the journal of Organic Chemistry

EDITOR-IN-CHIEF: FREDERICK D. GREENE
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

SENIOR EDITORS

Werner Herz
Florida State University
Tallahassee, Florida

James A. Moore
University of Delaware
Newark, Delaware

Martin A. Schwartz
Florida State University
Tallahassee, Florida

ASSISTANT EDITOR: Theodora W. Greene

BOARD OF EDITORS

Joseph F. Bunnett
Clifford A. Bunton Michael P. Cava
Orville L. Chapman
Gerhard L. Closs
Charles H. DePuy

James A. Marshall
James C. Martin
Roy A. Olofson
Leo A. Paquette
Howard E. Simmons

Robert V. Stevens
Edward C. Taylor
David J. Trecker
Barry M. Trost
Edwin F. Ullman
Edgar W. Warnhoff

EX-OFFICIO MEMBERS: GEorge H. Coleman, Wayne State University
Jeremiah P. Freeman, University of Notre Dame (Secretary-Treasurer of the Division of Organic Chemistry of the American Chemical Society)

Published by the

AMERICAN CHEMICAL SOCIETY
1155 16th Street, N.W.
Washington, D.C. 20036

BOOKS AND JOURNALS DIVISION

John K Crum Director
Ruth Reynard Assistant to the Director

Charles R. Bertsch Head, Editorial Processing Department
D. H. Michael Bowen Head, Journals Department

Bacil Guiley Head, Graphics and Production Department

Seldon W. Terrant Head, Research and Development Department
©Copyright, 1973, by the American Chemical Society.

Published biweekly by the American Chemical Society at 20th and Northampton Sts., Easton, Pa. 18042. Second-class postage paid at Washington, D. C., and at additional mailing offices.

Editorial Processing Department, American Chemical Society, 20th and Northampton Sts., Easton, Pa. 18042: Head, Charles R. Bertsch; Production Editor, Eileen Segal; Assistant Editor, Fern S. Jackson; Editorial Assistant, Andrew J. D'Amelio.

Advertising Office: Centcom, Ltd., 142 East Ave., Norwalk, Conn. 06851.

The American Chemical Society and the Editors of The Journal of Organic Chemistry assume no responsibility for the statements and opinions advanced by contributors.

Business and Subscription Information

Send all new and renewal subscriptions with payment to Office of the Controller, 1155 16th Street, N.W., Washington, D. C. 20036. Subscriptions should be renewed promptly to avoid a break in your series. All correspondence and telephone calls regarding changes of address, claims for missing issues, subscription service, the status of records, and accounts should be directed to Manager, Membership and Subscription Services, American Chemical Society, P.O. Box 3337, Columbus, Ohio 43210. Telephone (614) 4217230.

On changes of address, include both old and new addiesses with ZlP code numbers, accompaniec sy mailing label from a recent issue. Allow four weeks for change to beccme effective.

Claims for missing numbers will not be allowed (1) if loss was due to failure of notice of change in address to be received before the date specified, (2) if received more than sixty days from date of issue plus time normally required for postal delivery of journal and claim, or (3) if the reason for the claim is "issue missing from files."

Subscription rates for 1973: $\$ 20.00$ per volume to members of the ACS and $\$ 60.00$ per volume to all others. Those interested in becoming members should write to the Admissions Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Add $\$ 5.00$ per subscription for Canada and countries belonging to the Postal Union, and $\$ 6.00$ for all other countries.

Single copies for current year: $\$ 3.00$. Postage, single copies: to Canada and countries in the PanAmerican Union, \$0.15; all other countries, $\$ 0.20$. Rates for back issues from Volume 20 to date are available from the Special Issues Sales Department, 1155 16th St., N.W., Washington, D.C. 20036

Subscriptions to this and the other ACS periodical publications are available on microfilm. Supplementary material not printed in this journal is now available in microfiche form on a current subscription basis. For information on microfilm or microfiche subscriptions, write Special Issues Sales Department at the address above.

Tape Cassettes From The American Chemical Society

ENERGY

\square Energy. A Critique
Dr. Dean Abrahamson
Puzzles of Air Pollution Arthur Levy
\square Fusion: Prospects \& Pitfalls-1 Dr. H. Furth \& Dr. H. Forsen Fusion: Prospects \& Pitfalls- II
Dr. H. Furth \& Dr. H. Forsen
\square Antidote to the Energy Crisis George Long
Chemicals In the Environment
Dr. Samuel Epstein
\square Fusion and Fission: An Appraisal Dr. James L. Tuck
The Prospects for Energy
Dr. M. King Hubert

ENVIRONMENT

\square Man \& Nature in South Florida Rose McCluney The Slick Factor in Ocean Pollution Dr. Eugene Corcoran
\square The Damaged Air-I The Damaged Air-II
\square How Smells Shape Up
Dr. John Amoore Uban Auto Design
\square Tough Filaments of Fragile Liquid James Bacon
Electricity from Rooftops
Or. Charles E. Backus
\square The Struggle for Clean Water-I The Struggle for Clean Water-II
\square The Oil Mystery Harold Bernard The Language of Odors Dr. Stanley Freeman
\square The Muskegon County Experiment Dr. W Bauer \& Dr. J. Sheaffer The Sophisticated Dowser Dr. Richard Parizek
\square The Lonely Atom Dr. Philip Skell How Green the Revolution Lester Brown
\square Mercury: Another Look, Part I Dr John Wood Mercury: Another Look. Part II Dr. John Wood \& D. G. Langley
\square The Troubles with Water Dr. Daniel Okun Pure Oxygen for Polluted Water Dr. Jack McWhirter
\square Bubble Machines \& Pollution Finders Dr. K. Patel \& Dr. L. Kreuzer The Steam Engine: A Modern Approach Dr. W. Doerner \& Dr. M. Bechtold

Insects: The Elements of ChangeParts I \& II Dr. Carroll M. Williams
\square New Weapons Against Insects Dr. G Staal \& Dr J. Siddall Moths, Drugs, \& Pheromones Dr. Wendell Roelois
\square The Lead Issue
H. Mayrsohn \& M. H. Hyman Smog: An Environmental Dilemma Dr James Pitts
\square The Fusion Torch
Dr. B. Eastlund \& Dr. W. Gough The Impermanent Plastic Dr James Guillet

CANCER RESEARCH

\square Chemicals Combating Cancer Dr. David Grassetti
Chemical Essence of Beer \& Ale Dr. Rao Palamand
\square Cancer Research I-Perspective \& Progress Dr. Frank Rauscher Cancer Research II-Viruses
Dr. R. Gallo \& Dr G. Todaro
\square Cancer Research III-Chemotherapy Dr. C. Gordon Zubrod
Cancer Research IV-Immunology
Dr. Paul Levine
\square Cancer Research V-Environmental
Agents Dr. Umberto Saffiotti
Cancer Research VI-NCI Roundtable

SCIENCE

\square Community Needs: New Emphasis in Research Dr. H. Guyford Stever Aspirin vs. Prostaglandins Dr. John Vane
\square A Breakdown in Plastics-1 Drs. J. Guillet \& G. Scott A Breakdown in Plastics-II Drs. J. Guillet \& G. Scott
\square Protein: The Next Big Production? Dr. Steven Tannenbaum
Clean Energy: A One-Way Dream
Dr. J. R. Eaton
\square Science, Scientists, \& the Public Interest-I
Science, Scientists, \& the Public
Interest-II
\square Nitrosamines: A Reappraisal
Dr. Phillip Issenberg
The Emperor of Ice Cream
Dr Wendell Arbuckle
\square Ethics and Genetics
Dr. Robert F. Murray
The American Diet: A Critique
Dr Arnold Schaefer

Probing Creation Dr Myron A. Coler New Directions in U.S. Science Dr. William McElroy
\square Aspirins, Enzymes, \& Fragrant Redheads An Essay Report Vitamin D: A New Dimension Dr. Hector DeLura
\square Pica Dr J. Julian Chisolm. Jr Technology in the Nursery Dr. William J Dorson
\square Engineering Microbes Dr. Elmer Gaden
Liquid Crystals: A Bright Promise Dr George Heilmeier
\square Hot Brines in the Red Sea
Dr. David Ross
Complete Corn Dr. Edwin T. Mertz
\square Lively Xenon Dr. Neil Bartlett The Repressor Hunt Dr. Mark Ptashne
\square The New Prospectors Dr. William Prinz A Sober Look at Alcoholism Dr. Jack Mendelsohn
\square Probing the Active Site
Dr. David Pressman
The Puzzle of Diversity Dr. Oliver Smithies
\square Help for the Have Nots Dr. Harrison Brown The Closing Circle Dr. Preston Cloud

BIO-MEDICAL

\square Insulin \& Diabetes-I
Dr. George Cahill
Insulin \& Diabetes-II
Dr. George Cahill
\square Stalking the Molecules of Memory Dr. Leslie Iverson Immunotherapy Dr. Kenneth Bagshawe
\square Engineering Enzymes
Dr. Victor Edwards
On Drugs, Plasticizers, \& Mass Spec Dr. G. W. A. Milne
\square Body Metal Dr. Thomas Clarkson Judging Technology Dr. E. G. Mesthene
\square Prospects for Implants
Dr. Donaid Lyman
New Dimensions for Polymers
Dr. Alan Michaels
\square Fabricating Life An Essay Report New Ways to Better Food Dr. R. W. F. Hardy
\square Chemistry of the Mind: Schizophrenia Dr Larry Stein
Chemistry of the Mind: Depression
Dr Joel Elkes
\square The Molecules of Memory Dr. W. L. Byrne \& Dr. A. M. Golub The Matter with Memory Dr. J. McGaugh
\square Dissonant Harmony
Dr. Denham Harman
Why We Grow Old Dr Howard Curtis
\square New Materials for Spare Parts
Dr V. Gott \& Dr. A. Rubin
Against Individuality
Dr. R. Reisfeld \& Dr. B. Kahan
\square A Richness of Lipids
Dr. Roscoe 0 Brady
Life: Origins to Quality
Dr Stanley Miller
\square The Nitrogen Fixer
Dr. Eugene van Tamelen
Prostaglandins: A Potent Future
Dr. E. J. Corey \& Dr. S Bergstrom
\square A Glass Revolution Dr.S.D. Stookey A View of Genes Dr. Norman Davidson
\square Chemical Evolution
Dr Russell Doolittle
An Evolving Engine Dr. R.E. Dickerson

NOBEL PRIZE WINNERS

\square Dr. Linus Pauling
The Committed Scientis
Dr. Jacob Bronowski
Science and Man
\square Dr. Glenn Seaborg The Atomic World of Glenn Seaborg
Dr. George Wald Vision, Night
Blindness, \& Professor Wald
\square Dr. Melvin Calvin The Search
for Significance-Parts I \& II
\square Prospects for the Living Filter
Dr. Richard Parizek
Coral Designs Dr. Eugene White
\square Bones, Teeth, \& Ceramics
Thomas Driskel
PCBs: The Accidental Pollutants Dr. Henry Enos
\square Birth Control: Problems \& Prospects Dr. Carl Djerass
Hormones, Terpenes, \& the German
Air Force Dr. A. J. Birch

OUTER SPACE

\square Molecules in Space
Dr. D. Buhl \& Dr. L. Snyder
Chemistry Among the Stars
Dr. Bertram Donn
\square Molecules Meeting Molecules
Dr. John Richards
The Neutrinos of the Sun
Dr Raymond Davis
$\$ 1.08$ for all orders outside U.S.
5\% Bisceunt il payment accompanies eriliet
Brder From: American Chemical Seciety. 1155 16th Streat,
N.W., Washingten, B.C 20036. ATIN: A Reules

THE JOURNAL OF
 Organic Chemistry

Volume 38, Number 18

Tikam C. Jain, Alan F. Russell, and John G. Moffatt*	3179	Reactions of 2-Acyloxyisobutyryl Halides with Nucleosides. III. Reactions of Tubercidin and Formycin
E. J. Corey* and Harry E. Ensley	3187	Highly Stereoselective Conversion of Prostaglandin A_{2} to the 10,11 α-Oxido Derivative Using a Remotely Placed Exogenous Directing Group
Paul R. Jones* and Samuel J. Costanzo	3189	A Study of the Scope and Mechanism of Displacement of Halogen from a Saturated Carbon by Organocadmium Reagents
D. M. Fenton	3192	Noble Metal Catalysis. II. Hydratocarbonylation Reaction of Olefins with Carbon Monoxide to Give Saturated Acids
Sheldon E. Cremer,* Frederick L. Weitl, Frank R. Farr, Paul W. Kremer, George A. Gray, and Hai-ok Hwang	3199	Substituted 1-Chlorophosphetanium Salts. Synthesis, Stereochemistry, and Reactions
George A. Olah,* Y. K. Mo, and James L. Grant	3207	Stable Carbocations. CLI. Protonation of Cyclic Carboxylic Acid Anhydrides in $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ ("Magic Acid")- SO_{2} Solution
George A. Olah* and Y. K. Mo	3212	Stable Carbocations. CLVIII. Degenerate 1,2-Hydrogen Shifts in Fluorobenzenium Ions and Their Comparison with Those in Methylbenzenium Ions

NOTES

George A. Olah* and Y. K. Mo 3221 Stable Carbocations. CLVI. Dealkylative Formation of the tert-Butyl Cation from Substituted tert-Butylbenzenes with Fluoroantimonic Acid
E. J. Corey* and J. William Suggs 3223 Cleavage of Allyloxycarbonyl Protecting Group from Oxygen and Nitrogen under Mild Conditions by Nickel Carbonyl
E. J. Corey* and J. William Suggs 3224

Selective Cleavage of Allyl Ethers under Mild Conditions by Transition Metal Reagents

COMMUNICATIONS

C. F. Wong and 3225

Robert T. LaLonde*
Absolute Configuration of C_{30}, Sulfur-Containing Nuphar Alkaloids Determined by Circular Dichroism
John R. Obst* and John M. Harkin 3226 Reversible Deuteration of 2,6-Dimethoxy-1,4-benzoquinone in Alkali
John C. Sheehan* and Young S. Lo 3227 Benzyl 6-Oxopenicillanate and Derivatives. II

Supplementary material for this paper is available separately, in photocopy or microfiche form. Ordering information is given in the paper.
*In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

AUTHOR INDEX

Abushanab, E., 3105
Alpha, S. R., 3136
Arndt, H. C., 3140
Blount, J. F., 3077
Brace, N. O., 3167
Bristol, D. W., 3160
Brown, G. B., 3102
Burdon, L. G., 3114
Carey, F. A., 3107
Chellappa, K. L., 3172
Ciabattoni, J., 3149
Corey, E. J., 3187, 3223, 3224
Costanzo, S. J., 3189
Cremer, S. E., 3199
Curci, R., 3149
Day, A. R., 3084
DeVicaris, G., 3094

Ensley, H. E., 3187
Farr, F. R., 3199
Fay, C. K., 3122
Fenton, D. M., 3192
Friedlander, B. T., 3145
Fryer, R. I., 3077
Grant, J. L., 3207
Gray, G. A., 3199
Greenzaid, P., 3164
Grippi, M., 3094
Grutzner, J. B., 3122
Guthrie, R. D., 3114
Hammond, L. M., 3145
Harkin, J. M., 3226
Hayes, L. J., 3107
Haywood-Farmer, J., 3145
Herr, R. W., 3153

Ho, R. I., 3084
Holtz, H. D., 3175
Homsany, R., 3172
Hwang, H., 3199
Hyndman, C., 3094
Ise, N., 3120
Jain, T. C., 3179
Johnson, C. R., 3153
Johnson, L. F., 3122
Jones, P. R., 3189
Kane, J., 3087
Kocienski, P. J., 3149
Kremer, P. W., 3199
Krow, G. R., 3094
LaLonde, R. T., 3225
Lee, T.-C., 3102

Lo, Y. S., 3227
Lovell, F. L., Jr., 3114
Lucchini, V., 3149
Mahan, J. E., 3175
Marakowski, J., 3094
Mo, Y. K., 3207, 3212, 3221
Modena, G., 3149
Moffatt, J. G., 3179

Obst, J. R., 3226
Okamoto, Y., 3172
Okubo, T., 3120
Olah, G. A., 3207, 3212, 3221

Potts, K. T., 3087

Rodebaugh, R., 3094

Russell, A. F., 3179
Salemnick, G., 3102 Schroeder, J. P., 3160
Schultz, R. J., 3091
Sheehan, J. C., 3227
Solomon, P. W., 3175
Spurlock, L. A., 3091
Staas, W. H., 3091
Sternhell, S., 3122
Suggs, J. W., 3223, 3224

Trost, B. M., 3140
Walser, A., 3077
Weitl, F. L., 3199
Westerman, P. W., 3122
Wohl, R. A., 3099
Wong, C. F., 3225

Attention T-60 Owners:

nexpensive

ransform

nstrument

Nicolet Instrument Corporation and its subsidiary; Transform Technology, Inc.; announce NIFTI (New Inexpensive Fourier Transform Instrument), specifically designed for use with the Varian T-60 Spectrometer.
NIFTI, officially called Model TT-7, is a complete pulsed RF Fourier transform accessory which consists of: spectrometer RF circuitry for pulsed Fourier transform operation; a new, remotely controlled Nicolet computer; a specially designed, miniature alphanumeric keyboard; and a spectrum control display unit.
NIFTI benefits NMR operation by dramatically increasing sensitivity over that obtained in the normal CW mode of operation. Typically, samples five to ten times smaller than those now being handled can be run in the same amount of analysis time. Signal input, accumulated free induction decay, or transformed spectra can be displayed on the oscilloscope for visual monitoring. The spectra can be plotted using the T-60 recorder. Digital integrations of spectra can be viewed or plotted as well.
Fourier transform operation is rapidly becoming the method of choice in high resolution NMR studies. Not only will NIFTI enhance the capability and increase sample throughput of your T-60 but it will also provide an excellent Fourier transform training facility. In addition to the sensitivity improvement, spin-lattice relaxation times can be determined from a series of runs using the progressive saturation technique. Optional automatic T_{1} measurements are available using the inversionrecovery technique as well as other multi-pulse
experiments. In addition to sensitivity improvement and T_{1} measurement applications, the basic NIFTI system will provide computer calculations of synthesized NMR spectra of up to six spins. The operator simply defines the number of spins, the chemical shifts and the coupling constants and the calculated spectrum, or portion of it, with adjustable line widths can be displayed or plotted. Using the optional teletype printer a listing of theoretical transitions and intensities can also be obtained.
The basic NIFTI system uses a 20 bit, 8 K computer which provides 4 K data points. A high speed paper tape reader is used to read in programs at less than 20 seconds for 4 K words. An optional 12 K computer is available which increases the memory available for data by a factor of two. Input parameters are entered through the keyboard and are displayed as alphanumeric characters on the oscilloscope. If hard copy listings of input parameters, peak positions and intensities are required, an optional teletype can be used in place of the miniature keyboard.
Optional RF modules are available for studies of ${ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ nuclei. For these studies the T-60 must be equipped with an appropriate probe. An optional proton decoupler is also available for doing ${ }^{13} \mathrm{C}$ studies.

These two spectra were obtained in 500 seconds. One was run using conventional swept continuous wave (cw) techniques on a T-60, and the other was run in FT mode using the TT-7 FT accessory for the T-60. The sample was cortisone acetate ($300 \mathrm{ug} / 0.3 \mathrm{ml}$) in CDCl_{3}. This amounts to 2.5 x $10^{-3} \mathrm{M}$ or 0.1%. The additional sensitivity obtained through the pulsed Fourier method is astonishing. The 500 sec cw scan
only shows lines for the OAc and C_{18} methyl groups unambiguously. However, nearly the entire spectrum is clearly presented during 500 seconds of pulsed accumulation, since in the same time, 250 scans were summed. Note in particular that the $\mathrm{C}_{4} \mathrm{H}$ line and the $\mathrm{C}_{12} \mathrm{H}_{2}$ quartet are not even suggested by the cw spectrum, while the pulsed FT spectrum shows them clearly.

Caught In The

 Information Explosion? Then You Need Accounts Of Chemical Research!ACCOUNTS gives you the information you need in all fields of chemical research. Its reviews are short, concise and authoritative. Most of the reviews are written by the investigators primarily responsible for the research described.

We know you'll profit from ACCOUNTS. According to SCIENCE 178, 471 (1972) ACCOUNTS is one of the most important chemical journals in the world as measured by "impact factor".

And it costs just a small amount of money a year!

Get an up-to-date perspective on what's taking place in chemical research. Just complete and return the order form. We'll take care of the rest.

Accounts of Chemical Research
American Chemical Society
1155 Sixteenth'Street, N.W.
Washington, D.C. 20036
Yes, I would like to subscribe to ACCOUNTS OF CHEMICAL RESEARCH at the rate checked below.
-ACS members \square U.S. $\$ 5.00 \square \square^{*}$ Canada, PUAS \$ $9.00 \quad \square$ "Other Nations $\$ 10.00$ Nonmembers \square U.S. $\$ 15.00 \square \square^{\circ}$ Canada, PUAS $\$ 19.00 \square$ Other Nations $\$ 20.00$ \square Payment enclosed (payable to American Chemical Society). \square Bill me. \square Bill company.

Name	Position	
Your Employer		
Address \squareHome Business City	State	Zip

Employer's Business: \square Manufacturing \square Government \square Academic \square Other \qquad
If Manufacturer. Tvoe of Products Produced

- NOTE: Subscriptions at ACS member rates are for personal use only. *Payment must be made in U.S. currency, by international money order, UNESCO coupons, U.S. bank draft, or order through your book dealer.

тй onexal of Organic Chemistry̌

The Synthesis and Transformations of Some 3-Chloro- and 3-Nitroindolenines

Armin Walser,* John F. Blount, and R. Ian Fryer
Chemical Research Department, Hoffmann-La Roche, Inc., Nutley, New Jersey 07110

Received January 22, 1973

Abstract

3-Substituted indole-2-carboxylic ac:d esters and amides are readily converted to the corresponding 3 -chloroindolenines by reaction with tert-butyl hypochlorite. These compounds rearrange in protic solvents to oxindoles with migration of the ester or amide function into the 3 position. 3 -Substituted 2 -acetylindoles and indole-2carboxylic acids are converted to the oxindoles with loss of the carbonyl function. The intermediate 2 -alkoxyindoles may be isolated. Nitration of 3 -substituted indole-2-carboxylates yields the corresponding 3 -nitroindolenines. The structure of ethyl 5 -chloro-3-nitro-3-phenyl-3H-indole-2-carboxylate was determined by X-ray analysis. Ethyl 3-nitroindolenine-2-carboxylates also undergo acid-catalyzed rearrangement to ethyl oxindolecarboxylates. Treatment of 2-acetyl-3-nitroindolenines with trifluoroacetic acid results in the formation of 2nitroindoles.

The oxidative rearrangement of indoles to oxindoles during halogenation is by now a common reaction. ${ }^{1,2}$ It has been demonstrated in the alkaloid field ${ }^{3,4}$ that 3-haloindolenines are the key intermediates in this overall transformation. With few exceptions, ${ }^{5,6}$ however, 3 -chloroindolenines have seldom been propcrly characterized, and until recently ${ }^{7}$ no simple analog was disclosed in the literature.

We have obtained crystalline 3-chloroindolenines of formula 2 (Scheme I) by treating indole derivatives of structure 1 with tert-butyl hypochlorite in aprotic solvents. These 3 -chloroindolenines were found to be of limited stability and to convert exothermally and in high yields to oxindoles 3 in protic solvents such as alcohol. The structure of these compounds was derived from their spectroscopic data and confirmed by conversion of ethyl 3-phenyloxindole-3carboxylate (3a) to the known 3-phenyloxindole 4.
We have successfully extended this reaction to the indole-2-carboxamides 6 , which were prepared by standard methods via the indole-2-carboxylic acids 5. Reaction of the indole-2-carboxamides with tertbutyl hypochlorite again produced the crystalline 3chloroindolenines 7. These compounds underwent the same transformation to the oxindoles 8 when subjected to protic solvents. The fact that even the primary amide 6 d rearranged in the same manner as

[^0]the ester indicates that the carbonyl group migrates with its electrons. We believe that the mechanism of the reaction is best represented by the sequence of steps shown in Scheme II.

The protonated chlorindolenine A is assumed to be transformed to the carbonium ion C via a cyclic chloronium ion B. Migration of the carbonyl function with elimination of a proton leads to the imino chloride D , hydrolysis of which yields the oxindole 3. Ethanolysis would convert the imino chloride to the oxindole 3 via the imino ether E. As illustrated by examples in Scheme III, the 2-acetylindole 9c and the indole-2-carboxylic acids 5 undergo similar reactions. In both cases the carbonyl function was lost during the conversion of the 3 -chloroindolenine to the oxindole. Thus refluxing 2 -acetyl-3,5-dichloro-3-phenyl3 H -indole (10) in ethanol yielded 5 -chloro-3-phenyloxindole (12). The intermediate 2-ethoxyindole 11 could be isolated under milder reaction conditions. According to the mechanism proposed in Scheme II, the 2 -ethoxyindole would originate from deacetylation of the imino ether E . This would require migration of the carbonyl function prior to deacetylation. Possible deacetylation of the carbonium ion C was excluded by showing that the 2 -chloroindole 13 , which would result from this deacetylation, does not convert to the 2-ethoxyindole 11 under reaction conditions. The 3 -chloroindolenines derived from the indole-2carboxylic acids 5 c and 5 i were not isolated but directly treated with ethanol and methanol, respectively, to afford 11 and the 2 -methoxyindole 15.

Reaction of the 3 -chloroindolenine 10 with trifluoroacetic acid produced mainly a mixture of compounds 13 and 14 (separated by chromatography). For comparison the 2,5-dichloroindole 13 was prepared

Scheme I

Scheme II

D

3
by heating the oxindole 12 with phosphorus oxychloride. Acetylation of 13 with acetic anhydride in boiling pyridine yielded 14 which in turn was hydrolyzed with alkali to give 13 . Formation of com-
pounds 13 and 14 may follow the same mechanistic scheme. In this case nothing speaks against deacetylation of the carbonium ion C leading to the 2 -chloroindole 13 and the mixed anhydride of trifluoroacetic and acetic acids, which is probably responsible for the formation of the acetyl derivative 14.

To further explore the limitations of this reaction we prepared the vinylogous ester 17 as outlined in Scheme IV. The indole-2-carboxylic acid $5 f$ was converted to the aziridide $6 f$, the reduction of which with lithium aluminum hydride yielded the aldehyde 16. Treatment of 16 with ethyl diethylphosphonoacetate and base led to 17 . The crystalline 3 -chloroindolenine 18 was readily formed but failed to undergo the rearrangement to the oxindole. Two products were isolated instead. Based on spectroscopic data we have assigned structure 19 to the major product and structure 20 to the minor component. Again, a cyclic chloronium ion such as G may be postulated. Removal of a proton from the α position of G leads to 20 ; addition of ethoxide results in formation of 19.

Analogous to the chlorination, nitration of unprotonated 2,3 -disubstituted indoles has been thoroughly studied ${ }^{8,9}$ but no 3-nitroindolenines have been described.

We obtained the crystalline 3-nitroindolenines 21 and 23 (Scheme V) by treating the 2,3-disubstituted indoles 1 and 9 with fuming nitric acid at low temperatures. Since the alternate 1-nitroindole structure 22 could not be excluded based on spectral and chemical data, the 3 -nitroindolenine structure was confirmed by the single-crystal X-ray diffraction of ethyl 5 -chloro-3-nitro-3-phenyl-3H-indole-2-carboxylate (21c).
The preparation of 3 -nitroindolenines seems to be limited to indoles which are not susceptible to electrophilic attack in the benzene moiety. For example, we were unsuccessful in preparing 5 -methoxy-3nitroindolenines. It was found that 3 -nitroindolenines are more stable than the corresponding 3 -chloroindolenines. In analogy to the 3 -chloroindolenines, ethyl 3-nitro-3-phenyl-3 H -indole-2-carboxylates 21 were found to undergo an acid-catalyzed rearrangement to the oxindoles 3 . The reaction was slower and less clean than with the 3 -chloroindolenines and the yields were inferior. Mechanistically, the reaction can be visualized as proceeding via a cyclic nitronium ion analogous to that proposed by Berti ${ }^{9}$ and his coworkers. In the hydrogen chloride catalyzed reaction, however, the possibility of formation of the intermediate 3chloroindolenines cannot be ruled out.

Treatment of the 2-acetyl-3-nitroindolenines 23 with trifluoroacetic acid resulted in a clean conversion to the 2 -nitroindoles 24 . Berti and coworkers ${ }^{9}$ have described the only 2 -nitroindole that we could find in the literature. These authors treated 3-methylindole with benzoyl nitrate and obtained 3-methyl-2-nitroindole in 4.5% yield. The spectroscopic properties of 5-chloro-3-methyl-2-nitroindole (24f) are in agreement with the data reported by Berti and coworkers for 3 -methyl-2-nitroindole. The formation of 2-nitroindoles from 2-acetyl-3-nitroindolenines is mechanistically difficult to explain. If a cyclic nitronium ion would be involved in this reaction we would

[^1]Scheme III

14

Scheme IV

$6 f \quad 16$
 $\left\lvert\, \begin{gathered}\stackrel{0}{\uparrow} \\ \substack{(\mathrm{EtO})_{2} \mathrm{PCH}_{2} \mathrm{COOEt} \\ \mathrm{B}^{-}}\end{gathered}\right.$

17
18 $\downarrow \mathrm{EtOH}$

obtain the indole-2-nitrite rather than the 2 -nitroindole. The 1,2 migration of a nitro group is more likely the result of dissociation and renitration together with displacement of the acetyl group. Nitration of 5-nitro-3-formylindole with replacement of the formyl group has been reported by Noland and Rush. ${ }^{8}$

Crystallography.-Crystals of 21c are monoclinic, space group $P 2_{1} / c$. The crystal data are $a=7.746$ (3), $b=15.053$ (5), $c=13.898$ (5) $\AA, \beta=100.23(2)^{\circ}$, $Z=4, d_{\text {obsd }}=1.44, d_{\text {calcd }}=1.435 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Cu}$ $\left.\mathrm{K}_{\alpha}\right)=23.5 \mathrm{~cm}^{-1}$. Despite the fact that 21c crystallizes from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) as elongated prisms with welldefined faces, many of the crystals failed to extinguish properly under crossed polarizing filters. Most crystals which were examined with a polarizing microscope could be considered as composed of two parts, one which extinguished properly and another which never extinguished. The boundary between these two parts was always sharp and ran parallel to the length of the crystal. No difference could be detected between Weissenberg photographs of crystals for which

Scheme V

la, $\mathbf{c}, \mathbf{g}, \mathrm{h}, \mathrm{i}, \mathrm{k}$

22

9a, c, f

24a, c, f
the whole crystal extinguished and those for which only one part of the crystal extinguished. The crystals used for data collection were those for which almost the entire crystal extinguished under crossed polaroids.

The intensity data were measured on a Hilger-Watts Model Y290 four-circle diffractometer by $\theta-2 \theta$ scans. Nickel-filtered $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation and pulse height discrimination were used. The crystals deteriorated slowly upon exposure to X-rays (25% decrease in the intensity of the three standard reflections over a 3 day period). Intensity data were collected from two crystals, one approximately $0.09 \times 0.09 \times 0.45 \mathrm{~mm}$ (used for $2 \theta<107^{\circ}$) and the other $0.12 \times 0.14 \times 0.35$ mm (used for $85<2 \theta<127^{\circ}$). The intensity data were corrected for crystal deterioration, then placed on a common scale; no absorption correction was made.

The structure was solved by standard Patterson and Fourier methods. The hydrogen atoms were located from a difference Fourier calculated after partial refinement of the structure. The final refinement was by block-diagonal least squares with the matrix partitioned into five blocks. Anisotropic thermal parameters were used for all atoms except the hydrogens; the hydrogen atom parameters were not refined.

Figure 1.-Stereodrawing of 21c showing its conformation in the solid state. The ellipsoids represent the thermal motions of each atom at the 50% probability level. The hydrogen atoms are represented as spheres of an arbitrary size.

The quantity minimized was

$$
\Sigma w\left|\left|F_{\mathrm{o}}\right|-\right| F_{\mathrm{c}} \|^{2}
$$

where $w=1 /\left(8.5+\left|F_{\mathrm{o}}\right|+0.013\left|F_{\mathrm{o}}\right|^{2}\right)$. Standard scattering curves were used for $\mathrm{Cl}, \mathrm{O}, \mathrm{N}, \mathrm{C},{ }^{10}$ and $\mathrm{H} .{ }^{11}$ The Cl curve was corrected for the real and imaginary parts of the anomalous scattering. ${ }^{12}$ The refinement was stopped when the shifts of all parameters were less than one fifth of the corresponding standard deviations. The difference Fourier based on the final parameters has no features $>0.2 \mathrm{e} \AA^{-3}$ in magnitude.

$$
\text { final } R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|=0.041
$$

The bond lengths and angles in 11 b are in agreement with the expected values; the $\mathrm{N}_{1}-\mathrm{C}_{2}$ distance is 1.287 (5) \AA. The conformation of the molecule is shown in Figure 1. The phenyl ring of the indolenine system is planar to within $0.006 \AA$. The indolenine nitrogen and the 2 and 3 position carbon atoms [C(2) and $\mathrm{C}(3)$] are displaced $0.02,0.06$, and $-0.02 \AA$, respectively, from the plane of the indolenine phenyl ring. The nitrogen of the 3 -nitro group is $0.03 \AA$ out of the plane of $\mathrm{C}(3)$ and the two oxygens. The displacement is toward the carboxyl oxygen ($\mathrm{N} \cdot \mathrm{O}$ distance, $3.20 \AA$). The final atomic parameters and the observed and calculated structure factors appear in the microfilm in edition of this journal. ${ }^{13}$

Experimental Section

Melting points were determined in a capillary melting point apparatus. The uv spectra were measured in 2-propanol on a Cary Model 14 spectrophotometer; nmr spectra were recorded with a Varian A-60 or Varian T-60 instrument. Ir spectra were determined on a Beckman IR-9 spectrometer. Silica gel Merck (70-325 mesh) was used for chromatography.
Ethyl indole-2-carboxylates (1) were prepared by the JappKlingemann reaction ${ }^{14}$ following the procedure described by Hughes, et al. ${ }^{15}$

Ethyl 5,7-dichloro-3-phenylindole-2-carboxylate (1g) had mp $148-150^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1705,1740 \mathrm{~cm}^{-1}$ (COOEt); uv $\lambda_{\max } 238-$ $239 \mathrm{~m} \mu(\epsilon 39,000)$, 298-299 (14,600), sh 320 (7300).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$: C, $61.00 ; \mathrm{H}, 3.92 ; \mathrm{N}, 4.19$. Found: C, 60.99; H, 3.86; N, 4.03.

Ethyl 4,7-dichloro-3-phenylindole-2-carboxylate (lh) had mp $130-132^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 170 \overline{5}, 1740 \mathrm{~cm}^{-1}$ (COOEt); uv $\lambda_{\max } 241$ $\mathrm{m} \mu(\epsilon 38,200), 296-297(16,300), 320$ (8250).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$: C, $61.00 ; \mathrm{H}, 3.92 ; \mathrm{N}, 4.19$. Found: C, 60.49; H, 3.77; N, 4.09.

[^2]Ethyl 6,7-dichloro-3-phenylindole-2-carboxylate (li) had mp $154-155^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1700,1730 \mathrm{~cm}^{-1}$; uv $\lambda_{\max } 241 \mathrm{~m} \mu(\epsilon$ 38,600), 303 (18,000), infl 325 (8500).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$: C, 61.00; $\mathrm{H}, 3.92 ; \mathrm{N}, 4.19$. Found: C, 61.11; H, 3.91; N, 4.18.
Ethyl 5,7-dimethyl-3-phenylindole-2-carboxylate (1k) had mp 126-128 ; ir $\left(\mathrm{CHCl}_{3}\right) 1690,1710 \mathrm{~cm}^{-1}$; uv $\lambda_{\max } 225 \mathrm{~m} \mu(\epsilon$ $25,150), 242(26,100), 302(18,400)$, infl 335 (6800).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 77.79 ; \mathrm{H}, 6.53 ; \mathrm{N}, 4.77$. Found: C, 77.50; H, 6.34; N, 4.62.
Indole-2-carboxylic acids 5 were accessible by alkaline hydrolysis of the corresponding ester according to the standard procedure.
5-Chloro-3-methylindole-2-carboxylic acid (5f) had mp 238$240^{\circ}$ dec.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNO}_{2}$: C, $57.29 ; \mathrm{H}, 3.84 ; \mathrm{N}, 6.68$. Found: C, 57.37; H, 3.80; N, 6.51.

6,7-Dichloro-3-phenylindole-2-carboxylic acid (5i) had mp 219$221^{\circ}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$: C, 58.85; $\mathrm{H}, 2.96 ; \mathrm{N}, 4.58$. Found: C, 58.77; H, 3.11; N, 4.32.
Indole-2-carboxamides were obtained by converting the indole-2-carboxylic acids with thionyl chloride or phosphorus pentachloride to the acid chlorides which were directly treated with the amines.

5-Chloro-3-(2-fluorophenyl)indole-2-carboxamide (6d). ${ }^{14}$-A mixture of $14.5 \mathrm{~g}(0.05 \mathrm{~mol})$ of 5 -chloro-3-(2-fluorophenyl)indole-2-carboxylic acid (5 d), ${ }^{14} 12 \mathrm{~g}$ of phosphorus pentachloride, and 400 ml of methylene chloride was stirred at room temperature for 30 min . Concentrated aqueous ammonia was added with ice cooling until the aqueous phase was strongly alkaline. The precipitated crystals were collected and recrystallized from methanol to yield 10.2 g of product, $\mathrm{mp} 209-212^{\circ}$. From the evaporated methylene chloride phase and the mother liquor, another 2 g of product was obtained, yield $12.2 \mathrm{~g}(84 \%)$.

1-(5-Chloro-3-methylindole-2-carbonyl)aziridine (6f).-A mixture of $42 \mathrm{~g}(0.2 \mathrm{~mol})$ of 5 -chloro-3-methylindole-2-carboxylic acid (5f), 100 ml of thionyl chloride, and 200 ml of methylene chloride was refluxed for 16 hr . The solvent and excess thionyl chloride were evaporated under reduced pressure, at the end azeotropically with benzene. The residue was dissolved in tetrahydrofuran and added to a solution of 25 ml of aziridine in 200 ml of methylene chloride cooled to 0°.

A $150-\mathrm{ml}$ portion of 10% aqueous sodium carbonate solution was added at 0° and the two-phase mixture was stirred for 2 hr at room temperature. The methylene chloride layer was separated, dried over sodium sulfate, and evaporated. Crystallization of the residue from methylene chloride-hexane yielded 38 g (81%) of product, $\mathrm{mp} 140-142^{\circ}$.
The analytical sample was recrystallized from methylene chloride-ether: $m p 14 \overline{5}-146^{\circ}$; uv $\lambda_{\max } 23 \overline{5} m \mu(\epsilon 21,400), 310$ $(21,000)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}$: $\mathrm{C}, 61.42 ; \mathrm{H}, 4.72 ; \mathrm{N}, 11.93$. Found: C, 61.43; H, 4.88; N, 12.09 .

The following amides were prepared in the same way.
5-Chloro- N, N^{\prime}-diethyl-3-phenylindole-2-carboxamide (6 c) had $\operatorname{mp} 195-198^{\circ}$; uv $\lambda_{\max } 226 \mathrm{~m} \mu(\epsilon 35,000)$, sh $265(11,050)$, 293297 (11,400).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 69.83 ; \mathrm{H}, 5.86 ; \mathrm{N}, 8 . \overline{2} 7$. Found: C, 69.69; H, 5.89 ; N, 8.61.

5-Chloro- N-ethyl-3-(2-fluorophenyl)indole-2-carboxamide (6 e) had mp 248-250 ; uv $\lambda_{\max } 233 \mathrm{~m} \mu(\epsilon 35,000), 300(16,000)$.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClFN}_{2} \mathrm{O}: \mathrm{C}, 64.40 ; \mathrm{H}, 4.4 \overline{\mathrm{j}} ; \mathrm{N}, 8.84$. Found: C, 64.40; H, 4.15; N, 8.78.

1-(3-Methylindole-2-carbonyl)pyrrolidine (6b) had mp 232$234^{\circ}$; uv $\lambda_{\text {max }} 222 \mathrm{~m} \mu(\epsilon 32,200)$, infl $242(12,000)$, $293(14,400)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 73.65 ; \mathrm{H}, 7.06 ; \mathrm{N}, 12.27$. Found: C, 73.84; H, 7.30; N, 12.28.

1-(6,7-Dichloro-3-phenylindole-2-carbonyl)morpholine (6i) had $\mathrm{mp} 129-135^{\circ} ;$ uv $\lambda_{\text {max }} 233 \mathrm{~m} \mu(\epsilon 32,500)$, 298 (11,500)

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 60.81; $\mathrm{H}, 4.30 ; \mathrm{N}, 7.46$. Found: C, 60.79; H, 4.44; N, 7.32.

2-Acetylindoles 9 c and 9 f were prepared by the modified JappKlingemann reaction following a procedure described by Manske, Perkin, and Robinson. ${ }^{16}$

2-Acetyl-5-chloro-3-phenylindole (9c) had mp 151-153 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1650 \mathrm{~cm}^{-1}$; uv $\lambda \operatorname{sh} 232 \mathrm{~m} \mu(\epsilon 21,000)$, max $244(21,900)$, 313 (19,250), infl 345 (6600).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClNO}$: C, 71.25; H, 4.49; N, 5.19. Found: C, 71.48; H, 4.55; N, 5.18.
2-Acetyl-5-chloro-3-methylindole (9f) had mp 200-202 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1655 \mathrm{~cm}^{-1} ;$ uv $\lambda_{\max } 238 \mathrm{~m} \mu(\epsilon 9400)$, $312(20,450)$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}: \mathrm{C}, 63.62 ; \mathrm{H}, 4.85 ; \mathrm{N}, 6.75$. Found: C, 63.53; H, 4.74; N, 6.79.

3 -Chloroindolenines (10) were obtained by reaction of the indoles with tert-butyl hypochlorite in methylene chloride or tetrahydrofuran. The reactions were followed by thin layer chromatography and were found to be in general complete within 1.5 min to a few hours at room temperature.

2-Acetyl-3,5-dichloro-3-phenyl-3H-indole (10).-A $15-\mathrm{ml}$ portion of tert-butyl hypochlorite ($14.3 \mathrm{~g}, 0.133 \mathrm{~mol}$) was added to a solution of $27 \mathrm{~g}(0.1 \mathrm{~mol})$ of 2 -acetyl-o-chloro-3-phenylindole (9c) in 300 ml of methylene chloride. After sitting for 30 min at room temperature the solvent was removed under reduced pressure. The residue crystallized from methylene chloride-hexane to yield $27.5 \mathrm{~g}(90 \%)$ of product: $\mathrm{mp} 14 \overline{5}-148^{\circ}$ dec; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\delta 2.6\left(\mathrm{~s}, 3, \mathrm{COCH}_{3}\right), 7.33\left(\mathrm{~s}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.8(\mathrm{~d}, 1, J=8 \mathrm{~Hz}$, $\left.\mathrm{C}_{7} \mathrm{H}\right), 7.2 \check{5}-7.7\left(\mathrm{~m}, 2, \mathrm{C}_{4} \mathrm{H}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}\right)$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max } 251 \mathrm{~m} \mu$ (615,400$) 322(7100)$; ir $\left(\mathrm{CHCl}_{3}\right) 1700 \mathrm{~cm}^{-1}(\mathrm{CO})$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}: \mathrm{C}, 63.18 ; \mathrm{H}, 3.65 ; \mathrm{N}, 4.60$. Found: C, 63.30 ; H, 3.50 ; N, 4.60 .
N-Ethyl-3,5-dichloro-3-(2-fluorophenyl)-3H-indole-2-carboxamide (7e).-A $1.6-\mathrm{g}(5 \mathrm{mmol})$ portion of N-ethyl- $\mathrm{o}-\mathrm{ch}$ loro-3-(2 fluorophenyl) indole-2-carboxamide (6e) was dissclved in 100 ml of tetrahydrofuran by warming. tert-Butyl hypochlorite (2 ml , 17.5 mmol) was added to the warm solution. After sitting for 10 min, the solvent was removed under reduced pressure and the residue was crystallized from methylene chloride-hexane to yield $1.6 \mathrm{~g}(91 \%)$ of product: $\mathrm{mp} \mathrm{160-162}^{\circ} ; ~ \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.2(\mathrm{t}, 3$, $J=7 \mathrm{~Hz}, \mathrm{CH}_{3}$), 3.42 (quintuplet, $2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}$), 6.6-8.2 ($\mathrm{m}, 8$, NH and 7 aromatic H); uv $\lambda_{\text {max }} 243 \mathrm{~m} \mu(\epsilon 19,900)$, inf 269 (5020), 320 (6980); ir $\left(\mathrm{CHCl}_{3}\right) 1680 \mathrm{~cm}^{-1}(\mathrm{CO})$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}, 58.14 ; \mathrm{H}, 3.73 ; \mathrm{N}, 7.98$. Found: C, 58.17; H, 3.66; N, 7.90.

As above the following were prepred.
Ethyl 3,5-dichloro-3-phenyl-3 H -indole-2-carboxylate (2c) had $\mathrm{mp} \mathrm{110-113}{ }^{\circ}$, crystallized from methylene chloride-hexane; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }} 246 \mathrm{~m} \mu(\epsilon 17,000)$, 325 (6420); ir $\left(\mathrm{CHCl}_{3}\right) 1725$ $\mathrm{cm}^{-1}(\mathrm{CO}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.3\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.36(\mathrm{q}$, $\left.2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.37\left(\mathrm{~s}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.83\left(\mathrm{~d}, \mathrm{l}, J=8 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}\right)$, $7.25-7.7\left(\mathrm{~m}, 2, \mathrm{C}_{4}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$: C, 61.10; H, 3.92; N, 4.19. Found: C, 61.46; H, 4.11; N, 4.15.

Ethyl 3,5-dichloro-3-(2-fluorophenyl)-3 H -indole-2-carboxylate (2d) had mp 120-123 , crystallized from methylene chloridehexane; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }} 245 \mathrm{~m} \mu(\epsilon 18,150) 322(6580)$; ir $\left(\mathrm{CHCl}_{3}\right) 1735 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{t}, 3, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 4.4\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.8\left(\mathrm{~d}, 1, J=8 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}\right)$, 6.7-8.5 (m, 6 , aromatic protons).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{FNO}_{2}$: C, $57.98 ; \mathrm{H}, 3.43 ; \mathrm{N}, 3.97$. Found: C, 58.08 ; H, 3.27; N, 3.93 .

3,5-Dichloro-3-(2-fluorophenyl)-3H-indole-2-carboxamide (7d) had mp 186-188 ${ }^{\circ}$ dec, crystallized from tetrahydrofuranhexane; uv $\lambda_{\max } 242 \mathrm{~m} \mu(\epsilon 18,800)$, 318 (6500); ir (KBr) 1680 $\mathrm{cm}^{-1}(\mathrm{CO})$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}, 50.75 ; \mathrm{H}, 2.81 ; \mathrm{N}, 8.67$. Found: C, $55.79 ; \mathrm{H}, 2.72$; N, 8.59 .
trans-Ethyl 3-(3,5-dichloro-3-methyl-3 H -indolyl) propenoate (18) was obtained in 90% yield by treating 2.65 g (10 mmol) of transethyl 3 -(5 -chloro-3-methyl-2-indolyl) propenoate (17) in 50 ml of methylene chloride with $2.5 \mathrm{ml}(22 \mathrm{mmol})$ of tert-butyl hypo-
chlorite for 3 hr at room temperature: mp 100-102 ${ }^{\circ}$, crystallized from ether-hexane; uv $\lambda_{\max } 271 \mathrm{~m} \mu(\epsilon 12,800)$; ir $\left(\mathrm{CHCl}_{3}\right)$ $1720 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.37\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 1.97 (s, 3, CH_{3}), $4.33\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.02(\mathrm{~d}, 1, J=17$ Hz), and $7.64(\mathrm{~d}, 1, J=17 \mathrm{~Hz}$, olefinic H$), 7.2-7.7(\mathrm{~m}, 3$, aromatic H).
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$: C, $56.39 ; \mathrm{H}, 4.39 ; \mathrm{N}, 4.70$. Found: C, 56.39 ; H, 4.33; N, 4.67.
5-Chloro-3-methylindole-2-carboxaldehyde (16).-A 23.5-g (0.1 mol) portion of 1 -(0 -chloro- 3 -methylindole-2-carbonyl) aziridine (6f) was added in portions at 0° to a suspension of 5.6 g (0.14 mol) of lithium aluminum hydride in 200 ml of ether. The mixture was stirred at 0° for 1 hr and at room temperature for another 1 hr . The hydride was hydrolyzed by addition of 30 ml of water. The inorganic material was filtered and washed well with tetrahydrofuran. The filtrate was concentrated and the residue was slurried with ether. The collected solid was recrystallized from tetrahydrofuran-ethanol to yield $8.5 \mathrm{~g}(44 \%)$ of product, mp $248-250^{\circ}$. The analytical sample was recrystallized from methylene chloride-methanol: $\mathrm{mp} 250-252^{\circ}$; uv $\lambda_{\max } 238 \mathrm{~m} \mu$ (ϵ 18,800), $314(23,150)$; ir (KBr) $1640 \mathrm{~cm}^{-1}(\mathrm{CO})$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNO}: \mathrm{C}, 62.03 ; \mathrm{H}, 4.16 ; \mathrm{N}, 7.24$. Found: C, 62.17; H, 4.24; N, 7.08 .
trans-Ethyl 3-(5-Chloro-3-methyl-2-indolyl)propenoate (17).-A $6 \mathrm{~g}(53 \mathrm{mmol})$ portion of potassium tert-butoxide was added to a solution of 10.5 g (52.5 mmol) of ethyl diethylphosphonoacetate in 50 ml of tetrahydrofuran. After stirring for 15 min under nitrogen, a solution of 6 g (21 mmol) of 5 -chloro-3-methylindole-2-carboxaldehyde (16) in 300 ml of tetrahydrofuran was added. The mixture was stirred for 2 hr at room temperature and partitioned between 200 ml of methylene chloride and 300 ml of hexane and water. The organic layer was separated, washed with water, dried, and evaporated. Crystallization of the residue from ethanol yielded 6.1 g (75%) of product, $\mathrm{mp} 178-183^{\circ}$. The analytical sample was recrystallized from ethanol: $\mathrm{mp} 183-184^{\circ}$; uv $\lambda_{\max } 239 \mathrm{~m} \mu(\epsilon 12,400)$, $254(11,100)$, 345 (32,700); ir $\left(\mathrm{CHCl}_{3}\right)$ $1700 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \mathrm{nmr}$ (DMSO) $\delta 1.29\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $2.32\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 4.22\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.52(\mathrm{~d}, \mathrm{l}, J=16$ Hz, α proton), $7.2\left(\mathrm{q}, 1, J_{\mathrm{AB}}=8 \mathrm{~Hz}, J_{\mathrm{AX}}=2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}\right), 7.4$ $\left(\mathrm{d}, 1, J_{\mathrm{AB}}=8 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}\right), 7.64\left(\mathrm{~d}, 1, J_{\mathrm{AX}}=2 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}\right), 7.7$ (d, $1, J=16 \mathrm{~Hz}, \beta$ proton), 11.45 (broad s, $1, \mathrm{NH}$).
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{2}$: C, 63.76; H, $\check{0} .3 \check{5} ; \mathrm{N}, ~ 5.31$. Found: C, 63.82; H, 5.37 ; N, 5.03.

Ethyl 5-Chloro-3-nitro-3-phenyl-3 H -indole-2-carboxylate (21c). -A $10-\mathrm{ml}$ portion of fuming nitric acid was added to a solution of 15 g of ethyl 5 -chloro-3-phenylindole-2-carboxylate ${ }^{17}$ in 300 ml of methylene chloride cooled to -50°. The temperature was allowed to reach -30° within 30 min . A $150-\mathrm{ml}$ portion of 10% aqueous sodium carbonate solution was added with stirring. The methylene chloride layer was separated, washed with sodium carbonate solution and water, dried over sodium sulfate, and concentrated below 30°. The product crystallized upon addition of ether, yield $13.7 \mathrm{~g}(79 \%), \mathrm{mp} 117-120^{\circ}$ dec.
The analytical sample was recrystallized from methylene chlo-ride-hexane: mp $120-124^{\circ}$ dec; uv $\lambda_{\text {max }} 238 \mathrm{~m} \mu(\epsilon 15,560)$, 321 (6800); ir (KBr) $1730 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{t}, 3$, $J=7 \mathrm{~Hz}, \mathrm{CH}_{3}$), $4.36\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), 7-7.7 (m, 7, aromatic H$), 7.82\left(\mathrm{~d}, 1, J=8.5 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{4}$: $\mathrm{C}, ~ 59.23 ; \mathrm{H}, 3.80 ; \mathrm{N}, 8.13$. Found: C, 59.41 ; H, 3.90; N, 8.13.

Ethyl 3-nitro-3-phenyl-3 H -indole-2-carboxylate (21a) was obtained in 60% yield by treating $26.5 \mathrm{~g}(0.1 \mathrm{~mol})$ of ethyl $3-$ phenylindole-2-carboxylate ${ }^{15}$ in 300 ml of methylene chloride with 20 ml of fuming nitric acid at -50 to -38° : mp 79-81 ${ }^{\circ}$, crystallized from ether-hexane; uv $\lambda_{\max } 233 \mathrm{~m} \mu(\epsilon 16,380), 311$ (6020); ir (KBr) $1725 \mathrm{~cm}^{-1}$ (CO).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $65.80 ; \mathrm{H}, 4.55 ; \mathrm{N}, 9.03$. Found: C, 65.85; H, 4.55; N, 8.92.

Ethyl 4,7-Dichloro-3-nitro-3-phenyl-3 H -indole-2-carboxylate (21h).-A $17-\mathrm{g}(0.05 \mathrm{~mol})$ portion of ethyl 4,7-dichloro-3-phenyl-indole-2-carboxylate (1 h) in 300 ml of methylene chloride was treated at -10 to 18° with 10 ml of fuming nitric acid to yield $14.2 \mathrm{~g}(75 \%)$ of product with $\mathrm{mp} 124-126^{\circ}$ after recrystallization from acetone-ethanol: uv $\lambda_{\max } 240 \mathrm{~m} \mu(\epsilon 13,500)$, 294 (4900), 327 (4750); ir $\left(\mathrm{CHCl}_{3}\right) 1740 \mathrm{~cm}^{-1}$ (CO).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 53.85 ; \mathrm{H}, 3.19 ; \mathrm{N}, 7.39$. Found: C, $53.81 ; \mathrm{H}, 3.46 ; \mathrm{N}, 7.44$.

Ethyl 5,7-Dichloro-3-nitro-3-phenyl-3H-indole-2-carboxylate
$(21 \mathrm{~g})$.-Reaction of $17 \mathrm{~g}(0.05 \mathrm{~mol})$ of ethyl 5,7-dichloro-3-phenylindole-2-carboxylate (lg) in 300 ml of methylene chloride with 10 ml of nitric acid at -10 to 5° yielded after two recrystallizations from methylene chloride-ethanol $6 \mathrm{~g}(31.5 \%)$ of product: $\mathrm{mp} 107-109^{\circ}$; uv $\lambda_{\max } 244 \mathrm{~m} \mu(\epsilon 13,620)$, $323(6720)$; ir $\left(\mathrm{CHCl}_{3}\right)$ $1750 \mathrm{~cm}^{-1}(\mathrm{CO})$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $53.85 ; \mathrm{H}, 3.19 ; \mathrm{N}, 7.39$. Found: C, 53.76; H, 3.36; N, 7.28.

Ethyl 6,7-dichloro-3-nitro-3-phenyl-3 H -indole-2-carboxylate (21i) was obtained in 71% yield by reaction of $17 \mathrm{~g}(0.05 \mathrm{~mol})$ of 6,7-dichloro-3-phenylindole-2-carboxylate (li) in 400 ml of methylene chloride with 10 ml of nitric acid at -20 to $0^{\circ}: \mathrm{mp}$ 109-112 ${ }^{\circ}$, crystallized from acetone-ethanol; uv $\lambda_{\max } 242 \mathrm{~m} \mathrm{\mu}$ ($\epsilon 17,700), 309(6000)$; ir $\left(\mathrm{CHCl}_{3}\right) 1740 \mathrm{~cm}^{-1}(\mathrm{CO})$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $53.85 ; \mathrm{H}, 3.19 ; \mathrm{N}, 7.39$. Found: C, 53.67 ; H, 3.38; N, 7.32.

Ethyl 5,7-Dimethyl-3-nitro-3-phenyl-3 H -indole-2-carboxylate (21 k).-Treating $14.7 \mathrm{~g}(0.05 \mathrm{~mol})$ of ethyl 5,7 -dimethyl-3-phenylindole-2-carboxylate (lk) in 300 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 10 ml nitric acid at -60 to -50° for 5 min yielded a mixture of mainly two compounds. By crystallization from ether the by-product crystallized. Crystallization of the mother liquor from ethanol yielded $8.1 \mathrm{~g}(46 \%)$ of product, which was recrystallized from acetone ethanol: $\mathrm{mp} 119-121^{\circ}$; uv $\lambda_{\max } 245 \mathrm{~m} \mu(\epsilon 14,400), 338$ (7250); ir $\left(\mathrm{CHCl}_{3}\right) 1730 \mathrm{~cm}^{-1}(\mathrm{CO})$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 1.30$ (t, 3, $J=7 \mathrm{~Hz}, \mathrm{CH}_{3}$), $2.36\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 2.63\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 4.33(\mathrm{q}, 2$, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7-7.6(\mathrm{~m}, 7$, aromatic H).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 67.44; H, $5.36 ; \mathrm{N}, 8.28$. Found: C, 67.73; H, 5.40; N, 8.27.

2-Acetyl-3-nitro-3-phenyl-3 H -indole (23a).-Reaction of 23.5 g $(0.1 \mathrm{~mol})$ of 2-acetyl-3-phenylindole ${ }^{16}$ in 400 ml of methylene chloride with 20 ml of nitric acid at -50 to $-25^{\circ}(15 \mathrm{~min})$ yielded $11.6 \mathrm{~g}(41 \%)$ of product, crystallized from ethanol: $\mathrm{mp} \mathrm{122-124}^{\circ}$ dec; uv $\lambda_{\max } 235 \mathrm{~m} \mu(\epsilon 12,580), 315$ (6480); ir $\left(\mathrm{CHCl}_{3}\right) 1700 \mathrm{~cm}^{-1}$ $(\mathrm{CO}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.6\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 7-8(\mathrm{~m}, 9$, aromatic H$)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 68.54; H, 4.32; $\mathrm{N}, 10.00$. Found: C, 68.75; H, 4.19; N, 9.93.
2-Acetyl-5-chloro-3-nitro-3-phenyl- 3 H -indole (23c) was obtained in 38% yield by treating $27 \mathrm{~g}(0.1 \mathrm{~mol})$ of 2-acetyl-5-chloro-3-phenylindole (9c) in 500 ml of methylene chloride with
 crystallized from acetone ethanol; uv $\lambda_{\max } 241 \mathrm{~m} \mu(\epsilon 13,400)$, 317 (7500); ir $\left(\mathrm{CHCl}_{\mathrm{d}}\right) 1700 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.6$ (s, 3, CH_{3}), 7-8 (m, 8, aromatic H).
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 61.06; H, 3.52; N, 8.90. Found: C, 60.93; H, 3.45; N, 9.13.
2-Acetyl-5-chloro-3-methyl-3-nitro-3 H -indole (23f).-A 20.7-g $(0.1 \mathrm{~mol})$ portion of 2-acetyl-5-chloro-3-methylindole (9f) dissolved in 500 ml of methylene chloride was treated with 20 ml of fuming nitric acid at -30 to -5°. Crystallization from etherethanol yielded $10.2 \mathrm{~g}(40 \%)$ of product which was recrystallized twice from ether-ethanol: $\mathrm{mp} 93-94^{\circ}$; uv $\lambda_{\max } 240 \mathrm{~m} \mu(\epsilon 12,100)$, 324 (9140); ir $\left(\mathrm{CHCl}_{3}\right) 1690 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.08$ $\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right), 2.67\left(\mathrm{~s}, 3, \mathrm{COCH}_{3}\right), 7.3-7.7(\mathrm{~m}, 3$, aromatic H$)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, $52.29 ; \mathrm{H}, 3.59 ; \mathrm{N}, 11.00$. Found: C, 52.09 ; H, 3.55 ; N, 10.78 .

Ethyl 3-Phenyloxindole-3-carboxylate (3a).-A solution of 31 g $(0.1 \mathrm{~mol})$ of ethyl 3-nitro-3-phenyl-3 H -indole-2-carboxylate (23a) in 500 ml of methylene chloride and 250 ml of ethanol was treated with 100 ml of ethanol containing 5% of hydrogen chloride. After sitting at room temperature for 20 hr the solvents were evaporated and the residue was crystallized from ether to yield $17 \mathrm{~g}(60 \%)$ of product: $\mathrm{mp} 156-158^{\circ}$; uv $\lambda_{\max } 254 \mathrm{~m} \mu(\epsilon 7800)$, infl 265 (5600), 289 (1800); ir (KBr) 1740, 1720, $1684 \mathrm{~cm}^{-1}$ (CO); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 1.17\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.21$ (q, 2, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.3\left(\mathrm{~s}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.8-7.6(\mathrm{~m}, 4$, aromatic H$)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$: $\mathrm{C}, 72.58 ; \mathrm{H}, 5.37 ; \mathrm{N}, 4.98$. Found: C, 72.56; H, 5.44; N, 4.99.

Similarly the following were prepared.
Ethyl 5-chloro-3-phenyloxindole-2-carboxylate (3c) was obtained in 55% yield by crystallization and chromatography of the mother liquor on silica gel using 10% ethyl acetate in methylene chloride: $\mathrm{mp} 186-188^{\circ}$, crystallized from ethyl acetate-hexane; uv $\lambda_{\max } 259 \mathrm{~m} \mu(\epsilon 11,800)$, 300 (1800); ir (KBr) 1740, 1720, and $1680 \mathrm{~cm}^{-1}$ (CO).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClNO}_{3}$: C, 64.67; $\mathrm{H}, 4.50 ; \mathrm{N}, 4.44$. Found: C, 64.50; H, 4.41; N, 4.27.
Ethyl 5,7-dichloro-3-phenyloxindole-2-carboxylate (3g) (72.5\% yield) had mp $182-183^{\circ}$, crystallized from methylene chloridehexane; uv $\lambda_{\max } 258 \mathrm{~m} \mu(\epsilon 11,600), 303(2200)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{3}$: C, $58.31 ; \mathrm{H}, 3.74 ; \mathrm{N}, 4.00$. Found: C, 58.31 ; H, 3.78; N, 4.02.

Ethyl 6,7-dichloro-3-phenyloxindole-3-carboxylate (3i) (89\% yield) had $\mathrm{mp} 238-239^{\circ}$, crystallized from ethanol-ethyl acetate; uv $\lambda_{\max } 257 \mathrm{~m} \mu(\in 6300)$, infl 269 (4500), 294 (2100), sh 300 (2000).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{3}$: C, $58.31 ; \mathrm{H}, 3.74 ; \mathrm{N}, 4.00$. Found: C, 58.07 ; H, 3.52; N, 4.02 .

Ethyl 4,7-dichloro-3-phenyloxindole-3-carboxylate (3h) (43\% yield) had mp 200-203 ${ }^{\circ}$, crystallized from ethyl acetate; uv $\lambda_{\max } 248 \mathrm{~m} \mu(\epsilon 8250), 255(8350)$, inf 268 (5000), 295 (1975), 301 (1950).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{3}$: C, $58.31 ; \mathrm{H}, 3.74 ; \mathrm{N}, 4.00$. Found: C, 58.43; H, 3.61; N, 3.97.
Ethyl 5,7-dimethyl-3-phenyloxindole-3-carboxylate (3k) 55% yield) had mp 199-201 , crystallized from ethyl acetate-hexane; uv $\lambda_{\max } 259 \mathrm{~m} \mu(\epsilon 7300)$, 298 (2040).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}$: C, 73.83; $\mathrm{H}, 6.19 ; \mathrm{N}, 4.53$. Found: C, 78.83; H, 6.25; N, 4.80.

Ethyl 5-Chloro-3-(2-fluorophenyl)oxindole-3-carboxylate (3d). -A $7.05-\mathrm{g}(0.02 \mathrm{~mol})$ portion of ethyl 3,5 -dichloro-3-(2-fluoro-phenyl)-3H-indole-2-carboxylate (2d) was dissolved in 100 ml of ethanol by gentle warming. After the exothermic reaction, the solvent was evaporated and the residue was crystallized from ether to yield $6.4 \mathrm{~g}(95 \%)$ of product: $\mathrm{mp} 177-179^{\circ}$; uv $\lambda_{\max }$ $2.57 \mathrm{~m} \mu$ ($\epsilon 10,980$), 299 (1700).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClFNO}_{3}$: C, 61.18; H, 3.92; N, 4.20. Found: C, 60.99; H, 3.60; N, 4.09.

Ethyl 5-Chloro-3-methyloxindole-3-carboxylate (3f).-A 9-ml portion of tert-butyl hypochlorite was added to a solution of 12 g (0.0 .5 mol) of ethyl 5 -chloro-3-methylindole-2-carboxylate (1f). After sitting for 10 min the solvent was evaporated below 30°. Crystallization from ether-hexane yielded unstable ethyl 3,5-dichloro-3-methyl-3H-indole-2-carboxylate (2f): $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ $1.43\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.0\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 4.46(\mathrm{q}, 2, J=7 \mathrm{~Hz}$, CH_{2}), 7.2-7.8 (m, 3, aromatic H).

The collected crystals were dissolved and refluxed for 10 min in 100 ml of ethanol. Chromatography of the residue obtained after evaporation on 200 g of silica gel using 10% ethyl acetate in methylene chloride yielded $5.5 \mathrm{~g}(43 \%)$ of product: mp 120 122°; uv $\lambda_{\max } 254 \mathrm{~m} \mu(\epsilon 12,980), 294(1550)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{8}\right) \delta 1.2$ $\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{z}}\right), 1.7\left(\mathrm{~s}, 3, \mathrm{CH}_{\mathrm{z}}\right), 4.2\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $6.8-7.45(\mathrm{~m}, 3$, aromatic H$), 9.65$ (broad s, $1, \mathrm{NH})$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClNO}_{3}$: C, $56.81 ; \mathrm{H}, 4.77$; N, 5.52. Found: C, $51.09 ; \mathrm{H}, 4.70 ; \mathrm{N}, 5.54$.

Without characterization of the 3-chloroindolenines the following were similarly prepared.
N, N-Diethyl-5-chloro-3-phenyloxindole-3-carboxamide (8c) was obtained in 80% yield by first treating $2.4 \mathrm{~g}(7.3 \mathrm{mmol})$ of N, N-diethyl-5-chloro-3-phenylindole-2-carboxylate (6 c) in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $1.2 \mathrm{ml}(10.5 \mathrm{mmol})$ of tert-butyl hypochlorite for 30 min at room temperature and then refluxing the residue obtained upon evaporation in 50 ml of ethanol for 1 hr . Evaporation of the ethanol and crystallization from acetone-hexane gave 2 g of product: $\mathrm{mp} 130-133^{\circ}$; uv $\lambda_{\max } 262 \mathrm{~m} \mu(\epsilon 9100), 300$ (1700); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 1$ (broad s, 6, $2 \mathrm{CH}_{3}$), 3.34 (broad s, 4, $\left.2 \mathrm{CH}_{2}\right), 6.74\left(\mathrm{~d}, 1, J=8 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}\right), 7-7.6\left(\mathrm{~m}, 7, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\mathrm{C}_{4} \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}$), 11.0 (broad s, 1, NH).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C, $66.57 ; \mathrm{H}, 5.59 ; \mathrm{N}, 8.17$. Found: C, 66.59; H, 5.70; N, 8.19.
1-(6,7-Dichloro-3-phenyloxindole-3-carbonyl)morpholine (8i).A solution of $3.75 \mathrm{~g}(0.01 \mathrm{~mol})$ of $1-(6,7$-dichloro-3-phenylindole-2-carbonyl)morpholine ($6 \mathbf{i}$) in 50 ml of methylene chloride was treated with $1.6 \mathrm{ml}(0.014 \mathrm{~mol})$ of tert-butyl hypochlorite for 30 min at room temperature. The residue obtained after evaporation was refluxed in 50 ml of ethanol for 1 hr . Removal of the solvent and crystallization of the residue from methylene chlorideethyl acetate yielded 3.1 g (79%) of product: $\mathrm{mp} \mathrm{241-243}{ }^{\circ}$; uv $\lambda_{\text {max }} 216 \mathrm{~m} \mu(\epsilon 32,600)$, sh 260 (4600), 292 (1780).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $58.33 ; \mathrm{H}, 4.12 ; \mathrm{N}, 7.16$. Found: C, 58.61; H, 4.43; N, 7.12.

1-(3-Methyloxindole-3-carbonyl)pyrrolidine (8b) was obtained in 75% yield by first treating $4.6 \mathrm{~g}(0.02 \mathrm{~mol})$ of 1-(3-methyl-indole-2-carbonyl)pyrrolidine (6b) in 60 ml of methylene chloride with $3 \mathrm{ml}(0.026 \mathrm{~mol})$ of tert-butyl hypochlorite for 30 min and then refluxing the crude 3-chloroindolenine in 50 ml of ethanol for 15 min . Evaporation and crystallization from ether yielded 3.7 g of product: $\mathrm{mp} 218-220^{\circ}$; uv $\lambda_{\max } 251 \mathrm{~m} \mu(\epsilon 8190)$, 282 (1560).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 68.83; $\mathrm{H}, 6.60 ; \mathrm{N}, 11.47$. Found: C, 69.01; H, 6.73; N, 11.62.
N-Ethyl-5-chloro-3-(2-fluorophenyl)oxindole-3-carboxamide (8e).—A mixture of $3.5 \mathrm{~g}(0.01 \mathrm{~mol})$ of N-ethyl-3,5-dichloro-3-(2-fluorophenyl)- 3 H -indole-2-carboxamide (7e), 100 ml of ethanol, and 3 ml of 1.5 N ethanolic hydrogen chloride was heated to boiling. Evaporation and crystallization from ethyl acetatemethanol yielded 2.45 g (74%) of product: mp $228-230^{\circ}$; uv $\lambda_{\max } 260 \mathrm{~m} \mu(\epsilon 10,150)$, inf 269 (7850), 295 (1780); nmr (DMSO$\left.d_{6}\right) \delta 1.0\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.16\left(\mathrm{~m}, 2, \mathrm{NHCH}_{2}-\right), 6.7-7.5$ ($\mathrm{m}, 7$, aromatic H), $7.7\left(\mathrm{t}, 1, J=6 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right.$, exchanged slowly with $\mathrm{D}_{2} \mathrm{O}$), 11.0 (broad s, $1, \mathrm{NHCO}$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClFN}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 61.36 ; \mathrm{H}, 4.24 ; \mathrm{N}$, 8.42. Found: C, 61.41; H, 4.26 ; N, 8.42 .

5-Chloro-3-(2-fluorophenyl)oxindole-3-carboxamide (8d) was obtained in 53% yield by refluxing 3.2 g of 3,5 -dichloro-3-(2-fluorophenyl)-3H-indole-2-carboxamide (7d) with 100 ml of ethanol containing 3 ml of 1.5 N ethanolic hydrogen chloride for 10 min : mp $250-253^{\circ}$, crystallized from tetrahydrofuranmethanol; uv $\lambda_{\max } 260 \mathrm{~m} \mu(\epsilon 11,000)$, infl 270 (8300), 295 (1900); $\mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \delta 6.8-7.5(\mathrm{~m}, 7$, aromatic H$), 7.76$ (broad s , $2, \mathrm{NH}_{2}$, slowly exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 11.0(\mathrm{~s}, 1, \mathrm{NHCO})$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClFN}_{2} \mathrm{O}_{2}$: C, $59.13 ; \mathrm{H}, 3.31 ; \mathrm{N}$, 9.19. Found: C, 59.07 ; H, $3.75 ; \mathrm{N}, 9.08$.

5-Chloro-3-phenyloxindole ${ }^{18}$ (12). A.-A mixture of 2 g of 2-acetyl-3,5-dichloro-3-phenyl- 3 H -indole (10) and 30 ml of methanol was refluxed for 10 min . Evaporation and crystallization from ether yielded $1.3 \mathrm{~g}(81 \%)$ of product, melting point and spectroscopic data in agreement with those reported in the literature. ${ }^{18}$
B.-A mixture of 0.5 g of ethyl 5 -chloro-3-phenyloxindole-3carboxylate (3c), 10 ml of ethanol, and 1 ml of 50% aqueous potassium hydroxide was heated to reflux for 20 min . The ethanol was evaporated and the residue was partitioned between methylene chloride and dilute hydrochloric acid. The organic layer was dried and evaporated. Crystallization from methylene chloride-ether yielded 0.2 g of 5 -chloro-3-phenyloxindole.

5-Chloro-2-ethoxy-3-phenylindole (11). A.-A mixture of 2 g of 2-acetyl-3,5-dichloro-3-phenyl- 3 H -indole (10), 30 ml of methylene chloride, and 10 ml of ethanol was allowed to sit at room temperature for 15 min . The reaction mixture was washed with 10% aqueous sodium carbonate, dried, and evaporated. Crystallization from ethanol-water yielded $1.6 \mathrm{~g}(90 \%)$ of product, $\mathrm{mp} 124-127^{\circ}$. The analytical sample was recrystallized twice from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, \mathrm{mp}$ 127-129 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}: \mathrm{C}, 70.72 ; \mathrm{H}, 5.19 ; \mathrm{N}, 5.16$. Found: C, 71.04; H, 5.34; N, 5.09.
$\operatorname{Uv} \lambda_{\max } 228 \mathrm{~m} \mu(\epsilon 30,700), 281(17,900) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.27$ $\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.03\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.9-8.0$ ($\mathrm{m}, 9$, aromatic H and NH).
B.-A suspension of 1.35 g of 5 -chloro-3-phenylindole-2carboxylic acid ${ }^{17}$ in 20 ml of methylene chloride was treated with 1 ml of tert-butyl hypochlorite. After $5 \mathrm{~min}, 10 \mathrm{ml}$ of ethanol was added while the temperature was kept at $15-20^{\circ}$ by cooling with ice water. After 15 min , the reaction mixture was washed with 10% aqueous sodium carbonate solution. The methylene chloride layer was dried and evaporated. Chromatography of the residue over 30 g of silica gel with benzene and crystallization from hexane yielded $0.5 \mathrm{~g}(37 \%)$ of product, $\mathrm{mp} 127-129^{\circ}$.

6,7-Dichloro-2-methoxy-3-phenylindole (15).-A 1-ml portion of tert-butyl hypochlorite was added to a suspension of 1.5 g of 6,7-dichloro-3-phenylindole-2-carboxylic acid (5i) in 30 ml of methylene chloride. After stirring for $5 \mathrm{~min}, 20 \mathrm{ml}$ of methanol was added and stirring was continued for 10 min . Work-up as described above yielded after chromatography over 30 g of silica gel using benzene $0.4 \mathrm{~g}(27 \%)$ of product, $\mathrm{mp} 115-118^{\circ}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}: \mathrm{C}, 61.67 ; \mathrm{H}, 3.80 ; \mathrm{N}, 4.79$. Found: C, 61.49; H, 3.62; N, 4.71.
$\mathrm{Uv} \lambda_{\max } 234 \mathrm{~m} \mu(\epsilon 23,000), 277-278(14,400) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ $3.86\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 7-7.8(\mathrm{~m}, 7$, aromatic H$), 8.05$ (broad s, 1 , NH).

Reaction of 3-Acetyl-3,5-dichloro-3-phenyl-3H-indole (10) with Trifluoroacetic Acid.-A $2-\mathrm{ml}$ portion of trifluoroacetic acid was added to a solution of 2 g of 2-acetyl-3,5-dichloro-3-phenyl3 H -indole (10) in 20 ml of methylene chloride. After standing at room temperature for 1 hr , the reaction mixture was evaporated, at the end azeotropically with benzene. The residue was chromatographed over 40 g of silica gel using methylene chloridehexane ($1: 1$). Crystallization of the less polar main component

[^3]from hexane-ether yielded $0.86 \mathrm{~g}(50 \%)$ of 2,5 -dichloro-3-phenylindole (13), mp 89-91 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}$: C, 64.15; H, 3.46; N, 5.34. Found: C, $64.35 ; \mathrm{H}, 3.59 ; \mathrm{N}, 5.28$.

Uv $\lambda_{\max } 230 \mathrm{~m} \mu(\epsilon 31,800), 270(11,600)$, infl $283(10,750)$, infl 290 (9400), 301 (7250); ir $\left(\mathrm{CHCl}_{3}\right) 3460 \mathrm{~cm}^{-1}(\mathrm{NH}) ; \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 7.0-7.95(\mathrm{~m}, 8$, aromatic H$)$.

Crystallization of the more polar component from ether yielded $0.18 \mathrm{~g}(9 \%)$ of 1-acetyl-2, 5 -dichloro-3-phenylindole (14), mp 153-154 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}: \mathrm{C}, 63.18 ; \mathrm{H}, 3.65 ; \mathrm{N}, 4.61$. Found: C, 62.87; H, 3.63; N, 4.63.

Uv $\lambda_{\max } 243 \mathrm{~m} \mu(\epsilon 23,100), 280(11,500), 299$ (8600), 309 (8050); ir $\left(\mathrm{CHCl}_{3}\right) 1700 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.85(\mathrm{~s}, 3$, COCH_{3}), $7.1-7.7(\mathrm{~m}, 7$, aromatic H$), 8.33(\mathrm{~d}, 1, J=9 \mathrm{~Hz}$, $\mathrm{C}_{7} \mathrm{H}$).

A 0.1 g portion of 1 -acetyl-2,5-dichloro-3-phenylindole (14) was refluxed for 5 min in 5 ml of ethanol containing 1 ml of 1 N aqueous sodium hydroxide. Evaporation, extraction with ether, and crystallization from ether-bexane yielded 0.55 g of 2,5 -dichloro-3-phenylindole (13).

A mixture of 0.3 g of 2,5-dichloro-3-phenylindole (13), 2 ml of pyridine, and 0.5 ml of acetic anhydride was heated to reflux for 10 min . The crystals separated from the cooled reaction mixture were collected and recrystallized from ethanol, melting point and mixture melting point identical with those of 1-acetyl-2,5-dichloro-3-phenylindole (14).

A mixture of 0.8 g of 5-chloro-3-phenyloxindole (12) and 10 ml of phosphorus oxychloride was refluxed for 4 hr . The reagent was removed under reduced pressure and the residue was partitioned between benzene and $1 N$ sodium hydroxide solution. The benzene layer was dried and evaporated. Chromatography of the residue on 10 g of silica gel with hexane-methylene chloride ($1: 1$) yielded 0.179 g of 2,5 -dichloro-3-phenylindole (13), melting point and mixture melting point identical with those of material obtained before.

2-Nitro-3-phenylindole (24a).-A $5-\mathrm{ml}$ portion of trifluoroacetic acid was added to a solution of 10 g of 2 -acetyl-3-nitro-3-phenyl- 3 H -indole (23a) in 100 ml of methylene chloride. After sitting for 1 hr at room temperature the mixture was evaporated under reduced pressure and the residue was crystallized from hexane to yield $6.8 \mathrm{~g}(80 \%)$ of yellow crystals. The analytical sample was recrystallized from acetone-hexane, mp 160-162 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $70.58 ; \mathrm{H}, 4.23 ; \mathrm{N}, 11.75$. Found: C, 70.67; H, 4.29; N, 11.72.

Uv $\lambda_{\max } 237-238 \mathrm{~m} \mu(\epsilon 14,900)$, $351-352(13,250)$; ir (KBr) $3250(\mathrm{NH}), 1555 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7-8(\mathrm{~m}, 9$, aromatic H), 9.24 (broad s, $1, \mathrm{NH}$).

5-Chloro-2-nitro-3-phenylindole (24c).-A mixture of 2 g of 2-acetyl-5-chloro-3-nitro-3-phenyl- 3 H -indole (23 c), 20 ml of methylene chloride, and 2 ml of trifluoroacetic acid was allowed to sit at room temperature for 1 hr . Crystals started to separate after 10 min . The suspension was diluted with hexane and the crystals were collected to yield $1.2 \mathrm{~g}(69 \%)$ of product, mp 201$203^{\circ}$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C, 61.67; H, 3.33; $\mathrm{N}, 10.27$. Found: C, 61.54; H, 3.21; N, 10.17.

Uv $\lambda_{\max } 234-235 \mathrm{~m} \mu(\epsilon 18,150)$, infl $253(12,800), 349-350$ (1400); ir $\left(\mathrm{CHCl}_{3}\right) 3450(\mathrm{NH}), 1520 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.2-7.8$ (m, 8 , aromatic H), 9.4 (broad s, $1, \mathrm{NH})$.

5-Chloro-3-methyl-2-nitroindole (24f).-A solution of 5 g of 2-acetyl-5-chloro-3-methyl-3-nitro- 3 H -indole (23f) in 20 ml of trifluoroacetic acid was allowed to sit at room temperature for 15 min . The separated crystals were collected and washed with acetic acid and methanol to leave $3.9 \mathrm{~g}(93 \%)$ of yellow crystals, $\mathrm{mp} 220-222^{\circ}$. The analytical sample was recrystallized from acetone-methylene chloride, $\mathrm{mp} 224-226^{\circ}$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C, $51.32 ; \mathrm{H}, 3.35 ; \mathrm{N}, 13.29$. Found: C, 51.25 ; H, 3.42; N, 13.19.

Uv $\lambda_{\max } 246 \mathrm{~m} \mu(\epsilon 8700), 346(16,560)$; ir (KBr) $3400(\mathrm{NH})$, $1560 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; $\mathrm{nmr}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.53\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 7.32$ (s with fine structure, $2, \mathrm{C}_{6} \mathrm{H}$ and $\mathrm{C}_{7} \mathrm{H}$), 7.6 .5 (s with fine structure, $\left.1, \mathrm{C}_{4} \mathrm{H}\right), 12.4$ (broad s, 1, NH).

Reaction of trans-Ethyl 3-(3,5-Dichloro-3-methyl-3H-2-indolyl)propenoate (18) with Ethanol.-A mixture of 2 g of transethyl 3-(3,5-dichloro-3-methyl-3H-2-indolyl)propenoate (18), 20 ml of methylene chloride, and 10 ml of ethanol was allowed to sit at room temperature for 2 hr . The solvents were removed under reduced pressure and the residue was chromatographed over 60 g of silica gel using methylene chloride-hexane ($2: 1$,
$\mathrm{v} / \mathrm{v})$. Crystallization of the first eluted compound from ethanol yielded $0.2 \mathrm{~g}(10 \%)$ of ethyl 2-chloro-3-(5-chloro-3-methyl-2indolyl) propenoate (20) as yellow crystals, mp 155-157 .

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$: C, $56.40 ; \mathrm{H}, 4.40 ; \mathrm{N}$, 4.70. Found: $\mathrm{C}, 56.26 ; \mathrm{H}, 4.28 ; \mathrm{N}, 4.65$.

Uv $\lambda_{\text {max }} 262 \mathrm{~m} \mu(\epsilon 9670)$, 355-357 ($\epsilon 33,200$); ir (KBr) 3440 (NH), $1710 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \operatorname{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.4(\mathrm{t}, 3, J=7 \mathrm{~Hz}$, CH_{3}), $2.4\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 4.45\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.28$ (s with fine structure, $2, \mathrm{C}_{6} \mathrm{H}$ and $\mathrm{C}_{7} \mathrm{H}$), 7.55 (s with fine structure, $1, \mathrm{C}_{4} \mathrm{H}$), 7.99 (s, $1, \beta$ proton).

Crystallization of the later eluted second component from hexane yielded $0.9 \mathrm{~g}(39 \%)$ of ethyl 2 -chloro-3-(5-chloro-3-methyl-2-indolyl)-3-ethoxypropanoate (19), mp 81-83 .

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{3}$: C, $55.83 ; \mathrm{H}, 5.56 ; \mathrm{N}, 4.07$. Found: C, 55.60; H, 5.48; N, 4.19.

Uv $\lambda_{\max } 230 \mathrm{~m} \mu(\epsilon 38,000), 286-287$ (8100), 294 (8100), infl 304 (58.50); ir $\left(\mathrm{CHCl}_{3}\right) 3470(\mathrm{NH}), 1750 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.13\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.3(\mathrm{t}, 3, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 2.34\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.52\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.33(\mathrm{q}$, $\left.2, J=7 \mathrm{~Hz}^{2}, \mathrm{COOCH}_{2}-\right), 4.5(\mathrm{~d}, 1, J=9 \mathrm{~Hz})$, and $5.05(\mathrm{~d}$, $1, J=9 \mathrm{~Hz}$) (AB system, α and β proton), $7-7.5$ (m, 2, $\mathrm{C}_{6} \mathrm{H}$ and $\mathrm{C}_{7} \mathrm{H}$), 7.53 (s with fine structure, $1, \mathrm{C}_{4} \mathrm{H}$), 8.33 (broad s, 1, NH).

Acknowledgment.-The authors wish to thank the following members of our Physical Chemistry Department: Mr. S. Traiman for the ir spectra, Dr. V. Toome for the uv spectra, Dr. T. Williams for the nmr spectra, and Dr. F. Scheidl for the microanalyses. We are indebted to Professor G. Buchi for valuable discussions.

Registry No.-1g, 40735-51-1; 1h, 40735-52-2; 1i, 40735-53-3; 1k, 40735-54-4; 2c, 40735-55-5; 2d, 40735-56-6; 2f, 40735-57-7; 3a, 40735-58-8; 3c, 40735-59-9; 3d, 40735-60-2; 3f, 40735-61-3; 3g, 40735-62-4; 3h, 40735-63-5; 3i, 40735-64-6; 3k, 40827-74-5; 5d, 40731-34-8; 5f, 16381-47-8; 5i, 40731-36-0; 6b, 40731-37-1; 6c, 40731-38-2; 6d, 24106-90-9; 6e, 40730-98-1; 6f, 40730-99-2; 6i, 40731-00-8; 7d, 40731-01-9; 7e, 40731-02-0; 8b, 40731-03-1; 8c, 40731-04-2; 8d, 40731-05-3; 8e, 40731-06-4; 8i, 40731-07-5; 9c, 40731-08-6; 9f, 40731-09-7; 10, 40731-10-0; 11, 40731-11-1; $12,15815-97-1$; 13, 40731-13-3; 14, 40731-14-4; 15, 40731-15-5; $16,40731-16-6 ; 17,40731-17-7$; 18, 40827-72-3; 19, 40731-18-8; 20, 40731-19-9; 21a, 40731-20-2; 21c, 40731-21-3; 21g, 40827-73-4; 21h, 40731-22-4; 21i, 40731-23-5; 21k, 40731-24-6; 23a, 40731-25-7; 23c, 40731-26-8; 23f, 40731-27-9; 24a, 40731-28-0; 24c, 40731-29-1; 24f, 40731-30-4; phosphorus pentachloride, 10026-13-8; methylene chloride, 75-09-2; thionyl chloride, 7719-09-7; tert-butyl hypochlorite, 507-40-4; ethyl 5-chloro-3-phenylindole-2-carboxylate, 21139-32-2; ethyl 3-phenylindole-2-carboxylate, 37129-23-0; 2-acetyl-3-phenylindole, 36015-23-3; trifluoroacetic acid, 76-05-1; ethanol, 64-17-5.

Supplementary Material Available.-Listings of structure factors coordinates, and thermal parameters for 21c will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche ($105 \times 148 \mathrm{~mm}, 20 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JOC-733077.

Synthesis of 1,2-Diaminobenzimidazole, 1 H -s-Triazolo[1,5-a]benzimidazoles, and $a s$-Triazino[2,3-a]benzimidazoles

Richard I-fu Ho and Allan R. Day*
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19174

Received February 7, 1973

The preparations of 1,2 -diaminobenzimidazole, a new compound, and of two new ring systems, 1 H -s-triazolo-[1,5-a] benzimidazole and as-triazino [2,3-a]benzimidazole, are reported.

Although 1-aminobenzimidazoles are relatively wellknown compounds ${ }^{1}$ and 2-aminobenzimidazoles have been known for a longer period of time, ${ }^{2}$ nothing has been reported on 1,2-diaminobenzimidazole and its derivatives. The 1,2-diaminobenzimidazoles are readily obtained from o-acylhydrazidoanilines and cyanogen bromide.

The o-nitrophenylhydrazines were obtained from the corresponding 0 -nitroanilines by diazotization

[^4]followed by reduction with sodium bisulfite. ${ }^{3}$ The catalytic hydrogenation proceeded smoothly as long as the o-acylhydrazidonitrobenzene was pure. The ring-closure step was carried out by adding the cyanogen bromide to a suspension of the o-acylhydrazidoaniline in water. All of the ring compounds, isolated from the cyanogen bromide reactions, had the uv absorptions characteristic of benzimidazoles, namely $240-250 \mathrm{~m} \mu$ for the amidine group and $280-300 \mathrm{~m} \mu$ for the benzenoid portion. ${ }^{4}$

Heating the 1 -acylamido-2-aminobenzimidazoles with acid anhydrides or acid chlorides produced 1 H -striazolo $[1,5-a]$ benzimidazoles (a new ring system). The R groups at positions 1 and 2 werc always found to be identical with the R group of the acid anhydride or chloride. ${ }^{\text {lb }}$ It would appear from this observation that ring closure is slow compared to the rate of trans acylation. It is interesting to note that the action of hydrochloric acid on the 1 -acylamido-2-aminobenzimidazoles did not bring about the formation of the triazolo compound (Phillips method). ${ }^{5}$

[^5]

Owing to the tautomeric nature of 1 H -s-triazolo-[1,5-a]benzimidazole, there are three theoretically possible isomeric structures for the monoacyl derivatives. The assignment of the acyl group to the 1 position is therefore somewhat arbitrary. Only a single isomer was obtained by ring closure and the same isomer was obtained by acylation of 1 H -s-tri-azolo[1,5-a]benzimidazole. The nmr spectrum (CHCl_{3}) for the acetyl derivative shows a singlet at δ $2.46\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$, a singlet at $2.83\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$, a multiplet centered at 7.4 (3 H , aromatic), and a multiplet centered at $8.5(1 \mathrm{H}$, in 8 or 5 position). The unusual shift of one proton is probably due to a long-range anisotropic effect. This shift was noted only for the acyl derivatives and was not observed for 1 H -striazolo[$1,5-s$]benzimidazole or its 2 -alkyl derivatives. The nmr data appear to fit either the 1-acetyl or 4-

acetyl derivative. Benzylation of $1 H-s$-triazolo-[1,5-a]benzimidazole also gave only one isomer.

1,2-Diaminobenzimidazole reacted with 2,3 -butanedione to form 2,3-dimethyl-as-triazino[2,3-a|benzimidazole. Reactions with pyruvic acid and benzoylformic acid gave 2-methyl-as-triazino [2,3-a]ben-zimidazol-3(4H)-one and 2-phenyl-as-triazino[2,3-a]-benzimidazol-3(4H)-one, respectively. The dialkyl derivatives were yellow solids while the derivatives of the α-keto acids were colorless solids which show an intense amide carbonyl at $1700 \mathrm{~cm}^{-1}$.

Experimental Section

Melting points, up to 270°, were taken on a Thomas-Hoover capillary melting point apparatus. Above 270°, they were taken on a copper block melting point apparatus. The melting points are uncorrected. Ir spectra were obtained with a Perkin-

Elmer Model 521 spectrophotometer and uv spectra were measured with a Cary 14 spectrophotometer. Nmr spectra were determined at 60 Mcps on a Varian Associates NMR Model HA-60.

1-Formamido-2-aminobenzimidazole Hydrobromide (1).-A solution of $1.5 \mathrm{~g}(0.0142 \mathrm{~mol})$ of cyanogen bromide in a little water was added to a suspension of $2.12 \mathrm{~g}(0.0142 \mathrm{~mol})$ of o formylhydrazidoaniline ${ }^{1 \mathrm{~b}}$ in 30 ml of water. The mixture was stirred for 2 hr at 0° and then for 5 hr at room temperature. The solvent was removed under reduced pressure. The residual dark oil was triturated alternately with dry ethanol and dry benzene until it solidified, yield 85%. We were unable to purify this compound because of its hygroscopic nature. That it was at least 9.5% pure 1 -formamido-2-aminobenzimidazole hydrobromide was shown by the fact that a 9.5% yield of monopicrate was obtained in methanol solution. This is the yield after recrystallization from water-dimethylformamide: mp $270-275^{\circ}$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{7} \mathrm{O}_{8}: \mathrm{C}, 41.50 ; \mathrm{H}, 2.70 ; \mathrm{N}, 24.10$. Found: C, 41.31; H, 2.54; N, 24.23.

1-Acetamido-2-aminobenzimidazole Hydrobromide (2).-The acetamido derivative was prepared from o-acethydrazidoaniline ${ }^{1 b}$ by the procedure used for compound 1 . The residue from the evaporation of the solvent was washed with dry ether and dry acetone and recrystallized from acetonitrile: yield 90% $\mathrm{mp} 244-246^{\circ}$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrN}_{4} \mathrm{O}: \mathrm{C}, 39.86 ; \mathrm{H}, 4.09$; N , 20.66; Br, 29.47. Found: C, 39.61; H, 4.03; N, 20.43; $\mathrm{Br}, 29.27$.

1-Acetamido-2-aminobenzimidazole Hydrate (3).-An aqueous solution of 2 was neutralized with sodium bicarbonate to precipitate the free base which was recrystallized from water. It was isolated as a monohydrate: yield 82%; mp $224-226^{\circ}$; ir (KBr) strong band at $1700 \mathrm{~cm}^{-1}$ (amide carbonyl); nmr (DMSO) singlet at $\delta 2.06\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$, singlet at $6.45\left(2 \mathrm{H}, \mathrm{NH}_{2}\right)$, multiplet centered at $7.0(4 \mathrm{H}$, aromatic), singlet at $10.5(1 \mathrm{H}$, $\mathrm{HNC}=0$). The amide proton, being adjacent to two electronwithdrawing groups, absorbs more downfield than the phenyl protons. The 2 -amino and 1 -amido proton absorptions disappeared in the presence of $\mathrm{D}_{2} \mathrm{O}$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $51.92 ; \mathrm{H}, 5.77 ; \mathrm{N}, 26.92$. Found: C, 51.96; H, 5.97; N, 26.96.
The monopicrate, prepared in methanol solution, was recrystallized from acetonitrile: $\mathrm{mp} 276-283^{\circ}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{5}: ~ \mathrm{C}, 42.96 ; \mathrm{H}, 3.10 ; \mathrm{N}, 23.39$. Found: C, 43.06; H, 3.24; N, 23.23.

1-Propionamido-2-aminobenzimidazole Hydrobromide (4).Compound 4 was prepared from o-propionhydrazidoaniline ${ }^{1 b}$ by the procedure used for preparing compound 2 : yield 66%, $\mathrm{mp} 221-223^{\circ}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}: \mathrm{C}, 42.28 ; \mathrm{H}, 4.55 ; \mathrm{N}$, 19.66; $\mathrm{Br}, 28.04$. Found: C, 42.18; H, 4.69; N, 19.49; $\mathrm{Br}, 28.02$.

1-Propionamido-2-aminobenzimidazole (5).-Free base 5 was prepared from hydrobromide 4 by neutralization with sodium bicarbonate and recrystallization from ethyl acetate: yield 83%, mp 171-173 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}: ~ \mathrm{C}, 58.82 ; \mathrm{H}, 5.88 ; \mathrm{N}, 27.42$. Found: C, 59.01; H, 5.75; N, 27.25.

1-Benzamido-2-aminobenzimidazole Hydrobromide (6).Compound 6 was prepared from o-benzoylhydrazidoaniline ${ }^{1 b}$ by the procedure used for preparing compound 2 : yield 80%, $\mathrm{mp} 245-247^{\circ}$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}: \mathrm{C}, 50.43 ; \mathrm{H}, 3.93 ; \mathrm{N}$, 16.81; $\mathrm{Br}, 23.98$. Found: C, 50.59; H, 4.01; N, 16.79; $\mathrm{Br}, 24.06$.

The monopicrate, prepared in methanol solution, was recrystallized from acetonitrile: $\mathrm{mp} 270-280^{\circ}$.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O}_{8}: \mathrm{C}, 49.89 ; \mathrm{H}, 3.13 ; \mathrm{N}, 20.37$. Found: C, 50.1; H, 3.29; N, 20.23.

1,2 -Diaminobenzimidazole (7). -The 1,2 -diamino compound may be prepared by hydrolyzing any of the 1 -acylamido- 2 aminobenzimidazoles or their hydrobromides. The following is an example. 1-Acetamido-2-aminobenzimidazole hydrobromide (0.5 g) was dissolved in 60 ml of $4 N$ hydrochloric acid and the solution was refluxed for 1 hr . On cooling the hydrochloride separated. The salt was dissolved in water and the solution was neutralized with sodium bicarbonate to precipitate the free base. The free base was recrystallized from ethanol: yield 70%; mp 256-259 ${ }^{\circ}$; ir (KBr) showed no carbonyl absorption, strong N-H stretching absorptions at 3375 and $3500 \mathrm{~cm}^{-1}$;
nmr (DMSO) singlet at δ : $.52\left(2 \mathrm{H}, 1-\mathrm{NH}_{2}\right)$, singlet at 6.1.) ($2 \mathrm{H}, 2-\mathrm{NH}_{2}$), multiplet centered at $7.1(4 \mathrm{H}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4}$: 56.75 ; $\mathrm{H}, 5.42 ; \mathrm{N}, 37.92$. Found: C, 56.80; H, 5.52; N, 37.76.

1-Acetyl-2-methyl-1 H-s-triazolo[1,5-a] benzimidazole (8).-1-Acetamido-2-aminobenzimidazole hydrobromide ($0 . . \overline{\mathrm{F}} \mathrm{b}, 0.0018$ mol) was dissolved in 60 ml of acetic anhydride and the solution was refluxed for .5 hr. The solution was reduced to $. \overline{-}-10 \mathrm{ml}$ under reduced pressure. An oil separated which solidified on cooling. The solid was recrystallized from acetonitrile: yield 71%; mp 154-15.5 ; ir (KBr) strong band at $1700 \mathrm{~cm}^{-1}$ for amide carbonyl.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}: ~ \mathrm{C}, 61.70 ; \mathrm{H}, 4.67 ; \mathrm{N}, 26.17$. Found: C, 61.67; H, 4.58; N, 25.98.

2-Methyl-1 H -s-triazolo[1,5-a] benzimidazole (9).-1-Acetyl-2 methyl- $1 H$-s-triazolo[1,5-a] benzimidazole (0.5 g) was dissolved in 80 ml of hydrochloric acid and the solution was refluxed for 2 hr . The solution was evaporated to $10-15 \mathrm{ml}$ and neutralized with sodium bicarbonate. The precipitate was removed, washed with water, and recrystallized from acetonitrile: yield 80%; $\mathrm{mp} 258-2.59^{\circ}$; nmr ($\left.\mathrm{CD}_{3} \mathrm{COOD}\right)$ singlet at $\delta 2.5\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$, multiplet centered at $7.5(4 \mathrm{H}$, aromatic).

Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{4}$: $\mathrm{C}, 62.78$; $\mathrm{H}, 4.65$; $\mathrm{N}, 32.56$. Found: C, 62.64; N, 4.53; N, 32.47.

1-Propionyl-2-ethyl-1H-s-triazolo[1,5-a] benzimidazole (10).-1-Propionamido-2-aminobenzimidazole hydrobromide was refluxed with propionic anhydride. The procedure for 8 was followed to obtain 10: yield 71%; mp 111-113 ${ }^{\circ}$; ir (KBr) $1700 \mathrm{~cm}^{-1}$ (amide carbonyl); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ triplet at $\delta 1.37$ $\left(3 \mathrm{H}, 2-\mathrm{CH}_{3}\right)$, quartet at $2.9\left(2 \mathrm{H}, 2-\mathrm{CH}_{2}\right)$, triplet at 1.42 (3 $\left.\mathrm{H}, 1-\mathrm{CH}_{3}\right)$, quartet at $3.4\left(2 \mathrm{H}, 1-\mathrm{CH}_{2}\right)$, multiplet at 7.5 j (3 H , aromatic protons $5,6,7$), singlet at 8.55° (1 H , aromatic proton 8).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 64.47 ; \mathrm{H}, 5.80 ; \mathrm{N}, 23.14$. Found: C, 64.34; H, 5.84; N, 23.00.

2-Ethyl-1H-s-triazolo[1,5-a] benzimidazole (11).-This compound was prepared from 10 by the procedure used for making 9. The product was recrystallized from ethyl acetate: yield 66%; mp 198-200 ${ }^{\circ}$: nmr ($\mathrm{CD}_{3} \mathrm{COOD}$) triplet at $\delta 1.4(3 \mathrm{H}$, $\left.2-\mathrm{CH}_{3}\right)$, quartet at $2.85\left(2 \mathrm{H}, 2-\mathrm{CH}_{2}\right)$, multiplet at $7.55(4 \mathrm{H}$, aromatic protons).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4}$: C, 64.45; $\mathrm{H}, 5.41 ; \mathrm{N}, 30.00$. Found: C, 64.51; H,5.31; N, 30.19.

1-Benzoyl-2-phenyl-1- H-s-triazolo[1,5-a]benzimidazole (12).-1-Benzamido-2-aminobenzimidazole (0.5 g) was dissolved in 60 ml of benzoyl chloride and the solution was refluxed for 5 hr. The solution was distilled under reduced pressure to 510 ml and the resulting oil was cooled until it solidified. The product was washed with dry ether and recrystallized from acetonitrile: yield 83%; mp $230-232^{\circ}$; ir (KBr) $1700 \mathrm{~cm}^{-1}$ (amide carbonyl); nmr $\left(\mathrm{CDCl}_{3}\right)$ multiplet at $\delta 7.37(3 \mathrm{H}$, protons j, 6, 7), multiplet at $7.54\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, multiplet at $8.04(5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{O}$), multiplet at $8.43(1 \mathrm{H}$, proton 8).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{~N}_{4}$: C, 77.40; $\mathrm{H}, 4.54 ; \mathrm{N}, 18.0$. . Found: C, 77.51; H, 4.65̄; N, 17.88.

2-Phenyl-1 H-s-triazolo[1,5-a]benzimidazole (13).-1-Benzo-yl-2-phenyl-1H-s-triazolo[1,5-a] benzimidazole $\quad(0.5 \quad \mathrm{~g})$ was dissolved in 40 ml of 10% sodium hydroxide and the solution was refluxed for 2 hr . The solution was evaporated almost to
dryness and the residue was extracted with ethyl acetate. Dis illation of the ethyl acetate left a colorless solid which was recrystallized from ethanol: yield 60%; mp $310-315^{\circ}$; nmr ($\mathrm{CD}_{3} \mathrm{COOD}$) multiplet at $\delta 7.54$ (4 H , aromatic), multiplet at $8.00()$.H , aromatic).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4}$: $\mathrm{C}, 71.78 ; \mathrm{H}, 4.27 ; \mathrm{N}, 23.92$. Found: C, 71.84; H, 4.15; N, 23.76.

1-Benzyl-2-phenyl-1 H-s-triazolo [$1,5-a$] benzimidazole (14).-2-Phenyl-1H-s-triazolo[1,5-a] benzimidazole $(0.63 \mathrm{~g}, 0027 \mathrm{~mol})$ was dissolved in dry dimethylformamide. Sodium hydride $(0.065 \mathrm{~g}, 0.0077 \mathrm{~mol})$ was added gradually with stirring. The mixture was gently refluxed for 40 min and $0.38 \mathrm{~g}(0.003 \mathrm{~mol})$ of benzyl chloride was added. Refluxing was continued for 2 hr and the solution was cooled to 5°. The addition of 10 ml of water precipitated a solid which was recrystallized from n hexane: yield 50%; mp $130-132^{\circ}$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ singlet at δ 5. 38 ($2 \mathrm{H}, \mathrm{CH}_{2}$), multiplet at $7.20(4 \mathrm{H}$, aromatic), multiplet at $7.30\left(5 \mathrm{H}, 2\right.$-phenyl group), multiplet at $7.82\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ of benzyl).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4}$: C, 77.75; $\mathrm{H}, 4.97 ; \mathrm{N}, 17.27$ Found: C, 77.65; H,5.10; N, 17.27.

2,3-Dimethyl-as-triazino[2,3-a] benzimidazole (15). $-1,2-\mathrm{Di}$ aminobenzimidazole ($0.5 \mathrm{~g}, 0.0035 \mathrm{~mol}$) was dissolved in 60 ml of methanol. A solution of $0.43 \mathrm{~g}(0.005 \mathrm{~mol})$ of 2,3-butane dione in methanol was added and the solution was refluxed for 2 hr . The methanol was removed in vacuo and the residue was recrystallized from ethanol: yield 58%; yellow crystals; mp $236-239^{\circ}$; ir showed no carbonyl or NH absorption.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4}$: C, 66.65; $\mathrm{H}, 5.09$; $\mathrm{N}, 28.27$ Found: C, 66.65; H, 5.08; N, 28.25 .
2-Methyl-as-triazino[2,3-a] benzimidazol-3(4H)-one (16).-Pyruvic acid was used in place of 2,3 -butanedione and ethanol was the solvent. The product was recrystallized from dimethylformamide: yield 72%, colorless crystals, mp $350-355^{\circ}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 59.99 ; \mathrm{H}, 4.20 ; \mathrm{N}, 27.82$. Found: C, 59.80; H,4.01; N, 27.76

2-Phenyl-as-triazino[2,3-a] benzimidazol-3(4H)-one (17).Benzoylformic acid was used in place of 2,3-butanedione and ethanol was the solvent. The product was recrystallized from dimethylformamide-water: yield 68%, colorless crystals, mp 355-358 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 68.67 ; \mathrm{H}, 3.84 ; \mathrm{N}, 21.36$. Found: C, 68.48; H, 3.84; N, 21.30.

Registry No.-1, 40697-60-7; 1 monopicrate, 40697-61-8; 2, 40697-62-9; 3, 40697-63-0; 3 monopicrate, 40697-64-1; 4, 40697-65-2; 5, 40697-66-3; 6, 40697-67-4; 6 monopicrate, 40697-$68-5$; 7, 29540-87-2; 8, 40935-54-4; 8 4-acetyl tautomer, 40697-$70-9$; 9, 40697-71-0; 10, 40697-72-1; 10 4-propionyl tautomer, 40697-73-2; 11, 40697-74-3; 12, 40736-41-2; 12 4-benzoyl tautomer, 40736-42-3; 13, 40697-75-4; 14, 40697-76-5; 15, 40697-$77-6 ; 16,40697-78-7$; 17, 40697-79-8; 18, 40697-80-1; cyanogen bromide, 506-68-3; o-formhydrazidoaniline, 6299-89-4; o-acetylhydrazidoaniline, 6299-91-8; o-propionylhydrazidoaniline, 40697-83-4; o-benzoylhydrazidoaniline, 6299-88-3; acetic anhydride, 108-24-7; propionic anhydride, 123-62-6; benzoyl chloride, 98-88-4; 2,3-butanedione, 431-03-8; 2,3-pentanedione, 600-14-6; pyruvic acid, 127-17-3; benzoylformic acid, 611-73-4.

Bridgehead Nitrogen Heterocycles. VI. The Synthesis and Characterization of Some Ring-Fused 3-Substituted $\mathbf{3 H}$-[1,2,4]Thiadiazolopyrimidines, -pyrazines, and -pyridazines ${ }^{1 \mathrm{a}}$

K. T. Potts* and J. Kane ${ }^{\text {Ib }}$
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181

Received May 9, 1973

Abstract

Condensation of the trichloromethylthioamino derivatives of pyridazines, pyrimidines, and pyrazines derived from the corresponding amino compound and perchloromethyl mercaptan with primary aromatic amines gave a variety of 3 -substituted derivatives of the new, title ring systems. In several instances transaminations were observed. Spectral characteristics of these derivatives are described.

The $3 H-[1,2,4]$ thiadiazolo $[4,3-a]$ pyridme ring system 1 was synthesized recently from 2 -aminopyridines and perchloromethyl mercaptan. ${ }^{2 a}$ Isolation of the intermediate trichloromethylthioaminopyridine, followed by reaction with primary, aromatic amines, enabled a wide variety of substituents to be introduced into the 3 position. ${ }^{2 b}$ Reaction with sodium sulfhydrate and suitable enolate anions greatly extended the scope of this route to this fused-ring system. ${ }^{2 b}$ The isomeric ring system, 2-substituted $2 H-[1,2,4]$ thia-diazolo[2,3-a]pyridine (2), has also been prepared

2
be prepared directly from 2-amino-4-methylpyridine and perchloromethyl mercaptan (2:1) as described previously. ${ }^{2 \mathrm{~B}}$ This no doubt arose by a transamination reaction in which the more basic 2 -amino-4-methylpyridine $\left(\mathrm{p} K_{\mathrm{a}}=7.48\right)^{6}$ displaced 2-aminopyrimidine $\left(\mathrm{p} K_{\mathrm{a}}=3.45\right)^{7}$ from 3 forming the corresponding 4-methyl-2-trichloromethylthioaminopyridine (6), which then underwent ring closure with 2 -amino-4-methylpyridine to 5. In this study transamination was always observed to some extent when closure was attempted using 2 -aminopyridine derivatives, being easily detected by tlc, but only with 2 -amino- 4 -methylpyridine was the quantity of product sufficient for isolation. Related amine exchange in sulfenamides has also been observed ${ }^{8}$ with 2-tert-butylaminothiobenzothiazole and morpholine on heating in an inert solvent to 100°.

As derivatives of this system decompose near their melting point, difficulties in purification occur with lower melting products. This was especially true in the reactions of 3 with aniline derivatives. For example,

5
while those derivatives presented in Table I were easily purified, reaction of 3 with either p-toluidine or p chloroaniline yielded products which decomposed upon attempted recrystallization.

The analytical and spectral data described in Tables I and II clearly show that ring closure had occurred to these $[1,2,4]$ thiadiazolo $[4,3-a]$ pyrimidines. The possibility that ring closure had occurred in an alternative sense to yield a 2 -substituted $2 H-[1,2,4]$ thiadiazolo-[2,3-a]pyrimidine (7) (such would be the case if in 3 the trichloromethylthio group were attached to a ring
(6) F. N. Fastier and M. A. McDowell, Austr. J. Exptl. Biol., 86, 491 (1968).
(7) A. Albert. R. Goldacre, and J. Phillips, J. Chem. Soc., 2240 (1948).
(8) J. J. D'Amico and D. D. Mullins, Int. J. Sulfur Chem., in press; see also F. A. Davis, R. B. Wetzil, T. J. Devon, and J. F. Starkhouse, J. Org. Chem., 36, 799 (1971); F. A. Davis, S. Divald, and A. H. Cohn, Chem. Commип., 294 (1971).
Table I

Struc-ture	R	Method	$\mathrm{Mp},{ }^{\circ} \mathrm{C}^{\text {a }}$	Yield, \%	Cryababit tabit $^{\text {tal }}$	Solvent ${ }^{\text {c }}$	Some Ring-Fused 1,2,4-Thiadiazoles						$\begin{gathered} \mathrm{M} \cdot+\boldsymbol{m} / e \\ \text { (rel intensity) } \end{gathered}$	$\mathrm{C}=\mathrm{N}-$1640	em-\qquad Thiadiazole ring deiormn 1455	$\lambda_{\max },$$\mathrm{nm}$	Log e
								-	-	ir-							
							c	$\begin{gathered} \text { Calcd, } \% \\ \mathrm{H} \end{gathered}$	N	C	$\underset{\mathbf{H}}{\text { ound, }}$	N					
4	2-Pyridyl	A	226-228	40	N	A	52.38	3.08	30.55	52.30	3.04	30.40	229 (100)			423	3.51
																407	3.53
																337	4.16
																324	4.10
																273	4.02
																252	4.14
4	4-Methyl-2-	A	201-202	13	N	B: E	54.30	3.73	28.79	54.22	3.67	28.54	243 (100)	1630	1470	396	3.34
	pyridyl															376	3.29
																329	3.87
																321	3.82
																270	3.75
																247	3.81
9	4,6-Dimethyl-	A	217-218	10	P	B	56.01	4.31	27.22	55.86	4.15	27.19	257 (100)	1630	1450	415	3.49
	2-pyridyl															333	4.16
																$321{ }^{\text {d }}$	4.15
																308	3.90
																272	4.00
																250	4.11
4	5-Chloro-2-	A	249-250	28	Y	A	45.54	2.29	26.56	45.69	2.30	26.55	263 (95)	1640	1475	400	3.68
	pyridyl															341	4.20
																$330^{\text {d }}$	4.13
																280	4.12
																247	4.23
4	5-Iodo-2-	A	255-256	24	X	C	33.81	1.70	19.72	33.71	1.67	19.65	355 (100)	1630	1460	398	3.77
	pyridyl															343	4.31
																$333^{\text {d }}$	4.23
																285	4.15
																245	4.21
4	2,5-Dichloro-	A	199-200	57	N	F	44.46	2.04	18.85	44.42	2.03	18.80	296 (59)	1640	1470	415	3.40
	phenyl															$335{ }^{\text {d }}$	3.52
																292	3.96
																239	4.32
4		A	182-184	81	N	F	44.46	2.04	18.85	44.65	2.04	19.16	296 (44)	1630	1470	420	3.46
	phenyl															$332{ }^{\text {d }}$	3.62
																302	4.09
																244	4.24
4	p-Nitrophenyl	A	243-244	44	N	G	48.34	2.58	25.63	48.15	2.50	25.47	273 (80)	1630	1470	413	3.99
																360	4.16
																$285{ }^{\text {d }}$	3.90
																247	4.33
4	m-Nitrophenyl	A	189-191	66	N	G	48.34	2.58	25.63	48.24	2.53	25.53	273 (92)	1630	1470	405	3.49
																$300^{\text {d }}$	4.04

9	2,6-Dimethyl-4-pyrimidyl	B	182-184	32	Z	D	54.52	4.93	29.35	54.29	4.85	29.18	286 (100)	1640	1440
10	2-Pyrazinyl	B	287-289	30	Y	B	46.94	2.63	36.50	46.78	2.49	36.39	230 (100)	1620	1470
12	6-Chloro-3pyridazinyl	B	240-243	12	\mathbf{Y}	B : E	36.13	1.35	28.10	36.22	1.34	28.12	298 (63)	1610	1480
12	$\begin{gathered} \text { 5-Methyl-2- } \\ \text { pyridyl } \end{gathered}$	A	252-254	16	N	S	47.57	2.90	25.22	47.65	3.02	25.16	277 (100)	1610	1470

Table II
Nmr Data for Some Representative Ring-Fused 1,2,4-Thiadiazoles

Structure	R	Chemical shift, $\delta^{\text {a }}$
4	4,6-Dimethyl-2-pyridyl	$\begin{aligned} & 2.35\left(\mathrm{~s}, 3,4^{\prime}-\mathrm{CH}_{3}\right), 2.60(\mathrm{~s}, 3, \\ & \left.6^{\prime}-\mathrm{CH}_{3}\right), 6.55(\mathrm{q}, 1,6-\mathrm{H}), 6.70 \\ & \left(\mathrm{~m}, 1,5^{\prime}-\mathrm{H}\right), 7.02\left(\mathrm{~m}, 1,3^{\prime}-\mathrm{H}\right), \\ & 8.66(\mathrm{~m}, 1,7-\mathrm{H}), 8.80(\mathrm{~m}, 1, \\ & 5-\mathrm{H}) \end{aligned}$
9	2,6-Dimethyl4 -pyrimidyl	$\begin{aligned} & 2.30\left(\mathrm{~d}, 3,7-\mathrm{CH}_{3}\right), 2.48(\mathrm{~s}, 3, \\ & \left.6^{\prime}-\mathrm{CH}_{3}\right), 2.72\left(\mathrm{~s}, 3,2^{\prime}-\mathrm{CH}_{3}\right), \\ & 3.20\left(\mathrm{~s}, 3,5-\mathrm{CH}_{3}\right), 6.62(\mathrm{~m}, 1, \\ & 8-\mathrm{H}), 6.88\left(\mathrm{~m}, 1,5^{\prime}-\mathrm{H}\right) \end{aligned}$
10	2-Pyrazinyl	$\begin{aligned} & 8.02(\mathrm{~m}), 8.45(\mathrm{~m}), 8.93(\mathrm{~m}), \\ & 9.02(\mathrm{~m}), 9.34(\mathrm{~m}), 9.50(\mathrm{~m}) \end{aligned}$
12	5-Methyl-2pyridyl	$\begin{aligned} & 2.38\left(\mathrm{~s}, 3,5^{\prime}-\mathrm{CH}_{3}\right), 7.35(\mathrm{~m}) \\ & 8.40(\mathrm{~m}) \end{aligned}$

${ }^{a}$ All spectra were determined in CDCl_{3} except 10 , where $\mathrm{CF}_{\boldsymbol{i}_{-}}$ $\mathrm{CO}_{2} \mathrm{D}$ was used.
nitrogen) can be excluded on the basis of the close relationship of the spectral data to that of derivatives of the $3 H-[1,2,4]$ thiadiazolo [4,3-a]pyridine system. ${ }^{2}$

Steric considerations clearly exert an influence on the ring closure to the fused system, as 2 -amino- 4,6 -dimethylpyrimidine failed to yield a product with perchloromethyl mercaptan in a $2: 1$ ratio. In contrast to 2-trichloromethylthioaminopyridine, the pyrimidine derivative 3 did not react with sodium sulfhydrate or a variety of enolate anions such as sodium acetylacetonate, most likely owing to ring opening under the alkaline reaction conditions.
$3 H-[1,2,4]$ Thiadiazolo [4,3-c]pyrimidine (9). -This ring system could only be prepared from the reaction

of 4-amino-2,6-dimethylpyrimidine ${ }^{9}$ with perchloromethyl mercaptan (2:1) in the presence of triethylamine. All attempts to isolate the postulated 2,6-dimethyl-4trichloromethylthioaminopyrimidine (8) intermediate were unsuccessful. The nmr spectrum of 9 showed four clearly separated methyl resonances at $\delta 2.30,2.48$, 2.72 , and 3.20 and the assignments made in Table II are based on decoupling experiments and on the downfield shift expected for protons or methyl groups adjacent to nitrogen.
$3 \mathrm{H}-[1,2,4]$ Thiadiazolo [4,3-a]pyrazine (10). -As with the 4 -aminopyrimidine derivative above, 2 -aminopyrazine could only be converted into 3-(2-pyrazinylimino) $-3 H$ - $[1,2,4]$ thiadiazolo [4,3-a pyrazine (10) by reaction with perchloromethyl mercaptan in the presence of triethylamine. The intermediate 2-trichloromethylthioaminopyrazine also proved too unstable for isolation and 10 could only be purified by numerous preparative layer chromatograms.
$3 H-[1,2,4]$ Thiadiazolo $[4,3-b]$ pyridazine (12).-2-Amino-6-chloropyridazine reacted with perchloromethyl mercaptan to give 6-chloro-2-trichloromethylthioaminopyridazine (11), sufficiently pure for further reaction. With 2-amino-5-methylpyridine, ring closure
(9) A. R. Ronzio and W. B. Cook, "Organic Syntheses," Collect. Vol. III, Wiley, New York, N. Y.. 1955, p 71.
occurred to 6-chloro-3-(5-methyl-2-pyridylimino)-3H[1,2,4] thiadiazolo[4,3-b]pyridazine (12, $\mathrm{R}=5-\mathrm{CH}_{3}{ }^{-}$

$2-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$). However, using a $2: 1$ ratio of the aminopyridazine and perchloromethyl mercaptan gave 6-chloro-3-(6-chloro-3-pyridazinylimino)-3H-[1,2,4]thiadiazolo [4,3-b]pyridazine (12, $\quad \mathrm{R}=6-\mathrm{Cl}-3-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}_{2}$). Preparative layer chromatography was necessary to effect satisfactory purification of both derivatives.

Spectral Characteristics. -Infrared bands common to all compounds were observed at 1610-1640 and 1440$1480 \mathrm{~cm}^{-1}$ and may be assigned to the $\mathrm{C}=\mathrm{N}$ group and a thiadiazole ring deformation, ${ }^{2,10}$ respectively. In contrast to derivatives of the 3 H -[1,2,4]-thiadiazolo-[4,3-a]pyridine system, ${ }^{11}$ all the members of these present systems, with the exception of 5,7-dimethyl-3-(2,6-dimethyl-4-pyrimidylimino)-3H-[1,2,4]thiadiazolo-[4,3-c]pyrimidine (9), showed no fluorescence and, in one or two instances, gave as yet unidentified photoproducts. In derivatives of the two fused-ring systems with exocyclic pyridyl substituents at the 3 position, the ultraviolet spectra consisted of four main bands centered at approximately $400,330,275$, and 250 nm with the bands at 330 and 275 nm associated with the pyridine nucleus as in the $3 H-\mid 1,2,4]$ thiadiazolo [4,3-a|pyridine system. Variation of substituents had predictable effects on the absorptions which are shown in Table I.

Representative nmr data for these compounds are described in Table II. In compounds containing the exocyclic 2-pyridylimino moiety, assignments for this substituent were made by analogy to related derivatives in the $3 H-[1,2,4]$ thiadiazolo $[4,3-a]$ pyridine system ${ }^{2}$ and in those derivatives containing the thiadiazolo [4,3-a]pyrimidine nucleus, assignments are based on the downfield shift expected for protons adjacent to nitrogen and by comparison with derivatives of the s triazolo [1,5-a]pyrimidine system. ${ }^{12}$

The stability of these compounds is reflected in the intensity of the molecular ions (frequently $>90 \%$) in their mass spectra. In all products derived from 2aminopyrimidine and 2-aminopyrazine, a major fragmentation pathway of the bicyclic systems is the formation of a 2-pyrimidyl or 2-pyrazinylthionitroso ion. Other pathways are shown in Scheme I. In contrast, derivatives of the $3 H-[1,2,4]$ thiadiazolo [4,3-c]pyrimidine system undergo a much more complicated fragmentation in which the only definitive feature is the loss of acetonitrile from the molecular ion. Similarly the $3 H-[1,2,4$]thiadiazolo [4,3-b pyridazines lose a chlorine radical from the molecular ion in addition to the elimination of $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{ClN}_{6} \mathrm{~S}$. In the latter case a $\left[\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{Cl}\right]^{+}$ion, possibly a chlorocyclopropenium ion, is formed.

[^6]

Experimental Section ${ }^{13}$

The following procedures illustrate the general methods employed.
2-Trichloromethylthioaminopyrimidine (3).-Perchloromethyl mercaptan (37.2 g) was suspended in a stirred solution of potassium carbonate (30 g), Alconox (1 g), water (600 ml), and crushed ice. A solution of 2-aminopyrimidine (19.0 g) in water $(200 \mathrm{ml})$ was then added over 30 min . The precipitated product was collected, washed with water, and dried by suction. This was sufficiently pure for further use.

Method A. 3-(2-Pyridylimino)-3H-[1,2,4] thiadiazolo[4,3-a]pyrimidine (4, $\mathrm{R}=2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}$).-A solution of 2 -trichloromethylthioaminopyrimidine (4.0 g) in chloroform (100 ml) was added at room temperature to a stirred solution of 2 -aminopyridine $(1.54 \mathrm{~g})$, triethylamine (5.0 g), and chloroform (250 ml). After stirring for 24 hr the solvent was removed from the reaction mixture, giving a brown solid which, after washing with methanol, crystallized from acetone as orange needles, $1.5 \mathrm{~g}(40 \%), \mathrm{mp}$ $226-228^{\circ}$ dec.

Method B. 5,7-Dimethyl-3-(2,6-dimethyl-4-pyrimidylimino)3 H - $[1,2,4]$ thiadiazolo $[4,3$-c] pyrimidine (9).-A solution of perchloromethyl mercaptan (3.72 g) in chloroform (50 ml) was added over 30 min to a stirred solution of 4 -amino-2,6-dimethylpyrimidine (4.93 g), triethylamine (8.1 g), and chloroform (150 ml). After stirring for 24 hr at room temperature, the reaction mixture was evaporated to dryness and the residue was leached with several portions of boiling benzene. The benzene was evaporated, and the residue was dissolved in a small volume of chloroform and then added to a column of Florisil ($c a .10 \times 6.5 \mathrm{~cm}$) and eluted with ethyl acetate. The resulting yellow solid crystallized from cyclohexane as matted, yellow needles, $1.9 \mathrm{~g}(33 \%)$, mp 182$184^{\circ}$.
Registry No.-3, 40899-18-1; 4 ($\mathrm{R}=2$-pyridyl), 40899-19-2; 4 ($\mathrm{R}=4$-methyl-2-pyridyl), 40899-20-5; 4 ($\mathrm{R}=4,6$-dimethyl-2-pyridyl), 40899-21-6; 4 ($\mathrm{R}=5$-chloro-2-pyridyl), 40899-22-7; 4 ($\mathrm{R}=5$-iodo-2-pyridyl), 40899-23-8; 4 ($\mathrm{R}=2,5$-dichlorophenyl), 40899-24-9; 4 ($\mathrm{R}=3$,4-dichlorophenyl), 40899-25-0; 4 ($\mathrm{R}=p$-nitrophenyl), 40899-26-1; 4 ($\mathrm{R}=m$-nitrophenyl), 40899-27-2; 9 ($\mathrm{R}=2,6$-dimethyl-4-pyrimidyl), 40899-23-3; 10 ($\mathrm{R}=2$-pyrazinyl), 40899-29-4; 12 ($\mathrm{R}=6$-chloro-3-pyridazinyl), 40899-30-7; 12 ($\mathrm{R}=5$-methyl-2-pyridyl), 40899-31-8; perchloromethylmercaptan, 75-70-7; 2-aminopyrimidine, 109-12-6; 2-aminopyridine, 504-29-0; 4-amino-2,6-dimethylpyrimidine, 461-98-3.

[^7]
Bridged Azapolycyclic Alcohols from Intramolecular Epoxide Ring Openings by Amides

R. J. Schultz, ${ }^{1 a}$ W. H. Staas, ${ }^{\text {1b }}$ and L. A. Spurlock* ${ }^{*}$
Metcalf Research Laboratories, Brown University, Providence, Rhode Island 02912

Received May 2, 1973

Abstract

An epoxide ring opening by an intramolecular nucleophilic attack of an amide group was utilized to synthesize 2-azanorbornan-6-ols and 2-azaadamantan-4-ols. The spectral identification of these compounds is described.

In the courses of our studies of heteronorbornanes ${ }^{3,4}$ and 2-adamantyl derivatives ${ }^{5}$ we were led to devise synthetic routes to the 2 -aza analogs of these two types of bridged polycyclic skeleta. The main requisite in both cases lay in the versatility of the synthetic method with regard to substituent variation on the ringincorporated nitrogen. Fortunately, a single reaction type sufficed as the culminating step in the syntheses of both 2-azanorborn-6-yl derivatives and 2-azaadamant4 -yl derivatives. The reaction, a ring closure effected through an intramolecular epoxide ring opening, had been applied previously in the syntheses of 2 -oxa-norbornan-6-ol ${ }^{3}$ (2a) and 2-thianorbornan-6-ol ${ }^{6}$ (2b) from trans-3,4-epoxycyclopentylmethyl alcohol (1a) and thiol (1b), respectively. Interestingly, it failed com-

$$
\begin{aligned}
& \mathrm{a}, \mathrm{X}=0 \\
& \mathrm{~b}, \mathrm{X}=\mathrm{S} \\
& \mathrm{c}, \mathrm{X}=\mathrm{NR}
\end{aligned}
$$

pletely for syntheses of the amine analogs 2 c , owing to an inability to epoxidize the requisite olefins for preparation of $1 \mathbf{c}$.

As the latter difficulty could only be attributed to the amine nitrogen, several epoxy amides (5) were prepared by conventional procedures from Δ^{3}-cyclopentenecarboxylic acid^{7} (3) (Scheme I). Separations of the trans epoxides (6) were accomplished by recrystallization. Cyclizations of $6 a$ and $6 b$ were smoothly effected by potassium tert-butoxide in tert-butyl alcohol at reflux. Infrared analyses of the crude products showed the disappearance of epoxide absorptions, appearance of hydroxyl absorptions, and a shift of the amide $\mathrm{C}=\mathrm{O}$ stretching frequency to the higher wavenumber characteristic of the lactam. ${ }^{8}$ The nmr spectra of the purified lactams substantiated the structural assign-

[^8]

Scheme I

4

5
a, $\mathrm{R}=\mathrm{Ph} \quad \mathrm{c}, \mathrm{R}=p \cdot \mathrm{CH}_{3} \mathrm{OPh}$
b, $\mathrm{R}=\mathrm{PhCH}_{2} \quad \mathrm{~d}, \mathrm{R}=p-\mathrm{NO}_{2} \mathrm{Ph}$

a, $\mathrm{R}=\mathrm{Ph}$
b, $\mathrm{R}=\mathrm{PhCH}_{2}$
ments, as did those of subsequent conversion products (Table I).
For further characterization the N-phenyl hydroxylactam 7a was converted to its corresponding ketone 8

by chromium trioxide-pyridine oxidation. In addition, 7a underwent facile reduction with a diborane-tetrahydrofuran mixture to afford crystalline amino alcohol 9 a , which along with its p-nitrobenzoate (9 b) and acetate (9c) derivatives, was structurally identified on the basis of its well-defined nmr spectrum (Table I).

The preparation of 9 a confirmed the viability of the synthetic technique and indicated its having met the previously stated criterion as a general method for preparation of 2 -substituted 2 -azanorbornan-6-ols. This success led to our investigation of the ring closure method for preparation of azaadamantanols of similar structural relationship between hydroxyl and ring nitrogen.
N-endo-Bicyclo[3.3.1]non-6-en-3-ylbenzamide (11) was prepared from the related carboxylic acid ${ }^{9} 10$ by a conventional series of reactions ${ }^{10}$ (see Scheme II).

[^9]Table I
Chemical Shifts (δ) of N-Phenyl-exo-6-Substituted 2-Azanorbornyl Derivatives

Proton	$\mathbf{c} \mathbf{7 a}$	$9 \mathbf{c}$
H_{a}	$1.43-2.36(\mathrm{~m})$	$1.15-2.00(\mathrm{~m})$
H_{b}	$2.80(\mathrm{~m})$	$2.53(\mathrm{br} \mathrm{s})$
H_{c}		$2.53(\mathrm{~d})$
H_{d}		$3.28(\mathrm{dtr})$
H_{e}	$4.23(\mathrm{br} \mathrm{s})$	$3.87(\mathrm{br} \mathrm{s})$
H_{f}	$4.29(\mathrm{dd})$	$3.86(\mathrm{dd})$
	9 b	9 c
	$1.82,1.98(\mathrm{br} \mathrm{s})$	$1.70,1.81(\mathrm{br} \mathrm{s})$
H_{a}	$3.72(\mathrm{~m})$	$2.62(\mathrm{~d})$
H_{b}	$2.73(\mathrm{~d})$	$2.62(\mathrm{~d})$
H_{c}	$3.45(\mathrm{~d} \mathrm{tr})$	$3.38(\mathrm{dq})$
H_{d}	$4.31(\mathrm{br} \mathrm{s})$	$4.13(\mathrm{br} \mathrm{s})$
H_{e}	$5.05(\mathrm{dd})$	$4.77(\mathrm{dd})$
H_{f}		

Scheme II

10

14

Treatment of the olefin 11 with m-chloroperbenzoic acid in methylene chloride at room temperature (the procedure utilized in preparation of 5) afforded a product in 80% yield which, on the bases of its infrared and nmr spectra, was assigned the ring-closed structure, N-benzoyl-2-azadamantan-anti-4-ol (13). This unexpectedly facile closure of epoxyamide 12 apparently resulted from the unusual proximity of the amide nitrogen to the back side of the epoxide-bearing ring carbon. ${ }^{11}$ Quite happily we were thus provided with a highly efficient means of obtaining the desired synthetic goal of an azaadamantanol with possibilities (hydrolysis and alkylation or direct reduction) for easy substituent variation at the nitrogen. One of these variants, the N-benzylazaadamantanol 14, was, in fact, achieved by

[^10]reduction of 13 with diborane in tetrahydrofuran. Its structure could likewise be confirmed by infrared and nmr spectra.

The further application of this technique to heteropolycyclic systems will be reported later, as will the developments of the azapolycyclic derivatives already prepared.

Experimental Section ${ }^{12}$

Δ^{3}-Cyclopentenecarboxylic Acid (3).-The procedure of Murdock and Angier ${ }^{7}$ was utilized to convert 156 g (1.25 mol) of cis-1,4-dichloro-2-butene and $200 \mathrm{~g}(1.25 \mathrm{~mol})$ of diethyl malonate to 24.75 g of pure $3, \mathrm{bp} 98-99^{\circ}(7.5 \mathrm{~mm})$ [lit. ${ }^{7} \mathrm{bp} 83-84^{\circ}(2 \mathrm{~mm})$].
Δ^{3}-Cyclopentenecarbonyl Chloride.-To $67.2 \mathrm{~g}(0.600 \mathrm{~mol})$ of 3 being stirred and cooled with an ice bath was added dropwise 55 ml of thionyl chloride. The reaction mixture was then stirred overnight at room temperature. The crude mixture was distilled at 51 mm , giving $76.9 \mathrm{~g}(98.2 \%)$ of the desired product, bp $79-80^{\circ}$ [lit. ${ }^{7}$ bp $95-96^{\circ}(55 \mathrm{~mm})$].

General Procedure for Preparation of Amides.-A solution of Δ^{3}-cyclopentenecarbonyl chloride (0.025 mol) dissolved in 50 ml of anhydrous ether was added dropwise to a solution of 0.05 mol of primary amine dissolved in 50 ml of ether being stirred at 5°. Upon completion of the addition, the reaction mixture was stirred at room temperature overnight. The amine hydrochloride was removed by filtration and thoroughly washed with ether. The combined ether solutions were dried over magnesium sulfate and concentrated. In this fashion the following secondary amides were prepared, with solvents for recrystallization and yields indicated: tert-butyl, $\mathrm{mp} 127.5-128.5^{\circ}$ (78.8%); phenyl, 4a, $\mathrm{mp} 139.5-140.5^{\circ}$ from $\mathrm{CHCl}_{3}-$ pentane (75.8%) (lit. ${ }^{7} \mathrm{mp} 140^{\circ}$); benzyl, 4b, mp $112-113^{\circ}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pentane (77.3%); p nitrophenyl, 4d, mp 121-123 ${ }^{\circ}$ from $\mathrm{CHCl}_{3}(74.7 \%)$; and p methoxyphenyl, 4c, mp 138-140 ${ }^{\circ}$ (79.4%).
cis- and trans-3,4-Epoxycyclopentenecarboxamides (5).-In a typical procedure, 0.341 mol of amide 4 was dissolved in 725 ml of chloroform and stirred at 5°. To this solution was added dropwise 83.1 g of $85 \% \mathrm{~m}$-chloroperbenzoic acid dissolved in 950 ml of chloroform. After the addition was complete, the mixture was allowed to come to room temperature and was stirred overnight. The excess peracid was destroyed by the addition of 10% sodium sulfite solution and the reaction mixture was filtered. The chloroform solution was washed with 5% sodium hydroxide solution, dried over magnesium sulfate, and concentrated to give the crude epoxide mixture.

In the case of the p-nitrophenyl and p-methoxyphenyl compounds, only partial separation of isomers was achieved. Trituration of the crude p-nitrophenyl reaction product with chloroform left a yellow, crystalline solid, mp 225-230 ${ }^{\circ}$ (53.1%). Addition of pentane to the chloroform solution deposited a pale yellow, fluffy solid, mp $161-168^{\circ}(32.3 \%)$. The same procedure was applied to the crude p-methoxyphenyl product, giving a fluffy white, chloroform-insoluble solid, $\mathrm{mp} 182-185^{\circ}$ (32.5%). From the chloroform solution was obtained a light tan solid, mp $142-145^{\circ}$ (50.8%).

The crude material from epoxidation of the phenyl amide 4 a was completely soluble in chloroform but upon addition of pentane deposited a 55.4% yield of the trans epoxide 6 a as a white, crystalline solid: $\mathrm{mp} 169-170^{\circ}$; nmr (DMSO- d_{6}) δ (TMS) $1.52-2.89(5 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{s}), 6.70-7.78(5 \mathrm{H}, \mathrm{m})$. The filtrate from 6a was concentrated and the residue was recrystallized from ether-pentane, giving the cis epoxide as a fluffy, white solid: mp 112-114 ${ }^{\circ}(35.8 \%)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{TMS}) 1.72-3.23$ $(5 \mathrm{H}, \mathrm{m}), 3.62(2 \mathrm{H}, \mathrm{s}), 6.72-7.75(6 \mathrm{H}, \mathrm{m})$.

