THE JOURNAL OF

Organic Chemistry

the Nicolet 1020A is a time averaging system for magnetic resonance spectrometers that gives you results like these:

The Nicolet 1020A is an easy-to-use time averaging system combining unique data processing capabilities with extremely useful display and readout routines.
Using a normalized signal averaging method, the 1020A presents a true average on its built-in $5^{\prime \prime}$ CRT display. The complete spectrum (or any expanded portion of it) is continuously displayed throughout the averaging process.
Thumbwheel switches select sweep times from 60 milliseconds to 1,999 seconds for a 2048 -word sweep with 4 -digit accuracy. The 1020A can provide sweep current to the spectrometer and can compensate for spectrometer field drift when using the Field Stabilization mode. The calibrated sweep widths are front panel selected and can be matched to any spectrometer.
The analog-to-digital converter (ADC) resolution is 12 bits (one part in 4096) for sweep times over 1 second and 9 bits (one part in 512) for sweep times less than 1 second.
Total memory capacity is 2048 words, 24 bits long. The upper 12 bits store the final average while the lower 12 may be used to store the integral. Averaged spectra may be stored in halves of memory and -added to or subtracted from one another.
Digital integration is built-in and does not destroy the original spectrum thus allowing simultaneous display of spectrum and integral. Baseline correction can be accomplished during display of the integral to assure optimal results.
Another unique display feature is the ability to expand the displayed spectrum in both the X and Y axes by factors of 2 up to a total expansion of 64 times. (Typical expansion examples are shown to the right). In addition to this analog display a simultaneous numerical display shows the amplitude and address values of any data point selected by a moveable electronic cursor.

Write or call collect for complete details or to arrange a demonstration in your laboratory

NICOLET INSTRUMENT CORPORATION

5225 Verona Road, Nfadison, Wisconsin 53711
Phone 608:271-3333 TWX: 910-286-271.3

1. Averaged spectrum of 2-butyl-1, 2-dihydropyridene with spectrum expanded on amplitude

2. Integral of Figure 1 averaged spectrum.

3. Averaged spectrum expanded by a factor of 4 on both the amplitude scale and the trequency

4. Integral of Figure 4 averaged spectrum

Recent texts fromHolt

INTRODUCTION TO BIOCHEMISTRY

By John W. Suttie of the University of Wisconsin
The author attempts to provide the student with the basic biochemical information that he can be reasonably expected to master in a one semester course. A limited amount of more advanced material is provided, but the text is written with the view that instructors will enlarge and expand on those areas they feel are not adequately covered for their purposes. Although the general emphasis is on mammalian metabolism, there is more extensive coverage of carbohydrate and lipid chemistry than is found in many elementary biochemistry books. The genetic approach to problems of protein and nucleic acid function and metabolism has also been included. This has been done because the author finds most of his students have previously taken a modern biology or genetics course which has placed considerable emphasis on the molecular, biological aspects of biochemistry. Also, many students taking an introductory biochemistry course at this level have not taken physical chemistry, so the concepts of pH and buffers which should have been covered in general chemistry are reviewed in Chapter 1 AVAILABLE NOW/364/\$11.00

CONTEMPORARY ORGANIC CHEMISTRY

By Stephen J. Weininger of the Worcester Polytechnic Institute
This text is written for a one year course in organic chemistry. In the author's view, the largest problem confronting the instructor of such a course is the flood of new information generated by his colleagues - new synthetic methods, new mechanistic information, and new techniques for structure determination. He feels, therefore, it is pointless to attempt to introduce first year students to all the "important" reactions. He prefers to elucidate with the aid of a relatively small number of examples. The physiochemical forces which operate throughout organic chemistry, albeit in a profusion of guises. The book, consequently, is a relative lightweight by prevailing standards, yet contains a hefty body of material for a one yea- course. Reaction mechanisms are stressed by frequent reference to atomic and molecular properties which determine mechanistic behavior and by making a more intensive effort to introduce Thermodynamic and Kinetic considerations into the discussion of organic chemistry. The cook also interweaves a substantial number of biochemical topics into the general chemical development, much more so than many of its competitors. The author's rationale for doing this is partly historical in that organic chemistry owes its start as a separate discipline to man's curiosity about the chemical functioning of life processes. And partly the fact that many organic chemists once again are turning to biochemical systems recognizing them as chemical entities of great subtlety and complexity, but entities that are nonetheless constructed from familiar materials. An accompanying Instructor's Manual suggests material to omit for a given level course and contains additional problems and answers AVAILABLE NOW/800/\$14.00

ESSENTIALS OF ORGANIC CHEMISTRY

By Edward J. Barrett of Hunter College of CUNY, and John C. Powers. Jr. of Pace College
Written for students in the health sciences, nursing, biology, agriculture and home economics. this book presents organic chemistry with a solid introduction to biochemistry suitable for a one semester course. The major theme of the book is understanding basic organic chemical reactions and functions or organic compounds in terms of a few theoretical principles. Stereochemistry is treated early in the book and is referred to frequently in later discussions. Practical applications of organic chemistry encountered in everyday life are developed as they relate to drugs, disease, industrial and agricultural chemistry. A wide variety of problems is given at the ends of chapters. AVAILABLE NOW/416/\$10.00

For additional information or examination copies, address your requests to: Jere L Calmes. Director of Editorial Acquisiticns.
HOLT, RINEHART AND WINSTON, INC.,
383 Madison Avenue. New York. New York 1C017

the journal of Organic Chemistry

EDITOR-IN-CHIEF: FREDERICK D. GREENE
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

SENIOR EDITORS

Werner Herz
Florida State University
Tallahassee, Florida

James A. Moore
University of Delaware
Newark, Delaware

Martin A. Schwartz
Florida State University
Tallahassee, Florida

assistant editor: Theodora W. Greene

BOARD OF EDITORS

Joseph F. Bunnett	Stanton Ehrenson	James A. Marshall	Robert V. Stevens
Clifford A. Bunton	Robert J. Highet	James C. Martin	Edward C. Taylor
Michael P. Cava	Ralph Hirschmann	Roy A. Olofson	David J. Trecker
Orville L. Chapman	Earl S. Huyser	Leo A. Paquette	Barry M. Trost
Gerhard L. Closs	Walter Lwowski	Howard E. Simmons	Edwin F. Ullman
Charles H. DePuy			Edgar W. Warnhoff

EX-OFFICIO MEMBERS: GEorge H. Coleman, Wayne State University
Jeremiah P. Freeman, University of Notre Dame (Secretary-Treasurer of the Division of Organic Chemistry of the American Chemical Society)

Published by the

AMERICAN CHEMICAL SOCIETY
1155 16th Street, N.W.
Washington, D. C. 20036
BOOKS AND JOURNALS
DIVISION
John K Crum Director
Ruth Reynard Assistant to the Director

Charles R. Bertsch Head, Editorial Processing Department
D. H. Michael Bowen Head, Journals Department

Bacil Guiley Head, Graphics and Production Department

Seldon W. Terrant Head, Research and Development Department
©Copyright, 1973, by the American Chemical Society.
Published biweekly by the American Chemical Society at 20th and Northampton Sts., Easton, Pa. 18042. Second-class postage paid at Washington, D. C., and at additional mailing offices.

Editorial Processing Department, American Chemical Society, 20th and Northampton Sts., Easton, Pa. 18042: Head, Charles R. Bertsch; Production Editor, Eileen Segal; Assistant Editor, Fern S. Jackson; Editorial Assistant, Andrew J. D'Amelio.
Advertising Office: Centcom, Ltd., 142 East Ave., Norwalk, Conn. 06851.
The American Chemical Society and the Editors of The Journal of Organic Chemistry assume no responsibility for the statements and opinions advanced by contributors.

Business and Subscription Information

Correspondence concerning business matters should be sent to the Subscription Service Department, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036.

Claims for missing numbers will not be allowed (1) if received more than 60 days from date of issue plus time normally required for postal delivery of journal and claim; (2) if loss was due to failure to notify the Subscription Service Department of a change of address; or (3) if the reason for the claim is that a copy is "missing from files."
Change of address: Notify Subscription Service Department, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036.

Such notification should include both old and new addresses and postal ZIP number. Please send an old address label, if possible. Allow 4 weeks for change.
Subscriptions should be renewed promptly, to avoid a break in your series. Orders should be sent to the Subscription Service Department, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036.

Subscription rates for 1973: $\$ 20.00$ per volume to members of the ACS and $\$ 60.00$ per volume to all others. Those interested in becoming members should write to the Admissions Department, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036. Add $\$ 5.00$ per subscription for Canada and countries belonging to the Postal Union, and $\$ 6.00$ for all other countries.
Single copies for current year: $\$ 3.00$. Postage, single copies: to Canada and countries in the PanAmerican Union, $\$ 0.15$; all other countries, $\$ 0.20$. Rates for back issues from Volume 20 to date are available from the Special Issues Sales Department, 1155 Sixteenth St., N.W., Washington, D. C. 20036.

This publication and the other ACS periodical publications are now available on microfilm. For information write to MICROFILM, Special Issues Sales Department, 1155 Sixteenth St., N.W., Washington, D. C. 20036.

mes samex o. Organic Chemistry

Volume 38, Number 9
May 4, 1973

Toshio Fusta,* Chiyozo Takayama, and Minoru Nakajima	1623	The Nature and Composition of Taft-Hancock Steric Constants
Marvin Charton* and Barbara I. Charton	1631	Application of the Hammett Equation to Nonaromatic Unsaturated Systems. IX. Electrophilic Addition to Olefins. X. Nucleophilic Addition to Olefins
Jack Hine,* Kenneth W. Narducy, Julien Mulders, F. E. Rogers, and Nancy W. Flachskam	1636	Why Increasing Concentrations of Ethylenediamine Cause the Rate of Exchange of Isobutyraldehyde-2-d to Rise, Then Fall, and Then Rise Again
Raymond R. Witterind,* Thomas Capiris John Fahey, and John Shavel, Jr.	1641	1-(2-Imidazolin-2-yl)-2-imidazolines. I. The Structure of Jaffés Base and the Chemistry of Related Compounds
J. A. Deyrup,* J. C. Gill, T. LeBlanc, and H. L. Gingrich	1645	5-Imino-2-oxo-1,2,3-oxathiazolidines
Tadashi Sasaki,* Shoji Eguchi, Tsutomu Kiriyama, and Yoji Sakito	1648	Studies on Heterocage Compounds. IV. The Through- σ-Bond Interaction of β-Amino Ketone Moiety in 1,3-Diazaadamantan-6-one and 3,6-Diazahomoadamantan-9-one Systems. Structure and Reactivity
Edward E. Smissman* and Alexandros Makriyannis	1652	Azodicarboxylic Acid Esters as Dealkylating Agents
Theodore E. Snider and K. Darrell Berlin*	1657	Phosphorino [4,3- d]pyrimidines. III. Synthesis, Resolution, and Properties of 4-Substituted Phosphorino $[4,3-d$]pyrimidines
Michael P. Doyle,* Mary A. Zaleta, James E. DeBoer, and Wendell Wierenga	1663	Reactions of the Nitrosonium Ion. V. Nitrosative Cleavage of the Carbon-Nitrogen Double Bond. The Attempted Exchange of Oxygen for Nitrogen
Robert E. Ludt,* Jonathan S. Griffiths, Kim N. McGrath, and C. R. Hauser	1668	A Comparison of the Synthetic Utility of n-Butyllithium and Lithium Disopropylamide in the Metalations of N, N-Dialkyltoluamides
D. W. Slocum* and Burton P. Koonsvitsky	1675	Directed Metalation Reactions. III. Contribution of Oxygen Coordination in the Lithiation of o-tert-Butylanisole
D. W. Slocum* and Frank E. Stonemark	1677	Directed Metalation Reactions. IV. 2-Metalation of N-Substituted Ferrocenecarboxamides
Patrick M. Henry	1681	Oxidation of Olefins by Palladium(II). VI. Ethylene Oxidation by Palladium(II) Acetate in Acetic Acid Promoted by Various Oxidants
Charles W. Wilson, III,* and Philip E. Shaw	1684	(+)-Limonene Oxidation with Selenium Dioxide-Hydrogen Peroxice
Hiroshi Ohtara, Masuo Morisaki, and Nobuo Ikerawa*	1688	Reaction of 24,28-Epoxides of Sterol Side Chain with Boron Trifluoride Etherate
Douglas A. Seeley* and James McElwee	1691	Stereospecific Syntheses of Cis and Trans Epoxides from the same Diol
Steven Wolff and William C. Agosta*	1694	Preparation and Stereochemistry of the Methyl 1,3-Dimethylcyclohexaneacetates and Related Compounds
Allan Wissner and Jerrold Meinwald*	1697	anti-Tricyclo[3.1.0.0 ${ }^{2,4}$]hexanes. Synthesis and Reactions
Varda Usieli and Shalom Sarel*	1703	The Formation and the Mass Spectra of Adducts from the Reaction of Some α-Substituted Vinylcyclopropanes with Benzyne
Akira Takeda* and Sadao Tsuboi	1709	The Allylic Rearrangement. III. A Favorskii-Type Rearrangement of the Vinylogs of α-Chloroacetones
Irving J. Borowitz,* Kwok Chun Yee, and Rosalie K. Crouch	1713	Determination of Stereochemistry in Vinyl Phosphorylated Species by Nuclear Magnetic Resonance Shift Reagents. Revised Mechanistic Pathways for the Perkow Reaction
Douglas E. Dorman and Frank A. Bovey*	1719	Proton Coupled Carbon-13 Magnetic Resonance Spectra. The Simple Amides
		5A $\text { ก1. }, 2518$

Synthetic Methods of Organic Chemistry

 W. TheilheimerAnnouncing
the second volume of the sixth series

Vol. 27

yearbook 1973
600 pages, approx. $\$ 95.00$
Volume 27 of this well-known reference source of organic reactions again contains almost 1,000 new abstracts. This brings the total material in the 27 volumes to

24,333 selected and coordinated key abstracts

kept up-to-date by more than

21,500 supplementary references.

In contrast to card or tape systems, this comprehensive reaction documentation in handy book form allows the searcher to browse and to look up references in quick succession. The specially designed subject index provides easy access to all facets of the material covered and particularly to an increased number of review articles, by such entries as:
Assistance, intramolecular
Copper compounds, organo-
Dialkylchloroboranes
Dicarbanions
l, 3.Dithianes
Hexamethylphosphoramide
Hydroboration

Copper comporalecular
Dialkylchlorounds, organo-
Dicarbanions
Hexamethylphosphoramide Hydroboration

> Lysis
> Merrifield ayntheses Nucleosides
> Nucleosides
1,3.Oxazines, dihydro
> Oxymercuration-demercuration Peptides
> Prevention (of unwanted changes)

Protection (of functional groups) Radical reactions
Retention (of functional groups) Sodium tetracarbonylferrate(II) Solvents, aprotic, polar Stereospecific reactions Sulfonium ylids

The latest volume of Synthetic Methods of Organic Chemistry is number 25, completing the fifth series, and marking the documentation of synthetic procedures for the past 25 years. . Throughout the twenty five volumes the coverage of the literature and format has maintained a consistently high standard. . . Volume 25 is
completely up-to-date.
Each volume of 'Theilheimer' begins with a section entitled
'Trends in synthetic organic chemistry'.
This section in volume 25 is as in previous volumes

an extremely useful survey

of the main synthetic achievements during the past year. . The admirable achievement of 'Theilheimer' in collating the past twenty five years of synthetic organic chemistry can never be underestimated. Merely browsing through these volumes can be a source of many ideas and the acquisition of considerable knowledge. No active organic research school can afford to be without this vast store of information.

Chemistry \& Industry 1971, 1352
This, the final volume in the fifth series, contains a cumulative index for Volumes 2l-25 (nearly 200 pages in itself!)

The body of the text,
a comprehensive compendium of conversions in organic synthesis
is as usual an invaluable aid to the organic chemist. .
J. Am. Chem. Soc. 94, 689 (1972)

S. Karger•Basel•London•MÜnchen•New York•Paris•Sydney

Please place your order with:
Albert J. Phiebig, Inc.
P. O. Box 352

White Plains, N. Y. 10602, U.S.A.
CIRCLE 801 ON READER SERVICE CARD

For Research Laboratories: Semimonthly Expreas Abstract Service
William Theilheimer
318 Rillside Ave.
Nutley, N. J. 07110, U.S.A.

Hiroshi Furukawa, Kuo-Hsiung Lee,*
Tetsuro Shingu, Ronald Meck, and Claude Piantadosi

Walter J. Gensler* and Philippa Heggs Solomon

Marcel Fetizon,* Frederic J. Kakis, and Valentine Ignatiadou-Ragoussis Stan S. Hall* and Sharon D. Lipsky

Stan S. Hall

Donald A. Bolon
Robert D. Bach,* Denis Andrzejewski, and Laurence R. Dusold

George M. Laidlaw, Joseph C. Collins, Sydney Archer, David Rosi, and John W. Schulenberg* C. K. Tseng,* R. A. Simone, and F. H. Walker

Stephen A. Fine* and Philip D. Pulaski

Thomas J. Clark

William J. Middleton,* Diana Metzger, and David C. England
Takeo Saegusa,* Ichiki Murase, and
Yoshiniko Ito

Gerald F. Koser* and Shwn-Meei Yu

Richard W. Thies* and James E. Billigmeier

Manuel Salmón,* Eduardo Díaz, and Alfredo Ortega
Frank R. Stermitz* and David K. Williams

Tadatoshi Kubota* and Hiroshi Sakurai
Leland L. Smith,* Jon I. Teng, Martin J. Kulig, and Freddie L. Hill

Howard Haubenstock
Albert T. Bottini,* John G. Maroski, and Vasu Dev
K. T. Potts* and A. J. Elliott
J. Ernest Simpson, Guido H. Daub,*
f. Newton Hayes
A. Harry Andrist

James L. Dye,* Mei Tak Lok,
Frederick J. Tehan, Joseph M. Ceraso, and Kent J. Voorhees
Gilbert Stork* and Rick L. Danheiser

1722 Carolenin and Carolenalin, Two New Guaianolides in Helenium autumnale L. from North Carolina

1726 Synthesis of Chaminic Acid

1732 A Novel Method for the Degradation of the Carbon Chain of Organic Acids and Their Derivatives
1735 Alkylation-Reduction of Carbonyl Systems. Synthesis of Aromatic Hydrocarbons by the Alkylation-Reduction of Aromatic Ketones and Aldehydes
1738 Alkylation-Reduction of Carbonyl Systems. III. The Selective Synthesis of Aromatic Hydrocarbons and Alcohols by the Alkylation-Reduction of Benzylidene Carbonyl Compounds

NOTES

1741 Oxidative Substitution on Halophenols
1742 The Mechanism of the Cope Elimination

1743 The Synthesis of Hycanthone

1746 Synthesis of Aminobenzofurans and Aminonaphtho [1,2-b]furans

1747 Reexamination of the Claisen-Schmidt Condensation of Phenylacetone with Aromatic Aldehydes

1749 A Reinvestigation of the Condensation of Aliphatic Ketones with Benzil
1751 New Adducts of Hexafluoroacetone with Hydrogen Cyanide
1753 Synthetic Reactions by Complex Catalysts. XXIX. Esterification of Carboxylic Acid with Alkyl Halide by Means of Copper(I)-Isonitrile Complex
1755 Nucleophilic Methanolysis of 1-Acetyltetracyclo [3.2.0.0 $0^{2,7} .0^{4.6}$]heptane (2-Acetylquadricyclene) and Methyl 1-Tetracyclo[3.2.0.0 $0^{2,7} .0^{4,6}$]heptanecarboxylate (2-Carbomethoxyquadricyclene)
1758 Synthesis of Cyclodec-3-en-1-ols by Acid-Catalyzed Two-Carbon Ring Expansion

1759 Christinine, a New Epoxyguaianolide from Stevia Serrata Cav.

1761 Total Synthesis of the Pavinane Alkaloid Platycerine

1762 The Photocycloaddition of Diphenylacetylene to 1,5-Cyclooctadiene
1763 Sterol Metabolism. XXIII. Cholesterol Oxidation by Radiation-Induced Processes
1765 The Stereoselectivities of Lithium Aluminum Trialkoxyhydrides
1767 Base-Induced Cyclizations of Diethyl 4-Oxa-6-heptyne-1,1-dicarboxylate

1769 o-Dibenzoyl Heterocycles ria Cycloaddition Reactions. A Convenient Route to Fused Pyridazine Systems
1771 The Synthesis of Some 2,2'-Dioxa-Bridged Biphenyls and 1,1'-Dinaphthyls

COMMUNICATIONS

1772

1773

1775 The Regiospecific Alkylation of Cyclic β Diketone Enol Ethers. A General Synthesis of 4-Alkylcyclohexenones

Agosta, W. C., 1694
Andrist, A. H., 1772
Andrezjewski, D., 1742
Archer, S., 1743
Bach, R. D., 1742
Berlin, K. D., 1657
Billigmeier, J. E., 1758
Bolon, D. A., 1741
Borowitz, I. J., 1713
Bottini, A. T., 1767
Bovey, F. A., 1719
Capiris, T., 1641
Ceraso, J. M., 1773
Charton, B. I., 1631
Charton, M., 1631
Clark, T. J., 1749
Collins, J. C., 1743
Crouch, R. K., 1713
Danheiser, R. L., 1775
Daub, G. H., 1771
DeBoer, J. E., 1663
Dev, V., 1767
Deyrup, J. A., 1645
Díaz, E., 1759
Dorman, D. E., 1719
Doyle, M. P., 1663

Dusold, L. R., 1742
Dye, J. L., 1773
Eguchi, S., 1648
Elliott, A. J., 1769
England, D. C., 1751
Fahey, J., 1641
Fétizon, M., 1732
Fine, S. A., 1747
Flachskan, N. W., 1636
Fujita, T., 1623
Furukawa, H., 1722
Gensler, W. J., 1726
Gill, J. C., 1645
Gingrich, H. L., 1645
Griffiths, J. S., 1668
Hall, S. S., 1735, 1738
Haubenstock, H., 1765
Hauser, C. R., 1668
Hayes, F. N., 1771
Henry, P. M., 1681
Hill, F. L., 1763
Hine, J., 1636
Ignatiadou-Ragoussis,
V., 1732

AUTHOR INDEX

Ikekawa, N., 1688	Nakajima, M., 1623	Smith, L. L., 1763
Ito, Y., 1753	Narducy, K. W., 1636	Snider, T. E., 1657
		Solomon, P. H., 1726
Kakis, F. J., 1732	Ohtaka, H., 1688	Stermitz, F. R., 1761
Kiriyama, T., 1648	Ortega, A., 1759	Stonemark, F. E., 1677
$\begin{aligned} & \text { Koonsvitsky, B. P., } \\ & 1675 \end{aligned}$	Piantadosi, C., 1722	Stork, G., 1775
Koser, G. F., 1755	Potts, K. T., 1769	., 16
Kubota, T., 1762	Pulaski, P. D., 1747	09
	Rogers, F. E., 1636	Teng, J. I., 1763 Thies, R. W., 1758
Leidaw, G. M., 1		Tseng, C. K., 1746
Lee, K.-H., 1722	Saegusa, T., 1753	
Lipsky, S. D., 1735	Sakito, Y., 1648	ieli, V., 1703
Lok, M. T., 1773	Sakurai, H., 1762	
Ludt, R. E., 1668	Salmón, M., 1759 Sarel, S., 1703	Voorhees, K., 1773
Makriyannis, A., 1652	Sasaki, T., 1648	Walker, F. H., 1746
Maroski, J. G., 1767	Schulenberg, J. W.,	Wierenga, W., 1663 Williams, D. K., 1761
McElwee, J., 1691	1743	Wilson, C. W., III,
McGrath, K. N., 1668 Meck, R., 1722	Seeley, D. A., 1691 Shavel, J., Jr., 1641	1684
Meinwald, J., 1697	Shaw, P. E., 1684	Wissner, A., 1697
Metzger, D., 1751	Shingu, T., 1722	Wittekind, R. R., 1641
Middleton, W. J.,	Simone, R. A., 1746	Wolff, S., 1694
1751	Simpson, J. E., 1771	Yee, K. C., 1713
Morisaki, M., 1688	Slocum, D. W., 1675,	Yu, S.-M., 1755
Mulders, J., 1636	1677	
Murase, I., 1753	Smissman, E. E., 1652	Zaleta, M. A., 1663

In papers with more than one author the name of the author to whom inquiries about the paper should be addressed is marked with an asterisk in the by-line.

THE JOURNAL OF
 Organic Chemistrẙ

The Nature and Composition of Taft-Hancock Steric Constants

Toshio Fujita,* Chiyozo Takayama, and Minoru Nakajima
Department of Agricultural Chemistry, Kyoto University, Kyoto, Japan

Received November 7, 1972

Abstract

The Taft steric, E_{s}, and the Hancock corrected steric, $E_{8} \mathrm{c}$, constants of a set of various alkyl- and heteroatomsubstituted groups were analyzed as to whether they are separable into components. The analyses were carried out by means of the equation $E_{s}\left(\mathrm{CR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}\right)=a E_{\mathrm{s}}\left(\mathrm{R}_{1}\right)+b E_{8}\left(\mathrm{R}_{2}\right)+c E_{8}\left(\mathrm{R}_{3}\right)+d$, where $E_{8}=E_{\mathrm{s}}$ or $E_{9}{ }^{c}$ and $E_{9}\left(\mathrm{R}_{1}\right) \geqq E_{9}\left(\mathrm{R}_{2}\right) \geqq E_{9}\left(\mathrm{R}_{3}\right)$. For the set of 37 groups, the correlation was surprisingly good for $E_{5}{ }^{\mathrm{c}}$ values, 98% of variance of the data being elucidated. The finding that the linear combination of three α substituents is capable of describing the steric constant of the parent group indicates that the rela-ive importance of the steric repulsion effect and steric hindrance of motions in any one of the $E_{s}{ }^{c}$ values is unchanged so that an isokinetic relationship holds between relative enthalpies and entropies of activation for the steric ccurse of ester reactions.

In order to estimate the steric effect in aliphatic reactions quantitatively, the Taft $E_{\text {s }}$ constants defined by eq 1 are most widely used. ${ }^{1}$ The expression $\left(k_{\mathrm{R}}\right)$

$$
\begin{equation*}
E_{\mathrm{a}}=\log \left(k_{\mathrm{R}} / k_{\mathrm{Me}_{\mathrm{e}}}\right)_{\mathrm{A}} \tag{1}
\end{equation*}
$$

$\left.k_{\mathrm{Me}}\right)_{\text {A }}$ refers to the ratio of the rate constant of acidcatalyzed hydrolysis of esters of the type RCOOEt to that of MeCOOEt.
Since the E_{s} value is determined by the relative activation free energy from the unsaturated initial state to the saturated transition state of the ester hydrolysis, Hancock and his coworkers considered that a hyperconjugation effect of α hydrogen may contribute to the estmate of E_{s} values. ${ }^{2}$ They defined an $E_{\mathrm{s}}{ }^{\mathrm{c}}$ (corrected steric) constant as shown in eq 2 , separating

$$
\begin{equation*}
E_{\mathrm{g}}^{\mathrm{c}}=E_{\mathrm{a}}-0.306\left(3-n_{\mathrm{H}}\right) \tag{2}
\end{equation*}
$$

the hyperconjugation effect from the "true steric effect." In eq 2, n_{H} is the number of α hydrogen atoms.
In the course of structure-reactivity studies on various sets of aliphatic amines with various lone-pair electron acceptors, we have found that the steric and polar effects of three N substituents of amines can be separated in the form of eq 3 , where k is either a rate

$$
\begin{equation*}
\log k=\rho^{*} \Sigma^{*}+a E_{\mathrm{s}} \mathrm{c} 1+b E_{\mathrm{s}} \mathrm{c} 2+c E_{\mathrm{s}} \mathrm{c} 3+d \tag{3}
\end{equation*}
$$

or an equilibrium constant, ρ^{*}, a, b, c, and d are constants, and $\Sigma \sigma^{*}$ is the summation of the Taft σ^{*} values of three N substituents. $E_{\mathrm{s}}{ }^{\mathrm{c}} 1, E_{\mathrm{s}}{ }^{\mathrm{c}} 2$, and $E_{\mathrm{s}}{ }^{\mathrm{c}} 3$ relate to the N substituents $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}, denoted according to the sequence of their magnitude, i.e., $E_{\mathrm{s}}{ }^{\mathrm{c}} 1 \geqq E_{\mathrm{s}}{ }^{\mathrm{c}} 2 \geqq$

[^0]$E_{\mathrm{s}}{ }^{\mathrm{c}} 3$. The use of E_{s} instead of $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values was found to yield poorer results. ${ }^{3}$

The total steric effect of three N substituents, R_{1}, R_{2}, and R_{3}, on a certain electron acceptor is similar in nature, if not identical, to that of three α substituents R_{1}, R_{2}, and R_{3} on the reaction center in the transition state of ester hydrolysis as suggested by Taft (Figure 1). ${ }^{4}$ We have assumed that the $E_{s}{ }^{\text {c }}$ value of a certain group, $\mathrm{CR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}$, may be expressed by a linear combination of those of three α substituents, R_{1}, R_{2}, and R_{3}, as shown in eq 4 , where $E_{\mathrm{s}}{ }^{\mathrm{c}} 1 \geqq E_{\mathrm{s}}{ }^{\mathrm{c}} 2 \geqq E_{\mathrm{s}}{ }^{\mathrm{c}} 3$ and

$$
\begin{equation*}
E_{\mathrm{s}} \mathrm{c}\left(\mathrm{CR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}\right)=a E_{\mathrm{s}} \mathrm{c} 1+b E_{\mathrm{g}} \mathrm{c} 2+c E_{\mathrm{s}} \mathrm{c} 3+d \tag{4}
\end{equation*}
$$

a, b, c, and d are constants which are determined by means of the method of least squares.

The purpose of the work in this paper is to obtain supporting evidence on the above assumption by analyzing the mutual relationship among $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values expressed in terms of eq 4 and to contribute to a better understanding of the nature and composition of steric constants. Since the particular use of $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values has been viewed with skepticism by some workers, ${ }^{5}$ we have compared the quality of correlation between eq 4 and its counterpart for E_{s} values.

Analyses. -First, we have analyzed E_{s} and $E_{8}{ }^{\text {c }}$ values directly with those of three α substituents for 26 primary, seconcary, and tertiary alkyl groups from the Taft's original tabulation. ${ }^{1}$ Equations 5 and 6 are derived for E_{s} and $E_{\mathrm{s}}{ }^{\text {c }}$ values, respectively. In these and the following equations, n is the number of data points used for the correlation, s is the standard deviation, and r is the correlation coefficient. The figures in

[^1]\[

\left.$$
\begin{array}{l}
E_{\mathrm{s}}\left(\mathrm{CR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}\right)=\underset{(\pm 0.65)}{-2.467}+\underset{(\pm 0.554)}{0.924} E_{\mathrm{s}} 1
\end{array}
$$ \underset{(\pm 0.319)}{0.774 E_{\mathrm{s}} 2}+\underset{(\pm 0.334)}{0.438 E_{\mathrm{s}} 3}\right)
\]

Figure 1.-Resemblance of total steric effect of three substituents.
parentheses are the 95% confidence intervals. Both eq 5 and 6 are significant at better than the 99.5% confidence level ($F_{3,26,0.005}=5.41$). The quality of correlation is slightly better for $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values than for E_{s} values in terms of the F value. Although the correlations are far from complete, the E_{s} and $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values can be separated into their components much better than we might anticipate. With increasing substitutions at the α carbon, the steric effect is increased "telescopically" in such series as $\mathrm{Me}, \mathrm{Et}, i-\mathrm{Pr}$, and $t-\mathrm{Bu}$. However, the telescoping effect is not general and is not observed with successive α-methyl substitutions on neo-Pent and neopentylmethyl groups. Thus, we might expect that the composition of steric constants is too complex to be expressed by a simple relationship such as eq 5 or 6 . Almost 80% of variance in the steric constant data is elucidated by eq 5 and 6 .

In elaborating the correlations, we have considered that E_{s} or $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values of some α substituents could not always represent their steric effects properly. The E_{s} and $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values of primary alkyl groups are generally well predicted by eq 5 and 6 except for those of i-Pent and neopentylmethyl groups where the calculated values are considerably lower than their original values. For these two groups, the steric constants of the component R_{3} may not represent the true situation. The i - Bu and neo-Pent groups at the α carbon could rotate around the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ axis so that the effect of $i-\mathrm{Pr}$ and t-Bu groups at the β carbon might be minimized. We assume that the steric effect of i - Bu and neo-Pent substituents at the α carbon can be simulated by that of the $n-\operatorname{Pr}$ group.

If the components at the α carbon are congested in secondary and tertiary groups, their orientation would be limited and "effective" steric constants might differ from their original values. For these groups, the total number of hydrogens at β carbon atoms could be taken as a measure of congestion. The maximum number is six for secondary groups at $i-\operatorname{Pr}$ and nine for tertiary group at $t-\mathrm{Bu}$. The less the number of β hydrogens, i.e., the more substituted the β carbon atoms by other alkyl groups, the more congested would be the α substituents. We have assumed that, when the number of β hydrogens becomes less than four for secondary and less than six for tertiary alkyl groups, the steric effect of α comoonents, in particular, that of groups of $\mathrm{CH}_{2} \mathrm{R}^{\prime}$ type, is represented by a different E_{s} or $E_{\mathrm{s}}{ }^{\mathrm{c}}$ value.

If the steric effects of both the groups R_{2} and R_{3} of $\mathrm{CH}_{2} \mathrm{R}^{\prime}$ type are originally moderate, one of these groups would be forced to direct its R^{\prime} moiety forward so as to exaggerate its steric effect. Thus, in diethylcarbinyl,
di- n-propylcarbinyl, and triethylcarbinyl groups, the effective steric effect of one of the component Et and $n-\operatorname{Pr}$ groups could be expressed by the E_{s} or $E_{\mathrm{s}}{ }^{\text {c }}$ value of the i - Pr group. If the steric effect of the group R_{3} is large enough, the group R_{2} of the $\mathrm{CH}_{2} \mathrm{R}^{\prime}$ type would be oriented in such a way as to minimize the effect of R^{\prime} on the group R_{3} and the reaction center. For i - Bu and neo-Pent groups as the component R_{2} in diisobutylcarbinyl, dineopentylcarbinyl, and methylneopentyl-tert-butylcarbinyl groups, the steric effect could be similar to that of the $n-\operatorname{Pr}$ group.

For methyl-tert-butylcarbinyl and dimethyl-tertbutylcarbinyl groups both the groups R_{2} and R_{3} are of the symmetrical top type. It is difficult to choose other substituents the E_{s} or $E_{5}{ }^{\text {c }}$ values of which are capable of describing the effective steric effects of groups R_{2} and R_{3}. Probably, the effect of the t-Bu group would be much greater than that anticipated by its usual $E_{\text {s }}$ and $E_{3}{ }^{\text {c }}$ values. These two groups are not submitted to further correlations. In Table I, the above assumptions are summarized.

Table I
Conformationally Limited Groups

	rigin	groups ${ }^{\text {a }}$ -		No. of β H	Groups which exhibit "effective" steric effect ${ }^{b}$		
	R_{1}	R_{2}	R3		R_{1}	R_{2}	R_{8}
rima	H	H	$i-B u$	2	H	H	Pr
Primary	H	H	neo-Pent	2	H	H	Pr
	H	Ft	Et	4	H	Et	$i-P r$
	H	Pr	$\mathrm{Pr}_{\boldsymbol{r}}$	4	H	Pr	$i-P r_{\text {r }}$
Secondary	H	$i-B u$	$i-\mathrm{Bu}$	4	H	$P r r_{r}$	$i-\mathrm{Bu}$
	H	neo-Pent	neo-Pent	4	H	$P r r_{r}$	neo-Pent
	H	Me	$t-B u$	3	H	Me	($t-\mathrm{Bu}$)
	Et	Et	$E t$	6	Et	Et	$i-P r$
Tertiary	Me	Me	$t-B u$	6	Me	Me	($t-\mathrm{Bu}$)
	Me	neo-Pent	t-Bu	5	Me	$P r$	$t-\mathrm{Bu}$

${ }^{a}$ The component group the conformation of which is significantly limited is italicized. ${ }^{b}$ The group the steric constant of which is taken to simulate the "effective" steric effect is italicized. t-Bu group is shown with parentheses; see text.

With the use of effective E_{s} or $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values for conformationally limited α substituents in Table I, the correlations are repeated. The results are shown in Table II and eq 7 and 8. The correlation for E_{s} values is still not acceptable. By eq 7, $E_{\text {s }}$ values of secondary and tertiary groups are only very poorly predicted. On the other hand, the correlation for $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values is much improved. Equation 8 is able to interprete 98% of the variance in $E_{\mathrm{s}}{ }^{\text {c }}$ data. Thus, the assumptions made above for conformations of α substituents appear to be justified and the $E_{8}{ }^{\text {c }}$ value seems to be better than E_{s} for the scale of steric effects. Encouraged by this result, we have attempted to extend the analyses to other groups the α substituents of which include heteroatoms. To this end, the steric constants of heteroatoms should be evaluated.

Recently, Charton has analyzed quantitatively the dependence of E_{s} values on group dimensions expressed in terms of van der Waals radii. ${ }^{6}$ For example, the
(6) M. Charton, J. Amer. Chem. Soc., 91, 615 (1969).

${ }^{a}$ Conformationally limited groups are indicated with asterisk. Their steric constants are taken as shown in Table I. b Steric constants of n-Hept are taken as those of n-Oct. ${ }^{c} \mathrm{Bz}=$ benzyl. ${ }^{d}$ Original values from ref $1 .{ }^{e}$ Calculated by eq 7. ' Calculated by eq 8 .

$$
\begin{align*}
E_{\mathrm{s}}\left(\mathrm{CR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}\right) & =\underset{(\pm 0.596)}{-2.282}+\underset{(\pm 0.510)}{0.789 E_{\mathrm{s}} 1}+\underset{(\pm 0.363)}{0.832 E_{8} 2}+\underset{(\pm 0.340)}{0.648 E_{\mathrm{8}} 3} \tag{7}\\
E_{\mathrm{s}} \mathrm{c}^{\mathrm{c}}\left(\mathrm{CR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}\right) & =\underset{(\pm 0.195)}{-2.104}+\underset{(\pm 0.516)}{3.429 E_{\mathrm{s}} 1}+\underset{(\pm 0.252)}{1.978 E_{\mathrm{s}} \mathrm{c}^{2}}+\underset{(\pm 0.118)}{0.649 E_{\mathrm{s}} \mathrm{c} 3} \tag{8}
\end{align*}
$$

n	s	r
24	0.499	0.921
24	0.191	0.992

E_{s} values of $\mathrm{CH}_{2} \mathrm{X}, \mathrm{CHX}_{2}$, and CX_{3} groups including the group of $\mathrm{X}=\mathrm{H}$ are linearly dependent on van der Waals radius, $r_{\mathbf{v}}(\mathbf{X})$, of the heteroatom, \mathbf{X}, such as halogens and O and S in OCH_{3} and SCH_{3} groups. Equations 9-11 indicate the situation where $a, a^{\prime}, a^{\prime \prime}$,

$$
\begin{gather*}
E_{\mathrm{B}}\left(\mathrm{CH}_{2} \mathrm{X}\right)=a r_{\mathrm{v}}(\mathrm{X})+c \tag{9}\\
E_{\mathrm{B}}\left(\mathrm{CHX}_{2}\right)=a^{\prime} r_{\mathrm{v}}(\mathrm{X})+c^{\prime} \tag{10}\\
E_{\mathrm{B}}\left(\mathrm{CX}_{3}\right)=a^{\prime \prime} r_{\mathrm{v}}(\mathrm{X})+c^{\prime \prime} \tag{11}
\end{gather*}
$$

c, c^{\prime}, and $c^{\prime \prime}$ are constants. He also pointed out that, for symmetrical top-type groups such as CX_{3} and CH_{3}, either a maximum or a minimum value of the group van der Waals radius, $r_{\mathrm{v}}\left(\mathrm{CX}_{3}, \max \right)$ or $r_{\mathrm{v}}\left(\mathrm{CX}_{3}, \min \right)$, calculated by means of trigonometry can be used to correlate with their E_{5} value. With the use of an average of Charton's $r_{\mathrm{v}}(\max)$ and $r_{\mathrm{v}}(\min)$ values, Kutter and Hansch have derived eq 12 for symmetrical top-
type groups including H. ${ }^{7}$ Substituting the $r_{\mathrm{v}}(\mathbf{X})$ values of halogens, O , and S into eq 12, they have estimated $E_{\text {s }}$ values of symmetric monoatomic substituents as well as of OCH_{3} and SCH_{3}, as shown in Table III.

Adopting these E_{s} values for α-heteroatom substituents, eq 13 is derived for 37 groups including 24 alkyland 13 heteroatom-substituted groups. Although E_{8}

Table III
E_{g} and $E_{\mathrm{g}}{ }^{\mathrm{c}}$ Values of Halogens $\mathrm{OCH}_{3}, \mathrm{OPh}$, and SCH_{3}

Functions	$r_{\mathbf{v}}(\mathrm{X})$	$E_{8}{ }^{b}$	$E_{\mathrm{s}}{ }^{\mathrm{c}}{ }^{c}$
F	1.47	0.78	-0.02
Cl	1.75	0.27	-0.18
Br	1.85	0.08	-0.23
I	1.98	-0.16	-0.31
$\mathrm{OCH}_{3}{ }^{a}$	1.52	0.69	-0.05
$\mathrm{OC}_{6} \mathrm{H}_{5}{ }^{a}$	1.52	0.69	-0.05
$\mathrm{SCH}_{3}{ }^{a}$	1.80	0.17	-0.21

${ }^{a}$ Calculated asing oxygen or sulfur radius only. ${ }^{b}$ Calculated by eq 12. ${ }^{c}$ Calculated by eq 17 .
values of the heteroatom-substituted groups are well predicted in general, the situation for some of the secondary and tertiary alkyl groups is not improved much above eq 7, as shown in Table IV.
For evaluating $E_{s}{ }^{c}$ values of heteroatom substituents, the procedure using the relationship between $E_{s}{ }^{c}$ and r_{v} (ave) for symmetrical top-type groups including H cannot be applied. While both E_{s} and $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values of CH_{3} are equal to each other, being zero, the $E_{8}{ }^{\text {c }}$ values of H and $\mathrm{CX}_{3}\left(\mathrm{X}=\right.$ halogen and $\left.\mathrm{CH}_{3}\right)$ are taken to be $0.306\left(3-n_{\mathbf{H}}\right)=0.92$ unit lower than the corresponding E_{s} values. Thus, the correlation of $E_{\mathrm{s}}{ }^{\mathrm{c}}$ with r_{v} (ave) is obviously poorer than that in eq 12. If the $E_{\mathrm{s}}{ }^{\mathrm{c}}$ is really free from the hyperconjugation effect and a measure of the "true" steric effect, the apparent lack of linear correlation with the van der Waals radius might
$E_{8}\left(\mathrm{CR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}\right)=\underset{(\pm 0.382)}{-2.532}+\underset{(\pm 0.371)}{0.739 E_{\mathrm{s}} 1}+\underset{(\pm 0.276)}{0.926 E_{8} 2}+\underset{(\pm 0.215)}{0.440 E_{8} 3}$

n	${ }^{\boldsymbol{s}}$	
37	0.429	0.925

Figure 2.-Plot of E_{s} vs. $r_{\mathrm{v}}(\mathrm{X})$.
be due to the fact that the r_{v} (ave) values such as those used for eq 12 do not represent the "effective" steric dimensions for some groups.

There are some conflicts in the estimate of r_{v} (ave) or $r_{\mathrm{v}}(\mathrm{X})$ of the CH_{3} group ($\mathrm{X}=\mathrm{CH}_{3}$), even for the relation with E_{s} values. The E_{s} value of $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ is 0.89 unit larger than that of CBr_{3}, indicating that the effective steric size of CH_{3} is considerably smaller than that of Br . Yet, from eq 12 , the E_{s} value of Br is estimated as being quite close to that of CH_{3}, since $r_{\mathrm{y}}(\mathrm{X})$ of Br and r_{v} (ave) of CH_{3} are taken as 1.85 and $1.97 \AA$, respectively. Moreover, the linear relationships between $E_{\mathrm{s}}\left(\mathrm{CH}_{2} \mathrm{X}\right.$, $\left.\mathrm{CHX}_{2}, \mathrm{CX}_{3}\right)$ and $r_{\mathrm{v}}(\mathrm{X})$ as shown in eq 9-11 do not hold for the groups of $\mathrm{X}=\mathrm{CH}_{3}$. The E_{s} values of $\mathrm{Et}, i-\mathrm{Pr}$, and t-Bu groups are too large to be elucidated by r_{v} (ave) and even by $r_{\mathrm{v}}(\mathrm{min})$ of the Me group. The effective size of Me should be considerably smaller than that represented by $r_{\mathrm{v}}(\min), 1.76 \AA$.

Figures 2 and 3 indicate the situation, showing that the effective value of $r_{\mathrm{v}}\left(\mathrm{CH}_{3}\right)$ might be estimated as 1.3-1.5 \AA. The three lines in these figures which correlate E_{s} or $E_{\mathrm{s}}{ }^{\text {c }}$ values with $r_{\mathrm{v}}(\mathrm{X})$ should intersect the abscissa at the same point when $\mathrm{X}=\mathrm{H}$; i.e., $\mathrm{CH}_{2} \mathrm{X}=$ $\mathrm{CHX}_{2}=\mathrm{CX}_{3}=\mathrm{CH}_{3}$. The most probable $r_{\mathrm{v}}(\mathrm{X})$ values for $\mathrm{X}=\mathrm{CH}_{3}$ and $\mathrm{X}=\mathrm{H}$ are estimated by means of the relation expressed as eq 14. In this equation, a, b, c, and

$$
r_{\mathrm{v}}(\mathrm{X})=a E_{\mathrm{s}}\left(\mathrm{CH}_{2} \mathrm{X}\right)+b E_{8}\left(\mathrm{CHX}_{2}\right)+c E_{8}\left(\mathrm{CX}_{3}\right)+d \quad(14)
$$

d are constants and each of the E_{s} terms is applied only to each type of group; i.e., for $\mathrm{CH}_{2} \mathrm{X}$ type groups, $a \neq 0$ and $b=c=0$. For 12 groups in Table V where $\mathrm{X}=$ halogen, OCH_{3}, and SCH_{3}, eq 15 and 16 are derived. The correlation coefficients of these equations are not very high. However, the standard deviations

Figure 3.--Plot of $E_{\mathrm{s}}{ }^{\mathrm{c}}$ vs. $r_{\mathrm{v}}(\mathrm{X})$.
are rather small and the F tests show that the correlations are significant at better than 99% level of probability ($F_{3,8,0.01}=7.59$).

From eq $15, r_{\mathrm{v}}(\mathrm{H})$ is $1.16 \AA$ on the basis of E_{s} values, which agrees with its usually adopted value, $1.20 \AA$. However, eq 16 with $E_{\mathrm{s}}{ }^{\text {c }}$ values show that the effective radius of H is around $0.87 \AA$. By substituting the E_{s} value of $\mathrm{Et}, i-\mathrm{Pr}$, and $t-\mathrm{Bu}$ groups into the first, second, and third term of eq 15 , respectively, the values 1.31 , 1.34 , and $1.60 \AA$ are obtained for $r_{v}(\mathrm{Me})$. The average of these three is $1.41 \AA$, which could be regarded as the most probable effective radius of Me. Similarly, from eq 16 , the values $1.43,1.31$, and $1.55 \AA$ are derived. The average, $1.43 \dot{\AA}$, can be taken as $r_{\mathrm{v}}(\mathrm{Me})$ on the basis of $E_{8}{ }^{c}$ values. The effective value of $r_{\mathrm{v}}(\mathrm{Me})$, 1.41-1.43 \hat{A}, seems rather low compared with the usually adopted value, $2.00 \AA$, or $r_{\mathrm{v}}(\mathrm{ave}), 1.97 \AA$. Charton has recognized that $r_{\mathrm{v}}(\mathrm{min}), 1.72 \AA$, is always a better scale for elucidating the steric effect of Me than r_{v} (max) or r_{v} (ave). ${ }^{6}$ The dimensions of the hydrogen atom are so small that the net effect of Me could be represented by the one even lower than the $r_{\mathrm{v}}(\min)$ value. Since the effective value of $r_{\mathrm{v}}(\mathrm{Me})$ is close to the van der Waals radius of a naked carbon atom, $1.60 \AA \AA^{8}$ the group Me could be regarded as having the character of a single atom type substituent. Thus, the correlation between E_{s} and r_{v} (ave) shown as eq 12 seems to require reexamination, at least for ester reactions. For inter-
(8) "Handbook of Biochemistry," H. A. Sober. Ed.. Chemical Rubber Co., Clevelend, Ohio, 1970, p J-3.

Table IV
Steric Constants of Alkyl- and Heteroatom-Substituted Groups

Groupa	Component -substituenta ${ }^{\text {a }}$			Component - E_{a} values-				ues-	Component - $E_{8}{ }^{\circ}$ values			$E_{\mathrm{g}}{ }^{\text {c }}$ values--	
	\mathbf{R}_{1}	R2	R3	$E_{8} 1$	$E_{8} 2$	$E_{8} 3$	Orig ${ }^{\text {d }}$	Calcde	$E_{8}{ }^{\text {c }} 1$	$E_{8}{ }^{\circ} 2$	$E_{8}{ }^{\text {c }} 3$	Orig	Calcd ${ }^{\prime}$
Me	H	H	H	1.24	1.24	1.24	0.00	0.15	0.32	0.32	0.32	0.00	-0.29
Et	H	H	Me	1.24	1.24	0.00	-0.07	-0.40	0.32	0.32	0.00	-0.38	-0.47
Pr	H	H	Et	1.24	1.24	-0.07	-0.36	-0.43	0.32	0.32	-0.38	-0.67	-0.69
Bu	H	H	Pr	1.24	1.24	-0.36	-0.39	-0.56	0.32	0.32	-0.67	-0.70	-0.85
Pent	H	H	Bu	1.24	1.24	-0.39	-0.40	-0.57	0.32	0.32	-0.70	-0.71	-0.87
i-Pent	H	H	$i-\mathrm{Bu}^{*}$	1.24	1.24	-0.36	-0.35	-0.56	0.32	0.32	-0.67	-0.66	-0.85
n-Oct	H	H	n-Hept	1.24	1.24	$-0.33{ }^{\text {b }}$	-0.33	-0.55	0.32	0.32	$-0.64{ }^{\text {b }}$	-0.64	-0.84
	H	H	neo-Pent*	1.24	1.24	-0.36	-0.34	-0.56	0.32	0.32	-0.67	-0.65	-0.85
$i-\mathrm{Bu}$	H	H	$i-\mathrm{Pr}$	1.24	1.24	-0.47	-0.93	-0.61	0.32	0.32	-1.08	-1.24	-1.09
neo-Pent	H	H	$t-\mathrm{Bu}$	1.24	1.24	-1.54	-1.74	-1.08	0.32	0.32	-2.46	-2.05	-1.88
	H	H	$\mathrm{Bz}^{\text {c }}$	1.24	1.24	-0.38	-0.38	-0.57	0.32	0.32	-0.69	-0.69	-0.87
	H	H	$\mathrm{BzCH}_{2}{ }^{\text {c }}$	1.24	1.24	-0.38	-0.45	-0.57	0.32	0.32	-0.69	-0.76	-0.87
	H	H	c-Hex	1.24	1.24	-0.79	-0.98	-0.75	0.32	0.32	-1.40	-1.29	-1.27
$i-\mathrm{Pr}$	H	Me	Me	1.24	0.00	0.00	-0.47	-1.55	0.32	0.00	0.00	-1.08	-1.16
sec-Pent	H	Et	Et**	1.24	-0.07	-0.47	-1.98	-1.82	0.32	-0.38	-1.08	-2.59	-2.60
sec-Hept	H	Pr	Pr*	1.24	-0.36	-0.47	-2.11	-2.09	0.32	-0.67	-1.08	-2.72	-3.23
	H	$i-\mathrm{Bu}^{*}$	$i-\mathrm{Bu}$	1.24	-0.36	-0.93	-2.47	-2.29	0.32	-0.67	-1.24	-3.08	-3.32
	H	neo-Pent*	neo-Pent	1.24	-0.36	-1.74	-3.18	-2.65	0.32	-0.67	-2.05	-3.79	-3.78
$s e c-B u$	H	Me	Et	1.24	0.00	-0.07	-1.13	-1.58	0.32	0.00	-0.38	-1.74	-1.38
	H	Me	neo-Pent	1.24	0.00	-1.74	-1.85	-2.31	0.32	0.00	-2.05	-2.46	-2.33
$t-\mathrm{Bu}$	Me	Me	Me	0.00	0.00	0.00	-1.54	-2.53	0.00	0.00	0.00	-2.46	-2.12
	Et	Et	Et*	-0.07	-0.07	-0.47	-3.80	-2.86	-0.38	-0.38	-1.08	-4.72	-4.69
	Me	Me	neo-Pent	0.00	0.00	-1.74	-2.57	-3.30	0.00	0.00	-2.05	-3.49	-3.29
	Me	neo-Pent*	t-Bu	0.00	-0.36	-1.54	-4.00	-3.54	0.00	-0.67	-2.46	-4.92	-4.97
$\mathrm{CH}_{2} \mathrm{OMe}$	H	H	OMe	1.24	1.24	0.69	-0.19	-0.10	0.32	0.32	-0.05	-0.50	-0.50
$\mathrm{CH}_{2} \mathrm{Cl}$	H	H	Cl	1.24	1.24	0.27	-0.24	\cdots	0.32	0.32	-0.18	-0.55	-0.58
$\mathrm{CH}_{2} \mathrm{~F}$	H	H	F	1.24	1.24	0.78	-0.24	-0.06	0.32	0.32	-0.02	-0.55	-0.48
$\mathrm{CH}_{2} \mathrm{Br}$	H	H	Br	1.24	1.24	0.08	-0.27	-0.37	0.32	0.32	-0.23	-0.58	-0.60
$\mathrm{CH}_{2} \mathrm{SMe}$	H	H	SMe	1.24	1.24	0.17	-0.34	-0.33	0.32	0.32	-0.21	-0.65	-0.59
$\mathrm{CH}_{2} \mathrm{I}$	H	H	I	1.24	1.24	-0.16	-0.37	-0.47	0.32	0.32	-0.31	-0.68	-0.65
$\mathrm{CH}_{2} \mathrm{OPh}$	H	H	OPh	1.24	1.24	0.69	-0.33	-0.10	0.32	0.32	-0.05	-0.64	-0.50
CHF_{2}	H	F	F	1.24	0.78	0.78	-0.67	-0.48	0.32	-0.02	-0.02	-1.28	-1.22
CHCl_{2}	H	Cl	Cl	1.24	0.27	0.27	-1.54	-1.18	0.32	-0.18	-0.18	-2.15	-1.66
CHBr_{2}	H	Br	Br	1.24	0.08	0.08	-1.86	-1.44	0.32	-0.23	-0.23	-2.47	-1.79
CF_{3}	F	F	F	0.78	0.78	0.78	-1.16	-0.85	-0.02	-0.02	-0.02	-2.08	-2.23
CCl_{3}	Cl	Cl	Cl	0.27	0.27	0.27	-2.06	-1.95	-0.18	-0.18	-0.18	-2.98	-3.15
CBr_{3}	Br	Br	Br	0.08	0.08	0.08	-2.43	-2.36	-0.23	-0.23	-0.23	-3.35	-3.43

${ }^{a}$ Conformationally limited groups are shown with asterisk. For their steric constants, see Table I. ${ }^{b}$ Taken as those of n-Oct. ${ }^{c} \mathrm{Bz}=$ benzyl. ${ }^{\circ}$ From ref 1 . Calculated by eq 13 . S Calculated by eq 19.

Table V
$r_{\nabla}(\mathrm{X})$ vs. E_{B} and $E_{\mathrm{g}}{ }^{\circ}$ Values, Data for Equations 15 and 16

Groups	$E_{8}\left(\mathrm{CH}_{2} \mathrm{X}\right)$	$E_{8}\left(\mathrm{CHXX}_{2}\right)$	$E_{8}\left(\mathrm{CXX}_{2}\right)$	$\overbrace{\text { Oria }}{ }_{v}(\mathrm{X})$		$E_{8}{ }^{\text {o }}$ ($\left.\mathrm{CH}_{2} \mathrm{X}\right)$	$E_{8}{ }^{\text {e }}$ (CHX_{2})	$E_{8}{ }^{\text {c }}$ (CX ${ }^{\text {) }}$	$\overbrace{\text { Orig }} r(X){\underset{\text { Calcd }}{ }{ }^{\text {o }}}$	
$\mathrm{CH}_{2} \mathrm{~F}$	-0.24			1.47	1.66	-0.55			1.47	1.68
$\mathrm{CH}_{2} \mathrm{Cl}$	-0.24			1.75	1.66	-0.55			1.75	1.68
$\mathrm{CH}_{2} \mathrm{Br}$	-0.27			1.85	1.72	-0.58			1.85	1.73
$\mathrm{CH}_{2} \mathrm{I}$	-0.37			1.98	1.93	-0.68			1.98	1.88
$\mathrm{CH}_{2} \mathrm{OMe}$	-0.19			1.52	1.56	-0.50			1.52	1.61
$\mathrm{CH}_{2} \mathrm{SMe}$	-0.34			1.80	1.87	-0.65			1.80	1.83
CHF_{2}		-0.67		1.47	1.42		-1.28		1.47	1.39
CHCl_{2}		-1.54		1.75	1.75		-2.15		1.75	1.75
CHBr_{2}		-1.86		1.85	1.87		-2.47		1.85	1.89
CF_{3}			-1.16	1.47	1.49			-2.08	1.47	1.48
CCl_{3}			-2.06	1.75	1.74			-2.98	1.75	1.74
CBr_{3}			-2.43	1.85	1.85			-3.35	1.85	1.85

${ }^{a}$ Calculated by eq 15 . $^{\text {t }}$ Calculated by eq 16.
molecular interactions such as enzyme-inhibitor and drug-receptor complex formations where the thickness of substituents on an aromatic ring plays a critical role, the E_{8} values, being linearly related to the thickness of substituents, have been found to be useful parameters. ${ }^{7}$

The effective value, $0.87 \AA$, for hydrogen on the basis of $E_{\mathrm{s}}{ }^{\text {c }}$ values is also considerably lower than its usually adopted value, $1.20 \AA$. As shown in Figure 4, for CX_{3} type substituents, the variation in their dimension is largest toward a direction which takes $70.5^{\circ}\left(=180^{\circ}\right.$ 109.5°) with the central axis. In this case, the $r_{\mathrm{v}}\left(\mathrm{CX}_{3}\right.$, ave) values take care of the variation in the covalent bond radii of X . On the other hand, for single-atom substituents, the variation in their dimension is largest along the central axis, being determined by their covalent and van der Waals radii. In this case, the increase in the van der Waals radius which is necessarily accompanied with the elongation of the $\mathrm{C}-\mathrm{X}$ bond would not be reflected on the increase in the steric effect so remarkably as that for CX_{3} type substituents. The situation can be illustrated in Figure 5, where the plot of $E_{8}{ }^{\text {c }}$ values $v s$. effective or average r_{v} values for H -, $\mathrm{CH}_{3^{-}}$, and CX_{3}-type substituents, regarding CH_{3} as having characters of CX_{3} type and also single atom type substituent, results in biphasic lines. In Figure 5, the line connecting points for H and CH_{3} is regarded as representing the relation of $E_{\mathrm{s}}{ }^{\mathrm{c}}$ with effective r_{v} value of single-atom substituents. The slope is -0.57 , as shown in eq 17 . This value is about $1 / 3$ of that of the regression line expressed as eq 18 for CX_{3}-type sub-

$$
\begin{align*}
& E_{\mathrm{g}} \mathrm{c}(\mathrm{X})=0.821-0.571 r_{\mathrm{v}}(\mathrm{X}) \tag{17}\\
& E_{\mathrm{g}}{ }^{\circ}\left(\mathrm{CX}_{\mathrm{a}}\right)=2.610-1.860 r_{\mathrm{v}}(\text { ave }) \quad 5 \quad 0.126 \quad 0.997 \tag{18}\\
& (\pm 0.756)(\pm 0.285) \\
& \begin{array}{lll}
5 & 0.126 & 0.997
\end{array}
\end{align*}
$$

stituents. The ratio is acceptable since it is close to the cosine of 70.5°, the angle between two directions along which the variations in dimensions of X and CX_{3} substituents are most sensitive. On this basis, the effective value of an H-substituent radius, $0.87 \AA$, would not be considered as an unreasonable estimate.

The $E_{8}{ }^{\text {c }}$ values of single-atom substituents, including OCH_{3} and SCH_{3}, which are shown in Table III are estimated by means of eq 17 . With these values for α-heteroatom substituents, the $E_{\mathrm{s}}{ }^{\text {c }}$ values of 37 groups shown in Table IV are analyzed to give eq 19. The
with the use of reactivity and equilibrium data involving steric effects, $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values, in particular those of alkyl groups, are suggested to be superior to E_{s} values as the scale of steric effect. The failure in predicting those of secondary and tertiary alkyl groups is the most serious drawback in $E_{\text {s }}$ values.

We have adopted in this work $E_{\mathrm{s}}{ }^{\text {c }}$ values which are estimated assuming that the hyperconjugation effect is $-0.306 \log$ unit per α hydrogen. ${ }^{2}$ Whether or not the hyperconjugation effect of α hydrogen is unchanged regardless of substituents being alkyl- or heteroatomsubstituted groups is still open to further discussions. However, the good correlations obtained for eq 8 and 19 would indicate that the value -0.306 is reasonable at least as a first approximation. The concept of CF hyperconjugation, which was suggested at one time, has been proved to be fallacious recently. ${ }^{9}$

For the acid hydrolysis of esters, the step of attack of a water molecule on the protonated ester at the sp^{2} carbon atom is rate limiting. The stable conformations of esters and also of protonated esters have been generally considered to be the eclipsed forms. ${ }^{10,11}$ The most stable form is shown in Figure 6, where the bulkiest α substituent, R_{3}, is eclipsed with the carbonyl or ${ }^{+} \mathrm{C}-\mathrm{OH}$ except for dihalo acetates. ${ }^{11}$ The water molecule would attack the sp^{2} carbon from the side sterically least hindered. In this situation, the steric effect of the R_{1} group would play a dominant role. At the same time as the attack of water molecule, the coordination number of the sp^{2} carbon is increased from three to four and the resultant sp^{3} structure would take a staggered form, as shown in Figure 7. The larger the size of the component R_{2}, the less favorable would be the process, since nonbonded repulsion with R_{2} becomes greater in the sp^{3} structure than before. When the size of the R_{3} group increases, two opposed effects would emerge. One is that the attack of a water molecule is less favored and the other is that the release of the ${ }^{+} \mathrm{C}-\mathrm{OH}$ group from the eclipsed form to the less hindered staggered conformation would be facilitated. These two effects would be more or less compensated by each other. Thus, the activation process would be most sensitive to the steric effect of R_{1} and least to that of R_{3}. The coefficient of $E_{\mathrm{s}}{ }^{\mathrm{c}}$ terms in eq 8 and 19 can be understood on this basis. Although each of the component $E_{\mathrm{s}}{ }^{\text {c }}$ values can be further separable into three subcompo-

$$
E_{\mathrm{B}} \circ\left(\mathrm{CR}_{1} \mathrm{R}_{2} \mathrm{R}_{\mathrm{a}}\right)=\frac{-2.118}{(\pm 0.151)}+\underset{(\pm 0.468)}{2.982 E_{\mathrm{8}}{ }^{\circ} 1}+\underset{(\pm 0.273)}{2.160 E_{\circ}{ }^{\circ} 2}+\underset{(\pm 0.116)}{0.570 E_{\mathrm{8}} \circ}
$$

quality of correlation is slightly poorer than that of eq 8 but still good enough to be acceptable. The values of the slope of each $E_{\mathrm{s}}{ }^{\mathrm{c}}$ term and intercept are practically identical with those of eq 8 . Although the $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values of CHCl_{2} and CHBr_{2} are poorly predicted (vide infra), it would be reasonable to conclude that, on the whole, the steric constants are separable into components even for the heteroatom substituents.

Discussion

The above analyses strongly support the hypothesis that the steric constant of aliphatic groups is composed of three components. Although the relative merits of two sets of constants, E_{8} and $E_{8}{ }^{\text {c }}$, should be compared
nents, it should represent the "total" steric effect for each of the α substituents in the right side of these equations.

The most poorly predicted $E_{\mathrm{s}}{ }^{c}$ values in eq 19 are those of dihalomethyl (CHX_{2}) groups. For dihaloacetic acid esters, Brown has proposed that they exhibit a two-fold barrier to internal rotation and the form I is more stable than the form II in Figure 8. ${ }^{11}$ Thus, the situation where a water molecule attacks the sp^{2} carbon is different from that shown in Figure 7. If the protonated esters also maintain the same conformations as shown in Figure 8, the groups R_{1}, R_{2}, and R_{3} would

[^2]

Figure 4.-The direction along which the variation in group dimensions is most sensitive to structural variation (\longleftrightarrow).

Figure 5.-Plot of $E_{8}{ }^{\mathrm{c}} v$ s. effective $r_{\mathrm{v}}(\mathrm{X})$ or $r_{\mathrm{v}}\left(\mathrm{CX}_{3}\right.$, ave $)$ value of symmetric top-type groups.
correspond to X, X, and H , respectively, in either of these two conformations, so that the component $E_{\mathrm{s}}{ }^{\text {c }}$ values should be taken as $E_{8}{ }^{\mathrm{c}} 1=E_{8}{ }^{\mathrm{c}} 2=E_{\mathrm{s}}{ }^{\mathrm{c}}(\mathrm{X})$ and $E_{\mathrm{s}}{ }^{\mathrm{c}} 3=E_{\mathrm{s}} \mathrm{c}(\mathrm{H})$, the sequence of magnitude being $E_{\mathrm{s}}{ }^{\mathrm{c}} 1=E_{\mathrm{s}}{ }^{\mathrm{c}} 2<E_{\mathrm{s}}{ }^{\mathrm{c}} 3$. The calculated values by means of eq 19 with the use of these component values are, in effect, smaller than the values earlier predicted, but even smaller than the actual values. Thus, it could be anticipated that the dihalo acetates are attacked by the water molecule partly in these conformations.

In Taft's orginal tabulation of steric constants, 50 groups are included. ${ }^{1}$ Out of these, the cycloalkyl groups and groups where at least one of the α components is phenyl are excluded from the analyses, since steric constants of cyclic polymethylene and phenyl groups are not available. We are now able to calculate $E_{\mathrm{s}}{ }^{\text {c }}$ values of tri-, tetra-, penta-, and hexamethylene cyclic groups by substituting $E_{9}{ }^{\text {c }}$ values of H and cyclobutyl, -pentyl, -hexyl, and -heptyl groups into eq 8, and combining the $E_{\mathrm{s}} \mathrm{c} 2$ and $E_{8}{ }^{\circ} 3$ terms. As shown in Table VI, the steric effects of polymethylene groups are

Table VI

$E_{\mathrm{s}}{ }^{\text {c Values of Polymethylene Cyclic Groups }}$

Groups	$E_{8}{ }^{\mathrm{c}} / 2$
$\left(\mathrm{CH}_{3}\right)_{4}<$	0.13
$\left(\mathrm{CH}_{2}\right)_{4}<$	-0.04
$\left(\mathrm{CH}_{2}\right)_{5}<$	-0.15
$\left(\mathrm{CH}_{2}\right)_{6}<$	-0.27

Figure 6.-The most stable form of esters and their protonated intermediates.

Figure 7.-The rate-determining step of ester hydrolysis.

Figure 8.-Rotamers of dihalo acetates.
generally low. At the most, the $E_{\mathrm{s}}{ }^{\mathrm{c}}$ value of one of two bidentate hexamethylene ligands, -0.27 , is still higher than that of $\mathrm{Et},-0.38$. In cyclohexyl and cycloheptyl groups, the reaction center is located at the equatorial position with regard to the ring system, so that the effect of the tied-up polymethylene chain would be minimized. The steric constant for the phenyl group as the α components could be compared with that of Et, as shown in Table VII. The $E_{8}{ }^{\text {c }}$ value of the di-

Table VII

Comparison Component a substituents			$\begin{gathered} E_{\mathrm{g}}^{\mathrm{c}} \text { value } \\ -0.69 \end{gathered}$	Components of equivalent steric effect			$E_{8}{ }^{\text {o }}$ value calcd ${ }^{\text {a }}$
H	H	Ph		H	H	Et	-0.62
H	Me	Ph	-1.80	H	Me	Et	-1.25
H	Et	Ph	-2.11	H	Et	Et	-2.01
H	Ph	Ph	-2.37	H	Et	$i-\mathrm{Pr}$	-2.59

${ }^{a}$ Calculated by eq 8 .
phenylmethyl group can be explained by the congestion of two α-phenyl groups.

The steric constants of $\mathrm{ClCH}_{2} \mathrm{CH}_{2}{ }^{-}$and $\mathrm{CH}_{3} \mathrm{OCH}_{2}{ }^{-}$ CH_{2} - groups are also not included in the analyses, since they are only very poorly predicted on preliminary calculations. For these groups, the steric effect is much higher than expected. Probably, $\beta-\mathrm{Cl}$ and $-\mathrm{OCH}_{3}$ groups would be directed toward the reaction center as shown in Figure 9. The positive charge at the reaction center would attract the lone-pair-carrying substituents at the β-carbon atom.

It is interesting to test the applicability of eq 8 by examining the steric constants of alkyl-o-biphenylylcarbinyl groups determined by Bowden and his associates recently. ${ }^{5}$ Their $E_{\text {s }}$ values, listed in Table VIII,

Figure 9.-Interaction of β substituents with the reaction center.
Steric Constants of
Alkyl-o-biphenylylcarbinyl Groups
are obtained from the rate constants of acid-catalyzed esterification of acids. From the $E_{\mathrm{s}}{ }^{\mathrm{c}}$ value of group 2 in Table VIII, we can calculate that of one of two ligands of o-biphenylyl as being -0.21 by using eq 8 . With this value, the $E_{\mathrm{s}}{ }^{\text {c }}$ values of homologous groups are calculated. Except for group 3, the predictions by means of eq 8 are fairly good. The steric effect of the conformationally fixed phenyl group can be considered quite low, being between those of methyl and ethyl.

According to Taft, the steric effect in ester reactions is, in fact, a combination of two effects, i.e., steric strain effect and steric hindrance of motions. ${ }^{12}$ The activation energy due to repulsive interactions of component α substituents with the reaction center would be increased by an increase in the steric strain effect of substituents. The entropy of activation would be decreased by a loss of internal motions in the transition state relative to the initial state. It has been generally considered that "no substituent leads to increased steric strain without an accompanying increased
steric hindrance of motions, i.e., that the parallel retarding effects are usually observed in relative enthalpies and entropies of activation, $\Delta \Delta H^{\ddagger}$ and $\Delta \Delta S^{\ddagger}$, resulting from structural variation." ${ }^{12}$ The two parallel effects are not necessarily linearly related with each other.

The present work indicates that, although a simple additive principle does not hold for the steric constant of any substituent, the constants expressed in terms of $E_{\mathrm{s}}{ }^{\mathrm{c}}$ can be expressed by a linear combination of those of three α components. Thus, the relative importance of two effects, steric strain and steric hindrance of motions, in any one of $E_{\mathrm{s}}{ }^{\mathrm{c}}$ values should be kept constant, at least for ester reactions. The variation in the steric repulsion effect and steric hindrance of motions according to the structural variation, which are formulated by $\Delta \Delta H^{\ddagger}$ and $-T \Delta \Delta S^{\ddagger}$, are related proportionally so that an isokinetic relationship would hold between two parallel effects.
The above discussions present possible rationale for the linear relationship among steric constants of aliphatic groups. The critical assumptions used for the analyses, such as conformational restrictions for some α substituents and biphasic relations between $E_{\mathrm{s}}{ }^{\mathrm{c}}$ and r_{v} for symmetrical top-type groups, would be plausible enough as far as the present discussions are concerned. However, it is emphasized that, in the absence of theoretical knowledges, the present result should be taken as an empirical relationship among steric effect constants for ester reactions. In fact, we have found that the total steric effect of three N substituents on various types of electron acceptors is similarly expressed by a linear combination of $E_{\mathrm{s}}{ }^{\mathrm{c}}$ constants but the values of slope associated with each $E_{\mathrm{s}}{ }^{\text {c }}$ term are different from those of eq 8 or 19 , and substituents for which conformational restrictions should be considered are not identical with those in Table I. ${ }^{3}$ Here, a relationship such as eq 8 or 19 cannot be extended directly to estimate the total steric effect of N substituents. It might be also possible that further studies on steric mechanisms for other reactions reveal deviations from the simple linear combinations. As Miller has pointed out, multiple variations which give rise to linear relationships such as eq 8 or 19 are special cases of more generally expected ones which contain cross terms. ${ }^{13}$ Thus, it is urgently desirable for further work to establish the realm of validity of this type of quantitative approach to the steric course of reaction mechanisms.
(13) S. Miller, J. Amer. Chem. Soc., 81, 101 (1958).

Application of the Hammett Equation to Nonaromatic Unsaturated Systems. IX. Electrophilic Addition to Olefins. X. Nucleophilic Addition to Olefins

Marvin Charton*and Barbara I. Charton
Department of Chemistry School of Engineering and Science, Pratt Institute, Brooklyn, New York 11205

Received October 29, 1971

Abstract

Data for fifteen sets of rates of electrophilic addition to substituted ethylenes were correlated with the extended Hammett equation. Significant correlations were obtained for the majority of the sets studied. The results show that, while in the majority of the sets the localized effect is predominant, in a minority of the sets the delocalized effect is predominant. The results are accounted for in terms of the reaction mechanism. Sets for which the localized effect is predominant are believed to react via a bridged intermediate, whereas sets for which the delocalized effect predominates are thought to react via a carbonium ion intermediate. Data on the orientation observed in the addition of BH_{3} to substituted ethylenes were also studied. The orientation is governed largely by the delocalized effect. Data for eight sets of rates of nucleophilic addition to substituted ethylenes were correlated with the extended Hammett equation using σ_{R} constants, with the extended equation using $\sigma_{\mathrm{R}}{ }^{-}$ constants, and with the equation $Q \mathbf{x}=\beta \sigma_{R . x}+h$. Best results were obtained with the equation above. Of the eight sets examined, six gave significant correlation. The large values of β observed are in accord with ratedetermining formation of a carbanion intermediate. The transition state is closer to the carbanion than it is to the reactants. Although values of β obtained from correlation with the equation are temperature dependent, they are not a linear function of $1 / T$.

In a previous paper of this series, ${ }^{1}$ the effect of substituents on diene and dienophile reactivity in the Diels-Alder reaction was studied. It seemed of interest to extend our investigation to the effect of substituents upon electrophilic addition to the double bond. The first attempt to correlate rates of electrophilic addition to the double bond with a linear free-energy relationship was reported by de la Mare ${ }^{2}$ who used the $\sigma_{\mathrm{p}}{ }^{+}$constants and the simple Hammett equation to correlate rates of addition of chlorine to 3,3 -disubstituted acrylic acids. The Taft modification of the Hammett equation has been used by Dubois and coworkers to correlate the rates of bromination of substituted ethylenes. ${ }^{3-6}$ The use of eq 1 , in which the E_{S}

$$
\begin{equation*}
Q_{\mathrm{X}}=\rho^{*} \Sigma \sigma_{\mathrm{x}}^{*}+\delta \Sigma^{*} E_{\mathrm{s} \cdot \mathrm{X}}+h \tag{1}
\end{equation*}
$$

values are the Taft steric parameter, has been reported by Dubois and Bienvenue-Goetz. ${ }^{6}$ A correlation of values of $\Delta \Delta G^{\ddagger}{ }_{\psi}$ with $\sigma_{\mathrm{R}}{ }^{\circ}$ constants was reported by Dubois and coworkers ${ }^{7}$ for bromination of substituted ethylenes. The $\Delta \Delta G_{i}{ }^{\ddagger} \psi$ were obtained from eq 2 , where

$$
\begin{equation*}
\Delta \Delta G \neq=\Delta \Delta G \not \ddagger_{\mathrm{po}}+\Delta \Delta G \neq \downarrow \tag{2}
\end{equation*}
$$

$\Delta \Delta G^{\neq}{ }_{\mathrm{po}}$ is the polar contribution and $\Delta \Delta G^{\ddagger}{ }_{\psi}$ is the resonance contribution to the free energy. The $\Delta \Delta G^{\neq p}$ is calculated from the correlation of $\log k$ for the olefins bearing substituents which do not conjugate with the double bond.

No systematic examination of electrophilic additions by means of the extended Hammett equation ${ }^{8}$ (eq 3) is

$$
\begin{equation*}
Q \mathbf{x}=\alpha \sigma_{\mathbf{I}, \mathbf{x}}+\beta \sigma_{\mathrm{R}, \mathbf{x}}+h \text { (Hammett equation) } \tag{3}
\end{equation*}
$$

extant in the literature. Rate data taken from the literature for the addition of chlorine, bromine, hydronium ion, trifluoroacetic acid, and mercuric ion were correlated with eq 3. Data used are presented Table I. The sources of most of the substituent constants
(1) M. Charton, J. Org. Chem., 31, 3745 (1966).
(2) P. B. D. de la Mare, J. Chem. Soc., 3823 (1960).
(3) J. E. Dubois and G. Mouvier, Tetrahedron Lett., 1325 (1963).
(4) J. E. Dubois and E. Bienvenue-Goetz, J. Chim. Phys., 780 (1966).
(5) J. E. Dubois and G. Mouvier, Bull. Soc. Chim. Fr., 1441 (1968).
(6) J. E. Dubois and E. Bienvenue-Goetz, Bull. Soc. Chim. Fr., 2094 (1968).
(7) J. E. Dubois, P. Alcais, G. Barbier, and E. Bienvenue-Goetz, Bull. Soc. Chim. Fr., 2113 (1966).
(8) R. W. Taft and I. C. Lewis, J. Amer. Chem. Soc., 80, 2436 (1958).
used are reported in previcus papers of this series; ${ }^{1,9}$ substituent constants from cther sources are set forth in Table II. In several of the sets studied, the compounds are multiply substituted. Correlations in these sets were made with eq 4 which neglects interaction terms. ${ }^{10}$

$$
\begin{equation*}
Q_{\mathrm{X}}=\alpha \Sigma \sigma_{\mathrm{I}, \mathbf{X}}+\beta \Sigma \sigma_{\mathrm{R}, \mathbf{X}}+h \tag{4}
\end{equation*}
$$

The effect of substituents on orientation in the addition of BH_{3} to the double bond was also studied. In the reaction of BH_{3} with a substituted ethylene, the boron may bond to either carbon 1 or carbon 2. The overall rate constants for the reaction is given by

$$
\begin{equation*}
k_{\mathrm{T}}=k_{1}+k_{2} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{1}=p_{1} k_{\mathrm{T}} ; k_{2}=p_{2} k_{\mathrm{T}} \tag{6}
\end{equation*}
$$

The quantities p_{1} and p_{2} denote the per cent of the product with boron bonded to carbon and carbon 2 , respectively. Now, applying the extended Hammett equation (eq 4) to the partial rate constants k_{1} and k_{2} for the reaction of a substituted ethylene gives eq 7 and 8.

$$
\begin{align*}
& \log k_{1, \mathrm{X}}=\log p_{1, \mathrm{x}} k_{\mathrm{T}}=\alpha_{1} \sigma_{\mathrm{I}, \mathrm{x}}+\beta_{1} \sigma_{\mathrm{R}, \mathrm{X}}+h_{1} \tag{7}\\
& \log k_{2, \mathrm{X}}=\log p_{2, \mathrm{x}} k_{\mathrm{T}}=\alpha_{2} \sigma_{\mathrm{I}, \mathrm{X}}+\beta_{2} \sigma_{\mathrm{R}, \mathrm{X}}+h_{2} \tag{8}
\end{align*}
$$

Subtraction of eq 8 from eq 7 gives

$$
\begin{align*}
& \log \left(\frac{k_{1, \mathrm{x}}}{k_{2, \mathrm{x}}}\right)=\log \left(\frac{p_{1, \mathrm{x}}}{p_{2, \mathrm{x}}}\right)= \\
&\left(\alpha_{1}-\alpha_{2}\right) \sigma_{1, \mathrm{x}}+\left(\beta_{1}-\beta_{2}\right) \sigma_{\mathrm{R}, \mathrm{x}}+k_{1}-k_{2} \tag{9}
\end{align*}
$$

or

$$
\begin{equation*}
\log \left(\frac{p_{1, \mathrm{x}}}{p_{2, \mathrm{x}}}\right)=\alpha^{\prime} \sigma_{\mathrm{I}, \mathrm{X}}+\beta^{\prime} \sigma_{\mathrm{R}, \mathrm{x}}+h^{\prime} \tag{10}
\end{equation*}
$$

equivalent to eq 4. The data on orientation in the addition of BH_{3} to substituted ethylenes are presented in Table I.

We have also examined nucleophilic addition reactions of substituted olefins. The first attempt to apply a linear free-energy relationship to the reactivity of sub-
(9) M. Charton, J. Org. Chem., 30, 522, 557, 974 (1965).
(10) S. I. Miller, J. Amer. Chem. Soc., 81, 161 (1959).

Table I
Data Used in the Correlations

1. Substituted Ethylenes + Chlorine in Acetic Acid at 24° a ($k_{\text {rel }}$)
$\mathrm{CHCl}_{2}, 0.60 ; \mathrm{Br}, 0.28 ; \mathrm{SO}_{3} \mathrm{H}, 0.11 ; \mathrm{CO}_{2} \mathrm{Et}, 0.056 ; \mathrm{CO}_{2} \mathrm{H}$, $0.018 ; \mathrm{CCl}_{3}, 0.006 ; \mathrm{SO}_{2} \mathrm{Me}, 0.001 ; \mathrm{CN}, 0.0001$
2. Substituted Ethylenes + Chlorine in Aqueous Acetic Acid ${ }^{b}$ ($k_{\text {rel }}$)
Me, 2.0; H, 1.0; $\mathrm{CH}_{2} \mathrm{~F}, 3.4 \times 10^{-2} ; \mathrm{CH}_{2} \mathrm{Cl}, 1.9 \times 10^{-2}$; $\mathrm{CH}_{2} \mathrm{Br}, 1.3 \times 10^{-2} ; \mathrm{CH}_{2} \mathrm{CN}, 2.7 \times 10^{-3} ; \mathrm{CHCl}_{2}, 2.6 \times 10^{-5}$; $\mathrm{Br}, 1.3 \times 10^{-5} ; \mathrm{CCl}_{3}, 2.9 \times 10^{-7}$
3. Trans-2'-Substituted Styrenes + Chlorine in Acetic Acid at $24^{\circ}{ }^{a}\left(k_{r e l}\right)$
$\mathrm{Bz}, 61.0 ; \mathrm{Br}, 30.0 ; 3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 15.0 ; \mathrm{CO}_{2} \mathrm{Me}, 10.0 ; \mathrm{CO}_{2} \mathrm{H}, 4.9$; $\mathrm{CHO}, 1.8 ; \mathrm{CN}, 0.022 ; \mathrm{NO}_{2}, 0.020$.
4. Substituted Ethylenes + Bromine in Aqueous Perchloric Acid at $25^{\circ}{ }^{c}(k)$
$\mathrm{CO}_{2} \mathrm{Et}, 1.06 \times 10^{-1} ; \mathrm{CH}_{2} \mathrm{CN}, 440.0 ; \mathrm{H}, 3.9 \times 10^{5} ; \mathrm{CH}_{2} \mathrm{OH}$, $6.7 \times 10^{5} ; \mathrm{Me}, 4.5 \times 10^{6} ; \mathrm{CH}_{2} \mathrm{NMe}_{3}+\mathrm{Br}^{-}, 2.8 \times 10^{-1}$
5. Substituted Ethylenes with $\mathrm{Br}_{3}{ }^{-}$in Aqueous Perchloric Acid at $25^{\circ}{ }^{c}(k)$
$\mathrm{CO}_{2} \mathrm{Et}, 6.7 \times 10^{-2} ; \mathrm{CH}_{2} \mathrm{NMe}_{3}+\mathrm{Br}^{-}, 9.1 \times 10^{-2} ; \mathrm{CH}_{2} \mathrm{CN}, 100.0$; $\mathrm{H}, 2.0 \times 10^{4} ; \mathrm{CH}_{2} \mathrm{OH}, 6.9 \times 10^{4} ; \mathrm{Me}, 3.2 \times 10^{5}$
6. Trans-1,2-Disubstituted Ethylenes + Bromine in Aqueous Perchloric Acid at $25^{\circ}{ }^{c}(k)$
$\mathrm{CO}_{2} \mathrm{Et}, \mathrm{CO}_{2} \mathrm{Et}, 3.4 \times 10^{-6} ; \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Me}, 2.76 ; \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{OH}, 3.08$; $\mathrm{Ph}, \mathrm{CH}_{2} \mathrm{NMe}_{\mathrm{a}}{ }^{+} \mathrm{Br}^{-}, 37.0 ; \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Ph}, 220.0$
7. Trans-1,2-Disubstituted Ethylenes $+\mathrm{Br}_{3}{ }^{-}$in Aqueous Perchloric Acid at $25^{\circ}{ }^{c}(k)$
$\mathrm{CO}_{2} \mathrm{Et}, \mathrm{CO}_{2} \mathrm{Et}, 3.7 \times 10^{-4} ; \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Me}, 1.04 ; \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{OH}, 0.31$; $\mathrm{Ph}, \mathrm{CH}_{2} \mathrm{NME}_{3}{ }^{+} \mathrm{Br}^{-}, 4.8 ; \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Ph}, 2.3$
8. Substituted Ethylenes + Bromine in Acetic Acid at $24^{\circ}{ }^{a}(k)$
$\mathrm{Ph}, 11,000 ; \mathrm{Bu}, 2000 ; \mathrm{H}, 84.0 ; \mathrm{CH}_{2} \mathrm{OAc}, 10.0 ; \mathrm{CH}_{2} \mathrm{OB} z, 14.0$; $\mathrm{CH}_{2} \mathrm{Cl}, 1.6 ; \mathrm{CH}_{2} \mathrm{Br}, 1.0 ; \mathrm{CH}_{2} \mathrm{CN}, 0.23 ; \mathrm{Br}, 0.0011 ; \mathrm{CO}_{2} \mathrm{Et}, 0.004$
9. Trans-2'-Substituted Styrenes + Bromine in Acetic Acid at $24^{\circ}{ }^{a}(k)$
$\mathrm{CH}_{2} \mathrm{Cl}, 77.0 ; \mathrm{Ph}, 18.0 ; \mathrm{Br}, 0.11 ; \mathrm{CO}_{2} \mathrm{H}, 0.019 ; \mathrm{H}, 11,000$
10. Substituted Ethylenes + Bromine in $\mathrm{MeOH} 0.2 M$ in NaBr at $25^{\circ}{ }^{d}(\log k)$
H, 1.481; Et, 3.462; Pr, 3.320; Bu, 3.299; sec-Bu, 2.966; CH_{2} t-Bu, 2.539; OEt, 8.54; OAc, 3.36
11. Substituted Ethylenes + Bromine in Acetic Acid +HBr at $24^{\circ}{ }^{a}\left(k_{\text {rel }}\right)$
$\mathrm{CH}_{2} \mathrm{OBz}, 9.0 ; \mathrm{CH}_{2} \mathrm{Cl}, 3.8 ; \mathrm{CH}_{2} \mathrm{Br}, 2.2 ; \mathrm{Br}, 0.012 ; \mathrm{CO}_{2} \mathrm{H}, 0.44$
12. Trans-2'-Substituted Styrenes $+\mathrm{Br}_{2}$ in Acetic Acid $+\mathbf{H B r}$ at $24^{\circ}{ }^{a}\left(k_{\text {rel }}\right)$
$\mathrm{CH}_{2} \mathrm{Cl}, 16.0 ; \mathrm{Ph}, 8.0 ; \mathrm{Br}, 0.07 ; \mathrm{CN}, 4.0 ; \mathrm{NO}_{2}, 1.0$

[^3]stituted ethylenes undergoing nucleophilic addition is that of Friedman and Wall. ${ }^{11}$ These authors proposed the equation
\[

$$
\begin{equation*}
\log k_{\mathrm{X}}=P_{\mathrm{V}}+\log k_{\mathrm{CN}} \tag{11}
\end{equation*}
$$

\]

where k_{x} represents the rate constant for the reaction of the substituted ethylene bearing the X substituent with the anion of some amino acid, k_{CN} represents the rate
13. 2-Substituted Propenes $+\mathrm{H}_{3} \mathrm{O}^{+}$in 29.6% Aqueous Perchloric Acid at $38^{\circ} e\left(k_{\text {rel }}\right)$
$\mathrm{H}, 1.0 ; \mathrm{CH}_{2} \mathrm{Cl}, 1.0 ; \mathrm{CH}_{2} \mathrm{OMe}, 30.0 ; \mathrm{Ph}, 5000 ; \mathrm{Me}, 8000 ; \mathrm{Et}$, 10,$000 ; t-\mathrm{Bu}, 8000$
14. 2-Substituted Propenes + Trifluoroacetic Acid in Trifluoroacetic Acid at $25^{\circ}{ }^{\prime}(k)$
H, 4.81; F, 340.0; Cl, 1.70; Br, 0.395
15. Substituted Ethylenes + Mercuric Perchlorate in Water at 25° o (k)
H, $5100 ; \mathrm{Me}, 100,000 ; \mathrm{Et}, 80,000 ; \mathrm{CH}_{2} \mathrm{OH}, 1120 ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, $8400 ; \mathrm{MeCHOHCH}_{2}, 6100 ; \mathrm{CH}_{2} \mathrm{Cl}, 11.0 ; \mathrm{CH}_{2} \mathrm{CN}, 4.3$
16. Orientation in the Reaction $\mathrm{XCH}=\mathrm{CH}_{2}+\mathrm{B}_{2} \mathrm{H}_{6}$ in THF at $0^{\circ}{ }^{h}\left(\log p_{1} / p_{2}\right)$
Et, 1.195; Ph, 0.6021; $\mathrm{PhCH}_{2}, 0.9542 ; \mathrm{ClCH}_{2}, 0.1761 ; \mathrm{Me}_{3} \mathrm{Si}$, $0.3076 ; \mathrm{CF}_{3},-0.4543 ; \mathrm{ClCH}_{2} \mathrm{CH}_{2}, 0.6585 ; \mathrm{EtO}_{2} \mathrm{CCH}_{2}, 0.6886$
21. Rates of Addition of Diglycine Anion to Substituted Ethylenes in $\mathrm{H}_{2} \mathrm{O}, \mu=1.2 ; \mathrm{pH}=8.75$ at $30^{\circ}\left(10^{4} k_{2}, \mathrm{M}^{-1} \mathrm{sec}^{-1}\right)^{i}$
$\mathrm{CO}_{2} \mathrm{NH}_{2}, 2.00 ; \mathrm{CO}_{2} \mathrm{Me}, 46.0 ; \mathrm{CN}, 13.7 ; \mathrm{SO}_{2} \mathrm{Me}, 90.0$
22. Rates of Addition of Glycine Anion to Substituted Ethylenes in $\mathrm{H}_{2} \mathrm{O}, \mu=1.2 ; \mathrm{pH}=8.75 ; 30^{\circ}\left(10^{4} k_{2} \mathrm{M}^{-1} \mathrm{sec}^{-1}\right)^{\mathrm{i}}$
$\mathrm{CONH}_{2}, 6.30 ; \mathrm{PO}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}, 20.9 ; \mathrm{CO}_{2} \mathrm{Me}, 182.0 ; \mathrm{CN}$, $50.0 ; \mathrm{SO}_{2} \mathrm{Me}, 306.0$; Ac, 4000.0
23. Rates of Addition of ϵ Aminocaproic Acid Anion to Substituted Ethylenes in $\mathrm{H}_{2} \mathrm{O}, \mu=1.2 ; \mathrm{pH}=8.75,30^{\circ}\left(10^{-4} k_{2} M^{-1}\right.$ $\left.\mathrm{sec}^{-1}\right)^{\mathrm{i}}$
$\mathrm{CONH}_{2}, 16.9 ; \mathrm{CO}_{2} \mathrm{Me}, 528.0 ; \mathrm{CN}, 203.0 ; \mathrm{SO}_{2} \mathrm{Me}, 1120.0$
24. Rates of Addition of DL α-Alanine Anion to Substituted Ethylenes in $\mathrm{H}_{2} \mathrm{O}, \mu=1.2 ; \mathrm{pH}=8.75 ; 30^{\circ}\left(10^{4} k_{2} \mathrm{M}^{-1} \mathrm{sec}^{-1}\right)^{\mathrm{i}}$
$\mathrm{CONH}_{2}, 3.50 ; \mathrm{PO}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}, 10.7 ; \mathrm{CO}_{2} \mathrm{Me}, 111 ; \mathrm{CN}, 35.3$; Ac, 2280
25. Rates of Addition of Methoxide to Substituted Ethylenes in MeOH at $24^{\circ}\left(k_{2} \mathrm{l} \text {. } \mathrm{mol}^{-1} \mathrm{~min}^{-1}\right)^{i}$
Ac, 26.4; $\mathrm{EtSO}_{2}, 2.46 ; \mathrm{CN}, 0.732 ; \mathrm{CO}_{2} \mathrm{Me}, 0.21 ; \mathrm{EtCO}, 14.1$
26. Rates of Addition of Morpholine to Substituted Ethylenes in MeOH at $0^{\circ}\left(10^{4} k_{2} \mathrm{M}^{-1} \mathrm{sec}^{-1}\right)^{k}$
$\mathrm{PO}(\mathrm{OEt})_{2}, 0.233 ; \mathrm{CONH}_{2}, 0.561 ; \mathrm{CN}, 14.4 ; \mathrm{CO}_{2} \mathrm{Me}, 32.8 ; \mathrm{Ts}$, 187.0; Ac, 3770.0; CHO, 6490.0; Bz, 20,800
27. Rates of Addition of Morpholine to Substituted Ethylenes in Methanol at $30^{\circ}\left(10^{4} k_{2} \mathrm{M}^{-1} \mathrm{sec}^{-1}\right)^{k}$
$\mathrm{PO}(\mathrm{OEt})_{2}, 1.43 ; \mathrm{CONH}_{2}, 3.57 ; \mathrm{CN}, 56.8 ; \mathrm{CO}_{2} \mathrm{Me}, 104.0 ; \mathrm{Ts}$, $755 ; \mathrm{CO}_{2} \mathrm{Ph}, 1410.0$; Ac, 12,$000 ; \mathrm{CHO}, 12,800 ; \mathrm{Bz}, 40.500$
28. Rates of Addition of Morpholine to Substituted Ethylenes in MeOH at $45^{\circ}\left(10^{4} k_{2} \mathrm{M}^{-1} \mathrm{sec}^{-1}\right)^{k}$
$\mathrm{PO}(\mathrm{OEt})_{2}, 33.1 ; \mathrm{CONH}_{2}, 65.1 ; \mathrm{CN}, 106.0 ; \mathrm{CO}_{2} \mathrm{Me}, 162.0 ; \mathrm{Ts}$, $1200 ; \mathrm{CO}_{2} \mathrm{Ph}, 2270 ; \mathrm{Ac}, 23.300 ; \mathrm{CHO}, 17,000 ; \mathrm{Bz}, 49,200$
p 6 (cited in ref a). $\quad /$ P. E. Peterson and R. J. Bopp, J. Amer. Chem. Soc., 89, 1283 (1967). ${ }^{\circ}$ J. Halpern and H. B. Tinker, J. Amer. Chem. Soc., 89, 6427 (1967). ${ }^{h}$ H. C. Brown and K. A.' Keblys, J. Amer. Chem. Soc., 86, 1795 (1964). ${ }^{i}$ Reference 11. ${ }^{j}$ R. N. Rign, G. C. Tesoro, and D. R. Moore, J. Org. Chem., 32, 1091 (1967). ${ }^{k}$ Reference $12 ; k_{\text {rel }}$ indicates relative reaction rates.
constant for the reaction of acrylonitrile with the same nucleophile, and P_{V} is a measure of the electrical effect of X relative to that of the cyano group. These authors also reported nearly linear plots of $\log k_{\mathbf{X}}$ against $\sigma-\sigma^{\circ}$ and against σ_{R}. A plot of $\log k_{\mathrm{X}}$ against $\sigma^{-}-\sigma^{\circ}$ was said to give only qualitative correlation. Shenhav, Rappoport, and Patai ${ }^{12}$ have re-

Table II
Substituent Constants

Substituent Constants				
X	I	Source	R	Source
$\mathrm{CH}_{2} \mathrm{OMe}$			-0.08	a
$\mathrm{CH}_{2} \mathrm{OBz}$	0.15	b	-0.05	c
$\mathrm{CH}_{2} \mathrm{NME}_{3}+\mathrm{Br}^{-}$	0.25	b	0.0	c
$\mathrm{CH}_{2} \mathrm{~F}$	0.18	b	-0.04	c
$3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	0.19	d	-0.01	e
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	0	f	-0.10	c
$\mathrm{MeCHOHCH}_{2}$			-0.13	c
$\mathrm{CH}_{2} \mathrm{OAc}$	0.14	g	-0.05	c, g
CONH_{2}			0.09	h
$\mathrm{PO}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$	0.52	i	0.08	i
$\mathrm{PO}(\mathrm{OEt})_{2}$	0.52	j	0.08	j
EtSO_{3}			0.13	k
EtCO	0.29	l	0.19	l
CHO	0.31	m	0.14	n
$\mathrm{CO}_{2} \mathrm{Ph}$	0.42	o	0.14	o

${ }^{a}$ Calculated from $\sigma_{\mathrm{R}}=\sigma_{\mathrm{p}}-\sigma_{\mathrm{I}}$ assuming $\sigma_{\mathrm{P}, \mathrm{CH} 2 \mathrm{OMe}}=$ $\sigma_{\mathrm{p}, \mathrm{CH}_{2} \mathrm{OH}}{ }^{b}$ Calculated from $\sigma_{\mathrm{I}, \mathrm{XCH}}^{2} 2\left(0.3685 \sigma_{\mathrm{I}, \mathrm{X}}-0.01656\right.$. ${ }^{c}$ Calculated from $\sigma_{\mathrm{R}}=\sigma_{\mathrm{p}}-\sigma_{1}$. $\quad \sigma_{\mathrm{p}}$ calculated from $\sigma_{\mathrm{p}, \mathrm{xCH}_{2}}=$ $0.5217 \sigma_{\mathrm{I}, \mathrm{X}}-0.1306$. ${ }^{d}$ From $\mathrm{p} K_{\mathrm{a}}$ of $3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$. - From $\sigma_{\mathrm{R}}-\sigma_{\mathrm{p}}-\sigma_{\mathrm{I}}$. f From $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$. ${ }^{\circ}$ M. Charton, J. Org. Chem., 30, 3346 (1965). ${ }^{\text {h M. Charton, }}$ J. Org. Chem., 28, 3121 (1963). ' Assumed equal to substituent constants for $\mathrm{PO}(\mathrm{OEt})_{2}$. ${ }^{i}$ Calculated from σ_{m} and σ_{p} values reported by L. D. Freedman and H. H. Jaffé, J. Amer. Chem. Soc., 77, 920 (1055). ${ }^{k}$ Assumed equal to σ_{R} for $\mathrm{MeSO}_{2} .{ }^{l} \mathrm{M}$. Charton, J. Org. Chem., 36, 266 (1971). ${ }^{m}$ Calcalated from the equation $\sigma_{\mathrm{I} . \mathrm{xco}}=0.308 \sigma_{\mathrm{m}, \mathrm{x}}+0.31 .{ }^{n}$ Calculated from the σ_{p} value reported by K. Bowden and M. J. Shaw, J. Chem. Soc. B, 161 (1971). ${ }^{\circ}$ Calculated from σ_{m} and σ_{D} values estimated as described in footnote a. Other values of σ_{I} are generally taken from M. Charton, J. Org. Chem., 29, 1222 (1964). Other values of σ_{R} are obtained as in footnote e, using σ_{p} values reported by D. H. McDaniel and H. C. Brown, J. Org. Chem., 23, 420 (1958).
ported a correlation of the rate constants of the addition of morpholine to substituted ethylenes with the $P_{\mathbf{V}}$ values of Friedman and Wall. They also report a correlation of the rates with the σ_{R} values where $\rho=48$. This correlation was limited to substituents with σ_{R} in the range of 0.10 to 0.15 . Sufficient data is extant in the literature for eight sets of nucleophilic addition to substituted ethylenes. The sets studied are reported in Table I. The data were correlated with eq 1 and with the equation

$$
\begin{equation*}
Q_{\mathrm{X}}=\alpha \sigma_{\mathrm{I}, \mathrm{X}}+\beta \sigma_{\mathrm{R}, \mathrm{X}}+h \tag{12}
\end{equation*}
$$

where $\sigma^{-}{ }_{\mathbf{R}, \mathrm{x}}$ is defined by

$$
\begin{equation*}
\sigma_{\mathrm{R}, \mathrm{X}}^{-}=\sigma_{\mathrm{p}, \mathrm{X}}^{-}-\sigma_{\mathrm{I}, \mathrm{X}} \tag{13}
\end{equation*}
$$

using the $\sigma^{-}{ }_{p}$ values reported in the review of Ritchie and Sager. ${ }^{13}$ The data have also been correlated with eq 14 .

$$
\begin{equation*}
Q \mathbf{X}=\beta \sigma_{\mathrm{R}, \mathbf{x}}+h \tag{14}
\end{equation*}
$$

Results

The results of the correlations are presented in Table III. It should be noted that the magnitude of the multiple correlation coefficient is not the best measure of the goodness of fit of data to an equation with two or more independent variables. For such an equation, the best measure of goodness of fit is the confidence level of the F test for significance of regression. For correlation with an equation having only a single independent variable the confidence level of the " t " test
(13) C. D. Ritchie, and W. F. Sager, Prog. Phys. Org. Chem., 2, 323 (1963).
for significance of the regression coefficient of that variable is the best measure of goodness of fit. We consider a confidence level (CL; of $>99 \%$ to be excellent; 99.0% very good; $97.5-98 \%$, good; 95% fair; 90%, poor; and $<90 \%$, not significant. The equation which gives the best correlation is that equation for which the highest confidence level is observed. It is therefore entirely possible to get a more significant correlation with an equation which possesses fewer independent variables than its competitor.

The value for $\mathrm{SO}_{3} \mathrm{H}$ was excluded from set 1 as it is uncertain whether or not this group is ionized. The results obtained are excellent. Set 2 also gave an excellent correlation. Set 3 gave good results which were slightly improved by the exclusion of the value for $\mathrm{X}=\mathrm{Bz}$ (set 3A). Sets 4 and 5 gave good correlation; sets 6 and 7 did not give significant results. Sets 8 and 10 gave excellent correlation; set 9 did not give significant results, perhaps owing to the small size of the set. The value for $\mathrm{X}=\mathrm{Ph}$ was excluded from sets 8 and 9 as it obviously did not fit. Possibly this compound reacts by a different path. Set 11 gave good results. It is particularly significant that the values of α and β obtained for sets 12 are both significant and differ in sign. If the correlation is meaningful, this suggests a composite substituent effect made up of contributions from two or more steps. Set 13 gave very good correlation. Set 14 did not give significant results, again perhaps owing to the small size of the set. Set 15 gave an excellent correlation as did set 16.

The results for sets 26-28 are all slightly improved by the exclusion of the value for $\mathrm{X}=\mathrm{CHO}$. This is most likely due to the uncertainty in the value of σ_{R} for the formyl group. Of the eight nucleophilic addition sets studied, five gave significant correlation with eq 3 . In all of these sets, however, α was not significant. No sets gave significant correlation with eq 12 . Best results were obtained for correlations with eq 14 ; of the eight sets studied, six gave significant correlation with eq 14. The two sets which did not give significant correlation with σ_{R} had only four points each and encompassed a range of only 0.05σ unit. Of the six sets which did give significant correlation with eq 14 , one gave excellent, one gave very good, three gave good, and one gave poor correlation.

Discussion

Composition of the Electrical Effect.-Previously in this series of papers, the composition of the electrical effect was described by means of the parameter, ϵ, where

$$
\begin{equation*}
\epsilon=\beta / \alpha . \tag{15}
\end{equation*}
$$

A more useful measure of the composition of the electrical effect may be defined as

$$
\begin{equation*}
P_{\mathrm{R}}=\frac{\beta \times 100}{\alpha+\beta} \tag{16}
\end{equation*}
$$

where P_{R} is the per cent resonance effect. The quantities ϵ and P_{R} are related to each other by eq 17 .

$$
\begin{equation*}
P_{R}=\frac{\epsilon \times 100}{\epsilon+1} \tag{17}
\end{equation*}
$$

Values of P_{R} are given in Table IV.

Table III											
Results of Correlations											
Set	α	β	h	R^{a}	$F^{\text {b }}$	r^{c}	Sestd ${ }^{\text {d }}$	${ }^{8} \alpha^{d}$	${ }_{8} \beta^{d}$	${ }_{8}{ }^{\text {d }}$	n^{6}
1	-9.72	-5.60	2.28	0.980	$49.28{ }^{\circ}$	0.244	0.369	$1.35{ }^{\text {h }}$	$1.15{ }^{\text {n }}$	$0.601{ }^{\text {i }}$	7
2	-13.5	-3.38	0.912	0.965	$40.82{ }^{\text {f }}$	0.378	0.696	$1.55{ }^{\prime}$	$3.71{ }^{\circ}$	$0.397^{\text { }}$	9
3	-7.14	-3.02	3.41	0.881	$8.67{ }^{\text {i }}$	0.012	0.756	$1.79{ }^{\text {i }}$	2.39°	$0.781^{\text {h }}$	8
$3 \mathrm{~A}^{\text {r }}$	-6.22	-4.77	2.94	0.928	$12.45{ }^{\text {j }}$	0.121	0.603	$1.50{ }^{\text {i }}$	2.10^{2}	$0.667^{\text {i }}$	7
4	-22.4	2.29	6.10	0.974	$28.15^{\text {j }}$	0.838	0.974	$4.23{ }^{\text {k }}$	$10.5{ }^{\text {a }}$	$0.886^{\text {h }}$	6
5	-19.1	0.832	4.86	0.964	$19.98{ }^{\text {i }}$	0.838	1.01	$5.43{ }^{k}$	10.98	$0.920^{\text {i }}$	6
6	-10.7	-5.82	4.70	0.857	$2.762^{\text {m }}$	0.376	1.94	$6.85{ }^{\circ}$	$5.54{ }^{\circ}$	$3.33{ }^{\circ}$	5
7	-8.35	-2.73	3.32	0.837	2.337^{m}	0.376	1.43	5.05°	$4.08{ }^{p}$	$2.45{ }^{\circ}$	5
8	-13.0	-3.56	2.25	0.981	$78.65{ }^{\prime}$	0.133	0.440	$1.04{ }^{\prime}$	$1.75{ }^{\text {l }}$	$0.238{ }^{\prime}$	9
9	-9.76	-4.53	2.37	0.931	$3.238^{\text {m }}$	0.178	1.09	$3.93{ }^{\circ}$	$4.63{ }^{\text {p }}$	$1.15{ }^{\circ}$	4
10	0.328	-13.2	1.64	0.973	44.79 s	0.477	0.569	$1.35{ }^{\circ}$	$1.61{ }^{\text {f }}$	$0.292^{\text {h }}$	8
11	-7.49	2.20	1.93	0.990	$48.46{ }^{\text {i }}$	0.330	0.228	$0.895^{\text {i }}$	1.03^{n}	$0.239^{\text {i }}$	5
12	-3.72	6.80	2.01	0.990	$48.64{ }^{\text {i }}$	0.512	0.187	$0.423{ }^{\text {i }}$	0.816^{i}	$0.201^{\text {h }}$	5
13	-4.32	-32.9	-0.158	0.959	$22.96{ }^{h}$	0.447	0.651	$3.46{ }^{\circ}$	$6.08{ }^{\circ}$	$0.587^{\text {n }}$	7
14	-8.48	-13.7	0.672	0.985	$16.46{ }^{\text {m }}$	0.879	0.375	$1.88{ }^{n}$	$2.41^{\text {n }}$	0.375°	4
15	-18.3	-0.554	0.835	0.995	$262.7{ }^{\prime}$	0.694	0.187	$1.12{ }^{\prime}$	$1.93{ }^{\text {p }}$	$0.174^{\text { }}$	8
16	-1.26	-3.88	0.444	0.948	$220.4{ }^{\text {g }}$	0.428	0.192	$0.492{ }^{\text {l }}$	$0.875^{\text {h }}$	$0.0990^{\text {h }}$	8
21A	1.79	19.2	-1.45	0.797	$0.873^{\text {m }}$	0.319	0.758	$2.81{ }^{\text {p }}$	$2.14{ }^{p}$	$2.14{ }^{\text {p }}$	4
21B	1.90	4.31	-1.17	0.678	$0.424^{\text {m }}$	0.418	0.924	$3.58^{\text {p }}$	$9.33^{\text {p }}$	$3.15{ }^{\text {p }}$	4
21 C		23.5	-1.09	0.699			0.635		17.0°		4
22A	1.70	19.4	-0.940	0.921	8.437^{1}	0.376	0.495	$1.61{ }^{\circ}$	$4.76{ }^{\boldsymbol{k}}$	1.05°	6
22B	0.995	8.14	-1.58	0.848	$2.568^{\text {m }}$	0.193	0.773	$2.49{ }^{\text {p }}$	$3.59{ }^{\text {m }}$	$1.98{ }^{\text {p }}$	5
22 C		17.5	0.0124	0.891			0.501		$0.448^{\text {i }}$		6
23A	2.38	17.8	-0.514	0.794	$0.855^{\text {m }}$	0.319	0.834	$3.10{ }^{p}$	$23.5{ }^{\text {p }}$	$2.35{ }^{\circ}$	4
23B	2.54	3.63	-0.140	0.698	$0.476^{\text {m }}$	0.418	0.983	$3.80^{\text {p }}$	9.93p	$3.36{ }^{\circ}$	4
23C		23.6	-0.0337	0.643			0.744		$1.99{ }^{\circ}$		4
24A	2.25	20.2	-1.45	0.911	4.862^{m}	0.538	0.632	2.66°	$6.76{ }^{2}$	$1.63{ }^{\circ}$	5
24B	2.71	9.26	-2.81	0.865	1.491^{m}	0.465	1.02	$4.63^{\text {D }}$	5.41°	$3.35^{\text {p }}$	4
24C		17.1	-0.211	0.877			0.601		$5.42{ }^{l}$		5
25A	2.13	18.5	-3.09	0.978	$21.48{ }^{\text {k }}$	0.674	0.260	$1.13{ }^{n}$	3.13^{k}	0.848^{2}	5
25B	0.895	7.53	-3.35	0.957	$5.431^{\text {m }}$	0.426	0.450	$1.83{ }^{\text {p }}$	$2.38{ }^{\text {m }}$	$1.57{ }^{\circ}$	4
25C		14.5	-1.63	0.936			0.355		$3.16^{\text {i }}$		5
$26 \mathrm{~A}_{1}$	1.14	35.0	-2.81	0.841	6.044^{1}	0.552	1.19	4.09p	$11.5{ }^{\text {k }}$	$2.71{ }^{\circ}$	8
$26 \mathrm{~A}_{2}$	2.30	35.0	-3.47	0.874	$6.489^{\text {l }}$	0.540	1.09	$3.85{ }^{\text {p }}$	$10.6{ }^{\text {k }}$	$2.53{ }^{\circ}$	7
26B	2.21	7.94	-2.60	0.882	$3.505^{\text {m }}$	0.280	1.14	$4.80^{\text {p }}$	3.02^{n}	$2.61{ }^{\circ}$	5
$26 \mathrm{C}_{1}$		33.2	-2.14	0.838			1.09		8.82^{i}		8
$26 \mathrm{C}_{2}$		31.6	-2.13	0.862			1.02		$8.30^{\text {i }}$		7
$27 \mathrm{~A}_{1}$	1.28	32.7	-2.02	0.861	8.576^{k}	0.538	0.932	$3.1{ }^{\text {p }}$	$8.84{ }^{i}$	2.10^{i}	9
$27 \mathrm{~A}_{2}$	2.33	32.9	-2.62	0.892	$9.699^{\text {i }}$	0.528	0.847	$2.95{ }^{\circ}$	$8.04{ }^{\text {h }}$	$1.95{ }^{\circ}$	8
27 B	1.71	7.13	-1.49	0.877	$3.337^{\text {m }}$	0.280	1.06	$4.43^{\text {p }}$	$2.78{ }^{n}$	$2.41^{\text {p }}$	5
$27 \mathrm{C}_{1}$		30.7	-1.27	0.857			0.874		$6.99^{\text {h }}$		9
$27 \mathrm{C}_{2}$		29.6	-1.26	0.877			0.820		$6.61{ }^{\text {h }}$		8
$28 \mathrm{~A}_{1}$	0.0555	25.9	-0.113	0.912	$14.87^{\text {n }}$	0.538	0.568	$1.93{ }^{\text {a }}$	5.40^{h}	$1.28{ }^{\circ}$	9
$28 \mathrm{~A}_{2}$	0.817	25.1	-0.554	0.944	20.52°	0.528	0.464	1.62^{p}	$4.41^{\text {h }}$	$1.07{ }^{\text {p }}$	8
28B	-0.434	5.77	0.365	0.918	$5.345^{\text {m }}$	0.280	0.707	$2.97{ }^{\circ}$	$1.86{ }^{\text {l }}$	$1.61{ }^{\circ}$	5
$28 \mathrm{C}_{1}$		24.8	-0.0806	0.912			0.526		$4.21{ }^{\text {h }}$		9
$28 \mathrm{C}_{2}$		23.9	-0.0758	0.941			0.435		$3.50{ }^{\prime}$		8

${ }^{a}$ Multiple correlation coefficient. ${ }^{b} \mathrm{~F}$ test for significance of regression. ${ }^{c}$ Partial correlation coefficient of σ_{I} on σ_{R}. ${ }^{d}$ Standard deviation of the estimate, α, β, and h. ${ }^{\circ}$ Number of points in the set. ${ }^{\prime} 99.9 \%$ confidence level (CL). $\quad{ }^{\circ} 99.5 \% \mathrm{CL} .{ }^{h} 99.0 \% \mathrm{CL}$. ${ }^{i} 98.0 \%$ CL. ${ }^{i} 97.5 \%$ CL. ${ }^{k} 95 \%$ CL. ${ }^{i} 90 \%$ CL. $m<90 \% \mathrm{CL} .{ }^{n} 80 \% \mathrm{CL} .{ }^{\circ} 50 \% \mathrm{CL} . \quad{ }^{p} 20 \% \mathrm{CL} . \quad q<20 \% \mathrm{CL} . \quad \mathrm{Sets}$ labeled A, B, and C were correlated with eq 3,12 , and 14 , respectively.

TAble IV							
		Values of PR^{a}					
Set	P_{R}	Set	P_{R}	Set	P_{R}	Set	$P_{\mathbf{R}}$
1	37	5	4	9	c	13	e
2	b	6	d	10	e	14	d
3	43	7	d	11	b	15	b
4	c	8	21	12	d	16	76

${ }^{a}$ For sets with $P_{\mathrm{R}}>50, \beta$ is predominant, whereas, for sets with $P_{R}<50, \alpha$ is predominant. ${ }^{b} \beta$ is not significant for this set. ${ }^{c} \sigma \mathrm{I}$ is a function of $\sigma \mathrm{R}$ for this set. ${ }^{d}$ Correlation is not significant for this set. ${ }^{e} \alpha$ is not significant for this set.

Mechanism of Electrophilic Addition. -In the majority of the sets studied (sets $1-5,8,11,15$) a large significant value of α was obtained, while β was small and in some cases not significant. Thus two major classes
of electrophilic addition to olefins seem to exist in so far as substituent effects are concerned. We believe that this behavior may be accounted for in terms of the addition mechanism. The rate-determining step in the electrophilic addition to the double bond is the formation of an intermediate which may be either bridged or a free carbonium ion. ${ }^{14}$ Thus i-iii obtain. Those sets for which β is predominant are the sets which are most likely to give rise to the free carbonium ion, 3, as the substituents in these sets are all donors by resonance. This can readily be seen from the σ_{R}

[^4]
values of these substituents. Those sets for which α is predominant may be accounted for in terms of the formation of intermediates 1 or 2 . Sets 1, 3A, and 8 gave significant although small values of β. It is difficult to account for this in terms of intermediate 2. The results can, however, be accounted for in terms of intermediate 1 if the species resembles other three-membered rings in behavior. Sets $2,4,5,8$, and 11 include both donor and acceptor substituents. The succcssful correlation of these sets suggests that the same mechanism operates throughout the set. Then we may exclude free carbonium ion formation in these sets as the donor-substituted compounds would lead to 3 and the acceptor-substituted compounds would lead to 2 if free carbonium ions were to form. As substituent effects are not the same for 2 and 3 , this would result in a lack of correlation with eq 3 . Then we conclude that in these sets the addition must proceed through the formation of the bridged intermediate 1 . Since all of the substituents in set 15 are donors by resonance with the exception of $\mathrm{X}=\mathrm{H}$, if a free carbonium ion were to form, it would be expected to be 3 . This intermediate should show a large and significant β value, however. We conclude therefore that in set 15 the reaction again proceeds by way of the bridged intermediate, 1. The results obtained show that correlations with the extended Hammett equation are of use in describing the mechanism of the electrophilic addition to the double bond.
Magnitude of the Electrical Effect in Electrophilic Addition. -The β values observed for the sets in which α is predominant are smaller than the β values observed for substituent effects on dienophiles in the Diels-Alder reaction (the latter values must be corrected for multiple substitution by dividing by two). The β values observed for the sets in which β is predominant are large, in accordance with a mechanism proceeding via intermediate 3. The α values obtained for sets in which α is predominant are also large.

Multiply Substituted Sets in Electrophilic Addition. -The failure to obtain significant correlation in sets 6 and 7 cannot be attributed to a change in mechanism. A comparison of the substituents in sets 6 and 7 with those present in sets 4 and 5 suggests that, if more than one mechanism occurs in sets 6 and 7 , then it should also occur in sets 4 and 5 . Since sets 4 and 5 are successfully correlated with eq 3 , we may reject the multiple mechanism hypothesis. The lack of correlation may possibly be due to the neglect of interaction terms in the use of eq 4 or perhaps to steric factors.

Orientation in Electrophilic Addition.-The results of correlation with eq 10 show that orientation in electrophilic addition can be successfully represented by the extended Hammet \lrcorner equation. It would seem that orientation in the addition of BH_{3} to substituted ethylenes is primarily dependent upon the delocalized electrical effect. There is one surprising point concerning the results. For that member of the set for which $\mathrm{X}=\mathrm{H}$, carbon 1 is equivalent to carbon 2 and therefore $p_{1}=p_{2}$. Then $\log \left(p_{1} / p_{2}\right)_{\mathrm{H}}=0$ and therefore h^{\prime} should be equal to zero. The value actually obtained is significantly different from zero. This may possibly be due to a constant steric effect.
Nucleophilic Addition.-Obviously, the electrical effect in nucleophilic add:tion to the double bond is almost purely a resonance effect. In magnitude the electrical effect is very large. The values of β obtained range from 14 to 32 . This is comparable to the range of β observed for those electrophilic addition sets for which β was predominant, the range in that case being -13 to $-33 .{ }^{11}$

The results are in accord with a mechanism involving the formation of a carbanion, 6 , by a ratedetermining step (eq 18). The carbanion, 6, in which

the substituent X is directly attached to the carbon bearing the negative charge, would be expected to show a large degree of resonance stabilization of the negative charge. Thus, a large positive value of β for this reaction is in agreement with the formation of 6 by a transition state, 5 , which is closer to 6 than to 4 . If the transition state were closer to 4 than to 6 , the resonance effect would not be predominant, and β would be much smaller.

The β values are a function of temperature as is shown by the results for sets $26 \mathrm{C}_{2}, 27 \mathrm{C}_{2}$, and $28 \mathrm{C}_{2}$. Contrary to the literature ${ }^{15}$ however, β is not linear in $1 / T$. The β values ougnt to be dependent on both solvent and nucleophile. Thus, in the case of the nucleophile, let the reactivity as a function of nucleophile be given by the equation

$$
\begin{equation*}
Q_{\mathrm{Nu}}=a N_{\mathrm{Nu}}+h \tag{19}
\end{equation*}
$$

where N is a parameter characteristic of the nucleophile reactivity. When the nucleophile is held constant, and the substituent in the substituted ethylene is varied, the data may be represented by eq 20 where h_{Nu} repre-

$$
\begin{equation*}
Q_{\mathbf{X}, \mathrm{Nu}}=\beta_{\mathrm{Nu} u} \sigma_{\mathrm{R}, \mathbf{x}}+h_{\mathrm{Nu}} \tag{20}
\end{equation*}
$$

sents the reactivity of the unsubstituted compound (ethylene itself). Then from eq 19

$$
\begin{equation*}
h_{\mathrm{Nu}}=a N_{\mathrm{Nu}}+h \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{\mathbf{X}, \mathbf{N u}}=\beta_{\mathrm{N} \mathbf{v}} \sigma_{\mathrm{R}, \mathbf{X}}+a N_{\mathrm{Nu}}+h \tag{22}
\end{equation*}
$$

(15) H. H. Jaffe, Chem. Rev., 53, 191 (1953).

According to Miller, ${ }^{10}$ the quantity $Q_{\mathbf{X}, \mathrm{Nu}}$ can be written as eq 23 where $\chi \sigma_{\mathrm{R}, \mathrm{x}} N_{\mathrm{Nu}}$ is the so-called interaction term.

$$
\begin{equation*}
Q_{\mathrm{X}, \mathrm{Nu} u}=\beta \sigma_{\mathrm{R}, \mathrm{X}}+a N_{\mathrm{Nu}}+\chi \sigma_{\mathrm{R}, \mathrm{X}} N_{\mathrm{Nu}}+h \tag{23}
\end{equation*}
$$

Setting eq 22 equal to eq 23 and dividing through by $\sigma_{\mathrm{R}, \mathrm{x}}$ gives eq 24 which predicts that the slopes of the

$$
\begin{equation*}
\beta_{\mathrm{Nu}}=\chi N_{\mathrm{Nu}}+\beta \tag{24}
\end{equation*}
$$

line obtained from correlation with eq 17 will be a linear function of the nucleophilicity parameter, N. The same type of equation can be derived from the solvent variation. Thus,

$$
\begin{equation*}
\beta_{\mathrm{Sv}}=\chi S_{\mathrm{sv}}+\beta \tag{25}
\end{equation*}
$$

Unfortunately, the data available here do not permit a test of eq 24 and 25.
The results obtained would undoubtedly be much improved if a wider range of σ_{R} values could be studied.

The largest range of σ_{R} studied in this work encompassed only 0.14σ units. It is unlikely that a greater range of σ will be studied as no substituent with σ_{R} >0.21 is known, and it is unlikely that a substituent with $\sigma_{\mathrm{R}}<0.07$ would react at a measurable rate.
It is interesting to note that, although $\sigma_{R^{-}}$values might have been expected to be the substituent constants most applicable to reactions involving carbanions, correlations with eq 12 are generally inferior to correlations with eq 3 in which σ_{R} constants were used. This is partly due to the fact that values of $\sigma_{\mathrm{R}}{ }^{-}$were not available for all substituents, and therefore in several cases all the members of the set could not be correlated by eq 12. Nevertheless, eq 12 is not successful in correlating this data. Thus no attempt was made to correlate data with the equation

$$
\begin{equation*}
Q \mathbf{X}=\beta \sigma^{-}{ }_{\mathrm{R} . \mathrm{X}}+h \tag{26}
\end{equation*}
$$

Why Increasing Concentrations of Ethylenediamine Cause the Rate of Exchange of Isobutyraldehyde-2-d to Rise, Then Fall, and Then Rise Again ${ }^{\text {la,b }}$

Jack Hine,* Kenneth W. Narducy, ${ }^{1 c}$ Julien Mulders, F. E. Rogers, and Nancy W. Flachskam
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210,
and the School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia

Received January 23, 1973

Abstract

First-order rate constants for the deuterium exchange of about $0.06 M$ isobutyraldehyde-2-d in aqueous solution around pH 8.5 increase with increasing concentrations of added ethylenediamine and reach a maximum at diamine concentrations around 0.03 M . They then decrease, pass through a minimum around diamine concentrations of $0.1 M$, and finally increase again. This behavior is explained in terms of the transformation of most of the limiting reagent to 2 -isopropylimidazolidine (or its conjugate acid), which then catalyzes the exchange of remaining aldehyde. Exchange by this pathway is fastest when half the aldehyde has been transformed to imidazolidine. At higher concentrations of diamine most of the exchange arises from attack of the various bases present on the small amounts of iminium ions, such as $\mathrm{Me}_{2} \mathrm{CDCH}=\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+}$, which are present in equilibrium with the imidazolidine. Quantitative treatment of the data gives reasonable agreement with the experimental rate constants. A few measurements using N-methylethylenediamine also show a rate maximum and minimum, but N, N^{\prime}-dimethylethylenediamine, which gives a considerably less basic and more hindered imidazolidine, shows no extrema.

In searching for bifunctional catalysts for the dedeuteration of isobutyraldehyde-2- $d,{ }^{1 \mathrm{bb}, 2,3}$ it was observed that the rate of dedeuteration of $\sim 0.06 \mathrm{M}$ iso-butyraldehyde-2- d in the presence of ethylenediamine around pH 8.38 at first increased, then decreased, and then increased again as the concentration of diamine was increased from zero to about 0.5 M . We developed a hypothesis, which included the formation of 2 isopropylimidazolidine and its action as a basic catalyst, to explain these results. To test this hypothesis (and for other reasons), the equilibrium constant for the formation of 2-isopropylimidazolidine from isobutyraldehyde and ethylenediamine was measured and the basicity constant of the imidazolidine was determined. ${ }^{4}$

[^5]The way in which these results and additional kinetic measurements support our hypothesis will be described in the present paper.

Results

The kinetics of the dedeuteration of isobutyralde-hyde-2-d in the presence of ethylenediamine at 35° were studied at various concentrations and various pH 's. The reaction was followed in the manner described previously ${ }^{5,6}$ by acidifying the reaction mixture to stop the reaction (and to hydrolyze any imines, imidazolidines, etc., to aldehyde), extracting the aldehyde, and making proton magnetic resonance measurements to determine the extent of deuteration of the aldehyde. Satisfactory first-order rate constants were obtained in the various runs and their values are collected in Table I. Rate constants for the runs at $\mathrm{pH} 8.37 \pm 0.14$ using $0.060 \pm 0.007 M$ isobutyraldehyde-2-d are plotted as open circles against the concentration of ethylene-
(5) J. Hine, J. G. Houston, J. H. Jensen, and J. Mulders, ibid., 87, 5050 (1965).
(8) J. Hine, B. C. Menon, J. H. Jensen, and J. Mulders, ibid., 88, 3367 (1966).

Table I
Rate of Dedeuteration of Isobutyraldehyde-2-d in the Presence of Ethylenediamine in Water at 35°

$\underset{M}{\left[\mathrm{Me}_{2} \mathrm{CDCHO}\right]_{0}{ }^{a}{ }^{a}}$	$\underset{M}{\text { [Diamine], }{ }^{a}}$	$\mathrm{pH}^{\text {b }}$	$\begin{aligned} & 10^{\theta} k_{1}^{\prime} \\ & \text { sec }^{-1} \end{aligned}$
0.044	0.285	8.33	2.0
0.052	0.293	8.32	2.2
0.053	0.0127	$8.72^{\text {c }}$	3.4
0.053	0.0252	$8.76{ }^{\text {c }}$	5.1
0.053	0.050	8.49 ${ }^{\text {c }}$	2.0
0.053	0.050	$8.67{ }^{\text {c }}$	3.5
0.053	0.073	$8.59{ }^{\text {c }}$	2.2
0.053	0.098	$8.51^{\text {c }}$	1.20
0.053	0.100	$8.67{ }^{\text {c }}$	1.96
0.053	0.149	$8.76{ }^{\text {c }}$	2.3
0.053	0.195	$8.50{ }^{\text {c }}$	2.0
0.053	0.250	$8.70{ }^{\text {c }}$	2.7
0.067	0.239	8.24	1.73
0.067	0.335	8.31	2.6
0.067	0.382	8.33	3.2
0.067	0.430	8.35	3.4
0.067	0.478	8.36	4.2
0.071	0.312	8.29	2.4
0.088	0.238	8.19	2.1
0.088	0.329	8.27	2.6
0.107	0.284	8.19	2.2
0.107	0.427	8.29	3.5
0.216	0.796	9.63	7.2
0.216	0.977	9.84	7.2
0.216	1.16	9.99	7.2

${ }^{a}$ Total concentration. ${ }^{7}{ }^{b}$ Calculated unless otherwise noted. ${ }^{\text {c Observed. }}$
diamine in Figure 1. ${ }^{7}$ Rate constants for the runs at PH 8.68 ± 0.09 using $0.053 M$ isobutyraldehyde-2-d are plotted as solid circles in the same figure. In each case the rate is seen to pass through a maximum at a diamine concentration around $0.03 M$, then a minimum around $0.1 M$, and then to increase with increasing concentrations of diamine.

