $\mathrm{Et}_{2} \mathrm{O}$ to incipient turbidity, and chilling gave 11 as white crystals of constant mp 92-93 ${ }^{\circ}$: nmr ($\left.\mathrm{CDCl}_{3}\right) \delta 2.03\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $5.81\left(\mathrm{CO}_{2} \mathrm{H}\right)$; ir $3360,1690,1570,1540,1300,1190,1175$, and $890 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 43 (100), 60 (65) 86 (90), 118 (.50), 1.51 (5), 186 (4), 209 (1).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C, $34.41 ; \mathrm{H}, 5.27 ; \mathrm{N}, 6.70$ S, 30.62; mol wt, 209. Found: C, 34.42; H, . .34; N, 6.79; $\mathrm{S}, 30.84$; mol wt, 209 (mass spectrum).
(21) K. Randerath, "Thin-Layer Chromatography," 2nd ed, Academic Press, $\mathrm{N} \in \mathrm{w}$ York, N. Y., 1966, p 70 ff.

3-(2-Acetamidoethyldithio)propanoic Acid (12).-Aqueous NaOH solution ($376 \mathrm{~g}, 93.3 \mathrm{mmol}$ in 100 ml of $\mathrm{H}_{2} \mathrm{O}$) was added slowly (40 min) to a mixture of $10(25.0 \mathrm{~g}, 93.30 \mathrm{mmol}$) and 3 -mercaptopropionic acid ($9.90 \mathrm{~g}, 93.30 \mathrm{mmol}$) in 200 ml of $\mathrm{H}_{2} \mathrm{O}$ at $0-5^{\circ}$ wi:h stirring; solid began to appear at once. The mixture was kept at 25° for 1 hr and then was chilled $\left(0^{\circ}\right)$; filtration gave 13.0 g of white 12 . The mother liquor, extracted with CHCl_{3}, gave 3.0 g of 12 . Accordingly, 16.0 g ($\overline{7} \%$) of 12 was obtained, mp S0-83 ${ }^{\circ}$. Recrystallization as with 11 gave 12 as white plates of constant $\mathrm{mp} 8 \mathrm{5}-86^{\circ}$: $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.03$ ($\mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$), 9.60 ($\mathrm{s}, \mathrm{CO}_{2} \mathrm{II}$); ir (KBr) 3340, 170.7, 161.5, 1.560 , 1.540, 1330, 1240, 118.7, $900 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 43 (1J0), 60 (30), 86 (95), 118 (22), 164 (9), 210 (3), 223 (1).

Anal. Calcd for $\mathrm{C}_{\mathbf{i}} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C, 37.6S; $\mathrm{H}, \mathrm{j} . \mathrm{S3} ; \mathrm{N}, 6.28$; S, 2S.69; mol wt, 223. Found: C, 37.88; H, 6.01; N, 6.16; S, 28.48; mol $\mathbf{w}_{*}^{\star}, 223$ (mass spectrum).

4-(2-Acetamidoethyldithio)butanoic Acid (13).-As with 12, $\mathrm{NaOH}(2.8 \mathrm{~g}, 70.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(.50 \mathrm{ml})$ was added in part to $10(20.0 \mathrm{~g}, 74.5 \mathrm{mmol})$ and 4 -mercaptobutanoic acid (8.40 g , 70.0 mmol) at $0-5^{\circ}$ with stirring. Immediate precipitation made stirring difficult. Water (200 ml) was added, and addition of NaOH was cortinued. The mixture was let stand at $\sim 25^{\circ}$ for 2 hr . Treatment as for 12 gave $15.0 \mathrm{~g}(90 \%)$ of white $13, \mathrm{mp}$ $82-85^{\circ}$. Recrystallization as with 11 gave 13 of constant mp $87-88^{\circ}: \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.03\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $17.1\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}\right)$; ir (KBr) 3330, $1715,163$.), 1.58 .5 , $1300,1220,1150 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 43 (100), 60 (1.5), 86 (80), 118 (14), 151 (12), 178 (21, 237 (1).

Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C, 40.in; $\mathrm{H}, 6.34 ; \mathrm{N}, 5.91$; $\mathrm{S}, 27.00$; mol wt, 237 . Found: C, $40.31 ; \mathrm{H}, 6.19 ; \mathrm{N}, 5.80$; $\mathrm{S}, 26.91$; mol wt, 237 (mass spectrum).

5-(2-Acetam:doethyldithio)pentanoic Acid (14).-5-Mercaptopentanoic acid was synthesized as follows. ${ }^{22}$ A mixture of δ-valerolactone $(100 \mathrm{~g}, 1.19 \mathrm{~mol})$ and thiourea $(83.6 \mathrm{~g}, 1.10 \mathrm{~mol})$ in $48 \% \mathrm{HBr}(1.2 \mathrm{~mol})$ was heated under reflux for 10 hr . The mixture then was made strongly basic with $50 c_{c}$; aqueous NaOH until a homogeneous solution resulted, which was heated under reflux for 2.5 hr and then was allowed to stand overnight. The solution was asidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$, and an $\mathrm{Et}_{2} \mathrm{O}$ extract was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Distillation gave $85.0 \mathrm{~g}(58 \%)$ of 5 -mercaptopentanoic acid: bp $103-105^{\circ}(0.7 \mathrm{~mm}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{t}, \mathrm{SH}), 12.06(\mathrm{~s}$, $\mathrm{CO}_{2} \mathrm{H}$); ir 2940, 2660, 2.980, 2320, 1715, 1420, 124.), 1230 cm^{-1}.

Much as with $12, \mathrm{NaOH}(2.80 \mathrm{~g}, 70.0 \mathrm{mmol})$ in 50 ml of $\mathrm{H}_{2} \mathrm{O}$ then was added to $10(20.0 \mathrm{~g}, 74.5 \mathrm{mmol})$ and i-mercaptopentanoic acid ($9.40 \mathrm{~g}, 70.0 \mathrm{mmol}$) in 100 ml of $\mathrm{H}_{2} \mathrm{O}$ at $.5-10^{\circ}$: giving $17.0 \mathrm{~g} 97 \mathrm{C} / \mathrm{c}$) of $14, \mathrm{mp} 60-6)^{\circ}$. Recr!stallization as with 11 gave 14 of constant $\mathrm{mp} 69-70^{\circ}$; $\mathrm{nmr} \delta 2.03$ ($\mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$), 9.67 ($\mathrm{s},-\mathrm{CO}_{2} \mathrm{H}$); ir (KBr) 3370, 2955, 2480, 1715, 1630, 1560, 142.5, 1285, 1210, 1185 cm^{-1}; mass spectrum m / e (rel intensity) 43 (100), 60 (17), 86 (90), 118 (14), 192 (1), 251 (2).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C, $43.10 ; \mathrm{H}, 6.7$ s; $\mathrm{N}, 5.58$: S, 25.58; mol wt, 251. Found: C, 42.90; H, 6.60; N, 5. 42 ; S, 25.52; mol wt, 2.51 (mass spectrum).

Disproportionation of the Acids $11-14$ and Their Salts $11^{\prime}-14^{\prime}$. A. Of 11-14.-In a typical experiment, a solution of 12 (111.5 $\mathrm{mg}, 0.05 \mathrm{mmol}$; in 5 ml each of MeOH in $\mathrm{H}_{2} \mathrm{O}$ was heated at 61°. From time to time 10μ of the solution was withdrawn by a microsyringe and spotted on an alumina layer (solvent, $1: 2$ benzeneMe ${ }_{2} \mathrm{CO}$). After 3 days of heating, tle showed no spot of 3 (R_{f} of $\left.3,0.4.\right)$; of $11-14,0$). ${ }^{23}$
When 12 ($4.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{ml})$ was heated ar 61° for 3 days, 44 mg ($9 \times \%$) was recovered (identity was assured by melting point and ir). After 3 days, 11,13 , and 14 were stable in both $\mathrm{H}_{2} \mathrm{O}$ and MeOH at $61^{\circ} ; 11,13$, and 14 were each recovered ($\sim 1 \mathrm{C} 0 \%$ from MeOH).
B. Isolation of 3 after Heating of $11^{\prime}-14^{\prime}$.-Illustratively, aqueous $\mathrm{NaOH}(82.0 \mathrm{mg}, 2.04 \mathrm{mmol})$ was added to $12(446 \mathrm{mg}$, 2.00 mmol) in $\mathrm{H}_{2} \mathrm{O}(2:-\mathrm{ml})$; the pH then was ~ 8. The solution was heated at $5-60^{\circ}$ for 13 hr and then was extracted with CH Cl_{3} three times. The extract was washed with cold $\mathrm{H}_{2} \mathrm{O}$, dried (MgSO_{4}), and concentrated: vield of 3, $85.0 \mathrm{mg}(36 \%)$; ir spectrum identical with that of authentic 3 ; mp 91-92 ${ }^{\circ}$ (lit. ${ }^{17}$

[^69]mp $92-93^{\circ}$). The values for disproportionation per cent of $37-46 \%$ mentioned for 13 and 14 (see discussion) were obtained similarly.
C. Equilibration of 13^{\prime} and 14^{\prime}.-A solution of the acid 13 $(1.04 \mathrm{~g}, 4.39 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ containing $\mathrm{NaOH}(0.176 \mathrm{~g}$, 4.40 mmol) was heated at $61^{\circ}(\mathrm{pH} \sim 8)$. From time to time, 10 ml was withdrawn, saturated with NaCl , and extracted with CHCl_{3}. Removal of CHCl_{3} gave 3, which was recrystallized from $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{Et}_{2} \mathrm{O}$ and then identified by ir and melting point. Compound 14 was treated similarly, and disproportionation per cent was calculated as described above (previous section C). The results based on the weight of $\mathbf{3}$ isolated are shown in Table III.
D. Disproportionation of Salts $11^{\prime}-14^{\prime}$.-For the preparation of the sodium salts $11^{\prime}-14^{\prime}$ of the acids 11-14, illustratively, a solution of NaOMe in $\mathrm{MeOH}(2.2 \mathrm{ml}$ of 1.0 N$)$ was added to 14 $(0.5 \mathrm{j} \mathrm{g}, 2.2 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{ml})$ to a pH of $6.8-7.0$. Addition of dry $\mathrm{Me}_{2} \mathrm{CO}$ then immediately precipitated white 14^{\prime}. Decantation and drying at 0.1 mm gave 14 , which was washed with acetone and then was dried again at 0.1 mm under vacuum, mp
188° dec. Compounds $11^{\prime}, 12^{\prime}$, and 13^{\prime} were obtained similarly, except that with 11^{\prime} and $12^{\prime} \mathrm{dry}^{\prime} \mathrm{Et}_{2} \mathrm{O}$ was used instead of $\mathrm{Me}_{2} \mathrm{CO}$ because 11^{\prime} and 12^{\prime} are slightly soluble in $\mathrm{Me}_{2} \mathrm{CO}$. Melting points follow: $11^{\prime}, 280^{\circ} \mathrm{dec} ; 12^{\prime}, 120-122^{\circ}$; and 13^{\prime}, 215° dec. The purity of $11^{\prime}-14^{\prime}$ was confirmed by checking absence of any 3 by tlc on alumina.

The disproportionation results of Table IV were obtained using $\sim 1 \mathrm{mmol}$ in 10 ml of $\mathrm{H}_{2} \mathrm{O}$ of $11^{\prime}-14^{\prime}$ (or 11-14 where specified). Illustratively, a solution of $14^{\prime}(273 \mathrm{mg}, 1 \mathrm{mmol})$ in 10 ml of $\mathrm{H}_{2} \mathrm{O}$ was heated at $61 \pm 0.5^{\circ}$ in a constant-temperature bath. From time to time, $\bar{j} \mu$ was withdrawn by a microsyringe and spotted for tle on an alumina layer. ${ }^{23}$ The spot for disulfide 3 then was observed, and the time was reported in Table IV at which the area no longer increased.

Registry No. -2, 34915-80-5; 3, 638-44-8; 4, 34915-82-7; 11, 34915-83-8; 11', 34915-84-9; 12, 34915-85-0; $12^{\prime}, 34915-86-1 ; 13,34915-87-2$; $13^{\prime}, 34915-88-3$; 14, 34915-89-4; 14', 34915-90-7.

Electron-Accepting Through-Conjugation Effects in Organosulfur Compounds

Charles Kissel, Robert J. Holland, and Marjorie C. Caserio*1

Department of Chemistry, University of California, Irvine, California 92664
Received October 27, 1971

Abstract

The importance of cyclic conjugation involving ($p \rightarrow d$)- π bonding has been investigated in attempted syntheses of thianaphthalene derivatives and in the transmission of substituent effects through sulfur in S-phenacyl-S-phenyl- S-methylsulfonium salts as evaluated from $\mathrm{p} K_{\mathrm{a}}$ measurements. No evidence was obtained to support. the concept of through-conjugation in the systems chosen for study.

There now exists a large body of experimental evidence regarding the electron-accepting properties of sulfur. These properties are generally described as valence-shell expansion by π bonding in which overlap occurs between a vacant 3 d sulfur orbital and a filled 2 p orbital of an adjacent first-row atom. ${ }^{2}$ The importance, however, of 3d orbitals in supporting electron delocalization through sulfur remains a controversial issue. For example, the question of participation of 3d orbitals in the bonding of thiophene has been frequently discussed, ${ }^{3}$ and it now appears that 3 d and higher energy orbitals contributc very little to the bonding in thiophene in its ground state. ${ }^{4}$ Positive evidence for through-conjugation by way of sulfur stems from the synthesis of stable sulfur heterocycles of the type $1,52,{ }^{5} 3,{ }^{7}$ and 4^{8} in which sulfur may be

[^70]
viewed as quadricovalent in a delocalized π system. However, the stability of thiaaromatic compounds varies widely. For example, thiabenzenes $5^{7,9}$ and thianaphthalenes 3^{7} vary in stability according to the nature and position of substituents; the thiabenzene 1oxide 6 is remarkably stable ${ }^{9}$ although the chemical behavior of 6 more closely resembles that expected for an ylide structure than for a delocalized benzenoid structure. Likewise, the aromaticity of thiaphenalenes 2 is open to question, ${ }^{3 b}$ while thiepin dioxide 7 and related compounds, which are formally $6-\pi$-electron systems related to tropone, do not appear to possess aromatic character. ${ }^{10}$ The acidity of the cyclic sulfone 8 is unexceptional relative to that of the open-chain analog 9, and this suggests that the carbanion derived from 8 lacks aromaticity.

While the experimental evidence is both positive and negative on the issue of through conjugation, theoretical arguments are not clear-cut either. Calculations illustrating the importance of cyclic conjugation

[^71]

4

6
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{SC}_{6} \mathrm{H}_{5}$

9
through 3d orbitals of second-row elements has been advanced by Craig ${ }^{11}$ and questioned ky Dewar. ${ }^{12}$ Their arguments were initially concerned with the question of delocalization in phosphonitrilic compounds, but they may be applied equally well to other systems which may in principle support ($p \rightarrow d$)- π bonding. ${ }^{13}$
A somewhat different approach has been advanced by Price ${ }^{7 c}$ to explain the benzenoid properties of compounds of type 3. He has suggested that the delocalized π system of 3 may utilize a sulfur 3 p ard carbon $2 p$ orbitals with the nonbonding electron pair on sulfur promoted to a 3 d orbital. The heterocycle would by this theory be planar and would accordingly be destabilized by bulky substituents ortho to the heteroatom that would force nonplanarity on the ring system. Evidence in support of this theory has been given. ${ }^{\text {c }}$

It was with this background to the topic of throughconjugation that we initiated an investigation designed to test the driving force for aromaticity in thianaphthalene derivatives and to measure the transmission of substituent effects in the C-S-C system which we describe in this paper.

Thianaphthalene-Ylide Tautomerism.--In order to contribute to the question of thiabenzene aromaticity, an investigation of the behavior of 2-methylisothia-chroman-4-one fluoroborate (10) with base was undertaken. We reasoned that, if resonance stabilization is significant in a cyclic system of ten π electrons delocalized through sulfur and nine carbons, then treatment of 10 with base might afford the thianaphthol derivative 11, or an equilibrium mixture of 11 and the cyclic ylide 12. When 10 was treated with an equivalent of aqueous sodium hydroxide, sodium methoxide in ather-methanol, or sodium hydride in tetrahydrofuran, a single compound was isolated in high yield (00%). This compound was clearly not the thianaphthol derivative 11 but had all the characteristics expectec of a β-car-

[^72]

11
bonyl-stabilized sulfonium ylide 12 . Thus, its infrared spectrum showed a strong band at $1510 \mathrm{~cm}^{-1}$ typical of β-keto ylides; ${ }^{14}$ it was formed from 10 reversibly by the addition of appropriate amounts of acid or base, and its rmr spectrum in various solvents listed in Table I leaves no doubt that its structure is correctly assigned as 12. In particular, the broad temperaturedependent resonance near 3.7 ppm is typical of an ex-change-broadened resonance of an ylide proton, ${ }^{15}$ and the nonequivalence of the benzylic protons establishes that the structure is nonplanar. No resonances that could be ascribed to the thianaphthol 11 were evident and any rapidly established equilibration between 11 and 12 is rulec out by the observation that the benzylic protons of 12 are coupled ($J=15.8 \mathrm{~Hz}$) and are not exchanged by the addition of $\mathrm{D}_{2} \mathrm{O}$ to solutions of 12 in DMSO- d_{6} or acetonitrile. In contrast, the methine proton of 12 is exchanged instantly, typical of ylide behavior. ${ }^{16}$

Rapid exchange of the benzylic protons of 12 was observed, however, on addition of aqueous base (Na-$\mathrm{OD}-\mathrm{D}_{2} \mathrm{O}$) to solutions of 12 in DMISO- l_{6}. Enhanced acidity of the benzylic protons is anticipated if the resulting anion can support electron delocalization suggested by structures 13a, 13b, 13c, and 13d. To obtain

[^73]Table I
Nuclear Magnetic Resonance Spectra of β-Ketosulfonium Salts and Ylides ${ }^{a}$

Compd	$\delta_{\text {aromatic }}$	$\delta_{H_{a}{ }^{\text {b }}}$	$\delta_{\mathbf{H}_{\mathrm{b}}{ }^{\text {b }} \text { b }}$	$\Delta \nu_{\text {ab }}$	$J_{\text {ab }}$	$\delta^{H_{c}}$	$\delta_{H_{d}}$	$J_{\text {ed }}$	$J_{\text {ac }}$	$\delta_{\text {SCH }}^{3}$	Solvent
 ${ }^{-} \mathrm{BF}_{4}$	7.67 (3H)	4.91	4.56	21.2	16.6	$4.45{ }^{\text {b }}$	$4.09{ }^{\text {b }}$	18.0	2.0	2.83	$\mathrm{CH}_{3} \mathrm{CN}$
	$8.05(1 \mathrm{H})$										
	7.58 (3 H)	4.98	4.64	20.1	16.0	$4.59^{\text {b,c }}$	$4.27^{\text {b }}$	18.0	c	2.80	$\mathrm{CH}_{3} \mathrm{SOCH}_{3}$
	7.92 (1 H)										
		5.07	4.69	22.4	16.2					2.93	$\mathrm{D}_{2} \mathrm{O}^{e}$
	$7.39(3 \mathrm{H})$	3.93	4.51	34.9	15.8	$3.75{ }^{\text {d }}$				2.42	CDCl_{3}
	8.16 (1 H)										
	7.32 (3 H)	4.16	4.54	22.5	15.8	$3.63{ }^{\text {d }}$				2.35	$\mathrm{CD}_{3} \mathrm{SOCD}_{3}$
	7.75 (1 H)										
	7.40 (3 H)	4.49	3.97	31.6	15.8	$2.53{ }^{\text {d }}$				2.35	$\mathrm{CH}_{3} \mathrm{CN}$
	8.00 (1 H)										
	7.5 (8 H)	4.8	4.8			5.7	5.7			2.90	$\mathrm{CD}_{3} \mathrm{SOCD}_{3}$
	8.0 (2 H)										
	7.3 (8 H)	4.85	4.42	25.7	12.0	$4.11^{\text {d }}$				2.85	CDCl_{3}
$\mathrm{H}_{5} \mathrm{C}_{6}$	7.75 (2 H)										
${ }_{5} \mathrm{C}_{6}$	7.28 (8 H)	4.86	4.30	33.4	12.0	$4.03{ }^{\text {d }}$				2.80	$\mathrm{CD}_{3} \mathrm{SOCD}_{3}$
	7.63 (2 H)										
		4.98	4.00	58.8	12.0	$4.00^{\text {d }}$				2.51	$\mathrm{C}_{6} \mathrm{H}_{6}$

${ }^{a}$ Chemical shifts are in parts per million downfield from TMS as internal standard; coupling constants are in hertz measured at 60 MHz . ${ }^{b}$ Part of AB quartet. ${ }^{c}$ Broadened line shape of $\delta_{\mathrm{H}_{\mathrm{c}}}$ obscured long-range coupling J_{ac}. ${ }^{d}$ Exchange broadened. ${ }^{e}$ External reference, TMS.
evidence on this point, a comparison was made of the acidities of the benzylic protons of 12 and the benzylic protons of the related acyclic ylide 14 , which cannot

12

14
form an anion stabilized by cyclic conjugation. Qualitatively, there was no apparent difference in the behavior of 12 and 14 with base. When a mixture of 12 and 14 in DMSO- d_{6} was allowed to compete for less than an equivalent amount of $\mathrm{NaOD}-\mathrm{D}_{2} \mathrm{O}$, the nmr spectrum of the mixture showed changes in the benzylic AB quartets of both ylides. The progressive changes observed in both ylides with increasing added base showed that the exchange rates were not remarkably different and we are forced to conclude that the benzylic protons of 12 are not unusually acidic relative to those of 14 . The significance of delocalization implied in 13 is therefore questionable.

The cyclic ylide 12 was converted to the methyl ether derivative 15 by O-methylation with trimethyloxonium fluoroborate. The behavior of 15 with base is of some importance to the question of cyclic conjugation, since it is conceivable that a stable thianaphthalene derivative 16 might be formed.

No significant reaction occurred on treating 15 with sodium methoxide in methanol or with sodium hydride suspended in dry ether. However, potassium tertbutoxide in DMSO and sodium hydride in dry THF both reacted with 15 to give highly colored reaction mixtures from which an amorphous, reddish-brown solid could be isolated. This material defied purification; it could not be recrystallized and its nmr spectrum in chloroform was broad and ill-resolved sug-

gesting a polymeric composition. On following the exchange of 15 with $\mathrm{NaOD}-\mathrm{D}_{2} \mathrm{O}$ in acetonitrile-DMSO- d_{6} by nmr, it was observed that the S-methyl, vinylic, and benzylic protons exchanged at comparable rates. We conclude from these experiments that, if a compound of structure 16 is formed, it is not notably stable and rapidly reprotonates.
Transmission of Substituent Effects in β-Ketosulfonium Ylides. -Several comparative studies of the $\mathrm{p} K_{\mathrm{a}}$ values of nitrogen, phosphorus, arsenic, and sulfur onium compounds have been reported. ${ }^{17-20}$ The order of ylide stability may be established from the data as $\mathrm{N}<\mathrm{As}<\mathrm{P}<\mathrm{S}$, which parallels the order of increasing importance of ($\mathrm{p} \rightarrow \mathrm{d}$)- π bonding. Linear free energy relationships have also been established from $\mathrm{p} K_{\mathrm{a}}$'s of structures $17,{ }^{18} 18,{ }^{19}$ and 19. ${ }^{20}$ Thus, transmission of the electrical effects of the phenacyl X substituent in 17, 18, and 19 follows a Hammett $\rho \sigma$ relationship with $\rho=+2.1,+2.3$, and +2.3 , respectively. It will be noted that there is no direct conjugation of the X sub-

[^74](20) W. G. Phillips and K. W. Ratts, J. Org. Chem., 35, 3144 (1970).

Table II
Phenacylsulponium Flloroborate Salts ${ }^{\text {a }}$

							$\overline{\mathrm{B}} \mathrm{~F}_{4}$				
$\begin{gathered} \text { Compd } \\ 20 \end{gathered}$	Y	X	Mp. ${ }^{\circ} \mathrm{C}$	$\mathrm{p}^{\text {m }}$		${ }^{88} \mathrm{CR}_{3} .^{6} \mathrm{ppm}$	$\delta_{\text {ary }} .^{\text {c }}$ c ppm	${ }^{\mathbf{8}}$ x. ppm	$\lambda_{\text {Y }}$. ppm	$\lambda_{\text {max }}{ }^{\text {d }} \mathrm{nm}$	$\lambda_{\text {max }}{ }_{\text {nm }}{ }^{\text {c }}$
a	H	H	102-103	7.32	5.86	3.35	7.5-8.3			297	244
b	H	Br	164-166	6.73	5.86	3.36	7.6-8.3			29.5	268
c	H	Cl	146-147		5.87	3.37	7.6-8.3			30.)	266
d	H	CH_{3}	137.5-138.5	7.63	5.86	3.46	7.3-8.3	2.41		299	266
e	H	OCH_{3}	137-138	8.13	5.82	3.45	7.0-8.3	3.87		30\%	243
f	H	NO_{2}	173.5-175.5	5.79	5.92	3.36	7.2-8.4			343	266
Series 2											
a	H	H	102-103	7.32	5.86	3.35	7.5-8.3			297	244
g	Br	H	133-135	6.89	5.90	3.38	7.6-8.3			297	245
h	Cl	H	123-125		5.92	3.40	7.6-8.3			298	240
i	CH_{3}	H	135-137	7.59	4.35	3.45	7.4-8.2		2.42	296	253
j	$\mathrm{CH}_{3} \mathrm{O}$	H	105-107	7.79	3.88	3.34	7.2-8.2		3.88	29.5	2:1
k	NO_{2}	H	129-131	6.19	5.96	3.44	$7.5-8.2$			283	255

${ }^{a}$ Satisfactory elemental analyses were obtained for all compounds with the exceptior of $\mathrm{X}=\mathrm{Br}$ which was consistently 3% high in carbon for no apparent reason. ${ }^{b}$ In DMSO- d_{6} at 60 MHz ; singlet; chemical shift relative to TMS internal standard. c Multiplet. ${ }^{d} \mathrm{Uv}$ of ylide in aqueous base. e Uv of salt in aqueous solution.

19

20
stituent with the carbanion center, and in this respect phenacyl ylides parallel substituted benzoic acids (cf. 21 and 22). A linear correlation between the $\mathrm{p} K_{\mathrm{a}}$'s of

phenacylsulfonium ylides and benzoic acids in which there is no enhanced resonance effect is not then surprising.

Of greater interest to the present study is the transmission of substituent effects through sulfur in ylides derived from sulfonium salts of type 20 . If the electronic effects of the Y substituent in the ylide derived from 20 can be transmitted through sulfur by d-orbital interactions with the adjacent $p-\pi$ system this should be evidenced by an enhanced resonance effect of Y on the acidity of 20. For example, if resonarce stabiliza-
tion of the nitro-substituted ylide 23 is important due to contributions from the hybrid structure 23 b involving conjugation through sulfur, this should be reflected in a low basicity for 23 , or a low $\mathrm{p} K_{\mathrm{a}}$ for its conjugate acid 20 ' $\mathrm{Y}=\mathrm{NO}_{2}$).

To test these concepts, we prepared two series of salts of type 20 and determined their $\mathrm{p} K_{\mathrm{a}}$'s. In series 1, the Y substituent was held at $\mathrm{Y}=\mathrm{H}$ as the X substituent was varied from H to $\mathrm{CH}_{3}, \mathrm{Br}, \mathrm{OCH}_{3}$, and NO_{2}. In series $2, \mathrm{X}$ was held at $\mathrm{X}=\mathrm{H}$ as Y was varied. The shysical and spectral properties of these compounds are summarized in Table II. The $\mathrm{p} K_{\mathrm{a}}$ values for the salts in aqueous solution were determined spectrophotometrically and the values obtained are listed in Table II. The acidity data was analyzed by the Ehrenson-Brownlee-Taft dual-parameter equation ${ }^{21}$

$$
\mathrm{p} K_{\mathrm{a}}=\rho_{\mathrm{I}} \sigma_{\mathrm{I}}+\rho_{\mathrm{R}} \sigma_{\mathrm{R}}
$$

where σ_{I} and σ_{R} are inductive and resonance substituent constants, respectively, and ρ_{I} and ρ_{R} arc cssentially weightirg factors that reflect the relative importance of inductive and resonance effects in the given system. The values of ρ_{I} and ρ_{R} were obtained from the best fit of the data to the dual-parameter equation. A reiterative computer procedure was employed to obtain the best fit, which included variation of the substituent constants to include σ_{I} values, $\sigma_{\mathrm{R}}{ }^{-}, \sigma_{\mathrm{R}}, \sigma_{\mathrm{R}}{ }^{0}$, and $\sigma_{\mathrm{R}}{ }^{-}$.

For series 1 in which \mathbf{X} is varied and $\mathrm{Y}=\mathrm{H}$. the best fit was obtained using σ_{R}. The ρ_{1} and ρ_{R} values were found to be essentially equal and the data corresponds therefore to a straightforward Hammett $\rho \sigma$ relationship in which $\rho=+2.0$ (Figure 1). This parallels the acidity of the related compounds 17,18 . and 19 for which $\rho=2.1-2.3$. Transmission of substituent effects through the phenacyl ring as measured by the ρ value
(21) S. Ehrenson, R. T. C. Brownlee, and R. W. Taft. Proo. Phys. Org. Chem., 10, in press

Figure 1.-Plot of $\mathrm{p} K_{\mathrm{a}}$'s of substituted β-ketosulfonitm salts 20 against inductive and resonance parameters of the substituents X or Y . The data refer to aqueous solutions at $25^{\circ}, \Delta$ to series $1, \mathrm{Y}=\mathrm{H}$, and - to series $2, \mathrm{X}=\mathrm{H}$.
is therefore independent of the nature of the onium group and is roughly twice as effective as in the benzoic acids ($\rho=1$ by definition). However, the $\mathrm{p} K_{\mathrm{a}}$'s of the pyridinium salts 19^{20} are higher by about 2.6 pK units than the $\mathrm{p} K_{\mathrm{a}}$'s of the structurally related sulfonium salts 20 . This notable difference provides one of the strongest arguments for the involvement of d orbitals in the bonding of sulfonium ylides.

For series 2 in which Y is varied and $\mathrm{X}=\mathrm{H}$, the best fit was again obtained using σ_{R} values. The ρ_{I} and ρ_{R} values were also found to be equal and correspond to a Hammett ρ value of +1.4 (Figure 1). The fact that a Hammett type of free-energy relationship for series 2 was observed is inconsistent with the concept of an enhanced resonance contribution due to conjugation through sulfur and indicates that the substituent effects are mainly inductive in nature. Furthermore, the smaller ρ value $(+1.4)$ for series 2 relative to series 1 $(+2.0)$ means that substituent effects are transmitted less effectively through the phenylsulfonium group than through the phenacyl group. In particular the difference of 0.4 pK units in the acidities of 20 k ($\mathrm{Y}=\mathrm{NO}_{2}$, $\mathrm{X}=\mathrm{H})$ and $20 \mathrm{f}\left(\mathrm{Y}=\mathrm{H}, \mathrm{X}=\mathrm{NO}_{2}\right)$ implies that the ylide 23 derived from 20k is more basic (less stable relative to 20k) than the ylide from 20f, which argues against the importance of structure 23b in stabilizing the ylide.

The data for series 2 may be compared with the $\mathrm{p} K_{\mathrm{a}}$ data for the pyridinium salt 19 for which $\rho=+2.9$ as Y is varied with X constant. This ρ value is notably higher than the ρ values for series 1 and 2 as well as for 17 and 18 , and it has been suggested that this relatively high value reflects direct conjugation of the carbanion center with the pyridine ring in the derived ylide 24. This being so, the validity of related conjugation effects in the sulfonium ylides obtained from 20 is placed further in doubt.

In summary, the evidence at hand does not support conjugation effects transmitted through sulfur. An orbital description of $(p \rightarrow d) \pi$ bonding need not therefore be invoked to explain the chemistry of the sulfonium salts and ylides described in this paper.

Experimental Section

2-Methylisothiachroman-4-one fluoroborate (10) was prepared in 9.5% yield by the methylation of isothiachroman-4-one ${ }^{22}$ with 1 equiv of trimethyloxonium fluoroborate as a suspension in methylene chloride. ${ }^{23}$ Recrystallization of the crude product from absolute ethanol gave colorless crystals, $\mathrm{mp} 153-1.54^{\circ}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BF}_{4} \mathrm{OS}: \mathrm{C}, 45.12 ; \mathrm{H}, 4.16$. Found: C, 45.01; H, 4.06.
2-Methylisothiachroman-4-one-3-ylide (12) was prepared from 10 on treatment with aqueous sodium hydroxide and extracting with chloroform, or with sodium hydride in dry THF, or with sodium methoxide in methanol-ether solution. The latter method proved to be the most satisfactory. To 1.70 g (7.87 mmol) of sodium methoxide as a 2.5% solution in methanol was added $2.50 \mathrm{~g}(9.4 \mathrm{mmol})$ of 10 and 25 ml of ether. The mixture was stirred for 10 min and the solvents were removed by evaporation at reduced pressure. The residual yellow solid was extracted with 50 ml of chloroform. The chloroform was evaporated and the residue was worked up with pentane and then air dried to give 1.31 g of 12 as a yellow solid, $\mathrm{mp} 126-128^{\circ}$ dec.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{OS}: \mathrm{C}, 65.83 ; \mathrm{H}, 5.66$. Found: C,65.58; H, 5.56 .

Methylation of 2-Methylisothiochroman-4-one-3-ylide.-To a solution of 1.31 g of 12 in 50 ml of chloroform was added 1.9 g of trimethyloxonium fluoroborate. The mixture was stirred for 30 min and then decanted from any insoluble material, and the solvent was removed by evaporation at reduced pressure. The residual oil crystallized after washing with pentane and was subsequently recrystallized from absolute ethanol. The product 15 was obtained as almost white crystals, $\mathrm{mp} \mathrm{121-122}^{\circ}$, and gave an nmr spectrum in CDCl_{3} showing a complex four-proton aromatic resonance near 7.5 ppm , a one-proton vinylic singlet at 5.75 ppm , a two-proton singlet at 4.55 ppm , a three-proton singlet at 4.00 ppm , and a three-proton singlet at 2.75 ppm . In acetonitrile, the benzylic protons of 15 appeared as an $A B$ quartet ($J=16 \mathrm{~Hz}$) with coupling of the upfield proton to the vinylic proton. On adding a $\mathrm{D}_{2} \mathrm{O}-\mathrm{OD}^{-}$solution to the sample of 15 in $\mathrm{CH}_{3} \mathrm{CN}$ in an nmr tube, the exchange of the vinylic, benzylic, and SCH_{3} proton was observed.
(22) A. K. Kiang and F. G. Mann, J. Chem. Soc., 1909 (1951).
(23) M. C. Caserio, R. E. Pratt, and R. J. Holland, J. Amer. Chem. Soc., 88, 5747 (1966).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BF} 4 \mathrm{OS}: \mathrm{C}, 47.15 ; \mathrm{H}, 4.67$. Found: C, 46.95; H, 4.50.
Reaction of $15\left(0.2 \mathrm{~g}\right.$ in 1 ml of DMSO- $\left.d_{6}\right)$ with 1 equiv of potassium tert-butoxide was observed directly by nmr. The AB pattern of the benzylic protons disappeared rapidly but there was no significant change in the chemical shift of the vinylic, SCH_{3}, or OCH_{3} resonances of 15 . Attempts to isolate the product(s) of this reaction led only to the isolation of a sticky red solid which could not be recrystallized. Reaction of 15 with sodium thydride in dry THF in an inert atmosphere led to the immediate evolution of hydrogen, precipitation of NaBF_{4}, and formation of a dark red solution which, after evaporating at reduced pressure, gave a red oil which solidified on washing repeatedly with pentane. Analysis by tle showed the presence of at least three components. Separation was unsuccessful, and the nmr of the crude product in CDCl_{3} gave very broad signals which were uninformative as to structure.
S-Benzyl-S-methyl-S-phenacylsulfonium ylide (14) was prepared from the corresponding sulfonium bromide salt by treatment with sodium hydride in THF. ${ }^{24}$ The sulfcnium bromide was prepared from benzyl methyl sulfide and phenacyl bromide in benzere.

Preparation of Sulfonium Salts 20.-Each of the salts was prepared from the corresponding sulfide by methylation with trimethyloxonium fluoroborate, as described above for 10 . The salts so obtained were recrystallized to analytical purity from absolute ethanol. The sulfides were in turn prepared by the reaction of the appropriate thiophenol under basic conditions (sodium ethoxide in ethanol) with the appropriate phenacyl
(24) K. W. Ratts and A. N. Yao, J. Org. Chem., 3s, 70 (1968).
bromide. The procedure used was typically as follows for the preparation of p-methylphenacyl phenyl sulfide. To a solution of 2.88 g ($0.12: \overline{\mathrm{j}} \mathrm{g}$-atom) of sodium metal in 250 ml of ethanol was added all a- once $13.8 \mathrm{~g}(0.125 \mathrm{~mol})$ of thiophenol. To this stirred solution was added $26.7 \mathrm{~g}(0.125 \mathrm{~mol})$ of p-methylphenacyl bromide. The mixture was gently refluxed and stirred for 1 hr , during which time sodium bromide precipitated out. The cooled mixture was filtered and evaporated. The residual oil solidified on cocling and was recrystallized from hexane to give 26.3 g (87%) of product.

Determination of $\mathrm{p} K_{\mathrm{a}}$ for Sulfonium Salts 20.-Aqueous solutions of each of the sulfonium salts were prepared using oxygenfree distilled water. These stock solutions were diluted accordingly with standard KOH and standard HBF , such that $8-10$ solutions of a given salt at different pH were prepared, the net concentration of salt + ylide remaining constant. The $\mathrm{p} K_{\mathrm{a}}$ value is expressed by the relationship $\mathrm{pH}=\mathrm{p} K_{\mathrm{s}}-\log$ [salt]/[ylide] and a plot of pH vs. \log [salt]/[ylide] should be linear and of urit slope. The relative amount of salt and ylide present at a given pH was determined spectrophotometrically, and a plot was made of pH vs. \log [salt]/[ylide]. In each case, the slope was verified as unity. The $\mathrm{p} K_{\mathrm{a}}$ was determined directly from the plot for the condition [salt] = [ylide].

Registry No.-10, 24806-67-5; 12, 24310-06-3; 14, 15876-09-2; 15, 34881-62-4; 20a, 34881-63-5; 20b, 34881-64-6; 20c, 33043-77-5; 20d, 34881-66-8; 20e, $34881-67-9$; 20f, 34881-68-0; 20g, 33043-72-0; 20h, $33192-02-8$; 20i, 33043-70-8; 20j, 34881-71-5; 20k, 33043-73-1; $\mathrm{PhCOCH}_{2} \mathrm{~S}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph} \cdot \mathrm{BF}_{4}, \quad 17069-29-3$.

Mechanisms of Alkaline Hydrolysis of p-Nitrophenyl Glucopyranosides

C. S. Tsai* and C. Reyes-Zamora
Department of Chemistry, Carleton University, Ottawa, Ontario, Canada

Received January 24, 1972

Abstract

The alkaline hydrolysis of p-nit rophenyl- α - and - β-D-glucopyranosides has been studied by gas chromatographic, uv spectrophotometric, and nmr spectroscopic methods. The a anomer is hydrolyzed to a degradative product of D -glucose whereas the β anomer yieids the degradative product of D -glucose and 1,6 -anhydroglucopyranose. The formation of the degradative prodact of d-glucose and the detection of a free radical during the hydrolysis suggest the complexity of the over-all pathways for the alkaline hydrolysis of p-nitrophenyl glucopyranosides. p-Nitrophenyl- β-D-glucopyranoside is hydrolyzed by mixed mechanisms, C-2 oxyanion participation, and nucleophilic aromatic substitution. In alkalize media, p-nitrophenyl- α-D-glucopyranoside forms a Meisenheimer-type complex, 1,2-O-p-nitrophenylidene- α-D-glucopyranose, as the intermediate which undergoes hydrolysis.

In spite of the general agreement concerning mechanisms of acidic hydrolysis of aryl glucopyranosides, ${ }^{1,2}$ alkaline hydrolysis of aryl glucopyranosides has not been successfully rationalized on the basis of generalized mechanisms. In particular, exalted rates of hydrolysis of p-nitrophenyl- α - and - β-d-glucopyranosides in alkaline media remain enigmatic.

Previous studies on the alkaline hydroysis of aryl glucopyranosides ${ }^{2,3}$ have shown that β anomers react by a process (Scheme I) which yields 1,6 -arihydroglucopyranose (1) via neighboring C-2 oxyanicn participation. ${ }^{4,5}$ A trend toward the nucleophilic a-omatic substitution (Scheme II) was noted as the electron-withdrawing character of substitutents increased. 6,7

In the case of aryl- α-d-glucopyranosides, a nucleophilic aromatic substitution mechanism enalogous to
(1) J. N. BeMiller, Adran. Carbohyd. Chem., 22, 25 (1967).
(2) B. Capon, Chem. Rec., 69, 407 (1969).
(3) C. C. Ballou, Adran. Carbohyd. Chem., 9, 59 (1954).
(4) E. BI. Montgomery, N. K. Richtmeyer, and C. S. Fudson, J. Amer. Chem. Soc., 65, 3 (1943).
(5) A. Dyfverman and B. Lindberg, Acta Chem. Scand., 4, 878 (1950).
(6) C. M. McCloskey and G. H. Coleman, J. Org. Chem., 10, 184 (1945).
(7) R. C. Gasman and D. C. Johnson, ibid., 31, 1830 (1966).

Scheme II was proposed. ${ }^{8}$ This mechanism explains the fact that 1,6 -anhydroglucopyranose is not formed when the α anomers are treated with alkali. However, it does not explain the formation of p-nitrophenol when the experiment is carried out with sodium methoxide in methanol. To resolve some of these uncertainties, the present work was undertaken. The knowledge concerning mechanisms of hydrolysis of p-nitrophenylα - and - β-D-glucopyranosides is desirable because they have been extensively used as substrates in the studies of α - and β-glucosidases. ${ }^{9} 10$

Results

In the range of alkaline concentrations studied, the rate of p-nitrophenol liberation was first order in substrate concentrations until the hydrolysis is 50% completed. Figure 1 shows that the specific rate of alkaline hydrolysis of p-nitrophenyl- β-D-glucopyranoside (3)
(8) A. N. Hall. S. Hollingshead, and H. N. Rydon, J. Chem. Soc.. 4290 (1961).
(9) R. Heyworth and P. G. Walker, Biochem. J., 8s, 331 (1962).
(10) M. V. Kelemen and W. J. Whelan, Arch. Biochem. Biophys., 117, 423 (1966).

Scheme I

Scheme II

Figure 1.-Effect of hydroxide concentration on specific rates of hydrolysis of p-nitrophenyl-D-glucopyranosides for α anomer (-) and β anomer (O).
is first order with respect to hydroxide concentrations. For p-nitrophenyl- α-D-glucopyranoside (2), the linear relationship holds at low hydroxide concentrations but deviates at high concentrations, suggesting the formation of a kinetically significant intermediate. If one assumes that the alkaline hydrolysis of p-nitrophenyl-α-D-glucopyranoside proceeds via eq 1 , the observed

$$
\begin{equation*}
2+\mathrm{OH}^{-} \stackrel{K}{\rightleftharpoons} \mathrm{X} \xrightarrow{k} \mathrm{P} \tag{1}
\end{equation*}
$$

specific rate of alkaline hydrolysis (by equilibrium treatment) can be expressed by eq 2 . K is the equilibrium

$$
\begin{equation*}
k_{\mathrm{oH}-}=\frac{k K\left[\mathrm{OH}^{-}\right]}{1+K\left[\mathrm{OH}^{-}\right]} \tag{2}
\end{equation*}
$$

constant for the formation of the intermediate X, and k is the specific rate for the formation of product(s) P from X. The relationship describes the observed kinetic behavior; i.e., at low hydroxide concentrations, $k_{\mathrm{OH}^{-}}$is linearly related to $\left[\mathrm{OH}^{-}\right]$by $k_{\mathrm{OH}^{-}}=k K\left[\mathrm{OH}^{-}\right]$ whereas, at high hydroxide concentrations, $k_{\mathrm{OH}^{-}}$is independent of $\left[\mathrm{OH}^{-}\right]$according to $k_{\mathrm{OH}^{-}}=k$. Fur-

Figure 2.-Double reciprocal plot of specific rates of alkaline hydrolysis of p-nitrophenyl- α-d-glucopyranosides vs. hydroxide ion concentrations.
thermore, the plot of $k_{\mathrm{OH}^{-}}{ }^{-1}$ vs. $\left[\mathrm{OH}^{-}\right]^{-1}$ as shown in Figure 2 gives a straight line of intercept k^{-1} and slope $(k K)^{-1}$ from which k and K are estimated to be $1.55 \times$ $10^{-2} \mathrm{~min}^{-1}$ and $4.17 \mathrm{~mol}^{-1}$, respectively.

The results for p-chlorophenyl- α - and - β-D-glucopyranosides are shown in Figure 3. In these cases, the specific rates of alkaline hydrolysis are first order with respect to hydroxide concentrations and follow a linear relationship at low and high concentrations of base. These results again suggest that p-nitrophenyl- α-Dglucopyranoside is hydrolyzed by a mechanism different from other α derivatives or its β anomer.

Because of the presence of different mechanisms and the possibility of molecular rearrangement with subsequent degradation, kinetic studies alone do not provide sufficient information concerning mechanisms of alkaline hydrolysis. Alternative approaches were explored. An attempt was made to analyze hydrolysis products by gas chromatography, which has been used successfully for the analysis of glycoses and their derivatives. ${ }^{11}$ Gas chromatographic analyses of hydrolysis products of p-nitrophenyl- α - and - β-D-glucopyranosides indicate that the α anomer is degraded by alkali to p-nitrophenol (retention time of $20.5 \pm 1.0 \mathrm{~min}$) and an unidentified major product (D with a retention time of $14.0 \pm 1.0 \mathrm{~min}$) which was shown to be the degradative product of D -glucose in alkaline solution. The work is in progress to isolate D for characterization. The β anomer yields, in addition to p-nitrophenol and D, 1,6-anhydroglucopyranose (retention time of $16.5 \pm$ 0.5 min). Although D was not detected in the hydroly-

[^75]

Figure 3.-Effect of hydroxide concentration on sjecific rates of hydrolysis of p-chlorophenyl-D-glucopyranosides for α anomer (\bullet) and β anomer (O).
zate of phenyl- β-D-glucopyranoside, it was barely detectable in the hydrolyzate of p-chlorophenyl- β-Dglucopyranoside. None of three aryl- α-D-glucopyranosides yielded 1,6-anhydroglucopyranose. Both anomers produced small quantities of carboxylic acids such as lactic acid, suggesting the complexity of the degradative processes.
Nuclear magnetic resonance studies of alkaline hydrolysis provided unexpected results. p-Nitrophenyl-α-D-glucopyranoside (2) exhibits two pairs of aromatic protons: ortho protons $\left(\mathrm{H}_{0}\right)$ at $\delta 7.30 \mathrm{ppm}$ (doublet, $J=9 \mathrm{cps}$) and meta protons $\left(\mathrm{H}_{m}\right)$ at $\delta 8.26 \mathrm{ppm}$ (doublet, $J=9 \mathrm{cps}$). Immediately after the addition of 0.1 ml of $1.0 \mathrm{~N} \mathrm{NaOH}, \mathrm{H}_{o}$ and H_{m} split into a complex

2

3
multiplet centered at $\delta 7.20 \mathrm{ppm}$ and a pair of doublets with a separation of 3.0 Hz . These signcls broaden with time until complete disappearance. This is followed by the appearance of two new pairs of doublets corresponding to aromatic protons of p-nitrophenolate anion (Figure 4). By contrast, aromatic protons of p-nitrophenyl- β-D-glucopyranoside (3), H_{o} at $\delta 7.74$ ppm (doublet, $J=10 \mathrm{cps}$) and H_{m} at $\delta 8.22 \mathrm{ppm}$ (doublet, $J=10 \mathrm{cps}$), undergo broadening and disappearance without prior splitting (Figure 5). The reduction of aromatic nitro compounds by d-glucose in aqueous NaOH to produce amino aromatics is known; ${ }^{12}$ however, p-aminophenol was not detected under these experimental conditions.

Decoupling experiments with 2 in aqueous NaOH were carried out. When the multiplet is irradiated, the signal at $\delta 8.26 \mathrm{ppm}\left(\mathrm{H}_{m}\right)$ turns into a singlet $(\Delta f=$

[^76]

Figure 4.-Nmr studies of alkaline hydrolysis of p-nitrophenyl-α-D-glucopyranoside. $60-\mathrm{MHz}$ spectra in $\mathrm{H}_{2} \mathrm{O}$ were taken 0 (A), $\left.6(\mathrm{~B}), 12(\mathrm{C}), 16^{\prime} \mathrm{D}\right), 22(\mathrm{E})$, and $26 \mathrm{~min}(\mathrm{~F})$ after the addition of NaOH .

Figure 5.-Nmr studies of alkaline hydrolysis of p-nitrophenyl-β-d-glucopyranoside. $\quad 60-\mathrm{MHz}$ spectra in $\mathrm{H}_{2} \mathrm{O}$ were taken 0 (A), $12(\mathrm{~B}), 24(\mathrm{C}), 40(\mathrm{D}), 45(\mathrm{E})$, and $50 \mathrm{~min}(\mathrm{~F})$ after the addition of NaOH .

100 Hz) and, when the low-field signal is irradiated, the multiplet $\left(\mathrm{H}_{o}\right)$ turns into a quartet (Figure 6).

The broadening and subsequent disappearance of nmr signals of aromatic protons are due to the formation of a paramagnetic species in the system. Figure 7 shows the esr signals corresponding to p-nitrophenoxyl

Figure 6.-Decoupling spectra (100 MHz) of aromatic region of p-nitrophenyl- α-D-glucopyranoside in NaOH before the irradiation (A) and irradiated at $\delta 7.30 \mathrm{ppm}$ ($\mathrm{B} ;$ and $8.26 \mathrm{ppm}(\mathrm{C})$.
radical ${ }^{13}$ which is formed by dissolving 2 in 1.0 N NaOH . Identical esr signals are also observed by dissolving 3 in 1.0 N NaOH or d-glucose and p-nitrophencl in 1.0 $N \mathrm{NaOH} .{ }^{14}$

When the alkaline hydrolysis of 2 and 3 in NaOD $\left(\mathrm{D}_{2} \mathrm{O}\right)$ and $\mathrm{NaOCH}_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ was studied by nmr spectroscopy, the following observations were made. (1) Nuclear magnetic spectra are not altered by replacing $\mathrm{NaOH}\left(\mathrm{H}_{2} \mathrm{O}\right)$ with $\mathrm{NaOD}\left(\mathrm{D}_{2} \mathrm{O}\right)$. (2) In Na $\mathrm{OCH}_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right), 2$ yields p-nitrophenol exclusively, whereas 3 produces p-nitrophenol and p-nitroanisol with an approximate ratio of $9: 1$.

Discussion

The alkaline hydrolysis of aryl- β-d-glucopyranosides in which the aryl group and the C-2 hydroxyl group of D-glucopyranose are in the trans 1,2 configuration proceeds via Scheme I or Scheme II depending on the electron-withdrawing character of aryl substituents. Phenyl- β-d-glucopyranoside is hydrolyzed via Scheme I , whereas p-nitrophenyl- β-D-glucopyranoside is hydrolyzed via mixed mechanisms of Scheme I and Scheme II. This is consistent with the observation that p -nitrophenyl- β-D-glucopyranoside in alkali yields 1,6 anhydroglucopyranose and the degradative product (D) of d-glucose. In methanolic NaOCH_{3}, the p-nitrophenyl group is liberated as p-nitrophenol and p-nitroanisole.

No general mechanism is ascribed to alkaline hydrolysis of aryl- α-D-glucopyranosides. A mechanism analogous to Scheme II is implicated from the study

[^77]

Figure 7.-Esr spectrum of p-nitrophenyl- α-d-glucopyranoside in NaOH . The spectrum was taken with a Varian Model E-9 esr spectrometer 10 min after dissolving 90 mg of p-nitrophenyl- α-Dglucopyranoside in 1.0 N NaOH solution (0.3 M solution).
of the effect of para substituents on the alkaline hydrolysis of aryl- α-D-glucopyranosides which exhibit a high positive reaction constant. ${ }^{8}$ This mechanism is inconsistent with the formation of p-nitrophenol when p-nitrophenyl- α-D-glucopyranoside is hydrolyzed with NaOCH_{3} in methanol. A mechanism involving nucleophilic substitution at the glucosyl carbon is considered unlikely for the p-nitro derivative because of the positive deviation of the p-nitro substituent from the Hammett plot ${ }^{8}$ and the participation of the C-2 hydroxyl group in facilitating the alkaline hydrolysis of p-nitro-phenyl- α-D-glucopyranoside (see below). The participation of the trans C-6 oxyanion in the alkaline hydrolysis of phenyl- α-D-galactopyranoside has been deduced from the formation of 1,6-anhydrogalactopyranose. ${ }^{2}$ This mechanism is precluded because of the failure to detect 1,6 -anhydroglucopyranose from p-nitrophenyl- α-d-glucopyranoside even after a prolonged alkali treatment.

The mechanism consistent with present experimental observations for p-nitrophenyl- α - D -glucopyranoside is presented in Scheme III.

That the formation of the intermediate which is in a rapid equilibrium with 2 and hydroxide ion is supported by the linear relationship between $k_{\mathrm{OH}^{-1}}$ and $\left[\mathrm{OH}^{-}\right]^{-1}$. Thus, the rate of alkaline hydrolysis of 2 is first order in base at low hydroxide ion concentrations and zero order in base at high hydroxide ion concentrations. The nature of the intermediate is characterized by nmr studies. The change in the aromatic region of the nmr spectrum of 2 upon the addition of NaOH suggests the formation of a Meisenheimer complex ${ }^{15-18}$ of the type 4 in which the two ortho protons $\left(\mathrm{H}_{0}\right)$ become nonequivalent due to the restricted rotation when the ring is formed. The involvement of the C-2 hydroxyl group in the formation of 4 is deduced from following observations. (1) A molecular model

[^78]
indicates that the C-2 hydroxyl oxygen is approximately $2.8 \AA$ away from $\mathrm{C}-1$ of the aryl ring when the aryl ring of p-nitrophenyl- α-D-glucopyranoside exists in a syn configuration with respect to the pyranose ring as in 2. (2) The aromatic protons of p-nitrophenyl-β-d-glucopyranoside whose aryl ring exist in an anti configuration with respect to pyranose ring as in 3 do not exhibit nmr splitting upon the addition of NaOH . (3) A comparison of rates of the alkaline hydrolysis of p-nitrophenyl- α-D-glucopyranoside and its 2 -deoxy derivative indicates that the C-2 hydroxyl group facilitates the liberation of p-nitrophenol. ${ }^{19}$

The exact nature of the release of p-nitwophenolate anion from 4 via a or b is not known. p-Nitrophenyl-α-D-glucopyranoside in alkaline solution yields p-nitrophenoxy radical ${ }^{20}$ when the hydrolysis is approximately 50% completed. The radical is also formed immediately upon mixing d-glucose with p-nitrophenol in aqueous NaOH . It is likely that the radical formation is the consequence rather than the cause of the alkaline liberation of the p-nitrophenyl group. Recently Horton and Luetzow ${ }^{21}$ observed the O-migration of the p nitrophenyl group prior to its release. This is in agreement with the formation of 4 , which is hydrolyzed via pathway b of Scheme III. ${ }^{22}$

Experimental Section

Melting points were determined on a Fisher-Johns hot stage apparatus. Optical rotations in aqueous solutions were measured with a Perkin-Elmer Model 141 polarimeter. Ultraviolet spectra were taken with a Cary 14 spectrophotometer. Nuclear magnetic resonance spectra were obtained with Varian Associates T-60 and XL-100 instruments. Chemical shifts are reported on the δ scale, parts per million (ppm) downfield from sodium 3-
(19) R. J. Ferrier, W. G. Overend, and A. E. Ryan, J. Chem. Soc., 3484 (1965).
(20) An identical observation was made when the hydrolusis was carried out in methanolic NaOCH_{8} or under the N_{2} atmosphere.
(21) D. Horton and A. E. Luetzow, Chem. Commun., 79 (1971).
(22) Hor'on and Luetzow ${ }^{21}$ reported that the p-nitrophenyl group migrated from C-1 to C-2 and then C-3 hydroxyl groups before its release as the p-nitrophenolate anion.
(trimethylsilyl)-1-propanesulfonate. Adjustments of pH were made with a Rzdiometer TTTlc. Phenols were obtained from Eastman Organic Chemicals. 1,6-Anhydroglucopyranose, mp 175-176.5 ${ }^{\circ}$, was synthesized by Rayle Chemical Ltd., Edmonton, Alberta. Chromosorb W (AW-DMCS treated, 80-100 mesh) and XE-60 were purchased from Chromatographic Specialties Ltd. Tri-sil, p-nitrophenyl- α-D-glucopyranoside, mp 214-215 ${ }^{\circ}$, [a] +210 (c 0.38), and p-nitrophenyl β-d-glucopyranoside, mp 170-171 ${ }^{\circ}$, [a] -96.4 (c 1.07), were products of Pierce Chemical Co.

Synthesis of Aryl- α - and - β-D-glucopyranosides.-Phenyl- $\alpha-\mathrm{D}$ glucopyranoside, $\mathrm{mp} 160-161^{\circ},[\alpha]_{\mathrm{D}}+179$ (c 1.25), and p-chloro-phenyl- α-D-glucopyranoside, mp 195-197 ${ }^{\circ}$, $[\alpha] \mathrm{D}+59.3$ (c 2.23), were synthesized by the condensation of penta- O-acetyl $-\beta$-Dglucopyranose ${ }^{23}$ with phenol or p-chlorophenol in the presence of $\mathrm{ZnCl}_{2}{ }^{24}$ followed by O-deacetylation. ${ }^{25}$ Phenyl- β-D-glucopyranoside, $\mathrm{mp} 176-177^{\circ},[\alpha] \mathrm{D}-67.5$ (c 1.03), and p-chlorophenyl- β -D-glucopyranoside, $\mathrm{mp} 179-179.5^{\circ},[\alpha] \mathrm{D}-96.4$ (c 1.08), were synthesized by the condensation of penta- O-acetyl $-\beta$-D-glucopyranose with phezol or p-chlorophenol in the presence of p-toluenesulfonic acid ${ }^{23}$ followed by O-deacetylation.
Gas Chromatographic Analysis of Hydrolysis Products.-An F \& M Model 402 gas chromatograph (Hewlett-Packard) equipped with a recorder Model 7101B (Moseley) and a Disc integrator Model 229 (Moseley) was used for the product analysis. Arylα - or - β-D-glucopyranoside (0.5 g) was dissolved in 30 ml of 0.1 N NaOH and inctibated at 40°. At time intervals, an aliquot $(0.5 \mathrm{ml})$ of the reaction mixture was withdrawn and neutralized with HCI. The hydrolyzate was evaporated to the dryness and trimethylsilated with 0.5 ml of Tri-sil. ${ }^{27}$ The trimethylsilyl derivative ($5 \mu \mathrm{l}$) was injected into the glass U-shaped column ($6 \mathrm{ft} \times 0.125 \mathrm{in}$.) packed with 3.8% (w / w) XE- 60 on Chromosorb W (AW-DMCS treated, $80-100 \mathrm{mesh}$). The injection temperature was 290° and the analysis (column temperature) was carried out isothermally at 150°. Products were detected by a hydrogen flame detector (270°). Occasionally, mannitol was added as the internal standard.

Spectrophotometric Determination of Rates of Hydrolysis.- \boldsymbol{p} -Nitrophenyl- α - or $-\beta$-D-glucopyranoside ($8 \times 10^{-5} \mathrm{M}$) was dissolved in a KOH solution (ionic strength of the solution was maintained at $\mu=0.3 \mathrm{M}$ with KCl) and placed into a Beckman DB spectrophotometer equipped with a recorder, a scale expander, and a thermostat circulator maintained at $40 \pm 0.5^{\circ}$. Rates of hydrolysis were followed at 400 nm . For p-chloro-phenyl- α - or $-\beta$-D-glucopyranoside ($1.6 \times 10^{-3} \mathrm{M}$) and phenylα - or $-\beta$-d-glucopyranoside $\left(1.6 \times 10^{-3} M\right)$, rates of hydrolysis were followed at 300 and 285 nm , respectively. The observed pseudo-first-order rate constants ($k_{\text {obsd }}$) were calculated from plots of $\left.\log \left[A_{\infty}-A_{0}\right) /\left(A_{\infty}-A_{t}\right)\right]$ vs. time (t) as usual. After substraction of the first-order rate constant for spontaneous hydrolysis (k_{0}), the observed rate constant gives the second-order rate constant for alkaline hydrolysis (k_{OH}). ${ }^{28}$
Nuclear Magnetic Resonance (Nmr) Spectroscopic Studies of Hydrolysis. -The hydrolysis of p-nitrophenyl- α - or $-\beta$-d-glucopyranoside $\left(4.4 \times 10^{-2} \mathrm{M}\right)$ in $0.1 \mathrm{~N} \mathrm{NaOH}\left(\mathrm{H}_{2} \mathrm{O}\right), 0.1 \mathrm{~N} \mathrm{NaOD}$ $\left(\mathrm{D}_{2} \mathrm{O}\right)$, or $0.1 \mathrm{~N} \mathrm{NaOCH} 3\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ was followed in a Varian nmr spectrometer T-60 or XL-100. Sodium 3-(trimethylsilyl)-1-propanesulfonate or tetramethylsilane was used as the internal standard for aqueous or methanol solution, respectively.

Registry No. -2, 3767-28-0; 3, 2492-87-7.
Acknowledgment.-The financial support of the National Research Council of Canada is gratefully acknowledged. The authors thank Dr. P. M. Laughton for reading the manuscript and Dr. I. C. P. Smith of the National Research Council for taking esr spectra. Comments made by one of the reviewers were greatly appreciated.
(23) M. L. Wolfrom and A. Thompson in "Methods in Carbohydrate Chemistry." Vol. 2, R. L. Whistler and M. L. Wolfrom, Ed., Academic Press, New York, N. Y., 1963, p 211.
(24) J. Conchie ard G. A. Levry, in ref 23, p 345.
(25) A. Thompson and M. L. Wolfrom, in ref 23, p 215.
(26) B. Weissmann, J. Org. Chem., 31, 2505 (1966).
(27) C. S. Tsai, Anal. Biochem., 36, 114 (1970).
(28) T. C. Bruice and S. Benkovic, "Bioorganic Mechanisms" Vol. 1, W. A. Benjamin, New York, N. Y., 1966, p 4.

Total Dealkylation of Esters of Trivalent Phosphorus and Promotion of Anhydride Formation by $N, N, N^{\prime}, N^{\prime}$-Tetramethylchloroformamidinium Chloride

Gail H. Birum* and James D. Wilson
Monsanto Company Centrai Research Department, St. Louis, Missouri 63166

Received February 8, 1972

Abstract

$N, N, N^{\prime}, N^{\prime}$-Tetramethylchloroformamidinium chloride (1) exhibits two unusual reactions with esters of trivalent phosphorus acids. (1) It fully dealkylates the esters, in most cases, giving tetramethylformamidinium phosphorus (V) compounds. (2) It extracts oxygen from the resulting acid anions, causing condensation to anhydrides, an effect that 1 may have on acid anions in general. The reaction of 1 with trialkyl phosphites at ordinary temperatures results in the formation of the double inner salt ($N, N, N^{\prime}, N^{\prime}$-tetramethylformamidinium) phosphonic anhydride, $\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{C}+\mathrm{PO}_{2}{ }^{-}\right]_{2} \mathrm{O}$, along with tetramethylurea and alkyl chloride; presumably, the esters $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{C}+\mathrm{P}(\mathrm{O})(\mathrm{OR})_{2} \mathrm{Cl}^{-}$and $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{C}^{+} \mathrm{P}(\mathrm{OR}) \mathrm{O}_{2}{ }^{-}$are intermediates. Basic hydrolysis of the anhydride gives disodium dimethylcarbamylphosphonate. Acid hydrolysis converts it to ($N, N, N^{\prime}, N^{\prime}$-tetramethylformamidinium) phosphonic acid. Diethyl phenylphosphonite, $\mathrm{PhP}(\mathrm{OEt})_{2}$, and 1 give $N, N, N^{\prime}, N^{\prime}$-tetramethyl(ethoxy phenylphosphinyl)formamidinium chloride, which readily loses ethyl chloride, forming the inner salt ($N, N, N^{\prime}, N^{\prime}$ tetramethylformamidinium)phenylphosphinate, $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{C}+\mathrm{P}(\mathrm{Ph}) \mathrm{O}_{2}-$. Ethyl diphenylphosphinite, $\mathrm{Ph}_{2} \mathrm{POEt}$ undergoes a normal Michaelis-Arbuzov reaction with 1, giving $N, N, N^{\prime}, N^{\prime}$-tetramethyl(diphenylphosphinyl)formamidinium chloride, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}^{+}\left(\mathrm{NMe}_{2}\right)_{2} \mathrm{Cl}^{-}$. Structural identifications were made principally by nmr (${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$) spectroscopy and X-ray crystallography.

In the normal course of the reaction of a trialkyl phosphite ester with an alkyl halide, a carbon-phosphorus bond is formed, a carbon-oxygen bond is cleaved, and phosphorus is converted from trivalency to pentavalency. This is the classical MichaelisArbuzov reaction. ${ }^{1-2}$

$$
(\mathrm{RO})_{3} \mathrm{P}+\mathrm{R}^{\prime} \mathrm{X} \longrightarrow(\mathrm{RO})_{2} \mathrm{PR}^{\prime}+\mathrm{RX}
$$

The resulting phosphonate ester is relatively unreactive compared to the phosphite precursor, and further structural changes do not ordinarily occur readily. Alkyl exchange reactions with phosphonates and phosphinates have been shown to take place as side effects in certain Michaelis-Arbuzov reactions at high temperatures. For example, Harwood and Grisley found that, when dimethyl phenylphosphonite and β-bromoethylacetate were warmed at $160-175^{\circ}$ for $5 \mathrm{hr}, \beta$-acetoxyethyl phenyl(methyl)phosphinate was the major product rather than the expected methyl phenyl $(\beta$ acetoxyethyl)phosphinate; ${ }^{4}$ and Laughlin found that 40% of the product obtained when trimethyl phosphite and dodecyl bromide were warmed at $180-200^{\circ}$ for 20 hr was the alkyl exchange product, methyl dodecyl methylphosphonate. ${ }^{5}$ Chlorides required even higher temperatures ($200-250^{\circ}$) for exchange. ${ }^{6}$

This paper describes a new multistep reaction in which all three alkyl groups of trialkyl phosphites are rapidly cleaved at ordinary temperatures by $N, N,-$ N^{\prime}, N^{\prime}-tetramethylchloroformamidinium chloride (1). ${ }^{7}$ Besides causing the displacement of the alkyl groups, 1 extracts oxygen from phosphorus, resulting in the formation of a dizwitterionic phosphonic anhydride. Related transformations of phosphonite and phosphinite esters are also described.
(1) A. Michaelis and R. Kaehne, Ber., 31, 1048 (1898).
(2) A. E. Arbuzov, J. Russ. Phys. Chem. Soc., 38, 687 (1906).
(3) R. G. Harvey and E. R. DeSombre "Topics in Phosphorus Chemistry,' ' Vol. 1, Interscience, New York, N. Y., 1964.
(4) H. J. Harwood and D. W. Grisley, J. Amer. Chem. Soc., 82, 423 (1960). (5) R. G. Laughlin, J. Org. Chem., 27, 1005 (1962).
(6) V. V. Korshak, 1. A. Gribova, and V. K. Shitikov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 210 (1958); Chem. Abstr., 62, 12804 (1958).
(7) H. Eilingsfeld, G. Neubauer, M. Seefelder, and H. Weidinger, Chem. Ber., 97, 1232 (1964).

Results and Discussion

When triethyl phosphite was mixed with 1 in acetonitrile, a moderate temperature rise was observed, followed a short time later by separation of a white, crystalline product, $\mathrm{mp} 272-274^{\circ}$ dec. This product exhibited only a single line in both its ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P} n m r$ spectra. The proton resonance occurred at $\delta 3.45$, a position typical of amidinium N-methyl groups (e.g., 1 has a singlet at $\delta 3.43$). These results, along with mass spectra, elemental analyses, molecular weight measurement, and identification of by-products (cf. Experimental Section), suggested the phosphonic anhydrideinner salt, structure 2 , formed according to the following equation.

Based on this equation, the yield of 2 was 61%. Trimethyl and tris(2-chloroethyl) phosphites gave 82 and 29% yields of 2 , respectively. Tetramethylurea and the appropriate chlorides (ethyl and methyl chloride and ethylene dichloride) were formed in approximately the amounts called for by the above equation. In one case tetramethylurea was isolated and identified by its nmr and mass spectra and gle retention time.

The presence of the anhydride linkage in 2 was supported by changes that occurred during hydrolysis and methanolysis. After hydrolysis with aqueous acid, the ${ }^{31} \mathrm{P} \mathrm{nmr}$ spectrum consisted of a single line 8.9 ppm downfield from the line assigned to 2 (14.2 ppm in $\mathrm{H}_{2} \mathrm{O}$) ; however, after methanolysis (dry HCl in methanol), two signals of equal area were present, a singlet 8.3 ppm downfield from that of 2 and a quartet $\left(J_{\mathrm{POCH}_{3}}=12 \mathrm{~Hz}\right) 10 \mathrm{ppm}$ downfield. The proton
nmr spectrum of the methanol solution contained a doublet at $\delta 3.73\left(J_{\mathrm{CH}_{3} \mathrm{OP}}=12 \mathrm{~Hz}\right)$. The patterns and positions of these resonances are consistent with the formation of acid 3 and methyl ester 4 from 2, changes that only an anhydride could undergo.

The presence of $\mathrm{P}-\mathrm{C}$ bonds in 2 was demenstrated by hydrolysis with aqueous NaOH to disodium N, N-dimethylcarbamylphosphonate (5).

$$
2+\mathrm{NaOH} \xrightarrow{\mathrm{H}_{2} \mathrm{O}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} \stackrel{\stackrel{\mathrm{O}}{\mathrm{C}}-\stackrel{\mathrm{O}}{-} \stackrel{\|}{\mathrm{P}}(\mathrm{ONa})_{2}+\left(\mathrm{CH}_{8}\right)_{2} \mathrm{NH}}{5}
$$

The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum of 5 contained doublets of equal areas at $\delta 3.23(J=1.2 \mathrm{~Hz})$ and $2.84(J=1.2$ $\mathrm{Hz})$, reflecting dissimilar environments for the methyl groups and the coupling of each with phosphorus. Diethyl N, N-dimethylcarbamylphosphonate has a similar pair of ${ }^{1} \mathrm{H} n m r$ doublets for the nitrogen-bonded methyl groups. This nonequivalence of the methyl groups, characteristic also of N, N-dime-hylcarboxamides, results, presumably, from existence of the carbamyl phosphonates to some degree in the chargeseparated state

Final confirmation of structure 2 was provided by an X-ray crystal structure study carried out by J. J. Daly. ${ }^{8}$ This study showed that the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle is bent at 126°, the $\mathrm{P}-\mathrm{O}$ bond lengths in this group being $1.617 \AA$. The remaining $\mathrm{P}-\mathrm{O}$ bond lengths average $1.469 \AA$. The $\mathrm{P}-\mathrm{C}$ bond length is 1.878 A , slightly longer than found in other phosphonates. The $\mathrm{C}-\mathrm{N}$ bond lengths (average $1.330 \AA$) at the central carbon atom are close to the conjugated heterocyclic value $(1.339 \AA)$ and are characteristic of formamidinium compounds. ${ }^{8}$

For an anhydride, 2 is surprisingly resistant to hydrolysis. In one experiment a sample was recovered unchanged after having been in neutral aqueous solution for 24 hr at room temperature. As mentioned, 2 hydrolyzes in dilute aqueous acids to the acid 3. Crystals of $3{ }^{31} \mathrm{P} \mathrm{nmr} 5.8 \mathrm{ppm}$ in $\mathrm{CH}_{3} \mathrm{OH}$) were inadvertently obtained when 2 was recrystallized from moist chloroform. A crystal structure study showed that 3 forms hydrogen-bonded dimers (3a) across

3a
centers of symmetry $(\mathrm{O} \cdots \mathrm{O}=2.57 \AA$ across the hydrogen bond). Its $\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths are close to those of the anhydride $2 .{ }^{8}$

While an attempt to isolate an intermediate in the formation of 2 was unsuccessful even when an excess of trimethyl phosphite was used, the addition of 1 to an excess of diethyl phenylphosphonite gave $N, N,-$ N^{\prime}, N^{\prime}-tetramethyl (ethoxyphenylphosphinyl) formamidinium chloride (6), an isolable product which could be converted to the stable inner salt, ($N, N, N^{\prime}, N^{\prime}$-tetramethylformamidinium) phenylphosphinate (7), by gentle warming. The phenyl group evidently has a stabilizing effest on 6 .

Ethyl diphenylphosphinite, having only one displaceable alkyl group, was limited to a normal Mi-chaelis-Arbuzc, reaction with 1 , giving the outer salt, $N, N, N^{\prime}, N^{\prime}$-tetramethyl(diphenylphosphinyl)formamidinium chloride (8).

The reaction of 1 with trialkyl phosphites presumably proceeds according to Scheme I. The covalently

bonded chlorine on 1 is displaced by phosphorus via a typical Michaelis-Arbuzov reaction, giving ethyl chloride and intermediate A. The presence of the cationic center adjacent to phosphorus apparently weakens the remaining alky-oxygen bonds to the extent that
another molecule of ethyl chloride is lost, giving a second intermediate, B, which can react with more 1 to form uronium salt C. Displacement of tetramethylurea from C by a molecule of B and then cleavage of the remaining O-ethyl group leads to the final product, 2.

The effectiveness of 1 in converting an intermediate of 2 to the anhydride suggested that it might be possible to similarly convert 7 to its anhydride by treatment with 1. The product from this reaction was a viscous liquid that could not be induced to crystallize, possibly because of the presence of two asymmetric centers. Formation of the required amount of tetramethylurea and a ${ }^{31} \mathrm{P} \mathrm{nmr}$ change from -9.0 ppm for 7 to -19.0 ppm for the product (related structure 6 has -20.6 ppm) indicated that the anhydride 9 may have been formed.

Preliminary results suggest that 1 may also convert other acid anions, $e . y$. , acetate, to their corresponding anhydrides.

Experimental Section

Melting points were obtained in a Thomas-Hoover Unimelt instrument. Infrared spectra were determined in potassium bromide disks on a Beckman IR-4 spectrophotometer. Proton nuclear magnetic resonance (nmr) spectra were obtained at 60.0 or 100.0 MHz on Varian T-60 or HR-100 spectrometers with tetramethylsilane as an internal standard. Phosphorus nmr spectra were determined at 24.3 or 40.5 MHz on Varian HR-60 or $\mathrm{HR}-100$ instruments and are reported with respect to 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ contained in a capillary. The nmr measurements were generally made on saturated solutions. Mass spectra were obtained on a Consolidated Engineering Corp. Type 21-104 spectrometer fitted with a probe for direct introduction of solids. Elemental analyses and molecular weights were determined by Galbraith Laboratories, Knoxville, Tenn.
($N, N, N^{\prime}, N^{\prime}$-Tetramethylformamidinium) phosphonic Anhydride (2).-A $20.5-\mathrm{g}(0.12 \mathrm{~mol})$ portion of $N, N, N^{\prime}, N^{\prime}$-tetramethylchloroformamidinium chloride (1) ${ }^{7}$ (${ }^{1} \mathrm{H} \mathrm{nmr} \delta 3.43 \mathrm{ppm}$) was stirred with 40 g of dry acetonitrile under N_{2} in a drybox as $13.3 \mathrm{~g}(0.08 \mathrm{~mol})$ of freshly distilled triethyl phosphite was added dropwise in 5 min . The temperature of the uncooled reaction mixture increased to 40°, and all of the solid 1 dissolved to give a clear, colorless solution from which a white solid began separating after about 35 min . Stirring at room temperature was continued overnight. The reaction mixture was then filtered under N_{2}, and the solid was washed with $\mathrm{CH}_{3} \mathrm{CN}$ and dried to give 7.9 g (58% yield), $\mathrm{mp} 272-274^{\circ} \mathrm{dec} ; 7.4 \mathrm{~g}$ with the melting point unchanged was recovered after the product was stirred in 40 ml of boiling $\mathrm{CH}_{3} \mathrm{CN}$ and filtered hot. The white solid had a ${ }^{11} \mathrm{P}$ nmr singlet at $13.0 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 3.4 .5 \mathrm{ppm}(\mathrm{s})$; mass spectrum (70 eV) m/e 342 (molecular ion), 298, 270, 227, 163; ir (KBr) $3.43(\mathrm{~m}), 6.60(\mathrm{~s}), 7.16(\mathrm{~s}), 7.8(\mathrm{vs}), 8.28(\mathrm{~m}), 8.53(\mathrm{~m})$, $9.22(\mathrm{~s}), 11.1(\mathrm{vs}), 11.46(\mathrm{~s}), 13.66 \mu(\mathrm{~s}) ; \mathrm{mol} w \mathrm{t}\left(\mathrm{CHCl}_{3}\right) 340$ (calcd 342).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{P}_{2}: \mathrm{C}, 35.08 ; \mathrm{H}, 7.07$; Cl , 0.00; N, 16.37; P, 18.10. Found: C, 34.94; H, 7.21; Cl, 0.12 ; N, 16.28; P, 18.35.

The filtrate contained a ${ }^{1} \mathrm{H} \mathrm{nmr}$ singlet at $\delta 2.75$ for tetramethylurea as well as a quartet at $\delta 3.63$ and a triplet at $\delta 1.45$ for ethyl chloride. In another preparation of 2 carried out under similar conditions (yield 61%), a sample of the liquid phase was removed before the filtration step and found by gas chromatog-
raphy to contain 27.6% ethyl chloride (theory 30.8%) and 10.7% tetramethylurea (theory 9.2%).

The use of trimethyl phosphite with 1 at a $2: 3$ molar ratio gave a 74% yield of 2 . In another run, excess trimethyl phosphite was used in an attempt to limit the reaction to an intermediate stage. In this run $8.6 \mathrm{~g}(0.05 \mathrm{~mol})$ of 1 was added in portions over a period of 1 hr to a stirred solution of 24.8 g (0.2 mol) of freshly distilled trimethyl phosphite and 25 g of dry $\mathrm{CH}_{3} \mathrm{CN}$ under N_{2} at room temperature. After this mixture was stirred overnight, an 82% yield of 2 was isolated.

Tris(2-chloroethyl) phosphite and 1 at a 2:3 molar ratio gave a 29% yield of 2.
Hydrolysis of 2 with Sodium Hydroxide.-A solution of 1.7 g $(0.005 \mathrm{~mol})$ of 2 in 5 g of distilled $\mathrm{H}_{2} \mathrm{O}$ was stirred as 0.025 mol of NaOH (10% aqueous solution) was added dropwise. Most of the water was allowed to evaporate, and the salt was washed twice with warm ethanol and dried to give 1.6 g of disodium N, N-dimethylcarbamylphosphonate, ${ }^{31} \mathrm{P} \mathrm{nmr} 1.1 \mathrm{ppm}\left(\mathrm{D}_{2} \mathrm{O}\right)$. Recrystallization of a portion from ethanol-water gave a white solid: ${ }^{31} \mathrm{P} \mathrm{nmr} 1.1 \mathrm{ppm}\left(\mathrm{D}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 3.23(\mathrm{~d}, 3, J=1.2$ $\mathrm{Hz}), 2.84(\mathrm{~d}, 3, J=1.2 \mathrm{~Hz})$.

Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NNa}_{2} \mathrm{O}_{4} \mathrm{P}: \mathrm{C}, 18.28 ; \mathrm{H}, 3.07$; N , 7.11; P, 15.72. Found: C, 18.48; H, 3.15; N, 7.26; P, 15.69.

Hydrolysis and Methanolysis of 2 in Acidic Solutions.-A solution of 2 in distilled $\mathrm{H}_{2} \mathrm{O}$ had a ${ }^{31} \mathrm{P} \mathrm{nmr}$ singlet at 14.2 ppm and a ${ }^{1} \mathrm{H} \mathrm{nmr}$ singlet at $\delta 3.35$. After standing for 24 hr at room temperature, the $\mathrm{H}_{2} \mathrm{O}$ was removed at 0.2 mm over CaSO s to give a white solid having a melting point and ir and nmr spectra identical with those of 2.

When a catalytic amount of hydrochloric acid was added to a solution of 2 in distilled $\mathrm{H}_{2} \mathrm{O}$, a new ${ }^{1} \mathrm{H}$ nmr peak began forming at $\delta 3.32$. This new peak represented $\sim 60 \%$ of the total peak area after 2 hr and 100% after 24 hr . A new ${ }^{31} \mathrm{P}$ nmr peak formed at 5.3 ppm .