Treating a chloroform solution of the crude N-benzyl epoxide mixture with pentane gave, on cooling, a 45.7% yield of the trans isomer 6b as a white solid: mp 140.0-141.5 ${ }^{\circ}$; ir (Nujol) 3275, 1640, 1540, 1218, 1050, and $845 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ (TMS) 1.78-2.50 (5 H, m), $3.40(2 \mathrm{H}, \mathrm{s}), 4.28(2 \mathrm{H}, \mathrm{d}), 6.42(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $7.15(5 \mathrm{H}, \mathrm{s})$. Concentration of the filtrate gave impure cis epoxide as a yellow oil, ir (film) $3300,1650,1545$, and $840 \mathrm{~cm}^{-1}$.

[^11]N-Phenyl-exo-6-hydroxy-2-azabicyclo[2.2.1]heptan-3-one (7a). -To a hot solution of 14.8 g (0.378 g -atom) of potassium in 1150 ml of tert-butyl alcohol was added in small portions over a period of $30 \mathrm{~min} 38.4 \mathrm{~g}(0.198 \mathrm{~mol})$ of 6 a . The resulting orange solution was heated at reflux for 14 hr , after which time approximately 700 ml of tert-butyl alcohol was removed by distillation. The cooled solution was acidified with concentrated hydrochloric acid (39 ml) and filtered. The filtrate was concentrated to approximately 200 ml and then dissolved in 300 ml of chloroform. The chloroform solution was washed seven times with $100-\mathrm{ml}$ portions of water and once with saturated sodium chloride solution, dried, and concentrated, giving $30.5 \mathrm{~g}(79.4 \%)$ of crude product as a dark tan solid. An analytical sample of 7a was obtained after five recrystallizations from absolute ethanol: $\mathrm{mp} \mathrm{120.5-122.0}^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 3440,1700,1600,1500,1280,1160,1078,1068,990$, and $947 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{TMS}) 1.43-2.36(4 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}$, $\mathrm{m}), 3.97(1 \mathrm{H}, \mathrm{br}$ s), $4.23(1 \mathrm{H}, \mathrm{br}$ s), $4.29(1 \mathrm{H}, \mathrm{dd})$, and $5.88-7.64$ ($5 \mathrm{H}, \mathrm{m}$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, $70.92 ; \mathrm{H}, 6.45 ; \mathrm{N}, 6.89$. Found: C, 71.03; H, 6.54; N,6.92.
N-Benzyl-exo-6-hydroxy-2-azabicyclo[2.2.1]heptan-3-one (7b). -The preparation was carried out in a similar fashion to that of 7a. The trans epoxy amide $6 \mathrm{~b}, 29.6 \mathrm{~g}(0.136 \mathrm{~mol})$, was treated with a hot solution of 10.67 g (0.273 g -atom) of potassium in 850 ml of tert-butyl alcohol. On work-up, 26.7 g of a dark oil was obtained. Crystallization was accomplished by trituration of the oil with ether. In this fashion a light tan solid was obtained: $\mathrm{mp} 105-107^{\circ}$; ir (Nujol) 3350, 1680, 1410, 1225, 1075, 970, 750, and $700 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{TMS}) 1.28-2.22(4 \mathrm{H}, \mathrm{m}), 2.61$ $(1 \mathrm{H}, \mathrm{m}), 3.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.70-4.22(3 \mathrm{H}, \mathrm{m}), 4.47(1 \mathrm{H}, \mathrm{d}), 7.13$ ($5 \mathrm{H}, \mathrm{s}$).
N-Phenyl-exo-6-hydroxy-2-azabicyclo[2.2.2]heptane (9a).Treatment of $14.21 \mathrm{~g}(0.07 \mathrm{~mol})$ of crude 7 a dissolved in 75 ml of tetrahydrofuran with 117 ml of approximately $1 M$ borane in tetrahydrofuran, utilizing the reductive method of Brown and Heim, ${ }^{13}$ gave 17 g of crude material as an orange oil. A portion of the crude product was distilled at $124.5-127.0^{\circ}(0.1 \mathrm{~mm})$, affording the amino alcohol as a colorless oil which slowly solidified to a white, waxy solid, $\mathrm{mp} 80.5-83.0^{\circ}$. Four recrystallizations from ether-pentane gave pure 9 a as fluffy, white needles: mp 85.0-85. 5°; ir $\left(\mathrm{CHCl}_{3}\right) 3650,3465,1600,1500,1146,1080,1010$, 920 , and $690 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{TMS}) 1.15-2.00(4 \mathrm{H}, \mathrm{m})$, 2.53 ($1 \mathrm{H}, \mathrm{brs}$), $2.53(1 \mathrm{H}, \mathrm{d}), 2.70(1 \mathrm{H}, \mathrm{s}), 3.28(1 \mathrm{H}, \mathrm{d} \mathrm{tr}), 3.86$ ($1 \mathrm{H}, \mathrm{dd}$), $3.87(1 \mathrm{H}$, br s), 6.33-7.38 ($5 \mathrm{H}, \mathrm{m}$).
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 76.16 ; 7.99 ; \mathrm{N}, 7.40$. Found: C, 75.98; H, 7.96; N, 7.40.

The p-nitrobenzoate 9 b was recrystallized from ether, giving red needles: mp 141-142.5 ${ }^{\circ}$; ir $\left(\mathrm{CDCl}_{3}\right) 1720,1600,1525,1280$, $1120,1105,1018$, and $1000 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.82(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $1.98(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.73(1 \mathrm{H}, \mathrm{m}), 2.73(1 \mathrm{H}, \mathrm{d}), 3.45(1 \mathrm{H}, \mathrm{d} \operatorname{tr})$, $4.31(1 \mathrm{H}, \mathrm{br}$ s $), 5.05(1 \mathrm{H}, \mathrm{dd}), 6.52-7.44(5 \mathrm{H}, \mathrm{m}), 8.25(4 \mathrm{H}, \mathrm{s})$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 67.44; H, $5.36 ; \mathrm{N}, 8.28$. Found: C, 67.45; H, 5.44; N,8.43.
The acetate 9c was obtained as a colorless oil: bp 126-127 ${ }^{\circ}$ (0.1 mm); ir (film) 1730, 1590, 1370, 1240, 1140, 1045, and 740

[^12]cm^{-1}; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{TMS}) 1.70(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.81(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.00(3 \mathrm{H}, \mathrm{s}), 2.62(1 \mathrm{H}, \mathrm{d}), 2.62(1 \mathrm{H}, \mathrm{d}), 2.62(1 \mathrm{H}, \mathrm{d}), 3.38$ ($1 \mathrm{H}, \mathrm{dq}$), $4.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.77(1 \mathrm{H}, \mathrm{dd}), 6.48-7.38(5 \mathrm{H}, \mathrm{m}$.$) .$
N-Phenyl-2-azabicyclo[2.2.1]heptane-3,6-dione (8).-The amino alcohol $7 \mathrm{a}, 2.03 \mathrm{~g}(0.01 \mathrm{~mol})$, was oxidized with chromium trioxide and pyridine in methylene chloride according to the procedure of Ratcliffe and Rodehorst. ${ }^{14}$ The crude product was recrystallized from ether, giving $1.493 \mathrm{~g}(74.3 \%)$ of pure 8 as white needles: $\mathrm{mp} \mathrm{105-106}{ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 17701720,1600,1500$, $1365,1291,1127,1100$, and $980 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ (TMS) 1.68-2.63 ($4 \mathrm{H}, \mathrm{m}$), $3.05(1 \mathrm{H}, \mathrm{m}), 4.22(1 \mathrm{H}, \mathrm{dd}), 6.88-7.62$ (5 H, m).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$: $\mathrm{C}, 71.63 ; \mathrm{H}, 5.51 ; \mathrm{N}, 6.96$. Found: C, 71.41; H, 5.74; 6.93.
N-Benzoyl-2-azaadamantan-4-ol (13).-To $4.04 \mathrm{~g}(0.02 \mathrm{~mol})$ of $85 \% \mathrm{~m}$-chloroperbenzoic acid dissolved in 40 ml of methylene chloride was added dropwise a solution of $4.8 \mathrm{~g}(0.02 \mathrm{~mol})$ of 11^{10} dissolved in 40 ml of methylene chloride. The temperature was maintained below 25° during the addition. Afterward, the solution was allowed to stir at room temperature overnight. The excess oxidizing agent was destroyed by washing with 10% sodium bisulfite solution and the resulting solution was washed with saturated sodium bicarbonate solution and then with water until neutral. The solution was dried and concentrated to give 5.1 g of colorless oil which crystallized upon treatment with a single drop of ethanol. The resultant oily solid was slurried with hexane and filtered to give $4.2 \mathrm{~g}(82.5 \%)$ of 13 as a white, crystalline solid. An analytical sample was prepared by recrystallization from benzene-hexane: mp 143-145 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 3320$, $2930,2850,1590,1570,1445,1375,1080,1025,970,920,790$, 735 , and $700 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{TMS}) 1.18-2.54(10 \mathrm{H}, \mathrm{m})$, $3.45(1 \mathrm{H}, \mathrm{s}), 3.80(2 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}, \mathrm{m}), 7.34(5 \mathrm{H}, \mathrm{s})$

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, $74.68 ; \mathrm{H}, 7.44 ; \mathrm{N}, 5.44$. Found: C, 74.85; H, 7.29; N,5.46.
N-Benzyl-2-azaadamantan-4-ol (14).-Reduction of 13 was effected using the method of Brown and Heim. ${ }^{13}$ A $1.28-\mathrm{g}$ (0.005 mol) sample of 13 in 25 ml of tetrahydrofuran was treated with 10 ml of an approximately $1 M$ solution of diborane in tetrahydrofuran. Standard work-up gave $1.1 \mathrm{~g}(90 \%)$ of 14 as a white, crystalline solid. An analytical sample was prepared by recrystallization from cyclohexane-pentane: mp 94.5-96 ${ }^{\circ}$; ir (mull) $3340,2930,2850,1500,1455,1360,1150,1080,1050,1035$, 1000,740 , and $700 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{TMS}) 1.18-2.33(11 \mathrm{H}$, $\mathrm{m}), 2.67(2 \mathrm{H}, \mathrm{m}), 3.81(2 \mathrm{H}, \mathrm{s}), 4.0(1 \mathrm{H}, \mathrm{m}), 7.24(5 \mathrm{H}, \mathrm{br} \mathrm{s})$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 78.97 ; \mathrm{H}, 8.70 ; \mathrm{N}, 5.76$. Found: C, 78.69; H, 8.58; N, 5.61.

Registry No.-4 ($\mathrm{R}=t$-Bu), 40810-34-2; 4a, 7686-79-5; 4b, 40810-36-4; 4c, 40810-37-5; 4d, 40810-38-6; cis-5c, 40810-39-7; trans-5c, 40810-40-0; cis-5d, 40810-41-1; trans-5d, 40810-42-2; 6a, 40810-43-3; cis-6a, 40810-44-4; 6b, 40810-45-5; cis-6b, 40810-46-6; 7a, 40810-47-7; 7b, 38318-60-4; 8, 40810-49-9; 9a, 40810-50-2; 9b, 40810-51-3; 9c, 40810-52-4; 11, 40923-03-3; 13, 40810-53-5; 14, 40810-54-6; Δ^{3}-cyclopentenecarbonyl chloride, 3744-80-7.
(14) R. Ratcliffe and R. Rodehorst, J. Org. Chem., 36, 4000 (1970).

The Boron Trifluoride Catalyzed Cycloaddition of Iminourethanes with Cyclic Conjugated Olefins. An Examination of Reaction Stereochemistry

Grant R. Krow,* Ron Rodebaugh, Michael Grippi, Guy DeVicaris, Charles Hyndman, and Janis Marakowski
Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122

Received April 18, 1973

Abstract

The reaction of formaldehyde bisurethane with five-, seven-, and eight-membered-ring conjugated dienes and cycloheptatriene has been investigated. Bicyclic urethanes are obtained with the seven-membered-ring conjugated systems only; substituted dienes result from both seven- and eight-membered-ring dienes. Reaction products are consistent with a mechanism involving attack by diene on an acid-complexed iminourethane. The stereochemistry of phenyl-substituted bicyclic urethanes synthesized from cycloheptatriene and cyclohepta-1,3diene using benzaldehyde bisurethane has been determined using nmr with the aid of decoupling experiments. The stereochemical results have been rationalized on the basis of stepwise cycloadditions via (E)-iminourethanes.

The acid-catalyzed cycloaddition reaction between cyclohexa-1,3-diene and iminocarbamates offers a convenient synthetic route to 3 -substituted 5,6 -dehydroisoquinuclidines 1 . We have recently reported ${ }^{1 \mathrm{a}}$ on the stereochemical outcome of the synthesis of 3 -aryl- and 3-acetyl-5,6-dehydroisoquinuclidines $1 \mathbf{1 b}$ and 1 c in which predominant formation of the less

la, $R=H$
b, $R=P h$
c, $\mathrm{R}=\mathrm{COCH}_{3}$
stable 3-exo substituted isomers was found to occur. ${ }^{16}$ We here report an extension of these stereochemical studies to the azabicyclics formed from cyclohepta-1,3-diene and cycloheptatriene, and our observations on the course of the reaction of methylenebisurethane with cyclopentadiene and cyclooctadiene.
Reaction with Cyclohepta-1,3-diene.-Methylenebisurethane (2) reacts in the presence of boron trifluoride with cyclohepta-1,3-diene ${ }^{2}$ to form N-carb-ethoxy-6-azabicyclo[3.2.2]oct-8-ene (4) and the addi-tion-abstraction product 5 . Of importance for stereochemical studies on the reaction of substituted iminourethanes with cyclohepta-1,3-diene are the separate nmr (acetone- d_{6}) resonances (Table I) for $\mathrm{H}_{7 \text {-syn }}$ ($\delta 3.18$) and $\mathrm{H}_{7 \text {-anti }}(\delta 3.52$) and the unequal couplings $J_{1,7 \text {-syn }}=3.2 \mathrm{~Hz}, J_{1,7 \text {-anti }}=1.6 \mathrm{~Hz}$ of these hydrogens with the adjacent bridgehead hydrogen H_{1}. Assignment of the upfield position to the $\mathrm{H}_{7 \text {-syn }}$ relative to $\mathrm{H}_{7 \text {-anti }}$ proton can be made on the basis of a previously observed ${ }^{18}$ shielding of the analogous syn proton in the nmr spectrum of N-carbethoxy-5,6dehydroisoquinuclidine (1a). The larger vicinal coupling $J_{1,7 \text {-syn }}$ is as expected based on the smaller dihedral angle relationship ${ }^{3}$ for $\mathrm{H}_{7 \text {-syn }}$ and H_{1} as noted in Dreiding models.

Reaction of benzalbisurethane and cyclohepta-1,3-

[^13]Table I
$100-\mathrm{MHz}$ Proton Nmr Parameters for Cyclohepta-1,3-diene Adducts

Compd	Absorption	Chemical shift and description
$4{ }^{\text {a }}$	$\mathrm{H}_{7 \text {-syn }}$	$\begin{gathered} 3.18 \mathrm{dd}\left(J_{1,7 . \text {-vn }}=3.2,\right. \\ \left.J_{7 \text { aynn. } 7 \text {-anti }}=11.2 \mathrm{~Hz}\right) \end{gathered}$
	$\mathrm{H}_{7 \text {-anti }}$	$3.52 \mathrm{dd}\left(J_{1.7 \text {-anti }}=1.6 \mathrm{~Hz}\right)$
	$\mathrm{H}_{8.9}$	6.16 m
$6(\text { syn } \mathrm{Ph})^{\text {b }}$	$\mathrm{H}_{7 \text {-ant }}$	$4.88 \mathrm{~d}\left(J_{7,1}=1.6 \mathrm{~Hz}\right)$
	H_{8}	5.80 m
	H_{9}	6.18 m
$7\left(\right.$ anti Ph) ${ }^{\text {b }}$	$\mathrm{H}_{7 \text {-gy }}$	$4.62 \mathrm{~d}\left(J_{7.1}=4.4 \mathrm{~Hz}\right)$
	$\mathrm{H}_{\mathrm{d}, 0}$	6.18 m

${ }^{a}$ Solvent, acetone- $d_{8} . \quad{ }^{b}$ Solvent, CDCl_{3}.
diene afforded a mixture of the epimeric syn (6) and anti (7) phenyl adducts for which the nmr spectra

$\left(\mathrm{CDCl}_{3}\right)$ are shown in Table I. Notably, H_{8} in the isomer 6 with phenyl syn to the olefinic bond was shielded by 0.38 ppm relative to H_{9}. This shielding effect by the phenyl substituent on the proximate olefinic hydrogen was noted previously ${ }^{1 \mathrm{a}}$ in the spectra of syn-3-phenyl- N-carbethoxy-5,6-dehydroisoquinuclidine (1b). Spin-decoupling experiments confirmed a $0.26-\mathrm{ppm}$ upfield position for $\mathrm{H}_{7 \text {-syn }}(\delta 4.62)$ of the anti-phenyl isomer 7 relative to $\mathrm{H}_{7 \text {-anti }}$ ($\delta 4.88$) of the syn-phenyl isomer 6. As expected from dihedral angle relationships the coupling $J_{1,7 \text {-syn }}=4.4 \mathrm{~Hz}$ in

Table II
$100-\mathrm{MHz}$ Proton Nmr Spectrom of tee Methyleneurethane-Cycloheptatriene Adducts ${ }^{a}$

${ }^{a}$ Solvent, acetone- $d_{6} . \quad{ }^{b} J_{1,10} \cong J_{1,8} \cong J_{1,2}=6.0 \mathrm{~Hz} . \quad{ }^{c} J_{2,3}=12 \mathrm{~Hz}, J_{3,5}=3.5 \mathrm{~Hz} . \quad{ }^{d}$ Overlaps with $\mathrm{H}_{2} . \quad{ }^{\quad} J_{5,6} \cong J_{6,10}=7.5 \mathrm{~Hz}$. $J_{8,9}=10 \mathrm{~Hz} . \quad{ }^{\circ} J_{10.11}=12 \mathrm{~Hz} . \quad{ }^{h}$ Coupling pattern is observed more clearly in CDCl_{3}. ${ }^{i}$ Separate patterns result from separate urethane conformations. ${ }^{i} J_{1,9} \cong 0 \mathrm{~Hz}, J_{1,2}=J_{1,10}=5 \mathrm{~Hz} .{ }^{k} J_{6,6}=7.0 \mathrm{~Hz}, J_{6,10}=5.5 \mathrm{~Hz} .{ }^{i} J_{1,8}=6 \mathrm{~Hz}, J_{1,2}=J_{1,10}=7.0 \mathrm{~Hz}$. ${ }^{m} J_{2,3}=11.5 \mathrm{~Hz} . \quad{ }^{n} J_{5,6}=J_{6.10}=7.0 \mathrm{~Hz}$.

7 was greater than $J_{1,7 \text {-anti }}=1.6 \mathrm{~Hz}$ of 6 . The ratio of syn:anti phenyl isomers was conveniently determined as 1.0 by comparing the integrated area of H_{8} of the syn-phenyl isomer with the remaining olefinics $\left(\mathrm{H}_{8,9}\right.$ of the anti-phenyl isomer and H_{9} of the synphenyl isomer) or with $\mathrm{H}_{7 \text {-syn }}$ of the anti-phenyl isomer 7.

Reaction with Cycloheptatriene. - In principle reaction of methylenebisurethane with cycloheptatriene might give rise to a number of unusual azabicyclics. Cycloheptatriene forms $[4+2]$ adduct 8 by reacting with maleic anhydride via the norcaradiene valence tautomer, ${ }^{4}$ while the $[6+2]$ adducts 9 are found to

9a, $X=Y=O$
b, $\mathrm{X}=\mathrm{NSOCl} ; \mathrm{Y}=\mathrm{CO}$
c, $\mathrm{X}=\mathrm{NPh}, \mathrm{Y}=0$
result from additions of heteroenes, such as chlorosulfonyl isocyanate, ${ }^{5}$ nitrosobenzene, ${ }^{6}$ and singlet oxygen. ${ }^{7}$

[^14]When cycloheptatriene was treated in the usual manner with methylenebisurethane, the single bicyclic adduct 10 was obtained in moderate yield. The structure of 10 can be determined uniquely from the spectral parameters [uv ($\mathrm{CH}_{3} \mathrm{CN}$) $\lambda_{\max } 264 \mathrm{~m} \mu$ (ϵ 3760), 240 (3320); ir (CCl_{4}) $1690 \mathrm{~cm}^{-1}$] and the nmr spectrum (Table II) in combination with the spindecoupling technique.

Irradiation of H_{9} of 10 resulted in a narrowing of the peak width at half-height of H_{11} from 6 to 4 Hz , indicating slight W-plan coupling. The lack of observable coupling $J_{1,11} \cong J_{6,11} \cong J_{9,1} \cong 0 \mathrm{~Hz}$ results from nearly 90° dihedral angle relationships for each of these hydrogen pairs, as can be seen on Dreiding models.

Conformational effects are associated with the urethane functionality, which can have the ethoxyl syn or anti to the adjacent methylene group when in the planar amide conformation, ${ }^{8}$ The result is a broadening of the ethoxyl methylene resonance and a separate set of triplet resonances. When CDCl_{3} was used as solvent, the conformational effect of the urethane resulted in observation of two distinct but partially overlapping resonance patterns for $\mathrm{H}_{6}, \mathrm{H}_{8}$, and H_{9}, the protons on carbon adjacent to the nitrogen functionality.

Benzalbisurethane 3 and cycloheptatriene, reacted in the usual manner, afforded benzylurethane 14 (16%) and an epimeric mixture of $[6+2]$ adducts 11 and 12 ($10 \%, 80: 20,11: 12$). The adducts 11 and
(8) (a) P. T. Inglefield and S. Kaplan, Can. J. Chem., 50, 1594 (1972); (b) S. VanderWerf and J. Engberts, Recl. Trav. Chim. Pays-Bas, 90, 663 (1971).

$$
\begin{aligned}
& 10, R=R^{\prime}=H \\
& 11, R=P h ; R^{\prime}=H \\
& 12, R=H ; R^{\prime}=P h
\end{aligned}
$$

12 were characterized by uv (EtOH), $\lambda_{\max } 254 \mathrm{~m} \mu$ ($\epsilon 3900$), ir $\left(\mathrm{CCl}_{4}\right), 1695 \mathrm{~cm}^{-1}$, and their individual

$$
11+12
$$

nmr (acetone- d_{6}) patterns (Table II). Notably in 12 the syn-phenyl group causes an upfield shift for the proximate olefinic proton H_{2} of 0.98 ppm relative to the remaining olefinic protons, a shift which has also bcen qualitatively diagnostic for adducts 1 b from cyclo-hexa-1,3-diene and 6 from cyclohepta-1,3-diene (vide supra) where phenyl is syn to the olefinic linkage. In addition a downfield shift of 0.54 ppm for H_{1} of the syn-phenyl isomer 12 relative to the corresponding H_{1} proton in the anti-phenyl isomer 11 was observed. This latter shift readily allowed the determination of isomer ratios from the mixture of the two isomers 11 and 12.

Conformational effects associated with restricted rotation of the urethane functionality and possibly restricted phenyl rotation resulted in broadening of the ethoxyl methylene resonances, and observation of two separate triplet resonances, two singlets for H_{9} of 11 and two doublets for H_{8} of 12. The magnitudes of the separate peaks were strongly effected upon changing the solvent from acetone- d_{6} to CDCl_{3}. The appearance of H_{6}, the other proton on carbon adjacent to nitrogen, was not perturbed in either of the isomers 11 or 12 in the solvents studied.

Reaction with Cycloocta-1,3-diene and Cyclopenta1,3 -diene. -The reaction of dienophiles with cyclo-octa-1,3-diene has not been found to lead to the formation of bicyclic products. ${ }^{4 \mathrm{a}}$ Similarly, when methylenebisurethane was treated with cycloocta-1,3-diene under the usual conditions, the diene $15(27 \%)$, whose

15
structure follows from mechanistic and spectral considerations, was obtained as the only product formed from 1:1 methyleneurethane-diene addition. Although cyclopentadiene reacts readily with a number of dienophilic imines to form azabicyclic molecules, ${ }^{9,10}$ reaction of methylenebisurethane with cyclopentadiene under the present acid-catalyzed conditions did not lad to the isolation of $1: 1$ methyleneurethane-diene adducts.

[^15]
Conclusions

In a previous study ${ }^{1 b}$ of the reaction of cyclohexa-1,3-diene with alkylidenebisurethanes it was suggested that bicyclic urethane formation was the likely result of a stepwise process (Scheme I) involving acid-com-

plexed imines. ${ }^{11}$ Initial diene addition to the carbon of an acid-complexed iminourethane can form an allylic cation species 17, which upon intramolecular attack by urethane nitrogen and loss of a proton leads to bicyclic product 18. Alternatively, the allylic cation can lose a proton to generate a substituted cyclic diene system 19 or be attacked by various urethane species in solution to form less volatile diurethanes 20. In the present work we have focused our attention on the more volatile monourethane species 18 and 19.

The present study indicates that formation of substituted dienes 19 assumes importance to a small extent for reactions of cyclohepta-1,3-diene and to a greater degree for reaction of cycloocta-1,3-diene. For the latter, the failure to observe bicyclic urethanes 18 is likely due to conformational strain in assuming the requisite boatlike geometry ${ }^{12}$ for intramolecular ring closure of the allylic cation 17.

The stereochemical results for synthesis of phenylsubstituted azabicyclics are presented in Table III.

Table III

Stereochemical Outcome of Reactions of Cyclic Dienes with Benzalbisurethane ${ }^{a}$

Diene	Structure	\% anti phenyl ${ }^{b}$
Cyclohexa-1,3-diene	$\mathbf{2 2}$ and 23	80
Cyclohepta-1,3-diene	6 and 7	50
Cycloheptatriene	11 and 12	79
Benzene solvent, BF_{3} catalyst. ${ }^{b}$ Anti relative to the olefinic ge.		

[^16]Previously, ${ }^{1 \mathrm{l}}$ two alternative pathways have been suggested consistent with the formation of major amounts of anti-phenyl adducts $22(n=1)$ from cyclo-hexa-1,3-diene. According to Chart I the observed

21

22
kinetically derived anti stereochemistry for the phenyl substituent in the formation of 1 lb might result from electrophilic attack by iminourethane so that the bulkier phenyl substituent of the imine is oriented toward the less hindered face of the diene. By this argument the imine phenyl substituent will preferentially enter from the side syn to the diene, form a single carbon-carbon bond and allylic cation 21, and finally collapse following bond rotation to form anti-phenyl product 22.
For cycloheptatriene initial cationic attack by the complexed imine on the convex face of the triene terminus should be favored with the phenyl group away from the methylene bridge and syn to the olefinic bonds. In order to collapse to product, an initially formed cationic species must undergo a conformational inversion, the result of which locates the rotor substituent in a suitable position for bonding to form the anti-phenyl product 11 of $[6+2]$ cycloaddition. Chart II does not explain the failure to observe a

Chart II

E (exo R)

E (endo R)
preference for the syn-phenyl isomer 7 for reactions of cyclohepta-1,3-diene. Examination of Scheme I might however, provide an answer to this problem. Although initial electrophilic attack may occur with the bulkier substituent oriented over the diene portion of the ring, the initially formed allylic cation 17 can behave in a number of ways. The cation can undergo a rotation and ring closure to form bicyclic amine 18, it can undergo a conformational inversion whereby the urethane is no longer in a suitable position for intramolecular ring closure and then lose a proton to form a substituted diene 19, or it can be attacked by external nucleophile to form higher molecular weight material 20. The final stereochemical course of the cycloaddition would then be the resultant of numerous competing intra- and intermolecular processes. Molecular models indicate that rotation of the substitutent on the allylic cation 17 formed from cyclo-hepta-1,3-diene is somewhat restricted by the tri-
methylene bridge. Also, the overall yield of bicyclic adducts 4 (13%) and $6+7(11 \%)$, compared to the yields of bicyclic adducts 1 from cyclohexa-1,3-diene ($40-50 \%$), indicates the importance of alternative reaction modes for the cation from cyclohepta-1,3-diene.
According to Chart II, a cyclic process might involve cycloaddition of an acid-complexed (E)-iminourethane by initial formation of a carbon-carbon bond followed by ring closure. The observed reaction stereochemistry will reflect the relative substituent preferences for the syn position between the substituent on nitrogen and those on carbon of the imine. In the present instance the competition would favor a syn orientation for an acid-complexed urethane functionality which might be attracted to the electron-rich diene. Since steric interaction between the bridge atoms and an anti substituent should vary with the diene employed, variations in reaction stereochemistry may reflect different substituent preferences in the system under investigation. Chart III, involving cy-

cloaddition of (Z)-iminourethanes, is less likely, since the bulkier imine substituents should prefer the sterically less hindered side of the diene leading to a syn adduct preference, which was not observed. For the boron trifluoride catalyzed cycloaddition of the imine from 5-methoxy-3-phenylhydantoin ${ }^{13}$ with cy-clohexa-1,3-diene, stereospecific formation of syn adduct was observed in agreement with this argument.
Synthesis of N-carbethoxytrichloromethylimine ${ }^{14}$ and reaction with cyclohexa-1,3-diene afforded 3 -trichloromethyl - N - carbethoxy - 5,6 -dehydrosioquinuclidine (21), which contained 80% of the syn-trichloromethyl

isomer. ${ }^{15}$ The formation of syn product is best explained by Chart II, in which steric interaction of the bulky trichloromethyl group with the methylene bridge of the diene results in a preference for the less hindered syn orientation. Chart I, on the other hand, should

[^17]have led to a preference for the anti-trichloromethyl isomer.
In conclusion, the stereochemical course of the present cycloadditions is likely explained as proceeding via a stepwise cyclic transition state involving (E)-iminourethanes. However, predictions of product structures and stereochemistries based on such a model must be tempered by the recognition that allylic cations may play an important role.

Experimental Section

The nmr spectra were determined on a Varian Associates XL-100-15 spectrometer using tetramethylsilane (TMS) as an internal standard. Solutions of $5-10 \%$ solute in $\mathrm{CCl}_{4}, \mathrm{CDCl}_{3}$, or acetone- d_{6}, all containing 1% TMS, were used for nmr measurements. Couplings and coupling constants were where necessary obtained with the aid of decoupling experiments. All vpc work was performed using a $15 \mathrm{ft} \times 0.25$ in., $2 \% \mathrm{XF}-1150$ on Chromosorb W column. Stereoisomer ratios obtained by nmr analysis of prepped crude reaction mixtures or distilled material were in agreement.

General Procedure for the Reaction of Alkylideneurethanes with Dienes.-A solution of the diene (0.125 mol) in 100 ml of dry benzene was added dropwise over 30 min to a stirred refluxing solution of alkylidenebisurethane (0.125 mol) and 5 g of boron trifluoride etherate in 200 ml of dry benzene. After 8-24 hr reflux the reaction solution was cooled, washed with water, aqueous sodium carbonate, dilute HCl , and water, and dried over magnesium sulfate. After removal of solvent the oil was diluted $10: 1$ with boiling n-heptane, which was then decanted from insolubles. The solvent was then removed in vacuo and the product was isolated by distillation and vpc.
N-Carbethoxy-6-azabicyclo[3.2.2]non-8-ene (4).-Cyclohep-ta-1,3-diene ($1.8 \mathrm{~g}, 0.02 \mathrm{~mol}$) in 15 ml of benzene was added dropwise to a refluxing solution of methylenebisurethane (3.7 g , 0.02 mol) and boron trifluoride etherate $(0.5 \mathrm{ml})$ in 100 ml of dry benzene. Work-up after 18 hr reflux as above afforded 1.45 g of an oil which was distilled ($70-72^{\circ}, 0.01 \mathrm{~mm}$). The bicyclic product $(400 \mathrm{mg}, 13 \%)$ was purified by vpc $\left(145^{\circ}\right.$, retention time 11 min) to separate it from a small quantity of diene $5(21 \mathrm{~min})$ identified by comparison of its spectral parameters with those reported by Hobson. ${ }^{2}$ The bicyclic adduct had spectral parameters ir (film) $1675 \mathrm{~cm}^{-1}$, nmr (acetone- d_{6}) $\delta 1.58\left(\mathrm{~b}, \mathrm{H}_{2,3.4}\right), 2.60\left(\mathrm{~b}, \mathrm{H}_{1}\right), 4.10\left(\mathrm{OCH}_{2}\right), 1.20\left(\mathrm{CH}_{3}\right)$; see Table I.

7-Phenyl-6-azabicyclo[3.2.2]non-8-enes (6 and 7).-Boron trifluoride etherate $(0.5 \mathrm{ml})$ and benzalbisurethane $(13.3 \mathrm{~g}$, 0.05 mol) in dry benzene (250 ml) were heated to reflux and cy-clohepta-1,3-diene ($4.7 \mathrm{~g}, 0.05 \mathrm{~mol}$) was added dropwise over 30 min . After 8 hr reflux the reaction mixture was worked up to yield 7.4 g of crude oil which upon distillation $\left(160^{\circ}, 0.01\right.$ mm) afforded $1.5 \mathrm{~g}(11 \%)$ of 6 and 7: vpc (200°) retention time 10 min ; ir (film) $1675 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ for syn-phenyl $6, \delta 2.65\left(\mathrm{H}_{1}\right), 1.68$ and $1.28\left(\mathrm{H}_{2,3.4}\right), 5.00\left(\mathrm{H}_{5}\right), 7.18(\mathrm{Ph}), 3.90$ $\left(\mathrm{OCH}_{2}\right), 0.84\left(\mathrm{CH}_{3}\right)$, and see Table I ; nmr for anti-phenyl $7 \boldsymbol{\delta} 2.65$ $\left(\mathrm{H}_{1}\right), 1.68$ and $1.28\left(\mathrm{H}_{2,3,4}\right), 4.92\left(\mathrm{H}_{5}\right), 7.18(\mathrm{Ph}), 2.90\left(\mathrm{OCH}_{2}\right)$, $0.84\left(\mathrm{CH}_{3}\right)$, and see Table I. The ratio of anti (6) to syn (7) isomers as determined by comparison of integrated areas of
$\mathrm{H}_{7 \mathrm{x}}$ for the syn-phenyl isomer and H_{8} of the anti-phenyl isomer was 50:50.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 75.25; H, 7.80; $\mathrm{N}, 5.16$. Found: C, 75.02; H, 7.75; N, 5.28.

N-Carbethoxy-7-azabicyclo[4.2.1]nona-2,4-diene (10).-Boron trifluoride etherate $(5.0 \mathrm{~g}, 0.035 \mathrm{~mol})$ and methylenebisurethane $(24.0 \mathrm{~g}, 0.126 \mathrm{~mol}$) in dry benzene (250 ml) were refluxed and cyclohepta-1,3,5-triene ($11.6 \mathrm{~g}, 0.125 \mathrm{~mol}$) was added dropwise over 30 min . After 8 hr reflux and work-up, distillation afforded $5.5 \mathrm{~g}(23 \%$ yield $)$ of colorless oil 10 : bp $84-87^{\circ}(0.2$ $\mathrm{mm})$; vpc $\left(150^{\circ}\right)$ retention time 9 min ; ir $\left(\mathrm{CCl}_{4}\right) 1690 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } 264 \mathrm{~m} \mu(\epsilon 3760), 240(3320)$; nmr, see Table II. Only viscous tar remained in the distillation pot.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 68.37; $\mathrm{H}, 7.82 ; \mathrm{N}, 7.25$. Found: C, 68.21; H, 7.85; N, 7.42.

8-Phenyl- N-carbethoxy-7-azabicyclo[4.2.1]nona-2,4-diene (11 and 12).-Boron trifluoride etherate ($2.5 \mathrm{~g}, 0.018 \mathrm{~mol}$) and benzalbisurethane $(16.8 \mathrm{~g}, 0.063 \mathrm{~mol})$ were refluxed in dry benzene (200 ml), and 1,3,5-cycloheptatriene ($5.8 \mathrm{~g}, 0.063 \mathrm{~mol}$) was added dropwise over 30 min . After 8 hr reflux, work-up and distillation of the residue afforded a forerun of benzylurethane 14 ($1.8 \mathrm{~g}, 16 \%$ yield), bp $115-120^{\circ}(0.15 \mathrm{~mm})$, $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.14$, $5.64(\mathrm{~b}), 4.2(\mathrm{~d}, J=6 \mathrm{~Hz}), 4.00(\mathrm{q}, J=7 \mathrm{~Hz}), 1.10(\mathrm{t}, J=7$ Hz), identical with an authentic sample prepared from benzylamine and ethyl chloroformate. The product ($1.6 \mathrm{~g}, 10 \%$ yield) was obtained as a viscous oil, bp $130-135^{\circ}(0.15 \mathrm{~mm})$, ir (CCl_{4}) $1695 \mathrm{~cm}^{-1}$, uv (EtOH) $\lambda_{\max } 264 \mathrm{~m} \mu(\epsilon 3900)$, nmr, see Table II. The percentage of syn isomer 12 was determined by comparison of the integrated area for H_{1} of 12 with H_{6} for both isomers.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 75.81; $\mathrm{H}, 7.11 ; \mathrm{N}, 5.20$. Found: C, $75.65 ; \mathrm{H}, 7.27$; N, 5.49.

Reaction of Methylenebisurethane with Cycloocta-1,3-diene (15).-Boron trifluoride etherate (0.5 ml) and methylenebisurethane $(9.4 \mathrm{~g}, 0.05 \mathrm{~mol}$) were refluxed in dry benzene (300 ml) containing cupric bromide, and cycloocta-1,3-diene ($5.4 \mathrm{~g}, 0.05$ mol) was added dropwise over 30 min . After overnight reflux, work-up afforded a crude oil which upon distillation (130-135 ${ }^{\circ}$, 0.2 mm) afforded $2.0 \mathrm{~g}(27 \%)$ of diene 18: $\operatorname{vpc}\left(165^{\circ}\right)$ retention time 15 min ; ir (film) $1670,3220 \mathrm{~cm}^{-1}$; uv (EtOH) $\lambda_{\max } 227$ $\mathrm{m} \mu(\epsilon 9000) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ 5.6-5.5 (complex olefinic), 5.22 $(\mathrm{NH}), 4.08\left(\mathrm{OCH}_{2}\right), 3.75\left(\mathrm{CH}_{2} \mathrm{~N}, J=6 \mathrm{~Hz}\right), 2.12$ (allylic), 1.50 (methylene), $1.20\left(\mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}_{2}$: C, 68.90; $\mathrm{H}, 9.09 ; \mathrm{N}, 6.70$. Found: C, 68.78; H, 9.15; N, 6.71.

Attempted Reaction of Methylenebisurethane with Cyclo-pentadiene.-Reaction of cyclopentadiene and methylenebisurethane as described according to the general procedure did not afford $1: 1$ diene-methylenebisurethane adducts upon work-up. Only higher molecular weight materials resulted.

Acknowledgment.-This research was supported by grants from the National Institutes of Health (CA 12020), the Research Corporation, and an American Cancer Society Institutional Grant.

Registry No.-2, 3693-53-6; 3, 3693-54-7; 4, 40792-145, 40792-15-2; 6, 40792-16-3; 7, 40792-17-4; 10, 40792-18-5; 11, 40792-19-6; 12, 40792-20-9; 14, 2621-78-5; 15, 40792-21-0; cyclohepta-1,3-diene, 4054-38-0; cyclohepta-1,3,5-triene, 544 25-2.

Stereochemistry and Mechanism of the Ritter Reaction of Bromohydrins to Give 1-Amido-2-bromoalkanes and Ring Closure to Give 2-Oxazolines

Ronald A. Wohl
School of Chemistry, Rutgers University, New Brunwsick, New Jersey 08903

Received March 1, 1973

Abstract

The stereochemistry of the Ritter reaction of bromohydrins has been investigated. It is shown that the reaction proceeds with complete retention, e.g., threo-3-bromo-2-butanol (1) with acetonitrile or benzonitrile in the presence of sulfuric acid gave exclusively threo-2-acetamido-3-bromobutane (3a) and threo-2-benzamido-3-bromobutane (3b), respectively. Similarly, erythro-3-bromo-2-butanol (2) with acetonitrile and benzonitrile gave exclusively erythro-2-acetamido-3-bromobutane (4a) and erythro-2-benzamido-3-bromobutane (4b), respectively. The observed complete retention is explained by a mechanism over bridged bromonium ions. The bromoamides are not stable but ring close spontaneously to give the hydrobromide salts of the corresponding 2 -oxazolines. The nmr spectra of the latter salts are discussed.

Ritter and Lusskin have reported the preparation of 1 -amido-2-haloalkanes by the reaction of a halohydrin with a nitrile in the presence of concentrated sulfuric acid. ${ }^{1,2}$ The resulting 1 -amido-2-haloalkanes can with base be ring closed to give the corresponding 2 -oxazolines (eq 1). ${ }^{1,3}$ Owing to our interest in 2 -oxazolines ${ }^{4}$ we

have investigated the stereochemistry of this reaction sequence.

Results

Using threo-3-bromo-2-butanol (1) as starting bromohydrin, reaction with acetonitrile and benzonitrile gave exclusively threo-2-acetamido-3-bromobutane (3a) and threo-2-benzamido-3-bromobutane (3b), respectively.

1, threo
2, erythro

5

3, threo
4, erythro

a, $\mathrm{R}=\mathrm{CH}_{3}$
b, $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$

The stereochemistry of the bromoamides 3 a and 3 b was best demonstrated by their reaction with base to give exclusively cis-2,4,5-trimethyl-2-oxazoline (5a) and cis-4,5-dimethyl-2-phenyl-2-oxazoline (5b), respectively, in greater than 99% stereoisomeric purity as judged by

[^18]gas-chromatographic analysis and comparison with the known compounds. ${ }^{4}$ Since it is generally accepted that the ring-closure step forming the 2 -oxazoline proceeds with Walden inversion, ${ }^{5}$ the Ritter reaction step thus proceeds with complete retention.
erythro-3-Bromo-2-butanol (2) similarly with acetonitrile or benzonitrile in the presence of sulfuric acid led to practically pure erythro-2-acetamido-3-bromobutane (4a) and erythro-2-benzamido-3-bromobutane (4b), respectively, which on ring closure with base gave the corresponding trans-2-oxazolines, 6 a and 6 b .

The bromoamides 3 and 4 are not stable at room temperature. In solution they spontaneously ring close within a few hours to give the hydrobromide salts of the corresponding 2-oxazolines. This conversion can conveniently be followed by nmr spectroscopy. In the solid state the conversion to the oxazoline salt is slower. The instability of 1-amido-2-halides with respect to ring closure to 2 -oxazolines has been noted before. ${ }^{1,5}$

Discussion

The Ritter reaction step, as inferred from the observed complete retention, most likely proceeds over a bridged bromonium ion according to the following mechanism (eq 2). The nature of the intermediates

and products 8-10 are, as it turns out, identical with those encountered by Hassner, et al., in the addition of bromine and nitriles to olefins in the presence of silver salts. ${ }^{6}$

[^19]Table I
Nmr Spectra of 2-Oxazoline Hydrobromides

2-Oxazoline hydrobromide
cis-2,4,5-Trimethyl- (5a)
cis-4,5-1)imethyl-2-phenyl- (5b)
trans-2,4,5-Trimethyl- (6a)
trans-4,5-Dimethyl-2-phenyl- (6b)

H_{a} (at C-5)	H_{b} (at C-4)	H_{c} (at C-5)	H_{d} (at C-4)	H_{e}
5.64 (oct)	4.83 (pent) ${ }^{\text {b }}$	1.57 (d)	1.47 (d)	2.61 (s)
[4.52 (m)]	[3.95 (m)]	[1.16 (d)]	[1.03 (d)]	[1.81 (d)]
$J_{\mathrm{ab}}=9.8$	$J_{\text {ba }}=9.8$	$J_{\text {ca }}=6.5$	$J_{\text {db }}=6.4$	($\mathrm{R}=\mathrm{CH}_{3}$)
5.70 (oct)	4.98 (pent) ${ }^{\text {b }}$	1.61 (d)	1.56 (d)	7.34-7.97 (m) + 8.41 (m)
[4.66 (oct)]	[4.14 (oct)]	[1.25 (d)]	[1.14 (d)]	$[7.25(\mathrm{~m})+7.83(\mathrm{~m})]$
$J_{\text {ab }}=9.5$	$J_{\text {ba }}=9.5$	$J_{\text {ca }}=6.4$	$J_{\mathrm{db}}=6.3$	($\mathrm{R}=\mathrm{CH}_{3}$)
5.03 (pent) ${ }^{\text {b }}$	4.31 (pent) ${ }^{\text {b }}$	1.70 (d)	1.59 (d)	2.65 (s)
[3.95 (pent)]	[3.43 (m)]	[1.27 (d)]	[1.15 (d)]	[1.83 (d)]
$J_{\mathrm{ab}} \cong 6.9$	$J_{\text {ba }}=6.9$	$K_{\text {ca }}=7.9$	$J_{\mathrm{db}}=7.8$	($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$]
5.07 (pent) ${ }^{\text {c }}$	4.40 (pent) ${ }^{\text {c }}$	1.71 (d)	1.71 (d)	7.33-8.04 (m) +8.47 (m)
[4.07 (pent)]	[3.64 (pent)]	[1.35 (d)]	[1.21 (d)]	$[7.55(\mathrm{~m})+7.83(\mathrm{~m})]$
$J_{\text {ab }}=7.9$	$J_{\text {ba }}=7.9$	$J_{\text {ca }}=6.4$	$J_{\mathrm{db}}=6.4$	($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$)

${ }^{a}$ With respect to tetramethylsilane as internal standard. Chemical shifts in brackets are the values for the free 2 -oxazoline bases in CCl_{4} from ref 4. J values are observed splitting values in hertz. ${ }^{b}$ Major splitting pattern in actually higher multiplet. ${ }^{c}$ Predominating splitting pattern. Actually two overlapping quartets.

The 2,3-butylenebromonium ions $\mathbf{8}$ have also been discussed in the reaction of the bromohydrins 1 and 2 with HBr to give the corresponding 2,3-dibromobutanes, ${ }^{7}$ in the reaction of 2-acetoxy-3-bromobutanes and 2,3 -dibromobutanes with silver acetate in acetic acid, ${ }^{8}$ and in the addition of bromine azide to cis- and trans-2butene. ${ }^{9}$ Recently they have been observed by Olah, et al., by means of nmr spectroscopy in antimony pentafluoride-sulfur dioxide solution at low temperature. ${ }^{10}$

2-Oxazolines are of possible synthetic utility because they can be readily hydrolyzed to the corresponding amino alcohols. In the case of cyclic bromohydrins the resulting amino alcohols will possess the otherwise not readily available cis configuration. ${ }^{6}$

Nmr Spectra. - The nmr data of the hydrobromide salts of the 2-oxazolines are summarized in Table I. The general appearance of the spectra is very similar to that of the frec 2 -oxazoline bases. ${ }^{4}$ The cis salts 5 and 5b have a vinical coupling constant $J_{\text {ab }}$ of about 9.7 cps, and the trans compounds $6 a$ and $6 b$ have a coupling constant of $7-8 \mathrm{cps}$. Thus, as usual in more or less planar rings, cis-proton coupling is larger than transproton coupling. ${ }^{4,11-13}$ The magnitude of the vicinal coupling contant $J_{\text {ab }}$ is $1-2 \mathrm{~Hz}$ larger as compared to the values in the free oxazoline bases. ${ }^{4}$

The 4 and 5 methyl groups absorb at approximately 0.1 ppm higher field in the cis salts than in the corresponding trans isomers, whereas the 4 and 5 methine protons absorb at approximately 0.5 ppm lower field in the cis salts than in the trans compounds as is found in

[^20]many cis-trans isomer pairs of planar three- to fivemembered ring compounds. ${ }^{4,14}$

All protons appear in the hydrobromide salts as expected at lower field as compared with the same protons in the corresponding free 2 -oxazolines. It is very interesting to note, however, that this downfield shift is very similar in magnitude for both the 4 and 5 substituents in spite of the fact that the 4 carbon atom is neighboring the protonated nitrogen atom. Actually the 5 -methine proton which is neighboring the oxygen atom suffers a larger shift downfield than the 4-methine proton. In order to account for these data the resonance hybrid 11 may be invoked with the canonical

13

14
form 12 as an important contributor, i.e., the positive charge is delocalized over both heteroatoms. The above assignment and conclusions agree with those by Pittman and coworkers, which are based on a large number of oxazolinium cations observed in sulfuric acid solution. ${ }^{15}$

In the case of the 2-phenyloxazolines $5 \mathbf{b}$ and $\mathbf{6 b}$ the positive charge is further delocalized into the aromatic ring according to the resonance hybrid 13. The canonical form 14 and the canonical form with the positive charge in the other ortho position explain the observation that the two ortho hydrogen atoms of the phenyl group show the by far the largest shift downfield (ca. 0.6 ppm) of the aromatic protons as compared to their chemical shifts in the free bases.

(14) Reference 11, p 234 ff

(15) C. U. Pittman, Jr., S. P. McManus, and J. W. Larsen, Chem. Rev., 72, 357, 420 (1972), and references cited therein.

Table II
Nmr Spectra of 2-Amido-3-bromobutanes

2-Amido-3-bromobutane	nical abifte $\delta\left(\mathrm{CDCl}^{\prime}\right)^{a}$				
	$\stackrel{\mathrm{H}_{\mathrm{a}}}{\longleftrightarrow 4.25(\mathrm{~m}) \longrightarrow}{ }^{\text {H }}$		$\mathrm{H}_{\text {o }}$	H_{d}	$\mathrm{H}_{\text {。 }}$
3a (threo)			1.67 (d)	1.25 (d)	2.06 (s)
			$J_{\text {oa }}=6.8$	$J_{\text {db }}=6.4$	($\mathrm{R}=\mathrm{CH}_{3}$)
3b (threo)	$\longleftarrow 4.35$ (m) \longrightarrow		1.73 (d)	1.34 (d)	$6.49+7.82$ (m)
4a (erythro)			$J_{\text {ca }}=7.0$	$J_{\text {db }}=6.6$	($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$)
	4.40 (oct)	403 (m)	1.67 (d)	1.19 (d)	2.01 (s)
	$J_{\text {ab }}=3.2$	$J_{\text {ba }}=3.2$	$J_{\text {oa }}=6.9$	$J_{\text {db }}=6.4$	($\mathrm{R}=\mathrm{CH}_{3}$)
4b (erythro)	4.49 (oct)	412 (m)	1.17 (d)	1.29 (d)	$7.47+7.82$ (m)
	$J_{\mathrm{ab}}=3.0$	$J_{\text {ba }}=3.0$	$J_{\text {os }}=6.5$	$J_{\mathrm{db}}=6.2$	($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$)

${ }^{a}$ With respect to tetramethylsilane as internal standard. J values are observed splitting values in hertz.

The 2-methyl group in the salts 5 a and 6 a appears essentially as a singlet, whereas in the free 2-oxazolines it couples with the 4 -methine proton with a long-range coupling constant of approximately $1.5 \mathrm{cps}{ }^{4,18}$ The long-range coupling is, if present at all, much smaller in the salts as expected owing to the decreased double bond character of the $\mathrm{C}=\mathrm{N}$ bond. ${ }^{17}$

The spectrum of a hydrobromide salt could be converted gradually into the spectrum of the free 2-oxazoline base by adding slightly moist potassium carbonate in small portions to the nmr tube.

Experimental Section

General Procedures.-Infrared spectra were taken on a PerkinElmer Model 137 sodium chloride spectrophotometer. Methylene chloride was used as a solvent. Nmr spectra were taken on a Varian T-60 nuclear magnetic resonance spectrometer. Gas chromatography was done on a Varian Model 90P gas chromatograph. Acetonitrile was distilled over phosphorous pentoxide. Benzonitrile was dried over molecular sieves 3A.
2-Amido-3-bromobutanes.-The method of Lusskin and Ritter was essentially followed. ${ }^{1}$ To 0.3 mol of the nitrile, which was cooled in ice and stirred magnetically, 70 g of concentrated sulfuric acid was added slowly. After stirring for another 0.5 hr , 0.1 mol of the bromohydrin was slowly added in about 30 min . The solution was allowed to warm up to room temperature, kept for 3 hr at 35°, and then poured into 300 g of ice and water; 20 g of sodium carbonate was added in portions; and the solution was stirred for another $5-10 \mathrm{~min}$. The individual halo amides were then isolated as described below.
The nmr spectra of all halo amides are summarized in Table II.
On prolonged standing of the solid or a solution all 2 -amido-3bromobutanes converted to the hydrobromide salts of the corresponding 2 -oxazolines.
threo-2-Acetamido-3-bromobutane (3a)-The following workup was done as rapidly as possible and with the temperature not exceeding room temperature. The aqueous reaction mixture, in which no precipitate had formed, was extracted three times with ether. After drying with magnesium sulfate, evaporation yielded $15.7 \mathrm{~g}(81 \%)$ of a colorless oil, which eventually solidified to an extremely hygroscopic solid.
threo-2-Benzamido-3-bromobutane (3b).-The precipitate formed in the aqueous reaction mixture was isolated by filtration and washed with 10% sodium carbonate solution, water, and pentane; 50 g of white crystals were obtained containing substantial amounts of benzamide. The material was not purified further for conversion to the 2 -oxazoline 5 b.
erythro-2-Acetamido-3-bromobutane (4a).-The following work-up was done as rapidly as possible and with the temperature

[^21]not exceeding room temperature. The aqueous reaction mixture, in which no precipitate had formed, was extracted three times with ether. After drying with magnesium sulfate, evaporation of the ether yielded $14.2 \mathrm{~g}(73 \%)$ of a colorless oil which solidified to an extremely hygroscopic solid.
erythro-2-Benzamido-3-bromobutane (4b).-The precipitate formed in the aqueous reaction mixture was isolated by filtration and washed successively with 10% sodium carbonate solution, water, and pentane; 44 g of white crystals were obtained which contained substantial amounts of benzamide. The material was not further purified for conversion to the 2 -oxazoline $6 \mathbf{b}$. A much purer sample was obtained by rapidly treating the crude material with boiling water in order to extract the benzamide. This sample, which contained practically no benzamide, melted at 132-135 ${ }^{\circ}$.
General Procedure for 2-Oxazolines.-A $50-\mathrm{mmol}$ portion of the crude 2 -amido- 3 -bromobutane was treated with 40 ml of $2 N$ sodium hydroxide solution and then steam distilled. The 4,5-dimethyl-2-phenyl-2-oxazolines 5 b and 6 b were isolated by extracting three times with ether, drying the combined ether phases with magnesium sulfate, and evaporating the ether. The 2,4,5-trimethyl-2-oxazolines 5a and 6a were isolated by extracting the steam distillate with ether in a Kutscher-Steudel apparatus, then drying the ether with magnesium sulfate and evaporating the ether through a short Vigreux column. Table III shows the

Table III
Yields of 2-Oxazolines
2-Oxazoline
Yield, \% ${ }^{a}$
cis-2,4,5-Trimethyl-2-oxazoline (5a) 33
trans-2,4,5-Trimethyl-2-oxazoline (6a) 31
cis-4,5-Dimethyl-2-phenyl-2-oxazoline (5b)
94
trans-4,5-Dimethyl-2-phenyl-2-oxazoline (6b)
87
a Crude weight yield based on initial bromohydrin. The isolated oxazolines are essentially pure as judged by their ir and nmr spectra and gas chromatograms.
yields. The gas chromatographic separations were performed on a 6 -ft column of 15% Carbowax 20 M on Gas-Chrom P with a flow rate of $90 \mathrm{ml} / \mathrm{min}$. Column temperature was 104° for the transand cis-2,4,5-trimethyl-2-oxazolines $6 a$ and $5 a$, which had retention times of 2.5 and 3 min , respectively. Column temperature was 215° for the trans- and cis-2-phenyl-2-oxazolines 6 b and 5 b , which had retention times of 2.7 and 3.7 min , respectively. The stereoisomeric purity of all 2-oxazolines exceeded 99%.

Acknowledgment. - We wish to thank the Rutgers Research Council for financial support.

Registry No.-1, 19773-41-2; 2, 19773 40-1; 3a, 40891-89-2; 3b, 40891-90-5; 4a, 40891-91-6; 4b, 40891-92-7; 5a, 23236-41-1; 5b, 36746-57-3; 6a, 23336-75-6; 6b, 38898-95-2.

Reactions of an \boldsymbol{N}-Hydroxyquinazoline Structurally Analogous to Oncogenic \boldsymbol{N}-Hydroxypurines ${ }^{1}$

Tzoong-Chy Lee, Gad Salemnick, ${ }^{2}$ and George Bosworth Brown*
Memorial Sloan-Kettering Cancer Center, New York, New York 10021

Received April 5, 1973

Abstract

1,2,3,4-Tetrahydro-1-hydroxy-2,4-dioxoquinazoline, an analog of 3 -hydroxyxanthine, was found to be less reactive than 3 -hydroxyxanthine but more reactive than its pteridine analog. Thus, treatment of $1,2,3,4$-tetra-hydro-1-hydroxy-2,4-dioxoquinazoline with acetic anhydride gave a stable 1 -acetoxy derivative. Upon treatment with phosphorus oxychloride it gave 6 -chloro-1,2,3,4-tetrahydro-2,4-dioxoquinazoline, and with tosyl chloride, mesyl chloride, or p-nitrobenzenesulfonyl chloride it gave the corresponding 1,2,3,4-tetrahydro-2,4-dioxo-8sulfonyloxyquinazolines. The formation of the 8 -sulfonyloxyquinazolines probably proceeds via an intramolecular mechanism and the expected intermediate, 1,2,3,4-tetrahydro-2,4-dioxo-1-sulfonyloxyquinazoline, could be isolated. With peracetic acid 3,4-dihydro-4-oxoquinazoline gave 1,2,3,4-tetrahydro-1-hydroxy-2,4-dioxoquinazoline, rather than 1,2,3,4-tetrahydro-6-hydroxy-2,4-dioxoquinazoline, as was reported by others.

Chemical ${ }^{3-7}$ and biochemical ${ }^{8,9}$ studies have shown that the oncogenicity ${ }^{10.11}$ of 3 -hydroxyxanthine and some of its derivatives is paralleled by unique chemical reactivities of esters of these N-hydroxypurines. In a reaction termed the 3 -acyloxypurine 8 -substitution reaction, 3 -acetoxyxanthine ($1, \mathrm{R}=\mathrm{Ac}$) undergoes, under mild conditions, an $\mathrm{S}_{\mathrm{N}} 1^{\prime}$ reaction with nucleophiles to yield 8 -substituted xanthines. ${ }^{3-6}$

In an investigation of analogs of 3-hydroxyxanthine to determine the features required for this type of reactivity the initial study ${ }^{12}$ was of the N -hydroxypteridines (2 and $3, \mathrm{R}=\mathrm{Ac}, \mathrm{Ms}$, or Ts), which failed to undergo any similar substitution reactions. Their lack of reactivity could be attributed to the π-deficient character of the pyrazine ring in pteridines, as opposed to the π-excessive character of the imidazole ring of purines. ${ }^{13}$

We now report the reactions of $1,2,3,4$-tetrahydro-1-hydroxy-2,4-dioxoquinazoline ($4, \mathrm{R}=\mathrm{H}$). It is more analogous to 3 -hydroxyxanthine ($1, \mathrm{R}=\mathrm{H}$) since the π-electron density of the benzene ring lies between those of the imidazole ring of 1 and the pyrazine ring of 2. Therefore the tendency of 4 to undergo a substitution reaction is expected to be between those of 1 and 2.

Chiang and Li claimed ${ }^{14,15}$ that oxidation of $3,4-$ dihydro-4-oxoquinazoline (5) with peracetic acid gave 3,4 -dihydro- 3 -hydroxy-4-oxoquinazoline 1 -oxide (6) together with some 1,2,3,4-tetrahydro-6-hydroxy-2,4-

[^22]dioxoquinazoline (7), o-nitrobenzamide (8), $\quad N$ -formyl-o-nitrobenzamide, and benzoic acid. ${ }^{14}$ They also claimed that 7 was obtained from 6 by boiling with acetic acid, which would be comparable to the reaction we are studying. Reinvestigation of their work showed that the compound to which they assigned the structure 7 was actually $4(\mathrm{R}=\mathrm{H})$. Its nmr spectrum showed a 4 -proton ABCD pattern in the aromatic region, and it was found to be identical with that of an authentic sample.

Authentic $4(\mathrm{R}=\mathrm{H})$ was prepared from 4 -ethoxyquinazoline by an improvement of the published procedure. ${ }^{16}$ When refluxed in acetic anhydride only the N-hydroxy function of $4(\mathrm{R}=\mathrm{H})$ was esterified, to yield $4(\mathrm{R}=\mathrm{Ac})$, and no products comparable to those from 3-hydroxyxanthine ${ }^{3-6}$ resulted.
The 1 -acetoxyquinazoline ($4, \mathrm{R}=\mathrm{Ac}$), unlike 3 acetoxyxanthine ($1, \mathrm{R}=\mathrm{Ac}$), ${ }^{5}$ did not yield any substitution products when treated with a variety of nucleophiles, even under vigorous conditions. In boiling ethanol, only ethanolysis of $4(\mathrm{R}=\mathrm{Ac})$ to $4(\mathrm{R}=\mathrm{H})$ occurred, whereas the same treatment of $1(\mathrm{R}=\mathrm{Ac})$ gives 8 -ethoxyxanthine in almost quantitative yield. ${ }^{5}$
When compound $4(\mathrm{R}=\mathrm{H})$ was refluxed with phosphorus oxychloride and phosphorus pentachloride, a substitution with elimination of the N-hydroxy group
(16) H. Yamanaka, Chem. Pharm. Bull., 7, 152 (1959).

Table I
Nmr Chemical Shifts (δ, ppm)a and Coupling Constants (Hz)

		 10	\cdots	
Compd	$\mathrm{H}^{6}(\mathrm{t})$	H^{6} (dd)	H^{17} (dd)	$\mathrm{N}^{1}(\mathrm{~s}), \mathrm{Na}^{\text {a }}$ (8)
$\left(\mathrm{R}=\begin{array}{c} 10 \\ =\text { tolyl } \end{array}\right)^{b}$	$\begin{gathered} 7.17 ; J_{6.5}= \\ J_{6.7}=8 \end{gathered}$	$\begin{gathered} 7.50 ; J_{5.6}=8, \\ J_{5.7}=1.5 \end{gathered}$	$\begin{gathered} 7.94 ; J_{7.8}=8 \\ J_{7.5}=1.5 \end{gathered}$	$10.88{ }^{\text {c }} 11.38^{c}$
$\begin{gathered} 10 \\ (\mathrm{R}=\mathrm{Me})^{d} \end{gathered}$	$\begin{gathered} 7.23 ; J_{6.5}= \\ J_{6.7}=8 \end{gathered}$	$\begin{gathered} 7.71 ; J_{5.6}=8, \\ J_{6.7}=1.5 \end{gathered}$	$\begin{gathered} 7.94 ; J_{7.8}=8, \\ J_{7.5}=1.5 \end{gathered}$	$11.09 ;^{c} 11.47^{c}$
$(\mathrm{R}=\stackrel{10}{10}$	$\begin{gathered} 7.20 ; J_{6.6}= \\ J_{6.7}=8 \end{gathered}$	$\begin{gathered} 7.56 ; J_{6.6}=8, \\ J_{5.7}=1.5 \end{gathered}$	$\begin{gathered} 7.90 ; J_{7.6}=8 \\ J_{7.5}=1.5 \end{gathered}$	$10.98{ }^{\text {c }}$ c 11.38^{c}

${ }^{a}$ Solvent DMSO- d_{6}. ${ }^{b}$ Methyl singlet at 2.40, doublet at 7.44, $\mathrm{H}^{3 \prime}+\mathrm{H}^{b^{\prime}}, J=8$, doublet at 7.84, $\mathrm{H}^{2 \prime}+\mathrm{H}^{b^{\prime}}, J=8.0 . \quad{ }^{c}$ Exchangeable with $\mathrm{D}_{2} \mathrm{O}$. ${ }^{d}$ Methyl singlet at 3.61 . © Doublet at $8.22, \mathrm{H}^{2 \prime}+\mathrm{H}^{6^{\prime}}, J=8.0$; doublet at $8.47, \mathrm{H}^{3 \prime}+\mathrm{H}^{5 \prime}, J=8.0$.
did occur, and 6-chloro-1,2,3,4-tetrahydro-1,4-dioxoquinazoline ${ }^{17}$ was obtained. Presumably the dichlorophosphate ester was first formed, and this more effective leaving group facilitated the cleavage of the $\mathrm{N}-\mathrm{O}$ bond. Nucleophilic substitution by chloride ion, an intermolecular process, gave 9. Similar mechanisms

are involved in the reactions of pyridine N-oxide with phosphorus pentachloride ${ }^{18,19}$ and 1,X-naphthyridine 1 -oxides ${ }^{20}$ with phosphorus oxychloride.

When 1,2,3,4-tetrahydro-1-hydroxy-2,4-dioxoquinazoline ($4, \mathrm{R}=\mathrm{H}$) was treated with tosyl chloride, mesyl chloride, or p-nitrobenzenesulfonyl chloride in pyridine at room temperature, the products were probably the result of an intramolecular rearrangement. The respective 8 -sulfonyloxyquinazolines ($\mathbf{1 0}$, $\mathrm{R}=\mathrm{Me}, p$-tolyl, $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) were obtained. The position of substitution was indicated by nmr spectra (Table I) which were quite definitive and which showed that compounds 10 ($\mathrm{R}=\mathrm{Me}$, p-tolyl, $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) each bore a substituent at the 8 position (see Table I). In addition, the position of the substitution was confirmed by treatment of compounds $10(\mathrm{R}=\mathrm{Me})$ or 10 ($\mathrm{R}=p$-tolyl) with $0.1 N$ sodium hydroxide to give $1,2,3,4$-tetrahydro-8-hydroxy-2,4-dioxoquinazoline, which was prepared unambiguously from 3 -hydroxyanthranilic acid. Boiling $4(\mathrm{R}=\mathrm{H})$ with tosyl chloride in ethanol gave 1-ethoxy-1,2,3,4-tetrahydro-2,4-dioxoquinoline ($4, \mathrm{R}=\mathrm{Et}$) rather

[^23]than a sulfonyloxy derivative. Similar treatment with even a large excess of tosyl chloride in methanol did not yield the 1-methoxy compound. The structure of the ethoxy compound was established by its nmr spectrum which gave an ABCD pattern in the aromatic region, and one OEt and one NH signal.

An attempted Reissert reaction of $4(\mathrm{R}=\mathrm{H})$ with benzoyl chloride in the presence of potassium cyanide in DMF at temperatures up to 100° gave unchanged starting material. With tosyl chloride, to obtain a better leaving group, and potassium cyanide (2 equiv) both 1,2,3,4-tetrahydro-2,4-dioxo-1-tosyloxyquinazoline ($4=\mathrm{SO}_{2}$ - -tolyl) and the 8 -tosyloxy isomer were obtained. With less potassium cyanide the formation of the 1-tosyloxyquinazoline was reduced. When sodium cyanide was used instead of potassium cyanide, the only product was the 8 -tosyloxyquinazoline. The structure of the 1 -tosyl isomer was confirmed from its nmr spectrum which showed a methyl signal at $\delta 2.40$, aromatic protons, a multiplet at δ 7-8 integrating for eight protons, and a single exchangeable NH at $\delta 11.33$. Since the reaction of $4(\mathrm{R}=\mathrm{H})$ with tosyl chloride gave only 10 , even under the influence of stronger competitive nucleophiles such as pyridine or cyanide ion, the formation of the 8 -sulfonyloxyquinazoline is most likely the result of an intramolecular reaction within a solvent cage, as

A molecular model of the 1-tosyloxyquinazoline shows the oxygen of the $-\mathrm{SO}_{2}$ group to be close to the 8 position of the quinazoline, and thus able to form a six-membered cyclic transition state. Cleavage of the $\mathrm{N}-\mathrm{O}$ bond, hydrogen migration, and rearomatization would then yield the 8 -sulfonyloxyquinazoline. An intramolecular mechanism is supported by the finding of only the 8 -sulfonyloxyquinazolines, and no 6 -substitution products. This rearrangement is comparable to that of 1-hydroxycarbostyril to 8-tosyloxy-

2-quinolone, ${ }^{21}$ which has been proved by radioisotope labeling to be partially intramolecular. This rearrangement contrasts with the intermolecular $\mathrm{SN}_{\mathrm{N}}{ }^{\prime}$ reaction in $\mathrm{POCl}_{3}-\mathrm{PCl}_{5}$, which yields 9 .

Esters of the 1-hydroxyquinazoline analog are thus intermediate in reactivity between the 1-hydroxypteridine analog ${ }^{12}$ and 3-acetoxyxanthine. ${ }^{5,6}$ They do undergo reactions involving substitution with rearrangement, but only with leaving groups better than acetate. This is in agreement with predictions made from the relative π characters of the benzene, pyrazine, and imidazole rings in the fused ring systems. Should an ester of 1,2,3,4-tetrahydro-1-hydroxy-2,4dioxoquinazoline be formed in vivo, ${ }^{9}$ it would not be expected to be reactive under physiological conditions, and it is improbable that $4(\mathrm{R}=\mathrm{H})$ would be an oncogen. ${ }^{11}$

Experimental Section

The uv spectra were determined with a Cary 15 spectrometer. Analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn. Nmr spectra were determined with a Varian A- 60 spectrometer, in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ with tetramethylsilane as an internal reference. The melting points are uncorrected. Paper chromatography, ascending, on Whatman No. 1 paper was used to check the purity of each of the compounds prepared. For Dowex 50 chromatography BioRad AG--50, 8X, 200-400 mesh $\left[\mathrm{H}^{+}\right]$resin was used.

4-Ethoxy-1,2-dihydro-1-hydroxy-2-oxoquinazoline (12) and 1,2,3,4-Tetrahydro-1-hydroxy-2,4-dioxoquinazoline (4, $\mathbf{R}=$ H).- 12 was prepared from 4 -ethoxyquinazoline ${ }^{16}$ by oxidation with 2 equiv, instead of 1 equiv, of ethereal perphthalic acid. Upon isolation as described an improved yield of 12 (51%, lit. ${ }^{16}$ 26%) and some 4-ethoxyquinazoline 1-oxide (17%) was obtained. Hydrolysis of 12 in 50% acetic acid gave a quantitative yield of $4(\mathrm{R}=\mathrm{H}): \quad \mathrm{uv}$ max in methanol, $\mathrm{nm}\left(\epsilon \times 10^{-3}\right)$, 246 (8.48), 316 (3.64); nmr $\delta 7.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{5}+\mathrm{H}^{6}+\mathrm{H}^{7}+\mathrm{H}^{8}\right), 11.10$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 11.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{3}\right)$.

1-Acetoxy-1,2,3,4-tetrahydro-2,4-dioxoquinazoline (4, $\mathbf{R}=$ Ac). ${ }^{22}-4(\mathrm{R}=\mathrm{H})(0.60 \mathrm{~g}, 0.0033 \mathrm{~mol})$ was refluxed with acetic anhydride (10 ml) for 4 hr and cooled. The $4(\mathrm{R}=\mathrm{Ac})$ was collected and recrystallized from ethanol, 0.40 g (5.5%), colorless needles: mp 225°; uv max in ethanol, nm $\left(\epsilon \times 10^{-3}\right), 243$ (8.42), 308 (3.96).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $54.52 ; \mathrm{H}, 3.66 ; \mathrm{N}, 12.72$. Found: C, $54.26 ; \mathrm{H}, 3.63 ; \mathrm{N}, 12.45$.

6-Chloro-1,2,3,4-tetrahydro-2,4-dioxoquinaoline (9).-A stirred solution of $4(\mathrm{R}=\mathrm{H})(0.45 \mathrm{~g}, 0.002 \mathrm{~m} \mathrm{~mol})$ and phosphorus pentachloride (1.6 g) in phosphorus oxychloride (5 ml) was refluxed for 1.5 hr . The cooled mixture was poured into icewater (100 ml) and the clear supernatant was decanted. The solid residue was extracted with ether (100 ml); the ether was washed with water, dried over sodium sulfate, and evaporated to dryness. Concentrated $\mathrm{HCl}(20 \mathrm{ml})$ was added, the solution heated under reflux for 3 hr , and 9 crystallized on cooling. Recrystallization from 50% acetic acid gave $9,0.10 \mathrm{~g}$ (20%), colorless needles: $\mathrm{mp} 344^{\circ}$ (lit. ${ }^{17} \mathrm{mp} 34.5-348^{\circ}$); nmr $\delta 7.20$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{8}, J_{8.7}=8.5 \mathrm{~Hz}\right), 7.71\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{7}, J_{7.8}=8.5 \mathrm{H}_{7}\right.$, $\left.\left.J_{7.6}=2 \mathrm{~Hz}_{2}\right), 7.84\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, J_{5.7}=2 \mathrm{~Hz}\right), 11.2.\right), 11.41(2$, 1 H each, $\mathrm{N}_{1} \mathrm{H}, \mathrm{N}_{3} \mathrm{H}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$); uv max in ethanol, $\mathrm{nm}\left(\epsilon \times 10^{-3}\right), 245$ (11.5), 252 (11.3), 322 (3.42).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C, $48.87 ; \mathrm{H}, 2 . \pi(\mathrm{H} ; \mathrm{N}, 14.2 \%$; $\mathrm{Cl}, 18.03$. Found: C, $48.62 ; \mathrm{H}, 2.61 ; \mathrm{N}, 13.99 ; \mathrm{Cl}, 18.19$.
1,2,3,4-Tetrahydro-2,4-dioxo-8-tosyloxyquinazoline (10, R = p-Tolyl). A.-To a stirred solution of $4(\mathrm{R}=\mathrm{H})(0.178 \mathrm{~g}, 0.001$ mol) in dry pyridine (4 ml), tosyl chloride $(0.210 \mathrm{~g}, 0.0011 \mathrm{~mol})$ was added in small portions at room temperature. After stirring for 48 hr most of the pyridine was evaporated under vacuum $\left(<40^{\circ}\right)$, water was added, and the white precipitate was collected.
(21) K. Ogino and S. Oae, Tetrahedron, 27, 6037 (1971).
(22) This compound was incorrectly identified as 6 -acetoxy-1,2,3,4-tetrahydro-2,4-dioxoquinazoline. ${ }^{14}$

Two recrystallizations from ethanol gave the 10 ($\mathrm{R}=p$-tolyl), $0.13 \mathrm{~g}(39 \%)$, colorless crystals, $\mathrm{mp} 220^{\circ}$.
B.-Tosyl chloride ($420 \mathrm{mg}, 0.0022 \mathrm{~mol}$) was added to a solution of the $4(\mathrm{R}=\mathrm{H})(356 \mathrm{mg}, 0.002 \mathrm{~mol})$ and sodium cyanide $(212 \mathrm{mg}, 0.004 \mathrm{~mol})$ in dry DMF (4.5 ml). The reaction mixture was stirred at room temperature for 61 hr . The DMF was evaporated under vacuum $\left(<40^{\circ}\right)$, and a small amount of water was added to the oily residue to precipitate the tosyloxyquinazoline. Recrystallization of the crude product from methanol gave the pure 8-tosyloxyquinazoline, $158 \mathrm{mg}(24 \%)$: uv max in ethanol, $\mathrm{nm}\left(\epsilon \times 10^{-3}\right)$, 307 (4.12).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 54.21 ; \mathrm{H}, 3.64 ; \mathrm{N}, 8.43$; S, 9.6.). Found: C, 54.38; H, 3.61; N, 8.37; S, 9.83.

1,2,3,4-Tetrahydro-8-mesyloxy-2,4-dioxoquinazoline (10, $\mathbf{R}=$ $\mathrm{Me})$.-Methanesulfonyl chloride (0.1 ml) was added to a cooled stirred solution of $4(\mathrm{R}=\mathrm{H})(0.178 \mathrm{~g}, 0.001 \mathrm{~mol})$ in pyridine $(4 \mathrm{ml})$. It was stirred for 72 hr at room temperature; the pyridine was evaporated under vacuum, water added, and the white precipitate collected. Two recrystallizations from 50% acetic acid gave the $10(\mathrm{R}=\mathrm{Me}), 0.077 \mathrm{~g}(30 \%)$: mp 34: $)^{\circ}$ dec; uv max in ethanol, $\mathrm{nm}\left(\epsilon \times 10^{-3}\right), 312$ (saturated solution).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 42.18 ; \mathrm{H}, 3.15 ; \mathrm{N}, 10.93$; S, 12.i). Found: C, 42.37; H, 3.26; N, 11.00; S, 12.31 .
8- p-Nitrobenzenesulfonyloxy-1,2,3,4-tetrahydro-2,4-dioxoquinazoline (10, $\mathrm{R}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$). -This was prepared in a manner similar to that for tosyloxyquinazoline and yielded light yellow crystals (44%): mp 282- 283°; uv max in methanol, $\mathrm{nm}\left(\epsilon \times 10^{-3}\right.$), 243 (17.1), 310 (4.20).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}: ~ \mathrm{C}, 46.28 ; \mathrm{H}, 2.49 ; \mathrm{N}, 11.56$; S, 8.82. Found: C, 46.14; H, 2.36; N, 11.42; S, 8.91.

1,2,3,4-Tetrahydro-2,4-dioxo-1-tosyloxyquinazoline (4, R = SO_{2} - p-tolyl).-p-Toluenesulfonyl chloride ($210 \mathrm{mg}, 0.0011 \mathrm{~mol}$) was added to a solution of $4(\mathrm{R}=\mathrm{H})(178 \mathrm{mg}, 0.001 \mathrm{~mol})$ and potassium cyanide ($130 \mathrm{mg}, 0.002 \mathrm{~mol}$) in DMF (30 ml). After stirring at room temperature for 4 days, the DMF was evaporated nearly to dryness under vacuum $\left(<40^{\circ}\right)$. The addition of water to the oily residue precipitated 4 ($\mathrm{R}=\mathrm{SO}_{2}$-p-tolyl) (205 mg), and two recrystallizations from methanol gave $57 \mathrm{mg}(19 \%)$ of colorless crystals: $\mathrm{mp} 260-261^{\circ}$; uv max in ethanol, nm ($\epsilon \times$ 10^{-3}), 314 (3.65).

When 1 equiv of potassium cyanide was used, no 1-tosyloxy derivative could be isolated in pure form.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 54.21 ; \mathrm{H}, 3.64 ; \mathrm{N}, 8.43$; S. 9.6.). Found: $\mathrm{C}, 54.09 ; \mathrm{H}, 3.70 ; \mathrm{N}, 8.53 ; \mathrm{S}, 9.69$.

1,2,3,4-Tetrahydro-8-hydroxy-2,4-dioxoquinazoline (11). A. —Potassium cyanate ($0.360 \mathrm{~g}, 0.004 \% \mathrm{~mol}$) in water (5 ml) was added in portions to a suspension of 3-hydroxyanthranilic acid $(0.530 \mathrm{~g}, 0.00: 34 \mathrm{~mol})$ in water (1.5 ml) containing acetic acid $(0.26 \mathrm{ml})$. Af(er being stirred 2 in $^{-} \mathrm{min}$ at 35° sodium hydroxide $(4.78 \mathrm{~g}, 0.12 \mathrm{~mol})$ was added in small portions, with cooling $\left(<30^{\circ}\right)$. After 2 days the solution was brought to pH 5 with $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and the precipitate collected. It was absorbed on a Dowex $; 0\left[\mathrm{H}^{+}\right]$column ($4 . i$) $\times 26 \mathrm{~cm}$) which was eluted with water. Evaporation of the solution gave $11,1.50 \mathrm{mg}(23 \%)$, which was recrystallized from water as white needles: mp $>300^{\circ}$ (sublimation); ferric chloride test green in ethanol; paper chromatography $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(3: 1) \quad R_{\mathrm{f}} 0.80, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$: $\mathrm{NH}_{4} \mathrm{OH}(7: 2: 1) R_{\mathrm{f}} 0 . i 7, \mathrm{NH}_{4} \mathrm{Cl}(3 \%) R_{\mathrm{f}} 0.39$; uv max in methanol, nm ($\epsilon \times 10^{-3}$), :322 (3.57).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, $51.34 ; \mathrm{H}, 3.77 ; \mathrm{N}$, 14.96. Found: C, il.in; II, 3.50; N, 14.90 .
B.-The 8-tosyloxyquinazoline $(0.166 \mathrm{~g})$ was added to 0.5 N $\mathrm{NaOH}(20 \mathrm{ml})$ and heated on the steam bath for 6 hr . The mixture was absorbed on a Dowex $50\left[\mathrm{H}^{+}\right]$column ($4 . \overline{5} \times 26 \mathrm{~cm}$), from which elution with water gave p-toluenesulfonic acid and then the product. The concentrated eluate ($40 \mathrm{mg}, 43 \%$) of the product wis recrystallized from water as white needles: mp $>: 300^{\circ}$ (sublimation); ferric chloride test green in ethanol; paper chromatography $\mathrm{CII}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (3:1) $R_{\mathrm{f}} 0.80, \mathrm{CH}_{3} \mathrm{CN}$: $\mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{4} \mathrm{OH}(7:: 3: 1) R_{1} 0.57, \mathrm{NH}_{4} \mathrm{Cl}(3 \%) R_{4} 0.39$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, $51.34 ; \mathrm{H}, 3.77$; N, 14.96. Found: C, il.42; IH, 3.64; N, 14.68.

1-Ethoxy-1,2,3,4-tetrahydro-2,4-dioxoquinazoline $\quad(4, \quad \mathbf{R}=$ Et).-4 ($\mathrm{R}=\mathrm{H}$) $(.300 \mathrm{mg})$ in ethanol (.50 ml) was refluxed with tosyl chloride (. 000 mg) for 3 hr and the solution evaporated to dryness. The residue in dilute sodium hydroxide ($0.1 \mathrm{~N}, 20 \mathrm{ml}$) was absorbed on a Dowex $50\left[\mathrm{H}^{+}\right]$column. Elution with water gave the unchanged starting material (330 mg) as the first fraction, followed by $4(\mathrm{R}=\mathrm{Et}), 190 \mathrm{mg}: \mathrm{mp} 170^{\circ}$ (from water); uv max in methanol, $\mathrm{nm}\left(\epsilon \times 10^{-3}\right), 244$ (8.87), 312 (3.99).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $58.25 ; \mathrm{H}, 4.89 ; \mathrm{N}, 13.59$. Found: C, 58.05; H, 4.84; N, 13.39.

Acknowledgment.-We thank Mr. Marvin J. Olsen and Mr. Gerald Reiser for the nmr and uv spectra.

Registry No.-4 ($\mathrm{R}=\mathrm{H}$), 13300-21-5; 4 ($\mathrm{R}=\mathrm{Ac}$), 40919-19-5; 4 ($\mathrm{R}=\mathrm{SO}_{2}$-p-tolyl), 40919-20-8; 4 ($\mathrm{R}=\mathrm{Et}$), 40919-21-9; 9, 1640-60-4; 10 ($\mathrm{R}=p$-tolyl), 40919-23-1; 10 ($\mathrm{R}=\mathrm{Me}$), 40919-24-2; 10 ($\mathrm{R}=p$-nitrophenyl), 40919-25-3; 11, 40919-26-4; 12, 40919-27-5; phosphorus pentachloride, 10026-13-8; tosyl chloride, 98-59-9; 3-hydroxyanthranilic acid, 548-93-6.

Quinoxaline 1,4-Dioxides. Nucleophilic Displacement of Sulfinyl and Sulfonyl Groups in Acid Media. A Novel Method for the Preparation of 2-Haloquinoxaline $\mathbf{1}, \mathbf{4}$-Dioxides

Elie Abushanab ${ }^{1}$
Medical Research Laboratories, Pfizer Inc., Groton, Connecticut 06340
Received March 27, 1979

Abstract

The oxidation of the quinoxaline 1,4 -dioxides 2 a and 2 b with 1 or 2 equiv of m-chloroperbenzoic acid furnished the corresponding sulfoxides ($\mathbf{3 a}$ and $\mathbf{3 b}$) and sulfones ($4 a$ and $\mathbf{4 b}$), respectively, in high yields. Treatment of these compounds with aqueous halogen acids furnished the corresponding 2 -haloquinoxaline 1,4 -dioxides (5), almost in quantitative yields. The action of organic acids on these sulfoxides and sulfones produced, instead of the expected 2 -acyloxy derivatives, esters of 1-hydroxyquinoxalin-2-one 4 -oxide (6). The mechanism and the potential synthetic utility are discussed.

There are three general methods for the preparation of quinoxaline 1,4-dioxides: peracid oxidation of the parent amine, ${ }^{2}$ the condensation of enamines and enolates with benzofurazan 1 -oxide ($\mathrm{BFO}, 1$), ${ }^{3}$ and the condensation of α diketones with o-benzoquinone dioxime. ${ }^{4}$ However, none of these methods can be used for the synthesis of 2 -haloquinoxaline 1,4 -dioxides, owing to difficulties encountered in the oxidation of 2 -halo aromatic amines, and the failure of 2-halo ketones to react successfully with BFO. The present work describes a novel nucleophilic displacement of sulfinyl and sulfonyl groups which provides a simple method for the synthesis of 2-haloquinoxaline 1,4-dioxides in high yield.

Preparation of the starting materials was accomplished according to earlier procedures. ${ }^{3}$ Thus, condensation of BFO with acetonylmethyl sulfide and acetonylphenyl sulfide ${ }^{5}$ furnished the corresponding quinoxaline 1,4 -dioxides 2 a and 2 b , respectively (50 60%). These were in turn oxidized with either 1 or 2 equiv of m-chloroperbenzoic acid (MCPBA) to yield the corresponding sulfoxides (3 a and 3 b) and sulfones (4 a and 4 b), respectively, in $80-90 \%$ yields.

Treatment of 3 or 4 with aqueous hydrochloric or hydrobromic acid under mild conditions gave the quinoxaline 1,4 -dioxides 5 a and 5 b, respectively, almost in quantitative yields. Scheme I summarizes the above reactions.

The structures of $\mathbf{5 a}$ and $\mathbf{5 b}$ were based on mass spectral data, which showed the expected molecular ion doublets indicating the presence of chlorine and bromine. The nmr spectra of 5 a and 5 b were consistent with the proposed structures and each consisted of a three-hydrogen methyl singlet at $\delta 2.76$ (5a)

[^24]
and 2.88 (5b). The typical aromatic $\mathrm{A}_{2} \mathrm{~B}_{2}$ pattern observed for other quinoxaline 1,4 -dioxides was preserved in 5 a and 5 b and appeared at $\delta 7.78$ and 8.6.

A plausible mechanism for these reactions is depicted in Scheme II.

Scheme II

Initial protonation of the N-oxide group is probably involved followed by halide attack at C-2, with subsequent elimination of a sulfinic or sulfenic acid. Support for this mechanism came from the reaction of hydrochloric acid with the phenyl sulfoxide 3b. In addition to the chloro compound 5 a , there were isolated two additional compounds, namely diphenyl disulfide ${ }^{6}$ and S-phenyl benzenethiosulfonate ${ }^{7}$ in 84
(6) F. Krafft and W. Vorster, Chem. Ber., 26, 2815 (1893).
(7) H. J. Backer, Recl. Trav. Chim., Pays-Bas, 71, 409 (1952).
and 90% yields, respectively. These compounds are known to originate, by disproportionation, ${ }^{8}$ from the unstable benzenesulfenic acid initially formed.

When the sulfone 4 a was dissolved in glacial acetic acid at room temperature, a new compound was formed in 40% yield which was not the expected 2 -acetoxy product but rather 1-acetoxy-3-methylquinoxalin-2one 4 -oxide ($6 a$). The characterization of $6 a$ was based upon its ir spectrum, which showed two carbonyl absorptions at 5.5 and 5.8μ. The nmr spectrum had signals for two methyl singlets at $\delta 2.5$ and 2.58 but did not have the usual aromatic $\mathrm{A}_{2} \mathrm{~B}_{2}$ multiplet. Instead it had two separate one-proton quartets ($J=$ $7.5,2.0 \mathrm{~Hz}$) at $\delta 7.7$ and 8.3 assigned to protons at C-8 and C-5, respectively, and a multiplet for the two remaining protons ($\delta 7.15-7.5$). Upon heating the sulfoxide 3 a with acetic acid, two products were obtained, namely the acetate $6 a$ and its hydrolysis product 7, in 13 and 44% yields, respectively. Similar results were obtained during the preparation of the sulfone 4 b . Heating the sulfide 2b with MCPBA in chloroform resulted in the formation of $6 \mathbf{b}$, presumably from the reaction of the sulfone with m-chlorobenzoic acid. The use of pH 7.5 phosphate buffer as part of a two-phase system allowed the successful isolation of $\mathbf{4 b}$.

Similar arguments can be used to explain the action of organic acids on these compounds. Initial formation of the 2-acyloxy derivative followed by acyl migration to the N-oxide oxygen results in 6 , whose hydrolysis affords 7 (Scheme III). Transacylation

involving other forms of N-oxides have recently appeared. Shemyakin and coworkers reported acetyl migrations to aldonitrones ${ }^{9}$ and transtosylation in the thermal rearrangement of β-phenyl azoxytosylates. ${ }^{10}$ Skramstad proposed a similar mechanism to explain the migration of an acetyl group to the oxygen of a nitro group. ${ }^{11}$

Several analogies for the reactions of sulfones with aqueous acid are known. ${ }^{12}$ In the case of sulfoxides, however, only one such reaction has been found, which involves the acid hydrolysis of 2-methylsulfinyladenine 1 -oxide to isoguanine 1 -oxide. ${ }^{13}$

The above reactions, therefore, provide an attractive method for the preparation of 2 -haloquinoxaline 1,4-dioxides, which can be used as intermediates for

[^25]the synthesis of other classes of quinoxaline 1,4-dioxides, e.g., 2 -amino-, 2-alkoxy-, etc., not easily accessible by existing methods.

Experimental Section

Melting points (uncorrected) were determined on a ThomasHoover capillary apparatus. Nmr spectra were obtained on a Varian A-60 instrument. Mass spectral data were recorded on a Perkin Elmer RMV-65 mass spectrometer. The commercially available MCPBA is 88% pure, and was used as such without purification. All evaporations were conducted in vacuo using a water aspirator.

2-Methyl-3-methylthioquinoxaline 1,4-Dioxide (2a).—Acetonylmethyl sulfide ($30 \mathrm{~g}, 0.3 \mathrm{~mol}$) and $\mathrm{BFO}(40 \mathrm{~g}, 0.3 \mathrm{~mol})$ were dissolved in methanol (200 ml) and ammonia gas was bubbled in for 10 min . The reaction mixture was allowed to stand at room temperature overnight. The crystalline precipitate was filtered off and washed with methanol. The dried residue weighed 30 g . Crystallization from methanol gave the analytical sample, $\mathrm{mp} \mathrm{146-148}^{\circ}, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.85(\mathrm{~s}, 3), 2.95$ (s, 3).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 54.01 ; \mathrm{H}, 4.50 ; \mathrm{N}, 12.61$. Found: C, 53.80; H, 4.52; N, 12.49.
2-Methylthio-3-phenylquinoxaline 1,4 -Dioxide (2 b).-Acetonylphenyl sulfide ($8.3 \mathrm{~g}, 0.05 \mathrm{~mol}$) and BFO ($6.8 \mathrm{~g}, 0.05 \mathrm{~mol}$) were dissolved in methanol (75 ml) and ammonia gas was bubbled in for 5 min . The product (7.0 g) was isolated and crystallized from methanol-chloroform, $\mathrm{mp} 153-154^{\circ}, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.85$ (s, 3).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 63.37 ; \mathrm{H}, 4.23 ; \mathrm{N}, 9.86$. Found: C., 63.26; H, 4.11; N, 10.12.

2-Methyl-3-methylsulfinylquinoxaline 1,4-Dioxide (3a).-A solution of MCPBA ($2.0 \mathrm{~g}, 5 \mathrm{mmol}$) in chloroform (1.5 ml) was added to an ice-cold solution of the sulfide $2 \mathrm{a}(1.1 \mathrm{~g}, 5 \mathrm{mmol}$) in chloroform (10 ml) and the reaction mixture was stirred at room temperature overnight. The chloroform solution was washed with aqueous sodium bicarbonate, dried over magnesium sulfate, filtered, and evaporated to the finished product (1.2 g). Crystallization from methanol-chloroform furnished the analytical sample, $\mathrm{mp} 201-202^{\circ}, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.92(\mathrm{~s}, 3), 3.25(\mathrm{~s}, 3)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 50,42 ; \mathrm{H}, 4.20 ; \mathrm{N}, 11.76$. Found: C, 50.27 ; H, 4.25; N, 11.83.

2-Methyl-3-phenylsulfinylquinoxaline 1,4 -Dioxide (3b).-An identical procedure with that used in the preparation of 3a was followed using the sulfide $2 \mathrm{~b}(7.0 \mathrm{~g}, 24 \mathrm{mmol})$ and MCPBA (5.1 g , 24 mmol). The product obtained weighed 8.6 g , and was crystallized from methanol-chloroform, $\mathrm{mp} 164-165^{\circ}, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ 2.9 (s, 3).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 60.00 ; \mathrm{H}, 4.00 ; \mathrm{N}, 9.33$. Found: C, 60.11; H, 4.25; N, 9.30.

2-Methyl-3-methylsulfonylquinoxaline 1,4 -Dioxide (4a).-A solution of MCPBA ($4.0 \mathrm{~g}, 10 \mathrm{mmol}$) in chloroform (30 ml) was added dropwise to an ice-cold solution of the sulfide $2 \mathrm{a}(1.1 \mathrm{~g}$, 5 mmol) in chloroform (15 ml), and the reaction mixture was stirred at room temperature overnight. Similar work-up to that used for the preparation of 3a furnished the product (1.22 g). The analytical sample was obtained by crystallization from methanol-chloroform, $\mathrm{mp} 153-154^{\circ}, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.92(\mathrm{~s}, 3)$, 3.6 (s, 3).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: ~ \mathrm{C}, 47.24 ; \mathrm{H}, 3.94 ; \mathrm{N}, 11.02$. Found: C, 47.05; H, 3.90; N, 10.97 .

2-Methyl-3-phenylsulfonylquinoxaline 1,4 -Dioxide (4b).-The sulfide $2 \mathrm{~b}(2.0 \mathrm{~g}, 7 \mathrm{mmol})$ was dissolved in chloroform (100 ml) and was added to phosphate buffer ($\mathrm{pH} 7.5,100 \mathrm{ml}$). A solution of MCPBA ($4.25 \mathrm{~g}, 21 \mathrm{mmol}$) in chloroform (50 ml) was added to the cooled two-phase system dropwise with vigorous stirring overnight. Thin layer chromotography on silica gel ($1: 1 \mathrm{EtOAc}-$ benzene) indicated the presence of the desired product with small amounts of $6 \mathbf{b}$. Similar work-up to that of $4 \mathbf{a}$ furnished the product (1.5 g), which is very sensitive to light. Crystallization from methanol-chloroform furnished the analytical sample, mp 180-181 ${ }^{\circ}$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 56.96 ; \mathrm{H}, 3.79 ; \mathrm{N}, 8.86$. Found: C, 56.74; H, 3.70; N, 8.58.
2-Chloro-3-methylquinoxaline 1,4-Dioxide (5a). -The procedure described here for the conversion of 3 b to 5 a applies to all other sulfoxides and sulfones. The sulfoxide $3 \mathrm{~b}(2.0 \mathrm{~g}, 8.4 \mathrm{mmol})$ was dissolved in concentrated hydrochloric acid (10 ml). The solution was warmed up on the steam bath for few minutes. An
oily layer separated at the bottom of the reaction flask which was taken up in ether. Drying and evaporation gave an oil (0.7 g). The aqueous acidic layer was diluted with water (75 ml), precipitating the product $(1.5 \mathrm{~g})$. The analytical sample was obtained from methanol, $\mathrm{mp} 166-168^{\circ}$, $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.80(\mathrm{~s}, 3)$, $\mathrm{M}^{+} 212$ and 210.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$: C, 51.30 ; $\mathrm{H}, 3.32$; N, 13.25 . Found: C, $51.32 ; \mathrm{H}, 3.35 ; \mathrm{N}, 13.38$.
Thin layer chromotographc analysis of the above oil on silica gel (benzene) showed it to be a mixture of two compounds. Column chromotography (silica gel, 20 g) was used for their separation. Elution with hexane (300 ml) furnished diphenyl disulfide, $\mathrm{mp} 59-60^{\circ}(0.28 \mathrm{~g})$. Further elution with a $1: 1 \mathrm{mix}-$ ture of benzene-hexane (700 ml) gave S-phenyl benzenethiosulfonate $(0.38 \mathrm{~g})$ as a low-melting solid, $\mathrm{mp} 41-42^{\circ}$.

2-Bromo-3-methylquinoxaline 1,4-Dioxide (5b).-This compound was obtained using $48 \% \mathrm{HBr}$ solution following the same procedure described for the preparation of 5a. Crystallization from methanol-chloroform furnished the analytical sample, mp $163-164^{\circ}, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.87(\mathrm{~s}, 3), \mathrm{M}^{+} 256$ and 254.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}$: C, 42.35; $\mathrm{H}, 2.74$; N, 10.98 . Found: C, 42.12; H, 2.83; N, 11.03.

1-Acetoxy-3-methylquinoxaline-2-one 4-Oxide (6a). A.-The sulfone $4 \mathrm{a}(1.0 \mathrm{~g}, 4 \mathrm{mmol})$ was dissolved in acetic acid (25 ml) and was allowed to stand at room temperature for 18 hr . Dilution with water (250 ml) was followed by extraction with chloroform. The chloroform layer was backwashed with water, dried over magnesium sulfate, filtered, and evaporated to dryness to give a gum (0.37 g). The analytical sample was obtained by crystallization from ether-chloroform without the use of heat, $\mathrm{mp} 142-143^{\circ}, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.5(\mathrm{~s}, 3), 2.57(\mathrm{~s}, 3)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N}_{2}$: C, $56.41 ; \mathrm{H}, 4.27 ; \mathrm{N}, 11.96$. Found: C, 56.38 ; H, 4.49; N, 11.77.
B.-The sulfoxide $3 \mathrm{a}(2.5 \mathrm{~g}, 10 \mathrm{mmol})$ was dissolved in acetic acid (25 ml) by heating for 0.5 hr . Dilution with water (250 ml) was followed by extraction with chloroform. A similar work-up to that above gave a gum (1.9 g). This was chromatographed on Florisil eluting first with chloroform $(400 \mathrm{ml})$ to give $6 \mathrm{a}(0.32 \mathrm{~g})$, followed by a $1: 1$ mixture of methanol-chloroform (500 ml) to furnish the hydroxamic acid $7(1.0 \mathrm{~g}), \mathrm{mp} 224-225^{\circ}$, identical with an authentic sample. ${ }^{4}$

1- m-Chlorobenzoxy-3-methylquinoxalin-2-one 4-Oxide(6b).The sulfide 2b ($2.0 \mathrm{~g}, 7 \mathrm{mmol}$) was dissolved in chloroform (100 $\mathrm{ml})$. To this solution MCPBA ($2.83 \mathrm{~g}, 14 \mathrm{mmol}$) in chloroform (50 ml) was added and the resulting mixture was refluxed for 1 hr. One more equivalent of MCPBA (1.4 g) was added and the reaction mixture was refluxed for an additional 1 hr . The chloroform solution was first washed with a saturated solution of sodium bicarbonate ($3 \times 50 \mathrm{ml}$), and then with water, dried, filtered, and evaporated to dryness to yield a solid. The solid residue (0.6 g) was crystallized from methylene chloride-ether, $\mathrm{mp} 161-162^{\circ}, \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.6(\mathrm{~s}, 3), \mathrm{M}^{+} 332$ and 330.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}: \mathrm{C}, 58.09 ; \mathrm{H}, 3.32 ; \mathrm{N}, 8.47$. Found: C, 57.98; H, 3.23; N, 8.40.

Acknowledgment. - The author wishes to thank Mr. Leo B. Keith, Jr., for his technical assistance.

Registry No.-2a, 39576-50-6; 2b, 39576-56-2; 3a, 39576-76-6; 3b, 40735-40-8; 4a, 39576-77-7; 4b, 40735-42-0; 5a, 39576-78-8; 5b, 39576-79-9; 6a, 40735-45-3; 6b, 40735-46-4.

O-Nitrene and O-Nitrenium Cation Intermediates in Reactions of O-Substituted Hydroxylamines ${ }^{1}$

Francis A. Carey* and Larry J. Hayes
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903

Received April 6, 1973

Abstract

Two methods were investigated for the generation of O-nitrenes (3) and/or O-nitrenium cations (4): lead tetraacetate oxidation of O-alkylhydroxylamines (5) and thermal base-catalyzed decomposition of N - p-toluene-sulfonyl- O-alkylhydroxylamines (6). Lead tetraacetate oxidation of O-diphenylmethylhydroxylamine (5a) was solvent dependent and afforded mixtures of products containing O-diphenylmethylbenzophenone oxime, benzophenone, benzhydrol, and products corresponding to net O to N migration of $\mathrm{Ph}_{2} \mathrm{CH}-, N$-diphenylmethoxy- $N^{\prime}-$ diphenylmethyldiazine N^{\prime}-oxide (9), and benzophenone oxime. p-Nitrobenzyl alcohol was the only product formed on oxidation of $O-p$-nitrobenzylhydroxylamine (5b) with lead tetraacetate. The stereochemical course of formation of N-alkoxyaziridines from lead tetraacetate oxidation of O - n-butylhydroxylamine in the presence of cis- and trans-2-butene was examined and found to be nonstereospecific. trans-2-Butene afforded $N-n$-butoxy-trans-2,3-dimethylaziridine (12) and N - n-butoxy-cis-2,3-dimethylaziridine (13) in an $82: 18$ ratio while the $12: 13$ ratio from cis-2-butene was $38: 62$. The dominant thermal reaction from 6 and sodium hydride involved $\mathrm{O}-\mathrm{N}$ bond cleavage. Thus 6 a and excess sodium hydride gave benzhydrol as the major product which was shown to arise via cleavage of the carbanion of 6 a to benzophenone and p-toluenesulfonamide anion followed by reduction of benzophenone to benzhydrol. O to N migration was observed when either n-butyllithium or only small excesses of sodium hydride were used to yield benzophenone oxime (quantitative from n-butyllithium). No O to N migration was observed using 6 c or 6 d and NaH with the products being p-bromobenzoic acid and p-methoxybenzoic acid, respectively, probably arising via oxidation of the corresponding aldehydes. The suggestion is made that there is, as yet, no conclusive evidence for the intermediacy of 3 in any reactions of O -substituted hydroxylamines or its derivatives. Mechanisms not involving O-nitrenes are suggested including the possibility of organolead intermediates being the species undergoing O to N migration and addition to olefins in the lead tetraacetate oxidations, and fragmentation-recombination pathways for the base-catalyzed reactions of 6 a .

Species possessing an electron-deficient nitrogen have been proposed and, in some instances, detected as reactive intermediates in a great many organic reactions. ${ }^{2}$ Even-electron intermediates of this type
(1) Portions of the work described here have been reported previously: (a) F. A. Carey, 19th Southeastern Regional Meeting of the American Chemical Society, Atlanta, Ga., Nov 1967, paper 69; (b) F. A. Carey and L. J. Hayes, J. Amer. Chem. Soc., 92, 7613 (1970).
(2) (a) P. A. S. Smith in "Molecular Rearrangements," Vol. 1, P. de Mayo, Ed., Interscience, New York, N. Y., 1963; (b) J. H. Boyer in 'Mechanisms of Molecular Migrations," Vol. 2, B. S. Thyagarajan, Ec., Interscience, New York, N. Y., 1969; (c) P. G. Gassman, Accounts Chem. Res., 3, 26 (1970); (d) P. A. S. Smith, "Open-Chain Nitrogen Compounds," W. A. Benjamin, New York, N. Y., 1965.
may be either nitrenes (RN :) or nitrenium ions ($\mathrm{R}^{+}-$ NR^{\prime}), and each of these may exist either in a singlet or triplet electronic state with the triplet usually being lower in energy. ${ }^{2 c, 3}$ If substituents are chosen so as to be able to interact electronically with the unfilled 2 p orbital on nitrogen, the energy levels of the singlet and triplet states will be perturbed so that the singlet could become the ground state, e.g., when R or R^{\prime} is nitrogen, oxygen, or fluorine. With
(3) R. S. Berry in "Nitrenes," W. Lwowski, Ed., Interscience, New York, N. Y., 1970, Chapter 2.
respect to this point $a b$ initio $\mathrm{SCF}-\mathrm{CI}$ calculations on $\mathrm{NH}_{2}+$ indicate the triplet to be $c a .45 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the singlet, ${ }^{4}$ while it has been suggested that $\mathrm{NF}_{2}+$ has a singlet ground state. ${ }^{5}$ For nitrenes CNDO-INDO calculations indicate singlet ground states for both HON and $\mathrm{H}_{2} \mathrm{NN}$. ${ }^{6}$
N-Nitrenes (1, diazenes, azanitrenes) and N-nitrenium ions (2, diazenium, azanitrenium) are sufficiently

$$
\begin{array}{cc}
\mathrm{R}_{2} \mathrm{~N} \ddot{\mathrm{~N}} & \mathrm{R}_{2} \mathrm{~N} \stackrel{+}{\mathrm{N}} \mathrm{H} \\
1 & 2
\end{array}
$$

stabilized to be accessible by chemical means, have been the object of a number of investigations, and are known to be important in reactions of hydrazine and its derivatives. ${ }^{7}$

The analogous oxygen-stabilized species, O-nitrenes (3, oxyazenes, oxynitrenes) and O-nitrenium ions (4,

$$
\begin{array}{cc}
\text { ROṆ } & \text { ROṆ } \mathrm{H} \\
3 & 4
\end{array}
$$

oxyazenium, oxynitrenium), have proved to be more elusive. This paper reports the results of numerous attempts o generate $\mathbf{3}$ and 4 by applying the techniques which had been shown to be useful for generation of 1 and 2.

When these studies were begun there were no published reports of systematic attempts at generating 3 and 4, although the possibility of an O-nitrene intermediate intervening in the oxidation of O-alkylhydroxylamines to yield hyponitrite esters had been noted. ${ }^{2 d}$

During the course of this work several reports appeared which described attempts to generate 3 or postulated it as an intermediate. ${ }^{8}$ A priori, 3 and 4 should be higher energy intermediate than 1 and 2 and presumably more difficult to generate, since oxygen is less effective at stabilizing an adjacent electrondeficient center than is nitrogen.

Results

Of the techniques which can be considered conventional for generation of nitrenes and related electrondeficient intermediates, two were chosen for detailed examination with respect to the question of O-nitrenes: (a) oxidation of O-alkylhydroxylamines (5) (eq 1) and (b) base-promoted α-elimination of N-sulfonyl- O alkylhydroxylamines (6 or 7) (eq 2).

The required substrates for each process, O-alkylhydroxylamines ($5 \mathbf{a}-\mathbf{e}$) and their corresponding sulfonamide derivatives $(6,7)$, were conveniently available using standard synthetic routes.
(4) S. T. Lee and K. Morokuma, J. Amer. Chem. Soc., 93, 6863 (1971).
(5) A. B. Cornford, D. C. Frost, F. G. Herring, and C. A. McDowell, J. Chem. Phys., 64, 1872 (1971).
(6) (a) L. J. Hayes, F. P. Billingsley, II, and C. Trindle, J. Org. Chem., 37, 3924 (1972) ; (b) J. Pealak, Jr., D. S. Klett, and C. W. David, J. Amer. Chem. Soc., 93, 5001 (1971).
(7) D. M. Lemal in "Nitrenes," W. Lwowski, Ed., Interscience, New York, N. Y., 1970, Chapter 10; D. M. Lemal, F. Menger, and E. Coats, J. Amer. Chem. Soc., 86, 2395 (1964).
(8) (a) J. H. Boyer and J. D. Woodyard, J. Org. Chem., 33, 3329 (1968); (b) A. Hassner, R. Wiederkehr, and A. J. Kascheres, ibid., 35, 1962 (1970); (c) S. L. Brois, J. Amer. Chem. Soc., 92, 1079 (1970); (d) R. Partch, B. Stokes, D. Bergman, and M. Budnik, Chem. Commun., 1504 (1971); (e) R. O. C. Norman, R. Purchase, and C. B. Thomas, J. Chem. Soc., Perkin Trans. 1, 1701 (1972); (f) B. V. Ioffe and E. V. Koroleva, Zh. Org. Khim., 8, 1548 (1972); Tetrahedron Lett., 619 (1973).

$$
\begin{align*}
& \mathrm{RONH}_{2} \\
& \text { 5a, } \mathrm{R}=\mathrm{Ph}_{2} \mathrm{CH} \\
& \text { b. } \mathrm{R}=p \cdot \mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \\
& \text { c, } \mathrm{R}=\mathrm{CH}_{3} \\
& \text { d. } \mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \\
& \text { e. } \mathrm{R}=\mathrm{PhCH}_{2} \\
& \text { f. } \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \\
& \text { 6a, } \mathrm{R}=\mathrm{Ph}_{2} \mathrm{CH} \\
& \text { b, } \mathrm{R}=\mathrm{PhCH}_{2} \\
& \text { c, } \mathrm{R}=p \cdot \mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \\
& \text { d, } \mathrm{R}=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \\
& \mathrm{RONHSO}_{2} \mathrm{CH}_{3} \\
& \text { 7a, } \mathrm{R}=\mathrm{Ph}_{2} \mathrm{CH} \\
& \mathrm{RONH}_{2} \xrightarrow{[0]} \mathrm{ROM}: \tag{1}\\
& 5 \\
& \mathrm{RONHSO} \mathrm{e}_{2} \mathrm{R}^{\prime} \xrightarrow{\text { base }} \mathrm{RO} \overline{\mathrm{~N}} \mathrm{SO}_{2} \mathrm{R}^{\prime} \xrightarrow{\Delta} \mathrm{RO} \ddot{\mathrm{~N}}+\mathrm{RSO}_{2}{ }^{-} \tag{2}\\
& 6
\end{align*}
$$

Oxidation of O-Substituted Hydroxylamines.A number of oxidizing agents were briefly surveyed using O-diphenylmethylhydroxylamine (5a) as the substrate. Nickel peroxide, ${ }^{9}$ a source of hydroxyl radicals reported to oxidize amines to nitrenes, reacted rapidly with 5 a to cleave the $\mathrm{O}-\mathrm{N}$ bond, yielding benzhydrol in 83% yield. N-Bromosuccinimide in carbon tetrachloride converted 5 a to benzophenonc (29%) and O-diphenylmethylbenzophenone oxime $\left(\mathrm{Ph}_{2^{-}}\right.$ $\mathrm{CHON}=\mathrm{CPh}_{2}, 8,51 \%$), presumably formed by condensation of 5 a with benzophenone. Mercuric oxide, a commonly used oxidant of N, N-dialkylhydrazines, ${ }^{10}$ failed to react with 5 a.

Lead tetraacetate reacted readily with 5 a, as well as other O-alkylhydroxylamines, to afford product mixtures the composition of which was solvent dependent. In dichloromethane at 25°, 5 a yiclded a white, crystalline solid formulated on the basis of nmr^{11} and ir 12 data as N-diphenylmethoxy- N^{\prime}-diphenylmethyldiazinc N^{\prime}-oxide $\left[\mathrm{Ph}_{2} \mathrm{CHON}=\mathrm{N}\left(\mathrm{O}^{-}\right) \mathrm{CHPh}_{2}{ }^{+}\right.$, 9] in 32% yield. This product was also isolated from lead tetraacetate oxidation of 5 a in trichloroethylene as solvent. Complex reaction mixtures containing benzophenone, benzhydrol, and either benzhydryl acetate or benzhydryl methyl ether were obtained in acetic acid and methanol, respectively. When 5 a was oxidized with lead tetraacetate in pyridine or dimethylformamide there was formed, in addition to benzophenone and 8, small amounts of benzophenone oxime. The lead tetraacetate oxidation of $O-p$-nitrobenzylhydroxylamine was relatively clean and gave p-nitrobenzyl alcohol as the only product in high yield.

Since Brois ${ }^{8 c}$ had reported that oxidation of O methylhydroxylamine (5c) in the presence of tetramethylethylene resulted in the formation of the N methoxyaziridine 10 , a number of oxidations were carried out in the presence of olefins as trapping reagents.

For reasons of convenience we chose to use $O-n$ butylhydroxylamine (5d) and found that this compound afforded the N - n-butoxyaziridine (11) in 40% yield on oxidation with lead tetraacetate in tctramethylethylene.

[^26]

The nmr spectrum of 11 exhibited two singlets at $\delta 1.15$ and 1.19 of equal intensity for the aziridine ring methyl groups which are nonequivalent by virtue of the slow rate of pyramidal inversion at nitrogen. ${ }^{3 \mathrm{c}}$

Since an important piece of evidence in deducing the nature of the intermediate formed by lead tetraacetate oxidation of O -substituted hydroxylamines is whether the intermediate reacts with olefin to afford aziridines in a concerted or nonconcerted fashion, it was considered important to try to trap the intermediate with cis- and trans-2-butene. Generally speaking, stereospecific addition to cis- and trans-2-butene is taken as supporting concerted addition, although a nonconcerted addition can be stereospecific. Nonstcreospecific addition, however, requires that the process not be concerted.

When the necessary reactions were performed two observations were madc. First, both cis-2-butene and trans-2-butenc were much less effective at trapping the reactive intermediate than tetramethylethylene, giving yields of less than 20% of N-n-butoxyaziridines. Secondly, the reactions were not stereospecific. Thus, addition of a solution of 2 b in dichloromethane to a well-stirred slurry of lead tetraacetate in trans-2-butene at -78° afforded N - n-butoxy-trans-2,3-dimethylaziridine (12) and N-n-butoxy-cis2,3 -dimethylaziridine (13) in a ratio of $82: 18$. Using cis-2-butene as the trap under identical conditions gave 12 and 13 in a ratio of 38:62. Control experiments demonstrated that neither the cis- and trans-2-butene nor the products isomerized under the reaction conditions.

Assignment of structure to the adducts was made by considering their nmr spectra. The isomer with the shorter retention time on glpc (1.7 min) was identified as 12 by the presence of two nonequivalent methyl doublets at $\delta 1.13(J=5 \mathrm{~Hz})$ and $1.33(J=5 \mathrm{~Hz})$. The isomer with the longer retention time (2.2 min) exhibited a single methyl peak at $\delta 1.11$ (doublet, J $=6 \mathrm{~Hz}$) consistent with 13 . The other cis isomer 14

did not appear to be present. Both 12 and 13 gave similar mass spectra with $m / e 70$ as the most intense peak in each, corresponding to loss of BuO - from the molecular ion to leave $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}\right){ }^{+}$. The next most intense peak in each was $m / e 41$, while $m / e 143$ (parent)
was observed to be of quite low intensity (1.1 and 2.8%).

Base-Promoted Decomposition of N -Sulfonyl- O -alkylhydroxylamines.-Conversion of $6 a$ or $7 a$ to the corresponding sodium or lithium salt with sodium hydride or n-butyllithium, respectively, followed by pyrolysis in triglyme at $160-200^{\circ}$ resulted in the loss of sulfinate and net O to N migration of the diphenylmethyl substituent to afford benzophenone oxime. These results are summarized in Table I and eq 3.

6a or $\mathbf{7 a} \longrightarrow \mathrm{Ph}_{2} \mathrm{CHON} \mathrm{SO}_{2} \mathrm{X} \longrightarrow \mathrm{Ph}_{2} \mathrm{C}=\mathrm{NOH}+\mathrm{XSO}_{2}-$
Table I
Thermal Decomposition of Anions Derived from 6a and 7a

Substrate	Base	Leaving group	$\begin{gathered} \text { Yield of } \\ \mathrm{Ph}_{2} \mathrm{C}=\mathrm{NOH}, \\ \% \end{gathered}$
6 a	NaH (2 equiv)	Ts ${ }^{-}$	58
7 a	NaH (2 equiv)	$\mathrm{CH}_{3} \mathrm{SO}_{2}{ }^{-}$	48
63	BuLi (1.1 equiv)	Ts ${ }^{-}$	100

When large excesses of NaH were employed the reaction took a different course and produced benzhydrol exclusively.

Although the reaction was chosen as one likely to produce an O-nitrene and the formation of benzophenone oxime is consistent with the anticipated behavior of such an intermediate, there do exist a number of alternative mechanisms which could afford benzophenone oxime without an O-nitrene bcing involved. Efforts were made to test the more reasonable possibilities by experiment.

One such possibility for the case of $6 a$ is shown in eq 4-6. This scheme assumes that the expected

anion 15 is in equilibrium with the carbanion 16, which undergoes an intramolecular displacement of p-toluenesulfinate to afford the oxazirane 17 , which in turn rearranges to benzophenone oxime.

This sequence of events is analogous to one tentatively suggested by Paquette to explain the O to N migration observed in the base-catalyzed decomposition of N-chloro-O-substituted hydroxylamines. ${ }^{13}$

This possibility could not be tested directly using 6a but rather required the N-methyl compound 18. If the carbanion \rightarrow oxazirane transformation is important, then 18 should undergo this as readily as 6 a and lead to products derived from N-methyldiphenyloxazirane. ${ }^{14}$ Treatment of 18 with 2 equiv of sodium hydride in triglyme at 200° for 19 hr and separation of
(13) L. A. Paquette, Tetrahedron Lett., 485 (1962).
(14) For a review of oxazirane chemistry see W. D. Emmons in "Heterocyclic Compounds with Three- and Four-Membered Rings," Part One, A. Weissberger, Ed., Interscience, New York, N. Y., 1964, Chapter IV.
the products by preparative tle led to the isolation of benzophenone (13%), benzhydrol (72%), and N -methyl- p-toluenesulfonamide (46%). These products are most reasonably explained as arising from cleavage of the carbanion derived from 18 to benzophenone and N-methyl- p-toluenesulfonamide followed by reduction of the benzophenone to benzhydrol by sodium hydride. ${ }^{15}$

Evidence to support the notion that the benzhydrol is formed by reduction of the benzophenone resulting from cleavage of the carbanion was obtained by repeating the experiment using 18 substituted with deuterium at the carbon atom which bears the two phenyl groups. The benzhydrol formed in this reaction was isolated in 65% yield and determined to have lost completely its deuterium label in accordance with the prediction based on eq 7 .

18
19

$$
\begin{equation*}
\mathrm{Ph}_{2} \mathrm{CO}+\mathrm{CH}_{3} \overline{\mathrm{~N}} \mathrm{Ts} \tag{7}
\end{equation*}
$$

It thus appears that carbanions in these systems, when gencrated, undergo efficient fragmentation to carbonyl compounds rather than intramolecular O to N rearrangement. This also served to explain the results of reactions in which the p-toluenesulfonamide derivatives $6 \mathrm{~b}-\mathrm{d}$ of O-benzyl-, O - p-bromobenzyl-, and $O-p$-methoxybenzylhydroxylamine were treated with sodium hydride in triglyme at elevated temperature. The products were those formed by cleavage of the oxygen-nitrogen bond, affording initially substituted benzaldehydes and p-toluenesulfonamide. The isolated products from $6 b, 6 c$, and $6 d$, exclusive of p-toluenesulfonamide, were benzoic acid (30%), p-bromobenzoic acid (41%), and p-methoxybenzoic acid (39%), respectively. In one experiment benzonitrile was isolated from $\mathbf{6 b}$ in 35% yield along with a small amount (8%) of N-p-toluenesulfonylbenzylamine. Both the conversion of benzaldehyde to benzoic acid and the formation of $\mathrm{PhCH}_{2} \mathrm{NHTs}$ were established as occurring under the reaction conditions by a control experiment in which the anion of p toluenesulfonamide was generated using sodium hydride and heated in triglyme with benzaldehyde to yield benzoic acid (48\%), benzyl alcohol (15%), and N - p-toluenesulfonylbenzylamine (11%).

The dominant reaction path of $6 b, 6 c$, and $6 d$ therefore appears to be base-catalyzed cleavage to aldehyde and p-toluenesulfonamide anion. The formation of N - p-toluenesulfonylbenzylamine probably results from condensation of these two fragments followed by dehydration and reduction of the tosylimine with sodium hydride as formulated in Scheme I.
It is reasonable that $\mathrm{PhCH}=\mathrm{NT}$ s is also the precursor to benzonitrile via base-catalyzed β-elimination, although benzonitrile was not observed in the control experiment. It is not known exactly how oxidation of the aldehyde to the carboxylic acid occurs, and speculation on that point will not be offered, since it is not essential to the central question, i.e., whether O-nitrenes are formed in these reactions.

[^27]Scheme I

Discussion
It is apparent that many of the experimental methods which are suitable for the generation of N-nitrenes (1) from hydrazine dcrivatives are not directly applicable to the generation of O-nitrenes (3) from hydroxylamine derivatives. The most common observation in reactions of O-alkylhydroxylamines and their derivatives is cleavage of the $\mathrm{O}-\mathrm{N}$ bond. This has been observed previously, for example, in the attempted deoxygenation of benzyl nitrite and tert-butyl nitrite by trivalent phosphorus compounds as a route to $3 .^{8 a}$ Oxidation of 5 e with chromic acid^{16} or bromine afforded mixtures of benzaldehyde and benzyl alcohol with the brominc oxidation having been shown ${ }^{17}$ to procced by initial formation of a hyponitrite ester, ${ }^{18}$ which undergoes fragmentation to nitrogen and alkoxy radicals which in turn disproportionate to an aldehyde and an alcohol. ${ }^{19}$ The formation of the hyponitrite ester need not involve the intermediacy of 3 , since a reasonable alternative path exists. The overall process can be represented by Scheme II for the case of $5 \mathbf{e}$.

Scheme II

$$
\begin{aligned}
& 5 \mathrm{e}+\mathrm{Br}_{2}+\mathrm{OH}^{-} \longrightarrow \mathrm{PhCH}_{2} \mathrm{ONHBr}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}^{-} \\
& \begin{aligned}
\mathrm{PhCH}_{2} \mathrm{ONHBr}
\end{aligned}+5 \mathrm{e}+\underset{\mathrm{PhCH}_{2}}{\mathrm{OHNHNHOCH}_{2} \mathrm{Ph}^{-}}+\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{PhCH}_{2} \mathrm{ONHNHOCH}_{2} \mathrm{Ph}^{2}+\mathrm{Br}_{2}+2 \mathrm{OH}^{-} \longrightarrow \\
& \mathrm{PhCH}_{2} \mathrm{ON}=\mathrm{NOCH}_{2} \mathrm{Ph}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Br}^{-} \\
& \mathrm{PhCH}_{2} \mathrm{ON}=\mathrm{NOCH}_{2} \mathrm{Ph} \longrightarrow \mathrm{~N}_{2}+2 \mathrm{PhCH}_{2} \mathrm{O} \text {. } \\
& 2 \mathrm{PhCH}_{2} \mathrm{O} \longrightarrow \mathrm{PhCHO}+\mathrm{PhCH}_{2} \mathrm{OH}
\end{aligned}
$$

Cleavage of the $\mathrm{O}-\mathrm{N}$ bond was the dominant reaction course in most of the reactions carried out in this study as well. It was not considered significant for our purposes to determine whether hyponitrite esters were involved in these processes, because, as in the example citcd above, hyponitrite ester formation does not requirc an O-nitrene to be present as its precursor. ${ }^{20}$ The more important concerns were those reactions which afforded products having the $\mathrm{O}-\mathrm{N}$ bond intact. In the case of lead tetraacetate oxidation of 5 these were the formation of nitroso compounds (as dimers) from $5 e$ and $5 f,{ }^{8 d, e}$ the formation of 9 from 5a, and the formation of N-alkoxyaziridines when the oxidation of $5 \mathrm{c}^{8 \mathrm{c}}$ and 5 d was performed in the presence of olefins.

While O to N migration of an aralkyl group to afford a nitroso compound is consistent with the anticipated

[^28]behavior of an O-nitrene, the observation of products resulting from O to N migration does not demand the intermediacy of 3 . The most probable initial reaction of 5 with lead tetraacetate is formation of the organolead intermediate 20.
$$
5+\mathrm{Pb}(\mathrm{OAc})_{4} \longrightarrow \underset{20}{\mathrm{RONHPb}(\mathrm{OAc})_{3}}+\mathrm{HOAc}
$$

By analogy ${ }^{21}$ with other reactions of organolead intermediates, 20 could be expected to serve as a source of the 0 -nitrenium ion 4 , with 3 resulting from deprotonation of 4.

$$
\begin{equation*}
20 \longrightarrow \underset{4}{\mathrm{RON}} \stackrel{+}{\mathrm{N}} \mathrm{H}+\mathrm{Pb}(\mathrm{OAc})_{2}+\mathrm{OAc}^{-} \tag{8b}
\end{equation*}
$$

The O-nitrenium cation 4 seemingly has the capacity to do all of the things anticipated for 3: O to N migration of R and addition to alkenes are very likely reactions of 4. Additionally, these reactions could occur in a manner concerted with cleavage of the nitrogenlead bond of 20 . The available data do not allow a choice to be made regarding the point at which reactions occur during the process $20 \rightarrow 4 \rightarrow 3$, and the conclusion that 3 and/or 4 are intermediates in the lead tetraacetate oxidation of O -substituted hydroxylamines is not warranted. This conclusion receives support from the lack of stereospecificity observed in N alkoxyaziridine formation from cis- and trans-2-butene and 5d. Formation of N-alkoxyaziridine is not nearly so efficient as from tetramethylethylene and the total amount formed is not large, being estimated at $10-$ 20%. Nevertheless, both 12 and 13 are formed (in different amounts) from each olefin, providing evidence that at least a portion of the adduct arises by a nonstereospecific process. Triplet O-nitrene is not a reasonable intermediate, because calculations ${ }^{6 a}$ indicate the singlet O-nitrene to be more stable than the triplet and the reaction conditions are those which because of spin conservation would not be expected to yield the triplet state directly. Nonstereospecific addition requires at least a two-step mechanism and either 20 or 4 could add in a two-step process as shown in Scheme III.

Complete equilibration of the initial carbonium ion intermediates would not occur if the rate of closure were competitive with the rate of rotation around the carbon-carbon bond. The reaction mixtures were complex, and if pinacol-type rearrangement products were formed they were not detected.

[^29]The results of the base-catalyzed thermal decomposition reactions of N - p-toluenesulfonyl- O-alkylhydroxylamines are similarly inconclusive with regard to the intermediacy of 3 . In most cases the reactions appeared to be those of carbanions formed in equilibrium with the desired amide ions leading to cleavage to an aldehyde or ketone plus p-toluenesulfonamide anion. In this respect the reactions of 6 and 7 parallel closely the well-known Wittig rearrangement of O-benzyl esters for which a fragmentation-recombination mechanism has been shown to be operative. ${ }^{22}$ (Compare Schemes I and IV.)

The condensation of p-toluenesulfonamide anion with aldehydes and ketones is not very efficient and alternative reactions, such as reduction by sodium hydride or oxidation (mechanism not known), compete effectively.

The fragmentation-recombination pathway could conceivably lead to benzophenone oxime from 6a via oxazirane 17 formed by condensation of benzophenone and p-toluenesulfonamide ion (eq 9).

This possibility was tested by attempting to condense p-toluenesulfonamide with benzophenone in the presence of sodium hydride under the conditions of reaction. No benzophenone oxime was obtained. The isolated products were benzhydrol (32%) and recovered benzophenone (36%). Although the results of this control experiment were not supportive of eq 9 ; we are reluctant to discard this possibility totally, since it is not always possible to ensure that the conditions of a control experiment are identical with those which exist during a reaction. This mechanism fits best into the total picture which emerges for basecatalyzed thermal decomposition of 6 and 7 .

The conclusions to be reached from this study are that the methods used to generate N-nitrenes from hydrazine derivatives when applied to the generation of O-nitrenes from hydroxylamine derivatives afford results which do not uniquely require the involvement of O-nitrenes.

Experimental Section ${ }^{23}$

Reactions of O-Diphenylmethylhydroxylamine with Oxidizing Agents. A. Nickel Peroxide.-To a solution of $383 \mathrm{mg}(1.92$ mmol) of 5 a in 5 ml of dry benzene was added 1.6 g of nickel peroxide. ${ }^{9 \mathrm{a}}$ A rapid reaction occurred with 5 a being entirely consumed within 5 min (tlc examination). The solution was

[^30]filtered and evaporated to yield 291 mg (83%) of benzhydrol, identified by comparison of its ir spectrum with that of authentic material. After recrystallization from hexane the melting point was 64-6.5. $)^{\circ}\left(\right.$ reported $\left.\mathrm{mp} 68-69^{\circ}\right) .{ }^{24}$
B. N-Bromosuccinimide.-A solution containing 386 mg $(1.93 \mathrm{mmol})$ of 5 a and $3.52 \mathrm{mg}(1.93 \mathrm{mmol})$ of N-bromosuccinimide in 5 ml of carbon tetrachloride was refluxed under nitrogen for 20 hr . The solution was filtered and evaporated and the residue was chromatographed on 30 g of Woelm silica gel. Elution with chloroform (100 ml) afforded $178.5 \mathrm{mg}(.51 \%)$ of O-diphenylmethyl benzophenone oxime (8) as a clear syrup which soon crystallized (identified by comparison of its ir spectrum with that of authentic material). The product on recrystallization from

The second fraction, eluted with 100 ml of $10: 1$ chloroformether, was a syrup ($102 \mathrm{mg}, 29 \%$) identified as benzophenone by its ir spectrum
C. Lead Tetraacetate in Methylene Chloride.-To 746 mg (3.7 .7 mmol) of 5 a in 20 ml of methylene chloride was added 1.68 g (3.7 .5 mmol) of lead tetraacetate while stirring at 0°. A vigorous reaction occurred. After 10 min the reaction mixture was worked up and evaporated to leave a syrup which was taken up in ethanol, cooled, and filtered to afford 223 mg of 9 as a tan solid, mp $114-127^{\circ}$ (crude yield 32%). IRecrystallization from ethanol gave the analytical sample: mp 146.7-147.7 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right): 3100-3000,1500,1460,1004,994,940,910,700 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.4$ (s, 20, aromatic), 6.4.) ($\mathrm{s}, 1, \mathrm{HCO}$), 6.3.) ($\mathrm{s}, 1$, HCN).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 79.17; H, .. $62 ; \mathrm{N}, 7.10$; mol wt, 394.i. Found: C, 79.03; H, .i.62; N, 7.30; mol wt, 37.) (last).

The same product was formed in 19% yield when the oxidation was carried out in trichloroethylene. In this case the major product was benzhydrol (36%).
D. Lead Tetraacetate in Pyridine.-Lead tetraacetate (1.73 $\mathrm{g}, 3.9 \mathrm{mmol}$) was added to $487 \mathrm{mg}(2.4 \mathrm{mmol})$ of 5 d in .7 ml of pyridine. An exothermic reaction occurred. The solution was refluxed for 17 hr (N_{2} atmosphere) and worked up. The extracts were evaporated and the pyridine was removed by coevaporation with .50 ml of toluene on the rotary evaporator. The residue was chromatographed on 40 g of Woelm silica gel and eluted first with chloroform, collecting . $00-\mathrm{ml}$ fractions. The first three fractions contained $61 \mathrm{mg}(14 \%)$ of $8, \mathrm{mp} 96-99^{\circ}$, identified by its ir spectrum (lit. mp 101.i)-102 ${ }^{\circ}$. ${ }^{25}$ Fractions $4-8$ contained 216 mg (48%) of benzophenone identified by its ir spectrum and R_{f} on tlc. Fractions 9 and 10 contained $81 \mathrm{mg}(17 \%)$ of benzophenone oxime identified by ir and R_{1} on tlc.

The same compounds were obtained when the oxidation was carried out in dimethylformamide at 25° for 2 hr . The yield of 8 was 42%, benzophenone was 12%, and the oxime was ca. 30% (chromatographic fraction contaminated with benzhydrol).

Reaction of $0-p$-Nitrobenzylhydroxylamine with Lead Tetra-acetate.-To a solution of $400 \mathrm{mg}(2.4 \mathrm{mmol})$ of 5 b in 5 ml of methanol was added $1.2 \mathrm{~g}(2.7 \mathrm{mmol})$ of lead tetraacetate. The reaction mixture was worked up after 20 hr and evaporated to leave $231 \mathrm{mg}(69 \%)$ of crude p-nitrobenzyl alcohol, $\mathrm{mp} 6 . \mathrm{i}^{-}-76^{\circ}$, the ir spectrum of which was identical with that of authentic material. Recrystallization from water afforded material of mp $90-92^{\circ}$ (lit. mp 9:3 ${ }^{\circ}$. ${ }^{24}$

A similar experiment in methylene chloride at 25° for 10 min afforded p-nitrobenzyl alcohol in 68% yield.

Reaction of O-n-Butylhydroxylamine (5d) with Lead Tetraacetate in the Presence of Olefins.-A mixture of lead tetraacetate ($6.2 \mathrm{~g}, 13.9 \mathrm{mmol}$) and excess olefin was cooled in an isopropyl alcohol-Dry Ice bath while a solution of $1.0 \mathrm{~g}(11.2 \mathrm{mmol})$ of 5 d in 20 ml of dichloromethane was added slowly over the course of 1 hr . The reaction mixture was allowed to warm to room temperature and then stirred for an additional 1 hr , during which time a precipitate formed. The reaction mixture was filtered and the precipitate was washed thoroughly with a small amount of dichloromethane. The dichloromethane solution was washed with.: \% sodium carbonate and water and dried (MgSO_{4}), and the solvent was distilled at atmospheric pressure to leave the crude product.
A. Tetramethylethylene.-The crude product obtained when $5.7 \mathrm{ml}(68 . . i \mathrm{mmol})$ of tetramethylethylene was used as the trap-

[^31]ping reagent was chromatographed on 70 g of silica gel. Elution with n-hexane (200 ml) followed by a $90 \% n$-hexane-ether solution (200 ml) yielded $71 . \mathrm{mg}(37 \%$) of $1-n$-butoxy-2,2,3,3-tetramethylaziridine (11): ir $\left(\mathrm{CHCl}_{3}\right)$ 297.5, 1460, 1380, 1170, 1120, 1070 , and $1043 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.65(\mathrm{t}, 2 \mathrm{H}, J=6 \mathrm{~Hz})$, $1.19(\mathrm{~s}), 1.15(\mathrm{~s})$, and $0.7-1.8(\mathrm{~m})$, the area between 0.7 and 1.8 integrated for 19 H .

The analytical sample was prepared by preparative glpc.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 70.12 ; \mathrm{H}, 12.36 ; \mathrm{N}, 8.18$. Found: C, 70.03; H, 12.29; N, 8.14.
The reaction was repeated with 2 ml of acetic acid added to the initial lead tetraacetate-olefin mixture. A 40% yield of the aziridine was obtained.
B. trans-2-Butene.-Analysis of the crude product by glpc at a column temperature of 80° and a flow rate of $8.5 \mathrm{ml} / \mathrm{min}$ revealed only two products with retention times greater than 1 min . The major one (retention time 1.7 min) was isolated by preparative glpc and determined to be 1 -n-butoxy-trans-2,3-dimethylaziridine (12): ir $\left(\mathrm{CHCl}_{3}\right)$ 297.. $, 1740,14.50,1380,12.50,107.5$, 103.), and $970 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.7(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz})$ and $0.7-2.0(\mathrm{~m}, 15 \mathrm{H})$; mass spectrum $m / e 70$ (base peak), M^{+} 143, 56, 41.
Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 67.09 ; \mathrm{H}, 11.96 ; \mathrm{N}, 9.78$. Found: C, 67.08; H, 11.82; N, 9.98.
The minor component had the same retention time (2.2 min) as l-n-butoxy-cis-2,3-dimethylaziridine (13). Sufficient material was trapped from the glpc to measure the ir spectrum of this product. It was identical with that of 13 .

The ratio of trans (12) to cis (13) was 4:1. Control experiments (glpc analysis) established that trans-2-butene did not isomerize to cis-2-butene under the reaction conditions.
C. cis-2-Butene.-Analysis of the crude product by glpc indicated that the same products were formed as in the previous experiment but that in this case the ratio of the trans-aziridine to the cis-aziridine was $1: 1.6$. The major isomer was isolated by preparative glpc and determined to be 1 - n-butoxy-cis-2,3-dimethylaziridine (13): $\operatorname{ir}\left(\mathrm{CHCl}_{3}\right)$ 2975, $1740,1460,1380,1210$, 1070 , and $970 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.7(\mathrm{t}, 2 \mathrm{H}, J=6 \mathrm{~Hz})$ and $0.7-2.3(\mathrm{~m}, 15 \mathrm{H})$; mass spectrum $\mathrm{m} / \mathrm{c} 70$ (base peak), 57,56 , .).7, 42, 41 .