Less detailed studies were made of the catalytic activities of N-methylethylenediamine and $N, N^{\prime}-$ dimethylethylenediamine in the exchange of 0.053 M isobutyraldehyde-2d. Rate constants obtained with the N-methyl compound are listed in Table II and those

Table II
Rate of Dedeuteration of $0.053 M$ Isobutyraldehyde- $\mathbb{Q}-d$ in the Presence of N-Methylethylenediamine in Water at 35°

[Diamine], ${ }^{a}$ M	pH^{b}	$10^{6} k$, $\mathbf{s e c}^{-1}$
0.095	8.50	2.9
0.097	8.48	3.0
0.199	8.55	1.5
0.199	8.52	2.1
0.400	8.49	2.6
0.484	8.54	2.7

${ }^{a}$ Total concentration. ${ }^{7}{ }^{b}$ Observed.
for the N, N^{\prime}-dimethyl compound in Table III. The plots in Figure 2 show that the N-methyl compound at $\mathrm{pH} 8.51 \pm 0.04$ gives a maximum and then a minimum, but that with the N, N^{\prime}-dimethyl compound at pH 8.66 ± 0.07 it is not clear that there are any extrema.
(7) The concentrations given are "total" concentrations, without regard to how much of the compounds is actually transformed to imidazolidines, imines, etc., or to the state of protonation of the bases in the reaction mixtures.

Figure 1.-Rate constants for the dedeuteration of isobutyral-dehyde-2-d in water at 35° plotted against ethylenediamine concentration: O , at $\mathrm{pH} 8.68 \pm 0.09$ and 0.053 M aldehyde; \bullet, at $\mathrm{pH} 8.37 \pm 0.14$ and $0.060 \pm 0.007 M$ aldehyde. Lines constructed as described in text.

Figure 2.-Rate constants for the dedeuteration of isobutyral-dehyde-2-d at initial concentrations of $0.053 M$ in water at 35° : O , at $\mathrm{pH} 8.51 \pm 0.04$ in the presence of N-methylethylenediamine; -, at $\mathrm{pH} 8.66 \pm 0.07$ in the presence of N, N^{\prime}-dimethylethylenediamine. Lines constructed as described in text.

Tarle III
Rate of Dedeuteration of $0.053 M$ Isobutyraldehyde- $\mathbb{R}-d$ in the Presence of N, N^{\prime}-Dimethylethylenediamine in Water at 35° a

$\left[\begin{array}{c} \text { [Diamine }] \\ M \end{array}\right.$	$\mathrm{pH}^{\text {b }}$	$\begin{aligned} & 10^{8} k \\ & \sec ^{-1} \end{aligned}$
0.025	8.60	2.1
0.040	8.63	3.2
0.050	8.63	3.5
0.075	8.64	4.2
0.100	8.66	3.7
0.125	8.67	4.5
0.150	8.67	4.0
0.200	8.73	5.4

[^6]
Discussion

We hypothesized that the formation of imidazolidines was very important in influencing the rate of exchange of isobutyraldehyde-2-d in the presence of ethylenediamine and some of its derivatives. Equilibrium constants for the formation of 2 -isopropylimidazolidine are so large ${ }^{4}$ that at reagent concentrations above $0.001 M$, isobutyraldehyde and ethylenediamine react completely enough to transform most of the limiting reagent to the imidazolidine. Thus, when small amounts of diamine are added to aldehyde in the concentrations used in our kinetic runs, the diamine is transformed largely to the imidazolidine, which is the principal basic catalyst that acts on the remaining aldehyde. This component of the total reaction rate will reach a maximum (for a given pH and given aldehyde concentration) when half the aldehyde has been transformed to imidazolidine. In the presence of excess diamine the concentration of free aldehyde will be reduced to such a a low level that exchange via attack of imidazolidine on free aldehyde will be much less important. Exchange will also be taking place by attack of bases on iminium ions (such as $\mathrm{Me}_{2} \mathrm{CDCH}=\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+}$) that are present, and the rate of such exchange will increase monotonically with increasing diamine concentration.

Let us test this hypothesis by analyzing the rate data in terms of the suggested reaction mechanism. The rate constants obtained may be compared with values reported for somewhat similar processes in cases where a smaller number of possibilities made the interpretation of the kinetic data more straightforward. Exchange is assumed to take place entirely by the ratecontrolling attack of various bases on the deuterated aldehyde (AD) or on one of the deuterated iminium ions, $\mathrm{Me}_{2} \mathrm{CDCH}=\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+}\left(\mathrm{HDIm}^{+}\right)$and $\mathrm{Me}_{2} \mathrm{CDCH}=\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}\left(\mathrm{HDImH}^{2+}\right)$, present in the solution, as indicated in eq 1 , in which k is a rate

$$
\begin{align*}
& v=\sum_{i} k_{\mathrm{B}_{i}}\left[\mathrm{~B}_{i}\right][\mathrm{AD}]+\sum_{i} k^{\prime} \mathrm{B}_{\mathrm{B}}\left[\mathrm{~B}_{i}\right][\left.\mathrm{HDIm}^{+}\right]+ \\
& \sum_{i} k^{\prime \prime}{ }_{\mathrm{B}_{i}}\left[\mathrm{~B}_{i}\right]\left[\mathrm{HDImH}^{2+}\right] \tag{1}
\end{align*}
$$

constant for attack on aldehyde, k^{\prime} is for attack on the iminium ion HDIm ${ }^{+}$, and $k^{\prime \prime}$ is for attack on the doubly charged iminium ion HDImH^{2+}. Secondary deuterium kinetic isotope effects and equilibrium isotope effects will be neglected, so that the equilibrium constant for formation of an imidazolidine or the rate constant for basic catalysis by an imidazolidine, for example, will be independent of whether there is a deuterium atom in the 2 -isopropyl substituent of the imidazolidine or not. Since the observed rate constants were calculated in terms of [AD] $]_{\mathrm{t}}$, the total concentration of isobutyraldehyde-2- d in all forms, as shown in eq 2 , we should transform eq 1 into such terms also.

$$
\begin{equation*}
v=k_{\mathrm{obsd}}[\mathrm{AD}]_{\mathrm{t}} \tag{2}
\end{equation*}
$$

In the paper ${ }^{4}$ on equilibria the concentrations of imines and iminium ions are estimated to be no more than about 3% of those of the imidazolidine and imidazolidinium ions. Therefore we shall approximate $[\mathrm{AD}]_{\mathrm{t}}$ as shown in eq 3 , in which Imid and HImid ${ }^{+}$

$$
\begin{equation*}
[\mathrm{AD}]_{\mathrm{t}}=[\mathrm{AD}]+[\mathrm{Imid}]+\left[\mathrm{HImid}^{+}\right] \tag{3}
\end{equation*}
$$

are the imidazolidine and imidazolidinium ion, respec-
tively. ${ }^{8}$ The equilibrium constant $K_{\text {app }}$ was defined in the paper ${ }^{4}$ on equilibria as shown in eq 4 , in which

$$
K_{\mathrm{app}}=\frac{[\mathrm{Imid}]+[\mathrm{HImid}+]}{[i-\mathrm{PrCHO}][\mathrm{Da}]_{\mathrm{t}}}
$$

i-PrCHO refers to both free and hydrated aldehyde and $[\mathrm{Da}]_{t}$ is the concentration of diamine in all states of protonation. From the preceding, [AD] may be expressed in terms of $[A D]_{t}$ as shown in eq 5 , in which

$$
\begin{equation*}
[\mathrm{AD}]=\frac{[\mathrm{AD}]_{\mathrm{t}}}{1+K_{\mathrm{app}}[\mathrm{Da}]_{\mathrm{t}}}=f_{\mathrm{A}}[\mathrm{AD}]_{\mathrm{t}} \tag{5}
\end{equation*}
$$

f_{A} is the fraction of the aldehyde originally added that is present in the free or hydrated form. If the equilibrium constants K_{I} and $K_{\text {IH }}$ for the formation of the singly and doubly charged iminium ions, respectively, are defined as shown in eq 6 and 7 , then [HDIm^{+}]

$$
\begin{align*}
K_{\mathrm{I}} & =\frac{\left[i-\mathrm{PrCH}=\stackrel{+}{\mathrm{N}} \mathrm{HCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]}{[i-\mathrm{PrCHO}]\left[\mathrm{DaH}^{+}\right]} \tag{6}\\
K_{\mathrm{IH}} & =\frac{\left[i-\mathrm{PrCH}=\stackrel{+}{\mathrm{N}} \mathrm{HCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right]}{[i-\mathrm{PrCHO}]\left[\mathrm{DaH}_{2}{ }^{2+}\right]} \tag{7}
\end{align*}
$$

and [HDImH ${ }^{2+}$] may be expressed as shown in eq 8

$$
\begin{equation*}
\left[\mathrm{HDIm}^{+}\right]=K_{\mathrm{I}}[\mathrm{AD}]\left[\mathrm{DaH}^{+}\right] \tag{8}
\end{equation*}
$$

and 9. Substitution of these equations, which are

$$
\begin{equation*}
\left[\mathrm{HDImH}^{2+}\right]=K_{1 \mathrm{H}}[\mathrm{AD}]\left[\mathrm{DaH}_{2}{ }^{2+}\right] \tag{9}
\end{equation*}
$$

based on the well-founded assumption that the various equilibria concerned are established rapidly relative to the deuterium exchange reaction, into eq 1 gives eq 10 .

$$
\begin{align*}
& v=\left(\sum_{i} k_{\mathrm{B} i}\left[\mathrm{~B}_{i}\right]+\sum_{i} k_{\mathrm{B}_{\mathrm{i}}}^{\prime}\left[\mathrm{B}_{i}\right] K_{\mathrm{I}}\left[\mathrm{DaH}^{+}\right]+\right. \\
&\left.\sum_{i} k^{\prime \prime}{ }_{\mathrm{Bi}}\left[\mathrm{~B}_{\boldsymbol{i}}\right] K_{\mathrm{IH}}\left[\mathrm{DaH}_{2}^{2+}\right]\right) f_{\mathrm{A}}[\mathrm{AD}]_{\mathrm{t}} \tag{10}
\end{align*}
$$

The bases from which basic catalysis might be expected are water, hydroxide ion, unprotonated diamine (Da), monoprotonated diamine, imidazolidine, imidazolidinium ion, the iminium ion i - $\mathrm{PrCH}=\mathrm{NHCH}_{2-}$ $\mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+}$, and the imines i - $\mathrm{PrCH}=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ and $i-\mathrm{PrCH}=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$. The known catalysis constant for water ${ }^{5}$ shows that catalysis by attack of water on aldehyde would contribute only about 0.5% to reaction via attack on the aldehyde at the lowest diamine concentration used. Because of this inability of water to compete with the other bases in the solution, exchange via attack of water on the iminium ions was neglected. The imidazolidinium ion and the iminium ion should be too weakly basic (and the latter's concentration should be too low) for significant amounts of catalysis. Since no basic catalysis by imine was observed in runs using methylamine, where the imine was the most abundant nitrogen base present, ${ }^{6}$ we have neglected catalysis by imine nitrogen atoms in the present case, where the relative concentration of imines is much lower. Significant amounts of catalysis by the primary amino group of the uncharged imine seem unlikely in view of its relatively low concentration and the fact that primary amines are not particularly effec-

[^7]tive catalysts. ${ }^{9,10}$ In a kinetic analysis of the values of $k_{\text {obsd }}$ such catalysis by the imine would be indistinguishable from catalysis by its tautomer, the imidazolidine.

Increases in the diamine concentration at a given pH bring about decreases in the concentration of aldehyde and increases in the concentrations of iminium ions. For this reason the fraction of the reaction that proceeds through the aldehyde decreases as the concentration of diamine increases. The fraction of reaction involving the base hydroxide ion must also decrease with increasing concentration of diamine, since the hydroxide ion concentration remains constant, and the concentration of its competitors, the imidazolidine and the unprotonated and monoprotonated diamine, increases. These changes provide reasons for neglecting attack of hydroxide ions on the iminium ions, even though we do allow for attack of hydroxide ions on the aldehyde.

Neglect of the bases indicated and combination of eq 2 with eq 10 gives eq 11, in which the subscripts

$$
\begin{gather*}
k_{\text {obsd }}=f_{\mathrm{A}}\left\{k_{\mathrm{h}}\left[\mathrm{OH}^{-}\right]+k_{\mathrm{i}}[\mathrm{Imid}]+k_{\mathrm{d}}[\mathrm{Da}]+k_{\mathrm{dh}}\left[\mathrm{DaH}^{+}\right]+\right. \\
\left(k_{\mathrm{i}}^{\prime}[\text { Imid }]+k_{\mathrm{d}}^{\prime}[\mathrm{Da}]+k_{\mathrm{dh}}^{\prime}\left[\mathrm{DaH}^{+}\right]\right) K_{\mathrm{I}}\left[\mathrm{DaH}^{+}\right]+ \\
\left.\left({k^{\prime \prime}}_{\mathrm{i}}[\text { Imid }]+k^{\prime \prime}{ }_{\mathrm{d}}[\mathrm{Da}]+k^{\prime \prime}{ }_{\mathrm{dh}}\left[\mathrm{DaH}^{+}\right]\right) K_{\mathrm{IH}}\left[\mathrm{DaH}_{2}{ }^{2+}\right]\right\} \tag{11}
\end{gather*}
$$

h, i, d, and dh refer to the bases hydroxide ion, imidazolidine, unprotonated diamine, and monoprotonated diamine, respectively. Since we have the equilibrium constants and acidity constants with which to calculate f_{A} and the concentrations of the five species shown, and since k_{h} is known, there are nine unknowns (k_{i}, $k_{\mathrm{d}}, k_{\mathrm{dh}}, k^{\prime}{ }_{\mathrm{i}} K_{\mathrm{I}}, k^{\prime}{ }_{\mathrm{d}} K_{\mathrm{I}}, k^{\prime}{ }_{\mathrm{dh}} K_{\mathrm{I}}, k^{\prime \prime}{ }_{\mathrm{i}} K_{\mathrm{IH}}, k^{\prime \prime}{ }_{\mathrm{d}} K_{\mathrm{IH}}$, and $k^{\prime \prime}{ }_{\mathrm{dh}}$. $K_{\text {IH }}$) in eq 11. We did not vary the concentrations of all the participating species sufficiently to permit the reliable determination of all these constants. In fact, because of various concentration interdependencies and for other reasons it is not clear that such variation would be possible. It is therefore not surprising that an unrestricted least squares treatment of the data in Table I did not give a plausible set of values for these unknowns. ${ }^{11}$ For this reason certain restrictions were introduced. The rate constants for attack of the primary amines Da and DaH^{+}on isobutyraldehyde-2-d were assumed to fall on a Brønsted line of slope 0.5 with the rate constant for attack by methylamine, the only other primary amine whose reactivity has been studied. (Values of 0.49 and 0.53 for the Bronsted β have been found for 3 - and 4 -substituted pyridines and phenoxide ions, respectively. ${ }^{5}$) Using the estimate ${ }^{10,12}$ that the k_{m} term observed using methylamine buffers ${ }^{6}$ is about 90% owing to attack of amine on deuterioaldehyde gives a rate constant of $2.7 \times 10^{-3} \mathrm{M}^{-1}$ sec^{-1} for methylamine, from which values of $1.1 \times$ 10^{-3} and $3.0 \times 10^{-5} M^{-1} \mathrm{sec}^{-1}$ may be calculated for k_{d} and k_{dh}, respectively. Since the N-methyliminium ion of isobutyraldehyde-2- d has been found to be only 84% as selective as the aldehyde toward attack by

[^8]various bases, ${ }^{10}$ we have assumed that this is also true for the iminium ions encountered in the present case. These assumptions give eq 12 , in which there are only three unknowns. Least squares treatment of the data in Table I gave the values $1.45 \times 10^{-3} \mathrm{M}^{-1} \mathrm{sec}^{-1}$, $0.043 M^{-2} \mathrm{sec}^{-1}$, and $0.50 M^{-2} \mathrm{sec}^{-1}$ for $k_{\mathrm{i}}, k^{\prime}{ }_{\mathrm{i}} K_{\mathrm{I}}$, and $k^{\prime \prime}{ }_{i} K_{\mathrm{IH}}$, respectively. These values seem plausible.
\[

$$
\begin{gather*}
k_{\text {obad }}-f_{\mathrm{A}} k_{\mathrm{b}}\left[\mathrm{OH}^{-}\right]=f_{\mathrm{A}}\left\{k_{\mathrm{i}}[\text { Imid }]+0.0011[\mathrm{Da}]+\right. \\
0.00003\left[\mathrm{DaH}^{+}\right]+\left([\mathrm{Imid}]+\left(0.0011 / k_{\mathrm{i}}\right)^{0.84}[\mathrm{Da}]+\right. \\
\left.\left(0.00003 / k_{\mathrm{i}}\right)^{0.84}\left[\mathrm{DaH}^{+}\right]\right) k_{\mathrm{i}}^{\prime} K_{\mathrm{I}}\left[\mathrm{DaH}^{+}\right]+([\mathrm{Imid}]+ \\
\left.\left.\left(0.0011 / k_{\mathrm{i}}\right)^{0.84}[\mathrm{Da}]+\left(0.00003 / k_{\mathrm{i}}\right)^{0.84}\left[\mathrm{DaH}^{+}\right]\right) k^{\prime \prime}{ }_{\mathrm{i}} K_{\mathrm{IH}}\left[\mathrm{DaH}_{2}{ }^{2+}\right]\right\} \tag{12}
\end{gather*}
$$
\]

The value of k_{i} corresponds to 2 -isopropylimidazolidine attacking isobutyraldehyde-2-d 30% more rapidly than does ethylenediamine (according to our estimated rate constant), although the latter amine is about three times as basic. However, secondary amines (if not too hindered) are known to be better catalysts than primary amines of similar basicity. ${ }^{9}$ Our k_{i} is too small by a factor of about two to fall on a Brønsted plot of the points for piperidine, piperazine, and morpholine, ${ }^{9}$ suggesting that 2 -isopropylimidazolidine is somewhat more hindered than these other secondary amines.

From a plot of $\log k_{\mathrm{B}} v s . \log k^{\prime}{ }_{\mathrm{B}} K_{\mathrm{I}}$ in the case where $k^{\prime}{ }_{\mathrm{B}}$ is the rate constant for attack of base on and K_{I} is the equilibrium constant for formation of the N methyliminium ion of isobutyraldehyde-2- $d,{ }^{10}$ a value of $0.013 M^{-2} \sec ^{-1}$ would be calculated for $k^{\prime}{ }_{\mathrm{i}} K_{\mathrm{I}}$ if it referred to the N-methyliminium ion. Since $k^{\prime}{ }_{\mathrm{B}} K_{\mathrm{I}}$ for a given base has been found to increase with increasing acidity of the primary ammonium ion from which the iminium ion is formed, ${ }^{13}$ a larger value than this would be expected for our $k^{\prime}{ }_{i} K_{\mathrm{I}}$, which refers to the iminium ion formed from monoprotonated ethylenediamine, and a still larger value would be expected for $k^{\prime \prime}{ }_{i} K_{\mathrm{IH}}$, which refers to the iminium ion formed from diprotonated ethylenediamine. The values we have obtained are in agreement with these expectations.

From the constants obtained using eq 12 , the observed rate constants may be calculated with a standard deviation of 13% and an average deviation of 10%. These constants, a pH of 8.68 , and an aldehyde concentration of $0.053 M$ were used to calculate the solid curve in Figure 1, and with a pH of 8.37 and an aldehyde concentration of $0.060 M$ they were used to calculate the dashed curve. Part of the deviations of the points from the respective lines arises from the fact that most points refer to a slightly different set of conditions from those from which the lines were calculated.

In eq 12 all the rate constants were taken as being independent of the ionic strength. Two of these constants, $k^{\prime}{ }_{\mathrm{db}}$ and $k^{\prime \prime}{ }_{\mathrm{db}}$, govern reactions between ions. The data were also treated by using the Davies equation ${ }^{14}$ (which takes the form of eq 13 at 35°) to calculate

$$
\begin{equation*}
\log \gamma=-0.52 Z^{2}\left(\frac{\sqrt{\mu}}{1+\sqrt{\mu}}-0.2 \mu\right) \tag{13}
\end{equation*}
$$

activity coefficients and using the Brønsted method ${ }^{15}$ to calculate the ionic strength effect on the rate con-
(13) J. Hine, B. C. Menon, J. Mulders, and J. P. Idoux, J. Org. Chem., 32, 3850 (1967).
(14) C. W. Davies, J. Chem. Soc., 2093 (1938).
(15) J. N. Brønsted, Z. Physik. Chem., 102, 169 (1922); 115, 337 (1925).
stants. The values of k_{i} and $k^{\prime}{ }_{i} K_{I}$ obtained were within 3% of the values obtained neglecting such ionic strength effects, but $k^{\prime \prime}{ }_{i} K_{\text {IH }}$ was much smaller (0.040 $M^{-1} \mathrm{sec}^{-1}$) and the standard deviation of the fit increased to 14%. We feel that this procedure, which requires the evaluation of the activity coefficients of a triply charged ion, is not very reliable and, largely because the $k^{\prime \prime}{ }_{i} K_{\mathrm{IH}}$ value obtained is implausible, prefer the treatment in which ionic strength effects on rate constants were neglected. Nevertheless we feel that the value of $k^{\prime \prime}{ }_{i} K_{\text {IH }}$ obtained is much less reliable than the values of $k^{\prime}{ }_{i} K_{I}$ and k_{i}. Other sets of restrictions on the nine constants in eq 11 led to implausible sets of rate constants with values of $k^{\prime}{ }_{i} K_{\mathrm{I}}$, $k^{\prime \prime}{ }_{i} K_{\mathrm{IH}}$, and other constants that often differed considerably from the values obtained by the method described above, but the values of k_{i} were all constant within 15%.

A kinetic equation like eq 11 may be written for the dedeuteration of isobutyraldehyde-2-d in the presence of N, N^{\prime}-dimethylethylenediamine, but the relative rate of exchange via iminium ions may be affected by the fact that the only iminium ions possible are of the type of ion 1 , formed from a secondary amine. In a study

1
of catalysis of the dedeuteration of isobutyraldehyde-2- d by simple secondary amines, no evidence for reaction via iminium ions was obtained. ${ }^{9}$ Least squares treatments with plausible restrictions gave sets of rate constants that corresponded to some exchange via iminium ions and permitted the calculation of the $k_{\text {obsd }}$ values in Table III with standard deviations around 10%. However, when catalysis via iminium ion formation was completely neglected and only the restriction (based on a Brønsted β of 0.5) that $k_{\mathrm{db}}=$ $0.0259 k_{\mathrm{d}}$ was made, values for the two unknowns of 4.8×10^{-5} and $3.5 \times 10^{-3} M^{-1} \mathrm{sec}^{-1}$ were obtained for k_{i} and k_{d}, respectively. The $k_{\text {obsd }}$ values may be calculated with a standard deviation of 11% from these rate constants, which were also used (with a pH of 8.66 and an aldehyde concentration of 0.053 M) in constructing the solid line in Figure 2. The value for $\log k_{d}$ falls about $0.2 \log$ units below the line in the Brønsted plot for morpholine, piperazine, and piperidine, suggesting that the open-chain diamine is slightly more hindered than the cyclic amines. Brønsted plots of $\log k_{\mathrm{i}}$ indicate that 1,3-dimethyl-2-isopropylimidazolidine is more hindered than N -methylmorpholine but no more hindered than a number of tertiary amines. Hindrance would be expected in view of the fact that
the isopropyl group would have to be cis to at least one adjacent methyl group or cis to the unshared electron pair that is involved in removal of deuterium. In view of the plausible magnitude of the rate constants and the smallness in the improvement of the fit to the observed data obtained when catalysis via the formation of intermediate iminium ions is taken into account, we conclude that there may be some such catalysis, but it has not been established by our observations.

With N-methylethylenediamine we do not have equilibrium constants for reactions with isobutyraldehyde to form imidazolidines or imidazolidinium ions. Even if we did, the unsymmetrical nature of this base would make the detailed interpretation of kinetic data considerably more complicated than in the case of ethylenediamine or its N, N^{\prime}-dimethyl derivative. Hence the dashed line in Figure 2 is simply a smooth curve that approximates the kinetic data.

Although a rate maximum and subsequent minimum is found with ethylenediamine and its N-methyl derivative, none appears with N, N^{\prime}-dimethylethylenediamine. There are probably two major reasons for this. First, the equilibrium constant for the formation of an imidazolidine from isobutyraldehyde and $N, N^{\prime}-$ dimethylethylenediamine is only about one third as large as in the case of ethylenediamine itself. Second, 2-isopropylimidazolidine, which is 16 times as basic as its N, N^{\prime}-dimethyl derivative and considerably less hindered, is a much better catalyst for the dedeuteration of isobutyraldehyde-2-d.

Experimental Section

The reagents used in this study have been described previously. ${ }^{4,5}$ In some of the kinetic runs the pH of the reaction solution (which we take as $-\log a_{\mathrm{H}^{+}}$, with activity coefficients being calculated from the Davies equation ${ }^{14}$) was not measured but was calculated from the concentrations of the various reagents that had been added and the relevant acidity constants and equilibrium constants for imidazolidine formation. ${ }^{4}$ In some other kinetic runs the amount of hydrochloric acid or sodium hydroxide added was not carefully measured, but the pH was determined by use of a Radiometer pH meter (26c) and glass electrode (202 b or 202 c). In the remaining cases, in which the amount of added acid and the pH were both carefully measured, there were differences between the observed and calculated pH as large as 0.1 . In the runs carried out using ethylenediamine and its N-methyl derivative, the reaction solutions were prepared from the free amine and the appropriate amount of standard hydrochloric acid. With N, N^{\prime}-dimethylethylenediamine the dihydrochloride was used and the appropriate amount of standard sodium hydroxide was added.

In least squares treatments of the data it was the sum of the squares of the fractional deviations that was minimized.

Registry No.-Isobutyraldehyde-2-d, 4303-51-9; ethylenediamine, 107-15-3; N-methylethylenediamine, 109-81-9; N, N^{\prime}-dimethylethylenediamine, 110-70-3.

1-(2-Imidazolin-2-yl)-2-imidazolines. I. The Structure of Jaffés Base and the Chemistry of Related Compounds

Raymond R. Wittekind,* Thomas Capiris, John Fahey, and John Shavel, Jr.
Department of Organic Chemistry, Warner-Lambert Research Institute, Morris Plains, New Jersey 09950

Received November 15, 1972

Abstract

The synthesis of four potential starting materials for the preparation of 2-amino-1-(2-imidazolin-2-yl)-2-imidazolines is described. Treatment of 2 -(methylthio)-2-imidazoline (6) with 2 -(methylthio)-2-imidazoline hydriodide (7) gave 1-(2-imidazolin-2-yl)-2-(methylthio)-2-imidazoline hydriodide (9) and 1-(2-imidazolin-2-yl)-2-(methylthio-2-imidazoline hydriodide methanethiol (8). Two minor products, 1-(2-imidazolin-2-yl)-2-[2(methylthio ;-2-imidazolin-1-yl]-2-imidazoline hydriodide (10) and 2,3,8,9-tetrahydro-5-(methylthio)-7H-imidazo $[2,3-b][1,3,5]$ triazepine hydriodide (11), were also obtained. Reaction of 2 -(methylthio)-2-imidazoline hydriodide (7) with triethylamine afforded triethyl[1-(2 -imidazolin- 2 -yl)-2-imidazolin- 2 -yl]ammonium iodide hydriodide methanethiol (12) and 1-(2-imidazolin-2-yl)-2-(methylthio)-2-imidazoline dihydriodide methanethiol (13). The determination of the structures of the aforementioned compounds and their reationship to Jaffés base, 1-(2-imidazolin-2-yl)-2-imidazolidinethione (5), is described. A novel hydrolysis, the transformation of 1-(2-imidazolin-2-yl)-2-(methylthio)-2-imidazoline dihydriodide methanethiol (13) to S, S-dimethyl dithiocarbonate (17) and 2-[(2-aminoethyl)amino]-2-imidazoline dihydroiodide (18), was observed. Evidence which suggests that previously described conversion of 6 to 1 -(2 -imidazolin- 2 -yl)-2-imidazolidinone (14$)^{4}$ proceeds via alkoxylimidazolinylimidazoline 21 is presented.

Structures 1^{1} and 2^{2} initially assigned to Jaffe's base, the product of the interaction of ethylenediamine (3) and thiophosgene (4), ${ }^{1}$ were subsequently shown to be incorrect; the correct structure 5 was established

by the results of uv measurements ${ }^{3}$ and confirmed by chemical interconversion. ${ }^{4}$ During the course of an investigation concerned with the synthesis of 2 -amino-1-(2-imidazolin-2-yl)-2-imidazolines as potential cardiovascular drugs, we obtained evidence compatible with structure 5 and studied some aspects of the chemistry of this class of compounds.

The starting material, 1 -(2-imidazolin-2-yl)-2-(meth-ylthio)-2-imidazoline hydriodide (9), required for the synthesis of 2-aminoimidazolinylimidazolines, was prepared by the reaction of 2 -(methylthio)-2-imidazoline (6) ${ }^{5}$ with 1 equiv of its hydriodide $7 .{ }^{6}$ Treatment of 6 with 7 gave 9 by precipitation from the reaction mixture and the corresponding methanethiol complex by concentration of the filtrate. Triimidazoline 10 and imidazotriazepine 11 were isolated by fractional crystallization of the residual reaction product.

The minor products were assigned triimidazoline and triazepine structures 10 and 11, respectively, on the basis of plausible modes of formation, the former by

[^9]reaction of either 8 or 9 with 6 and the latter by the internal rearrangement of 9 (and/or 8) depicted below. The spectral properties (ir, uv, and nmr) of 10 and 11 were in accord with these structural postulations.

Two additional precursors of 2-aminoimidazolinylimidazolines became available when we found that reaction of imidazoline 7 with triethylamine afforded quaternary salt 12 by precipitation from the reaction mixture and methanethiol complex dihydriodide 13 by addition of 50% hydriodic acid to the filtrate.

Ammonolysis of 8 or 9 with triethylammonium iodide ${ }^{7}$ and 13 with triethylamine gave quaternary iodide 12. Hence, the imidazolinylimidazolines 8, 9, 12 , and 13 belong to the same chemical series and, as such, show ir absorption bands in the 1620-1660- and $1565-1600-\mathrm{cm}^{-1}$ regions, characteristic of the imine and iminium functions, ${ }^{8}$ respectively, and nmr signals in the $3.4-3.9-\mathrm{ppm}$ region, assignable to the protons of the imidazoline rings. ${ }^{9}$ As expected, the uv spectra of 8, 9, 12 , and 13 are transparent above 220 nm .

Structure 12 was assigned to the ammonolysis product solely on the basis of its solid-state (Nujol mull) ir spectrum, which exhibited an absorption band at $2550 \mathrm{~cm}^{-1}$, a value within the accepted range for the sulfur-hydrogen stretching frequency of a thiol group. ${ }^{10}$ That 12 exists in solution as the triethylammonium

[^10]
iodide complex 15 of 9 was indicated by nmr spectroscopy. Excluding the signals due to the ethyl groups, the spectra of 9 and 12 in deuteriodimethyl sulfoxide were strikingly similar, each displaying three-proton singlets at $\delta 2.5 \mathrm{ppm}$ assignable to the methylthio groups, ${ }^{11}$ in addition to those associated with the imidazoline moieties. Rapid deposition of 9 from a warm solution of 12 and dichloromethane provided supportive chemical evidence for this conclusion.
A comparison of the nmr spectra of 8 and 9 indicated that 8 was the methanethiol complex of 9 . Whereas the spectrum of 9 showed a three-proton singlet at δ 2.54 ppm , assignable to the methylthiol group, ${ }^{11}$ that of 8 displayed two three-proton singlets in the same region ($\delta 2.40$ and 2.60 ppm), one assignable to methanethiol and the other to the methylthio group. This indication was substantiated by the thermal demethylthiolation of 8 to 9 and by the methylthiolation of 9 to 8 .
Acid hydrolysis of imidazolinylimidazolines 9 and 12 afforded imidazolinylimidazolidinone 14 in fair yield. Numerous attempts to convert Jaffe's base 5 to 14 by exchange with mercuric oxide ${ }^{4}$ and thereby interrelate this work with that previously described by others ${ }^{1-4}$ failed to give 14. Attempts to achieve the desired interrelation by methylation of 5 to 9 with methyl iodide also failed, hydriodide 5 a being the only identifiable product. The goal was finally achieved by the thermal demethylation of 9 to 5 . Thus, the structures of the reported imidazolinylimidazolines are established.
A novel hydrolysis of 2-methylthioimidazolinyl-

[^11]imidazoline 13, which established the presence of di(methylthiol)imidazolidine 16 in aqueous solution, was observed during the course of our initial attempts to correlate the gross structure of 13 with that of the cyclic urea 14. Treatment of 13 with boiling hydriodic acid gave S, S-dimethyl dithiocarbonate (17) and 2-[(2-aminoethyl)amino]-2-imidazoline dihydriodide (18) in comparable yields. The hydrolysis products, carbonate 17^{12} and imidazoline dipicrate 18a, ${ }^{13}$ were identical with authentic samples prepared by previously described procedures. Hydrolysis under milder conditions afforded a low yield of the expected cyclic urea 20. Neutralization of 20 furnished 14.

Even though 13 is recrystallizable from methanol, prolonged dissolution in thes solvent results in extensive decomposition to imidazol-none 19. Neutralization of 19 gave 14.
Methylthioimidazolinylimidazoline 9 and quaternary salt 12 reacted slowly witi predried boiling methanol and 2-propanol under a blanket of nitrogen to give imidazolinylimidazolidinone 14 a in $25-30 \%$ yield in addition to unchanged 9 and 12 and were refractive in boiling 1-butanol, a weaker nucleophile than the primary and secondary alcohos. Hence, the conversion of 9 and 12 to 14 a was not a simple hydrolysis promoted by trace amounts of water but, more likely, involved alcoholysis of 9 and 12 to alkoxyimidazolinylimidazoline 21 followed by dealkylation of 21 by iodide to 14a.
These observations coupled with the formation of 9 from 6 and 7 suggest that alkoxylimidazolinylimidazo-

[^12]
line 21 is an intermediate in the reported conversion ${ }^{4}$ of 6 to 14 by ethanolic sodium ethoxide, the ethoxide acting as a base for the transformation of 6 to 21 and a nucleophile for the transformation of 21 to 14.

Methylthioimidazolinylimidazolines 8, 9, 12, and 13 react with a variety of amines to give 2 -aminoimidazolinylimidazolines. These compounds show interesting biological activities, which will be the subject of forthcoming publications. ${ }^{14,15}$

Experimental Section ${ }^{16}$

Reaction of 2-(Methylthio)-2-imidazoline (6) with 2-(Methyl-thio)-2-imidazoline Hydriodide (7). -A solution of imidazoline 6 ($116 \mathrm{~g}, 1.00 \mathrm{~mol}$), imidazoline hydriodide $7(244 \mathrm{~g}, 1.00 \mathrm{~mol})$, and acetonitrile (distilled from calcium hydride) $(700 \mathrm{ml})$ was heated under reflux for 1.5 hr while a moderate stream of nitrogen was passed through the reaction mixture. The solution was allowed to stand at room temperature for 48 hr . The precipitate was collected, yield $25 \mathrm{~g}(8.0 \%$) of 1-(2-imidazolin-2-yl)-2-(methyl-thio)-2-imidazoline hydriodide (9), $\mathrm{mp} 176-178^{\circ}$ (resolidified) and $230-250^{\circ}$.

An analytical sample, prepared by repeated recrystallization from 2-propanol, had mp 173-175 ${ }^{\circ}$ (resolidified) and 230-250 dec; uv max $218 \mathrm{~nm}(\epsilon 14,600)$; ir $1620\left(\mathrm{C}=\mathrm{N}^{+}\right), 1565 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N})$; $\mathrm{nmr} \delta 2.54\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{~S}\right), 3.71,3.91\left(\mathrm{~s}, 8, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, and $8.70\left(\mathrm{D}_{2} \mathrm{O}\right.$-exchangeable broad $\mathrm{m}, 2, \mathrm{NH}_{2}$).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{IN}_{4} \mathrm{~S}: \mathrm{C}, 26.93 ; \mathrm{H}, 4.20 ; \mathrm{I}, 40.65 ; \mathrm{N}$, 17.95. Found: C, 27.22; H, 4.16; I, 40.79; N, 17.84.

The filtrate was concentrated to a volume of 400 ml and the precipitate was collected. Fractional recrystallization from acetonitrile and 2-propanol gave 103 g (29%) of 1-(2-imidazolin-2-yl)-2-(methylthio)-2-imidazoline hydriodide methanethiol (8) $\mathrm{mp} 101-102^{\circ}$, which was recrystallized from acetonitrile: mp $103-104^{\circ}$ dec; uv $\max 219 \mathrm{~nm}(\epsilon 47,700)$; ir $1660\left(\mathrm{C}=\mathrm{N}^{+}\right), 1585$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{N}) ; \mathrm{nmr} \delta 2.40\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{~S}\right), 2.60\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{~S}\right), 3.33$ (s, 1, SH), $3.44\left(\mathrm{~s}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.67\left(\mathrm{~s}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, and 8.1 ($\mathrm{D}_{2} \mathrm{O}$-exchangeable broad $\mathrm{m}, \mathrm{NH}, \mathrm{NH}_{2}{ }^{+}$).

[^13]Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{IN}_{4} \mathrm{~S}_{2}$: C, 26.67; H, 4.76; I, 35.22; $\mathrm{N}, 15.55$; S, 17.80. Found: C, 26.82; H, 4.82; I, 35.16; N, 15.61; S, 17.79.

Also obtained was $7.05 \mathrm{~g} \quad(1.9 \%)$ of 1-(2-imidazolin-2-yl)-2-[2-(methylthio)-2-imidazolin-1-yl]-2-imidazoline hydriodide (10): $\mathrm{mp} 191-192^{\circ}$ dec; uv max $217 \mathrm{~nm}(\epsilon 40,800)$; ir $1712\left(\mathrm{C}=\mathrm{N}^{+}\right)$, $1680,1585 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; nmr ò $2.33\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{~S}\right), 3.8(\mathrm{~m}, 12$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$) and $9.3\left(\mathrm{D}_{2} \mathrm{O}\right.$-exchangeable broad $\left.\mathrm{s}, 2, \mathrm{NH}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{IN}_{6} \mathrm{~S}: \mathrm{C}, 31.59 ; \mathrm{H}, 4.51$; I, 33.37 ; N, 22.10 ; S, 8.73. Found: C, 31.61; H, 4.51; I, 33.20; N, 22.14; S, 8.82 .

Also obtained was $1.9 \mathrm{~g}(0.5 \%)$ of $2,3,8,9$-tetrahydro- $5-$ (methylthio)- 7 H -imidazo $[2,3-b][1,3,5]$ triazepine hydriodide (11): $\mathrm{mp} 183-184^{\circ}$; uv max $219 \mathrm{~nm}(\epsilon 26,500)$; ir $1685\left(\mathrm{C}=\mathrm{N}^{+}\right), 1550$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{N})$; $\mathrm{nmr} \delta 2.35\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{~S}\right) 3.1-4.4\left(\mathrm{~m}, 9, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, $\mathrm{NH})$, and $8.8\left(\mathrm{D}_{2} \mathrm{O}\right.$-exchangeable broad $\left.\mathrm{m}, \mathrm{l},{ }^{+} \mathrm{NH}\right)$.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{IN}_{4} \mathrm{~S}: \mathrm{C}, 26.93 ; \mathrm{H}, 4.20 ; \mathrm{I}, 40.65$; $\mathrm{N}, 17.95$. Found: C, 27.15; H, 4.22; I, 40.61; N, 17.92.
The base of 11 had $\mathrm{mp} 167-169^{\circ}$; uv max end absorption; ir 1670, $1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.25\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{~S}\right)$, $3.0-4.0\left(\mathrm{~m}, 8, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, and $6.25(\mathrm{~s}, 1, \mathrm{NH})$.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 45.63 ; \mathrm{H}, 6.56 ; \mathrm{N}, 30.41$; S, 17.40. Found: C, 46.03; H, 6.70; N, 30.27; S, 17.04 .

Conversion of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Hydriodide (9) to 1-(2-Imidazolin-2-yl)-2-(methylthio)-2imidazoline Hydriodide Methanethiol (8).-A solution of imidazoline $9(3.0 \mathrm{~g}, 9.6 \mathrm{mmol}$;, methylmercaptan ($25 \mathrm{~g}, 0.52$ mol), and acetonitrile (175 ml) was allowed to stand at 0° for 5 min and then evaporated. Trituration of the residue with acetone gave $2.28 \mathrm{~g}(76 \%)$ of unchanged imidazoline $9, \mathrm{mp} \mathrm{181-182}^{\circ}$ (resolidified) and $230-250^{\circ}$, alone and admixed with an authentic sample of 9 , and $0.10 \mathrm{~g}(12 \%)$ of methanethiol complex $8, \mathrm{mp}$ $100-102^{\circ}$, alone and admixed with an authentic sample of 8 .

The ir spectra of 9 and 8 , so obtained, were identical with those of the authentic samples.
Demethylthiolation of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2imidazoline Hydriodide Methanethiol (8).-A solution of methanethiol complex 8 and acetonitrile (100 ml) was heated under reflux for 66 hr while a vigorous stream of nitrogen was passed through the reaction mixture ard then allowed to cool to room temperature. The precipitate was collected, washed with acetone, and dried, yield $1.05 \mathrm{~g}(66 \%)$ of imidazoline $9, \mathrm{mp} \mathrm{183-185}{ }^{\circ}$ (resolidified) and $230-250^{\circ} \mathrm{dec}$, alone or admixed with a reference sample.

The ir spectra of the two samples were identical.
Triethyl [1-(2-imidazolin-2-yl)-2-imidazolin-2-yl]ammonium Iodide Hydriodide Methanethiol (12) and 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Dihydriodide Methanethiol (13).-A solution of 2 -(methylthio)-2-imidazoline hydriodide (7) (244 g , $1.00 \mathrm{~mol})$, triethylamine ($101 \mathrm{~g}, 1.00 \mathrm{~mol}$), and 2-propanol (freshly distilled from calcium hydride) (1 1.) was heated under reflux for 2 hr while a vigorous stream of N_{2} was passed through the solution. The reaction mixture was allowed to cool to room temperature and the precipitate was collected. Recrystallization from 2-propanol gave $79.7 \mathrm{~g}(30 \%)$ of quaternary salt 12 : mp $169-172^{\circ}$ (resolidified) and $245-255^{\circ}$ dec; uv max end absorption; ir 3300, $3150\left(\mathrm{NH}^{+}\right), 2550(\mathrm{SH}), 1630\left(\mathrm{C}=\mathrm{N}^{+}\right), 1600 \mathrm{~cm}^{-1}$ (C=N); nmr $\delta 1.15\left(\mathrm{t}, 9, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.51\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{~S}\right)$, 3.13 ($\mathrm{q}, 6, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}$), 3.70 and 3.86 (s, $8, \mathrm{CH}_{2} \mathrm{CH}_{2}$), and 8.6 ($\mathrm{D}_{2} \mathrm{O}$-exchangeable broad m, $3 \mathrm{H}, \mathrm{NH}^{+}$, SH).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{I}_{2} \mathrm{~N}_{5} \mathrm{~S}$: C, $28.85 ; \mathrm{H}, 5.40$; I, 46.89; N, 12.94; S, 5.92. Found: C, 28.98; H, 5.42; I, 46.75; N, 12.79; S, 5.94.

Hydriodic acid (50%) (140 ml) was added to the above filtrate and, after 30 min , the solid was collected and recrystallized from 2-propanol-water ($4: 1$); yield 59.6 g (12%) of methanethiol dihydriodide 13: $\mathrm{mp} 162-164^{\circ}$; uv $\max 218 \mathrm{~nm}(\epsilon 36,800)$; ir $1668\left(\mathrm{C}=\mathrm{N}^{+}\right), 1600,1545 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}) ; \mathrm{nmr}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.84,2.89$ (s, $6, \mathrm{CH}_{3} \mathrm{~S}$), and $3.9\left(\mathrm{~m}, 8, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2}$: C, $19.68 ; \mathrm{H}, 3.72$; I, 52.00 ; $\mathrm{N}, 11.48$; S, 13.13. Found: C, 19.97; H, 3.80; I, 52.13 ; N , 11.26; S, 13.22.

Preparation of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Dihydriodide Methanethiol (13) from 2-(Methylthio)-2imidazoline (6) and 2-(Methylthio)-2-imidazoline Hydriodide (7).-A solution of imidazoline $6(58.0 \mathrm{~g}, 0.500 \mathrm{~mol})$, hydriodide $7(122 \mathrm{~g}, 0.500 \mathrm{~mol})$, and acetonitrile (1.5 l.) was heated under reflux for 2 hr and then allowed to cool to room temperature. Hydriodic acid $(50 \%, 65 \mathrm{ml}) \mathrm{w} \varepsilon \mathrm{s}$ added and the precipitate was
collected. Recrystallization from methanol gave $75.0 \mathrm{~g}(30 \%)$ of dihydriodide $13, \mathrm{mp} 160-161^{\circ}$, alone and admixed with a sample described in the preceding section.

Conversion of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Hydriodide (9) to Triethyl [1-(2-imidazolin-2-yl)-2-imidazolin-2-yl]ammonium Iodide Hydriodide Methanethiol (12).-A solution of imidazoline $9(1.06 \mathrm{~g}, 3.39 \mathrm{mmol})$, triethylammonium iodide ($0.777 \mathrm{~g}, 3.39 \mathrm{mmol}$), and 2-propanol (40 ml) was heated under reflux for 1 hr while a stream of N_{2} was passed through the reaction mixture. The solution was allowed to cool to room temperature and the solid was collected; yield $1.29 \mathrm{~g}(77 \%)$ of quaternary salt $12, \mathrm{mp} 169-172^{\circ}$ (resolidified) and $240-250^{\circ}$ dec, alone or admixed with the initial sample.

The ir spectra of the two samples were identical.
Conversion of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Hydriodide Methanethiol (8) to Triethyl(1-(2-imidazolin-2-yl)-2-imidazolin-2-yl]ammonium Iodide Hydriodide Methanethiol (12).-A solution of imidazoline $8(5.4 \mathrm{~g}, 0.015 \mathrm{~mol})$, triethylammonium iodide ($3.4 \mathrm{~g}, 0.015 \mathrm{~mol}$), and 2 -propanol (20 ml) was heated under reflux for 23 hr and allowed to cool to room temperature. The solid was collected. Recrystallization from 2-propanol gave $3.0 \mathrm{~g}(37 \%)$ of quaternary salt $12, \mathrm{mp} 169-171^{\circ}$ (resolidified) and $245-250^{\circ}$ dec, alone or admixed with an authentic sample of 12 .

The ir spectra of the two samples were superimposable.
Conversion of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Dihydriodide Methanethiol (13) to Triethyl[1-(2-imidazolin-2-yl)-2-imidazolin-2-yl]ammonium Iodide Hydriodide Methanethiol (12).-A solution of imidazoline $13(4.88 \mathrm{~g}, 0.0100 \mathrm{~mol})$, triethylamine ($1.05 \mathrm{~g}, 0.0102 \mathrm{~mol}$), and 2 -propanol (110 ml) was boiled under reflux for 35 min , during which time a steady stream of nitrogen was bubbled through the solution. The reaction mixture was allowed to cool to room temperature and the precipitate was collected. Recrystallization from 2-propanol gave $2.72 \mathrm{~g}(50 \%)$ of quaternary salt $12, \mathrm{mp} 169-172^{\circ}$ (resolidified) and $241-250^{\circ} \mathrm{dec}$, alone or admixed with an authentic sample from the initial experiments.

The ir spectra of the samples were identical.
Conversion of Triethyl[1-(2-imidazolin-2-yl)-2-imidazolin-2-yl]ammonium Iodide Hydriodide Methanethiol (12) to 1-(2-imidazo-lin-2-yl)-2-(methylthio)-2-imidazoline Hydriodide (9).-A mixture of quaternary salt $12(8.43 \mathrm{~g}, 0.0155 \mathrm{~mol})$ and dichloromethane (300 ml) was heated for 45 min and allowed to cool to room temperature. Unchanged quaternary salt $12(2.92 \mathrm{~g}$, 0.00538 mol) was collected. The filtrate was allowed to stand for several hours. The solid was collected; yield 3.00 g (11%) of $9, \mathrm{mp} 176-178^{\circ}$ (resolidified) and $230-250^{\circ}$, alone and admixed with a sample prepared by the method described in the preceding experiment.

Hydrolysis of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Hydriodide (9).-A solution of imidazoline $9(5.40 \mathrm{~g}, 0.0173$ $\mathrm{mol})$, water (100 ml), and 50% hydriodic acid (0.75 ml) was heated under reflux for 1 hr and then evaporated under reduced pressure. Trituration of the residue with 2-propanol followed by recrystallization from 2-propanol gave 3.57 g (73%) of 1-(2-imidazolin-2-yl)-2-imidazolidinone hydriodide (14a): mp 256$258^{\circ} \mathrm{dec}$; uv max end absorption; ir $1740(\mathrm{C}=\mathrm{O}), 1650 \mathrm{~cm}^{-1}$ $\left(\mathrm{C}=\mathrm{N}^{+}\right)$; nmr $\delta 3.5\left(\mathrm{~m}, 9, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NH}\right)$ and $8.2\left(\mathrm{D}_{2} \mathrm{O}\right.$-exchangeable broad $\mathrm{m}, 2, \mathrm{NH}^{+}$).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{IN}_{4} \mathrm{O}$: C, 25.55; H, 3.93; I, 44.99; N, 19.86; O, 5.67. Found: C, 25.64; H, 4.15; I, 44.72; N, 19.65; O, 5.91 .

Hydrolysis of Triethyl[1-(2-imidazolin-2-yl)-2-imidazolin-2yl] ammonium Iodide Hydriodide Methanethiol (12).-A solution of quaternary salt $12(42.8 \mathrm{~g}, 0.0870 \mathrm{~mol})$, water $(150 \mathrm{ml})$, and 50% hydriodic acid (1.5 ml) was heated under reflux for 7 days and then the solution was evaporated to dryness under reduced pressure. Recrystallization of the residue from 2-propanol gave $5.01 \mathrm{~g}(21 \%)$ of imidazolidinone hydriodide $14 \mathrm{a}, \mathrm{mp} 256-258^{\circ}$ dec, alone or admixed with the sample obtained from the preceding experiment.

The ir spectra of the two samples were also identical.
The free base of 14a was obtained by the usual procedure (neutralization with 1 N NaOH solution and extraction with $\mathrm{Et}_{2} \mathrm{O}$) and had mp 198-199 ${ }^{\circ}$ dec (lit. ${ }^{4} \mathrm{mp} 200-204^{\circ}$); uv max end absorption; ir $3380,3200(\mathrm{NH}), 1720(\mathrm{C}=\mathrm{O}), 1610 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N})$; nmr $\delta 3.5\left(\mathrm{~m}, 8, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $7.3\left(\mathrm{D}_{2} \mathrm{O}\right.$-exchangeable v br m, 2, NH).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}: ~ \mathrm{C}, 46.74 ; \mathrm{H}, 6.54 ; \mathrm{N}, 36.34$. Found: C, 47.01; H, 6.74; N, 36.38.

Demethylation of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Hydriodide (9).-A solution of methylthioimidazoline hydriodide $9(12.5 \mathrm{~g}, 0.0400 \mathrm{~mol})$ and acetonitrile (300 ml) was heated under reflux under an atmosphere of nitrogen for 1 week and then cooled in an ice bath. The solid was collected. Recrystallization from 95% ethanol-water (5:1) gave $3.35 \mathrm{~g}(28 \%)$ of 1-(2-imidazolin-2-yl)-2-imidazolidinethione hydriodide (5a): $\mathrm{mp} 282-284^{\circ}$ dec (lit. ${ }^{4} \mathrm{mp} 296-299^{\circ}$ dec); uv max $223 \mathrm{~nm}(\epsilon$ 26,700), $265(12,600)$; ir $1630\left(\mathrm{C}=\mathrm{N}^{+}\right), 1590(\mathrm{C}=\mathrm{N}), 1120$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{S})$; $\mathrm{nmr} \delta 4.0\left(\mathrm{~m}, 9, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NH}\right)$ and $9.7\left(\mathrm{D}_{2} \mathrm{O}-\right.$ exchangeable v br $\mathrm{m}, 2 \mathrm{H}, \mathrm{NH}^{+}$).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{I} \mathrm{N}_{4} \mathrm{~S}$: C, 24.17; H, 3.72; I, 42.56; $\mathrm{N}, 18.79$; S, 10.75. Found: C, 24.32; H, 3.77; I, 42.75; N, 18.83; S, 10.59.

Methanolysis of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Dihydriodide Methanethiol (13). -Imidazoline 13 (60.0 $\mathrm{g}, 0.123 \mathrm{~mol}$) was dissolved in the minimum volume of boiling methanol and the solution was allowed to stand at room temperature for 3 days. The precipitate was collected. Recrystallization from ethanol gave 20.1 g (47%) of 1 -(2-imidazolin- 2 -yl)-2imidazolidinone hydriodide methanethiol hydrate (19): mp $160-161^{\circ} \mathrm{dec}$; uv max $216 \mathrm{~nm}(\epsilon 18,700)$; ir $1670(\mathrm{C}=0), 1640$ $\mathrm{cm}^{-1}\left(\mathrm{C}=\mathrm{N}^{+}\right)$; $\mathrm{nmr} \delta 2.23\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{~S}\right), 3.25\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{H}_{2} \mathrm{O}\right), 3.62\left(\mathrm{~s}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, and $7.9\left(\mathrm{D}_{2} \mathrm{O}\right.$-exchangeable broad m , $4, \mathrm{NH})$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{IN}_{4} \mathrm{O}_{2} \mathrm{~S}: ~ \mathrm{C}, 25.54 ; \mathrm{H}, 4.29$; I, 38.54; $\mathrm{N}, 17.02$; O, 4.88; S, 9.74. Found: C, 25.75; H, 4.63; I, 38.15; N, 17.67; O, 5.14; S, 10.48 .

Neutralization of 1-(2-Imidazolin-2-yl)-2-imidazolidinone Hydriodide Methanethiol Hydrate (19).-Dissolution of hydriodide 19 in $1 N \mathrm{NaOH}$ solution followed by extraction and recrystallization from benzene gave imidazolidinone $14, \mathrm{mp} 200-203^{\circ} \mathrm{dec}$ (lit. ${ }^{4} \mathrm{mp} 200-205^{\circ}$) alone or admixed with the sample derived from 9 .

The ir spectra of the samples were identical.
Hydrolysis of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Dihydriodide Methanethiol (13).-A solution of imidazoline 13 ($218 \mathrm{~g}, 0.486 \mathrm{~mol}$), water (1.2 l .), and 50% HI solution (25 ml) was heated under reflux for 1 hr and then evaporated to dryness under reduced pressure. Recrystallization of the residue from 2-propanol-water ($9: 1$) gave $14.9 \mathrm{~g}(6.7 \%)$ of 1 -(2-imid-azolin-2-yl)-2-imidazolidinone dihydriodide methanethiol (20): $\mathrm{mp} 258-259^{\circ} \mathrm{dec}$; uv $\max 218 \mathrm{~nm}(\epsilon 37,800)$; ir $1690(\mathrm{C}=0)$, $1550 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{N}^{+}\right) ; \mathrm{nmr} \delta 2.44\left(\mathrm{~m}, 4, \mathrm{CH}_{3} \mathrm{SH}\right), 2.8-4.2(\mathrm{~m}, 8$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, and $8.5\left(\mathrm{D}_{2} \mathrm{O}\right.$-exchangeable $\left.\mathrm{v} \mathrm{br} \mathrm{m}, 4, \mathrm{NH}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 18.35 ; \mathrm{H}, 3.52 ; \mathrm{N}$, 12.23; $\mathrm{O}, 3.49$. Found: $\mathrm{C}, 18.60 ; \mathrm{H}, 3.60 ; \mathrm{N}, 12.02 ; \mathrm{O}$, 3.70 .

Neutralization of 20 with $5 \% \mathrm{NaOH}$ solution followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 37% of the base $14, \mathrm{mp} 199-200^{\circ}$ dec alone or admixed with an authentic sample, prepared as previously described.

The ir spectra of the samples were identical.
A solution of imidazolidine $13(244 \mathrm{~g}, 0.500 \mathrm{~mol})$, water (1.2 1.), and 50% hydriodic acid (10 ml) was boiled under reflux for 1 hr and allowed to cool to room temperature. The layers were separated and the aqueous phase was extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Distillation of the residual oil gave $20 \mathrm{~g}(33 \%)$ of S,S-dimethyl dithiocarbonate (17): bp 61-62 ${ }^{\circ}$ (17 mm); uv max $215 \mathrm{~nm}(\epsilon 2500)$, 248 (4450); ir $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 2.37$ (s, $6,{ }^{17} \mathrm{CH}_{3} \mathrm{~S}$).

Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OS}_{2}$: $\mathrm{C}, 29.49 ; \mathrm{H}, 4.95 ; \mathrm{O}, 13.10$; S, 52.48. Found: C, 29.58; H, 4.94; O, 13.43; S, 52.21.

The filtrate was evaporated. 2-Propanol was added to the residue and the solid was collected. Recrystallization from 2-propanol-water ($15: 1$) gave $60.7 \mathrm{~g}(31 \%)$ of 2 -[(2-aminoethyl)-aminol-2-imidazoline dihydriodide (18): mp 210-212 ${ }^{\circ}$; uv $\max 218 \mathrm{~nm}(\epsilon 31,500)$; ir $1655 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{N}^{+}\right)$; $\mathrm{nmr} \delta 2.6-3.5$ ($\mathrm{m}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.66\left(\mathrm{~s}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, and $8.1\left(\mathrm{D}_{2} \mathrm{O}\right.$-exchangeable broad m, 4, NH).

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{I}_{2} \mathrm{~N}_{4}$: C, $15.64 ; \mathrm{H}, 3.67$; $\mathrm{N}, 14.59$; I, 66.10. Found: C, 15.93; H, 3.69; N, 14.71; I, 66.29 .

2-[(2-Aminoethyl)amino]-2-imidazoline dipicrate, $\mathrm{mp} 198-$ 200° (lit. ${ }^{13} \mathrm{mp} \mathrm{199-200}^{\circ}$), was prepared by basification (NaOH)

[^14]of an aqueous solution of the corresponding dihydriodide, evaporation, dissolution of the residue in ethanol, and treatment with picric acid and showed an ir spectrum identical with that of an authentic sample. ${ }^{18}$

Alcoholysis of 1-(2-Imidazolin-2-yl)-2-(methylthio)-2-imidazoline Hydriodide (9) and Triethyl(1-(2-imidazolin-2-yl)-2-imid-azolin-2-yl]ammonium Iodide Hydriodide Methanethiol (12). A. With Methanol and 2-Propanol.-A solution of 9 or 12 $(0.020 \mathrm{~mol})$ and the alcohol (distilled from calcium hydride, 25 ml) was heated under reflux for 5 days while a stream of nitrogen was bubbled through the reaction mixture and then allowed to cool to room temperature. The precipitate was collected; yield $0.005-0.0067 \mathrm{~mol}(25-30 \%)$ of imidazolidinone hydriodide 14 a , $\mathrm{mp} 255-257^{\circ}$ dec alone or admixed with an authentic sample.
The ir spectra of the samples were identical.
B. With tert-Butyl Alcohol.-A solution of 9 or 12 (0.020 mol) and tert-butyl alcohol (distilled from calcium hydride, 175
ml) was treated as above to give $0.0180-0.0185 \mathrm{~mol}(90-93 \%)$ of unchanged 9 or 12 by mixture melting point determination and ir spectroscopy.

Registry No.-5a, 38631-03-7; 6, 20112-79-2; 7, 5464-11-9; 8, 38621-46-4; 9, 36858-50-1; 10, 38631-06-0; 11, 38631-07-1; $11 \mathrm{HI}, 38631-08-2$; 12, 36813-47-5; 13, 38621-48-6; 14a, 38631-09-3; 14a HI, 38677-78-0; 17, 868-84-8; 18, 38631-10-6; 19, 38744-27-3; 20, 38621-49-7.

Acknowledgment.-We wish to thank Mrs. U. Zeek and Dr. R. C. Greenough and their associates for microanalysis and spectral determinations.

5-Imino-2-oxo-1,2,3-oxathiazolidines ${ }^{1}$

J. A. Deyrup,* J. C. Gill, T. LeBlanc, ${ }^{2}$ and H. L. Gingrich
Department of Chemistry, University of Florida, Gainesville, Florida 32601

Received November 13, 1972

Abstract

A series of aryl and aliphatic substituted 2-aminoamides have been prepared and treated with thionyl chloride and base to give 5 -imino-2-oxo-1,2,3-oxathiazolidines in good yield. This structure was assigned on the basis of analytical, chemical, and spectral data as well as by comparisons with other 2-oxo-1,2,3-oxathiazolidines obtained previously. Asymmetry at sulfur is noted.

As part of our continuing study on the reactions of isonitriles with imines, ${ }^{3}$ it became necessary to develop a general synthesis for unsymmetrically N -substituted 1,4-diaza-1,3-butadienes (1). Since a direct synthesis of 1 from 1,2-dicarbonyl compounds was precluded by imine interchange reactions, ${ }^{4}$ we sought alternative approaches to 1. Dehydration of readily available 2 -aminoamides (3) to 2 -aminoketenes (2) which might

in turn be isomerizable to 1 constituted one attractive path. ${ }^{5}$ Initial attempts at dehydration with PCl_{5} and subsequent base treatment ${ }^{7}$ or with $\mathrm{P}_{2} \mathrm{O}_{5}^{8}$ failed to give recognizable products. Reaction of 3 with thionyl chloride and subsequent treatment of the product with pyridine yielded compounds to which we have assigned the 5 -imino-2-oxo-1,2,3-oxathiazolidine structure (4). In this paper, we wish to discuss the synthesis and structural assignment of this novel functionally sub-

[^15]

4

4	R_{1}	R_{2}	R ${ }_{3}$
a	$0-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	$t-\mathrm{Bu}$	H
b	$o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{8}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	H
c	t-Bu	$\mathrm{C}_{6} \mathrm{H}_{6}$	H
d	$i-\mathrm{Pr}$	t-Bu	H
e	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	t-Bu	H
f-1	$\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	$\mathrm{C}_{6} \mathrm{H}_{5}$
f-2	$\mathrm{C}_{6} \mathrm{H}_{5}$	$t-\mathrm{Bu}$	$\mathrm{C}_{6} \mathrm{H}_{5}$

stituted example of a relatively unexplored heterocyclic system. ${ }^{9-13}$

Results and Discussion

A series of 2-aminoacetamides was prepared from the reactions of the appropriate 2 -chloroacetamides and excess primary amines in benzene. These 2 -aminoacetamides were in turn treated with excess thionyl chloride and subsequently (after removal of unreacted thionyl chloride) with excess pyridine. Equivalent results were obtained when base (triethylamine) was present during the thionyl chloride reaction.

The product in each reaction (Table I) was neutral and gave a mass spectral parent ion which corresponded to the original molecule plus SO minus 2 H . This empirical formula was confirmed by elemental analysis. The ir spectra indicated that the amide $\mathrm{C}=\mathrm{O}$ band had

[^16]Table I
5-Imino-2-oxo-1,2,3-oxathiazolidines ${ }^{a}$

Compd	R3	R_{1}	R_{2}							
				Yield, \%	$\begin{gathered} \mathrm{Mp}, \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\underset{\mu}{\mathrm{C}=\mathrm{N}},$	$\mathrm{R}_{2}{ }^{c}$		data $\delta \mathrm{ppm}^{\text {t }}$ \qquad R_{1} (Jab in Hz_{z}, $\Delta \mathrm{AB}$ in Hz_{z})	R_{2}
4a	H	${ }_{-}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	t-Bu	76	123-125 ${ }^{\text {d }}$	5.81	4.09	(15.9, 19.2)	7.23 (s), 2.27 (s)	1.40 (8)
4b	H	$o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{8}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	56	129-131 ${ }^{e}$	5.83	4.49	(15.7, 12.8)	6.90-7.60(m), 2.30 (s)	6.90-7.60 (m)
4 c	H	t-Bu	$\mathrm{C}_{6} \mathrm{H}_{6}$	41	$84-86^{d}$	5.81	4.30	(15.5, 15.2)	1.65 (8)	6.90-7.54 (m)
4d	H	${ }_{i-\mathrm{Pr}}$	t-Bu	48	$73-75^{\text {d }}$	5.83	3.93	(16.0, 22.0)	1.11-1.50 (m)	1.37 (8)
4e	H	$\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	64	88-89 ${ }^{\text {d }}$	5.85	3.98	(16.0, 15.2)	$\begin{aligned} & 4.70(15.3,36.7) \text {, } \\ & 7.29 \text { (8) } \end{aligned}$	1.35 (8)
41-1	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	80^{\prime}	152-153.5 ${ }^{\text {e }}$	5.87	$\begin{gathered} 7.20-7.90(\mathrm{~m}), \\ 5.11(\mathrm{~g}) \end{gathered}$		7.20-7.80 (m)	1.36 (8)
48-2	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu		145-147 ${ }^{\text {e }}$	5.81	$\begin{aligned} & 7.25-7.55(\mathrm{~m}), \\ & 5.25(\mathrm{~s}) \end{aligned}$		7.25-7.55 (m)	1.30 (s)

${ }^{a}$ Satisfactory analytical values ($\pm 0.4 \%$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}$) for all compounds were reported: Ed. ${ }^{b}$ Relative to tetramethylsilane (TMS) in deuteriochloroform. ${ }^{c}$ When $\mathrm{R}_{3}=\mathrm{H}$ the values are for the center of the AB quartet. ${ }^{d}$ From petroleum ether (bp 65-110 ${ }^{\circ}$). ${ }^{\quad}$ From absolute EtOH. / $4 \mathrm{f}-1$ and $4 \mathrm{f}-2$ were obtained in a $1: 2$ ratio.
been replaced by an absorption at approximately 5.83 μ (Table I). This is consistent with the exocyclic imino ether substructure in 4. ${ }^{14}$ Other tautomeric structures were excluded by the absence of $\mathrm{N}-\mathrm{H}$ or OH peaks. Additional support for structure 4 was provided by the mild, high yield (91%) acid hydrolysis of 3 -tert-butyl-2-oxo-5-(o-toluidino)-1,2,3-oxathiazolidine (4a) to its precursor, 2-aminoacetamide (3a).

Further structural information was revealed by the nmr spectra of these compounds (Table I). The geminal methylene protons of compounds $4 \mathrm{a}-\mathrm{e}$ are in a nonequivalent environment as evidenced by their appearance as a doublet of doublets. The benzylic methylene group of compound 4 e also experiences an asymmetric situation. In the case of 4 f , a pair of isomers ($4 \mathrm{f}-1$ and $4 \mathrm{f}-2$) could be separated by fractional recrystallization. These results require that 4 has a noncarbon dissymmetric center. Asymmetry at sulfur and long-range anisotropic effects by the $\mathrm{S}-\mathrm{O}$ bond have been discussed previously for the parent 2 -oxo- $1,2,3$ oxathiazolidines (5). ${ }^{12}$ Thus 4f-1 and 4f-2 must differ with respect to the cis-trans relationship between the sulfur-oxygen bond and the phenyl group (6). ${ }^{15}$

5

6
Reasons for the formation of the 5-imino-2-oxo-1,2,3oxathiazolidines and failure to observe the desired imidoyl chlorides are not totally clear. If initial reaction occurs at oxygen to give 7 , then neighboringgroup participation by nitrogen must be faster than ionization to nitrilium salt 8. Protonation on the amino nitrogen (when base is not present during the thionyl chloride reaction) apparently inhibits ionization with loss of SO_{2}. Alternatively, thionyl chloride might initially react at the α nitrogen. Subsequent neighbor-

[^17]
ing-group participation by the amide oxygen could then yield the product 4. At the present time, we have no basis for choosing between these alternatives.

A wide variety of similarly functionalized heterocyclic systems should be available by application of the principle embodied in the formation of 4. It is also worthy of note that formation of these 5 -imino-2-oxo-$1,2,3$-oxathiazolidines results in the simultaneous protection of the nitrogen and activation of the amide. Synthetic utilization of this situation as well as further chemical study of this and related heterocycles is in progress.

Experimental Section

Melting points and boiling points are uncorrected. Ir spectra were recorded on a Perkin-Elmer 137 spectrophotometer. All nmr spectra were recorded on a Varian A-60A spectrometer. Mass spectra were obtained on a RMU 6E mass spectrometer. Microanalyses were obtained from Atlantic Microlab, Atlanta, Ga. 30308.

Chloroacetamides.- N-Benzyl-2-chloroacetamide, ${ }^{18}$ 2-chloro-o-acetotoluidide, ${ }^{17} \quad N$-tert-butyl-2-chloroacetamide, ${ }^{18} \quad N$-iso-propyl-2-chloroacetamide, ${ }^{18}$ and 2 -chlorophenylacetanilide ${ }^{19}$ were prepared according to published procedures. ${ }^{20}$

General Procedure for Preparation of 2-Aminoacetamides.Into a $250-\mathrm{ml}$ round-bottomed flask equipped with a magnetic stirrer, heating mantle, and a reflux condenser was placed the 2-chloroacetamide $(0.05 \mathrm{~mol})$ in 100 ml of benzene along with the primary amine (0.5 mol). The reaction was refluxed for $14-60$ hr under a nitrogen atmosphere. After this time the 2 -amino-

[^18]Table II
2-Aminoacetamides

Compd	R_{3}	R2	R1	Time, hr	Yield, \%	$\begin{gathered} \mathrm{Mp}_{\mathrm{p}}{ }^{\circ} \mathrm{C}, \text { or } \mathrm{bp} \\ (\mathrm{~mm}) \end{gathered}$	C	H	N	C	H	N
3a	H	t-Bu	${ }_{0}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	22	95	77-79 ${ }^{\text {a }}$	70.87	9.15	12.72	70.76	9.26	12.71
3b	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	${ }_{0}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	22	89	159.5-161 ${ }^{\text {b }}$	74.97	6.71	11.66	74.82	6.77	11.55
3 c	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	14	51	72-74 ${ }^{\text {c }}$	69.87	8.80	13.58	69.77	8.89	13.62
3d	H	t-Bu	$i-\mathrm{Pr}$	21	86	72 (0.23)	62.75	11.70	16.26	62.65	11.66	16.15
3 e	H	t-Bu	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	21	96	36.5-37.5 ${ }^{\text {a }}$	70.87	9.15	12.72	70.79	9.20	12.76
3 f	$\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	$\mathrm{C}_{6} \mathrm{H}_{5}$	60	58	123.5-125.5 ${ }^{\text {d }}$	76.56	7.85	9.92	76.61	7.87	9.85

${ }^{a}$ From petroleum ether (bp 65-110 ${ }^{\circ}$). ${ }^{b}$ From absolute EtOH. ${ }^{c}$ From $\mathrm{C}_{6} \mathrm{H}_{6}$ and petroleum ether (bp 65-110 ${ }^{\circ}$). d From MeOH.
acetamide was extracted into 10% hydrochloric acid to separate it from neutral or acidic by-products and then the acid layer was made basic with 10% sodium hydroxide solution and extracted with methylene chloride. The organic layer was dried with anhydrous magnesium sulfate, filtered, and evaporated. The reactions and reaction products are summarized in Table II.

General Procedure for Preparation of 5-Imino-2-ox0-1,2,3oxathiazolidines. - Into a $200-\mathrm{ml}$ round-bottomed flask equipped with a heating mantle, a magnetic stirrer, a reflux condenser, and a drying tube was placed the 2 -aminoacetamide (0.01 mol) in 100 ml of benzene with thionyl chloride $(33.1 \mathrm{~g}, 20 \mathrm{ml}, 0.278$ $\mathrm{mol})$. The solution was refluxed for 2 hr , cooled, and evaporated to $\sim 10-15 \mathrm{ml}$ to remove excess thionyl chloride. To the residue was added 100 ml of benzene and to this with stirring 25 ml of dry pyridine was slowly added. The resulting mixture was then extracted with 50 ml of water, 100 ml of 10% hydrochloric acid, 50 ml of 10% sodium hydroxide, and then 50 ml of water. The organic layer was dried with anhydrous magnesium sulfate, filtered, and evaporated to an oil. The resulting oil was crystallized from an appropriate solvent (see Table I).

The isomers of compound $4 f$ were separated by fractional crystallization since column chromatography over 5% deactivated alumina failed to produce separation. It was found that some isomer 4f-1 could be removed very efficiently from isomer 4f-2 by recrystallization from methanol.

As an example of an alternative procedure, a solution of thionyl chloride ($0.72 \mathrm{ml}, 0.01 \mathrm{~mol}$) in 25 ml of benzene was added to a solution of 2-tert-butylamino-o-acetotoluidide ($2.20 \mathrm{~g}, 0.01 \mathrm{~mol}$)
and triethylamine ($2.79 \mathrm{ml}, 0.02 \mathrm{~mol}$) in 100 ml of benzene over 1 hr at room temperature. The solution was then refluxed for 2 hr . After the solution had cooled, the triethylamine hydrochloride precipitate was collected by filtration and washed with 50 ml of benzene. The combined filtrates were then washed with 100 ml of $10 \% \mathrm{HCl}, 50 \mathrm{ml}$ of $10 \% \mathrm{NaOH}$, and 50 ml of water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and evaporated to a solid. The resulting solid was recrystallized once from absolute EtOH to give $1.93 \mathrm{~g}(73 \%)$ of a colorless crystalline solid, $\mathrm{mp} 123-125^{\circ}$ (4a).

Acid Hydrolysis of $4 \mathrm{a} .-\mathrm{A}$ solution of $666 \mathrm{mg}(2.5 \mathrm{mmol})$ of $4 \mathrm{a}, 20 \mathrm{ml}$ of tetrahydrofuran, 10 ml of water, and 6 ml of concentrated hydrochloric acid was allowed to stand at room temperature for 24 hr . The tetrahydrofuran was then evaporated, and, after basification with $10 \% \mathrm{NaOH}$, the basic aqueous phase was extracted with chloroform. The dried chloroform extracts (MgSO_{4}) were evaporated to give a yellow solid. This solid was recrystallized from petroleum ether ($\mathrm{bp} 65-110^{\circ}$) to give 502 mg (91%) of a colorless crystalline solid which was identified as 2-tert-butylamino-o-acetotoluidide (3a) by comparing melting point and ir and $n m r$ spectra with those of an authentic sample.

Registry No.-3a, 38630-92-1; 3b, 38630-93-2; 3c, 38630-94-3; 3d, $38630-95-4$; 3e, $38630-96-5$; 3f, 38630-97-6; 4a, 38630-98-7; 4b, 38630-99-8; 4c, 38631-00-4; 4d, 38631-01-5; 4e, 38631-02-6; 4f-1, 38630-66-9; 4f-2, 38630-67-0.

Studies on Heterocage Compounds. IV. ${ }^{1}$ The Through- σ-Bond Interaction of β-Amino Ketone Moiety in 1,3-Diazaadamantan-6-one and 3,6-Diazahomoadamantan-9-one Systems. Structure and Reactivity

Tadashi Sasaki,* Shoji Eguchi, Tsutomu Kiriyama, and Yoji Sakito
Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464, Japan

Received October 3, 1972

Abstract

Some characteristic structural features of 5,7-diphenyl- (1a) and 5,7-dicarbomethoxy-1,3-diazaadamantan-6one (1 b) and 1,8-diphenyl- (2a) and 1,8-dicarbomethoxy-3,6-diazahomoadamantan-9-one (2b) are discussed in terms of $u v, n m r$, and ir spectral data, and $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ values. The β-amino ketone moiety in these compounds was shown to behave as an amide analog because of the through- σ-bond interaction of the lone electron pair on the nitrogen atom with the carbonyl π orbitals. Reaction of $1 a$ with tosylhydrazide afforded no trace of the corresponding hydrazone but only 6 -alcohol 8 . Reaction of 1 a with excess hydrazine hydrate in refluxing diethylene glycol gave hydrazone 7, which, on treatment with potassium tert-butoxide in dimethyl sulfoxide, gave also 8 .

Although the through- σ-bond interaction of the appropriately oriented β-amino ketone moiety is well recognized by recent theoretical and spectroscopic (uv and CD) studies, ${ }^{2-4}$ structure-reactivity correlations of such systems have not been extensively studied. ${ }^{5}$ In a continuation of our recent studies on heterocage compounds, ${ }^{6}$ this paper deals with some characteristic structural features and reactions of 1,3-diazaadamantan6 -one and 3,6-diazahomoadamantan- 9 -one systems, in which both the lone electron pair on nitrogen and the π orbitals of the $\mathrm{C}=\mathrm{O}$ group can interact with the same $\mathrm{C}-\mathrm{C} \sigma$ bond.

Results and Discussion

Synthesis.-5,7-Diphenyl- (1a) and 5,7-dicarbome-thoxy-1,3-diazaadamantan-6-one (1b) were prepared by the Mannich condensation of dibenzyl ketone and dimethyl acetonedicarboxylate with formaldehyde and ammonia according to reported procedures. ${ }^{7}$ By using ethylenediamine instead of ammonia in the above Mannich reactions, 1,8-diphenyl- (2a) and 1,8-dicarbo-methoxy-3,6-diazahomoadamantan-9-one (2b) were obtained in 8 and 6% yields, respectively (Scheme I). Although the yields are very low, this reaction provides a facile one-step synthesis of the homoadamantane skeleton. ${ }^{8}$

Compound 2a had a formula $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ from analysis and a mass spectral molecular ion peak at $m / e 318$. An ir absorption at $1700 \mathrm{~cm}^{-1}$ indicated the presence

[^19]Scheme I
$\underset{\substack{ \\\mathrm{a}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}}}{\mathrm{RCH}_{2} \mathrm{COCH}_{2} \mathrm{R}}+\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}+{\underset{\mathrm{CH}}{2}}^{\mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{OAc}} \rightarrow$
b, $\mathrm{R}=\mathrm{COOCH}_{3}$

of a carbonyl group in 2a (Table I), which, on reduction with lithium aluminum hydride, was converted to the corresponding alcol.ol 3 . In the nmr spectrum, 2a revealed an AB-pattern quartet (8 H) centered at $\tau 6.35$ assignable to methylene protons at $\mathrm{C}_{2}, \mathrm{C}_{7}, \mathrm{C}_{10}$, and C_{11}, and a singlet (4 H) at $\tau 6.70$ due to the ethanobridge protons as well as a singlet $(10 \mathrm{H})$ at $\tau 2.77$ due to phenyl protons.

The mass spectral fragmentation pattern of 2 a was different from that of 1a. Compound 2a revealed some ion peaks corresponding to methyl piperidone and piperidine derivatives at $m / e 268$ and 251 , although fragment peaks of pyridone derivatives at $m / e 261$, 260 , and 247 are abundant for la. An ion peak at m / e 58 appeared as a base peak for 2a, while an ion peak at $m / e 103$ appeared for 1 a.

The methano bridge in la is known to be cleaved very readily on treatment with acetic anhydride, affording N, N^{\prime}-diacetylbispidin-9-one (6b). ${ }^{7 \mathrm{a}}$ However, the same treatment of 2 a did not cleave the ethano bridge at all, even under more drastic conditions.
All of these spectral and chemical data are in good agreement with the assigned diphenyldiazahomoadamantanone structure for 2a. The structural assignment of 2 b was performed similarly.
Spectral Properties.-In the uv spectra, 1a, 1b, 2a, and 2 b all showed characteristic strong absorptions in the $224-260-\mathrm{nm}$ region (Table I and Figure 1). An absorption of 1 b at 255 nm can be assigned to the σ coupled ($\pi-\pi^{*}$) transition ${ }^{3,4}$ that arises when the lone electron pair of nitrogen is antiperiplanar to the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond of a carbonyl group. This absorption moves to shorter wavelengths on protonation of one of the nitrogen lone pairs in ca. 0.2 N ethanolic hydro-

Table I
Spectral Properties and $\mathrm{p}_{\mathrm{a}}{ }^{\prime}$ Valuées of 1,3 -Diazaadamantan-6-one and 3,6-Diazahomoadamantan-9-one Derivatives

Compd	$\begin{aligned} & \mathrm{Uv}, \mathrm{~nm}(\epsilon) \\ & (\mathrm{EtOH}) \end{aligned}$	$\begin{gathered} \mathrm{Ir}_{(\mathrm{KBr}} \mathrm{cm}^{-1} \end{gathered}$	$\underset{\left(\mathrm{CDCl}_{3}, 25^{\circ}\right)}{\mathrm{Nmr}_{1}}$	$-\mathrm{In}_{\mathrm{p} K_{\mathrm{a} 1}}$	$\stackrel{\left.{ }^{\circ}\right)}{\mathrm{p} K_{\mathrm{a} 2^{\prime}}}$
1a	250 (1640)	1700 (CO)	$\begin{aligned} & 2.81\left(\mathrm{~m}, 10,2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.82\left(\mathrm{~s}, 2, \mathrm{NCH}_{2} \mathrm{~N}\right) \text {, } \\ & \quad 6.25\left(\mathrm{~s}, 8, \text { other } \mathrm{CH}_{2}\right) \end{aligned}$	4.45	3.30
	$(\mathrm{EtOH}-\mathrm{HCl})^{a-c}$	(monohydrochloride)			
	249 (1130)	1728 (CO)			
	256 (1050)				
1b	255 (1380)	$\begin{aligned} & 1694(\mathrm{CO}) \\ & 1725\left(\mathrm{COOCH}_{3}\right) \end{aligned}$	$\begin{aligned} & 5.94\left(\mathrm{~s}, 2, \mathrm{NCH}_{2} \mathrm{~N}\right), 6.23\left(\mathrm{~s}, 8 \text {, other } \mathrm{CH}_{2}\right), \\ & 6.35\left(\mathrm{~s}, 6, \mathrm{COOCH}_{3}\right) \end{aligned}$	5.15	3.43
	$(\mathrm{EtOH}-\mathrm{HCl})^{\text {a,c }}$				
	227 (1200)				
	$(\mathrm{DMCS}-\mathrm{HCl})^{\text {d }}$				
	224 (654)				
	285 (164)				
2a	250 (1840) ${ }^{\text {e }}$	1700 (CO)	$\begin{aligned} & 2.77\left(\mathrm{~s}, 10,2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.35(\mathrm{AB} \mathrm{q}, 8 \\ & \left.J=14 \mathrm{~Hz}, J / \Delta \tau=0.486,4 \mathrm{CH}_{2}\right) \\ & 6.70\left(\mathrm{~s}, 4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) \end{aligned}$	5.03	3.46
	256 (1670) ${ }^{e}$				
	263 (1350) ${ }^{e}$				
	$(\mathrm{EtOH}-\mathrm{HCl})^{\text {a,c }}$	(dihydrochloride)			
	250 (1170)	1748			
	262 (1250)				
2b	$\begin{aligned} & 259 \text { (1670) } \\ & \text { (end type) } \end{aligned}$	$1725\left(\mathrm{COOCH}_{3}\right)$	$\begin{aligned} & 6.27\left(\mathrm{~s}, 6,2 \mathrm{COOCH}_{3}\right), 6.83(\mathrm{~s}, 4, \\ & \left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 6.47(\mathrm{AB} \mathrm{q}, 8, J=14 \mathrm{~Hz} \\ & \left.J / \Delta \tau=0.376,4 \mathrm{CH}_{2}\right) \end{aligned}$	5.33	3.51
	$\begin{aligned} & (\mathrm{EtOH}-\mathrm{HCl})^{a, c} \\ & 259(1000) \\ & (\mathrm{DMCS}-\mathrm{HCl})^{d} \\ & 260-285^{\prime} \end{aligned}$				
4	250 (1015)256 (955)	1722 (CO)	$\begin{aligned} & 4.25\left(\mathrm{~m}, 10,2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.22\left(\mathrm{~s}, 2, \mathrm{NCH}_{2} \mathrm{NO}\right), \\ & \quad 6.74(\mathrm{AB} \mathrm{q}, 4, J=12 \mathrm{~Hz}, J /, \Delta \tau= \\ & \left.0.364,2 \mathrm{CH}_{2} \text { at } \mathrm{C}_{8} \text { and } \mathrm{C}_{9}\right), 7.32(\mathrm{~s}, 4, \\ & \left.2 \mathrm{CH}_{2} \text { at } \mathrm{C}_{4} \text { and } \mathrm{C}_{10}\right)^{\text {o }} \end{aligned}$		
		970 (NO)			
	262 (670)				
5	250 (910)	1725 (CO)			
	256 (820)				
	263 (585)				
	285 (87, broad)				
8	250 (740)	3400 (OH)	$\begin{aligned} & 2.55\left(\mathrm{~s}, 10,2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.37(\mathrm{~s}, 1, \mathrm{CHOH}), \\ & 5.95\left(\mathrm{~s}, 2, \mathrm{NCH}_{2} \mathrm{~N}\right), 6.05-6.90(\mathrm{~m}, 8 \\ & \text { other } \left.\mathrm{CH}_{2}\right), 7.45(\text { broad } \mathrm{s}, 1, \mathrm{OH}) \end{aligned}$		3.47
	256 (625)			7.20	
	262 (425)				

${ }^{a}$ Ca. 0.2 N hydrochloric acid in ethanol. ${ }^{b}$ An ethanolic solution of the isolated monohydrochloride of la gave the same absorptions. ${ }^{c}$ No characteristic $n-\pi^{*}$ absorption was observed owing to the facile formation of diethyl ketal in ca. 1.5 N hydrochloric acid in ethanol. ${ }^{d}$ Into dimethyl Cellosolve solution, dry hydrogen chloride gas was bubbled and the spectral change was followed by time. ${ }^{e}$ As shoulder. ${ }^{f}$ Because of lower solubility of 2 b , only broad weak absorption was observed qualitatively. ${ }^{\circ}$ In $\mathrm{CF}_{3} \mathrm{COOH}$ by using CHCl_{3} as an internal reference.
chloric acid. The $n-\pi^{*}$ transition of a carbonyl group in these systems is too weak to be observed because of symmetry. ${ }^{9}$ Further addition of hydrochloric acid until ca. 1.5 N ethanolic hydrochloric acid for complete protonation of both nitrogen lone pairs resulted in no unequivocal absorption in uv spectra. ${ }^{10}$ However, in dimethyl Cellosolve saturated with dry hydrogen chloride, the carbonyl $n-\pi^{*}$ transition was observed at 285 nm (Table I). A similar absorption of σ-coupled transition for la was observed, although the B band of the phenyl chromophore overlapped. However, the spectra of homoadamantane derivatives 2 a and 2 b were quite different from those of $\mathbf{1 a}$ and $\mathbf{1 b}$, exhibiting only strong end absorption in this region. Addition of hydrochloric acid to the ethanolic solutions of 2a and/or $\mathbf{2 b}$ caused a dramatic change in the spectra: the broad

[^20]

Figure 1.—Uv spectra of $\mathbf{1 b}$ and $2 \mathrm{~b}: \quad$ _ in $\mathrm{EtOH} ;--$, ca. 0.2 N hydrochloric acid in EtOH .
end absorption changed to an unequivocal peak at 259 nm for a monoprotonated derivative of 2 b and finally disappeared on further addition of hydrochloric acid; ${ }^{10}$ a similar change was observed for 2a, although the benzene B band overlapped in the same region.

The broadening of the σ-coupled transition absorption of 2 a or $\mathbf{2 b}$ is of interest in comparison with the relatively sharp absorption of $\mathbf{l a}$ or $\mathbf{l b}$, since this difference suggests the presence of another through- σ bond interaction between two lone electron pairs on two nitrogen atoms; the mixing of the interaction with the π orbitals on the carbonyl group may result in the splitting ${ }^{2}$ of the σ-coupled transition of the β-amino ketone chromophore, and hence the broadening of the absorption. The interaction between two lone electron pairs on two nitrogen atoms in 2 a and 2 b should disappear on protonation of one of the nitrogen atoms. As the result, the spectra of $2 a$ and $2 b$ in weakly acidic solutions ($c f . \mathrm{p}_{\mathrm{a}}{ }^{\prime}$ values in Table I) showed the simple σ-coupled transition similar to those of 1a and lb. ${ }^{11-13}$

In the ir spectra, $\mathbf{1 a}, \mathbf{1 b}, \mathbf{2 a}$, and $\mathbf{2 b}$ showed considerably lower carbonyl stretching frequencies at around $1694-1700 \mathrm{~cm}^{-1}$ (Table I) compared to those of 4-piperidone derivatives, ${ }^{14}$ while the corresponding hydrochlorides, trifluoroacetate, or some other derivatives such as 4 and 6 a had normal values. These facts suggest through- σ-bond interaction of the nitrogen lone electron pair with the carbonyl group in $\mathbf{1 a}, \mathbf{1 b}, \mathbf{2 a}$, and 2 b in the ground state, which is also supported by the basicity measurements as described below.
$\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ Study. -The $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ values of $1 \mathrm{a}, 1 \mathrm{~b}, 2 \mathrm{a}, 2 \mathrm{~b}$, and 8 were measured potentiometrically in water at 19° and the values obtained are summarized in Table I. The $\mathrm{p} K_{\mathbf{a}_{1}}{ }^{\prime}$ values for the carbonyl compounds $\mathbf{1 a}, \mathbf{1 b}, 2 \mathbf{a}$. and 2 b are considerably lower compared to that for alcohol 8, though the $\mathrm{p} K_{\mathrm{a} 2}{ }^{\prime}$ values are more or less similar for all compounds. Pseudopelletierine, with a similar piperidone system, has a $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ value of 7.55 in water, ${ }^{15}$ which is also much higher than those of the present β-amino ketone derivatives.

All of these spectral and $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ data indicate that β-amino ketone systems in $1 \mathrm{a}, 1 \mathrm{~b}, 2 \mathrm{a}$, and 2 b should be regarded as an amide analog rather than independent tert-amine and keto groups. Therefore, examination of the carbonyl reactivity in these ring systems is of interest in connection with the structure-reactivity correlation.

Chemical Reactivity of 1a.-Reactions of la with several carbonyl reagents were examined. Previously,
(11) The through- σ-bond interaction between two nitrogen atoms is expected to be operative effectively only in an eclipsed conformation of the ethano bridge in $\mathbf{2 a}$ and $\mathbf{2 b}$; cf. ref 2.
(12) The untwisted conformation of the $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ group in 2a was suggested by the nmr spectra, since the protons of the ethano bridge at $\tau 6.70$ exhibited no broadening on cooling until at -70° in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The nmr measurement at below -70° was unsuccessful because of the lower solubility of 2a. Furthermore, 2a and 2 b had $J_{\text {gem }}$ of 14 Hz for CH_{2} at $\mathrm{C}_{2}, \mathrm{C}_{7}$, C_{10}, and C_{11}. This larger J_{gem} value of the homoadamantane system compared to those of the adamantane series (mono- N-oxide 4, for example, had $J_{\text {gem }}=12 \mathrm{~Hz}$) is indicative of somewhat fattened cyelohexane ring structures in $\mathbf{2 a}$ and $\mathbf{2 b}$; for detailed $n \mathrm{mr}$ studies on related azacyclic compounds, see (a) S. P. Nelsen, P. J. Hintz, and R. T. Landis, II, J. Amer. Chem. Soc., 94, 7105 (1972); (b) R. C. Cookson, T. A. Crabb, J. J. Frankel, and J. Hudee, Tetrahedron, Suppl., No. 7, 355 (1966).
(13) Homoadamantane itself has been reported recently to have a broad energy minimum between skewing angles of $\pm 33^{\circ}$ from calculations; E. M. Engler, L. Chang, and P. v. R. Schleyer, Tetrahedron Lett., 2525 (1972). For the preferred untwisted conformation of cis-4,5-homoadamantandiol and homoadamantan-4,5-dione, see P. v. R. Schleyer, E. Funke, and S. H. Liggero, J. Amer. Chem. Soc., 91, 3965 (1969); J. L. M. A. Schlatmann, J. G. Korsloot, and J. Schut, Tetrahedron, 26, 949 (1970).
(14) For example, N-methyl-4-piperidone has a carbonyl frequency at $1725 \mathrm{~cm}^{-1}$: C. J. Pouchert, "The Aldrich Library of Infrared Spectra," Aldrich Chemical Co., Inc., 1970.
(15) T. Sasaki, S. Euchi, and T. Kiriyama, Bull. Chem. Soc. Jap., 44, 3410 (1971).
the successful reductions of 1 a to alcohol 8 with LiAlH_{4} or sodium alkoxide, and to amine 9 with hydrazine hydrate-sodium acetate, have been reported by Stetter ${ }^{7 a}$ as well as the facile ring fission to the bispidinones $\mathbf{6 b}$ and 6 c with acetic anhydride and benzoyl chloride,

la, $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$ b, $\mathrm{R}=\mathrm{COOCH}_{3}$

10
respectively. Some of the other reactions examined are summarized in Scheme II. As expected, la did

not react with the usual carbonyl reagents such as 2,4dinitrophenylhydrazine and hydroxylamine, but with hydrazine hydrate la gave the corresponding hydrazone 7 in a moderate yield only under very drastic conditions in refluxing diethylene glycol. With a large excess of
diazomethane, la did not react at all. These facts point to a lower reactivity of the carbonyl group; however, steric hindrance by the 5,7-diphenyl substituents is considered to be another reason. ${ }^{16}$
Reaction of la with excess m-chloroperbenzoic acid or hydrogen peroxide afforded no Baeyer-Villiger product but only mono- N-oxide 4 . The mono- N-oxide structure of 4 was supported by the formation of the monotrifluoroacetate 5 .
Reaction of la with dichlorocarbene in an alkaline micelle ${ }^{17}$ afforded a ring-fission product, 1,5-diphenylN, N^{\prime}-diformylbispidinone (6a). The formation of 6 a could be explained by an initial attack of dichlorocarbene on nitrogen followed by ring fission and hydrolysis as illustrated in Scheme III.

When a mixture of p-toluenesulfonylhydrazide (tosylhydrazide), la, and barium oxide in ethanol was heated at 65°, no trace of the corresponding tosylhydrazone was produced but alcohol 8 was produced in a low yield. The formation of 8 from 1a and tosylhydrazide can be explained reasonably by dimide type reduction or by decomposition of a hydroxyazene intermediate (10). ${ }^{18-20}$ This is the first example of novel reduction of a very inert alicyclic ketone with tosylhydrazide, though an example for an aromatic ketone has been reported. ${ }^{20}$

When 7 was treated with potassium tert-butoxide in dimethyl sulfoxide, only alcohol 8 was produced but no

[^21]Wolff-Kishner reduction product 9. This reaction might proceed similarly as above via diimide type reduction.

These results on the facile formation of 8 are in good accord with the expected lower reactivity of the carbonyl group in la.

Experimental Section ${ }^{21}$

5,7-Diphenyl-1,3-diazaadamartan-6-one (1a).-This was prepared by the known method: ${ }^{7 \mathrm{a}} \mathrm{mp} 255-258^{\circ}$ (lit. ${ }^{7 \mathrm{a}} \mathrm{mp} 257^{\circ}$); mass spectrum m / e (rel intensity) $304\left(13, \mathrm{M}^{+}\right.$), 261 (43), 260 (12), 247 (10), 233 (15), 146 (13), 144 (18), 131 (42), 103 (100), 91 (33), 77 (36), 57 (35), and 42 (65).

5,7-Dicarbomethoxy-1,3-diazaadamantan-6-one (1b).-A mixture of ammonium acetate $(5.00 \mathrm{~g}, 65.0 \mathrm{mmol})$, dimethyl acetonedicarboxylate ($3.58 \mathrm{~g}, 20.0 \mathrm{mmol}$), and paraformaldehyde $(3.28 \mathrm{~g}$, 108 mmol) in ethanol (30 ml) was refluxed for 3 hr . Removal of the solvent and extraction with benzene ($5 \times 20 \mathrm{ml}$) followed by evaporation afforded a solid product which was recrystallized from ethanol-benzene to give 1 b as colorless crystals (340 mg , 6.4%): mp 175-177 ${ }^{\circ}$; mass spectrum m / e (rel intensity) 268 (7, M^{+}), 241 (14), 240 (30), 239 (15), 237 (41), 226 (13), 209 (15), 208 (22), 194 (18), 181 (12i, 177 (18), 167 (8), 142 (6), 140 (8), 114 (12), 113 (100), 96 (26), 69 (12), 59 (74), and 57 (93).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, $53.72 ; \mathrm{H}, 6.01 ; \mathrm{N}, 10.44$. Found: C, 53.91 ; H, 6.00 ; N, 10.26 .
1,8-Diphenyl-3,6-diazahomoadamantan-9-one (2a).-A mixture of dibenzyl ketone ($4.20 \mathrm{~g}, 20.0 \mathrm{mmol}$), paraformaldehyde (3.60 $\mathrm{g}, 120 \mathrm{mmol}$), and ethylenedianmonium diacetate ($3.60 \mathrm{~g}, 30.0$ mmol) prepared from ethylenediamine and acetic acid in ethanol (30 ml) was refluxed for 1 day. After removal of the solvent, the crude product was extracted with benzene ($5 \times 20 \mathrm{ml}$) and the combined benzene extracts were purified on a silica gel column eluting with a $\mathrm{CHCl}_{2}-\mathrm{EtOH}$ system to afford 2a as colorless crystals ($510 \mathrm{mg}, 8.1 \%$): mp $182-185^{\circ}$; mass spectrum m / e (rel intensity) $318\left(72, \mathrm{M}^{+}\right.$), 287 (15), 268 (15), 251 (10), 240 (15), 160 (62), 117 (33), 113 (41), 103 (71), 77 (42), and 58 (100).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 79.21 ; \mathrm{H}, 6.96 ; \mathrm{N}, 8.80$. Found: C, 79.44; H, 7.04; N, 8.59.

1,8-Dicarbomethoxy-3,6-diazajomoadamantan-9-one (2b).-A mixture of ethylenediammonium diacetate ($4.32 \mathrm{~g}, 24.0 \mathrm{mmol}$), dimethyl acetonedicarboxylate ($3.48 \mathrm{~g}, 20 \mathrm{mmol}$), and paraformaldehyde ($3.60 \mathrm{~g}, 120 \mathrm{mmol}$) in methanol $(30 \mathrm{ml})$ was refluxed for 20 hr . After removal of the solvent, the crude product was extracted with benzene ($5 \times 20 \mathrm{ml}$) and the benzene extract was washed once with 10% aqueous sodium carbonate and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent and recrystallization from carbon tetrachloride afforded 2 b as colorless crystals $(310 \mathrm{mg}$, 5.7%): mp 134-135 ; mass spectrum m / e (rel intensity) 282 (20, \mathbf{M}^{+}), 251 (10), 241 (5), 240 (5), 226 (8), 223 (6), 218 (6), 195 (5), 183 (5), 180 (5), 167 (5), 153 (5), 152 (6), 150 (8), 142 (11), 140 (10), 126 (10), 113 (51), 69 (28), 59 (69), 57 (70), and 43 (100).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, $55.31 ; \mathrm{H}, 6.43 ; \mathrm{N}, 9.92$. Found: C, $55.23 ; \mathrm{H}, 6.29$; N, 9.66 .

1,8-Diphenyl-3,6-diazahomoadamantan-9-ol (3).-A mixture of 2a ($170 \mathrm{mg}, 0.530 \mathrm{mmol}$) and litiium aluminum hydride (30 mg , 0.79 mmol) in dry tetrahydrofuran (20 ml) was refluxed for 4 hr . The excess reagent was decomposed by adding water (50 ml) and the mixture was extracted with methylene chloride ($5 \times 20 \mathrm{ml}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent and recrystallization from methanol afforded 3 as cclorless crystals ($120 \mathrm{mg}, 75 \%$): $\mathrm{mp} 233-237^{\circ}$; ir $(\mathrm{KBr}) 3400 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.72(\mathrm{~s}, 10,2$ $\mathrm{C}_{6} \mathrm{H}_{5}$), $5.42\left(\mathrm{~s}, 1, \mathrm{C}_{9} \mathrm{H}\right), 6.18$ (d of $\mathrm{d}, 2, J=14$ and $3 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}_{\mathrm{ax}}$ and $\mathrm{C}_{10} \mathrm{H}_{\mathrm{ax}}$ anti to OH), 6.79 ($\mathrm{s}, 4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 7.20 (d, 4, $J=14 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}_{\mathrm{eq}}, \mathrm{C}_{7} \mathrm{H}_{\mathrm{eq}}, \mathrm{C}_{10} \mathrm{H}_{\mathrm{eq}}$, and $\mathrm{C}_{11} \mathrm{H}_{\mathrm{eq}}$), and 7.95 (s, 1, OH); mass spectrum m / e (rel intensity) $320\left(100, \mathrm{M}^{+}\right.$), 303 (30), 291 (35), 248 (21), 246 (17), 232 (22), 231 (24), 217 (30), 160 (37), 111 (35), 97 (50), 85 (53), and 83 (43).

[^22]Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$: C, 78.71; H, 7.j.5; N, 8.74 Found: C, 78.42; H, 7.55; N, 8.45.
5,7-Diphenyl-1,3-diazaadamantan-6-one N-Oxide (4).-A mixture of la ($300 \mathrm{mg}, 0.987 \mathrm{mmol}$) and m-chloroperbenzoic acid ($520 \mathrm{mg}, 3.00 \mathrm{mmol}$) in chloroform (20 ml) was refluxed for 13 hr . After cooling, excess peracid was decomposed by adding 10% aqueous sodium bisulfite solution and the mixture was extracted with 10% aqueous sodium carbonate solution ($3 \times 10 \mathrm{ml}$). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed to afford a crude product which was purified on a silica gel column eluting with a $\mathrm{CHCl}_{3}-\mathrm{EtOH}$ system to give 4 as colorless crystals ($100 \mathrm{mg}, 32 \%$): mp 2:88- 261°; mass spectrum m / e (rel intensity) 320 ($12, \mathrm{M}^{+}$), 304 (72), 261 (100), 260 (.)7), 247 (24), 233 (24), 1:9 (19), 144 (23), 131 (32), and 103 (46). Treatment of 4 with trifluoroacetic acid gave quantitatively trifluoroacetate salt 5: mp 177-181 ${ }^{\circ}$; ir (KBr) 1725 (CO), 1670 (COO^{-}), and $1190 \mathrm{~cm}^{-1}\left(\mathrm{CF}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3}$: C, $52.76 ; \mathrm{H}, 3.69$; N , i. 12 . Found: C, 52.81 ; H, 3.93 ; N, 5.12.
N, N^{\prime}-Diformylbispidin-9-one (6a).-To a vigorously stirred mixture of 1 a ($300 \mathrm{mg}, 0.987 \mathrm{mmol}$), triethylbenzylammonium chloride ($20 \mathrm{mg}, 0.088 \mathrm{mmol}$), benzene (5 ml), and 50 (ic sodium hydroxide aqueous solution (10 ml) was added dropwise a mixture of benzene (5 ml) and chloroform ($0.80 \mathrm{ml}, 9.9 \mathrm{mmol}$) at 25° in $c a .0 .5 \mathrm{hr}$. After the addition was completed, the stirring was continued for a further 22 hr , and the mixture was diluted with water (60 ml) and extracted with chloroform ($2 \times 30 \mathrm{ml}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a crude product, which was chromatographed on a silica gel column ($\mathrm{CHCl}_{3}-\mathrm{EtOH}$) to afford 6a as colorless crystals ($80 \mathrm{mg}, 23 \%$): mp 229-232 ${ }^{\circ}$; ir (KBr) 1720 (CO) and $1680 \mathrm{~cm}^{-1}$ (NCHO); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 1.98(\mathrm{~s}, 2,2 \mathrm{CHO}), 2.69\left(\mathrm{~s}, 10,2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.80$ (d of d, $2, J=13$ and $2 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}_{\mathrm{eq}}$ anti to oxygen atom of the formyl carbonyl), 5.95 (AB q, $4, J=13 \mathrm{~Hz}, J / \Delta \tau=0.542,2 \mathrm{CH}_{2}$ at C_{4} and C_{8} syn to oxygen atom of the formyl carbonyl), and 6.5\% (d of $\mathrm{d}, 2, J=13$ and $2 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}_{\mathrm{ax}}$ and $\mathrm{C}_{6} \mathrm{H}_{\mathrm{nx}}$ anti to the formyl carbonyl); ${ }^{22}$ mass spectrum m / e (rel intensity) $348\left(100, \mathrm{M}^{+}\right)$, 320 (36), 277 (73), 276 (95), 248 (32), 233 (26), 207 (34), 20٪ (32), 105 (62), 103 (.51), 97 (41), 85 (41), 83 (45), 71 (77), 69 (47), 57 (95), 44 (53), 43 (85), 41 (42), and 40 (38).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $72.39 ; \mathrm{H}$, j. $79 ; \mathrm{N}, 8.04$ Found: C, 72.40; H, 6.04; N, 7.88 .

5,7-Diphenyl-1,3-diazaadamantan-6-one Hydrazone (7).-A mixture of $1 \mathrm{a}(600 \mathrm{mg}, 1.97 \mathrm{mmol})$ and 80% hydrazine hydrate $(5.00 \mathrm{~g}, 80.0 \mathrm{mmol})$ in diethylene glycol $(20 \mathrm{ml})$ was refluxed with a Dean-Stark trap for 18 hr . The cooled mixture was diluted
(22) The formyl group seems to rotate not freely at room temperature. and hence two formyl groups in 6 a take preferably the anti conformation to each other by dipole-dipole interaction though further details on this problem will be published elsewhere: cf. ref $€$ and references cited therein.
with water (50 ml) and extracted with chloroform (20 ml). The extract was washed with water $(2 \times 10 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent and chromatography of the crude product on a silica gel column (CHCl_{3}-EtOII) afforded 7 as colorless crystals ($390 \mathrm{mg}, 62 \%$): mp 249-251 ; mass spectrum m / e (rel intensity) 318 ($19, \mathrm{M}^{+}$), 275 (32), 247 (14), 223 (15), 205 (14), 175 (13), 150 (34), 141 (15), 119 (13), 105 (13), 104 (20), 97 (14), 95 (12), 93 (13), 91 (14), 85 (17), 83 (17), 81 (14), 76 (20), $71(30), 69(26), 57(70), 56(40), 55(34), 44(32), 43(32), 41$ (62), and 40 (100); ir (KBr) 3425 and $3305 \mathrm{~cm}^{-1}$; nmr $\left(\mathrm{CDCl}_{3}\right)$ $\tau 2.65$ (s, 5, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 2.83\left(\mathrm{~s}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.70(\mathrm{~s}, 2$, disappeared on deuteration, NH_{2}), is. $89\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{~N}\right), 6.15$ (d of d, $4, J=12$ and $4 \mathrm{H} /, \mathrm{C}_{4} \mathrm{H}_{n \mathrm{x}}, \mathrm{C}_{3} \mathrm{H}_{\mathrm{nx}}, \mathrm{C}_{9} \mathrm{H}_{\mathrm{ax}}$, and $\mathrm{C}_{10} \mathrm{H}_{n \mathrm{x}}$), and 6.53 (d of d, 4, $J=12$ and $3 \mathrm{H}_{7}, \mathrm{C}_{4} \mathrm{H}_{\cdot n}, \mathrm{C}_{8} \mathrm{H}_{\mathrm{eq}}, \mathrm{C}_{9} \mathrm{H}_{\mathrm{e} q}$, and $\mathrm{C}_{10} \mathrm{H}_{\mathrm{eq}}$).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4}$: C, 75.44; H, 6.96; N, 17.60 . Found: C, 7i.21; H, 6.96; N, 17.82 .

Reaction of 1a with Tosylhydrazide.-A mixture of la (160 $\mathrm{mg}, 0.83 \mathrm{mmol}$), tosylhydrazide ($200 \mathrm{mg}, 1.08 \mathrm{mmol}$), and barium oxide ($2.0 \mathrm{~g}, 13.1 \mathrm{mmol}$) in ethanol was heated at 65° with occasional stirring for 3 days. After removal of the solids by filtration, the filtrate was evaporated to dryness to give crude product, which on purification by preparative tlc (silica gel, 5% $\mathrm{MeOH}-\mathrm{CHCl}_{3}$) afforded recovered la ($110 \mathrm{mg}, 80 \%$ recovery) and i, 7 -diphenyl-1,3-diazaadamantan-6-ol (8) ($30 \mathrm{mg}, 20 \%$), $\mathrm{mp} 282-284^{\circ}$ (lit. ${ }^{7 \mathrm{a}} \mathrm{mp} 274^{\circ}$), identified by spectral (ir and nmr) comparison with an authentic sample. ${ }^{7 \mathrm{a}}$

Treatment of 7 with Potassium tert-Butoxide in Dimethyl Sulfoxide.-To a solution of potassium tert-butoxide ($40 \mathrm{mg}, 0.36$ mmol) in freshly distilled (from KOH) dimethyl sulfoxide (4 ml) was added $7(60 \mathrm{mg}, 0.19 \mathrm{mmol})$ and the resulting solution was stirred for 22 hr at room temperature under nitrogen atmosphere. The mixture was poured onto ice-water (30 ml) and extracted with methylene chloride ($4 \times 20 \mathrm{ml}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to afford $8(47 \mathrm{mg}, 80 \%)$.
$\mathrm{p} K_{\mathrm{n}}{ }^{\prime}$ Measurements.- $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ measurements were carried out by titrating potentiometrically an acidic solution of each amine (prepared by dissolving ca. 2.5 mg of amine into 3.00 ml of 0.01 N hydrochloric acid) with 0.1 N potassium hydroxide aqueous solution at 19°. The titration was performed on a Radiometer Model TT1.

Registry No.-la, 19066-35-4; 1b, 38740-11-3; 2a, 38740-12-4; 2b, 38740-13-5; 3, 38740-14-6; 4, 38740-$15-7$; 5, 38740-16-8; 6а, 38740-17-9; 7, 38740-18-0; 8, 3.576-75-8; ammonium acetate, 631-61-8; dimethyl acetonedicarboxylate, 1830-54-2; dibenzyl ketone, 1083-30-3; ethylenediammonium acetate, 38734-69-9; trifluoroacetic acid, 76-05-1; tosylhydrazide, 1576-35-8.

Azodicarboxylic Acid Esters as Dealkylating Agents ${ }^{1}$

Edward E. Smissman* and Alexandros Makriyannis

Department of Medicina! Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66044
Received March 10, 1972
The use of azodicarboxylic acid esters as dealkylating agents has been studied. The isolation and structure proof of the intermediate adducts obtained from the reaction of the azo esters with secondary and tertiary amines is reported. Dealkylation of compounds other than amines by this method is also discussed.

The diesters of azodicarboxylic acid $(1,2)$ react with aliphatic primary amines to give amides, ${ }^{2-4}$ while primary aromatic amines yield either triazan addition compounds ${ }^{4-6}$ or ring-substituted systems. ${ }^{6.7}$ It was

[^23]reported that whereas piperidine reacts with diethyl azodicarboxylate (1) to yield the corresponding azodicarboxamide, other sccondary amines combined with one molccule of this ester to give a stable addition product. ${ }^{3,4}$ On acidic hydrolysis these adducts produced aldehydes in relatively low yields. Diels ${ }^{3}$ assigned structure 3 to these adducts and later Kenner and Stedman, ${ }^{8}$ utilizing infrared evidence, proposed the triazan structure 4.

Diels was the first to investigate the reaction of the

azodicarboxylic acid esters with tertiary alkylamines. ${ }^{3,4}$ When N, N-dimethylaniline was used, a compound corresponding to the addition of one molecule of amine to one molecule of the azo ester was obtained. On acidic hydrolysis he obtained the corresponding monodemethylated amine and formaldehyde. He favored structure 5 as representing the adduct. Kenner

and Stedman ${ }^{8}$ provided evidence to substantiate this proposed structure and suggested that its formation involved initial coordination of the basic nitrogen atom with the electrophilic azo group followed by a two-step ylide rearrangement. Huisgen and Jakob ${ }^{9}$ provided some evidence in support of a similar mechanism.

Tertiary amines containing the CHCHN- grouping were recently reported ${ }^{10}$ to react with 1 in two steps through a different mechanism. In the first step a dehydrogenation takes place leading to diethyl hydrazodicarboxylate (6) and the corresponding enamines. The enamines can then react further with 1 , yielding the corresponding mono- or diadducts (7) which can

hydrolyze readily in acidic media to the secondary amines.

In these laboratories an investigation of the use of azodicarboxylic acid esters as dealkylating agents led to the isolation and conclusive structure proof of the adducts obtained from the reaction of the azo ester with secondary or tertiary amines. The investigation also provided information for the determination of the relative ease of dealkylation of unsymmetrically substituted tertiary aliphatic amines. A further study as to the possibility of using azo esters to dealkylate ethers and thio ethers was also performed.

Reaction with Secondary Amines. - When either 1 or 2 was allowed to react with a solution of dimethylamine or piperidine in ether, the reaction occurred at the ester carbonyl carbon of the azo ester, giving rise to $N, N, N^{\prime}, N^{\prime}$-tetramethylazodicarboxamide (8) and azodicarboxyldipiperidide (9), respectively. When dimethylamine was mixed with 2 in a methanol-ether (1:1) or an ethanol-ether ($1: 1$) solution, 8 was the only product isolated. However, when 1 was used under similar conditions the diamide 8 was only a
(9) R. Huisgen and F. Jakob, Justus Liebigs Ann. Chem., 690, 37 (1954). (10) M. Colonna and L. Marchetti, Gazz. Chim. Ital., 99, 14 (1969).
minor product. The major product resulted from reaction at the azo nitrogen. This colorless addition product was characterized from its infrared and nmr spectra as diethyl 1,1-dimethyltriazane-2,3-dicarboxylate (4), the structure suggested by Kenner and Stedman. Piperidine yielded only the diamide 9 with both esters.

8

10

9

11

Following the failure to ojtain the piperidyl adduct of the azo ester, the piperidyl adduct of 9 was sought. Reaction of 9 , however, with excess piperidine either by refluxing or by allowing the mixture to stand at room temperature for 1 week afforded a crystalline product identified as hydrazodicarboxyldipiperidide (10).

The difference in reactivity between 1 and 2 can be attributed to the larger steric effects operating at the carbonyl reaction center in the case of 1. Piperidine, on the other hand, owing to its considerable bulk, was incapable of reacting with the azo nitrogen even under severe conditions.

The nmr spectrum of 8 in deuteriochloroform consisted of two sharp singlets at $\delta 3.00$ and $3.12\left(\Delta \delta_{A B}\right.$ 0.12) each due to six protons. Furthermore the nmr spectrum of 9 in carbon tetrachloride showed the presence of two equivalent, partially overlapping broad peaks at $\delta 3.15-3.77\left(\Delta \delta_{\text {AB }} 0.27\right)$ due to the methylene groups α to the amido nitrogen. When the solvent was changed to benzene a strong general upfield shift of the peaks was observed. The magnitude of this upfield shift was distinctly larger with the singlet situated higher upfielc. ($\Delta \delta_{\mathrm{AB}} 0.20$) in the case of 8 as well as with the broad peak situated higher upfield ($\Delta \delta_{\mathrm{AB}} 0.31$) in the case of 9 .
The observations mentioned above constitute evidence for the nonequivalence of the amide alkyl groups and indicate some conformational rigidity in the system. Similar observations concerning the nonequivalence of the two methyl groups in N, N-dimethylamides have been reported. ${ }^{11,12}$
Examination of the nmr spectrum of 10 in deuteriochloroform revealed that there was only one broad peak ($\delta 3.24-3.62$) due to the four methylene protons α to the amido nitrogen. This observation, in conjunction with the absence of any significant solvent effect, provides evidence for a lack of conformational rigidity in this system.
Reaction with Tertiary Amines. - When N-methylpiperidine was allowed to react with 2 , a white, crystalline compound was isolated from the reaction mixture. The elemental analysis of the compound was compatible with a structure obtained from the addition of one

[^24]molecule of the amine to one of the azo ester. Acid hydrolysis of the compounds afforded equimolar amounts of formaldehyde, piperidine, and dimethyl hydrazodicarboxylate. The infrared spectrum of the compound showed absorptions at 3350,1740 , and $1750 \mathrm{~cm}^{-1}$, indicating the presence of an NH group and two nonequivalent carbonyl groups. The nmr spectrum furnished conclusive evidence that the isolated adduct was diethyl N -(piperidinomethyl)-hydrazine- N, N^{\prime}-dicarboxylate. The product obtained from the reaction between 1 and N-methylpiperidine, when isolated as its hydrochloride salt, was identified by infrared and rmr analysis as diethyl N-(piperidinomethyl)hydrazine- N, N^{\prime}-dicarboxylate hydrochloride (12).

N-Benzylpiperidine, when allowed to react with 1 , afforded an adduct whose hydrochloride salt was identified as diethyl N-(piperidinobenzyl)hydrazineN, N^{\prime}-dicarboxylate hydrochloride (13). This compound was extremely hygroscopic and labile, hydrolyzing spontaneously into cquimolar amounts of benzaldehyde, piperidine, and 6.

The relative ease of dealkylation of the different alkyl groups was determined by performing the reaction on a number of unsymmetrically substituted tertiary amines (Table I).

Table I
Dealkylation of Tertiary Amines Using Diethyl Azodicarboxylate ${ }^{a}$

a It was found that there was no significant difference in these results when 2 was used instead of 1. ${ }^{\circ}$ The results of the dealkylation of N, N-dimethylbenzylamine shown here differ sharply from those reported by Kenner and Stedman. ${ }^{8}$ Those investigators using dibenzyl azodicarboxylate reported only the adduct resulting from the reaction of a methyl group of the tertiary amine.

The effect of ring substitution on the reactivity of the benzyl group was studied by allowing a number of ring-substituted N, N^{\prime}-diethylbenzylamines to react with 1 (Table II).

In every case the reaction mixture was analyzed by gas-liquid chromatography to determine the amounts of the different secondary amines obtained from the dealkylation of the corresponding tertiary amine.

Table II
Dealkylation of Substituted N, N-Diethylbenzylamines
Using Diethyl Azodicarboxylate

Substituent	Debenzylation, $p-\mathrm{H}$
$p-\mathrm{OCH}_{3}$	33
$p-\mathrm{CH}_{3}$	55
$p-\mathrm{Cl}$	39
$p-\mathrm{NO}_{2}$	40
	96

In the case of disubstituted benzylamines the amount of debenzylation could also be determined by measuring the amount of benzaldehyde obtained.

The method of analysis was based on the observation that when an aqueous solution of the tertiary amineazo ester hydrochloride salt adduct was injected into a gas chromatograph having a hot injection port (220$240^{\circ}$), spontaneous hydrolysis of the adducts occurred. This method of analysis proved satisfactory when tested on standards.

The overall rate of the reaction between the azo esters and the tertiary amines ${ }^{13}$ appeared to be greatly affected by the nucleophilicity of the latter. The reactivity of N, N^{\prime}-dialkylbenzylamines decreased with an increase in the bulk of the alkyl substituents in the following order: isopropyl $<n$-propyl $<\mathrm{Et}<\mathrm{Me}$. The same was observed with the substituted piperidines, where benzyl < Et, Me. The para-substituted N, N^{\prime}-diethylbenzylamines reacted in the order $\mathrm{OCH}_{3}>$ $\mathrm{CH}_{3}, \mathrm{H}>\mathrm{Cl}>\mathrm{NO}_{2}$, the more basic amines reacting faster.

The reaction of the tertiary amine alkyl groups with azodicarboxylate esters proceeds by two different mechanisms depending on the presence or absence of alkyl hydrogens β to the amino nitrogen. They appear to have a common first step: the nucleophilic attack of the amino nitrogen on the azo group.

Preferential demethylation occurred only in the case of N-methylpiperidine, where ring dehydrogenation is less favored, probably because of stereoelectric considerations. ${ }^{10}$

The comparison of the reactivity of the benzylic position in para-substituted N, N-diethylbenzylamines does not present a clear picture of the electronic factors involved in this reaction. However, the fact that the p-nitro compound possesses by far the most reactive benzylic position is compatible with the suggested ylide intermediate. ${ }^{8,9}$

When O-acetyl bulbocapnine (14) was allowed to react with 1, a pale, crystalline compound insoluble in dilute acid and alkali was obtained. When the compound was subjected to hydrolysis with dilute sulfuric acid, only the O-acetyl group was cleaved to give the free phenol while the remainder of the molecule remained intact. Based on further infrared and nmr evidence the product of this reaction, which probably proceeded through the mechanism outlined below, was identified as $1-\left[2-\left[\left(N, N^{\prime}\right.\right.\right.$-dicarbethoxyhydrazino $)$ -methylamine]ethyl]-3,4-methylenedioxy-5-acetoxy-6methoxyphenanthrene (15).

Reaction with Ethers and Thioethers.-A study of the dealkylation of ethers and thioethers was initiated. The reactions of 1 with dibenzyl ether and dibenzyl

[^25] observed reaction times with the azo esters.

thioether were performed in the absence of solvent. It was found that heating to 100° was sufficient to initiate the reaction, no ultraviolet irradiation being necessary. ${ }^{14,15}$ The free radicals appear to originate from the thermal decomposition of the azo ester. Both adducts obtained $(17,18)$ were labile in the presence of moisture.

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{HCXCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

$\mathrm{NHCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$
16, $\mathrm{X}=\mathrm{O}$
17, $\mathrm{X}=\mathrm{S}$

The method of analysis of the products was based on the observation that when an acidic solution of the adduct was injected into a gas chromatograph having a hot injection port $\left(220-240^{\circ}\right)$, complete spontaneous hydrolysis occurred. Determination of the benzaldehyde obtained from these reaction mixtures indicated that the dealkylations occurred quantitatively.

Experimental Section ${ }^{16}$

$N, N^{\prime}, N^{\prime}, N^{\prime}$-Tetramethylazodicarboxamide (8).-To a cooled solution of diethyl azodicarboxylate ($1,1.00 \mathrm{~g}, 5.74 \mathrm{mmol}$) in 20 ml of anhydrous $\mathrm{Et}_{2} \mathrm{O}, \mathrm{Me}_{2} \mathrm{NH}(0.50 \mathrm{~g}, 11.09 \mathrm{mmol})$ was added slowly with continuous stirring. The mixture was allowed to stand at 0° for 2 hr and the yellow flakes which formed were filtered and washed with a small amount of anhydrous $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated to a volume of 10 ml and allowed to stand at 0° for 12 hr . A second crop of crystals was filtered

[^26]Table III

Compd	lumn ${ }^{16}$ used	Temp, ${ }^{\circ} \mathrm{C}$	$\mathrm{ml} /$ min	time, min
Diethylmethylamine	III	60	7	6
Methylethylamine	III	95	5	9
Diethylamine	III	95	5	12.3
N-Methylpiperidine	I	85	20	8
Piperidine	I	90	15	9
Ethylpiperidine	I	90	15	13
Piperidine	I	90	15	9
Benzylpiperidine	II	150	90	10
Piperidine	I	90	15	9
Benzaldehyde	I	115	20	9
N, N-Dimethylbenzylamine	I	125	16	12
N-Methylbenzylamine	I	115	14	16
Benzaldehyde	I	115	14	11
N, N-Diethylbenzylamine	I	120	12	37
N-Ethylbenzylamine	I	120	12	25
Benzaldehyde	I	120	12	11
Dibenzyl ether	I	185	25	10.5
Benzaldehyde	I	135	15	4
Dibenzyl thioether	I	185	25	25
Benzaldehyde	I	135	15	4

and washed with a small amount of anhydrous $\mathrm{Et}_{2} \mathrm{O}$. The combined crops of the product were recrystallized [n-hexane- $\mathrm{C}_{6} \mathrm{H}_{8}$ (10:1)] to give long, bright yellow needles ($0.78 \mathrm{~g}, 4.53 \mathrm{mmol}$, 79%): mp 111-112 ${ }^{\circ}$; ir (KBr) $1700 \mathrm{~cm}^{-1}(\mathrm{C}=0)$ [lit. ${ }^{17} 1701$ cm^{-1} (Nujol)]; nmr (CDCl_{3}) $\delta 3.00$ and $3.12(2 \mathrm{~s})$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $41.85 ; \mathrm{H}, 7.02 ; \mathrm{N}, 32.54$. Found: C, 41.76; H, 6.93; N, 32.84 .

Azodicarboxyldipiperidide (9).-To a cooled solution of diethyl azodicarboxylate ($1,1.00 \mathrm{~g}, 5.74 \mathrm{mmol}$) in 30 ml of anhydrous $\mathrm{Et}_{2} \mathrm{O}$, piperidine ($1.00 \mathrm{~g}, 11.74 \mathrm{mmol}$) was added dropwise with continuous stirring. The mixture was allowed to stand at 0° for 2 hr and the crystals which formed were filtered and washed with a small amount of $\mathrm{Et}_{2} \mathrm{O}$ (anhydrous). The filtrate was concentrated to 8 ml and allowed to stand at 0° for 15 hr . The second crop of crystals was filtered and washed with a small amount of $\mathrm{Et}_{2} \mathrm{O}$ (anhydrous). The combined product was recrystallized [n-hexane $-\mathrm{C}_{6} \mathrm{H}_{6}(10: 1)$] to give golden yellow crystals $(0.92 \mathrm{~g}$, $3.65 \mathrm{mmol}, 64 \%$): $\mathrm{mp} 135^{\circ}$ (lit. ${ }^{4} \mathrm{mp} 134-135^{\circ}$); ir (KBr) 1705 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$ [lit. ${ }^{17} 1704 \mathrm{~cm}^{-1}(\mathrm{KBr})$] $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 3.15-3.77$ (two partially overlapping broad peaks, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), 1.471.88 (broad peak, $12 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $57.14 ; \mathrm{H}, 7.94 ; \mathrm{N}, 22.22$. Found: 57.12; H, 7.84; N, 22.14 .

Diethyl 1,1-Dimethyltriazan-2,3-dicarboxylate (4).-This substance was prepared as by Diels and Paquin ${ }^{3}$ and was recrystallized [n-hexane $-\mathrm{C}_{6} \mathrm{H}_{6}(15: 1)$]: $\mathrm{mp} 94-95^{\circ}$ (lit. mp 92.5-93 ${ }^{\circ}$, ${ }^{8}$ 95°); ir (KBr) $3260(\mathrm{NH}), 1760(\mathrm{C}=0), 1690 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.91$ (broad peak, NH), 4.14 and 4.16 (2 q overlapping $\left.8, J=7.5 \mathrm{cps}, 4 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 2.54\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$], $1.30\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CCH}_{3}\right)$.
$N, N, N^{\prime}, N^{\prime}$-Tetramethylhydrazodicarboxamide (11).-A solution of $8(2.00 \mathrm{~g}, 11.61 \mathrm{mmol})$ in methanol (30 ml , anhydrous) was hydrogenated for $15 \cdot \mathrm{~min}$ at 50 psi using platinum oxide (20 mg) as a catalyst. After filtration and removal of the solvent, a white, crystalline residue was obtained which was purified by recrystallization ($\mathrm{Me}_{2} \mathrm{CO}$) to give colorless crystals ($1.95 \mathrm{~g}, 11.20$ $\mathrm{mmol}, 97 \%$): $\mathrm{mp} 221^{\circ}$ (lit. ${ }^{18} \mathrm{mp} 220-221^{\circ}$); ir (KBr) 3275 (NH) , $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.96$ (broad peak, 2 H , $\mathrm{NH}), 2.93\left[\mathrm{~s}, 12 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.

Hydrazodicarboxyldipiperidide (10).-A solution of azodicarboxyldipiperidide ($9,8.32 \mathrm{mmol}$) in piperidine (50 ml , anhydrous), was refluxed until the bright yellow color of the solution was completely discharged (2 hr). The mixture was taken to dryness and the white, crystalline residue obtained was purified by crystallization $\left(\mathrm{CCl}_{4}\right)$ to give colorless needles ($1.90 \mathrm{~g}, 7.84 \mathrm{mmol}$, 94%): $\operatorname{mp~} 180^{\circ}$ (lit. ${ }^{19} \mathrm{mp} 179^{\circ}$); ir (KBr) 3275 (NH), 1645

[^27]$\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.22-3.53\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right)$, 1.38-1.70 (m, $\left.12 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\right)$. This compound was also obtained from 9 using the procedure outlined in the preparation of 11 .