A solution of 2 in anhydrous trifluoroacetic acid showed a ${ }^{31} \mathrm{P}$ nmr peak at 15.4 ppm and a ${ }^{1} \mathrm{H} \mathrm{nmr}$ peak at $\delta 3.47$. When $\mathrm{H}_{2} \mathrm{O}$ was slowly added to this solution, the ${ }^{31} \mathrm{P}$ peak gradually decreased and was finally completely converted to a new peak at 4.8 ppm ; at the same time the ${ }^{1} \mathrm{H}$ peak at $\delta 3.47$ disappeared and a new peak formed at $\delta 3.43$.

A solution of 2 in methanol showed a ${ }^{31} \mathrm{P} n m r$ peak at 14.6 ppm. As trifluoroacetic acid was slowly added, this peak disappeared and peaks of about equal areas formed at 4.6 (q, $J=$ $12 \mathrm{~Hz}, \mathrm{POCH}_{3}$) and $6.3(\mathrm{~s})$; the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum had a doublet at $\delta 3.73\left(J=12 \mathrm{~Hz}, \mathrm{POCH}_{3}\right)$ as well as a singlet at $\delta 3.46$ for NCH_{3}.
$N, N, N^{\prime}, N^{\prime}$-Tetramethyl(ethoxyphenylphosphinyl)formamidinium Chloride (6).-An $8.6-\mathrm{g}(0.05 \mathrm{~mol})$ portion of 1 was added in about $1-\mathrm{g}$ portions to $29.7-\mathrm{g}(0.15 \mathrm{~mol})$ of diethyl phenylphosphonite which was stirred under N_{2}. Stirring was continued overnight at room temperature, giving a thick, white slurry. Benzene was added to aid stirring, the reaction mixture was filtered, and the solid was washed with benzene and ether and dried at room temperature to give 11.5 g (96% yield) of white solid (6): $\mathrm{mp} 94-95^{\circ}$ (with foaming); ${ }^{31} \mathrm{P} \mathrm{nmr} \mathrm{(} \mathrm{CDCl}_{3}$) -20.6 ppm (on fresh solution); ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.51(\mathrm{t}, 3, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.60\left(\mathrm{~s}, 12, \mathrm{NCH}_{3}\right), 4.55\left(\mathrm{~m}, 2, J \cong 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 7.5-8.2 ($\mathrm{m}, 5, \mathrm{C}_{6} \mathrm{H}_{5}$). When nmr measurements were not made immediately on a freshly prepared solution, new ${ }^{1} \mathrm{H}$ peaks and a new ${ }^{31} \mathrm{P}$ peak developed; after 2 days the ${ }^{31} \mathrm{P}$ peak at -20.6 ppm was replaced by a peak at -9.6 and the ${ }^{1} \mathrm{H}$ peak at $\delta 3.60$ was replaced by a peak at 3.36 .
($N, N, N^{\prime}, N^{\prime}$-Tetramethylformamidinium) phenylphosphinate (Inner Salt) (7).-Diethyl phenylphosphonite, $6.0 \mathrm{~g}(0.03 \mathrm{~mol})$, was added rapidly to a stirred mixture of $5.1 \mathrm{~g}(0.03 \mathrm{~mol})$ of 1 in 10 g of dry $\mathrm{CH}_{3} \mathrm{CN}$ under N_{2}. The heat of reaction raised the temperature to 52°, and all of the solid dissolved. Stirring was continued at room temperature for 20 hr , and then the clear solution was diluted with ether, which caused 4.7 g of white solid to separate. Recrystallization twice from diglyme- $\mathrm{CH}_{3} \mathrm{CN}$ gave 3.6 g (50% yield) of 7: mp 186-188 ${ }^{\circ}$; ${ }^{31} \mathrm{P} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $-9.0 \mathrm{ppm} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 3.30\left(\mathrm{~s}, 12, \mathrm{CH}_{3}\right), 7.2-7.9\left(\mathrm{~m}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ir $(\mathrm{KBr}) 2.9(\mathrm{~m}), 6.32(\mathrm{~s}), 7.17(\mathrm{~m}), 7.97(\mathrm{~s}), 8.80(\mathrm{~s}), 9.40 \mu(\mathrm{~s})$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 54.99, \mathrm{H}, 7.13, \mathrm{~N}, 11.66$; $\mathrm{P}, 12.89$. Found: $\mathrm{C}, 55.08, \mathrm{H}, 7.08, \mathrm{~N}, 11.76 ; \mathrm{P}, 12.77$.

In another preparation of 7 a $5.0-\mathrm{g}$ portion of 6 in 25 ml of diglyme was stirred and warmed at $115-120^{\circ}$ as enough $\mathrm{CH}_{3} \mathrm{CN}$ was added to give a clear solution. After 5 min at this temperature, the reaction mixture was cooled and filtered. The solid
obtained was recrystallized from diglyme- $\mathrm{CH}_{3} \mathrm{CN}$ to give 2.3 g of $7, \mathrm{mp} 186-188^{\circ}$, and having nmr and ir spectra essentially identical with those of the product obtained by the first method.

Treatment of ($N, N, N^{\prime}, N^{\prime}$-Tetramethylforramidinium)phenylphosphinate (7) with $N, N, N^{\prime} N^{\prime}$-Tetramethylchloroformamidinium Chloride (1).-A mixture of $4.1 \mathrm{~g}(0.017 \mathrm{~mol})$ of 7 and $1.45 \mathrm{~g}(0.0085 \mathrm{~mol})$ of 1 in 10 g of dry $\mathrm{CH}_{3} \mathrm{CN}$ was stirred under N_{2} at room temperature for 22 hr . Nmr measurements on the resulting clear, slightly yellow solution showed a ${ }^{31} \mathrm{P}$ signal at -19.0 ppm and ${ }^{1} \mathrm{H}$ signals at $\delta 2.73$ (s, 12), 3.43 (s, 24), and $7.6-8.4(\mathrm{~m}, 10)$. The ${ }^{1} \mathrm{H}$ signal at $\delta 2.73$ was enhanced by addition of tetramethylurea. Stripping of the reaction mixture at reduced pressure and extraction of the residue with ether left a gum having a ${ }^{31} \mathrm{P} \mathrm{nmr}$ signal at -19.0 ppm and ${ }^{1} \mathrm{H} \mathrm{nmr}$ signals at $\delta 3.45(\mathrm{~s}, 24)$ and $7.6-8.4(\mathrm{~m}, 10)$. It could not be induced to crystallize. Tetramethylurea was isolated from the ether extract and identified by mass spectra.
$N, N, N^{\prime}, N^{\prime}$-Tetramethyl(diphenylphosphinyl)formamidinium Chloride (8).-E-hyl diphenylphosphinite, 6.9 g (0.02 mol), was added dropwise to a stirred mixture of $5.1 \mathrm{~g}(0.03 \mathrm{~mol})$ of 1 in 20 g of $\mathrm{CH}_{3} \mathrm{CN}$ under N_{2}. All of 1 dissolved during the addition, and then another solid separated. The reaction mixture was stirred at room temperature overnight and then filtered to give $9.6 \mathrm{~g}\left(94 \%\right.$ yield) of $8, \mathrm{mp} 137-138.5^{\circ}$. Recrystallization from acetonitrile gave a white solid: mp 137.5-138.5 ${ }^{\circ}$; ${ }^{31} \mathrm{P}$ $\mathrm{nmr}-28.8 \mathrm{ppm} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 3.46\left(\mathrm{~s}, 12, \mathrm{CH}_{3}\right), 7.5-8.3(\mathrm{~m}, 10$, $\mathrm{C}_{6} \mathrm{H}_{5}$); ir (KBr) $2.9(\mathrm{~m}), 6.3(\mathrm{~s}), 6.95(\mathrm{~m}), 7.15(\mathrm{~m}), 8.3-8.4(\mathrm{~s})$, 8.95 (s).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{OP}: \mathrm{C}, 60.62 ; \mathrm{H}, 6.58 ; \mathrm{Cl}$, 10.53; N, 8.32; P, 9.20. Found: C, 60.33; H, 6.65; Cl, 10.54; N, 8.20; P, 9.07.

Registry No.-1, 13829-06-6; 2, 34959-65-4; 5, 34959-66-5; 6, 34982-10-0; 7, 34959-67-6; 8, 34982-11-1.

Degradation of Penicillin G Methyl Ester with Trifluoroacetic Acid ${ }^{1}$

Malcolm R. Bell,* John A. Carlson, and Rudolf Oesterlin
Sterling-Winthrop Research Institute, Rensselaer, New York 12144

Received February 17, 1972

Abstract

Penicillin G methyl ester (2) is degraded to methyl D-5,5-dimethyl- Δ^{2}-thiazoline-4-carboxylate (6) in trifluoroacetic acid. The N-phenylacetylglycyl fragment was isolated by conversion to its N-benzylamide. Methicillin and penillonic acid methyl esters were also degraded to 6 . A mechanism for the degradation is presented with special emphasis on the relationship to the penillic acid and penillonic acid rearrangements.

The penillic acid and the penillonic acid rearrangements are two well-known rearrangements of benzylpenicillin (1). ${ }^{2}$ These rearrangements may be carried out by exposure of 1 to dilute aqueous mineral acid or by heating 1 in toluene with iodine, processes which respectively yield penillic acid (3) and penillonic acid (4).

We have discovered a new and potentially useful degradation of benzylpenicillin which we believe is closely related in mechanism to the penillic acid and penillonic acid rearrangements.

The nmr spectrum of a solution of either benzylpenicillin (1) or its methyl ester (2) in trifluoroacetic acid (TFAA) which had been briefly warmed exhibited the characteristic nmr signals of the thiazolines 5 or 6 . To facilitate isolation of the thiazoline, degraciation was

[^79]
performed on the ester 2. Optically active D -thiazoline ester could be obtained easily in $50-60 \%$ yield. That the configuration at C-4 has been retained was shown by comparison of its melting point with that reported in the literature ${ }^{3}$ and by hydrolysis to $\mathrm{d}-$ penicillamine (8). ${ }^{4}$

The fate of the phenylacetylglycyl portion of 2 is not known with certainty. The fragment has clearly retained the capacity to acylate, since addition of the reaction mixture to an excess of benzylamine in pyridine led to the isolation of the benzylamide of N phenylacetylglycine. As a result there appear to be at least three choises among monomeric species for the structure of the phenylacetylglycyl fragment: the oxazolone 7 , the mixed anhydride 10 , and the acylaminoketene 11. An analogous ketene has been pro-

$$
\underset{11}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CONHCH}=\mathrm{C}=\mathrm{O}}
$$

[^80]posed as an intermediate to account for the products observed upon irradiation of an aqueous solution of 6aminopenicillanic acid, ${ }^{5}$ but it seems unlikely that 11 would have an appreciable lifetime in trifluoroacetic acid.
The nmr spectrum of the reaction mixture from 2 does not show the characteristic signals of the oxazolone 7, although this compound is reasonably stable alone or in the presence of the thiazoline in hot trifluoroacetic acid. Addition of authentic benzyloxazolone 7 to the reaction mixture from 2 resulted in a rapid loss of its characteristic nmr signals. We do not have a satisfactory explanation for the instability of 7 under these circumstances. Possibly ring opening of 7 is promoted by side products generated in the degradation of 2. We favor, therefore, the mixed anhydride structure 10 for the N-phenylacetylglycyl fragment, since this is the simplest alternative to the oxazolone which would retain the capacity to acylate a nucleophile. In contrast, oxazolone 13 was clearly present in

the reaction mixture from methicillin (12); ${ }^{6}$ this reaction appears to be quantitative.
The trifluoroacetic acid degradation is apparently limited to those penicillins which possess an acyl side chain, since 6 -aminopenicillanic acid failed to yield detectable amounts of thiazoline. A few cephalosporin structures were examined but the results were not considered promising. Penillic acid (3) was stable in boiling trifluoroacetic acid, but penillonic acid (4) as the methyl ester was quantitatively transformed to the oxazolone 7 and the thiazoline 6 . The nmr spectrum of the reaction mixture showed that equal parts of 6 and 7 had been formed. Thiazoline 6 was isolated and the N-phenylacetylglycyl fragment was characterized as the benzylamide.

Our proposal for the mechanism of the trifluoroacetic acid degradation and its relationship to the penillic acid rearrangement is outlined in Scheme I. The intermediate 14 is identical with that which has been proposed for the penillic acid rearrangement. ${ }^{7}$ This rearrangement is carried out in dilute aqueous mineral acid, and under these conditions it was suggested that nucleophilic addition of the thiazolidine ring amino function to the imino ether function of the oxazolone in intermediate 14 gave 15, which then yields penillic acid (3). We suggest that in trifluoroacetic acid the intermediate 14 is diverted from this course by protonation of the thiazolidine ring nitrogen followed by fragmentation of the new intermediate 16 to give 17 and 18.

[^81]Scheme I

Where R is benzyl, the oxazolone is solvolyzed to the mixed anhydride 10 . Support for the step $16 \rightarrow 17+$ 18 is provided by the observation that synthetic ox-azolone-thiazolidine ${ }^{8} 19$ is cleaved in trifluoroacetic acid to thiazoline 6.

Jansen and Robinson have reported that penillonic acid methyl ester is formed by the condensation of oxazolone 7 with thiazoline 6 in benzene and on this basis proposed that the penillonic acid rearrangement proceeds by dissociation of penicillin to oxazolone and thiazoline followed by recombination to penillonic acid. ${ }^{9}$ Although the degradation of penicillin to the thiazoline under acid conditions provides support for the first step of the Robinson pathway, it does not exclude the mechanisms proposed by Bird ${ }^{10}$ and Woodward. ${ }^{11}$

The simplicity of the process for the preparation of the D -thiazoline ${ }^{12}$ may be of some practical importance
(8) M. R. Bell, S. D. Clemans, R. Oesterlin, and J. A. Carlson, Abstracts, 23rd International Congress of Pure and Applied Chemistry, Boston, Mass., July 1971, p 74.
(9) A. B. A. Jansen and R. Robinson, Monatsh. Chem., 98, 1017 (1967).
(10) C. W. Bird, Tetrahedron, 22, 2489 (1966).
(11) R. B. Woodward, ref 2a, p 447.
(12) A. K. F. Bose, G. Spiegelman, and M. S. Manhas, J. Amer. Chem. Soc., 90, 4506 (1968). These workers reported that DL- 6 could be prepared by heating $\mathrm{dL}-N$-formylpenicillamine with boron trifluoride etherate in methanol. Prior to their publication we had synthesized dl- 6 by hydrogen chloride catalyzed esterification of do-6 in the presence of trimethyl orthoformate. The Merck group ${ }^{3}$ prepared $\mathrm{D}-6$ by the reaction of ethyl formimidate hydrochloride and D -penicillamine methyl ester (9).
in view of the need to develop methods for the synthesis of pencillins with a modified nucleus. Our initial efforts to synthesize a 6 -substituted penicilin utilizing the d-thiazoline 6 as a relay have recently been reported. ${ }^{8}$ Sheehan has reported that a de and L penicillin have respectively one-half and negligible antibacterial activity when compared with the corresponding D isomer. This underlines the importance of the absolute configuration of a penicillin fo: maximum biological activity. ${ }^{13}$ The advantages of the D-thiazoline as a starting material for penicillir total syntheses are that it is readily available and inexpensive, and that it has the correct absolute configuration.

Experimental Section

All melting points were taken in capillary tubes in an oil bath and are uncorrected. Nmr spectra were determined under the supervision of Dr. R. K. Kullnig with a Varian Model A-60 spectrometer; TMS was used as the internal standard.

Penicillin G Methyl Ester (2).-A suspension of $344 \mathrm{~g}(0.9 \mathrm{~mol})$ of penicillin G potassium salt (Chas. Pfizer) in 21 . of anhydrous DMF (distilled, then stored over molecular sieves) was stirred at room temperature for 6 hr with $59 \mathrm{ml}(0.9 \mathrm{~mol})$ of methyl iodide. The clear solution was left under nitrogen at room temperature overnight. It was poured slowly into 61 . of icewater with vigorous stirring. The white solid was filtered and washed with cold water. The solid was dissolved in 2.5 l . of methylene dichloride and washed (cold $\mathrm{H}_{2} \mathrm{O}$, brine:- The dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) filtrate was evaporated at 40° and the residual oil was triturated with $c a .11$. of absolute ether. The solid was filtered to afford $250 \mathrm{~g}(80 \%)$ of ester, $\mathrm{mp} 95-96.5^{\circ}$ (lit. $.^{14} \mathrm{mp} 97-98^{\circ}$). Concentration of the mother liquor gave a second crop, 21 g (7.5%): mp 94-9.5ㅇ ir $\left(\mathrm{CHCl}_{3}\right) 5.61$ (β-lactam $\mathrm{C}=\mathrm{O}$), 5.73 (ester $\mathrm{C}=0$), and 5.99μ (amide $\mathrm{C}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}$, 3), 1.5 (s, 3), 3.6 (s, 2, ArCH_{2}), 3.7 (s, 3, OCH_{3}), 4.4 (s, 1, $\mathrm{CHCO}_{2} \mathrm{CH}_{3}$), 5.5 (d, $1, J=4 \mathrm{~Hz}, \mathrm{CHS}$) 5.6 (dd, $1, J=4,10$ $\mathrm{Hz}, \mathrm{NCHCO}), 6.3(\mathrm{~d}, 1, J=10 \mathrm{~Hz}, \mathrm{NH})$, and $7.3 \mathrm{pem}(5, \mathrm{ArH})$.
Methyl ,-5,5-Dimethyl- Δ^{2}-thiazoline-4-carboxylate (6).-Penicillin G methyl ester ($150 \mathrm{~g}, 0.43 \mathrm{~mol}$) was added to 1.51 . of TFAA and the solution was heated on a steam bath in a nitrogen atmosphere for 20 min . The excess TFAA was recovered by distillation in vacuo (water aspirator, pot temperature not to exceed 40°) and was used in subsequent reactions. The residual yellow oil was dissolved in 1.5 l . of dry methylene dichloride and added slowly during 1 hr to a vigorously stirred, ice-cooled solution of 600 ml of concentrated ammonium hydroxide in 3 l . of ice-water. The organic phase was separated. The aqueous layer was extracted once with chloroform. The combined organic fractions were washed ($\mathrm{H}_{2} \mathrm{O}$, brine). The dried ($\mathrm{Na}_{2}-$ SO_{4}) filtrate was evaporated at 40° and the residual brown gum was distilled twice to afford $43 \mathrm{~g}(58 \%)$ of thiazoline 6: bp 74° $(0.3 \mathrm{~mm}) ; \mathrm{mp} 50.5-51.5^{\circ}\left(\mathrm{lit} .^{3} \mathrm{mp} \mathrm{50} 0^{\circ}\right) ;[\alpha]^{25} \mathrm{D}+51.9^{\circ}(c \mathrm{c}$, CHCl_{3}); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{~s}, 3), 1.73(\mathrm{~s}, 3), 3.8\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, $4.6\left(\mathrm{~d}, 1, J=3 \mathrm{~Hz}, \mathrm{CHCO}_{2} \mathrm{CH}_{3}\right)$, and $8.15 \mathrm{ppm}(\mathrm{d}, 1$, $J=3 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CHS}) ; \mathrm{nmr}(\mathrm{TFAA}) \delta 1.7(\mathrm{~s}, 3), 1.9(\mathrm{~s}, 3)$, $3.95(\mathrm{~s}, 3), 5.15(\mathrm{~d}, 1, J=2 \mathrm{~Hz})$, and $8.15 \mathrm{ppm}(\mathrm{d}, 1, J=2 \mathrm{~Hz})$.
d-Penicillamine Hydrochloride (8). -Two grams of the thiazoline 6 dissolved in 21 ml of $2.5 N \mathrm{HCl}$ and 11 ml of $\mathrm{H}_{2} \mathrm{O}$ was heated at reflux for 16 hr under nitrogen and evaporated in vacuo. The amorphous residue was crystallized fro-n acetonitrile to give $1.3 \mathrm{~g}(61 \%)$ of $8: \mathrm{mp} \mathrm{177-179.5}^{\circ} \mathrm{dec} ;[\alpha]^{25} \mathrm{D}-48.6^{\circ}$ (c $1,1 N \mathrm{NaOH}$) [lit. ${ }^{4} \mathrm{mp} 177.5^{\circ} \mathrm{dec},[\alpha]^{25} \mathrm{D}-55^{\circ}$ (c $1,1 N$ $\mathrm{NaOH})$. An additional recrystallization left the melting point unchanged but raised the rotation to $[\alpha]^{25} \mathrm{D}-49.8^{\circ}$. Its isopropylidene derivative was obtained in 57% yield: mp 199 201° dec; $[\alpha]^{25} \mathrm{D}+92.0^{\circ}$ (c $1, \mathrm{H}_{2} \mathrm{O}$) $\left[\mathrm{lit} .{ }^{15} 198^{\circ},[\alpha]^{17^{\mathrm{D}} \mathrm{D}}+94^{\circ}\right.$ ($c 1, \mathrm{H}_{2} \mathrm{O}$)].

[^82]Commercial d-penicillamine (Aldrich Chemical Company) was converted to its hydrochloride, $\mathrm{mp} 177-180^{\circ} \mathrm{dec},[\alpha]^{25} \mathrm{D}-50.6^{\circ}$ (c $1,1 N \mathrm{NaOH}$). Its isopropylidene derivative was obtained in 72% yield, $\mathrm{mp} 199-200^{\circ}$ dec, $[\alpha]^{25} \mathrm{D}+92.8^{\circ}\left(c, 1, \mathrm{H}_{2} \mathrm{O}\right)$.
N-Benzyl-2-(2-phenylacetamido)acetamide.-Penicillin G methyl ester (5 g) in 50 ml of TFAA was heated at reflux for 15 min in a nitrogen atmosphere. After cooling, the solution was added slowly with stirring to ice-cooled benzylamine (80 ml) in 100 ml of pyridine. Stirring was continued for 1.5 hr at room temperature. The mixture was poured into 21 . of water and extracted with ethyl acetate. The organic fractions were washed ($\mathrm{H}_{2} \mathrm{O}, 10 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ until acidic, $\mathrm{H}_{2} \mathrm{O}$, saturated brine), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to yield a yellow solid. Recrystallization from THF afforded $1.1 \mathrm{~g}(27 \%)$ of the amide, $\mathrm{mp} 173-175^{\circ}$, identical with a sample (mixture melting point, ir) prepared from phenylacetylglycine, benzylamine, and 1-cyclo-hexyl-3-(2-morpholinoethyl)carbodiimide metho- p-toluenesulfonate.
TFAA Degradation of Methyl Benzylpenillonate (4-Methyl Ester).-A solution of methyl benzylpenillonate ($8 \mathbf{g}$) in 38 ml of TFAA was allowed to stand at room temperature in a nitrogen atmosphere. After 30 hr the nmr spectrum of this solution indicated that an equimolar mixture of thiazoline 6 and oxazolone 7 had formed. The acid was evaporated in vacuo at room temperature.
Most of the oxazolone 7 initially present in the reaction mixture was destroyed during this evaporation, as evidenced by nmr. An aliquot (1.03 g) was added to 2 g of benzylamine in 15 ml of pyridine. After standing at room temperature for 2 hr , the phenylacetylglycyl benzylamide was isolated by the above procedure, yield $63 \mathrm{mg}, \mathrm{mp} \mathrm{173-174.5}^{\circ}$, mixture melting point with an authentic sample was undepressed. The thiazoline 6 was isolated from the remaining reaction mixture by the above procedure, yield $1.6 \mathrm{~g}, \mathrm{mp} 49-51^{\circ}$

TFAA Degradation of Penicillin G (1).-Penicillin G (1 g) prepared from Potassium Penicillin G (Chas. Pfizer) was dissolved in 5 ml of TFAA. The nmr spectrum indicated essentially complete conversion to thiazoline 5 within 5 min after mixing. Heating the solution at reflux for 15 min completed the degradation. The nmr spectrum of this solution exhibited sharp signals at $\delta 1.7(\mathrm{~s}, 3), 2.0(\mathrm{~s}, 3), 5.35\left(\mathrm{~d}, 1, J=2 \mathrm{~Hz}, \mathrm{CHCO}_{2} \mathrm{H}\right)$, and $9.75 \mathrm{ppm}(\mathrm{d}, 1, J=2 \mathrm{~Hz}, \mathrm{NCHS})$, characteristic of thiazoline 5 in addition to broad undefined absorptions at $\delta 1.7,4.3$, and 7.5 ppm (ArH).

2-Benzyl-2-oxazolin-5-one (7) ${ }^{9}$.-This compound was prepared from pherylacetylglycine by dehydration with dicyclohexylcarbodiimide: bp $92-98^{\circ}(0.003 \mathrm{~mm})$ [lit. ${ }^{9}$ bp $90-100^{\circ}$ $(0.005 \mathrm{~mm})$] ; nrar (TFAA) $\delta 4.35\left(\mathrm{t}, 2, J=1.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right)$, $4.8\left(\mathrm{t}, 2, J=1.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CO}\right)$, and $7.3-7.6 \mathrm{ppm}(5, \mathrm{ArH})$. The nmr spectrum of 5 was essentially unchanged after heating the TFAA solution at reflux for 30 min .

Stability of Oxazolone 7 to TFAA Degradation.-Penicillin G methyl ester (2) (350 mg) and benzyloxazolone 7 (175 mg) were dissolved in 3 ml of TFAA. After heating at reflux for 30 min the nmr spectrum of this solution exhibited signals at $\delta 1.65$ ($\mathrm{s}, 3$), $2.0(\mathrm{~s}, 3), 3.95(\mathrm{~s}, 3), 5.15(\mathrm{~d}, 1, J=2 \mathrm{~Hz})$, and 9.75 ppm $(\mathrm{d}, 1, J=2 \mathrm{~Hz})$ characteristic of thiazoline 6. Additional undefined signals at $\delta 1.3-2.1,3.6-3.8,4.1-4.5$, and $7.2-7.6 \mathrm{ppm}$ (ArH) were also present.

TFAA Degradation of Methicillin (12).-Sodium methicillin (200 mg , Bristol-Myers) was heated at reflux in 1 ml of TFAA for 30 min . The $n m r$ spectrum of this solution exhibited signals at $\delta 1.75(\mathrm{~s}, 3), 2.05(\mathrm{~s}, 3), 5.2(\mathrm{~d}, 1, J=2 \mathrm{~Hz})$, and 9.75 ppm (d, $1, J=2 \mathrm{~Hz}$) characteristic of thiazoline 6 in addition to signals at $\delta 4.2\left(\mathrm{~s}, 6, \mathrm{OCH}_{3}\right), 4.6$ and $4.7\left(\mathrm{~s}, \mathrm{AB}, \mathrm{NCH}_{2} \mathrm{CO}\right)$, $7.0(\mathrm{~d}, 1, J=10 \mathrm{~Hz}, \operatorname{ArH}), 7.05(\mathrm{~d}, 1, J=9.5 \mathrm{~Hz}, \mathrm{ArH})$, and $9.75 \mathrm{ppm}(\mathrm{dd}, 1, J=9.510 \mathrm{~Hz}, \mathrm{ArH})$ characteristic of oxazolone 13.

TFAA Degradation of Adduct 19.-Adduct $19^{8}(100 \mathrm{mg})$ was dissolved in 0.3 ml of TFAA and heated at 60° for 15 min . The nmr spectrum of this solution exhibited signals characteristic of 6 at $\delta 1.7(\mathrm{~s}, 3), 1.9(\mathrm{~s}, 3), 3.95(\mathrm{~s}, 3), 5.15(\mathrm{~d}, 1, J=2 \mathrm{~Hz})$, and $9.75 \mathrm{ppm}(\mathrm{d}, 1, J=2 \mathrm{~Hz})$ in addition to broad undefined resonances at $\delta 1.4-1.8,3.8-4.2$, and 7.3-7.8 (ArH).

Registry No.-2, 653-89-4; 6, 27494-11-7; trifluoroacetic acid, 76-05-1; N-benzyl-2-(2-phenylacetamido)acetamide, 15440-34-3.

Attempted Duplication of the Methyl Shift in Eremophilane Biosynthesis

J. W. Huffman
Department of Chemistry and Geology, Clemson University, Clemson, South Carolina 29631

Received February 29, 1972

Abstract

In an attempt to duplicate the proposed biosynthetic conversion of a 10 -epieudesmane to a nootkatane derivative, 10 -epieudesm-3-en- 2 -on- $\bar{\rho}$-ol (10) was prepared from 10 -epieudesm- 4 -en- 3 -one by a four-step sequence patterned on the synthesis of α-agarofuran. Dehydration of 10 with phosphoryl chloride-pyridine gave as the only product the linear dienone, 10 -epieudesma-3,5-dien-2-one (15). Hydrogenation of 10 gave 10-epieudesman3 -on- $\bar{j} \beta$-ol (16), which on dehydration with boron trifluoride etherate-acetic acid gave 10 -epieudesm- $\overline{-}$-en- 2 -one (20), 10-epieudesm-3-en-2-one (19), and 5 -epi-10-epieudesm-3-en-2-one (18). Dehydration of 16 with aqueous sulfuric acid gave only 18 and 19 . The factors governing the course of these reactions and the CD curves of compounds 10, 16, 18, 19, and 20 are discussed.

It was suggested a number of years ago by Robinson that the eremophilane (1) group of sesquiterpenes could be derived biosynthetically from a eudesmane (2) precursor. ${ }^{1}$ In recent years this proposal has been modified slightly to give the currently accepted scheme for the biosynthesis of these sesquiterpenes and the closely related nootkatanes (3 from a 10 -epieudesmane 4) and vetispirans (5). ${ }^{2}$

Although the conversions outlined in Scheme I can

be represented as simple carbonium ion rearrangements, with one exception they have yet to be duplicated in the laboratory. The rearrangements of several epoxides of gross structure 6 have been investigated, ${ }^{3}$ while the apparent methyl migration encountered in the rearrangement of 7^{4} has been shown to proceed via spiro intermediates. ${ }^{5}$ The only chemical analogy to the biochemical interconversions described in Scheme I is the rearrangement on dehydration of β-rotunol (8) to a spirovetivane derivative $9 .{ }^{6}$
(1) R. Robinson in A. R. Penfold and J. L. Simonsen, J. Chem. Soc., 87 (1939).
(2) (a) W. Parker, J. S. Roberts, and R. Ramage, Quart. Rev., Chem. Soc., 331 (1971); (b) N. H. Andersen, M. S. Falcone, and D. D. Syrdal, Tetrahedron Lett., 1759 (1970).
(3) (a) G. Mehtu, G. L. Chetty, U. R. Nayak, and S. Dev, Tetrahedron 24, 3775 (1967): (b) H. Hikino, T. Kohana, and T. Takemoto, ibid., 25, 1037 (1968)
(4) C. H. Heathcock and T. R. Kelly, ibid., 24, 3753 (1968).
(5) D. T. Dunham and R. G. Lawton, J. Amer. Chem. Soc., 93, 2075 (1971). These authors have proposed a mechaniatically plausible alternative to Scheme I, which, however, suffers from a severe phytochemical fiaw in that it predicts the existence of two new groups of sesquiterpeaes, and is in addition based on the incorrect assumption that 10 -epieudesmanes are not encountered in nature.
(6) H. Hikino, K. Aota, D. Kuvano, and T. Takemoto, Tetrahedron Lett. 2741 (1969); Tetrahedron, 27, 4831 (1971).

In an attempt to duplicate the biosynthetic methyl shift it was felt that the conversion of a 10 -epieudesmane to a nootkatane derivative ($4 \rightarrow 3$) would be more favorable than the conversion of $2 \rightarrow 1$, since it would result in a net conversion of an axial to equatorial isopropyl group. Also, by analogy with the β-rotunol rearrangement, it seemed desirable to design a model which would afford a conjugated system on rearrangement. The simplest compound which fulfills these requirements is the hydroxy enone 10 , which could afford a dehydronootkatone derivative 11 on dehydration and rearrangement.

The synthesis of 10 as outlined in Scheme II followed the general procedure utilized by Büchi for the synthesis of α-agarofuran. ${ }^{7}$ The only significant modification of Büchi's method was the use of the Dauben-Shapiro method 8 for the preparation of homoannular diene 12. As expected, photosensitized oxidation of 12 gave a dienone 14 as well as the desired peroxide 13. The stereochemistry of 13 , and the derived hydroxy ketone (10), was assigned by analogy with the agarofuran series ${ }^{7}$ and confirmed by the CD curve of 10 , which showed a positive Cotton effect for the $n \rightarrow \pi^{*}$ transition $\left([\theta]_{363}+799\right)$ which is of the same magnitude, but of opposite sign, to that of α-rotunol (8, with the hydroxyl α) and a 5α-androst-3-en-2-one derivative. ${ }^{6}$

Treatmentof 10 with phosphoryl chloride-pyridine under a variety of conditions gave a single product, although in mediocre yield. The spectral data for this compound (see Experimental Section) were not those predicted for the rearranged dienone 11, but indicated that dehydration to a linear dienone (15), a reaction which has some precedent in the steroid series, ${ }^{9}$ had occurred. After standing at room temperature for a number of hours, the original aqueous phase from the isolation of the products of this reaction gave significant quantities of recovered 10. Apparently, 10 under the conditions of the reaction is converted to a phosphoric acid ester, which is soluble in the mildly basic aqueous pyridine solution, and slowly hydrolyzes to give recovered 10.

In order to attempt to avert the formation of a simple conjugated system, 10 was reduced catalytically to give a single, saturated hydroxy ketone 16 . The stereochemistry assigned to 16 is based on the $n m r$ spectrum,

[^83]

Scheme II

$\xrightarrow{h \nu, \text { eosin }}$

6

7

11

which shows a doublet ($J=7 \mathrm{~Hz}$) with the coupling constant indicative of an axial methyl group. ${ }^{10}$ Also, the chemical shift of the secondary methyl is nearly the same as that of the angular methyl in both benzene- d_{6} and deuteriochloroform, indicating that toth methyl groups have a similar spatial relationship to the ketone carbonyl. The ORD and CD curves of 16 show the
(10) (a) F. Johnson, N. A. Starkowsky, and W. D. Gurowitz, J. Amer. Chem. Soc., 87, 3492 (1965). (b) The nmr spectrum of 16 is quite complex in the methyl region, and, in order to assign the position of the signals, the spectrum was run at both 60 and 90 MHz . We would like to thank Dr. G. B. Savitsky of this department for the $90-\mathrm{MHz}$ spectra.
expected negative Cotton effect curve; however, rather than the usual smooth curve obtained for ketones of this type, ${ }^{11}$ a cu=ve with two inflections and an amplitude (ORD) of -63 is obtained. This is almost the same amplitude as that of several model compounds, which however lack the secondary methyl group at C-4. ${ }^{11}$ This methyl group should make a contribution of +20 to $+25^{12}$ to the amplitude of the Cotton effect of 16 , giving a predic-ed amplitude of about -40 to -50 for 16 assuming a normal, undistorted, all-chair conformation. On the basis of the ORD data, it seems probable that the ring containing the carbonyl group is either considerably flattened, or in a twist conformation, caused by the interaction of the axial secondary methyl group, with the angular methyl.
Reaction of 16 with phosphoryl chloride-pyridine gave no dehydration product, but only material soluble in aqueous pyridine which afforded starting hydroxy ketone on standing in solution. Treatment with aqueous sulfuric acid gave a mixture of two ketones, neither of which was dihydronootkatone (17). ${ }^{13}$ By varying the reaction time it was found that one ketone could be obtained as the principal reaction product (Table I) and that this compound was probably not that initially formed. Separation and characterization indicated that the products were α, β-unsaturated ketones, and were both isomeric with dihydronootkatone. In the nmr each ketone showed a vinyl proton as a broadened singlet, a vinyl methyl group, an angular methyl, and an isopropyl group. The mass spectra of these compounds were very similar to that of dihydronootkatone (see Experimental Section), and on the basis of these data it was apparent that these compounds were the stereoisomeric eudesmenones, 18 and 19. The ketone of shorter retention time, which is the more stable isomer, must be the cis isomer (19), which can exist in a nonsteroid conformation with an equatorial isopropyl group. The trans isomer, 18, must be formed initially, via a hydride shift from C-4, and is then isomerized to 19 on prolonged treatment with acid. Further eviderice for these structural assignments was obtained when it was found that treatment of 18 with acid or base gave predominantly 19, and the CD curves of 18 and 19 provided additional evidence for the assigned stereockemistry. The CD curve of trans ketone 18 showed a pcsitive Cotton effect for the $n \rightarrow \pi^{*}$ transition $\left([\theta]_{36}+146\right)$ which is opposite in sign to that of α rotunol and a 5α-androst- 3 -en-2-one derivative. ${ }^{6}$ The cis isomer alsc exhibits a positive Cotton effect curve $\left([\theta]_{353}+440\right)$, which is that predicted by the inverse octant rule ${ }^{14}$ for a ketone of structure 19 , having a nonsteroid conformation.
In an effort to probe the course of this reaction, and also to effect the desired methyl migration, hydroxy ketone 16 was treated with boron trifluoride etherate in acetic acid under a variety of conditions. Prolonged treatment at room temperature gave essentially the
(11) (a) C. Djerassi and D. Marshall, Tetrahedron, 1, 238 (1957); (b) W. Klyne, ibid., 19, 29 (1961).
(12) W. Klyne in G. Snatzke, "Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry." Heyden and Son, London, 1967, pp 139-152.
(13) Dihydronootkatone was prepared from (土)-nootkatone by hydrogenation using a homogeneous catalyst (see Experimental Section).
(14) G. Snatzke in G. Snatzke, "Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry." Heyden and Sons, London. 1967. pp 208-223.
same mixture of 18 and 19 obtained with sulfuric acid; however, 3% of a new compound could be detected by glc. By carrying out the dehydration for a short time, a mixture containing 16% of the new product plus 37 and 47% of 19 and 18, respectively, was obtained. Separation of this minor reaction product and characterization by spectral methods (see Experimental Section) showed that it contained a saturated cyclohexanone carbonyl, an angular methyl group, a secondary methyl, an isopropyl group, and an isolated trisubstituted double bond. The only structure consistent with these data is that of the direct dehydration product 20. The CD curve of 20 exhibits a weak negative Cotton effect ($\theta_{306}-680$), and, although a negative Cotton effect is predicted by the octant rule, the small amplitude was unexpected. A study of models suggests that the most favorable conformation of 20 has a twist conformation for ring A which balances groups in positive and negative octants in such a manner that the amplitude of the Cotton effect will be minimal.
Although it was not anticipated that dihydronootkatone would be the exclusive product of the dehydration of 16 , it is a priori surprising that no trace of this compound was formed. The most probable explanation for the failure to observe any methyl migration is that the direct dehydration of 16 to 20 with the loss of the isopropyl-hydroxyl axial-axial interaction and relief of the methyl-methyl interaction is a much more rapid process. Protonation of 20 from the less hindered α face with migration of the β hydrogen at C-4 would lead to 18, which is subsequently isomerized to the more stable cis isomer 19. ${ }^{15}$

Experimental Section ${ }^{16}$

10-Epieudesm-4-en-3-one. -This compound was prepared from 10 -epieudesm-11-en-3-on- 5α-ol ${ }^{17}$ by a modification of the method of Hikino. ${ }^{3 b}$
10-Epieudesma-2,4-diene (12).-To a solution of 2.98 g of p-toluenesulfonylhydrazine in 35 ml of tetrahydrofuran was added 3.51 g of 10 -epieudesm-4-en-3-one and 3 drops of concentrated hydrochloric acid. The reaction mixture was stirred and heated at reflux for 6 hr , benzene was added, and the solvents were distilled off until the boiling point reached 80°. The reaction flask was cooled with an ice bath and 30 ml of 1.91 M methyllithium was added dropwise over 30 min . Water was added cautiously, the mixture was extracted with two portions of hexane which were combined and dried, and the solvent was

[^84]removed at reduced pressure to give 2.72 g of pale yellow oil. The crude product was taken up in hexane and filtered through a column of 75 g of Merck alumina to give $2.22 \mathrm{~g}(68 \%)$ of diene 12 as a rather unstable colorless oil, which was homogeneous to tlc (hexane, silica gel G) and glc: mass spectrum m / e (rel intensity) 204 (52), 189 (74), 145 (17), 132 (98), 131 (72), 118 (40), 117 (100); nmr $\delta 0.88,0.90(\mathrm{~d}, J=6 \mathrm{~Hz}$, isopropyl), 0.92 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.72\left(\mathrm{~d}, J=1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}-\right.$), $5.68(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{HC}=\mathrm{CH})$; uv $269 \mathrm{~nm}(\log \epsilon 3.73)$.

Photooxygenation of 12 .-A solution of 0.81 g of homoannular diene was dissolved in 160 ml of a $1: 1$ mixture of benzene-ethanol and 0.020 g of eosin was added. The reaction mixture was irradiated with a Westinghouse 275 W sun lamp while oxygen was bubbled through the reaction mixture. Analysis of aliquots by glc showed that no diene remained after 12 hr and the reaction mixture was filtered through Celite and charcoal and concentrated to a small volume in vacuo. The residue was taken up in benzene, washed with water until the washings were colorless, and dried, and the benzene was removed to give 0.73 g of yellow oil which partially crystallized. The crude product was taken up in hexane and chromatographed on 25 g of Merck acidwashed alumina. Elution with hexane-benzene (2:1) gave $0.216 \mathrm{~g}(23 \%)$ of endo peroxide 13 as white crystals, $\mathrm{mp} 72-73^{\circ}$. Recrystallization from aqueous methanol gave the analytical sample: $\mathrm{mp} 73-74^{\circ}$; $\mathrm{nmr} \delta 0.88,0.90(\mathrm{~d}, J=7 \mathrm{~Hz}$, isopropyl), 0.92 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.85\left(\mathrm{~d}, 3 \mathrm{H}, J=2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right), 4.48$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{HCO}$), $6.20\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{HCCH}=\mathrm{CCH}_{3}\right.$); mass spectrum m / e (rel intensity) 236 (12), 204 (52), the balance of the spectrum was identical with that of the starting diene.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$: C, $76.23 \mathrm{H}, 10.24$. Found: C, 76.00 H, 9.94.
Elution with benzene gave $0.035 \mathrm{~g}(4 \%)$ of 10 -epieudesma- $2,4-$ dien-3-one (14) as a colorless oil, which was homogeneous to tlc [benzene-acetone ($10: 1$), silica gel G]: ir 6.03 and 6.14μ; nmr $\delta 0.88,0.90\left(\mathrm{~d}, J=7 \mathrm{~Hz}\right.$, isopropyl), $1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 6.21,6,83(2 \mathrm{H}, \mathrm{AB}, J=10 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CH}-$); mass spectrum m / e (rel intensity) 219 (62), 218 (23), 204 (18), 175 (100), 161 (41), 147 (75).

Elution with methylene chloride gave $0.115 \mathrm{~g}(12 \%)$ of $10-$ epieudesm-3-en-2-on-5 β-ol (10) as white crystals, mp $140-142^{\circ}$. The analytical sample, $\mathrm{mp} 143-144^{\circ}$, was prepared by recrystallization from hexane: ir 2.94 and $6.04 \mu ; \mathrm{nmr} \delta 0.91,0.98$ (d, $J=$ 6 Hz , isopropyl), $\left.1.05(\mathrm{~s}, 3 \mathrm{H}), \mathrm{CH}_{3}\right), 1.96(\mathrm{~d}, J=1 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}$), $5.76\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CCH}_{3}\right)$: mass spectrum m / e (rel intensity) 236 (2), 208 (5), 193 (15), 175 (12), 126 (13), 123 (18), 111 (100), 110 (76); uv $237 \mathrm{~nm}(\log \epsilon 4.12)$; CD (c $\left.0.00205,25^{\circ}\right)[\theta]_{396} 0,[\theta]_{379}+418,[\theta]_{373}+351,[\theta]_{363}+799$, $[\theta]_{354}+351,[\theta]_{348}+684,[\theta]_{340} 0,[\theta]_{339}-57,[\theta]_{336} 0,[\theta]_{333}+38$, $[\theta]_{332} 0,[\theta]_{326}-380,[\theta]_{320}-285,[\theta]_{314}-380$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$: C, $76.23 \mathrm{H}, 10.24$. Found: $\mathrm{C}, 76.38 \mathrm{H}, 10.40$.

10-Epieudesm-3-en-2-on-5 β-ol (10). A.-A solution of 0.117 g of peroxide 13 in 6 ml of 1 M ethanolic sodium hydroxide was heated at reflux for 15 min , cooled, acidified with glacial acetic acid, and diluted with water. The aqueous suspension was extracted with three portions of methylene chloride, which were combined, washed with water and 5% aqueous sodium hydroxide, and dried, and the solvent was removed at reduced pressure to give $0.077 \mathrm{~g}(66 \%)$ of white crystals, $\mathrm{mp} 138-140^{\circ}$, identical (ir, mixture melting point) with the material obtained as described above.
B.-The crude product from the photooxygenation of 1.36 g of diene 12 was dissolved in 60 ml of 1 N sodium hydroxide and treated as described in part A. Recrystallization of the crude product from hexane gave $0.415(26 \%)$ of $10, \mathrm{mp} 136-139^{\circ}$. Concentration of the mother liquors gave 0.52 g of yellow oil which on tle showed the presence of dienone 14 , hydroxy ketone 10 , and traces of two other compounds. By chromatography of the mother liquors and sublimation ($0.5 \mathrm{~mm}, 100^{\circ}$) of the fractions eluted with methylene chloride, an additional 0.078 g (5%) of 10 could be obtained.

10-Epieudesma-3,5-dien-2-one (15).-To a solution of 0.078 g of hydroxy ketone 10 in 5 ml of pyridine was added 0.15 ml of phosphoryl chloride; the reaction mixture was heated at reflux for 1 hr , cooled, and poured into water; and the aqueous solution was extracted with three portions of ether. The ethereal extracts were combined, washed with two portions of water, 5% hydrochloric acid, and again with water and dried, and the solvent was removed at reduced pressure to give $0.021 \mathrm{~g}(29 \%)$ of yellow oil which gave essentially one spot on tle (silica gel G,
benzene-acetone, $10: 1$). Preparative tle using the same system gave 0.010 g of 12 as a colorless oil: ir $6.02,6.18,5.30 \mu$; mass spectrum m / e (rel intensity) 218 (46), 203 (11), 175 (100), 161 (46), 147 (43), 133 (29), 131 (43); nmr $\delta 0.92,0.69(\mathrm{~d}, J=7$ Hz , isopropyl), $1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05(\mathrm{~d}, J=1 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}$), $5.85\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CCH}_{3}\right), 6.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $3 \mathrm{~Hz}, \mathrm{CHCH}=\mathrm{C}-$); uv $284 \mathrm{~nm}(\log \epsilon 4.27)$.

After standing overnight at room temperature, the original aqueous pyridine solution deposited 0.034 g (43\%) of starting hydroxy ketone, mp and $\mathrm{mmp} 140-142^{\circ}$.
Similar results were obtained at steam bath temperature for $1-2 \mathrm{hr}$ and at reflux for 2 hr .
10-Epieudesman-3-on-5 β-ol (16).-A solution of 0.040 g of hydroxy ketone 10 in 10 ml of 95% ethanol was hydrogenated at 30 psig using 0.010 g of 5% rhodium on alumina ca-alyst. The reaction mixture was filtered through Celite, and the solvent was removed as reduced pressure to give 0.027 g (68%) of white crystals, $\mathrm{mp} 157-159^{\circ}$, which were homogeneous to tlc. ${ }^{18}$ Recrystallization from hexane gave the analytical sample: mp 161-162 ${ }^{\circ}$; ir 2.89 and 5.91μ; mass spectrum m / e (rel intensity) 238 (35), 223 (4), 220 (4), 203 (13), 193 (33), 154 (100); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 0.98,1.00(\mathrm{~d}, J=6 \mathrm{~Hz}$, isopropyl), $1.09(\mathrm{~d}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; nmr $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$; $\mathrm{nmr}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 0.77 (d, $J=7 \mathrm{~Hz}$, isopropyl), $0.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), \mathrm{C} .89(\mathrm{~d}, J=$ $\left.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$; CD $(c 0.000212) \theta_{332} 0, \theta_{314}-2020, \theta_{304}-3520$, $\theta_{295}-3710 ;$ ORD $\phi_{380}-795^{\circ}, \phi_{322}-3640 ; \phi_{314}-3060^{\circ}, \phi_{302}$ $-900^{\circ}, \phi_{298} 0^{\circ}, \phi_{236}+2700^{\circ}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$: C, 75.58; H, 10.99. Found: C, 75.57; H, 11.04 .

Dehydration of 10 -Epieudesman-2-on- 5β-ol. A.-To a solution of 0.164 g of hydroxy ketone 16 in 4 ml of acetic acid was added with stirring 0.20 ml of redistilled boron trifluoride etherate. The reaction mixture was stirred at room temperature for 15 min , poured into ice water, and extracted with three portions of ether. The ethereal extracts were washed with water, 10% sodium hydroxide, and saturated brine and dried, and the solvent was removed in vacuo to give 0.074 g of pale brown oil. Analytical gle showed three compounds listed in order of increasing retention time in a ratio of $14: 54: 32$, and the mixture was separated by preparative gle to give respectively, 20,19 , and 18 .

10-Epieudesm-5-en-2-one (20) (0.004 g) had ir 5.85μ; mass spectrum m ! e (rel intensity) 220 (34), 205 (23), 193 (18), 178 (49), 163 (21), $151(25), 139(70), 138(100) ; \mathrm{nmr} \delta 0.91,0.93(\mathrm{~d}, J=$ 7 Hz , isopropyl), $1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right)$; $\mathrm{CD}(c 0.0014) \theta_{370} 0, \theta_{316}-528, \theta_{306}-680$. Glc indicated that this material contained 15% of cis ketone 19 and 5% of the trans isomer 16.

10-Epieudesm-3-en-2-one (19) (0.008 g) had ir 6.01 and 6.10 μ; mass spectrum m / e (rel intensity) 220 (100), 205 (25), 178 (87), 177 (64), 136 (42), 135 (43); nmr $\delta 0.88,0.90$ (d, $J=$ 6 Hz , isopropyl), $0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.98\left(\mathrm{~d}, J=1 \mathrm{~Hz}, \mathrm{CH}_{3}-\right.$ $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right), 5.82\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CCH}_{3}\right) ; \mathrm{CD}(c 0.0029) \theta_{380} 0$, $\theta_{369}+302, \theta_{z 61}+176, \theta_{333}+440, \theta_{344} 0, \theta_{338}+137, \theta_{335} 0, \theta_{330}-274$, $\theta_{325}-176,9_{318}-376, \theta_{31}-274, \theta_{306}-302$; uv 243 nm (log $\epsilon 4.00$). Glc indicated that this material contained less than 5% of the other two isomers.
5-Epi-10-epieudesm-3-en-2-one (18) (0.007 g) had ir 6.00 and 6.10μ; mass spectrum m / e (rel intensity) $220(96 `, 205(25)$, 178 (100), 177 (73), 135 (91); nmr $\delta 0.92,0.96\left(\mathrm{~d}, \iota^{r}=6 \mathrm{~Hz}\right)$, $1.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89\left(\mathrm{~d}, 3 \mathrm{H}, J=1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right), 5.88$ (br s, $1 \mathrm{H}, \mathrm{HC}=\mathrm{CCH}_{3}$); $\mathrm{CD}(c 0.0021) \theta_{384} 0, \theta_{3 \mathrm{~T} 2}+90, \theta_{363}$ $+42, \theta_{356}+146, \theta_{350} 0, \theta_{347}-35, \theta_{344} 0, \theta_{341}+49, \theta_{338} 0, \theta_{333}-167$, $\theta_{325}-28, \theta_{32}-167, \theta_{310} 0$; uv $244 \mathrm{~nm}(\log$ є 3.79$)$ Glc indicated that this compound contained less than 5% of the other two isomers. The retention time of 18 was the same (two columns) as that of 11,12-dihydronootkatone.

When the boron trifluoride catalyzed dehydration was carried

[^85]out for varying periods and the mixture of ketones was isolated as described above and subjected to analytical gle, the results recorded in Table I were obtained.

Table I
Dehydration of 10-Epieudesman-2-on-ōp-ol (16)

		Catalyst	$\mathbf{2 0}$	$\mathbf{1 9}$
Time, hr	Compd. $70-18$			
0.25^{a}	Boron trifluoride	16	37	47
1	Boron trifluoride	8	51	41
18	Boron trifluoride	3	64	33
1.5	Salfuric acid	0	47	53
3^{a}	Sulfuric acid	0	67	33
18	Sulfuric acid	0	76	24

${ }^{a}$ Product were isolated, separated, and characterized.
B.-To 0.042 g of hydroxy ketone 16 at 0° was added with efficient stirring 4.0 ml of cold $\left(0^{\circ}\right) 50 \%$ aqueous sulfuric acid. The reaction mixture was allowed to warm to room temperature, stirred for 3 hr , and poured into ice water, and the aqueous suspension was extracted with three portions of methylene chloride. The organic extracts were combined, washed with water, and dried and the solvent was removed to give 0.039 g cf yellow oil. Althcugh this material was homogeneous to tlc (silica gel G, benzene-acetone $10: 1$), glc indicated the presence of two compounds in a ratio of $2: 1$. Preparative gle as described in part A gave 0.010 g of 19 and 0.004 g of 18 , the infrared, $n m r$, and mass spectra of which were identical with those of the compounds cbtained in part A.
C.-A solution of 0.031 g of 16 in 2 ml of dry pyridine was treated with 0.10 ml of phosphoryl chloride and the product was isolated as descrited above to give $0.003 \mathrm{~g}(10 \%)$ of impure hydroxy ketone. The initial aqueous extracts after standing overnight gave an additional $0.015 \mathrm{~g}(48 \%)$ of 16 .

Isomerizations of 5-Epi-10-epieudesm-3-en-2-one. A.-To a solution of 0.001 g of 18 in 0.5 ml of dioxane was added 1 drop of concentrated hydrochloric acid, and the mixture was heated on the steam bath for 12 hr . Analysis by glc indicated a ratio of 19 to 18 of 7:1.
B.-To a solution of 0.001 g of 18 in 1 ml of methanol was added 0.050 g of sc.dium methoxide, and the mixture was heated at reflux for 18 hr . Glc indicated only the presence of cis ketone 19.
(土)-11,12-Dihydronootkatone (17).-To a solution of 0.281 g of (土)-nootkatone ${ }^{19}$ in 30 ml of dry benzene was added 0.147 g of tris(triphenylphosphine)rhodium chloride. The reaction flask was swept with hydrogen, sealed, and stirred overnight at room temperature. The reaction mixture was filtered through a short column of Merck alumina and the solvent was removed to give $0.234 \mathrm{~g}(83 \%)$ of 17 as a colorless oil, the infrared spectrum of which was identical with that of a sample prepared from (+)nootkatone by Pinder: ${ }^{20}$ mass spectrum m / e (rel intensity) 220 (81), 205 (12), 178 (100), 177 (21), 135 (95); nmr $\delta 0.90$ (d, $J=$ 6 Hz , isopropyl), $0.97\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.09(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 5.75(\mathrm{br} \mathrm{s}, \mathrm{HC}=\mathrm{C})$. Glc indicated the presence of trace amounts of unreduced nootkatone and tetrahydronootkatone.

Registry No. - 10, 34996-35-5; 12, 34996-36-6; 13, 34969-20-5; 14, 34996-37-7; 16, 34996-38-8; 18, 34996-39-9; 19, 34996-40-2; 20, 34996-41-3.

Acknowledgments. - The spectropolarimeter and mass spectrometer were obtained through National Science Foundation Research Instruments Grants.
(19) The author would like to thank Professor A. R. Pinder for making available a sample of (\pm)-nootkatone which had been supplied to him by Dr. P. Schudel.
(20) A. R. Pinder, unpublished work.

Further Studies on the Sesquiterpene Lactones Tulipinolide and Epitulipinolide from Liriodendron tulipifera L. ${ }^{1}$

Raymond W. Doskotch,* Charles D. Hufford, and Farouk S. El-Feraly
Division of Natural Products Chemistry, Coliege of Pharmacy, The Ohio State University, Columbus, Ohio 43210

Received February 14, 1972

Abstract

The dihydro derivatives 3 and 4 of tulipinolide (1) and epitulipinolide (2) were prepared by NaBH_{4} reduction since cataly tic hydrogenation gave other reduction products. The stereochemistry at the reduced center of these derivatives was determined by cyclization to the already known β-cyclo compounds 6 and 7. Minor alkalinehydrolysis products of epitulipinolide (2) were established as the methoxy Michael adducts 13 and 15 if methanol was a cosolvent. Without methanol the eudasmanolide diol 16 was formed along with the unusual cadinene lactone 22, but in no case was the C-8 cis γ-lactone germacranolide (isoeupatolide) detected. A product of alkaline hydrolysis of tulipinolide (1) was desacetylisotulipinolide (23), a C-8 trans γ-lactone which was also obtained by treatment of eupatolide methanesulfonate (25) with hydroxide ion. The acetate of 23 (isotulipinolide) was shown to be identical with the recently isolated germacranolide, laurenobiolide.

The cytotoxic sesquiterpene lactones, tulipinolide and epitulipinolide, from the root bark of Liriodendron tulipifera L., were recently assigned structures 1 and 2 , respectively. ${ }^{2}$ We report herein new transformation products of these compounds and show a direct conversion of epitulipinolide to the tulipinolide skeleton by epimerization at the 8 carbon.

1, $\mathrm{R}=\mathrm{Ac}$
26, $R=H$

3

2, $R=A c$
11, $\mathrm{R}=\mathrm{H}$
25, $\mathrm{R}=\mathrm{SO}_{2} \mathrm{Me}$

4, $R=A c$
12, $\mathrm{R}=\mathrm{H}$

6, $R^{1}=H, R^{2}=O A c$
7, $\mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{H}$

The 11,13-dihydro derivatives 3 and 4 of tulipinolide (1) and epitulipinolide (2), respectively, were prepared by sodium borohydride reduction, since catalytic hy-

[^86]drogenation gave undesired products. For example, the product of tulipinolide (1) and 1 mol of hydrogen still contained the exocyclic methylene protons as seen in the nmr spectrum, while epitulipinolide (2), which very rapidly took up 2 mol of hydrogen, gave a substance without the exocyclic methylene but, in addition to the expected secondary $\mathrm{C}-11$ methyl group (δ $1.12, J=7.1 \mathrm{~Hz}$), the nmr spectrum also showed a three-proton broadened singlet ($\delta 1.05, W_{1 / 2}=7 \mathrm{~Hz}$) reminiscent of a "virtually coupled" methyl group. ${ }^{3}$ The physical data support formulation of this substance as 5 .

Dihydrotulipinolide (3) has physical properties close to those of acetylbalchanolide, ${ }^{4}$ and comparison of their ir spectra ${ }^{5}$ indicate that they are most probably identical. The methyl group at C-11 was placed α on the basis that cyclization of dihydrotulipinolide (3) produced the known compound dihydrocyclotulipinolide (6), for which all of the asymmetric centers werc established. ${ }^{2}$ Dihydroepitulipinolide (4) on cyclization gave the $11 R$ epimer 7 of the two known dihydro- β-cycloepitulipinolides. ${ }^{2}$ The cyclization reaction on dihydrotulipinolide and dihydroepitulipinolide also made available the corresponding α-cyclo compounds 8 and 9 as coproducts. To complete the series of dihydrocycloepitulipinolides, the remaining γ isomer 10 was made by sodium borohydride reduction of γ-cycloepitulipinolide. ${ }^{2}$ Eupatolide (11) ${ }^{2}$ was reduced with sodium borohydride to dihydroeupatolide (12) with the $11 R$ configuration, since on acetylation it gave dihydroepitulipinolide (4).
Alkaline hydrolysis of epitulipinolide (2) in dilute aqueous methanolic KOH gave mainly eupatolide (11) and two additional substances, as observed by thin layer chromatography of the mother liquor. Column chromatography yielded these as crystalline compounds that were characterized as the epimeric Michael addition products of eupatolide and methanol. The major epimer 13 exhibited a methoxy peak at δ 3.34, two olefinic methyls at $\delta 1.62$ and 1.70 , and the split $A B$ pattern found typical of H_{5} and H_{6} protons in the $\mathrm{C}-6$ trans γ-lactone germacranolides. ${ }^{2}$ In addi-

[^87]
8, $\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{OAc}$
$9, R^{1}=O A c ; R^{2}=H$

13, $\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$ $15, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCH}_{3} ; \mathrm{R}^{2}=\mathrm{H}$

16, $R=H$
17, $\mathrm{R}=\mathrm{Ac}$

18, $R=A c$
19, $R=H$
tion, a two-proton, eight-peak pattern, the AB part of an ABX system, ${ }^{6}$ was observed for the H_{13} protons, and the X part of this system $\left(\mathrm{H}_{11}\right)$ was seen as four equal peaks further split by $\mathrm{H}_{7}(J=12.0 \mathrm{~Hz})$. The large $\mathrm{H}_{\tau}-\mathrm{H}_{11}$ coupling value would require the H_{11} proton to be pscudoaxial, and confirmation of this assignment was obtained from analysis of the cyclized product, 13-methoxydihydro- β-cycloeupatolide (14), ir which the $\mathrm{H}_{\tau}-\mathrm{H}_{11}$ coupling constant is 12.8 Hz . Values of this order were shown to be indicative of an axial-pseudoaxial interaction for eudesmanolide C-6 trans α-methyl-γ-lactones. ${ }^{7}$ Replacement of the α-methyl group with an α-methoxymethylene would not be expected to greatly alter this relationship. The minor dihydro-13methoxyeupatolide epimer 15 exhibited an nmr spectrum similar to that of the major isomer except that the H_{13} proton pattern appeared as two sharp singlets at $\delta 3.91$ and $3.95,{ }^{8}$ and the H_{11} absorption was hidden in an envelope of peaks, consequently its detailed analysis was not possible.
Elimination of methanol as a cosolvent in the alkaline hydrolysis (followed by acidification) of epitulipinolide eliminated the formation of the methanol adducts 13 and 15, but instead two other compounds were obtained. One of these analyzed for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$ and had spectral properties in agreement with structure 16. Acetylation of the diol 16 to the monoacetate 17 followed by dehydration afforded β-cycloisoepitulipinolide (18), identical with the acetate of a product 19 obtained on isomerization by hydrolysis of β-cycloeupatolide (20) ${ }^{2}$ or of β-cycloepitulipinolide (21). This established the

[^88]

20, $\mathrm{R}=\mathrm{H}$
21, $\mathrm{R}=\mathrm{Ac}$

27

23, $R=H$
24, $\mathrm{R}=\mathrm{Ac}$

28
structure and stereochemistry for compound 16 except for the configaration at $\mathrm{C}-4$, which was resolved by utilization of the solvent-induced nmr shift correlations of Demarco, et al. ${ }^{9}$ although the dehydrated product itself could be taken as supporting an equatorial hydroxyl. The nmr spectrum of the hydroxy acetate 17 in pyridine $-d_{5}$ shows the $\mathrm{C}-10$ methyl at $\delta 1.01$, whereas in CDCl_{3} it appears at $\delta 1.09$. Since a deshielding effect did not occur, a 1,3 -diaxial relationship for the C-4 hydroxyl group and the C-10 methyl does not exist, and the hydroxyl group must be equatorial.

The second minor product from the hydrolysis of epitulipinolide (2) analyzed for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$ and showed from the ir spectrum the presence of a hydroxyl, a γ lactone, and e ehylenic groups. The structure 22 bearing a cadinene-ring system was proposed for the compound from nmr studies, and its formation from the hydroxy acid of eupatolide was rationalized as occurring during the lactone closing phase of the reaction (Scheme I). A pair of doublets typical of the exocyclic methyl-

Scheme I

${ }_{+}+$

$$
\mathrm{H}^{+}+\downarrow
$$

ene protons was present at $\delta 6.23$ and 5.75 and found, by double-irradiation experiments, to be coupled ($J=$ 3.2 and 3.0 Hz , respectively) to a proton at $\delta 3.22$ which was assigned position 7. Splitting of the H_{7} pattern was caused by two additional couplings of $J=4.8\left(\mathrm{H}_{6}\right)$

[^89]and $7.2 \mathrm{~Hz}\left(\mathrm{H}_{8}\right)$, values in accord with two equatorialaxial interactions, if the twist of the relevant dihedral angle by the lactone ring is taken into account. The olefinic methyl at $\delta 1.75$ and the one-proton (H_{5}) peak $\left(W_{1 / 2}=5 \mathrm{~Hz}\right)$ at $\delta 5.35$ are related as shown, since irradiation of one causes marked sharpening of the other. The C-10 tertiary hydroxyl group ($\mathrm{D}_{2} \mathrm{O}$ exchangeable sharp singlet at $\delta 1.93$) was placed equatorial because a large deshielding of the H_{8} proton was not observed in the nmr spectrum taken in pyridine- $d_{5} .{ }^{9}$ The uncommon cyclization of a germacranolide to a cadinene, as we have observed, has been previously reported for the simple sesquiterpene hydrocarbon, bicyclogermacrene, ${ }^{10}$ but not to our knowledge for a germacranolide lactone.

It is of note that none of the products from hydrolysis of cpitulipinotide (2) is the C-8 cis lactone, isoeupatolide. On the other hand, the hydrolysis of tulipinolide (1) does yield deacetylisotulipinolide (23), a $\mathrm{C}-8$ trans lactone. An unusual feature of the nmr spectrum of this compound is the presence of a broad singlet ($W_{1 / 2}$ $=6 \mathrm{~Hz})$ at $\delta 6.19$ for the H_{13} proton situated trans to the lactone and is probably due to long-range coupling to H_{6} or H_{8}, or both. The other H_{13} proton appears at $\delta 6.38$ as a pair of doublets, $J=2.8$ and 1 Hz . The latter value is the characteristic geminal coupling commonly noted for the $\mathrm{C}-6$ trans α, β^{\prime}-unsaturated γ lactones, ${ }^{11}$ which appears to hold in this case for an α-C-8 trans α, β^{\prime}-unsaturated γ-lactone with $\mathrm{C}-6 \alpha-\mathrm{OH}$. Acetylation of 23 to isotulipinolide (24) restored the exocyclic methylene proton pattern to a pair of double doublets. ${ }^{12}$ After this study was completed, a communication appeared on the isolation of a substance named laurenobiolide from Laurus nobilis L. ${ }^{13}$ which has the same constitution as isotulipinolide (24). A comparison of the nmr and ir spectra and tle mobility of the two substances showed them to be identical.

Deacetylisotulipinolide (23) was obtained in low yields in another way: from eupatolide methanesulfonate (25) by inversion of the C-8 center on treatment with potassium hydroxide. The other product of the reaction was eupatolide. Attempts to obtain deacetyltulipinolide (26) by sodium borohydride reduction of dehydroeupatolide ${ }^{2}$ (27) were unsuccessful; the products were eupatolide, 11,13-dihydroeupatolide, and what was tentatively identified from the nmr spectrum as 11,13-dihydrodehydroeupatolide.
(10) K. Nishimura, N. Shinoda, and Y. Hirose, Tetrahedron Lett., 3097 (1969).
(11) H. Yoshioka. T. J. Mabry, M. A. Irwin, T. A. Geissman, and Z Samek, Tetrahedron, 27, 3317 (1971).
(12) Although geminal coupling does not appear to be common for C-6 α-oxygenated, C-8 α-germacranolides (ref 11), it does occur in some cases, e.g., pyrethrosin (i), where the exocyclic methylenes are found at $\delta_{\mathrm{CDCl}_{3}} 6.37$ $(J=3.0,0.8 \mathrm{~Hz})$ and $5.93(J=2.6,0.8 \mathrm{~Hz})$.

i
X-Ray studies on pyrethrosin were reported by E. J. Gabe, S. Neidle, D. Rogers, and C. E. Nordman, Chem. Commun., 559 (1971), and chemical studies by S. Iriuchijima and S. Tamura, Agr. Biol. Chem. (Tokyo`, 34, 204 (1970): R. W. Doskotch, F. S. El-Feraly and C. D. Hufford, Can. J. Chem., 49, 2103 (1971), and references cited therein.
(13) H. Tada and K. Takeda, Chem. Commun., 1391 (1971). We thank Dr. Tada for the copies of the ir and nmr spectra and the sample of laurenobiolide.

Experimental Section ${ }^{14}$

Dihydrotulipinolide (3).-An $80-\mathrm{mg}$ sample of tulipinolide (1) suspended in 4 ml of absolute EtOH was treated with 20 mg of NaBH_{4}. When the suspension cleared (10 min) the acidified ($10 \% \mathrm{HOAc}$) solution was evaporated at reduced pressure and the residue was dissolved in chloroform. The chloroform solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the crystalline residue remaining after solvent removal crystallized from n-hexane to give 3 as needles (57 mg): $\mathrm{mp} 120-122^{\circ} ; ~[\alpha]^{22} \mathrm{D}+45^{\circ}$ (c $0.056, \mathrm{MeOH}) ; \mathrm{CD}(\mathrm{c} 0.056, \mathrm{MeOH}), 22^{\circ},[\theta]_{220}+141,000$; uv end absorption 210 nm ($\log \epsilon 3.93$); ir 1770 (γ-lactone), 1740 (acetate), 1660 (olefin) and $1240 \mathrm{~cm}^{-1}$ (CO stretching); mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 292$ (0.4), 250 (1.2), 232 (33), 121 (68), 93 (68), and 43 (100). ${ }^{15}$
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}: \mathrm{C}, 69.83 ; \mathrm{H}, 8.27$. Found: C , 69.61 ; H, 8.16.

The physical properties of 3 were very close to those of acetylbalchanolide [lit. ${ }^{4} \mathrm{mp} 125^{\circ},[\alpha]^{20} \mathrm{D}+128.1^{\circ}\left(c 3.38, \mathrm{CHCl}_{3}\right)$], and the ir spectra were the same. ${ }^{5}$
Dihydroepitulipinolide (4).-A $100-\mathrm{mg}$ sample of epitulipinolide (2) in 5 ml of absolute EtOH was treated with 30 mg of NaBH_{4}. After 15 min the acidified $(10 \% \mathrm{HOAc})$ solution was evaporated at reduced pressure to remove the EtOH ; the residue was taken up in CHCl_{3}, washed with $\mathrm{H}_{2} \mathrm{O}$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to dryness. The colorless residue was chromatographed on 7 g of silica gel G to give an oil (8 5 mg) that crystallized from diethyl ether-pentane as needles (59 mg): mp 102$103^{\circ},[\alpha]^{22} \mathrm{D}+135^{\circ}$ (c 0.048, MeOH); CD (c 0.048, MeOH), $22^{\circ},[\theta]_{220}+162,000$; uv end absorption 220 nm (log $\epsilon 3.50$); ir $1770,1740,1670,1240$ and $965 \mathrm{~cm}^{-1} ; R_{\mathrm{f}} 0.5$ on tlc (silica gel G) with $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ ($1: 1$); mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 292$ (0.5), $250(0.9), 232(36), 121$ (42), 93 (46) and 43 (100).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}: \mathrm{C}, 69.83 ; \mathrm{H}, 8.27$. Found: C , 69.62; H, 8.30.

Catalytic Hydrogenation of Epitulipinolide (2).-A sample (100 mg) of 2 dissolved in 20 ml of absolute EtOH was reduced over 20 mg of $5 \% \mathrm{Pd} / \mathrm{C}$ presaturated with hydrogen at ambient temperature and atmospheric pressure. Two moles of hydrogen was rapidly absorbed and uptake ceased. The residue, after removal of catalyst and solvent, crystallized (33 mg) from ether: $\mathrm{mp} 147-148^{\circ} ;[\alpha]^{22} \mathrm{D}-218^{\circ}$ (c 0.070, MeOH); CD (c 0.070, $\mathrm{MeOH}) 22^{\circ},[\theta]_{225}+1030$; ir 1770 (γ-lactone), 1735 (acetate), and $1235 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}$ stretching); mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 294$ (2), 252 (11), 234 (16), 161 (38), and 43 (100).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}$: C, $69.36 \mathrm{H}, 8.90$. Found: C , $69.29 \mathrm{H}, 8.70$.

Structure 5 is proposed on the basis of the physical data, in particular the nmr spectrum.

Cyclization of Dihydroepitulipinolide (4).-A sample (70 mg) of 4 in 4 ml of CHCl_{3} was treated with 0.2 ml of SOCl_{2} for 30 min at room temperature. The residue remaining, after evaporation of the reaction mixture, was chromatographed on 5 g of silica gel G containing $10 \% \mathrm{AgNO}_{3}$ with $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (5:1) as eluting solvent. Fractions (4 ml) were collected. The α-cyclo isomer 9 emerged first and was crystallized from n-hexane to give colorless plates (15 mg): mp 102-104 ${ }^{\circ} ;[\alpha]^{22} \mathrm{D}-36^{\circ}(c 0.19, \mathrm{MeOH})$; ir 1775,1740 , and $1245 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 292$ (35), 232 (58), 217 (81), 108 (77), and 43 (100).
(14) Melting points were taken in capillaries on a Thomas-Hoover apparatus or on a Fisher-Johns hot stage, and are uncorrected. Elemental analyses were by Dr. Alfred Bernhardt, Germany, or the Scandinavian Microanalytical Laboratory, Denmark. Infrared spectra were taken in CHCl_{a} or in KIBr pellets on a Perkin-Elmer Model 237 or 257 spectrophotometer and ultraviolet spectra were obtained in $\mathrm{CH}_{3} \mathrm{OH}$ on a Cary Model 15 spectrophotometer. The nmr spectra were measured in CDCl_{3} or as stated otherwise on a Varian A-60A or T-60 instrument with $\left(\mathrm{CH}_{8}\right)_{4} \mathrm{Si}$ as internal standard, and chemical shifts are reported in δ (parts per million) units. The ORD, CD, and optical rotation values were determined on a Jasco ORD/UV-5 spectropolarimeter with CD attachment. Mass spectra were obtained on an AEI MS-9 double focusing instrument and samples were introduced via the direct inlet probe. Thin layer chromatography (tlc) was performed on silica gel G (Merck) with detection by iodine vapor or spraying with $0.3 \% \mathrm{KMnO}$ solution. Plates incorporating AgNO_{8} were poured as a slurry with the per cent (w/w) of complexing agent indicated. Columns poured with such adsorbents were made from the powdered (through 100 mesh), dried (110°) slurries prepared for the plates and continuously protected from light.
(15) For the mass spectral data we are grateful to Dr. R. L. Foltz of Battelle Memorial Institute, which was made possible by the National Institutes of Health Contract No. NIH-71-2483, and to Mr. R. Weisenberger of our Chemistry Department for results from their instrument.

Dihydro- β-cycloepitulipinolide (7) was eluted next and crystallized from n-pentane as needles (12 mg), $\mathrm{mp} 84-85^{\circ}$, and showed identical ir and nmr spectra with a sample of the same substance produced by another route. ${ }^{2}$
Cyclization of Dihydrotulipinolide (3).-A 77-mg sample of 3 was cyclized and the products were separated in a manner given for dihydroepitulipinolide (4). Dihydro- α-cyclotulipinolide (8 , 11 mg) was crystallized from n-hexane: mp 95-97; $[\alpha]^{22} \mathrm{D}$ $+552^{\circ}(c 0.038, \mathrm{MeOH})$; ir 1775,1740 , and $1240 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 292$ (8), 232 (100), 217 (39), 136 (50), and 43 (49).

Dihydro- β-cyclotulipinolide ($6,17 \mathrm{mg}$), mp 139-141 ${ }^{\circ}$, crystallized from isopropyl ether- n-hexane and was identical (melting point, ir, and nmr) with the same compound produced by a different route. ${ }^{2}$

Dihydro- γ-cycloepitulipinolide (10).- γ-Cyclotulipinolide ${ }^{2}$ (46 mg) dissolved in 2 ml of absolute EtOH was treated with 12 mg of NaBH_{4} for 10 min at room temperature. After acidification with 10% HOAc and evaporation of solvent, the CHCl_{3} solution of the residue was washed with water and evaporated to dryness. The solid crystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ as fine white needles (33 mg): mp 114-115 ${ }^{\circ}$; $[\alpha]^{22} \mathrm{D}-14^{\circ}\left(c 0.036, \mathrm{MeC} \mathrm{C}^{\circ}\right)$; ir 1775 , 1740 , and $1245 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) M^{+} 292 (28), 232 (68), 217 (94), 188 (86), and 173 (96).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 69.83; H, \&.27. Found: C, 70.18; H, 8.35.

Dihydroeupatolide (Deacetyldihydroepitulipinolide) (12).Eupatolide (deacetylepitulipinolide) ($11,60 \mathrm{mg}$) was suspended in 2 ml of absolute EtOH and treated, while stirring, with 20 mg of NaBH_{4}. After 10 min , the clear solution was worked up as reported for dihydrotulipinolide. Crystallization from benzene gave 42 mg of dihydroeupatolide (12) as colorless needles: mp $184-187^{\circ} ;[\alpha]^{22} \mathrm{D}+215^{\circ}(c 0.070, \mathrm{MeOH})$; ir $3605,3460,1760$, and $1665 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$: $\mathrm{C}, 71.97 \mathrm{H}, 8.86$. Found: C, $72.24 \mathrm{H}, 9.01$.
Catalytic hydrogenation (Pd on C) of eupatolide gave the same dihydroeupatolide but in much lower yield.

The acetate of dihydroeupatolide made by $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine treatment was identical (melting point, ir, and rmr) with dihydroepitulipinolide (4).

Hydrolysis of Epitulipinolide (11) in Aqueous MeOH .- A $3-\mathrm{g}$ sample of epitulipinolide dissolved in 120 ml of MeOH was stirred and treated with $480 \mathrm{ml}(3 \mathrm{~g})$ of aqueous KOH . After 2 days at room temperature, the acidified solution was evaporated to remove MeOH , saturated with NaCl and extracted with $3 \times$ 300 ml of CHCl_{3}. The CHCl_{3} solution was extracted with 1% NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to dryness. The residue (2.6 g) gave from isopropyl ether 1.47 g cf eupatolide, ${ }^{2}$ mp 186-188 ${ }^{\circ}$.

Chromatography of 470 mg of the mother liquor residue, which showed two spots ($R_{\mathrm{f}} 0.8$ and 0.5) on tle [silica gel G, EtOH$\mathrm{Et}_{2} \mathrm{O}$ (1:100)], on 21 g of silica gel G with $1 \% \mathrm{EtOH}$ in $\mathrm{Et}_{2} \mathrm{O}$ as solvent gave 123 mg of $(11 R)$-13-methoxydihydroeupatolide (13), identical with the product obtained when epitulipinolide (2) was treated with $\mathrm{NaOCH}_{3} .{ }^{2}$ Later column factions gave an oil (90 mg), which yielded from isopropyl ether-EtOH 46 mg of (11S)-13 methoxydihydroeupatolide (15): mp 98-99 ; mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 280$ (6), 262 (14), 235 (16), 217 (100), and 45 (36).

Cyclization of (11R)-13-Methoxydihydroeupatolide (13).-A $400-\mathrm{mg}$ sample of 13 in 50 ml of CHCl_{3} containing 0.2 ml of SOCl_{2} was stirred for 30 min at room temperature. Evaporation of the solvent left a residue from which 240 mg of a crystalline mixture was deposited from isopropyl ether. Chromatography of the mixture on 14 g of silica gel G containing $5 \% \mathrm{AgNO}_{3}$ with $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave from the first eluted fraction (66 mg) ($11 R$)13 -methoxydihydro- α-cycloeupatolide (44 mg , isopropyl etherCHCl_{3}): mp $146-148^{\circ}$; mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 280$ (25), 217 (50), and 45 (100); nmr $\delta 5.35$ ($\mathrm{br} \mathrm{m}, \mathrm{H}_{3}$) and 1.84 (br, C-4 Me). The second column fraction (135 mg) yielded from the same solvent system the β isomer $14(111 \mathrm{mg}): \mathrm{mp}$ $173-174^{\circ} ;[\alpha]^{22} \mathrm{D}+94^{\circ}$ (c 0.072, MeOH); ir 3610, 1770, and $1655 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 68.54; $\mathrm{H}, 8.63$. Found: C, 68.53; H, 8.65 .
Hydrolysis of Epitulipinolide (2) in $\mathrm{H}_{2} \mathrm{O}$.-A E -g sample of 2 was stirred in 1 l. of 0.28 NKOH for 48 hr at room temperature. After acidification to pH 3 with $1 \mathrm{NH}_{2} \mathrm{SO}_{4}$, saturation with NaCl , and stirring for 2 hr , the solution was extracted with four $900-\mathrm{ml}$
portions of CHCl_{3}. The combined CHCl_{3} extract was washed with $5 \% \mathrm{NaHCO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and cvaporated to dryness. The 4.2 g residue was crystallized from isopropyl ether to give 2.34 g of eupatolide (11). ${ }^{2}$

Chromatography of the mother liquor residue on 64 g of silica gel G with ether as eluent gave a fraction (211 mg) that was still a mixture (nmr). Elution with EtOAc gave a fraction (174 mg) that crystallized from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ to give the lactone diol 16 (100 mg): mp 196-197${ }^{\circ}$; $[\alpha]^{22} \mathrm{D}+15^{\circ}$ (c $0.092, \mathrm{MeOH}$); ir $3580,3400,1760$, and $1665 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$: $\dot{\mathrm{C}}, 67.64 ; \mathrm{H}, 8.33$. Found: C, 67.45; H, 8.29.
Rechromatography of the first-eluted fraction $(211 \mathrm{mg})$ on 15 g of silica gel G impregnated with $10 \% \mathrm{AgNO}_{3}$ and elution with EtOAc gave a crystalline fraction that on recrystallization from $\mathrm{Et}_{2} \mathrm{O}$-benzene yielded the cadinene $22(80 \mathrm{mg})$: mp 137-138 ; $[\alpha]^{22} \mathrm{D}+36^{\circ}$ (c $1.078, \mathrm{MeOH}$); ir 3680, 3450, 1760 and 1660 cm^{-1}; mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 248$ (2), 230 (8), 139 (70), 94 (100 , and 95 (91).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C, $72.55 ; \mathrm{H}, 8.12$. Found: C, $72.57 \mathrm{H}, 7.95$.
Acetylation of Lactone Diol 16.-Compound 16 (50 mg) was treated with 1 ml of pyridine and 0.4 ml of $\mathrm{Ac}_{2} \mathrm{O}$ at 40° for 40 hr . Work-up of the reaction in the usual manner gave a residue that yielded 29 mg of the monoacetate 17 from EtOH-hexane: mp $133-134^{\circ} ;[\alpha]^{22} \mathrm{D}+46^{\circ}$ (c 0.076, MeOH); ir 3590 (sharp), 1770, 1735 (sh, d), and 1670.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 66.21; H, 7.85. Found: C, 65.84; H, 7.84.
Dehydration of Acetate 17.-The monoacetate $17(12 \mathrm{mg})$ was dissolved in 1 ml of dry pyridine, cooled at 5°, and treated with 0.1 ml of SOCl_{2} for 10 min . The solution was diluted with water, CHCl_{3} was added, and the organic layer was washed with dilute acid, bas ϵ, and $\mathrm{H}_{2} \mathrm{O}$. The crystalline residue (13 mg) from the CHCl_{3} solution gave 4 mg of β-cycloisoepitulipinolide (18) from benzene-pentane as colorless needles, mp 193-194 ${ }^{\circ}$, identical (mixture melting point, ir, and nmr) with a sample of the same compound prepared from β-cycloepitulipinolide (21) or β-cycloeupatolide (20).