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 67.09 ; \mathrm{H}, 11.96 ; \mathrm{N}, 9.78$. Found: C, 67.19; H, 12.08; N, 9.68.

The minor component was isolated by preparative glpc and determined to be 12 by comparison of its ir spectrum with that of material from the previous experiment.

Pyrolysis of Lithio Derivative of N - p-Toluenesulfonyl- O-diphenylmethylhydroxylamine (6a).-n-Butyllithium in hexane ($2.6 \mathrm{ml}, 6.1 \mathrm{mmol}$) was added to a solution of $2.00 \mathrm{~g}(.5 .67 \mathrm{mmol})$ of 6 a in 2.5 ml of triglyme and the solution was heated at 16.5° for 18 hr . The reaction mixture was poured into 200 ml of water and extracted with four $.00-\mathrm{ml}$ portions of ether and the ether extracts were washed with three $20-\mathrm{ml}$ portions of water and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the ether left the crude product, which was chromatographed on 30 g of silica gel. The column was eluted with 100 ml of hexane, 200 ml of $1: 1$ hexane-ether, and 100 ml of ether. All of the product was eluted in the hexaneether mixture fraction and was identified as benzophenone oxime $(1.13 \mathrm{~g}, 100 \%), \mathrm{mp} 134-139^{\circ}$ (reported $\mathrm{mp} 143-144^{\circ}$). ${ }^{24}$ The ir spectrum of the product was identical with that of authentic material. Recrystallization from ethanol-water raised the melting point to $136-138^{\circ}$.
The aqueous layers from the extractions were combined and acidified with 12 N hydrochloric acid and extracted with three : $00-\mathrm{ml}$ portions of ether. The ether extracts were washed with $20-\mathrm{ml}$ portions of water, dried over magnesium sulfate, and evaporated to leave 1.07 g of crude product which was washed well with n-hexane to afford $500 \mathrm{mg}(.57 \%)$ of p-toluenesulfinic acid, $\mathrm{mp} 83-87^{\circ}$ (reported $\mathrm{mp} 85-90^{\circ}$), ${ }^{24}$ which was identical with authentic material in its ir spectrum.

Pyrolysis of Sodio Derivative of 6 a . Two Equivalents of NaH .-A solution containing 2.00 g (5.67 mmol) of 6 a and 0.546 $\mathrm{g}(11.3 \mathrm{mmol})$ of sodium hydride as a 50% dispersion in mineral oil in 2.5 ml of triglyme was heated at 200° for 14 hr . The reaction mixture was poured into 400 ml of water and extracted with four $50-\mathrm{ml}$ portions of ether and the combined ether extracts were washed with four $25-\mathrm{ml}$ portions of water. After drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, the crude product was chromatographed on 30 g of silica gel and eluted successively with $1: 50 \mathrm{ml}$ of n-hexane, 100 ml of $1: 1$ hexane-ether, and 200 ml of ether. The first fraction contained 0.13 g of mineral oil.

The second fraction contained 650 mg (: 8%) of benzophenone oxime identified by its ir spectrum, which was identical with that of authentic material. Recrystallization from ethanol-water gave material of $\mathrm{mp} \mathrm{141-142}^{\circ}$.

Four Equivalents of NaH .-To a solution of $3.3 \mathrm{mg}(1.0$ mmol) of 6 a in 10 ml of diglyme was added 172 mg (4 mmol) of a 56% sodium hydride dispersion in mineral oil and the reaction mixture was refluxed for 1 hr , during which time a large amount of solid formed. The reaction mixture was poured into 75 ml of water and extracted with three $20-\mathrm{ml}$ portions of ether and the combined ether extracts were washed with three $10-\mathrm{ml}$ portions of water. After drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the ether the product was heated at $100^{\circ}(1 \mathrm{~mm})$ to remove residual diglyme and the residue was taken up in hexane. Cooling of the hexane solution resulted in the deposit of $98.3 \mathrm{mg}(.26 \%)$ of benzhydrol, $\operatorname{mp} 62-65^{\circ}$ (reported $\operatorname{mp} 68-69^{\circ}$), ${ }^{24}$ identified by its ir spectrum, which was identical with that of authentic material.

Similar results were obtained when 6a was heated at 200° for 22 hr with 10 equiv of sodium hydride in triglyme.

Ten Equivalents of NaD.-Sodium deuteride was added as a 50% suspension in mineral oil ($1.0 \mathrm{~g}, 20 \mathrm{mmol}$) to a solution of 748 mg (2.1 mmol) of 6 a in 2.$) \mathrm{ml}$ of triglyme and the solution was refluxed for 1.5 hr . Work-up afforded $245 \mathrm{mg}(64 \%)$ of benzhydrol, mp 63-64 ${ }^{\circ}$. The ir and nmr were identical with those of an authentic sample and showed no evidence for deuterium incorporation.

Pyrolysis of Sodio Derivative of N-p-Toluenesulfonyl- O-diphenylmethylhydroxylamine (7a). - A solution of 7 a (. 30 mg , 1.92 mmol) in 25 ml of triglyme was heated with $184 \mathrm{mg}(3.84$ mmol) of a 50% dispersion of sodium hydride in mineral oil at 200° for 14 hr . The reaction mixture was worked up as described above for 6a and the crude product was washed with pentane to afford $180 \mathrm{mg}(48 \%)$ of ben\%ophenone oxime, mp $136-140^{\circ}$.

Reaction of N-Methyl- N - p-toluenesulfonyl- O-diphenylmethylhydroxylamine (18) with NaH .-To $1.0 \mathrm{~g}(2.7 \mathrm{mmol})$ of 18 in 50 ml of triglyme was added 5.4 mmol of sodium hydride and the solution was heated at 210° for 19 hr . The reaction mixture was quenched with 400 ml of water and worked up as in previous experiments. The crude product was purified by preparative tle using a n-hexane-ether ($2: 1$) solution to yield $66 \mathrm{mg}(13 \%)$ of benzophenone, 281 mg ($.77 \%$) of benzhydrol, $\mathrm{mp} \mathrm{61-62}^{\circ}$, and $122 \mathrm{mg}(24 \%)$ of N-methyl- p-toluenesulfonamide, mp 6.$)^{-}-72^{\circ}$ (lit. ${ }^{24} \mathrm{mp} 78-79^{\circ}$). The ir and nmr were shown to be identical with those of authentic samples of ben\%ophenone, benzhydrol, and N-methyl- p-toluenesulfonamide, respectively.

The base-soluble fraction was purified by preparative tle using a n-hexane-ether ($2: 1$) solution to yield 73 mg (14.7%) of benzhydrol, $\mathrm{mp} 58-63^{\circ}, 10 \mathrm{mg}(3 \%)$ of benzoic acid, and 111 mg (22%) of N-methyl- p-toluenesulfonamide. The ir and nmr were shown to be identical with those of authentic samples of benzhydrol, ben\%oic acid, and N-methyl- p-toluenesulfonamide, respectively.
Reaction of N-Methyl- N - p-toluenesulfonyl- O-diphenylmethylhydroxylamine $-\alpha-d_{1}$ with NaH.-Repetition of the preceding experiment using $441 \mathrm{mg}(1.2 \mathrm{mmol})$ of the title compound afforded a crude product which was purified by preparative tle ($2: 1$ hexane-ether) to yield $168 \mathrm{mg}(65 \%)$ of unlabeled benzhydrol, mp 63-6:5 ${ }^{\circ}$. The ir, nmr and mass spectra were identical with those of an authentic sample.

A control experiment in which $\mathrm{Ph}_{2} \mathrm{CDOH}$ was heated at 135° for 18 hr in triglyme resulted in a 71% recovery of benzhydrol which retained 90% of the original deuterium (nmr analysis).

Attempted Reaction of Benzophenone with p-Toluenesul-fonamide.- p-Toluenesulfonamide ($970 \mathrm{mg}, 5.67 \mathrm{mmol}$) was dissolved in dry triglyme (25 ml). A 50% oil dispersion of sodium hydride ($545 \mathrm{mg}, 10.4 \mathrm{mmol}$) was added slowly and the reaction was stirred for 15 min . Benzophenone $(1.0 \mathrm{~g}, 5.67$ mmol) was added and the reaction was heated at 18.5° for 19 hr. Work-up was carried out as described in previous experiments. The crude product weighed 1.13 g . A portion of this product (405 mg) was separated by preparative tlc using $2: 1$ hexane-ether as the developing solvent to yield 12.5 mg of benzophenone and 114 mg of benzhydrol, $\mathrm{mp} 64-65^{\circ}$. These amounts correspond to yields of 36 and 32%, respectively. The identity of the products was established by comparison of their ir spectra with those of authentic material.

Reactions of N - p-Toluenesulfonyl- O-benzylhydroxylamine with Sodium Hydride. A.-To $2.0 \mathrm{~g}(7.2 \mathrm{mmol})$ of 6 b in 200 ml of purified tetrahydrofuran was added 1 equiv of sodium hydride.

The reaction mixture was stirred for 30 min and the solvent was evaporated under reduced pressure. The salt was then heated at 192° in 100 ml of triglyme for 18 hr under nitrogen. The reaction mixture was poured into 400 ml of water and extracted with five $50-\mathrm{ml}$ portions of ether. The ether extracts were then washed with three $50-\mathrm{ml}$ portions of water and dried over magnesium sulfate. The residue after evaporation of the ether was chromatographed on 50 g of silica gel and eluted successively with 100 ml of hexane, 200 ml of $3: 1$ hexane-ether, and 200 ml of $1: 1$ hexane-ether. The middle fractions on evaporation afforded $263 \mathrm{mg}(3 . \%)$ of benzonitrile, which was identified by comparison of its ir spectrum and glpc retention time with those of authentic material. Further elution with ether removed $162 \mathrm{mg}(8 \%)$ of N - p-toluenesulfonylbenzylamine, mp $108-112^{\circ}$ (reported ${ }^{26} \mathrm{mp}$ 116°), which was identical with an authentic sample prepared from benzylamine and p-toluenesulfonyl chloride (mp 110-112 ${ }^{\circ}$).
B.-In another exper:ment $1.27 \mathrm{~g}(4.6 \mathrm{mmol})$ of 6 b was treated with 2 equiv of sodium hydride in 7.5 ml of triglyme at 100° for 18 hr . After work-up as described above, no product was found in the ether extracts, so the aqueous phase was acidified with 2 N HCl and extracted with ether $(4 \times 50 \mathrm{ml})$. These ether extracts were washed with two $20-\mathrm{ml}$ portions of water, dried (MgSO_{4}), and evaporated and the residue was chromatographed on 30 g of silica gel. Elution with 100 ml of $1: 1$ ether-hexane afforded $170 \mathrm{mg}(30 \%)$ of impure benzoic acid ($\mathrm{mp} 92-105^{\circ}$) the ir of which was identical with that of an authentic sample. Further elution with ether yielded $710 \mathrm{mg}(91 \%)$ of p-toluenesulfonamide.

Reaction of N - p-Toluenesulfonyl- O - p-bromobenzylhydroxylamine with Sodium Hydride.-Two equivalents of sodium hydride was added to a solution of $2.0 \mathrm{~g}(5.6 \mathrm{mmol})$ of 6 c in 50 ml of triglyme and heated at 200° for 21 hr . The reaction mixture was worked up as described for the reactions of 6 b . No identifiable products could be obtained from the neutral fraction.

The base-soluble fraction was chromatographed on silica gel and eluted with chloroform ($3 \times 50 \mathrm{ml}$), a n-hexane-ether ($1: 1$) solution ($4 \times .50 \mathrm{ml}$), and finally ether (100 ml). Fractions $1,3,4$, and 6 yielded 71 mg of unidentifiable products. Fractions 2 and $\%$ yielded $480 \mathrm{mg}(41 \%)$ of p-bromobenzoic acid, mp $23.5-240^{\circ}$ (lit. mp 2.54.4 ${ }^{\circ}$) ${ }^{24}$ Fractions 7 and 8 yielded 3.50 mg (36%) of p-toluenesulfonamide, $\mathrm{mp} \mathrm{134-136}{ }^{\circ}$ (lit. mp 137.5${ }^{\circ}$)..24 The products were shown to be identical with authentic samples of p-bromoben\%oic acid and p-toluenesulfonamide, respectively, by ir and mixture melting point.

Reaction of N - p-Toluenesulfonyl- O - p-methoxybenzylhydroxylamine with Sodium Hydride.-The title compound 6 d (1.0 g , 3.26 mmol) was dissolved in 100 ml of tetrahydrofuran and treated with 3 equiv of sodium hydride, and the reaction mixture was stirred for 30 min . The solvent was evaporated under reduced pressure. The salt was heated in 50 ml of triglyme at 1:0 $0-160^{\circ}$ for 18 hr under a nitrogen atmosphere. The reaction was worked up according to the procedure described previously. No product was obtained from the base-insoluble fraction.

The base-soluble fraction was eluted with chloroform (100 ml) and a n-hexane-ether ($1: 1$) solution (100 ml) to yield 94 mg of unidentifiable products. Elution with more n-hexane-ether ($1: 1$) solution (100 ml) yielded $19 \% \mathrm{mg}(39 \%)$ of p-methoxybenzoic acid, mp $176-181^{\circ}$ (lit. mp 185°). ${ }^{24}$ Elution with ether (100 ml) yielded $150 \mathrm{mg}(27 \%)$ of p-toluenesulfonamide, mp $121-123^{\circ}$ (lit. mp 137.$)^{\circ}$). ${ }^{24}$ The ir and nmr were shown to be identical with those of authentic samples of p-methoxybenzoic acid and p-toluenesulfonamide, respectively.

Reaction of Benzaldehyde with p-Toluenesulfonamide in the Presence of NaH .-p-Toluenesulfonamide ($1.0 \mathrm{~g}, 5.8 .5 \mathrm{mmol}$) was dissolved in dry triglyme (2.5 ml) and treated with 2 equiv of a 50% oil dispersion of sodium hydride, and the reaction mixture was stirred for 1.5 min . Benzaldehyde ($620 \mathrm{mg}, 5.85 \mathrm{mmol}$) was added and the reaction was heated at 205° for 18 hr under a nitrogen atmosphere. Work-up was accomplished as described in the preceding experiments and the crude mixture of products was separated by preparative tlc using chloroform to yield 172 $\mathrm{mg}(11 \%)$ of N-p-toluenesulfonylbenzylamine, $\mathrm{mp} 107-109^{\circ}$, and $93 \mathrm{mg}(15 \%)$ of benzyl alcohol shown by ir and nmr to be identical with authentic samples.

The base-soluble fraction was purified by preparative tlc using a n-hexane-ether ($2: 1$) solution to yield $340 \mathrm{mg}(48 \%$) of benzoic
(26) "Handbook of Tables for Organic Compound Identification," 3rd ed, Z. Rappaport. Ed., Chemical Rubber Publishing Co., Cleveland, Ohio, 1967.
acid and 550 mg (55%) of p-toluenesulfonamide. The ir were shown to be identical with that of authentic samples.

Acknowledgment.-Financial support of this research was provided by a grant (GP-9550) from the National Science Foundation.

Registry No.- 5 a, 1782-38-3; 5b, 1944-96-3; 5d, 5622-7-5; 6a lithio derivative, 40780-47-0; 6a sodio derivative, 40780-48-1; 6b, 1576-39-2; 6c, 40780-50-5; 6d, 40780-51-6; 7a sodio derivative, $40780-52-7$; $9,30542-59-7$; 11, 40780-54-9; 12, 40780-55-0; $13,40780-56-1$; 18, 30646-06-1 ; $18 \alpha-d_{1}$ derivative, 40780-58-3; nickel peroxide, 1313-99-1; N-bromosuccinimide, 128-08-5; lead tetraacetate, 546-67-8; tetramethylethylene, 563-79-1; trans-2-butene, 624-64-6; cis-2-butene, $590-18-1$; sodium hydride, 7646-69-7; benzophenone, 119-61-9; p-toluenesulfon-
amide, 70-55-3; benzaldehyde, 100-52-7; O - p-bromobenzylhydroxylamine hydrochloride, 40780-59-4; 0 - p-methoxybenzylhydroxylamine hydrochloride, 876-33-5; benzhydrol- d_{1}, 17498-07-6; bromodiphenylmethane- d_{1}, 40780-62-9.

Supplementary Material Available.-A description of the instruments used and details of the syntheses, spectral and physical properties, and microanalytical combustion data of the starting materials will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche $(105 \times 148$ $\mathrm{mm}, 20 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 115.5 16th St., N.W., Washington, D. C. 20036. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JOC-73-3107.

The Effect of Added Electron Acceptor on the Methylene-Azomethine Rearrangement, a Trapped Transamination

R. D. Guthrie,* L. G. Burdon, and F. L. Lovell, Jr.
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506

Received November 17, 1972

Abstract

It has been shown that the carbanion intermediate in the hydrogen-deuterium exchange of N-neopentylidenebenzylamine, IV, can be intercepted by nitrobenzene and in the presence of oxygen converted to benzoic acid, pivalic acid, benzamide, and pivalamide. A detailed kinetic analysis of exchange, isomerization, and trapping processes has been carried out. Evidence that this reaction occurs for other azaallylic anions is also presented.

For many years, the methylene-azomethine rearrangement was thought to occur via a one-stcp mechanism involving a single transition state. ${ }^{1}$ More recently it has been shown that the reaction actually involves a carbanion intermediate. ${ }^{2}$ Although the evidence presented for this mechanistic revision has met with some skepticism, ${ }^{3}$ the number of examples of imine systems for which one of the tautomers undergoes base-catalyzed hydrogen-deuterium exchange faster than isomerization has grown to the point where there can be little doubt as to the gencrality of the carbanion mechanism. ${ }^{4}$

Our recent success in the application of electrontransfer trapping to the elucidation of the mechanistic details of carbanion reactions ${ }^{5}$ prompted us to apply the technique to the base-catalyzed methylene-azomethine rearrangement. We did this not so much to demonstrate the intermediacy of carbanions, a point which we feel has been adequately documented, but rather to extend the technique to a new kind of carbanion intermediate, to examine the kinetic problems of dealing with isomerizing systems by this method, and hopefully to find ways in which the technique can be applied to cases for which electron-transfer trapping can be coupled with the subtleties of stereochemistry in such reactions. We hope in this way to learn more
(1) C. K. Ingold, "Structure and Mechanism in Organic Chemistry," 1st ed, Cornell University Press, Ithaca, N. Y., 1953, p 572.
(2) (a) D. J. Cram and R. D. Guthrie, J. Amer. Chem. Soc., 87, 397 (1965); (b) D. J. Cram and R. D. Guthrie, ibid., 88, 5760 (1968).
(3) C. K. Ingold, "Structure and Mechanism in Organic Chemistry," 2nd ed, Cornell University Press, Ithaca, N. Y., 1969, p 837.
(4) (a) R. D. Guthrie, W. Meister, and D. J. Cram, J. Amer. Chem. Soc., 89, 5288 (1967); (b) R. D. Guthrie, D. A. Jaeger, W. Meister, and D. J. Cram. ibid., 99, 5137 (1971); (c) D. A. Jaeger and D. J. Cram, ibid., 93, 5153 (1971).
(5) (a) R. D. Guthrie, J. Amer. Chem. Soc., 91, 6201 (1969); (b) R. D. Guthrie, ibid., 92, 7219 (1970); (c) R. D. Guthrie, A. T. Young, anc G. W. Pendygraft, ibid., 99, 4947 (1971); (d) R. D. Guthrie, Intra-Z.i. Chem. Rep., in press.
about both the methylene-azomcthine rearrangement and the process of elcctron transfer. We rcport here our preliminary cfforts.

Results

The major remaining problem to application of the electron transfer trapping technique to the entire spectrum of carbanion reactions is the requirement that the acceptor be stable to the reaction conditions. In reactions where carbanions are gencrated by proton removal this means that the acceptor must not react with the base. Nitroaromatics work well but have limitations. As regards alkoxide bases, primary and sccondary alkoxides will reduce aromatic nitro compounds to azoxy compounds in the vicinity of $70^{\circ} .{ }^{6}$ Potassium tert-butoxide, a stronger base, will not react appreciably at 50°.

In the general formulation shown the R groups must then be selected such that the ionization can be carried

out either below 70° in methoxide-methanol or ethox-ide-ethanol or betwcen 20° and 50° in potassium tert-butoxide-tert-butyl alcohol. When $\mathrm{R}_{1}=\mathrm{R}_{3}=$ aryl and $R_{2}=R_{4}=H$, isomerization can be effected at 80° in ethanol-ethoxide. ${ }^{7}$

When N-benzylidenebenzylamine (I) was allowed to react with nitrobenzene and 0.6 N potassium tert-butoxide in tert-butyl alcohol at 30°, the imine was destroyed within 20 min and a precipitate of potassium

[^32]nitrobenzenide ${ }^{8}$ was observed. Compound I was stable to these conditions in the absence of nitrobenzene.

When the less acidic N-benzylidene- α-phenylethylamine (II) was subjected to the conditions described for I, II disappeared from the reaction mixture at a rate comparable to the rate at which it isomerizes to N-(α-methylbenzylidene)benzylamine (III) in the absence of nitrobenzene (half-life of roughly 50 min). When III was subjected to these conditions, it was no longer detectable by gas chromatography after 16 min . It appeared, therefore, that III was also too acidic and that, although II was not, there was no way to tell whether II was destroyed on the way to III or after it arrived. This analysis was supported by the obscrvation that III underwent rapid hydrogen-deuterium exchange of both its methyl and methylene hydrogens with nitrobenzene absent.

If an excess of III (0.211 M) and nitrobenzenc (0.32 M) was employed in 0.05 N potassium tert-butoxide in tert-butyl alcohol, the reaction stopped after 33% loss of III (very little change between 1 i) or 30 min) and very little deuterium was incorporated in unreacted III. This suggested that elcctron transfer from the carbanion was faster than reprotonation but bccause ionization was too rapid for convenient kinctic analysis we pursued the study of this system no further.

Finally, we prepared N-neopentylidenebenzylaminc (IV), which at 50° in potassium tert-butoxide-tertbutyl alcohol underwent isomerization to N-benzylideneneopentylamine (V), hydrogen-deuterium exchange, and reaction with nitroaromatics at measurable rates. For convenience, the reaction was carried out in the presence of oxygen, which regenerated nitrobenzene and simplified the products. No direct reaction of the substrate with oxygen was observed under the reaction conditions in the absence of nitrobenzene. The initial rate of substrate loss appeared to be slightly higher in the presence of oxygen, although the experimental error is quite large for initial rate determinations because the species being measured is the starting reagent rather than the products.

The products of the reaction carricd out in an oxygen atmosphere were benzamide, pivalamide, benzoic acid, and pivalic acid. No significant amounts of benzaldehyde or pivalaldehyde could be detccted. When the reaction was carricd out under anaerobic conditions nitrobenzene was lost as the reaction proceeded. Roughly 1.5-2 mol of nitrobenzene disappeared for every mole of substrate lost and the appearance of azoxybenzene was observed.

For purposes of comparison with electron transfer trapping runs, isomerization and exchange of IV was carried out in the absence of nitrobenzene. The concentrations of all species are obtainable by combining mass spectral and gas chromatographic analyses. The data could kee analyzed in terms of Scheme I.

The analysis was carried out as follows. (1) k_{5} was determined by studying the isomerization of IV- d_{2} under the conditions described for run 1. This run (run 2) gave good pseudo-first-order kinetics with $k_{5}=$ $0.765 \pm 0.008 \times 10^{-6} \mathrm{sec}^{-1}, 9$ through 30% isomerization. (2) Compound V- h_{2} was found to undergo no measurable exchange or isomerization under the con-

[^33]
ditions of runs 1 and 2 and therefore the formation of V was assumed to be irreversible. (3) Integrated rate equations were obtained for Scheme I. (4) The relationship $k_{4}=\left(k_{5} k_{2} / 4 k_{3}\right)+\left(k_{1} k_{3} / k_{2}\right)$ was assumed. (5) A unique set of rate constants were obtained as listed in Table I.

Table I
R.ate Constants for Exchange and Isomerization of IV- h_{2} in tert-Butyl Alcohol- O - d-Роtassium tert-Butoxide (0.592N) at 50° (Runs 1 and 2)

Rate constant or ratio	Value $\times 10^{8}$, sec -1	Significance
k_{1}	0.292	Isomerization of IV- h_{2}
k_{2}	6.93	Exchange of IV- h_{2}
k_{3}	2.87	Exchange of IV-hd
k_{4}	0.168	Isomerization of IV-hd
k_{4}	0.0765	Isomerization of IV- d_{2} k_{5} k_{2} / k_{1}
$k_{2} / 2 k_{3}$	1.21	Collapse ratio Secondary isotope effect $\left(k_{\mathrm{B}} / k_{\mathrm{D}}\right)$
k_{1} / k_{5}	3.81	Primary isotope effect on isomerization $\left(k_{\mathrm{B}} / k_{\mathrm{D}}\right)$

Table II gives a comparison of the measured concentrations and those calculated using the rate constants of Table I.

Table II
Exchange ind Isomerization of
N-Neopentylidenebenzylamine (IV- h_{2}) in tert-Butyl
Alcohol-O-d Catalyzed by Potassium terl-Butoxide (0.592 N) at 50.0° (Run 1)

$\begin{gathered} \text { Time, } \\ \left(\times \quad 10^{4}\right) \end{gathered}$	-\% IV- $h_{2}-$		-\% IV-hd-		-\% IV- d_{2}		$\overbrace{\mathrm{Ob}_{s} \mathrm{~d}}^{\%}$	$6 \text { Caled }$
	Obsd	Caled	Obad	Calcd	Obsd	Calcd		
0.486	70.3	70.4	27.2	26.3	1.1	2.0	1.3	1.3
0.852	52.7	54.0	39.7	38.3	万.)	5.4	2.3	2.2
1.458	34.3	34.9	48.9	48.6	13.4	13.1	3.5	3.5
2.916	12.5	12.2	47.5	48.2	33.8	33.8	6.1	5.9
4.116	5.9	5.1	39.4	39.0	47.5	48.4	7.1	7.4

The exchange and isomerization of IV- d_{2} in tert-butyl alcohol-O-h was also studied and analogous rate constants were obtained by the same method of calculation. The results are displayed in Table III. The determination of $k^{\prime}{ }_{1}$ is inherently inaccurate because the bulk of isomerization comes via exchanged starting material.

Having satisfactorily analyzed this system of four intermediates, we then considered the additional complications arising with an electron acceptor present in the reaction mixture. Under these circumstances the kinetic situation is represented by Scheme II. This system was treated as follows. (1) The loss of IV- h_{2} in tert-butyl alcohol- $O-h$ was studied and the results were fitted by numerical integration. Best results

Table III

Rate Constants for Exchange and Isomerization of IV- $d_{2}{ }^{a}$ in tert-Butyl Alcohol-Potassium tert-Butoxide
$(0.628 \mathrm{~N})$ at 50° (Runs 3 and 4^{b})

Rate constants and ratios	$\begin{gathered} \text { Values } \times 10^{6}, \\ \sec ^{-1} \end{gathered}$	Significance
$k^{\prime}{ }_{1}$	0.0483	Isomerization of IV- d_{2}
$k^{\prime}{ }_{2}$	2.01	Exchange of IV- d_{2}
$k^{\prime}{ }_{3}$	1.25	Exchange of IV-hd
$k^{\prime}{ }_{4}$	0.101	Isomerization of IV-hd
$k^{\prime}{ }^{\text {b }}$	0.176	Isomerization of IV- d_{2}
$k^{\prime}{ }_{5} / k_{1}$	3.6.5	Primary isotope effect on isomerization ($k_{\mathrm{H}} / k_{\mathrm{D}}$)
$k^{\prime}{ }_{3} / 2 k^{\prime}{ }_{2}$	1.23	Secondary isotope effect on isomerization ($k_{\mathbf{H}} / k_{\mathrm{D}}$)
$k^{\prime}{ }_{2} / k^{\prime}{ }_{1}$	41.5	Collapse ratio

a The starting material contained 3.3% of material having only one deuterium atom. ${ }^{b}$ The value of k^{\prime}; was determined separately by studying isomerization of IV- h_{2} in tert-butyl alcohol-$O-h$. This is referred to as run 4.

were obtained by assuming a stoichiometry of 2.5 mol of base loss per mole of substrate loss. This value was used in subscquent calculations. (2) Isomerization and loss of IV- d_{2} in tert-butyl alcohol- O - $c l$ was studied and the results, which yiclded values of k_{34} and k_{35}, are given in Table IV. (3) It was assumed that $k_{35} k_{4} / k_{5}=$

Table IV
Isomerization and Loss of
N-Neopentilideni:- α-dideuterionenzylamine (IV- $\left.d_{2}\right)^{a}$ with 0.502 N Potassium tert-Butoxide and 0.206 M

Nitrobenzene in tert-Butyl Alcohol-O-d at 500 (Run 6)

$\begin{gathered} \text { Time } \times 10^{-4}, \\ \text { sec } \end{gathered}$	- - V, \%--		-Loss, ${ }^{\text {b }}$ \%	
	Found	Calcd ${ }^{\text {c }}$	Found	Calcd ${ }^{\text {c }}$
2.760	1.2	1.4	27.4	28.5)
6.510	2.6	2.6	47.8	47.4
11.47	3.8	3.5)	62.9	64.1
16.53	4.2	4.0	74.0	74.1
28.53	5.2	4.7	84.9	85.8

${ }^{a}$ Contained 3.3% of IV-hd. ${ }^{b}$ By gas chromatographic comparison with bicyclohexyl as an internal standard. ${ }^{c}$ Calculated using initial first-order rate constants: $k_{34}=1.16 \times 10^{-5}$ and $k_{35}=0.63 \times 10^{-6} \mathrm{sec}^{-1}$ by numerical integration assuming loss of 2.5 mol of base $/ \mathrm{mol}$ of substrate.
k_{25} and that $k_{24}=\left(k_{14} k_{23} / k_{12}\right)+\left(k_{34} k_{12} / 4 k_{23}\right)$. (4) Numerical integration was carried out making minor adjustments for dilution of the deuterium pool and the rate constants were adjustcd itcratively to fit the data of run 7 which is given in Table V. A unique set of rate constants was obtained as given in Table VI. (i) The analogous procedure was carried out for the reaction of IV- d_{2} and the results are given in Tables VII and VIII.
linally, several runs were carried out using IV- h_{2} in tert-butyl alcohol- $O-h$ at different nitrobenzenc concentrations and two runs were made with p-chloronitrobenzenc as acceptor. These are listed in Table IX.

Discussion

It is well accepted that a variety of carbon acids will react with nitroaromatics via electron transfer from a carbanion intermediate as detailed in Scheme III. ${ }^{10}$

Scheme III

$$
\begin{gathered}
\mathrm{RH}+\mathrm{B}^{-} \longrightarrow \mathrm{R}^{-} \\
\mathrm{R}^{-}+\mathrm{ArNO}_{2} \longrightarrow \mathrm{R} \cdot+\mathrm{ArNO}_{2}^{-}
\end{gathered}
$$

The carbanion intermediate in the methylene-azomethine rearrangement seems unexceptional in this regard, as we have now demonstrated characteristic behavior for several such systems. The compound studied in greatest detail, IV, behaved in a manner analogous to that observed by Russell for the nitro-benzene-catalyzed reaction of fluorene with oxygen to give fluorenone, ${ }^{11}$ with the exception that oxidation was more extensive in our system.

The collapse ratio for the carbanion from IV favors protonation to give IV rather than V by a large factor. This system is therefore behaving more like a chargelocalized rather than an ambident anion. We hope to find systems which depart from this simple behavior for future study. The collapse ratio for this system is much larger when the exchange of deuterated substrate is considered (see Tables I and III). Curiously, this is opposite to a previously studied system. ${ }^{\text {4b }}$

When nitrobenzene is added to the isomerizing and exchanging mixture of IV and base, the kinetic situation becomes quite complex; however, a number of interesting qualitative and semiquantitative conclusions can be drawn.

It is significant that the isotope effect on loss of IV in run 7 is roughly a factor of 2 lower than that for isomerization (see Table VI). Because most of the loss of IV occurs dircctly from unexchanged IV- h_{2} and Table V shows agreement of calculated and experimental values within normal gas chromatographic reproducibility, the value of k_{14} should be accurate to within a few per cent, as should k_{14} / k_{34}. If the amount of isomerized product represents a constant fraction of the anions formed (independent of the origin of the anion), then the amount of material oxidized must not. The results could be explained if a lower fraction of the anions arising from IV- h_{2} gave electron transfer than those arising from IV- d_{2}. Clearly this demonstrates that the anions arising from protio and deuterio substrate are different and this difference is explicable in terms of specific solvation by the alcohol molecule generated by base attack. When the alcohol molecule is tert-butyl alcohol- O - h, internal return is favored by the kinetic isotope effect and electron transfer trapping is less efficient.

Data obtained using IV- d_{2} as substrate in tert-butyl alcohol- $O-h$ is also included for completeness, although, as previously mentioned, the inaccuracies are magnified in this case by the preference for reaction via exchanged IV. The significant features of this data (listed in Table VIII) are the similarity of the value determincd for the kinetic isotope effect on loss to that

[^34]Table V
Calculated and Observed Product Distribution in the Reaction of N-Neopentylidenebenzylamine (0.101 M) with Nitrobenzene (0.206 M) and Potassium tert-Butoxide (0.592 N) in tert-Butyl Alcohol- -O - at 50° in Oxygen Atmosphere (Run 7)

$\underset{\sec ^{-1}}{\text { Time } \times 10^{-4}}$	-_IV- $\mathrm{h}_{2}, \%$ -		-_IV-hd, \%--		\ldots		- V, \%		-Loss, \%	
	Found	Calcd								
0.7620	54.0	53.7	26.2	27.2	2.7	2.9	1.6	1.8	15.6	14.5
1.596	29.5	29.6	34.3	34.2	8.0	8.0	3.1	3.0	25.1	25.2
2.5560	16.1	16.0	33.3	32.9	13.1	13.1	4.1	3.9	33.1	34.1
3.210	10.7	10.9	30.7	30.1	16.6	15.8	4.6	4.4	37.3	38.8
7.872	1.7	1.3	11.9	12.5	22.6	21.4	6.1	6.1	57.7	58.7

Table VI
Rate Constants Used for Calculating Product Distribution in Run 7 (Table V)

Rate constant or ratio	$\begin{aligned} & \text { Value } \times 10^{5}, \\ & \sec ^{-1} \end{aligned}$	Significance
k_{12}	6.07	Exchange of IV- h_{2}
k_{14}	2.34	Loss of IV-h2
k_{15}	0.29	Isomerization of IV- $h_{\text {\% }}$
k_{23}	2.75	Exchange of IV-hd
k_{24}	1.70	Loss of IV-hd
k_{25}	0.166	Isomerization of IV-hd
k_{34}	1.16	Loss of IV-d ${ }_{2}$
k_{35}	0.0631	Isomerization of IV- d_{2}
k_{15} / k_{35}	4.6	Primary isotope effect on isomerization ($k_{\mathrm{H}} / k_{\mathrm{D}}$)
k_{14} / k_{34}	2.02	Primary isotope effect on loss ($k_{\mathrm{B}} / k_{\mathrm{D}}$)
$k_{12} / 2 k_{23}$	1.10	Secondary isotope effect on exchange ($k_{\mathbf{H}} / k_{\mathrm{D}}$)
k_{12} / k_{15}	21	Collapse ratio
k_{14} / k_{12}	0.386	Trapping efficiency ($k_{\mathrm{e}} / k_{\mathrm{d}}$)

discussed above and the lower trapping efficiency in this protic solvent. When the trapping efficiency in deuterated solvent ($k_{\mathrm{e}} / k_{\mathrm{d}}$) is divided by that for protio solvent ($k_{\mathrm{e}} / k_{\mathrm{h}}$) the resultant value $k_{\mathrm{h}} / k_{\mathrm{d}}=2.1$ is the effective isotope effect on reprotonation of the carbanion intermediate. This type of calculation has been discussed previously ${ }^{5 b}$ and assumes that only protonation and not electron transfer rates are affected by the isotopic nature of the solvent medium. In the example previously studied, ${ }^{\text {5b }}$ it was found that the isotope effect on carbanion reprotonation was very similar to the primary isotope effect on ionization. The fact that the difference between reprotonation rates in the isotopically different solvents is smaller than the ionization isotope effect in this case is probably another indication of the involvement of intramolecularity.

Still another indication that intramolecular reprotonation is occurring is the observation that the total $k_{12}+k_{14}+k_{15}$ (see Table VI) is greater than the total $k_{1}+k_{2}$ (see Table I). As these sums represent the total observable processes undergone by the carbanion in each case, it is clear that we have observed a greater fraction of the total carbanions with nitrobenzene present. This is also true starting from IV- d_{2}, but we have previously qualified our faith in the rate constants obtained with this starting material and the fact that $k^{\prime}{ }_{12}$ is slightly greater than $k^{\prime}{ }_{2}$ makes us suspicious that the value measured for k_{12}^{\prime} is somewhat high.

Our failure to find an acceptor which would trap the anion from IV at the ionization limit is a final interesting feature of this system. ${ }^{\text {bb }}$ The data given in Table IX shows that the loss of IV from the reaction mixture is reasonably close to first order in both nitro-
benzene and potassium tert-butoxide, as would be expected. The unexpected feature of this data is that substitution of p-chloronitrobenzene had such a minor effect on the rate of loss. By contrast, in the case of 9 -methoxyfluorenide ion, p-chloronitrobenzene increases the trapping efficiency by a factor of 7. ${ }^{12}$ There are several mechanistic schemes which could explain the insensitivity to acceptor nature in this system. A trivial situation would be that in which all carbanions formed were trapped, the process of loss becoming ionization limited. This is clearly not the case, as indicated by the trapping efficiency in Table VIII. A modification would arise if two types of intermediate were involved, only one of which was being trapped by nitroaromatics. This would result in an upper limit of $k_{\text {loss. }}$. It is clear that this explanation cannot account for the fact that the reaction is approximately first order in nitrobenzene.

It seems most likely that we have found a case in which the rate of loss of substrate is limited to some degree by the rate of encounter of the carbanion and the nitroaromatic. The fact that the rate constant for loss is increased slightly by the change from nitrobenzene to p-chloronitrobenzenc suggests that encounter is reversible to some small extent. The encounter rate could be limited either by diffusion of the carbanion and nitroaromatic together in solution or by the breaking of a solvation sheath by the nitroaromatic prior to complex formation and subsequent electron transfer.

Experimental Section

Solvent and Solutions.-tert-Butyl alcohol was purified by distillation from molecular sieves (type 3A) on to molecular sieves. For some reactions further purification was carried out by treating 2.5 kg of the alcohol with 21.4 g of potassium. When the potassium had reacted, 100 ml of nitrobenzene was added and the mixture was stirred at 50° in oxygen for 72 hr . The alcohol was separated by distillation and purified by distilling from calcium oxide after 24 hr reflux. The final distillation was carried out from molecular sieves onto molecular sieves through a $2-\mathrm{ft}$ Widmer column. This latter procedure is recommended for future work as it eliminated a side reaction between an unidentified impurity in the tert-butyl alcohol and nitrobenzene.

Solutions of potassium tert-butoxide in tert-butyl alcohol were prepared by dissolving potassium metal in the alcohol under oxygen-free nitrogen. tert-Butyl alcohol- O - d was prepared by a published procedure ${ }^{13}$ and contained $98-99 \%$ of one atom of deuterium by nmr .

Nitrobenzene was purified as previously described. ${ }^{14}$
N-Benzylidenebenzylamine (I) was prepared by a published procedure. ${ }^{16}$ Its nmr spectrum agreed with that predicted.

[^35]Table VII
Calculated and Observed Product Distribution in the Reaction of N-Neopentylidenebenzylamine- $\alpha-d_{2}$ (0.102 M) with Nitrobenzene (0.205 M) and Potassium tert-Butoxide (0.628 N) in tert-Butyl Alcohol (Run 8)

$\begin{gathered} \text { Time, } \\ \times 10^{4}, \mathrm{sec} \end{gathered}$	-_IV- $\mathrm{d}_{2}, \%$ _-		\ldots IV-hd, \%——		-IV- $h_{2}, \%$ -		\sim - $\mathrm{V}, \%$ -		-Loss, \%.-	
	Found	Calcd								
0.7440	78.8	79.4	15.3	15.9	1.3	1.0	0.7	0.6	3.8	3.0
1.476	64.8	65.3	22.9	24.3	2.6	3.1	1.3	1.1	8.4	6.2
3.198	43.3	42.4	33.3	32.6	8.2	9.0	2.6	2.5	12.6	13.5
9.618	9.6	9.9	24.4	23.2	21.9	22.2	5.6	7.0	38.6	37.8
20.44	1.34	1.31	7.36	7.12	20.1	18.2	10.7	11.4	60.5	62.0

Table VIII
Rate Constants Used for Calculating Product Distribution in Run 8 (Table VII)

Rate constant or ratio	$\underset{\text { sec }^{-1}}{\text { Value } \times 10 \text {, }}$	Significance
$k^{\prime}{ }_{12}$	2.21	Exchange of IV- d_{2}
k^{14}	0.397	Loss of IV- d_{2}
$k^{\prime}{ }_{15}$	0.0739	Isomerization of IV-d ${ }_{2}$
$k^{\prime}{ }_{23}$	1.51	Exchange of IV-hd
$k^{\prime 2}$	0.619	Loss of IV-hd
$k^{\prime 2}$	0.115	Isomerization of IV-hd
$k^{\prime}{ }_{34}{ }^{\text {a }}$	0.951	Loss of IV-h2
$k^{\prime}{ }_{35}{ }^{\text {a }}$	0.177	Isomerization of IV- h_{2}
$k^{\prime}{ }_{35} / k^{\prime}{ }_{15}$	2.40	Primary isotope effect on isomerization
$k^{\prime}{ }_{34} / k^{\prime}{ }_{14}$	2.40	Primary isotope effect on loss
$2 k^{\prime}{ }_{23} / k^{\prime}{ }_{12}$	1.37	Secondary isotope effect on exchange
$k^{\prime}{ }_{12} / k^{\prime}{ }_{15}$	30	Collapse ratio
$k^{\prime}{ }_{14} / k^{\prime}{ }_{12}$	0.180	Trapping efficiency ($k_{\mathrm{e}} / k_{\mathrm{h}}$)

${ }^{a}$ Taken from run designated run 9 .

Table IX
Effect of Nitroaromatic Concentration and Nature on Rate of Loss of IV-h2 in Potassium tert-Butoxide-tert-Butyl Alcohol at 50° in Oxygen Atmosphere

Run no. ${ }^{\text {d }}$	[$\mathrm{KO}-\mathrm{t}-\mathrm{Bu}$]	$\left[\mathrm{ArNO}_{2}\right]^{a}$	$\begin{gathered} k_{\operatorname{loss} 8} \times 10^{5}, \\ \sec ^{-1} \end{gathered}$	$\begin{gathered} k_{\text {loges }_{8}^{b}} \times 10^{8}, \\ M^{-2} \sec ^{-1} \end{gathered}$
5	0.245	0.215	0.36	0.68
10	0.509	0.126	0.57	0.89
11	0.509	0.127	0.57	0.88
9	0.628	0.206	0.95	0.73
12	0.509	0.255	1.00	0.77
13	0.509	0.385	1.49	0.76
14 and 15^{c}	0.509	0.193	1.08	1.10

${ }^{a}$ Nitrobenzene was used except for last entry. ${ }^{b}$ Third-order rate constant. ${ }^{c} p$-Chloronitrobenzene was used. ${ }^{d}$ At least five points for each run.
N-Benzylidene- α-phenylethylamine (II) was prepared by a published procedure. ${ }^{16}$ Its nmr spectrum agreed with that predicted
N-(α-Methylbenzylidene)benzylamine (III) was prepared by treatment of a mixture of acetophenone ($24.2 \mathrm{~g}, 0.200 \mathrm{~mol}$) and benzylamine ($21.4 \mathrm{~g}, 0.200 \mathrm{~mol}$) with 100 ml of benzene and a catalyst prepared as follows. Benzylamine (0.5 ml) was added to a mixture of 4 g of saturated aqueous zinc chloride and 2 ml of ethanol. The white precipitate was filtered with suction and washed with 95% ethanol.
The mixture described was refluxed past a Dean-Stark trap for 12 hr . The benzene solution was filtered through Celite and the benzene was removed by rotary evaporation to give an oil. White crystals were obtained from pentane, $27.3 \mathrm{~g}, 65 \%$. Two recrystallizations from pentane gave material of $\mathrm{mp} \mathrm{44-46}$. Distillation to a cold finger gave an analytical sample. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}$: $\mathrm{C}, 86.08 ; \mathrm{H}, 7.23 ; \mathrm{N}, 6.691$. Found: C, 85.86 ; $\mathrm{H}, 7.28$; N, 6.74 .

[^36]Preparation of N-Neopentylidenebenzylamine (IV- h_{2}).-Pivalaldehyde ($18.8 \mathrm{~g}, 0.218 \mathrm{~mol}$) was cooled to 0° in a flask protected by an Ascarite tube. Benzylamine ($25 \mathrm{ml}, 23.5 \mathrm{~g}, 0.220 \mathrm{~mol}$) was then added dropwise with stirring over 20 min . The reaction mixture was allowed to warm to room temperature and stirred for 3 hr . Pentane (50 ml) was added and the water was separated. The pentane layer was washed with two $20-\mathrm{ml}$ portions of water and dried over anhydrous sodium sulfate. Evaporation of the pentane and distillation gave $32.4 \mathrm{~g}(85 \%)$ of product: bp $123-125^{\circ}(28 \mathrm{~mm}) ; n^{24} \mathrm{D} 1.4960 ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 7.58(\mathrm{t}$, 1, neopentylidene), 7.24 (s, 5 H , phenyl), 4.52 (d, 2 H , benzyl), 1.00 (s, 9, tert-butyl). The ir spectrum showed a peak at 1666 $\mathrm{cm}^{-1}(\mathrm{C}==\mathrm{N})$. An analytical sample was purified by gas chromatography. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}$: C, 82.23; H, 9.78; $\mathrm{N}, 7.99$. Found: C, $82.54 ; \mathrm{H}, 9.88$; N, 7.77.

Preparation of Benzylamine- $\alpha-d_{2}$.-Lithium aluminum deuteride ($1.00 \mathrm{~g}, 23.8 \mathrm{mmol}$) was slurried in 30 ml of dry ether, and benzonitrile ($1.8 \mathrm{~g}, 17.5 \mathrm{mmol}$) in 10 ml of ether was added dropwise with stirring over 30 min . The reaction mixture was stirred for 2 hr , treated with 15 drops of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and allowed to stir for an additional 18 hr . Additional saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution was added and when no heat was evolved, the reaction mixture was vacuum filtered through a Celite pad with ether washing. The ether solution was extracted with 15 ml of $10 \% \mathrm{HCl}$ and 3 ml of water. The combined aqueous extracts were washed with 20 ml of ether and made basic with solid KOH . The resultant mixture was extracted with $30-$ and $20-\mathrm{ml}$ portions of ether, and the ether extracts were washed with saturated aqueous NaCl and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the ether gave 1.50 g , which was reduced to 1.23 $\mathrm{g}(65 \%)$ after two short-path distillations. Gc analysis showed this to be mainly benzylamine with $c a .1 \%$ of long retention time 420 impurity.

Preparation of N-Neopentylidenebenzylamine- $\alpha-d_{2}$ (IV- d_{2}).The benzylamine- $\alpha-d_{2}$ described above ($1.23 \mathrm{~g}, 11.5 \mathrm{~mol}$) was added to pivalaldehyde ($1.00 \mathrm{~g}, 11.6 \mathrm{~mol}$) as described for the preparation of IV- h_{2}. The product weighed $1.63 \mathrm{~g}(81 \%)$ after two short-path distillations. Mass spectral analysis at 70 eV showed a parent peak at 177 amu . The $\mathrm{P}-1$ peak was reduced to 3.3% of the ${ }^{13} \mathrm{C}$ corrected parent (about 50% of its original height) by running the spectrum at low voltage.

Preparation of N-Benzylideneneopentylamine (V).-Neopentylamine ($2.5 \mathrm{~g}, 35 \mathrm{mmol}$) was added to benzaldehyde (3.6 g , 34 mmol) in the manner prescribed above for the preparation of IV. The same work-up procedure gave 725 mg (12%) of V, $n^{24.6} \mathrm{D} 1.5096$ after gas chromatographic separation from unreacted benzaldehyde. The reason for the low yield was uncertain. Mass spectral analysis at 70 eV showed a parent peak at 175 amu and a peak at $\mathrm{P}-1, \mathrm{P}-1 / \mathrm{P}=0.67$. $\mathrm{Nmr}\left(\mathrm{CCl}_{4}\right)$ showed δ 8.15 ($\mathrm{t}, \mathrm{1}$, benzylidene), $7.2-7.8(2 \mathrm{~m}, 5$, phenyl), $3.30(\mathrm{~d}, 2 \mathrm{H}$, neopentyl), 0.98 (s, 9, tert-butyl). Ir showed $\mathrm{C}=\mathrm{N}$ at 1643 cm^{-1}. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}$: C, 82.23; $\mathrm{H}, 9.78 ; \mathrm{N}$, 7.99. Found: C, 82.13; H, 9.61; N, 7.72.

Kinetic Runs.-A mixture of substrate, nitrobenzene, and bicyclohexyl was added to a temperature-equilibrated, oxygenfilled reaction vessel containing the solvent and base (10 ml) through a rubber septum using a calibrated syringe. Aliquots (2 ml) were withdrawn at timed intervals (with addition of oxygen) and added to a mixture of 25 ml of pentane and 40 ml of ice-water. The pentane layer was washed with $20-$ and $10-\mathrm{ml}$ portions of ice-water and dried over anhydrous sodium sulfate. The pentane solution was concentrated by rotary evaporation and kept cold when concentrated. Analysis was carried out on a $15-20-\mathrm{ft}$ column of either SE-30 or SF-96 silicone grease (20% on Chromosorb W) at 200°. Where deuterium analysis was required, the substrate was collected from the gas chromatograph
and analyzed on an Hitachi Model RMU 6-E double-focusing mass spectrometer at low voltage.

Isolation of Potassium Nitrobenzenide from the Reaction of N-Benzylidenebenzylamine with Potassium tert-Butoxide and Nitrobenzene in tert-Butyl Alcohol.-A solution of 0.49 N potassium tert-butoxide in tert-butyl alcohol (10.0 ml) was placed in a $30-\mathrm{ml}$ centrifuge tube and degassed by bubbling oxygen-free nitrogen through the solution. The tube was sealed with a septum and a mixture of nitrobenzene ($264 \mathrm{mg}, 2.15 \mathrm{mmol}$), N benzylidenebenzylamine ($210 \mathrm{mg}, 1.08 \mathrm{mmol}$), and bicyclohexyl (81 mg) was injected with a calibrated syringe. The reaction mixture turned deep red and precipitated solid material. After 30 min at room temperature, the solids were separated by centrifugation and the supernatant was removed by syringe under nitrogen flush. The supernatant was added to a mixture of 50 ml of pentane and 100 ml of water. The pentane layer contained some dispersed solids, which were separated by filtration through a sintered glass filter after two $100-\mathrm{ml}$ water washes. An amorphous brown solid ($39 \mathrm{mg}, \mathrm{mp} 110-120^{\circ}$) was obtained and has not yet been identified. The filtrate was treated with more pentane and separated from the water used to wash the solids (some additional insoluble solid material was observed at this point) and the pentane layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Partial evaporation of the pentane layer allowed gc analysis, which showed that 78% of the initial nitrobenzene had been lost, none (less than 0.5%) of the imine I remained, a peak with retention time equal to that of the benzaldehyde appeared, and some minor components of long retention time were also present.

The solids separated by centrifugation were washed with two $10-\mathrm{ml}$ portions of degassed tert-butyl alcohol under nitrogen and after storage at 0° for 6 days were treated with 10 ml of DMSO. The resultant dark solution was sampled ($c a .50 \mu \mathrm{l}$) for esr, which gave the characteristic spectrum of nitrobenzene radical anion. The remaining solution was treated with oxygen (bubbled through until no solids were visible). This solution was poured into 100 ml of water and 50 ml of pentane. The pentane layer was separated, combined with a second $50-\mathrm{ml}$ pentane extract, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Partial removal of the pentane by rotary evaporation after addition of 39.5 mg of hexadecane (by calibrated syringe) gave a sample for gc analysis which showed, after comparison with synthetic standards, the presence of 89.5 mg of nitrobenzene. This represents a 68% yield based on 1 mol of potassium nitrobenzenide $/ \mathrm{mol}$ of I lost. It accounts for 55% of the nitrobenzene lost.

Acidification of the DMSO-water solution and extraction with ether gave 17 mg of brown gum.

Identification of Products from the Reaction of N-Neopentylidenebenzylamine (IV) with Oxygen as Catalyzed by Potassium tert-Butoxide and Nitrobenzene in tert-Butyl Alcohol.-A solution of potassium tert-butoxide in tert-butyl alcohol ($143 \mathrm{ml}, 0.49$ N) was placed in a $500-\mathrm{ml}$ flask and oxygen was bubbled through for several minutes. The reaction vessel and its contents were heated to 50° and a mixture of nitrobenzene $(4.28 \mathrm{mg}, 34.8$ mmol) and IV ($3.06 \mathrm{~g}, 17.4 \mathrm{mmol}$) was added. A rubber balloon containing oxygen was affixed and the reaction was allowed to proceed with occasional swirling for 209 hr . (In other cases stirring was used with no change in the qualitative outcome.) In the experiment presently being described, the amount of azoxybenzene, a major product of the anaerobic reaction, amounted to $c a .1 \%$ of the nitrobenzene present. In kinetic runs under oxygen, azoxybenzene was not observed.

The reaction mixture was cooled to room temperature and poured into a mixture of $c a .100 \mathrm{~g}$ of ice and 200 ml of water which contained pieces of solid carbon dioxide. This mixture, $\mathrm{pH} \sim 9$, was extracted with two $100-\mathrm{ml}$ portions of pentane. The pentane extracts were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the pentane was removed by rotary evaporation to leave 4.61 g of a solid-liquid mixture. Re-treatment with pentane and filtration gave 0.76 g of solid which gave benzamide (undepressed mixture melting point) after ether washing. Gc analysis of the pentanesoluble material showed it to be mainly nitrobenzene containing some IV and V and small amounts of unidentified materials.
The aqueous layer was continuously extracted with ether for 24 hr . Drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporation gave 0.9 g of solids which showed benzamide and pivalamide with a peak area ratio of $3.5: 1$. Both were collected from the gc effluent and identified by comparison of their infrared spectra with those of authentic samples. Some nitrobenzene ($5-10 \%$ of mixture) was also present in this fraction. In two other experiments similar to the one being described, larger amounts of pivalamide relative to benzamide were observed but it was found difficult to reproduce the ratio. It is believed that this difficulty was due to the volatility of pivalamide. The total benzamide described above accounts for $60-70 \%$ of the benzyl groups in the starting imine.

The residual aqueous solution was acidified with concentrated hydrochloric acid and continuously extracted with ether for 1 week. The ether was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and treated with 438 mg of bicyclohexyl. Gc analysis showed a 45% yield of pivalic acid after comparison with synthetic standards. Direct gc analysis for benzoic acid proved impractical, so the mixture was treated with an excess of diazomethane in ether and the resultant mixture was found to contain an amount of methyl benzoate corresponding to 13% yield. In a separate experiment benzoic acid was isolated, purified, and compared to authentic material.

In summary, after correction for the presence of $8-10 \%$ of V , about 85% of oxidized IV shows up as benzoic acid or benzamide. The neopentylidene end of the molecule is converted either to pivalamide or pivalic acid, which together correspond to about 60% of oxidized IV. It is assumed that the balance of this material was lost in handling.

It was shown that pivalaldehyde was not present in the initial neutral extract by the addition of benzylamine, which would have reacted to increase the amount of IV. The only change observed was a decrease ln the amount of V which apparently reacts with benzylamine.

Acknowledgment. -We wish to thank the National Science Foundation for a grant (GP-17465) supporting this work.

Registry No.-I, 780-25-6; III, 14428-98-9; IV- $h_{2}, 1775-74-2$; IV- $d_{2}, 40792-09-4$; V, 7731-35-3; acetophenone, 98-86-2; benzylamine, 100-46-9; pivalaldehyde, 630-19-3; benzylamine- $\alpha-d_{2}$, 15185-02-1; lithium aluminum deuteride, 14128-54-2; benzonitrile, 100-47-0; neopentylamine, 5813-64-9; benzaldehyde, 100-52-7; potassium nitrobenzenide, 40791-84-2; potassium tert-butoxide, 865-47-4; nitrobenzene, 98-95-3; oxygen, 7782-44-7.

The Alkaline Hydrolyses of p-Nitrophenyl Esters in the Presence of Polyelectrolytes ${ }^{1}$

Tsuneo Okubo and Norio Ise*
Department of Polymer Chemistry, Kyoto University, Kyoto, Japan

Received January 30, 1973

Abstract

The rapid hydrolyses of p-nitrophenyl esters in a strongly alkaline media were followed using the stopped-flow technique in the presence of polyelectrolytes and in their absence. The esters used were p-nitrophenyl acetate propionate, valerate, caprylate, laurate, and palmitate. The polyelectrolytes were poly(4-vinylpyridine) quaternized with ethyl, butyl, and benzyl halides, copolymer of 4 -vinyl- N-benzylpyridinium chloride and 4 -vinyl-: $\hat{\text {-cetylpy }}$ Cationic and anionic surfactants (cetyltrimethylammonium bromide and sodium lauryl sulfate) were also used. The ion-molecule reactions were accelerated with the hydrophobic cationic polyelectrolytes, and the strength of the acceleration increased with increasing hydrophobicity of esters and/or polyelectrolytes. The free energy, enthalpy, and entropy of activation were decreased by addition of the polyelectrolytes. The relative catalytic contributions of the electrostatic and hydrophobic interactions were discussed.

It is now woll recognized that the reaction rates of many kinds of organic and inorganic reactions are strikingly influenced by polyclectrolytes. ${ }^{2}$ The important contributions of hydrophobic intcractions in a large number of organic reactions in solutions containing polyrelectrolytes or micelle electrolytes have also been pointed out. ${ }^{3-6}$

In the present paper, we report additional data on the hydrophobic effects of polyclectrolytes using an ion-molecule reaction.

In this reaction, attractive interactions between the p-nit rophenyl ester and polyelectrolyte would be hydrophobic. On the other hand, those between hydroxide ions and macroion are certainly electrostatic. The relative magnitudes of the two kinds of interactions, therefore, may be compared by studying the reaction. We can also examine the hydrophobic interactions more systematically by changing n of the substrate ester (from 1 to 1) in the present study). Salts of poly (4vinylpyridine) quaternized with alkyl halides of various numbers of methylene groups and polystyrene sulfonate were used as synthetic hydrophobic polyelectrolytes.

Results and Discussion

The hydrolyses were performed in aqueous media for p-nitrophenyl acetate (PNPA, $n=1$), propionate (PNPPR, $n=2$), and valerate (PNPV, $n=4$). Those of p-nitrophenylcaprylate (PNPC, $n=7$), laurate (1 NPL, $n=11$), and palmitatc (PNPP, $n=15$) were carried out in aqueous ethanol. The second-order rate constants, k_{2}, of the hydrolyses of PNPA, PNPV,

[^37]and PNPP in the presence of various amounts of polyor micclle electrolyte are portrayed in Figures 1-3. The k_{2} values in the absence of polyelectrolytes or micelles were also plottcd in the figures for the reader's convenience. The concentrations of the esters and the hydroxide ions are $4 \times 10^{-5} \sim 5 \times 10^{-5} M$ and $10^{-3} \sim$ $2.5 \times 10^{-2} M$, respectively, and those of electrolytes $10^{-6} \sim 10^{-1}$ equiv l^{-1}. The changes of pH during the reaction werc not observed under the present experimental conditions. The results of PNPPR, PNPC, and PNPL were similar to those of the other esters and are not given here in order to save space.

Several important results were derived. First, the cationic polyelectrolytes having hydrophobic groups accelerated the hydrolyses, whereas those having no hydrophobic groups did not show such effects; i.e., the accelerating effect of the polymer increases with increasing hydrophobicity of the polymer. The rateenhancing actions are in the following order except for the PNPP system: DECS < C2PVP < C4PVP < $\mathrm{BzPVP}<\mathrm{C} 16 \mathrm{BzPVP}<\mathrm{CTABr}$, where DECS, C2PVP, C4PVP, BzPVP, and C16BzPVP indicate the copolymer of dicthyldiallylammonium chloride and sulfur dioxide, poly (4-vinyl- N-ethylpyridinium bromide), poly-(4-vinyl- N-butylpyridinium bromide), poly(4-vinyl- N benzylpyridinium chloride), and copolymer of 4 -vinyl-N-benzylpyridinium chloride (95%) and 4-vinyl- N cetylpyridinium bromide (5%), respectively. In the casc of PNPP, the rate-enhancing action of CTABr below $5 \times 10^{-3} \mathrm{M}$ is not so large as that of cationic polysoaps such as C16BzPVP and BzPVP. The order is clearly the same as that of the hydrophobicity of the polyelectrolyte, and the same inequality was found to hold for the alkaline fading reactions of triphenylmethane dyes. ${ }^{6}$ The hydroxide ions are attracted to the cationic polymer by the electrostatic attractive forces and the hydrophobic esters are also accumulated around the polymer by the hydrophobic attractive interactions. Thus, the cationic, hydrophobic polymer promotes the hydrolysis. Similar findings were observed for ester hydrolysis by using polysulfonic acid, ${ }^{4}$ micelle-forming cationic detergents of various hydrophobicities, ${ }^{7,8}$ and polyethylenimine derivatives. ${ }^{9,10}$

Second, hydrophobic polyelectrolyte was effective
(7) M. T. A. Behme, J. G. Fullington, R. Noel, and E. H. Cordes, J. Amer. Chem. Soc., 87, 266 (1965).
(8) L. R. Romsted and E. H. Cordes, J. Amer. Chem. Soc., 90, 4404 (1968).
(9) I. M. Klotz and V. H. Stryker, J. Amer. Chem. Soc., 90, 2717 (1968).
(10) G. P. Royer and I. M. Klotz, J. Amer. Chem. Soc., 91,5885 (1969).

Figure 1.-Polyelectrolyte effect on the alkaline hydrolysis of PNPA at $30^{\circ}:[P N P A]=5 \times 10^{-5} M,[\mathrm{NaOH}]=2.5 \times$ $10^{-2} M$.
in accelerating the reaction even in dilute concentration regions compared with surfactants; CTABr accelerated the reaction in the concentration above $10^{-4} M$, whereas polyelectrolyte was effective at $10^{-6} \sim 10^{-5}$ equiv l. $^{-1}$ as is clearly shown in Figure 3. This is quite under standable because the charges and the hydrophobic groups are fixed to the main chain in the case of polyelectrolytes and cannot be separated by dilution from each other. The cmc of $\operatorname{CTABr}\left(\sim 10^{-3} M\right.$ in pure water) would be expected to decrease upon the addition of a hydrophobic ester. ${ }^{3 b}$ Hence, one would expect CTABr to begin to catalyze the reaction at lower concentrations as the esters become more hydrophobic, which agrees with the observations.
Third, the strength of the rate-enhancing action of the polyelectrolytes is most marked for the hydrolysis of PNPP and least for PNPA with the order PNPA $<$ PNPPR < PNPV < PNPC < PNPL < PNPP. This feature has already been demonstrated for the hydrolyses in the presence of surfactant, in which the concentration of hydroxide ions was extremely low compared with that in the present work. ${ }^{11,12}$ The relative strength of the rate enhancement by C16BzPVP of the hydrolysis is shown in Table I, where k_{20} is the rate

Table I
Rate Enhancement by C16BzPVP of the
Alkaline Hydrolyses of p-Nitrophenyl Esters Concn of C16BzPVP, equiv $1 .{ }^{-1}$
1.25×10^{-5} $\begin{array}{llllll} & 4^{a} & 1^{k} / k_{20} & 7^{b} & 11^{c} & 15^{d}\end{array}$
$\begin{array}{llll}1.00 & 1.15 & 1.40 & 15.0\end{array}$
$\begin{array}{lllllll}3.75 \times 10^{-4} & 1.14 & 1.38 & 1.96 & 2.39 & 5.32 & 80.2\end{array}$
$\begin{array}{lllllll}1.25 \times 10^{-3} & 1.34 & 1.57 & 2.47 & 3.98 & 21.4 & 135\end{array}$
$\begin{array}{lllllll}3.75 \times 10^{-3} & 1.46 & 1.59 & 3.57 & 16.9 & 112 & 140\end{array}$
${ }^{a}$ [Ester] $=5 \times 10^{-6} M,\left[\mathrm{OH}^{-}\right]=2.5 \times 10^{-2} M$, at 30°, in pure water. ${ }^{b}$ [Ester] $=5 \times 10^{-6} M,\left[\mathrm{OH}^{-}\right]=2.5 \times 10^{-2} M$, at 25°, in $15 \% \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O} .{ }^{c}[$ Ester $]=5 \times 10^{-5} M,\left[\mathrm{OH}^{-}\right]=$ $2.5 \times 10^{-2} M$, at 25°, in 22.5% EtOH-H2O. ${ }^{d}$ [Ester] $=4 \times$ $10^{-5} M,\left[\mathrm{OH}^{-}\right]=10^{-3} M$, at 30°, in $30 \% \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$.
constant without the polyelectrolyte. As is clear in the table, the larger the n values of esters, the stronger the rate enhancement. The maximum acceleration factor for the hydrolysis of PNPP is about 150 , whereas that for PNPA is only 1.5. The factor for PNPP probably would become much larger if the reaction could be carried out in pure water, since ethanol is considered to be a breaker of the hydrophobic bonds between ester and catalyst.

[^38]

Figure 2.- Polyelectrolyte effect on the alkaline hydrolysis of PNPV at $30^{\circ}:[\mathrm{PNPV}]=5 \times 10^{-5} M ;[\mathrm{NaOH}]=2.5 \times$ $10^{-2} M$.

Figure 3.- Polyelectrolyte effect on the alkaline hydrolysis of PNPP at 30° in 30% ethanol $-\mathrm{H}_{2} \mathrm{O}:$ [PNPP] $=4 \times 10^{-5} \mathrm{M}$, $[\mathrm{NaOH}]=10^{-3} M$.

The activation parameters, namely the free energy (ΔG^{\ddagger}), enthalpy (ΔH^{\ddagger}), and entropy (ΔS^{\ddagger}) of activation, are given in Table II for the alkaline hydrolysis

Table II
Activation Parameters for the Alkaline Hydrolysis of PNPL in 22.5% Ethinolic Aqueous Solution at 30° a

Electrolyte	Conen of electrolyte, equiv 1^{-1}	$\begin{gathered} \Delta G^{\ddagger}, \text { kcal } \\ \mathrm{mol}^{-1} \end{gathered}$	$\begin{gathered} \Delta H^{\mp}, \mathrm{kcal} \\ \mathrm{~mol}^{-1} \end{gathered}$	$\Delta S^{\ddagger}, \mathrm{cal}$ deg^{-1} mol^{-1}
None	0	18.0	10.9	-23
C16BzPVP	1.67×10^{-3}	14.7	5.3	-31
CTABr	2.5×10^{-3}	14.6	4.8	-32

${ }^{a}[\mathrm{PNPL}]=5 \times 10^{-6} \mathrm{M},[\mathrm{NaOH}]=2.5 \times 10^{-2} \mathrm{M}$.
of PNPL in the presence of C 16 BzPVP and CTABr and in their absence. As was usually found, ${ }^{13}$ the ΔS^{\ddagger} values are strongly negative. All three parameters were decreased by the electrolytes. It should be noted that the ΔH^{\mp} was sharply decreased by the electrolyte, as was the case for interionic reactions in the presence of polyelectrolytes. ${ }^{2,14}$ The decrease in ΔS^{\ddagger} suggests that the acceleration is due to the enthalpic loss.

[^39](14) N. Ise and F. Matsui, J. Amer. Chem. Soc., 90, 4242 (1968).

Experimental Section

Materials.-PNPA obtained from Nakarai Chemicals Co., Kyoto, Japan, was further purified by recrystallization until it was nearly colorless (mp 78°). PNPPR, PNPV, PNPC, and PNPL obtained from Sigma Chemicals Co. were used without further purification. PNPP was a guaranteed reagent from Nakarai Chemicals Co. The details about the preparation of the polymers, namely C2PVP, C4PVP, BzPVP, C16BzPVP, and DECS, were described in the preceding paper. ${ }^{8}$ The degree of polymerization of the parent poly(4-vinylpyridine) is 3800 . The characterization of NaDNA was also described before. ${ }^{6}$ NaLS and CTABr were commercially available. Deionized water was
used for the preparation of the solutions of esters and polymer catalysts.

Kinetic Measurements.-Reaction rates were obtained from the change in absorbance at 400 nm owing to release of p-nitrophenoxide ion. The rapid reaction was followed using a Hitachi stopped-flow spectrophotometer, Model RSP-2, with a Hitachi memoriscope Model V-018. The slow ractions were monitored using a Hitachi spectrophotometer Model EPS-3T.

Registry No.-PNPA, 830-03-5; PNPPR, 1956-06-5; PNPV, 1956-07-6; PNPC, 1956-10-1; PNPL, 1956-11-2; PNPP, 1492-30-4; C2PVP, 25619-82-3; C4PVP, 25703-28-0; BzPVP, 30109-97-8; C16BzPVP, 40780-43-6; DECS, 27577-32-8; CTABr, 57-09-0; NaLS, 151-21-3.

Proton Nuclear Magnetic Resonance Spectra of 1-Substituted Acenaphthenes and Other Systems of Well-Defined Geometry ${ }^{1 a}$

C. K. Fay, ${ }^{\text {1b }}$ J. B. Grutzner, ${ }^{\text {1e }}$ L. F. Johnson, ${ }^{\text {1d }}$ S. Sternhell, ${ }^{\text {lb }}$ and P. W. Westerman ${ }^{\text {1b }}$
Department of Organic Chemistry, The University of Sydney, Sydney, N.S.W., Australia, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, and Analytical Instrument Division, Varian Associates, Palo Alto, California 94303

Received March 20, 1973

Abstract

The pmr spectra of 221 -substituted acenaphthenes were analyzed and the published nmr data for series of hexachlorobicyclo[2.2.1]heptenes, oxiranes, 1,1-dichlorocyclopropanes, and dibenzobicyclo[2.2.2]octadienes were extended by the analysis of the parent compound using ${ }^{13} \mathrm{C}$ satellites. The above data enable us to derive the following conclusions. (1) For the common range of functional groups, the dependence of vicinal and geminal coupling constants on the "electronegativity" of the substituent X is complex. However, it appears likely that empirical "substituent effects" can be used predictively. (2) A wide variety of substituents shield the vicinal protons eclipsed by them relatively to those trans to them. With some substituents $\left(-\mathrm{COCH}_{3},-\mathrm{COOH},-\mathrm{COOMe}\right.$, $-\mathrm{CONH}_{2},-\mathrm{N}^{+} \mathrm{Me}_{3},-\mathrm{CHO}$) the opposite effect may be observed. (3) By comparison with unsubstituted compounds, trans vicinal protons and geminal protons are deshielded by all substituents encountered here, except $-\mathrm{SiMe}_{3}$. The cis vicinal protons may be either shielded or deshielded. (4) No encompassing theoretical analysis of the observed shifts was possible. However, by restricting the data to selected substituents it has been shown that the shift of the geminal hydrogen induced by a given substituent depends on the substrate. A Hammett-type relationship has been proposed which should prove useful for estimation of chemical shifts. An interpretation of this observation in terms of the inductive effect is presented. (5) For substituents limited to first-row elements, both vicinal hydrogens are shifted to about the same extent, consistent with either electric field or inductive effects. In addition, the eclipsed vicinal hydrogen shows a substantial upfield shift which is not explicable by any current theory. A new interpretation in terms of backbonding and a Karplus type relationship is suggested.

To explore the influence of substituents on chemical shifts and coupling constants, it is necessary to use molecules of reasonably well-defined stereochemistry. System 1 represents one class of compounds where H_{A} and H_{C} are approximately eclipsed and X is any substituent of interest in proton magnetic resonance studies. Clearly, system 1 can be incorporated only into flat, rigid rings and extensive systematic studies have so far been confined to hexachlorobicyclo[2.2.1] heptenes (2) ${ }^{2 \mathrm{a}}$ and their 7,7-difluoro derivatives, ${ }^{2 \mathrm{~b}}$ 1,1 ,dichlorocyclopropanes (3), ${ }^{3}$ oxiranes (4), ${ }^{3}$ cyclopropanes (5), ${ }^{4,5}$ and norbornenes (6). ${ }^{6}$ A fairly large collection of data is also available ${ }^{7}$ for dibenzobicyclo[2.2.2]octadienes (7), and some general studies dealing with the effects of substituents on coupling constants ${ }^{8}$ are pertinent.

This work deals with the nmr parameters for frag-
(1) (a) Abstracted in part from the Ph.D. thesis of P. W. Westerman, University of Sydney, 1970; (b) University of Sidney; (c) Purdue University; (d) Varian Associates.
(2) (a) K. L. Williamson, J. Amer. Chem. Soc., 85, 516 (1963); (b) K. L. Williamson and J. C. Fenstermaker, ibid., 90, 342 (1968).
(3) K. L. Williamson, C. A. Lanford, and C. R. Nicholson, ibid., 86, 762 (1964).
(4) K. M. Crecely, V. S. Watts, and J. H. Goldstein, J. Mol. Spectrosc., 30, 184 (1969).
(5) P. A. Scherr and J. P. Oliver, ibid., 31, 109 (1969).
(6) P. Laszlo and P. v. R. Schleyer, J. A mer. Chem. Soc., 85, 2709 (1963).
(7) S. J. Cristol, T. W. Russell, J. R. Mohrig, and D. E. Plorde, J. Org. Chem., 31, 581 (1966).
(8) S. Sternhell, Quart. Rev., Chem. Soc., 23, 236 (1969).

1

4

2

3

5

6

7

8
ment 1 in 22 1-substituted acenaphthenes (8) and with the extension of data for systems $2,3,4$, and 7 by the analysis of the nmr spectra of the parent compounds ($\mathrm{X}=\mathrm{H}$) for each series. The principal purpose of the present study was the exploration of previously pro-
Table I
Nmr Data for 1-Substituted Acenaphthene Derivatives

$\delta_{\mathrm{A}}-\delta_{\mathrm{B}}$
0
0.10

-18.30

Registry no.	No.		X
$83-32-9$	1	H	
$35998-76-6$	2	$\mathrm{CMe}_{3}{ }^{\text {g }}$	

Table II
Nmr Data for Hexachlorobicyclo[2.2.1]heptenes ${ }^{a}$

Registry no.	No.	$\mathrm{X}^{\text {i }}$
22039-38-9	1	H
40745-55-9	3	$\mathrm{CH}_{3}{ }^{\text {a }}$
19095-26-2	8	CN
2157-20-2	11	COOH
17064-54-9	12	Ph
5202-36-8	18	Cl
19095-29-5	20	OH
19095-28-4	21	OCOMe
40745-62-8	22	$\mathrm{F}^{\text {h }}$

			Chemical shifts, ppm				Chemical shifts from parent			-Coupling constants,		
c	d	e	$\mathrm{H}_{\text {A }}$	H_{B}	H_{C}	$\delta_{A}-\delta_{B}$	$\mathrm{H}_{\text {A }}$	H_{B}	HC_{C}	$J_{\text {AB }}$	$J_{\text {AC }}$	$J_{\text {BC }}$
1.78	2.00	1.9	2.49	2.00	2.49	0.49	0	0	0	-12.42	$9.73{ }^{\prime}$	3.81
2.07	2.23	2.2	2.63	1.58	2.86	1.05	-0.14	0.42	-0.37	-12.18	8.81	3.91
2.49	2.58	2.5	2.70	2.15	3.40	0.55	-0.21	-0.15	-0.91	-12.6	9.3	4.6
2.60	2.68	2.6	2.72	2.43	3.62	0.29	-0.23	-0.43	-1.13	-12.6	8.5	4.4
2.75	2.80	2.8	2.87	2.38	3.87	0.49	-0.38	-0.38	-1.38	-12.7	8.9	4.2
3.25	3.21	3.2	3.08	2.22	4.72	0.86	-0.59	-0.22	-2.23	-13.2	8.0	3.2
3.43	3.36	3.4	2.78	1.90	4.63	0.88	-0.29	0.10	-2.14	-12.6	7.4	2.4
3.74	3.60	3.7	2.95	1.90	5.56	1.05	-0.46	0.10	-3.01	-13.3	7.6	2.5
3.92	3.76	3.9	2.85	2.11	5.31	0.74	-0.36	-0.11	-2.82	-13.3	7.19	1.82

${ }^{a}$ The data refer to 10% solutions in CS_{2} unless otherwise indicated. Chemical shifts are believed to be significant to $\pm 0.02 \mathrm{ppm}$ and coupling constants to $\pm 0.2 \mathrm{~Hz} .{ }^{b}$ See footnote b, Table I. ${ }^{c}$ Dailey electronegativity. ${ }^{d}$ Muller electronegativity. ${ }^{6}$ Electronegativity value accepted in this work. $\quad J_{\text {exo,exo }} \cdot J_{\text {endo.endo }}=9.16 \mathrm{~Hz}\left(c f\right.$. text) ${ }^{\circ}{ }^{\circ} \mathrm{A}$. Dean and S. Sternhell, unpublished observations. ${ }^{n}$ Data for $5 \mathrm{~mol} \%$ solution in cyclohexane: S. L. Smith, University of Kentucky, private communication. ${ }^{i}$ Reference 2.

Table III
Nmr Data for Monosubstituted Ethylene Oxides ${ }^{a}$

Registry no.	No. X		- Ex ${ }^{\text {b }}$			-Chemical shifts, ppm (ex TMS) -				Chemical shifts from parent			-Coupling constants		Hz
			c	d	e	$\mathrm{H}_{\text {A }}$	H_{B}	H_{C}	$\delta_{\mathrm{A}}-\delta_{\mathrm{B}}$	$\mathrm{H}_{\text {A }}$	H_{B}	H_{C}	$J_{\text {A B }}$	$J_{\text {A }}$	$J_{\text {BC }}$
75-21-8	1	H	1.78	2.00	19	$\begin{gathered} 2.49 \\ (2.54)^{\circ} \end{gathered}$	$\begin{gathered} 2.49 \\ (2.54)^{9} \end{gathered}$	$\begin{aligned} & 2.49 \\ & (2.54)^{0} \end{aligned}$	0	0	0	0	-6.26 ± 1.6	$4.43{ }^{\prime}$	$3.08{ }^{f}$
75-56-9	3	Me ${ }^{\boldsymbol{h}}$	2.07	2. 23	2.1	2.59	2.28	2.85	0.31	-0.10	0.21	-0.36	$5.37{ }^{\prime}$	3.88 ${ }^{\prime}$	$2.57{ }^{\prime}$
4538-51-6	8	$\mathrm{CN}^{\text {i }}$	2.49	2.58	2.5	3.12	3.00	3.50	0.12	-0.63	-0.51	-1.01	5.5	4.2	2.5
503-11-7	11	$\mathrm{COOH}^{\text {i }}$	2.60	2.68	2.6	2.99	2.93	3.48	0.06	-0.50	-0.44	-0.99	6.3	5.0	1.9
765-34-4		$\mathrm{CHO}^{\text {i }}$	2.69	2.75	2.7	3.17	3.10	3.35	0.07	-0.68	-0.61	-0.86	5.5	4.9	2.0
4401-11-0		$\mathrm{COCH}_{3}{ }^{\text {j }}$	2.75	2.80	2.8	2.96	2.84	3.28	0.12	-0.47	-0.35	-0.79	5.7	4.3	2.7
96-09-3	12	$\mathrm{Ph}^{\text {i }}$	2.75	2.80	2.8	2.82	2.52	3.61	0.30	-0.33	-0.03	-1.12	5.7	4.0	2.5
7763-77-1	18	Cl^{i}	3.25	3.21	3.2	2.83	2.75	4.90	0.08	-0.34	-0.26	-2.41	4.7	2.7	14
36099-39-5	21	OCOMe ${ }^{\text {i }}$	3.74	3.60	3.7	2.76	2.58	5.33	0.18	-0.27	-0.09	-2.84	4.5	2.2	1.4

${ }^{a}$ The data refer to 10% solutions in CS_{2} unless otherwise indicated. Chemical shifts are believed to be significant to $\pm 0.02 \mathrm{ppm}$ and coupling constants to $\pm 0.2 \mathrm{~Hz}$. ${ }^{b}$ See footnote b, Table I. ${ }^{c}$ Dailey electronegativity. ${ }^{d}$ Muller electronegativity. electronegativity value accepted in this work. ${ }^{\prime}$ Probable error ≤ 0.01. © E. Lippert and H. Prigge, Ber. Bunsenges. Ges., 67, 415 (1963). ${ }^{h}$ Chemical shift data for CCl_{4} solution [G. Allen, D. J. Blears, and K. H. Webb, J. Chem. Soc., 810 (1965)]; coupling constants for neat liquid [D. D. Elleman, S. L. Manatt, and C. D. Pearce, J. Chem. Phys., 42, 650 (1965)]. ' Reference 3. ${ }^{i}$ Values for CCl 4 solution [J. L. Pierre, P. Chautemps, and P. Arnaud, C. R. Acad. Sci., 261, 4025 (1965)].
posed correlations ${ }^{8}$ between geminal (J_{AB}) and vicinal (J_{AC} and J_{BC}) coupling constants in fragment 1 with electronegativity ${ }^{9}$ and of the relative shielding of the β protons $\left(\mathrm{H}_{\mathrm{A}}\right.$ and $\left.\mathrm{H}_{\mathrm{B}}\right)$ by the substituent X . Scattered observations about the latter effect can be found in the literature ${ }^{10 a}$ and the substituents in this work were chosen to explore the effects of commonly encountered functional groups with the view of obtaining correlations useful in structural investigations.

Results and Discussion

The nmr data for acenaphthenes are presented in Tablc I, for hexachlorobicyclo[2.2.1]heptenes in Table II, for oxiranes in Table III, for 1,1-dichlorocyclopro-

[^40]panes in Table IV, and for dibenzobicyclo[2.2.2]octadienes in Table V. With the exception of the parameters for the parent hydrocarbons, most of the data in Tables II-V are taken from the literature and converted to units used to describe the acenaphthene series to allow direct comparison between the various series. Table VI gives nmr parameters for monosubstituted cyclopropanes abstracted from literature. ${ }^{4,5,11}$ Entry numbers in each table refer to the same substituents.
A. Analysis of Nmr Spectra. - With the exception of entries 1-3 (Table I) the nmr spectra of 1 -substituted acenaphthenes gave well-defined patterns for signals assigned to protons at C-1 and C-2. In all cases the relevant resonances were further split by coupling with aromatic protons ${ }^{8}$ and analyses were performed on 100MHz spectra with the latter decoupled. The spectra of 1 -substituted acenaphthenes where the group X had
(11) R. J. Crawford and G. L. Erickson, J. Amer. Chem. Soc., 89, 3907 (1967).

Table IV
Nmr Data for 2-Substituted 1,1-Dichlorocyclopropanes ${ }^{a}$

$\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$	No.	X	, - EX ${ }^{\text {b }}$			Chemical shifts, ppm (ex TMS)				Chemical shifts from parent			-Coupling constants,		
			c	d	\boldsymbol{e}	$\mathrm{H}_{\text {A }}$	HB_{B}	HC	$\boldsymbol{\delta}_{\mathbf{A}}-\boldsymbol{\delta}_{\mathrm{B}}$	$\mathrm{H}_{\text {A }}$	H_{8}	HC_{C}	$J_{\text {AB }}$	$\mathrm{J}_{\text {AC }}$	$J_{\text {BC }}$
2088-35-9	1	H	1. 78	2.00	1.9	1.45	1.45	1.45	0	0	0	0	$\begin{gathered} -4.99^{f} \\ (-6.0)^{g} \end{gathered}$	$\begin{gathered} 11.25^{f} \\ (11.2)^{0} \end{gathered}$	$\begin{gathered} 7.99^{f} \\ (8.0)^{0} \end{gathered}$
3591-38-6		SiMes	1.80	1.76	1.8	1.43	1.11	0.58	0.32	0.02	0.34	0.87	-4.9	12.6	9.6
5365-14-0	11	COOH^{h}	2.60	2.68	2.6	1.87	2.02	2.52	-0.15	-0.42	-0.57	-1.07	-6.8	11.0	6.8
2415-80-7	12	Ph^{h}	2.75	2.80	2.8	1.85	1.73	2. 80	0.12	-0.40	-0.28	-1.35	-7.3	10.5	8.6
40745-72-0	14	$\mathrm{Br}^{\text {r }}$	2.96	3.10	3.0	2.08	1.58	3.45	0.50	-0.63	-0.13	-2.00	-8.6	9.4	6.6
17355-81-6	19	OMe ${ }^{\text {h }}$	3.30	3.25	3.3	1.67	1.52	3.62	0.15	-0.22	-0.07	-2.17	-8.4	7.9	5.3
3591-44-4	21	OCOMe ${ }^{h}$	3.74	3.60	3.7	1.84	1.58	4.28	0.26	-0.39	-0.13	-2.83	-9.1	8.0	5.4

${ }^{a}$ The data refer to 10% solutions in CS_{2} unless otherwise indicated. Chemical shifts are believed to be significant to ± 0.02 ppm and coupling constants to $\pm 0.2 \mathrm{~Hz}$. ${ }^{b}$ See footnote b, Table I. ${ }^{c}$ Dailey electronegativity. ${ }^{d}$ Muller electronegativity. e Electronegativity value accepted in this work. /Probable error $\leqslant 0.03$. D. J. Patel, M. E. H. Howden, and J. D. Roberts, J. Amer. Chem. Soc., 85, 3218 (1963). ${ }^{n}$ Reference 3.

Table V
Nmr Data for 7-Substituted Dibenzobicyclo[2.2.2]octadienes ${ }^{a}$

Chemical shifts from parent

a Unless otherwise stated the data refer to CCl_{4} solutions. Chemical shifts are significant to $\pm 0.02 \mathrm{ppm}$ and coupling constants to $\pm 0.2 \mathrm{~Hz}$. ${ }^{b}$ See footnote b, Table I. ${ }^{c}$ Dailey electronegativity. ${ }^{d}$ Muller electronegativity. e Flectronegativity value accepted in this work. ' K. Tori, Y. Takano, and K. Kitahonoki, Chem. Ber., 97, 2798 (1964). a Reference 7. ${ }^{h}$ Data for solution in CF3COOH. ${ }^{i}$ Y. Terui, K. Aono, and K. Tori, J. Amer. Chem. Soc., 90, 1069 (1968).

Table VI

Nmr Data for Monosubstituted Cyclopropanes ${ }^{a}$

Registry по.	No.	X	- $E \mathrm{X}^{\text {b }}$				Chemical shifts, ppm ——			Chemical shifts from parent\qquad			-Coupling constants. Hz^{-}		
			${ }^{\text {c }}$	${ }^{\text {d }}$			H_{B}	H_{c}	$\delta_{A}-\delta_{B}$	$\mathrm{H}_{\text {A }}$	H_{B}	Hc_{c}	$J_{\text {AB }}$	$J_{\text {AC }}$	
75-19-4	1	H^{\prime}	1.78	2.00	1.9	0.20	0.20	0.20	0	0	0	0	-4.34	8.97	5.58
594-11-6	3	Me ${ }^{\text {a }}$	2.07	2.23	2.2	0.40	-0.06	0.65	0.46	-0.20	0.26	-0.45	2.5	7.5	4.0
5500-21-0	8	CN ${ }$	2.49	2.58	2.5	0.94	0.94	1.36	0.00	-0.74	-0.74	-1.16	-4.72	8.43	5.12
1759-53-1	11	COOH^{\prime}	2.60	2.68	2.6	0.91	1.01	1.59	-0.10	-0.71	-0.81	-1.39	-4.00	8.04	4.57
765-43-5		$\mathrm{COCH}_{3}{ }^{\text {f }}$	2.75	2.80	2.8	0.81	0.85	1.96	-0.04	-0.61	-0.65	-1.76	-3.41	7.96	4.55
765-30-0	13	$\mathrm{NH}_{2}{ }^{\prime}$	2.91	2.93	2.9	0.32	0.20	2.23	0.12	-0.12	0.00	-2.03	-4.29	6.63	3.55
4333-56-6	14	Br^{\prime}	2.96	3.10	3.0	0.96	0.81	2.83	0.15	-0.76	-0.61	-2.63	-6.12	7.13	3.80
7393-45-5	18	$\mathrm{Cl}{ }^{\prime}$	3.25	3.21	3.2	0.87	0.74	2.96	0.13	-0.67	-0.54	-2.76	-6.01	7.01	3.58
16545-68-9	20	OH^{h}	3.43	3.36	3.4	0.59	0.34	3.35	0.25	-0.39	-0.14	-3.15	-5.43	6.19	294
1959-79-1	22	$\mathrm{F}^{\text {i }}$	3.92	3.76	3.9	0.69	0.27	4.32	0.42	-0.49	-0.07	-4.12	-6.69	5.89	2.39

${ }^{a}$ The data refer to neat liquids unless otherwise stated. ${ }^{b}$ See footnote b, Table I. c Dailey electronegativity. ${ }^{d}$ Muller electronegativity. e Electronegativity value accepted in this work. ' Reference 4. a Data for chloroform solution [R. J. Crawford and G. L. Erickson, J. Amer. Chem. Soc., 89, 3907 (1967)]. The data presented here were not used for plots of J vs. $E_{\text {r }}$ etc., because of the unlikely value quoted for J_{gem} and lack of published details concerning the analysis of the nmr spectrum. ${ }^{\text {h }}$) ata (ref $\overline{\mathrm{i}}$) for $13 \mathrm{~mol} \%$ sotution in benzene. ${ }^{i}$ Data (ref 5) for $8 \mathrm{~mol} \%$ solution in $38 \mathrm{~mol} \%$ benzene and $54 \mathrm{~mol} \%$ trichlorofluoromethane.

Figure 2.-Portion of $220-\mathrm{MHz}$ spectrum of 1 -methyl-3,5,6,8tetradeuterioacenaphthene.
the portion of the spectrum of interest to us became distorted, while the portion of the spectrum comprising the six-spin system ($\mathrm{H}_{\mathrm{A}}, \mathrm{H}_{\mathrm{B}}, \mathrm{H}_{\mathrm{C}}$, and the methyl group), after the successful decoupling of aromatic protons, could not be analyzed because we were unable to obtain satisfactory initial parameters for the iterative stage. As homonuclear spin decoupling was not possible at 220 MHz , a specimen of 1 -methyl-3,5,6,8-tetradcuterioacenaphthenc was prepared (see Experimental Section), whose $220-\mathrm{MHz}$ spectrum (Figure 2) was sufficiently simple to permit us to deduce trial parameters for analysis by means of the laocs3 procedure. ${ }^{14 b}$ Satisfactory analyses of both 220 - and $100-$ MHz spectra were achieved, although the accuracy is rather poorer than usual owing to the large number of coincident transitions and imperfect resolution. The data for long-range interactions involving the methyl group are thereforc of doubtful significance.

Hexachlorobicyclo [2.2.1] heptene. - The $100-\mathrm{MHz}$ nmr spectrum of hexachlorobicyclo [2.2.1]heptene as approximately $10 \% \mathrm{w} / \mathrm{v}$ solution in CS_{2} gave an AA^{\prime} BB^{\prime} pattern with 24 clearly identifiable lines which was analyzed iteratively by laocs 3 procedure to give the parameters listed under entry 1, Table II. The probable crrors were all less than 0.02 Hz and the largest deviation between the experimental and calculated position of any single line was 0.106 Hz . The assignment of the upfield portion of the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ multiplet to the endo protons and the downfield portion to the exo protons was arrived at on the following grounds. It has been established ${ }^{15,16}$ that in bicyclo $[2.2 .1$]heptenes $J_{\text {cxo, exo }}$ is somewhat larger than $J_{\text {endo, endo }}$ and, as $J_{A^{\prime}}$ and $J_{\mathrm{BB}^{\prime}}$ were available from the tightly coupled spectrum and differed significantly (9.16 and 9.73 Hz , respectively), a clear choice could be made. Secondly, comparison of the differences in the chemical shifts between H_{c} and the parent compound in hexachlorobicyclo[2.2.1]heptenes (Table II) with the corresponding values for acenaphthenes (Table I) gave comparable values with the assignment chosen but some larger discrepancies for the alternative assignment. Finally, in norbornene ${ }^{16}$ the resonances assigned to the analogous endo protons at C-5 and C-6 occur upfield of those assigned to the corresponding exo protons.

[^41]Ethylene Oxide and 1,1-Dichlorocyclopropane.-The nmr spectrum of ethylene oxide has been previously analyzed by the ${ }^{13} \mathrm{C}$ satellite method ${ }^{13}$ as a neat liquid to give values $\left(J_{\text {cis }}=4.45 \pm 0.1\right.$ and $J_{\text {trans }}=3.1 \pm$ 0.1 Hz) almost identical with our results for CS_{2} solution (entry 1, Table III) obtained by the iterative procedure. ${ }^{12}$ The insensitivity of this spectrum to the magnitude of $J_{\text {gem }}$ is reflected in the large probable error ($\pm 1.6 \mathrm{~Hz}$) for this parameter in the final iteration where the root mean square (rms) error was 0.023 Hz and the largest deviation between the experimental and calculated line positions was 0.05 Hz .

The nmr spectrum of 1,1-dichlorocyclopropane in benzene has been analyzed by the ${ }^{13} \mathrm{C}$ satellite method. ${ }^{17}$ Our results for CS_{2} solution (entry 1, Table IV) are comparable. Owing to the relatively good quality of the satellite spectrum ${ }^{18}$ and excellent convergence on iteration (rms error 0.013 Hz , largest deviation between the experimental and calculated line position 0.036 Hz), reliable results for all parameters, including $J_{\text {gem }}$, were obtained.

Dibenzobicyclo [2.2.2]octadiene gave a poor-quality ${ }^{13} \mathrm{C}$ satellite spectrum of the bridge protons after decoupling of the benzylic (bridgehead) protons. ${ }^{19}$ Analysis by the method of Mortimer ${ }^{13}$ was performed as for acenaphthene, using averages from eight spectra for the spacing assigned to the sum and difference, respectively, of the vicinal couplings.
B. Assignment of Resonances and Discussion of Geometry. - The resonances of the geminal protons at $\mathrm{C}-2$ in 1 -substituted acenaphthenes were assigned on the basis of the Karplus relation; ${ }^{8}$ i.e., it was assumed, following previous workers, ${ }^{2-7}$ that in system $1 J_{\text {cis }}>$ $J_{\text {trans }}$. The same considerations were used to assign the coupling constants in the satellite analyses of the unsubstituted compounds (entries 1 , Tables I-V).

No low-temperature neutron diffraction data on 1monosubstituted acenaphthenes (8) are available and hence the central question of the exact stereochemistry of the system 1 in acenaphthene cannot be unequivocally answered. From the point of view of the present investigation, the most relevant distortions from the idealized stereochemistry of the system 1 , in which H_{A} is completely eclipsed by H_{C} and H_{B} is completely eclipsed by X , involve torsional changes about the $\mathrm{C}-1-\mathrm{C}-2$ bond. These are most likely to be of two kinds, represented by projections 9 and 10 . We consider that the

9

10
most instructive of the available X-ray diffraction data on acenaphthenes ${ }^{20-23}$ are those for cis-acenaphthene1,2 -diol, ${ }^{21}$ which show that the analogous distortion

[^42]

Figure 3.-Plot of $J_{\text {vieinal.cis }}\left(J_{\mathrm{Ac}}\right)$ vs. $J_{\text {vicinal, trane }}\left(J_{\mathrm{BC}}\right)$ in 1substituted acenaphthenes (8). Identification numbers refer to Table I. The straight line of best fit was obtained by the standard procedure and has slope 0.63 , intercept on the y axis 6.00 , and correlation coefficient 0.68 .
from perfect eclipsing owing to the nonbonded interaction between the cis vicinal oxygen atoms is of the order of 10°. Consideration of van der Waals radii suggest that in the series of 1 -substituted acenaphthenes examined here the most important nonbonded interactions, i.e., those between H_{B} and X , are likely to be less severe (except possibly in cases 2,15 , and 16, Table I), and hence should result in distortions smaller than $c a .10^{\circ}$.

Assuming, as is generally done, ${ }^{8}$ that the most important factor determining the magnitude of vicinal coupling constants is the dihedral angle, one concludes that $J_{\text {trans }}\left(i . e ., J_{\mathrm{BC}}\right.$) in 8 should be more sensitive to distortions from perfect eclipsing than $J_{\text {cis }}\left(\right.$ i.e., $\left.J_{\mathrm{Ac}}\right)$ because of the shape of the Karplus function. ${ }^{8}$ The plot of $J_{\mathrm{AC}} v$. J_{BC} (Figure 3) shows considerable scatter, but there seems no unequivocal correlation between the bulk of substituent X and the deviation from the straight line of best fit, with the possible exception of 1-trimethylammonioacenaphthene (entry 16), thus suggesting that distortions are moderate.

It is apparent from the projections 9 and 10 that while distortion from perfect eclipsing must cause a decrease in $J_{\text {cis }}$ it could be accompanied by either an increase (projection 9) or a decrease (projection 10) in $J_{\text {trans }}$. Comparison of pairs of entries in Table I where the substituents have similar electronegativity (see below) but differ in bulk leads to some very tentative suggestions. Thus the somewhat greater $J_{\text {trans }}$ for $\mathrm{X}=\mathrm{Cl}$ than for $\mathrm{X}=\mathrm{Br}$ (in spite of an increase in electronegativity) suggests that the distortion (if any) is in the direction of projection 9. On the other hand, entries 2 and 3 in Table I suggest that the tert-butyl group causes a distortion toward the projection 10.

In summary, there is no evidence for gross distortions in monosubstituted acenaphthenes, but steric factors cannot be ignored.
C. Substituent Effects on Coupling Constants. Previous workers ${ }^{2-6,8,10 c}$ have investigated the effect

Figure 4.-Plot of coupling constants in 1 -substituted acenaphthenes (8) vs. electronegativity of the substituents. Identification numbers refer to Table I. The straight lines of best fits were obtained by the standard procedure and have the following parameters: slope $-0.48,-0.44,+0.42$; intercept on the y axis $4.29,6.32,-4.63$; correlation coefficient $-0.71,-0.74$, 0.39 for $J_{\text {trane }}, J_{\text {cies }}$, and $J_{\text {gem }}$, respectively.

Table VII

System	Parameter	$\mid J_{\text {gem }}$!	$J_{\text {cis }}$	$J_{\text {trane }}$	$J_{\text {cis }}+J_{\text {trans }}$	$\delta_{C}-\delta_{\text {A }}$	$\delta_{\text {C }}-\delta_{\text {B }}$
Acenaphthene (Table I)	No. of points	21	22	22	22	21	21
	Slope	0.42	-0.44	-0.48	-0.31	0.59	0.53
	Intercept	-4.63	6.32	4.29	6.2	2.13	2.03
	Correlation coefficient	0.39	-0.72	-0.71	-0.79	0.93	0.91
Bicycloheptene (Table II)	No. of points	8	8	8	8	8	8
	Slope	1.51	-0.71	-0.49	-0.37	0.72	0.56
	Intercept	-16.3	8.9	4.7	7.3	2.0	1.8
	Correlation coefficient	0.83	-0.95	-0.84	-0.92	0.99	0.98
Oxirane (Table III)	No. of points	8	9	9	9	9	9
	Slope	-0.55	-0.40	-0.81	-0.35	0.50	0.50
	Intercept	5.8	4.3	4.5	4.9	2.3	2.2
	Correlation coefficient	-0.68	-0.67	-0.87	-0.82	0.88	0.83
Dichlorocyclopropane (Table IV)	No. of points	7	7	7	7	7	7
	Slope	0.41	-0.40	-0.39	-0.26	0.55	0.57
	Intercept	-0.2	6.7	5.6	7.2	2.2	2.1
	Correlation coefficient	0.97	-0.94	-0.86	-0.94	0.98	0.98
Dibenzobicyclooctadiene (Table V)	No. of points	6	7	7	7	7	7
	Slope	0.11	-0.60	-0.17	-0.17	0.58	0.49
	Intercept	1.8	8.8	3.7	5.3	2.1	2.0
	Correlation coefficient	-0.2	-0.76	-0.28	-0.56	0.96	0.95
Cyclopropane (Table VI)	No. of points	9	9	9	9	9	9
	Slope	0.32	-0.57	-0.56	-0.25	0.48	0.46
	Intercept	1.3	7.1	5.1	5.8	2.13	2.11
	Correlation coefficient	0.71	-0.99	-0.94	-0.95	0.97	0.97

of electronegativity on vicinal and geminal coupling constants in many systems and found definite correlations. Plotting the relevant data from Table I against the mean of Dailey ${ }^{9}$ and Muller ${ }^{24}$ electronegativities (Figure 4) confirms the general trends noted previously, but clearly it is futile to propose any definite correlations in view of the degree of scatter.

Besides the apparent lack of a simple relation between electronegativity and coupling constants shown in Figure 4, a number of significant particular exceptions to any proposed relation of type $J=E A+B$, where A and B are constants, can be seen in Tables I-VI. Thus the vicinal coupling constants in 1-cyanoacenaphthene (entry S, Table I) are abnormally large, although this is not observed in the cyano derivatives of hexachlorobicyclo[2.2.1]heptene (entry 8 , Table II),

Table VIII					
Direct Comparison between Coupling Constants					
System	Parameter	$\left\|J_{\text {gem }}\right\|$	$J_{\text {ois }}$	$J_{\text {trans }}$	$J_{\text {cis }}+J_{\text {truns }}$
Bicycloheptene vs. acenaphthene	No. of points	7	8	8	8
	Slope	1.22	0.70	1.23	0.88
	Intercept	1.99	2.2	-1.04	1.8
	Correlation coefficient	0.54	0.97	0.93	0.98
Oxirane vs. acenaphthene	No. of points	6	7	7	7
	Slope	0.0	0.72	1.05	1.01
	Intercept	17.6	5.6	1.33	5.97
	Correlation coefficient	-0.04	0.90	0.73	0.90
Dichlorocyclopropane vs. acenaphthene	No. of points	5	6	6	6
	Slope		0.63	0.52	0.68
	Intercept		1.9	-0.40	0.00
	Correlation coefficient		0.95	0.84	0.93
Dibenzobicyclooctadiene vs. acenaphthene	No. of points	5	6	6	6
	Slope		0.42	-0.20	0.34
	Intercept		3.87	3.45	6.65
	Correlation coefficient		0.91	-0.32	0.55
Cyclopropane vs. acenaphthene	No. of points	7	8	8	8
	Slope	0.58	0.75	0.86	1.01
	Intercept	14.8	2.39	-0.30	0.10
	Correlation coefficient	0.88	0.97	0.84	0.91
Cycloheptene vs. cyclopropane	No. of points	6	6	6	6
	Slope	1.94	1.21	1.00	1.24
	Intercept	-19.6	-2.7	0.66	-3.05
	Correlation coefficient	0.88	0.95	0.90	0.98
Cycloheptene vs. oxirane	No. of points	5	6	6	6
	Slope		0.23	0.56	1.20
	Intercept		1.76	0.01	-8.8
	Correlation coefficient		0.74	0.62	0.08

ethylene oxide (entry S, Table III), or cyclopropane (entry S, Table VI). ${ }^{25}$ Geminal coupling constants for all bromo derivatives (entrics 14 in Tables I, IV, and VI) are too small (large negative values) and several other prominent irregularities of the same type can be discerned in Tables I-VI.
Replotting data from Tables I-VI in the manner shown in Figure 4 shows (Table VII) that the degree of correlation varies significantly but, owing to the small number of derivatives in several series, it is difficult to draw any firm conclusions. There does not appear to be any clear relation between the size of X and deviation from straight-line relationships, and hence steric factors are unlikely to be solely responsible for the poor and variable correlation betwcen $E_{\mathbf{X}}$ and coupling constants in system 1.

We conclude that, within the comparatively narrow range of clectronegativity valucs associated with commonly encountcred functional groups, correlations between vicinal and geminal coupling constants and electronegativitics of functional groups arc of doubtful significance. It can be seen (Figure 4) that the scatter for $J_{\text {trans }}$ is not much greater than that for $J_{\text {cis }}$ and, by arguments advanced above, this confirms that the poor correlation with electronegativity is not solely duc to steric factors. It is more likely that the "Dailey-
type" measures of electronegativity ${ }^{10 \mathrm{~d}}$ are not very meaningful for narrow ranges found among rommon functional groups. In view of this and the uncertain status ${ }^{26}$ of the underlying theory, we forl that, for the purpose of structural determination, it would be more uscful to look for regularities in the influenere of substituents on the magnitude of coupling constants rather than for the influence of a general property of substituents, such as electronegativity.

Comparisons of data for different systems (Tables I-VI) suggests that in the generalized system 1 substituents are indeed associated with charalcteristic: values of vicinal coupling constants. Thus plots of the sums ${ }^{27}$ of vicinal coupling constants in acenaphthencs vs. hexachlorobicyclo[2.2.1]heptenes (l゙igure i) and cyclopropanes (ligure 6) appear to be straight lincs.

Clearly the data in Tables I-VI could give rise to a very large number of plots of the type shown in lïgures 5 and 6 . These were chosen as illustrations because of the relatively large number of data available. While other plots appear less convincing, they show ronsiderably more correlation between the substituent affects in different systems than between the sums of vicinal coupling constants and "electronegativity" in (ach system (Tables VII and VIII). The existence of sub-

Figure 5.-Plot of the sums of vicinal coupling constants in monosubstituted hexachlorobicyclo[2.2.1]heptenes (2) vs. the sums of vicinal coupling constants in 1-substituted acenaphthenes (8). Identification numbers refer to Tables I and II. The straight line of best fit was obtained by the standard procedure and has slope 0.88 , intercept on the y axis 1.8 , and correlation coefficient 0.98 .
stituent effects of this type has obvious predictive value for structural work.
D. Substituent Effects on Chemical Shifts. -The causes of some substituent effects on chemical shifts in system 1 will be discussed below; in this section we are concerned with establishing the regularity, if any, in substituent influences in this system for the purpose of obtaining correlations useful in structural determination.

It is well known ${ }^{28}$ that the minimum experimental conditions for obtaining genuinely meaningful chemical shift data consist of extrapolation to infinite dilution in a completely inert, isotropic solvent using suitable internal standards. Such conditions must conflict with even the most painstaking routine operations because spectral analysis on very dilute solutions becomes virtually impossible, owing to unfavorable signal to noise ratio, and because the solubility of the majority of organic compounds in "inert isotropic solvents" is inadequate. ${ }^{29}$ As the principal purpose of this work was to establish correlations usable in structural determinations, the nmr spectra of the series of 1 -substituted acenaphthenes 8 were determined in deuteriochloroform solutions. For a number of compounds (Table I) it was also possible to obtain spectra for dilute ($1-3 \%$) solutions in carbon tetrachloride. It can be seen that, although the actual chemical shifts in the two solvent

[^43]

Figure 6.-Plot of the sums of vicinal coupling constants in monosubstituted cyclopropanes (5) vs. the sums of vicinal coupling constants in 1 -substituted acenaphthenes (8). Identification numbers refer to Tables I and VI. The straight line of best fit was obtained by standard procedure and has slope 1.01 , intercept on the y axis -0.10 , and correlation coefficient 0.91 .
systems vary quite appreciably (up to 0.13 ppm), the internal chemical shifts vary considerably less and it is the latter which are most likely to be useful in the present context.

Several investigators ${ }^{2-6}$ have commented about the good correlation between electronegativity and the internal chemical shifts in systems incorporating the fragment 1, and analogous plots for 1 -substituted acenaphthenes (Figure 7) are indeed straight lines. This indicates that solvent effects are unlikely to be a major influence. ${ }^{32}$ We consider, however, that plots of this nature are of little direct significance to the problem of the relation between shielding and electronegativity in complex molecules, because the electronegativity values of "Dailey type" ${ }^{9,24}$ are linear functions of analogous internal chemical shifts in the corresponding ethyl derivatives $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{X}$. In other words, plots of the type shown in Figure 7 are plots of $\delta_{\mathrm{H}_{\alpha}}-\delta_{\mathrm{H}_{\beta}}$ in two systems $\mathrm{CH}_{\beta} \mathrm{CH}_{\alpha} \mathrm{X}$ differing only in stereochemistry.

Data in Tables I-VI reveal that all substituents, with the exception of $-\mathrm{SiMe}_{3}$ in all systems ${ }^{33}$ investigated here, deshield the geminal proton (H_{C}) and the trans vicinal proton $\left(\mathrm{H}_{\mathrm{A}}\right)$ with respect to the parent compound ($\mathrm{X}=\mathrm{H}$), but the eclipsed cis vicinal proton $\left(\mathrm{H}_{\mathrm{B}}\right)$ generally experiences smaller relative downfield shifts and in several cases is actually shielded. Not surprisingly, with most substituents the eclipsed vicinal proton appears upfield of the trans vicinal proton, i.e., the values in the column $\delta_{\mathrm{A}}-\delta_{\mathrm{B}}$ are generally positive. Carbonyl derivatives ($\mathrm{X}=\mathrm{COOH},-\mathrm{COOMe},-\mathrm{CO}-$
(32) R. F. Zurcher in "Progress in NMR Spectroscopy." Vol. 2, Pergamon Press, Elmsford, N. Y., 1967, Chapter 5.
(33) Data for hexachlorobicyclo[2.2.1]heptenes (Table II) can be compared with those for the remaining systems only after correcting for the inherent differences in chemical shifts between H_{A} and $H_{B}(0.49 \mathrm{ppm})$, which involves making the unverifiable assumption that this factor remains constant throughout the series.

Figure 7.-Plots of the internal chemical shifts in 1 -substituted acenaphthenes (8) vs. electronegativity of the substituent: (a) for the proton trans to the substituent $\left(\mathrm{H}_{\mathrm{A}}\right)$; (b) for the proton cis to the substituent (H_{B}). Identification numbers refer to Table I. The straight lines of best fit were obtained by standard procedure and have the following parameters: slope $0.59,0.53$; intercept on y axis $2.13,2.03$; correlation coefficient, $0.93,0.91$ for plots 10 a and 10 b , respectively.
$\mathrm{NH}_{2},-\mathrm{COMe}$, and -CHO) show either the opposite or erratic behavior, which can be readily rationalized by taking into account the variable conformation of the highly anisotropic carbonyl group. In the acenaphthene series (Table I, entry 16) but not in the dibenzobicyclo [2.2.2]octadiene series (Table V, entry 16), the trimethylammonium group also gives a negative value for $\delta_{A}-\delta_{B}$.

Clearly caution is necessary in utilizing the "eclipsed upfield" rule, particularly where the substituent lacks axial symmetry about the $\mathrm{C}-\mathrm{X}$ bond, but it is capable of giving structural information. ${ }^{10 \mathrm{a}, 34}$ The effect of the methyl group has been established independently. ${ }^{35}$

Comparing the values of $\delta_{\mathrm{A}}-\delta_{\mathrm{B}}$ in Tables I-VI for substituents where conformational factors can be neglected (i.e., here for $\mathrm{X}=\mathrm{Me}$, tert-butyl, $\mathrm{CN}, \mathrm{Br}, \mathrm{Cl}$, and F) shows that the magnitude of the effect varies considerably without showing any obvious trends for the limited data available. It is therefore important that for structural determinations, an appropriate model should be chosen.
E. Rationalization of Some Substituent Effects in Fragment 1.-Because of the inherent difficulties in theoretically estimating chemical shifts, the main aim of this work has been to provide empirical parameters for common substituent effects which may be transferred from one system to another. However, a number of insights into the factors which contribute to sub-stituent-induced chemical shifts may be gained from a collection of selected data from Tables I-VI. For ease of interpretation, the substituents to be examined have been restricted to substituents where the X in the $\mathrm{C}-\mathrm{X}$ bond is a first-row element. In addition highly anisotropic groups such as carbonyl containing substituents have been given minimal consideration. Even with these limitations, no general, highly accurate correlations can be made which can account for all of the ob-

[^44]served chemical shifts. Thus the estimation of substituent chemical shifts must remain empirically based. However, within the limitations specified by the selection of data, some trends are detected which may prove generally useful and should serve as the basis for future investigations.

The possible contributing factors which generate substituent chemical shifts have been discussed in detail by many authors. ${ }^{10 e, 32}$ The diamagnetic screening term is the dominant effect on proton chemical shifts and it is directly proportional to the electron density at the proton in question. While this fact has been recognized for many years, the analysis of the electron density changes in terms of the various contributing factors (inductive effect, electric field effects, etc.) has remained uncertain. When chemical shift variations in substituted alkanes of 0.3 ppm or less are being considered, any or all of the possible contributors (diamagnetic shielding, short-range paramagnetic interaction, neighboring group anisotropy, solvent effects, and intermolecular interactions) may provide a rationalization. Larger changes can only be accounted for by the diamagnetic screening term or less commonly by the neighbor anisotropy term when a highly anisotropic group is involved.

The most readily apparent chemical shift change with substitution occurs at the geminal (α) proton. Many authors have provided electronegativity correlations to account for this behavior, but deviations from these simple correlations are well known. The definitive studies by Cavanaugh and Dailey ${ }^{9}$ and Spiesecke and Schneider ${ }^{36}$ provided a basis for subsequent studies.

The X substituents for system 1 can be arranged in order of increasing downfield shift and this ordering correlates moderately well with the electronegativity of X (of Tables I-VI and Figure 7). There are a few minor inversions from substrate to substrate, but these are found with groups which have large magnetic anisotropies (e.g., $\mathrm{C}=0$) or the substituent to carbon

[^45]

Figure 8.-Plot of α-proton shift of substituted acenaphthenes vs. ${ }^{13} \mathrm{C}$ substituent effect (from ref 38). Similar plots are obtained for methyl, ethyl, and cyclopropyl derivatives (see Table X). Substituents are labeled according to Table I.
bond involves a non-first-row element (e.g., Br•). This substituent sequence holds not only for systems 2-8 but also for methyl, ethyl, ${ }^{10}$ adamantyl, ${ }^{37}$ and vinyl compounds. ${ }^{10}$ Furthermore it correlates well with the ${ }^{13} \mathrm{C}$ chemical shifts of the carbons in the $\mathrm{C}-\mathrm{X}$ group of simple alkanes. ${ }^{38}$

In addition to the substituent dependence, a careful examination reveals that the influence of a given substituent depends on the substrate in question. This dependence is illustrated by the substituent chemical shifts of protons α to an OH (relative to the corresponding hydrocarbon): methyl (3.16), cyclopropyl (3.15), ethyl (2.73), isopropyl (2.61), system 7 (2.26), system 8 (2.23), system 2 (2.14), 2-adamantyl (2.02), vinyl (1.22). A similar order of substrates is shown with other electronegative substituents.

The substrate dependence can be put on a quantitative basis by plotting the α-proton shift against a standard ${ }^{13} \mathrm{C}$ substituent chemical shift (Figure 8). Although this plot is clearly not a lincar functionproton shifts change more slowly than carbon shifts-a least squares treatment can be used to provide an approximate measure of substrate sensitivity. The available results are given in Table IX. There is insuffi-

Table IX
Substrate Sensitivity to Substituenta
(Correlation of Proton Chemical Shifts with Carbon Chemical Shifts)

\quad Subatituent	Slope (m)	Intercept (c)	Correlation coefficient
Cyclopropyl	0.060	-0.58	0.94
Methyl	0.054	-0.90	0.92
Ethyl	0.049	-0.75	0.90
Acenaphthenyl ${ }^{b}$	0.065	-0.10	0.86
Vinyl	0.019	-0.30	0.82

${ }^{a}$ Data for plot of substituent-induced α-proton shift (δ_{H}) against ${ }^{13} \mathrm{C}$ substituent shift ($\left.\delta^{1{ }^{1} \mathrm{CX}}\right) . \delta_{\mathrm{H}}=m{ }^{{ }^{13} \mathrm{CX}}+c$. Note that the ${ }^{13} \mathrm{C}$ data is for simple alkanes from ref $38 .{ }^{b}$ This correlation does not include the fluoro derivative; see text.

[^46]cient data for other substrates to provide a meaningful plot. The cyano group invariably falls off the correlation line and this can be attributed to a low value for the carbon shift of the carbon α to cyano. The apparently anomalous position of the acenaphthyl substrate is readily understood when it is realized that the data for fluoride as a substituent were not available. Thus the approximation of a curved line by a straight line will fail. This emphasizes the need for a wide range of data if a measurement of substrate sensitivity is to be made. A knowledge of substrate sensitivity will be useful for chemical shift predictions because a relationship akin to the classical Hammett $\sigma \rho$ treatment can be applied. Because of the limitations set by compound and data availability, the following relationship (eq 1) is suggested for chemical shift estimation,
\[

$$
\begin{equation*}
\Delta \delta_{\mathrm{RX}}=\Delta \delta_{\mathrm{EtX}} ; \Delta \delta_{\mathrm{ROH}} / \Delta \delta_{\mathrm{EtOH}} \tag{1}
\end{equation*}
$$

\]

where $\Delta \delta$ represents the substitucnt chemical shift of the α proton relative to the corresponding hydrocarbon RH . Of course other common substituents besides OH could be used, provided that the magnitude of $\Delta \delta$ is large enough to provide a reliable ratio. If a sufficiently wide range of substituents is available, it would be preferable to use an analysis based on Table IX. The results for cstimating acenaphthene shifts with the equation above are shown in Table \mathbf{X}. It is clear that

Table: X
Comparison of Observed and Predicted Chemical Shifts of Acenaphthene Drerivatives Based on Equation 1

X	Calcd	Obad	Calcd-obsd
Me	-0.04	-0.17	0.13
$\mathrm{CH}_{2} \mathrm{COMe}$	-0.55	-0.71	0.16
$\mathrm{CH}_{2} \mathrm{COOH}$	-0.65	-0.75	0.10
CN	-1.17	-1.19	0.02
CONH		-1.08	-1.03
COOMe	-1.12	-1.13	-0.05
COOH	-1.18	-1.19	0.01
Ph	-1.39	-1.35	-0.01
NH		-1.48	-1.35
Br	-1.98	-2.35	-0.13
NHCOCH			
Cl	-1.85	-2.56	0.37
OMe	-2.06	-2.31	0.71
OH	-1.98	-2.03	0.25
OCOMe	-2.15	-2.23	0.05
F	-2.51	-3.14	0.08
	-2.76		0.63

a The values for EtOH and EtX are taken from ref 10.
major discrepancies arise with the highly anisotropic N acetyl and O-acetyl substituents and this serves as a warning that highly anisotropic groups should be treated with caution.

The combination of substituent and substrate dependence of chemical shifts of α protons clearly supports the long-held view that the diamagnetic screening term is dominant in controlling proton chemical shifts. In particular the magnetic anisotropy of the $\mathrm{C}-\mathrm{X}$ bond cannot contribute significantly to the observed α proton shift. This term should be essentially independent of substrate given the limited geometry available for an $\mathrm{H}-\mathrm{C}-\mathrm{X}$ group. Only a change in $\mathrm{H}-\mathrm{C}-\mathrm{X}$ bond angle should alter this term significantly and there is no corrclation between bond angle and substrate sensitivity. The results for the methyl and cyclopropyl
compounds are particularly informative here, because these groups of compounds should show the largest variation in bond angle, but their sensitivities to a given substituent are very similar. In addition, the close correlation between proton and carbon shifts further supports this conclusion because the magnetic anisotropy contribution would be expected to be substantially different for carbon and hydrogen. Their geometric orientation with respect to the anisotropic group and the substantial difference in their gyromagnetic ratios should lead to quite different anisotropy contributions.

The ordering of substrates is readily explicable in terms of an inductive effect model. Consider the molecular fragment shown in the structure, where \mathbf{X} is an electronegative substituent which withdraws electrons from carbon (relative to H as a substituent). The carbon in turn withdraws electrons from the $\mathrm{C}-\mathrm{H}$, $\mathrm{C}-\mathrm{Y}$, and $\mathrm{C}-\mathrm{Z}$ bonds. If one of the substituents Y or Z is a more electron-rich element or has a more polarizable bond (i.e., any of the substrates studied here), then the inductive effect of the X group will be compensated predominantly by the $\mathrm{C}-\mathrm{Y}$ group rather than the $\mathrm{C}-\mathrm{H}$ group. Thus, of all the substrates available, the methyl group should show greatest substituent sensitivity. In the other systems, Y and Z are carbon atoms and the substrate sensitivity reflects the ability of the carbon framework to replace the electrons withdrawn by \mathbf{X}. The more readily the carbon framework can provide electrons the less demand there is on hydrogen and so the lower the substrate sensitivity. In the strained cyclopropyl system, inductive electron withdrawal by X would weaken the $\mathrm{C}-\mathrm{C}$ bonds, a highly unfavorable process, and thus major compensation is provided by the $\mathrm{C}-\mathrm{H}$ bond and a large substrate sensitivity results. Simple alkyl compounds show a lower sensitivity, followed by the electron-rich systems 2,7 , and 8 and finally the readily polarizable vinyl group. The position of the adamantyl group as a lowsensitivity framework is interesting and suggests the intriguing possibility that the number of β carboncarbon bonds is an important factor in governing substrate sensitivity. This is consistent with the inductive model, as β carbon-carbon bonds will be better able to compensate for electron removal from the β carbon than β carbon-hydrogen bonds.
The interpretation of the vicinal (β) hydrogen shifts H_{A} and H_{B} is complex. The magnitude of the observed shifts is sufficiently small that any or all of the factors which control chemical shifts could make a significant contribution. In a rigid system, the different orientation of H_{A} and H_{B} to the substituent X provides a limited probe for separation of these contributions. Zürcher ${ }^{32}$ has given a thorough review of the necessary relationships. Since the shift of the α proton $\left(\mathrm{H}_{\mathrm{C}}\right)$ is dominated by the inductive effect, a plot of H_{C} vs. H_{A} or H_{B} should show the importance of inductive effects. Using all the acenaphthene data, a mild trend of H_{A} to follow H_{C} was shown (correlation coefficient 0.69) and
the eclipsed proton H_{B} showed no correlation. Thus the inductive effect does not dominate β-proton shifts. Some of the data spread may be attributed to the effect of anisotropic groups of unknown conformation. However, even when the data is limited to axially symmetrical substituents no general trends were apparent. An attempt was made to predict some of these shifts using Zürcher's parameters ${ }^{32}$ for electric field and anisotropy contributions, but this also failed (Table XI).

In an attempt to overcome some of the deficiencies of the point dipole approximation an alternative representation was tried. The $\mathrm{C}-\mathrm{X}$ bond electric field was approximated by point charges at the nuclei and a Buckingham ${ }^{39}$ electric field calculation was performed. The magnitudes of the nuclear charges were chosen so as to reproduce the dipole moment in conjunction with the $\mathrm{C}-\mathrm{X}$ bond length. The resultant electric field was calculated at the center of the $\mathrm{C}-\mathrm{H}$ bond in question. The chemical shifts calculated by this method were usually within about 0.1 ppm of the simple point dipole values and so offer no advantages.

Thus there is no simple single correlation which will account for β-proton shifts. However, it is apparent that for simple substituents $\left(\mathrm{Me}, \mathrm{NH}_{2}, \mathrm{OH}, \mathrm{F}\right)$, the electrical character of the X substituent does have a marked influence on the shifts of H_{A} and H_{B} (Figure 9). The breakdown of this behavior into the contributions due to through-bond and through-space effects must await further data.

The major stumbling block in all these calculations is the upfield shift induced at the eclipsed hydrogen. As Zürcher has shown, ${ }^{32}$ none of the normal electric field or anisotropy contributions can reproduce this behavior. Zürcher interpreted the results as a solvent effect, but this effect has since been shown to be insufficient by the work of Simon ${ }^{35}$ among others. Since none of the recognized factors controlling chemical shift can account for the observed behavior, it seems that some previously undetected effect must be invoked.
Whatever this mechanism is, it must be strongly geometry dependent. Furthermore, it would seem from Figure 9 that the factor responsible for the upfield shift is approximately constant for each substituent. Since it is most unlikely that a completely new electromagnetic phenomenon is responsible for this behavior, it seems reasonable to suggest that a neglected component in the diamagnetic shielding term is responsible. The strong dependence on dihedral angle (0.7 ppm at 0°, 0.4 ppm at $60^{\circ}, 0$ at 120°) (Figure 10) and the approximate independence to the substituent are strongly reminiscent of the Karplus relationship for vicinal coupling constants. ${ }^{40}$ This suggests that the explanation lies in a small amount of backbonding from the substituent to the eclipsed hydrogen. This will increase the electron density at the proton and generate an upfield shift. Unfortunately, no reliable data are available for a dihedral angle of 180° and so determination of the total shape of the backbonding contribution must await further experiments.

Experimental Section

Melting points were obtained on a Kofler block and are uncorrected. Ir spectra were determined with a Perkin-Elmer Model
(39) A. D. Buckingham, Can. J. Chem., 38, 300 (1960).
(40) M. Karplus, J. Chem. Phys., 30, 11 (1959).

Table XI

Observed and Calculated Relative Proton Chemical Shifts of the Rigid System XC-CH for Different Substituents X and Torsion Angles ϕ

${ }^{a}$ See Tables I-VI. ${ }^{b} \times 10^{-12}$ esu. ${ }^{c} \times 10^{-30} \mathrm{~cm}^{8} /$ molecule. ${ }^{d} \Delta \delta_{\text {oalicd }}=\Delta \delta_{\text {el }}+\Delta \delta_{\text {maga. }}$. ${ }^{e}$ Center of dipole from carbon atom $=$ $0.90 \AA$ (ref 32). \quad Center of dipole from carbon atom $=0.96 \AA .{ }^{\circ}$ Center of dipole from carbon atom $=2.1 \AA$ (ref 32). ${ }^{h} A=-2.6$ $\times 10^{-12}$ esu and $\mu(\mathrm{C}-\mathrm{Cl})=2.2 \mathrm{D}$. ${ }^{i} A=-4.07 \times 10^{-12}$ esu and $\mu(\mathrm{C}-\mathrm{Br})=2.3 \mathrm{D} .{ }^{i} A=-2.6 \times 10^{-12}$ esu and $\mu(\mathrm{C}-\mathrm{Br})=2.3 \mathrm{D}$. ${ }^{k}$ Mean of values determined by W. Zeil and H. Buchert, Z. Phys. Chem., 38, 47 (1963), and G. S. Reddy and J. H. Goldstein, J. Phys. Chem., 39, 3509 (1963). ${ }^{2} \Delta x_{\mathrm{c}-\mathrm{c}}=21.33$ and $\Delta_{\mathrm{xc}-\mathrm{H}}=12.57 .{ }^{m} \Delta_{\mathrm{xc}-\mathrm{c}}=13.98$ and $\Delta \mathrm{xc}_{\mathrm{c}-\mathrm{H}}=11.00 .{ }^{n}$ Calculated for $\mathrm{H}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{CH}_{3}$ angles of 109°. Corresponding angles in acenaphthene are 119°. ${ }^{\circ}$ Reference $3 . \quad p$ Reference 32 .

221 spectrophotometer. Nmr spectra were obtained on a Varian Associates Model A-60 or HA-100 spectrometer using tetramethylsilane, unless otherwise indicated, as internal reference. Some of the spectra were recorded with a Varian HR-220 spectrometer. Elemental analyses were performed by the Australian Microanalytical Service, Melbourne.

Acenaphthene was purchased from Fluka, A.G., and recrystallized from ethanol before use. Acenaphthylene was obtained from the same source, and purified by recrystallization from pentane. Diethyl ether, benzene, petroleum ether (bp $58-64^{\circ}$), ethyl acetate, and acetone were purified by standard procedures. 1 -Acetoxy-, ${ }^{41} \quad 1$-bromo-, ${ }^{42-44} \quad 1$-chloro-, ${ }^{46} \quad 1$-acetonyl-, ${ }^{45} \quad$ 1-phenyl-, ${ }^{48} 1$-methyl-, 46,47 and 1-methoxy acenaphthene, ${ }^{48}$ as well as 1-acenaphthenol,41 diethyl 1-acenaphthenylmalonate, ${ }^{43}$ 1-
(41) J. Cason, Org. Syn., 21, 1 (1941).
(42) M. J. S. Dewar and R. C. Fahey, J. Amer. Chem. Soc., 85, 2245 (1983).
(43) M. Julia and M. Baillarge, Bull. Soc. Chim. Fr., 1065 (1952).
(44) W. E. Bachmann and J. C. Sheehan, J. Amer. Chem. Soc., 63, 204 (1941).
(45) K. N. Campbell, J. R. Corrigan, and B. K. Campbell, J. Org. Chem., 16, 1712 (1951).
(46) B. R. Brown and D. L. Hammick, J. Chem. Soc., 1395 (1948)
(47) A. Bosch and R. K. Brown, Can. J. Chem., 46, 715 (1968).
(48) H. Gault and G. Kalopissis, C. R. Acad. Sci., 229, 624 (1949).
acenaphthenecarbonitrile, ${ }^{43,48}$ 1-acenaphthenecarboxylic acid,43 1-acenaphthenemalonic acid, ${ }^{44,46}$ 1-acenaphtheneacetic acid, ${ }^{46}$ ethyl 1-acenaphthenylacetoacetate, ${ }^{45}$ trimethyl 1-acenaphthenylammonium bromide, ${ }^{50}$ 1-acenaphthenamine, ${ }^{51} \quad N$-(1-acenaphthenyl)acetamide, ${ }^{51}$ hexachlorobicyclo[2.2.1]heptene, ${ }^{62}$ 1,1-dichlorocyclopropane, ${ }^{50,64}$ and dibenzobicyclo [2.2.2] octadiene ${ }^{65,56}$ were prepared as previously described.

1-Acenaphthenecarboxamide.-1-Acenaphthenecarbonitrile (4.0 g) was warmed at $40-50^{\circ}$ with $10 M$ hydrochloric acid (25 $\mathrm{ml})$ for 75 min . Water (300 ml) was added to the solution and the precipitate which formed was separated by filtration and washed with ether and saturated aqueous NaHCO_{3} solution. The crude product was recrystallized from ethyl acetate and sublimed $\left[130-140^{\circ}(0.5 \mathrm{~mm})\right.$] to give colorless crystals of 1-ace-

[^47](50) S. D. Ross, M. Finkelstein, and R. C. Petersen, J. Amer. Chem. Soc., 80, 4327 (1958).
(51) H. Lettre and M. Stratmann, Hoppe Seyler's Z. Physiol. Chem., 288, 25 (1951).
(52) C. F. Wilcox and J. G. Zajacek, J. Org. Chem., 29, 2209 (1984).
(53) G. C. Robinson, Tetrahedron Lett., 1749 (1985).
(54) V. A. Slabey, J. Amer. Chem. Soc., 74, 4928 (1952).
(55) C. L. Thomas, U. S. Patent 2,406,245 (1946).
(56) S. J. Cristol and N. L. Hause, J. Amer. Chem. Soc., 74, 2193 (1952).

Figure 9.-Plot of H_{A} vs. H_{C} and H_{B} vs. H_{C} for substituted acenaphthenes. Similar plots are obtained for cyclopropyl derivatives.
naphthenecarboxamide $(2.2 \mathrm{~g}, 50 \%)$: mp 217-218 ${ }^{\circ}$ (sealed tube); uv $\max \left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 228 \mathrm{~nm}(\epsilon 62,000), 288$ (5800), 320 (800); ir (CHCl_{3}) 3520, 3409, 3005, 1680, 1580, 1368, 1052, 1028, 1010, $710 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ (for signals assigned to benzylic protons, see Table I) $\delta 4.26\left(\mathrm{~s}, 2, \mathrm{CONH}_{2}\right), 7.08-7.75$ (m, 6, aromatics).
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 79.16 ; \mathrm{H}, 5.62 ; \mathrm{N}, 7.10$. Found: C, 79.2; H, 5.65; N, 6.96.

1-tert-Butyl-1-acenaphthenol.-A solution of tert-butyllithium in ether was prepared from tert-butyl chloride (13.7 g), lithium shavings, and dry ether (500 ml). ${ }^{67}$ With the temperature at -40°, acenaphthenone $(6.0 \mathrm{~g})$ dissolved in a minimum of dry ether was added slowly over 2 hr . The reaction mixture was stirred for a further 2 hr at the same temperature. The lithium addition compound and excess lithium were decomposed by the addition of water. The mixture was extracted with ether $(2 \times$ $75 \mathrm{ml})$ and the combined ether extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was chromatographed on neutral alumina. Benzene eluted acenaphthenone (1.0 g); ether eluted 1-acenaphthenol (1.85 g), and benzene-ether (15%) eluted the crude product (2.1 g), which was rechromatographed to give as a clear oil, 1-tert-butyl-1-acenaphthenol ($1.6 \mathrm{~g}, 20 \%$): n^{25} D 1.688; uv $\max \left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 227 \mathrm{~nm}(\epsilon 73,000), 287$ (6800); ir (liquid film) $3450,3042,2947,1592,1452,1365,1012$, 817, 797, $778 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.98\left[\mathrm{~s}, 9, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.15$ (s, 1, OH), $3.09\left(\mathrm{~d}, 1, J=18 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.79(\mathrm{~d}, 1, J=18 \mathrm{~Hz}$, CH_{2}), 6.88-7.62 (m, 6, aromatics). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}$: C, 84.9; H, 8.0. Found: C, 84.8; H, 8.0.

1-tert-Butylacenaphthylene.-1-tert-Butyl-1-acenaphthenol $(0.12 \mathrm{~g})$ was warmed on a steam bath for 2.5 hr with pyridine (1 $\mathrm{ml})$ and thionyl chloride $(0.15 \mathrm{~g})$. The reaction mixture was poured into water and extracted with ether. The combined ether extracts were washed with $3 N$ sulfuric acid $(2 \times 20 \mathrm{ml})$, dilute sodium bicarbonate solution $(20 \mathrm{ml})$, and water. The ethereal extract was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and filtered through silica gel in light petroleum to give, on evaporation of the solvent, yellow crystals of 1-tert-butylacenaphthylene $(0.084 \mathrm{~g}$, 84%): mp $38-40^{\circ}$; ir (liquid film) $2900,1452,1381,1263$, $1095,1030,839,810,771,729,718 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.48$ [s, 9, C $\left(\mathrm{CH}_{3}\right)_{3}$], $6.71(\mathrm{~s}, 1, \mathrm{C}=\mathrm{CH}), 7.13-7.87$ (m, 6, aromatics). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18}$: C, 92.3; H, 7.7. Found: C, 92.2; H, 7.9.

1-tert-Butylacenaphthene.-A solution of 1-tert-butylacenaphthylene $(0.10 \mathrm{~g})$ in absolute ethanol was hydrogenated over Raney nickel at room temperature under 2 atm of hydrogen. The reaction mixture was filtered and the solvent was removed

[^48]

Figure 10.-Plot of backbonding contribution to β chemical shifts as a function of dihedral angle (ϕ).
to give colorless crystals of 1-tert-butylacenaphthene $(0.095 \mathrm{~g}$, 95%). The compound was further purified by filtration through silica gel in light petroleum: $\mathrm{mp} 37-38^{\circ}$; uv $\max \left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ $227 \mathrm{~nm}(\epsilon 76,000), 287$ (6800); ir (liquid film) 3040, 2944, 2857, $1580,1484,1450,1395,1369,1210,832,806,779 \mathrm{~cm}^{-1}$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 0.92$ [s, $9, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$] (see Table I for benzylic protons), 6.95-7.62 (m, 6, aromatics). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18}$: C, 91.4; H, 8.6. Found: C, 91.2; H, 8.9.

Methyl 1-Acenaphthenecarboxylate.-A saturated solution of diazomethane in ether $\left(0^{\circ}\right)$ was added to a mixture of 1-acenaphthenecarboxylic acid (0.5 g) in methanol (20 ml) at 0°. The reaction mixture was allowed to stand at room temperature for 30 min before the solvent was evaporated. The residue was chromatographed on silica gel in light petroleum to give a thick oil which became crystalline on standing in the refrigerator for several days. This was rechromatographed to yield colorless crystals of methyl 1-acenaphthenecarboxylate ($0.4 \mathrm{~g}, 75 \%$): mp $31-33^{\circ}$; uv $\max \left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 227 \mathrm{~nm}(\epsilon 71,000), 288$ (6800); ir $\left(\mathrm{CHCl}_{3}\right) 3040,3008,2956,1731,1601,1432,1320,1267,1165$, $1030,840 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.72$ (s, $\left.3, \mathrm{COOCH}_{3}\right)$ (for signals assigned to benzylic protons see Table I), 7.15-7.70 (m, 6, aro matics). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$: $\mathrm{C}, 79.2 ; \mathrm{H}, 5.6$. Found: C, 79.3; H, 5.5

1-Methylacenaphthene- $3,5,6,8-d_{4}$.-1-Methylacenaphthene $(0.5 \mathrm{~g})$ was heated at reflux in deuteriotrifluoroacetic acid (7.5 $\mathrm{ml})$, carbon tetrachloride $(2.5 \mathrm{ml})$, and difluorophosphonic acid $(0.05 \mathrm{ml})$ for 3 days. The solvent was evaporated and the crude product was chromatographed on neutral alumina to yield 1-methylacenaphthene- $3,5,6,8-d_{4}(0.10 \mathrm{~g}, 65 \%)$, nmr $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.33 (d, 3, CH_{3}) (for signals assigned to benzylic protons see Table I), 7.32 ($\mathrm{s}, 2, \mathrm{H}_{4,7}$).