Demethylation of N-Methylpiperidine (Preparative Method). -To a solution of N-methylpiperidine ($2.48 \mathrm{~g}, 2 \overline{5} .00 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(20 \mathrm{ml}, \mathrm{Na}$ dry) was slowly added a solution of $1(6.53 \mathrm{~g}$, 37.50 mmol) in $\mathrm{C}_{6} \mathrm{H}_{6}(20 \mathrm{ml}, \mathrm{Na}$ dry) and the mixture was refluxed for $30 \mathrm{~min} .{ }^{20}$ The solvent and the unreacted N-methylpiperidine ($0.25 \mathrm{~g}, 2.52 \mathrm{mmol}, 10 \%$) were removed under reduced pressure and the residue was dissolved in a mixture of $4 N \mathrm{HCl}$ $(25 \mathrm{ml})$ and $\mathrm{EtOH}(10 \mathrm{ml})$. The solution was refluxed for 2 hr and taken to dryness under reduced pressure. The residue was triturated with 10 N NaOH solution (1 ml) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{ml})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and distilled to give piperidine ($1.3 \mathrm{~g}, 15.27 \mathrm{mmol}, 61 \%$).

Diethyl N^{-}-(Piperidinomethyl)hydrazine- N, N^{\prime}-dicarboxylate Hydrochloride (12).-To a solution of N-methylpiperidine (0.68 $\mathrm{g}, 6.84 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(25 \mathrm{ml}, \mathrm{Na}$ dry $)$ was added $1(2.00 \mathrm{~g}, 11.48$ mmol) and the mixture was allowed to stand for 24 hr at 25°. The mixture was filtered and the clear filtrate was taken to dryness under reduced pressure. The residue was dissolvec in $\mathrm{Et}_{2} \mathrm{O}$ (20 ml , anhydrous) and to the mixture was added a saturated solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ (l 5 ml , anhydrous). The white precipitate which formed was filtered and dried over $\mathrm{P}_{2} \mathrm{O}_{3}$ and NaOH pellets under vacuum for 24 hr . The solid was t-iturated thoroughly with $\mathrm{Me}_{2} \mathrm{CO}$ (5 ml , anhydrous) and the undissolved portion was filtered and washed twice with $\mathrm{Me}_{2} \mathrm{CO}(1 \mathrm{ml}$, anhydrous). The residue ($1.30 \mathrm{~g}, 4.20 \mathrm{mmol}, 61 \%$) was a white, microcrystalline powder: $\mathrm{mp} 162-163^{\circ} \mathrm{dec}$; ir (KBr) $3200(\mathrm{NH})$, 17:5 $(\mathrm{C}=0), 1715 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 4.7 \mathrm{~B}$ (broad pea, $\left.2 \mathrm{H},{ }^{+} \mathrm{NCH}_{2} \mathrm{~N}\right), 4.23$ and $4.26(2 \mathrm{q}$ overlapping, $4 \mathrm{H}, J=$ 7.5 ср.s, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 1.30\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}: \mathrm{C}, 46.52 ; \mathrm{H}, 7.81 ; \mathrm{N}, 13.56$. Found: C, 46.20; H, 7.69; N, 13.30.

A solution of $\left.12\left(0.2^{-}\right) \mathrm{g}, 0.87 \mathrm{mmol}\right)$ in $4 N \mathrm{HCl}(10 \mathrm{ml})$ was refluxed for 2 hr and the mixture was distilled, leaving a white residue. The formaldehyde in the distillate was de ermined gravimetrically as its 2,4-dinitrophenylhydra\%one. ${ }^{8,21}$ The experiment was repeated after adding a known amount of 1% formaldehyde ($3.00 \mathrm{ml}, 1.00 \mathrm{mmol}$) to the solution of 12 . The concentration of formaldehyde was then estimated by comparing the results from the two experiments. After drying over $\mathrm{P}_{2} \mathrm{O}_{3}$ and NaOH pellets under vacuum, the white, crystalline residue was weighed and made into a homogeneous powder. A solution (10%) of small amount (40 mg) of the powder in $\mathrm{CD}_{3} \mathrm{OD}$ was used for the nmr determination of piperidine hydrochloride (δ $1.80, \mathrm{~m}, 6 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}$) and 6 (o $1.22, \mathrm{t}, 6 \mathrm{H}, \mathrm{CCH}_{3}$). The overall analysis indicated that hydrolysis of 12 afforded equimolar amounts of formaldehyde, piperidine hydrochloride, and 6.

Reaction of O-Acetyl Bulbocapnine with Diethyl Azodicarboxyl-ate.-O-Acetyl bulbocapnine (14) ($0.50 \mathrm{~g}, 1.36 \mathrm{mmol}$) was dissolved in 5 ml of absolute EtOH and the solution was added slowly to diethyl azodicarboxylate ($0.50 \mathrm{~g}, 2.87 \mathrm{mmol}$) under N_{2}. The reaction mixture was allowed to stand for 12 hr ; irregular yellow crystals (0.20 g) formed, were filtered, and were washed with 0.5 ml of absolute EtOH . A second crop of crystals was obtained by evaporating the solvent under reduced pressure and washing the residue several times with ether to obtain a pale yellow, amorphous powder $(0.25 \mathrm{~g})$. The product (15) was recrystallized (EtOH), purified over an $\mathrm{Al}_{2} \mathrm{O}_{3}$ column (Reagent, Merck) using CHCl_{3} as an eluent, and recrystallized [absolute $\mathrm{EtOH}-\mathrm{EtOAc}$ ($1: 1$)] to give yellow crystals $(0.41 \mathrm{~g}, 0.76 \mathrm{mmol}, 56 \%$): mp $179-182^{\circ}$; ir (KBr) $32 \overline{5} 0(\mathrm{NH}), 170 \overline{5}-1750 \mathrm{~cm}^{-1}$ (broad band, $3 \mathrm{C}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.02\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.19$ and 4.20 (2 overlapping $\left.8,4 \mathrm{H}, \mathrm{OCCH}_{2}-\right), 3.92\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 2.71\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$, $2.34\left(\mathrm{~s}, \mathrm{OCOCH}_{3}\right)$. The product was analyzed immediately after purification.
Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{9}$: C, $59.88 ; \mathrm{H}, 5.77 ; \mathrm{N}, 7.76$. Found: C, $59.73 ;$ H, $5.59 ; ~ N, 7.40$.

Preparation of Substituted Benzyldialkylamines.-To a mixture of a secondary amine (5.0 mmol) and 10 N NaOH solution was slowly added the appropriate benzoyl chloride (37.0 mmol). The addition required 1 hr and after an additional 1 hr of stirring, 10 N NaOH solution (3 ml) was added. After the heat subsided,

[^28]the mixture was poured into ice $-\mathrm{H}_{2} \mathrm{O}$ and the precipitate was collected.
$\mathrm{LiAlH}_{4}(1.6 \mathrm{~g}, 42.0 \mathrm{mmol})$ was placed in 10 ml of $\mathrm{Et}_{2} \mathrm{O}$, and a solution of the amide (14.0 mmol) in $\mathrm{Et}_{2} \mathrm{O}$ was added over 1.5 hr .
After refluxing for $2-12 \mathrm{hr}$ and stirring for an additional 4 hr at 25°, the excess hydride was decomposed by the slow addition of $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{ml})$. The mixture was stirred for $1-3 \mathrm{hr}$ and filtered, and the precipitate as washed several times with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate and washings were dried $\left(\mathrm{CaSO}_{4}\right)$ and the $\mathrm{Et}_{2} \mathrm{O}$ was removed.
The product was purified by dissolving it in 2 N HCl and extracting the solution with $\mathrm{C}_{6} \mathrm{H}_{5}(3 \times 25 \mathrm{ml})$. The solution was then made basic with NaOH and again extracted with $\mathrm{C}_{6} \mathrm{H}_{6}(3 \times$ $50 \mathrm{ml})$. The $\mathrm{C}_{6} \mathrm{H}_{6}$ extracts were dried $\left(\mathrm{CaSO}_{4}\right)$ and the $\mathrm{C}_{6} \mathrm{H}_{6}$ was removed.

Reaction of N-Benzylpiperidine with Azodicarboxylate Esters. -A mixture of N-benzylpiperidine ($1.20 \mathrm{~g}, 6.84 \mathrm{mmol}$) and 1 ($2.00 \mathrm{~g}, 11.48 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}$ (2.5 ml , Na dry) wa.s refluxed for 6 hr and filtered, and the filtrate was evaporated to dryness under reduced pressure. After drying over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum for 12 hr , the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ (20 ml , anhydrous) and to the mixture was added a saturated solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ (15 ml , anhydrous). The white precipitate which formed was filtered and triturated thoroughly with $\mathrm{Me}_{2} \mathrm{CO}$ (3 ml , anhydrous). The undissolved portion was filtered and washed with $\mathrm{Me}_{2} \mathrm{CO}$ (0.5 ml , anhydrous). The residue ($1.50 \mathrm{~g}, 3.89 \mathrm{mmol}, .57 \%$) was a white, hydroscopic, microcrystalline powder which was very labile in the presence of moisture.

A solution of the product (50 mg) in 0.1 ml of $\mathrm{D}_{2} \mathrm{O}$ was allowed to stand for 2 hr , after which $\mathrm{Cl}_{3} \mathrm{OD}$) (0.5 ml) was added to the mixture. Nmr analysis of the resulting clear solution indicated the presence of equimolar amrunts of piperidine hydrochloride ($\delta 1.80, \mathrm{~m}, 6 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}$), benzaldehyde ($\delta 9.92, \mathrm{~s}, 1 \mathrm{H}$, CHO), and $6\left(\delta 1.22, \mathrm{t}, 6 \mathrm{H}, \mathrm{CCH}_{3}\right)$.

Reaction of Azodicarboxylate Esters with Tertiary Amines. General Procedure.-To a solution of the tertiary amine (5.74 mmol) in $\mathrm{C}_{6} \mathrm{H}_{6}(29 \mathrm{ml}$, Fisher certified reagent over Na), the a\%odicarboxylate ester (11.48 mmol) was added and the mixture was refluxed until no increase was observed in the quantities of secondary amines, when the mixture was analyzed by the procedure.

Determination of the Unreacted Tertiary Amines.-The reaction mixture was transferred quantitatively into a $25-\mathrm{ml}$ volumetric flask and diluted to the mark with $\mathrm{C}_{6} \mathrm{H}_{6}$ (anhydrous). Aliquots ($\% \mu \mathrm{l}$) of this solution were injected into the gle and the integration corresponding to the peak of the tertiary amine was compared to that of a standard. The standard was prepared by making $25-\mathrm{ml}$ solution of the tertiary amine (5.47 mmol) in anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}$. Three readings were taken in each case and their averages were compared.

Determination of the Secondary Amines.-The reaction mixture was evaporated to dryness on a rotatory evaporator and the residue was dissolved in anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}(20 \mathrm{ml})$. Dry HCl gas was bubbled into the solution for 15 min and the solvent was removed again on a rotatory evaporator. The residue was kept in a desiccator under vacuum (0.5 mm) over NaOH for 12 hr and then extracted thoroughly with distilled $\mathrm{H}_{2} \mathrm{O}\left(50^{\circ}\right)$. The extract was transferred quantitatively into a $20-\mathrm{ml}$ volumetric flask and diluted to the mark with distilled $\mathrm{H}_{2} \mathrm{O}$. Aliquots ($i, \mu \mathrm{l}$) of this solution plus aliquots ($5 \mu \mathrm{l}$) of a $20 \% \mathrm{NaOH}$ solution were injected together into the glc. The peak corresponding to the secondary amine was compared to that obtained by injecting an equal aliquot ($5 \mu \mathrm{l}$) of a $20 \% \mathrm{NaOH}$ hydroxide solution. The standard was prepared by making a $20-\mathrm{ml}$ solution of the HCl salt of the secondary amine in distilled $\mathrm{H}_{2} \mathrm{O}$. Three readings were taken in each case and their averages were compared.

Determination of Benzaldehyde.-From the previous extract, aliquots ($5 \mu \mathrm{l}$) plus aliquots ($\overline{5} \mu \mathrm{l}$) of distilled $\mathrm{H}_{2} \mathrm{O}$ were injected together into the glc. The peak corresponding to benzaldehyde was compared to that obtained by injecting an equal aliquot (5 $\mu \mathrm{l}$) of the standard together with an aliquot ($\overline{3} \mu \mathrm{l}$) of distilled $\mathrm{H}_{2} \mathrm{O}$. The standard was prepared by making a $20-\mathrm{ml}$ solution of benzaldehyde in a $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ (2:1) mixture. Three readings were taken in each case and their averages were compared.

Debenzylation of Dibenzyl Ether (Preparative Method).-A mixture of dibenzyl ether ($4.96 \mathrm{~g}, 25.00 \mathrm{mmol}$) and $1(6.53 \mathrm{~g}$, 37.50 mmol) was heated at 140° for 30 min . The reaction mixture was subsequently refluxed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ for 1 hr and extracted with $\mathrm{C}_{6} \mathrm{H}_{6}(3 \times 50 \mathrm{ml})$. The extracts were then dried
(MgSO_{4}), the solvent was removed under reduced pressure, and the residue was fractionally distilled to give benzaldehyde (2.10 $\mathrm{g}, 19.79 \mathrm{mmol}, 79 \%$), benzyl alcohol ($2.25 \mathrm{~g}, 20.80 \mathrm{mmol}, 83 \%$), and unreacted dibenzyl ether ($0.55 \mathrm{~g}, 2.77 \mathrm{mmol}, 11 \%$).

Reaction of Dibenzyl Ether with Ethyl Azodicarboxylate.-A mixture of dibenzyl eth.er $(1.14 \mathrm{~g}, 5.74 \mathrm{mmol})$ and $1(1.00 \mathrm{~g}, 5.74$ mmol) was heated at 140° for 30 min to give a colorless solid: ir (neat) $3280(\mathrm{NH}), 1740 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.36$ $\left(\mathrm{m}, 10 \mathrm{H}\right.$, aromatic), $6.48(\mathrm{~s}, 1 \mathrm{H}), 4.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 4.25 and 4.27 (2 q overlapping, $J=7.5 \mathrm{cps}, 4 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2}$), 1.27 ($\mathrm{t}, J=7.5 \mathrm{cps}, 6 \mathrm{H}, \mathrm{CCH}_{3}$).

A small fraction of the product (50 mg) was refluxed with $\mathrm{H}_{2} \mathrm{O}$ $(0.2 \mathrm{ml})$ for 30 min and extracted with $\mathrm{CDCl}_{3}(2 \times 0.3 \mathrm{ml})$. Nmr analysis of the combined $\mathrm{CI}_{\mathrm{N}} \mathrm{Cl}_{3}$ extracts indicated that they contained equimolar amounts of benzaldehyde ($\delta 9.88, \mathrm{~s}, 1$ H, CHO), benzyl alcohol ($\delta 4.60, \mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), and 6 ($\delta 1.22$, $\mathrm{t}, 6 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

Reaction of Dibenzyl Thioether with Ethyl Azodicarboxylate.A mixture of dibenzyl thioether ($1.23 \mathrm{~g}, 5.74 \mathrm{mmol}$) and 1 (1.00 $\mathrm{g}, 5.74 \mathrm{mmol}$) was heated at 140° for 30 min to g :ve a white solid mass: ir (neat) $3280(\mathrm{NH}), 1740 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ 7.2 .5 ($\mathrm{m}, 10 \mathrm{H}$, aromatic), $6.50\left(\mathrm{~s}, 1 \mathrm{H}\right.$), $3.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 4.16 and 4.17 (2 q overlapping, $J=7.5 \mathrm{cps}, 4 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2}$), 1.22 ($\mathrm{t}, J=7.5 \mathrm{cps}, 6 \mathrm{H}, \mathrm{CCH}_{3}$). A small fraction of the product (50 mg) ws refluxed under N_{2} with $1 N \mathrm{HCl}(0.2 \mathrm{ml})$ for 1 hr and extracted with $\mathrm{CDCl}_{3}(2 \times 0.3 \mathrm{ml})$. Nmr analysis of the combined CDCl_{3} extracts indicated that they contained equi-
molar amounts of benzaldehyde ($\delta 9.88$, s, $1 \mathrm{H}, \mathrm{CHO}$), benzyl mercaptan ($\delta 3.66, \mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}$), and $6\left(\delta 1.22, \mathrm{t}, 6 \mathrm{H}, \mathrm{CCH}_{2}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}$).

Determination of Unreacted Dibenzyl Ether or Dibenzyl Thioether by Glc.-A known amount $(2.87 \mathrm{mmol})$ of the reaction mixture between 1 and the appropriate ether was transferred quantitatively into a $25-\mathrm{ml}$ volumetric flask and diluted to the mark with a $1 N \mathrm{HCl}$ solution in a $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ (1:1) mixture. The mixture was analyzed against a standard of the dibenzyl ether (2.87 mmol) or the dibenzyl thioether (2.87 mmol) following the same procedure as used in the determination of tertiary amines.

Registry No.-1, 1972-28-7; 6, 4114-28-7; 8, 10465-$78-8$; 9, 10465-81-3; 12, 38910-96-2; 14, 38910-97-3; 15, 38910-98-4; N-methylpiperidine, 626-67-5; N benzylpiperidine, 2905-56-8; dibenzyl ether, 103-50-4; dibenzyl thioether, 538-74-9.

Acknowledgment. -The authors gratefully acknowledge support of this project by McNeil Laboratories, Inc., Fort Washington, Pa. The authors wish to express their appreciation to Mr. T. L. Gruen for his technical assistance.

Phosphorino[4,3-d]pyrimidines. III. Synthesis, Resolution, and Properties of 4-Substituted Phosphorino[4,3-d]pyrimidines ${ }^{1}$

Theodore E. Snider ${ }^{2}$ and K. Darrell Berlin*
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74074

Received October 27, 1972

Abstract

A family of 4 -substituted 6-phenylphosphorino $[4,3-d]$ pyrimidines has been prepared with 4-amino-1,2,5,6-tetrahydro-1-phenylphosphorin-3-carbonitrile as the key starting material. Pmr, ${ }^{31} \mathrm{P} \mathrm{nmr}$, infrared, and mass spectral data support the structures. Treatment of 4 -amino-5,6,7,8-tetrahydro-6-phenylphosphorino[4,3-d]pyrimidine with benzyl bromide gave the corresponding phosphonium salt, which was resolved via its dibenzoyl tartrate salts. Ammonium bromide converted the diastereomers back to the enantiomeric bromides. Attempted methylation of $\overline{\mathrm{j}}, 6,7,8$-tetrahydro-6-phenylphosphorino $[4,3-d]$ pyrimidine-4-thiol gave $\overline{5}, 6,7,8$-tetra-hydro-4-(methylthio)-6-phenylphosphorino[4,3-d]pyrimidine 6 -sulfide without quaternization of the phosphorus atom. Spectral data for all of these compounds are briefly discussed.

Phosphorino [4,3-d]pyrimidines (1) represent a very recent ${ }^{3}$ and intriguing family of compounds in the area

1

2
of fused carbon-phosphorus heterocycles. The 5,6,7,8tetrahydro derivatives are prochiral about the asymmetric phosphorus atom, and 4 -substituted pyrimidines, such as adenine and 6-mercaptopurine, are well known

[^29]for their biological and medicinal valuc. ${ }^{4}$ Recent evidence also indicates that quinazolines substituted at the 6 position, particularly heteroatom substituents, are of potential use as antimetabolites. ${ }^{5}$ Additionally, $\mathrm{C}-\mathrm{P}$ heterocycles which possess organic functionality are extremely rare in the literature ${ }^{6,7}$ and hence very little is known of the biological activity conveyed by the phosphorus atom. The first reported ${ }^{3}$ phosphorinopyrimidine was the 2,4-diamino derivative 2 prepared in a direct condensation of the 2 -enamine nitrile 3 with guanidine. Interestingly, recent literature ${ }^{8}$ suggests that a method of choice for the synthesis of 4 -substituted fused pyrimidines involves the utilization of 2 enamino nitriles as their triethyl orthoformate adducts.
(4) J. H. Lister, "Fused Pyrimidines, Part II Purines," D. J. Brown, Ed., in "The Chemistry of Heterocyclic Compounds," A. Weissberger and E. C" Taylor, Ed., Wiley-Interscience, New York. N. Y., 1971.
(5) J. Davoll, A. M. Johnson, H. J. Davies, O. D. Bird, J. Clarke, and E. F. Elslager, J. Med. Chem., 15, 812 (1972); E. F. Elslager, J. Clarke, L. M. Werbel. and D. F. Worth, ibid., 15, 827 (1972); J. Davoll, J. Clarke, and E. F. Elslager, ibid., 15, 837 (1972).
(6) K. D. Berlin and D. M. Hellwege. Top. Phosphorus Chem., 6, 1 (1969).
(7) T. E. Snider, C. H. Chen, and K. D. Berlin, Phosphorus, 1, 81 (1971).
(8) E. C. Taylor, A. McKillop, and S. Vromen, Tetrahedion, 23, 885 (1967); E. C. Taylor and A. McKillop, "The Chemistry of Cyclic Enaminonitriles and o-A minonitriles," in "Advances in Organic Chemistry: Methods and Results," Vol, 7, E. C. Taylor, Ed., Interscience, New York, N. Y., 1970.

In view of the potential biological activity, novel structure, and stereochemistry of the title compounds, we elected to attempt the preparation of 4 -substituted 5,6,7,8-tetrahydro - 6 - phenylphosphorino [4,3-d]pyrimidines from 4-amino-1,2,5,6-tetrahydro-1-phenylphos-phorin-3-carbonitrile (3).

The resolution of cyclic phosphorus compounds (and acyclic) has generally been effected by two basic methods: (a) quaternization of phosphorus to form phosphonium salts which may be resolved via anion exchange with reagents such às hydrogen silver $L(+)$ and $\mathrm{D}(-)$-dibenzoyltartaric acids; ${ }^{9}$ and (b) by blocking the phosphorus atom for reaction, generally by conversion to the phosphine oxide, and utilizing some other functionality for resolution. Thus, 4 has been resolved by Chen and Berlin ${ }^{10}$ utilizing method a and 5 has been resolved via method b by Ostrogovich and Kerek ${ }^{11}$ using camphor-13-sulfonic acid.

4

5

The synthesis of 4 -substituted 6-phenylphosphorino $[4,3,-d]$ pyrimidines 6,7 , and 8 was accomplished as outlined in Scheme I. 4-Amino-1,2,5,6-tetrahydro-1-phenylphosphorin-3-carbonitrile (3) was prepared according to known procedure ${ }^{12}$ from bis(2-cyanoethyl)phenylphosphine. ${ }^{13}$ The ethoxymethylene derivative 10 (Scheme I), formed by boiling the 2 -amino nitrile 3 in excess solution of 50:50 triethyl orthoformate and acetic anhydride, was used in crude form in reaction with either anhydrous amine (to give 6 or 7) or anhydrous ethanolic sodium hydrosulfide (to give 8) to

[^30]effect pyrimidine formation. Derivatives such as 10 can be and have been isolated ${ }^{14}$ but are generally used as crude material. The mechanisms involved in these transformations may be similar to those proposed by Taylor and coworkers ${ }^{8,14}$ utilizing carbocyclic 2 -enamine nitriles. It has been proposed that the yield-limiting factor in analogous reactions was the formation of the ethoxymethylene derivative. ${ }^{8}$ The narrow range of yields ($65-68 \%$) for 6,7 , and 8 is additional evidence that the formation of the ethoxymethylene derivative may be the yield-limiting step in the sequence. Thus, in spite of the large size of the phosphorus atom (covalent radius $1.10 \AA$) ${ }^{15}$ compared to carbon (covalent radius $0.77 \AA$), ${ }^{15}$ any inherent strain in the six-membered $\mathrm{C}-\mathrm{P}$ heterocycle is not sufficient to prevent formation of the fused-ring system.

The importance of acetic anhydride to the initial condensation is clearly illustrated in the synthesis of 8. Attempted formation of 8 without the presence of acetic anhydride resulted in a yield of only 26%. With acetic anhydride, the return was increased to 66%. The function of the acetic anhydride may be to remove the ethanol converted in the reaction to ethyl acetate, which thereby helps to drive the reaction to completion. This assumes that the initial formation of 10 is an equilibrium-controlled reaction. An interesting facet in the synthesis of 8 is that a small amount of the phosphine sulfide 9 is also formed. Evidently, the phosphine is capable of abstracting sulfur from $\mathrm{H}_{2} \mathrm{~S}$ or NaSH (an apparent redox reaction). This type of exchange ($\rightarrow \mathrm{P} \rightarrow \rightarrow \mathrm{P}=\mathrm{S}$) appears to be rare, although removal of sulfur by phosphorus from carbon ${ }^{16,17}$ or phosphorus ${ }^{18}$ is known. A possible analogous process is the formation of phosphine oxides via treatment of a phosphine with hydroxylamine. ${ }^{19}$ The proposed structures of 6,7 , and 8 are supported by elemental analysis and their respective ir, pmr, ${ }^{31} \mathrm{P}$ nmr , and mass spectral properties.
In an ancillary experiment to confirm the structure,

[^31]7 was rearranged to 11 by boiling the former in 0.1 $M \mathrm{NaOH}$, known conditions for the classic Dimroth rearrangement. ${ }^{20}$

The pmr spectra of both reactant and product show anomalous features. The spectrum of 7 displays two sets of quartets o^{2} approximate equal intensity for the N-methylene group. Decoupling experiments (irradiating $\mathrm{NCH}_{2} \mathrm{CH}_{3}$ and observing $\mathrm{NCH}_{2} \mathrm{CH}_{3}$) reveal the collapse of the double set of quartets to a crude singlet. In an inverse decoupling experiment the observed triplet of the $\mathrm{NCH}_{2} \mathrm{CH}_{3}$ collapsed to a singlet. A third decoupling experiment (irradiation of $=\mathrm{NH}$ and observation of the $\mathrm{NCH}_{2} \mathrm{CH}_{3}$) showed some type of magnetic interaction, but did not cause the methylene to go to a simple quartet. Observing the spectrum in the presence of $\mathrm{D}_{2} \mathrm{O}$ did not reveal any change in the coupling pattern. Although Brown ${ }^{20}$ did not record any secondary splitting of this type in his discussion of the pmr spectra of N-methyl-4-iminoquinazolines, we have tentatively attributed this phenomenon in our system to syn-anti isomerism about the imino nitrogen and/or nonequivalence of the methylene hydrogens owing to restricted rotation. The distance between the imine hydrogen and other protons in the molecule could conceivably preclude the observation of any other splitting as a result of syn-anti isomerism. Curiously, the pmr spectrum of 11 in DCCl_{3} shows a complete doubling of all resonance lines in an approximate intensity ratio of $3: 1$. A Courtauld model of 11 indicates considerable hindered rotation of the $-\mathrm{NHC}_{2} \mathrm{H}_{5}$ group. This steric barrier to rotation could result in conformers in which the $-\mathrm{NHC}_{2} \mathrm{H}_{5}$ group is syn or anti with respect to the P-phenyl ring. Experimental evidence supporting this explanation is: (1) the relative intensity of the doubled spectrum is solvent-dependent, and (2) the spectrum (in o $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$) is temperature dependent with only one set of resonance signals observable at 125°.

Recent reports concerning the biological activity and potential chemotherapeutic usefulness of 6(methylthio)purine ${ }^{21}$ and the predicted increased water

solubility of phosphonium salts prompted us to investigate the chemistry of 6 and 8 . Of particular interest were the relative reactivities of the following groups: . $-\ddot{\mathrm{S}} \mathrm{H}$ vs. $\mathrm{C}_{6} \mathrm{H}_{5} \ddot{\mathrm{P}}$ (alkylation vs. quaternization), $-\ddot{\mathrm{S}} \mathrm{CH}_{3}$ vs. $\mathrm{C}_{6} \mathrm{H}_{5} \ddot{\mathrm{P}}$, and $-\ddot{\mathrm{N}} \mathrm{H}_{2}$ and/or pyrimidine ring N vs. $\mathrm{C}_{6} \mathrm{H}_{5} \ddot{\mathrm{P}}$. Specifically, the question arose of competitive alkylation involving the thiol function in the presence of a phosphine without carbon-phosphorus bond formation or cleavage (in the presence
of base) and whether it would be possible to quaternize a tertiary phosphine in the presence of a methylthio or nitrogen functional group.

The methylation of 8 and 9 to form the methylthio derivatives 12 (89%) and 13 (71%) was accomplished

with 10% sodium hydroxide and methyl iodide. Surprisingly, derivatives 12 and 13 are volatile and are readily purified by vacuum sublimation $\left(83-90^{\circ}\right.$, 0.05 mm). Quaternization of phosphorus during the preparation of 12 was not observed and there was also no evidence of carbon-phosphorus bond cleavage. Hence, with respect to methylation, $\mathbf{8}$ is an exact chemical analog of aminopyrimidinethiols in which one can methylate the mercapto group in the presence of the amino function. ${ }^{22}$

The formation of phosphonium salts 14 and 15 from phosphines 6 and 12, respectively, indicate that

the tertiary phosphinc in these phosphorino [4,3-d]pyrimidines is a stronger base and/or a more powerful nucleophile than the 4 -methylthio or the 4 -amino group. The assignment of the phosphonium structure is rigorously supported by infrared, nmr, mass spectral, and elemental analysis; except for the latter, the analyses are similar to those of the simpler precursor pyrimidines. However, most significantly, the highly positive ${ }^{31} \mathrm{P} \mathrm{nmr}$ absorption of the phosphine precursors (ca. $\delta 44$ relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$; see Table I)

Table I
${ }^{31}$ P Chemical Shifts of C-P Heterocycles

Compd	δ	Solvent	Conen, $\%$
$\mathbf{3}$	+46.9	HCCl_{3}	5
6	+44.0	DMSO	5
7	+44.6	DMSO	5
8	+39.6	DMSO	5
11	+44.7	DMSO 2	$\mathrm{CH}_{3} \mathrm{OH}$
12	+44.4	HCCl_{3}	5
14	-18.6	DMSO^{2}	5
15	-18.6	DMSO	10
17	-29.0		5

is shifted to a highly negative $\delta{ }^{31} \mathrm{P} \mathrm{nmr}$ absorption in the phosphonium salts (ca. $\delta-18$; Table I). This shift from positive to negative ${ }^{31} \mathrm{P}$ absorption is characteristic of a conversion from a phosphine to a phosphonium salt and is well documented. ${ }^{23}$ The reaction
(22) D. J. Brown and S. F. Mason, "The Pyrimidines," in "The Chemistry of Heterocyclic Compounds," A. Weissberger, Ed., Interscience, New York, N. Y., 1962.
(23) M. M. Crutchfield, C. H. Dungan, J. H. Letcher, V. Mark, and J. R. Van Wazer, Top. Phosphorus Chem., 5, 1 (1967).
is complete and specific for the phosphine, as indicated by the loss of all absorption for ${ }^{31} \mathrm{P}$ at positive δ in the nmr . (Even after extended time averaging, absorption at positive δ was not observable.)

The resolution of racemic 14 was achieved by the successful isolation of the enantiomer (+)-14 and (-)14. Conversion of racemic 14 to a mixture of diastereomeric hydrogen $\mathrm{D}(-,-)$-dibenzoyltartrate salts $[(+$, $-,-)-16$ and $(-,-,-)-16]$ is shown in Scheme II.

Subsequent separation of $(+,-,-)-16$ and $(-,-,-)-$ 16 could be realized by repeated recrystallizations from a minimal amount of methanol.

Four recrystallizations were sufficient to purify 375 mg of $(+,-,-)-14$ to a constant specific rotation, $[\alpha]^{25} \mathrm{D}-14^{\circ}$, and a sharp melting point, 164.5-165 ${ }^{\circ}$. The pure diastereomer $(+,-,-)-16$ underwent satisfactory metathesis with ammonium bromide to form optically active (+)-14, $[\alpha]^{25} \mathrm{D}+78^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}\right), 89 \%$, $\mathrm{mp} 250-251^{\circ}$. In a parallel but separate resolution $(+)-14$ was isolated with a specific rotation of $[\alpha]^{25} \mathrm{D}$ $+77^{\circ}$. The equal but opposite values obtained for the specific rotations of enantiomeric 14 (Scheme II) and enantiomeric $16[(+,-,-)-16$ and $(-,+,+)-$ 16], coupled with the reproducibility of the values, is strong evidence that complete resolution has been achieved.

Attempts to prepare the salt of phosphine 6 and \mathbf{L} mandelic acid were unfruitful. A crystalline product was not obtained even after repeated crystallization attempts. However, it is interesting that when this mixture was treated with aqueous NaOH to decompose the salt, 6 was not obtained, but instead the phosphine oxide 17 was isolated. Whether 17 is the result

of simple air oxidation of 6 or was oxidized by some other material in solution is not known at this time.

Salts 14-16 have been characterized by spectral data and elemental analyses. The inclusion of solvent of crystallization, or of stoichiometric amounts of dibenzoyltartaric acid or its anions, was an anticipated difficulty which was not encountered. ${ }^{10}$
The predominant mass spectral fragment ions of all phosphorino $[4,3-d]$ pyrimidines are listed in the Experimental Section. In general, these compounds give molecular ions of good intensity. However, phosphonium salts 14 and 15 do not show molecular ions such as Aguiar and coworkers ${ }^{24}$ observed in certain C-P heterocycles (evaporated into the spectrometer above 300°) but instead show $m / e \mathrm{M}^{+}-\mathrm{HBr}$ as the largest major ion. The loss of HBr possibly results from electron impact within the ionizing region of the spectrometer and not from thermal decomposition on the probe. If thermal decomposition occurred, HBr would be observed in the spectrum, and it was not found. This situation is not true in the case of 16, the hydrogen dibenzoyltartrate salt. Decomposition of the sample occurs in the probe at about 160°. Elimination of benzoic acid (identified by comparison with the known mass spectrum) is noted in the spectrum. The spectrum of the main sample is obtained at a probe temperature of $c a .200^{\circ}$. Benzoic acid must come from decomposition and cannot be a contaminant because benzoic acid is volatile at room temperature in the mass spectrometer.

Experimental Section

Melting points are uncorrected and were determined on a Thomas-Hoover capillary melting point apparatus in evacuated, sealed tubes. Infrared spectra were determined on a Beckman IR-5A spectrometer as potassium bromide pellets. Nuclear magnetic resonance spectra were determined on a Varian A-60 MHz high-resolution spectrometer and a Varian XL- 100 MHz spectrometer. Mass spectra were determined on a LKB-9000 prototype, single-focusing magnetic sector instrument. Rotations were determined on a Rudolf Model 80 polarimeter at the sodium d line using a 2-dm cell. Elemental microanalyses were determined by Galbraith Laboratories, Knoxville, Tenn.

4-Amino-5,6,7,8-tetrahydro-6-phenylphosphorino $[4,3-d]$ pyrimidine (6).-A mixture of the 2-enamino nitrile $3^{12}(10.8 \mathrm{~g}, 0.05$ $\mathrm{mol}), 80 \mathrm{ml}(72 \mathrm{~g}, 0.49 \mathrm{~mol})$ of triethyl orthoformate, and 80 ml of acetic anhydride was boiled for 1 hr . The solution of ethoxymethylene derivative 10 was concentrated to a residual oil by distillation under vacuum ($70^{\circ}, 0.1 \mathrm{~mm}$). Anhydrous, saturated $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{NH}_{3}\left(200 \mathrm{ml}\right.$, saturated at $\left.0^{\circ}\right)$ was added to the residue and the solution was stirred overnight. (After approximately 5 hr of stirring, a precipitate formed.) The mixture was filtered and the residue was washed with 25 ml of cold $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ on the filter to yield 5.5 g , mp 194-197 ${ }^{\circ}$ of 6 . The filtrate and washings were combined and evaporated to dryness on the rotary evaporator. Trisuration of the resulting oil with acetone followed by filtration gave an additional 0.8 g (mp 196$197^{\circ}$) of 6 for a total yield of $7.3 \mathrm{~g}(66 \%)$. Sublimation ($190-$ $200^{\circ}, 0.001-0.0005 \mathrm{~mm}$) gave pure $6, \mathrm{mp} \mathrm{196-197}^{\circ}$ (lit. ${ }^{3} \mathrm{mp} \mathrm{196-}$ 197°). A mixture melting point of 6 with an authentic sample showed no depression and the respective spectral properties were identical.

3-Ethyl-5,6,7,8-tetrahydro-4(3H)-imino-6-phenylphosphorino-[4,3- d] pyrimidine (7). -The crude ethoxymethylene derivative 10 was prepared as in the previous experiment. Anhydrous ethylamine (20 g) in 200 ml of absolute ethanol was added to crude 10 with stirring. After a short period of time (ca. 15 min), a large amount of precipitate formed. Stirring was continued overnight. The black reaction mixture was filtered, and the
(24) A. M. Aguiar, H. Aguiar, and D. Daigle, J. Amer. Chem. Soc., 87, 672 (1965).
residue was washed on the filter with two $50-\mathrm{ml}$ portions of cold anhydrous ethanol to give $8.8 \mathrm{~g}\left(65 \%\right.$, dried at $\left.78^{\circ}, 1 \mathrm{~mm}\right)$ of 7 as a clean white powder. Sublimation of this sample at $13 \overline{5}^{-}$ 140° ($0.0001-0.0005 \mathrm{~mm}$) afforded an analytical sample: mp $147-149^{\circ}$ (s.t.); ir (KBr) 3.04, 6.14, 6.38, 7.0, 7.2μ; pmr (DC$\left.\mathrm{Cl}_{3}\right) \delta 1.4\left(\mathrm{t}, 3, \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.9-2.8(\mathrm{~m}, 6$, phosphorin ring $)$, $4.0\left(\mathrm{~m}, 2, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 5.6(\mathrm{~s}$, broad, $1,=\mathrm{NH}), 7.3\left(\mathrm{~m}, 5,-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.65(\mathrm{~s}, 1,2 \mathrm{H})$; mass spectrum (70 eV) m / e (rel intensity) 271 (80), 242 (11), 194 (27), 181 (10), 180 (100), 162 (28), 107 (10), 28 (12). The ${ }^{31} \mathrm{P}$ magnetic resonance absorption of 7 occurred at $\delta+39.6$ (5% in DMSO) from $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{P}: \mathrm{N}, 15.50 ; \mathrm{P}, 11.44$. Found: $\mathrm{N}, 15.36$; P, 11.22.

5,6,7,8-Tetrahydro-6-phenylphosphorino $[4,3-c l]$ pyrimidine-4thiol (8).-A mixture of the 2-amino nitrile $3(9.0 \mathrm{~g}, 0.0416$ $\mathrm{mol})$ and triethyl orthoformate $(100 \mathrm{ml}, 90 \mathrm{~g}, 0.6 \mathrm{~mol})$ was boiled for 2 hr . Volatiles were then removed by distillation under reduced pressure ($70^{\circ}, 0.05 \mathrm{~mm}$) to yield the crude ethoxymethylene derivative 10. Sodium hydrosulfide in anhydrous $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(300 \mathrm{ml}, 1 . \overline{\mathrm{N}} \mathrm{N}$) was added and the mixture was boiled for 12 hr . The $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}$ was removed by rotary evaporation and the residual solid was dissolved in hot $\mathrm{H}_{2} \mathrm{O}$ (ca. 150 ml). The aqueous solution was treated with decolorizing charcoal and filtered. Acidification of the hot filtrate was achieved with glacial $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ ($\mathrm{H}_{2} \mathrm{~S}$ was evolved). The precipitated product was washed with water and ethanol and dried. Two sublimations of the crude yellow product at $180-190^{\circ}(0.002-0.001 \mathrm{~mm})$ gave $3.1 \mathrm{~g}(26 \%)$ of analytically pure phosphine 8: mp 230-231.5${ }^{\circ}$; ir (KBr) 3.18, 3.28, 3.38, 6.24 μ; pmr (1)MSO- c_{6}) δ 1.9-3.8 (m, 6 , phosphorin ring), 2.95 (s, broad, $1, N H$), 7.2 ($\mathrm{m}, 5, \mathrm{C}_{6} \mathrm{H}_{5}$), $8.0(\mathrm{~s}, 1,2-\mathrm{H})$; mass spectrum (70 eV) m / e (rel intensity) 260 (100), 259 (18), 261 (18), 245 (17), 227 (20), 183 (21), 169 (42), 151 (16), 109 (13), 107 (11), 91 (25), 78 (12), 6.5 (11), 28 (11). The $40.5-\mathrm{MHz} \mathrm{nmr}$ spectrum of 8 showed ${ }^{31} \mathrm{P}$ absorption at δ $+44.59\left(5 \%\right.$ in DMSO) relative to $85 / 6 \mathrm{H}_{3} \mathrm{PO}_{4}$.
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{PS}: \mathrm{N}, 10.77$; P, 11.92; S, 12.31 . Found: $\mathrm{N}, 10.90 ; \mathrm{P}, 11.80$; $\mathrm{S}, 12.43$.

In a second preparation, equal volumes of triethyl orthoformate and acetic anhydride were used. The yield of 8 was increased to 66% in what was otherwise an iden ical experiment.

4-(Ethylamino)-5,6,7,8-tetrahydro-6-phenylphosphorino [4,3-d]pyrimidine (11).-A mixture of the iminopyrimidine $7(1 \mathrm{~g})$ and 50 ml of $\mathrm{NaOH}(0.1 \mathrm{~N})$ was boiled for 1 hr . The resulting oil was separated from the water and dissolved in HCCl_{3}. The HCCl_{3} solution was evaporated to dryness on the rotary evaporator and the residual oil was dissolved in acetone. After 2 days, during which time no crystallization occurred, the acetone solution was evaporated to dryness on the rotary evaporator so give $11(0.7 \mathrm{~g}$, 70%) as a crystalline solid. An analytical sample was obtained by sublimation at $135-140^{\circ}(0.0001-0.0005 \mathrm{~mm})$: mp 134$138^{\circ}$ (s.t.); ir (KBr) 3.02, 3.4, 6.26μ (the pmr spectrum shows two absorptions, a high-intensity and low-intensity signal, for each proton); pmr (DCCl_{3}) high intensity (low intensity) $\delta 1.25$ (1.22) (t, 3, $\mathrm{NHCH}_{2} \mathrm{CH}_{3}$), 2.0-3.2 ($\mathrm{m}, 6$, phosphorin ring), 3.25 (pentet, 2, $\mathrm{NHCH}_{2} \mathrm{CH}_{3}$), 4.8 (5.2 j), ($\mathrm{s}, 1, \mathrm{NHCH}_{2} \mathrm{CH}_{3}$), 7.25 (7.3) ($\mathrm{m}, 5, \mathrm{C}_{6} \mathrm{H}_{5}$), $8.38(8.45)(\mathrm{s}, 1,2-\mathrm{H})$; mass spectrum (70 eV) m / e (rel intensity) 271 (100), 271 (18), 270 (13), 256 (20), 243 (15), 228 (25), 180 (16), 162 (13). The ${ }^{31} \mathrm{P}$ magnetic resonance adsorption of 11 occurred at $\delta+44.74$ (5% in DMSO) relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{P}: \mathrm{N}, 15.50 ; \mathrm{P}, 11.44$. Found: N, 15.45; P, 11.18.

5,6,7,8-Tetrahydro-4-(methylthio)-6-phenylphosphorino [4,3-d]pyrimidine (12).-Methyl iodide ($3.0 \mathrm{~g}, 0.021 \mathrm{~mol}$) was added to a solution of pyrimidine $8(5.2 \mathrm{~g}, 0.02 \mathrm{~mol})$ in 35 ml of 2 N NaOH . The mixture was shaken vigorously and allowed to stand for 30 min while the product precipitated. The mixture was filtered, and the residue was washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$ while on the filter and subsequently dried under vacuum ($56^{\circ}, 1 \mathrm{~mm}$). The crude material was then sublimed ($80-90^{\circ}, 0.1-0.02 \mathrm{~mm}$) to yield 4.9 g (89%) of pure 12: $\mathrm{mp} 96-98^{\circ}$; ir (KBr) 6.47, 6.56, 6.95, 7.06μ; pmr (DMSO- d_{6}) 2.55 ($\mathrm{s}, 3, \mathrm{SCH}_{3}$), 2.1-3.2 ($\mathrm{m}, 6$, phosphorin ring), $7.25\left(\mathrm{~m}, 5, \mathrm{C}_{6} \mathrm{H}_{\mathrm{s}}\right), 8.15(\mathrm{~s}, 1,2-\mathrm{H})$; mass spectrum (70 eV) m / e (rel intensity) 274 (100), 275 (27), 273 (10), 259 (27), 241 (33), 201 (11), 109 (10). The $40.5-\mathrm{MHz}$ nmr spectrum of 12 showed ${ }^{31} \mathrm{P}$ absorption at $\delta+44.45\left(5 \%\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$ relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{PS}: \mathrm{N}, 10.22 ; \mathrm{P}, 11.31 ; \mathrm{S}, 11.68$. Found: N, 10.07; P, 11.16; S, 11.76.

5,6,7,8-Tetrahydro-4-(methylthio)-6-phenylphosphorino [4,3-d]pyrimidine 6-Sulfide (13).-Methyl iodide ($0.79 \mathrm{~g}, 0.15 \mathrm{~mol}$) was added to a solution of crude $9(0.38 \mathrm{~g}, 0.13 \mathrm{~mol})$ in 15 ml of 10% NaOH . The mixture was shaken vigorously and allowed to stand for 15 min while the product precipitated. The mixture was filtered and the residue was recrystallized $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}\right)$. Subsequent sublimation $\left(80-90^{\circ}, 0.05 \mathrm{~mm}\right)$ of the residue gave 13: $\mathrm{mp} \mathrm{146-148}{ }^{\circ}(0.28 \mathrm{~g}, 71 \%)$; ir (KBr) 6.46, $6.58,6.98,7.04$, $7.48,9.05 \mu ; \mathrm{pmr}\left(\mathrm{DMSO}_{\mathrm{d}}\right) \delta 2.55\left(\mathrm{~s}, 3, \mathrm{SCH}_{3}\right), 2.1-4.0(\mathrm{~m}, 6$, phosphorin ring $), 7.6\left(\mathrm{~m}, 3, m-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.85-8.15\left(\mathrm{~m}, 2, o-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $8.8(\mathrm{~s}, 1,2-\mathrm{H})$; mass spectrum (70 eV) m / e (rel intensity) 306 (100), 308 (11), 307 (17), 305 (13), 304 (68), 291 (28), 290 (10), 273 (37), 271 (14), 260 (21), 243 (10), 165 (11), 135 (10), 109 (13), 92 (10), 91 (11), 65 (10), 63 (19).
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{PS}_{2}$: $\mathrm{N}, 9.15 ; \mathrm{P}, 10.14 ; \mathrm{S}, 20.92$. Found: $\mathrm{N}, 9.02 ; \mathrm{P}, 10.34 ; \mathrm{S}, 20.76$.

Preparation of 5,6,7,8-Tetrahydro-4-(methylthio)-6-benzyl-6phenylphosphorinia [4,3- d |pyrimidine Bromide (14).-Benzyl bromide $(1.7 \mathrm{~g}, 0.01 \mathrm{~mol})$ was added to a warm solution of pyrimidine $12(2.74 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 50 ml of 2-propanol. The solution was boiled for 1 hr . The solution was concentrated on the rotary evaporator to approximately 35 ml (a small amount of crystal formation was noted at this point), diluted with 100 ml of ethyl acetate, and allowed to crystallize overnight. The precipitate was filtered out and recrystallized ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$-ethyl acetate) to give $3.2 \mathrm{~g}(74 \%)$ of pure $14: \mathrm{mp} 249-251^{\circ}$; ir (KBr) 6.48, 7.05, $7.4 \overline{5}, 11.51,12.08 \mu ; \operatorname{pmr}\left(\mathrm{DCCl}_{3}\right) \delta 2.45^{\prime}\left(\mathrm{s}, 3, \mathrm{SCH}_{3}\right) 2.0-5.0$ ($\mathrm{m}, 6$, phosphorin ring), 5.18 and 5.45 (pair of double j s, $J_{\mathrm{PCB}}=$ $\left.16.4, J_{\mathrm{HCH}}=3.7 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.25\left(\mathrm{~s}, 5,-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.4-7.7$ $\left(\mathrm{m}, 3, m-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.7-8.0\left(\mathrm{~m}, 2, o-\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.62(\mathrm{~s}, 1,2-\mathrm{H})$; mass spectrum (70 eV) m / e (rel intensity) 364 (33), 365 (11), 363 (11), 350 (12), 349 (51), 274 (24), 273 (40), 271 (13), 121 (13), 109 (12), 92 (18), 91 (100), 82 (11), 80 (12), 65 (15). The ${ }^{31} \mathrm{P}$ nmr spectrum of 14 showed absorption at $\delta-18.6\left(10 \%\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$ relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{PS}: \mathrm{N}, 6.29 ; \mathrm{P}, 6.96 ; \mathrm{S}, 7.19$. Found: N,6.21; P,6.89; S, 7.16.

Preparation of 4-Amino-5,6,7,8-tetrahydro-6-benzyl-6-phenylphosphorinia $[4,3-d]$ pyrimidine Bromide (15).-Benzyl bromide $(0.86 \mathrm{~g}, 0.01 \mathrm{~mol})$ was added to a warm solution of pyrimidine 6 $(1.22 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 50 ml of 2 -propanol and the solution was boiled for 1 hr . The solution was subsequently concentrated to ca. 15 ml on the rotary evaporator, diluted with 50 ml of ethyl acetate, and allowed to stand overnight. The mixture was filtered and the residue was recrystallized $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right.$-ethyl acetate) to give 1.6 g of $15\left(\mathrm{mp} 248-251^{\circ}, 79 \%\right)$: ir (KBr) 2.94, 3.19, 3.45, 5.99, 6.15, 6.34, 6.94 μ; pmr (DMSO- d_{6}) $\delta 2.7-4.2$ $(\mathrm{m}, 6$, phosphorin ring $), 3.6\left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right), 4.4\left(\mathrm{~d}, 2, J_{\mathrm{P} \text { 饿 }}=15.4\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.15\left(\mathrm{~m}, 5, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.5-8.05\left(\mathrm{~m}, 5,-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 8.18 ($\mathrm{s}, 1,2-\mathrm{H}$); mass spectrum (70 eV) m / e (rel intensity) 333 (66), 334 (17), 332 (32), 243 (32), 242 (66), 241 (12), 166 (12), 164 (13), 134 (22), 121 (31), 109 (19), 107 (17), 92 (17), 91 (100), 82 (17), $80(21), 65$ (35), 28 (40). The ${ }^{31} \mathrm{P} \mathrm{nmr}$ spectrum of 15 showed absorption at $\delta-18.6\left(10 \%\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$ relative to 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{P}$: $\mathrm{N}, 10.16 ; \mathrm{P}, 7.49$. Found: N, 9.76; P, 7.22.

Preparation and Resolution of (\pm)-5,6,7,8-Tetrahydro-4-(methylthio)-6-benzyl-6-phenylphosphorinia [4,3-d] pyrimidine Hy drogen $\mathrm{D}(-,-)$-Dibenzoyltartrate $[(\pm,-,-)-16]$.-The phosphonium salt $14(2.225 \mathrm{~g}, \mathrm{mmol})$ dissolved in 50 ml of $\mathrm{CH}_{3} \mathrm{OH}$ was slowly added to a suspension of silver hydrogen $\mathrm{D}(-,-)$ dibenzoyltartrate ${ }^{9}(2.79 \mathrm{~g}, 6 \mathrm{mmol})$ in boiling $\mathrm{CH}_{3} \mathrm{OH}$ and the mixture was heated for 30 min . The white Ag HDBT slowly dissolved during the reaction. After $c a .10 \mathrm{~min}$ of heating, AgBr precipitated as a gray solid. The mixture was cooled and filtered to give $\mathrm{AgBr}(0.78 \mathrm{~g}, 83 \%)$ and a rose-colored, $\mathrm{CH}_{3} \mathrm{OH}$ solution of 16 . The $\mathrm{CH}_{3} \mathrm{OH}$ solution was concentrated on the rotary evaporator to $c a .20 \mathrm{ml}$, treated with 50 ml of ethyl acetate, and allowed to stand overnight. The mixture was then filtered to give 1.9 g of crude white $16, \mathrm{mp} 154-158^{\circ},[\alpha]^{25} \mathrm{D}-46^{\mathrm{c}}$ (c 0.0100 , $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$. The filtrate was concentrated to $c a .20 \mathrm{ml}$, diluted with ethyl acetate, and filtered to give a second fraction of 16 as a rose-colored solid ($1.0 \mathrm{~g}, \mathrm{mp} 126-153^{\circ}$). Determination of the optical rotation of this fraction was not possible because of the color. The total yield was $2.9 \mathrm{~g}(83 \%)$. The first fraction was leached with boiling 2-propanol to give a residue of 1.6 g , $[\alpha]{ }^{25} \mathrm{D}-42^{\circ}\left(c 0.0100, \mathrm{CH}_{3} \mathrm{OH}\right)$. Three subsequent recrystallizations $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ of the first fraction produced $0.4 \mathrm{~g}(23 \%)$ of material with a narrow, constant melting range (mp 154.5-165 ${ }^{\circ}$)
and of constant specific rotation，$[\alpha]{ }^{25} \mathrm{D}-14^{\circ}\left(\mathrm{c} 0.0120, \mathrm{CH}_{3} \mathrm{OH}\right)$ ． Subsequent recrystallizations of this material failed to cause any variance in these analytical data．The direction in which the rotation had changed，i．e．，from negative toward positive，indi－ cated that the diastereomer isolated was $(+,-,-)-16$ ：ir （ KBr ） $5.80,6.45,6.93,7.33,7.44,7.84 \mu$ ；mass spectrum m / e （rel intensity） $\mathrm{M}^{+} 722$ absent，the spectrum of benzoic acid is observed at a probe temperature of $c a .160^{\circ}, 391$（29）， 364 （13）， 349 （18）， 317 （19）， 290 （19）， 274 （11）， 273 （12）， 257 （13）， 109 （14）， 105 （12）， 92 （15）， 91 （100）， 77 （17）， 65 （18）， 51 （10）， 48 （18）， 47 （27）， 45 （15）， 44 （63）， 43 （11）， 28 （42）．

Anal．Calcd for $\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{PS}: \mathrm{C}, 64.82 ; \mathrm{H}, 4.84 ; \mathrm{N}$ ， $3.88 ; \mathrm{P}, 4.29$ ．Found：C， $64.75 ; \mathrm{H}, 4.87$ ；N， 3.77 ；P，4．17．

In a parallel but separate experiment， $0.82 \mathrm{~g}(31 \%)$ of $(+$ ， $-,-)-16\left[\mathrm{mp} 164.5-165^{\circ},[\alpha]^{25} \mathrm{D}-14^{\circ}\left(c 0.0120, \mathrm{CH}_{3} \mathrm{OH}\right)\right]$ was obtained from 5.3 g of $(\pm,-,-)-16$ prepared as previously de－ scribed．

The mother liquors of the initial recrystallizations from both experiments were combined and evaporated to dryness．The residue was recrystallized $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ to give 3.3 g of（土，一，一）－16 enriched in the $(-,-,-)-16$ diastereomer，$[\alpha]^{25_{D}}-84^{\circ}$（c $0.0120, \mathrm{CH}_{3} \mathrm{OH}$ ）．

Metathesis of（＋）－5，6，7，8－Tetrahydro－4－（methylthio）－6 benzyl－6－phenylphosphorinia $[4,3-d$ ］pyrimidine Hydrogen $D(-$ ， $-)$－Dibenzoyltartrate $[(+,-,-)-16$ to the Corresponding Bro－ mide $[(+)-14]$ ．－A solution of $(+,-,-)-16(0.375 \mathrm{~g}, 0.00052$ $\mathrm{mol})$ and $\mathrm{NH}_{4} \mathrm{Br}(0.1 \mathrm{~g}, 0.001 \mathrm{~mol})$ in 25 ml of $\mathrm{CH}_{3} \mathrm{OH}$ was boiled for 1 hr and allowed to stand overnight．The $\mathrm{CH}_{3} \mathrm{OH}$ was evaporated on the rotary evaporator and the residue was ex－ tracted with hot $\mathrm{HCCl}_{3}(4 \times 25 \mathrm{ml})$ ．The HCCl_{3} extracts were evaporated to dryness and the residue was recrystallized $\left(\mathrm{CH}_{3}\right.$ OH －ethyl acetate）to give 211 mg （ 89% ）of enantiomer（ + ）－14， $[\alpha]^{25} \mathrm{D}+76^{\circ}\left(c 0.00873, \mathrm{CH}_{3} \mathrm{OH}\right)$ ．Recrystallization of this sample（ $\mathrm{CH}_{3} \mathrm{OH}$－ethyl acetate）gave 174 mg of $(+)-14, \mathrm{mp} 250-$ $251^{\circ},[\alpha]^{25_{\mathrm{D}}}+78^{\circ}\left(c 0.00696, \mathrm{CH}_{3} \mathrm{OH}\right)$ ．The infrared spectrum of $(+)-14$ was identical with the infrared spectrum of racemic 14.

In like manner，the 0.82 g of $(+,-,-)-16$ from the separate but parallel resolution underwent metathesis with $\mathrm{NH}_{4} \mathrm{Br}$ to give，after two recrystallizations $\left(\mathrm{CH}_{3} \mathrm{OH}\right.$－ethyl acetate $), 0.44 \mathrm{~g}$ (87%) of（＋）－14，mp 250－251,$\left[\alpha{ }^{25} \mathrm{D}+77^{\circ}\left(c 0.0120, \mathrm{CH}_{3} \mathrm{OH}\right)\right.$ ．
Similarly，the $3.3 \mathrm{~g},[\alpha]^{25} \mathrm{D}-84^{\circ}$ ，of residual $(\pm,-,-)-16$ en－ riched in $(-,-,-)-16$ diastereomer was subjected to meta－ thesis with $\mathrm{NH}_{4} \mathrm{Br}$ to give $1.9 \mathrm{~g}\left[\alpha{ }^{25} \mathrm{D}-16^{\circ}\left(c 0.0120, \mathrm{CH}_{3} \mathrm{OH}\right)\right.$ ， $\mathrm{mp} 249-251^{\circ}, 93 \%$ ，of（土）－14 enriched in（－）－14（ 20% optical purity）．

Preparation and Resolution of（土）－5，6，7，8－Tetrahydro－4－ （methylthio）－6－benzyl－6－phenylphosphorinia［4，3－d ］pyrimidine Hy － drogen $\mathrm{L}(+,+)$－Dibenzoyltartrate $[(\pm,+,+)-16]$ ．－The levo－ rotary enriched phosphonium bromide（土）－14，$[\alpha]^{25} \mathrm{D}-16^{\circ}, 1.9$ $\mathrm{g}, 4.2 \mathrm{mmol}$ ，and silver hydrogen $\mathrm{L}(+,+)$－dibenzoyltartrate ${ }^{8}$ $(2.325 \mathrm{~g}, 5 \mathrm{mmol})$ were allowed to react in the same manner utilized for the $\mathrm{D}(-,-)$ isomer to give $3.2 \mathrm{~g}(94 \%)$ of $(-,+$ ，

+ ）－enriched（ $\pm,+,+$ ）－16，mp 137－152 ${ }^{\circ}$ ．Three recrystalliza－ tions of this material were sufficient to produce $433 \mathrm{mg}(23 \%)$ of $(-,+,+)-16$ with a constant melting point and constant specific rotation， $\mathrm{mp} 165-166^{\circ},[\alpha]{ }^{25} \mathrm{D}+14^{\circ}\left(c 0.0120, \mathrm{CH}_{3} \mathrm{OH}\right)$ ．

Metathesis of（－）－5，6，7，8－Tetrahydro－4－（methylthio）－6－ben－ zyl－6－phenylphosphorinia 4,3 －d ］pyrimidine Hydrogen $\mathrm{L}(+,+)$－ Dibenzoyltartrate $[(-,+,+)-16]$ to the Corresponding Bromide ［（ - －14］．－Utilizing the procedure previously described for meta－ thesis， $433 \mathrm{mg}(0.6 \mathrm{mmol})$ of $(-,+,+)-16$ and $0.2 \mathrm{~g}(2 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{Br}$ reacted to give，after two recrystallizations，（ - ）－14， 194 $\mathrm{mg}(73 \%), \mathrm{mp} 250-251^{\circ},[\alpha]^{25} \mathrm{D}-77^{\circ}\left(c 0.0120, \mathrm{CH}_{3} \mathrm{OH}\right)$ ．The infrared spectrum of $(-)$－ 14 was identical with the infrared spec－ trum of racemic 14

Preparation of 4－Amino－5，6，7，8－tetrahydro－6－phenylphosphor－ ino［4，3－d］pyrimidine 6－Oxide（17）．－Phosphorinopyrimidine 6 （ $2.43 \mathrm{~g}, 0.01 \mathrm{~mol}$ ）in 25 ml of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and a solution of $\mathrm{D}(-)$－ mandelic acid（ $1.52 \mathrm{~g}, 0.01 \mathrm{~mol}$ ）in 25 ml of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ were mixed and the solution was boiled for 1 hr ．The solvent was subse－ quently evaporated and the resulting oil was submitted to re－ crystallization attempts utilizing a variety of solvents．After ca． 8 weeks，crystallization had not occurred．Hence，the sol－ vents were removed via rotary evaporator and the resulting oil was treated with 200 ml of $10 \% \mathrm{NaOH}$ to decompose any salt present and to remove the mandelic acid．The reaction mixture was filtered to give a light brown powder．Recrystallization of this powder，with the aid of Nuchar，from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ ，gave 1.9 g of 17 as white crystals： $\mathrm{mp} 294-296^{\circ}$ ； 73% ；ir $(\mathrm{KBr}) 3.02$ ， $3.18,6.03,6.34,6.40,6.49,6.75,6.88 \mu$ ；pmr（DMSO－d_{6} ）δ 2．0－3．3（ $\mathrm{m}, 6$ ，phosphorin ring）， $6.72\left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right), 7.56(\mathrm{~m}, 3$ ， m－and $\left.p-\mathrm{PC}_{6} \mathrm{H}_{5}\right), 7.64-7.88\left(\mathrm{~m}, 2, o-\mathrm{PC}_{6} \mathrm{H}_{5}\right), 8.18(\mathrm{~s}, 1,2-\mathrm{H})$ mass spectrum（ 70 eV ）m／e（rel intensity） 259 （100）， 260 （17）， 258 （21）， 182 （21）， 135 （21）， 134 （56）， 107 （14）， 54 （10）， 47 （19） The $40.5-\mathrm{MHz} \mathrm{nmr}$ spectrum of 17 showed ${ }^{31} \mathrm{P}$ absorption at δ $-29.0\left(5 \%\right.$ in DMSO）relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ ．

Anal．Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OP}: \mathrm{N}, 16.22 ; \mathrm{P}, 11.97$ ．Found N，16．11；P，11．84．

Registry No．－3，23848－09－1；6，38626－62－9；7， 38626－63－0；8，38626－64－1；9，38626－65－2；10，38626－ $66-3$ ；11，38626－67－4；12，38626－68－5；13，38626－ $69-6$ ；（ \pm ）－14，38626－70－9；（ + ）－14，38626－71－0；（ - ）－ 14，38626－72－1；15，38626－73－2；（土，ー，一）－16， 38626－74－3；（ $\quad(,-,-)-16,38626-75-4$ ；（ \quad ，－，- ） 16，38626－76－5；（ $\pm,+,+$ ）－16，38677－76－8；（,,-++ ）－ 16，38677－77－9；（＋，＋，＋）－16，38626－77－6；17，38626－ 78－7；triethyl orthoformate，122－51－0；silver hydrogen， $\mathrm{D}(-,-)$－dibenzoyltartrate，38823－92－6；silver hydrogen $\mathrm{L}(+,+$ ）－dibenzoyltartrate，38823－93－7； $\mathrm{D}(-)$－man－ delic acid，611－71－2．

Reactions of the Nitrosonium Ion. V. Nitrosative Cleavage of the Carbon-Nitrogen Double Bond. The Attempted Exchange of Oxygen for Nitrogen ${ }^{13}$

Michael P. Doyle,* Mary A. Zaleta, ${ }^{\text {1b }}$ James E. DeBoer, and Wendell Wierenga ${ }^{\text {1c }}$
Department of Chemistry, Hope College, Holland, Michigan 49429

Received October 20, 1972

Abstract

N-Benzylidenetriphenylmethylamine reacts with $\mathrm{NO}^{+} \mathrm{BF}_{4}-$ to give benzaldehyde, nitrogen, and the triphenylmethyl cation. When N-benzylidenebenzhydrylamine is similarly treated with $\mathrm{NO}^{+}{ }^{+} \mathrm{BF}_{4}-$ in acetonitrile, nitrogen, nitric oxide, and nitrous oxide are formed; and when the reaction solution is quenched with water, benzaldehyde, benzophenone, protonated imine, and N-(diphenylmethyl)acetamide are observed. With N-benzylidenebenzylamine, silane quenching of the reaction products gives dibenzyl ether; using N-benzylidenebenzylamine-$\alpha-d_{2}$, the dibenzyl ether formed contains only two deuterium atoms per molecule. Similar reactions with other imines, pyridines, and various unsaturated heterocyclic compounds are presented. Results are discussed in terms of competitive nitrosative cleavage of the carbon-nitrogen double bond and hydrogen transfer to the nitrosyl group.

We have previously reported that N-benzylideneanilines react with nitrosonium salts under mild conditions in anhydrous media to produce benzaldehydes and benzenediazonium salts (eq 1). ${ }^{2}$ Yields were gen-

$$
\mathrm{ArCH}=\mathrm{NAr}^{\prime}+\mathrm{NO}^{+} \mathrm{X}^{-} \longrightarrow \mathrm{ArCHO}+\mathrm{Ar}^{\prime} \mathrm{N}_{2}+\mathrm{X}^{-} \quad(1)
$$

erally greater than 90%, and no major competing side reactions were observed. Similar results had been reported for the reactions of benzylideneaniline with nitrosyl chloride, dinitrogen tetroxide, and nitrosylsulfuric acid. ${ }^{3}$

Although no previous study has been reported, we expected that N-alkylimines would also undergo nitrosative cleavage of the carbon-nitrogen double bond to form a carbonyl compound and, following the loss of nitrogen, an alkyl cation (Scheme I). If the carbonyl

Scheme I

$$
\begin{gather*}
\mathrm{R}_{2} \mathrm{C}=\mathrm{NR}^{\prime}+\mathrm{NO}^{+} \longrightarrow \mathrm{R}_{2} \mathrm{C}=\mathrm{O}+\mathrm{R}^{\prime} \mathrm{N}_{2}+ \tag{2}\\
\mathrm{R}^{\prime} \mathrm{N}_{2}^{+} \longrightarrow \mathrm{R}^{\prime+}+\mathrm{N}_{2} \tag{3}\\
\mathrm{R}^{\prime+}+\mathrm{R}_{2} \mathrm{C}=\mathrm{O} \longrightarrow \mathrm{R}_{2} \mathrm{C}=\stackrel{+}{\mathrm{O}}-\mathrm{R}^{\prime} \tag{4}
\end{gather*}
$$

compound produced is the most basic species in solution, O -alkylation by the carbenium ion would provide the net result of an oxygen exchange for the imine nitrogen (eq 5). For this purpose nitrosonium salts,

$$
\begin{equation*}
\mathrm{R}_{2} \mathrm{C}=\mathrm{NR}^{\prime}+\mathrm{NO}^{+} \longrightarrow \mathrm{R}_{2} \mathrm{C}=\stackrel{+}{\mathrm{OR}^{\prime}}+\mathrm{N}_{2} \tag{5}
\end{equation*}
$$

such as $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$, are most suitable since the nonbasic anion is not expected to undergo reactions with carbenium ion products. ${ }^{4}$

Results

N-Benzylidenetriphenylmethylamine. -To determine if nitrosative cleavage would occur with N-alkylimines to produce carbonyl compounds, nitrogen, and alkyl cations, $\quad N$-benzylidenetriphenylmethylamine was treated with an equivalent amount of nitrosonium tetrafluoroborate in acetonitrile to give the results

[^32]shown in eq 6 . The benzylideneimines were chosen because side reactions with the benzylidene moiety do not
\[

$$
\begin{align*}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NC}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}+ & \mathrm{NO}+\mathrm{BF}_{4}-\xrightarrow[25^{\circ}]{\mathrm{CH}_{8} \mathrm{CN}} \\
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{N}_{2}+\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}^{+} \mathrm{BF}_{4}- \tag{6}
\end{align*}
$$
\]

occur and because benzaldehyde is stable toward $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$under the reaction conditions studied. ${ }^{2}$ A nearly quantitative yield of nitrogen was observed. The pmr spectrum of the reaction solution after complete nitrogen evolution was identical with that produced when an equimolar amount of benzaldehyde and trityl salt were added to acetonitrile. Benzaldehyde, produced in greater than 95% yield, was confirmed prior to quenching and work-up by glpc analysis. Addition of triethylsilane, an effective trapping agent for carbenium ions, ${ }^{5}$ yielded triphenylmethane quantitatively; quenching with water gave triphenylmethanol. The protonated imine was produced when small amounts of water were present in the reaction medium.
N-Benzylidenebenzhydrylamine was similarly treated with $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-}$(1.1 equiv) in anhydrous acetonitrile at room temperature (eq 7). In addition

to nitrogen, nitric oxide and a small amount of nitrous oxide were produced; the total yield of gaseous products, based on the expected production of 1 mol of gas per mole of imine, was greater than 70%. Benzaldehyde and benzophenone were observed by pmr spectroscopy and from glpc analysis prior to quenching; protonated N-benzylidenebenzhydrylamine accounted for approximately 60% of the reaction products. Quenching the reaction mixture with 1 equiv of water produced N-(diphenylmethyl) acetamide ($16-26 \%$); the same yields of benzaldehyde, benzophenone, and protonated imine were observed before and after quenching. The N-benzhydrylacetonitrilium ion could not be detected in the reaction solution prior to
(5) F. A. Carey and H. S. Tremper, J. Org. Chem., 36, 758 (1971), and references cited therein.
quenching. ${ }^{6}$ Quenching with triethylsilane yielded diphenylmethane, presumably produced from both the benzhydryl cation and benzophenone. ${ }^{4,7}$

When the nitrosation of N-benzylidenebenzhydrylamine by $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-}$was run in chloroform- d_{1} at 25°, a 54% yield of gaseous products was obtained in addition to benzaldehyde (42%) and the protonated imine (44%). After quenching with water (1.2 equiv), benzaldehyde (44%), benzophenone (15%), and protonated imine (47%) were the only components of the mixture that could be identified; no benzhydrol was detected. In a separate experiment, triethylsilane quenching (2 equiv) yielded diphenylmethane in 52% yield along with 40% of protonated N-benzylidenebenzhydrylamine and 15% of dibenzyl ether. When the imine $-\mathrm{NO}^{+} \mathrm{BF}_{4}-$ reaction was carried out in chloroform $-d_{1}$ at 65°, the products and per cent yields were similar to those obtained at 25° with the exception that diphenylmethane (5\%) was produced prior to quenching.

Although N-benzylidenebenzhydrylamine undergoes nitrosative cleavage with nitrosonium salts, competing reactions that lead to benzophenone, diphenylmethane, nitric oxide, and nitrous oxide are also evident. No evidence was obtained for the production of O-alkylated benzaldehyde using this imine.
N-Benzylidenebenzylamine. - The addition of N benzylidenebenzylamine to an equivalent amount of $\mathrm{NO}+\mathrm{BF}_{4}{ }^{-}$in anhydrous acetonitrile at 25° yielded gaseous products (54%), benzaldehyde, and the corresponding N -protonated imine (54%). The protonated imine showed no tendency to react with $\mathrm{NO}^{+} \mathrm{BF}_{4}-$ even when the salt was used in large excess or when the reaction was run at temperatures as high as 60°.

The yield of benzaldehyde from the reaction in acetonitrile was 28% by pmr spectroscopy, based on integration of the characteristic signal at $\delta 10.0$ and compared to an internal standard. This yield, however, would not reflect the total yield of benzaldehyde from nitrosative cleavage if the process given in eq 4 had occurred. In separate experiments between 0.5 and 1.0 equiv of benzaldehyde was added to an acetonitrile solution of the N-benzylacetonitrilium ion, prepared from the reaction between benzyl azide and nitrosonium tetrafluoroborate. ${ }^{6}$ The pmr signals of both benzaldehyde ($\delta 10.0$) and the N-benzylacetonitrilium ion ($\delta 5.37$ and 2.85) were diminished; as the amount of benzaldehyde was increased, the integrated signal of benzaldehyde also increased while those for the nitrilium ion decreased. However, both species could be observed even at 0.5 and 1.0 equiv of added benzaldehyde; only when an excess of benzaldehyde (1.5 equiv) was added were the nitrilium ion signals absent. No absorptions other than those of benzaldehyde and the N-benzylacetonitrilium ion were evident under our pmr conditions ($37^{\circ}, 0.4 M$ nitrilium ion).

Although we were not able to detect O-alkylated benzaldehyde, similar compounds have been observed in other media. ${ }^{8}$ The observation of benzaldehyde and

[^33]the nitrilium ion, even when equivalent amounts of both compounds were present in solution, suggests an equilibrium process (eq 8). Addition of triethylsilane
\[

$$
\begin{align*}
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \stackrel{+}{\mathrm{N}} \equiv \mathrm{CCH}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \rightleftharpoons \\
& {\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\stackrel{+}{\mathrm{O}} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]+\mathrm{CH}_{3} \mathrm{CN} } \tag{8}
\end{align*}
$$
\]

produced dibenzyl ether, the expected reduction product from I. ${ }^{7}$

Addition of 10 equiv of water to the acetonitrile solution from the reaction of N -benzylidenebenzylamine with $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$gave benzaldehyde (95%), benzylamine (55%), N-benzylacetamide (25%), and benzyl alcohol (10%). No significant differences in the identities or yields of products were observed when the reaction was performed at -13° or when $\mathrm{NO}^{+} \mathrm{BF}_{4}-$ was added to N-benzylidenebenzylamine.

The addition of triethylsilane (1.2 equiv) to the acetonitrile reaction solution after complete gas evolution gave dibenzyl ether (6\%). No benzaldehyde was observed by pmr spectroscopy immediately following the addition of triethylsilane. The yield of protonated imine was not noticeably affected by silane quenching.

In acidic media benzaldehyde is reduced by trialkylsilanes to dibenzyl ether in high yield. ${ }^{9}$ This explains the formation of dibenzyl ether from silane quenching of the products from the reaction between N-benzylidenebenzhydrylamine and $\mathrm{NO}+\mathrm{BF}_{4}$ in chloroform- d_{1}, noted earlier. Thus, the presence of dibenzyl ether from silane quenching in the nitrosative cleavage reactions of N-benzylidenebenzylamine does not unambiguously suggest the process described in Scheme I. We, therefore, treated N-benzylidenebenzylamine- $\alpha-d_{2}$ with $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$in anhydrous acetonitrile at 25°. The yields of gaseous products, protonated imine, and observed benzaldehyde were identical with those from the same reaction with the undeuterated compound. Quenching with triethylsilane followed by addition of water and work-up yielded dibenzyl ether- $\alpha-d_{2}$ (II), strongly suggesting the process shown in eq 9 . A 5% yield of II was obtained.

Treatment of N-benzylidenebenzylamine with $\mathrm{NO}^{+}{ }_{-}$ $\mathrm{BF}_{4}{ }^{-}$in chloroform at 55° gave gaseous products (65%), benzaldehyde (30%), and the protonated imine (30%) as the only products definable by pmr spectroscopy. The pmr spectrum did, however, exhibit a distinct signal at $\delta 3.95$, characteristic of a ring-substituted diphenylmethane ($>5 \%$); no attempt was made to characterize this product. Under similar reaction conditions the benzyl cation, produced from the reaction between benzyl azide and $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$, undergoes Friedel-Crafts alkylation of benzene. ${ }^{10}$ The addition of 2 equiv of triethylsilane followed by addition of water and work-up gave an 18% yield of dibenzyl ether with $55 \mathrm{~mol} \%$ of recovered benzaldehyde. In separate experiments the addition of tri- n-butylsilane and triphenylsilane gave dibenzyl ether in 10 and 11% yield,

[^34]respectively. Quenching with sodium borohydride gave only a small amount ($<2 \%$) of dibenzyl ether.
An attempt was made to trap reaction products, such as I, by the addition of cyanide salts following complete gas evolution from the reaction between N benzylidenebenzylamine and $\mathrm{NO}^{+} \mathrm{BF}_{4}^{--}$in acetonitrile. The same procedure was used that had been successful in trapping compound III in experiments described by

Smith and Loeppky. ${ }^{11}$ Under our reaction conditions no evidence for cyanide products derived from I, III, or IV was obtained, and no phenylacetonitrile was produced.
Since the major competing processes in the nitrosative cleavage of imines are those leading to protonated imines, we attempted to treat the imine with $\mathrm{NO}+\mathrm{BF}_{4}-$ in the presence of a base that was stable toward $\mathrm{NO}^{+}-$ $\mathrm{BF}_{4}{ }^{-}$, yet sufficiently strong to accept the protons produced in these reactions. Pyridine was chosen because Olah has reported that nitrosonium salts react with pyridine to form stable N -nitrosated pyridinium salts. ${ }^{12}$ Addition of equimolar amounts of N-benzylidenebenzylamine and pyridine to $\mathrm{NO}^{+} \mathrm{BF}_{4}-$ in acetonitrile at 29° gave, however, only 18% of gaseous products and no improvement in the yields of products from the nitrosative cleavage reaction.

Other Imines. -When N-benzylidene-tert-butylamine was added to an equivalent amount of $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$in anhydrous acetonitrile at 29°, a 76% yield of gaseous products, 73% of the corresponding protonated imine, and 17% of benzaldehyde were obtained; after quenching with water and work-up a minor amount ($<5 \%$) of N-tert-butylacetamide was observed. N-Benzylidenemethylamine was similarly treated with $\mathrm{NO}^{+} \mathrm{BF}_{4}-$ to give gaseous products (45%), protonated imine (49%), and benzaldehyde (23%); addition of triethylsilane to the reaction solution after complete gas evolution did not produce benzyl methyl ether.

Pyridines. - Results from the reaction of N-benzylidenebenzylamine with $\mathrm{NO}^{+} \mathrm{BF}_{4}-$ which indicated the production of I prompted us to consider the possibility that pyridine could also undergo nitrosative cleavage with an exchange of oxygen for nitrogen. Although pyrylium salts can be converted to pyridines, no method exists for the direct preparation of pyrylium compounds from pyridines. ${ }^{13}$ Since both 2,4,6-tri-methyl- and 2,4,6-triphenylpyrylium tetrafluoroborates are stable compounds and easily characterized, the corresponding trisubstituted pyridines were chosen for study.

Results similar to those reported by Olah ${ }^{12}$ were obtained when pyridine was added to an excess of NO^{+} $\mathrm{BF}_{4}{ }^{-}$. When 2,4,6-trimethylpyridine was added to a slight molar excess of $\mathrm{NO}^{+} \mathrm{BF}_{4}-$ in anhydrous acetonitrile, approximately $16 \mathrm{~mol} \%$ of gaseous products, identified as mainly nitrous oxide and nitrogen dioxide,
(11) P. A. S. Smith and R. N. Loeppky, J. Amer. Chem. Soc., 89, 1147 (1967).
(12) G. A. Olab, J. A. Olah, and N. A. Overchuk, J. Org. Chem., 30, 3373 (1965).
(13) A. T. Balaban, W. Schroth, and G. Fischer, Advan. Heterocycl. Chem., 10, 241 (1969).
was produced. Only 2,4,6-trimethylpyridinium tetrafluoroborate ($>90 \%$) was observed by pmr and ir analyses. Similarly, 2,4,6-triphenylpyridine produced only the corresponding pyridinium salt when added to $\mathrm{NO}^{+} \mathrm{BF}_{4}-$ in acetonitrile; again, a low yield ($<20 \%$) of gaseous products was obtained. Under the same reaction conditions, 2,4,6-trimethylpyrylium tetrafluoroborate was unaffected by $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$. When $2,4,6-$ trimethylpyridine was added to 0.5 equiv of $\mathrm{NO}^{+} \mathrm{BF}_{4}-$ in acetonitrile at room temperature, the same yield of gaseous products was obtained (16% based on the pyridine, 32% based on $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$) and only the pyridinium salt (50%) and unreacted pyridine (50%) were observed; addition of another 0.5 equiv of $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$ to the reaction solution increased the yield of pyridinium salt to 100%. Neither changing the rate of addition of the pyridine, nor increasing the reaction temperature to 60°, nor using as much as a tenfold excess of $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$, nor changing the reaction solvent from acetonitrile to nitromethane or to using no solvent, nor performing the reaction under a dry nitrogen atmosphere, changed the course of the reaction. No evidence was obtained for the production of pyrylium salts.

Other Heterocyclic Compounds. -Similar attempts were made to exchange oxygen for nitrogen in imidazole, N-methyl-, and N-benzylimidazole, 2,5 -diphenyloxazole, benzoxazole, benzothiazole, phenazine, and $1 H-1,2,4$-triazole. Gaseous products, mainly nitrogen dioxide, and the protonated substrate were produced. Again, no evidence for an exchange of oxygen for nitrogen was obtained.

Discussion

Results from the reaction of N-benzylidenetriphenylmethylamine with $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-}$demonstrate that nitrosative cleavage of N-alkylimines does occur with formation of a carbonyl compound, nitrogen, and a carbenium ion. In this case, however, an alternate mechanism to that given in Scheme I, involving N -nitrosation followed by dissociation to the trityl cation and N-nitrosobenzylideneimine (eq 10), cannot be excluded; N-nitro-

sobenzylideneimine would be expected to yield nitrogen and benzaldehyde in a manner analogous to that of N-nitrosoketimines. ${ }^{2,14}$ With N-alkylimines able to provide less stable carbenium ions, nitrosative cleavage is also observed; and the occurrence of a similar dissociation of an initially formed N -nitrosated N -alkylimine is less likely.

With N-benzylidenebenzylamine, nitrosative cleavage with loss of nitrogen results in the production of the O-alkylated benzaldehyde, I. The existence of this species, which represents a net exchange of oxygen for nitrogen in the nitrosative cleavage reaction, rests mainly on the results of silane quenching of the products from the reaction of N-benzylidenebenzylamine-$\alpha-d_{2}$ with $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-}$. The observation of dibenzyl

[^35]ether having two deuterium atoms per molecule can only be explained by reduction of an O-alkylated benzaldehyde; the reduction of benzaldehyde alone would have resulted in dibenzyl ether with no deuterium per molecule. The yield of dibenzyl ether from reactions in acetonitrile is low, accounting for less than 15% of the reacted N-benzylidenebenzylamine. Since benzaldehyde is observed in relatively high yield ($>50 \%$ of reacted imine) and not observed following triethylsilane quenching, reduction products other than dibenzyl ether, which were not identified in this present study, must account for the difference. Neither the protonated imine nor the N-benzylacetonitrilium ion lead to dibenzyl ether; the protonated imine is unaffected by silane quenching, and the N-benzylacetonitrilium ion is reduced to the corresponding imine.

The production of benzophenone from N-benzylidenebenzhydrylamine can be explained by hydrogen transfer to the nitrosyl group (eq 11a) in an elimination
 NO^{+}
reaction similar to that observed by Smith and Loeppky in the nitrosative clcavage of tertiary amines. ${ }^{11} \mathrm{Al}$ ternatively, hydride abstraction from the imine by the nitrosonium ion (eq 11b), analogous to that observed by Olah and Friedman with cumene, ${ }^{15}$ would also explain the observed results. Nitrosyl hydride is known to form nitrous oxide and water (eq 12) ${ }^{11,16}$ and, when

$$
\begin{equation*}
2 \mathrm{HNO} \longrightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \tag{12}
\end{equation*}
$$

produced in the presence of the nitrosonium ion, nitric oxide and a proton (eq 13); $;^{11,17}$ both nitrous and nitric

$$
\begin{equation*}
\mathrm{HNO}+\mathrm{NO}^{+} \longrightarrow 2 \mathrm{NO}+\mathrm{H}^{+} \tag{13}
\end{equation*}
$$

oxides were observed as gaseous products from the reaction of N -benzylidenebenzhydrylamine with NO^{+} $\mathrm{BF}_{4}{ }^{-}$. Although no evidence for the independent existence of V was obtained, the production of benzophenone, nitrous oxide, and nitric oxide requires that hydrogen transfer must have occurred. Under the same reaction conditions the solvent does not react with $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-}$, and no evidence for isomerization of N-benzylidenebenzhydrylamine to N-benzhydrylidenebenzylamine was obtained. The production of diphenylmethane when the nitrosative cleavage reaction was run in chloroform at elevated temperatures indicated that hydride abstraction by the benzhydryl cation might also yield V; however, attempts to generate V using trityl salts in acetonitrile at 65° were unsuccessful.

The decomposition of nitrosyl hydride also partiälly explains the formation of protonated imines in these reactions. However, if the protonated imine is produced only through the hydrogen transfer reaction that leads to benzophenone (eq 11), only a 15% yield of protonated imine would have been expected. The high yields of protonated imine, produced under reaction

[^36]conditions where water contamination was carefully avoided, require other reaction processes. Since we are able to account for greater than 90% of the reaction products in most reactions, only a small proportion of N-alkylimine must be involved in other proton-producing processes. This latter explanation also accounts for the sole production of pyridinium salts in the reactions of trisubstituted pyridines with $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$; if nitrosative cleavage of the carbon-nitrogen bond is involved, the unsaturated ring-opened product might be expected to be quite susceptible to electrophilic attack by the nitrosonium ion, followed by elimination of a proton.

The results obtained in this study can be explained by nitrosative cleavage of the carbon-nitrogen double bond in competition with hydrogen transfer to the nitrosyl group. Alternate processes that lead to protonation of the substrate utilize only a small fraction of the total amount of substrate; however, protonation of the substrate quenches further reaction with nitrosonium salts.

Experimental Section

General.-Instrumenjation has been described. ${ }^{6}$ Gaseous products were identified by mass spectroscopy using a Finnigan Model 1015 mass spectrometer at 70 eV , as well as by infrared analyses with a Perkin-Elmer Model 621 spectrometer. Use was made of 5 -ft columns of 20% SE- 30 on Chromosorb P and 3% SE-30 on Varaport 30 and of. $3-\mathrm{ft}$ columns of 20% Carbowax 20M on Chromosorb P. Nitrosonium salts were obtained from Ozark Mahoning Co. and were dried over phosphorus pentoxide in a vacuum desiccator at 1.0 Torr prior to use. Analytical grade acetonitrile and nitromethane were distilled twice from calcium hydride and stored over molecular sieves. The water content of the acetonitrile was determined by measuring the amount of N benzylacetamide formed in the reaction between benzyl azide and $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-;}$analysis of the reaction products by pmr spectroscopy shows N-benzylacetamide when water is present. The amide is formed quantitatively from the reaction of water with an equivalent amount of the N-benzylacetonitrilium ion, and coexists in acetonitrile solutions with the acetonitrilium ion; the acetonitrile generally contained less than 0.02 mmol of water per ml . Chloroform was purified by standard procedures; chloroform- d_{1} was obtained from Merck Sharpe and Dohme and used without further pur:fication.
N-Benzylidenealkylamines.- N-Benzylidenetriphenylmethylamine was prepared from benzaldehyde and triphenylmethylamine in refluxing benzene by removal of water with a DeanStark trap. The crude product was recrystallized from chloro-form-ether, yielding white crystals in 83% yield: mp 152.0$152.5^{\circ} ; \operatorname{pmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1, \mathrm{CH}=\mathrm{N}), 7.9-7.7(\mathrm{~m}, 2, o-\mathrm{H})$, 7.6-7.1 (m, 18, Ph).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}$: C, 89.88; H,6.09. Found: C, $89.90 ; \mathrm{H}, 6.16$.
N-Benzylidenebenzhydrylamine, ${ }^{18} N$-benzylidenebenzylamine, ${ }^{18}$ and N-benzylidene-lert-butylamir. ${ }^{20}$ were prepared by the same method and purified by recrystallization or distillation. N Benzylidenemethylamine was commercially available.

General Procedure for Nitrosation of Imines.-The N-alkylimine (5.0 mmol) in 7 ml of anhydrous acetonitrile or chloroform was added dropwise to a constantly stirred solution of $\mathrm{NO}^{+} \mathrm{BF}_{4}^{-}$ (5.5 mmol) in 3 ml of the same solvent. Reactions were run in a three-necked flask fitted with a dropping funnel, thermometer, and gas outlet tube. N-Benzylidenetriphenylmethylamine was added as a solid in portions from an erlenmeyer flask fitted to the reaction flask with tygon tubing. Except when mass spectral identification of the gaseous products was made, the entire system was flushed with dry nitrogen prior to addition. The imine was added at such a rate ($15-30 \mathrm{~min}$) as to cause no sig-

[^37]nificant rise in the reaction temperature. Temperature control was effected by using an appropriate heating or cooling bath. For reactions run with pyridine, an equimolar amount of pyridine was added to $\mathrm{NC}^{+} \mathrm{BF}_{4}{ }^{-}$prior to the imine.
Total gas evolution was measured on the closed system by water displacement from a calibrated gas buret. Gas evolution was usually complete within 1 hr after addition at room temperature. The yield of gaseous products was calculated on the basis of 1 mol of gas per mole of imine. Gaseous products from the reactions of $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$with N -benzylidenetriphenylmethylamine and -benzhydrylamine were identified by mass spectroscopy using representative gas samples.

A pmr spectrum of the reaction products was usually obtained prior to quenching. Glpc analyses were also used at this point to detect products prior to quenching. Following analysis between 2 and 10 equiv of water or deuterium oxide was added, usually within 30 min after gas evolution was complete; and a pmr spectrum of the reaction solution was again obtained. For reactions in which silanes were used as the quenching agent, between 1 and 2 equiv of the appropriate silane was added instead of water. Methylene chloride (25 ml) was added along with water (20 ml) and the resulting layers were separated after thorough mixing. The aqueous layer was washed once with methylene chloride (25 ml) and made basic with sodium carbonate, and the basic solution was washed twice with $25-\mathrm{ml}$ portions of methylene chloride. The combined methylene chloride extracts were passed through anhydrous magnesium sulfate and the solvent was removed under reduced pressure.

Reaction products were analyzed by integration of the individual and characteristic absorptions of each compound by pmr spectroscopy in carbon tetrachloride or chloroform- d_{1}. Integrations were maximized and averaged over several integrations of the same signal. A measured amount of an internal standard, usually 1,2 -dibromoethane or nitromethane, was used for each analysis. Individual products were identified either from the pmr spectram of the reaction solution and from glpc retention times and peak enhancement, or after isolation by glpc using appropriate spectral methods. Protonated imines were identified prior to work-up by comparison to authentic samples prepared in ecetonitrile by adding an equivalent amount of $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}$ to the imine. Pmr spectra in acetonitrile at 37° were similar to those previously reported: ${ }^{21} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NH}$ $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}{ }^{+}, \delta 8.85\left(\mathrm{~d}, \mathrm{CH}=\mathrm{N}, J_{\mathrm{CH}=\mathrm{NB}}=18 \mathrm{~Hz}\right) ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NH}-$ $\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}{ }^{+}, \delta 12.0$ (jroad, NH), $8.94\left(\mathrm{~d}, \mathrm{CH}=\mathrm{N}, J_{\mathrm{CH}=\mathrm{NH}}=17\right.$ $\mathrm{Hz}), 6.62\left(\mathrm{~d}, \mathrm{CHN}, J_{\text {ChN }}=6 \mathrm{~Hz}\right) ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$, $\delta 12.7$ (broad, NH), $Э .01\left(\mathrm{CH}=\mathrm{N}, J_{\mathrm{CH}=\mathrm{NII}}=18.5 \mathrm{~Hz}, J_{\mathrm{CBCH}_{2}}=\right.$ $1.0 \mathrm{~Hz}), 5.12\left(\mathrm{CH}_{2} \mathrm{~N}, J_{\mathrm{CH}_{2} \mathrm{NH}}=6.0 \mathrm{~Hz}\right) ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NHC}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}$, $\delta 8.80\left(\mathrm{~d}, \mathrm{CH}=\mathrm{N}, J_{\mathrm{CH} m \mathrm{NH}}=18.3 \mathrm{~Hz}\right) ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NHCH}_{3}{ }^{+}$, δ $8.85\left(\mathrm{CH}=\mathrm{N}, J_{\text {CH-NH }}=18, J_{\mathrm{CHCH}_{3}}=1 \mathrm{~Hz}\right), 3.63\left(\mathrm{CH}_{3} \mathrm{~N}, J_{\mathrm{CH}_{3} \mathrm{NH}}\right.$ $=5 \mathrm{~Hz}$).
N-Benzylidenebenzylamine- $\alpha-d_{2}$.-Benzylamine- $\alpha-d_{2}$ was synthesized from benzonitrile and lithium aluminum deuteride (Ventron) in 32% yield using the procedure of Amundsen and Nelson, ${ }^{22}$ bp 29° (0.15 Torr). No signal for the α hydrogens was observed by pmr spectroscopy. Benzaldehyde was condensed with benzylamine- $\alpha-d_{2}$, using the procedure previously described, to give N-benzylidenebenzylamine- $\alpha-d_{2}$ in 73% yield: bp 107-109 ${ }^{\circ}$ (0.15 Torr); pmr (CCl_{4}) $\delta 8.38(\mathrm{~s}, 1, \mathrm{CH}=\mathrm{N}$), $8.0-$

[^38]7.1 ($\mathrm{m}, 10, \mathrm{Ph}$). The ir spectrum was consistent with the structure.

Treatment of the deuterated imine with $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$in anhydrous acetonitrile according to the general procedure gave, by pmr analysis prior to quenching, a 42% yield of "protonated" imine ($\mathrm{pmr} \delta 8.92$ for $\mathrm{CH}=\mathrm{N}^{+}, J=18 \mathrm{~Hz}$; no signal was observed between $\delta 7.0$ and 4.0) and 26% of benzaldehyde ($\mathrm{pmr} \delta$ 10.0 for $\mathrm{CH}=\mathrm{O})$. An absorption for the $\mathrm{C}=\mathrm{NH}^{+}$of the protonated imine was observed as a broad signal ($\delta 11.5-10.8$) and integrated to only one-half the value for the $\mathrm{CH}=\mathrm{N}^{+}$signal; with undeuterated imine these signals have the same area. After quenching with water and after work-up no signal between δ 7.0 and 4.0 was detected by pmr spectroscopy; N-benzylacetamide $-\alpha-d_{2}$ was detected by glpc analysis and confirmed by pmr spectroscopy. With triethylsilane quenching (5 equiv) the product corresponding to dibenzyl ether was collected by glpc and identified by pmr spectroscopy, $\delta 7.27(\mathrm{~s}, 10.0)$ and 4.53 (s, 2.0).

Nitrosation of Pyridines and Other Heterocyclic Compounds.Compounds were commercially available. The same general procedure as that given for the imines was used. With 2,4,6trimethylpyridine, reactions were run at 25° and at 60° for between 1 and 3 hr , in acetonitrile, nitromethane, or without solvent, and with 1,2 , and 10 equiv of $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$; only the pyridinium salt was detected prior to quenching by pmr and ir spectroscopy. The corresponding pyrylium salt would have been detected by these methods. 2,4,6-Trimethylpyrylium tetrafluoroborate was commercially available. 2,4,6-Trimethylpyridinium tetrafluoroborate was isolated from several reactions and characterized by comparison to the authentic sample by pmr and ir spectroscopy and from its melting point (233$235^{\circ}$). Similar reactions were attempted with 2,4,6-triphenylpyridine and gave identical results.

The reactions of $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}$with imidazole, N-methyl- and N benzylimidazole, 2,5 -diphenyloxazole, benzoxazole, benzothiazole, phenazine, and $1 H-1,2,4$-triazole were carried out in a manner analogous to that for the pyridines. N-Methylimidazole and 2,5-diphenyloxazole were studied under the greatest variety of reaction conditions. Only the corresponding protonated compound could be detected.

Protonated substrates were prepared by adding the nitrogen heterocycle to a slight molar excess of fluoroboric acid in benzene. The water from the 40% aqueous fluoroboric acid was removed using a Dean-Stark trap, and the benzene was distilled under reduced pressure.
Registry No. $-N$-Benzylidenetriphenylmethylamine, 38662-28-1; $\quad N$-benzylidenebenzhydrylamine, 36728-52-6; N-benzylidenebenzylamine, 780-25-6; N-benzyl-idene-tert-butylamine, 6852-58-0; N-benzylidenebenzhydrylamine, 622-29-7; nitrosonium tetrafluoroborate, 14635-75-7; 2,4,6-trimethylpyridine, 108-75-8; 2,4,6triphenylpyridine, $580-35-8 ; \quad N$-benzylidenebenzyl-amine- $\alpha-d_{2}$, 38662-32-7.
Acknowledgment. - We gratefully acknowledge the support of the National Science. Foundation (Grant No. GP-27587) and of the Research Corporation for this work. We wish to thank Mr. J. Gregory Kalmbacher for preliminary studies with pyridines.

A Comparison of the Synthetic Utility of n-Butyllithium and Lithium Diisopropylamide in the Metalations of \mathbf{N}, \mathbf{N}-Dialkyltoluamides ${ }^{1 a}$

Robert E. Ludt, ${ }^{\text {b }}$ Jonathan S. Griffiths, ${ }^{2 \mathrm{a}}$ Kim N. McGrath, ${ }^{2 \mathrm{~b}}$ and C. R. Hauser ${ }^{20}$
Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706, and Department of Chemistry, Virginia Military Institute, Lexington, Virginia 24450

Received June 19, 1972

Abstract

N, N-Diisopropyl-o-toluamide (1) underwent side-chain metalation using either n-butyllithium or lithium diisopropylamide as the lithium reagent. Evidence for the presence of lithiated N, N-diisopropyltoluamide was obtained by quenching studies and by using condensation reactions with benzophenone and n-butyl bromide. The analogous meta and para N, N-diisopropyltoluamides underwent predominantly a carbonyl addition reaction with n-butyllithium, giving the cleavage products on hydrolysis. In contrast, lithium diisopropylamide metalated both these toluamides at the respective side chain methyl in good to excellent yields. The corresponding N, N-diethyl -0 -, m-, and p-toluamides were also metalated at the respective side chain positions using lithium diisopropylamide in fair to good yields.

Metalations and subsequent condensations at the methyl group of N, N-dimethyl- p-toluenesulfonamide by means of sodium amide in liquid ammonia ${ }^{3}$ and at the ortho position of N, N-dimethylbenzenesulfonamide with n-butyllithium ${ }^{4}$ have been observed. Unlike the sulfonamides, which are stable to nucleophilic addition and cleavage by n-butyllithium, N, N-dialkylbenzenecarboxamides undergo addition reactions with Grignard ${ }^{5}$ and lithium reagents, ${ }^{6}$ leading to the Eormation of ketones. For example, valerophenone was obtained in 70% yield when N, N-dimethylbenzamide was treated with n-butyllithium in tetrahydrofuran (THF)-hexane. ${ }^{7}$ However, ortho and side-chain metalations have been observed when N -substituted benzamides ${ }^{7}$ and o-toluamides ${ }^{8}$ were treated with 2 equiv of n-butyllithium. Apparently, the initial N -metalation of the amino hydrogen deactivates the carbonyl group to attack by the base.

It was of initial interest during this investigation to determine if carbonyl addition of the lithium reagent to the N, N-dialkyltoluamides could be eliminated or significantly reduced by increasing the steric requirements of the N, N-dialkyl substituents; that is, could the carbonyl addition reaction be reduced or eliminated by steric factors rather than by electronic deactivation as shown by the dimetalation of N -substituted amides ${ }^{7,8}$ described above. Secondly, the synthetic value of metalating N, N-dialkyltoluamides by different lithium reagents was investigated.

Results

The findings of the present study show that ortho toluamide 1 ($\mathrm{R}=$ isopropyl) will undergo preferential side-chain metalation with n-butyllithium in THF at 0°, whereas para toluamide 3 ($\mathrm{R}=$ isopropyl), under the

[^39]same metalating conditions, apparently undergoes more carbonyl addition with n-butyllithium than metalation.

1, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{1}=\mathrm{CH}_{3}$
4, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{COH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$
7, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
$7^{\prime}, \mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{1}=\mathrm{CH}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}$
10, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathrm{R}_{1}=\mathrm{CH}_{3}$
13, $R=\mathrm{C}_{2} \mathrm{H}_{5} ; \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{COH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$
16, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} ; \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
$16^{\prime}, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} ; \mathrm{R}_{1}=\mathrm{CH}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}$

2, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{1}=\mathrm{CH}_{3}$
5, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{COH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$
8, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
11, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathrm{R}_{1}=\mathrm{CH}_{3}$
14, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right) \mathrm{COH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$
17, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$

3, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{1}=\mathrm{CH}_{3}$
6, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{COH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$
9, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
12, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathrm{R}_{1}=\mathrm{CH}_{3}$
15, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{COH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$
18, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
Evidence of this difference in the site of attack by n-butyllithium in toluamides 1 and 3 was obtained initially by glpc analysis of the respective reaction mixtures, obtained by adding n-butyllithium dropwise to a THF solution of the respective toluamide at 0°. The glpc data of the quenched toluamides (cf. Table I,

Table I
Composition of the Reaction Mixtures of the Metalated N, N-Dialkyltoluamides When Quenched with Water

Expt	Toluamide	Metalating conditions	Carboxamide. ${ }^{6} \%$	Ketone, ${ }^{\text {c }}$ \%	Other, \%
1	1	$\begin{aligned} & n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}-\text { Hexane } ; \\ & \text { THF } 0^{\circ} \end{aligned}$	92-94	0-2	4
2	2	$\begin{aligned} & n \text { - } \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}-\mathrm{Hexane} ; \\ & \mathrm{THF} 0^{\circ} \end{aligned}$	42	45	13
3	3	$\begin{aligned} & n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}-\mathrm{Hexane} ; \\ & \text { THF } 0^{\circ} \end{aligned}$	25-40	75-50	0-10
4	3	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$ $\text { THF } 0^{\circ}$	98	1	
5	10	$\begin{aligned} & n \text { - } \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}-\text { Hexane; } \\ & \text { THF } 0^{\circ} \end{aligned}$	68-70	20-23	8-10
6	11	$\begin{aligned} & n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}-\mathrm{Hexane} ; \\ & \text { THF } 0^{\circ} \end{aligned}$	20	70	10
7	12	$n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li} ;$ THF 0°	0-10	80-90	0-10

${ }^{a}$ Glpc analysis via ratio of peak areas found by integration. ${ }^{b}$ While this term includes both unchanged carboxamide as well as the hydrolyzed side-chain metalated product, a comparison of these data to the yield data for the benzophenone and butylation reactions (Tables II and III) gives a good indication of the extent to which side-chain lithiation is occurring in the respective tcluamides. ${ }^{c}$ This term gives good indication of the extent of carbonyl addition which is occurring in the respective toluamides by the n-butyllithium. ${ }^{\circ}$ No attempt was made to isolate or identify the "other" components of the glpc analysis, though in most cases the "other" was a single high-boiling component.
expt 1 and 3) clearly show that no o-tolyl butyl ketone, the expected cleavage product, was present when the intermediate lithiated toluamide of 1 was quenched. Conversely, the ketone resulting from the attack of the lithium butyl at the carbonyl of toluamide 3 was the major product recovered when lithiated $\mathbf{3}$ was quenched.

Using the identical metalating conditions, N, N -diethyl-o-toluamide (10) showed a metalation-carbonyl addition reactivity ratio with n-butyllithium which was intermediate between that of toluamides 1 and 3 (cf. Table I, expt 5), while the corresponding N, N -diethyl- p-toluamide (12) underwent an exclusive carbonyl addition reaction, as indicated by the absence of toluamide 12 in the glpc of the quenched reaction mixture.

Supporting evidence for this difference in the site of attack by n-butyllithium in toluamides $1,3,10$, and 12 at 0° was afforded from the varying yields obtained when the respective lithiated toluamides were condensed with benzophenone. Whereas toluamide 1
afforded an $80-85 \%$ yield of adduct 4 and toluamide 10 gave a $15-25 \%$ yield of adduct 13 , no benzophenone adduct was isolated using the identical experimental conditions with either lithiated toluamide 3 or 12.

These results indicate that sufficient steric requirements in the N, N-dialkyl substituents, as in toluamide 1 and to a smaller degree in toluamide 10, will inhibit cleavage of the amide linkage by the n-butyllithium and allow metalation, at least in the side chain, to occur. However, in most cases n-butyllithium cannot be used as a metalating reagent in preparing side-chain or ortho lithio- N, N-dialkyltoluamides as synthetic intermediates because of the undesirable carbonyl addition by the base with subsequent cleavage of the amide bond on hydrolysis (see Scheme I).

Since lithium diisopropylamide, $\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$, has been shown to be an effective metalating reagent of o-, p-, and m-toluic acids, ${ }^{9}$ metalations of the corresponding N, N-dialkyltoluamides were attempted using this lithium reagent. With $\operatorname{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$ as the metalating reagent, toluamide 1 was lithiated, then condensed with benzophenone to give carbinolamide 4 in yields varying from 80 to 95%. The intermediate lithioamide of 1 was also alkylated with n-butyl bromide (see Table II), yielding both mono- and di-side

Table II

The Carbonyl Addition and Alkylation Reactions of the Lithiated N, N-Disopropyltoluamides. Comparison of the Yields ${ }^{a}$ in Alkylation Reaction Using the Stepwise ${ }^{b}$ and Direct ${ }^{c}$ Method

Expt	Toluamide	Lithiating reagent	Electrophile	Product	Yield, \%
1	1	$n-\mathrm{C} \mathrm{H}_{9} \mathrm{Li}, \mathrm{THF} 0^{\circ}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}=\mathrm{O}$	4	75-85
2	1	$n-\mathrm{C}_{4} \mathrm{H}_{0} \mathrm{Li}, \mathrm{THF} \mathrm{15-20}^{\circ}$	$\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{C}=\mathrm{O}$	4	45-50
3	1	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{8}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{C}=\mathrm{O}$	4	80-80
$4^{\text {b }}$	1	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{8}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$n-\mathrm{C} 4 \mathrm{H}_{9} \mathrm{Br}$	7	70
				$7{ }^{\prime}$	14
$4^{\prime \prime}$	1	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{8}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$n-\mathrm{C} \mathrm{CH}_{8} \mathrm{Br}$	7	72
				$7 \times$	11
5	2	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{8}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{C}=\mathrm{O}$	6	3-10
8^{6}	2	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{8}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$n-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}$	8	66
$8^{\prime \prime}$	2	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$, THF 0°	$n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$	8	77
7	9	n - $\mathrm{C}_{6} \mathrm{H} 9 \mathrm{Li}, \mathrm{THF} 0^{\circ}$	$\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{2} \mathrm{C}=\mathrm{O}$	6	0-5
8	s	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{8}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}=0$	6	80-100
$9^{\text {b }}$,	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CHz}_{8}\right)_{2} \mathrm{l}_{2}, \mathrm{THF} 0^{\circ}\right.$	$n-\mathrm{C} 4 \mathrm{H}_{8} \mathrm{Br}$	9	93
$9^{\prime \prime}$	9	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{8}\right)_{2} \mathrm{I}_{2}, \mathrm{THF} 0^{\circ}\right.$	$n-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{Br}$	9	87-92

${ }^{a}$ By glpc analysis by integration of peak areas. ${ }^{b}$ Formation of lithioamide followed by treatment with 1-bromobutane. ${ }^{c}$ Addition of base to a mixture of toluamide and 1-bromobutane.

[^40]chain alkylated products, 7 and 7^{\prime}. Using the same metalating conditions p-toluamide 3 was metalated at the p-methyl group as evidenced by benzophenone condensation of the intermediate lithiated amide to give carbinolamide $6(85-95 \%)$, and by butylation to give substituted toluamide 9 (see Table II).

Carbinolamines 4 and 6 were readily isolated from the respective reaction mixtures (see Experimental Section). However, when m-toluamide 2 ($\mathrm{R}=$ isopropyl) was metalated using $\operatorname{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$, then condensed with benzophenone under the exact conditions which gave carbinolamides 4 and 6 in $>85 \%$ yield, only a small amount of solid product, identified as carbinolamide 5, was isolated. This seemed to indicate that cither metalation of 2 was not occurring, or that the resulting lithioamide did not condense as readily with benzophenone as did the o - and $p-N, N$ diisopropyltoluamides. Presumably, the latter explanation is more correct than the former, since butylation of the intermediate meta-lithiated toluamide of 2 gave $60-70 \%$ of alkylated amide 8 .

As the metalations of N, N-diisopropyltoluamides 1 , 2, and 3 proceeded satisfactorily using $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{NLi}$ as the metalating reagent, metalations of the analogous N, N-dicthyltoluamides 10,11 , and 12 were attempted using the same lithium reagent. Under these conditions, 10 was successfully metalated at the 2 -methyl position, as shown by the $50-60 \%$ yield of benzophenone adduct 13 and the $70-75 \%$ yield of monoand di-side chain butylated amides 16 and 16^{\prime}. Similarly, N, N-dicthyltoluamides 11 and 12 were successfully metalated at the respective side-chain methyl groups, with the resulting lithiated intermediates being condensed with benzophenone and/or alkylated with n-butyl bromide. The results are summarized in Table III.

Table III
The Carbonyl Addition and Alkylition Reactions of the Lithiated N, N-Diethyltoluamides. Comparison of the
Yields ${ }^{a}$ in Alkylation Reactions Using the Stepwise ${ }^{b}$ and Direct ${ }^{c}$ Methods

Expt	Toluamide	Lithisting reagent	Electrophile	Product	Yield \%
1	10	${ }^{-}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}, \mathrm{THF} 0^{\circ}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}=0$	13	15-25
2	10	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$, THF 0°	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}=\mathrm{O}$	13	50-60
$3^{\text {b }}$	10	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$n-\mathrm{C} \mathrm{c}_{8} \mathrm{H}_{8} \mathrm{Br}$	16	42
				16^{\prime}	25
$3^{\prime \prime}$	10	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$, THF 0°	$n-\mathrm{C}_{4} \mathrm{H} 9 \mathrm{Br}$	16	75
				16^{\prime}	12
4	11	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}=0$	14	42
$5^{\text {b }}$	11	$\mathrm{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$n-\mathrm{C} \mathrm{H}_{8} \mathrm{Br}^{\text {Br }}$	17	75
$5{ }^{\prime \prime}$	11	$\operatorname{LiN}\left[\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$n-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}$	17	75
6	12	$\mathrm{LiN}\left[\mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{C}=0$	15	28-40
$7^{\text {b }}$	12	$\mathrm{LiN}\left[\mathrm{CN}(\mathrm{CN})_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$n-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Br}$	18	80
$7^{\prime \prime}$	12	$\mathrm{LiN}\left[\mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}, \mathrm{THF} 0^{\circ}$	$n-\mathrm{C} 4 \mathrm{H}_{9} \mathrm{Br}$	18	71

${ }^{a}$ By glpc analysis via integration of peak areas. ${ }^{b}$ Formation of lithioamide followed by treatment with 1-bromobutane. c Addition of base to a mixture of toluamide and 1-bromobutane.

Discussion

Both the quenching experiments (Table I) and the yields of the side-chain benzophenone adducts (Tables II and III) indicate that a greater amount of side-chain metalation is occurring in the ortho N, N-dialkyltoluamides than in either of the corresponding meta or para isomers when n-butyllithium is used as the lithium reagent. Furthermore, the yield of the benzophenone adduct of the o-toluamide was much higher when $\mathrm{R}=$
isopropyl (1) than when $R=$ ethyl (10). Thus, similar to some sterically hindered ketones which do not undergo carbonyl addition reactions with n-butyllithium, ${ }^{10}$ it appears that a sufficiently large N, N-dialkyl group can, at least in the ortho isomers, reduce the amount of carbonyl addition by the lithium reagent and increase the amount of side-chain metalation which occurs. Closer inspection of the data (Table II, expt 1 and 2) shows that in addition to the steric factor, the temperature at which the metalation is run also determines the reaction which occurs between the lithium butyl and the toluamide. For example, at 0° the yield of the benzophenone adduct of toluamide 1 using n-butyllithium as the metalating reagent was $75-85 \%$, while at $>20^{\circ}$ the yield of the addition product under otherwise identical conditions dropped to $45-50 \%$.

Confirmation that the steric factors do play the major role in preventing carbonyl addition is supported by the ir and nmr spectra of these toluamides and their respective benzophenone addition products. Siddall and Garner have shown that increased ortho substitution in the benzene ring attached to the carbonyl causes slower rotation about the amide bond (higher coalescence temperature). ${ }^{11}$ That is, because of this steric inhibition of resonance, substitution decreases the effect of cross conjugation of the benzene ring with the carbonyl group, and thereby increases the doublebond character of the amide bond; note the $\nu \mathrm{O}=\mathrm{CN}<$ of the ortho toluamides in Table IV, especially that of benzophenone adduct $4\left(\nu \mathrm{O}=\mathrm{CN}<1591 \mathrm{~cm}^{-1}\right.$).

In addition to these low ir absorption frequencies for the amide bond, further confirmation of the greater steric crowding in the ortho toluamides can be seen by examination of the nmr spectra of the respective toluamides. For example, the nmr study of Siddall and Garner showed two methine sets of absorptions and three methyl sets of absorptions for the N, N-diisopropyl groups in the nmr spectrum of 1 at $40^{\circ},{ }^{11}$ while in the present study the nmr spectrum of 4 indicates that all four methyls of the N, N-diisopropyl groups are in different chemical environments (see Experimental Section). Apparently, there is sufficient steric interaction between the N, N-diisopropyl groups and the ortho side chain substituent in 4 , owing to the reduced rotation about the carbon-nitrogen-amide bond, to hinder rotation within both N-isopropyl groups.

Evidence that this unusual steric interaction is a combination of the two large N, N-dialkyl groups, the ortho side-chain substituent, and the amide linkage can be seen from the following data: (1) the $n m r$ spectra of the side-chain benzophenone adduct of N-isopropyl-o-toluamide shows a single doublet (6 H), $J=6.2 \mathrm{~Hz}$, centered at $\delta 1.1$, assigned to the two methyls of the isopropyl group; (2) the nmr spectra of the corresponding N, N-dialkyl meta and para side-chain benzophenone adducts each show a single doublet, $J=6 \mathrm{~Hz}$, for all the methyls of the N, N-diisopropyl groups; (3) the nmr spectrum of the side chain benzophenone adduct of N, N-diisopropyl-o-toluidine at 40° shows a single doublet for all the methyls of the N, N-diisopropyl groups.

[^41]Table IV
Carboxamide Infrared Spectral Data of the N, N-Dialkyltoluamides

${ }^{a}$ Data recorded on the Beckman IR-20 spectrophotometer using ca. 0.1 M chloroform solutions.

Though to a lesser extent, a similar nonequivalence in the N, N-dialkyl groups can be seen in the nmr spectra of toluamide 10^{11} and its side-chain benzophenone adduct 13 (see Experimental Section).

Summary

While n-butyllithium cannot be used as a general reagent to successfully metalate N, N-dialkyltoluamides, the results of this study do show that the use of lithium diisopropylamide as the metalating reagent does provide a good synthetic alternative. Though the intermediate lithiotoluamides prepared using the latter metalating reagent have been condensed only with benzophenone and alkylated only with butyl bromide, it is assumed that other electrophiles and alkylating reagents should undergo the same type of reactions with the lithiated amines.

It is also important to point out that the alkylation reactions of the respective lithiated toluamides were carried out using both a stepwise and a direct metalation procedure (see Experimental Section). The results are summarized in Tables II and III.

Both the stepwise and direct method have advantages. Somewhat higher yields of products generally resulted from the stepwise method; however, greater selective control of the product ratios was possible with the direct method by adding more alkylating reagent and base as needed.

Experimental Section

All melting points were taken in open capillary tubes on a Thomas-Hoover melting point apparatus and are uncorrected. All boiling points are uncorrected. Infrared spectra were obtained on Perkin-Elmer Model 137 and 237 spectrophotometers and a Beckman IR-20A spectrophotometer, using potassium bromide pellets (KBr) or chloroform solutions for solids, and sodium chloride plates (neat) or chloroform solutions for liquids. Nmr spectra were obtained on a Varian T-60 spectrometer using deuteriochloroform as solvent. All chemical shifts are reported in parts per million (δ) downfield from an internal tetramethylsilane (TMS) standard. Gas-liquid partition chromatography (glpc) was carried out with an F \& M Model 700 chromatograph, using helium as the carrier gas and a thermal conductivity detector, with $0.25 \mathrm{in} . \times 6 \mathrm{ft}, 3 \% \mathrm{SE}-30$ on $60 / 80$ Gas Chrom Q columns. The measurement of peak areas was done with a Disc integrator attached to the recorder. Measured molar response factors, determined from known mixtures of authentic
materials, agreed within $\pm 5 \%$ of the integrated peak areas. Analyses were performed by M-H-W Laboratories, Garden City, Mich, Tetrahydrofuran (THF) was freshly distilled from lithium aluminum hydride immediately before use. The n-butyllithium in hexane was obtained from both Foote Mineral Co., Exton, Pa., and Alfa Inorganics, Inc., Beverly, Mass., and used as supplied. The toluyl chlorides and N, N-diethyl-mtoluamide were obtained from Aldrich Chemical Co., Cedar Knolls, N. J.

The metalation reactions were done either in a $300-\mathrm{ml}$ roundbottomed flask, equipped with a side arm for nitrogen inlet, or in a $500-\mathrm{ml}$ round-bottomed flask fit with a Claisen adapter; a dropping funnel was placed directly above the flask, and a condenser was placed in the other side of the Claisen adapter. In both instances, the apparatus was predried and the reactions were performed under a positive nitrogen pressure.
Preparation of the N, N-Diisopropyltoluamides (1-3).-One mole of the appropriate toluyl chloride in 100 ml of THF was added at room temperature to a rapidly stirred solution of 5-6 mol of diisopropylamine in 800 ml of THF. After the suspension had been stirred for 20 min , the solid amine hydrochloride was collected by suction filtration. The THF and excess amine were removed from the filtrate under reduced pressure and the resulting crude N, N-diisopropyltoluamide was recrystallized twice from benzene-hexane and dried before use. The following toluamides were prepared using this procedure.
N, N-Diisopropyl-o-toluamide (1) had $\mathrm{mp} 100-102^{\circ} ; \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 7.20-7.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 3.97-3.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH})$, $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.57,1.05\left(2 \mathrm{~d}, 12 \mathrm{H}, \mathrm{CHCH}_{3}\right)$ (see ref 11).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 76.66 ; \mathrm{H}, 9.65 ; \mathrm{N}, 6.39$. Found: C, 76.58; H, 9.71; N, 6.26.
N, N-Diisopropyl-m-toluamide (2) had mp $50-61^{\circ}$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.25-7.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 3.67(\mathrm{sp}, 2 \mathrm{H}, \mathrm{NCH}), 2.35$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.32\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 76.66 ; \mathrm{H}, 9.65 ; \mathrm{N}, 6.39$. Found: C, 76.71 ; H, 9.68 ; N, 6.29 .
N, N-Diisopropyl- p-toluamide (3) had mp $85-86^{\circ}$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.20-7.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 3.68(\mathrm{sp}, 2 \mathrm{H}, \mathrm{NCH}), 2.30$ (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.33\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$: C. $76.66 ; \mathrm{H}, 9.65 ; \mathrm{N}, 6.39$. Found: C, 76.50; H, $9.61 ;$ N, 6.31 .
Preparation of the N, N-Diethyltoluamides (10-12).-One mole of the appropriate toluyl chloride in 100 ml of THF was added to a rapidly stirred solution (0°) of $5-6 \mathrm{~mol}$ of diethylamine in 800 ml of THF. After the suspension had been stirred for 20 min , the solid amine hydrochloride was collected by suction filtration. The THF and excess amine were removed from the filtrate under reduced pressure and the resulting crude N, N diethyltoluamide was purified by distillation.

Using the above procedure, N, N-diethyl- o-toluamide (10), bp $118-120^{\circ}(1.5 \mathrm{~mm})$ [lit. bp $160^{\circ}(24 \mathrm{~mm})$], ${ }^{12} N, N$-diethyl-mtoluamide (11), bp $94^{\circ}(0.2 \mathrm{~mm})$ [lit. bp $160^{\circ}(19 \mathrm{~mm})$], ${ }^{12}$ and

[^42]N, N-diethyl- p-toluamide (12), bp $100^{\circ}(0.2 \mathrm{~mm}), \mathrm{mp} 57-58^{\circ}$ [lit. bp $\left.163^{\circ}(17 \mathrm{~mm})\right]^{12}$ were prepared. (Spectroscopic data of these ethyl toluamides corresponds to that found in ref 11.)

Metalation of N, N-Dialkyltoluamides Using n-Butyllithium in THF.-To a solution of $2.2 \mathrm{~g}(0.01 \mathrm{~mol})$ of the N, N-diisopropyltoluamide in 1.50 ml of THF, precooled to 0° in an ice bath for $45-60 \mathrm{~min}$, was added $8 \mathrm{ml}(0.013 \mathrm{~mol})$ of approximately $2.25 M n$-butyllithium in hexane. The resulting solution was stirred for $30-60 \mathrm{~min}$, then treated with either benzophenone or n-butyl bromide or quenched with water.

Preparation of Lithium Diisopropylamide.-To a THF solution of $2.6 \mathrm{~g}(0.026 \mathrm{~mol})$ of diisopropylamine, precooled to 0°, was added $13 \mathrm{ml}(0.026 \mathrm{~mol})$ of approximately $2.0 N n$-butyllithium. The resulting clear yellow solution was stirred for 30 min ; it was then assumed to contain $\sim 0.26 \mathrm{~mol}$ of lithium diisopropylamide.

Metalations of N, N-Dialkyltoluamides Using Lithium Diisopropylamide. A.-A THF solution of $4.38 \mathrm{~g}(0.02 \mathrm{~mol})$ of N, N diisopropyltoluamide was added dropwise to a stirred solution of 0.026 mol of lithium diisopropylamide in THF at 0°. The resulting mixture was stirred for $30-60 \mathrm{~min}$ and then treated with either benzophenone or n-butyl bromide or quenched with water.

Using this procedure the following characteristic colors were observed for the respective lithiated toluamides: ortho, deep red solution; para, deep green solution; meta, brown solution.
B.-A THF solution of $3.82 \mathrm{~g}(0.02 \mathrm{~mol})$ of N, N-diethyltoluamide was added dropwise to a stirred solution of 0.026 mol of lithium diisopropylamide in THF at 0°. The resulting mixture was stirred for $1:-90 \mathrm{~min}$ and then treated with either benzophenone or n-butyl bromide or quenched with water.
Quenching of Intermediate Lithioamides with Water or Dilute HCl . - The magnetically stirred solutions of the respective lithiotoluamides were quenched by pouring them directly onto either ice-water or equal amounts (by weight) of ice and $3 N$ HCl . The layers were separated and the aqueous layer was extracted with several $50-\mathrm{ml}$ portions of ether. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated to an oil which solidified in several instances on cooling. The solids were recrystallized (benzene-hexane) and shown by mixture melting point to be recovered starting material. The oils were analyzed by glpc (Table I) and distilled under reduced pressure to give recovered toluamides and the side-chain methyl valerophenones. Using n-butyllithium as the lithiating reagent, the following methylvalerophenones were isolated: 2'-methylvalerophenone, bp $84^{\circ}(0.6 \mathrm{~mm})$ [lit. bp $97-98^{\circ}(2.0 \mathrm{~mm})$]; ${ }^{13} 3^{\prime}$-methylvalerophenone, bp $85^{\circ}(0.25 \mathrm{~mm})$, 2,4-dinitrophenylhydrazone $\mathrm{mp} 139-140^{\circ}$ (lit. mp 141-142 ${ }^{\circ}$); $;^{14}$ and 4^{\prime}-methylvalerophenone, bp 144° (15 mm), semicarbazone $\mathrm{mp} 198-199^{\circ}$ (lit. mp 199$201^{\circ}$). ${ }^{15}$ The yields are summarized in Table I.

Condensation of the N, N-Diisopropyl Side Chain Lithiotoluamides with Benzophenone.-A THF solution of 4.0 g 0.022 mol) of benzophenone was added dropwise to the respective lithiated toluamide at 0°. The resulting clear yellow solution was stirred for 30 min , then inversely neutralized onto ice. Stirring was continued until the THF had evaporated, leaving a white precipitate which was filtered, weighed, and then recrystallized. The filtrate was extracted with several $50-\mathrm{ml}$ portions of ether. The combined ether extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and then concentrated to an oil which was subjected to glpc analysis.
Preparation of Carbinol Amide 4.-Using the general procedure described above, ca. 8 g of white solid was obtained on evaporation of the THF. Recrystallization from benzene-hexane gave $6.0-6.4 \mathrm{~g}$ ($75-80 \%$ yield) of carbinol amide $4, \mathrm{mp} 159-161^{\circ}$. Further recrystallization from benzene-hexane gave an analytical sample: mp 161.5-162ㅇ ir $\left(\mathrm{CHCl}_{3}\right) 1595 \mathrm{~cm}^{-1}(-\mathrm{NC}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.2-7.8(\mathrm{~m}, 14 \mathrm{H}$, aromatic $), 6.5(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH})$, $3.2-4.0\left[\mathrm{~m}, 3.84, \mathrm{PhCH}_{2}\right.$ and $\left.2 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.5[\mathrm{~d}$ of $\mathrm{d}, J=6.0$ $\mathrm{Hz}, 6 \mathrm{H}, \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}$], and 1.1 [d of d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$. HC$\left.\left(\mathrm{CH}_{3}\right)_{2}\right]$ (see ref 11)

When this reaction was run at $15-20^{\circ}$, rather than at 0°, the yield of 4 dropped to $\sim 3.9 \mathrm{~g}(\sim 50 \%)$ crude product.
(13) P. L. Pickard and S. H. Jenkens, Jr., J. Amer. Chem. Soc., 75, 5899 (1953).
(14) E. A. Evans, Chem. Ind. (London), 1596 (1957).
(15) J. H. Simons, D. I. Randall, and S. Archer, J. Amer. Chem. Soc., 61, 1795 (1939).

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{2}$: $\mathrm{C}, 80.76 ; \mathrm{H}, 7.78 ; \mathrm{N}, 3.49$ Found: C, 80.68; H, 7.81; N, 3.38.

Preparation of Carbinol Amide 6.-Using the general procedure described above using n-butyllithium as the metalating agent, no solid product was obtained when the THF evaporated. In contrast, the reaction using $\operatorname{LiN}(i-\mathrm{Pr})_{2}$ as the metalating reagent afforded nearly 10 g of crude brown-white solid. One recrystallization from benzene-hexane gave $6.3-7.3 \mathrm{~g}(78-93 \%), \mathrm{mp} 196-$ 198°. Further recrystallization from benzene-hexane gave an analytical sample: mp 197-198 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1614 \mathrm{~cm}^{-1}$ $(-\mathrm{NC}=0)$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 6.8-7.5(\mathrm{~m}, 14 \mathrm{H}$, aromatic), 3.3$3.9\left[\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{HC}\left(\mathrm{CH}_{\mathrm{z}}\right)_{2}\right], 3.6\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 2.6(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 1.3\left[\mathrm{~d} ; \mathrm{J}=6 \mathrm{~Hz}, 12 \mathrm{H}, 2 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}\right.$]

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{2}$: C, $80.76 ; \mathrm{H}, 7.78 ; \mathrm{N}, 3.49$. Found: C, 80.83; H, 7.69; N, 3.48 .

Preparation of Carbinol Amide 5.-Using the general procedure described above uising only lithium diisopropylamide as the metalating agent, no solid product was obtained when THF evaporated. The resulting aqueous layer was extracted with several $50-\mathrm{ml}$ portions of chloroform. The combined organic extracts were concentrated to give a yellow oil. This oil was washed with several portions of petroleum ether (bp 30-60) at room temperature to remove excess benzophenone. Crystallization occurred after the oil was allowed to stand for several days. Two recrystallizations of the solid from benzene-hexane gave 2.0 g (12%) of white, crystalline m-(2-hydroxy-2,2-diphenyl-ethyl)- N, N-diisopropylbenzamide (5): $\mathrm{mp} \mathrm{160-161}^{\circ}$; ir (KBr) $1613 \mathrm{~cm}^{-1}(-\mathrm{NC}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.7-7.6(\mathrm{~m}, 14.3 \mathrm{H}$, aromatic), $3.78\left(\mathrm{~s}, \sim 2 \mathrm{H}, \mathrm{PhCH}_{2}-\right), 3.2-4.0[\mathrm{~m}, \sim 2 \mathrm{H}, 2 \mathrm{HC}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right], 2.70(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.25[\mathrm{~d}, J=6 \mathrm{~Hz}, 11.9 \mathrm{H}, 2$ $\mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}$.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{2}$: C, 80.76; $\mathrm{H}, 7.78 ; \mathrm{N}, 3.49$. Found: C, 81.07; H, 7.76; N, 3.42.