Hydrolysis of β-Cycloepitulipinolide (20).-A $60-\mathrm{mg}$ sample of β-cycloepitulipinolide (21) ${ }^{2}$ was stirred in 10 ml of 0.33 N KOH for 25 hr at room temperature. The clear solution was acidified (1 N HCl) and extracted with $3 \times 10 \mathrm{ml}$ of CHCl_{3}. The extract was washed with $1 \% \mathrm{NaHCO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to leave a residue (14 mg) of deacetyl- β-cycloisoepitulipinolide (19). Acetylation with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine at room temperature for 50 hr gave β-cycloisoepitulipinolide (18), which was crystallized from benzene-pentane to give 6 mg of product: $\mathrm{mp} 193-194^{\circ} ;[\alpha]^{22} \mathrm{D}+168^{\circ}(c 0.086, \mathrm{MeOH})$; ir 1765,1740 , and $1650 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$: C, 70.32; $\mathrm{H}, 7.64$. Found: $\mathrm{C}, 70.49$; H, 7.72.
From the bica-bonate extract after acidification was isolated a crystalline residue (45 mg) that on recrystallization from EtOHpentane yielded 21 mg of hydroxy acid 28: mp 174°; $[\alpha]^{22} \mathrm{D}$ $-49^{\circ}(c 0.036, \mathrm{MeOH})$; ir (KBr) 3290, 2600 (bonded OH of COOH), 1740 (acetate), 1675 (unsaturated acid), 1650 , and 1630 cm^{-1}; mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 308$ (absent), 290 (4), 248 (8), 230 (23), 161 (24), and 43 (100).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 66.21; H, 7.85. Found: C, 65.72; H, 7.80.
Isomerization of β-Cycloeupatolide (20).-A $317-\mathrm{mg}$ sample of lactone 20 was stirred in 48 ml of aqueous $\mathrm{KOH}(640 \mathrm{mg}$) solution for 2 hr at room temperature. The clear solution was acidified ($1 N \mathrm{HCl}$) and extracted with $3 \times 10 \mathrm{ml}$ of CHCl_{3}. The crystalline residue from CHCl_{3} was dissolved in 3 ml of absolute $\mathrm{EtOH}, 1$ drop of 1 NHCl was added, and the contents were left overnight at room temperature for relactonization. The residue on removal of EtOH was recrystallized twice from $\mathrm{Et}_{2} \mathrm{O}$-hexane to give 202 mg of β-cycloisoeupatolide (19): mp $147-148^{\circ}$; $[\alpha]^{22} \mathrm{D}+143^{\circ}$ (c $0.15, \mathrm{MeOH}$); ir 3590, 3500, 1765, 1670 , and $1648 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: $\mathrm{C}, 72.55 ; \mathrm{H}, 8.12$. Found: C, 72.22; H, 8.17.

Acetylation of β-Cycloisoeupatolide (19).-A $50-\mathrm{mg}$ sample of 19 in 2 ml of dry pyridine was treated with 0.2 ml of $\mathrm{Ac}_{2} \mathrm{O}$ at 40° for 43 hr . Evaporation of the mixture at reduced pressure left a crystalline residue that gave 38 mg of β-cycloisoepitulipinolide (18) from benzene-hexane, that had identical properties [ir,

Kretchmer

nmr, melting point, mixture melting point, and tle nobility ($R_{\mathrm{f}} 0.36$, silica gel G , ether)] as the previously prepared sample.

Isotulipinolide (24).-Tulipinolide ($1,175 \mathrm{mg}$) was suspended in $1 N \mathrm{KOH}$ and warmed for 2 hr on a steam bath. The solution was quickly evaporated, treated with 3 ml HOAc, and evaporated, and the process repeated again. The residue was dissolved in CHCl_{3}, extracted with $5 \% \mathrm{NaHCO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to leave a $50-\mathrm{mg}$ residue. Chromatography of the residue over 4 g of silica gel G with $\mathrm{CHCl}_{3}-$ $\mathrm{Et}_{2} \mathrm{O}(1: 1)$ as eluting solvent gave 27 mg of an oil that was one spot on tle and was formulated as desacetylisotulipinolide (23): $[\alpha]^{22} \mathrm{D}+130^{\circ}$ (c 0.054, MeOH); ir 3610, 3460, 1760, and 1660 cm^{-1}; mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 248.1417$ (3.5) $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}\right.$ calcd 248.1412), 230 (3), 108 (13), 84 (36), and 18 (100).

Acetylation of desacetylisotulipinolide (23, 27 mg) with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine at room temperature for 20 hr gave a residue that after chromatography on silica gel G using $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (20:1) as eluting solvent gave 15 mg of an oil that was one spot on tlc and was formulated as isotulipinolide (24): $[\alpha]^{22} \mathrm{D}+36$ (c $0.056, \mathrm{MeOH}$), ir $1760,1735,1660$, and $1250 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) $\mathrm{M}^{+} 290.1507(0.6)\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}\right.$ calcd 290.1518), 230 (5), 107 (14), 84 (50), and 43 (100). A comparison (ir, nmr, and tle) of this material with laurenobiolide ${ }^{18}$ showed them to be the same.
Eupatolide Methanesulfonate (25).-A $500-\mathrm{mg}$ sample of eupatolide (11) dissolved in 4 ml of pyridine and cooled in an ice bath was treated with 0.3 ml of $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$. After 17 hr the solution was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3} and the CHCl_{3} extract was washed with $1 \% \mathrm{HCl}$ and $\mathrm{H}_{2} \mathrm{O}$. The CHCl_{3}-soluble residue was crystallized from EtOH -isopropyl ether to give 412 mg of eupatolide methanesulfonate (25): mp $112-113^{\circ}$; ir 1770, 1670,1350 , and $1175 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}$: C, $58.88 \mathrm{H}, 6.80 \mathrm{~S}, 9.81$. Found: C, $58.57 \mathrm{H}, 6.93 \mathrm{~S}, 9.68$.

Treatment of Eupatolide Methanesulfonate (25) with KOH.A $400-\mathrm{mg}$ sample of 25 was stirred with 8 ml of EtOH , and 72 ml of $0.4 N \mathrm{KOH}$ was added. After 24 hr at room temperature, the reaction solution was acidified with dilute HOAc, saturated with NaCl , and extracted with ether. The ether extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to leave 243 mg of an oily residue. Chromatography of the oil was on 15 g of silica gel G with $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (1:1) as eluting agent. Early fractions gave 37 mg of deacetylisotulipinolide (23) identical (tle, ir, and nmr) with the product of alkaline hydrolysis of tulipinolide (1). Later fractions contained eupatolide (11).

Reduction of Dehydroeupatolide (27). -To a solution of dehydroeupatolide ${ }^{2}(100 \mathrm{mg})$ in 7 ml of $i-\mathrm{PrOH}$ at 40° was added 6 mg of NaBH_{4}. After 10 min the solution was acidified with dilute HOAc , diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with ether. The ether-soluble residue (95 mg) showed three spots on tlc. Separation of these substances was accomplished on 5 g of silica gel G using $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}(1: 1)$ as solvent system. Two products were identified as eupatolide (11) and dihydroeupatolide (12), while the third from spectral evidence appeared to be 11,13dihydrodehydroeupatolide, but deacetyltulipinolide (26) was not detected.

Registry No.-1, 24164-12-3; 2, 24164-13-4; 3, 35001-07-1; 4, 35001-08-2; 5, 35001-09-3; 6, 24164-$20-3$; 7, 24165-31-9; 8, 35001-12-8; 9, 35001-13-9; $10,35001-14-0 ; \quad 12, \quad 35001-16-2 ; \quad 13,35001-15-1$; $14,35001-17-3 ; \quad 15,35001-18-4 ; 16,35001-19-5$; 17, 35001-20-8; 18, 35001-21-9; 19, 35001-22-0; 22, 35001-23-1; 23, 35001-24-2; 24, 35001-25-3; 25, 35001-26-4; 28, 35001-27-5.

1,4 Addition of Organometallic Reagents to α, β-Unsaturated Ketones in the Presence of (-)-Sparteine

Richard A. Kretchmer
Department of Chemistry, Illirois Institute of Technology, Chicago, Illinois 60616

Received February 22, 1972

Abstract

The reaction of 2-cyclohexenone, 3-penten-2-one, and 1,3-diphenyl-2-propen-1-one with a series of Grignard reagents has been studied in the presence of (- -sparteine (4) and other additives. The resulting conjugate addition products possess an optical purity of $3-6 \%$ and represent the first examples of asymmetric 1,4 addition of achiral organometallic reagents to prochiral α, β-unsaturated ketones. Subsequent reactions of enolate anions initially produced by conjugate addition of the organometallic reagents are discussed. (- -Sparteine is shown to reduce the reactivity of methylmagnesium iodide toward α, β-unsaturated ketones.

The ability of α, β-unsaturated ketones (1) to add Grignard reagents (2a) ${ }^{1}$ and organocopper(I) compounds (2b) ${ }^{2}$ in a 1,4 manner is well documented in

the literature. Recently, it has been shown tiat the course of this reaction can be influenced to some extent by solvent or the ligands attached to the organometallic

[^90]reagent. ${ }^{2 b, c}$ In view of this, we have examined the reaction of some α, β-unsaturated ketones with Grignard reagents in the presence of (-)-sparteine (4). The

4
results, indicated in Tables I and II, represent the first examples of asymmetric 1,4 addition of achiral organometallic reagents to prochiral α, β-unsaturated ketones.

The most apparent effect of an equimolar amount of (- -sparteine (4) on an ether solution of methylmagnesium iodide is a drastic reduction of reactivity toward the enone substrates (Table I). Both 2-cyclohexenone and 1,3-diphenyl-2-propen-1-one were recovered unchanged after exposure to this reagent system for over 1 hr at room temperature. Enolization

Table I
1,4 Addition of Grignard Reagents to α, β-Unsaturated Ketones in the Presence of Various Additives

Run	Organometallic ($\mathrm{mol} \%)^{a}$	Additive (mol \%)	Substrate	Product	Time, $h r^{b}$	Solvent	Yield, $\%{ }^{c}$	Substrate recovery, $\%^{c}$
1	$\mathrm{CH}_{3} \mathrm{MgI}$ (124)	Sparteine (124)	2-Cyclohexenone	3-Methylcyclohexanone	1	$\mathrm{Et}_{2} \mathrm{O}$	$<1^{\text {d }}$	38
2	$\mathrm{CH}_{3} \mathrm{MgI}$ (125)	Sparteine (125)	2-Cyclohexenone	3-Methylcyclohexanone	$18{ }^{\text {e }}$	Benzene	<1	$<1^{\prime}$
3	$\mathrm{CH}_{3} \mathrm{MgI}$ (100)	$\begin{aligned} & \text { Sparteine (200) } \\ & +\mathrm{CuCl}(99) \end{aligned}$	2-Cyclohexenone	3-Methylcyclohexanone	0.50	$\mathrm{Et}_{2} \mathrm{O}$	17	2^{\prime}
4	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$ (124)	$\begin{aligned} & \text { Sparteine (221) } \\ & \quad+\mathrm{CuCl}(110) \end{aligned}$	2-Cyclohexenone	3-Phenylcyclohexanone	1	$\mathrm{Et}_{2} \mathrm{O}$	17	f
5	$\mathrm{CH}_{3} \mathrm{MgI}$ (156)	None	1,3-Diphenyl-2-propen-1-one	1,3-Diphenyl-3-methyl- 1-propanone	0.5	$\mathrm{Et}_{2} \mathrm{O}$	39	f
6	$\mathrm{CH}_{3} \mathrm{MgI}$ (155)	Sparteine (170)	$\begin{gathered} \text { 1,3-Diphenyl-2- } \\ \text { propen-1-one } \end{gathered}$	1,3-Diphenyl-3-methyl- 1-propanone	1.5	$\mathrm{Et}_{2} \mathrm{O}$		100
7	$\mathrm{CH}_{3} \mathrm{MgI}$ (120)	Sparteine (120)	1,3-Diphenyl-2-propen-1-one	1,3-Diphenyl-3-methyl- 1-propanone	16^{e}	Benzene	45	$<1{ }^{\prime}$
8	$\mathrm{CH}_{3} \mathrm{MgI}$ (124)	$\begin{array}{r} \text { Sparteine (260) } \\ + \text { CuI (131) } \end{array}$	1,3-Diphenyl-2-propen-1-one	1,3-Diphenyl-3-methyl- 1-propanone	1	$\mathrm{Et}_{2} \mathrm{O}$	$7{ }^{\text {d }}$	$25^{\text {d, }}$
9	$\mathrm{CH}_{3} \mathrm{MgI}$ (125)	$\begin{aligned} & \text { Sparteine (249) } \\ & \quad+\mathrm{CuCl}(130) \end{aligned}$	1,3-Diphenyl-2-propen-1-one	1,3-Diphenyl-3-methyl- 1-propanone	1	$\mathrm{Et}_{2} \mathrm{O}$	$50(64)^{\text {d }}$	
10	$\mathrm{CH}_{3} \mathrm{MgI}$ (140)	$\begin{array}{r} \text { Sparteine (281) } \\ +\mathrm{LiCl}(136) \end{array}$	1,3-Diphenyl-2-propen-1-one	1,3-Diphenyl-3-methyl- 1-propanone	1.5	$\mathrm{Et}_{2} \mathrm{O}$	<1	80
11	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{MgBr}$ (124)	$\begin{aligned} & \text { Sparteine (250) } \\ & \quad+\mathrm{CuCl}(131) \end{aligned}$	3-Penten-2-one	4-Methyl-2-hexanone	$0.5{ }^{\circ}$	$\mathrm{Et}_{2} \mathrm{O}$	10	$5^{\text {f,h}}$

${ }^{a}$ Mole per cent of Grignard reagent calculated on the basis of the amount of magnesium employed. ${ }^{b}$ At room temperature unless otherwise indicated. ${ }^{c}$ Isolated yield unless otherwise indicated. ${ }^{d}$ Determined by nmr. e At reflux temperature. J Uncharacterized higher molecular weight material was formed in this reaction. © At ice-bath temperature. ${ }^{n} 4$-Methyl-3-sec-butyl-2,6-heptanedione was obtained in 27% yield.

Table II
Optical Activity of Products Resulting from 1,4 Addition of Organometallic Reagents to α, β-Unsaturated Ketones in the Presence of (-)-Sparteine

Registry no.	Runa	Product	${ }^{[\alpha]}{ }^{25}{ }_{\text {D }}$	Configuration	Optical purity, \%
13368-65-5	3	3-Methylcy clohexanone ${ }^{\text {b }}$	$+0.91{ }^{\text {c }}$	Rd	$6.3{ }^{\text {e }}$
34993-51-6	4	3-Phenylcy ${ }^{\text {a }}$ lohexanone ${ }^{\text {b }}$	+0.12 ${ }^{\text {f }}$	Ro	
20698-96-8	7	1,3-Diphen-yl-3-methyl-1-propanone ${ }^{h}$	-0.38	$\mathrm{R}^{\text {i }}$	$3.1{ }^{\text {i }}$
	9	1,3-Diphenyl-3-methyl-1-propanone ${ }^{h}$	$-0.61{ }^{\text {i }}$	R ${ }^{\text {i }}$	$5.0{ }^{\text {i }}$
1731-00-6	11	4-Methyl-2-hexanone ${ }^{\text {b }}$	+0.36	$\mathbf{S}^{\boldsymbol{k}}$	$4.6{ }^{\text {k }}$
34994-54-9	11	4-Methyl-3-sec-butyl-2,6-heptanedione	+1.04		

${ }^{a}$ Numbering identical with that used in Table I. ${ }^{b}$ Purified by preparative gas chromatography on a $15 \mathrm{ft} \times 0.25 \mathrm{in}$. column packed with 10% silicon QF-1 on Chromosorb P. ${ }^{c} \mathrm{CHCl}_{3}$ sclution, c 2.14 . ${ }^{d}$ E. J. Eisenbraun and S. M. McElvain, J. Amer. Chem. Soc., 77, 3383 (1955); R. Adams, C. M. Smith, and S. Loewe, ibid., 64, 2087 (1942). e Optically pure (R)-3-methylcyclohexanene has [$\alpha]^{25} \mathrm{D}$ $+14.35^{\circ}\left(\approx 9.674, \mathrm{CHCl}_{3}\right)$. ${ }^{\prime} \mathrm{CHCl}_{3}$ solution, c 16.30 . ${ }^{\circ}$ Assigned on the basis of a positive Cotton effect in ethanol. ${ }^{\wedge}$ Purified by preparative gas chromatography on a $5 \mathrm{ft} \times 0.25 \mathrm{in}$. cclumn packed with 15% silicone SF- 96 on Chromosorb P. i J. H. Brewster and M. W. Kline, J. Amer. Chem. Soc., 74, 5179 (1952). ${ }^{i} \mathrm{CCl}_{4}$ solution. ${ }^{k}$ C. Djerassi and L. E. Geller, J. Amer. Chem. Soc., 81,2789 (1959).
does not appear to be responsible for this recovery of starting material, since 1,3 -diphenyl-2-propen-1-one is incapable of undergoing this type of reaction. These results are not entirely surprising, however, in view of the ability of pyridine and quinoline to surpress the rate of reaction of phenylmagnesium brcmide with benzophenone. ${ }^{3}$ When ether was replaced by benzene as the solvent, reaction did take place between methylmagnesium iodide and 1,3-diphenyl-2-propen-1-onc, after prolonged reflux, to give the conjugate addition product in 45% yield. An attempt to react 2-cyclohexenone with methylmagnesium iodide under these conditions afforded large quantities of nonvclatile, car-bonyl-containing material, but no isolable conjugate addition product.

Alkyl- and arylcopper(I) compounds can be prepared by reaction of the corresponding organomag-

[^91]nesium halide with a copper(I) salt. ${ }^{2 \mathrm{a}, 4}$ Treatment of α, β-unsaturated ketones with these organocopper(I) reagents frequently results in predominant or exclusive 1,4 addition to the enone. ${ }^{2}$ In view of this, $1,3-$ diphenyl-2-propen-1-one was allowed to react with an ether solution of methylmagnesium iodide in the presence of an equimolar amount of cuprous chloride and enough (- -sparteine (4) to chelate all of the metal atoms present. Under these conditions, a 64% yield of conjugate addition product was obtained. A control experiment utilizing lithium chloride in place of cuprous chloride resulted in recovery of starting material and suggests that methylmagnesium chloride, which could be obtained by simple halogen exchange, is not responsible for the observed conjugate addition. Lack of reactivity by the Grignard-sparteine system in the absence of cuprous chloride makes it appear likely that the reactive intermediate contains copper. It
(4) H. Gilman and J. M. Straley, Recl. Trav. Chim. Pays-Bas, 55, 821 (1936); (b) G. Costa, A. Camus, L. Gatti, and N. Marsich, J. Organometal. Chem., 8, 568 (1966).
is also noteworthy that cuprous iodide was an unsatisfactory substitute for cuprous chloride and resulted primarily in conversion of 1,3-diphenyl-2-propen-1one to uncharacterized, high molecular weight, car-bonyl-containing material. This seems to further imply that halide ion exerts some control over the intermediates reactivity and must also be included in its description.

Reaction of other α, β-unsaturated ketones with the reagent systems obtained by addition of (-)-sparteine (4) and cuprous chloride to ether solutions of various Grignard reagents resulted in the successful production of additional conjugate addition products, although in low yield (Table I). The formation of high molecular weight, carbonyl-containing material represented the major reaction in most cases. This is unfortunate but not without precedent, and appears to be a function of the ligands present. ${ }^{2 c}$ These high molecular weight by-products appear to result from Michael addition of enolate anion 3 to a molecule of starting material 1 to give a new enolate anion 5, which could undergo further reaction with excess enone 1 or organometallic reagent 2. Alternatively, hydrolysis of 5 would afford 1,5-diketone 6. ${ }^{5}$ Thispr ocess was substantiated for the reaction of 3 -penten-2-one with ethylmagnesium bromide in the presence of (- -sparteine (4) and CuCl (Table I). A major product (27%) of this reaction was

4-methyl-3-sec-butyl-2,6-heptanedione (6, $\mathrm{R}=\mathrm{CH}_{3}$; $R^{\prime}=\mathrm{C}_{2} \mathrm{H}_{5}$). The unenolized ketone carbonyl of 5 would not be expected to survive an ordinary Grignard reaction. In this example, however, the organometallic reagent present is presumably either largely or exclusively a copper(I) derivative. The lack of reactivity by organocopper(I) reagents toward carbonyl groups is well documented. ${ }^{2 b}$ In the event of incomplete conversion of Grignard reagent to the corresponding organocopper(I) derivative, the lack of reactivity by methylmagnesium iodide in the presence of an equimolar amount of (-)-sparteine (4) (Table I) makes the survival of the unenolized carbonyl group of 5 unsurprising. In this context, it should be noted that no hydroxyl-containing products were observed in the series of experiments utilizing CuCl and (-)-sparteine (4). It appears, therefore, that in the presence of diamine 4, Michael reaction of the initially formed enolate anion 3 can compete effectively with conjugate addition by the organometallic reagent.

Without exception, the conjugate addition products obtained by reaction in the presence of (- -sparteine (4) possessed a low degree of optical activity (Table II). These results require that the optically active diamine 4 be considered in a description of the organometallic intermediate. The asymmetric synthesis can be rationalized most simply as proceeding through the intermediacy of an organometallic-sparteine complex such as 7 , where M may be either mag-

[^92] (1933).
nesium or copper ${ }^{6}$ and L represents a ligand such as chloride ion. This model is also consistent with the

ability of (- -sparteine (4) to reduce the reactivity of methylmagnesium iodide in the absence of added CuCl (Table I). The diamine ring system, folded about the magnesium atom, would be expected to interfere sterically with approach by the enone substrate. Although the mechanism involved in the conjugate addition of organometallic reagents is not well understood, the results reported here are consistent with a transfer of the alkyl or aryl group from the metal to the β carbon of the enone 1 through a transition state which contains (- -sparteine (4) coordinated to the metal atom. Correlation of the absolute configuration ${ }^{8}$ of (- -sparteine (4) with that of the resulting conjugate addition products has not been attempted in view of the low optical yields and lack of definitive mechanistic information.

Experimental Section ${ }^{9}$

Reaction of 3-Penten-2-one with Ethylmagnesium Bromide in the Presence of (-)-Sparteine (4) and Cuprous Chloride.-The following preparation is representative of the general procedure utilized for the reactions carried out in ether solution and summarized in Tables I and II. A solution of ethylmagnesium bromide was prepared under nitrogen by dropwise addition of a solution of $4.8 .50 \mathrm{~g}(0.045 \mathrm{~mol})$ of ethyl bromide in 75 ml of anhydrous ether into a flask containing 0.5986 g (0.037 g -atom) of magnesium turnings over a period of 30 min with mechanical stirring at ice-bath temperature. Stirring was continued at room temperature for an additional 30 min after addition was complete, resulting in complete reaction of the magnesium. The Grignard solution was then cooled at ice-bath temperature, and a solution of $17.426 \mathrm{~g}(0.074 \mathrm{~mol})$ of (- -sparteine (4) [distilled from CaH_{2} prior to use, bp $\left.112.0-116.5^{\circ}(0.45 \mathrm{~mm})\right]$ in 60 ml of anhydrous ether was added, resulting in formation of a white precipitate. Next, $3.860 \mathrm{~g}(0.039 \mathrm{~mol})$ of cuprous chloride was added and the mixture was stirred for 15 min to give a yellow precipitate. To this was added a solution of $2.505 \mathrm{~g}(0.030 \mathrm{~mol})$ of 3-penten-2-one in 75 ml of anhydrous ether dropwise over a period of 20 min with stirring. Stirring was continued at ice-bath temperature for 30 min after addition was complete. The resulting mixture was decomposed with 150 ml of $3 M \mathrm{HCl}$. The ether layer was separated, washed three times with $50-\mathrm{ml}$ portions of $3 M \mathrm{HCl}$ and once with 50 ml of saturated brine, and dried over anhydrous MgSO_{4}. Solvent was removed from the ether extract

[^93] tories, Garden City, Mich.
by distillation through a $10-\mathrm{cm}$ Vigreux column, and the pale yellow, liquid residue was fractionated in vacuo. The first fraction consisted of 0.486 g of colorless liquid, bp $56-58^{\circ}$ (31-43 mm). A second $0.786-\mathrm{g}$ fraction of pale yellow oil, bp $123-141^{\circ}$ ($5.0-7.0 \mathrm{~mm}$), and a third $0.947-\mathrm{g}$ fraction of yellow oil, bp 142-$168^{\circ}(0.4-5.0 \mathrm{~mm})$, were also collected. The low-boiling fraction was shown to contain two components by gas chromatography. ${ }^{10}$ The minor component, identified on the basis of its glpc retention time, consisted of recovered 3 -penten- 2 -one. The major component (66%) was 4 -methylhexan-2-one, which was obtained as a colorless liquid by preparative gas chromatography ${ }^{13}$ ($>99 \%$ pure by glpc), $[\alpha]^{25} \mathrm{D}+0.36^{\circ}\left(c 6.84, \mathrm{CHCl}_{3}\right)$, and identified by spectroscopic comparison with an authentic sample.
A $0.589-\mathrm{g}$ portion of the second distillation fraction was chromatographed on 30.0 g of $60-200$ mesh silica gel. Fractions eluted with $2: 98$ and 5:95 eher-benzene contained 0.424 g of 4-methyl-3-sec-butylheptane-2,6-dione. Short-path distillation (2.4 mm and 117° bath) afforded the analytical sample as a colorless liquid: $[\alpha]^{25} \mathrm{D}+1.04^{\circ}(c 6.46$, hexane); ir (neat) 1709 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$ and $2.07(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{COCH}_{\mathrm{z}}\right)$; mass spectrum (70 eV) m/e $198\left(\mathrm{M}^{+}\right)$

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 72.68; H, 11.18. Found: C, 72.96; H, 11.08 .

The high-boiling distillation fraction showed strong carbonyl absorption at $1709 \mathrm{~cm}^{-1}$ but no hydroxyl absorption in the infrared spectrum. No further attempt was made to characterize this material.
Reaction of 1,3-Diphenyl-2-propen-1-one with Methylmagnesium Iodide in the Presence of (- -Sparteine (4) in Benzene Solution.-The following preparation is representative of the reactions carried out in benzene solution and in the presence of (-)-sparteine (4) which are summarized in Tables I and II. A solution o: methylmagnesium iodide was prepared under nitrogen by dropwise addition of a solution of 4.429 g ($C .031 \mathrm{~mol}$) of methyl iodide in 50 ml of anhydrous ether into a flask containing 0.630 g (0.026 g -atnm) of magnesium turnings over a period of 20 min at ice-bath temperature with magnetic strring. After addition was completed, stirring was continued at room tempera-

[^94] sorb P was employed
ture for an additional 40 min , resulting in complete reaction of the magnesium. A solution of $6.105 \mathrm{~g}(0.026 \mathrm{~mol})$ of (-) sparteine (4) [distilled from CaH_{2} prior to use, bp 119.0-124.0 ($0.75-0.90 \mathrm{~mm}$) in 100 ml of benzene was then added. Ether was removed by distillation through a $10-\mathrm{cm}$ Vigreux column in a nitrogen atmosphere. A total of 86 ml of solvent was distilled with a final distillation temperature of 80.0°. The resulting mixture was cooled to room temperature and a solution of 4.512 g (0.022 mol) of , 3-diphenyl-2-propen-1-one, mp $58.0-58.5^{\circ}$, in 50 ml of benzene was added over a period of 3 min with stirring The mixture was then heated at reflux, under nitrogen, and with stirring for 16 hr . After cooling, the mixture was decomposed with 100 ml of 3 MHCl . The organic layer was separated washed once with 50 ml of 3 M HCl and once with 50 ml of water and dried over anhydrous MgSO_{4}. Concentration in vacuo af forded 4.633 g of amber-colored oil. The principal product, 1,3-diphenyl-3-methylpropan-1-one, was isolated by preparative gas chromatography ${ }^{11}$ as a white solid, mp $68.5-71.0^{\circ},[\alpha]^{25} \mathrm{D}-0.38^{\circ}$ (c $10.78, \mathrm{CCl}_{4}$), and identified by spectroscopic comparison with an authentic sample. Distillation of 3.446 g of the crude product afforded $1.632 \mathrm{~g}(45 \%)$ of amber-colored oil, bp 129-136 ${ }^{\circ}$ (0.20 mm), which crystallized on seeding with the 1,3-diphenyl3 -methylpropan-1-one obtained by preparative gas chromatog raphy, mp 70.0-72.0 ${ }^{\circ}$. The distillation residue showed strong carbonyl absorption at $1677 \mathrm{~cm}^{-1}$ but no hydroxyl absorption in the infrared spectrum (measured in CHCl_{3} solution).

Registry No. 4, 90-39-1; methylmagnesium iodide, 917-64-6; phenylmagnesium bromide, 100-58-3; ethylmagnesium bromide, 925-90-6; 2-cyclohexenone, 930-68-7; 1,3-diphenyl-2-propen-1-one, 91-41-7: 3-penten-2-one, $625-33-2$.

Acknowledgment.-Financial support by the Petroleum Research Fund of the American Chemical Society is gratefully acknowledged.
(11) A $5 \mathrm{ft} \times 0.25 \mathrm{in}$. column packed with 15% silicone SF-96 on Chromo sorb P was employed.

The Reaction of Benzalacetophenone with Methylmagnesium Iodide. A Novel Grignard Reaction

Richard A. Kretchmer

Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616

Received March 10, 1972
The reaction of Grignard reagents with many α, β unsaturated ketones to give exclusive or predominant 1,4 -addition products is well known. ${ }^{1}$ It is less generally recognized, however, that, unless the Grignard reagent is used in large excess, products of high molecular weight are often formed in high yield. ${ }^{2}$ These
(1) (a) M. S. Kharasch and O. Reinmuth, "Grignard Reactions of Nonmetallic Substances," Prentice-Hall, New York, N. Y., 1954, pp 196-234; (b) J. Munch-Petersen, Bull. Soc. Chim. Fr., 471 (1966).
(2) (a) E. P. Kohler and W. D. Peterson, J. Amer. Chem. Soc., 56, 1073 (1933); (b) M. S. Kharasch and D. C. Sayles, ibid., 64, 2972 (1942).
by-products have been regarded as arising from either ketol condensations or from diene polymerizations, ${ }^{19}$ but almost witiout exception they have not been carefully studied. The reaction of methylmagnesium bromide with benzalacetophenone (1) represents an isolated example where such a by-product was examined. This reaction has been reported to afford dienone 2, in addition to β-phenylbutyrophenone (3), the anticipated 1,4-addition product. ${ }^{2 b}$

2

3

We recently had occasion to examine the reaction between 1 and methylmagnesium iodide. A major product (20%) of this reaction had properties consistent with those reported for 2 , but the spectroscopic data
were clearly incompatible with structure 2. ${ }^{3}$ The mass spectrum indicated a molecular weight of 430 , while the nmr contained a methyl doublet at $\delta 1.20$ and a methyl singlet at $\delta 1.67$. In addition, the infrared spectrum failed to confirm the presence of a carbonyl group. The available data appear most consistent with the formulation of this compound as dihydropyran 8. This compound is, presumably, formed through initial 1,4 addition of methylmagnesium iodide to benzalacetophenone (1) to give magnesium enolate 4 (Scheme I). Michael addition of 4 to another mole-

cule of starting material would then afford 1,5 -diketone 5, containing one of the carbonyl groups in enolic form. ${ }^{4}$ The unenolized carbonyl group of 5 would not be expected to survive in the presence of excess methylmagnesium iodide, and subsequent reaction should afford 6. Hydrolysis of 6 would give hydroxy ketone 7 , which under acidic conditions would be expected to cyclize and dehydrate to give $8 .{ }^{5}$

The formation of 8 , under these conditions, indicates that magnesium enolate 4 is able to compete favorably with Grignard reagent for unreacted enone 1. Utilization of a large excess of Grignard reagent in this reaction would obviously act to surpress the Michael reaction responsible for formation of 5. It is interesting to speculate that a process similar to that of Scheme I may be responsible for the high molecular weight byproducts obtained in the Grignard reactions of other α, β-unsaturated ketones.

Experimental Section ${ }^{6}$

Reaction of Methylmagnesium Iodide with Benzalacetophe-none.-A solution of methylmagnesium iodide was prepared under

[^95]nitrogen by dropwise addition of a solution of $4.136 \mathrm{~g}(0.0291 \mathrm{~mol})$ of methyl iodide in 50 mll of anhydrous ether into a flask containing 0.590 g (0.0243 g -atom) of magnesium turnings over a period of 18 min , at ice-bath temperature, and with magnetic stirring. After addition was completed, stirring was continued at room temperature for 30 min , resulting in complete reaction of the magnesium. The Grignard solution was cooled at ice-bath temperature, and a solution of $3.251 \mathrm{~g}(0.0156 \mathrm{~mol})$ of benzalacetophenone (1), $\mathrm{mp} 58-58.5^{\circ}$, in 90 ml of anhydrous ether was added dropwise, with stirring, over a period of 24 min . The resulting mixture was stirred at room temperature for 30 min and then decomposed with 100 ml of $3 M \mathrm{HCl}$. The ether layer was washed twice with $50-\mathrm{ml}$ portions of 3 M HCl and once with 50 ml of saturated NaCl , and dried over anhydrous MgSO_{4}. Concentration in vacuo afforded an amber-colored oil which was chromatographed on a $40-\mathrm{g}$ column of $60-200$ mesh silica gel. Fractions eluted with hexane and with $1: 19$ benzene-hexane were crystallized from ether to give $0.677 \mathrm{~g}(20 \%)$ of 8 as small white needles, $\mathrm{mp} 176.0-177.5^{\circ}$. Recrystallization from ether afforded the analytical sample: $\mathrm{mp} 178.0-179.0^{\circ}$ (lit. ${ }^{2 b} \mathrm{mp} \mathrm{176}{ }^{\circ}$); ir (KBr) $1658(\mathrm{~m}, \mathrm{C}=\mathrm{C}), 760$ (s, aromatic CH), 745 (s, aromatic CH), and $697 \mathrm{~cm}^{-1}$ (s, aromatic CH); nmr ($\left.\mathrm{CCl}_{4}\right) \delta 1.20(3, \mathrm{H}$, $\left.\mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CHCH}_{z}\right), 1.67\left(3, \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.33-3.00(2 \mathrm{H}$, complex m, aliphatic CH), $4.41\left(1 \mathrm{H}, \mathrm{q}, J_{\mathrm{ab}}=6.8, J_{\mathrm{bc}}=2.2 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{ArCH}_{\mathrm{c}}=\mathrm{C}\right), 5.74\left(1 \mathrm{H}, \mathrm{br}, W_{1 / 2}=4 \mathrm{~Hz}, \mathrm{ArCHCH}=\mathrm{C}\right)$, and 6.0-8.0 (20 H , aromatic CH); mass spectrum (70 eV) m / e (rel intensity) $430\left(\mathrm{M}^{+}, 12\right), 325$ (65), 222 (27), 221 (35), 208 (14), 207 (76), 206 (78), 205 (81), 105 (100), 91 (29), and 77 (5).
Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}: \mathrm{C}, 89.26 ; \mathrm{H}, 7.02$. Found: C, 89.58; H, 7.17.
Fractions eluted with 1:9 and 1:1 benzene-hexane contained 1.634 g of solid, which afforded $0.981 \mathrm{~g}(28 \%)$ of pure β-phenylbutyrophenone after crystallization from aqueous ethanol and from hexane, $\mathrm{mp} 73.5-75.0^{\circ}$ (lit..$^{\circ} \mathrm{mp} 74^{\circ}$).

Registry No.-1, 94-41-7; 2, 34959-76-7; methylmagnesium iodide, 917-64-6.
(6) Melting points are uncorrected. The infrared spectra were determined with a Beckman IR-8 spectrophotometer. Nmr spectra were recorded with a Varian A-60 specjrometer using tetramethylsilane as an internal standard. The mass spectra were obtained with a Varian MAT CH7 mass spectrometer. Microanalyses were performed by M-H-W Laboratories, Garden City, Mich.
(7) M. A. Spielman and C. W. Mortenson, J. Amer. Chem. Soc., 61, 666 (1939).

Silver(II) Oxide as a Reagent. Reactions with Aromatic Amines and Miscellaneous Related Compounds

Benjamin Ortiz, Pedro Villanueva, and Fernando Walls*

Contribution No. 350 from the Instituto de Quimica de la Universidad Nacional Autonóma de México, México 20, D. F. México

Received October 5, 1971
Lee and Clarke have effected the oxidation of aliphatic amines, alcohols, aldehydes, and aromatic hydrocarbons ${ }^{1,2}$ by means of the complexes of silver(II) oxide. ${ }^{3}$ Syper ${ }^{4}$ utilized the same reagent in acidic media to oxidize alcohols and aromatic hydrocarbons, while Corey, Gillman, and Ganem ${ }^{5}$ employed it in neutral or slightly basic media for the stereospecific con-
(1) J. B. Lee and T. G. Clarke, Tetrahedron Lett., 415 (1967).
(2) T. G. Clarke, N. A. Hampson, J. B. Lee, J. R. Morley, and B. Scanlon, ibid., 5685 (1968).
(3) R. N. Hammer and J. Kleinberg, Inorg. Syn., 4, 12, (1953).
(4) L. Syper, ibid., 4193 (1967).
(5) E. J. Corey, N. W. Gillman, and B. E. Ganem, J. Amer. Chem. Soc., 90, 5616 (1968).

Table I
Oxidation of Various Amines with Silver(II) Oxide

$\begin{gathered} \text { Registry } \\ \text { no. } \end{gathered}$	Amine	Solvent	Temp. ${ }^{\circ} \mathrm{C}$	Time, hr	$\begin{aligned} & \text { Equiv } \\ & \mathrm{AgO} \end{aligned}$	Product	Yield, \%
62-53-3	Aniline	Benzene		0.5			
		Chloroform	25	2	2	Azobenzene	20
		Acetone		2			
		Methanol		72			
87-62-7	2,2-Dimethylaniline	Benzene	72	5	2	2,2',6,6'-Tetramethylazobenzene	33
106-49-0	p-Toluidine	Benzene	25	8	2	4,4'-Dimethylazobenzene ${ }^{\text {a }}$	17
99-98-9	N, N-Dimethyl- p phenylenediamine	Benzene	25	1	2	4,4'-Dimethylamino- N, N^{\prime} azobenzene ${ }^{b}$	59
106-47-8	p-Chloroaniline	Benzene	72	9	2	4,4 ${ }^{\prime}$-Dichloroazobenzene ${ }^{a}$	47
134-32-7	α-Naphthylamine	Benzene	25	1	2	1,1'-Azonaphthalene ${ }^{\text {c }}$	15
95-54-5	o-Phenylenediamine	Ether	25	72	3	o,o-Azodianiline	40
	o-Phenylenediamine	Benzene	72	4	4	1,4-Dicyanobutadiene	30
95-55-6	o-Aminophenol	Benzene	25	2	3	o-Benzoquinone azine	45

${ }^{a}$ K. Tabei and M. Yamaguchi, Bull. Chem. Soc. Jap., 40, 1539 (1967). ${ }^{\text {b E E. Noelting, Ber., 18, } 1143 \text { (1885). c Beilstein, 2nd ed, }}$ 16, 25.

Table II
Oxidation of Various Functionally Substituted Compounds with Silver(II) Oxide

Registry no.	Substrate	Solvent	Temp, ${ }^{\circ} \mathrm{C}$	Time, br	Ecuiv AgO	Yield, $\%$
$5350-57-2$	Benzophenone hydrazone	Benzene	72	4	2	Benzophenone ${ }^{a}$ azine

${ }^{a}$ W. Lirmre, L. Horner, and H. Farnekess, Chem. Ber., 94, 712 (1961). ${ }^{\text {b }}$ C. Neogeli and G. Stefanovitsch, Helv. Chim. Acta, 2, 636 (1928). ${ }^{c}$ W. Autervieth and G. Thomae, Chem. Ber., 57, 436 (1924). d C. Aguilar, M. Salmón, and F. Walls, Bol. Inst. Quim. Univ. Nac. Auton. Mex., 21, 226 (1969).
version of allylic alcohols to conjugated acids. We have examined the behavior of silver(II) oxide with a wide variety of functionally substituted compounds.

With each of the amines, aniline, p-toluidine, N, N -dimethyl- p-phenylenediamine, 2,6-dimethylaniline, p chloroaniline, and α-naphthylamine, the principal product after the disappearance of the starting material was the corresponding azo derivative in yields as high as 59%. This reaction can be carried out at room temperature or at the boiling temperature of several solvents, such as ethyl ether, acetone, chloroform, methanol, or benzene (Table I). Among these, benzene proved, in general, to be the best solvent.

No reaction took place with p-nitroaniline, 2,4 -dinitroaniline, m-phenylenediamine, or p, p^{\prime}-methylenedianiline, either at room temperature or at the boiling temperature of the solvents mentioned above. However, the oxidation of o-phenylenediamine with 3 equiv of silver(II) oxide in ether at room temperature produced $o, 0^{\prime}$-azodianiline (1) in 40% yield. On the other hand, using 4 equiv of AgO produced a 30% yield of 1,4 -dicyanobutadiene (2). Willstatter and Pfannenstiehl ${ }^{6}$ obtained diaminophenazine in 12% and $o, 0^{\prime}$ -

[^96]
azodianiline in 10% yield when o-phenylenediamine was treated with $\mathrm{Ag}_{2} \mathrm{O}$ or PbO_{2}. Nakagawa ${ }^{7}$ obtained (only) 2 from the same substrate in 14 and 50% yields, respectively, using nickel peroxide and lead tetraacetate.

Hydroquinone and methylhydroquinone in benzene or acetone were oxidized in less than 10 min to give the corresponding p-quinones in 100 and 90% yields, respectively; pyrocatechol produced o-benzoquinone in 2 hr in 40% yield.

[^97] Communn., 396 (1965).
o-Aminophenol, in benzene at room temperature, gave rise to the azine 3 , which on subsequent reduction produced o-benzoquinone mono(0 -acetoxy phenylhydrazone) (4).

It is interesting to point out that the oxidation of benzil dihydrazone (5) treated with silver(II) oxide produced diphenylacetylene in 95% vield, a better yield than that obtained by oxidation with $\mathrm{HgO}(81 \%){ }^{8}$

The results of oxidation involving a wide range of functional groups are summarized in Table II.

Experimental Section

The general method employed for the reactions was to dissolve the substance to be oxidized ($1-.5 \mathrm{mmol}$) in a suitable solvent. Then the silver(II) oxide, prepared according to Hammer and Kleinberg, ${ }^{1}$ was added and the mixture was allowed to stand at room temperature with stirring and sampling at frequent intervals for tle analysis of the extent of the reaction. If the chromatoplate spot corresponding to the starting material remained after several hours, the mixture was heated to the boiling point of the solvent. When the starting material had been used up, the reaction was stopped by filtering the silver or $\mathrm{Ag}_{2} \mathrm{O}$ formed in the reaction. The purification of the products was carried out by chromatography either on alumina or on silica gel. The yields given are those of the pure products that were identified by melting point, uv, ir, nmr, and mass spectra and compared with authentic samples or spectra described in some detail.
$2,6,2^{\prime}, 6^{\prime}$-Tetramethylazolenzene.-A solution of 1 g of silver(II) oxide was allowed to reflux for 5 hr . The solution was filtered and chromatographed on alumina, Alcoa F-20 (150 g). From the fractions eluted with benzene, $320 \mathrm{mg}(33 \%)$ of orange-red crystals, $\mathrm{mp} 50^{\circ}$, was obtained: $\lambda_{\max } 213 \mathrm{~nm}$ $(\epsilon 26,400), 243(10,100), 24 S(11,600), 254(12,300), 260(10,250)$, 300 ($\times 8.50$), and 450 (40); ir $1585 \mathrm{~cm}^{-1}$; nmr $\delta 2.4$ (singlet) $(T M S=0)(12$ protons of methyl on aromatic ring) and 7.1 ppm (singlet) (six protons, aromatic). Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}$: C, 10.63 ; $\mathrm{H}, 7.61 ; \mathrm{N}, 11.76$; mol wt, $23 \times .32$. Found: C , S0.49; H, $7.41 ; \mathrm{N}, 11.52$; mol wt, 239 (mass spectrum).
o-Benzoquinone Azine 3.-A mixture of 6 g of o-aminophenol and 21 g of silver(II) oxide in 200 ml of benzene was stirred at room temperature for 2 hr . After filtering, 2.5 g (4:5\%) of crystals were obtained: $\mathrm{mp} 245^{\circ}$; $\lambda_{\max } 235 \mathrm{~nm}(\epsilon 30,400)$ and $430(28,700)$; ir 3370 and 1575 cm^{-1}. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{8}$ $\mathrm{N}_{2} \mathrm{O}_{2}: ~ \mathrm{C}, 67.92 ; \mathrm{H}, 3.80 ; \mathrm{O}, 15.04 ; \mathrm{N}, 13.20 ; \mathrm{mol} w t, 212.2$. Found: C, 67.46: H, 3.80; O, 15.17; N, 12.74; mol wt, 212 (masis spectrum).
o-Benzoquinone Mono(o-acetoxy)phenylhydrazone (4).-A mixture of 200 mg of o-benzoquinone azine (3), 10 ml of acetic acid, 10 ml of acetic anhydride, and 2 g of zinc dust was heated for 2 hr at the steam bath, filtered, and poured into ice. The solid formed was crystallized from methanol: yield 152 mg $(63 \%) ; \operatorname{mp} 279-280^{\circ} ; \lambda_{\max } 240 \mathrm{~nm}(\epsilon 17,200)$ and $396(24,000)$; ir 3270, 1700, and $160.5 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 6. $\overline{2} .62 ; \mathrm{H}, 4.72$; N, 10.93 ; O, 18.73 ; mol wt, 2.5 .2 .). Found: C, 6.5.7x; H, 4.34; N, 10.81; O, 18.93 ; mol wt, 2.56 (mass spectrum).

Diphenylacetylene.-To 240 mg of benzildihydrazone, obtained by the method of Cope, Smith, and Cotter, ${ }^{8}$ in 50 ml of benzene, 500 mg of silver(II) oxide was added and the mixture was stirred for 2 hr . After filtering, the solvent was evaporated and the residue was sublimed at $60^{\circ}(0.5 \mathrm{~mm})$; the yield was 170 $\mathrm{mg}(9.5 \%), \mathrm{mp} .5 \mathrm{X}^{\circ}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10}: \mathrm{C}, 94.34 ; \mathrm{H}, 5.66$; mol wt, 178.22. Found: C, 94.09; H, 5.74; mol wt, 178 (mass spectrum).

Registry No.-1, 554-55-2; 3, 34562-05-5; 4, 34562-06-6; diphenylacetylene, 501-65-5; AgO, 1301-96-8.

Acknowledgments.-We thank the Consejo Nacional de Ciencia y Tecnología de México for financial help in the publication of this work, and Dr. Harold Kwart for aid in the preparation of the manuscript.
(8) A. C. Cope, D. S. Smith, and R. J. Cotter, "Organic Syntheses," Collect. Vol. IV, Wiley, New York, N. Y., 1963, p 377.

The Hydrochlorination of Thujopsene

Alan R. Hochstetler* and Garry C. Kitchens
Givaudan Corporation, Clifton, New Jersey 07014
Received February 15, 1972
In recent years much work has been done on the chemistry of the cyclopropylcarbinyl cation system. ${ }^{1}$ The naturally occurring sesquiterpene (-)-thujopsene (1) contains a conjugated cyclopropyl olefin functionality which is readily protonated to form the rearrange-ment-prone cyclopropylcarbinyl cation system. Most of the isomerization studies on this interesting molecule have been performed in aqueous media with oxygencontaining acids. ${ }^{2-8}$ We recently reported ${ }^{9}$ the results of our study on the isomerization products obtained under nonaqueous conditions employing oxygen-containing acids. Friedrich ${ }^{10}$ has also shown that the major product obtained upon treatment of (-)thujopsene in refluxing 12 M HCl in dioxane is the bicyclic neopentyl chloride 5 . We have subsequently investigated the action of anhydrous hydrogen chloride on (-)-thujopsene and report our results below.

Treatment of 1 with anhydrous hydrogen chloride at 5° led to a rapid absorption of the gas. The initial crystalline product, although stable for days at -20° either as a solid or in a nonprotic solvent, rearranged upon warming to room temperature to other isomeric products. The formation of these products was casily followed by nmr spectroscopy and the pertinent spectral data are summarized in Table I. From this data the structures of the various intermediates were assigned.

The initial crystalline hydrochlorination product exhibited four methyl singlets and no vinyl hydrogen absorption in the nmr spectrum at -10°, and clearly was expected simple 1,2 -addition product, tertiary chloride 2. The stereochemistry of the chlorine atom is assigned by approach from the less hindered α face, as has been found in the stereochemistry of hydroboration and cpoxidation of (-)-thujopsene. ${ }^{11}$

Subsequent warming of the deuteriochloroform solution to 20° showed the gradual disappearance of resonance peaks due to 2 and the concomitant appearance of new peaks, notably the transformation of one of the original methyl singlets into a vinyl methyl and the appearance of a vinyl hydrogen singlet at $\delta \quad 5.05$ and a two-proton singlet at $\delta 3.59$ of an isolated chloromethyl grouping. This data is consistent with structure 3, the 1,4 -addition product of hydrogen chloride to thujopsene.

Further warming or standing at 20° for a longer time afforded a new set of resonance peaks containing a well-
(1) See R. Breslow in "Molecular Rearrangements," Vol. 1, P. DeMayo, Ed., Interscience, New York N. Y., 1963, pp 233-294.
(2) S. Nagahama, Bull. Chem. Soc. Jap., ss, 1467 (1960).
(3) W. G. Dauben and L. E. Friedrich. Tetrahedron Lett., 1735 (1967).
(4) W. G. Dauben and L. E. Friedrich, ibid., 2675 (1964).
(5) W. G. Dauben and E. I. Aoyagi, Tetrahedron, 26, 1249 (1970).
(6) S. Ito, M. Yatagai, and K. Endo, Tetrahedron Lett., 1149 (1971).
(7) S. Itô, M. Yatagai, K. Endo, and M. Kodama, ibid., 1153 (1971).
(8) W. G. Dauhen and L. E. Friedrich, J. Org. Chem., 37, 241 (1972).
(9) H. U. Daeniker, A. R. Hochstetler, K. Kaiser, and G. C. Kitchens, ibid., 37, 1 (1972).
(10) L. E. Friedrich, Dissertation 67-8559, University Microfilms, Inc., Ann Arbor, Mich.
(11) S. P. Acharya and H. C. Brown, J. Org. Chem., 35, 3874 (1970).

Table I
Nmr Chemical Shifts for the Thujopsene Hydfochlorides ${ }^{a}$

2	3	4	Widdrol (6) ${ }^{\text {b }}$	5
0.55 (s, 3)	1.00 (s, 3)	1.08 (s, 6)	1.08 (s, 6)	1.05 (s, 6)
1.00 (s, 3)	$1.04(\mathrm{~s}, 3)$	$1.22(\mathrm{~s}, 3)$	$1.22(\mathrm{~s}, 6)$	1.08 (s, 3)
$1.12(\mathrm{~s}, 3)$	1.08 (s, 3)	1.59 (s, 3)		1.17 (s, 3)
1.81 (s, 3)	1.70 (s, 3)	2.27 (d, d, 1, $J=14,9 \mathrm{~Hz}$)	1.94	3.31 (s, 2)
	3.59 (s, 2)	2.95 (d, d, 1, J $=14,6 \mathrm{~Hz}$)	2.48	5.11 (s, 1)
	5.05 (s, 1)	5.48 (d, d, 1, J = 9, 6 Hz)	5.48	

${ }^{a}$ Expressed as δ values from TMS in CDCl_{3}. ${ }^{b}$ Coupling constants for the last three entries are identical with those shown for compound 4.
defined doublet of doublets at $\delta 5.48$ coupled with upfield nonequivalent allylic protons at $\delta 2.95$ and 2.27 as the resonances for compound 3 vanished. Bicyclic structure 4 is assigned to this new compound by the close similarity of its nmr spectrum with that of the known ${ }^{12}$ tertiary alcohol widdrol (see Table I), and by the fact that widdrol can be isolated when this intermediate is treated with refluxing aqueous sodium carbonate.
The final thermodynamic product obtained upon warming to 40° afforded an nmr spectrum identical in all respects with that of the neopentyl chloride 5 previously reported by Friedrich ${ }^{10}$ as the major product obtained by treatment of thujopsene with 12 M HCl in refluxing dioxane.
The formation of these products is readily rationalized via the cyclopropylcarbinyl cation intermediates outlined in Scheme I. Protonation of (-)-thujopsene

to cation 2 a and chloride ion capture leads directly to the crystalline 1,2 -addition product 2. Subsequent thermal ion pair decomposition then affords cation 3a, which generates the 1,4 -addition product 3. Fur-

[^98]ther rearrangement to cation 4 a has been previously well documented by Dauben and Friedrich ${ }^{4}$ and the capture of chloride ion by this cation to give tertiary chloride 4 shoald afford the same stereochemistry as that of widdro (6) itself, formed under acid hydration conditions. ${ }^{4}$ Final thermal ion pair decomposition via homoallylic cation 5 a then leads to the most stable neopentyl chloride 5, as has been reported previously by Friedrich ${ }^{10}$ via the same mechanistic rationale.

Earlier studies ${ }^{13-15}$ have shown that such rearrangements are quite general for cyclopropylcarbinyl systems. Our present observations on the formation of intermediate chlorides in the hydrochlorination reaction lends additional support to the finite existence of homoallylic cations such as 3a, 4a, and 5a. No chloride product consistent with the capture of cation la was detected by nmr, a result not too surprising since this tertiary ring fusion cation should be quite sterically hindered to capture by an external nucleophile.

Neopentyl chloride 5 is completely stable to the action of refluxing 10% aqueous sodium carbonate, whereas similar treatment of crystalline chloride 2 afforded a mixture of thujopsene (1) and widdrol (6) in a $2: 1$ ratio. The same ratio was also obtained upon the identical treatment of a $50: 50$ mixture (by nmr) of chlorides 3 and 4 which contained less than 5% of 2 . These results imply the rapid interconversion of ion pairs $2 a, 3 a$, and $4 a$ to afford the same product ratio irrespective of starting material under these mildly basic conditions.

A recent report ${ }^{16}$ that treatment of (-)-thujopsene (1) with anhydrous hydrogen bromide at 0° leads to the neopentyl bromide analog of 5 has been confirmed by us. No crystalline 1,2 -addition tertiary bromide product could be obtained under these conditions, undoubtedly due to the higher reactivity of such a molecule as compared with the corresponding chloro compound 2 .

Experimental Section

Materials and Equipment.-(-)-Thujopsene was readily obtained in 99% purity by careful fractional distillation of Hibawood oil through a $2-\mathrm{ft}$ Goodloe column, bp $67-68^{\circ}(0.5 \mathrm{~mm})$, $n^{20} \mathrm{D} 1.5050,[\alpha]^{25} \mathrm{D}-92.5^{\circ}$ (neat).

Spectra were recorded using a Perkin-Elmer 457 grating ir spectrophotometer and a Varian A-60A nmr spectrometer. Com-
(13) R. H. Mazur, W. N. White, D. A. Semenow, C. C. Lee, M. S. Silver, and J. D. Roberts, J. Amer. Chem. Soc., 81, 4390 (1959).
(14) E. F. Cox, M. C. Caserio, M. S. Silver, and J. D. Roberts, ibid., 83, 2719 (1961).
(15) S. Winstein and E. M. Kosower, ibid., 81, 4399 (1959).
(16) M. Ito, K. Abe, H. Takeshita, and M. Yatagai, Bull. Chem. Soc. Jap., 44, 2168 (1971).
bustion analyses were determined by Schwartzkoff Microanalytical Laboratory, Woodside, N. Y.
2α-Chloro- $1 \alpha, 9 \alpha$-methano- $2 \beta, 8,8,10 \alpha$-tetramethyldecalin (2).-(-)-Thujopsene ($102 \mathrm{~g}, 0.5 \mathrm{~mol}$) was cooled to 5° and vigorously agitated while anhydrous hydrogen chloride was passed in over 1.7 hr . Gas absorption ceased when 1 molar equiv had been added and the reaction mixture crystallized with an attendant temperature rise to 25°. Ice-cold hexane (100 ml) was added and the mixture was rapidly filtered through a cold sintered glass funnel to afford 63 g of solid material, $\mathrm{mp} \mathrm{40-43}^{\circ} \mathrm{dec}$. A sample recrystallized from hexane at -50° exhibited $\mathrm{mp} 42-45^{\circ}$ dec: ir $\left(\mathrm{CCl}_{4}, 0^{\circ}\right) 1255,1160,1150,1030,1000,827 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right.$, $\left.-10^{\circ}\right) \delta 0.55,1.00,1.12,1.81(\mathrm{~s}, 3$ each $) ;[\alpha]^{0} \mathrm{D}-95^{\circ}(c 20 \%$, CHCl_{3}).

A crystalline sample stored under nitrogen at -20° for 10 days showed little signs of decomposition.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{Cl}$: C, 74.81; H, 10.46; Cl, 14.72 . Found: C, 74.91; H, 10.48; Cl, 14.53.
9α-Chloromethyl-2,8,8,10 α-tetramethyl-1-octalin (3).-The nmr sample (at -10°) of tertiary chloride 2 was warmed to 20° for 0.4 hr and the spectra were recorded. The major component showed the following nmr resonances: $\delta 1.00,1.04,1.08$ (s, 3 each), 1.70 (s, 3, vinyl CH_{3}), 3.59 (s, 2), 5.05 (s, 1, $W_{h / 2}=4$ $\mathrm{Hz})$; ir (CCl_{4}) $1080,845,648 \mathrm{~cm}^{-1}$.
4α-Chloro- $4 \beta, 7 \alpha, 11,11$-tetramethylbicyclo[5.4.0] undec-1-ene (4). -The above nmr sample was warmed to 40° for an additional 1.0 hr and the spectra were recorded. The major component showed the following nmr resonances: 1.08 (s, 6), 1.22, 1.59 (s, 3 each), 2.27 (d, d, $1, J=14,9 \mathrm{~Hz}$), $2.95(\mathrm{~d}, \mathrm{~d}, 1, J=14,6 \mathrm{~Hz})$, $5.48(\mathrm{~d}, \mathrm{~d}, 1, J=9,6 \mathrm{~Hz})$; ir $\left(\mathrm{CCl}_{4}\right) 1230,672 \mathrm{~cm}^{-1}$.
2α-Chloromethyl-2 $\beta, 8,8,10 \alpha$-tetramethyl-1(9)-octalin (5).Continued warming of the above nmr sample at 40° for an additional 20 hr gave the stable neopentyl chloride 5 with the following nmr resonances: $\delta 1.05$ (s, 6), 1.08, 1.17 (s, 3 each), 3.31 (s, 2), $5.11\left(\mathrm{~s}, 1, W_{h / 2}=2.5 \mathrm{~Hz}\right)$; ir $\left(\mathrm{CCl}_{4}\right) 1020,925,860,718,662$ $\mathrm{cm}^{-1} ;[\alpha]^{25} \mathrm{D}+75^{\circ}\left(c 20 \%, \mathrm{CDCl}_{3}\right)$. These data are identical with those reported by Friedrich ${ }^{10}$ for chloride 5.
Treatment of neopentyl chloride 5 at reflux for 6 hr with 10% aqueous sodium carbonate gave recovered unchanged starting material.
$4 \beta, 7 \alpha, 11,11$-Tetramethylbicyclo[5.4.0] undec-1-en- 4α-ol (Widdrol) (6).—An $18-\mathrm{g}$ sample of crystalline chloride 2 was heated to 60° for 2.0 hr . The nmr spectrum showed that the products at this point were approximately an equimolar mixture of chlorides 3 and 4 with only trace amounts of chlorides 2 and 5 . Water $(150 \mathrm{ml})$ and sodium carbonate (10 g) were added and the mixture was allowed to reflux for 6 hr . The mixture was cooled and the organic layer was separated. Analysis by gas chromatography showed three peaks identified as thujopsene ($1,57 \%$), an unidentified hydrocarbon (18%), and widdrol ($6,25 \%$). Distillation on a micro-still head afforded 12.2 g of liquid fractions, bp $100-110^{\circ}$ (1.5 mm), with an infrared spectrum virtually identical with that of thujopsene (1). The fractions boiling at $125-135^{\circ}(1.5 \mathrm{~mm})$ $(4.0 \mathrm{~g})$ crystallized and were recrystallized from methanol to afford widdrol (6): $\mathrm{mp} 89-90^{\circ} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.08,1.22$ (s, 6 each), 1.94 (d, d, $1, J=14,9 \mathrm{~Hz}$), $2.48(\mathrm{~d}, \mathrm{~d}, 1, J=14,6 \mathrm{~Hz}$), 5.48 (d, d, $1, J=9,6 \mathrm{~Hz}$). The infrared spectrum was identical with that reported by Enzell ${ }^{12}$ for widdrol.

The same products were also obtained in a similar ratio when the crystalline hydrochloride 2 was treated directly with 10% aqueous sodium carbonate at reflux for 3 hr .

Treatment of Thujopsene with Anhydrous Hydrogen Bromide. -(-)-Thujopsene ($51 \mathrm{~g}, 0.25 \mathrm{~mol}$) was cooled to 0° and vigorously agitated while anhydrous hydrogen bromide was passed in. Absorption was slow and the theoretical amount was consumed in 4.5 hr . The dark colored mixture did not crystallize as had been the case for the chloride analog. Hexane (50 ml) was added and the mixture was washed neutral with cold 10% aqueous sodium carbonate solution. The solvent was removed at reduced pressure and distilled, affording 51.5 g of yellow oil: bp 125-128 ${ }^{\circ}$ $(1.0 \mathrm{~mm}) ;{ }^{20}{ }^{2} 1.5170 ; \alpha^{25} \mathrm{D}+68^{\circ}$ (neat); ir (neat) 1630,1250 , $1230,1021,985,925,868,668,650 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.06$ $(\mathrm{s}, 6), 1.08,1.17(\mathrm{~s}, 3$ each $), 3.25(\mathrm{~s}, 2), 5.10(\mathrm{~s}, 1)$. The spectral data are identical with those reported by Itô ${ }^{16}$ and coworkers for the bromide analog of chloride 5.

Registry No.-1, 470-40-6; 2, 34905-90-3; 3, 34905-91-4; 4, 34905-92-5; 5, 32540-35-5; 5 bromide analog, 34905-94-7 ; 6, 6892-80-4.

Aniline Derivatives of
 Tetrakis(hydroxymethyl)phosphonium Chloride

Arlen W. Frank* and George L. Drake, Jr.

Southern Regional Research Laboratory, ${ }^{1}$ New Orleans, Louisiana 70179

Received August 6, 1971

The development of flame-retardant finishes for cotton based on the reaction of tetrakis(hydroxymethyl)phosphonium chloride (1) with polyfunctional amines such as melamine ${ }^{2}$ has led to the investigation of many other nitrogen compounds as resin-forming substrates. ${ }^{3,4}$ Secondary amines give well-defined monomeric products, ${ }^{5,6}$ but primary amines, such as cetylamine, ${ }^{7-9}$ have thus far given only polymeric products. ${ }^{7-12}$ In this paper we report our investigation of the reaction of 1 and some of its derivatives with aniline, which led to a series of well-defined crystalline compounds.

Aniline reacts readily with 1 in ethanol or acetone at room temperature, displacing all four hydroxyl groups (Scheme I). ${ }^{13}$ The product, tetrakis(anilino-

Scheme I

(1) One of the laboratories of the Southern Marketing and Nutrition Research Division. Agricultural Research Service, U. S. Department of Agriculture.
(2) W. A. Reeves and J. D. Guthrie, Text. World, 104 (2), 101 (1954).
(3) G. L. Drake, Jr., "Encyclopedia of Chemical Technology." Vol. 9, 2nd ed, Wiley, New York, N. Y., 1966, p 300.
(4) K. A. Petrov and V. A. Parshina, Usp. Khim., 37, 1218 (1968) (Engl. transl., 532).
(5) H. Coates and P. A. T. Hoye [to Albright \& Wilson (Mfg.) Ltd.], British Patent 842,593 (1960); Chem. Abstr., 65, 4363 (1961).
(6) D. J. Daigle, W. A. Reeves, and D. J. Donaldson, Text. Res. J., 40, 580 (1970).
(7) W. A. Reeves and J. D. Guthrie, Ind. Eng. Chem., 48, 64 (1956).
(8) W. A. Reeves and J. D. Guthrie (to United States of America as represented by the Secretary of Agriculture), U. S. Patent 2,809,941 (1957); Chem. Abstr., 52, 2421 (1958).
(9) J. G. Evans, G. Landelle, J. R. W. Perfect, B. Topley, and H. Coates [to Bradford Dyers' Assoc. Ltd. and Albright \& Wilson (Mfg.) Ltd.]. British Patent 761,985 (1956); Chem. Abstr., 51, 9178 (1957).
(10) W. A. Reeves and J. D. Guthrie (to United States of America as represented by the Secretary of Agriculture), U. S. Patent 2,668,096 (1954); Chem. Abstr., 48, 6710 (1954).
(11) Anon. [to Albright \& Wilson (Mfg.) Ltd.], Belgian Patent 626,626 1963); Chem. Abstr., 61, 7144 (1964)
(12) E. V. Kuznetsov, R. K. Valetdinov, Ts. Ya. Roitburd, and L. B. Zakharova, Tr. Kazan. Khim.-Tekhnol. Inst., 29, 20 (1960); Chem. Abstr., 68, 547 (1963).
(13) A $\mathbf{1}: 1$ molar ratio of aniline to $\mathbf{1}$ is reported to give a yellow polymer (ref 9 , example 18).
methyl)phosphonium chloride (2), is unaffected by water or ethanol, which would remove aniline hydrochloride if it were present. Aniline is apparently too weak a base $\left(\mathrm{p} K_{\mathrm{g}}=4.58\right)^{14}$ to cause the displacement of formaldehyde and HCl which is characteristic of secondary (eq 1$)^{5}$ and tertiary ${ }^{15,16}$ amines.

$$
\begin{equation*}
4 \mathrm{R}_{2} \mathrm{NH}+1 \longrightarrow\left(\mathrm{R}_{2} \mathrm{NCH}_{2}\right)_{3} \mathrm{P}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{R}_{2} \mathrm{NH} \cdot \mathrm{HCl} \tag{1}
\end{equation*}
$$

When stirred with a slight excess of triethylamine in acetone for 1 hr at room temperature, 2 gives triethylamine hydrochloride (correct ir ${ }^{17}$ melting point, 84.0%), aniline (correct ir, $n \mathrm{D}, 62.5 \%$), and a white, crystalline solid (76.0%) identified as 5 -anilinomethyl-1,3-diphenyl-1,3,5-diazaphosphorinane (3a, Scheme I). The ir spectrum of 3a shows a weak but sharp $\mathrm{N}-\mathrm{H}$ band at $3340 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum shows overlapping multiplets in the $3.2-4.0-\mathrm{ppm}$ region $\left(\mathrm{PCH}_{2}, \mathrm{NH}\right)$, an ABX sextet $\left(\mathrm{NCH}_{2} \mathrm{~N}\right)$ in the 4.0-5.2ppm region, and a multiplet $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ in the 6.3-7.4ppm region, in the ratio 7.0:2.0:15. The ABX pattern, which appears as a sextet owing to coupling of the upfield proton to phosphorus ($\mathrm{X}={ }^{31} \mathrm{P}$), is assigned to the $\mathrm{NCH}_{2} \mathrm{~N}$ protons because its position (mean chemical shift, $\delta=4.65 \mathrm{ppm}$) is close to the 4.77 ppm reported for hexahydro-1,3,5-triphenyl-s-triazine, ${ }^{18}$ and the separation ($\Delta \mu=49.9 \mathrm{~Hz}$) between the chemical shifts of the two protons is close to the 52.8 and 53.8 Hz reported ${ }^{19,20}$ for hexahydro-1,3,5-trimethyl-s-triazine at low temperatures. ${ }^{21-26}$
The mass spectrum of 3 a exhibits the fragmentation pattern characteristic of methyleneanil:ne derivatives, ${ }^{27,28}$ with $m / e 93\left(\mathrm{PhNH}_{2} \cdot{ }^{+}\right), 104\left(\mathrm{PhN} \equiv \mathrm{CH}^{+}\right)$ and $105\left(\mathrm{PhN}=\mathrm{CH}_{2}{ }^{+}\right)$as the most abundant ions.

This product is evidently formed by the displacement of aniline and HCl from 2, perhaps via the intramolecular mechanism shown in Scheme II. ${ }^{29-31}$
(14) A. Albert and E. P. Serjeant, "Ionization Constants of Acids and Bases," Wiley, New York, N. Y., 1962, p 144
(15) K. A. Petrov, V. A. Parshina, and M. B. Luzanova, Zh. Obshch. Khim., 32, 553 (1962); Chem. Abstr., 58, 5714 (1963).
(16) S. E. Ellzey, Jr., W. J. Connick, Jr., and G. J. Boudreaux, Can. J. Chem., 49, 3581 (1971).
(17) Sadt.er Infrared Prism Spectra, No. 6605, Sadtler Research Laboratories, Philadelphia, Pa., 1959.
(18) L. Stefaniak, T. Urbanski, M. Witanowski, and H. Januszewski, Rocz. Chem., 43, 1687 (1969); Chem. Abstr., 72, 21072 (1970:.
(19) R. F. Farmer and J. Harmer, Chem. Commun., 866 (-966).
(20) H. S. Gutowsky and P. A. Temussi, J. Amer. Chem. Soc., 89, 4358 (1967).
(21) The amr spectrum is consistent with a model in which there is rapid inversion of the diazaphosphorinane ring and of the nitrogen atoms, but not of the phospiorus atom. This allows two stable chair conformations for the diazaphosphorinane ring, depending on whether the phosphorus lone pair (or, in the cese of 3b or 3c, the oxygen or sulfur atom) is equetorial or axial. If the preferred conformation is equatorial, as in other phosphorinane ring systems, ${ }^{22-2 t}$ the trans $\mathrm{NCH}_{2} \mathrm{~N}$ proton (H_{A}) is in a favorable zig-zag geometry for long-range splitting by phosphorus. Neither conformation for the cis proton (H_{B}) has this feature. On this basis, H_{A} is tentatively assigned the upfield chemical shift, $\delta 4.23\left({ }^{4} J_{\mathrm{P}_{\mathrm{H}}}=3.0 \mathrm{~Hz}\right.$), and H_{B} the downfield chemical shift, $\delta 5.06\left(4 J_{\mathrm{PB}_{\mathrm{B}}}=0 \mathrm{~Hz}\right)$. The preferred conformation is illustrated in Scheme I.
(22) L. D. Hall and R. B. Malcolm, Chem. Ind. (London), 82 (1968).
(23) H. J. Geise, Red. Trav. Chim. Pays-Bas, 86, 362 (1967).
(24) K. D. Bartle, R. S. Edmundson, and D. W. Jones, Tetrahedron, 23, 701 (1967).
(25) D. Gagnaire, J. B. Robert, and J. Verrier, Bull. Soc. Chim. Fr., 2392 (1968).
(26) J. B. Lambert and W. L. Oliver, Jr., Tetrahedron, 27, 4245 (1971).
(27) E. Schumacher and R. Taubenest, Helv. Chim. Acta, 49, 1439 (1966)
(28) R. Colton and Q. N. Porter, Aust. J. Chem., 21, 2215 (1968).
(29) The direct displacement of an anilinomethyl group as $\mathrm{PhN}=\mathrm{CH}_{2}$ would probably result instead in the formation of the cyclic trimer, hexa hydro-1,3,5-triphenyl-s-triazine. 20, 31
(30) C. Eberhardt and A. Welter, Ber., 27, 1804 (1894).
(31) H. Krässig and H. Ringsdorf, Makromol. Chem., 22, 153 (1957).

Scheme II

The same product (3a) is obtained in 77.0% yield when 1 is neutralized with sodium ethoxide in ethanol prior to reaction with aniline (Scheme I).

Oxidation of 3a with hydrogen peroxide in acetone gives the phosphine oxide 3 b in 93.1% yield. The corresponding phosphine sulfide 3 c is obtained from 3a and sulfur in benzene in 60.4% yield, together with 7.9% unidentified by-product.

An entirely different series of products is obtained from formaldehyde-free tris(hydroxymethyl)phosphine (4). Reaction of 4 with aniline in benzene, carried out at reflux with azeotropic removal of the water, ${ }^{32}$ gives tris(anilinomethyl)phosphine (5a) as a white, crystalline solid in 81.3% yield (Scheme I). 5a shows a much stronger $\mathrm{N}-\mathrm{H}$ band in the ir than 3a, and its nmr spectrum shows none of the fine structure associated with 3a. There is a sharp doublet at $\delta 3.52\left(\mathrm{PCH}_{2}\right)$, a singlet at $3.64(\mathrm{NH})$, and a multiplet $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ in the $6.6-$ 7.2-ppm region, in the ratio 6.1:2.9:15.

Oxidation of 5 a with hydrogen peroxide in acetone gives the phosphine oxide 5 b in 82.9% yield. The corresponding phosphine sulfide 5 c is obtained from 5 a and sulfur in benzene in 94.2% yield. The physical properties and spectra of these derivatives are clearly different from those of 3 b and 3 c .

5a can also be prepared from 2 in 61.9% yield by reaction with ammonia instead of triethylamine (Scheme I). The ammonia presumably functions by tying up the excess formaldehyde as hexamethylenetetramine, ${ }^{33}$ though none was found in this experiment.

Still another method is the displacement of dimethylamine from tris(dimethylaminomethyl)phosphine (6) by aniline, which takes place smoothly at $160-170^{\circ}$ giving 5 a in 45.4% yield (eq 2).

$$
\begin{equation*}
\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{3} \mathrm{P}+3 \mathrm{PhNH}_{2} \longrightarrow 5 \mathrm{a}+3 \mathrm{Me}_{2} \mathrm{NH} \tag{2}
\end{equation*}
$$

This type of displacement has not been reported previously, though compounds like 6 are known to react with active hydrogen compounds such as acetoacetic ester or phenol or dialkyl phosphites with the displacement of 1 equiv of secondary amine. ${ }^{5}$

Efforts to prepare N-methylol or N-methylene (e.g., 3a) derivatives of $5 a$ by reaction with aqueous formalin or with paraformaldehyde in ethanol were unsuccessful, owing to the tendency of 5 a to disproportionate to substances richer and poorer in $\mathrm{N}-\mathrm{H}$. This tendency
(32) Under these conditions, the reaction of 1 with aniline gives a yellow powder, dec pt 250°, which appears to be the product of displacement of three of the four hydroxyl groups. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{OP}$: C $63.53 ; \mathrm{H}, 6.54$; $\mathrm{Cl}, 8.53$; $\mathrm{N}, 10.11$; P, 7.45. Found: C, 62.97 ; H, 6.41 ; Cl $8.75 ; \mathrm{N}, 9.91 ; \mathrm{P}, 7.40$. The product is insoluble in water and in all or ganic solvents except DMSO and appears to be unaffected by triethylamine or sodium hydroxide.
(33) J. F. Walker, "Formaldehyde," 3rd ed, Reinhold Publ. Corp., New York, N. Y., 1964, p 234.
was manifested to some extent in all of the aniline derivatives described in this paper. The phosphonium chloride 2 , for example, appears to be easily recrystallized from methanol or ethanol, but the product which separates on cooling is a high-melting white, crystalline solid, mp $170-171^{\circ}$, having the composition $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{P}_{2}$ (41.0%). None of the 2 is recovered. This same substance is obtained from 5a simply on stirring in ethanol at room temperature overnight (2.1%). The nature of this disproportionation, which seems to be related to the known disproportionation of N, N^{\prime} diphenylmethanediamine to aniline and hexahydro$1,3, \overline{\mathrm{j}}$-triphenyl-s-triazine, ${ }^{30}$ is currently under investigation.

Experimental Section ${ }^{34}$

Starting Materials.-Tetrakis(hydroxymethyl)phosphonium chloride ${ }^{35}$ (1) was recrystallized from 2-propanol: mp 149 149.5°. Tris(hydroxymethyl)phosphine ${ }^{36}$ (4), dried by azeotropic distillation with benzene, ${ }^{37}$ analyzed ${ }^{38,39} 73.92 \% 4$ and $0.08 \% \mathrm{CH}_{2} \mathrm{O}$, the remainder being tris(hydroxymethyl)phosphine oxide. Tris(dimethylaminomethyl)phosphine (6), bp 6:5-67 ${ }^{\circ}$ $(0.4 \mathrm{~mm})$, was prepared by the reaction of 1 with dimethylamine. ${ }^{40}$ Aniline was distilled from a pinch of zinc dust before use.

Tetrakis(anilinomethyl)phosphonium Chloride (2).-Aniline $(7.70 \mathrm{~g}, 83.0 \mathrm{mmol})$ was added to a solution of $1(3.83 \mathrm{~g}, 20.0$ mmol) in 75 ml of ethanol. There was a mild exotherm, followed immediately by the separation of solids. The mixture was stirred for 2 hr and filtered, giving $9.15 \mathrm{~g}(93.0 \%)$ of 2 as a white crystal line solid: mp 129-130 ; ir (Nujol) $689\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{\mathrm{j}}\right), 695$ (m, sh), 745 (vs, $\mathrm{C}_{6} \mathrm{H}_{5}$), 755 (vs, $\mathrm{C}_{6} \mathrm{H}_{\mathrm{s}}$), 786 (w), 795 (w), 875 (w), 885 (w), 908 (m), 922 (m), 1020 (w), 1060 (w), 1090 (w), 1150 (w), 1180 (m), 1205 (m), 1245 ($\mathrm{s}, \mathrm{CN}_{\text {arom }}$), 1280 (m), 1310 (m, $\mathrm{CN}_{\text {arom }}$), 1410 (w), 1500 (vs, $\mathrm{C}=\mathrm{C}_{\text {arom }}$), 1510 (s, sh), 1608 (vs $\mathrm{C}=\mathrm{C}_{\text {nrom }}$), 3290 (vs, NH) cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO- d_{6}) δ 3.3-5.0 $\left(\mathrm{m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$, strong peak at 4.47$), 6.3-7.3\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and NH).

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{ClN}_{4} \mathrm{P}: ~ \mathrm{C}, 6.9 .49 ; \mathrm{H}, 6.57 ; \mathrm{N}, 11.41$; P, 6.31. Found: C,68.18; H, 6.88; N, 11.33; P, 6.33.

No further solids separated from the filtrate in the next 5 hr The filtrate and washings, stripped under vacuum, left 1.15 g of yellow oil, $n^{20} \mathrm{D} 1.5923$, which contained 2 and the excess aniline (ir).
2 yellows rapidly on exposure to light. It is insoluble in water and in organic solvents, with the exception of dimethyl sulfoxide (I)MSO) and dimethylformamide. It dissolves readily in hot chloroform or acetone, giving yellow solutions which deposit gums on work-up, and in hot methanol or ethanol, giving disproportionation products. Even in DMSO there is evidence of partial decomposition (${ }^{1} \mathrm{H} \mathrm{nmr}$).