Additional Notes.-Two papers ${ }^{58,50}$ have appeared since this manuscript was completed which should be considered in conjunction with this work. Wiberg, et al., ${ }^{68}$ have reported detailed data for cyclopropyl derivatives which can be added to Table VI. They also note the substrate dependence of α-proton chemical shifts, and the general correlation of coupling constants with electronegativity. Their assignment of the β-proton shifts to anisotropy effects appears questionable. The discussion by Boaz ${ }^{59}$ of chemical shifts in terms of electric dipole contributions appears to us to have more merit.

Acknowledgments.-The authors wish to thank Dr. W. Tochtermann (University of Heidelberg), Dr. L. D. Hall (University of British Columbia), and Dr. S. L. Smith (University of Kentucky) for gifts of samples and helpful correspondence. This work has been supported by funds from the Australian Research Grants Committee (Grant No. 15567 to S. S.) and a grant from Eli Lilly and Co. to J. B. G.

Registry No.-l-tert-butyl-1-acenaphthenol, 40748-33-2; 1-tert-butylacenaphthylene, 38206-03-0.
(58) K. B. Wiberg, D. E. Barth, and P. E. Schertler, J. Org. Chem., 38, 378 (1973)
(59) H. Boaz, Tetrahedron Lett., 55 (1973).

Supplementary Material Available.-A table of analysis results for 1-methylacenaphthene and three figures will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche ($105 \times 148 \mathrm{~mm}, 20 \times$ reduction, negatives) con-
taining all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JOC-73-3122.

A Novel Reaction between 3,5-Dinitroacetophenone-Acetone and Secondary Amines Yielding Naphthalenic Structures

Sigma R. Alpha
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received March 16, 1979

Abstract

The exothermic reaction which occurs upon the addition of a secondary amine to a mixture of 3,5 -dinitroacetophenone and acetone was investigated to determine the nature of the products. Instead of the expected Meisenheimer addition product, a new compound, 1-methyl-3-diethylamino-5,7-dinitronaphthalene, was formed. Employing 3,5-dinitrobenzaldehyde as the starting material resulted in the formation of the analogous 1,3-di-nitro-7-diethylaminonaphthalene. The scope of the reaction is investigated.

The chemistry of complexes arising from the interaction of electron-deficient aromatics with organic bases has received considerable attention during the last 10 years and has been reviewed. ${ }^{1.2}$ These socalled Meisenheimer complexes in which the negative charge is delocalized over a pentadienide system have been observed under certain conditions to undergo an internal cyclization to form a second bond and a stable bicyclic anion. An example is the reaction between trinitrobenzene, acetone, and diethylamine.

Although, as shown above, the products usually isolated are N, N-diethyl- p-nitroaniline and 2 -acetonyl-1,3-dinitropropane, ${ }^{3}$ the intermediate complex Ia can be isolated under special conditions. ${ }^{4}$ Such structures with electron-withdrawing substituents other than nitro and ketones other than acetone have been isolated (Ib, Ic). ${ }^{5}$

Analogous products and intermediates might be expected from the reaction of 3,5-dinitroacetophenone, acetone, and alkylamines. It was hoped to obtain some otherwise difficultly available acetophenones by means of this reaction.

In fact, when diethylamine is added to an acetone solution of 3,5 -dinitroacetophenone, the mixture immediately turns black and a mildly exothermic reaction takes place. After a few minutes at room tem-

[^49](2) E. Bunchel, A. R. Norris, and K. E. Russel, Quart. Rev., Chem. Soc., 123 (1963).
(3) R. Foster and C. A. Fyfe, Tetrahedron, 22, 1831 (1862).
(4) H. Schran and M. J. Strause, J. Org. Chem., 36, 856 (1971).
(5) M. J. Strauss, T. C. Jensen, H. Schran, and D. O'Conner, J. Org. Chem., 95, 383 (1870).

Ia, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{NO}_{2}$
b, $\mathrm{R}_{1}=\mathrm{COCH}_{3} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{NO}_{2}$
c, $\mathrm{R}_{1}=\mathrm{CO}_{2} \mathrm{Et} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{CN}$
perature black crystals begin to appear, their formation being complete within 1 hr , yielding a compound (mp 178-180 ${ }^{\circ}$ from dioxane-water) hereafter referred to as compound Y (Table I).

Table I
Compound Y

		$\mathrm{Nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right)$		Uv		Uv	
δ	H	Multiplicity	J				$\left.\mathrm{H}_{2} \mathrm{SO} 4\right)$ -
0.8	6	Triplet	7.0 Hz	λ	ϵ	λ	ϵ
3.4	4	Quartet	7.0 Hz	235	27,000	210	40,000
2.5	3	Singlet		260	48,000	255	21,000
$7.4{ }^{\text {a }}$	1	Broad singlet		350	5,800	295	14,000
$8.4{ }^{\text {a }}$	1	Broad singlet		415	24,000	360	2,700
$8.6{ }^{\text {a }}$	1	Doublet	2.0 Hz	470	25,000	430	80
$8.9{ }^{\text {a }}$	1	Doublet	2.0 Hz	620	~ 0	550	~ 0

${ }^{a}$ The chemical shifts of these four protons are extremely solvent dependent, being well separated in trichloroacetic acid and mineral acids but having totally different positions in other solvents. For example, in chloroform or methylene chloride the two downfield protons accidentally overlap ($2 \mathrm{H}, \delta 8.36$), the two upfield protons now appearing at $\delta 7.5$ and 7.1 ; while in dimethyl sulfoxide both the two downfield protons as well as the two upfield protons are accidentally overlapping at $\delta 8.7$ and 7.3 , respectively.

Elemental analysis established the empirical formula as $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ and a mass spectrum of the compound confirms it to have a molecular weight of 303. This corresponds to the combination of 1 equiv each of diethylamine, acetone, and 3,5-dinitroacetophenone, together with the loss of 1 molar equiv of hydrogen and water. The ir of Y shows the presence of acidic hydrogens or $\mathrm{C}=\mathrm{N}$ multiple bonds. The uv of Y shows it not to be of the dinitropropenyl class, as such
compounds have an absorption peak at 510 nm (ϵ $30,000-50,000)$.

Discussion

Reduction of Y with tin in hydrochloric acid resulted in a compound having a similar nmr except for the presence of amine hydrogens (4 H) at $\delta 3.8$ and a shift of the aromatic peaks to $\delta 6.1,6.5,6.7$, and 7.0 . Treatment of this compound with acetic anhydride gave a diacetyl derivative with two methyl peaks at $\delta 1.8$ and 2.0. These results are consistent with the presence of two nitro groups in Y.
The intensely red colored Y is insoluble in water, but dissolves in concentrated mineral acids to give clear yellow solutions which yield unchanged Y upon dilution with water. Estimations of basicity of the compound in aqueous sulfuric acid solutions show it to have approximately the basicity of 3,5 -dinitroaniline ($\mathrm{p} K_{\mathrm{a}}=0.23$) but to be much more basic than 2,4 -dinitroaniline. This finding suggests the presence of an amine nitrogen substituent on an aromatic ring bearing two meta nitro groups, or a direct through-conjugation with the nitro groups but across a much larger aromatic system. Such long-range conjugative effects have been observed previously, for example in the basicity of aminoquinolines. ${ }^{6}$
Subtracting the elements due to the methyl, dicthylamino, and nitro moieties from the empirical formula $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$, one is left with a skeletal formula of $\mathrm{C}_{10} \mathrm{H}_{4}$ which corresponds to a parent hydrocarbon, $\mathrm{C}_{10} \mathrm{H}_{8}$. All four of the protons not on side chains appear in the aromatic region of the nmr spectrum and show a meta coupling between the two downfield peaks. The only possible $\mathrm{C}_{10} \mathrm{H}_{4}$ aromatic skeletons consistent with these facts are naphthalenic and azulene structures containing meta-positioned hydrogens. ${ }^{7}$
The results of a deuterium exchange experiment allow the exclusion of the azulene structures. The compound Y exchanges one of its four ring protons (that at δ 8.4) for deuterium in trifluoroacetic acid-$O-d$ with a half-life of $c a .30 \mathrm{~min}$. This result is consistent with the naphthalenic structures, since naphthalene is electrophilically attacked at the α position an order of magnitude faster than at the β position ${ }^{8}$ Azulenes, on the other hand, exchange in the 1 and 3 positions in both acidic and basic media. ${ }^{9}$ Neither of the protons in the 1 or 3 positions could exchange faster than the other owing to resonance influences of substituents on the azulene seven-membered ring, since in acidic exchange, the plus charge of the carbonium ion intermediate is delocalized equally onto all of the carbon atoms of the seven-membered ring. A two-proton exchange is thus obligatory and we are
(6) R. M. Acheson, "An Introduction to the Chemistry of Heterocyclic Compounds," 2nd ed, Interscience, New York, N. Y., 1967, p 258.
(7) The pronounced atability of Y under a variety of vigorous reaction conditions renders an 8:4 system such as C unlikely.

C
(8) L. Fieser and M. Fieser, "Advanced Organic Chemistry," Reinhold, New York, N. Y., 1961, p 879.
(9) B. C. Challis and F. A. Long, J. Amer. Chem. Soc., 87, 1196 (1965).
left only with naphthalenic backbone structures to consider.

The nmr aromatic region can always be divided into two meta-coupled downield peaks and two metacoupled upfield peaks. From known dependences of aromatic chemical shifts on ring substitution, the former set of protons can be assigned to the nitrated ring of a naphthalene structure, and the latter set of protons to the ring derived from acetone.

There are thus four remaining positional isomers of the remaining naphthalene possibilities, which are given below.

II

IV

III

V

Models show one feature which distinguishes between structures III-V and structure II. In II the hydrogens of the methyl group are in intimate contact with the peri hydrogen on the nitrated ring. Spacefilling models indicate that this hydrogen ought to actually restrict the rotational motion of the methyl group. This close spatial proximity combined with the lack of through-bond coupling between the two sets of protons is what is required for the transfer of spin relaxation energy from one set of nuclei to the other, i.e., a nuclear Overhauser effect. ${ }^{10}$
In fact, saturation of the methyl protons in cither the field or frequency sweep modes produced a marked reduction in the intensity of the $\delta 8.6$ hydrogen. From known chemical shift dependences the hydrogen between the two nitro groups ought to be furthest downfield. Therefore the hydrogen in the α position of the nitrated ring ought to be the next upfield peak (that at $\delta 8.6$). Reduction of the intensity of this peak with respect to the other aromatic peaks was observed as high as 50%. Overhauser effects of this magnitude can be unambiguously interpreted, and this fact, along with the other evidence presented above, clearly establishes the compound Y as having structure II. ${ }^{11}$
Structure II can be formed through a reasonable mechanism via an intermediate such as VI, which is known to be formed in the interaction of 3,5 -dinitrosubstituted aromatics with bases. ${ }^{12}$ However, in this case, instead of another Michael attack on the benzene ring by the acetone enamine to form bicyclic structures like I, one obtains reactions with the active car-
(10) R. A. Bell and J. K. Saunders, Can. J. Chem., 46, 3421 (1968).
(11) Attempts to use acetone d_{6} to distinguish among the naphthalene atructures proved to be futile, as there was complete exchange of deuterium between acetone- d_{0} and the acetophenone methyl prior to product formation.
(12) M. J. Foreman, R. Foster, and M. J. Strauss, J. Chem. Soc. B, 147 (1970).
bonyl position to yield a dihydronaphthalene structure like VII, which then aromatizes to form the product II.

VI

Attempts were made to make derivatives of Y by treating 3,5 -dinitroacetophenone and diethylamine with 1-phenylacetone, acetylacetone, or 2-butanone. However, all of these compounds failed to give isolable products. This inability to obtain products from ketones other than acetone can be rationalized in terms of structure II in that there must be too great a steric interaction in the $1,2,3$ - or $3,4,5$-trisubstituted naphthalenes to allow the reaction to go to completion in the presence of competing side ractions.
In order to investigate the generality of the reaction it was decided to change the nature of the aromatic starting material.
When an acetone solution of 3,5 -dinitrobenzaldehyde (prepared from the acid chloride and lithium tributoxyaluminum hydride ${ }^{13}$) was treated with diethylamine, an instant black color formed and a mildly exothermic reaction proceeded. Within a few minutes black crystals were growing from the solution, which after recrystallization gave a material with mp $183.5-185.6^{\circ}$ in a yield of 47%.
Similarly to the original compound Y, this material was soluble in polar media to give dark red solutions. It was not soluble in water but gave a pale yellow solution in mineral acids. The molecular weight was 289, which corresponds to one CH_{2} group less than Y . Analysis of the compound gave an empirical formula of $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$.
The uv and visible spectra show a serics of peaks with an envelope identical in essential features with that of Y , indicating that the substance belongs to the same structural class as II.

[^50]The nmr of the material shows the presence of two ethyl moieties and five aromatic peaks. By analogy with structure assignment II for compound Y, there is now an expected definite AB pattern in the aromatic region of this new material ($J=9 \mathrm{cps}$).
Synthesis of the material from acetone- d_{6} produced a spectrum whose AB pattern was partially collapsed (incompletely owing to prereaction exchange between acetone- d_{6} and diethylamine), which reveals that one of the protons in the AB pattern is derived from acetone and the other is a proton originating from the benzaldehyde.
As in the original compound II, this material exchanges only one proton in trifluoroacetic acid-O-d, which is the third upfield proton.
All of these findings are consistent with structure VIII for this second compound.

VIII

IX

As a check on the generality of the reaction, pyrrolidine was allowed to react with acetone and 3,5dinitrobenzaldehyde. The reaction mixture proved to be very exothermic and had to be kept on ice for the first few minutes to prevent boiling to dryness. This reactivity might be expected, as pyrrolidine has a much higher propensity to form enamines than diethylaminc. After crystallization from dioxane a 30% yield of black crystals was obtained, $\mathrm{mp} 229-231^{\circ}$.
The compound had a molecular weight of 287 and an nmr analogous to that of VIII. It was found that exchange of one of the aromatic protons in the pyrrolidine derivative was very fast (half-life in minutes) in trifluoroacetic acid- $O-d$, which is again consistent with pyrrolidine's greater stability in the iminium form than diethylamine. Also, this material exchanges the single aromtic proton in $75 \% \mathrm{D}_{2} \mathrm{SO}_{4}-\mathrm{D}_{2} \mathrm{O}$ with a halflife of $c a .1 \mathrm{hr}$. These findings are all consistent with structure IX. ${ }^{14}$
It thus appears that compounds of the general structure X can be made through the reaction of the

appropriate alkylphenone, acetone, and secondary amine. ${ }^{15}$

[^51]
Experimental Section

3,5-Dinitroacetophenone.-Though this compound has been reported in the literature ${ }^{16,17}$ from the reaction of 3,5 dinitrobenzoyl chloride and diethylmagnesium malonate, in our hands ethyl 3,5-dinitrobenzoate was always the major product. Included here, therefore, is a procedure which was patterned after that for the synthesis of m-nitroacetophenone. ${ }^{18}$

A three-necked 2-l. flask fitted with an addition funnel, a condenser with a nitrogen inlet, and a mechanical stirrer was charged with 16 g of magnesium turnings, and purged with nitrogen. To the flask was added 14.7 ml of absolute ethanol and 3 ml of carbon tetrachloride. After the reaction had subsided, 440 ml of anhydrous ether was added and then a solution of $103 \mathrm{ml}(0.55 \mathrm{~mol})$ of diethyl malonate, $59 \mathrm{ml}(1.0 \mathrm{~mol})$ of absolute ethanol, and 73 ml of ether was dropped in at a rate sufficient to cause rapid boiling. After refluxing for 4 hr , the ether was distilled off and approximately 200 ml of benzene was added. A continuous process of benzene addition and benzene-ethanol azeotropic distillation was carried out until the temperature was $\sim 75^{\circ}$ to remove the last of the ethanol. At this point, 1 l . of benzene was added to the pot, and the addition funnel was charged with a solution of 500 ml of benzene containing $135 \mathrm{~g}(0.59 \mathrm{~mol})$ of 3,5 -dinitrobenzoyl chloride. The stirring motor was placed on high speed, and the acid chloride solution was allowed to run into the pot as rapidly as possible. If the addition funnel has a sufficiently large bore stopcock, the addition takes approximately 15 sec , which gives the solution about 5 sec of high-speed stirring before the entire contents suddenly jell into a solid mass.

This material was then isolated and decarboxylated as in ref 18. The solid material so obtained was recrystallized from methanol, ethanol, or a 1:1 mixture of methanol-carbon tetrachloride to give $88 \mathrm{~g}(71 \%)$ of material, $\mathrm{mp} 81-83^{\circ}$ (lit. ${ }^{16} \mathrm{mp} 80-81^{\circ}$).

In the following procedures high-quality 3,5 -dinitroacetophenone must be used (commercial material fails to react without extensive purification) and the diethylamine and acetone must be dry. No attempts to maximize yields were undertaken other than to observe that excess amine decreases yields as does allowing the amine and acetone to mix before reaction with the aromatic compound.

1-Methyl-3-diethylamino-5,7-dinitronaphthalene (II).-To a solution of $1.5 \mathrm{~g}(0.007 \mathrm{~mol})$ of 3,5 -dinitroacetophenone in 4 ml of acetone was added $0.5 \mathrm{~g}(0.007 \mathrm{~mol})$ of diethylamine. The solution was swirled and set aside. After 1 hr the solution was cooled in the refrigerator and then filtered. The black crystals thus obtained were washed (quickly) with acetone and then with ether. Crystallization from a 5:1 mixture of dioxane-water gave $0.7 \mathrm{~g}(32 \%)$ of II, mp 178-180 ${ }^{\circ}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 59.40; H, 5.61; N, 13.85. Found: C, $59.42 ; \mathrm{H}, 5.71$; N, 14.16. Further data can be found in the text.

1,3-Dinitro-7-pyrrolidinonaphthalene (IX).-To an ice-cold solution of $0.75 \mathrm{~g}(0.0037 \mathrm{~mol})$ of 3,5-dinitrobenzaldehyde in 3 ml of acetone was added $0.27 \mathrm{~g}(0.0037 \mathrm{~mol})$ of pyrrolidine. The

[^52]solution was swirled and kept on ice for 15 min , whereupon it was filtered and the collected solid was rapidly washed with acetone. The crystals were taken up in 45 ml of boiling dioxane, which was then filtered. Cooling of the solution yielded 0.27 g of crystals. Addition of water to the hot, concentrated dioxane mother liquor until turbidity yielded on cooling another 0.07 g of material to give a total of $0.33 \mathrm{~g}(30 \%)$ of IX, $\mathrm{mp} 229-231^{\circ}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $58.10 ; \mathrm{H}, 5.19$; $\mathrm{N}, 14.52$. Found: C, $58.10 ; \mathrm{H}, 5.22$; $\mathrm{N}, 14.73$. Nmr in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ showed a broad singlet $(4 \mathrm{H})$ at $\delta 2.6$ and similarly $(4 \mathrm{H})$ at $\delta 4.2$, an AB pattern $(2 \mathrm{H}, J=9 \mathrm{~Hz})$ centered at $\delta 8.4$, and two singlets $(1 \mathrm{H}, 1 \mathrm{H})$ at ס 9.5.

1,3-Dinitro-7-diethylaminonaphthalene (VIII).-To a solution of $1.0 \mathrm{~g}(0.0048 \mathrm{~mol})$ of 3,5-dinitrobenzaldehyde in 3 ml of acetone was added $0.37 \mathrm{~g}(0.0048 \mathrm{~mol})$ of diethylamine. The solution was swirled and set aside at room temperature for 30 min and worked up as above. The yield was 0.58 g (47%) of material, mp 183.5$185.6^{\circ}$. $\operatorname{Nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right)$ showed a triplet ($6 \mathrm{H}, J=7.5 \mathrm{~Hz}$) at $\delta 1.48$, a quartet ($4 \mathrm{H}, J=7.5 \mathrm{~Hz}$) at $\delta 4.08$, an AB pattern $(2 \mathrm{H}$, $J=9.0 \mathrm{~Hz})$ at $\delta 8.6$, a singlet (1 H) at $\delta 9.4$, and a singlet $(2 \mathrm{H})$ at $\delta 9.6$.

Reduction of II.-To a steam-heated solution of 2 g of III in 150 ml of $38 \% \mathrm{HCl}$ and 20 ml of concentrated sulfuric acid was added portionwise 4 g of tin with shaking over a period of 1 hr . The solution was basified with 50% aqueous NaOH and extracted with ether. After drying and treatment with activated charcoal, yellow crystals were obtained (0.5 g), $\mathrm{mp} 96-97^{\circ} . \mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right)$ showed a triplet ($6 \mathrm{H}, J=8 \mathrm{~Hz}$) at $\delta 1.18$, a singlet (3 H) at δ 2.68, a quartet $(4 \mathrm{H}, J=8 \mathrm{~Hz})$ at $\delta 3.4$, a singlet (4 H) at $\delta 3.88$, a doublet ($2 \mathrm{H}, J=0.5 \mathrm{~Hz}$) at $\delta 6.08$, a singlet (1 H , broad) at $\delta 6.5$, a singlet (1 H) at $\delta 6.7$, and a singlet (1 H) at $\delta 7.0$.

To 0.35 g of this material in 20 ml of ether was added 1 ml of acetic anhydride. After 0.5 hr of stirring the solution was poured into water, neutralized with sodium bicarbonate, and extracted with methylene chloride. The methylene chloride solution was stirred with ammonium hydroxide for 0.5 hr and extracted with water and the solvent was evaporated. The residue was crystallized from methanol to give 0.25 g of material, $\mathrm{mp} 139.5-141.0^{\circ}$. $\mathrm{Nmr}\left(\mathrm{CDCl}_{3}\right)$ showed a triplet ($3 \mathrm{H}, J=8 \mathrm{~Hz}$) at $\delta 1.18$, a singlet $(3 \mathrm{H})$ at 1.88 , two singlets $(3 \mathrm{H}, 3 \mathrm{H})$ at $\delta 2.3$ and 2.08 , a quartet $(4 \mathrm{H}, J=8 \mathrm{~Hz})$ at $\delta 3.2$, and singlets $(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H})$ at $\delta 6.48,6.78,7.10,8.08$, and 8.28 , respectively.

Acknowledgments. - The author would like to acknowledge Professor C. G. Swain for financial support and the National Science Foundation for a predoctoral fellowship, 1970-1971. He would also like to express his indebtedness to Professor D. Kemp for many helpful discussions during the course of this work.

Registry No.-II, 40792-03-8; VIII, 40792-04-9; IX, 40792-$05-0$; II reduction product, 40792-22-1; II reduction product, diacetyl derivative, 40792-23-2; 3,5-dinitroacetophenone, 14401-75-3; diethyl malonate, 105-53-3; 3,5-dinitrobenzoyl chloride, 99-33-2; acetone, 67-64-1; diethylamine, 109-89-7; 3,5-dinitrobenzaldehyde, 14193-18-1; pyrrolidine, 123-75-1.

New Synthetic Reactions. Dimethylsulfonium 2-Oxotetrahydrofuryl-3-ylide as an Annelating Reagent ${ }^{1}$

Barry M. Trost*2 and Henry C. Arndt
Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706

Received March 8, 1973

Abstract

Alkylation of α-methylthio- γ-butyrolactone available from 2-bromo- γ-butyrolactone with trimethyloxonium fluoroborate followed by deprotonation with sodium hydride generates dimethylsulfonium 2-oxotetrahydrofuryl3 -ylide. This new annelating reagent combines with acrolein, methyl vinyl ketone, acrylonitrile, dimethyl fumarate, diethyl maleate, and benzalacetophenone to give the corresponding cyclopropanes in $25-90 \%$ yields in a highly stereoselective reaction. Nonenolizable 1,2-dicarbonyl compounds also condense to give a glycidic lactone but in low yield. Some transformations of the acrolein adduct are described. Treatment of 2 -methyl-thio- γ-butyrolactone with lithium diisopropylamide generated the corresponding enolate as demonstrated by deuteration and methylation. Attempts to condense this enolate with cyclohexanone failed.

The utility of sulfur ylides (π sulfuranes) in synthesis has encouraged the development of new types of ylides and the exploration of their synthetic potential. ${ }^{3}$ As a result many alkyl-substituted ylides ${ }^{4}$ and ylides stabilized by carboxylate, ${ }^{5}$ carboalkoxy, ${ }^{6}$ acyl, ${ }^{7}$ and cyano ${ }^{8}$ groups have been developed. The existence of many geminal-substituted cyclopropanes in which the alkyl groups are differentially functionalized encouraged us to examine the synthesis and reactions of dimethylsulfonium 2-oxotetrahydrofuryl-3-ylide. ${ }^{9}$ Use of such a reagent would introduce geminal cyclopropyl groups at the oxidation level of an alcohol and an ester.

The ylide was obtainable as a somewhat stable solid which would decompose over a period of weeks in the freezer by deprotonation of S, S-dimethyl-S-(2-oxo-tetrahydro-3-furyl)sulfonium fluoroborate (2) with sodium hydride (Scheme I). The latter was readily

Scheme I
Generation of Ylide 1

2

$$
\mathrm{BF}_{4}-\xrightarrow[\substack{\mathrm{THF} \\(100 \%)}]{\mathrm{NaH}}
$$

1

[^53]available by the methylation of α-methylthio- γ butyrolactone, the disproportionation product of dimethyl sulfide and 2-bromo- γ-butyrolactone. The ylide 1 showed an exceedingly low carbonyl stretch at $1647 \mathrm{~cm}^{-1}$, indicating extensive delocalization of negative charge. The approximately $30-\mathrm{cm}^{-1}$ shift from that of dimethylsulfonium carboethoxymethylide (3)
\[

$$
\begin{gathered}
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}= \\
\mathbf{3} \\
\mathrm{CHCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \\
\hline
\end{gathered}
$$
\]

($\left.1620 \mathrm{~cm}^{-1}\right)^{6}$ is what is expected for placement of the carbonyl in a five-membered ring. The nmr spectrum exhibits two approximate triplets $(J=8 \mathrm{~Hz})$ at $\delta 4.30$ and 2.75 for the ring protons and a singlet at $\delta 2.68$ for the S-methyl groups. The shift of only 0.1 ppm from the salt to the ylide for the S-methyl groups compares to a $0.4-\mathrm{ppm}$ shift for the same change in the case of ylide 3. The fixed cisoid configuration in the lactone ylide 1 accounts for this difference. ${ }^{10}$ Attempts to generate the ylide with hydroxylic base led only to decomposition.

Condensation of the preformed ylide with Michael acceptors gave mixed results (see Scheme II). Good Michael systems such as acrylonitrile, benzalacetophenone, diethyl maleate, dimethyl fumarate, acrolein, and methyl vinyl ketone generated the desired cyclopropanes in yields from 12 to 90%. Synthetically, it is sometimes advantageous to prepare the ylide in the presence of the Michael acceptor. Thus, in the case of chalcone, the adduct 9 was obtained in 92% yield (based on sulfonium salt 2) by generating the ylide in situ with sodium hydride, whereas with the preformed ylide, the yield of adduct was only 12% (based on ylide 1). In order to explore this question further, the reaction of acrylonitrile was examined in more detail (see Table I). The lower yields obtainable in DMF or HMPA may be attributable to the instability of the ylide in these solvents. The stability factor also poses a problem in acetonitrile and tetrahydrofuran, as evidenced by the increase in yield as a function of increasing the ratio of trapping agent to ylide. Synthetically, the best overall yields of cyclopropanes are obtained by use of in situ ylide generation and of an approximately 2:1 ratio of Michael acceptor to ylide. Acetonitrile appears to be the best solvent for reactions with preformed ylide.

The structures of the adducts are clearly supported by spectroscopic data. The ir spectra had a lactone
(10) J. Casanova and D. A. Rutolo, Chem. Commun., 1224 (1967).

Table I
Yield Data for Adduct 4^{a}

	${\text { Yield Data for Adduct } 4^{a}}^{c}$			
Mode of ylide generation	Ratio ylide: acrylonitrile	Solvent	Time,	
1, Preformed	$1: 1$	$\mathrm{CH}_{3} \mathrm{CN}$	8	Yield, \%
2, In situ	$1: 1$	THF	8	58^{b}
3, In situ	$1: 2$	THF	8	75^{c}
4, In situ	$1: 4$	THF	8	84^{c}
5, In situ	$1: 1$	DMF	8	17^{c}
6, In situ	$1: 1$	HMPA	6	21^{c}

3, In situ	$1: 2$	THF	8	75^{c}

${ }^{a}$ All runs carried out at room temperature and all yields are of isolated product. ${ }^{b}$ Yield based on starting ylide 1. ${ }^{c}$ Yield based on starting salt 2.
carbonyl at $1770-1775 \mathrm{~cm}^{-1}$. The rest of the spectral data is summarized in the Experimental Section. In each case examined, condensation generated one major cyclopropane isomer whose stereochemistry is assigned in structures 4-9. The stereochemistry of adduct 5
was most thoroughly investigated. Its nmr spectrum showed two aldehyde proton absorptions at $\delta 9.62$ and 9.28 in the ratio of $9: 1$. Since the carboxaldehydo group of $\mathbf{5 b}$ lies directly in the shielding cone of the lactone carbonyl, the higher field absorption was assigned to this isomer. Treatment of the aldehyde with triphenylphosphonium methylene produced the olefin 10 as an essentially single isomer after chromato-

10
graphic separation. The cyclopropane protons appear at $\delta 2.02$ (ddd, $J=8.9,6.4,5.1 \mathrm{~Hz}$), 1.50 (dd, $J=8.9,4.5 \mathrm{~Hz}$), and 0.90 (dd, $J=6.4,4.5 \mathrm{~Hz}$) assignable to $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$, and H_{c}, respectively, on the basis of relative chemical shifts, cyclopropyl cis coupling being larger than trans coupling, ${ }^{11}$ and pseudocontact shift data. ${ }^{12}$ Upon addition of $20 \mathrm{~mol} \%$ of $\mathrm{Eu}(\mathrm{fod})_{3}$ the absorptions at $\delta 1.50$ and 0.90 shift to $\delta 2.40$ and 1.40 , respectively, indicating that H_{b} is cis to the lactone carbonyl and H_{c} trans. The shift of H_{a} from $\delta 2.02$ to 3.10 , combined with the coupling constants, demands that it is cis to the lactone carbonyl.

For adduct 6, the protons of the cyclopropyl methylene group appear as a simple doublet at $\delta 1.4(J=$ 7.2 Hz) in the nmr spectrum, indicating that each is in the same magnetic environment, i.e., cis to a carbonyl group as in structure 6. Such accidental equivalence would not be explicable on the basis of the alternative isomer. Similarly, adducts 7 and 8 show nonequivalent ester groups in their nmr spectra (see Experimental Section) demanding the trans isomers. The stereochemistry of the remaining adducts are assigned on the basis of analogy to the above and earlier work. ${ }^{5-8}$

Stabilized ylides add reversibly to α, β-unsaturated systems to generate intermediate enolates, thus the loss of olefin stereochemistry in the product. ${ }^{5-9}$ The stereochemical preferences seen normally reflect the thermodynamic stability of these intermediates. In considering the conformers for the precursors of 5a and 5b (11a and 11b, respectively), clearly steric and unfavorable dipole-dipole interactions are minimized in 11a compared to 11 b , thus accounting for the stereoselectivity observed.

Less reactive Michael acceptors such as ethyl 3-methyl-2-butenoate, carvone, and methyl sorbate failed to react. Carbonyl condensations with cyclohexanone and benzaldehyde were also unsuccessful. 1,2-Dicarbonyl systems gave mixed results. Biacetyl and methyl pyruvate failed to condense, presumably because of enolization under the reaction conditions. Benzil, which cannot enolize, did condense, although in low yields, to produce adduct $12 .{ }^{13}$ Its infrared spectrum showed carbonyl absorptions at 1785 and 1670 cm^{-1}. The nmr spectrum showed only the typical pattern for the $\mathrm{CH}_{2} \mathrm{CH}_{2}$ unit of the lactone ring in
(11) J. D. Graham and M. T. Rogere, J. Amer. Chem. Soc., 84, 2249 (1962); A. Bothner-by, Advan. Magn. Resonance, 1, 195 (1965).
(12) P. E. Manni, G. A. Howie, B. Katz, and J. M. Cassady, J. Org. Chem., 37, 2769 (1972).
(13) For a glycidic lactone see J. D. White, J. B. Bremner, M. J. Dimsdale, and R. L. Garcea, J. Amer. Chem. Soc., 93, 7398 (1971).

addition to aromatic absorptions but did suggest that the adduct was essentially stereohomogeneous.

To overcome this unreactivity, a brief investigation centered on the generation and properties of the anion of α-methylthio- γ-butyrolactone. ${ }^{14}$ Dropwise addition of the sulfide to a -78° solution of lithium diisopropylamide in THF followed by quenching with DOAc generated the corresponding 2-deuterio-2-meth-ylthio- γ-butyrolactone, which was $65 \% d_{1}$, by nmr and mass spectral analysis. ${ }^{15}$ Addition of 1 equiv of methyl

iodide to the anion generated the methylated compound in 37% yield. However, attempts to condense cyclohexanone with the lactone enolate led to essentially quantitative recovery of starting materials. Its failure to undergo ketone condensation may be due to enolization.

In ancillary experiments, some transformations of the cyclopropane adducts were investigated. Adduct 5 formed a dithiane derivative quite smoothly, al-

[^54]though attempts to desulfurize this adduct failed. The aldehyde underwent Wittig condensation with triphenylphosphonium methylide and crotylide to give olefin lactones 10 and 13. Reduction of the lactone to

the lactol proceeded smoothly with diisobutylaluminum hydride. It is interesting to note that the product exists solely in the hydroxyaldehyde form as evidenced by the carbonyl stretching frequency at 1700 cm^{-1} in the infrared spectrum and the aldehyde proton at $\delta 8.80-9.06$. Such products would be valuable intermediates to the dictyopterenes. ${ }^{16}$

Experimental Section

General.-Melting points were taken on a Thomas-Hoover melting point apparatus and are corrected. Infrared spectra were determined on a Beckman IR-8 spectrophotometer, and ultraviolet spectra were recorded on Cary Model 11 and Model 15 spectrophotometers. Nmr spectra were determined on Varian Associates Model A-60A, HA-100, or XL100 spectrometers fitted with a variable-temperature probe. Chemical shifts are given in parts per million relative to TMS as an internal standard. Abbreviations for multiplicity are s, singlet; d, doublet; app t, apparent triplet; t, triplet; and m, multiplet. Mass spectra were taken on a MS-902 mass spectrometer at an ionizing current of 40 mA and ionizing voltage of 70 V . Analyses were performed by Spang Microanalytical Laboratory. Vpc analyses were performed on an Aerograph Model 90P instrument. Tlc separations were achieved on Merck (Darmstadt) silica gel PF-254. All reactions were carried out under an atmosphere of nitrogen.

Preparation of α-Methylthio- γ-butyrolactone.-A mixture of $58.2 \mathrm{~g}(0.35 \mathrm{~mol})$ of α-bromo- γ-butyrolactone and $85 \mathrm{~g}(100 \mathrm{ml}$, 1.37 mol) of dimethyl sulfide was refluxed for 20 hr under a nitrogen atmosphere. After the mixture was allowed to cool, filtration removed the precipitated trimethylsulfonium bromide, which was washed thoroughly with ether. The ether washes were combined with the original filtrate and the solvent was removed in vacuo, leaving a pale yellow oil. Distillation under reduced pressure yielded $44.6 \mathrm{~g}(96 \%)$ of α-methylthio- γ-butyrolactone: bp $82-86^{\circ}(0.5 \mathrm{~mm})$; ir $\left(\mathrm{CCl}_{4}\right) 1779 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ $\delta 2.25(3 \mathrm{H}, \mathrm{s}), 2.3-3.0(2 \mathrm{H}, \mathrm{m}), 3.24(1 \mathrm{H}, \mathrm{dd}, J=8.2,5.4$ Hz), and 4.34 (app $\mathrm{t}, J=7.2 \mathrm{~Hz}$); mass spectrum m / e (rel intensity) $132(59), 122(5), 120(4), 86(100), 73(45)$, and 55 (44).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$: 132.02450. Found: 132.02457 . Preparation of Dimethyl(2-oxotetrahydro-3-furyl)sulfonium Fluoroborate (3).- α-Methylthio- γ-butyrolactone (30 g, 0.23 mol) was dissolved in 750 ml of dry (freshly distilled from calcium hydride) acetonitrile under nitrogen. Trimethyloxonium fluoroborate ($33.6 \mathrm{~g}, 0.23 \mathrm{~mol}$) was added in one portion. After the mixture was stirred for 1.5 hr at room temperature, the solvent was removed in vacuo and the residual oil was swirled with ether. After the ether washes were decanted, the residue was dissolved
(16) For a leading reference see J. A. Pettus and R. E. Moore, J. Amer. Chem. Soc., 98, 3087 (1971).
in 20 ml of dry acetonitrile and absolute ethanol was added to precipitate the sulfonium salt. The resultant solid was recrystallized twice from ethanol-acetonitrile to give $25 \mathrm{~g}(47 \%)$ of sulfonium salt: mp 81.5-82.5 ${ }^{\circ}$; ir (Nujol) $1748 \mathrm{~cm}^{-1}$; nmr $\left(\mathrm{CO}_{3} \mathrm{CN}\right) \delta 2.1-3.0(2 \mathrm{H}, \mathrm{m}), 3.02(3 \mathrm{H}, \mathrm{s}), 3.05(3 \mathrm{H}, \mathrm{s})$, and $4.3-$ $4.8(3 \mathrm{H}, \mathrm{m})$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{SBF}_{4}$: $\mathrm{C}, 30.75 ; \mathrm{H}, 4.74 ; \mathrm{S} 13.66$; F, 32.47. Found: C, 30.86; H, 4.55; S, 13.82; F, 32.60 .

Preparation of Dimethylsulfonium 2-Oxotetrahydrofuryl-3ylide (1). -Sodium hydride ($257 \mathrm{mg}, 6.00 \mathrm{mmol}$, of a 56% dispersion in mineral oil) was washed free of mineral oil with pentane under a nitrogen atmosphere. Subsequently, 50 ml of dry tetrahydrofuran (distilled from sodium benzophenone ketyl) and then $1.50 \mathrm{~g}(6.4 \mathrm{mmol})$ of salt 2 were added. Stirring continued at room temperature until evolution of hydrogen ceased. The solution was decanted from a solid residue. The latter was washed with chloroform and the chloroform layer was combined with the tetrahydrofuran solution. Evaporation in vacuo produced a gum which was induced to crystallize by dissolving in ethanol and adding ether. In this way, 880 mg (quantitative yield) of ylide 1 was obtained. For infrared and nmr spectral data see results and discussion section. 1 had uv ($\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ $\lambda_{\text {max }} 263 \mathrm{~nm}(\epsilon 107)$; mass spectrum m / e (rel intensity) 146 (7), 132 (59), 100 (42), 98 (62), 86 (100), and 73 (45).
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}:$ 146.04015. Found: 146.04055.
Reaction of π Sulfurane 1 with Acrylonitrile. Method A (in Situ Generation).-A suspension of 192 mg (4.5 mmol of a 56% mineral oil dispersion) of sodium hydride, 1.10 g (4.70 mmol) of dimethyl(2-oxotetrahydro-3-furyl)sulfonium fluoroborate, and 984 mg (18.6 mmol) of acrylonitrile in 25 ml of dry tetrahydrofuran was prepared under nitrogen. This mixture was stirred for 8 hr at room temperature. The mixture was then poured into water and extracted with ethyl acetate. After drying over anhydrous magnesium sulfate and removal of solvent in vacuo, a nearly colorless oil remained. Chromatographic separation by tlc eluting with chloroform and washing the product off the silica gel with ether gave $544 \mathrm{mg}(84 \%)$ of cyclopropane 4: ir $\left(\mathrm{CHCl}_{3}\right) 2250$ and $1768 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 4.48(2 \mathrm{H}$, app t, $J=7 \mathrm{~Hz}), 2.50(2 \mathrm{H}, \operatorname{appt} \mathrm{t}, J=7 \mathrm{~Hz}), 2.05(1 \mathrm{H}, \mathrm{dd}, J=8.5$, $6.7 \mathrm{~Hz}), 1.52(1 \mathrm{H}, \mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}$), and $1.46(1 \mathrm{H}, \mathrm{dd}, J=$ $6.7,4.5 \mathrm{~Hz}$); mass spectrum m / e (rel intensity) 137 (7), 136 (4), 119 (5), 109 (12), 84 (39), 56 (100), and 55 (59).
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}$: 137.04767. Found: 137.04762.
Method B (Preformed).-Dimethylsulfonium 2 -oxotetra-hydrofuryl-3-ylide ($385 \mathrm{mg}, 2.64 \mathrm{mmol}$) was dissolved in 25 ml of dry acetonitrile (distilled from calcium hydride) under nitrogen. Acrylonitrile ($152 \mathrm{mg}, 2.87 \mathrm{mmol}$) was added in one portion and the solution was stirred for 8 hr at room temperature. The reaction mixture was evaporated in vacuo and the crude product was chromatographed on silica gel utilizing chloroform as the eluting solvent. In this way $209 \mathrm{mg}(58 \%)$ of cyclopropane 4 identical with the material previously characterized was obtained.
Reaction of π Sulfurane 1 with Benzalacetophenone.-As described above for the in situ method (method A), 1.00 g (4.3 mmol) of salt $2,182 \mathrm{mg}(4.3 \mathrm{mmol})$ of a 56% mineral oil dispersion of sodium hydride, and 930 mg (4.4 mmol) of benzalacetophenone in 30 ml of THF was converted to $1.1 \mathrm{~g}(88 \%)$ of crystalline product $9, \mathrm{mp} 106.5-107^{\circ}$, after tlc purification utilizing benzene as the eluting solvent: uv $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) \lambda_{\max }$ $248 \mathrm{~nm}(\epsilon 10,700)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 8.1(2 \mathrm{H}, \mathrm{m}), 7.72(3 \mathrm{H}$, $\mathrm{m}), 7.4(5 \mathrm{H}$, pseudosinglet), $4.47(2 \mathrm{H}$, app t, $J=7.7 \mathrm{~Hz}$), $3.98(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 2.52(2 \mathrm{H}$, app t, $J=7.7 \mathrm{~Hz}$); mass spectrum m / e (rel intensity) 292 (3), 187 (5), 128 (3), 105 (100), and 77 (17).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 78.05; H, 5.86 ; mol wt, 292.10994. Found: C, 77.70; H, $5.59 ; \mathrm{mol} w \mathrm{t}, 292.10886$.

Reaction of π Sulfurane 1 with Diethyl Maleate.-As described above for method B, $137 \mathrm{mg}(0.94 \mathrm{mmol})$ of π sulfurane 1 and $147 \mathrm{mg}(0.85 \mathrm{mmol})$ of freshly distilled diethyl maleate in 25 ml of dry acetonitrile generated $209 \mathrm{mg}(95 \%)$ of 8 after tlc isolation utilizing chloroform as the eluting solvent: ir $\left(\mathrm{CHCl}_{3}\right)$ 1775 and $1725 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 4.43(2 \mathrm{H}$, app $\mathrm{t}, J=7.2$ $\mathrm{Hz}), 4.18(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 4.15(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 2.2-3.0$ $(4 \mathrm{H}, \mathrm{m}), 1.28(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$, and $1.23(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$; mass spectrum m / e (rel intensity) 256 (1), 186 (32), 185 (26), 177 (12), 144 (100), 132 (32), 129 (51), 115 (22), 86 (48), 84 (70), 73 (24), and 55 (30).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{6}$: 256.09468. Found: 256.09503 .

Reaction of π Sulfurane 1 with Dimethyl Fumarate.-By method B, 350 mg (2.4 mmol) of π sulfurane 1 and 376 mg (2.6 mmol) in 20 ml of acetonitrile gave 390 mg (72%) of crystalline $7, \mathrm{mp} 93.5-94.0^{\circ}$, after tlc purification utilizing chloroform as the eluting solvent: ir $\left(\mathrm{CHCl}_{3}\right) 1772$ and $1726 \mathrm{~cm}^{-1} ; \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 4.48(2 \mathrm{H}$, app t, $J=7.2 \mathrm{~Hz}), 4.12(3 \mathrm{H}, \mathrm{s}), 4.05$ $(3 \mathrm{H}, \mathrm{s}), 2.90(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.68(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz})$, and $2.50(2 \mathrm{H}$, app t, $J=7.2 \mathrm{~Hz}$).

Reaction of π Sulfurane 1 with Methyl Vinyl Ketone.-Preformed dimethylsulfonium 2-oxotetrahydrofuryl-3-ylide (251 mg , 1.72 mmol) was dissolved in 25 ml of dimethylformamide (freshly distilled from calcium hydride) at room temperature. In one portion, $131 \mathrm{mg}(1.87 \mathrm{mmol})$ of methyl vinyl ketone was added and the solution was stirred for 7 hr at room temperature. It was then poured into 150 ml of water and extracted with $3 \times 25 \mathrm{ml}$ of ethyl acetate. The ethyl acetate extracts were washed with $3 \times$ 50 ml of water to remove dimethylformamide. After the extracts were dried over anhydrous potassium carbonate and the solvent was removed in vacuo, the product was purified by tle utilizing chloroform as the eluting solvent to give $62 \mathrm{mg}(23 \%)$ of 6 as an oil: ir $\left(\mathrm{CHCl}_{3}\right) 1769$ and $1705 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\delta 4.28(2 \mathrm{H}$, app t, $J=7.5 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.25$ $(3 \mathrm{H}, 3), 2.22(2 \mathrm{H}$, app $\mathrm{t}, J=7.5 \mathrm{~Hz})$, and $1.40(2 \mathrm{H}, \mathrm{d}, J=$ 7.2 Hz); mass spectrum m / e (rel intensity) 154 (6), 139 (23), 136 (100), 112 (58), 111 (82), 108 (75), 95 (58), 83 (43), 67 (93), and 53 (53).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}$: 154.06299. Found: 154.06359.
Reaction of π Sulfurane 1 with Acrolein.-By method A, 10 g (42.7 mmol) of salt $2,1.83 \mathrm{~g}$ (38.0 mmol) of 56% mineral oil dispersion of sodium hydride, and $2.39 \mathrm{~g}(42.7 \mathrm{mmol})$ of acrolein in 250 ml of dry tetrahydrofuran produced $1.65 \mathrm{~g}(31 \%)$ of cyclopropane 5 as a colorless oil after silica gel chromatography utilizing chloroform as the eluting solvent: ir (CHCl_{3}) 2730 , 1772 , and $1705 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 9.62(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz})$, $4.45(2 \mathrm{H}, \operatorname{app} \mathrm{t}, J=7.1 \mathrm{~Hz}), 2.55(1 \mathrm{H}, \mathrm{ddd}, J=10.1,7.1$, $3.0 \mathrm{~Hz}), 2.43(2 \mathrm{H}, \operatorname{appt} \mathrm{t}, J=7.1 \mathrm{~Hz})$, and $1.40-2.1(2 \mathrm{H}, \mathrm{m})$; mass spectrum m / e (rel intensity) 140 (8), 122 (14), 109 (74), $91(54), 86(58), 79(100), 77(68)$, and 71 (98). In the nmr spectrum a doublet also appeared at $\delta 9.28(J=6 \mathrm{~Hz})$. Utilizing the relative intensity of this signal to the one at $\delta 9.62$ gave an isomer ratio of $1: 9$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3}$: 140.08372 . Found: 140.08314.
Preparation of Glycidic Lactone 12.-To a solution of 267 mg (1.83 mmol) of ylide 1 in 20 ml of dry acetonitrile was added $418 \mathrm{mg}(2.0 \mathrm{mmol})$ of benzil at room temperature. The mixture was stirred for 2.5 hr at room temperature and 2 hr at 84°. After cooling and evaporation of solvent, the crude material was chromatographed on silica gel utilizing chloroform as the eluting solvent. In this way, 76 mg (14% yield) of glycidic lactone, mp 139-140 ${ }^{\circ}$, was obtained in addition to a recovery of 260 mg (62%) of benzil: ir $\left(\mathrm{CHCl}_{3}\right) 1785,1670,1590$, and $1580 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{8}\right) \delta 8.0(2 \mathrm{H}, \mathrm{m}), 7.1-7.8(8 \mathrm{H}, \mathrm{m}), 4.46(2 \mathrm{H}, \mathrm{app} \mathrm{t}$, $J=7.0 \mathrm{~Hz})$, and $2.47(2 \mathrm{H}$, app $\mathrm{t}, J=7.0 \mathrm{~Hz})$; uv ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) 254 nm ($\epsilon 8200$); mass spectrum m / e (rel intensity) 294 (5), 249 (7), 165 (3), 116 (5), 105 (100), and 77 (29).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}: 294.08920$. Found: 294.08741.
Reaction of Cyclopropyl Aldehyde 5 with Wittig Reagents. Reaction with Triphenylphosphonium Methylide.-To a slurry of 4.32 g (12.0 mmol) of methyltriphenylphosphonium bromide in 95 ml of dry tetrahydrofuran (distilled from sodium benzophenone ketyl) was added $9.16 \mathrm{ml}(12.0 \mathrm{mmol})$ of a 1.31 M hexane solution of n-butyllithium and the mixture was stirred for 20 min . A solution of 1.65 g (11.7 mmol) of aldehyde 5 in 5 ml of dry tetrahydrofuran was added in one portion at room temperature and the mixture was subsequently heated to 60° for 15 hr . The slurry was cooled and filtered to remove the precipitated triphenylphosphine oxide. The solvent was removed in vacuo and the crude material was chromatographed on 1 kg of silica gel G utilizing chloroform as eluting solvent. In this way $698 \mathrm{mg}(44 \%)$ of the methylene compound 10 was obtained as a colorless oil: ir $\left(\mathrm{CHCl}_{3}\right) 1765,1640,985$, and $909 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{8}\right) \delta 5.27$ (3 $\mathrm{H}, \mathrm{m}), 4.33(2 \mathrm{H}$, app t, $J=6.9 \mathrm{~Hz}), 2.23(2 \mathrm{H}, \operatorname{app} \mathrm{t}, J=6.9$ $\mathrm{Hz}), 2.02(1 \mathrm{H}$, ddd, $J=8.9,5.1,4.5 \mathrm{~Hz}), 1.50(1 \mathrm{H}, \mathrm{dd}, J=$ $8.9,4.5 \mathrm{~Hz}$), and $0.9(1 \mathrm{H}, \mathrm{dd}, J=6.4,4.5 \mathrm{~Hz})$; mass spectrum m / e (rel intensity) 138 (17), 137 (4), 123 (30), 110 (17), 93 (41), 91 (37), 79 (100), 77 (55), 66 (24), and 53 (27).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: 138.06807 . Found: 138.06733.
Reaction with Triphenylphosphonium Crotylide.-As described above, 470 mg (1.20 mmol) of crotyltriphenylphosphonium bromide, $888 \mu \mathrm{l}(1.16 \mathrm{mmol})$ of a 1.31 M hexane solution of n -
butyllithium, and 162 mg (1.15 mmol) of aldehyde 5 were converted into $50 \mathrm{mg}(25 \%)$ of diene 13 after isolation by tlc utilizing chloroform as eluting solvent: ir $\left(\mathrm{CHCl}_{3}\right) 1773 \mathrm{~cm}^{-1} ; \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 4.6-6.5(4 \mathrm{H}, \mathrm{m}), 4.22(2 \mathrm{H}$, app $\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.27$ $(2 \mathrm{H}$, app $\mathrm{t}, J=7.6 \mathrm{~Hz}), 1.9-2.3(1 \mathrm{H}, \mathrm{m}), 1.79$ and $1.73(3 \mathrm{H}$, overlapping $\mathrm{d}, J=6.0 \mathrm{~Hz}), 1.4(1 \mathrm{H}, \mathrm{m})$, and $0.95(1 \mathrm{H}, \mathrm{m})$; mass spectrum m / e (rel intensity) $178(70), 163(10), 1.50(51)$, 133 (30), 119 (38), 105 (67), 93 (31), 91 (100), 81 (76), 80 (100), 79 (71), and 77 (53).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$: 178.09937. Found: 178.09942.
Dreparation of Dithiane Derivative of Aldehyde 5.-To a solution of 150 mg (1.07 mmol) of aldehyde 5 in 10 ml of chloroform at 0° was added $129 \mathrm{mg}(1.2 \mathrm{mmol})$ of 1,3 -propanedithiol and $150 \mu \mathrm{l}$ of distilled boron trifluoride etherate. After stirring for 45 min , the reaction mixture was diluted with 50 ml of ether and washed with $2 \times 50 \mathrm{ml}$ of saturated aqueous sodium bicarbonate solution. After drying over anhydrous potassium carbonate, the solvent was removed in vacuo. Purification by tle utilizing chloroform as eluting solvent yielded $170 \mathrm{mg}(69 \%)$ of product as a colorless oil: $\operatorname{ir}\left(\mathrm{CHCl}_{3}\right) 1755 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\delta 4.47(2 \mathrm{H}, \operatorname{app} \mathrm{t}, J=7.9 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz})$, $2.8(4 \mathrm{H}, \mathrm{m}), 2.41(1 \mathrm{H}, \mathrm{dd}, J=6.7,4.8 \mathrm{~Hz}), 2.0(2 \mathrm{H}, \mathrm{m}), 1.55$ ($2 \mathrm{H}, \mathrm{m}$); mass spectrum m / e (rel intensity) 230 (12), 132 (100), 123 (6), 106 (6), 99 (7), 97 (6), 73 (6), and 58 (6).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2}$: 232.05917. Found: 232.06102.

Preparation of 1-(2'-Hydroxyethyl)-2-vinylcyclopropanecarboxaldehyde. To a solution of olefin lactone $10(26 \mathrm{mg}, 0.19$ mmol) in 3 ml of dry toluene cooled to -78° was added $140 \mu \mathrm{l}$ (0.20 mmol) of a 1.42 M diisobutylaluminum hydride solution in toluene. The reaction was stirred for 5 min and then quenched by addition of 1 ml of absolute ethanol. The reaction mixture was poured into 5 ml of saturated aqueous ammonium chloride solution and 0.5 ml of glacial acetic acid was added. The product was extracted with ethyl acetate and the combined organic layers were washed with 20 ml of saturated aqueous sodium bicarbonate solution. After drying over anhydious potassium carbonate and evaporation in vacuo, isolation of product was accomplished by tlc utilizing a $95: 5(\mathrm{v} / \mathrm{v})$ chloroform-ether mixture to give 18 mg (70%) of product: ir (CCl_{4}) 3390, 2720, 1700 , and $1635 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 8.84(1 \mathrm{H}, \mathrm{s}), 4.9-5.9$ $(3 \mathrm{H}, \mathrm{m}), 3.70(2 \mathrm{H}, \operatorname{app} \mathrm{t}, J=6.5 \mathrm{~Hz}), 2.64(1 \mathrm{H}, \mathrm{brs}), 1.93$ (1 H , ddd, $J=8.9,7.0,3.3 \mathrm{~Hz}$), $1.51(1 \mathrm{H}, \mathrm{dd}, J=8.9,5.0$ $\mathrm{Hz})$, and $1.13(1 \mathrm{H}, \mathrm{dd}, J=7.0,5.0 \mathrm{~Hz})$; mass spectrum m / e (rel intensity) $140(8), 122(14), 121(12), 109(74), 91(54), 86$ (58), 81 (60), 79 (100), 77 (68), 71 (98), 70 (44), 58 (88), and 53 (51).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$: 140.08372. Found: 140.08314 .
Preparation of 1-(2'-Hydroxyethyl)-2-($1^{\prime \prime}, 3^{\prime \prime}$-pentadienyl)-cyclopropanecarboxaldehyde.-As described above, 50 mg (0.28 mmol) of diene lacetone 13 upon treatment with $196 \mu \mathrm{l}$ (0.28 mmol) of a 1.42 M toluene solution of disobutylaluminum
hydride in 3 ml of toluene yielded 36 mg (72%) of aldehyde product after tlc purification utilizing a $9.5: 5(\mathrm{v} / \mathrm{v})$ mixture of chloroform-ether as the eluting solvent: ir $\left(\mathrm{CHCl}_{3}\right) 3571,2717$, 1700 , and $1620 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 9.08,8.89$, and 8.81 (total 1 H , all s), 4.8-6.5 ($4 \mathrm{H}, \mathrm{m}$), $3.72(2 \mathrm{H}$, app t, $J=6.3 \mathrm{~Hz}), 1.4-$ $2.6(6 \mathrm{H}, \mathrm{m}$ with superimposed singlet at 2.62 and doublets at 1.78 and 1.73$)$, and $1.1(1 \mathrm{H}, \mathrm{m})$

Metalation of α-Methylthio- γ-butyrolactone.-To a solution of 1.01 g (10 mmol) of diisopropylamine in 11 ml of dry tetrahydrofuran at -78° was added $8.86 \mathrm{ml}(11.6 \mathrm{mmol})$ of n-butyl lithium ($1.3 M$ in hexane) over a 2 -min period. After the solution was stirred for an additional $15 \mathrm{~min}, 1.32 \mathrm{~g}(10.0 \mathrm{mmol})$ of α-methylthio- γ-butyrolactone was added dropwise. Upon completion of the addition, stirring was continued for 15 min . Freshly distilled methyl iodide ($1.42 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added all at once. Reaction proceeded for another 15 min at -78° and slowly warmed to room temperature. Addition of 20 ml of water quenched the reaction and the products were extracted with ether. After drying over anhydrous potassium carbonate, the solvent was removed in vacuo. The crude material was purified by silica gel chromatography utilizing chloroform as eluting solvent to give $541 \mathrm{mg}(37 \%)$ of α-methyl- α-methyl-thio- γ-butyrolactone: ir $\left(\mathrm{CCl}_{4}\right) 1760 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ $4.28(2 \mathrm{H}, \mathrm{m}), 2.2-2.7(2 \mathrm{H}, \mathrm{m}), 2.14(3 \mathrm{H}, \mathrm{s})$, and $1.53(3 \mathrm{H}$, s); mass spectrum m / e (rel intensity) 146 (35), 100 (100), 98 (14), 87 (20), 69 (18), and 55 (47).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$: 146.04015. Found: 146.04047 .
Acknowledgment. - We wish to thank the National Science Foundation and the National Institutes of Health for their generous support of our programs. We also thank the National Science Foundation and the Wisconsin Alumni Research Foundation (administered by the Graduate School of the University of Wisconsin) for funds utilized for the purchase of the spectrometers used in the characterization of these compounds.

Registry No.-1, 40587-47-1; 2, 40733-71-9; 4, 40587-48-2; 5a, 40587-49-3; 5b, 40587-43-7; 6, 40587-44-8; 7, 40587-45-9; 8, 40587-46-0; 9, 40587-50-6; 10, 40587-51-7; 12, 40587-52-8; 13, 40587-53-9; α-methylthio- γ-butyrolactone, 40587-54-0; α -bromo- γ-butyrolactone, 5061-21-2; dimethyl sulfide, 75-18-3; acrylonitrile, 107-13-1; benzalacetophenone, 94-41-7; diethyl maleate, 141-05-9; dimethyl fumarate, 624-49-7; methyl viny ketone, 78-94-4; acrolein, 107-02-8; benzil, 134-81-6; triphenylphosphonium crotylide, 40587-56-2; 1,3-propanedithiol, 109-80-8; dithiane derivative of $5,40587-57-3$; 1-(2^{\prime}-hydroxyethyl)-2vinylcyclopropanecarboxaldehyde, 40587-58-4; 1-(2'-hydroxy-ethyl)-2-($1^{\prime \prime}, 3^{\prime \prime}$-pentadienyl)cyclopropanecarboxaldehyde, 40587-59-5; α-methyl- α-methylthio- γ-butyrolactone, 40587-60-8.

Synthesis of Tricyclo[4.4.1.1 ${ }^{2,5}$]dodec-3-en-11-one

John Haywood-Farmer,* Barry T. Friedlander, and Linda M. Hammond
Department of Chemistry, Bishop's University, Lennoxville, Quebec, Canada

Received February 27, 1973

Abstract

To convert tricyclo[4.4.1.1 $1^{2,5}$]dodeca-3,7,9-trien-11-one (1) into tricyclo[4.4.1.12,5]dodec-3-en-11-one (4), it was necessary to protect the isolated double bond while hydrogenation of the conjugated diene was accomplished. Both m-chloroperbenzoic acid and chlorine react selectively with the isolated double bond to give, respectively, an exo epoxide and a trans dichloride which are retained during hydrogenation of the remaining diene unit, and from which the isolated double bond can be regenerated. Regeneration from the epoxide fails with reagents which attack the sterically hindered carbon atom of the heterocycle (sodium iodide, zinc and acetic acid, and triphenylphosphine) but is facile with reagents which attack the unhindered epoxide oxygen atom (chromous ion and zinc-copper couple). Regeneration of the olefin from the dichloride is readily effected with zinc in refluxing ethanol. In the present example, which is one of the first employing protecting groups for this purpose, it is clear that the conversion via the dichloride is the superior route. Some of the spectral properties (nmr , ir, and uv) of the various compounds prepared are presented and discussed and some of the nmr parameters of the tricyclo[4.4.1.1 ${ }^{2,5}$]dodecyl and norbornyl ring systems compared.

A frequently encountered and often vexing synthetic problem is that of protecting one functional group while reactions are carried out on another. Although the literature abounds with examples of protecting groups, there are relatively few examples of ones which protect specifically one double bond in the presence of another. ${ }^{1}$ We would like to report the use of two groups that we have used to protect an isolated double bond while a reaction is carried out on a distant diene unit.
As part of our general interest in the use of rigid polycyclic molecules as stereochemical models, it became necessary to synthesize tricyclo[4.4.1.1 ${ }^{2,5}$]dodec3 -en-11-one (4), the most promising precursor of which is the well-known tricyclo[4.4.1.1 ${ }^{2,5}$]dodeca-3,7,9-trien11 -one (1), ${ }^{2}$ formed from tropone and cyclopentadiene. We initially considered reducing the activity of the isolated double bond of 1 (it is hydrogenated more readily than is the diene unit ${ }^{2 a}$) by chlorine substitution in the cyclopentadiene starting material, but the direction taken by this cycloaddition can be greatly altered by substitution in the addends; ${ }^{3}$ in particular neither $1,2,3,4$-tetrachlorocyclopentadiene ${ }^{3 \mathrm{a}}$ nor hexachlorocyclopentadiene add to tropone to give derivatives of 1 . It was thus necessary to protect the isolated double bond of 1 .

Reaction of 1 with 1 equiv of m-chloroperbenzoic acid 4,5 afforded exo-3,4-epoxytricyclo [4.4.1.1 $\left.{ }^{2,5}\right]$ dodeca-

[^55] Amaterdam, 1966, pp 155-159.

1

3

5

7

2

4

6

8

7,9-dien-11-one (2) in addition to some unidentified minor products. The ir spectrum of 2 shows all the bands typical of epoxides. ${ }^{6}$ The uv spectrum is almost identical with that reported for $5^{2 \mathrm{a}}$ and climinates other conceivable, symmetrical but unconjugated structures such as 6; in fact the uv parameters of this diene chromophore have proven to be very diagnostic in 1 , in a variety of its derivatives (Table I) and in related compounds. ${ }^{7}$ The nmr spectrum, discussed more fully below, establishes that 2 has a plane of symmetry, the same ring structure as 1 , and the exo stereochemistry as shown.
(5) m-Chloroperbenzoic acid is the reagent of choice for selective epoxidations. Cf. L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis, Vol. 1. Wiley, New York, N. Y., 1968, pp 135-139.
(6) J. Bomstein, A nal. Chem., 30, 544 (1958).
(7) S. Ito. H. Ohtani, S. Narita, and H. Honma, Tetrahedron Lett., 2223 (1972).

Catalytic hydrogenation of 2 gave the saturated epoxide exo-3,4-epoxytricyclo[4.4.1.1 ${ }^{2,5}$]dodecan-11-one (3). Retention of the epoxide ring was shown spectroscopically, in particular by the ir bands, ${ }^{6}$ and by the nmr singlet at $\tau 6.73$.
Several procedures are commonly used for the regeneration of olefins from epoxides. ${ }^{8}$ Treatment of 3 with sodium iodide, zinc and acetic acid, ${ }^{9}$ or triphenylphosphine and hydroquinone ${ }^{10}$ according to the published procedures gave only recovered 3. Both of these reagents attack epoxide rings stereospecifically from the back side of one of the carbon atoms to give, respectively, a trans iodohydrin, ${ }^{9}$ e.g., 9, and a trans betaine, ${ }^{11}$ e.g., 10, which then undergo elimination to give an olefin, e.g., 4. We feel that the deoxygenation fails with both reagents at the ring opening rather than at the elimination step. Cornforth, Cornforth, and Mathew treated epoxides with iodide ion and isolated iodohydrins which were subsequently converted to olefins with zinc; ${ }^{9}$ however, 3 failed to react with iodide ion with or without zinc present. Although direct elimination of triphenylphosphine oxide from 10 is untenable because it requires rotation about the C-3-C-4 bond to eclipse the phosphorus and oxygen atoms and leads to the highly strained trans olefin 11, it is

9

10

11
expected ${ }^{12}$ that 10 will equilibrate via ylide intermediates with either of its cis epimers, from which elimination should be facile. We thus conclude that neither 9 nor 10 is formed because the required attack by the bulky nucleophiles from the endo side of 3 is too sterically hindered.

An alternative mode of epoxide ring opening, attack by the phosphorus at the oxygen atom (unhindered in 3), is the predominant, if not the exclusive, route in the closely related desulfurization of episulfides. ${ }^{13}$ It is not the commonly found pathway for deoxygenation, however, and one considered unlikely on theoretical grounds. ${ }^{14}$ Our results are the first experimental

[^56]evidence that epoxide deoxygenation by a trivalent phosphorus compound will not occur by this route should the preferred attack at carbon be impossible.

In contrast to the two reagents discussed above, both zinc-copper couple ${ }^{15}$ and chromous ion ${ }^{15,16}$ deoxygenate 3 readily, giving 4 as the sole product (overall yield from $1, c a .30 \%$). The structure of 4 followed from its method of preparation, its conversion upon mild catalytic hydrogenation into the known ketone $12,{ }^{2 a}$ and its

nmr spectrum. These two reagents effect the desired deoxygenation because they attack the unhindered epoxide oxygen atom of $3^{15,16}$ rather than one of the hindered carbon atoms.

We have also found that the isolated double bond in 1 can be protected as its dichloride. Trienone 1 reacted with chlorine to give trans-3,4-dichlorotricyclo[4.4.1.1 ${ }^{2,5}$]dodeca-7,9-dien-11-one (13) as the predominant product. As with 2, structural assignment of 13 rested on spectral evidence which clearly showed the presence of the diene chromophore and the trans relationship of the chlorine atoms.

Catalytic hydrogenation of 13 gave trans-3,4dichlorotricyclo[4.4.1.1 ${ }^{2,5}$]dodecan-11-one (14), whose

structure was assigned by nmr. Treatment of 14 with zinc in refluxing ethanol effected removal of the blocking group to give the desired ketone 4 (overall yield from $1, c a .35 \%$).

It is apparent from this work that both epoxidation and chlorination occur selectively at the isolated double bond of 1 and therefore usefully protect that function in the presence of the conjugated diene unit. Chlorination appears to be more selective than epoxidation in agreement with its larger value of $\rho^{4 \mathrm{~d}}$ and the unlikelihood of competing reactions at the carbonyl group. The generality of these two protecting procedures awaits additional work, however, since it is not yet certain that diene units react more slowly with electrophiles than do nonconjugated olefins, or if the present example of selectivity has some other origin, for example, an exceptionally reactive C-3-C-4 bond or diene

[^57]deactivation by the nearby carbonyl group. ${ }^{4}$ Extensions of our studies on the spectroscopic and chemical properties of 4 and some of its derivatives are currently in progress.
Nmr Spectra.-The nmr spectra of the tricyclo[4.4.1.1 ${ }^{2,5}$]dodecane derivatives prepared in this study have proven to be very useful for stereochemical and structural assignments and to demonstrate that this ring system has much in common with the norbornyl one.
The epoxide ring protons in 2 appear as a sharp singlet at almost the same postion as the sharp signals exhibited by the exo epoxides $15,{ }^{17} 16,{ }^{18}$ and $17 ;{ }^{19}$ the endo epoxides 18^{18} and 19^{18} give signals which are broader and at somewhat lower field than those of their exo counterparts. ${ }^{20}$ Although it is tempting to assign the exo stereochemistry to 2 on the basis of this chemical shift data alone, we do not feel that such an argument is justified at this time because the anisotropic effects of the bonds in 1 on protons at C-3 and C-4 are as yet unknown, because the chemical shift differences between the known exo-endo pairs of epoxides is relatively small, and because only one isomer of 2 is yet available. The stereochemistry of 2 can be assigned from the observed coupling, however.

Each of the four exo epoxides 2, 15, 16, and 17 displays a very sharp signal for the epoxide ring protons, owing to a very small coupling to the adjacent bridgehead protons, whereas the endo epoxides 18 and 19 show a broader, more strongly coupled signal. This coupling pattern is typical of exo- and endo-norbornyl ${ }^{21}$ and more pertinently of exo- and endo-tricyclo[3.2.1.0 ${ }^{2,4}$] octyl ${ }^{22}$ derivatives. The implied similarly between the norbornyl and the tricyclo[4.4.1.1 ${ }^{2,5}$]dodecyl systems is supported by molecular models which indicate little geometric change upon removal of the C-1-C-6 bond, the dihedral angles between $\mathrm{H}-2$ and $\mathrm{H}-3$ being about 75° in 2 (small coupling) and about 5° in the as yet unknown 20 (larger coupling). ${ }^{23}$ The corresponding

15

16

17

20

[^58]angles measured for 15 and 18 are 60 and 20°, respectively, so that the coupling difference between exo- and endo-norbornyl derivatives should be enhanced in the tricyclo[4.4.1.1 ${ }^{2,5}$]dodecyl system.

Corroborative evidence for both the similarity between the two ring systems and the assigned stereochemistry of 2 comes from a consideration of the bridge protons. It has finally been established that the H-7a proton of norbornene absorbs at higher field than $\mathrm{H}-7 \mathrm{~s}$. ${ }^{24}$ The assignment of the bridge proton signals in 1 and its derivatives rests on the examination of molecular models, which indicate that the complex, highest field signal is due to $\mathrm{H}-12 \mathrm{~s}$ (dihedral angle about 40°) whereas the simple, lower field doublet is due to $\mathrm{H}-12 \mathrm{a}$ (dihedral angle about 80°). Although the relative positions of the syn and anti protons in 1 and norbornene are opposite, epoxidation to 2 and 15 is accompanied by identical behavior: an upfield shift of about 0.3 ppm of the anti proton, the syn proton being relatively ununaffected. This parallel behavior of the bridge protons strengthens the arguments for an exo stereochemistry in 2 and emphasizes the geometric similarity between the norbornyl and tricyclo[4.4.1.1 ${ }^{2,5}$]dodecyl ring systems.

The two dichlorides 13 and 14 have also provided interesting nmr spectra. The assignment of the two protons $\mathrm{H}-3$ and $\mathrm{H}-4$ was based on the relative chemical shifts of trans-2,3-dichloronorbornene, ${ }^{21}$ in which $\mathrm{H}-2_{\text {exo }}$ is at lower field, and on the larger coupling to the adjacent bridgehead expected for the exo proton. A more rigorous analysis is required to more firmly assign the chemical shifts and coupling constants in these rather complex molecules.

Experimental Section

Melting points were determined on a Thomas-Hoover apparatus and are uncorrected. The nmr spectra were obtained on a Varian A-60A spectrometer in deuteriochloroform solution. Peak positions are given in units of τ relative to internal tetramethylsilane at τ 10.00; in all cases the relative peak areas are consistent with assigned structure. Infrared spectra were recorded as Nujol mulls or as neat liquids on a Unicam SP200 spectrometer; the peak positions are recorded in wavenumbers. Ultraviolet spectra (Table I) were recorded on a Unicam SP800

Table I
Ultraviolet Spectra of Some Tricyclo [4.4.1. ${ }^{2.5}$] dodec-7,9-Dienes

Compd	Band positions ($\epsilon)^{a}$					Ref
	267 (4935)	258 (4600)	249 (3375)	240 (2730)	216 (3510)	
$1{ }^{\text {c }}$	267 (7870)	257 (7680)				2a
$1^{\text {b,d }}$	266 (4630)	257 (4520)	248 (3370)	238 (2840)		2 b
$5{ }^{\text {c }}$	269 (4620)	258 (4720)				2a
$2^{\text {b }}$	266 (6075)	256 (6000)	248 (4100)	239 (2800sh)	222 (3500)	
$13^{\text {b }}$	270 (4080)	260 (4280)	252 (3075)	243 (2100sh)	223 (2440)	
$7^{\text {d }}$	273 (3173)	262 (5568)	252 (5720)	243 (4552sh)		2 b
8	270 (4040)	261 (4100)	252 (3070)			3b

${ }^{a} \lambda_{\max }$ in nm obtained in ethanol unless otherwise stated. ${ }^{0}$ In addition a broad weak peak ($\epsilon c a .500$) was noted at $c a .300$ nm . ${ }^{c}$ Solvent not specified. ${ }^{d}$ Methanol as solvent.
recording uv spectrophotometer using ethanol as the solvent. Gas-liquid chromatograms (glc) were obtained on a VarianAerograph A90P3 instrument using a single column of Carbowax 20 M (25%) packed on acid-washed Chromosorb W. Combustion microanalyses were obtained from Galbraith Laboratories, Inc., Knoxville, Tenn. 37921.

[^59]Reaction of Tropone and Hexachlorocyclopentadiene.-An nmr tube containing a mixture of 230 mg of freshly distilled tropone, $600 \mu \mathrm{l}$ of acetone, and 65.5 mg of freshly distilled hexachlorocyclopentadiene was heated at 60°. After 21 hr the tube contents had turned black with the deposition of black particles but the nmr had not changed. The reaction was discontinued.

Tricyclo[4.4.1.12,5] dodeca-3,7,9-trien-11-one (1).-This ketone, $\mathrm{mp} 69.5-70.0^{\circ}$ (lit. ${ }^{2} \mathrm{mp} 70-71.5^{\circ}$), was prepared in 6.5% yield by a modification of the published route. It was found advantageous to monitor the reaction by nmr , to distill off the volatile components at the completion of the reaction, and to purify the product by column chromatography followed by recrystallization. The nmr spectrum showed peaks at τ 3.8-4.6 ($\mathrm{m}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-7-\mathrm{H}-10$), 6.7-6.9 (m, H-1, H-6), 6.9-7.0. (m, $\mathrm{H}-2, \mathrm{H}-\mathrm{j}), 7.68$ (d, H-12a, $J=11 \mathrm{~Hz}$), $8.50(\mathrm{dt}, \mathrm{H}-12 \mathrm{~s}, J=11$, .j. 5 Hz).
exo-3,4-Epoxytricyclo[4.4.1.12,5] dodeca-7,9-dien-11-one (2).— A mixture of 1.00 g of 1 and 1.24 g of 8.5% m-chloroperbenzoic acid in 15 ml of chloroform was stirred at room temperature until a positive test with starch iodide paper was no longer obtained (ca. 2-5 hr). Additional chloroform was added to dissolve a white precipitate and the organic solution was washed with 10% aqueous sodium carbonate solution and water and then dried over magnesium sulfate. The drying agent was filtered off and the solvent was evaporated to give a yellow oil which deposited sticky crystals on standing. The product was chromatographed on a column of alumina eluting unreacted 1 (benzene), mixtures of 1 and 2 (benzene), and mixtures of 2 and an as yet unidentified third component (benzene and ether).

Unreacted 1 could be separated from 2 by virtue of its greater solubility in ether to leave an analytically pure sample of $2, \mathrm{mp}$ $141 . \overline{\text { i }}-142^{\circ}$, sublimation of which [115 $\left.{ }^{\circ}(0.2 \mathrm{~mm})\right]$ depressed the melting point somewhat ($139 . \overline{\text { i }}-142^{\circ}$). The ir spectrum showed characteristic peaks at $30.50,1710,1280,1260,900$, and 840 cm^{-1}. The nmr spectrum showed peaks at $\left.\tau 3.80-4.6.\right)(\mathrm{m}, \mathrm{H}-7-$ H-10), 6.6.5 (s, H-3, H-4), 6.68-6.9.5 (m, H-1, H-6), 7.26-7.48 (m, H-2, H-.), 7.9.) (d, H-12a, $J=13 \mathrm{~Hz}$), 8.63 (dt, H-12s, $J=13, \overline{5} .5 \mathrm{~Hz}$)

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 76.57; $\mathrm{H}, 6.43$. Found: C , 76.76; H, 6.40 .

The yield of 2 was very difficult to determine because of the difficulty of separating it from the unidentified product.
exo-3,4-Epoxytricyclo[4.4.1.12.5] dodecan-11-one (3).-The crude product from the epoxidation of 1.10 g of 1 (vide supra) was dissolved in 7.5 ml of 9.5% ethanol and exposed to hydrogen gas in the presence of 400 mg of 10% palladium on charcoal. After the hydrogen uptake ceased (400 ml) the catalyst was removed by filtration and the solvent was evaporated to give a yellow oil which was purified by chromatography on alumina. Benzene elution afforded 0.16 g of tricyclo[4.4.1.1 ${ }^{2.5}$]dodecan-11-one (12) from hydrogenation of unreacted 1,25 followed closely by 0.39 g $\left(32 \%\right.$ from 1) of pure 3, sublimation of which $\left[100^{\circ}(1.0 \mathrm{~mm})\right.$] gave an analytical sample, mp 88.5-89.5 ${ }^{\circ}$. The ir spectrum showed characteristic peaks at $1690,126 \overline{5}, 1250,890$, and 8.50 cm^{-1}. The nmr spectrum showed peaks at $\tau 6.73$ (s, H-3, H-4), 7.10-7.50 (m, H-1, H-6), $7.50-7.70(\mathrm{t}, \mathrm{H}-2, \mathrm{H}-5, J=4 \mathrm{~Hz}$), 7.75-8.8.) (m, H-7-H-12).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 74.97; H, 8.39. Found: C, 75.08; H, 8.51.

An additional 0.64 g of a yellow oil, as yet unidentified, was obtained by further elution with methanol. The only volatile component of this oil had a shorter retention time (glc) than 3 and was present in smaller amounts (ratio ca. 1:2.5).

Treatment of 3 with Zinc-Copper Couple.-The method of Kupchan and Maruyama ${ }^{15}$ was followed. Zinc-copper couple was prepared from 900 mg of zinc as usual ${ }^{26}$ except that the ether wash and drying were omitted. A mixture of this couple, 3 ml of ethanol, and 102 mg of 3 was sealed in a thick-walled glass tube, which had been flushed out with nitrogen, and heated at 140° for 24 hr . The mixture was cooled to room temperature and filtered and the solvent was evaporated to give $93 \mathrm{mg}(99 \%)$ of glc homogeneous, white, crystalline 4. Sublimation [110. ${ }^{\circ}$ (10 $\mathrm{mm})]$ gave an analytical sample, $\mathrm{mp} 60.5-61.5^{\circ}$. The ir spectrum showed peaks at 3020 and $1710 \mathrm{~cm}^{-1}$; the nmr spectrum showed peaks at $\tau 3.89$ (s, H-3, H-4), 7.3-7.5 (m, H-1, H-2, H-5, H-6), $7.56(\mathrm{~d}, \mathrm{H}-12 \mathrm{a}, J=12 \mathrm{~Hz})$, and $7.9-8.7(\mathrm{~m}, \mathrm{H}-7-\mathrm{H}-10, \mathrm{H}-12 \mathrm{~s})$.
(25) This ketone was identified by a spectral and chromatographic comparison with an authentic sample of 12 prepared by hydrogenation of $1 .{ }^{2}$
(26) L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," Vol. 1, Wiley, New York, N. Y., 1968, p 1292.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 81.77 ; \mathrm{H}, 9.15$. Found: C , 81.62; H, 9.18.

Longer reaction times caused further reduction to 18 ; milder conditions (reflux for 70 hr) gave only 2% reaction.

Treatment of 3 with $\mathrm{Cr}(\mathrm{II})$.-A solution of $\mathrm{Cr}\left(\mathrm{ClO}_{4}\right)_{2}$ was prepared according to the method of Kupchan and Maruyama. ${ }^{15}$ To a thoroughly degassed (argon) solution of 40 mg of 3 in 12 ml of N, N-dimethylformamide was added 1.2 ml of the $\mathrm{Cr}(\mathrm{II})$ solution and $60 \mu \mathrm{l}$ of ethylenediamine. This solution was stirred and heated at 90° for $\overline{5}$ hr under a slow stream of argon. The mixture was cooled to room temperature, poured into 20 ml of 2 N aqueous hydrochloric acid, and extracted three times with ether. The ether was washed with 10% aqueous sodium carbonate and dried over magnesium sulfate. The drying agent was filtered off and the solvent was evaporated to give a yellow oil. The product was purified by chromatography on alumina. Benzene eluted $2.5 \mathrm{mg}(88 \%)$ of pure 4 identical with that prepared above.

Treatment of 3 with Triphenylphosphine.-The procedure of Wittig and Haag^{10} was followed. A mixture of 100 mg of 3,138 mg of triphenylphosphine, and 21 mg of hydroquinone was heated to 180° over a period of 1 hr and kept at that temperature for an additional 2.5 hr . The black reaction mixture was cooled to room temperature and chromatographed on a $10-\mathrm{g}$ column of alumina. Benzene (25 ml) eluted triphenylphosphine $(80 \mathrm{mg})$ and unreacted $3(100 \mathrm{mg})$ cleanly separated from it. The nmr spectrum of the recovered 3 was identical with that of authentic material and showed no trace of the expected product 4.
Treatment of 3 with Sodium Iodide.-This experiment was based on the published procedure. ${ }^{9}$ A mixture of 100 mg of 3 , 164 mg of sodium iodide, 17 mg of sodium acetate, 0.3 ml of acetic acid, and 0.6 ml of propionic acid was heated at 100° for 18 hr . The mixture was diluted with ether, washed with 10% aqueous sodium bicarbonate solution, sodium bisulfite solution, and water, and dried over magnesium sulfate. The drying agent was filtered off and the solvent was evaporated to give a yellow solid. The nmr spectrum showed that it was unreacted 3.

Treatment of 3 with Sodium Iodide and Zinc.-The method used was that described by Cornforth, Cornforth, and Mathew. ${ }^{9}$ An ice-cooled solution of 134 mg of sodium iodide and 4.5 mg of sodium acetate in 0.27 ml of acetic acid and 0.02 ml of water was prepared and 134 mg of zinc powder was added to it. To this magnetically stirred mixture was added 100 mg of 3 , which caused the suspension to turn brown and then gray and very pasty. After standing at 0° for about 75 min the mixture was filtered and the residues were washed well with ether. The organic solution was washed with 10% aqueous sodium carbonate solution and water and dried over magnesium sulfate. The drying agent was filtered off and the solvent was evaporated to give 60 mg of a yellow solid shown to be unreacted 3 by comparison of its nmr spectrum with that of an authentic sample.
trans-3,4-Dichlorotricyclo[4.4.1.1 ${ }^{2,5}$] dodeca-7,9-dien-11-one (13).-A solution of 1.64 g of chlorine in 2.5 ml of carbon tetrachloride was added to a solution of 4.05 g of trienone 1 in 115 ml of carbon tetrachloride at room temperature. After about 0.5 hr of stirring the initial green color had disappeared and an additional 1.64 g of chlorine in 25 ml of carbon tetrachloride was added. After a total reaction time of 1 hr the solvent was evaporated to give a viscous green oil which was decolorized by elution with ether through a short alumina column followed by treatment with charcoal in ethanol. Evaporation gave yellow crystals which were rechromatographed on alumina using ether as the eluent giving 4.7 g of crude white product, the nmr of which clearly showed 13 to be the predominant component. Recrystallization (ether) afforded $2.15 \mathrm{~g}(37 \%)$ of pure 13 . Additional material was present in the mother liquors. Sublimation [125° $(0.4 \mathrm{~mm})$] gave an analytical sample, $\mathrm{mp} 1.56-156.5^{\circ}$. The ir spectrum showed peaks at 1720,800 , and $700 \mathrm{~cm}^{-1}$. The nmr spectrum showed peaks at $\tau 3.80-4.70$ (m, H-7-H-10), 5.45-5.70 ($\mathrm{m}, \mathrm{H}-4_{\text {exo }}, \mathrm{J}=4.2,6.4 \mathrm{~Hz}$), 6.00 (dd, $\mathrm{H}-3_{\text {endo }}, J=4.2,2.4 \mathrm{~Hz}$), 6.27-6.85 (m, H-1, H-6), 7.15-7.55 (m, H-2, H-5, H-12a), 8.02 (ddt, H-12s, $J=13.7,4.6,1.0 \mathrm{~Hz}$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}: \mathrm{C}, 59.28 ; \mathrm{H}, 4.98 ; \mathrm{Cl}, 29.16$. Found: C, 59.23; H, 4.91; Cl, 29.08.
trans-3,4-Dichlorotricyclo[4.4.1.1 ${ }^{2,5}$] dodecan-11-one (14).—A solution of 4.09 g of 13 in 300 ml of 95% ethanol was exposed to hydrogen gas in the presence of 1.72 g of 10% palladium on charcoal. After the hydrogen uptake ceased (940 ml) the catalyst was removed by filtration and the solvent was evaporated to give $3.90 \mathrm{~g}(94 \%)$ of pure 14 . Sublimation [125°
$(0.4 \mathrm{~mm})]$ gave an analytical sample, $\mathrm{mp} 139-140^{\circ}$. The ir spectrum showed peaks at 1710 and $800 \mathrm{~cm}^{-1}$. The nmr spectrum showed peaks at $\tau 5.50-5.80\left(\mathrm{~m}, \mathrm{H}-4_{\text {exo }}, J=4.2,6.4 \mathrm{~Hz}\right.$), 6.18 (dd, H-3 endo, $J=4.0,2.4 \mathrm{~Hz}$), $6.70-7.70(\mathrm{~m}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-5$, H-6, H-12a), 7.80-8.20 (m, H-7-H-10, H-12s).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}: \quad \mathrm{C}, 58.31 ; \mathrm{H}, 6.53: \mathrm{Cl}, 28.69$. Found: C, 58.55; H, $6.50 ; \mathrm{Cl}, 28.50$.
Tricyclo[4.4.1.12.5]dodec-3-en-11-one (4).-A mixtiare of 3.90 g of $14,2.0 \mathrm{~g}$ of zinc chloride, and 21.3 g of zinc dust in 215 ml of 95% ethanol was refluxed at 100° for 25 hr . The mixture was allowed to cool to room temperature, the gray solid was filtered off, and the ethanol solution was diluted with ether. The ether was washed twice with water and the water was back extracted twice with ether. The combined ether fractions were dried over magnesium sulfate, the drying agent was filtered off, and the ether was evaporated. Purification of the resulting crystals by sublimation [$100^{\circ}(12 \mathrm{~mm})$] yielded $2.52 \mathrm{~g}(91 \%)$ of pure 4 identical
in all respects with a sample prepared from deoxygenation of 3 (vide supra).

Catalytic Hydrogenation of Tricyclo[4.4.1.12,5]dodec-3-en-11one (4). -A solution of 48 mg of 4 in 3 ml of 95% ethanol was exposed to hydrogen gas in the presence of 35 mg of 10% palladium on charcoal. After 25 min the uptake ceased; no additional hydrogen was taken up over the next 15 min . The solution was filtered and the solvent was evaporated to give $48 \mathrm{mg}(98 \%)$ of pure colorless $12 .{ }^{25}$ The nmr spectrum showed only a complex multiplet between $\tau 7.2$ and 8.9.

Acknowledgment.-We would like to thank the National Research Council of Canada for their generous financial support of this work.

Registry No.-1, 4668-70-6; 2, 40696-03-5; 3, 40696-04-6; 4, 40696-05-7; 12, 6824-69-7; 13, 40696-06-8; 14, 40696-07-9.

The Isomerization of Tri-tert-butylcyclopropenyl Azide ${ }^{1}$

R. Curci, V. Lucchini, and G. Modena
Centro C. N. R. di Meccanismi di Reazioni Organichc, Istituto di Chimica Organica, Universita di Padova, 35100 Padova, Italy
P. J. Kocienski and J. Ciabattoni*
Metcalf Research Laboratories, Brown University, Providence, Rhode Island 02912

Received May 30, 1973

Abstract

Tri-tert-butylcyclopropenyl azide has been synthesized by the reaction of tri-tert-butylcyclopropenyl perchlorate or fluoroborate with sodium azide. The nmr spectra exhibited both solvent and temperature dependence as the result of chemical exchange of the azide iunction between three equivalent annular sites. Total line shape analyses of the spectra provided activation parameters in six widely different solvents. The sensitivity of the degenerate isomerization rate to the nature of the solvent suggests that the process proceeds via an ionization-recombination (ion-pair) mechanism.

In recent years much interest has been devoted to the problem of structure and reactivity of organic azides. ${ }^{2}$ The rates of rearrangement of allylic azides (eq 1) have been shown to be relatively insensitive to

alkyl substitution and changes in solvent polarity. ${ }^{3}$ These results are consistent with a concerted mechanism involving a $[3,3]$ sigmatropic shift. On the other hand, Wulfman, et al., ${ }^{4}$ have suggested that the temperature and solvent dependence of the nmr spectrum of tropyl azide (1) can be rationalized on the basis of a mechanism involving ionization to the tropylium ion-azide ion pair (la). Upon warming a

solution of 1 in acctone $-d_{6}$ at -35 to -15°, all nmr $(60 \mathrm{MHz})$ spin-spin splitting disappears, whereas, at 30°, all chemical shifts are indistinguishable and the
(1) A preliminary communication of this work has appeared in which a different total line ahape analysis (TLS) program was employed: R. Curci, V. Lucchini, P. J. Kocienski, G. T. Evans, and J. Ciabattoni, Tetrahedron Lett., 3293 (1972).
(2) E. Lieber, J. S. Curtice, and C. N. R. Rao, Chem. Ind. (London), 586 (1966).
(3) A. Gagneux, S. Winstein, and W. G. Young, J. Amer. Chem. Soc., 82, 5956 (1960).
(4) (a) C. E. Wulfman, C. F. Yarnell, and D. S. Wulfman, Chem. Ind. (London), 1440 (1960); (b) D. S. Wulfman, L. Durham, and C. E. Wulfman, ibid., 859 (1962); (c) D. S. Wulfman and J. J. Ward, Chem. Commun., 276 (1967); (d) D. S. Wulfman, Ph.D. Thesis, Stanford University, 1962.
spectrum exhibits a single broad maximum. The position of the center of gravity of the spectrum at -35°, namely $\delta 5.85$, is identical with the corresponding position at 52° but is much further upfield than the tropylium ion resonance (δ 10.0). The independence of the spectra of concentration provided evidence that the protons in tropyl azide approach equivalency via an intramolecular degenerate isomerization process. However, it was shown that 1 in the presence of added tropylium perchlorate exhibits spectra ranging from those showing a single sharp line between tropylium ion and exchanging azide peaks, through those showing broad absorption in the same region, to those showing scparate pcaks. Furthermore, it was reported that under certain conditions these spectra show extreme concentration dependence attributed to an intermolecular exchange process between tropyl azide and tropylium perchlorate via an ion triplet 2.

$$
\begin{array}{ccc}
\mathrm{C}_{7} \mathrm{H}_{7}+ & \mathrm{N}_{3}- & \mathrm{C}_{7} \mathrm{H}_{7}+ \\
2
\end{array}
$$

Since cyclopropenyl azides are $(4 n+2)$ vinylogs of tropyl azide (1), it was of interest to establish whether they revealed in their nmr spectra any of the unusual features exhibited by 1. However, it has been reported that the reaction of triphenylcyclopropenyl bromide with sodium azide in DMF gives the unstable covalent triphenylcyclopropenyl azide (3) which undergoes facile rearrangement to the v-triazinc 4.5
(5) E. A. Chandross and G. Smolinsky, Tetrahedron Lett., 19 (1960).
(6) I. A. D'yakanov and R. R. Kostikov, Russ. Chem. Rev., 36, 557 (1967).

Figure 1.-Experimental (left) and computer-calculated (right) $n \mathrm{mr}$ spectra $(90 \mathrm{MHz})$ of tri-tert-butylcyclopropenyl azide (0.08 M) in acetone- d_{6} at various temperatures.

Nevertheless, the tendency of trialkylcyclopropenyl azides such as tri-tert-butylcyclopropenyl azide (6) toward ionization is a priori expected to be increased relative to 3 , since the tri-tert-butylcyclopropenyl

3

4
cation $\left(\mathrm{p} K_{\mathrm{R}^{+}}=6.5 \text { in } 50 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}\right)^{7}$ is considerably more stable than the corresponding triphenyl derivative ($\mathrm{p} K_{\mathrm{R}^{+}}=3.1$ in $50 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}$). ${ }^{8}$ Tri-tert-butylcyclopropenyl azide was selected on the basis of the above reasoning as well as the fact that it would be expected to exhibit a simple nmr spectrum.

Results and Discussion

Reaction of tri-tert-butylcyclopropenyl fluoroborate ${ }^{9}$ or perchlorate ${ }^{10}$ (5) with sodium azide in acetonitrile at 0° followed by aqueous work-up afforded tri-tert-butylcyclopropenyl azide (6) in nearly quantitative yield as a stable, colorless oil which could be distilled under reduced pressure. Azide 6 has been stored neat in the crystalline state at about -10° ($\mathrm{mp} c a .2^{\circ}$) for periods exceeding 6 months with no detectable decomposition. Unlike $\mathbf{3}$ no evidence was found for the rearrangement of 6 to v-triazine 7 . The infrared, ultraviolet, and nmr spectra were con-

[^60]
sistent with the covalent formulation 6 . In the infrared $\left(\mathrm{CCl}_{4}\right) 6$ exhibited strong characteristic azide absorption at $2085 \mathrm{~cm}^{-1}$ and weak cyclopropene ($\mathrm{C}=\mathrm{C}$) absorption at $1810 \mathrm{~cm}^{-1} .^{11}$ The ultraviolet spectrum (cyclohexane) showed the characteristic azide maximum at $295 \mathrm{~nm}(\epsilon 28) .{ }^{12}$ The nmr spectrum exhibited a symmetrical exchange-broadened singlet at $\delta 1.21$ $\left(60 \mathrm{MHz}, W_{1 / 2}=9 \mathrm{~Hz}\right)$. The appearance of solution spectra was a function of solvent and temperature and in acetone- $d_{6}(0.08 \mathrm{M})$ varied from two sharp singlets $\left(-52^{\circ}, 90 \mathrm{MHz}, W_{1 / 2}=1.2 \mathrm{~Hz}\right)$ at $\delta 1.28$ and 0.96 in a $2: 1$ ratio, respectively, to one singlet $\left(41^{\circ}, 90 \mathrm{MHz}, W_{1 / 2}=1.2 \mathrm{~Hz}\right)$ at $\delta 1.19$ (approximate weighted average position). By comparison the completely ionic tri-tert-butylcyclopropenyl perchlorate or fluoroborate exhibits a sharp singlet at $\delta 1.58$ in CDCl_{3}. Although the mass spectrum of 6 did not reveal a parent ion, an intense peak at $m / e 207$ ($M-$ 42) was observed corresponding to the cyclopropenyl cation. The lability of the azide was demonstrated by the reaction of a solution of 6 in ethanol with aqueous silver nitrate, affording an immediate white precipitate of silver azide. Furthermore, a solution of the cyclopropenyl azide 6 in acetonitrile reacted slowly with potassium cyanide to give the corresponding tri-tert-butylcyclopropenyl nitrile in 80% yield. This nitrile proved to be identical in all respects with an authentic sample prepared by the reaction of tri-tert-butylcyclopropenyl perchlorate with potassium cyanide.

The nmr spectra of 6 were recorded in a series of solvents of widely different characteristics at various temperatures. At sufficiently low temperatures the spectrum consisted of two sharp singlets of relative intensity $2: 1$. However, as the temperature was increased, the two peaks broadened, coalesced, and finally merged into one sharp peak whose position approximated the weighted-average position of the two singlets at low temperature (see Figure 1). This nmr behavior suggests that 6 is in equilibrium among its three congruent isomers. ${ }^{13}$ Chemical shift data of azide 6 as well as the ionic tri-tert-butylcyclopropenyl perchlorate (5) in a series of solvents are presented in Table I.

In order to obtain rates and activation parameters for the apparent degenerate isomerization process in which the tert-butyl groups become magnetically equivalent, the spectra in six representative solvents were subjected to a total line shape analysis (TLS).
(11) G. L. Closs, Advan. Alicycl. Chem., 1, 53 (1966).
(12) W. D. Closson and H. B. Gray, J. Amer. Chem. Soc., 85, 290 (1963).
(13) R. Breslow, G. Ryan, and J. T. Groves, J. Amer. Chem. Soc., 92, 988 (1970).

Table I
Positions of Nmr Absorption of Tri-tert-butylcyclopropenyl Azide and Tri-tert-butylcyclopropenyl Perchlorate in Various Solvents

Solvent	Azide $6^{\text {a }}$	$\begin{gathered} \text { Cation } \\ 5^{a} \end{gathered}$	Temp, ${ }^{\circ} \mathrm{C}$	Dielectric constant ${ }^{b}$
Neat	1.21		40	
	1.18		75	
CCl_{4}	1.18		70	2.24
	$\left\{\begin{array}{l} 0.92(9 \mathrm{H}) \\ 1.27(18 \mathrm{H}) \end{array}\right.$		-35	
CDCl_{3}	1.17	1.58	40	4.81
	$\{0.95$ (9 H)		-6.5	
	\{1.27 (18 H)		-6.	
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	1.17	1.58	40	9.08
Acetone- d_{6}	1.19	1.62	40	20.7
	$\{0.96$ (9 H)	1.62	-40	
	$\{1.28(18 \mathrm{H})$		-40	
$\mathrm{CD}_{3} \mathrm{OD}$	1.18		40	32.6
	$\{0.95$ (9 H)		-65	
	¢ 1.26 (18 H)		-65	
$\mathrm{CD}_{3} \mathrm{NO}_{2}$	1.19	1.60	40	$35.8{ }^{\text {c }}$
DMF- d_{7}	1.17	1.54	40	$37.6{ }^{\text {d }}$
	$\left\{\begin{array}{l}0.95 \\ \text { (9 H })\end{array}\right.$		-60	
	1.26 (18 H)		-60	
$\mathrm{CD}_{3} \mathrm{CN}$	1.18	1.51	40	37.5
	$\left\{0.96(9 \mathrm{H})^{e}\right.$		-40	
	$\left(1.28(18 \mathrm{H})^{e}\right.$		-40	
Ethylene carbonate	1.16	1.56	40	95.0
SO_{2} (liquid)	1.58	1.58	-42	14.1

${ }^{a}$ All positions are given in units of δ to $\pm 0.01 \mathrm{ppm}$. ${ }^{b}$ Dielectric constants for undeuterated solvents at 20° except as noted. ${ }^{c}$ At $30^{\circ} .{ }^{d}$ At 2:5 ${ }^{\circ}$. ${ }^{e}$ Estimated values from spectra at -40°.

The linc shapes were computer-calculated employing Binsch's dnmr program ${ }^{14 a}$ and rate constants were estimated by determining the best fit between experimental and theoretical spectra; in most instances (see Table II) the experimental spcctra were fed point by point into the computer and the theoretical curves representing the best fit were found by a least squares method. ${ }^{14 b-d}$ The results of typical fits are shown in Figure 1. Statistical least squares analyses of Eyring plots provided approximate ΔH^{\mp} and ΔS^{\ddagger} values. ${ }^{14 \mathrm{~b}}$ These activation parameters are shown in Table II together with their uncertainties. It should be pointed out, however, that systematic errors may be significantly larger than these estimates. ${ }^{15}$ It is apparent from Table II that no significant changes in the activation parameters were found on changing the cyclopropenyl azide concentration, consistent with an intramolecular rather than an intermolecular exchange process.

The effect of added salts was also investigated. The addition of $0.07 M$ lithium perchlorate to a solution of 6 in acetone- d_{6} resulted in a decrease in the coalescence temperature and an increase in rate at 25°. Similarly, the addition of $0.05 M$ tri-tert-butylcyclopropenyl perchlorate (5) resulted in the observation of a positive salt effect (see Table II). On the other hand, when an equimolar quantity of 5 was added to a solution of 6 in $\mathrm{CD}_{3} \mathrm{CN}$ or $\mathrm{CD}_{3} \mathrm{NO}_{2}$ at 40°, only a

[^61]

Figure 2.-The nmr spectra (90 MHz) of tri-tert-butylcyclopropenyl azide (0.08 M) in the presence of tri-tert-butylcyclopropenyl perchlorate (0.05 M) in acetone- d_{6} at various temperatures.
single sharp peak was observed halfway between the singlet for pure cation and the singlet for pure azide. The results suggest that in these polar solvents there is rapid intermolecular exchange of the azide function between 5 and 6 in analogy with the tropyl azidetropylium perchlorate system (vide supra). However, the temperature-dependent nmr spectrum of 6 in the presence of 5 in acetone- d_{6} (Figure 2) reveals that the above intermolecular azide group exchange actually occurs between the cation and the dynamic tri-tert-butylcyclopropenyl azide molecule, which is already undergoing a fast intramolecular isomerization process on the nmr time scale.

It can be seen from Table II that the rate of intramolecular isomerization of 6 , like that of 1 , is very sensitive to the nature of the solvent in contrast with the analogous rearrangement of allylic azides. ${ }^{3}$ The observed solvent effects, instead, are consistent with an ionic process involving the ionization of 6 to an ion pair $6 a^{16}$ as depicted in Scheme I (path a). However, the concurrent intervention of a concerted pathway b cannot be excluded on the basis of our data. A concerted $[1,3]$ sigmatropic shift is of course forbidden but a $\left[\omega+{ }_{\pi} 2+{ }_{\sigma} 2\right]$ process and a $[3,3]$ sigmatropic shift represent possible allowed processes. ${ }^{17}$

Inspection of the data in Table I does not reveal any significant solvent effect on the single resonance position of 6 , which in every case, with the exception of SO_{2}, was about 0.4 ppm upfield from the signal of cation 5. This suggests that the position of equi-

[^62]Table II
Activation Parametersa and Relative Rates for the Isomerization of 6 in Various Solvents

Solvent	Dielectric constant	Azide, M	$\Delta H^{\dagger} b$	$\Delta S^{\ddagger} c$	$\Delta G^{\ddagger}{ }_{25}{ }^{\circ} \mathrm{b}$	$\begin{aligned} & \text { Relative } \\ & \text { rates }\left(25^{\circ}\right)^{d} \end{aligned}$	$T_{\text {c }},{ }^{\circ} \mathrm{C}^{\circ}$
Acetone-d ${ }_{6}$	20.7	0.02	10.7 ± 0.3	-10.4 ± 1	13.8 ± 0.4		-2.5
		0.06	10.7 ± 0.2	-10.8 ± 0.5	13.9 ± 0.2	0.95×10^{2}	-1.5
		0.08	10.0 ± 0.2	-13.6 ± 0.5	14.0 ± 0.2		-2.5
		0.14	10.4 ± 0.2	-11.6 ± 0.5	13.9 ± 0.2		-2.5
		0.29	10.7 ± 0.3	-10.7 ± 0.5	13.9 ± 0.3		-1.0
$\begin{aligned} & \text { Acetone }-d_{\theta} \\ & 0.05 M 5 \end{aligned}$		0.08	11.5 ± 0.3	-6.6 ± 0.5	13.5 ± 0.3	1.9×10^{2}	-8.5
$\begin{aligned} & \text { Acetone- } d_{6} \\ & \quad 0.07 \mathrm{M} \mathrm{LiClO} \end{aligned}$		0.08	9.8 ± 0.2	-12.5 ± 0.5	13.5 ± 0.2	1.9×10^{2}	-11.0
CCl_{4}	2.24	0.02	13.3 ± 0.3	-10.8 ± 0.5	16.5 ± 0.3		62.5
		0.10	13.1 ± 0.3	-11.5 ± 0.5	16.5 ± 0.3		63.5
		0.19	13.7 ± 0.3	-9.6 ± 0.5	16.6 ± 0.3	1	63.5
CDCl_{3}	4.81	0.12	7.8 ± 0.1	-17.6 ± 0.5	13.0 ± 0.1	4.4×10^{2}	-31.5
DMF- d_{7}	37.6	0.10	10.4 ± 0.2	-10.0 ± 0.5	13.4 ± 0.2	2.2×10^{2}	-18.0
$\mathrm{CD}_{3} \mathrm{CN}$	37.5	0.31	7.8 ± 0.3	-17.4 ± 0.5	13.0 ± 0.3	4.4×10^{2}	-31.5
$\mathrm{CD}_{3} \mathrm{OD}$	32.6	0.09	10.6 ± 0.2	-4.8 ± 0.5	12.0 ± 0.2	2.4×10^{3}	-38.0

${ }^{a}$ Calculated from rate data obtained by a computer-determined point by point fit of experimental to theoretical spectra at various temperatures. Uncertainties arise from statistical analysis of random errors. Any systematic errors could result in much larger errors in the derived parameters; this might be particularly true for activation parameters estimated for the intramolecular isomerization process in the presence of added 5 (sixth entry) because of some contribution from the intermolecular exchange process (see text and

librium between 6 and 6 a must lie almost entirely in favor of the covalent form (eq 2). In liquid SO_{2}

at -42°, however, the chemical shift of the azide was identical with that of 5 ($\delta 1.58$), demonstrating that in this solvent 6 exists as a completely ionized species. This is not surprising in view of the welldocumented ability of SO_{2} to complex strongly with inorganic anions, forming monosolvates. ${ }^{18}$

From the data in Table II it is evident that there is no simple correlation between the dielectric constant of the solvent and activation parameters or relative rates, although with the exception of chloro-

[^63]form, which exhibits a higher rate than expected, a rough trend does exist between the log of the rates and Kosower's Z values. ${ }^{19}$ The observed order of relative rates apparently reflects, at least in part, specific solvation interactions. The high rate in CDCl_{3} could be attributed to hydrogen bonding to the azide function. ${ }^{20}$ This effect may also contribute to the fast rate observed in methanol relative to the rates in aprotic solvents of comparable dielectric constant such as DMF and acetonitrile (Table II). It can also be seen that the ΔS^{\ddagger} value in methanol is significantly less negative than that found in DMF and acetonitrile. This appears to be consistent with the ionic path a (Scheme I), since the separation of opposite charges in going from covalent azide to transition state should require less reorganization of methanol molecules than the molecules of aprotic solvents. ${ }^{20,21}$ Furthermore, the positive salt effects observed in acetone- d_{6} are consistent with a process involving ionization in poorly ionizing media. ${ }^{22}$

After this work was completed, a brief paper by Closs and Harrison appeared describing a similar nmr study of trimethylcyclopropenyl azide. ${ }^{23}$ Our results are in substantial agreement with those reported by these authors, who also suggested an ionic pathway for the isomerization. It should be mentioned, however, that tri-tert-butylcyclopropenyl azide, in contrast with trimethylcyclopropenyl azide, does not exhibit rearrangement to a v-triazine in competition with the degenerate isomerization process. ${ }^{23}$

[^64]
Experimental Section

Melting points are uncorrected. High-purity commercial solvents were employed for all spectral determinations. Infrared and ultraviolet spectra were recorded with a Perkin-Elmer Model 337 and a Cary Model 14 recording spectrophotometer, respectively. Mass spectra were obtained on a Hitachi RMU-6D mass spectrometer. The nmr spectra were recorded on a Bruker HFX-10 (90 MHz) or a Varian A-60A (60 MHz) instrument with variable-temperature capability. Line shapes were calculated by a CDC-6600 computer using the DNMR program developed by Binsch. ${ }^{14}$ The rate-dependent tert-butyl resonances of 6 were simulated for the azide moiety exchanging among three equivalent sites. High-quality experimental spectra were obtained on the Bruker HFX-10 instrument by constantly checking the field homogeneity with an internal standard. The same scale ($2.00 \mathrm{~Hz} / \mathrm{cm}$) was employed for both the experimental and computer-simulated spectra. Sample temperatures were determined by the chemical shift method employing a capillary containing methanol (or ethylene glycol) which was inserted into the sample tube. Reference to revised calibration curves provided the temperatures. ${ }^{14 \mathrm{c}, 24}$

1,2,3-Tri-terl-butyl-3-azidocyclopropene (6).-To a solution of $1.00 \mathrm{~g}(3.28 \mathrm{mmol})$ of tri-tert-butylcyclopropenyl perchlorate in 10 ml of acetonitrile was added $0.228 \mathrm{~g}(3 . i 1 \mathrm{mmol})$ of sodium azide (Matheson Coleman and Bell) in one portion. The mixture was stirred at 0° for 1 hr , after which dilution with 50 ml of water resulted in the separation of a colorless oil. The oil was then extracted into two $15-\mathrm{ml}$ portions of ether. After the ether layer was washed with five $10-\mathrm{ml}$ portions of water and dried over anhydrous magnesium sulfate, the solvent was removed in vacuo to afford the cyclopropenyl azide ($0.81 \mathrm{j} \mathrm{g}, 100 \%$) as a colorless oil which crystallized upon refrigeration. Azide 6 is quite stable
and has been stored neat in the crystalline state at about -10° for periods exceeding 6 months with no detectable decomposition. Purification, if necessary, may be effected by short-path distillation, pot temperature $40-50^{\circ}(0.03-0.05 \mathrm{~mm}): \mathrm{mp} \sim 2^{9}$; $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 2950(\mathrm{~s}), 2900(\mathrm{~m}), 2870(\mathrm{~m}), 2085$ (vs), $1810(\mathrm{w})$, 1475 (m), 1455 (m), 1390 (m), 1365 (m), 1258 (m), and 910 $\mathrm{cm}^{-1}(\mathrm{~m}) ; \lambda_{\max }$ (cyclohexane) $295 \mathrm{~nm}(\epsilon 28)$; mass spectrum m / e (rel intensity) 207 (33), 206 (11), 166 (23), 150 (16), 123 (68), 108 (10), 95 (18), 93 (10), 82 (10), 81 (15), 69 (18), 68 (15), 67 (23), 57 (100), ј6 (10), $55(23), ~ \check{5} 3(12), 43$ (27), 42 (38), 41 (29), and 39 (19).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3}$: C, 72.24; H 10.91; N 16.85 ; mol wt, 249. Found: C, 72.36; H, 10.96; N, 16.74; mol wt, 250 (osmometric, CCl_{4}).

Reaction of azide 6 with potassium cyanide in aqueous acetonitrile followed by work-up as described above gave 1,2,3-tri-tert-butyl-3-cyanocyclopropene (80%), which was identical in all respects with an authentic sample prepared by the reaction of cation 5 with potassium cyanide: $\mathrm{mp} \mathrm{30}-31^{\circ}$; $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 2970$ (s), 2900 (m), 2870 (m), 2210 (m), 1845 (w), 1610 (w), 1475 (m). $1455(\mathrm{~m}), 1380(\mathrm{~m}), 1365(\mathrm{~m})$, and $1040 \mathrm{~cm}^{-1}(\mathrm{~m}) ; \mathrm{nmr}\left(\mathrm{CCl}_{\mathrm{f}}\right)$ $\delta 1.00(9 \mathrm{H}, \mathrm{s})$ and $1.27(18 \mathrm{H}, \mathrm{s})$; mass spectrum m / e (rel intensity) 233 (4), 176 (100), 162 (13), 1i50 (19), 135 (12), 57 (72), and 41 (40).

Acknowledgments.-We thank the Italian National Research Council (C. N. R., Rome) and the Research Corporation for financial support of this research. We are also grateful to the Committee on International Exchange of Persons (Washington, D. C.) for a Senior Fulbright-Hays grant to J. C. (1972-1973) and for a travel grant to R. C. (summer, 1971).

Registry No.-5, 19985-80-9; 6, 38409-72-2; 1,2,3-Tri-tert-butyl-3-cyanocyclopropene, 40893-42-3.

[^65]
Substituent Effects in the Ring Expansion Reactions of Isopropenylcycloalkanols by tert-Butyl Hypochlorite

Carl R. Johnson* and R. Wilbur Herr
Department of Chemistry, Wayne State University, Detroit, Michigan 48202

Received February 7, 197.3

Abstract

1-Isopropenylcyclobutanol was prepared by the conventional Grignard method. 1-Isopropenylcyclopropanol was synthesized by the addition of isopropenylmagnesium bromide to 1,3-dichloroacetone followed by ferric chloride induced coupling. The cyclobutanol underwent the chlorinative ring expansion with tert-butyl hypochlorite to produce 2-methyl-2-(chloromethyl)cyclopentanone in 81% yield. The cyclopropanol proved to be so labile that it spontaneously rearranged to 2,2 -dimethylcyclobutanone. The acid-cataly\%ed ring expansion of 1 -isopropenylcyclobutanol was accomplished with sulfuric acid in the presence of 2,4 -dinitrophenylhydra\%ine. A slight preference for phenyl migration over methylene migration ($60: 40$) was demonstrated in the reaction of 1-isopropenyl-1-indanol with tert-butyl hypochlorite. The substituent effect studies were extended to trans-1-isopropenyl-2-methylcyclopentan-1-ol and exo-2-isopropenylnorbornan-2-ol. Structure assignments for the ring expansion products from these two substrates were based on an nmr study. Methine carbon migration was shown to predominate over methylene carbon migration. These results were rationalized in terms of a nonconcerted mechanism with some carbonium-ion character in the transition state. The observed stereochemistry of the product ketones was explained on the basis of the conformational preference of the isopropenyl group in the reactant alcohol.

Part A

Carbocyclic ring expansion is a useful synthetic trick of the organic chemist. ${ }^{1}$ Some of the classical methods applied to ring homologation by one carbon atom are the Demjanov ${ }^{2}$ rearrangement, the TiffeneauDemjanov ${ }^{2}$ rearrangement, and the pinacol ${ }^{3}$ rcarrange-
(1) C. D. Gutsche and D. Redmore, "Carbocyclic Ring Expansion Reactions," Academic Press, New York, N. Y., 1968.
(2) P. A. Smith and D. R. Baer, "Organic Reactions," Vol. 11, Wiley. New York, N. Y., 1960, p 157.
(3) Y. Pocker in "Molecular Rearrangements," Part 1, P. de Mayo, Ed., Wiley, New York, N. Y., 1964, pl.
ment. Well-known ring homologation methods which incorporate a heteroatom into the ring are the BaeyerVilliger reaction (oxygen) ${ }^{4}$ and the Beckmann rearrangement (nitrogen). ${ }^{5}$ Several years ago we discovered a chlorinative ring-expansion reaction which homologates a ring by one carbon atom (eq 1). ${ }^{6}$ This
(4) C. H. Hassall, "Organic Reactions," Vol. 9, Wiley, New York, N. Y., 1957, p 73.
(5) L. G. Donaruma and W. Z. Heldt, "Organic Reactions," Vol. 11. Wiley, New York, N. Y., 1960, p 1.
(6) C. R. Johnson, C. J. Cheer, and D. Goldsmith, J. Org. Chem., 29, 3320 (1964).

paper reports an investigation of the ring expansion of the smaller ring alcohols (eq $1, n=2,3$) and a study of substituent effects and stereochemistry.

The synthesis of 1 -isopropenylcyclopropanol was undertaken with the awareness that 1-vinylcyclopropanols were an unreported class of compound at the time, although several methods were available for the synthesis of 1-alkyl- and 1-arylcyclopropanols. ${ }^{7}$ Reaction of 1,3 -dichloroacetone with isopropenylmagnesium bromide, followed by addition of ferric chloride and ethylmagnesium bromide ${ }^{8}$ and subsequent hydrolysis, gave, after removal of the solvent under vacuum and flash distillation under 20°, a 15% yield of a 4:1 mixture of 1 -isopropenylcyclopropanol and 2,2dimethylcyclobutanone (eq 2). Upon standing for 1

day at room temperature, either neat or in solution, the rearrangement of 1 to 2 was complete.

Reaction of the mixture of 1 -isopropenylcyclopropanol and 2,2-dimethylcyclobutanone with tert-butyl hypochlorite resulted in a complex mixture of products, apparently owing to chlorination of 2,2-dimethylcyclobutanone competing with chlorinative ring expansion of the cyclopropanol. Although chlorinative ring expansion did occur, owing to the lack of synthetic utility of the reaction, the product was not rigorously characterized.

Several related vinylcyclopropanols have recently been reported. Wasserman and Clagett synthesized 1-cyclopentadienylcyclopropanol and found that it also undergoes a facile acid-catalyzed ring expansion. ${ }^{9}$ Konzelman and Conley have reported isolating 1-vinylcyclopropanol as a minor product from the deamination of spiropentylamine. ${ }^{10}$ Wasserman and coworkers have reported on the synthesis of two vinylcyclopropanols and their ring-expansion reactions with a variety of electrophilic reagents (eq 3). ${ }^{11}$

Attention was next focused on the cyclobutanol system. The synthesis of 1-isopropenylcyclobutanol was accomplished in 61% yield by Grignard addition to cyclobutanone. Because of the facility with which 1-

[^66]
isopropenylcyclopropanol underwent acid-catalyzed ring expansion, efforts were made to bring about a similar reaction with isopropenylcyclobutanol. A variety of acids and solvents were examined with no success. No volatile ketonic product could be detected and dark, tarry residues resulted in most cases. However, a solution of 1-isopropenylcyclobutanol in ethanol and sulfuric acid in the presence of 2,4-dinitrophenylhydrazine resulted in a 51% yield of the hydrazone of 2,2-dimethylcyclopentanone (eq 4). When a similar

reaction was attempted with 1 -isopropenylcyclopentanol, a dark solution resulted with no evidence of hydrazone formation. The reaction of 1 -isopropenylcyclobutanol with tert-butyl hypochlorite resulted in an 81% yield of 2-(chloromethyl)-2-methylcyclopentanone (eq 5).

A study of substituent effects in the chlorinative ring expansion of 1 -vinylcycloalkanols was initiated with the 1 -indanol system. The synthesis of 1 -isopropenyl1 -indanol (4) was accomplished in 38% yield by the Grignard reaction on 1-indanone.

The usual procedure ${ }^{6}$ for the chlorinative ring expansion on 1 -isopropenyl-1-indanol resulted in an 88% yield of product consisting of two isomers (eq 6). The

isomers were separated and collected by glc and identified through their infrared and nmr spectra. The first isomer eluted exhibited a carbonyl band at $1680 \mathrm{~cm}^{-1}$ and was assigned the 1 -tetralone structure 5 . The second isomer showed a carbonyl band at $1720 \mathrm{~cm}^{-1}$ and was assigned the 2 -tetralone structure 6.

Alcohol 7 was prepared by the addition of isopropenylmagnesium bromide to 2 -methylcyclopentanone. The Grignard reaction was accomplished in 28% yield, although the actual yield based on consumed starting
material would be higher since a considerable amount of 2-methylcyclopentanone was recovered. Two isomers are theoretically possible from the Grignard addition, but gle analysis with several columns under varying conditions showed only one peak. Literature data on related reactions supports the structure 7 having trans alkyl groups. ${ }^{12}$

Following reaction of the alcohol 7 with tert-butyl hypochlorite and removal of the solvent, the infrared spectrum of the crude product showed a strong carbonyl band at $1720 \mathrm{~cm}^{-1}$. Glc analysis showed the presence of four isomers in the ratio 15:8:72:5 (eq 7).

A kcy step in one scheme planned for the synthesis of cis-1-isopropenyl-2-methylcyclopentan-1-ol (13) was the addition of an organometallic reagent to the oxiranc moicty of 1 -isopropenyl-1,2-epoxycyclopentane (12) (cq S). Neither the addition of methyllithium or

lithium dimethylcuprate yielded the desired product, but rather gave a mixture of isomeric alcohols resulting from conjugate addition (eq 9). The facile reac-

tion observed in this case with the cuprate initiated our interest in exploring the general reactions of cuprates and epoxides.

The reaction of isopropenylmagnesium bromide with bicyclo[2.2.1] heptan-2-one gave 2 -isopropenyl-bicyclo[2.2.1]heptan-2-ol (2-isopropenylnorbornan-2-ol) (14) in 82% yield. Only one isomer could be detected by gle analysis. The product was assigned the exoalkyl configuration by analogy with the addition of methylmagnesium iodide to 2 -norbornanone, where 95% of the exo-2-methylnorbornan-2-ol was obtained. ${ }^{13}$ When subjected to the chlorinative ring expansion

[^67]reaction, exo-2-isopropenylnorbornan-2-ol
(14) gave a mixture of four isomeric ketones (eq 10).

In the chlorinative ring expansion of 4 it is observed that phenyl migration is slightly preferred over methylene, and in the ring expansions of 7 and 14 it is found that methine migration is preferred to methylene. These observations are consistent with rearrangements involving carbonium ion intermediates. Migratory preferences involving cyclic systems never tend to be as clear-cut as those involving acyclic systems because of the arrogation of electronic factors by steric effects. ${ }^{1}$

Part B

Structural Assignments by Nmr Studies.-Aromatic solvent induced shifts (ASIS) in nmr spectra have been documented for many different classes of compounds. ${ }^{14}$ Ketones, and in particular methylsubstituted cyclohexanones, have been studied extensively. The empirical generalization of Connolly and McCrindle for predicting the direction and magnitude of benzene-induced solvent shifts ${ }^{14,15}$ was especially useful. This rule states that, if a reference plane (P) is drawn through the carbon of the carbonyl group at right angles to the carbon-oxygen bond, then protons close to P show no shift or very small shifts; protons in front of P, i.e., on the same side as the oxygen of the carbonyl group, are deshielded; while protons behind P are shielded. Some data selected from the literature ${ }^{15,16}$ on ASIS of methyl-substituted cyclohexanones are summarized as follows.
Methyl substituent
$2-\mathrm{CH}_{3}$ eq
$2-\mathrm{CH}_{3}$ ax
$3-\mathrm{CH}_{3}$ eq
$3-\mathrm{CH}_{3}$ ax

$$
\begin{aligned}
& \quad \Delta_{\mathrm{C}_{6} \mathrm{H}_{6},}^{\mathrm{CDC}}, \mathrm{~Hz} \\
& -1.6 \text { to }+3.0 \\
& +16.6 \text { to }+18.0 \\
& +18.5 \text { to }+21.2 \\
& +11.8
\end{aligned}
$$

Another empirical generalization which has proved useful in distinguishing the axial and equatorial members of isomer pairs is the observation that an axial 2-methyl substituent in a cyclohexanone gives a signal downfield from an equatorial 2-methyl sub-

[^68]stituent in its nmr spectrum run in deuteriochloroform solution. ${ }^{14 b, 16,17}$

The pertinent $n m r$ data for the four isomers from the ring expanison of 7 necessary for structure assignments based on these two empirical rules are given in Table I. The solvent shift values for the methyl

Table I
Nmr Data for the Cyclohexanone Isomers from the Ring Expansion of
trans-1-ISOPROPENYL-2-METHYLCYCLOPENTAN-1-OL ${ }^{c, d}$

Isomer		$\nu{ }^{\text {CDCl }}$, ${ }^{\text {, }} \mathrm{Hz}$	${ }^{\nu}{ }^{\mathrm{C}_{6} \mathrm{H}_{6}}, \mathrm{~Hz}^{\text {a }}$	
A	CH_{3} (d)	$61(J=6)$	$55(J=6)$	6
(15\%)	CH_{3} (s)	76	53	23
	$\mathrm{CH}_{2} \mathrm{Cl}{ }^{\text {c }}$	$218\left(J_{\text {AB }}=0\right)$	$212\left(J_{\text {AB }}=0\right)$	6
	$\Delta \nu_{\text {AB }}$	0	0	
B	CH_{3} (d)	$62(J=6)$	$57(J=6)$	5
(8\%)	CH_{3} (s)	69	65	4
	$\mathrm{CH}_{2} \mathrm{Cl}$	$222\left(J_{\text {AB }}=11\right)$	$194\left(J_{\text {AB }}=11\right)$	28
	$\Delta \nu_{\text {AB }}$	14	12	
C	CH_{3} (d)	$55(J=6)$	$36(J=7)$	19
(72\%)	CH_{3} (s)	76	65	11
	$\mathrm{CH}_{2} \mathrm{Cl}$	$222\left(J_{\mathrm{AB}}=11\right)$	$210\left(J_{\text {AB }}=11\right)$	12
	$\Delta \nu_{\text {AB }}$	10	9	
D	CH_{3} (d)	$57(J=6)$	$36(J=6)$	21
(5\%)	CH_{3} (s)	63	37	26
	$\mathrm{CH}_{2} \mathrm{Cl}$	$221\left(J_{\mathrm{AB}}=11\right)$	$207\left(J_{\text {AB }}=11\right)$	14
	$\Delta \nu_{\text {AB }}$	30	44	

${ }^{\text {a }}$ Spectra were run on a $60-\mathrm{MHz}$ instrument (Varian A-60A) with the compounds in $10 \% \mathrm{w} / \mathrm{w}$ solution. ${ }^{b}$ The $\Delta_{\mathrm{C}_{6} \mathrm{H}_{g}}^{\mathrm{CDCl}} \mathrm{A}$ values for the chloromethyl groups are included in the table, but their significance must be interpreted with caution since $\Delta \nu_{A B}$ is observed to vary with solvent. Although this phenomenon has been observed previously (ref 14a, p 144), the precise solvent effect (if any) on rotamer populations cannot be predicted. ${ }^{c}$ The protons of the chloromethyl group in these compounds are chemically nonequivalent (since the methylene group is attached to an asymmetric carbon) and can be magnetically equivalent resulting in an A_{2} singlet (isomer A) or magnetically nonequivalent resulting in an AB quartet (isomers $\mathrm{B}, \mathrm{C}, \mathrm{D}$). ${ }^{d}$ Chemical shift values are expressed in hertz downfield from TMS. J's are in hertz.
doublets show unambiguously that A and B are the 6 -methyl isomers and that C and D are the 3-methyl isomers.

A and B

C and D

Analysis of the solvent shift data for the methyl singlets $\left(2-\mathrm{CH}_{3}\right)$ indicates the following conformational assignments. Interpretation of the chemical-shift data

	Isomer	$\Delta_{\mathrm{Cb}_{6} \mathrm{He}_{\mathrm{H}}}^{\mathrm{CDI}}, \mathrm{Hz}$	$2-\mathrm{CH}_{3}$ Conformation
$6-\mathrm{CH}_{3}$	A	23	ax
	B	4	eq
$3-\mathrm{CH}_{3}$	C	11	eq
	D	26	ax

for the 2-methyl singlets in deuteriochloroform based on the rule that axial methyls appear at lower field

[^69]than equatorial methyls indicates the following conformational assignments.

	Isomer	$\nu_{\mathrm{CDCl}_{3}, \mathrm{~Hz}}$	$2-\mathrm{CH}_{8}$ Conformation
$6-\mathrm{CH}_{3}$	A	76	ax
	B	69	eq
$3-\mathrm{CH}_{3}$	C	76	ax
	D	63	eq

Both types of data are in agreement for isomers A and B , which can now be assigned as 8 and 9 , respectively. However, note that the two methods yield contradictory assignments for C and D .

We have solved this dilemma by a study modeled after the work of Wolinsky on the pmr spectra of brominated bicyclooctanes. ${ }^{18}$ Wolinsky found that a bromine in 1,3-diaxial relationship to a methyl group will shift the methyl signal about 20 Hz to lower field, while a bromine and methyl in a 1,3-diequatorial relationship cause a much smaller downfield shift $(\sim 8 \mathrm{~Hz})$ of the methyl signal. Isomer C was dibrominated and the nmr spectrum of the product was obtained. The 2 -methyl singlet of the dibromo ketone occurred at 18 Hz lower field than in C while the chloromethyl experienced an average downfield shift of only $12 \mathrm{~Hz} .{ }^{19}$ We interpret this to mean that the dibromo ketone has the structure shown as 19 and hence isomer C has structure 10, leaving structure 11 for isomer D.

19
The mixture, obtained from chlorination of 14 , was separated into its components by preparative glc and nmr data obtained (Table II). For this mixture

Table II

Nmr Data for the Bicyclooctanone Isomers from the
Ring Expansion of exo-2-Isopropenylnorbornan-2-ol ${ }^{\text {a,e }}$

Isomer		$\nu \mathrm{CDCl}_{3}{ }^{\text {a }}$, Hz	$\nu \mathrm{C}_{6} \mathrm{H}_{6} . \mathrm{Hz}$	
15	CH_{3}	76	$62^{\text {d }}$	14
16	$\mathrm{CH}_{2} \mathrm{Cl}{ }^{c}$	$222\left(J_{\text {AB }}=11\right)$	$222\left(J_{\text {AB }}=11\right)$	0
	$\Delta \nu_{\text {AB }}$	7	9	
	CH_{3}	70	58	12
	$\mathrm{CH}_{2} \mathrm{Cl}$	$207\left(J_{\text {AB }}=11\right)$	$196\left(J_{\text {AB }}=11\right)$	11
17	$\Delta \nu_{\text {AB }}$	31	37	
	CH_{3}	72	56	16
	$\mathrm{CH}_{2} \mathrm{Cl}$	$206\left(J_{\text {AB }}=11\right)$	$197\left(J_{\text {AB }}=11\right)$	9
18	$\Delta \nu_{\text {AB }}$	43	51	
	CH_{3}	68	66	2
	$\mathrm{CH}_{2} \mathrm{Cl}$	$216\left(J_{\text {AB }}=11\right)$	$197\left(J_{\text {AB }}=11\right)$	19
	$\Delta \nu_{\text {AB }}$	11	9	

${ }^{a}$ Spectra were run on a $60-\mathrm{MHz}$ instrument (Varian A-60A) with the compounds in $25 \% \mathrm{w} / \mathrm{w}$ solution. ${ }^{b}$ See footnote b, Table I. ${ }^{c} \mathrm{AB}$ quartets are observed for all four of the bicyclooctanone isomers. See footnote c, Table I. ${ }^{d} \mathrm{CH}_{3}(\mathrm{~d}), J=0.7$ Hz . ${ }^{e}$ Chemical shift values are expressed in hertz downfield from TMS. J's are in hertz.

[^70]of bicyclooctanones nmr integration of the α-carbonyl protons should serve to distinguish the 2-keto and 3keto isomer pairs. This proved to be the case. The structures of the individual isomers of each pair were then assigned using the first two methods as previously employed for the cyclohexanones. Unlike the data for the cyclohexanones, the two methods arrived at the same assignments for the bicyclooctanone mixture.

The methyl doublet ($J=0.7 \mathrm{~Hz}$) observed for isomer 15 was attributed to long-range coupling of the W type ${ }^{20}$ with one of the chloromethyl protons. Although the coupling constant could not be measured, the coupling was observed to occur with H_{A} (the higher field proton; 218 Hz) as evidenced by broadening and fine splitting of the two lines for H_{A}. There are two conformers (20 and 21) of 15 which have the correct

20

21
geometry to give the observed long-range W type coupling. Assuming that the conformational preference will be the same in deuteriochloroform and benzene, the preferred conformer can then be assigned from the solvent shift data for H_{A} and H_{B}. Conformer 20 has H_{A} and H_{B} in different environments with respect to the solvent-shift plane (P) and H_{A} is predicted to undergo no shift while H_{B} is expected to undergo a fairly large upfield shift. Conformer 21, on the other hand, has H_{A} and H_{B} both in the solventshift plane (P), and no solvent shift is expected for either. Since no solvent shift is observed for either

	$\nu_{\mathrm{CHCl},}, \mathrm{Hz}$	$\nu_{\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{~Hz}}$	$\Delta_{\mathrm{CDHe}_{6}, \mathrm{~Hz}}^{\mathrm{CDCl}}, \mathrm{Hz}$
H_{A}	218	218	0
H_{B}	226	226	0

H_{A} and H_{B}, conformer 21 is believed to be the preferred conformer.

Stereochemistry and Mechanism. -In eq 7 and 10 it is shown that methine migration is preferred over methylene migration in these chlorinative ring-expansion reactions. Examination of the product distribution for the two reactions also shows that there is a definite configurational preference for the chloromethyl group in the product ketones. In the cyclopentanol 7 the isopropenyl group is trans to the methyl, and, if the norbornyl system is viewed as a substituted cyclopentane, then the isopropenyl group of the norbornanol 14 is trans to the ethano bridge. The configuration of the chloromethyl in the product ketones can then be consistently correlated with the geometry of both isopropenyl alcohols. The important factor is the trans-cis relationship of the chloromethyl group in the ketones to the alkyl group which corresponds to the 2-alkyl substituent in the alcohol. For the cyclohexanones this is the relationship of the chloromethyl to the 3 - and 6-methyl substituents, and for the bicyclooctanones it is the relationship of the chloromethyl to the ethano bridge. The product distribution data

[^71]for the two reactions can then be illustrated as follows, with the trans-cis ratio given for each isomer pair. No significance can be attached to the trans-cis ratio for the pair of 6 -methylcyclohexanones, as isomerization may have occurred during the glc analysis. However, isomerization is not possible for the other three isomer pairs.

Trans:cis ratio for the chloromethyl-alkyl

Isomer pair
3-Methylcyclohexanones
2-Bicyclooctanones
3-Bicyclooctanones
group relationship
14.4:1
2.3:1
1.8:1

Three mechanisms have been proposed for the chlorinative ring expansion with tert-butyl hypochlorite. ${ }^{6}$ They are (1) electrophilic attack on the olefin by tertbutyl hypochlorite to generate an intermediate carbonium ion followed by an alkyl shift and collapse to product (intermolecular) (eq 11); (2) hypochlorite ester interchange followed by intramolecular reorganization (eq 12); and (3) a cyclic, concerted mechanism (eq 13).

The observation that in these chlorinative ringexpansion reactions methine carbon migration is preferred over methylene is consistent with that expected of a ring-expansion reaction with some cationic character in the transition state (eq 11). Mechanisms 12 and 13 involve a concerted step, thus requiring that the isopropenyl group be in the conformation with the methyl over the face of the ring, thereby predicting 11 as the major product (cq 14), contrary to what is observed (eq 7).

The evidence thus points to a nonconcerted mechanism with some carbonium ion character in the transition state. Additionally, a prefcrred mechanism must account for the observed trans-cis ratio in the 3 -methylcyclohexanone isomer pair. Inspection of

Dreiding models and Hirschfelder models indicates that the preferred conformation for trans-1-isopropenyl2 -methylcyclopentan-1-ol is the one with the methylene carbon situated over the face of the cyclopentane ring. If electrophilic attack by tert-butyl hypochlorite in this conformation (22) is then assumed, followed by a rapid alkyl shift to the intermediate "carbonium ion," the product predicted would be 10, as is actually observed (eq 15). An additional requirement for

22
obtaining the observed trans-cis ratio (14.4:1) is that the alkyl shift occurs before rotational equilibration of the carbonium ion can take place. The mechanism of eq 15 seems to best explain the observed product distribution from the chlorinative ring expansion of trans-1-isopropenyl-2-methylcyclopentan-1-ol. The mechanistic arguments applied to the 2-methylcyclopentanol system can be applied to exo-2-isopropenyl-norbornan-2-ol as well.