Alkylation of Lithioamide 1^{\prime} with 1-Bromobutane (Stepwise Method).-A solution containing $12 \mathrm{~g}(0.088 \mathrm{~mol})$ of l-bromobutane in 40 ml of THF was added during 30 min to a stirred solution (0°) containing 0.060 mol of lithioamide 1^{\prime}. After it had been stirred for 1 hr , the yellow solution was poured on a mixture of ice and $3 N \mathrm{HCl}$. The layers were separated, and the aqueous layer was extracted with several $50-\mathrm{ml}$ portions of chloroform. The combined extracts were concentrated to give 16.0 g of a light yellow oil. A glpc analysis of this oil indicated a ratio of toluamide 1 to two product peaks of 16:70:14.

Purification was effected by a two-step distillation. The oil was first refluxed in a $19-\mathrm{cm}$ column under reduced pressure $(0.2$ mm). The toluamide 1 solidified at the top of the column, and refluxing was continued until a glpc analysis of the material in the distillation flask indicated that no toluamide 1 remained. Distillation of the remaining oil with a spinning-band column gave $10.1 \mathrm{~g}(62 \%)$ of colorless N, N-diisopropyl-o-pentylbenzamide (7), bp $108^{\circ}(0.2 \mathrm{~mm})$, and $1.9 \mathrm{~g}(10 \%)$ of N, N-diiso-propyl-o-(1-butylpentyl)benzamide (7^{\prime}): mp 123-125 ${ }^{\circ}$ (0.2 $\mathrm{mm})$; $\mathrm{mp} 73^{\circ}$; ir (neat) $1629 \mathrm{~cm}^{-1}(>\mathrm{NC=}=\mathrm{O})$; nmr $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.1-7.4(\mathrm{~m}, 3.7 \mathrm{H}$, aromatic), 3.52 and $3.75[\mathrm{~m}, 2 \mathrm{H}$, centers of two septets of $2 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}$], $2.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{PhCH}_{2-}\right), 0.67-2.0$ [$\left.\mathrm{m}, \sim 9 \mathrm{H},\left(-\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right], 1.58\left[\mathrm{~d}, J=6 \mathrm{~Hz}, 12 \mathrm{H}, 2 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}\right.$].

Anal. (of 7). Calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}: \mathrm{C}, 78.49 ; \mathrm{H}, 10.61$; $\mathrm{N}, 5.09$. Found: C, 78.72; H, 10.71 ; N, 5.14.

7 had ir (KBr) $1621 \mathrm{~cm}^{-1}(>\mathrm{NC}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.0-$ $7.4(\mathrm{~m}, 3.9 \mathrm{H}$, aromatic), 3.5 and $3.75(\mathrm{~m}, 2 \mathrm{H}$, centers of two septets of $\left.2 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.75\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhHC}\left(\mathrm{CH}_{2}^{-}\right)_{2}\right], 0.3-1.9$ $\left[\mathrm{m}, 18 \mathrm{H}, 2\left(\mathrm{CH}_{2} \mathrm{H}_{3} \mathrm{CH}_{3}\right], 1.58\left[\mathrm{~d}, J=6 \mathrm{~Hz}, 12 \mathrm{H}, 2 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}\right.\right.$].

Anal. (of 7'). Calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{NO}: \mathrm{C}, 79.70 ; \mathrm{H}, 11.25$; $\mathrm{N}, 4.23$. Found: C, 79.57; H, 11.46; N, 4.16.

Alkylation of N, N-Diisopropyl-o-toluamide (1) by Metalation in the Presence of 1 -Bromobutane (Direct Method).-To a stirred solution containing $2.19 \mathrm{~g}(0.010 \mathrm{~mol})$ of N, N-diiso-propyl-o-toluamide (1) and $2.05 \mathrm{~g}(0.015 \mathrm{~mol})$ of 1-bromobutane in 50 ml of THF at 0° was added during 10 min 0.010 mol of lithium diisopropylamide in THF. As the base was added to the stirred solution a red color was produced, but was rapidly discharged. A glpc analysis of an acid-neutralized sample of the reaction mixture, taken 20 min after the start of the addition of base, indicated that the solution contained toluamide 1 , monoalkylation product 7 , and dialkylation product 7^{\prime} in a ratio of 17:72:11, respectively. Addition of an extra 0.005 mol of base to the reaction mixture changed this ratio (glpc) to $5: 75: 20$.

Alkylation of Lithioamide 2^{\prime} with 1-Bromobutane (Stepwise Method).-Following the stepwise procedure outlined above,
a light yellow oil was isolated on concentration of the organic extracts. Purification was effected by a two-step distillation (see above), giving a 64% yield of colorless N, N-diisopropyl-mpentylbenzamide (8): bp $128-130^{\circ}(0.2 \mathrm{~mm})$; ir (neat) 1634 $\mathrm{cm}^{-1}(>\mathrm{NC}=\mathrm{O})$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~m}, 3.8 \mathrm{H}$, aromatic), $3.7\left[\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.62\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{PhCH}_{2}-\right), 0.43-2.3$ $\left.\left[\mathrm{m}, 9 \mathrm{H},+\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right], 1.3\left[\mathrm{~d}, J=6 \mathrm{~Hz}, 12 \mathrm{H}, 2 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}\right]$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}: \mathrm{C}, 78.49 ; \mathrm{H} ; 10.61 ; \mathrm{N}, 5.09$. Found: C, $78.36 ; \mathrm{H}, 10.74$; N, 5.01 .

Alkylation of N, N-Diisopropyl-m-toluamide (2) by Metalation in the Presence of 1 -Bromobutane (Direct Method).-Following the direct procedure described above, the reaction mixture was stirred for 2 hr , when a glpc analysis of an acid-neutralized sample of the reaction mixture indicated that the solution contained toluamide 2 and alkylation product 8 in a ratio of $33: 66$. Treatment of the reaction mixture with an additional 0.0075 mol of base and 0.0075 mol of 1-bromobutane changed the ratio to 23 (2): 77 (8) after 2 hr .

Alkylation of Lithioamide 3^{\prime} with 1-Bromobutane (Stepwise Method).-Using the stepwise procedure described above gave a light yellow oil, glpc analysis of which showed that it contained toluamide 3 and another component in a ratio of 6:93. Purification of this crude product using two-step distillation gave an 84% yield of colorless N, N-diisopropyl- p-pentylbenzamide (9): bp 130-133 ${ }^{\circ}(0.2 \mathrm{~mm})$; ir (neat) $1629 \mathrm{~cm}^{-1}(>\mathrm{NC}=0)$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.2\left(\mathrm{~m}, 3.7 \mathrm{H}\right.$, aromatic), $3.72\left[\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $2.62\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{PhCH}_{2}-\right), 0.5-2.23\left[\mathrm{~m}, 9 \mathrm{H},-\left(-\mathrm{CH}_{2}-\mathrm{F}_{3} \mathrm{CH}_{3}\right], 1.3\right.$ [d, $J=6 \mathrm{~Hz}, 12 \mathrm{H}, 2 \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{2}$].
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}: \mathrm{C}, 78.49 ; \mathrm{H}, 10.61 ; \mathrm{N}, 5.09$. Found: C, 78.58; H, 10.85; N, 5.06.

Alkylation of Λ^{\top}, N-Diisopropyl- p-toluamide (3) by Metalation in the Presence of 1-Bromobutane (Direct Method).-Following the direct procedure described above, the reaction mixture was stirred for 2 hr , when a glpc analysis of an acid-neutralized sample of the reaction mixture indicated that the solution contained toluamide 3 and alkylation product 9 in a ratio of $13: 87$. Treatment of the reaction mixture with an additional 0.0075 mol of base and 0.0075 mol of 1 -bromobutane changed this ratio to 8 (3):92 (8).

Results with N, N-Diethyl- o-toluamide (10). Neutralization of the Lithio Intermediate with $\mathrm{H}_{2} \mathrm{O}-\mathrm{HCl}$.-Using the quenching procedure described above, a light orange oil was recovered when lithium diisopropylamide was used. A glpc analysis of this oil showed the ratio of toluamide 10 to a major product to be 3:95. The major product was tentatively identified by spectral evidence as 2-(o- N^{\prime}, N-diethylcarbamoylphenyl)- 2^{\prime}-methylacetophenone: ir (neat) 1635 (amide $\mathrm{C}=0$), $1705 \mathrm{~cm}^{-1}$ (ketone $\mathrm{C}=0$); nmr $\left(\mathrm{CICl}_{3}\right) \delta 8.00-6.22(\mathrm{~m}, 7.9 \mathrm{H}, \mathrm{ArH}), 4.34\left(\mathrm{~s}, 1.8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $3.42,3.25\left(12 \mathrm{q}, 4.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.45\left(\mathrm{~s}, 2.7 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, and 1.02 ($\mathrm{t}, 6.3 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}$).
The 2,4-dinitrophenylhydrazone derivative of this keto amide was prepared according to standard procedure ${ }^{16}$ and recrystallized twice from ethanol-ethyl acetate to give yellow solid: mp 174$176^{\circ} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) 8.3-6.8(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 4.03(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.52,2.87\left(2 \mathrm{q}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.02$, $0.93\left(2 \mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Anal. (of 2,4-DNP). Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{6}$: $\mathrm{C}, 63.79 ; \mathrm{H}$, 5.56; N, 14.31. Found: C, 63.60; H, 5.47; N, 14.30.

Using n-butyllithium as the lithiating reagent gave recovered 10 and 2^{\prime}-methylvalerophenone, as shown in Table I.

Condensation of the N, N-Diethyl Side Chain Lithiotoluamide with Benzophenone. Preparation of Carbinol Amide 13.-Using the general procedure described above for the preparation of 4, the reaction mixture of 10^{\prime}, after the addition of benzophenone, was stirred for 1 hr , then inversely neutralized onto ice. Using lithium diisopropylamide as the metalating reagent, $c a .4 .2 \mathrm{~g}$ of crude 13 was collected on filtration after the quenched reaction mixture had been heated with a benzene-hexane solution. One recrystallization from benzene-hexane (1:2) gave a 56% yield of 13, mp 135-136 ${ }^{\circ}$.

Using n-butyllithium as the metalating reagent, the yield of carbinol amide 13 was reduced to $c a .20 \%$: ir $\left(\mathrm{CHCl}_{3}\right) 1611$ $\mathrm{cm}^{-1}(-\mathrm{NC}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.2-7.7(\mathrm{~m}, 14 \mathrm{H}$, aromatic), $6.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.6\left(\mathrm{~s}, 1.9 \mathrm{H}, \mathrm{PhCH}_{2}-\right), 3.2$ and $3.57(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, \sim 2 \mathrm{H}$, centers of two overlapping " q " of the $2>\mathrm{NCH}_{2}$ -

[^43]$\left.\mathrm{CH}_{3}\right) ; 1.08$ and $1.2(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, centers of two overlapping " t " of the two, $>\mathrm{NCH}_{2} \mathrm{CH}_{3}$) (see ref 11).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2}$: $\mathrm{C}, 80.39 ; \mathrm{H}, 7.29 ; \mathrm{N}, 3.75$. Found: C, 80.25 ; H, $7.40 ; \mathrm{N}, 3.48$.

Alkylation of Lithioamide of 10 (Stepwise Methodi.-Following the stepwise procedure described above, a yellow oil was isolated on concentration of the dried organic extracts. A glpc analysis of this oil indicated that the ratio of recovered toluamide 10 to two product peaks was $33: 42: 25$.

Distillation of this oil at reduced pressure with a spinningband column gave $5.8 \mathrm{~g}(38 \%)$ of colorless N, N-diethyl-o-pentylbenzamide (16), bp $102-104^{\circ}(0.2 \mathrm{~mm})$, and $3.5 \mathrm{~g}(20 \%)$ of colorless N, N-diethyl-o-(1-butylpentyl)benzamide (16'): bp 123° $(0.2 \mathrm{~mm})$; ir (neat) $1631 \mathrm{~cm}^{-1}(>\mathrm{NC}=0)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ 6.9-7.2 (m, 4 H , aromatic), 3.08 and $3.53(\mathrm{q}, 2 \mathrm{H}$, centers of two overlapping ' q ". of the $2>\mathrm{NCH}_{2} \mathrm{CH}_{8}$), 2.6 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{PhCH}_{2}$-), $0.7-2.0\left(\mathrm{~m}, 14.8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right.$ and $\left.2>\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$.
Anal. (of 16). Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 77.68 ; \mathrm{H}, 10.19$; $\mathrm{N}, 5.66$. Found: C, $77.75 ; \mathrm{H}, 10.46$; N, 5.84 .

16 had ir (neat) $1637 \mathrm{~cm}^{-1}(>\mathrm{NC}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.0-$ $7.5\left(\mathrm{~m}, 4 \mathrm{H}\right.$, aromatic), $2.5-4.2\left[\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhHC}\left(\mathrm{CH}_{2}\right)_{2}\right.$ and 2 amido methylenes], $0.6-2.0\left[\mathrm{~m}, 24 \mathrm{H}\right.$, two $-\mathrm{CH}_{2}-{ }_{3} \mathrm{CH}_{3}$ and two $\mathrm{NCH}_{2} \mathrm{CH}_{3}$].

Anal. (of 16^{\prime}). Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}: \mathrm{C}, 79.15 ; \mathrm{H}, 11.14$; N,4.62. Found: C, 79.14; H, 11.14 ; N, 4.82 .

Alkylation of N, N-Diethyl-o-toluamide by Metalation in the Presence of 1-Bromobutane (Direct Method).-To a stirred solution containing $1.91 \mathrm{~g}(0.010 \mathrm{~mol})$ of N, N-diethyl-o-toluamide and $2.05 \mathrm{~g}(0.015 \mathrm{~mol})$ of 1-bromobutane in 50 ml of THF at 0° was added during 10 min 0.010 mol of lithium diisopropylamide in THF. A red color was produced as the base was added to the stirred solution, but was rapidly discharged. A glpc analysis of an acid-neutralized sample of the reaction mixture, taken 20 min after the start of the addition of base, indicated that the solution contained toluamide 10 , monoalkylation product 16 , and dialkylation product 16^{\prime} in a ratio of $13: 75: 12$, respectively. Treatment of the reaction mixture with ar additional 0.005 mol of base changed this ratio to $2: 76: 22$ after 10 min .

Results with N, N-Diethyl- m-toluamide (11). Neutralization of the Lithio Intermediate(s) with $\mathrm{H}_{2} \mathrm{O}-\mathrm{HCl}$.-Using the quenching procedure described above, an orange oil was recovered when lithium diisopropylamide was used. A glpc analysis of this oil showed the ratio of toluamide 11 to the product peak to be $3: 97$. Distillation of the oil gave $8.0 \mathrm{~g}\left(86 \%_{0}\right)$ of $2-(m-N, N$-diethylcar-bamoylphenyl)-3'-methylacetophenone: bp 190° (0.25 mm); ir (neat) 1621 (amide $\mathrm{C}=0$), 167 is cm^{-1} (ketone $\mathrm{C}=0$); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 8.12-7.03(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 4.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.35$ $\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) .1 .10\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, $77.64 ; \mathrm{H}, 7.49 ; \mathrm{N}, 4.53$. Found: C, 77.48; H, 7.51 ; N, 4.61 .

Using n-butyllithium as the lithiating reagent gave recovered 11 and 3^{\prime}-methylvalerophenone, as shown in Table I.
Condensation of the Lithio Intermediate with Benzophenone. Preparation of Carbinol Amide 14.-A solution of 14.56 g (0.080 mol) of benzophenone in 50 ml of THF was added during 15 min to a stirred solution $\left(0^{\circ}\right)$ of the lithio intermediate. Normal work-up of the reaction mixture gave a yellow oil which was dissolved in benzene. Crystallization occurred after the solution was allowed to stand for several days and $8.5 \mathrm{~g}(42 \%)$ of a white, crystalline solid was collected. Two recrystallizations from benzene gave an analytical sample of m-(2 -hydroxy- 2,2 -di-phenylethyl)- N, N-diethylbenzamide (14): mp 181-183 ${ }^{\circ}$; ir $(\mathrm{KBr}) 1618 \mathrm{~cm}^{-1}(>\mathrm{NC=}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.8-7.7(\mathrm{~m}, 13.9$ H , aromatic), $3.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 2.9-3.6 \overline{5}$ (broaci m, 3.9 H , overlapping amido methylenes), $2.62(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.07$ (t, 6.1 H, two $\mathrm{NCH}_{2} \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, 80.39; $\mathrm{H}, 7.29 ; \mathrm{N}, 3.75$. Found: C, 80.20; H, 7.29; N, 3.58.

Alkylation of the Lithio Intermediate with 1-Bromobutane (Stepwise Method).-Following the stepwise procedure described above, the reaction mixture was stirred for 9 hr at room temperature, quenched, and then worked up to give a yellow oil. A glpc analysis of this oil showed that it contained toluamide 11 and one other peak in a ratio of $25: 75$. Distillation of the oil gave $8.8 \mathrm{~g}(60 \%)$ of colorless N, N-diethyl- m-pentylbenzamide (17): bp 121-122 ${ }^{\circ}(0.2 \mathrm{~mm})$; ir (neat) $1634 \mathrm{~cm}^{-1}(>\mathrm{NC}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~m}, 3.8$, aromatic $), 3.38(\mathrm{q}, J=7.5 \mathrm{~Hz}$, 4 H , two $\left.\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.63\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2.1 \mathrm{H}, \mathrm{PhCH}_{2}-\right.$), $0.5-2.3\left[\mathrm{~m}, 15.2 \mathrm{H},+\mathrm{CH}_{2}-{ }_{3} \mathrm{CH}_{3}\right.$ and two $\left.>\mathrm{NCH}_{2} \mathrm{CH}_{3}\right]$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 77.68 ; \mathrm{H}, 10.19 ; \mathrm{N}, 5.66$ Found: C, 77.50; H, 10.38; N, 5.56.
Alkylation of N, N-Diethyl- m-toluamide (11) by Metalation in the Presence of 1 -Bromobutane (Direct Method).-A solution of 0.040 mol of lithium diisopropylamide was added during 10 \min to a stirred solution $\left(0^{\circ}\right)$ of $5.74 \mathrm{~g}(0.030 \mathrm{~mol})$ of N, N-diethyl-m-toluamide (11) and $5.48 \mathrm{~g}(0.040 \mathrm{~mol})$ of 1-bromobutane in 50 ml of THF. After it had been stirred for 3 hr , a glpc analysis of an acid-neutralized sample of the reaction mixture indicated the presence of toluamide 11 and alkylation product 17 in a ratio of 25:75.

Results with N, N-Diethyl- p-toluamide (12). Neutralization of the Lithio Intermediates with $\mathrm{H}_{2} \mathrm{O}-\mathrm{HCl}$.-Using the quenching procedure described above, a copious white precipitate formed immediately when lithium diisopropylamide was employed. The solvents were removed from the mixture at reduced pressure, and the white solid was collected by vacuum filtration. The filter cake was broken up and stirred with $\mathrm{H}_{2} \mathrm{O}$ for 5 min , and the white solid was again collected by vacuum filtration. The solid was extracted with two $200-\mathrm{ml}$ portions of benzene to remove the lower molecular weight components of the mixture. After removal of the solvent, the benzene fraction gave 2.7 g of white solid. Sublimation of the solid $\left(100^{\circ}, 0.2 \mathrm{~mm}\right)$ gave 1.4 g (30%) of white, crystalline $2-(p-N, N$-diethylcarbamoylphenyl)-4^{\prime}-methylacetophenone: $\mathrm{mp} 110-112^{\circ}$; ir (KBr) 1623 (amide $\mathrm{C}=0$), $1675 \mathrm{~cm}^{-1}$ (ketone $\mathrm{C}=0$); nmr $\left(\mathrm{CDCl}_{3}\right) ~ \delta 8.17-6.90$ $(\mathrm{m}, 8 \mathrm{H}, \mathrm{ArH}), 4.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.40\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.38$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.13\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, $77.64 ; \mathrm{H}, 7.49 ; \mathrm{N}, 4.53$. Found: C, 77.78; H, 7.59; N, 4.42 .

After sublimation of the monoself-condensation product, the remaining solid was recrystallized twice from acetone to give $0.9 \mathrm{~g}(21 \%)$ of white crystalline 2 -($p-N, N$-diethylcarbamyl-phenyl)-4'-(p-methylphenacyl)acetophenone: mp 166-169 ${ }^{\circ}$; ir (KBr) 1629 (amide $\mathrm{C}=0$), $1678 \mathrm{~cm}^{-1}$ (ketone $\mathrm{C}=0$); nmr (acetone $-d_{6}$) $\delta 8.22,7.12(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 4.47,4.40(2 \mathrm{~s}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}$), 3.38 ($\mathrm{q}, 4 \mathrm{H}, \mathrm{NCH}_{2}$), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right.$), 1.10 ($\mathrm{t}, 6$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); mass spectrum $\mathrm{M}^{+} m / e 427$.

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{3}$: C, 78.66; H, 6.84; N, 3.28; m / e 427.2147. Found: C, 78.78; H, 6.71; N, 2.94; m/e 427.2150.

Using n-butyllithium as the lithiating reagent gave recovered 12 and 4^{\prime}-methylvalerophenone as shown in Table I.

Condensation with Benzophenone. Preparation of Carbinol Amide 15.-Using the general procedure described above for the preparation of 4 , the reaction mixture of 12^{\prime}, after the addition of benzophenone, was stirred for 45 min , then inversely neutralized onto ice. Using lithium diisopropylamide as the metalating reagent, $2.3-3.0 \mathrm{~g}$ of crude 15 were collected on filtration after the quenched reaction mixture had been heated with a benzene-hexane solution. Recrystallization from benzenehexane (1:2) gave a $28-40 \%$ yield of $15, \mathrm{mp} \mathrm{153-154}$.

Using n-butyllithium as the metalating reagent, no carbinol amide 15 was isolated.

15 had ir $\left(\mathrm{CHCl}_{3}\right) 1610 \mathrm{~cm}^{-1}(-\mathrm{NC}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) 6.8-$ 7.5 (m, 14 H , aromatic), 3.69 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}-$), $3.0-3.55$ (broad $\mathrm{m}, 3.9 \mathrm{H}$, two $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.8(\mathrm{~s}, 0.9 \mathrm{H}, \mathrm{OH}), 1.1(\mathrm{t}, 6 \mathrm{H}, J=$ 7 Hz , two $\mathrm{NCH}_{2} \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, 80.39; H, 7.29; N, 3.75. Found: C, 80.52; H, 7.32; N, 3.52.
Alkylation of the Lithio Intermediates with 1-Bromobutane (Stepwise Method).-Following the stepwise procedure described above, the reaction mixture was stirred for 6 hr at room temperature, quenched, and then worked up to give a yellow oil. A glpc analysis of this oil indicated that the ratio of toluamide 12 to a product peak was 20:80.

Distillation of the oil at reduced pressure gave $9.8 \mathrm{~g}(66 \%)$ of colorless N, N-diethyl- p-pentylbenzamide (18): bp $121^{\circ}(0.2$ mm); ir (neat) $1629 \mathrm{~cm}^{-1}(>\mathrm{NC=}=0)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ \% $7.0-7.5$ $\left(\mathrm{m}, 3.8 \mathrm{H}\right.$, aromatic), $3.35\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.6$ ($\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2-}$), $0.62-2.1\left(\mathrm{~m}, 15.2 \mathrm{H},\left(-\mathrm{CH}_{2}\right){ }_{3} \mathrm{CH}_{3}\right.$ and $\mathrm{NCH}_{2} \mathrm{CH}_{3}$).
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 77.68 ; \mathrm{H}, 10.19 ; \mathrm{N}, 5.66$. Found: C, 77.89; H, 10.40; N, 4.89.

Alkylation of N, N-Diethyl- p-toluamide by Metalation in the Presence of 1-Bromobutane (Direct Method).-To a stirred solution containing $1.91 \mathrm{~g}(0.010 \mathrm{~mol})$ of N, N-diethyl $-p$-toluamide (12) and $2.05 \mathrm{~g}(0.015 \mathrm{~mol})$ of 1-bromobutane in 50 ml of THF at 0° was added during 10 min 0.010 mol of lithium diisopropylamide. After the solution had been stirred for 1 hr a glpc analysis of an acid-neutralized sample showed that the reaction mixture contained toluamide 12 and alkylation product 18 in a ratio of 29:71.

Registry No.-1, 6641-72-1; 2, 5448-36-2; 3, 6937-52-6; 4, 38630-83-0; 5, 38630-83-0; 6, 38630-85-2; 7, $38630-86-3$; 7', 38630-87-4; 8, 38630-88-5; 9, 38630-$89-6$; 10, 2728-04-3; 11, 134-62-3; 12, 2728-05-4; 13, $38631-12-8 ; \quad 14, \quad 38631-13-9 ; \quad 15, \quad 38631-14-0$; 16, 38631-15-1; 16', 38631-16-2; 17, 38631-17-3; 18, 38631-18-4; n-butyllithium, 109-72-8; lithium diisopropylamide, 4111-54-0; o-toluyl chloride, 933 -88-0; m-toluyl chloride, 1711-06-4; p-toluyl chloride, 874-60-2; diisopropylamine, 108-18-9; diethylamine, 109-89-7; benzophenone, 119-61-9; 1-bromobutane, 109-65-9; 2-(O - N, N-diethylcarbamaylphenyl)-2'-methylacetaphenone, 38631-19-5, 38631-20-8 (2,4-DNPH); 2 -(m - N, N-diethylcarbamoylphenyl)-3'-methylacetophenone, 38631-21-9; 2-($p-N, N$-diethylcarbamoylphenyl)-4'-methylacetophenone, 38631-22-0; 2-(p - N, N-diethyl-carbamoylphenyl)-4'-(p-methylphenacyl)acetophenone, 38631-23-1.

Directed Metalation Reactions. III. ${ }^{1}$ Contribution of Oxygen Coordination in the Lithiation of o-tert-Butylanisole

D. W. Slocum* and Burton P. Koonsvitsky
Neckers Laboratory, Southern Illinois University, Carbondale, Illinois 62901

Received August 29, 1972

Abstract

In order to ascertain the role played by coordination of the lithium ion with the oxygen atom in the metalation of anisole, 0 -tert-butylanisole was metalated with n-butyllithium and the position of metalation was determined. o-tert-Butylanisole was found to undergo metalation ortho to the methoxy group in 7.5% yield under similar conditions, which gave a 65% yield of ortho metalation of anisole itself. Addition of tetramethylethylenediamine (TMEDA), a reagent known to increase the metalating ability of n-butyllithium, brought about 30% metalation of o-tert-butylanisole. These results are attributed to steric interference by the tert-butyl group with the relevant coordinated intermediate; the fact that a small amount of ortho metalation was still observed is suggested to arise from the inductive effect of the methoxy group at that position.

There has been considerable speculation concerning the mechanism of the directed metalation reaction, this being one in which the alkali metal atom replaced a hydrogen at a position adjacent to the substituent on an aromatic ring. One of the primary questions raised has been the role that the heteroatom plays in such metalations. In 1946^{2} it was proposed that during these metalations a coordinated complex, 1 , was formed between the heteroatom and alkyllithium reagents. Finnegan and Altshuld ${ }^{3}$ viewed such coordination of the metal atom with the donor atom as increasing the electron-withdrawing inductive effect of the coordinating substituent. A transition state, 2, was

1

2
drawn which seemed to imply both coordination and concertedness. Thus both coordination and induction have been suggested to explain the role of the heteroatom in directed metalations.

Shirley and Hendrix ${ }^{4}$ investigated the metalation of anisole and tert-butyl phenyl ether with n-butyllithium and tert-butyllithium. The virtually exclusive ortho metalation observed in these reactions was interpreted to mean that such reactions had low steric requirements. These workers proposed that this low steric requirement of the metalation reaction was in disagreement with the concept of a cyclic transition state formed from a coordination complex of RLi with the heteroatom and have suggested a mechanism involving prior ionization of the metalating reagent with subsequent formation of a radical anion of the aromatic ring. This mechanism was felt to offer a better explanation of the apparent lack of steric effect observed in these systems.

Three alternative interpretations of these results of Shirley and Hendrix ${ }^{4}$ are also possible. First, n-butyllithium is known to exist as a tetramer or hexamer in

[^44]solution and tert-butyllithium has been found to be a tetramer in solution. ${ }^{5}$ If the metalation reaction takes place with these polymeric species, rather th.an with the monomer, then there is very little steric difference between n-butyllithium and tert-butyllithium. Second, the greater base strength of tert-butyllithium may balance its possibly greater steric demand. Third, models have shown that if the methyl group cf anisole is replaced by a tert-butyl group, there is very little additional steric interaction with the alkyllithium oligomer.

In order to ascertain the role coordination plays in the metalation reaction in the anisole system, it was decided to metalate a compound in which the possibility for coordination had been markedly reduced with respect to anisole. The compound chosen was o-tertbutylanisole (3). Space-filling models of this compound showed that the o-tert-butyl group restricts the possible conformers of 3 and should result in a steric hindrance to complexation.

Results and Discussion

Metalation of o-tert-butylanisole (3) with n-butyllithium in refluxing ether for 22 hr and condensation with Dry Ice resulted in a 91.5% recovery of starting material (eq 1). Under similar conditions, anisole is

converted to the ortho acid in 65% yield. ${ }^{6}$ This is a marked reduction in reactivity relative to anisole.

Similarly, ether 3 was metalated under the same conditions and treated with trimethylsilyl chloride. The product which was isolated by vpe in 7.5% vield, was identified as a $1,2,3$-trisubstituted benzene by absorptions at $5.20,5.40$, and 5.70μ in its ir spectrum. Differentiation between 4 and 5 could not be made on these grounds. On steric grounds, however, the structure 5 is most unlikely. ${ }^{7}$ A metalation was run for 10 hr with otherwise identical experimental conditions to check
(5) L. D. McKeever and R. Waack, Chem. Commun., 751 (1969).
(6) D. A. Shirley, J. R. Johnson, Jr., and J. P. Hendrix, J. Organometal. Chem., 11, 209 (1968).
(7) C. D. Broaddus, J. Org. Chem., 35, 10 (1970).

4

5
that metalation was not taking place over a shorter period, but no product was detected by vpc analysis.

The reaction of ether 3 with n-butyllithium and an equimolar amount of TMEDA gave a 30% yield of this same product after a l-hr metalation period. This is in agreement with the results of Slocum, Book, and Jennings, ${ }^{8}$ who found that TMEDA significantly increased the rate and yields of a number of directed metalation reactions.

The metalation of ether 3 with n-butyllithium and TMEDA followed by condensation with benzophenone gave a 25% yield of 6 (eq 2). The structure of 6 was

determined by a number of observations. Molecular models show that the anisotropic effect of two phenyl groups of an ortho-situated diphenylhydroxymethyl group should exert a distinct upfield shift on neighboring methyl resonances. ${ }^{9}$ In the case of 6 , an upfield shift of $\tau 0.73$ was noted for the methoxy group relative to the methoxy group of o-tert-butylanisole itself, supporting the validity of the structure assigned. An ir spectrum of this product showed absorptions at 5.10, 5.31, and 5.53μ, indicative of $1,2,3$-trisubstitution. This also reinforces our arguments for structure 4 being the product of the reaction of metalated ether 3 with trimethylsilyl chloride.

Concern may be expressed that the large reduction in rate of metalation of o-tert-butylanisole (3) with respect to anisole might be due to the electronic effect of the tert-butyl group. Although there are a number of examples of the reduction of the yields of a metalation reaction by the introduction of an alkyl substituent, ${ }^{10,11}$ there is no precedent for an effect as large as observed here. The extreme reduction in the rate of metalation of o-tert-butylanisole (3) as compared to anisole represents another example of a reaction where a lower conversion may be explained by steric hindrance to complexation. The fact that metalation of ether 3 still occurred ortho to the methoxy group can be explained as a result of the inductive effect of the methoxy group. The increase in the rate and yield of metalation with TMEDA is probably due to the reactivity of the TMEDA-complexed (monomeric) alkyllithium being much greater than that of polymeric n butyllithium. This reactive species may not need to form a complex with the heteroatom to effect metalation. The site of metalation is still ortho to the methoxy group, probably as a result of the fact that the in-
(8) D. W. Slocum, G. Book, and C. A. Jennings, Tetrahedron Lett., 3443 (1970).
(9) D. W. Slocum and C. A. Jennings, J. Chem. Soc. Chem. Commun., 54 (1972).
(10) D. A. Shirley and E. A. Lehto, J. Amer. Chem. Soc., 79, 3481 (1957).
(11) M. Hallet and R. Huls, Bull. Soc. Chim. Belg., 61, 33 (1952).
ductive effect of the oxygen atom is strongest at that position.

Experimental Section

General- n-Butyllithium (1.f M in hexane) was purchased from the Foote Mineral Co. $N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediamine (TMEDA), bp $120-122^{\circ}$ (Aldrich Chemical Co.), was distilled and the fraction of bp $120.5-121.0^{\circ}$ was collected. The redistilled TMEDA was stored over Linde 4A molecular sieves. The ether used as a reaction solvent was Matheson, Coleman and Bell "absolute" grade and was stored over Linde 4A molecular sieves. Elemental anaiyses were performed by Galbraith Laboratories, Knoxville, Tenn., and Alfred Bernhardt Laboratory, Mulheim, West Germany. Gas chromatography was performed on a $6-\mathrm{ft}, 6 \%$ Apiezon L on $60-80$ mesh Chromosorb W column at 155°, helium flow rate $60 \mathrm{cc} / \mathrm{min}$. All ir spectra were obtained on a Perkin-Elmer Model 137 Infracord using the 6.246μ band of polystyrene as a reference. The nmr spectra were obtained on a Varian A-56/60 spectrometer and a Varian HA-100 using TMS as an internal standard.

Metalation of o-tert-Butylanisole ${ }^{12}$ (3). Condensation with Dry Ice.-In a flame-dried flask were placed o-tert-butylanisole (3) $(3.28 \mathrm{~g}, 0.02 \mathrm{~mol})$ and ether $(100 \mathrm{ml})$. Under an argon atmosphere, $12 \mathrm{ml}(0.019 \mathrm{~mol})$ of 1.6 M n -butyllithium in hexane was slowly dripped in and the mixture was refluxed for 22 hr . The reaction mixture was cooled to -70° and poured into a Dry Ice-ether slush. The mixture was allowed to come to room temperature and the ether layer was separated and washed with base. The ether layer was dried over MgSO_{4} and stripped to give o-tert-butylanisole (3) (recovery $2.98 \mathrm{~g}, 91.5 \%$). The basic wash was acidified and extracted with ether and the ether layer was dried over MgSO_{4} and stripped. An nmr spectrum of the resultant oil showed faint signals around $\tau 3$, ample signals in the alkyl region, and a strong odor of valeric acid.

Metalation of o-tert-Butylanisole (3). Condensation with Trimethylsilyl Chloride to Produce 2-tert-Butyl-6-trimethylsilylanisole (4).-o-tert-Butylanisole (3) ($3.28 \mathrm{~g}, 0.02 \mathrm{~mol}$) was dissolved in 100 ml of dry ether. Under an argon atmosphere, 12 ml (0.019 mol) of $1.6 M n$-butyllithium in hexane was added and the mixture was refluxed for 22 hr . The mixture was cooled to 0° and trimethylsilyl chloride ($3.0 \mathrm{~g}, 0.0278 \mathrm{~mol}$) was added over a $15-\mathrm{min}$ period. The reaction was allowed to come to room temperature and was stirred for an additional 5 hr . After the reaction had been hydrolyzed with approximately 20 ml of water, the ether layer was separated and dried over MgSO_{4} and the solvent was stripped. The resulting liquid was analyzed by vpc. The first peak was identified by its retention time as recovered o-tert-butylanisole (3). The peak whose retention time was 8.0 min with respect to o-tert-butylanisole was isolated. Nmr and elemental analysis data of this compound were consistent with the structure 2-tert-butyl-6-trimethylsilylanisole (4) (yield 7.2% by vpc analysis): ir $8.00\left(-\mathrm{OCH}_{3}\right), 8.20\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 5.20,5.40$, 5.70μ (1,2,3-trisubstituted benzene); nmr (CCl_{4}) τ 2.66-3.25 (multiplet, 3.2 protons, $\mathrm{C}_{6} \mathrm{H}_{3}-$), 6.28 (singlet, 2.9 protons, $\left.-\mathrm{OCH}_{3}\right), 8.59$ [singlet, 9.1 protons, $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], 9.62 [singlet, 8.8 protons, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$].
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi}$: C, 70.91; H, 10.20. Found: C, 71.05 ; H, 10.30 .

Metalation of o-tert-Butylanisole (3) with n-Butyllithium and TMEDA. Condensation with Trimethylsilyl Chloride to Produce 2-tert-Butyl-6-trimethylsilylanisole (4).-o-tert-Butylanisole (3) ($3.28 \mathrm{~g}, 0.02 \mathrm{~mol}$) and TMEDA ($2.22 \mathrm{~g}, 0.0192 \mathrm{~mol}$) were dissolved in 50 ml of dry ether. Under an argon atmosphere, $12 \mathrm{ml}(0.0192 \mathrm{~mol})$ of 1.6 Mn -butyllithium in hexane was added. The mixture was refluxed for 1 hr and cooled to 0° and 3.0 g (0.0278 mol) of trimethylsilyl chloride was added slowly. After the mixture was stirred for an additional 4 hr at room temperature, the reaction was hydrolyzed with 20 ml of water, the layers were separated, and the ether layer was dried over MgSO_{4} and stripped. The first peak was identified by its retention time (3.1 min with respect to ether), which was identical with that of o-tert-butylanisole (3). The peak whose retention time was 8 \min with respect to o-lert-butylanisole was identified as 2 -tert-butyl-6-trimethylsilylanisole on the basis of this retention time and on the fact that its $n m r$ and ir spectra were identical with those of 4 prepared above (yield 23.8% by vpc analysis).

[^45]Metalation of o-tert-Butylanisole (3) with n-Butyllithium and TMEDA. Condensation with Benzophenone to Produce 2-tert-Butyl-6-diphenylhydroxymethylanisole (6).-o-tert-Butylanisole (3) ($3.28 \mathrm{~g}, 0.02 \mathrm{~mol}$) was dissolved in 50 ml of dry ether. TMEDA ($2.22 \mathrm{~g}, 0.0192 \mathrm{~mol}$) was added, and under an argon atmosphere $12 \mathrm{ml}(0.0192 \mathrm{~mol})$ of 1.6 Mn -butyllithium was slowly added. The mixture was stirred for 1 hr and treated with benzophenone ($3.5 \mathrm{~g}, 1.0192 \mathrm{~mol}$) in 20 ml of ether. The mixture was stirred for 4 hr and hydrolyzed with 20 ml of water. The ether layer was separated, washed with water, dried over MgSO_{4}, and stripped. The resulting oil was purified by heating in a steam bath overnight at 0.01 mm to remove unreacted o-tertbutylanisole (3) and benzophenone. An ir of the resulting oil indicated that some benzophenone still remained. The oil was subjected to steam dissillation until an ir spectrum of the residue indicated that all the benzophenone had been removed. The absence of any definitive absorptions in an nmr spectrum of this residue indicated that it was contaminated by some paramagnetic material, probably a result of the steam distillation. The oil was dissolved in ether and washed through a column of sand
and magnetic stirring bars. Upon removal of the solvent an oil resulted and the nmr and elemental analysis data given below were consistent with the structure 2-tert-butyl-6-diphenylhydroxymethylanisole (6) (yield $1.73 \mathrm{~g}, 25 \%$): ir $2.94(-\mathrm{OH})$, 5.10 , i. 31, i. 53 ($1,2,3$-trisubstituted benzene), $7.90\left(-\mathrm{OCH}_{3}\right)$, $8.20 \mu\left[-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.59-3.63$ (multiplet, 13.9 protons, $\left.\mathrm{HO}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CC}_{6} \mathrm{H}_{3}-\right), 6.96$ (singlet, 3.2 protons, $-\mathrm{OCH}_{3}$), 8.58 [singlet, 8.9 protons, $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2}: \mathrm{C}, 83.02 ; \mathrm{H}, 7.56$. Found: C, 82.96; H, 7.75.

Registry No.-3, 2944-48-1; 4, 38661-99-3; 6, 38662-00-9; trimethylsilyl chloride, 75-77-4.

Acknowledgment. - Financial support in the form of a Southern Illinois University Graduate Fellowship for B. P. K. is gratefully acknowledged. Portions of this research were supported by the Office of Research and Projects, Southern Illinois University.

Directed Metalation Reactions. IV. ${ }^{1}$ 2-Metalation of N-Substituted Ferrocenecarboxamides

D. W. Slocum* and Frank E. Stonemark
Neckers Laboratory: Southern Illinois University, Carbondale, Illinois 62901

Received August 29, 1972

Abstract

Demonstration of the 2-metalating ability of the N -substituted carboxamide group in ferrocene is presented. By means of the 2-lithiated intermediate a series of 1,2 -disubstituted ferrocenes, where one of the substituents is the carboxamide group, has been prepared. That this procedure will be useful for the preparation of 2-substituted ferrocenecarboxylic acids has been shown by the three-step synthesis, starting from ferrocene, of 2 methylferrocenecarboxylic acid.

Puterbaugh and Hauser in 1963^{2} demonstrated the interesting phenomenon of the directing ability of the methyl amide substituent in the 2 -metalation of the benzene nucleus. This served to extend the original observation from the Hauser group of the directing ability of the dimethylaminomethyl substituent in both the benzene ${ }^{3}$ and ferrocene ${ }^{4}$ systems. Metalation of the amide functional group was postulated to occur by successive removal of two protons: the first from the monosubstituted amide group to produce a reso-nance-stabilized anion; the second from the 2 position of the benzene ring, with a coordinated lithio intermediate similar to that described for the 2-lithiation of aromatics containing the dimethylaminomethyl substituent being proposed (Scheme I). The resonancestabilized anion which was produced by the removal of the nitrogen proton was felt to significantly reduce the tendency of the carbonyl group to undergo nucleophilic attack. Hence electrophilic attack of the more reactive second position of metalation, i.e., the 2 position of the aromatic ring, could be observed.
In these laboratories we have observed that directed metalation reactions of monosubstituted benzenes can be made to occur in their ferrocene counterparts, often
(1) For part III, cf. D. W. Slocum and B. P. Koonsvitsky, J. Org. Chem., 98, 1675 (1973).
(2) W. H. Puterbaugh and C. R. Hauser, J. Amer. Chem. Soc., 85, 2467 (1963).
(3) (a) F. N. Jones, M. F. Zinn, and C. R. Hauser, J. Org. Chem., 28, 663 (1963); (b) F. N. Jones, R. L. Vaulx, and C. R. Hauser, ibid., 28, 3461 (1963).
(4) D. W. Slocum, B. W. Rockett, and C. R. Hauser, J. Amer. Chem. Soc., 87, 1241 (1965).

Scheme I

with greater facility. ${ }^{5}$ These observations, coupled with our desire to examine methods of synthesizing 2substituted ferrocene derivatives, prompted an investigation of the use of the directed metalation of N ethylferrocenecarboxamide (1).

Results and Discussion

N-Ethylferrocenecarboxamide (1) was metalated with 1.5 equiv of n-butyllithium and condensed with various reagents in order to test the suitability of the procedure as a method of synthesizing 1,2 -disubstituted ferrocenes. The N-ethyl derivative was chosen for examination because of its recorded preparation; ${ }^{6}$ the

[^46]N-methyl derivative was later found to be accessible by the same route. That one of the two substituents of the 1,2 -disubstituted ferrocene systems thus produced was an amide was of particular interest, compared to the directing groups previously studied in the ferrocene system, since numerous additional derivative possibilities could be prepared through the hydrolysis product of the amides, namely, the 2 -substituted carboxylic acids. Thus the scope of the reaction was limited only by the type of electrophilic condensing reagents that would react, the ease of hydrolysis of the amide, and the reactions the derived carboxylic moiety could undergo. As we shall see, these are significant limitations to the convenience of this particular synthetic technique for the preparation of 1,2 -disubstituted ferrocenes.

The ability of the N-ethylamide functional group to direct lithiation to the 2 position of ferrocene was demonstrated by two independent routes. The first method, shown in Scheme II, was to synthesize 2-

methylferrocenecarboxylic acid (2a) via the carboxamide routc and match its properties with those reported for the known compound. ${ }^{7}$ It was also found possible to prepare 2 -methyldimethylaminomethylferrocene (4) by two separate methods (Scheme III). One of these was via the carboxamide routc; the other was via the 2-lithiation of dimethylaminomethylferrocene (DMAMF) (3). The fact that the last-mentioned compound has clearly been demonstrated to undergo metalation in the 2 position establishes without question that the carboxamide functional group on ferrocene also directs metalation to the 2 position.

Scheme III contains two steps that deserve comment. It has been reported that certain ferrocene carboxamides cannot bc hydrolyzed; ${ }^{8}$ however, the N-methyl-N-ethylamide 2 was found to undergo basic hydrolysis but not with great ease. The two steps in Scheme III leading to 2 -methyldimethylaminomethylferrocene (4) utilize an amine exchange reaction that was developed in this laboratory; recently Ugi and coworkers have reported a similar reaction. ${ }^{9}$ This amine exchange procedure has proved to be convenient for the

[^47]substitution of a dimethylamine functional group in place of other types of substituted amines.

The conditions found to maximize the yield of 2methylcarboxamide 2 from the metalation of carboxamide 1 followed by derivatization with dimethyl sulfate were a mole ratio of 1.5:1.0 n-butyllithium/carboxamide 1 in THF solvent. Higher ratios gave significant unsubstituted ring metalation, as noted in other ferrocene systems. ${ }^{4,5}$ A time study of the reaction showed the yield of 2 -methyl carboxamide 2 to reach a maximum after 10 min . In each trial of the study 0.6 g (2.30 mmol) of N-ethylferrocenecarboxamide (1), 2.5 ml of 1.6 Mn -butyllithium in ether-hexane, and 50 ml of purified, dry THF were used. The data are shown in Table I.

Table I
Time Study of 2-Methylation of Lithiated N-Ethylferrocenecarboxamide (1)

Time, min	Quantity of 2- methylcarboxamide 2, mmol	Quantity of N - methyl- N-ethyl- ferrocenecarbox- amide 9, mmol	Summation of the two products, mmol
1	$0.49(0.49)^{a}$	$1.66(1.61)$	$2.15(2.10)$
8	0.63	1.48	2.11
10	$0.70(0.66)$	$1.36(1.36)$	$2.06(2.02)$
15	0.35	1.30	1.65
20	$0.18(0.21)$	$1.44(1.48)$	$1.62(1.69)$
30	0.07	1.59	1.66

${ }^{a}$ Figures in parentheses represent duplicate runs.

Scheme IV depicts the proposed successive removal of protons from N-ethylferrocenecarboxamide (1) necessary to explain the reported observations. The mono-N-anion la could give rise to N-methyl- N-ethylferrocenecarboxamide (9) when treated with dimethyl sulfate. This product could also be argued to arise just as easily from incomplete derivatization of the dianion intermediate $\mathbf{1 b}$, but the fact that no product was detected arising from substitution at only the more reactive site, namely, the 2-lithio position, mitigates strongly against this supposition. The dianion 1b would be the only path leading to 2 -methyl carboxamide 2.

The relative dianion ($\mathbf{l b}$) and mono- N -anion (1a) concentrations were conveniently followed by the isolation of 2-methyl carboxamide (2) and N,N-disubstituted carboxamide (9) produced upon treatment with dimethyl sulfate. Since from Table I the dianion product can be seen to have increased at a rate similar to that for the decrease of the monoanion product over the first 10 min , it can be deduced that the 2-methyl N, N-disubstituted carboxamide 2 was derived from an equilibrium involving the mono-N-anion 1a. After a period of $10-15 \mathrm{~min}$, the dianion 1 lb apparently abstracts a proton and regenerates the mono- N -anion. This seems plausible, since as further time passed the dianion product 2 decreased by the same magnitude as the mono- N -anion product 9 increased.
The yield of 2-methyl N,N-disubstituted carboxamide 2 falls off sharply after 10 min , as does the combined yield of products. After the maximum yield of product 2 was reached (10 min), it was observed that one-third of the starting material was lost. Up to this point the material balance had been within experimental error. Possibly a different reaction occurred at the

Scheme IV

1

9

1b
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$

2
$10-\mathrm{min}$ point. This unknown reaction yielded no new identifiable products. After the initial decline in products was observed, the summation of the two products remained relatively constant over a 15 -min interval, indicating that the competing reaction was no longer interfering. The nature of this very rapid reaction remains uncertain.
Table II lists the new 1,2-disubstituted ferrocenes

Table II
New 1,2-Disubstituted Ferrocenes Prepared from N-Ethylferrocenecarboxamide (1)

Compd	Molecular formula ${ }^{a}$	$\begin{gathered} \text { Ir spectrum } \\ \operatorname{cm}^{-1} b \end{gathered}$
2-Methyl- N-methyl- N-ethylferrocenecarboxamide (2)	$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{NOFe}$	$\begin{aligned} & 2950,1625 \\ & (\mathrm{C}=\mathrm{O}), 825 \end{aligned}$
2-Ethyl- N, N-diethylferzocenecarboxamide (5)	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NOFe}$	$\begin{aligned} & \text { 2970, } 1629 \\ & (\mathrm{C}=\mathrm{O}), 825 \end{aligned}$
2-n-Propyl- N - n-propyl- N-ethylferrocenecarboxamide (6)	$\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NOFe}$	$\begin{aligned} & 3000,2980 \\ & 1630(\mathrm{C}=0) \\ & 825 \end{aligned}$
2-Trimethylsilyl- N-ethylferrocenecarboxamide (7)	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NOSiFe}$	1670, 1280, 1240
2-Diphenylhydrox y methyl- N ethylferrocenecarboxamide (8)	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Fe}$	
2-Methyl- N, N-dimethylaminomethylferrocene (4)	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NFe}^{\text {c }}$	2920, 1930, 735

${ }^{a}$ Satisfactory analytical data were reported for all compounds listed in the table, unless otherwise noted. ${ }^{b}$ The usual 9 - and $10-\mu$ bands indicative of homoannular substitution were found for all ferrocenes and are not recorded. ${ }^{\text {c Anal. Calcd: C, 65.41; }}$ H, 7.40; N, 5.45; Fe, 21.74. Found: C, 65.98; H, 7.63; N, 5.37 ; $\mathrm{Fe}, 20.35$.
which have been prepared by 2 -lithiation of N-ethylferrocenecarboxamide (1) as a result of this investigation.

Experimental Section

General starting materials were obtained from Matheson Coleman and Bell. Arapahoe Chemical Co. supplied the ferrocene starting materials. All starting materials were checked for purity prior to use. Foote Mineral Co. supplied the organolithium reagents. All reactions involving the use of organolithium reagents were conducted under an inert atmosphere of argon. Ethyl isocyanate was a complimentary sample supplied by Ott Chemical Co. Nmr data were obtained on a Varian A $56 / 60$ spectrometer at 44° with internal tetramethylsilane (TMS) standard. Concentrations were approximately 10% by volume in CDCl_{3} unless otherwise stated. All ir spectra were obtained on a Perkin-Elmer Model 137 infracord either as smears or Nujol mulls using the $6.25-\mu$ band of polystyrene as a reference. All ferrocene compounds possessed the $9-10-\mu$ band which was characteristic of an homoannularly unsubstituted cy clopentadiene ring. The $9-10-\mu$ bands are underlined. Elemental analyses were performed by Galbraith Laboratories, Knoxville, Tenn. Melting points were determined on a Thomas-Hoover capillary melting point apparatus and all melting points were corrected.

Metalations were performed by injecting the requisite amount of n-butyllithium into a closed flask containing a side arm fitted with a septum and a water-cooled condenser fitted with a drying tube.
A. Preparation of 2-Methyl- N-methyl- N-ethylferrocenecarboxamide (2).-To a solution of $0.6 \mathrm{~g}(0.023 \mathrm{~mol})$ of N-ethylferrocenecarboxamide (1) in 50 ml of purified THF, 2.5 ml of a 1.6 M solution of n-butyllithium was injected. The lithiation was allowed to proceed for 10 min and then 0.5 ml of dimethyl sulfate was quickly injected into the solution and the solution was allowed to stir for 30 min . The reaction mixture was evaporated to constant weight, suspended in water and extracted with several portions of methylene chloride. Anhydrous MgSO_{4} was used to dry the combined extracts, which were evaporated and chromatographed on basic alumina II. The product was eluted with a $50: 50$ mixture of petroleum ether (bp 30-60) methylene chloride. Three bands were observed on the chromatography column. The first band eluted was an oil weighing $0.2 \mathrm{~g}(30.4 \%)$; the following analytical data identified it as 2 -methyl- N -methyl- N -ethylferrocenecarboxamide (2). The second band was also an oil, weighing $0.37 \mathrm{~g}(59 \%)$, and was identified as N-methyl- N-ethylferrocenecarboxamide (9). The third band, a red material, was isolated in only a trace amount.

Nmr data for 2 -methyl- N-methyl- N-ethylferrocenecarboxamide (2): $\delta 1.10(\mathrm{t}, 8.0, J=7.6 \mathrm{~Hz}), 2.1(\mathrm{~s}, 3.0), 2 . \mathrm{C} 5$ ($\mathrm{s}, 3.0$), 3.40 (AB quartet, $2.0, J=7.3 \mathrm{~Hz}$), $4.18(\mathrm{~m}, 7.9)$. Nmr data for N-methyl- N-ethylferrocenecarboxamide (9): $\delta 1.18$ (t $3.0, J=$ 7.5 Hz), 3.06 (s, 3.0), 3.51 (AB quartet, $2.1, J=7.0 \mathrm{~Hz}$), 4.18 ($\mathrm{s}, 5.1$), $4.26(\mathrm{~m}, 1.9), 4.59(\mathrm{~m}, 2.0)$. Ir data: major peaks at $2960,1625(\mathrm{C}=\mathrm{O}), 1110,1000$, and $830 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOFe}: \mathrm{C}, 62.03 ; \mathrm{H}, 6.28 ; \mathrm{N}, 5.17$; $\mathrm{Fe}, 20.62$. Found: C, 62.25 ; H, 6.32 ; N, 5.22 ; Fe, 20.46 .

Preparation of 2-Methylferrocenecarboxylic Acid (2a).-A solution of $0.1 \mathrm{~g}(0.35 \mathrm{~mol})$ of 2 -methyl- N-methyl- N-ethylferrocenecarboxamide (2) and 20.0 g of KOH in 30 ml of 95% ethanol was refluxed under an argon atmosphere for 3 days At the end of the first day 25 ml of 95% ethanol was added and allowed to distil from the reaction mixture. The mixture was then brought up to approximately 50 ml volume and argon was flushed through the system, which was then allowed to reflux for another day. This procedure was repeated at the end of the second day. At the end of the third day the sample was distilled almost to dryness. This mixture was then partitioned between $10 \% \mathrm{NaOH}$ and methylene chloride. The aqueous layer was acidified with $10 \% \quad \mathrm{H}_{2} \mathrm{SO}_{4}$ and extracted several times with methylene chloride. The combined methylene chloride extracts were washed several times with water, dried over anhydrous MgSO_{4}, and evaporated to dryness to yield $0.03 \mathrm{~g}(35.2 \%)$ of crystalline acid $2 \mathrm{a}, \mathrm{mp} 151-153^{\circ}$. A sublimed sample had a melting point of $155-156^{\circ}$ (lit. ${ }^{7} \mathrm{mp} 158-160^{\circ}$). Nmr data: $\delta 2.29(\mathrm{~s}, 3.0), 4.17(\mathrm{~s}, 5.0), 4.33(\mathrm{~m}, 2.4), 4.79(\mathrm{~m}, 1.5)$. The carboxyl group proton was not discernible; however, from integration it was probably broadly spread out under the $\delta 4.33$ and 4.79 multiplet. Ir data: major peaks at $3300(\mathrm{OH}), 1670$ $(\mathrm{C}=\mathrm{O}), 1280,1240,1120$, and $1000 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Fe}: \mathrm{C}, 59.06 ; \mathrm{H}, 4.92$. Found: C, 59.36 ; H, 5.21 .

Preparation of 2-Methyl DMAMF (4) from 2-Methylcarboxamide (2).-To a stirring suspension of ether and $\mathrm{LiAlH}_{4}, 1.0 \mathrm{~g}$ $(3.5 \mathrm{~mol})$ of 2 -methyl- N-methyl- N-ethylferrocenecarboxamide (2) dissolved in ether was slowly added. The reaction was kept at reflux temperature for 24 hr . After this period water and $15 \% \mathrm{NaOH}$ were added to decompose excess LiAlH_{4}. The reaction mixture was acidified and extracted with ether. The aqueous layer was then made basic and this basic solution was extracted with ether. Reduction afforded 0.8 g (82%) of 2-methyl- N-ethyl- N-methylaminomethylferrocene (2b). This amine was treated with an excess of methyl iodide to form the quaternary ammonium salt 2c. The quaternary salt 2c was subjected to an amine exchange reaction. Dimethylamine was passed for 3 days through a refluxing heterogeneous mixture of 100 ml of benzene and 1.0 g of methiodide 2 c . The reaction mixture was acidified with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and extracted with ether. The aqueous layer was made basic with $10 \% \mathrm{NaOH}$ and extracted with ether. This latter ether layer was dried over anhydrous MgSO_{4}, filtered, and stripped to give 0.6 g of an oily product. This oil was chromatographed on basic alumina IV. The material was eluted with petroleum ether (trace of ether) solvent to yield $0.6 \mathrm{~g}(92 \%)$ of 2 -methyl DMAMF (4).
B. Preparation of 2-Ethyl- N, N-diethylferrocenecarboxamide (5).-To a solution of $0.6 \mathrm{~g}(2.4 \mathrm{mmol})$ of N-ethylferrocenecarboxamide (1) in 25 ml of purified THF, $2.5 \mathrm{ml}(1.6 \mathrm{M})$ of n-butyllithium was injected and the solution was allowed to stir for 10 min . At the end of 10 min , the mixture was quickly treated with an excess of diethyl sulfate in THF and subsequently allowed to stir for 1 hr . After the solvent had been stripped, the resulting thick oil was taken up in methylene chloride, washed several times with water, dried over MgSO_{4}, and then chromatographed on basic alumina IV with a solvent system of $50: 50$ petroleum ether-methylene chloride. Three bands were observed and separated. Band I was eluted as an oil and was shown to be 2-ethyl- N, N-diethylferrocenecarboxamide (5), 0.16 g (22%). Band II, a crystalline solid, was N, N-diethylferrocenecarboxamide (10), $0.35 \mathrm{~g}(53 \%), \mathrm{mp} 59-60^{\circ}$. Band III was starting material $1,0.15 \mathrm{~g}(25 \%)$.

Nmr data for 2 -ethyl- N, N-diethylferrocenecarboxamide (5): $\delta 1.10$ and 1.11 (overlapping $\mathrm{t}, 9.0, J=7.0 \mathrm{~Hz}$ each), 2.46 (m, $2.0), 3.30(\mathrm{~m}, 4.0), 4.11$ and $4.21(\mathrm{~m}$ and s , respectively, 8.0).

Nmr data for N, N-diethylferrocenecarboxamide (10): $\delta 1.20$ $(\mathrm{t}, 6.2, J=7.5 \mathrm{~Hz}$), 3.52 (AB quartet, $3.9, J=7.0 \mathrm{~Hz}$), 4.23 ($\mathrm{m}, 7.2$), multiplet centered at 4.65 ($\mathrm{m}, 1.8$).

Preparation of 2-Ethyl- N, N-diethylaminomethylferrocene (5a). -To a large excess of LiAlH_{4} suspended in a vigorously stirred solution of ether, $0.16 \mathrm{~g}(0.5 \mathrm{mmol})$ of 2-ethyl $-N, N$-diethylferrocenecarboxamide (5) dissolved in ether was slowly added. The reaction mixture was refluxed overnight. Excess LiAlH_{4} was hydrolyzed with 10 ml of water followed by 10 ml of $10 \% \mathrm{NaOH}$. The solution was extracted with ether and the ether extracts were evaporated to a dark oil, which was chromatographed with petroleum ether on basic alumina IV yielding $0.14 \mathrm{~g}(98 \%)$ of amine 5a as an oil. Nmr data: $\delta 1.06(\mathrm{~m}$,
9.0), $2.38(\mathrm{~m}, 6.1), 3.42$ (AB quartet, $2.0, \nu_{1}=3.31, \nu_{2}=3.54$, $J=13.5 \mathrm{~Hz}), 4.00(\mathrm{~m}, 8.3)$. Ir data: major peaks at 3010 , 1110,1000 , and $830 \mathrm{~cm}^{-1}$.

Preparation of 2-Ethyl DMAMF (5b).-2-Ethyl- N, N-diethylaminomethylferrocene (5a) (0.14 g) was treated with methyl iodide, producing the quaternary ammonium salt. The salt was filtered, dried, and found not to possess a sharp melting point. This quaternary salt was refluxed in benzene-dimethylamine for 3 days to produce 0.08 g of crude oil product. The oil was chromatographed on basic alumina IV; $0.01 \mathrm{~g}(7.7 \%)$ of an oil identified as 2-ethyl DMAMF (5b) was eluted. Physical and spectral properties of this oil were in accord with those reported by Nesmeyanov and coworkers ${ }^{10}$ for this compound prepared by a less direct method. Nmr data: $\delta 1.17(\mathrm{t}, 3.0, J=7.5 \mathrm{~Hz})$, 2.27 (AB quartet and $s, 8.1, J=7.5 \mathrm{~Hz}), 3.25(\mathrm{AB}$ quartet, 2.0, $\nu_{1}=3.16, \nu_{2}=3.35, J=12.5 \mathrm{~Hz}$).
C. Preparation of 2 - n-Propyl- N-ethyl- N - n-propylferrocenecarboxamide (6).-To a stirring solution of $4.0 \mathrm{~g}(0.015 \mathrm{~mol})$ of N ethylferrocenecarboxamide (1) in THF , $20.0 \mathrm{ml}(0.03 \mathrm{~mol})$ of n butyllithium was injected. The solution was allowed to react for 10 min and quickly treated with an excess of di- n-propyl sulfate. The reaction was allowed to stir for 1 hr at room temperature and hydrolyzed with water. The aqueous THF solution was stripped under vacuum and the resultant thick oil was taken up in ether and washed with water several times. The ether layer was dried over MgSO_{4} and evaporated to a thick oil, which was chromatographed on a 50:50 mixture of alumina I-alumina IV using a 50:50 mixture of methylene chloride-petroleum ether, yielding first starting material (90% recovery) and 0.4 g (7.6%) of $2-n$-propyl- N-ethyl- N - n-propylferrocenecarboxamide (6). Nmr data: $\delta 0.61-1.68(\mathrm{~m}, 13.2), 2.13-2.45(\mathrm{~m}, 1.9), 2.80-3.40(\mathrm{~m}$, 3.9), 4.08 (m, 8.0).
D. Preparation of 2-Trimethylsilyl- N-ethylferrocenecarboxamide (7).-To a stirring solution of $0.6 \mathrm{~g}(2.34 \mathrm{mmol})$ of N ethylferrocenecarboxamide (1) in 25 ml of THF, $2.5 \mathrm{ml}(1.6 \mathrm{M})$ of n-butyllithium was quickly added. The mixture was allowed to stir under an argon atmosphere for 10 min . Trimethylchlorosilane ($1.5 \mathrm{ml}, 0.014 \mathrm{~mol}$) was added and allowed to stir for 1 hr . To ensure complete removal of THF, the reaction mixture was evaporated to dryness repeatedly with subsequent additions of methylene chloride. The material was then extracted several times with a water-methylene chloride system. The methylene chloride portion was dried with anhydrous MgSO_{4}, filtered, and evaporated to dryness. The solid material obtained was subjected to column chromatography on alumina IV. 2-Trimethyl-silyl- N-ethylferrocenecarboxamide (7) was the first material eluted from the column with a solvent system of $50: 50$ petroleum ether-methylene chloride, $0.09 \mathrm{~g}(12.3 \%)$, mp 139-141 ${ }^{\circ}$. Nmr data: $\delta 0.33(\mathrm{~s}, 9.0), 1.22(\mathrm{t}, 2.9, J=7.0 \mathrm{~Hz}), 4.17(\mathrm{~s}, 5.1)$, 4.26 ($\mathrm{m}, 0.9$), 4.40 (m, 1.0), 4.60 (m, 1.0).
E. Preparation of 2-Diphenylhydroxymethyl- N-ethylferrocenecarboxamide (8).-To a solution of $0.6 \mathrm{~g}(2.4 \mathrm{mmol})$ of N ethylferrocenecarboxamide (1) in 50 ml of purified THF, 2.5 ml (1.6 M) of n-butyllithium was quickly added and the solution was allowed to stir for 10 min . The reaction was then treated with an excess of benzophenone in THF and allowed to stir for 12 hr . The solvent was removed by vacuum distillation, yielding a thick, syrupy material which was dissolved in ether and washed several times with water. The ether layer was dried with MgSO_{4} and evaporated to dryness. The material was chromatographed on basic alumina IV with a $50: 50$ petroleum ether-methylene chloride solvent system and the products were eluted in the following order: $0.49 \mathrm{~g}(82 \%)$ starting material $1,0.05 \mathrm{~g}(5 \%)$ 2-diphenylhydroxymethyl- N-ethylferrocenecarboxamide (8), mp $245-246^{\circ}$, and a trace of a red colored material. Nmr data: δ 0.96 ($\mathrm{t}, 3.0, J=7.0$), 3.15 (quartet, 2.0) $3.66(\mathrm{~m}, 0.9), 4.38(\mathrm{~m}$, 7.0), 5.91 ($\mathrm{s}, 1.0$), 7.38 ($\mathrm{m}, 10.0$), 8.21 ($\mathrm{s}, 1.0$).
F. Preparation of 2-Methyl DMAMF (4) via Amine Exchange Reaction.-Dimethylamine was passed for 3 days through a refluxing heterogeneous mixture of 100 ml of benzene and 1.0 g of the 2 -methylmethiodide of DMAMF (3a). ${ }^{11}$ The reaction mixture was acidified with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and extracted with ether. The aqueous layer was made basic with $10 \% \mathrm{NaOH}$ and extracted with ether. This latter ether layer was dried over anhydrous MgSO_{4}, filtered, and stripped to give 0.6 g of an oily product.

[^48]This oil was chromatographed on basic alumina IV. The material was eluted with petroleum ether (trace of ether) solvent to yield $0.6 \mathrm{~g}(92 \%)$ of 2-methyl DMAMF (4). Nmr data: $\delta 1.95$ (s, 3.0), 2.13 (s, 6.0), 3.26 (AB quartet, 2.1, $\nu_{1}=3.21, \nu_{2}=3.30$, $J=13.0), 4.00(\mathrm{~m}, 8.0)$.

Registry No.-1, 38744-26-2; 2, 38641-31-5; 2a, 12214-99-2; 4, 12111-28-3; 5, 38641-34-8; 5a, 38641-$35-9$; 5b, 12111-89-6; 6, 38641-37-1; 7, 38641-38-2; 8, 38641-39-3.

Oxidation of Olefins by Palladium(II). VI. Ethylene Oxidation by Palladium(II) Acetate in Acetic Acid Promoted by Various Oxidants ${ }^{1}$

Patrick M. Henry ${ }^{2}$
Contribution No. 1605 from the Research Center, Hercules Incorporated, Wilmington, Delaware 19899

Received November 29, 1972

Abstract

Palladium(II) salts alone in acetic acid oxidize ethylene to vinyl acetate. It has been previously reported that CuCl_{2} and NO_{3} - increase the rate of oxidation and change the product from vinyl acetate to 1,2 -disubstituted ethanes such as ethylene glycol mono- and diacetate and 2-chloroethyl acetate. The present study was undertaken to determine the generality of this new reaction. A number of oxidants, including $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{NaNO}_{2}, \mathrm{CuBr}_{2}$, $\mathrm{MnO}_{2}, \mathrm{~Pb}(\mathrm{OAc})_{4}, \mathrm{Tl}(\mathrm{OAc})_{3}, \mathrm{TlCl}_{3}$, and HAuCl_{4}, were also found to be active in this reaction. Others which had little or no activity include p-quinone, $\mathrm{FeCl}_{3}, \mathrm{Fe}(\mathrm{OAc})_{2}, \mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{MoCl}_{5}$, and MoOCl_{4}. CuBr_{2} gave 2-bromoethyl acetate. In addition to the 1,2 -disubstituted ethanes, $\mathrm{Tl}(\mathrm{OAc})_{3}, \mathrm{TlCl}_{3}$, and HAuCl_{4} also formed appreciable quantities of ethylidene diacetate. The reaction probably proceeds by a mechanism similar to that of the previously studied aromatic substitution reaction. This mechanism involves formation of an intermediate with a palladium(II)-carbon bond. This intermediate reacts with the oxidant to give the observed products.

In the absence of other oxidants palladium(II) salts in acetic acid oxidize ethylene to vinyl acetate ${ }^{3}$ and other olefins to mixtures of vinyl and allylic acetates. ${ }^{4}$ A study of the product distributions obtained from oxidation of 1 and 2 olefins with palladium(II) acetate

indicated that the reaction proceeds by way of an acetoxypalladation $-\mathrm{Pd}(\mathrm{II})$-hydride elimination. ${ }^{5}$

Addition of copper(II) chloride to these reaction mixtures causes the rate of olefin oxidation to increase. In addition the main product changes from vinyl acetate to 1,2-disubstituted alkanes. ${ }^{6}$ It has been demonstrated that both PdCl_{2} and CuCl_{2} are required for this reaction

$$
\left.\begin{array}{rl}
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CuCl}_{2}+\mathrm{OAc}^{-} \frac{\mathrm{PdCl}_{2}}{\mathrm{HOAc}}+ & +\mathrm{H}_{2} \mathrm{O}
\end{array}\right\} \begin{aligned}
& \left\{\mathrm{AcOCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right. \\
& \mathrm{AcOCH}_{2} \mathrm{CH}_{2} \mathrm{OAc}+\mathrm{CuCl} \\
& \mathrm{AcOCH} \mathrm{CH}_{2} \mathrm{OH} \tag{3}
\end{aligned}
$$

to take place. ${ }^{6 \mathrm{~b}}$ On the basis of studies with the butenes ${ }^{6 \mathrm{~b}}$ and cyclohexene ${ }^{1}$ the mechanism for this reaction has been postulated to involve the interception

[^49]of the acetoxypalladation intermediate, 1, by oxidant to give saturated products ($\mathrm{X}=\mathrm{OAc}, \mathrm{Cl}$, or OH).
\[

$$
\begin{align*}
& 1+2 \mathrm{CuCl}_{2}+ \mathrm{X}-\longrightarrow \\
& \mathrm{AcOCH}_{2} \mathrm{CH}_{2} \mathrm{X}+\mathrm{PdCl}_{2}+2 \mathrm{CuCl}+\mathrm{OAc}^{-} \tag{4}
\end{align*}
$$
\]

The reaction is not limited to CuCl_{2}, as it has been demonstrated that nitrate can replace $\mathrm{CuCl}_{2}{ }^{7}$ The present study is aimed at defining the scope of this new reaction. In particular a number of oxidants will be surveyed to determine what types of oxidants are effective in interacting with $\operatorname{Pd}(\mathrm{II})$.

A related reaction is the $\mathrm{Pd}(\mathrm{II})$-catalyzed aromatic substitution reaction, which also requires a second oxidant ${ }^{8}$ ($\mathrm{X}^{-}=\mathrm{OAc}^{-}, \mathrm{N}_{3}^{-}, \mathrm{Cl}^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{Br}^{-}, \mathrm{CN}^{-}$, or SCN^{-}).

This reaction very likely proceeds by way of a $\mathrm{Pd}(\mathrm{II})-$ aryl intermediate analogous to 1 although $\mathrm{Pd}(\mathrm{IV})$ species cannot be eliminated by the experimental evidence.

Results

A number of oxidants were tested for their ability to change the nature of the oxidation of olefins in the same fashion as CuCl_{2} or nitrate. In the present work ethylene was the olefin used. There are two criteria for a given reagent to be capable of interacting with $\mathrm{Pd}(\mathrm{II})$: first, the rate of ethylene oxidation in the presence of this reagent and $\mathrm{Pd}(\mathrm{II})$ as compared to the rate of oxidation in the absence of $\operatorname{Pd}(\mathrm{II})$; and second, the product distributions obtained in the oxidations containing $\operatorname{Pd}(\mathrm{II})$ and the reagent. Of course, $\mathrm{Pd}(\mathrm{II})$ alone gives only vinyl acetate.
Gas Uptake Experiments. - In Table I are listed the results of a series of experiments in which the $\mathrm{Pd}(\mathrm{OAc})_{2}$

[^50]Table I
Effect of Various Oxidants on the Rate of Eteylene Uptake by Pd(OAc) 2 Solutions in Acetic Acid at 25° and Atmospheric Pressure ${ }^{a}$

Oxidant	Initial rate, $\mathrm{M} \mathrm{hr}^{-1}$
None	0.017
p-Quinone ${ }^{b}$	0.015
$\mathrm{~Pb}(\mathrm{OAc})_{4}$	0.09
CuBr	
MnO_{2}	0.047
FeCl_{3}	2.0^{c}
$\mathrm{Fe}(\mathrm{OAc})_{3}$	<0.001
$\mathrm{Hg}(\mathrm{OAc})_{2}$	<0.001
$\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	Very fast
KMnO_{4}	0.73
NaNO_{3}	0.004
NaNO_{2}	0.1
MoCl_{5}	0.011
MoOCl_{4}	0.005
	0.005

${ }^{a}$ For all solutions $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]=0.04 M$ and $[\mathrm{LiOAc}]=1 M$; concentration of oxidant is also $1 M$. Most reaction mixtures were heterogeneous. ${ }^{b}$ Concentration of this oxidant is $0.25 M$. ${ }^{c}$ After ethylene uptake reached $0.04 M$ the uptake stopped. ${ }^{d}$ Gas uptake mass transfer controlled. Uptake stopped after $1 M$ ethylene concentration was reached.
and LiOAc concentrations are kept constant but contain various uxidants at a concentration of $1 M$.

The initial ethylene uptake as measured by gas burets is given for all oxidants. The initial rate is used since in almost all cases the rate of ethylene uptake decreases rapidly with time. For all the oxidants listed in Table I the initial ethylene uptake in the absence of palladium(II) acetate was less than $0.005 \mathrm{M} \mathrm{hr}^{-1}$.

In some cases the oxidant in the absence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ oxidized ethylene at an appreciable rate under the reaction conditions. Three such oxidants are $\mathrm{Tl}(\mathrm{OAc})_{3}$, TlCl_{3}, and HAuCl_{4}. The initial rates of oxidation and product distributions in the presence and absence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ are given in Table II.

Product Distributions. -The reactions listed in Table I were allowed to run under atmospheric ethylene pressure at 25° for 24 hr and then analyzed for the type of products found in the CuCl_{2}-promoted reaction. Results are listed in Table III. Because of the inaccuracy in refilling the gas burets, the total ethylene uptake was not measured. Thus yields could not be calculated, so total concentrations of products are given. For two-electron oxidants such as $\mathrm{Pb}(\mathrm{OAc})_{4}$, the maximum total concentration of oxidation products would be $1 M$, and for one-electron oxidations, it would be 0.5 M . For oxidants such as $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, which have lower oxidizing states, the maximum expected concentration of products is uncertain. In the case of CuBr_{2} the main product ($c a .0 .5 \mathrm{M}$) was 2-bromoethyl acetate, the product expected by analogy with the reaction of CuCl_{2} and PdCl_{2}.

Two oxidants, p-quinone and FeCl_{3}, which did not give the promoted oxidation at 25° and atmospheric pressure, were tested under more vigorous conditions. The FeCl_{3} run was carried out at 100° under an ethylene pressure of 500 psig for 24 hr . Only traces (0.015 M) of vinyl acetate were found in the reaction mixture.

The p-quinone run was carried out under the conditions described in a patent ${ }^{9}$ claiming to produce saturated esters. These include $0.007 M \mathrm{PdCl}_{2}, 2 M p$ -

[^51]quinone, $1.4 M \mathrm{LiCl}$, and $0.1 M \mathrm{LiOAc}$. The reaction was run at 69° under 300 psig ethylene pressure for 12 hr . Only vinyl acetate was detected in the reaction mixture.

A control run was carried out to determine if the ethylidene diacetate in the $\mathrm{Tl}(\mathrm{OAc})_{3}$ run could result from further reaction of vinyl acetate. The reaction was carried out in the same fashion as the first run in Table II except that the reaction mixture was initially 0.1 M in vinyl acetate. At the conclusion of the run the reaction mixture still contained $0.1 M$ vinyl acetate.

Discussion

The most important result of the present study is the demonstration that oxidants other than CuCl_{2} and nitrate will act as cocatalyst with $\mathrm{Pd}(\mathrm{II})$ in the oxidation of olefins. On the basis of oxidation rates for the oxidants listed in Table $\mathrm{I}, \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{~Pb}(\mathrm{OAc})_{4}, \mathrm{CuBr}_{2}$, NaNO_{2}, and NaNO_{3}, included for purposes of comparison, definitely give the reaction. MnO_{2} gave a rapid initial rate but is a doubtful case because the total ethylene uptake was 1 mmol . The data in Table II indicate that $\mathrm{Tl}(\mathrm{OAc})_{3}, \mathrm{TlCl}_{3}$, and $\mathrm{AuCl}_{4}-$ also give the reaction, although the result is obscured by the fact that they oxidize ethylene in the absence of $\mathrm{Pd}(\mathrm{OAc})_{2}$. However, rates are faster in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$, and product distributions are different than in its absence.

A number of oxidants, including p-quinone, FeCl_{3}, $\mathrm{Fe}(\mathrm{OAc})_{3}, \mathrm{NaNO}_{2}, \mathrm{MoCl}_{5}, \mathrm{KMnO}_{4}$, and MoOCl_{4}, gave initial rates slower than the rates with $\mathrm{Pd}(\mathrm{OAc})_{2}$ alone, so by this criterion are not effective. $\mathrm{Hg}(\mathrm{OAc})_{2}$ gave a rapid ethylene uptake, but no oxidation resulted. The only reaction was the well-known mercuration reaction. ${ }^{10}$

$$
\begin{equation*}
\mathrm{Hg}(\mathrm{OAc})_{2}+\mathrm{C}_{2} \mathrm{H}_{4} \xrightarrow{\mathrm{HOAc}} \mathrm{AcOHgCH}_{2} \mathrm{CH}_{2} \mathrm{OAc} \tag{6}
\end{equation*}
$$

The product distribution data, samples of which are given in Tables II and III, tend to confirm the ethylene uptake results, since the active cocatalysts gave saturated products. In addition, NaNO_{2} and KMnO_{4}, which gave a slow ethylene uptake, produced detectable amounts of saturated products. The other oxidants, which gave slow initial rates, also gave no detectable amounts of saturated products. The case of quinone is worthy of special mention because it has been used as a reoxidant for $\mathrm{Pd}(0)$ in kinetic studies of olefin oxidation at temperatures close to room temperature. ${ }^{11}$ The present results confirm that quinone is suitable for this purpose, since it does not change either the rate or product of the oxidation.

The fact that an oxidant gives little or no activity under the reaction conditions used in this study does not eliminate it as a candidate under more vigorous conditions. Thus KMnO_{4} gives the aromatic substitution reaction at 90° and almost certainly would give appreciable rates of ethylene oxidation at this temperature. Its slow activity at 25° probably results from low solubility. For this reason two oxidants which gave negative results and are of special interest in Pd (II) chemistry were tested under more vigorous conditions. FeCl_{3}, used as reoxidant for $\mathrm{Pd}(\mathrm{II})$ in several patents, still

[^52](11) I. I. Moiseev, A. P. Belov, V. A. Igoshin, and Ya. K. Sirkin, Dokl. Akad. Nauk SSSR, 173, 863 (1967).

Table II
Initial Rates and Product Distributions with $\mathrm{TlCl}_{3}, \mathrm{Tl}(\mathrm{OAc})_{3}$, and HAuCl_{4} in the Presence and Absence of $\operatorname{Pd}(\mathrm{OAc})_{2}{ }^{a}$

Reaction Mixtures								
[$\left.\mathrm{Pd}(\mathrm{OAc})_{2}\right], M$	0.04		0.04		0.04		0.04	
[LiOAc], M	1.0	1.0			1.0	1.0	1.0	1.0
[NaOAc], M			0.1	0.1				
Oxidant	$\mathrm{Tl}(\mathrm{OAc})_{3}$	$\mathrm{Tl}(\mathrm{OAc})_{3}$	$\mathrm{Tl}(\mathrm{OAc})_{3}$	$\mathrm{Tl}(\mathrm{OAc})_{3}$	TlCl_{3}	TlCl_{3}	HAuCl_{4}	HAuCl_{4}
Concentration of oxidant, M	1.0	1.0	0.4	0.4	1.0	1.0	1.0	1.0
Initial Rate, $M \mathrm{hr}^{-1}$								
	0.1	0.026	0.103	0.019	0.15	0.0094	0.07	0.011
Product Distribution, $M^{\text {b }}$								
Vinyl acetate	0.006	ND	ND	ND	0.012	ND	0.027	ND
2-Chloroethyl acetate	ND	ND	ND	ND	0.0025	0.013	0.08	0.01
Ethylidene diacetate	0.14	ND	0.2	ND	0.105	ND	0.07	ND
Ethylene glycol diacetate	0.145	0.057	0.082	0.051	0.004	0.033	0.08	0.02
2-Hydroxyethyl acetate	0.023	0.075	0.067	0.045	ND	0.03	ND	0.02

Table III
Product Disfributions for the Oxidation of Ethylene by Pd(OAc) $)_{2}$ in the Presence of Other Oxidants ${ }^{a}$

Oxidant	$\mathrm{Pb}(\mathrm{OAc})_{4}$	$p-Q u i n o n e$	MnO_{2}	KMnO_{4}	$\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	NaNO_{3}	NaNO_{2}
Vinyl acetate	0.003	0.03	ND^{b}	0.004	0.017	ND	ND
Ethylidene diacetate	ND	ND	ND	ND	0.031	0.0017	0.011
Ethylene glycol diacetate	0.08	ND	0.029	0.017	0.43	0.013	0.0031
2-Hydroxyethyl acetate	0.15	ND	ND	ND	0.13	ND	ND
Total	0.233	0.03	0.029	0.021	0.608	0.0147	0.0141

${ }^{a}$ All reaction mixtures 0.04 M in $\mathrm{Pd}(\mathrm{OAc})_{2}$ anc 1.0 M in LiOAc. Concentration of oxidant is 1.0 M ; reaction run for 24 hr under 1 atm ethylene pressure at $25^{\circ} .{ }^{b} \mathrm{ND}=\operatorname{not} \operatorname{detected}(<0.001 M)$.
gave no saturated products, and quinone gave only vinyl acetate under conditions previously reported to produce saturated products. ${ }^{9}$
The saturated product distributions deserve comment in some cases. In the case of CuBr_{2} the main product, as expected in analogy to oxidations by CuCl_{2}, is $2-$ bromoethyl acetate. The appreciable yields of ethylidene diacetate found with $\mathrm{Tl}(\mathrm{OAc})_{3}, \mathrm{TlCl}_{2}$, and $\mathrm{AuCl}_{4}{ }^{-}$ were not observed with these oxidants in the absence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ or with the other oxidants in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$. Control experiments demonstrated that this product was not formed by a secondary reaction of vinyl acetate. Finally, detection of 2-hydroxyethyl acetate in some reaction mixtures was unexpected inasmuch as the reaction mixtures were dried with acetic anhydride, and formation of this acetate would usually require the presence of water. Thus either water is introduced into the reaction in some manner or an intermediate is formed which can react with acetic acid to give this product. An example of the latter could be $\mathrm{Cr}-\mathrm{O}-\mathrm{C}$ bonds in the $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reaction.
The present results do not justify a detailed mechanistic analysis but do emphasize one difference between the aromatic and olefin oxidations previously noted in the study of the aromatic oxidation. This is the fact that the aromatic oxidation requires stronger oxidants than the olefin oxidation. Thus CuCl_{2} and $\mathrm{Tl}(\mathrm{OAc})_{3}$ give the olefin oxidation but not the aromatic substitution. As mentioned in the introduction, there is good evidence that the CuCl_{2}-promoted oxidation proceeds via a $\operatorname{Pd}(\mathrm{II})$ species, but there are no definitive experiments to distinguish between mechanisms involving $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{IV})$ species in the case of aromatic sub-
stitution. Likewise, the ethylene oxidation with stronger oxidants may proceed through $\operatorname{Pd}(\mathrm{IV})$ species. Certainly more mechanistic work is required on both oxidations to distinguish between the two possibilities. Any mechanism will have to explain the formation of ethylidene diacetate in some oxidations.

The properties which cause an oxidant to be a cocatalyst with $\operatorname{Pd}(\mathrm{II})$ are certainly not well defined by this study. In general the oxidants with higher redox potentials in aqueous solution appear to give the oxidation, but CuCl_{2} is certainly an exception with a potential in the range of Fe (III), $\mathrm{Mo}(\mathrm{VI})$, and p-quinone. Other factors, such as solubility, may be important. The fact that MnO_{2} oxidized only 1 mmol of ethylene may mean that an impurity is the actual active reagent.

Experimental Section

Reagents.--Palladium(II) chloride was purchased from Engelhardt Industries Inc. The thallic acetate was prepared as described earlier. ${ }^{12}$ The p-quinone (Aldrich) was recrystallized from ethanol before use. The acetic acid was dried by refluxing over $\mathrm{B}(\mathrm{OAc})_{3} .^{13}$ Water content was less than 0.01% as determined by Karl Fischer. The lead tetraacetate was purchased from $\mathrm{K} \& \mathrm{~K}$ Laboratories, Inc. All other chemicals were of reagent grade.
Experimental Procedure.-All runs at 25° and atmospheric pressure were carried out on a $25-\mathrm{ml}$ scale using creased flasks. The gas uptake was measured by gas burets. The procedure has been described previously. ${ }^{14}$ The various reagents were mixed and diluted to 25 ml with acid. Then 0.3 ml of acetic

[^53]anhydride was added and the reaction mixture was heated gently on a steam bath. After cooling the reaction mixture was put in a 25° bath for 0.5 hr before the run was begun. Because of limited solubility of reactants in acetic acid almost all reaction mixtures were heterogeneous.

Analysis of Reaction Mixtures.-All analyses were carried out by vapor phase chromatography using a $6-\mathrm{ft}$ column packed with 20% Carbowax 20 M on a $70-80$ mesh ABS support. The temperature was programmed from 80 to 200° at a rate of 7.5° min . The helium flow rate was $60 \mathrm{ml} / \mathrm{min}$. Standards of vinyl
acetate and all the saturated products were prepared and used to calculate the concentration of the various products.

Registry No.-Ethylene, 74-85-1; $\mathrm{Pd}(\mathrm{OAc})_{2}, 3375-$ $31-3 ; \quad \mathrm{Tl}(\mathrm{OAc})_{3}, \quad 2570-63-0 ; \quad \mathrm{HAuCl}_{4}, \quad 16903-35-8$; $\mathrm{TlCl}_{3}, 13453-32-2$.

Acknowledgment.-The author gratefully acknowledges the excellent technical assistance of Mr. F. Kriss.

(+)-Limonene Oxidation with Selenium Dioxide-Hydrogen Peroxide

Charles W. Wilson, III,* and Philip E. Shaw
Citrus and Subtropical Products Laboratory, ${ }^{1}$ Winter Haven, Florida 33880

Received October 26, 1972

Abstract

(+)-Limonene oxidation with selenium dioxide-hydrogen peroxide has afforded (+)-1-hydroxyneodihydrocarveol (8) as the main product plus () -carvone, (- -cis-carveol, (-)-trans-carveol, (-)-1,8-p-menthadien-4-ol (2), and three other alcohols. One of the alcohols, (-)-1,4-epoxyneoisodihydrocarveol (6), is a new compound whose structure was determined and whose mechanism for formation was explored. (-)-1,8- p-Menthadien-4-ol (2) was oxidized with m-chloroperbenzoic acid to produce the previously unreported (-)-4-hydroxy-trans-8-pmenthene oxide (4), and (-)-4-hydroxy-cis-8-p-menthene oxide (7). The trans oxide 4, but not the cis isomer 7 , was converted to 6 with acetic acid. Terpinen- 4 -ol (10) was similarly oxidized with peracid, and both the cis and trans isomers (11 and 12) afforded a 1,4-epoxide (9) upon treatment with dilute sulfuric acid.

Selenium dioxide oxidation of (+)-limonene has been studied by several workers, ${ }^{2 a-1}$ and the products identified involved oxidation at all allylic positions except carbon-3 (menthol series). Most of these oxidation products are constituents of natural products such as citrus essential oils, ${ }^{2 e}$ of which (+)-limonene is the major constituent. As part of a program to explore conversion of (+)-limonene to more valuable fine chemicals, we studied $(+)$-limonene oxidation with hydrogen peroxide and only a catalytic amount of selenium dioxide. ${ }^{3}$ Among the oxidation products was a new 1,4 -epoxide derivative (6 in Scheme I) whose structure was determined and whose mechanism for formation was explored.
Table I lists the products identified from selenium dioxide-hydrogen peroxide oxidation of $(+)$-limonene under four sets of reaction conditions. Increasing the proportion of oxidizing agents increased the yield of most products (reaction 2). Decreasing the catalytic amount of selenium dioxide (reaction 3) decreased the percentage of all oxidation products except (- -ciscarveol, (+)-1-hydroxyneodihydrocarveol (8), and 1,8 - p-menthadien- 7 -ol. Stopping the reaction at the end of the initial exothermic period (reaction 4) resulted in decreased yield of all oxidation products. For most products yield was best with high proportions of oxidizing agents and a long reaction time (reaction 2).

One of the main oxidation products of this reaction is a previously unreported compound, (-)-1,4-epoxyneoisodihydrocarveol ${ }^{4}$ (6 in Scheme I). The ir spectrum suggested that this compound contained either

[^54]

two hydroxyl groups or one hydroxyl group and an ether linkage [1045 ($\mathrm{C}-\mathrm{OH}$), $1118 \mathrm{~cm}^{-1}$ ($\mathrm{C}-\mathrm{O}-\mathrm{C}$ or $t-\mathrm{OH})$]. ${ }^{5}$ A high-resolution mass spectrum showed the empirical formula to bc $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$. The low-resolution mass spectrum showed a major fragment due to loss of one water molecule ($\mathrm{M}-18$), but a second molecule

[^55] Canada

Table I
Products from d-Limonene Oxidation with $\mathrm{SeO}_{2}-\mathrm{H}_{2} \mathrm{O}_{2}$

Compd	Gle peak area \%			
	$1^{\text {a }}$	$2^{\text {b }}$	$3^{\text {c }}$	$4^{\text {d }}$
1 (+)-Limonene	68.7	47.1	74.6	92.4
2 (-)-Carvone	1.4	3.7	0.8	0.2
3 (-)-trans-Carveol	4.2	3.1	1.9	0.4
4 (-)-cis-Carveol	0.9	2.0	0.9	0.2
5 (-)-1,4-Epoxyneoisodihydrocarveol (6)	1.8	4.5	0.8	0.2
6 (+)-1-Hydroxyneodihydrocarveol (8)	10.2	22.1	13.7	4.2
7 (-)-1,8-p-Menthadien-4-ol (2)	6.2	9.3	2.7	0.8
8 1,8-p-Menthadien-7-ol	0.8	2.6	1.1	0.3
9 1,8-p-Menthadien-10-ol	4.5	3.2	2.7	0.5
10α, p-Dimethylstyrene	Tr	0.2	0.5	0.2
11 Hydrocarbon (unidentified)	0.9	1.7	0.5	0.2

${ }^{a}$ Reaction conditions: $32 \mathrm{mmol} \mathrm{SeO}, 0.66 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}, 0.6 \mathrm{~mol}$ (+)-limonene, 4 hr . ${ }^{b} 32 \mathrm{mmol} \mathrm{SeO}_{2}, 0.66 \mathrm{~mol} \mathrm{H} \mathrm{O}_{2}, 0.3 \mathrm{~mol}(+)-$ limonene, 4 hr . ${ }^{c} 16 \mathrm{mmol} \mathrm{SeO} 2,0.66 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}, 0.6 \mathrm{~mol}(+)$-limonene, 4 hr . ${ }^{~} 32 \mathrm{mmol} \mathrm{SeO}_{2}, 0.66 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}, 0.6 \mathrm{~mol}(+)$-limonene, 20 min .
of water was not lost as is the case with the 1,2 diol $8 .{ }^{6}$ The nmr spectrum in dimethyl sulfoxide- d_{6} showed two methyl singlets at $\delta 1.30$ and 1.70 ppm assigned to the tertiary methyl and terminal allylic methyl groups, respectively, a onc-proton multiplet centered at 3.5 ppm assigned to the carbon at position 2 bearing the hydroxyl group, and two one-proton singlets at 4.70 and 4.85 ppm asigned to the vinyl hydrogens on the terminal double bond. The hydroxyl hydrogen appeared as a one-proton doublet at 4.99 ppm . Upon addition of a trace of sulfuric acid, this doublet collapsed to a singlet appearing at $5.8 \mathrm{ppm} .^{7}$ Reduction of 6 with hydrogen and a 10% palladium on carbon catalyst afforded 8, formed by hydrogenolysis of the allylic carbon-oxygen bond at C-4. Surprisingly, the double bond was not reduced under these conditions. Reduction of 6 with hydrogen and 5% palladium on barium sulfate afforded the known saturated derivative 1,4-epoxyneoisocarvomenthol (9), which was also prepared from terpinen-4-ol (10) by a procedure similar to that previously described. ${ }^{8}$

Possible pathways for formation of 6 from (+)limonene have been explored. The main product of selenium dioxide-hydrogen peroxide oxidation of (+)limonene, (+)-1-hydroxyneodihydrocarveol (8), was oxidized to 6 under the same conditions used to obtain 6 from (+)-limonene. An intermediate, 1,4-dihydroxyneoisodihydrocarveol (3), probably formed in this reaction, can then be dehydrated to 6 just as in the formation of 1,4-cineole from 1,4-dihydroxy-p-menthane. ${ }^{9}$ Chromium trioxide-pyridine oxidation of 8 also afforded 6.

An alternate pathway for formation of 6 from (+)limonene involves initial oxidation at C-4 to afford $1,8-p$-menthadien-4-ol (2). Treatment of 2 with selenium dioxide and hydrogen peroxide did yield 6 in addition to the major product α, p-dimethylstyrene. Since selenium dioxide-hydrogen peroxide can oxidize

[^56]an olefin to the corresponding 1,2 diol, ${ }^{10} 3$ is a possible intermediate in the formation of 6 from 2. An intermediate 1,2 epoxide has been implicated in 1,2 diol formation from an olefin in this oxidation reaction. ${ }^{10}$ Thus, 6 also can be obtained from 2 through a 1,2-epoxy-4-ol, e.g., 4.
Limonene 1,2-epoxide ($1: 1$ mixture of cis and trans isomers) ${ }^{11}$ is another possible intermediate in the oxidation of limonene to 1,4 epoxide 6 . Treatment of limonene 1,2 -epoxide with selenium dioxide-hydrogen peroxide afforded 6 in small yield with 8 being the major product. In the conversion of limonene $1,2-$ epoxide to 6, 4-hydroxy-8-p-menthene oxide is a likely intermediate. We prepared the previously unreported cis and trans isomers, 7 and 4, respectively, of this suggested intermediate by epoxidation of the endocyclic double bond in 2 with peracid. The trans isomer 4 was readily converted to 6 upon treatment with acetic acid, but the cis isomer 7 decomposed under the same conditions and no starting material or 6 could be separated from the reaction mixture by gc. A concerted acid-catalyzed 1,2 -epoxide opening and 1,4epoxide formation, as illustrated in intermediate 5 , is sterically favorable in the trans isomer (4), but not in the cis isomer (7). If the peracid oxidation of 2 was allowed to stand for a longer time, only cis isomer 7 and 1,4 epoxide 6 were isolated, apparently because enough acid was present in the reaction mixture to convert the trans epoxide to 6 . Structures of 4 and 7 were assigned on the basis of the conversion of 4 to 1,4 epoxide 6 , on the relative gc retention times as compared to the saturated analogs, ${ }^{12}$ and on the fact that the cis isomer 7 was reduced with palladium and hydrogen to 4-hydroxycarvomenthol. ${ }^{12}$

Of the three discussed pathways for formation of 6 from (+)-limonene, that involving initial oxidation to 8 seems the most probable. Thus, 8 is the major reaction product in all cases in Table I. The ratio of a secondary reaction product to a primary product should increase with time, and in (+)-limonene oxidation the ratio of secondary product 6 to primary product 8 shows a greater increase with time (6:8 $=0.05$ in run 4 and 0.18 in run 1 of Table I) than does that of 6 to primary product $2(6: 2=0.25$ in run 4 and 0.30 in run 1). Limonene 1,2 -epoxide is the least likely intermediate considered because none was found among the products even under the shortest reaction time used (run 4); epoxidation of olefins with selenium dioxide and hydrogen peroxide has been reported, however. ${ }^{13}$

Oxidation of (+)-limonene to (-)-carvone and $(-)$-cis- and (- -trans-carveols in this study indicates attack primarily at the 1,2 double bond ${ }^{4}$ rather than allylic oxidation at $\mathrm{C}-6^{14}$ to form these oxidation products. The (-)-cis- and (-)-trans-carveols are probably not intermediates in (- -carvone formation, since the latter is of higher optical purity. Furthermore, the ratio of carvone to carveols does not increase with time (carvone:carveols $=0.33$ in run 4 and 0.28

[^57]in run 1 of Table I) as should be the case if the carveols were intermediates in carvone formation.

A comparison sample of 1,4-epoxyneoisocarvomenthol (9) was prepared by epoxidation of terpinen-4-ol (10) to 4-hydroxy-trans-carvomenthane epoxide (11) and 4-hydroxy-cis-carvomenthane epoxide (12) followed by acid-catalyzed epoxide opening of either 11 or 12 to 9 . Garside, et al., ${ }^{8}$ who prepared 9 from 10 by peracid oxidation, had proposed 11 as an intermediate in their reaction, but had not isolated it. We epoxidized 10 with m-chloroperbenzoic acid and isolated 11 and $12,{ }^{12}$ both of which rearranged to 9 upon treatment with 0.1 N sulfuric acid. However, only the trans isomer (11) cleanly afforded 9 , while the cis isomer (12) also produced significant quantities of p-cymene and carvenone. The structures of 11 and 12 were confirmed by lithium aluminum hydride reduction of 11 to trans-p-menthane-1,4-diol as previously reported, ${ }^{12}$ and the cis epoxide to 4 -hydroxycarvomenthol ${ }^{12}$ plus a small amount of cis-p-menthane-1,4-diol. The 4hydroxycarvomenthol, thus prepared, was identical with that obtained by catalytic reduction of 7 described above.

Absolute configurations of the compounds, as shown in Scheme I, were determined by comparison of 8 and terpinen-4-ol (10) isolated in this study with previously reported samples of known configuration. Compound 8, having $\mathrm{mp} 66.5-67.5^{\circ}$ and $[\alpha] \mathrm{D}+41^{\circ}$, was the isomer previously obtained from peracid oxidation of (+)-limonene and has the $1 S, 2 S, 4 R$ configuration. ${ }^{15}$ Catalytic reduction of 1,8 - p-menthadien-4-ol (2) afforded ($4 R$)-terpinen-4-ol with [α] $\mathrm{D}-36^{\circ}$ of established configuration (reported $[\alpha] \mathrm{D}-34^{\circ}$)..12 The $1,8-p$ -menthadien-4-ol (2) obtained from this selenium dioxide and hydrogen peroxide oxidation reaction had $[\alpha]_{\mathrm{D}}-43^{\circ}$, whereas the $1,8-p$-menthadien-4-ol obtained previously from selenium dioxide oxidation of (+)limonene either was optically inactive ${ }^{2 b, c}$ or slightly dextrorotatory. ${ }^{2 d}$ Presently accepted mechanisms for selenium dioxide oxidation of olefins to allylic alcohols ${ }^{16}$ do not explain this formation of optically active $1,8-p$ -menthadien-4-ol (2) from (+)-limonene, because the proposed intermediate contains a 4,8 double bond, and should be attacked equally from either side of the molecule at C-4 to produce racemic $1,8-p$-menthadien4 -ol. ${ }^{2 c}$ In the present case, stereospecific hydrogen removal and oxygen addition with inversion at C-4 must take place without racemization.

Experimental Section

Infrared spectra were obtained on thin liquid films with a Perkin-Elmer Infracord. Nuclear magnetic resonance spectra were obtained with a Varian A-60 spectrometer on samples dissolved in deuteriochloroform or dimethyl- d_{6} sulfoxide containing tetramethylsilane as internal standard. Optical rotations were determined on absolute ethanol solutions with a Rudolph Model 62 polarimeter. Low-resolution mass spectra were determined at 70 eV with a Bendix Model 3012 Time-of-Flight mass spectrometer, and high-resolution mass spectra with an A. E. I. Picker ultrahigh-resolution mass spectrometer. Melting points were determined between glass plates on a Nalge block type melting point apparatus and are uncorrected.

[^58]Gas chromatographic analyses and separations were performed on F \& M Model 500 and 700 gas chromatographs equipped with 0.20 in. i.d. $\times 20 \mathrm{ft}$ stainless steel columns packed with 20% Carbowax 20M on 60/80 mesh Gas-Chrom \mathbf{P} and using thermal conductivity detectors. Temperature programming was from 100 to 220° at $1^{\circ} / \mathrm{min}$ at a He flow rate of $100 \mathrm{ml} / \mathrm{min}$ and an injection port temperature of 245°. Peak areas were determined as height times width at half-height. When reaction product percentages are listed, they were determined by integrating the gc curve for the crude reaction mixture.
$(+)$-Limonene was obtained from distillation of Valencia orange essence oil, ${ }^{17}$ bp $45-50^{\circ}(1.5 \mathrm{~mm}),[\alpha]^{29} \mathrm{D}+116.5^{\circ}(c 1.24)$, and was shown to be greater than 99% pure by gc.

Selenium Dioxide-Hydrogen Peroxide Oxidation of (+)-Limonene.-Selenium dioxide ($3.6 \mathrm{~g}, 32.4 \mathrm{mmol}$) and 75 g $(0.66 \mathrm{~mol})$ of 30% hydrogen peroxide were added to a stirred solution of $80 \mathrm{~g}(0.6 \mathrm{~mol})$ of (+)-limonene in 100 ml of tetrahydrofuran (THF). The mixture was heated until a vigorous exothermic reaction ensued. After 10 min , the exothermic reaction began to subside and the mixture was heated to reflux. Three separate oxidations (see footnotes to Table I), varying the molar quantities of reagents, were conducted in this manner. A fourth reaction was also carried out in which the initial exothermic reaction was allowed to subside (20 min) and the mixture was not heated further.

In each case, the reaction products were isolated by removing the THF solvent at 30° and water pump pressure on a rotary evaporator (Buchi Rotavapor R, Type KRV 65/45) and the bulk of the (+)-limonene was then removed in the same apparatus at 40° and 1 mm pressure. Portions of the residual liquid were subjected to ge to separate individual products for identification. Carvone, $[\alpha]^{29} \mathrm{D}-54.5^{\circ}$ (c 0.67), cis-carveol, $[\alpha]^{29} \mathrm{D}-12.8^{\circ}$ (c 1.56), trans-carveol, $[\alpha]^{29} \mathrm{D}-90^{\circ}$ (c 1.11), 1,8-p-menthadien10 -ol, and 1-hydroxyneodihydrocarveol [mp 66.5-67.5 ${ }^{\circ}$ and $[\alpha]^{29} \mathrm{D}+41.0^{\circ}$ (c 1.86) after two crystallizations of a gc-purified sample from benzene-hexane ${ }^{15 \mathrm{~b}}$] were all identified by comparison of their infrared spectra with those from authentic samples obtained previously at our laboratories. ${ }^{2,17}$ Authentic samples of α, p-dimethylstyrene and $1,8-p$-menthadien- 7 -ol were obtained from commercial sources. Quantitative estimates as listed in Table I have been corrected to include the limonene removed by distillation.

The ir, nmr, and mass spectra of $1,8-p$-menthadien-4-ol (2) were identical with those already reported. ${ }^{18}$ Both compounds 2 and 6 could be isolated in $>90 \%$ purity by distillation of the residue after removing the bulk of the $(+)$-limonene: $(-)-1,8-$ p-menthadien- 4 -ol (2), bp $34-36^{\circ}(0.1 \mathrm{~mm})$, gc purified sample showed $[\alpha]^{29} \mathrm{D}-43.0^{\circ}$ (1.24); (-)-1,4-epoxyneoisodihydrocarveol (6), bp $58-65^{\circ}(0.1 \mathrm{~mm})$, gc-purified sample showed $[\alpha]^{29} \mathrm{D}-89.2^{\circ}$ (c 1.35); ir $3490(\mathrm{~s}), 2995(\mathrm{~s}), 1650$ (s), 1450 (s), 1380 (s), 1320 (w), 1270 (w), 1235 (w), 1220 (sh), 1200 (w), 1180 (w), 1118 (s), 1100 (sh), 1045 (s), 1035 (sh), 1010 (w), 985-975 (m, split), $950(\mathrm{~m}), 900(\mathrm{~m}), 875(\mathrm{~m}), 815(\mathrm{w}), 755 \mathrm{~cm}^{-1}(\mathrm{w})$; mass spectrum m / e (rel intensity) 168 (9), 150 (14), 124 (11), 107 (26), 97 (11), 95 (20), 92 (14), 84 (20), 82 (12), 81 (13), 69 (30), 67 (11), 58 (13), $55(16), 43(100), 41$ (40); high resolution m / e 168.1148 (calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}, 168.1149$); nmr ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta 1.30$ ($\mathrm{s}, 3, t-\mathrm{CH}_{3}$), $1.70\left(\mathrm{~s}, 3,=\mathrm{CCH}_{3}\right), 3.50(\mathrm{~m}, 1, \mathrm{CHOR}), 4.70$ and $4.85\left(\mathrm{~s}, 2, \mathrm{C}=\mathrm{CH}_{2}\right), 4.99(\mathrm{~d}, 1, J=4 \mathrm{~Hz}, \mathrm{OH})$; the latter, with a trace $\mathrm{H}_{2} \mathrm{SO}_{4}$ added, shifted to $\delta 5.87$ (s). ${ }^{7}$ The monoacetate derivative of 6 was prepared with acetic anhydride and pyridine: ir $1730,1240 \mathrm{~cm}^{-1}\left(-\mathrm{COOCH}_{3}\right)$; mass spectrum m / e (rel intensity) 210 (3), 168 (3), 151 (9), 150 (8), 135 (6), 107 (10), 92 (8), 84 (8), 69 (17), 58 (3), 55 (7), 43 (100).

Oxidation of Limonene 1,2-Epoxide to $6 .-T o ~ 80 \mathrm{~g}(0.52 \mathrm{~mol})$ of limonene 1,2-epoxide ${ }^{11}$ (FMC Corp., New York, N.Y.) in 100 ml of THF were added 0.66 mol of 30% hydrogen peroxide and 32 mmol of selenium dioxide following the above procedure ($4-\mathrm{hr}$ reflux) for (+)-limonene oxidation. Gc separation of the crude reaction mixture after removal of solvent afforded limonene 1,2 epoxide (6%), 1,4-epoxyneoisodihydrocarveol (6) (8%), and 1 hydroxyneodihydrocarveol (8) (86%) based on relative gc peak areas.

Oxidation of $1,8-p$-Menthadien-4-ol (2) to 6 .-To $0.90 \mathrm{~g}(6.0$ mmol) of 2 in 50 ml of THF were added 4.0 mmol of 30% hydro-

[^59]gen peroxide and 2.7 mmol of selenium dioxide following the above procedure for $(+)$-limonene oxidation. Gc separation of the crude reaction mixture after removal of solvent yielded 7% p-cymene, $56 \% \alpha$, p-dimethylstyrene, 17% starting material (2), and 20% 1,4-epoxyneoisodihydrocarveol (6).

Oxidation of (+)-1-Hydroxyneodihydrocarveol (8) to (-)-1,4Epoxyneoisodihydrocarveol (6). A. With Selenium DioxideHydrogen Peroxide.-To $3.0 \mathrm{~g}(17.4 \mathrm{mmol})$ of 8 in 50 ml of methylene chloride were added 8.0 mmol of 30% hydrogen peroxide and 1.4 mmol of selenium dioxide following the procedure for $(+)$-limonene oxidation. Gc separation of the crude reaction mixture after separation of the layers and removal of methylene chloride afforded a 9:1 mixture of starting material 8 and (-)-1,4epoxyneoisodihydrocarveol (6), $[\alpha]^{29} \mathrm{D}-91.8^{\circ}(c 0.98)$.
B. With Chromium Trioxide-Pyridine.-To 20 mg of 8 in $25 \mu \mathrm{l}$ of pyridine was added $500 \mu \mathrm{l}$ of a 10% solution of the $\mathrm{CrO}_{3}{ }^{-}$ pyridine complex ${ }^{19}$ in methylene chloride, and the reaction mixture was kept for 18 hr at room temperature. The solution was decanted from a brown precipitate that had formed during the reaction, the solvent was removed under N_{2} at 35°, and the residue was separated by gc to afford a $2: 3$ mixture of 6 and starting material 8
Peracid Oxidation of 1,8-p-Menthadien-4-ol (2).-To 0.8 g (5.2 mmol) of 2 in 10 ml of methylene chloride cooled in an ice bath were added $0.9 \mathrm{~g}(5.2 \mathrm{mmol})$ of m-chloroperbenzoic acid ($\mathrm{K} \& \mathrm{~K}$ Laboratories, Inc., Plainview, N. Y.) in 10 ml of methylene chloride followed by 25 ml of saturated aqueous sodium carbonate solution. The reaction mixture was kept in the ice bath and stirred for 4 hr , the layers were separated, and the organic layer was concentrated under N_{2}. Separation of the residue by gc afforded 12% starting material (2) and 67% (-)-4-hydroxy-cis-8-p-menthene oxide (7): $[\alpha]^{29} \mathrm{D}-81.2^{\circ}$ (c 1.23); ir 3600 (s), 3050 (s), 1655 (m), 1450 (s), 1420 (w), 1380 (m), 1360 (w), 1340 (m), 1305 (w), 1265 (w), 1240 (m), 1225 (w), 1215 (w), 1200 (w), 1140 (w), 1130 (w), 1115 (m), 1095 (m), 1090 (m), 1085 (m), 1060 (s), 1135 (m), 1120 (m), 1005 (w), 985 (m), $970(\mathrm{w}), 905(\mathrm{~s}), 855(\mathrm{~s}), 840(\mathrm{~s}), 775 \mathrm{~cm}^{-1}$ (s); mass spectrum m / e (rel intensity) 168 (21), 107 (10), 97 (11), 95 (11), 84 (29), 83 (19), 82 (7), 81 (14), 71 (19), 69 (82), 55 (40), 44 (64), 43 (100), 41 (81); high resolution $m / e 168.1149$ (calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$, 168.1149); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.35\left(\mathrm{~s}, 3, t-\mathrm{CH}_{3}\right), 1.78\left(\mathrm{~s}, 3,=\mathrm{CCH}_{3}\right)$, 3.2 ($\mathrm{m}, 1, \mathrm{CHOR}$), 4.90 and 5.02 (2 singlets, $2, \mathrm{C}=\mathrm{CH}_{2}$); and 17% (-)-4-hydroxy-trans-8-p-menthene oxide (4): $[\alpha]^{29} \mathrm{D}$ -88.4° (1.13); ir 3450 (s), 2950 (s), 1645 (m), 1440 (s), 1420 (m), 1380 (m), 1360 (m), 1305 (m), 1260 (m), 1230 (w), 1215 (s), 1118 (m), $1090(\mathrm{~m}), 1060(\mathrm{~s}), 1040(\mathrm{~m}), 1018(\mathrm{~m}), 1005(\mathrm{w})$, 975 (m), $950(\mathrm{~m}), 905(\mathrm{~s}), 845(\mathrm{~s}) ,785(\mathrm{~m}), 718 \mathrm{~cm}^{-1}(\mathrm{~m})$; mass spectrum m / e (rel intensity) 168 (2), 153 (2), 150 (3), 110 (9), 107 (14), 97 (8), 95 (12), $84(16), 83(11), 82(12), 81$ (9), 71 (11), 69 (26), 67 (12), 58 (11), 55 (20), 53 (9), 44 (19), 43 (100), 41 (49), 39 (28); high resolution $m / e 168.1143$ (calcd for $\left.\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}, 168.1149\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.27\left(\mathrm{~s}, 3, t-\mathrm{CH}_{3}\right), 1.67$ (s, $3,=\mathrm{CCH}_{3}$), 2.92 (m, 1, CHOR), 4.80 and 4.94 (singlets, 2 , $\mathrm{C}=\mathrm{CH}_{2}$).

When the peracid reaction mixture was removed from the ice bath after 4 hr , allowed to stir at room temperature 20 hr longer, and worked up as described above, the products isolated by gc were about equal quantities of 7 and 1,4-epoxyneoisodihydrocarveol (6).

Rearrangement of 4-Hydroxy-trans-8-p-menthene Oxide (4) to 6.-When 4μ l of 4 was treated with 20μ l of $9: 1$ acetic acid-water and in 5 min injected onto the ge column, a 2:1 mixture of starting material 4 and 6 was obtained. When 4-hydroxy-cis-8-pmenthene oxide (7) was treated under the same conditions, no starting material, or 6 , or other gc-volatile products could be isolated.

Reduction of 1,4-Epoxyneoisodihydrocarveol (6) to 8.-To 50 $\mu \mathrm{l}$ of 6 in 0.5 ml of absolute EtOH was added 50 mg of 10% Pd / C and the mixture was shaken at 50 psi hydrogen for 24 hr in a Parr hydrogenation apparatus. The catalyst was removed by filtration, the filtrate was concentrated to small volume, and the residue was separated by gc to afford $8,[\alpha]^{29} \mathrm{D}+39.5^{\circ}$ (c

[^60] (1968).
1.32), as the only product isolated, which was identified by ir comparison with an authentic sample. ${ }^{2 \mathrm{e}}$

Reduction of 7 to 4-Hydroxycarvomenthol.-Catalytic reduction of 7 with $10 \% \mathrm{Pd} / \mathrm{C}$ by the above procedure afforded, by gc separation, 4-hydroxycarvomenthol (identified by ir comparison to the authentic sample prepared below by LiAlH_{4} reduction of 11), and cis- and trans-p-menthan-4-ol, which were identified by comparison of their ir spectra to published spectra for these two alcohols. ${ }^{20}$
Reduction of 6 to 1,4-Epoxyneoisocarvomenthol (9). When hydrogenation of 6 was carried out as described above except that $5 \% \mathrm{Pd}$ on BaSO_{4} catalyst was used, the product isolated by ge was identified as 9 by comparison of its ir and mass spectra to those of an authentic sample prepared as described below.

Preparation of (-)-1,4-Epoxyneoisocarvomenthol (9) from Terpinen-4-ol (10).-Epoxidation of 10 with 1 equiv of m chloroperbenzoic acid by the above described procedure for peracid oxidation of 2 afforded, by gc analysis, 26% starting material, 62% 4-hydroxy-cis-carvomenthene epoxide (12), and 12% 4-hydroxy-trans-carvomenthene epoxide (11). The relative retention times and mass spectra matched those reported for these two epoxides. ${ }^{12}$
The cis epoxide 12 (shorter gc retention time) was reduced with LiAlH_{4} as described previously ${ }^{12}$ to afford, by gc separation, 4hydroxycarvomenthol whose mass spectrum was identical with that published for this compound, ${ }^{12}$ and a trace of $c i s-p$-menthane-1,4-diol, mp 116-117.5 ${ }^{\circ}$, whose ir and mass spectra were identical with those of an authentic sample prepared as described previously from ascaridole. ${ }^{21}$ The trans epoxide 11 (longer gc retention time) was reduced with LiAlH_{4}, as described previously, to trans- p-menthane-1,4-diol, ${ }^{12}$ whose ir spectrum was identical with that of a comparison sample prepared below.
The comparison sample was prepared by adding to 0.5 g of 10 a mixture of 1.0 g of $\mathrm{Hg}(\mathrm{OAc})_{2}$ in 30 ml of water and 30 ml of THF, and after $10 \mathrm{~min}, 30 \mathrm{ml}$ of 3 NaOH and 30 ml of 0.5 M NaBH_{4} in 3 N NaOH were added. ${ }^{22}$ The reaction mixture was filtered, the filtrate was saturated with NaCl , the layers were separated, the upper organic layer was concentrated to dryness, and the crystalline residue was recrystallized three times from hexane to yield trans- p-menthane 1,4-diol, mp 135-136.5 ${ }^{\circ}$.

After treatment of $c a .10 \mu \mathrm{l}$ of 4-hydroxy-trans-carvomenthane epoxide (11) with $100 \mu \mathrm{l}$ of THF and $50 \mu \mathrm{l}$ of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ for 5 min and injection of the mixture onto the gc the only product isolated was $9[\alpha]^{29} \mathrm{D}-76.2^{\circ}(c \quad 1.35) .{ }^{8}$ Similar treatment of 4-hydroxy-cis-carvomenthene epoxide (12) afforded a smaller quantity of 9 with significant amounts of p-cymene and carvenone also identified. Carvenone was identified by ir comparison with that of an authentic sample, ${ }^{23}$ and the p-cymene by ir and mass spectral comparison with that of a sample purchased commercially.

Reduction of 1,8-p-Menthadien-4-ol (2) to Terpinen-4-ol (10). ${ }^{24}$ -A $500-\mu \mathrm{l}$ sample of $2, \mathrm{bp} 34-36^{\circ}(0.1 \mathrm{~mm})$, in 1 ml of absolute ethanol was shaken with $10 \% \mathrm{Pd}$ on carbon under 60 psi hydrogen for 4 hr in a Parr hydrogenation apparatus. The catalyst was allowed to settle and portions of the solution were separated by gc to afford terpinen-4-ol (10), $[\alpha]^{29} \mathrm{D}-36^{\circ}$ (c 1.44), as the main product with some starting material and p-menthan-4-ol also identified.

Registry No.-1, 5989-27-5; 2, 38630-70-5; 4, 38630-71-6; 6, 38630-72-7; 6 monoacetate, 38630-$73-8 ; 7,38630-74-9 ; 8,38630-75-0 ; 9,38630-76-1$; 10, 20126-76-5; $\quad \mathrm{SeO}_{2}, 7446-08-4 ; \quad \mathrm{H}_{2} \mathrm{O}_{2}, 7722-84-1$; (-)-carvone, 6485-40-1; (- -cis-carveol, 2102-59-2; (-)-trans-carveol, 2102-58-1; 1,8-p-menthadien-10-ol, 3269-90-7.
(20) B. M. Mitzner, V. J. Mancini, S. Lemberg, and E. T. Theimer, Appl. Spectrosc., 22, 34 (1968).
(21) O. Wallach, Justus Liebigs Ann. Chem., 392, 59 (1912).
(22) H. C. Brown and P. Geoghegan, Jr., J. Amer. Chem. Soc., 89, 1522 (1967).
(23) Kindly furnished by Dr. Ross Sheldon, Glidden-Durkee Co., Jacksonville, Fla
(24) J. C. Leffingwell, U. S. Patent 3,609,197 (Sept 28, 1971).

Reaction of 24,28-Epoxides of Sterol Side Chain with Boron Trifluoride Etherate ${ }^{1}$

Hiroshi Ohtaka, Masuo Morisaki, and Nobuo Ikekawa*
Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo, Japan

Received November 22, 1972

Abstract

Brief treatment of 24,28 -epoxystigmast- 5 -en- 3β-yl acetate (6) with boron trifluoride etherate gave a fragmentation product, desmosteryl acetate ($11,35 \%$), together with 24 -acetylcholesteryl acetate ($12,45 \%$) and 24 -formyl24 -methylcholesteryl acetate (13, 12%). By contrast, when the analogous epoxides, 24,28 -epoxyergost- 5 -en3β-yl acetate (7), 24,28-epoxy-26-norstigmast-5-en- 3β-yl acetate (8), and 24,28 -epoxy- 28 -methylstigmast- 5 -en3β-yl acetate (9) were treated with this reagent, no fragmentation reaction occurred, but 24 -formylcholesta- $3,5-$ diene ($15,12 \%$), 24 -acetyl-26-norcholesteryl acetate ($14,100 \%$), and 24 -acetyl 24 -methylcholesteryl acetate (16 , 22%) were obtained, respectively. The reactions of epoxide 6 with other Lewis acids and protonic acids are also described.

While the BF_{3}-catalyzed reaction of epoxides in the steroidal nucleus has been extensively studied, ${ }^{2}$ the investigation of side-chain epoxides is relatively limited. ${ }^{3}$ In continuation of our studies on the chemical reactivity of the side-chain double bond of fucosteryl acetate (1) (Chart I), ${ }^{4}$ we have found a novel

fragmentation reaction of 24,28 -epoxystigmast-5-en- 3β yl acetate (6) to give desmosteryl acetate (11) by brief treatment with boron trifluoride etherate. ${ }^{5}$ A similar reaction seems to occur in insects during the dealkylation of β-sitosterol to cholesterol, from the evidence that tritiated 24,28 -epoxystigmast- 5 -en- 3β-ol was shown to be effectively transformed into cholesterol in silkworm. ${ }^{6}$

[^61]Details on the reactions of the epoxide will be described in this paper. Furthermore, to test the effect of structural variations of the epoxide on the fragmentation reaction, several analogous epoxides (7, 8, and 9) were prepared and their reaction with boron trifluoride etherate was examined. The influence of various acids on the reaction behavior was also tested.

Results and Discussion

Preparation of Epoxides. - The following epoxides were prepared: 24,28 -epoxystigmast- $5-\mathrm{en}-3 \beta$-yl acetate (6), 24,28 -epoxyergost- $5-\mathrm{en}-3 \beta$-yl acetate (7), 24,28 -epoxy- 26 -norstigmast-5-en- 3β-yl acetate (8), and 24,28 -epoxy- 28 -methylstigmast-5-en- 3β-yl acetate (9). 24-Methylenecholesteryl acetate (2) was synthesized by a Wittig reaction of 24 -oxocholeteryl acetate, ${ }^{7}$ prepared from fucosteryl acetate by ozonolysis. Similarly 26 -norfucosteryl acetate (3) was obtained in 20% yield from 24-oxo-26-norcholesteryl acetate ${ }^{4}$ by a Wittig reaction with ethylenetriphenylphosphorane. Treatment of 1,2 , or 3 with 1 equiv of m chloroperbenzoic acid afforded the corresponding epoxides, 6,7 , and 8 in the yield of 75,18 , and 73%, respectively.
The attempted preparation of 24 -isopropylidenecholesteryl acetate (4) by a Wittig reaction of 24 -oxocholesteryl acetate with isopropylidenetriphenylphosphorane failed, probably because of severe steric hindrance and the tetrasubstituted nature of the resulting olefin. ${ }^{8}$ Therefore, an alternative route was explored. 24-Acetylcholesteryl acetate (12) ${ }^{5}$ by a Grignard reaction with methylmagnesium iodide afforded 28 -hydroxy-24-isopropylcholesteryl acetate (10) in 47% yield. Dehydration of 10 with phosphorus oxychloride gave a mixture of olefins (4 and 5, in a 1:3 ratio by glc analysis), which was directly (without separation) treated with a 0.5 equiv of m-chloroperbenzoic acid. The expected epoxide (9) and the olefin (5) were separated in yields of 28 and 48% by column chromatography of the crude product.

Reaction of Epoxides with Acids.-Treatment of 6 with an excess of boron trifluoride etherate in benzene for 10 sec at room temperature yielded desmosteryl acetate ($11,35 \%$), 24-acetylcholesteryl acetate (12, 45%), and 24 -formyl-24-methylcholesteryl acetate [13, $12 \%, 9.53 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H})$]. A reasonable pathway of this reaction is the following (Scheme I). Regiospecific
(7) D. R. Idler and U. H. M. Fagerlund, J. Amer. Chem. Soc., 79, 1988 (1957).
(8) For a review of the Wittig reaction see A. Maercker, "Organic Reactions," Vol. 14, Wiley, New York, N. Y., 1965, p 270.

epoxide ring opening of 6 would generate the tertiary carbonium ion at C-24, which, in turn, may be quenched in three ways: (a) migration of $\mathrm{C}-25 \mathrm{H}$ with subsequent cleavage of $\mathrm{C}-24,28$ bond to give 11. (b) $\mathrm{C}-28 \mathrm{H}$ shift to afford 12, and (c) $\mathrm{C}-28 \mathrm{CH}_{3}$ shift to yield 13. Rearrangement by route a would necessarily involve loss of acetaldehyde. Indeed, acetaldehyde was identified in the reaction mixture as its 2,4-dinitrophenylhydrazone by a glc analysis.

It was also suspected that the tertiary nature of the intermediate carbonium ion at C-25 may be one important factor in this fragmentation reaction. ${ }^{9}$ This consideration appeared to be, at least partly, verified when similar treatment of epoxide (8) with boron trifluoride etherate was found to give 24-acetyl-26-norcholesteryl acetate (14) (Chart II) in theoretical yield,

15

whereas, no 26 -nordesmosteryl acetate was detected gas chromatographically.
(9) J. M. Coxon, M. P. Hartshorn, and D. N. Kirk, Tetrahedron, 25, 1603 (1969). B. N. Blackett, J. M. Coxon, M. P. Harshorn, and K. E. Richards, Tetrahedron Lett., 1737 (1969); Tetrahedron, 26, 4999 (1969). I. G. Guest and B. M. Marples, J. Chem. Soc. C, 1626 (1970).

Recently, Morelli, et al., reported an interesting fragmentation reaction of 3 -isopropyl-3,5-epoxy- A-norcholestane with boron trifluoride etherate: I. Morelli, S. Catalano, G. Moretts, and A. Marsili, Tetrahedron Lett., 717 (1972). They proposed a mechanism proceeding through an oxetane intermediate. If a similar oxetane could be formed from 6, 26 -nordesmosteryl acetate should be one of the reaction products. However, we could not find, by gle analysis, any material having a shorter retention time than 11. Further, if the oxetane were an intermediate of the reastion of 9 , demosteryl should be the sole product.

In an attempt to assess the effect of a substituent at C-28 on this reaction, epoxides 7 and 9 were treated with boron trifluoride etherate. At room temperature, compound 7 reacted only sluggishly with boron trifluoride etherate. Starting material was recovered even on prolonged treatment (25 hr), while refluxing in benzene for 45 hr gave 24 -formylcholesta-3,5-diene ($15,12 \%$), uv $236.5 \mathrm{~nm}(\epsilon 19,600)$, nmr $\delta 5.2-6.00(\mathrm{~m}, 3 \mathrm{H})$ and $9.55 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H})$, as the sole isolable product, in addition to recovered starting compound. When compound 9 was treated with boron trifluoride etherate at room temperature for 10 sec , glc analysis of the product showed 24 -acetyl-24-methylcholesteryl acetate (16), $\delta 1.97(\mathrm{~s}, 3 \mathrm{H})$ and $2.00 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$, as the major component and a trace of 11 . The former was isolated in 22% yield by column chromatography on silicic acid.

Comparing the reactivity of four epoxides, it was found that the disubstituted one (7) reacted extremely slowly with boron trifluoride etherate compared with the tri- or tetrasubstituted epoxides (6,8, or 9). Thus, even by refluxing the epoxide 7 in benzene for 30 hr , about half of unreacted starting material was recovered, whereas the other three epoxides were consumed completely within 10 sec at room temperature. All the isolated products (11-16) can be considered to be generated from the C-24 carbonium ion. This regiospecificity in the opening of the epoxide ring appears to be accomplished even in the case of 9 , which could give another tertiary carbonium ion at C-28. Another noteworthy feature of these reactions is the strong dependency of the fragmentation reaction on the substituents around the epoxide ring. Thus, only the epoxide 6, but none of the analogous 7, 8, or 9 , seems to induce the fragmentation reaction.

Several Lewis acids and protonic acids were used to open the epoxide 6 in the hope of increasing the yield of desmosteryl acetate (11). However, the results summarized in Table I show that the optimum yield of 11 which never exceeded 35% was obtained with boron trifluoride etherate or SnCl_{4}.

When the epoxide 6 was refluxed with p - TsOH in benzene, a diene was obtained in 48% yield. The structure of this diene was deduced from its uv spectrum $235.5 \mathrm{~nm}(\epsilon 18,600)$ and nmr 1.83 (s, 6 H). The same diene 17 was generated from saringosteryl acetate 10 by dehydration with $p-\mathrm{TsOH}$. A catalytic hydrogenation over PtO_{2} gave tetrahydrofucosteryl acetate, proving no skeletal rearrangement during the reactions. The diene 17 seems to be a common reaction product of the epoxide 6 treated with protonic acids as shown in Table I.