A similar reaction with acetone as the solvent gave a 66.0% yield of $2, \mathrm{mp} 120-121^{\circ}$, together with deep yellow liquid byproducts.
5-Anilinomethyl-1,3-diphenyl-1,3,5-diazaphosphorinane (3a). A. From 2.-Triethylamine $(6.05 \mathrm{~g}, 60.0 \mathrm{mmol})$ was added to a

[^99]well-stirred slurry of $2(18.85 \mathrm{~g}, 38.4 \mathrm{mmol})$ in 2.50 ml of acetone. There was no exotherm, but the appearance of the solid gradually changed to that of a much less voluminous, granular solid. After 1 hr , the solid was collected on a filter, washed with acetone and dried, giving $4.4 . \mathrm{g}(84.0 \%)$ of triethylamine hydrochloride, $\mathrm{mp} 251-2.53^{\circ}$ (correct ir ${ }^{17}$). No more separated on standing, nor upon the addition of more triethylamine. The filtrate was stripped of solvent under vacuum, and the residue, a yellow oil, was shaken vigorously with ethanol (250 ml), whereupon it crystallized. After 2 hr , the solid was collected on a filter, washed with ethanol, and dried, giving $10.50 \mathrm{~g}(76.0 \%)$ of 3 a as a white, granular solid, $\mathrm{mp} 96-97^{\circ}$. This product was identical (melting point, ir, nmr) to the 3a from neutralized 1, described below. The filtrate and washings from the 3a yielded 7.40 g of yellow oil, from which $2.25 \mathrm{~g}\left(62.5 \%\right.$) of aniline (ir, n_{D}) was recovered by extracting with ether, drying over potassium hydroxide, and distilling.
B. From Neutralized 1.-1 (4.7.5 g, 25.0 mmol) was added to a solution of sodium ($0.60 \mathrm{~g}, 25.0 \mathrm{mmol}$) in ethanol (25 ml), stirred for 1 hr under nitrogen, and filtered to remove sodium chloride ($1.55 \mathrm{~g}, 26.5 \mathrm{mmol}$). The filtrate was treated with aniline ($9.30 \mathrm{~g}, 100.0 \mathrm{mmol}$) and stirred at room temperature overnight. A mild exotherm (from 24 to 32°) occurred, followed by the separation of an oil which solidified after $2 . \overline{\mathrm{h}} \mathrm{hr}$. After 20 hr , the solid was collected on a filter, washed with ethanol, and dried, giving 6.9 - $\mathrm{g}(77.0 \%)$ of 3 a as a white, crystalline solid, $\mathrm{mp} 96-97^{\circ}$. Two crystallizations from cyclohexane gave an analytical sample: mp $96-97^{\circ}$; ir (Nujol) 687 (s, $\mathrm{C}_{6} \mathrm{H}_{\mathrm{j}}$), 706 (m), 743 (vs, $\mathrm{C}_{6} \mathrm{H}_{5}$), 748 (s, sh), 774 (m), $8.50(\mathrm{~m}), 860$ (m), 897 (m), 910 (m), 925 (m), 995 (m), 1025 (w), 1060 (m), 1095 (m), 1145 (w), 1170 (m), 1180 (s), 1195 (s), 1210 (s), 1230 (s), 1255 (w), 1310 (s, $\mathrm{CN}_{\text {arom }}$), 1415 (m), 1490 (vs, $\mathrm{C}=\mathrm{C}_{\text {arom }}$), 1600 (vs, $\left.\mathrm{C}=\mathrm{C}_{\text {arom }}\right), 3340(\mathrm{~s}, \mathrm{NH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.2-4.0(\mathrm{~m}, 7 \mathrm{H}$, PCH_{2} and NH), H_{A} at 4.23 and H_{B} at 5.06 (ABX sextet, 2 H , $\left.\mathrm{NCH}_{2} \mathrm{~N},{ }^{1} J_{\mathrm{HH}}=13.0,{ }^{4} J_{\mathrm{PH}_{4}}=3.0,{ }^{4} J_{\mathrm{PH}_{11}}=0 \mathrm{~Hz}\right), 6.3-7.4(\mathrm{~m}, 1.5$ $\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$) (the ${ }^{1} \mathrm{H}$ spectrum was not visibly altered by $\mathrm{D}_{2} \mathrm{O}$, but the integration showed one less proton in the $3.2-4.0-\mathrm{ppm}$ region ${ }^{41}$); mass spectrum m / e ($\%$ relative abundance, ion fragment), 121 (4), 106 (7, $\mathrm{PhNH}=\mathrm{CH}_{2}{ }^{+}$), 105 (71, $\mathrm{PhN}=\mathrm{CH}_{2} \cdot{ }^{+}$), 104 (53, $\mathrm{PhN} \equiv \mathrm{CH}^{+}$), $94(27), 93\left(100, \mathrm{PhNH}_{2} .{ }^{+}\right), 92\left(33, \mathrm{PhNH}^{+}\right), 91$ $\left(2, \mathrm{PhN}^{+}\right), 84(51), 78(7), 77\left(27, \mathrm{Ph}^{+}\right), 69(9), 66\left(18, \mathrm{C}_{5} \mathrm{H}_{6}{ }^{+}\right)$, $6.5\left(11, \mathrm{C}_{5} \mathrm{H}_{5}{ }^{+}\right), 56(27), 55(9), 52.5\left(2, \mathrm{PhN}=\mathrm{CH}_{2}{ }^{2+}\right)$, $51(4$, $\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$), 41 (11).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{P}: \mathrm{C}, 73.11 ; \mathrm{H}, 6.69 ; \mathrm{N}, 11.63$; P, S.57; mol wt, 361. Found: C, 73.36; H, 6.73; N, 11.48; P, 8.34; mol wt (osmometric, in CHCl_{3}), 359
3a is soluble in chloroform, acetone, and benzene and insoluble in water and ether. It can be recrystallized from cyclohexane ($10 \mathrm{ml} / \mathrm{g}$) or ethanol, but tends to oil out from eit her solvent unless seeded or scratched during cooling. Prolonged heating in ethanol, however, results in a hard, transparent gum from which no 3a can be recovered. 3a gives a positive test with iodine, ${ }^{42}$ but dissolves in carbon disulfide without giving the red color characteristic of tertiary phosphines. ${ }^{43}$

5-Anilinomethyl-1,3-diphenyl-5-oxo-1,3,5-diazaphosphorinane (3 b). -3 a ($1.805 \mathrm{~g}, 5.0 \mathrm{mmol}$) in acetone (1.5 ml) was oxidized with 30% hydrogen peroxide, giving $1.755 \mathrm{~g}(93.1 \%)$ of 3 b as a white, crystalline solid, $\mathrm{mp} 16 \mathbf{j}^{-1}-168^{\circ}$. One recrystallization from benzene gave an analytical sample: mp 170-171 ${ }^{\circ}$; ir (Nujol) 690 (m, $\mathrm{C}_{6} \mathrm{H}_{5}$), 752 (s, $\mathrm{C}_{6} \mathrm{H}_{5}$), 762 (s, $\mathrm{C}_{6} \mathrm{H}_{5}$), 782 (w), 822 (w), 897 (s), 932 (w), 990 (w), 1030 (w), 1055 (w), 1090 (w), 1120 (m), 1160 (vs, $\mathrm{P}=\mathrm{O}$), 1180 (w), 1200 (w), 1235 (s), 1260 (m), 1320 (s, $\mathrm{CN}_{\text {arom }}$), 1410 (w), 149.5 (vs, $\mathrm{C}=\mathrm{C}_{\text {arom }}$), 1530 (w), $1600(\mathrm{~s}, \mathrm{C}=\mathrm{C}$. 3.3-4.5 $\left(\mathrm{m}, 7 \mathrm{H}, \mathrm{PCH}_{2}\right.$ and NH$), \mathrm{H}_{\mathrm{A}}$ at 4.21 and H_{B} at 5.04
(41) The $\mathrm{NCH}_{2} \mathrm{~N}$ assignment was further supported by the $100-\mathrm{Mc}$ spectrum of 3 a , which also showed an ABX pattern: $\delta\left(\mathrm{CDCl}_{3}\right), \mathrm{H}_{\mathrm{A}}$ at 4.15 , H_{B} at $4.98 \mathrm{ppm}\left({ }^{1} J_{\mathrm{HH}}=13.0,{ }^{4} J_{\mathrm{PH}_{\mathrm{A}}}=3.0, ~ \cdot J_{\mathrm{PH}_{\mathrm{B}}}=0 \mathrm{~Hz}\right.$). The chemical shifts were slightly lower, but the separation (0.83 ppm) was identical.
(42) Iodine test: dissolve sample in a little benzene, ethanol, or chloroform, add 2% iodine in benzene by means of a medicine dropper, and note if the yellow iodine color is discharged. This is a useful test for trivalent phosphorus in organic phosphorus compounds. The test was positive with 4 and $\mathbf{6}$, negative with $\mathbf{3 b}, \mathbf{3 c}, \mathbf{6 b}$, and $\mathbf{5 c}$, and a slow discharge of the iodine color was observed with 1 and 2.
(43) G. M. Kosolapoff, "Organophosphorus Compounds," Wiley, New York, N. Y., 1950, pp 25, 26.
$\left(\mathrm{ABX}\right.$ sextet， $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{~N},{ }^{1} J_{\mathrm{BH}}=13.0,{ }^{4} \mathrm{~J}_{\mathrm{PH}_{4}}=4.0,{ }^{4} \mathrm{~J}_{\mathrm{PH}}=$ 0 Hz ），6．2－7．4（m， $15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ ）．
Anal．Calcd for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{OP}$ ：C， $\mathbf{7 0 . 0 1 ; ~ \mathrm { H } , 6 . 4 1 ; \mathrm { N } , 1 1 . 1 4 ; ~}$ P，8．21．Found：C，69．92；H，6．51；N，10．87；P，8．10
3b is soluble in chloroform and insoluble in acetone，water，and other solvents．It can be recrystallized from benzene（ $40 \mathrm{ml} / \mathrm{g}$ ） or ethanol（ $80 \mathrm{ml} / \mathrm{g}$ ）．

5－Anilinomethyl－1，3－diphenyl－5－thiono－1，3，5－diazaphosphori－ nane（ 3 c ）． $\mathbf{- 3 a}$（ $1.805 \mathrm{~g}, 5.00 \mathrm{mmol}$ ）was stirred overnight at room temperature with 0.160 g （ 5.00 mmol ）of sulfur in benzene（ 30 $\mathrm{ml})$ ，giving an acetone－soluble product， 1.186 g （ $60.4 \mathrm{~T}_{\mathrm{c}}$ ）， mp $12 \overline{7}-128^{\circ}$ ，and an acetone－insoluble product， $0.156 \mathrm{~g}(7.9 \mathrm{c})$ ）mp $1.59-160^{\circ}$ ．The acetone－soluble product， 3 c ，a white crystalline solid，was recrystallized from ethanol and dried in vacuo at $\$ 0^{\circ}$ ：
 $\mathrm{C}_{6} \mathrm{H}_{5}$ ）， 772 （m，sh ）， 806 （w），S18（w）， 834 （w）， $8.55(\mathrm{w}), 904(\mathrm{~m})$ ，
 1110 （w，sh）， 1190 （m，sh）， 1200 （s）， 1235 （m），131．5（m）， 1410 （m）， 1490 （vs， $\mathrm{C}=\mathrm{C}_{\text {arom }}$ ）， 1600 （ $\mathrm{vs}, \mathrm{C}=\mathrm{C}_{\text {arom }}$ ）， 3370 （ \mathbf{w}, NH ） cm^{-1} ；${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.3-4.5\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{PCH}_{2}, \mathrm{NH}\right.$ ，and H_{A} of $\left.\mathrm{NCH}_{2} \mathrm{~N}\right), \mathrm{H}_{\mathrm{B}}$ at $5.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right.$ of $\mathrm{NCH}_{2} \mathrm{~N},{ }^{1} \mathrm{~J}_{\mathrm{HH}}=13.0$ ， $\left.{ }^{4} J_{\mathrm{PH}_{\mathrm{B}}}=0 \mathrm{~Hz}\right), 6.2-7.4\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ ．The upfield portion $\left(\mathrm{H}_{\mathrm{A}}\right)$ of the ABX pattern was not discernible．
Anal．Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{PS}: \mathrm{C}, 67.1 \overline{5} ; \mathrm{H}, 6.15 ; \mathrm{N}, 10.68$ ； P，7．87，S，8．15．Found：C， $67.35 ; \mathrm{H}, 6.15 ; \mathrm{N}, 10.60 ; \mathrm{P}$ 7．63；S， 7.93 ．
$3 c$ is soluble in acetone，chloroform，and benzene and insoluble in water and cyclohexane．It can be recrystallized from ethanol （ $60 \mathrm{ml} / \mathrm{g}$ ）or carbon tetrachloride $(20 \mathrm{ml} / \mathrm{g})$ ．
The acetone－insoluble product was an unidentified white crystalline solid：ir（Nujol） 686 （s， $\mathrm{C}_{6} \mathrm{H}_{5}$ ）， 740 （s，sh）， 750 （vs $\mathrm{C}_{6} \mathrm{H}_{5}$ ）， S 13 （m）， 862 （m）， 891 （m）， $930\left(\mathrm{~m}^{\circ}\right), 97 \mathrm{~S}(\mathrm{w}), 992(\mathrm{w})$ ， 1030 （w），111．5（w）， 1200 （s）， 1210 （s）， 1230 （vs， $\mathrm{CN}_{\text {arom }}$ ）， 1320 （w）， 1410 （m）， 1490 （vs， $\mathrm{C}=\mathrm{C}_{\text {arom }}$ ）， 1600 （vs， $\mathrm{C}=\mathrm{C}_{\text {srom }}$ ）， 3400 （ \mathbf{w}, NH ） cm^{-1} ．
The same two products were obtained when the reaction was carried out at reflux（ 30 min ）instead of room temperature．
Tris（anilinomethyl）phosphine（5a）．A．From 4．－A mixture of $4(3.10 \mathrm{~g}$ of 73.92% titer， 18.5 mmol$)$ ，aniline $(9.30 \mathrm{~g}, 100$ mmol ），and benzene（ 25 ml ）was heated in a nitrogen atmosphere under reflux in an apparatus equipped with a Dean－Stark trap for azeotropic removal of the water．In 2 hr ，a total of 1.00 ml （theory 1.00 g ）of water was collected in the trap．The solution was allowed to cool，decanted from the unreacted oil $[0.55 \mathrm{~g}$ ， $n^{20} \mathrm{D} 1.5050$ ，identified by ir as tris（hydroxymettyl）phosphine oxide］，and stripped of solvent under vacuum．The residue，a white，crystalline mass containing $5 a$ and the excess aniline， was triturated under ether with a mortar and pestle，filtered， and washed with ether，giving $0.30 \mathrm{~g}(73.7 \%)$ of 5 a as white flakes， $\mathrm{mp} 82-83^{\circ}$ ．Another $0.55 \mathrm{~g}(7.6 \%$ ）of 5 a ，and 4.25 g （theory 4.14 g ）of aniline（ir，$n \mathrm{D}$ ）was recovered from the ether filtrate．Two recrystallizations from benzene（ $6 \mathrm{ml} / \mathrm{g}$ ），followed by thorough drying in cacuo at room temperature，gave an analytical sample：mp $85-86^{\circ}$ ；ir（Nujol） 676 （m， $\mathrm{C}_{6} \mathrm{H}_{6}$ sol－ vate）， $692\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{\mathrm{s}}\right.$ ）， 747 （vs， $\mathrm{C}_{6} \mathrm{H}_{5}$ ）， 863 （w）， 890 （w）， 981 （w）， $1055(\mathbf{w}), 1080$（w）， 1140 （w）， 1165 （w）， 1195 （w）， 1230 （s， $\mathrm{CN}_{\text {arom }}$ ）， 1310 （s， $\mathrm{CN}_{\text {arom }}$ ）， 1450 （vs）， 1500 （vs， $\mathrm{C}=\mathrm{C}_{\text {nrom }}$ ）， 1590 （vs， $\mathrm{C}=\mathrm{C}_{\text {arom }}$ ）， $3440(\mathrm{~s}, \mathrm{NH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.52$（d， $\left.\mathrm{CH}_{2}, J=5.0 \mathrm{~Hz}\right), 3.64(\mathrm{~s}, \mathrm{NH}), 6.6-7.2\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ ，and 7.37 （s， $3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}$ solvate）；${ }^{31} \mathrm{P} \mathrm{nmr} \delta+32.5 \mathrm{ppm}$ ．The NH peak vanished when $\mathrm{D}_{2} \mathrm{O}$ was added，changing the $\mathrm{C}_{6} \mathrm{H}_{5}:\left(\mathrm{CH}_{2}\right.$ +NH ）ratio from 15：9．0 to 15：6．1．
Anal．Calcd for $\mathrm{C}_{21} \mathrm{H}_{24}, \mathrm{~N}_{3} \mathrm{P} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ ：C， $74.20 ; \mathrm{H}, 7.01$ ； N，10．82；P，7．97．Found：C， 73.81 ；H， 7.17 ；N，10．73；P， 7．79．

The presence of solvate benzene was evident in both the ir（676 cm^{-1} ）and ${ }^{1} \mathrm{H} n m \mathrm{r}$（ 7.37 ppm ）．The compound retains solvent tenaciously．A sample of 5 a dried in a drying pistol over boiling benzene $\left(80^{\circ}\right)$ ，however，lost 37.2% of its weight and was no longer arystalline．
$5 a$ is insoluble in water or ether，but dissolves instantly in acetone or chloroform．It gives a positive test with iodine，${ }^{42}$ but dissolves in carbon disulfide without giving the red color characteristic of tertiary phosphines．${ }^{{ }^{3}}$
5 a was also obtained when 4 was stirred with anil ne in ethanol at room temperature overnight．The product was an off－white， crystalline solid（ 70.5% ） $\mathrm{mp} 61-63^{\circ}$ ，ir identical xith ir of the product described above except for the $\mathrm{C}_{6} \mathrm{H}_{6}$ band at $6 \overline{7} 6 \mathrm{~cm}^{-1}$ ． Prolonged stirring should be avoided，however，as the product disproportionates in ethanol，even at room temperature．

B．From 6．－6 $(10.25 \mathrm{~g}, 0.05 \mathrm{~mol})$ was added br means of a syringe to $18.60 \mathrm{~g}(0.20 \mathrm{~mol})$ of aniline under nitrogen in a small distillation assembly and heated rapidly to $160-170^{\circ}$ ．Gas evolution was strong，but steady，and subsided within 30 min ． The solution was kept at this temperature for 1 hr ，allowed to cool to $130-140^{\circ}$ ，and stripped under water－pump vacuum to remove the excess aniline（ $4.15 \mathrm{~g}, n^{24} \mathrm{D} 1.5803$ ，correct $\mathrm{ir}, \$ 9.5 / \mathrm{c}$ ）． The still contents（ 17.60 g ）solidified on cooling to a waxy， malodorous solid，ir similar to 5 a ，but without the $\mathrm{C}_{6} \mathrm{H}_{6}$ band $\left(676 \mathrm{~cm}^{-1}\right)$ ．Ore recrystallization from benzene gave $S . S 0 \mathrm{~g}$ $\left(4.5 .4 \stackrel{\sim}{c}\right.$ ）of $5 \mathrm{a}, \mathrm{mp} \mathrm{S}-\mathrm{S} 6^{\circ}$ ，identical with the product prepared from 4.

A preliminary experiment in ethanol solution（ 3 hr at reflux） produced no direthylamine until most of the ethanol was dis－ tilled off．

C．From 2．－Ammonia was bubbled into a slurry of $2(4.90 \mathrm{~g}$ ， 10.0 mmol ）in acetone（ 50 ml ）for 5 min at room temperature， during which time the 2 dissolved and was replaced by a finely divided white frecipitate．After 30 min ，the mixture was filtered，giving $0.50 \mathrm{~g}\left(93 . \mathrm{j}_{\mathrm{c}}\right.$ ）of ammonium chloride（ir， NaOH test，Beilstein test）and a pale vellow oil（ $5.60 \mathrm{~g}, n^{25} \mathrm{D} 1.611 \mathrm{7}$ ） which contained no chlorine（Beilstein test）．The oil，on work－ up，vielded $2.40 \mathrm{~g}(61.9 / \mathrm{c})$ of 5 a ，isolated as the $\mathrm{C}_{6} \mathrm{H}_{6}$ hemisol－
 ful check of each of the fractions failed to reveal the presence of any hexamethylenetetramine．
Tris（anilinomethyl）phosphine Oxide（5b）．－5a（1．747 g，4．50 mmol ）in acetore（ 20 ml ）was oxidized with 30° c hydrogen peroxide as described for 3 a ，giving 1.416 g （ $\left(\mathrm{S} 2.9^{{ }^{\circ}}\right.$ c）of $5 \mathrm{~b}, \mathrm{mp}$ 119－122 ${ }^{\circ}$ after recrystallization from ethanol－water．Two recrystallizations from carbon tetrachloride gave an analytical sample，mp 122－123 ${ }^{\circ}$ ，after drying in vacuo over refluxing benzene： ir（Nujol） $786\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 793(\mathrm{~m}), 74.5\left(\mathrm{vs}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7 . \mathrm{T}_{3}(\mathrm{~s}), 7 \$ 0$
 $1090(\mathrm{~m}), 1110(\mathrm{w}), 1135$（vs， $\mathrm{P}=\mathrm{O})$ ，11．50（m，sh）， $11 \mathrm{~S} 0(\mathrm{~m})$ ， 1220 （w），123： $\mathbf{*}$ ）， $1260\left(\mathrm{~m}, \mathrm{CN}_{\text {arom }}\right), 1290(\mathrm{~m}), 131.5(\mathrm{~m})$ ， 1410 （w）， 1500 （s， $\mathrm{C}=\mathrm{C}_{\text {asom }}$ ）， 1530 （s）， 1610 （vis， $\mathrm{C}=\mathrm{C}_{\text {arom }}$ ）， 3340 （vs，NH）cm ${ }^{-1}$ ；${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.66\left(\mathrm{~d}, 6 \mathrm{I}, \mathrm{CH}_{2}, J=\right.$ $7.0 \mathrm{~Hz}), 4.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N} \mathrm{H}), 6.6-7.3\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ ．The NH peak vanished when $\mathrm{D}_{2} \mathrm{O}$ was added．

Anal．Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{OP} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$ ，6．7．7s； $\mathrm{H}, 6 . \mathrm{S4}: \mathrm{N}$ ， 10．96；P，S．0S．Found：C，65．50；H，6．36；N．10．70；P， S．18．
$\mathbf{5 b}$ is soluble in acetone，chloroform，and ethanol and insoluble in water and ether．It can be recrystallized from carbon tetra－ chloride（ $30 \mathrm{ml} / \mathrm{g}$ ），but must then be dried in racuo over refluxing benzene（ $\mathrm{S} 0^{\circ}$ ）or butanol（ 118° ）to remove the solvent（ CCl band at $757 \mathrm{~cm}^{-1}$ in the ir）．Drying over acetone（ 56° ）is insufficient．

Tris（anilinome：hyl）phosphine Sulfide（5c）．－5a（1．747 g，4．．50 $\mathrm{mmol})$ and sulfur（ $0.160 \mathrm{~g}, 5.00 \mathrm{mmol}$ ）in benzene（ 20 ml ）yielded $1.61 .5 \mathrm{~g}\left(94.2 \%\right.$ ）of $5 \mathrm{c}, \mathrm{mp} 10.5-106^{\circ}$ ．A portion of this com－ pound was recrystallized from acetone－water and dried in vacuo over refluxing acetone： $\mathrm{mp} \mathrm{105}-106^{\circ}$ ；ir（Nujol） $792\left(s, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ ，
 827 （w）， 877 （m）， 896 （w）， 917 （w）， 956 （w）， 99.5 （ \mathbf{w}^{*} ）， 1020 （ \mathbf{w} ）， 1065 （w）， 1110 （w），115．5（w）， 1180 （m）， 1210 （w）， 1240 （m）， 1250 （s）， 1290 （m）， 1315 （s）， 1420 （ $\mathbf{~} \cdot$ ）， 1440 （s）， 1.505 （vs， $\left.\mathrm{C}=\mathrm{C}_{\text {arom }}\right), 1610\left(\mathrm{vs}, \mathrm{C}=\mathrm{C}_{\text {arom }}\right), 3400(\mathrm{~s}, \mathrm{NH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 3.66\left(\mathrm{c}, 6 \mathrm{H}, \mathrm{CH}_{2}, J=5.0 \mathrm{~Hz}\right), 4.14(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH})$ ， $6.5-7.3\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ ．The NH peak vanished when $\mathrm{D}_{2} \mathrm{O}$ was added．

Anal．Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{PS}$ ： $\mathrm{C}, 66.12 ; \mathrm{H}, 6.34 ;$ N゙， 11.02 ； P，8．12．Found：C，65．46；H，6．27；N，10．§6；P， 7.93 ．
5 c is soluble in acetone，chloroform，and acetonitrile and in－ soluble in water and ether．

Registry No．－1，124－64－1；2，3488．－67－1；3a． 34SSj゙－6S－2；3b．348S5－69－3；3c，34ЯSj－70－6；5a． 34SSゴ－71－7；5b．34SS戸－72－S；5c，34ККゥ－73－9； 6. 24577－28－4．

Acknowledgments．－We are indebted to Dr．R．H． Dinius，Auburn University，for the ${ }^{31} \mathrm{P} n m r$ spectrum of 5a and to Mrr．G．J．Boudreaux of this laboratory for the ${ }^{1} \mathrm{H}$ nmr spectra．

A Novel Ring Expansion of a Diazacyclopentadienone Dioxide ${ }^{1}$

Jeremiah P. Freeman,* Edmund G. Duthie, ${ }^{2 a}$
Michael J. O'Hare, ${ }^{2 b}$ and John F. Hansen

Department of Chemistry, University of Notre Dame,
Notre Dame, Indiana 46556 .
Received February 8, 1972
During a study of the cycloaddition reactions of diazacyclopentadienone oxides with acetylenic dipolarophiles, ${ }^{3}$ an unusual ring expansion was observed when $\quad 2,5$-diphenyl-3,4-diazacyclopentadienone $3,4-$ dioxide (1) was heated with ethyl propiolate in benzene. Although the expected ${ }^{3}$ oxabicyclooctadienone derivative 2 was present in small amounts, ${ }^{4}$ the major product (20%) was a nitrogen-containing compound, 3.

The structure of $\mathbf{3}$ is based upon its elementary analysis, spectral properties, its acidic character, and its degradation to 4,6-diphenylpyrimidine (Chart I). Treatment of 3 with phosphorus trichloride produced the corresponding pyrimidine 4. A comparison of the aromatic proton regions of the nmr spectra of the methyl ethers of $3 a$ and $4 a$ was the original clue that a pyrimidine rather than a pyridazine ring was present, since the two phenyl groups, magnetically nonequivalent in 3 a , became equivalent in $4 \mathrm{a} .{ }^{5}$ Alkaline hydrolysis of 4 followed by heating produced the hydroxypyrimidine 5 . The structure of 5 is supported

[^100]

[^101]
$\xrightarrow{\mathrm{PCl}_{3}}$

4, $\mathrm{R}=\mathrm{H}$ $4 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{3}$

5, $\mathrm{R}=\mathrm{H}$
5a, $\mathrm{R}=\mathrm{CH}_{3}$

7
by the appearance in its nmr spectrum of a sharp oneproton singlet at $\delta 9.09$, typical of the shift of the 2 proton in pyrimidines. ${ }^{6}$ In addition, the isomer of 4 with the hydroxyl and ethoxycarbonyl groups interchanged was synthesized independently by bromine oxidation of the condensation product of benzaldehyde, urea, and ethyl benzoylacetate. This compound proved to be different from 4. The hydroxyl group of 4 was removed by the method of Pelletier and Locke, ${ }^{7}$ which involves the dissolving metal reduction of the dimethyl phosphate ester 6 . The resulting 4,6 -diphenylpyrimidine $7, \mathrm{mp} 99 . \mathrm{o}^{-}-101^{\circ}$ (lit. ${ }^{8} \mathrm{mp} \mathrm{102-103}{ }^{\circ}$), was identical with an authentic sample prepared by the condensation of dibenzoylmethane with formamide. ${ }^{8}$

This ring enlargement appears to be related to that observed in the reaction of isatogens with acetylenic esters. ${ }^{9}$ In those reactions also, one of the acetylenic carbon atoms is lost through an obscure deacylation process. However, the present case differs in that insertion is into an $\mathrm{N}-\mathrm{N}$ bond rather than into the $\mathrm{C}-\mathrm{N}$ bond of the original nitrone function. Another ring expansion of the diazacyclopentadienone oxides was observed during oxidation, but in that case $\mathrm{C}-\mathrm{C}$ bond insertion occurred. ${ }^{10}$

Experimental Section

2,5-Diphenyl-3,4-diazacyclopentadienone 3,4-Dioxide and Ethyl Propiolate.-A mixture of $20.0 \mathrm{~g}(0.07 .5 \mathrm{~mol})$ of dioxide 1^{11} and $15.0 \mathrm{~g}(0.15 \mathrm{~mol})$ of ethyl propiolate in 150 ml of benzene was heated under reflux for 24 hr . Upon cooling, a yellow solid separated. Recrystallization of this solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave $5.25 \mathrm{~g}(20 \%$) of 2-ethoxycarbonyl-5-hydroxy-4,6-diphenylpyrimidine l-oxide (3): $\mathrm{mp} 218-219^{\circ}$; ir (KBr) $174.5,1550 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $67.84 ; \mathrm{H}, 4.80 ; \mathrm{N}, 8.30$. Found: C, 67.46; H, 5.09; N, 8.43.

[^102]Methyl ether 3a was prepared in the standard way by reaction of 3 with diazomethane in tetrahydrofuran: mp 170-171 ${ }^{\circ}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 8.09\left(\mathrm{~m}, W_{1 / 2}=1-\mathrm{Hz},{ }^{12} 2 \mathrm{H}\right)$, $7.74(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~m}, 6 \mathrm{H}), 4.52(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.31$ (s, $3 \mathrm{H})$, and $1.43(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $68.96 ; \mathrm{H}, 4.63 ; \mathrm{N}, 8.04$. Found: C, 68.41; H, 5.10; N, 8.01.
The benzene mother liquor (above) was concentrated and the residue was taken up in 200 ml of boiling ethanol. After standing overnight the solution deposited $4.5 \mathrm{~g}(23 \%)$ of unreacted 1 . The solution was concentrated to 75 ml and chilled overnight to yield 4.9 g of a tan powder that was recrystallized from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, then from benzene-Skellysolve B to yield pale yellow needles of 2: $\mathrm{mp} 124-126^{\circ} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1), 7.2-7.6$ (m, 11), 4.1-4.5 (overlapping $\mathrm{m}, 4$), 1.2-1.4 (overlapping $\mathrm{m}, 6$); mass spectrum m / e (rel intensity) 418 (12), 373 (22), 344 (10), 317 (10), 215 (10), 106 (11), 105 (100), 77 (22).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{6}$: C, 71.76; $\mathrm{H}, 5.30$. Found: C, 71.33; H, 5.48.
The ethanol mother liquor was evaporated to dryness. The residue was dissolved in 1:1 benzene-Skellysolve B and placed on a silica gel column. Elution with the same solvent mixture yielded an additional 0.18 g of 2 , total yield $5.08 \mathrm{~g}(13 \%)$.
Elution with benzene yielded a yellow oil which deposited 0.66 g of yellow crystals from ethanol: mp 189-191 ${ }^{\circ}$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 6.9-8.1$ ($\mathrm{m}, 20$), 5.13 ($\mathrm{s}, 1$), $4.99(\mathrm{~s}, 1), 3.75-4.40$ (overlapping $\mathrm{m}, 7$), $1.18(\mathrm{t}, J=7 \mathrm{~Hz}, 3), 1.00(t, J=7 \mathrm{~Hz}, 3)$, 0.89 ($\mathrm{t}, J=7 \mathrm{~Hz}, 3$); mass spectrum m / e (rel intens:ty) 738 (8), 321 (41), 320 (16), 319 (9), 291 (24), 105 (100), 77 (11).
Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{O}_{10}$: C, 73.15; H, 5.20. Found: C, 73.03; H, 5.40.

2-Ethoxycarbonyl-5-hydroxy-4,6-diphenylpyrimidine (4).-A mixture of 1.5 g (4.46 mmol) of 3 and $2 \mathrm{ml}(10 \mathrm{mmol})$ of phosphorus trichloride in 20 ml of CHCl_{3} was allowed to stand at room temperature overnight. Evaporation of the solvent and recrystallization of the residue from ethanol produced $1 \mathrm{~g}(76 \%)$ of white crystals of $4, \mathrm{mp} 227-228^{\circ}$. Traces of this compound were also found in the eluent from the silica gel column separation of the product from the ethyl propiolate reaction.
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: $\mathrm{C}, 71.23 ; \mathrm{H}, 5.03 ; \mathrm{N}, 8.80$. Found: C, 70.05; H, 5.21; N, 8.60.

The acetate ester of 4 had $\mathrm{mp} 113-115^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$.
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 69.20; H, 5.01; N, 7.73. Found: C, 69.33; H, 5.12; N, 7.50.
Methyl ether 4a had mp 117-119 ${ }^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ $8.17\left(\mathrm{~m}, W_{1 / 2}=11 \mathrm{~Hz},{ }^{12} 4 \mathrm{H}\right), 7.50(\mathrm{~m}, 6 \mathrm{H}), 4.51(\mathrm{q}, J=7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$, and $1.45(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$; mass spectrum m / e (rel intensity) 334 (32), 213 (14), 262 (100), 26.1 (29), 129 (10), 89 (16), 77 (12).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: $\mathrm{C}, 71.84 ; \mathrm{H}, 5.43 ; \mathrm{N}, 8.38$. Found: C, 71.73; H, 5.55; N, 8.29.

5-Hydroxy-4,6-diphenylpyrimidine (5).-A suspension of 1.0 g (3.2 mmol) of 4 in 25 ml of 20% aqueous KOH was heated on a steam bath for 1 hr . The solution was cooled and acidified to congo red and the solid that separated was collected. It was dried and heated without solvent at 200° for 30 min . Recrystallization of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a pale yellow solid: mp 181-182 ${ }^{\circ}$; ir (KBr) 3μ (broad), 1570, 1550, 1520 cm^{-1}; mass spectrum m / e (rel intensity) 248 (82), 247 (100).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.39 ; \mathrm{H}, 4.87 ; \mathrm{N}, 11.28$. Found: C, 77.09; H, 5.08; H, 11.50.

Methyl ether 5 a had mp 69-70 ${ }^{\circ}$ from petroleum ether (bp $\left.30-60^{\circ}\right)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.12\left(\mathrm{~m}, W_{1 / 2}=11 \mathrm{~Hz}\right.$, $4 \mathrm{H}), 7.50(\mathrm{~m}, 6 \mathrm{H})$, and $3.35(\mathrm{~s}, 3 \mathrm{H})$; mass spectrum m / e (rel intensity) 263 (13), 262 (73), 261 (100), 89 (28).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$: C, $77.84 ; \mathrm{H}, 5.38 ; \mathrm{N}, 10.68$. Found: C, 78.35; H, 5.45; N, 10.79.
Dimethyl 4,6-Diphenyl-5-pyrimidyl Phosphate (6).-A mixture of 0.3 g (1.2 mmol) of 4,6-diphenyl-5-hydroxypyrimidine (5) and 5 ml of POCl_{3} were heated under reflux for 1 hr . After evaporation of excess POCl_{3} the residue was dissolved in 5 ml of $\mathrm{CH}_{3} \mathrm{OH}$ and this solution was diluted with water. The white solid that separated was recrystallized from $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}, \mathrm{mp} 123-125^{\circ}$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}: \mathrm{C}, 60.67 ; \mathrm{H}, 4.82 ; \mathrm{N}, 7.86$. Found: C, 60.87; H, 4.86; N, 7.87.

4,6-Diphenylpyrimidine (7).-Small pieces of sodium (45 mg) were added to a refluxing solution of 356 mg of phosphate 6 in liquid NH_{3}-tetrahydrofuran. After the usual work-up, 132 mg
(12) Band width at half beight.
(57%) of $7, \mathrm{mp} 99.5-101^{\circ}\left(n-\mathrm{C}_{6} \mathrm{H}_{14}\right)$, was obtained. It was identical with an authentic sample ${ }^{8}$ (mixture melting point, ir spectra).

Ethyl 2-Hydroxy-4,6-diphenyl-1,6-dihydropyrimidine-5-carbox-ylate.-A mixture of $10.6 \mathrm{~g}(0.1 \mathrm{~mol})$ of benzaldehyde and 12.0 g $(0.2 \mathrm{~mol})$ of urea in 100 ml of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ was treated with 8 ml of concentrated HCl and warmed on a steam bath for 15 min . Ethyl benzoylacetate, $19.2 \mathrm{~g}(0.1 \mathrm{~mol})$, was added and the solution was heated under reflux overnight. The solvent was evaporated and the residual oil was crystallized from ethanolhexane to yield $17.0 \mathrm{~g}(53 \%)$ of pale yellow crystals. Upon recrystallization from ethanol, two forms were observed, mp $158-159^{\circ}$ and $\mathrm{my} 172-173^{\circ}$. The low-melting modification partially resolidifizd on hea-ing above its melting point and finally melted at $172-173^{\circ}$: nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.90$ (br s, 1), 7.17$7.50(\mathrm{~m}, 10), 6.68(\mathrm{br} \mathrm{s}, 1), 5.40(\mathrm{brd}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{q}$, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$.
Anal. Calcd fcr $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $70.79 ; \mathrm{H}, 5.63 ; \mathrm{N}, 8.69$. Found: C, 70.56; H, 5.45; N, 8.57.
Ethyl 2-Hydroxy-4,6-diphenylpyrimidine-5-carboxylate.-A solution of $3.22 \mathrm{~g}(0.01 \mathrm{~mol})$ of the dihydro compound and 1.8 g (0.011 mol) of Br_{2} in 30 ml of acetic acid was heated under reflux overnight. The solvent was evaporated in vacuo to yield a mixture of the py-imidine and its dibromo intermediate. The dehydrobromination was completed by dissolving the mixture in ethanol and stirring overnight in the presence of excess solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ at room temperature. The mixture was filtered, and the filtrate was evaporated to yield $2.68 \mathrm{~g}(84 \%)$ of white solid. A sample was recrystallized from ethanol-water and sublimed at $180^{\circ}(0.5 \mathrm{~mm}): \mathrm{mp} 215-216^{\circ}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.25-7.80(\mathrm{~m}$, $10 \mathrm{H}), 3.90(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $71.24 ; \mathrm{H}, 5.03 ; \mathrm{N}, 8.75$. Found: C, 71.04; H, 5.12; N, 8.83.

Registry No.-1, 34982-07-5; 2, 34906-18-8; 3, $34906-19-9$; $3 \mathrm{a}, 34906-20-2 ; 4,34906-21-3$; 4 acetate ester, 34906-22-4; 4a, 34906-23-5; 5, 34906-24-6; 5a, $34906-25-7$; 6, 34906-26-8; 7, 3977-48-8; ethyl 2-hydroxy-4,6-dipnenyl-1,6-dihydropyrimidine-5-carboxylate, 34906-28-0; ethyl 2-hydroxy-4,6-diphenylpyrim-idine-5-carboxylate, 34906-29-1.

New Synthetic Methods from Dithianes. A Convenient Oxidation of Aldehydes to Acids and Esters

Robert A. Ellison,* Warren D. Woessner, and Craig C. Williams

School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53706

Received November 2, 1971
The considerable literature on the chemistry of 2-lithio-1,3-dithianes which has been accumulating recently ${ }^{1}$ attests to their great utility in organic synthesis. This contrasts with the present utility of metalated orthothioformates which suffer from being simultaneously less reactive and somewhat unstable. ${ }^{2}$ Furthermore, neither their hydrolysis ${ }^{2}$ nor alcoholysis ${ }^{3}$ has produced outstanding yields. We wish to report a combination of reactions which leads from 2 -substituted 1,3-dithianes to carboxylic acids and esters in good overall yields via 2 -substituted 2 -methylthio-1,3dithianes.

Treatment of 2 -lithio 2 -substituted 1,3-dithianes
(1) For a review, see D. Seebach. Synthesis, 1, 17 (1969).
(2) D. Seebach, Anpew. Chem., Int. Ed., Engl., 6, 442 (1967).
(3) R. M. Carlson and P. M. He.quist, Tetrahedron Lett., 173 (1969).

Table I
Conversion of Dithianes 1 into Esters 5 via Orthothioformates 3^{a}

R	Reaction time, hr	Orthothioformates 3 reaction temp, ${ }^{\circ} \mathrm{C}$	Yield, ${ }^{c}$ \%	$\begin{aligned} & \text { Ethyl esters } 5^{b} \\ & \text { reflux } \\ & \text { time, } \\ & h r \end{aligned}$	$\begin{gathered} \text { Yield, }{ }^{d} \\ \% \end{gathered}$	Acids 4 reflux time, hr	Yield, $\%$
Phenyl	2	-78	94.5	4.5	92.4	24	6.5
n-Butyl	3	-20	89.8	4.0	99.0	25	40
trans-Cinnamyle	2	-78	90.0	7.5	$92.1{ }^{\text {e }}$	21	46

a All new compounds were characterized by nmr and infrared spectra as well as satisfactory elemental analyses. b Methyl benzoate was prepared in 95% yield by refluxing for 4.5 hr in 30% aqueous methanol. ${ }^{c}$ Crude yield from 1. d Crude yield from 3 . ${ }^{2}$ All trans by nmr analysis.
(2) in tetrahydrofuran with 1 equiv of methyl disulfide gave high yields of the corresponding orthothioformates (3). ${ }^{4}$ These were converted in similar yields

to the corresponding esters by refluxing in aqueous alcohols in the presence of mercury (II) salts for periods of 4.0-7.5 hr. Representative examples are shown in Table I. In keeping with the lower acidity of the butyl derivative ($1, \mathrm{R}=n$-butyl), reaction times to form the anion were substantially longer than with the benzylic analogs. The orthothioformates were readily recognizable due to a three-proton singlet in their nmr spectra at about $\delta 2.00$ corresponding to the S-methyl protons. Interestingly, although the styryl derivative $2\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}-\right.$) could in principle be expected to give two methylthio adducts (6 or 7), nmr analysis of the product obtained under our conditions showed it to be entirely 6 . Furthermore, treatment of this anion with deuterium oxide resulted in recovery of only monodeuterated starting material ($1, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}-, \mathrm{R}^{\prime}=\mathrm{D}$). As may have been expected, there was no evidence for cis product. However, it was subsequently found that 7 may be

6

7
obtained by pyrolysis of 6 . Distillation of 6 at 190° and $50-\mu$ pressure yielded a 2.6:7.4 mixture of 6 and 7 by nmr integration. In accord with expectation, alcoholysis of this mixture yielded typical yields of ethyl cinnamate. It should also be noted that at least in the cinnamyl case alkoxymercuration of the double bond either does not occur or is reversible under the reaction conditions. As the beginning of an exploration of the scope of the alcoholysis, the phenyl orthothioformate was treated with tert-butyl alcohol under typical conditions. The reaction time to completion was much longer ($c a .70 \mathrm{hr}$) and gave the unexpected result of producing benzoic acid in 60% yield. Since we have demonstrated that tert-butyl ienzoate

[^103]is stable to the reaction conditions, it may be that in this case steric factors permit water to successfully compete with tert-butyl alcohol for reaction at the benzylic carbon.

The corresponding carboxylic acids were obtained in lower yield (Table I) by reaction of 3 in refluxing 35% aqueous acetone for 24 hr with mercury (II) salt catalysis. Considerable experimental variation in conditions did not improve these yields. The neutral material recovered from these reactions showed no starting matcrial upon tlc analysis. We are exploring this reaction more thoroughly and will report more details in due course.

We expect the oxidative procedure we have described to be of value in systems which are sensitive to conventional oxidizing reagents and are continuing to explore further ramifications of this work.

Experimental Section

Nmr spectra were :ecorded on a Varian A-60A spectrometer and chemical shifts are reported in parts per million (δ) from internal tetramethylsilane. Infrared spectra were recorded on a Beckman IR-jA spectrometer. Melting points were taken with a Thomas-Hoover apparatus and are uncorrected. Deuterium oxide (99.7 / $)$ was purchased from Merck Sharp and Dohme, Canada. Microanalyses were performed by Galbraith Laboratories, Knoxville, Tenn. The 1,3-dithianes were prepared by the method of Seebach, et al. ${ }^{5}$
Ethyl Benzoate.-A solution of $2.0 \mathrm{~g}(10.68 \mathrm{mmol})$ of 2-phenyl-1,3-dithiane ${ }^{4}$ in 20 ml of tetrahydrofuran in a $50-\mathrm{ml}$, two-neck, round-bottomed flask equipped with magnetic stirring, nitrogen inlet, and septum cap was cooled to -75°, and 5.70 ml of 2.24 M-butyllithium in hexane was injected over 25 min . The clear yellow solution was stirred for 2 hr at -78°, and then 1.73 ml (19.35 mmol) of methyl disulfide was injected over 10 min . The reaction mixture was allowed to warm to 25° and then poured into 100 ml of 0.05 N hydrochloric acid. Tetrahydrofuran was removed by rotary evaporation and the remaining aqueous solution was extracted with two $100-\mathrm{ml}$ portions of $1: 1$ pentanemethylene chloride. The extracts were combined, washed with 10% aqueous sodium bicarbonate, water, and saturated brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and evaporated in vacuo to afford 2.44 g $(94.5 \%$) of 2-thiomethoxy-2-phenyl-1,3-dithiane as white plates: $\mathrm{mp} 67-71^{\circ}$ (from methanol, $76-7 \mathrm{~S}^{\circ}$); nmr $\left(\mathrm{CCl}_{4}\right) \delta 1.90(\mathrm{~s}, 3 \mathrm{H}$, SCH_{3}). Anal. Calcd: C, $54.50 ; \mathrm{H}, 5.82$. Found: C, 54.70 , $\mathrm{H}, 5.86$. Crude product ($23 \mathrm{~s} \mathrm{mg}, 0.98 \mathrm{mmol}$) was placed in a $50-\mathrm{ml}$ round-bottom flask with 27 ml of $9.5 \widetilde{T}_{c}$ ethanol, 1.14 g (4.20 mmol) of mercuric chloride, and 353 mg (1.62 mmol) of mercuric oxide and refluxed for 4.5 hr under nitrogen. The mixture was filtered and the solid residue was washed with two $20-\mathrm{ml}$ portions of methylene chloride. The filtrate was diluted with 75 ml of water and extracted with two $7 \overline{5}-\mathrm{ml}$ portions of methylene chloride. These extracts were combined, washed with 4 M aqueous ammonium chloride and saturated brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and evaporated in vacuo to yield 133 mg of ethyl benzoate (92.4 /cc) as a clear oil. Characterization by nmr and infrared spectroscopy indicated no significant impurities: ir

[^104]$\left(\mathrm{CHCl}_{3}\right) 5.82 \mu ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.40(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.37$ (q, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}$).
Methyl Benzoate.-Treatment of 144 mg of phenyl orthothioformate with 665 mg of mercuric chloride and 213 mg of mercuric oxide in 14 ml of 7.7% aqueous methanol under conditions identical with those above yielded $66 \mathrm{mg}(95.5 \%)$ of methyl benzoate: ir $\left(\mathrm{CCl}_{4}\right) 5.78 \mu, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.89(\mathrm{~s}, 3 \mathrm{H})$.
Ethyl Pentanoate.-Treatment of $1.88 \mathrm{~g}(8.46 \mathrm{mmol})$ of 2-butyl-1,3-dithiane in 20 ml of tetrahydrofuran with 5.70 ml (12.8 mmol) of n-butyllithium followed by $1.72 \mathrm{ml}(19.35 \mathrm{mmol})$ of methyl disulfide in a manner identical with the above procedure yielded $2.13 \mathrm{~g}(89.8 \%)$ of crude orthothioformate derivative as an orange oil: $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 2.00(\mathrm{~s}, 3 \mathrm{H})$. Anal. Calcd: C, 48.60; H, 8.16. Found: C, 49.12; H, 8.15. Crude product ($222 \mathrm{mg}, 1 \mathrm{mmol}$) was refluxed for 4 hr in 87 ml of 95% ethanol with 1.14 g of mercuric chloride and 353 mg of mercuric oxide. Work-up as above yielded 132 mg (quantitative) of the ester as a clear, light brown oil: ir $\left(\mathrm{CHCl}_{3}\right) 5.80 \mu$.

Ethyl Cinnamate.-A solution of $2.38 \mathrm{~g}(10.68 \mathrm{mmol})$ of $2-(\beta$ -styryl)-1,3-dithiane in 20 ml of tetrahydrofuran was treated with 5.70 ml (12.8 mmol) of n-butyllithium and subsequently with 1.73 ml (19.35 mmol) of methyl disulfide as above to give 2.56 g (90%) of the orthothioformate derivative as a clear yellow oil: $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.04(\mathrm{~s}, 3 \mathrm{H}), 6.30(\mathrm{~d}, 1 \mathrm{H}, J=19.0 \mathrm{~Hz}), 6.90$ (d, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}$). Anal. Calcd: C, $58.16 ; \mathrm{H}, 6.01$. Found: $57.80 ; \mathrm{H}, 5.83$. Crude product ($268 \mathrm{mg}, 1 \mathrm{mmol}$) was refluxed for 7.5 hr in 95% ethanol with 1.14 g of mercuric chloride and 353 mg of mercuric oxide. The standard wo k-up yielded $162 \mathrm{mg}(92.1 \%)$ of oily ethyl cinnamate: $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 1.24$ (t , $3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.15(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 6.37(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.5 \mathrm{~Hz}), 7.63(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz})$; ir $\left(\mathrm{CCl}_{4}\right) 5.82,6.10 \mu$.
Isomerization of 6 to 7.-The cinnamyl orthothioformate was bulb to bulb distilled in a Kugelrohr apparatus at 192° and 50μ to give an oil. The nmr spectrum (CDCl_{3}) of this material showed peaks corresponding to a small amount of 9 and new resonances at $\delta 1.98(\mathrm{~s}, 3 \mathrm{H}), 5.08(\mathrm{~d}, 1, \mathrm{H}, J=10.0 \mathrm{~Hz})$, and $6.05(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz})$ which were attributed to isomer 10. Integration of the spectrum showed 9 and 10 to be present in a ratio of 2.6:7.4.

Benzoic Acid.-Phenyl orthothioformate 3 ($238 \mathrm{mg}, 1 \mathrm{mmol}$) was refluxed in 27 ml of 35% aqueous acetone with 1.14 g of mercuric chloride and 353 mg of mercuric oxide for 24 hr . The reaction was cooled and worked up in a manner identical with the esterification reaction. The methylene chloride extract was washed with 10% aqueous sodium carbonate. Acidification of the aqueous layer followed by extraction with methylene chloride yielded $80 \mathrm{mg}(69 \%)$ of benzoic acid which was homogeneous in the nmr spectrum, $\mathrm{mp} 122^{\circ}$.
Cinnamic Acid.-The cinnamyl orthothioformate ($508 \mathrm{mg}, 2$ mmol) was similarly refluxed in 50 ml of 35% aqueous acetone with 1.63 g of mercuric chloride and 1.30 g of mercuric oxide for 21 hr . Typical work-up yielded $131 \mathrm{mg}(46 \%)$ of cianamic acid: $\mathrm{mp} 133-144^{\circ}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.55(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 7.88$ $(\mathrm{d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 10.7(\mathrm{~s}, 1 \mathrm{H})$; ir $\left(\mathrm{CDCl}_{3}\right) 5.93,6.13 \mu$.
Pentanoic Acid.-Butyl orthothioformate ($224 \mathrm{mg}, 1 \mathrm{mmol}$) was similarly refluxed in 25 ml of 35% aqueous acetone with 823 mg of mercuric chloride and 658 mg of mercuric oxide for 25 hr . Typical work-up jielded $42 \mathrm{mg}(40 \%)$ of oily pentanoic acid: $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~s}, 1 \mathrm{H})$; ir $\left(\mathrm{CDCl}_{3}\right) 3.05-4.35,5.85 \mu$.

Reaction of Phenyl Orthothioformate (3, R = Phenyl) with tert-Butyl Alcohol.-A mixture of $142 \mathrm{mg}(0.6 \mathrm{mmcl})$ of phenyl orthothioformate, 665 mg of mercuric chloride, and 213 mg of mercuric oxide was refluxed with 12 ml of tert-butyl alcohol and 1 ml of water for 67.5 hr . The reaction was cooled and filtered and the residue was washed with methylene chloride. The filtrate was washed with 20% aqueous ammonium chloride and saturated aqueous sodium chloride, dried, and evaporated to yield 62 mg of amorphous solid. This material was dissolved in methylene chloride and extracted with 10% aqueous sodium bicarbonate. Acidification of the aqueous layer followed by methylene chloride extraction yielded $43 \mathrm{mg}(60.3 \%)$ of benzoic acid, mp 119-120 .

Stability of tert-Butyl Benzoate.-tert-Butyl benzoate was prepared according to procedure 1 of Raha. ${ }^{6}$ tert-Butyl benzoate ($173 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in 24 ml of tert-butyl alcohol and 2 ml of distilled water with 1.4 g of mercuric chloride and 430 mg of mercuric oxide. The mixture was refluxed for 72 hr and then

[^105]worked up as above to give 172 mg of recovered tert-butyl benzoate. No addi-ional products were evident in the nmr spectrum.

Orthothioformates via 2-Thiomethoxy-1,3-dithiane. Ethyl Pentanoate.-2-Thiomethoxy-1,3-dithiane was prepared from 1,3-dithiane ($1.0 \mathrm{~g}, 8.32 \mathrm{mmol}$) by treatment with n-butyllithium $(4.0 \mathrm{ml}, 8.8 \mathrm{mmol})$ followed by methyl disulfide $(0.752 \mathrm{ml}, 8.5$ mmol) in a manner identical with that above. The crude product was isolated as an oil ($1.72 \mathrm{~g}, 92 \%$). To $168 \mathrm{mg}(1.01$ mmol) of crude thiomethoxy derivative in 5 ml of tetrahydrofuran at -20° was injected $0.5 \mathrm{ml}(1.02 \mathrm{mmol})$ of n-butyllithium over a period of 1 min . After 3 min of stirring, $0.114 \mathrm{ml}(1.0 \mathrm{mmol})$ of methyl iodide was added and stirring was continued for 2.5 hr . The reaction was brought to 0° and stored for 17 hr followed by 3 hr at 25°. The reaction was subjected to the usual work-up to yield 175 mg of yellow oil with properties identical with those of the butyl orthothioformate previously described. Treatment of 166 mg of this oil with 95% ethanol under typical alcoholysis conditions yielded crude ethyl pentanoate ($94 \mathrm{mg}, 97 \%$).

Registry No.-Ethyl benzoate, 93-89-0; 2-thio-methoxy-2-phenyl-1,3-dithiane, 34858-82-7; methyl benzoate, $93-58-3$; ethyl pentanoate, $539-82-2$; ethyl cinnamate, 4192-77-2; benzoic acid, 65-85-0; cinnamic acid, 621-82-9; pentanoic acid, 109-52-4.

Acknowledgment.-We are grateful to the Graduate School of the University of Wisconsin for financial support of this work and to the National Science Foundation for support to C. C. W. under the auspices of the undergraduate research participation program (GY8817, 1971).

A Nuclear Magnetic Resonance Technique for Distinguishing Isomers of 3,5-Disubstituted Nortricyclenes ${ }^{1 a}$

Boris Franzus, * Stephen Wu, ${ }^{1 b}$ W. C. Baird, Jr., ${ }^{\text {1c }}$ and Monte L. Scheinbaum
Department of Chemistry, East Tennessee State University, Johnson City, Tennessee 36701

Received April 26, 1971
Known techriques for assigning relative stereochemistry to the 3,5 positions of nortricyclene derivatives are generally limited to compounds with a "trans" arrangement of substituent groups as in 1a. ${ }^{2-6} \mathrm{Nmr}$ techniques for distinguishing between the "cis" isomers 1 b and $1 \mathrm{c}(\mathrm{X}=\mathrm{Y})$ have not been reported.

The symmetry of the parent nortricyclene system includes a threefold axis oì rotation through the bridgehead carbon $\left(\mathrm{C}_{4}\right)$ and the center of the cyclopropyl ring ($\mathrm{C}_{3 \mathrm{v}}$ symmetry). The same sets of rules employed in the interpretation of spectra of norbornene and norbornadiene systems do not apply to the nortricyclyl system. The terms endo and exo do not have the same significarce in considering the nortricyclene system, for which of the three carbons chosen as the
(1) (a) Presented ic part at the Southeast Regional Meeting of the American Chemical Society. Nashville, Tenn., Nov 4-6, 1971; (b) Abstracted in part from the M.S. Thesis of Stephen Wu, East Tennessee State University, Aug 1970; (c) Corpo-ate Research Laboratories, Esso Research and Engineering Company, Linden, N. J.
(2) S. J. Cristol, J. K. Harrington, and M. S. Singer, J. Amer. Chem. Soc., 88, 1529 (1966).
(3) D. G. Trecker and J. P. Henry, ibid., 85, 3204 (1963).
(4) R. S. Neale and E. B. Whipple, ibid., 86, 3130 (1964).
(5) D. R. Coulson, ibid., 91, 200 (1969).
(6) J. R. Stille and L. F. Hines, ibid., 92, 1798 (1970).

Figure 1.-Nmr spectrum of the 3,5 -endo,endo-diacetate (4). Inset, spectrum of 4 after irradiation of the bridgehead proton H_{4}.
bridge $\left(\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{7}\right)$ is arbitrary. Hence, assignments of stereochemistry based on experience with coupling constants in the norbornyl or norbornadienyl derivatives cannot be made in the nortricyclene case. The use of a monosubstituted reference compound to determine chemical shifts of endo or exo protons is meaningless; there are only R and S isomers of 3substituted nortricyclenes.

A technique based upon nmr analysis of the highfield spectra has been developed in these laboratories for assigning stereochemistry to cis,exo and cis,endo isomers of 3,5 -disubstituted nortricyclenes. This technique depends upon the fact that an exo- Y substituent at position 5 (as in 1 a or 1 l) should cause a paramagnetic shift of $H_{7 \mathrm{c}}$, for, owing to the symmetry of the nortricyclene system, the $\mathrm{H}_{7 \mathrm{c}}-\mathrm{Y}$ interaction in $\mathbf{1 a}$ and $\mathbf{1 b}$ is similar to the $\mathrm{H}_{\mathrm{a}}-\mathrm{X}$ interaction in 1a. In the same vein, an endo- X substituent at position 3 (as in 1a or 1c) would not affect the chemical shift of either $H_{7 c}$ or $H_{7 \mathrm{~d}}$.

Nmr analyses of reported 3,5-disubstituted nortricyclenes of known stereochemistry have been carried out with particular emphases on the high-field portions of the spectra $\left(\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{6}\right.$, and $\left.\mathrm{H}_{7}\right)$. The compounds used in these studies were the 3,5-exo,exo- and endo,-endo-dibenzoate derivatives, 2 and 3 respectively, ${ }^{7}$ the 3,5 -endo,endo-diacetate $4,{ }^{7}$ and the exo,exo-diacetamide $5 .{ }^{8}$

If indeed the paramagnetic shift is a general phenomenon, then the $\mathrm{H}_{7 c}, \mathrm{H}_{7 \mathrm{~d}}$ protons of the "pseudo" exo,exo isomer ($1 \mathrm{~b}, \mathrm{X}=\mathrm{Y}$) would appear at lower field

[^106]

2

4

3

5
$\mathrm{Bz} \equiv \mathrm{COC}_{6} \mathrm{H}_{5}$
$\mathrm{Ac} \equiv \mathrm{COCH}_{3}$
(unspecified positions are hydrogens)
(paramagnetic shift) than the $\mathrm{H}_{7 \mathrm{c}}, \mathrm{H}_{7 \mathrm{~d}}$ protons of the corresponding "pseudo" endo,endo isomer (1c, X = $\mathrm{Y})$. The critical task in these nmr analyses was assignment of H_{7} for both the "pseudo" exo,exo and endo,endo isomers. Since H_{7} is magnetically coupled to H_{4} (and H_{1}), irradiation of H_{4} should sharpen the H_{7} signal. Identification of H_{4} in each of the spectra presented little problem, since the H_{4} signal appeared downfield with respect to the $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{6}$, and H_{7} absorptions, owing to its bridgehead nature and to its proximity to the electronegative X groups (at C_{3} and C_{5}). In all cases, irradiation of H_{4} resulted in sharpening of the downfield protons $\left(\mathrm{H}_{3}, \mathrm{H}_{5}\right)$ and sharpening of the bridge protons $\left(\mathrm{H}_{7}\right)$. For example, irradiating H_{4} of the 3,5-endo,endo-diacetate ($4, \mathrm{X}=\mathrm{Y}=\mathrm{Ac}$) resulted in collapse of the signals at $\delta 1.53 \mathrm{ppm}$; therefore the absorption at 1.53 ppm can be assigned to H_{7} (see Figure 1). The same technique was applied to compounds 2, 3, and 5 to ascertain the chemical shift of H_{7} in each case. Further proton decoupling and spectral simulation led to chemical shift assignments of the protons in compounds $2-5$. These results are shown in Table I.

Table I
Chemical Shift Assignments

	Chemical Shift Assignments			
	Hydrogen	2	3	4
H_{1}	1.60	1.39	1.44	1.30
$\mathrm{H}_{7 \mathrm{c}}=\mathrm{H}_{7 \mathrm{~d}}$	1.99	1.53	1.53	1.56
$\mathrm{H}_{2}=\mathrm{H}_{6}$	1.70	1.71	1.64	1.36
H_{4}	2.49	2.59	2.44	2.13
$\mathrm{H}_{3}=\mathrm{H}_{6}$	4.88	4.96	4.84	3.77

Protons H_{7} would be expected to absorb at higher field than $\mathrm{H}_{2}, \mathrm{H}_{6}$ even though the latter are "cyclopropyl" type hydrogens, since H_{7} is one carbon further removed from the electronegative X groups. However, H_{7} should absorb at lower field than H_{1}, for both protons are about equally removed from C_{3} and C_{5}, but H_{1} is a "cyclopropyl" type proton. These predictions hold true for the 3,5-di-endo isomers 3 and 4, wherein H_{1} absorbs at higher field than H_{7}, which in turn absorbs higher than $\mathrm{H}_{2}, \mathrm{H}_{6}$.

This order of absorption is not observed for the 3,5-di-exo compounds 2 and 5. For compounds 2 and 5, proton H_{1} still absorbs at the highest field, but the

Table II
Coupling Constants of the Nortricyclic System

J	Coupling constant J. ${ }^{\text {a }} \mathrm{Hz}$			
	2	3	4	5
$J_{1,2} \equiv J_{1,6}$	5.3-5.5 ${ }^{\text {b }}$	5.3-5.5	5.3-5.5 (5.46) ${ }^{\text {e }}$	5.3-5.5
$J_{1.7}$	1.2-1.5	1.2-1.5	1.2-1.5	1.2-1.5
$J_{4.7}$	1.8-2.0	1.8-2.0	1.8-2.0	1.8-2.0
$J_{2,3} \equiv J_{\text {¢, }}$	$0.5{ }^{\text {c }}$	$0.75{ }^{\text {d }}$	0.75	
$J_{3,4} \equiv J_{4,5}$	1.3-1.5	1.3-1.5	1.3-1.5	1.3-1.5
$J_{3.7} \equiv J_{5.7}$	$0.0{ }^{\text {d }}$	$0.9{ }^{\text {d }}$		
$J_{2.4} \equiv J_{4.6}$		$\leq 0.3{ }^{\text {c }}$	≤ 0.3	

${ }^{a}$ It was not possible to obtain signs of coupling constants in this work. ${ }^{b}$ This coupl:ng constan: was assumed from analogy with compound 3 and was found to fit the spectral simulation. The order of magnitude was also checked by the hand calculation of an $A B_{2}$ type spectrum. ' Estimated from sharpening of peak after irradiation. Such coupling cor.stants are known to be small. See M. Barfeld and B. Chakrabati, Chem. Rev., 69, 757 (1969). © Estimated from sharpening of peak from triple resonance. © Based on coupling constants from endo,endo compounds and the spectral simulation. ${ }^{s}$ This was based on a hand calculation of an AB_{2} system. See, for example, J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution NMR Spestroscopy," Vol. I, Pergamon Press, New York N. Y., 1965, pp 321-329.
$\mathrm{H}_{2}, \mathrm{H}_{6}$ signals are at higher field than H_{7}. It is quite clear from Table I that H_{7} (in compound 2) absorbs about 0.3 ppm lower than $\mathrm{H}_{2}, \mathrm{H}_{6}$; in compound $5, \mathrm{H}_{7}$ absorbs at 0.2 ppm lower than $\mathrm{H}_{2}, \mathrm{H}_{6}$. These results are completely consistent with previous observations showing that protons spatially adjacent to electronattracting groups suffer a paramagnetic (downfield) shift.
Additional evidence corroborating the $\mathrm{H}_{7 \mathrm{c}}-\mathrm{H}_{7 \mathrm{~d}}$ assignment ($\delta 1.57 \mathrm{ppm}$) for the endo,endo isomer 3 and the $\mathrm{H}_{7 \mathrm{c}}-\mathrm{H}_{7 \mathrm{~d}}$ assignment ($\delta 1.99 \mathrm{ppm}$) for the exo, exo isomer 2 came from observation of the chemical shifts of each of these compounds (2 and 3) in the presence of tris(dipivalomethanato)europium, $\operatorname{Eu}(\mathrm{DPMI})_{3} \cdot{ }^{9-13}$ Since the effect of $\mathrm{Eu}(\mathrm{DPM})_{3}$ decreases with distance it was ar.ticipated that all the protons in the 3,5 -exo,exodibenzoate 2 would suffer some paramagnetic shift, for the $\mathrm{Eu}(\mathrm{DPM})_{3}$ should be spatially proximate to all the hydrogens in 2. In contrast to the exo,exo isomer 2, the $\mathrm{Eu}(\mathrm{DPM})_{3}$ would be expected to interact with all the protons of the 3,5 -endo,endo-dibenzoate 3 except the bridge hydrogens (7c, 7d). Addition of $\mathrm{Eu}(\mathrm{DPM})_{3}$ to 2 resulted in a chemical shift of all signals; addition of $\mathrm{Eu}(\mathrm{DPM})_{3}$ to 3 resulted in a sizable chemical shift of all signals except those for $H_{7 c}$ and $H_{7 d}$.
The generality of paramagnetic shifts for various electronegative X groups has been shown for chloride, ${ }^{3,5}$ bromide,,${ }^{2,5}$ acetate, ${ }^{4}$ carbomethoxy, ${ }^{6}$ and phenylsulfone groups. ${ }^{2}$ This study has extended the above grouping to include benzoates, acetates, ${ }^{14}$ and acetamides wherein the groups are identical $(\mathrm{X}=\mathrm{Y}) .{ }^{15}$
In summary, paramagnetic shifts of bridge protons $\left(\mathrm{H}_{7}\right)$ in contrast to "cyclopropyl" hydrogens (H_{2} and H_{6}) are observed for 3,5 -di-exo compounds, whereas bridge proton absorptions are observed at higher fields than those for "cyclopropyl" hydrogens in $3, \overline{0}$-di-endo derivatives. One can distinguish between 3,5 -di-exo and 3,5 -di-endo derivatives by irradiation of the bridge-

[^107] to establish the generality of the paramagnetic shift effect.
head hydrogen $\left(\mathrm{H}_{4}\right)$, thereby revealing the decoupled signals for the bridge protons $\left(\mathrm{H}_{7}\right)$. If the bridge hydrogens absorb at lower field than the "cyclopropyl" protons (H_{2} and H_{6}), then the compound is di-exo; if not, it is di-endo.

Experimental Section

Nmr spectra (60 and 100 MHz) were run on a JEOLC() C-60H at East Tennessee State University and on a JNM-4H-100 at Medford, Mass. A JEOLCO-SD-30 was used for homonuclear spin decoupling. Samples for nmr analysis were dissolved in CDCl_{3} with tetramethylsilane (TMS) as internal standard. Chloroform-d, hewever, was not used as solvent for compound 5; $\mathrm{CD}_{3} \mathrm{CO}_{2} \mathrm{D}$ ($9.9 .9 \%$ isotopically pure from Diaprep, Inc.) was used as solvent with TMIS as internal standard. All compounds were prepared as previously described, ${ }^{2,8}$ and had the correct elemental analyses.

Although the chemical shifts and coupling constants asisigned in this study do not necessarily form a unique set, ${ }^{16,17}$ these parameters have been so caosen that they are consistent with those values found in analogous systems. Values of bridgebridgehead coupling constants of $1.5-2.5 \mathrm{~Hz}$ are consistent with previous studies; ${ }^{18-21}$ the $. \overline{5} . \overline{\mathrm{j}}-\mathrm{Hz}$ coupling constants ($J_{1.2} \equiv$ $J_{1,6}$) of "nortricyclic" three-membered ring cis protons are not inconsistent with other literature values. ${ }^{22-26}$ These results are summarized in Table II.
Spectral Simulation.-Spectral simulation was done using an (8 K) IBM-1130 with plotter and a computer program designed for five spins. Comparison spectra were obtained from both double and triple resonance (homonuclear) experiments. These were compared to the simulated spectra. The $3, i$-disubstituted nortricyclyl system has eight protons, but the chemical shift of the 3, , hydrogens are the same, reducing the number of spins to seven. Decoupling was necessary in order to reduce the number of spins to five for comparison of simulated spectra with actual spectra.

Experiments with Chemical Shift Reagent.-To an nmr tube, containing about 100 mg of $3, \overline{5}$-exo, exo-dibenzoate (2) and $0 . \overline{\mathrm{ml}}$ of CDCl_{3}, about $i 2 \mathrm{mg}$ of $\mathrm{Eu}(\mathrm{DPM})_{3}$ was introduced. A solution containing atout 90 mg of the 3,5 -endo, endo-dibenzoate (3), $0 . \overline{5} \mathrm{ml}$ of CDCl_{3}, and about 16 mg of $\mathrm{Eu}(\mathrm{DPM})_{3}$ was prepared
(16) S. Castellano and J. S. Wacgh, J. Chem. Phys., 34, 295 (1961).
(17) S. Castellano and J. S. Wacgh, ibid., 36, 1900 (1961).
(18) P. Laszio an 1 P. v. R. Schleyer, J. Amer. Chem. Soc. 86, 1171 (1964).
(19) E. I. Snyder and B. Franzus, ibid., 86, 1166 (1964)
(20) J. C. Davis, Jr., and T. V. V'anAuken, ibid., 87, 3900 (1965)
(21) B. Franzus, W. C. Baird, Jr., N. F. Chamberlain, T. Hines, and E. I. Snyder, ibid., 90, 372: (1968).
(22) D. J. Patel, M. E. H. Howden, and J. D. Roberts, ibid., 86, 3218 (1963).
(23) H. M. Hutton and T. Schacfer, Can. J. Chem., 41, 2774 (1963)
(24) F. A. Bovey, "Nuclear Magnetic Resonance Spectroscopy." Academic Press, New look. N. Y., 1969.
(25) C. A. Reilly and J. Swalen, J. Chem. Phys., 32, 1378 (1960)
(26) M. S. Gutowaky, M. Karplus, and D. M. Grant, ibid., 31, 1278 (1959).
in an nmr tube. The paramagnetic shifts undergone by various protons (TMS as internal standard) are shown in Table III.

TABLE III		
3,5-exo,exo-Dibenzoate (2)	3,5-endo,endo-Dibenzoate (3)	
Hydrogens	Ppm	Ppm
H_{1}		0
$\mathrm{H}_{2}, \mathrm{H}_{6}$	0.05	0.12
$\mathrm{H}_{7 \mathrm{c}}, \mathrm{H}_{7 \mathrm{~d}}$	0.07	0
H_{4}	0.10	0.17
$\mathrm{H}_{3}, \mathrm{H}_{5}$	0.10	0.27

The chemical shifts and coupling constants obtained in this study were reliable enough to be used for computer simulation of the actual high-field spectra of compounds 3 and 4. Long-range coupling could not be demonstrated on the simulated spectrum owing to the five-spin computer limitation. However, irradiation of H_{4} eliminated the long-range coupling of H_{4}, resulting in a better correlation of simulated with experimental spectra.

Registry No. -2, 4054-86-8; 3, 4118-49-4; 4, 17290-03-8; 5, 24694-55-1.

Acknowledgment.-We are indebted to Mr. C. A. Boye of Tennessee Eastman for furnishing us the basic five-spin computer program and to Dr. E. I. Snyder, Visiting Professor of Chemistry, 1969-1970, for rewriting certain segments of this program to fit the (8 K) IBM1130 at East Tennessee State University. We would also like to acknowledge the aid of Mr. Ogawa at JEOLCO for running the $100-\mathrm{MHz}$ spectra. We acknowledge considerable assistance from the East Tennessee State University Research Advisory Council.

Structure of 1,3-Dicyanobicyclo[1.1.0]butane Using X-Ray Analysis

Paul L. Johnson and John P. Schalefer*
Department of Chemistry, University of Arizona, Tucson, Arizona 85~21

Received September 28, 1971
Bicyclo[1.1.0]butane and its derivatives are of current interest because of the favorable properties of some of the polymers formed. The structure of bicyclobutane has been assessed using a wide variety of physical methods, including infrared and Raman spectroscopy, ${ }^{1}$ microwave spectroscopy, ${ }^{2,3}$ electron diffraction, ${ }^{4}$ and nuclear magnetic resonance spectroscopy. ${ }^{5,6}$ The instability of bicyclobutane makes X-ray diffraction analysis on this compound difficult. However, a substituted bicyclobutane, 1,3-dicyanobicyclobutane (I), is a solid at room temperature and is stable for a sufficient time to collect X-ray data. We wish to report the results of a single-crystal X-ray determination of this substituted bicyclobutane which was kindly supplied to us by Dr. S. C. Cherkofsky of the Du Pont Company.

[^108]
Experimental Section

Compound I crystallizes as colorless needles elongated about the b crystallographic axis. The lattice constants, as determined by a least-squares analysis on the settings for the angles on a four-angle diffractometer for six reflections ($\mathrm{Cu} \mathrm{K}_{\alpha}, \lambda=$ $1.54178 \AA$) are $a=10.397$ (7), $b=5.813$ (4), $c=9.358$ (8), $V=566(2) \AA^{3}$. The systematic absences, $0 k l$ when $k=2 n+$ $1, h 0 l$ when $l=2 n+1, h k 0$ when $h+k=2 n+1, h 00$ when $h=2 n+1,0 k 0$ when $k=2 n+1$, and $00 l$ when $l=2 n+1$, determine the space group to be $P b c n$. The molecular weight, $\mathrm{C}_{6} \mathrm{~N}_{2} \mathrm{H}_{4}$, is $104 ; F(000)$ is 216 . The observed and calculated densities are 1.20 and $1.22 \mathrm{~g} \mathrm{~cm}^{-3}$, respectively

All data in the 2θ range $0-120^{\circ}$ were collected with a Picker FACS-I diffractometer. A $\theta-2 \theta$ scan was used; the scan rate was $2 \mathrm{deg} / \mathrm{min}$ and $10-\mathrm{sec}$ backgrounds were collected before and after each scan. There were 42.5 unique reflections of which 321 were considered to be above backround using the criteria I $>3 \sigma(\mathrm{I})$. Lorentz and polarization factors were applied but no absorption corrections were made. The maximum and minimum transmission factors to be applied to the intensities are estimated to be 0.97 and 0.94 . A standard reflection was measured every 50th reflection. The intensity of the standard at the end of data collection was 81% of the original. This was corrected for by assuming that the decline in intensity for all reflections followed the decline of the standard. A linear interpolation between each pair of standards was used to arrive at the individual reflections scale factor.
The structure was solved using Long's program for the reiterative application of Sayre's equation.? The first E map yielded the positions of all nonhydrogen atoms. After full matrix least-squares refinement, the hydrogen atoms were located from a difference map. Further refinement with carbon and nitrogen vibrating anisotropically while hydrogen vibrated isotropically yielded a final R value of 0.057 . The final atomic coordinates are given in Table I and the thermal parameters are in Table II.

Table I
Final Atomic Coordinates of Dinitrile Bicyclobutane in
Fractions of the Unit Cell Edge, with Standard Deviations in Parentheses

	x	y	z
$\mathrm{~N}-1$	$0.3506(3)$	$0.5118(6)$	$0.0813(4)$
$\mathrm{C}-2$	$0.3940(3)$	$0.3523(6)$	$0.1321(4)$
$\mathrm{C}-3$	$0.4492(3)$	$0.1507(5)$	$0.1929(3)$
$\mathrm{C}-4$	$0.4218(4)$	$0.0515(6)$	$0.33 .55(4)$
$\mathrm{H}-5$	$0.417(3)$	$-0.124(7)$	$0.340(4)$
$\mathrm{H}-6$	$0.367(3)$	$0.130(6)$	$0.406(3)$

Table II
Final Anisotropic Thermal Parameters for the
Nonhydrogen Atoms Expressed As $\exp -\left(b_{11} h^{2}+b_{22} k^{2}+\right.$ $\left.b_{33} l^{2}+2 b_{12} h k+2 b_{13} h l+2 b_{23} k l\right)$. Final Isotropic
Temperature Factors for the Hydrogen Atoms ($B_{\theta} \AA^{2}$) $b_{11}\left(\times 10^{4}\right) b_{22}\left(\times 10^{4}\right) b_{33}\left(\times 10^{4}\right) b_{12}\left(\times 10^{4}\right) \quad b_{13}\left(\times 10^{4}\right) b_{23}\left(\times 10^{4}\right)$

N-1	$160(4)$	$48 \overline{5}(13)$	$291(7)$	$48(7)$	$8(4)$	$132(7)$
$\mathrm{C}-2$	$121(4)$	$396(13)$	$171(5)$	$-10(6)$	$3(3)$	$31(7)$
$\mathrm{C}-3$	$123(4)$	$293(10)$	$133(4)$	$-6(5)$	$-14(3)$	$0(5)$
$\mathrm{C}-4$	$154(5)$	$360(13)$	$146(5)$	$-47(6)$	$5(4)$	$18(7)$

Bo

H-5 7.3 (9)
H-6 5.0 (7)

Results and Discussion

The bond lengths are given in Figure 1 and the bond angles are given in Table III. Most of the parameters found in this study are in agreement with the results of previous structural studies using other methods. ${ }^{1-6}$ A notable difference comes in the dihedral angle formed
(7) R. E. Long, Ph.D. Thesis, University of California at Los Angeles, 1965, part II, pp 86-126.

Figure 1.-Bond lengths for 1,3-dicyanobicyclo[1.1 0] butane in angstroms.

Table III
Intramolecllar Angles between Atoms of

> 1,3-Dicyanobicyclo[1.1.0] BUTANE

$\mathrm{N}-1-\mathrm{C}-2-\mathrm{C}-3$	$178.8(3)$
$\mathrm{C}-2-\mathrm{C}-3-\mathrm{C}-4$	$127.1(3)$
$\mathrm{C}-2-\mathrm{C}-3-\mathrm{C}-3^{\prime}$	$124.6(3)$
$\mathrm{C}-2-\mathrm{C}-3-\mathrm{C}-4^{\prime}$	$127.8(3)$
$\mathrm{C}-3-\mathrm{C}-4-\mathrm{H}-5$	$115.9(14)$
$\mathrm{C}-3-\mathrm{C}-4-\mathrm{H}-6$	$112.3(12)$
$\mathrm{C}-3-\mathrm{C}-4-\mathrm{C}-3^{\prime}$	$60.9(2)$
$\mathrm{C}-4-\mathrm{C}-3-\mathrm{C}-3^{\prime}$	$59.6(2!$
$\mathrm{C}-3-\mathrm{C}-3^{\prime}-\mathrm{C}-4$	$59.5(2$
$\mathrm{C}-4-\mathrm{C}-3-\mathrm{C}-4^{\prime}$	$100.6(3$
$\mathrm{C}-3-\mathrm{C}-4^{\prime}-\mathrm{H}-5^{\prime}$	$116.4(1 \leq)$
$\mathrm{C}-3-\mathrm{C}-4^{\prime}-\mathrm{H}-6^{\prime}$	$117.7(12)$
$\mathrm{H}-5-\mathrm{C}-4-\mathrm{H}-6$	$113.7(15)$

by the two three-membered carbon rings. The X-ray diffraction results of $126.4 \pm 0.4^{\circ}$ is larger than the values previously found, which ranged from 120.2° to $126^{\circ} .^{1-6}$ Perhaps the substitution of a nittile group for hydrogen affects this dihedral angle.

In a survey of previous information on the structure of bicyclobutane, the largest discrepancy occurs in the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angle corresponding to $\mathrm{C}_{3}{ }^{-}-\mathrm{C}_{3}-\mathrm{C}_{2}$ of dinitrile bicyclobutane where C_{2} is substituted for H . The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle found in this paper is $124.6 \pm 02^{\circ}$, which is in moderate agreement with the microwave spectra ${ }^{2,3}$ result of $130^{\circ} 22^{\prime}$, the nmr spectra ${ }^{5,6}$ result of 128.0°, and the electron diffraction result ${ }^{4}$ of 125.5°. In contrast, the infrared work ${ }^{1}$ placed this angle (CCH) as $163 \pm 3^{\circ}$. They do state that the moments of inertia are rather insensitive to this angle.

There are no anomalous intermolecular contacts in this structure. Two interesting intramolecular contacts are the $\mathrm{H}_{5}-\mathrm{H}_{5}^{\prime}$ distance of 2.42 (5) \AA and the $\mathrm{C}_{2}-\mathrm{C}_{2}{ }^{\prime}$ distance of 3.118 (5) \AA. The hydrogen atom repulsions appear to be of little importance because twice the van der Waals radius of hydrogen is about
$2.4 \AA$. However, the $\mathrm{C}_{2}-\mathrm{C}_{2}{ }^{\prime}$ repulsions may affect the geometry of the bicyclobutane moiety of this compound.