Experimental Section

Infrared spectra were obtained on a Perkin-Elmer 137 B spectrophotometer. The nmr spectra were taken on either a Varian A-60A or Varian T-60 spectrometer with tetramethylsilane (TMS) as the internal standard. The sweep width was 500 Hz , unless otherwise indicated. The gle work was performed with a Hewlett-Packard 5750 and Prepmaster, Jr.
All Grignard reactions were run under a dry nitrogen atmosphere. Grignard solvents (ether and tetrahydrofuran) were dried by distillation from sodium dispersion.
The melting points and boiling points are uncorrected. Elemental analyses were performed by Midwest Microlab, Inc., Indianapolis, Ind.
1-Isopropenylcyclopropanol (1).-To $2.68 \mathrm{~g}(0.11 \mathrm{~mol})$ of magnesium turnings in 20 ml of tetrahydrofuran (THF) there was added dropwise over $4 \overline{\mathrm{~m}} \mathrm{~min}$ a solution of $10.65 \mathrm{ml}(14.5 \mathrm{~g}, 0.12$ mol) of 2 -bromopropene in 80 ml of THF. The temperature was maintained at $40-50^{\circ}$ throughout the addition, and stirring was continued for 30 min after the addition was complete. The solution of isopropenylmagnesium bromide was then cooled to -40° and a solution of $12.70 \mathrm{~g}(0.10 \mathrm{~mol})$ of 1,3 -dichloroacetone (Eastman) in 100 ml of THF was added over a 1-hr period with the temperature maintained at -40°. Stirring was continued for 30 min at -40° and for 3 hr longer, during which time the temperature was allowed to rise to 0°. There was then added simultaneously over a $1.5-\mathrm{hr}$ period 400 ml of an ether solution containing 0.6 mol of ethylmagnesium bromide and a solution of $1.3 \mathrm{~g}(0.008 \mathrm{~mol})$ of anhydrous ferric chloride in 100 ml of THF. The reaction mixture was allowed to stir for an additional 6 hr at 0°, followed by hydrolysis at 0° with a phosphate buffer solution (pH 7.0). The precipitated salts were filtered, and the filtrate was dried over anhydrous sodium sulfate. The solvent was removed under vacuum with a maximum pot temperature of 20° allowed. The residue was flash distilled with the pot temperature maintained under 20° to give $1.483 \mathrm{~g}(15 \%)$ of a clear, colorless liquid. The infrared spectrum of the product showed a strong hydroxyl band at $3300 \mathrm{~cm}^{-1}$ and absorptions at 3020, 1640, and $880 \mathrm{~cm}^{-1}$. In addition, there was a medium band at $1770 \mathrm{~cm}^{-1}$. The nmr spectrum of the product revealed the presence of two compounds in a $4: 1$ ratio. There was a complex multiplet of the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ type centered at $\delta 0.78$ (cyclopropyl H), a quartet at 1.67 (isopropenyl $-\mathrm{CH}_{3}$), a singlet at $3.88(-\mathrm{OH})$, and two multiplets at 4.75 and 4.93 (vinyl H of isopropenyl group). These resonances were attributed to 1 -isopropenylcyclopropanol. In addition, there was a singlet at $\dot{\delta}$
1.13 (gem-dimethyl), a triplet at 1.67 (β methylene H), and a triplet at $1.87(\alpha$ methylene H$)$. These resonances were attributed to 2,2 -dimethylcyclobutanone. Although the 1 -isopropenylcyclopropanol was the major component initially, there was a slow conversion to 2,2 -dimethylcyclobutanone which was complete after 24 hr as evidenced by the nmr spectrum. This rearrangement occurred either in carbon tetrachloride or neat. The 2,2-dimethylcyclobutanone was converted to its 2,4-dinitrophenylhydrazone (recrystallized from 95% ethanol), mp 139$140^{\circ}$ (lit. ${ }^{21} \mathrm{mp} \mathrm{140-141}^{\circ}$).
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $51.79 ; \mathrm{H}, 5.08$. Found: C, 51.64 ; H, 5.02.

1-Isopropenylcyclobutan-1-ol (3).-To $4.38 \mathrm{~g}(0.18 \mathrm{~mol})$ of magnesium turnings in 30 ml of tetrahydrofuran (THF) there was added $16.9 \mathrm{~g}(0.09 \mathrm{~mol})$ of 1,2 -dibromoethane in 120 ml of THF. The addition was carried out over a $1.25-\mathrm{hr}$ period with the temperature maintained at 50°. After the solution was stirred for an additional $30 \mathrm{~min}, 12.35 \mathrm{~g}(0.102 \mathrm{~mol})$ of 2 -bromopropene (Columbia Organics, $99+\%$ purity) in 65 ml of THF was added to the reaction mixture over a $1.5-\mathrm{hr}$ period. Stirring was continued for 45 min with the temperature maintained at 45° throughout the entire $2.25-\mathrm{hr}$ period.
A solution of $4.2 \mathrm{~g}(0.06 \mathrm{~mol})$ of cyclobutanone (Columbia Organics) in 40 ml of THF was added over a $1.25-\mathrm{hr}$ period to the Grignard solution maintained at 50°. Stirring was continued for 15 hr at 50°. The reaction mixture was then cooled with an ice bath and hydrolyzed by the dropwise addition of saturated ammonium chloride solution. The THF solution was decanted from the precipitated salts and the precipitate was washed with three $100-\mathrm{ml}$ portions of ether. The combined THF-ether solution was washed with two $100-\mathrm{ml}$ portions of water and 100 ml of saturated sodium chloride solution. The combined water washings were extracted with 100 ml of ether; the THF-ether solution was washed once more with 100 ml of saturated sodium chloride solution and dried over anhydrous sodium sulfate. The ether and THF were removed by distillation at atmospheric pressure with the last traces removed by distillation at 60 mm (water pump). The viscous, yellow residue was flash distilled at 1 mm to give a clear, colorless liquid, which was distilled through a $4-\mathrm{cm}$ column to yield $4.11 \mathrm{~g}(61 \%)$ of 1 -isopropenylcyclobutan-1-ol: bp 48-50 ${ }^{\circ}(7.8 \mathrm{~mm}) ; n^{25} \mathrm{D} 1.4633$; ir (film) $3350(\mathrm{~s},-\mathrm{OH}), 3100\left(\mathrm{w},=\mathrm{CH}_{2}\right), 2950(\mathrm{~s},-\mathrm{CH}), 1650$ $\left(\mathrm{m},>\mathrm{C}=\mathrm{CH}_{2}\right), 900 \mathrm{~cm}^{-1}\left(\mathrm{~s},>\mathrm{C}=\mathrm{CH}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.77(\mathrm{~m}$, $\left.-\mathrm{CH}_{3}\right), 2.10\left(\mathrm{~m},-\mathrm{CH}_{2^{-}}\right), 3.42(\mathrm{~s},-\mathrm{OH}), 4.78$ (m, trans vinyl H), 4.93 (m , cis vinyl H).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 74.94 ; \mathrm{H}, 10.80$. Found: C, 74.83 ; H, 10.74 .
Acid-Catalyzed Rearrangement of 1-Isopropenylcyclobutan-1 ol.-To 20 ml of 0.15 M 2,4-dinitrophenylhydrazine reagent was added 119.2 mg (1 mmol) of 1 -isopropenylcyclobutan-1-ol. The solution was allowed to stand at room temperature for 3 days, during which period the 2,4-dinitrophenylhydrazone slowly crystallized as long, fine needles. The product was collected by filtration and dried to yield $149 \mathrm{mg}(51 \%)$ of product, $\mathrm{mp} 142-$ 143°. The 2,4-dinitrophenylhydrazone (recrystallized once from 95% ethanol) had mp 142-143 ${ }^{\circ}$ (lit. ${ }^{22} \mathrm{mp} 144^{\circ}$).

2-Methyl-2-(chloromethyl)cyclopentanone.-A solution of 1-isopropenylcyclobutan-1-ol ($0.4475 \mathrm{~g}, 0.004 \mathrm{mmol}$) in 20 ml of alcohol-free chloroform was heated to 55° in a black-painted flask fitted with a reflux condenser. To the stirred solution was added $0.476 \mathrm{ml}(0.434 \mathrm{~g}, 0.004 \mathrm{~mol})$ of tert-butyl hypochlorite. ${ }^{2 \mathrm{a}}$ The reaction was completed in 2 hr as evidenced by a negative test for tert-butyl hypochlorite with potassium iodide-starch test paper. The chloroform solution was passed through a short column of alumina, and the chloroform was removed by distillation at atmospheric pressure. The pale-yellow liquid residue was distilled twice with a short-path apparatus to yield 0.4281 g (73%) of 2-methyl-2-(chloromethyl)cyclopentanone: bp 46$48^{\circ}(1.8 \mathrm{~mm})$; $n^{25 \mathrm{D}} \mathrm{D} .4663$; ir (film) $2950(\mathrm{~m},-\mathrm{CH}), 1740(\mathrm{~s}$, $\mathrm{C}=0), 740(\mathrm{~m},-\mathrm{CCl}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.05\left(\mathrm{~s},-\mathrm{CH}_{3}\right), 2.08$ (broad $\mathrm{m},-\mathrm{CH}_{2}-$), 3.46 (AB quartet, $J=11 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Cl}$).
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{OCl}: \mathrm{C}, 57.33 ; \mathrm{H}, 7.56$. Found: C, 57.21; H, 7.46.
Reaction of 1-Isopropenyl-1-indanol (4) with terl-Butyl Hypo-chlorite.-To a magnetically stirred solution of 0.3485 g (2

[^72]mmol) of 1-isopropenyl-1-indanol ${ }^{24}$ in 10 ml of alcohol-free chloroform in a black-painted flask at 55° was added $0.24 \mathrm{ml}(0.217 \mathrm{~g}$, 2 mmol) of freshly prepared tert-butyl hypochlorite. ${ }^{23}$ After complete reaction (38.5 hr , negative potassium iodide-starch test) the solvent was removed in vacuo. The viscous, yellow residue (0.411 g) was subjected to infrared and glc analysis. The infrared spectrum of this material contained carbonyl bands at 1720 and $1680 \mathrm{~cm}^{-1}$, with the more intense band at $1720 \mathrm{~cm}^{-1}$. Gle analysis was carried out with a $8 \mathrm{ft} \times 0.25$ in., 20% diethylene glycol succinate on Chromosorb W, 60-80 mesh column at a column temperature of 172° and a helium flow of $150 \mathrm{ml} / \mathrm{min}$. The chromatogram revealed three peaks with retention times of 19 (minor), 33 (major), and 39.5 min (major). The minor peak at 19 min was not identified, and planimetric integration showed it to be 11% of the total mixture. Based on glc analysis, the yield of tetralones was $0.266 \mathrm{~g}(88 \%)$. Planimetric integration of the two major peaks at 33 (isomer 5) and 39.5 min (isomer 6) gave a ratio of $41: 59$. Collection of the two peaks by gle and their infrared spectra and elemental analyses gave the following data. Isomer 5 had ir $\left(\mathrm{CCl}_{4}\right) 1680 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{OCl}: \mathrm{C}, 69.06 ; \mathrm{H}, 6.29$. Found C, $68.78 ; \mathrm{H}, 6.15$. Isomer 6 had ir $\left(\mathrm{CCl}_{4}\right) 1720 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{OCl}$: C, 69.06; H, 6.29 . Found: C, 68.93 ; H, 6.21 .
trans-1-Isopropenyl-2-methylcyclopentan-1-ol (7).-to 7.3 g (0.30 mol) of magnesium turnings (Fisher, Laboratory Reagent) in tetrahydrofuran (THF) was added, dropwise with stirring, $13.0 \mathrm{ml}(28.2 \mathrm{~g}, 0.15 \mathrm{~mol})$ of 1,2 -dibromoethane in 200 ml of THF over a period of 2 hr while the temperature was maintained at 50°. After stirring for an additional 30 min at $50^{\circ}, 15.1 \mathrm{ml}$ $(20.6 \mathrm{~g}, 0.17 \mathrm{~mol})$ of 2-bromopropene (Columbia Organics, $99+\%$ purity) in 110 ml of THF was added over a period of 1.5 hr with the temperature maintained at 45°. The stirring was continued at 45° for 30 min after the addition was completed.

A solution of $9.814 \mathrm{~g}(0.10 \mathrm{~mol})$ of 2-methylcyclopentanone ${ }^{25}$ in 70 ml of THF was added to the Grignard solution at 50° over a $2.5-\mathrm{hr}$ period. Stirring was continued for 14 hr with the reaction temperature maintained at 50° throughout. The reaction mixture was cooled with an ice bath, hydrolyzed, and worked up as described for the preparation of 1 -isopropenyl cyclobutan-1-ol. The product was fractionally distilled through a $20-\mathrm{cm}$ Podbielniak column to yield $3.90 \mathrm{~g}(28 \%)$ of pure trans-1-isopropenyl-2-methylcyclopentan-1-ol: bp $62^{\circ}(9.2 \mathrm{~mm})$; $n^{25} \mathrm{D}$ 1.4692; ir (neat) $3400(\mathrm{~m},-\mathrm{OH}), 2825(\mathrm{~m}), 1650\left(\mathrm{~m},=\mathrm{CH}_{2}\right), 950(\mathrm{~m})$, $900 \mathrm{~cm}^{-1}(\mathrm{~m}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.83\left(\mathrm{~d}, J=6 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.70$ $\left(\mathrm{m},-\mathrm{CCH}_{3}\right), 1.70\left(\mathrm{~m},-\mathrm{CH}_{2}-\right), 4.82(\mathrm{~m}$, trans vinyl H$), 5.02(\mathrm{~m}$, cis vinyl H).
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 77.09$; H, 11.50. Found: C, 76.84; H, 11.35 .
Reaction of trans-1-Isopropenyl-2-methylcyclopentan-1-ol with tert-Butyl Hypochlorite.-To a magnetically stirred solution of $1.05 \mathrm{~g}(7.5 \mathrm{mmol})$ of trans-1-isopropenyl-2-methylcyclopentan-1ol in 40 ml of alcohol-free chloroform in a black-painted flask at 55° was added 0.92 ml ($0.84 \mathrm{~g}, 7.7 \mathrm{mmol}$) of freshly prepared tert-butyl hypochlorite. ${ }^{23}$ After completion of the reaction (8 hr , negative potassium iodide-starch test) the solvent was removed in vacuo to leave 1.29 g of a clear, yellow oil. The infrared spectrum of this material had a strong carbonyl band at $1720 \mathrm{~cm}^{-1}$. Glc analysis was performed with a $16 \mathrm{ft} \times 0.25 \mathrm{in}$., 20% diethylene glycol succinate on Chromosorb W, 60-80 mesh column, with a column temperature of 180° and a helium flow of 46 $\mathrm{ml} / \mathrm{min}$. The chromatogram revealed at least 15 minor peaks with retention times in the range $0-13 \mathrm{~min}$, and four major peaks with retention times of 16 (isomer A), 20 (isomer B), 25 (isomer

[^73]C), and 29.5 min (isomer D). Planimetric integration gave the following percentages for the total of the four major peaks: isomer $\mathrm{A}, 15 \%$; isomer $\mathrm{B}, 8 \%$; isomer $\mathrm{C}, 72 \%$; and isomer D , 5%. No attempt was made to identify any of the minor peaks in the $0-13 \mathrm{~min}$ range. The four major peaks were collected with a $20 \mathrm{ft} \times 0.375 \mathrm{in}$., 20% diethylene glycol succinate on Chromosorb W, 60-80 mesh column. Temperature programming was employed with a postinjection interval of 20 min at 145°, a programmed increase of $2^{\circ} / \mathrm{min}$ to 188°, and an additional 20 \min at the upper limit of 188°. The helium flow rate was 150 $\mathrm{ml} / \mathrm{min}$, and the total time of the cycle was 54 min . Nmr data in deuteriochloroform and benzene were collected for all four isomers (Table I). An elemental analysis was obtained for isomer C.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{OCl}: \mathrm{C}, 61.88 ; \mathrm{H}, 8.67$. Found: C, 61.72; H, 8.73.
exo-2-Isopropenyl-2-norbornanol (14).-The procedure was identical with that used for the preparation of trans-1-isopropenyl-2-methylcyclopentan-1-ol. A $19.83-\mathrm{g}(0.18 \mathrm{~mol})$ portion of 2 norbornanone was allowed to react, with all other reagents scaled up accordingly. After the usual work-up, distillation through a Vigreux column yielded $22.58 \mathrm{~g}(82 \%)$ of exo-2-iso-propenyl-2-norbornanol: bp $49-51^{\circ}(0.8 \mathrm{~mm})$; ir (film) 3600 , $3450,1650,900 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.80\left(\mathrm{~m},-\mathrm{CCH}_{3}\right), 4.78(\mathrm{~m}$, trans vinyl H), 4.92 (m , cis vinyl H).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 78.89 ; \mathrm{H}, 10.60$. Found: C, 78.92; H, 10.61.

Reaction of exo-2-Isopropenyl-2-norbornanol with tert-Butyl Hypochlorite.-To a magnetically stirred solution of 3.81 g (25 mmol) of exo-2-isopropenyl-2-norbornanol in 125 ml of al-cohol-free chloroform was added $3.10 \mathrm{ml}(2.82 \mathrm{~g}, 26 \mathrm{mmol})$ of freshly prepared tert-butyl hypochlorite. ${ }^{23}$ After completion of the reaction (8 hr , negative potassium iodide-starch test), the solvent was removed in vacuo to leave 4.46 g of a clear, yellow oil. The infrared spectrum of this material had a strong carbonyl band at $1700 \mathrm{~cm}^{-1}$. Glc analysis was carried out with a $16 \mathrm{ft} \times 0.25 \mathrm{in}$., 10% ethylene glycol succinate on Chromosorb $\mathrm{W}, 60-80$ mesh column with a column temperature of 150° and a helium flow rate of $60 \mathrm{ml} / \mathrm{min}$. The chromatogram showed two very minor peaks at $18-20 \mathrm{~min}$ and four major peaks at 27 (isomer 15), 30 (isomer 16), 34 (isomer 17), and 38 min (isomer 18). Planimetric integration gave the following percentages for the four major peaks: isomer $15,23 \%$; isomer $16,11 \%$; isomer $17,25 \%$; and isomer $18,41 \%$. The four major peaks were collected by preparative glc using a $6 \mathrm{ft} \times 0.75 \mathrm{in}$., 20% diethylene glycol succinate on Chromosorb W, 10-60 mesh column, with a 150° column temperature and a nitrogen flow rate of 300 $\mathrm{ml} / \mathrm{min}$. Four fractions were collected corresponding to each of the four peaks. The first and the fourth fractions contained over 75% of the desired isomer and were further purified by a second pass through the $6 \mathrm{ft} \times 0.75 \mathrm{in}$. column. The second and third fractions were about $50: 50$ mixtures of the desired isomers and they were further purified by collecting from a $25 \mathrm{ft} \times 0.375$ in., 15% ethylene glycol succinate on Chromosorb W, 60-80 mesh column, at 170° column temperature and a nitrogen flow rate of $100 \mathrm{ml} / \mathrm{min}$. Nmr data in deuteriochloroform and benzene were obtained for the four isomers (Table II). An elemental analysis was obtained for isomer 18.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{OCl}: \mathrm{C}, 64.33 ; \mathrm{H}, 8.11$. Found: C, 64.18; H, 8.09.

Registry No.-1, 40791-85-3; 2, 1192-14-9; 2 DNP, 4070-16-0; 3, 40791-88-6; 4, 19063-65-1; 5, 40791-90-0; 6, 40791-91-1 7, 40791-92-2; 8, 40791-93-3; 9, 40791-94-4; 10, 40791-95-5; 11, 40791-96-6; 14, 40791-97-7; 15, 40791-98-8; 16, 40791-99-9; 17, 40792-00-5; 18, 40792-01-6; tert-butyl hypochlorite, 507-40-4; 2-bromopropene, 557-93-7; 1,2-dibromoethane, 106-93-4; cyclobutanone, 1191-95-3; 2,2-dimethylcyclopentanone, 4541-32-6; 2-methyl-2-(chloromethyl)cyclopentanone, 40792-02-7; 2methylcyclopentanone, 1120-72-5; 2-norbornanone, 497-38-1.

Liquid Crystals. IV. Effects of Terminal Substituents on the Nematic Mesomorphism of \boldsymbol{p}-Phenylene Dibenzoates ${ }^{1}$

J. P. Schroeder* and D. W. Bristol
Department of Chemistry, The University of North Carolina al Greensboro, Greensboro, North Carolina 27412

Received January 25, 1973

Abstract

New p-phenylene diben\%oates with various end groups were prepared and their phase transition temperatures determined. The data for these compounds and for other terminally substituted p-phenylene dibenzoates described in the literature were then examined for trends in nematic liquid crystalline behavior. Only 7 of the 63 esters do not exhibit a nematic mesophase. The marked tendency of this molecular system to be nematic is further shown by the mesomorphism of three esters having only one terminal substituent. Of the end groups for which data are available, long-chain alkoxy groups are most effective at lowering the melting point; $\mathrm{CN}, \mathrm{NO}_{2}$, COOMe, and Br are most effective at raising it. The highest nematic-isotropic transition temperatures are produced by CN, COOMe, MeO, and COOEt, and the lowest by COO-n-Bu, $i-\mathrm{Pr}$, cyclohexoxy, and $i-\mathrm{BuO}$. Unsymmetrical di- n-alkoxy esters are the lowest melting p-phenylene dibenzoates and have the broadest nematic temperature ranges. An attempt is made to rationalize the data, and analogies with other nematic molecular systems are discussed. In the course of the investigation, new para-substituted benzoic acids and p-hydroxyphenyl benzoates were also synthesized.

Attempts to correlate the properties of compounds with their molecular structures are common in chemical research. A familiar example is the systematic variation of substituent groups on a physiologically active parent compound to determine the effect of these changes on activity. Mesomorphic !liquid crystalline) ${ }^{2-4}$ molccular systems have been investigated in a similar manner to ascertain the effects of structural variations on the temperature range over which the mesophase is stablc. Sometimes, the objective is to "tailor" the range to fit a particular application. Usually, there is also the broader goal of finding correlations between specific structural modifications and changes in liquid crystallinity that might be applicable in some degree to other mesomorphic systems. Ideally, if the latter goal is considered, the original compound's mesophase should exist over a broad temperature range. Otherwise, even minor alterations in structure may destroy mesomorphism altogether. If most structural changes accomplish this destruction, their deleterious effect is established, but the relative extent to which they are disruptive remains unknown.
p-Phenylene di- n-alkoxybenzoates ($1, \mathrm{R}=\mathrm{R}^{\prime}=$ n-alkoxy) have been shown ${ }^{5-7}$ to exhibit nematic

mesophases ${ }^{2-4}$ with broad ranges terminating at high temperatures. Introduction of a methyl substituent on the central phenylene ring, ${ }^{7}$ two very different terminal alkoxy groups (e.g., $\mathrm{CH}_{3} \mathrm{O}$ and $n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}$), ${ }^{8}$

[^74]or replacement of the alkoxy end groups by $\mathrm{Cl}, \mathrm{NO}_{2}$, or $\mathrm{CO}_{2} \mathrm{Et}^{6 a}$ do not destroy mesomorphism. These results suggested that the nematic mesophase of system 1 might survive still more drastic structural variations and, therefore, that the system would be excellent for an extensive study of the effects of structural changes on nematic behavior. This paper describes an investigation of major variations of R and R^{\prime}.

Ten symmetrical and 11 unsymmetrical esters of type 1 were prepared by the processes shown in eq $1-3$. During the investigation, three new para-sub-

stituted benzoic acids and three new phenols of type 2 were also prepared. The phase transition temperatures of these products were determined using a hot stage polarizing microscope.

Experimental Section

Para-Substituted Benzoic Acids.-The methyl, isopropyl, tertbutyl, bromo, chloro, and cyano acids are commercial products. The isobutoxy, cyclohexoxy, and 2 -ethoxyethoxy acids were prepared by reaction of ethyl p-hydroxybenzoate with the appropriate alkyl bromide and saponification of the resulting ethyl p-alkoxybenzoate in ethanolic KOH solution. ${ }^{5}$ Recrystallization solvent, yield (based on ethyl p-hydroxyben\%oate), and melting point data are as follows: $i-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}$ acid, ben\%ene, $86 \%, 142^{\circ}$; cyclohexoxy acid, EtOH, $12 \%, 185^{\circ}$; $\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ acid, benzene, $90 \%, 134^{\circ}$. Apparently, Steinsträsser ${ }^{\theta}$ has prepared the last-named compound, but does not describe its properties.

Benzoyl Chlorides.-Benzoyl and p-nitrobenzoyl chloride were purchased. The others were obtained from the corresponding
(9) R. Steinstrāsser, Angew. Chem., Int. Ed. Enol., 11, 633 (1972).

Table I
p-Phenylene Dibenzoates ${ }^{a}$

Registry no.	R	R'	Synthetic method	Recrystn solvent	Yield, \%	$\stackrel{\text { Trans }}{\stackrel{\text { Mp }}{ }}$	$\underset{\mathrm{emp}-\mathrm{I}^{\mathrm{b}}}{ }$
14210-97-0	H	H	A	EtOH	60	$207{ }^{\text {c }}$	d
40781-77-9	H	Me	A	EtOH	81	172	d
40781-78-0	H	MeO	A	EtOH	76	157	173
40781-79-1	H	i - BuO	A	EtOH	90	153.5	d
40781-80-4	H	$n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}$	A	EtOH	89	119	150
40864-79-7	H	EtOCH ${ }_{2} \mathrm{CH}_{2} \mathrm{O}$	A	EtOH	92	134	(117) ${ }^{\text {e }}$
40781-81-5	Me	Me	A	Dioxane	63	231.5	236
40781-82-6	$i-\mathrm{Pr}$	$i-\mathrm{Pr}$	C	EtOH	8	161.5	d
40781-83-7	t-Bu	t-Bu	B	EtOAc	58	204	d
40781-84-8	MeO	Me	A	1. EtOHdioxane 2. EtOH	73	199	265
40781-85-9	MeO	Cl	A	EtOH	93	196	275
40781-86-0	MeO	Br	A	EtOH-dioxane	81	214	277
40781-87-1	MeO	i-BuO	A	EtOH	73	155.5	236.51
40781-88-2	MeO	Cyclohexoxy	B	EtOH	89	174	299
40781-89-3	MeO	$\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$	A	EtOH	60	$127{ }^{\circ}$	237
40781-90-6	i - BuO	i - BuO	A	EtOH	75	174	181
40781-91-7	Cyclohexoxy	Cyclohexoxy	B	EtOH	59	203	(163) ${ }^{\text {e }}$
40781-92-8	$\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$	$\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$	A	EtOH	76	125	188.5
40781-93-9	Br	Br	A	Dioxane	73	255	(252) ${ }^{\text {e }}$
40781-94-0	CN	CN	B	Dioxane	74	331.5	353.5
24706-98-7	NO_{2}	NO_{2}	B	Dioxane	55	$262^{\text {b }}$	$281{ }^{\text {b }}$

${ }^{a}$ Satisfactory analytical data ($\pm 0.4 \%$ for C and H) were reported for all new compounds listed in the table. ${ }^{b}$ Nematic-isotropic.
 tion observed only on cooling. /This compound also exhibited a monotropic transition (see footnote e) from nematic to smectic at 125.5°. © Another crystalline modification melting at 109.5° to nematic liquid was also observed. ${ }^{h} \mathrm{Mp} 260^{\circ}$ and $\mathrm{N}-\mathrm{I}$ transition temperature 266° have been reported for this compound (ref 6a).
acid by treatment with thionyl chloride at reflux in the presence of pyridine as catalyst. Excess thionyl chloride was distilled to give the acid chloride as a residue product. p-Ethoxyethoxybenzoyl chloride crystallized on cooling as needles, $\mathrm{mp} 43-45^{\circ}$.
p-Hydroxyphenyl Benzoate (2) Starting Materials.-The p -methoxy- and p - n-hexoxybenzoates had been synthesized earlier by S . A. Haut..$^{8} \quad$-Hydroxyphenyl benzoate, $\mathrm{mp} 167^{\circ}$ (lit. ${ }^{10} \mathrm{mp}$ 164°), was prepared from benzoyl chloride and hydroquinone by essentially the same procedure.
p-Phenylene Dibenzoates (1). Method A.-Most of the esters were prepared by the procedure that had proven to be satisfactory earlier.., 8 Typically, for symmetrical esters, a solution of 0.0060 mol of hydroquinone in 30 ml of dry pyridine was added with swirling to a solution of 0.018 mol of acid chloride in 30 ml of dry pyridine. After standing for $24-48 \mathrm{hr}$, the mixture was added to 300 ml of 3 N hydrochloric acid. The resulting precipitate was filtered, washed with water, and stirred with 200 ml of 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution for 1 hr . The crude product was recovered by filtration, washed with water and then ethanol, and recrystallized from a suitable solvent. The procedure for unsymmetrical esters was similar except that the reaction was initiated by addition of a solution of the hydroxyphenyl benzoate to a solution of the acid chloride (molar ratio $1: 3$), both in anhydrous pyridine.

This method was unsuccessful when applied to the preparation of the di- p-isopropyl and di-p-tert-butyl benzoates. The only esters isolated were small amounts of p-hydroxyphenyl p-alkyl benzoates (see below). Accordingly, the following procedural modifications were tried.

Method B.-The only change here was to add the reaction mixture to water instead of hydrochloric acid to precipitate the product. The di-tert-butyl benzoate was obtained in this manner. The method was subsequently used to prepare several other esters (see Table I). In the synthesis of p-phenylene di- p-cyclohexoxybenzoate, the monoester (see below) was a major by-product.

[^75]Method C.-The di-i-propylbenzoate was prepared using classic Schotten-Baumann conditions. p-Isopropylbenzoyl chloride $(0.0040 \mathrm{~mol})$ was added with stirring to a solution of 0.0010 mol of hydroquinone and 2.0 g of NaOH in 8 ml of water. After 1.5 hr , the product was recovered by filtration, washed with water, and recrystallized.
In all three methods, excess acyl chloride can be recovered (as the acid) by treatment of the alkaline filtrate and/or wash liquor with excess hydrochloric acid. The results for the dibenzoates are summarized in Table I.
p-Hydroxyphenyl Benzoate (2) Products. $-2, \mathrm{R}=i-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{mp}$ 127°, and $2, \mathrm{R}=t-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{mp} 156^{\circ}$, were the sole products of attempts to prepare the corresponding dibenzoates by method A. The yields were 2 and 4%, respectively. $2, \mathrm{R}=$ cyclohexoxy, mp 133°, was a major by-product (33% yield) in the synthesis of the corresponding dibenzoate by method B. All three compounds were recrystallized from aqueous ethanol.
Transition Temperatures.-These were determined with a Reichert "Thermopan" polarizing microscope equipped with a Kofler micro hot stage. The instrument was calibrated against pure compounds of known melting points.

Analyses.-The elemental microanalyses were performed by Dr. Kurt Eder, Geneva, Switzerland, and by Galbraith Laboratories, Inc., Knoxville, Tenn. Satisfactory analytical data ($\pm 0.4 \%$ for C and H) were reported for the new p-alkoxybenzoic acids and p-hydroxyphenyl benzoates.

Results and Discussion

The esters in Table I fall into three general categories of end group combinations: $\mathrm{R}-\mathrm{R}, \mathrm{MeO}-\mathrm{R}$, and $\mathrm{H}-\mathrm{R}$. In Table II, system 1 esters from this work and from the literature are arranged, within cach of the three end-group categories, in order of increasing N-I transition temperature. Of the 42 esters in Table II, representing a wide variation in end groups,

Table II
Effects of Terminal Substituents on Nematic-Isotropic
Transition Temperatures and Melting Points of p-Phenylene Dibenzoates ${ }^{a}$

Registry no.	R	$\begin{aligned} & \mathrm{N}-\mathrm{I} \text { temp, } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Mp.
	Symmetrical Esters		
1819-04-1	H		207
	$i-\mathrm{Pr}$		161.5
	t-Bu		204
	COO-n-Bu	$155^{\text {b }}$	$139{ }^{\text {b }}$
	Cyclohexoxy	163	203
	i - BuO	181	174
	EtOCH ${ }_{2} \mathrm{CH}_{2} \mathrm{O}$	188.5	125
24706-96-5	$n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}$	$195{ }^{\text {c }}$	$122{ }^{\text {c }}$
1819-00-7	$n-\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}$	$199{ }^{\text {c }}$	$122{ }^{\text {c }}$
24706-99-8	F	199 ${ }^{\text {d }}$	$210{ }^{\text {e }}$
1818-99-1	$n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}$	$213{ }^{\text {c }}$	$124{ }^{\text {c }}$
1819-03-0	COO-n-Pr	$219{ }^{\text {b }}$	$193{ }^{\text {b }}$
33903-92-3	$n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}$	2225	1451
	Me	236	231.5
1818-98-0	$n-\mathrm{BuO}$	$241{ }^{0}$	$153{ }^{\circ}$
5411-00-7	Cl	$246{ }^{\text {e }}$	$226{ }^{\circ}$
24704-16-3	$n-\mathrm{PrO}$	2490	$175{ }^{\circ}$
	Br	252	255
	NO_{2}	281	262
24706-93-2	EtO	2870	$226{ }^{\circ}$
1819-02-9	COOEt	$298{ }^{6}$	$203{ }^{\text {b,e }}$
1962-76-1	MeO	$300{ }^{\text {b }}$	222^{6}
1819-01-8	COOMe	343 dec ${ }^{\text {b }}$	$262^{\text {b }}$
	CN	353.5	331.5

MeO-Terminated Esters

	H	173	157
	Cyclohexoxy	229	174
$\begin{aligned} & 33905-73-6 \\ & 33905-72-5 \end{aligned}$	$n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}$	229 /	$125{ }^{\prime}$
	$n-\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}$	234 ${ }^{\prime}$	127 '
	i - BuO	236.5	155.5
40781-89-3	$\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$	237	127 (109.5)
33905-71-4	$n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}$	244 ${ }^{\prime}$	125^{\prime}
33905-70-3	$n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}$	$253 /$	$137{ }^{\prime}$
	Me	265	199
33905-69-0	$n-\mathrm{BuO}$	$266{ }^{\prime}$	$134{ }^{\prime}$
40781-85-9	Cl	275	196
33905-68-9	$n-\mathrm{PrO}$	$277{ }^{\text {s }}$	$167{ }^{\prime}$
	Br	277	214
33905-67-8	EtO	$295{ }^{\prime}$	$213{ }^{\prime}$
	MeO	$300^{\text {b }}$	$222^{\text {b }}$
	H-Terminated Esters		
H			207
Me			172
i-BuO			153.5
	$\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$	117	134
	$n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}$	150	119
	MeO	173	157

[^76]only seven do not exhibit a nematic mesophase. ${ }^{11}$ The marked tendency of the system to be mesomorphic is particularly well shown by the three nematic compounds having only one terminal substituent. When the data in Table II are examined, trends are apparent that may be summarized as follows. Bulky, relatively nonpolar, long-chain alkoxy groups give the lowest melting points, while more compact, polar groups (CN, $\mathrm{NO}_{2}, \mathrm{COOMe}$, halogen, EtO MeO , $\mathrm{Me})$ give the highest. The $\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ substituent is about as effective as the long-chain alkoxy groups in lowering the melting point. The "abnormally" high values for MeO and H in the $\mathrm{MeO}-\mathrm{R}$ and $\mathrm{H}-\mathrm{R}$ series, respectively, reflect the importance of symmetry to crystalline lattice stability.

End group bulk and polarity seem to be the principal factors that influence the $\mathrm{N}-\mathrm{I}$ transition temperature also. The highest values are provided by relatively compact, polar substituents (CN, $\mathrm{COOMe}, \mathrm{MeO}$). Bulky and, particularly, branched groups with little polarity give low N-I points. The effect of branching is shown by the results for isomeric alkyl moieties (cyclohexoxy $<n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}, i$-BuO $<n$ - BuO). The combined effects of increasing bulk and decreasing polarity are demonstrated by the homologous series n-RO ($\mathrm{Me}>\mathrm{Et}>\mathrm{Pr}>\mathrm{Bu}>\mathrm{C}_{5} \mathrm{H}_{11}>\mathrm{C}_{6} \mathrm{H}_{13}>\mathrm{C}_{8} \mathrm{H}_{17}$) and $\mathrm{COO}-n-\mathrm{R}(\mathrm{Me}>\mathrm{Et}>\mathrm{Pr}>\mathrm{Bu})$. However, there appears to be a group size below which an adverse effect on mesomorphism sets in, probably because the molecule becomes too short. Thus, H and the highly polar F are well below Me and Cl in the $\mathrm{N}-\mathrm{I}$ temperature order. The fact that Cl and Br give very similar values, despite the larger size and lower electronegativity of the latter, may be associated with the greater polarizability of Br .

The results are in accord with generally accepted theories of molecular structural influences on melting and N-I transition points. The melting temperature is enhanced by symmetry and strong intermolecular attractive forces. The latter are provided by polar and easily polarizable segments of the molecule. Bulky, nonpolar groups, because they inhibit close approach of neighboring molecules while contributing little or nothing to intermolecular attraction, have a lowering effect on the melting point. The same factors apply also to nematic mesophase stability except that they are conditioned by the requirement that a nematic compound must have rod-shaped molecules; i.e., bulk along the longitudinal molecular axis is not nearly so deleterious as the same bulk located laterally so that it broadens the molecule. Our data for $\mathrm{EtOCH}_{2^{-}}$ $\mathrm{CH}_{2} \mathrm{O}$ appeared, at first, to be anomalous. The group is about the same size as $n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}$ and, presumably, more polar because of the additional ether oxygen. However, in Table II, the melting point order is $n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}>\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ and the $\mathrm{N}-\mathrm{I}$ point order $n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}>n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}>\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$. For the symmetrical esters, the $\mathrm{N}-\mathrm{I}$ temperature of $\mathrm{EtOCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{O}$ even falls below those of $n-\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}$ and $n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}$. This suggests that the opposing dipoles in the extended $\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ group (3) render it less polar than a n alkoxy group of similar length with its unopposed $\mathrm{C}-\mathrm{O}-\mathrm{C}$ dipole. The situation recalls the insolubility

[^77] are not included in Table II, have been prepared. ${ }^{8}$
of poly(formaldehyde) (4) in water, which appears to be anomalous in that poly(ethylene oxide) (5) is readily soluble. Superficially, 4 should be more soluble

since it has the higher oxygen content. However, the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ dipoles in 4 are all in the same direction, resulting in powerful intermolecular attractive forces, whereas these forces are weaker in 5 because of its alternating opposed dipoles. Individual molecules of 5 are more readily hydrated and pulled into aqueous solution from the surfaces of polymer particles. Steinsträsser's results ${ }^{9}$ for the $\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ end group in terminally substituted phenyl p-benzoyloxybenzoates (6) agree with ours in the 1 system. For $6, \mathrm{R}^{\prime}=n-\mathrm{Bu}$,

6
$\mathrm{R}=$ alkoxy, he found that the nematic ranges are $\mathrm{R}=n-\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}, 91-172^{\circ} ; \mathrm{R}=\mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 99-$ $170^{\circ} ; \mathrm{R}=\mathrm{MeO}, 107-235^{\circ} ; \mathrm{R}=n-\mathrm{BuO}, 113-212^{\circ}$; i.e., the $\mathrm{EtOCH} \mathrm{CH}_{2} \mathrm{O}$ ester melts well below the $n-\mathrm{BuO}$ ester (only 8° above the $n-\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}$ ester), and its $\mathrm{N}-\mathrm{I}$ temperature is the lowest of the four. Working with Schiff bases, Dietrich and Steiger ${ }^{12}$ have also observed nematic mesophase destabilization on replacement of $-\mathrm{CH}_{2}$ - by - O - in n-alkoxy substituents, and have drawn similar conclusions relating the effect to intermolecular forces.

Of the terminal substituents in Table II, long-chain alkoxy groups are most effective in lowering the melting point, while $\mathrm{CN}, \mathrm{NO}_{2}, \mathrm{COOMe}$, and Br are most effective in raising it. The highest N-I temperatures are produced by $\mathrm{CN}, \mathrm{COOMe}, \mathrm{MeO}$, and COOEt, the lowest by COOBu, cyclohexoxy, and i-BuO. Unsymmetrical di- n-alkoxy esters ${ }^{8}$ are the lowest melting $\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}-\mathrm{OC}_{8} \mathrm{H}_{17}, \mathrm{mp} 106^{\circ} ; \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}-\mathrm{OC}_{7} \mathrm{H}_{15}, \mathrm{mp} 108^{\circ}\right)$ and have the broadest nematic ranges ($\mathrm{MeO}-\mathrm{OBu}$, $134-266^{\circ}$; EtO-OBu, $150-270^{\circ}$) of the type 1 compounds that have been described to date. However, we are certain that terminal n-alkyl groups ${ }^{9,12-20}$ and methyl ${ }^{7}, 18,19$ or chloro ${ }^{20}$ substituents on the phenylene rings would provide still lower melting points
(12) H. J. Dietrich and E. L. Steiger, Mol. Cryst. Liq. Cryst., 16, 263 (1972).
(13) (a) H. Kelker and B. Scheurle, A ngew. Chem., Int. Ed. Engl., 8, 884 (1969); (b) H. Kelker, B. Scheurle, R. Hatz, and W. Bartach, ibid., 9, 982 (1970).
(14) R. Steinsträsser and L. Pohl, Tetrahedron Lett., 1921 (1971).
(15) D. L. Fishel and Y. Y. Hsu, Chem. Commun., 1557 (1971).
(16) J. Malthete, M. Leclercq, J. Gabard, J. Billard, and J. Jacques, C. R. Acad. Sci., Paris, Ser. C, 273, 265 (1971).
(17) W. R. Young, A. Aviram, and R. J. Cox, Angew. Chem., Int. Ed. Engl., 10, 410 (1971); J. Amer. Chem. Soc., 94, 3976 (1972).
(18) W. R. Young, I. Haller, and D. C. Green, J. Org. Chem., 37, 3707 (1972).
(19) W. R. Young and D. C. Green, private communication.
(20) J. P. van Meter and B. H. Klanderman, Abstracta, 4th International Liquid Crystal Conference, Kent, Ohio, Aug 1972, No. 161.
without destroying nematic mesomorphism in consideration of data reported for other molecular systems.

It is pertinent to compare the effects of end group variation on nematic behavior in type 1 esters with those in the closely related diphenyl terephthalates (7) and phenyl p-benzoyloxybenzoates (6). Dewar

and Goldberg ${ }^{68}$ compared the $\mathrm{N}-\mathrm{I}$ transition temperatures of five 1-7 ester pairs with identical end groups and found the value for the 1 ester to be invariably higher. Their explanation is that an electron-releasing end group increases the polarity of the $\mathrm{C}=\mathrm{O}$ group in 1 and hence stabilizes the mesophase; there is little effect on 7. On the other hand, an electronwithdrawing end group has little effect on 1, but destabilizes the mesophase in 7 by reducing the polarity of the $\mathrm{C}=\mathrm{O}$ group. Extension of the comparison to include five n-alkoxy end groups lends further support to this argument. The N-I temperature difference between 1 and 7 esters is $11-12^{\circ}$ for $n-\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}, n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}$, $n-\mathrm{BuO}$, and $n-\mathrm{PrO}$ (electron releasing), $20-23^{\circ}$ for $\mathrm{MeO}, \mathrm{EtO}$, and Cl (electron releasing but also electron withdrawing inductively), 25° for F (strongly electron withdrawing), and $54-63^{\circ}$ for NO_{2} and COOEt (powerfully electron withdrawing in 7 since the $\mathrm{N}=\mathrm{O}$ and $\mathrm{C}=0$ bonds are conjugated with the para oxygen, producing inordinately low N-I temperatures). Four of the type 6 esters described by Steinsträsser ${ }^{9}$ have the same end groups (n-alkoxy) as known esters of type $1 .{ }^{8}$ In each of these four directly comparable pairs, the $\mathrm{N}-\mathrm{I}$ transition temperature of the 1 ester is higher than that of the 6 ester. Again, this is consistent with enhancement of nematic mesophase stability by an electron-releasing end group that is in conjugation with a $\mathrm{C}=0$ group as suggested by Dewar and Goldberg. ${ }^{6 a}$ Both alkoxy substituents in 1 are so situated, whereas only one is in 6 . In both systems, the N-I temperature decreases with increasing end group length. The difference between N-I values for each ester pair also decreases in this order, suggesting that, as the end groups become longer, this effect becomes dominant over polarity variations in the centers of the molecules.

Correlations can also be demonstrated for type 1 esters vs. dissimilar systems. Dave and Dewar ${ }^{21}$ determined the effects on nematic properties of adding nonmesomorphic para-substituted Schiff bases to p azoxyanisole. From these data, they arranged the end groups of the Schiff bases in order of decreasing efficiency in promoting nematic mesomorphism. Gray ${ }^{22}$ compared this order with the effects of various terminal groups (X) on the N-I transition temperatures of two homologous Schiff base systems (8a and 8b).

[^78]When the groups common to these three system, type 7 esters, and the esters in Table II are examined together (Table III), a general correspondence of the

Table III
Efficiencies of End Groups in Promoting Nemitic Mesomorphism in Systems 1, 7, 8a, 8b and Schiff

Base-Azoxyanisole Mixtures

System	Ref	-Group efficiencies
1		$\begin{aligned} & \mathrm{MeO}>\mathrm{NO}_{2}>\mathrm{Br} \sim n-\mathrm{PrO} \sim \mathrm{Cl}>\mathrm{Me} \\ & \quad>n-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}>\mathrm{F}>\mathrm{H} \end{aligned}$
7	6a	$\mathrm{MeO}>\mathrm{NO}_{2}>\mathrm{Cl}>n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}^{a}>\mathrm{F}>\mathrm{H}$
8a	22	$\begin{aligned} & \mathrm{MeO}>\mathrm{NO}_{2}>n-\mathrm{PrO} \sim \mathrm{Cl} \sim \mathrm{Br}>\mathrm{Me} \\ & \quad>n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}>\mathrm{F}>\mathrm{H} \end{aligned}$
8b	22	$\mathrm{MeO}>n-\mathrm{PrO}>n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}>\mathrm{Me} \sim \mathrm{NO}_{2}{ }^{\text {b }}$
Mixtures	21	$\mathrm{NO}_{2}>\mathrm{MeO}>\mathrm{Cl}=\mathrm{Me}>\mathrm{Br} \sim \mathrm{H}$

${ }^{a}$ The $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}$ ester has not been reported, but this position for it is assured from interpolation between the known $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}$ and $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}$ esters. ${ }^{b}$ This position is questionable since the compound decomposed at the N-I transition temperature.
orders is evident and the agreement between systems 1 and 8 a is very good.

The use of data from a systematic structural modification study of onc nematic molecular system as a guide to other systems can be rewarding. Certainly, the discovery of Kelker, et al., ${ }^{13 \mathrm{a}}$ that the n-butyl
end group lowers the melting points of nematic Schiff bases and the demonstration by Arora, et al., ${ }^{7}$ that a methyl substituent on the central phenylene ring of type 1 esters has a similar effect have been applied to other systems with outstanding success. ${ }^{9,13 b, 14-19}$ The correlations presented in this paper are further evidence that this approach is highly worthwhile.

Registry No.-2 $(\mathrm{R}=\mathrm{H}), 2444-19-1 ; 2(\mathrm{R}=i-\mathrm{Pr})$, 40782-20-5; 2 ($\mathrm{R}=t$-Bu), 40782-21-6; 2 ($\mathrm{R}=$ cyclohexoxy), 40782-22-7; 2 ($\mathrm{R}=\mathrm{MeO}$), 28099-28-7; benzoyl chloride, 98-88-4; p-methylbenzoyl chloride, 874-60-2; p-methoxybenzoyl chloride, 100-07-2; p-isobutoxybenzoyl chloride, 40782-45-4; p hexyloxybenzoyl chloride, 39649-71-3; p-(2-ethoxyethoxy)benzoyl chloride, 40782-47-6; p-cyclohexoxybenzoyl chloride, 36823-91-3; p-bromobenzoyl chloride, 586-75-4; p-cyanobenzoyl chloride, 6068-72-0; p-nitrobenzoyl chloride, 122-04-3; p-chlorobenzoyl chloride, 122-01-0; p-butoxycarbonylbenzoyl chloride, 39853-28-6; p-tert-butylbenzoyl chloride, 1710-98-1; p-isopropylbenzoyl chloride, 21900-62-9; p-octyloxybenzoyl chloride, 40782-53-4; p-heptyloxybenzoyl chloride, 40782-54-5; p-fluorobenzoyl chloride, 403-43-0; p-propoxycarbonylbenzoyl chloride, 40782-56-7; p-pentyloxybenzoyl chloride, 36823-84-4; p-butoxybenzoyl chloride, 33863-86-4; p-propoxybenzoyl chloride, 40782-58-9; p-ethoxybenzoyl chloride, 16331-46-7; p-ethoxycarbonylbenzoyl chloride, 27111-45-1; p-methoxycarbonylbenzoyl chloride, $7377-26-6$; p-isobutoxybenzoic acid, 30762-00-6; p-cyclohexoxybenzoic acid, 139-61-7; p-(2-ethoxyethoxy)benzoic acid, 40782-64-7; ethyl p-hydroxybenzoate, 120-47-8; hydroquinone, 123-31-7.

The Reversible Addition of Hydroxide to Substituted Benzaldehydes

P. Greenzaid
Chemistry Department, Tel-Aviv University, Ramat Aviv, Israel

Received January 31, 1973

Abstract

The equilibrium constants determined for the addition of hydroxide ion to a series of benzaldehydes, monoand disubstituted in the meta and para positions, can be correlated with $\Sigma \sigma$, with a slope $\rho=2.24$. From this the stabilization energy of the carbonyl group of benzaldehyde relative to acetaldehyde can be calculated as 2.7 $\mathrm{kcal} / \mathrm{mol}$. For benzaldehydes substituted in one ortho position a linear relationship is observed between the equilibrium constants for addition and the $\mathrm{p} K_{\mathrm{a}}$ values of the analogous substituted benzoic acids.

Aliphatic aldehydes and some aliphatic ketones undergo a reversible hydration in neutral aqueous solutions to form the gem-diol. ${ }^{1}$ Aromatic aldehydes are not hydratcd to any appreciable extent, owing to the extra resonance stabilization.

However, in basic solutions, mono- and disubstituted benzaldchydes do undergo a reversible addition of hydroxide ion to form the ionized gem-diol. In the present work, cquilibrium constants for this addition were measured and are discussed for Scheme I, with correlations proposed for the various substituents.

Experimental Section

The substituted ben\%aldehydes were pure commercial products, recrystallized before use to a constant melting point. The methiodide of 4 -dimethylaminobenzaldehyde, prepared by refluxing the amine with methyl iodide, had $\mathrm{mp} 1.58^{\circ}$ (lit. ${ }^{2} \mathrm{mp}$ $156-157^{\circ}$).

Uv spectra were recorded on a Cary 17 spectrophotometer, and the pmr spectra on a Jeol C-60HL instrument at 30°; chemical shifts in parts per million are noted downfield relative to the sodium salt of 3 -(trimethylsilyl)propanesulfonate.

The amount of hydroxide addition was followed by uv spectroscopy at 25°, by observing the instant decrease of the aromatic

[^79]carbonyl band on addition of base. The spectra were recorded at various concentrations of base until the intensity decreased to a constant value, with formation of a new band. For all the benzaldehydes substituted with one or two chlorines only, the final absorption approached or was extrapolated to zero. For the unsubstituted and $2-\mathrm{CH}_{3}$ benzaldehydes, only $10-20 \%$ hydroxide addition was determined, and the absorption of the gem-diol form was taken as zero. The ratio of hydroxide adduct to carbonyl compound is shown in eq 1 , where OD_{0} is the carbonyl

absorption in neutral solution and $\mathrm{OD}_{\mathrm{OH}}$ is the absorption at some hydroxide concentration. These values were plotted vs. the hydroxide ion concentration, the slope of the line being K_{OB}, with intercepts through the origin. As shown, some of the carbonyl compounds are hydrated to a small extent in neutral solution, and $\mathrm{Ol} D_{0}$ is the carbonyl absorption in the presence of of the gem-diol. However, the same procedure for K_{OH} is valid.
The amount of initial hydration as shown directly by nmr for 4 -trimethylammonium benzaldehyde iodide and indirectly for 3-nitrobenzaldehyde (see Results and Discussion) is not more than 10%. As small amounts of gem-diol are difficult to deter-

Table I
Equilibrium Constant Determinations

Registry no.	Substituted benzaldehyde	$\lambda_{\text {max }}{ }^{\text {a }}$ ($)^{\text {b }}$	Range of $\left[\mathrm{OH}^{-}\right]$(c)	$\mathrm{KOH}^{\text {d }}$
100-52-7	$3,4-\mathrm{H}_{2}$	$250(13,900)$	0.36-1.0 (3)	0.18
104-88-1	4-CI	260 (17,900)	0.20-1.3 (4)	0.47
587-04-2	$3-\mathrm{Cl}$	$249(10,800)$	0.13-0.80 (5)	1.13
6287-38-3	$3,4-\mathrm{Cl}_{2}$	$260(12,800)$	0.03-0.90 (7)	2.5
24964-64-5	$3-\mathrm{CN}$	$245(9,900)$	0.03-0.50 (6)	4.8
7541-76-6	$4-\mathrm{N}+\mathrm{Me}_{3}$	$230(22,000)$	0.01-0.33 (6)	7.6
10203-08-4	$3,5-\mathrm{Cl}_{2}$	$252(8,250)$	0.03-0.30 (6)	7.7
99-61-6	$3-\mathrm{NO}_{2}$	233 (19,300)	0.03-0.50 (7)	8.3
555-16-8	$4-\mathrm{NO}_{2}$	$268(11,450)$	0.017-0.30 (6)	13.3
16588-34-4	$3-\mathrm{NO}_{2}-4-\mathrm{Cl}$	$245(19,600)$	0.005-0.08 (7)	21
529-20-4	$2-\mathrm{CH}_{3}$	$254(7,500)$	0.65-1.3 (3)	0.095
89-98-5	$2-\mathrm{Cl}$	$253(11,400)$	0.067-1.0 (7)	2.6
874-42-0	2,4-Cl ${ }_{2}$	$264(12,100)$	0.03-0.50 (9)	6.0
83-38-5	2,6- Cl_{2}	$255(5,800)$	0.017-0.50 (7)	10.8
552-89-6	$2-\mathrm{NO}_{2}$	225 (12,600)	0.01-0.30 (6)	15
6361-22-4	$2-\mathrm{Cl}-6-\mathrm{NO}_{2}$	$260^{\circ}(5,250)$	0.01-0.06 (5)	36
6361-21-3	$2-\mathrm{Cl}-5-\mathrm{NO}_{2}$	240 (9,800)	0.003-0.03 (4)	62
528-75-6	2,4-($\left.\mathrm{NO}_{2}\right)_{2}$	246 (14,500)	0.0008-0.02 (4)	215

${ }^{a}$ Wavelengths at which absorption was studied. ${ }^{b}$ Extinction coefficients are from one sample weighing. ${ }^{c}$ Number of points on plot. ${ }^{d} K_{\mathrm{OH}}=\left[>\mathrm{C}(\mathrm{OH}) \mathrm{O}^{-}\right] /[>\mathrm{C}=\mathrm{O}]\left[\mathrm{OH}^{-}\right]$at 25°. \cdot Shoulder.
mine accurately by nmr or uv, ${ }^{3}$ it can be assumed that other aldehydes with electron-withdrawing substituents have similar small degrees of hydration. For the 2,6 -dichloro- and 2 -chloro6 -nitrobenzaldehydes, the extinction coefficient is appreciably lower than for the other aldehydes and thus the possibility of hydration arises. It was found, however, that the extinction coefficient of these compounds in organic solvents is even smaller than in water. This served as evidence against hydration in neutral solutions. The extinction coefficients and band shapes for 2,4-dinitrobenzaldehyde were the same in water and the organic solvents acetonitrile, dioxane, and chloroform, and the possibility of some hydration exists.

The addition of base was reversible and by neutralizing the basic solutions, the original spectra were obtained.
Changes in the spectra in basic solutions due to other reactions were checked for, and did not interfere during the time of the experiment.

At base concentrations above 1.5 M , the ratio of [ionized gemdiol]/[carbonyl] was no longer linear with base, presumably owing to a change in the activity of water in these concentrated solutions, where the proper acidity functions should be used.
The ionic strength was not kept constant in the determination of $K_{\text {or }}$. In a few cases $K_{\text {or }}$ was measured at $\mu 1.0$ with KCl . The values were $10-15 \%$ lower than those presented in Table I. It was therefore assumed that the salt effect on the equilibria would not be of such magnitude as to affect the logarithmic correlations.

Results

In Table I are listed the substituted benzaldehydes studied and the experimental results.

At room temperature and in the range of base concentrations studied ($0.01-1.3 \mathrm{M}$), no other reactions, such as the Cannizzaro disproportionation or the cleavage of 2,6-dihalobenzaldehydes to 1,3-dihalobenzenes and formate ion, occur. The latter reaction was studied by Bunnett, et al., ${ }^{4}$ who observed the reversible addition of hydroxide.

It has been shown in nmr studies that the aldehydic protons shift to higher fields when the carbonyl group adds water to form the gem-diol. ${ }^{1,5}$ The difficulty in the present case was the limited solubility of the sub-

[^80]stituted benzaldehydes in water, usually not sufficient for running the nmr spectra. An exception was the soluble 4 -trimethylammoniobenzaldehyde iodide. A 0.50 M solution in $\mathrm{D}_{2} \mathrm{O}$ showed, in addition to the expected three lines at $\delta 10.22,8.24$, and 3.84 , a small peak at $\delta 6.2$ and a small structured line 0.34 ppm upfield from the aromatic line. ${ }^{6}$ These small lines were not observed in DMSO- d_{6} as solvent, and were ascribed to the protons of the gem-diol compound. Integration and comparison of the aldehydic hydrogen and the hydrogen bound to the gem-diol group at $\delta 10.22$ and 6.2 , respectively, as well as the two aromatic lines at 8.24 and 7.90 ppm , showed that approximately 10% of the compound was hydrated in $\mathrm{D}_{2} \mathrm{O}$ solution. As hydroxide was added to the solution, the aldehyde peak as well as the gem-diol hydrogen both shifted and broadened owing to a fast exchange between the species.

In concentrated hydroxide solution the solubilities of the substituted benzaldehydes increased owing to the ionization of the gem-diol formed. The nmr spectrum of 2-nitrobenzaldehyde in $1 M$ base had no peak in the range of aldehydic protons. However, a broad line appeared at $\delta 6.5 \mathrm{ppm}$, ascribed to the hydrogen bound to the ionized gem-diol group.

Discussion

The addition of hydroxide to the substituted benzaldehydes can be viewed as a reversible attack of water which is favored in basic solutions owing to the ionization of the gem-diol formed. In Scheme I and eq 2, it is shown that K_{OH} is a composite of $K_{\mathrm{H}_{2} \mathrm{O}}$ and K_{a}, where K_{OH} and $K_{\mathrm{H}_{2} \mathrm{O}}$ are defined as association constants and K_{a} and K_{w} as dissociation constants of the acids (and include the concentration of water).

Correlation of the Meta- and Para-Substituted Benzaldehydes.-For the series of benzaldehydes, mono- and disubstituted in the 3 and 4 positions, there exists a good correlation with $\Sigma \sigma$, the sum of the aro-

[^81]

Figure 1.-Plot of $\log K_{\mathrm{OH}}$ for hydroxide addition to substituted benzaldehydes vs. $\Sigma \sigma$, the sum of the aromatic substituent constants.

matic substituent constants ${ }^{7}$ (Figure 1). The slope of the plot $\left(\rho_{\mathrm{OH}}\right)$ is 2.24 with a correlation coefficient of 0.982 .

From eq 2

$$
\begin{equation*}
\rho_{\mathrm{OH}}=\rho_{\mathrm{H}_{2} \mathrm{O}}+\rho_{K_{\mathrm{n}}} \tag{3}
\end{equation*}
$$

It was shown that the $\mathrm{p} K_{\mathrm{a}}$ values of the gem-diols of a series of substituted trifluoroacetophenones are correlated with σ values 8 with $\rho=1.11$. Taking $\rho_{K_{\mathrm{a}}}=$ 1.1 for the dissociation of the gem-diols of substituted benzaldehydes, from eq $3, \rho_{\mathrm{H}_{2} \mathrm{O}}=1.1$ for the hydration equilibria. Relative to the dissociation of carboxylic acids ($\rho=1.0$), these values are similar to those found for aliphatic compounds where $\rho^{*}{ }_{R_{\mathrm{a}}}=1.32,{ }^{9} \rho^{*}{ }_{\mathrm{H}_{2} \mathrm{O}}=$ $1.70,{ }^{5}$ and for the acid dissociation ${ }^{10} \rho^{*}=1.62$.
$\mathrm{p} K_{\mathrm{a}}$ and $K_{\mathrm{H}_{2} \mathrm{O}}$ Values. -The $\mathrm{p} K_{\mathrm{a}}$ values for the substituted benzaldehyde hydrates can be evaluated from those determined for the substituted trifluoroacetophenone hydrates. ${ }^{8}$ Of interest here are the reported values of 9.2 for the 3 -nitro derivative and 10.0 for the unsubstituted compound. Using $\rho^{*}{ }_{K_{\mathrm{a}}}=1.32$ and in-

[^82](10) G. B. Barlin and D. D. Perrin, Quart. Rev., Chem. Soc., 20, 75 (1966).

Figure 2.-Plot of $\log K_{\text {OH }}$ for hydroxide addition to 2 -substituted benzaldehydes $v s$. the $\mathrm{p} K_{\mathrm{a}}$ values ${ }^{16}$ of the analogous benzoic acids.
serting σ_{H}^{*} for $\sigma^{*}{ }_{\mathrm{CF}_{3}}$, the corresponding $\mathrm{p} K_{\mathrm{a}}$'s for the aldehyde hydrates can be derived: for the gem-diol of 3-nitrobenzaldehyde, $\mathrm{p} K_{\mathrm{a}}=12.0$, and for the unsubstituted benzaldehyde hydrate, $\mathrm{p} K_{\mathrm{a}}=12.8$.

From eq 2, using the calculated $\mathrm{p} K_{\mathrm{a}}$ and the measured K_{OH} values for 3 -nitrobenzaldehyde, the value of $K_{\mathrm{H}_{2} \mathrm{O}}$ is 0.08 . Therefore this compound is slightly hydrated in neutral solution, although less than 10%. For the unsubstituted benzaldehyde $K_{\mathrm{H}_{2} \mathrm{O}}$ is calculated to be 1.1×10^{-2}.

Resonance Stabilization of the Aromatic Carbonyl. From the correlation of $K_{\mathrm{H}_{2} \mathrm{O}}$ for the aliphatic compounds, ${ }^{5}$ using $\sigma^{*}=0.60$ for the phenyl group, ${ }^{11}$ the calculated equilibrium constant for hydration of benzaldehyde equals 11.2 . This value is higher than that calculated previously, as only the inductive effect of the benzene ring is taken into account without the conjugative interaction with the carbonyl group. In terms of free energy, this means that the additional stabilization of the carbonyl of benzaldehyde is $4.1 \mathrm{kcal} / \mathrm{mol}$, relative to an aliphatic aldehyde with a group of similar inductive effect as the phenyl ring (assuming no extrastabilization of the phenyl ring in the addition product). Relative to acetaldehyde, this stabilization amounts to $2.7 \mathrm{kcal} / \mathrm{mol}$.

In a similar fashion, from the addition of other nucleophiles, Fersht ${ }^{12}$ estimated the extra stabilization of the aromatic carbonyl in benzaldehyde compared to acetaldehyde as $4 \pm 0.4 \mathrm{kcal} / \mathrm{mol}$. The classical method of evaluating the extra resonance energy of the aromatic carbonyl is from bond dissociation energies and Pauling's calculated value ${ }^{13}$ is $4 \mathrm{kcal} / \mathrm{mol}$. However, the relative error in such a treatment is large, as large amounts of energy are subtracted to give a small difference.
(11) (a) R. W. Taft, Jr., in "Steric Effects in Organic Chemistry." M. S. Newman, Ed., Wiley, New York, N. Y., 1956, Chapter 13; (b) S. Takahashi, L. A. Cohen, H. K. Miller, and E. G. Peake, J. Org. Chem., 36, 1205 (1971).
(12) A. R. Fersht, J. Amer. Chem. Soc., 99, 3514 (1971).
(13) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithace, N. Y., 1960, p 198.

Ortho-Substituted Benzaldehydes.-For benzaldehydes substituted in the ortho position, a similar correlation could not be shown as there is no reliable set of ortho-substituent constants. ${ }^{14,15}$ A correlation does exist, however, for values of K_{OH} for six benzaldehydes substituted in only one of the ortho positions, with the $\mathrm{p} K_{\mathrm{a}}$ values ${ }^{16}$ for the analogous substituted benzoic acids with a slope of -1.36 and correlation coefficient 0.984 (Figure 2). This correlation is limited to compounds with only one ortho position substituted, as the

[^83]two compounds with substitution at both ortho positions deviate markedly. 2,4,6-Trimethylbenzaldehyde also deviates from the plot, as there was no indication of addition up to $1 M$ base, while the $\mathrm{p} K_{\mathrm{a}}$ value for the corresponding acid is 3.44 . A similar deviation of diortho substitution was noted when correlating the rate constants for the attack of diphenyldiazomethane on ortho-substituted benzoic acids in ethanol, with the $\mathrm{p} K_{\mathrm{a}}$'s of the acids. ${ }^{17}$

Acknowledgment.-Discussions with W. P. Jencks and R. P. Bell are gratefully acknowledged.
(17) N. B. Chapman, J. Shorter, and J. H. P. Utley. J. Chem. Soc., 1824 (1962).

Free-Radical Addition of Iodoperfluoroalkanes to Terminal Alkadienes. Relative Reactivity as a Function of Chain Length and Reaction Conditions ${ }^{1,2}$

Neal O. Brace
Wheaton College, Wheaton, Illinois 60187

Received February 28, 1973

Abstract

Terminal alkadienes, $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}(n=1-4,1$ to 4$)$, gave mono- and bisadducts from iodoperfluoroalkanes ($\mathrm{R}_{\mathrm{F}} \mathrm{I}$) in high yield. 1,6-Heptadiene (3) was unusual in preferentially cyclizing under conditions which favored linear adducts from the other dienes. For 3 the ratio of linear to cyclic adducts was dependent on $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ concentration, as predicted from kinetic analysis of the reaction scheme. Relative reactivities on an equivalent double-bond basis for alkadienes against either 1 -hexene or 1 -heptene were the following: $1,0.935 ; 2$, $0.805 ; 3,1.08-1.42$, depending on reaction conditions; $4,0.945$. Thus, only 3 reacted significantly faster than an alkene on the basis of available reaction sites, and this appears to be related to cyclization of 3 . The overall results are interpreted as being dependent on radical intermediate conformations. The absence of significant amounts of cyclization products from 2 or 4 , or of isomeric adducts of the structure $\mathrm{ICH}_{2} \mathrm{CHR}_{\mathrm{F}}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}$ ($n=1-4$), has been confirmed for azonitrile-initiated reactions.

In previous work ${ }^{3-5}$ it was found that 1,6 -heptadiene (3) and substituted 1,6-heptadienes cyclized to five-membered ring compounds during the addition of free radicals from perfluoroalkyl iodides ($\mathrm{R}_{\mathrm{F}} \mathrm{I}$), carbon tetrachloride, chloroform, and the like. 1,5Hexadiene (2) or 1,7-octadiene (4) did not cyclize under free-radical conditions, however, but gave openchain adducts in excellent yield. By contrast, $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ and 1,3-butadiene reacted poorly, probably because an unstable product was formed. ${ }^{6}$ (Styrene gave an adduct of analogous structure which also was exceedingly sensitive to heat, light, and air. $)^{7,8}$ As part of a continuing study of $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ reactions it seemed worthwhile to determine the relative reactivity of terminal alkadienes, and to look more carefully into the matter of their propensity to cyclize. ${ }^{9}$ Quantitative comparison with norbornadiene, which also cyclized with great ease, ${ }^{10}$ was desired. It was felt that these data would shed some further light on the nature of these interesting free-radical processes.

[^84]
Results

Reactions of $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ with alkadienes 1-4 are outlined in Chart I. The yield of monoadduct A, bisadduct

Chart I
Reaction of R R with Dienes

$\mathrm{C}_{\mathrm{a}, \mathrm{b}}$

$\mathrm{C}_{\mathrm{a}, \mathrm{b}}(n=3)$

B.

B
B, or cis and trans cyclic adducts $\mathrm{C}_{\mathrm{a}, \mathrm{b}}$ varied with reaction conditions.

Figure 1.-Dependence of $\mathrm{A} / \mathrm{C}_{\mathrm{a}, \mathrm{b}}$ on $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ concentration: Δ, $\mathrm{mol} / \mathrm{I}$. of $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{I}$ and $3 ; \mathrm{O}, 5,3$, and 6 (see Table I.)

Kinetic analysis of the reaction scheme given in Chart I, as employed by Carlsson and Ingold ${ }^{11}$ or by Kochi and Powers ${ }^{12}$ in somewhat analogous systems, predicts that the A to $\mathrm{C}_{\mathrm{a}, \mathrm{b}}$ ratio should be proportional to R_{FI} concentration.

$$
\frac{\mathrm{A}}{\mathrm{C}_{\mathrm{a}, \mathrm{~b}}}=\frac{k_{\mathrm{d} 1}}{k_{\mathrm{e}}}\left[\mathrm{R}_{\mathrm{F}} \mathrm{I}\right]
$$

The available data are consistent with this prediction, which assumes that $k_{\mathrm{d} 1}$ and $k_{\mathrm{d} 2}$ are of comparable value. ${ }^{13}$ The A to $C_{a, b}$ ratio from reaction of $R_{F} I$ with 1,6 -heptadiene (3) at 70° (extrapolated to zero time) in seven sets of experiments are recorded in Table I and plotted in Figure 1. Reactions were all initiated

Table I
Effect of R_{F} Concentration on $\mathrm{A} / \mathrm{C}_{\mathrm{a}, \mathrm{b}} \mathrm{at} 70^{\circ}$

\sim_{n}^{Cl}	$\left.\mathrm{CF}_{2}\right)_{\mathrm{n}} \mathrm{I}-$ $\mathrm{mol} / 1$.	Mol of $A / C_{a, b}$	Source of data
2	$2.29{ }^{\text {a }}$	1.3	Ref 4
2	$3.50{ }^{\text {a }}$	1.7	Ref 4
2	$4.44{ }^{\text {a }}$	2.7	Ref 4
3	0.140	0.18	Table VII, runs 6-8
3	1.32	0.70	Table VII, runs 1-4
3	1.47	0.92	Table X, part 3
3	3.21	1.9	Table X, part 1

by azobis-2-methylpropionitrile (ABN), but under different conditions. The data for runs using $\mathrm{CF}_{3}-$ $\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{I}$ (5) were obtained in competitive experiments in which 1-hexene (6) was also present; details are given below.
A second pathway to $\mathrm{C}_{\mathrm{a}, \mathrm{b}}$ also exists, as a slow isomerization of A to $C_{a, b}$ occurs during reaction and sub-

[^85]

Figure 2.-Reaction of 1-iodoperfluoropropane and 3 at 70° (ref 4): $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{I}, 5.00 \mathrm{mmol} ; 3,10.00 \mathrm{mmol} ; \mathrm{ABN}, 0.100$ mmol. ∇, trans $\mathrm{C}_{\mathrm{b}} ; O$, monoadduct $\mathrm{A} ; \diamond$, cis C_{a}; \square, bis adduct B .
sequent to the addition of $\mathrm{R}_{\mathrm{F}} \mathrm{I} .{ }^{4}$ This can be seen from Figure 2. Under these reaction conditions (with excess diene) little B was formed, but $\mathrm{C}_{\mathrm{a}, \mathrm{b}}$ continued to increase after all the $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ was gone (41% of $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ had reacted in 1 hr and 99.7% in 4 hr). It is significant that the trans isomer of C was formed about five or six times faster than cis C. Isomerization of A to $\mathrm{C}_{\mathrm{a}, \mathrm{b}}$ and radical rearrangements of related compounds have been independently observed. ${ }^{5}$

It was interesting to observe the effect of $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ /diene ratio on mono- and bisadducts from reaction of 5 with these alkadienes. As shown in Table II, the

Table II
Effect of Reactant Ratio on Mono- and Bisadducts from $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{I}$ (5) and Alkadienes ${ }^{a}$

Diene	Mol of $5 /$ diene	Convn of diene or $5 . \%$	Mol of A/B
1	0.250	86	12.7
	4.00	76	0.410
2	0.250	76	11.5
	2.00^{b}	96	0.60^{b}
3	2.50	95	0.25
	0.250	81	c
4	2.00	83	1.54^{d}
	0.250	82	16.1
	0.500	44	10.1
	2.00^{b}	97	0.67^{b}
	2.10	95	0.672

a All reactions were done at 70.0° in a sealed tube, using ABN as initiator; see Table III for details. ${ }^{b}$ See ref 4 . ${ }^{c}$ Reaction gave 1.5% of A , less than 2% of B , and 80% of $\mathrm{C}_{\mathrm{a}, \mathrm{b}}$. ${ }^{d}$ There was formed also 35.2% of $\mathrm{C}_{\mathrm{a}, \mathrm{b}}$.
highest A/B ratios were found with 1,2 , and 4 when an excess of diene was present; with 3, however, cyclization to $\mathrm{C}_{\mathrm{a}, \mathrm{b}}$ was the predominant reaction. Even in the presence of an excess of R_{F} much of 3 cyclized, while the other dienes gave mostly B. As previously reported ${ }^{4}$ for 2 and 4 , it is now found that also with 1 linear adducts are obtained under all conditions. Careful examination of product mixtures from all these dienes by gas-liquid partition chromatography (glpc) showed two or three impurities at the $1-2 \%$ level. In reaction mixtures of 4 there were found two additional products which appeared at the retention times anticipated for cyclic isomers.

Table III
 Preparation of Adducts from $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{I}$ (5) and Terminal Alkadienes at $70^{\circ} a$

Diene	Mol	5/diene	ABN, mmol	Time, hr	A		C	- Physical constants			
						$\begin{gathered} \text {-Yield, \% } \\ \text { B } \end{gathered}$		${\mathrm{Bp},{ }^{\circ} \mathrm{C}(\mathrm{mm})}^{\mathrm{A}}$	n^{25} D	$\overbrace{\mathrm{Bp},{ }^{\circ} \mathrm{C}(\mathrm{mm})}$	$n^{25^{5}}$
1	0.100	0.250	2.00	16	74	12		68 (11)	1.3967	82 (0.10)	1.4050
1	0.0250	4.99	1.00	8.5	22.1	53.5					
2	0.200	0.250	1.82	9.5	65	$11^{\text {b }}$		85 (12)	1.4010	79 (0.30)	1.4350
2	0.0200	2.50	2.00	6	20	79.2					
3	0.200	0.250	0.92	4	1	(2)	80°	90 (8)	1.4065		
3	0.100	2.00	0.92	1	28.9	18.8	35.2			108 (0.25)	1.4091
3	0.0250	2.00	0.50	$16^{\text {d }}$	30.8	8.06	34.1				
4	0.200	0.250	1.00	18	72	(10)		57 (0.25)	1.4090		
4	0.200	0.500	2.00	16	38	(7.6)					
$4{ }^{\text {e }}$	0.0500	2.00	1.00	18	21	76		$50(0.25)^{\circ}$	1.4080°	115 (0.20) ${ }^{\text {e }}$	1.4100°
4	0.105	2.10	1.50	9	38.2	52.9					

a Satisfactory analytical data ($\pm 0.4 \%$ for C, H, F, or I) were reported for all new compounds listed in the table. b Moles times two since 2 mol of 5 used, limiting reactant. ${ }^{c} \mathrm{C}(n=3), \mathrm{bp} 69^{\circ}(0.75 \mathrm{~mm}), n^{25} \mathrm{D} 1.4186$. ${ }^{d}$ Reaction temperature was 130°. e Reference 4 .

The amount was too small, however, to warrant trapping for identification. The other isomers are probably of the type $\mathrm{ICH}_{2} \mathrm{CHR}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2} \quad(n=$ 1,2 , or 4), as previously indicated for the addition of $\mathrm{CF}_{3} \mathrm{I}$ to 1-heptene ${ }^{15}$ (7) and now confirmed by others ${ }^{16,17}$ for $R_{F} I$ additions in similar cases. The amount of these isomers varied with reaction conditions, as it has been shown ${ }^{17}$ that the linear adduct is favored by kinetic control. Rearrangement to the branched isomer has been demonstrated in one case. ${ }^{17}$
Details for the preparation of adducts, their physical properties, and analytical data are given in Tables III and IV. Characteristic infrared and nmr spectral properties are listed in the Experimental Section. The nmr spectrum of $\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{CH}_{2} \mathrm{CHI}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~A}(n=$ 3) is presented as Figure $3 ;{ }^{2}$ significant features of the linear adduct structure are clearly evident from the spectrum. The nmr spectrum of the 1-hexene adduct $\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{CH}_{2} \mathrm{CHI}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$ appears as Figure 4. ${ }^{2}$ Spectral evidence is in full accord with the postulated structure. In both instances proton resonances for CHI at $\delta 4.4$ and for $\mathrm{R}_{\mathrm{F}} \mathrm{CH}_{2}$ at $\delta 2.8$ have the correct areas and splitting patterns.

Relative Reactivities.-A reference olefin, 1-hexene (6) or 1-heptene (7), competing for 5 with another unsaturated compound, gave valid results when the reaction was conducted and the products analyzed as previously described. ${ }^{15}$ Two different reference olefins were required to avoid overlapping of peaks in glpc analysis of 1-4. This technique was recently applied to the determination of relative reactivities of a series of cyclic olefins. ${ }^{18}$ It was not sufficient merely to follow the disappearance of olefin, as a small change in concentration was difficult to determine accurately; and as shown above, several products may be formed from the same starting material. Because of the disparate nature of the reactants and products, correction factors varied with composition of a mixture. Factors were therefore determined for more than one mixture of 3 , and in every case for a standard mixture similar in composition to unknown samples. Quanti-

[^86]tative aspects of radical additions to olefins have been critically reviewed by Cadogan and Sadler. ${ }^{19}$

The method was applied to reaction of 5 with several pairs of alkenes (Tables V and VI). ${ }^{2}$ 1-Hexene (6) against 1 -heptene (7) gave initial and final reactivity ratios of $6 / 7$ of 1.03 ± 0.02. The reactivity ratio for norbornene (8) against 7 was redetermined using the technique of this study; the two values (1.0^{15} and 1.00) were identical. Norbornadiene (9) against 7 gave $9 / 7$ of 1.83 ± 0.01. The diene series $1-4$ was compared against either 6 or 7 for different reaction times and reactant ratios, particularly with 2 and 3 to ascertain what effect these variables might have on reactivity ratios. These data are collected in Tables VI^{2} and VII, and summarized in Table VIII. Results for 3 are given separately because of their unique nature.

Discussion

Chart I summarizes the various reaction steps to be discussed. Termination reactions of the usual kind are assumed to account for the radical chain. These would result in the coupling of R_{F} radicals, of $A \cdot, B \cdot$, and $C_{B, b} \cdot$ radicals and probably in allylic termination reactions as previously observed. ${ }^{4,10,15}$

Relative reactivity \bar{P} of two alkenes toward addition of R_{F} radicals is given by the usual equation ${ }^{19,20}$

$$
\bar{P}=\frac{\log \left(\left[\mathrm{M}_{1}\right]_{o} /\left[\mathrm{M}_{1}\right]_{\mathrm{t}}\right)}{\log \left(\left[\mathrm{M}_{2}\right]_{o} /\left[\mathrm{M}_{2}\right]_{\mathrm{t}}\right)}=\frac{k_{\mathrm{a} 1}}{k_{\mathrm{a} 2}}
$$

for competitive reactions, where $\left[M_{1}\right]_{0}$ and $\left[M_{1}\right]_{f}$ are initial and final concentrations of olefin M_{1}, and $\left[\mathrm{M}_{2}\right]_{0}$ and $\left[\mathrm{M}_{2}\right]_{f}$ are initial and final concentrations of M_{2}. It was advantageous, for analytical reasons, to substitute for $\left[M_{1}\right]_{f}$ the equivalent quantity ($\left[M_{1}\right]_{0}$ - [products]) in determining \bar{P}, as has been done by others. ${ }^{17,19}$

As summarized in Table VIII, 1,5-hexadiene appears to be significantly less reactive than the other dienes, but the difference in the remaining compounds is not great. The variation of adduct formation with time (extent of conversion) shown in Figure 2 was observed in reactions of 3 with $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ at different reactant ratios. The reactivity ratio, however, varied only slightly as a function of $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ conversion or $\mathrm{A} / \mathrm{C}_{\mathrm{a}, \mathrm{b}}$

[^87]Table VII
Competition Reactions of $\mathrm{CF}_{8} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{I}$ (5) with 1,6-Heptadiene and 1-Hexene

Run no.	Time, hr	5, initial mmol	Alkene ${ }_{1}$					Alkene ${ }^{2}$			A	k_{1}
				-m			$\begin{gathered} \text { Convn } \% \\ \text { of } 5 \end{gathered}$	-m		$\begin{gathered} \text { Convn } \% \\ \text { of } 5 \end{gathered}$		
			Reactant	A	B	C		Reactant	Product		$\mathrm{C}_{\mathrm{a}, \mathrm{b}}$	
1	0.083	4.8800^{a}	10.025	0.2133		0.3386	11.31	9.944	0.2676	5.48	0.630	2.145
2	0.167	4.8800	10.025	0.9628	0.0382	1.8248	57.90	9.944	1.4124	28.94	0.5488	2.162
3	0.33	4.8800	10.025	0.6900	0.0384	1.601	47.70	9.944	1.173	24.04	0.4596	2.105
4	1.00	4.8800	10.025	0.7197	0.0589	2.238	61.80	9.944	1.525	31.24	0.3479	2.196
5	1.00	4.8800	10.025	0.6731	0.0473	2.370	63.30	9.944	1.508	30.90	0.3090	2.185
											Mean	2.159
												0.040
6	1.16	$1.2236{ }^{\text {b }}$	10.1466	0.0793		0.4861	45.76	10.379	0.2657	21.71	0.1520	2.359
7	4.16	1.2236	10.1466	0.0509		0.6826	59.95	10.379	0.2713	22.17	0.07457	2.836
8	7.00	1.2236	10.1466	0.0504		0.6392	52.24	10.379	0.2306	18.85	0.0788	$3.134{ }^{\text {c }}$

${ }^{a}\left[R_{F} \mathrm{I}\right]=1.32 . \quad{ }^{\circ}\left[\mathrm{R}_{\mathrm{F}} \mathrm{I}\right]=0.140 . \quad{ }^{c}$ Owing to a decrease in adducts from both alkenes, this value is uncertain. See, however, Table X for a similar value from another experiment.

Table VIII		
	Relative Reactivity of Alkenes and	
	Dienes with $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{I}$ (5) at 70°	
Olefin pair	\bar{P}	$\bar{P} /$
$\mathbf{6 / 7}$	1.03 ± 0.02	double bonds
$8 / 7$	0.996 ± 0.005	1.03 ± 0.02
$9 / 7$	1.83 ± 0.01	0.996 ± 0.005
$1 / 7$	1.87 ± 0.05	0.965 ± 0.01
$2 / 7$	1.61 ± 0.03	0.935 ± 0.05
$3 / 6$	2.16 ± 0.04^{a}	0.805 ± 0.03
$3 / 6$	2.84^{b}	1.08 ± 0.04^{a}
$4 / 6$	1.89 ± 0.01	1.42^{b}

${ }^{a}$ At moles of $5 / 3=0.4868$. ${ }^{b}$ At $5 / 3=0.1206$.
ratio (Table VII, runs $1-5$). At a low $5 / 3$ reactant ratio of 0.1206 which greatly increased cyclization, \bar{P} increased substantially to at least 2.84 (runs 6-8).

Reactivity ratio $\bar{P}_{\text {diene/alkene }}$ for a diene competing against an olefin should be twice as large as for an alkenc, since there is twice the probability that an R_{F} radical will attack a diene at the same concentration as an alkene.

The reactivity ratio on a per double bond basis for dienes $1-4$ and 9 shows that only 3 reacted significantly faster than the reference olefin. Models show that effective overlap of the adduct radical A. $(n=3)$ with the π electrons of the terminal double bond is quite possible in at least two staggered conformations. It secms significant that 3 reacted fastest under conditions where cyclization was enhanced. This may mean that rate of radical addition to 3 is increased by overlap to the π bond. While the amount of acccleration was not great, it was clearly present in 3 and not in 2 or in 4 . Indeed, it has been recently shown that the i-hexenyl radical generated at low temperature readily rearranges to the cyclopentylmethyl radical ${ }^{21-24}$ and that the esr spectrum of the 5hexenyl radical exhibits large temperature-dependent changes. ${ }^{23}$ The broadening of the β-proton triplets is attributcd to coiling of the radical into conformation 10, in which the terminal unsaturated linkage lies over the radical center. ${ }^{24}$ This same conformation had been previously postulated by Lamb, Ayers,

[^88]
and Toney ${ }^{14}$ as a possible common precursor to cyclization products. ${ }^{25}$

As pointed out by Capon and Rees, ${ }^{26}$ cyclization of radical $\mathrm{A} \cdot(n=3)$ occurs by a path having a transition state closer in energy to the open-chain radical than to the more stable product radical. If overlap with the π electron cloud lowers the activation energy for radical cyclization, this may also reduce the energy required for the R_{F}. radical to open the original double bond. Hence, the two steps become effectively coupled.
\bar{P} for 4 approached the statistical value of two. Cyclization, if it occurred, was only a minor reaction. It is suggested that entropy of bringing the two ends of the molecule in close proximity is too great to allow such a conformation to affect either the rate of addition of R_{F} radical or displacement on $R_{F} I$. This may also explain the lack of cyclization of 4.

A folded conformation of an alkadiene would offer a certain amount of steric hindrance to the approach of an R_{F} radical in the rate-determining step. For 1 there is a greater probability that the two ends of the molecule will sweep past each other than for the larger dienes. A model of 1 , however, shows that nonbonded repulsion of hydrogens on carbons one and five may be sufficient to restrain such motion and maintain the molecule in a more open conformation. Thus, rate of attack by R_{F} radical would be less affected.

2 has more degrees of freedom than 1 and attack by the R_{F} radical may be hindered by proximity of the other terminal double bond. This cannot be due merely to the presence of a four carbon chain residue, since addition to 1 -hexene was actually slightly faster than to 1-heptene (Table VIII). Examination of models of 2 shows that there are several staggered conformations which have the terminal double bonds in close proximity. Approach of the R_{F} radical is

[^89](26) B. Capon and C. W. Rees, Proc. Chem. Soc., London, 61, 221, 281 (1964).
thought to occur best in the plane perpendicular to the nodal plane ${ }^{25}$ and partial blockage of the bulky R_{F} radical in this orientation could be responsible for the slowing of rate.

The significant difference between the dienes 1 and 9 , both of which are 1,5 dienes, is that the adduct radical 11 . from 9 has the required geometry for facile overlap and cyclization while A- $(n=1)$ radical does not. This is because addition to 1 occurs predominantly at the end of the double bond and overlap and cyclization would have to form a strained four-membered ring (Chart II).

While 9 cyclized completely it did not react faster than an alkene or even norbornene (8) on an equivalent double bond basis (Table VIII). A similar result was reported by Trecker and Henry ${ }^{27}$ for relative reactivity of 8 and 9 toward carbon tetrachloride. 9 reacted just twice as fast as 8 , and 9 also cyclized completely to a nortricyclene derivative.

Experimental Section

Sources of Materials and Methods.-Dienes 1-3 and 1-hexene (6) came from Chemical Samples Co.; 4 was obtained from Cities Service Co. and was redistilled, bp $117^{\circ}, n^{25} \mathrm{D} 1.4191$. 5 was obtained from Thiokol Chemical Co., 7 and 9 from Aldrich Chemical Co., and 8 from Columbia Organic Chemicals Co. The remaining compounds were standard laboratory grade. Glpc analyses of all samples were performed using replicate injections of $1-2 \mu$ l on a $6 \mathrm{ft} \times 0.25 \mathrm{in}$. column packed with SE-30 silicone oil (10%) on $60-80$ mesh Chromosorb W unless otherwise indicated. The column was temperature programmed from 60 to 175° at 20° per minute; the injector was at 150° and the detector at 250°. Helium carrier gas flow of $27 \mathrm{ml} / \mathrm{min}$ was used. A Sargent Welch gas chromatograph was fitted with a thermal conductivity detector. Table IX lists the times and weight factors determined for prepared mixtures, using n-octane (12), chlorobenzene (13), or o-xylene (14) as reference compound. In some cases the reference compound was present during reaction.
Infrared spectra were recorded using a Perkin-Elmer Model 337 grating spectrophotometer. Nmr spectra were obtained on a Varian A-60 or T-60 spectrometer. Distillations were performed in a Nester/Faust 2 - ft platinum spinning band column (column A).
Competitive Reaction of 6 and 7 with 5.-A mixture was

[^90]weighed into a tightly capped vial, transferring known volumes of liquids in order of increasing volatility by graduated pipet, starting with chlorobenzene (0.3549 g), $7(0.9569 \mathrm{~g}, 9.745 \mathrm{mmol})$, σ ($0.8339 \mathrm{~g}, 9.7085 \mathrm{mmol}$), and $5(1.9502 \mathrm{~g}, 5.6371 \mathrm{mmol})$; a portion $(0.3779 \mathrm{~g})$ was removed to prepare a standard mixture (listed in Table IX), and to the remainder (3.7180 g) was added ABN ($0.0475 \mathrm{~g}, 0.288 \mathrm{mmol}$). The reaction mixture was distributed by capillary pipet while cold into five ampoules made from $8-\mathrm{mm}$ tubing which were evacuated and filled with nitrogen three times at -78° and sealed by hand torch. Four of the ampoules were heated for periods of time at 70.0° as given in Table V. The fifth was opened and analyzed to show that adducts 15 and 16 were not formed during analysis by glpc. The reaction samples were transferred to tightly capped vials and kept cold. Similar techniques were used in the experiments summarized in Tables V, VI, and VII.
Reaction of 5 and 6 to Give 1,1,1,2,2,3,3,4,4-Nonafluoro-6iododecane (15). $-5(17.30 \mathrm{~g}, 0.0500 \mathrm{~mol}), 6(4.20 \mathrm{~g}, 0.0500 \mathrm{~mol})$, and ABN ($0.0820 \mathrm{~g}, 0.500 \mathrm{mmol}$) were charged to a FischerPorter pressure tube, evacuated, and filled three times with nitrogen, sealed and heated for 8 hr at 70°. Distillation gave $15, \mathrm{bp}$ $81^{\circ}(10 \mathrm{~mm}), n^{25} \mathrm{D} 1.3942,15.64 \mathrm{~g}(72.7 \%)$; an oil residue, 0.60 g ; and recovered starting materials, 2.40 g ; ir $\nu_{\text {CH }} 2950,2930$, $2870,2860 \mathrm{~cm}^{-1} ; \delta$ ch $1460,1425,1375,1350 \mathrm{~cm}^{-1} ; \nu_{\text {CF }} 1250-$ 1200,1130 , and bands at $1080,1020,1010,930,880,840$ (d), $770,735,720$, and $690 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.90$ (3 protons, m , CH_{3}), 1.1-2.2 [6 protons, $\left(\mathrm{CH}_{2}\right)_{3}$], 2.82 (2 protons, t of d, $J_{\mathrm{HF}}=$ $18, J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{CHI}$), 4.4 (1 proton, 5 lines, $J=12,6$, $6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHICH}_{2}$). The spectrum (Figure 4) conformed to the postulated structure of 15 , and not to an isomeric substance.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~F}_{9} \mathrm{I}: \mathrm{C}, 27.92 ; \mathrm{H}, 2.81 ; \mathrm{F}, 39.76$; I, 29.50. Found: C, 27.97; H, 2.77; F, 39.19; I, 29.47.
Reaction of 5 and 7 to Give $1,1,1,2,2,3,3,4,4$-Nonafluoro-6iodoundecane (16). $5(17.3 \mathrm{~g}, 0.0500 \mathrm{~mol}), 7(9.82 \mathrm{~g}, 0.100 \mathrm{~mol})$, and ABN $(0.164 \mathrm{~g}, 1.00 \mathrm{mmol})$ were charged to a pressure tube and treated as above. After 18 hr at 70° the filtered liquid (26.82 g) gave 16, bp $95^{\circ}(10 \mathrm{~mm}), n^{25} \mathrm{~d} 1.3982,17.20 \mathrm{~g}(77 \%)$; an oil residue, 0.57 g ; and recovered starting materials, 6.39 g ; ir was essentially identical with that of 15 . The nmr spectrum also resembled closely that of 16 , and not that of an isomeric substance.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~F}$ II: C, 29.75; H, 3.18; F, 38.50; I, 28.57. Found: C, 29.73; H, 3.20; F, 38.22; I, 28.63.
Reaction of 5 with 1 to Give 4-Iodo-6,6,7,7,8,8,9,9,9-Nona-fluoro-1-nonene [18 (A, $n=1)$]. $-5(8.65 \mathrm{~g}, 0.0250 \mathrm{~mol}), 1(6.81$ $\mathrm{g}, 0.100 \mathrm{~mol})$, and ABN $(0.328 \mathrm{~g}, 2.00 \mathrm{mmol})$ were processed as above. After 16 hr at 70° the product mixture (16.0 g) gave unreacted 1, bp $31^{\circ}, 4.16 \mathrm{~g} ; 18, \mathrm{bp} 68-69^{\circ}(11 \mathrm{~mm}), n^{25} \mathrm{D} 1.3967$, $7.67 \mathrm{~g}, 74 \%$ conversion based on 5 ; and an oil residue which glpc showed to contain 11.4% of 18 , an isomer (3.7%) and 49.7% of 19 (B, $n=1$). Two higher retention time compounds (14.2 and 21.0%) also were present; ir (18) $\nu_{\text {CH- }} 3080$; $\nu_{\text {CH }} 2980$, 2920 ; $\nu_{\mathrm{C}} \mathrm{c}$ 1 1640; $\nu_{\text {CH }} 1430,1350 ; \nu_{\text {CF }} 1250-1200,1140$; bands at 1020 , $990,925,880,775,745,740,730,690$, and $515 \mathrm{~cm}^{-1}$. Bands at 990 and $925 \mathrm{~cm}^{-1}$ are characteristic for this type of compound; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta$ 2.3-3.3 (4 protons, two m, $\mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{CHICH}_{2}$), $\delta 4.3$ (1 proton, 5 line, $J=13$ and $6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHICH}_{2}$), 4.9-6.2 (3 protons, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$).
Reaction of 5 with 1 to Give $1,1,1,2,2,3,3,4,4,10,10,11,11,-$ 12,12,13,13,13-Octadecafluoro-6,8-diiodotridecane [19 (B, $n=$ 1)]. $-5(34.56 \mathrm{~g}, 0.100 \mathrm{~mol})$, $1(1.70 \mathrm{~g}, 0.0250 \mathrm{~mol})$, and ABN $(0.164 \mathrm{~g}, 1.00 \mathrm{mmol})$ were treated as above, and heated at 70° for $8 \mathrm{hr} .5(11.11 \mathrm{~g})$ and trap liquid $(8.68 \mathrm{~g})$ were recovered: 18 , bp $64^{\circ}(9.0 \mathrm{~mm}), n^{25} \mathrm{D} 1.3970,1.80 \mathrm{~g}(98.7 \%$ by glpc); a mixture of 18 and 19 , bp $57-81^{\circ}(0.15 \mathrm{~mm}), 1.62 \mathrm{~g}(29.5 \% 18$ and 70.5% 19 by glpc); $19, \mathrm{bp} 82^{\circ}(0.10 \mathrm{~mm}), n^{25} \mathrm{D} 1.4050,9.04 \mathrm{~g}(99.5 \%$ by glpc); a residue, 0.9 g ; ir (19), similar to that of ($\mathrm{B}, n=4$) ; ${ }^{4} \mathrm{nmr}$ $\left(\mathrm{CCl}_{4}\right) \delta 2.2$ (2 protons, $\mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CHICH}_{2} \mathrm{CHI}$), 2.2-3.5 [4 protons, m , $\left.\left(\mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{CHI}\right)_{2}\right]$, 4.4, [2 protons, $\mathrm{m},(\mathrm{CHI})_{2}$].
Reaction of 5 and 3 at 130° to Give 20 (A, $n=3$), 21 ($\mathrm{B}, n=$ 3), and 22a,b $(\mathbf{C}, n=3)$, Using Di-tert-butyl Peroxide Initiator. $-5(16.4 \mathrm{~g}, 0.0500 \mathrm{~mol}), 3(2.40 \mathrm{~g}, 0.0250 \mathrm{~mol})$, and di-tert-butyl peroxide ($0.0685 \mathrm{~g}, 0.500 \mathrm{mmol}$) were charged to a pressure tube and processed as above. After 16 hr at $130-132^{\circ}$ the light yellow liquid (18.3 g) was distilled to give 20, bp $89-90^{\circ}(8 \mathrm{~mm}), n^{25} \mathrm{D}$ $1.4065,2.31 \mathrm{~g}, 97.3 \% 20$ and $1.39 \% 22 \mathrm{a}, \mathrm{b}$ by glpc; a mixture, bp $96-105^{\circ}(8 \mathrm{~mm})$ and $60-55^{\circ}(0.15 \mathrm{~mm}), 2.77 \mathrm{~g} ; 22 \mathrm{a}, \mathrm{b}$, bp 50° (0.12 mm), $n^{25} \mathrm{D} 1.4185,3.49 \mathrm{~g}, 3.0 \% 20$ and $97.0 \% 22 \mathrm{a}$, b by glpc; a solid residue of $21,4.70 \mathrm{~g}$; and recovered 3 and 5 in trap, 5.37 g. Glpc analysis was done using a $6 \mathrm{ft} \times 0.25 \mathrm{in}$. Apiezon $\mathrm{N}(10 \%)$
column at 150°. There was a shoulder on the peak for 20: ir 20 $\nu_{\text {CH- }}$ 3080; $\nu_{\text {CH }} 2980$; 2930, 2850 (d); $\nu_{\text {c_c }}$ 1640; bands at 1025, 932, 880, 735, and $725 \mathrm{~cm}^{-1}$; nmr (20, Figure 3), $\delta 1.3-1.9$ (4 protons, $\mathrm{m}, \mathrm{CH}_{2}$ of $\mathrm{C}_{4}, \mathrm{C}_{5}$), 2.1 (2 protons, $\mathrm{q}, J=13,6 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=$), 2.75 (t of $\mathrm{d}, J_{\mathrm{HF}}=20 \mathrm{~Hz}, \mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 4.4 (1 proton, 5 line, $J=12$ and $6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHICH}_{2}$); nmr (21) $\delta 1.8$ (6 protons, t of d, $J_{\mathrm{BF}}=20, J=8 \mathrm{~Hz}, \mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{CHI}$), 4.4 [2 protons, $\mathrm{m},(\mathrm{CHI})_{2}$].
Reaction of 5 and 8 to Give endo-2-Iodo-exo-3-perfluorobutylnorbornane (17).-5 ($17.3 \mathrm{~g}, 0.0500 \mathrm{~mol}$), $8(4.70 \mathrm{~g}, 0.0500 \mathrm{~mol})$, and ABN ($0.164 \mathrm{~g}, 1.00 \mathrm{mmol}$) were processed as above and heated for 3 hr at 70.0°. Distillation gave 17: bp 79-82 ${ }^{\circ}$ (3.5 $\mathrm{mm}), 16.7 \mathrm{~g}(76 \%)$, a single peak by glpc; ir (KBr plates) $\delta_{\text {c的 }}$ 1480, 1460, 1355, 1320; $\nu_{\text {CF }} 1250-1200,1130$; bands at 1030 , $1020,1010,970,945,925,910,875,855,790,760,740,735,685$, and $650 \mathrm{~cm}^{-1}$; nmr was identical with the published spectrum of perfluoropropyl homolog. ${ }^{10}$
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F} 9 \mathrm{I}: \mathrm{C}, 30.02 ; \mathrm{H}, 2.29$; I, 28.84 . Found: C, 30.2; H, 2.10; I, 28.2.
Reaction of 5 and 9 to Give 5-Perfluorobutyl-exo- and -endo-7iodonortricyclene ($11_{\mathrm{a}, \mathrm{b}}$). $-5(6.93 \mathrm{~g}, 0.0200 \mathrm{~mol})$, $9(0.921 \mathrm{~g}$, 0.0100 mol), ABN ($0.0328 \mathrm{~g}, 0.200 \mathrm{mmol}$), and 2-butanone (10 ml) were treated as above. After 16 hr at 70° the reaction mixture was analyzed by glpc ($6-\mathrm{ft}$ Apiezon N column, temperatureprogrammed $7^{\circ} / \mathrm{min}$ from 110° to 180°); adducts were found at 5. $75(3.19 \%), 9.5(3.26 \%)$, and $11_{\text {n.b }}$ at 10.2 and $11.2 \mathrm{~min}(48.5$ and 45.0% relative areas). The small amount of the first set of peaks precluded isolation. Distillation afforded $11_{\mathrm{a}, \mathrm{b}}$: bp $75 \mathrm{~J}^{-78}{ }^{\circ}$ (1.5 mm), $3.56 \mathrm{~g}\left(81.3 \%\right.$); ir (KBr plates) $\nu_{\text {Ce }} 3040,3020,3000$, 2980, 2955; no bands at 1600-1900; $\delta \mathbf{c н} 1475,1355,1320,1300 ;$ $\nu_{\text {CF }} 1250-1150$; and bands at $1050,1035,1025,980,950,910$, $900,880,870,820,740,730,720,700$, and $650 \mathrm{~cm}^{-1}$; $\mathrm{nmr} \delta 1.0-$ 2.68 (6 protons, m , ring protons), 3.2 , (1 proton, $\mathrm{t}, J_{\mathrm{HF}}=17 \mathrm{~Hz}$, $\mathrm{CF}_{2} \mathrm{CH}-$; $\delta 3.82$ (0.9 proton, s, CHI), 4.25 (0.06 proton, s, CHI). That the perfluorobutyl group was exo was indicated by the absence of coupling of proton on C-5 to adjacent protons at a 90° dihedral angle.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{9} \mathrm{I}: \mathrm{C}, 30.16 ; \mathrm{H}, 1.84 ; \mathrm{F}, 39.03$; I, 28.97. Found: C, 30.4; H, 1.8; I, 27.7.

Competitive Addition of 5 to 6 and 3.-A 50 ml , three-necked, pear-shaped flask fitted with a nitrogen inlet, a Dry Ice filled condenser, and a liquid sampling tube extending to the bottom of the flask, was charged with materials as listed in Table \mathbf{X}. The flask was partly immersed in an oil bath kept at 70° and at intervals indicated in Table X , a sample (approximately 0.010 g) was removed by suction through the sample tube. The liquid in the sample tube below the "Teflon-Varibor" valve was flushed back into the reaction by external nitrogen. Samples thus obtained from three different experiments were kept in a refrigerator and analyzed by glpe as described below.
A mixture of reaction products was weighed and weight/area factors were determined from replicate analysis as indicated in Table XI. ${ }^{2}$ Results from these experiments were mainly used as guidance for more quantitative work, as given in Table VII.

Acknowledgment. -Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Registry No.-1, 591-93-5; 18, 40735-20-4; 19, 40735-21-5; 2, 592-42-7; A $(n=2), 40735-22-6 ;$ B $(n=2), 40735-23-7$; 3, 3070-53-9; 20, 40735-24-8; 21, 40735-25-9; 22a (cis), 40735-26-0; 22b (trans), 40735-27-1; 4, 3710-30-3; A ($n=4$), 13105-45-8; В $(n=4), 40735-29-3 ; 5,423-39-2 ; 6,592-41-6 ; 7,592-76-7$; 8, $498-66-8$; $9,121-46-0$; 11a, 40735-30-6; 11b, 40735-31-7; 15, 40735-32-8; 16, 40735-33-9; 17, 40735-34-0.
Supplementary Material Available.-Tables IV, V, VI, IX, X and XI and Figures 3 and 4 will appear immediately following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche ($105 \times 148 \mathrm{~mm}, 20 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JOC-73-3167.

Reactions of Alkyl Phenyl Selenide with Benzoyl Peroxide

Yoshiyuki Okamoto,* K. L. Chellappa, and Rachid Homsany
Research Division, Department of Chemical Engineering, New York University, University Heights, New York, New York 10453

Received May 30, 1973

Abstract

Benzoyl peroxide readily reacts with alkyl phenyl selenides in CCl_{4} solution at room temperature to yield stable tetravalent selenium coordination compounds: alkylphenyldibenzoyloxyselenuranes (4). When refluxed in $\mathrm{CCl}_{4}, 4$ decomposed into α-benzoyloxyalkyl phenyl selenides (5) and benzoic acid. Benzoyl peroxide further reacts with 5 to form stable selenium(IV) compounds: α-benzoyloxyalkylphenyldibenzoyloxyselenuranes (9). Upon heating, they decomposed into additional α-benzoyloxylation products (10). It is suggested that the reaction involves the initial decomposition of 4 into ion pairs and attack of the benzoate ion on the α hydrogen, producing a selenium-stabilized carbonium ion. Subsequently, the benzoyloxy moiety on the selenium rearranges the α position of the alkyl group and yields the benzoyloxylation product (5a).

Recently, we found that free-radical initiators such as benzoyl peroxide did not initiate the polymerization of phenylvinyl selenide. This failure was attributed to the addition of benzoyl peroxide on the selenium atom to give a tetravalent selenium(IV) compound (1). ${ }^{1}$ Similar tetravalent selenium compounds have been known in the literature for some time. ${ }^{2}$ Foster isolated diphenylselenium diacetate from the reaction of diphenylselenium oxide with acetic anhydride. ${ }^{3}$ Stable

[^91]
cyclic tetravalent selenium compounds were also prepared by the intramolecular reactions between selenium oxide and carboxylic acid. ${ }^{4-6}$ More recently Reich

[^92]Table I
Reaction Products of alkyl Phenyl Selenide with Benzoyl Peroxide

Compd	$\xrightarrow[\text { Alkyl protons }]{\text { Chemical s }}$	Ch)	$n^{22} \mathrm{D}$	Bp. ${ }^{\circ} \mathrm{C}$ (mm)	Yield, \%
$\mathrm{CH}_{3} \mathrm{SePh}, 3 \mathrm{a}$	7.80 (s, 3 H)	$2.50-3.00$ (m, 5 H)	1.5895	70-72 (7)	
4 a	7.15 (s, 3 H)	$1.95-2.90$ (m, 15 H$)$		Mp 116	92
5a	4.20 (s, 2 H)	2.10-3.05 (m, 10 H)	1.6130	120 (0.7)	60
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SePh}, 3 \mathrm{~b}$	$\begin{aligned} & 7.35(\mathrm{q}, 2 \mathrm{H}) J=7.5 \mathrm{~Hz} \\ & 8.35(\mathrm{t}, 3 \mathrm{H}) J=7.5 \mathrm{~Hz} \end{aligned}$	$2.33-2.92$ (m, 5H)	1.5745	63 (3)	
4b	$\begin{aligned} & 6.05(\mathrm{q}, 2 \mathrm{H}) J=7.5 \mathrm{~Hz} \\ & 8.22(\mathrm{t}, 3 \mathrm{H}) J=7.5 \mathrm{~Hz} \end{aligned}$	1.80-3.05 (m, 15 H)		Mp 95-99	87
5b	$\begin{aligned} & 3.45(\mathrm{q}, 1 \mathrm{H}) J=7.0 \mathrm{~Hz} \\ & 8.30(\mathrm{~d}, 2 \mathrm{H}) J=7.0 \mathrm{~Hz} \end{aligned}$	$1.85-3.05(\mathrm{~m}, 10 \mathrm{H})$	1.5970	122 (0.3)	60
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{SePh}, 3 \mathrm{c}$	$\begin{aligned} & 7.18(\mathrm{t}, 2 \mathrm{H}) J=7.5 \mathrm{~Hz} \\ & 8.10-8.90(\mathrm{~m}, 4 \mathrm{H}) \\ & 9.05(\mathrm{t}, 3 \mathrm{H}) J=6.5 \mathrm{~Hz} \end{aligned}$	2.47-2.98 (m, 5 H)	1.5605	85 (3)	
4 c	$\begin{aligned} & 6.92(\mathrm{t}, 2 \mathrm{H}) J=7.5 \mathrm{~Hz} \\ & 8.10-8.90(\mathrm{~m}, 4 \mathrm{H}) \\ & 9.05(\mathrm{t}, 3 \mathrm{H}) J=6.5 \mathrm{~Hz} \end{aligned}$	$1.80-2.98$ (m, 15 H$)$		Mp 75-80	82
5 c	$\begin{aligned} & 3.60(\mathrm{t}, 1 \mathrm{H}) J=6.5 \mathrm{~Hz} \\ & 8.00-8.90(\mathrm{~m}, 4 \mathrm{H}) \\ & 9.05(\mathrm{t}, 3 \mathrm{H}) J=6.5 \mathrm{~Hz} \end{aligned}$	1.95-3.05 (m, 10 H$)$	1.5855	140 (0.3)	49

synthesized several cyclic chiral dialkoxydiaryl selenuranes. ${ }^{7}$

In this paper, we report the direct synthesis of the tetravalent selenium dicarboxylate by the reaction of alkyl phenyl selenides with benzoyl peroxide and the thermal decomposition products of the compounds.

Results and Discussion

In a typical reaction, CCl_{4} solution of methyl phenyl selenide (3a) was added dropwise to a CCl_{4} solution of benzoyl peroxide. The solution was cooled using water. A slight exothermic reaction followed and a white solid precipitate was obtained. The solid was methylphenyldibenzoyloxyselenurane (yield 92%) (4a). 4 a was refluxed in CCl_{4} for 2 hr . Upon cooling, the

solution remained clear. It was washed with aqueous NaHCO_{3}, the CCl_{4} solution was dried, and the solvent was evaporated. α-Benzoyloxymethyl phenyl selenide (5a) $\left(60 \%\right.$ yield) was obtained. From the NaHCO_{3} extract, benzoic acid and a trace amount of phenyl-

[^93]selenic acid were isolated. These results are summarized in Table I.

The thermal decomposition of benzoyl peroxide in the presence of alkyl ether ${ }^{8,9}$ or sulfide ${ }^{10}$ has been reported to yield the corresponding α-benzoyloxylation products. The reaction mechanisms were accounted for by the chain-reaction sequence. Recently, however, Pryor and Bickley reported that benzoyl peroxide decomposes at an accelerated rate in the presence of alkyl sulfide. ${ }^{11}$ They showed that the sulfide makes a nucleophilic attack on the $\mathrm{O}-\mathrm{O}$ bond of benzoyl peroxide to form an unstable intermediate which subsequently decomposes into α-benzoyloxy sulfide and benzoic acid. The intermediate was not isolated. The structure could be postulated to have a resonance hybrid of ionic (6) and covalent (7) characters.

Horner suggested that the possible mechanism for the formation of the α-benzoyloxylation product involves the cyclic structure 8. ${ }^{12}$ This structure is similar to one

(8) W. E. Cass, J. Amer. Chem. Soc., 69, 500 (1947).
(9) P. D. Bartlett and K. Nozaki, J. Amer. Chem. Soc., 69, 2299 (1947).
(10) H. B. Henbest, J. A. W. Reid, and C. J. M. Stirling, J. Chem. Soc., 1217 (1964).
(11) S. A. Pryor and H. T. Bickley, J. Org. Chem., 37, 2855 (1972).
(12) L. Horner and E. Jurgens, Justus Liebigs Ann. Chem., 602, 135 (1957).

Table II
Reaction Products of α-Benzoyloxyalkyl Phenyl Selenides with Benzoyl Peroxide

Compd	Alkyl protons	Aryl protons	Mp, ${ }^{\circ} \mathrm{C}$	Yield, \%
9a	3.38 (s, 2 H)	1.50-3.05 (m, 20 H)	102	85
10a	0.20 (s, 1 H)	$1.80-2.70(\mathrm{~m}, 15 \mathrm{H})$	121-122	54
9b	8.30 (d, 3 H) $J=5.5 \mathrm{~Hz}^{\text {a }}$	$1.20-3.00(\mathrm{~m}, 20 \mathrm{H})$	55	77
10b	8.25 (s, 3 H ${ }^{\text {a }}$	$1.70-2.60$ (m, 15 H$)$	70-74	48

${ }^{a}$ The proton spectra for CH were overlapped with those of aromatic protons.
proposed by Oae and Kise to rationalize an ${ }^{18} \mathrm{O}$ exchange between a sulfoxide and acetic anhydride. ${ }^{13}$ They suggested that the exchange involves an equilibrium between a cyclic structure similar to 8 and one like $6 \rightleftarrows$ 7. Johnson and Phillips have, however, investigated the Pummerer rearrangement of sulfonium salts. ${ }^{14}$ Their results indicate that the initial formation of an ylide is the rate-determining step; the ylide then leads to product via a sulfur-stabilized carbonium ion. This mechanism is supported by Pryor and Bickley. ${ }^{11}$

When alkylphenyldibenzoyloxyselenuranes were decomposed in the presence of different alkyl-substituted selenides, crossover products were obtained. However, methyl phenyl selenide was found to preferentially form the α-benzoyloxylation products over ethyl and n-butyl phenyl selenides.

$$
\begin{aligned}
\mathrm{R} & =\mathrm{H}, \mathrm{C}_{3} \mathrm{H}_{7} \\
\mathrm{R}^{\prime} & =\mathrm{H}, \mathrm{CH}_{3}
\end{aligned}
$$

These results suggest that benzoate ion escapes to solution in the α-rearrangement reaction and the reaction has an intermolecular nature.

Therefore, it is likely that the reaction shown in eq 2 involves the initial formation of an ion pair and then leads to product via a selenium-stabilized carbonium ion as shown in Scheme I.

Scheme I

Similarly, the reaction mechanism of eq 1 can be described as shown in Scheme II.

[^94]Benzoyl peroxide further reacts with $\mathbf{5 a}$ and $\mathbf{5 b}$ at room temperature to form corresponding stable selenium(IV) compounds: α-benzoyloxyalkylphenyldibenzoyloxyselenurane (9). After 9 was refluxed in

CCl_{4} and the reaction products were treated by a procedure similar to that described above, the additional α-benzoyloxylation products (10) were obtained. However, the compounds tend to hydrolyze during the treatment with the aqueous NaHCO_{3} to form diphenyl diselenide and alkyl dibenzoates. ${ }^{15}$ The typical results of these reactions are summarized in Table II.

Experimental Section

All boiling points and melting points reported are uncorrected. Nuclear magnetic resonance spectra were obtained on a Varian Associates Model A-60 spectrometer with tetramethylsilane as an internal reference. Infrared spectra were recorded with a Perkin Elmer Infracord. Mass spectra were obtained on a Hitachi Perkin-Elmer Model RMU-60. Benzoyl peroxide was purchased from Matheson Coleman and Bell and was recrystallized from CCl_{4}-methyl alcohol. Elemental analyses and molecular weight determination were made by Schwartzkopf Laboratories, New York, N. Y.

Alkyl Phenyl Selenide.-Ethyl and n-butyl seneides were prepared by the method of Okamoto and Yano. ${ }^{17}$ Methyl phenyl selenide was synthesized by the method previously reported in 72% yield, bp $70-72^{\circ}(7 \mathrm{~mm})$ [lit. ${ }^{18}$ bp 200-201 ${ }^{\circ}$ (760 $\mathrm{mm})$].

Reactions between Alkyl Selenides (3) and Benzoyl Peroxide. -Methyl phenyl selenide ($7.0 \mathrm{~g}, 0.04 \mathrm{~mol}$) in 30 ml of CCl_{4} was added dropwise over 20 min to a solution of benzoyl peroxide $\left(9.5 \mathrm{~g}, 0.04 \mathrm{~mol}\right.$) in 40 ml of CCl_{4}. The solution was cooled using water. A slight exothermic reaction was followed by the precipitation of a white solid. The solid was identified as methylphenyldibenzoyloxyselenurane (4a): yield 92%; $\mathrm{mp} 116^{\circ}$; mol wt (benzene) 402 (calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Se}, 413$); ir (CCl_{4}) 1680 and $1725 \mathrm{~cm}^{-1}$ with no absorption bands which can be attributed to benzoyl peroxide; mass spectrum $m / e 171,122,105$, and 77 . The CCl_{4} solution of 4 a was refluxed for 2 hr and washed with aqueous NaHCO_{3}. After the CCl_{4} solution was dried and the

[^95]solvent was evaporated, benzoyloxymethyl phenyl selenide (5a) (7 g, yield 60%) was obtained: bp $120^{\circ}(0.7 \mathrm{~mm})$; $n^{20} \mathrm{D} 1.6130$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Se}$: C, $57.70 ; \mathrm{H}, 4.10$; $\mathrm{Se}, 27.14$. Found: C, 57.38; H, 4.10; Se, 27.15. Ir had 1720, 2982, 3022 cm^{-1}; mass spectrum $m / e 291,261,122,105$, and 77. From the NaHCO_{3} extract, benzoic acid (5.0 g) and phenylselenic acid $(0.5 \mathrm{~g})$ were isolated and identified. Under similar conditions, ethyl and n-butyl phenyl selenides were treated with benzoyl peroxide. α-Benzoyloxyethyl and butyl phenyl selenides were obtained. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Se}$ (5b): C, 59.01 ; H, 4.59 ; Se, 25.90. Found: C, $59.25 ; \mathrm{H}, 4.70$; $\mathrm{Se}, 25.40$. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Se}(5 \mathrm{c})$: C, 61.26; H, 5.41; $\mathrm{Se}, 23.72$. Found: 61.54; H, 5.59; Se, 23.35.

Decomposition of Alkylphenyldibenzoyloxyselenuranes in the Presence of Other Alkyl Phenyl Selenides.-Alkylphenyldibenzoyloxyselenurane was prepared by the reaction of alkyl phenyl selenide with benzoyl peroxide in CCl_{4}. To the solution was added a different alkyl-substituted phenyl selenide. The CCl_{4} solution was gradually refluxed for 2 hr . After the CCl_{4} was washed with aqueous NaHCO_{3} and then water, the CCl_{4} solution was dried and the solvent was evaporated. The products were determined by nmr measurements without isolation. The results are shown in Table III.

Table III

Decomposition of Alkylphenyldibenzoyloxyselenuranes in the Presence of Other Alkyl Phenyl Selenides

$\overparen{\mathrm{PhSe}(\mathrm{OBz})_{2} \mathrm{CH}_{2} \mathrm{R}+\mathrm{PhSeCH}_{2} \mathrm{R}^{\prime}}$	$\alpha-\mathrm{Benzoyloxylation} \mathrm{product,0}$ PhSeCHR		$\mathrm{PhSeCHR}^{\prime}$

Reactions between α-Benzoyloxyalkyl Phenyl Selenides (5) and Benzoyl Peroxide.-The reactions were carried out by a procedure similar to those described in the reactions between alkyl phenyl selenides and benzoyl peroxide. Benzoyloxymethyl
phenyl selenide ($5.8 \mathrm{~g}, 0.020 \mathrm{~mol}$) was dissolved in 60 ml of CCl_{4} solution of benzoyl peroxide ($5.2 \mathrm{~g}, 0.022 \mathrm{~mol}$). The white solid 9a obtained was filtered and washed with $\mathrm{CCl}_{4}, 9.0 \mathrm{~g}$ (85% yield), $\operatorname{mp~100-102}{ }^{\circ}$. $9 \mathrm{a}(8.0 \mathrm{~g}, 0.015 \mathrm{~mol})$ was heated in CCl_{4} for 2 hr and the solution was treated with aqueous NaHCO_{3}. After CCl_{4} solutions were dried and the solvent was evaporated, dibenzoyloxymethyl phenyl selenide (10a) was obtained, 3.3 g (0.008 mol), yield $54 \%, \mathrm{mp} 121-122^{\circ}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O} \mathrm{O}_{4} \mathrm{Se}: \mathrm{C}$, 61.16; H, 3.88; Se, 19.17. Found: C, 61.59; H, 4.10; Se, 18.80. α, α^{\prime}-Dibenzoyloxyethyl phenyl selenide (10 b) was obtained (yield 48\%), mp 70-74 ${ }^{\circ}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Se}$: C, 62.11; H, 4.23; Se, 18.60. Found: C, 62.49; H, 4.60; Se, 18.15.

Decomposition Products of α, α^{\prime}-Dibenzoyloxyalkyl Phenyl Selenide (10).-After recrystallization of 10 a from CHCl_{3}, the solvent was evaporated and the residue was treated with petroleum ether (bp 30-60). From the petroleum ether solution, diphenyl diselenide was isolated (0.41 g), mp 57°. Its spectrum was superimposed on that of the pure compound. The petroleum ether insoluble solid was recrystallized from benzene and methylene dibenzoate was obtained $(0.52 \mathrm{~g}), \mathrm{mp} 96^{\circ}$, (lit. ${ }^{19} \mathrm{mp} 99^{\circ}$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}: \mathrm{C}, 70.30 ; \mathrm{H}, 4.68$; mol wt, 256. Found: C, 69.87; H, 4.48; mol wt, 281 (benzene). Ethylidene dibenzoate was isolated from the reaction of $9 \mathrm{~b} \rightarrow 10 \mathrm{~b}, 0.45 \mathrm{~g}, \mathrm{mp} 69^{\circ}$ (lit. ${ }^{19} \mathrm{mp} \mathrm{70}{ }^{\circ}$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 71.10; H, 5.02; mol wt, 270. Found: C, 71.80; H, 5.22 ; mol wt, 292 (benzene).

Acknowledgment. - The authors are grateful to the Selenium-Tellurium Development Association, Inc., for the generous support of part of this work.

Registry No.-3a, 4346-64-9; 3b, 17774-38-8; 3c, 28622-61-9; 4a, 38104-61-9; 4b, 40902-60-1; 4c, 40872-41-1; 5a, 40872-42-2; 5b, 40872-43-3; 5c, 40872-44-4; 9a, 40872-45-5; 9b, 40872-46-6; 10a, 40872-47-7; 10b, 40872-48-8; benzoyl peroxide, 94-36-0; diphenyl diselenide, 1666-13-3; methylene dibenzoate, 5342-31-4; ethylidene dibenzoate, 4991-30-4.
(19) R. J. P. Allen, E. Jones, and P. D. Ritchie, J. Chem. Soc., 524 (1957).

The Reaction of Peroxides with Phosphines in the Presence of Water

H. D. Holtz, P. W. Solomon, and J. E. Mahan*
Phillips Petroleum Company, Research and Development Department, Bartlesville, Oklahoma 74004

Received March 7, 1973

Abstract

The reaction of alkyl- or arylphosphines with dialkyl peroxides or polyperoxides in solvent systems containing water leads to the formation of alcohols or glycols from the peroxides. The quantitative formation of phosphine oxides in this reaction provides a useful analytical tool and glc analytical methods are described. The model systems investigated are (1) the reaction of styrene and 1,3-octadiene polyperoxides with triphenylphosphine and (2) the reaction of di-n-hexyl peroxide, 1,2-dioxane, ascaridole, and di-tert-butyl peroxide with tri-n-butylphosphine. The latter two compounds do not give quantitative amounts of phosphine oxide.

The reaction of phosphines with peroxygen compounds to give phosphine oxides was first reported in 1927^{1} when the reaction of benzoyl peroxide and triphenylphosphine was described. Horner and Jurgeleit, ${ }^{2}$ however, were the first workers to report results of a comprehensive study of the reaction of phosphines with a variety of peroxides. They reported that dialkyl peroxides react very sluggishly with triphenyl- or triethylphosphine in hydrocarbon solvent to give the corresponding dialkyl ethers and phosphine oxides. Some of their data for tertiary peroxides was subsequently shown to be in error. ${ }^{3}$ More recently, Denney,

[^96]et al., ${ }^{4}$ reported the formation of ethanol, ethylene, ethyl ether, and tributylphosphine oxide from the reaction of diethyl peroxide and tri- n-butylphosphine in the absence of solvent.
The ready reduction of hydroperoxides to alcohols by phosphines has been used in oxidation chemistry as a tool in determining the structure of hydroperoxides. Quantitative measurements of the resultant alcohols and phosphine oxides can be used as analytical methods. ${ }^{5}$
We were interested in the analysis of various olefin autoxidation product mixtures which were expected to contain both peroxide and hydroperoxide groups.

[^97]Iodometric analysis of such materials in the presence of olefin and other functional groups is very unreliable owing to various interfering reactions. It was, therefore, of interest to establish the reactivity and reaction products of a number of model peroxide systems. This paper deals with the reaction of several polyperoxides and dialkyl peroxides with tri- n-butyl- and triphenylphosphine. We have demonstrated that this reduction in the presence of solvent systems containing water leads to the nearly exclusive formation of alcohols and phosphine oxides as products. Gle methods for the determination of the major reaction products have been developed.

Results and Discussion

Polyperoxides.-Styrene and 1,3-octadiene polyperoxides were chosen as model systems because they are representative of olefin polyperoxides in general and because they were readily available without major by-products from the oxidation of the respective olefins.

Styrene polyperoxide in styrene was prepared by the reaction of styrene with oxygen (70 psig) in the presence of AIBN at 50° as described by Miller and Mayo. ${ }^{6}$ They have shown that these conditions lead to styrene polyperoxide containing sytrene and oxygen in nearly $1: 1$ ratio with only small amounts of monomeric oxidation products. Table I shows results of the analysis of styrene polyperoxide with triphenylphosphine.

Table I

Styrene Polyperoxide Determinations ${ }^{\boldsymbol{a}}$				
Run no.	Styrene convn, ${ }^{\text {b }} \%$	O_{2} uptake, ${ }^{c}$ $\mathrm{mol} \times \mathbf{1 0}^{2}$	$\begin{gathered} \mathrm{Ph}_{3} \mathrm{PO},_{1}^{d} \\ \mathrm{~mol} \times 0^{2} \end{gathered}$	Solvent
1	8.3	3.20	3.10	Acetone
2	10.8	4.34	4.17	Acetone
3	10.8	4.34	4.34	Benzene
4	10.8	4.34	4.13	Aqueous acetone ${ }^{\text {c }}$
5	13.9	5.27	5.26	Acetone

${ }^{\text {a }}$ A $2-3-\mathrm{g}$ portion of polyperoxide solution with twice the stoichiometric amount of $\mathrm{Ph}_{3} \mathrm{P}$ (calculated from O_{2} absorption) in 4 ml of solvent in a sealed Diels-Alder tube under N_{2} for 12-24 hr at ambient temperature. ${ }^{b}$ Based on 1 mol of styrene converted per mol of O_{2} absorbed. ${ }^{c}$ By weight gain. ${ }^{d}$ Determined by glc using internal standard. ©A $0.25-\mathrm{ml}$ portion of $\mathrm{H}_{2} \mathrm{O}, 4 \mathrm{ml}$ of acetone.

The utility of this method for the analysis of styrene polyperoxide is apparent. The products from the polyperoxide reaction are 1-phenylethane-1,2-diol and styrene oxide, depending on conditions (Table II).

Table II
Products from the Reaction of Styrene Polyperoxide
With Triphenylphosphine
${ }^{\text {a }}$ Products by glc using internal standard based on moles of styrene polyperoxide as computed from O_{2} absorption; small amounts of benzaldehyde were also observed. ${ }^{b}$ A small amount of 1-phenylethane-1,2-diol was observed early in the reaction; it, however, disappeared ultimately. ${ }^{c}$ Reagent grade.

[^98]The presence or absence of water during the reduction has a major influence on product formation. It was shown that the epoxide, once formed, is not converted to glycol under the reaction conditions. The glycol and epoxide were isolated from the reaction mixtures by silica gel chromatography or distillation for comparison with authentic samples. The rate of reaction can be qualitatively followed by glc by monitoring the disappearance of the benzaldehyde peak from the thermolysis of unreacted polyperoxide in the gle injection port.

Conjugated dienes are known to react with oxygen by both 1,2 and 1,4 addition to give polyperoxides. ${ }^{7}$ Although the polyperoxide from 1,3 -octadiene has not been reported in the literature, we experienced no difficulty in its synthesis by the method used with styrene at 50°. An ir spectrum of the polyperoxide isolated by evaporation of unreacted octadiene in a stream of nitrogen showed no significant carbonyl absorption, an indication that little polyperoxide had decomposed during the synthesis. Table III shows some representative analytical data.

Table III
1,3-Octadiene: Polyperoxide Determinations ${ }^{a}$

Run no.	1,3-Octadiene conversion, \%	O_{2} uptake, ${ }^{\text {b }}$ $\mathrm{mol} \times$ 10^{2}	$\mathrm{Ph}_{8} \mathrm{PO}^{\mathrm{C}}{ }^{\mathrm{C}}$ $\mathrm{mol} \times$ 10^{2}	Solvent	Time, hr
1	6.3	2.04	1.46	Acetone $-\mathrm{H}_{2} \mathrm{O}$	20
1 a	6.3	2.04	1.97	Acetone $-\mathrm{H}_{2} \mathrm{O}$	72
2	9.5	3.20	3.05	Acetone $-\mathrm{H}_{2} \mathrm{O}$	72

${ }^{a}$ A 2-3-g portion of polyperoxide solution with twice the stoichiometric amount of $\mathrm{Ph}_{3} \mathrm{P}$ in 4 ml of acetone, 0.25 ml of $\mathrm{H}_{2} \mathrm{O}$ in a sealed Diels-Alder tube under N_{2} at ambient temperature. ${ }^{b}$ By weight gain. ${ }^{c}$ Determined by glc using internal standard.

In one semiquantitative experiment $2.00 \mathrm{~g}(1.66 \times$ $10^{-3} \mathrm{~mol}$ of active O_{2}) of oxidate was treated with 3.11 $\times 10^{-3} \mathrm{~mol}$ of tri- n-butylphosphine in 6 ml of acctone and 0.25 ml of water in the presence of benzophenone as internal standard. Successive glc analyses showed that the ratio of phosphine to phosphine oxide remained constant after 12 hr , indicating that the butylphosphine is much more reactive than triphenylphosphine.

The major reduction products in this system were studied in some detail. They were shown to be 2-octene-1,4-diol (1), 3-octene-1,2-diol (2), and 1-octene3,4 -diol (3), by a combination of mass, ir, nmr, and C, H analyses and comparison with the same compounds produced by $\mathrm{NaAlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)_{2}$ reduction of the polyperoxide. In addition, 2 and 3 were synthesized by reaction of 1,3 -octadiene with m-chloroperbenzoic acid and hydrolysis of the epoxide and glycol ester. A typical product analysis (duplicate runs) is shown in Table IV. In addition to the glc peaks attributed to diols, some smaller and lower eluting peaks were also observed and are probably due to small amounts of monools present. $\mathrm{As}_{2} \mathrm{O}_{3}$ titration of a sample containing $2.04 \times 10^{-2} \mathrm{~mol}$ total O_{2} by weight gain gave $0.95 \times$ $10^{-3} \mathrm{~mol}$ of active oxygen as hydroperoxide (4.6% of the total).

Dialkyl Peroxides.-Di- n-hexyl peroxide was pre-
(7) O. L. Magelli and C. S. Sheppard in "Organic Peroxidea," Vol. 1, D. Swern, Ed., Wiley-Intergcience, New York, N. Y., 1970, p 52.

Table IV
Triphenylphosphine Reduction of 1,3 -Octadiene Polyperoxide ${ }^{a}$

	Sample A	Sample B
Active O_{2} in aliquot, mol $\times 10^{8} \mathrm{~b}$	1.66	1.66
$\mathrm{Ph}_{3} \mathrm{P}, \mathrm{mol} \times 10^{3}$	3.83	3.82
Products by glc, mol $\times 10^{3}$		
$\mathrm{Ph}_{8} \mathrm{PO}$	1.61	1.54
$\mathrm{Ph}_{3} \mathrm{P}+\mathrm{Ph}_{3} \mathrm{PO}$	3.75	3.71
1,4-diol (1)	0.76	0.76
1,2-diol (2)	0.35	0.33
3,4-diol (3)	0.12	0.10
Total diols	1.23	1.19

${ }^{a}$ A $2-\mathrm{g}$ solution of polyperoxide in 1,3-octadiene, 4 ml of acetone, 0.25 ml of water, 72 hr under nitrogen in a sealed DielsAlder tube. ${ }^{b}$ By weight gain (oxygen uptake).

Table V
Reduction of Di- n-hexyl Peroxide with Tri- \boldsymbol{n}-butylphosphine ${ }^{a}$

Run no.	1	2	$3^{\text {b }}$
Reactants, mol $\times 10^{3}$			
$\left(n-\mathrm{C}_{6} \mathrm{H}_{13}\right)_{2} \mathrm{O}_{2}$	1.03	1.00	1.05
$n-\mathrm{Bu}_{3} \mathrm{P}$	1.90	1.94	1.89
Solvents, ml			
Acetone	8.0		
Water	0.4		
Benzene		8.0	8.0
Products, mol $\times 10^{3}$			
n-Hexyl alcohol	2.00	1.52	0.50
n-Hexyl ether		0.08	0.49
$n-\mathrm{Bu}_{3} \mathrm{PO}$	1.08	1.07	0.96

a Reaction carried out at ambient temperature under N_{2} for 7 days in a sealed bulb or Diels-Alder tube. ${ }^{b}$ Benzene and $n-\mathrm{Bu}_{3} \mathrm{P}$ dried over 3A molecular sieve.
pared by the known method. ${ }^{8}$ Table V illustrates the results obtained in the reduction of di- n-hexyl peroxide with $n-\mathrm{Bu}_{3} \mathrm{P}$ in acetone-water and benzene. We were surprised to find n-hexyl alcohol as the major product in moist benzene (run 2); using benzene and $\mathrm{Bu}_{3} \mathrm{P}$ (dried over 3 A molecular sieve) gave the expected ether as the major product (run 3), indicating that traces of moisture can have a significant effect on the relative amounts of ether and alcohol formed even in benzene solvent.

The effect of moisture in these systems is also shown in Table VI, where it is demonstrated that the maximum amount of alcohol is formed very soon with increasing amounts of ether as the reaction progresses and the

Table VI
Products of the Reaction of Tri- n-Butylphosphine with Di-n-hexyl Peroxide as a Function of Timea

[^99]water present is used up. Some n-hexyl alcohol is observed as decomposition product when n-hexyl peroxide is injected into the glc instrument under conditions similar to those used in the analysis. Some of the reaction products observed may have been formed in the glc instrument. The proportion of these materials would be a maximum at low reaction times.

1,2 -Dioxane was prepared by the method of Criegee and Müller. ${ }^{9}$ Reduction of this material with $n-\mathrm{Bu}_{3} \mathrm{P}$ in benzene without added water gave about an equal mixture of tetrahydrofuran and 1,4-butanediol in 6 days at room temperature. A similar reduction except in a 95:5 acetone-water mixture for 7 days gave essentially only 1,4-butanediol. Experiments using $\mathrm{Ph}_{3} \mathrm{P}$ instead of $n-\mathrm{Bu}_{3} \mathrm{P}$ indicated reaction rates ~ 25 times slower at ambient temperature.

Di-tert-butyl peroxide was shown to be virtually unreactive toward $n-\mathrm{Bu}_{3} \mathrm{P}$ at 50°. Peroxide $\left(1 \times 10^{-3}\right.$ mol) and $n-\mathrm{Bu}_{3} \mathrm{P}\left(1.97 \times 10^{-3} \mathrm{~mol}\right)$ in acetone (8 ml) and water (0.4 ml) were allowed to react for 10 days at 50° in a sealed Diels-Alder tube under nitrogen. Only $0.14 \times 10^{-3} \mathrm{~mol}$ of $n-\mathrm{Bu}_{3} \mathrm{PO}$ and no tert-butyl alcohol or di-tert-butyl ether was observed.

Ascaridole was shown to react sluggishly at 50°. Ascaridole ($3.92 \times 10^{-3} \mathrm{~mol}$) and $n-\mathrm{Bu}_{3} \mathrm{P}\left(5.31 \times 10^{-3}\right.$ mol) were allowed to react in acetone (6 ml) and water $(0.25 \mathrm{ml})$ for 160 hr in a sealed bulb under nitrogen at 50°. The yield of $n-\mathrm{Bu}_{3} \mathrm{PO}$ was 85% and the yield of p-menthene-1,4-diol was 23% based on ascaridole. The structure of the 1,4 -diol was ascertained by comparison with an authentic sample of correct melting point and spectral properties obtained by reduction of ascaridole with $\mathrm{NaAlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)_{2}$ in benzene. The reaction was sluggish at 50°; better results were obtained at 75°. Horner and Jurgeleit ${ }^{2}$ have reported the reduction of ascaridole to the corresponding $1,4-$ endo oxide by $\mathrm{Ph}_{3} \mathrm{P}$ at 100°. However, it has been found more recently ${ }^{10}$ that 3,4-epoxy- p-menth-1-ene is the product of this reduction under Horner's conditions.

Mechanism.-Careful recent kinetic studies by Hiatt, et al., ${ }^{11,12}$ on the reaction of hydroperoxides with phosphines have confirmed earlier suggestions ${ }^{2}$ that such peroxide reductions are nucleophilic displacements rather than free-radical reactions. However, reactions of alkoxy and alkylperoxy radicals with trivalent phosphorus compounds are also well known. ${ }^{13}$

Pentavalent phosphorus intermediates are involved in the reactions of trialkylphosphines ${ }^{4,14}$ and trialkyl phosphites ${ }^{15}$ with dialkyl peroxides.