Experimental Section ${ }^{11}$

24,28-Epoxystigmast-5-en-3 β-yl Acetate (6).-A solution of 9.1 g of fucosteryl acetate ${ }^{12}$ and 5.2 g of m-chloroperbenzoic acid in

[^62]Table I
Product Distribution in the Reaction of 24,28 -Epoxyfucosteryl Acetate with Various Acids

Acids	Molar ratio of reagent	Solvent	Temp. ${ }^{\circ} \mathrm{C}$	Time	Yields, ${ }^{\text {a }}$ \%			
					$\begin{gathered} \text { Desmo } \\ 11 \end{gathered}$	$\begin{gathered} \text { 28-Keto } \\ 12 \end{gathered}$	$\begin{aligned} & 24 \text {-Formyl } \\ & 13 \end{aligned}$	$\begin{gathered} \text { 24,28-Diene } \\ 17 \end{gathered}$
Lewis acids								
$\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$	4	Benzene ${ }^{\text {b }}$	25	10 sec	33.6	34.8	27.6	
$\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$	0.15	Benzene	25	10 sec	7.6	20.3	25.1	
$\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$	0.15	Benzene	25	1 hr	29.7	28.4	28.4	
SnCl_{4}	4	Benzene	25	1 hr	30.4	42.0	17.6	
ZnBr_{2}	4	Benzene	80	1 hr	14.4	30.7	38.9	
AlCl_{3}	4	AcOH	25	10 sec	7.6	59.4	trace	
BF_{3} gas	L.E. ${ }^{\text {c }}$	CCl_{4}	25	10 sec	10.9	29.7	22.5	
BF_{3} gas	L.E.	CCl_{4}	0	10 sec	2.5	54.7	21.6	
Protonic acids								
$p-\mathrm{TsOH}$	4	Benzene	25	1 hr	4.1	30.7	19.6	26.5
$\mathrm{AcOH}^{\text {d }}$			25	10 min	2.9	34.3	41.4	13.3
$\mathrm{CF}_{3} \mathrm{COOH}$	4	Hexane	25	1 hr	12.0	26.1	23.2	24.7
PPA	L.E.	Hexane	25	1 hr	12.8	39.4	14.5	29.2

${ }^{a}$ Estimated from the peak area of gas chromatogram (1.5% OV-1 on Gas-Chrom P, $80-100$ mesh, $180 \mathrm{~cm} \times 4 \mathrm{~mm}$ i.d.; column temperature, 270°; carrier gas, N_{2}; flow rate, $80 \mathrm{ml} / \mathrm{min}$). ${ }^{b}$ The reaction is strongly dependent on solvent. Ether in place of benzene gave a complex mixture of products, whereas n-hexane seemed to afford a similar product distribution as in the case of benzene. ${ }^{c}$ Large excess. ${ }^{d}$ The reagent was used as a solvent.

300 ml of chloroform was stirred for $5 \min$ at 0°. The reaction mixture was washed with $1 N \mathrm{NaOH}$ and then with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the product was chromatographed on silica gel. The fraction eluted with hexane-benzene ($1: 3$) afforded the epoxide $6(6.9 \mathrm{~g})$, which was crystallized from acetone: mp 101-103 ${ }^{\circ}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.67$ (s, 3, C-18 H), 0.85-0.95 (m, 9), 1.01 (s, 3, C-19 H), 1.25 (d, 3, $J=6 \mathrm{~Hz}, \mathrm{C}-29 \mathrm{H}), 2.02(\mathrm{~s}, 3, \mathrm{OAc}), 2.88(\mathrm{q}, 1, J=6 \mathrm{~Hz}$, C-28 H), $4.60(\mathrm{~m}, 1, \mathrm{C}-3 \mathrm{H}), 5.35(\mathrm{~m}, 1, \mathrm{C}-6 \mathrm{H})$; mass spectrum $m / e 410\left(\mathrm{M}^{+}-\mathrm{AcOH}\right)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}: \mathrm{C}, 79.10$; H, 10.71. Found: C, 79.16; H, 10.63.

Reaction of 24,28-Epoxystigmast-5-en-3 β-yl Acetate with Boron Trifluoride Etherate.-24,28-Epoxystigmast-5-en- 3β-yl acetate $(6,270 \mathrm{mg})$ in 5 ml of dry benzene was treated with 0.5 ml of boron trifluoride etherate for 10 sec at room temperature. The solution was washed with saturated NaHCO_{3}, then with water, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was distilled off and the crude product was chromatographed on silica gel.

The fraction eluted with benzene-hexane (1:4) gave 95 mg of desmosteryl acetate, mp 114-116 ${ }^{\circ}$ (from acetone), identified by comparison with the authentic sample.

The fraction eluted with benzene-hexane (1:1) gave 32 mg of 24 -formyl-24-methylcholesteryl acetate (13): mp 128-131 ${ }^{\circ}$ (from acetone); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \hat{o} 0.67\left(\mathrm{~s}, 3, \mathrm{C}-18 \mathrm{CH}_{3}\right), 0.90(\mathrm{~s}, 6)$, $0.96(\mathrm{~s}, 3), 1.02(\mathrm{~s}, 6), 2.03(\mathrm{~s}, 3, \mathrm{OAc}), 4.60(\mathrm{~m}, 1, \mathrm{C}-3 \mathrm{H}), 5.40$ ($\mathrm{m}, 1, \mathrm{C}-6 \mathrm{H}$), $9.53 \mathrm{ppm}(\mathrm{s}, 1, \mathrm{CHO})$; ir $1710 \mathrm{~cm}^{-1}$; mass spectrum $m / e 410.3493\left(\mathrm{M}^{+}-\mathrm{AcOH}\right)$ (calcd 410.3548). Compound $13(9 \mathrm{mg})$ in methanol (1 ml) was treated with excess NaBH_{4} at room temperature for 30 min . After usual work-up, the 24-hydroxymethyl derivative was obtained: mp 129-132 ${ }^{\circ}$ (from methanol); nmr (CDCl_{3}) 0.67 ($\mathrm{s}, 3$), 0.73 ($\mathrm{s}, 3$), 0.77 $0.97(\mathrm{~m}, 6), 1.00(\mathrm{~s}, 6), 2.03(\mathrm{~s}, 3), 3.43\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{OH}\right), 4.60$ ($\mathrm{m}, 1$), $5.37 \mathrm{ppm}(\mathrm{m}, 1)$.

The fraction eluted with benzene-hexane (3:1) gave 125 mg of 24-acetylcholesteryl acetate: mp 130-132 ${ }^{\circ}$ (from acetone); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 0.66(\mathrm{~s}, 3), 0.85-1.05(\mathrm{~m}, 12), 2.01(\mathrm{~s}, 3), 2.08(\mathrm{~s}, 3$, C-24 Ac), $4.55(\mathrm{~m}, 1), 5.33 \mathrm{ppm}(\mathrm{m}, 1)$; ir $1710,1725 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}$: C, 79.10; $\mathrm{H}, 10.71$. Found: C, 79.05 ; H, 10.73 .

Identification of Acetaldehyde.-To the reaction mixture of 24,28 -epoxystigmast- 5 -en- 3β-yl acetate (5 mg) with boron trifluoride etherate ($5 \mu \mathrm{l}$) in benzene (1 ml), a solution of 2,4dinitrophenylhydrazine (0.01 g) in diglyme (0.3 ml) and concentrated HCl (1 drop) was added. The mixture was extracted with benzene. The extract was analyzed by a glc using 1.5% OV-1 and 1.5% OV- 17 on Chromosorb W, $80-100$ mesh, as the column packings (column size, $180 \mathrm{~cm} \times 4 \mathrm{~mm}$ i.d.; column temperature, 200°). One of the prominent peaks corresponded with the 2,4dinitrophenylhydrazone of acetaldehyde.

26-Norfucosteryl Acetate (3).-A mixture of triphenylphosphinethyl bromide (0.5 g), n-butyllithium ($1.5 \% \mathrm{w} / \mathrm{v}, 0.6 \mathrm{ml}$), and dry ether (6 ml) was shaken under nitrogen atmosphere in a pressure bottle for 30 min at room temperature. To the ylide
solution, 24-oxo-26-norcholesteryl acetate ${ }^{4}$ (185 mg) was added and the mixture was allowed to stand for 23 hr at 80°. After the usual work-up the product was acetylated with excess of acetic anhydride and pyridine and then chromatographed on silica gel. Elution with benzene-hexane ($1: 5$) afforded 36 mg of 3: mp 126-129 ${ }^{\circ}$ (from methanol-acetone); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 0.67$ (s, 3), 0.99-1.10 (m, 9), $1.60\left(\mathrm{~d}, 3, J=7 \mathrm{~Hz}, \mathrm{C}-29 \mathrm{CH}_{3}\right), 2.00$ ($\mathrm{s}, 3$), $4.60(\mathrm{~m}, 1), 5.17(\mathrm{q}, 1, J=7 \mathrm{~Hz}, \mathrm{C}-28 \mathrm{H}), 5.40 \mathrm{ppm}(\mathrm{m}$, 1); mass spectrum $m / e 380.3416$ ($\mathrm{M}^{+}-\mathrm{AcOH}$) (calcd 380.3443). Elution with benzene-hexane (3:1) afforded 89 mg of starting material.
24,28-Epoxy-26-norstigmast-5-en-3 β-yl Acetate (8).-26-Norfucosteryl acetate (30 mg) in 1 ml of chloroform was treated with 17 mg of m-chloroperbenzoic acid at 0° for 3 min . The product was chromatographed on silica gel. Elution with benzenehexane ($1: 5$) afforded 5 mg of recovered starting material. Elution with benzene-hexane ($1: 1$) afforded 22 mg of 8: mp 135$137^{\circ}$ (from methanol-acetone); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 0.67(\mathrm{~s}, 3), 0.87-$ $1.10(\mathrm{~m}, 9), 1.27\left(\mathrm{~d}, 3, J=6 \mathrm{~Hz}, \mathrm{C}-29 \mathrm{CH}_{3}\right), 2.02(\mathrm{~s}, 3), 2.83$ ($\mathrm{q}, 1, J=6 \mathrm{~Hz}, \mathrm{C}-28 \mathrm{H}), 4.60(\mathrm{~m}, 1), 5.40 \mathrm{ppm}(\mathrm{m}, 1)$; mass spectrum $m / e 396.3371\left(\mathrm{M}^{+}-\mathrm{AcOH}\right)$ (calcd 396.3392).

Reaction of 8 with Boron Trifluoride Etherate.-8 (10 mg) in dry benzene (2 ml) was treated with $10 \mu \mathrm{l}$ of boron trifluoride etherate for 10 sec at room temperature. The solution was washed with saturated NaHCO_{3}, then with water, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent afforded 10 mg of 24 -acetyl- 26 norcholesteryl acetate as a sole product: mp 133.5-134.5 $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.67(\mathrm{~s}, 3), 0.83-1.10(\mathrm{~m}, 9), 2.03(\mathrm{~s}, 3), 2.10$ ($\mathrm{s}, 3, \mathrm{C}-24 \mathrm{Ac}$), $4.60(\mathrm{~m}, 1), 5.40 \mathrm{ppm}(\mathrm{m}, 1)$; mass spectrum $m \neq e 396.3371\left(\mathrm{M}^{+}-\mathrm{AcOH}\right)$ (calcd 396.3392).

24,28-Epoxy-24-methylenecholesteryl Acetate (7).-24Methylenecholesteryl acetate (2) was prepared from 24-oxocholesteryl acetate with triphenylphosphinemethyl bromide by a Wittig reaction. The yield was increased to 85% by heating the reaction mixture at 120° for 24 hr , instead of room temperature as reported. ${ }^{7}$
$2(1 \mathrm{~g})$ in 50 ml of chloroform was treated with m-chloroperbenzoic acid (450 mg) at 0° for 3.5 hr . After the usual work-up the product was chromatographed on silical gel. Elution with benzene-hexane ($1: 2$) afforded 200 mg of the starting material. Elution with benzene-hexane (1:1) afforded 190 mg of 7: mp $134-136^{\circ}$ (from methanol); nmr (CCl ${ }_{4}$) $\delta 0.67(\mathrm{~s}, 3), 0.80-1.02$ (m, 12), $1.93(\mathrm{~s}, 3), 2.39(\mathrm{~s}, 2, \mathrm{C}-28 \mathrm{H}), 4.48(\mathrm{~m}, 1), 5.42 \mathrm{ppm}$ (m, 1). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}: \mathrm{C}, 78.89 ; \mathrm{H}, 10.59$. Found: C, 78.99 ; H, 10.63 .

Reaction of 7 with Boron Trifluoride Etherate.-A solution of 100 mg of 7 and $110 \mu \mathrm{l}$ of boron trifluoride etherate in 20 ml of benzene was refluxed for 45 hr . After the usual work-up, the crude product was chromatographed on silica gel column. Elution with benzene-hexane ($1: 6$) afforded 9.4 mg of 24 -formyl-cholesta-3,5-diene (15): mp 94-99 (amorphous); nmr (CDCl_{3}) $\delta 0.67(\mathrm{~s}, 3), 0.87-1.03(\mathrm{~m}, 12), 5.62-6.0(\mathrm{~m}, 3, \mathrm{C}-3,4,6 \mathrm{H})$, and $9.55 \mathrm{ppm}(\mathrm{s}, 1,24-\mathrm{CHO})$; uv $\max 236.5 \mathrm{~nm}(\epsilon 19,600)$; ir 1715
cm^{-1}; mass spectrum $m / e 396\left(\mathrm{M}^{+}\right)$. Elution with benzenehexane ($2: 1$) afforded 12 mg of the starting material.
28-Hydroxy-24-isopropylcholesteryl Acetate (10).-A solution of $250 \mu \mathrm{l}$ of methyl iodide in 1 ml of dry ether was added dropwise to 96 mg of magnesium turnings under nitrogen atmosphere. After the spontaneous reaction began, another 5 ml of dry ether was added, and the mixture was stirred for 45 min . To the solution 800 mg of 12 in 5 ml of ether was added dropwise in 15 min and the solution was refluxed for 1.5 hr . After the usual work-up, the product was acetylated with excess acetic anhydride and pyridine and chromatographed on silica gel. Elution with ben-zene-hexane ($2: 1$) afforded 237 mg of the starting material. Elution with benzene-hexane ($10: 1$) afforded 28 -hydroxy-24isopropylcholesteryl acetate ($10,387 \mathrm{mg}$): $\mathrm{mp} \mathrm{132-135}{ }^{\circ}$ (from acetone); $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.62(\mathrm{~s}, 3), 0.73-1.00(\mathrm{~m}, 12), 1.07(\mathrm{~s}, 6$, $\mathrm{C}-29 \mathrm{CH}_{3}, \mathrm{C}-30 \mathrm{CH}_{3}$), 1.89 (s, 3), $4.50(\mathrm{~m}, 1), 5.30(\mathrm{~m}, 1)$; mass spectrum $m / e 426.3849$ (M^{+}- AcOH) (calcd 426.3861).
24,28-Epoxy-28-methylstigmast-5-en-3 β-yl Acetate (9).-To the solution of 150 mg of 10 in 3 ml of pyridine, 0.3 ml of phosphorus oxychloride was added, and the mixture was allowed to stand overnight at room temperature. After the usual work-up, the product was dissolved in 10 ml of chloroform and treated with 35 mg of m-chloroperbenzoic acid at 0° for 10 min . The product was chromatographed on silica gel. Elution with benzenehexane ($1: 10$) afforded 82 mg of 24 -isopropylcholesta-5,28-dien3 -ol acetate (5): $\mathrm{mp} \mathrm{128-131}{ }^{\circ}$ (from acetone); $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta$ $0.63(\mathrm{~s}, 3), 0.80-1.03(\mathrm{~m}, 12), 1.53(\mathrm{~s}, 3), 1.90(\mathrm{~s}, 3), 4.55(\mathrm{~m}, 1)$, 4.59 (s, 1, C-29 H), 4.70 ($\mathrm{s}, 1, \mathrm{C}-29 \mathrm{H}$), $5.33 \mathrm{ppm}(\mathrm{m}, 1)$; mass spectrum $m / e 408.3724\left(\mathrm{M}^{+}-\mathrm{AcOH}\right)$ (calcd 408.375). Elution with benzene-hexane ($3: 1$) afforded 48 mg of $9: \mathrm{mp} \mathrm{103-105}{ }^{\circ}$ (amorphous); nmr (CCl ${ }_{4}$) $\delta 0.67$ (s, 3), 0.83-1.13 (m, 12), 1.22 (s, 3), $1.26(\mathrm{~s}, 3), 1.95(\mathrm{~s}, 3), 4.55(\mathrm{~m}, 1), 5.30 \mathrm{ppm}(\mathrm{m}, 1)$; mass spectrum $m / e 424.3671$ ($\mathrm{M}^{+}-\mathrm{AcOH}$) (calcd 424.3704).

Reaction of 9 with Boron Trifluoride Etherate.- $9(30 \mathrm{mg})$ in 6 ml of benzene was treated with boron trifluoride etherate (30 $\mu \mathrm{l})$ for 10 sec at room temperature. After the usual work-up, the product was chromatographed on silica gel. Elution with ben-zene-hexane ($1: 3$) afforded 6.6 mg of 24 -acetyl- 24 -methylcholesteryl acetate (16): mp 115-120 ${ }^{\circ}$ (from methanol); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 0.67(\mathrm{~s}, 3), 0.80(\mathrm{~s}, 3), 0.90(\mathrm{~s}, 6), 1.00(\mathrm{~s}, 6), 1.97$ (s, 3), 2.00 (s, 3, C-24 Ac), 4.60 (m, 1), $5.40 \mathrm{ppm}(\mathrm{m}, 1)$; ir $1690,1715 \mathrm{~cm}^{-1}$; mass spectrum $m / e 424.3671\left(\mathrm{M}^{+}-\mathrm{AcOH}\right)$ (calcd 424.3704).

24-Ethylcholesta-5,24,28-trien-3 β-ol Acetate (17).-A solution of 1 g of 6 and 65 mg of p-toluenesulfonic acid in 30 ml of benzene
was refluxed for 30 min . After usual work-up of the mixture, the crude product was chromatographed on silica gel. The fraction eluted with benzene-hexane ($1: 1$) gave 487 mg of $17: \mathrm{mp}$ $109-111^{\circ}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.69$ (s, 3), 1.02 (s, 6), 1.83 (m, 6, $\mathrm{C}-26$ and $\mathrm{C}-27 \mathrm{CH}_{3}$), 2.02 (s, 3), $4.60(\mathrm{~m}, 1), 4.80-5.06$ (m, 2, C-29 H_{2}), $5.38(\mathrm{~m}, 1, \mathrm{C}-28 \mathrm{H}), 5.64 \mathrm{ppm}(\mathrm{m}, 1)$; uv $\max 235.5$ nm ($\epsilon 18,600$); mass spectrum $m / e 452.3677\left(\mathrm{M}^{+}\right)$(calcd 452.3654).

Compound $17(50 \mathrm{mg})$ was dissolved in 1 ml of acetic acid and hydrogenated over 5 mg of platinum dioxide. Three mole equivalents of hydrogen was absorbed over a period of 1 hr . After removal of the catalyst, the filtrate was made alkaline with NaOH solution and the precipitate crystallized from acetone, mp $123-126^{\circ}$. The melting point and ir and nmr spectra were identical with those of tetrahydrofucosteryl acetate prepared from fucosteryl acetate by the same procedure.

Compound 17 was unstable to light. After a 1-day exposure to light in the laboratory, the major part had decomposed, but it was stable when refrigerated in a dark bottle.

Dehydration of Saringosteryl Acetate.-A solution of 517 mg of saringosteryl acetate and 27 mg of p-toluenesulfonic acid in 15 ml of benzene was refluxed for 30 min . After the usual work-up, the crude product was chromatographed on silica gel. The fraction eluted with benzene-hexane ($1: 3$) afforded prisms from acetone of mp 109-111 ${ }^{\circ}$. The compound's melting point, mixture melting point, and nmr spectrum agreed with those of compound 17.

Registry No. -3, 38863-83-1; 5, 38863-84-2; 6, $35458-70-9$; 7, 35458-74-3; 8, 38863-87-5; 9, 38863-88-6; 10, 38863-89-7; 11, 2665-04-5; 12, 38863-91-1; 13, 38863-92-2; 13 (24-hydroxymethyl derivative), $38863-93-3$; 14, $38863-94-4$; 15, $38863-95-5$; 16, 38863-96-6; 17, 38863-97-7; fucosteryl acetate, 6035-$62-7$; boron trifluoride etherate, 109-63-7; 24-oxo-26norcholesteryl acetate, 26308-99-6; 24-oxocholesteryl acetate, 20981-59-3.

Acknowledgments.-This work was supported by grants from The Ministry of Education and The Hoansha Foundation. We are grateful to Mr. Y. Shida, Tokyo College of Pharmacy, for the mass spectral measurements.

Stereospecific Synthesis of Cis and Trans Epoxides from the Same Diol

Douglas A. Seeley* and James McElfee ${ }^{1}$
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Received July 19, 1972
From the benzaldehyde acetal of meso-2,3-butanediol, isomerically pure cis-2,3-epoxybutane was synthesized by treatment with N-bromosuccinimide in carbon tetrachloride, followed by treatment with potassium hydroxide; isomerically pure trans-2,3-epoxybutane was synthesized by treatment with N-bromosuccinimide in water, followed by treatment with p-toluenesulfonyl chloride, followed by treatment with potassium hydroxide. From these reactions and the treatment of other cyclic acetals with N-bromosuccinimide, the reaction was shown to be ionic, kinetically regiospecific, and specific for the acetal carbon.

The recently reported stereospecific syntheses of halohydrin esters and epoxides by Newman and Chen ${ }^{2}$ prompt us to report our preliminary results on a related stercospecific epoxide synthesis. Treatment of the readily accessible acetal of benzaldehyde and meso-2,3butancdiol ${ }^{3}$ with N-bromosuccinimide ${ }^{4}$ (NBS) in carbon
(1) Participant in ACS Seed Catalyst Program, summer, 1971.
(2) M. S. Newman and C. H. Chen, J. Amer. Chem. Soc., 94, 2149 (1972).
(3) D. Gagnaire and J.-B. Robert, Bull. Soc. Chim. Fr., 3646 (1965).
(4) For other examples of bromination of 1,3-dioxolanes, see ref 6 and papers cited therein; T. L. Hullar and S. B. Siskin, J: Org. Chem., 35, 225 (1970), and M. M. Ponpipom and S. Hanessian, Can. J. Chem., 50, 253 (1972), for uses in sugar and nucleoside chemistry; and D. H. R. Barton, L. Bould, D. L. C. Clive, P. D. Magnus, and T. Hase, J. Chem. Soc. C, 2204 (1971).
tetrachloride containing a trace of HBr followed by treatment of the resulting bromohydrin ester ${ }^{5}$ with potassium hydroxide in ethylene glycol gives cis-2,3epoxybutane isomerically pure by nmr (Scheme I). Treatment of the same acetal with NBS in water, followed by treatment of the tosylate derived from the resulting glycol monoester with potassium hydroxide in ethylene glycol and 1,2-dimethoxyethane, gives trans-2,3-cpoxybutane isomerically pure by nmr (Scheme II).

[^63]Scheme I

Hence either the cis or trans cpoxide may bc made at will from the same glycol.

That the oxidation of the dioxolane involves a dioxolenyl cation rather than radical is shown by the absence of bromo ester or 2-butyl benzoate in Schemc II and the absence of chloro ester in Scheme I. ${ }^{6}$ When the acetal madc from a mixture of $60 \% \mathrm{dl}$ - and 40% meso-2,3-butanediol is treated with NBS in carbon tetrachloride, the erythro bromohydrin ester predominates. ${ }^{7}$ When the acctal is treated with NBS in water, the threo glycol monoester predominates. ${ }^{8}$ Hence there is no cis-trans isomerization of the dioxolane or dioxolenium rings before cleavage.

An explanation of the difference in the stereochemistry of the ring opening by water $v s$. bromide was advanced by Perst, as depicted in Scheme III. ${ }^{9}$
Regiospecificity similar to that of Newman and Chen ${ }^{2}$ was observed on bromination of 4-methyl-2-phenyl-1,3dioxolane in carbon tetrachloride with NBS and a trace of HBr at room temperature. ${ }^{6}$ This ratio is apparently

kinetically controlled, since upon heating this reaction mixture or the $3: 1$ mixture of bromo benzoates resulting
(6) Cf. J. D. Prugh and W. C. McCarthy, Tetrahedron Lett., 1351 (1966).
(7) Assayed by nmr of the resultant epoxide: 40% cis and 60% trans.
(8) Assayed by gle (10% SE-30, 100°) of the acetonides of the glycols resulting from saponification of this ester: $\sim 70 \%$ threo and 30% erythro.
(9) H. Perst, "Oxonium Ions," Academic Press, New York, N. Y., 1971, 80 ff.

from reaction of benzoyl bromide with practical 1-bromo-2-propanol (consisting of 75% 1-bromo-2-propanol and 25% 2-bromo-1-propanol) in carbon tetrachloride at 70° for 12 hr , no significant change in the ratio of isomers is observed by nmr; i.e., the reverse reactions (Scheme IV) do not occur under the reaction conditions.

Note that, since there is no crossover of cll-2,3-butanc-diol-derived products to meso-2,3-butanediol-derived products, or vice versa, the conversion of cither $d-$ or l-2,3-butanediol to epoxide via Scheme I would result in no racemization and would give the enantiomerically pure epoxide.
The chemical specificity of this bromination is demonstrated in the reaction of cedrenaldchyde and 3-phenylbutyraldehyde cthylene acctals with NBS in carbon tetrachloride (Scheme V). In no case were any

Scheme V

products resulting from the bromination of the allylic or benzylic positions detected by nmr .

One of the useful features of being able to generate either the cis or trans cpoxide from a given diol is that the epoxides are intermediates for stereospecific deoxygenation to the olefins. We are now pursuing ways to generate cis or trans olefins at will directly from a given bromohydrin ester.

Experimental Section

Infrared spectra were recorded on a Perkin-Elmer 2.77 spectrometer. All nmr spectra were recorded on a Varian A-60A spectrometer. Mass spectra were recorded on a AEI MN-901/ Digital PDP-8/I system. The elemental analysis was performed by Meade Microanalytical Laboratory, Amherst, Mass. Gas chromatographic analyses and preparations were made on a modified Wilkens Aerograph A-90-P/Varian Aerograph 700 gas chromatograph.

Cedren-15-aldehyde Ethylene Acetal.-A mixture of 5.57 g (25.6 mmol) of cedren- 15 -aldehyde, ${ }^{10} 1.60 \mathrm{~g}$ (25.8 mmol) of ethylene glycol, 3.79 g (25.6 mmol) of triethyl orthoformate, and $c a .10 \mathrm{mg}$ of p-toluenesulfonic acid was heated slowly to 140° while the volatile products were distilled through a short-path still at atmospheric pressure. When the head temperature reached 85° the remaining mixture was distilled in vacuo to give 3.0 g of mixture (70% acetal by gc^{11}), bp $102-128^{\circ}(0.10 \mathrm{~mm})$, and 2.5 g of pure acetal, bp $128^{\circ}(0.10 \mathrm{~mm})$, in 68% yield (total): $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 0.90(\mathrm{~d}, 3, J=7 \mathrm{~Hz}), 0.98$ (s, 3), 1.02 (s, 3), 1.2$2.3(\mathrm{~m}, 11), 3.8(\mathrm{~m}, 4), 5.05(\mathrm{~s}, 1), 5.68(\mathrm{t}, 1, J=3 \mathrm{~Hz}) ; m / e$ 262.1912 (calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}, 262.1932$).

3-Phenylbutyraldehyde Acetal.-A mixture of 2.00 g (13.5) mmol) of 3-phenylbutyraldehyde \{prepared by reduction of ethyl 3-phenylbutyrate ${ }^{12}$ with diisobutylaluminum hydride by the method of Zakharkin and of Khorlina ${ }^{13}$, bp $8: 3-84^{\circ}(2.8 \mathrm{~mm})$ [lit. ${ }^{14} \mathrm{bp} 115^{\circ}(18 \mathrm{~mm})$] in 86% yield \}, $1.3 \mathrm{~g}(21 \mathrm{mmol})$ of ethylene glycol, and 10 mg of p-toluenesulfonic acid in 50 ml of benzene was heated at reflux in a Dean-Stark apparatus for 15 hr. The mixture in the pot was diluted with 50 ml of ether, washed with 30 ml of saturated aqueous NaHCO_{3} solution, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, concentrated on a rotating evaporator, and distilled in vacuo to give $2.18 \mathrm{~g}(84 \%)$ of acetal: bp $88-94^{\circ}(0.8 \mathrm{~mm})$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ $\delta 1.25(\mathrm{~d}, 3, J=7 \mathrm{~Hz}), 1.8(\mathrm{~m}, 2), 2.93$ (sextet, $1, J=7 \mathrm{~Hz}$), $3.76\left(\mathrm{~m}, 4, \mathrm{~A}_{2} \mathrm{~B}_{2}\right), 4.56(\mathrm{~d} \times \mathrm{d}, \mathrm{l}, J=4,6 \mathrm{~Hz}), 7.13$ ($\left.\mathrm{s}, \mathrm{i}\right)$) m / e 192.1169 (calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}, 192.1150$).

Bromination of 4,5-Dimethyl-2-phenyl-1,3-dioxolane in CCl_{4}.To a slurry of 21.0 g (0.118 mol) of N-bromosuccinimide (NBS) in 250 ml of CCl_{4} cooled in an ice bath, $21.0 \mathrm{~g}(0.118 \mathrm{~mol})$ of 4,5-dimethyl-2-phenyl-1,3-dioxolane ${ }^{2}$ [prepared by the triethyl orthoformate method (above) in 98% yield from 2,3-butanediol (56% threo and 44% erythro by gc^{15} of acetonide), bp $153-157^{\circ}$ $(56 \mathrm{~mm})$] was added slowly. The mixture was stirred in darkness for 16 hr at room temperature, after which all of the NBS was observed to have reacted (this reaction time varies, without apparent pattern, from 2 hr to 1 week). The reaction mixture was filtered, washed twice with 60 ml of saturated aqueous NaH CO_{3} solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on a rotating evaporator to 33.7 g of yellow oil (111% of theory). A sample was purified by distillation in vacuo for analysis: bp 112-113 ${ }^{\circ}$ (1.6 mm); ir (neat) 1725 and $1270 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.60$ (d, $3, J=6.5 \mathrm{~Hz}), 1.72(\mathrm{~d}, 3, J=7 \mathrm{~Hz}), 4.21(\mathrm{~m}, 1), 5.17(\mathrm{~m}, \mathrm{l})$, 7.4 (m, 3), $8.0(\mathrm{~m}, 2) ; \mathrm{m} / e 258.0051$ (calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Br}^{81} \mathrm{O}_{2}$, 258.0078). The nmr spectrum of an analytical sample prepared from the bromination of 4,5-dimethyl-2-phenyl-1,3-dioxolane prepared from erythro-2,3-butanediol differs only in the multiplets at $\delta 4.12$ and 5.17 , which are simplified to $4.21(\mathrm{~d} \times \mathrm{q}, 1$, $J=4,7 \mathrm{~Hz})$ and $5.17(\mathrm{~d} \times \mathrm{q}, 1, J=4,6 \mathrm{~Hz})$.

Saponification of Crude 2-(3-Bromobutyl) Benzoate.-A mixture of $1.9 \mathrm{~g}(47 \mathrm{mmcl})$ of NaOH and $5.32(20.7 \mathrm{mmol})$ of $2-(3-$ bromobutyl) benzoate in 15 ml of ethylene glycol was gradually heated to 140° while the product was distilled through a short-

[^64]path still, giving 1.19 g of clear liquid, bp $59^{\circ}(740 \mathrm{~mm})$, which was analyzed by nmr to be 35% cis- and 55% trans- 2,3 -epoxybutane and 10% ethylene glycol. The yield from 4,5-dimethyl-2-phenyl-1,3-dioxolane was $111 \% \times 72 \%$ or 80%.

Bromination of 4,5-Dimethyl-2-phenyl-1,3-dioxolane in $\mathrm{H}_{2} \mathrm{O}$.To a mixture of $13.51 \mathrm{~g}(76.1 \mathrm{mmol})$ of NBS, 1 drop of concentrated hydrobromine acid, and 130 ml of $\mathrm{H}_{2} \mathrm{O}$ cooled in an ice bath, $13.51 \mathrm{~g}(76.1 \mathrm{mmol})$ of 4,5 -dimethyl-2-phenyl-1,3-dioxolane (prepared from a mixture of erythro- and threo-2,3-butanediols) was added slowly. After being stirred for 1 hr , the reaction mixture was still red, so $c a .2 \mathrm{~g}$ of NaHCO_{3} was added, and the mixture was stirred for 17 hr at room temperature, then extracted with $3 \times 100 \mathrm{ml}$ portions of ether which were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to $c a .20 \mathrm{ml}$ of yellow oil. The oil was distilled in vacuo to give 12.58 g (85%) of 2-(3-hydroxybutyl) benzoate: bp $108-115^{\circ}(0.5 \mathrm{~mm})$; ir (neat) 3450 and $1720 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{~d}, 3, J=7 \mathrm{~Hz}), 1.34(\mathrm{~d}, 3, J=$ $\overline{\mathrm{H}} \mathrm{H}), 2.9(\mathrm{~s}, 1), 3.95(\mathrm{~m}, 1), 5.07(\mathrm{~m}, 1), 7.45(\mathrm{~m}, 3), 8.1(\mathrm{~m}, 2)$; $\mathrm{m} / \mathrm{e} 194.0964$ (calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}, 194.0942$).

2-(3-Benzoyloxybutyl) p-Toluenesulfonate.-To 0.88 g (4.53 mmol) of 2-(3-hydroxybutyl) benzoate in 12 ml of pyridine, 1.74 $\mathrm{g}(9.11 \mathrm{mmol})$ of freshly recrystallized p-toluenesulfonyl chloride was added. The mixture was allowed to stand at room temperature for 24 hr , then was diluted with 50 ml of ether. The solution was washed successively with $3 \times 10 \mathrm{ml}$ of dilute (1:1) HCl solution, $2 \times 10 \mathrm{ml}$ of saturated aqueous NaHCO_{3} solution, and 10 ml of $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, and concentrased on a rotating evaporator to a white solid which was recrystallized from ether and petroleum ether (bp 30-60) to give $1.13 \mathrm{~g}(72 \%)$ of tosylate: $\mathrm{mp} 81-82^{\circ}$ (uncorrected); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.30$ $(\mathrm{d}, 3, J=7 \mathrm{~Hz}), 1.38(\mathrm{~d}, 3, J=6.5 \mathrm{~Hz}), 2.31(\mathrm{~s}, 3), 4.9(\mathrm{~m}, 2)$, $7.0-8.0(\mathrm{~m}, 9)$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}$: C, 62.05; $\mathrm{H}, 5.79$. Found: C, 62.17; H, 6.04.

Saponification of 2-(3-Benzoyloxybutyl) p-Toluenesulfonate. A mixture of $3.76 \mathrm{~g}(10.8 \mathrm{~mol})$ of tosylate and 6.5 ml of $c a .1 .4 \mathrm{M}$ KOH in 1,2-dimethoxyethane (glyme) solution in 12 ml of glyme was stirred at room temperature for 1 hr and then distilled at room temperature in vacuo (50 mm) with a cold trap immersed in Dry Ice-acetone. After 14 hr at 50 mm the reaction pot was heated at 50° and the pressure was lowered to 25 mm for 1 hr . The contents of the trap (9.67 g) were analyzed by nmr to be $6.80 \mathrm{wt} \% 2,3$-epoxybutane in glyme, a net yield of 97%.

Registry No. - Cedren-15-aldehyde ethylene acetal, 38739-76-3; cedren-15-aldehyde, 30960-40-8; ethylene glycol, 107-21-1; triethyl orthoformate, 122-51-0; 3-phenylbutyraldehyde ethylene acetal, 38739-78-5; 3 -phenylbutyraldehyde, 16251-77-7; N-bromosuccinimide, 128-08-5; 4,5-dimethyl-2-phenyl-1,3-dioxolane, isomer A, 13165-94-1; 4,5-dimethyl-2-phenyl-1,3-dioxolane, isomer B, 4359-31-3; erythro-2-(3-bromobutyl) benzoate, 38822-42-3; threo-2-(3-bromobutyl) benzoate, $38739-82-1$; cis-2,3-epoxybutane, 1758-33-4; trans-2,3-epoxybutane, 6189-41-9; erythro-2-(3-hydroxybutyl) benzoate, 38739-85-4; threo-2-(3-hydroxybutyl) benzoate, 38739-86-5; erythro-2-(3-benzoyloxybutyl) p-toluenesulfonate, $38739-87-6$; threo-2-(3-benzoyloxybutyl) p-toluenesulfonate, 38739-88-7; p-toluenesulfonyl chloride, 98-59-9.

Acknowledgment.-We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Preparation and Stereochemistry of the Methyl 1,3-Dimethylcyclohexaneacetates and Related Compounds

Steven Wolff and William C. Agosta*
Laboratories of The Rockefeller University, New York, New York 10021

Received December 19, 1972
The two methyl 1,3-dimethylcyclohexaneacetates (6 e and 7 e) have been prepared by Arndt-Eistert synthesis from the related cyclohexanecarboxylic acids $\mathbf{6 b}$ and 7 b . Concomitant formation in this synthesis of the rearrangement products 11 and 12 from $6 b$ rigorously establishes the stereochemistry of these compounds. The assignment is in accord with data reported here from independent syntheses, nmr spectra, and vpc retention times. It leads to reversal of the assignment made earlier for 6 b and 7 b and methyl ketones 4 , and it suggests that the stereochemistry proposed for keto esters 19 and 20 may be in error.

In examining the steric course of certain photochemical reactions we required authentic samples of both diastereomers of 1,3-dimethylcyclohexaneacetic acid methyl ester (1). In this report we describe the preparation and rigorous assignment of stereochemistry for these esters, as well as for the related cyclohexanecarboxylic acids 2 and esters 3. In the only pertinent earlier work ${ }^{1}$ the stereochemistry of the methyl ketones 4 was deduced from their viscosities and from the failure of one isomer to yield a semicarbazone; each of these ketones was then degraded to the corresponding isomer of acid 2 by hypobromite oxidation. Our present assignments require reversal of these earlier conclusions.

The first line of evidence comes from alkylation of the lithium salt of 3-methylcyclohexanecarbonitrile $(5)^{2}$ with methyl iodide in dimethoxyethane. The 7:3 mixture of isomeric products formed in 89% yield was separated by preparative vapor phase chromatography (vpc), and each nitrile was fully characterized. Structures 6a and 7a can be assigned with reasonable confidence to the major and minor isomer, respectively, since alkylation of the tert-butyl-substituted nitrile 8 under these conditions yields a 71:29 mixture of 9 and $10 .^{3}$ Nitriles 6a and 7a were then hydrolyzed

1, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$
2, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$
3, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$
4, $\mathrm{R}=\mathrm{COCH}_{3}$

6
a, $\mathrm{R}=\mathrm{CN}$
b, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$
c. $\mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{2}$

5
, $\mathrm{R}=\mathrm{COCH}_{3}$
in strong base to the corresponding crystalline carboxylic acids $6 \mathrm{~b}, \mathrm{mp} 88.5-89.5^{\circ}$, and $7 \mathrm{~b}, \mathrm{mp} 45-46^{\circ}$.
A most convincing confirmation of this stereochemical assignment comes from the Arndt-Eistert homol-

[^65]ogation of these acids $\mathbf{6 b}$ and $7 \mathbf{b}$. Each was converted through the acyl chloride to the diazo ketone in the usual manner, ${ }^{4}$ and these diazo ketones 6d and 7d were then treated ${ }^{5}$ with silver benzoate and triethylamine in methanol. While 7d gave the desired homologous ester 7 e without incident, the attempted Wolff rearrangement of 6 d gave some 6 e along with two ketones. On the basis of the spectroscopic properties detailed in the Experimental Section and the degradative correlation described below, we assign structures 11 and 12 to these substances. These are then carbonhydrogen insertion products from so-called anomalous Wolff rearrangement, a process which has already received attention in closely related systems. ${ }^{6}$ The structure of 11 was verified by a photochemical degradation. ${ }^{7}$ Irradiation ($\lambda>2800 \AA$) of 11 in benzene led to α cleavage and subsequent hydrogen transfer, with formation of aldehyde 13 and ketene 14 . The

latter reacted with methanol to give the corresponding ester, which was isolated and shown to be $6 \boldsymbol{e}$ by comparison with a sample from the Arndt-Eistert synthesis. This correlation securely establishes the structure of ketone 11. The formation of these insertion products 11 and 12 from 6d rigorously defines, in turn, the stereochemistry in this series.
(4) W. E. Bachmann and W. S. Struve, Org. React., 1, 38 (1942).
(5) M. S. Newman and P. F. Beai, III, J. Amer. Chem. Soc., 72, 5163 (1950).
(6) E. Wenkert, B. L. Mylari, and L. L. Davis, ibid., 90, 3870 (1968); J. K. Chakravarty. S. S. Szinai, and A. Todd, J. Chem. Soc. C, 1303 (1970); R. C. Cambie and R. A..Franich, Aust. J. Chem., 24, 117 (1971); U. R. Ghatak and S. Chakrabarty, J. Amer. Chem. Soc., 94, 4757 (1972).
(7) S. Wolff, W. L. Schreiber, A. B. Smith, III, and W. C. Agosta, J. Amer. Chem. Soc., 94, 7797 (1972).

We have also independently prepared $6 \mathbf{e}$ from 3 methylcyclohexanone by a sequence previously used with cyclohexanone ${ }^{8}$ and 4,4-dimethylcyclohexanone. ${ }^{7}$ Knoevenagel reaction between the ketone and cyanoacetic ester furnished 15 (geometry undetermined), which underwent stereoselective addition of methylmagnesium iodide in the presence of copper(I) catalyst to yield 16. This was converted to $6 e$ through saponification and decarboxylation, followed by esterification with diazomethane. The exclusive equatorial 1,4 addition to 15 observed here is analogous to the stereoselective conversion of 17 under similar conditions (or using lithium dimethylcuprate) into $18 .{ }^{9}$

These stereochemical deductions are all in complete accord with evidence from nmr spectra and vpc retention times. In the $220-\mathrm{MHz}$ spectra of both acid 6 b and the derived methyl ester 6 c the resonance of two of the ring protons is shifted downfield and appears at $\delta 2.25 \mathrm{ppm}$ (broad, 2 H). We ascribe this signal to the two protons in an axial 1,3 relation to, and somewhat deshielded by, the carbonyl group of these compounds. No such shifted signal appears for 7 b and 7 c , in which the carbonyl group is preferentially equatorial. Also the equatorial methyl substituent at $\mathrm{C}-1$ in $\mathbf{6 b}, \mathbf{6 c}$, and $\mathbf{6 e}$ is characterized by the expected ${ }^{10}$ small upfield shift ($\Delta 0.02-0.06 \mathrm{ppm}$) of resonance relative to the axial methyl of $7 \mathrm{~b}, 7 \mathrm{c}$, and $7 e$, respectively. In similar fashion the signal for the equatorial methylene substituent at $\mathrm{C}-1$ in 7 e appears upfield ($\Delta 0.15 \mathrm{ppm}$) from its axial counterpart in $6 e$. Previous observations ${ }^{11}$ suggest that axial carboalkoxycyclohexanes should have shorter vpc retention times than their equatorial epimers. This relationship holds here for $\mathbf{6 c}$ and $7 \mathbf{c}$, as well as for the homologous esters $6 e$ and 7 e .

One final matter deserves attention. A tentative stereochemical assignment has been made ${ }^{12}$ for keto esters 19 and 20 on the basis of the data reproduced

15

17

19

16

18

20

[^66]in Table I. In view of our present results and earlier work cited above it appears that isomer A should

Table I
Nmr and Vpc Data for 19 and 20

Isomer	C-1 Chemical shift. \&		Vpc retention time, \min
A	1.08	2.58	29.3
B	1.32	2.24	34.7

be considered to be 19, and isomer B, 20. This is the reverse of the original conclusion.

Experimental Section

Materials and Equipment.-All vpc was carried out using a Varian Aerograph Model 700 Autoprep or Model A-90-P3 with a $10 \mathrm{ft} \times 0.375 \mathrm{in}$. column prepared using $45-60$ Chromosorb W in aluminum tubing and one of the following: A, 30\% DEGS; B, 30% SE-30; C, 30% Carbowax 20 M ; D, 30% Carbowax 1500. Unless otherwise noted, the column oven was operated at $145-160^{\circ}$, and the helium carrier gas flow rate was 120-135 $\mathrm{ml} / \mathrm{min}$. Ir and nmr spectra were obtained for CCl_{4} solutions, the former on a Perkin-Elmer Model 237B spectrophotometer and the latter on a Varian A-60 $(60 \mathrm{MHz})$ or HR-220 $(220 \mathrm{MHz})^{\text {- }}$ spectrometer. Solutions were dried over MgSO_{4} or $\mathrm{Na}_{2} \mathrm{SO}_{4}$; melting points are corrected; boiling points are uncorrected. Compounds purified by vpc were obtained as colorless oils. Photochemical experiments were carried out with a Hanovia Model L mercury lamp (no. 679A-36) in a quartz immersion well using Pyrex 7740 as filter.
trans- and cis-1,3-Dimethylcyclohexanecarbonitrile (6a and 7a). -3-Methylcyclohexanecarbonitrile ($5,4.496 \mathrm{~g}, 36.5 \mathrm{mmol})^{2}$ was alkylated according to the procedure of House. ${ }^{3}$ Distillation afforded a mixture of isomers $(4.458 \mathrm{~g}, 89 \%)$, which were separated on a preparative scale on column A to give first 6a (70% of the mixture): ir 2890 (m), 2930 (s), 2876 (m), 2850 (m), 2230 (w), 1460 (s), 1375 (w), 1118 (w), 960 (w), $940 \mathrm{~cm}^{-1}$ (w); $\mathrm{nmr}(60 \mathrm{MHz}) \delta 2.28-0.50(\mathrm{brm}), 1.32\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 0.94$ (d, CH_{3}).
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}$: C, 78.77; H, 11.02; N, 10.21 . Found: C, 78.42; H, 11.11; N, 10.12.

The second product was 7 a (30% of the mixture): ir 2930 (s), $2870(\mathrm{~m}), 2235(\mathrm{w}), 1460(\mathrm{~s}), 1450(\mathrm{~m}), 1435(\mathrm{~m}), 1375 \mathrm{~cm}^{-1}(\mathrm{~m})$; $\mathrm{nmr}(60 \mathrm{MHz}) \delta 2.30-0.78$ (br m), $1.36\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 0.94$ (br d, CH_{3}).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}$: C, 78.77; H, 11.02; $\mathrm{N}, 10.21$. Found: C,78.85; H, 11.10; N, 10.22.
trans-1,3-Dimethylcyclohexanecarboxylic Acid (6b).-The major nitrile (250 mg), ethylene glycol (10 ml), potassium hydroxide (3 g), and water (2 ml) were heated at reflux for 3 days. The reaction mixture was cooled, poured into water, and extracted with ether. Acidification of the aqueous phase, extraction with ether, drying, and removal of solvent in vacuo gave $247 \mathrm{mg}(87 \%)$ of crystalline material, $\mathrm{mp} 86-87.5^{\circ}$. Recrystallization from aqueous methanol gave material of mp 88.5-89.5 ${ }^{\circ}$, unchanged on further recrystallization (lit. ${ }^{1} \mathrm{mp} 90^{\circ}$): ir 34502400 (br), 2950 (m), 2930 (s), 2870 (m), 2850 (m), 1700 (s), $1465(\mathrm{~m}), 1450(\mathrm{~m}), 1250(\mathrm{~m}), 1230(\mathrm{~m}), 1175 \mathrm{~cm}^{-1}(\mathrm{~m}) ; \mathrm{nmr}$ $(220 \mathrm{MHz}) \delta 12.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.22-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.30$ $(\mathrm{m}, 4 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.05-0.64(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=7 \mathrm{~Hz}$, 3 H).
cis-1,3-Dimethylcyclohexanecarboxylic acid (7b) was prepared in 92% yield from 7a as described above for 6 b . The crude product was a slightly yellow oil which slowly crystallized, mp 40-42.5 . Recrystallization from aqueous methanol gave material of mp 45-46 ${ }^{\circ}$ (lit. ${ }^{1} \mathrm{mp} 44^{\circ}$): ir 3400-2400 (br), 2955 (m), 2935 (m), $2870(\mathrm{~m}), 1700(\mathrm{~s}), 1468(\mathrm{~m}), 1295(\mathrm{~m}), 1270(\mathrm{~m})$, $1168 \mathrm{~cm}^{-1}(\mathrm{w}) ; \mathrm{nmr}(220 \mathrm{MHz}) \delta 11.54$ (br s, 1 H), 2.00-1.20 ($\mathrm{br} \mathrm{m}, 8 \mathrm{H}$), $1.22(\mathrm{~s}, 3 \mathrm{H}), 0.95-0.73(\mathrm{~m}$, with d at $0.89, J=7$ $\mathrm{Hz}, 4 \mathrm{H})$.

Arndt-Eistert Synthesis with 6b.-A mixture of the acid (2.73 $\mathrm{g}, 0.0175 \mathrm{~mol})$ and thionyl chloride (10 ml) was stirred at room temperature overnight. After heating to reflux for 1 hr , bulb-to-bulb distillation gave $2.95 \mathrm{~g}, \mathrm{bp} 120^{\circ}(14 \mathrm{~mm})$, of acvl chloride. This was immediately taken up in ether and added to a large
excess of ethereal diazomethane ($\sim 0.06 \mathrm{~mol}$). The mixture was left standing in an ice bath overnight. Removal of the ether afforded 3.14 g of a yellow oil; ir analysis indicated that the diazo ketone had been formed ($2100 \mathrm{~cm}^{-1}$), but that some acid chloride remained. Wolff rearrangement of this crude diazo ketone in methanol with silver benzoate catalysis ${ }^{6}$ gave, after work-up and bulb-to-bulb distillation, 2.18 g of a colorless oil. Vpc analysis on column A indicated four components in the ratio 1.3:2.2:2.3:1. The first was $6 c$, having a retention time identical with that of an authentic sample prepared from $6 b$ and diazomethane. The second component was identified as 1,5-dimethylbicyclo[3.2.1]-octan-6-one (11): ir 2955 (m), 2935 (m), 2875 (m), 2852 (m), 174.5 (s), $1450(\mathrm{~m}), 1398(\mathrm{~m}), 1345(\mathrm{~m}), 1250(\mathrm{~m}), 1100(\mathrm{~m})$, $1082(\mathrm{~m}), 950 \mathrm{~cm}^{-1}(\mathrm{w}) ; \mathrm{nmr}(220 \mathrm{MHz}) \delta 2.01$ (dd, $J=18$, $4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.18$ (br m, 8 H), $1.12(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 78.89$; $\mathrm{H}, 10.59$. Found: C, 78.79; H, 10.57.

The third component was identified as trans-1,3-dimethylcyclohexaneacetic acid methyl ester (6e): ir 2950 (m), 2925 (m), $2870(\mathrm{~m}), 2845$ (m), 1745 (s), 1450 (m), 1250 (m), 1195 (m), 1005 $\mathrm{cm}^{-1}(\mathrm{~m}) ; \mathrm{nmr}(220 \mathrm{MHz}) \delta 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 2 \mathrm{H}), 1.74-$ 0.6 :) (br m with sat 0.96 and d at $0.84, J=7 \mathrm{~Hz}, 15 \mathrm{H}$).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 71.69 ; \mathrm{H}, 10.90$. Found: C, 71.85 ; H, 11.13 .
The fourth component was identified as exo-1,3-dimethylbicyclo[3.2.1] octan-7-one: ir 2955 (m), $2930(\mathrm{~m}), 2870(\mathrm{~m}), 1745$ (s), 1450 (m), 1400 (m), 1370 (m), 1115 (m), 1032 (m) cm^{-1}; $\mathrm{nmr}(220 \mathrm{MHz}) \delta 2.47$ (brs, 1 H), 2.15 (dd, $J=18,7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.00 (ddd, $J=18,4, \sim 1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-0.96$ (br m, 7 H), $0.94(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 78.89 ; \mathrm{H}, 10.59$. Found: C, 78.96; H, $10 . \% 0$.

Arndt-Eistert Synthesis with 7b.-Similar treatment of acid 7b $(317 \mathrm{mg})$, but without distillation of the intermediate acid chloride, gave after work-up of the rearrangement product 314 mg , which was analyzed on column D. The major component ($\sim 95 \%$ of volatile material) was collected and identified as cis-1,3-dimethylcyclohexaneacetic acid methyl ester (7e): ir 2950 (m), 2930 (m), 2865 (m), 2845 (m), 1742 (s), 1450 (m), 1432 (m), $1427(\mathrm{~m}), 1145(\mathrm{~m}), 1130(\mathrm{~m}), 1115(\mathrm{~m}), 1000 \mathrm{~cm}^{-1}(\mathrm{w})$; $\mathrm{nmr}(220 \mathrm{MHz}) \delta 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 2 \mathrm{H}), 1.77-0.69$ (br m with s at 0.98 and d at $0.85, J=6 \mathrm{~Hz}, 15 \mathrm{H}$).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$: $\mathrm{C}, 71.69 ; \mathrm{H}, 10.94$. Found: C, 71.86 ; H, 10.9;.
trans-1,3-Dimethylcyclohexaneacetic Acid Methyl Ester from 3-Methylcyclohexanone.-A mixture of 3-methylcyclohexanone $(6.74 \mathrm{~g}, 0.06 \mathrm{~mol})$, ethyl cyanoacetate $(6.79 \mathrm{~g}, 0.06 \mathrm{~mol})$, acetic acid (720 mg), ammonium acetate (480 mg), and benzene (21 ml) was heated at reflux for 4.5 hr with continuous removal of water with a Dean-Stark trap. The reaction mixture was cooled, poured into water, and extracted with ether; the combined organic phases were washed with saturated sodium bicarbonate and brine and dried. After removal of ether in vacuo, distillation afforded $8.79 \mathrm{~g}(71 \%)$ of a colorless oil considered to be 15: bp $115-116^{\circ}(0.5 \mathrm{~mm})$; ir $2940(\mathrm{~m}), 2225(\mathrm{w}), 1727(\mathrm{~s}), 1602$ (s), 1280 (m), 1255 (m), 1215 (s), 1198 (m), 1095 (m), 1038 (m), $945(\mathrm{w}), 850 \mathrm{~cm}^{-1}(\mathrm{w})$; the nmr spectrum indicated a mixture of isomers.

To a solution of methylmagnesium iodide [prepared from magnesium ($558 \mathrm{mg}, 0.023 \mathrm{~g}$-atom) and iodomethane (3.12 g , 0.022 mol) in 15 ml of ether] was added a solution of tetrakisiodo-(tri-n-butylphosphine)copper ($394 \mathrm{mg}, 0.001 \mathrm{~mol}$) in 10 ml of ether and, immediately afterwards, a solution of the unsaturated cyano ester $15(2.07 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 10 ml of ether at a rate that caused refluxing of the solvent. Immediately after completion of the addition, the reaction mixture was poured into saturated ammonium chloride. After extraction with ether, drying, and removal of solvent, 2.47 g of colorless oil was obtained. This material, considered to be 16, was purified on column $\mathrm{B}\left(208^{\circ}\right)$: ir 2930 (m), 2245 (w), 1747 (s), 1450 (m), 1235 (m), 1170 (m),
$1023 \mathrm{~cm}^{-1}(\mathrm{~m}) ; \mathrm{nmr}(60 \mathrm{MHz}) \delta 4.33(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.83$ (s, 1 H), 2.25-0.55 [br m with t at $1.38, J=7 \mathrm{~Hz}$, s at 1.13, and d at 0.97 and d at 0.90 (due to diastereomers), 18 H].
The crude cyano ester 16 was hydrolyzed with potassium hydroxide (5.0 g) in ethylene glycol (15 ml) containing 3 ml of water for 15 hr . The reaction mixture was cooled, poured into water, and extracted with ether; the aqueous phase was acidified with concentrated hydrochloric acid and extracted with ether. The combined organic extracts were washed with brine, dried, and evaporated in vacuo to yield a pale yellow oil which was heated to 205° for 0.75 hr . The reaction mixture was cooled, diluted with ether, and extracted with 5% aqueous sodium carbonate; the basic extracts were acidified, extracted with ether, and dried over magnesium sulfate. The ethereal filtrate was treated with diazomethane. After removal of solvent in vacuo, the residue ($1.395 \mathrm{~g}, 76 \%$ from 15) was analyzed by vpc on column C. One component was detected; this had an identical ir spectrum and vpc retention time with those of 7 e prepared by Arndt-Eistert homologation of 7b.

Photolysis of 1,5-Dimethylbicyclo[3.2.1]octan-6-one.-A solution of ketone $11(60 \mathrm{mg})$ in benzene (50 ml) was irradiated through Pyrex. Ir spectroscopy was used to monitor the disappearance of starting material and appearance of a ketone band at $2108 \mathrm{~cm}^{-1}$; essentially no ketone remained after 8.25 hr . The photolysate was allowed to stand overnight with 3.0 ml of absolute methanol. After removal of solvents by distillation, vpc analysis on column B indicated two major components. The first was presumed to be 1,3-dimethylcyclohex-2-eneacetaldehyde ($\sim 40 \%$) from the following data: ir $2930(\mathrm{~m}), 2875(\mathrm{~m}), 2840$ (w), 2730 (w), 1722 (s), 1450 (m), 1375 (m), 855 (w), $825 \mathrm{~cm}^{-1}$ (w); nmr (220 MHz) $\delta 9.72$ (t, $J=3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24 (brs, 1 H), $2.20(\mathrm{t}, J=3 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.33(\mathrm{~m}, 4 \mathrm{H})$, $1.63(\mathrm{~d}, J \cong 1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H})$. The second component ($\sim 60 \%$) was $6 e$, having ir and $\mathrm{nmr}(220 \mathrm{MHz})$ spectra and vpc retention time identical with those of the independently synthesized material described above.
trans-1,3-Dimethylcyclohexanecarboxylic Acid Methyl Ester (6 c).-Acid 6 b was esterified with etheral diazomethane and the product was purified on column C: ir 2955 (s), 2940 (s), 2875 (m), 2845 (m), 1740 (s), 1455 (m), 1220 (m), 1200 (m), 1150 (s), $1125 \mathrm{~cm}^{-1}(\mathrm{~m}) ; \mathrm{nmr}(220 \mathrm{MHz}) \delta 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.02$ $(\mathrm{m}, 2 \mathrm{H}), 1.67-0.52(\mathrm{br} \mathrm{m}$ with s at 1.09 and d at $0.86, J=6$ $\mathrm{Hz}, 13 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 70.54; $\mathrm{H}, 10.66$. Found: C, 70.53 ; H, 10.67 .
cis-1,3-Dimethylcyclohexanecarboxylic Acid Methyl Ester (7c).-This was prepared just as 6c above: ir 2955 (s), 2860 (m), 1738 (s), 1462 (m), 1427 (m), 1245 (s), $1200(\mathrm{~m}), 1110 \mathrm{~cm}^{-1}$ (s); nmr (220 MHz) $\delta 3.59$ (s, 3 H), 1.72-1.12 (brm, 8 H), 1.17 (s, 3 H), 0.88 (d, $J=6 \mathrm{~Hz}$, with m at $\sim 0.85,4 \mathrm{H}$).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 70.54; $\mathrm{H}, 10.66$. Found: C, 70.58; H, 10.72 .

Registry No.-5, 38857-62-4; 6a, 38864-01-6; 6b, 38864-02-7; 6b acid chloride, 38864-03-8; 6c, 38864-04-9; 6d, 38864-05-0; 6e, 38864-06-1; 7a, 38864-07-2; 7b, 38864-08-3; 7c, 38864-09-4; 7e, 38864-10-7; 11, $38857-63-5$; 12, 38857-64-6; 13, 38857-65-7; 15, 38857-66-8; 16, 38857-67-9; 3-methylcyclohexanone, 591-24-2; ethyl cyanoacetate, 105-56-6.

Acknowledgments.-We thank Mr. S. T. Bella for microanalyses and Miss Luz Catan for expert technical assistance. Nmr spectra (220 MHz) were obtained on an instrument at The Rockefeller University and operated by a consortium supported in part by NSF Grant No. GB-12278 and grants from Research Corporation and the Alfred P. Sloan Foundation.

anti-Tricyclo[3.1.0.0 ${ }^{2,4}$]hexanes. Synthesis and Reactions

Allan Wissner ${ }^{1}$ and Jerrold Meinwald*
Department of Chemistry, Cornell University, Ithaca, New York 14850, and Department of Chemistry, University of California, San Diego, La Jolla, California 92037

Received November 6, 1972

Abstract

A facile synthesis of dimethyl anti-tricyclo[3.1.0.0 ${ }^{2.4}$] hexane-1,2-dicarboxylate (4) involving two intramolecular nucleophilic displacements is described. Thermolysis of 4 gives dimethyl cyclohexa-1,4-diene-1,2-dicarboxylate (7). Silver ion catalyzed reaction of 1,2-bis(acetoxymethyl)-anti-tricyclo[3.1.0.0 $0^{2,4}$]hexane (8) also results in ring opening, giving 1,2-bis(acetoxymethyl)cyclohexa-1,4-diene (10) and 2-acetoxymethyltoluene (11). Catalytic hydrogenation of 4 proceeds stereospecifically from an endo face, giving a product shown to be dimethyl bicyclo[3.1.0]hexane-1,endo-2-dicarboxylate (17). The addition of hydrogen bromide to 4 yields a pair of products shown to be the epimeric bicyclo[3.1.0] hexanes 20 and 21, in accord with expectations for stereospecific attack of bromide ion on protonated 4.

Although anti-tricyclo[3.1.0.0.0,4 hexanc (1) and a few of its derivatives have been described, little chem-

1
istry of this interesting strained ring system has been studied; only hydrogenation and thermolysis of the parent hydrocarbon ${ }^{2}$ and thermolysis of various derivatives ${ }^{3-5}$ have been reported. We would like to report a new, convenient synthesis of this ring system and to describe some of its thermal, catalytic, and ionic reactions.

Synthesis.-Previous syntheses of substituted antitricyclo [3.1.0.0 ${ }^{2,4}$]hexanes have relied on photochemical $^{4-7}$ or metal-catalyzed ${ }^{3}$ dimerizations of cyclopropenes. The method which we have used provides much easier access to these compounds, as outlined in Scheme I. The benzophenone-sensitized photo-

addition of maleic anhydride to trans-1,4-dichloro-2butene afforded anhydride 2 in 76% yield $(\nu \mathrm{CO}$
(1) National Institutes of Health Postdoctoral Fellow, 1972.
(2) E. L. Allred and J. C. Hinshaw, J. Amer. Chem. Soc., 90, 6885 (1968).
(3) F. J. Weigert, R. L. Baird, and J. R. Shaply, J. Amer. Chem. Soc., 92, 6630 (1970).
(4) H. H. Stechl, Chem. Ber., 97, 2681 (1964)
(5) C. Deboer and R. Breslow, Tetrahedron Lett., 1033 (1967)
(6) N. Obata and I. Moritani, Bull. Chem. Soc. Jap., 39, 2250 (1966)
(7) J. Trotter, C. S. Gibbons, N. Nakatsuka, and S. Masamune, J. Amer. Chem. Soc., 89, 2792 (1967).
$1865,1800 \mathrm{~cm}^{-1}$). The reaction of 2 first with methanol and then with diazomethane furnished the bis methyl ester 3 in 91% yield ($\nu_{\mathrm{CO}}^{\text {neat }} 1740 \mathrm{~cm}^{-1}$). The nmr spectrum of 3 confirmed the trans arrangement of the chloromethyl substituents. (Methoxyl resonances appeared at δ 3.6.5 and 3.70.) Refluxing a solution of 3 in tetrahydrofuran with an excess of sodium hydride produced dimethyl anti-tricyclo[3.1.$0.0^{2,4}$ hexane-1.2-dicarboxylate (4) in 59% yicld.

The structure of 4 was established on the basis of its spectral and chemical properties. Its mass spectrum showed a molecular ion at $m / e 196\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}\right)$. The pmr spectrum showed no olefinic absorption; a single methoxyl absorption (6 H) appeared at $\delta 3.67$; and three separated multiplets (2 H each) were found at $\delta 1.72,1.9 \overline{5}$, and 2.20 . While a detailcd assignment of these absorptions was not attempted, they are clearly compatible with the structure proposed. The cmr spectrum of 4 (parts per million downfield from external TMS) showed, besides absorptions at 71.73 and 52.96 for the carbonyl and methyl carbons, three absorptions at 29.41, 31.09, and 32.66 assigned, respectively, to the quaternary, tertiary, and secondary carbon atoms on the basis of the ${ }^{13} \mathrm{C}-\mathrm{H}$ coupling patterns. The fact that the bridgehead carbon atoms absorb at higher field than the bridge carbon atoms may be ascribed to these nuclei lying in the shielding region of the adjacent cyclopropane ring. The values obtained for the ${ }^{13} \mathrm{C}-\mathrm{H}$ coupling constants ($J_{1_{\mathrm{a}_{\mathrm{CH}}}}=$ $188 \mathrm{~Hz}, J_{13_{\mathrm{C}-\mathrm{H} 2}}=166 \mathrm{~Hz}$) are in the range expected for a strained molecule of this type and are indicative of the high degree of s character associated with the bonds in this system. ${ }^{8}$

It is of interest that the dehydrohalogenation of 3 gives 4, the result of two 1,3 -intramolecular displacements, rather than 5, the product which would have resulted from two 1,4 displacements. This preference may be rationalized on the basis of the relative activation energies expected for the initial displacements in carbanions $6 \mathbf{a}$ and $\mathbf{6 b}$. These displacements can yield either a bicyclo[2.1.0]pentane, which should cyclize readily to 4 , or a bicyclo[1.1.1]pentane, which could cyclize to 5 (Scheme II). Insofar as the activation energies of these two displacements reflect the strain energies of the bicyclic products, we would expect to obtain the obscrved product 4 , since it has been calculated that bicyclo[1.1.1]pentane is more highly strained than bicyclo[2.1.0]pentane. ${ }^{9}$
(8) K. B. Wiberg, Advan. Alicyclic Chem., 3, 193 (1968).
(9) N. C. Baird, Tetrahedron, 26, 2185 (1970).
Scheme II

6a, $\mathrm{R}_{1}=\mathrm{CO}_{2} \mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{H}$
b, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$

4

5
Thermolysis.-A sample of 4 maintained at 190° in an evacuated glass tube for 1.5 hr was quantitatively converted to dimethyl cyclohexa-1,4-diene-1,2-dicarboxylate (7), identified by comparison with an authentic

7
sample. ${ }^{10}$ Although this isomerization is formally $\mathrm{a}-\left[2_{\mathrm{a}}+2_{\mathrm{a}}\right]$ cycloaddition, which, on the basis of orbital symmetry concepts, is not allowed, ${ }^{11}$ whether this reaction is concerted or proceeds through a discrete diradical intermediate is, as yet, unanswered. ${ }^{12}$

Silver-Catalyzed Rearrangement.-In view of the current interest shown in silver-catalyzed rearrangements of strained hydrocarbons, ${ }^{13}$ we have examined the silver-catalyzed rearrangement of 4 . When a sample of 4 was refluxed in chloroform in the presence of silver fluoroborate, it was recovered unchanged. We noted that Eaton, et al., ${ }^{14}$ in their study of the silvercatalyzed rearrangement of the cubyl system, observed a rate-retarding effect by carbomethoxy groups. Consequently, we prepared the diacetate 8 (by reduction of 4 with lithium aluminum hydride to give diol 9 , followed by acetylation) with the expectation that the absence of the electron-withdrawing substituents would make reaction more likely. When a sample of 8 in chloroform- d containing a catalytic quantity of silver fluoroborate was heated to boiling for 1 min

[^67]and allowed to stand at room temperature for 1 hr , the nmr spectrum of the resulting solution indicated a complete conversion of 8 to $10(84 \%)$ and $11(16 \%) .{ }^{15}$

The structure of 10 was proven by independent synthesis (see Experimental Section); the minor product (11) was identical with the compound obtained upon acetylation of 2-hydroxymethyltoluene. ${ }^{16}$

With the experimental data obtained thus far, either of two mechanisms for the formation of 10 and 11 appear plausible; these are shown in Schemes III and IV.

In Scheme III, silver ion adds across one of the strained σ bonds of 8 to produce the carbonium ion 12, subsequent rearrangement of which (to 13), followed by loss of silver ion, would give 10 . Loss of a proton from 13, followed by loss of silver acetate as shown, would produce 14. Tautomerization of 14 to give 11 would follow.

Scheme IV involves a silver ion assisted ionization of 8^{17} to give carbonium ion 15 , subsequent rearrangement of which would yield the allylic carbonium ion 16. Recapture of acetate would yield 10, while loss
(15) That 11 is a primary product, and not simply the result of acetic acid elimination from 10, was demonstrated by the observation that 10 was unchanged when subjected to the reaction conditions for a $24-\mathrm{hr}$ period.
(16) G. H. Daub and R. N. Castle, J. Org. Chem., 19, 1571 (1954).
(17) Silver ion assisted ionization of some strained methyl ethers has recently been observed: L. A. Paquette and G. Zon, J. Amer. Chem. Soc., 94, 5096 (1972).
of a proton would give 14. Tautomerization of 14 again completes the sequence. ${ }^{18}$

Hydrogenation. - Hydrogenation of the parent hydrocarbon 1 with platinum oxide in acetic acid at atmospheric pressure is reported ${ }^{2}$ to yield cyclohexane and methylcyclopentane. In contrast to these results, hydrogenation of 4 under identical conditions proceeded with cleavage of a single bridging bond, giving dimethyl bicyclo[3.1.0]hexane-1,endo-2-dicarboxylate (17) stereospecifically within the limits of nmr detection.

To assign the stereochemistry of 17 , we prepared brosylate 18 from the corresponding alcohol of known configuration, ${ }^{18}$ with the expectation that a baseinduced intramolecular displacement of the brosylate group would give dimethyl bicyclo[3.1.0]hexane-1,exo-2-dicarboxylate (19) as the major isomer, provided that conditions could be found which would minimize subsequent epimerization of 19 . This could be accomplished by the addition of potassium tert-butoxide to a solution of 18 in tert-butyl alcohol at room temperature, giving 19 and 17 in a $3: 2$ ratio. ${ }^{20}$ That this ratio of products is not simply the equilibrium ratio was demonstrated by equilibration studies using sodium methoxide in methanol; an equilibrium mixture consisting of $78 \% 17$ and $22 \% 19$ was obtained. The above results indicate that the reaction of 18 with

base gave 19 as the initial product. It follows that 19 has the exo configuration and that 17 is the corresponding endo epimer. These assignments were substantiated by the nmr spectra of 17 and 19. While 17 showed a multiplet in the region of $\delta 3.33-3.60$ for the proton α to the carboxylate group, 19 showed the corresponding absorption at $2.95-3.17$. It is well established that, for 2-substituted bicyclo[3.1.0]hexanes, the proton α to the substituent absorbs at higher

[^68]field when the substituent is exo, owing to the shielding properties of the cyclopropyl ring. ${ }^{21}$
The most striking feature of the hydrogenation of 4 is its stereospecificity. This requires that the hydrogen must have added from the inside of one of the "flaps" of the anti-tricyclo[3.1.0.0 ${ }^{2,4}$]hexane skeleton. In this respect, the reaction bears a formal similarity to the cycloadditions described by Gassman, ${ }^{22}$ in which bicyclo[2.1.0]pentane suffers attack from the concave face.

Hydrobromination. - When 4 is allowed to stand in a chloroform solution of hydrogen bromide for 30 min , it is completely converted to a mixture of dimethyl exo-4-bromobicyclo[3.1.0]hexane-1,exo-2-dicarboxylate (20, 44\%) and dimethyl exo-4-bromobicyclo-[3.1.0]-hexane-1,endo-2-dicarboxylate ($21,56 \%$). The stereo-

chemistry of 20 and 21 was determined as follows. The reaction of the dibromo diester 22^{23} with sodium hydride in tetrahydrofuran gave a 65% yield of a product identical with the major yroduct obtained in the reaction of 4 with hydrogen bromide. Since the bromine atoms of 22 are trans to each other, the bromine substituent in 21, obtained by this intramolecular nucleophilic displacement, must then be exo to the three-membered ring. The endo configuration of the ester group in 21 was demonstrated by hydrogenolysis of 21 to give 17. When a sample of 20 was allowed to react with sodium hydride in setrahydrofuran, it was epimerized to 21, along with small amounts of dimethyl phthalate and an unidentified product. It therefore can be concluded that the bromine atom of 20 is also exo. The exo configuration of the ester group of 20 was confirmed by hydrogenolysis to give 19 (Scheme V).

Scheme V

[^69]To gain further insight into the hydrobromination of 4 , we performed several other experiments. It was found that, when both 20 and 21 were resubmitted to the reaction conditions, they were recovered unchanged. When a sample of 4 was allowed to react with deuterium bromide in chloroform, the nmr spectra of the isolated products showed that the absorptions at $\delta 3.20$ and 3.83 , assigned to the protons α to the carboxylate group in 20 and 21 , were absent; no other deuterium incorporation in either isomer was apparent.

To determine whether the reaction of 4 with hydrogen bromide is thermodynamically or kinetically controlled, equilibration studies were conducted with 20 and 21. A sample of 21 treated with lithium bromide in dimethylformamide gave an equilibrium mixture consisting of $21(56 \%)$ and the new epimer 23

(44%), as determined from the nmr spectrum of the mixture. Similarly, treatment of 20 with lithium bromide in dimethylformamide gave an equilibrium mixture consisting of $20(20 \%)$ and $24(80 \%)$. These results clearly indicate that the reaction of 4 with hydrogen bromide is kinetically controlled, since epimers 23 and 24 are not observed.

An important feature of the hydrobromination of 4 is the stereochemistry of the resulting bicyclo [3.1.0]hexanes, 20 and 21 . While there is essentially no stereochemical preference shown for the carboxylate group in the products, the reaction is stereospecific with respect to the bromine substituents. One of the first mechanisms which we considered involves addition of a proton to a strained bridgehead bond, giving the bicyclo[3.1.0]hexyl cations 25 and 26. Stereo-

specific (exo) addition of bromide ion would give the observed products. However, it appears that, when the 2-bicyclo[3.1.0]hexyl cation has been generated under a variety of conditions, addition of a nucleophile to the cation is generally not stereospecific. ${ }^{24}$
(24) (a) K. B. Wiberg, R. A. Fenoglio, U. Z. Williams, and R. W. Obersax, J. Amer. Chem. Soc., 92, 568 (1970); (b) E. C. Friedrich and M. A. Saleh. Tetrahedron Lett., 1373 (1971); (c) P. R. Brook, R. M. Ellam, and A. S, Bloss. Chem. Commun., 425 (1968); (d) G. H. Schmid and A. Brown, Tetrahedron Lett., 4695 (1968); (e) R. N. McDonald and G. E. Davia, J. Amer. Chem. Soc., 94, 5078 (1972).

Consequently, it is unlikely that 25 and 26 are intermediates in the hydrobromination of 4.

The mechanism shown in Scheme VI appears to offer the best explanation of the experimental results.

In this scheme, protonation of 4 occurs at an ester carbonyl oxygen, giving cation 27. Attack of bromide ion at the back lobe of the appropriate σ orbital would yield enolized ester 28, tautomerization of which to the observed products would follow. The specificity of attack by bromide ion and the formation of both epimers at the ester site are thereby simply accommodated.

Experimental Section

trans-1,2-Bis(chloromethyl)cyclobutane-cis-3,4-dicarboxylic Acid Anhydride (2).-A solution of $30.0 \mathrm{~g}(0.306 \mathrm{~mol})$ of maleic anhydride and 14.0 g (0.077 mol) of benzophenone in 370 ml of trans-1,4-dichloro-2-butene was placed in a photochemical apparatus equipped with a $450-\mathrm{W}$ Hanovia lamp, Pyrex filter, and a water-cooled quartz immersion well. The reaction mixture was flushed with nitrogen for 8 min . The mixture was irradiated with stirring for 48 hr , at which time a white solid began to separate. The unreacted trans-1,4-dichloro-2-butene was removed by distillation [$35^{\circ}(4 \mathrm{~mm}$); this material can be used in further runs without additional purification]. The residue was refluxed with 300 ml of hexane for $\sim 15 \mathrm{~min}$. The hot hexane solution was decanted and discarded. The mixture was then stirred at reflux in 250 ml of ether. The mixture was allowed to cool to room temperature. An off-white solid ($51.6 \mathrm{~g}, 76 \%$) was collected by filtration. An analytical sample was prepared by dissolving the anhydride in hot chloroform and adding ether until the solution became cloudy. Cooling to room temperature gave colorless crystals of the anhydride 2: mp 121-123.5 ${ }^{\circ} ; \nu_{\max }^{\mathrm{KBr}} 3020,2960$, $1865,1800 \mathrm{~cm}^{-1} ; \mathrm{nmr} \delta_{\mathrm{TMS}}^{\text {sectene }}$ d $2.90-4.05$ (series of multiplets).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{Cl}_{2}$: $\mathrm{C}, 43.07 ; \mathrm{H}, 3.62$; $\mathrm{Cl}, 31.79$. Found: C, 42.98; H, 3.44; Cl, 31.61.

Dimethyl trans-1,2-Bis(chloromethyl)cyclobutane-cis-3,4-dicarboxylate (3).-To 90 ml of methanol was added 5.5 g (0.0246 mol) of 2. The mixture was heated on a steam bath until it became homogeneous ($\sim 15 \mathrm{~min}$). The solution was cooled to 0° and an ethereal solution of diazomethane was slowly added until a permanent yellow color remained. Excess diazomethane was destroyed by the addition of a few drops of acetic acid. The solvent was removed by rotary evaporation. The residue was distilled [$\left.156.5-157.5^{\circ}(4 \mathrm{~mm})\right]$ to give $5.98 \mathrm{~g}(91 \%)$ of 3 . After standing several weeks in the freezer, this material crystallized: $\operatorname{mp} 37-39^{\circ} ; \nu_{\max }^{\text {neat }} 2985,2950,1740 \mathrm{~cm}^{-1} ; \mathrm{m} / e 237$ $\left(\mathrm{M}-\mathrm{OCH}_{3}\right), 209\left(\mathrm{M}-\mathrm{COOCH}_{3}\right) ; n \mathrm{nmr} \delta_{\mathrm{TMS}}^{\text {sectened }} \mathbf{3 . 7 7 - 3 . 9 3}$ (m, 4 H), 2.65-3.55 (m, 4 H), 3.65 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.70 (s, 3 H , CH_{3}).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cl}_{2}$: C, 44.63; $\mathrm{H}, 5.24 ; \mathrm{Cl}, 26.35$. Found: C, 44.47; H, 5.24; Cl, 26.16.

Dimethyl anti-Tricyclo[3.1.0.0 $0^{2,4}$]hexane-1,2-dicarboxylate (4). -A mixture of $8.0 \mathrm{~g}(10.0297 \mathrm{~mol})$ of $3,1.65 \mathrm{~g}(0.0687 \mathrm{~mol})$ of sndium hydride, and 1 drop of methanol was stirred at reflux in 170 ml of tetrahydrofuran (THF) for 48 hr . The mixture was filtered from the precipitated salts and the THF removed by rotary evaporation. The mixture was mixed with a saturated solution of ammonium chloride. The aqueous mixture was extracted with ether. The ether solution was dried over magnesium sulfate and treated with Norit. The ether was removed at reduced pressure. The residue was distilled. The fraction boiling at $77-79^{\circ}(0.02 \mathrm{~mm})$ was collected, and 3.45 g (59%) of 4 was obtained as a liquid which, on standing several hours, crystallized: $\mathrm{mp} 44-45^{\circ} ; \nu_{\max }^{\text {neat }} 3014,3000,1740,1335,1260$, 1205, 1165, 1097, 770, $735,717 \mathrm{~cm}^{-1}$; cmr (neat, parts per million downfield from external TMS $29.41\left(\mathrm{CCOOCH}_{3}\right), 31.09$ $\left(\mathrm{CH}, J^{1{ }^{13} \mathrm{C}-\mathrm{H}}=188 \mathrm{~Hz}\right), 32.66\left(\mathrm{CH}_{2}, J^{{ }^{13} \mathrm{C}-\mathrm{H}}{ }=166 \mathrm{~Hz}\right), 52.96$ $\left(\mathrm{CH}_{3}\right), 71.73(\mathrm{CO}) ; \mathrm{pmr} \delta_{\mathrm{TMS}}^{\mathrm{CDCl}_{3}} 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H})$, $2.20(\mathrm{~m}, 2 \mathrm{H}), 3.67\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$; uv $\lambda_{\text {max }}^{n-\text { heptane }} 227 \mathrm{~m} \mathrm{\mu}(\epsilon 82.2)$; mass spectrum $m / e, 196$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$: $\mathrm{C}, 61.21 ; \mathrm{H}, 6.17$. Found: C , 60.96 ; H, 6.23 .

Thermolysis of 4.-In a thick-walled glass tube was placed 0.075 g (0.446 mmol$)$ cf 4 . The tube was evacuated $(0.05 \mathrm{~mm})$ and sealed. The tube was heated to 190° for 1.5 hr . The contents of the tube were subjected to molecular distillation [bath temperature $70^{\circ}(0.05 \mathrm{~mm})$] to give dimethyl cyclohexa-1,4-diene-1,2-dicarboxylate (7). This material was identified by comparing its nmr and ir spectra with those of an authentic sample. ${ }^{10}$

1,2-Bis(hydroxymethyl)-anti-tricyclo[3.1.0.0 ${ }^{2,4}$ hexane (9).— To a stirred slurry of $0.425 \mathrm{~g}(11.2 \mathrm{mmol})$ of lithium aluminum hydride in 10 ml of ether was added dropwise a solution of 1.0 g (5.1 mmol) of 4 in 10 ml of ether at such a rate as to maintain reflux. The mixture was stirred at room temperature for an additional 1 hr and $\leq 5 \mathrm{~min}$. Excess reducing agent was destroyed by the dropwise addition of a saturated sodium sulfate solution. The mixture was filtered, and the salts were washed with additional ether. The combined ether solutions were dried $\left(\mathrm{MgSO}_{4}\right)$. The ether was removed at reduced pressure, leaving $0.68 \mathrm{~g}(95 \%)$ of 9 . An analytical sample was obtained via molecular distillation [bath temperature $80^{\circ}(0.3 \mathrm{~mm})$]: $\nu_{\max }^{\text {noat }}$ $3305,3015,2995,2949,2889,2835,1005 \mathrm{~cm}^{-1} ; \mathrm{nmr} \delta_{\mathrm{TMS}^{\mathrm{CDCl}}} 3.59$ $\left[\mathrm{AB}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}, \Delta \nu_{\mathrm{AB}}=33.7 \mathrm{~Hz}, J_{\mathrm{AB}}=-11.4 \mathrm{~Hz}\right.$ (the low field portion of the AB pattern is further coupled, $J=1.0 \mathrm{~Hz}$)], $4.16(\mathrm{~b} \mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 155(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~m}, 2 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 68.54; H, 8.63. Found: C, 67.26 ; H, 8.70.

1,2-Bis(acetoxymethyl)-anti-tricyclo [3.1.0.0 ${ }^{2,4}$] hexane (8).-A solution of $0.30 \mathrm{~g}(2.1 \leq \mathrm{mmol})$ of 9 and 0.075 g of sodium acetate in 2 ml of acetic anhydride was refluxed for 2 hr . The acetic anhydride was remcved by distillation. The residue was mixed with water. Solid sodium bicarbonate was added until gas evolution ceased. The mixture was extracted with ether, and the ether solution was dried. The ether was removed by rotary evaporation. The residue was subjected to molecular distillation, giving $0.374 \mathrm{~g}(91 \%)$ of 8 . An analytical sample was isolated via preparative vpc ($6 \mathrm{ft} \times 0.25 \mathrm{in}$. glass column, 5% Carbowax 20 M on $60-80$ mesh Chromosorb Q, 145°): $\nu_{\max }^{\text {neat }} 3090,2970,2930,2859,1740 \mathrm{~cm}^{-1} ; \mathrm{nmr} \delta_{\mathrm{TMS}}^{\mathrm{CDOla}} 2.16(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 4.33\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 0.80-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.76$ ($\mathrm{m}, 4 \mathrm{H}$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$: C, 64.27; $\mathrm{H}, 7.19$. Found: C, 64.32 ; H, 7.40 .

Reaction of 8 with Silver Fluoroborate.-A solution of 0.240 g (1.2 .5 mmol) of 8 in 1 ml of CDCl_{3} was placed in an nmr tube. Several crystals of silver fluoroborate were added. The solution was heated to boiling on a steam bath for 1 min and allowed to stand at room tempeature in the dark for 1 hr . At this time, the nmr spectrum of the dark brown solution showed the presence of 1,2-bis(acetoxymethyl)cyclohexa-1,4-diene (10, 84\%) and 2-acetoxymethyltoluene ($11,16 \%$). The products were identified by comparison of their nmr spectra in the mixture and vpc retention times (5% Carbowax 20 M on $60-80$ mesh Chromosorb $\mathrm{W}, 150^{\circ}$) with independently prepared samples.

When a sample of 10 was subjected to the above reaction conditions for 24 hr , it was observed to be unchanged.

1,2-Bis(acetoxymerhyl)cyclohexa-1,4-diene (10).-To a slurry of $0.68 \mathrm{~g}(17.9 \mathrm{mmol})$ of lithium aluminum hydride in 15 ml of ether was added with stirring $1.6 \mathrm{~g}(8.16 \mathrm{mmol})$ of dimethyl
cyclohexa-1,4-diene-1,2-dicarboxylate (7) ${ }^{10}$ in ether at such a rate as to maintain reflux. The mixture was stirred an additional 1 hr 45 min at room temperature. Excess reducing agent was destroyed by the dropwise addition of a saturated sodium sulfate solution. The mixture was filtered, and the ether was removed at reduced pressure. The residue was dissolved in 6 ml of acetic anhydride. To this solution was added 0.30 g of sodium acetate. The mixture was refluxed for 1 hr and 15 min . The excess acetic anhydride was removed by distillation, and the residue was mixed with water. Solid sodium bicarbonate was added until gas evolution ceased. The mixture was extracted with ether, and the ether soluion was dried $\left(\mathrm{MgSO}_{4}\right)$ and treated with Norit. The ether was removed at reduced pressure, giving $1.16 \mathrm{~g}(74 \%)$ of a liquid which was distilled $\left[98-100^{\circ}(0.1 \mathrm{~mm})\right]$. Analysis by nm : of the distillate indicated that this material was 10 contaminated with $9 \% 1,2$-bis(acetoxymethyl)benzene. An analytical sample of the diene was isolated via vpe (6×0.25 in. glass column, 5% Carbowax 20 M on $60-80$ mesh Chromosorb Q, 175°): mp 34-35 ${ }^{\circ}$; $\nu_{\max }^{\text {neat }} 3005,2850,2790,1739,1655,1225 \mathrm{~cm}^{-1} ; \mathrm{nmr}^{\mathrm{CDCl}} 2.14$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.87\left(\mathrm{~b} \mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}, W_{\mathrm{t}} / 2=3.0 \mathrm{~Hz}\right), 4.83(\mathrm{~s}, 4$, $\mathrm{CH}_{2} \mathrm{OAc}$), 5.90 (b s, 2 H , vinyl, $W_{1 / 2}=2.7 \mathrm{~Hz}$).
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}$: C, 64.27; H, 7.19. Found: C, 63.91 ; H, 7.20 .

Hydrogenation of 4 .-A solution of $0.20 \mathrm{~g}(1.02 \mathrm{mmol})$ of 4 in 2 ml of acetic acid containing 0.06 g of platinum dioxide was hydrogenated at atmospheric pressure. Hydrogen uptake ceased after 1 hr . The mixture was filtered, poured into water, and extracted with ether. The ether solution was washed with a saturated solution of sodium bicarbonate and dried $\left(\mathrm{MgSO}_{4}\right)$. The ether was removed by rotary evaporation. The residue was subjected to molecular distillation [bath temperature 70° $(0.05 \mathrm{~mm})] ; 0.180 \mathrm{~g}(92 \%)$ of dimethyl bicyclo[3.1.0] hexane-1,endo-2-dicarboxylate (17) was obtained. An analytical sample was isolated by preparative vpc (UCON nonpolar on $60-80$ mesh Chromosorb W, 190°): $\nu_{\max }^{\text {neat }} 2960,2870,1730 \mathrm{~cm}^{-1}$; $\mathrm{nmr} \delta_{\mathrm{TMS}}^{\mathrm{CDCl}_{3}} 1.14-2.12(\mathrm{~m}, 7 \mathrm{H}), 3.33-3.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCOOCH} 3)$, $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; mass spectrum $\mathrm{m} / \mathrm{e} 198$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 60.59; $\mathrm{H}, 7.12$. Found: C, 60.82 ; H, 7.32 .

Preparation of the Brosylate of Dimethyl trans-4-Hydroxy-cyclohexane-cis-1,2-dicarboxylate.-To a solution of 1.80 g (9.0 mmol) of dimethyl trans-4-hydroxycyclohexane-cis-1,2-dicarboxylate ${ }^{19}$ in 10 ml of dry pyridine was added 3.0 g (11.7 mmol) of brosyl chloride. The mixture was allowed to stand overnight in the refrigerator. The solution was filtered from the pyridine hydrochloride and poured into water. The aqueous mixture was extracted with ether. The ether solution was washed with dilute hydrochloric acid, followed by a saturated solution of sodium bicarbonate. The ether solution was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the ether removed by rotary evaporation. The residue (1.85 g) was dissolved in an ether-pentane mixture. The solution was cooled; the brosylate, which first oiled out, crystallized on standing several days in the freezer. The crystalline cake was crushed under pentane. The solid was washed with more pentane and dried at reduced pressure. The resulting brosylate showed $\mathrm{mp} 58-64^{\circ}$; $\mathrm{nmr} \delta_{\mathrm{TMB}}^{\mathrm{CDCl}} 1.50-2.23(\mathrm{~m}, 6 \mathrm{H}$, methylenes), 2.76-3.11 (m, 2 H, $\mathrm{CHCOOCH}_{3}$), 3.73 (s, 6 H , CH_{3}), 4.63-4.98 (m, 1 H, CHOBs), 7.71 ($\mathrm{s}, 4 \mathrm{H}$, aromatic).
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrO}_{7} \mathrm{~S}: \mathrm{C}, 45.83 ; \mathrm{H}, 4.57$. Found: C, 45.54; H, 4.32 .
The Reaction of the Brosylate of Dimethyl trans-4-Hydroxy-cyclohexane-cis-1,2-dicarboxylate with Potassium tert-Butoxide.A solution of potassium tert-butoxide in 20 ml of tert-butyl alcohol was prepared by refluxing $0.251 \mathrm{~g}(6.425 \mathrm{mmol})$ of potassium in the alcohol. This solution was added dropwise with stirring to a solution of $2.8 \mathrm{~g}(6.425 \mathrm{mmol})$ of 18 in 10 ml of tert-butyl alcohol over a 20 -min period. The mixture was stirred for an additional 15 min . Solid ammonium chloride (1.0 g) was added. The tert-butyl alcohol was removed by rotary evaporation. The residue was diluted with water and extracted with ether. The ether solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and the ether was removed by rotary evaporation. The residue (1.10 g) was distilled [bath temperature $\left.110^{\circ}(0.1 \mathrm{~mm})\right]$ to give a $3: 2$ mixture ($0.88 \mathrm{~g}, 67 \%$) of dimethyl bicyclo[3.1.0] hexane-1,ex0-2-dicarboxylate (19) and 17 as determined by nmr analysis.
Equilibration of 17 and 19. -A solution of $0.150 \mathrm{~g}(0.757$ mmol) of 17 in 2 ml of methanol containing a small amount of sodium methoxide was refluxed for 24 hr . The mixture was
diluted with ether, treated with Norit, and filtered. The ether was removed by rotary evaporation. Nmr analysis of the residue showed the presence of the endo and exo isomers in a 78:22 ratio.

When an isomer mixture containing 60% exo isomer and 40% endo isomer was subject to the above reaction conditions, the endo-exn ratio was found to be 76:24.

Hydrobromination of 4.-Hydrogen bromide was bubbled into a solution of $0.50 \mathrm{~g}(2.5) \mathrm{mmol})$ of 4 in 8 ml of chloroform for 45 sec. The mixture was allowed to stand at room temperature for 30 min . The solvent was removed at reduced pressure, leaving $0.69 \mathrm{~g}(100 \%)$ of a mixture of 20 and 21 . The mixture was taken up in boiling hexane. The solution was allowed to stand for several hours at room temperature. Filtration gave 0.250 g of pure dimethyl exo-4-bromobicyclo[3.1.0]hexane-1,exo-2-dicarboxylate (20): mp 103-105 ${ }^{\circ}$; $\nu_{\max }^{\mathrm{KBr}} 2985,2935,2912,2810$, 1741, $1720 \mathrm{~cm}^{-1} ; \mathrm{nmr} \delta_{\mathrm{TMS}}^{\mathrm{CDCl}^{2}} 0.70-1.35(\mathrm{AB}$ of an $\mathrm{ABX}, 2 \mathrm{H}$, cyclopropyl methylene, $\left.J_{\mathrm{AB}}=-5.7 \mathrm{~Hz}\right), 2.23-2.47(\mathrm{~m}, 2 \mathrm{H}$, cyclopentyl methylene), $2.52-2.77$ (X of an $\mathrm{ABX}, 1 \mathrm{H}$, cyclopropyl methine, $J_{\mathrm{Ax}}+J_{\mathrm{AX}}=13.5 \mathrm{~Hz}$), $3.20(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}-$ OCH_{3}), $4.32(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHBr}), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{Br}$: C, $43.34 ; \mathrm{H}, 4.73 ; \mathrm{Br}, 28.84$. Found: C, 43.i3; H, 4.75; $\mathrm{Br}, 28.72$.

The hexane was removed from the filtrate by rotary evaporation, leaving 0.403 g of a liquid which was subjected to molecular distillation, giving dimethyl exo-4-bromobicyclo[3.1.0]hexane-1,endo-2-dicarboxylate (21) contaminated with only a trace of 20: $\nu_{\text {mix }}^{\text {neit }} 2970,2930,2830,1735 \mathrm{~cm}^{-1} ; \mathrm{nmr} \delta_{\mathrm{TMS}}^{\mathrm{CDCl}_{3}} 1.13-1.68$ (AB of an $\mathrm{ABX}, 2 \mathrm{H}$, cyclopropyl methylene, $J_{\mathrm{AB}}=-5.9 \mathrm{~Hz}$), 1.9.)-2.63 (m, 3 H, cyclopropyl methine, cyclopentyl methylene), $3.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCOOCH}_{3}\right), 3.67\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.49(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CHBr}, J=4.8 \mathrm{~Hz}$).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{Br}$: C, 43.34; H, 4.73, Br, 28.84 . Found: C, $43.60 ; \mathrm{H}, 4.85$; $\mathrm{Br}, 28.53$.

The ratio of 20 to 21 was found to be $44: 56$ by integration of the methyl resonances in the nmr spectrum of the mixture; the methyl resonances were resolved by the addition of $\mathrm{Eu}(\mathrm{fod})_{3}-d_{30}$. Samples of both isomers, when subjected to the reaction conditions, were recovered unchanged.

The above reaction was repeated, using deuterium bromide. Nmr analysis of the separated isomers indicated that in each case only the hydrogen α to the carbomethoxy group was replaced by deuterium.

The Reaction of Dimethyl trans-4,5-Dibromocyclohexane-cis-1,2-dicarboxylate (22) with Sodium Hydride.-A solution of $12.0 \mathrm{~g}(0.035 .5 \mathrm{~mol})$ of dimethyl trans-4,5-dibromocyclohexane-cis-1,2-dicarboxylate (22) in 400 ml of dry THF containing 1.85 $\mathrm{g}(0.077 \mathrm{~mol})$ of sodium hydride was refluxed with stirring for 48 hr. The mixture was filtered and the THF removed by rotary evaporation. The residue was mixed with an aqueous solution of ammonium chloride and extracted with ether. The ether solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed by rotary evaporation. The residue was distilled [95-100 ${ }^{\circ}$ (0.05 $\mathrm{mm})$], giving $6.0 \mathrm{~g}(6.5 \%)$ of 21 . This material is identical with the major isomer isolated from the hydrobromination of 4 as determined by nmr and ir spectra, as well as vpc retention times.

Hydrogenolysis of 21.-A solution of $0.2 .5 \mathrm{~g}(0.91 \mathrm{mmol})$ of $21,0.5 \mathrm{~g}$ of sodium acetate, and 0.10 g of $\mathrm{Pd} / \mathrm{C}(5 \%)$ in 3 ml of acetic acid was hydrogenated at atmospheric pressure for 23 hr . The mixture was filtered and poured into water. The aqueous mixture was extracted with ether. The ether solution was washed with a saturated solution of sodium bicarbonate and dried (MgSO_{4}). The ether was removed by rotary evaporation, leaving $0.180 \mathrm{~g}(100 \%)$ of 17 , determined from its nmr spectrum and vpc retention time.

Hydrogenolysis of 20. -A $0.080-\mathrm{g}(0.289 \mathrm{mmol})$ sample of 20 was hydrogenated for a total of 48 hr using the above procedure, giving $0.053 \mathrm{~g}(93 \%)$ of 19 . An analytical sample was isolated
via preparative vpc ($6 \mathrm{ft} \times 0.25 \mathrm{in}$. glass column, Carbowax 20 M on 60-80 mesh Chromosorb Q, 160°): $\nu_{\text {max }}^{\mathrm{CCh}} 2915,2845,2813$, $1731 \mathrm{~cm}^{-1} ; \mathrm{nmr} \delta_{\mathrm{TMS}}^{\mathrm{CDCl}_{3}} 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.95-3.17 (m, 1 H, CHCOOCH 3), $0.75-2.30(\mathrm{~m}, 7 \mathrm{H}$, saturated).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$: C, $60.59 ; \mathrm{H}, 7.12$. Found: C, 60.72 ; H, 7.17.

The Interconversion of 20 and $21 .-A$ solution of 0.100 g (0.37 mmol) of 20 and 0.014 g of sodium hydride in 2 ml of THF was stirred at reflux for 2 hr and at room temperature for 16 hr . A few drops of acetic acid were added, and the mixture was poured into a saturated solution of ammonium chloride. The mixture was extracted with ether. The ether solution was washed with a saturated solution of sodium bicarbonate and dried $\left(\mathrm{MgSO}_{4}\right)$. The ether was removed at reduced pressure, giving 0.065 g of a liquid. Nmr and vpc analysis (Carbowax 20 M on $60-80$ mesh Chromosorb W, 165°) of the liquid indicated it was composed of 21, dimethyl phthalate, and an unidentified component; the ratio of the respective areas of the vpc trace was 69:13:18.

Equilibration of Dimethyl exo- and endo-4-Bromobicyclo[3.1.0]-hexane-1,endo-2-dicarboxylates (21 and 23).-To a solution of $0.150 \mathrm{~g}(0.54 \mathrm{mmol})$ of 21 in 1 ml of DMF was added 0.30 g (3.5 mmol) of lithium bromide. The solution was stirred at room temperature for 30 min , poured into water, and extracted with ether. The ether solution was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. The ether was removed at reduced pressure, giving $0.110 \mathrm{~g}(73 \%)$ of a mixture of 21 and 23 ; the ratio of the two isomers was found to be 56:44 by integration of the methyl resonances in the nmr spectrum of the crude reaction mixture; the methyl resonances were resolved by the addition of Eu$(\text { fod })_{3}-d_{30}$.

These isomers were shown to differ only in the configuration at the carbon atom bearing the bromine by hydrogenolysis of the mixture ($5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{NaOAc}, \mathrm{HOAc}, 48 \mathrm{hr}$) to give 17.

A similar mixture of isomers was obtained by passing 21 through a column packed with UCON nonpolar on 60-80 mesh Chromosorb W at 190°.

Equilibration of Dimethyl exo-and endo-4-Bromobicyclo[3.1.0]-hexane-1,exo-2-dicarboxylates (20 and 24).-To a solution of $0.080 \mathrm{~g}(0.289 \mathrm{mmol})$ of 20 in 0.75 ml of DMF was added 0.20 $\mathrm{g}(2.3 \mathrm{mmol})$ of lithium bromide. The mixture was maintained at 100° for 1 hr and then poured into water. The aqueous mixture was extracted with ether. The ether solution was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. The ether was removed at reduced pressure, giving $0.074 \mathrm{~g}(92 \%)$ of a mixture of 20 and 24 in a ratio of $20: 80$, respectively; the ratio was determined from integration of the methyl resonances in the nmr spectrum of the crude reaction mixture; these resonances were resolved by the addition of $\mathrm{Eu}(\mathrm{fod})_{3}-d_{30}$.

These isomers were shown to differ only in the configuration at the carbon atom bearing the bromine by hydrogenolysis of the mixture ($5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{NaOAc}, \mathrm{HOAc}, 72 \mathrm{hr}$) to give 19 as the major product.

Registry No.-2, 38665-90-6; 3, 38665-91-7; 4, 38665-92-8; 7, 14309-54-7; 8, 38665-94-0; 9, 38665-95-1; 10, 38665-96-2; 17, 38665-97-3; 19, 38665-98-4; 20, $38665-99-5$; 21, $38666-00-1$; maleic anhydride, 108-31-6; trans-1,4-dichloro-2-butene, 110-57-6; dimethyl trans-4-hydroxycyclohexane-cis-1,2-dicarboxylate, 7731-16-0; dimethyl trans-4-hydroxycyclohexane-cis-1,2-dicarboxylate brosylate, 38666-01-2.

Acknowledgment.-The authors are grateful for the partial support of this work by a grant from the donors of the Petroleum Research Fund, administered by the American Chemical Society.

The Formation and the Mass Spectra of Adducts from the Reaction of Some α-Substituted Vinylcyclopropanes with Benzyne ${ }^{1}$

Varda Usieli and Shalom Sarel*
Department of Pharmaceutical Chemistry, The Hebrew University School of Pharmacy, Jerusalem, Israel

Received October 31, 1972

Abstract

The reactions of benzyne, generated by the thermolysis of benzenediazonium-2-carboxylate, with 1,1-dicyclopropylethylene (1), 2-cyclopropylpropene (6), and α-cyclopropylstyrene (11) are herein described. Benzyne shows no tendency to add across the vinylcyclopropane systems in 1, 6, and 11. With substrates containing proper allylic hydrogens, the "ene" reaction ($6 \rightarrow 7 \rightarrow 10$) exceeds that of $[2+2]$ cycloaddition ($6 \rightarrow 9$). When the allylic hydrogens are part of a cyclopropane ring, the $[2+2]$ cycloaddition $(1 \rightarrow 2)$ or the Diels-Alder reaction ($11 \rightarrow 13 \rightarrow 14$) prevail. In the case of 1 , the $1 \rightarrow 2$ conversion was accompanied by a novel "ene" reaction involving the cyclopropane methine hydrogen $(1 \rightarrow 3)$. The intermediacy of a diradical species of structure 17 was invoked to explain the $1 \rightarrow 2$ and $1 \rightarrow 3$ conversions. Small amounts of 3 -cyclopropyl-3-phenyl-isochroman-1-one (12) were isolated from the reaction of 11 with benzyne. Peaks corresponding to ions M CH_{3} and $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}$, and/or $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}$, and $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{3}$, are prominent in the mass spectra of most of the adducts described herein. The appearance of $\mathrm{M}-\mathrm{CH}_{3}$ and $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}$ ions implies rearrangement of the cyclopropyl group followed by hydrogen migration prior to fragmentation. Ionized 3 and 10 are featured by the loss of either cyclopropyl or benzyl radical to yield the methylenecyclopropane (21 and 30) and phenylvinylcyclopropane (33) cations, respectively.

The olefinic character of cyclopropane is manifested by (1) its tendency to undergo addition reactions and (2) its ability to enter into conjugation with adjacent double bonds. ${ }^{2}$ Thus, vinylcyclopropanes are analogous to some degree to conjugated dienes. For example, properly activated vinylcyclopropanes lend themselves to thermal $[2+5]$ cycloaddition ${ }^{3}$ where a cyclopropane bond provides a source of two electrons. ${ }^{4}$
To explore further the scope of the reaction, which can be labeled as a [$2+\pi_{\pi} 2+\pi_{\pi} 2$] cycloaddition, a study of the reaction of benzyne with some α-substituted cyclopropylethylenes was undertaken. Benzyne is known to react with dienes containing readily accessible allylic hydrogens, preferably by the "ene" synthesis analogous to the Diels-Alder reaction, ${ }^{5}$ or, in absence of such hydrogens, by $[2+2]$ and/or $[2+4]$ cycloaddition (Schemes I, II, and III). ${ }^{6-8}$
On the McEwen-Streitwieser-Applequist-Dessy $\mathrm{p} K_{\mathrm{a}}$ scale 9 the cyclopropane hydrogens are $3.5 \mathrm{p} K_{\mathrm{a}}$ units less acidic than the allylic hydrogen in propylene. Furthermore, from Shatenstein's hydrogen-deuterium

[^70]Scheme I

ratio $^{6} \quad 4.5-6.7$
1.0
1.0
Scheme II

Scheme III

exchange experiments ${ }^{10}$ it is known that the ring methine hydrogen in alkylcyclopropane is less acidic than the ring methylene hydrogens, which, in turn, are comparable in acidity to aromatic hydrogens in alkylbenzenes. Vinylcyclopropane, therefore, is not ex-
(10) A. I. Shatenstein, Advan. Phys. Org. Chem., 1, 176 (1963); ref 9, pp 22-23.
pected to react with benzyne by the "ene" synthesis but rather to give rise to cycloaddition products.

We found that on exposure of 1,1-dicyclopropylethylene (1) to the action of benzyne generated by the thermolysis of benzenediazonium-2-carboxylate in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ a mixture of three isomeric adducts is obtained (30% yield), in the ratio of 3.8:2.8:1 (Scheme IV).

The major component was shown to be a fourmembered cycloadduct, identified as 3,3-dicyclopropylbenzocyclobutene (2) in the following way. It was analyzed as a $\mathrm{C}_{14} \mathrm{H}_{16}$ compound. Its nmr and ir spectra indicated the presence of a 1,2-disubstituted benzene ring, and two cyclopropyl groups, with observed resonance up to $\tau 10.36$, and two methylene protons of a cyclobutene ring appearing as a singlet at $\tau 7.15$.

The two other products proved to be isomeric compounds where the more abundant one most likely results from the "ene" synthesis, involving one of the cyclopropane methine hydrogens, and was assigned the α-cyclopropylphenethylidenecyclopropane structure (3). Its structure was inferred from the mass spectrum, showing the parent peak at $m / e 184$, and from its nmr spectrum, indicating the presence of one benzyl, one cyclopropyl, and one cyclopropylidene group in the molecule.

The minor product was assigned similarly the $1,1-$ dicyclopropyl-2-phenylethylene (4) structure. Its uv spectrum is characterized by two well-defined peaks of similar intensity at 255 and $205 \mathrm{~m} \mu$, attributable to the styrene and the vinylcyclopropane chromophores, respectively. The origin of 4 is not known. It could well be an artifact of 3 as a result of a 1,3hydrogen shift to yield the thermodynamically more favored conjugated system 4.

In another experiment, 1 was allowed to react with benzyne which was generated by a slightly different method (method B, Experimental Section), from benzenediazonium-2-carboxylate hydrochloride and propylene oxide. This led to higher yields of reaction products 2 and 4 and a new adduct (major product) which analyzed as a $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{Cl}$ compound (see Scheme V). Its mass spectrum was characterized by two peaks at $m / e 220$ and 222 , corresponding to the molecular ions, in the ratio expected for the presence of the

${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ isotopes of chlorine. It was assigned the 4-cyclopropyl-3-phenylpent-4-enyl chloride structure (5) on the basis of its spectroscopic properties (see Experimental Section).

The reaction of jenzyne with a threefold excess of 2-cyclopropylpropene (6) has been shown ${ }^{11}$ to give a 38% yield of three adducts, $7-9$, in the ratio of 19.5 : 4.5:1 (Scheme VI).

Scheme VI

When 2 mol of benzyne were allowed to react with 1 mol of 6 (instead of the $1: 3$ ratio employed by the Japanese authors ${ }^{11}$), a 55% yield of a mixture of two products in the ratio of $5: 1$ was obtained.

The two products were shown to bc geometric isomers of 2-cyclopropyl-1,3-diphenylpropene (10a and 10b, see Scheme VII). The isomeric mixture analyzed

as $\mathrm{C}_{18} \mathrm{H}_{18}$ compounds, exhibiting the parent peak at $m / e 234$ in the mass spectrum. The nmr spectrum shows a ten-proton aromatic multiplet centered at $\tau 2.9$, a singlet at 3.63 for the predominant isomer, and

another singlet at 3.78 for the minor product (the integrated area for the two corresponds to one proton), a singlet at 6.44 for the major product, and another singlet at 6.75 for the minor product (the integrated area of which corresponds to two protons).

It has been shown ${ }^{2 d}$ that in vinylcyclopropane systems of the a and b types (see Scheme VII) the vinylic proton cis to the cyclopropane resonates at a higher field than the corresponding proton in the trans arrangement. The difference of 0.15 ppm between the vinylic protons permits us to assign the trans geometry (10a) to the predominant isomer, and the cis geometry (10b) to the minor product.

The uv spectrum of $10 \mathrm{a}+10 \mathrm{~b}$ displays two intense bands at 250 and $209 \mathrm{~m} \mu$, assignable to the styrene and the vinylcyclopropane chromophores, respectively. The extinction coefficient at the lower wavelength markedly exceeds that at the longer wavelength of the spectrum.

The reaction of α-cyclopropylstryene (11) with benzyne (Scheme VIII) resulted in a 10% yield of two compounds in the ratio of $1: 8.5$. The major product was identified as 9 -cyclopropylphenanthrene (14) on the basis of its analysis and spectroscopic properties. In its mass spectrum the molecular ion at $m / e 218$ is the base peak, reflecting the remarkable stability of the aromatic polycyclic nucleus. Other peaks with abundances $>25 \%$ of the base peak are at $m / e 217$ ($\mathrm{M}-1$, $61 \%)$, at $m / e 203\left(\mathrm{C}_{16} \mathrm{H}_{11}, 72 \%\right)$, corresponding to the loss of methyl from the parent ion (as evidenced by the presence of a metastable peak at m / e 189), and at m / e $202\left(\mathrm{C}_{16} \mathrm{H}_{10}, 54 \%\right)$ arising from further fragmentation of the ion of $m / e 217$ by loss of methyl, as substantiated by the presence of a metastable ion ($\mathrm{m}^{*} 188$) in the spectrum. Study has shown that the ion of $m / e 217$ lends itself to two more reactions: (i) the loss of acetylene to give the ion of $m / e 191\left(\mathrm{C}_{15} \mathrm{H}_{11}, 40 \%\right)$; (ii) the loss of ethylene to yield the ion of $\mathrm{m} / \mathrm{e} 189$ $\left(\mathrm{C}_{15} \mathrm{H}_{\mathrm{e}}, 21 \%\right)$. Its uv spectrum shows the typical phenanthrene absorption bands at 252 and $221 \mathrm{~m} \mu^{12}$ with high extinction coefficients (see Figure 1). The nmr data (see Experimental Section) are in agreement with structure 14.
The minor product from the reaction of 11 with

Figure 1-Ultraviolet absorption spectra of $3.10 \times 10^{-5} \mathrm{~mol} / \mathrm{l}$. 9 -cyclopropylphenanthrene (14) (---) and of $2.16 \times 10^{-6} \mathrm{~mol} / 1$. phenanthrene ($\cdots \cdot$) in n-hexane.
benzyne was assigned the structure of 3-cyclopropyl-3-phenylisochroman-1-one 12 on the basis of its ir spectrum, exhibiting the lactone carbonyl absorption at $1720 \mathrm{~cm}^{-1}$, and its molecular ion at m/e $264\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}\right)$ in the mass spectrum. The base peak of the spectrum is at $m / e 118\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}\right)$ corresponding to the loss of cyclopropyl phenyl ketone. ${ }^{13}$ Other peaks with abundances $>40 \%$ of the base peak are at $m / e 236$ $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}, 50 \%\right)$, corresponding to the loss of carbon monoxide from the parent ion, and $m / e 90\left(\mathrm{C}_{7} \mathrm{H}_{6}, 40 \%\right)$, arising either from further fragmentation of the ion of $m / e 118$ by loss of carbon monoxide or from the ion of $m / e 236$ by loss of cyclopropyl phenyl ketone. The nmr spectrum shows a one-proton aromatic multiplet centered at $\tau 2.03$ and an eight-proton aromatic multiplet between 2.35 and 2.95. In addition, the benzylic protons appear as a singlet at $\tau 6.43$.

The data produced above clearly reflect the tendency of α-cyclopropylstyrene to behave toward
(13) Compare with similar electron impact induced elimination of acetaldehyde from derivatives of 3-methylisochroman-1-one: (a) M. J. Rix and B. R. Webster, J. Chem. Soc. B, 254 (1968); (b) J. F. Grove, J. Chem. Soc., Perkin Trans. 1, 2400 (1972); (c) see also D. R. Arnold, E. Hedaya. V. Y. Maritt, L. A. Karnischky, and M. E. Kent, Tetrahedron Lett., 3917 (1972).
benzyne as a true styrene, ${ }^{14}$ undergoing a $[2+4]$ cycloaddition followed by dehydrogenation ($11 \rightarrow$ $13 \rightarrow 14)$. The $[2+2]$ cycloaddition and the "ene" reaction, which are displayed by 1 , could not be observed in the case of 11 . Most significantly, benzyne shows no tendency to add across the vinylcyclopropane system, as do the acetylenedicarboxylic acid esters. ${ }^{3 b, 0}$

The immediate precursor of 12 is most likely the zwitterion 15, presumably being formed via expulsion of a nitrogen molecule from benzenediazonium-2carboxylate (Scheme IX). The low yield of 12 suggests

that 15 does not appreciably equilibrate with its cyclic form $16 .{ }^{5 \mathrm{~b}}$

Mechanism. -The formation of 3 from 1 can be best explained in terms of a multistage process involving a diradical intermediate 17 , which via intramolecular 1,5-hydrogen shift gives rise to "ene" synthesis (Scheme X).

The intermediacy of a dipolar adduct 18 appears less likely, since it implies that in the conversion of 18

to 3 the more acidic $\mathrm{C}-\mathrm{H}$ bond (aromatic) is formed via migration of a proton from the less acidic $\mathrm{C}-\mathrm{H}$ bond (the methine cyclopropane $\mathrm{C}-\mathrm{H}$ bond). Indeed, formation of 3 in this reaction should be viewed as a substantiation for the radical mechanism. ${ }^{15}$ The formation of 5 from 1 (Scheme V) most likely occurs via HCl -induced homoallylic rearrangement ($1 \rightarrow 19$) followed by benzyne addition $(19 \rightarrow 20 \rightarrow 5)$ as delineated in Scheme XI.

Mass Spectra. - The mass spectra were measured on a Varian CH5 mass spectrometer using the direct

[^71]Scheme XI

19

inlet system. The electron energy was maintained at 70 eV and the ionization current at $20 \mu \mathrm{~A}$. The abundances of the prominent ions in the mass spectra of compounds 2, 3, 4, and 10 are assembled in Table I and given in percentages relative to the base peaks in the spectra.

Table I
Relative Abundances of Prominent Ions in the Mass Spectra of 2, 3, 4, 5, and 10

m / e	2	3	4	5	10
77	11.0	33.0	47.4	21.6	
91	9.0	100	91.7	84.3	60.4
93		35.0	30.0		
115	69.6	28.0	72.4	56.0	35.2
128	63.8	46.1	100		52.1
129	21.7	32.8	49.4	100	14.1
141	100	47.2	99.4		13.8
142	20.6	29.4	39.1		9.4
143	14.2	27.2	80.0	58.2	100
155	37.7	26.7	80.1		
156	46.4	7.8	35.3		
157				56.0	
169	17.7	23.9	70.5		
M.+	3.2	3.9	73.7	46.3	45.0

The principal electron-induced fragmentation of saturated cyclopropanes was shown ${ }^{169, b}$ to involve the rupture of the small ring in two main modes: (a) cleavage of the cyclopropane 1,2 bond to yield ions of a "normal" propane chain which then eject a neutral ethylene derivative, and (b) cleavage of the 2,3 bond to yield a branched ionic biradical propane followed by loss of a neutral C_{3} unit with retention of the charge on the substituent (see Scheme XII).

The mass spectra of the $[2+2]$ cycloadduct 2 and of the "ene" reaction products, 3 and 4 , from the reaction of 1 with benzyne are characterized by six peaks at $m / e 169,155,143,141,128$, and 115, corresponding to the ionic fragments $\mathrm{M}-\mathrm{CH}_{3}, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{M}-$ $\mathrm{C}_{3} \mathrm{H}_{5}, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}$, and $\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9}$, respectively. The first two ionic species, $\mathrm{M}-\mathrm{CH}_{3}$ and M $\mathrm{C}_{2} \mathrm{H}_{5}$, probably originate from an initial 1,2-bond fission of one of the cyclopropyl groups with concomitant
(16) (a) H. Weitkamp, U. Hasserodt, and F. Korte, Chem. Ber., 95, 2280 (1962); (b) N. Turro, et al., J. Amer. Chem. Soc., 87, 4097 (1965).
double hydrogen migrations to yield n-propyl radical ions which then eject a methyl and/or an ethyl radical.

From Table I it can be seen that the relative intensity of the molecular ion peak in the mass spectra of 2,3 , 4 , and 10 decreases in the order $4>10>3 \approx 2$, suggesting that the cation radicals produced by loss of an electron from either 4 or 10 are more stable than those derived from 2 or 3 . This is in harmony with the observed unusually low ionization potentials in cyclopropylethylenes ${ }^{17}$ probably due to the ability of the small ring to stabilize an adjacent electrondeficient center. ${ }^{18}$

Of particular interest are the two primary mass spectral reactions of geminal benzylcyclopropylmethylenecyclopropane (3), featured by the loss of either cyclopropyl radical or benzyl radical to give the respective methylenecyclopropane cations 30 and 21. The latter subsequently loses two atoms of hydrogen to yield a highly stable ionic fragment ($m / e 91$, base peak) to which we assign the cyclobutenylcylclopropenylium ion structure 22, constituting an isoelectronic species of the well-known tropylium ion (23). A metastable peak observed at $m / e 46.6$ could result from the $3 \rightarrow 21$ route (calculated metastable 47.0) or from the elimination of an acetylene molecule from the tropylium ion (23) to form the cyclopentadienylium ion (24) of $\mathrm{m} / \mathrm{e} 65$ (relative abundance 22%; calculated metastable 46.4). Significantly, the abundance of the benzylmethylenecyclopropylium ion (30) is considerably less prominent in the spectrum of 3 (see Table I). This suggests that ionized benzylcyclopropylmethylenecyclopropane (3) ruptures α to the vinyl bond in two main modes: (i) cleavage of the benzyl-vinyl bond gives the cyclopropylmethylenecyclopropylium ion, which then loses two hydrogen atoms to give the highly stable ion 22 ; and (ii) cleavage of the cyclopropyl-vinyl bond with retention of charge on the substituted methylenecyclopropane moiety ${ }^{19-21}$ (Scheme XIII).

The importance of the latter mass-spectral pattern is further demonstrated in the case of ionized 10, in which the dominating primary reaction involves
(17) S. Nishida, I. Moritani, and T. Traji, J. Chem. Soc., Chem. Commun., 1114 (1972).
(18) C. D. Poulton and S. Winstein, J. Amer. Chem. Soc., 94, 2297 (1972).
19) (a) H. G. Richey and J. M. Richey in "Carbonium Ions," Vol. 2, G. A. Olah and P. v. R. Schleyer, Ed., Wiley-Interscience, New York, N. Y., 1970, p 899; (b) M. Hanack, Accounts Chem. Res., 3, 209 (1970); (c) G. Modena and U. Tonellato, Advan. Phys. Org. Chem., 9, 185 (1971).
(20) (a) S. A. Sherrod and R. G. Bergman, J. Amer. Chem. Soc., 98, 1925 (1971); (b) D. R. Kelsey and R. G. Bergman, ibid., 93, 1941, 1953 (1971).
(21) (a) J. A. Landgrebe and L. W. Becker, ibid., 90, 395 (1968), report that cyclopropyl substitution ($\mathbf{S 4} \boldsymbol{\rightarrow} \mathbf{3 5}$) enhances the solvolytic propensity of cyclopropyl chloride (34) by a factor of 286,000 ; (b) M. Hanack, private communication, observed a similar enhancing effect of cyclopropyl substitution in solvolysis of vinyl bromides. Thus, the relative rates increase on going from 36 to 37 , to 38 , to 39 by a factor of $10^{3}, 10^{4}, 10^{6}$, respectively. The intermediacy of 21 is invoked to explain the facile conversion of 39 to 40.

fission of the benzyl-vinyl bond to give a phenylvinylcyclopropane cation ($10 \rightarrow 33$) and neutral benzyl fragment. The ion 33 then either cjects an cthylene molecule to give the indenylium ion (29), or irst rearranges into a protonated methylnaphthalene species (31) and then loses a methyl radical to give ionized naphthalene (32) (Scheme XIV).

Experimental Section

Nmr spectra were recorded on JEOL C-60H spectrometer (internal TMS), uv spectra on a Unicam SP 800 A spectrophotometer, ir spectra on a Perkin-Elmer 237 spectrophotometer, and mass spectra on a MAT CH 5 spectrometer.

Cyclopropylethylenes.-Literature procedures were used for the preparation of 1,1-dicyclopropylethylene (1), bp 45° (20 mm), $n^{20} \mathrm{D} 1.4653,{ }^{22 \mathrm{a} \cdot \mathrm{b}} 2$-cyclopropylpropene (6), bp 70 ${ }^{\circ}$ (690 mm), $n^{20} \mathrm{D} 1.4250,{ }^{23}$ and α-cyclopropylstyrene (11), bp 102-104 ${ }^{\circ}$ (20 mm), $n^{25} \mathrm{D} 1.5467 .{ }^{22 \mathrm{~b}, 24}$

General Procedure for the Reaction of Cyclopropylethylenes with Benzyne. Method A.-Benzenediazonium-2-ca:boxylate (25 mmol), prepared by the method of Logullo, Seitz, and Friedman, ${ }^{25}$ was added to a solution of the olefin in ethylene dichloride. The stirred reaction mixture was refluxed for 1 hr or until gas evolution ceased. The dark solution was then concentrated and chromatographed on neutral alumina (40 g) with ethylene dichloride, carbon tetrachloride, or benzene as eluent. The first fractions contained a mixture of the reaction products and unreacted starting olefin. Separation of the reaction products was carried out by preparative vpc or by preparative tle.

Method B.-The procedure in method A was followed, but instead of benzenediazonium-2-carboxylate the hydrochloride of this reagent was used, and propylene oxide (2 equiv) was added to the reaction mixture.

Reaction of 1,1-Dicyclopropylethylene (1) with Benzvne (1:1). Method A.-The reaction mixture was chromatographed with ethylene dichloride as eluent. A mixture of three isomeric compounds, 2, 3, and 4, was obtained in a yield of 15,11 , and 4%, respectively. The compounds were separated by preparative vpc ($6 \mathrm{ft} \times 0.25 \mathrm{in} .10 \% \mathrm{SE}-30$, at 140°, gas flow rate 57 ml / \min).

Compound 2 was a liquid: retention time $13.5 \mathrm{~min} ; \mathrm{nmr}$ $\left(\mathrm{CCl}_{4}\right) \tau 2.65-3.40(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 8.53-9.08(\mathrm{~m}, 2 \mathrm{H})$, $9.25-10.36(\mathrm{~m}, 8 \mathrm{H})$; ir $3085-2920,1470,1430,1050,1020,755$, $725 \mathrm{~cm}^{-1}$; mass spectrum $\mathrm{M}^{+} m / e 184$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16}$: C, 91.30; H, 8.70. Found: C, $91.50 ; \mathrm{H}, 8.59$.
Compound 3 was a liquid: retention time $20 \mathrm{~min} ; \mathrm{nmr}$ $\left(\mathrm{CCl}_{4}\right) \tau 2.6-3.2(\mathrm{~m}, 5 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}), 8.80(\mathrm{~m}, 1 \mathrm{H}), 9.07$ ($\mathrm{m}, 4 \mathrm{H}$), 9.43 and 9.55 (two apparent s, 4 H); ir 3085-2910, $1605,1500,1455,1045,1025,990,75 \mathrm{j}, 705 \mathrm{~cm}^{-1}$; mass spectrum $\mathrm{M}^{+} m / e 184$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16}$: C, 91.30; H, 8.70. Found: C, 91.40; H, 8.45.

Compound 4 was a liquid: retention time $26 \mathrm{~min} ; \mathrm{nmr}$ $\left(\mathrm{CCl}_{4}\right) \tau 2.6-3.1(\mathrm{~m}, 5 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~m}, 1 \mathrm{H}), 8.85$ $(\mathrm{m}, 1 \mathrm{H}), 9.0-9.65(\mathrm{~m}, 8 \mathrm{H})$; ir $3080-3000,1630,1600,1490$,

[^72]

$1445,1020,930,915,755,700 \mathrm{~cm}^{-1}$; uv (n-hexane) $\lambda_{\max } 255 \mathrm{~m} \mu$ $\left(\epsilon 1.3 \times 10^{4}\right), 205\left(1.4 \times 10^{4}\right) ;$ mass spectrum $\mathrm{M}^{+} m / e 184$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10}$: C, 91.30; H, 8.70. Found: C, 91.10; H, 8.56.

Reaction of 1,1-Dicyclopropylethylene (1) with Benzyne (1:1). Method B.-The reaction mixture was chromatographed with ethylene dichloride as eluent. A mixture of 2, 4, and 5 was obtained in a yield of $17,7.2$, and 21%, respectively. The compounds were separated by preparative vpc, as described above for the reaction of 1 with benzyne, method A.

Compound 5 was a liquid: retention time 40 min ; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ $\tau 2.50-2.95(\mathrm{~m}, 5 \mathrm{H}), 5.25$ and 5.33 (2 apparent s, 2 H), 6.31 (t, $J=7.5 \mathrm{cps}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=6 \mathrm{cps}, 2 \mathrm{H}), 7.73(\mathrm{~m}, 2 \mathrm{H})$, $8.60-9.75(\mathrm{~m}, 5 \mathrm{H})$; ir $3095-2880,1645,1605,1500,1460$, $895,755,710 \mathrm{~cm}^{-1}$; mass spectrum $\mathrm{M}^{+} m / e 220$ and 222 .

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{Cl}$: C, 76.0; H, 7.70; Cl, 16.30. Found: C, 76.08; $\mathrm{H}, 7.84$; $\mathrm{Cl}, 16.16$.

Reaction of 2-Cyclopropylpropene (6) with Benzyne (1:2) Method A.-The reaction mixture was chromatographed with carbon tetrachloride as eluent and one major product, 10 , which consisted of two geometrical isomers, 10a and 10b (5:1), was obtained in a yield of 55%. Purification of 10 was effected by preparative vpc without separation of isomers ($6 \mathrm{ft} \times 0.25$ in. 10% SE-30, at 205°, gas flow rate $43.5 \mathrm{ml} / \mathrm{min}$).

Isomeric mixture 10 was a liquid: retention time 13.5 min ; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \tau 2.6-3.1(\mathrm{~m}, 10 \mathrm{H}), 3.63$ (major isomer, 10a) and 3.78 (minor isomer, 10 b) (two s, $5: 1$ respectively, 1 H), 6.44 (10a) and 6.75 (10b) (two s, $5: 1$ respectively, 2 H), 8.5-9.0 (m,
$1 \mathrm{H}), 9.3-9.7$ (m, 4 H); ir 3080-2900, 1640, 1600, 1495, 1455 $1070,1045,1030,1015,915,765,750,730,700 \mathrm{~cm}^{-1}$; uv ($n-$ hexane) $\lambda_{\max } 250 \mathrm{~m} \mu\left(\epsilon 1.6 \times 10^{4}\right), 209\left(2.0 \times 10^{4}\right)$; mass spectrum $\mathrm{M}^{+} m / e 234$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18}$: C, 92.31; $\mathrm{H}, 7.69$. Found: C, 92.56; H, 7.70.

Reaction of α-Cyclopropylstyrene (11) with Benzyne (1:1).The procedure followed was that given in method A with the following variations: (1) chloranil ($6.15 \mathrm{~g}, 25 \mathrm{mmol}$) was added to the reaction mixture; (2) basic instead of neutral alumina was used for chromatography. The reaction mixture was chromatographed with benzene as eluent. Two products, 14 and 12, were obtained in a yield of 8.5 and 1%, respectively.