Two review articles on bicyclobutane describe the chemistry of these compounds in detail. 8,9 A model for the electronic structure has been proposed, ${ }^{10}$ but, at the time of these calculations, only an inexact knowledge of the structure of bicyclobutane was known. More recently, calculations of the valence electron density distribution ${ }^{11}$ and the first excited state charge density ${ }^{12}$ have been made for bicyclobutane.

Registry No.-1,3-Dicyanobicyclo[1.1.0]butane, 27184-67-4.
(8) K. B. Wiberg, Rec. Chem. Proor., 26, 143 (1965).
(9) K. B. Wiberg, Э. M. Lampman, R. P. Ciula, D. L. Conner, P. Schertler, and J. Lavanish, Tetrahedron, 21, 2749 (1965).
(10) M. Pomerantz and E. W Abrahamson, J. Amer. Chem. Soc., 88, 3970 (1966).
(11) O. Martensson, Acta Chem. Scand., 24, 3123 (1970).
(12) O. Martenssoa, ibid., 25, 3196 (1971).

Buffered Permanganate Reactions. Effect of

Calcium on the Rate of Disproportionation of Manganate(VI)

Hans S. Posselt
Department of Civil Engineering, The University of Michigan, Ann Arbor, Michigan 48104

Received January 13, 1972
The pronounced influence pH exerts on the kinetic course of many permanganate oxidations is well recognized. ${ }^{1}$ This effect is rarely related to variations in oxidation potential, but can be usually explained by mechanistic factors, such as ionization of the substrate or protonation of permanganate, for example. Furthermore, permanganate oxidations tend to give rise to simultaneous operation of several mechanisms and, consequently, to the formation of multiple reaction products under unfavorable reaction conditions.

Control of pH by employment of suitable buffer systems is a common method for manipulation of yields and product ratios in the application of oxidations to organic synthesis. A typical example is the neutral oxidation of certain organic substrates in $\mathrm{M}^{2} \mathrm{~g}^{2+}$-ion buffered systems, in which the equilibrium concentration of OH^{-}ions in solution is limited by the solubility of magnesium hydroxide. ${ }^{2}$

$$
\begin{equation*}
\mathrm{Mg}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \tag{1}
\end{equation*}
$$

Permanganate oxidations of organic compounds often proceed at faster rates in alkaline than in neutral solutions. In many suck instances the observed rate enhancement is associated with an increasing degree of substrate ionization. The reaction pattern of alkaline permanganate oxidations is, however, usually highly complex in view of the different pathways by

[^109]

Figure 1.-Rate of potassium manganate(VI) disproportionation in the presence of calcium and potassium hydroxide at pH 12.4 and at $23 \pm 1^{\circ}$.
which permanganate ion may be reduced to its final end products.
Organic substrates, which reduce alkaline permanganate directly beyond manganate(VI) (eq 2) have

$$
\begin{equation*}
\mathrm{MnO}_{4}^{-}+\mathrm{e} \longrightarrow \mathrm{MnO}_{4}{ }^{2-} \tag{2}
\end{equation*}
$$

not been reported, ${ }^{3}$ and permanganate is known ${ }^{1}$ to oxidize a vast number of compounds at a rate much faster than does manganate(VI). Thus, the full utilization of permanganate, as usually represented by a 3 -equiv net reduction (eq 3) depends to a large extent

$$
\begin{equation*}
\mathrm{MnO}_{4}^{-}+3 \mathrm{e}+4 \mathrm{H}^{+} \longrightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \tag{3}
\end{equation*}
$$

on the rate of disproportionation of manganate(VI) yielding permanganate and manganese dioxide (eq 4).

$$
\begin{equation*}
3 \mathrm{MnO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+4 \mathrm{OH}^{-} \tag{4}
\end{equation*}
$$

There is sufficient evidence for this reaction to be rcversible, but much uncertainty remains with regard to kinetic parameters and the magnitude of the equilibrium constant. ${ }^{1}$ This inconsistency is believed to stem from differences in the reactivity of manganese dioxide, since the numerical position of the disproportionation equilibrium is strongly affected by the direction of its approach.

The rate of manganate(VI) disproportionation is most strongly influenced by the hydroxide ion concentration and by temperature, among other factors. The reaction is immeasurably fast in acid and extremely slow in $3 N$ base. Decomposition of manganate(VI) yielding hypomanganate or manganate $(\mathrm{V}$) (eq 5) has

$$
\begin{equation*}
\mathrm{MnO}_{4}{ }^{2-}+\mathrm{OH}^{-} \longrightarrow \mathrm{MnO}_{4}{ }^{3-}+\mathrm{OH} . \tag{5}
\end{equation*}
$$

been observed to occur in $8 N \mathrm{KOH}$ solution. ${ }^{1}$ Thus, an experimental examination of manganate(VI) disproportionation (eq 4) is limited to a narrow range of hydroxide ion concentrations only. Decomposition of permanganate (eq 6) is an additional factor complica-

$$
\begin{equation*}
4 \mathrm{MnO}_{4}^{-}+4 \mathrm{OH}^{-} \longrightarrow 4 \mathrm{MnO}_{4}^{2-}+\mathrm{O}_{2} \tag{6}
\end{equation*}
$$

ting the study of alkaline systems containing manganate species. The reaction is strongly catalyzed by hydroxyl ions and by manganese dioxide, which is almost always present in these solutions. Low permanganate yields, as have been observed in certain
(3) J. W. Ladbury, and C. F. Cullis, Chem. Rev., 58, 403 (1958).
alkaline oxidations, are in great part attributed to this decomposition reaction. ${ }^{4}$
We have observed a significant acceleration of the rate of manganate(VI) disproportionation in the presence of calcium. As shown in Figure 1 near stoichiometric disproportionation of manganate(VI) occurs in less than 10 min in calcium hydroxide, as compared to an exceedingly slow approach to equilibrium in a KOH system under otherwise identical conditions. The rate acceleration was found to increase with increasing concentration of calcium and to reach a limiting value under conditions (pH 12.4) corresponding to saturation with respect to solid calcium hydroxide ($K_{\mathrm{sp}}=5.5 \times 10^{-6}$).

Although an exhaustive interpretation of the role of calcium in the disproportionation of manganate(VI) requires further experimental exploration, the author tends to favor a mechanism involving the precipitation of highly reactive tetravalent species of manganese by Ca^{2+} ions. Some of the following observations related to the chemistry of this system are in support of this interpretation. (1) Attainment of the disproportion equilibrium is extremely slow when approached by reaction of inactive or precipitated forms of manganese dioxide with permanganate in basic solution. This indicates that only highly reactive species of manganese(IV) are capable of participating in the backward reaction. (2) Colloidal forms of hydrous manganese dioxide exhibit a strong sorption tendency for calcium ions with subsequent sol destabilization being observed. ${ }^{5,6}$ Whether Ca^{2+}-ion interaction with tetravalent manganese operates via the mechanism of sorption and counterion destabilization or by the formation of an inactive calcium manganate(IV) is not presently understood. Apart from certain mechanistic implications, the calcium ion induced acceleration of the disproportionation of manganate(VI) is felt to be of immediate importance to synthetic applications of permanganate reactions, because of an associated net gain in permanganate yields. This effect has been experimentally verified in the oxidation of cyanide with permanganate.

In the range $\mathrm{pH} 12-14$, cyanide is quantitatively oxidized to cyanate ${ }^{7,8}$ (eq 7) with a concurrent 1 -equiv

$$
2 \mathrm{MnO}_{4}^{-}+\mathrm{CN}^{-}+2 \mathrm{OH}^{-} \longrightarrow
$$

$$
\begin{equation*}
2 \mathrm{MnO}_{4}{ }^{2-}+\mathrm{CNO}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{7}
\end{equation*}
$$

net reduction of permanganate yielding manganate(VI). The reaction is quantitative in this pH range only and exhibits a nonstoichiometric pattern with a variety of reaction products being formed at lower pH regimes.

A rapid and 3 -equiv net reduction of permanganate was realized when conducting the reaction under conditions of saturation with respect to calcium hydroxide (eq 8). This result was found to be independent of an
$2 \mathrm{MnO}_{4}^{-}+3 \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\mathrm{pH} 12.4]{\mathrm{Ca}(\mathrm{OH})_{2}}$
$3 \mathrm{CNO}^{-}+2 \mathrm{MnO}_{2}+2 \mathrm{OH}^{-}$

[^110]excess of calcium hydroxide, which tends to rule out the possibility of heterogeneous catalysis. While this favorable yield shift was demonstrated for cyanide oxidation only, a dependence of this effect on the nature of the substrate seems highly unlikely considering that manganate(VII) is usually the primary oxidant ${ }^{1,3}$ in alkaline aqueous systems. In light of these evidences it becomes apparent that the reaction is of considerable interest to the field of organic synthesis.
It should further be noted that the observed effect is probably limited to calcium among the alkaline earth metals, because the higher members of this group $\left(\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}\right)$ tend to form insoluble salts with the transient manganate(VI) ion.
Since the observed phenomena discussed in this paper promise to lead to more and deeper insights into the chemistry of oxyanions of manganese, the author hopes to encourage further investigations of these reactions.

Experimental Section

Potassium Manganate(VI).-Pure crystalline potzssium manganate(VI) was prepared according to the method described by Scholder ar.d Waterstradt' as follows. Powdered reagent grade potassium permanganate (20 g) was slowly added to a $1000-\mathrm{ml}$ round flask containing a cold solution of 250 g of KOH in 250 ml of distilled water. The solution was heated to boiling for 20 min under a reflux condenser, which was attached to an absorption tube containing "Ascarite" to prevent back-diffusion of carbon dioxide. After cooling to ambient temperature and crystallization, the reaction product was separated by filtration through a Gooch filtering crucible of medium pore size. The following sclutions were employed for further purification of the raw product: I, 50 ml of $40 \% \mathrm{KOH}$ (filtered); II, 50 ml of $\mathrm{CH}_{3} \mathrm{OH}$ and 5 g of KOH (filtered); III, 100 ml of $\mathrm{CH}_{3} \mathrm{OH}$ and 3 g of KOH (filtered); $\mathrm{IV}, 50 \mathrm{ml}$ of $\mathrm{CH}_{3} \mathrm{OH}$ and 0.5 g of KOH (filtered); V, 100 ml of ethyl ether (water free). Solutions II-V were precooled to -15°. The crystals were first washed with 50 ml of I at room temperature, then with 50 ml of II, and finally with 40 ml of III, both at -15°. Further removal of adhering KOH was accomplished by resuspension and shaking of the crystals in 50 ml of III, followed by filtration and successive washing with 50 ml of IV, and four times each with 25 ml of ether (V). The temperature was kept below -10° during each of the latter operations. The crystals were then vacuum dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ for a minimum period of 3 hr .
Differential spectrophotometric analysis at 526 and $603 \mathrm{~m} \mu$ of a solution of a weighed amount of the product in $2 N \mathrm{KOH}$ revealed a purity of $100 \pm 0.2 \%$ as $\mathrm{K}_{2} \mathrm{MnO}_{4}$ with no detectable trace of permanganate present. The assay of $\mathrm{K}_{2} \mathrm{MnO}_{4}$ prepared by this method is usually in the order of 99.8%.
Disproportionation of $\mathrm{K}_{2} \mathrm{MnO}_{4}$ in Aqueous KOH .-A quantity of 0.44 g of $\mathrm{K}_{2} \mathrm{MnO}_{4}$ was dissolved under magnetic stirring in 500 ml of $0.025 N \mathrm{KOH}$, which was preadjusted to pH 12.4 employing a pH meter. Control of pH throughout the duration of the experiment was accomplished by addition of small increments of 0.5 N nitric acid delivered from a microburette and by simultaneous pH monitoring. The solution was keyt agitated with a magnetic stirrer. The temperature was maintained at $23 \pm 1^{\circ}$ 。
The reaction was arrested by addition of 5 ml of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ to $20-\mathrm{ml}$ aliquots followed by rapid mixing for 10 min in order to facilitate the agglomeration of manganese(IV) and barium manganate. After filtration of this mixture through a fine Gooch crucible, the concentration of permanganate in the filtrate was determined by spectrophotometric analysis ${ }^{7}$ at $526 \mathrm{~m} \mu$, with appropriate volume corrections taken into account.

Disproportionation of $\mathrm{K}, \mathrm{MnO}_{4}$ in Aqueous $\mathrm{Ca}(\mathrm{OH})_{2}$.-The disproportionation reaction in systems saturated with calcium hydroxide was conducted under conditions identical with those described for aqueous KOH with the following excepticns.
$\mathrm{K}_{2} \mathrm{MnO}_{4}$ was dissolved in 500 ml of distilled water containing 1 g of $\mathrm{Ca}(\mathrm{OH})_{2}$. The pH of this solution remained at a constant
(9) R. Scholder, and H. Waterstradt, Z. Anorg. Allg. Chem. 172 (1954).
value of 12.4 witnout necessitating adjustments throughout the duration of the exjeriment.

Oxidation of Cyanide.-The alkaline oxidation of cyanide with permanganate was investigated under a variety of experimental conditions and over a wide range of reactant concentrations. ${ }^{10}$ A description of the experimental details of those studies relevant to this paper is given below.
Standardized solutions of KCN and KMnO4 were employed. The reaction was initiated by addition of permanganate solution to solutions saturated with $\mathrm{Ca}(\mathrm{OH})_{2}$ and containing KCN under conditions of rap.d mixing and at room temperature. Initial concentrations varied for cyanide and permanganate between 10^{-3} and $10^{-2} M$ and between 3×10^{-4} and $3 \times 10^{-3} M$, respectively. An excess of each individual reactant was applied in some of the cases. The stoichiometric relationship postulated for the reaction in the presence of calcium hydroxide was established during advenced stages and after completion of the reaction, usually no la er than 30 min after initiation. Quenching of the reaction, i.e. reduction of excess permanganate to manganese dioxide, was accomplished by dropwise addition of hydrogen peroxide or manganese nitrate. Manganese dioxide was separated by filtration through membrane filters ($220 \mathrm{~m} \mu$); its removal by this method was readily accomplished by virtue of its precipitation in the presence of calcium ions. The concentration of cyanide was determined argentometrically by the Liebig method, ${ }^{8}$ whereas permanganate was measured spectrophotometrically ${ }^{7}$ in those cases in which an excess of the oxidant had been applied.

Registry No. $-\mathrm{K}_{2} \mathrm{MnO}_{4}$, 10294-64-1; KOH, 1310-$58-3 ; \mathrm{Ca}(\mathrm{OH})_{2}, 1305-62-0$; KCN, 151-50-8.
(10) Unpublished research, Carus Chemical Co., LaSalle, Ill.

Conversion of Hetacillin into Cephalexin

William J. Gottsfein, Peter F. Misco, and Lee C. Cheney*
Research Division, Bristol Laboratories,
Division of Bristol-Myers Company, Syracuse, New York 13201

Received March 8, 1972

In 1963 Morin and collaborators ${ }^{1}$ showed that thermal treatment of esters of penicillin V sulfoxide in acidic media gave rise to the corresponding esters of 7-phen-oxyacetamido-3-methyl-3-cephem-4-carboxylic acid. ${ }^{2}$ Later, when ce shalexin ${ }^{3}$ was shown to be of commercial importznce, Chauvette and coworkers ${ }^{4}$ reported the synthesis of cephalexin in a multistep sequence from pericillin V sulfoxide ester. We wish to report the syntiesis of cephalexin from commercial hetacillin ${ }^{5}$ by a four-step series of reactions. Hetacillin (1) was nitrosated ${ }^{6,7}$ to block its secondary amino function and subsequently oxidized to the sulfoxide 3 with sodium metaperiodate. ${ }^{8}$ The sulfoxide 3 was thermally rearranged as the free acid in the presence of p-toluenesulfonic acid to the cephalosporin derivative 4, de-

[^111]nitrosated with dry hydrogen chloride, and hydrolyzed to cephalexin (6).

The nitrosation of hetacillin (1) proceeded readily in 70% yield to "nitrosohetacillin" (2). Oxidation of 2 to the sulfoxide 3 in 90% yield was attained with sodium metaperiodate. However, it was found that one main contaminant of 3 was its C_{6} epimer. The production

5

6
of this unwanted isomer was obviated by carefully controlling the acidity of the oxidation reaction. When the reaction mixture was kept at pH 5 or below, the α isomer was reduced to less than 5%. The sulfoxide 3 was thermally rearranged to 4 , which was isolated as its N, N^{\prime}-dibenzylethylenediammonium (DBED) salt. Conversion of this salt to "nitrosohetacephalexin" (4) afforded an average yield of 32%. The final denitrosation of 4 to "hetacephalexin" (5) was accomplished in yields averaging 60%. Hydrolysis of 5 afforded cephalexin (6) in 70% yield.

However, when cephalexin was the desired product, "nitrosohetacephalexin" (4) could be advantageously denitrosated and hydrolyzed without isolation of 5 to obtain cephalexin in a yield of 30%.

Experimental Section

Melting points were determined on a Fisher-Johns apparatus, and are uncorrected. The ir spectra were recorded on a Beckman IR-9 spectrometer. The nmr spectra were run on a Varian A-60 spectrometer at a sweep width of 500 cps using dimethyl sulfoxide as a solvent. The authors wish to thank Mr. R. M. Downing and Miss Elizabeth A. Ragan for the microanalyses, and Mr. D. F. Whitehead and Mr. A. L. Vulcano for the spectral data.

6 β-(D-2,2-Dimethyl-3-nitroso-5-oxo-4-phenyl-1-imidazolidinyl)penicillanic Acid (2).-To a suspension of $142 \mathrm{~g}(0.37 \mathrm{~mol})$ of commercial hetacillin (1) in 2 l. of water at room temperature was added $69 \mathrm{~g}(0.41 \mathrm{~mol})$ of sodium nitrite. The mixture was layered with 1.5 l . of ethyl acetate, and with vigorous stirring 6 N hydrochloric acid was added dropwise until both layers were clear (pH of aqueous layer 1.9). The addition took 15 min . Stirring was continued for an additional 15 min , and the ethyl acetate was separated, washed with water, and evaporated at $40^{\circ}(15 \mathrm{~mm})$. The crystalline solid was collected, washed with ether, and recrystallized from methanol-water to yield 110 g (71%): mp 195° dec; ir (KBr) 2800-3600 (carboxyl OH), 1803-1790 (β-lactam $\mathrm{C}=\mathrm{O}$), 1750 and 1730 (carboxyl $\mathrm{C}=\mathrm{O}$ and imidazolidinyl $\mathrm{C}=0$), $700 \mathrm{~cm}^{-1}\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right)$; nmr (DMSO- d_{6}) δ $7.30\left(\mathrm{~s}, 5, \mathrm{C}_{6} \mathrm{H}_{5^{-}}\right), 5.64\left(\mathrm{~s}, 1, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHN}\right.$), 5.60 (d, $1, J=4 \mathrm{cps}$, $\mathrm{NCHCO}), 5.45(\mathrm{~d}, 1, J=4 \mathrm{cps}, \mathrm{NCHS}), 4.35\left(\mathrm{~s}, 1, \mathrm{NCHCO}_{2}\right)$, 2.00 (s, 6, $\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CN}$), 1.48 (s, $6, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CS}$).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$: C, $54.54 ; \mathrm{H}, 5.30 ; \mathrm{N}, 13.39$. Found: C, $54.55 ; \mathrm{H}, 5.58$; N, 13.33 .

6 β-(D-2,2-Dimethyl-3-nitroso-5-oxo-4-phenyl-1-imidazolidinyl)penicillanic Acid Sulfoxide (3).-To a mixture of 110 g (0.263 mol) of 6β-($\mathrm{D}-2,2$-dimethyl-3-nitroso-5-oxo-4-phenyl-1imidazolidinyl)penicillanic acid (2) in 2.5 l . of water was added with vigorous stirring $66 \mathrm{~g}(0.31 \mathrm{~mol})$ of sodium metaperiodate. The solution was adjusted to pH 5 with 10% sodium hydroxide, and the mixture was stirred at room temperature for 3 hr with periodic adjustment of the pH . When the mixture became clear, the solution was stirred for an additional 1 hr . The final pH of this solution was 4.1. The sulfoxide was precipitated by addition of $40 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ to pH 2 , collected, washed well with water, air dried to constant weight, and finally dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ to yield $103 \mathrm{~g}(91 \%)$ of white crystals. An analytical sample was obtained by recrystallization from dimethylformamide and water: $\mathrm{mp} 160^{\circ}$ slow dec; $\operatorname{ir}(\mathrm{KBr}) 3540$ (hydrate OH), 2400-3400 (carboxyl OH), 1804 (β-lactam $\mathrm{C}=\mathrm{O}$), 17201750 (imidazolidinyl $\mathrm{C}=\mathrm{O}$ and carboxyl $\mathrm{C}=\mathrm{O}$), 1050 (SO), $705 \mathrm{~cm}^{-1}\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right)$; $\mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \delta 7.32\left(\mathrm{~s}, 5, \mathrm{C}_{6} \mathrm{H}_{5}-\right), 5.77$ (s, 1, $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{CHN}$), 5.72 (d, $\left.1, J=4.5 \mathrm{cps}, \mathrm{NCHCO}\right), 4.83$ (d, $1, J=4.5 \mathrm{cps}, \mathrm{NCHS}), 4.30\left(\mathrm{~s}, 1, \mathrm{NCHCO}_{2}\right), 2.12$ and 2.05 $\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CN}\right), 1.47$ and $1.20\left(2 \mathrm{~s}, 3,3, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CS}\right)$.

A nal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}: \quad \mathrm{C}, 52.52 ; \mathrm{H}, 5.11 ; \mathrm{N}, 12.92$. Found: C, 52.66 ; H, 5.37 ; N, 13.45 .
7β-(D-2,2-Dimethyl-3-nitroso-5-oxo-4-phenyl-1-imidazoli-dinyl)-3-methyl-3-cephem-4-carboxylic Acid (4).-A stirred solution of 10 g (0.022 mol) of 6β-(D-2,2-dimethyl-3-nitroso-5-oxo-4-phenyl-1-imidazolidinyl)penicillanic acid sulfoxide monohydrate (3) and 2.5 g of anhydrous p-toluenesulfonic acid (prepared by azeotropic drying of the monohydrate with ethyl acetate) in 250 ml of tetramethylurea was heated in a preheated bath at 135° for 2 hr . The solvent was removed at $40^{\circ}(0.1 \mathrm{~mm})$ to obtain an oil which was dissolved in 100 ml of ethyl acetate. The ethyl acetate solution was washed twice with $100-\mathrm{ml}$ portions of water and extracted twice with 100 ml of saturated aqueous sodium bicarbonate solution (final pH 6.7). The aqueous layers were separated, combined, and stirred with 100 ml of ethyl acetate. The aqueous solution was adjusted to pH 2 with $40 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and the organic extract was separated. The solution was extracted twice more with $100-\mathrm{ml}$ portions of ethyl acetate and the extracts were combined and azeotroped to obtain an oil at 35° (15 mm). The residue was slurried with Skellysolve B and collected as a tan, amorphous powder which weighed 6.2 g . The solids were suspended in 80 ml of water, and saturated sodium bicarbonate solution was added until all the material dissolved (final pH 7.5). A solution of $4 \mathrm{~g}(0.011 \mathrm{~mol})$ of $N, N^{\prime}-$ dibenzylethylenediammonium diacetate (DBED) in 75 ml of water was added, and the mixture was stirred for 0.5 hr with 150 ml of MIBK in a two-phase system. The mixture was stored at 25° for 5 days. The crystalline DBED salt of 4 was collected and washed with water and finally with acetone. After air drying the salt weighed 4 g : mp $150-152^{\circ} \mathrm{dec}$; ir
(KBr) 3200-3600 (water OH), 2200-3200 $\left(\mathrm{NH}_{2}{ }^{+}\right.$), 1770 (β-lactam $\mathrm{C}=0$), 1730 (imidazolidinyl $\mathrm{C}=0$), 1600 (COO^{-}), 760, $70 \overline{5}$ $\mathrm{cm}^{-1}\left(\mathrm{C}_{6} \mathrm{H}_{5}^{-}\right) ; \mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \delta 7.0-7.6$ (m, 20, $\mathrm{C}_{6} \mathrm{H}_{5}$), $5.3-$ 6.0 (m, 15, $\mathrm{NH}_{2}{ }^{+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NCHCO}$), 5.0 (d, 2 , NCHS), 3.9 ($\mathrm{s}, 4$, $\mathrm{C}_{6} \mathrm{H}_{\mathrm{s}} \mathrm{CH}_{\mathrm{t}} \mathrm{N}$), 2.6-3.4 (m, 8, SCH $\mathrm{C}_{2} \mathrm{C}=\mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.9 (s, $18, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{C}$).
Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{60} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{~S}_{2} .3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.53 ; \mathrm{H}, 5.90$; $\mathrm{N}, 12.43$. Found: C, $57.54 ; \mathrm{H}, 6.21 ; \mathrm{N}, 12.71$.
The 4 g of the DBED salt of 4 was suspended in 75 ml of water, and 25 ml of $40 \% \mathrm{H}_{3} \mathrm{PO}$, was added. The mixture was layered with 50 ml of ethyl acetate and shaken v:gorously until all the salt dissolved. A final extraction was made with 50 ml of ethyl acetate and the organic layers were collected, washed with water, and evaporated at $40^{\circ}(15 \mathrm{~mm})$ to obtain a crystalline solid which weighed $2.95 \mathrm{~g}(32 \%), \mathrm{mp} 175-180^{\circ}$. The ir and $n \mathrm{mr}$ spectra were identical with the spectra of authentic 4 prepared from cephalexin.
7β-(D - α-Aminophenylacetamido)-3-methyl-3-cephem-4-carboxylic Acid (Cephalexin) (6) via Hetacephalexin (5).-Into a solution of $1 \mathrm{~g}(0.0025 \mathrm{~mol})$ of 4 in 50 ml of dioxane (purified by running through a column of aluminum oxide) was introduced a stream of dry hydrogen chloride for 5 min at room. temperature. The solution was evaporated at $30^{\circ}(15 \mathrm{~mm})$ to a gum, which was slurried with ethyl acetate and collected. The solid was then dissolved in water (50 ml) and made basic with aqueous sodium bicarbonate solution to pH 4.8 . The mixture was filtered, and the filtrate was evaporated at $30^{\circ}(15 \mathrm{~mm})$ to a glass which was further d:ied by azeotropic distillation with ethyl acetate. The yield of the sodium salt was $600 \mathrm{mg}(63 \%)$. The nmr and ir spectra were consistent with the spectra of the acetone condensation product of cephalexin (5).
A solution of $1 \mathrm{~g}(0.0024 \mathrm{~mol})$ of sodium hetacephalexin (5) in 5 ml of water was adjusted to pH 3.5 with 6 N hydrochloric acid and stirred at room temperature overnight while a stream of nitrogen was bubbled through the solution to remove the acetone formed during the reaction. The white crystalline cephalexin was collected, the filtrate was adjusted to pH 3.5 again and made up to a volume of 5 ml , and the procedure was repeated. The initial crop weighed 350 mg after drying in vacio over $\mathrm{P}_{2} \mathrm{O}_{3}$. The second crop weighed 240 mg , giving a total yield of 590 mg (70%). The nmr and ir spectra were identical with those of authentic cephalexin.

Cephalexin (6) Prepared Directly from 4.-A solution of 2 g $(0.0048 \mathrm{~mol})$ of 4 in 100 ml of peroxide-free dioxane was treated with dry hydrogen chloride for 10 min at room temperature. The solution was evaporated at 35° (15 mm) to a gummy solid. The solid was dissolved in 10 ml of water and filtered, and the pH was raised to 4.5 by the addition of 10% sodium hydroxide solution. The solution was stirred for 48 hr at 30° while a stream of nitrogen was bubbled through the mixture. The white solid was collected and washed with cold water and finally with acetone to yield $550 \mathrm{mg}(30 \%)$ of pure 6 .
7 β-(D-2,2-Dimethyl-3-nitroso-5-oxo-4-phenyl-1-imidazolidinyl)-3-methyl-3-cephem-4-carboxylic Acid (4) from Cephalexin.-To a mixture of 10 g (0.03 mol) of ($7-\mathrm{D}-\alpha$-aminophenylacetamido)-3-methyl-3-cephem-4-carboxylic acid in 100 ml of water was added 10% sodium hydroxide solution until pH 7.8 was attained. To this solution was added 40 ml of acetone, and the reaction mixture was stored overnight. The solvent was evaporated, leaving behind a frothy, amorphous solid which was dissolved in $200 \mathrm{ml} \mathrm{o}^{*}$ water and acidified to pH 2 with 6 N hydrochloric acid, and layered with 200 ml of ethyl acetate. The solution was cooled in an ice bath to 5°, and 2.1 g (0.03 m .0 l) of sodium nitrite wes added. After stirring for 0.5 hr , the ethyl acetate was separated, washed with water, and evaporated under reduced pressure to an oil. The oil solidified on slurrying with ether to give 2.5 g of an amorphous solid. During storage overnight, a second crop separated, which was crystalline and weighed 1.2 g . The crops were combined and recrystallized from ethyl acetate and ether to obtain $3.2 \mathrm{~g}(26 \%)$. The analytical sample was recrystallized from boiling methanol: $\mathrm{mp} 175-180^{\circ}$ dec; ir $(\mathrm{KBr}) 2500-3500($ carboxyl OH$), 1780(\beta$-lactam $\mathrm{C}=0), 1720$ and 1730 (imidazolidinyl $\mathrm{C}=\mathrm{O}$ and carboxyl $\mathrm{C}=0$), $700 \mathrm{~cm}^{-1}$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right) ; \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 7.31\left(\mathrm{~s}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.68$ ($\mathrm{s}, 1, \mathrm{C}_{6} \mathrm{H}_{5-}$ CHN), $\overline{5} . \overline{5}$ ($\mathrm{d}, 1, J=4.5 \mathrm{cps}, \mathrm{NCHCO}), \overline{5} .15(\mathrm{~d}, 1, J=4 . \overline{5}$ cps, NCHS), 2.9-3.6 (m, 2, SCH $)_{2}$), 1.8-2.3 ($\mathrm{m}, \mathrm{c}, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{3} \mathrm{C}=$).
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} \cdot{ }^{1 / 2} \mathrm{H}_{2} \mathrm{O}$: C, $53.73 ; \mathrm{H}, 4.74$; $\mathrm{N}, 13.17$. Found: C, $53.90 ; \mathrm{H}, 4.96 ; \mathrm{N}, 13.48$.

6 α-(D-2,2-Dimethyl-3-nitroso-5-oxo-4-phenyl-1-imidazolidinyl)penicillanic Acid Sulfoxide (6 Epimer of 2).-To a solution of 20 $\mathrm{g}(0.048 \mathrm{~mol})$ of 2 in $500 \mathrm{~m} . \mathrm{l}$ of water made basic to pH 9 by the addition of 10% sodium hydroxide was added $12 \mathrm{~g}(0.056 \mathrm{~mol})$ of sodium metayeriodate. After stirring for 2 hr at pH 7 , the solution was acilified to pH 2 with $40 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and the crystalline solid was collected, washed with water, and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ to yield $14 \mathrm{~g}(67 \%)$: mp 201° dec; ir (KBr) 2990 and $2950\left(\mathrm{CH}_{3}\right), 1795$ (β-lactam $\mathrm{C}=0$), 1735 (imidazolidinyl $\mathrm{C}=0$ and carboxyl $\mathrm{C}=0$), 705 (monosubstituted phenyl); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right.$ and DMSO-d $\mathrm{d}_{6} ; \delta 7.0-7.76\left(\mathrm{~m}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.7(\mathrm{~d}, J=$ $2 \mathrm{~Hz}, 1, \mathrm{C}_{6} \mathrm{H}$), 5.6 ($\mathrm{s}, 1, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}$), 4.9 (d, $J=2 \mathrm{~Hz}, 1, \mathrm{C}_{5} \mathrm{H}$), $4.3\left(\mathrm{~s}, 1, \mathrm{C}_{3} \mathrm{H}\right), 1.9-2.2\left(\mathrm{~m}, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CN}\right), 1.65$ and $1.3(2 \mathrm{~s}, 3,3$, $\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CS}$).
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S} \cdot 2 \mathrm{H}_{2} \mathrm{O}$: C, 48.51; H, 5.57 ; $\mathrm{N}, 11.91$. Four.d: C, 48.47; H, $5.23 ; \mathrm{N}, 11.79$.

Registry No. - 1, 145̄37-96-3; 2, 34959-70-1; 2 (6 epimer), 34959-71-2; 3, 34982-12-2; 4, 34959-72-3; 4 DBED salt, 34959-73-4; 6, 15686-71-2.

Synthesis of Compounds Structurally Related to Poison Ivy Ĺrushiol. V. ${ }^{1 \mathrm{a}}$ A Novel Synthesis of 3-n-($1^{\prime}, 2^{\prime}$-Dehydro)pentadecylcatechol
 (3 β-Alkylvinylcatechols) via Dehydration of a Bis(trimethylsilyl) Intermediate ${ }^{16}$

A. Peter Kurtzic and Charles R. Dawson*

Department of Chemistry, Columbia University, New York. New York 10027

Received July 2, 1971
In connection with recent studies ${ }^{19}$ of the role of the side chain in the dermatological activity of 3-alkylcatechols, it became necessary to develop a practical synthesis of $3-n$-($1^{\prime}, 2^{\prime}$-dehydro) pentadecylcatechol (1a), the styrenic analog of the saturated component of poison ivy urushiol, $3-n$-pentadecylcatechol (3-PDC). A search of the literature revealed that no efficient synthesis of compounds of the general type, 3β-alkylvinylcatechol, had previously been reported.
While the dimethyl (1b) and dibenzyl (1c) ethers of la can easily be prepared by conventional routes from, respectively, 2,3 -dimethoxybenzaldehyde and 2,3-dibenzyloxybenzaldehyde, ${ }^{2}$ neither 1 b nor lc can be converted to the free dihydroxybenzene derivative, 1a. ${ }^{3}$

Exploratory experimentation confirmed the results of earlier studies in which it had been found that $3-n$ -
(1) (a) Previous yaper in the series (IV): A. P. Kurtz and C. R. Dawson, J. Med. Chem.. 14, 733 (1971). (b) These investigations were supported by Contract $\mathrm{PH}-43-64-76$ with the Division of Biologics Standards of the National Institutes of Health. (a) National Institutes of Health Predoctoral Fellow, 1965-1968.
(2) (a) H. J. Backer and N. H. Haack, Recl. Trav. Chim. Pays-Bas, 57, 225 (1938): (b) B. Loev and C. R. Dawson, J. Amer. Chem. Soc., 78, 6095 (1956).
(3) Prior to the development of the synthetic route with which this report is concerned, a ser.es of experiments were conducted testing methods of cleavage of 1 b and 1 c to 1 a . Use of a variety of agents, including $\mathrm{AlCl}_{\mathrm{F}}$ chlorobenzene, HI3r-HOAc, pyridinium chloride, and others for the cleavage of 1 b gave high yields of polymer when conditions vigorous enough to effect cleavage were employed. Reductive cleavage of 1 c using either Na-1butanol or hydrogezolysis (10% ?d/C) yielded only the saturated 3-PDC
(1^{\prime}-hydroxy) pentadecylcatechol (2 a$)^{4}$ cannot be successfully dehydrated without extensive cyclization or polymerization. ${ }^{5}$

$$
\begin{array}{ll}
\text { 1a, } \mathrm{R}=\mathrm{H} & 2 \mathrm{a}, \mathrm{R}=\mathrm{H} \\
\text { b, } \mathrm{R}=\mathrm{CH}_{3} & \\
\text { c, } \mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2} \mathrm{Ph} & \text { c, } \mathrm{Ph}=\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3} \\
\text { d, } \mathrm{R}=\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3} &
\end{array}
$$

$3-n$-($1^{\prime}, 2^{\prime}$-Dehydro)pentadecylcatechol (1a) was successfully synthesized in the present investigation from $2 \mathrm{a}^{4}$ according to the route shown via the bis(trimethylsilyl) intermediates 2c and 1d. As reported in the Experimental Section, bis(trimethylsilyl)acetamide $(\mathrm{BS} \Lambda)^{6}$ was used first as a reagent to form 2c, an analog of 2 a having protected phenolic hydroxyl groups, and secondly as a water scavenger during the pyrolytic dehydration of 2 c . It is interesting to note that our mild silylation procedure did not effect etherification of the sterically hindered 1'-hydroxyl group in 2 a (sce nmr data for 2 c). Use of BSA as a water scavenger apparently precludes in situ hydrolysis of the protecting TMS groups during the dehydration. Concomitant cyclization or polymerization is thus avoided. By this route $1 d$ was obtained from 2 a in an overall yicld of 60%; both 2 c and 1d were easily purified by fractional distillation. The bis(trimethylsilyl) compound, 1d, was quantitatively hydrolyzed to the alkylvinylcatechol, la, using aqueous ethanoldioxane at 100° as given in the Experimental Section.

The success of this synthesis suggests its general applicability to the synthesis of 3β-alkylvinylcatechols, hitherto very elusive compounds.

Experimental Section

Precursors to 3-n-($1^{\prime}, 2^{\prime}$-Dehydro)pentadecylcatechol-A sample of $8.0 \mathrm{~g}(0.024 \mathrm{~mol})$ of $3-n$-(1^{\prime}-hydroxy $)$ pentadecylcatechol (2a), ${ }^{4} \mathrm{mp} 90.0-91.0^{\circ}$ (lit. ${ }^{7} \mathrm{mp} \mathrm{59.6-90.5}^{\circ}$), was dissolved in 100

[^112]ml of anhydrous benzene and stirred under a nitrogen blanket at room temperature. Over a $2-\mathrm{min}$ period, 10.6 g of bis(trimethylsilyl)acetamide (BSA) ${ }^{6}$ was added with ice bath cooling as necessary to maintain the temperature of the reaction near 50°. The resulting solution was stirred for about 20 min until the exothermic reaction was complete and allowed to stand under nitrogen for 18 hr . About 1 g of acetamide, $\mathrm{mp} 68-79^{\circ}$, was filtered off, and the filtrate was evaporated in vacuo using an 80° bath to give 17.08 g of a thick oil.

Part (7.25 g) of this oil was cleanly distilled in vacuo using a small Vigreux column to give a viscous oil, bis(trimethylsily))-3-n-(1'-hydroxy)pentadecylcatechol (2c): $4.5 \mathrm{~g} \quad(93 \%$ yield); ir (neat) 2.86 (w, sharp), 2.8-3.0 (vw, broad), 3.45 (s, sharp), shoulder 3.53 (s, sharp), 6.29 (w), 6.78 (vs, broad), 7.36 (w, broad), 7.80 (m , broad), 8.01 (vs, sharp), 8.23 (m, broad), $9.0-9.5(\mathrm{~m}$, very broad), $9.8-10.5$ (m , very broad), 10.9 (s , broad), 11.2-12.2 (vs, very broad), 13.0-13.7 (m, very broad); $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \tau$ 2.83-3.55 (multiplet, 3 H , aromatic), 5.07 (center of poorly defined triplet, 1 H , benzylic), 7.57 ($\mathrm{s}, 1 \mathrm{H}$, hydroxyl), 8.0-9.5 (broad singlet and distorted triplet, $29 \mathrm{H}, \mathrm{C}_{14} \mathrm{H}_{29}$), 9.78 [center of jagged singlet, 18 H , bis- $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$].

A sample of 8.0 g of the crude (not purified by distillation) 2 c was pipetted into a $125-\mathrm{ml}$ erlenmeyer flask fitted with a gas inlet tube reaching to the bottom and to one side of the flask. While this material was flushed with bubbling nitrogen, 3.4 g of BSA and 0.5 g of powdered KHSO، were added. With agitation via the nitrogen bubbling, the contents of the flask were heated for 30 min using a $150-200^{\circ}$ bath. The progress of the dehydration was monitored by observation of frothing and reflux of low-boiling materials. Following this pyrolysis period, 3.4 g further of BSA was added and the contents of the flask were heated for 10 min at 150°. The resulting clear, slightly yellow oil was transferred to a pointed flask and distilled in vacuo through a Vigreux column. Following collection of a low-boiling fraction including excess BSA, $2.99 \mathrm{~g}(60 \%$ yield from 2a) of a clear, slightly yellow oil was obtained, bis(trimethylsilyl(-3-n-($1^{\prime}, 2^{\prime}$-dehydro) pentadecylcatechol (1d): bp $18.5-190^{\circ}(0.1 \mathrm{~mm})$; one spot on tlc analysis (extremely mobile); ir (neat) essentially identical with spectrum for 2 c except no OH bands in the present spectrum (2.86, 2.80, 3.0, $7.36,9.0-9.5 \mu$ bands absent); nmr (CCl_{4}) $\tau 2.8-3.2$ (multiplet, 5 H , aromatic and vinyl), 7.4-8.0 (broad resonance, allylic), 8.0-9.3 (broad singlet and distorted triplet, $\mathrm{C}_{12} \mathrm{H}_{25}$), signals at τ $7.4-9.3$ integrated for $27 \mathrm{H}, 9.80$ and 9.83 (two sharp singlets, 18 H , bis-TMIS). A 10.3μ band in the ir spectrum was diagnostic for predominance of the trans isomer.
$3-n-\left(1^{\prime}, 2^{\prime}\right.$-Dehydro jpentadecylcatechol (1a).-A sample of 3.18 g of 1 d was dissolved in 30 ml of dioxane containing 10 ml of 95% ethanol. The solution was brought to reflux under nitrogen with stirring. A total of about 15 ml of water was dripped in gradually over 2 hr at a rate slow enough so that the solution never became turbid. Water and ether were added, the phases were separated, and a conventional work-up was performed. A white solid was obtained, 1.95 g , which showed no TMS resonances in the nmr (quantitative hydrolysis). Recrystallization from ligroin gave pure $1 \mathrm{a}: 1.75 \mathrm{~g} ; \mathrm{mp} 56.5^{-57.4}{ }^{\circ}$; ir (CCl_{4}) 2.76-3.26 (s, broad), 3.45 (s, sharp), shoulder (3.53 (sharp), 6.13 and 6.24 (pair of medium sharp peaks), 6.78 (vs, broad), $7.2-9.0$ (broad band of multiple peaks), 9.35 (w, broad), 10.25 (vs, broad) (diagnostic for trans double bond); no detail in fingerprint region; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \tau 3.0-4.1$ (multiplet, aromatic and vinyl), 4.29 (broad singlet, hydrolysis), signals at 3.0-4.5 integrated for $7 \mathrm{H}, 7.60-8.15$ (broad jagged resonance, 2 H , allylic), 8.73 (center of broad singlet, $\mathrm{C}_{11} \mathrm{H}_{22}$), 9.10 (center of distorted triplet, terminal methyl); signals at 7.6-9.2 integrated for 25 H .

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 79.19; $\mathrm{H}, 10.76$. Found: C, 79.12; H, 10.73 .
Hydrogenation of id gave bis(trimethylsilyli-3-n-pentadecylcatechol, identical (spectra) with the product of the reaction between 3-PDC and BSA. The hydrogenation required exactly 1 equiv of hydrogen. Similarly, la took up exactly 1 equiv of hydrogen over $10 \% \mathrm{Pd} / \mathrm{C}$ to give 3-PDC, identical in melting point ($58-59^{\circ}$) (lit. ${ }^{8} \mathrm{mp} 59-60^{\circ}$) and spectra (ir and nmr) with an authentic sample.

Registry No. - 1a, 34910-28-6; 1d, 34910-29-7.
(8) H. Keil, D. Wasserman, and C. R. Dawson, J. Amer. Chem. Soc., 68, 534 (1946).

Simplification of Epoxide and Lactone Proton Magnetic Resonance Spectra Using Tris(dipivalomethanato)europium Shift Reagent ${ }^{1 a}$
 Peter E. Manni, Gary A. Howie, ${ }^{\text {b }}$ Barry Katz, ${ }^{\text {le }}$ and John M. Cassady*
 Department of Medicinal Chemistry and Pharmacognosy, Purdue University, Lafayette, Indiana 47907

Received November 18, 1971
The observation by Hinckley ${ }^{2}$ that the dipyridine adduct of tris(dipivalomethanato)europium, Eu(DPMI) ${ }_{3}$, caused paramagnetic shifts in the pmr spectrum of cholesterol was closely followed by the discovery that the unsolvated complex was a superior shift reagent. ${ }^{3}$ Since then, many articles have appeared describing applications of $\mathrm{Eu}\left(\mathrm{DPN}_{-}\right)_{3}$ to structure determination. ${ }^{4}$ While information concerning the extent of paramagnetic shifts for monofunctional compounds is important, data concerning the interactions of shift reagents with polyfunctional compounds are more useful for the structure determination of complex organic compounds. Several groups have reported studies in this area. ${ }^{j-7}$ In most of these studies emphasis has been placed on compounds containing sites that complex unequally with $\mathrm{Eu}(\mathrm{DPM})_{3}$. We wish to report our study of the effects of $\mathrm{Eu}(\mathrm{DP} \backslash)_{3}$ on the pmr spectra of a series of lactones and epoxides which ircludes compounds containing two equivalent sites for complexation with $\mathrm{Eu}(\mathrm{DP} \backslash \mathrm{I})_{3}$. The study of lactones and epoxides is of interest because of their widespread natural occurrence and broad range of physiological activities.
Reference monofunctional compounds studied were 1,2 -epoxyoctane (1), cyclohexene oxide (2), γ-butyrolactone (3), and $3 \mathrm{a} \beta, 4,5,6,7,7 \mathrm{a} \alpha$-hexahydro-2(3H)benzofuranone (4). Difunctional compounds included were the epoxides $1,2,3,4$-diepoxybutane (5) (isomer mixture) and $1,2,7,8$-diepoxyoctane (6), and the lactones 4,5 -dihydroxyoctanedioic acid bislactone (7) and 4,9-dihydroxydodecanedioic acid bislactone (8). Compound 1 was prepared from 1 -octene by epoxidation with monoperphthalic acid. ${ }^{8}$ Compounds 4, 7, and 8 were prepared from the corresponding epoxides by the method of Newman and VanderWerf. ${ }^{9}$ Chart I summarizes pmr spectral data for representative epoxides and lactones in the presence of $\mathrm{Eu}(\mathrm{DP} \backslash)_{3}$. Figure 1 shows the relationship between concentration of epoxide 6 and chemical shift at constant mole ratio of shift reagent to substrate.

[^113]

Figure 1.-Chemical shift of methine protons in epoxide 6 as a function of epoxide concentration; $\operatorname{Eu}(D P M)_{3}$: epoxide $=0.5$.

Chart I
The Pmr Spectra of Epoxides and Lactones in the Presence of $\mathrm{Eu}(\mathrm{DPM})_{3}{ }^{a, b}$

2

${ }^{a}$ Epoxide concentration was $1.25 \mathrm{mmol} / \mathrm{ml} \mathrm{CDCl}_{3} ; \mathrm{Eu}(\mathrm{DPM})_{3}$ content, $1,0.52 \mathrm{mmol} ; 2,0.19 \mathrm{mmol} ; 5,0.33 \mathrm{mmol} ; 6,0.74$ mmol. b Lactone concentration was $0.66 \mathrm{mmol} / \mathrm{ml} \mathrm{CDCl}_{3}$; $\mathrm{Eu}(\mathrm{DPM})_{3}$ content, 0.13 mmol .

Results and Discussion

Hart and Love ${ }^{5}$ have reported the chemical shift of epoxide protons in cyclohexene oxide (2) and propylene oxide. Chart I gives more extensive data for 2 which showed sets of signals containing two protons each. The assignments presented were determined by assuming that protons farthest from the epoxide group would be least affected by shift reagent, and by extrapolating to zero $\mathrm{Eu}(\mathrm{DP} \ \mathrm{I})_{3}$ concentration the straight lines produced when the chemical shift of each signal was graphed against $\mathrm{Eu}(\mathrm{DP} \backslash \mathrm{I})_{3}$ concentration. The data reported ${ }^{5}$ for propylene oxide indicated that signals corresponding to H_{A} and H_{B} were inseparable. We observed that the corresponding signals ${ }^{10}$ in 1 and 5 were resolved while a single peak was still seen for these resonances in compound 6 at the limit of $\mathrm{Eu}(\mathrm{DPM})_{3}$ solubility. The close proximity of the two epoxide groups in 5 could have accounted for the separation of resonances noted. It was expected that similar resolu-
(10) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, New York, N. Y., 1969, p 228.
tion could be obtained for 6 if the epoxide signals could be shifted beyond δ 11.7. While investigating the latter point we observed an apparently hitherto unreported effect of substrate concentration upon resolution of resonances.

Published data concerning shift reagents has implied that barring effects due to line broadening the resolution of overlapping signals increases as the signals are shifted downfield. However, our data for epoxides 1 and 5 show that resolution of resonances H_{A} and H_{B} is achieved at lower chemical shifts when the epoxide concentration is high ($1.25 \mathrm{mmol} / \mathrm{ml} \mathrm{CDCl}_{3}$) than when the epoxide concentration is low $(0.13 \mathrm{mmol} / \mathrm{ml}$ CDCl_{3}) although the mole ratio of shift reagent to epoxide was larger (0.92 vs. 0.20) in the latter case. This information emphasizes that substrate concentration is as important a factor in the proper use of shift reagents as is the mole ratio of shift reagent to substrate.

Recently, Tomic and coworkers ${ }^{11}$ showed that the magnitude of shift experienced by a given set of protons diminished with dilution. Variation over a wide concentration range could not be determined because only one dilution was measured. Compound 6 shows the same overall behavior (Figure 1) upon dilution, with the most pronounced changes occurring at low concentrations. The increased shift caused by dilution could be counterbalanced by adding more shift reagen:. The shift observed in the usual experiment is the difference between the downfield shift produced by adding shift reagent and the upfield shift caused by dilution.

At the concentrations of epoxides and shift reagent used the chemical shift difference ($\Delta \delta=\delta_{\mathrm{Eu}}-\delta_{\mathrm{CDCl}_{3}}$) for a given proton varied in proportion to the amount of shift reagent per epoxide group. Thus, at the same concentration of epoxide and shift reagent $\Delta \delta$ for 1 was twice that measured for 6 (3.1 vs .1 .6). The same dependence was not seen for the lactones. The effect may be obscured by the much smaller shift experienced by the lactone protons ($\delta 1-2$ at the concentrations studied) due to their weaker association with Eu(DP\I) ${ }_{3}$ compared with epoxides.

Without $\operatorname{Eu}(\mathrm{DPMI})_{3}$, only the protons on carbon adjacent to the lactone oxygen were resolved completely; the remaining signals were contained within a broad multiplet. Addition of $\mathrm{Eu}(\mathrm{DP} \backslash)_{3}$ caused the signals for protons α to the carbonyl group to experience the greatest shift. These data agree with reports concerning the interaction of $\mathrm{Eu}\left(\mathrm{DP} \mathrm{II}_{3}\right.$ with esters ${ }^{5}$ and δ-valerolactones ${ }^{12}$ that place the site of complexation at the carbonyl oxygen.

An interesting example of the use of $\mathrm{Eu}(\mathrm{DPMI})_{3}$ occurred in the analysis of the reaction products from the epoxidation of 9 with monoperphthalic acid. Column chromatography of the reaction mixture yielded an apparently homogeneous oil on the basis of tlc and spectral data. Elemental analysis established the molecular formula $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}$. However, analysis of the pmr spectrum with $\mathrm{Eu}(\mathrm{DP} \backslash)_{3}[1.25 \mathrm{mmol}$ of 10 : 0.265 mmol of $\left.\mathrm{Eu}(\mathrm{DP} \backslash)_{3}\right]$ showed that the product was a mixture of isomeric epoxylactones 10 a and 10 b in the ratio 6:4. The 7a protons were well resolved (5.4
(11) L. Tomic, Z. Majerski, M. Tomic, and D. E. Sunko, Cherr. Commun., 719 (1971).
(12) F. I. Carroll and J. T. Blackwell, Tetrahedron Lett., 4173 (1970).

and 6.6 ppm), and the signal farthest downfield was assigned to the 7 a proton which is cis to the epoxide group in compound 10b. The chemical shift of protons 5 and 6 in 10 is less than that noted for cyclohexene oxide (2) measured under comparable conditions. Thus, complexation is occurring at both the lactone and epoxide moieties. The pronounced effect of the epoxide group upon the 7 a protons in 10 in the presence of $\mathrm{Eu}(\mathrm{DP} \backslash)_{3}$ suggests that this group would be a valuable derivative for studying the structure and stereochemistry of cyclic olefins.

Experimental Section ${ }^{13}$

Preparation of 3a $\beta, 4,7,7 \mathrm{a} \alpha$-Tetrahydro-2(3H)-benzofuranone (9).-4,5-Epoxycyclohexene was treated according to the method of Newman and VanderWerf, ${ }^{9}$ and gave a 43% yield of crude lactone. An analytical sample was prepared by column chromatography over silicic acid followed by sublimation [$45-48^{\circ}$ (20 $\mathrm{mm})]$ to give white needles: $\mathrm{mp} 56.5-58^{\circ} ; \mathrm{nmr} \delta$ a. $63(\mathrm{~s}, 2$, $\mathrm{CH}=\mathrm{CH}), 4.00(\mathrm{~s}, 1, \mathrm{CHO}), 2.21\left(\mathrm{~m}, 7, \mathrm{CH}_{2}, \mathrm{CH}\right)$; ir $\left(\mathrm{CHCl}_{3}\right)$ $5.64(\mathrm{C}=\mathrm{O}, \gamma$-lactone $)$, and $6.13 \mu(\mathrm{C}=\mathrm{C})$; mass spectrum m / e $138\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: $\mathrm{C}, 69.54 ; \mathrm{H}, 7.30$. Found: C , 69.76 ; H, 7.31 .

Preparation of $3 \mathrm{a} \beta, 4,5,6,7,7 \mathrm{a} \alpha$-Hexahydro-5,6-epoxy-2(3H)benzofuranone (10).-To $2 \mathrm{~g}(0.01 \mathrm{5} \mathrm{mol})$ of $3 \mathrm{a} \beta, 4,7,7 \mathrm{a} \alpha$-tetra-hydro- $2(3 H)$-benzofuranone (9) was added dropwise with stirring $2.64 \mathrm{~g}(0.015 \mathrm{~mol})$ of monoperphthalic acid in 23 ml of ethyl ether, and the solution was stirred in the dark at room temperature for 24 hr . A precipitate ($1 . \overline{\mathrm{g}} \mathrm{g}$) of phthalic acid was removed by filtration, and the ether filtrate was mixed with solid potassium carbonate until effervescence ceased. The solution was dried (anhydrous sodium sulfate) and concentrated to give 1.35 g cf a mixture containing (nmr) 9 and 10 in the ratio of $80: 20$. Purification was achieved by column chromatography (silicic acid). Elution with benzene removed 9, and benzene-chloroform ($1: 1$) removed 400 mg of 10 (18% yield). The sample was homogeneous by tlc, but resisted attempts to crystallize it: $n \mathrm{mr} \delta 3.94$ (broad s, 1, HCO, lactone), 3.26 (broad d, separation 4.5 Hz , epoxide), $2.21\left(\mathrm{~m}, 7, \mathrm{CH}_{2}, \mathrm{CH}\right)$; mass spectrum $\mathrm{m} / e 154\left(\mathrm{II}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}$: $\mathrm{C}, 62.32 ; \mathrm{H}, 6.54$. Found: C , 61.84; H, 6.84.

Data Relating to the Separation of Resonances for H_{A} and H_{B} in Compounds 1, 5, and 6.-Under conditions described in Chart I partial separation of resonances was achieved when signals were shifted to $\delta 10.6$ in 1, and $6 . i$ in 5 . At larger mole ratio (0.92), but lower epoxide concentration ($0.13 \mathrm{mmol} / \mathrm{ml} \mathrm{CDCl}_{3}$), resolu-
(13) All melting points are uncorrected. The infrared spectra were measured with a Perkin-Elmer 21 spectrophotometer. Mass spectra were obtained using a Hitachi RMU-6A spectrometer. Pmr spectra were determined at 60 MHz with a Varian A-60A or Jeolco Minimar (JNM-MH-$60-\mathrm{II})$ spectrometer. The chemical shift values are expressed in δ values (parts per million) relative to TMS internal standard. Chloroform-d was the solvent for pmr spectra. For studies of shift reagent the sample temperature was maintained at $28 \pm 1^{\circ}$. The Eu(DPM)s content of the solution was increased gradually until the desired resolution was obtained. Solution compositions are expressed as the number of mmoles of Eu(DPM) and epoxide added to 1 ml of CDCl_{3}. Unless otherwise noted the term "mole ratio" refers to the fraction Eu(DPM) ${ }^{\prime} /$ substrate. Physical data are recorded only for new compounds. Elemental analyses were performed by Midwest Microlab, Inc., Indianapolis, Ind. Compounds 2, 3, 5, and 6 were obtained commercially, and were used without further purification.
tion was not obtained until the epoxide signals in 5 were shifted to $\delta 15$.

Registry No. - 1, 2984-50-1; 2, 286-20-4; 5, 1464-$53-5$; 6, 2426-07-5; 9, 34905-87-8; 10a, 34905-88-9; 10b, 34905-89-0; $\mathrm{Eu}(\mathrm{DPM})_{3}, 15522-71-1$.

Photolysis of 2,6-Di-tert-butyl-4-alkylphenols with Polyhalomethanes

Richard H. S. Wang

Research Laboratories, Tennessee Eastman Ccmpany, Division of Eastman Kodak Company, Kingsport, Tennessee 37662

Received August 13, 1971
In recent years, a number of studies on photochemical reactions of sterically hindered phenols with various solvents have been published. ${ }^{1}$ However, as yet there is little information on the photoreactions of such phenols with polyhalomethanes.

When solutions of 2,6-di-tert-butyl-p-cresol (1a) or 2,4,6-tri-tert-butylphenol (lb) in either carbon tetrachloride or bromotrichloromethane were irradiated with near-ultraviolet light, two types of photoproducts involving the addition of either a halogen atom or a trichloromethyl radical to the phenol were obtained. The product mixture obtained depended on the structure of the phenol, the solvent used, and, for la, the wavelength of the light used.
The cyclopentenone 3 was the major product of the photolysis of la in carbon tetrachloride when either $300-$ or $350-\mathrm{nm}$ light was used. When irradiated with $300-\mathrm{nm}$ light in bromotrichloromethane, la gave about

1a, $\mathrm{R}=\mathrm{CH}_{3}$

$$
\mathrm{b}, \mathrm{R}=t-\mathrm{Bu}
$$

$65 \mathrm{~mol} \%$ of the cyclopentenones 4 and 5 along with 20 mol $\%$ of the α-brominated phenol 7, bu $\stackrel{1}{\prime}$, when ir-
(1) (a) H. D. Becker, J. Org. Chem., 92, 2115 (1967); (b) T. H. Matsuura, Y. Hiromoto, A. Okada, and K. Ogura, Tetrahedron Lett., 3727 (1970).
radiated with $350-\mathrm{nm}$ light, 1a gave more of the α brominated phenols 6 and 7 (40% total) than the cyclopentenone 4 (25%).

The photolysis of 1 lb in either carbon tetrachloride or bromotrichloromethane gave the cyclohexadienones 8 and 9 b as well as a tert-butyl halide. The same products were obtained whether 300 - or $350-\mathrm{nm}$ light was used, but the use of $350-\mathrm{nm}$ light resulted in a much lower conversion of 1 lb . Moreover, 10 was produced either by irradiating $\mathbf{l b}$ in bromotrichloromethane containing 10% methanol or by stirring a mixture of 8 in methanol containing $1 N \mathrm{HCl}$ at room temperature for 1 hr .

The thermal reaction of 1 a or 1 b with bromotrichloromethane at 169° in the dark gave only a low yield of chloroform and black tar. Neither 2,2'-azobis(2methylpropion trile) (AIBN) nor benzoyl peroxide increased the rate of reaction of la or lb with bromotrichloromethane at 80° in the dark. These results, taken with the abilities of 1 and 2 to absorb light at 300 and $350 \mathrm{~nm},{ }^{2}$ probably indicate that the excitation of phenol ${ }^{3}$ and the rate of generation of a halogen atom and a trichloromethyl radical are the vital factors in the photochemical reactions of 1 with a halotrichloromethane. Therefore, a short-chain or nonchain radical mechanism, as shown in Scheme I, probably accounts for the first stage of these photolyses.

Since carbon tetrachloride does not absorb light in the $350-\mathrm{nm}$ region, the photolyses of 1 a and 1 b in carbon tetrachloride were probably initiated by the excitation of phenol followed by an energy transfer to the carbon tetrachloride, which decomposed to give a chlorine atom and a trichloromethyl radical. These fragments subsequently reacted with phenol to form products. The mechanism shown in Scheme I is consistent with the relative rates of disappearance of 1 a and $1 \mathrm{lb} ; 1 \mathrm{a}$, which

[^114]Table I
Photolysis of 2,6-Di-tert-butylf p-cresol (1a)

Solvent	λ, nm	Phenol reacted, \%	$3^{\text {b }}$	$4{ }^{\text {b }}$	$8^{\text {b }}$	$6^{\text {b }}$	$7^{\text {b,c }}$	CHCls ${ }^{\text {d }}$	$t-\mathrm{BuBr}^{\text {d }}$	${ }^{6}-\mathrm{BuCl}^{\text {d }}$
BrCCl_{3}	300	90		30	35		20	45		
	350	80		25		30	10	60		
CCl_{4}	300	60	35					4		
	350	10	10							

${ }^{a}$ Based on the amount of phenol added. ${ }^{b}$ Measured by nmr spectra. ${ }^{c}$ Based on the amount of 3,5-di-tert-butyl-4-hydroxybenzaldehyde, hydrolysis product of 7. ${ }^{d}$ Measured by glpc.

Table II
Photolysis of 2,4,6-Tri-tert-butylphenol (1b)
Phenol

reacted, \%					
	$8{ }^{\text {b }}$	$9^{\text {b }}$	$\mathrm{CHCl}{ }^{\text {c }}$	$t-\mathrm{BuBr}^{\text {c }}$	$t-\mathrm{BuCl}^{c}$
70	35	8	27	26	15
5	trace	3	<1	11	11
40	10	25	5		10
2	trace	trace	<1		1

${ }^{a}$ Based on the amount of phenol added. ${ }^{b}$ Measured by nmr spectra. ${ }^{c}$ Measured by glpc.

Scheme I
$\mathrm{XCCl}_{3} \xrightarrow{h \nu} \mathrm{X} \cdot+\mathrm{Cl}_{3} \mathrm{C} \cdot$
or $1 \xrightarrow{h \nu} 1^{*}$
$1^{*}+\mathrm{XCCl}_{3} \rightarrow$

HX or $\mathrm{HCCl}_{3}+\mathrm{X} \cdot$ or $\mathrm{Cl}_{3} \mathrm{C} \cdot+$

11

$11+\mathrm{XCCl}_{3} \rightarrow$

$\begin{aligned} 12 \mathrm{a}, \mathrm{R} & =\mathrm{CH}_{3} \\ \mathrm{~b}, \mathrm{R} & =t-\mathrm{Bu}\end{aligned}$
9a, $\mathrm{R}=\mathrm{CH}_{3}$
$\mathrm{b}, \mathrm{R}=t-\mathrm{Bu}$

$$
\begin{aligned}
11+\mathrm{Cl}_{3} \mathrm{C} & \longrightarrow 9 \\
11+\mathrm{X} & \longrightarrow 12
\end{aligned}
$$

absorbs much more strongly at 350 nm than $\mathbf{1 b}$, reacted about five times faster with carbon tetrachloride than did 1b (Tables I and II).

The order of hydrogen atom abstraction from hydrocarbons by the radical species involved in the reactions of Scheme I is known to be $\mathrm{Cl} \cdot>\mathrm{Cl}_{3} \mathrm{C} \cdot \geq \mathrm{Br} \cdot ;^{4,5}$ hence, in carbon tetrachloride $k_{1}>k_{2}$, and a little chloroform was formed. Both 1 la and lb would give a cyclohexadienone intermediate, 9 a and 9 b . The courses of the subsequent reactions depend on the nature of R. When $\mathrm{R}=\mathrm{CH}_{3}$ (9a), photorearrangement ${ }^{6}$ of 9 a would give 3 or 4 and allylic bromination of 4 would give 5 (Scheme II).
(4) C. Walling, "Free Radicals in Solution," Wiley, New York, N. Y. 957, pp 48-50.
(5) J. M. Tedder, Quart. Rev., Chem. Soc., 14, 344 (1960)
(6) D. J. Patel and D. I. Schuster, J. Amer. Chem. Soc., 90, 5137 (1968).

Sснеме II

9a

Because the tert-butyl group can be cleaved from an aromatic ring, ${ }^{7} 9 \mathrm{~b}$ reacts further by a path different from that for 9 a . It reacts probably via expulsion of a tert-butyl radical to form a phenoxy radical 13 and subsequently to produce 8 (Scheme III). ${ }^{8}$

Neither 12a nor 12b was detected in any of the reaction mixtures, probably because both were photounstable. When la was irradiated in bromotrichloromethane, 12a, formed along with 9a, rearranged ${ }^{9}$ immediately to form the α-brominated phenols 6 and 7 (Scheme IV).

The structures of various photolytic products were deduced from spectroscopic measurements and elemental analyses. The maximum uv absorptions of compounds 3,4 , and 5 at 235,236 , and 237 nm , respectively,
(7) T. Matsurra and K. Ogura, ibid., 89, 3846 (1967).
(8) The acid-catalyzed expulsion of a tert-butyl group from $9 b$ by mixing 9 b with methanol containing $1 N \mathrm{HCl}$ at room temperature for 20 hr failed to produce 10, and only 9 b was recovered
(9) V. D. Pokhodenko and N. N. Kalibabcbu, Zh. Org. Khim., 2, 1397 (1966).

Scheme III

$t-\mathrm{Bu} \cdot+\mathrm{Cl} \longrightarrow t-\mathrm{BuCl}$
$t-\mathrm{Bu} \cdot+\mathrm{BrCCl}_{3}$ (or $\mathrm{Br} \cdot$) $\longrightarrow t-\mathrm{BuBr}$

Scheme IV

indicate a possible cyclopentenone structure. ${ }^{10}$ In the infrared, 3 and 4 have nearly identical spectra with two major bands at 1710 and $1625 \mathrm{~cm}^{-1}$ (cyclopentenone carbonyl group and a dichloro-substituted double bond ${ }^{6}$). The nmr spectra (see Experimental Section) of $\mathbf{3}$ and 4 are also consistent with the assignment of the cyclopentenone structures. The infrared spectrum of 5 is not identical with the spectra of 3 or 4 , but it also shows strong bands at 1710 and $1630 \mathrm{~cm}^{-1}$. However, the nmr spectrum of 5 gives three signals distinctively different from those of $\mathbf{3}$ and 4. After investigations of the splittings and the coupling constants of those signals, it was concluded that 5 actually has a cyclopentenone structure similar to the cyclopentenone structures of 3 and 4. The chemical shifts of $\delta 1.15(9 \mathrm{H}, \mathrm{s}), 1.30$ $(9 \mathrm{H}, \mathrm{s})$, and $4.35(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz})$, which are similar to those of 3 and 4, were assigned to the two tertbutyl groups at C_{2} and C_{5} and to the tertiary hydrogen at C_{4}, respectively. The two protons at C_{7} are non-

A

II

I

III

[^115] Chem. Soc., 70, 1379 (1948).
equivalent in the three rotomers (I-III); hence, the chemical shifts of $\delta 3.35(1 \mathrm{H}, J=11.0 \mathrm{~Hz})$ and 4.25 ($1 \mathrm{H}, J=11.0 \mathrm{~Hz}$) can reasonably be assigned to the methylene protons at C_{7}. The proton at $\delta 7.30(1 \mathrm{H}$, $J=3.0 \mathrm{~Hz}$) is believed to be adjacent to the proton at C_{4}; hence, it must be the vinyl proton at C_{3} in structure A. Although the bromine atom at C_{7} would not be expected to directly affect the chemical shift of the vinyl proton at C_{3} through the σ bonds, the steric restriction in A would allow the bromine atom to be close enough to affect the vinyl proton at C_{3} inductively through space; hence, the chemical shift of the vinyl proton at C_{3} appears at a lower field ($\delta 7.30$) in 5 than in 3 and 4.
The structures of 8 and 9 are fully supported by their spectrossopic data and elemental analyses (see Experimental Section).

Experimental Section ${ }^{11}$

The photolytic reactions were carried out in a Rayonet reactor, Model RPR-100. The RPR 300- and $350-\mathrm{nm}$ lamps were used as light sources without filters. All melting points are uncorrected and were measured with a Thomas-Hoover capillary melting point apparatus. The ultraviolet spectra were recorded on a Cary 14 spectrophotometer. The nmr spectra were determined with a Varian A-60 spectrophotometer with tetramethylsilane as an internal standard. The mass spectra were recorded on a Consolidated Electrodynamic 21-110B mass spectrometer.

General Photolysis Procedure.-A solution of 5 mmol of the desired phenol in 15 ml of polyhalomethane, contained in a quartz tube (i.d. 1.30 cm), was flushed with nitrogen for 5 min and then irradia-ed with either 300 - or $350-\mathrm{nm}$ light for 20 hr . A $1-\mathrm{ml}$ aliquot was analyzed by glpc to determine the amount of volatile products, such as chloroform and tert-butyl halides, present. The solvent was removed, and the remainder was analyzed by nmr spectroscopy to determine the molar proportions of various products (Tables I and II).

2,5-Di-tert-butyl-5-chloro-4-(2,2-dichloro-1-methylvinyl)-2-cy-clopenten-1-one (3).-After the irradiation of 1 la in carbon tetrachloride witi $300-\mathrm{nm}$ light, the solvent was removed from the reaction mixture, and the residue was dissolved in absolute ethanol. 3 was obtained after three recrystallizations from ethanol ($0.42 \mathrm{~g}, 42 \%$, white needles): $\mathrm{mp} \mathrm{99-101}{ }^{\circ}$; ir (KBr) 1710 (cyclopentenone carbonyl group) and $1625 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{CCl}_{2}\right)$; uv max $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} \vdots 235 \mathrm{~nm}\right.$ ($\log \epsilon 3.99$); mass spectrum $m / e 336$ (M^{+}with three chlorines); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 1.10(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$, $1.20(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.30(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}$, $t-\mathrm{H})$, and $6.85(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}$, vinyl proton).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{Cl}_{3} \mathrm{O}$ (337.38): $\mathrm{C}, 56.91 ; \mathrm{H}, 6.82$; $\mathrm{Cl}, 31.53$. Found: C,57.00; H,6.82; Cl, 31.25 .

5-Bromo-2,5-di-terl-butyl-4-(2,2-dichloro-1-methylvinyl)-2-cy-clopenten-1-one '4).-After the irradiation of 1 a in bromotrichloromethane with $350-\mathrm{nm}$ light, the solvent was removed from the reaction mixture, and the residue was recrystallized three times from ethanol to give 4 as white needles ($0.35 \mathrm{~g}, 23 \%$) : $\mathrm{mp} 126-128^{\circ}$; ir (KBr) 1710 (cyclopentenone carbonyl group) and $1625 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{CCl}_{2}\right)$; uv $\max \left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 236 \mathrm{~nm}(\log \epsilon 3.95)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.10(9, \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.20(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.60$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.25(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, t-\mathrm{H})$, and $6.85(1 \mathrm{H}, \mathrm{d}$, $J=3.0 \mathrm{~Hz}$, vinyl proton).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrCl}_{2} \mathrm{O}$ (381.73): C, $50.28 ; \mathrm{H}$, 6.02 ; $\mathrm{Br}, 20.93$; $\mathrm{Cl}, 18.57$. Found: $\mathrm{C}, 49.95 ; \mathrm{H}, 5.99$; $\mathrm{Br}, 21.01 ; \mathrm{Cl}, 18.72$.

The residue which remained after evaporation of the combined filtrates from the recrystallizations of 4 was dissolved in 10 ml of petroleum ether ($\mathrm{bp} 30-60^{\circ}$) and eluted through a silica gel column ($0.05-0.20 \mathrm{~mm}, 35.0 \times 2.5 \mathrm{~cm}$) with additional petroleum ether. The first $50-\mathrm{ml}$ portion of eluate contained mostly la The second $50-\mathrm{ml}$ portion contained about equal amounts of la and α-bromo-2,6-di-tert-butyl-p-cresol (6); the presence of 6 was shown by nmer analysis [$\delta 4.30\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right)$ and $7.01(2 \mathrm{H}$,
(11) The actual yields of various products are based on the actual amount of 1 reacted.
aromatic)], which was consistent with the nmr analysis of an authentic sample of $6 .{ }^{12}$
5-Bromo-2,5-di-terl-butyl-4-[1-(bromomethyl)-2,2-dichlorovinyl]2 -cyclopenten- 1 -one (5).-After the irradiation of 1 a in bromotrichloromethane with $300-\mathrm{nm}$ light, the solvent was removed from the reaction mixture, and the residue was recrystallized five times from absolute ethanol to give $5(0.28 \mathrm{~g}, 13.5 \%)$ as white needles: $\mathrm{mp} 180-182^{\circ}$; ir (KBr) 1710 (cyclopentenone carbonyl group) and $1630 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{CCl}_{2}\right)$; uv $\max \left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 237$ $\mathrm{nm}(\log \epsilon 4.18)$; mass spectrum $m / e 460$ (M^{+}with two bromines and two chlorines); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.15(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.30(9$ $\mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 4.35(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, t-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{d}, J=$ 3.0 Hz , vinyl proton), and 3.35 and $4.25\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{HA}}=J_{\mathrm{HB}}=\right.$ $11.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Br}$).
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{O}$ (460.74): C , 41.67; H , $4.77 \mathrm{Br}, 34.69 ; \mathrm{Cl}, 15.39$. Found: C, 41.78; H, 4.84; $\mathrm{Br}, 34.27$; $\mathrm{Cl}, 15.43$.

The residue which remained after evaporation of the combined filtrates from the recrystallizations of 5 was dissolved in 10 ml of petroleum ether and eluted through a silica gel column with additional petroleum ether. The first 20 ml of the petroleum ether fraction contained about 0.01 g of low-melting ($35-45^{\circ}$) material, shown by its nmr spectrum to be a mixture of 10% of la and about 90% of a second component. The following spectroscopic data are consistent with the assignment of the 2,5-di-tert-butyl-4-methyl-4-(trichloromethyl)-2,5-cyclohexadien-1-one (9a) structure to the major component of this mixture: ir (neat) 1650 and $1670 \mathrm{~cm}^{-1}$ (double strong bands, cyclohexadienone carbonyl group ${ }^{13}$); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.25(18 \mathrm{H}, \mathrm{s}, 2 t-\mathrm{Bu})$, $6.70\left(2 \mathrm{H}\right.$, s, two vinyl protons), and $1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum $m / e 336$ (M^{+}with three chlorines), major fragments at m / e (rel intensity) 219 (96), 189 (13), 177 (42), 163 (17), 57 (100), and 41 (37); an intense metastable peak was observed at an apparent mass of 143 which results from the transition of M^{+} (336) $\rightarrow \mathrm{M}_{1}{ }^{+}(219)+\mathrm{Cl}_{3} \mathrm{C}^{+}$(117). After the elution of the first $20-\mathrm{ml}$ fraction, an additional 100 ml of petroleum ether was added to the column to remove the rest of la and 12a. Then 50 ml of methylene chloride was passed through the column. Evaporation of the methylene chloride gave a brown tar which was refluxed in 90% ethanol for 30 min . On cooling, white crystals were formed and were identified as 3,5 -di-lett-butyl-4hydroxybenzaldehyde ($0.11 \mathrm{~g}, 10.5 \%$), mp $188-189^{\circ}$ (lit. ${ }^{14} \mathrm{mp}$ 189°). The aldehyde was assumed to result from the hydrolysis of 7 with 90% ethanol. ${ }^{15}$ The column was again eluted, this time with 50 ml of methanol, and $0.15 \mathrm{~g}(8.8 \%)$ of 4 was isolated.

2,6-Di-ter'-butyl-4-(dichloromethylene)-2,5-cyclohexadien-1one (8).-After the irradiation of lb in bromotrichloromethane with $300-\mathrm{nm}$ light, the solvent was removed from the reaction mixture, and the residue was recrystallized five times from absolute ethanol to give 8 as light yellow leaflet crystals $(0.30 \mathrm{~g}$, $30 \%): \mathrm{mp} \mathrm{91-93}{ }^{\circ}$; ir (KBr) $1630(\mathrm{C}=0)$ and $1590 \mathrm{~cm}^{-1}$ (conjugated $\mathrm{C}=\mathrm{CCl}_{2}$); uv $\max \left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 323 \mathrm{~nm}(\log \in 4.15)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.40(18 \mathrm{H}, \mathrm{s}, 2 t-\mathrm{Bu})$ and $7.30(2 \mathrm{H}$, s, two vinyl protons); mass spectrum $m / e 286$ (M^{+}with two chlorines).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}$ (286.91): C, 62.74; H, 6.97; $\mathrm{Cl}, 24.72$. Found: C, $62.59 ; \mathrm{H}, 6.92 ; \mathrm{Cl}, 24.58$.

A mixture of 8 in methanol containing $1 N \mathrm{HCl}$ was stirred at room temperature for 1 hr . The white precipitate formed was identified as methyl(3,5-di-tet-butyl-4-hydroxy)benzoate (10), mp $156-158^{\circ}$ (lit. ${ }^{16} \mathrm{mp} 159^{\circ}$).

2,4,6-Tri-tert-butyl-4-(trichloromethyl)-2,5-cyclohexadien-1one (9b).-After the irradiation of 1 lb in carbon tetrachloride with $300-\mathrm{nm}$ light, the solvent was removed from the reaction mixture, and the residue was recrystallized three times from absolute ethanol to give 9 b as white needles ($0.32 \mathrm{~g}, 56 \%$): mp $69-71$; ir (KBr) 1660 and $1640 \mathrm{~cm}^{-1}$ (double strong bands, carbonyl group of cyclohexadienone ${ }^{13}$); uv $\max \left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 248 \mathrm{~nm}$ ($\log \epsilon 3.95$) and 322 (3.87); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.24(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$, $1.26(18 \mathrm{H}, \mathrm{s}, 2 t-\mathrm{Bu})$, and $6.95(2 \mathrm{H}, \mathrm{s}$, two vinyl protons).
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{O}$ (379.38): C, 60.10; H, 7.64; $\mathrm{Cl}, 28.04$. Found: C, 99.95 ; H, 7.65 ; Cl, 27.97.
Attempted Thermal Reaction of 2,6-Di-tert-butyl-4-alkylphenol with Bromotrichloromethane.-A mixture of 5 mmol of 1 a or lb

[^116]and 15 ml of bromotrichloromethane was sealed in a Pyrex tube and heated at 160°. After 10 hr , the solution was dark brown, but no product, other than some chloroform which was identified by glpc, could be isolated, When a similar mixture was heated at 80° in the presence of either AlBN or benzoyl peroxide, no reaction occurred, even after 2 days.

Registry No.-la, 128-37-0; 1b, 732-26-3; 3, 34982-09-7; 4, 34957-03-4; 5, 34959-60-9; 8, 34959-61-0; 9a, 34959-62-1; 9b, 34959-63-2.

Acknowledgment.-The author thanks Dr. G. R. Lappin for encouragement and for discussions of this work and is grateful to Mr. H. D. Kinder and Mr. J. C. Gilland for spectroscopic analyses.

The Chemistry of Flavandiones. Reaction with Diazomethane ${ }^{18}$

M. A. Smith,* W. D. Boswell, Jr., ${ }^{\text {1b }}$ K. G. Henzel, and D. G. Miller
Department of Chemistry, Bucknell University,
Lewisturg, Pennsylvania 1783\%

Received January 11, 1972

Flavonols 1 are oxidized by periodic acid, 1 mol of oxidant being consumed. ${ }^{2,3}$ When methanol is the solvent, the products are the methyl 3-hemiketals of 2 -methoxy-3,4-flavandiones $2 .{ }^{4}$ Solutions of these hemiketals are an equilibrium mixture of 2 and the free dione, this being responsible for the solutions' yellow color.

When the hemiketals $2 \mathbf{a}-\mathbf{d}$ are mixed with an ethereal solution of diazomethane, they are converted to the epoxides 3. This formulation is supported by elemental analysis, spectra, and chemical reactivity.
Before the advent of routine ir and nmr spectra, α diketones were generally believed to form 1,3 -dioxoles with diazomethane. ${ }^{5}$ Later work by Eistert ${ }^{6}$ established that these products were generally epoxides, although exceptions are known. ${ }^{7}$ However, the products from diazomethane and 2a-d all have strong bands in the carbonyl region and this renders a dioxole structure most unlikely.