The results of this work are generally consistent with such a nucleophilic displacement mechanism.

Equation 1 illustrates the formation of the pentavalent phosphorus intermediate (I), which in the pres-
(9) R. Criegee and G. Muller, Ber., 89, 238 (1956).
(10) A. W. P. Jarvie, C. G. Moore, and D. Skelton, J. Polym. Sci., Part $A-1,9,3105$ (1971).
(11) R. Hiatt, R. J. Smythe, and C. McColeman, Can. J. Chem., 49, 1707 (1971).
(12) R. Hiatt and C. McColeman, ibid., 49, 1712 (1971).
(13) K. U. Ingold and B. P. Roberta, "Free Radical Substitution Reactions," Wiley-Interscience, New York, N. Y., 1971, p 118.
(14) (a) D. B. Denney and N. Gershman Adin, Tetrahedron Lett., 2569 (1966); (b) D. B. Denney, et al., J. Amer. Chem. Soc., 91, 5243 (1969); (c) B. C. Chang, et al., ibid., 93, 4004 (1971); (d) D. B. Denney, et al., ibid., 94, 245 (1972); (e) C. D. Hall, et al., ibid., 94, 9264 (1972).
(15) (a) D. B. Denney and H. M. Relles, ibid., 86, 3897 (1964); (b) D. B. Denney and S. T. D. Gough, ibid., 87, 138 (1965); (c) D. B. Denney and D. H. Jones, ibid., 91, 5821 (1969).

ence of watcr is hydrolyzed (eq 2) to give alcohols or in an anhydrous medium (eq 3) forms ethers. The etherforming reaction must be largely intramolecular in the case of styrenc polyperoxide reacting with $\mathrm{Ph}_{3} \mathrm{P}$ because the major product is styrene oxide. (Thermal decomposition of styrene polyperoxide gives almost exclusively benzaldchyde and formaldehyde. ${ }^{16}$) The apparent initial formation of alcohols in the reduction of dialkyl peroxides by tri- n-butylphosphine in benzene in the absence of added water could be attributed to the presence of moisture in the solvent or the phosphine, especially in view of runs 2 and 3, Table V; however, determination of the exact amount of alcohol due to the presence of moisture or due to the reaction sequence suggested by Denney, et al., ${ }^{4}$ must await further experimental clarification.

Experimental Section

Infrared spectra were obtained on a Perkin-Elmer Model 137 sodium chloride spectrophotometer. Glc determinations were carried out on Perkin-Elmer Model 900 or Varian Aerograph A90P3 instruments. All melting points are corrected.

Polyperoxides.-Both styrene and 1,3-octadiene polyperoxide were prepared in an apparatus consisting of a $60 \times 7 \overline{5} \mathrm{~mm}$ Pyrex thick wall bulb with a capillary neck attached to an oxygen reservoir and 100 -psi test gauge with a $53 \times 1 / 16$ in. stainless steel tube via a nylon ferrule and Swagelok fitting. The bulb was immersed in an Eberbach constant-temperature shaking bath using a Ysi Model 74 Thermistemp temperature controller at 50°. Pressure drops were converted to volume (STP) by a calibration curve making the appropriate temperature correction for fluctuations in the oxygen reservoir temperature.

In a typical oxidation a solution of 0.0921 g of AIBN (Aldrich, twice recrystallized) in 41.7708 g of freshly distilled styrene was placed in the reactor bulb. The system was flushed twice with oxygen and then pressured to 70 psig. A pressure drop from 67.9 to 16.9 psig in 940 min corresponded to a weight gain of 1.3879 g of oxygen. Conversion of styrene was 10.8% assuming 1 mol of oxygen per mol of sytrene. Polyperoxide solutions in monomer were stored in a brown bottle at -10°.

The reduction of styrene polyperoxide by $\mathrm{Ph}_{3} \mathrm{P}$ can be qualitatively followed by observing the disappearance of PhCHO (from polyperoxide pyrolysis) and the appearance of $\mathrm{Ph}_{3} \mathrm{PO}$ peaks by glc as a function of time. Styrene oxide is quantitatively determined on a.ift $\times 0.2$; in. 17% Carbowax 20 M on AW Chromosorb P column using methyl caprate as internal standard. Styrene glycol, $\mathrm{Ph}_{3} \mathrm{P}$, and $\mathrm{Ph}_{3} \mathrm{PO}$ are determined using a $1 \mathrm{ft} \times 0.25 \mathrm{in}$. 10% (iE SE-30 silicone rubber on AW Chromosorb P column with benzophenone as internal standard. In analyses for $\mathrm{Ph}_{3} \mathrm{PO}$, the column must be preconditioned by injection of a sample containing $\mathrm{Ph}_{3} \mathrm{PO}$ prior to the first quantitative determination. 1-Phenylethane-1,2-diol was trapped from the gle effluent and re-

[^100]crystallized from $\mathrm{CCL}_{4}, \mathrm{mp} 64^{\circ}$ (lit. ${ }^{17} \mathrm{mp} 67-68^{\circ}$), ir identical with that of authentic sample.

Styrene oxide was prepared from the polyperoxide as follows. Styrene polyperoxide in styrene ($30 \mathrm{~g}, 0.03 \mathrm{~mol}$ of peroxide) was treated with $\mathrm{Ph}_{3} \mathrm{P}(8.7 \mathrm{~g}, 0.033 \mathrm{~mol})$ under N_{2} for 5 hr at room temperature and 2 days in the refrigerator. The product was distilled and a fraction, bp $40-50^{\circ}(0.5 \mathrm{~mm})$, was collected; this sample was fractionated through a $2-\mathrm{ft}$ microcolumn using 5 g of methyl pentadecanoate as chaser. Styrene oxide $[2.1 \mathrm{~g}, 58 \%$ on polyperoxide, bp $42^{\circ}(2 \mathrm{~mm})$] was collected. Both glycol and epoxide were also isolated from $\mathrm{Ph}_{3} \mathrm{P}$-reduced samples of polyperoxide by silica chromatography.

1,3-Octadiene polyperoxide was prepared in the apparatus described previously. A cis-trans mixture of 1,3-octadiene (from Chemical Samples Co.) was distilled and a center cut was collected. The distillate was shown to be $9 . \overline{9}+\%$ trans by $n m r$ and was uniform by capillary glc on a $150 \mathrm{ft} \times 10 \mathrm{mil}$ squalane column at room temperature.

The reduction of 1,3 -octadiene polyperoxide by $\mathrm{Ph}_{3} \mathrm{P}$ requires $\sim 72 \mathrm{hr}$ at ambient temperature. $\mathrm{Ph}_{3} \mathrm{P}$ and $\mathrm{Ph}_{3} \mathrm{PO}$ were determined as before. The glycols were determined on a $5 \mathrm{ft} \times 0.25$ in. Carbowax 20M (5%) on Percopak T column using benzophenone as internal standard. Response factors for the glycols were determined using the individual glycols trapped from the glc effluent.

The reduction of 1,3-octadiene polyperoxide by $\mathrm{Ph}_{3} \mathrm{P}$ in aqueous acetone or by $\mathrm{NaAlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)_{2}$ in benzene resulted in the same mixture of major product peaks (glc) identified as glycols. In order of elution, peak 1 was 1 -octene-3,4-diol (3), and peaks 2 and 3 were 3 -octene-1,2-diol (2) and 2 -octene-1,4-diol (1), respectively. Some lower eluting peaks are presumed to be monools but were not specifically identified owing to the small amounts present. For compounds 1,2 , and 3 the C, H analyses were low in C owing to the presence of $3-4 \%$ water (observed by nmr).

2-Octene-1,4-diol (1) had ir 3300, 2900, 1460, 1075, 1010, $97 . \mathrm{cm}^{-1}$; mass spectrum $m / e 113\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right)^{+}, 85$ $\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{O}\right) \cdot{ }^{+}, 69(\mathrm{HOCH}=\mathrm{CHCH}=\mathrm{CH}) \cdot{ }^{+}, 57(\mathrm{i}), 31\left(\mathrm{CH}_{2} \mathrm{OH}\right) \cdot+$;

$\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{~T} 60\right) \delta 0.85$ ($\mathrm{m}, 3 \mathrm{H}$, methyl), 1.4 ($\mathrm{m}, 6 \mathrm{H}$, methylene), $3.5(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OH}), 4.1(\mathrm{~m}, 3 \mathrm{H}$, methine plus methylene), 5.8 (m, 2 H , nonterminal olefinic).

3-Octene-1,2-diol (2) had ir 3300, 2900, 1450, 106.), 1025, 970, 87:) cm^{-1}; mass spectrum m/e $144\left(\mathrm{M}^{+}, \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2}\right), 113$ (M $\left.\mathrm{CH}_{2} \mathrm{OH}\right)^{+}, 9 . \overline{\mathrm{J}}\left(\mathrm{m} / e 113-\mathrm{H}_{2} \mathrm{O}\right), 69,57$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.9(\mathrm{~m}$, 3 H , methyl), $1.4\left(\mathrm{~m}, 4 \mathrm{H}\right.$, methylene), $2.0\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right.$ $\mathrm{CH}), 3.6\left(\mathrm{~m}, 4.1 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2}\right.$ next to OH$), 4.2$ (1 H , methine), 5.6 ($\mathrm{m}, 1.9 \mathrm{H}$, nonterminal olefin).

1-Octene-3,4-diol (3) had ir 3300, 2900, 1450, 1100, 1030, 990, $920,830 \mathrm{~cm}^{-1}$; mass spectrum $m / e 87\left(\mathrm{HOCHC}_{4} \mathrm{H}_{9}\right){ }^{+}+69(\mathrm{~m} / e$ $\left.87-\mathrm{H}_{2} \mathrm{O}\right), 58$ (base peak), $57\left(\mathrm{CH}_{2}=\mathrm{CHCHOH}\right) \cdot{ }^{+}$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 0.9(\mathrm{~m}, 3 \mathrm{H}$, methyl), $1.3(5.9 \mathrm{H}$, methylene $), 2.4$ $(2 \mathrm{H},-\mathrm{OH}), 3.6(1 \mathrm{H}$, methine adjacent to OH$), 4.0(1 \mathrm{H}$, methine), 5-6 (2.8 H , vinyl).

The 1,2 and 3,4 glycols were also synthesized from 1,3-octadiene by oxidation with m-chloroperbenzoic acid in CHCl_{3} followed by hydrolysis of the epoxide and benzoate esters. The products isolated by glc trapping had the same spectral properties as the compounds obtained from the polyperoxide.

Dialkyl Peroxides.- n-Hexyl peroxide was prepared from n hexyl methanesulfonate by the method of Mosher, et al., ${ }^{8}$ in 17% yield. The peroxide had bp $64^{\circ}(0.3 \mathrm{~mm}), n^{20} \mathrm{D} 1.4244$ (lit. ${ }^{8} n^{20} \mathrm{D}$ 1.4248). Among the products of the reduction of n-hexyl peroxide by n - $\mathrm{Bu}_{3} \mathrm{P}$, n-hexyl alcohol was identified by trapping from the glc effluent and by silica gel chromatographic separation and spectral comparison with an authentic sample. n-Hexyl ether was separated by silica chromatography as a mixture with $n-\mathrm{Bu}_{3} \mathrm{P}$. The chromatographic results demonstrate that the products are not formed in the gle instrument. In some reduction runs using $\mathrm{Bu}_{3} \mathrm{P}$ in acetone, aldol condensation products of acetone were also observed.

Glc analyses were carried out on a $5 \mathrm{ft} \times 0.25$ in. Carbowax $20 \mathrm{M}(5 \%)$ on Percopak T column with 2-dodecanone or n-hexadecane as internal standards. The order of elution with increas-

[^101]ing temperature is n-hexyl alcohol, n-hexyl ether, $n-\mathrm{Bu}_{3} \mathrm{P}$, internal standard, and $n-\mathrm{Bu}_{3} \mathrm{PO}$.

1,2 -Dioxane was prepared by the method of Criegee ${ }^{9}$ in 18% yield. The product had bp $49^{\circ}(67 \mathrm{~mm})$ [lit. ${ }^{9} \mathrm{bp} 61-62^{\circ}(110$ mm)] ; $n^{20} \mathrm{D} 1.4261$ (lit. ${ }^{7} n^{30} \mathrm{D} 1.4262$). Ir, mass, and $n m r$ spectra confirm the structure. 1,4-Butanediol was trapped from the glc effluent of a reduced sample of 1,2-dioxane for comparison with an authentic sample.
The best column for quantitative glc analysis of the components of a reduced sample of 1,2 -dioxane was a $10 \mathrm{ft} \times 0.25 \mathrm{in}$. Carbowax 20M (16.7%) on AW Chromosorb P ($60-80$ mesh); 2-dodecanone was used as internal standard.

Di-tert-butyl peroxide was obtained from Lucidol and was 99.9% pure by glc.

Ascaridole was obtained from $\mathrm{K} \& \mathrm{~K}$. The reduction product, p-menthene-1,4-diol, was prepared by hydride reduction. Ascaridole ($1.7 \mathrm{~g}, 1.01 \times 10^{-2} \mathrm{~mol}$) in 30 ml of benzene was refluxed with $\mathrm{NaAlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)_{2} \quad\left(2.86 \times 10^{-2} \mathrm{~mol}\right)$ for 2 hr . On cooling, 50 ml of water was added, benzene was removed on a Rotavapor, and the aqueous phase was extracted with four $300-\mathrm{ml}$ portions of $1: 1$ ether- n-pentane. Removal of the solvent provided 1.8 g of residue which on two crystallizations from cyclohexane gave 1.6 g of crystals: mp $80-81^{\circ}$ (lit. ${ }^{18} \mathrm{mp} \mathrm{82}{ }^{\circ}$); nmr (CDCl_{3}) $\delta 0.8-1.0(2 \mathrm{~d}, 6 \mathrm{H}$, methyl),
(18) M. Matic and D. A. Sutton, J. Chem. Soc., 2679 (1952).
$1.25(\mathrm{~s}, 3 \mathrm{H}$, methyl), $1.5-2.0(\mathrm{~m}, 5 \mathrm{H}$, methylene + methine), $2.3(1 \mathrm{H}, \mathrm{OH}), 2.7(1 \mathrm{H}, \mathrm{OH}), 5.4-5.9(2 \mathrm{~d}, 2 \mathrm{H}$, olefinic); the OH resonance is shifted by addition of $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$. The glycol as a mixture with $n-\mathrm{Bu}_{3} \mathrm{PO}$ was also obtained by chromatograpic separation of a $\mathrm{Bu}_{3} \mathrm{P}$-reduced sample of ascaridole on basic alumina (Alcoa, pH 9).

The product mixture from $n-\mathrm{Bu}_{3} \mathrm{P}$ reduction was analyzed by glc on a $5 \mathrm{ft} \times 0.25$-in. Carbowax $20 \mathrm{M}(5 \%)$ on Percopak T column using methyl heptanoate as internal standard. The order of elution was internal standard, $n-\mathrm{Bu}_{3} \mathrm{P}$, ascaridole decomposition peaks, 1,4 -diol, and $n-\mathrm{Bu}_{3} \mathrm{PO}$.

Acknowledgment.-We wish to thank Mr. D. L. Smith for competent laboratory assistance, the Analytical Branch for assistance with nmr, mass, and elemental analyses, and the Phillips Petroleum Company for permission to publish this work.

Registry No.-1, 40735-15-7; 2, 40735-16-8; 3, 40735-17-9; styrene polyperoxide, 27379-77-7; triphenylphosphine, 603-35-0; 1,3-octadiene polyperoxide, 40742-13-0; n-hexyl peroxide, 3903-89-7; tributylphosphine, 998-40-3; 1,2-dioxane, 5703-46-8; tert-butyl peroxide, 110-05-4; ascaridole, 512-85-6; styrene oxide, 96-09-3; p-menthene-1,4-diol, 40735-19-1.

Reactions of 2-Acyloxyisobutyryl Halides with Nucleosides. III. ${ }^{1}$ Reactions of Tubercidin and Formycin

Tikam C. Jain, ${ }^{2}$ Alan F. Russell, ${ }^{3}$ and John G. Moffatt*
Contribution No. 100 from the Institute of Molecular Biology, Syntex Research, Palo Alto, California 94304

Received March 22, 1973

Abstract

The reaction of tubercidin with 2 -acetoxyisobutyryl halides gives exclusively the 2^{\prime} - 0 -acetyl- 3^{\prime}-halo- 3^{\prime}-deoxy-β-D-xylofuranosyl nucleoside (3) substituted at the 5^{\prime} position with a trimethyldioxolanone moiety. Treatment of 3 with methanolic ammonia rapidly removed both the acetyl and dioxolanone groups to give crystalline 4-amino-7-(3-deoxy-3-halo- β-D-xylofuranosyl)-pyrrolo $[2,3-d]$ pyrimidines (4) which could be converted to $2^{\prime}, 3^{\prime}-$ anhydrotubercidin with sodium methoxide. Catalytic hydrogenolysis of the 3^{\prime}-bromo nucleoside (4 b) gave 3^{\prime} deoxytubercidin while similar treatment of the bromo acetate (3 b) gave both 3^{\prime}-deoxytubercidin and $2^{\prime}, 3^{\prime}$-dideoxytubercidin. Similar reactions of formycin with 2-acetoxyisobutyryl bromide gave both $2^{\prime}-0$-acetyl-3'-bromo-3'-deoxy- β-d-xylofuranosyl and $3^{\prime}-0$-acetyl- 2^{\prime}-bromo- 2^{\prime}-deoxy- β-io-arabinofuranosyl nucleosides (9 and 10) substituted at the 5^{\prime} position as 2-acetoxyisobutyryl esters. The acetyl and acetoxyisobutyryl esters could be sequentially removed by treatment with ammonia and catalytic hydrogenolysis of the appropriate compounds gave 2^{\prime}-deoxy-, 3^{\prime}-deoxy-, and $2^{\prime}, 3^{\prime}$-dideoxyformycin. Treatment of 9 and 10 with sodium methoxide gave $2^{\prime}, 3^{\prime}$-anhydroformycin.

Several recent papers from this laboratory have described the reactions of 2 -acetoxyisobutyryl halides (1) with uridine ${ }^{4}$ and adenosine. ${ }^{1}$ These studies, based upon earlier work by Mattocks, showed that simple cis vicinal diols react with 1 to form trans halo acetates via intermediate acetoxonium ions. In the case of the reaction of 1 with uridine the major products proved to be derivatives of $3^{\prime}-0$-acetyl- 2^{\prime}-deoxy- 2^{\prime}-halouridine, the unusual cis configuration of the acetyl and halo functions being explained by interaction of the C_{2} carbonyl group of the uracil ring with the intermediate $2^{\prime}, 3^{\prime}$-acetoxonium intermediate. ${ }^{4}$ On the other hand, the reaction of adenosine with 1 led predominantly to the formation of $2^{\prime}-O$-acetyl-3'-deoxy-3^{\prime}-halo and $3^{\prime}-0$-acetyl- 2^{\prime}-deoxy- 2^{\prime}-halo nucleosides with the D -xylo and D -arabino configurations in a ratio of roughly $10: 1 .{ }^{1}$ These products were entirely to be expected on the assumption that the intermediate

[^102]$2^{\prime}, 3^{\prime}$-acetoxonium ion was opened by halide attack without participation of the purine ring. The halo nucleosides obtained from adenosine and 1 were shown to be useful intermediates for the preparation of 3^{\prime}-de-oxy- and $2^{\prime}, 3^{\prime}$-dideoxyadenosine as well as of $2^{\prime}, 3^{\prime}$-anhydroadenosine.

In recent years numerous nucleoside antibiotics have been isolated from nature. ${ }^{5}$ Analogs of adenosine have been particularly prevalent in this class and antibiotics such as 4 -amino-7-(β-D-ribofuranosyl)pyrrolo-[2,3-d]pyrimidine (2 , tubercidin) and 7-amino-3-(β-D-ribofuranosyl)-pyrazolo [4,3-d]pyrimidine (8, formycin) have been widely studied. ${ }^{5,6}$ The interesting spectrum of biological activities shown by tubercidin and formycin has made the chemical modification of these molecules an attractive exercise and has led to both work on total synthesis ${ }^{7}$ and to preparation of a variety of
(5) R. J. Suhadolnik, "Nucleoside Antibiotics," Wiley-Interscience, New York, N. Y., 1970.
(6) C. G. Smith, G. D. Gray, R. G. Carlson, and A. R. Hanze, Advan. Enzyme Regul., 5, 121 (1967).
(7) R. L. Tolman, R. K. Robins, and L. B. Townsend, J. Amer. Chem. Soc., 91, 2102 (1969).

Table I
Nmr Chemical Shifts (Parts per Million) at 100 MHz in DMSO- d_{6}

Compd	$\mathrm{C}_{1}, \mathrm{H}$	$\mathrm{C}_{2}{ }^{\text {, }}$ H	$\mathrm{C}_{2}{ }^{\mathrm{H}}$	$\mathrm{C} \cdot \mathrm{H}$	$\mathrm{Cb} \mathrm{H}_{3}$	$\mathrm{C}_{5} \mathrm{H}_{\mathrm{b}}$	$\mathrm{C}_{2} \mathrm{H}^{\text {a }}$	$\mathrm{C}_{6} \mathrm{H}$	C6 H	Other
2	5.97 (d)	4.42 (dd) ${ }^{\text {b }}$	4.08 (dd) ${ }^{\text {b }}$	3.91 (dt)	3.59	(d) ${ }^{\text {b }}$	8.04 (s)	6.59 (d)	7.32 (d)	
3a free base	6.30 (d)	5.47 (dd) ${ }^{\text {c }}$	4.86 (m) ${ }^{\text {c }}$	$\begin{gathered} 4.50(\mathrm{br} \\ \mathrm{dt}) \end{gathered}$	3.72 (dd)	3.92 (dd)	8.06 (s)	6.66 (d)	7.25 (d)	1.44, 1.47 (s, $3, \mathrm{CMe}_{\mathrm{s}}$), 1.71 (s, 3, MeCO_{8}), 2.05 (s, 3, OAc), 7.08 (s, 2, NH2)
3b free base	6.29 (d)	5.60 (m) ${ }^{\text {c }}$	4.86 (m) ${ }^{\text {c }}$	4.38 (m)	3.76 (dd)	3.88 (dd)	8.06 (s)	6.66 (d)	7.30 (d)	$\begin{aligned} & 1.45,1.48(\mathrm{~s}, \\ & \left.3, \mathrm{CMe}_{2}\right), \\ & 1.72(\mathrm{~s}, 3 \\ & \left.\mathrm{MeCO}_{3}\right), \\ & 2.06(\mathrm{~s}, 3 \\ & \mathrm{OAc}), 7.09 \\ & \left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right) \end{aligned}$
4 a	6.02 (d)	4.56 (dd) ${ }^{\text {b }}$	4.44 (d)	4.29 (dt)	3.68	(dd)	8.04 (s)	6.60 (d)	7.26 (d)	$\begin{aligned} & 6.23\left(\mathrm{~d}, 1, \mathrm{C}_{2}\right. \\ & \mathrm{OH}), 5.13 \\ & \left(\mathrm{t}, 1, \mathrm{C}_{5}\right. \\ & \mathrm{OH}), 7.01(\mathrm{~s}, \\ & \left.2, \mathrm{NH}_{2}\right) \end{aligned}$
4b	5.98 (d)	4.68 (ddd)	4.48 (dd)	4.18 (dt)	3.67	(dd)	8.04 (s)	6.60 (d)	7.31 (d)	$\begin{gathered} 6.21\left(\mathrm{~d}, 1, \mathrm{C}_{2},\right. \\ \mathrm{OH}), 5.16 \\ \left(\mathrm{t}, 1, \mathrm{C}_{5}\right. \\ \mathrm{OH}), 6.99 \\ \left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right) \end{gathered}$
5	6.00 (d)	4.4 (m)	$\begin{aligned} & 1.90 \text { (ddd) } \\ & 2.16 \text { (ddd) } \end{aligned}$	4.4 (m)	3.56	(m)	8.04 (s)	6.56 (d)	7.31 (d)	$\begin{gathered} 5.49\left(\mathrm{~d}, 1, \mathrm{C}_{2^{\prime}}\right. \\ \mathrm{OH}), 5.04 \\ \left(\mathrm{t}, 1, \mathrm{C}_{5^{\prime}}\right. \\ \mathrm{OH}), 6.95 \\ \left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right) \end{gathered}$
6	6.33 (dd)	$\underset{(\mathrm{m})}{2.0-2.3}$	$\begin{gathered} 2.0-2.3 \\ (\mathrm{~m}) \end{gathered}$	4.02 (m)	3.43 (dd) ${ }^{\text {b }}$	3.57 (dd) ${ }^{\text {b }}$	8.02 (s)	6.54 (d)	7.31 (d)	$\begin{gathered} 5.16\left(\mathrm{~m}, 1, \mathrm{C}_{5},\right. \\ \mathrm{OH}), 6.97 \\ \left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right) \end{gathered}$
7	6.28 (s)	4.28 (d)	4.17 (d)	4.11 (t)	3.55	(m) ${ }^{\text {b }}$	8.08 (s)	6.61 (d)	7.34 (d)	$\begin{gathered} 5.07\left(\mathrm{~m}, 1, \mathrm{C}_{5}\right. \\ \mathrm{OH}), 7.05 \\ \left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right) \end{gathered}$
8	4.94 (d)	4.47 (dd) ${ }^{\text {b }}$	4.09 (dd) ${ }^{\text {b }}$	3.96 (m)	4.6	(m)	8.13 (s)			
$9^{\text {d }}$	5.19 (d)	6.19 (dd)	4.75 (dd)	4.4 (m)	4.21 (dd)	4.35 (dd)	8.17 (s)			$\begin{aligned} & 1.47(\mathrm{~s}, 6 \\ & \left.\mathrm{CMe}_{2}\right), 1.99 \\ & (\mathrm{~s}, 3, t-\mathrm{OAc}), \\ & 2.04(\mathrm{~s}, 3, \\ & \mathrm{OAc}), 7.37 \\ & \left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right) \end{aligned}$
11a	4.89 (d)	5.21 (dd) ${ }^{\text {b }}$	4.49 (dd)	4.28 (m)	4.22 (dd)	4.35 (dd)	8.14 (s)			$\begin{aligned} & 1.46(\mathrm{~s}, 6 \\ & \mathrm{CMe} \\ & (\mathrm{~s}, 3,1 . \mathrm{OAc}), \\ & 6.0\left(\mathrm{Or}, 2^{\prime}\right. \\ & \mathrm{OH}), 7.27 \\ & \left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right) \end{aligned}$
11b	4.79 (d)	4.95 (dd) ${ }^{\text {b }}$	4.47 (dd)	4.19 (m)	3.57 (dd)	3.74 (dd)	8.14 (s)			$\begin{gathered} 5.85(\mathrm{~m}, 2 \\ \mathrm{OH}), 7.38 \\ \left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right) \end{gathered}$
12a	5.57 (d)	4.73 (dd)	4.7 (m)	3.90 (m)	4.29 (dd)	4.48 (dd)	8.15 (s)			$\begin{aligned} & 1.46(\mathrm{~s}, 6, \\ & \left.\mathrm{CME}_{2}\right), 1.97 \\ & (\mathrm{~s}, 3, t-\mathrm{OAc}), \\ & 7.29(\mathrm{~s}, 2, \\ & \left.\mathrm{NH}_{2}\right) \end{aligned}$
12b	5.56 (d)	4.70 (dd)	4.58 (dd) ${ }^{\text {b }}$	3.73 (m)	3.73	(m)	8.07 (s)			$\begin{gathered} 7.78(\mathrm{br} \mathrm{~s}, 2, \\ \left.\mathrm{NH}_{2}\right) \end{gathered}$
13a	5.01 (d)	4.70 (m)	$\begin{aligned} & 1.95(\mathrm{~m}) \\ & 2.30(\mathrm{~m}) \end{aligned}$	4.37 (m)	4.13 (dd)	4.24 (dd)	8.13 (s)			$\begin{gathered} 1.40,1.42(\mathrm{~s}, \\ \left.3, \mathrm{CMe}_{2}\right), \\ 1.95(\mathrm{~s}, 3, \\ t-\mathrm{OAc}) \end{gathered}$
13b free base	4.91 (d)	$4.58(\mathrm{dt})^{\text {b }}$	$\begin{aligned} & 1.88 \text { (ddd) } \\ & 2.25(\mathrm{~m}) \end{aligned}$	4.25 (m)	3.38 (dd) ${ }^{\text {b }}$	3.63 (dd) ${ }^{\text {b }}$	8.10 (s)			$\begin{gathered} 7.4 \text { (br s, } 2 \text {, } \\ \mathrm{NH}_{2} \text {) } \end{gathered}$
14 HCl	5.46 (dd)	$\begin{gathered} 2.15-2.35 \\ (\mathrm{~m}) \end{gathered}$	4.32 (m)	3.88 (m)		56 (d)	8.52 (s)			$\begin{gathered} 9.8 \text { (br s, } 3, \\ \mathrm{NH}_{3}+\text {) } \end{gathered}$

Table I
(Continued)

Compd	$\mathrm{C}_{1}, \mathrm{H}$	C_{2}, H	C3, H	Cı, H	$\mathrm{C}_{\mathrm{b}}, \mathrm{H}_{\mathrm{a}}$	$\mathrm{Cb}^{\prime} \mathrm{H}_{\mathrm{b}}$	$\mathrm{C}_{2} \mathrm{H}^{\text {a }}$	$\mathrm{Cb}_{5} \mathrm{H}$	Cf H	Other
15	5.34 (s)	4.17 (d)	4.10 (d)	4.08 (t)	3.39 (dd) ${ }^{\text {b }}$	3.62 (dd) ${ }^{\text {b }}$	8.18 (s)			$\begin{aligned} & 7.34(\mathrm{~s}, 2, \\ & \left.\mathrm{NH}_{2}\right), 5.2 \\ & \mathrm{br}, 1, \mathrm{C}_{5}, \\ & \mathrm{OH}) \end{aligned}$
16 free base	5.16 (dd)	$\begin{gathered} 2.0-2.4 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.0-2.4 \\ (\mathrm{~m}) \end{gathered}$	4.1 (m)	3.37 (dd)	3.61 (dd)	8.12 (s)			$\begin{gathered} 7.39(\mathrm{~s}, 2, \\ \left.\mathrm{NH}_{2}\right) \end{gathered}$

${ }^{a} \mathrm{C}_{2} \mathrm{H}$ refers only to tubercidin derivatives and is replaced by $\mathrm{C}_{5} \mathrm{H}$ in the case of formycin derivatives. ${ }^{b}$ After addition of $\mathrm{D}_{2} \mathrm{O}$. ${ }^{c}$ The signals for $\mathrm{C}_{2}, \mathrm{H}$ and $\mathrm{C}_{3}, \mathrm{H}$ clearly showed slight doubling due to the chiral dioxolanone grouping. The spectrum of the hydrochloride was very similar except for the chemical shifts of $\mathrm{C}_{2} \mathrm{H}, \mathrm{C}_{5} \mathrm{H}$, and $\mathrm{C}_{6} \mathrm{H}$ which appeared at $8.41,7.12$ and 7.54 ppm , respectively. ${ }^{d}$ The 2^{\prime}-bromo isomer (10) can be recognized by its $\mathrm{C}_{1^{\prime}}, \mathrm{H}\left(5.58 \mathrm{ppm}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=5 \mathrm{~Hz}\right), \mathrm{C}_{2}, \mathrm{H}\left(4.97 \mathrm{ppm}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=4 \mathrm{~Hz}\right), \mathrm{C}_{3^{\prime}}, \mathrm{H}$ ($5.70 \mathrm{ppm}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=4 \mathrm{~Hz}$), and $3^{\prime} \mathrm{OAc}(2.12 \mathrm{ppm}, \mathrm{s})$ signals.

Scheme I

base analogs. ${ }^{8}$ On the other hand, while 2^{\prime}-deoxytubercidin has been isolated following incubation of radioactive 2 with L cells in tissue culture, little work has been done on modification of the sugar moiety of these interesting compounds. ${ }^{9}$ In this paper we describe the reactions of tubercidin and formycin with 1 leading to syntheses of the corresponding 3^{\prime}-deoxy, $2^{\prime}, 3^{\prime}$-dideoxy, and $2^{\prime}, 3^{\prime}$-anhydro analogs. The work with tubercidin has been presented previously. ${ }^{10}$

As an initial model, a suspension of tubercidin (2) in acetonitrile was treated with 2 -acetoxyisobutyryl chloride (1a) ${ }^{4}$ and gave a homogeneous reaction mixture after 18 hr at 37°. Following a simple work-up using either precipitation or extraction techniques a crude product was isolated in essentially quantitative yield and was shown by tle to be predominantly a single spot with only traces of more polar by-products. The nmr spectrum of this crude product was very sharp and clearly indicated the presence of essentially a

[^103]single compound identified as 4 -amino-7-[2-0-acetyl-3-chloro-3-deoxy-5-0-(2,5,5-trimethyl-1,3-dioxolan-4-on2 -yl)- β-d-xylofuranosyl]pyrrolo $[2,3-d$]pyrimidine (3a). The nature of the 5^{\prime} substituent was clear from the nmr spectrum (Table I, nonequivalent CMe_{2} singlets at 1.44 and 1.47 ppm , and MeCO_{3} at 1.71 ppm), ${ }^{1,4}$ as was the location of the acetyl group, the $\mathrm{C}_{2}, \mathrm{H}$ being strongly deshielded relative to that in tubercidin. The β-D-xylo configuration of the 3^{\prime}-chloro group was expected on mechanistic grounds ${ }^{1,4}$ and was confirmed by the facile conversion of 3 a into crystalline $2^{\prime}, 3^{\prime}$ anhydrotubercidin (7) upon treatment with sodium methoxide (Scheme I). The nmr spectrum of 7 is very similar to those of other $2^{\prime}, 3^{\prime}$-anhydro nucleosides that we have prepared ${ }^{1,11}$ and shows values of $J_{1^{\prime}, 2^{\prime}}$ and of $J_{3^{\prime}, 4^{\prime}}=0$ (Table II).

Quite unlike the situations observed during reactions of adenosine, ${ }^{1}$ guanosine, ${ }^{11}$ and inosine ${ }^{11}$ with 1 , it is clear from the nmr spectrum of crude $3 a$ that no significant formation of $3^{\prime}-0$-acetyl- 2^{\prime}-chloro- 2^{\prime}-deoxy- β -d-arabinofuranosyl nucleoside occurred. For the moment we see no explanation for the apparently complete regiospecificity shown in the tubercidin reaction. It should also be noted that 3 a should be present as a

[^104]Tarle II

First-Order Coupling Constants (Hertz)								
Compd	$J_{10,2}$	$J_{2}, 3$,	$J 8.41$	J4,8\%a	J40,01b		$J_{6,6}$	Other
2	6	5.5	3	3	3	0	3.5	
3a	3.5	5.5	4.5	5	3.5	10	3.5	
3b	3.5	a	a	a	3	11	3.5	
4 a	4	3	4.5	4.5	4.5	0	3.5	
4b	4.5	3.5	4.5	4.5	4.5	0	3.5	$J_{2^{\prime}, \mathrm{OB}}=J_{5^{\circ}, \text { OB }}=5$
5	2.5	$3.5,5^{\text {b }}$	6, $8^{\text {b }}$	a	a	a	3.5	$J^{\text {dea }, \mathrm{f}^{\prime} \mathrm{b}}$ = 13
6	5, 5.5	a	a	4.5	4	11	3.5	
7	0	2.5	0	6	6	a	3.5	
8	7	5	2.5	a	a	a		
9	5	2	3.5	3.5	3.5	12		
11a	6	3.5	3.5	3	3	12		
11 b	7	5.5	5.5	3.5	3.5	11		
12a	5.5	5.5	a	7	4	11		
12b	5.5	5	5	a	a	a		
13a	3	a	a	4	3.5	10		
13b	4.5	5, 5	7°	4	3	12		$J_{3^{\prime} \mathrm{a}, 8^{\prime} \mathrm{b}}=14$
14	7, 8.5	a	a	4	4	0		
15	0	2.5	0	6	6	11		
16	6, 8	a	a	3.5	3.5	11		

${ }^{a}$ Unresolved. ${ }^{b}$ The relative assignments of J values are based upon analogy with the spectrum of 3^{\prime}-deoxyadenosine ${ }^{1}$ and in the present case cannot be confirmed by decoupling studies since $\mathrm{C}_{2}, \mathrm{H}$ and $\mathrm{C}_{4}, \mathrm{H}$ are very close together. © The C_{3} 'b H signal is not readily subject to first-order analysis.
pair of diastereoisomers owing to the chiral nature of the dioxolanone grouping. In the adenosine and uridine series ${ }^{1,4}$ this was always reflected in the nmr spectra by a doubling of the signals for various heterocyclic ring or sugar protons. In the case of 3a, at least in DMSOd_{6}, there is no indication whatsoever for multiple signals due to $\mathrm{C}_{2} \mathrm{H}, \mathrm{C}_{5} \mathrm{H}$, or $\mathrm{C}_{6} \mathrm{H}$ of the heterocyclic ring or for $\mathrm{C}_{1^{\prime}} \mathrm{H}$ of the sugar, all of which appcared as very sharp signals. The presence of diastereomers could only be detected in the $\mathrm{C}_{2}, \mathrm{H}$ and $\mathrm{C}_{3}, \mathrm{H}$ signals, both of which appeared as closely overlapping doublets of doublets.

One of our principal interests was the preparation of various deoxy analogs of tubercidin and formycin via catalytic hydrogenolysis of the corresponding halo compounds. We have previously found that chloro compounds are generally unsuited for this purpose and accordingly studied the reaction of tubercidin with 2acetoxyisobutyryl bromide (1b). ${ }^{1}$ As in the case of the corresponding reaction with adenosine, ${ }^{1}$ the reaction of 1 b and 2 took place within an hour at room temperature. The crude product, isolated in almost quantitative yield, was shown by tle to consist predominantly of the 3^{\prime}-bromo nucleoside ($\mathbf{3 b}$) together with only a trace amount of the comparable product from which the labile 5^{\prime} - O-dioxolanone grouping had been lost. Once again the $n m r$ spectrum of the crude product gave no indication of the presence of any 2^{\prime}-bromo isomer and showed the 5^{\prime} position to be blocked by a dioxolanone group. As in the case of 3 a , treatment of crude 3 b with sodium methoxide at room temperature gave the epoxide in 73% yield.

In our previous studies we have made use of mild acidic hydrolysis for the stepwise removal of both dioxolanone and O-acetyl protecting groups. While the former were removed very rapidly by treatment with roughly $0.1 \quad N$ methanolic hydrogen chloride, complete deacetylation under these acidic conditions took $4-8$ days at room temperature. We have now observed that brief treatment of $\mathbf{3 a}$ or $\mathbf{3 b}$ with saturated methanolic ammonia leads to rapid cleavage of both the dioxolanone and acetyl groups giving the
corresponding 4 -amino-7-(3-halo-3-deoxy- β-d-xylofuranosyl)pyrrolo [2,3-d]pyrimidines (4a and 4b) without significant epoxide formation. In this way the bromohydrin (4b) and the chlorohydrin (4a) were obtained in crystalline form in overall yields of 65 and 47% from tubercidin without any serious effort to maximize the yields through reworking the mother liquors. Catalytic hydrogenolysis of 4 b in the presence of a palladium catalyst went very smoothly and gave crystalline 3^{\prime}-deoxytubercidin (5) in 62% yield. The structure of 5 was obvious from its nmr spectrum, the sugar portion of which was very similar to that of 3^{\prime} deoxyadenosine and showed the presence of free hydroxyl groups at both the C_{2}, and C_{5}, positions. In addition, the two C_{3}, protons appeared as clearly separated, geminately coupled eight-line patterns at 1.90 and 2.16 ppm . Similar catalytic hydrogenolysis of the protected 3 -bromo nucleoside (3a), followed by hydrolysis of the 3^{\prime} and 5^{\prime} substituents gave, however, two principal products that were isolated by preparative tle and shown to be 3^{\prime}-deoxytubercidin (5) and $2^{\prime}, 3^{\prime}$-dideoxytubercidin (6) in roughly equal amounts. Once again the nmr spectrum of 6 closely resembled that of $2^{\prime}, 3^{\prime}$-dideoxyadenosine and showed the 2^{\prime} - and 3^{\prime}-methylene groups as overlapping multiplets at 2.0 2.3 ppm .

The formation of $2^{\prime}, 3^{\prime}$-dideoxy nucleosides was previously reported in the adenosine series during hydrogenolysis of a trans bromo acetate and has been explained via a palladium-catalyzed trans elimination of the acetate group giving a $2^{\prime}, 3^{\prime}$ olefin which is concomitantly reduced. ${ }^{1}$ In the absence of the $2^{\prime}-0$ acetyl group such an elimination is blocked and simple hydrogenolysis to the 3^{\prime}-deoxy nucleoside is observed as above.
The reaction of formycin (8) with 1 b follows a puzzlingly different course. Complete reaction occurred once again at room temperature and the crude product could be isolated in quantitative yield as either the free base or the hydrobromide by use of partition or precipitation work-ups, respectively. The crude ma-

Scheme II

terial proved to be an analytically pure but inseparable mixture of the $2^{\prime}-0$-acetyl -3^{\prime}-bromo- 3^{\prime}-deoxy- β -D-xylofuranosyl and $3^{\prime}-0$-acetyl- 2^{\prime}-bromo- 2^{\prime}-deoxy- β -D-arabinofuranosyl nucleosides (9 and 10, Scheme II) in a ratio of $3: 1$ by nmr analysis. Unlike the results in the tubercidin series, these products showed none of the characteristics of dioxolanone groupings in either their nmr or ir spectra. ${ }^{4}$ They were, however, clearly 5^{\prime}-O-(2-acetoxyisobutyrate) esters, their nmr spectrum showing a gem-dimethyl group as a six-proton singlet at 1.47 ppm and a tertiary acetate at 1.99 ppm while the ir spectrum showed no bands near $1805 \mathrm{~cm}^{-1}$. The location of the acetyl groups was readily apparent from the nmr spectrum of the mixture, and the trans stereochemistry of the bromo and acetyl functions was once again confirmed by conversion in 46% yield of the mixture to crystalline $2^{\prime}, 3^{\prime}$-anhydroformycin (15) upon treatment with sodium methoxide.

Brief treatment of the mixture of 9 and 10 quite selectively removed the acetyl groups while having little effect upon the acetoxyisobutyrates. The resulting isomeric trans bromohydrins (11a and 12a) could be cleanly separated by preparative tlc giving the pure
3^{\prime}-bromo-D-xylo (11a) and 2'-bromo-d-arabino (12a) isomers in yields of 61 and 26%, respectively, together with only 9% bromo diols (11 b and 12 b) resulting from hydrolysis of the 5^{\prime} substituent. While we have not actually done the experiment, the very low solubility of the 2^{\prime}-bromo compound (12a) in ethyl acetate suggests that this compound could be directly isolated from the mixture by crystallization. Complete removal of the acetoxyisobutyrate ester from 11a and 12a requires treatment with saturated methanolic ammonia for 48 hr at room temperature and even under these conditions is accompanied by relatively little (8%) formation of the epoxide 15 . The isomeric bromo diols (11b and 12b) were readily separated by preparative tlc giving the pure isomers in yields of 57 and 18%, respectively, together with 8% of crystalline 15 , identical with that described above.

As in the tubercidin series, palladium-catalyzed hydrogenolysis of the trans bromohydrin 11b gave $5^{\prime}-$ O-(2-acetoxyisobutyryl)-3'-deoxyformycin (13a) in 65% yield and subsequent hydrolysis with methanolic ammonia converted this to 3^{\prime}-deoxyformycin (13b). Similar hydrogenolysis of the bromo diol (11b) directly
gave analytically and spectroscopically pure 13b both as the amorphous free base and the crystalline hydrochloride. In a similar way direct hydrogenolysis of the 2^{\prime}-bromo diol (12b) gave 2^{\prime}-deoxyformycin (14) which was isolated as its crystalline hydrochloride. The isomeric deoxyformycins ($13 \mathrm{~b}, 14$) could be distinguished from one another by tlc using several developments with chloroform-methanol (85:15). As expected, hydrogenolysis of the pure 5 '-protected 2^{\prime} bromo nucleoside (12a), followed by hydrolysis with methanolic ammonia, also gave 14 uncontaminated by its 3^{\prime}-deoxy isomer. Also, in agreement with what has been previously shown in the adenosine and tubercidin serics, direct hydrogenolysis of the mixture of fully blocked bromo acetates (9 and 10), followed by removal of the 5 'substituent and preparative tle, gave as the major product (44%) $2^{\prime}, 3^{\prime}$-dideoxyformycin (16). Smaller amounts of 3^{\prime}-deoxyformycin (13b, 28\%) and 2^{\prime}-deoxyformycin ($14,3 \%$) were also isolated and all three compounds could be obtained as their crystalline hydrochlorides. The various deoxy and dideoxy analogs of tubercidin and formycin are currently being examined for biological activities, and these results will be described elsewhere.

For the moment it is very difficult to explain the different courses followed by tubercidin and formycin in their reactions with 2-acetoxyisobutyryl halides. Thus the reaction of tubercidin leads exclusively to introduction of halogen at the 3^{\prime} position and to substitution of the 5 'hydroxyl group by a dioxolanone group. On the other hand, formycin, which is grossly very similar in structure, gives both 3^{\prime} - and 2^{\prime}-bromo derivatives in a ratio of roughly $3: 1$ and is exclusively substituted at $\mathrm{C}_{5^{\prime}}$ by an acetoxyisobutyryl ester. A possible contributing factor could be the known syn conformation of formycin at least in the crystal statc ${ }^{12}$ and in certain polynucleotides. ${ }^{13}$ At first glance, however, one might feel that attack by halide ion from the β face at C_{2}, of a $2^{\prime}, 3^{\prime}$-acetoxonium ion intermediate would be sterically inhibited if the nucleoside were preferentially in a syn conformation. Such an argument would suggest that the reaction of formycin with 1 would lead to less 2^{\prime}-halogenation (10) than was observed with tubercidin or adenosine, a situation that is clearly not so. The reason for the clear-cut difference in the nature of the 5^{\prime} substituent is equally obscure and we are unable to provide any meaningful suggestions. A similar preference for either dioxolanone or acetoxyisobutyrate substitution at $\mathrm{C}_{5^{\prime}}$ was previously observed in the uridine series depending upon the solvent used for the reaction. ${ }^{4}$ One possible factor that we have considered is that formycin exists as a very tenacious monohydrate that is not removed upon drying in vacuo at 50°. Because of this a slightly larger excess of 1 lb was used and the formation of an equivalent of hydrogen bromide would be expected. The addition of 1 equiv of water to a reaction of adenosine with 1 lb exactly as above does not, however, lead to any observable changes in the products. We are, accordingly, unable to provide any adequate explana-
(12) G. Koyama, K. Maeda, and H. Umezawa. Tetrahedron Lett., 579 (1966).
(13) (a) D. C. Ward and E. Reich, Proc. Nat. Acad. Sci., 61, 1494 (1968). (b) D. C. Ward, W. Fuller, and E. Reich, ibid., 62, 581 (1969). For a review of the data concerning the conformation of formycin, see ref 5 , Chapter 9.
tion for the subtle differences observed in the reactions of tubercidin and formycin at this time.

The reactions of 1 with ribonucleosides such as tubercidin and formycin clearly provide a novel and facile route to a variety of deoxy and epoxide derivatives. These compounds are currently being examined for possible biological activities and the results of these studies will be reported elsewhere.

Experimental Section

General Methods.-The general methods used are similar to those described earlier. ${ }^{4}$ Melting points were obtained on a hotstage microscope and are corrected.

4-Amino-7-[2-O-acetyl-3-chloro-3-deoxy-5-0-(2,5,5-trimethyl-1,3-dioxolan-4-on-2-yl)- β-D-xylofuranosyl] pyrrolo [2,3- d] pyrimidine (3a).-A suspension of tubercidin ($1.3 \mathrm{~g}, 4.88 \mathrm{mmol})^{14}$ and 1a ($2.24 \mathrm{~g}, 13.6 \mathrm{mmol}$) in anhydrous acetonitrile was stirred at 37° for 18 hr . The resulting clear solution was evaporated in vacuo to a syrup that was triturated with ether giving a white precipitate that was dried in vacuo. This material ($2.33 \mathrm{~g}, 97 \%$) was homogeneous by tlc (chloroform-methanol, 9:1) and gave a very sharp nmr spectrum indicating the presence of a single compound shown by its elemental analysis to be the hydrochloride
 $271 \mathrm{~nm}(\epsilon 11,700) ;\left[\alpha{ }^{23} \mathrm{D}-16.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{ORD}(\mathrm{MeOH})\right.$ $[\Phi]_{280}^{*}-3000^{\circ},[\Phi]_{255} 0^{\circ},[\Phi]_{248} 1300^{\circ} ; \nu_{\max }(\mathrm{KBr}) 1805$ (dioxolanone), $1755,1675 \mathrm{~cm}^{-1}$.

For analytical purposes this material was converted with quantitative recovery into the free base by partitioning between ethyl acetate and aqueous sodium bicarbonate. The organic phase was dried and evaporated leaving a dry foam. In some experiments the free base was isolated directly (85% yield) by omitting the ether precipitation step and directly using the partitioning process.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Cl}$ (454.86): $\mathrm{C}, 50.17 ; \mathrm{H}, 5.10$; $\mathrm{N}, 12.32$. Found: C, 50.29; H, 5.32 ; N, 12.24.

4-Amino-7-[2-O-acetyl-3-bromo-3-deoxy-5- O-(2,5,5,-trimethyl-1,3-dioxolan-4-on-2-yl)- β-D-xylofuranosyl]pyrrolo[2,3-d]pyrimidine ($\mathbf{3 b}$).-A suspension of tubercidin ($1.3 \mathrm{~g}, 4.88 \mathrm{mmol}$) and lb ($3.13 \mathrm{~g}, 15 \mathrm{mmol}$) in acetonitrile (50 ml) was stirred at room temperature for 1 hr . The solvent was largely removed in vacuo and the residue was partitioned between ethyl acetate and aqueous sodium bicarbonate. The organic phase was washed once more with bicarbonate and then with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated leaving crude 3 b as a white froth in quantitative yield. As obtained, this material showed essentially one spot by tlc (chloroform-methanol, 9:1) and only traces of a more polar material lacking the dioxolanone group. The nmr spectrum of the crude product confirmed that it was essentially homogeneous and for analytical purposes an aliquot was purified by preparative tlc using the above system giving 3 b with excellent recovery as a froth that could not be crystallized: $\lambda_{\max }^{\text {MeOH. }+} 227 \mathrm{~nm}$ ($\epsilon 24,500$), $271(11,500)$; $\lambda_{\max }^{\mathrm{MeOH}, 0 H^{-}} 271 \mathrm{~nm}(\epsilon 11,800) ;[\alpha]^{23} \mathrm{D}$ -4.7° (c 0.7, CHCl_{3}); ORD (MeOH) $[\Phi]_{280}^{\text {tr }}-1950^{\circ},[\Phi]_{264}$ $0^{\circ},[\Phi]_{242}^{\mathrm{k}} 4100^{\circ}$; $\nu_{\max }(\mathrm{KBr}) 1808,1755,1635 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Br}(499.32)$: $\mathrm{C}, 45.70 ; \mathrm{H}, 4.64$; N, 11.22; Br, 16.00. Found: C, 45.93; H, 4.79; N, 11.03; $\mathrm{Br}, 15.86$.

In one experiment the hydrobromide of $\mathbf{3 b}$ was isolated in essentially quantitative yield by the direct precipitation process described for 3a. This material was entirely satisfactory for direct use in subsequent steps.

4-Amino-7-(3-chloro-3-deoxy• β-D-xylofuranosyl)pyrrolo [2,3- d]pyrimidine (4a).-A solution of the crude hydrochloride of 3a ($1.8 \mathrm{~g}, 3.66 \mathrm{mmol}$) in saturated methanolic ammonia (100 ml) was kept at room temperature for 5 hr and then evaporated to dryness in vacuo. The residue was partitioned between chloroform and water, the bulk of the nucleoside material being found in the aqueous phase. The aqueous phase was freed of salts by preparative tlc using chloroform-methanol (4:1) giving 808 mg (78%) of a foam that contained a minor slower moving impurity by tlc. Crystallization from methanol gave $490 \mathrm{mg}(47 \%)$ of pure 4a: $\mathrm{mp} 188-189^{\circ} ; \lambda_{\text {max }}^{\text {MeOH. }+} 228 \mathrm{~nm}(\epsilon 24,700), 272(11,200)$; $\lambda_{\max }^{\text {MeOH.OH- }} 270 \mathrm{~nm}(\epsilon 12,400) ; \quad[\alpha]^{23} \mathrm{D}-37.2^{\circ}$ (c 0.5 , MeOH);

[^105]ORD (MeOH) $[\Phi]_{288}^{\mathrm{tr}}-1600^{\circ},[\Phi]_{260} 0^{\circ},[\Phi]_{250}^{\mathrm{p} k} 450^{\circ},[\Phi]_{230} 0^{\circ}$; mass spectrum $m / e 284,286\left(\mathrm{M}^{+}\right), 249(\mathrm{M}-\mathrm{Cl}), 163$ [base (B) $+\mathrm{CH}_{2} \mathrm{O}$], 135 (base +2 H), 134 (base +H).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}(284.70): \mathrm{C}, 46.40 ; \mathrm{H}, 4.60$; $\mathrm{N}, 19.68 ; \mathrm{Cl}, 12.45$. Found: C, 46.48; H, 4.70; N, 19.58; $\mathrm{Cl}, 12.34$.
4-Amino-7-(3-bromo-3-deoxy- β-D-xylofuranosyl) pyrrolo [2,3-d]pyrimidine (4b).-A solution of the crude hydrobromide salt of $3 \mathrm{~b}(1.5 \mathrm{~g}, 2.58 \mathrm{mmol}$) in saturated methanolic ammonia (150 ml) was kept at room temperature for 2 hr and then evaporated to dryness. The residue was purified by preparative tlc on three plates using four developments with chloroform-methanol (9:1). The major band was eluted and crystallized from methanol-ethyl acetate giving $554 \mathrm{mg}(65 \%)$ of $4 \mathrm{~b}: \mathrm{mp} 179.5-180^{\circ} ; \lambda_{\max }^{\text {Meor. } \mathrm{H}+}$ $228 \mathrm{~nm}(\epsilon 25,300), 272(11,400)$; $\lambda_{\mathrm{max}}^{\text {MeOH.OH- }} 270 \mathrm{~nm}(\epsilon 12,300)$; $[\alpha]^{23} \mathrm{D}-21.5^{\circ}(c 0.65, \mathrm{MeOH}) ; \operatorname{ORD}(\mathrm{MeOH})[\Phi]_{292}^{u t}-2200^{\circ}$, $[\Phi]_{270} 0^{\circ},[\Phi]_{248}^{\mathrm{pk}} 1700^{\circ}$
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}$ (329.16): $\mathrm{C}, 40.14 ; \mathrm{H}, 3.98$; $\mathrm{N}, 17.02 ; \mathrm{Br}, 24.28$. Found: C, $40.28 ; \mathrm{H}, 4.10 ; \mathrm{N}, 16.88$; $\mathrm{Br}, 24.11$.
3^{\prime}-Deoxytubercidin (5).-A solution of $4 \mathrm{~b}(474 \mathrm{mg}, 1.44 \mathrm{mmol})$ in methanol (100 ml) and ethyl acetate (50 ml) containing triethylamine (0.5 ml) was vigorously stirred in an atmosphere of hydrogen in the presence of a 10% palladium-on-carbon catalyst $(1.0 \mathrm{~g})$ for 3 days. The mixture was filtered and the filtrate was desalted by preparative tle using chloroform-methanol (9:1). Crystallization of the uv-absorbing material from ethyl acetate gave $224 \mathrm{mg}(62 \%)$ of $5: \mathrm{mp} 178-179^{\circ} ; \lambda_{\max }^{\text {MeOH+ }} \mathrm{H} 230 \mathrm{~nm}$ ($\epsilon 24,200$), $273(11,100)$; $\lambda_{\text {max }}^{\text {Mеон.он- }} 271 \mathrm{~nm}(\epsilon 11,200) ;[\alpha]^{23} \mathrm{D}$ -74.6° (c 1.0, EtOH); ORD (MeOH) $[\Phi]_{202}^{\mathrm{tr}}-2400^{\circ},[\Phi]_{267} 0^{\circ}$, $[\Phi]_{256}^{\mathrm{pk}} 600^{\circ},[\Phi]_{240} 0^{\circ},[\Phi]_{238}^{\mathrm{tr}}-550^{\circ},[\Phi]_{234} 0^{\circ}$; mass spectrum $(20 \mathrm{eV}) m / e 251(\mathrm{M}+\mathrm{H}), 250\left(\mathrm{M}^{+}\right), 177(\mathrm{BH}-\mathrm{CH}=\mathrm{CHOH})$, 163 (BHCHO), $136(\mathrm{~B}+2 \mathrm{H}), 135(\mathrm{~B}+\mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{3}(250.25): \mathrm{C}, 52.79 ; \mathrm{H}, 5.64 ; \mathrm{N}$, 22.39; O, 19.18. Found: C, $52.64 ; \mathrm{H}, 5.73$; N, 22.27; O, 19.28.
$2^{\prime}, 3^{\prime}$-Dideoxytubercidin (6).-A solution of crude 3b (from 2.25 mmol of tubercidin) in ethyl acetate (100 ml) was stirred in an atmosphere of hydrogen in the presence of triethylamine (0.35 ml) and 10% palladium on carbon (500 mg) for 22 hr . The filtered and evaporated mixture was treated with methanolic ammonia for 6 hr and then purified first on a column of silicic acid and then by preparative tlc using two developments with chloro-form-methanol ($9: 1$). Elution of the major band gave 230 mg (40%) of 3^{\prime}-deoxytubercidin (5) identical with that above, while elution of a somewhat less polar band gave $294 \mathrm{mg}(56 \%)$ of 6 as a homogeneous foam that could not be obtained crystalline and tenaciously held water: $\lambda_{\max }^{\text {moн. }}+219 \mathrm{~nm}(\epsilon 19,100), 275$ $\mathrm{nm}(\epsilon 8400)$; $\lambda_{\max }^{\text {Меон.OH- }} 272 \mathrm{~nm}$ ($\epsilon 9000$); $[\alpha]^{23 \mathrm{D}} \mathrm{D}-20.8^{\circ}$ (c $1.0, \mathrm{MeOH}) ;$ ORD $(\mathrm{MeOH})[\Phi]_{288}^{\mathrm{tr}}-1000^{\circ},[\Phi]_{260} 0^{\circ},[\Phi]_{250}^{\mathrm{ks}}$ $300^{\circ},[\Phi]_{240}^{\text {ti }} 100^{\circ}$; mass spectrum (70 eV) m/e 59 (base peak); mass spectrum (20 eV) m/e $234\left(\mathrm{M}^{+}\right), 134(\mathrm{~B}+\mathrm{H}$, base peak).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (266.25): C, 48.88; H, 6.71. Found: C, $48.91 ; \mathrm{H}, 6.92$.
$2^{\prime}, \mathbf{3}^{\prime}$-Anhydrotubercidin (7). A. From the Bromohydrin (4b). -A solution of $4 \mathrm{~b}(250 \mathrm{mg}, 0.75 \mathrm{mmol})$ in methanol (10 ml) containing 0.76 mmol of sodium methoxide was kept under nitrogen at room temperature for 3 hr . The solution was then neutralized with Dowex $50\left(\mathrm{H}^{+}\right)$resin and evaporated leaving a syrup that was purified by preparative tlc using several developments with chloroform-methanol (9:1) giving a major band moving just faster than 4 b . Elution of this band and crystallization from methanol-ethyl acetate gave $106 \mathrm{mg}(57 \%)$ of 7 which decomposed gradually at $145-176^{\circ}$ (cf. $2^{\prime}, 3^{\prime}$-anhydroadenosine, which decomposes above 180° without melting ${ }^{1}$): $\lambda_{\text {max }}^{H+} 228 \mathrm{~nm}$ (ϵ $22,700), 272(11,200) ; \lambda_{\max }^{\text {OHI- }} 270 \mathrm{~nm}(\epsilon 12,200) ; \quad[\alpha]^{23} \mathrm{D}-42.6^{\circ}$ ($c 0.2, \mathrm{MeOH}$); mass spectrum (70 eV) $m / e 248\left(\mathrm{M}^{+}\right), 221(\mathrm{M}-$ HCN), 134 ($\mathrm{B}+\mathrm{H}$, base peak), 163 ($\mathrm{B}+30$).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$ (248.24): C, $53.22 ; \mathrm{H}, 4.86$; $\mathrm{N}, 22.57$. Found: C, $53.19 ; \mathrm{H}, 4.99 ; \mathrm{N}, 22.57$.
B. From Tubercidin.-The total crude extracted product from tubercidin ($266 \mathrm{mg}, 1 \mathrm{mmol}$) and 1 lb as above (600 mg) was dissolved in methanol (20 ml) containing 5 mmol of sodium methoxide and stored overnight at room temperature. The solution was then heated under reflux for 30 min , neutralized with Dowex $50\left(\mathrm{H}^{+}\right)$resin, and evaporated in vacuo. The residue was purified by preparative tlc using chloroform-methanol (85:15) giving 180 $\mathrm{mg}(73 \%)$ of chromatographically homogeneous 7 which crystallized on standing and had an nmr spectrum identical with that of the analytical sample above.

Analogous treatment of the crude chloro nucleoside (3a) gave 7 in the same way.
Reaction of Formycin with 1b.-Formycin monohydrate (1.14 $\mathrm{g}, 4 \mathrm{mmol})^{16}$ and $1 \mathrm{~b}(2.48 \mathrm{ml}, 16 \mathrm{mmol})$ were stirred together in acetonitrile for 3 hr . The resulting clear solution was largely evaporated in vacuo and a solution of the residue in ethyl acetate was washed twice with saturated aqueous sodium bicarbonate and then with water. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ solution left $2.10 \mathrm{~g}(100 \%)$ of a mixture of 9 and $10(3: 1 \mathrm{by} \mathrm{nmr})$ which behaved as a single spot on tle with chloroform-methanol ($9: 1$) but could not be crystallized: $\lambda_{\max }^{\text {MeOH. } \mathrm{H}^{+}} 235 \mathrm{~nm}$ ($\epsilon 8300$), 297 $(10,800) ; \lambda_{\max }^{\text {MeOH. }}{ }^{\text {H- }} 235 \mathrm{~nm}(\epsilon 18,900)$, 305 (7600); $\nu_{\text {max }} 1665$, $1740 \mathrm{~cm}^{-1}$, no peaks near $1805 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Br}(500.32)$: C, $43.21 ; \mathrm{H}, 4.43$; N, 14.00. Found: C, 43.58; H, 4.67; N, 14.28.

A similar reaction on 1.3 g of formycin but using ether precipitation rather than the partitioning work-up gave 2.9 g of the almost homogeneous hydrobromide of 9 and 10 containing a small amount of deacetylated material.

7-Amino-3-[5-O-(2-acetoxyisobutyryl)-3-bromo-3-deoxy- β-dxylofuranosyl] pyrazolo $[4,3-d]$ pyrimidine (11a).-A solution of the mixture of 9 and 10 above $(1.0 \mathrm{~g}, 2 \mathrm{mmol})$ in saturated methanolic ammonia (10 ml) was kept at room temperature for 2.5 hr and then evaporated to dryness. The residue was applied to four preparative tlc plates and developed four times with chloroformmethanol (9:1) giving a clean separation of two major bands. Elution of the faster band gave $560 \mathrm{mg}(61 \%)$ of 11 a as a chromatographically and spectroscopically homogeneous foam that could not be crystallized: $\lambda_{\text {max }}^{\text {Moि. } \mathrm{H}^{+}} 236 \mathrm{~nm}(\epsilon 8600), 298$ (10,100); $\lambda_{\max }^{\text {Mof.OH- }} 235 \mathrm{~nm}(\epsilon 16,800), 304(10,000)$; $[\alpha]^{23}{ }^{23}$ $7.1^{\circ}(c 1.0, \mathrm{MeOH}) ; \operatorname{ORD}(\mathrm{MeOH})[\Phi]_{318}^{\mathrm{H}}-1400^{\circ},[\Phi]_{302} 0^{\circ}$, $[\Phi]_{276}^{\text {pl }} 1850^{\circ},[\Phi]_{280}^{\mathrm{L}} 1450^{\circ},[\Phi]_{236}^{\mathrm{Lk}} 4100^{\circ} ; \nu_{\text {max }}(\mathrm{KBr}) 1735,1645$ cm^{-1}.
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Br}$ (458.27): C, 41.93; H, 4.40; $\mathrm{N}, 15.28$; $\mathrm{Br}, 17.44$. Found: $\mathrm{C}, 41.69 ; \mathrm{H}, 4.82$; $\mathrm{N}, 15.13$; Br, 17.78 .

A sample of this material was converted into its hydrochloride, which was precipitated from methanol with ether giving a dry white powder.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Br} \cdot \mathrm{HCl}$ (480.73): C, 39.97; H , 4.40: N, 11.65; Br, 16.62. Found: C, 39.82; H, 4.55; N, 11.88; $\mathrm{Br}, 16.37$.

7-Amino-3-[5-O-(2-acetoxyisobutyryl)-2-bromo-2-deoxy- β-darabinofuranosyl] pyrazolo[4,3-d]pyrimidine (12a).--Elution of the slower band from the above ammonia-treated product gave $240 \mathrm{mg}(26 \%)$ of homogeneous 12a which was crystallized from ethyl acetate giving 200 mg with mp 200-205 ${ }^{\circ}$ dec from ethyl
 $236 \mathrm{~nm}(\epsilon 17,800), 306$ (7100); $[\alpha]^{2{ }^{23}}{ }^{2} 37.4^{\circ}(c 1.0, \mathrm{MeOH})$; ORD (MeOH) $[\Phi]_{320}^{\text {tr }}-1000^{\circ},[\Phi]_{308} 0^{\circ}$, $\left[\Phi \Phi_{240}^{\text {p. }} \quad 15,600^{\circ}\right.$; $\nu_{\text {max }}(\mathrm{KBr}) 1735,1640 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Br}$ (458.27): C, 41.93; H, 4.40; $\mathrm{N}, 15.28 ; \mathrm{Br}, 17.44$. Found: C, 41.78; H, 4.53; N, 15.14, Br, 17.57.

A small amount ($60 \mathrm{mg}, 9 \%$) of a mixture of 11 b and 12 b was also eluted from a much more polar band on the above plates. See below.

7-Amino-3-(3-bromo-3-deoxy- β-d-xylofuranosyl) pyrazolo [4,3d] pyrimidine (11b).-A solution of the crude mixture of 9 and 10 ($500 \mathrm{mg}, 1 \mathrm{mmol}$) in saturated methanolic ammonia (5 ml) was kept at room temperature for 50 hr and then evaporated to dryness. The residue was chromatographed on two preparative plates using four developments with chloroform-methanol ($85: 15$) which clearly separated two major slow bands from lesser amounts of epoxide ($15,20 \mathrm{mg}, 8 \%$, after crystallization from ethanol), 11a ($39 \mathrm{mg}, 8 \%$), and 12a ($17 \mathrm{mg}, 3 \%$, mp 199-202 ${ }^{\circ}$ from ethyl acetate). Elution of the faster band gave $190 \mathrm{mg}(57 \%)$ of 11 b as a chromatographically homogeneous syrup that was crystallized from ethanol: mp 202-204 ${ }^{\circ} \mathrm{dec}$; $\lambda_{\max }^{\text {Meop. }+\mathrm{H}} 238 \mathrm{~nm}(\epsilon 8500)$, $298(12,000)$; $\lambda_{\max }^{\text {меин.он- }} 213 \mathrm{~nm}(\epsilon 26,400), 236(19,900), 305$ (8100); $[\alpha]^{23_{\mathrm{D}}} \mathrm{D} 83^{\text {max }}(c 1.0, \mathrm{MeOH}) ;$ ORD (MeOH) $[\Phi]_{296}^{\mathrm{p}} 1700^{\circ}$, $[\Phi]_{258} 0^{\circ},[\Phi]_{234}^{t r}-12,400^{\circ}$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Br}$ (330.15): C, $36.38 ; \mathrm{H}, 3.66$; $\mathrm{N}, 21.21$; $\mathrm{Br}, 24.21$. Found: C, 36.54; H, 3.61; N, 21.21; $\mathrm{Br}, 24.23$.

7-Amino-3-(2-bromo-2-deoxy- β-D-arabinofuranosyl)pyrazolo-
(15) Obtained from Meiji Seika Kaisha, Ltd., Kawasaki, Japan, through the kindness of Dr. Kenji Maeda of the Institute of Microbial Chemistry, Tokyo, Japan. This material proved to be a tenacious monohydrate and was used as such.
$[4,3-d]$ pyrimidine (12 b).-Elution of the slower band from the isolation of 11 b gave $60 \mathrm{mg}(18 \%)$ of 12 b , which was crystallized from ethanol giving 4.5 mg of crystals that underwent a loss of crystal structure at 16.5° and then slowly decomposed above
 $236 \mathrm{~nm}(\epsilon 18,800), 306$ (7400).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Br}$ (330.15): $\mathrm{C}, 36.38 ; \mathrm{H}, 3.66$. Found: C, 36.44; H, 3.99.
5^{\prime}-O-(2-Acetoxyisobutyryl)-3'-deoxyformycin (13a).-A solution of 11 a ($576 \mathrm{mg}, 1.2 . \mathrm{mmol}$) in methanol (100 ml) and ethyl acetate (50 ml) containing triethylamine (0.5 ml) was vigorously stirred in an at mosphere of hydrogen for 24 hr in the presence of a 10% palladium on carbon catalyst (1 g). The mixture was filtered and the filtrate desalted by preparative tle using chloro-form-methanol ($9: 1$) to give 308 mg (6.) \%) of 13 a as a homogeneous foam that could not be crystallized: $\lambda_{\max }^{\text {Meor. }}{ }^{+} 236 \mathrm{~nm}$ ($\epsilon 9100$), 297 (10,800); $\left.\lambda_{\max }^{\text {нон.он- }} 212 \mathrm{~nm}(\epsilon 2), 900.\right), 236$ $(16,600), 30.5(6700)$; $[\alpha]^{23} \mathrm{D}-21.0^{\circ}(c 0.7, \mathrm{MeOH})$; ORD (Me-$\mathrm{OH})[\Phi]_{34}^{1!}-1400^{\circ},[\Phi]_{290} 0^{\circ},[\Phi]_{288}^{\text {nk }} .5200^{\circ}$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6}$ (379.37): C, 50.6 .7 ; H , .5 .58 ; $\mathrm{N}, 18.46$. Found: C, $50.41 ; \mathrm{H}, 5.57$; N, 18.29 .

3'-Deoxyformycin (13b). A. From 11b.-A solution of 11b ($3.50 \mathrm{mg}, 1.06 \mathrm{mmol}$) in methanol (180 ml) and ethyl acetate (90 ml) containing triethylamine (0.5 ml) was vigorously stirred in an atmosphere of hydrogen for 48 hr in the presence of a 10% palladium on carbon catalyst. The filtered and evaporated mixture was desalted by preparative tlc using chloroform-methanol ($8.5: 1.5$) giving $1.54 \mathrm{mg}(60 \%)$ of 13 b as a chromatographically homogeneous but hygroscopic white foam.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}(2.51 .24): \mathrm{C}, 47.80 ; \mathrm{H}, 5.22$; $\mathrm{N}, 27.88$. Found: C, 47.59; H,.5.27; N, 27.72.
Treatment of a portion of this substance with a small excess of methanolic hydrogen chloride gave the crystalline hydrochloride in quantitative yield with mp 207-209 ${ }^{\circ}$ from ethanol: $\lambda_{\max }^{\text {Meor. }}+$ $234 \mathrm{~nm}(\epsilon 8.000), 29$. ($10, .500$); $\lambda_{\mathrm{max}}^{\text {меонон- }} 234 \mathrm{~nm}(\epsilon 16,800)$, 303 (7800); $[\alpha] \mathrm{D}-32.4^{\circ}\left(c 0.4, \mathrm{H}_{2} \mathrm{O}\right) ;$ ORD $\left(\mathrm{H}_{2} \mathrm{O}\right)[\Phi]_{308}^{\text {li }}-8: 0^{\circ}$, $[\Phi]_{293} 0^{\circ},[\Phi]_{260}^{\text {pk }} 2100^{\circ},[\Phi]_{22} 0^{\circ},[\Phi]_{220}^{\mathrm{tr}}-4300^{\circ}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}$ (287.70): C, 41.74; H, 4.90; $\mathrm{N}, 24.34$. Found: C, 41.58; H, 4.7.); N, 24.49 .
B. From 13a.-A solution of 13a ($236 \mathrm{mg}, 0.62 \mathrm{mmol}$) in saturated methanolic ammonia (100 ml) was kept at room temperature for 2 days. Preparative tle using chloroform-methanol ($8.5: 1.5$) showed that a trace of $13 a$ still remained, and elution of the major band gave $140 \mathrm{mg}(90 \%)$ of 13 b identical wish that above.
2^{\prime}-Deoxyformycin (14).-A solution of 12 a ($410 \mathrm{mg}, 0.89 \mathrm{mmol}$) in methanol (100 ml) was hydrogenated as above in the presence of a palladium-on-carbon catalyst (400 mg). The mixture was then filtered and evaporated leaving a crude 2 '-deoxy nucleoside that gave a single spot on tlc using chloroform-methanol ($85: 1.5$). This material was dried, treated with methanolic sodium methoxide at room temperature for 3 hr , and then passed through a column of Dowex :0 $\left(\mathrm{NH}_{4}{ }^{+}\right)$resin. The eluate was concentrated and purified by preparative tlc using multiple developments with chloroform-methanol (4:1). The eluted material ($140 \mathrm{mg}, 63 \%$) was treated with an excess of methanolic hydrogen chloride and crystallized from ethanol giving the hydrochloride of $14: \mathrm{mp}$
 $234 \mathrm{~nm}(\epsilon 16,500), 304$ (7300); $\left.[\alpha]^{23} \mathrm{D} 20.8^{\circ}(c) 1.0, \mathrm{H}_{2} \mathrm{O}\right)$; ORD
$\left(\mathrm{H}_{2} \mathrm{O}\right)[\Phi]_{320}^{\text {tr }}-500^{\circ},[\Phi]_{303} 0^{\circ},[\Phi]_{260}^{\text {ph }} 1300^{\circ},[\Phi]_{241} 0^{\circ},[\Phi]_{224}^{\text {tr }}$ $-.5900^{\circ}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Cl}$ (287.70): C, 41.74; H, 4.90; N, 24.34; Cl, 12.32. Found: C, 42.00; H, 4.87; N, 24.14; $\mathrm{Cl}, 12.36$.
$2^{\prime}, 3^{\prime}$-Dideoxyformycin (16).-A solution of the crude product from formycin (3.45 mmol) and lb (as above) in methanol (100 ml) was vigorously stirred in the presence of triethylamine (0.5 ml) and a 10% palladium-on-carbon catalyst (500 mg) for 5 days. After filtration and evaporation, the residue was treated with methanolic sodium methoxide for 3 hr and then passed through a column of Dowex $50\left(\mathrm{NH}_{4}{ }^{+}\right)$resin. The residue was chromatographed on four preparative plates using eight developments with chloroform-methanol ($85: 1 \overline{5}$) which clearly separated three bands. Elution of the slowest band gave $35 \mathrm{mg}(3 \%)$ of pure 14 which was isolated as the crystalline hydrochloride. Elution of the middle band gave 320 mg (28%) of 13 b which was isolated as its crystalline hydrochloride with $\mathrm{mp} 20 \overline{\mathrm{j}}-209^{\circ}$ as above. Elution of the fastest band gave $360 \mathrm{mg}(44 \%)$ of chromatographically and spectroscopically homogeneous 16 as a foam. This material was converted to its hydrochloride and crystallized from ethanol giving 27.5 mg of needles with $\mathrm{mp} 182-185^{\circ}$. The remaining material was precipitated with ether for other studies:
 ($\epsilon 17,200$), 304 (8000); $[\alpha]^{23}{ }^{3} \mathrm{D} 30.2^{\circ}$ (c 1.0, $\mathrm{H}_{2} \mathrm{O}$); ORD (Me$\mathrm{OH})[\Phi]_{254}^{\mathrm{pk}} 1800^{\circ},[\Phi]_{239} 0^{\circ},[\Phi]_{22 \mathrm{e}}^{\mathrm{tr}}-3600^{\circ}$; mass spectrum (hydrochloride, 20 and 70 eV) m/e $235\left(\mathrm{M}^{+}\right), 162(\mathrm{~B}+28$, base peak). ${ }^{16}$
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Cl}$ (271.71): C, 44.20; H, 5.19; N, 25.77; Cl, 13.05. Found: C, 44.03; H, 5.18; N, 25.53; Cl, 13.24.
$2^{\prime}, 3^{\prime}$-Anhydroformycin (15).-A solution of crude 9 and 10 (. 500 $\mathrm{mg}, 1 \mathrm{mmole}$) in methanol (35 ml) containing 2.7 mmol of sodium methoxide was kept at room temperature for 72 hr , at which point tle showed the presence of a single product. The mixture was neutralized by portionwise addition of Dowex $50\left(\mathrm{H}^{+}\right)$resin, filtered, and evaporated. The residue was purified by preparative tle using chloroform-methanol (4:1) and the major uv-absorbing product was crystallized from methanol-ethyl acetate giving $115 \mathrm{mg}(46 \%)$ of 15 which decomposed gradually above 190° without melting: $\lambda_{\max }^{\text {MeOH }}+235 \mathrm{~nm}(\epsilon 8300), 297(11,100)$;
 $0.5, \mathrm{MeOH}) ; \operatorname{ORD}(\mathrm{MeOH})[\Phi]_{240}^{\mathrm{pk}} 4600^{\circ},[\Phi]_{230} 0^{\circ},[\Phi]_{22}$ -8300°.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3}$ (249.23): C, 48.19; H, 4.45; $\mathrm{N}, 28.01$. Found: C, $48.38 ; \mathrm{H}, 4.62 ; \mathrm{N}, 27.84$.

Registry No.-1a, 40635-66-3; 1b, 40635-67-4; 2, 69-33-0; 3a, 40627-07-4; 3а HCl, 40627-08-5; 3b, 40627-09-6; 3b HBr, 40627-10-9; 4a, 40627-11-0; 4b, 40627-12-1; 5, 40725-89-1; 6, 40627-30-3; 7, 40627-31-4; 8, 6742-12-7; 9, 40627-32-5; 10, $40627-33-6$; 11a, $40627-34-7$; $11 \mathrm{a} \mathrm{HCl}, 40627-35-8$; 11b, 40627-$36-9$; 12a, 40627-37-0; 12b, 40627-38-1; 13a, 40627-39-2; 13b, $40725-90-4 ; 13 \mathrm{~b} \mathrm{HCl}, 40627-13-2 ; 14,40627-14-3 ; 14 \mathrm{HCl}$, 40627-15-4; 15, 40627-16-5; 16, 40627-17-6; 16 HCl, 40627-18-7.

[^106] cussed in detail elsewhere.

Highly Stereoselective Conversion of Prostaglandin A_{2} to the $\mathbf{1 0 , 1 1} \alpha$-Oxido Derivative Using a Remotely Placed Exogenous Directing Group

E. J. Corey* and Harry E. Ensley
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Received April 23, 1979

Abstract

Attachment of the tri-p-xylylsilyl group to the 15 -hydroxyl function of prostaglandin A_{2} has been used to control the stereochemistry of epoxidation at the $\Delta^{10,11}$ bond using alkaline peroxide in methanol at -40°. The controller group allows formation of the $10,11 \alpha$-oxide with 94% stereoselectivity. A lower degree of control ($87.5 \% \alpha$-oxide) is observed under the same conditions using the tribenzylsilyl group as the contrcl unit. Utilizing these exogenous controlling groups, convenient, efficient, and highly stereoselective conversion of A prostaglandins to E prostaglandins becomes possible.

We have recently been concerned with the development of a process for stereocontrolled epoxidation of prostaglandin A_{2} at the $\Delta^{10,11}$ linkage for several reasons. First, quantities of very pure $10,11 \alpha$ - and $10,11 \beta$-oxido derivatives were required for studies of enzymic transformations of prostaglandin A_{2} in blood. ${ }^{1}$ Additionally, two simple and stereocontrolled synthetic routes to prostaglandins have been developed lately in these laboratories ${ }^{2}$ which lead with high efficiency to A type prostaglandins; these syntheses would become general for all primary prostaglandins with the realization of a process for stereocontrolled 10,11 α-epoxidation of the PGA's. Although our studies of the directed α epoxidation are not yet complete, we have at this point in time succeeded in effecting epoxidation essentially quantitatively with a ratio of $10,11 \alpha$-epoxide to $10,11 \beta$ epoxide (referred to herein as α / β ratio) of $94: 6$. Previously described epoxidations of PGA_{2} derivatives, ${ }^{3}$ including those in a very recent communication, ${ }^{4}$ have favored only moderately the α isomer. Our plan depends on the attachment of a controller group at the 15-hydroxyl group so designed as to block the approach of a reagent to the β face of $\mathrm{C}-11$ in the five-membered ring of PGA_{2}. In this connection it should be noted that a technique has recently been devised in this laboratory which permits highly stereoselective generation of the $15 S$ configuration of the natural prostaglandins by reduction of 15 -ketones bearing an appropriate controlling group at C-11. ${ }^{5}$ Taken together, the present studies and previous work ${ }^{5}$ illustrate the use of a controller group at C-15 to direct stereochemistry at C-11 and also the reverse, i.e., the regulation of configuration at $\mathrm{C}-15$ by the presence of a suitable control element at C-11.
The epoxidation of the $\Delta^{10,11}$ linkage of the A prostaglandins can be effected by the alkaline hydrogen peroxide method. ${ }^{3,6,7}$ Two attractive candidates as

[^107] diastereomers, typically with an α / β ratio of 60:40.

substrates designed to favor $10,11 \alpha$-epoxidation appeared to be the 15 -tribenzylsilyl ether of PGA_{2} (1) and the 15 -tri- p-xylylsilyl ether 2 . Figure 1 shows a view of 2 in what appears to be the energetically favorable molecular conformation. ${ }^{8}$ The strong shielding of the β face of the cyclopentenoid unit in 2 by one of the benzenoid units of the controller is apparent. Although this shielding can be decreased to some degree by rotation about the $\mathrm{Si}-\mathrm{CH}_{2} \mathrm{Ar}$ bonds and/or $\mathrm{O}-$ Si bond, the obstruction to nucleophilic attack at the β face of $\mathrm{C}-11$ remains substantial.

Reaction of prostaglandin A_{2} with tribenzylsilyl chloride ${ }^{9}$ (3.5 equiv) (prepared from benzylmagnesium chloride and silicon tetrachloride in ether, $\mathrm{mp} 140^{\circ}$) in dimethylformamide in the presence of 2,6 -lutidine (3.5 equiv) at -20° for $24-36 \mathrm{hr}$ followed by aqueous workup and chromatography of the crude product on silica gel afforded the 15 -tribenzylsilyl derivative of PGA_{2} (1) as a colorless oil, homogeneous by tlc analysis on silica gel using ether for development ($R_{\mathrm{f}} 0.58$), and free of PGB_{2} tribenzylsilyl ether ($R_{\mathrm{f}} 0.23$), the most
(7) The epoxidation of prostaglandin A_{2} methyl ester by the procedure of N. C. Yang and R. A. Finnegan, J. Amer. Chem. Soc., 80, 5845 (1958) (tertbutyl hydroperoxide-Triton B in aprotic medium) shows a preference opposite to the alkaline epoxidation in protic media (E. J. Corey and R. A. Ruden, unpublished experiments, 1972); for example, an α / β ratio of $25: 75$ is observed in benzene solution at 25°. This appears to be the method of choice at present for the preparation of $10,11 \beta$-oxido PGA's.
(8) In this conformation the two side chains are extended to avoid torsional or eclipsing interactions, and the tri-p-xylylsilyl group is arranged so as to minimize nonbonded intramolecular repulsions. Other conformations generated by rotation about the $\mathrm{C}-15-\mathrm{O}$ bond appear to involve a major increase in ateric repulsion.
(9) G. Martin and F. S. Kipping, J. Chems. Soc., 95, 302 (1909).

Figure 1.-CPK model of 2. Numbers on hydrogens correspond to the carbons to which they are attached. $\mathrm{O}-1$ is carboxyl oxygen, O-2 carbonyl at C-9 and O-3 oxy at C-15. The lower and upper faces of the cyclopentane unit are α and β, respectively.
troublesome potential contaminant at this stage. Epoxidation of 1 was effected by reaction with a large excess of hydrogen peroxide in methanol at -40° with the addition of 0.6 -equiv portions of $3 N$ sodium hydroxide after $0.1,4,12$, and 30 hr . Addition of saturated aqueous ammonium chloride, concentration at $<20^{\circ}$ to remove methanol, and extraction afforded 10,11-epoxide almost quantitatively. Analysis of the product, carried out using a Waters Associates ALC-202 high-pressure liquid chromatographic unit using an ultraviolet (254 nm) detector, ${ }^{10}$ revealed the product to be $87.5 \% \alpha$-oxide 3 and 12.5% of the epimer. ${ }^{11}$ As expected, the α / β ratio was lower when the reaction was conducted at higher temperature (e.g., 84.5:15.5 at -18°), and in addition, the epoxidation was considerably faster ($c a .4 \mathrm{hr}$ required).
The 15 -tri- p-xylylsilyl ether of $\mathrm{PGA}_{2}(2)^{12}$ upon epoxidation as described above at -40° afforded 94% of the $10,11 \alpha$-oxide 4 and 6% of the β-oxide. At -20° epoxidation led to a product of α / β ratio of $89.5: 10.5$.
The epoxides 3 and 4 were converted smoothly by desilylation [acetic acid-tetrahydrofuran-water (3:1:1) $\left.26^{\circ}, 9 \mathrm{hr}\right]$ and reduction with aluminum amalgam to prostaglandin E_{2}, identical in all respects with an authentic sample. Since the rate of the aluminum amalgam reduction of the $10,11 \alpha$-oxide of PGA_{2} is considerably faster than that of the isomeric $10,11 \beta$ -

[^108]oxide, it is probable that by proper choice of reaction time pure crystalline prostaglandin E_{2} can be prepared efficiently from the $94: 6 \alpha, \beta$-oxide mixture simply by use of an appropriate reaction time followed by recrystallization of the resulting PGE_{2}. Thus a highly stereoselective and convenient process is available for the conversion of A to E prostaglandins. ${ }^{13}$

These studies are continuing. It is of great interest that the replacement of hydrogen in 1 by para methyl as in 2 results in a substantial increase in the directive influence of the remote controller group. The effect is not surprising based upon the considerations outlined above; it points the way for further research. ${ }^{14}$

Experimental Section

15-Tri- p-xylylsilyloxy-PGA ${ }_{2}$ (2).-A mixture of 201 mg (0.60 mmol) of PGA_{2} (purity $70-80 \%$) and 710 mg (1.88 mmol) of tri- p-xylylsilyl chloride ${ }^{9,12}$ was dissolved in 3 ml of DMF. The slurry was cooled to -25°, and $80 \mathrm{mg}(0.75 \mathrm{mmol})$ of 2,6 -lutidine was added. The solution was stirred at -25° for 12 hr and then another 80 mg (0.75 mmol) of 2,6 -lutidine was added and the solution was stirred for another 24 hr . The solution was diluted with 15 ml of methylene chloride and extracted twice with saturated brine. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation of the solvent, the residue was chromatographed on silica gel to give 283 $\mathrm{mg}(0.42 \mathrm{mmol}, 90-100 \%)$ of the pure 15 -silyl ether of PGA_{2} : $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ 7.6-7.2 (multiplet, $1 \mathrm{H}, \mathrm{C}_{11} \mathrm{H}$), 6.9 (singlet, 12 H, ArH), 6.4-6.1 (multiplet, $1 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}$), $5.5-5.2$ (multiplet, 4 H , olefinic), $4.25-3.95$ (multiplet, $1 \mathrm{H}, \mathrm{C}_{15} \mathrm{H}$), 3.35-0.7 (multiplet, 36 H); ir $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3480,1740,1705,1510 \mathrm{~cm}^{-1}$; mass spectrum $(70 \mathrm{eV}) m / e 676\left(\mathrm{M}^{+}\right)$.

10,11-Epoxy-15-tri- p-xylylsilyloxy-PGA2 (4).-To a solution of $174.3 \mathrm{mg}(0.26 \mathrm{mmol})$ of 15 -tri- p-xylylsilyloxy- PGA_{2} dissolved in 10 ml of methanol at -45° was added $150 \mu \mathrm{l}$ of 2 N NaOH and 0.5 ml (ca. 2 mmol) of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. The homogeneous mixture was stirred at -45° for 12 hr . Another $150 \mu \mathrm{l}$ of 2 N NaOH and 0.5 ml of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ were added, and the solution was stirred for 24 hr at -45°. The solution was added to 5 ml of saturated ammonium chloride, and the methanol was evaporated under reduced pressure. The aqueous residue was extracted twice with methylene chloride. The organic layers were washed with saturated ammonium chloride and then saturated sodium chloride solution. After drying and evaporation of the solvent, there was obtained $180 \mathrm{mg}(102 \%)$ of the oily epoxide: $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.94$ (singlet, 12 H, ArH), 5.55-5.20 (multiplet, $1 \mathrm{H}, \mathrm{C}_{15} \mathrm{H}$), 3.67-3.51 (multiplet), $1 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}$), 3.49-3.30 (multiplet, $1 \mathrm{H}, \mathrm{C}_{11} \mathrm{H}$), 3.0-0.7 (multiplet, 36 H); ir ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3480, 1770, $1720,1510 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e $692\left(\mathrm{M}^{+}\right)$.

Liquid-liquid chromatography ${ }^{10}$ showed the mixture to consist of $94.5 \% \alpha$-epoxide and $5.5 \% \beta$-epoxide.

10,11-Epoxy-PGA .-A solution of $180 \mathrm{mg}(0.26 \mathrm{mmol})$ of 15 -tri- p-xylylsilyloxy-PGA ${ }_{2}$ epoxide in 12 ml of HOAc, 4 ml of $\mathrm{H}_{2} \mathrm{O}$, and 4 ml of THF was stirred for 6 hr at ca. 26°. Then the temperature was raised to 45° for 3 hr . After evaporation of the solvent there was obtained 184 mg of a mixture of trixylylsilanol and PGA_{2} epoxide. The PGA_{2} epoxide could not be purified by extraction into pH 8 buffer and then acidification to pH 3.5 ; however, it was easily purified by filtration through silica gel. Thus 87 mg of the mixture of trixylylsilanol and PGA_{2} epoxide was filtered through 5 g of silica gel in ether. The silanol was eluted rapidly and then a trace of acetic acid was added to the ether. The A_{2} epoxide ($37 \mathrm{mg}, 85 \%$) was eluted rapidly: nmr $\left(\mathrm{CDCl}_{3}\right) \delta 6.00-5.20$ (multiplet, 6 H , olefinic, $\mathrm{CO}_{2} \mathrm{H}$ and OH), 4.17 (broad singlet, $1 \mathrm{H}, \mathrm{C}_{15} \mathrm{H}$), 3.87-3.62 (multiplet, 1 H , $\mathrm{C}_{10} \mathrm{H}$), 3.55-3.38 (multiplet, $1 \mathrm{H}, \mathrm{C}_{9} \mathrm{H}$), 3.20 (multiplet, 21 H); ir $\left(\mathrm{CCl}_{4}\right) 3350,1741,1709 \mathrm{~cm}^{-1}$.
PGE_{2}.-To a solution of 2.75 ml of THF, 1.5 ml of $\mathrm{H}_{2} \mathrm{O}, 0.1$ ml of saturated sodium bicarbonate, 1 ml of ethanol, and 15 mg (0.043 mmol) of PGA_{2} epoxide was added aluminum amalgam (freshly prepared from 250 mg of aluminum foil). The reaction

[^109]was allowed to proceed for 1.5 hr at 4°. The reaction mixture was centrifuged, and the aqueous THF was decanted. The alumina residue was washed twice with 10 ml of ethyl acetate containing 1% acetic acid, and the washings were combined with the THF solution. The solution was acidified with acetic acid and extracted with 10 ml of saturated sodium chloride solution. Drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation of the solvent gave 16.1 mg of material which was almost entirely PGE_{2} with some PGA_{2} and starting material (no detectable epi-PGE ${ }_{2}$).
This was dissolved in a small amount of ethyl acetate at ca. 40°, and hexane was added until the solution was cloudy. The solution was cooled at -20° for 2 hr , then overnight at -75° to give $11 \mathrm{mg}(0.031 \mathrm{mmol}, 72.5 \%): \mathrm{mp} 63-66^{\circ}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 5.6$ - 5 - 5.48 (multiplet, 2 H , olefinic), 5.48- 5.25 (multiplet, 2 H , olefinic), 5.17 (broad singlet, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$ and OH), $4.23-$ 3.83 (multiplet, $2 \mathrm{H}, \mathrm{C}_{11} \mathrm{H}$ and $\mathrm{C}_{15} \mathrm{H}$), 2.80-0.70 (multiplet, 23 H); ir $\left(\mathrm{CHCl}_{3}\right) 3400,1733,1704,967 \mathrm{~cm}^{-1}$. An additional 2 mg of PGE_{2} could be obtained from the mother liquor by thin layer chromatography, raising the yield to 85%.

15-Tribenzylsilyloxy-PGA ${ }_{2}$ (1).-A mixture of 345 mg (1.03 mmol) of PGA_{2} (purity $70-80 \%$) and $1.237 \mathrm{~g}(3.67 \mathrm{mmol})$ of tribenzylsilyl chloride was slurried under argon in 5 ml of DMF. The slurry was cooled to -20°, and $113 \mathrm{mg}(1.03 \mathrm{mmol})$ of $2,6-$ lutidine in 0.5 ml of DMF was added. The solution was stirred for 12 hr at -20° and then another $101 \mathrm{mg}(0.94 \mathrm{mmol})$ of $2,6-$ lutidine was added and the solution was stirred for 12 hr at -20°. After another $50 \mathrm{mg}(0.47 \mathrm{mmol})$ of 2,6 -lutidine and 12 hr at -20°, the silylation was complete. The solution was diluted with 20 ml of methylene chloride and extracted twice with 20 ml of water and then 10 ml of brine. The aqueous layers were extracted with 10 ml of methylene chloride, and the combined methylene chloride solutions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Tlc shows tribenzylsilyl chloride ($R_{\mathrm{f}} 0.58, \mathrm{Et}_{2} \mathrm{O}$) and a small amount of 15 -tribenzylsilyloxy- $\mathrm{PGB}_{2}\left(R_{\mathrm{f}} 0.23, \mathrm{Et}_{2} \mathrm{O}\right)$ as impurities. Chromatography on silica gel gave $452 \mathrm{mg}(0.71 \mathrm{mmol}, 88-100 \%)$ of $15-$ tribenzylsilyl- PGA_{2} as an oil: $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 9.8\left(1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right)$, 7.40-6.80 (multiplet, $16 \mathrm{H}, \mathrm{ArH}$ and $\mathrm{C}_{11} \mathrm{H}$), 6.25-6.05 (multiplet,
$1 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}$), 5.45-5.15 (multiplet, 4 H , olefinic), 4.20-3.95 (multiplet, $1 \mathrm{H}, \mathrm{C}_{15} \mathrm{H}$), 3.22-2.96 (multiplet, $1 \mathrm{H}, \mathrm{C}_{12} \mathrm{H}$), 2.500.85 (multiplet, 20 H); ir (neat) 2970, 1740, 1720, 1600, 1500 , $1450 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e $634\left(\mathrm{M}^{+}\right), 527$.

10,11-Epoxy-15-tribenzylsilyloxy-PGA ${ }_{2}$ (3) and PGE 2 - To a 2 solution of $64 \mathrm{mg}(0.10 \mathrm{mmol})$ in 1 in 5 ml of methanol at -17.5° was added 1 ml (ca. 5 mmol) of $3 \mathrm{C} \% \mathrm{H}_{2} \mathrm{O}_{2}$ followed by $20 \mu \mathrm{I}$ $(0.06 \mathrm{mmol})$ of $3 N \mathrm{NaOH} .{ }^{6}$ After 4 hr at -17.5° another $20 \mu \mathrm{l}$ (0.06 mmol) of 3 N NaOH was added and the solution was stirred for 8 hr . Another $25 \mu \mathrm{l}(0.075 \mathrm{mmol})$ of $3 N \mathrm{NaOH}$ was added, and the solution was stirred for another 18 hr . Then 2 ml of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, and the volume was reduced to $c a .5 \mathrm{ml}$. The residue was diluted with 10 ml of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which was washed twice with 5 ml of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and then washed with 5 ml of brine. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation of the solvent, there was obtained $60.7 \mathrm{mg}(0.094 \mathrm{mmol}$, 94%) of a mixture of epoxides: $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.32-6.80$ (broad doublet, $15 \mathrm{H}, \mathrm{ArH}$), $5.60-5.10$ (multiplet, 4 H , olefinic), $4.20-$ 3.90 (multiplet, $1 \mathrm{H}, \mathrm{C}_{15} \mathrm{H}$), 3.56 (doublet, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}$), 3.35 (multiplet, $1 \mathrm{H}, \mathrm{C}_{11} \mathrm{H}$), 2.80-0.85 (multiplet, 27 H); ir (CHCl_{3}) $3400,2960,1760,1720,1600,1 \overline{0} 00 \mathrm{~cm}^{-1}$; mass spectrum $(70 \mathrm{eV}) m / e 650\left(\mathrm{M}^{+}\right), 541$.

Although the two epoxides were inseparable by tlc, they were easily separated by llc. ${ }^{10}$. This showed a mixture of $84.5: 15.5$ with the major isomer being the desired epoxide.

When the epoxidation was carried out at -40°, the isomer ratio was $87.5: 12.5$ and the yield was 95%. However, epoxidation did not occur at -78° even using $90 \% \mathrm{H}_{2} \mathrm{O}_{2}$ instead of 30% $\mathrm{H}_{2} \mathrm{O}_{2}$.

The conversion of 3 to PGE_{2} was carried out by the same procedure described above for the synthesis of PGE_{2} from 4.

Registry No.-1, 41366-90-9; 2, 41366-91-0; 3, 41366-92-1; PGA $_{2}, 13345-50-1$; 10,11-epoxy-PGA $2,41366-94-3$; PGE 2 , 363-24-6; tri- p-xylylsilyl chloride, 41366-¢5-4; tribenzylsilyl chloride, 18740-59-5; 4, 41366-93-2.

A Study of the Scope and Mechanism of Displacement of Halogen from a Saturated Carbon by Organocadmium Reagents ${ }^{1}$

Paul R. Jones* and Samuel J. Costanzo
Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824

Received January 23, 1973

Abstract

Displacement of halogen with phenylcadmium reagent has been effected in several substrates: ethyl bromoacetate, ethyl α-bromopropionate, ethyl α-bromobutyrate, 3-bromocyclohexene, allyl bromide, benzyl bromide, and chloromethyl methyl ether. Under similar reaction conditions, 1-bromobutane, ethylene bromide, bromoacetaldehyde diethyl acetal, tert-butyl chloride, trimethylsilyl chloride, chlorocyanomethane, and 1-chloro-1nitroethane were unreactive. With α-halo esters, an α hydrogen, as well as halogen, seems to be a minimum requirement for displacement. A carbene intermediate ($\mathrm{RCO} C O R^{\prime}$) seems unlikely, inasmuch as none of the expected bicyclo product was found when cyclohexene was added as a carbene trapping agent. The generation of free radicals is evident from the strong esr signal observed initially on mixing of the reactants. The intermediacy of a free-radical intermediate, either by homolysis or electron transfer, is consistent with the fact that the displacement proceeds with racemization, which was established in the formation of (\pm)-methyl hydratropate from $(R)-(+)$-bromopropionate and phenylcadmium reagent under conditions when the starting ester was optically stable. The interesting observation has been made that the displacement in 3-bromocyclohexene proceeds without the intermediacy of free radicals, as judged by esr spectroscopy.

For some time we have been investigating a fascinating reaction of promising synthetic value, namely, the displacement of substituents-often but not always halogen-in esters, lactones, and ketones with organocadmium reagents. ${ }^{2}$ The general reaction is represented in eq 1 a and 1 b .

[^110]

While it had already been shown that the displacement from a phthalide ${ }^{2 e}$ was stereoselective, no such information was at hand concerning the steric course of displacement in α-halo esters ${ }^{2 \mathrm{~d}}$ when this present work was undertaken. We found that $(R)-(+)-$ methyl α-bromopropionate (1) underwent reaction with ethereal phenylcadmium reagent to afford racemic

$$
\begin{align*}
&(R)-(+)-\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{CO}_{2} \mathrm{CH}_{3}+ \mathrm{PhCdCl} \\
& \underset{\text { ether }}{60 \%} \tag{2}\\
&(\pm)-\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Ph}) \mathrm{CO}_{2} \mathrm{CH}_{3}
\end{align*}
$$

methyl hydratropate (2) (eq 2). In the course of our investigation, we learned that Van Horn ${ }^{3}$ had observed a similar behavior with "active" ethyl α-bromopropionate, which was converted to "racemic" ethyl α-(α-naphthyl)propionate with the α-naphthylcadmium reagent in ether-THF. Like Van Horn, we were able to show that racemization of the starting ester could not account for racemic displacement product; in addition, Van Horn carried out control experiments to demonstrate that optically active α (α-napthyl)propionate was configurationally stable under the reaction conditions.

This racemization pathway for α-halo esters, in marked contrast to the behavior of phthalides, rules out certain mechanisms which otherwise would be attractive: an SN 2 displacement, a concerted reaction involving either a four- or six-center transition state. While an $\mathrm{S}_{\mathrm{N}} 1$ reaction seemed unlikely, two mechanistic pathways warranted further experimental verification: substitution by way of a carbene (eq 3)

and a reaction involving free radicals. Evidence against the carbene mechanism is provided by the observation that none of the expected bicyclo[4.1.0] product was formed when the reaction was carried out in the presence of cyclohexene as a carbene trapping agent. This conclusion was based on the absence of any additional peaks (aside from that of cyclohexene) in the glpc, under conditions where all the components were cleanly separated, and the lack of typical cyclopropyl protons in the nmr spectrum of the reaction mixture.

Some preliminary esr experiments provided impressive evidence for the involvement of free radicals in the displacement reaction. When reactants-phenylcadmium reagent and bromopropionate ester-were placed in a reaction flask as usual, and an aliquot immediately transferred to an esr sample tube, a strong signal was observed. As the mixture was allowed to reflux, aliquots were removed every few minutes, their esr spectra being measured as quickly as possible. After 1 hr the esr signal was weak; in 24 hr it had disappeared. In parallel experiments it could be shown by glpc analysis that the amount of hydratropic ester, the displacement product, increased up to about 1 hr and then remained unchanged for periods as long as 24 hr . No such strong initial esr signal was produced by a 0.05 M reaction mixture to which 0.5 g of AIBN had been added; and, indeed, no hydratropic ester was formed, as shown by glpc. It should be stressed that the strong esr signal was lacking in ethereal solutions of phenylmagnesium bromide, phenylcadmium reagent, or bromopropionate alone. An

[^111]aliquot from the reaction mixture of ethereal phenylcadmium reagent and acetyl chloride, under conditions leading to acetopheneone, ${ }^{4}$ likewise gave rise to no esr signal.

It is an attractive possibility that the displacement with bromopropionate ester may involve an electron transfer, with the intermediacy of anion radicals, a pathway postulated by Kornblum ${ }^{5}$ for the reaction of p-nitrocumyl chloride with sulfur, carbon, nitrogen, and oxygen nucleophiles. As outlined in eq 4-7,

$$
\begin{align*}
& 1 \xrightarrow[3]{\mathrm{e}}\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{CO}_{2} \mathrm{CH}_{3}\right]^{-} \longrightarrow \\
& \begin{array}{c}
\begin{array}{c}
{\left[\mathrm{CH}_{3} \mathrm{CHCO}_{2} \mathrm{CH}_{3}\right] \cdot+\mathrm{Br}^{-}} \\
4 \xrightarrow{e} \\
4+\mathrm{PhCdCl} \\
\hline\left[\mathrm{CH}_{3} \mathrm{CHCO}_{2} \mathrm{CH}_{3}\right]^{-} \\
5 \\
{\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Ph}) \mathrm{CO}_{2} \mathrm{CH}_{3}\right]^{--}} \\
6 \\
6+1 \longrightarrow 2+3
\end{array}
\end{array} \tag{4}
\end{align*}
$$

the bromine-containing radical anion 3 may undergo bromide elimination with generation of the radical 4, which, in turn, can be reduced through another electron transfer to the enolate 5 or be transformed to a new radical anion 6 by addition of "phenyl anion" from the cadmium reagent. The radical anion 6, serving itself as an electron transfer agent, would react with bromopropionate, with formation of the final product 2 and regenerated 3.

This series of steps accounts for the observation that the generation of the "dehalogenation" product, propionate ester, is not accompanied by formation of bromobenzene, as would be required by an alternate "enolization" scheme, ${ }^{6}$ eq 8. Bromobenzene was con-

sistently absent from the reaction mixtures. On the contrary, bromomalonate and phenylcadmium reagent exchange, very likely by the mechanism represented in eq 8 , the products formed in equal amounts being malonate and bromobenzene. ${ }^{2 \mathrm{~b}}$ Cason and Fessenden ${ }^{6}$ had proposed the dehalogenative enolization to account for the Claisen product during interaction of ethyl α-bromoisobutyrate with butylcadmium reagent.
Although we looked for Claisen products in reactions with phenylcadmium reagents, they were never detectable by glpc, ir, or nmr.

In experiments designed to define the scope of this displacement we found that ethyl esters of α-bromoacetic, -propionic, and -butyric acids afforded the expected products with the phenylcadmium reagent, whereas none was found with α-bromoisobutyrate and ethyl α-bromisovalerate. All esters underwent some
(4) J. Cason, Chem. Rev., 40, 15 (1947).
(5) N. Kornblum, T. M. Davies, G. W. Earl, N. L. Holy, R. C. Kerber, M. T. Musser, and D. H. Snow, J. Amer. Chem. Soc., 89, 725 (1967).
(6) J. Cason and R. J. Fessenden, J. Org. Chem., 22, 1326 (1957).
degree of dehalogenative enolization (eq 4,5) and the last two appeared to give coupling products, substituted succinate esters. Thus it seems that both hydrogen and halogen at the α carbon are necessary for the displacement to occur, although the steps outlined in eq 4-7 should be equally valid for α-halo esters which do not contain an α hydrogen. Reactions of ethylor isopropylcadmium reagents with ethyl α-bromoacetate or α-bromopropionate led to dehalogenated (enolization) ester, Claisen product, or polymeric material.

Replacement of halogen by the phenylcadmium reagent is by no means limited to esters, lactones, and ketones. We have found that allyl bromide, benzyl bromide, 3 -bromocyclohexene, and chloromethyl methyl ether are all converted to their corresponding phenyl substitution products in yields of $39,40,81$, and 34%, respectively. No attempt was made to optimize yields. Reactions proceeded readily, and glpe analysis indicated few or no side products. Unlike the reactions with esters, no strong esr signal was produced on admixture of 3-bromocyclohexene and phenylcadmium reagent, an observation which lends support for a concerted mechanism in this case. A variety of other halides failed to give any detectable amounts of displacement products: 1-bromobutane, ethylenc bromide, bromoacetaldehyde diethyl acetal, tert-butyl chloride, trimethylsilyl chloride, chlorocyanomethane, and 1-chloro-1-nitroethane. Earlier investigators have observed the failure to effect displacement with alkylcadmium reagents at secondary, ${ }^{6}$ tertiary, ${ }^{7}$ and allylic ${ }^{6}$ carbons. Our results seem to be the first instances of displacement of an allyl or benzylic halogen with a cadmium reagent, apparently by a nonradical process.

From among the displacements by organocadmium reagents with a wide variety of substrates, there must bc postulated at least two distinct mechanistic pathways: a concerted, stereoselective process in the case of α^{\prime}-halo lactones and a radical reaction accompanied by racemization with α-halo esters. On the basis of the preliminary csr results, the behavior of allylic halides appears to fit the former category as well, but the stereochemistry of their displacements has not yet becn established.

Experimental Section

Instrumentation.-Infrared (ir) spectra were recorded as films with Perkin-Elmer Model 337 and Model 700 grating spectrophotometers. Nuclear magnetic resonance (nmr) spectra were obtained with a Varian A-60 spectrometer and recorded in parts per million downfield from tetramethylsilane used as an internal standard. Gas-liquid phase chromatography (glpc) was accomplished with a Varian Model 90-P gas chromatograph, with a recorder speed of $2.54 \mathrm{~cm} / \mathrm{min}$ and helium flow rate of $50 \mathrm{ml} / \mathrm{min}$. The columns were all 10 ft along and 0.25 in . in diameter. Peak areas were determined from the product of the height and the width at half height. Yields were calculated from glpc by the method of peak enrichment. Esr spectra were determined with a Varian Model E-4 X-band instrument. Rotations were obtained with a Zeiss polarimeter. Melting points are corrected.
Materials.-Grignard reagents were prepared under anhydrous conditions from reagent-grade magnesium turnings and the appropriate halide. The solutions were refrigerated in serumcapped bottles, and their normality was determined by titration with sec-butyl alcohol as titrant and 1,10-phenanthrolene as
indicator. ${ }^{8}$ Anhydrous cadmium chloride (reagent grade) was oven dried for at least 24 hr at 110°. The halo esters were obtained from Aldrich Chemical Co., Milwaukee, Wis., unless otherwise indicated.

Apparatus.-Reactions were carried out in a flame-dried, three-necked, round-bottomed flask, fitted with a mechanical stirrer, reflux condenser, and pressure-equalizing addition funnel. Grignard reagents were transferred to the flask from the serumcapped bottles with a $20-\mathrm{ml}$ syringe. Nitrogen was not used as an inert atmsophere, except where noted.

Reaction of Phenylcadmium Reagent with Ethyl α-Bromo-propionate.-The following is typical of displacements carried out with ethyl α-bromoacetate, -propionate, and -butyrate.

Phenylcadmium reagent (0.10 mol) in 100 ml of anhydrous ether was prepared from the Grignard reagent ($22 \mathrm{ml}, 0.10 \mathrm{~mol}$) and $18.33 \mathrm{~g}(0.10 \mathrm{~mol})$ of anhydrous cadmium chloride. After a negative Gilman test, ${ }^{9} 6.5 \mathrm{ml}(0.05 \mathrm{~mol})$ of ethyl α-bromopropionate in 2.5 ml of anhydrous ether was added dropwise to the solution, and stirring at reflux was maintained for 3 hr . The mixture was then hydrolyzed with 10 ml of water, the ether layer was dried with MgSO_{4}, and the solvent was removed in a rotary evaporator. Some of the crude material was injected into a glpc column (10% Carbowax, 1.50°) and the peaks were collected directly onto salt plates, from which the infrared spectra were measured. The first peak $(1.1 \mathrm{~cm})$, too volatile to collect, was probably ether, inasmuch as an injection of pure ether emerged at this point on the chromatogram. The next peak appeared at 1.7 cm and the ir spectrum indicated it to be ethyl propionate (as shown by comparison with Sadtler ${ }^{10}$ Spectrum No. 303) contaminated with benzene. That benzene and ethyl propionate were emerging from the column at the same place was confirmed by their identical retention times under the same column conditions in a separate experiment. The next peak at 5.5 cm was identified as ethyl α-bromopropionate by comparison with an ir spectrum of authentic material. Ethyl hydratropate at 26.4 cm was identified in a similar way. The final peak, appearing at about 56 cm on the chromatogram, was collected as a white solid, $\mathrm{mp} 68-70^{\circ}$ [lit. ${ }^{11} \mathrm{mp}$ (biphenyl) 70°].

Reaction of Ethyl α-Bromoisobutyrate with Phenylcadmium Reagent.-The following description is typical of the results with ethyl α-bromoisobutyrate and -isovalerate. The crude mixture, obtained from reaction of $9.75 \mathrm{~g}(0.05 \mathrm{~mol})$ of ethyl α-bromoisobutyrate and 0.10 mol of phenylcadmium reagent for 3 hr at icebath, room, or reflux temperature, was analyzed on an SAIB column at 170°. In addition to peaks at 5.7 (starting bromo ester and bromobenzene), 22.0 (phenol), and 46.0 cm (biphenyl, $\mathrm{mp} 69-70^{\circ}$), one at 30.0 cm was collected and analyzed: $\nu \mathrm{co}$ $1730 \mathrm{~cm}^{-1}$; bp (micro) 238-240 ${ }^{\circ}\left(760 \mathrm{~mm}\right.$) [lit. ${ }^{12} \mathrm{bp}$ (diethyl tetramethylsuccinate) $\left.115-121^{\circ}(15 \mathrm{~mm}) ; 238-240^{\circ}(760 \mathrm{~mm})\right]$.

Reaction of Phenylcadmium Reagent with (R) $-(+)$-Methyl α -Bromopropionate.-(S)-(-)-Methyl lactate, $\alpha_{578}^{26}-9.67^{\circ}$ (neat, $l .1 \mathrm{dm})$, obtained by esterification of $(S)-(+)$-lactic acid with diazomethane, was converted to $(R)-(+)$-methyl α-bromopionate $\alpha_{578}^{26}+66.21^{\circ}$ (neat, $l 1 \mathrm{dm}$), according to the method of Gerrand and Richmond. ${ }^{13}$ To an ethereal solution of 0.04 mol of phenylcadmium reagent was added dropwise $3.34 \mathrm{~g}(0.02 \mathrm{~mol})$ of the $(+)$-bromo ester, and then the mixture was allowed to reflux for 3 days. It was hydrolyzed with 10 ml of distilled water, and the pasty, gray-white precipitate was washed three times with $25-\mathrm{ml}$ portions of anhydrous ether; the washings were combined with the original liquid layer. The solution was dried over MgSO_{4} and the ether was removed on the rotary evaporator. The crude reaction mixture was then separated by vacuum distillation, the fraction, bp $55-60^{\circ}(1 \mathrm{~mm})$, being collected (lit. ${ }^{14} \mathrm{bp} 62-65^{\circ}$ $(0.5 \mathrm{~mm})$), $\alpha_{578}^{27}+0.06^{\circ}$ (neat, $l 0.2 \mathrm{dm}$). The ir spectrum of this product indicated that it was methyl hydratropate, but a chromatogram, (SAIB, 170°) showed that, besides the methyl hydratropate, a small amount of biphenyl was also present.

[^112]The sample was further purified by preparative glpc (SAIB, 170°), $\alpha_{578}^{27}+0.02^{\circ}$ (neat, $l 0.1 \mathrm{dm}$). The amide of hydraptropic acid was prepared by saponification of methyl hydratropate and treatment of the intermediate acid chloride $\left(\mathrm{SOCl}_{2}\right)$ with concentrated ammonia, $\mathrm{mp} 91-92^{\circ}$ (lit. ${ }^{16} \mathrm{mp} 91-92^{\circ}$).

Similar results were obtained when the reaction was repeated for a $3-\mathrm{hr}$ reflux period with 0.05 mol of phenylcadmium reagent and 0.025 mol of bromo ester. Control experiments to determine the degree of racemization of bromo ester were carried out by measuring the optical rotation and glpc peak area before and after the addition of fresh (+)-bromo ester. It was concluded that recovered bromo ester had racemized to the extent of 9% (maximum) during the course of the reaction.

Reaction of Allyl Bromide with Phenylcadmium Reagent.-A solution of $6.05 \mathrm{~g}(0.05 \mathrm{~mol})$ of allyl bromide in 10 ml of anhydrous ether was added dropwise with stirring to 0.1 mol of phenylcadmium solution diluted with 75 ml of dry ether. After spontaneous refluxing subsided (about 5 min), the mixture was heated to reflux for an additional 4 hr . It was hydrolyzed with 10 ml of water, whereupon the usual precipitate formed. The liquid was decantated from the solid, and the precipitate was washed twice with $25-\mathrm{ml}$ portions of ether. The washings were combined with the decantate, dried with MgSO_{4}, and filtered, and the ether was removed. When a portion of the 2.60 ml of crude residue was injected onto a column (10% Carbowax, 130°), three major peaks besides ether were observed. The one at 2.4 cm had the same retention time as that of allyl bromide. One at 10.7 cm was isolated, and its ir spectrum was identical with that of 3 -phenylpropene (Sadtler ${ }^{10}$ Spectrum No. 13701). The ir spectrum of the large peak at 16.1 cm was identical with that of bromobenzene. The yield of 3 -phenylpropene was 39%, as determined by peak enhancement.

Reaction of Benzyl Bromide with Phenylcadmium Reagent.To 0.1 mol of phenylcadmium reagent in 75 ml of anhydrous ether, $8.55 \mathrm{~g}(0.05 \mathrm{~mol})$ of benzyl bromide was added dropwise with stirring at room temperature. The mixture was maintained at reflux for 10 hr , and then hydrolyzed with 10 ml of water. A
(15) H. Janssen, Justus Liebigs Ann. Chem., 250, 125 (1889).
portion of the crude mixture isolated as above was injected onto the gc (Apiezon $\mathrm{L}, 150^{\circ}$); three peaks were observed at $1.8,2.4$, and 15.3 cm . The last exhibited an ir spectrum identical with that of diphenylmethane (Sadtler ${ }^{10}$ Spectrum No. 3389). Its yield, as determined by the peak enhancement method, was 40%.

Reaction of Phenylcadmium Reagent with 3-Bromocyclo-hexene.-To 0.1 mol of phenylcadmium reagent in 75 ml of anhydrous ether, 8.05 g (0.05 mol) of 3-bromocyclohexene was added slowly with stirring. After reaction conditions and workup identical with those of allyl bromide, there was obtained 7.0 g $(7.40 \mathrm{ml})$ of crude product. Glpc analysis (10% Carbowax, 150°) gave peaks for ether and starting halide and one at 23.4 cm . Its ir spectrum was that expected for 3-phenylcyclohexene: 3080, $3050(\mathrm{ArH}, \mathrm{C}=\mathrm{CH}), 1650 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$. The yield (81%) of 3phenylcyclohexene was established by the method of peak enhancement.

The above reaction of 3-bromocyclohexene with phenylcadmium reagent was repeated, and aliquots of the reaction mixture were removed at various time intervals, placed in a sample tube, and the esr spectrum taken. Aliquots were taken immediately after mixing of the reagents at room temperature, after 5 min of stirring at room temperature, after 0.5 hr of refluxing, and after 4 hr of refluxing. None of the spectra indicated the presence of radicals.

Reaction of Chloromethyl Methyl Ether with Phenylcadmium Reagent.-Reaction as above of a solution of $4.0 \mathrm{~g}(0.05 \mathrm{~mol})$ of chloromethyl methyl ether in 10 ml of anhydrous ether and phenylcadmium reagent afforded 6.0 ml of crude product. On glpc (Apiezon L, 160°) it exhibited peaks for ether and benzene and one at 7.5 cm . The ir spectrum of the third peak was identical with that of commercial benzyl methyl ether (Sadtler ${ }^{10}$ Spectrum No. 17013). The yield, determined by the peak enhancement method, was 34%. No starting material or other by-products were found.

Registry No.-Phenylcadmium reagent, 15924-35-3; ethyl α-bromopropionate, 535-11-5; ethyl α-bromoisobutyrate, 600-00-0; (R)-(+)-methyl α-bromopropionate, 20047-41-0; allyl bromide, 106-95-6; benzyl bromide, 100-39-0; 3-bromocyclohexene, 1521-51-3; chloromethyl methyl ether, 107-30-2.

Noble Metal Catalysis. II. Hydratocarbonylation Reaction of Olefins with Carbon Monoxide to Give Saturated Acids

D. M. Fenton
Union Research Center, Union Oil Company of California, Brea, California 92621

Received February 1, 1973

Abstract

A process study of the hydratocarbonylation reaction of olefins with carbon monoxide to give saturated acids is described. The catalyst is probably a zero valent palladium-phosphine complex. Effects of changes in temperature, pressure, and concentrations of the three reactants and the complex catalyst system were studied. The rate of reaction depends approximately in a linear manner on the concentration of olefin and the pressure of carbon monoxide, while the rate reaches a maximum with a water concentration of $5-10 \%$. The catalyst system undergoes a complex number of changes between the zero and plus two valence states, probably some involving the carbon moieties attached to the phosphine ligand.

The synthesis of saturated carboxylic acids from olefins, carbon monoxide, and water has been recently described, ${ }^{1}$ according to eq 1 using a palladium-phosphine complex as catalyst.

$\mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{CH}_{3} \mathrm{CHRCO}_{2} \mathrm{H}$
If alcohols are used in place of water, then esters are produced. ${ }^{2}$ These palladium-phosphine catalyzed systems have advantages in rate and selectivity over the

[^113]earlier palladium complexes without phosphines. ${ }^{3}$ However, in those examples involving α olefins the branched-chain isomer was shown to be dominant. ${ }^{2,4}$ The purpose of this paper is to describe methods for obtaining increased yields of the straight-chain acids starting from α olefins, since the straight-chain acids find greater utility as surface active agents.

Results

The following variables were studied: temperature and pressure, catalyst and solvent changes, proportions of olefin and water, and oxidation-reduction conditions.
(3) J. Tsuji, M. Morikawa, and J. Kiji, Tetrahedron Lett., 1937 (1963).
(4) R. Huttel, Synthesis, 5, 225 (1970).

Effect of Olefin. - 1 -octene was chosen as the olefin component because of its ready availability and purity (over 90% 1-octene) and because it might suitably represent olefins used for fatty acid synthesis. The results are shown in Table I. At both 125 and 150°

Table I
Conversion to and Ratio of Acid Products as a Function of Weight of Starting Olefin

Starting wt 1-Otene, $\mathrm{g}^{\text {a }}$	Temp, ${ }^{\circ} \mathrm{C}$	Conversion, $\%$	Ratio normal acid to
80 -methyl acid			

a Water was added intermittently to keep water percentage around 5%. Otherwise except where noted conditions were as for the "standard run"; see Experimental Section.
increases in the 1-octene concentration lead to increases in the production of acids. The small changes in normal to α-methyl acid ratio may be due to small changes in the water concentration and/or catalyst changes (as discussed later). The production of acids is approximately proportional to the concentration of 1-octene.

Effects of Changes of Carbon Monoxide (and Hydrogen) Pressure. - As might be expected, increases in the carbon monoxide pressure cause increases in the yield of acid products. The increase is approximately linear with increase in carbon monoxide pressure. However, the ratio of normal to α-methyl acid products is effected inversely; i.e., as carbon monoxide pressure increases the ratio decreases; refer to Table II.

Table II
Conversion to and Ratio of Acid Products as a Function of Carbon Monoxide (and Hydrogen) Pressure

Carbon monoxide	Hydrogen	Conversion, $\%$	Ratio normal acid to to $\alpha-$ Methyl acid
100	0	14	5.5
200	0	51	3.0
800°	0	71	2.0
350	50	76	3.6
750	50	74	2.1
700	100	78	2.5
400	400	33	3.8

${ }^{a}$ Standard run.
The effect of hydrogen is noteworthy. ${ }^{5}$ Small partial pressures lead to an increase in yield and also ratio but ultimately the yield drops dramatically, but no aldehydes, esters, or alcohols were discerned as long as carbon monoxide pressures above 400 psig were maintained. At 200 psig carbon monoxide pressure (with no added hydrogen) some n-octane was found in the remaining olefin.

Effect of Changes in Water Concentration.-As can be seen from Table III, water has a most pronounced effect on both yield and product ratio. The water percentages listed (by weight) are for the initial water concentrations. A 100% yield of acid products corresponds to about a 4% drop in water concentration.

[^114] of California.

Table III
Conversion to and Ratio of Acid Products as a Function of Initial Water Per Cent

Initial water $\%^{a}$	Temp, ${ }^{\circ} \mathrm{C}$	Conversion, $\%$	Ratio normal acid to α-methyl acid
50	125	38	2.0
12	125	80	0.9
8	125	74	1.5
4^{b}	125	71	2.0
0	125	48	2.5
-50^{c}	125	0	
75	150	11	0.9
22	150	57	0.8
12	150	64	0.5
8	150	73	1.0
0	150	63	2.0

${ }^{a}$ Standard catalyst and conditions except for water concentration. ${ }^{b}$ Standard run. ${ }^{c} 50 \%$ by weight acetic anhydride.

Thus, an initial water concentration of 0% means that anhydrides are the products of reaction. The yield of acid products reaches a maximum between 5 and 15% water both at 125 and 150°, while the ratio of normal acid to α-methyl acid reaches a minimum at slightly higher water levels. At quite high water levels probably a two-phase system exists, so that in the olefinrich phase the concentration of water may be low, similar to the low water experiments. Thus the ratios of normal to α-methyl acids are similar, though the yiclds in the high concentration water experiments are low, probably owing to loss of catalyst. On the other hand, high anhydride levels also impede the reaction. It may be that a water molecule is a highly desirable ligand and at high anhydride concentrations it is lost. In a related system for hydratocarbonylation using a plat-inum-stannous chloride complex as catalyst, Kchoc and Schell ${ }^{6}$ showed that small amounts of water were necessary for reaction even in alcoholic systems.

Effect of Temperature Changes. -The maximum yield of acids is obtained around 150° while the maximum ratio occurs around 125°. Yields at temperatures above 150° are complicated by the inverse reaction, i.e., the dehydratocarbonylation reaction. At these temperatures acid products can be converted back to olefin, carbon monoxide, and water so that both the forward reaction (hydratocarbonylation) and the reverse reaction (dehydratocarbonylation) occur at appreciable rates. The resulting ratios and conversion are a function of both reactions; refer to Table IV.

Table IV

Conversion to and Ratio of Acid Products as a Function of Temperature

Temp, ${ }^{\circ} \mathrm{C}$	Conversion, $\%$	Ratio normal acid to α-methyl acid
100	47	1.3
125^{a}	71	2.0
150	76	1.2
175	71	1.0

${ }^{a}$ Standard run.
Effects of Varying Catalyst Concentrations.-When the standard catalyst $(0.5 \mathrm{~g}$ of palladium chloride and 3 g of triphenylphosphine, a molar ratio of $1: 4$) is doubled, the conversion of acid products goes from 71% to 77%
(6) L. J. Kehoe and R. A. Schell, J. Org. Chem., 35, 2846 (1970).
but the ratio of acid products remains constant at 2.0 . However, if just the triphenylphosphine concentration is increased, then there are effects on both conversion and ratio. At 125° the conversion is lowered by increasing the triphenylphosphine amount to 10 g but the ratio is dramatically increased, while at 150° both the yield and the ratio are increased. However, at 150°, additional increases in triphenylphosphine to 20 g increases the yield but lowers the ratio; refer to Table V.

Table V
Conversion to and Ratio of Acid Products as a Function of Weight of Triphenylphosphine

Weight Triphenyl- phosphine, g	Temp, ${ }^{\circ} \mathrm{C}$	Conversion, $\%$	Ratio normal acid to
3^{a}	125	71	2.0
$\mathbf{6}^{b}$	125	77	2.0
10	125	46	3.5
3	150	75	1.0
10	150	80	3.6
20	150	86	1.5

${ }^{a}$ Standard run. ${ }^{b}$ With 1 g of $\mathrm{PdCl}_{2}, 6 \mathrm{~g}$ of triphenylphosphine.

Effect of Phosphine Substituents. - Although all of the listed triarylphosphines are active it appears that electron-donating groups both decrease conversion and lower ratio. Tris-o-tolylphosphine is an exception and will be discussed later. p-Fluoro substituents give mixed results; refer to Table VI.

Table VI
Conversion to and Ratio of Acid Products as a Function of Phosphine Substituents

Phosphine substituents ${ }^{\text {a }}$	Conversion, \%	Ratio normal acid to α-methyl acid
Tris-p-anisyl	50	1.0
Tris-p-tolyl	67	1.2
Tris-m-tolyl	69	1.6
Triphenyl ${ }^{\text {b }}$	71	2.0
Tris-o-tolyl	73	2.4
Triphenyl ${ }^{\text {c }}$	77	2.0
Diphenyl-p-fluorophenyl ${ }^{\text {c }}$	81	1.8
Bis-p-fluorophenylphenyl ${ }^{\text {c }}$	83	1.7
Tris-p-fluorophenyl ${ }^{\text {c }}$	53	1.8
g of phosphine used in othe ${ }^{c} 1 \mathrm{~g}$ of PdCl_{2} and 6 g of tria	e standard hosphine.	${ }^{6}$ Standard

Effect of Additional Reagents.- Since both hydrochloric acid and lithium chloride reduce the normal to α-methyl ratio by the same amount, it is inferred that the effect on ratio is predominantly due to the chloride ion. Chloride ion (from lithium chloride) increases the conversion but hydrochloric acid decreases the conversion. So it must be that strong acid hydrogen ion is more detrimental to conversion than chloride ion is beneficial. In contrast to lithium chloride, those reagents capable of chloride ion removal, such as iron carbonyls, increase ratio but decrease conversion. Of course, iron carbonyls like ferrous chloride may complex with the palladium. ${ }^{7}$ Stearic acid is effective, probably acting on colloidal palladium as a surfaceactive agent; ${ }^{8}$ refer to Table VII.
(7) D. M. Fenton, U. S. Patent 3,661,949 (1972), to Union Oil Company of California.
(8) D. M. Fenton, U. S. Patent $3,530,155$ (1970), to Union Oil Company of California.

Table VII
Conversion to and Ratio of Acid Products in the Presence of Additional Reagents

\quad Reagent	Λ mount of reagent. g	Conversion, $\%$	Ratio normal acid to $\alpha-$ methyl acid
Concd HCl	2	69	1.6
$\mathrm{LiOAc} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	5	74	2.0
LiCl	5	82	1.6
Stearic acid	10	86	1.0
$\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	5	62	0.9
${\mathrm{Fe}(\mathrm{CO})_{5}}^{\mathrm{Fe}_{2}(\mathrm{CO})_{\theta}}$	2	50	3.0
a	2	57	2.6
${ }^{a}$ Standard run.	0	71	2.0

Effect of Solvents.-Acetic acid was chosen as the paramount solvent because of its convenience. However, in industrial practice the product acids would probably be chosen as solvents. At 150° or lower the reverse reaction is negligible; so other carboxylic acids can be used. Noncarboxylic acid solvents that have a capacity for dissolving water may also be used; refer to Table VIII.

Table VIII
Conversion to and Ratio of Acid Products Produced in Other Solvents

		Conversion, Ratio normal acid to		
Valeric acid	Temp, ${ }^{\circ} \mathrm{C}$	$\%$		α-methyl acid
:---:				

Effect of Oxidative Conditions.-It was found necessary to thoroughly purge the system of oxygen in order to obtain reproducible results, for oxygen dramatically lowered the rate of conversion. Other oxidizing agents, such as benzoquinone and cupric chloride, completely inhibited the reaction. Also it was found that, when triphenylphosphine oxide was substituted for triphenylphosphine while under oxygen-free conditions, the hydratocarbonylation reaction did proceed but at diminished rate. Therefore, the conversion of triphenylphosphine to triphenylphosphine oxide was not the only reason for inhibition. Since hydroquinone, the reduction product of benzoquinone, actually increased the rate of reaction, and since zero-valent palladium complexes were observed as the products of the initial palladium complex added to the reaction, e.g., $\mathrm{PdCl}_{2}-$ $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2}(\mathrm{I})$, then it is proposed that the interfering oxidizing agents complex with I and render it inactive.

Effect of Reducing Agents. - Moderate amounts of reducing agents, e.g., hydrogen, hydrazine, and hydroquinone, cause slightly improved conversion, and in the case of hydrogen to slightly higher ratios. The improved conversions may be due to the impedance of the oxidative side reaction leading to the inactive complex I. Previously Tsuji ${ }^{9}$ noted that with the nonphosphine complexes hydrogen was beneficial. It was noted that in an open flask at $110^{\circ} \mathrm{I}$ was stable in acetic acid with l-octene and that the introduction of carbon monoxide
(9) J. Tsuji and K. Ohno, Advan. Chem. Ser., No. 70, 155 (1968).

Table IX
Palladium Complexes Isolated from Hydratocarbonylation Reactions

Registry no.	Complex	$\begin{aligned} & \text { Decomposi- } \\ & \text { tion } \\ & \text { range, }{ }^{\circ} \mathrm{C} \end{aligned}$	-Carbon, \%- Calcd Found		-Hydrogen, \%Caled Found		-Phosphorus, \%-		Caled $\underset{\text { Chlorine, } \% \text { \% }}{\text { Found }}$	
13965-03-2	$\mathrm{PdCl}_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$	280-290	61.6	61.1	4.3	4.8	8.8	8.6	10.0	8.7
40691-26-7	$\mathrm{PdCl}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{8}\right]_{2}$	250-260	63.1	63.4	4.6	5.7	8.5	8.4	4.9	5.5
28516-49-6	$\mathrm{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{3}$	90-100	72.7	71.6	5.1	5.6	10.0	10.2	0.0	<0.1
14221-01-3	$\operatorname{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$	105-110	74.8	75.2	5.2	5.5	10.7		0.0	
40691-27-8	$\mathrm{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{Cl}\right]$	120-130	69.0	70.6	4.9	4.9	10.3	10.1	4.0	4.5
40756-38-5	$\mathrm{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)\right]_{2}$	120-130	66.6	66.7	4.7	5.0	10.0	9.6	7.6	7.4
40691-28-9	$\mathrm{PdCl}_{2}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{2}\right]_{2}$	200-210	51.5	50.4	3.1	3.9	7.4		25.4	26.7
40691-29-0	$\mathrm{PdCl}_{2}\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{2}\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{3}\right]$	290-300	49.7		2.9		7.1	6.0	28.2	28.1

only very slowly caused catalyst decomposition, while either hydrogen or hydrazine quickly reduced I. Also small amounts of lithium acetate slightly speeded up the decomposition of I.

The slightly increased normal to α-methyl ratio with small amounts of hydrogen may be due to the reaction of hydrogen with complexes such as V (see next section) to give back complex I and thus impede the formation of substituted chlorophenylphosphine complexes which may give ratios more like fluorophenylphosphine complexes, i.e., less than 2. Indeed it was noted for the standard run that in the first 0.5 hr the ratio was 2.4 with subsequent leveling off at 2.0.

Discussion of the Catalyst System. -The palladium catalyst system undergoes many complex reactions. When hydrochloric acid was added to the standard run, the main catalyst component isolated after reaction was I, as was noted earlier. ${ }^{2}$ However, in other experiments without the added hydrochloric acid I was not isolated. Several components were isolated and will be discussed.

In those runs deficient in phosphine, colloidal palladium metal was sometimes found. This palladium metal could be redissolved by treating it with hydrochloric acid and triphenylphosphine ${ }^{10}$ in acetic acid according to eq 2, and accordingly hydrogen was de-

$$
\begin{equation*}
\mathrm{Pd}^{0}+2 \mathrm{HCl}+2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P} \longrightarrow \mathrm{I}+\mathrm{H}_{2} \tag{2}
\end{equation*}
$$

tected in the gas phase above the reaction. Small amounts of hydrogen were also detected in the gas phase during the hydratocarbonylation reaction, particularly if hydrochloric acid was present. It may also be recalled that with low carbon monoxide concentrations some conversion of octene to octane occurred.

It was also found that heating I to its decomposition point under vacuum gave an equimolar mixture of triphenylphosphine and chlorophenyldiphenylphosphine. This is germane, for, particularly from experiments conducted above 150° and in the presence of excess chloride ion, there were isolated type II complexes where

$$
\begin{array}{cc}
\mathrm{PdCl}_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5-x} \mathrm{Cl}_{x}\right)_{3}\right]_{2} & \operatorname{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5-x} \mathrm{Cl}_{x}\right)_{3}\right]_{3} \\
\text { II } & \text { III }
\end{array}
$$

$x=0$ and/or 1. The infrared spectrum of some of these yellow-orange complexes showed aromatic ortho disubstitution, indicating that the chlorine was ortho to the phosphorus. Some of these complexes are listed in Table IX.

The known complex ${ }^{11} \operatorname{Pd}\left[\mathrm{P}^{\left.\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{3}\right]_{3} \text { was frequently }}\right.$ isolated, particularly at high triphenylphosphine con-

[^115]centrations. Also $\operatorname{Pd}\left[P\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$ was once isolated. ${ }^{12}$ The corresponding chlorophenylphosphine complexes III were isolated, where $x=0$ and/or 1 . These light yellow complexes slowly turned green on standing and were probably picking up oxygen. ${ }^{13}$ In addition, small amounts of triphenylphosphine oxide and, under strongly acidic conditions, some diphenylphosphinic acid were found.