Compound 14 was isolated by preparative vpc (retention time 10 min on $3 \mathrm{ft} \times 0.25 \mathrm{in} .20 \% \mathrm{SE}-30$, at 205°, gas flow rate 33 $\mathrm{ml} / \mathrm{min}$) and purified by recrystallization from hexane: colorless crystals; $\mathrm{mp} 78^{\circ}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \tau 1.2-1.7(\mathrm{~m}, 3 \mathrm{H}), 2.2-2.8(\mathrm{~m}$, $6 \mathrm{H}), 7.4-8.0(\mathrm{~m}, 1 \mathrm{H}), 8.65-9.3(\mathrm{~m}, 4 \mathrm{H})$; ir $3060-2820,1615$, $1590,1480,1440,1010,875,750,735,715 \mathrm{~cm}^{-1}$; uv (n-hexane) $\lambda_{\max } 252 \mathrm{~m} \mu\left(\epsilon 6 \times 10^{4}\right), 221\left(3 \times 10^{4}\right)$; mass spectrum $\mathrm{M}^{+} m / e$ 218.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14}: \mathrm{C}, 93.58 ; \mathrm{H}, 6.42$. Found: C, 93.77; H, 6.48 .

Compound 12 was isolated by preparative tlc on silica gel: R_{f} 0.18 (benzene as eluent); $\mathrm{mp} \mathrm{70-72}^{\circ}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.03$ (m, $1 \mathrm{H}), 2.35-2.95(\mathrm{~m}, 8 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 8.63$ (apparent $\mathrm{q}, 1 \mathrm{H}$), 9.41 and 9.51 (two apparent s, 4 H); ir $3080-2850,1720,1605$, $1490,1460,1445,1285,1235,1120,1080,102 \overline{5}, 1010,990,92 \overline{5}$, $910,750,715,695 \mathrm{~cm}^{-1}$; mass spectrum $\mathrm{M}^{+} m / e 264$, base peak 118.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 81.81; $\mathrm{H}, 6.06$. Found: C, 81.0; H, 6.05 .

Registry No.-1, 822-93-5; 2, 38662-40-7; 3, 38662-41-8; 4, 23772-96-5; 5, 38662-43-0; 6, 4663-22-3; 10a, 38662-44-1; 10b, 38662-45-2; 11, 825-76-3; 12, 38661-79-9; 14, 38661-80-2; benzyne, 462-80-6.

Acknowledgment.-We are thankful to Professor Lester Friedman of the Case Western Reserve University Department of Chemistry, Cleveland, Ohio, for suggesting the topic while here as a guest professor in 1971, and for his help at the earlier stage of this work. We also wish to thank Dr. Joseph Deutsch of this department for his kind help and valuable comments.

The Allylic Rearrangement. III. ${ }^{1,2}$ A Favorskii-Type
 Rearrangement of the Vinylogs of α-Chloroacetones

Akira Takeda* and Sadao Tsuboi
Department of Synthetics Chemistry, School of Engineering, Okayama University, Tsushima, Okayama, Japan 700

Received October 16, 1972

Abstract

A Favorskii-type rearrangement of the vinylogs of α-chloroacetones is described. The alkaline hydrolysis of $5,5,5$-trichloro-3-penten-2-one (1) or its precursor, $5,5,5$-trichloro-4-hydroxy-2-pentanone (2), gave 5 -chloro-2,4-pentadienoic acid (3) in a $27-29 \%$ yield. The treatment of 1 with methanolic sodium methoxide gave the mixture of the methyl ester (10) of 3 and the methyl ester (14) of 5,5 -dichloro- 4 -pentenoic acid (13). The alkaline hydrolysis of 5,5 -dichloro-3-penten-2-one (7), 5,5 -dichloro- 3 -hexen- 2 -one (8), and 5,5 -dichloro- 4 -hydroxypentan2 -one (9) also gave the corresponding unsaturated acids. The reactions carried out in protic solvents tend to afford 4 -pentenoic acid derivatives predominantly rather than 2,4 -pentadienoic acid derivatives. It is assumed that the pathway of the formation of $\mathbf{3}$ from the starting material 1 involves a Favorskii-type rearrangement initiated by loss of chlorine at C-5 from the enolate anion of 1 to give a dipolar ion intermediate.

It has long since been known that the alkaline hydrolysis of $5,5,5$-trichloro-3-penten-2-one (1) ${ }^{3}$ or $5,5,5$ -trichloro-4-hydroxy-2-pentanone (2) ${ }^{4}$ gives a carboxylic acid (3) with the composition of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{Cl}, \mathrm{mp} 171-172^{\circ}$. Uschakow ${ }^{4}$ once assigned the structure of 4 -chloro-2,3-pentadienoic acid (4) and/or 4-chloro-2,4-pentadienoic acid (5) to the acid. On the other hand,

Muskat has later shown that the latter structural assignment of Uschakow was not correct, as he obtained the real acid 5, which melted at about $94^{\circ},{ }^{5}$ by the alkaline dehydrochlorination of 4,5-dichloro-2-pentenoic acid (6). The structure of the acid 3 had been

6
left ambiguous thereafter. In the course of our study on the reactions of the pentenone $1,{ }^{2,6}$ we became interested in reexamining the structure of the acid 3 and have identified it as 5 -chloro-2,4-pentadienoic acid.

We assumed the pathway of the formation of 3 from the starting material 1 to involve a Favorskii-type rearrangement initiated by loss of chlorine at C-5 from the enolate anion ${ }^{7}$ of 1 as shown in Scheme I. To en-

[^73]

$7 \mathrm{X}=\mathrm{H}$ 8, $\mathrm{X}=\mathrm{CH}_{3}$

$q \quad \ddagger+\mathrm{H}^{+}$

17
$\downarrow-\mathrm{Cl}^{-}$

3, $\mathrm{X}=\mathrm{Cl} ; \mathrm{R}=\mathrm{H}$
10, $\mathrm{X}=\mathrm{Cl} ; \mathrm{R}=\mathrm{CH}_{3}$
21, $\mathrm{X}=\mathrm{R}=\mathrm{CH}_{3}$
sure the validity of this assumption, we carried out the alkaline hydrolysis of a number of substrates with the structures of the vinylog of α-chloroacetones such as 5,5-dichloro-3-penten-2-one (7) and 5,5-dichloro-3-hex-en-2-one (8) or the precursor of 7, 5,5-dichloro-4-hydroxypentan-2-one (9). These compounds also afforded the unsaturated carboxylic acids, whose formation can be well explaincd by the proposed mechanism. This paper describes the structural identification of the acid 3 and the related compounds and discusses the reaction mechanisms of their formaticn.

Results and Discussion

By the alkaline hydrolysis of either 1 or 2 , we obtained the acid, $\mathrm{mp} 170^{\circ}$, in a $19-29 \%$ yield, which was
believed to be the same one as that described by Uschakow. ${ }^{4}$ The mass spectrum of this product as well as its analyses supported the composition $\mathrm{C}_{5} \mathrm{H}_{5}-$ $\mathrm{O}_{2} \mathrm{Cl}$. The ir spectrum (KBr) of the acid 3 exhibited absorptions at 3060 ($>\mathrm{C}=\mathrm{CH}$), 3000-2500 (carboxy), 1690 and 1670 (conjugated carboxy $\mathrm{C}=0$), 1655 (shoulder, $\mathrm{C}=\mathrm{C}$), $1620(\mathrm{C}=\mathrm{C}), 1002$ and 950 (trans $\mathrm{HC}=\mathrm{CH}), 840($ cis $\mathrm{HC}=\mathrm{CH})$, and $710 \mathrm{~cm}^{-1}(\mathrm{CCl})$. The allenic structure can be ruled out from the possible structures of 3 because no notable absorption was observed in the region of $1950 \mathrm{~cm}^{-1}$. Since the nmr spectrum [d, $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$] showed signals due to four vicinally coupled protons attached to the individual carbon atoms, 5 -chloro-2,4-pentadienoic acid has now been assigned to this product (3). ${ }^{8}$ The geometry of the acid 3, trans-2: cis-4, is estimated by the coupling constants observed of four protons ${ }^{9}$ and also by the ir absorptions in the region of $800-1000 \mathrm{~cm}^{-1.10}$ No additional peaks ascribable to other isomers were observed.

The acid 3 was converted to the methyl ester 10 with diazomethane quantitatively. One mole of the ester 10 took 2 mol of bromine in two steps. In addition to the acid 3, 5,5-dichloro-4-pentenoic acid (13, 19\%)

12
that Uschakow ${ }^{4}$ did not allude to was obtained in the alkaline hydrolysis of 1 . The acid 13 was converted to the methyl ester 14 . The nmr spectrum of 14 in carbon tetrachloride showed one olefinic proton as a triplet at $\delta 5.89 \mathrm{ppm}$, methyl ester protons as a singlet at 3.64 ppm , and methylene protons as a multiplet centered at 2.41 ppm . The mass spectrum of 14 showed strong molecular ions at $m / e 182$ with the characteristic chlorine isotope distribution.

The treatment of 1 with methanolic sodium methoxide at $20-25^{\circ}$ for 10 min gave the mixture of esters 10 and 14 and $5,5,5$-trichloro-4-methoxypentan-2-one (15). ${ }^{2}$ Only the ester 10 was isolated when 1 was treated with sodium methoxide in ether. The derivation of 13 and 14 in hydroxylic solvents can be explained by assuming a delocalized anion 16, which, in protic solvents, is thought to give protonated products
(8) Two monoehloropentadienoic acid structures, i and ii, have two geminate protons. Compound ii has been derived by Corre, et al., by the

$\mathrm{CH}_{2}=\mathrm{CHCH}=\underset{\substack{\mathrm{Cl} \\ \text { l } \\ \mathrm{Cl}}}{\mathrm{COH}}$
ii
reaction of 2,3,3-trichloropropenal with vinylmagnesium chloride: M. L Corre and E. Levas, C. R. Acad. Sci., Ser. C, 260, 3414 (1965); lit. mp 118 119°.
(9) Y. Leraux and E. Vauthier, C. R. Acad. Sci., Ser. C, 271, 1333 (1970).
(10) (a) L. Crombie, J. Chem. Soc., 1007 (1955); (b) J. L. H. Allan, G. D. Meakins, and M. C. Whiting, ibid., 1874 (1955).

partly and isomerized products partly. The latter products probably underwent a dehydrochlorination to give 3 and 10. This mechanism is further substantiated by the reaction of dichloro ketones 7, 8, and 9 with base. By treatment with aqueous sodium hydroxide, both 7 and 9 were converted to trans-2,4-pentadienoic acid (18) ${ }^{11}$ in a 25% yield. The alkaline hydrolysis of the ketone 8 afforded 5-chloro-4-hexenoic acid (19) ${ }^{12}$ exclusively in a 27% yield. The ir bands

19
at 1700 (acid $\mathrm{C}=\mathrm{O})$ and $1660-1630 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$ indicated the α, β-saturated structure of 19 . The unusually high δ value of its methylene protons (broad singlet, 2.42 ppm) is due to deshielding effects of the acid group and the vinyl group. The transformation of an intermediate 16 to 17 appears to be more favored when the substituent X is chlorine or hydrogen, since ketones 1, 2, 7, and 9 afforded 2,4-pentadienoic acid derivatives as main products in protic solvents, whereas the ketone 8 gave 4-hexenoic acid derivatives as main products in protic solvents. When 8 was treated with sodium methoxide in dry methanol, the methyl ester $20^{13 \mathrm{a}}$ of the acid 19 was produced as the major component

along with methyl sorbate (21) ${ }^{13 \mathrm{~b}}$ as the minor component. The ester 20 was transformed to methyl sorbate (21) by the action of sodium methoxide in ether, though in a low yield (6%). This fact presents additional evidence to support the proposed mechanism of the Favorskii-type rearrangement reported here. The reaction sequence of 20 is given in Scheme II.

The effect of aprotic solvents on the product distribution has been further investigated. Table I summarizes the results of the reactions which were carried out in aprotic solvents such as ether, benzene, and n hexane, and also those in protic solvents. There is an indication that the reactions in protic solvents afford more 4 -alkenoic acid as compared to those in aprotic

[^74]Table I
Rearrangement Products from the Reaction of Ketones with Base in Various Solvents
Ketone, $\mathrm{CXCl}_{2} \mathrm{CI}=\mathrm{CHCOCH}_{3}$ or

$\underset{\text { Compd }}{\mathrm{XCCl}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COCH}_{3}}$		Base (RO-)
		R
1	Cl	H
1	Cl	CH_{3}
2	Cl	H
1	Cl	CH_{3}
9	H	H
7	H	H
8	CH_{3}	H
8	CH_{3}	CH_{3}

Solvent
Water
Methanol
Water
Ether
Water
Water
Water
Methanol
Ether
Benzene
n-Hexane

$\mathrm{xCCl}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}$	$\mathrm{XCH}=\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{R}$
19 (13)	29 (3)
4 (14)	32 (10)
0	27 (3)
0	10 (10)
0	25 (18)
0	25 (18)
27 (19)	0
34 (20)	17 (21)
5 (20)	9 (21)
16 (20)	39 (21)
1 (20)	21 (21)

minutes at $50-60^{\circ}$, treated with activated charcoal, and finally acidified with dilute hydrochloric acid to pH 2 . The solid was collected, thoroughly washed with water, and air dried to give 18 g (yield 27%) of crude 3. Recrystallization from chloroform gave $9 \mathrm{~g}(14 \%)$ of $3: \mathrm{mp} 170^{\circ}$; ir (KBr) $3060(\mathrm{C}=\mathrm{CH}), 3000-$ $2500(\mathrm{COOH}), 1690(\mathrm{acid} \mathrm{C}=0), 1670($ acid $\mathrm{C}=0), 1620(\mathrm{C}=\mathrm{C})$, $1330,1002,952,833,710 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta 6.02(\mathrm{~d}, 1, J=$ $\left.14.3 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right), 6.82(\mathrm{~d}, 1, J=11.4 \mathrm{~Hz}, \mathrm{ClCH}=$ $\mathrm{CH}-$), 6.95 (dd, $1, J=11.4$ and $10.4 \mathrm{~Hz}, \mathrm{ClCH}=\mathrm{CH}-$), 7.37 ppm (dd, $1, J=10.4$ and $\left.14.3 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}\right)$; mass spectrum ($70 \mathrm{eV} m / e$ (rel intensity) $132\left(23, \mathrm{M}^{+}, 1 \mathrm{Cl}\right), 115(5), 97$ (100), 89 (7), 87 (21), 79 (8), 69 (24), 61 (10), 51 (77), 50 (27), 49 (9), 44 (13), 43 (9), 41 (60), 39 (19), 38 (14), 36 (42).

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClO}_{2}: \mathrm{C}, 45.30 ; \mathrm{H}, 3.80 ; \mathrm{Cl}, 26.71$. Found: C, $45.28 ; \mathrm{H}, 3.92 ; \mathrm{Cl}, 26.82$.
Methyl 5-Chloro-2,4-pentadienoate (10).-Acid 3 ($4.4 \mathrm{~g}, 0.033$ $\mathrm{mol})$ was esterified with diazomethane as usual to give $4.5 \mathrm{~g}(94 \%)$ of 10: bp $66^{\circ}(5 \mathrm{~mm})$; $\mathrm{mp} 43-43.5^{\circ}$ (n-hexane); ir (neat) 3060 $(\mathrm{C}=\mathrm{CH}), 2960,1720$ (ester $\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{C}), 1585(\mathrm{C}=\mathrm{C})$, $1440,1320,995,840,730 \mathrm{~cm}^{-1}(\mathrm{CCl}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 3.69$ (s, 3, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.87\left(\mathrm{~d}, 1, J=14 \mathrm{~Hz},=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 6.28-6.90(\mathrm{~m}$, $1,-\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$), $6.48(\mathrm{~d}, \mathrm{I}, \mathrm{ClCH}=\mathrm{CH}-), 7.19 \mathrm{ppm}(\mathrm{m}$, $1, \mathrm{ClCH}=\mathrm{CH}-$).
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ClO}_{2}: \mathrm{C}, 49.17 ; \mathrm{H}, 4.81$. Found: C, 49.10; H, 4.82 .

Alkaline Hydrolysis of 1.-Similar treatment of $1(3.2 \mathrm{~g}, 0.016$ mol) with 36 ml of 12% aqueous sodium hydroxide gave 0.34 g of crude 3 , as in the case of compound 2. The extraction of the filtrate with ether gave 0.79 g of light brown needles. Tle analysis of this product showed two spots, but the separation of these components by tle was not successful. The esterification of the solid with diazomethane afforded a light brown oil. Glpe analysis (column $\mathrm{A}, 120^{\circ}$, carrier gas $\mathrm{N}_{2}, 0.5 \mathrm{~kg} / \mathrm{cm}^{2}, 42 \mathrm{ml} / \mathrm{min}$) showed two peaks, with retention times of 7.8 and 9.6 min , respectively, and in an area ratio of 34:66. Components 1 and 2 were collected by preparative glpc and identified as 10 (yield $29 \%{ }^{16}$) and methyl 5,5 -dichloro-4-pentenoate (14) (yield 19%), respectively, by comparison of ir spectrum and retention time with those of authentic samples. ${ }^{17}$
Reaction of 1 with Sodium Methoxide in Dry Methanol.-To a stirred solution of $17.3 \mathrm{~g}(0.32 \mathrm{~mol})$ of sodium methoxide in 60 ml of dry methanol was added dropwise a solution of $10 \mathrm{~g}(0.054$ mol) of 1 in 20 ml of dry methanol, at $20-25^{\circ}$ for a period of 15 min . The mixture was stirred for 10 min and poured into a large excess of water. The organic layer was extracted with ether. The ethereal extracts, treated with activated charcoal, were washed with water and dried over MgSO_{4}. Removal of the solvent left 5.5 g of a clean oil. Glpc analysis (column C, 130°, carrier gas $\mathrm{N}_{2}, 0.5 \mathrm{~kg} / \mathrm{cm}^{2}, 42 \mathrm{ml} / \mathrm{min}$) of this oil showed four peaks. The peaks, retention times (min), and integ:ated percentages are as follows: $1,1.8,46 \% ; 2,2.7,7 \% ; 3,3.2,6 \%$; $4,3.8,38 \%$. Each component was collected by preparative glpc. Component 1 , which solidified in a few minutes after separation, was identified as ester $10, \mathrm{mp} 41 . \mathrm{j}^{-}-42^{\circ}$ after one recrystallization from n-hexane, yield 32%.
Component 2 was identified as 14: yield 4%; ir (neat) 1735 (ester $\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C}), 1438,1175,890 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta$ $2.41\left(\mathrm{~m}, 4,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), 3.64 (s, $3,-\mathrm{CO}_{2} \mathrm{CH}_{3}$), 5.89 ppm
(16) Total yield of 3.
(17) For spectral data of compound 14 see the next section.
($\mathrm{t}, 1, J=8 \mathrm{~Hz},=\mathrm{CH}-$); mass spectrum (70 eV) m/e (rel intensity) $182\left(52, \mathrm{M}^{+}, 2 \mathrm{Cl}\right), 151(70,2 \mathrm{Cl}), 147(100,1 \mathrm{Cl}), 124$ (87), 122 (95), 115 (53), 109 (84), 105 (41), 87 (75), 59 (65), 51 (61), 43 (40).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, 39.37; $\mathrm{H}, 4.40$. Found: C, $39.50 ; \mathrm{H}, 4.54$.

Component 4 was identified as 15 by comparison of ir and retention time with those of the authentic sample, ${ }^{2}$ yield 18%

Reaction of 1 with Sodium Methoxide in Dry Ether.-To a solution of $5 \mathrm{~g}(0.027 \mathrm{~mol})$ of 1 in 30 ml of dry ether, $2.9 \mathrm{~g}(0.053$ mol) of sodium methoxide was added slowly at -60 to -50°. The mixture was stirred for 30 min at -60 to -50° and then for 20 min at -40 to -30°. The mixture was poured into ice water and acidified with dilute hydrochloric acid. The organic layer was extracted with ether several times. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent left a deep brown oil which, on distillation, gave $0.4 \mathrm{~g}(10 \%)$ of a clean oil, bp 65-68 ${ }^{\circ}$ (6 mm). It was identified as 10 by comparison of retention time and ir spectrum with those of the sample synthesized in the previous section.

Methyl 4,5-Dibromo-5-chloro-2-pentenoate (11).-To a solution of $6.3 \mathrm{~g}(0.043 \mathrm{~mol})$ of 10 in 30 ml of dry carbon tetrachloride was added $6.9 \mathrm{~g}(0.043 \mathrm{~mol})$ of bromine at 20°. After the mixture had been stirred for 2 hr , it was allowed to stand overnight at room temperature. Removal of the solvent left a brown oil which, on distillation, gave $10.6 \mathrm{~g}(81 \%)$ of 11: bp $12.5-133^{\circ}(5$ mm); ir (neat) 3030,1725 (ester $\mathrm{C}=\mathrm{O}$), 165\% $(\mathrm{C}=\mathrm{C})$, 1440, 1290, 980, $735 \mathrm{~cm}^{-1}(\mathrm{CCl})$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 3.77\left(\stackrel{s}{ }, 3, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 4.9:) ($\mathrm{m}, 1,-\mathrm{CHBrCH}=$), $\overline{\mathrm{j}} .88(\mathrm{~d}, 1, J=5.9 \mathrm{H} /, \mathrm{ClBrCH}), 6.10$ $\left(\mathrm{d}, 1, J=13 \mathrm{~Hz},=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 6.98\left(\mathrm{~m}, 1,-\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right)$; mass spectrum (70 eV) m / e (rel intensity) 274 ($0.4, \mathrm{M}^{+}-$ $\mathrm{CH}_{3} \mathrm{OH}$), 244 (1), 225 (24), 189 (14), 165 (6), 145 (13), 115 (58), 111 (100), 87 (85), 59 (65), 51 (73).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{ClO}_{2}$: C, 23.52; $\mathrm{H}, 2.30$. Found: C, 23.30; H, 2.57.

Methyl 2,3,4,5-Tetrabromo-5-chloropentanoate (12).-To a solution of $2 \mathrm{~g}(0.014 \mathrm{~mol})$ of 10 in 20 ml of dry carbon tetrachloride was added $4.6 \mathrm{~g}(0.029 \mathrm{~mol})$ of bromine at 0°. The mixture was stirred at room temperature for 2 days under the irradiation of the ultraviolet lamp. Removal of the solvent left a yellow oil which, on distillation under an atmosphere of nitrogen, yielded $2.2 \mathrm{~g}(35 \%)$ of 12: bp 1.53-154 ${ }^{\circ}(3 \mathrm{~mm})$; mp 133$13 \overline{5}^{\circ}$ (n-hexane); ir (Nujol) $17.50 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=\mathrm{O}$).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{Br}_{4} \mathrm{ClO}_{2}$: $\mathrm{C}, 15.43 ; \mathrm{H}, 1.51$. Found: C, 15.73 ; H, 1.69.

5,5-Dichloro-4-hydroxypentan-2-one (9).-This material was prepared by the literature procedure for the synthesis of chloralacetone (2) ${ }^{14}$ with a slight modification. A mixed solution of $22.8 \mathrm{~g}(0.17 \mathrm{~mol})$ of ethyl acetoacetate in dilute aqueous potassium hydroxide prepared from $12 \mathrm{~g}(0.21 \mathrm{~mol})$ of potassium hydroxide and 460 ml of water was stirred at room temperature for 1 day. After the mixture was acidified with 10% hydrochloric acid, a solution of $18.4 \mathrm{~g}(0.16 \mathrm{~mol})$ of dichloroacetaldehyde in 28 ml of water was added. The mixture was stirred for 3 days. The pH of the solution was adjusted to 5 by adding 10% hydrochloric acid when necessary. After evaporation of two-thirds of the water, the residual oil was extracted with ether and the extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent left a clean oil which, on distillation, gave $14.2 \mathrm{~g}(52 \%)$ of 9 : bp $121-123^{\circ}(0.1 \mathrm{~mm})$; ir (neat) $3400(\mathrm{OH}), 1710(\mathrm{C}=\mathrm{O}), 1425,1370,1090,755,735,705$ $\mathrm{cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 2.26\left(\mathrm{~s}, 3, \mathrm{COCH}_{3}\right), 2.92(\mathrm{~d}, 2, J=5.5$ $\left.\mathrm{Hz},-\mathrm{CH}_{2} \mathrm{COCH}_{3}\right), 3.58(\mathrm{~s}, 1, \mathrm{OH}), 4.42(\mathrm{dt}, 1, J=4$ and 5.5 Hz , $>\mathrm{CHOH}), 5.85\left(\mathrm{~d}, 1, J=4 \mathrm{~Hz},-\mathrm{CHCl}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, 35.11; H, 4.71. Found: C, $34.83 ; \mathrm{H}, 4.80$.

5,5-Dichloro-3-penten-2-one (7).-To 17 ml of concentrated sulfuric acid was added $1.7 \mathrm{~g}(0.01 \mathrm{~mol})$ of 9 at room temperature. The mixture was allowed to stand for 2.5 hr and poured onto cracked ice. The organic layer was extracted with ether several times and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent left a pale brown oil, which on distillation under an atmosphere of nitrogen gave $1.0 \mathrm{~g}(65 \%)$ of a clean oil (7): bp $91-92^{\circ}(17 \mathrm{~mm})$, ir (neat) $3030,1710-1660(\mathrm{C}=0)$, $1640(\mathrm{C}=\mathrm{C}), 730 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 2.3\left(\mathrm{~s}, 3, \mathrm{COCH}_{3}\right), 6.22(\mathrm{~d}$, $\left.1, J=15.8 \mathrm{~Hz},=\mathrm{CHCOCH}_{3}\right), 6.23\left(\mathrm{~d}, 1, J=6.4 \mathrm{~Hz},-\mathrm{CHCl}_{2}\right)$, 6.78 ppm (dd, $1, J=6.4$ and $15.8 \mathrm{~Hz}, \mathrm{CHCl}_{2} \mathrm{CH}=$); mass spectrum (70 eV) m / e (rel intensity) $152\left(13, \mathrm{M}^{+}, 2 \mathrm{Cl}\right.$), 137 (100 , $\left.\mathrm{M}^{+}-\mathrm{CH}_{3}, 2 \mathrm{Cl}\right), 117\left(9, \mathrm{M}^{+}-\mathrm{Cl}, 1 \mathrm{Cl}\right), 109\left(48, \mathrm{M}^{+}-\right.$ $\mathrm{CH}_{3} \mathrm{CO}, 2 \mathrm{Cl}$).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}$: C, 39.25; H, 3.95. Found: C, 39.62; H, 3.85.
trans-2,4-Pentadienoic Acid (18). A. From 9.-Hydroxypentanone $9(2.1 \mathrm{~g}, 0.012 \mathrm{~mol})$ was added to 4.4 ml of 10% sodium hydroxide at room temperature. The mixture was heated at 60° for 5 min , and then was treated with activated charcoal. The filtrate was acidified with 10% hydrochloric acid. The organic layer was extracted with ether several times and the extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent left 0.3 $\mathrm{g}(25 \%)$ of light brown needles (18), mp 68-70 ${ }^{\circ}$ (from ether) (lit. ${ }^{11} \mathrm{mp} 71.5-72.5^{\circ}$). Ir and nmr spectra were identical with that of an authentic sample: ${ }^{11}$ ir (Nujol) 2900-2500 (COOH),

$1690(\mathrm{C}=\mathrm{O}), 1630$, and $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 5.60$ (dd, $1, J=1.6$ and $17.2 \mathrm{~Hz}_{\mathrm{z}}, \mathrm{H}_{\mathrm{e}}$), 5.69 (dd, $1, J=1.6$ and 9.4 $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{d}}\right), 5.90\left(\mathrm{~d}, 1, J=14.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 6.50(\mathrm{dt}, 1, J=9.6$ and $17.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}$), $7.38 \mathrm{ppm}\left(\mathrm{dd}, 1, J=9.6\right.$ and $14.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}$).
B. From 7.-Pentenone 7 (2.i) g, 0.016 mol) was added to 26 ml of 15% sodium hydroxide and the mixture was stirred for $\overline{5}$ \min. After being washed with ether and treated with activated charcoal, the aqueous layer (pH 11) was acidified with 10% hydrochloric acid. The acidic material was extracted with ether three times and the ethereal extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent left 0.7 g of pale brown needles. The fractionation of this product by means of preparative tlc ${ }^{18}$ gave $0.4 \mathrm{~g}(25 \%)$ of pale yellow needles of $18, \mathrm{mp} 68-70^{\circ}$. The ir and nmr spectra were identical with those of a pure sample obtained from 9.
5,5-Dichloro-3-hexen-2-one (8). ${ }^{19}$-To a mixed solution of 12.1 $\mathrm{g}(0.095 \mathrm{~mol})$ of freshly distilled 2,2-dichloropropanal ${ }^{20}$ and acetylacetone ($10 \mathrm{~g}, 0.1 \mathrm{~mol}$) in 50 ml of dry THF was added 20.7 $\mathrm{g}(0.15 \mathrm{~mol})$ of anhydrous potassium carbonate in several portions. After being stirred at room temperature for 1 day, the mixture was poured into 150 ml of water and acidified with 10% hydrochloric acid. The organic layer was extracted with ether and the ethereal extracts were washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent left a pale brown oil which, on distillation, gave $8.2 \mathrm{~g}(52 \%)$ cf $8:$ bp $77-80^{\circ}(6 \mathrm{~mm})$; ir (neat) 1710 and 1685 (conjugated $\mathrm{C}=\mathrm{O}$), 1638 (conjugated $\mathrm{C}=\mathrm{C}$), 1365, $1285,1260,1080,980,700,685 \mathrm{~cm}^{-1}(\mathrm{CCl}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 2.30$ $\left(\mathrm{s}, 6,2 \mathrm{CH}_{3}\right), \mathrm{AB}$ quartet centered at 6.30 and $6.88 \mathrm{ppm}(2, J=$ $15 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCOCH}_{3}$).
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}: ~ \mathrm{C}, 43.1 \overline{5} ; \mathrm{H}, 4.83$. Found: C, 43.18; H, 4.97.

5-Chloro-4-hexenoic Acid (19).-To 36 ml of 15% sodium hydroxide was added the ketone $8(4.2 \mathrm{~g}, 0.027 \mathrm{~mol})$, with stirring at 50°. After being stirred at $70-75^{\circ}$ for 4 min , the mixture was cooled, washed with ether to remove neutral materials, and acidified with 10% hydrochloric acid. The organic layer was extracted with ether several times, and the ethereal extracts were dried over MgSO_{4}. The solvent was removed in vacuo, and the residue, on distillation, gave $1.1 \mathrm{~g}(27 \%)$ of 19: bp $10 \overline{5}-108^{\circ}$ (3 $\mathrm{mm})$; ir (neat) $2650(\mathrm{COOH}), 1700(\mathrm{C}=\mathrm{O}), 1660-1630 \mathrm{~cm}^{-1}$ (shoulder, $\mathrm{C}=\mathrm{C}$); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 2.09\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CCl}=\right), 2.42$ (broad s, 4, $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$), 5.50 (broad t, $1, J=4 \mathrm{~Hz}=\mathrm{CH}$), $11.30 \mathrm{ppm}(\mathrm{s}, 1, \mathrm{COOH})$; mass spectrum (70 eV) m/e (rel intensity) $148\left(64, \mathrm{M}^{+}, 1 \mathrm{Cl}\right), 131\left(7, \mathrm{M}^{+}-\mathrm{CH}_{3}\right), 113(100$, $\left.\mathrm{M}^{+}-\mathrm{Cl}\right), 102(70), 95(56), 91(70), 89(83), 71(72), 67(71), 60$ (62), 53 (71).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClO}_{2}: \mathrm{C}, 48.50 ; \mathrm{H}, 6.10$. Found: C, 48.61 ; H, 6.28.

Methyl 5-Chloro-4-hexenoate (20).-Esterification of 19 with diazomethane afforded the ester 20, bp $55^{\circ}(.5 \mathrm{~mm})$. Glpc analysis (column A, 120°, carrier gas, $\mathrm{N}_{2}, 0.5 \mathrm{~kg} / \mathrm{cm}^{2}, 42 \mathrm{ml} /$ min) showed two peaks. The peaks, retention times (min), and integrated percentages are as follows: $1,4.2,70 \% ; 2,4.9,30 \%$.

[^75]Component 1 was collected by preparative glpc and identified as trans-20 (or cis-20): ir (neat) 1740 (ester $\mathrm{C}=0$), $1660(\mathrm{C}=\mathrm{C})$, $1440,1366,1175,1110,1040,990,830,790 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta$ 2.08 ($\mathrm{s}, 3, \mathrm{CH}_{2} \mathrm{CCl}=$), 2.33 (broad s, 4, $-\mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.62 (s, 3, $-\mathrm{CO}_{2} \mathrm{CH}_{\mathrm{j}}$), 5.51 ppm (broad s, $1,-\mathrm{CH}=$); mass spectrum (70 $\mathrm{eV}) m / e\left(r e l\right.$ intensity) $162\left(19, \mathrm{M}^{+}, 1 \mathrm{Cl}\right), 131$ (76), 127 (100, $\left.\mathrm{M}^{+}-\mathrm{Cl}\right), 105(61), 104(60), 103(68), 102(75), 95(57), 89(72)$, 85 (68), 74 (61), 67 (63), 59 (50), 53 (61).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{ClO}_{2}$: C, $51.70 ; \mathrm{H}, 6.82$. Found: C, 51.58 ; H, 6.72 .

Component 2, collected similarly, was identified as cis-20 (or trans-20): ir (neat) 1740 (ester $\mathrm{C}=\mathrm{O}$), $1660(\mathrm{C}=\mathrm{C}), 1440,1366$, $1340,1175,1110,1080,1035,990,860,830,800 \mathrm{~cm} .^{-1}$ The $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ and mass spectrum (70 eV) of this component were like those of component 1.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{ClO}_{2}$: $\mathrm{C}, 51.70 ; \mathrm{H}, 6.82$. Found: C, 51.43 ; H, 6.60 .

Reaction of 8 with Sodium Methoxide in Dry Methanol.-To a stirred solution of $5.9 \mathrm{~g}(0.11 \mathrm{~mol})$ of sodium methoxide in 25 ml of dry methanol was added dropwise at $34-45^{\circ}$ a solution of 8 (3 g , 0.018 mol) in 6 ml of dry methanol, for a period of 10 min . The mixture was stirred for additional 15 min , and poured into a large amount of water. The organic layer was extracted with ether, washed with water, and dried over MgSO_{4}. Removal of the solvent left 1.4 g of a light yellow, clean oil, bp 75-78 ${ }^{\circ}(12 \mathrm{~mm})$. Glpc analysis (column $\mathrm{B}, 120^{\circ}$, carrier gas $\mathrm{N}_{2}, 0.5 \mathrm{~kg} / \mathrm{cm}^{2}, 42 \mathrm{ml} /$ min) of this oil showed three peaks. The peaks, retention times (min), and integrated percentages are as follows: $1,3.2,28 \%$; $2,4.7,60 \% ; 3,6.2,11 \%$. Component 1 was collected by preparative glpc and identified as methyl sorbate (21) by comparison of the infrared spectrum and retention time with those of methyl sorbate prepared by the esterification of sorbic acid with diazomethane: yield 17%; ir (neat) 1723 (ester $\mathrm{C}=0$), $1650(\mathrm{C}=\mathrm{C}$), $1623(\mathrm{C}=\mathrm{C}), 1010 \mathrm{~cm}^{-1}(=\mathrm{CH}) ; 10 \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta 1.85(\mathrm{~d}, 3, J=$ $\left.5.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 3.67\left(\mathrm{~s}, 3,-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.69(\mathrm{~d}, 1, J=16 \mathrm{~Hz}, \mathrm{C}-2$ $\mathrm{H}), 6.20(\mathrm{~m}, 2, \mathrm{C}-4 \mathrm{H}$ and $\mathrm{C}-5 \mathrm{H}), 7.16 \mathrm{ppm}(\mathrm{m}, 1, \mathrm{C}-3 \mathrm{H}) .^{9}$

Components 2 and 3 were collected and identified as trans- 20 (or cis-20) (yield 29%) and cis-20 (or trans-20) (yield 5\%), respectively, by comparison of ir spectra and retention times with those of an authentic sample.

Reaction of 8 with Sodium Methoxide in Aprotic Solvents (Ether, Benzene, and n-Hexane).-To a suspension of 0.76 g $(0.014 \mathrm{~mol})$ of sodium methoxide in 10 ml of aprotic solvent was added $0.88 \mathrm{~g}(0.0048 \mathrm{~mol})$ of 8 in several portions during the course of 5 min , at 0° with stirring. After the mixture was stirred at $0-10^{\circ}$ for a further 30 min , it was worked up in the usual manner. The composition of the products was determined by glpc (column $\mathrm{B}, 120^{\circ}$, carrier gas $\mathrm{N}_{2}, 0.5 \mathrm{~kg} / \mathrm{cm}^{2}, 42 \mathrm{ml} / \mathrm{min}$).

Transformation of the Ester 20 to the Ester 21 with Sodium Methoxide.-To a mixture of sodium methoxide ($0.14 \mathrm{~g}, 0.0025$ $\mathrm{mol})$ and dry ether (1 ml) was added a solution of $20(0.082 \mathrm{~g}$, 0.0005 mol) in dry ether (1 ml) at 0°. The mixture was stirred for 30 min and filtered. Removal of the solvent gave 0.04 g of a clean oil. Glpc analysis (column A, 120°, carrier gas $\mathrm{N}_{2}, 0.5$ $\mathrm{kg} / \mathrm{cm}^{2}, 42 \mathrm{ml} / \mathrm{min}$) indicated this oil to contain three components, which were identified by the comparison of the retention times with those of the authentic samples. Peaks, compounds, retention times (min), and the integrated peak areas are as follows: 1, $21,{ }^{21} 3.3,9 \% ; 2$, trans- 20 (or cis-20), $4.2,61 \% ; 3$, cis-20 (trans-20), 5.1, 30%.

Registry No.--1, 1552-26-7; 2, 1552-33-6; 3, 22970-18-9; 7, 38666-05-6; 8, 38666-06-7; 9, 38666-07-8; 10, $38666-08-9$; 11, $38666-09-0$; 12, $38666-10-3$; 14, 38666-11-4; 18, 21651-12-7; 19, 38666-13-6; (Z)-20, 38666-14-7; (E)-20, 38666-15-8; 21, 1515-80-6; ethyl acetoacetate, 141-97-9; dichloroacetaldehyde, 79-02-7; acetylacetone, 123-54-6; 2,2-dichloropropanol, 27313-32-2.
(21) Yield 6%.

Determination of Stereochemistry in Vinyl Phosphorylated Species by
 Nuclear Magnetic Resonance Shift Reagents. Revised Mechanistic Pathways for the Perkow Reaction ${ }^{1}$

Irving J. Borowitz,* Kwok Chun Yee, and Rosalie K. Crouch
Department of Chemistry, Belfer Graduate School of Science, Yeshiva University, New York, New York 10033

Received November 29, 1972

Abstract

The application of lanthanide induced shifts employing $\operatorname{Eu}(D P M)_{3}$ [and, to a minor extent, $\operatorname{Pr}(D P M)_{3}$], to the nmr spectra of di-, tri-, and tetrasubstituted vinyl phosphates, phosphonates, and phosphinates is described. Vicinal cis protons or methyl groups undergo greater shifts than the corresponding trans groups. On this basis, E and Z stereochemical assignments can be made for such groups. The major isomers in the gem-phenyl vinyl phosphorylated compounds featuring vicinal phenyl, methyl, bromine, or chlorine groups are shown to be Z, reversing our previous assignments. Confirmation of this assignment is found by a positive nuclear Overhauser effect from phenyl to vicinal proton on the major (Z) isomer of diethyl 1-phenyl-2-chlorovinylphosphate. Available stereochemical data, including these revised results and the tendency toward smaller Z / E ratios in Perkow reactions involving alkyl diphenylphosphinites, compared with trialkyl phosphites, are evaluated on the basis of variations of the carbonyl addition mechanism previously proposed. The Perkow reactions of α, α-dibromo ketones and α-bromo- α-phenyl ketones, which give only Z vinyl phosphorylated products, may occur via halogen attack. The importance of considering the magnitude of $k_{2} \mathrm{Br} / \mathrm{Cl}$ ratios for pairs of bromo and chloro ketones, as well as E, Z stereochemistry of the products, in evaluating the various mechanistic pathways for the Perkow reaction, is stressed.

We have recently reported the determination of the relative stereochemistry of the E and Z isomeric vinyl phosphates arising from the Perkow reaction of α halo ketones with trialkyl phosphites, ${ }^{2,3}$ Of the various methods used, ${ }^{2}$ the most reliable seemed to be the use of nmr additive increments as developed by Simon and
(1) This investigation was supported by Grant No. 19,664 from the National Science Foundation. This is Organophosphorus Chemistry. 23. (2) I. J. Borowitz, S. Firstenberg, E. W. R. Casper, and R. K. Crouch, J. Org. Chem., 36, 3282 (1971).
(3) I. J. Borowitz, S. Firstenberg, G. B. Borowitz, and D. Schuessler, J. Amer. Chem. Soc., 94, 1623 (1972).

Sternhell ${ }^{4}$ and modified by Tobey. ${ }^{5}$ This method correctly assigns E and Z stereochemistry to isomeric diand trisubstituted olefins in a large number of cases.
We now find that in the case of trisubstituted gemphenyl vinyl phosphates (and the related phosphinates and phosphonates ${ }^{6}$) the E and Z assignments by
(4) (a) C. Pascual, J. Meier, and W. Simon, Helv. Chim. Acta, 49, 164 (1966); (b) U. E. Matter, C. Pascual, E. Pretsch, A. Pross, W. Simon, and S. Sternhell, Tetrahedron, 25, 691 (1969); (c) U. E. Matter, et al., ibid., 25, 2023 (1969).
(5) S. W. Tobey, J. Org. Chem., 34, 1281 (1969).
(6) I. J. Borowitz and R. K. Crouch, Phosphorus, 3, 3 (1973).
these calculations are close in value and give the reversed assignment; i.e., the actual stereochemistry is the opposite (see below). If the correct assignments are compared with the calculated values (Table I),

Table I
Calculation of Vinyl Proton Nmr Absorption in gem-Phenyl Vinyl Phosphates ${ }^{a}$

Compd	Isomer	Obsd	$\begin{gathered} {\left[\delta\left(\mathrm{CCl}_{4}\right)\right]} \\ \text { Calcd } \end{gathered}$	
1 a	Major, Z	6.33	6.49	$(6.38)^{\text {b }}$
1b	Minor, E	6.69	6.33	
2a	Major, Z	5.60	5.60	$(5.49)^{\text {b }}$
2b	Minor, E	5.77	5.35	
3 a	Major, ${ }^{c}$ Z	6.13	6.14	$(6.03)^{\text {b }}$
3b	Minor, ${ }^{\text {c }}$ E	6.45	5.96	
4a	Major, Z	6.14	6.18	$(6.07)^{\text {b }}$
4b	Minor, E	6.49	5.93	

${ }^{a} \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$. ${ }^{\mathrm{b}}$ Revised values using $Z_{\text {trans }}=0.61$, based on 11b, 13, and 15. Revision suggested by a referee. ${ }^{c}$ Isomer ratio obtained in original Perkow reaction. Distillation reverses the isomer ratio.
the vinyl proton of the E isomers is found to be abnormally deshielded. Perhaps this is due to a decreased mesomeric effect of the phosphate group when it is part of a "buttressed" system (phosphate, gemphenyl, R cis to phenyl) which does not allow the vinyl oxygen to be properly oriented for the usual shielding effect noted. ${ }^{2}$

1a

-

3a

4a

1b

2b

3b

4b

Allylic substitution next to a vinyl phenyl results in abnormal deshielding of vicinal vinyl protons, a related phenomenon. ${ }^{4 \mathrm{c}}$

In contrast, the additive increment method correctly predicts the nmr absorption of the vinyl protons in the E, Z isomeric pairs of substituted stilbenes containing morpholino ${ }^{78}$ and butyl ${ }^{76}$ groups (Table II). Thus stilbenes are not abnormal per se.

Determination of Vinyl Phosphate Stereochemistry by Lanthanide Induced Shifts (LIS).--The use of tris(dipivalomethanato)europium(III) $\left[\mathrm{Eu}(\mathrm{DPM})_{3}\right]$ in causing lanthanide induced shifts in phosphates has been established. ${ }^{8}$ It is generally agreed that the

[^76]Table II
Calculation of Vinyl Proton Nmr Absorption in Stilbenes

Compd	Registry no.	Obsd	Vinyl proton (δ)-
Calcd ${ }^{a}$			
i	$4176-69-6$	5.56^{b}	5.32
ii	$4176-68-5$	5.71^{b}	5.80
iii	$5041-39-4$	6.38^{c}	6.36
iv	$5041-40-7$	6.64^{c}	6.73

${ }^{a}$ From group increment values in ref $4 b$. ${ }^{b}$ In cyclohexane. ${ }^{7 a}$ ${ }^{c}$ In $\mathrm{CHCl}_{3} .{ }^{\text {. }}$ b

interaction involves coordination of the europium with the PO bond. ${ }^{8, \mathrm{c}, \mathrm{c}}$ Table III indicates LIS data obtained on di- and trisubstituted vinyl phosphates, phosphonates, and phosphinates. The data for compounds of known stereochemistry (the cyclic 5-9 and acyclic 10-12) indicates the following order of decreasing proton sensitivity [shift, hertz/mole of $\mathrm{Eu}(\mathrm{DPM})_{3}$]: gem-vinyl $\mathrm{H}>$ cis vic-vinyl $\mathrm{H} \cong \mathrm{CH}_{2}$ of ethoxy $>$ trans vic-vinyl $\mathrm{H} \geqq \mathrm{CH}_{3}$ of ethoxy. The sensitivity values do not differ greatly for the various groups on phosphorus for a given ethylene. The values for genuine cis vicinal protons ${ }^{2}$ (335 for 12, 375 for 10] are closer to the assigned cis vicinal proton in acyclic cases such as 11 or 16 than to the trans protons. ${ }^{9}$

These observations suggest that, at least in the presence of $\mathrm{Eu}(\mathrm{DPM})_{3}$, the vinyl phosphorylated species are either all in approximately the same geometrical configuration or that the same averaging of several configurations occurs in all cases. Inspection of Dreiding models indicates that, in most (but not all) of the possible rotational configurations for the PO group relative to the plane of the ethylene moiety, the cis vicinal proton is closer to it than is the trans vicinal proton. This is especially so for the preferred configurations v and vi for geminal pro-

v

vi
ton and gem-methyl vinyl phosphates calculated by Gaydou from ${ }^{4} J_{\mathrm{PH}}$ coupling constants. ${ }^{10}$ Although the exact position of the europium relative to the PO group is unknown, making the angular term in the usual shift equations ${ }^{8 b}$ difficult to evaluate, it seems reasonable that larger shifts will be associated with vic-vinyl protons which are cis to phosphate. The results for 1 a and 1 b (and dimethyl esters 20a and 20b) were confirmed with $\operatorname{Pr}(\mathrm{DPM})_{3}$ which gave greater upfield shifts for 20b (Table III).

The method can be extended to tetrasubstituted
(9) The variation of the magnitude of LIS for $\mathrm{H}_{\mathrm{cis}}$ (and other protons) with various structural features remains to be investigated.
(10) E. Gaydou, Tetrahedron Lett., 4473 (1972).

Table III
Lanthanide Induced Shifts in Proton Nmr Spectra of Vinyl Phosphorylated Speciesa

Substrate								
	$\mathrm{H}_{\text {cis }}$	$\begin{gathered} \text { inyl proto } \\ \text { Herana }^{\text {n }} \end{gathered}$	$\mathrm{Hg}_{\text {gem }}$	POCH	POCCH	Other groups	$\Delta_{\text {obod }}^{\mathrm{POCH}} / \Delta_{\text {obod }}^{\mathrm{i}}{ }^{\mathrm{c}, \mathrm{d}}$	
5, $\mathrm{Y}=\mathrm{OC}_{2} \mathrm{H}_{5}$	487			488	176	$412\left(\mathrm{gem}-\mathrm{CH}_{2}\right)$	1.01	0.36
6, $Y=P h$	486							
7, $\mathrm{Y}=\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}$	500			510	170	400 (gem- CH_{2})	0.42	
8, $\mathrm{Y}=\mathrm{Ph}$	560					370 (gem- CH_{2})		
9	510			510	170	400	1.00	0.33
10	375		710	570			$\mathrm{H}_{\text {c }}, 1.81$	
							$\mathrm{H}_{\mathrm{g}}, 0.82$	
11 a	300		592	525			$\mathrm{H}_{\text {c }}, 1.71$	
							$\mathrm{H}_{\mathrm{g}}, 0.94$	
11b		75		545			$\mathrm{H}_{\mathrm{t}}, 6.3$	
12	335		710	565		$22\left(\mathrm{CCH}_{3}\right)$	$\mathrm{H}_{\mathrm{c}}, 1.65$	
13	528	192		486	168	$304\left(\mathrm{gem}-\mathrm{CH}_{3}\right)$	$\mathrm{H}_{0}, 0.92$	0.32
							$\mathrm{H}_{\mathrm{t}}, 2.50$	1.00
14, $\mathrm{Y}=\mathrm{Ph}, \mathrm{OC}_{4} \mathrm{H}_{9}$	736	184						
15, $Y=\mathrm{OC}_{2} \mathrm{H}_{5}$	650	180		500	175			
20a, $\mathrm{Y}=\mathrm{CH}_{3}$		225		400			1.66	
1a, $\mathrm{Y}=\mathrm{C}_{2} \mathrm{H}_{5}$		280		580	153		1.99	0.59
20a		$-360{ }^{e}$		-580^{e}			1.68	
20b	>225			610			0.67	
	$-1220^{\circ, 5}$			-810°			0.67	
16a, $\mathrm{Y}=\mathrm{Ph}$		210						
$3 \mathrm{a}, \mathrm{Y}=\mathrm{OC}_{2} \mathrm{H}_{5}$		198		378	113			
16b, $Y=P \mathrm{Ph}$	470							
$3 \mathrm{~b}, \mathrm{Y}=\mathrm{OC}_{2} \mathrm{H}_{5}$	610			627	216			
4a,b, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$		$248{ }^{\circ}$		475°	152°			
2a, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$		140			140	260 (vinyl CH_{3})		
2b, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$		440			120	40 (vinyl CH_{3})		

${ }^{a}$ The shifts are downfield and caused by $\operatorname{Eu}(D P M)_{3}$ unless otherwise noted. ${ }^{b}$ Obtained from the plots of $\delta v s$. mole ratio of Eu$(\mathrm{DPM})_{3}$ /substrate. c These ratios are obtained from the slopes of plots of LIS for POCH (or POCCH) vs. LiS for vinyl H or vinyl CH_{3} : D. R. Kelsey, J. Amer. Chem. Soc., 94, 1764 (1972). ${ }^{d}$ Similar ratios are obtained from the values listed in the table. $\quad e \operatorname{Pr}(D P M)_{3}$ values. $f \mathrm{Eu}(\mathrm{DPM})_{3}$ with Ib caused vinyl proton to merge with phenyl. θ Values found on $97: 3$ mixture of $4 \mathrm{a}: 4 \mathrm{~b}$.

17

19b
vinyl phosphates bearing methyl groups, whose stereochemistry is not otherwise readily accessible (Table IV). There is good agreement between the shift for the cis-methyl group in 17 and the assigned cis-methyl groups in 18 and 19.

Thus the LIS method seems to represent a simple and powerful tool for the determination of E, Z stereochemistry in vinyl phosphorylated species.

Further Evidence for the Assignment of E, Z Stereochemistry of gem-Phenyl Vingl Phosphorylated Species. -Since the stereochemistry of the E, Z pairs $\mathbf{l a , b}-4 \mathrm{a}, \mathrm{b}$ as determined by LIS is opposite to that originally deduced by the Simon-Sternhell calculations, ${ }^{2}$ further confirmation of the revised stereochemical assignments was sought. The diethyl 1 -phenyl-2-chlorovinylphosphate pair 3 (60:40 ratio of distilled material, changed from the $40: 60$ ratio of isomers formed in the reaction of dichloroacetophenone with triethyl phosphite) has an upfield vinyl proton doublet which had been assigned as trans to phenyl originally. ${ }^{2}$

Table IV
$\operatorname{Eu}(D P M)_{3}$ Induced Shifts on Vinyl Methyls in Vinyl Phosphorylated Species ${ }^{a}$

Substrate	-_- Vinyl methyl Magnitude of induced shist (hertz/mole ratio) ${ }^{\text {b }}$					$\Delta_{\text {obbd }}^{\text {Poch }} / \Delta_{\text {obod }}^{i}{ }^{\text {c,d }}$	$\Delta_{\text {obad }}^{\text {Pocce }} / \Delta_{\text {obad }}^{\mathrm{i}}{ }^{\text {c }}$, d
	cis $-\mathrm{CH}_{3}$	trans-CH3	gem- CH_{2}	POCH	POCCH		
17	292		508	490	157	$\left(\mathrm{CH}_{3}\right)_{\mathrm{c}}, 1.67$	0.55
18	312	112		495	140	$\left(\mathrm{CH}_{3}\right)_{\mathrm{c}}, 1.59$	0.44
						$\left(\mathrm{CH}_{3}\right)_{\mathrm{t}}, 4.28$	1.18
19a	322						
19b		108					
${ }^{-d}$ The	those	e III.					

Table V
Revised Vinyl Phosphate and Phosphinate Spectral Data ${ }^{a}$

	3-Vinyl H nmi-					${ }^{\text {J }}$ POCCE, ${ }^{\text {Hz }}$
	Isomer ratio		$\Delta=\delta_{E_{2}} \mathrm{O}$			
Compd		$-\delta_{\mathrm{E}}^{2} \mathrm{O}$	$\delta_{\mathrm{BF}_{3} \mathrm{Et}} \mathrm{O}$	$-\mathrm{SCCl}_{4}$	$\Delta=\delta \mathrm{CCl}_{6}-\delta \mathrm{C}_{6} \mathrm{D}_{0}$	
22						
H_{B}		5.28	-0.06	5.21	-0.36	2.2
H_{C}		5.05	-0.29	5.04	+0.07	2.0
(Z)-1a	65	6.42	-0.28	6.33	-0.15	1.0
(E)-1b	35	6.79	-0.02	6.69	+0.30	2.5
(Z)-2a	61-70	5.66	-0.16	5.60	+0.05	2.5
$(E)-2 \mathrm{~b}$	30-39	5.79	-0.04	5.77	-0.23	2.8
(Z)-3a	60	6.31	-0.19	6.13	+0.21	2.3
(E)-3b	40	6.56	-0.08	6.45	-0.25	2.8
(Z)-4a	97	6.36	-0.21	6.14	+0.17	1.6
(E)-4b	3	6.59		6.49	-0.23	2.8

${ }^{a}$ Assignments are reversed from those reported previously in ref 2 . The vinyl phosphates and 22 are synthesized from the reaction of triethyl phosphite (or ethyl diphenylphosphinite) with the appropriate α-bromo or chloro ketone (see ref 2 and Table VI).

This proton is now found to be cis to phenyl by a positive nuclear Overhauser effect (NOE) (63:37 of $3 \mathrm{~b}: \mathbf{3 a}$ changes to $47: 53$, a 16% increase in area for the vinyl proton of 3a). The NOE was caused by irradiation at the ortho protons of the phenyl. ${ }^{11}$ Thus the upfield proton belongs to the Z isomer 3a and not to the E isomer 3 b , as previously believed. ${ }^{2}$

Previous attempts at observing an NOE from phosphorus or from methoxyl to the vinyl protons in either isomer of the E, Z mixture of dimethyl 1,2-diphenylvinyl phosphate (20) had failed. ${ }^{2}$

3a, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} ; \mathrm{Y}=\mathrm{Cl}$
(Z) $20, \mathrm{R}=\mathrm{CH}_{3} ; \mathrm{Y}=\mathrm{Ph}$

The mixture of E, Z stereoisomers la,b, the one stereoisomer 1a (from bromobenzyl phenyl ketone and triethyl phosphite), and the corresponding vinyl phosphinate 21 all have uv absorption at 283 nm which seemed to be more closely related to that of cis-stilbene (280 nm) than that of trans-stilbene (295 nm). ${ }^{12}$ The minor isomer 1 b was separated (by preparative tle) and was found to have uv absorption at 253 nm , confirming its new assignment as a cis-stilbene.

Table V gives data on two other methods previously used in correlating E, Z stereoisomerism ${ }^{2}$ with the now revised structures for $1-4$. The β-vinyl protons trans to phosphate show small but significant shielding in benzene, compared to carbon tetrachloride, as ex-

[^77]
pected. ${ }^{2,13}$ Only 1 is anomolous. The boron trifluoride coordination of PO causes a greater deshielding of the trans- β-vinyl proton than the cis- β-vinyl proton, as observed for other vinyl phosphates and already discussed. ${ }^{2}$ Thus these methods would seem to apply to most of the vinyl phosphates studied, including 2-4. ${ }^{14,15}$

Revised Stereochemical Course of Perkow Reactions.
-Table VI lists the isomer ratios of gem-phenyl vinyl phosphorylated species derived from the reaction of various α-haloketones with triethyl phosphite (25), dibutyl phenylphosphonite (24), and ethyl diphenyl phosphinite (23).6,16 Consideration of this revised data together with other data is summarized as follows.
(E)-Vinyl phosphates predominate in the reactions of α-haloaldehydes ${ }^{2,10}$ and α-chloroalkyl methyl ketones. ${ }^{10}(Z)$-Vinyl phosphates predominate in the Perkow reactions of α-bromoalkyl methyl ketones, ${ }^{10}$ β-bromo- α-keto esters, ${ }^{17} \alpha$-haloalkyl phenyl ketones
(13) (a) F. Hruska, D. W. McBride, and T. Schaefer, Can. J. Chem., 45, 1081 (1967); (b) J. Ronague and D. H. Williams, J. Chem. Soc., 2642 (1967); (c) A. Kemula and R. T. Ivamoto, J. Phys. Chem., 72, 2764 (1968); (d) M. Fetizon, J. Gore, P. Laszlo, and B. Waegell, J. Org. Chem., 31, 4047 (1966).
(14) The determination of ${ }^{8} J^{18} \mathrm{CCH}$ coupling constants in (E)- and (Z)vinyl phosphates is in progress by Dr. E. Pretsch, ETH, Zurich.
(15) The X-ray crystal structures of vinyl phosphinates related to 1 a and \&a are being determined by Professor J. Van derVeen, Stevens Institute of Technology.
(16) R. K. Crouch, Ph.D. Thesis, Yeshiva University, 1972.
(17) (a) J. A. Stubbe and G. L. Kenyon, Biochemistry, 10, 2669 (1971); (b) W. E. Bondinell and D. B. Sprinson, Biochem. Biophys. Res. Commun., co, 1464 (1970).

Table VI
Isomer Ratios of Vinyl Phosphorylated Species ${ }^{a}$

$\alpha-$ Halo ketone	Tricovalent phosphorus reagent	\overbrace{Z}	Isomer ratios-
26	23	40	60
	24	63	37
27	25	61	39
	23	50^{c}	50^{c}
	24	70^{c}	30^{c}
28	25	70^{c}	30^{c}
	23	18	82
	24	35	65
29	25	60	40
	23	100	0
30	24	75	25
	25	65	35
	23	100	0
31	24	100	0
	25	100	0
	23	100	0
	25	97	3

${ }^{a}$ Reaction conditions are given in ref 2, 3, and 6. ${ }^{\circ}$ As determined by ${ }^{1} \mathrm{H} \mathrm{nmr}$ on undistilled and distilled reaction mixtures. A change in isomer ratio upon distillation is noted only for the products 3a and 3b (from 28 and 25). ${ }^{c}$ Some ketophosphorylated product is formed in these reactions. ${ }^{2}$
such as 26 and 27 , and other halo and dihalo phenyl ketones (28-31). In the reactions of 24 and 23 with α-haloalkyl phenyl ketones (26-28) there is a tendency toward increased E isomeric vinyl phosphorylated products $v s$. reactions with 25 . Finally, 30 and 31 give only Z products with 23 or 24 .
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{POC}_{2} \mathrm{H}_{5}$ 23

26
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{P}\left(\mathrm{OC}_{4} \mathrm{H}_{9}\right)_{2}$
24

27

If we apply our previously postulated mechanism for the phosphite reactions, ${ }^{3} E$ phosphates must result from the irreversible addition of phosphites to halogen eclipsed or halogen gauche conformers of α-halocarbonyl compounds while the Z phosphates are derived from halogen-staggered conformers. ${ }^{18}$ While this con-

[^78]cept of kinetically controlled carbonyl addition seems especially attractive for α-haloaldehydes which exist as the halogen eclipsed or gauche conformers in the ground state, ${ }^{19}$ there are problems with the rationalization of some of the other cases.
An alternative explanation of the stereochemistry of the Perkow reaction involves the assumption of reversible phosphite addition to carbonyl and subsequent thermodynamic control in the elimination step leading to (E) - or (Z)-vinylphosphonium halides. The elimination is assumed to be anti, and the last step, Arbusov cleavage to the vinyl phosphorylated species, is assumed to be rapid, as already discussed. ${ }^{3}$ For cases where the $k_{2} \mathrm{Cl} / \mathrm{Br}$ ratio $\geqq 1,,^{3,6}$ this may mean that k_{2} values are not much greater than k_{-1} or that the initial equilibrium for addition to carbonyl favors the α-chloro ketone while the elimination is faster for bromide loss, as usual. ${ }^{20,21}$

Thus the predominance of E products (vii, $\mathrm{R}=\mathrm{H}$) from α-haloaldehydes and Z products (viii) from α halo ketones may reflect the greater thermodynamic stability of these products vs. their stereoisomers. ${ }^{22}$

The tendency toward equilibrium control is seen in comparing the $k_{2} \mathrm{Br} / \mathrm{Cl}$ ratios for the reactions of several α-halo ketones with the series triethyl phosphite (25), phosphonite 24 , and phosphinite 23. Thus the ratios increase from 0.62 to 1.76 for p-nitrophenacyl halides and from 1.0 to 7.2 for 2-halocyclohexanones. ${ }^{6}$ The predominance of E product in the diphenyl phosphinite reactions (as for 26 and 27, Table VI) may reflect the greater stability of products with the bulky diphenylphosphinoxy group trans to the β vinyl substituent.

Addition of a phosphinite to carbonyl should give a less stabilized intermediate (xi) than the corresponding phosphite adduct (xii) which can be stabilized by pentacovalency and other factors. Thus the carbonyl additions by phosphinites should tend to be more reversible than those of phosphites and therefore more subject to thermodynamic control.

The reactions of dibromo ketones or halobenzyl phenyl ketones (29 and 30 in Table VI) with P(III) are not explicable by these arguments. Perkow re-

[^79]
Z, major product $(\mathrm{Y}=\mathrm{OR}) \quad E$, major product $(\mathrm{Y}=\mathrm{Ph})$
actions of α, α-dibromo ketones are characterized by exclusive formation of Z products, debromination in the presence of acetic acid, ${ }^{6,23}$ and large $k_{2} \mathrm{Br} / \mathrm{Cl}$ ratios (~ 200) vs. those of the corresponding dichloroketone. ${ }^{6}$ The data suggests that dibromo ketones react with P (III) via initial attack on bromine followed by O-phosphorylation of the resultant enolate halophosphonium ion pair. It is noteworthy that the (Z)vinyl phosphate is the sole product formed in the phosphorylation of propiophenone or benzyl phenyl ketone under kinetic or equilibrium control conditions. ${ }^{2}$

The reactions of bromobenzyl phenyl ketone (30) with P (III), and possibly even of chlorobenzyl phenyl ketone (29) with phosphinites, may also proceed by halogen attack (at least in part). The $k_{2} \mathrm{Br} / \mathrm{Cl}$ ratios

[^80] Phosphorus, 1, 301 (1972).
for these reactions range from 24 (triethyl phosphite reactions) to 205 (reactions with ethyl diphenylphosphinite), ${ }^{6}$ and Z products predominate (Table VI).

In summary, Perkow reactions can occur via several mechanistic pathways. Evidence on the reversibility or nonreversibility of carbonyl addition in these reactions is needed.

Experimental Section ${ }^{24}$

The vinyl phosphates, ${ }^{2,8}$ phosphonates, ${ }^{2,6}$ and phosphinates ${ }^{6,28}$ have been described. $\operatorname{Eu}(D P M)_{3}, m p 188-189^{\circ}$, and $\operatorname{Pr}(D P M)_{3}$, $\mathrm{mp} 218-220^{\circ}$, were purchased from Alfa Inorganics.

General LIS Procedure.-The nmr spectrum of the vinyl phosphorylated species ($1-2 \times 10^{-4} \mathrm{~mol}$) in dry $\mathrm{CCl}_{4}(0.5 \mathrm{ml})-$ TMS was recorded at 60 MHz . Increments of lanthanide shift reagent were added and spectra recorded. From the slope of the plot of induced chemical shifts vs. the mole ratio of LIS reagent/ substrate, the magnitude of induced shifts for certain protons in the substrate were calculated. All plots used to determine these shifts were linear over a range of LIS reagent/substrate of $0-0.4$.

Registry No.-1a, 10409-52-6; 1b, 10409-53-7; 2a, 10409-50-4; 2b, 10409-51-5; 3a, 31327-17-0; 3b, 31327-16-9; 4a, 31428-82-7; 4b, 31327-18-1; 5, 31651-16-8; 6, 38868-16-5; 7, 38868-17-6; 8, 38868-18-7; 9, 38868-19-8; (E)-10, 31327-12-5; (Z)-10, 38858-37-6; 11a, 31327-14-7; 11b, 31327-15-8; (E)-12, 31327-13-6; (Z)-12, $38858-40-1 ; 13,5954-28-9 ; 14,31327-22-7$; 15, 1021-45-0; 16a, 38858-41-2; 16b, 38858-42-3; 17, $30908-58-8$; 18, 10409-55-9; 19a, 38778-62-0; 19b, $38778-61-9$; 20a, 31327-10-3; 20b, 31327-09-0; 22, $31327-19-2$; 23, 719-80-2; 24, 3030-90-8; 25, 122-52-1; 26, 6084-17-9; 27, 2114-00-3; 28, 2648-61-5; 29, 447-31-4; 30, 1484-50-0; 31, 13665-04-8.

Acknowledgments.-We thank Professors S. Sternhell and R. Breslow for stimulating discussions. The hospitality of the Eidgenossische Technische Hochschule, Zurich, which enabled the preparation of part of this paper is gratefully acknowledged. We also thank Professor J. Oth for NOE results and E. Gaydou for unpublished results.
(24) Instrumental and relevant experimental techniques have been previously described. ${ }^{2,2 s}$
(25) I. J. Borowitz, K. C. Kirby, P. E. Rusek, and E. W. R. Casper, J. Org. Chem., 36, 88 (1971).
(26) I. J. Borowitz, E. W. R. Casper, R. K. Crouch, and K. C. Yee, J. Org. Chem., s7, 3873 (1972).

Proton Coupled Carbon-13 Magnetic Resonance Spectra. The Simple Amides

Douglas E. Dorman and Frank A. Bovey*
Bell Laboratories, Murray Hill, New Jersey 07974

Received October 13, 1972

Abstract

The carbon-13 magnetic resonance spectra of a selection of simple amides are reported, with special emphasis placed upon the application of proton coupled spectra to the problem of peak assignment.

Because of their relationship to the biologically important polypeptide macromolecules, the amides have been the subject of numerous studies using diverse spectroscopic methods. As a result of this intensive study, a great deal is known regarding the molecular and electronic structure of these molecules. ${ }^{1}$ Thus, the amides are essentially planar, with the nitrogen-acyl bond restricted to two rotameric states which are separated by an energy barrier of about $20 \mathrm{kcal} / \mathrm{mol}$. Proton magnetic resonance spectroscopy has been extensively used to study these conformations and their interconversions.

The amides have also received the attention of carbon-13 magnetic resonance (${ }^{13} \mathrm{C} \mathrm{nmr}$) spectroscopists. Using double resonance techniques, it has been shown that N-methyl carbons which are syn ${ }^{2}$ to the carbonyl oxygen in N, N-dimethylamides are shielded relative to the anti by $3-5 \mathrm{ppm} .^{3}$ A more recent publication ${ }^{4}$ has concentrated largely upon the relaxation times of the carbons of simple amides, and it is clear that T_{1} measurements will be a useful aid in distinguishing the syn and anti α-carbon resonances of such molecules as N, N-dibutylformamide.

As part of a more extended investigation of ${ }^{13} \mathrm{C}$ nmr spectra of polypeptides, ${ }^{5}$ we have undertaken a brief survey of the amides. The major thrust of our study has been to develop additional methods by which the carbon resonances of more complex molecules may be assigned. Our prior experiences with the esters ${ }^{6}$ suggested that carbon-proton coupling might be useful in this regard. The present paper describes our progress in the measurement of proton coupled ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra of amides.

Experimental Section

All compounds were commercially available and were used without purification. N-Deuterioamides were prepared by treatment with deuterium oxide or methanol $-d_{1}$ followed by distillation.

Carbon-13 nuclear magnetic resonance spectra were measured on a Varian XL-100 spectrometer modified for Fourier transform spectroscopy in a manner which has been previously described.'

[^81]Carbon chemical shifts were measured in aqueous solutions (10% v / v) relative to internal (2-5\%) 1,4-dioxane. The chemical shifts so measured were than related to external carbon disulfide on the basis of the chemical shift of 1,4 -dioxane measured relative to that standard (126.2 ppm). Proton coupled ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra were measured using neat solutions when possible. For crystalline amides, proton coupled spectra were measured in aqueous solutions.
For the preliminary coherent decoupling experiments reported in this paper, decoupling power was adjusted to the minimum necessary for complete decoupling. On our basic Varian XL100 spectrometer, ${ }^{7}$ this generally corresponded to about 110 dB on the low power range.

Results and Discussion

Carbon Chemical Shifts.-Carbon chemical shifts reported in this paper are presented in Tables I and II. To facilitate later comparison of these spectra

Table I
Carbon Chemical Shifts in Simple Amides

Registry no.	Amide	$\mathrm{C}=0$	$\overbrace{\text { anti }} \mathrm{NCH}_{\text {syn }}$		CCH_{3}
75-12-7	Formamide	26.1			
123-39-7	N-Methylformamide (trans)	28.2		168.3	
	(cis) ${ }^{3}$	25.0	164.7		
68-12-2	$\begin{aligned} & N, N \text {-Dimethyl- } \\ & \text { formamide } \end{aligned}$	28.1	155.9	161.4	
60-35-5	A cetamide	15.6			171.4
79-16-3	N-Methylacetamide	18.3		166.8	171.0
127-19-5	N^{γ}, N-Dimethylacetamide	19.0	154.6	157.5	172.2

${ }^{a}$ Measured relative to external carbon disulfide. ${ }^{\text {b }}$ Spectrum measured as a 25% aqueous solution.

Table II
Carbon Chemical Shifts ${ }^{a}$ of
Formylr and Acetylsarcosines

$\begin{gathered} \text { Registry no. } \\ 38456-66-5 \end{gathered}$	Sarcosine N-Formylsarcosine (trane) (cis)	$\mathrm{COOH} \mathrm{NCH}_{2}$				$\mathrm{CH}_{3} \mathrm{C}$
		20.5	146.5	157.0	27.3	
		19.4	141.5	161.9	26.7	
5888-91-5	N-A cetylsarcosine (trans)	19.4	143.1	155.3	18.0	172.2
	(cis)	19.5	140.4	158.0	17.9	172.4

a All chemical shifts measured relative to carbon disulfide.
to those of peptides and amino acid derivatives, ${ }^{5}$ aqueous solutions were used in all measurements. In many cases, peak assignments were derived from the literature. ${ }^{3,4}$ These assignments were confirmed and extended using carbon-proton coupling constants measured in this study (vide infra).

The most significant source of carbon chemical shift differences in amides is that due to the carbonyl group. N-Methyl carbons which are syn to the carbonyl oxygen are invariably shielded relative to the anti case. There appears to be some question regarding the source

Figure 1.-Schematic representation of the ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{spectrum}$ of N-formylsarcosine. The more intense set of peaks represents the spectrum of the major or trans conformer. The back-to-back pattern shown in the upfield resonances is typical of the spectra of sarcosine derivatives.
of this shielding proximity effect. McFarlane, ${ }^{3}$ citing evidence derived from proton chemical shifts and onebond carbon-proton coupling, ${ }^{8}$ attributed it to the electric field associated with the carbon-oxygen bond. More recently ${ }^{4}$ the proximity effect of the carbonyl oxygen has been discussed in terms of steric compression. Whatever the source of this effect, it is thought to extend its influence even to the terminal methyl carbons of N, N-di- n-butylformamide. ${ }^{4}$

The existence of such an effect may have important implications in the ${ }^{13} \mathrm{C} \mathrm{nmr}$ study of the conformations of peptides. An indication of this is apparent in the spectra of N-acylsarcosines (Table II). Even in the absence of any data other than the carbon chemical shifts of these compounds, full and reliable peak assignments may be made. The case of N-formylsarcosine will be used as an example. The aqueous solution of this compound shows the presence of the two unequally populated conformers, cis and trans. Within

the spectra of each of these conformers the two upfield resonances may be differentiated by off-resonance decoupling. ${ }^{9}$ On the basis of the shielding effect of the carbonyl group we would predict that (1) the N methyl resonance of the cis conformer would be upfield relative to the trans; and (2) the N-methylene resonance of the trans conformer would be the more shielded. This should lead to a back-to-back pattern in the upfield carbon resonances, as has been observed for similar compounds using proton magnetic resonance spectroscopy. ${ }^{10}$ This is indeed observed in the ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{spec-}$ trum of this compound, as is schematically shown in Figure 1. Similar methods of assignment have proven useful in the ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{spectra} \mathrm{of} \mathrm{proline} \mathrm{derivatives}.{ }^{5}$

Proton Coupled ${ }^{13} \mathrm{C}$ Nmr Spectra.-A previous study ${ }^{6}$ of the proton coupled ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra of ethers and esters demonstrated that geminal and vicinal carbonproton coupling constants could be easily measured in simple compounds. Such data were found to be useful in the conformational analysis of these systems. Corresponding measurements on amides should be useful in making peak assignments. Unfortunately, the
(8) W. T. Raynes and T. A. Sutherley, Mol. Phys., 18, 129 (1970); 17, 547 (1969).
(9) H. J. Reich, M. Jautelat, M. T. Messe, F. J. Weigert, and J. D. Roberts, J. Amer. Chem. Soc., 91, 7445 (1969).
(10) F. A. Bovey, J. J. Ryan, and F. P. Hood, Macromolecules, 1, 305 (1968).
spectra of amides are subject to problems not present in the earlier investigation. ${ }^{6}$ The presence of the ${ }^{14} \mathrm{~N}$ nucleus in amides, for example, might be expected to lead to additional complexities in their spectra. The presence in many amides of an exchangeable N proton is another potential complication. Because virtually every carbon nucleus in these simple amides is spin coupled to the N proton, any exchange phenomena could lead to irreproducible results. This problem can be avoided by exchanging the N protons with deuterium, a device which also leads to simplification of the proton coupled spectra.

It is largely due to problems of this nature that the coupling constant data of Tables III and IV must be

Table III				
Coupling ${ }^{\text {a }}$ Involving the Carbonyl Carbon				
Amide	${ }^{1}{ }_{\text {CH }}$	${ }^{2}{ }^{\text {CCCH }}$	${ }^{8} \mathrm{JCNH}$	${ }^{8}{ }^{\text {CNCH }}$
Formamide	192.8		2.4, $c a .5$	
N-Methylformamide- d_{1}				
(trans)	191.5			3.1
(cis)	189.1			ca. 4.3
N-Methylformamide				
(trans)	191.7		ca. 3.7	ca. 3.7
(cis)	189.1		b	b
Acetamide ${ }^{\text {c }}$		5.9	$\begin{aligned} & 2.65, \\ & 2.65 \end{aligned}$	
N-Methylacetamide- d_{1}		6.1		3.5
N-Methylacetamide		5.9	3.7	3.7

${ }^{a}$ All coupling constants are in hertz, and are accurate within $\pm 0.2 \mathrm{~Hz} .{ }^{b}$ Not resolved. ${ }^{c}$ Measured in saturated aqueous solution.

Table IV

a All coupling constants are reported in hertz, and are accurate to approximately $\pm 0.2 \mathrm{~Hz}$. ${ }^{b}$ Not resolved. ${ }^{c}$ Vicinal coupling between the carbon of one methyl group and the protons of the other. ${ }^{d}$ Vicinal coupling between N-methyl carbons and the formyl proton.
considered approximate. Even in view of these limitations, however, the present data are sufficient to provide important information for peak assignments and conformational analysis. Thus, as shown in Figure 2, the coupling between the N-methyl carbon and formyl proton nuclei of N-methylformamide is strongly dependent upon the dihedral angle about the nitrogenacyl bond. In the trans isomer, wherein the diliedral angle between the two coupled nuclei is 180°, this vicinal carbon-proton coupling constant is about 5 Hz . For the cis conformer, corresponding to a dihedral angle of 0°, the coupling is too small to be resolved under the conditions of the experiment. Clearly such differences

Figure 2.-The proton coupled spectrum of the N-methyl carbons of N-methylformamide. Minor peaks, which are shown at higher gain in the insets, are those of the minor cis conformer.
in coupling are of potential use in peak assignment and conformational analysis in these systems.

A more striking dihedral dependence is shown by acetamide (cf. Figure 3). Here, the methyl carbon is coupled observably to only one of the N protons $\left.{ }^{3} J_{\mathrm{CCNH}}=7.1 \mathrm{~Hz}\right)$. In the spectrum of N-methylacetamide, the acetyl methyl carbon resonance is coupled to none but the directly attached protons. Because this latter compound is known to be 100% trans, ${ }^{11}$ these results indicate that the methyl carbon of acetamide is coupled only to the syn N proton.
One-bond carbon-proton coupling constants also have occasional application to the problem of peak assignment. In the spectrum of N-methylacetamide, for example, the two methyl resonances differ by less than 5 ppm , a surprisingly small difference. The indicated assigment (Table I) can be supported, however, by the proton coupled ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum. In the latter spectrum the one-bond carbon-proton coupling constant for the high-field methyl resonance is found to be approximately 128 Hz , while that of the low-field methyl quartet is about 138 Hz . The same coupling constants can be conveniently measured from the ${ }^{13} \mathrm{C}$ side bands of the proton spectrum, in which there is no question of assignment. ${ }^{11}$ Using this method, the low-field methyl carbon resonance can be related to the N-methyl proton resonance, thereby confirming the above assignment.

In the spectrum of N-acetylsarcosine, the chemical shifts of the carbonyl nuclei were found to be rather similar (cf. Table II). By correlation with the spectrum of N-formylsarcosine, the peaks near 19.5 ppm were assigned to the carboxyl resonance. Confirmation of this assignment was derived from the proton coupled ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum. The acetyl carbonyl carbon of N-acetylsarcosine would be expected to be coupled to the protons of both methyl groups and the N methylene group, as well as to the ${ }^{14} \mathrm{~N}$ nucleus. The carboxyl carbon, however, would be coupled only to the adjacent methylene protons. In the proton coupled ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum, the resonances near 19.5 ppm appeared as triplets (${ }^{2} J_{\mathrm{CCH}} \cong 5.7 \mathrm{~Hz}$), thereby confirming their assignment to the carboxyl carbons.

These results, taken in conjunction with the data in Tables III and IV, indicate that proton coupled ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra may provide important information regarding the peak assignment and conformational analysis in such systems. More recent results indicate

[^82]

Figure 3.-The proton coupled methyl resonance of acetamide. Each portion of the widely split quartet shows evidence of vicinal coupling to only one N proton.

Figure 4.-Coherent proton decoupling experiments with $N, N-$ dimethylformamide. In the upper trace, the decoupling frequency has been set on the upfield N-methyl proton resonance. The upfield carbon resonance shows residual vicinal coupling to the formyl proton. The lower trace was obtained when the decoupling frequency was moved to the lower N-methyl proton resonance.
that proper control of the temperature at which the spectra are taken leads to much narrower lines and thus more precise coupling data. Continuing experiments designed to investigate these effects, and to evaluate the application of carbon-proton coupling constants to problems in conformational analysis, are in progress.
Coherent Proton Decoupling. - In many amides, it may be desirable to measure a particular coupling constant in the absence of any other carbon-proton coupling. As an example of such a situation, we may consider the case of N, N-dimethylformamide. Through measurements of the coupling between the N-methyl carbons and the formyl proton, one can detect dihedral angle effects in such systems. Unfortunately, each of the methyl carbons in N, N dimethylformamide is also coupled to six methyl protons, and the resonances of these spectra are accordingly complex.

It is possible in this system, however, to decouple the N-methyl proton resonances without significant perturbation of the formyl proton resonance ($c f$. Figure 4). Under such conditions the residual coupling is easily estimated. As observed for the simpler cases, the coupling constant for the syn N-methyl carbon was larger (3.4 Hz) than that of the anti ($\leq 2.0 \mathrm{~Hz}$). It is similarly possible to decouple only the formyl proton, thus facilitating the measurement of the coupling between each methyl carbon and the protons of the other methyl group. This vicinal coupling was approxi-

Furukawa, Lee, Shingu, Meck, and Piantadosi

mately the same (3.4 Hz) for each methyl carbon. Similar techniques may find application in the analysis of the conformations of N -formyl derivatives of greater complexity.

Conclusion

One of the most important carbon-13 chemical shift effects seen in the amides is a proximity effect associated with the carbonyl oxygen. Thus, N-alkyl carbons which are syn to this oxygen are strongly shielded. While at present this effect has only been recognized for carbon nuclei attached to the nitrogen of amides or
the ether oxygen of esters, ${ }^{6}$ there appears to be no reason why a similar effect cannot occur at the β carbon of amino acids. Such an effect could have important application to the conformational analysis of such systems.

Carbon-proton coupling appears to hold promise of useful applications in the conformational analysis and peak assignment for at least the simple amides, and may be useful in further investigations into the shielding effect of the carbonyl group in small molecules. Such experiments are currently in progress.

Carolenin and Carolenalin, Two New Guaianolides in Helenium autumnale L. from North Carolina ${ }^{1,2}$

Hiroshi Furukawa, Kuo-Hsiung Lee,**, ${ }^{*}$ Tetsuro Shingu, ${ }^{5}$ Ronald Meck, ${ }^{4,6}$ and Claude Piantadosi ${ }^{4}$
Department of Medicinal Chemistry, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514, and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan

Received December 5, 1972

Abstract

The major sesquiterpene lactones found in Helenium autumnale L. collected during the summer in North Carolina were not the pseudoguaianolide helenalin or the norsesquiterpene lactone, dihydromexicanin E , but were the new guaianolides, carolenin and carolenalin. The structures of carolenalin and carolenin have been shown to be 1 and 13 on the basis of chemical transformations and spectral evidence.

The constituents of Helenium autumnale L. collected from different populations were previously examined and reported to contain helenalin, ${ }^{7-10}$ dihydromexicanin $\mathrm{E},{ }^{11-12}$ helenium lactone, ${ }^{13}$ 2-acetyl flexuosin $\mathrm{A},{ }^{14}$ autumnolide, ${ }^{14}$ tenulin, ${ }^{15}$ mexicanin I, ${ }^{15}$ and flexuosin A. ${ }^{15}$ In the course of a search for convenient supply of the pseudoguaianolide helenalin for investigation of the relationship between the sesquiterpene lactone structure and the antitumor or cytotoxic activity, ${ }^{16-19}$ we had occasion to extract a batch of Helenium autumnale L., collected during the summer in the vicinity of Durham, N. C. We report herein the isolation and structural
(1) This investigation was supported by U. S. Public Health Service Research Grant No. CA12360-02 from the National Cancer Institute.
(2) Presented in part at the 13 th Annual Meeting of the American Society of Pharmacognosy, The Ohio State University, Columbus, Ohio, July 21, 1972.
(3) Address correspondence to this author.
(4) University of North Carolina.
(5) Kyoto University.
(6) Medicinal Chemistry Trainee; supported by Public Health Training Grant 5T01-AM01770-03 from the National Institute of General Medical Sciences, National Institutes of Health.
(7) E. P. Clark, J. Amer. Chem. Soc., 58, 1982 (1936).
(8) R. Adams and W. Herz, ibid., 71, 2546 (1949), and related papers.
(9) W. Herz, A. Romo de Vivar, J. Romo, and N. Viswanathan, ibid., 85, 19 (1963).
(10) M. T. Emerson, C. N. Caughlan, and W. Herz, Tetrahedron Lett., 621 (1964).
(11) R. A. Lucas, R. G. Smith, and L. Dorfman, J. Org. Chem., 29, 2101 (1964).
(12) A. Romo de Vivar and J. Romo, J. Amer. Chem. Soc., 89, 2326 (1961); J. Romo, A. Romo de Vivar, and W. Herz, Tetrahedron, 19, 2317 (1963).
(13) H. Hikino, D. Kuwano, and T. Takemoto, Chem. Pharm. Bull., 16, 1601 (1968).
(14) W. Herz, P. S. Subramaniam, and N. Dennis, J. Org. Chem., 34, 2915 (1969).
(15) W. Herz and P. S. Subramaniam, Phytochemistry, 11, 1101 (1972).
(16) K. H. Lee, E. S. Huang, C. Piantadosi, J. S. Pagano, and T. A. Geissman, Cancer Res., 31, 1649 (1971).
(17) K. H. Lee, D. C. Anuforo, E. S. Huang, and C. Piantadosi, J. Pharm. Sci. 61, 626 (1971).
(18) K. H. Lee, H. Furukava, and E. S. Huang, J. Med. Chem., 15, 609 (1972).
(19) K. H. Lee, R. Meck, C. Piantadosi, and E. S. Huang, ibid., 16, 299 (1973).
elucidation of two new guaianolides, carolenalin and carolenin. ${ }^{20}$

Carolenalin and carolenin, isolated from a chloroform extract of the finely ground plant material by fractionation involving successive solvent partitions and silica gel chromatography, were assigned structure 1 and 13, respectively, on the basis of the following chemical transformations and spectral evidence.

Carolenalin (1) was isolated as an oil in 0.4% yield and had infrared bands at 3500,1760 , and $1640 \mathrm{~cm}^{-1}$, thus indicating the presence of a hydroxyl group, a γ-lactone carbonyl, and a carbon-carbon double bond. The nmr spectrum of carolenalin (Table I) is in accord with the structure 1. The vinyl methyl protons at C-10 appeared as a broad singlet at $\delta 1.75$ and the methyl groups at C-11 and C-4 were seen, respectively, as a doublet $(J=7.5 \mathrm{~Hz})$ at 1.19 and a sharp singlet at 1.08 . Other nmr signals were seen at $\delta 5.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$, $5.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8)$, and $3.74(1 \mathrm{H}, \mathrm{t}, J=3.0 \mathrm{~Hz}, \mathrm{H}-3)$ which was shifted downfield to 4.79 ($q, J=3.0,5.25$ $\mathrm{Hz})$ in the monoacetate 2 and $5.45(\mathrm{t}, J=3.0 \mathrm{~Hz})$ in the diacetate 3 as described below.

Acetylation of 1 with acetic anhydride in pyridine for 3 days at room temperature yielded approximately equal amounts of a monoacetate 2 (mp $160-161^{\circ}$, $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$) and a diacetate $3\left(\mathrm{mp} 146-148^{\circ}, \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6}\right)$, ${ }^{21}$ indicating the presence of two hydroxyl groups. Mass spectral peaks at $m / e 308\left(\mathrm{M}^{+}\right), 290(\mathrm{M}-18)(\mathrm{M}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right), 248(\mathrm{M}-60)(\mathrm{M}-\mathrm{AcOH})$, and $230(\mathrm{M}-78)$ ($\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$ and AcOH), and ir absorption at $3580(\mathrm{OH})$ and $1740 \mathrm{~cm}^{-1}$ (acetyl $\mathrm{C}=\mathrm{O}$) showed that 2 was a

[^83]hydroxy monoacetate. That the remaining hydroxyl group in 2 was tertiary was evidenced by the fact that 2 showed a sharp $\mathrm{D}_{2} \mathrm{O}$-exchangeable one-proton singlet at $\delta 4.42$ in the nmr spectrum (DMSO- d_{6}). The structure of 2 and 3 was also verified by the appearance of the three-proton singlet for the acetyl methyl groups in 2 and 3 at $\delta 2.10$ and 2.00 and 2.03, respectively.

$1, R_{1}=R_{2}=H$
2, $R_{1}=H ; R_{2}=A c$
3, $R_{1}=R_{2}=A c$
$9, \mathrm{R}_{\mathrm{l}}, \mathrm{R}_{2}=>\mathrm{CH}_{3}$

5, $\mathrm{R}=\mathrm{H}$
6, $\mathrm{R}=\mathrm{CH}_{3}$

$7, R=H$
8, $\mathrm{R}=\mathrm{CH}_{3}$

10

11

Catalytic hydrogenation of 2 with platinum oxide in ethyl acetate afforded a mixture of the corresponding dihydro compound 4 (mp $221-222^{\circ}, \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5}$) whose nmr spectrum showed a new secondary methyl group at C-10 as a doublet $(J=6.0 \mathrm{~Hz})$ at $\delta 0.95$, and an acid 5 (mp 125-126 ${ }^{\circ}, \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5}$) whose nmr spectrum showed the disappearance of the characteristic lactonic (H-8) and vinylic ($\mathrm{H}-9$) protons in the low-field region. Methylation of 5 with diazomethane gave a methyl ester (6, oil) which showed a carboxymethyl singlet at $\delta 3.63$. The ready formation of the acid 5 by hydrogenolysis indicated an allylic disposition for the oxygen atom of the lactone ring. Support for this suggestion was found in the nature of the signal for the lactonic proton at H-8 in the nmr spectra of 2 and 4 . The H-8 proton in $4(4.53,1 \mathrm{H}, \mathrm{m})$ is upfield shifted compared to the $\mathrm{H}-8$ signal in $2(5.08,1 \mathrm{H}, \mathrm{m})$.

Oxidation of 1 with Jones reagent at room temperature furnished a keto acid 7 (mp 171-172 ${ }^{\circ}, \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}$). The nmr spectrum of 7 exhibited, instead of a tertiary methyl singlet at $\delta 1.08\left(\mathrm{C}-4 \mathrm{CH}_{3}\right)$ as seen in 1, a new sharp three-proton singlet at 2.14 attributable to the methyl ketone. Methylation of 7 yielded the corresponding ester 8 . The facile reaction of 1 to form acetonide (9) from acetone and p-toluenesulfonic acid, and

Table I
Nmr Spectral Data for Carolenalin, Carolenin, and Derivatives ${ }^{a}$

Compd	d H-3	H-8	H-9	$\begin{aligned} & \mathrm{C}-11 \\ & \mathrm{CH} \end{aligned}$	$\begin{aligned} & \mathrm{C}-10 \\ & \mathrm{CH}_{\mathrm{j}} \end{aligned}$	$\begin{aligned} & \mathrm{C}-4 \\ & \mathrm{CH}_{8} \end{aligned}$	Ac	Miac
1	3.74	5.09	5.35	1.19	1.75	1.08		
	t (3.0)	m	m	d (7.5)	m	8		
2	4.79	5.08	5.35	1.19	1.75	1.13	2.10	
	dd (3.0,5.25)	m	m	d (7.5)	m	8	8	
3	$5.45{ }^{\text {b }}$	5.15	5.45	1.22	1.78	1.32	2.00	
	t (3.0)	m	m	d (7.5)	m	8	8	
							2.03	
							8	
4	4.80	4.53		1.15	0.95	1.22	2.08	
	dd (6.0, 9.75)	m		d (7.5)	d (6.0)	8	-	
5	4.78			1.14	0.89	1.19	2.10	
	dd (4.5, 7.5)			d (7.5)	d (6.0)	8	8	
6	4.80			1.11	0.88	1.18	2.08	$3.63{ }^{\text {c }}$
	dd (5.25, 7.5)			d (7.5)	d (6.0)	8	8	8
7		5.42	5.20	1.20	1.82	2. 14		
		m	m	d (6.75)	m	8		
8		5.45	5.25	1.20	1.82	2.14		$3.67{ }^{\text {c }}$
		m	m	d (6.75)	m	8		s
9	4.20	5.40	5.15	1.18	1.78	1.45		$1.38{ }^{\text {d }}$
	dd (1.5, 6.0)	m	m	d (6.75)	m	8		
10		5.49	5.25	1.20	1.80	2.15		$9.84{ }^{e}$
		m	m	d (6.75)	m	8		
13	4.88	5.14	5.40	1.22	1.78	1.18		6. 18^{\prime}
	dd (3.0, 4.5)	m	m	d (6.75)	m	B		
								1.920

${ }^{a}$ These spectra were measured in CDCl_{3} with a Jeolco C-60 HL nmr spectrometer using TMS as an internal standard. All chemical shifts were reported in δ (ppm) values and the coupling constants (figures in parentheses) in hertz. Signals are characterized in the usual way: s, singlet; d, doublet; t, triplet; q, quartet; and m, multiplet. H-3, H-8, and H-9 each integrated for one proton. Methyl as well as acetyl signals had three proton intensities. ${ }^{b}$ Overlapped with H-9. ${ }^{c}$ Carboxymethyl group. ${ }^{d}$ Geminal dimethyl groups $(6 \mathrm{H})$ of the acetonide. ${ }^{6}$ Aldehyde (1 H). ${ }^{〔} \mathrm{H}-18 .{ }^{\circ} \mathrm{C}-17$ and $\mathrm{C}-18$ methyl groups (6 H).
aldehyde ${ }^{22}$ [$10, \mathrm{nmr} \delta 9.84$ (aldehyde) and 2.15 (methyl ketone)] by treatment with sodium periodate, indicated the presence of the partial structure $-\mathrm{CH}(\mathrm{OH}) \mathrm{C}(\mathrm{OH})$ $\left(\mathrm{CH}_{3}\right)$ - in carolenalin. Dehydrogenation of 1 with 30% palladium on carbon led to the expected chamazulene (11), which was characterized as the trinitrobenzene adduct (mp 128-129 ${ }^{\circ}, \mathrm{C}_{14} \mathrm{H}_{16} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~N}_{3}$) and was shown to be identical with an authentic sample of chamazulene trinitrobenzene adduct ${ }^{23}$ by mixture melting point determination and direct infrared spectral comparison.

Added confirmation for the assignment of structure 1 to carolenalin was obtained by detailed double resonance experiments of monoacetate 2 . When the C-8 lactonic proton $\left(\mathrm{H}_{\mathrm{B}}\right)$ at 515 Hz was irradiated, the vinyl proton at $\mathrm{C}-9\left(\mathrm{H}_{\mathrm{A}}\right)$ collapsed to a broad singlet. Irradiation of the $\mathrm{C}-1$ proton $\left(\mathrm{H}_{\mathrm{D}}\right)$ at 322 Hz caused the signal for the lactonic proton (multiplet) at C-8 $\left(\mathrm{H}_{\mathrm{B}}\right)$ to collapse to a quartet with $J_{\mathrm{AB}}=4.0$ and $J_{\mathrm{BF}}=7.2$ Hz . The coupling constant of the protons at C-7 and $\mathrm{C}-8\left(J_{7,8}=7.2 \mathrm{~Hz}\right)$ suggested the trans-fused lactone ring. Dreiding models of this compound indicate the feasibility of this suggestion, since the conformation of the seven-membered ring is very rigid. Aciditional spin-decoupling studies are summarized in Table II.

The conformation of carolenalin monoacetate (12) was determined by nuclear Overhauser effect (NOE)

[^84]Table II
Double-Resonance (100 MHz) Nmr Data for Carolenalin Monoacetate ${ }^{a}$

${ }_{a}$ The double-resonance studies were done on a Varian HA100 nmr spectrometer in CDCl_{δ} and the values differ slightly from those recorded in Table I, which were obtained from $60-\mathrm{MHz}$ studies.
studies. Irradiation of the C-4 methyl signal at 113 Hz increased the intensity of the H-3 to 12%, suggesting that the C-4 methyl and the $\mathrm{H}-3$ are cis to each other.

12
Irradiation of the $\mathrm{H}-1$ proton at 320 Hz also produced a positive response (11% increase) on the $\mathrm{H}-8$ proton signal, indicating a 1,4-diaxial relationship between these two protons. Thus, if the $\mathrm{C}_{8} \mathrm{H}$ configuration is β, as is likely, the $\mathrm{C}_{1} \mathrm{H}$ configuration is then β. Since the biogenetic evidence indicates that the naturally occurring guaianolide-type sesquiterpene lactones isolated so far all possess a β-oriented C-4 methyl group and an α-oriented C-7 proton, this consideration, coupled with the above observations, leads to the conclusion that the stereochemistry of carolenalin is as depicted in structure 1 (or 12) in which the configuration of the C-11 methyl group remains to be determined. The configuration of $\mathrm{C}_{5} \mathrm{H}$ is assigned α since an alternative is not supported by models on the basis of a 1,4-diaxial relationship between $\mathrm{H}-1$ and $\mathrm{H}-8$.

The other new guaianolide carolenin (13) was also isolated as an oil. Carolenin showed a molecular ion peak at $m / e 348$ and a prominent peak at $m / e 330$ ($\mathrm{M}-18$) in the mass spectrum. The presence of an α, β-unsaturated ester group was revealed by an ir band at $1713 \mathrm{~cm}^{-1}$, and by a characteristic ion of $m / e 83$ (base peak) $\left[\mathrm{COC}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right]$ (i.e., the cleavage of esters of angelic, tiglic, and senecioic acids). ${ }^{24}$ That carolenin (13) is probably an angelate ester of carolenalin (1) was indicated by the nmr spectrum, in which the vinyl proton at C-18 of the ester moiety appeared as a
(24) T. A. Geissman and T. S. Griffin, Rev. Latinoamer. Quim., 2, 81 (1971), and references cited therein.
one-proton multiplet at $\delta 6.10$, a value which is characteristic of an angeloyl residue. ${ }^{23,25}$ The two vinyl methyl groups (C-17 and C-18) appeared as one sharp singlet at $\delta 1.92(6 \mathrm{H})$. Other nmr signals of 13 (Table I) are nearly identical in form and multiplicity with the signals for the corresponding groups of carolenalin (1). The downfield shift of the proton at C-3 (4.88, q, J = $3.0,4.5 \mathrm{~Hz}$) in 13 compared with that in the nmr spectrum of 1 , in which the $\mathrm{H}-3$ signal appeared at $\delta 3.73$ ($\mathrm{t}, J=3.0 \mathrm{~Hz}$), further indicated that this angeloyl side chain is located at the C-3 position. To further confirm the structure of carolenin, it was hydrolyzed with potassium hydroxide in methanol, with the formation of carolenalin (1) (identified with an authentic sample by ir comparison), a C-11 epimer of carolenalin, ${ }^{26}$ and an angelic acid which was isolated as p-phenylphenacyl ester and was shown to be identical with an authentic sample of p-phenylphenacyl angelate by mixture melting point determination. The foregoing evidence leads to the assignment of structure 13 for carolenin beyond doubt.

Experimental Section

Melting points were determined on a Thomas-Hoover melting point apparatus and were corrected. Unless otherwise specified, optical rotations were determined on a Perkin-Elmer 141 polarimeter. Ultravislet (uv) spectra were determined on a Cary Model 15 spectrophotometer. Infrared (ir) spectra were measured in chloroform with a Perkin-Elmer 257 grating infrared spectrophotometer. Mass spectra were determined on an A.E. I. MS-902 instrument at 70 eV using a direct inlet system. We thank Mr. F. Williams of the Research Triangle Center for Mass Spectrometry for these determinations. Silica gel and neutral alumina for column chromatography refers to Baker A. R. No. 3405 and Bio-Rad neutral alumina AG-7 (100-200 mesh), respectively; and silica gel for -hin layer chromatography (tlc) refers to Merck silica gel G developed with chloroform-acetone (3:1) and visualized by spraying with concentrated sulfuric acid and heating. Silica gel for preparative tlc refers to Merck silica gel GF-254. Elemental analyses were performed by Atlantic Microlab, Inc., Atlanta, Ga.

Isolation of Carolenin (13) and Carolenalin (1).-The Helenium autumnale L. (Compositae) used was from a collection made on July 26,1971 , along the meadow approximately 0.4 mile south of Tar River station and east of US 15 in Granvilk County, N. C. ${ }^{27}$ The ground, air-dried, whole plant material (40 lb) was exhaustively extracted with chloroform and worked up in the usual manner. ${ }^{28}$ This gave 359 g of a dark-brown syrup. Tlc showed that this crude extract was a mixture of two major components. This extract was then dissolved in a minimum amount of benzene and chromatographed over 1.5 kg of silica gel, using benzene, ethyl acetate, and ethyl acetate-methanol as eluents. The first 3.5 l . of benzene (fractions $1-7$) eluted minor quantities of nonpolar substances. The subsequent 10 l . of benzene eluate (fractions 8-28) afforded a mixture of the above-mentioned two components (carolenin and carolenalin). The polar fractions 29-35

[^85](ethyl acetate, 3 l.) and 36-40 (ethyl acetate-methanol, 6:1, 21 .) yielded a mixture of mainly carolenalin and very small amounts of more polar substances whose structures are now under investigation.

The brown syrup obtained from fractions 8-28 (192 g) was rechromatographed on silica gel (1 kg). Elution with benzene (19.5 l.) gave 71.8 g of brown oil (crude carolenin). The tle analysis of this oil showed only a faster moving single spot. One rechromatography of this oil (20 g) on silica gel (200 g) using benzene and benzene-chloroform as eluents afforded the pure carolenin (0.97 g) ${ }^{29}(13)$: $[\alpha]^{25} \mathrm{D}-101.9^{\circ}(c 0.598, \mathrm{MeOH})$; ir bands at 3586 (hydroxyl), 1765 (γ-lactone), 1713 (α, β-unsaturated ester carbonyl), and $1643 \mathrm{~cm}^{-1}$ (unsaturation); nmr data listed in Table I.

The materials remaining in the column after the removal of carolenin were further eluted with chloroform (6 1.) to yield carolenalin (1) ${ }^{29}$ as a brown, viscous oily substance (100 g) which gave primarily one slower moving spot on the thin layer chromatogram using different solvent systems.

Carolenalin Monoacetate (2).-Carolenalin (5 g) was acetylated with acetic anhydride and pyridine for 24 hr at room temperature to yield after two crystallizations from ethyl acetate 3.53 g of monoacetate 2: mp 160-161 ${ }^{\circ} ;[\alpha]^{25} \mathrm{D}-91.7^{\circ}$ (c $1.002, \mathrm{MeOH})$; uv (EtOH) end absorption; ir bands at 3580 (hydroxyl), 1760 (γ-lactone), 1740 (acetyl), and $1640 \mathrm{~cm}^{-1}$ (unsaturation)
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 66.21; $\mathrm{H}, 7.85$. Found: C, 66.23; H, 7.69.

Carolenalin Diacetate (3).-Carolenalin (5 g) was acetylated with acetic anhydride and pyridine at room temperature for 72 hr to give a mixture of mono- and diacetates 2 and 3. The latter was isolated by column chromatography on silica gel (100 g) using benzene and benzene-chloroform as eluents. Appropriate fractions were combined to yield after recrystallization from chloro-form- n-hexane 1.2 g of the diacetate $3: \mathrm{mp} 146-148^{\circ}$; uv (EtOH) end absorption; ir bands at 1762 (γ-lactone) and 1740 cm^{-1} (double strength, acetyl).
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 65.12; $\mathrm{H}, 7.48$. Found: C, 64.77; H, 7.48 .

Catalytic Hydrogenation of Carolenalin Monoacetate (2). A. Dihydrocarolenalin Monoacetate (4).-A solution of carolenalin monoacetate (200 mg) in methanol (15 ml) was hydrogenated at room temperature and atmospheric pressure using platinum oxide as catalyst. After 2 hr the catalyst was removed by filtration and the solvent was evaporated in vacuo to yield a residue. This residue was crystallized from n-hexane-ether ($1: 1$) and recrystallized from ether containing a small amount of n-hexane to give the pure dihydrocarolenalin monoacetate (4) as colorless prisms (13 mg), mp 221-222 .
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, $63.95 ; \mathrm{H}, 8.15$. Found: C, 64.19; H, 8.18.
B. Acid 5.-The filtrate after the removal of 4 was further concentrated to give another crystalline product which, upon recrystallization from n-hexane containing a small amount of ether, afforded the acid 5 as colorless needles (136 mg): mp 125-126 ; ir bands at 3590 (hydroxyl), 1725 (acetyl), and 1700 cm^{-1} (acid).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5}$: $\mathrm{C}, 65.36 ; \mathrm{H}, 9.03$. Found: C , 65.29 ; H, 9.05.

Methylation of Acid 5.-The acid 5 (54 mg) was methylated with diazomethane in the usual manner. The product crystallized and was collected and recrystallized from n-hexane-ether ($1: 1$) to give 50 mg of the methyl ester 6 as colorless needles: $\mathrm{mp} 87-88^{\circ}$; ir bands at 3590 (hydroxyl) and $1725 \mathrm{~cm}^{-1}$ (double strength, ester and acetyl carbonyl).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{5}$: C, 66.26; $\mathrm{H}, 9.20$. Found: C, 66.07; H, 9.32 .

Oxidation of Carolenalin (1). Keto Acid 7.-A solution of carolenalin (250 mg) in acetone (20 ml) was cooled to $10-12^{\circ}$ with stirring and treated with 0.5 ml of Jones reagent. After 10 min the solution was diluted with water and extracted with chloroform. The chloroform extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to afford a crystalline residue which was recrystallized from ether to give 7 as colorless prisms (190 mg): $\mathrm{mp} 171-172^{\circ}$; ir bands at 3500 (broad, hydroxyl), 1765 (γ-lactone), and $1710 \mathrm{~cm}^{-1}$ (acid).

[^86]Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$: $\mathrm{C}, 64.27 ; \mathrm{H}, 7.19$. Found: C, 64.57; H, 7.46.
Methylation of Keto Acid 7.-The keto acid 7 was methylated in the manner described for compound 6 . The product formed colorless oil 8: ir bands at 1765 (γ-lactone), 1730 (ester), and $1710 \mathrm{~cm}^{-1}$ (methyl ketone).

Carolenalin Acetonide (9).-To a solution of carolenalin (100 mg) in acetone (10 ml) was added p-toluenesulfonic acid (5 mg). After 5 min at room temperature the reaction mixture was diluted with water and extracted with chloroform. The dried chloroform extract was evaporated to give an oil which was passed through a column of neutral alumina ($3 \mathbf{g}$) and eluted with ether to yield 9 as a colorless oil (80 mg). Tlc analysis of this oil showed a single spot, although it could not be crystallized. It showed ir absorption at 1760 (γ-lactone) and $1655 \mathrm{~cm}^{-1}$ (unsaturation).

Treatment of Carolenalin (1) with Sodium Periodate. Keto Aldehyde 10.-A solution of carolenalin (418 mg) in ethanol $(20 \mathrm{ml})$ was added to a solution of sodium periodate $(500 \mathrm{mg})$ in water (2 ml) containing concentrated sulfuric acid (0.5 ml). After standing at $38-40^{\circ}$ for 30 min the reaction mixture was diluted with water, extracted with chloroform, and dried (Na_{2} SO_{4}). The dried chloroform extract was evaporated to furnish a yellowish, oily substance (10) which could not be induced to crystallize. Compound 10 showed a single spot on tle (ethyl acetate-acetone, 3:1) and had ir absorption at 1765 (γ-lactone), $2730,2830,2880$ (weak), and $1720 \mathrm{~cm}^{-1}$ (aldehyde).

Dehydrogenation of Carolenalin (1).-A mixture of carolenalin $(3.3 \mathrm{~g})$ and 30% palladium on carbon $(500 \mathrm{mg})$ was heated at $200-300^{\circ}$ for 10 min and then at $300-320^{\circ}$ for 7 min . After cooling, the reaction mixture was extracted with ether, and the ether extract was chromatographed on neutral alumina. The first 30 ml of the ether eluate was further rechromatographed on neutral alumina. Elution with n-hexane (50 ml) afforded 11 as a dark blue oil (37 mg) which was converted to the crystalline trinitrobenzene complex, mp 128-129 ${ }^{\circ}$ (ethanol), ir (Nujol) bands at 1615 and $1535 \mathrm{~cm}^{-1}$ (unsaturation).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}_{3}$: C, 60.45; $\mathrm{H}, 4.82$. Found: C, 60.24; H, 4.92.

A mixture melting point with authentic chamazulene-trinitrobenzene adduct ${ }^{23}$ showed no depression and the ir spectra were identical.

Hydrolysis of Carolenin (13).-A solution of carolenin (130 mg) in methanol (3 ml) and 10% potassium hydroxide $(0.6 \mathrm{ml})$ was refluxed for 40 min . The reaction mixture was diluted with water, acidified with concentrated hydrochloric acid, and extracted with chloroform. The chloroform extract was further washed with 5% sodium bicarbonate solution in order to separate the acidic and the neutral fractions. The neutral fraction (the chloroform extract) was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo to give an oil which showed a mixture of two compounds on a thin layer chromatogram. The separation of this mixture of compounds was achieved by preparative tle (silica gel, ethyl acetateacetone, $6: 1$). One of them (90 mg) was identified as carolenalin (1) by tlc and ir and nmr spectral comparison with the authentic sample. The other was obtained as a colorless oil (35 mg) which showed an $n m r$ spectrum virtually identical with that of carolenalin except for the slight differences of the chemical shifts and coupling constants in the methyl group at the C-11 position. The C-11 methyl group, which was seen as a three-proton doublet at $\delta 1.19(J=7.5 \mathrm{~Hz})$ in carolenalin, was shifted to $1.23(J=$ 6.0 Hz). This oily substance was believed to be the C-11 epimer of carolenalin.

The acidic fraction (the aqueous sodium bicarbonate layer) was acidified with dilute hydrochloric acid and extracted with ethyl acetate. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to yield an oil, which was converted to the crystalline p-phenylphenacyl ester in the usual manner. The crude crystalline product was purified by preparative tlc (silica gel, benzene) to give p-phenylphenacyl angelate ($\mathrm{mp} 81-83^{\circ}, 20 \mathrm{mg}$) and p phenylphenacyl tiglate ($\mathrm{mp} 87-90^{\circ}, 4 \mathrm{mg}$), ${ }^{25 \mathrm{a}}$ which were identified by direct ir comparison, respectively.

Registry No. -1, 38769-25-4; 2, 38769-26-5; 3, 38769-27-6; 4, 38769-28-7; 5, 38769-29-8; 6, 38769-30-1; 7, 38769-31-2; 8, 38769-32-3; 9, 38769-33-4; 10, 38769-34-5; 11 trinitrobenzene salt, 4955-13-9; 13, 38769-36-7; p-phenylphenacyl angelate, 16193-68-3; p-phenylphenacyl tiglate, 19451-66-2.

Synthesis of Chaminic Acid

Walter J. Gensler* and Philippa Heggs Solomon
Department of Chemistry, Boston University, Boston, Massachusetts 02215

Received November 28, 1972

Abstract

Chaminic acid, a bicyclic terpene from Chamaecyparis nootkatensis, has been synthesized. 5-Hydroxy-1,3cyclohexanedicarboxylate, obtained by hydrogenating the benzenoid compound, is dehydrated with acetyl chloride to give in part the corresponding lactone and in part the acetate of the cyclic acid anhydride. Excess methylmagnesium chloride with either compound furnishes the same adduct, 5 -hydroxy-1-(α-hydroxyisopropyl)cyclohexanecarboxylic acid. Chlorination to the α-chloroisopropyl derivative, esterification, and oxidation give rise to methyl 5-oxo-3-(α-chloroisopropyl)cyclohexanecarboxylate, which cyclizes with base to methyl 2-oxo-7,7-dimethylnorcarane-4-carboxylate. A double bond β, γ to the carboxyl group is then introduced by brominating the oxo compound, reducing the bromo ketone to bromohydrin, and eliminating the elements of hypobromous acid with zinc. The final step, yielding the desired dl-chaminic acid, consists in isomerizing the double bond to the α, β position with alkali. Arguments are presented allowing assignment of stereochemistry to the several intermediates.

Chaminic acid and chamic acid, terpenes isolated from the heartwood of the tree Chamaecyparis nootkatensis, ${ }^{1}$ have been assigned the structures and absolute configurations as formulated in 1 and $2.2,3$ The in-

1
chaminic acid
sect-repellent properties and the decay resistance of this heartwood may be attributed to one or possibly both of these compounds. We now wish to describe a synthesis of $d l$-chaminic acid ${ }^{4}$ proceeding through cis or trans dl -chamic acid. ${ }^{9}$

The starting point was 5 -hydroxyisophthalic acid (3 diacid), readily accessible by alkali fusion of commercially available 5 -sulfoisophthalic acid. ${ }^{10}$ Catalytic hydrogenation (rhodium-alumina) of the dimethyl ester 3 saturated the ring to give dimethyl 5 -hydroxy-

[^87]1,3-cyclohexanedicarboxylate (4,70\%). Refluxing the corresponding diacid with acetyl chloride led to 5 -acetoxy-1,3-cyclohexanedicarboxylic acid anhydride (5, 65%) plus the mixed anhydride of 5 -hydroxy- 1,3 cyclohexanedicarboxylic acid lactone ($6,10 \%$). Excess methylmagnesium chloride either with anhydride 5 or with the acid lactone 7 from 6 furnished the same adduct 8 in good yield. Cold concentrated hydrochloric acid reacted selectively with the tertiary hydroxy group in 8 to form the tertiary chloride 9 (98%). After esterification of the carboxylic acid group in 9, oxidation of the ring hydroxyl furnished cyclohexanone 10 (84%). This cyclized in the presence of potassium tert-butoxide to the desired bicyclic intermediate $11(70 \%)$, with the cis form of 11 predominating.

The final stages of the synthesis called for removing the keto group of 11 and inserting an ethylenic link, as in 14. Attempts to generate a double bond by elimination procedures using the cyclohexanol corresponding to cyclohexanone 11 failed. Thus low-temperature sulfonylation, expected to furnish the tosylate or the mesylate, gave products evidently with the three-membered ring opened. Neither the methyl xanthate nor the ethyl carbonate ester was obtained despite many trials under different conditions. ${ }^{11}$ The tosylhydrazone derivative of ketone 11 could be obtained, but heating the lithium salt in aprotic solvent, instead of the desired olefin, ${ }^{12}$ gave an actylenic material, probably methyl 7-methyl-6-octen-1-yne-4-carboxylate, as the major product. ${ }^{13}$

The sequence that succeeded in converting ketone 11 to chaminic acid (1) started with the bromination of 11 with phenyltrimethylammonium perbromide ${ }^{14}$ to give α-bromo ketone 12. Sodium borohydride reduced the bromo ketone to the bromohydrin 13, which with
(11) Examples of the Chugaev elimination in related compounds may be found in U. T. Bhalerao, J. Plattner, and H. Rapoport, J. Amer. Chem. Soc., 92, 3429 (1970); W. Cocker, P. V. R. Shannon, and P. A. Staniland, J. Chem. Soc. C. 485 (1967); slso see C. H. Depuy and R. W. King, Chem. Rev., 60, 431 (1960).
(12) Many examples are known: R. H. Shapiro and M. J. Heath, J. Amer. Chem. Soc., 89, 5734 (1967); W. G. Dauben, et al., ibid., 90, 4762 (1968); F. Y. Edamura and A. Nickon, J. Org. Chem., 35, 1509 (1970).
(13) Analogous processes have been observed: e.g., cf. J. W. Wheeler, R. H. Chung, Y. N. Vaishnov, and C. C. Shroff, J. Org. Chem., 84, 545 (1969); R. M. Coates and R. M. Freidinger, Chem. Commun., 871 (1969); G. Ohloff and W. Pickenhagen, Helv. Chim. Acta, E4, 1789 (1971).
(14) W. S. Johnson, J. D. Bass, and K. L. Williams, Tetrahedron, 19, 861 (1963); D. Vorländer and E. Siebert, Chem. Ber., 82, 283 (1919); of. C. Berger, M. Franck-Neumann, and G. Ourisson, Tetrahedron Lett., 3451 (1968).

zinc in methanol eliminated the elements of HOBr to give either cis-chamic ester (14) or methyl chamate

itself (2). ${ }^{15}$ Instead of trying to purify this compound, it was isomerized with alkali ${ }^{2}$ to give the desired dlchaminic acid (1). The synthetic material corresponded well in its infrared, ultraviolet, and nuclear magnetic resonance spectra as well as in in melting point with the data ${ }^{2,3}$ for the optically active forms. ${ }^{16}$ The overall yield in the four-step 11 to 1 process came to 25% when manipulation at each stage was held to a minimum.
Stereochemistry. -Formation of lactone 7 establishes the fact that the hydroxyl group and one of the carboxy groups are on the same side of the cyclohexane ring; formation of acid anhydride 5 shows that both carboxy groups must be on the same side of the ring. These features, as well as the fact that anhydride 5 and lactone 7 both furnish the same Grignard adduct 8, fix the all-cis configuration in hydrogenation product 4. The reactions leading to intermediates 8,9 , and 10 involve no harsh conditions, so that we have assumed that the cis geometry is carried over to the chloro ketone 10.
The base-catalyzed cyclization of 10 to 11 afforded two isomers 11 in a combined yield of 70%. That these were stereoisomers 16 and 19 rather than struc-
(15) Related sequences have been reported. Thus cf. E. J. Corey and R. A. Sneen, J. Amer. Chem. Soc., 78, 6267 (1956); M. Akhtar and S. Marsh, Biochim. J., 102, 462 (1967) [Chem. Abstr., 66, 52355b (1967)].
(16) Partial resolution (ca. 33%) of $d l$-chaminic acid into chaminic acid (dextro) and isochamic acid (levo) was achieved by fractionally recryatallizing the quinine salts. The optical rotatory dispersion curves of the partially resolved materials were close to being mirror images of each other.
tural isomers was proved by their interconversion on contact with base.
Sodium borohydride reduces the cis keto ester 11 to the all-cis hydroxy ester $15(60 \%)$ with both sub-

stituent groups equatorial. This assignment relied on published nuclear magnetic resonance data for the four geometric forms of 2-hydroxy-3,7,7-trimethylbicyclo [4.1.0]heptane. ${ }^{6}$ In this set, when the hydroxyl is cis to the cyclopropane ring, the gem-dimethy groups show chemical shifts differing by 7.5 and 13.5 Hz . In contrast, in both of the forms with hydroxyl trans to the cyclopropane ring, the chemical shift difference is 4.5 Hz . In our compound 15, the chemicalshift difference is 8 Hz , a value that fits better with the cis assignment for the 2 -hydroxyl group than the trans. Another indicator is the observed $W_{1 / 2}=25 \mathrm{~Hz}$ for the $\mathrm{C}-\mathrm{H}$ signal at position 2 in 15 , a value that fits the axial $2-\mathrm{H}$ better than the equatorial. ${ }^{17}$

The stereochemical analysis for bromo compound 12 (18) leads to the conclusion that the 3 -bromo and the adjacent 4-carbomethoxy group are both equatorial, and that the 4-carbomethoxy group is cis to the threemembered ring. The infrared ketone absorption peak for bromo compound 18 appears at a frequency $20 \mathrm{~cm}^{-1}$ higher than that for its precursor, 16, a shift corresponding closely to those observed in equatorial α-bromocyclohexanones (as in 18) but not to the shift for axial α-bromocyclohexanones (about $5 \mathrm{~cm}^{-1}$ to lower frequency). ${ }^{18}$ So far as the geometric relation of the 3 -bromo and 4-carbomethoxy groups in 18 is concerned, the coupling constant $(12.5 \mathrm{~Hz})$ of the $3-\mathrm{H}$ with the $4-\mathrm{H}$ corresponds far better to an axial-axial dihedral angle than to the angle for any equatorial-

[^88]

axial or equatorial-equatorial arrangement. ${ }^{19}$ Accordingly the Br and COOCH_{3} groups are taken as trans (equatorial-equatorial) as in 18.

The assignments of cis and trans geometry to the two forms of keto ester 11 (see 16 and 19) are made by considering the detailed steps in the subsequent bromination process. The intermediates in the bromination will be the enol cis-17 derived from cis compound 16 and the enol trans- 17 derived from trans compound 19. Dreiding models suggest that the enol forms have very little flexibility, and that both enols 17 will have their 4-C bent somewhat away from the gem-dimethyl groups. The alternate arrangement with the 4-C bent toward the gem-dimethyl grouping leads to appreciable steric interactions between the endo methyl group and the resulting upward-pointing axial group at position 4, no matter whether the axial group is carbomethoxy or hydrogen. Neither model cis-17 nor trans-17 offers much open space for approach of the bulky brominatiing agent from the side of the gem-dimethyl group, while both show more room on the opposite less hindered side. Accordingly in both enols, deposition of the bromo group at position 3 would be favored from the side opposite the gemdimethyl groups, and therefore bromo ketone product 18 will be formec from cis precursor 16, and product 20 from trans precursor 19. Since only in conformation 18 are the bromo and ester groups disposed equatorially, both the starting material 16 and its bromo product 18 will have the ester group cis to the threemembered ring. The other cyclization product 19 (the isomer obtained in smaller amounts) accordingly has its ester group trans to the three-membered ring.

Experimental Section

General.-Melting points and boiling points are uncorrected. Thin layer chromatograms were obtained with commercially available supported layers of silica gel impregnated with a fluorescent material. Nuclear magnetic resonance spectra were recorded on a $60-\mathrm{MHz}$ spectrometer. The analyses for elements were performed by Chemalytics, Inc., Tempe, Ariz., Galbraith Laboratories, Inc., Knoxville, Tenn., Scandinavian Microanalytical Laboratories, Herlev, Denmark, and Werby Laboratories, Inc., Boston, Mass.

Preparation and Alkali Fusion of 5-Sulfoisophthalic Acid. ${ }^{10}-\mathrm{A}$ mixture of isophthalic acid $(85 \mathrm{~g}, 0.51 \mathrm{~mol})$ and $20-23 \%$ fuming

[^89]sulfuric acid (150 ml) was stirred and heated at $200-240^{\circ}$ for 5 hr , or until quenching a few drops of the reaction mixture in cold water no longer gave a precipitate. The cooled mixture was poured over crushed ice, and the resulting solution was stirred until no more solid dissolved and filtered. Cooling the filtrate to -10° produced a slurry, which was filtered. The crystals of 5sulfoisophthalic acid were dissolved in water, and the solution ($c a .300 \mathrm{ml}$) was treated with concentrated sulfuric acid (125 ml) and cooled again to -10°. The resulting crystals of 5 -sulfoisophthalic acid were collected and sucked as dry as possible before dissolving them in absolute ethanol (550 ml). A solution of $112 \mathrm{~g}(2 \mathrm{~mol})$ of potassium hydroxide in 500 ml of absolute alcohol was slowly introduced to precipitate the tripotassium salt, which was collected and dried in a vacuum oven overnight (251 g).
The tripotassium salt was added gradually to a melt of potassium hydroxide pellets $(600 \mathrm{~g})$ at 280°. Gas evolution was noted. The temperature was then held at 325° for 5 hr . The solid cooled melt was mixed with 1.4 l. of water, the alkaline mixture was filtered, and to the filtrate was added 840 ml of concentrated hydrochloric acid to pH 2 . Filtration of the mixture at room temperature afforded crude 5-hydroxyisophthalic acid as a white solid. Several crystallizations from water produced 59 g of 5 hydroxyisophthalic acid, $\mathrm{mp} 30 \overline{5}-306.5^{\circ}$ (lit. ${ }^{10} \mathrm{mp} \mathrm{284-285}{ }^{\circ}$ for the dihydrate). The sample for analysis showed $\mathrm{mp} 296-299^{\circ}$.
Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{5} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, $50.01 ; \mathrm{H}, 3.67$. Found: C, 49.90; H, 3.46 .
When a commercial source of 5 -sulfoisophalic acid monosodium salt was located, the commercial material was used in the alkali fusion instead of the tripotassium salt, with essentially the same results.
Dimethyl 5-Hydroxyisophthalate (3).-A solution of the above hemihydrate of 5 -hydroxyisophthalic acid ($40 \mathrm{~g}, 0.21 \mathrm{~mol}$) in 500 ml of anhydrous methanol containing 5 ml of concentrated sulfuric acid was refluxed for 2 days. After filtration, the clear solution was stripped of solvent. The residue was taken up in ethyl acetate (400 ml) and the solution was washed free of acids with aqueous sodium bicarbonate. The dried $\left(\mathrm{MgSO}_{4}\right)$ ethyl acetate solution was stripped of solvent, and then kept warm in an open flat dish until the resulting white, fluffy crystals of dimethyl 5-hydroxyisophthalate (3), $\mathrm{mp} 162-163.5^{\circ}$ (lit..$^{10} \mathrm{mp} 159$ 160°), reached constant weight ($37 \mathrm{~g}, 85 \%$): ir (mineral oil) $3360(\mathrm{OH}), 1710$ and $1730\left(\mathrm{COOCH}_{3}\right), 1625$, and $1610 \mathrm{~cm}^{-1}$; ir $\left(\mathrm{CHCl}_{3}\right) 1710(\mathrm{sh})$ and $1720 \mathrm{~cm}^{-1}$ (peak, $\left.\mathrm{COOCH}_{3}\right)$; nmr ($\mathrm{CD}_{3^{-}}$ $\left.\mathrm{COCD}_{3}\right) \delta 8.12(\mathrm{q}, 1, J=2 \mathrm{~Hz}, \mathrm{H}-2), 7.71(\mathrm{~d}, 2, J=2 \mathrm{~Hz}, \mathrm{H}-4$ and H-6), $3.94\left(\mathrm{~s}, 6,2 \mathrm{COOCH}_{3}\right.$), and $2.09-3.70 \mathrm{ppm}$ (solvent impurity plus OH).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$: $\mathrm{C}, 57.14 ; \mathrm{H}, 4.80$. Found: C , 57.14; H, 4.83.

Dimethyl 5-Hydroxy-1,3-cyclohexanedicarboxylate (4) by Hydrogenation of Dimethyl 5-Hydroxyisophthalate (3).-Suspensions of 5% rhodium-on-alumina catalyst (Englehardt Industries, Inc.) in methanol containing the isophthalate ester plus a small amount of acetic acid were shaken under hydrogen (55 psi) until either the correct amount of hydrogen had been absorbed or hydrogen uptake had stopped. Batches of ester ranging from 5 to 23 g were successfully converted, in each case with the weight of catalyst equal to $1 / 5$ the weight of ester, and with the
volume of 1% acetic acid in methanol corresponding to $10-20$ times the weight of ester. To avoid fire, it was necessary to have the methanol cooled to 0° before allowing it to come in contact with the catalyst. Hydrogenation required about 12 hr for the larger amounts.

Catalyst and solven; were removed from the hydrogenation mixtures. The combined residues from several preparations were dissolved in chlo-oform and were washed first with 10% aqueous potassium hycroxide and then with saturated salt solution. Solvent was dis illed from the dried chloroform solution, and the remaining oily product was pumped at 0.1 mm for several hours. The combined yield $(70.1 \mathrm{~g})$ corresponded to a quantitative conversion. This material retained no sign of the 1625 - or $1610-\mathrm{em}^{-1}$ absorptions attributable to the aromatic ring.

The hydrogenation product was divided into equal parts and each half was chrometographed through about ten times its weight of silica gel. The developing solvent was chloroform, followed by chloroform-ether mixtures with increasing proportions of ether, and finally ether. Fractions were monitored and were combined on the basis of thin layer chromatographic results (ether solvent). In this way was obtained a total of 13.9 g (22%) of dimethyl 1,3-cyclohexanedicarboxylate, $R_{f} \quad 0.89$, and $48.6 \mathrm{~g}(70 \%)$ of dimethyl 5 -hydroxy-1,3-cyclohexanedicarboxylate (4), $R_{\mathrm{f}} 0.43$.
The structure of the lesser product, the hydrogenolysis product, bp $64-66^{\circ}(0.05 \mathrm{~mm})$, was assigned on the basis of its infrared absorption spectrum, ir $\left(\mathrm{CHCl}_{3}\right) 1740 \mathrm{~cm}^{-1}\left(\mathrm{COOCH}_{3}\right)$, no absorption in the OH region.