With monoketones and diazomethane, epoxide formation competes with methylene insertion. This has been observed with α-diketones also. Diazomethane in ether converts phenanthraquinone into an epoxide, but, in the presence of much methanol, a ring-expanded product is found. ${ }^{8}$ However, the spectral properties of the diazomethane products from 2a-d are hardly consistent with those expected for any ring-expanded product. In our case, such a product could be either of a pair of α-diketones or a β-diketone. In the ketone form, any of these diketones would have two bands in
(1) (a) Supported in part by the National Institute of General Medical Sciences, National Institutes of Health, U. S. Public Service (Grant No. 11830). (b) National Science Foundation Undergraduate Research Participant, summer, 1966.
(2) M. A. Smith and B. R. Willeford, Anal. Chem., 26, 751 (1954).
(3) M. A. Smith, J. Otg. Chem., 28, 933 (1963).
(4) M. A. Smith, R. A. Webb, and L. Cline, ibid., 30, 995 (1965).
(5) C. D. Gutsche, Org. React., 8, 364 (1954).
(6) B. Eistert, G. Fink, and R. Wollheim, Chem. Ber., 91, 2710 (1958).
(7) B. Eistert and L. Klein, ibid., 101, 391 (1968).
(8) B. Eistert, R. Wollheim, G. Fink, and H. Minas, and L. Klein, ibid., 101, 84 (1968).
the carbonyl region of the ir spectrum. This is not the case; only a single band is found. Were these α diketones in an enolic form, a band should be detected in the hydroxyl region of the ir spectra, There are no bands above $3070 \mathrm{~cm}^{-1}$ in any of the spectra. Had these enols undergone methylation, this would have doubled the methoxyl analysis.
Therefore, it is clear that the ir spectra of these products are incompatible with both the dioxole and the ring-expanded structures. The ir spectra and the nmr spectra do fit the epoxy structures 3a-d.

1

3

5

2

4

6

7
a, $R=R^{\prime}=H$

8
b, $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{OCH}_{3}$
c, $\mathrm{R}=\mathrm{OCH}_{3} ; \mathrm{R}^{\mathbf{\prime}}=\mathrm{H}$
d, $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{OCH}_{3}$

In the earlier work ${ }^{4}$ on the flavandione 3-hemiketals 2, the position of the hemiketal methoxyl was expected to be at C-3, the carbonyl band in the ir spectrum being assigned to a carbonyl at C-4. This was confirmed by measuring the position of the ν_{CO} band with and without a methoxyl at C-7, i.e, para to the C-4 carbonyl. A similar study on 3a-d has established that the oxymethylene group is also at C-3. The relevant data are recorded in Table I. The $\nu_{c o}$ for 3 c and 3d, the

Table I
Carbonyl Stretching Frequencies of the Epoxides 3a-d

	Compd
3a, $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$	$\nu \mathrm{co}, \mathrm{cm}^{-1}{ }^{a}$
3', $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{OCH}_{3}$	1705
3c, R $=\mathrm{OCH}_{3} ; \mathrm{R}^{\prime}=\mathrm{H}$	1703
3d, R $=\mathrm{R}^{\prime}=\mathrm{OCH}_{3}$	1693

${ }^{a}$ Spectra recorded on a Perkin-Elmer 337 grating spectrophotometer, CCl_{4} solution. Calibration was agairst the 1601-cm^{-1} line of polystyrene.
pair with methoxyls at C-7, is significantly lower than the ν_{Co} for 3 a and 3 b . A methoxyl group at C-7 would be expected to have a bathochromic effect on the band for a carbonyl at C-4.

The epoxy structures 3a-d receive additional support from the nmr spectra. A three-proton singlet near 3.2 ppm is common to all the spectra of $3 \mathrm{a}-\mathrm{d}$. This is attributed to the 2-methoxyl group. This chemical shift is somewhat upfield from most methoxyl signals but it seems to be characteristic for 2-methoxyl groups in the flavandione compounds (see Table II).

Table II
Nmr Data (δ) ${ }^{a}$

	Epoxides			
	3a	3b	3 c	3d
Aryl ${ }^{\text {b }}$	7-8	6.8-8.1	6.5-8.0	6.6-8.0
Aryl $\mathrm{OCH}_{3}{ }^{\text {d }}$		4.01	3.88	3.81, 3.88
$2-\mathrm{OCH}_{3}{ }^{\text {d }}$	3.19	3.21	3.23	3.21
$\begin{aligned} & \text { Oxymethy- } \\ & \text { lene }^{c} \end{aligned}$	2.32, 3.49	2.65, 3.48	2.61, 3.45	2.62, 3.44

Flavandione Hemiketals				
	2a	2b	2 c	2d
Ary ${ }^{\text {b }}$	7-8	7-8	6.6-8	6.6-8
$\mathrm{COH}^{\text {d }}$	4.73	4.74	4.87	4.78
Aryl $\mathrm{OCH}_{3}{ }^{\text {d }}$		3.84	3.87	3.82, 3.85
$\left.2-\mathrm{OCH}_{3}\right]^{\text {d }}$				
$\left.\begin{array}{c} \text { Hemiketal } \\ \mathrm{OCH}_{3} \end{array}\right\}$	2.94, 3.03	3.00, 3.07	2.97, 3.10	2.98, 3.07
${ }^{\text {a }}$ Varian A-60A, CDCl_{8}, in parts per million from TMS.				
Complex m	plet. ${ }^{\text {c }}$	blets (J	Hz). ${ }^{\text {d }}$	inglets.

The aryl methoxyls of $\mathbf{3 b} \mathbf{- d}$ are unexceptional, giving rise to singlets between 3.8 and 3.9 ppm . The methylene protons of the epoxide ring are diastereiomeric. In all cases, these protons appear as a pair of doublets ($J=6 \mathrm{cps}$), one centered near 3.5 ppm , the other near 2.6.

Chemical evidence for the epoxide formula for 3a is found in its facile conversion to an iodohydrin 4 by an acetic acid-potassium iodide mixture. The structure of 4 is amply supported by elemental analysis and spectra. Sodium methoxide reacts with 4 to regenerate the epoxide 3a. The nmr spectrum of the iodohydrin 4 contained a nine-proton aryl multiplet between 6.9 and 7.9 ppm . The 2-methoxyl manifested itself as a singlet at 3.24 ppm , very near an OH singlet at 3.42 ppm . The diasteriomeric methylene protons appeared as a pair of AB doublets at 3.65 and $3.75 \mathrm{ppm}(J=$ $22 \mathrm{cps})$. The direction of ring opening was as expected. The tertiary nature of the alcohol group in 4 was demonstrated when 4 gave a negative test with Bordwell's chrcmic acid reagent. ${ }^{9}$

We attempted to isomerize 3a to an aldehyde with boron trifluoride. This well-known rearrangement ${ }^{5}$ had been carried out by Eistert ${ }^{6}$ on the epoxides of phenanthraquinone and benzil. In both cases the expected aldehyde was obtained. However, this reagent conver-s the epoxide 3 a into the corresponding flavonol. The same conversion is effected by aqueous acids. This transformation involves cleavage of the carbon-carbon bond of the epoxide.

Several mechanisms can be envisaged to account for this transformation. Protonation of 3 followed by loss of methanol could lead to the carbonium ion 5. Such a cation should be stabilized by the heterocyclic oxygen as well as the aromatic ring. An attack on the methylene group by water could cleave the carbon-carbon bond and lead to 6 , a hemiacetal of formaldehyde, which would then hydrolyze to flavonol 1. Alternately, water could open the oxirane ring to the diol 7 which might then undergo fragmentation to flavonol 1. A third possibility would be a rearrangement of 3 to a dioxole 8 followed by hydrolysis.

Experimental Section

Spectra.-Except for the data reported in Table I, all ir spectra were taken as Nujol mulls on a Perkin-Elmer Infracord. Model 137 (NaCl prism). ${ }^{10}$ All nmr spectra were obtained in CDCl_{3} using a Varian A-60A spectrometer. ${ }^{10}$

All melting points are uncorrected. Analyses were carried out by Schwarzkopf Microanalytical Laboratory.
Diazomethane. -This was prepared from N, N^{\prime}-dimethylN, N^{\prime}-dinitrosoterephthalamide (8) according to the procedure of Moore and Reed. ${ }^{11}$ When running $1-\mathrm{g}$ batches of the flavandione hemiketals $2 \mathrm{a}-\mathrm{d}$, we used 7.2 g of the 70% suspension of 8 in mineral oil, adding this to 120 ml of ether, 18 ml of 2 -($2^{\prime}-$ ethoxyethoxy)ethanol, and 24 ml of 30% aqueous NaOH . This should produce about a tenfold excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$. In practice the $\mathrm{CH}_{2} \mathrm{~N}_{2}$-ether was distilled directly into a flask containing 2a-d suspended in a little ether.

Flavonols (1a-d).-The flavonols 1 la and 1 b were prepared directly from o-hydroxyacetophenone and the corresponding benzaldehydes according to the procedure of Smith, Neuman and Webb. ${ }^{12}$ This procedure is erratic for flavonols with methoxyls in the o-hydroxyacetophenone. However, alkaline hydrogen peroxide converts the corresponding 2^{\prime}-hydroxychalcones into flavonols in yields of $40-50 \%$ using essentially the procedure of Algar and Flynn. ${ }^{13} \quad$ 1c and Id were made this way.

2-Methoxy-3,4-flavandione Methyl 3-Hemiketals (2a-d). ${ }^{10}$ These were prepared as reported previously. ${ }^{4}$ For nmr data, see Table II.

2-Methoxy-3,3-oxymethyleneflavanone (3a).-A 1.0-g sample of 2a was treated with diazomethane at room temperature over night. The reaction was followed qualitatively by tle on SiO_{2} $\left(\mathrm{CHCl}_{3}\right)$, 2a being much less mobile than the epoxide 3a. Upon standing overnight 2 a had substantially disappeaerd. A trace of a second product was detected but not isolated. Evaporation of the filtered ether solution yielded a mixture of oil and solid. Crystallization from 15 ml of methanol afforded $0.58 \mathrm{~g}(62 \%)$ of $3 \mathrm{a}, \mathrm{mp}$ 133-134 .
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 72.33; $\mathrm{H}, 5.00 ; \mathrm{OCH}_{3}$, 10.99. Found: C, 72.62; H,5.19; $\mathrm{OCH}_{3}, 10.71$

2,4'-Dimethoxy-3,3-oxymethyleneflavanone (3b).-A 1-g sample, treated twice with diazomethane, yielded a tough residue upon evaporation of the solvent. This was crystallized from 20 ml of methanol to give $0.61 \mathrm{~g}(64 \%)$ of rodlike crystals, mp 138-139 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5}$: $\mathrm{C}, 69.22 ; \mathrm{H}, 5.16 ; \mathrm{OCH}_{3}$, 19.88. Found: C,69.00; H, 5.16; $\mathrm{OCH}_{3}, 20.90$.

2,7-Dimethoxy-3,3-oxymethyleneflavanone (3c).-A 1-g sample, treated twice with diazomethane, yielded a solid upon evaporation of the solvent. When recrystallized from 15 ml of MeOH , it afforded a 47% yield of white crystals melting at $135-$ 137°. The analytical sample melted at $139-140^{\circ}(\mathrm{MeOH})$.
(10) The ir and nmr spectra of hemiketal 2a, epoxide 3a, and iodohydrin 4 will appear following these pages in the microfilm edition of this volume of the journal. Single copies may be obtained from the Business Operations Office, Books and Journals Division, American Chemical Society 1155 Sixteenth St., N.W., Washington, D. C. 20036, by referring to code number JOC-72-2774. Remit check or money order for $\mathbf{\$ 3 . 0 0}$ for photocopy or $\mathbf{\$ 2 . 0 0}$ for microfiche.
(11) J. A. Moore and D. E. Reed, Org. Syn., 41, 16 (1961).
(12) M. A. Smith, R. M. Neumas, and R. A. Webb, J. Heterocycl. Chem., 5, 425 (1968).
(13) J. Algar and J. P. Flynn, Proc. Irish Acad. Sci., B42, 1 (1934); Chem. Abstr., 29, 161 (1935).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 69.22; $\mathrm{H}, 5.16 ; \mathrm{OCH}_{3}$, 19.87. Found: C,69.13; H,5.26; $\mathrm{OCH}_{3}, 19.34$.

2,4',7-Trimethory-3,3-orymethyleneflavanone (3d).-A $\quad 1-\mathrm{g}$ sample of 2 d was treated with two portions of diazomethane, tle indicating incomplete reaction after the first one. Both the starting hemiketal 2d and the product 3d have limited solubility in ether. At the end of the second treatment, there was 400 mg of a solid which was 3d mixed with some polymer. Evaporation of the filtrate from this yielded an oil-solid mixture. This mixture yielded 180 mg (21%) of crystalline 3d, $\mathrm{mp} 185-187^{\circ}$ from 40 ml of MeOH . The analytical sample melted at $187.5-189^{\circ}$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 66.69; $\mathrm{H}, 5.30 ; \mathrm{OCH}_{3}$, 27.20. Found: C, 66.67; H, 5.38; $\mathrm{OCH}_{3}, 27.45$.

3-Hydroxy-3-iodomethyl-2-methoxyflavanone (4).-A $500-\mathrm{mg}$ sample of 3 a was rapidly converted to 4 in a hot mixture of 15 ml of acetic acid and 750 mg of KI . Tlc ($\mathrm{SiO}_{2}, \mathrm{CHCl}_{3}$) showed that reaction was complete in 10 min . The hot, brown solution was poured into 200 ml of water containing 1 g of sodium bisulfite. A formless solid separated. After drying, it was crystallized from 15 ml of petroleum ether ($\mathrm{bp} 60-110^{\circ}$), fine crystals separating. The yield of 4 was $450 \mathrm{mg}(63 \%), \mathrm{mp} 124-125^{\circ}, \mathrm{nmr}$, see discussion. When treated with sodium methoxide in methanol, 4 was converted to the epoxide 3 in high yield.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{I}: \mathrm{C}, 49.80 ; \mathrm{H}, 3.79$; $\mathrm{I}, 30.94$. Found: C, 50.00, 50.87; H, 3.28, 3.67; I, 29.39, 30.3 .

Conversion of Epoxide to Flavonol. With Boron Trifluoride Etherate.-2a (150 mg) was heated at 65° for 1 hr with a mixture of 20 ml of benzene and 2 ml of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The addition of 60 ml of ether afforded a copious precipitate of flavonol, 70 mg (47%), mp $168-170^{\circ}$ (from MeOH).

With Sulfuric Acid.-2a (200 mg) was stirred with 40 ml of $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ for 1 hr at $100-120^{\circ}$. The resulting yellow solution was filtered through charcoal and diluted with 20 ml of water. After standing, the flavonol (1a) was collected by filtration, 120 $\mathrm{mg}(71 \%), \mathrm{mp} 169^{\circ}$, ir identical with that of an authentic sample.

Registry No.-la, 577-85-5; 2a, 1603-46-9; 2b, 1808-05-5; 2c, 2047-54-3; 2d, 1808-02-2; 3a, 34917-93-6; 3b, 34887-89-3; 3c, 34887-90-6; 3d, 34887-91-7; 4, 34887-92-8; diazomethane, 334-88-3.

2-Thiocyanobenzimidazoles. The Synthesis of 13H-[1,3,5]Thiadiazino[3,2-a:5,6- a^{\prime}]-bisbenzimidazole-13-thiones

R. D. Haugwitz* and V. L. Narayanan

The Squibb Institute for Medical Research,

 New Brunswick, New Jersey 08903Received February 25, 1972
We recently reported ${ }^{1}$ that 2 -thiocyanomethylbenzimidazoles (1) cyclized readily to yield 1 -imino- $1 \mathrm{H}, 3 \mathrm{H}$ thiazolo [3,4-a]benzimidazoles (2). These results encouraged us to investigate the utility of 2-thiocyanobenzimidazole (3) for the synthesis of novel fused benzimidazole ring systems. Thus, it was hoped that the reaction of 3 with carbon disulfide in basic medium would furnish ${ }^{2}$ A. However, the yellow crystalline product isolated in 86% yield from the reaction mixture (reaction time 5 min) showed no exchangeable proton ($\mathrm{D}_{2} \mathrm{O}$) in the nmr but exhibited only aromatic protons, with a one-proton multiplet significantly downfield from the remaining three protons. We have observed similar chemical shifts for 3,4-dihydropyrimido-
(1) R. D. Haugwitz, B. V. Maurer, and V. L. Narayanan, Chem. Commun., 1100 (1971).
(2) (a) P. G. Sergeev, B. S. Kolychev, and V. S. Kolychev, J. Gen. Chem. USSR, 7, 2863 (1937); Chem. Abstr., 32, 2940 (1937); (b) M. T. Bogert, J. Amer. Chem. Soc., 25, 289 (1903).
[3,4-a] benzimidazole-1(2H)-thiones (4) the most downfield signal, namely $9-\mathrm{H}$, being due to the deshielding effect of the thione function. The ir of the product was devoid of NH absorption but showed a band at $1500 \mathrm{~cm}^{-1}$ compatible with a $\mathrm{S}=\mathrm{CN}<$ moiety. Its mass spectrum showed a molecular ion of $\mathrm{M}+308$ consistent with the formula $-\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$, suggestive of two benzimidazole rings linked by CS_{2} (structure 6 a or B). Whereas oxidative degradation of the reaction product resulted in ill-defined products and acid hydrolysis led to the recovery of starting material, mild base hydrolysis furnished a white solid which was subsequently identified as dibenzimidazol-2-yl sulfide ${ }^{3} 5$, obtained by the alkylation of 2 -mercaptobenzimidazole with 2 chlorobenzimidazole. Based on the above facts, we have assigned the pentacylic structure $6 a$ to the product. This was confirmed by synthesizing $6 a$ from 5 by the interaction of the sodium salt of 5 with thiophosgene.

We have extended this facile one-step synthesis of the pentacyclic system to the preparation of the tetramethyl analog 6 b.

Presently, we are investigating the scope of this interesting cyclization.

Experimental Section

Melting points were determined on a Thomas-Hoover "UniMelt'' apparatus and are uncorrected. Ir spectra were determined in Nujol. Nmr spectra were obtained on a Varian A-60 instrument. Signals are described as singlet (s) or multiplet (m). $13 H-[1,3,5]$ Thiadiazino[3,2-a:5,6- a^{\prime}] bisbenzimidazole-13thione (6a).-To a solution of 5 g of 2 -thiocyanobenzimidazole in 20 ml of dimethyl sulfoxide, there was added at once 5 ml of carbon disulfide and 5 ml of triethylamine. A yellow solid, deposited after 1 min , was filtered off after 1 hr of standing. The
solid was washed with ethanol to yield 3.6 g of 6 a . Two crystallizations from benzene-ethyl ether furnished the pure product: $\mathrm{mp} 184-185^{\circ}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.26-7.84(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 8.93-$ 9.09 (m, $2 \mathrm{H}, 1-\mathrm{H}, 11-\mathrm{H}$); mass spectrum $m / e 308.0187$ (M^{+}). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$: C, 58.42; H, 2.62; N, 18.17; $\mathrm{S}, 20.80$. Founc: $\mathrm{C}, 58.42$; H, 2.75; N, 18.50; S, 21.03 .

2,3,9,10-Tetramethyl-13H-[1,3,5] thiadiazino [3,2-a:5,6-a'] bis-benzimidazole-13-thione (6 b).-To a solution of 1.9 g of 2 -thiocyano-5,6-dimethylbenzimidazole in 10 ml of dimethyl sulfoxide was adced 2 ml of carbon disulfide and 2 ml of triethylamine. The mixture was allowed to stand at room temperature overnight. The yellow crystals were filtered off, washed with methanol, and crystallized from benzene to yield 0.8 g of 6 b . Recrystallization from benzene yielded the pure product, mp 338 340°, mass spectrum $m / e 364.0856$ (${ }^{+}$). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{2}$: $\mathrm{C}, 62.61 ; \mathrm{H}, 4.43 ; \mathrm{N}, 15.37$. Found: $\mathrm{C}, 62.74$; $\mathrm{H}, 4.66$; $\mathrm{N}, 15.46$.

3,4-Dihydropyrimido [3,4-a] benzimidazole-1 (2H)-thione (4a). -A mixture of 4.6 g of 2 -(β-aminoethyl)benzimidazole, 30 ml of dimethyl sulfoxide, 4.6 ml of triethylamine, and 4.6 ml of carbon disulfide was stirred at room temperature for 14 hr . The product that separated upon diluting the reaction mixture with water was crystallized from acetone to yield 4a: mp $212-213^{\circ}$ (lit. ${ }^{4} \mathrm{mp}$ 216°); nmr (dimethyl sulfoxide- d_{6}) $\delta 3.13-3.83$ ($\mathrm{m}, 4 \mathrm{H},-\mathrm{CH}_{2}$ -$\mathrm{CH}_{2}-$), 7.23-7.92 (m, $3 \mathrm{H}, \mathrm{ArH}$), 8.82-9.02 (m, $1 \mathrm{H}, 9-\mathrm{H}$).

7,8-Dimethyl-3.4-dihydropyrimido [3,4-a] benzimidazole-1 (2H)thione (4b).-A suspension of 6 g of 2-(β-aminoethyl)-5,6-dimethylbenzimidazole cihydrochloride, 6 ml of triethylamine, 6 ml of carbon disulfide, and 40 ml of dimethyl sulfoxide was stirred at room temperature overnight. Water was added and the crude product was filtered off. Crystallization from diglyme gave 3.5 g of pure 4 b : mp 232°, nmr (dimethyl sulfoxide- d_{6}) $\delta 2.34$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$), 2.98-3.78 (m, $\left.4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 7.38(\mathrm{~s}, 1 \mathrm{H}$, $6-\mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{H}), 10-10.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}$: C, 62.30; H, 5.66; N, 18.17. Found: C, 61.95 ; H, 5.94; $\mathrm{N}^{-}, 18.45$.

Hydrolysis of $13 H-[1,3,5]$ Thiadiazino[3,2-a:5,6-a'] bisbenzim-idazole-13-thione (6a).-A mixture of 0.4 g of $6 \mathrm{a}, 8 \mathrm{ml}$ of methanol and 2 ml of $10 \% \mathrm{NaOH}$ was heated on the steam bath for 1 min. By this time, the compound has dissolved and had lost its yellow color. The cooled mixture was filtered and the filtrate was adjusted to pH 7 with $10 \% \mathrm{HCl}$. The precipitate was filtered off and dried to yield 0.35 g of crude sulfide 5. Crystallization from ethanol yielded the pure product, mp 273-275 ${ }^{\circ}$, the ir of which was identical with that of an authentic sample prepared by the method of Harrison and Ralph. ${ }^{8}$

Synthesis of 6 a .-To a suspension of 0.15 g of the sulfide 5 in 20 ml of glyme, there was added 0.03 g of sodium hydride. After 2 hr of stirring at room temperature 0.05 ml of thiophosgene was added to the suspension and the stirring was continued for 2 hr . The mixture was evaporated and the product was extracted with benzene. Two crystalizations from benzene-ethyl ether furnished 0.05 g of $6 \mathrm{a}, \mathrm{mp} \mathrm{180-182}^{\circ}$, the ir of which was identical with that of the product obtained by the reaction of 2 -thiocyanobenzimidazcle with carbon disulfide.

Registry No. 4b, 34858-78-1; 5, 2469-66-1; 6a, 34858-80-5; 6b, 34858-81-6.
(4) K. Nagarajan, V. Rangh Rao, and A. Venkateswalcu, Indian J. Chem., 8, 126 (1970).

Quaternary Ammonium Salts and Betaines of Thionocarbamic Esters

Robert A. Bauman

Colgate-Palmolive Research Center, Piscataway, New Jersey 08854

Received February 28, 1972
An earlier paper ${ }^{1}$ described tertiary aminoalkyl esters of thionocarbamic acids (1) and their isomerism due to

 1

restricted rotation about the $\mathrm{N}-\mathrm{C}$ bond as revealed by nmr spectroscopy. The present paper is concerned with the behavior of quaternary ammonium salts of these tertiary amines. Examples of aliphatic thionocarbamate quaternaries prepared are 2 and 3 and of

aromatic thionocarbamate quaternaries are 4 and 5.

4

At room temperature an alkyl bromide reacts quantitatively with 1 ; the sulfur atom is not attacked. This was shown by comparison of the nmr spectra of these products with those formed from the analogous carbamates where alkylation can occur only on the tertiary nitrogen. In both cases the methyl protons undergo upon quaternization a downfield shift of about 1 ppm and remain a singlet, which would not be the case for the hypothetical product 6 of S-alkylation.

Another feature of the nmr spectra (in chloroform- d) was a broadening of the signals, perhaps due to the viscosity of the solutions, which made difficult the detection of cis-trans isomerism, except for 2 where two unequal doublets for the carbamate CH_{3} were discernible. The aromatic protons in 4 showed an assymmetric broadening, with the downfield pair being most affected.

The carbamate proton in the quaternary salts showed a downfield shift of $1-2 \mathrm{ppm}$ compared to the starting amines (measured on equimolar solutions at the same temperature). This appears to be due to a marked increase in the acidity of this proton. Indeed, for 4 this increase in acidity was enough to permit titration to a sharp end point with aqueous sodium hydroxide; 5

showed a shallower break at the end point. Why alkylation of the molecule at a position remote from the carbamate proton should affect the acidity might be explained by the preceding equilibrium, with the negative charge being stabilized both by delocalization and by the positive charge on the quaternary nitrogen. Proof for this hypothesis was obtained by the isolation of several betaines of this type.

Treatment of compounds 4 and 5 with 1 equiv of methanolic sodium methoxide followed by solvent evaporation at room temperature and crystallization from acetone gave products with the correct elemental analyses, and ir spectra in which the NH absorption had disappeared and a strong characteristic band at $1365 \mathrm{~cm}^{-1}$ had been replaced by an equally strong band at about $1080 \mathrm{~cm}^{-1}$. The fingerprint region of the spectrum of the inner salt was completely different from that of the normal quaternary salt.

The nmr spectra of 5 and its betaine 8 were compared in dimethyl sulfoxide. All protons in 8 showed an upfield shift from those in 5.

The aliphatic thionocarbamate quaternaries were also readily converted to the inner salts by sodium methoxide; however, these were not stable enough to be recrystallized for analysis. The betaine of 3 was obtained pure by an alternate method of preparation in which an aqueous solution of 3 was passed through a column of Dowex 1-X8 in the hydroxide form. This ordinarily would result in formation of a solution of a quaternary ammonium hydroxide, but here spontaneous crystallization occurred in the eluate to form the inner salt 9 , with an acceptable analysis and an ir spectrum related to that of betaine 7 .

Redissolved in water, 9 gave a strongly basic solution indicating formation of the quaternary hydroxide. Neutralization with 1 equiv of HCl or HBr gave the normal quaternary chloride or bromide. Treatment with HF also gave the quaternary fluoride, as deduced from the ir spectrum of partly dried material, but removal of the water under vacuum also removed HF , and the spectrum reverted to that of the inner salt 9 .

The betaine can be further alkylated at the sulfur atom. For example, 9 when treated with excess methyl iodide gave a single product characterized by elemental analysis, argentimetric titration, ir, and nmr spectroscopy as 10 ; no N -alkylation product was found.

With the exception of 8 the betaines prepared are only moderately stable. In a melting point determination the betaine 7 melted sharply to two immiscible liquids. Also when refluxed in benzene for 1 hr it slowly dissolved, and, upon removal of the solvent, two liquid phases remained. The lighter of these was in both cases identified as dimethyldodecylamine. The other phase contained some of the amine as well as two other major products. Separated by thəir different solubilities in hexane and obtained as pure crystalline compounds, these were isomers of molecular weight 213 (mass spectrometry). The nmr spectrum of each showed a four-proton group typical of the para-substituted benzene ring and two two-proton groups coupled to each other ($J=7 \mathrm{~Hz}$). The two isomers, referred to temporarily as A and B, had different chemical shifts, which are shown in Table I.

Table I
Chemical Shifts of Thermal Degradation Products

Isomer	Methylene protons	Benzene protons	N-Alkyl protons
$\mathrm{A} \quad(11)$	$3.38,4.48$	$6.90,7.26$	
$\mathrm{~B}(14)$	$4.20,4.66$	$7.37,7.54$	
$\mathrm{~A}^{\prime}(12)$	$3.40,4.36$		3.01
$\mathrm{~B}^{\prime}(15)$	$3.84,4.52$		3.22
$\mathrm{~A}^{\prime \prime}(13)$	$3.42,4.35$		$1.19,3.17$
$\mathrm{~B}^{\prime \prime}(16)$	$3.78,4.56$		$1.24,3.74$

The two structures which conform to these spectra are as follows.

11, $\mathrm{R}=\mathrm{ClC}_{6} \mathrm{H}_{4}$
12, $\mathrm{R}=\mathrm{CH}_{3}$
$13, R=\mathrm{C}_{2} \mathrm{H}_{5}$

14, $\mathrm{R}=\mathrm{ClC}_{6} \mathrm{H}_{4}$
15, $\mathrm{R}=\mathrm{CH}_{3}$
16, $R=\mathrm{C}_{2} \mathrm{H}_{5}$

Compound A , the less retentive in both gas and thin layer chromatography, shows very strong absorption at $1640 \mathrm{~cm}^{-1}$, which is interpreted as due to the $\mathrm{C}=\mathrm{N}$ bond. ${ }^{2}$ For compound B the $1640-\mathrm{cm}^{-1}$ band is missing, and the principal absorption bands are very close to those reported for 3 -phenyl-1,3-oxazolidine-2thione. ${ }^{3}$ The chemical shifts help establish the structures. It has been found ${ }^{4}$ that there is a greater difference in chemical shift between the ortho and meta protons of p-chlorophenyl isothiocyanate (and isocyanate) than between the corresponding protons of p-chlorothionocarbanilic esters; thus one would expect the aromatic protons of structure 11 to have a greater chemical shift difference than those of 14 . Further, from the nmr data reported for related open-chain ${ }^{1,5}$ and cyclic ${ }^{6}$ compounds, it appears that resonances for

[^117] (1970).
methylene groups attached to O, N, and S occur at increasing field in accordance with their relative electronegativities. This, too, confirms the assignment of A as 11 and B as 14 .

Although the isomeric products from the betaines of 2 and 3 (A^{\prime} and B^{\prime}, and $\mathrm{A}^{\prime \prime}$ and $\mathrm{B}^{\prime \prime}$, respectively, in Table I) were not separated on a preparative scale, they could be distinguished in an nmr spectrum of the mixture, and similarly identified from the chemical shifts as the 1,3 -oxathiolane-2-imines (12 and 13) and the 1,3-oxazolidine-2-thiones (15 and 16).

The structural assignments in the aliphatic cases can be further verified by the use of benzene-induced shifts. All the protons of B^{\prime} show large positive solvent shifts ($\delta 0.4-0.9$ downfield), whereas in A^{\prime} the methylene protons have similar large positive shifts (0.6), but the methyl protons a small shift of 0.05 . Also, the methyl protons of $\mathrm{B}^{\prime \prime}$ have a solvent shift of 0.4 , whereas in $\mathrm{A}^{\prime \prime}$ the shift is only 0.01 . Past experience ${ }^{7}$ with aromatic solvent-induced shifts of protons near double bonds would make it probable that the protons with the very small shift are located in front of a plane passed perpendicularly through the double-bonded carbon. This procedure identifies A^{\prime} as 12 and $\mathrm{A}^{\prime \prime}$ as 13 .

The therma- decomposition products of the betaines probably represent the results of internal S- and Nalkylation, and thus provide justification for formulating the inner salts with a delocalized negative charge. Approximately the same ratio of products- 30% oxazolidinethione 14 and 70% oxathiolane 11 -was obtained when the betaine of 4 was decomposed in benzene and in acetonitrile; for the betaine of 2 the proportions were 78% of 15 and 22% of 12 . This reaction did not occur on refluxing the betaine in methyl or ethyl alcohol, presumably because in protic solvents the compound exists as a normal quaternary ammonium hydroxide rather than as a betaine. The homologous quaternary salt 5 formed a betaine 8 which showed no tendency to eliminate dimethyldodecylamine in refluxing benzene, although one might have expected sixmembered rings of structures analogous to 11 and 14.

The stability of the betaines of the various quaternary salts seems to correlate with the shift in position of the strong infrared absorption band found about $1540 \mathrm{~cm}^{-1}$ in the spectra of all thionocarbamic esters examined ${ }^{4}$ and recorded in Table II.

Table II
Infrared Band Shift ${ }^{a}$ on Betaine Formation

Quaternary salt	Absorption band, cm^{-1}			
	Stability	Bromide	Betaine	Δ
2	low	1546	1598	52
3	low	1530	1580	50
4	moderate	1522	1560	38
5	high	1534	1534	0

The synthetic implications of this work are interesting because methods for preparing these particular heterocycles are rare and few examples of the compounds themselves have been recorded. For 3 -substituted oxazolidine-2-thiones there is the decomposi-
(7) J. D. Connolly and R. McCrindle, Chem. Ind. (London), 379 (1965).
tion of N-(2-hydroxyethyl)dithiocarbamate salts, ${ }^{3,8,9}$ and for 1,3-oxathiolane-2-ylideneamines there is the reaction of isocyanide dihalides with 2 -mercaptoethanol. ${ }^{10,11}$ It has been demonstrated here that in the decomposition of thionocarbamate betaines an aryl substituent on the carbamate nitrogen favors S-alkylation, whereas an alkyl substituent favors N -alkylation. We have not studied the possible influence of other solvents or reaction conditions on the product ratio nor the possibility that a preparative method for one or both of these heterocyclic systems might be developed.

Experimental Section

3-Dimethylaminopropyl p-Chlorothionocarbanilate.-Two grams of sodium was powdered in 25 ml of xylene. With stirring and warming 8.8 g of 3-dimethylamino-1-propanol was added. When the reaction was over in $3 \mathrm{hr}, 13.9 \mathrm{~g}$ of p-chlorophenyl isothiocyanate was stirred in. After 15 min the stiff paste was diluted with 200 ml of water and acidified with HCl . The precipitate was separated, dried, and crystallized from alcohol (Nuchar) to give 16.5 g (66% of theory) of white crystals. An analytical sample was recrystallized from alcohol, mp 175.5-176 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 46.60 ; \mathrm{H}, 5.87 ; \mathrm{N}, 9.06$; neut equiv, 309.3. Found: C, 46.44; H, $5.94 ; \mathrm{N}, 8.96$; neut equiv, 310.1 .

The free base was obtained by neutralization and recrystallization from benzene-hexane, mp 113-115 . The same method was used to prepare the previously reported 2-dimethylaminoethyl esters of methylthionocarbamic, ${ }^{1}$ ethylthionocarbamic, ${ }^{1}$ and p-chlorothionocarbanilic ${ }^{4}$ acids.

Quaternary Ammonium Bromides.-Equimolar quantities of an aminoalkyl thionocarbamate and a l-bromoalkane were mixed neat (for 3) or in just sufficient acetone or acetonitrile (for $2,4,5$) for solubility, and were allowed to stand at room temperature for 1 week or longer to obtain substantially quantitative yields. The solidified reaction mixtures were recrystallized from ethyl acetate or acetone. Melting points for the compounds are given in Table III.

Table III ${ }^{a}$

Melting Points for Quaternary Ammonium Bromides and Betaines

Compd	Formula	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$
$\mathbf{2}$	$\mathrm{C}_{20} \mathrm{H}_{43} \mathrm{BrN}_{2} \mathrm{OS}$	$73.5-77.0$
$\mathbf{3}$	$\mathrm{C}_{19} \mathrm{H}_{41} \mathrm{BrN}_{2} \mathrm{OS}$	$94.0-95.5$
$\mathbf{4}$	$\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{BrClN}_{2} \mathrm{OS}$	$140.5-142.5$
5	$\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{BrClN}_{2} \mathrm{OS}$	$150.0-151.0$
7	$\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{ClN}_{2} \mathrm{OS}$	$116.5-117.0$
$\mathbf{8}$	$\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{ClN}_{2} \mathrm{OS}$	$157.0-158.0$

${ }^{a}$ Satisfactory analytical data (0.4% for C, H, and N) were reported for all compounds. Ed.

Betaines.-The quaternary ammonium bromides 4 and 5 were treated in methanol with 1 equiv of sodium hydroxide or methoxide, and the solvent was removed under vacuum at room temperature. The products, 7 and 8 , were dissolved in acetone with the minimum heating time, filtered from sodium bromide, and allowed to crystallize. Melting points are given in Table III.

2-(Ethylthiocarbamoyloxy)ethyldodecyldimethylammonium Hydroxide Inner Salt (9).-A solution of 12 g of 3 in 200 ml of water was passed through a column packed with 60 g of Dowex 1 X-8 (50-100 mesh) ion exchange resin in OH^{-}form, collecting 600 ml of eluate at $c a .6 \mathrm{ml} / \mathrm{min}$. Crystallization began spon-
(8) I. V. Podgornaya and I. Ya. Postovskii, Zh. Obshch. Khim., 33, 2938 (1963).
(9) H. Gerlach, Helv. Chim. Acta, 49, 2481 (1966).
(10) V. S. Etlis, A. P. Sineokov, and G. A. Razuvaev, Zh. Obshch. Khim., 34, 4090 (1964).
(11) E. Kuhle, Angew. Chem., Int. Ed. Engl., 8, 20 (1969).
taneously and was completed in the refrigerator. The solid (7 g) was recovered by filtration and washed with ether: mp 118-119 ${ }^{\circ}$ dec ; ir (Nujol) $1580(\mathrm{C}=\mathrm{N}), 1122,1054 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 66.22 ; \mathrm{H}, 11.70$; neut equiv, 344.6. Found: C, $66.39 ; \mathrm{H}, 11.75$; neut equiv, 344.2 .

2-(N-Ethyl-S-methylisothiocarbamoyloxy)ethyldodecyldimethylammonium Iodide (10).-One gram (2.9 mmol) of 9 was allowed to stand with $1.2 \mathrm{ml}(19 \mathrm{mmol})$ of methyl iodide for 64 hr . At this time the 1577 - and $1054-\mathrm{cm}^{-1}$ bands typical of 9 were missing from the infrared spectrum, and there was no absorption at $1545 \mathrm{~cm}^{-1}$ as expected of an N -methylated product. The pale yellow liquid solidified in ether to 1.4 g of white solid, which was recrystallized from 6 ml of ethyl acetate: $\mathrm{mp} 65-69^{\circ}$; ir (Nujol) $1634(\mathrm{C}=\mathrm{N}), 1178 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.45\left(\mathrm{SCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{43} \mathrm{IN}_{2} \mathrm{OS}: \mathrm{C}, 49.37$; H, 8.91; I, 26.08 . Found: C, 49.11; H, 8.91; I, 26.17.

Thermal Decomposition of 7.-Two grams of the betaine 7 in 25 ml of benzene was refluxed for 1 hr and filtered from a trace of insoluble material. Evaporation of the solvent left two liquid layers, the lighter of which had an infrared spectrum identical with that of dodecyldimethylamine. The heavier liquid, when chromatographed on silica gel (Eastman chromagram plate) with ether, showed two components at $R_{f} 0.6$ and 0.8 . This liquid was stirred overnight with 100 ml of hexane. The crystals present in the morning were washed with more hexane and dried to 290 mg ; this was the component of $R_{\mathrm{f}} 0.6$. Recrystallization from CCl_{4} and benzene-hexane gave colorless prisms: mp 124$125.5^{\circ}$; ir (KBr) $1490,1468,1440,1320,1291,1163,821 \mathrm{~cm}^{-1}$. The ir and nmr data (Table I) lead to assignment of the compound as 3 - p-chlorophenyl-1,3-oxazolidine-2-thione (14).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NOSCl}: \mathrm{C}, 50.59 ; \mathrm{H}, 3.77$. Found: C, 50.53 ; H, 3.78.

The hexane solution obtained above was evaporated to a viscous oil which was induced to crystallize. Recrystallization from hexane gave 350 mg of white needles: $\mathrm{mp} \mathrm{68-69}^{\circ}$; ir (KBr) 1640 (broad), 1480, 1113, 1022, $839 \mathrm{~cm}^{-1}$. The spectroscopic data lead to formulation of the compound as p-chloro- N -1,3-oxathiolane-2-ylideneaniline (11). ${ }^{12}$

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NOSCl}: \mathrm{C}, 50.59 ; \mathrm{H}, 3.77$. Found: C, 50.59 ; H, 3.91 .

Thermal Decomposition of 2-(Methylthiocarbamoyloxy)ethyltetradecyldimethylammonium Hydroxide Inner Salt.-In 25 ml of 0.2 N sodium methoxide solution was dissolved $2.2 \mathrm{~g}(5 \mathrm{mmol})$ of 2. The solution was evaporated under vacuum at 30° and the product (admixed with sodium bromide) was characterized as a betaine by its infrared spectrum as compared to that of 9 : ir (Nujol) 1598, 1134, 1075, 1058, 1045, 995, $920 \mathrm{~cm}^{-1}$.

Benzene (25 ml) was added and the mixture was refluxed for 20 min and then filtered hot from sodium bromide. After flash evaporation two liquid phases remained, of which the lighter was tetradecyldimethylamine (ir identification). Sufficient benzene was added to obtain homogeneity, and the solution was then analyzed by gc ($4 \mathrm{ft} \times 0.25 \mathrm{in}$. column of Apiezon L on Chromosorb $\mathrm{W}, 178^{\circ}$, thermoconductivity detector). Integration gave a product composition of 78% oxazolidinethione 15 and 22% oxathiolane 12 (nmr identification).

Decomposition of the betaine 9 gave results which were essentially similar, but under the gc conditions used there was a partial overlap of peaks due to dodecyldimethylamine and the oxazolidinethione 16 , so the isomer ratio could not be determined.

Registry No.-2, 34524-02-2; 3, 34523-95-0; 4, 34916-01-3; 5, 34916-02-4; 7, 34916-03-5; 8, 34916-04-6; 9, 34916-05-7; 10, 34934-79-7; 11, 34916-06-8; 14, 34916-07-9; 3-dimethylaminopropyl p-chlorothiocarbanilate, 34916-08-0; 3-dimethylaminopropyl p chlorothiocarbanilate hydrochloride, 34916-09-1.

Acknowledgments. -The author wishes to thank Messrs. Michael Camara for assistance in the syntheses, Gilbert Suarez for the nmr spectra, Karl Kellenbach for the infrared spectra, and E. Emery for the mass spectra.
(12) This compound was reported previously as a liquid: B. Anders and E. Kuehle, Belgian Patent 632,578 (1963); Chem. Abstr., 61, 8321 (1964).

Solvolysis of 1-Bromomethyltriptycene. An Unusually Unreactive Bromide

James W. Wilt* and Thomas P. Malloy ${ }^{1}$

Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626

Received February 17, 1972
Our interest ${ }^{2}$ in the inductive effect of the phenyl group apart from its resonance effect led us to study the solvolysis of the title compound 1-Br. A phe-

1, $\mathrm{X}=$ cited function 2, $\mathrm{X}=+$

4

$3, \mathrm{Z}=\mathrm{OH}, \mathrm{OAc}$

5
nonium ion type of stabilization for the ion 2 logically produced upon solvolysis of $1-\mathrm{Br}$ is precluded geometrically. It was hoped, therefore, that the solvolytic reactivity of $1-\mathrm{Br}$ would reflect rather the inductive influence of these rings upon the stability of 2. Interestingly, deamination of amine $1-\mathrm{NH}_{2}$ in acetic acid has recently been shown ${ }^{3}$ to give "homotriptycene" derivatives 3 by an astounding 1,2-aryl shift that seemingly demands a σ-bonded precursor such as 4. Whether such a rearrangement would also attend the solvolysis of $1-\mathrm{Br}$ was an additional point of interest in this study.
The synthesis of $1-\mathrm{Br}$ followed reported procedures used for similar compounds. The synthesis and other relevant reactions are described in the Experimental Section.

Bromide $1-\mathrm{Br}$ was extraordinarily unreactive under typical solvolysis conditions, ${ }^{4}$ but reaction in m cresol ${ }^{5}$ at elevated temperatures was finally achieved. First-order kinetic behavior was observed to the limit studied ($\sim 80 \%$). The kinetic and activation parameter data are collected in Table I. The solvolysis of highly reactive ${ }^{6} 2$-chloro-1,1,1-triphenylethane (5) was studied also for comparison.

The sole identifiable solvolysis product from $1-\mathrm{Br}$ was 1-methyltriptycene ($1-\mathrm{H}$), isolated in 31% yield. Importantly, however, the solvent-derived product, 3,6 -dimethylxanthene (6), was isolated in 16.5% yield.
(1) National Science Foundation Trainee, 1968-1970.
(2) J. W. Wilt, H. F. Dabek, Jr., J. P. Berliner, and C. A. Schneider, J. Org. Chem., 35, 2402 (1970).
(3) S. J. Cristisl and D. K. Pennelle, ibid., 35, 2357 (1970). We thank Professor Cristol for information on this work prior to its publication.
(4) Apropos of this, Cristol and Pennelle ${ }^{3}$ reported that 1-Cl was unchanged upon treatment with silver acetate in acetic acid for 24 hr at 210°.
(5) Cf. K. B. Wiberg and B. R. Lowry, J. Amer. Chem. Soc., 85, 3188 (1963). Bromide $1-\mathrm{Br}$ is in fact comparable in reactivity (or lack thereof) to the bridgehead halides studied by these workers.
(6) S. Winstein, B. K. Morse, E. Grunwald, K. C. Schreiber, and J. Corse, ibid., 74, 1113 (1952), studied the corresponding tosylate and developed the basis for understanding in this area.

Table I
Solvolysis Data in m-Cresol

Halide	Temp, ${ }^{\circ} \mathrm{C}$	$k_{1, \mathrm{sec}^{-1} a}^{a}$	ΔH^{*}, $\mathrm{kcal} \mathrm{mol}^{-1}$	ΔS^{*}, eu
$1-\mathrm{Br}$	325^{b}	4.47×10^{-5}		
	360	6.25×10^{-5}		
	370	1.01×10^{-4}		
	25^{c}	4.13×10^{-19}	35.2	-23.9
5^{d}	65^{e}	3.65×10^{-5}		
	77	1.11×10^{-4}		
	90	2.97×10^{-4}		
	25^{c}	6.15×10^{-7}	20.1	-19.7

${ }^{a}$ Precision $\pm 5 \%$. ${ }^{b} \pm 1^{\circ}$. ${ }^{c}$ Calculated from data at other temperatures. ${ }^{d}$ In the presence of 2,4 -lutidine. ${ }^{e} \pm 0.2^{\circ}$.

A control experiment showed that 6 was not formed in the absence of $1-\mathrm{Br}$. Only triphenylethylene was observed as the product from 5. The sluggish behavior of $1-\mathrm{Br}$, the absence of homotriptycyl products, and the formation of $1-\mathrm{H}$ imply that ion 2 is a highly reactive species formed with considerable difficulty. We suggest that 1-H was formed via hydride transfer from the solvent (eq 1), although this is admittedly conjectural. Nonetheless, xanthene 6 does result from m-cresol and acids or bases at elevated temperatures ${ }^{7}$ and its formation here lends some credibility to an ionic process leading to $1-\mathrm{H}$.

Homolysis of $1-\mathrm{Br}$ into radicals is also a possible reaction pathway, although the process was insensitive to the presence of oxygen. We feel, moreover, that the kinetic ΔH^{*} value is too low ${ }^{8}$ for such a process (if nonchain) and that the reaction is more likely a heterolytic one.
The remarkable 10^{12}-fold difference in reactivity at 25° between $1-\mathrm{Br}$ and 5 deserves some comment. A minimal value of $c a .10^{-2.7}$ per aromatic ring for inductive retardation ${ }^{3}$ seems inordinately large. ${ }^{10}$ Some of the extra retardation may likely be the result of lost solvent stabilization of 2. A Dreiding model of 2 , as depicted in 7, indicated peri-type steric hindrance about the cationic center by the adjacent aromatic hydrogens.
The rearrargement reported ${ }^{3}$ with $1-\mathrm{NH}_{2}$ may be allowed in its case because no hydride donor was present to trap ion 2. In fact, deamination of $1-\mathrm{NH}_{2}$ with nitrosyl chloride ${ }^{3}$ gave some unrearranged $1-\mathrm{Cl}$, pos-

[^118]
sibly by capture of 2 prior to rearrangement by chloride ion. In our case, 2 upon formation is surrounded by a potential hydride donor solvent and formation of $1-\mathrm{H}$ is thereby favored, all the more so because eq 1 should be sizably exothermic.
Finally, the relationship of $1-\mathrm{Br}$ to 5 is reminiscent of the similar relationship between 1-triptycyl and triphenylmethyl halides ${ }^{11}$ and demonstrates once more the dramatic effect of pinning back the aromatic rings in these compounds.

Experimental Section

General.-Microanalyses were done by Micro-Tech Laboratories, Skokie, Ill., and by M-H-W Laboratories, Garden City, Mich. Spectral data were obtained on Varian A-60A (nmr, CDCl_{3} solutions) and Beckman $\mathrm{IR}-5 \mathrm{~A}$ (ir, KBr discs) instruments.

1-Bromomethyltriptycene ($1-\mathrm{Br}$).-Reaction of yellow 9-bromomethylanthracene, $\mathrm{mp} 145-147^{\circ}$ (lit. ${ }^{12} \mathrm{mp} 137.5-142^{\circ}$ dec), anthranilic acid, and isoamyl nitrite in dioxane, as described for similar preparations, ${ }^{13}$ led to colorless $1-\mathrm{Br}$: 39.5% on a 22 mmol scale; $\mathrm{mp} 217-218.5^{\circ}$ from benzene-petroleum ether (bp $30-60^{\circ}$); nmr $\delta 7.5(\mathrm{~m}), 7.0(\mathrm{~m}, \mathrm{ArH}), 5.37$ (s, bridgehead H), 4.85 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}$).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{Br}$: $\mathrm{C}, 72.63 ; \mathrm{H}, 4.35$. Found: 72.61 ; H, 4.31 .

Crude product from this reaction was yellow. Purification was tedious, requiring chromatography on silica gel for final processing. Use of carboxybenzenediazonium chloride ${ }^{14}$ as the benzyne precursor in this reaction gave $1-\mathrm{Br}$ contaminated with 1-Cl (82.j: 17.5), probably via some prior conversion of 9 -bromomethylanthracene to its 9 -chloro analog by chloride ion displacement. Chloride $1-\mathrm{Cl}$ was apparent from its $-\mathrm{CH}_{2} \mathrm{Cl}$ resonance at $\delta 5.07 .{ }^{3}$

2-Chloro-1,1,1-triphenylethane (5).-The chloride was prepared as reported, ${ }^{15} \mathrm{mp} \mathrm{99-101}{ }^{\circ}$ (lit. ${ }^{14} \mathrm{mp} \mathrm{101.0-101.8}^{\circ}$), nmr $\delta 7.33$ (s, ArH), 4.67 (s, $\mathrm{CH}_{2} \mathrm{Cl}$).
Solvolysis Studies.- m-Cresol was purified by disillation from zinc dust, bp $50-52^{\circ}(0.5 \mathrm{~mm})$, homogeneous by glpc. The solvolysis was conducted on ca. 0.02 M solutions of purified $1-\mathrm{Br}$ in m-cresol sealed in Carius tubes, following closely a reported procedure. ${ }^{5}$ A Carius tube furnace equipped with a thermocouple for temperature measurement was used. The reactions were carried to $\sim 80 \%$ completion and processed as reported. ${ }^{5}$ The liberated bromide was titrated potentiometrically at 25° with standard 80% ethanolic silver nitrate (0.010 M), using a Leeds and Northrup Model 7402 pH meter. The kinetic data are given in Table I.
The solvolysis product from $1-\mathrm{Br}$ was isolated from the titrated samples by removal of silver bromide by filtration and m-cresol by codistillation with water followed by chromatography of the residue on a silica gel column. Elution with petroleum ether (bp 30-60 ${ }^{\circ}$) gave 3,6 -dimethylxanthene (6): 16.5% based on 1-Br; mp 195-200 ${ }^{\circ}$ (lit. ${ }^{16} 197.5-203.5^{\circ}$); ir, nmr, and uv spectra agreed with those reported; ${ }^{16}$ mass spectrum (70 eV) m/e inter alia, $210(\mathrm{P}), 209(\mathrm{P}-1), 195\left(\mathrm{P}-\mathrm{CH}_{3}\right)$. Elution with ben-zene-petroleum ether gave 1-methyltriptycene ($1-\mathrm{H}, 31 \%$ based on consumed $1-\mathrm{Br}$, melting point, mixture melting point with authentic sample, and $n m r$ spectrum agreed with those reported ${ }^{3}$).

[^119]No other characterizable products were eluted. No homotriptycyl products were detected. A control study of m-cresol itself at 370° for 6 hr afforded no 6 . Degassed reaction conditions showed no difference.

Chloride 5 was solvolyzed analogously. Sealed ampoules containing ca. 0.02 M solutions of 5 in m-cresol with an equimolar amount of redistilled 2,4-lutidine added were held at various temperatures. Processing and chloride determination were as described above. See Table I for further details. From reactions taken to ca. 80% completion, the only product isolated (chromatography on silica gel) was triphenylethylene, 95% based on consumed $5, \mathrm{mp}$ and mmp with authentic material $67.5-68.5^{\circ}$, coincidental ir and nmr spectra.

Miscellaneous.-Among the triptycenes prepared in this study were those following. Their syntheses followed standard or cited procedures and their properties are briefly reported here for documentation purposes.

1-Diazoacetyltriptycene was yellow: mp $220-222^{\circ}$ dec; 89% from 9 -triptoyl chloride and diazomethane in ether; $\lambda 4.8$, $6.14\left(\mathrm{COCHN}_{2}\right)$; nmr $\delta 8.02(\mathrm{~m}, 3$, peri ArH's), $7.45(\mathrm{~m}), 7.08$ $\left(\mathrm{m}\right.$, remaining ArH's), $5.80\left(\mathrm{~s},-\mathrm{CHN}_{2}\right)$, $5.42(\mathrm{~s}$, bridgehead H$)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{ON}_{2}$: C, 81.97; H, 4.37; N, 8.69. Found: C, 81.67; H, 4.40; N, 8.41.
1-Chloroacetyltriptycene was colorless: mp 200-202 ${ }^{\circ}$; 85% from reaction of the diazo ketone above and hydrogen chloride ${ }^{17}$ in tetrahydrofuran at $50^{\circ} ; \lambda 5.82(\mathrm{CO})$; nmr $\delta 7.75(\mathrm{~m}, 3$, peri ArH's), $7.50(\mathrm{~m}), 7.10(\mathrm{~m}$, remaining ArH's), 5.40 (s, bridgehead $\mathrm{H}), 4.80$ ($\mathrm{s},-\mathrm{CH}_{2} \mathrm{Cl}$).
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{OCl}: \mathrm{C}, 79.88 ; \mathrm{H}, 4.57$. Found: C, 80.07; H, 4.59.
1-Triptycylacetic acid was colorless: mp $298-300^{\circ}$; 10% from the above diazo ketone upon uv irradiation in 20% aqueous tetrahydrofuran; ${ }^{18}$ 入 3.3 (broad) $5.82(\mathrm{COOH})$; nmr $\delta 9.6$ (broad s, COOH), $7.33(\mathrm{~m}), 7.03(\mathrm{~m}, \mathrm{ArH}), 5.40(\mathrm{~s}$, bridgehead $\mathrm{H}), 4.03$ ($\mathrm{s}, \mathrm{CH}_{2}$).
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 84.59; $\mathrm{H}, 5.16$. Found: C, 84.23; H, 5.33.
Attempted conversion of the diazo ketone above to this acid using silver benzoate and triethylamine in methanol ${ }^{19}$ followed by saponification gave intractable material. Reaction of silver 1 -triptycyclacetate with bromine in carbon tetrachloride to form $1-\mathrm{Br}$ seemed partially successful. However, the easier preparation given above made further work on this reaction unnecessary.

Registry No. 1 ($\mathrm{X}=\mathrm{Br}$), 34858-83-8; 5, 33885-01-7; m-cresol, 108-39-4; triphenylethylene, 58-72-0; 1-diazoacetyltriptycene, $34887-50-8$; 1-chloroacetyltriptycene, $34858-85-0$; 1-triptycylacetic acid, 34858-86-1.
(17) W. D. McPhee and E. Klingsberg, "Organic Syntheses," Collect. Vol. III, Wiley, New York, N. Y., 1955, p 119.
(18) A. L. Wilds, N. F. Wollsey, J. Van Den Berghe, and C. H. Winestock, Tetrahedron Lett., 4481 (1965).
(19) M. S. Newman and P. F. Beal, III, J. Amer. Chem. Soc., 72, 5163 (1950).

Intramolecular Addition of 4-Alkynyloxy Radicals

Jean-Marie Surzur,* Claude Dupuy, Michèle Paula Bertrand, and Robert Nouguier

Laboratoire associé au C.N.R.S. no. 126, Centre de St. Jerome, Université de Provence, 13-Marseille-13eme, France

Received January 19, 1972

It was recently reported by Rieke and Cooke, that alkoxy radicals fail to add intramolecularly to alkynes. ${ }^{1}$ Analysis of the photolysis products of several 4-alkynyl nitrites has provided us with evidence for the occur-
(1) R. D. Rieke and B. J. A. Cooke, J. Org. Chem., 36, 2674 (1971).
rence of this reaction in low yield. Whereas numerous studies have been devoted to free-radical chemistry of alkenes, little seems to be known on the behavior of alkynes, ${ }^{2 a}$ particularly toward alkoxy radicals. ${ }^{3}$ As an example, the interaction of tert-butyl hypobromite or hypochlorite with alkynes leads to an explosive homolytic decomposition which is apparertly induced by the triple bond. Abstraction of the propargylic hydrogen by alkoxy radicals is the sole reaction generally observed. ${ }^{4}$ However some additions to the triple bond occur in the case of conjugated enynes only. ${ }^{5}$ Nevertheless, although hydrogen abstraction is impossible, addition products do not form with phenylacetylene. ${ }^{4 \mathrm{~B}}$
Surprisingly enough, in the case of 4-alkenyloxy radicals the preferred reaction is an intramolecular addition, ${ }^{6}$ whereas allylic hydrogen abstraction occurs essentially in intermolecular reactions. ${ }^{3}$ On the other hand interesting synthetic reactions could be achieved by intramolecular addition of carbon,,${ }^{2 b,-}$ and thiyl radicals ${ }^{9}$ on alkynes. Accordingly it was of interest to investigate the intramolecular interaction of a nonconjugated triple bond with alkoxy radicals obtained by photolysis of 4-alkynyl nitrites

$$
\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{s}-\mathrm{O}-\mathrm{NO}
$$

Results and Discussion

Nitrogen was slowly bubbled through a $0.05-0.1 \mathrm{M}$ benzene solution of the nitrites 1 , which was irradiated with a Hanau TQ 81 (70 W) high-pressure lamp equipped with a Pyrex filter. The same compound, identified as γ-butyrolactone by comparison with an authentic sample, was obtained in poor yields ($1-6 \%$) from the three nitrites under investigation ($\mathrm{R}=\mathrm{H}$, CH_{3} or $\mathrm{C}_{6} \mathrm{H}_{5}$). In order to explain these results we suggest the following scheme.

(2) For a recent review, see M. Julia in "Chemistry of Acetylenes," H. Viehe, Ed., Marcel Dekker, New York, N. Y., 1969: (a) pp 335-354; (b) pp 349-354.
(3) For a review, see C. Walling, Bull. Soc. Chim. Fr., 1609 (1966).
(4) (a) C. Walling, L. Heaton, and D. Tanner, J. Amer. Chem. Soc., 87 , 1715 (1965); (b) J. K. Kochi and P. J. Krusic, ibid., 92, 411 (1970).
(5) (a) M. Poutsma and P. Ibarbia, J. Org. Chem., 35, 4038 (1970); (b) L. Byrd and M. Caserio, J. Amer. Chem. Soc., 92, 5422 (1970).
(6) (a) J.-M. Surzur, P. Cozzone, and M. P. Bertrand, C. R. Acad. Sci., Ser. C, 267, 908 (1968); (b) R. Rieke and N. Moore, Tetrahedron Lett., 2035 (1969); (c) J.-M. Surzur, M. P. Bertrand, and R. Nouguier, ibid., 4197 (1969); (d, P. Tordo, M. P. Bertrand, and J.-M. Surzur, ibid., 3399 (1970).
(7) (a) H. R. Ward, J. Amer. Chem. Soc., 89, 5517 (1767). (b) J. K. Crandall and D. J. Keyton, Tetrahedron Lett., 1653 (1969). (c) Intramolecular cyclizations of acetylenic Grignard reagents have also been reported as proceeding possibly by free-radicals intermediates. ${ }^{8}$
(8) (a) H. G. Richey, Jr., and A. Rothman, Tetrahedron Lett., 1457 (1968); (b) J. L. Derocque, U. Beisswenger, and M. Hanack, ibid., 2149 (1969); (c) W. C. Kossa, Jr., T. C. Rees, and H. G. Richey, Jr., ibid, 3455 (1971).
(9) (a) J.-M. Surzur, C. Dupuy, M. P. Crozet, and N. Aimar, C. R. Acad. Sci., Ser. C, 269, 849 (1969); (b) H. Kwart and T. J. George, Chem. Commun., 433 (1970).

Irradiation of nitrite 1 yields the alkoxy radical 2 which adds intramolecularly to the triple bond. The vinylic cyclic radical 3 is trapped by nitric oxide to form the nitroso compound 4. Such nitrosovinylic intermediates have been shown to be unstable by a study of photolytic intramolecular addition of alkyl and chlorine radicals to alkynes in presence of nitric oxide. ${ }^{10}$ Indeed, in the present case they fragment into γ-butyrolactone 6 and nitrite 7. When $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$, benzonitrile is detected. This is in agreement with the present mechanism involving an intermediate such as 5.

In all the cases the other products which are normally expected from the evolution of the alkoxy radical 2^{3} as 4 -alkynols ($\mathrm{R}=\mathrm{H}(30-35 \%), \mathrm{CH}_{3}(45-50 \%)$, and $\mathrm{C}_{6} \mathrm{H}_{5}(50-55 \%)$) were identified besides approximately 25% polymeric material. For $\mathrm{R}=\mathrm{H} 4$-pentynal was detected together with four as yet unidentified compounds (less than 10% by vpc). The reaction was very sensitive to experimental conditions. For instance, when the nitrogen flow rate was increased the yield of γ-butyrolactone decreased (when $\mathrm{R}=\mathrm{H}$). The use of a Hanau TQ 150 (150 W) lamp lowered the yield of γ-butyrolactone; this could be an explanation for the somewhat different results reported by Rieke and Cooke ${ }^{1}$ who used a $450-\mathrm{W}$ lamp. Nitric oxide was bubbled through the solution in order to more efficiently trap 3 and get better yields of 4; this experiment was unsuccessful since the quantities of γ-butyrolactone formed were not modified. However, this failure might be due to competitive reactions between nitric oxide and the alkyne. ${ }^{11}$

These results strongly support the possibility of intramolecular addition of alkoxy radicals to isolated triple bonds. However, the low yields of cyclic products show that this reaction is more difficult than with a double bond. As a conclusion, we wish to point out that five-membered rings are obtained with substituted alkynes ($\mathrm{R}=\mathrm{CH}_{3}$ or $\mathrm{C}_{6} \mathrm{H}_{5}$). With monosubstituted alkynes ($\mathrm{R}=\mathrm{H}$) no hypothesis on the orientation of the cyclization can be made, as several products need to be identified.

Experimental Section

The ir spectra were measured with a Perkin-Elmer 337 grating ir spectrophotometer. The nmr spectra were obtained on Varian A-60 and HA-100 instruments, chemical shifts were recorded as δ values (parts per million) relative to tetramethylsilane as an internal reference.

4-Pentynol, bp 67° (15 mm) [lit. ${ }^{12}$ bp 70-71 ${ }^{\circ}$ (29 mm)], was prepared from tetrahydrofurfuryl chloride according to "Organic Syntheses." ${ }^{12}$

4-Hexynol, bp 78° (13 mm), n^{18} D (1.4602 [lit. ${ }^{13} \mathrm{bp} 85^{\circ}$ (20 $\left.\left.\mathrm{mm}), n^{18} \mathrm{D} 1.4604\right)\right]$ was prepared according to a procedure described for 4 -uncecynol ${ }^{14}$ from lithium (7 g), excess of propyne, and 3-bromopropanol yieldirg 11.4 g of 4-hexynol (46%).

1-Phenyl-1-per.tyn-5-ol was prepared according to a procedure described for 5 -hexynol ${ }^{15}$ using the reaction pathway chloride, iodide, acetate, and alcohol. 5 -Chloro-1-phenyl-1-pentyne was prepared in 70% yield (12.5 g), bp $146^{\circ}(15 \mathrm{~mm})$, from lithium $(8 \mathrm{~g})$, phenylacetylene $(112 \mathrm{~g})$, and 3-bromo-1-chloropropane
(10) A. G. Sherwood and H. E. Gunning, J. Amer. Chem. Soc., 85,, 3506 (1963).
(11) S. F. Reed, Jr., J. Org. Chem., 35, 3961 (1970).
(12) E. R. H. Jcnes, G. Eglington, and M. C. Whiting, "Organic Syntheses," Collect. Vcl. IV, Wiley, New York, N. Y., 1963, p 755.
(13) R. Paul, Buil. Soc. Chim. Fr., 109 (1951).
(14) D. Ames, A. Covell, and T. Goodburn, J. Chem. Soc., 5889 (1963).
(15) M. Ohno and A. Hatanaka, Bull. Inst. Chem. Res., Kyoto Univ., 40, 322 (1962).
$(157 \mathrm{~g})$ in 1 l . of liquid ammonia. A mixture of 3-bromo-1chloropropane (125 g) and sodium iodide (110 g) was refluxed and stirred for 24 hr in 1 l . of dried acetone. The excess of solvent was then distilled and the cooled residue treated with water. The upper layer was washed, dried, and rectified to yield 140 g (74%) of 5 -iodo-1-phenyl-1-pentyne, bp $9.5-100^{\circ}$ (0.0 .5 mm). The iodide (43 g) was added while stirring to silver acetate (27 g) in 150 ml of benzene. After refluxing for 6 hr the cooled mixture was filtered and the benzene was evaporated. Distillation gave $25 \mathrm{~g}(72 \%)$ of 5 -acetoxy-1-phenyl-1-pentyne, bp 100-105 ${ }^{\circ}$ (0.05 mm). The ester (25 g) was heated at reflux for 2 hr in a solution of potassium hydroxide (12 g) in water ($20-\mathrm{ml}$)ethanol (50 ml). Ethanol was removed by distillation and the residue was extracted with ether. The ether extract was washed with dilute acid, water, and dried. Distillation gave $11 \mathrm{~g}(53 \%)$, of 1-phenyl-1-pentyn- .)-ol: bp $100-104^{\circ}(0.04 \mathrm{~mm}), n^{20} \mathrm{D}$ 1.5765 [lit. ${ }^{16}$ bp $122^{\circ}(2 \mathrm{~mm}), n^{20} \mathrm{D}$ 1.5769]; ir (neat) 3.500, $3200,3080,3020,2220,1600,1500,1060,750,690 \mathrm{~cm}^{-1}$; nmr $\left(\mathrm{CCl}_{4}\right) 1.75(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) 2.4(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.6 .5(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.0 .5(\mathrm{~s}, 1 \mathrm{H}), 7.1(\mathrm{~m}, 5 \mathrm{H})$.
Preparation of 4-Alkynyl Nitrites.-They were prepared, like alkenyl nitrites, ${ }^{\text {bc }}$ by alkynol esterification with nitrous acid at $0^{\circ} .^{17}$ Alkynol (0.2 mol) and sodium nitrite (21 g) were dissolved in water (75 ml). Concentrated sulfuric acid (15 g) in water (10 ml) slowly added with vigorous stirring to the solution maintained at 0° with external cooling and swept by a nitrogen stream. The upper layer was dried and 4-alkynyl nitrites $\mathrm{RC}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{3}$ ONO (1) distilled at temperature below 50°. 1a: ($\mathrm{R}=\mathrm{H}$) (70%); bp $35^{\circ}(25 \mathrm{~mm}) ; n^{20} \mathrm{D}$ 1.4168; ir (neat) 3300,2110 , $1640,1600,780 \mathrm{~cm}^{-1}$. $1 \mathrm{~b}\left(\mathrm{R}=\mathrm{CH}_{3}\right)(66 \%)$: bp 42° (15 mm); $n^{25} \mathrm{D} 1.4309$; ir (neat) $2210,1640,1600,700 \mathrm{~cm}^{-1}$. lc ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$) (8.5%, crude because it decomposed by distillation): ir (neat) 2220, 1640, 1600, 790. [All these compounds have characteristic uv absorption spectra of nitrites ${ }^{18}$ between 320 and 380 nm (hexane).]

Photolysis of 4-Alkynyl Nitrites.-The nitrite ($0.1-0.0 .5 \mathrm{~mol}$) dissolved in 100 ml of benzene was added during 2 hr to 900 ml of benzene irradiated by an inside Hanau TQ 81 lamp provided with a Pyrex filter. A slow stream of nitrogen was maintained before and during the irradiation. The solution was maintained between 10 and 15° by external cooling. The photolysis was followed by uv spectra and carried to 80% completion. Benzene was removed under reduced pressure at temperature below $.50^{\circ}$. The residue was distilled and fractions analyzed by vpc (Carbowax 20 M). Compounds were isolated by preparative vpc and identified by comparative spectral analysis with authentic samples. Yields were calculated from the weight of nitrite ester used.

Photolyses were also run in the cavity of an epr (Varian E_{3}) apparatus irradiated with an SP 500 Philips lamp. Spectra of nitroxides were observed but these spectra were complex and important modification were observed during and after irradiation, not permitting yet, direct verification of the mechanism proposed as in the photolysis of 4 -alkenyl nitrites. ${ }^{6 d}$

Photolysis of 4-Hexynyl Nitrite.-As described above 9 g (0.07 mol) of the nitrite was irradiated in 11 . of benzene for 20 hr . Distillation gave 3.7 g , bp $75-90^{\circ}(13 \mathrm{~mm})$, and undistillable residue, $1.84 \mathrm{~g}(21 \%)$. Only two compounds could be detected by vpc of the distilled fraction; they were identified after vpc preparative and comparison with authentic samples of 4 -hexynol (47%) and γ-butyrolactone (6%).

Photolysis of 5-Phenyl-4-pentynyl Nitrite.-An amount of 9.9 g $(0.048 \mathrm{~mol})$ was irradiated in 11 . of benzene for 60 hr . Distillation gave a first fraction, $0.1 \mathrm{~g}, \mathrm{bp} 36-40^{\circ}(0.0 .7 \mathrm{~mm})$, a second fraction, $1.9 \mathrm{~g}, \mathrm{bp} \mathrm{110-11.)}^{\circ}(0.2 \mathrm{~mm})$, and an undistillable residue, 2 g (20%). Only two compounds were detected in the first fraction, identified as γ-butyrolactone (1%) and benzonitrile (1%). 1-phenyl-1-pentyn-5-ol was the major product of the second fraction (57%).
Photolysis of 4-Pentynyl Nitrite.-As above $6.7 \mathrm{~g}(0.0 .59 \mathrm{~mol})$ of the nitrite was irradiated for 18 hr . Distillation gave fraction $1,1.8 \mathrm{~g}$, bp $50-65^{\circ}(13 \mathrm{~mm})$, fraction $2,0.7 \mathrm{~g}$, bp 60-65 ${ }^{\circ}$ (0.2 mm), and an undistillable residue, $1.6 \mathrm{~g}(24 \%)$. Fraction 1 was composed of 4-pentynol (32%) and traces of 4 -pentynal and unreacted nitrite ester. Fraction 2 was composed of six com-

[^120]pounds. Two of them were identified as 4-pentynol (6%) and γ-butyrolactone (2%). The photolysis of $4.13 \mathrm{~g}(0.047 \mathrm{~mol})$ of 4-pentynyl nitrite in 2.50 ml of benzene as above but with a plunging lamp, Hanau TQ 150 (1.50 W), gave still two fractions: fraction $1,0.7 \mathrm{~g}, \mathrm{bp} 32-.50^{\circ}(0.05 \mathrm{~mm})$, fraction $2,0.7 \mathrm{~g}$, bp $50-80^{\circ}(0.05 \mathrm{~mm})$, undistillable residue, $1 \mathrm{~g}(24 \%)$, 4-pentynal (4%), 4-pentynol (16%), and traces of nitrite ester composed the first fraction. Six compounds were present in the second fraction, two of them were identified as 4 -pentynol (7%) and γ-butyrolactone (traces).
Photolysis of 7.83 g of nitrite ester in 1 l . of benzene with a TQ 81 lamp as above but with a quicker stream of nitrogen gave 4-pentynal (8%) and 4-pentynol (23%) in fraction 1 . In fraction 2, the proportion of two unidentified compounds increased but γ-butyrolactone could only be detected. When the stream of nitrogen was replaced by nitric oxide we observed the formation of γ-butyrolactone (2.2%), 4-pentynal (traces), 4-pentynol (10%), four unidentified compounds, and polymeric material (40%).

Registry No.-1a ($\mathrm{R}=\mathrm{H}$), 30428-24-1; $1 \mathrm{~b}(\mathrm{R}=$ CH_{3}), 34886-47-0; 1c ($\mathrm{R}=\mathrm{Ph}$), 34886-48-1; 5-chloro-1-phenyl-1-pentyne, $24463-87-4$; 5 -iodo-1-phenyl-1pentyne, $34886-50-5$; 5 -acetoxy-1-phenyl-1-pentyne, 29313-49-3; 1-phenyl-1-pentyn-5-ol, 24595-58-2.

A Terminology for the Chiral Attributes of Steric Elements ${ }^{1}$

H. Hirschmann*

Department of Medicine, Case Western Reserve University,
Cleveland, Ohio 44106

Kenneth R. Hanson*

Department of Biochemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504

Received January 28, 1972
In a recent analysis of stereoisomerism we concluded ${ }^{2}$ that the conventional types of stereoisomerism (the center, axis, plane, "conformational helix," and cistrans isomerism at double bonds) ${ }^{3,4}$ could be reduced to two elements, the center and the line of torsion, and that these elements of stereoisomerism may possess or lack one or both of two distinct chiral characteristics. The first of these determines whether the configuration of the element by itself has to be specified with a chiral descriptor and the second whether the element can contribute to the chirality of a compound. Either of these tests may be thought to be suitable for determining the chiral character of the element. We suggested, at least as a temporary expedient, to call an element chiral if it meets both of these tests, as this would preserve existing practices. The problem of selecting the most useful criterion for a chiral element, however, remained unsolved. We now find that the need for making this difficult choice would be avoided
(1) Supported in part by Grants AM 9105 and K6-AM-14367 from the National Institutes of Health (H. H.), and GB 29021-X from the National Science Foundation (K. R. H.).
(2) H. Hirschmann and K. R. Hanson, J. Org. Chem., 36, 3293 (1971). This paper should be consulted for the definition of all terms and symbols not explained in this note.
(3) R. S. Cahn, C. K. Ingold, and V. Prelog, Angew. Chem., Int. Ed. Engl., b, 385, 511 (1966).
(4) IUPAC Tentative Rules for the Nomenclature of Organic Chemistry. Section E. Fundamental Stereochemistry: J. Otg. Chem., 35, 2849 (1970).
and the discussion of both relevant properties would be facilitated if we had two separate and concise terms to characterize all elements of stereoisomerism that meet one or the other of these tests. Accordingly we propose to call an element graphochiral ${ }^{5}$ if its configuration, viewed apart from that of any other element of the same molecule, can be specified only by a chiral descriptor, and pherochiral ${ }^{5}$ if the element would contribute to the chirality of a chiral molecule. Operational definitions of these and of related terms follow. They utilize the same criteria that were presented before ${ }^{2}$ and are stated here in a manner applicable to all elements, on the understanding that the atom at a center of stereoisomerism or of prostereoisomerism represents the core of these elements.
An element of stereoisomerism is graphochiral or agraphochiral, respectively, if its assembly of differentiated atoms ([3], [14]) ${ }^{2}$ cannot or can be superposed on its mirror image. An element of prostereoisomerism ([8], [16]) ${ }^{2}$ or an agraphochiral element of stereoisomerism is prographochiral if there are linked to the core two superposable $c f$-ligands ([2], [13]) ${ }^{2}$ so located that the element would be graphochiral if one of these ligands were considered to be different from all others.

An element of stereoisomerism is pherochiral or apherochiral, respectively, if its assembly cannot or can be superposed on the assembly of corresponding atoms ([5], [15]) ${ }^{2}$ derived from the reflected model. An element of prostereoisomerism is propherochiral if it should become pherochiral on assuming that one of a pair of equivalent proximal atoms is different from all others in the assembly.

To make the concept fully effective, a correlation is needed between the pherochirality of the individual elements and the chirality of the whole structure. This relationship can be expressed as follows. A compound is chiral if it contains a pherochiral element of stereoisomerism that cannot be paired within the same molecule with another element whose $c f$-ligands can be superposed after a reflection upon the $c f$-ligands of the first.

As before, ${ }^{2}$ only those elements of stereoisomerism that are both graphochiral and pherochiral are designated as chiral, all others as achiral. The retention of these simpler terms is desirable because in the vast majority of cases an element that meets one test for chirality also meets the other. The exceptions to this rule always involve elements with at least one pair of enantiomeric ligands. Similarly elements of prostereoisomerism are called prochiral, if they are both prographochiral and propherochiral. They are called proachiral if they are "not prographochiral" and/or "not propherochiral." Consequently, there is no conflict between this supplement and any of the statements of the earlier paper. ${ }^{2}$

Application of these new terms will be illustrated by compounds 1-4. In analyzing $1 a^{6}$ one first identifies its elements of stereoisomerism (factorization). These

[^121]

lb

are the most compact parts of the structure for which one has to define the spatial distribution of the bonds to the individual ligands in order to differentiate the compound from its stereoisomers. The elements of 1a are two centers C-3 and C-5 which are chiral, and the $\mathrm{C}=\mathrm{N}$ double bond. To examine this last element one replaces its three $c f$-ligands by three points which are all distinct ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) as the ligands represented by the points are not superposable. The assembly consisting of $\mathrm{C}=\mathrm{N}$ and of the three points which we have called the differentiated proximal atoms ${ }^{2}$ has a plane of symmetry, as all atoms of the assembly lie in this plane. The element represented by this assembly is, therefore, agraphochiral. As the assembly cannot be superposed on the assembly derived from the enantiomer lb with all corresponding atoms coinciding, the double bond is pherochiral. The description of the double bond as agraphochiral and pherochiral brings out the unusual relationship between 1a and lb. They are enantiomers which can be cistinguished by a pair of achiral descriptors (Z and $E)^{4}$ because they are also cis-trans isomers. If we merely designate the double bond of 1a as achiral we would obscure an important difference from $2 a$, which derives its chirality only from the chiral center $\mathrm{C}-3$ as its other element of stereoisomerism, the double bond, is both agraphochiral and apherochiral. Factorization of the stereoisomerism of 3 shows three elements which are all centers. Those at C-3 and C-5 are chiral as in 1, whereas that at C-1 is graphochiral and apherochiral. Therefore, as for the double bond in $1 \mathbf{a}$, the chirality of C-1 of 3 is incomplete but the combination of properties is the reverse of that found for the double bond. This combination of graphochirality and apherochirality fully characterizes all elements traditionally designated as pseudoasymmetric. As expected fo: a graphcchiral center, it requires a chiral descriptor (e.g., s) to specify its configuration without relating it to the configurations of the two other centers. The further conclusion that $\mathrm{C}-1$ is apherochiral is consistent with the achirality of 3, as any compound with an odd number of pherochiral elements is necessarily chiral. However, it is not essential for a compound to be achiral in order to have such an apherochiral element. The character of C-1 remains un-
changed, but the plane of symmetry is lost if the hydroxyl group of 3 is esterified (as in 4) with (S)-lactic acid.

In our full paper ${ }^{2}$ we summarized the classification of steric centers by a chart which separated centers of stereoisomerism into chiral and achiral and then subdivided the achiral centers into those having and not having chiral configurations. Centers of prostereoisomerism were treated in an analogous manner. This classification brought out pherochiral properties only if the element was also graphochiral (and propherochiral properties only if it was also prographochiral). The present terminology ${ }^{7}$ is therefore better balanced and it allows one to focus on the relevant property, as we have illustrated in discussing examples 1-4.
(7) Of the examples listed in Chart $1,{ }^{2} \mathrm{Cghij}^{(C g} \mathrm{Cg}^{-} \mathrm{hi}, 8 \mathrm{~B}-\mathbf{c}, \mathbf{f}, \mathrm{g}$ are graphochiral: tetragonal Xghij, octahedral Xgghgig, 8d, e, hare agraphochiral. (Of this last group $\mathbf{8 d}, \mathbf{e}, \mathbf{h}$ can be further classed as prographochiral whereas the two others are not prographochiral.) Cgghi and Cggh +h ${ }^{-}$are prographochiral; tetragonal Xgggh and octahedral Xgggggh are not prographochiral. In the alternative classification $\mathrm{Cghij}, 8 \mathrm{a}-\boldsymbol{0}$ are pherochiral $\mathrm{Cg}^{+} \mathrm{g}^{-h}$, tetragonal $\mathrm{Xghij}, \mathbf{8 f}-\mathbf{h}$ and octahedral Xgghgig are apherochiral; Cgghi is propherochiral; Cggh ${ }^{+}{ }^{-}$, tetragonal Xgggh , and octahedral Xgggggh are not propherochiral.

Potential Inhibitors of

L-Asparagine Biosynthesis. I.

β-Elimination Reactions with β-Hydroxyaspartic Acid Derivatives ${ }^{1 \mathrm{a}, \mathrm{b}}$

Michael Mokotoff* and Bharat S. Parikh ${ }^{\text {c }}$

Department of Medicinal Chemistry, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213

$$
\text { Received January 10, } 1972
$$

In the course of a study aimed at preparing irreversible inhibitors of the enzyme l-asparagine synthetase we obscrved a β-elimination reaction with derivatives of β-hydroxyaspartic acids, the results of which form the text of this paper.