With a lithium acetate cocatalyst IV and V were

found. V is quite labile and was not isolated in satisfactory condition from hydratocarbonylation runs, but can be made independently (see Experimental Section). The addition of hydrochloric acid to V gives I. Also it was shown that $\mathrm{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$ reacts with chloride to give $\mathrm{V}(\mathrm{X}=\mathrm{Cl})$. Also V in the presence of excess triphenylphosphine goes to type III complexes. Furthermore, Coulson ${ }^{14}$ reported that the decomposition of a mixture of palladium chloride and $\mathrm{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$ gave VI, which might arise from still another decomposition mode of V. Scheme I shows some of the interrelationships proposed for the complex catalyst system. Although the analogous platinum complexes to V are known, apparently V cannot be recovered by simple heating of I; so bases are necessary (however, see Shaw ${ }^{15}$). The addition of hydrogen effects reduction while that of hydrogen chloride causes oxidation (dehydrogenation). Also base hinders oxidation. The insertion of palladium into a carbon-chlorine bond effects oxidation and the reverse reaction causes reduction of the palladium.

Tris-o-tolylphosphine is a special case. The palladium complex of this ligand does not give V complexes but instead VII is formed. The results of these various effects are summarized in Table \mathbf{X}.

Dehydratocarbonylation and Reversible Reactions. An important adjunct to the hydratocarbonylation reaction is the dehydratocarbonylation, which involves the
(12) P. Fitton, M. P. Johnson, and J. E. MeKeon, Chem. Commun., 1, 6 (1968).
(13) C. J. Nyman, C. T. Wymore, and G. Wilkinson, J. Chem. Soc. A, 561 (1968).
(14) D. R. Coulson, Chem. Commun., 23, 1530 (1868).
(15) A. J. Cheney and B. L. Shaw, J. Chem. Soc., Dalton Trans., 860 (1972).

Scheme I

III

${ }^{a}$ As compared to standard run.
decomposition of acids back to olefins, carbon monoxide, and water. ${ }^{16}$ Under certain conditions both of these reactions are significant so that products are based on thermodynamic control, and equilibrium conditions dominate. On the other hand, conditions are easily found where only one of the two reactions is occurring to any significant extent, so that kinetic control is achieved. Further, if only one acid isomer is desired, the other can be separated by distillation, crystallization, clathration, etc., and submitted to dehydratocarbonylation conditions to give back the olefin starting material. In this way, by-products are eliminated and essentially only the desired product is synthesized. ${ }^{17}$
(18) D. Fenton, U. S. Patents $3,530,198$ (1970), 3,578,688 (1971), and 3,592,849 (1971), to Union Oil Company of California.
(17) D. Fenton, U. S. Patent 3,668,249 (1972), to Union Oil Company of California.

Proposed General Mechanism. - Since the rate of formation of acid products near standard reaction conditions depends on the concentration of all three of the reactants, i.e., 1 -octene, carbon monoxide, and water, as well as the complex catalyst system, then the catalyst system must accommodate all three of the reactants before the rate-determining step. It will be recalled that acid production varies linearly with both 1 -octene and carbon monoxide concentrations but that only carbon monoxide has an effect on ratio. Similarly, near standard conditions acid synthesis is approximately proportional to water concentration, and, like carbon monoxide, water also effects the acid ratio. Thus it is inferred that, in addition to the threc reacting molecules, the active complex also includes other ligands, which list includes carbon monoxide and water, but not 1 -octene. It should be emphasized that the competition of nonreactive ligands for the remaining sites of the palladium complex is equilibrium controlled and depends not only on ligand concentration but also on the stability of the palladium-ligand bond. In particular, since quite small amounts of both water (or hydroxide ligand) and chloride have such pronounced effects, it is evident that they form exceptionally stable ligand-palladium bonds. However, chloride, like 1octene, does not effect ratio (except for a slight initial drop). On the other hand, the effect of triphenylphosphine is complex and ratios vary dramatically. It is concluded that the list of important ligands filling nonreactive sites on the active palladium complex includes chloride, water (or hydroxide), carbon monoxide, and triphenylphosphine, but it is only the last three that significantly affect ratio and particularly the last two. Since increases in the triphenylphosphine concentration lead first to an increase in ratio and then to a decrease, this implies that at high triphenylphosphine concentrations two triphenylphosphines are complexed at one time.

The transition state might look more like the product than like the starting materials. That this is true can be deduced from the following. The reaction of olcfins, carbon monoxide, and ROH for the production of csters, acids, and anhydrides has shown to be reversible, ${ }^{16}$ and also the production of esters occurs at lower temperatures than does the production of acids, while the for-
mation of anhydrides at practical conversions is difficult. Vice versa, the decomposition of anhydrides is facile at 150° while acids need temperatures around 200° and esters demand still higher temperatures. Thus the nature of R in VIII and IX is important. If the degree of ionization is important, then the formation of products should decrease in the order of acids $>$ esters, but such is not the case. Also, if the production of the oxygen-hydrogen bond in ROH is important in the decomposition reactions then the decomposition series should be esters > anhydrides > acids, and again such is not the case. Therefore, the nature of R in ROH is not so important as the nature of R in $\mathrm{RO}_{2} \mathrm{CR}^{\prime}$, or, in other words, the transition state more closely resembles the acid derivative product than it does olefin, carbon monoxide, and ROH . While this fact does not rule out a concerted mechanism, it does imply that a stepwise mechanism is possible.

There are several candidates for the first step in the stepwise mechanism. Palladium-olefin ${ }^{18}$ and palla-dium-carbonyl ${ }^{19}$ complexes are known as well as alkyl, ${ }^{12,19,20}$ acyl, and carboalkoxyl ${ }^{12,21}$ complexes. Tsuji ${ }^{22}$ and Chatt ${ }^{23}$ have discussed mechanisms in which first-formed alkyl complexes are converted next to acyl complexes and finally to product. Heck ${ }^{24}$ and the author ${ }^{25}$ have considered the addition of carboalkoxyl or carboxyl complexes to olefins.

Mitigating against alkyl complexes is the fact that neither in the presence or absence of carbon monoxide were any alcohols (olefin plus water) or esters (olefin plus carboxylic acid) found, except under very acidic conditions with mineral acid. This is in contrast to palladium(II) chemistry, where acetaldehyde and vinyl carboxylates are prepared. Recently McKeon ${ }^{26}$ has emphasized this difference between $\operatorname{Pd}(\mathrm{II})$ and $\operatorname{Pd}(0)$ where $\operatorname{Pd}(\mathrm{II})$ will cause transesterification and transetherification reactions while reduced palladium will not, thus indicating that reduced palladium will not form alkyl-palladium bonds by addition to olefins ${ }^{27}$ under non-strong-acid conditions. Also, in the presence of hydrogen no aldehydes are produced, thus mitigating against acyl complexes although at still higher hydrogen (and lower carbon monoxide) pressures some alkane is produced. If then we have eliminated, as the first step, the attachment of H to olefin as well as the attachment of carbon monoxide to olefin, then we have left to consider only the attack of ROH on the palladium-carbonyl complex. This complex could look like VIII.

Here pentacoordinate complexes are drawn, because although three ligands are donating two electrons each, the H and COR are donating only two electrons altogether. ${ }^{28}$ The olefin may be coplanar with the ring. ${ }^{29}$

[^116]The nature of R^{\prime} in type VIII complexes is important and it might be anticipated that esters would give more stable complexes than acids and acids more stable complexes than anhydrides. In particular, carboxyl complexes can undergo the shift reaction to give carbon dioxide and hydrogen. This may also account for the small amounts of hydrogen found. That carboalkoxyl complexes are stable was shown for $\mathrm{Pd}(\mathrm{II})$ complexes when oxalates ${ }^{30}$ were prepared from carbon monoxide and alcohols, but in an aqueous environment oxalic acid could not be, and only carbon dioxide was produced. Thus Pd(II) can tolerate two carbonyl groups, at least one of which is a carboalkoxyl group.

VIII, $\mathrm{X}=\mathrm{Cl}$

IX, $\mathrm{X}=\mathrm{Cl}, \mathrm{H}$

The hydride ligand in type VIII complexes may be relatively unstable. It has been shown that other palladium hydrides are unstable either under acidic or basic conditions, ${ }^{31}$ and only moderately thermally stable. ${ }^{32}$

Under these conditions reactions like those discussed in Scheme I are probably occurring. In particular, complexes like IX could occur. This might account for the interesting effects of mixed phosphines. With the phenyl-substituted phenylphosphines it may be that the phenyl group is the preferred "second" ligand and thus exerts an extraordinary influence.

The second step would then be the attack of the olefin on the carboxyl group to give β-carboxyalkylpalladium complexes. The ultimate formation of either the straight-chain acid of the branched-chain acid is determined in this step. Steric effects would dictate the formation of the straight-chain acid, and this is the general result as long as large amounts of free mineral acid are absent (in the presence of free mineral acid alkyl-palladium complexes are probably formed from alkyl groups which, in turn, are formed by the addition of a proton to the olefin so that the direction of proton addition determines the ratio).

That intermediates have some lifetime was indicated when it was shown that in competitive experiments the rate of isomerization of butyric anhydride to isobutyric anhydride was faster than the rate of reaction of butyric anhydride with 1 -octene to give nonanoic and α-methyloctanoic acids (anhydrides). The reverse reaction with nonanoic anhydride and propylene also showed that isomerization was faster than olefin exchange. ${ }^{33}$

Finally, the addition of the olefin to the carboxyl

[^117]group can be linked to the $\pi-\sigma$ complex shifts of allyl palladium complexes, ${ }^{34}$ where eq 3 shows the $\pi-\sigma$

shifts and eq 4 shows the corresponding form for the reversible hydratocarbonylation reaction.

Experimental Section

A one-half gallon stainless steel stirred autoclave equipped with a cooling coil and condenser was used for the hydratocarbonylation reactions. The catalyst system, solvent, water, and olefin were placed in the autoclave, which was then purged twice with nitrogen. Carbon monoxide was added to the desired pressure. Heating and stirring were started. Pressure drops were noted. The autoclave was cooled and depressured, and any gain or loss of liquid weight was noted. The contents were analyzed by gas chromotography on a FFAP (free fatty acid phase) coated column. Each sample was run twice to reduce problems associated with "memory" effects. When acetic acid was used as solvent, additional information was obtained by either concentration by partial evaporation or by water washing. The recipe for the standard run is as follows: palladium chloride $\cdot 2 \mathrm{H}_{2} \mathrm{O}$, $0 . \overline{\mathrm{F}} \mathrm{g}$; triphenylphosphine, 3 g ; acetic acid, 400 ml ; water, 15 g ; 1 -octene, 80 g ; carbon monoxide, 800 psig. The conditions for the standard run are as follows: temperature, 125°; pressure, 800 psig (initial); time, 2 hr . In addition to the production of straight-chain and α-methyl acids there were also obtained small amounts of two other isomeric acids. Without additional hydrochloric acid the total of these other acids (α-ethylheptanoic and α-propylhexanoic) was less than 20% of the α-methyloctanoic acid production.

Preparation of $V\left(\mathbf{R}=\mathbf{C}_{6} \mathbf{H}_{5}\right)$.-To a $100-\mathrm{ml}$ saturated solution of palladium chloride bis(triphenylphosphine) in N, N-dimethylformamide (the filtrate from 2.5 g of palladium chlorine bis(triphenylphosphine) in 100 ml of N, N-dimethylformamide), all protected by a nitrogen atmosphere, was added a $10-\mathrm{ml}$ solution of 0.5 g of lithium acetate in 20 ml of water. Quickly a light yellow solid precipitated, decomposition range $80-100^{\circ}$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{ClP}_{2} \mathrm{Pd}$: $\mathrm{C}, 6 \mathrm{~F} .5$; $\mathrm{H}, 3.7 ; \mathrm{P}, 9.4 ; \mathrm{Cl}, 5.4$. Found: $\mathrm{C}, 6.5 .7 ; \mathrm{H}, 4.4 ; \mathrm{P}, 9.4 ; \mathrm{Cl}, 5.3$. The infrared spectrum showed ortho substitution and the compound could be reduced polarographically.

Conversion of V to $\mathrm{Pd}\left[\mathbf{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{3}$. - $\mathrm{To} 1 . \overline{\mathrm{i}} \mathrm{g}$ of $\mathrm{V}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ and 3 g of triphenylphosphine was added 200 ml of ethanol. The mixture was stirred for 6 hr at room temperature in a closed container. A white solid appeared. Anal. Calcd for $\mathrm{C}_{54}-$

[^118]$\mathrm{H}_{45} \mathrm{P}_{3} \mathrm{Pd}: \mathrm{C}, 72.6 ; \mathrm{H}, 5.1 ; \mathrm{P}, 10.4 ; \mathrm{Cl}, 0.0$. Found: C , $71.3 ; \mathrm{H}, 5.2$; $\mathrm{P}, 10.2$; $\mathrm{Cl}, 0.3$.

Reaction of V with Carbon Tetrachloride. Formation of II (Where Only $1 \mathbf{X}=1$, Other $\mathbf{X}=0$).-To a solution of 1.5 g of $\mathrm{V}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ in 50 ml of carbon tetrachloride was added heat to reflux for 5 min . A yellow solid formed. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{P}_{2} \mathrm{Pd}$: C, $58.7 ; \mathrm{H}, 4.0 ; \mathrm{Cl}, 14.4$. Found: C, 99.2 ; $\mathrm{H}, 4.6 ; \mathrm{Cl}, 13.0$.
Reaction of V with Bromine.-Bromine (0.7 g) was slowly added to a solution of $\mathrm{V}(1.5 \mathrm{~g})$ in benzene (50 ml). At first the color was rapidly discharged but after about half of the bromine was added the color persisted. The solution was refluxed for 5 min . To the cooled solution was added 50 ml of methanol, which caused the precipitation of 0.5 g of $\mathrm{PdBr}_{2}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$, decomposition range $300-305^{\circ}$. The filtrate was concentrated on the steam bath to give brick red solid, 0.7 g , analyzing for either $\mathrm{PdBr}_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right)\right]_{2}$ (Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Br}_{4} \mathrm{P}_{2} \mathrm{Pd}$: C, 4;.6; $\mathrm{H}, 3.0 ; \mathrm{P}, 6.5$.) or $\mathrm{PdBr}_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right)_{2}\right]\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$] (Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{Br}_{3} \mathrm{P}_{2} \mathrm{Pd}$: C, 42.1; H, 2.7; $\mathrm{P}, 6.0$. Fôind: $\mathrm{C}, 43.1 ; \mathrm{H}, 3.4 ; \mathrm{P}, 5.9$).

Conversion of $\operatorname{Pd}\left[\mathbf{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{3}$ to $\operatorname{Pd}\left[\mathbf{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}\left[\mathbf{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right]$. - To 2 g of $\mathrm{PdCl}_{2}\left[\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{3} \mathrm{P}\right]_{2}, 2 \mathrm{~g}$ of triphenylphosphine, and 200 ml of 1 -butanol was added 5 ml of hydrazine hydrate. The mixture was magnetically stirred and heated to 90°, whereupon the white $\operatorname{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{3}\right]_{3}$ formed. Heating was continued until a greenish-yellow precipitate had formed, decomposition range $12 . \overline{5}-130^{\circ}$. Anal. Calcd for $\operatorname{Pd}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PC}_{6}\right.$ $\left.\mathrm{H}_{4} \mathrm{Cl}\right)$: $\mathrm{C}, 67.4 ; \mathrm{H}, .5 .2 ; \mathrm{P}, 10.9$; $\mathrm{Cl}, 4.1$. Found: $\mathrm{C}, 69.1$; H, ...2; P, 10.6; Cl, 2.0.

Conversion of V to $I\left(R=C_{6} \mathrm{H}_{5}\right)$.-To 0.8 g of $\mathrm{V}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$, .$\overline{\mathrm{ml}}$ of concentrated hydrochloric acid, and 1 g of triphenylphosphine in a $2.50-\mathrm{ml}$ flask was added 100 ml of acetic acid. The mixture was refluxed for 16 hr to give a yellow precipitate identified as I, decomposition range $300-310^{\circ}$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}$: Cl, 10.1. Found: $\mathrm{Cl}, 9.8$.
Preparation of IV $\left(\mathbf{R}=\mathbf{C}_{6} \mathbf{H}_{5}\right)$.-To 4 g of I $\left(R=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ dispersed in 200 ml of acetic acid was added 5 ml of hydrazine hydrate. The mixture was refluxed for 30 min . A light yellow solid was filtered away from the blackish filtrate, decomposition range $260-270^{\circ}$. Anal. Calcd for IV, $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{ClP}_{2} \mathrm{Pd}$: C, 62.9 ; $\mathrm{H}, 4.6$. Found: C, 63.8; H, 4.7.

Decomposition of $I\left(R=C_{6} \mathrm{H}_{5}\right)$.-To 3.5 g of $\mathrm{I}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ in 50 ml of acetic acid and 50 ml of acetic anhydride in a $250-\mathrm{ml}$ flask was bubbled nitrogen while the mixture was heated to reflux for 6 hr . The palladium was removed and the filtrate was distilled to give 0.5 g of an oil, bp $220-240^{\circ}(1 \mathrm{~mm})$. The infrared spectrum of this distillate showed triphenylphosphine and an ortho-disubstituted phenyldiphenylphosphine. Anal. Calcd for 50% triphenylphosphine and 50% chlorophenyldiphenylphosphine: $\mathrm{Cl}, 6.0$. Found: $\mathrm{Cl}, 5.2$.

Preparation of VII.-To 3.5 g of palladium chloride bis(tri-otolylphosphine), 100 ml of acetic acid, and 5 g of lithium acetate in a $2.50-\mathrm{ml}$ flask was added hydrogen while the mixture was heated for 2 hr at reflux. An orange-yellow precipitate was filtered which gave an infrared spectrum that indicated the presence of methylene groups (not present in the starting material). Anal. Calcd for VII, $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{P}_{2} \mathrm{ClPd}$: $\mathrm{Cl}, 4.7$. Found: Cl , 5.7.

Registry No.-II, 40691-30-3; V, 35917-41-0; VII, 3.5917-43-2; 1-octene, 111-66-0; carbon monoxide, 630-08-0; triphenylphosphine, 603-35-0; carbon tetrachloride, 56-23-5; bromine, 7726-95-6; $\mathrm{PdBr}_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}, 23523-33-3 ; \mathrm{PdBr}_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right)\right]_{2}$, 40691-31-4; $\quad \mathrm{PdBr}_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right)_{2}\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right)\right]$, 40691-32-5; palladium chloride bis(tri-o-tolylphosphine), 40691-33-6.

Substituted 1-Chlorophosphetanium Salts. Synthesis, Stereochemistry, and Reactions ${ }^{1 \mathrm{a}}$

Sheldon E. Cremer, ${ }^{\text {ib }}$ Frederick L. Weitl, Frank R. Farr, Paul W. Kremer, George A. Gray, and Hai-ok Hwang
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233

Received December 27, 1979
The phosphetanium tetrachloroaluminates $\mathbf{1 b}$ and $\mathbf{1 c}$ derived from $\mathrm{PhPCl}_{2}-\mathrm{AlCl}_{3}$ or $\mathrm{CH}_{3} \mathrm{PCl}_{2}-\mathrm{AlCl}_{3}$, and $2,4,4-$ trimethyl-2-pentene have been isolated and fully characterized. The cis-trans isomer distribution in these salts has been correlated with the isomer ratio of the oxides 2 b and 2 c when the former are quenched with water. The experimental mode of water addition is critical and determines the isomeric composition; an explanation consistent with these observations is advanced. The three chlorinated adducts 11,10 , and 6 derived fram 1 -methyl-, 1-phenyl-, and 1-tert-butyl-2,2,3,4,4-pentamethylphosphetane have been prepared. The cis-trans isomers of these chlorides undergo interconversion in solution; the rate of stereomutation follows the order 10 faster than 11 faster than 6 at 35°. Trigonal bipyramidal intermediates (or transition states) are invoked to account for the isomer crossover. Interconversion can be frozen by addition of aluminum chloride to give $\mathbf{1 b}, \mathbf{1 c}$, or $\mathbf{7}$. Thermolysis of the phosphetanium chlorides leads to ring-opened and ring-expanded products. Hydrogen bromide "adducts" of several phosphetane oxides have been synthesized, and the nature of their structure is discussed.

There are only a limited number of reports which have described the successful synthesis of the phosphetane ring system. ${ }^{2}$ Of these, the addition of $\mathrm{PCl}_{3}-$ AlCl_{3} to 2,4,4-trimethyl-2-pentene (TMP) to give $1 a^{2 c}$ (Scheme I) and its subsequent generalization ${ }^{2 f}$ have led to substituted phosphetanes which have been widely employed for stereochemical, ${ }^{2 f, g, 3}$ kinetic, ${ }^{31, \mathrm{n}}{ }^{13} \mathrm{C}$ $\mathrm{nmr},{ }^{3 \mathrm{~b}-\mathrm{i}, \mathrm{m}}$ and other studies. ${ }^{3 \mathrm{k}}$
The mechanism suggested by McBride ${ }^{2 c}$ for the formation of 2a (Scheme I) implied that la was formed as an intermediate; however, the latter was not characterized at the time. Our initial observation ${ }^{2 f}$ that the cis:trans ratio of the products $2 b$ or $2 c^{4}$ was dramatically dependent upon the mode of addition of water to $\mathbf{1 b}$ or $\mathbf{1 c}$ (see Table I) prompted us to isolate $\mathbf{1 b} \mathbf{b}^{5}$ and $\mathbf{1 c}$ and to relate the stereochemistry of
(1) (a) This work was partially supported by Public Health Service Grant CA 11631, National Cancer Institute, and a grant from the Marquette University Committee on Research. (b) Alfred P. Sloan Research Fellow, 19711973.
(2) (a) G. M. Kosolapoff and R. F. Struck, J. Chem. Soc., 3739 (1957); (b) M. Green, ibid., 541 (1965); (c) J. J. McBride, Jr., E. Jungermann, J. V. Killheffer, and R. J. Clutter, J. Org. Chem., 27, 1833 (1962); (d) D. Berglund and D. W. Meek, J. Amer. Chem. Soc., 90, 518 (1968); (e) T. A. Zyablikova, A. P. Panteleeva, and I. M. Shermergorn, Izv. Akad. Nauk SSSR, Ser. Khim., 373 (1969); (f) S. E. Cremer and R. J. Chorvat, J. Org. Chem., 32, 4066 (1967); (g) G. Zon and K. Mislow, Fortschr. Chem. Forsch., 19, 88 (1971); (h) R. I. Wagner, U. S. Patent 3,086,053 (1963); Chem. Abstr., 59, 10124 (1963); (i) B. A. Arbuzov, L. A. Shapshinskaya, and V. M. Erokhina, Izv. Akad. Nauk SSSR, Ser. Khim., 1820 (1965).
(3) (a) K. Mislow, Accounts Chem. Res., 3, 321 (1970), and references cited therein; (b) R. F. Hudson and C. Brown, ibid., 6, 204 (1972); (c) D. Gorenstein, J. Amer. Chem. Soc., 94, 2808 (1972); (d) J. R. Corfield, R. K. Oram, D. J. H. Smith, and S. Trippett, J. Chem. Soc., Perkin Trans. 1, 713 (1972); (e) R. K. Oram and S. Trippett, J. Chem. Soc., Chem. Commun., 554 (1972); (f) D. B. Denney, D. Z. Denney, C. D. Hall, and K. L. Marsi, J. Amer. Chem. Soc., 94, 245 (1972); (g) N. J. De'ath, D. Z. Denney, and D. B. Denney, J. Chem. Soc., Chem. Commun., 272 (1972); (h) G. A. Gray and S. E. Cremer, Tetrahedron Lett., 3061 (1971); (i) G. A. Gray and S. E. Cremer, J. Chem. Soc., Chem. Commun., 367 (1972); (j) G. A. Gray and S. E. Cremer, J. Org. Chem., 37, 3458 (1972); (k) see appropriate chapters in Specialist Periodical Reports, "Organophosphorus Chemistry," Vol. 1-3, S. Trippett, Ed., The Chemical Society, London, 1970-1972; (1) S. E. Cremer, B. C. Trivedi, and F. L. Weitl, J. Org. Chem., 36, 3226 (1971); (m) G. A. Gray and S. E. Cremer, ibid., 37, 3470 (1972); (n) P. Haake, R. D. Cook, T. Koizumi, P. S. Ossip, W. Schwarz, and D. A. Tyssee, J. Amer. Chem. Soc., 92, 3828 (1970)
(4) An initial report ${ }^{25}$ indicated that the stereochemistry of 2 c was invariant with the mode of quench; a subsequent publication ${ }^{3 i}$ showed this to be incorrect. Also, the isomer ratios of $\mathbf{2 b}$ in the earlier report ${ }^{24}$ were determined after recrystallization of the product; since fractionation occurs, these ratios differ from those in the present paper which records the ratios prior to recrystallization.
(5) A preliminary report on the isolation of 1 b has appeared: 160 th $\mathrm{Na}-$ tional Meeting of the American Chemical Society, Chicago, Ill., Sept 1970, Abstract ORGN 62.

Scheme I

la, $\mathrm{R}=\mathrm{Cl}$
b, $\mathrm{R}=\mathrm{Ph}$
c, $\mathrm{R}=\mathrm{CH}_{3}$
these intermediates to the corresponding oxides. The results of these and related experiments form the basis of the present investigation.

Results and Discussion

Isolation of the Tetrachloroaluminate Salts. -Treatment of $\mathrm{CH}_{3} \mathrm{PCl}_{2}-$ or $\mathrm{PhCl}_{2}-\mathrm{AlCl}_{3}$ in methylene chloride with TMP was carried out in the usual manner ${ }^{2 f}$ except that the intermediate salts were isolated prior to the addition of water. The reactivity of these compounds required the rigorous exclusion of atmospheric moisture and manipulation in dry solvents. The nmr of the crude reaction products $\mathbf{1 b}$ or $1 \mathbf{c}$ indicated the presence of two isomers in each case. The ${ }^{1} \mathrm{H}$ nmr of la in situ showed a single isomer as anticipated from its structure. Isolation of the crystalline intermediates $\mathbf{1 b}$ and $\mathbf{1 c}$ followed by redissolution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ did not change the original isomer ratio. The ${ }^{1} \mathrm{H}$ nmr spectra were similar to other phosphetanium salts ${ }^{24}$ and the low field ${ }^{31} \mathrm{P}$ shifts were in accord with values of chloro-substituted phosphonium salts; ${ }^{6}$ addi-
(6) A. J. Kirby and S. G. Warren in "The Organic Chemistry of Phosphorus." C. Eaborn and N. B. Chapman, Ed., Elsevier, Amsterdam, 1967, pp 26-27, 194; (b) J. R. Van Wazer, et al., in "Topics in Phosphorus Chemistry," Vol. 5, M. Grayson and E. J. Griffith, Ed., Wiley-Interscience, New York, N. Y., 1967, Chapters 3 and 4.
tional structural support comes from ${ }^{13} \mathrm{C} n m r^{3 m}$ and satisfactory elemental combustion analysis.

A single attempt was made to prepare 7 from tertbutylphosphonous dichloride-aluminum chloride and TMP; the liquid product (after $\mathrm{H}_{2} \mathrm{O}$ quench) did not show the characteristic nmr features ${ }^{2 f}$ of a phosphetane oxide. An alternate route for the preparation of 7 was achieved following Scheme II.

Scheme II

The trans acid chloride 3^{7} was treated with tertbutyllithium to give 4 a ; retention of configuration about phosphorus was expected from analogy to similar systems. ${ }^{3 d, 8}$ The ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum supported ${ }^{3 j}$ the trans assignment. Reduction of 4 a to give 5 should also go with retention; ${ }^{2 f, 3 a}$ the ${ }^{31} \mathrm{P}$ shifts ${ }^{8 a}$ are consistent with this assignment. The phosphetane 5 was converted to $6 a$ with chlorine, and the latter gave 7 a with AlCl_{3}; the stereochemistry of $5 \rightarrow 7 \mathrm{a}$ is discussed under Chorination of the Phosphetanes.

Chlorination of the Phosphetanes.-Our initial efforts were directed toward a stereospecific synthesis of the pure cis or trans isomers of 1 b and lc by an independent route. The availability of a predominance ${ }^{2 f}$ of cis- and trans-1-phenyl-2,2,3,4,4-pentamethylphosphetane (8) and $1,2,2,3,4,4$-hexamethylphosphetane (9) suggested that 1 lb and 1 c could be prepared by low-temperature chlorination and subsequent treatment with aluminum chloride as in the conversion of 5 to 7. However, chlorination of a predominance of either the cis or trans isomers of 8 led to the same chlorinated product, 10, which showed a remarkably simple nmr pattern of two overlapping doublets corresponding to the four $\mathrm{C}-\mathrm{CH}_{3}$ groups at carbons 2 and 4, a double doublet due to the $\mathrm{C}-\mathrm{CH}_{3}$ at carbon 3, a multiplet due to the hydrogen at carbon 3 , and five aromatic protons. Likewise, chlorination of a predominance of the cis or trans isomers of 9 led to the same product whose nmr spectrum was considerably broadened but interpretable on the basis of the presence of two isomeric phosphetanium chlorides $11 \mathrm{a}(\mathrm{b})$. The nmr spectrum of 10 is readily under-

[^119]stood if the 1-phenylphosphetanium salts undergo rapid interconversion on the nmr time scale to give a simple, time-averaged spectum. In 11 the interconversion is slower, and the individual isomers are discernible, but as broadened peaks. Low-temperature nmr experiments support this explanation. At about -20° sharp nmr signals due to the separate isomers are observed in 10 as well as in 11. Treatment of 10 and 11 in methylene chloride with anhydrous aluminum chloride converted them to their respective AlCl_{4} - derivatives, $\mathbf{l b}$ and $\mathbf{1 c}$. The former showed a $2: 1$ (cis:trans, refers to $1-\mathrm{Ph}$ vs. $3-\mathrm{CH}_{3}$) mixture of isomers and the latter a $3: 2$ mixture (trans:cis $1-\mathrm{CH}_{3}$ and $3-\mathrm{CH}_{3}$ relationship).

As anticipated, low-temperature chlorination of a cis-trans mixture of 1 -chloro-2,2,3,4,4-pentamethylphosphetane (12) followed by the addition of AlCl_{3} gave la which was identical with that prepared through addition of TMP to $\mathrm{PCl}_{3}-\mathrm{AlCl}_{3}$.

The low-temperature chlorination of the trans-tert-butylphosphetane (5) gave only the trans-phosphetanium chloride (6a), provided that the nmr spectrum of 6 a was taken immediately after chlorination. Similarly, chlorination of a $1: 1$ cis: trans mixture rendered a $1: 1$ ratio of $6 \mathrm{a}: 6 \mathrm{~b}$. On standing pure 6 a isomerized; for example, after 1.5 hr at 35° a $1: 1$ composition was observed, and on standing about 1 day a $3: 1$ ($\mathbf{6 b}: \mathbf{6 a}$) equilibrium mixture was reached. The same equilibrium ratio prevailed by starting from a $9: 1$ mixture of $\mathbf{6 b}: \mathbf{6 a}$. The equilibration could be stopped by adding dry AlCl_{3}.

Isomer Assignments. -The isomer assignments in 1c have previously been made on the basis of empirical corrclations using ${ }^{13} \mathrm{C} n m r .{ }^{9}$ The assignment in the tert-butylphosphetanium chloride is made on the same basis; for a $3: 1$ mixture of $\mathbf{6 b}: \mathbf{6 a}$ the ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum $\left(\mathrm{CDCl}_{3}\right.$, shifts relative to $\mathrm{TMIS}{ }^{13} \mathrm{C}$) gave a peak at $\delta 47.86\left(J_{\mathrm{PCC}}=8.2 \mathrm{~Hz}\right)$ for ring C-3, corrcsponding to the major component vs. 42.68 ($J_{\mathrm{PCC}}=$ 11.3 Hz) for the minor isomer. The relative shifts and coupling constants are parallel to those in $1 \mathbf{c}$.

In compounds 6 and 10 the cquilibrium distribution ${ }^{10}$ favors the isomer in which the larger group ${ }^{11}$ on phosphorus is pseudoequatorial and is cis to the pseudoequatorial $3-\mathrm{CH}_{3}{ }^{7 \mathrm{~b}, 12}$ This is consistent with the base catalyzed equilibration of $13 \mathrm{a}-\mathbf{c}$; in chloroform

13a, $\mathrm{R}=\mathrm{Ph} ; \mathrm{R}^{\prime}=\mathrm{Bz}$
b, $\mathrm{R}=\mathrm{Bz} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}$
c, $\mathrm{R}=\mathrm{Ph} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}$

[^120]or water the predominant isomer (2:1 to $4: 1$, dependent on R and R^{\prime}) had the bulkier substituent R cis to the $3-\mathrm{CH}_{3}$ group. ${ }^{13}$ In compound 11, however, it is noted that the trans isomer is favored (a $3: 2$ ratio corresponds to a free energy difference of $0.24 \mathrm{kcal} / \mathrm{mol}$ at 25°). Hence, the relative stability of isomers cannot always be predicted on the basis of simple steric considerations, especially when the energy difference is small.

The resultant stereochemistry of the oxides derived from $1 \mathrm{~b}, 1 \mathrm{c}$, and 7 on treatment with water provides indirect evidence that the above cis-trans assignments are reasonable (vide infra).

Mechanism of Isomerization. -One pathway for isomer interconversion involves a manifold of pentacovalent phosphorus intermediates (Scheme III).

Scheme III

10a (trans), $\mathrm{R}=\mathrm{Ph}$

11a (trans), $\mathrm{R}=\mathrm{CH}_{3}$

Ample precedent for pseudorotation in similar systems is available. ${ }^{3 a, 14}$ The four-membered ring is best accommodated in the equatorial-apical positions of a trigonal bipyramid because of angle constraint. ${ }^{3 \mathrm{a}, 15}$ The intermediate 14, however, is of high energy, especially if $\mathrm{R}=$ tert-butyl; the two chlorine atoms are also in the unfavored equatorial positions. ${ }^{16}$ A case in point is cis- and trans-1-tert-butyl-1,2,2,3,4,4-hexamethylphosphetanium iodide which do not interconvert on heating with $1 \mathrm{~N} \mathrm{NaOH} .{ }^{17}$

An alternate pathway for stereomutation is shown in Scheme IV; Quin first proposed a similar scheme to explain cis-trans interconversion (rapid on the nmr time scale) in phospholenium salts. ${ }^{18}$ The ring spans the two equatorial positions in the trigonal bipyramid 15 (intermediate or transition state); previous stereochemical ${ }^{3 d, 19}$ and nmr data ${ }^{38}$ suggest this geometry especially when other balancing, stereoelectronic factors ${ }^{16 a}$ are present. In an idealized trigonal bipyramid the two equatorial positions are 120° apart; however, it is possible that the four-membered ring spans these

[^121]Scheme IV

15

$$
\mathrm{R}=\mathrm{CH}_{3}, t-\mathrm{Bu}, \mathrm{Ph}
$$

positions in an unsymmetrical trigonal bipyramid with one of the basal angles $<120^{\circ}$. The relative rates (in the nmr at 35°) of interconversion ($\mathrm{Ph}>$ $\mathrm{CH}_{3}>t-\mathrm{Bu}$) in 10, 11, and 6 are consistent with Scheme IV. An inductive effect ($t-\mathrm{Bu}>\mathrm{CH}_{3}>\mathrm{Ph}$) would slow down the rate of Cl^{-}attack ${ }^{20}$ at P^{+}; moreover, a steric effect may be present in the t-Bu derivative.

As a test of Quin's ${ }^{18}$ suggestion of rapid interconversion of the isomers of 1 -chloro-1,2,5-trimethyl-3phospholenium chloride (16), we have treated this salt with dry AlCl_{3} in both CDCl_{3} and nitrobenzene. This froze the equilibration and gave nmr signals for the separate isomers (ratio $\sim 5: 1$).

It should be noted that the ${ }^{31} \mathrm{P}$ shifts in 6,10 , and 11 are virtually identical with their $\mathrm{AlCl}_{4}-$ derivatives and range from -110 to -138 ppm . Thus, the concentration of pentacovalent intermediates must be small in Scheme III or IV; it is assumed that the ${ }^{31} \mathrm{P}$ values for 14,15 , etc., would be at least $0-10 \mathrm{ppm} .{ }^{20 b}$ Likewise, if 15 is a transition state, the ${ }^{31} \mathrm{P}$ shifts are also understandable.

Water Quench of Intermediates.-Table I summar-

Table I
$\mathrm{H}_{2} \mathrm{O}$ Quench of the Intermediate Salts

| Compound | Isomer ratio ${ }^{a}$
 of salta (c:t) | Mode of quench
 lb | $2: 1$ |
| :---: | :---: | :---: | :---: | | $\mathrm{H}_{2} \mathrm{O}$ to salt |
| :---: |
| Isomer ratio ${ }^{a}$ |
| of oxides $(\mathrm{c}: \mathrm{t})$ |

${ }^{a}$ The ratios are approximate in some cases due to integration of partially overlapping peaks; the error is estimated at $\pm 10 \%$. In the case of 1 b and 1 c , the ratios are the average of three separate runs. ${ }^{b}$ The mode of quench was immaterial in this case, since the salt did not react with $\mathrm{H}_{2} \mathrm{O}$ in the cold. Sodium hydrooxide was used for the conversion-see Discussion and Experimental Section. ${ }^{c}$ The ratio obtained by treatment of 16 with AlCl_{3} is assumed to reflect the ratio in 16.
izes the stereochemical relation of the phosphetane oxides to the salt precursors. The salts in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were quenched with water by two methods: (a) water was added dropwise to a cold solution of the intermediate; (b) the intermediate was added dropwise to cold water. The data for 1 b and 1 c suggest that the latter quenching method gives a mixture of oxides whose

[^122]composition correlates with that of the salts. That is, with an excess of water present a given isomer is rapidly converted to its oxide with retention of configuration about phosphorus. ${ }^{21}$ In the reverse mode of quench, in which water is the limiting reagent, chloride ions are formed after the first drop of water has been added; the chloride ion then allows equilibration between the cis and trans tetrachloroaluminate salts. Subsequently, the cis $v s$. trans intermediates are bled off to the oxides at different rates; the predominant isomer is derived from the salt which reacts fastest. Thus either a $7: 3$ or $2: 3$ (cis:trans) mixture of 1 c leads to an isomer mixture which contains $75-80 \%$ of the trans oxide. ${ }^{22}$ To support the assumption that the isomers of $1 \mathbf{c}$ interconvert in the presence of Cl^{-}, a nonequilibrium composition, $4: 1$ (cis:trans) was treated with lithium chloride; a $3: 2$ (cis:trans) ratio was observed shortly after the addition. Trace amounts of water also induced interconversion. When 1c was heated at 80° in acetonitrile with a trace of water, the equilibrium composition (2:3, cis:trans) was observed; this ratio was identical with that from treatment of 11 with AlCl_{3}.

Since 1a is not associated with cis-trans isomerism, the mode of quench has no effect on the stereochemical outcome of the acid chloride 3 . It is curious that the reaction gives nearly one pure isomer. ${ }^{23}$

Treatment of 7 a with water by either mode of quench gave unexpected results. Examination of the mcthylene chloride layer revealed only about onequarter of the expected amount of oxide; inspection of the aqueous layer showed the presence of a compound whose nmr spectrum was identical with that of 6a. In a subscquent experiment it was found that solid $6 \mathbf{a}$ (or $6 \mathbf{b}$) could be dissolved in water and then recovered unchanged after removal of the solvent. The tert-butyl substituent apparently makes attack at P^{+}quite slow; this same effect was previously noted on the rate of isomerization of 6 by chloride ion.

On heating a sample of 6 a in $\mathrm{H}_{2} \mathrm{O}$ at steam bath tempcratures it was transformed into pure trans $4 a$ in about 45 min . Likewisc a $9: 1$ mixture of $6 \mathbf{b}: 6 \mathrm{a}$ gave a $3: 1$ (cis:trans) composition of $4 \mathrm{~b}: 4 \mathrm{a}$ under identical conditions, but required $\sim 45 \mathrm{hr}$; a control experiment showed that 4 b does not give 4 a in aqueous HCl at 100° for 56 hr . These results are readily understood if one assumes that the cquilibration $6 \mathrm{a} \underset{\mathrm{c}}{\mathrm{Z}} \mathrm{bb}$ is quite slow ${ }^{24}$ in water rclative to the rate of conversion to oxidc. In $6 a$ the transformation to 4 a is faster than its interconversion to $6 \mathbf{b}$. However, since the rate of $\mathbf{6 b} \rightarrow 4 \mathrm{~b}$ is about 60 times slower, some competitive isomerization occurs, but a predominance of the cis oxide is still obtained. Aqueous sodium hydroxide treatment of $6 a$ and $6 b$ gives the respective oxides $4 a$ and 4 b without concomitant isomerization.

[^123]Quin ${ }^{18}$ had earlier observed difficulty in obtaining a reproducible isomeric composition of 1,2-dimethyl-3phospholene oxide on hydrolysis of the intermediate salt. That the stereochemistry of a similar system is dependent on the mode of quench was shown by hydrolysis of 1,2,5-trimethyl-3-phospholenium chloride (16), ${ }^{18}$ Table I. The isomer assignments in 16 are tentative; it is assumed that the addition of 16 to $\mathrm{H}_{2} \mathrm{O}$ reflects the cis-trans composition at equilibrium. The isomer assignments in 1,2,5-trimethyl-3-phospholene oxide have already been established. ${ }^{18,25}$

Thermal Decomposition of the Phosphetanium Chlorides. - In an attempt to dry (for analysis) the phosphetanium chlorides 10 and 11 at elevated temperatures under vacuum, the salts decomposed. On purification of one of the products, 17, by distillation, ring closure occurred to give 17a. Scheme V sum-

Scheme Va

17b (bromide)

11a

11b

${ }^{a}$ Structure proof for these compounds is contained in the Experimental Section. ${ }^{6}$ The compounds in brackets are postulated, unisolated intermediates.
marizes the results of these and other reactions, including characterization of liquid products by conversion to crystalline derivatives. During the course

[^124]of this work, ${ }^{26}$ Trippett ${ }^{27}$ reported on the preparation of $17 a$ and 18 by similar reactions.

The ease of ring opening, $12 \mathrm{a}>10>11$, qualitatively parallels the combined electronegativity of the substituents on phosphorus. Phosphetanium salts which only have aryl and/or alkyl groups on phosphorus thermolyze at $200-350^{\circ} .{ }^{28}$ In comparison, 1-benzyl-1,2,2-trimethylazetidinium perchlorate gives N-methyl-N-(3-methyl-3-buten-1-yl)benzylamine perchlorate on refluxing for 3 days in acetonitrile. ${ }^{29}$

Conversion of the phosphetanium chlorides to acyclic olefins bears analogy to a prior observation ${ }^{13}$ in which 20 was converted to 21 by sulfuryl chloride. ${ }^{30}$ In contrast 2 a did not react with sulfuryl chloride; this is reasonable in view of the greater nucleophilicity of sulfur (in $\mathrm{P}=\mathrm{S}$) vs. oxygen (in $\mathrm{P}=\mathrm{O}$)..31 The driving force for the formation of 17,18 , and 21 is attributed to angle strain in the four-membered ring. ${ }^{31}$

Hydrogen Bromide Adducts of Phosphetane Oxides. -In an earlier attempt to establish the stereochemistry of 1 c , we tried to convert a known ${ }^{8 a}$ isomeric mixture (2:1, trans:cis) of 12 with methyl bromide to the respective isomeric salts; isomer interconversion, at that time, had not been anticipated. The quaternization proceeded very slowly to give $22, \mathrm{mp} 176-179^{\circ}$. Recrystallization of this from acetonitrile (which was not rigorously dried) gave a different compound, mp $235-249^{\circ}$ dec, which did not contain chlorine. The nmr spectrum and elemental analysis suggested isomeric (2:1) phosphetanc oxide -HBr adducts shown as 23. Treatment of trans-2c in chloroform or benzene with dry HBr gave a product which was identical with the major isomer of 23 ; likewisc cis-2c and HBr yielded the minor isomer. The ${ }^{31} \mathrm{P}$ chemical shifts of these adducts and that derived from 4 a were about 30 ppm downficld from the parent oxide; similar shifts have been reported for acyclic phosphine oxides. ${ }^{32}$ The infrared of the HBr addition products showed the absence of $\mathrm{P}=0$ stretch $\left(\sim 1150-1200 \mathrm{~cm}^{-1}\right)$ and the presence of several new peaks in the region 1800-2700 (broad, PO-H stretch?) and $920-960 \mathrm{~cm}^{-1}$ (strong and broad, PO-H bending?). It was found that cis-trans interconversion of 23 at 100° in tetrachloroethane for 5 days does not occur. Moreover, these adducts are readily sublimed by heating under vacuum without apparent loss of HBr .

From the ${ }^{31} \mathrm{P}$ data it is unlikely that the structure of 23 can be written as 24 ; however, an equilibrium, 23 $\rightleftarrows 24$, cannot be ruled out, cspecially if 23 is the predominant species. The absence of isomer interconversion is reasonable since Scheme IV does not apply (apical groups are not identical) and Scheme III would include high energy intermediates (e.g., CH_{3} apical,

[^125]

OH and Br equatorial). Hopefully, a definitive structure will be forthcoming from X-ray studies. ${ }^{23}$

Experimental Section

Nmr spectra were recorded on a Varian A-60A spectrometer; tetramethysilane was used as an internal standard. In those cases in which $\mathrm{H}_{2} \mathrm{O}$ was employed as the solvent, Tier's salt $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SO}_{3} \mathrm{Na} \cdot \mathrm{H}_{2} \mathrm{O}\right]$ was the reference standard. The ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ decoupling experiments were performed with an NMR specialties Model HD-60A heteronuclear spin decoupler. Microanalyses were carried out by Alfred Bernhardt, Mikroanalytisches Laboratorium, Elbach, West Germany. All boiling and melting points (Thomas-Hoover apparatus) are uncorrected. All reactions were conducted under a nitrogen atmosphere; reaction work-up and isolation of moisture sensitive intermediates were conducted in a Labconco glove box in a dry, nitrogen atmosphere. The low temperature for the nmr studies was determined by methanol calibration. ${ }^{34}$

1-Chloro-1-phenyl-2,2,3,4,4-pentamethylphosphetanium Tetrachloroaluminate ($\mathbf{l b}$).-To $40 \mathrm{~g}(0.30 \mathrm{~mol})$ of anhydrous aluminum chloride (powder) suspended in 100 ml of methylene chloride was added $54 \mathrm{~g}(0.30 \mathrm{~mol})$ of phenylphosphonous dichloride in 100 ml of methylene chloride. The mixture was briefly stirred until homogeneous and then cooled to $0-5^{\circ}$ while 34 g (0.30 mol) of 2,4,4-trimethyl-2-pentene in 100 ml of methylene chloride was added dropwise over 2 hr . The solution was allowed to warm to room temperature and was stirred overnight. The solvent was removed under vacuum $(\sim 20 \mathrm{~mm})$ to give a crude, crystalline solid. The nmr spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the crude product showed two isomers in a $2: 1$ ratio (estimated due to overlap of peaks). The tetrachloroaluminate was recrystallized twice from hot, dry acetonitrile (minimum) and dry ethyl acetate to give about 50 g of white, crystalline salt, mp 84-104 ${ }^{\circ}$ (sealed tube). The nmr spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the major component showed peaks at τ $1.73-2.33(\mathrm{~m}, 5 \mathrm{H}), 6.67-7.20(\mathrm{~m}, 1 \mathrm{H}), 8.27\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCB}} \approx\right.$ $24 \mathrm{~Hz}), 8.30\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=25.5 \mathrm{~Hz}\right), 8.80\left(\mathrm{~d} \mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{HCCH}}=\right.$ $7 \mathrm{~Hz}, J_{\text {PCCCH }} \sim 1 \mathrm{~Hz}$). The minor isomer showed peaks at 8.28 $(\mathrm{d}, 6 \mathrm{H}, J \approx 24 \mathrm{~Hz}), 8.39(\mathrm{~d}, 6 \mathrm{H}, J=25.5 \mathrm{~Hz})$, and $8.73(\mathrm{~d} \mathrm{~d}$, $\left.3 \mathrm{H}, J_{\mathrm{HCCH}}=7 \mathrm{~Hz}, J_{\mathrm{PCCCH}} \approx 1 \mathrm{~Hz}\right)$; the aromatic and ring protons overlapped with those of the major isomer. A moderate concentration of tetrachloroaluminate formed two layers in chloroform. The upper layer contained most of the salt; the lower layer was about tenfold less concentrated in salt. In methylene chloride only one homogeneous phase was apparent. On ${ }^{31} \mathrm{P}-1 \mathrm{H}$ decoupling all doublets due to ${ }^{31} \mathrm{P}$ coupling collapsed to singlets. From the frequency used to decouple this sample, the ${ }^{31} \mathrm{P}$ chemical shift was calculated ${ }^{35}$ to be $-111 \pm 2 \mathrm{ppm}$ (relative to $85 \% \quad \mathrm{H}_{3} \mathrm{PO}_{4}$); two standards (trimethyl phosphite and trimethyl phosphate in a sealed capillary tube) were employed as references for the calculation. Use of two references provided an internal check on the reliability of this method; the experimental difference ($138 \pm 1 \mathrm{ppm}$) in ${ }^{31} \mathrm{P}$ shift of the standards was in accord with literature values. ${ }^{\text {b }}$ This same technique was used for other ${ }^{31} \mathrm{P}$ shifts in this paper.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{AlCl}_{5} \mathrm{P}: \mathrm{C}, 39.51 ; \mathrm{H}, 5.21$; Al , 6.34 ; Cl, 41.66; P, 7.28. Found: C, 39.25; H, 5.49; Al, 6.50; Cl, 41.39; P, 7.43.

[^126]The quench of 1 b with $\mathrm{H}_{2} \mathrm{O}$ followed the general procedure for that of 1 c (vide infra). The isomer ratio (Table I) in the oxide was determined (nmr, benzene) by integration of the $\mathrm{C}-\mathrm{CH}_{3}$ groups at the 2 and 4 positions. ${ }^{2 f}$

1-Chloro-1,2,2,3,4,4-hexamethylphosphetanium Tetrachloroaluminate (1c).-This intermediate was prepared in $80-90 \%$ yield by the general method described for (1b). ${ }^{2 f}$ An nmr $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ spectrum of the crude reaction mixture (prior to evaporation) indicated an isomer ratio or $\sim 4: 1$ (cis:trans). ${ }^{36}$ The nmr spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of the major component (cis isomer) showed absorption at $\tau 7.37$ (d, $\left.3 \mathrm{H}, J_{\mathrm{PCH}}=11 \mathrm{~Hz}\right), \sim 8.41$ (d, $\left.6 \mathrm{H}, J_{\mathrm{PCCH}} \sim 26 \mathrm{~Hz}\right), \sim 8.43\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}} \sim 24 \mathrm{~Hz}\right), 8.88$ $\left(\mathrm{d} \mathrm{d}, 3 \mathrm{H}, J_{\mathrm{HCCH}}=7 \mathrm{~Hz}, J_{\text {PCCCH }}=1 \mathrm{~Hz}\right)$. The minor component showed a peak at $\tau 7.32\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCH}}=11 \mathrm{~Hz}\right)$; the upfield methyl absorption partially overlapped with that of the major component. The elemental combustion analysis and ${ }^{13} \mathrm{C}$ nmr spectrum have been reported. ${ }^{3 \mathrm{~m}}$ The cis and trans isomers showed ${ }^{31} \mathrm{P}$ shifts at -126 and -114 ppm , respectively.

Equilibration of the Isomeric Tetrachloroaluminate Salts (1c).-A sample of the salt (cis: trans, $4: 1$) in dry $\mathrm{CH}_{3} \mathrm{CN}$ (dried over Linde Molecular Sieves 3A and then passed through Woelm neutral alumina) was heated in a sealed, degassed nmr tube at about 80°. The isomer ratio gradually changed: $\sim 3: 1(2 \mathrm{hr})$, $\sim 2: 1(4.5 \mathrm{hr}), \sim 16: 9(7 \mathrm{hr}), \sim 11: 9(11 \mathrm{hr}), \sim 1: 1(19 \mathrm{hr})$, and $\sim 9: 11(24 \mathrm{hr})$.

A sample of the salt (initially cis:trans, 4:1) was dissolved in dry acetonitrile and then solid LiCl (dried at 135°) was added to saturate the solution. An nmr spectrum this solution indicated that equilibration had already started (cis: trans, $3: 2$) at room temperature; heating the sealed, evacuated $n m r$ tube for 1 hr at 80° was sufficient to reach the equilibrium composition (cis: trans, 2:3).

A solution of 8 g of the tetrachloroaluminate salt (cis: trans, $4: 1)$ in 20 ml of dry $\mathrm{CH}_{3} \mathrm{CN}$ in a flask was heated to about 80° for 13 hr to give a $3: 2$ (cis: trans) mixture; then, about 100 mg of $\mathrm{D}_{2} \mathrm{O}$ was added; and the reaction was heated for 3 hr to give the equilibrium composition (cis: trans, 2:3).
$\mathrm{H}_{2} \mathrm{O}$ Quench of 1 c .-To 4.3 g of recrystallized tetrachloroaluminate salt (cis: trans, 2:3) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ}, \overline{5} \mathrm{ml}$ of water was added slowly and dropwise (via a medicine dropper) over 2 hr with stirring; then an additional 7.5 ml of water was added over 2 hr at 0°. The layers were separated, and the water layer was extracted three times with an equal volume of CHCl_{3}. The combined organic layers were dried and evaporated to give 2.1 $\mathrm{g}(95 \%)$ of 2 c ; the isomer ratio $4: 1$ (trans: cis) was determined by relative integration of the characteristic $\mathrm{P}-\mathrm{CH}_{3}$ groups in the $\mathrm{nmr}\left(\mathrm{D}_{2} \mathrm{O}\right)$ spectrum.

For the reverse mode of quenching, 4.6 g of intermediate (cis: trans, 2:3) in 100 ml of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to 80 ml of water (maintained at $0-5^{\circ}$ by external cooling) which was rapidly stirred. A nitrogen inlet tube was connected to the pressure equalized addition funnel to prevent water vapor from contacting the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution prior to its contact with the bulk sample of water. Work-up as described for the addition of $\mathrm{H}_{2} \mathrm{O}$ to the tetrachloroaluminate salt gave a 92% yield of oxide, $\sim 3: 7$ (cis:trans).

General Chlorination Procedure of Phosphetanes.-A solution of chlorine (0.015 mol) was prepared by passing dry chlorine into 10 ml of dry methylene chloride at about -30°; the flask and its contents were weighed to follow the amount of chlorine uptake. The solution was then transferred under nitrogen to an addition funnel and added slowly ($15-30 \mathrm{~min}$) to a stirred solution of phosphetane (0.015 mol) in 8 ml of methylene chloride. The temperature was maintained at -60 to -50° by external cooling. The solution was then placed in a drybox in order to fill nmr tubes or to add anhydrous aluminum chloride. The nmr spectra of the chlorinated solutions were "clean" which indicated that chlorination occurred in nearly quantitative yield.
$\mathrm{H}_{2} \mathrm{O}$ Quench of 1-tert-Butyl-1-chloro-2,2,3,4,4-pentamethylphosphetanium Tetrachloroaluminate (7).-To 7a (prepared from chlorination of 2 g of 5 followed by AlCl_{3} addition) in 8 ml of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ}, 8 \mathrm{ml}$ of water was added dropwise over 3 hr . The layers were separated, and the water was extracted three times with 25 ml portions of chloroform. Evaporation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ CHCl_{3} gave only $\sim 2.5 \%$ of the expected amount of oxide; the nmr spectrum showed it to be pure trans. The aqueous solution contained the chloride analog of 7a (namely, 6a): the nmr

[^127]spectrum $\left(\mathrm{H}_{2} \mathrm{O}\right)$ showed peaks at $\tau 8.26\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}} \sim 23 \mathrm{~Hz}\right)$, $8.33\left(\mathrm{~d}, 9 \mathrm{H}, J_{\mathrm{PCCH}}=19 \mathrm{~Hz}\right)$, and $8.43\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=21.5\right.$ Hz). The cold, water layer was brought to $\mathrm{pH} 9-10$ with sodium hydroxide and extracted with chloroform. Evaporation of the chloroform and nmr examination of the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed only trans oxide 4 a . The salt 7 a was also added slowly to an equal volume of water at 0°; the results were identical with those just described.

Similarly, a 3:1 mixture of 7b:7a was treated with water by both methods of quench. In each case the aqueous layer contained a $3: 1$ mixture of $\mathbf{6 b}: 6 \mathbf{a}$. Neutralization with sodium hydroxide gave a $3: 1$ mixture of the $4 \mathrm{~b}: 4 \mathrm{a}$. The nmr spectrum $\left(\mathrm{H}_{2} \mathrm{O}\right)$ due to 6 b in a mixture showed peaks at $\tau 8.23(\mathrm{~d}, 6 \mathrm{H}$, $\left.J_{\mathrm{PCCH}}=23.5 \mathrm{~Hz}\right), 8.41\left(\mathrm{~d}, 9 \mathrm{H}, J_{\mathrm{PCCH}}=19.3 \mathrm{~Hz}\right), 8.46(\mathrm{~d}, 6 \mathrm{H}$, $\left.J_{\text {PCCH }}=21.8 \mathrm{~Hz}\right)$, and $8.89\left(\mathrm{~d} \mathrm{~d} 3 \mathrm{H}, J_{\mathrm{HCCH}}=7 \mathrm{~Hz}\right.$; overlaps with 6a).

1-Chloro-1,2,2,3,4,4-hexamethylphosphetanium Chloride (11).-Chlorination of either trans-1,2,2,3,4,4-hexamethylphosphetane $(>95 \%)$ or a cis: trans ($7: 3$) mixture of isomers using the general chlorination method gave the same $\mathrm{nmr}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ pattern: $\tau 6.4-6.8$ (very broad doublet, $3 \mathrm{H}, J_{\mathrm{PCH}} \sim 13 \mathrm{~Hz}$), 8-8.8 (four broad peaks, 12 H) , 8.95 (d d, $3 \mathrm{H}, J_{\text {Hссн }}=7 \mathrm{~Hz}$, $\left.J_{\text {PCCCH }}=1 \mathrm{~Hz}\right)$. As the sample was cooled from the normal probe temperature $\sim 35^{\circ}$ to lower temperatures the upfield methyl absorption (τ 8-8.8) became sharper and the low field doublet $\left(\mathrm{P}-\mathrm{CH}_{3}\right)$ changed into two doublets. At -20° the major isomer showed peaks at $\tau 6.5\left(\mathrm{~d}, J_{\mathrm{PCH}}=12.5 \mathrm{~Hz}\right), 8.32$ $\left(\mathrm{d}, J_{\mathrm{PCCH}}=2(\mathrm{i} . \mathrm{i} \mathrm{Hz}), 8.59\left(\mathrm{~d}, J_{\mathrm{PCCH}}=23.4 \mathrm{~Hz}\right)\right.$; the minor isomer showed peaks at $\tau 6.6\left(\mathrm{~d}, J_{\mathrm{PCH}}=12.5 \mathrm{~Hz}\right), 8.33(\mathrm{~d}$, shoulder, $\left.J_{\text {PCCH }} \sim 26 \mathrm{~Hz}\right), 8.48\left(\mathrm{~d}, J_{\mathrm{PCCH}}=23.2 \mathrm{~Hz}\right)$. The $\mathrm{C}_{3}-\mathrm{CH}_{3}$ protons occurred at $\tau 8.9 \overline{\mathrm{j}}$ for both isomers. The nmr spectrum reverted to its original pattern when the sample was allowed to warm to 35°. A ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ decoupling experiment at 35° gave a ${ }^{31} \mathrm{P}$ value of approximately -121 ppm .

Addition of AlCl_{3} to 11.--Samples of 11 derived from either the trans-phosphetane or a cis: trans ($7: 3$) mixture were treated with an equivalent of AlCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent. In each case the nmr spectrum was the same. The ratio of isomers was about $3: 2$ (trans:cis); the nmr spectrum was also identical with the tetrachloroaluminate salt prepared from methylphosphonous di-chloride-aluminum chloride and TMP followed by equilibration of the isomers.

1-Chloro-1-phenyl-2,2,3,4,4-pentamethylphosphetanium Chloride (10).-The general method of chlorination was applied to $>95 \%$ trans-1-phenyl-2,2,3,4,4-pentamethylphosphetane as well as to a cis: trans ($7: 3$) mixture of the phosphetanes. In each case the same product was obtained. Rigorous exclusion of water was required since the phosphetanium chloride is very moisture sensitive. The nmr spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ showed absorption at $\tau 1 . \bar{i}-2.2(\mathrm{~m}, \overline{\mathrm{j}} \mathrm{H}), 6.6-7.1(\mathrm{~m}, 1 \mathrm{H}), 8.27$ (apparent d, $\left.12 \mathrm{H}, J_{\mathrm{PCCH}}=24.5 \mathrm{H} \%\right), 8.78\left(\mathrm{~d} \mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{HCCH}}=7 \mathrm{~Hz}, J_{\mathrm{PCCCH}}\right.$ $=1 \mathrm{~Hz})$. The ${ }^{31} \mathrm{P}$ shift was -110 ppm . When the anhydrous phosphetanium chloride partially hydroly\%ed in the presence of trace amounts of water, additional peaks were observed in the nmr spectrum at $\tau-4$ to -5 (s , function of the degree of hydrolysis), $8.20\left(\mathrm{~d}, J_{\mathrm{PCCH}}=23.8 \mathrm{H} \%\right)$, and $8.33\left(\mathrm{~d}, J_{\mathrm{PCCH}}=2 \overline{5} .8\right.$ Hz).

A sample for chlorine analysis was prepared by chlorination of distilled 1-phenylphosphetane; the white solid was washed in the glove box with anhydrous ether and then dried at 25° under vacuum (0.1 mm).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{P}: \quad \mathrm{Cl}, 24.3 \overline{5}$. Found: $\mathrm{Cl}, 24.74$.
A sample of phosphetanium chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with an equivalent of anhydrous AlCl_{3}; the AlCl_{3} dissolved in this reaction. The nmr spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ showed the presence of two isomers in a ratio of $2: 1$ (cis: trans); the nmr spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was identical with that of the phosphetanium tetrachloroaluminate salt prepared from 2,4,4-trimethyl-2-pentene and phenylphosphonous dichloride-aluminum chloride; moreover the chemical shifts and coupling constants in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were similar to those in CDCl_{3} (vide supra).

A low-temperature nmr study was run on 10 . As the sample was cooled the original doublet at $\tau 8.27$ broadened at the base line; near 0°, additional peaks were observed which flanked this doublet. At -10 to -20° these peaks became sharp: $\tau 8.25$ $\left(\mathrm{d}, J_{\mathrm{PCCH}}=24 \mathrm{~Hz}\right)$ and $8.3 \overline{5}\left(\mathrm{~d}, J_{\mathrm{PCCH}}=2 \overline{\mathrm{i}} .7 \mathrm{~Hz}\right)$. In addition, the upfield absorption at 8.78 changed to two broad doublets ($J_{\mathrm{HCCB}} \sim 7 \mathrm{~Hz}$ for each doublet). The isomer ratio at -20° was about $3: 2$. The low-temperature spectrum reverted to the original when allowed to warm to 35°.

1-tert-Butyl-2,2,3,4,4-pentamethylphosphetane 1-Oxide (4). The synthesis of this compound has appeared elsewhere. ${ }^{3 j}$ The pure trans oxide, mp 149-151 ${ }^{\circ}$, showed peaks in the nmr spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at $\tau 8.0-8.4(\mathrm{~m}, 1 \mathrm{H}), 8.70\left(\mathrm{~d}, 9 \mathrm{H}, J_{\mathrm{PCCB}}=\right.$ $13.5 \mathrm{~Hz}), 8.73\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=17 \mathrm{~Hz}\right), 8.82\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=\right.$

The cis isomer was obtained by sodium hydroxide treatment of a $3: 1$ (cis:trans) mixture of $7 \mathbf{b}: 7 \mathbf{a}$. Repeated recrystallization of the predominately cis isomer from cyclohexane followed by fractional sublimation gave a sample, mp $87-90.5^{\circ}$, which was $\sim 90 \%$ cis oxide. The nmr spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ showed peaks at $\tau 7.7-8.1(\mathrm{~m}, 1 \mathrm{H}), 8.72\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=16.5 \mathrm{~Hz}\right)$, $8.80\left(\mathrm{~d}, 9 \mathrm{H}, J_{\mathrm{PCCH}}=13.5 \mathrm{~Hz}\right), 8.86\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=15.5 \mathrm{~Hz}\right)$, and 9.14 (d d, $J_{\text {HCCH }}=7 \mathrm{~Hz}, J_{\mathrm{PCCCH}}=1.3 \mathrm{~Hz}$).

1-tert-Butyl-2,2,3,4,4-pentamethylphosphetane (5).-A solution of $26 \mathrm{~g}(0.12 \mathrm{~mol})$ of the corresponding trans oxide in 200 ml of benzene was reduced with trichlorosilane-triethylamine by the usual method ${ }^{27}$ to give the phosphetane in 90% yield after distillation of the benzene at atmospheric pressure. Sublimation ($\sim 40^{\circ}, 0.1 \mathrm{~mm}$) gave a white, crystalline product, mp 66 67°. An nmr spectrum (benzene) showed peaks at $\tau 7.41$ ($\mathrm{q}, 1$ $\left.\mathrm{H}, J_{\text {НССВ }}=7.5 \mathrm{~Hz}\right) ; 8.72\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=19 \mathrm{~Hz}\right) ; 8.76(\mathrm{~d}, 9$ $\left.\mathrm{H}, J_{\mathrm{PCCH}}=11.5 \mathrm{~Hz}\right) ; 8.82\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=5.5 \mathrm{~Hz}\right) ; 9.31(\mathrm{~d}$, $\left.3 \mathrm{H}, J_{\mathrm{HCCH}}=7.5 \mathrm{~Hz}\right)$. A $1: 1$ mixture of isomers was obtained by heating the trans isomer at $157^{\circ} .{ }^{37}$ The nmr spectrum (benzene) of the cis isomer showed a characteristic peak at $\tau 7.99$ (d $\mathrm{q}, 1 \mathrm{H}, J_{\mathrm{HCCH}}=7.5 \mathrm{~Hz} ; J_{\mathrm{PCCH}} \sim 3.5 \mathrm{~Hz}$); the ratio of cis:trans isomers was determined from this peak and $\tau 7.41$ from the trans isomer. Treatment of the trans isomer with methyl iodide gave white needles, $\mathrm{mp} 323-326^{\circ}$ dec, from acetonitrile-ethyl acetate.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{IP}: \mathrm{C}, 45.62 ; \mathrm{H}, 8.25$. Found: C, 45.57; H, 8.08 .

1-Chloro-1-tert-butyl-2,2,3,4,4-pentamethylphosphetanium Chloride (6).-A solution of 2.0 g of the trans phosphetane 5 was chlorinated using the general procedure. The solution was transferred while still cold to a drybox. An aliquot was immediately examined in the nmr spectrophotometer. A similar aliquot was immediately treated with anhydrous AlCl_{3} powder The AlCl_{3} rapidly dissolved in the solution; after 1 equiv had been added, the original pale yellow solution became light brown. Additional AlCl_{3} was insoluble in the methylene chloride solution.

The nmr spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of the phosphetanium chloride showed only one isomer, 6 a , to be present: $\tau 6.7-7.1(\mathrm{~m}, 1 \mathrm{H})$, $8.15\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=23 \mathrm{~Hz}\right), 8.24\left(\mathrm{~d}, 9 \mathrm{H}, J_{\mathrm{PCCH}}=19 \mathrm{~Hz}\right)$, $8.37\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCB}}=21.5 \mathrm{~Hz}\right)$, and $8.80\left(\mathrm{~d} \mathrm{~d}, 3 \mathrm{H}, J_{\text {HCCH }}=\right.$ $7 \mathrm{~Hz}, J_{\mathrm{PCCCH}}=1 \mathrm{~Hz}$).
The sample of pure trans-phosphetanium chloride showed about 10% of the cis isomer after spinning in the probe (about 35°) for $10-15 \mathrm{~min}$. After 90 min in the probe the cis:trans isomer ratio was about $50: 50$. On prolonged standing at room temperature (58 hr) the cis: trans ratio was $3: 1$ which is the equilibrium distribution.

The nmr spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of the trans-phosphetanium tetrachloroaluminate (7 a) showed peaks at τ 6.8-7.4 (m, 1 H), 8.25 $\left(\mathrm{d}, 6 \mathrm{H}, J_{\mathrm{PCCH}} \sim 23 \mathrm{~Hz}\right), 8.30\left(\mathrm{~d}, 9 \mathrm{H}, J_{\mathrm{PCCH}}=19 \mathrm{~Hz}\right) ; 8.40$ $\left(\mathrm{d}, 6 \mathrm{H}, J_{\text {PCCH }}=21.5 \mathrm{~Hz}\right), 8.84\left(\mathrm{~d} \mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{HCCH}}=7 \mathrm{~Hz}, J_{\text {Pccce }}\right.$ $=1 \mathrm{~Hz}$). Examination of this sample after 10 days at room temperature showed only trans isomer.

Chlorination of a $1: 1$ mixture of the cis- and trans-phosphetane gave a $1: 1$ mixture of $6 \mathrm{a}: 6 \mathrm{~b}$; the nmr spectrum was taken immediately after the completion of the reaction. The nmr spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of the cis-phosphetanium chloride (6 b) showed peaks at $\tau 6.8-7.3\left(\mathrm{~d} \mathrm{q}, 1 \mathrm{H}, J_{\mathrm{BCCH}}=7 \mathrm{~Hz}, J_{\mathrm{PCCH}}=2.5 \mathrm{~Hz}\right)$, $8.10\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=23.4 \mathrm{~Hz}\right), 8.30\left(\mathrm{~d}, 9 \mathrm{H}, J_{\mathrm{PCCH}}=19.5 \mathrm{~Hz}\right)$, 8.37 (d, $6 \mathrm{H}, J_{\text {PCCH }} \sim 21.5 \mathrm{~Hz}$), and $8.85\left(\mathrm{~d} \mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{HCCH}}=7\right.$ $\left.\mathrm{Hz}, J_{\text {PCcce }}=1 \mathrm{~Hz}\right)$. The cis-phosphetanium tetrachloroaluminate (7 b) had nmr $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ absorption at τ 6.8-7.3 (m, 1 H), $8.20\left(\mathrm{~d}, 6 \mathrm{H}, J_{\text {PCCH }}=23.5 \mathrm{~Hz}\right), 8.38\left(\mathrm{~d}, 9 \mathrm{H}, J_{\mathrm{PCCH}}=19\right.$ $\mathrm{Hz}), 8.42\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=21.5 \mathrm{~Hz}\right)$, and $8.87\left(\mathrm{~d} \mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{HCcH}}\right.$ $=7 \mathrm{~Hz}, J_{\text {PCCCE }}=1 \mathrm{~Hz}$). The ${ }^{31} \mathrm{P}$ shifts (relative to 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$) of 6 b and 7 b (both in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were -137 and -138 ppm , respectively.

A sample of the phosphetanium tetrachloraluminate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with anhydrous ether to precipitate the solid salt. The solid was redissolved and reprecipitated several times to provide an analytical sample.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{AlCl}_{5} \mathrm{P}: \mathrm{Cl}, 43.81$. Found: Cl , 43.32
(37) S. E. Cremer and C. H. Chang, Tetrahedron Lett., 5799 (1968).

The ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of a $3: 1$ mixture of $\mathbf{6 b}: \mathbf{6 a}$ showed peaks at $\delta 50.69\left(J_{\mathrm{PC}}=66.8 \mathrm{~Hz}, \mathrm{C}-2\right), 47.86\left(J_{\mathrm{PCC}}=\right.$ $8.2 \mathrm{~Hz}, \mathrm{C}-3), 17.21\left(J_{\mathrm{PCC}}<1 \mathrm{~Hz}, \mathrm{C}-5\right), 24.93\left(J_{\mathrm{PCC}}<1 \mathrm{~Hz}\right.$, C-6), $5.78\left(J_{\mathrm{PCCC}}=21.4 \mathrm{~Hz}, \mathrm{C}-7\right), 50.41\left[J_{\mathrm{PC}}=25.1 \mathrm{~Hz}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 24.93\left[J_{\mathrm{PCC}}<1 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ for the major isomer. The minor isomer had peaks at $\delta 42.68\left(J_{\mathrm{PCC}}=11.3 \mathrm{~Hz}, \mathrm{C}-3\right)$, $19.70\left(J_{\mathrm{PCC}}=5.8 \mathrm{~Hz}, \mathrm{C}-5\right), 23.16\left(J_{\mathrm{PCC}} \sim 0 \mathrm{~Hz}, \mathrm{C}-6\right)$, and 7.13 $\left(J_{\text {PCCC }}=21.4 \mathrm{~Hz}, \mathrm{C}-7\right)$; the other peaks overlapped with the major component. The numbering of the carbons follows that in previous manuscripts; the chemical shifts were calculated relative to $\left({ }^{13} \mathrm{CH}_{3}\right)_{4} \mathrm{Si}$, and the instrumental methods were as previously described. ${ }^{3 \mathrm{j}, \mathrm{m}}$

Treatment of 6 with $\mathrm{H}_{2} \mathrm{O}$.-Heating an aqueous solution of $3: 1$ ($6 \mathrm{~b}: 6 \mathrm{a}$) for 45 min at 100° converted all of the 6 a to 4 a , most of which could be extracted out of solution with several portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resultant aqueous solution of 90% pure 6 b was slowly converted to a mixture of cis:trans oxides (ca.3:1) after 45 hr at 100°. Evaporation (under vacuum) of an aqueous solution of 6 b gave a solid which was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the nmr spectrum initially showed a $9: 1$ ratio of $6 \mathrm{~b}: 6 \mathrm{a}$. On standing for 24 hr , the equilibrium distribution (3:1) was obtained.
A solid sample of a $\mathbf{6 b}$ and $\mathbf{6 a}$ mixture which was isolated from aqueous solution was identical (infrared and nmr) with a sample of $\mathbf{6 b}$ and 6 a which had never been in contact with water. For the infrared spectrum (Nujol mull) the samples were dried at 70° under vacuum to remove either $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which form a solvate with 6 .

Chlorination of 1-Chloro-2,2,3,4,4-pentamethylphosphetane (12) and Conversion to 18 .-To 1.0 g (5.7 mmol) of 1 -chloro-2,2,3,4,4-pentamethylphosphetane ${ }^{3 \mathrm{~m}}$ in 10 ml of dry methylene chloride was added $0.40 \mathrm{~g}(5.7 \mathrm{mmol})$ of chlorine in 10 ml of dry methylene chloride; the temperature was maintained below -50° by external cooling. The addition required 5 min ; a white precipitate was observed as the chlorine was added. Then $1.2 \mathrm{~g}(9.0 \mathrm{mmol})$ of anhydrous AlCl_{3} was added at -50° and the reaction mixture allowed to warm to room temperature. The resultant solution showed the following absorption in the nmr spectrum: $\tau 7.02(\mathrm{~m}, 1 \mathrm{H}), 8.28\left(\mathrm{~d}, 6 \mathrm{H}, J_{\text {PCCE }}=32 \mathrm{~Hz}\right), 8.30$ $\left(\mathrm{d}, 6 \mathrm{H}, J_{\text {PCCB }}=32.5 \mathrm{~Hz}\right), 8.73\left(\mathrm{~d}, 3 \mathrm{H}, J_{\text {нссн }}=7 \mathrm{~Hz}\right)$. The nmr spectrum was identical with that of the tetrachloroaluminate salt la prepared by treatment of TMP with $\mathrm{PCl}_{3}-\mathrm{AlCl}_{3}$.
In a second experiment, 2.0 g of the chlorophosphetane was treated with 0.8 g of Cl_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -50°. The mixture was allowed to warm to room temperature; after stirring for about 1 hr all of the suspended, white solid went into solution. The nmr spectrum of the solution was consistent with ring-opened product, 18: $\tau 5.0-5.3(\mathrm{~m}, 2 \mathrm{H}), 7.5(\mathrm{~m}, 1 \mathrm{H}), 8.4(\mathrm{~m}, 3 \mathrm{H}), 8.87$ $\left(\mathrm{d}, 3 \mathrm{H}, J_{\mathrm{PCCH}}=10.5 \mathrm{~Hz}\right), 8.92\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCCH}}=13 \mathrm{~Hz}\right), 9.03$ (d d, $3 \mathrm{H}, J_{\mathrm{Hcci}}=7 \mathrm{~Hz}$). Treatment of 18 with phenyllithium and then methyl iodide converted it into its corresponding phosphonium salt which was identical (infrared and nmr) with 19 (vide infra).

1-Chloro-1,2,5-trimethyl-3-phospholenium Tetrachloroalumi-nate.-A sample of the chloride 16 was prepared according to the procedure of Quin; ${ }^{18}$ the $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ values were in agreement with those reported. To 497 mg of the chloride in $\sim 3 \mathrm{ml}$ of $\mathrm{CDCl}_{3}, 330 \mathrm{mg}$ of anhydrous aluminum chloride was added; all of the AlCl_{3} went into solution. An additional 50 mg of AlCl_{3} was added whereupon the light, pale yellow solution turned yel-low-brown. The nmr spectrum (CDCl_{3}) of the predominant isomer showed peaks at $\tau 3.80\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{PCCB}}=35.5 \mathrm{~Hz}\right), 6.12$ $(\mathrm{m}, 2 \mathrm{H}), 7.30\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCB}}=12.8 \mathrm{~Hz}\right)$, and $8.45(\mathrm{~d} \mathrm{~d}, 6 \mathrm{H}$, $\left.J_{\text {PCCB }}=21.5 \mathrm{~Hz}, J_{\mathrm{HCCH}}=7.3 \mathrm{~Hz}\right)$. The minor isomer showed peaks at $\tau 3.77$ (d, $J_{\text {PCCH }}=35.5 \mathrm{~Hz}$, partially obscured by the major isomer) and $7.41\left(\mathrm{~d}, J_{\mathrm{PCH}}=12.5 \mathrm{~Hz}\right)$; the upfield methyl groups were partially obscured by the major isomer and appeared as shoulders. The isomer ratio was $\sim 5: 1$.
The phospholenium chloride as a suspension in dry nitrobenzene was also treated with a slight excess of AlCl_{3} whereupon the salt and AlCl_{3} went into solution. The upfield $\mathrm{C}-\mathrm{CH}_{3}$ doublets of the minor isomer were now distinguishable from the major isomer.
$\mathrm{H}_{2} \mathrm{O}$ Quench of 16 .-To 3.5 g of the phospholenium salt in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ}, 10 \mathrm{ml}$ of water was added slowly. The water layer was saturated with NaCl and extracted repeatedly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the organic solvent gave 2.4 g 95% yield, of crude product. An nmr spectrum (benzene) indicated an isomer ratio of about $3: 2$ (cis: trans). The slow addition of 6.0 g of the salt in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to an equal volume of ice water gave $4.2 \mathrm{~g}, 97 \%$ yield, of oxide. The isomer ratio
was $\sim 7: 1$ (cis:trans). ${ }^{18,25}$ The nmr spectrum (benzene) of the cis isomer showed peaks at $\tau 4.59\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{PCCH}}=23.7 \mathrm{~Hz}\right)$, $7.27\left(2 \mathrm{H}\right.$, six-line pattern, $\left.J_{\mathrm{HCCH}}=7 \mathrm{~Hz}, J_{\mathrm{PCH}}=13 \mathrm{~Hz}\right), 8.87$ $\left(\mathrm{d}, 3 \mathrm{H}, J_{\mathrm{PCH}}=12 \mathrm{~Hz}\right)$, and $9.02\left(\mathrm{~d} \mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{HCCH}}=7 \mathrm{~Hz}\right.$, $J_{\text {PCCH }}=16 \mathrm{~Hz}$). The trans isomer showed peaks at $4.40(\mathrm{~d}, 2$ $\left.\mathrm{H}, J_{\mathrm{PCCH}}=26.5 \mathrm{~Hz}\right), 7.82(2 \mathrm{H}$, apparent five-line pattern, $\left.J_{\mathrm{HCCH}}=7 \mathrm{~Hz}, J_{\mathrm{PCH}}=7 \mathrm{~Hz}\right), 8.72\left(\mathrm{~d}, J_{\mathrm{PCH}} \sim 12 \mathrm{~Hz}\right)$; the $\mathrm{C}-\mathrm{CH}_{3}$ groups were obscured by the cis isomer.

Thermal Decomposition of 1-Chloro-1-phenyl-2,2,3,4,4-pentamethylphosphetanium Chloride (10) to Chlorophenyl(1, 1, 2, 3-tetramethyl-3-butenyl)phosphine (17).-A fresh sample of the salt 10 in a molecular still was heated at about 90° under vacuum (0.1 mm). A clear colorless liquid, bp $13 \overline{5}-137^{\circ}(1.6 \mathrm{~mm})$, was obtained in 60% yield. The infrared spectrum (neat) showed absorption at $89.5 \mathrm{~cm}^{-1}\left(>\mathrm{C}=\mathrm{CH}_{2}\right)$ and at 69) and $742 \mathrm{~cm}^{-1}$ (monosubstituted phenyl). The nmr spectrum (neat) gave peaks at $\tau 2.2-3.0(\% \mathrm{H}$, aromatic), $\overline{5} .00-\overline{5} .38(2 \mathrm{H}, \mathrm{m}), 7.20-$ 7.8) ($1 \mathrm{H}, \mathrm{m}$), $8.22(3 \mathrm{H}, \mathrm{m})$, and 8.7-9.4 ($9 \mathrm{H}, \mathrm{m}$); the ${ }^{31} \mathrm{P}$ decoupled spectrum was consistent with the assigned structure.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClP}$: C, 66.01; $\mathrm{H}, 7.91 ; \mathrm{Cl}, 13.92$; P, 12.16. Found: C, 6.5.52; H, 8.29; Cl, 14.0.); P, 11.9.).

The liquid phosphine 17 was characterized by conversion to a solid derivative. To 2 g of the chlorophenylphosphine in $2 . \overline{\mathrm{ml}}$ of ether at $-30^{\circ}, 12 \mathrm{ml}$ of phenyllithium (0.7 M) was added. The mixture was then stirred at room temperature overnight. Water was added and the ether layer was dried and treated with an excess of methyl iodide. The resultant solid, 19, was recrystallized twice from acetonitrile-ethyl acetate to give 1.7 g (50% yield), of salt, mp $181-188^{\circ}$ dec. The nmr spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed absorption at $\tau 1.6-2.4(10 \mathrm{H}, \mathrm{m})$, $.0-0-5.47$ (2 H , apparent doublet $), 7.07\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCH}}=12 \mathrm{~Hz}\right), 8.30(3 \mathrm{H}$, broad s), $8.40\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCCH}}=18 \mathrm{H} \%\right), 8.46\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCCH}} \sim\right.$ $20 \mathrm{~Hz}), 8.94\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{HCCH}}=7 \mathrm{~Hz}\right)$; the single tertiary, allylic hydrogen was obscured by the doublet at $\tau 7.07$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{IP}: \mathrm{C}, .57 .54 ; \mathrm{H}, 6.44 ; \mathrm{I}, 28.95$; P, 7.07. Found: $\mathrm{C}, .57 .5 ; 3 ; \mathrm{H}, 6.50 ; \mathrm{I}, 29.12 ; \mathrm{P}, 6.99$.

1-Phenyl-2,2,3,4-tetramethyl-3-phospholene (17a).-The chlorophenylphosphine $17,7.7 \mathrm{~g}$, was gradually heated and stirred under a nitrogen atmosphere. At about 17.5° a slow evolution of HCl gas was observed; at $200-210^{\circ}$ the evolution was more vigorous. The liquid was heated at the latter range for 4 hr . On cooling two layers were observed, a viscous upper layer and a smaller bottom layer (about $1 . \overline{\text { g }} \mathrm{g}$) which was hard. An nmr spectrum (neat) of the upper layer showed peaks at $\tau 2-3$ (m, $\therefore \mathrm{H}), 6.8-7.0(\mathrm{~m}, 2 \mathrm{H}), 8.28$ (broad s, 3 H$), 8.53($ broad s, 3 H$)$, $8.77\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCCH}}=20 \mathrm{H} \%\right)$, and $9.28\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCCH}}=9 \mathrm{~Hz}\right)$. The upper layer was dissolved in ether and treated with an excess of methyl bromide. The resultant precipitate, 6.9 g , was recrystallized from acetonitrile-ethyl acetate to give 5.3 g of the phospholenium salt $17 \mathrm{~b}, \mathrm{mp} 159-161.)^{\circ}$. The nmr spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the salt showed peaks at $\tau 1.6-2.5(\mathrm{~m}, 5 \mathrm{H}), .5 .6-6.6$ $(\mathrm{m}, 2 \mathrm{H}), 7.2\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCH}}=14 \mathrm{~Hz}\right), 8.0($ broad s, 3 H$), 8.28$ (broad s, 3 H), $8.39\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCCH}}=17 \mathrm{~Hz}\right)$, and $8.86(\mathrm{~d}, 3 \mathrm{H}$, $J_{\text {PCCH }}=17.5 \mathrm{~Hz}$).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrP}: \mathrm{C}$, 57.53; $\mathrm{H}, 7.08 ; \mathrm{Br}, 25.51$. Found: C, 77.51 ; $\mathrm{H}, 6.79$; $\mathrm{Br}, 25.52$.

Thermolysis of 1 -Chloro-1,2,2,3,4,4-hexamethylphosphetanium Chloride (11).-The phosphetanium chloride did not show decomposition when dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CHCl_{3} and heated at reflux for 24 hr . A 1-g sample was heated to 145° in a sublimation apparatus under vacuum (0.1 mm); a white solid (11a) gradually sublimed onto the cold finger. The solid had a distinct phosphine odor and was insoluble in dry benzene. The nmr spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed resonances at $\tau 6.3-7.4(\mathrm{~m}, 2 \mathrm{H})$, $7.78\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCH}}=15.2 \mathrm{~Hz}\right), \sim 8.37($ broad s, 3 H$), \sim 8.51$ $\left.\left(\mathrm{d}, 3 \mathrm{H}, J_{\mathrm{PCCH}} \sim 18 \mathrm{~Hz}\right), \sim 8.5\right)($ broad s, 3 H), and $\sim 8.64(\mathrm{~d}$, : $) \mathrm{H}, J_{\mathrm{PCCH}} \sim 16 \mathrm{H} \%$). The solid was treated with cold 10% NaOH and the liberated phosphine extracted with ether. The ether was dried and treated with methyl iodide to give the methindide salt 11b, mp 314-317 ${ }^{\circ}$ dec, and previous darkening at $\sim 290^{\circ}$. The nmr spectrum $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ showed peaks at τ (j .84 (broad d, 2 H), $7.98\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{PCH}}=14 \mathrm{H} \%\right), 8.14$ (broad s), $8.24(\mathrm{broad} \mathrm{s}), 8.58\left(\mathrm{~d}, 6 \mathrm{H}, J_{\text {PCCH }}=17 \mathrm{~Hz}\right)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{IP}: \mathrm{C}, 40.28 ; \mathrm{H}, 6.77$; I, 42.57; P, 10.39. Found: C, 40.2.), H, 6.56; I, 42.64; P, 10.25.

1,1,2,3-Tetramethyl-3-butenylthiophosphonyl Dichloride (21). -To $9.1 \mathrm{~g}(0.04 \mathrm{~mol})$ of the sulfide $20^{3 \mathrm{~m}}$ in 100 ml of benzene, $6.7 \mathrm{~g}(0.0-5 \mathrm{~mol})$ of sulfuryl chloride in 50 ml of benzene was added over 20 min ; the temperature was kept near 8° by ice bath cooling; considerable gas evolved on warming to room tem-
perature. The mixture, which contained two phases, was stirred at ambient temperature for 24 hr . The solvent was evaporated and the product distilled to give 8.7 g of clear liquid, bp 67-68 ${ }^{\circ}$ $(0.1 \mathrm{~mm})$. The nmr spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed absorption at $\tau .5 .01$ ($\mathrm{m}, 2 \mathrm{H}$, vinyl protons), 6.83 (six peaks observed, 1 H , $\left.J_{\mathrm{HCCH}}=7 \mathrm{~Hz}, J_{\mathrm{PCCH}} \sim 14 \mathrm{~Hz}\right), 8.18\left(\mathrm{~m}, 3 \mathrm{H}\right.$, allylic $\left.\mathrm{CH}_{3}\right)$, $8.49\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCCH}} \sim 28 \mathrm{~Hz}\right), 8.53\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCCH}}=28 \mathrm{~Hz}\right)$, $8.68\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{HCCH}}=7 \mathrm{~Hz}\right) . \quad$ A ${ }^{31} \mathrm{P}-^{1} \mathrm{H}$ decoupling experiment was consistent with these assignments.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{PS}: \mathrm{C}, 39.19 ; \mathrm{H}, 6.17 ; \mathrm{P}, 12.63$; $\mathrm{Cl}, 28.92$. Found: $\mathrm{C}, 39.23 ; \mathrm{H}, 6.23 ; \mathrm{P}, 12.49 ; \mathrm{Cl}, 28.95$.

1-Chloro-1,2,2,3,4,4-hexamethylphosphetanium Bromide (22) and Its Reaction with $\mathrm{H}_{2} \mathrm{O}$.-To 8 g of 1-chloro-2,2,3,4,4-pentamethylphosphetane (12) $\ln 50 \mathrm{ml}$ of dry ether in a thick-walled flask, an excess of methyl bromide was added; the flask was stoppered and allowed to stand at room temperature for 2 weeks. A white precipitate formed very slowly during this period. The solution was then filtered in the drybox to give 2.5 g of the phosphetanium bromide 22. The filtrate contained unreacted 12.

The phosphetanium bromide was nearly insoluble in CHCl_{3} and $\mathrm{CH}_{3} \mathrm{CN}$. It was purified by trituration with hot $\mathrm{CH}_{3} \mathrm{CN}$ to give a white solid, mp 176-179 ${ }^{\circ}$ dec (sealed tube under nitrogen). The ${ }^{31} \mathrm{P}$ shift (dilute solution in CHCl_{3}) was -116 ppm . The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum (dilute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) showed peaks at $\tau 6.65$ (broad d, $3 \mathrm{H}, J_{\mathrm{PCH}}=11 \mathrm{~Hz}$), 8.31 (broad d, $J_{\mathrm{PCCH}} \sim 25 \mathrm{~Hz}$), $8.40\left(\mathrm{~d}, J_{\mathrm{PCCH}} \sim 21.5 \mathrm{~Hz}\right), 8.52\left(\mathrm{~d}, J_{\mathrm{PCCH}}=21.5 \mathrm{~Hz}\right), 8.90(3$ $\mathrm{H}, \mathrm{d}, J_{\mathrm{HCCH}}=7 \mathrm{~Hz}$).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{BrClP}: \mathrm{C}, 39.51 ; \mathrm{H}, 7.00 ; \mathrm{Br}$, 29.21; Cl, 12.96; P, 11.32. Found: C, 39.52; H, 7.03; Br, 29.06; $\mathrm{Cl}, 12.67$; $\mathrm{P}, 11.34$.

Treatment of 22 with acetonitrile which had not been completely dried, followed by evaporation of the solvent gave white crystals, mp 235-249 ${ }^{\circ}$ dec. Traces of water added to a suspension of 22 in CHCl_{3} led to the same product, 23. Addition of excess $\mathrm{H}_{2} \mathrm{O}$ or base to 22 gave 2 c , cis and trans. Compound 23 is soluble in CHCl_{3} and can be sublimed at about $70^{\circ}(0.1 \mathrm{~mm})$. The nmr spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed two isomers to be present.

The major component (trans) absorbed at $\tau-1.87(\mathrm{~s}, 1 \mathrm{H})$, $7.82\left(\mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{PCH}}=12.2 \mathrm{~Hz}\right), 8.57\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=18.0 \mathrm{~Hz}\right)$, $8.63\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=21.3 \mathrm{~Hz}\right)$, and $8.98\left(\mathrm{~d} \mathrm{~d}, 3 \mathrm{H}, J_{\text {HCCH }}=7\right.$ $\mathrm{Hz}, J_{\mathrm{PCCCH}} \sim 1 \mathrm{~Hz}$). The minor component (cis) overlapped with the major isomer except for peaks at $\tau 8.52\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}\right.$ $=18 \mathrm{~Hz})$ and $8.67\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=22 \mathrm{~Hz}\right)$. The ratio of isomers was $\sim 2: 1$ (trans: cis).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{OBrP}: \mathrm{C}, 42.36 ; \mathrm{H}, 7.90 ; \mathrm{Br}, 31.32$; P, 12.14. Found: $\mathrm{C}, 42.53 ; \mathrm{H}, 7.89 ; \mathrm{Br}, 31.20 ; \mathrm{P}, 12.12$; $\mathrm{Cl}, 00.00$.

1,2,2,3,4,4-Hexamethylphosphetane 1-Oxide HBr Adduct (23).-To 0.5 g of trans-1,2,2,3,4,4-hexamethylphosphetane 1oxide in 5 ml of CDCl_{3} a slow stream dry HBr gas was added for several minutes. An nmr spectrum matched the major isomer derived from the addition of $\mathrm{H}_{2} \mathrm{O}$ to 22 . The solvent was evaporated and the product recrystallized from dry acetonitrile (sparingly soluble), $\mathrm{mp} 237-249^{\circ} \mathrm{dec}$. The infrared spectrum (Nujol mull) showed strong peaks at $1800-2500$ (broad), 990,895 , and $795 \mathrm{~cm}^{-1}$.

The ${ }^{31} \mathrm{P}$ shift (in CDCl_{3}) of the trans-phosphetane 1-oxide was -63 ppm and its corresponding HBr adduct was -94.5 ppm.

Similarly, a 7:3 mixture (cis: trans) of oxides was converted to the respective adducts 23 . The cis isomer was identical (nmr) with the minor component derived from addition of $\mathrm{H}_{2} \mathrm{O}$ to 22 .

Heating either isomer of 23 for 5 days at 100° in tetrachloroethane in sealed nmr tubes showed no isomer interconversion.

1-tert-Butyl-2,2,3,4,4-pentamethylphosphetane 1-Oxide HBr adduct.-Into 5 g of 4 a in 2.5 ml of dry benzene, a slow stream of HBr gas was bubbled. The solvent was evaporated to give 6.7 g of white solid, $\mathrm{mp} 1.58-166^{\circ}$. The product was sublimed $\left(80^{\circ}\right.$, 0.1 mm) and recrystallized twice from dry acetonitrile. The infrared spectrum (Nujol mull) showed absorption at 27001800 (broad), $960,810,755$, and $680 \mathrm{~cm}^{-1}$. The nmr spectrum $\left(\mathrm{CDCl}_{3}\right)$ exhibited peaks at $\tau-2.38(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.87(\mathrm{~m}, 1$ $\mathrm{H}), 8.41\left(\mathrm{~d}, 9 \mathrm{H}, J_{\mathrm{PCCH}}=15.5 \mathrm{~Hz}\right), 8.42\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=19\right.$ $\left.\mathrm{H}^{*}\right), 8.47\left(\mathrm{~d}, 6 \mathrm{H}, J_{\mathrm{PCCH}}=17 \mathrm{H}^{*}\right), 8.92\left(\mathrm{dd}, 3 \mathrm{H}, J_{\mathrm{HCCH}}=7\right.$ $\mathrm{H}^{*}, J_{\mathrm{PCCH}}=1.5 \mathrm{H}^{*}$). The ${ }^{31} \mathrm{P}$ shift (in CDCl_{3}) for 4 a was -72 ppm and the HBr adduct, -103 ppm .

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{OBrP}: ~ \mathrm{C}, 48.49 ; \mathrm{H}, 8.82 ; \mathrm{Br}$, 26.89; P, 10.42. Found: C, 48.58; H, 8.93; Br, 27.11; P, 10.31.

Acknowledgment.-We thank Mr. Paul G. Elsey and Mr. Dale Stoy of the Ethyl Corporation for a generous supply of methylphosphonous dichloride. We also acknowledge the research work of Dr. B. C. Trivedi on several of the compounds described herein.

Registry No.-la, 40084-63-7; cis-1b, 40084-64-8; trans-1b, 40084-65-9; cis-1c, 35616-95-6; trans-1c, 35616-97-8; 4a, 35624-$08-9$; $4 \mathrm{~b}, 35624-09-0 ; 5,40085-35-6$; 5 cis isomer, 22434-52-2; 5 methiodide, 26339-55-9; 6a, 39990-53-9; 6b, 39990-54-0; 6 phosphorane form, 39981-51-6; 7a, 40084-68-2; 7b, 40084-69-3; 10a, 39990-55-1; 10b, 39990-56-2; 10 phosphorane form, 39981-$52-7$; 11a, $39990-57-3$; 11b, 39990-58-4; 11 phosphorane form,

39981-53-9; cis-12, 25145-23-7; trans-12, 25145-24-8; cis-16, 39990-60-8; trans-16, 39990-63-1; 16 phosphorane form, 20699-83-6; cis-16 AlCl_{4} derivative, 40084-70-6; trans-16 oxide, $35623-32-6$; 17, 30092-42-3; 17a, 30092-44-5; 17b, 39981-57-2; 18, 36044-91-4; 19, 39981-59-4; 20, 39981-60-7; 21, 39981-61-8; 22, 39990-66-4; 22 phosphorane form, 39981-62-9; cis-23, 39990-67-5; trans-23, 39990-68-6; 24, 39981-63-0; phenyl phosphonous dichloride, 644-97-3; cis-1,2,2,3,4,4-hexamethylphosphetane, 35622-00-5; trans-1,2,2,3,4,4-hexamethylphosphetane, 35621-97-7; cis-1-phenyl-2,2,3,4,4-pentamethylphosphetane, 22434-51-1; trans-1-phenyl-2,2,3,4,4-pentamethylphosphetane, 16083-95-7; 1-tert-butyl-2,2,3,4,4-pentamethylphosphetane 1oxide HBr adduct, charged form, 40088-36-6; 1-tert-butyl-2,2,3,-4,4-pentamethylphosphetane 1 -oxide HBr adduct, neutral form, 9981-10-0.

Stable Carbocations. CLI. ${ }^{1}$ Protonation of Cyclic Carboxylic Acid Anhydrides in $\mathrm{FSO}_{3} \mathbf{H}-\mathrm{SbF}_{5}$ ('"Magic Acid")- SO_{2} Solution

George A. Olah,* Y. K. Mo, and James L. Grant
Department of Chemistry, Case Western Reserve University, Cleveland, Ohiw 44106

Received January 8, 1973

Abstract

Protonation of a series of cyclic carboxylic acid anhydrides (1-16) in SO_{2} solutions containing varying amounts of $1: 1 \mathrm{~mol} / \mathrm{mol}_{\mathrm{FSO}}^{3} \mathrm{H}-\mathrm{SbF}_{5}$ was studied by nmr spectroscopy. O-Protonated cyclic carboxylic acid anhydrides formed undergo rapid intermolecular hydrogen exchange with the acid solvent system or excess anhydride, even at the lowest accessible temperatures. Unsaturated cyclic carboxylic acid anhydrides (1-3), as well as cyclic aromatic carboxylic acid anhydrides (4-10), were not cleaved in magic acid solution up to 0°, in sharp contrast to the behavior of acyclic saturated cyclic carboxylic acid anhydrides.

Protonation of acyclic carboxylic acid anhydrides in superacids has been studied in our preceding work. ${ }^{2}$ A preliminary study of protonation of cyclic anhydrides, including succinic and glutaric anhydrides, was also carried out in $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}-\mathrm{SO}_{2}$ solution. ${ }^{3,4}$ Protonated cyclic anhydrides such as succinic and glutaric anhydrides could not be observed even when the solutions were prepared and examined at -80°, as they were cleaved in "magic acid" giving the corresponding alkyleneoxocarbenium-carboxonium ions, ${ }^{+} \mathrm{OC}\left(\mathrm{CH}_{2}\right)_{n^{-}}$ $\mathrm{COOH}_{2}{ }^{+}\left(n=2\right.$ and 3 , respectively). ${ }^{5}$ On the other hand, succinic anhydride was reported to be only partially protonated in sulfuric acid. ${ }^{6}$

In continuation of our studies, we presently wish to report the results of protonation of a series of cyclic (both aliphatic and aromatic) carboxylic acid anhydrides (1-16) in SO_{2} solutions containing varying amounts of $1: 1 \mathrm{~mol} / \mathrm{mol} \mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$.

Results and Discussion

The chemical behavior of cyclic carboxylic acid anhydrides in $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}-\mathrm{SO}_{2}$ is different from that of acyclic anhydrides. In particular cyclic aromatic anhydrides 4-10 are not cleaved even with large excess of $\mathrm{FSO}_{3} \mathrm{H}$ in SO_{2} solution at 0°. They are protonated in the superacid and undergo rapid intermolecular hydrogen exchange with the solvent system. Intra-

[^128]molecular hydrogen exchange seems to be less feasible since the position of the two carbonyl groups are rigidly fixed and consequently their distance is too large. Intermolecular hydrogen exchange processes must be extremely rapid, since static mono- or diprotonated cyclic anhydrides were not observed even at the lowest possible temperature ($c a .-90^{\circ}$) under the experimental conditions. Consequently, the proton chemical shifts of protonated cyclic anhydrides are dependent upon the concentration of both substrate and superacid used. Pmr parameters of cyclic carboxylic acid anhydrides protonated in SO_{2} solutions containing varying amounts of magic acid and their precursors (in SO_{2}) are summarized in Table I (also showing the proportions of superacid and anhydride in the system).

Unsaturated cyclic carboxylic acid anhydrides including maleic (1), dimethylmaleic (2), and $3,4,5,6-$ tetrahydrophthalic anhydride (3) show similar behavior in $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{2}-\mathrm{SO}_{2}$ solutions. When maleic anhydride (1) was protonated with 0.5 equimolar magic acid in SO_{2} solution, the pmr absorption of the two vinylic protons was deshielded from $\delta 6.83$ (s) to 7.21 (s). A very deshielded pmr singlet absorption (~ 0.5 proton intensity) is found at $\delta 14.5$ and is assigned to the OH proton of protonated maleic anhydride, which undergoes intermolecular hydrogen exchange with 1. The pmr singlet absorption of the two vinylic protons in protonated maleic anhydride 1a was further deshielded at $\delta 7.63$ when equimolar magic acid was used. The OH proton was slightly shielded to $\delta 13.5$. These data suggest that another intermolecular H exchange process may occur (eq 1). When 1 was treated with a large excess of $1: 1 \mathrm{~mol} / \mathrm{mol} \mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} or with neat magic acid solution, the pmr spectra of the resulting solution showed two more deshielded singlets at $\delta 8.09$ and 8.30 , respectively. The OH proton is not observed

Table I

Cyclic carboxylic

acid anhydride

1

2

3

4

5

6

d
Excess MA 8.9 (m)
Neat MA $9.3(\mathrm{~m})$

8.3 (m)

9.3 (m)

$$
\begin{array}{ll}
8.68(\mathrm{t}, 8) & 9.85(\mathrm{~d}, 8) \\
9.31(\mathrm{t}, 8) & 10.3(\mathrm{~d}, 8)
\end{array}
$$

Neat MA
9.70 (d, 8)
10.3 (d, 8)
δ_{Hb}
$\delta_{\text {He }}$
$\begin{array}{lll}\mathrm{SO}_{2} & 2.18(\mathrm{~m}) & 1.50(\mathrm{~m}) \\ 0.5 M \mathrm{MA} & 2.36(\mathrm{~m}) & 1.71(\mathrm{~m})\end{array}$
$1.90(\mathrm{~m})$
2.10 (m)
$2.40(\mathrm{~m})$
7.73 (s)
8.03 (s)
$8.35(\mathrm{~m})$
$8.50(\mathrm{~m})$
$9.03(\mathrm{~m})$
9.45 (m)

$$
\begin{array}{llll}
\mathrm{SO}_{2} & 9.2(\mathrm{~m}) & 7.6(\mathrm{~m}) & 9.2(\mathrm{~m}) \\
\text { Excess MA } & 9.70(\mathrm{~d}, 8) & 8.68(\mathrm{t}, 8) & 9.85(\mathrm{~d}, 8)
\end{array}
$$

$\delta \mathrm{CH}_{\mathbf{2}}$	
	$14.5(\mathrm{OH})$
	$13.5(\mathrm{OH})$
	c
	c

1.88 (s)
$1.97(\mathrm{~s}) \quad 14.0(\mathrm{OH})$
$2.11(\mathrm{~s}) \quad 13.2(\mathrm{OH})$
2.42 (s) c
2.90 (s) c
$14.6(\mathrm{OH})$
$12.9(\mathrm{OH})$
c
c
14.0 (s, br, OH)
c
c
c
c
2.25 (s)
$2.75(\mathrm{~s}) \quad 14.5(\mathrm{OH})$
2.90 (s) c
3.70 (s) c
$\begin{array}{ll}3.3(\mathrm{~s}) & c \\ 4.0(\mathrm{~s}) & c\end{array}$
$14.5(\mathrm{OH}, \mathrm{s}, \mathrm{br})$
c

9

10
$\mathrm{SO}_{2} \quad 8.20$ (dd, 8, 2) $\quad 7.73$ (dd, 8, 4) 8.83 (dd, 4, 2)
Excess MA $9.3(\mathrm{~m})$
8.7 (m)
. 3.8 (dd, 4,2)
9.3 (m)
9.7 (s, br, NH)

Table I (Continued)						
Cyclic carboxylic acid anhydride	Solvent ${ }^{b}$ system	$\delta^{H_{s}}$	δ_{Hb}	$\delta_{\mathbf{H C}}$	$\delta \mathrm{CH}_{3}$	Other
13	SO_{2}	2.73 (s)				
	0.25 M MA	2.90 (s)				14.8 (OH, s, br)
	1.0 M MA	3.00 (s)				$13.2(\mathrm{OH}, \mathrm{s}, \mathrm{br})$
	3.0 M MA	3.80 (s)				(0H, s, br)
	4.0 M MA	4.60 (s, br)				c
	Excess MA ${ }^{\text {e }}$	4.47, 5.15				14.43 (OH)
	Wet MA ${ }^{\prime}$	4.08 (s)				13.6 (s, br)
	Neat MA ${ }^{\text {o }}$	5.10 (s)				
	SO_{2}	2.53 (t, 6)	1.80 (qu, 6)			
	1.0 M MA	2.68 (t, 6)	2.00 (qu, 6)			$16.1(\mathrm{OH}, \mathrm{s}, \mathrm{br})$
	Wet MA ${ }^{\prime}$	3.85 (t, 6)	2.80 (qu, 6)			$12.7(\mathrm{OH}, \mathrm{s})$
$\mathrm{H}_{\mathrm{i}}{ }^{-} \quad \mathrm{O}$	Excess MA ${ }^{\text {e }}$	$4.40(\mathrm{t}, 6)$	$3.11(\mathrm{qu}, 6)$			13.0 (OH, s)
14	Neat MA ${ }^{\text {a }}$	5.20 (t, 6)	4.10 (qu, 6)			
	SO_{2}	4.20 (s)				
	0.5 M MA	4.30 (s)				13.0 (OH, s, br)
	1.0 M MA	4.40 (s)				$12.8(\mathrm{OH}, \mathrm{s}, \mathrm{br})$
	Excess MA ${ }^{\text {e }}$	5.58 (s)				13.3 (OH, s, br)
		6.58 (s)				
	Wet MA'	5.40 (s)				$13.2(\mathrm{OH}, \mathrm{s}, \mathrm{br})$
	SO_{2}					
	1.0 M MA	4.10 (s)	$8.0(\mathrm{~m})$	7.5 (m)		12.3 (OH, s, br)
	Excess MA ${ }^{\text {e }}$	4.91 (s)	8.0-9.0 (m)			$13.1(\mathrm{OH}, \mathrm{s}, \mathrm{br})$
		5.03 (s)	$8.0-9.0$ (m)			13.3 (OH, s, br)
$\mathrm{H}_{\mathrm{b}}^{\mathrm{H}_{\mathrm{t}}}$	Neat MA ${ }^{\text {a }}$	5.50 (s)	$8.80(t, 6)$	$9.60(\mathrm{~d}, 6)$		
				$9.32(\mathrm{~d}, 6)$		

a Proton chemical shifts are reported in parts per million (δ) from external (capillary) TMS. Abbreviation: s, singlet; d, doublet; t, triplet; qu, quintet; m , multiplet; br, broad. The coupling constants are shown in parentheses. ${ }^{b}$ Used equimolar amount of magic acid (MA) in SO_{2} : excess, more than 5 mol equiv of magic acid; wet, excess magic acid containing 10% water; neat, neat magic acid at room temperature. " The OH protons are not observable because of rapid intermolecular hydrogen with the solvent system. ${ }^{d}$ Insoluble in SO_{2}. ${ }^{e}$ Formation of oxocarbenium-carboxonium ions. ${ }^{f}$ Formation of diprotonated dicarboxylic acids. - Formation of dioxocarbenium ions.

since it now rapidly exchanges with the superacid system. It is suggested that under these conditions diprotonated maleic anhydride $\mathbf{1 b}$ may be involved in the intermolecular exchange process. The deshielding

of the vinylic protons is proportional to the molar concentration of magic acid used.

Dimethylmaleic anhydride (2) ${ }^{7}$ and 3,4,5,6-tetrahydrophthalic anhydride (3) show similar deshielding effects of the methyl and methylene protons, respectively, in magic acid solutions. The pmr data of 2 and 3 in solutions containing varying amounts of magic acid are summarized in Table I.

It is known that acyclic and saturated cyclic acid anhydrides are cleaved in excess magic acid. ${ }^{2}$ However, unsaturated carboxylic acid anhydrides (1-3) are not cleaved under similar conditions. Furthermore, the olefinic double bonds in 1-3 are not protonated in the same media. This behavior is similar to that observed in the protonation of α, β-unsaturated alde-

[^129]

Figure 1.-Pmr spectra of phthalic anhydride (4) in $\mathrm{SO}_{2}(\mathrm{~A})$, in 1.0 equiv mol of magic acid (B), in 2.0 equiv mol of magic acid (C), in 4.0 equiv mol of magic acid (D), in excess magic acid (E), and in neat magic acid (F) solutions.
hydes and ketones in superacids. ${ }^{8}$ Magic acid solutions of cyclic carboxylic acid anhydrides (1-3) when quenched with ice-water regenerate the starting anhydrides unchanged.

Protonation of the olefinic double bonds in unsaturated cyclic carboxylic acid anhydrides can take place only if they are not directly attached to the carbonyl groups. For example, 1,2,3,6-tetrahydrophthalic anhydride reacted with magic acid at -80° giving complicated and yet unidentified products. The pmr spectrum of the resulting solution shows the absence of olefinic protons and the presence of carboxonium groups $\left(\mathrm{COOH}_{2}{ }^{+}\right) .{ }^{9}$ These data indicatc that protonation of double bond in 1,2,3,6-tetrahydrophthalic anhydride has occurred, as well as cleavage of the acid anhydride group.

Aromatic Cyclic Acid Anhydrides.-Phthalic anhydride (4) was studied with different molar equivalents of $1: 1 \mathrm{~mol} / \mathrm{mol} \mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} solution at low temperature. The pmr spectra of the resulting solutions are shown in Figure 1. The deshielding of the aromatic protons (which show a singlet absorption at δ 7.73 in SO_{2} solution) after protonation is proportional to the molar cquivalents of magic acid used. When 4 was treated with cquimolar $1: 1 \mathrm{~mol} / \mathrm{mol} \mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} solution at -78°, the pmr spectrum of the solution shows a singlet absorption at $\delta S .03$ for the aromatic protons and a very deshielded broad singlet absorption at $\delta 14.0$ for the rapidly exchanging OH proton. The aromatic singlet absorption was further deshielded and split into a multiplet at δ S.35) when 2 mol equiv of $1: 1$ $\mathrm{mol} / \mathrm{mol} \mathrm{l}^{2} \mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} was used (Figure 1, C trace). The OH absorption is shifted upfield, presumably due to rapid exchange with the superacid

[^130]system. The multiplet absorption was slightly broadened and further deshielded to $\delta 8.50$ when 4 mol equiv of $1: 1 \mathrm{~mol} / \mathrm{mol}^{\mathrm{FSO}} 3_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} solution was used (Figure 1, D trace). The pmr spectrum of 4 in excess $1: 1 \mathrm{~mol} / \mathrm{mol} \mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}-\mathrm{SO}_{2}$ became two multiplets at $\delta 9.38$ and 9.03 (Figure 1, E trace). This solution was then added to a solution of 4 in SO_{2}. The pmr spectrum of the resulting solution is dependent upon the concentration of 4 in SO_{2} and is similar to those previously obtained (Figure 1, B, C, and D traces). Thus, the process is reversible. Under all of the experimental conditions studied, no static OH proton absorption of either mono- or diprotonated phthalic anhydride was observed. This behavior is very similar to that of 1 in similar magic acid solutions. Thus, intermolecular hydrogen exchange processes involving mono- or diprotonated phthalic anhydride, such as $4+4 a \rightleftharpoons 4 a$ $+4,4 a+4 b \rightleftharpoons 4 b+4 a$, and $4 a+H^{+} \rightleftharpoons 4 c \rightleftharpoons 4 b+$ H^{+}, are taking place.

Phthalic anhydride was not cleaved, however, to 4d

cven in neat $1: 1 \mathrm{~mol} / \mathrm{mol}_{\mathrm{FSO}}^{3} \mathrm{H}-\mathrm{SbF}_{5}$ at room temperaturc. The pmr spectrum of this solution shows again two further deshiclded multiplets at $\delta 9.80$ and 9.4\%. Quenching of the solution quantitatively regeneratcd starting phthalic anhydride. If 4d would be formed or involved in the intermolecular hydrogen exchange processes, phthalic acid should have been obtained from the quenching experiment. ${ }^{10}$

In addition, we have also studied the behavior of phthalic acid with varying molar amounts of $1: 1 \mathrm{~mol} /$ mol $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} solution at low temperature. The pmr spectra of either 4 or phthalic acid in the same magic acid solution are identical, except for the intense $\mathrm{H}_{3} \mathrm{O}^{+}$peak in the latter. These data clearly show that phthalic acid dehydrated in $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}-\mathrm{SO}_{2}$ solution to phthalic anhydride 4.

Other aromatic cyclic carboxylic acid anhydrides, such as 3,6-dimethylphthalic anhydride (5), 1,8naphthalic anhydride (6), 1,4-dimethyl-2,3-naphthalic anhydride (7), 1,2,4,5-benzenetetracarboxylic acid dianhydride (8), 1,4,5,8-naphthalenetetracarboxylic acid dianhydride (9), and 2,3-pyridinedicarboxylic acid anhydride (10), were also studied with varying molar amounts of $1: 1 \mathrm{~mol} / \mathrm{mol}$ of $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} solution, at low temperature. They behave very similarly to phthalic anhydride in these media. Their pmr parameters are tabulated in Table I. The aromatic, as well as the methyl, protons of 5-10 are increasingly more deshiclded with higher molar equivalents of $1: 1 \mathrm{~mol} /$

[^131]mol $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} solution. Data indicate that intermolecular hydrogen exchange of monoprotonated, as well as diprotonated, aromatic cyclic carboxylic acid anhydrides with the superacid solvent system takes place. None of the cyclic carboxylic acid anhydrides 5-10 or tetrachloro- (bromo-) phthalic anhydride (11-12) were cleaved in the superacid solutions, even at 0°, in sharp contrast to acyclic and also saturated cyclic acid anhydrides (see subsequent discussion). Quenching of the solution again quantitatively regenerated starting anhydrides.

Saturated Cyclic Anhydrides and Their Cleavage.Protolytic cleavage of succinic and glutaric anhydrides (13 and 14, respectively) has been observed in excess $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}-\mathrm{SO}_{2}$ solution. ${ }^{3}$ However, observation of protonated succinic and glutaric anhydrides $13 a$ and 14a, respectively, under stable ion conditions have not

13a

14a
yet been achieved. As an extension of this work, we have now examined 13 and 14 with different molar equivalents of $1: 1 \mathrm{~mol} / \mathrm{mol} \mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} solution with a hope to observe directly the mono- and diprotonated anhydrides. The pmr spectrum of 13 in SO_{2} at -60° displays a singlet absorption at $\delta 2.73$. This singlet absorption was deshielded to $\delta 2.90$ and 3.00 when 13 was treated with 0.25 and 1.00 molar equiv amounts of $1: 1 \mathrm{~mol} / \mathrm{mol} \mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} solution, respectively. Two OH absorptions were also observed at $\delta 14.8$ and 13.2, respectively, in their pmr spectra. These data indicate that 13 was protonated and underwent intermolecular hydrogen exchange with the superacid systems. Static monoprotonated succinic anhydride 13a was not observed even at -90°. The pmr spectra of 13 in SO_{2} solutions containing 3 and 4 mol equiv of $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ displayed two further deshielded singlets at $\delta 3.80$ and 4.60 (slightly broadened), respectively. These data suggest that intermolecular hydrogen exchange in these system may involve diprotonated succinic anhydride (13b and 13c). Intramolecular hydrogen exchange through 13b and 13 c is less probable. It can be suggested that dipro-

tonated succinic anhydrides 13 b and 13 c are also involvcd in the cleavage reaction of 13 in large excess of superacid to give oxocarbenium-carboxonium ion $\mathrm{OC}^{+}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}_{2}{ }^{+}(13 \mathrm{~d})$. The cleavage reaction of 13 in excess superacid has been reported previously. ${ }^{3}$ Consequently, the slight broadening of the CH_{2} absorption at $\delta 4.60$ (when 13 was treated with 4 mol equiv of $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} solution) may be due to involvement of 13d.

When 13 was treated with "wet" magic acid (i.e.,
containing $\sim 10 \mathrm{~mol} \%$ of $\mathrm{H}_{3} \mathrm{O}^{+}$), diprotonated succinic acid was formed in addition to 13d. The amount of diprotonated succinic acid formed is proportional to the concentration of hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$originally present in the magic acid solution. In neat $1: 1 \mathrm{~mol} /$ mol $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ solution, at room temperature, 13 was cleaved and dehydrated to the diacyl cation, $\mathrm{OC}^{+}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}^{+}(13 \mathrm{e})$.

Glutaric anhydride (14) and diglycolic anhydride (15) behave very similarly to 13 with varying amounts of magic acid (Scheme I). The pmr data of 13-15 in

Scheme I

these solutions are tabulated in Table I. Diglycolic anhydride (15) decomposed with CO_{2} evolution when treated with neat magic acid at room temperature. The ethereal oxygen atom of 15 was not observed in protonated form under any other studied conditions, ${ }^{11}$ although it may be involved in the cleavage processes.

Protonation of homophthalic anhydride (16) was also studied in different magic acid media. With 1 and 2 mol equiv of $1: 1 \mathrm{~mol} / \mathrm{mol} \mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ in SO_{2} solution, 16 behaved similarly to $13-15$. In excess magic acid, 16 was cleaved to give equal amounts of acylcarboxonium ions $16 d$ and $16 \mathrm{~d}^{\prime}$. The pmr spectrum of the solu-

16d

$16 d^{\prime}$
tion shows two (equal intensity) singlet absorptions at $\delta 4.95$ and 5.05 for the methylene protons of 16 d and $16 d^{\prime}$, respectively. These singlet absorptions are independent of the temperature in the range from - 80 to -10°, indicating that interconversion of 16 d and $16 \mathrm{~d}^{\prime}$ through 16b and 16 c does not occur. The OH absorptions of 16 d and $16 \mathrm{~d}^{\prime}$ were not observed in the pmr spectra owing to rapid exchange with the acid solvent system.
(11) G. A. Olah and D. H. O'Brien, J. Amer. Chem. Soc., 89, 1725 (1967).

16b
In neat magic acid at room temperature, 16 was cleaved and dehydrated to the corresponding diacyl cation 16 e . The methylene protons of 16 e show a

singlet absorption at δ j.is0. Quenching of the solution with ice-water gave homophthalic acid exclusively.

In conclusion cyclic carboxylic acid anhydrides behave differently from their acyclic analogs in superacid solutions. Aromatic and unsaturated cyclic anhydrides (in which the carbonyl carbons are directly attached to the sp^{2} olefinic carbons) are not cleaved, even in neat magic acid at room temperature. Maleic anhydride and related unsaturated anhydrides thus show remarkable stability in superacid media. One possible explanation is that they contain four adjacent sp^{2} carbon atoms and thus favor for the formation of a five-membered ring. Even if this would be cleaved in superacid media, the recyclization process may be extremely rapid. This is evidenced by the ease of cyclodehydration of phthalic and maleic acid in neat
magic acid at room temperature to the corresponding anhydrides. In contrast acyclic saturated dicarboxylic acids (such as glutaric acid) are dehydrated to diacyl cations.

Experimental Section

Materials.-Carboxylic acid anhydrides used, when not otherwise indicated, were commercial material of high purity (Aldrich Chemical Co.). They were used without further purification. Dimethylmaleic anhydride was made available by Dr. H Bosshard of CIBA-GEIGY Limited, Basel, Switzerland, and we are grateful for his assistance. 3,6-Dimethylphthalic anhydride (4) and 1,4-dimethyl-2,3-naphthalic anhydride (7) were gifts from Professor M. S. Newman. Antimony pentafluoride and fluorosulfuric acid were purified as previously described. ${ }^{12}$ Magic acid solutions were stored in Teflon bottles.
Nmr Spectra.-A Varian Associates Model A-56/60A spectrometer with variable temperature probe was used for all spectra. Chemical shifts are reported in parts per million (δ) from external (capillary) TMS.
Protonation of Cyclic Carboxylic Acid Anhydrides.-Protonated cyclic acid anhydrides were prepared by slow addition, with efficient stirring (vortex mixer), of generally a 10% (w/w) solution of the anhydride in SO_{2} to a SO_{2} solution of fluorosulfuric acid-antimony pentafluoride (in proportions of the reagents indicated in Table I). Samples were transferred to a precooled nmr tube and studied by nmr .
Quenching of protonated anhydrides was carried out by adding, with efficient stirring, their solution to ice-water. The quenched products were isolated and analyzed by comparison with authentic samples of starting material or their corresponding carboxylic acids by glc, ir, and nmr. Details of all studies were similar to those reported previously in the case of acyclic anhydrides ${ }^{2}$.

Acknowledgment.-Support of our work by the National Institutes of Health and the donors of the Petroleum Rescarch Fund, administered by the American Chemical Socicty, is gratefully acknowledged. Professor M. S. Newman is thanked for arousing our interest in the topic and stimulating discussion.

Registry No.-1, 108-31-6; 2, 766-39-2; 3, 2426-02-0; 4, 85-$44-9 ; 5,5463-50-3 ; 6,81-84-5 ; 7,40682-58-4 ; 8,89-32-7 ; 9$, $81-30-1$; $10,699-98-9$; 13, 108-30-5; 14, 108-55-4; 15, 4480-83-5; 16, 703-59-3.
(12) G. A. Olah and T. E. Kiovsky, J. Amer. Chem. Soc., 89, 5692 (1967).

Stable Carbocations. CLVIII. ${ }^{\text {1a }}$ Degenerate 1,2-Hydrogen Shifts in Fluorobenzenium Ions and Their Comparison with Those in Methylbenzenium Ions ${ }^{1 b}$

George A. Olah* and Y. K. Mo
Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106

Received March 7, 1979

Abstract

Protonation of fluorinated benzenes was studied in fluoroantimonic acid $\mathrm{SbF}_{5}-\mathrm{HF}\left(1: 1 \mathrm{~mol}: \mathrm{mol}^{2}\right)-\mathrm{SO}_{2} \mathrm{ClF}$ $(1: 1 \mathrm{v}: \mathrm{v})$ solution at low temperature. Temperature dependent $\mathrm{nmr}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{19} \mathrm{~F}\right)$ spectra of protonated fluorobenzene, o - and p - difluorobenzene, and 1,2,3,4-tetrafluorobenzene were observed indicating stepwise 1,2hydrogen shifts in all these benzenium ions. The activation energies for the two, different, stepwise processes in the 3,4-difluorobenzenium ion were found to be 5.7 ± 0.8 and $11.2 \pm 0.9 \mathrm{kcal} / \mathrm{mol}$.

In previous studies of protonation of fluorinated benzenes in $\mathrm{FSO}_{3} \mathrm{H}$ - SbF_{5} solution, o-difluorobenzene, 1,2,3,4-tetrafluorobenzene, pentafluorobenzene, and hexafluorobenzene were not observed to be protonated. ${ }^{2}$

[^132]We have consequently applicd the more suitable superacid medium, $\mathrm{SbF}_{\mathrm{s}}-\mathrm{HF}$ ($1: 1 \mathrm{~mol}: \mathrm{mol}$)- $\mathrm{SO}_{2} \mathrm{ClF}$ ($1: 1 \mathrm{v}: \mathrm{v}$), for the protonation of some weak aromatic bases. ${ }^{3}$ The advantages of this superacid system are the increased solubility of substrate, lower freezing

[^133]point and lesser viscosity of the medium even at very low temperatures, and the acid's protonating ability toward weak bases. The resolution of spectra of protonated fluorinated benzenes also showed marked improvement over earlier studies in neat $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ at low temperature and allowed observation of fine structure of spin-spin couplings. This system allowed us to carry out a systematic investigation of protonated fluorinated benzenes and the study of 1,2-hydrogen shifts in the formed ions. Temperature-dependent nmr study of fluorobenzenium ions was used to investigate the nature of intra- and intermolecular hydrogen exchange reactions.

Results and Discussion

Protonation of fluorinated benzenes was carried out in $\mathrm{SbF}-\mathrm{HF}$ ($1: 1 \mathrm{~mol}: \mathrm{mol}$)- $\mathrm{SO}_{2} \mathrm{ClF}(1: 1 \mathrm{v}: \mathrm{v}$) solution, generally at low temperatures. The $\mathrm{nmr}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{19} \mathrm{~F}\right)$ parameters of parent fluorobenzenes and the related fluorobenzenium ions are summarized in Tables I and II, respectively.

Fluorobenzene (1) was protonated in $\mathrm{SbF}_{5}-\mathrm{HF}$ ($1: 1 \mathrm{~mol}: \mathrm{mol}$) $-\mathrm{SO}_{2} \mathrm{ClF}(1: 1 \mathrm{v}: \mathrm{v})$ solution at -78° to give 4 -fluorobenzenium ion 2 . The $\mathrm{nmr}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{19} \mathrm{~F}\right)$ spectra are temperature dependent (Figure 1). The pmr spectrum of the static "frozen-out" ion 2 (at -84°) is well resolved and shows the methylene protons as a doublet at $\delta 5.43\left(J_{\mathrm{HF}}=11 \mathrm{~Hz}\right)$; the coupling is due to the long-range $\mathrm{H}-\mathrm{F}$ spin-spin interaction (through five bonds). The slight broadening of the CH_{2} absorption indicates coupling of CH_{2} to the ortho protons. The meta protons show a triplet at $\delta 8.33\left(J_{\mathrm{HH}}=J_{\mathrm{HF}}=9\right.$ Hz) indicating about equal coupling to the ortho protons and the para fluorine atom. The ortho protons display a multiplet at $\delta 9.93$. As the temperature of the solution is increased, the methylene and the ortho proton absorptions become broadened and merge into the base line at -21°. Meanwhile, the triplet of the meta protons changes to a doublet. The doublet is due to the proton-fluorine coupling. The ${ }^{19} \mathrm{~F} \mathrm{nmr} \mathrm{ab-}$ sorption of ion 2 shows a multiplet at $\phi 10.0$ (96.3 ppm deshielded from fluorobenzene). The substantial deshielding effect is due to the resonance contribution of form 3. These results indicate that rapid 1,2-hydrogen

3
shifts occur between the CH_{2} and the ortho protons. The interconversion of 2 and 2 b is considered to involve two-electron, three-center bonded benzonium ion (2a) type transition states. ${ }^{3,4}$ There is no indication, however, in the low-temperature nmr spectra for observable benzonium ion intermediates.

When the temperature of the solution of ion 2 is further raised (owing to the relatively low boiling point of $\mathrm{SO}_{2} \mathrm{ClF}, 7^{\circ}$, these studies were carried out in neat $\mathrm{SbF}_{\mathrm{s}}-\mathrm{HF}$ solution), a second set of degenerate hydrogen shifts is observed. The pmr spectrum of ion 2 at -10° is essentially the same in $\mathrm{SbF}_{5}-\mathrm{HF}$ solution
(4) G. A. Olah, Accounts Chem. Res., 4, 240 (1971).

Figure 1.-Temperature-dependent pmr spectra of 4-fluorobenzenium ion 2.

with or without $\mathrm{SO}_{2} \mathrm{CIF}$ as cosolvent. The meta protons will show a broadened doublet at $\delta \delta .33$. There is a very broad peak at $\delta 7.7$ which is about equal to the average shift of CH_{2} and ortho-proton absorptions $[(9.93+5.43) / 2=\delta 7.68]$ (due as discussed to the intramolecular 1,2 -hydrogen shift between the methylene and ring hydrogens ortho to them). On further

Table II

raising the temperature of the solution to 10°, the broad peak at $\delta 7.7$ collapses together with the meta-proton peak at $\delta 8.33$ and finally (at 33°) appears as a broadened singlet at $\delta 7.9$. This singlet absorption at $\delta 7.9$ is also equal to the average of all the proton absorptions of ion $2[(5.43+8.33+9.93) / 3=\delta 7.9]$. These data show that at this temperature, a second set of degenerate intramolecular 1,2-hydrogen shifts occurs (2c \rightleftharpoons $2 \mathrm{~b} \rightleftharpoons 2 \mathrm{a}$).

A comparison of the temperature-dependent nmr behavior of the 4 -fluorobenzenium ion 2 and the 4 methylbenzenium ion (toluenium ion) ${ }^{3}$ shows that both ions undergo intramolecular 1,2-hydrogen shifts. However, whereas all the ring hydrogens of the p-toluenium ion are rapidly exchanging with one another upon raising the temperature of the solution of the static ion to $-60^{\circ},{ }^{3}$ this is not the case in ion 2 . The 1,2 -hydrogen shifts of ion 2 are taking place in a stepwise process, i.e., 2 undergoes intramolecular 1,2-hydrogen shifts in two separate steps which can be separately observed by nmr spectroscopy. The difference in behavior is mainly due to the relative instability of ion 2c caused by the inductive effect of fluorine on its ortho position. In addition, this is strongly indicated by results of electrophilic aromatic substitution of fluorobenzene, generally showing high para/ortho isomer ratio. ${ }^{5}$ Consequently, ion 2 is much more stable than ion 2c and the 4-methylbenzenium ion is only slightly more stable than the 2-methylbenzenium ion.

Difluorobenzene (4) was protonated in $\mathrm{SbF}_{5}-\mathrm{HF}$ ($1: 1 \mathrm{~mol}: \mathrm{mol}$)- $\mathrm{SO}_{2} \mathrm{ClF}$ ($1: 1 \mathrm{v}: \mathrm{v}$) solution at -82° to give 2,5 -difluorobenzenium ion 5 . The nmr (${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$) spectra of ion 5 are also temperature dependent (Figure 2). The methylene protons of ion 5 show a doublet pmr absorption at $\delta 5.73\left(J_{\mathrm{HF}}=11 \mathrm{~Hz}\right)$ owing to the ortho-fluorine coupling. It should be noted that the coupling constants of CH_{2} to ortho F and para F are about equal (similar as in ion 2 and also ion 7 , see subsequent discussion). The ortho, meta, and para protons show slightly broadened absorption at $\delta 8.6,8.3$, and 9.9 , respectively. The not completely resolved spectrum may be due to more complicated couplings (higher than first order) and viscosity of the medium. The ortho proton has a surprisingly shielded absorption (δ S.6) when compared to that of ion 2 ($\delta 9.93$), indicating the more important resonance contribution of 5 a over 5b. Of course, the back donation of fluorine can also stabilize ion $\mathbf{5 c}$, as shown by the substantially deshielded (by 112.7 ppm from p-difluorobenzene) fluorine absorption at $\phi 0.5$ for the ortho fluorine atom.
(5) G. A. Olah, S. J. Kuhn, and S. H. Flood, J. Amer. Chem. Soc., 83, 4581 (1961).

Figure 2.-Temperature-dependent pmr spectra of 2,5-difluorobenzenium ion 5 .

As the temperature of the solution containing ion 5 is raised, all the four proton absorptions broaden. At -11°, they appear as two slightly broadened peaks at $\delta 6.7$ and 9.1 . The ${ }^{19} \mathrm{~F} \mathrm{nmr}$ spectrum of ion 5 shows two multiplets at $\phi 0.5$ (ortho F) and 106.0 (meta F). As the temperature of the solution is further raised, the two fluorine absorptions broaden and finally merge into the base line at -11°. The temperature-dependent behavior of ion 5 indicates that intramolecular 1,2-hydrogen shifting occurs, via two-electron three-center bonded benzonium ion 5 d as transition state. The exchange reaction is an intramolecular process because the observed pmr shifts at $\delta 6.7$ and 9.1 are equal to the cal-

culated average shifts $[(5.73 \times 2+8.6) / 3=\delta 6.69$ and $(8.3+9.9) / 2=\delta 9.1$, respectively $]$.

For studies at higher temperatures, we also protonated p-difluorobenzene (4) in neat $\mathrm{SbF}_{5}-\mathrm{HF}$ solution. The pmr spectra of ion 5 are identical at -11° with or without $\mathrm{SO}_{2} \mathrm{ClF}$ diluent. Temperature-dependent pmr spectra thus could be studied above -11° (Figure 2). The two pmr absorptions ($\delta 6.7$ and 9.1) became broad when the temperature was raised above 0°. At 30°, they became a single very broad peak at δ 7.8 (the calculated average shift is $\delta 7.9$). These data indicate that ion 5 also deprotonates above 0° and undergoes both intra- and intermolecular hydrogen exchange (with the solvent system).
o-Difluorobenzene (6) was protonated in $\mathrm{HF}-\mathrm{SbF}_{5}$ ($1: 1 \mathrm{~mol}: \mathrm{mol}$) $-\mathrm{SO}_{2} \mathrm{ClF}$ ($1: 1 \mathrm{v}: \mathrm{v}$) solution to give $3,4-$ difluorobenzenium ion 7 . The pmr spectrum of ion 7 is temperature dependent, as it is shown in Figure 3 (left). At -103°, a broadened absorption is observed at $\delta 5.8$, corresponding to the methylene protons (as usual in benzenium ions ${ }^{6-9}$). In the vinylic ring proton region, two broadened absorption lines at $\delta 8.7$ and 9.5 are observed (the resonance line at $\delta 10.5$ being due to the oxonium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$impurity in the solvent system). The integration of peak areas gives the number of protons corresponding to each signal; the morc deshielded vinylic proton absorption has twice the intensity of that of the more shielded absorption. In the ${ }^{19} \mathrm{~F} \mathrm{nmr}$ spectrum, two very broad absorptions were found at ϕ 32.4 and 124.4 corresponding to the fluorine shifts of para and meta fluorine atoms in fluorobenzenium ions. ${ }^{2}$ These data clearly suggest observation of the static ("frozen-out") 3,4-difluorobenzenium ion 7 .

7
As the temperature of the solution was raised (e.g., to -94°), the two vinylic proton absorption lines collapsed to a broadened peak at $\delta 9.2$ and the methylene proton absorption line also broadened and became slightly deshielded. Further warming of the solution caused the methylene proton resonance to become more deshielded and also broad. Meanwhile, the deshielded vinylic proton absorption line became less broadened as the temperature was raised. At -52°, only two resolved absorption lines were observed at $\delta 7.1$ and 9.1 with a peak area ratio of $3: 2$. In the ${ }^{19} \mathrm{~F} \mathrm{nmr} \mathrm{spectrum}$, the two absorptions became broadened as the temperature was raised and at -77° merged into the base line. These observation indicate a rapid degenerate equilibration of 3,4 -difluorobenzenium ion 7 through equivalent (degenerate) forms 7a and 7b. The interconversion of 7 a and 7 b takes place by a 1,2-hydrogen shift via a transition state of benzonium ion nature (8).

[^134]

As the temperature is further raised, the two absorption lines become again broad and finally collapse into a single absorption at $\delta 7.9$ (from -52 to 0°). In the ${ }^{19} \mathrm{~F} \mathrm{nmr}$ spectrum, no new absorption lines were observed (except those of the solvent). ${ }^{10}$ Thus, there is a second temperature-dependent dynamic process in the 3,4-difluorobenzenium ion, i.e., $9 \mathrm{a} \rightleftharpoons 7 \mathrm{a} \rightleftharpoons 7 \mathrm{~b} \rightleftharpoons 9 \mathrm{~b}$.