The desired all-cis hydroxy diester 4 showed bp 116-128 ${ }^{\circ}$ $(0.05) \mathrm{mm})$; ir $\left(\mathrm{CHCl}_{3}\right) 3500-3450(\mathrm{OH})$ and $1735 \mathrm{~cm}^{-1}$ (CO$\left.\mathrm{OCH}_{3}\right)$; nmr $\left(\mathrm{CCl}_{4}\right)$ ò $1.0-2.6$ ($\mathrm{m}, 8$, ring protons at positions $1,2,3,4,6$) and $3.54-3.65 \mathrm{ppm}(\mathrm{m}, 8$, remainirg protons dominated by $\mathrm{CH}_{3} \mathrm{O}$ singlet at 3.65 ppm).
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5}$: C, $55.55 ; \mathrm{H}, 7.46$. Found: C , 55.89 ; H, 7.48

Dichromate oxidation of dimethyl 5-hydroxy-1,3-cyclohexanedicarboxylate (4) affo-ded the corresponding keto diester (57%; $\mathrm{mp} 110-113^{\circ}$ before recrystallization from ethyl acetate): mp $118.5-122^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1730 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.0-2.61$ ($\mathrm{m}, 8$, ring, protons), $3.73 \mathrm{ppm}\left(\mathrm{s}, 6,2 \mathrm{COOCH}_{3}\right.$).

Anal. Calcd for $\mathrm{C}_{0} \mathrm{H}_{14} \mathrm{O}_{5}$: C, 56.07; H,6.59. Found: C, 56.08; H, 6.66.

Saponification of the hydroxy diester was accomplished by refluxing a mixture of $14.1 \mathrm{~g}(0.065 \mathrm{~mol})$ of diester 4 and 5.5 g of sodium hydroxide with 40 ml of water for 1 day. After appropriate treatment of the reaction mixture, crystallization of the crude product from tetrahydrofuran-benzene gave $10.2 \mathrm{~g}(83 \%)$ of 5-hydroxy-1,3-cyclohexanedicarboxylic acid, mp 198-199 , ir (KBr pellet) $3600-24\left(10\left(\mathrm{OH}\right.\right.$ and COOH) and $1715 \mathrm{~cm}^{-1}$ (shoulder at $1688 \mathrm{~cm}^{-1}$).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{5}$: $\mathrm{C}, 51.06 ; \mathrm{H}, 6.42$. Found: C , $50.84 ; \mathrm{H}, 6.36$.

Acetyl Chloride Treatment of 5-Hydroxy-1,3-cyclohexanedicarboxylic Acid.-When a mixture of acetyl chloride (60 ml) and hydroxy diacid ($12.7 \mathrm{~g}, 0.067 \mathrm{~mol}$) was refluxed for 7 hr , the insoluble crystalline starting material gradually dissolved. Volatile material was removed, and the residue wes pumped at 0.1 mm for several hours. The crystalline residue was fractionally recrystallized from acetone to give a total of $9.3 \mathrm{~g}(65 \%)$ of pure, less soluble 5-acetoxy-1,3-cyclohexanedicarboxylic acid anhydride (5), mp 190-193 ${ }^{\circ}$, showing a single spot at $R_{\mathrm{f}} 0.72$ (ethyl acetate), and approximately $1.0 \mathrm{~g}(10 \%)$ of less pure mixed anhydride 6 between acetic acid and 5-hydroxy-1,3-cyclohexanedicarboxylic lactone. The acetoxy anhydride 6 in chloroform showed infrared absorption peaks at 1810 and 1765 (cyclic anhydride) and $1740 \mathrm{~cm}^{-1}$ (acetate $\mathrm{C}=0$); nmr (deuterated acetone) $\delta 5.03$ ($\mathrm{m}, 1, \mathrm{H} \alpha$ to acetate), 3.03 ($\mathrm{m}, 2, \mathrm{H}$'s α to anhydride carbonyls), 2.70 (broad $\mathrm{s}, 1$, equatorial H at position 2), 2.12 (m, ring H's, $1.85 \mathrm{ppm}\left(\mathrm{s}, \mathrm{OOCCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{5}$: C, $56.60 ; \mathrm{H}, 5.70$. Found: C, 56.68 ; H, 5.88.

Lactone 7 of 5-Hydroxycyclohexane-1,3-dicarboxylic Acid from the Mixed Acetic Anhydride 6.-The unparified crystalline mixed anhydride as a solution in chloroform showed maxima at 1810 and 1765 (anhydride), 1780 (γ-lactone), and a shoulder at $1745 \mathrm{~cm}^{-1}$ (some of the acetoxy anhydride). Since this material lost acetic acid readily, it was not purified but instead was hydrolyzed directly to the lactone 7.
Refluxing a mixture of 3.3 g of the mixed anhydride-lactone with 10 ml of water for 45 min gradually dissolved the solid.

Allowing the cooled solution to stand for 2.5 hr deposited 2.3 g of the desired lactone 7 of 5-hydroxy-1,3-cyclohexanedicarboxylic acid as crystals, $\mathrm{mp} 190-192^{\circ}$, ir (KBr pellet) $3500-2500(\mathrm{COOH})$ and 1770 and $1685 \mathrm{~cm}^{-1}$ (γ-lactone and carboxyl carbonyls).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$: $\mathrm{C}, 56.47$; $\mathrm{H}, 5.92$. Found: C , 56.59; H, 6.04.

5-Hydroxy-3-(α-hydroxyisopropyl)cyclohexanecarboxylic Acid (8) from Methylmagnesium Chloride and 5-Acetoxy-: ,3-cyclohexanedicarboxylic Anhydride (5).-A solution of the acetoxy anhydride ($5.0 \mathrm{~g}, 0.024 \mathrm{~mol}$) in 300 ml of absolute tetrahydrofuran was added at 0° over 1.5 hr to methylmagnesium. chloride $(0.17 \mathrm{~mol})$ in solution (58 ml) with the same solvent. The reaction mixture was stirred during addition and for 1 hr thereafter. Then saturated ammonium chloride solution (ca. 35 ml) was added dropwise to the mixture still at 0° until no further precipitate formed. The supernatant liquid was decanted from the heavy semisolid lower phase, which was then rinsed by decantation with two $20-\mathrm{ml}$ portions of ether. Adding nore ammonium chloride solution (ca. 150 ml) changed the clumped mass to discrete particles. This was followed with concentrated hydrochloric acid (to pH 2) and finally with enough water to dissolve all the solid. The acidic aqueous phase (ca. 400 ml) was ether extracted continuously for 1 week, with the solvent replaced every 2 days. Removal of ether from the combined extracts left crude product, which on recrystallization from concentrated water solution afforded pure, chunky, white crystals (85%) of 5 -hydroxy- 3 -(α-hydroxyisopropyl)cyclohexanecar-
 with sharper maxima at 3530 and $3375,1705 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}$: C, $59.39 ; \mathrm{H}, 8.97$. Fcund: C, 59.55 ; H, 9.03 .

5-Hydroxy-3-(α-hydroxyisopropyl)cyclohexanecarboxylic Acid (8) from Methylmagnesium Chloride and the Lactone 7 of 5-Hydroxycyclohexane-1,3-dicarboxylic Acid.-A solution of lactone $7(0.50 \mathrm{~g}, 0.003 \mathrm{~mol})$ in 65 ml of absolute tetrahydrofuran was added dropwise to a stirred tetrahydrofuran solution of methylmagnesium chloride (5.4 ml of $2.8 \mathrm{M}, 0.016 \mathrm{~mol}$) at 0° over a period of 15 min . After the mixture had been stirred further for 21 hr , product was isolated essentially as described before. Recrystallizations from water gave 5 -hydroxy-3-(α hydroxyisopropyl)cyclohexanecarboxylic acid ($0.36 \mathrm{~g}, 60 \%$) , mp $166-167.5^{\circ}$. When this product was mixed with the same material prepared from the anhydride, the melting point was $167.5-$ 168.5°. The infrared absorption curves were indistirguishable.

5-Hydroxy-3-(α-chloroisopropyl)cyclohexanecarboxyiic Acid (9).-After 3.8 g of 5 -hydroxy-3-(α-hydroxyisopropy-)cyclohexanecarboxylic acid (8) was dissolved in 60 ml of concentrated hydrochloric acid at 0° by stirring, the solution was stored cold for 16 hr . Filtration afforded the desired chloro compound 9, which was dried overnight under reduced pressure to give 3.7 g (98%) of crystalline product, mp 16.5.5-166.5 ${ }^{\circ}$. Although this was suitable for use in the next step, a sample (mp 168.5-169 ${ }^{\circ}$) for analysis was prepared by recrystallizations from acetonehexane.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ClO}_{3}$: C, 54.42; $\mathrm{H}, 7.76 ; \mathrm{Cl}, 16.06$. Found: C, 54.23; H, 7.87; Cl, 16.21.
This material 9 , pelleted with potassium bromide, showed infrared absorptions at 3500 and 2500 (broad), 3420 , and 1705 cm^{-1}.
The ketone corresponding to hydroxy acid 9 was prepared by introducing 14 drops of chromium(VI) solution to a solution $\left(0^{\circ}\right)$ of chlorohydroxy acid $9(107 \mathrm{mg})$ in 10 ml of acetone. The oxidant was made up by adding 2.3 ml of concentrated sulfuric acid to 2.88 g of chromium(VI) trioxide dissolved in 4 ml of water and then diluting with water to 10 ml . After 0.5 hr at 0°, the reaction mixture was filtered, and volatiles were removed from the filtrate. Water (4 ml) was added to the residue, which was then extracted thoroughly with chloroform. The dried extract was treated with a little isopropyl alcohol, the resulting blue mixture was filtered, and the filtrate was stripped of solvent Crystallizations from benzene-hexane gave white rystals (76 $\mathrm{mg}, 71 \%$) of 5 -oxo-3-(α-chloroisopropyl)cyclohexanecarboxylic acid (acid corresponding to 10): ir (KBr) $3700-2500,1725,1685$ cm^{-1}; ir $\left(\mathrm{CHCl}_{3}\right) 1750$ and $1710 \mathrm{~cm}^{-1}$. Naterial melting at $129.5-130^{\circ}$ was analyzed.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClO}_{3}$: $\mathrm{C}, 54.92 ; \mathrm{H}, 6.91, \mathrm{Cl}, 16.21$. Found: C, $54.89 ; \mathrm{H}, 6.65 ; \mathrm{Cl}, 16.17$.

Methyl 5-Oxo-3-(α-chloroisopropyl)cyclohexanecarboxylate (10) by Oxidation of the 5-Hydroxyl Ester.-The starting ester,
methyl 5-hydroxy-3-(α-chloroisopropyl)cyclohexanecarboxylate, prepared from acid 9 with diazomethane in ether-methanol, showed $\left(\mathrm{CHCl}_{3}\right)$ absorptions at 3600 (sharp) and $1730 \mathrm{~cm}^{-1}$; nmr signals $\left(\mathrm{CDCl}_{3}\right)$ were seen at $\delta 3.66\left(\mathrm{~s}, \mathrm{COOCH}_{3}\right)$, ca. 3.55 $(\mathrm{m}, \mathrm{HCOH}), 3.51(\mathrm{~s}, \mathrm{OH}), 1.56\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.5-1.0 \mathrm{ppm}(\mathrm{m}$, ring H's).

With the temperature at $5-8^{\circ}$, acid chromium trioxide solution (12 ml , see above) was added over 45 min to a stirred solution of this ester ($9.4 \mathrm{~g}, 0.037 \mathrm{~mol}$) in 200 ml of acetone. After another 15 min at 0°, the mixture was filtered, the crushed solids were rinsed with acetone, and the combined filtrates were evaporated. Water (20 ml) was added to the residue, which was thoroughly extracted with chloroform. The extracts were washed twice with small portions of 5% bicarbonate and twice with saturated aqueous sodium chloride, and then treated with solid sodium sulfate, some sodium bicarbonate, and a few milliliters of isopropyl alcohol. Removal of solvent from the dry solution left a crystalline residue, which when rinsed with hexane and air dried weighed 8.2 g and showed $\mathrm{mp} 67.5-68^{\circ}$ (softening at 65°). Chromatography through a $2 \times 50 \mathrm{~cm}$ column of silica gel with chloroform as solvent was monitored by thin layer chromatography. Removal of solvent, etc., furnished $7.3 \mathrm{~g}(84 \%)$ of one-spot methyl 5-oxo-3-(α-chloroisopropyl)cyclohexanecarboxylate (10): $\mathrm{mp} 69-71.5^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1735$ and $1715 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.69\left(\mathrm{~s}, 3, \mathrm{COOCH}_{3}\right), 2.56(\mathrm{~m}, \mathrm{H}$'s next to keto group), 2.7-1.0 (m, H's at positions $1,2,3$), $1.58 \mathrm{ppm}[\mathrm{d}, J=$ $3 \mathrm{~Hz}, \mathrm{ClC}\left(\mathrm{CH}_{3}\right)_{2}$]. Integration of the signals from 2.56 to 1.0 ppm showed 14 protons as demanded.

Methyl 2-Oxo-7,7-dimethylnorcarane-4-carboxylate (11) by Cy clization of Methyl 5-Oxo-3-(α-chloroisopropyl)cyclohexanecarboxylate (10).-Approximately $1.2 \mathrm{~g} \quad 10.03 \mathrm{~g}$-atom) of clean pieces of potassium was dissolved in 40 ml of boiling tert-butyl alcohol that had been distilled from calcium hydride. A solution of methyl 5-oxo-3-(α-chloroisopropyl)cyclohexanecarboxylate ($10,3.7 \mathrm{~g}, 0.016 \mathrm{~mol}$) in 30 ml of benzene was added dropwise over a period of 25 min to the tert-butoxide solution kept cool with a bath of cold water. The milky amber reaction mixture was stirred at room temperature for 45 min . Some ice was added and the mixture was evaporated to a volume of $c a .5 \mathrm{ml}$, diluted with an equal volume of water, and extracted twice with ether. The aqueous layer at 0° was brought to pH 2 with 6 N hydrochloric acid, and the acid mixture was extracted with ether to remove the carboxylic acid product. The extract, after rinsing with saturated aqueous salt solution and drying, was stripped of volatiles to yield ca. 3.0 g of yellow viscous 2-oxo-7,7-dimethyl-norcarane-4-carboxylic acid (acid corresponding to 11): ir $\left(\mathrm{CHCl}_{3}\right) 1710(\mathrm{COOH}), 1680$ (cyclopropyl ketone), and $900 \mathrm{~cm}^{-1}$ (cyclopropane ring).

Esterification with diazomethane afforded the methyl ester in near-quantitative yield. This was chromatographed over 100 g of silica gel, with ether-hexane ($15: 85$) as solvent, and with fractions combined with the help of thin layer chromatographic monitoring.

Methyl cis-2-oxo-7,7-dimethylnorcarane-4-carboxylate (11), $R_{\mathrm{f}} 0.72$ (hexane-ether-methanol, 20:10:1), was isolated in 42% yield $(1.3 \mathrm{~g})$: ir $\left(\mathrm{CHCl}_{3}\right) 1730,1680$, and $900 \mathrm{~cm}^{-1}$; uv $(95 \%$ ethanol at $\left.1 \times 10^{-4} M\right) \lambda_{\max } 208 \mathrm{~nm}(\log \in 3.72) ; \mathrm{nmr}\left(\mathrm{CCL}_{4}\right) \delta$ $3.62\left(\mathrm{~s}, 3, \mathrm{COOCH}_{3}\right), 1.16(\mathrm{~s}$, gem-dimethyl), and $1.0-3.0 \mathrm{ppm}$ (m , cyclohexane protons). The signals from 1.16 to 3.0 ppm integrated to 13 protons. A sample of 11 for analysis was prepared by a bulb-to-bulb distillation.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3}$: C, 67.32; $\mathrm{H}, 8.22$. Found: C , 67.25 ; H, 8.19.

Methyl trans-2-oxo-7,7-dimethylnorcarane-4-carboxylate (11), $R_{1} 0.53$, was obtained in $0.63-\mathrm{g}$ yield. Together with a second fraction $(0.24 \mathrm{~g})$ showing the presence of a trace of extraneous material at $R_{f} 0.62$, the yield of the trans isomer was 28% : ir $\left(\mathrm{CHCl}_{3}\right) 1725$ and $1675 \mathrm{~cm}^{-1}$, with the fingerprint region substantially different from that of the cis isomer; uv (95% ethanol, $8 \times 10^{-6} \mathrm{M}$) $\lambda_{\max } 208 \mathrm{~nm}(\log \epsilon 3.67) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right.$ with bulb-tobulb distilled material) $\delta 3.64$ ($\mathrm{s}, 3, \mathrm{COOCH}_{3}$), $1.0-3.0$ (m , cyclohexane ring protons), 1.16 (s, exo CH_{3}), 1.08 ppm (s, endo CH_{3}). The signals from 3.0 to 1.08 ppm integrated to 13 protons as required.

Interconversion of Cis and Trans Isomers of Methyl 2-Oxo-7,7-dimethylnorcarane-4-carboxylate (11). A. Trans to Cis.-The trans isomer $19(0.63 \mathrm{~g}, 0.0033 \mathrm{~mol})$ in 10 ml of tert-butyl alcohol was added slowly to a solution of potassium ($0.4 \mathrm{~g}, 0.01 \mathrm{~g}$-atom $)$ in 15 ml of tert-butyl alcohol. The dark brown solution was
stirred at room temperature under nitrogen for 40 min . After part of the solvent was removed, the concentrated solution was added dropwise to 7 ml of cold 6 N hydrochloric acid. Adding an excess of solid sodium bicarbonate neutralized the mixture, which was then distilled until all the tert-butyl alcohol had been removed. Addition of a few drops of aqueous sodium hydroxide raised the pH from 8 to 9 . The basic solution was rinsed twice with ether and acidified with cooling to pH 2 , and the acid products were extracted thoroughly with ether. The combined extracts were dried, and the viscous yellow residue (0.55 g) dissolved in methanol was esterified with ethereal diazomethane. After several hours, the filtered solution was evaporated to give 0.51 g of methyl esters. Column chromatography though silica gel in a $1.2 \times 50 \mathrm{~cm}$ column using 700 ml of ether-hexane ($15: 85$) followed by 950 ml of ether-hexane ($20: 80$) gave several fractions, one of which consisted of homogeneous methyl cis-2-oxo-7,7-dimethylnorcarane-4-carboxylate ($16,0.10 \mathrm{~g}, 19 \%$) with R_{f} 0.78 , and another of the trans isomer $19(0.15 \mathrm{~g}, 27 \%)$ with R_{f} 0.48 . The identity of the cis and trans isomers was established by R_{1} comparisons and by infrared absorption curves, which were identical, respectively, with those of the previously isolated compounds.
B. Cis to Trans.-The cis isomer $16(26 \mathrm{mg})$ in 2 ml of dry tertbutyl alcohol was stirred with 5 ml of a 0.77 solution of potassium tert-butoxide for 1 hr . Processing similar to that described above gave 25 mg of reesterified crude methyl esters. Thin layer chromatography (two developments) showed four spots; the R_{f} values of two of the darkest corresponded to those of authentic cis and trans esters spotted on the same plate.
Methyl 2-Hydroxy-7,7-dimethylnorcarane-4-carboxylate by Reduction of the Corresponding Oxo Compound 11.-A cold solution of sodium borohydride ($46 \mathrm{mg}, 1.2 \mathrm{mmol}$) in 4 ml of methanol was added to 98 mg (0.5 mmol) of methyl cis-oxo-7,7-di-methylnorcarane-4-carboxylate (11) dissolved in cold methanol $(5 \mathrm{ml})$. The mixture was allowed to come to room temperature and was stirred further for 3 hr . Solvent was removed, 4 ml of water was added to the residue, and the mixture, held at 0°, was brought to $\mathrm{pH} 2-3$ with hydrochloric acid. The aqueous phase was extracted with ether, which after rinsing with 5% aqueous bicarbonate and then water was dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of all solvent left 78 mg of product which showed no ketone absorption at $1675 \mathrm{~cm}^{-1}$. Column chromatography through 1.2 g of silica gel using first benzene and then 1:1 benzene-chloroform as developing solvents gave fractions containing a total of 58 mg of one-spot, solvent-free hydroxy ester (60%): ir $\left(\mathrm{CHCl}_{3}\right) 3600$ and $3450(\mathrm{OH})$ and $1730 \mathrm{~cm}^{-1}\left(\mathrm{COOCH}_{3}\right): \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 4.32$ $\left(\mathrm{m}, W_{1 / 2}=25 \mathrm{~Hz}\right), 3.66\left(\mathrm{~s}, \mathrm{COOCH}_{3}\right), 1.66(\mathrm{~s}, \mathrm{OH}), 0.9-2.5$ (m , cyclohexane ring protons at $1,3,4,5,6$), 1.2 (s , exo CH_{3}), $1.09 \mathrm{ppm}\left(\mathrm{s}\right.$, endo CH_{3}). The first two signals corresponded to 4 protons, all the others to 14 . A sample for analysis was prepared by bulb-to-bulb distillation.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 66.64; $\mathrm{H}, 9.15$. Found: C, 66.59; H, 9.23.

Methyl 3-Bromo-2-oxo-7,7-dimethylnorcarane-4-carboxylate (12).-A 0° solution of methyl cis-2-oxo-7,7-dimethylnorcarane4 -carboxylate ($11,0.45 \mathrm{~g}, 2.3 \mathrm{mmol}$) in 20 ml of freshly distilled tetrahydrofuran was treated with portions of phenyltrimethylammonium perbromide ${ }^{14}$ (total weight $0.90 \mathrm{~g}, 2.4 \mathrm{mmol}$; mp $114-$ 115.5°). After 50 min of stirring, another 20 mg of perbromide was added and the mixture was stirred further for 5 min .

The mixture, containing a white precipitate, was poured into an ice-cold water solution of 5% sodium bicarbonate (15 ml) plus 0.1 N sodium thiosulfate (16 ml). The separated bromination product 12 was taken up in ether, and the ether solution was washed, dried, and stripped of solvent. The viscous residue deposited crystals after standing at 0°, and, after trituration with a small amount of cold methanol, furnished $0.19 \mathrm{~g}(30 \%)$ of crystalline methyl 3-bromo-2-oxo-7,7-dimethylnorcarane-4carboxylate (12), mp 112.5-113.5 . Other preparations gave the same product with $\mathrm{mp} 115-115.5^{\circ}$. Assay with the help of infrared absorption showed that the mother liquor contained appreciable additional amounts of the desired product; the estimated total yield was $c a .50 \%$. The crystalline material showed ir $\left(\mathrm{CHCl}_{3}\right) 1730\left(\mathrm{COOCH}_{3}\right)$ and $1695 \mathrm{~cm}^{-1}$ (α-bromo ketone); uv (95% alcohol, $8 \times 10^{-5} M$) $\lambda_{\text {max }} 212 \mathrm{~nm}(\log \epsilon 3.575)$; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 4.53\left(\mathrm{~d}, J_{\text {eq }}=12.5 \mathrm{~Hz}, 1, \mathrm{H}_{\mathrm{g}}\right), 3.75\left(\mathrm{~s}, 3, \mathrm{H}_{\mathrm{f}}\right), 3.21$ (sextet, $\left.J_{\text {eg }}=J_{\text {eb }}=12.5 \mathrm{~Hz} ; J_{\text {ec }}=5 \mathrm{~Hz}, 1, \mathrm{H}_{\mathrm{e}}\right), 1.7\left(\mathrm{~m}, \mathrm{H}_{\mathrm{d}}\right)$, $1.5-2.5\left(\mathrm{~m}, \mathrm{H}_{\mathrm{b}}\right.$ and $\left.\mathrm{H}_{\mathrm{c}}\right), 1.21 \mathrm{ppm}\left(\mathrm{s}, \mathrm{H}_{\mathrm{a}}\right)$. The signals on the high-field side of $\delta 2.5 \mathrm{ppm}$ integrated to 10 protons, as required.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{3}$: C, $48.01 ; \mathrm{H}, 5.49 ; \mathrm{Br}, 29.02$. Found: C, 47.97; $\mathrm{H}, 5.54 ; \mathrm{Br}, 29.12$.

Methyl 2-Hydroxy-3-bromo-7,7-dimethylnorcarane-4-carboxylate (13) from Oxo Compound 12.-Solid sodium borohydride ($24 \mathrm{mg}, 0.63 \mathrm{mmol}$) was added to an ice-cold solution of methyl 3-bromo-2-oxo-7,7-dimethylnorcarane-4-carboxylate ($62 \mathrm{mg}, 0.24$ mmol) in methanol (7 ml). After 35 min , methanol was stripped, water was added to the residue, and the mixture was extracted thoroughly with ether. The oil obtained after removing ether from the dried extract weighed $63 \mathrm{mg}(100 \%)$ and was taken as product 13: ir $\left(\mathrm{CHCl}_{3}\right) 3670$ and $3450(\mathrm{OH})$ and $1730 \mathrm{~cm}^{-1}$ $\left(\mathrm{COOCH}_{3}\right)$, with the ketone peak at $1695 \mathrm{~cm}^{-1}$ missing; nmr $\left(\mathrm{CDCl}_{3}\right) \delta 3.8-4.6\left(\mathrm{~m}, 2, \mathrm{H}_{\mathrm{t}}\right.$ and $\left.\mathrm{H}_{\mathrm{g}}\right), 3.68\left(\mathrm{~s}, 3, \mathrm{H}_{\mathrm{e}}\right), 2.5\left(\mathrm{~m}, \mathrm{H}_{\mathrm{d}}\right)$, 1.0-3.0 ($\mathrm{m}, \mathrm{H}_{\mathrm{c}}$), $1.18\left(\mathrm{~s}, \mathrm{H}_{\mathrm{b}}\right), 1.06 \mathrm{ppm}\left(\mathrm{s}, \mathrm{H}_{\mathrm{a}}\right)$. The signals other than those for $\mathrm{H}_{\mathrm{e}}, \mathrm{H}_{\mathrm{f}}$, and H_{g} integrated to 12 protons.

Bromohydrin 13 decomposes on standing; the infrared and nuclear magnetic resonance absorption curves of the decomposition product are consistent with those expected for methyl 3isopropylbenzoate.
$d l$-Chaminic Acid (1).-A solution of 63 mg of unpurified bromohydrin 13 in 10 ml of methanol was refluxed for 22 hr with 0.64 g of "activated" granular zinc. ${ }^{20}$ After standing overnight, solvent was removed and the residue was extracted with chloroform. The liquid (.88 mg) left after stripping solvent from the filtered extract was taken as the Δ^{2}-unsaturated product 14: ir $\left(\mathrm{CHCl}_{3}\right) 3500$ (broad, weak band corresponding to a low concentration of OH$), 1725\left(\mathrm{COOCH}_{3}\right)$, and 1640 and $1600 \mathrm{~cm}^{-1}$ (weak). The nuclear magnetic resonance absorption curve closely resembled that published ${ }^{3}$ for natural chamic acid when the acid-ester differences are taken into account. Preparative layer chromatography over silica gel using 200:15:1.5 hexane-ether-methanol afforded material with ir $\left(\mathrm{CHCl}_{3}\right)$ peaks at 1725 $\left(\mathrm{COOCH}_{3}\right)$ and 1640 and $1655 \mathrm{~cm}^{-1}$ (isolated and conjugated double bonds); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 5.84\left(\mathrm{~m}, c a .2, \mathrm{H}_{\mathrm{f}}\right), 3.68$ (s, 3,

H_{e}), $3.15\left(\mathrm{~m}, \mathrm{H}_{\mathrm{d}}\right), 2.5-0.8\left(\mathrm{~m}, \mathrm{H}_{\mathrm{c}}\right), 1.08\left(\mathrm{~s}, \mathrm{H}_{\mathrm{b}}\right), 0.92 \mathrm{ppm}(\mathrm{s}$, H_{a}). The integration ratio for the H_{e} and H_{f} protons to all the rest was ca. 5:11 as required by methyl 7,7-dimethylnorcar-2-ene-4-carboxylate (14). A very small peak at $\delta 0.73 \mathrm{ppm}$ confirmed the infrared evidence in suggesting the presence of a small proportion (less than 5%) of methyl chaminate in this material.

Instead of isolating the Δ^{2} isomer 14 , the mixture was converted to the conjugated chaminic acid (1) as follows. A mixture of crude Δ^{2} isomer (49 mg) with 2.5% aqueous sodium hydroxide was
(20) L. F. Fieser and W. S. Johnson, J. Amer. Chem. Soc., 62, 575 (1940).
refluxed for 2 hr . The cooled homogeneous system was rinsed with ether (discarded), and after acidification (pH 2) was extracted thoroughly with ether. Removal of all solvent from the dried ether extract left a tacky residue ($26 \mathrm{mg}, 55 \%$) which showed a nuclear magnetic resonance spectrum almost identical with that obtained subsequently for pure $d l$-chaminic acid (1). Purification of this material was accomplished by thick layer chromatography (50:60:1 hexane-ether-acetic acid) followed by rinsing the crystals so obtained with a few drops of hexane. The resulting dl -chaminic acid (1) showed $\mathrm{mp} 101-103^{\circ}$.

Preparative Directions for $d l$-Chaminic Acid (1) from Methyl 2-Oxo-7,7-dimethylnorcarane-4-carboxylate (11).-Bromination of the oxo compound $11(0.69 \mathrm{~g})$ essentially as described before gave 0.25 g of crystalline bromo ketone $12, \mathrm{mp} 112 . \mathrm{j}^{-113.5^{\circ}}$, as well as an oily impure fraction (see below). The crystalline bromo ketone was reduced with excess sodium borohydride to give 0.26 g of semicrystalline bromohydrin 13 . This was treated with zinc in methanol for 42 hr ; the filtered (Celite) solution was then refluxed for 2.5 hr in the presence of 0.75 g of sodium hydroxide with 2 ml of water. Methanol was removed under reduced pressure, water was added, and the alkaline solution was processed as before to give 0.13 g of semicrystalline dl -chaminic acid (1). Two crystallizations from benzene afforded crystalline product $(0.06 \mathrm{~g}), \mathrm{mp} 102-104^{\circ}$, in 40% overall yield from the crystalline bromo ketone.
When the above oily impure bromo ketone was put through the same steps crude $d l$-chaminic acid (1) was obtained, which was then chromatographed through a small column of silica gel ($1: 5$ ether-hexane), with the less pure fractions being rechromatographed. $d l$-Chaminic acid (1) was obtained, mp 97.5-100..5 ${ }^{\circ}$ $(0.11 \mathrm{~g})$. A finel recrystallization of the combined crystalline products from methanol gave $0.14 \mathrm{~g}(25 \%$ from methyl cis- 2 -oxo-7,7-dimethylnorcarane-4-carboxylate, 11), mp 104.5-105.5 . The value reported for the optically active forms is $105-106^{\circ} .^{2,3}$ The synthetic material showed uv ($1.1 \times 10^{-4} \mathrm{M}$ in 95% alcohol $)$ $\lambda_{\max } 218 \mathrm{~nm}(\log \epsilon 3.871)$ [lit. ${ }^{2} \lambda_{\max } 218 \mathrm{~nm}(\log \epsilon 3.860)$); ir $\left(\mathrm{CHCl}_{3}\right) 3500-2400$ (broad), 1680, 1647, $1655 \mathrm{~cm}^{-1}$ (sh) (the spectrum was the same as that described for natural chaminic acid ${ }^{2}$); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 10.7$ (broad s, COOH), 7.05 (broad s, 1 , vinyl H), $2.33\left(\mathrm{~m}, 4,2\right.$ ring CH_{2} 's), $1.1-0.5$ (m , cyclopropane H 's), 1.07 (s , exo CH_{3}), 0.73 ppm (s , endo CH_{3}). The signals for the two methyl groups plus the two cyclopropane H's integrated to eight protons.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 72.27; H, 8.49. Found: C, 72.03; H, 8.76.

Formation of the quinine salt of racemic chaminic acid followed by fractional crystallization from benzene-hexane appeared to offer a practical resolution method for the levorotatory enantiomer (isochamic acid). Fractional precipitation o: the less soluble isochamic salt by adding hexane to a benzene solution of racemic material containing a deficiency of quinine left the uncombined chaminic acid in solution. Appropriate processing, including crystallizations from methanol, afforded the partially resolved materials in good recovery. With rotations determined using methanol as solvent, the partially resolved chaminic acid, $\operatorname{mp} 104.5-105^{\circ}$, showed $[\alpha]_{590} \mathrm{ca} .+2.1^{\circ}$ (lit. $^{2}+6^{\circ}$); the partially resolved isochamic acid, mp $102.5-103^{\circ}$, showed $[\alpha]_{590} c a .-2.3$ (lit. ${ }^{2}-6^{\circ}$). Thus the extent of resolution was $30-40 \%$. Resolution to optical purity was not pursued.

Registry No. - 1, 38859-06-2; 2 methyl ester, 38859-07-3; 3, 13036-02-7; 3 free acid, 618-83-7; 4, 38859-08-4; 4 corresponding keto derivative, 38859-09-5; 4 free acid, $38859-10-8 ; 5,38859-11-9 ; 6,38859-12-0$; 7, 38859-13-1; 8, 38859-14-2; 9, 38859-15-3; 9 methyl ester, 38859-17-5; 10, 38859-18-6; 10 free acid, 38859-16-4; cis-11, 38859-19-7; trans-11, 38859-20-0; 11 corresponding hydroxy derivative, $38858-06-9$; cis-12, 38859-21-1; 13, 38859-22-2; 14, 38859-23-3.

Acknowledgment. -This work was supported in part by a fellowship grant (1966-1969) under the National Defense Education Act.

A Novel Method for the Degradation of the Carbon Chain of Organic Acids and Their Derivatives

Marcel Fetizon,* Frederic J. Kakis, ${ }^{1}$ and Valentine Ignatiadou-Ragoussis
Department of Synthetic Organic Chemistry, Ecole Polytechnique, Paris, France

Received December 6, 1972

Abstract

A convenient scheme for the stepwise degradation of ethyl caprinate (1) is described, which allows the removal of either one, two, or three carbon fragments from the chain, affording high yields of the corresponding carbonyl compounds. The method may have important applications in the transformations of steroids, lipids, and other natural products.

The utility of side chain degradative schemes in the syntheses, modification, and structural elucidation of natural products is well known. ${ }^{2}$ The same type of reactions also find useful applications in the transformations of lipids. ${ }^{3}$ However, none of the available methods ${ }^{4-8}$ for degrading carboxylic acids give particularly attractive yields.
Furthermore, to our best knowledge, there is no satisfactory degradative scheme which permits the elimination of two carbon atoms at a time. The present paper describes a practical and flexible procedure for removing one, two, or three carbon atoms. The key step makes use of a rearrangement worked out before ${ }^{9}$ and found to be successful on a variety of substrates, including some steroids. The individual steps in the degradative sequence are outlined in Scheme I.

Results and Discussion

A commericial sample ${ }^{10}$ of pure (99% by glc) ethyl caprinate (1) was allowed to react with an ether solution of phenylmagnesium bromide, prepared in the usual way. After purification of the crude alcohol by column chromatography, a nearly quantitative yield (96%) of 1,1-diphenyl-1-decanol (2) was obtained. Dehydration of the alconol was achieved in refluxing acetic anhydride. After suitable work-up and purification of the crude product by column chromatography, a sufficiently pure sample of 1,1 -diphenyl-1-decene (3) was obtained. The yield based on the ester 1 was 85%. The identity of the product was confirmed by infrared and nmr spectroscopy and by elemental analysis.

The olefin 3 was without any further purification subjected to the conditions of the Kakis reaction, ${ }^{9}$ which converted it smoothly to 1,2-diphenyl-1-decanone (4).

After purification of the crude product by recrystallization from methanol followed by thin layer chromatography, a 90% yield (76.5% overall) of pure (mp $56.5-57^{\circ}$) ketone 4 was obtained. The identity of

[^90]
the ketone was established by infrared, ultraviolet, and nmr spectroscopy and by elemental analysis.

The following two steps in the degradation sequence involved the α-bromination ${ }^{11}$ of 1,2 -diphenyl-1-decanone 4 followed by the collidine dehydrobromination ${ }^{12}$ of the resulting 1,2-diphenyl-2-bromo-1-decanone (5).

Both reactions were nearly quantitative. The identity of the products was in each case confirmed by infrared and nmr spectroscopy. The ketones 6 and 6^{\prime} were further identified by elemental analysis.
(11) D. Baudry, J. P. Bégué, and M. Charpentier-Morize, Bull. Soc. Chim. Fr., 1416 (1971).
(12) J. J. Beereboom, C. Djerassi, D. Ginsburg, and L. Fieser, J. Amer. Chem. Soc., 75, 3500 (1953).

As expected, the collidine dehydrobromination of 5 produced a mixture of cis (6) and trans (6^{\prime}) α, β unsaturated ketones which were separated by thin layer chromatography on fluorescent silica plates and characterized by nmr. ${ }^{13}$ The ratio of cis to trans product was about 1:1.6.

The reduction of the isomeric ketones 6 and 6^{\prime} was accomplished by means of the specialized reagent ${ }^{14}$ $\mathrm{AlNa}\left(\mathrm{OCH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2} \mathrm{H}_{2}$, producing the allylic alcohols 7 and 7', respectively. After purification by thin layer chromatography a 75% yield of the cis (7) and a 50% yield of the trans (7^{\prime}) alcohol was obtained. Thus the combined yield of alcohols was 62.5% (48% overall, i.e., based on 1).
A small quantity ($c a .6 \%$) of the ketone 4 was also isolated, presumably stemming from 1,4 reduction of the conjugated ketones 6 and 6^{\prime}.

The three components were readily separable by thin layer chromatography.

The alcohols 7 and 7^{\prime} were subsequently dehydrated with ethanolic hydrochloric acid. ${ }^{15}$ Thus a 70% (34% overall) yield of 1,2-diphenyl-1,3-decadiene (8) was obtained whose nmr spectrum was compatible with the trans, trans structure shown. In addition a 20% yield of 1,2-diphenyl-3-ethoxy-1-decene (9) was isolated. Attempting to minimize the formation of this side product, the dehydration of the alcohols 7 and 7^{\prime} was also tried with methanol and isopropyl alcohol solvents. However, the yields were in these cases substantially lower than those obtained from the ethanolic hydrochloric acid dehydration.

Thus it can be seen that the sequence of reactions described above and summarized in Scheme I generates compounds 3, 6 and 6^{\prime}, and 8, which can in turn be degrated by ozonolysis with the corresponding loss of one, two, and three carbon fragments, respectively. These possibilities are summarized in Scheme II.

We have in fact carried out the ozonolysis of these compounds by standard procedures ${ }^{18}$ and have isolated and identified all the fragments. Thus the ozonolysis of 1,1-diphenyl-1-decene (3) resulted in the formation of nonanal (10) and benzophenone (11). Similarly compounds 6 and 6^{\prime} yield octanal (12) and

[^91]benzil (13) and compound 8 yields heptanal (14) and benzaldehyde (15). To facilitate the separation and identification of the ozonolysis products the mixtures were treated with the Wanzlick reagent, ${ }^{17}$ which selectively converts the aldehydes into crystalline derivatives. These derivatives were easily separable by chromatography, and their melting points were in agreement with those reported in the literature. ${ }^{17}$ Furthermore, mixture melting points with authentic samples showed no depression. In the case of heptanal and benzaldehyde additional confirmation was obtained by glc and by preparing the 2,4-dinitrophenylhydrazone derivatives. Again the melting points were in agreement with those reported in the literature.
We estimate that the typical ozonolysis yielcis were about 80%. Thus we have achieved a two-carbon fragment degradation with an overall yield of 60% for the six-step process.
The corresponding overall yield for the removal of three carbon atoms was about 28% for the eightstep process.
The removal of one carbon atom from the chain involves three steps and proceeds with an overall yield of about 70%.

In view of the above, we feel that the procedure we have developed is superior to the existing degradative schemes, not only because of the higher yields but also because in most cases substantial portions of unchanged starting materials can be easily recovered. Thus the process lends itself well to recycling, which may be significant in industrial terms.
From the foregoing discussion, it can be concluded that a useful degradative method has been developed with potential important applications in the chemistry of natural products. This possibility is currently under investigation.

Experimental Section

General.-Melting points were taken on a Köfler apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer Model 257 spectrophotometer. Ultraviolet spectra were recorded on a Beckman Model DK2A spectrophstometer. Nmr spectra were determined on a Jeol Model C60H spe 3 trometer using tetramethylsilane as internal standard and are reported in parts per million. Gas chromatographic analysis was carried out on a Loenco Model 160 gas chromatograph equipped with a LAC 446, 8 -ft column. Microanalysis were performed by the microanalysis service of C. N. R.S. at the Gif Sur Yvette laboratories in France.

1,1-Diphenyl-1-decanol (2).-The preparation of this compound involved the standard addition of phenylmagnesium bromide (0.5 mol) to a commercial sample ${ }^{10}$ of ethyl caprinate (1) $(10 \mathrm{~g}, 0.05 \mathrm{~mol}, 99 \%$ pure $)$.

After hydrolysis of the reaction mixture and decomposition with a saturated solution of ammonium chloride, ca. 20.3 g of crude product was obtained (yellow oil).
After purification by column chromatography over silica (Merck, $0.05-0.2 \mathrm{~mm}$) using a pentane-ether mixture as the eluent ($10: 1$), 15 g of the pure alcohol (96%) was obtained.
1,1-Diphenyl-1-decene (3).-This compound was prepared by dehydrating a sample of the alcohol $2(15 \mathrm{~g})$ in refluxing acetic anhydride for a period of 10 hr . After removal of the solvents by rotatory evaporation, the crude product was purified by column chromatography over silica (Merck, $0.05-0.2 \mathrm{~mm}$) using petroleum ether (bp 48-55 ${ }^{\circ}$) as the eluent. Thus $12.4 \mathrm{~g}(85 \%)$ of pure 1,1-diphenyl-1-decene was obtained. The sample showed the following physical data: ir $\left(\mathrm{CCl}_{2}=\mathrm{CCl}_{2}\right) 3080,3060$, 3020,1600 , and $700 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(3 \mathrm{H}$, multiplet,

[^92]methyl), 1.28 (12 H , singlet, $-\mathrm{CH}_{2^{-}}$), 2.1 (2 H , multiplet, $-\mathrm{CH}_{2}$ allylic), $6.09(1 \mathrm{H}$, triplet, ethylenic, $J=7.5 \mathrm{~Hz}), 7.23$ (10 H , aromatic protons).
The above nmr constants were in agreement with those reported in the literature. ${ }^{18}$

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28}$: C, $90.35 ; \mathrm{H}, 9.65$. Found: C, 90.37; H, 9.46 .

1,2-Diphenyl-1-decanone (4).-A sample (2 g) of the olefin 3 was converted to 1,2-diphenyl-1-decanone (4) by the Kakis method. ${ }^{9}$ The crude product (2.4 g) was then purified by recrystallization from methanol, followed by thin layer chromatography of the mother liquors over fluorescent silica using a petroleum ether-ether mixture ($6: 1$) as the eluent. Thus $1.9 \mathrm{~g}(90 \%)$ of pure ($\mathrm{mp} 56.5-57^{\circ}$) 1,2-diphenyl-1-decanone (4) was obtained. Confirmation of structure was obtained by the following physical data: ir $\left(\mathrm{CCl}_{4}\right) 3090,3070,3030,1690,1450$, and $690 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.85\left(3 \mathrm{H}\right.$, multiplet, $\left.-\mathrm{CH}_{3}\right), 1.25$ and $2[14 \mathrm{H}$, singlet, $\left(-\mathrm{CH}_{2}\right)_{7}$,, $4.53(1 \mathrm{H}$, triplet, $\mathrm{H} \alpha$ to ketone, $J=7.5 \mathrm{~Hz}$), $7.25-8.1$ (10 H , aromatic protons); uv ($95 \% \mathrm{EtOH}$) $244 \mathrm{~m} \mu$ ($\epsilon 11,180$).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}: \mathrm{C}, 85.66 ; \mathrm{H}, 9.15 ; \mathrm{O}, 5.19$. Found: C, 85.38; H, 8.98; O, 5.39.

1,2-Diphenyl-2-bromo-1-decanone (5).-A sample (1 g) of the ketone 4 was brominated by the method of Baudry. ${ }^{11}$ After work-up $1.23 \mathrm{~g}(99 \%)$ of chromatographically pure product was obtained: ir $\left(\mathrm{CCl}_{4}\right) 3090,3070,3030,1685,1450,1225$, doublet at 695-685, and $655 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.85(3 \mathrm{H}$, multiplet, $\left.-\mathrm{CH}_{3}\right), 1.2\left[12 \mathrm{H}\right.$, multiplet, $\left.\left(-\mathrm{CH}_{2}\right)_{6}\right], 2.4(2 \mathrm{H}$, multiplet, $\left.-\mathrm{CH}_{2} \mathrm{CBrPh}\right), 7.15-7.85(10 \mathrm{H}$, aromatic protons).
cis- and trans-1,2-Diphenyl-1-keto-2-decene (6 and 6^{\prime}). Dehydrobromination of a sample (1.25 g) of compound 5 by collidine ${ }^{12}$ afforded a mixture ($0.92 \mathrm{~g}, 99 \%$) of cis- and trans-1,2-diphenyl-1-keto-2-decene. Analytical thin layer chromatography of the mixture on silica-silver nitrate (7%) plates with petroleum ether-ether ($30: 1$) eluent showed that it was practically pure.
Separation was achieved on fluorescent silica preparatory plates by multiple elutions with the above solvent mixture (R_{f} of trans compound 6, R_{f} of cis compound 4).

Thus 330 mg of the pure cis isomer 6 and 530 mg of the pure trans isomer 6^{\prime} were obtained: ir $\left(\mathrm{CCl}_{2} \mathrm{CCl}_{2}\right) 3090,3070,3030$, $1675,1600,1450,1215$, and $690 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ for trans compound $\delta 0.85\left(3 \mathrm{H}\right.$, multiplet, $\left.-\mathrm{CH}_{3}\right), 1.25[10 \mathrm{H}$, multiplet, $\left(-\mathrm{CH}_{2}\right)_{5}$, $2.1\left(2 \mathrm{H}\right.$, multiplet, $-\mathrm{CH}_{2^{-}}$allylic), $6.28(1 \mathrm{H}$, triplet, ethylenic, $J=7.5 \mathrm{~Hz}), 7.25-8.2(10 \mathrm{H}$, aromatic protons); for cis compound $\delta 0.87\left(3 \mathrm{H}\right.$, multiplet, $\left.-\mathrm{CH}_{3}\right), 1.27[10 \mathrm{H}$, multiplet, $\left.\left(-\mathrm{CH}_{2}-\right)_{5}\right], 2.25\left(2 \mathrm{H}\right.$, multiplet, $-\mathrm{CH}_{2}-$ allylic), $6.5(1 \mathrm{H}$, triplet, ethylenic, $J=7.5 \mathrm{~Hz}), 7.2-8(10 \mathrm{H}$, aromatic protons); uv ($95 \% \mathrm{EtOH}$) for cis $245 \mathrm{~m} \mu(\epsilon 18,900)$; for trans $245 \mathrm{~m} \mu(\epsilon 24,000)$.
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 86.23 ; \mathrm{H}, 8.55 ; \mathrm{O}, 5.22$. Found for cis: C, $86.28 ; \mathrm{H}, 8.77$; $0,5.40$. Found for trans: C, 86.40 ; H, 8.52; O, 5.45 .

1,2-Diphenyl-2-decen-1-ol (7 and 7^{\prime}). A. Reduction of Compound 6.-A sample of compound $6(250 \mathrm{mg})$ was reduced with bis(2-methoxyethoxy)sodium aluminum hydride, AlNa$\left(\mathrm{OCH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2} \mathrm{H}_{2}$, by a procedure similar to that of Bazant, et al. ${ }^{14}$. On work-up 250 mg of crude product was obtained. Separation was achieved by thin layer chromatography on fluorescent silica plates with a petroleum ether-ether mixture ($5: 1$) as the eluent. Thus $190 \mathrm{mg}(75 \%)$ of the pure alcohol 7 was obtained. The chromatography also afforded 20 mg of ketone 4. 7 had ir $\left(\mathrm{CCl}_{2}=\mathrm{CCl}_{2}\right) 3620,3080,3030,1600,1490,1450$, and $700 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.87$ (3 H , multiplet, $-\mathrm{CH}_{3}$), 1.23 [$10 \mathrm{H},\left(-\mathrm{CH}_{2}-\right)_{6}$], $1.95\left(2 \mathrm{H}\right.$, multiplet, $-\mathrm{CH}_{2}-$ allylic $), 5.45(1 \mathrm{H}$, singlet, -CHOH$), 5.92(1 \mathrm{H}$, triplet, ethylenic $\mathrm{H}, J=7.5 \mathrm{~Hz})$, $7.1-7.2(10 \mathrm{H}$, aromatic protons).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}: \mathrm{C}, 85.66 ; \mathrm{H}, 9.15 ; \mathrm{O}, 5.19$. Found: C, 85.68; H, 9.19; O, 5.20.
B. Reduction of Compound 6^{\prime}.-A reduction of a sample (500 mg) of compound 6^{\prime} by a procedure identical with the above afforded 440 mg of a crude product. The purification of the product mixture and separation of the components was carried out as before. Thus 250 mg (50%) of alcohol $7^{\prime}, 30 \mathrm{mg}$ of ketone 4 , and 20 mg of the dehydration product 1,2 -diphenyl-1,3decadiene (8) were obtained in a pure state. 8 had ir same as 7; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.9\left(3 \mathrm{H}\right.$, multiplet, $\left.-\mathrm{CH}_{3}\right), 1.35\left[10 \mathrm{H},\left(-\mathrm{CH}_{2}-\right)_{5}\right]$,

[^93]2.25 (3 H , multiplet, allylic $-\mathrm{CH}_{2}-$ and -OH), $5.88(2 \mathrm{H}$, triplet, 6:3:1, -CHOH and $\mathrm{CH}=), 7.1-7.3(10 \mathrm{H}$, aromatic protons).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}: \mathrm{C}, 85.66 ; \mathrm{H}, 9.15 ; \mathrm{O}, 5.19$. Found: C, 85.95; H, 9.28; O, 5.14.

1,2-Diphenyl-1,3-decadiene (8).-Dehydration of either alcohol 7 or $7^{\prime}(200 \mathrm{mg})$ by means of ethanolic hydrochloric acid ${ }^{16}$ gave after work-up a mixture of two products (200 mg). The mixture was separated on fluorescent silica plates with a mixture of petroleum ether-ether ($20: 1$) as the eluent.

Thus $130 \mathrm{mg}(70 \%)$ of pure diene $8\left(R_{\mathrm{f}} 9\right)$ and $45 \mathrm{mg}(20 \%)$ of 1,2-diphenyl-3-ethoxy-1-decene (9) ($R_{\mathrm{f}} 7.7$) were obtained. Diene 8 had ir $\left(\mathrm{CCl}_{2}=\mathrm{CCl}_{2}\right), 3090,3070,3030,1600,1490,1470$, 1450 , and $700 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(3 \mathrm{H}\right.$, multiplet, $\left.-\mathrm{CH}_{3}\right)$,

$1.3\left[8 \mathrm{H},\left(-\mathrm{CH}_{2}-\right)_{4}\right], 2.1\left(2 \mathrm{H}\right.$, multiplet, $-\mathrm{CH}_{2-}$ allylic), two triplets centered at $5.27\left(\mathrm{H}_{\alpha}, J_{\alpha, \delta}=7.5, J_{\alpha, \beta}=16 \mathrm{~Hz}\right) ; 6.36$ $\left(\mathrm{H}_{\beta}\right.$, doublet, $\left.J_{\alpha, \beta}=16 \mathrm{~Hz}\right), 6.42\left(\mathrm{H}_{\alpha}\right.$, singlet $), 6.65-7.5(10 \mathrm{H}$, aromatic protons).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26}$: C, $90.98 ; \mathrm{H}, 9.02$. Found: C , 90.84 ; H, 9.14 .

Compound 9 had ir $\left(\mathrm{CS}_{2}\right) 3080,3060,3030,1080,760$, and $700 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(3 \mathrm{H}\right.$, multiplet, $\left.-\mathrm{CH}_{3}\right)$, $1.05-$ 1.7 [12 H, large, $\left(-\mathrm{CH}_{2}-\right)_{6}$ and triplet due to $-\mathrm{CH}_{3}$ of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-$], quadruplet centered at 3.65 due to $-\mathrm{CH}_{2-}$ of $-\mathrm{OCH}_{2} \mathrm{CH}_{3}, 3.9$ ($1 \mathrm{H},-\mathrm{CHOEt}$), 6.7 (1 H , singlet, $\mathrm{RC}=\mathrm{CH}-$), 7-7.6 (10 H, aromatic protons).

Ozonolysis.-All of the ozonolysis reactions were carried out as follows. The reactants were dissolved in a mixture of methanol and methylene chloride (2:3). The solution was then ozonized until the appearance of a blue color ($5-10 \mathrm{~min}$).

Decomposition was accomplished by stirring the product mixture with a solution of potassium iodide in glacial acetic acid.

The mixtures were then extracted with ether and the organic phase was decolorized by washing with a sodium thiosulfate solution and a saturated sodium bicarbonate solution.
The combined ether extracts were then dried over anhydrous magnesium and sodium sulfates.

Removal of the solvents by rotatory evaporation afforded the crude mixtures of the ozonolysis products. In some instance direct chromatographic separation of these products proved difficult. Consequently, the mixtures were treated with freshly prepared Wanzlick reagent, ${ }^{17}$ which converted all the aldehyde components of the mixtures to the crystalline dianilinoethane derivatives, easily separable by chromatography. Purification was achieved by recrystallization from methanol.

Thus from the ozonolysis of 1,1-diphenyl-1-decene (3), nonanal (10) was isolated as the dianilinoethane derivative (mp 54 55°) along with benzophenone ($\mathrm{mp} 46.5-48^{\circ}$).
Similarly the ozonolysis of 1,2-diphenyl-1-keto-2-decenes (6 and 6^{\prime}) afforded octnal 12 as the dianilinoethane derivative (mp 53.5$54.5^{\circ}$) and benzil $13\left(\mathrm{mp} 95-96^{\circ}\right)$.
Finally the dianilinoethane derivatives of heptanal (14) (mp $77-78^{\circ}$) and benzaldehyde ($\mathrm{mp} 136-137^{\circ}$) were isolated from the ozonolysis of 1,2-diphenyl-1,3-decanone (8).

In all of the above cases the observed melting points were in agreement with those reported in the literature. ${ }^{17}$ Confirmation was obtained by mixture melting points with authentic samples.

In the last ozonolysis additional confirmation was obtained by gas chromatography of the original mixture against known standards.

Registry No. $-1,110-38-3 ; 2,21236-83-9 ; 3,1530-$ 27-4; 4, 38821-25-9; 5, 38821-26-0; 6, 38821-29-3; 6', 38821-30-6; 7, 38896-72-9; 7', 38896-73-0; 8, 38821-31-7; 9, 38821-28-2.

Acknowledgments. - The participation of Dr. Frederic J. Kakis in this project was made possible in part through a grant by the Research Corporation. We are grateful for this assistance. We also want to thank The Ecole Polytechnique for the financial assistance given to V. Ignatiadou-Ragoussis.

Alkylation-Reduction of Carbonyl Systems. II. A Convenient Synthesis of Aromatic Hydrocarbons by the Alkylation-Reduction of Aromatic Ketones and Aldehydes ${ }^{1}$

Stan S. Hall* and Sharon D. Lipsky ${ }^{2}$
Department of Chemistry, Rutgers University, Newark, New Jersey 07102

Received November 22, 1972

Abstract

Aromatic hydrocarbons are prepared from aromatic ketones and aldehydes by alkylation with an organolithium reagent followed by lithium-ammonia reduction in the same reaction vessel without isolation of intermediates. Methylation-reduction yielded p-tert-butylethylbenzene from p-tert-butylbenzaldehyde, p-ethylisopropylbenzene from p-isopropylbenzaldehyde, 1 -methylindan from 1 -indanone, $1,1,3$-trimethylindan from 3,3dimethylindanone and 5 -chloro-3,3-dimethylindanone, 1,1,3,4,5,6,7-heptamethylindan from 3,3,4,5,6,7-hexamethylindanone, 1 -methyltetralin from 1-tetralone, 1,1 -diphenylethane from benzophenone, 9 -methylxanthene from xanthenone, 9 -methylfuorene from fluorenone, and 2,4-diphenylpentane from dibenzoylmethane. Butyla-tion-reduction yielded p-tert-butylpentylbenzene from p-tert-butylbenzaldehyde, p-isopropylpentylbenzene from p-isopropylbenzaldehyde, 1 -butylindan from 1 -indanone, 1 -butyltetralin from 1 -tetralone, and 1,1 -diphenylpentane from benzophenone. Phenylation-reduction yielded p-lert-butylbenzylbenzene from p-tert-butylbenzaldehyde, p-isopropylbenzylbenzene from p-isopropylbenzaldehyde, 1 -phenylindan from 1-indanone, 1 -phenyltetralin from 1 -tetralone, triphenylmethane from benzophenone, and 9 -phenylfuorene from fluorenone.

Recently we introduced the concept of tandem alkyl-ation-reduction of aromatic ketones and aldehydes to aromatic hydrocarbons. ${ }^{3}$ At that time we demonstrated the feasibility of the procedure, which involves the lithium-ammonia reduction of a benzyl alkoxide generated in situ by alkylation, with a few methylationreduction examples. We now wish to report our completed study in this area which includes the alkyla-

tion-reduction of a reasonable sampling of aromatic ketones and aldehydes using phenyllithium, n-butyllithium, and methyllithium as illustrative alkylating agents.
The advantages of the method over such classics as the alkylation-dehydration-catalytic reduction procedure are that the entire sequence is carried out in the same reaction vessel without isolation or purification of intermediates, the procedure consumes only a few hours, and the isolated yield of the aromatic hydrocarbon is in most cases excellent. ${ }^{4}$
The basis for this work evolved from the results of some of our earlier studies on the lithium-ammonia reduction of aromatic ketones to aromatic hydrocarbons. ${ }^{5}$ It was demonstrated that aromatic ketones are reduced to benzyl alkoxides in lithium-ammonia solutions and the benzyl alkoxides were protonated and reduced to the corresponding aromatic hydrocarbons during the ammonium chloride quench. ${ }^{6}$ It

[^94]seemed reasonable to assume that a benzyl a'koxide, generated by other methods, such as alkylation of an aromatic carbonyl compound, should also be reduced to an aromatic hydrocarbon when subjected to this metal-ammonia procedure. The potential advantages of such a sequence were immediately obvious.

The general procedure is to generate the benzyl alkoxide in a metal-ammonia reaction vessel ${ }^{7}$ by the addition of the aromatic ketone or aldehyde to the organolithium reagent in ether. Ammonia is subsequently distilled into the vessel, followed by the addition of lithium wire; and then the resulting mixture is cautiously quenched with ammonium chloride.

The organolithium reagents used were commercial methyllithium (ether), n-butyllithium (hexane); phenyllithium (ether-benzene); and phenyllithium (ether) and n-butyllithium (ether) generated in situ from the corresponding bromides and lithium foil. All the organolithium reagents that were generated in ether or are commercially available in ether were extremely satisfactory; however, slight modifications had to be made for those in hexane or benzene. In these cases a mixture of alkylated aromatic hydrocarbon and alkylated benzyl alcohol resulted when the normal amount of lithium (3 equiv) was used in the reduction step. However, this problem was overcome by the use of excess lithium (6 equiv) and vigorous stirring during the quench step. Evidently the slight amount of hexane in the commercial n-butyllithium and the benzene in the commercial phenyllithium results in a twophase system. ${ }^{8}$

Table I is a listing of aromatic ketones and aldehydes that have been alkylated-reduced to aromatic hydrocarbons by this method. All products gave satisfactory spectral and analytical data and, in some cases, were compared with authentic samples. Minor products are observed when the alkylation step or the reduction step is incomplete. The former yields unalkylated aromatic hydrocarbon, ${ }^{5 a}$ which is removed by distillation, and the latter yields alkylated benzyl alcohol, which is conveniently removed by column
(7) For a useful general discussion of metal-ammonia exper mental techniques see R. L. Augustine, Ed., "Reduction," Marcel Dekker, New York N. Y., 1968, pp 98-105
(8) In the latter case there is also the possibility that the benzene is being reduced, and thereby consuming some of the lithium.

Table I
Alkylation-Reduction of Aromatic Ketones and Aldehydes

Table I (Continued)
Organo-
Aromatic
carbonyl
compound
Registry no
${ }^{\text {a }}$ Analyzed by glpc using a $6 \mathrm{ft} \times 0.25 \mathrm{in} .10 \%$ Apiezon L on Chromosorb W ($60-80$, AW-DMCS) column in a flame detector instrument at a $40-\mathrm{ml} / \mathrm{min}$ flow rate. All samples were injected at a reasonable temperature, followed by a $10-\mathrm{min}$ post-injection interval, and then programmed at $10^{\circ} / \mathrm{min}$ to 290° and held at limit for 0.5 hr . ${ }^{\text {b }}$ Isolated from an aluminum oxide column by eluting with petroleum ether. ${ }^{c}$ Reaction conditions are those described in the Experimental Section for the methylation-reduction of benzophenone (synthesis of 1,1-diphenylethane) using commercial MeLi and 3 equiv of lithium. ${ }^{d}$ Five equivalents of lithium was used for the reduction sequence because of the presence of chlorine. - Because of the insolubility of this ketone in ether, a solution of the ketone in 20 ml of THF was added to 2 equiv of MeLi in 10 ml of THF. ' Plus an unidentified product (14%). © In this experiment 2.5 mmol of ketone was used. ${ }^{h}$ The organolithium reagent was generated in situ in ether from n-butyl bromide or bromobenzene and 3 equiv of lithium was used for the reduction. See phenylation-reduction of indanone (synthesis of 1 -phenylindan) in Experimental Section. i When commercial n - BuLi and 3 equiv of lithium were used p-tert-butylpentylbenzene (5%) and 1-(4'-tert-butylphenyl)pentanol (95%) were formed. ${ }^{i}$ When commercial n-BuLi and 6 equiv of lithium were used 1-butylindan (73%) and indan (27%) were formed. k Commercial $n-\mathrm{BuLi}$ and 6 equiv of lithium were used. See phenylation-reduction of benzophenone (synthesis of triphenylmethane) in Experimental Section. 'When commercial n-BuLi and 3 equiv of lithium were used 1,1 -diphenylpentane (12%), 1,1-diphenylpentanol (68%), and benzophenol (20%) were formed. m Commercial phenyllithium (ether-benzene) and 6 equiv of lithium were used. See phenyla-tion-reduction of benzophenone (synthesis of triphenylmethane) in Experimental Section. n When commercial phenyllithium and 3 equiv of lithium were used p-isopropylbenzylbenzene (56%), p-isopropylphenylphenyicarbinol (30%), and p-isopropyltoluene (14%) were formed.
chromatography. Since excess organolithium reagent was used the incomplete alkylation suggests that some enolization or reduction of the carbonyl compound may have occurred during the alkylation step. ${ }^{9}$ Incomplete reduction seems to result when the intermediate benzyl alkoxide is splattered on the walls of the reaction vessel and is not in solution during the quench.

Experimental Section ${ }^{10}$

Alkylation-Reduction General Comments.-The entire reaction sequence was performed under a prepurified nitrogen

[^95]atmosphere which is connected by a T tube to the assembly and an oil bubbler. All glassware was oven-dried, cooled to room temperature in a large box desiccator, and then quickly assembled. The commercial organolithium reagents, methyllithium (5.1% in ether), n-butyllithium (15.1% in hexane), and phenyllithium (19.7% in ether-benzene), were obtained from Foote Mineral Co. Anhydrous ether was used directly from freshly opened containers. Anhydrous ammonia was distilled into the reaction vessel. Lithium wire (0.125 in., $0.01 \% \mathrm{Na}$, Ventron Corp.) was wiped free of oil and rinsed in petroleum ether (bp 38-58 ${ }^{\circ}$) just prior to use. All alkylated aromatic hydrocarbon products gave satisfactory spectral and analytical data, and in some cases were compared with authentic samples. Three alkylation-reductions are described to illustrate the general methods. The first, 1,1-diphenylethane, exemplifies the procedure using an organolithium reagent commercially available in ethyl ether. The second, 1-phenylindan, demonstrates the use of an organolithium reagent which is generated in situ in ether. The last, triphenylmethane, uses an organolithium reagent which is commercially available in solvents other than ether.

1,1-Diphenylethane.-To a stirred ethereal solution of methyllithium ($7.5 \mathrm{mmol}, 4.8 \mathrm{ml}$ of a 5.1% ether solution diluted with 10 ml of ether) was slowly added a solution of $0.908 \mathrm{~g}(5 \mathrm{mmol})$ of benzophenone in 10 ml of ether in a metal-ammonia reaction
vessel. ${ }^{7}$ After 1 hr 25 ml of ammonia was distilled into the mixture; this was then followed by the addition of 105 mg of lithium wire (15 mg atoms, six pieces). After 15 min the dark-blue color was discharged by the rather cautious addition ($c a .5 \mathrm{~min}$) of ammonium chloride ${ }^{11}(c a .1 .5 \mathrm{~g})$ and the ammonia was allowed to evaporate. After the residue had been partitioned between aqueous NaCl and $\mathrm{Et}_{2} \mathrm{O}$, the organic layer was dried, concentrated, and analyzed by glpc. After chromatography (alumina, petroleum ether) a colorless liquid ($0.86 \mathrm{~g}, 95 \%$) was isolated which was identical with an authentic sample of 1,1-diphenylethane. ${ }^{12}$

1-Phenylindan.-Into a metal-ammonia reaction vessel ${ }^{7}$ containing 210 mg of lithium wire (30 mg -atoms, 12 pieces which had been hammered to a foil) in 10 ml of ether was slowly added a solution of $1.18 \mathrm{~g}(7.5 \mathrm{mmol})$ of bromobenzene in 7 ml of ether. After 1 hr a solution of $658 \mathrm{mg}(5 \mathrm{mmol})$ of 1 -indanone in 8 ml of ether was slowly added and the mixture was stirred for an additional 1 hr . Ammonia ($c a .25 \mathrm{ml}$) was distilled into the mixture and, once the dark-blue color of the mixture was established, ca. 1.6 g of ammonium chloride was cautiously added ${ }^{11}$ ($c a .4 \mathrm{~min}$) to discharge the blue color and the ammonia was allowed to evaporate. After the residue had been partitioned between aqueous NaCl and ether, the organic phase was dried, concentrated, and analyzed (glpc). Following chromatography (alumina, petroleum ether) white crystalline material (935 mg ,

[^96]97%) was isolated and compared with an authentic sample prepared by a classical procedure. ${ }^{13}$

Triphenylmethane.-To a solution of 7.2 mmol of phenyllithium (4.5 ml of a 19.7% ether-benzene solution) in 10 ml of ether in a metal-ammonia reaction vessel ${ }^{7}$ was added, dropwise and with stirring, 908 mg (5 mmol) of benzophenone in 10 ml of ether. After $1 \mathrm{hr} c a .25 \mathrm{ml}$ of ammonia was distilled into the mixture and then 210 mg of lithium wire (30 mg -atoms, 12 pieces) was quickly added. After $15 \mathrm{~min} c a .2 .9 \mathrm{~g}$ of ammonium chloride was cautiously added ${ }^{11}$ (ca. 4 min) to discharge the dark-blue color and the ammonia was allowed to evaporate. The residue was partitioned between ether and aqueous NaCl , and the ethereal layer was dried, concentrated, and analyzed (glpc). Chromatography (alumina, petroleum ether) yielded $1.22 \mathrm{~g}(97 \%)$ of a white crystalline compound which was identical with a commercial sample of triphenylmethane.

Registry No.-MeLi, 917-54-4; BuLi, 109-72-8; PhLi, 591-51-5.

Acknowledgments. - The authors wish to thank Ms. Rose Marie Luethy and Mr. Paul P. Vallon, Givaudan Corp., Clifton, N. J., for the mass spectra, and Dr. Franz J. Scheidl, Hoffmann-La Roche Inc., Nutley, N. J., for the microanalyses.
(13) This is a good example of what we called a classic procedure (alkyla-tion-dehydration-catalytic reduction) earlier in the discussion. The alcohol 1-phenylindanol, prepared by the phenylation of 1 -indanone using a Grignard reagent, was dehydrated by distillation from KHSO_{4}, and the resulting olefin 1-phenylindene was hydrogenated over Raney nickel. See Pl. A. Plattner, R. Sandrin, and J. Wyss, Helv. Chim. Acta, 29, 1604 (1946).

Alkylation-Reduction of Carbonyl Systems. III. The Selective Synthesis of Aromatic Hydrocarbons and Alcohols by the Alkylation-Reduction of Benzylidene Carbonyl Compounds

Stan S. Hall
Department of Chemistry, Rutgers University, Newark, New Jersey 07102

Received December 14, 1972

Abstract

Lithium-ammonia reduction of benzylidene benzyl alkoxides, generated in situ by alkylation of benzylidene ketones and aldehydes, yields aromatic hydrocarbons when quenched with ammonium chloride and alcohols when quenched with sodium benzoate. The following examples are cited. Phenylation-reduction of benzylidene acetophenone yields $1,1,3$-triphenylpropane and 1,1,3-triphenylpropanol, respectively; benzylidene acetone yields 1,3-diphenylbutane and 1,3-diphenyl-3-butanol, respectively; benzylidene propanal vields 1,3 -diphenyl- 2 methylpropane and 1,3-diphenyl-2-methylpropanol, respectively; benzylidene acetaldehyde yields 1,3-diphenylpropane and 1,3-diphenylpropanol, respectively. Methylation-reduction of benzylidene acetophenone yields 1,3-diphenylbutane and 1,3-diphenyl-3-butanol, respectively; and benzylidene acetone yields 1-phenyl-3-methyl3 -butanol with either quenching agent since the intermediate alkoxide is not benzylic. Mechanistic implications are discussed.

Recently we introduced the concept of tandem al-kylation-reduction of aromatic carbonyl systems as a convenient method of preparing aromatic hydrocarbons by the lithium-ammonia reduction of benzyl alkoxides generated in situ by alkylation. ${ }^{1}$ In addition this laboratory has demonstrated the mechanistic and selective synthetic utility of using ammonium chloride $v i s-\grave{a}$-vis sodium benzoate as quenching agents in metal-ammonia reductions. ${ }^{2}$ We now wish to report our first example of the combination of these two procedures for the selective synthesis of aromatic

[^97]hydrocarbons and alcohols by the alkylation-reduction of benzylidene ketones and aldehydes. It is a method which is characterized by its simplicity, selectivity, and excellent isolated yield of the desired product. In addition the mechanistic implications are obvious.

The general procedure is to generate a benzylidene benzyl alkoxide in a metal-ammonia reaction vessel ${ }^{3}$ by the addition of the benzylidene ketone or aldehyde to the organolithium reagent in ether. Ammonia is subsequently distilled into the vessel, followed by the addition of lithium wire; and then the resulting darkblue mixture is cautiously quenched.

The sequence is outlined in Scheme I using two examples. Alkylation of benzylideneacetophenone (1)
(3) For a useful general discussion of metal-ammonia experimental techniques see R. L. Augustine, Ed., "Reduction," Marcel Dekker, New York, N. Y., 1968, pp 98-105.

Scheme I
(
${ }^{a}$ Reaction conditions are those discussed in the Experimental Section. ${ }^{b}$ Analyzed by glpc using a $6 \mathrm{ft} \times 0.25 \mathrm{in} .10 \%$ Apiezon L on 60-80 Chromosorb W (AW, DMCS) stainless steel column on a flame-detector instrument at a $40-\mathrm{ml} / \mathrm{min}$ flow rate. ${ }^{c}$ Column chromatography on neutral aluminum oxide (activity I) and eluted with petroleum ether. ${ }^{d}$ Analyzed by glpc using a $4 \mathrm{ft} \times 6 \mathrm{~mm} 4 \%$ silicone gum rubber UCC-W-982 (methylvinyl) on $80-100$ HP Chromosorb W (AW, DMCS) all-glass column on a flame-detector instrument at a $40-\mathrm{ml} / \mathrm{min}$ flow rate. © Column chromatography on neutral aluminum oxide (activity III) and eluted with petroleum ether, petroleum ether- $\mathrm{Et}_{2} \mathrm{O}$.
with methyllithium or benzylideneacetone (3) with phenyllithium generates the benzylidene benzyl alkoxide 2 , which in the presence of lithium-ammonia is evidently reduced to the benzyl alkoxide 5, since quenching the reaction mixture with sodium benzoate yields 1,3-diphenyl-3-butanol (4) quantitatively. ${ }^{4}$ In contrast, the use of ammonium chloride as the quenching agent yields 1,3 -diphenylbutane (6).

These results imply that at the time of quench the benzyl alkoxide 5 is present in the reaction mixture, since it has been demonstrated that benzyl alkoxides yield similar results when subjected to these conditions. ${ }^{1,2}$ The use of sodium benzoate, a procedure introduced by this group which destroys the excess reducing agent in the absence of an external proton source, protects a benzyl alkoxide intermediate,

[^98]whereas ammonium chloride protonates the benzyl alkoxide and the resulting benzyl alcohol is rapidly reduced to the aromatic hydrocarbon before all the lithium is destroyed.

The results of this study, which are summarized in Table I, indicate the selectivity and synthetic utility of this simple procedure. It also has the advantages that the benzylidene ketones and aldehydes, if not commercially available, can be readily prepared by the Claisen-Schmidt reaction or related aldol condensations; ${ }^{5}$ and the organolithium reagents when not available can be generated in situ and yield similar results.
The methylation-reduction of benzylideneacetone, the last entry in Table I, is included because it represents a limitation of the procedure which is a direct consequence of the sequence of events. Lithiumammonia reduction of the intermediate benzylidene
(5) A. T. Nielsen and W. J. Houlihan in "Organic Reactions," Vol. 16. A. C. Cope, Ed., Wiley, New York, N. Y., 1968, pp 1-438.
alkoxide forms an alkoxide which is not benzylic and consequently cannot be reduced further during the ammonium chloride quench. ${ }^{6}$ Hence the same product is formed using either quenching agent.

Experimental Section ${ }^{7}$

Alkylation-Reduction General Comments.-The entire reaction sequence was performed under a prepurified nitrogen atmosphere which is connected by a T tube to the assembly and an oil bubbler. All glassware was oven-dried, cooled to room temperature in a large box desiccator, and then quickly assembled. Phenyllithium (19.7% in ether-benzene) and methyllithium (5.1% in ether) were obtained from Foote Mineral Co. Phenyllithium was also generated in situ in the reaction vessel from bromobenzene and lithium foil in $\mathrm{Et}_{2} \mathrm{O}$. Anhydrous $\mathrm{Et}_{2} \mathrm{O}$ was used directly from freshly opened containers. Anhydrous ammonia was distilled into the reaction vessel. Lithium wire (0.125 in ., $0.01 \% \mathrm{Na}$, Ventron Corp.) was wiped free of oil and rinsed in petroleum ether just prior to use. All aromatic hydrocarbon and alcohol products gave satisfactory spectral and analytical data, and in some cases were compared with authentic samples. The methylation-reduction of benzylideneacetophenone (1) is described to illustrate the general procedure.

Methylation-Reduction of Benzylideneacetophenone (1).-To a solution of 7.4 mmol of MeLi in 15 ml of $\mathrm{Et}_{2} \mathrm{O}$ in a metal-ammonia reaction vessel ${ }^{3}$ was added, dropwise and with stirring, 1.03 $\mathrm{g}(4.95 \mathrm{mmol})$ of benzylideneacetophenone (1) in 5 ml of $\mathrm{Et}_{2} \mathrm{O}$. After $1 \mathrm{hr} c a .20 \mathrm{ml}$ of ammonia was carefully, to prevent excessive splattering, distilled into the mixture; this was then followed by the rapid addition of 175 mg (25 mg -atoms, eight pieces) of lithium wire. The mixture soon turned dark blue with red fringes. ${ }^{8}$

1,3-Diphenylbutane (6, Ammonium Chloride Quench).-To

(7) Spectral measurements were determined with the following instruments: ir, Perkin-Elmer Model 237; nmr, Varian Associates Model A-60; mass spectra, Perkin-Elmer Model 270 with a Varian Associates Model 620/i computer attachment. Gas chromatographic analyses (glpc) of the aromatic hydrocarbons (ammonium chloride quench) were performed on a Hewlett-Packard Model 5750 research chromatograph (flame detector) using a $6 \mathrm{ft} \times 0.25 \mathrm{in}$. (stainless steel) 10% Apiezon L on $60-80$ Chromosorb W (AW, DMCS) column and the benzyl alcohols (sodium benzoate quench) on a Hewlett-Packard Model 7810 high-efficiency chromatograph (flame detector) using a $4 \mathrm{ft} \times 6 \mathrm{~mm}$ (all glass) 4% silicone gum rubber UCC-W-982 (methylvinyl) on 80-100 HP Chromosorb W (AW, DMCS) column. Column chromatography of the aromatic hydrocarbons was performed on neutral aluminum oxide (activity I) using petroleum ether (bp 33-58) and chromatography of the alcohols was performed on neutral aluminum oxide (activity III) using petroleum ether and petroleum ether- $\mathrm{Et}_{2} \mathrm{O}$.
(8) Normally ca. 20 min elapsed before proceeding with the quenching step, although the time interval does not seem too critical.
the dark-blue mixture (red fringes) was cautiously added, ${ }^{9}$ with vigorous stirring, ca. 3 g of ammonium chloride until the mixture turned white (ca. 4 min) and the ammonia was allowed to evaporate. After the residue had been partitioned between aqueous NaCl and $\mathrm{Et}_{2} \mathrm{O}$, the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated at water aspirator pressure at $40-50^{\circ}$, and analyzed (glpc). Following chromatography (neutral aluminum oxide, activity I; petroleum ether) $0.925 \mathrm{~g}(89 \%)$ of 1,3 -diphenylbutane (6) was obtained as a colorless liquid: ir (film) $3080,3060,3030$, $1600,1495,700$ (aromatic); 2960, 2930, 2860, 1450, $1375 \mathrm{~cm}^{-1}$ $\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}, \mathrm{TMS}\right) \delta 1.22(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.6-2.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.5\left(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.6$ (1 H , apparent sextet, $J=7 \mathrm{~Hz}, \mathrm{CH}$), and apparent singlets at $7.14(4 \mathrm{H}, \mathrm{Ar})$ and $7.2(6 \mathrm{H}, \mathrm{Ar})$; mass spectrum m / e (rel intensity) 210 (M^{+}, 14), 119 (11), 105 (100), 91 (61), and 77 (22).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18}$: C, 91.37 ; H, 8.63. Found: C, 91.39; H, 8.61 .

This product was identical with that obtained by the phenyla-tion-reduction (ammonium chloride quench) of benzylideneacetone (3).

1,3-Diphenyl-3-butanol (4, Sodium Benzoate Quench).-To the dark-blue mixture (red fringes) was cautiously added, ${ }^{9}$ with vigorous stirring, ca. 1.5 g of sodium benzoate until the mixture turned yellow (ca. 4 min) and then the ammonia was allowed to evaporate. Normal work-up (described above) and chromatography (neutral aluminum oxide, activity III; petroleum ether, petroleum ether- $\mathrm{Et}_{2} \mathrm{O}$) yielded $1.1 \mathrm{~g}(98 \%)$ of 1,3 -diphenyl-3butanol (4) obtained as a pale-yellow syrup exhibiting the following spectral properties: ir (film) spectrum was almost superimposable on that from product 6 except for additional bands at 3560,3410 (broad), and $1120 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CCl}_{4}, \mathrm{TMS}\right) \delta 1.48$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.7-2.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, a broad singlet, disappears when $\mathrm{D}_{2} \mathrm{O}$ is added, at $2.4(1 \mathrm{H},-\mathrm{OH})$ which is superimposed on a multiplet at $2.2-2.7\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, and a complex pattern at 6.8-7.4 ($10 \mathrm{H}, \mathrm{Ar}$); mass spectrum m / e (rel intensity) 226 (M^{+}, 1), 211 (2), 209 (4), 208 (13), 193 (11), 121 (100), 107 (41), $10 €$ (25), 105 (24), 91 (73), 77 (35), and 43 (99).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 84.91 ; \mathrm{H}, 8.02$. Found: C, 84.72; H, 8.09 .

This product was identical with that obtained by the phenyla-tion-reduction (sodium benzoate quench) of benzylideneacetone (3).

Acknowledgment.-The author wishes to thank Ms. Rose Marie Luethy and Mr. Paul P. Vallon, Givaudan Corp., Clifton, N. J., for the mass spectra, and Dr. Franz J. Scheidl, Hoffmann-La Roche Inc., Nutley, N. J., for the microanalyses.
(9) The quenching agent was mos; conveniently introduced by attaching a glass tube filled with the salt to a side arm with tygon tubing. When the quenching agent is to be added the tube is raised and tapped gently to smoothly introduce the salt. Should this step start to become violent, the addition and the vigorous stirring should be momentarily halted to avoid an eruption.

Oxidative Substitution on Halophenols

Donald A. Bolon

General Electric Corporate Research and Development, Schenectady, New York 12301

Received September 26, 1972
Organic acids or phenols replace the halogen in 4halogen substituted phenols when one-electron oxidizing agents oxidize the substituted phenol in the presence of the acid or phenol. Such a reaction allows the synthesis of a variety of substituted phenols, under mild conditions, which are difficult to make by other means.
Hunter ${ }^{1,2}$ and Price ${ }^{3}$ observed halogen replacement reactions in the oxidation of 4 -bromo-2,6-xylenol to polyphenylene oxide with concurrent loss of halogen. More highly halogen substituted phenols such as pentachlorophenol, when oxidized, yield quinol ethers, with no loss of halogen, instead of polymers. ${ }^{4,5}$ In certain cases the coupling occurs with carbon-carbon bond formation (diphenoquinones) rather than with carbonoxygen bond formation as in quinol ethers. ${ }^{6}$ These couplings are free-radical dimerizations.

One-electron oxidation of phenols without 4-halogen substitutents, particularly 4 -substituted 2,6 -xylenol (1), can give an o-quinone methide 2 which can react with itself to give a trimer 3 or with another hydroxylcontaining group to give a benzyl ether $4 .^{7,8}$ When R

is a halogen this sequence is not followed. No trimer or benzyl ether is found; the observed products result from substitution of the halogen by some other group.

[^99]When 4-chloro-2,6-xylenol (5) is oxidized with either silver oxide or potassium permanganate in acetic acid, two products are formed in addition to the expected polymer. The material present in larger amount was identified as 4 -acetoxy- 2,6 -xylenol by comparison of its mass spectrum, infrared spectrum, and retenticn time of its trimethylsilyl ether ${ }^{9}$ with those of authentic $6 .{ }^{10}$ The second material is 2,6 -xyloquinone (7).

A similar substitution is obtained with benzoic acid where dimethylformamide is needed as a solvent. This oxidation yields 4 -benzoyloxy-2,6-xylenol waen 4 -chloro- 2,6 -xylenol is oxidized with silver oxide.
In addition to organic acids, phenols will replace the halogen on a chlorophenol. The oxidation with silver oxide of a mixture of 4-tert-butyl-2,6-xylenol (8) and

2,4,6-trichlorophenol (9) in a $1: 1$ ratio gives the phenoxy phenol 10 as the chief product. An nmr and mass spectrum identified 10 as the illustrated para isomer.

These reactions probably all occur by a similar mechanism. One mechanism that accounts for these results involves oxidation of 5 to the radical 11, which then dimerizes to the quinol ether 12, a well-known reaction. This intermediate solvolyzes, perhaps by some sort of ionic reaction, with the attendant organic acid or phenol to yield the quinone ketal 13, which can then separate and abstract a hydrogen to yield 4 -acetoxy2,6 -xylenol ($\mathrm{R}=\mathrm{AcO}$) or solvolyze to 2,6 -xyloquinone.

Although this work uses typical one-electron oxidizing agents, there appears to be mounting evidence that in certain cases the two electrons can be removed with equal ease. ${ }^{11}$ If this should occur in these reactions,

[^100]
the phenol 5 could be oxidized directly to 14 and subsequently yield the products by a solvolysis mechanism.

In all of the reactions a polymeric material forms which is probably a polyphenylene oxide polymer but which was not characterized.

This reaction offers a method of making some substituted phenols which would be difficult to make by other means. The conditions are mild and the reaction easy to run.

The reaction is general in the sense that a wide variety of oxidants yield identical results. Lead dioxide, silver oxide, and potassium permanganate all give the same distribution of products. Phenols that fulfill the conditions of blocked ortho positions also will work. Alcohols do not give a similar product distribution and an investigation of this reaction is under way.

Experimental Section

4-Chloro-2,6-xylenol and 2,4,6-Trichlorophenol.-These materails were used as obtained from Aldrich Chemical Co.

4-tert-Butyl-2,6-xylenol.-This material was prepared by butylation of $2,6-x y l e n o l .{ }^{7}$

Oxidation of 4-Chloro-2,6-xylenol (5) in Acetic Acid.-The slow addition of powdered potassium permanganate (1.58 g , 0.05 equiv) to 4 -chloro- 2,6 -xylenol ($2.34 \mathrm{~g}, 0.015 \mathrm{~mol}$) in glacial acetic acid (75 ml) produced a bright yellow solution which was poured into water and the organics were extracted with ether. The ether was washed with sodium bicarbonate solution and water and dried, and the ether was distilled, which left a yellow gum. Upon treatment with bis(trimethylsilyl)acetamide ${ }^{9}$ the sample became sufficiently volatile so that it could be analyzed by vapor phase chromatography (vpc) and the major product was collected. This material is 4-acetoxy-2,6-xylenol trimethylsilyl ether, as shown by mass spectra (molecular weight and fragmentation pattern), infrared spectrum, and vpc retention time when compared with those of an authentic material. ${ }^{12}$

The residual oil gave pale yellow crystals $(0.4 \mathrm{~g}, 8 \%)$ when dissolved in hexane and cooled to -20°. These crystals, $\mathrm{mp} 65-$ 67°, are 2,6 -xyloquinone, as shown by the mixture melting point and a comparison of infrared spectra with those of an authentic material. ${ }^{6}$

Oxidation of 4-Chloro-2,6-xylenol and Benzoic Acid.-Silver oxide $(6.96 \mathrm{~g}, 0.03 \mathrm{~mol})$ was stirred with a mixture of 4-chloro-

[^101]

Figure 1.
2,6 -xylenol ($4.68 \mathrm{~g}, 0.03 \mathrm{~mol}$), benzoic acid ($3.66 \mathrm{~g}, 0.03 \mathrm{~mol}$), magnesium sulfate, and dimethylformamide over an $18-\mathrm{hr}$ period. The solid silver salts were filtered and the filtrate was placed in water. Ether extraction removed the organic materials, after which sodium bicarbonate and water washes removed contaminants. The dried ether was distilled, leaving a red, gummy residue. The gum was dissolved in hexane and cooled to -20°. Tan crystals formed in a yield of 12%. Recrystallization of these crystals gave a yellow solid which was 4-benzoyl-oxy-2,6-xylenol, mp 139-141 ${ }^{\circ}$. The infrared spectrum shows a hydroxyl at 3430, carbonyl at 1725 , and phenyl absorbtions at 710 and $735 \mathrm{~cm}^{-1}$ which support the assigned structure $6(\mathrm{OAc}=$ OBz).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 74.4; H, 5.8; mol wt, 242. Found: C, 74.5; H, 5.7; mol wt, 245.

Oxidation of 4-tert-Butyl-2,6-xylenol and 2,4,6-Trichloro phenol.-4-tert-Butyl-2,6-xylenol ($1.78 \mathrm{~g}, 0.01 \mathrm{~mol}$) and $2,4,6$ trichlorophenol ($1.97 \mathrm{~g}, 0.01 \mathrm{~mol}$) in benzene were stirred with silver oxide ($2.3 \mathrm{~g}, 0.01 \mathrm{~mol}$) for 0.5 hr and then filtered. A vpc of the silylated reaction mixture showed that the products were 80% phenoxy phenol 10 and 20% mixed monomers. A sample of silylated 10 was collected from the vpc and gave the correct mass spectrum for the trimethylsilyl derivative of 10 ; major peaks at $m / e 412,410$, and 177 (phenoxy) were found along with no evidence for three chlorines on the molecule.

Chromatography of the residue after filtration and benzene removal, and elution by hexane followed by 20% benzene-hexane gave several fractions. One consisted of 0.16 g of solids which a vpc analysis showed was $90 \% 10$. This fraction, when separated by preparative thin layer chromatography, gave 0.102 g of a gum which crystallized at -30°, giving white plates, mp $105-106^{\circ}$.

Anal. Calcd as $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Cl}_{2}$: C, 63.7; $\mathrm{H}, 5.9$. Found: C, 63.7; H, 6.2.

The nmr spectrum of this material (Figure 1) clearly shows that the structure of 10 is the assigned 4 isomer.

Registry No.-5, 1123-63-3; 6 trimethylsilyl ether, $38645-01-1$; 8, 879-97-0; 9, 88-06-2; 10, 38645-02-2; 4-benzoyloxy-2,6-xylenol, 38645-03-3.

The Mechanism of the Cope Elimination

Robert D. Bach,* Denis Andrzejewski, and Latrence R. Dusold

Department of Chemistry, Wayne State University, Detroit, Michigan 48202

Received October 27, 1972
The Cope elimination ${ }^{1}$ involves the thermal decomposition of an amine oxide by a five-membered cyclic transition state. This reaction has been extensively used as a "reference reaction" for syn elimination, since its mechanism has been considered to be essentially
beyond doubt. ${ }^{2}$ Although there is good evidence ${ }^{1,3}$ that the pyrolysis of an amine oxide involves synelimination, this mechanism has never been rigorously tested by deuterium-labeling experiments. Since considerable emphasis has been placed on this reaction we now report unequivocal deuterium-labeling evidence that establishes the mechanism of the Cope elimination as a 100% syn elimination.

The specifically labeled N, N-dimethylcyclooctylamines were prepared according to the method of Coke. ${ }^{4}$ The amine oxides were prepared by oxidation of the labeled tertiary amines with 36% hydrogen peroxide affording cis- and trans- N, N-dimethylcyclooctyl oxide-2- d_{1}. Pyrolysis of the cis-2- d_{1} oxide 1 at 110° (11 mm) afforded cis-cyclooctene that had retained 78% of its initial deuterium content (Scheme I).

Scheme I

From these data a syn $k_{\mathrm{H}} / k_{\mathrm{D}}$ of 3.5 may be calculated. The deuterium content was analyzed by mass spectrometry on a sample purified by gas chromatography. Pyrolysis of the trans-2- d_{1} oxide 2 afforded cis-cyclooctene that had retained 100% (within experimental error) of the deuterium initially present in the amine oxide, providing unequivical evidence for an exclusive syn elimination.

The complete absence of trans-cyclooctene (gc analysis) in the pyrolyses of 1 and 2 is worthy of comment. The stereoselective formation of cis olefin has been taken ${ }^{3 \mathrm{a}, 5}$ as evidence for the intramolecular cyclic mechanism, because the atoms eliminated would be in a preferred planar transition state. This reaction may be considered an analog of the ylide mechanism in which an α^{\prime} oxy anion rather than the carbanion basic center is involved. We recently reported ${ }^{6}$ that trans-cyclooctene can be readily formed by an α^{\prime}, β elimination in liquid ammonia using KNH_{2} as the base $\left(\operatorname{syn} k_{\mathrm{H}} / k_{\mathrm{D}}=\right.$ 5.89). Thus, a cyclic intramolecular transition state to form the more strained ($\sim 9 \mathrm{kcal} / \mathrm{mol}$ relative to the cis isomer) trans olefin is not precluded in the cyclooctyl system. Therefore the cis/trans ratio observed in these reactions should not be used as an indication of the mechanism involved. ${ }^{7}$ As an alternate explanation we suggest that the exclusive formation of cis-cyclo-
(2) J. Zavada, J. Krupicka, and J. Sicher, Collect. Czech. Chem. Commun., 31, 4273 (1966); J. Sicher, Anpew. Chem., Int. Ed. Enol., 11, 200 (1972).
(3) (a) C. H. DePuy and R. W. King, Chem. Rev., 60, 431 (1960); (b) M. R. V. Sahyun and D. J. Cram, J. Amer. Chem. Soc., 85, 1263 (1963).
(4) J. L. Coke and M. C. Mourning, J. Amer. Chem. Soc., 90, 5561 (1968).
(5) A. C. Cope, R. A. Pike, and C. F. Spencer, J. Amer. Chem. Soc., 75, 3213 (1953).
(6) (a) R. D. Bach and D. Andrzejewski, J. Amer. Chem. Soc., 93, 7118 (1971); (b) R. D. Bach, K. W. Bair, and D. Andrzejewski, ibid., 94, 8608 (1972).
(7) G. Wittig and R. Polster, Justus Liebigs Ann. Chem., 612, 102 (1958); C. L. Bumgardner, J. Org. Chem., 27, 1035 (1962).
octene is a manifestation of the weakly basic oxy anion. In the Cope elimination both $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{N}$ bond cleavage may be well advanced at the transition state with considerable development of double-bond character. However, with the strongly basic nitrogen ylide ${ }^{6}$ there might be more $\mathrm{C}-\mathrm{H}$ cleavage than $\mathrm{C}-\mathrm{N}$ cleavage in the transition state. In support of this suggestion, stabilized benzyl ylides ${ }^{7}$ and sulfonium ylides ${ }^{8}$ also afford the thermodynamically favored cis olefin. Thus, in the present case product development control results in exclusive formation of the cis stereoisomer.

Experimental Section

Mass spectral analyses were performed on an MS- 902 mass spectrometer. cis-Cyclooctene and N, N-dimethylcyclooctylamine were purified by preparative gas chromatography and analyzed at 11 eV . The deuterium analyses were corrected for 83.3% and the 86.7% isotopic purity of the starting compounds, N, N-dimethyl-cis- and N, N-dimethyl-trans-cyclooctylamine-2d_{1}. The cis-cyclooctene and the labeled amines were collected on a $6-\mathrm{ft} 10 \%$ SE- 30 column at 150° prior to mass spectral analysis. Gas chromatographic analyses of the reaction mixtures were carried out with a 6 -ft 10% NMPN column at 80°.
The cis-cyclooctene was obtained as a gift from Columbian Carbon Co. trans-Cyclooctene was prepared as reported previously. ${ }^{9}$ cis- and trans-cyclooctene were converted to cis- and trans-cyclooctylamine-2- d_{1}, bp $80-81^{\circ}(20 \mathrm{~mm})$, according to the procedure of Coke and Mourning. ${ }^{4}$ The Clark-Eschweiler procedure described by Icke ${ }^{4,10}$ was used to prepare the specifically labeled N, N-dimethylcyclooctylamines
N, N-Dimethyl-cis-cyclooctylamine-2- d_{1} Oxide.-To a stirring solution of 1 ml of reagent methanol was added $0.028 \mathrm{~g}(0.180$ mmol) of N, N-dimethyl-cis-cyclooctylamine-2- $d_{1}{ }^{4}$ and $30 \mu \mathrm{l}$ (1.3 mmol) of 36% hydrogen peroxide. After 3 days at room temperature the solvent was removed by rotary evaporation, affording the crude amine oxide as a viscous oil.
N, N-Dimethyl-trans-cyclooctylamine-2- d_{1} Oxide.-The above procedure was repeated on 0.028 g of N, N-dimethyl-trans-cyclo-octylamine-2- d_{1} affording the trans labeled amine oxide as a viscous oil.

Cope Elimination.-The crude amine oxides were heated at $110^{\circ}(11 \mathrm{~mm})$ and the temperature was slowly raised to 120° over a $30-\mathrm{min}$ period. The pyrolysis products were collected in a cold trap in a pentane solution and washed with $10 \% \mathrm{HCl}$. The cis-cyclooctene was isolated by preparative gas chromatography. The product composition was at least 99.9% ciscyclooctene with none of the trans isomer being observed by gc analysis.
Registry No.-1, 38645-04-4; 2, 38645-05-5.
Acknowledgment. - We wish to express our appreciation to donors of the Petroleum Research Fund, administered by the American Chemical Society, for the support of this research.
(8) V. Franzen and H. J. Schmidt, Chem. Ber., 94, 2937 (1961).
(9) A. C. Cope and R. D. Bach, Org. Syn., 49, 39 (1969).
(10) R. N. Icke, B. B. Wisegarver, and G. A. Alles, "Organic Syntheses," Collect. Vol. III, E. C. Hornung, Ed., Wiley, New York, N. Y., 1955, p 723.

The Synthesis of Hycanthone

George M. Laidlaw, Joseph C. Collins, Sydney Archer, David Rosi, and John W. Schulenberg*

Sterling-Winthrop Research Institute, Rensselaer, New York 12144
Received September 22, 1972
Hycanthone (7), a schistosomicidal agent, was first prepared by Rosi, et al., by microbiological oxidation of the corresponding 4-methylthioxanthenone,
lucanthone. ${ }^{1-3}$ We now wish to report a chemical synthesis of hycanthone from 1-chlorothioxanthen-9one (1). Although Mahishi, et al., ${ }^{4}$ claim to have prepared pure 1 by cyclization of $o-[(m$-chlorophenyl)thio]benzoic acid (3) (Scheme I), we found that the

product was an approximately 50:50 mixture of 1 and 3 -chlorothioxanthen- 9 -one (2).5,5a

We, therefore, prepared 1 by an alternate route (Scheme II) which was designed to afford pure 1.

2-Chloro-6-(phenylthio)benzonitrile (5) was easily prepared from 2,6-dichlorobenzonitrile (4) and potassium thiophenolate in DMSO. A similar preparation of 5 has been reported utilizing 2-chloro-6-nitrobenzonitrile in place of $4 .{ }^{6}$ The nitrile 5 was cyclized in polyphosphoric acid and the imine intermediate 6 was hydrolyzed in water to give a 66% yield of the desired chloro compound 1. Optimum yields of 1 were obtained when the PPA cyclization was carried out at $150-170^{\circ}$. As the cyclization temperature was raised above this range, increasing amounts of the 3 -chloro
(1) D. Rosi, G. Peruzzotti, E. W. Dennis, D. A. Berberian, H. Freele, and S. Archer, Nature (London), 208, 1005 (1965).
(2) H. Mauss, Ber. 81, 19 (1948).
(3) D. Rosi, G. Peruzzotti, E. W. Dennis, D. A. Berberian, H. Freele, B. F. Tullar, and S. Archer, J. Med. Chem., 10, 867 (1967).
(4) N. B. Mahishi, P. B. Sattur, and K. S. Nargund, J. Karnatak Univ., 2 (1), 50 (1957); Chem. Abstr., 53, 14101 (1959).
(5) A recent patent reports the preparation of the isomeric 3-chloro-thioxanthen- 9 -one by essentially the same procedure employed by Mahishi, et al.: British Patent $1,000,509$ (1965); Chem. Abstr., 58, $12518 f$ (1963).
(5a) Note Added in Proof.-A recent paper reports essentially the same mixture of 1 and 2 obtained by us by cyclization of 9 in strong acid. These authors also describe an unambiguous synthesis of 1 starting with 6 chloroanthranilic acid: I. Oksbayashi, et al., Yakugaka Zasshi, 92, 1386 (1972).
(6) British Patent 951,651 (1964); Chem. Abstr., 61, P5575b (1964).
isomer 2 formed and at $260^{\circ} 2$ was the sole product produced. The formation of 2 is presumably a result of the following temperature-dependent reactions.

An attempt was made to prepare 2 -chloro-6-(phenylthio) benzoic acid from 2,6-dichlorobenzoic acid and thiophenol. Unreacted acid was recovered when the reaction was run in refluxing DMF. When this same reaction was run with a copper catalyst present (Ullmann conditions): no acidic procduts were obtained and gas chromatography revealed the presence of m dichlorobenzene, indicating that decarboxylation had occurred. In an attempt to block this decarboxylation the reaction was run with methyl 2,6 -dichlorobenzoate in place of the corresponding acid. Although none of the desired sulfide formed, gas chromatography indicated the presence of thioanisole. The ester apparently behaved as an alkylating agent to form thioanisole and 2,6-dichlorobenzoic acid. ${ }^{7}$

The synthesis oì hycanthone (7) from 1 is shown in Scheme III.

Compound 8 was prepared by treating 1 with $N, N-$ diethyl- N^{\prime}-methylethylenediamine in refluxing pyridine. This same reaction can be run on the mixture of 1 - and 3 -chlorothioxanthen- 9 -ones, obtained from cyclization of 3 , since the 3 isomer 2 is unreactive in refluxing pyridine. The chlorine atom of 2 can, however, be displaced in refluxing DMF. Reaction of 8 with phosphorus oxychloride in DMF (Vilsmeier conditions)

[^102] Johnson, Tetrahedron Lett., 4459 (1970).
afforded the aldehyde 9 with no evidence of formylation in the 2 position of the thioxanthene ring. A similar Vilsmeier reaction on 11 did not yield the desired aldehyde 10. The N-methyl group of 8 functions, therefore, as a protecting group allowing formylation in the 4 position. The methyl group of 9 was then removed with pyridine hydrochloride to yield compound 10, which has been reported previously as a by-product in the microbiological oxidation of lucanthone. ${ }^{3}$ Sodium borohydride reduction of 10 afforded hycanthone ${ }^{8}$ in 15% overall yield from pure 1 .

The demethylation of 9 presumably proceeds in the following manner.

The peri oxygen atom may stabilize this intermediate through hydrogen bonding. Attack of the chloride ion on the methyl group then yields 10 . There was no evidence of N -dealkylation of the other, more hindered, alkyl group.

Experimental Section

All melting points are corrected. Thin layer chromatograms were developed on precoated silica gel F-254 Merck plates. Gas chromatograms were recorded on a Hewlett-Packard Model 5750 gas chromatograph. The ir spectra were recorded on a PerkinElmer Model 21 spectrophotometer and the nmr spectra were determined on a Varian Model A-60 or a Varian HA-100 spectrometer.

Elemental analyses were performed by Istranal Laboratories, Rensselaer, N. Y., or Galbraith Laboratories, Inc., Knoxville, Tenn.

2-Chloro-6-(phenylthio)benzonitrile (5).-Thiophenol (13 ml , 0.15 mol) in DMSO (50 ml) was dripped into a cooled suspension of potassium tert-butoxide ($13.0 \mathrm{~g}, 0.15 \mathrm{~mol}$) in DMSO (300 ml). 2,6-Dichlorobenzonitrile ($19.0 \mathrm{~g}, 0.11 \mathrm{~mol}$) in DMSO (300 ml) was added dropwise to this mixture with stirring over a $30-\mathrm{min}$ period. The reaction mixture was heated on a steam bath for 2.5 hr and then poured into cold $\mathrm{H}_{2} \mathrm{O}$ (11.) and allowed to stand while the oily product solidified. Recrystallization from ethanol (125 ml) yielded white prisms, $19.5 \mathrm{~g}(72 \%)$, $\mathrm{mp} 67-72^{\circ}$ (lit. ${ }^{\circ} \mathrm{mp}$ 66-67$)$.

1-Chlorothioxanthen-9-one (1).-Compound 5 ($25 \mathrm{~g}, 0.10 \mathrm{~mol}$) was suspended in PPA (2.5 1.) and heated with vigorous stirring for 6 hr at $150-170^{\circ}$. The reaction mixture was allowed to cool to 90° and poured into an ice-water (12 1.) mixture with stirring. The aqueous mixture was warmed on a steam bath for several hours and cooled (ice bath), and 1 was collected by filtration (sintered glass). Recrystallization from isopropyl alcohol (125 ml) afforded 1 as pale yellow needles: $14.0 \mathrm{~g}(56 \%)$; mp 112.5$114.0^{\circ}$ (lit. ${ }^{1} \mathrm{mp} 146^{\circ}$]; uv $\max (\mathrm{EtOH}) 221 \mathrm{~m} \mathrm{\mu}(\log \epsilon 4.19), 258$ (4.62), 293 (3.70), 303 (3.72), $380(3.75)$; ir (KBr) $1638 \mathrm{~cm}^{-1}$ $(\mathrm{C}=0) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~m}, 1$, peri H$), 7.15-7.55(\mathrm{~m}, 6$, aromatic H).
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClOS}: \mathrm{C}, 63.28 ; \mathrm{H}, 2.85 ; \mathrm{Cl}, 14.37$; S, 12.99. Found: C, 63.28; H, 2.98; Cl, 14.39; S, 13.11.
$o-[(m$-Chlorophenyl)thiol benzoic Acid (3).-Thiosalicylic acid $(30 \mathrm{~g}, 0.19 \mathrm{~mol})$, copper bronze $(1.86 \mathrm{~g})$, KI $(1.75 \mathrm{~g}, 0.010 \mathrm{~mol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(40.5 \mathrm{~g}, 0.29 \mathrm{ml})$ were combined in DMF (450 ml). The mixture was warmed to 100° and m-bromochlorobenzene ($40.8 \mathrm{~g}, 0.21 \mathrm{~mol}$) in DMF (25 ml) was added. The reaction mixture was refluxed for 18 hr and then poured into an ice-water (1.0 1.) mixture. The aqueous mixture was charcoaled, filtered,

[^103] see ref 3 .
and made acidic (3 NHCl). 3 was collected and recrystallized from glacial acetic acid (300 ml), $30.4 \mathrm{~g}(61 \%), \mathrm{mp} \mathrm{186-194}{ }^{\circ}$ (lit. ${ }^{4} \mathrm{mp}$ 192-194 ${ }^{\circ}$).

1 and 3-Chlorothioxanthen-9-one (2).-Compound 3 (16.3 g, 0.061 mol) was suspended in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(50 \mathrm{ml})$ and stirred at ambient temperatures for 2 hr . The reaction mixture was poured into an ice-water mixture (300 ml) and the crude products were collected by filtration, $15.2 \mathrm{~g}(100 \%), \mathrm{mp} 150-$ 165°. Vpc analysis of this mixture showed it to be a $52: 48$ mixture of 1 and $2 .{ }^{\circ}$ Pure 2 was also prepared by an unambiguous synthesis. ${ }^{4}$ A portion of the above mixture was recrystallized several times from isopropyl alcohol to yield 2, mp 171-173 ${ }^{\circ}$ (lit. ${ }^{4} \mathrm{mp} 176^{\circ}$).

1-\{[2-(Diethylamino)ethyl]methylamino \}thioxanthen-9-one (8).-Compound $1(5.0 \mathrm{~g}, 0.020 \mathrm{~mol}), N, N$-diethyl- N^{\prime}-methylethylenediamine ($3.26 \mathrm{~g}, 0.025 \mathrm{~mol}$), and pyridine (15 ml) were refluxed for 36 hr . The solvents were removed under reduced pressure and the residue was dissolved in 10% aqueous acetic acid $(40.0 \mathrm{ml})$, charcoaled, filtered, and extracted with methylene dichloride $(40.0 \mathrm{ml})$. The aqueous layer was made basic with 35% aqueous NaOH solution (15.0 ml) and extracted with methylene dichloride (300 ml). The organic layer was dried, filtered, and concentrated to an oil, $3.41 \mathrm{~g}(50 \%)$. This oil was converted to its dihydrochloride and recrystallized from acetonitrile: $1.10 \mathrm{~g} ; \mathrm{mp} 160.5-161.0^{\circ}$; uv $\max (\mathrm{EtOH}) 262 \mathrm{~m} \mu$ (log $\epsilon 4.54), 315$ (3.61), 322 sh (3.60), 375 (3.42), 428 (3.56); ir $\left(\mathrm{CHCl}_{3}\right) 1605 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.65-9.00[\mathrm{~m}, 7$, aromatic H), 5.13 ($\mathrm{s}, 2$, exchanged H 's $), 4.58\left(\mathrm{~m}, 2, \mathrm{NCH}_{2}\right), 3.87$ $\left(\mathrm{s}, 3, \mathrm{NCH}_{3}\right), 3.33-4.08\left(\mathrm{~m}, 6,3 \mathrm{NCH}_{2}\right), 1.70\left(\mathrm{t}, 6,2 \mathrm{NCH}_{3}\right)$.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 58.10 ; \mathrm{H}, 6.33 ; \mathrm{N}, 6.77$; S,7.75. Found: C, 57.65; H, 6.37; N, 7.04; S, 7.63.
Compound 8 could also be prepared from a mixture of 1 and 2 using the procedure described above, partitioning the inreacted 2 and 8 between an organic layer (chloroform) and aqueous acetic acid. This also provides a useful synthesis for pure 3-chlorothioxanthen-9-one (2).
1-\{[2-(Diethylamino)ethyl]amino \}thioxanthen-9-one (11).Compound 11 was prepared from a mixture of 1 and 2 asing the general procedure outlined in the synthesis of 8 . Thus a mixture ($26 \mathrm{~g}, 0.10 \mathrm{~mol}$) of 1 and 2 yielded $15 \mathrm{~g}(88.5 \%$ from 1$)$ of 11 as yellow plates when recrystallized from ethanol, $\mathrm{mp} \mathrm{83-85}^{\circ}$, ir (KBr) $1605 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 69.89 ; \mathrm{H}, 6.79 ; \mathrm{N}, 8.58$. Found: C, 69.83; H, 6.84; N, 8.28.

1-\{[2-(Diethylamino)ethyl] methylamino \}-9-oxothioxanthene-4carboxaldehyde (9).-Compound $8(10 \mathrm{~g}, 0.029 \mathrm{~mol})$ was dissolved in DMF (70 ml), and phosphorus oxychloride $(5.5 \mathrm{ml}$, 0.06 mol) was slowly added as the temperature rose to 55°. The reaction mixture was heated on a steam bath for 1 hr , cooled, and poured into ice water $(200 \mathrm{ml})$. The mixture was made basic with 35% aqueous sodium hydroxide (30 ml) and extracted with chloroform (300 ml) to yield 9 isolated as its hydrochloride: 7.4 g (63%); mp 202-204 ${ }^{\circ}$; uv max (EtOH) $256 \mathrm{~m} \mu$ ($\log \epsilon 4.39$), 272 sh (4.21), 301 (4.15), 333 (4.20), 415 (3.83); ir (KBr) $1655 \mathrm{~cm}^{-1}$ $(\mathrm{HC=}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{O}) ; \mathrm{nmr}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 9.30(\mathrm{~s}, 1, \mathrm{CHO}), 5.65-8.35$ $(\mathrm{m}, 6$, aromatic H$), 5.18(\mathrm{~s}, 1$, exchanged H$), 3.33-4.83(\mathrm{~m}, 8,4$ $\left.\mathrm{NCH}_{2}\right), 2.95\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 1.71\left(\mathrm{t}, 6,2 \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, 62.28; $\mathrm{H}, 6.22 ; \mathrm{N}, 6.91$. Found: C, 62.25; H, 6.22; N, 7.00.

1-\{ [2-(Diethylamino)ethyl] amino \}-9-oxothioxanthene-4-carboxyaldehyde (10).-Compound $9(5.4 \mathrm{~g}, 0.013 \mathrm{~mol}$), as its hydrochloride, was heated in pyridine hydrochloride ($25 \mathrm{~g}, 0.216$ mol) at 140° for 1 hr and then treated with $\mathrm{H}_{2} \mathrm{O}$ and n ade basic with 35% aqueous sodium hydroxide. Extraction with ether yielded 10, which was recrystallized from isopropyl acetate (50 ml), $3.85 \mathrm{~g}\left(91 \%\right.$), mp 118-120 ${ }^{\circ}$ (lit. ${ }^{3} \mathrm{mp} 119.4-120.6^{\circ}$;

1-\{ [2-(Diethylamino)ethyl] amino \}-4-(hydroxymethyl)thio-xanthen-9-one, Hycanthone (7). -The aldehyde $10(3.80 \mathrm{~g}, 12$ mmol) was dissolved in methanol (50 ml) and treated with sufficient sodium borohydride at room temperature to reduce 10 to 7 as evidenced by tlc examination. (Plates were sprayed with a solution of 2,4-dinitrophenylhydrazine and the addition of sodium borohydride was terminated when no aldehyde was evident.) Methanol was removed and the residue was taken up in benzene and washed with water until the pH was 3.0. The benzene solution was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to a yellow solid which was recrystallized from isopropyl acetate (45

[^104] and packed with $3 \% \mathrm{OV}-1$ as the stationary phase.
ml). Hycanthone was collected as yellow prisms: 2.71 g (71%); mp $95-98^{\circ}$ (lit. ${ }^{3} \mathrm{mp} 101-102.5^{\circ}$); uv max (EtOH) 223 $\mathrm{m} \mu$ ($\log \in 4.27$), 234 (4.35), 257 (4.65), 331 (3.93), 441 (3.91); ir (KBr) $1600 \mathrm{~cm}^{-1}(\mathrm{C}=0) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 10.1(\mathrm{t}, \mathrm{l}, \mathrm{NH}), 8.40$ ($\mathrm{m}, 1$, peri H), $7.30(\mathrm{~m}, 4$, aromatic H$), 6.30(\mathrm{~d}, 1$, aromatic H$)$, $4.60\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{O}\right), 3.76(\mathrm{~s}, 1, \mathrm{OH}), 2.33-3.50\left(\mathrm{~m}, 8,4 \mathrm{NCH}_{2}\right), 1.08$ (t, 6, $2 \mathrm{CH}_{3}$).
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 67.38 ; \mathrm{H}, 6.78 ; \mathrm{N}, 7.85$; S, 8.99. Found: C, $67.20 ; \mathrm{H}, 6.76 ; \mathrm{N}, 7.85 ; \mathrm{S}, 9.05$.

Registry No.-1, 38605-72-0; 2, 6469-87-0; 3, 13420-58-1; 5, 38615-62-2; 7, 3105-97-3; 8, 38615-64-4; $82 \mathrm{HCl}, 38615-65-5$; 9, 38615-66-6; $9 \mathrm{HCl}, 38615-67-7$; 10, 3613-13-6; 11, 32484-50-7; thiophenol, 108-98-5; 2,6-dichlorobenzonitrile, 1194-65-6; thiosalicylic acid, 147-93-3; m-bromochlorobenzene, 106-37-2; N, N -diethyl- N^{\prime}-methylethylenediamine, 104-79-0.

Acknowledgments. - The authors wish to express appreciation to our associates, Drs. R. Kullnig and S. Clemans and their coworkers, for the spectroscopic data reported in this paper.

Synthesis of Aminobenzofurans and Aminonaphtho[1,2-b]furans

C. K. Tseng,* R. A. Simone, and F. H. Walker

Stauffer Chemical Company, Western Research Center, Richmond, California 94804

Received November 17, 1972
The synthesis of benzofurans and naphthofurans by the ring closure of α-aryloxy carbonyl compounds and their corresponding acetals has been well documented. ${ }^{1}$ However, the ring closure of α-aryloxyamides has not been presented. We wish to report a new synthesis of aminonaphtho[1,2-b]furan (2) and aminobenzofurans (4) by a cyclodehydration of aryloxyamides. ${ }^{2,3}$ When N, N-diethyl-2-(1-naphthyloxy)propionamide (1) was treated with phosphorus oxychloride, compound 2 was isolated in 90% yield. The mass spectrum of 2 gave a

[^105]molecular ion at $m / e 253$ which is equivalent to a loss of water from 1. The ir spectrum of 2 showed no carbonyl group. The nmr spectrum of 2 showed a sharp singlet at $\delta 2.50 \mathrm{ppm}$ corresponding to a methyl group, and the aromatic protons were reduced from seven to six protons. From a comparison of the aromatic region of the nmr spectra of 1 ($\hat{o} 6.72-8.40 \mathrm{ppm}$) and 2 ($\delta 7.22-$ 8.35 ppm), it is obvious that the proton at the 2 position was replaced. ${ }^{4}$ These spectral data suggest 2 to be 2-methyl-3-(N, N-diethylamino) naphtho [1,2-b]furan. Similarly, the reaction of aryloxyamides 3 gave benzofurans 4.

The reaction is believed to involve an electrophilic attack by the carbonyl carbon at a position ortho to the ether group. Attempts were made to use phosphorus pentoxide, zinc chloride, and polyphosphoric acid as dehydrating agents, but the yield was poor.

Experimental Section

The nmr spectra were obtained on a Varian HA-60-IL spectrometer in deuteriochloroform solution with tetramethylsilane as an internal reference. The mass spectra were measured on a Varian MAT CH-5 spectrometer. Melting points are uncorrected. Elemental analyses were performed on a Perkin-Elmer 240 Elemental Analyzer.
Preparation of α-Aryloxyamides. General Procedure.-The α-aryloxy acids were prepared from the corresponding phenol or naphthol and the α-halo acid according to the procedure of Koelsch. ${ }^{5}$ The α-aryloxy acids were converted to their corresponding acid chlorides by reaction with phosgene at 50° in toluene using 0.1 mol of dimethylformamide per 1 mol of acid. After HCl evolution ceased, excess phosgene was removed by purging with dry nitrogen. The α-aryloxyamides were prepared by addition of the acid chloride solution to a mixture of diethylamine and triethylamine (each in 10% excess) in toluene at $10-$ 15°. After complete acid chloride addition, the solution was stirred at 45° for 1 hr . Upon cooling, the reaction mixture was washed successively with $2 \% \mathrm{HCl}$ solution and water. The organic phase was dried over anhydrous magnesium sulfate and then evaporated to obtain α-aryloxyamides. Compounds 1 , 3 a , and 3 b prepared in this method are listed in Table I.

Table I
Preparation of α-Aryloxyamides ${ }^{a}$

Compd	Yield, $\%$	Mp or $\mathrm{bp},{ }^{\circ} \mathrm{C}(\mathrm{mm})$
$\mathbf{1}$	98	$78-79$
3a	82	$63.5-64.5$
3b	84	$133-135$
		(0.06)

${ }^{a}$ Satisfactory analytical values ($\pm 0.35 \%$ for C, H) were reported for $\mathbf{1 , 3 a}$, and $\mathbf{3}$ b.

Preparation of Aminobenzofurans and Aminonaphtho[1,2-b]furans. General Procedure.-The aryloxyamide (0.05 mol) and phosphorus oxychloride (0.15 mol) in 50 ml of toluene were refluxed for 5 hr . The resulting reaction mixture was quenched in cold water $\left(15-20^{\circ}\right)$ and then treated with 100 ml of 5% sodium carbonate solution. The toluene layer was separated, dried over anhydrous magnesium sulfate, and then evaporated to obtain an oil which was either distilled under reduced pressure or purified by tlc.

2-Methyl-3-(N, N-diethylamino)naphtho[1,2-b|furan (2) had nmr spectrum $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{t}, 6 \mathrm{H}$, methyl), $2.50(\mathrm{~s}, 3 \mathrm{H}$, methyl), 3.15 ($\mathrm{q}, 4 \mathrm{H}$, methylene), and $7.22-8.35$ ($\mathrm{m}, 6 \mathrm{H}$, aromatic); mass spectrum $m / e 253$ (parent ion); picrate (ethanol) $m p 154-155^{\circ}$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8}$: $\mathrm{C}, 57.26 ; \mathrm{H}, 4.56 ; \mathrm{N}, 11.62$. Found: C, 57.34; H, 4.52; N, 11.60.

[^106]2-Ethyl-3-(N, N-diethylamino)-4,6-dichlorobenzofuran (4a) had nmr spectrum $\left(\mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{t}, 6 \mathrm{H}$, methyl), $1.25(\mathrm{t}, 3 \mathrm{H}$, methyl), 2.79 ($q, 2 \mathrm{H}$, methylene), 3.08 ($\mathrm{q}, 4 \mathrm{H}$, methylene), 7.18 (d, 1 H , aromatic), and 7.28 (d, 1 H , aromatic); picrate (ethanol) mp 148.5-149.5 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Cl}_{2}$: C, $46.60 ; \mathrm{H}, 3.88 ; \mathrm{N}$, 10.87. Found: $\mathrm{C}, 46.30 ; \mathrm{H}, 3.81$; $\mathrm{N}, 10.72$.

2-Ethyl-3-(N, N-diethylamino)-5,7-dichlorobenzofuran (4b) had nmr spectrum $\left(\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, 6 \mathrm{H}$, methyl), $1.24(\mathrm{t}, 3 \mathrm{H}$, methyl), 2.77 (q, 2 H , methylene), 3.03 ($\mathrm{q}, 4 \mathrm{H}$, methylene), 7.17 (d, 1 H , aromatic), and $7.40(\mathrm{~d}, 1 \mathrm{H}$, aromatic); picrate (ethanol) mp 172-173 ${ }^{\circ}$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Cl}_{2}$: $\mathrm{C}, 46.60 ; \mathrm{H}, 3.88 ; \mathrm{N}$, 10.87. Found: C, 46.15; H,3.87; N, 10.68.

Registry No.-1, 15299-99-7; 2, 38740-02-2; 2 picrate, 38740-03-3; 3a, 38740-04-4; 3b, 38740-05-5; 4a, 38740-06-6; 4a picrate, 38740-07-7; 4b, 38740-08-8; 4b picrate, 38740-09-9.

Reexamination of the Claisen-Schmidt Condensation of Phenylacetone with Aromatic Aldehydes ${ }^{1}$

Stephen A. Fine* and Philip D. Pulaski
Department of Chemistry, Lafayette College, Easton, Pennsylvania 18042

Received October 10, 1972
Although the base-catalyzed reaction of aldehydes with ketones of the type $\mathrm{RCH}_{2} \mathrm{COCH}_{3}$ can, in principle, occur with two possible orientations (Scheme I) the

condensation of aromatic aldehydes with such ketones usually occurs at the methyl group. ${ }^{2}$ It has been

[^107]shown ${ }^{3-6}$ that the rate-determining step in reactions of this type involves the condensation process, namely, attack by an enolate ion of IV at the carbonyl group of I. In basic solution methyl- n-alkyl ketones form approximately equal amounts of the two isomeric enolates while branched alkyl groups favor the less highly substituted enolate; ${ }^{7}$ hence a mixture of both unsaturated ketones, III and VI, would be expected from the base-catalyzed condensations of the ketones IV with aldehydes. Because this is not the case, the product-determining step is believed to involve large rate differences in the competing dehydrations of the intermediate ketols, II and V. For example, the reaction of 2-butanone (IVb) with benzaldehyde affords the unsaturated ketone IIIb exclusively. ${ }^{4,5}$ Independent synthesis of ketols IIb and Vb followed by treatment with base revealed that Vb retrogressed to reactants ${ }^{5}$ while both dehydration and retrogression occurred with IIb. ${ }^{4,5}$ The exclusive formation of methyl condensation products is usually observed only when reaction conditions are vigorous enough to cause dehydration of the intermediate ketols. Under milder conditions ketols II and V can both be isolated in reactions of aromatic aldehydes with 2 -butanone. ${ }^{5,8,9}$ The preferential cleavage of type V ketols to reactants has been attributed to steric hindrance to dehydration imposed by bulky R groups. ${ }^{4,5,10,11}$

A reaction frequently cited ${ }^{12,13}$ as involving exclusive methyl condensation is the hydroxide-catalyzed condensation of phenylacetone (IIId) with benzaldehyde; ${ }^{14,15}$ substituted benzaldehydes have also been reported to afford unsaturated ketones corresponding to methyl condensation only. ${ }^{16}$ Since the more highly substituted enolate of phenylacetone is strongly favored in basic solution ${ }^{7}$ these results have prompted the belief ${ }^{12,13}$ that ketol Vd must undergo retrogression in preference to dehydration.

We have examined the base-catalyzed reaction of phenylacetone with several aromatic aldehydes under similar conditions to those reported previously and have quantitatively determined the components of the crude products using gle and nmr analysis. In every reaction but one, unsaturated ketones corresponding to both possible modes of condensation were produced. The results are shown in Table I. ${ }^{17}$ The relative mole ratios of III:VI were determined by glc analysis, using pure samples of the unsaturated ketones as standards. Samples of VI were prepared independently by the piperidine-catalyzed condensa-
(3) J. D. Gettler and L. P. Hammett, J. Amer. Chem. Soc., 65, 1824 (1943).
(4) D. S. Noyce and W. L. Reed, J. Amer. Chem. Soc., 81, 624 (1959).
(5) M. Stiles, D. Wolf, and G. V. Hudson, J. Amer. Chem. Soc., 81, 628 (1959).
(6) P. L. Nayak and M. K. Rout, J. Indian Chem. Soc., 47, 807 (1970).
(7) H. O. House and V. Kramar, J. Org. Chem., 28, 3362 (1963).
(8) I. Kasiwagi, Bull. Chem. Soc. Jap., 2, 310 (1927).
(9) H. Midorikawa, Bull. Chem. Soc. Jap., 27, 131 (1954).
(10) M. R. F. Ashworth and J. E. Dubois, Bull. Soc. Chim. Fr., 147 (1955).
(11) C. S. Rondestvedt and M. E. Rowley, J. Amer. Chem. Soc., 78, 3804 (1956).
(12) Reference 2, p 35.
(13) H. O. House, "Modern Synthetic Reactions," W. A. Benjamin, New York, N. Y., 1965, p 222.
(14) P. L. Southwick, L. A. Pursglove, and P. Numerof, J. Amer. Chem. Soc., 72, 1604 (1950).
(15) G. Goldschmiedt and H. Krczmar, Monatsh. Chem., 22, 659 (1901). (16) G. Goldschmiedt and H. Krczmar, Monatsh. Chem., 749 (1901).
(17) See Experimental Section.

Table I
Base-Catalyzed Reaction of Phenylacetone with Substituted Benzaldehydes, p - $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CHO}$

Registry

no.
$100-52-7$
104-87-0

123-11-5
104-88-1
555-16-8

Reaction
temp,
${ }^{\circ} \mathrm{C}$

65
65
65
80
65
80
65
Various ${ }^{\text {b }}$

Reaction
time,
hr

18
18
24
18
24
18

Various ${ }^{\text {b }}$
a Determined by glc and nmr analysis, as detailed in Experimental Section.

	Yield of Total yield a		
Relative mole			
ratio III: VI		\quad	Y VI,
:---:			
isolated III,	,		

${ }^{\text {b }}$ Reference 17.
tion of phenylacetone with the appropriate aromatic aldehyde, a procedure which has previously been found to produce condensation at the methylene group ${ }^{18-20}$ and subsequent formation of the cis-diaryl alkene when R is phenyl. ${ }^{18,21}$ Work-up of the hydroxidecatalyzed reaction mixtures afforded pure samples of III, invariably the major product of these reactions. The structures of all products were verified via nmr and ir, as well as elemental analysis for new compounds.

The results show no significant variation in the relative yields of the isomeric ketones with changes in aldehyde structure, the relative mole ratio of III to VI being approximately $9: 1$ for four of the five aldehydes. Increasing the temperature in two of the reactions also caused no significant change in relative product yields. In other reactions of aldehydes with methyl alkyl ketones higher temperatures have been found to favor methyl condensation. ${ }^{22}$ Apparently, base-catalyzed dehydration of V relative to II is more favorable when R is phenyl than when R is methyl, a conclusion which suggests that electronic effects play a role in the dehydration step along with steric effects. In particular the transition states in the dehydration of ketols Vd-h are stabilized more when $\mathrm{R}=$ phenyl than when $\mathrm{R}=\mathrm{CH}_{3}$; no such difference in transition state stabilities is expected in the dehydration of ketols IId--h. ${ }^{23}$ As a result, the ratio of rate constants $k_{\mathrm{V} \rightarrow \mathrm{VI}} / k_{\mathrm{II} \rightarrow \text { III }}$ should increase with a change in R from methyl to phenyl. Competing with this favorable electronic effect is unfavorable steric interference from the phenyl group in Vd-h, a factor absent in ketols IId-h. ${ }^{24}$

The independence of relative yields of III:VI to the para substituent, \mathbf{X}, is probably an indication that any electronic effects caused by variations in X are exerted to the same extent on the dehydration and retrogression steps of both ketols II and V. It is relevant that ketols Va and Vc exhibited nearly identical ratios of dealdolization to dehydration on treatment with dilute $\mathrm{NaOH} .{ }^{4}$ The rates of both reactions were larger for the p-methoxy compound, which was attributed to the fact that both dealdolization and
(18) H. E. Zimmerman, L. Singer, and B. S. Thyagarajan, J. Amer. Chem. Soc., 81, 108 (1959).
(19) R. Dickinson, J. Chem. Soc., 2234 (1926).
(20) I. M. Heilbron and F. Irving, J. Chem. Soc., 931,936 (1929).
(21) R. A. Abramovitch and A. Obach, Can. J. Chem., 87, 502 (1959).
(22) Reference 2, p 77.
(23) This conclusion would be valid for either an E2 or an E1cb transition state.
(24) It is also likely, although the consequences are uncertain, that the location of the phenyl group in V would stabilize the enolate in which dehydration occurs, namely $p-\mathrm{XC}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)=\mathrm{COCH}_{2}{ }^{-}$. In contrast. the favored enolate of II, $p-\mathrm{XC}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CO}=\mathrm{CHC}_{6} \mathrm{H}_{5}{ }^{-}$is not the one in which dehydration can occur.
dehydration lead to more effectively resonance-stabilized products when X is p-methoxy than when X is hydrogen.

Experimental Section ${ }^{25}$

A. Synthesis of 1-(p-X-Phenyl)-2-phenyl-1-buten-3-ones. 1,-2-Diphenyl-1-buten-3-one (VId) was prepared by the method of Zimmerman, et al. $:^{18}$ bp $127-132^{\circ}(0.6 \mathrm{~mm})$; mp $54-55^{\circ}$ (lit. ${ }^{18}$ $\operatorname{mp} 55-56^{\circ}$); nmr $\delta 7.56(\mathrm{~s}, 1,-\mathrm{CH}=), 7.1(\mathrm{~m}, 10$, aryl H), 2.22 ($\mathrm{s}, 3, \mathrm{CH}_{3}$).