In view of the usefulness of the diazoacetate group in the design of irreversible enzyme inhibitors, we attempted to synthesize the O-diazoacetyl derivative of both threo- (1a) and erythro- β-hydroxyaspartic acid (1b). Initially we began with la since it was readily obtainable, ${ }^{2}$ whereas 1b was more difficult to obtain. Because of contradictory reports ${ }^{2,3}$ concerning the stereospecific synthesis of $\mathbf{l a}$ and 1 b , we used two methods to ascertain their stereointegrity, namely a chemical vanadate test ${ }^{4}$ and analysis via an automatic amino acid analyzer; ${ }^{5}$ both confirmed the stereopurity of 1 a and lb .
(1) (a) This work was supported by Grant M-28 from the Health Research and Services Foundation, Pittsburgh, Pa., and Grant CA-11714 from the National Cancer Institute, NIH, Bethesda, Md. (b) Presented in part at the 163rd National Meeting of the American Chemical Society, Boston, Mass., April 1972, Medi 26. (c) Taken in part from the M.S. Dissertation of B. S. P., University of Pittshurgh, July 1971.
(2) C. W. Jones, III, D. E. Leyden, and C. H. Stammer, Can. J. Chem., 47, 4363 (1969).
(3) H. Okai, N. Imamura, and N. Izumiya, Bull. Chem. Soc. Jap., 40, 2154 (1967).
(4) Y. Liwschit2, Y. Robinson. and A. Haber, J. Chem. Soc., 3589 (1962).
(5) Recorded on a Beckman Model 116 A.A.A. The authors thank Mr J. P. Vergnes, Department of Biochemistry, University of Pittshurgh, for these determinations.

The amino function of 1 a was readily protected by carbobenzoxylation followed by esterification of the carboxyl groups to give 2a. ${ }^{6}$ Esterification of 2a with carbobenzoxyglycine in the presence of the condensing agent N, N^{\prime}-carbonyldiimidazole (CDI) ${ }^{7}$ afforded an oil which, according to tle, was composed of three components. Separation by preparative tlc afforded starting material, the supposed 4 a , and compound 3 , a product of β elimination. Compound 4 a could not be

crystallized and attempts to prepare an analytical sample failed because of a tendency for it to decompose to 3. The tentative assignment of the structure for 4 a was based on nmr data [$\delta 3.88$ (d, CH_{2} of glycyl, singlet after shaking with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.65(\mathrm{~m}, \beta-\mathrm{H})$] and the fact that stirring 4 a in THF with imidazole (this base is a side product of reactions with CDI) readily affords some of compound 3 .

By a scheme similar to that used in the threo series, $\mathbf{2 b}$ was obtained in a 72% overall yield from $\mathbf{l b}$. In an attempt to synthesize the coupled product $\mathbf{4 b}$, similar results were obtained using CDI and carbobenzoxyglycine, namely, small amounts of starting material and unsaturated 3 were obtained and the major product presumably was 4 b . The latter was noncrystalline and attempts to prepare an analytical sample caused some decomposition to 3 . The tentative assignment of the structure for $\mathbf{4 b}$ was based on nmr data $\left[\delta 3.92\left(\mathrm{~d}, \mathrm{CH}_{2}\right.\right.$ of glycyl) and $5.66(\mathrm{~m}, \beta-\mathrm{H})$]. Furthermore, stirring the supposed 4 b in THF with imidazole very slowly (in contrast to the facile 4a) formed some of 3 . As a control experiment both 2 a and 2 b were separately stirred with imidazole but only

[^122]starting material was recovered, thus implicating 4 a and 4 b as the source of 3 .

After several months in the refrigerator, compound 3 (from 4a and 4b) showed evidence on tle for approx-

$4 a$

imately 5% of a lower R_{1} component. Preparative tlc afforded a small sample of this new compound, whose structure was assigned as the cis isomer 5. Evidently there is an equilibrium which lies far on the trans isomer (3) side. If 3 is dissolved in $15: 1$ isooctanemethylene chloride and allowed to remain for 1 week in sunlight ${ }^{8}$ there is approximately a $25-35 \%$ conversion to 5 , and this ratio does not change on heating the mixture to 150°.

Proof for these structures is based on the following evidence. An nmr spectrum of 3 showed signals at $\delta 5.15,5.25$ (s, 6 H , benzylic), 5.51 ($\mathrm{s}, 1 \mathrm{H}$, vinyl), 7.34 (s, 15 H , aromatic), and 9.71 (broad, $1 \mathrm{H}, \mathrm{NH}$), while in the ir $\left(\mathrm{CCl}_{4}\right)$ there was a broad NH band at 3.01 (H bonded) and carbonyl absorption at 5.73 and 5.92μ, the latter band duc to the conjugated, H -bonded ester. ${ }^{9}$ Furthermore, catalytic hydrogenation (Pt) of 3 gave aspartic acid (identical ir with ir of authentic sample). The cis isomer 5 showed resonance in the nmr at $\delta 5.00,5.15(\mathrm{~m}, 6 \mathrm{H}$, benzylic), $6.67(\mathrm{~s}, 1 \mathrm{H}$, vinyl), 6.96 (broad, $1 \mathrm{H}, \mathrm{NH}$, disappears with $\mathrm{D}_{2} \mathrm{O}$), and 7.33 ($\mathrm{m}, 15 \mathrm{H}$, aromatic). The ir $\left(\mathrm{CCl}_{4}\right)$ spectrum of 5 showed peaks at $2.92 \mu(\mathrm{NH})$ and carbonyl absorption at 5.73 and 5.78μ.
The data for 3 and 5 deserve brief comment. In 3, where a six-membered H -bonded ring can exist, the NH is broadened in the ir and further downield in the nmr , and the H -bonded carbonyl appears at higher wavelength in the ir, ${ }^{9}$ when compared to 5 . In 5, where the carbamate carbonyl can assume a closer proximity to the vinyl hydrogen than the ester carbonyl can in 3, there is greater deshielding ${ }^{9,10}$ of this proton and it appears further downfield in the nmr .
The observation of β elimination with certain amino acid derivatives is well documented. ${ }^{11}$ The formation
(8) R. E. Lutz. D. F. Hindley, and R. H. Jordan J. Amer. Chem. Soc., 73, 4647 (1951).
(9) R. Fuisgen, K. Herbig, A. Siegl, and H. Huber, Chem. Ber., 99, 2526 (1966).
(10) J. E. Dolfini, J. Org. Chem., 30, 1298 (1965).
(11) I. Photaki, J. Amer. Chem. Soc., 85, 1123 (1963); Y. Liwschitz, A. Singerman. and S. Sokoloff, J. Chem. Soc., 1843 (1968); R G. Hiskey, R. A. Upham, G. M. Beverly, and W. C. Jones, Jr., J. Org. Chem., 35, 513 (1970); R. K. Olsen, ibid., 35, 1912 (1970).
of 3 from 4 a could be explained by a one-step β-elimination mechanism (E2), since in the threo derivative the favored conformation has the leaving groups transcoplanar. However, obtaining 3 from $\mathbf{4 b}$ is not as readily explained. 4 b in its favored arrangement does not have the leaving groups coplanar, and rotation to bring about ccoplanarity followed by β elimination would afford 5. There are several possibilities ${ }^{12}$ that could explain the formation of 3 from 4 b (cis elimination, E 1 or E 1 cB), but in the absence of further experimental evidence it would be unwise to speculate.

Experimental Section

Melting points were taken on a Fisher-Johns apparatus and are not corrected. Ultraviolet spectra were determined in 95% ethanol on a Beckman DB-G recording spectrophotometer. Infrared absorption spectra were recorded on either a PerkinElmer Infracord or a Beckman IR-8 spectrophotometer. Nmr spectra were recorded on a Varian A-60 or A-60D recording spectrometer in CDCl_{3} with tetramethylsilane as internal standard. Thin layer chromatography and preparative tle (1.0 mm) were carried out with silica gel GF (Analtech, Inc.) and spots were located with either uv light or by spraying with 3% ceric sulfate in $3 \mathrm{NH}_{2} \mathrm{SO}_{4}$ and then heating. Microanalyses were performed by Spang Microanalytical Laboratory, Ann Arbor, Mich. Dioxane and tetrahydrofuran (THF) were purified by distillation from LiAlH_{4}. The petroleum ether used had a boiling point range of $30-60^{\circ}$. All concentrations were done under reduced pressure. Prior to concentration all organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Mass spectra were determined on an LKB Model 9000 spectrometer at 70 eV .
threo- β-Hydroxy-d L-aspartic Acid (1a).-Maleic acid was converted ${ }^{2}$ to la in a 42% yield, and characterized by conversion to its dimethyl ester: $\mathrm{HCl}, \mathrm{mp} 135-136^{\circ}$ (lit. ${ }^{2} \mathrm{mp} 134-135^{\circ}$).
erythro- β-Hydroxy-Dl-aspartic Acid (1b).-Fumaric acid was converted, ${ }^{2}$ with much difficulty, to 1 b in a $13-15 \%$ yield, and characterized by conversion to its dimethyl ester: $\mathrm{HCl}, \mathrm{mp}$ $149-150^{\circ}$ (lit. ${ }^{2} \mathrm{mp} 152-153^{\circ}$). The difficulty encountered was in the conversion of fumaric acid to trans-epoxysuccinic acid. ${ }^{13}$ In our hands, the epoxidation never proceeded as smoothly as reported, ${ }^{13}$ while the conversion ${ }^{2}$ of the epoxide to lb consistently (71% yield) gave good results.
Dibenzyl N-Carbobenzoxy-threo- β-hydroxy-d L-aspartate (2a). -This compound was prepared as reported ${ }^{6}$ from la in a yield of 88% : mp $90-9^{-}{ }^{\circ}$ (lit. ${ }^{6} \mathrm{mp} 88^{\circ}$); nmr $\delta 3.22$ (broad, OH , exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.6-4.8(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\alpha, \mathrm{H}-\beta), 5.12(6 \mathrm{H}$, benzylic $-\mathrm{CH}_{2}$), ᄃ. $75(\mathrm{~d}, J=9 \mathrm{~Hz},-\mathrm{NH}), 7.33(\mathrm{~s}, 15 \mathrm{H}$, phenyls); mass spectrum $w_{\mathrm{r}} / e 463\left(\mathrm{M}^{-}\right)$.

Dibenzyl N-Carbobenzoxy-erythro- β-hydroxy-pl-aspartate (2b).- N-Carbobenzoxy-eryihro- β-hydroxy-Dl-aspartic acid was prepared ${ }^{6}$ in a 78% yield from 1 b . This compound ($0.50 \mathrm{~g}, 1.7$ mmol) was heated under reflux in $\mathrm{CCl}_{4}(10 \mathrm{ml})$ containing benzyl alcohol ($0.68 \mathrm{ml}, 6.8 \mathrm{mmol}$) and p-toluenesulfonic acid (0.05 g) and the $\mathrm{H}_{2} \mathrm{O}$ formed was removed via a Dean-Stark trap. After 72 hr the reaction solution was allowed to cool to room temperature. The resulting mixture, containing some crystallized product, was concentrated to dryness. The remaining oil was dissolved in CHCl_{3}, the solution was extracted twice with NaHCO_{3} solution, dilute HCl solution, and $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was dried. The solvent was evaporated and the product was crystallized from EtC Ac-petroleum ether, affording $0.72 \mathrm{~g}(92 \%)$ of 2b. The analytical sample had $\mathrm{mp} 74.5-75.5^{\circ}$; nmr $\delta 3.56$ (broad, OH , exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.57\left(\mathrm{~m}, \mathrm{H}_{\beta}\right.$, doublet after $\mathrm{D}_{2} \mathrm{O}$ exchange, $\left.J=2.5 \mathrm{~Hz}\right), 4.87\left(\mathrm{~m}, \mathrm{H}_{\alpha}\right)$, $5.08(6 \mathrm{H}$, benzylic $-\mathrm{CH}_{2}$), $\quad . .83(\mathrm{~d}, J=8 \mathrm{~Hz},-\mathrm{NH}), 7.30(1.5 \mathrm{H}$, phenyls); mass spectrum $m_{i} / e 463\left(\mathrm{M}^{-}\right)$.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{7}$: $\mathrm{C}, 67.37 ; \mathrm{H}, 5.43 ; \mathrm{N}, 3.02$. Found: C, 67.49; H, 5.49; N, 2.90.
Dibenzyl O-(N-Carbobenzoxyglycyl)- N-carbobenzoxy-threo- β -hydroxy-di-asparate (4a) and Dibenzyl 2-Carbobenzoxyamino-
(12) J. March, "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure," McGraw-Hill, New York, N. Y., 1968. pp 728-736.
(13) G. B. Payne and P. H. Williams, J. Org. Chem., 24, 54 (1959).
fumarate (3).-A solution of N-carbobenzoxyglycine ${ }^{14}$ (0.23 g , 1.1 mmol) in anhydrous THF (1.5 ml) was added dropwise to a solution of N, N^{\prime}-carbonyldiimidazole (CDI, Aldrich Chemical Co., $0.17 \mathrm{~g}, 1.1 \mathrm{mmol}$) in THF (2.5 ml) and stirred for 1 hr . To this was then added in one portion, a solution of $2 \mathrm{a}(0.50 \mathrm{~g}, 1.1$ mmol) in 2 ml of THF. After 3 days the solution was concentrated to dryness, redissolved in CHCl_{3}, washed twice with 5% HCl solution, saturated NaHCO_{3} solution, and water and dried. Evaporation of the solvent afforded a syrup (0.61 g) whose tlc $\left(\mathrm{CHCl}_{3}\right)$ showed three spots. Preparative tlc $\left(\mathrm{CHCl}_{3}\right)$ of an aliquot (75 mg) of the syrup separated the three components; the one of lowest R_{f} was shown by comparison ir to be recovered 2a (10 mg), the middle R_{f} compound was tentatively assigned (by physical data) as 4 a ($10 \mathrm{mg}, 11 \%$), and the upper R_{f} product was identified as the unsaturated $3(20 \mathrm{mg}, 32 \%)$. Compound 3 could not be induced to crystallize but an analytical sample was obtained by rechromatographing ($1 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}$) on thin layer plates, and the extracted product was washed through a $1: 1$ charcoal-Celite column with CHCl_{3}. Evaporation of the solvent left a very pale yellow gum (3), uv $\lambda_{\max } 212 \mathrm{~m} \mu(\epsilon 18,400)$ and $270(13,900)$ with a shoulder at 259 ; mass spectrum $m / e 445\left(\mathrm{M}^{+}\right)$, 430, $354\left(-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 310\left(-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 248,140,107$ $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}^{+}\right), 91$ (base peak).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{6}$: C, 70.11; H, 5.20; N, 3.14. Found: C. $70.10 ; \mathrm{H}, 5.27 ; \mathrm{N}, 3.07$.

Dibenzyl O-(N-Carbobenzoxyglycyl- N-carbobenzoxy-erythro- β -hydroxy-1) L-aspartate (4b) and Dibenzyl 2-Carbobenzoxyaminofumarate (3).-The above procedure was followed using CDI $(2.30 \mathrm{~g}, 14.2 \mathrm{mmol})$ in 10 ml of THF, N-carbobenzoxyglycine ${ }^{14}$ $(2.96 \mathrm{~g}, 14.2 \mathrm{mmol})$ in 10 ml of THF, and $2 \mathrm{~b}(3.30 \mathrm{~g}, 7.1 \mathrm{mmol})$ in 10 ml of THF. The reaction mixture was worked up after 2.5 hr , as described above, to give a pale yellow oil (4.4 g). Tlic $\left(1 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}\right)$ of the oil indicated one major spot, tentatively assigned as $\mathbf{4 b}$, and traces of starting material ($\mathbf{2 b}$) and unsaturated 3. From several purifications by preparative tlc $\left(1.5 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}, 0.21 \mathrm{~g} /\right.$ three plates) we obtained a fairly pure (not analytical grade) sample of $4 \mathrm{~b}(0.18 \mathrm{~g}, 81 \%$ yield). Further attempts at purifying 4 b only led to some decomposition to the unsaturated 3. By the above preparative tle we obtained a sample of $3(8 \mathrm{mg}, 5 \%)$ which was identical in the ir, nmr , and uv with compound 3 as isolated from the reaction with 2 a .

Dibenzyl 2-Carbobenzoxyaminofumarate (3) and Dibenzyl 2-Carbobenzoxyaminomaleate (5).-A solution of $4 \mathrm{a}(10 \mathrm{mg})$, contaminated with a small amount of 3 , in 1 ml of CHCl_{3} was divided in half and a few crystals of imidazole were added to one portion. After both portions were stirred overnight a tlc examination indicated no change in the ratio of 4 a to 3 in the absence of imidazole, but about a $60-70 \%$ conversion to 3 in the presence of imidazole. Similarly, when $\mathbf{4 b}$ contaminated with only a trace of 3 was stirred overnight with imidazole there was only a $20-30 \%$ increase in intensity of the spot on tlc coresponding to 3 , whereas in the absence of imidazole there was no change.

A pure sample of $3(0.22 \mathrm{~g})$, when allowed to remain in a refrigerator for about 3 months, was slowly converted to approximately 5% of the cis isomer 5. Preparative tlc afforded 10 mg of 5, which could not be induced to crystallize. An analytical sample of 5 was obtained by chromatography as reported above for 3 , uv $\lambda_{\max } 211 \mathrm{~m} \mu(\epsilon 20,900)$ and $267(14,000)$. Compound 3 (75 mg) was more readily converted to 5 by dissolving it in 1 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, diluting with 15 ml of isooctane, and exposing it to daylight for 7 days. The solvent was removed by evaporation, and tlc of the resulting oil indicated a $25-35 \%$ enrichment of 5 : mass spectrum of $5 \mathrm{~m} / e 445\left(\mathrm{M}^{+}\right), 430,354\left(-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 310$ ($-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 248, 140, $107\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}^{+}\right.$), 91 (base peak).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{6}$: C, $70.11 ; \mathrm{H}, 5.20$. Found: C, 69.92 ; H, 5.48.

DL-Aspartic Acid from Dibenzyl 2-Carbobenzoxyaminofumarate (3).-To a solution of $3(0.10 \mathrm{~g}, 0.22 \mathrm{mmol})$ in 50% ethanol-dioxane (4 ml) was added 50 mg of PtO_{2}. The mixture was hydrogenated at 1 atm pressure for 70 min , during which the calculated amount of H_{2} was consumed. Removal of the catalyst by filtration and concentration of the filtrate gave a residue which was crystallized from $\mathrm{H}_{2} \mathrm{O}$-ethanol, yielding $12 \mathrm{mg}(41 \%)$ of dL-aspartic acid (identical in the ir with an authentic sample).
(14) J. P. Greenstein and M. Winitz, "Chemistry of the Amiro Acids." Vol. 2, Wiley, New York, N. Y., 1961, p 891.

Registry No. 2 a , 16712-81-5; 2b, 34910-00-4; 3, 34910-01-5; 5, 34910-02-6; L-asparagine, 70-47-3.

Acknowledgment.-The authors wish to thank Mr. John Naworal, University of Pittsburgh, for the mass spectral determinations, performed under Grant RR00273 from the National Institutes of Health.

Reaction of 3β-Acetoxy- $8 \alpha, 9 \alpha$-oxido- 5α-lanostane with Grignard Reagents ${ }^{1}$

George R. Pettit* and William R. Jones

Department of Chemistry, Arizona State University,
Tempe, Arizona 85281

Received April 13, 1970
Synthetic degradation of lanosterol has been used to prepare otherwise difficultly accessible 14α-methyl steroids. ${ }^{2}$ With the prospect of readily obtaining B/C ring juncture modifications of lanosterol for similar purposes, we decided to explore the oxirane ring opening reactions of an $8 \alpha, 9 \alpha$-oxidolanostane with methyl and allyl Grignard reagents. For this purpose dihydrolanosterol acetate (1) was oxidized in excellent yield to 3β-acetoxy- $8 \alpha, 9 \alpha$-oxido- 5α-lanostane (2). ${ }^{3}$

Methyllithium in ether did not attack the oxirane ring over a period of 19 days. With methylmagnesium iodide in refluxing toluene the product was dihydroagnosterol (3a). Allylmagnesium bromide ${ }^{4}$ in ether at 25° reacted completely in a few hours with epoxy
(1) Steroids and Related Natural Products. 79. For Part 78 see G. R. Pettit and Y. Kamano, Experientia, 28, in press. This investigation was supported by Public Health Service Research Grants RO1 CA08705-01, R01 CA08705-02, and R01 CA11451-01.
(2) Cf. G. R. Pettit and P. Hofer, Helv. Chim. Acta, 41, 2142 (1963); J. Chem. Soc., 44391963.
(3) J. Fried, J. W. Brown, and M. Applebaum, Tetrahedron Lett., 849 (1965): I. G. Guest and B. A. Marples, J. Chem. Soc. C. 1468 (1971).
(4) H. Felkin and G. Poussi, Tetrahedron Lett., 4153 (1965). The reactivity of allyl Grignard reagents toward epoxide ring-opening is much greater than that of methyl or isopropyl Grignard reagents. The stereochemical course leads to trans diaxial products.
acetate 2. The sole product was formulated as $3 \beta, 9 \alpha-$ dihydroxy- 5α-lanost-7-ene (4a) on the following basis.

Acetylation with pyridine and acetic anhydride under the usual conditions gave a monoacetyl derivative 4b which still contained a hydroxyl function. Very brief treatment with a trace of mineral acid converted the alcohol 4b into dihydroagnosteryl acetate (3b). The nmr spectrum of alcohol 4a showed the presence of a trisubstituted olefin. Further support for the olefin was provided by the mass spectrum, which displayed an $m / e 426$ fragment ($\mathrm{M}-18$). The foregoing would allow the product to be assigned structure 4 a or 5 , of which 4 a is preferred. In this respect the lithium in ethylamine reduction of epoxide 2 gives the α alcohol. ${ }^{3}$ Also, the strong vicinal 14α-methyl- 8α-hydroxy steric interaction in 5 is absent in 4.

When no products involving alkylation of the lanostane skeleton were detected the Grignard study was not pursued further. However, the new syntheses of dihydroagnosterol and alcohol 4 were considered potentially useful in approaches to natural products such as batracheotoxinin A .

Experimental Section ${ }^{5}$

Dihydroagnosteryl Acetate (3b).-To a solution of 3β-acetoxy$8 \alpha, 9 \alpha$-oxido- 5α-lanostane (0.65 g) in dry ether (25 ml) was added (during 5 min) the Grignard reagent (in ether) derived from magnesium turnings $(4.9 \mathrm{~g})$ and methyl iodide $(28 \mathrm{~g})$. After 20 hr at 25° dry toluene (75 ml) was added and the ether was removed by distillation. The solution was heated under reflux for 11 days, cooled, and poured over crushed ice. The product was isolated using ether to afford a brown grease which slowly solidified. Adsorption on activated alumina (22 g) from solution in benzene and elution with benzene-chloroform ($4: 1$) gave dihydroagnosterol (3a, 0.60 g): $\mathrm{mp} 150-154^{\circ} ; \lambda_{\max }^{\mathrm{ENOH}} 236,243$, and $252 \mathrm{~m} \mu$. Acetylation gave dihydroagnosteryl acetate, plates from ethanol: $\mathrm{mp} 167-169^{\circ} ; \lambda_{\max }^{\mathrm{EtOH}} 236,243$, and $252 \mathrm{~m} \mu$. Acetate 3b was identical ${ }^{5}$ with an authentic specimen.

Reaction between Allylmagnesium Bromide and Oxide 2.Allylmagnesium bromide was prepared ${ }^{6}$ and stored at 0° in a narrow-necked bottle fitted with a septum cap. The assay ${ }^{7}$ was 0.66 M and 15 ml of the reagent was added to oxide $2(0.71 \mathrm{~g})$ in dry ether (20 ml , under an atmosphere of dry nitrogen). The reaction mixture was kept at 22° and monitored by tle upon removal of $0.5-\mathrm{ml}$ aliquots. After 14 hr the mixture was poured into 5% ammonium sulfate (100 ml) at 5°. Ether (25 ml) was used for isolation. The product $(0.69 \mathrm{~g})$ was a clear oil which showed one component on tlc. Crystallization from methanol containing one drop of pyridine gave fine needles (0.30 g), mp $132-133^{\circ}$, of a compound formulated as $4 \mathrm{a}: \nu_{\max }^{\mathrm{KBr}} 3500-3200$ cm^{-1}; pmr (pyridine) $\delta 0.8,0.88,0.93,1.03,1.12$ (ring and sidechain methyl groups), 2.06 ($\mathrm{s}, 3$ protons), 3.5 (broad, 1 proton), 4.25 (1 proton), 5.18 and 5.47 ppm (broad, 1 proton); mass spectrum $m / e 426\left(\mathrm{M}^{+}-18\right)$.

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{2}$: C, 81.02; H, 11.79. Found: C, 80.77 ; H, 11.64.

The product $(0.18 \mathrm{~g})$ in pyridine $(1.5 \mathrm{ml})$-acetic anhydride (1 ml) was kept at 22° for 19 hr . Ether (30 ml) was added and the solution was washed with $2 N$ sodium bicarbonate until effervescence ceased ($5 \times 15 \mathrm{ml}$). Drying and solvent removal furnished a colorless solid (0.18 g), one component on tlc, which crystallized as needles from methanol containing one drop of pyridine. The alcohol weighed $0.13 \mathrm{~g}: \mathrm{mp} \mathrm{170-175}^{\circ}$ (raised to 171 175° by further recrystallization from the same solvent system); $\nu_{\text {max }}^{\mathrm{KBr}} 3580,1724$, and $1230 \mathrm{~cm}^{-1}$; pmr $\delta 0.675$ (C-13 Me), 0.86 $(\mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{C}-26,27$ methyl groups $), 0.90,0.99,1.18$ (C-4,

[^123]$10,14 \alpha$, and 20 methyl groups), 2.03 ($3 \beta-\mathrm{OAc}$), 4.5 (broad, $3 \alpha-\mathrm{H}$), 5.33 ppm (broad, $7-\mathrm{H}$).

Anai. Calcd for $\mathrm{C}_{22} \mathrm{H}_{54} \mathrm{O}_{3}$: C, 78.63; $\mathrm{H}, 11.55$. Found: C, 78.98; H, 11.64.

Conversion of Alcohol 4a to Dihydroagnosterol (3a).-Concentrated hydrochloric acid (1 drop) was added to alcohol 4 a (30 mg) in ethanol (5 ml). The ethanol was removed in vacuo and the residue was partitioned between ether (15 ml) and water (15 ml). The e-her phase was washed with $2 N$ sodium bicarbonate, dried, and evaporated to a white solid (28 mg) which crystallized frorr ethanol as needles of dihydroagnosterol (3a), mp and mp with an authentic sample $150-154^{\circ}, \lambda_{\max }^{\mathrm{ELOH}} 236$, 243 , and $252 \mathrm{~m} \mu$.

Registry No. -3a, 2644-75-9; 3b, 5600-01-1; 4a, 34910-26-4; 4b, 34910-27-5.

The Camptothecin δ-Lactone ${ }^{1 \mathrm{a}}$

George R. Pettit,* ${ }^{\text {b }}$ Ronald J. Quinn, Thomas H. Smith, and Peter Brown
Department of Chemistry, Arizona State University, Tempe, Arizona 85281

C. C. Cheng, Jarrell E. O'Brien, William J. Haggerty, and O. L. Salerni

Midwest Research Institute, Kansas City, Missouri 64110
Received January 31, 1972
As part of an approach to total synthesis of the antineoplastic agent ${ }^{2 \mathrm{a}-\mathrm{c}}$ camptothecin (1), ${ }^{\text {di, } \mathrm{e}}$ it became necessary to investigate synthesis of the terpenoid unit, ${ }^{3}$ or an appropriate subunit, of the alkaloid. Synthesis of camptothecin by combination of appropriate fragment molecules, involving formation of the pyridone amide bond and condensation with the pyrrolidinoquinoline entity, would require an eight-carbon unit. A δ-lactone precursor of the type depicted by
(1) (a) The research upon which this publication is based was performed pursuant to Contract No. NIH-71-2308 and PH 43-65-94 with Chemotherapy, National Cancer Institute, National Institutes of Health, Department of Health, Education and Welfare, and by Research Grants CA-11451-02 and CA--0612-04 from the National Cancer Institute and GP 4939 from the National Science Foundation. (b) Part XXVIII of the series Antineoplastic Agents. For part XXVII see G. R. Pettit, L. E. Houghton, N. H. Rogers, R. M. Coomes, D. F. Berger, P. R. Reucroft, J. F. Day, J. L. Hart well, and H. B. Wood, Jr., Experientia, 28, 381 (1972).
(2) (a) J. M. Venditti and B. J. Abbott. Lloydia, 30, 332 (1967). (b) W. D. DeWys, S. R. Humphreys, and A. Goldin, Cancer Chemother. Rep., 52, 229 (1968). (c) J. A. Gottlieb, A. M. Guarino, J. B. Call, V. T. Oliverio, and J. B. Block, ibid., 54, 1461 (1970). (d) M. E. Wall, M. C. Wani, C. E. Cook, K. H. Palmer, A. T. McPhail, and G. A. Sim, J. Amer. Chem. Soc., 88, 3888 (1966). (e) A T. McPhail and G. A. Sim, J. Chem. Soc. B, 923 (1968). Three total synthesis of camptothecin have recently been reported: G. Stork and A. G. Schaltz, J. Amer Chem. Soc., 93, 4074 (1971); R. Volkmann. S. Danishefsky, J. Eggler, and D. M. Solomon, ibid., 93, 5576 (1971); M. C. Wani, H. F. Camp jell, G. A. Brine, J. A. Kepler, M. E. Wall, and S. G. Levine, Abstracts, 162nd National Meeting of the American Chemical Society, Washington, D. C., Sept 12-17, 1971. Recent structure/activity investigations have been summerized by J. A. Beisler, J. Med. Chem., 14, 1116 (1971); T. K Liao, W. H. Nyberg, and C. C. Cheng, J. Heterocycl. Chem., 8, 373 (1971:; J. A. Kepler, M. C. Wani, J. N. McNaull, M. E. Wall, and S. G. Levine, J. Org. Chem., 34, 3853 (1969): M. C. Wani, J. A. Kepler, J. B. Thompson, M. E. Wall, and S. G. Levine, Chem. Commun., 404 (1970).
(3) The terpenoid origin of the nontryptophan portion of the indole alkaloids has been established; see A. R. Battersby, Pure Appl. Chem., 14, 117 (1967), and A. I. Scott, Accounts Chem. Res., 3, 151 (1970). Biogenetic linkage of camptothecin to the indole alkaloids has been suggested by E . Wenkert, K. G. Dave, R. G. Lewis, and P. W. Sprague, J. Amer. Chem. Soc., 89, 6741 (1967). A chemical transformation of the tetrahydrocarboline unit of the indole alkaloids to the camptothecin quinoline unit has been reported: E. Wintefeldt and H. Radunz, Chem. Commun., 374 (1971).
structure 2 seemed attractive and was investigated as follows.

Ethyl α-carbethoxy- γ-ethylglutaconate (3a) was known ${ }^{+}$and appeared a suitable first stage for the proposed synthesis. Accordingly, base condensation of dicthyl malonate with chloroform and concomitant climination of hydrogen chloride yielded the sodium salt of tetracthyl 1-propene-1,1,3,3-tetracarboxylate (ethyl α, γ-dicarbethoxy- α-glutaconate), ${ }^{5}$ which was ethylated directly to give ethyl α, γ-dicarbethoxy- α ethylglutaconate. ${ }^{4}$ Treatment of the latter compound with 1 molar equiv of sodium ethoxide was reported to yicld triester 3a in 95% yield. ${ }^{4}$ However, the decarbethoxylation reaction was accompanied, under a varicty of reaction conditions, by the formation of diethyl ethylmalonate. In our hands, this competing mode of reaction could only be suppressed to about 25% of the reaction product. The desired triester 3a was apparently formed by ethoxide attack at either of the C-3 carbethoxy groups, followed by elimination of ethyl carbonate to yield the resonance-stabilized anion 3 b , while attack at the C-1 carbethoxy group leads to the formation of diethyl ethylmalonate. Attack at the C-1 carbethoxy groups was confirmed by the isolation of the other product, ethyl propiolate, as its trimer triethyl 1,3,5-benzenctricarboxylate. ${ }^{6}$ The triester product 3 a was separable, by gas-liquid chromatography, into a major component and two minor components, presumably corresponding to the cis and trans 2 olefins and the 1 olefin. The triester mixture was used as such for the next step, as this involved a base condensation with resultant formation of the resonance-stabilized anion 3b. The anion structure would be expected, of course, to be independent of the actual olefin isomer or isomer mixture used for its genesis.

Base condensation of the triester mixture 3a with formaldehyde gave the desired lactone, diethyl 3-eth-y-i,, 6 -dihydro-2H-pyran-2-one-i, 5 -dicarboxylate (2). Formation of neutral lactone 2 would be expected to regenerate base as ethoxide ions, and should, therefore, proceed in the presence of a catalytic amount of base. Indeed, this mechanistic consideration proved to be critical, as the use of 1 molar equiv of sodium ethoxide gave a complex reaction mixture containing virtually no lactone. Increasing the proportion of solvent, ethanol, also gave poorer yields. The reaction was best accomplished in the absence of solvent and with catalytic amounts of sodium ethoxide.
The mass spectrum of lactone 2 showed a weak molecular ion at $m / e 270$ in accord with observed weak or zero molecular ions for substituted diethyl malonates. ${ }^{7}$ The spectrum showed similarities to those reported for substituted diethyl malonates in which there was no possibility of a McLafferty rearrangement of the alkyl substituents. ${ }^{7}$ The base peak at $m / e 198$ could be obtained by hydrogen rearrangement to give a M $\mathrm{COOC}_{2} \mathrm{H}_{4}$ ion as well as by initial expulsion of CO_{2} from the lactone ${ }^{8}$ followed by loss of $\mathrm{C}_{2} \mathrm{H}_{4}(226 \rightarrow 198)$.

[^124]The $m / e 198$ peak showed metastable ion peaks for loss of $\mathrm{H}_{2} \mathrm{O}(\mathrm{MI}-90)$ followed by loss of $28\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ leading to $\mathrm{m} / \mathrm{e} 152$, the second most abundant peak, and for loss of $28\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{M}-100)$, as expected for ethyl esters. There was a metastable peak for the conversion $m / e 198 \rightarrow 125$ corresponding to loss of $\mathrm{COOC}_{2} \mathrm{H}_{5}$.

The isomeric lactone, diethyl 5-ethyl-5,6-dihydro2 H -pyran-2-one-3,5-dicarboxylate (4), was obtained as a minor product from the lactonization reaction via attack at C-3 of the triester anion 3 b by formaldehyde. The structure was confirmed by analysis of the nuclear magnetic resonance spectra of the two lactones (2 and 4). The vinylic proton of lactone 4 underwent a downfield shift of 62.4 Hz relative to that of lactone 2 due to the electron-withdrawing carbethoxy group at C-5, while the methylene protons of the ethyl group showed a corresponding upfield shift of 31.2 Hz corresponding to the change in environment from allylic to saturated.

Direct hydroxylation of lactone 2 with, e.g., monopersuccinic acid in water, as well as other methods, such as osmium tetroxide or ruthenium tetroxide, were unsuccessful. Generally, lactone 2 was isolated in good recovery. Interestingly, application of the persuccinic acid reaction ${ }^{9}$ to isomeric lactone 4 gave only epoxide 5.

An extensive effort was devoted to developing a means for partial decarboxylation of malonate 2 to provide ethyl ester 6. However, application of various

1

3a, $R=H$
b, $R=-$

5

4

6
acidic and basic reaction conditions led to a variety of different products arising from a facile retroaldol degradation of lactone 2. Several ncutral methods (e.g., dimethyl sulfoxide-sodium cyanide and lithium iodide) offered no regress and other approaches to camptothecin were eventually considered more promising. Nevertheless, the convenient synthesis developed for lactone 2 should prove valuable in evaluating camptothecin E-ring structure/activity relationships.

Experimental Section

Melting points are uncorrected and were recorded on a Kofler melting point apparatus. All organic solvent extracts were
(9) R. Lombard and G. Schroeder, Bull. Soc. Chim. Fr., 2800 (1963).
dried over either anhydrous magnesium sulfate or anhydrous sodium sulfate. The nuclear magnetic resonance (nmr) spectra (CDCl_{3}, TMS internal standard) were recorded by Miss K. Reimer using a Varian A-60 spectrometer. Gas-liquid chromatography was performed with a Varian 1200 instrument (flame ionization detector) using nitrogen as carrier gas. Elemental microanalytical data was provided by Dr. A. Berrhardt, Mikroanalytisches Laboratorium, 5251 Elbach uber Engelskirchen, West Germany. Mass spectral data was obtained by Mr. R. Scott, employing an Atlas CH-4B mass spectrometer equipped with a molecular beam inlet system.

Tetraethyl 1-Pentene-1,1,3,3-tetracarboxylate (Ethyl $\alpha, \gamma-$ Dicarbethoxy- α-ethylglutaconate). -The following method is a modification of those reported by Ingold and Perren, ${ }^{\text {sb }}$ for the preparation of the sodium salt of tetraethyl 1-propene-1,1,3,3tetracarboxylate, and Thole and Thorpe, ${ }^{4}$ for the ethylation reaction.
Sodium ($46 \mathrm{~g}, 2 \mathrm{~mol}$) was dissolved in ethanol absolute, 750 $\mathrm{ml})$. Diethyl malonate ($160.2 \mathrm{~g}, 1 \mathrm{~mol}$) was added over 30 min with heating and stirring and the mixture was heated at reflux for a further 15 min . Heating was stopped and, as soon as reflux had subsided, chloroform ($60.5 \mathrm{~g}, 0.51 \mathrm{~mol}$) was added at a rate sufficient to maintain vigorous reflux (over 15 min). Heating was resumed and the mixture was heated at reflux for 3 hr . The apparatus was arranged for distillation and 110 ml of the solvent was distilled from the reaction vessel. ${ }^{10}$ The apparatus was returned to the reflux position, ethyl iodide ($85.8 \mathrm{~g}, 0.55 \mathrm{~mol}$) was addec over 10 min , and the mixture was refluxed for a further 36 hr . After cooling the reaction mixture was poured into water $(750 \mathrm{ml})$ and extracted with chloroform ($10 \times 2100 \mathrm{ml}$). The chloroform layer was washed with potassium hydroxide solution $(10 \%, 5 \times 200 \mathrm{ml})$ and water $(5 \times 200 \mathrm{ml})$ and dried, and the solvent was removed under reduced pressure to give an orange oil (203.2 g). Fractionation (Vigreux column) gave tetraethyl 1-pentene-1,1,3,3-tetracarboxylate ($46-63 \%$), bp 153-157 ${ }^{\circ}$ (1.5 mm) [reported ${ }^{4} \mathrm{bp} 213^{\circ}(20 \mathrm{~mm})$]. The nmr spectrum showed $\delta 0.88$ (3 H , triplet, $J=7.6 \mathrm{~Hz}$, protons on C-5 coupled to C-4 methylene protons), 1.28 and $1.325(12 \mathrm{H}$, two riplets, $J=$ 7.1 Hz , methyl protons), $2.22(2 \mathrm{H}$, quartet, $J=7.6 \mathrm{~Hz}$, protons on C-4 coupled to C-5 methyl protons), $4.0-4.5$ (8 H , complex methylene multiplet), $7.61 \mathrm{ppm}(1 \mathrm{H}$, singlet, vinylic proton on C_{2}).
Triethyl 3-Ethyl-1(2)-pentene-1,1,3-tricarboxyla:e (Ethyl α -Carbethoxy- γ-ethylglutaconate) (3a).-Sodium ($5.36 \mathrm{~g}, 0.233$ mol) was dissolved in ethanol (absolute, 670 ml) and the solution was cooled to 10°. Tetraethyl 1-pentene-1,1,3,3-tetracarboxylate ($83.4 \mathrm{~g}, 0.233 \mathrm{~mol}$) in ethanol (absolute, 670 ml) was added over 30 min with the temperature maintained between 6 and 10° (immersion in an ice bath), and a deep yellow coor appeared. The reaction mixture was stirred for $20 \mathrm{hr} \mathrm{at} 10^{\circ}$ and then poured into chloroform (500 ml) and shaken well with hydrochloric acid $(0.6 \mathrm{~N}, 375 \mathrm{ml})$. The aqueous layer was extracted with chloroform ($3 \times 200 \mathrm{ml}$) and the combined chlorofcrm layer was washed with saturated salt solution ($3 \times 250 \mathrm{ml}$), dried, and evaporated under reduced pressure to give a yellow oil (57.5 g). Glc [column, $3 \% \mathrm{QF}_{1}$ on Chromosorb W ($60-80$ mesh), $5 \mathrm{ft} \times$ 0.125 in., Pyrex; flow rate, $12 \mathrm{ml} / \mathrm{min}$; temperature, initial 80°, final 215°, at an average of 3.75° per minute] showed diethyl ethylmalonate (appearance temperature $117-120^{\circ}$) and three peaks with an appearance temperature around 170° in the ratio of $28: 26: 64$. Diethyl ethylmalonate was removed by fractional vacuum distillation and the mixture of isomers of triethyl 3-ethyl-1(2)-pentene-1,1,3-tricarboxylate (3a) was used as such for the next step.

Diethyl 3-Ethyl-5,6-dihydro-2H-pyran-2-one-5,5-dicarboxylate (2). -Sodium ethoxide (60 mg), triethyl 3-ethyl-1(2)-pentene-1,1,3-tricarboxylate $(7.68 \mathrm{~g})$, and paraformaldehyde (0.801 g) were heated to 97° over 60 min (the reaction mixture becoming clear at about 80°) and then maintained at 97° for 3.25 hr . The mixture was cooled and dissolved in ether (50 ml), and the ethereal solution was washed with dilute hydrochloric acid (1 N , $3 \times 10 \mathrm{ml})$ and water ($2 \times 10 \mathrm{ml}$), dried, and evaporated under reduced pressure to give an oil (5.96 g). Chromatography on 24 g of silica gel (Merck $0.05-0.2 \mathrm{~mm}$) gave diethyl 3-ethyl-5,6-

[^125]dihydro-2H-pyran-2-one-5,5-dicarboxylate (2) (2.15 g) as a colorless oil, eluted with ligroin-benzene (4:1). The nmr spectrum showed $\delta 1.11(3 \mathrm{H}$, triplet, $J=7.4 \mathrm{~Hz}), 1.28(6 \mathrm{H}$, triplet, $J=7 . \mathrm{C} \mathrm{Hz}), 2.40(2 \mathrm{H}$, doublet of quartets, $J=7.4$, $7.4,7.4,1.4 \mathrm{~Hz}), 4.26(4 \mathrm{H}$, quartet, $J=7.0 \mathrm{~Hz}), 4.69[2 \mathrm{H}$, narrow signal showing small (0.8 Hz) splittingl, $6.71 \mathrm{ppm}(1 \mathrm{H}$, narrow signal, $W_{1 / 2}=3.6 \mathrm{~Hz}$).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 57.77 ; $\mathrm{H}, 6.71$. Found: C, 57.98; H, 6.88.

The mass spectrum showed m / e (rel intensity at 70 and 12 eV , respectively) $27 \mathrm{I}(M+1,13,2), 270(M, 1.5,4), 226(10,27)$, $198(100,100), 180(27,26), 170(25,7), 169(19,3), 152(94,25)$, $151(38,0), 125(83,6), 124(30,2) ; \mathbf{M}^{+}$at 173.3 (calcd for $226 \rightarrow$ 198, 173.5), $163.5(198 \rightarrow 180,163.6), 146.0(198 \rightarrow 170,145.9)$, $143.5(226 \rightarrow 180,143.4), 128.3(180 \rightarrow 152,128.3), 106.8$ ($270 \rightarrow 170,107.0$), 101.5 ($152 \rightarrow 124,101.2$).

Further elution of the column gave diethyl 5-ethyl-5,6-dihydro-2H-pyran-2-one-3,5-dicarboxylate ($4,0.42 \mathrm{~g}$) as a colorless oil. The nmr spectrum showed $\delta 0.98(3 \mathrm{H}$, triplet, $J=7.2 \mathrm{~Hz})$, $1.23(3 \mathrm{H}$, triplet, $J=7.0 \mathrm{~Hz}), 1.35(3 \mathrm{H}$, triplet, $J=7.0 \mathrm{~Hz})$, $1.88(2 \mathrm{H}$, quartet, $J=7.2 \mathrm{~Hz}), 4.0-4.5(6 \mathrm{H}$, complex multiplet), 7.75 ppm (1 H , singlet).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 57.77 ; $\mathrm{H}, 6.71$. Found: C, 57.65 ; $\mathrm{H}, 6.78$.
Diethyl 5-Ethyl-3,4-epoxytetrahydro-2 H -pyran-2-one-3,5-dicarboxylate (5).-A suspension of peroxydisuccinic acid ${ }^{9}$ (135 $\mathrm{mg})$ in water $(1 \mathrm{ml})$ was heated and stirred at 50° for 1 hr . The resulting aqueous solution was cooled to 42° and diethyl 5 -ethyl5,6 -dihydro- 2 H -Fyran-2-one-3,5-dicarboxylate (4) (135 mg) was added. The reaction mixture was stirred at 42° for 8 hr , cooled to about 10°, neutralized with sodium bicarbonate, and extracted with ether. The ethereal solution was washed with water $(2 \times 10 \mathrm{ml})$, dried, ard evaporated under reduced pressure to give a quan-itative yield of diester 5 . Recrystallization from ligroin gave colorless crystals: yield 43 mg ; mp $50-51^{\circ}$; glc [column, 5% SE- 30 on Chromosorb W ($60-80$ mesh), $5 \mathrm{ft} \times$ 0.125 in., stainless steel; temperature, -178°; flow rate, 10 $\mathrm{ml} / \mathrm{min}$] retention time 10.5 min relative to starting material 9.5 min . The glc of the mother liquors showed only the one peak corresponding to the isolated solid. The mass spectrum showed a peak at $m / e 286$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7}, \mathrm{M}^{+} 286$). The nmr spectrum showed $\delta 1.02(3 \mathrm{H}$, triplet, $J=7 \mathrm{~Hz}), 1.32(3 \mathrm{H}$, triplet $J=7 \mathrm{~Hz}), 1.33(3 \mathrm{H}$, triplet, $J=7 \mathrm{~Hz}), 1.8(2 \mathrm{H}$, quartet, $J=7 \mathrm{~Hz}$, exhibiting further splitting), 4.0-4.6 ppm (7 H , complex multiplet).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7}$: C, 54.54; $\mathrm{H}, 6.34$. Found: C, 54.40; H, 6.27.

Registry No.-2, 34993-71-0; 4, 34993-72-1; 5, 34993-73-2; tetraethyl 1-pentene-1,1,3,3-tetracarboxylate, 34993-74-3.

Catalytic Deoxygenation of Organic Compounds by Carbon Monoxide. II. ${ }^{1}$ Direct Synthesis of Schiff Bases from Aromatic Nitro Derivatives, Aldehydes, and Carbon Monoxide

Abul F. M. Iqbal
Monsanto Research S.A., Eggbühlstrasse 36,
8050 Zürich, Switzerland
Received January 28, 1972
The subject of the present communication is a novel synthesis of Schiff bases by intercepting in situ deoxygenated nitro derivatives by aldehydes. Thus, in the presence of a group VIII metal catalyst (e.g., rhodium carbcnyl), the interaction of benzaldehyde and aromatic nitro compounds under a pressure of
(1) For part I, see A. F. M. Iqbal, Tetrahedron Lett., 3385 (1971).

Table I
Schiff Bases by the Catalytic Conversion of Benzaldehyde and Aromatic Nitro Compounds in the Presence of Carbon Monoxide ${ }^{a}$

Schiff base	$\mathrm{R}=$	Yield. \% ${ }^{\text {b }}$	Bp. ${ }^{\circ} \mathrm{C}$ (Torr) ${ }^{\text {c }}$		$\underset{\mu^{\prime}}{\operatorname{Ir}(\nu \mathrm{N})} \mathrm{I}^{d}$	Physical constants ${ }^{\prime}$ \qquad		
				Mp, ${ }^{\circ} \mathrm{C}^{\text {c }}$		$\overbrace{\mathrm{CH}=\mathrm{N}}^{1 \mathrm{H}}$	chemical shif Aromatic	${ }^{\text {e }} \mathrm{CH}_{3}$
Ia	H	80	88-92 (0.3)	48-49	6.15	8.28	6.9-8.0	
Ia	H	6^{9}	88-92 (0.3)	48-49	6.15	8.28	6.9-8.0	
Ia	H	$78^{\text {h }}$	88-92 (0.3)	48-49	6.15	8.28	6.9-8.0	
Ib	$p-\mathrm{OCH}_{3}$	60		71-72	6.15	8.30	6.65-7.95	3.70
Ic	$p-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	65		98-99	6.19	8.37	6.5-7.95	2.93
Id	$o-\mathrm{CH}_{3}$	82	94-98 (0.4)		6.12	8.17	6.6-7.95	2.32
Ie	$m-\mathrm{CH}_{3}$	85	90-93 (0.3)		6.15	8.25	6.7-7.95	2.31
If	$p-\mathrm{CH}_{3}$	83	97-100 (0.3)		6.14	8.24	6.8-7.9	2.26
Ig	p-Phenyl	84		147	6.16	8.41	7.05-8.05	

${ }^{a}$ Constant conditions: 0.1 mol benzaldehyde, 0.11 mol nitro derivative, $10^{-5} \mathrm{~mol}$ hexarhodium hexadecacarbonyl, 50 ml pyridine (solvent), 150 atm carbon monoxide (initial pressure at room temperature), $170^{\circ}, 3 \mathrm{hr}, 0.5-1$. rocking stainless steel autoclave. ${ }^{b}$ Based on benzaldehyde. ${ }^{c}$ Boiling and melting points are uncorrected. ${ }^{d}$ Liquids were measured neat, solids in chloroform. ${ }^{e}$ Nmr spectra were taken in carbon tetrachloride. 'Observed physical constants are identical with those of authentic samples, easily synthesized by applying the standard procedure [see, for example, A. I. Vogel, "A Textbook of Practical Organic Chemistry," Longmans, Green and Co., London, 1956, p 653] for condensation of aldehydes with corresponding amines. © Yield obtained on substituting pyridine by 50 ml of benzene. ${ }^{h}$ In dry N-methylpyrrolidine as solvent (at $70^{\circ}, 50 \mathrm{~atm}, 6 \mathrm{hr}$).
carbon monoxide eventuated in the formation of the corresponding azomethines in high yields (eq 1).

Carbon monoxide apparently functions here solely as a deoxygenating agent. All reactions were carried out in a stainless steel autoclave, using dry pyridine as solvent and hexarhodium hexadecacarbonyl as catalyst. The Schiff bases were obtained by fractional distillation or, where necessary, by fractional crystallization of the pyridine-free reaction mixture. The identity of the azomethine compounds has been ascertained by derivatization, as well as by ir and nmr spectroscopic comparison with authentic samples.

Some results and reaction conditions have been summarized in Table I. Only 5-7\% Schiff base formation takes place in benzene, while over 80% yield of the same is obtained in pyridine solvent. Anhydrous N methylpyrrolidine, for example, enables successful operation under essentially mild conditions ($70^{\circ}, 50$ atm CO). Analogous enhancement of the catalytic activity of rhodium carbonyls by the addition of tertiary amines has been noted previously. ${ }^{1}$

Azomethine yields from dimethylamino- and me-thoxy-substituted nitrobenzenes are distinctly lower. However, in view of the paucity of data and manipulative losses, particularly during work-up of the latter compounds, substituent effects are not easy to interpret. Some trends may seem apparent; nonetheless, it would be premature to make any generalizations. While exclusively rhodium carbonyl has been listed in Table I, under analogous conditions, iron pentacarbonyl, triruthenium dodecacarbonyl, and dicobalt octacarbonyl likewise catalyze the formation of Schiff base by the present route. In the absence of any one of these metals, no formation of the corresponding azomethine derivative was observed under the given conditions.

A reasonable explanation for Schiff bases would be eq 2 . This is unlikely, since intermediacy of amines is

precluded by the absence of water ${ }^{1}$ or of sufficiently high pressures of hydrogen. ${ }^{2}$ The formation of aryl isocyanate by reductive carbonylation ${ }^{5}$ of aromatic nitro compounds would, on the other hand, suggest the following route ${ }^{6}$ (eq 3).

$$
\begin{equation*}
\mathrm{ArNO}_{2} \longrightarrow \mathrm{ArNCO} \xrightarrow{\mathrm{PhCHO}} \mathrm{ArN}=\mathrm{HCPh} \tag{3}
\end{equation*}
$$

However, control experiments with nitrobenzene and ethanol, in place of benzaldehyde, under conditions of azomethine formation yielded but small amounts of the corresponding urethane ($<10 \%$) and urea ($<5 \%$) derivatives. The major product, as expected, ${ }^{1}$ was aniline (ca. 45%), which could not have originated in phenyl isocyanate since no water was present. While consequently the isocyanate route (eq 3) may at best account for a minor portion of Schiff base, we believe that the preponderant mechanism incorporates the following sequence of reactions.

(2) At low partial pressures of hydrogen the corresponding 1,3-diarylureas are formed ${ }^{2,4}$ along pathways independent of intermediate amine.
(3) A. F. M. Iqbal, submitted for publication.
(4) F. L'Eplattenier, P. Matthys, and F. Calderazzo, Inorg. Chem., 9, 342 (1970).
(5) W. B. Hardy and R. P. Bennett, Tetrahedron Lett., 961 (1967).
(6) H. Staudinger and R. Endle, Ber., 50, 1042 (1917).

The first step is considered to involve the catalytic deoxygenation of the nitro compound to a nitrene (II), discrete or complexed, whose subsequent addition to the carbonyl compound, present in solution, would furnish the oxazirane IIIa, and correspondingly the isomeric nitrone IIIb.

The intermediacy of nitrene and nitrenoid intermediates has been invoked by previous investigators ${ }^{4,7,8}$ in an attempt to rationalize the formation of an array of products from catalytic coversions of nitro compounds with carbon monoxide. Even in formation of isocyanates, ${ }^{5}$ nitrene intervention is made very probable by the analogous reaction of azides. ${ }^{9}$ One might thus expect in situ trapping of the reactive intermediate by aldehyde (vide supra) to prevail over transformation to isocyanate and subsequent reaction (eq 3). As additional persuasive evidence for the first two steps may be cited the formation of Schiff bases by thermolysis of phenyl azide in aldehydes or ketone, -eported by Neiman, et al. ${ }^{10,11}$ The expected nitrone o: oxazirane, however, remained elusive in these latter reactions. This fact is ascribed by the authors to probable oxidation of excess carbonyl compound by the oxygenated intermediates, which in the process become reduced to Schiff base.

Once formed, III can be reduced by carbon monoxide in the presence of rhodium carbonyl to the Schiff base I, as could also be verified experimentally.: ${ }^{2}$

Experimental Section

Materials.-Commercial carbon monoxide was used without further purification. Benzaldehyde and various nitro compounds were freshly distilled prior to reaction. Hexarhodium hexadecacarbonyl was prepared by the reductive carbonylation of rhodium chloride in the presence of iron pentacarbonyl. ${ }^{14}$ Pyridine and N-methylpyrrolidine were additionally dried and distilled over potassium hydroxide. Authentic samples of Schiff bases for comparison of physical constants were synthesized by usual condensation ${ }^{2}$ of benzaldehyde with corresponding amines.

General Procedure for Schiff Bases.-All reactions were carried out in a stainless steel autoclave of $500-\mathrm{ml}$ capacity, heated by an external rocking electric oven. Only one experiment, with benzaldehdye and p-nitrobiphenyl, will be described here to exemplify the general procedure adopted; the effest of varying conditions can be seen from the data presented in Table I. A solution o: benzaldehyde (0.1 mol), p-nitrobiphenyl (0.11 mol), and hexarhodium hexadecacarbonyl ($10^{-5} \mathrm{~mol}$) in 50 ml of anhydrous pyridine was allowed to react with carbon monoxide (150 atm). The content of the autoclave was heated during 40 \min to $16.5-170^{\circ}$ and held at this temperature for 3 hr . After cooling, the autoclave was discharged and pyridine was evaporated from the mixture under vacuum. The residue was swirled with ca. $40-50 \mathrm{ml}$ of methanol and filtered to give in 84% yield substantially pure crystals of N-benzylidene- p-כhenylaniline (Ig), mp 147°. Identity of the compound was confirmed by mixture melting point, ir, and nmr spectroscopic comparison with an authentic sample. Yields and physical properties of further azomethine derivatives are compiled in Table I.

[^126](8) T. Kajimoto and J. Tsuji, Bull. Chem. Soc. Jap., 42, 827 (1969).
(9) R. P. Bennett and W. B. Hardy, J. Amer. Chem. Soc., 90, 3295 (1968).
(10) L. A. Neiman, V. I. Maimind, and M. M. Shemyakin, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1498 (1962). ${ }^{11}$
(11) Compare also Izv. Akad. Nauk SSSR, Ser. Khim., 1831 (1964).
(12) For example, α-phenyl- N-phenylnitrone ${ }^{13}$ was smoothly deoxygenated by hexarhodium hexadecacarbonyl at 150° and 130 atm carbon monoxide pressure to N-benzylideneaniline.
(13) O. H. Wheeler and P. H. Gore, J. A mer. Chem. Soc., 78, 3363 (1956).
(14) B. L. Booth, M. J. Else, R. Fields, H. Goldwhite, and R. N. Haszeldine, J. Oroanometal. Chem., 14, 417 (1968).

Registry No.-Ia, 538-51-2; Ib, 783-08-4; Ic, 889-38-3; Id, 5877-55-4; Ie, 5877-58-7; If, 2272-45-9; Ig, 13924-28-2; carbon monoxide, 630-08-0.

Conformational Preference of cis-8-Oxabicyclo[4.3.0]non-3-ene

Bradford P. Mundy,* Kauo-Rong Sun, and Rodney D. Otzenberger ${ }^{1}$
Department of Chemistry, Montana State University, Bozeman, Montana 59715

Received January 25, 1972
cis-8-Oxabicyclo[4.3.0]non-3-ene (1) has found occasional use as a model of cis-bicyclo[4.3.0]non-3-ene (2), primarily due to the ease of preparing $1 .{ }^{2}$ As part of our effort to test the validity of using an oxygencontaining mclecule as a model for its carbocyclic analog, ${ }^{3}$ we examined the ground-state conformation of 1.

1

2

Using results based on the steric course of epoxidation, previous investigations have suggested that 5 is the preferred ground-state conformer of $2^{4}\left(\right.$ Scheme $\left.I^{5}\right)$. We have examined the products from epoxidation of 1 and find a fortuitously similar product ratio (Scheme I). These data wculd appear to support, based on steric data alone, conformer 8 as the ground-state conformer. Furthermore, this would be consistent with the steric course of oxymercuration and the oxygen participation noted for this reaction. ${ }^{6}$ However, the nmr spectrum of 1 is better accommodated by conformer 9 .

The spectrum of 1 exhibited a multiplet for the pro-
(1) NDEA Predoctoral Fellow, 1968-1971. Abstracted, in part, from the Ph.D. Thesis of Rodney D. Otzenberger, Montana State University, 1971.
(2) (a) E. L. Eliel and C. Pillar, J. Amer. Chem. Soc., 77, 3600 (1955); (b) B. Rickborn and S. Y. Lwo, J. Org. Chem., 30, 2212 (1965).
(3) (a) B. P. Mundy, A. R. DeBernardis, and R. D. Otzenberger, ibid., 36, 3830 (1971); (b) B. P. Mundy and R. D. Otzenberger, ibid., 37, 677 (1972).
(4) J. C. Jallageas and E. Casadevall, C. R. Acad. Sci., Ser. C, 268, 449 (1969).
(5) We did not a aalyze the epoxides, but rather compared the alcohols resulting from lithium aluminum hydride reduction of the epoxide mixture. The stereochemistry of the alcohols had been previously assigned, ${ }^{3 \mathrm{~b}}$ and the known stereospecificity of reductive opening of the epoxide moiety assured us that we were analyzing an alcohol mixture representative of the epoxide mixture.
(6) See ref 3 b . The stereospecificity and oxygen participation is best explained by invoking an intermediate for reactions proceeding via carbonium ion intermediates.

Figure 1.-Partial nmr spectrum of cis-8-oxabicyclo[4.3.0]-non-3-ene.

Scheme I
Steric Course of Epoxidations

tons adjacent to the ether oxygen. The spectrum of cis-S-oxabicyclo[4.3.0]7,7-dideuterionon-3-ene (10) ex-

8

9

10
hibited the same multiplet, but with only half the "intensity." This requires that H_{a} and H_{a}, share equiv-
alent magnetic environments, as must H_{b} and H_{b}. An analysis of the coupling of these protons with each other and with the protons at the ring juncture (Figure 1) suggests that 9 will be the stable conformer.

A very simple ABX pattern for the spectrum of 1 can be analyzed. Protons $\mathrm{H}_{\mathrm{a}}\left(\mathrm{H}_{\mathrm{a}^{\prime}}\right)$ and $\mathrm{H}_{\mathrm{b}}\left(\mathrm{H}_{\mathrm{b}^{\prime}}\right)$ exist in different magnetic environments, leading to different chemical shifts of $\delta 3.46$ and 3.83 , respectively. H_{a} couples with H_{b} to give a coupling constant of $J=7.8$ cps. The only other coupling available now can be between the proton at the ring juncture. At this point we face interpretative problems because coupling con-stant-dihedral angle relationships have not been well studied for hetcrocyclic systems. However, we will assign the larger coupling constant to the trans coupling of H_{b} with the ring juncture proton. Additional chemical evidence supports the necessary conformation, 9 , resulting from this assignment. If 8 were the ground-state conformer, proton H_{b} would be expected to be upfield from H_{a} because it would be influenced by the shielding cone of the alkene system. Another argument for 9 being the ground-state conformer might be suggested from the simple suggestion that in 8 there would be extensive repulsion of the π clectrons with the nonbonding electrons of oxygen. The effects of interacting dipoles of oxygen heteroatoms has been well documented in the field of carbohydrate chemistry. ${ }^{7}$

Although the use of molecular models does not always solve conformational problems, their use can be instructive in the sense that certain conformations are readily noted to be improbable. Space-filling models are particularly useful in this study and it can be readily suggested that only two conformations, 8 and 9, are reasonable, both maintaining a boat conformation of the cyclohexene moicty. As we have already noted, nmr evidence is consistent with, but does not prove, the assumption that 9 is the ground-state conformer. We next sought chemical evidence to substantiate our assignment.

Buttressing our argument for 9 being the groundstate conformer are the results from our studies related to the steric course of hydroboration. Because the transition state for hydroboration has a structure similar to that of the reactants, it has been suggested that the stereochemistry of the reaction products can bc correlated with the ground state of the reactants. ${ }^{8}$ Brown ${ }^{\text {sc }}$ has convincingly argued that the observed high reactivity for diborane addition is most consistent with a low activation energy, and with thujopsene has suggested that the energy of interconversion of conformations would be greater than the energy of activation for diborane addition. Although we do not have the necessary thermodynamic data, we suggest that, in our fused ring system, conformational interconversions might be also expected to be higher than the activation energy for diborane addition. With this reasonable assumption we can consider transition states 11 and 12 , resembling 9 and 8 , respectively. The ex-

[^127]pected major product resulting from 11 would be 13^{9} and from 12 would be $14 .{ }^{10}$ We find 13 to make up 72% of the reaction product after addition of diborane. The apparent insensitivity of 1 to steric demands of the reactants is most consistent with 9 being the groundstate conformer. ${ }^{11}$

Diborane is known to complex with tetrahydrofuran. ${ }^{12}$ That our results from diborane addition are not merely a reflection of simple coordination with the ether oxygen of 1 , followed by a rapid transfer to the π system, can best be seen by examining space-filling models. Steric crowding around the π system of 8 is so great that it precludes the possibility of addition, as might be suggested by 15 . If complexing were to occur, it would most certainly have to take place on the other face of the tetrahydrofuran moiety. This brings us to another argument against an intermediate such as 15. Since the reaction is carried out in an ether, a consideration of the high reactivity of diborane with alkene bonds ccupled with the necessary and unfavorable competition of solvent and the oxygen of 1 would suggest that preferential complexing, as in 15, is not reasonable.

The results of this work, coupled with our previous investigations relating to the directive ${ }^{33}$ and electronic effects of the oxygen heteroatom, ${ }^{3 \mathrm{~b}}$ clearly demonstrate
(9) Attack of the other side of the π system would be less favorable due to interference of the protons at the ring juncture. Being in a boat, this interaction would be of critical importance, similar to that found in the lack of endo addition to nonbornene.
(10) Space-filling models clearly indicate that in conformation 12 there is no possibility of attack from the other side of the π system.
(11) We find an almost identical product ratio after the addition of disiamylborane.
(12) H. O. House, "Modern Synthetic Reactions," W. A. Benjamin, New York, N'. Y., 1965, p 42.
that there can be serious consequences resulting from the use of heterocyclic molecules as models for the carbocyclic analogs.

Experimental Section

The nmr spectra were recorded on a Varian A-60 instrument, using deuteriochloroform as solvent and tetramethylsilane as standard.

Epoxidation of cis-8-Oxabicyclo[4.3.0]non-3-ene (1).-To 5 ml of chloroform containing 5 mmol of perbenzoic acid ${ }^{13}$ was added 0.5 g of 1 . The reaction mixture was maintained at 0° for 3 days, after which it was washed with a solution of 10% bicarbonate. The chloroform solution was dried and reduced in volume to yield 0.56 g of crude product. Distillation yielded 240 mg of a water-clear liquid, bp $94-98^{\circ}(9 \mathrm{~mm})$. The epoxide mixture was immediately reduced with $2^{\circ} \mathrm{mg}$ of lithium aluminum hydride in 10 ml of dry tetrahydrofuran. The known alcohols ${ }^{3 \mathrm{~b}}$ resulting from this procedure were analyzed by analytical glc.

Synthesis of cis-8-Oxabicyclo[4.3.0]7,7-dideuterionon-3-ene (10).-Following the method of Bailey, ${ }^{14} 7.7 \mathrm{~g}$ of cis-1,2,3,6tetrahydrophthalic anhydride in 40 ml of anhydrous tetrahydrofuran were slowly added to a cooled solution prepared from 2.0 g of sodium borohydride in 10 ml of tetrahydrofuran. After 1 hr , 20 ml of 6 M hydrochloric acid was cautiously added to the reaction mixture. After the addition had been completed, the reaction mixture was extracted with dichloromethane. The combined extracts were dried, filtered, and distilled, yielding 1.7 g of product, bp $129-132^{\circ}(10 \mathrm{~mm})$. This lactone was taken directly onto the next step, where $0 . \overline{\mathrm{j}} \mathrm{g}$ of lithium aluminum deuteride and 30 ml of anhydrous tetrahydrofuran reduced it to the 1,4 -diol $(0.75 \mathrm{~g})$. Cyclization by the method of Eliel ${ }^{2 a}$ was affected with 1 g of p-toluenesulfonyl ch.oride in 10 ml of pyridine. The product, identica by gle with 1 , exhibited an nmr spectrum identical with that of 1 , except that the portions of the spectrum assigned to the protons at C-7 and C-9 exhibited only half the intensity.

Hydroboration of cis-8-Oxabicyclo[4.3.0]non-3-ene (1).-To a reaction mixture prepared from $1 . \overline{\mathrm{j}} \mathrm{g}$ of sodium borohydride and 3.6 g of 1 in 17 ml of anhydrous diglyme was slowly added 3 ml of a freshly distilled sample of boron trifluoride etherate. The reaction mixture was maintained at 20° and under a nitrogen atmosphere during the addition. After stirring for $30 \mathrm{~min}, 3.5$ ml of $2 N$ sodium hydroxide was slowly added. This was followed by the slow addition of 3.5 ml of 30% hydrogen peroxide. After stirring for an additional 1 hr the reaction mixture was extracted with ether, and the resulting crude alcohol mixture was compared with the known products ${ }^{3 b}$ by analytical glc.

Registry No. - 1, 3471-41-8; 10, 34959-69-8.
Acknowledgments.-We acknowledge the support of the Endowment and Research Foundation of Montana State University and the donors of the Petroleum Research Fund administered by the American Chemical Society, for partial support of this research. Helpful discussions with Dr. Arnold Craig have also been appreciated.
(13) G. Braun, "O-ganic Syntheses," Collect. Vol. I., Wiley, New York, N. Y., 1941, p 431.
(14) D. M. Bailey and R. E. Johzson, J. Org. Chcm., 35, 3574 (1970).

Heterocyclic Studies. 36. Acyldiazepinium
 Intermediates in Thermal Reactions of Diazabieyclo[3.2.0]heptenones ${ }^{11}$

Summary: '1'he bicyclic ketones 4 undergo thermal ring opening to acyldiazepinium betaines 5 which can be trapped by 1,3 cycloaddition; rearrangement of 5 gives the bicyclic lactams 6 and 1-acyl-1,7-dihydrodiazepinones 8.

Sir: Methylation of the 2,3-dihydrodiazepinone 1 at $\mathrm{N}-1$ gives the betaine $2,{ }^{2}$ but the corresponding 1 -acyl derivatives of 1 exist entirely as the 2 -acyl-1,2-diazabicyclo [3.2.0] ketones 4. ${ }^{3}$ This difference in structure can be attributed to the poor stabilization of positive charge in the acyl betaine 5 , as compared to 2 . The facile formation of cycloaddition products from $\mathbf{2}^{2}$ prompted us to examine whether acyl betaines could be produced from the acylbicyclic ketones and trapped at elevated temperatures. On heating 4 a or 4 b at 80° in excess dimethyl acetylenedicarboxylate, the crystalline adducts 7 a and 7 b were in fact obtained in yields of 55 and 30%, respectively (Scheme I). The spectra of these products were fully consistent with the bicyclo[4.2.1] structures and resembled those of the methyl betaine adduct, ${ }^{2}$ although the methylene protons were nonequivalent in 7 a and 7 b [for $7 \mathrm{a}, \delta_{\mathrm{A}} 5.20, \delta_{\mathrm{B}} 5.35$ $\left.\left(J_{\mathrm{AB}}=4.2\right)\right] .{ }^{4}$
Thermal isomerization of the benzoyl ketone 4 in the absence of dipolarophile involves an unusual rearrangement leading in 75% yield to the bicyclic lactam $6 \mathbf{b} .{ }^{5}$ The isolation of the acyl-azomethine imine adducts 7 indicates the accessibility of the acyl betaine at moderate temperature and strongly suggests that $\mathbf{5 b}$, rather than the intermediates previously postulated, ${ }^{6}$ is the precursor of $6 \mathbf{b}$. This behavior, however, appeared to be in marked contrast to the thermal reaction of the methyl betaine 2, which undergoes sigmatropic hydrogen migration to the 1-methyl-1,7-dihydrodiazepinone $3 .{ }^{7}$

To examine this point, the acetyl bicyclic ketone 4a was heated in benzene solution at 80°. The nmr spectrum of the resulting mixture showed peaks corresponding to the lactam $6 \mathbf{a}$ and the acetyldihydrodiazepinone

[^128]Scheme I

8a, in a ratio of $2: 1$, accounting for over 90% of the total integral. The two products were then isolated by crystallization, the less soluble yellow minor product $\mathbf{8 a}$ crystallizing first. Structure 6 a is based on the very close correspondence of spectra with those of $\mathbf{6 b}$ and the characteristic reaction of the methylene diamine ring of 6 a with acidic methanol to give the 5 -acetamido-1methoxymethylpyrrolone, analogous to the well-characterized methanolysis product of $6 b .{ }^{5}$
The contrasting results with the methyl and acyl betaines thus reflect merely a difference in product distribution. Reexamination of the reaction product from pyrolysis of $\mathbf{4 b}$ by nmr , after removing a first crop of 6 b , showed a trace (maximum $\sim 8 \%$) of 8 b . The role of the substituent in the partition of the acyl betaines between products 6 and 8, and the pathway from 5 to 6 are now being studied.
The 1-acetyl-1,7-dihydrodiazepinone structure 8a follows from the close correspondence of properties with those of the 1 -methyl derivative 3 (including the characteristic low ir C-4 carbonyl frequency, $\nu^{\text {Chf }} 1622$
cm^{-1}) and its further transformations. Base-catalyzed methanoysis of 8 a 25° gave the deacetylated 1,7-dihydrodiazepinone 9 (Scheme II) ($\nu \mathrm{C}=0$

cm^{-1}) as very pale yellow crystals, mp 119-121 ${ }^{\circ}$, then $148-150^{\circ}$. The double melting point reflects conversion to the 2,3 -dihydrodiazepinone $1\left(\mathrm{mp} 152^{\circ}\right)$. This isomerization occurred rapidly at 20° in stronger base and obeyed clean first-order kinetics on heating at 80° in neutral solution ($k_{1}{ }^{\mathrm{CDCl}_{3}} 2 \times 10^{-5} \mathrm{sec}^{-1} ; k^{\mathrm{CD}_{3} \mathrm{OD}}$ $\left.9 \times 10^{-5} \sec ^{-1}\right)$. No deuterium incorporation occurred at $\mathrm{C}-3$ in $\mathrm{CD}_{3} \mathrm{OD}$. The transformation $9 \rightarrow 1$ thus involves a 1,5 -sigmatropic shift of hydrogen from $\mathrm{C}-7$ to $\mathrm{C}-3$, in the reverse direction to that of the 2,3-dihydrobetaines 2 and $5 .{ }^{8}$ The faster rate in $\mathrm{CD}_{3} \mathrm{OD}$, in contrast to the rearrangement of 2 to 3 which is slightly faster in CHCl_{3} than in $\mathrm{CH}_{3} \mathrm{OH},{ }^{7}$ is consistent with the fact that proton transfer, in addition to sigmatropic hydrogen migration, is required in the reaction $9 \rightarrow 1$.

Tautomeric Relationships in the 1,2-Dihydro-diazepin-4-one System.- The NH 1,7-dihydro com-

[^129]pound 9 is the third of three possible unsubstituted tautomers in this series; all have been isolated in crystalline form. The NH 1,5-dihydrodiazepinone 12a is obtained from the 2,3-dihydro isomer by base-catalyzed equilibration via the enols 10a and 11 and is the more stable of the two ketones. ${ }^{9}$ Furthermore, the 1-methyl-1,7-diazepinone $\mathbf{3}$ is converted completely to the 1 -methyl derivative 12b by base via the enol 10b. ${ }^{9}$ It is remarkable, therefore, that isomerization of 9 , even in the presence of base, gives exclusively the 2,3-dihydro tautomer and none of the more stable 12a.

This combination of interconversions by sigmatropic rearrangements and enolizations establish the stability order $1,7<2,3<1,5$ in this multitautomer system. The 1,7 -dihydro system is accessible only when this stability sequence is reversed by the formation of 1 substituted 2,3-dihydrobetaines; it can be predicted that a 2 -substituted 1,7-dihydrobetaine would undergo extremely rapid rearrangement to a 2 -substituted 2,3 dihydro derivative.
(9) M. G. Pleiss and J. A. Moore, J. Amer. Chem. Soc., 90, 1369 (1968).

Department of Chemistry
Otis S. Rothenberger
University of Delaware James A. Moore*
Newark, Delawaze 19711
Received June 2, 1972

Thallium in Organic Synthesis. XXXVI. A New Synthesis of Allenic Esters \dagger

Summary: $\quad \alpha$-A kyl- β-keto esters can be converted in a single step into allenic esters by initial reaction with hydrazine (giving the 5 -pyrazolones in situ) followed by oxidation by thallium(III) nitrate.

Sir: There has been much recent interest in the synthesis ${ }^{1}$ and reactions ${ }^{2}$ of allenic acids and esters. Available synthetic methods include addition of Wittig reagents to ketenes ${ }^{3}$ or acid chlorides, ${ }^{4}$ reaction of propargyl alcohols with nickel carbonyl, ${ }^{5}$ and basic isomerization of acetylenes. ${ }^{6}$ We now report a simple synthesis of allenic esters from α-alkyl- β-keto esters.

Our recently reported new synthesis of α, β-acetylenic esters ${ }^{7}$ by thallium(III) nitrate (TTN) ${ }^{8}$ oxidation of 3 -substituted 5-fyrazolones ($2, \mathrm{R}_{3}=\mathrm{H}$) involves, in a formal sense, the dehydration of a β-keto ester. We have now found that α-alkyl- β-keto esters (1) are converted under the same conditions to allenic esters (6). Thus, the β-keto ester is first converted to a 3,4 -disub-
\dagger Part XXXV: A. McKillop, J. D. Hunt, and E. C. Taylor, J. Org. Chem.. in press.
(1) S. C. Sandler and W. Karo, "Organic Functional Group Preparations," Vol. 2, Academic Press. New York, N. Y., 1971.
(2) M. Caserio in "Selective Orzanic Transformations," Vol. 1, B. S. Thyagarajan, Ed., Wiley-Interscience, New York, N. Y., 1970, p 239.
(3) W. S. Wadsworth and W. D. Emmons, J. Amer. Chem. Soc., 88, 1733 (1966).
(4) (a) H. J. Bestmann, G. Graf, H. Hartung, S. Kalewa, and E. Vilsmaier, Chem. Ber., 103, 2794 (1970); (b) H J. Bestmann and H. Hartung, ibid., 99, 1198 (1966).
(5) E. R. H. Jones, G. H. Whitham, and M. C. Whiting, J. Chem. Soc., 4628 (1957).
(6) G. Eglington, E. R. H. Jones, G. H. Mansfield, and M. C. Whiting, bid., 3197 (1954).
(7) E. C. Taylor, R. L. Robey, and A. McKillop, Angew. Chem., Int. Ed. Engl. 11, 48 (1972).
(8) A. McKillop, J. D. Hunt, E. C. Taylor, and F. Kienzle, Tetrahedron Lett., 5275 (1970).

Communications

stituted 5-pyrazolone ($2, \mathrm{R}_{3}=$ alkyl) by addition of 1 equiv of hydrazine, and then a solution of 2 equiv of TTN in methanol is added to a suspension or solution of the pyrazolone in methanol. The reaction mixture is stirred at room temperature for 30 min and the precipitated thallium(I) nitrate removed by filtration. The filtrate is poured into water, which is extracted with chloroform, and the extracts are dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered through a short column of Florisil. Evaporation of the solvent followed by distillation gives the pure allenic ester. Representative conversions are given in Table I.

Table I
Synthesis of Allenic Esters from β-Keto Esters with TTN $/ \mathrm{CH}_{3} \mathrm{OH}$

${ }^{a}$ Based upon the intermediate 5-pyrazolone. ${ }^{b}$ Yield after distillation. ${ }^{c}$ Identity of products established via spectral and analytical data.

This reaction, like that of β-keto esters to α, β-acetylenic esters, ${ }^{7}$ formally represents the dehydration of the precursor α-substituted β-keto ester. In fact, isolation of the intermediate 5 -pyrazolone is unnecessary, and allenic esters can be formed in a single operation by initial addition of hydrazine to a methanol solution of the α-substituted β-keto ester followed by addition of TTN in methanol. In this manner, ethyl 2-isopropylacetoacetate was converted to 3 -carbomethoxy-4-methyl-1,2-pentadiene [$6, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{CH}$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right]$ in 63% yield.

The conversion of 5-pyrazolones to allenic esters can be explained by electrophilic thallation of the enamine (3-pyrazolin-5-one) tautomer ${ }^{9}$ (2a) of the 5 -pyrazolone
(2), followed by proton loss to give the alkylidene pyrazolidone (4). Subsequent oxidation to 5 and solvolysis by methanol would give the observed allenic ester (6). ${ }^{10}$

The ready availability of monoalkylated β-keto esters ${ }^{13}$ and their facile (and usually quantitative) conversion to 5 -pyrazolones ${ }^{14}$ make this route to allenes particularly appealing. Further work in this area is in progress.
(9) A. R. Katritzky and J. M. Lagowski, Advan. Heterocycl. Chem., 2, 28 (1963).
(10) Although 5-pyrazolones have been mercurated in the 4 position ${ }^{11}$ and oxidized to diazacyclopentadienones by lead tetraacetate, ${ }^{12}$ no conversions analogous to those reported here are known.
(11) (a) W. Schrauth and H. Bauerschmidt, Ber., 47, 2736 (1914); (b) R. H. Kent and J.-P. Anselme, Can. J. Chem., 46, 2322 (1968).
(12) B. T. Gillis and R. Weinkam, J. Ora. Chem., 32, 3321 (1967).
(13) E. C. Taylor, G. H. Hawks, and A. McKillop, J. Amer. Chem. Soc., 90, 2421 (1968).
(14) R. H. Wiley and P. Wiley, "Pyrazolones, Pyrazolidones, and Derivatives," Vol. 20 in the series "The Chemistry of Heterocyclic Compounds," A. Weissberger, Ed., Interscience, New York, N. Y., 1964.

Department of Chemistry
Princeton University
Princeton, N. J. 08540
School of Chemical Sciences
Edward C. Taylor*
Roger L. Robey

University of East Anglia
Norwich NOR 88C
Norfolk, England
Received July 11, 1972

Grignard Reactions

.now made easier, quicker and safer with INSTA-START. Ethers

J. T. Baker announces two new 'Baker Analyzed'm Reagent solvents with special additives to reduce or totally eliminate induction periods in most Grignard reactions compared to the use of commercially available anhydrous ether or THF (tetrahydrofuran). Hazards usually encountered in the Grignard reaction are minimized. Both new products, InSTA-START Ether and INSTA-START THF require no drying and are alcohol-free. They are also peroxide-free and inhibited against subsequent peroxide formation.