When the exchange rate exceeds that of the nmr time scalc (at 0°), then all the protons arc becoming equivalent. This process also takes place through 1,2hydrogen shifts. Since the two processes can be separately obscrved by pmr, the corresponding activation parameters can be obtained. The activation energies, E_{a}, of the two processes were calculated by a multiplesite exchange program ${ }^{11}$ and were found to be 5.7 ± 0.8 $\mathrm{kcal} / \mathrm{mol}$ with a preexponential factor, A, of $10^{8.9 \pm 0.7}$ and $11.2 \pm 0.9 \mathrm{kcal} / \mathrm{mol}$ with a preexponential factor, A, of $10^{12.4 \pm 0.9}$, respectively.

In the benzenium ion 7 and alkylbenzenium ions, ${ }^{3,9}$ both intra- and intermolecular exchanges are possible. In the casc of 3,4-difluorobenzenium ion, intermolecular exchange is unlikely, even at 0°, when considering the experimental evidence of the pmr spectra. The calculated average proton shift of CH_{2} and ortho H in ion 7 a or 7 b is $(5.8 \times 2+9.5) / 3=\delta 7.03$, in good agreement with the experimentally observed value ($\delta 7.1$). A similar calculated average shift of one of the ortho and meta protons is $\delta 9.1$, which is identical with the experimentally observed value. This is also the casc when all protons become cquivalent (at 0°). The calculated average shift is $(8.7+9.5 \times 2+5.8 \times 2) / 5=$ $\delta 7.9$. Besides the excellent agreement of pmr paramcters with those calculated for intramolecular cxchange processes, further cvidence for the purely intra-

[^135]

Figure 3.-Temperature-dependent pmr spectra of 3,4-difluorobenzenium ion 7 (left) and 3,4-dimethylbenzenium ion (right).
molecular nature of exchange was obtained when o difluorobenzene was deuterated in $\mathrm{DF}-\mathrm{SbF}_{5}-\mathrm{SO}_{2} \mathrm{ClF}$ solution at -78°. Deuteration was found to take place only at C-4 and C-5, as shown by the equal inten-
sity of the two proton absorptions at $\delta 7.9$ and 9.1 in the pmr spectrum (vide supra) of the $d_{1}-3,4$-difluorobenzenium ion at -61°. When the temperature of the solution was raised above -52°, the intensity of the

Figure 4.- ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F} \mathrm{nmr}$ spectra of 2,4-difluorobenzenium ion 11.
two resonances changed. The intensity of the more deshielded absorption decreased and that of the shielded absorption increased, reaching a ratio of $2: 3$. At the same time, the intensity of the acid peak (present owing to a small amount of protic acid impurity in the $\mathrm{DF}-\mathrm{SbF}_{5}-\mathrm{SO}_{2} \mathrm{ClF}$ solution) was not affected.
m-Difluorobenzene (10) was protonated in superacid at -30° to give 2,4-difluorobenzenium ion 11. The $\mathrm{nmr}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{19} \mathrm{~F}\right)$ spectra of ion 11 are shown in Figure 4. The methylene protons of ion 11 show a triplet of doublets at $\delta 5.40\left(J_{\mathrm{HF}}=9\right.$ and $\left.J_{\mathrm{HH}}=2 \mathrm{~Hz}\right)$, indicating that CH_{2} is equally coupled to the ortho and para F but the coupling is smaller than in ions 2 and 5 $(11 \mathrm{~Hz})$. The small coupling (2 Hz) is due to $\mathrm{CH}_{2}-$ ortho-H coupling. The ortho proton centered at δ 9.3 shows a complicated deshielded multiplet, owing to spin-spin interactions with CH_{2}, meta H , and F . The two meta protons show a five-line absorption from $\delta 7.7$ to S.3. More carcful studies show that it is actually two scts of triplets. The deshielded triplet at $\delta 8.2$ $\left(\cdot J_{\mathrm{HF}}=S \mathrm{~Hz}\right.$) is assigned to the meta H between the two fluorine atoms, caused by their joint inductive effects. The triplet at $\delta 7.9\left(J_{\mathrm{HF}}=J_{\mathrm{HH}}=8 \mathrm{~Hz}\right)$ is then assigned to the other meta H . The ${ }^{19} \mathrm{~F} \mathrm{nmr}$ spectrum of ion 11 shows two sets of doublet of multiplets at $\phi 0.0$ (para F) and 7.3 (meta F). The doublet is due to the large fluorine-fluorine coupling of 50 Hz . The nmr (${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$) spectra of ion 11 are temperature independent from -80 to -10°.

Protonation of 1,2,4- and 1,3,5-trifluorobenzenes (12 and 13) in superacid at -78° gave the $2,4,5$ - and $2,4,6$ trifluorobenzenium ions 14 and 15 , respectively. The

14

15
$\mathrm{nmr}\left({ }^{1} \mathrm{H}\right.$ and ${ }^{19} \mathrm{~F}$) spectra of ion 14 are shown in Figure万. The methylene protons of ion 14 show a slightly broadencd triplet at δ \% $.43\left(J_{\mathrm{HF}}=9 \mathrm{~Hz}\right)$. The protonfluorine couplings (ortho and para) must be equal and the broadening may be due to the ortho and meta F couplings. The ortho proton of ion 14 has an eight-line multiplet at δ 8.4\% and is shielded compared to that of 4 -fluorobenzenium ion 2 ($\delta 9.93$). A similar shielding offect has bcen obscrved in the 2,4-difluorobenzenium ion 5 (sce previous discussion). Each of the three fluorine absorptions of ion 14 show two multiplets owing to the unusually large fluorinc-fluorine coupling gencrally observed in fluorobenzenium ions.

The pmr spectrum of ion 15 shows a quartet at $\delta 5.30$

Figure 5. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F} \mathrm{nmr}$ spectra of $2,4,5$-trifluorobenzenium ion 14.
$\left(\mathrm{CH}_{2}, J_{\mathrm{HF}}=8 \mathrm{~Hz}\right)$ and an eight-line multiplet at δ 7.64 (meta H), indicating that methylene protons are equally coupled to the three fluorine atoms and the meta protons are coupled to all three fluorine atoms. In the ${ }^{19} \mathrm{~F} \mathrm{nmr}$ spectrum, ion 15 shows two fluorine absorptions at $\phi-7.45$ (para F, triplet of quintet, $J_{\text {FF }}=$ 70 and $J_{\mathrm{HF}}=8 \mathrm{~Hz}$) and 21.45 (ortho F , doublet of multiplet, $J_{\mathrm{FF}}=70 \mathrm{~Hz}$). The triplet of quintet of the para fluorine is due to the long-range fluorine-fluorine coupling (70 Hz) and also to the equal proton-fluorine couplings of para F -meta H and para $\mathrm{F}-\mathrm{CH}_{2}$. Both ions 14 and 15 show no temperature-dependent behavior from -80 to -10°.

1,2,3,5-Tetrafluorobenzene (16), when protonated in superacid at -78°, gave the $2,3,4,6$-tetrafluorobenzenium ion 17 . The pmr spectrum of ion 17 shows

two well-resolved absorptions at $\delta 5.62\left(\mathrm{CH}_{2}\right.$, quartet, $J_{\mathrm{HF}}=8 \mathrm{~Hz}$) and 7.78 (meta, doublet of triplets, $J_{\mathrm{HF}}=$ 8 and 4 Hz). The methylene protons are equally coupled to the ortho and para fluorine atoms. The meta proton apparently couples to the adjacent fluorine atoms with equal magnitude and the small coupling could be due to the meta fluorine. The ${ }^{19} \mathrm{~F} \mathrm{nmr} \mathrm{spec-}$ trum of ion 17 shows a triplet at $\phi 152.02\left(J_{\mathrm{FF}}=20 \mathrm{~Hz}\right)$ for the meta F which is equally coupled to the ortho and para fluorine atoms. Each peak of the triplet is a multiplet with coupling constants of less than 1 Hz , presumably owing to the spin-spin interaction of meta H and the distant ortho F . There are five multiplet fluorine absorption between $\phi 12.4$ and 16.6 (with an intensity corresponding to two fluorine atoms) and these can be assigned to the para F and the ortho F , which is adjacent to the meta F . Owing to a smaller inductive effect of the other ortho F, the more shielded doublet of multiplets at $\phi 53.2\left(J_{\mathrm{FF}}=68 \mathrm{~Hz}\right)$ was assigned to the latter. The $\mathrm{nmr}\left({ }^{1} \mathrm{H}\right.$ and ${ }^{19} \mathrm{~F}$) spectra of ion 17 are again temperature independent from -80 to -10°.

The reaction conditions for the protonation of $1,2,3,4-$ tetrafluorobenzene (18) are important. The ratio of superacid $\mathrm{SbF}_{5}-\mathrm{HF}$ to diluent $\mathrm{SO}_{2} \mathrm{ClF}$ must be $1: 1$ ($\mathrm{v}: \mathrm{v}$) and the acid must be at least four times in excess of the substrate $1,2,3,4$-tetrafluorobenzene. The pmr spectrum of protonated $1,2,3,4$-tetrafluorobenzene (19) is temperature dependent (Figure 6A). At -83°, a slightly broadened triplet absorption is observed at δ $5.8\left(2 \mathrm{H}, J_{\mathrm{HF}}=10 \mathrm{~Hz}\right)$ corresponding to the methylene proton of the benzenium ion 19. It is assumed that the

Figure 6-(A) Temperature-dependent pmr spectra of 2,3,4,5-tetrafluorobenzenium ion 19 ; (B) ${ }^{19} \mathrm{~F} \mathrm{nmr}$ spectra of 2,3,4,5tetrafluorobenzenium ion 19; (C) temperature-dependent pmr spectra of a mixture of $1,2,3,4$-tetrafluorobenzene 18 and $2,3,4,5$-tetrafluorobenzenium ion 19.
triplet is due to the CH_{2} coupling with the two fluorine atoms (ortho and para). The ortho proton shows a broad absorption at $\delta 8.8$. In the ${ }^{19} \mathrm{~F} \mathrm{nmr}$ spectrum, four fluorine absorptions were observed (Figure 6B). The most deshielded absorption at $\phi 28.0$ is assigned to the para fluorine $\left(\mathrm{F}_{3}\right)$. The unusually large coupling ($J_{\mathbf{F F}}=90 \mathrm{~Hz}$) is due to the ortho, para fluorine coupling. This kind of coupling has been observed in other fluorobenzenium ions. Consequently, the ortho fluorine (F_{1}) is assigned to the second most deshielded fluorine absorption at ϕ 41.1. The most shielded doublet of triplet at $\phi 143.3$ is assigned to the meta fluorine (F_{2}), since it couples to all of the fluorine atoms in ion 19 (the coupling constants of $J_{\mathbf{F}_{1}-\mathrm{F}_{2}}$ and $J_{\mathrm{F}_{3}-\mathrm{F}_{3}}$ are about equal).

As the temperature of the solution was raised (e.g., -53°), the two-proton absorptions became broad and finally merged into the base line at -10°. Meanwhile, the four fluorinc absorptions were also broadened and merged into the base line similarly to the pmr absorptions. In the pmr spectrum, the acid peak was also broadened and became shielded at higher temperature $\left(-10^{\circ}\right)$. The temperature-dependent nmr spectra of the solution of 18 are reversible. However, the ion is decomposed gradually at -10°. All these data indicate that both intra- and intermolecular proton exchanges of ion 19 occur. The transition state for the intramolecular hydrogen exchange again is considered to be of tctracoordinated benzonium ion nature, 19c.

When the superacid concentration is less than $4 M$ to 1,2,3,4-tetrafluorobenzenc, both parent 1,2,3,4-tetrafluorobenzene and protonated ion 19 are observed at -83°. The $\mathrm{nmr}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{19} \mathrm{~F}\right)$ spectra of this solution again show temperature-dcpendent nature (Figure 6C). Upon raising the temperature, the acid pcak (not shown in Figure 6C) is also broadened and becomes shiclded, indicating that an additional intermolecular

proton exchange process also takes place $(18+19 \rightleftharpoons$ $19+18)$.

1,2,4,5-Tetrafluorobenzene (20) was protonated in $\mathrm{HF}-\mathrm{SbF}_{5}-\mathrm{SO}_{2} \mathrm{ClF}$ solution at -80° to give $2,3,5,6-$ tetrafluorobenzenium ion 21. The nmr spectra of ion 21 show two broadened pmr absorptions at $\delta 5.8\left(\mathrm{CH}_{2}\right)$ and 8.7 (para H) and also two broadened fluorine resonances at $\phi 45.7$ (ortho F) and 121.4 (meta F). The broadening may be due to complex couplings and the viscosity of the medium at low temperature $\left(-80^{\circ}\right)$. Both proton and fluorine resonances become broader and finally morge into the base line at higher temperature $\left(-40^{\circ}\right)$. The temperature-dependent behavior can be explained in terms of 21 undergoing intermolecular hydrogen exchange with the superacid system or/and the formation of a radical cation. Since $1,2,4,5-$ tetrafluorobenzene (20) is a highly deactivated system, an intramolecular 1,2 -hydrogen shift process is very unlikely. Consequently, formation of a protonationdeprotonation equilibrium can be best considered. On the other hand, when highly fluorinated aromatics (e.g., tetra-, penta-, and hexafluorobenzenes) are treated with $\mathrm{SbF}_{6}-\mathrm{FSO}_{3} \mathrm{H}$ at room temperature, radical
cations are known to form. ${ }^{12}$ This behavior is probably due to SbF_{5} present in the system oxidizing the fluoroaromatic π system.

Pentafluorobenzene (22) was also protonated in $\mathrm{HF}-\mathrm{SbF}_{5}-\mathrm{SO}_{2} \mathrm{ClF}$ solution at -78° to give $2,3,4,5,6-$ pentafluorobenzenium ion (23). The pmr spectrum of ion 23 shows a multiplet at $\delta 5.8$, indicating the methylene protons of a benzenium ion. The pmr spectrum of 22 is also a multiplet but the aromatic proton is more deshielded ($\delta 6.9$). In the ${ }^{19} \mathrm{~F} \mathrm{nmr}$ spectrum of ion 23 , the para fluorine displays a triplet of triplets at $\phi 33.5\left(J_{\mathrm{FF}}^{\mathrm{o}}=76\right.$ and $\left.J_{\mathrm{FF}}^{\mathrm{m}}=25 \mathrm{~Hz}\right)$ indicating that it is coupled to both ortho and meta fluorine atoms. Each peak of the triplet of triplets is slightly broadened since it also couples to the methylene protons. The ortho-fluorine absorption is less deshielded than that of para fluorine and appears as a doublet of multiplets at $\phi 47.6\left(J_{\text {FF }}^{\mathrm{p}}=76 \mathrm{~Hz}\right)$. In addition, the meta fluorines show a doublet of multiplets ${ }^{19} \mathrm{~F}$ nmr resonance at $\phi 146.6\left(J_{\mathrm{FF}}^{\mathrm{p}}=25 \mathrm{~Hz}\right)$. As for ion 21, both proton and fluorine absorptions of ion 23 are broadened at higher temperature, and may be due to the same explanations.

Comparison of Fluoro- and Methylbenzenium Ions. Comparison of the nature of fluorobenzenium ions in superacids shows similarities as well as some differences to those of the corresponding methylbenzenium ions. Temperature-dependent nmr spectra of 4 -fluorobenzenium ion, isomeric difluorobenzenium ions, and 2,3,4,5-tetrafluorobenzenium ion were observed in a parallel fashion with the corresponding methylbenzenium ions.

We have already discussed and compared the tem-perature-dependent behavior of 4-fluorobenzenium ion with 4 -methylbenzenium ion. Similarly, tempera-ture-dependent pmr spectra of 3,4-dimethylbenzenium ion were also observed, resembling closely those of 3,4-difluorobenzenium ion. Figure 3 (right) shows the temperature-dependent pmr spectra of 3,4 -dimethylbenzenium ion. The degenerate 1,2 -hydrogen shifts are again of intramolecular nature (within the studied temperature range). In the case of the 2,5difluorobenzenium ion, degenerate intramolecular 1,2hydrogen shifts were found below 0°. However, the corresponding 2,5 -dimethylbenzenium ion undergoes intramolecular 1,2 -hydrogen shifts only below -74°. On the other hand, both 2,4-dimethyl- and 2,4-difluorobenzenium ions show no intramolecular 1,2hydrogen shift.

Temperature-dependent pmr spectra of 2,3,4,5tetramethylbenzenium ion (prehnitenium ion) have been studied by Brouwer. ${ }^{13}$ Degenerate intramolecular 1,2-hydrogen shifts similar to those of the 2,3,4,5tetramethylbenzenium ion were also found in the 2,3,4,5tetrafluorobenzenium ion.

Both 2,4,6- and 2,3,5-trifluoro- and the corresponding trimethylbenzenium ions show no intramolecular 1,2hydrogen shifts. In contrast, the $2,3,4,5,6$-pentamethylbenzenium ion undergoes intramolecular 1,2hydrogen shifts while the corresponding pentafluorobenzenium ion does not. The hexamethylbenzenium ion (protonated hexamethylbenzene) also undergoes

[^136]degenerate 1,2-hydrogen shifts. ${ }^{13}$ The analog fluorine compound, hexafluorobenzene, was not found to be protonated in any superacids studied. It formed a donor-acceptor complex with antimony pentafluoride.

In none of the studied arenium ion systems was there evidence that the "frozen-out" species at low temperature are of bridged aronium ion nature. Thus presently it seems that the 1,2-hydrogen shifts in degenerate arenium ion rearrangement proceed through a relatively high-lying bridged aronium ion state involved between the two identical arenium ion inter-

mediates. Aronium ions also play a similar role in electrophilic aromatic substitutions.
In electrophilic aromatic substitution, the electrophile (E^{+}) first interacts with an aromatic substrate forming a weak reagent-substrate complex ("outer" complex ${ }^{14}$). The formation of such complexes is reversible and does not lead to substituted products. As the reagent moves closer to bonding distance, the highest lying occupied aromatic π orbital containing an electron pair overlaps with the empty orbital of the electrophile, forming a two-electron thrce-center bond (π complex). The formed complex is indeed a bridged tetracoordinated carbonium ion (benzonium ion) and is identical with that involved in 1,2hydrogen (methyl) shifts of benzenium ions. Open-

ing the three-center bond of the benzonium ion leads to the observable trivalent benzenium ion (σ complex) intermediate.

Among the three species ("outer" complex, benzonium ion, and benzenium ion) involved in elcetrophilic aromatic substitutions and isomerizations, "outer" complexes and benzenium ions are dircctly observable. Benzonium ions, however, were not yet observed under stable ion conditions.

Experimental Section

Materials-All fluorinated benzenes were commercially available (Pennisular Chemresearch) and used without further purification.

Preparation of the Ions.-Samples of the protonated fluoro-

[^137]benzenes for nmr studies were prepared by adding 0.2 g of the fluorobenzene to 2 ml of $\mathrm{SbF}_{5}-\mathrm{HF}_{-} \mathrm{SO}_{2} \mathrm{ClF}$ solution which had been cooled at -78°. Upon warming and stirring, clear solutions were obtained.
Nmr Studies.-A Varian Associates Model A-56-60A nmr spectrometer equipped with a variable-temperature probe was used to obtain all spectra. Capillary TMS and CFCl_{3} were used for proton and fluorine references, respectively.
Kinetic Analysis.-The activation energies for intramolecular 1,2 -hydrogen shifts in protonated o-difluorobenzenes were determined by nmr line shape analysis. A computer stimulation of line shape was employed based on the Gutowsky-Holm ${ }^{11}$
equation for multiple-site exchange. Activation parameters were calculated as previously described. ${ }^{1 b}$

All the temperature-dependent nmr spectra are reversible under the studied conditions, unless otherwise mentioned.

Acknowledgment.-Support of our work by the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation is gratefully acknowledged.

Stable Carbocations. CLVI. Dealkylative Formation of the tert-Butyl Cation from Substituted tert-Butylbenzenes with Fluoroantimonic Acid ${ }^{1}$

George A. Olah and Y. K. Mo
Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106

Received February 12, 1973
Under Friedel-Crafts reaction conditions, isomerization of di-tert-butylbenzene ${ }^{2}$ and tert-butyltoluene ${ }^{3}$ is well known. Under stable ion conditions, isomerization processes of alkylbenzenium ions ${ }^{4}$ were also studied. In the study of protonation of alkylbenzenes, tert-butylbenzene was found to cleave readily to benzene and tert-butyl cation in superacid media even at low temperature. ${ }^{4,5}$ The study of protonation of tert-butylbenzene in superacids at low temperature also provided direct experimental evidence for the formation of the tertbutylbenzenium ion. Raising the temperature results in intramolecular hydrogen migration as is shown by temperature-dependent nmr spectra. Eventually, the proton is attached to the carbon carrying the tert-butyl group (in all probability) and subsequently the tertbutyl cation is cleaved according to an α, β-cleavage mechanism (eq 1).

Ring-substituted alkylbenzenes, particularly with electron-withdrawing or sterically crowded groups, make formation of ring-protonated arenium ions increasingly difficult or even prevent it. In order to gain further insight into the protolytic behavior of tert-butylbenzenes with increasing substitution, we studied 17

[^138]
substituted tert-butylbenzenes in $\mathrm{SbF}_{5}-\mathrm{HF}-\mathrm{SO}_{2} \mathrm{ClF}$ solution at -30°. In all cases, tert-butyl cation was formed as evidenced by its pmr singlet absorption ${ }^{2}$ at δ 4.0-4.2 (dependent on concentration and media). This peak was increased in intensity by adding a known solution of the tert-butyl cation. The pmr spectra of

$\mathrm{R}_{\mathrm{x}}=\mathrm{F}_{5}, o-\mathrm{F}, p-\mathrm{F}, p-\mathrm{NH}_{2}, m-\mathrm{CONH}_{2}, o-, p-\mathrm{NO}_{2}, p-\mathrm{COCH}_{3}$, p-COOH, o-, m-, p-tert-butyl, 3,5-di-tert-butyl, 3,5-di-tert-butyl-4-nitro, 3,5-di-tert-butyl-4-bromo, 2,4,5- and 3,4,5-tri-tert-butyl
the de-tert-butylated benzenes are identical with those of the corresponding benzenes derivatives in the same superacid media. For example, the pmr spectrum of p-tert-butylbenzoic acid in $\mathrm{SbF}_{5}-\mathrm{HF}-\mathrm{SO}_{2} \mathrm{ClF}$ solution is identical with that of the tert-butyl cation and O protonated benzoic acid in the same superacid solution.
Owing to the electron-withdrawing groups (e.g., F_{5}, COOH , and NO_{2}), protonation at ring and subsequent benzenium-benzonium-benzenium ion rearrangement leading to cleavage of the tert-butyl group may not be necessary. Protonation may directly involve the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}_{\alpha}$ bond via a three-center bonded transition state (I) (thus reacting in accordance with known protolytic behavior of neopentane derivatives).

R_{x} are deactivating groups
Alternatively, initial interaction of the protonating agent with the deactivated or sterically crowded ring could form an outcr complex ${ }^{6}$ in equilibrium with an oriented π complex (benzonium ion ${ }^{7}$), then undergo intramolecular "bond-to-bond" rearrangement ${ }^{8}$ and lead to the formation of I.

Our proposed mechanism is based on the fact that the formation of σ complexes (benzenium ions) in these systems is difficult or even does not take place. For example, we recently studicd the protonation of pentafluorotoluenc in superacid media and found no ring protonation. ${ }^{9}$ Indecd, pentafluorotoluene underwent protolytic cleavage in superacids to give pentafluorobenzyl cation, $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{CH}_{2}{ }^{+}$, and H_{2}. Thus, the protolytic cleavage of pentafluoro-tert-butylbenzene in superacid to give tert-butyl cation and pentafluorobenzene may not involve any ring protonation. In other cases $\left[\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{X}=\mathrm{NO}_{2}, \mathrm{COOH}, \mathrm{COCH}_{3}, \mathrm{NH}_{2}\right.$, ctc.], protonation may proceed at the n-donor side chain sites in preference to the π-donor ring. The corresponding benzenium ions (σ complexes) of these deactivated benzenes were never directly observed. Consequently, we conclude that dealkylation of these deactivated tert-butylbenzenes may also not involve any ring protonation prior to $\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}_{\alpha}$ bond protolysis.

Poly-tert-butylbenzenes such as $1,2,4,5$ - and 1,3,4,5-tetra-tert-butylbenzenes also cleaved to benzenc and the tert-butyl cation in fluoroantimonic acid. As initial benzenium ion formation in these sterically crowded systems is unfavorable, protolytic cleavage may involve similar σ-bond reactivity as in the case of deactivated tert-butylbenzenes.

Cyclopentyl- and cyclohexylbenzenes behave very much as tertiary alkylbenzenes when treated with $\mathrm{Sbr}_{5}-\mathrm{HI}-\mathrm{SO}_{2} \mathrm{ClF}$ solution at -30°. Protolytic $\mathrm{C}_{\mathrm{Ar}^{-}}$ C_{α} bond cleavage takes place forming, besides benzene, tert-amyl and methylcyclopentyl cations, respectively. Under these conditions, the initially formed cyclohexyl

[^139]
and cyclopentyl cations are known to rearrange to give methylcyclopentyl and tert-amyl cations, respectively. ${ }^{10}$ The driving force for $\mathrm{C}_{\mathrm{Ar}^{2}}-\mathrm{C}_{\boldsymbol{\alpha}}$ over $\mathrm{C}_{\boldsymbol{\alpha}}-\mathrm{H}$ protolysis (the corresponding 1-methyl-1-cyclopentyl cation is a known very stable ion) must be the higher reactivity of the $\mathrm{C}-\mathrm{C}$ bond. The initial protonation in cycloalkylbenzenes is on the aromatic ring, as they can be protonated in superacid at -78° to give the stable cycloalkylbenzenium ions. The pmr spectra of the ions are in accordance with their structures.

$\delta 2.3(\mathrm{~s}, \mathrm{br})$
$\delta 3.2$ (s, br)
$\delta 8.37(\mathrm{~d}, J=8 \mathrm{~Hz})$
$\delta 9.30(\mathrm{~d}, J=8 \mathrm{~Hz})$
$\delta 5.1(\mathrm{~s}, \mathrm{br})$

In conclusion, our study on dealkylation of substituted tert-butylbenzenes under stable ion conditions proves that tert-alkylcarbenium ions are indeed involved in Friedel-Crafts isomerization of alkylbenzenes.

Experimental Section

Materials.-All the substituted tert-butylbenzenes were either commercially available materials (Aldrich Chemical Co.) or prepared according to the literature. Cyclopentyl- and cyclohexylbenzenes were obtained from Aldrich Chemical Co. Antimony pentafluoride (Allied Chemical Co.) was triply distilled before used. HF was obtained from J. T. Baker Chemical Co. The preparation of anhydrous fluoroantimonic acid has been described previously. ${ }^{11}$ Spectrograde HSbF_{6} was obtained from Cationics Inc.

Dealkylation of Substituted tert-Butylbenzenes with Fluoroantimonic Acid.- $\mathrm{HF}-\mathrm{SbF}_{5}$ (1.5 ml) was diluted with an equal volume of sulfuryl chloride fluoride $\left(\mathrm{SO}_{2} \mathrm{ClF}\right)$ at -78°. To the resulting cold solution was added with vigorous stirring the substituted tert-butylbenzene (ca. $0.2 \mathrm{ml}, 0.2 \mathrm{~g}$) at -30°. The clear solution which formed was transferred to an $n m r$ tube for spectral studies.

Ions not described in detail (pmr spectra) in this paper were already reported and characterized in our previous studies.

Nmr spectra were obtained on a Varian A-56-60A nmr spectrometer equipped with a variable-temperature probe. Chemical shifts are referred to external capillary TMS.

Acknowledgment.-The support of our work by the National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged.

Registry No.-A $\left(\mathrm{R}_{\mathrm{x}}=\mathrm{F}_{5}\right)$, 40782-24-9; $\mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=o-\mathrm{F}\right)$, 320-11-6; $\mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=p-\mathrm{F}\right), 701-30-4 ; \mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=p-\mathrm{NH}_{2}\right), 769-92-6$; $\mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=m-\mathrm{CONH}_{2}\right), 40782-26-1 ; \mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=o-\mathrm{NO}_{2}\right), 1886-57-3$; $\mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=p-\mathrm{NO}_{2}\right), 3282-56-2 ; \mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=p-\mathrm{COCH}_{3}\right), 943-27-1$; $\mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=p-\mathrm{COOH}\right), 98-73-7 ; \mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=o\right.$-tert-butyl), 1012-76-6; $\mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=m\right.$-tert-butyl), 1014-60-4; $\mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=p\right.$-tert-butyl $), 1012-$ $72-2 ; A\left(R_{x}=3,5-\right.$ di-tert-butyl), 1460-02-2; $A\left(R_{x}=3,5\right.$-di-
(10) (a) G. A. Olah, J. M. Bollinger, C. A. Cupas, and J. Lukas, J. A mer. Chem. Soc., 89, 2692 (1967); (b) G. A. Olah and J. Lukas, ibid., 90, 933 (1968).
(11) G. A. Olah, D. H. O'Brien, and A. M. White, J. Amer. Chem. Soc., 89, 5694 (1967).
tert-butyl-4-nitro), 4074-25-3; A ($\mathrm{R}_{\mathrm{x}}=3,5$-di-tert-butyl-4-bromo), 3975-77-7; $\mathrm{A}\left(\mathrm{R}_{\mathrm{x}}=2,4,5\right.$-tri-tert-butyl), 796-97-4; A $\left(\mathrm{R}_{\mathrm{x}}=\right.$ 3,4,5-tri-tert-butyl), 40782-30-7; $\mathrm{B}\left(\mathrm{R}_{\mathrm{x}}=\mathrm{F}_{5}\right)$, 363-72-4; B $\left(\mathrm{R}_{\mathrm{x}}=\mathrm{F}\right), 462-06-6 ; \mathrm{B}\left(\mathrm{R}_{\mathrm{x}}=\mathrm{NH}_{2}\right), 62-53-3 ; \mathrm{B}\left(\mathrm{R}_{\mathrm{x}}=\mathrm{CONH}_{2}\right)$, $55-21-0 ; \mathrm{B}\left(\mathrm{R}_{\mathrm{x}}=\mathrm{NO}_{2}\right), 98-95-3 ; \mathrm{B}\left(\mathrm{R}_{\mathrm{x}}=\mathrm{COCH}_{3}\right), 98-86-2$; $\mathrm{B}\left(\mathrm{R}_{\mathrm{x}}=\mathrm{COOH}\right), 65-85-0 ; \mathrm{B}\left(\mathrm{R}_{\mathrm{x}}=\right.$ tert-butyl), 98-06-6; B ($\mathrm{R}_{\mathrm{x}}=m$-di-tert-butyl), 1014-60-4; $\mathrm{B}\left(\mathrm{R}_{\mathrm{x}}=1,3\right.$-di-tert-butyl-2nitro), 15141-43-2; $\mathrm{B}\left(\mathrm{R}_{\mathrm{x}}=1,3\right.$-di-tert-butyl-2-bromo), 19715-32-3; $\mathrm{B} \quad\left(\mathbf{R}_{\mathbf{x}}=1,2,4\right.$-tri-tert-butyl), 1459-11-6; $\quad \mathrm{B} \quad\left(\mathrm{R}_{\mathbf{x}}=1,2,3\right.$-tri-tert-butyl), 40782-34-1; tert-butyl cation, 14804-25-2.

Cleavage of Allyloxycarbonyl Protecting Group from Oxygen and Nitrogen under Mild Conditions by Nickel Carbonyl

E. J. Corey* and J. William Suggs

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Received May 15, 1973
This note outlines a method for the use of the allyloxycarbonyl group for protection of hydroxyl and amino functions.
Allyl and cinnamyl acetates have been reported to react with nickel carbonyl at $45-65^{\circ}$ in tetrahydrofuran for $2-3 \mathrm{hr}$ to form the allylic coupling products ($1,5-$ hexadienes) in $30-50 \%$ yield. ${ }^{1}$ Under these conditions nonallylic acetatcs and allylic alcohols or ethers are unreactive. These facts suggest that the allyloxycarbonyl group could be used for hydroxyl or amino protection in a way parallel to the well-known benzyloxycarbonyl (carbobenzoxy) group and removed under mild aprotic conditions by the action of nickel carbonyl or a related "allylophilic" reagent. Experimental verification of this possibility was readily obtained. The conversion of a variety of alcohols to alkyl (or cycloalkyl) allyl carbonates could be accomplished in high yield by reaction with allyl chloroformate (available from Polysciences, Inc., Warrington, Pa.) and pyridine in a suitable aprotic solvent [e.g., ether or tetrahydrofuran (THF)]. Regeneration of alcohol from the corresponding alkyl allyl carbonate occurred upon exposure to nickel carbonyl, as expected, but it was found that the reaction could not be driven to completion even with an excess of the reagent. This difficulty could be overcome by the addition of $N, N^{\prime}-$ tetramethylethylenediamine to reaction mixtures in either acctonitrile or dimethylformamide (DMF) as solvent, although an excess of nickel carbonyl was found still to be necessary. ${ }^{2}$ For optimal yields of alcohols from alkyl allyl carbonatcs, the following reaction conditions were typically employed: (a) ca. 5 equiv of nickel carbonyl and 3 equiv of tetramethylethylenediamine per cquiv of allyl carbonate, (b) DMF [5-10 $\mathrm{ml} / \mathrm{ml}$ of $\left.\mathrm{Ni}(\mathrm{CO})_{4}\right]$ as solvent at 55°, (c) nitrogen or argon atmosphere, (d) $c a .4 \mathrm{hr}$ reaction time. Under these quite mild conditions the following cleavages of
(1) N. L. Bauld, Tetrahedron Lett., 859 (1962).
(2) The role of tetramethylethylenediamine in this regard is unclear. It was originally considered that the formation of $\mathrm{Ni}(\mathrm{II})$ as a reaction product might somehow inhibit the reaction and that the diamine might prevent such inhibition by complexation. However, it has been observed that added nickel acetate has no effect on the rate or extent of reaction between alkyl allyl carbonate and nickel carbonyl alone.
alkyl allyl carbonates to alcohols were observed (yield in parentheses).

To illustrate the use of the allyloxycarbonyl group for protection of amino nitrogen, two substrates, N -allyloxycarbonyl- $d l$-phenylalanine ${ }^{3}$ and N -allyloxydicyclohexylamine, were prepared and treated with nickel carbonyl under the conditions outlined above except for the use of DMF-water (95:5) as medium and 10 equiv of nickel carbonyl. The expected free amino compounds, dl-phenylalanine and N, N-dicyclohexylamine, were obtained in 95 and 83% yield.

We expect that for large-scale preparative work where the use of excess nickel carbonyl may be unacceptable, the use of a carbon monoxide atmosphere under pressure is advisable to stabilize the reagent.

Experimental Section

The following procedures for the synthesis and cleavage of the allyloxycarbonyl derivative of 1-decanol could also be applied to exo-2-norborneol and menthol.

Decyl Allyl Carbonate.-A magnetically stirred solution of 1decanol ($3.24 \mathrm{~g}, 20.5 \mathrm{mmol}$) and pyridine $(2.03 \mathrm{~g}, 25.7 \mathrm{mmol})$ in 75 ml of THF was cooled to 0°, and allyl chloroformate (3.097 $\mathrm{g}, 25.7 \mathrm{mmol}$) in 10 ml of THF was added dropwise. The reaction mixture was slowly warmed to room temperature, and after 2 hr at room temperature the solution was filtered and solvent was removed at reduced pressure. Ether (25 ml) was then added and the solution was filtered again, washed with water and brine, dried over anhydrous MgSO_{4}, then distilled to give 4.54 g (91%) of a pleasant-smelling liquid: bp $109-110^{\circ}(0.5 \mathrm{~mm})$; ir (neat) 1751 (s), 1647 (w), 1292 (sh), 1250 (s, b), 970 (m), $795 \mathrm{~cm}^{-1}(\mathrm{~m}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 6.34-5.70$ (9-line multiplet, 1 H), 5.37 (ABC triplet, 2 H$), 4.61(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H})$ (these three absorbances are due to the allyl group and are the same in all the carboallyloxy derivatives made), $4.14(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.33(\mathrm{~s}, 16 \mathrm{H}), 0.97(\mathrm{~m}, 3 \mathrm{H})$; mass spectrum $m / e 140\left[\left(\mathrm{CH}_{2}\right)_{10}{ }^{+}\right]$.

1-Decanol.-(Nickel carbonyl is both volatile and toxic; all operations involving it were performed in a well-ventilated hood.) Into a $25-\mathrm{ml}$ flask fitted with a side arm and reflux condenser topped by a three-way stopcock opened to an argon-filled balloon were placed n-decyl allyl carbonate $(0.288 \mathrm{~g}, 1.19 \mathrm{mmol})$, tetramethylethylenediamine $(0.417 \mathrm{~g}, 3.60 \mathrm{mmol})$, and 7 ml of dry, argon-saturated DMF. Nickel carbonyl ($0.78 \mathrm{ml}, 6.0$ mmol) was added all at once, and the stirred mixture was warmed slowly to 55°. After 4 hr excess nickel carbonyl was removed by codistillation with ether into an ethereal iodine solution. The mixture was poured into 20 ml of water and extracted twice with 15 ml of pentane. The pentane layer was washed with 20 ml of 1 N hydrochloric acid and brine, and dried over anhydrous MgSO_{4}. Evaporation of the solvent at reduced pressure gave $0.177 \mathrm{~g}(95 \%)$ of 1-decanol, homogeneous by tlc and with spectral properties identical with those of authentic material.

Cleavage of Allyloxycarbonyl Amides. A. N-AllylozycarbonylN, N-dicyclohexylamine.-The above procedure was followed except that 0.3 ml of water was also added to the reaction mixture, and 10 equiv of nickel carbonyl was used. After removal of excess nickel carbonyl, the reaction mixture was poured into 20 ml of 1 N HCl , and the solution was made basic with sodium carbonate and extracted thrice with pentane. These pentane extracts were dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give dicyclohexylamine (95\% yield).
B. N-Allyloxycarbonyl-dl-phenylalanine.-The reaction conditions were as described just above. After 5 hr excess nickel carbonyl and TMEDA were removed under reduced pressure. Then 50 ml of water was added and $\mathrm{H}_{2} \mathrm{~S}$ was bubbled through the solution for 10 min . The solution was brought to pH 6 , heated
(3) C. M. Stevens and R. Watanabe, J. Amer. Chem. Soc., 72, 725 (1950).
to break the nickel sulfide colloid, and filtered through Celite. The filtrate was evaporated under reduced pressure, and the residual solid was washed three times with acetone and dried to give pure $d l$-phenylalanine (83% yield) identified by comparison with an authentic sample.

Acknowledgment.-This work was assisted financially by the National Science Foundation.
Registry No .-Ni(CO) ${ }_{4}$, 13463-39-3; decyl allyl carbonate, 40940-42-9; 1-decanol, 112-30-1; allyl chloroformate, 2937-50-0; N-allyloxycarbonyl- N, N-dicyclohexylamine, $\quad 40940-43-0 ; \quad N$ allyloxy carbonyl-dl-phenylalanine, 40940-57-6.

Selective Cleavage of Allyl Ethers under Mild Conditions by Transition Metal Reagents

E. J. Corey* and J. William Suggs

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Received May 15, 1973
The highly selective propertics of various transition metal derived reagents would seem to recommend their application to the removal of suitable chosen protecting groups. ${ }^{1}$ This note outlines a new method for the sclective cleavage of allyl ethers to alcohols under conditions sufficiently mild so that alcohol derivatives such as alkyl ethers, aryl cthers, or csters, and also many of the common functional groups, would not be affected. Our findings suggest that protection of hydroxyl groups as allyl ethers may be a very useful technique for organic synthesis.

We have found that rhodium(I) complexes such as $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ catalyze the isomerization of allyl ethers (1) to 1-propenyl ethers (2) under neutral aprotic

[^140]conditions. ${ }^{2}$ Hydrolysis of the enol ethers 2 occurs rapidly at pH 2 to form the free alcohols 3. The generality of the process was demonstrated for the allyl ethers of methanol, 1-decanol, and cholesterol, all of which could be converted readily to the corresponding alcohols 3 in $>90 \%$ yield. Benzyl ethers were found to be stable under the conditions which cleave allyl ethers. Tristriphenylphosphine rhodium chloride was considerably more active as a catalyst than $\mathrm{RhCl}_{3}{ }^{3}{ }^{3}$ which in turn was more active than $\mathrm{PdCl}_{2}, \mathrm{RuCl}_{3}$, or IrCl_{3}. Prior to this work the cleavage of allyl ethers has been effected by the conventional method using strong acids, by oxidation with SeO_{2} in acetic aciddioxane, ${ }^{4}$ or by treatment with strong base to generate an cnol ether followed by acid hydrolysis or oxidation. ${ }^{2,5}$

Experimental Section

Cleavage of Allyl Ethers as Illustrated by Menthyl Allyl Ether \rightarrow Menthol.-A solution of menthyl allyl ether $(0.114 \mathrm{~g}, 0.58$ mmol) (prepared from menthol, sodium hydride, and allyl bromide), $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(0.037 \mathrm{~g}, 0.040 \mathrm{mmol})$ (Alfa Inorganics), and diazabicyclo $\left[2.2 .2\right.$]octane $(0.013 \mathrm{~g}, 0.120 \mathrm{mmol})^{6}$ in 10% aqueous ethanol was heated at reflux for 3 hr . An aliquot was injected into $1 N \mathrm{HCl}$ and after a few minutes was assayed by vpc analysis ($10 \mathrm{ft} \times 0.12 \mathrm{j}$ in. 5% Carbowax 20M Chromosorb $\mathrm{W}, 130^{\circ}$) which showed only menthol and menthyl allyl ether in 93 and 7% yield, respectively. Work-up of a parallel reaction (by pouring into water, extracting with ether, washing the ether with brine acidified to pH 2 , drying over anhydrous MgSO_{4}, concentration, and separation on silica gel) gave menthol in 93% yield. The same procedure was applied to the cleavage of the allyl ethers of 1-decanol and cholesterol to form the alcohols in 96 and 90% yield, respectively.

Acknowledgment. - This work was assisted financially by the National Science Foundation.

Registry No.- $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}, 14694-95-2$; menthyl allyl ether, 40940-58-7; allyl decyl ether, 3295-96-3; allyl cholesteryl ether, 25092-65-3.

[^141]
Communications

Absolute Configuration of C_{30}, Sulfur-Containing
 Nuphar Alkaloids Determined by

Circular Dichroism ${ }^{1}$

Summary: The circular dichroism resulting from an α-thioimmonium ion function was studied in 6 -hydroxythiobinupharidine, $\quad 6,6^{\prime}$-dihydroxythiobinupharidine, and $6,6^{\prime}$-dihydroxythionuphlutine B to determine the absolute stereochemistry of thiobinupharidine and thionuphlutine B.
Sir: We have recently reported in detail the evidence for the relative stereochemistry of the C_{30}, sulfur-containing alkaloids thiobinupharidine (1) and thionuphlutine B (2). ${ }^{2}$ An appreciation of the influence of sulfurimmonium ion interaction was instrumental in arriving at these structures. Manifestations of the interaction were (1) the demonstrated stereospecificity of the deuteride reduction of the bishemiaminals 3 and 4 to 1 and 2 , respectively, and (2) the appearance of the acidinduced bands in the $290-300-\mathrm{nm}$ region of the uv of 3 and 4 as well as the naturally occurring monohemiaminal 5 and the model compounds 6 and 7 .

Measurement ${ }^{3}$ in 95% ethanol of the CD of the immonium perchlorates derived from the hemiaminals mentioned above provides data which allow the assignment of the absolute configuration to these C_{30} alkaloids.

1, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$ (D)
3, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH}$
5, $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H}$

$2, R_{1}=R_{2}=H(D)$
$4, R_{1}=R_{2}=O H$

6, $\mathrm{R}_{1}=\mathrm{SCH}_{3} ; \mathrm{R}_{2}=\mathrm{CH}_{3}$
7, $\mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{SCH}_{3}$
$8, \mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{CH}_{3}$

[^142]

Figure 1.-The circular dichroism of immonium perchlorates derived from 7β-methylthiodeoxynupharidin- 6α-ol (6) and 7α -methylthiodeoxynupharidin- 6β-ol (7).

Thus the pseudoenantiomeric pair of perchlorates 6 and 7 give, respectively, positive ($[\theta]_{298}^{25} 22,000, c 1.5 \mathrm{mg} / 10$ ml) and negative ($[\theta]_{300}^{25}-14,000, c 0.8 \mathrm{mg} / 5 \mathrm{ml}$) CD bands as shown in Figure 1. The relative configuration of the C_{7} sulfur atom in 6 and in the immonium ions derived from $\mathbf{3}$ and 5 is the same. On the other hand, the relative configuration of the sulfur atom in 7 and in the immonium ion from 4 is the same but different from that of 3,5 , and $6 .{ }^{2}$ Since 6 and 7 are derived from (-)-deoxynupharidine whose absolute configuration has been established ${ }^{4,5}(1 R, 4 S, 7 S, 10 S)$, the set of curves given in Figure 1 can be used as comparison standards for ascertaining the absolute stereochemistry of other α thioimmonium ions of the nuphar alkaloid series. Significantly the immonium ion 8 also gives a positive CD band ($[\theta]_{230}^{25} 8800$) but at a much lower wavelength, a result consistent with the report that simple immonium ions absorb in the uv in the $220-230-\mathrm{nm}$ region ${ }^{6}$ and our earlier observation that interaction of sulfur with an immonium ion is necessary for the appearance of the longer wavelength absorption in the $300-\mathrm{nm}$ region. ${ }^{2}$
As the curves of Figure 2 show, perchlorates derived from bishemiaminal 3 and monohemiaminal 5 give

[^143]

Figure 2.-The circular dichroism of immonium perchlorates derived from 6,6'-dihydroxy thiobinupharidine (3) (-); 6,6'-dihydroxythionuphlutine B (4) (---); 6-hydroxythiobinupharidine (5) (--- , in neutral EtOH), ($-\times-$, in EtOH with added perchloric acid).
positive CD bands $\left([\theta]_{296}^{25} 13,000, c 3.5 \mathrm{mg} / 5 \mathrm{ml}\right.$ and $[\theta]_{296}^{25} 7500, c 1.3 \mathrm{mg} / 1 \mathrm{ml}$, respectively), whereas the perchlorate of bishemiaminal 4 gives a negative CD band $\left([\theta]_{308}^{25}-3200, c 1 \mathrm{mg} / 2 \mathrm{ml}\right)$. Therefore, since the relative configurations of carbons 1,4 , and 10 in the C_{30} alkaloids and in (-)-deoxynupharidine were demonstrated to be the same but the configuration at C-7 to be variable, ${ }^{2}$ the absolute configurations of chiral centers in the AB quinolizidine system of the C_{30} alkaloids are now known and are represented in the structures given. Reasonably the configurations of corresponding centers in AB and $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ quinolizidine ring systems would be the same judging from the near symmetrical (C_{2}) incorporation of two deoxynupharidine moieties into the C_{30} skelcton. However, this latter proposal is being checked ('xperimentally by studies now in progress.

The appearance of positive CD bands at 275 nm for the perchlorate of 4 and at $26 \% \mathrm{~nm}$ for the perchlorate of 3 results from an $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ immonium ion. The CD bands in the $230-240-\mathrm{nm}$ region cvident in the CD of perchlorates of 4 and 5 possibly are due to the presence of α-ethoxyamines which are in equilibrium with immonium ions. These CD bands become more intense in dilute solution but disappear altogether, with simultaneous enhancement of the immonium ion bands, when several drops of perchloric acid are added. This is demonstrated in the case of 5 by the CD curve in Figure 2.

These results demonstrate that the CD of immonium ions holds considerable promise as a simple method for gaining stercochemical information. Since many immonium ions are naturally occurring in the form of hemiaminals and are readily available by oxidation of tertiary amines, the CD of immonium ions would appear
to have special applicability to the study of alkaloid structure.

Department of Chemistry
C. F. Wong

State University of New York
Robert T. LaLonde*
College of Environmental Science and Forestry
Syracuse, New York 13210
Received May 9, 1973

Reversible Deuteration of

2,6-Dimethoxy-1,4-benzoquinone in Alkali

Summary: Base catalyzes rapid replacement by deuterium of the ring protons in 2,6-dimethoxy-1,4-benzoquinone in $\mathrm{D}_{2} \mathrm{O}$, establishing that nucleophilic addition of a hydroxyl ion to form an o-quinal structure is the primary step in alkaline decomposition of the quinone.

Sir: On treatment with alkali, quinones undergo rapid decomposition and polymerization to yield dark pigments of humus-like character. ${ }^{1}$ Quinone percursors of humins arise in nature as fungal metabolites ${ }^{2}$ or as products of biodegradation of plant lignins by fungal phenol oxidases. ${ }^{3}$ One of the quinones frequently encountered as a product of fungal or enzymatic degradation of lignin ${ }^{3}$ or lignin model compounds ${ }^{3-5}$ is $2,6-$ dimethoxy-1,4-benzoquinone (1). This compound and its conversion products are therefore considered to be likely components of soil humus.

The rate of decomposition of unsubstituted p-benzoquinone in 0.1 N sodium hydroxide is so fast that special flow methods had to be applied in efforts to study the kinetics and course of the primary reaction. ${ }^{6}$ However, the dimethoxy-p-benzoquinone (1) is relatively stable in alkali, where it undergoes unusual base-catalyzed exchange reactions which indicate that a nucleophilic addition of a hydroxyl ion onto the quinone must be the initial step in its alkaline decomposition.

The quinone 1 was prepared by nitric acid oxidation of 2,6-dimethoxyphenol ${ }^{5}$ and purified by vacuum sublimation ($\mathrm{mp} 255^{\circ}$). Addition of alkali to a yellow aqueous solution of 1 [$\lambda_{\max } 289,396 \mathrm{~nm}(\epsilon 14,500,660)$] produced a colorless solution with only a sing'e maximum at $249 \mathrm{~nm}(\epsilon 15,300)$. On immediate reacidification, the original spectrum was regenerated and unchanged 1 could be recovered almost quantitatively from the solution by extraction with chloroform [$\lambda_{\text {max }}$ (in $\left.\left.\mathrm{CHCl}_{3}\right) 286,376 \mathrm{~nm}(\epsilon 18,000,600)\right]$.

A sample of 1 [pmr in $\mathrm{CDCl}_{3}, \delta 3.82\left(\mathrm{~s}, 2,6-\mathrm{OCH}_{3}\right)$, $5.85(\mathrm{~s}, 3,5-\mathrm{H})$] was dissolved in alkaline $\mathrm{D}_{2} \mathrm{O}$ and the solution acidified 1 min later with HCl in $\mathrm{D}_{2} \mathrm{O}$. The
(1) H. Erdtman and W. Stjernstrom, Chem. Ind. (London), 1599 (1960); W. Flaig, et al., Chem. Geol., 3, 161 (1968); Naturwiss., 47, 516 (1960); Justus Leibigs Ann. Chem.. 597, 196 (1955).
(2) K. Haider and J. P. Martin, Soil Biol. Biochem., 2, 145 (1970); Soil Sci., 107, 260 (1969); Soil Sci. Soc. Amer. Proc., 31, 766 (1967).
(3) (a) T. Ishihara and M. Miyazaki, Mokuzai Gakkaishi, 18, 415 (1972); (b) K. Freudenberg. J. M. Harkin, M. Reichert, and T. Fukuzumi, Chem. Ber., 91, 581 (1958).
(4) W. J. Connors, J. S. Ayers, K. V. Sarkanen, and J. S. Gratzl, Tappi, 54, 1248 (1971); (b) S. I. Clare and C. Steelink, Tappi, 66, 119 (1973); (c) J. D. Fitzpatrick and C. Steelink, J. Org. Chem., 37, 762 (1972); (d) E. S. Caldwell and C. Steelink, Biochim. Biophys. Acta, 184, 420 (1969); (e) T. K. Kirk, J. M. Harkin, and E. B. Cowling, ibid., 165, 145 (1968).
(5) W. Baker, J. Chem. Soc., 622 (1941).
(6) M. Eigen and P. M. Matthies, Chem. Ber., 94, 3309 (1961).
solution was extracted with chloroform, the extract dried, and the solvent removed. The pmr of the residue in CDCl_{3} showed only a singlet at $\delta 3.82$, indicating that the recovered product was 3,5-dideuterio-2,6-dimethoxy1,4 -benzoquinone (4).

The formation of 4 can be explained as follows. In

alkaline solution, a hydroxyl ion adds on to 1 to yield an anion hitherto formulated as $2 ;^{4 b, c, 6}$ however, this is evidently tautomer.c with the anion 3, a form through which exchange of the ring protons can occur readily in $\mathrm{D}_{2} \mathrm{O}$ via deuteration and deprotonation. Reacidification in $\mathrm{D}_{2} \mathrm{O}$ therefore yields 4 . The original quinone 1 was re-formed from 4 by dissolution in $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}$ and acidification with $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$. This rapid reversible deuteration therefore indicates the immediate formation in base of adducts of the type $2 \leftrightarrow 3$, which has been postulated as the first step in the alkaline decomposition of quinones. ${ }^{4 b, c, 6}$

Even for a substituted quinone, 1 is atypical in its relative stability in base. Its decomposition in alkali, as measured by the decay of the peak at 289 nm after reacidification, follows first-order kinetics with a halflife of 30 min at pH 10.5 and 20°. Other substituted quinones (1,2 - and 1,4-naphthoquinone, 2 -methyl-1,4 naphthoquinone, 2 -methoxy-, 2,5-dimethyl-, 2,6-di-methyl-, 2,5-dichloro-, and 2,6-dichloro-1,4-benzoquinone, and 3,5-dimethoxy-1,2-benzoquinone) all decomposed within 1 min at pH 10.5 . Regeneration of original quinones by acidification could not be established by uv or pmr spectroscopy. It was, therefore, impossible to establish deuterium exchange in alkaline solution.

On treatment of 1 with NaOH or $\mathrm{CD}_{3} \mathrm{ONa}$ in $\mathrm{CDCl}-$ $\mathrm{CD}_{3} \mathrm{OD}$, both the methoxyl and proton resonances were immediately discharged from the pmr spectrum. $3,5-\mathrm{Di}-$ deuterio-2,6-bis(trideuteriomethoxy)-1,4-benzoquinone (7) recovered from the solution after acidification was

reconverted to 1 with NaOH in $\mathrm{CH}_{3} \mathrm{OH}$ followed by acidification.

The exchange of the methoxyl probably involves an intermediate quinal (quinol ether) adduct ($6 \leftrightarrow 7$) analogous to the o-hemiquinal structure $(2 \leftrightarrow 3)$. Rapid exchange of the methoxyl groups in 1 in alkaline solution by other alkoxyl groups has also been demonstrated by pmr and esr. ${ }^{4 c}$
$\begin{array}{ll}\text { USDA-FS Forest Products Laboratory } \\ \text { Madison, Wisconsin } & 53705\end{array} \begin{gathered}\text { John R. Obst* }\end{gathered}$
Received June 25, 1973

Benzyl 6-Oxopenicillanate and Derivatives. II

Summary: The amide side chain of a penicillin has been removed and the carbon analogs of penicillin V and phenylpenicillin have been synthesized stereospecifically; the penicillin V analog has antibiotic activity and penicillinase resistance.

Sir: We have reported ${ }^{1}$ the preparation of 6β-phenoxyacetoxypenicillanic acid-a 6-oxygen analog of penicillin V, from benzyl 6-oxopenicillanate (1). This versatile

intermediate can also be transformed to 6β-phenoxyacetylmethylpenicillanic acid (8b) -a 6-carbon analog of penicillin V. Surprisingly, this relatively major change in structure resulted in a compound still containing appreciable antibiotic activity. In addition, 8b was resistant to Bacillus cereus penicillinase. ${ }^{2}$

As a model side-chain precursor, the readily available benzoylmethylenetriphenylphosphorane (2a) was allowed to react with benzyl 6-oxopenicillanate (1) in refluxing benzene to give, after column chromatography, a yellow oily product (64%), benzyl benzoylmethylene-
(1) Y. S. Lo and J. C. Sheehan, J. Amer. Chem. Soc., 94, 8253 (1872).
(2) Bristol Laboratories, Division of Bristol-Myers Co., Syracuse, N. Y. In the previous communication. ${ }^{1}$ crude 6β-phenoxyacetoxypenicillanic acid was reported to be inactive. The potassium salt of this acid has since been retested and ahowed some antibacterial activity. Presumably the crude acid sample had decomposed before bioassay.
penicillanate: ${ }^{3} \quad R_{\mathrm{f}} 0.75\left(1: 50 \mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ir (film) 1770, 1740, 1690, 1635, 1595, $1450 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{DCCl}_{3}\right)$ δ S.07-7.30 ppm (m, 11 H$), 6.12(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz})$, $5.22(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$. Presumably this oil was a mixture of the geometrical isomers 3a and 4a.

Hydrogenation of the oily benzyl benzoylmethylenepenicillanate in cthyl acetate in the presence of platinum oxide gave two fractions of oily products after column chromatography. The nmr spectrum of the major fraction (49%) provided good evidence for a mixture of cis- and trans-benzyl benzoylmethylpenicillanate (5a and 6a). Column chromatography effected partial separation of the two epimers. An early fraction contained the cis and trans epimers in a $2: 1$ ratio, which increased to $19: 3$ in a later fraction. The overall cis:trans ratio was $\sim 4: 1$. A sample containing the cis and trans cpimers in a $2: 1$ ratio gave the following spectra: $\mathrm{nmr}\left(\mathrm{DCCl}_{3}\right) \delta 8.0 \bar{j}^{-7.20 \mathrm{ppm}}(\mathrm{m}, 30 \mathrm{H}$, aromatic protons), $\overline{5} .70(\mathrm{~d}, 2 \mathrm{H}, J=4 . \overline{\mathrm{H}} \mathrm{Hz}, \mathrm{C}-5$ proton of the cis epimer), 5.20 (s, 6 H , benzylic protons), 5.10 (d, $1 \mathrm{H}, J=1 . j \mathrm{~Hz}, \mathrm{C}-\overline{\text { o }}$ proton of the trans epimer), $4.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-3$ proton of the trans cpimer), 4.48 (s , $2 \mathrm{H}, \mathrm{C}-3$ proton of the cis epimer), 4.30-3.25 (m, 9 H , C-6 protons and α protons to the ketone function), 1.60-1.40 (d over d, 18 H , gem-dimethyl protons); ir (film) $1770,1740,1680,1600,14.50 \mathrm{~cm}^{-1}$.

The minor portion $[16 \%$; ir (film) 3300, 1735, 1680, 162\%, $1560-1500,1200,1000,910 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{DCCl}_{3}\right)$ $\delta 8.0)^{-}-7.20 \mathrm{ppm}(\mathrm{m}, 10 \mathrm{H}), 6.8 \mathrm{j}^{-7.75}(\mathrm{~d}, 1 \mathrm{H}, J=\mathrm{S}$ $\mathrm{Hz}), 6.55-6.30(\mathrm{~m}, 1 \mathrm{H}, J=5,8 \mathrm{~Hz})$, $5.15(\mathrm{~s}, 2 \mathrm{H})$, 4.40-4.30 (d, $1 \mathrm{H}, J=5 \mathrm{~Hz}$), 4.18-3.40 (q, $2 \mathrm{H}, J=$ $17 \mathrm{~Hz}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})]$ has tentatively been assigned the structure of 2,2-dimethyl-3-carbobenzyl-oxy-6-benzoylmethyl-7-oxo-2,3,4,7-tetrahydro-1,4-thiazepine (7 a$)^{3}$ based on similar spectral data and the same nmr coupling pattern as the 1,4 -thiazepine derivatives reported by Sjöberg, et al., ${ }^{4}$ and Clayton, et al. ${ }^{5}$

Condensation of phenoxyacetylmethylenetriphenyl-
(3) All compounds give satisfactory elemental analyses.
(4) O. K. J. Kovas, B. Ekstrom, and B. Sjöberg, Tetrahedron Lett., 1863 (1969).
(5) J. P. Clayton, R. Southgate, B. G. Ramsey, and R. J. Stoodley, J. Chem. Soc., 2089 (1970).
phosphorane (2b) with benzyl 6-oxopenicillanate (1) gave, after column chromatography, benzyl 6-phenoxyacetylmethylenepenicillanate ${ }^{3}(62 \%)$ as a yellow oil: $R_{\mathrm{f}} 0.65$ (1:25 Et $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ; ir (film) $1775,1735,1715$, $1.595,1490 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{DCCl}_{3}\right) \delta 7.40-6.70 \mathrm{ppm}(\mathrm{m}$, $11 \mathrm{H}), 6.05(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~s}$, $2 \mathrm{H}), 4.65$ ($\mathrm{s}, 1 \mathrm{H}$), 1.55 ($\mathrm{s}, 3 \mathrm{H}$), $1.40(\mathrm{~s}, 3 \mathrm{H})$. This oil may contain both geometrical isomers $\mathbf{3 b}$ and $4 b$.

Hydrogenation of benzyl 6-phenoxyacetylmethylenepenicillanate gave, after column chromatography, three product fractions. The first fraction contained a 29% yield of a mixture of the cis and trans epimers, $\mathbf{5 b}$ and 6 b , in a $4: 1$ ratio. The sccond fraction contained the pure cis epimer 5 b in $\sim 1 \%$ yield. The third fraction contained 2,2-dimethyl-3-carbobenzyloxy-6-phenoxy-acetylmethyl-7-oxo-2,3,4,7-tetrahydro-1,4-thiazepine (7b, yield 7.5\%). Benzyl 6 $\beta \beta$-phenoxyacetylmethylpenicillanate $(5 b)^{3}$ was isolated as a pale yellow oil: $R_{\mathrm{f}} 0.75$ ($1: 10 \mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ; ir (film) 1770, 1735, 1595, $1490 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{DCCl}_{3}\right) \delta 7.50-6.80 \mathrm{ppm}(\mathrm{m}, 10 \mathrm{H})$, $5.65(\mathrm{~d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$, 4.45 ($\mathrm{s}, 1 \mathrm{H}$) , $4.30-3.85$ (m, 1 H), 3.2. -3.12 (d, 2 H , $J=S \mathrm{~Hz}), 1 . j \mathrm{~S}(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$.

The free acid, 8 b , was obtained by hydrogenating a 8:1 cis:trans mixture of benzyl 6-phenoxyacetylmethylpenicillanate in ethyl acetate in the presence of palladium on charcoal (10%) at 25° and 1 atm pressure. The acid, $\mathbf{8 b},{ }^{3}$ was purificd by crystallization from benzene: yield 43%; mp $101.5-102^{\circ}$; ir (HBr) 3440, 1785, 1765, 1750, 1730, 1720, 1700, 1595, 1490, 122i) $\mathrm{cm}^{-1} ; \mathrm{nmr}\left(\mathrm{DCCl}_{3}\right) \delta 11.15(\mathrm{~s}, 1 \mathrm{H}), 7.50-6.85$ $(\mathrm{m}, 5 \mathrm{H}), 5.65(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.50$ ($\mathrm{s}, 1 \mathrm{H}$) , $4.30-3.95$ (m, 1 H), 3.35-3.20 (d, $2 \mathrm{H}, J=\mathrm{S}$ $\mathrm{Hz}), 1.65$ (d, 6 H). Compound 8 b was found to be resistant to Bacillus cereus penicillinase and showed the following MIC's: Diplococcus pneumoniae, 1; Streptococcus pyogenes, \because; Staphylococcus aureus Smith, 32.

Acknowledgment.-This work was assisted financially by a grant from the Sloan Basic Research Fund.
$\begin{array}{lr}\text { Department of Chemistry } & \text { John C. Shbehan* } \\ \text { Massachusetts Institute of Tlehnology } & \text { Young S. Lo } \\ \text { Cambridge, Massachusetts } & 02139\end{array}$
Recrived July 2ij, 1973

MAGIC ALKYLATORS
 MAGIC METHYL® ${ }^{\circledR}$
 (Methyl fluorosulfonate)
 MAGIC ETHYL*
 (Ethyl fluorosulfonate)

Magic Methy ${ }^{\circledR}$ and Magic Ethyl* are far superior to conventional alkylating reagents because of their high reactivity. Magic Methyl ${ }^{\circledR}$ not only quaternizes amines ${ }^{1}$ exothermically but also alkylates some porphyrins ${ }^{2}$, amides ${ }^{1}$ and carbamates ${ }^{3}$. Ethers form oxonium salts ${ }^{1}$, while esters undergo exchange ${ }^{1}$ to yield methyl esters. Nitriles ${ }^{1}$, sulfoxides ${ }^{1}$ and sulfides ${ }^{4}$ are converted to their respective nitrilium, sulfoxonium and sulfonium salts which are useful synthetic intermediates. Nitrilium salts can be reduced by NaBH_{4} to secondary amines ${ }^{5}$. Sulfonium salts undergo the Stevens rearrangement ${ }^{6}$ to form carbon-carbon bonds and may be used to generate sulfur ylids for the preparation of cyclopropane derivatives, for example, from α, β-unsaturated ketones ${ }^{4}$. In addition, Magic Methy ${ }^{\left({ }^{®}\right.}$ converts ${ }^{7}$ thioacetals into the parent aldehyde or ketone. Magic Methy ${ }^{\circledR}{ }^{\circledR}$ ringsulfonates some phenols, anisoles and 2-pyridone ${ }^{8}$ to give methyl esters of aromatic sulfonic acids. Magic Ethyl* has obvious applications for ethylations in place of the methylations so readily accomplished by Magic Methy ${ }^{\circledR}$ and extends the synthetic scope of this superalkylator. These reagents offer the synthetic chemist a splendid combination of convenience and high reactivity.

References:

1. R. W. Alder, et al., Chem. Commun., 1968, 1533
2. R. Grigg, et al., ibid., 1970, 1273
3. M. G. Ahmed and R. W. Alder, ibid., 1969, 1389; T. Kametani et al., Chem. Pharm. Bull. Tokyo, 1972, 20, 2057 4. R. S. Mathews and T. E. Meteyer, Chem. Commun., 1971,1576
4. R. H Mitchell and V Boekelh
5. R. H. Mitchell and V. Boekelheide, Tet. Lett., 1970, 1197
6. M. Fetizon and M. Jurion, Chem. Commun., 1972, 382.
7. T. Kametani et al., Synthesis, 1972, 473.

16,048-2 Magic Methyl ${ }^{\circledR}$ (methyl fluorosulfonate).............11.4g.-\$3.00; 100g. $\$ 14.00$
17,759-8 Magic Ethyl* (ethyl fluorosulfonate)...............128.1g. $\$ 20.00 ; 500 \mathrm{~g} . \$ 58.00$
"Trademark of the Aldrich Chemical Co.

For the new Aldrich HANDBOOK OF ORGANIC CHEMICALS
which lists over 18,000 chemicals, write to -

Aldrich Chemical Company, Inc.
 CAAFTSMENINCHEMISTAV

940 WEST SAINT PAUL AVENUE. MILWAUKEE, WISCONSIN 53233

In Great Britain:
RALPH N. EMANUEL Ltd.

In Continental Europe: ALDRICH-EUROPE, B-2340 Beerse, Belgium

In Germany: EGA-CHEMIE KG. 7924 Steinheim am Albuch

[^0]: (1) J. M. Muchowski, Can. J. Chem., 48, 422 (1970).
 (2) R. M. Acheson, R. W. Snaith, and J. M. Vernon, J. Chem. Soc., 3229 (1964).
 (3) N. Finch and W. I. Taylor, J. Amer. Chem. Soc., 84, 3871 (1962).
 (4) K. V. Lichman, J. Chem. Soc., 2539 (1971).
 (5) N. O. Godtfredsen and S. Vangedal, Acta Chem. Scand., 10, 1414 (1956).
 (6) H. Finnes and J. Shavel, Jr., J. Org. Chem., 31, 1765 (1966).
 (7) While this manuscript was in preparation the synthesis and transformations of 3-chloro-2,3-dimethylindolenine have been reported by P. G. Gassman, G. A. Campbell, and G. Mehta, Tetrahedron, 28, 2749 (1972).

[^1]: (8) W. E. Noland, K. R. Rush, and L. R. Smith, J. Org. Chem., 31, 65 (1966); W. E. Noland and K. R. Rush, ibid., 31, 70, (1966).
 (9) G. Berti, A. DaSettimo, and E. Nannipieri, J. Chem. Soc., 2145 (1968).

[^2]: (10) D. T. Cromer and J. T. Waber, Acta Crystallogr., 18, 104 (1965).
 (11) R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1985).
 (12) D. T. Cromer, Acta Crystallogr., 18, 17 (1965).
 (13) See paragraph at end of paper regarding supplementary material.
 (14) R. R. Phillips, Oro. React., 10, 143 (1959).
 (15) G. K. Hughes, et al., J. Proc. Roy. Soc. N. S. W., 71, 475 (1959).

[^3]: (18) H. Kuch, G. Seidl, and K. Schmitt, Arch. Pharm. (Weinheim), 300, 299 (1967).

[^4]: (1) (a) R. A. Abramovitch and K. Schofield, J. Chem. Soc., 2326 (1955); (b) M. N. Sheng and A. R. Day, J. Org. Chem., 28, 736 (1963).
 (2) N. J. Leondard, D. Y. Curtin, and K. M. Beck, J. Amer. Chem. Soc., 69, 2459 (1947).

[^5]: (3) W. Davis, J. Chem. Soc., 121, 720 (1922); C. Montigel and T. Reichstein, Helv. Chim. Acta, 20, 1468 (1937).
 (4) K. Hofmann, Ed., "Imidazole and Derivatives," part 1, Interscience, New York, N. Y., 1953, p 253; A. Mangini and F. Montanari, Bull. Sci. Fac. Chim. Ind. Bologna, 14, 36 (1956).
 (5) M. A. Phillips, J. Chem. Soc., 3134 (1928); 2820 (1929); 1409 (1930).

[^6]: (10) J. Goerdeler and M. Budnowski, Chem. Ber., 94, 1682 (1961).
 (11) K. T. Potts, H. H. Richtol, and R. Armbruster, Anal. Chem., 43, 1304 (1971)
 (12) Y. Makisumi, H. Watanabe, and K. Tori, Chem. Pharm. Bull., 12, 204 (1964).

[^7]: (13) All evaporations were done under reduced pressure using a rotatory evaporator. Spectral characterizations were performed with the following instrumentation: ir and uv spectra, Perkin-Elmer Model 337 and Cary Model 14 spectrophotometers; mass spectra, Hitachi Perkin-Elmer RMU6 E mass spectrometer. Melting points were taken in capillaries and microanalyses were by Galbraith Laboratories, Inc., Knoxville, Tenn., and Inatranal Laboratory, Inc., Rensselaer, N. Y. Plc was carried out on 20×20 nm plates using a $1-\mathrm{mm}$ layer of silica gel PF 254 containing CaSO4 with chloroform-ethyl acetate (80:20) as developing agent.

[^8]: (1) (a) Taken in part from the Ph.D. thesis of R. J. Schultz, Brown University, 1971; (b) Taken in part from the Ph.D. thesis of W. H. Staas, Brown University, 1973.
 (2) Alfred P. Sloan Fellow, 1973-1975.
 (3) L. A. Spurlock and R. G. Fayter, Jr., J. Amer. Chem. Soc., 94, 2707 (1972).
 (4) L. A. Spurlock and R. G. Fayter, Jr., Abstracts, 160th National Meeting of the American Chemical Society, Chicago, Ill., Sept 1970, ORGN 108; L. A. Spurlock, R. D. Gleim, and R. J. Schultz, Abstracts, 162nd National Meeting of the American Chemical Society, Washington, D. C., Sept 1971, ORGN 133.
 (5) L. A. Spurlock and K. P. Clark, J. Amer. Chem. Soc., 94, 5349 (1972); 92, 3289 (1970).
 (6) C. R. Johnson, J. E. Keiser, and J. C. Sharp, J. Org. Chem., 34, 860 (1969).
 (7) K. C. Murdock and R. B. Angier, J. Org. Chem., 27, 2395 (1962).
 (8) The cyclizations of trans-5c and δd gave similar apparent results; however, the crude products in these cases were characterized only by their infrared spectra and no further attempt was made to utilize these materials.

[^9]: (9) T. Sasaki, S. Eguchi, and T. Toru, J. Org. Chem., 35, 4109 (1970).
 (10) The reaction sequence proceeded from 10 via diazomethane esterification, conversion to the bydrazide, Curtius rearrangement to the endo amine, and benzoylation to give 11. Experimental details will be given in a subsequent publication.

[^10]: (11) This is one of several examples which we have observed of unusually enhanced reactivity at the former double bond sites of this endo-substituted bicyclic ring system. All are seemingly related to proximity effects.

[^11]: (12) Infrared spectra were determined on a Perkin-Elmer Model 337 grating infrared spectrometer using sodium chloride optics. Nmr determinations were carried out on a Varian Associates A-60 mately 20% solutions in a deuterated solvent (CDCl_{3} or $\mathrm{DMSO}-d_{6}$) were employed with tetramethylsilane as the internal standard. Analyses were carried out by Micro-Analysis, Inc., Wilmington, Del.

[^12]: (13) H. C. Brown and P. Heim, J. Amer. Chem. Soc., 86, 3566 (1964).

[^13]: (1) (a) G. Krow and R. Rodebaugh, J. Org. Magn. Resonance, B, 73 (1973); (b) G. Krow, R. Rodebaugh, R. Carmosin, W. Figures, H. Pannella, G. DeVicaris, and M. Grippi, J. Amer. Chem. Soc., 96, 5273 (1973); (c) H. Harter and S. Liisberg, Acta Chem. Scand., 22, 2685 (1968); (d) M. Cava, C. Wilkins, D. Dalton, and K. Bessho, J. Org. Chem., 30, 3772 (1965).
 (2) J. D. Hobson and W. D. Riddell, Chem. Commun., 1180 (1968).
 (3) P. Laszlo and P. v. R. Schleyer, J. Amer. Chem. Soc., 86, 1171 (1964).

[^14]: (4) (a) A. S. Onishchenko, "Diene Synthesis," Davey, New York, N. Y. 1964, pp 370-376. (b) D. Bellus, G. Helferich, and C. D. Weisa, Helv. Chim. Acta, 54, 463 (1971). Small amounts of [$6+2]$ products occasionally arise, possibly via a diradical pathway. (c) H. Ishitobi, H. Tanida, K. Tori, and T. Tsuji, Bull. Chem. Soc. Jap., 44, 2993 (1971).
 (5) (a) E. J. Moriconi, C. F. Hummel, and J. F. Kelly, Tearahedron Lett., 5325 (1969); (b) J. R. Malpass, Chem. Commun., 1246 (1972).
 (6) P. Burns and W. A. Waters, J. Chem. Soc. C, 27 (1968).
 (7) A. S. Kende and J. Y. C. Chu, Tetrahedron Lett., 4837 (1970).

[^15]: (9) (a) J. Biehler and J. Fleury, J. Heterocycl. Chem., 8, 431 (1971); (b) G. Kresze and R. Albrecht, Chem. Ber., 97, 490 (1984).
 (10) G. Krow, R. Rodebaugh, J. Marakowski, and K. Ramey, Tetrahedron Lett., 1899 (1973).

[^16]: (11) (a) G. Krow, H. Pannella, and W. Figures, J. Chem. Eng. Data, 17, 118 (1972); (b) T. Sasaki, S. Eguchi, M. Sugimoto, and F. Hibi, J. Org. Chem., 37, 2317 (1972).
 (12) A similar problem has been encountered in attempted Diels-Alder cycloadditions to cycloocta-1,3-diene. ${ }^{43}$

[^17]: (13) (a) D. Ben-Ishai and E. Goldstein, Tetrahedron, 27, 3119 (1971). (b) E. Goldatein and D. Ben-Ishai, Tetrahedron Lett., 2631 (1969). (c) We have obtained a single stereoisomer in which the C-3 proton does not exhibit long-range W-plan coupling. This proton is likely anti and the C-3 substituent is thus syn oriented.
 (14) H. Ulrich, B. Tucker, and A. Sayigh, J. Org. Chem., 3s, 2887 (1988).
 (15) Thermal and acid-catalyzed reactions of halomethylimines with dienes are to be reported elsewhere. Isomer ratios 21a:21b were determined from the nmr resonances (benzene- d_{6}) for $H_{3 x}\left(\delta 4.76, \mathrm{~d}, J=3 \mathrm{~Hz}\right.$) and $\mathrm{H}_{3 n}$ ($\delta 4.42, \mathrm{q}, \mathrm{J}=3,1.3 \mathrm{~Hz}$).

[^18]: (1) R. M. Lusskin and J. J. Ritter, J. Amer. Chem. Soc., 72, 5577 (1950).
 (2) The reaction of carbenium centers with nitriles is known as the Ritter reaction. Original publications: J. J. Ritter and P. P. Minieri, J. Amer. Chem. Soc., 70, 4045,4048 (1948).
 (3) For a recent review of oxazoline chemistry see J. A. Frump, Chem. Rev., 71, 483 (1971).
 (4) R. A. Wohl and J. Cannie, J. Org. Chem., 38, 1787 (1973).

[^19]: (5) See also H. W. Heine, J. Amer. Chem. Soc., 78, 3708 (1956); 79, 907 (1957); and ref 6.
 (6) A. Hassner, L. A. Levy, and R. Gault, Tetrahedron Lett., No. 27, 3119 (1966).

[^20]: (7) S. Winstein and H. J. Lucas, J. Amer. Chem. Soc., 61, 2845 (1939).
 (8) S. Winstein and R. E. Buckles, J. Amer. Chem. Soc., 64, 2780, 2787 (1942).
 (9) A. Hassner and F. Boerwinkle, J. Amer. Chem. Soc., 90, 216 (1968).
 (10) G. A. Olah, J. M. Bollinger, and J. Brinich, J. Amer. Chem. Soc., 90, 2587 (1968).
 (11) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, New York, N. Y., 1969.
 (12) Reference 11, p 286 ff .
 (13) S. Sternhell, Quart. Rev., Chem. Soc., 23, 236 (1969).

[^21]: (16) J. Roggero and J. Metzger, Bull. Soc. Chim. Fr., 1715 (1964).
 (17) See, however, the comments pertaining to footnote 361 in ref 15.

[^22]: (1) This investigation was supported in part by funds from the National Cancer Institute (Grant No. CA 08748). This is no. 51 in a aeries on Purine N-Oxides; no. 50 is ref 11.
 (2) G. Salemnick is a David A. Gimbel Fellow.
 (3) U. Wolcke, N. J. M. Birdsall, and G. B. Brown, Tetrahedron Lett., 785 (1969).
 (4) N. J. M. Birdsall, T.-C. Lee, and U. Wölcke, Tetrahedron, 27, 5961 (1971).
 (5) N. J. M. Birdsall, U. Wölcke, T.-C. Lee, and G. B. Brown, ibid., 27, 5969 (1971).
 (6) N. J. M. Birdsall, J. C. Parham, U. Wölcke, and G. B. Brown, ibid., 28, 3 (1972).
 (7) D. R. Sutherland and G. B. Brown, J. Org. Chem., 38, 1291 (1973).
 (8) G. Stöhrer and G. B. Brown, Science, 167, 1622 (1970).
 (9) G. Stöhrer, E. Corbin, and G. B. Brown, Cancer Res., 32, 637 (1972).
 (10) K. Sugiura, M. N. Teller, J. C. Parham, and G. B. Brown, ibid., s0, 184 (1970).
 (11) G. B. Brown, M. N. Teller, I. Smullyan, N. J. M. Birdsall, T.-C. Lee
 J. Parham, and G. Stöhrer, ibid., 3S, 1113 (1973).
 (12) T.-C. Lee, J. Org. Chem., 38, 703 (1973).
 (13) A. Albert, "Heterocyclic Chemistry, An Introduction," Athlone Press, University of London, London, 1959.
 (14) M. C. Chiang and C. Li, Acta Chim. Sinica, 23, 391 (1957); Sci. Sinica, 7, 617 (1958).
 (15) W. L. F. Armarego in "Fused Pyrimidines, Part 1, Quinazoline," D. J. Brown, Ed., Wiley-Interscience, New York, N. Y., 1967, p 460.

[^23]: (17) F. Curd, J. Landquist, and F. Rose, J. Chem. Soc., 1759 (1948).
 (18) J. Eisch and H. Gilman, Chem. Rev., 57, 561 (1957).
 (18) R. A. Abramovitch and J. G. Saba, Advan. Heterocycl. Chem., 6, 229 (1966).
 (20) D. J. Pokorny and W. W. Paudler, J. Org. Chem., 37, 3101 (1972).

[^24]: (1) Address correspondence to author at Department of Medicinal Chemistry, College of Pharmacy, University of Rhode Island, Kingston, R. I. 02881.
 (2) E. Ochiai, "Aromatic Amine Oxides," Elsevier, New York, N. Y., 1987, pp 31, 35, 44.
 (3) (a) M. J. Haddadin and C. H. Issidorides, Tetrahedron Lett., 3253 (1965); (b) J. Org. Chem., 31, 4087 (1966).
 (4) E. Abushanah, J. Org. Chem., 35, 4279 (1970).
 (5) C. K. Bradsher, R. C. Brown, and R. J. Grantham, J. Amer. Chem. Soc., 76, 114 (1954).

[^25]: (8) N. Kharasch, "Organic Sulfur Compounds," Vol. I, Pergamon Press, New York, N. Y., 1961, p 392.
 (9) L. A. Neiman, S. V. Zhukova, L. B. Senyavina, and M. M. Shemyakin, Zh. Obshch. Khim., 38, 1480 (1968).
 (10) L. A. Neiman, V. S. Smolyakov, Yu. S. Nekrasov, and M. M. Shemyakin. Tetrahedron, 26, 4963 (1970).
 (11) J. Skramstad, Tetrahedron Lett., 955 (1970).
 (12) See, for example (a) C. W. Noell and R. K. Robins, J. Amer. Chem. Soc., 81, 5997 (1959); (b) M. Saneyoshi and M. Ikehara, Chem. Pharm. Bull., 16, 1390 (1968).
 (13) R. M. Cresswell and G. B. Brown, J. Org. Chem., 28, 2560 (1963).

[^26]: (9) (a) K. Nakagawa, R. Konaka and T. Nakata, J. Org. Chem., 27, 1597 (1962); (b) K. Nakagawa and H. Onoue, Tetrahedron Lett., 1433 (1965).
 (10) See, for example, C. G. Overberger and S. Altacher, J. Org. Chem., 31, 1728 (1966); P. S. Forgione, G. S. Sprague, and H. J. Troffkin, J. Amer. Chem. Soc., 88, 1079 (1966).
 (11) J. P. Freeman, J. Org. Chem., 28, 2508 (1963).
 (12) M. V. George, R. W. Kierstead, and G. F. Wright, Can. J. Chem., 37, 679 (1959).

[^27]: (15) F. W. Swamer and C. R. Hauser, J. Amer. Chem. Soc., 68, 2647 (1946).

[^28]: (16) R. Kothe, Justus Liebigs Ann. Chem., 266, 310 (1891).
 (17) L. Seed, British Patent 795,824; Chem. Abstr., 63, 219 (1959).
 (18) For a review on hyponitrite esters see M. N. Hughes, Quart. Rev., Chem. Soc., 22, 1 (1968).
 (19) S. K. Ho and J. B. DeSousa, J. Chem. Soc., 1788 (1961); H. Kiefer and T. G. Traylor, Tetrahedron Lett., 6163 (1966); C. Walling and J. A. McGuiness, J. Amer. Chem. Soc., 91, 2053 (1989).
 (20) See ref 8 e for a plausible mechanistic scheme to rationalize formation of dibenzyl hyponitrite in the lead tetrascetate oxidation of 50.

[^29]: (21) For references and mechanistic discussion of lead tetraacetate oxida tions see (a) W. H. Starnes, Jr., J. Amer. Chem. Soc., 90, 1807 (1968); (b) J. K. Kochi, Rec. Chem. Progr., 27, 207 (1966); (c) R. Criegee in "Oxidation in Organic Chemistry," Part A, K. B. Wiberg, Ed., Academic Press, New York, N. Y., 1965, Chapter V.

[^30]: (22) D. L. Dalrymple, T. L. Kruger, and W. N. White in "The Chemistry of the Ether Linkage," S. Patai, Ed., Interscience, New York, N. Y., 1967, Chapter 14.
 (23) See paragraph at end of paper regarding supplementary material.

[^31]: (24) R. C. Weast, Ed., "Handhook of Chemistry and Physics," 47th ed, Chemical Rubher Publishing Co., Cleveland. Ohio, 1966.
 (25) A. C. Cope and A. C. Haven, Jr., J. Amer. Chem. Soc., 72, 4896 (1950).

[^32]: (6) Y. Ogata and J. Mibae, J. Org. Chem., 27, 2048 (1982).
 (7) C. W. Shoppee, J. Chem. Soc., 1225 (1931); (b) E. De Salas and C. H. Wilson, ibid., 319 (1938).

[^33]: (8) G. A. Russell and A. G. Bemis, Inorg. Chem., 6, 403 (1967).
 (9) Error limita given represent one standard deviation.

[^34]: (10) G. A. Russell, E. G. Janzen, and E. T. Strom. J. Amer. Chem. Soc., 86, 1807 (1964).
 (11) G. A. Russell, A. G. Bemis, E. J. Geels, E. G. Janzen, and A. J. Moye, Advan. Chem. Ser., 75, 174 (1968).

[^35]: (12) R. D. Guthrie and G. W. Pendygraft, unpublished results.
 (13) A. T. Young and R. D. Guthrie, J. Org. Chem., 35, 853 (1970).
 (14) R. D. Guthrie and D. W. Wesley, J. Amer. Chem. Soc., 92, 4057 (1970).
 (15) R. Perez-Ossorio, J. M. Gamboa, and R. M. Utrilla, An. Real Soc. Espan. Fis. Quim., Ser. B, 53, 17 (1956).

[^36]: (16) R. Perez-Ossorio and F. G. Herrera, An. Real Soc. Espan. Fis, Quim., Ser. B, 60, 875 (1954).

[^37]: (1) Presented at the 21st Annual Meeting of the Society of High Polymers, Tokyo, Japan, May 1972.
 (2) See, for example, H. Moravetz, Accounts Chem. Res., 3, 354 (1970); N. Ise, Advan. Polym. Sci., 7, 536 (1970).
 (3) (a) E. H. Cordes and R. B. Dunlop, Accounts Chem. Res., 2, 329 (1964); (b) E. J. Fendler and J. H. Fendler, Advan. Phys. Org. Chem., 8, 271 (1970).
 (4) I. Sakurada, J. Pure Appl. Chem., 16, 263 (1968).
 (5) T. Ueda, S. Harada, and N. Ise, Polym. J., 3, 476 (1972).
 (6) T. Okubo and N. Ise, J. A mer. Chem. Soc., 95, 2293 (1973).

[^38]: (11) C. Gitler and A. Ochoa-Solano, J. Amer. Chem. Soc., 90, 5004 (1968).
 (12) C. A. Blyth and J. R. Knowles, J. Amer. Chem. Soc., 93, 3021 (1971).

[^39]: (13) K. J. Laidler, "Chemical Kinetics," 2nd ed, McGraw-Hill, London, 1965.

[^40]: (9) J. R. Cavanaugh and B. P. Dailey, J. Chem. Phys., 34, 1099 (1961).
 (10) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," Pergamon Press, Elmsford, N. Y., 1969: (a) Chapter 3-8; (b) p 164; (c) Chapters 4-1 and 4-2; (d) p 64; (e) Chapter 2-2.

[^41]: (15) F. A. L. Anet, H. H. Lee, and J. L. Sudmeier, J. Amer. Chem. Soc., 89, 4431 (1967), and references cited therein.
 (16) A. P. Marchand and J. E. Rose, ibid., 90, 3724 (1968).

[^42]: (17) D. J. Patel, M. E. H. Howden, and J. D. Roberts, J. Amer. Chem. Soc., 86, 3218 (1963).
 (18) Shown in microfilm edition.
 (19) See microfilm edition.
 (20) H. W. W. Ehrlich, Acta Crystallogr., 10, 699 (1957).
 (21) J. Trotter and T. C. W. Mak, ibid., 16, 1032 (1963).
 (22) V. Balasubramaniyan, Chem. Rev., 66, 567 (1966).
 (23) (a) R. L. Avoyan and Yu. T. Struchkov, Zh. Strukt. Khim., 2, 719 (1961); (b) ibid., 4, 631 (1963); (c) ibid., 3, 605 (1962); (d) T. C. W. Mak and J. Trotter, Acta Crystallogr., 16, 811 (1963).

[^43]: (28) P. Laszlo in "Progress in NMR Spectroscopy," Vol. 3, Pergamon Press, Elmsford, N. Y., 1967, Chapter 6.
 (29) It has been shown recently ${ }^{30}$ that even carbon tetrachloride, which has been almost universally used as an "inert isotropic solvent" in nmr spectroscopy, is not always reliable, while the ubiquitous deuteriochloroform is known ${ }^{31}$ to cause quite large solvent shifts.
 (30) T. Schaefer, B. Richardson, and R. Schwenk, Can. J. Chem., 46, 2775 (1968).
 (31) P. Laszlo, Bull. Soc. Chim. Fr., 2658 (1964).

[^44]: (34) C. J. Moye and S. Sternhell, Aust. J. Chem., 19, 2107 (1968); R. H. Andreatta, V. Nair, and A. V. Robertson, ibid., 20, 2701 (1967).
 (35) E. Pretsch and W. Simon, Helv. Chim. Acta, 52, 2133 (1968).

[^45]: (38) H. Spiesecke and W. G. Schneider, J. Chem. Phys., 35, 722 (1961).

[^46]: (37) R. C. Fort and P. v. R. Schleyer, J. Org. Chem., 30, 789 (1965).
 (38) G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists,"' Wiley, New York, N. Y., 1972, pp 47, 48.

[^47]: (49) A. Fredga and T. Svensson, Ark. Kemi, 25, 81 (1966)

[^48]: (57) P. D. Bartlett and E. B. Lefferts, J. Amer. Chem. Soc., 77, 2804 (1955)

[^49]: (1) R. Foster and C. A. Fyfe, Rev. Pure Appl. Chem., 16, 61 (1966).

[^50]: (13) R. N. Zaxapkah, A. H. Mosach, and R. B. Raepurecko, Zh. Org. Khim., 2, 2197 (1966).

[^51]: (14) As can be seen from the structures II and III-V, the acetophenone methyl is an inherent part of the aromatic structure in compounds III-V, but is only a side chain in compound II. Thus observation of producta VIII and IX with 3,5-dinitrobenzaldehyde is an independent proof of structure II vs. III-V.
 (15) No attempts have been made to improve yields. However, as it is probable that 1 equiv of starting material is used in accepting the 1 equiv of hydrogen liberated in forming product, an oxidizing agent in the reaction mixture might considerably increase yields.

[^52]: (16) M. Suzuki and B. Shimizu, J. Pharm. Soc. Jap., 73, 392 (1953).
 (17) N. S. Kyachoc, Zh. Obshch. Khim., 32, 293 (1962).
 (18) G. A. Reynolds and C. R. Hauser, "Organic Syntheses," Collect. Vol. IV. Wiley, New York, N. Y., 1963, p 708.

[^53]: (1) Part 12 of our series on new synthetic reactions.
 (2) Camille and Henry Dreyfus Teacher-Scholar Grant Recipient.
 (3) For some reviews see C. Agami, Bull. Soc. Chim. Fr., 1021 (1965); J. C. Bloch, Ann. Chim. (Paris), 10, 419 (1965); A. W. Johnson, "Ylid Chemistry." Academic Press, New York, N. Y., 1966; P. A. Lowe, Chem. Ind. (London), 1070 (1970). For the fundamental papers in synthetic applications see E. J. Corey and M. Chaykovsky, J. Amer. Chem. Soc., 87, 1353 (1965), and V. Franzen, H. J. Schmidt, and C. Mertz, Chem. Ber., 94, 2942 (1961).
 (4) For example see E. J. Corey and W. Oppolzer, J. Amer. Chem. Soc., 86, 1899 (1964); E. J. Corey, M. Jautelat, and W. Oppolzer, Tetrahedron Lett., 2325 (1967); A. W. Johnson, V. J. Hruby, and J. L. Williams, J. Amer. Chem. Soc., 86, 918 (1964); R. W. LaRochelle, B. M. Trost, and L. Krepski, J. Org. Chem., 36, 1126 (1971).
 (5) J. Adams, L. Hoffman, Jr., and B. M. Trost, J. Org. Chem., 36, 1600 (1970).
 (6) K. W. Ratts and A. N. Yao, ibid., 31, 1185 (1966); G. B. Payne, ibid., 32, 3351 (1967).
 (7) B. M. Trost, J. Amer. Chem. Soc., 89, 138 (1967); H. Nozaki, M. Takaku, and K. Kondo, Tetrahedron, 22, 2145 (1966); T. Mukaiyama and M. Higo, Tetrahedron Lett., 5297 (1970); M. Higo, T. Sakashita, M. Toyoda, and T. Mukaiyama, Bull. Chem. Soc. Jap., 45, 250 (1972).
 (8) D. Jeckel and J. Gosselck, Tetrahedron Lett., 2101 (1972); B. M. Trost and L. S. Melvin, Jr., unpublished work.
 (9) Cf. H. Nozaki, D. Tunemoto, S. Matubara, and K. Kondo, Tetrahedron, 23, 545 (1967).

[^54]: (14) For other studies on enolates derived from lactones see A. E. Greene, J. C. Muller, and G. Ourisson, Tetrahedron Lett., 2489 (1972); P. A. Grieco and K. Hiroi, J. Chem. Soc., Chem. Commun., 1317 (1972); G. H. Posner and G. L. Loomis, ibid., 892 (1972).
 (15) The less than 100% deuterium incorporation is presumably due to isotope dilution because of the presence of protonic diisopropylamine. A similar effect has been found in quenching enolates of esters generated in similar fashion. See M. W. Rathke and A. Lindert, J. Amer. Chem. Soc., 93, 2318 (1971).

[^55]: (1) Cf. J. F. W. McOmie, Advan. Org. Chem., 3, 191 (1963).
 (2) (a) R. C. Cookson, B. V. Drake, J. Hudec, and A. Morrison, Chem. Commun., 15 (1966); (b) S. Itô, Y. Fujise, T. Okuda, and Y. Inoue, Bull. Chem. Soc. Jap., 39, 1351 (1966); S. Itb, K. Sakan, and Y. Fujise, Tetrahedron Lett., 2873 (1970).
 (3) (a) Y. Kitahara, I. Murata, M. Funamizu, and T. Asano, Bull. Chem. Soc. Jap., 97, 1399 (1964); (b) S. Itó, K. Sakan and Y. Fujise, Tetrahedron Lett., 775 (1968).
 (4) (a) It was expected that the more electron-rich isolated double bond of 1 would react preferentially with peracids. Cf. H. O. House, "Modern Synthetic Reactions," 2nd ed, W. A. Benjamin, Menlo Park, Calif., 1972, pp 304-306; J. March. "Advanced Organic Chemistry: Reactions, Mechanisms and Structure," McGraw-Hill, New York, N. Y., 1968, pp 575, 620. (b) A referee has pointed out that experimental justification of the above expectation is lacking. We are unaware of any good, pertinent kinetic data for diene epoxidation, although conjugation to a phenyl group enhances the epoxidation rate of a double bond by a factor of ca. 2 (compare the ratea for styrene and simple terminal olefins in ref 4c). Since electron-withdrawing groups retard epoxidation (ref $4 \mathrm{a}, 4 \mathrm{c}$, and 4 d) and since the value of σ^{*} for vinyl groups indicates electron withdrawal $[C f$. a recent tabulation: C. Laurence and B. Wojtkowiak, Ann. Chim. (Paris), 6, 163 (1970)], the expectation seems quite reasonable. (c) Cf. D. Swern in "Organic Peroxides," Vol. II, D. Swern, Ed., Wiley-Interscience, New York, N. Y., 1971, Chapter V, and references cited therein. (d) Cf. P. B. D. de la Mare and R. Bolton, "Electrophilic Additions to Unsaturated Systems," C. Eaborn, Ed., Elsevier,

[^56]: (8) Cf. C. A. Buehler and D. E. Pearson, "Survey of Organic Syntheses," Wiley-Interscience, New York, N. Y., 1970, pp 84, 97; L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," Vol. 1, Wiley, New York, N. Y., 1968, pp 147-151, 1238-1247; I. T. Harrison and S. Harrison, "Compendium of Organic Synthetic Methods," Wiley-Interscience, New York, N. Y., 1971, pp 502-504.
 (9) J. W. Cornforth, R. H. Cornforth, and K. K. Mathew, J. Chem. Soc., 112 (1959).
 (10) G. Wittig and W. Haag, Chem. Ber., 88, 1654 (1955).
 (11) M. J. Boskin and D. B. Denney, Chem. Ind. (London), 330 (1959); A. J. Speziale and D. E. Bissing. J. Amer. Chem. Soc., 85, 1888, 3878 (1963).
 (12) D. E. Bissing and A. J. Speziale, ibid., 87, 2683 (1965).
 (13) N. P. Neureiter and F. G. Bordwell, ibid., 81, 578 (1959); R. D. Schuetz and R. L. Jacobs, J. Org. Chem., 23, 1799 (1958).
 (14) F. G. Bordwell, H. M. Andersen, and B. M. Pitt, J. Amer. Chem. Soc., 76, 1082 (1954).

[^57]: (15) S. M. Kupchan and M. Maruyama, J. Org. Chem., 36, 1187 (1971).
 (16) J. K. Kochi and D. M. Singleton, J. Amer. Chem. Soc., 90, 1582 (1968); J. K. Kochi, D. M. Singleton, and L. J. Andrewe, Tetrahedron, 24, 3503 (1968).

[^58]: (17) K. Tori, K. Kitahonoki, Y. Takano, H. Tanida, and T. Tsuji, Tetrahedron Lett., 559 (1964); K. Tori, K. Aono, K. Kitahonoki, R. Muneyuki, Y. Takano, H. Tanida, and T. Tauji, ibid., 2921 (1966).
 (18) H. C. Brown, J. H. Kawakami, and S. Ikegami, J. Amer. Chem. Soc., 92, 6914 (1970); H. C. Brown and S. Krishnamurthy, private communication.
 (19) J. Meinwald, S. S. Labana, L. L. Labana, and G. H. Wahl, Tetrahedron Lett., 1789 (1965).
 (20) endo-Norbornadiene oxide, the endo analog of 17 , has been reported but no nmr data were given. See J. T. Lumb and G. H. Whitham, J. Chem. Soc., 1189 (1984), and ref 19.
 (21) P. Laszlo and P. v. R. Schleyer, J. Amer. Chem. Soc., 86, 1171 (1964).
 (22) R. E. Pincock and J. Haywood-Farmer, Tetrahedron Lett., 4758 (1967); J. Haywood-Farmer, Ph.D. Thesis, University of British Columbia, 1867.
 (23) M. Karplus, J. Chem. Phys., 80, 11 (1959); J. Amer. Chem. Soc., 85, 2870 (1963).

[^59]: (24) B. Franzus, W. C. Baird, N. F. Chamberlain, T. Hines, and E. I. Snyder, ibid., 90, 3721 (1968); A. P. Marchand and J. E. Rose, ibid., 90, 3724 (1988).

[^60]: (7) J. Ciabattoni and E. C. Nathan, Tetrahedron Lett., 4997 (1969).
 (8) R. Breslow and H. W. Chang, J. Amer. Chem. Soc., 83, 2367 (1961).
 (9) J. Ciabattoni, E. C. Nathan, A. E. Feiring, and P. J. Kocienski, Otg Syn., in press.
 (10) J. Ciabattoni and E. C. Nathan, J. Amer. Chem. Soc., 91, 4766 (1969).

[^61]: (14) (a) G. Binsch, J. Amer. Chem. Soc., 91, 1304 (1969); (b) G. Binsch, Top. Stereochem., 3, 97 (1968); (c) R. R. Shoup, E. D. Becker, and M. L. McNeel, J. Phys. Chem., 76, 71 (1972); (d) L. G. Sillen, Acta Chem. Scand., 18, 1085 (1964), and references cited therein.
 (15) B. L. Hawkins, W. Bremser, S. Borcic, and J. D. Roberts, J. Amer. Chem. Soc., 93, 4472 (1971).

[^62]: (16) A more elaborate scheme would include a solvent-separated ion pair and dissociated ions depicting various degrees of association between the azide ion and cyclopropenyl cation
 (17) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry," Academic Press, New York, N. Y., 1970.

[^63]: (18) (a) E. J. Woodhouse and T. H. Norris, Inorg. Chem., 10, 614 (1971); (b) G. Illuminati, Rend. Accad. Naz. Lincei, 11, 303 (1968); (c) T. C. Waddington, "Non-Aqueous Solvent Systems," Academic Press, New York N. Y., 1965, pp 256-259.

[^64]: (19) (a) E. M. Kosower, "An Introduction to Physical Organic Chemistry," Wiley, New York, N. Y., 1968, p 293 ff; (b) R. W. Alder, R. Baker, and J. M. Brown, "Mechanism in Organic Chemistry." Wiley-Interscience, London, 1971, p 40 ff.
 (20) C. D. Ritchie, Accounts Chem. Res., 5, 348 (1972), and references cited therein
 (21) (a) R. Alexander, E. C. F. Ko, A. J. Parker, and T. J. Broxton, J. Amer. Chem. Soc., 90, 5049 (1968); (b) P. Haberfield, L. Clayman, and J. S. Cooper, ibid., 91, 787 (1969).
 (22) (a) S. Winstein, S. Smith, and D. Darwish, J. Amer. Chem. Soc., 81, 5511 (1959); (b) A. Iliceto, A. Fava, U. Mazzucato, and O. Rossetto, ibid. 83, 2729 (1961), and references cited therein; (c) R. A. Sneen and W. A. Bradley, ibid., 94, 6975 (1972), and references cited therein.
 (23) G. L. Closs and A. M. Harrison, J. Org. Chem., 37, 1051 (1972).

[^65]: (24) (a) A. L. Van Geet. Anal. Chem., 42, 679 (1970); (b) ibid., 40, 2227 (1968).

[^66]: (7) C. H. DePuy, Trans. N. Y. Acad. Sci., Ser. II, 28, 561 (1966).
 (8) C. H. DePuy, G. M. Dappen, K. L. Eilers, and R. A. Klein, J. Org. Chem., 29, 2813 (1964).
 (9) H. H. Wasserman and D. C. Clagett, J. Amer. Chem. Soc., 88, 5368 (1966).
 (10) L. M. Konzelman and R. T. Conley, J. Org. Chem., 3s, 3828 (1968).
 (11) H. H. Wasserman, R. E. Cochoy, and M. S. Baird, J. Amer. Chem. Soc., 91, 2375 (1969).

[^67]: (12) J. P. Battioni, W. Chodkiewicz, and P. Cadiot, C. R. Acad. Sci., Ser. C, 264, 991 (1967).
 (13) N. J. Tiovonen and P. J. Malkonen, Suom. Kemistilehti, 32, 277 (1959).

[^68]: (14) (a) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, New York, N. Y., 1969, pp 104-113, 246; (b) N. S. Bhacca and D. H. Williams, "Applications of NMR Spectroscopy in Organic Chemistry." Holden-Day, San Francisco, Calif., 1964.
 (15) J. D. Connolly and R. McCrindle, Chem. Ind. (London), 379 (1965).
 (16) M. Fetzion, J. Gore, P. Laszlo, and B. Waegell, J. Org. Chem., 81, 4047 (1966).

[^69]: (17) F. Johnson, N. A. Starkovsky, and W. D. Gurowitz, J. Amer. Chem. Soc., 87, 3492 (1965).

[^70]: (18) J. Wolinsky, J. Org. Chem., 26, 704 (1961).
 (18) The methylene of the chloromethyl appears as an $A B$ quartet, so the problem is complicated, but a more detailed analysis has led us to the same conclusion.

[^71]: (20) Reference 14a, pp 334-341.

[^72]: (21) H. Bestian and D. Guenther, Angew. Chem., 75, 841 (1963).
 (22) C. F. Wilcox, Jr., and M. Mesirov, J. Org. Chem., 25, 1841 (1960).
 (23) D. J. Pasto and C. R. Johnson, "Organic Structure Determination," Prentice-Hall, Englewood Cliffs, N. J., 1969, p 363.

[^73]: (24) C. J. Cheer and C. R. Johnson, J. Amer. Chem. Soc., 90, 178 (1968).
 (25) The 2-methylcyclopentanone was prepared from 1 -methylcyclopentene by the hydroboration-dichromate oxidation procedure of H. C. Brown and C. P. Garg, J. Amer. Chem. Soc., 89, 2544 (1961).

[^74]: (1) (a) This work was supported by a grant from the Research Council of the University of North Carolina at Greensboro and a summer stipend from the university. (b) Previous paper in this series: M. A. Andrews,
 D. C. Schroeder, and J. P. Schroeder, J. Chromatogr., 71, 233(1972).
 (2) G. H. Brown and W. G. Shaw, Chem. Rev., 57, 1049 (1957).
 (3) G. W. Gray, "Molecular Structure and the Properties of Liquid Crystals," Academic Press, New York, N. Y., 1962.
 (4) A. Saupe, Angew. Chem., Int. Ed. Engl., 7,97 (1988).
 (5) M. J. S. Dewar and J. P. Schroeder, J. Otg. Chem., 90, 2296 (1965).
 (6) (a) M. J. S. Dewar and R. S. Goldberg, J. Oro.Chem., 35, 2711 (1970); (b) J. Amer. Chem. Soc., 92, 1582 (1970).
 (7) S. L. Arora, J. L. Fergason, and T. R. Taylor, J. Org. Chem., s5, 4055 (1970).
 (8) S. A. Haut, D. C. Schroeder, and J. P. Schroeder, J. Oro. Chem.. 37. 1425 (1972).

[^75]: (10) F. Kehrmann, M. Sandoz, and R. Monnier, Helv. Chim. Acta, 4, 941 (1921).

[^76]: ${ }^{a}$ Data from sources other than Table I are indicated by footnotes. ${ }^{b}$ Reference 5. ${ }^{c}$ Reference 7. ${ }^{d}$ Compound is not nematic. Value estimated by extrapolation of N-I transition curve in binary phase diagram for this ester and the dimethoxy ester (ref 6a). \quad e Reference 6a. / Reference 8. © Reference 6.

[^77]: (11) In addition, 21 nematic unsymmetrical di-n-alkoxy esters, which

[^78]: (21) J. S. Dave and M. J. S. Dewar, J. Chem. Soc., 4305 (1955).
 (22) Reference 3, p 132.

[^79]: (1) R. P. Bell, Advan. Phys. Org. Chem., 4, 1 (1966).
 (2) G. R. Wiley and S. I. Miller, J. Org. Chem., 87, 767 (1972).

[^80]: (3) P. Greenzaid, Z. Rappoport, and D. Samuel, Trans. Faraday Soc. 63, 2131 (1967).
 (4) J. F. Bunnett, J. H. Miles, and K. V. Nababedian, J. Amer. Chem. Soc., 83, 2512 (1961).
 (5) P. Greenzaid, Z. Luz, and D. Samuel, J. Amer. Chem. Soc., 89, 749 (1967).

[^81]: (6) The aromatic line for this compound had very little structure, as expected for an $A A^{1} B B^{2}$ pattern, pointing to similar chemical environments for the aromatic protons.

[^82]: (7) D. H. McDaniel and H. C. Brown, J. Org. Chem., 23, 420 (1958).
 (8) R. Stewart and R. Van der Linden, Can. J. Chem., 38, 400 (1960).
 (9) J. Hine and G. F. Koser, J. Org. Chem., 36, 1348 (1971).

[^83]: (14) J. Shorter in "Advances in Free Energy Relationships," N. B. Chapmanand J. Shorter, Ed., Plenum Press, London, 1972, p 72.
 (15) M. Charton, Progr. Phys. Org. Chem., 8, 235 (1971).
 (16) J. F. J. Dippy and S. R. C. Hughes, Tetrahedron, 19, 1527 (1963).

[^84]: (1) Presented in part at the Fourth European Symposium on Fluorine Chemistry at Ljubjlana, Yugoslavia, September 1972.
 (2) See paragraph at end of paper regarding supplementary material.
 (3) N. O. Brace, J. Amer. Chem. Soc., 86, 523 (1964).
 (4) N. O. Brace, J. Org. Chem., 31, 2879 (1966).
 (5) N. O. Brace, ibid., 32, 2711 (1967).
 (6) N. O. Brace, U. S. Patent 3,145,222, assigned to E. I. du Pont de Nemours and Co., Aug 18, 1964.
 (7) N. O. Brace, J. Org. Chem., 27, 3033 (1962).
 (8) N. O. Brace, unpublished observations.
 (9) E. S. Huyser, "Free Radical Chain Reactions," Wiley-Interscience, New York, N. Y., 1970, pp 182-185. Cyclizations of 1,7-octadiene and of 1,5-hexadiene during addition of CCl_{4} are reported, but neither references to the original literature nor supporting evidence were given.
 (10) N. O. Brace, J. Org. Chem., 27, 3027 (1962).

[^85]: (11) D. J. Carlsson and K. U. Ingold, J. Amer. Chem. Soc., 90, 7047 (1968).
 (12) J. K. Kochi and J. W. Powers, ibid., 92, 137 (1970).
 (13) It has been shown that cyclization in this system is not reversible ${ }^{11}$ as ring opening of the cyclopentylmethyl radical does not occur. ${ }^{14}$
 (14) R. C. Lamb, P. W. Ayers, and M. K. Toney, J. Amer. Chem. Soc., 88, 3483 (1963).

[^86]: (15) N. O. Brace, J. Org. Chem., 28, 3093 (1963).
 (16) M. Capka and V. Chvalovsky, Collect. Czech. Chem. Commun., 39, 2872 (1968).
 (17) R. N. Haszeldine, D. W. Keen, and A. E. Tipping, J. Chem. Soc. C, 414 (1970).
 (18) N. O. Brace, J. Org. Chem., 37, 2429 (1972).

[^87]: (19) J. I. G. Cadogan and I. H. Sadler, J. Chem. Soc. B, 1191 (1966).
 (20) E. S. Huyser, "Free Radical Chain Reactions," Wiley-Interscienoe, New York, N. Y., 1970, p 61.

[^88]: (21) J. K. Kochi and P. J. Krusic, J. Amer. Chem. Soc., 91, 3940 (1969).
 (22) R. . Sheldon and J. K. Kochi, ibid., 92, 4395 (1970).
 (23) D. J. Edge and J. K. Kochi, ibid., 94, 7695 (1972).
 (24) It was also indicated that such a coiled conformation was not observed for the 3 -butenyl radical, although it is known to cyclize.

[^89]: (25) N. O. Brace, J. Polym. Sci., Part A-1, 8, 2091 (1970).

[^90]: (27) D. J. Trecker and J. P. Henry, J. Amer. Chem. Soc., 85, 3204 (1963).

[^91]: * Address correspondence to author at the Department of Chemistry, Polytechnic Institute of New York, New York, N. Y. 11201.
 (1) Y. Okamoto, R. Homsany, and T. Yano, Tetrahedron Lett., 2531 (1972).
 (2) For a discussion of bonding in high-valenced selenium compounds, see (a) J. I. Musher, Ann. N. Y. Acad. Sci., 19252 (1972); (b) J. I. Musher, Angew. Chem., Int. Ed. Engl., 8, 54 (1969).
 (3) D. G. Foster, Recl. Trav. Chim. Pays-Bas, 54, 447 (1935).

[^92]: (4) L. B. Agenas and B. Lindgren, Acta Chem. Scand., 24, 3301 (1970)
 (5) R. Lesser and R. Weiss, Ber., 47, 2510 (1914).
 (6) B. Lindgren, Acta Chem. Scand., 26, 2560 (1972).

[^93]: (7) H. J. Reich, J. Amer. Chem. Soc., 98, 964 (1973). The name "selenurane" for tetrasubstituted selenium(IV) compounds was used in analogy with sulfurane.

[^94]: (13) S. Oae and M. Kise, Tetrahedron Lett., 2261 (1968).
 (14) C. R. Johnson and W. G. Phillips, J. Amer. Chem. Soc., 91, 682 (1969).

[^95]: (15) The mechanisms of the decomposition have not been investigated. However, it may be speculated that the dibenzoates react with water to form diphenyl diselenide and alkyl dibenzoates.
 $\mathrm{PhSeCH}(\mathrm{OBz})_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PhSeOH}+\mathrm{CH}_{2}(\mathrm{OBz})_{2}$
 $2 \mathrm{PhSeOH} \rightarrow \mathrm{PhSeOOH}+\mathrm{PhSeH}^{16}$
 $\mathrm{PhSeH}+\mathrm{PhSeOH} \rightarrow \mathrm{Pb}_{2} \mathrm{Se}_{2}+\mathrm{H}_{2} \mathrm{O}$
 (16) K. W. Bagnall, "The Chemistry of Selenium, Tellurium and Polonium, '" Elsevier, Amsterdam, 1966, p 164.
 (17) Y. Okamoto and T. Yano, J. Organometal. Chem., 29, 99 (1971).
 (18) W. J. Pope and A. Neville, J. Chem. Soc., 81, 1553 (1902).

[^96]: (1) F. Challenger and V. K. Wilson, J. Chem. Soc., 209 (1927).
 (2) L. Horner and W. Jurgeleit, Justus Liebigs Ann. Chem., 591, 138 (1955).
 (3) R. Hiatt in "Organic Peroxides," Vol. 3, D. Swern, Ed., Wiley-Interscience, New York, N. Y., 1972, p 24.

[^97]: (4) D. B. Denney, H. M. Rellea, and A. K. Taolis, J. Amer. Chem. Soc., 86, 4487 (1964).
 (5) R. Hiatt in "Organic Perosides," Vol. 3, D. Swern, Ed., Wiley-Interscience, New York, N. Y., 1972, p 71.

[^98]: (6) A. A. Miller and F. R. Mayo, J. Amer. Chem. Soc., 78, 1017 (1956).

[^99]: (8) F. Welch, H. R. Williams, and H. S. Mosher, J. Amer. Chem. Soc., 77, 551 (1955).

[^100]: (16) F. R. Mayo and A. A. Miller, J. Amer. Chem. Soc., 78, 1023 (1956).

[^101]: (17) R. C. Weast, "Handbook of Chemistry and Physics," 45th ed, Chemical Rubber Publishing Co., Cleveland, Ohio, 1964, p C-310.

[^102]: (1) For part II, see A. F. Russell, S. Greenberg, and J. G. Moffatt, J. Amer. Chem. Soc., 95, 4025 (1973).
 (2) Syntex Postdoctoral Fellow, 1971-1973.
 (3) Syntex Postdoctoral Fellow, 1968-1970.
 (4) S. Greenberg and J. G. Moffatt, J. Amer. Chem. Soc. 95, 4016 (1973).

[^103]: (8) See, e.g., (a) S. Watanabe, G. Matsuhashi, S. Fukatsu, G. Koyama, K. Maeda, and H. Umezawa, J. Antibiot. Ser. A, 19, 93 (1966); (b) R. L. Tolman, G. L. Tolman, R. K. Robins, and L. B. Townsead, J. Heterocycl. Chem., 7, 799 (1970); (c) R. A. Long, A. F. Lewis, R. K. Robins, and L. B. Townsend, J. Chem. Soc. C, 2443 (1971).
 (9) (a) J. A. Montgomery and K. Hewson, J. Med. Chem., 10, 665 (1967) (b) M. Bobek, R. L. Whistler, and A. Block, ibid., 15, 168 (1ə72).
 (10) A. F. Russell, S. Greenberg, and J. G. Moffatt, A bstracts of the 158 th National Meeting of the American Chemical Society, New York, N. Y., Sept 1969, CARB 14.

[^104]: (11) Unpublished work by T. C. Jain, A. F. Russell, and J. G. Moffatt; see T. C. Jain and J. G. Moffatt, Abstracts of the 165th National Meeting of the American Chemical Society, Dallas, Texas, April 1973, CARB 15.

[^105]: (14) Obtained through the kindness of Dr. A. R. Hanze of The Upiohn Co., Kalamazoo, Mich.

[^106]: (16) The mass spectra of a number of compounds in this paper will be dis-

[^107]: (1) E. J. Corey. H. E. Ensley, L. Levine, and R. H. Abeles, in progress.
 (2) (a) E. J. Corey and J. Mann and (b) E. J. Corey and G. Moinet, Symposium on Prostaglandins (Canadian Institute of Chemistry), Montreal, Canada, June 5, 1973.
 (3) (a) W. P. Schneider, R. D. Hamilton, and L. E. Rhuland, J. Amer. Chem. Soc., 94, 2122 (1972); (b) G. L. Bundy, W. P. Schneider, F. H. Lincoln, and J. E. Pike, ibid., 94, 2123 (1972); (c) G. L. Bundy, E. G. Daniels, F. H. Lincoln, and J. E. Pike, ibid., 94, 2124 (1972).
 (4) W. P. Schneider, G. L. Bundy, and F. H. Lincoln, J. Chem. Soc., Chem. Commun., 254 (1973). Strictly quantitative measurements of α / β epoxide ratios are not available in this or previous papers.
 (5) E. J. Corey, K. B. Becker, and R. K. Varma, J. Amer. Chem. Soc., 94, 8616 (1972).
 (6) The epoxidation of prostaglandin A_{1} using alkaline hydrogen peroxide [for method see E. Klein and G. Ohloff, Tetrahedron, 19, 1091 (1963)] was studied first in these laboratories: E. J. Corey and N. H. Anderson, unpublished results, 1968. Such direct epoxidation of the A prostaglandins is relatively nonstereoselective in protic solvents and affords a mixture of

[^108]: (10) Although the $10,11 \alpha$ - and $10,11 \beta$-epoxides are not cleanly separated by thin layer chromatography using a wide variety of solvent systems (cf. ref 3 and 4), the isomers were easily and completely resolved by the ALC-202 instrument using a $5 \mathrm{ft} \times 0.125 \mathrm{in}$. Porasil T column with 0.5% acetic acid in methylene chloride as eluent. Using a flow rate of $1 \mathrm{ml} / \mathrm{min}$, retention times of 12 and 16 min were observed for the β - and α-epoxides, respectively. The strong ultraviolet absorbance of the controller group allowed analyses to be performed on submilligram amounts with a precision of better than 0.5%.
 (11) Satisfactory infrared, nuclear magnetic resonance, and mass spectral data were obtained for all new substances reported herein.
 (12) The ether 2 was prepared by the procedure used for 1 using tri-pxylylsilyl chloride, $\mathrm{mp} 69^{\circ}$, which in turn was made by the Grignard-silicon tetrachloride method. ${ }^{9}$

[^109]: (13) Although this development can be regarded as additional incentive to exploit the marine source of PGA_{2}, the soft coral Plexaura homomalla, ${ }^{\mathbf{8} .4}$ the authors urge against such exploitation as potentially damaging or disastrous to the beautiful and irreplaceable reefs of the Caribbean.
 (14) This work was assisted financially by the National Institutes of Health, the National Science Foundation, and the Chas. Pfizer Co.

[^110]: (1) (a) Taken in part from the Ph.D. thesis of S. J. C., University of New Hampshire, 1972. (b) Presented in part at the 164th National Meeting of the American Chemical Society, New York, N. Y., 1972, ORGN 169.
 (2) (a) P. R. Jones and S. L. Congdon, J. Amer. Chem. Soc., 81, 4291 (1959); (b) P. R. Jones and A. A. Lavigne, J. Org. Chem., 25, 2020 (1960); (c) P. R. Jones, C. J. Jarboe, and R. Nadeau, J. Organometal. Chem., 8, 361 (1967); (d) P. R. Jones and J. R. Young, J. Org. Chem., 33, 1675 (1968); (e) P. R. Jones and C. J. Jarboe, Tetrahedron Lett., 1849 (1969); (f) P. R. Jones and C. J. Jarboe, J. Organometal. Chem., 24, 555 (1970).

[^111]: (3) A. R. Van Horn, private communication, 1970.

[^112]: (8) S. C. Watson and J. F. Eastham, J. Organometal. Chem., 9, 165 (1967). (9) H. Gilman and F. Schulze, J. Amer. Chem. Soc., 47, 2002 (1925).
 (10) "The Sadtler Standard Spectra," Sadtler Research Laboratories, Philadelphia, Pa., 1965.
 (11) R. C. Weast and S. M. Selby, Ed., "Handbook of Chemistry and Physics," 47th ed, The Chemical Rubber Company, Cleveland, Ohio, 1966.
 (12) B. F. Hudson, Jr., and C. R. Hauser, J. Amer. Chem. Soc., 63, 3156 (1941).
 (13) W. Gerrard and M. J. Richmond, J. Chem. Soc., 853 (1945).
 (14) S. M. McElvain and C. L. Stevens, J. Amer. Chem. Soc., 69, 2663 (1947).

[^113]: (1) N. von Kutepow, K. Bittler, and D. Neubauer, U. S. Patent 3,437,676 (1969), to Badische Anilin-and Soda-Fabrik.
 (2) K. Bittler, N. von Kuteporv, D. Neubauer, and H. Reis, Angew. Chem., Int. Ed. Engl., 7, 329 (1968).

[^114]: (5) D. M. Fenton, U. S. Patent 3,641,074 (1972), to Union Oil Company

[^115]: (10) J. Tsuji and K. Ohno, J. Amer. Chem. Soc., 90 , 94 (1968).
 (11) L. Malatesta and M. Angoletta, J. Chem. Soc., 1186 (1957).

[^116]: (18) R. Van Der Linde and R. O. De Jongh, Chem. Commun., 11, 563 (1971); C. A. Tolman, W. C. Seidel, and D. H. Gerlach, J. Amer. Chem. Soc., 94, 2669 (1972).
 (19) A. Misono, Y. Uchida, M. Hidai, and K. Kudo, J. Organometal. Chem., 20, 7 (1969); K. Kudo, M. Hidai, and Y. Ochida, ibid., 33, 393 (1971).
 (20) P. Fitton and E. A. Rick, J. Organometal. Chem., 28, 287 (1971).
 (21) S. Otauka, M. Naruto, T. Yoshida, and A. Nakamura, J. Chem. Soc., Chem. Commun., 396 (1972).
 (22) J. Tsuji, K. Ono, and T. Kajimoto, Tetrahedron Lett., 4565 (1965).
 (23) G. Booth and J. Chatt, J. Chem. Soc. A, 634 (1966).
 (24) R. F. Heck, J. A mer. Chem. Soc., 93, 6896 (1971).
 (25) D. M. Fenton and K. L. Olivier, Chemtech, 220 (1972).
 (26) J. E. McKeon and P. Fitton, Tetrahedron, 28, 233 (1972).
 (27) J. Chatt, R. S. Coffey, A. Gough, and D. T. Thompson, J. Chem. Soc. A, 190 (1988).

[^117]: (28) C. A. Tolman, Chem. Soc. Rev., 1, 337 (1972).
 (29) E. W. Stern, Catal. Rev., 1, 73, 105 (1967).
 (30) D. M. Fenton and P. J. Steinwand, U. S. Patent 3,393,136 (1968), to Union Oil Company of California.
 (31) E. H. Brooks and F. Glocking. J. Chem. Soc. A, 1030 (1967).
 (32) K. Kudo, M. Midai, T. Murayama, and Y. Uchida, Chem. Commun., 1701 (1970).
 (33) D. M. Fenton, U. S. Patent 3,654,322 (1972), to Union Oil Company of California.

[^118]: (34) J. Powell end B. L. Shar; J. Chem. Soc. A, 1839 (1967).

[^119]: (7) (a) S. E. Cremer and B. C. Trivedi, J. Amer. Chem. Soc., 91, 7200 (1969): (b) M. Haque, J. Chem. Soc. B, 934 (1970).
 (8) (a) S. E. Cremer, Chem. Commun., 616 (1970); (b) W. Hawes and S. Trippett, J. Chem. Soc. C, 1465 (1969).

[^120]: (9) The relative chemical shifts of $\mathrm{C}-3$ and the J_{PCC} couplings have been diagnostically used to distinguish between cis and trans isomers. ${ }^{3 \mathrm{~mm}}$
 (10) In cases 10 and 11 it is assumed that the isomer composition of the tetrachloroaluminate salts produced by AlCl_{3} treatment reflects the composition in the rapidly equilibrated chlorides.
 (11) The relative A values for the substituents are $t-\mathrm{Bu}>\mathrm{Ph}>\mathrm{CH}_{3}>\mathrm{Cl}$; see E. L. Eliel, N. L. Allinger, S. Angyal, and G. A. Morrison, "Conformational Analysis," Wiley, New York, N. Y., 1965, p 44.
 (12) X-Ray data is in accord with placement of the $3-\mathrm{CH}_{3}$ in a pseudoequatorial position in 1 -phenyl-2,2,3,4,4-pentamethylphosphetane 1 -oxide (both cis and trans) and in 1 -phenyl-1,2,2,3,4,4-hexamethylphosphetanium bromide, personal communications from M. Haque and L. M. Trefonas; see also M. Haque, J. Chem. Soc. B, 117 (1971); M. Haque, ibid., 938 (1970); C. Moret and L. M. Trefonas, J. Amer. Chem. Soc., 91, 2255 (1969).

[^121]: (13) B. C. Trivedi, Ph.D. Dissertation, Illinois Institute of Technology, Chicago, Ill., 1970.
 (14) S. E. Cremer, R. J. Chorvat, and B. C. Trivedi, Chem. Commun., 769 (1969).
 (15) F. H. Westheimer, Accounts Chem. Res., 1, 70 (1968).
 (16) (a) E. L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., 2, 613 (1963). (b) The energy barrier associated with placing an alkyl or aryl group in an apical position has been reported: D. Gorenstein, J. Amer. Chem. Soc., 92, 644 (1970).
 (17) S. E. Cremer and C. H. Chang, Chem. Commun., 1156 (1969).
 (18) L. D. Quin and T. P. Barket, J. Amer. Chem. Soc., 4303 (1970).
 (19) D. J. H. Smith and S. Trippett, Chem. Commun., 855 (1969).

[^122]: (20) (a) This is consistent with the relative ease of dissociation of a series of phenyl-and chloro-substituted phosphoranes; ${ }^{20}$ (b) D. B. Denney, D. Z. Denney, and B. C. Chang, J. Amer. Chem. Soc., 90, 6332 (1968).

[^123]: (21) Ample precedent for retention of configuration about phosphorus is availahle: see ref $2 \mathrm{~g}, 3 \mathrm{a}, \mathrm{d}$, and 7 a .
 (22) In the hydroxide decomposition of other phosphetanium salts, a preference for the trans oxide has been observed. ${ }^{14}$
 (23) A $2: 1$ cis:trans mixture of the acid chlorides ${ }^{73}$ in methylene chloride does not change composition when stirred with water (treated with AlCl_{3}) at 0° for 3 hr . Hence, it is assumed that, if the cis isomer had been present. it would have survived in the work-up process.
 (24) In studies on isomerization of phosphetanium salts in base, ${ }^{14}$ we have qualitatively olserved slower stereomutation in $\mathrm{H}_{2} \mathrm{O}$ than CHCl_{3}. Increased solvent polarity would stabilize the salts relative to the pentacovalent intermediate. Likewise, $\mathbf{6 a} \rightarrow \mathbf{6 b}$ and $\mathbf{6 b} \rightarrow \mathbf{6 a}$ is found to be faster in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ than in $\mathrm{H}_{2} \mathrm{O}$.

[^124]: (25) A. Bond, M. Green, and S. C. Pearson, J. Chem. Soc. B, 929 (1968). Total nmr analysis of the phospholene (and oxide) supports the stereochemical assignments; J. P. Albrand and J. B. Robert, personal communication.

[^125]: (26) The conversion of $\mathbf{1 0} \rightarrow \mathbf{1 7}$ and $\mathbf{2 0} \rightarrow \mathbf{2 1}$ was first reported at the Third Great Lakes Regional Meeting of the American Chemical Society, Northern Illinois University, DeKalb, Ill., June 5-6, 1969. Credit for the first observation of thermolysis of a phosphetanium chloride is due to M. Green, Proc. Chem. Soc., London, 177 (1963).
 (27) J. R. Corfield, M. J. P. Harger, R. K. Oram, D. J. H. Smith, and S. Trippett, Chem. Commun., 1350 (1970).
 (28) S. E. Cremer and L. Wilkinson, unpublished work.
 (29) N. J. Leonard and D. A. Durand, J. Org. Chem., 33, 1322 (1968).
 (30) Sulfuryl chloride converts $\mathrm{R}_{2} \mathrm{PSCl}$ to $\mathrm{R}_{2} \mathrm{POCl}$ in acyclic systems;
 R. Colln and G. Schrader, Chem. Zentralbl., 17390 (1959).
 (31) See ref 6a, p 230.
 (32) See ref 6b, Chapter 4, pp 284-285.

[^126]: (33) Several phosphetane-HBr adducts are under study by C. N. Caughlan, Montana State University. An X-ray of triphenylarsenic hydroxybromide [G. Ferguson and E. W. Macaulay, Chem. Commun., 1288 (1968)] is suggestive of a structure $\mathrm{Ph}_{3} \mathrm{As}^{+}-\mathrm{O}^{1 / 2}-\cdots \mathrm{H} \cdots \mathrm{Br}^{1 / 2}-$; the bonding in 23 may be similar.
 (34) A. L. Van Geet, A nal. Chem., 42, 679 (1972).
 (35) J. B. Stothers and J. R. Robinson, Can. J. Chem., 42, 967 (1964).

[^127]: (36) The initial isomer ratio will sometimes vary and is probably dependent on the amount of water present in the reagents.

[^128]: (1) Part CL: G. A. Olah, G. Liang, G. D. Mateescu, and J. L. Riemenschneider, J. Amer. Chem. Soc., in press.
 (2) G. A. Olah, K. Dunne, Y. K. Mo, and P. Szilagyi, J. Amer. Chem. Soc., 94, 4200 (1972).
 (3) G. A. Olah and A. M. White, J. Amer. Chem. Soc., 89, 4752 (1967).
 (4) G. A. Olah, A. M. White, and D. H. O'Brien, Chem. Rev., 70, 561 (1970).
 (5) For a discussion of the general concept of carbocations and differentiation of trivalent carbenium ion from penta- (or tetra-) coordinated carbonium ions, see G. A. Olah, J. Amer. Chem. Soc., 94, 808 (1972).
 (6) R. J. Gillespie and J. A. Leisten, Quart. Rev., Chem. Soc., 8, 40 (1954).

[^129]: (7) Dimethylmaleic anhydride was made available by Dr. H. Bosshard of CIBA-GEIGY Limited, Basel, Switzerland.

[^130]: (8) G. A. Olah, Y. Haipern. Y. K. Mo, and G. Liang, J. Amer. Chem. Soc.. 94, 3.554 (1972).
 (9) The carhoxonium groups $\left(\mathrm{COOH}_{2}{ }^{+}\right)$generally show two nonequivalent OH alsorptions at $\delta 12.0-13.5$ (see G. A. Olah and A. M. White, J. Amer. Chem. Soc. 89, 3591 (1967)].

[^131]: (10) A referee has pointed out, however, that quenching experiments would not exclude 4 as a low concentration, steady-state intermediate.

[^132]: (1) (a) G. A. Olah, S. Kobayashi, and Y. K. Mo, J. Org. Chem., submitted. (b) A preliminary communication has appeared: G. A. Olah and Y. K. Mo, J. Amer. Chem. Soc., 94, 9241 (1972).
 (2) G. A. Olah and T. E. Kiovsky, ibid., 89, 5692 (1967).

[^133]: (3) G. A. Olah, R. H. Schlosberg, R. D. Porter, Y. K. Mo, D. P. Kelly, and Gh. D. Mateescu, ibid., 94, 2034 (1972).

[^134]: (6) G. A. Olah, J. Amer. Chem. Soc., 87, 1103 (1965).
 (7) G. A. Olah, R. H. Schlosberg. D. P. Kelly, and G. D. Mateescu ibid., 92, 2548 (1970).
 (8) G. A. Olah and Y. K. Mo, ibid., 94, 5341 (1972).
 (9) D. M. Brouwer, E. L. Mackor, and C. MacLean, in "Carbonium Ions," Vol. 2, G. A. Olah, and P. v. R. Schleyer, Ed., Wiley-Interscience, New York, N. Y., 1970, p 864

[^135]: (10) No ${ }^{19} \mathrm{~F}$ nmr resonance was detectable for the rapidly equilibrating ions 7 a and $\mathbf{7 b}$. This is because the ortho and meta F shifts are separated by 92 ppm and the rate constant for observing the coalescence of the two signals is calculated to be $11,526 \mathbf{s e c}^{-1}$. Thus, at the temperature used in this work, the rate constant is expected to be much smaller than this value. Consequently, the two resonances became too broad to be observed even at 0°.
 (11) The theoretical spectra were obtained by using a Fortran IV coded program based on the equation of Gutowsky and Holm: H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 25, 1228 (1956). The program was obtained originally from Dr. T. Gerig and was adapted to the Univac 1108 computer by Dr. W. E. Heyd

[^136]: (12) N. M. Bazhin, Yu. V. Pozdnyakovich, V. D. Shteingarts, and G. G. Yakobson, Izv. Akad. Nauk SSSR, Ser. Khim., No. 10, 2300 (1969).
 (13) Reference 9, p 889.

[^137]: (14) Using Mulliken's definition: R. S. Mulliken, J. Amer. Chem. Soc. 72, 600 (1950); 74, 811 (1952); J. Phys. Chem., 56, 801 (1952).

[^138]: (1) Part CLV: G. A. Olab, D. A. Beal, and P. W. Weaterman, J. Amer Chem. Soc., 96, 3387 (1973).
 (2) G. A. Olah, C. G. Carlson, and J. C. Lapierre, J. Org. Chem., 29, 2687 (1964).
 (3) G. A. Olah, N. W. Meyer, and N. A. Overchuk, J. Org. Chem., 29, 2310 (1964).
 (4) For a review and references see D. M. Brouwer, E. L. Mackor, and C. MacLean in "Carbonium Ions," G. A. Olah and P. v. R. Schleyer, Ed., Wiley-Interscience, New York, N. Y., 1970, p 865.
 (5) G. A. Olah, R. H. Schlosberg, R. D. Porter, Y. K. Mo, D. P. Kelly, and G. D. Mateescu, J. Amer. Chem. Soc., 94, 2034 (1972), and references cited therein.

[^139]: (6) Using Mulliken's definition: R. S. Mulliken, J. Amer. Chem. Soc., 72, 600 (1950); J. P'hys. Chem., 56, 801 (1952).
 (7) G. A. Olah, Accounts Chem. Res., 4, 240 (1971).
 (8) G. A. Olah. J. A mer. Chem. Soc., 94, 808 (1972).
 (9) G. A. Olah and Y. K. Mo, J. Amer. Chem. Soc., in press.

[^140]: (1) For an earlier application involving a metal-ion sensitive protecting group, see E. J. Corey and R. L. Dawson, J. Amer. Chem. Soc., 84, 4899 (1962).

[^141]: (2) Allyl ethers have been found previously to be isomerized to 1-propenyl ethers under quite drastic conditions (potassium tert-butoxide in dimethyl sulfoxide at 100°). See J. Cunningham, R. Gigg, and C. D. Warren, Tetrahedron Lett., 1191 (1964), and references cited therein.
 (3) A. J. Birch and G. S. R. Rao, Tetrahedron Lett., 3797 (1968): J. F. Biellmann and M. J. Jung, J. Amer. Chem. Soc., 90, 1673 (1968).
 (4) K. Kariyone and H. Yazawa, Tetrahedron Lett., 2885 (1970).
 (5) R. Gigg and C. D. Warren, J. Chem. Soc. C, 1903 (1968).
 (6) Added to inhibit premature hydrolysis of the intermediate enol ether. Free propionaldehyde reacts with $\mathrm{RhCl}\left(\mathrm{PPh}_{8}\right)_{3}$ to form the catalytically much less active $\mathrm{RhCl}\left(\mathrm{PPh}_{8}\right)_{2} \mathrm{CO}$.

[^142]: (1) Support of this work by the National Institutes of Health, U. S. Public Health Service (Grant No. AL10188) is gratefully acknowledged.
 (2) R. T. LaLonde, C. F. Wong, and K. C. Das, J. Amer. Chem. Soc., in press.
 (3) CD measurements were performed on a Jasco Model 5 spectropolarimeter at the concentrations indicated.

[^143]: (4) (a) C. F. Wong, E. Auer, and R. T. LaLonde, J. Oro. Chem., 35, 517 (1970); (b) I. Kawasaki, I. Kusumoto, and T. Kaneko, Bull. Chem. Soc. Jap., 41, 1264 (1968); (c) K. Oda and H. Koyama, J. Chem. Soc. B, 1450 (1970).
 (5) (-)-Deoxynuphridine gives a negative plain curve in the 310-230nm region.
 (6) G. Opitz, H. Hellmann, and H. W. Schubert. Justus Liebigs Ann.

 Chem., 629, 117 (1959).