Comparative experiments using INSTAStart Ether versus ether predried with sodium, showed Insta-Start Ether to have the similar induction periods without the additional hazards and time requirement of
the sodium pre-treatment. In some cases, the induction period is reduced using insta-Start Ether.
'Baker Analyzed' Reagent Insta-Start THF has been successfllly used in the preparation of several difficult Grignard reagents, including neopentyl magnesium chloride and phenyl magnesium chloride, without requiring the use of initiators or activators.

A suitability test for Grignard synthesis is run on each producticn lot to assure product performance.

INSTA-START Ether and THF are available in SAFETAINER ${ }^{\text {™ }}$ containers and 5 -gallon pails for laboratory use and in 55-gallon drum quantities for production uses. Write today for a technical bulletin.
J. T. BAKER CHEMICAL COMPANY, 222 RED SCHOOL LANE, PHILLIPSBURG, N.J. 08865

[^130]
LLAVLELLLLE SOLVENTS: $\mathbf{1 0 0 . 0}$ afom \% D (Solvents of choice for Fourier Transform NMR)

Nuclear magnetic resonance spectroscopy (nmr) is an extremely useful tool for the organic chemist; however, a prime experimental difficulty of this technique is the requirement for solvents which dissolve a wide range of compounds but which have minimal spectral absorptions. Carbon tetrachloride and carbon disulfide should be ideal choices because they have no nmr absorptions. However, they dissolve only a limited range of compounds and nmr spectra are usually obtained by using proton-containing or conventional deuterated solvents. As a result, nmr spectra often are partially masked by solvent absorptions or spinning sidebands. In addition, the availability of Fourier Transform accessories which enable nmr experiments on very dilute solutions compounds the difficulty of choosing the appropriate solvent.

We now remedy these problems by offering 100.0 atom \%D deuterated solvents. The level of proton-containing material in these solvents cannot be detected by conventional spectrometers. In addition to the strict requirements of 100.0 atom \% D , these materials undergo the same high quality controls expected of our conventional deuterated sol. vents and $n m r$ standards. We routinely examine the entire $n m r$ spectrum for proton-containing impurities and rigorously dry hygroscopic solvents. We also carefully monitor the purity of our tetramethylsilane to exclude contamination by tetrahydrofuran or diethyl ether. excellent scavengers for fluorinated lanthanide shift reagents.

We feel that our 100.0 atom \%D and our conventional deuterated solvents offer an unparalleled combination of high deuterium content and purity which now enables the observation of nmr spectra that previously were difficult or impossible to obtain.
17,586-2 Acetone-d 100.0 \%D 5g. $\$ 36.00 ; 25 \mathrm{~g} . \$ 130.00 \quad 15,185.8$ Chloroform-d $100.0 \% \mathrm{D} \quad 10 \mathrm{~g} . \$ 18.00 ; 50 \mathrm{~g} . \$ 45.00$ 17,587.0 Benzene-d 100.0 \%D 5g. $\$ 38.00 ; 25 \mathrm{~g} . \$ 135.00 \quad 15,189.0$ Deuterium oxide $100.0 \% \mathrm{D} 10 \mathrm{~g} . \$ 15.00 ; 50 \mathrm{~g} . \$ 43.00$ $15,691.4$ Dimethyl sulfoxide-d。 100.0% D 5g. $\$ 35.00 ; 25 \mathrm{~g} . \$ 125.00$

New LOWER PRICED LINE of DEUTERATED SOLVENTS for less sensitive spectrometers

17,595-1 Acetone-do $99.0 \% \mathrm{D}$ min
17,597-8 Benzene-d. 99.0 \%D min

50g. $\$ 37.50 \quad 17,593-5$ Chloroform-d $99.6 \% \mathrm{~min}$ 17,594-3 Dimethyl sulfoxide-d. 99.0 \% D min

500g. $\$ 34.00$ 50g. $\$ 37.50$

In Great Britain: RALPH N. EMANUEL Ltd.
264 Water Rd., Wembley, Middx., HAO 1PY, England In Continental Europe: ALDRICH-EUROPE, B-2340 Beerse, Belgium In West Germany: EGA-CHEMIE KG, 7924 Steinheim am Albuch

[^0]: (1) Supported in part by a grant from the National Science Foundation GP-6133X.
 (2) H. C. Brown and Y. Okamoto, J. Amer. Chem. Soc., 80, 4979 (1958).

[^1]: (3) V. J. Shiner, Jr., W. E. Buddenbaum, B. L. Murr, and G. Lamaty, J. Amer. Chem. Soc., 90, 418 (1968).
 (4) D. S. Noyce and J. A. Virgilio, I. Org. Chem., 37, 1052 (1972).

[^2]: (11) Melting points and boiling points are uncorrected. Routine infrared spectra were obtained using a Perkin-Elmer Infracord Model 137. Nmr spectra were obtained using a Varian A-60, T-60, or HA-100 instrument with tetramethylsilane as the internal standard. The elemental analyses were carried out by the Microanalytical Laboratory of the University of California at Berkeley.

[^3]: (12) C. Dorken, Ber., 21, 1505 (1888).
 (13) G. O. Doak and L. D. Freedman, J. Amer. Chem. Soc., 73, 5658 (1951).
 (14) O. Korpium, R. Lewis, .J. Chickos, and K. Mislow, ibid., 90, 4843 (1968).
 (15) K. A. Pollart and H. J. Harwood, J. Org. Chem., 27, 4444 (1962).
 (16) G. M. Kosolapoff and R. M. Watson, J. Amer. Chem. Soc., 73, 5466 (1951).

[^4]: (17) P. C. Crofts and G. M. Kosolopoff, J. A mer. Chem. Soc., 75, 3379 (1953).
 (18) M. I. Kabachnik and E. N. Tsvetkov, Izv. Akad. Nauk SSSR, Ser. Khim., 1227 (1963).
 (19) A. A. Neimysheva and I. L. Knunyants, Zh. Obshch. Khim., 36, 1090 (1966).

[^5]: (1) Presented in part at the Cenfral Regional Meeting of the American Chemical Society, Akron, Ohio, May 1968, Abstracts, p 111.
 (2) Taken from the Ph.D. Thesis of M. J. G., Duquesne University, 1968.
 (3) J. D. Roberts and V. C. Chambers, J. Amer. Chem. Soc., 73, 5034 (1951).
 (4) B. A. Howell and J. G. Jewett, ibid., 93, 798 (1971); U. Schöllkopf, E. Ruban, P. Tonne, and K. Riedel, Tetrahedron Lett., 5077 (1970), and references cited therein.
 (5) J. W. Hausser and N. J. Pinkowski, J. Amer. Chem. Soc., 89, 6981 (1967).
 (6) C. H. DePuy, L. G. Schnack, J. W. Hausser, and W. Wiedemann, ibid., 87, 4006 (1965); C. H. DePuy, L. G. Schnack, and J. W. Hausser, ibid., 88, 3343 (1966).
 (7) P. v. R. Schleyer, G. W. van Dine, U. Schöllkopf, and J. Paust, ibid., 88, 2868 (1966); P. v. R. Schleyer, Abstracts, 20 th National Organic Symposium of the American Chemical Society, Burlington, Vt., June 1967. p 8; J. A. Landgrebe and L. W. Becker, J. Org. Chem., 33, 1173 (1968); U. Schöllkopf, Angew. Chem., Int. Ed. Engl., 7, 588 (1968); W. E. Parham and K. S. Yong, J. Otg. Chem., 35, 683 (1970).
 (8) P. v. R. Schleyer, W. F. Sliwinski, G. W. van Dine, U. Schollköpf, J. Paust, and K. Fellenberger, J. Amer. Chem. Soc., 94, 125 (1972); W. F. Sliwinski, T. M. Su, and P. v. R. Schleyer, ibid., 94, 133 (1972).
 (9) R. B. Woodivard and R. Hoffmann, J. Amer. Chem. Soc., 87, 395 (1965) ; see also R. B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry," Academic Press, New York, N. Y., 1970.
 (10) P. v. R. Schleyer, T. M. Su, M. Saunders, and J. C. Rosenfeld, J. Amer. Chem. Soc., 91, 5174 (1969).

[^6]: (13) cis-Cinnamyl acetate is the predicted kinetic product from the solvolysis of 1. Although only trans-cinnamyl acetate is observed, it is reasonable to assume that the cis product, if formed, would rapidly isomerize to the trans isomer through the allylic cation. See V. Buss, R. Gleiter, and P. v. R. Schleyer, J. Amer. Chem. Soc., 93, 3927 (1971), and references cited therein. An earlier suggestion (ref 5) that the alternate mode of disrotatory ring opening may be operative also remains as a possibility for the solvolysis of 1 .

[^7]: (15) W. J. Dale and P. E. Swartzentruber, J. Org. Chem., 24, 955 (1959). (16) H. G. Kuivila and O. F. Buemerl, J. Amer. Chem. Soc., 83, 1248 (1961).

[^8]: (1) Part I: E. T. McBee, I. W. Serfaty, and T. Hodgins, J. Amer

[^9]: (10) (a) M. J. Aroney, R. J. W. LeFevre, R. K. Pierens, and M. G. N. The, J. Chem. Soc. B, 666 (1969); (b) M. J. Aroney, M. G. Corfield, and R. J. W. LeFevre, J. Chem. Soc., 2954 (1964).
 (11) (a) R. T. C. Brownlee, A. R. Katritzky, and R. D. Topsom, J. Amer. Chem. Soc., 88, 1413 (1966); (b) R. T. C. Brownlee, R. E. J. Hutchinson, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, ibid., 89, 1757 (1967).

[^10]: (12) H. J. Bernstein, J. Phys. Chem., 69, 1550 (1965), and references cited therein. This model has been applied to ${ }^{13} \mathrm{C}$ nmr shifts for halogenated methanes (W. M. Litchman and D. M. Grant, J. Amer. Chem. Soc., 90, 1400 (1968)] and heats of formation of fuorocarbons [J. R. Lacher and H. A. Skinner, J. Chem. Soc. A, 1034 (1968)]. The precise nature of the interaction is unknown but it is probably a complex blend of various factors including ateric and polarization contributions.
 (13) (a) D. H. McDaniel, J. Org. Chem., 26, 4692 (1961); (b) N. L. Bauld, Abstracts, 139th National Meeting of the Americsn Chemical Society, St. Louis, Mo., March 1961, No. 21-0.

[^11]: (20) The calculated dipole moment $\mu=1.46 \mathrm{D}$ was also closest to the experimental value ${ }^{10}$ of 1.24 D (compare 1.83 D for conformation $m_{0}=3$).

[^12]: (24) G. Wheland, "Resonance in Organic Chemistry," Wiley, New York, N. Y., 1955.
 (25) The corresponding values found ${ }^{1}$ in the side-chain halogenated toluenes are smaller but are more dependent on the number of halogens in the substituent.
 (26) (a) H. J. Barber, H. J. Cottrell, R. F. Fuller, and M. B. Green, J. Appl. Chem., S, 253 (1953); (b) H. J. Barber, R. F. Fuller, M. B. Green, and H. T. Zwartouw, ibid., 3, 266 (1953).
 (27) U. Schoellkopf, A. Lerch, and J. Paust, Chem. Ber., 96, 2260 (1963).
 (28) H. Lasto and P. Lehtonen, Suomen Kemistilehti, B, 37, 168 (1964); Chem. Abstr., 62, 6428 (1964).

[^13]: (29) K. B. Wiberg and R. D. Geer, J. Amer. Chem. Soc., 87, 5202 (1965); 88, 5827 (1966).
 (30) Aldrich Chemical Co., Inc
 (31) Chemical Samples Co.
 (32) Matheson Coleman and Bell.
 (33) K \& K Laboratories, Inc.
 (34) Sample from Columbian Carbon Co., Inc
 (35) Metal Hydrides Inc.
 (36) Mallinckrodt Chemical Works

[^14]: (40) Epoxides have been isolated in the chromyl acetate oxidation of alkenes and styrenes, ${ }^{41,42}$ and in the chromic acid oxidation of allylic alcohols, ${ }^{13}$ cyclohexene, ${ }^{44}$ and styrenes. ${ }^{45}$
 (41) M. A. Davis and W. J. Hickinbottom, J. Chem. Soc., 2205 (1958).
 (42) W. A. Mosher, F. W. Steffgen, and P. T. Lansbury, J. Org. Chem. 26, 670 (1961).
 (43) P. S. Kalsi, K. S. Kumar, and M. S. Wadia, Chem. Ind. (London), 71 (1971).
 (44) J. Roček and J. C. Drozd, J. Amer. Chem. Soc., 92, 6668 (1970).
 (45) W. J. Hickinbottom and G. E. M, Moussa, J. Chem. Soc., 4195 (1957); G. E. M. Moussa, J. Appl. Chem., 12, 385 (1962).

[^15]: (46) B. Rickborn and S. Y. Lwo, J. Org. Chem., 30, 2212 (1965).
 (47) H. Kwart and L. J. Miller, J. Amer. Chem. Soc., 83, 4552 (1961).
 (48) R. W. Taft, Jr., in "Steric Effects in Organic Chemistry," M. S. Newman, Ed., Wiley, New York, N. Y., 1956, p 556.
 (49) The $\Sigma \sigma^{*}$ for the cycloalkenes was calculated as follo vs: in cyclohexene the $\mathrm{C}=\mathrm{C}$ was considered as having two n-butyl groups (-0.26) and two hydrogens $(0.98)=\Sigma \sigma^{*}=0.72$. In this manner $\Sigma \sigma^{*}$ values of 0.23 , $0.75,0.26$, and -0.23 were calculated for 1 -methylcyclohexene, cyclopentene, and 1 -methyl- and 1,2 -dimethylcyclopentene, respectively. Perchance treating cycloalkenes as substituted ethenes is an oversimp ication, since chromyl chloride oxidations presumbably proceed via a highly ordered activated complex and there may be small but significant variations in activation parameters owing to steric effects and I strain. Эowever, it is also recognized that chromyl chloride oxidations are not particularly susceptible to steric effects. 9
 (50) A. I. Scott and A. D. Wrixon, Tetrahedron, 27, 4787 (1971)

[^16]: (51) ρ^{+}values larger than -3 are generally observed in reactions with a large degree of carbonium ion character in the activated complex.
 (52) E. W. Garbisch, Jr., S. M. Schildcrout, D. B. Peterson, and C. M. Sprecher, J. Amer. Chem. Soc., 87, 2932 (1965).
 (53) Table VII, ref e.
 (54) G. S. Hammond, J. Amer. Chem. Soc., 77, 334 (1955).
 (55) R. E. Erickson and R. L. Clark, Tetrahedron Lett., 3997 (1969).

[^17]: (56) The symmetrical species 5 and 6 could have sufficient carbonium ion character to satisfy $\rho^{*} \cong-2.0$. It is also recognized that the oxidation is a process in which there is a net flow of electrons from the substrate through the oxidant. This resulta in the inevitable development of a partial positive charge either on the carbon atoms of the double bond or on the oxygen atom, and of a partial negative charge on the chromium atom undergoing a valency change or on its ligands.
 (57) P. D. Barteltt, Rec. Chem. Progr., 11, 47 (1950).
 (58) A $\rho=-1.20$ has been obtained for the epoxidation of stilbenes with peroxybenzoic acid: B. M. Lynch and K. H. Pausacker, J. Chem. Soc., 1525 (1955); Y. Ogata and I. Tabushi, J. Amer. Chem. Soc., 8s, 3440 (1961).
 (59) D. Swern, "Organic Peroxides," Vol. II, Wiley, New York, N. Y., 1971, p 355.

[^18]: (2) D. R. Dimmel, C. A. Wilkie, and F. Ramon, J. Org. Chem., 37, 2665

[^19]: (8) R. West and G. A. Gornowicz, J. Organometal Chem., 28, 25 (1971), and references cited therein.
 (9) G. E. Coates, M. L. H. Green, P. Powell, and K. Wade, "Principles of Organometallic Chemistry,'" Methuen, London, 1968, p 47.

[^20]: (10) D. Blake, G. E. Coates, and J. M. Tate, J. Chem. Soc., 318 (1961). (11) Refer to ref 2 for additional details.

[^21]: (12) G. Köbrich and R. V. Nagel, Tetrahedron Lett., 4693 (1970).
 (13) C. C. Cerato, J. L. Lauer, and H. C. Beachell, J. Chem. Phys., 22,

[^22]: (8) Peninsular ChemResearch (PCR), Inc., P. O. Box 1466, Gainesville, Fla. 32601.
 (9) W. R. Bamford and B. C. Pant, I. Chem. Soc. C, 1470 (1967).
 (10) R. L. Merker and M. J. Scott, J. Organometal. Chem., 4,98 (1965).
 (11) K. Biemann, "Mass Spectrometry: Organic Chemical Applications," McGraw-Hill, New York, N. Y., 1962, pp 51-52.
 (12) P. D. Zemany and F. P. Price, J. Amer. Chem. Soc., 70, 4222 (1948).

[^23]: (13) In general there were few metastables in the various spectra to sid in the interpretation. The most frequent metastables were m/e $27.8(73 \rightarrow$ 45) and $41.1(45 \rightarrow 43) .^{2}$
 (14) V. H. Dibeler, F. L. Mohler, and R. M. Reese, J. Chem. Phys., 21, 180 (1953).
 (15) (a) The bar graph representation of the mass spectrum of this compound will appear following these pages in the microfilm edition of this volume of the journal. Single copies may be obtained from the Business Operations Office, Books and Journals Division, American Chemical Society, 1155 Sirteenth St., N.W.. Washington, D. C. 20036, by referring to code number JOC-72-2665. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche. (b) In the supplementary data, available in the microfilm of this paper, a postulated breakdown of bis(trimethylsilyl)dichloromethane (3) is presented which tries to rationalize the formation of the allyl ions $m / e 85$ and 105 . (c) In the supplementary data, available in the microfilm of this paper, a scheme is presented which attempts to depict reasonable structures for the fragments of 6 .

[^24]: (17) J. Kleinberg, W. J. Argersinger, Jr., and E. Griswold, "Inorganic Chemistry." D. C. Heath, Boston, Mass., 1960, pp 104-105.
 (18) R. A. Kbmelfitzkii, A. A. Polyakova, and A. A. Petro, Akad. Nauk Kirg. SSR, 236 (1962); Chem. Abstr., 62, 2348 (1965).

[^25]: (21) F. C. Whitmore, L. H. Sommer, and J. J. Gould, J. Amer. Chem. Soc., 69, 1976 (1947).
 (22) J. M. Bellama and J. A. Morrison, Organosilicon Symposium, Carne-gie-Mellon University, March 27, 1971.
 (23) E. White, V, and J. A. McCloskey. J. Org. Chem., 35, 4241 (1970).
 (24) W. P. Weber, A. K. Willard, and H. G. Boettger, ibid., 36, 1620 (1971).
 (25) (a) J. Diekman, J. B. Thomson, and C. Djerassi, ibid., s4, 3147 (1969); 3s, 2271 (1968).

[^26]: (1) A preliminary report has appeared: T. Saegusa, T. Tsuda, K. Isayama, K. Nishijima, and Y. Isegawa, Tetrahedron Lett., 1641 (1968).
 (2) "Gmelins Handbuch der Anorganischen Chemie," Verlag Chemie GMBH, Weinheim/Bergstr., 1958, Kupfer, Teil B, Lieferung 1, p 240.
 (3) T. Saegusa, T. Tsuda, and K. Isayama, J. Org. Chem., 36, 2976 (1970). (4) T. Saegusa, T. Tsuda, K. Nishijima, and K. Isayama, Tetrahedron Lett., 3379 (1968).
 (5) T. Tsuda, K. Nishijima, and T. Saegusa, unpublighed work.

[^27]: (7) U. Schoellkopf and F. Gerhart, Angew. Chem., 78, 675 (1966).

[^28]: (1) Paper V, "Adamantanes and Related Compounds;" for the preceding publication in the series see ref 9 ; presented at the 163 rd National Meeting of the American Chemical Society, Boston. Mass., A pril 1972.
 (2) Postdoctoral, 1970-1971.
 (3) P. Kovacic, M. K. Lowery, and K. W. Field, Chem. Rev., 70, 639 (1970).
 (4) M. E. Wolff, ibid., 69, 55 (1963).
 (5) H. E. Baumgarten and F. A. Bower, J. Amer. Chem. Soc., 76, 4561 (1954).
 (6) P. G. Gassman, Accounts Chem. Res., s, 26 (1970).
 (7) H. H. Wasserman, H. W. Adickes, and O. E. de Ochoa, J. Amer. Chem. Soc., 93, 5586 (1971).
 (8) P. Kovacic, M. K. Lowery, and P. D. Roskos, Tetrahedron, 26, 529 (1970).
 (9) P. Kovacic, J.-H. Liu, P. D. Roskos, and E. M. Levi, Chem. Commun., 1034 (1970); J. Amer. Chem. Soc., 99, 5801 (1971).

[^29]: (11) P. A. S. Smith. "Open-Chain Nitrogen Compounds," Vol. I, W. A Benjamin, New York, N. Y., 1965, pp 150-151.
 (12) T. D. Steward and W. E. Bradley, J. Amer. Chem. Soc., 84, 4172 (1932): H. Meerwein in "Methoden der Organischen Chemie," Vol. VI, Part 3, F. Muller, Ed., Georg Thieme Verlag, Stuttgart, 1965, p 195.

[^30]: (13) P. G. Gassman and B. L. Fox, J. Amer. Chem. Soc., 89, 338 (1967).
 (14) J. O. Reed and W. Lwowski, J. Org. Chem., 86, 2864 (1971).
 (15) J. A. Tonnis and T. A. Wnuk, unpublished work.

[^31]: (16) (a) H. O. House, "Modern Synthetic Reactions," W. A. Benjamin, New York, N. Y., 1965, p 31; (b) p 83.
 (17) G. L. Buchanan in "Topics in Carbocyclic Cbemistry." Vol. 1, D. Lloyd, Ed., Plenum Press, New York, N. Y., 1969, p 199.
 (18) (a) J. A. Peters, J. D. Remijnse, A. van, der Wiele, and H. van Bekkum. Tetrahedron Lett., 3065 (1971); (b) W. D. K. Macrosson, J. Martin. and W. Parker, ibid., 2589 (1965).
 (19) J. K. MacLeod, M. Vegar, and R. J. Wells, Recent Develop. Mass Spectrosc., Proc. Int. Conf. Mass Spectrosc., 1197 (1969); Chem. Abstr., 75, 97901 (1971).

[^32]: (20) H. Singh and A. Singh, Tetrahedron Lett., 585 (1970).
 (21) A. E. Alper and A. Taurins, Can. J. Chem., 45, 2903 (1967).
 (22) N. J. Leonard, Rec. Chem. Progr., 17, 243 (1956).

[^33]: (23) A. Streitwieser, Jr., "Solvolytic Displacement Reactions," Mc-Graw-Hill, New York, N. Y., 1962, p 102.

[^34]: (1) Presented at the 3rd International Congress of Heterocyclic Chemistry, Aug 1971, Sendai, Japan.
 (2) M. Takeda and H. Kugita, J. Med. Chem., 19, 630 (1970).
 (3) Chemical Abstracts name: 3,7-dimethyl-9-methoxy-12-oxo-1,2,4,5,-6,7-hexahydro-2,7-methano-3 H -3-benzazonine. The term "homobenzomorphan" has been given to this series of derivatives. See ref 2.
 (4) J. G. Murphy, J. H. Ager, and E. L. May, J. Org. Chem., 25, 1386 (1960).

[^35]: (1) H. Ogura, T. Itoh, and Y. Shimada, Chem. Pharm. Bull., 16, 2167 (1968): H. Ogura, T. Itoh, and K. Kikuchi, J. Heterocyd. Chem., 6, 797 (1969).
 (2) H. Ogura, T. Itoh, M. Ogiwara, and T. Okamoto, Yakugaku Zasshi, 89, 469 (1969).
 (3) H. Ogura and T. Itoh, Chem. Pharm. Bull., 18, 1981 (1970).
 (4) H. Ogura, T. Itoh, and S. Sugimoto, ibid., 18, 2204 (1970).
 (5) H. Ogura and M. Kawano, Abstracts of Papers, 91st Annual Meeting of the Pharmaceutical Society of Japan, 1971, p 669.
 (6) H. Ogura and T. Itoh, Kitasato Arch. Exp. Med., 42, 65 (1969).
 (7) H. Ogura, M. Kawano, K. Kikuchi, and T. Itoh, Abstracts of Papers, 3rd International Congress of Heterocyclic Chemistry, 1971, p 506.
 (8) V. Boekelheide and N. A. Fedoruk, J. Org. Chem., 32, 2062 (1967).
 (9) V. Boekelheide and N. A. Fedoruk, J. Amer. Chem. Soc., 90, 3830 (1968).

[^36]: (11) R. Huisgen, Anoew. Chem., Inf. Ed. Enol., 2, 633 (1963)

[^37]: (15) Melting points were taken on a Fisher-Johns melting point apparatus and are uncorrected. Infrared spectra were obtained on a Perkin-Elmer 457 grating spectrometer and nmr spectra on a Varian A-60A spectrometer. Mass spectra were taken on a Varian M.A.T. CH-5. All solvents were either reagent grade or distilled before use. All vinyl azides and azirines were prepared by the method of A. Hassner and F. W. Fowler, J. Org. Chem., 33, 2686 (1968), and ref 6.
 (16) L. I. Smith and H. H. Hoehn, "Organic Syntheses,' Collect. Vol. III, Wiley, New York, N. Y., 1955, p 356.
 (17) C. D. Nenitzescu and E. Solomonica, "Organic Syntheses," Collect. Vol. II, Wiley, New York, N. Y., 1943, p 496.

[^38]: (1) (a) This investigation was supported by NIH Training Grant No 5-T01-GM00728 and the University of California Academic Senate Grant 10, San Francisco Division; (b) NIH Trainee, 1970-1972; (c) NIH Trainee, 1969-1970: (d) Department of Pharmaceutical Chemistry, College of Pharmacy, University of Washington, Seattle, Washington 98195.
 (2) J. Asunskis and H. Sbechter, J. Org. Chem., 33, 1164 (1968).
 (3) S. Matin and N. Castagnoli, Department of Pharmaceutical Chemistry, University of California at San Francisco, private communication.
 (4) (a) T. Ajello and S. Cusmano, Gaz2. Chim. Ital., 68, 792 (1938); (b) S. Cusmano, ibid., 78, 622 (1948).

[^39]: (10) (a) C. D. Nenitzescu and D. A. Isacescu, Bull. Soc. Chim. Romania, 14, 53 (1932); (b) T. Urbanski and W. Gurzynska, Rocz. Chem., 25, 213 (1951).
 (11) (a) W. E. Noland, J. H. Colley, and P. A. McVeigh, J. Amer. Chem. Soc., 81, 1209 (1959); (b) T. Simmons and K. L. Kreuz. J. Org. Chem., 33, 836 (1968).
 (12) (a) T. Sasski, T. Yoshioka, and Y. Suzuki, Bull. Chem. Soc. Jap., 44, 185 (1971): (b) Y. Otsuji, Y. Tsujii, A. Yoshids, and E. lmoto, ibid., 44, 223 (1971).

[^40]: (15) (a) C. A. Sprang and E. F. Degering, J. Amer. Chem. Soc., 64, 1063 (1942); (b) H. C. Brown and C. P. Garg, ibid., 83, 2952 (1961); (c) C. Harries, Justus Liebigs Ann. Chem., 319, 2.51 (1901).
 (16) The melting point reported by Ajello and Cusmano ${ }^{4 \mathrm{~B}, \mathrm{~b}}$ is in error.
 (17) J. Schmidt and K. T. Widmann, Ber., 42, 1875 (1909).

[^41]: (3) Postdoctoral Fellow. We thank Texas Tech University for support of one of us (T. O.) under Grant No. 191-4719.
 (4) Y. Murata and H. J. Shine, J. Org. Chem., 34, 3368 (1969).
 (5) J. J. Silher End H. J. Shine, ibid., 36, 2923 (1971).

[^42]: (6) J. Rochlitz, Tetrahedron, 23, 3043 (1967).
 (7) H. Lund, Acta Chem. Scand., 11, 1323 (1957).
 (8) G. Manning, V. D. Parker, and R. N. Adams, J. Amer. Chem. Soc., 91, 4584 (1969).
 (9) V. D. Parker and L. Eberson, Tetrahedron Lett., 2839, 2843 (1969); Acta Chem. Scand., 24, 3542 (1970).
 (10) L. Marcoux, J. Amer. Chem. Soc., 93, 537 (1971).
 (11) J. Danecke and H.-W. Wanzlick, Justus Liebigs Ann. Chem., 740, 52 (1970).
 (12) C. V. Ristagno and H. J. Shine, J. Amer. Chem. Soc., 93, 1811 (1971). (13) M. J. Allen, "Organic Electrode Processes," Reinhold, New York, N. Y., 1958, p 162.
 (14) F. Fichter, "Die Chemische Reaktion," herausgegeben von K. F. Bonhoeffer. Band VI. "Organische Elektrochemie," Theodor Steinkopf Verlag, Dresden and Leipzig, 1942, p 143.
 (15) S. Krishna, J. Chem. Soc., 123, 156 (1923).

[^43]: (18) R. D. Whitaker and C. L. Bennett, Quart. J. Fla. Acad. Sci., 28, 329 (1965).
 (19) R. D. Whitaker and C. L. Bennett, ibid., 28, 137 (1965).
 (20) R. D. Whitaker and H. H. Sisler, J. Org. Chem., 25, 1038 (1960).

[^44]: (29) Private communication from Dr. L. S. Marcoux.
 (30) Reference 21, p 408.
 (31) Refercnce 21, p 350.
 (32) J.-P. Billon, Bull. Soc. Chim. Fr., 1923 (1961).
 (33) Schwarzkopf Microanalytical Laboratory, Woodside, N. Y.

[^45]: (40) Prepared by Dr. C. F. Dais. See H. J. Shine, C. F. Dais, and R. J. Small, J. Org. Chem., 29, 21 (1964).

[^46]: (1) This investigation was supported by Grant MH 12204 from the Na tional Institute of Mental Health, U. S. Public Health Service. The compounds were submitted to Eli Lilly and Company for pharmacological evaluation.
 (2) B. R. Lowry and A. C. Huitric, J. Org. Chem., submitted for publication.
 (3) W. F. Trager and A. C. Huitric, J. Pharm. Sci., 54, 1552 (1965).
 (4) W. M. Whaley and T. R. Govindachari, Org. React., 6, 74 (1851).

[^47]: (5) W. E. Stewart and T. H. Siddall, III, Chem. Rev., 70, 517 (1971).

[^48]: (7) C. E. Johnson, Jr., and F. A. Bovey, J. Chem. Phys., 29, 1012 (1958).

[^49]: (1) (a) For paper V see R. N. McDonald, D. L. Morris, H. E. Petty, and T. L. Hoskins, Chem. Commun., 743 (1971). (b) NDEA Fellow, 19681970: NSF Trainee, 1970-1971.
 (2) K. Hafner and K. L. Moritz, Justus Liebigs Ann. Chem., 656, 40 (1962).
 (3) A. G. Anderson and I.. L. Replogle, J. Org. Chem., 28, 2578 (1963).
 (4) A. Streitwieser, "Molecular Orbital Theory for Organic Chemists," Wiley, New York, N. Y., 1961, pp 456-457.
 (5) See footnotes $7-9$ in ref 3.
 (6) K. Kuroda, T. Ohta, and T. L. Kunii in "Aromaticity, PseudoAromaticity, Anti-Aromaticity," E. D. Bergmann and B. Pullman, Ed., Academic Press, New York, N. Y., 1971.
 (7) P. A. Leermakers and W. A. Bowman, J. Org. Chem., 29, 3708 (1964). The 5-and 6-azuloic acids were obtained as oils, possibly containing various benzenoid carboxylic acid impurities.

[^50]: (7a) Note Added in Proof.-Using ${ }^{19} \mathrm{C}$ chemical shifta for azulene, the relative π-electron densities would be $1>5>2>6$: P. C. Lauterbur, J. Amer. Chem. Soc., 89, 1838 (1961).
 (8) (a) H. C. Brown, D. H. McDaniel, and O. Hafliger in "Determination of Organic Structures by Physical Methods,' ${ }^{\text {V Vol. 1, E. A. Braude and F. C. }}$ Nachod, Ed., Academic Press, New York, N. Y., 1955, Chapter 14. (b) J. A. Richards and T. J. Curphey, Chem. Ind. (London), 1456 (1956), reported $\mathrm{p} K_{\mathrm{a}^{1}}=3.64$ and $\mathrm{p} K_{\mathrm{a}^{2}} \geq 12$ for ferrocene-1,2-dicarboxylic acid in 2:1 ethanol-water.
 (9) L. L. McCoy, J. Amer. Chem. Soc., 89, 1673 (1967).
 (10) (a) We wish to thank Professor K. Hafner for a generous sample of the dimethyl ester of 2 . (b) The $\mathrm{p} K_{\mathrm{a}}$'s of azulene-1,3-dicarboxylic acid could not be measured in 50% ethanol due to insolubility of this diacid.

[^51]: (1) P. A. S. Smith and J. H. Hall, J. Amer. Chem. Soc., 84, 480 (1962).
 (2) A. Reiser and R. Marley, Trans. Faraday Soc., 64, 1806 (1968); P. A. S. Smith :n "Nitrenes," W. Lwowski, Ed., Interscience, New York, N. Y., 1970, p 99; R. A. Abramovitch and E. P. Kyba in "The Chemistry of the Azido Grour,"' S. Patai, Ed., Interscience, London, 1971, p 221.
 (3) G. Smolinsky, E. Wasserman, and W. A. Yager, J. Amer. Chem. Soc., 84, 3220 (1962); E. Wasserman, Progr. Phys. Org. Chem., 8, 327 (1971).
 (4) J. I. G. Cadogan, Quart. Rev., Chem. Soc., 22, 222 (1968); R. J. Sundberg, B. P. Das, and R. H. Smith, Jr., J. Amer. Chem. Soc., 91, 658 (1969).
 (5) R. Huisgen, D. Vossius, and M. Appl, Chem. Ber., 91, 1 (1958); W. v. E. Doering and R. A. Odum, Tetrahedron, 22, 81 (1966).
 (6) R. A. Odum and A. M. Aaronson, J. Amer. Chem. Soc., 91, 5680 (1969).
 (7) R. P. Bennett and W. P. Hardy, ibid., 90, 3295 (1968); G. Ribaldone, G. Capara, and G. Borsotti, Chem. Ind. (Milan), 50, 1200 (1968); Chem. Abstr., 70, 37326g (1969).
 (8) J. H. Hall, J. W. Hill, and J. M. Fargher, J. Amer. Chem. Soc., 90, 5313 (1968).
 (9) J. S. Swenton, T. J. Ikeler, and B. H. Williams, ibid., 92, 3102 (1970).
 (10) L. K. Dyall and J. E. Kemp, J. Chem. Soc. B, 976 (1968).
 (11) J. I. G. Cadogan and M. J. Todd, J. Chem. Soc. C, 2808 (1969), and references cited therein.

[^52]: (12) J. I. G. Cadogan and S. Kulik, ibid., 2621 (1971).
 (13) Y. Maki, T. Hosokani, and M. Suzuki, Tetrahedron Lett., 3509 (1971). (14) A. Bertho, Chem. Ber., 57, 1138 (1924).
 (15) R. A. Abramovitch and E. E. Knaus, unpublished results (1967).
 (16) W. Lwowski, T. J. Maricich, and T. W. Mattingly, Jr., J. Amer. Chem. Soc., 85, 1200 (1963); R. J. Cotter and W. F. Beach, J. Org. Chem., 29, 751 (1964); K. Hafner and C. König. Angew. Chem., 75, 89 (1963).
 (17) F. D. Marsh and H. E. Simmons, J. Amer. Chem. Soc., 87, 3529 (1965).
 (18) R. A. Abramovitch and R. G. Sutherland, Fortschr. Chem. Forsch., 16 (1), 1 (1970).

[^53]: (21) R. A. Abramovitch, C. I. Azogu, and R. G. Sutherland, Chem. Commun., 134 (1971).
 (22) F. D. Lewis and W. H. Saunders, J. Amer. Chem. Soc., 90, 3828 (1968).
 (23) R. A. Abramovitch and E. P. Kyba, Chem. Commun., 265 (1969).
 (24) J. H. Boyer and G. J. Mikol, ibid., 734 (1969); R. A. Abramovitch and S. R. Challand, unpublished results.

[^54]: (25) J. F. Heacock and M. T. Edmison, J. Amer. Chem. Soc., 82, 3460 (1960).

[^55]: (26) K. Hafner, D. Zinser, and K. L. Moritz, Tetrahedron Lett., 1733 (1964).
 (27) A. G. Anastassiou, H. E. Simmons, and F. D. Marsh in "Nitrenes," W. Lwowski, Ed., Interscience, New York, N. Y., 1970, p 343.
 (28) J. N. Ashley, G. L. Buchanan, and A. P. T. Eason, J. Chem. Soc., 60 (1947): P. K. Datta, J. Indian Chem. Soc., 24, 109 (1947); R. A. Abramovitch and T. Takaya, J. Oro. Chem., 37, 2022 (1972).
 (29) R. Huisgen and K. von Fraunberg, Tetrahedron Lett., 2595 ;1969).
 (30) H. Rupe and K. v. Majerrski, Ber., 33, 3406 (1900).
 (31) P. Griess, ibid., 2, 370 (1869).
 (32) M. O. Forster and H. M. Judd, J. Chem. Soc., 252 (1910)
 (33) E. Noelting and O. Michel, Ber., 26, 86 (1893).
 (34) A. V. Kirsanov, Zh. Obshch. Khim., 36, 1248 (1966).
 (35) J. N. Ashley and S. S. Berg. J. Chem. Soc., 3089 (1957)
 (36) E. Bamberger and R. Hubner, Ber., 36, 3803 (1903).

[^56]: (1) (a) Paper 33: L. Field and Y. H. Khim, J. Med. Chem., 16, 312 (1972). (b) This investigation was supported by the C-. S. Army Medical Research and Development Command, Department of the Army, under Research Contract No. DADA17-69-C-9128. (c) We are indebted to Professor H. E. Smith of Vanderbilt U'niversity for helpful discussion.
 (2) C. Falconi, P. Scotto, and P. De Franciscis, Boll. Soc. Ital. Biol. Sper., 44, 326 (1968): Chem. Abstr., 69, 16658 (1968).
 (3) (a) L. Field and R. B. Barbee, J. Org. Chem., 34, 36 (1969); (b) L. Field and R. B. Barbee, ibid., 34, 1792 (1969).

[^57]: (4) A. Lattringhaus, S. Kabuss, W. Maier, and H. Friebolin, Z. Natur forsch. B. 16, 761 (1961).

[^58]: (7) J. E. Dunbar and J. H. Rogers, J. Org. Chem., 31, 2842 (1966).

[^59]: (8) L. Schotte and H. Strōm, Acta Chem. Scand., 10, 687 (1956). A referee kindly pointed out a recent modification that affords 16 from 15 in $\sim 90 \%$ yield [J. P. Danehy and V. J. Elia, J. Oro. Chem., 37, 369 (1972)].
 (9) D. N. Harpp and J. G. Gleason, J. Org. Chem., 35, 3259 (1970).
 (10) W. W. Cleland, Biochemistry, 3, 480 (1964).
 (11) B. Lindberg and G. Bergson, Ark. Kemi, 23, 319 (1965).

[^60]: (12) We are indebted for these results to T. R. Sweeney, D. L. Klayman and (especially) M. M. Grenan of the Walter Reed Army Institute of Re search, Washington, D. C. For details of procedures, see ref la and other papers cited therein.

 Note Added in Proof.-The two enantiomers of 3 were recently reported to have $L D_{x}=410$ and 435 mg kg and not to be protective at doses of $200-300 \mathrm{mg} / \mathrm{kg}$ against $625-750 \mathrm{R}$ of radiation [M. Carmack. C. J. Kelley. S. D. Harrison, Jr., and K. P. DuBois. J. Med. Chem., 16, 600 (1972)].
 (13) Melting points are corrected, and boiling points are uncorrected Mass spectra were obtained with an LKB Model 9000 instrument operated at 70 eV with a source temperature of 250° and an accelerating potential of 3.5 kV , using the direct-probe inlet; this instrument was obtained through Science Development Program Grant GE゙-2057 from the National Science Foundation: we are indebted to C. T. Wetter for these spectra. Moist extracts ordinarily were dried over anhydrous MgSO4, and solvent then was removed using a rotating-flask evaporator. The ratios of nmr integrals met expectation and therefore are not reported. Other details were as given in footnote 6 of ref la.
 (14) R. Kuhn and G. Quadbeck, Chem. Ber., 84, 844 (1951)

[^61]: (17) Wherever feasible, protection from light was effected using Al foil.

[^62]: (1) (a) Paper 34: L. Field and Y. H. Khim, J. Org. Chem., 37, 2710 (1972). (b) This investigation was supported by the U. S. Army Medical Research and Development Command, Department of the Army, under Research Contract No. DADA17-69-C-9128.

[^63]: (3) L. Field and Y. H. Kbim, J. Med. Chem., 16, 312 (1972).
 (4) (a) For leading references, see ref 4 b; (b) L. Field, W. S. Hanley, and
 I. McVeigh J. Otg. Chem., 36, 2735 (1971).
 (5) For leading references, see L. Field and H. K. Kim, J. Med. Chem., 9, 397 (1966), especially footnote 7.
 (6) H. Haraldson, C. J. Olander, S. Sunner, and E. Varde, Acta Chem. Scand., 14, 1509 (1960).

[^64]: (7) When the amino sulfone hydrochloride 1 was heated at 61° in methanol for $8 \mathrm{hr}, 1$ was quantitatively recovered. Since disproportionation of 1 at 100° in water for 72 hr gave one of the symmetrical disulfides in 79% yield, ${ }^{2}$ however, disproportionation of 1 can occur. When 5 was heared at 61° in MeOH for 8 hr , it was recovered quantitatively, and in water (same conditions) only a trace of one of the symmetrical disulfides was obtained. The aqueous solution of 6 after 1.5 hr at 61° showed only the one spot for recovered 6 ($R_{1} 0$ on alumina, 0.69 on silica gel) with none whatever for 3 ($R_{1} 0.45$ on alumina); evaporation gave pure 6; even after 96 hr at 61°, the showed only slight traces of disproportionation (small spot for $\mathbf{3}$ on alumina). Identifications of recovered 1,6 , and 6 were performed by comparing ir absorptions and melting points.

[^65]: (8) (a) For further disc assion of the catalytic effect of thiolate ion on disproportionation, see ref 8 J ; (b) M. Bellas, D. L. Tuleen, and L. Field, J. Oro. Chem., 32, 2591 (1967).
 (9) L. Field, P. M. Giles, Jr., and D. L. Tuleen, J. Org. Chem., 36, 623 (1971).
 (10) J. S. Meek and J. S. Fowler, ibid., s3, 3422 (1968)

[^66]: (14) T. Mukaiyans and K. Takahashi, Tetrahedron Lett., 5907 (1968)

[^67]: (15) A five-membered ring evidently is involved in anchimerically assisted racemization of sulfoxides that contain $-\mathrm{CO}_{2} \mathrm{H}$ moieties. See S. Allenmark and C.-E. Hagberg, Acta Chem. Scand., 24, 2225 (1970), and earlier papers.

[^68]: (16) Melting points are corrected, and boiling points are uncorrected Nmr spectra were obtained with a Varian Model A-60 and ir spectra with a Beckman Model IR-10 using KBr pellets or NaCl plates (bands reported are at least of medium intensity). Moist extracts were dried over the anhydrous agent specified; solvent then was evaporated in a rotary evaporator Brinkmann precoated the sheets of silica gel ($\mathbf{F}-254,0.25 \mathrm{~mm}$) and Eastman Chromagram sheets of alumina (Type 6063 with fluorescent indicator) were used for tle; with the former, spots were observed after exposure to I_{2} vapor in a saled container, and with the latter, spots were observed under a uv lamp. Other details were essentially as given in footnote 13 of ref la.
 (17) L. Field, T. C. Owen, R. R. Crenshaw, and A. W. Bryan, J. Amer Chem. Soc., 83, 4414 (1961).
 (18) L. Field and R. B. Barbee, J. Org. Chem., 34, 36 (1969)
 (19) J. D. Buckman and L. Field, ibid., 32,454(1967).
 (20) R. Kuhn and G. Quadbeck, Chem. Ber., 84, 844 (1951),

[^69]: (22) Based on the procedure of Kodak Society. Belgian Patent No. 593.048 (1960): Chem. Abstr., 55, 14142 (1961).
 (23) Eastman Chromagram sheet Type 6063 alumina with fuorescent indicator: uv was used in searching for 3.

[^70]: (1) The authors wish to gratefully acknowledge the support received for this work from the National Science Foundation GP 7278 and GP 12828).
 (2) For reviews on the topic of sulfur bonding see (a) G. Cilento, Chem. Rev.. 60, 147 (1960); (b) A. B. Burg in "Organic Sulfur Compounds." Vol. I. N. Kharasch, Ed., Pergamon Press. New York, N. Y., 1961, pp 30-40; (c) C. C. Price and S. Oae. '"Sulfur Bonding." Ronald Press, New York. N. Y., 1962: (d) D. T. Clark in "Orgenic Compounds of Sulfur, Selenium, and Tellurium," Special Publication of the Chemical Society, D. H. Reid, Ed., London, 1970; (e) K. A. R. Mitchell, Chem. Rer., 69, 157 (1969)
 (3) For recent reviews on valence-shell expansion in sulfur heterocycles, see (a) W. G. Salmond, Quart. Rev., Chem. Soc., 22, 253 (1968); (b) D. H. Reid in "Organic Compounds of Sulfur, Selenium and Tellurium," Vol. I, Special Publication of the Chemical Society, D. H. Reid, Ed., London, 1970.
 (4) D. T. Clark, Tetrahedron, 24, 2663 (1968); D. T. Clark and D. R. Armstrong. Chem. Commun., 319 (1970): U. Gelius, B. Roos, and P. Siegbahn, Chem. Phys. Lett. 4, 471 (1970); M. J. S. Dewarand M. Trinajatić, J. Amer. Chem. Soc., 92, 1453 (1970).
 (5) M. P. Cava and G. E. M. Husbands, ibid., 91, 3952 (1969).
 (6) J. M. Hofiman, Jr., and R. H. Schlessinger, ibid., 91, 3953 (1969).
 (7) (a) G. Suld and C. C. Price, J. Amer. Chem. Soc., 83, 1770 (1961); 84, 2090 (1962); (b) C. C. Price, M. Hori, T. Parasaran, and M. Polk, ibid., 85, 2278 (1963); (c) C. C. Price and D. H. Follweiler, J. Org. Chem., 34, 3202 (1969); (d) C. C. Price, M. Siskin, and C. K. Miao, ibid. 36, i94 (1971).
 (8) For a concise summary of the historical development of thiathiophenes, see ref 3 a

[^71]: (9) (a) A. G. Hortmann, J. Amer. Chem. Soc., 87, 4972 (1965); (b) Y. Kishida and J. Ide, Chem. Pharm. Bull., 15, 360 (1967); (c) B. Holt, J. Howard, and P. A. Lowe. Tetrahedron Lett., 4937 (1969); (d) A. H. Hortman and R. L. Harris, J. A mer. Chem. Soc., 92, 1803 (1970).
 (10) W. L. Mock, J. Amer. Chem. Soc.. 89, 1281 (1967): W. E. Truce and F. J. Lotspeich, ibid., 78, 848 (1956); V. J. Traynelis and R. F. Love, Chem. Ind. (London), 439 (1958): J. Org. Chem., 26, 2728 (1961): H. Hofmann and H. Westernacher, Angew Chem., Int. Ed. Engl., 6, 958 (1966).

[^72]: (11) (a) D. P. Craig, A. Maccoll, R. S. Nyholm, L. E. Drgel, and L. E. Sutton, J. Chem. Soc., 332 (1954); (b) D. P. Craig and E A. Magnusson, ibid., 4895 (1956); (c) D. P. Craig. ibid., 997 (1959); D. P. Craig and N. L. Paddock, ibid., 4118 (1962).
 (12) M. J. S. Dewar, E. A. C. Lucken, and M. A. Whitebead, J. Chem. Soc., 2423 (1960); M. J. S. Dewar and V. P. Kubba, J. Amer. Chem. Soc., 82, 5685 (1960).
 (13) Conjugation effects in the related system $\mathrm{N}-\mathrm{Si}-\mathrm{N}$ are discussed by C. H. Yoder and J. J. Zuckerman, Inorg. Chem., 6, 103 (1967).

[^73]: (14) A. J. Speziale and K. W. Ratts, J. Amer. Chem. Soc., 85, 2790 (1963): H. Nozaki, D. Tunemoto, Z. Morita, K. Nakamura, K. Watanale, M. Takaku, and K . Kondo, Tetrahedron, 23, 4279 (1967).
 (15) S. H. Smalliombe, R. J. Holland, R. H. Fish, and M. C. Caserio, Tetrahedron Lett., 5987 (1968).
 (16) H. Nozaki, J. Tunemoto, S. Matubara, and K. Kondo, Tetrahedron, 23, 545 (1967): F. J. Randall and A. W. Johnson, Tetrahedron Lett., 2841 (1968); H. J. Bestman, H. G. Liherda, and J. P. Snyder. J. Amer. Chem. Soc., 90, 2963 (1968); P. Crews, ibid., 90, 2961 (1968).

[^74]: (17) A. W. Johnson and R. T. Amel, Can. J. Chem., 46, 461 (1968).
 (18) K. W. Ratts and A. N. Yao, J. Org. Chem., 31, 1185 (1966).
 (19) S. Fliszar, R. F. Hudson, and G. Salvadori, Helv. Chim. Acta, 46, 1580 (1963).

[^75]: (11) (a) C. C. Sweeley, R. Bentley, M. Makita, and W. W. Wells, J. Chem. Soc., 85, 2497 (1963); (b) M. Bolan, and J. W. Steele, J. Chromatogr., 36, 22 (1968); (c) G. G. S. Button, K. B. Gibney, G. D. Jensen, and P. E. Reid, ibid., 36, 152 (1968).

[^76]: (12) H. W. Galbraith, E. F. Degering, and E. F. Hitch, J. Amer. Chem. Soc., 73, 1323 (1951).

[^77]: (13) K. Umenoto, Y. Deguchi, and T. Fujinaga, Bull. Chem. Soc., Jap., 36, 1539 (1963).
 (14) Under the identical condition (30°), d-glucose in NaOH does not yield a radical, but on boiling an esr signal is detected. See also C. Lagercrantz, Acta Chem. Scand., 18, 1321 (1964).

[^78]: (15) J. Meisenheimer, Justus Liebigs Ann. Chem., 323, 205 (1902)
 (16) K. L. Servis, J. Amer. Chem. Soc., 87, 5495 (1965).
 (17) M. R. Crampton and V. Cold, J. Chem. Soc. B, 893 (1966).
 (18) C. A. Fyfe, Can. J. Chem., 47, 2331 (1969).

[^79]: (1) A preliminary communication has been published: M. R. Bell, J. A. Carlson, and R. Oesterlin, J. Amer. Chem. Soc., 92, 2177 (1970).
 (2) (a) A. H. Cook in "The Chemistry of Penicillin," H. T. Clarke, J. R. Johnson, and R. Robinson, Ed., Princeton University Press, Princeton, N. J., 1949, p 126; (b) R. L. Peck and K. Folkers, ref 2a, p 188.

[^80]: (3) Merck Report No. 63, p 18, April 1945, cited by H. M. Crooks, Jr., in ref $2 \mathrm{a}, \mathrm{p} 1057$.
 (4) "The Merck Index," P. G. Stecher, Ed., Merck and Co., Rahway, N. J., 1968, p 789.

[^81]: (5) W. O. Godtfredsen, W. von Daehne, and S. Vangedal, Experientia, 23, 280 (1967).
 (6) F. P. Doyle, K. Hardy, J. H. C. Nayler, M. J. Soulal, E. R. Stove, and H. R. J. Waddington, J. Chem. Soc., 1453 (1962).
 (7) R. B. Woodward, ref 2a, pp 445-446.

[^82]: (13) J. C. Sheehan and J. R. Henry-Logan, J. Amer. Chem. Soc., 81, 3089 (1959).
 (14) O. Wintersteiner, W. R. Boon, H. C. Carrington, D. W. MacCorquodale, F. H. Stodola, J. L. Wachtel, R. D. Coghill, W. C. Risser, J. E. Philip, and 0 . Tocster, ref 2a, p 93.
 (15) E. P. Abraham, W. Baker, W. R. Boon, C. T. Calam, H. C. Carrington, E. Chain, H. W. Florey, G. G. Freeman, R. Robinson, and A. G. Sanders, ref 2a, p 26.

[^83]: (7) H. C. Barrett and G. Buchi, J. Amer. Chem. Soc., 89, 5685 (1967). More recently this route has been used by J. A. Marshall. R. A. Ruden, L. K. Hirsch, and M. Phillipe, Tetrahedron Lett., 3795 (1971), for the synthesis of a number of compounds similar to 10.
 (8) W. G. Dauben, M. E. Lorber, N. D. Vietmeyer, R. H. Shapiro, J. H Duncan, and K. Tomer, J. Amer. Chem. Soc., 90, 4782 (1968).
 (9) R. J. Conca and W. Bergman, J. Org. Chem., 18, 1104 (1953).

[^84]: (15) A study of models of 20 show that with ring A in the twist conformation mentioned above the steric relationship between the double bond and the β hydrogen at $\mathrm{C}-4$ should favor this reaction path.
 (16) All melting points were determined on a Kofer hot stage apparatus and are uncorrected. Infrared spectra were taken as potassium bromide disks or liquid films on sodium chloride plates using a Perkin-Elmer Model 137 spectrophotometer and are reported in microns. Ultraviolet spectra were taken in methanol using a Perkin-Elmer Model 202 spectrophotometer and are reported as $\lambda_{\text {max }}$ in nanometers ($\log \epsilon$). Nuclear magnetic resonance spectra were obtained using a Varian Associates A-60 nuclear magnetic resonance spectrophotometer with deuteriochloroform as a solvent unless stated otherwise. All spectra are reported in parts per million relative to tetramethylsilane (δ). Gas-liquid chromatography was carried out on an F\& M Model 810 analytical gas chromatograph using helium as the carrier gas at a flow rate of $35 \mathrm{ml} / \mathrm{min}$ through a $10 \mathrm{ft} \times 0.125 \mathrm{in}$. copper column of 20% Carbowax on 'HP' Chromosorb W ($80-100$ mesh). Preparative gle was carried out on an Aerograph Autoprep, Model A-700, using helium as a carrier gas at a flow rate of $300 \mathrm{ml} / \mathrm{min}$ using a $25 \mathrm{ft} \times 0.375 \mathrm{in}$. copper column of 25% Carbowax on Chromosorb W. Optical rotatory dispersion and circular dichroism measurements were made in dioxane solution using a Jasco ORD/UV-5 spectropolarimeter. Mass spectra were determined using a Du Pont $21-490$ mass spectrometer at $70-\mathrm{eV}$ ionization potential. Elemental analyses were performed by Galbraith Laboratories, Knoxville, Tenn.
 (17) The author would like to thank Professor A. R. Pinder for the gift of a generous sample of this material.

[^85]: (18) Both this material and hydroxy enone 10 sublime readily at 100° and atmospheric pressure, which undoubtedly contributes to the mediocre yields encountered in their preparation.

[^86]: (1) Antitumor Agents. VI. Previous paper: R. W. Doskocch, M. Y. Malik, C. D. Hufford, S. N. Malik, J. E. Trent, and W. Kubelka, J. Pharm. Sci., 61, 570 (1972). This investigation was supported by Public Health Service research grant CA-08133 from the National Cancer Institute and equipment grant FR-00328 from Special Research Resources for purchase of a Varian $\mathrm{A}-60 \mathrm{~A} \mathrm{nmr}$ spectrometer plus accessories.
 A detailed listing (Table I) of the nmr peaks for the compounds in this publication will appear following these pages in the microfilm edition of this volume of the journal. Single copies may be obtained from the Business Operations Office, Books and Journals Division, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036, by Feferring to code number JOC-72-2740. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche.
 (2) R. W. Doskotch and F. S. El-Feraly, J. Org. Chem., 38, 1928 (1970).

[^87]: (3) F. A. L. Anet, Can. J. Chem., 39, 2262 (1961).
 (4) J. Hochmannova, V. Herout, and F. Sorm, Collect. Czech. Chem. Commun., 26, 1826 (1961); V. Herout, M. Suchy, and F. Sorm, ibid., 2612 (1961).
 (5) We thank Professor F. Sorm for a copy of the ir spectrum of acetylbalchanolide. Since an authentic sample of the compound was unavailable, our comparison of spectra, one determined on a prism instrument and the other on a grating instrument, precludes a statement about their complete identity. No major differences were noted.

[^88]: (6) Analysis of this system was carried out as given by R. Bible, "Interpretation of NMR Spectra," Plenum Press, New York. N. Y., 1965, pp 86-92.
 (7) C. R. Narayanan and N. K. Venkatasubramanian, J. Org. Chem., 33, 3156 (1968).
 (8) These are undoubtedly the larger inner peaks of ar $A B$ quartet for which the smaller outside peaks were too weak to be observed.

[^89]: (9) P. V. Demarco, E. Farkas. D. Doddrell, B. L. Mylari, a nd E. Wenkert, J. Amer. Chem. Soc., 90, 5480 :1988). Methyl groups 1,3 diaxial to a hydroxyl show a deshielding of $0.2-0.4 \mathrm{ppm}$ in pyridine relative to chloroform.

[^90]: (1) (a) M. S. Kharasch and O. Reinmuth, "Grignard Reactiors of Nonmetallic Substances," Prentice-Hall, New York, N. Y., 1954, pp 196-234; (b) J. Munch-Petersen, Bull. Soc. Chim. Fr., 471 (1966).
 (2) (a) H. Gilman, R. G. Jones, and L. A. Woods, J. Org. Chem, 17, 1630 (1952); (b) H. O. House, W. L. Respess, and G. M. Whitesides, ibid., s1, 3128 (1966); (c) H. O. House and W. F. Fiacher, ibid., 3s, 949 (1968).

[^91]: (3) (a) F. Drahowzal and H. Kōnig, Monatsh. Chem., 85, 654 (1954). (b) Bidentate ligands such as $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine have also been ahown to retard the rate of reaction of dimethylmagnesium with benzophencne: H. O. House and J. E. Oliver, J. Org. Chem., 33, 929 (1968).

[^92]: (5) E. P. Kohler and W. D. Peterson, J. Amer. Chem. Soc., 65, 1073

[^93]: (6) Organocopper(I) reagents produced by treatment of cuprous salts with Grignard reagents are of uncertain structure and may be complex compounds containing both copper and magnesium. ${ }^{4 \mathrm{~b} \cdot 7}$ If this is the case, (- -sparteine (4) could be coordinated with either or both metal atoms of the reagent.
 (7) N.-T. Luong-Thi and H. Riviere, Tetrahedron Lett., 587 (1971).
 (8) S. Okuda and K. Tsuda, Chem. Ind. (London), 1115 (1961).
 (9) Melting points are uncorrected. The infrared spectra were determined with a Beckman IR-8 infrared spectrophotometer. Nmr spectra were recorded with a Varian A-60 spectrometer using tetramethylsilane as an internal standard. The mass spectra were obtained with a Varian MAT CH 7 mass spectrometer. Optical rotations were measured with an O. C. Rudolph and Sons, Inc., Model 200 photoelectric polarimeter equipped with a Model 340 oscillating polarizer. The optical rotatory dispersion curve for (+)-3-phenylcyclohexanone was determined with a Cary Model 60 spectropolarimeter. Microanalyses were performed by M-H-W Labora-

[^94]: (10) A $15 \mathrm{ft} \times 0.25 \mathrm{in}$. column packed with 10% silicone QF-1 on Chromo-

[^95]: (3) Kharasch and Sayles reported the independent synthesis of 2 in quantitative yield by reaction of benzalacetophenone with β-phenylbutyrophenone in the presence of pyridine. ${ }^{2 b}$ We have been unable to duplicate this preparation.
 (4) The Michael reaction of a magnesium enolate with benzalacetophenone has previously been reported. ${ }^{2 \mathrm{a}}$
 (5) Cf. M. Julia and A. Rouault, Bull. Soc. Chim. Fr., 1833 (1959).

[^96]: (6) R. Wi.lstatter and A. Pfannenstiebl, Chem. Ber., 38, 2350 (1905).

[^97]: (7) K. Nakagawa and H. Onoue, Tetrahedron Lett., 1433 (1965); Chem.

[^98]: (12) C. Enzell, Acta Chem. Scand., 16, 1553 (1962).

[^99]: (34) Melting points are corrected. Analyses were performed by Gal braith Laboratories. Inc., Knoxville. Tenn. Ir spectra were taken on a Perkin-Elmer Model 137B instrument with NaCl optics. ${ }^{1} \mathrm{H}$ nmr spectra were taken on a Varian A-60 spectrometer, using TMS as an internal standard, and ${ }^{31} \mathrm{P} \mathrm{nmr}$ spectra were taken on a Varian HA-60-IL instrument at 24.3 Mc , using $85 \% \mathrm{H}_{3} \mathrm{PO}$ ، as an external standard.
 (35) Hooker Chemical Corp., Niagara Falls. N. Y. Name of firms or their products in this paper does not imply their endorsement by the Depart ment of Agriculture.
 (36) M. Reuter and L. Orthner (to Farbwerke Hoechst A.-G.), U. S Patent 3,030,421 (1962)
 (37) R. K. Valetdinov, E. V. Kuznetsov, R. R. Belova, R. K. Mukhaeva T. I. Malykhina, and M. Kh. Khasanov, Zh. Obshch. Khim., 37, 2269 (1967) Chem. Abstr., 68, 87350 (1968).
 (38) E. I. Grinshtein, A. B. Bruker, and L. Z. Soborovskii, Zh. Obshch. Khim., 36, 302 (1966); Chem. Abstr., 64, 17629 (1966).
 (39) A. W. Frank and G. L. Drake, Jr., J. Org. Chem., 36, 549 (1971).
 (40) H. Coates and P. A. T. Hoye [To Albright \& Wilson (MIfg.) Ltd.] German Patent 1,077,214 (1960).

[^100]: (1) This research was carried out under grant number CA-10742 from the National Cancer Institute, National Institutes of Health.
 (2) (a) NSF Undergraduate Research Participant, Summer 1970; (b) National Defense Education Act Fellow, 1966-1969.
 (3) J. P. Freeman and M1. J. Hoare. J. Org. Chem., 36, 19 (1971)
 (4) There is still some uncertainty in structure 2 as to whether the olefinic ester function is α or β with respect to the bridgehead ester group. In addition to 2 , traces of a $\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{O}_{10}$ compound were isolated. Although the structure of this compound has not been completely elucidated, it is believed to be of the type i, resulting from capture of the intermediate 2 witterion ${ }^{2}$ by product 2 instead of by ethyl propiolate.

[^101]: (5) The spectra of the methyl ethers were used because the low solubility of the parent hydroxy compounds resulted in poor spectra

[^102]: (6) G. S. Reddy, R. T. Hobgood, Jr., and J. H. Goldstein, J. Amer. Chem. Soc., 84, 336 (1962); S. Gronowitz, B. Norrman, H. Gestbloom, B. Mathiasson, and R. A. Hoffman, Ark. Kemi, 22, 65 (1964).
 (7) S. W. Pelletier and D. M. Locke, J. Org. Chem., 23, 131 (1958).
 (8) H. Bredereck, R. Gompper, and G. Morlock, Chem. Ber., 90, 942 (1957).
 (9) W. E. Noland and R. F. Modler, J. Amer. Chem. Soc., 86, 2086 (1964).
 (10) J. P. Freeman, D. L. Surbey, and J. E. Kassner, Tetrahedron Lett., 3797 (1970).
 (11) J. P. Freeman, D. L. Surbey, and J. J. Gannon. J. Org. Chem., 34, 184 (1969).

[^103]: (4) Although it is not an oxidative procedure, we have found that orthothioformates may also be obtained in high yields by treating 2-lithio-2-thio-methoxy-1,3-dithiane with alkyl halides under carefully controlled conditions See Experimental Section for details.

[^104]: (5) D. Seebach, B. W. Erickson, and G. Singh, J. Org. Chem., 31, 4303 (1966).

[^105]: (6) C. Raha, "Organic Syntheses," Collect. Vol. IV, Wiley, New York, N. Y., 1963, p 263.

[^106]: (7) W. C. Baird, Jr., and M. Buza, J. Org. Chem., 33, 4105 (1968)
 (8) M. L. Scheinbaum, ibid., 35, 2785 (1970).

[^107]: (9) C. C. Hinckley. J. A mer. Chem. Soc., 91, 5160 (1969).
 (10) J. K. M. Sanders and D. H. Williams, Chem. Commun., 422 (1970)
 (11) Georze H. Wahl, Jr., and M. R. Peterson. Jr., ibid., 1167 (1970).
 (12) P. V. Demarco, T. K. Elzey, R. Burton Lemis and E. Wenkert. J. Amer. Chem. Soc., 92, 5734 (1970).
 (13) E. Wedejs and M. S. Salomon, ibid., 92, 6965 (1970).
 (14) A sample of the "trans" 3,5 -diacetate ($1 \mathrm{a}, \mathrm{X}=\mathrm{Y}=\mathrm{OAc}$) showed t wo different downfield signals for H_{3} and H_{5} with a difference in chemical shift of about 0.3 ppm .
 (15) We sympathize nith a referee's query as to how many cases are necessary to demonstrate the generality of a phenomenon; we hope that the seven different electronegative groupings that have shown this effect are sufficient

[^108]: (1) I. Haller and R. Srinivasan, J. Chem. Phys., 41, 2745 (1964).
 (2) M. D. Harmony and K. W. Cox, J. Amer. Chem. Soc., 88, 5049 (1966)
 (3) K. W. Cox, M. D. Harmony, G. Nelson, and K. B. Wiberg, J. Chem. Phys., 50, 1976 (1969).
 (4) O. Bastiansen, private communication.
 (5) S. Meiboom and L. C. Snyder, Science, 162, 1337 (1968).
 (6) K. Wathrick, S. Meiboom, and L. C. Snyder, J. Chem. Phys., 52, 230 (1970).

[^109]: (1) R. Stewart. "Oxidation in Organic Chemistry," Part A. Academic Press, New York, N. Y., 1965, Chapter 1, pp 2-25.
 (2) S. G. Powell, J. Amer. Chem. Soc., 45, 2707 (1923).

[^110]: (4) L. F. Fieser, and M. Fieser, "Reagents for Organic Synthesis," Wiley, New York, N. Y., 1967, pp 942-952.
 (5) H. S. Posselt, A. H. Reidies, and W. J. Weber, Jr., J. Amer. Water Works Ass., 60, 48, 1366 (1968).
 (6) H. S. Posselt, F. J. Anderson, and W. J. Weber, Jr., Environ. Sci. Technol., 2, 1087 (1968).
 (7) R. Stewart and R. van der Linden, Can. J. Chem., 38, 2237 (1960).
 (8) T. Freund, J. Inorg. Nucl. Chem., 15, 371 (1960).

[^111]: (1) R. B. Morin, B. G. Jackson, R. A. Mueller, E. R. Lavagnino, W. B. Scanlon, and S. L. Andrews, J. Amer. Chem. Soc., 85, 1896 (1963); 91, 1401 (1969).
 (2) R. B. Morin, B. G. Jackson, E. H. Flynn, and R. W. Roeske, ibid., 84, 3400 (1962).
 (3) C. W. Ryan, R. L. Simon, anc E. M. Van Heyningen, J. Med. Chem., 12, 310 (1969).
 (4) R. R. Chauvette. P. A. Pennington, C. W. Ryan, R. D. G. Cooper F. L. Jose, I. G. Wrigit, E. M. Van Heyningen, and G. W. Huffman, J. Org. Chem., 36, 1259 (1971).
 (5) G. A. Hardcastle, Jr., D. A. Johnson, C. A. Panetta, A. I. Scott, and S. A. Sutherland, ibid., 31, 897 (1966).
 (6) P. Quitt, R. O. Studer, and K. Vogler, Helv. Chim. Acta, 47, 166 (1964).
 (7) F. H. C. Stewart, Aust. J. Chem., 22, 2451 (1969).
 (8) J. M. Essery, K. Dadabo, W. J. Gottstein, A. Hallstrand, and L. C. Cheney, J. Org. Chem., 30, 4388 (1965).

[^112]: (4) The trihydroxy compound, $2 a$, was obtained in the present investigation according to the method of Loev and Dawson (see ref 2 b and the Ph.D. Dissertation of B. Loev, Columbia Úniversity, 1952). Quantitative hydrogenolysis of 2,3-dibenzyloxy(1'-hydroxy)pentadecylbenzene (2b), a precursor of 1 c , at 1 atm over $10 \% \mathrm{Pd} / \mathrm{C}$ gave 2 a . 2b had been obtained in t wo steps in an overall yield of 58% from o-catechualdehyde according to the method given in ref $2 b$.
 (5) Ortho-allyl and propenyl phenols are very susceptible to cyclization to form dihydrobenzofurans under the infuence of heat and/or acidic catalysts. Such reactions are usually accompanied by formation of large amounts of polymer. See (a) D. S. Tarbell, Chem. Rev., 27, 287 (1940) (b) Q. R. Bartz, R. F. Miller, and R. Adams, J. Amer. Chem. Soc., 57, 371 (1935): (c) D. S. Tarbell, Org. React., 2, 1 (1944); (d) C. D. Hurd and L. Schmerling, J. Amer. Chem. Soc., 69, 107 (1937).
 (6) (a) Aldrich Chemical Co.. $\mathrm{CH}_{\mathrm{i}}(\mathrm{COTMS})=\mathrm{NTMS}$; (b) J. F. Klebe, H. Finkbeiner, and D. M. White, ibid.. 88, 3390 (1966); (c) L. Birkofer and A. Ritter, Angew. Chem., Int. Ed. Engl., 4, 417 (1965).
 (i) B. Loev and C. R. Dawson, J. Org. Chem., 24, 980 (1959).

[^113]: (1) (a) This research was supported in part by Public Health Service Grant No. CAl1715 from the National Cencer Institute. b) David Ross Fellow, 1969-1971. (c) Abstracted in part from the thesis of B. K., 1969.
 (2) C. C. Hinckley, J. Amer. Chem. Soc., 91, 5160 (1969).
 (3) J. K. M. Sanders and D. H. Williams, Chem. Commun., 422 (1970).
 (4) J. K. M. Sanders and D. H. Williams, J. Amer. Chem. Soc., 93, 641 (1971), and references cited therein.
 (5) H. Hart and G. M. Love, Tetrahedron Lett., 625 (1971).
 (6) T. Okutani, A. Morimoto, T. Kaneko, and K. Mastda, ibid., 1115 (1971), and ref 6 in that article.
 (7) H. van Brederode and W. G. B. Huysmans, ibid., 1695 (1971).
 (8) T. W. Craig, C. R. Harvey, and G. A. Berchtold, J. Org. Chem., 32, 3743 (1967).
 (9) M. S. Newman and C. A. VanderWerf, J. Amer. Chem. Soc., 67, 233 (1945).

[^114]: (2) The optical densities of $1\left(0.335 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and XCCl_{8} in a quartz tube (i.d. 1.3 cm) are at $300 \mathrm{~nm} \mathrm{1a}=126,1 \mathrm{~b}=1.3, \mathrm{BrCCl}_{\mathrm{s}}=52, \mathrm{CCl}_{\mathrm{a}}=$ 0.007 ; at $350 \mathrm{~nm}, 1 \mathrm{a}=3.0,1 \mathrm{~b}=1.1, \mathrm{BrCCl}_{\mathrm{s}}=0.7, \mathrm{CCl}_{4}=0$. The spectral distribution of an RPR $350-\mathrm{nm}$ lamp ranges from 307 to 420 nm with the maximum emigsion at 350 nm .
 (3) K. Omura and T. Matsuura, Tetrahedron, 26, 255 (1970).

[^115]: (10) R. L. Frank, R. Armstrong, J. Kwiatek, and H. A. Price, J. Amer.

[^116]: (12) T. Fujisaki and T. Miyazaki, Chem. Abstr., 35, $11345 b$ (1963).
 13) W. H. Pirkle and G. F. Koser, J. Amer. Chem. Soc., 90, 3598 (1968)
 (14) T. W. Campbell and G. M. Coppinger, ibid., 74, 1469 (1952).
 (15) L. K. Popov, F. M. Egidis, and V. V. Ershov, Bull. Acad. Sci. USSR 4, 863 (1968).
 (16) A. Hausweiler, R. Seydel, and R. Stroh, Chem. Abstr., 55, 27217h (1961).

[^117]: (2) L. J. Bellamy, "The Infra-red Spectra of Complex Moiecules," Wiley. New York, N. Y., 1958, p 267.
 (3) T. Mukaiyama, I. Kuwajima, and K. Mizui, J. Org. Chem., 31, 32 (1966).
 (4) R. A. Bauman, J. Chem. Eng. Data, 11, 274 (1966).
 (5) R. Radeglia, S. Scheithauer, and R. Mayer, Z. Naterforsch. B, 24, 283 (1969).
 (6) (a) J. L. Richards, D. S. Tarbell, and E. H. Hoffmeister, Tetrahedron, 24, 6485 (1¢68); (b) F. N. Jones and S. Andreades, J. Oro. Chem., 34, 3011 (1969): (c) K. Pihlaja, Suomen Kemistilehti B. 43, 143 (1970): (d) G. E. Wilson, Jr., M. G. Huang, and F. A. Bovey J. Amer. Chem Soc., 92, 5907

[^118]: (7) Inter alia, cf. C. Graebe, Ber., 16, 862 (1883); R. Mohlau, ibid., 49, 168 (1916). See alзo S. Wawzonek in "Heterocyclic Compounds," Vol. 2. R. C. Elderfield, Ed., Wiley, Nevo York, N. Y., 1951, p 453.
 (8) $\mathrm{D}(\mathrm{C}-\mathrm{Br})$ is normally $65-70 \mathrm{kcal} \mathrm{mol}^{-1}$ in the gas phase, much above the ΔH^{*} value for $1-\mathrm{Br}$. We seriously doubt that some type of "solvation" phenomenon could lower the enthalpy by $30 \mathrm{kcal} \mathrm{mol}^{-1}$.
 (9) The tosylate related to 5 is ca. 10^{4}-fold more reactive in acetolysis (50°) than is neopentyl tosylate, ${ }^{6}$ undoubtedly because of anchimeric assistance. The 10^{-12} rate found for $1-\mathrm{Br}$ relative to 5 places $1-\mathrm{Br}$ roughly at 10^{-8} relative to neopentyl tosylate, or $c a .^{10^{-2.7}}$ slower per aromatic ring. Because 5 is undolbtedly somewhat slower in solvolysis than its related tosylate, this extrafolation really gives a minimal value for this "inductive retardation."
 (10) A value of ca. 10^{-1} seems more likely. ${ }^{2}$

[^119]: (11) P. D. Bartlett and E. S. Lewis, J. Amer. Chem. Soc., 72, 1005 (1950).
 (12) J. S. Meek, W. B. Evans, V. Godefroi, W. R. Benson, M. F. Wilcox,
 W. G. Clark, and T. Tiedeman, J. Org. Chem., 26, 4281 (1961)
 (13) E. C. Kornfeld, P. Barney, J. Blankley, and W. Faul, J. Med. Chem.,

 8, 342 (1965)
 (14) F. M. Logullo, Dissertation, Case Western Reserve University, 1965; B. H. Klanderman and T. R. Criswell, J. Org. Chem., 34, 3425 (1969).
 (15) E. Grovenstein, Jr., J. A mer. Chem. Soc., 79, 4985 (1957).
 (16) J.-B. Chazan and G. Ourisson, Bull. Soc. Chim. Fr., 1384 (1968).

[^120]: (16) A. S. Atavin and N. V. Egorov, Khim. Atsetilena, Dokl. V ses. Nauch. Konf., 1965, 17 (1968) [Chem. Abstr., 71, 70,019c (1969)].
 (17) C. S. Coe and T. F. Doumani, J. Amer. Chem. Soc., 70, 1516 (1948).
 (18) C. H. Purkis and H. W. Thompson, Trans. Faraday Soc., 32, 1466 (1936).

[^121]: (5) The prefix grapho is derived from the Greek verb grephein, to write, which was used by Greek mathematicians in the sense "to describe a figure." The prefix phero is derived from the Greek pherein, to bear, to cause. It seems appropriate as "phore," which is derived from the same root, is used in the same sense in chromophore.
 (6) Compound 1 is a close analog of one prepared and resolved by R. E. Lyle and G. G. Lyle, J. Otg. Chem., 24, 1679 (1959), to serve as a first example of what they called "geometrical enantiomorphic isomerism." The term shows how blurred the traditional distinction between geometrical and optical isomerism has become and that a classification of the elements of stereoisomerism requires terms that are mutually exclusive in all situations.

[^122]: (6) Y. Liwschitz and A. Singerman, J. Chem. Soc., 1696 (1967); H. Oka and N. Izumiya, Bull. Chem. Soc. Jap., 42, 3550 (1969).
 (7) H. A. Staab, Angew. Chem., Int. Ed. Engl., 1, 351 (1962).

[^123]: (5) The introduction to the Experimental Section of an earlier contribution provides a summary of general methods and reagents employed here; see J. C. Knight, G. R. Pettit, and P. Brown, J. Org. Chem., 35, 1415 (1970).
 (6) O. Grummitt, E. P. Budewitz, and C. C. Chudd, Org. Syn., 36, 61 (1956).
 (7) H. Gilman, E. A. Zoellner, and J. B. Dickey, J. Amer. Chem. Soc., 51, 1576 (1929).

[^124]: (4) F. B. Thole and J. F. Thorpe, J. Chem. Soc.. 2187 (1911).
 (5) (a) M. Conrad and M. Guthzert. Ber., 18, 2841 (1882); (b) C. K. Ingold and E. A. Perren. J. Chem. Soc., 1582 (1921).
 (6) The trimerization of ethyl propiolate to aromatic compounds has been described hy L. S. Meriwether. E. C. Colthup, G. W. Kennerly, and R. N. Reusch. J. Org. Chem.. 26, 5155 (1961).
 (i) J. H. Bowie. D. H. Williams, S. O. Lawesson, and G. Schroll, ibid., 31, 1792 (1966).
 (8) L. Friedmannand F. A. Long, J. Amer. Chem. Soc., 78, 2832 (1953).

[^125]: (10) This removal of a quantity of the solvent was necessary to ensure optimization of the ethylation reaction; otherwise, unethylated material was obtaine 4 , as the pyrone, ethyl 6 -ethoxy- 2 H -pyran-2-or:e-3,5-dicarboxylated, via elimination of ethanol from tetraethyl 1-propene-1,1,3,3-tetracarboxylate. See M. Guthzeit and O. Dressel, Ber., 22, 1413 (1889).

[^126]: (7) J. E. Kmiecik, J. Org. Chem., 30, 2014 (1965)

[^127]: (7) See, for example, R. V. Lemieux in "Molecular Rearrangements," Vol. 2, P. de Mayo, Ed., Interscience, New York, N. Y., 1984, Chapter 12.
 (8) (a) F. Frinquelli and A. Taticchi, J. Chem. Soc. C, 2011 (1971); (b) J. Klein and D. Lichtenbert, J. Org. Chem., 35, 2654 (1970); (c) S. P. Acharya and H. C. Brown, ibid., 35, 3874 (1970).

[^128]: \dagger Attention is called to the possibility of including supplementary data [e.g., see footnote 4 of this communication and editorial, J. Org. Chem., 37, No. 13, 4A (1972)]: F. D. G.
 (1) Supported by Grant GP-9322 from the National Science Foundation. (2) O. S. Rothenberger, R. T. Taylor, D. L. Dalrymple, and J. A. Moore, J. Org. Chem., 37, 2540 (1972)
 (3) J. A. Moore, F. J. Marascia, R. W. Medeiros, and R. L. Wineholt, ibid., 31, 34 (1966).
 (4) Complete experimental details on all compounds described in this communication will appear following these pages in the microfilm edition of this volume of the journal. Single copies may be obtained from the Business Operations Office, Books and Journals Division, American Chemical Society, 1155 16th Street, N.W., Washington, D. C. 20036, by referring to code number JOC-72-2796. Remit $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche.
 (5) J. M. Eby and J. A. Moore, ibid., 32, 1346 (1967).
 (6) J. A. Moore, R. L. Wineholt, F. J. Marascia, R. W. Medeiros, and F. J. Creegan, ibid., 32, 1353 (1967).
 (7) M. G. Pleiss and J. A. Moore, J. Amer. Chem. Soc., 90, 4738 (1968).

[^129]: (8) The same process was observed previously in the base-catalyzed conversion of the 7 -methoxy-1-benzoyl-1,7-dihydrodiazepinone to the 7 -methoxy-2,3-dihydrodiazepinone, but was not recognized as such, and was represented as a series of prototropic rearrangements: R. L. Wineholt, E. Wyss, and J. A. Moore, J. Otg. Chem., 31, 48 (1966).

[^130]: INSTA-START ${ }^{\text {M }}$ —Trademark of Realco Chemical Company, A Division of National Patent Development Corporation, New York, New York
 *U.S. Pat. Applied for.