1-p-Tolyl-2-phenyl-1-buten-3-one (VIe).-A mixture of phenylacetone ($15.6 \mathrm{~g}, 0.116 \mathrm{~mol}$), p-tolualdehyde ($13.9 \mathrm{~g}, 0.116 \mathrm{~mol}$), and piperidine (0.24 g) in 80 ml of dry benzene was refluxed for 19 hr using a Dean-Stark trap. Evaporation of solvent under reduced pressure followed by vacuum distillation gave 16.9 g (62%) of light yellow oil, bp $140-145^{\circ}$ (0.5 mm), which solidified on standing. Recrystallization from petroleum ether (bp 60$110^{\circ}$) afforded white needles: $\mathrm{mp} 64-65^{\circ}$; ir $16.5 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; $\mathrm{nmr} \delta 7.62(\mathrm{~s}, 1,-\mathrm{CH}=), 7.2(\mathrm{~m}, 9$, aryl H$), 2.26\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right)$, $2.20\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 86.40 ; \mathrm{H}, 6.82$. Found: C, $86.55 ; \mathrm{H}, 6.94$.

1-p-Methoxyphenyl-2-phenyl-1-buten-3-one (VIf) was prepared by the same method as VIe from p-anisaldehyde (15.6 g , 0.116 mol) with a $24-\mathrm{hr}$ reflux period. Vacuum distillation of crude product gave $15.5 \mathrm{~g}(53 \%)$ of viscous yellow oil, bp 159$164^{\circ}(0.6 \mathrm{~mm})$ [lit. ${ }^{26} \mathrm{bp} 218-220^{\circ}(8-10 \mathrm{~mm})$], which gradually crystallized on refrigeration. Recrystallization from petroleum ether (bp 38-50 ${ }^{\circ}$) afforded white needles: $\mathrm{mp} 61-63^{\circ}$ (lit. ${ }^{24} \mathrm{mp}$ $\left.63-64^{\circ}\right)$; ir $1658 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; $\mathrm{nmr} \delta 7.60(\mathrm{~s}, 1,-\mathrm{CH}=), 7.0$ (m, 9, aryl H), $3.66\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 2.24\left(\mathrm{~s}, 3, \mathrm{COCH}_{3}\right)$.

1-p-Chlorophenyl-2-phenyl-1-buten-3-one (VIg) was prepared by the same method as VIe from p-chlorobenzaldehyde $(16.3 \mathrm{~g}$, 0.116 mol). The crude product, a solid, was recrystallized from ethanol, affording light tan needles $(16.8 \mathrm{~g}, 56 \%)$: mp 125$126.5^{\circ}$; ir $1660 \mathrm{~cm}^{-1}(\mathrm{C=})$) $\mathrm{nmr} \delta 7.56(\mathrm{~s}, 1,-\mathrm{CH}=), 7.2$ ($\mathrm{m}, 9$, aryl H), $2.27\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right.$).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClO}: \mathrm{C}, 74.86 ; \mathrm{H}, 5.10 ; \mathrm{Cl}, 13.81$. Found: C, 74.86; H,5.25; Cl, 13.65.

1- p-Nitrophenyl-2-phenyl-1-buten-3-one (VIh) was prepared from p-nitrobenzaldehyde $(8.76 \mathrm{~g}, 0.058 \mathrm{~mol})$, phenylacetone $(7.78 \mathrm{~g}, 0.058 \mathrm{~mol})$, piperidine $(0.14 \mathrm{ml})$, and hexanoic acid $(0.07 \mathrm{ml})$ in dry benzene $(40 \mathrm{ml})$. After 18 hr more piperidine $(0.18 \mathrm{ml})$ was added and the solution was refluxed for 20 hr longer. The crude product was vacuum distilled and the fraction with bp $184-195^{\circ}(0.7 \mathrm{~mm})$ was collected as an orange oil (3.7 g , 24%) which rapidly solidified. Recrystallization from ethanol and then from petroleum ether ($\mathrm{bp} 60-110^{\circ}$) gave yellow leaflets: $\mathrm{mp} 110-112^{\circ}$; ir $1668 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; $\mathrm{nmr} \delta 8.0$ and $7.3(\mathrm{~m}, \sim 9$, $\operatorname{aryl} \mathrm{H}), 7.61(\mathrm{~s}, 1,-\mathrm{CH}=), 2.31\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$: $\mathrm{C}, 71.90 ; \mathrm{H}, 4.90 ; \mathrm{N}, 5.24$. Found: C, 72.11; H,5.06; N, 4.97.

[^108]B. Base-Catalyzed Reactions of Phenylacetone with ParaSubstituted Benzaldehydes. Reaction of Phenylacetone with Benzaldehyde.-Phenylacetone ($24.9 \mathrm{~g}, 0.186 \mathrm{~mol}$) and benzaldehyde ($19.7 \mathrm{~g}, 0.186 \mathrm{~mol}$) were added to a rapidly mechanically stirred solution of $\mathrm{NaOH}(1.50 \mathrm{~g})$ in water (800 ml) at 65°. After 18 hr the mixture was cooled to room temperature and extracted with five $100-\mathrm{ml}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent was evaporated under reduced pressure. A small sample of the crude product was set aside for glc and nmr analysis. The remainder of the product was recrystallized from methanol, affording 18.2 g (44%) of trans-1,4-diphenyl-3-buten-2-one (IIId): mp 72-75 ${ }^{\circ}$ (lit. ${ }^{27}$ $\left.\mathrm{mp} 73-76^{\circ}\right)$; nmr $\delta 7.57(\mathrm{~d}, 1, J=16 \mathrm{~Hz})$ and $6.70(\mathrm{~d}, 1, J=16$ Hz) (trans $\mathrm{CH}=\mathrm{CH}), 7.3(\mathrm{~m}, 10$, aryl H$), 3.82\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right)$.

Glc analysis of the crude product showed a relative yield of 91:9 of IIId:VId; glc and nmr analysis ${ }^{28}$ showed a total yield of 92% for IIId + VId. ${ }^{28}$

Reaction of Phenylacetone with p-Tolualdehyde.-The same procedure as with benzaldehyde was followed. Washing of the crude product with petroleum ether ($\mathrm{bp} 20-40^{\circ}$) and recrystallization from ethanol afforded $8.2 \mathrm{~g}(19 \%)$ of trans-1-phenyl-4- $(p$ -tolyl)-3-buten-2-one (IIIe): $\mathrm{mp} 112.5-114^{\circ}$ (lit. ${ }^{16} \mathrm{mp} 115^{\circ}$); $\mathrm{nmr} \delta 7.57(\mathrm{~d}, 1, J=16 \mathrm{~Hz})$ and $6.66(\mathrm{~d}, 1, J=16 \mathrm{~Hz})$ (trans $\mathrm{CH}=\mathrm{CH}), 7.2(\mathrm{~m}, \sim 9$, aryl H$), 3.84\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right), 2.26(\mathrm{~s}, 3$, CH_{3}). Repetition of the reaction at 80° for 24 hr increased the yield to $21.9 \mathrm{~g}(50 \%)$.

Glc and nmr analysis of the crude products, as above, showed a relative yield of $92: 8$ for IIIe:VIe for the 65° reaction and $90: 10$ for the 80° reaction. A total yield (IIIe + VIe) of 88% was found in the latter reaction.

Reaction of Phenylacetone with p-Anisaldehyde.-The standard procedure was followed. Trituration of the crude product with cold ether and filtration afforded $11.2 \mathrm{~g}(24 \%)$ of trans-4(p-anisyl)-1-phenyl-3-buten-2-one (IIIf): mp $98-100^{\circ}$ (lit. ${ }^{16}$ $\left.\operatorname{mp} 98-100^{\circ}\right)$; nmr $\delta 7.58(\mathrm{~d}, 1, J=16 \mathrm{~Hz})$ and $6.62(\mathrm{~d}, 1, J=$ $16 \mathrm{~Hz})($ trans $\mathrm{CH}=\mathrm{CH}), 7.25\left(\mathrm{~m}, \sim 9\right.$, aryl H), $3.87\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right)$, 3.72 (s, $3, \mathrm{OCH}_{3}$).

Glc and nmr analysis of the crude products showed relative yields of 90:10 for IIIf: VIf in both reactions. The total yield (IIIf + VIf) was 88% in the 80° reaction.

Reaction of Phenylacetone with p-Chlorobenzaldehyde.-The standard procedure was used. Two recrystallizations of the crude product from ethanol gave $11.4 \mathrm{~g}(24 \%)$ of trans-4-(p -chlorophenyl)-1-phenyl-3-buten-2-one (IIIg) as white crystals: mp 102-104 ${ }^{\circ}$; ir $1655 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 970$ (trans $\left.\mathrm{CH}=\mathrm{CH}\right)$; nmr $\delta 7.53(\mathrm{~d}, 1, J=16 \mathrm{~Hz})$ and $6.66(\mathrm{~d}, 1, J=16 \mathrm{~Hz})$ (trans $\mathrm{CH}=\mathrm{CH}), 7.27(\mathrm{~m}, 9, \operatorname{aryl} \mathrm{H}), 3.89\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClO}: \mathrm{C}, 74.85 ; \mathrm{H}, 5.10 ; \mathrm{Cl}, 13.81$. Found: C, 74.77; H,5.02; Cl, 13.80 .

Glc and nmr analysis of the crude product showed a ratio of IIIg:VIg of $87: 13$. A total yield (IIIg +VIg) of 68% was found.

Reaction of phenylacetone with p-nitrobenzaldehyde at temperatures varying from 50 to 75° and times of $6-24 \mathrm{hr}$ afforded eisher unreacted starting materials and/or a dark red glassy substance which could not be purified. Glc analysis of the crude products showed a trace of VIh but no products other than starting materials could be detected. ${ }^{30}$

[^109]Registry No.-IIId, 38661-84-6; IIIe, 38661-85-7; IIIf, 38661-86-8; IIIg, 37562-70-2; IVd, 103-79-7; VId, 38661-88-0; VIe, 38661-89-1; VIf, 13938-22-2; VIg, 38661-91-5; VIl, 8661-92-6.

A Reinvestigation of the Condensation of Aliphatic Ketones with Benzil

Thomas J. Clark
Department of Chemistry, California State University, Humboldt, Arcata, California 95521

Received November 7, 1972

An extensive investigation of the base-catalyzed condensation of acetone and other aliphatic ketones with benzil was carried out many years ago by Japp and his coworkers. ${ }^{1}$ The product from the reaction of acetone with benzil was proved to be 4 -hydroxy-3,4-diphenyl-2-cyclopenten-1-one (1). From the reaction of other aliphatic ketones with benzil, cyclopentenones bearing alkyl groups at C-2 or C-5 were obtained. The structures of these products, however, were not completely established. In the present study some of these products were reinvestigated, and their structures were determined using nmr spectroscopy.

The structure of 1 and that of 2 , which is produced from 3 -methyl-2-butanone, are unambiguous, and these compounds serve as models. In addition to signals for aromatic and hydroxylic hydrogens, the spectrum of 1 has a one-proton singlet at $\delta 6.66$ and an AB pattern $\left[\delta_{\mathrm{A}} 2.98, \delta_{\mathrm{B}} 2.84\left(J_{\mathrm{AB}}=19 \mathrm{~Hz}\right)\right]$. The spectrum of 2 has a one-proton singlet at $\delta 6.74$ and three-proton singlets at 1.32 and 0.64 . The substituents at C-4 cause these latter to be displaced from $\delta 1.03$, the reported position for the methyl hydrogen resonance of 5,5-dimethyl-2-cyclopenten-1-one. ${ }^{2}$ The methyl group cis to the phenyl group on C-4 lies in the region shielded by the aromatic ring, and this methyl group thus gives rise to the higher field peak. ${ }^{3}$

$$
\begin{aligned}
& \text { 1, } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H} \\
& \text { 2, } \mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH}_{3} \\
& \text { 3, } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{H} \\
& \text { 4, } \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{CH}_{\dot{j}} \mathrm{R}_{2}=\mathrm{H} \\
& \text { 5, } \mathrm{R}_{\mathrm{L}}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H} \\
& \text { 6, } \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{3} \\
& \text { 7, } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{CH}_{3}
\end{aligned}
$$

From the reaction of 3 -pentanone with benzil Japp and Meldrum obtained two products, one melting at 150° and the other at $128 .^{\circ}{ }^{1 \text { a }}$ They concluded
(1) (a) F. R. Japp and A. N. Meldrum, J. Chem. Soc., 79, 1024 (1901); (b) F. R. Japp and J. Knox, ibid., 87, 673 (1905); (c) F. R. Japp and A.C. Michie, ibid., 83, 276 (1903).
(2) T. Matsumato, H. Shirahama, A. Ichihara, H. Shin, S. Kagawa, N. Ito, T. Hisamitau, T. Kamada, and F. Sakan, Tetrahedrcn Lett., 4097 (1987).
(3) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry." 2nd ed, Pergamon Preas, Oxford, 1969, p 234.
that the product of higher melting point is a cyclopentenone bearing methyl groups at C-2 and C-5 and that the other product is an acyclic compound, 3 -methyl-1,2-diphenyl-2-hexene-1,4-dione. The nmr spectra of these compounds clearly show that the two are, in fact, diastereoisomeric. Each has a threeproton singlet near $\delta 2.0$ and a one-proton quartet and a three-proton doublet. The spectrum of the higher melting product has the doublet at $\delta 1.24$, and the compound is therefore 3 with the methyl group on C-5 trans to the phenyl group on C-4. The spectrum of the other isomer has the doublet at $\delta 0.74$, and the compound is therefore 4.

The compounds equilibrate under basic conditions, and the equilibrium mixture in ethanol contains very nearly equal amounts of the two. That the two are of nearly equal stability is surprising since one would expect steric interference of the methyl group with phenyl to be far more severe than interference of methyl with hydroxyl. A reasonable explanation is that clustering of solvent molecules about the hydroxyl group increases its apparent size. Although the equilibrium mixture contains nearly equal amounts of the two compounds, in preparative experiments 3 is produced in nearly quatitative yield because this more insoluble compound preferentially crystallizes from the basic solution.

Condensation of 2-butanone with benzil can give three different monomethyl-substituted products. When the reaction was carried out in dilute alcoholic potassium hydroxide, Japp and Meldrum obtained a product melting at 118° to which they assigned structure 5. ${ }^{1 \mathrm{a}, 4}$ The nmr spectrum clearly confirms the correctness of the assignment of structure. The spectrum has an easily exchangable one-proton singlet, a two-proton singlet at $\delta 2.96$ (accidentally equivalent methylene protons), and a three-proton singlet at $1.93 .{ }^{5 \mathrm{a}}$ From a heterogeneous reaction carried out in the presence of hot concentrated aqueous base, Japp and Meldrum obtained, in addition to 5, a compound melting at 180° and a small amount of a compound melting at $157^{\circ} .{ }^{1 \mathrm{a}}$ They concluded that the higher melting product is a cyclopentenone with a methyl group at C-5 and that the compound melting at 157° is 1,2-diphenyl-2-hexene-1,4-dione. The nmr spectra of the compounds show them to be diastereoisomeric. In addition to signals for aromatic and hydroxylic hydrogens, each has a oneproton singlet near $\delta 6.8$ and a one-proton quartet and a three-proton doublet. The doublet in the spectrum of the higher melting compound lies at $\delta 1.24$, and the compound is 6 . The doublet at $\delta 0.72$ in

[^110]the spectrum of the other compound proves it to be 7, the diastereomer of 6 .

In agreement with the properties of the related dimethyl compounds, an equilibrium mixture of 6 and 7 in ethanolic base contains appreciable amounts of both isomers, but the higher melting 6 preferentially crystallizes. Compounds 6 and 7 are not readily interconverted with the structurally isomeric 5. Compound 5 was unaffected by base, and appreciable conversion of a mixture of 6 and 7 to 5 was accomplished only by heating in $1 M$ ethanolic potassium hydroxide for an extended period during which extensive destruction of the compounds took place. Since these conditions are far more vigorous than those under which the three compounds are formed in the same reaction mixture, the production of the structurally isomeric compounds is the result of independent, rather than consecutive reactions.

The uv absorption maximum of those compounds which have hydrogen at C-2 occurs near 285 nm . The maximum lies near 275 nm for the compounds in which C-2 bears a methyl group. The explanation, given some years ago, for these observations is that the alkyl group interferes with the ability of the phenyl group on C-3 and the cyclopentenone ring to be coplanar. ${ }^{6}$

Experimental Section

All melting points are uncorrected. The nmr spectra were recorded on a Perkin-Elmer Model R12A instrument, and chemical shifts are reported in parts per million downfield from internal tetramethylsilane. The ir spectra were taken on a Perkin-Elmer Model 467 grating instrument, and uv spectra were recorded on a Cary 14 spectrophotometer.

The following compounds were prepared by published procedures. 4-Hydroxy-3,4-diphenyl-2-cyclopenten-1-one (1): mp 147-148 ${ }^{\circ}$ (lit. ${ }^{\text {lb }} \mathrm{mp} 149^{\circ}$); nmr (CDCl_{3}) $\delta 7.2-7.7(\mathrm{~m}, 10), 6.66$ $(\mathrm{s}, 1), 3.53(\mathrm{~s}, 1, \mathrm{OH}), 2.91\left(\mathrm{AB} \mathrm{q}, 2, \Delta_{\mathrm{AB}}=8 \mathrm{~Hz}, J_{\mathrm{AB}}=19 \mathrm{~Hz}\right)$; uv max $(95 \% \mathrm{EtOH}) 288 \mathrm{~nm}(\log \epsilon 4.26)$; ir $\left(\mathrm{CHCl}_{3}\right) 3600,3400$, 1725 (sh), $1695 \mathrm{~cm}^{-1}$. 4-Hydroxy-5,5-dimethyl-3,4-diphenyl-2-cyclopenten-1-one (2): mp 181-183 ${ }^{\circ}$ (lit. ${ }^{1 \mathrm{~s}} \mathrm{mp} \mathrm{181}{ }^{\circ}$); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.2-7.7(\mathrm{~m}, 10), 6.74(\mathrm{~s}, 1), 2.46(\mathrm{~s}, 1, \mathrm{OH}), 1.32(\mathrm{~s}, 3)$, $0.64(\mathrm{~s}, 3)$; uv $\max (95 \% \mathrm{EtOH}) 287 \mathrm{~nm}(\log \epsilon 4.29)$; ir $\left(\mathrm{CHCl}_{3}\right)$ $3610,3400,1705 \mathrm{~cm}^{-1} . \quad(4 S R, 5 S R)$-4-Hydroxy-2,5-dimethyl-3,4-diphenyl-2-cyclopenten-1-one (3): mp 150-151 ${ }^{\circ}$ (lit. ${ }^{5} \mathrm{mp}$ $\left.152-153^{\circ}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.1-7.5(\mathrm{~m}, 10), 2.71(\mathrm{q}, 1, J=7$ $\mathrm{Hz}), 2.32(\mathrm{~s}, 1, \mathrm{OH}), 1.98(\mathrm{~s}, 3), 1.24(\mathrm{~d}, 3, J=7 \mathrm{~Hz})$; uv max $(95 \% \mathrm{EtOH}) 275 \mathrm{~nm}(\log \epsilon 4.18)$; ir $\left(\mathrm{CHCl}_{3}\right) 3600,3400,1705$ $\mathrm{cm}^{-1} . \quad 4$-Hydroxy-2-methyl-3,4-diphenyl-2-cyclopenten-1-one (5): mp 116-118 ${ }^{\circ}$ (lit. ${ }^{1 \mathrm{~m}} \mathrm{mp} \mathrm{118}{ }^{\circ}$); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.0-7.5(\mathrm{~m}$, 10), $2.96(\mathrm{~s}, 2), 2.57(\mathrm{~s}, 1, \mathrm{OH}), 1.93(\mathrm{~s}, 3)$; uv $\max (95 \% \mathrm{EtOH})$ $276 \mathrm{~nm}(\log \epsilon 4.30)$; ir $\left(\mathrm{CHCl}_{3}\right) 3580,3400,1705 \mathrm{~cm}^{-1}$. (4 SR ,-5SR)-4-Hydroxy-5-methyl-3,4-diphenyl-2-cyclopenten-1-one (6): $\mathrm{mp} 182-183^{\circ}$ (lit. ${ }^{1 \mathrm{a}} \mathrm{mp} \mathrm{180}{ }^{\circ}$); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 7.2-7.7(\mathrm{~m}, 10)$, $6.74(\mathrm{~s}, 1), 2.68(\mathrm{q}, 1, J=7 \mathrm{~Hz}), 2.35(\mathrm{~s}, 1, \mathrm{OH}), 1.24(\mathrm{~d}, 3, J=$ 7 Hz); uv $\max (95 \% \mathrm{EtOH}) 286 \mathrm{~nm}(\log \in 4.32)$; ir $\left(\mathrm{CHCl}_{3}\right)$ 3600, 3400, $1705 \mathrm{~cm}^{-1}$.
Preparation of ($4 S R, 5 R S$)-4-Hydroxy-2,5-dimethyl-3,4-di-phenyl-2-cyclopenten-1-one (4).-To a warm solution of 6.3 g of 3 in 25 ml of ethanol was added a solution of 2.5 g of KOH in 10 ml of ethanol. After 15 min the solution was slowly added to 5 ml of acetic acid in 25 ml of ethanol, and 100 ml of water was slowly added to the resulting solution. The precipitated product, 5.7 g , a $3: 2$ mixture of 4 and 3, was filtered and dried. A portion of this product (0.69 g) was chromatographed on 50 g of silica gel. Elution by $1: 150$ ether-benzene gave 3 followed by a mixture of 3 and 4. The latter was recrystallized twice from carbon tetra-chloride-hexane to give 0.26 g of $4: \mathrm{mp} \mathrm{129-130}^{\circ}$ (lit. ${ }^{1 \mathrm{a}} \mathrm{mp}$ 128°); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.0-7.5(\mathrm{~m}, 10), 2.91(\mathrm{q}, 1, J=7 \mathrm{~Hz})$, $2.45(\mathrm{~s}, 1, \mathrm{OH}), 2.02(\mathrm{~s}, 3), 0.74(\mathrm{~d}, 3, J=7 \mathrm{~Hz})$; uv $\max (95 \%$ EtOH $) 274 \mathrm{~nm}(\log \epsilon 4.12)$; ir $\left(\mathrm{CHCl}_{3}\right) 3580,3400,1705 \mathrm{~cm}^{-1}$.
(6) P. Yates, N. Yoda, W. Brown, and B. Mann, J. Amer. Chem. Soc., 80, 202 (1958).

Preparation of ($4 S R, 5 R S$)-4-Hydroxy-5-methyl-3,4-diphenyl-2-cyclopenten-1-one (7).-By a procedure analogous to that used to prepare 4,6 was isomerized to give a $6: 5$ mixture of 7 and 6. Chromatography of 0.90 g of this mixture on 50 g of silica gel (elution with dilute ether in benzene mixtures) gave 0.24 g of 6 , followed by 0.36 g of a mixture of 6 and 7 , and finally 0.24 g of a 6:1 mixture of 7 and 6 . Four recrystallizations of the last from carbon tetrachloride gave 0.10 g of $7: \mathrm{mp} 159-160^{\circ}$ (lit. ${ }^{1 \mathrm{~s}} \mathrm{mp}$ 157°); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.2-7.7(\mathrm{~m}, 10), 6.77(\mathrm{~s}, 1), 2.92(\mathrm{q}, 1, J$ $=7 \mathrm{~Hz}$), 2.88 (s, 1, OH), $0.72(\mathrm{~d}, 3, J=7 \mathrm{~Hz}$); uv $\max (95 \%$ EtOH) $285 \mathrm{~nm}\left(\log \epsilon 4.29\right.$); ir $\left(\mathrm{CHCl}_{3}\right) 3600,3400,1705 \mathrm{~cm}^{-1}$.

Equilibration of 3 and 4 in Basic Solution.-A solution of 0.23 g of 3 in 15 ml of ethanol was heated under reflux with 0.05 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$. Aliquots were withdrawn at intervals and prepared for analysis by $n m r$ by precipitation in water, extraction into ether, and evaporation of the ether. An equilibrium mixture containing $52 \% 4$ and $48 \% 3$ was formed after 90 min of heating. An identical mixture was formed by heating a 3:2 mixture of 4 and 3 in ethanol with $\mathrm{K}_{2} \mathrm{CO}_{3}$. A mixture containing a somewhat greater proportion of 4 was formed by allowing a solution of 3 in ethanol containing KOH to stand at room temperature. In another experiment, upon allowing a warm solution of 7.5 g of a mixture of 3 and 4 in 30 ml of ethanol containing 0.1 g of KOH to cool slowly, 5.5 g of a $16: 1$ crystalline mixture of 3 and 4 was slowly deposited. Analysis of the supernatant liquid at intervals showed it continuously to contain an equilibrium mixture of 3 and 4.

Action of Base upon 5, 6, and 7.-A solution of 0.96 g of a mixture of 6 and 7 in 5 ml of 1 M ethanolic KOH was heated under reflux for 1 hr . The solution became very dark. After neutralization with acetic acid, the solution was poured into water, and the precipitated material was extracted into ether. The ether was evaporated, and 0.8 g of the residue was chromatographed on 45 g of neutral alumina (activity grade III). Eluted by benzene were 0.2 g of material, the ir spectrum of which lacked hydroxyl absorption, and 0.1 g of highly colored material. Eluted by $1: 10$ ether-benzene was 0.39 g of a mixture of 5,6 , and 7 which contained, according to analysis by $\mathrm{nmr}, 0.08 \mathrm{~g}$ of 5 . Other treatments of 5 and of mixtures of 6 and 7 did not effect interconversion of the structural isomers. Among the experiments in which no change was observed were treatment of 5 with boiling $1 M$ ethanolic KOH for 30 min , treatment of 5 with 0.1 M ethanolic KOH for 5 days, treatment of a mixture of 6 and 7 with 0.1 M ethanolic KOH for 5 days, and stirring, while heating under reflux, for 2 hr a heterogeneous mixture of 30% aqueous KOH and a solution of 6 and 7 in DME.

Registry No.-1, 5587-78-0; 2, 38661-94-8; 3, 38661-95-9; 4, 38661-96-0; 5, 38661-97-1; 6, 38661-98-2; 7, 38677-74-6; benzil, 134-81-6.

New Adducts of Hexafluoroacetone with Hydrogen Cyanide

William J. Middleton,* Diana Metzger, and David C. England

Contribution No. 1983 from the Central Research Department, E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898

Received November 7, 1972
Two adducts of hexafluoroacetone with hydrogen cyanide are known. A $1: 1$ adduct, hexafluoroacetone cyanohydrin (6), was prepared by the piperidinecatalyzed addition of hydrogen cyanide to the ketone, ${ }^{1}$ and a $2: 1$ adduct, 2,2,5,5-tetrakis(trifluoromethyl)4 -oxazolidinone (4), was prepared by reaction of hexafluoroacetone with sodium cyanide in acetonitrile. ${ }^{2}$
(1) I. L. Knunyants, E. M. Rokhlin, N. P. Gambaryan, Yu. A. Cheburkov and T-Y. Chen, Khim. Nauka Prom., 4, 802 (1959); Chem. Abstr., 54, 10851 (1958).
(2) W. J. Middleton and C. G. Krespan, J. Org. Chem., 32, 951 (1967).

We noted that large, transparent crystals separated from a sample of hexafluoroacetone cyanohydrin that had been standing for more than a year in a clear glass bottle at room temperature. Elemental and mass spectral analysis showed that these crystals are a new, 3:2 adduct of hexafluoroacetone with hydrogen cyanide.
The spiro structure 1 was assigned to this $3: 2$ adduct on the basis of infrared and nmr spectral analysis. The ${ }^{19} \mathrm{~F} \mathrm{nmr}$ showed six nonequivalent CF_{3} groups. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ showed two different absorptions of equal intensity that coalesced on warming, similar to the ${ }^{1} \mathrm{H} n \mathrm{nmr}$ spectrum of the closely analogous 4 -amino-2,2,5,5-tetrakis(trifluoromethyl)-3-oxazoline (2). ${ }^{3}$ The ir spectra of both 1 and 2 were also similar, with a band at 5.88μ for $\mathrm{C}=\mathrm{N}$.

1

2

Chemically, the spiro compound 1 was also similar to 2. Both compounds are stable to concentrated sulfuric acid at 100°, and both compounds are nitrated by fuming nitric acid in fuming sulfuric acid to form nitramines.

Attempts to prepare 1 under controlled conditions resulted in additional new adducts of hexafluoroacetone with hydrogen cyanide. A 3:1 adduct resulted when excess hexafluoroacetone was added to either hydrogen cyanide or the preformed cyanohydrin in the presence of basic catalyst at or below room temperature. The structure of this new adduct is believed to be the dioxolane 3 instead of the isomeric oxazoline 3a, because attempts to distil the adduct

3

3a
at atmospheric pressure decomposed it to hexafluoroacetone and hexafluoroacetone cyanohydrin. Thermal decomposition of 3a should result in hexafluoroacetone and 2,2,5,5-tetrakis(trifluoromethyl)-4-oxazolidinone, a compound known to possess high thermal stability. ${ }^{2}$ Although this new $3: 1$ adduct is somewhat thermally unstable, it can be distilled at reduced pressure. It can be dissolved in cold alkali and reprecipitated with acid, but warm alkali converts it to the cyanohydrin. Methylation of 3 with diazomethane gives a stable O-methyl ether. Reaction of 3 with sodium hydride followed by acidification gives the $2: 1$ adduct 4. Pyrolysis of $\mathbf{3}$ in the presence of a few drops of sulfuric acid gave a product that appeared to be a mixture of 3 and a new $2: 1$ adduct, 5. Evidence
(3) W. J. Middleton, D. Metzger, K. B. Cunningham, and C. G. Krespan, J. Heterocycl. Chem., 7, 1045 (1970).

for formation of 5 consists of a new band in the ir spectrum at 5.73μ, and two new absorptions in the ${ }^{19} \mathrm{~F}$ nmr spectrum not due to the other known adducts.
The $3: 2$ adduct 1 was eventually prepared in 40% yield by reaction of hexafluoroacetone cyanohydrin with excess hexafluoroacetone at 100° for 16 hr in the presence of an amine catalyst. Adduct 1 can also be prepared by adding trace amounts of amine to hexafluoroacetone cyanohydrin and allowing the equilibrating mixture to remain at room temperature for a prolonged period of time.
We believe that the very complex reactions of hexafluoroacetone with hydrogen cyanide to give the several different adducts ($1: 1$, two $2: 1,3: 1$, and $3: 2$) can be represented by the following reaction schemes (Scheme I and II). Note that the intermediate anion

7 is common to all higher adducts. Which path the reaction takes depends on the temperature and the relative concentrations of catalyst, ketone, and hydrogen cyanide. All the adducts except the very un-
stable 5 can be prepared in pure form as the major product.

Experimental Section

8-Amino-2,2,4,4,7,7-hexakis(trifluoromethyl)-9-aza-1,3,6-tri-oxaspiro[4.4]non-8-ene (1).-A mixture of 19.3 g (0.10 mol) of hexafluoroacetone cyanohydrin, ${ }^{1} 9.0 \mathrm{~g}(0.54 \mathrm{~mol})$ of hexafluoroacetone, and 0.5 g of 1,4-diazabicyclo[2.2.2]octane (catalyst) was heated for 16 hr at 100° in a $125-\mathrm{ml}$ Hastelloy-lined bomb. Excess hexafluoroacetone was allowed to evaporate and the residue was sublimed at 1 mm to give $10.9 \mathrm{~g}(40 \%)$ of 1 as a white, crystalline solid. Recrystallization from hexane gave the product as colorless prisms: mp 113-114 ${ }^{\circ}$; ir (KBr) 5.86μ; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO- d_{6} at 30°) $\delta 8.60$ (s) and $9.44 \mathrm{ppm}(\mathrm{s}) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d d_{6} at 50°) $\delta 9.12 \mathrm{ppm}$ (broad s); ${ }^{19} \mathrm{~F} \mathrm{nmr} \mathrm{(acetone)} \delta$ $-70.8\left(\mathrm{~A}_{3} \mathrm{~B}_{3}, 6 \mathrm{~F}\right),-73.5\left(\mathrm{~A}_{3} \mathrm{~B}_{3}, 6 \mathrm{~F}\right)$, and $-78.3 \mathrm{ppm}\left(\mathrm{A}_{3} \mathrm{~B}_{3}\right.$, 6 F).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{2} \mathrm{~F}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 23.93; H, 0.36; F, 61.94; N, 5.07; mol wt, 552. Found: C, 23.71; H, 0.24; F, 61.93; N, 5.04 ; mol wt, 552 (mass spectrum).

Nitration of 1.-Red fuming nitric acid, 7 ml , was added to a solution of $2.76 \mathrm{~g}(0.005 \mathrm{~mol})$ of 1 in 25 ml of fuming sulfuric acid $\left(20 \% \mathrm{SO}_{8}\right)$. The reaction mixture became warm. It was stirred for 5 min and then poured over ice. The white solid that formed was collected on a filter and recrystallized from benzene to give $1.70 \mathrm{~g}(58 \%)$ of 8-nitramino-2,2,4,4,7,7-hexakis(tri-fluoromethyl)-9-aza-1,3,6-trioxaspiro[4.4]non-8-ene (or tautomer) as colorless crystals: mp 43-44 ${ }^{\circ}$; ir (KBr) $2.95(\mathrm{NH})$ and $6.00 \mu(\mathrm{C}=\mathrm{N})$; uv (EtOH) $\lambda_{\text {max }} 288 \mathrm{~m} \mu(\epsilon 12,200)$; ${ }^{19} \mathrm{~F} \mathrm{nmr}$ $\left(\mathrm{CCl}_{3} \mathrm{~F}\right) \delta-71.3\left(\mathrm{~A}_{3} \mathrm{~B}_{3}, 6 \mathrm{~F}\right),-74.0\left(\mathrm{~A}_{3} \mathrm{~B}_{3}, 6 \mathrm{~F}\right)$, and -78.9 ppm ($\left.\mathrm{A}_{3} \mathrm{~B}_{3}, 6 \mathrm{~F}\right)$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{HF}_{18} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 22.12; H, 0.17; F, 57.27; N, 7.03; mol wt, 597. Found: C, 22.14 ; H, 0.43; F, 57.40; N, 6.87; mol wt, 597 (mass spectrum).

4-(1-Trifluoromethyl-1-hydroxy-2,2,2-trifluoroethylimino)-2,2,5,5-tetrakis(trifluoromethyl)-1,3-dioxolane (3). Method A. -Two drops of piperidine was added to a stirred mixture of $19.3 \mathrm{~g}(0.1 \mathrm{~mol})$ of hexafluoroacetone cyanohydrin and 33.2 g $(0.2 \mathrm{~mol})$ of hexafluoroacetone cooled to -30°. The mixture solidified and the temperature rose to 15° in about 3 sec . There was obtained a quantitative crude yield of 3 as a colorless oil. A sample was purified by first dissolving it in cold 5% sodium hydroxide, and then precipitating it by adding 10% hydrochloric acid. The product was extracted with $\mathrm{CCl}_{3} \mathrm{~F}$, and the extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and then evaporated to dryness to give 3 as a colorless, crystalline solid, $\mathrm{mp} 29-30^{\circ}$.

Method B.-A mixture of $42 \mathrm{~g}(0.27 \mathrm{~mol})$ of hexafluoroacetone, $4 \mathrm{ml}(0.1 \mathrm{~mol})$ of hydrogen cyanide, and a few crystals of potassium cyanide was sealed in a Carius tube at liquid nitrogen temperature. When the tube was warmed to room temperature and shaken, an exothermic reaction took place. Distillation gave $44 \mathrm{~g}(93 \%)$ of 3 as a colorless liquid, bp $58^{\circ}(20 \mathrm{~mm}), n^{25} \mathrm{D}$ 1.3022. A $6-\mathrm{g}$ sample was dissolved with cooling in 5 ml of 10% sodium hydroxide and 10 ml of water. Concentrated hydrochloric acid (2 ml) was added with cooling and the crystals that formed were collected on a filter and recrystallized from petroleum ether (bp $30-60^{\circ}$) to give 5.1 g of 3 as a colorless crystal: mp $29-30^{\circ}$; ir (neat) $5.61 \mu(\mathrm{C}=\mathrm{N}) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CCl}_{3} \mathrm{~F}\right) \delta 3.8 \mathrm{ppm}(\mathrm{s})$; ${ }^{19} \mathrm{~F} \mathrm{nmr}\left(\mathrm{CCl}_{3} \mathrm{~F}\right) \delta-73.1$ (septet, $J=5.5 \mathrm{~Hz}, 6 \mathrm{~F}$), -78.8 (septet, $J=5.5 \mathrm{~Hz}, 6 \mathrm{~F}$), and $80.0 \mathrm{ppm}(\mathrm{s}, 6 \mathrm{~F})$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{HF}_{18} \mathrm{NO}_{3}$: C, 22.88; $\mathrm{H}, 0.19 ; \mathrm{F}, 65.14$; $\mathrm{N}, 2.67$. Found: $\mathrm{C}, 23.46 ; \mathrm{H}, 0.54 ; \mathrm{F}, 65.05 ; \mathrm{N}, 2.80$.

4-(1-Trifluoromethyl-1-methoxy-2,2,2-trifluoroethylimino)-2,2,5,5-tetrakis(trifluoromethyl)-1,3-dioxolane.-To 100 ml of dry ether and $19.3 \mathrm{~g}(0.1 \mathrm{~mol})$ of hexafluoroacetone cyanohydrin at -30° was added 0.2 mol of hexafluoroacetone followed by 0.1 g of 1,4-diazabicyclo[2.2.2]octane. The mixture was brought to room temperature and filtered to remove a small amount of solid. A 3% solution of diazomethane in ether was added to the filtrate until no further evolution of nitrogen was observed, and the reaction mixture was distilled to give 17.5 g of the methyl ether as a colorless liquid: bp 135-148 ${ }^{\circ}$; ir (neat) $5.63 \mu(\mathrm{C}=\mathrm{N})$; ${ }^{19} \mathrm{~F} \mathrm{nmr}\left(\mathrm{CCl}_{8} \mathrm{~F}\right) \delta-73.0$ (septet, $J=6 \mathrm{~Hz}, 6 \mathrm{~F}$), -75.7 (q, $J=1 \mathrm{~Hz}, 6 \mathrm{~F}$), and -79.0 ppm (septet, $J=6 \mathrm{~Hz}, 6 \mathrm{~F}$); ${ }^{1} \mathrm{H}$ $\mathrm{nmr} \delta 3.63 \mathrm{ppm}$ (septet, $J=1.0 \mathrm{~Hz}$).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{NF}_{18}$: C, 24.50; $\mathrm{H}, 0.56 ; \mathrm{F}, 63.44$; N,2.60. Found: C, 24.38; H, 0.79; F, 63.30; N, 2.56.
Distillation of 3 from Acid.-A few drops of sulfuric acid was added to a crude sample of 3 , and the mixture was distilled to
give a liquid, bp $43^{\circ}(10 \mathrm{~mm})$. Analysis by glc, ir, and ${ }^{19} \mathrm{~F} \mathrm{nmr}$ indicated that two compounds were present in about equal amounts. One product was 3. The other product (probably 5) showed an ir band at 5.73μ for $\mathrm{C}=\mathrm{N}$ and two septets of equal intensity in the ${ }^{19} \mathrm{~F}$ nmr spectrum. Attempts to isolate this second product were unsuccessful, for it apparently decomposes easily to hexafluoroacetone and hexafluoroacetone cyanohydrin.

Conversion of 3 to 2,2,5,5-Tetrakis(trifluoromethyl)-4-oxazolidinone (4) by Sodium Hydride.-A solution of 8.5 g of 3 in 10 ml of ethylene glycol dimethyl ether was added to a slurry of 1 g of sodium hydride in mineral oil (50%) in 15 ml of ethylene glycol dimethyl ether. The mixture was then warmed to 50° and the resulting solution was poured into ice and acidified with hydrochloric acid. The oil that formed was extracted with methylene chloride, dried, and distilled to give $3.2 \mathrm{~g}(38 \%)$ of 4 , bp 89° (20 mm), mp 104-106 ${ }^{\circ}$ (after recrystallization from benzene), identified by comparison with an authentic sample. ${ }^{2}$

Registry No.-1, 38868-31-4; 1 nitro derivative, 38868-32-5; 2, 22038-16-0; 3, 38868-34-7; 3 methyl ether derivative, $38868-35-8$; 4, 7730-28-1; 6, 677-77-0; hexafluoroacetone, 684-16-2; hydrogen cyanide, 74-90-8.

Synthetic Reactions by Complex Catalsts. XXIX.
Esterification of Carboxylic Acid with Alkyl Halide by Means of Copper(I)-Isonitrile Complex

Takeo Saegusa,* Ichiki Murase, and Yoshihiko Ito
Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan

Received September 26, 1972
In a preliminary paper, ${ }^{1}$ we have reported that carboxylic acid is readily esterified with alkyl halide in the presence of $\mathrm{Cu}_{2} \mathrm{O}$-isonitrile complex. A reaction scheme was presented in which $\mathrm{Cu}(\mathrm{I})$ carboxylateisonitrile complex (1) was first generated from $\mathrm{Cu}_{2} \mathrm{O}$ isonitrile complex and carboxylic acid, and then 1 reacted with alkyl halide to produce the corresponding carboxylic ester (Scheme I).

In the present paper, we wish to report the isolation of $\mathrm{Cu}(\mathrm{I})$ carboxylate-isonitrile complex (1) as a key intermediate in the above reaction and the stereochemistry of the reaction. It is of interest to note that 1 in Scheme I constitutes a counterpart of or-ganocopper(I)-isonitrile complex (2) derived from the

2

[^111]reaction of acidic carbon acid such as acetylacetone and malonate with the $\mathrm{Cu}_{2} \mathrm{O}$-isonitrile complex. ${ }^{2,3}$

Isolation of $\mathrm{Cu}(\mathrm{I})$ Carboxylate-Isonitrile Complex. On heating, $\mathrm{Cu}_{2} \mathrm{O}$ was dissolved in acetic acid in the presence of tert-butyl isocyanide under nitrogen. From the reaction mixture, $\mathrm{Cu}(\mathrm{I})$ acetate- t - BuNC complex (3) was isolated. 3 is a white, crystalline

```
CH3
3
```

solid, which is soluble in acetonitrile and hot benzene, and air sensitive. 3 could be purified by recrystallization from hot benzene under nitrogen. In the presence of an additional amount of t-BuNC, 3 is readily soluble in benzene even at room temperature. The elemental analysis, nmr, and ir were in accord with the structure of 3 (see Experimental Section). By a similar way, $\mathrm{Cu}(\mathrm{I})$ benzoate- t - BuNC complex was prepared.
3 reacted with alkyl halide even at room temperature to give the corresponding acetate. In the reaction of 3 with phenethyl bromide and chloride, phenethyl acetate was obtained in the yields of 88 and 12%, respectively. For the purpose of comparison, $\mathrm{Cu}(\mathrm{I})$ acetate prepared by Calvin's procedure ${ }^{4,5}$ was also treated with alkyl halide. The results are summarized in Table I. Here it is seen that the isonitrile ligand enhances the reactivity of $\mathrm{Cu}(\mathrm{I})$ carboxylate toward alkyl halide.
Reaction of $\mathrm{Cu}(\mathrm{I})$ Acetate t-BuNC Complex with (+)-(R)-Phenethyl Bromide.-The stereochemical course of the reaction of $\mathrm{Cu}(\mathrm{I})$ carboxylate $-t-\mathrm{BuNC}$ with alkyl halide was examined using an optically active halide, $(+)-(R)$-phenethyl bromide (4), having

$[\alpha]^{25} \mathrm{D}+58.6^{\circ}$. The optical purity of 4 employed in the present study was 45%. ${ }^{6}$
The reaction proceeded quantitatively (Table I). The product was purified by preparative glpc, which showed an optical rotation of $[\alpha]^{25} \mathrm{D}-41.6^{\circ}$ (Table I). The optical purity was calculated at 33% on the basis of the known rotation of optically pure phenethyl acetate. ${ }^{7}$ As the authentic ester, (-)-(S)-phenethyl acetate was prepared by the reaction of $(-)-(S)$-phenethyl alcohol with acetic anhydride in pyridine, which was known to proceed with the retention of configuration. ${ }^{7}$ It has been established that the bromination of alcohol using PBr_{3} proceeds with the inversion of

[^112]Table I
Reaction of Copper（I）Acetate with Phenethyl Halides

					oduc
Copper acetates ${ }^{\prime}$ （mmol）	Halides ${ }^{f}$ （mmol）	Temp， ${ }^{\circ} \mathrm{C}$	Time， hr	Yield， \％	Optical activity $\left[\begin{array}{c} \\]^{22} \mathrm{D}\end{array}\right.$
$\mathrm{CH}_{3} \mathrm{COOCu}(\mathrm{I})$（4．1）	（土）－Phenethyl bromide（5）${ }^{\text {b }}$	45	3	93	
（598－54－9）	（38661－81－3）				
$\mathrm{CH}_{3} \mathrm{COOCu}(\mathrm{I})(4.1)$	（土）－Phenethyl bromide（2．4）${ }^{\text {b }}$	r．t．${ }^{\text {d }}$	2	52	
3 （8）	（ \pm ）－Phenethyl bromide（5）${ }^{\text {a，c }}$	r．t．${ }^{\text {d }}$	2	88	
（38641－29－1）					
3 （8）	$\begin{aligned} & \text { (土)-Phenethyl chloride (5) }{ }^{a, c} \\ & (38661-82-4) \end{aligned}$	r．t．${ }^{\text {d }}$	2.5	12	
3 （8）	（ \pm ）－Phenethyl chloride（5）${ }^{\text {a，c }}$	50	1	56	
$\left(\mathrm{CH}_{8} \mathrm{COO}\right)_{2} \mathrm{Cu}(\mathrm{II})(5)$	（土）－Phenethyl bromide（5）${ }^{\text {b }}$	45	3	Trace	
（142－71－2）					
$\mathrm{CH}_{3} \mathrm{COOCu}(\mathrm{I})$（3）	$(+)-(R)$－Phenethyl bromide $(2.2)^{b}$ （1459－14－9）	50	3	>90	$-0.3^{\circ}(c 6.62, \text { cyclohexane })^{e}$
3 （4）	$(+)-(R)$－Phenethyl bromide（2．4）${ }^{\text {b }}$	45	2	>90	-41.6°（c 6．27，cyclohexane）${ }^{e}$

${ }^{a}$ The reaction was carried out in the presence of tert－butyl isocyanide（ 4 mmol ）．${ }^{b}$ Benzene（ 5 ml ）was used as solvent．${ }^{c}$ Benzene $(10 \mathrm{ml})$ was used as solvent．${ }^{d}$ r．t．$=18-20^{\circ}$ ．${ }^{e}$ Optical purity can be calculated on the optically pure phenethyl acetate ${ }^{7}$ having $[\alpha]^{21_{D}}-124.5$（c 3，benzene）．／Registry numbers are in parentheses below compound．
configuration．${ }^{8,9}$ From these facts，it is concluded that the reaction（3）proceeds with a predominant stereochemistry of $\sim 75 \%$ inversion of configuration． Next， $\mathrm{Cu}(\mathrm{I})$ acetate ${ }^{4.5}$ having no isonitrile ligand was subjected to the reaction with optically active（ + ）－ (R)－phenethyl bromide（ $\left[\alpha{ }^{25} \mathrm{D}+58.6^{\circ}\right.$ ）under the designated conditions in Table I．In this case，the product，phenethyl acetate，has a very small rotation of $[\alpha]^{25} \mathrm{D}-0.3^{\circ}$ ，indicating that this reaction proceeds with racemization．Here，it has become clear that the employment of isonitrile ligand in the reaction of $\mathrm{Cu}(\mathrm{I})$ carboxylate with alkyl halide greatly in－ fluences the stereochemistry of the reaction．Re－ cently，Lewin ${ }^{10}$ reported that the reaction of copper（I） carboxylate with alkyl halide in refluxing pyridine afforded ester with inversion．This is not inconsistent with our results，because pyridine as well as isonitrile are strongly coordinated ligands on copper．Per－ haps the simplest mechanistic rationale of predom－ inant inversion in reaction 3 is indicated in Scheme II．It may be supposed that the isonitrile ligand

increases the nucleophilicity of carboxylate anion to cause a Sn2 displacement．

In the course of our study，we found that the $\mathrm{Cu}_{2} \mathrm{O}$－ isonitrile complex induced the ester interchange re－ action between ester and alkyl halide，being accom－ panied with the formation of ether as formulated by eq 4．For example，a mixture of phenyl acetate and benzyl chloride was heated in benzene at 80° for 12 hr in the presence of $\mathrm{Cu}_{2} \mathrm{O}-t$－ BuNC ．The products were benzyl acetate and benzyl phenyl ether（eq 4）． By glpc analysis，no other species，except for the start－

[^113]
ing two compounds，was detected in the reaction mix－ ture．
Other examples of the ester interchange reaction （i．e．，phenyl acetate－n－butyl bromide and benzyl benzoate－n－butyl bromide）are shown in Table II．The two alkyl groups of the product ether are derived from alkyl halide and ester．
From the material balance，one oxygen atom of $\mathrm{Cu}_{2} \mathrm{O}$ is to be transferred to one of the products．The following（Scheme III）may be assumed．The reac－

tion is initiated by the reaction of alkyl halide and $\mathrm{Cu}_{2} \mathrm{O}$ to form $\mathrm{Cu}(\mathrm{I})$ alkoxide（eq 5）．Then $\mathrm{Cu}(\mathrm{I})$ alkoxide may act as the key intermediate in the follow－ ing manner．The isonitrile ligand is being omitted in this equation．The transient formation of $\mathrm{Cu}(\mathrm{I})$ alkoxide has been supported by a reference experiment in which a mixture of benzyl chloride（ 20 mmol ）， $\mathrm{Cu}_{2} \mathrm{O}(10 \mathrm{mmol})$ ，and t－ $\mathrm{BuNC}(20 \mathrm{mmol})$ at 80° for 12 hr produced benzyl ether in a yield of 51% on the basis of benzyl chloride．In this reaction，the transient formation of $\mathrm{Cu}(\mathrm{I})$ benzylate（5）will be assumed （eq 8 ）．

5

Table II
$\substack{\text { Ester }{ }^{\text {d }} \\ \text { (mmol) }}$
$\mathrm{CH}_{3} \mathrm{COOPh}(10)$
$(122-79-2)$
$\mathrm{CH}_{3} \mathrm{COOPh}(10)$
$\mathrm{PhCOOCH}_{2} \mathrm{Ph}(10)$
(120-51-4)

Ester with Alkyl Halide ${ }^{a}$

Halide ${ }^{d}$ (mmol)	$\mathrm{Cu}_{2} \mathrm{O}$, mmol	$\begin{gathered} t \text {-BuNC, } \\ \text { mmol } \end{gathered}$	Time, br	Product yield, ${ }^{\text {b }}$ \%
PhCH2Cl (10)	5	20	12	$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{Ph} 43{ }^{\text {- }}$
(100-44-7)				$\mathrm{PhOCH}_{2} \mathrm{Ph} 45{ }^{\text {c }}$
$n-\mathrm{BuBr}$ (40)	10	20	5	$\mathrm{CH}_{3} \mathrm{COO}-n-\mathrm{Bu} 40$
(109-65-9)				PhO-n-Bu 41
$n-\mathrm{BuBr}$ (50)	10	15	8	PhCOO-n-Bu 38
				$\mathrm{PhCH}_{2} \mathrm{O}-n-\mathrm{Bu} 36$

${ }^{a}$ A mixture of ester with alkyl halide was heated at 80° in 10 ml of benzene under nitrogen. ${ }^{b}$ Yield was determined by glpc analysis and calculated on the basis of ester. ${ }^{c}$ Calculated on the basis of benzyl chloride. ${ }^{d}$ Registry numbers are in parentheses.

In the two reactions of eq 5-7 and 8, a stoichiometric amount of $\mathrm{Cu}_{2} \mathrm{O}$ is converted into $\mathrm{Cu}(\mathrm{I})$ halide. The formation of $\mathrm{Cu}(\mathrm{I})$ alkoxide requires alkyl halide.

Experimental Section

Materials.- $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{Cu}(\mathrm{II})$ acetate were commercial reagents of analytical grade and were dried under nitrogen prior to use. $\mathrm{Cu}(\mathrm{I})$ acetate was prepared under nitrogen according to Calvin's method. 4,5 tert-Butyl isocyanide was prepared according to Ugi's procedure. ${ }^{11}(-)-(S)$-Phenethyl alcohol, $[\alpha]^{25} \mathrm{D}-45.6^{\circ}$ (c 3.29, cyclohexane) (lit. $[\alpha]^{23} \mathrm{D}-45.5^{\circ}$), ${ }^{12}$ was prepared according to Kenyon's method, ${ }^{12}$ and was converted to $(+)-(R)$ phenethyl bromide, $[\alpha]^{25} \mathrm{D}+58.6^{\circ}$ (c 3.94, cyclohexane) (lit. $\left.[\alpha]^{22} \mathrm{D}+130.96^{\circ}\right)^{8}$ (optical purity 45%), according to a published method of Gerrard. ${ }^{8}$

Preparation of $1: 1$ Complex of $\mathrm{Cu}(\mathrm{I})$ Acetate- t - BuNC (3).-All the reagents were carefully dried and distilled under nitrogen. Under nitrogen, a mixture of acetic acid (34 mmol), $\mathrm{Cu}_{2} \mathrm{O}$ (17 mmol), and $t-\mathrm{BuNC}(34 \mathrm{mmol})$ was heated in 24 ml of benzene at 80° for 2.5 hr . During the reaction, the production of water was observed. After filtration, the filtrate was subjected to evaporation in vacuo (10 mm). Then 20 ml of benzene was added and recrystallization was carried out by warming the mixture up to 80°. This procedure was repeated three times. The white residue was dried in vacuo ($2-3 \mathrm{~mm}$) at 80° for $12 \mathrm{hr}(3,1.85 \mathrm{~g}$, 53% on the basis of $\mathrm{Cu}_{2} \mathrm{O}$). 3 was sensitive to air. When 3 was exposed to air in solid state, it turned light blue gradually, and in benzene solution it turned greenish blue immediately. $\mathrm{Cu}(\mathrm{I})$ acetate- t-BuNC (3) had nmr ($\mathrm{CD}_{3} \mathrm{CN}$) $\tau 8.51$ (singlet, $\mathrm{CH}_{3}-$ and tert-butyl protons at the same position); ir (KBr) $2169(\mathrm{C} \equiv \mathrm{N})$, 1585, 1560 (COO), 1410, 1235, $1210 \mathrm{~cm}^{-1}$ (tert-butyl group).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{Cu}: \mathrm{C}, 40.87 ; \mathrm{H}, 5.88 ; \mathrm{N}, 6.81$; $\mathrm{Cu}, 30.98$. Found: $\mathrm{C}, 40.83 ; \mathrm{H}, 6.13 ; \mathrm{N}, 6.80 ; \mathrm{Cu}, 30.40$.

Preparation of $1: 1$ Complex of $\mathbf{C u}(\mathrm{I})$ Benzoate- t-BuNC Com-plex.-A similar procedure was carried out with benzoic acid. The 1:1 complex was obtained: $\mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \tau \sim 2.6(5 \mathrm{H}), 8.55$ (9 H); ir (KBr) 3060 (phenyl), $2168\left(\mathrm{C} \equiv \mathrm{N}\right.$), $\sim 1600,1570 \mathrm{~cm}^{-1}$ (COO and phenyl).

Reaction of 3 or $\mathbf{C u}(\mathrm{I})$ Acetate with (+)-(R)-Phenethyl Bromide. A.-Under nitrogen, $3(4 \mathrm{mmol})$ was mixed with t-BuNC (2 mmol) in 5 ml of benzene. The solution became clear by the addition of t-BuNC. To this mixture, (+)- (R)-phenethyl bromide (2.35 mmol) was added dropwise at room temperature. The reaction mixture was stirred for 30 min at room temperature. Then it was elevated up to 45° and allowed to react for 2 hr . After the reaction, 30 ml of n-pentane was added to remove Cu -$\mathrm{Br}-t$-BuNC by filtration. The filtrate was condensed at room temperature by evaporation in vacuo (10 mm). Analysis by glpc showed that the reaction was quantitative. The product ester was purified by preparative glpc. The specific rotation of the ester was $[\alpha]^{22_{\mathrm{D}}}-41.6^{\circ}$ (c6.27, cyclohexane), being opposite in sign to the original halide. This sign was the same as that obtained from the reaction of $(-)$ alcohol with acetic acid anhydride. ${ }^{7}$
B.-The reaction of $\mathrm{Cu}(\mathrm{I})$ acetate with (+)-(R)-phenethyl bromide was carried out at 50° for 3 hr by a similar procedure. Yield of the ester was over 90%. The specific rotation of the product ester was $[\alpha]^{26} \mathrm{D}-0.3^{\circ}$ and $[\alpha]_{350}^{25}-1.5^{\circ}$ (c 6.62, cyclohexane). By a reference experiment, it was confirmed that the
optical active ester obtained in the above reaction (A) was not racemized under the reaction conditions.

Reaction of Ester with Alkyl Halide by $\mathrm{Cu}_{2} \mathrm{O}-t$-BuNC.-A typical procedure is as follows. Under nitrogen, a mixture of $\mathrm{Cu}_{2} \mathrm{O}(5 \mathrm{mmol})$, phenyl acetate (10 mmol), and t-BuNC (20 mmol) in benzene was stirred at 80° for 5 min , and then benzyl chloride (10 mmol) was added dropwise and heated for 12 hr . Then 20 ml of petroleum ether was poured into the cooled reaction mixture. The precipitated $\mathrm{CuCl}-t-\mathrm{BuNC}$ and some unreacted $\mathrm{Cu}_{2} \mathrm{O}$ were removed by filtration. The yields of products were determined by glpc analysis of the filtrate. Benzyl acetate and benzyl phenyl ether were obtained in the yield of 42.5 and 44.5%, respectively. Dibenzyl ether was no ${ }^{\star}$ detected in the reaction mixture. The product structures were determined by comparison of nmr and ir with those of the authentic sample.
Reaction of Benzyl Chloride by $\mathrm{Cu}_{2} \mathrm{O}-t$-BuNC.-Under nitrogen, a mixture of benzyl chloride (20 mmol), $\mathrm{Cu}_{2} \mathrm{O}(10 \mathrm{mmol})$, and t-BuNC $(20 \mathrm{mmol})$ was heated at 80° for $12 \mathrm{hr} . \quad n$-Pentane was added to remove $\mathrm{CuCl}-t-\mathrm{BuNC}$ and the unreacted $\mathrm{Cu}_{2} \mathrm{O}$ by filtration. The yield of product was determined by glpc analysis of filtrate. Dibenzyl ether was obtained in a yield oi 51% (on the basis of $\mathrm{Cu}_{2} \mathrm{O}$).

Registry No.-Acetic acid, 64-19-7; $\mathrm{Cu}_{2} \mathrm{O}, 1317-$ $39-1$; t-BuNC, 7188-38-7; benzoic acid, 65-85-0; Cu(I) benzoate-tert-butyl isocyanide complex, 38641-30-4; benzyl ether, 103-50-4.

Nucleophilic Methanolysis of 1-Acetyltetracyclo[3.2.0.0 $\left.0^{2,7} \cdot 0^{4,6}\right]$ heptane (2-Acetylquadricyclene) and Methyl 1-Tetracyclo[3.2.0.0 $\left.{ }^{2.7} .0^{4,6}\right]$ heptane carboxylate (2-Carbomethoxyquadricyclene)

Gerald F. Koser* and Shwn-Meei Yu
Department of Chemistry, The University of Akron, Akron, Ohio 44325

Received October 24, 1972
Although electrophilic additions to saturated, strained carbocyclic systems are commonplace, the corresponding nucleophilic additions are rare. Thus, such reactions as the alcoholysis of strained carbon linkages are usually feasible only in the presence of electrophilic catalysts (e.g., $\mathrm{H}^{+}, \mathrm{Ag}^{+}$, etc.). We wish to report, however, that α-carbanion stabilizing substituents, such as the acetyl group, render the quadricyclene skeleton exceedingly reactive toward methanolysis not only under basic conditions but even in neutral solvent.
2-Acetylquadricyclene (1a), previously unreported, was prepared in nearly quantitative yield by sensitized
irradiation of 2-acetybicyclo[2.2.1]heptadiene (2a), ${ }^{1}$ and characterized by its elemental composition, spectra, and $\operatorname{Pd}(\mathrm{II})$-catalyzed cycloreversion to 2a. When 1a was treated with absolute methanol, a rapid, exothermic reaction ensued. Subsequent removal of excess solvent left crude 3-acetyl-5-methoxynortricyclene ($3 \mathrm{a}, \mathbf{9 5 \%}$) as a mixture (ca. 50:50) of C-3 epimers. The structure assigned to 3 a was inferred from its spectral and analytical data. In particular, the nmr spectrum exhibits two acetyl proton singlets at $\tau 7.87$ and 7.93, one for each epimer, and two methoxy proton singlets at 6.77 and 6.79. The near-infrared spectrum of 3a between 1.6 and 1.8μ, the first C-H stretching vibration overtone region, closely resembles the published spectrum of parent nortricyclene, ${ }^{2}$ while the infrared spectrum shows characteristic nortricyclene skeletal absorption at $12.35 \mu .^{3 \mathrm{~s}-\mathrm{c}}$

The assignment of C-3 rather than C-5 as the epimeric carbon atom was confirmed by treatment of $c a$. 50:50 exo:endo-3a with sodium methoxide in meth-anol-O-d. All hydrogen atoms α to the carbonyl function, including $\mathrm{H}-3$, underwent complete deuterium exchange, while the epimers of the resulting tetradeuterionortricyclene 3b were simultaneously equilibrated to a $35: 65$ ratio. No new isomers of 3 b were detected by nmr analysis. Had 3a been epimeric at C-5 and of a single configuration (i.e., exo or endo) at $\mathrm{C}-3$, two additional isomers should have formed upon treatment with base.

When quadricyclene 1a was allowed to react with methanol-O-d, an 87% yield of crude 3-deuterio-3-acetyl-5-methoxynortricyclene (3c) was obtained. The position of the deuterium atom was fixed by the absence of a one-proton multiplet at $\tau 7.49$ in its nmr spectrum. Preliminary nmr rate studies showed methoxide ion to be an active catalyst. Thus, the deuteriomethanolysis of 1.87 M 1a was complete within 42 min at probe temperature ($c a .30^{\circ}$) in neutral solvent but required no more than 6 min to go to completion in the presence of $10 \mathrm{~mol} \%$ sodium methoxide. In one experiment, addition of 1.95 M sodium methox-

[^114]ide in methanol to neat quadricyclyl methyl ketone initiated a near explosion.

It seems likely that the methanolysis of 1a proceeds as depicted below. Catalysis by methoxide ion is consistent with rate-determining nucleophilic cleavage of the cyclopropane ring bonded to the acetyl function. Also, protonation of the indicated intermediates would be expected to afford epimeric C-3 product.

The reactivity of cyclopropanes toward nucleophilic addition is clearly enhanced by internal strain. Truce and Linday found, for example, that cyclopropyl methyl ketone had incompletely reacted with sodium thiophenoxide after 3 hr in refluxing ethanol. ${ }^{4}$ However, electronic factors are also important. Indeed, 2 -carbomethoxyquadricyclene ($\mathbf{1 b})^{5}$ is significantly less reactive than la toward nucleophilic alcoholysis.

When 1b was allowed to stand in absolute methanol for nearly 7 days at room temperature, there was no reaction. After 4 days in refluxing methanol, 1b was partially isomerized to diene 2b (14%) and largely converted to 3 -carbomethoxy-5-methoxynortricyclene (3d, 72\%). Methoxide ion effectively catalyzes the addition of methanol to $\mathbf{1 b}$. In one experiment, $\mathbf{l b}$ and sodium methoxide ($110 \mathrm{~mol} \%$) were mixed in methanol at room temperature. After 5 days, the reaction mixture was poured into water and extracted with dichloromethane. Ultimately, a 47:53 mixture of 3-exo,endo-carbomethoxy-5-exo-methoxynortricyclene (3d) was obtained in 72% yield. The structure assigned to 3d was based on spectral comparison (ir, near-ir, nmr) with authentic material prepared by the action of sulfuric acid on methanolic 1 b and confirmed by comparison of chemical shift parameters to those published ${ }^{3 \mathrm{c}}$ for known exo- and endo-3d.

The facility with which 1 a and 1 b add methanol contrasts with the severe conditions often necessary to promote nucleophilic additions to appropriately substituted, strained carbocycles. ${ }^{4,6 \mathrm{a}-\mathrm{d}}$ We note, however, that uncatalyzed, room-temperature methanolyses of spiro[2.5]octa-4,7-dien-6-one ${ }^{7}$ and the photobicyclobutane derived from $\Delta^{3.5}$-cholestadiene ${ }^{8}$ have been

[^115]reported. Also, 1-cyanobicyclo[1.1.0]butane ${ }^{9}$ and 1-cyano-3-methylbicyclo[1.1.0]butane ${ }^{6 d}$ have been found to undergo methoxide-catalyzed addition of methanol at room temperature. The reactions of $1 \mathbf{l a}$ and 1 b described herein corroborate the earlier finding of Cristol and Singer that treatment of quadricyclyl phenyl sulfone (1c) with potassium tert-butoxide and tert-butyl alcohol in dimethyl sulfoxide gave, after 18 hr at room temperature, a 34% yield of 3 -exo,endo-phenylsulfonyl-5-exo-tert-butoxynortricyclene (3e). ${ }^{\text {dd, } 10}$ Finally, the lesser reactivity of 1 b relative to 1 a must reflect the superior ability of the acetyl group over the carbomethoxy group to stabilize adjacent negative charge.

Experimental Section

General.-The photoisomerizations described herein were conducted in a Rayonet photochemical reactor equipped with $163500-\AA$ lamps and an RQV-118 quartz reaction vessel. Nmr spectra were recorded on a Varian Model A-60 nmr spectrometer (relative to internal TMS), infrared spectra on a Perkin-Elmer Model 337 spectrophotometer, and near-infrared spectra on a Cary-17 uv-vis-ir spectrophotometer. Boiling points are uncorrected. Glpc analyses were performed on a Hewlett-Packard Model 5750 gas chromatograph, a 6-ft column of 10% UCON W-98 on $80-100$ mesh silica being utilized. Elemental compositions were determined by Galbraith Laboratories, Inc., Knoxville, Tenn. Sodium methoxide was obtained from the J. T. Baker Chemical Co. and methanol-O-d (99\%) from Diaprep Inc.
2-Acetylquadricyclene (1a).-A solution of diene 2a (20.0 g , 149 mmol) and bis(dimethylamino)benzophenone ($0.6 \mathrm{~g}, 2.2$ mmol) in ether (125 ml) was irradiated for 28 hr . The solvent and sensitizer were subsequently removed and the crude product was distilled, giving $17.9 \mathrm{~g}(89 \%)$ of 1 a as a colorless liquid: bp $45-47^{\circ}(0.5 \mathrm{~mm})$; ir (neat) 3.25 (cyclopropyl CH), $6.02 \mu(\mathrm{C}=0$); $\mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ т $7.30-7.65(\mathrm{~m}, 2), 7.8-8.1(\mathrm{~m}, 3), 8.21(\mathrm{~s}, 3$, COCH_{3}), 8.25-8.45 (m, 2).
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$: C, 80.60; H, 7.46. Found: C, 80.50; H, 7.46.

A $0.3-\mathrm{g}$ sample of the presumed quadricyclene (from a benzo-phenone-sensitized run) was dissolved in chloroform-d (0.5 ml) and treated with bis(benzonitrile)palladium(II) chloride (0.025 g). An nmr spectrum recorded shortly thereafter was, except for minor impurities, identical with that of diene $2 a$.

Under ambient conditions, la rapidly becomes colored and is eventually transformed into a red gum. It can, however, be stored for long periods at low temperatures.

Methanolysis of 1 a .-To 7.58 g (56 mmol) of 1 a was added 10 ml of absolute methanol. Within several minutes, there was heat evolution sufficient to cause the solvent to reflux. After 19 hr , the excess methanol was evaporated in vacuo, leaving 8.85 $\mathrm{g}(95 \%)$ of crude 3 a as a yellow oil which was then distilled to a colorless liquid: bp $50.5-53.5^{\circ}(0.05-0.07 \mathrm{~mm})$; ir (neat) 3.27 (cyclopropyl CH), $5.86(\mathrm{C}=\mathrm{O}), 9.05(\mathrm{COC}), 12.35 \mu$ (nortricyclene skeleton); near-ir $\left(\mathrm{CCl}_{4}\right) \lambda_{\max } 1.659 \mu(\epsilon 1.233)$ (first CH stretching vibration overtone characteristic of the nortricyclene skeleton); $\mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ г 7.87 and 7.93 (singlets, $\mathrm{O}=\mathrm{C}$ CH_{3}), 7.68 (m, H-4), 7.49 (m, H-3), 6.77 and 6.79 (singlets, OCH_{3}), 6.55 (broad singlet, H-5), 8.0-9.1 (complex multiplets, $H-1,2,6,7,7^{\prime}$). The acetyl proton singlets are of nearly equal intensity, as are the methoxy proton singlets, consistent with the formulation of 3 a as an equimolar mixture of $\mathrm{C}-3$ epimers.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 72.26; H,8.49. Found: C, 72.02 ; H, 8.52.

Deuteriomethanolysis of 1a.-Quadricyclene 1a ($1.34 \mathrm{~g}, 10$ $\mathrm{mmol})$ was dissolved in methanol- $O-d(10 \mathrm{ml})$ and stirred at room temperature for ca. 22 hr . Vacuum evaporation of the solvent left $1.45 \mathrm{~g}(87 \%)$ of crude deuterionortricyclene (3c) as a clear, yellow oil: ir (neat) 3.26 (cyclopropyl CH), 5.87 ($\mathrm{C}=\mathrm{O}$), 9.05 (COC), 12.26μ (nortricyclene skeleton); $\mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \tau$ 7.87 and 7.93 (ca. $1: 1$ singlets, $\mathrm{O}=\mathrm{CCH}_{3}$), 7.72 (m, H-4), 6.77 and 6.80 (ca. 1:1 singlets, OCH_{8}), 6.55 (broad singlet, $\mathrm{H}-5$), $8.0-$ 9.1 (complex multiplets, $\mathrm{H}-1,2,6,7,7^{\prime}$). Except for the absence

[^116]of a one-proton multiplet at $+7.49(\mathrm{H}-3)$, the nmr spectrum of 3 c is nearly identical with that of 3 a .

Methoxide-Catalyzed Epimerization and α-Hydrogen Exchange in 3 a .-To 1.67 g (10 mmol) of $c a .50: 50$ exo:endo-3a was added 10 ml of 0.16 M sodium methoxide in methanol- $0-d$. After stirring at room temperature for $c a .2 .35 \mathrm{hr}$, the reaction mixture was poured into 50 ml of water and extracted with three $100-\mathrm{ml}$ portions of dichloromethane. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrared in vacuo, leaving 1.50 g (88%) of tetradeuterionortricyclene (3b) as a clear, colorless liquid: ir (neat) 3.27 (cyclopropyl CH), $5.89(\mathrm{C}=\mathrm{C}$ ($), 9.04$ (COC), 12.3μ (nortricyclene skeleton). Except for the absence of singlets at $\tau 7.87$ and $7.93\left(\mathrm{O}=\mathrm{CCH}_{3}\right)$ and a multiplet at τ 7.49 (H-3), the nmr spectrum of 3 b is nearly identical with that of 3 a . However, the methoxy resonances at $\tau 6.77$ and 3.79 are no longer of equal intensity but are in a $65: 35$ ratio.

Preliminary Rate Studies.-The deuteriomethanolysis of quadricyclene la was followed by nmr spectroscopy at instrument probe temperature (ca. 30°). Owing to the large solvent proton resonance ($\sim \tau 6.7$), the spectral region between $\tau 7.5$ and 10.0 was isolated for analysis.
A. Uncatalyzed.-Three $50-\mu \mathrm{l}$ portions of la ($164 \mathrm{mg}, 1.22$ mmol) were injected into methanol- $0-d(0.5 \mathrm{ml})$, and nmr spectra were recorded ca. $7,16,26,40$, and 49 min after the time of mixing. Reaction progress was monitored by the disappearance of the acetyl singlet of $1 a$ and the appearance of the acety- singlets of 3c. The conversion of 1 a to 3 c was more than 70% complete within $7-8 \mathrm{~min}$ and 100% complete within 40 min .
B. Catalyzed.-Three $50-\mu$ l portions of la were injected into 0.5 ml of 0.25 M sodium methoxide in methanol- -C . . By the time an $n m r$ spectrum was recorded (within 4-7 min from the time of mixing), the alcoholysis of la was complete. The spectrum of the reaction mixture was identical with that of tetradeuterionortricyclene 3b.

2-Carbomethoxyquadricyclene (1b).-Although the synthesis of 1 b has appeared in the literature, ${ }^{5}$ preparative details and spectral parameters were not described. Thus, we include herein our synthesis and characterization of 1 b .

A solution of diene 2 b ($20.0 \mathrm{~g}, 133 \mathrm{mmol}$) and bis(dimethylamino) benzophenone ($0.6 \mathrm{~g}, 2.2 \mathrm{mmol}$) in ether (125 ml) was irradiated for 24 hr . Removal of the solvent and sensitizer and distillation of the crude product gave $16.6 \mathrm{~g}(83 \%)$ of $\mathbf{l b}$ as a clear, colorless liquid: bp $40-42^{\circ}(0.5 \mathrm{~mm})$; ir (neat) 3.28 (cyclopropyl CH), $5.83 \mu(\mathrm{C}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \tau 6.44$ (s, COOCH_{3}), 7.58 (complex multiplet, 7).
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 72.00; $\mathrm{H}, 6.67$. Found: C , 71.97; H, 6.85 .

When $0.3-\mathrm{g}$ samples of neat 1 b were heated at $\mathrm{ca} .103^{\circ}$ (oil bath), isomerization to diene $\mathbf{2 b}$ was effected (as determined by nmr analysis).

Reaction time, hr	Approximate mole ratio $\mathbf{1 b}: \mathbf{2 b}$
21	$50: 50$
24	$54: 46$
24	$46: 54$
25	$52: 48$

Acid-Catalyzed Methanolysis of 1 b .-A solution of 1 b (7.50 g, 50 mmol) in methanol (40 ml) was treated with 1 ml of concentrated sulfuric acid. After several hours, the reaction mixture was poured into dichloromethane (200 ml), washed with two 50ml portions of saturated aqueous sodium bicarbonate and two $50-\mathrm{ml}$ portions of water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated at reduced pressure. Distillation of the crude product gave 6.74 g (74%) of 3-exo,endo-carbomethoxy-5-exo-methoxynortricyclene (3d): bp $70-72^{\circ}(0.5 \mathrm{~mm})$ [lit. ${ }^{3 \mathrm{c}} \mathrm{bp} 60^{\circ}(0.3 \mathrm{~mm})$]; ir (neat) $5.77(\mathrm{C}=\mathrm{O}), 12.3 \mu$ (nortricyclene skeleton); near-ir (CCl_{4}) $\lambda_{\max } 1.658 \mu(\epsilon 1.312)$ (nortricyclene skeleton, first CH stretching vibration overtone); $\mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \tau 6.37\left(\mathrm{~s}, \mathrm{COOCH}_{3}\right.$ of endo-3d), 6.41 (s, COOCH_{3} of exo-3d), 6.58 (m, H-5 cf exo-3d), 6.78 (s, $-\mathrm{OCH}_{3}$ of exo- and endo-3d), 7.65-8.90 (several complex multiplets, $\mathrm{H}-1,2,4,6,7,7$ ' of exo- and endo-3d (the H-5 resonance of endo-3d is buried under the 6.37 singlet); glpc 65:35 endo:exo3d.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$: $\mathrm{C}, 65.93 ; \mathrm{H}, 7.69$. Found: C , 66.48; H, 7.47.

Methoxide-Catalyzed Methanolysis of $\mathbf{1 b}$.-A solution of $1 \mathbf{b}$ $(1.50 \mathrm{~g}, 10 \mathrm{mmol})$ in methanol $(5 \mathrm{ml})$ and a solution of sodium methoxide ($0.54 \mathrm{~g}, 10 \mathrm{mmol}$) in methanol (5 ml) were mixed and allowed to stir for 5 days at room temperature. The reaction
mixture was then poured into water (100 ml) and extracted with three portions (100 ml each) of dichloromethane. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated at reduced pressure, leaving $1.32 \mathrm{~g}(72 \%$) of a clear oil with spectra (ir, near ir, nmr) identical with those described for authentic 5-exo-methoxy-3-exo,endo-carbomethoxynortricyclene (3d): glpc 47:53 endo: exo.

In a control experiment, a solution of $1 \mathrm{~b}(1.53 \mathrm{~g}, 10 \mathrm{mmol})$ in methanol (10 ml) was allowed to stir at room temperature for nearly 7 days. Vacuum evaporation of the solvent left 1.45 g (95%) of product with an nmr spectrum identical with that of unreacted starting material.
Uncatalyzed Methanolysis of 1 b .-A solution of $1 \mathrm{~b}(1.50 \mathrm{~g}$, 10 mmol) in methanol (10 ml) was refluxed mildly over a period of 4 days. Reduced pressure evaporation of the solvent left 1.61 g of crude product found by nmr analysis to consist primarily of diene 2 b (14%), nortricyclene 3 d (72%), and unreacted lb (13%). The product ratios were estimated by integration of appropriate carbomethoxy proton resonances. However, owing to significant peak overlap, they may be somewhat in error.

Registry No.-la, 38739-89-8; 1b, 24161-47-5; 2a, 38739-91-2; 2b, 3604-36-2; endo-3a, 38739-93-4; exo3a, 38822-43-4; endo-3b, 38822-44-5; exo-3b, 38822-45-6; endo-3c, 38822-46-7; exo-3c, 38734-70-2; endo3d, 28298-03-5; exo-3d, 35193-30-7; bis(dimethylamino)benzophenone, 90-94-8.

Synthesis of Cyclodec-3-en-1-ols by Acid-Catalyzed Two-Carbon Ring Expansion

Richard W. Thies* and James E. Billigmeier
Department of Chemistry, Oregon State Universiiy, Corvallis, Oregon 97331
Received December 12, 1972

Acid-catalyzed rearrangement of bicyclo[n.1.0]alkyl methanols (1) represents an effective synthetic route to 2 -vinylcycloalkanols (2) for certain ring sizes. ${ }^{1}$

In an effort to use this reaction with an eight-membered ring (3), we discovered that the major products

of the reaction are not analogous to 2 but rather are the result of an interesting two-carbon ring expan-

[^117]sion. ${ }^{2,3}$ The rearrangement provides a convenient synthetic route to 3 -cyclodecenols.

Compound 3 is readily prepared from cyclooctene by addition of ethyl diazoacetate followed by hydride reduction. This results in a $66: 34$ mixture of exo and endo isomers. Acid-catalyzed rearrangement of the mixture gave a 74:19:7 ratio of trans-4, cis-4, and 5 in an overall yield of 95%. Products cis-4 and trans4 were identified by retention time comparisons of the alcohols and their trimethylsilyl derivatives and by spectral comparisons with authentic samples. The minor component (5) is an isomeric alcohol of unknown structure.
The isomers of 3 (syn-3 and anti-3) were separated by gas chromatography and examined separately. Acid-catalyzed rearrangement of anti-3 gave only the trans ring-expanded product, trans-4. Rearrangement of syn-3 gave a 46:40:9:4 ratio of trans-4, cis-4, 5 , and another unknown compound.

No cyclobutanol products 6 were detected. A mixture of cyclobutanols (6) was prepared and coinjected

6

7
on gc and was found not to enhance any of the product peaks. It was also established that the cyclobutanols are stable to the acid catalysis conditions.
It should be noted that a stereospecific synthesis of cis-4 or trans-4 is best accomplished by the WinsteinPoulter method ${ }^{4}$ involving stereospecific rearrangement of bicyclo[7.1.0]decan-2-ols, 7. Although the syntheses of cis,syn- or cis,anti-7 are lengthy, they are formed with high stereoselectivity and require no difficult separations. Although anti-3 rearranges cleanly to trans-4, the synthesis of anti-3 is nonselective and the separation is difficult.

The rearrangement of 3 is more useful where the stereochemistry of the double bond is not crucial, e.g., in making compounds where the double bond is to be removed. ${ }^{5}$ For those cases the sequence requires fewer steps than the Winstein-Poulter method and gives a higher overall yield (35% vs. 19%).

Experimental Section

Spectral measurements utilized Beckman IR-8, Varian Associates A-60 or HA-100, and Atlas CH7 instruments. Analyses were performed by Alfred Bernhardt Microanalytisches Laboratorium or Galbraith Laboratories, Analytical gas chromatography (gc) was carried out with a Wilkens Aerograph Model 1200 instrument with flame ionization detector and the $0.01-\mathrm{in}$. capillary columns listed: (A) 125 ft UCONLB550X, (B) 75 ft DEGS, (C) 100 ft Apiezon N. Samples were collected using an

[^118]Aerograph A90-P instrument using the $0.25-\mathrm{in}$. columns listed: (D) $10 \mathrm{ft}, 5 \%$ KOH-5\% Carbowax 4000 on Chromosorb W, (E) $10 \mathrm{ft}, 5 \%$ UCONLB550X on Chromosorb G.
Preparation of the cis-Bicyclo[6.1.0]nonane-9-methanols (syn3 and anti-3)--To $165 \mathrm{~g}(1.5 \mathrm{~mol})$ of cyclooctene was added 4.0 g of anhydrous cupric sulfate. The mixture was heated and stirred at $70-80^{\circ}$ under nitrogen while $28.5 \mathrm{~g}(0.25 \mathrm{~mol})$ of ethyl diazoacetate ${ }^{6}$ was added dropwise ($c a .1 \mathrm{hr}$ for addition). The solution was heated and stirred at $55-60^{\circ}$ overnight. The cupric sulfate was removed by filtration. Analysis by gc on column B at 110° showed essentially two volatile products in a ratio of 34:66.
To 140 ml of Vitride in 100 ml of dry ether was slowly added ($c a .2 \mathrm{hr}$) the crude reaction mixture at reflux. The mixture was allowed to cool to room temperature and stir overnight. To the crude reaction solution was added dropwise 100 ml of saturated sodium carbonate solution. The organic and aqueous layers were separated, and the organic layer was washed with two $50-\mathrm{ml}$ portions of saturated sodium carbonate solution, four $50-\mathrm{ml}$ portions of water, and one $50-\mathrm{ml}$ portion of saturated salt solution. The organic layer was dried over anhydrous magnesium sulfate and filtered, and all of the volatile solvent was removed on a rotary evaporator. The crude, dark mixture was vacuum distilled to give $18.6 \mathrm{~g}(48.3 \%)$ of light yellow liquid, bp $96-100^{\circ}(0.6 \mathrm{~mm})$. Gc analysis on column C at 135° showed essentially two components in a ratio of $66: 34$ which were separated by gc using column D at 140°. Collection of the first component gave anti-3 (100% pure by gc): ir (neat) $3325,3000,2920,2870,1470,1440,1140,1103,1075,1030,1020$ $\mathrm{cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CCl}_{4}, 100 \mathrm{MHz}\right) \delta 0.31-0.68(\mathrm{~m}, 3), 0.75-2.23(\mathrm{~m}$, 13), $3.35(\mathrm{~d}, J=6 \mathrm{~Hz}, 2)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$: C, 77.88; H, 11.66. Found: C, 77.72; H, 11.88.

Collection of the second peak gave 35% anti- $\mathbf{3}$ and 65% syn- $\mathbf{3}$. A more effective separation was obtained by converting the 66:34 syn- and anti-3 mixture to trimethylsilyl ethers and separating the mixture on column E at 115°. Hydrolysis ${ }^{7}$ of the second gc fraction gave syn-3 (still contained 12% anti-3): ir (neat) $3375,3000,2920,2870,1470,1440,1160,1145,1105$, $1090,1015 \mathrm{~cm}^{-1}$; nmr ($\mathrm{CCl}_{4}, 100 \mathrm{MHz}$) $\delta 0.57-2.30(\mathrm{~m}, 16)$, 3.57 (d, $J=7 \mathrm{~Hz}, 2$).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 77.88 ; \mathrm{H}, 11.66$. Found: C, 77.68; H, 11.74 .
The trimethylsilyl derivative was prepared by shaking for 10 min a mixture of $100 \mu \mathrm{l}$ of $3,200 \mu \mathrm{l}$ of Tri-sil, ${ }^{8}$ and $400 \mu \mathrm{l}$ of dimethyl sulfoxide. The mixture was extracted twice with 2-ml portions of pentane. The pentane solution was washed with 10% sulfuric acid and water and dried over sodium sulfate.

Acid-Catalyzed Rearrangement of anti-3.-To 0.11 g (0.73 mmol) of anti-3 was added 0.84 ml of 0.23 M perchloric acid and 4 ml of dioxane. The mixture was heated and stirred at 80° for 15 hr , whereupon all of the starting material was shown to be gone by gc on column C. To the mixture was added 30 ml of ether. The ether solution was washed with two $20-\mathrm{ml}$ portions of 10% sodium carbonate, one $20-\mathrm{ml}$ portion of water, and one $20-\mathrm{ml}$ portion of saturated salt solution. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the ether was removed on a rotary evaporator to yield 0.10 g (95%) of clear, viscous 4 ($>95 \%$ pure on column C at 135°): ir (neat) $3320,2900,2700,1450,1350,1260,1170,1120,1053$, 1015, 985, $860,705 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CCl}_{4}, 100 \mathrm{MHz}\right) \delta 1.06-1.83$ ($\mathrm{m}, 10$), 1.83-2.28 (m, 3), 2.32-2.69 (m, 1), 3.21 (OH, 1), 3.73, $(\mathrm{m}, 1), 5.45(\mathrm{~m}, 2)$. The ir and nmr spectra of an authentic sample of trans-cyclodec-3-en-1-ol and those of the major component were identical.

Further gc analysis was conducted on the trimethylsilyl ether of the reaction product (prepared as above). Analysis by gc on column A at 130° showed essentially one peak ($>98 \%$, 6.8 min). Coinjection of this major component with the trimethylsilyl derivative of trans-cyclodec-3-en-1-ol on two different columns gave one peak. The minor component ($<2 \%, 10.0 \mathrm{~min}$) was shown not to be the trimethylsilyl ether of cis-cyclodec-3-en-1-ol by coinjection with an authentic sample.
Acid-Catalyzed Rearrangement of syn-3.-A solution of 0.011 g of syn-3 (containing 12% anti-3), 2 ml of dioxane, and $84 \mu \mathrm{l}$

[^119]of 0.23 M perchloric acid was heated at $80-85^{\circ}$ for 20.5 hr and then worked up as described above. A portion of the reaction products was converted to trimethylsilyl derivative (as above) and analyzed on column A at 130° which showed four products in a ratio of 9:4:46:40. The latter two components were shown to be trans-4 and cis-4, respectively, by coinjection on columns A and C with authentic samples and by mass spectral comparison with these samples.
Acid-Catalyzed Rearrangement of a Mixture of syn-3 and anti-3.-To $6.5 \mathrm{~g}(0.042 \mathrm{~mol})$ of 3 ($66: 34$ mixture of anti-3 and syn-3) was added 220 ml of dioxane, 48 ml of water, and 1.6 g of 70% perchloric acid. The mixture was stirred, heated for 12 hr at $85-90^{\circ}$, and worked up as described above, which gave $6.2 \mathrm{~g}(95 \%)$ of products. A portion was converted to the trimethylsilyl derivative (as above) and analyzed on column A at 130° which gave four peaks in a ratio of $6: 64: 16: 14$. The first peak corresponds to the 9% unknown component observed from rearrangement of syn-3. The next two peaks correspond to trans-4 and cis-4; the last peak is unreacted syn-3 (coinjection on column A and C and mass spectral comparison).
Bicyclo[6.2.0]decan-9-ols (6).-The method of Wiberg and Nakihara ${ }^{2}$ was used to produce bicyclo(6.2.0]decan-9-one ($\mathrm{C}=\mathrm{O}$ at $1760 \mathrm{~cm}^{-1}$), which was reduced with lithium aluminum hydride to give a mixture of alcohols (6): ir (neat) 3430, 2980, $2860,1465,1440,1325,1190,1135,1095,1065,870,810 \mathrm{~cm}^{-1}$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}, 100 \mathrm{MHz}\right) \delta 1.07-2.10(\mathrm{~m}, 16), 3.23-4.02(\mathrm{~m}, 1)$, 4.93 (s, OH).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 77.88 ; \mathrm{H}, 11.66$. Found: C, 77.78; H, 11.82.
Analysis of the trimethylsilyl derivative of the above mixture (column A) indicated four overlapping peaks in an approximate ratio of $5: 50: 40: 5$. Coinjection of this mixture with the trimethylsilylated mixture from 3 gave no enhancement of peaks.

Registry No.-syn-3, 38858-51-4; anti-3, 38858-52-5; trans-4, 29971-50-4; cis-4, 29746-36-9; 6, 38868-39-2; cyclooctene, 931-88-4; bicyclo[6.2.0]decan-9-one, 38868-40-5.

Acknowledgment. - We thank the Research Corporation for their support of this work.

Christinine, a New Epoxyguaianolide from Stevia Serrata Cav.

Manuel Salmón,* Eduardo Díaz, and Alfredo Ortega

Contribution No. 367 from the Instituto de Quimica de la Universidad Nacional Autónoma de México, México 20, D.F.

Received September 26, 1972

Very few sesquiterpene lactones had been isolated from Stevia genera. ${ }^{1}$ We now describe the structure determination of a new guaianolide from Stevia serrata Cav. ${ }^{2}$ which we have named christinine.

Fractionation of the methanol extract with chloroform and chromatographic separation involving silica gel and alumina yielded christinine $\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7}\right) .^{3}$ The ion $m / e 304\left[\mathrm{M}^{+}-\left(\mathrm{CH}_{3} \mathrm{COOH}\right)\right]$ was observed by mass spectrometry: mp 164-165 ${ }^{\circ} ;[\alpha] \mathrm{D}+19.72^{\circ}$ (c $3.65, \mathrm{CHCl}_{3}$); uv max $(95 \% \mathrm{EtOH}) 215 \mathrm{~nm}(\epsilon$ 2270); ir (CHCl_{3}) 1775 (lactone), $1730 \mathrm{~cm}^{-1}$ (acetate).

[^120]The proposed structure and stereochemistry of christinine (1) are based on the evidence gained from

1
the chemical shifts and coupling constants of its HA100 nmr spectra (Table I) and verified by spin-decou-

Table I
Nmr Data for Christinine

Proton	Multiplicity	Chemical shifts ${ }^{\text {a }}$		Coupling constants
H_{2}	c	5.58	5.82	$J_{2,3}=2.0$
				$J_{2,5}=1.0$
				$J_{2,9}=J_{2,9}=1.75$
				$J_{2,15}=1.75$
H_{8}	ddd	4.73	5.29	$J_{8,7}=1.5$
				$J_{8,9}=6.0$
				$J_{8,8^{\prime}}=1.5$
H_{6}	dd	3.72	4.3	$J_{6,5}=10$
				$J_{6.7}=9.5$
H_{3}	dd	3.45	3.64	$J_{3,5}=1.0$
H_{5}	br d	2.74	3.17	$J_{5.16}=1.75$
H_{11}	quintet	2.13	2.74	$J_{11,13}=7.5$
H_{7}	ddd	2.25	2.58	$J_{7.11}=7.0$
OAc	s	1.69	2.11	
OAc	s	1.57	2.01	
H_{14}	s	1.55	1.62	
H_{15}	t	1.41	1.61	
H_{13}	d	0.86	1.16	
$\mathrm{H}^{\text {b }}$	dd	4.7		$J_{9,8}=7 ; J_{9,9}=15$
$\mathrm{H}_{9}{ }^{\text {b }}$	br d	3.4		$J_{90,8}=2$
OAc in $\mathrm{C}_{2}{ }^{\text {b }}$	s	5.86		
OAc in $\mathrm{C}_{8}{ }^{\text {b }}$	s	3.46		

${ }^{a}$ Chemical shifts are given in parts per million (δ scale) relative to TMS as internal standard. The coupling constants are in hertz. Singlets are marked as s. Multiplets are described as follows: $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{br}=$ broad, $\mathrm{c}=$ complex signal whose center is given. © Assignments of these signals were made using 30 mg of $\mathrm{Eu}(\mathrm{DPM})_{3}$.
pling experiments. Confirmations of the various assignments and pertinent coupling constants were sought using $\mathrm{Eu}(\mathrm{DPM})_{3}$ as a chemical shift reagent.

The trans diaxial positions between protons H_{5} and H_{6} and H_{6} and H_{7} were assigned based on $J_{5,6}$ and $J_{6,7}$ values, confirming firmly the trans ring attachment of the γ-lactone, H_{5} and H_{7} being α as has been proposed for globicin, ${ }^{4}$ achillin, ${ }^{5}$ and hydroxyachillin. ${ }^{6}$ Decoupling of the methyl doublet at 1.16 ppm caused the quintet at 2.74 ppm corresponding to H_{11} to collapse to a doublet ($J_{7,11}=7 \mathrm{~Hz}$). Quintets with these characteristics have been observed ${ }^{6,7}$ in compounds with the stereochemistry of $\mathrm{H}_{11} \alpha$ and a dihedral angle $\mathrm{H}_{11}-\mathrm{H}_{7}$ of $c a .30^{\circ}$.
(4) R. B. Bates, V. Procházka, and Z. Čekan, Tetrahedron Lett., 877 (1963).
(5) E. H. White and J. N. Marx, J. Amer. Chem. Soc., 89, 5511 (1967); S. J. Smolenski, C. L. Bell, and L. Bauer, Lloydia, 30, 144 (1967).
(6) F. W. Bachelor, A. B. Paralikar, and S. It6, Can. J. Chem., 50, 333 (1972).
(7) J. T. Pinhey and S. Sternhell, Aust. J. Chem., 18, 543 (1965).

A small long-range 4σ coupling between the allylic protons H_{5} and H_{2} was observed. This fact can only be made plausible when the two protons are α and a M or W coupling exists between them. ${ }^{8}$ Irradiation of the C_{15} methyl signal at 1.61 ppm caused the multiplet at 5.82 ppm (assigned to H_{2}) to collapse, producing a quartet. Finally, triple irradiation at 1.61 and 3.17 ppm (attributed to H_{5}) eliminated the homoallylic and the 4σ coupling at 5.82 ppm , giving a triplet, suggesting similar angles for the homoallylic interaction, ${ }^{9}$ H_{2} with H_{9} and $\mathrm{H}_{9^{\prime}}, J_{2,9}=J_{2,9^{\prime}}=1.75 \mathrm{~Hz}$. This demonstrates that the eliminated second coupling constant, $J=1.0 \mathrm{~Hz}$, was caused by the M interaction between H_{2} and H_{5}, possible only when these protons are in the M path. Another confirming fact that H_{2} is in the α position is the dihedral angle of about 60° between H_{2} and $\mathrm{H}_{3},{ }^{10}$ resulting from the largest coupling constant, $J_{2,3}=2.0 \mathrm{~Hz}$, thus establishing H_{3} as β leaving the 3,4 epoxide in the α position as has been proposed by Kupchan and coworkers in a series of $\alpha-3,4$-epoxy lactones. ${ }^{11}$

The stereochemistry of the C_{8} acetate could be α or β and each isomer could exist in two conformations, these being the chair and boat forms of the sevenmembered ring. One can eliminate the two conformations for the acetate in the α position because the coupling constant $J_{7,8}$ in the chair conformation should be larger. This has been observed in hydroxyachillin. ${ }^{6}$ In case of a boat conformer, the signal for the homoallylic interaction of H_{2} with H_{9} and H_{9}, would be a triplet, and not a quartet, as observed by irradiation of the C_{15} proton signals. From the other two possible conformations structure la can be eliminated for the

1a

1b
following reasons. H_{7} and H_{8} should be in an α position with a dihedral angle of 15° and would show a larger coupling constant between them. In addition, the quartet for H_{2} at 5.82 ppm formed by the homoallylic interactions with H_{9} and $\mathrm{H}_{9}{ }^{\prime}$ would not be observable for this conformation. According to these results, we conclude that christinine must have the conformational structure 1 b .

Experimental Section

The uncorrected melting point was determined on a Culatti capillary melting point apparatus.

Infrared Spectra.-A Perkin-Elmer Model 521 infrared spectrophotometer was used. The sample was run in chloroform.

Optical Rotation.-A Perkin-Elmer Model 141 polarimeter was used.

[^121]Mass Spectra.-An Hitachi Perkin-Elmer RMU-6D double focussing mass spectrometer was used, operating at 75 eV , with an inlet and source temperature of $c a .215^{\circ}$.

Nuclear Magnetic Resonance Spectra.-A Varian HA-100 spectrometer with Hewlett-Packard audio oscillator Models 200 CD and 200 AB was used. The samples were run in benzene- d_{6} and deuterio chloroform, with tetramethylsilane as internal standard.

Isolation Procedure.-Stevia serrata was collected in September 1971 south of México City. A 4-kg portion of dried whole plant was extracted with 25 l . of warm methanol. The extract was filtered and concentrated to 21 ., then 1 . of water was added and extracted, first with 1 l . of hexane, which was discarded, and then with 21 . of chloroform. The chloroform extract was washed with water and concentrated to dryness, giving 200 g of a syrupy brown oil. The part soluble in AcOEt $10 / \mathrm{B} 90,180 \mathrm{~g}$, was chromatographed on silica gel (packed in AcOEt 10/B90). The column was successively eluted, starting with 3 l . of AcOEt 10/B90, and increasing the amount of AcOEt in the solvent mixture in the following fashion: 3 l. (40/60), 4 l. (60/40), 2 l. (100); fractions close to 300 ml were taken. Fractions 20-40 were combined and evaporated to dryness, and the residue, 123 g of syrup, was redissolved in AcOEt 5/B95 and chromatographed in 2 kg of alumina. The column was packed in AcOEt 5/B95 and successively eluted, taking fractions of about 500 ml , first 5 l . (AcOEt 5/B95), 5 l . (AcOEt 10/B90), 20 l. (AcOEt 20/B80), 7 l. (AcOEt 40/B60), and finally 2 l . (AcOEt $90 / \mathrm{MeOH} 10$). All fractions were monitored by tlc. Fractions $32-37$ were joined and christinine, 250 mg , crystallized out in ethyl acetate-hexane. One recrystallization from acetone-diisopropyl ether yielded pure christinine (1): mp 164-165 ${ }^{\circ} ;[\alpha] \mathrm{D}+19.72^{\circ}\left(c 3.65, \mathrm{CHCl}_{3}\right)$; ir $\left(\mathrm{CHCl}_{3}\right)$ $1775,1730,1360,1000,940 \mathrm{~cm}^{-1}$; uv $\max (95 \% \mathrm{EtOH}) 215 \mathrm{~nm}$ ($\epsilon 2270$); mass spectrum (75 eV) m / e (rel intensity) $304\left(\mathrm{M}^{+}-\right.$ $60), 244$ (45), 202 (64), 200 (74), 185 (47), 171 (77), 159 (100), 157 (63), 141 (70), 131 (85), 129 (77), 128 (82), 115 (71), 105 (24), 91 (39), 60 (31), 45 (20), 43 (30).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7}$: C, 62.62; $\mathrm{H}, 6.64 ; \mathrm{O}, 30.76$. Found: C, 62.54; H, 6.61; O, 30.47.

Registry No. - 1, 38555-39-4.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of the research. The authors are indebted to Mr. R. Zawadzki for the critical reading and discussion of the manuscript.

Total Synthesis of the Pavinane Alkaloid Platycerine ${ }^{1}$

Frank R. Stermitz* and David K. Williams
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521

Received December 7, 1972

The alkaloid platycerine (I) was first isolated ${ }^{2}$ from Argemone platyceras Link et Otto. and it was later shown ${ }^{3}$ that methylation converted platycerine to O, O-dimethylmunitagine (II). II in turn had been prepared ${ }^{4}$ by methylation of munitagine (III), whose structure rested ${ }^{4}$ upon spectrographic and degradative evidence. Platycerine had also been isolated ${ }^{5}$ from
(1) Part XVI in the series "Alkaloids of the Papaveraceae." For Part XV see F. R. Stermitz, D. K. Kim, and K. A. Larson, Phytochemistry, in press. This work was supported in part by NIH Grant GM 19234 from the National Institute of General Medical Sciences and in part by Vipont Chemical Co.
(2) J. Slavik and L. Slavikova, Collect. Czech. Chem. Commun., 28, 1728 (1963).
(3) J. Slavik, L. Slavikova, and K. Haisova, ibid., 32, 4420 (1967).
(4) F. R. Stermitz and J. N. Seiber, J. Org. Chem., 31, 2925 (1966).
(5) F. R. Stermitz and K. D. McMurtrey, ibid., 34, 555 (1969).
A. gracilenta Greene and structure I proposed ${ }^{5}$ on the basis of its preparation by methylation of munitagine and its mass spectral fragmentation pattern. However, the alternate structure IV for platycerine re-

mained an outside possibility and hence we have synthesized I as final proof of structure.

Our synthesis was accomplished by means of Scheme I and yielded (\pm)-platycerine identical with the natural

XII
material (except for optical rotation), and hence structure I for platycerine is confirmed.

Experimental Section

2-Benzyloxy-3-methoxybenzaldehyde (V) was prepared by benzylation of o-vanillin according to the method of Uff. ${ }^{\epsilon \mathrm{a}} \mathrm{V}$ was obtained in 80% yield as colorless needles (crystallized from ether), $\mathrm{mp} 44^{\circ}$ (lit. ${ }^{6 \mathrm{~b}} \mathrm{mp} 44.0-44.5^{\circ}$).
7-Methoxy-8-benzyloxyisoquinoline (IX).-An adaptation of the method of Jackson and Stewart ${ }^{7}$ was used. Intermediates to IX were isolated but were not rigorously purified at each step. A mixture of V and 10% excess aminoacetaldehyde dimethyl acetal was heated in benzene at reflux with a Dean-Stark trap until the calculated amount of water was collected. Excess amino acetal was removed by washing, and distillation in vacuo left the product Schiff's base VI as a yellow oil. VI was quantitatively reduced to the amine in ethanol with 1% by weight PtO_{2} in a Parr apparatus at 50 psi hydrogen. The amine was converted to the tosylate VII in good yield with p-toluenesulfonyl chloride in pyridine. VII (0.1 mol) was dissolved in a solution of 100 ml of peroxide-free dioxane and 15 ml of 6 M HCl and the solution was heated at reflux in the dark until tlc showed complete disappearance of VII. The reaction mixture was washed with water and the solvent was removed in vacuo to leave VIII as a brown oil. VIII was stirred for several hours in a solution of potassium tert-butoxide in tert-butyl alcohol under gentle heat. After the mixture had cooled, benzene and water were added and the benzene layer was washed several times with additional water. The benzene layer was dried and the solvent was evaporated to leave a red oil, which was purified by Florisil column chromatography to yield red needles of IX, mp 188° (iit. ${ }^{6} \mathrm{mp}$ $185-188^{\circ}$), in 60% yield from V. ${ }^{8}$
N-Benzoyl-8-benzyloxy-1,2-dihydro-7-methoxyisoquinoline-1carbonitrile (\mathbf{X}). - To $75 \mathrm{ml}(0.15 \mathrm{~mol})$ of an aqueous solution of KCN in an ice-cold three-neck flask fitted with a mechanical stirrer, addition funnel, and condenser was added IX (13 g , 0.05 mol). The mixture was stirred until a fine suspension of IX in the solution was obtained. Benzoyl chloride (0.1 mol) was then added dropwise with stirring. Stirring was continued until the Reissert compound X separated as a tan solid. This was filtered off and recrystallized from ethanol to yield $65 \% \mathrm{X}$ as a white solid, mp 135° (lit..$^{68} \mathrm{mp} 135^{\circ}$).

1-(3,4-Dimethoxybenzyl) -7-methoxy-8-benzyloxyisoquinoline (XI).-The nitrile $\mathrm{X}\left(12 \mathrm{~g}\right.$ in 100 ml of DMF at $\left.0^{\circ}\right)$ was treated under nitrogen with a threefold excess of NaH , and then a twofold excess of 3,4-dimethoxybenzyl chloride in 50 ml of DMF was added. The mixture was stirred overnight and then ethanol was added to destroy the excess NaH . Benzene and water were added and the benzene layer was separated and washed again with water and finally with 6 M HCl . The acidic layer was made basic with NaOH and extracted with CHCl_{3}. The CHCl_{3} layers were combined, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated to yield XI in 80% yield. Recrystallization from ethanol gave XI as a white solid: mp $117^{\circ} ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 8.2\left(\mathrm{~d}, \mathrm{1}, \mathrm{H}\right.$ on $\left.\mathrm{C}_{3}\right), 7.7-6.6$ ($\mathrm{m}, 6$, aromatic H), $5.0\left(\mathrm{~s}, 2, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 4.88 ($\mathrm{s}, 2, \mathrm{CH}_{2}$), $3.93\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right.$), 3.70 (s, $3, \mathrm{OCH}_{3}$), $3.60\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right.$).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, 75.08; H, 5.97; N, 3.29. Found: C, 75.16; H, 6.06; N, 3.37.
(\pm)-Platycerine (I).-The isoquinoline XI (3 g) was converted to the methiodide by heating in a mixture of 15 ml of $\mathrm{CH}_{3} \mathrm{I}$ and $\mathrm{CH}_{3} \mathrm{OH}$. The solvents were removed in vacuo and the yellow solid which was obtained was dried and then added to a slurry of $\mathrm{LiAlH}_{4}(0.75 \mathrm{~g})$ in dry ether. The slurry was stirred for 3 hr and the excess hydride was decomposed by the addition of wet ether and a saturated solution of sodium potassium tartrate. The ether layer was separated and evaporated to yield the 1,2dihydroisoquinoline XII as a yellow oil. To XII was added 25 ml of $7: 5 \mathrm{HCOOH}-\mathrm{H}_{3} \mathrm{PO}_{4}$ and the solution was heated at reflux until all XII had disappeared as evidenced by tlc. The solution was then diluted with water and washed with CHCl_{3}. The aqueous layer was made basic to pH 8 with NaOH solution and extracted with CHCl_{3}. The CHCl_{3} layers were combined, dried

[^122]over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated to yield a crude oil shown by tlc and nmr to be the desired I in $60-70 \%$ yield. Preparative layer chromatography yielded a sample of pure (\pm)-platycerine (I) whose $\mathrm{CHCl}_{3} \mathrm{ir}, \mathrm{CDCl}_{3} \mathrm{nmr}$, cyclohexane uv, and tlc R_{f} value (0.55 using silica gel G and $3: 2$ benzene-methanol) were identical with those of the natural alkaloid. ${ }^{4}$

Registry No.-I, 38863-79-5; V, 2011-06-5; VI, 38868-50-7; VII, 38868-51-8; VIII, 38868-52-9; IX, 36454-41-8; X, 38868-54-1; XI, 38868-55-2.

The Photocycloaddition of Diphenylacetylene to 1,5-Cyclooctadiene

Tadatoshi Kubota* and Hiroshi Sakurai
The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, Japan

Received November 6, 1972
It is known that diphenylacetylene photoreacts with tetramethylethylene ${ }^{1}$ and cyclic vinyl ethers ${ }^{2}$ to give the cyclobutene derivatives. In an earlier paper ${ }^{3}$ we reported the photocycloaddition of diphenylacetylene to norbornadiene, in which the products that were considered to be formed by the further reactions of the intermediate cyclobutene were obtained in contrast to the above reactions. In order to observe the behavior of diphenylacetylene in other dienes, we photolyzed a solution of diphenylacetylene in 1,5cyclooctadiene. The reaction mixture was irradiated for 40 hr through a Pyrex filter with a high-pressure mercury lamp. Chromatography on silica gel gave only one product, 1 (72%).
Elemental analysis and the mass spectrum ($\mathrm{M}^{+} 286$) indicated that this product was a $1: 1$ adduct of diphenylacetylene and 1,5-cyclooctadiene. The nmr spectrum showed no signals in the vinyl region, and was very simple, indicating that this product has the symmetrical structure. The possible structure for this product is 1 or 2 , whose type of structure was assigned to the photoadduct of acetylenedicarboxylic acid and 1,4-cyclohexadiene. ${ }^{4.5}$
This product was stable on heating for 1 hr at 47° in $2 N$ sulfuric acid, where norcarane completely decomposed, ${ }^{6}$ and the signal at $\delta 3.04$ is at too low field to be assigned to the ring protons of cyclopropanes. ${ }^{7}$ Structure 1 is compatible with these properties, but structure 2 is not. Thus, this product was assigned the structure 9,10 -diphenyltetracyclo $\left[6.2 .0 .0^{4,10} .0^{5,9}\right]$ decane.
(1) O. L. Chapman and W. R. Adans, J. Amer. Chem. Soc., 90, 2333 (1968).
(2) H. M. Rosenberg and P. Servé, J. Org. Chem., 33, 1653 (1968); M. P. Servé and H. M. Rosenberg, ibid., 35, 1237 (1970).
(3) T. Kubota, K. Shima, and H. Sakurai, Chem. Commun., 360 (1971).
(4) M. Takahashi, Y. Kitahara, I. Mjrata, T. Nitta, and M. C. Woods, Tetrahedron Lett., 3387 (1968).
(5) The photoreaction of diphenylacetylene and 1,4-cyclohexadiene gave the complex mixtures, but a $1: 1$ adduct corresponding to that of diphenylacetylene and 1,5 -cyclooctadiene could not be isolated.
(6) R. T. LaLonde and L. S. Forney, J. Amer. Chem. Soc., 85, 3767 (1963).
(7) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, New York, N. Y., 1969, pp 196, 228.

1

2

3

This reaction was neither sensitized by thioxanthone $\left(E_{\mathrm{T}}=65.5 \mathrm{kcal} / \mathrm{mol}\right)^{8}$ and triphenylene $\left(E_{\mathrm{T}}=66.6\right.$ $\mathrm{kcal} / \mathrm{mol}),{ }^{8}$ whose triplet energies are considered to be effectively transferred to diphenylacetylene ($E_{\mathrm{T}}=62.5$ $\mathrm{kcal} / \mathrm{mol}$), ${ }^{8}$ nor quenched by diacetyl ($E_{\mathrm{T}}=54.9 \mathrm{kcal} /$ $\mathrm{mol}) .{ }^{8} \quad$ These results suggest that the addition involves singlet-excited diphenylacetylene; this is a contrast to the results that other photoreactions of diphenylacetylene proceeded via triplet diphenylacetylene. ${ }^{2,9}$ This reaction is considered to involve the intramolecular photocycloaddition of the intermediate cyclobutene 3. However, this intermediate was never observed when the photolysis was monitored by glc and uv. This can be well explained by the assumptions that the intermediate diphenylcyclobutene $\mathbf{3}$ is preferentially photoexcited on account of its large molar extinction coefficient ${ }^{10}$ at the excitation wavelengths, and the quantum efficiency of the intramolecular reaction is greater than that of diphenylacetylene with 1,5cyclooctadiene.

Experimental Section

Melting points are uncorrected. Ir spectra were obtained on a Hitachi EPI-S2 spectrophotometer. Uv spectra were obtained on a Hitachi 124 spectrophotometer. Mass spectra were obtained on a Hitachi RMS-4 spectrometer. Nmr spectra were taken on a high Hitachi Perkin-Elmer R-20 spectrophotometer. Glc was performed on a Simadzu GC-3AF ($2 \mathrm{~m} \times 3 \mathrm{~mm}, 3 \%$ SE-30 on Chromosorb W column).

Photoaddition of Diphenylacetylene and 1,5-Cyclooctadiene.In a Pyrex vessel, a solution of diphenylacetylene ($0.8 \mathrm{~g}, 0.0045$ mol) in 1,5-cyclooctadiene ($48 \mathrm{~g}, 0.44 \mathrm{~mol}$) was irradiated for 40 hr with a $350-\mathrm{W}$ high-pressure mercury lamp. After removal of the unreacted diene under reduced pressure, the remaining liquid $(1.4 \mathrm{~g})$ was subjected to column chromatography on Merck silica gel, 50 g ($70-230$ mesh). Elution in $200-\mathrm{ml}$ fractions gave fractions 1-3, n-hexane, nil; $4-5,5 \%$ benzene in n-hexane, a crystalline material. Recrystallization of this crystalline material from ethanol gave 9,10-diphenyltetracyclo[6.2.0.0 $\left.{ }^{4,10} .0^{5,9}\right]$ decane: $924 \mathrm{mg}(72 \%)$; $\mathrm{mp} 105.5-106.5^{\circ}$; ir (KBr) 3040, 3010, $2930,1595,1487,1440,750,721$, and $695 \mathrm{~cm}^{-1} ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta$ 2.0 ($\mathrm{m}, 8 \mathrm{H}$, methylene), 3.04 (br s, 4 H , cyclobutane), and 7.0 ($\mathrm{m}, 10 \mathrm{H}$, aromatic); mass spectrum m / e (rel intensity) 286 (1), 144 (48), 143 (100), 142 (83), 128 (39), 115 (15), and 91 (11); uv (n-hexane) $223 \mathrm{~nm}(\epsilon 10,700$), 248 (1500), 253 (920), 262 (800), and 272 (490).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22}$: C, 92.26; $\mathrm{H}, 7.74$. Found: C, 92.25; H, 7.56 .

Attempted Sensitization with Thioxanthone and Triphenylene. -Diphenylacetylene ($50 \mathrm{mg}, 0.28 \mathrm{mmol}$), 1,5-cyclooctadiene ($300 \mathrm{mg}, 2.78 \mathrm{mmol}$), and thioxanthone $(10 \mathrm{mg}, 0.047 \mathrm{mmol})$ or triphenylene ($10 \mathrm{mg}, 0.044 \mathrm{mmol}$) in benzene (3 ml) were irradiated through a liquid filter (an aqueous solution of NaBr and $\left.\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2},>330 \mathrm{~nm}\right)^{11}$ with the $350-\mathrm{W}$ high-pressure mercury lamp for 20 hr . However, the product was not observed by glc.

Attempted Quenching with Diacetyl.-Each of two quartz tubes was charged with 3 ml of a solution of diphenylacetylene

[^123](0.0337 M) and 1,5-cyclooctadiene ($0.926 M$) in cyclohexane. Diacetyl ($44 \mathrm{mg}, 0.512 \mathrm{mmol}$) was added to one of the tubes. The tubes were irradiated for 2 hr at 254 nm in which most of the light was absorbed by diphenylacetylene. No quenching was observed by glc.
Registry No.-1, 38821-22-6; diphenylacetylene, 501-65-5; 1,5-cyclooctadiene, 111-78-4.

Sterol Metabolism. XXIII. Cholesterol Oxidation by Radiation-Induced Processes ${ }^{1}$

Leland L. Smith,* Jon I. Teng, Martin J. Kulig, ${ }^{2}$ and Freddie L. Hill

Division of Biochemistry,
Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77550

Received December 20, 1972
The common cholesterol oxidation products 3β -hydroxycholest-5-en-7-one (IV), cholesta-3,5-dien-7one (V), and the epimeric cholest-5-ene-3 $\beta, 7$-diols (IIb, IIIb) derive by thermal decomposition of sterol hydroperoxides formed by two distinct mechanisms from cholesterol. Photosensitized oxidation of cholesterol in solution by excited-state (singlet) molecular oxygen gives 3β-hydroxy- 5α-cholest-6-ene-j-hydroperoxide (Ia), ${ }^{3}$ which may rearrange in solution to the 7α-hydroperoxide IIa, ${ }^{3 c, 4}$ which in turn may epimerize to the 7β-hydroperoxide IIIa. ${ }^{5}$ Alternatively,

Ia, $\mathrm{R}=\mathrm{OH} \quad$ IIa, $\mathrm{R}=\mathrm{OH}$
b, $R=H$
b, $R=H$

IIIa, $\mathrm{R}=\mathrm{OH}$
b, $R=H$

(1) Paper XXII: J. I. Teng, M. J. Kulig, and L. L. Smith, J. Chromatogr., 75, 108 (1973). Financial support of these studies by the Robert A. Welch Foundation, Houston, Texas, and the U. S. Public Health Service (Research Grants NS-08106 and HE-10160) is gratefully acknowledged.
(2) Robert A. Welch Foundation Postdoctoral Fellow, 1971-1972.
(3) (a) G. O. Schenck, Angew. Chem., 69, 579 (1957); (b) G. O. Schenck, K. Gollnick, and O.-A. Neumuller, Justus Liebigs Ann. Chem., 603, 46 (1957); (c) G. O. Schenck, O.-A. Neumaller, and W. Eisfeld. ibid., 618, 202 (1958); Angew Chem., 70, 595 (1958); (d) A. Nickon and J. F. Bagli, J. Amer. Chem. Soc., 81, 6330 (1959); 83, 1498 (1961).
(4) B. Lythgoe and S. Trippett, J. Chem. Soc., 471 (1959).
(5) J. I. Teng. M. J. Kulig, L. L. Smith, G. Kan, and J. E. van Lier, J. Org. Chem., 38, 119 (1973).

Figure 1.-Gas chromatographic (3% OV-210) detection of IIIa via its pyrolysis products IIIb, IV, and V (at retention times relative to cholesterol as unity of $2.45,5.04$, and 2.17 respectively): A, control; B, ${ }^{80} \mathrm{Co} \gamma$ radiation, $7 \times 10^{4} \mathrm{rad} ; \mathrm{C}, 254-\mathrm{nm}$ light, 1 hr ; D, daylight, 6 days; E, 100° heat, 42 hr .
radical oxidation of cholesterol in solution may afford cholesterol 7-peroxy radicals or 7 -hydroperoxides. ${ }^{6-8}$ In either case the initially formed hydroperoxides give rise to the more common secondary products IIb, IIIb, IV, and V (but not Ib).
Radiation-induced oxidation of crystalline cholesterol leads to the same secondary products IIb, IIIb, IV, and $\mathrm{V},{ }^{9}$ but the mechanism of their formation in the solid state has not heretofore been examined. By means of suitable chromatographic techniques ${ }^{1,9 \mathrm{gd}, 10}$ (see Figure 1) we demonstrated that the initial and major sterol hydroperoxide formed from crystalline cholesterol subjected to a variety of irradiation conditions was the 7β-hydroperoxide IIIa, with small amounts of the 7α-hydroperoxide IIa formed later in the reactions. Radiations ranging from ${ }^{60} \mathrm{Co} \gamma$ rays through ultraviolet and visible light to infrared heat all afforded IIIa as that hydroperoxide first detected. No 5α-hydroperoxide Ia was detected. Under radiation conditions producing IIIa from cholesterol, the 5α-hydroperoxide Ia was not rearranged to the 7α hydroperoxide IIa, nor was IIa epimerized. However, Ia, IIa, and IIIa were partially decomposed to their

[^124]thermal decomposition products IIb, IIIb, IV, and V on longer exposure to radiation.

These results eliminate formation of the 5α-hydroperoxide Ia as a pathway (via IIa) to IIIa and accordingly participation of singlet molecular oxygen by the established cyclic ene mechanism. Furthermore, we did not detect the 7β-hydroperoxide IIIa in photosensitized oxidations of cholesterol despite a careful chromatographic examination. We thereby confirm prior findings on this point derived by less certain means. ${ }^{3 d}$ We conclude that IIIa is not a product of singlet molecular oxygen attack on cholesterol in solution or in the solid state.

Formation of IIIa from cholesterol was independent of the type of radiation used, and we consider that radical processes are implicated. ${ }^{11}$ Initial generation of a C-7 allylic radical followed by reaction with groundstate (triplet) molecular oxygen to form a cholesterol 7 -peroxy radical is supported by published electron spin resonance data. ${ }^{13}$ Subsequent C-7 hydrogen atom abstraction by the 7 -peroxy radical from another cholesterol molecule would then afford the product 7 -hydroperoxides IIIa and IIa and continue the radical chain. Preferential formation of the quasiequatorial 7β-hydroperoxide IIIa in a radial process may be rationalized by consideration of the demonstrated greater thermodynamic stability of IIIa. ${ }^{5}$ Formation of smaller amounts of IIa is thereby a random or statistically fortuitous matter. However, some preference in radical generation and attack of molecular oxygen may obtain from the crystal properties of cholesterol, for we have previously demonstrated that autoxidation of crystalline cholesterol yields 24 -hydroperoxides in approximately $2: 1$ ratio rather than in the expected 1:1 ratio. ${ }^{12 \mathrm{a}}$

Autoxidation of cholesterol dispersed in aqueous sodium sterarate solutions ${ }^{88, b}$ similarly afforded only the 7 -hydroperoxides IIa and IIIa as initially formed products, with no 5α-hydroperoxide Ia detected. Radical autoxidation of cholesterol accordingly may occur in solution, in the dispersed state, and in the solid state. The sensitive chromatographic methods used in these studies suggest anew the great ease with which highly purified cholesterol is oxidized in air. The unirradiated control (curve A of Figure 1) obtained by mere recrystallization of a highly purified cholesterol sample clearly contained the 7β-hydroperoxide IIIa, as evinced by the presence of the pyrolysis products IIIb and V on the elution curve. ${ }^{14}$

Access to the 7β-hydroperoxide IIIa has heretofore been via epimerization of IIa, in which case tedious

[^125]separation of IIIa from thermal decomposition products and from IIa was necessary. Accordingly, radia-tion-induced oxidation of cholesterol is of some preparative utility. Yields of $5.8-7.4 \%$ of $1,2-{ }^{3} \mathrm{H}-\mathrm{III}$ a free from other detectable sterols have been attained from $1,2-{ }^{3} \mathrm{H}$-cholesterol by irradiation with ${ }^{60} \mathrm{Co} \gamma$ radiation for 8 hr .

Experimental Section ${ }^{15}$

Radiation Conditions.-Samples (2 and 5 g) in glass beakers of crystalline cholesterol (purified to a high degree by multiple recrystallizations from methanol and in which no autoxidation component could be detected) were exposed in air to four radiation conditions. Samples were exposed to ${ }^{60} \mathrm{Co} \gamma$ rays in a Gammacell 200 (Atomic Energy of Canada Ltd., Ottawa) providing $2.7 \times$ $10^{5} \mathrm{rad} / \mathrm{hr}$. After 15 min the 7β-hydroperoxide IIIa was readily detected. Other samples were exposed to a $254-\mathrm{nm}$ germicidal ultraviolet light for 1 hr at a distance of 10 cm , after which time IIIa was readily detected. Samples were exposed to daylight and air on the laboratory bench for 6 days, at which time IIIa was readily detected. Samples were heated at 100° in an electric oven. After 42 hr IIIa was readily detected.
Sample Preparation.-Irradiated samples were dissolved (2 $\mathrm{g} / 40 \mathrm{ml}, 5 \mathrm{~g} / 100 \mathrm{ml}$) in the dark at 40° under N_{2} in diethyl ethermethanol (1:1). Chilling to 5° yielded crystalline cholesterol which was filtered off for analysis. The mother liquor was concentrated under vacuum to incipient crystallization, and a second crop of crystalline cholesterol was removed. Concentration under vacuum was repeated until the mother liquor volume was 5 ml (for $2-\mathrm{g}$ samples) or 10 ml (for $5-\mathrm{g}$ samples). The concentrated mother liquor was preparatively chromatographed on 0.25 mm chromatoplates of silica gel HF_{254} using benzene-ethyl acetate ($17: 8$) in triple ascending irrigations. The sterol hydroperoxide zone was located and eluted from the chromatoplate with $5-10 \mathrm{ml}$ of acetone, the acetone was removed under vacuum, and the sterol residue was redissolved in $100 \mu \mathrm{l}$ of acetone for analysis.

Replicate experiments were handled by a more direct method. The mother liquor obtained by crystallization of cholesterol and concentration was evaporated under vacuum and the sterol residue was subjected to analysis without intermediate preparative thin layer chromatography. Essentially identical results were obtained by the two different sample preparation methods.

Sample Analysis.-Mother liquor sterols in 100μ l of acetone were subjected to thin layer chromatography with up to 100-200 $\mu \mathrm{g}$ of total sterols applied to the chromatoplate per analysis. Reference sterols were run on the same chromatoplate. Each sample was analyzed as such and also after reduction on the chromatoplate with 20μ of a 10% sodium borohydride solution in methanol. ${ }^{17}$ In that no 7 -ketone IV was detected in these samples by ultraviolet light absorption of the chromatoplate reduction with borohydride gave product alcohols solely from the sterol hydroperoxides present. Each chromatoplate was visualized with N, N-dimethyl- p-phenylenediamine and 50% sulfuric acid for identification with confidence of each detected sterol component. In each case IIIa was the first sterol product to be detected in irradiated samples, with IIa forming more slowly and at much reduced levels. No Ia could be detected as such or as the reduced product Ib.

Samples of mother liquor ($2-10 \mu \mathrm{l}$) were analyzed by gas chromatography on SP-2401 and OV-210 columns at the same time. 1

[^126]Uniform and characteristic elution curves were obtained for all samples, in which IIIa and V predominated. Typical elution curves are given in Figure 1 in which 3% OV-210 columns were used. Key relative retention times noted are 1.00 , reference cholesterol; 2.17, VI; 2.45, IIIb; 5.04, IV. Cholesta-4,5-dien3 -one would appear at 3.46 and IIIb at 2.27 .

Stability Experiments.-Pure samples of Ia, IIa, and IIIa were exposed to the same irradiation conditions. In the case of ${ }^{60} \mathrm{Co} \gamma$ radiation, exposure times of 30 min were also used. Analysis of these samples by both thin layer and gas chromatography established that thermal decomposition only had occurred, with no evidence of conversion of Ia to IIa, of IIa to IIIa, or of conversion of IIIa to other hydroperoxides.

1,2 - ${ }^{3} \mathrm{H}$-Cholesterol 7β-Hydroperoxide (IIIa).-An aliquot ($c a$. $10 \mu \mathrm{Ci}$) of $1,2-{ }^{3} \mathrm{H}$-cholesterol was chromatographed on 0.25 mm thick silica gel HF_{254} chromatoplates irrigated three times with benzene-ethyl acetate ($17: 8$), and the eluted radioactive cholesterol was rechromatographed a second time. Dilution with 500 mg of crystalline highly purified carrier cholesterol gave a sample assaying $29,700 \mathrm{dpm} / \mathrm{mg}$. A portion of this material (200 mg) in a small glass vial open to the air was irradiated with ${ }^{60} \mathrm{CO} \gamma$ radiation for 8 hr , after which time the irradiated sample was dissolved in 200 ml of methanol, chilled overnight, and the resultant crystalline $1,2-{ }^{3} \mathrm{H}$-cholesterol filtered. The solvent was evaporated under vacuum, and the sterol residue was dissolved in a minimum volume of acetone and chromatographed on 0.25 mm thick silica gel HF_{254} chromatoplates using benzene-ethyl acetate ($17: 8$) with triple irrigation in the usual fashion. The IIIa zone was located and excised from the chromatoplate. The $1,2-{ }^{3} \mathrm{H}$-IIIa was eluted with acetone. Rechromatography of the material twice more using the same system sufficed to give pure $1,2-{ }^{-} \mathrm{H}$-IIIa free from IIa and other detectable sterols. Only one component ($1,2-{ }^{3} \mathrm{H}$-IIIa) was detected on thin layer chromatograms or on gas chromatography on 2% SP-2401. Sodium borohydride reduction gave only one radioactive component identified as IIIb, with no other detectable sterols preserit. The radioactive IIIa was dissolved in 1 ml of acetone, and $50-\mu \mathrm{l}$ aliquots were assayed for radioactivity to determine y ields of 5.8 and 7.4% for two separate preparations.

Registry No.-Cholesterol, 57-88-5.

The Stereoselectivities of Lithium

Aluminum Trialkoxyhydrides

Howard Haubenstock

Richmond College of the City University of New York, Staten Island, New York 10301

Received November 27, 197\%

The modification of lithium aluminum hydride $\left(\mathrm{LiAlH}_{4}\right)$ by the addition of various alcohols (or ketones), and subsequent use of the resulting lithium aluminum alkoxyhydrides (1) in the reduction of the model system dihydroisophorone (2), has led to two basic conclusions. ${ }^{1}$ First, lithium aluminum alkoxyhydrides are generally more highly stereoselective than LiAlH_{4} itself, presumably because of the greater bulk of the alkoxyhydride reagents. It was recognized ${ }^{1,2}$ that certain alkoxyhydrides, such as lithium aluminum tri-tert-butoxyhydride, were less stereoselective than their apparent bulk suggested. This was explained by Ashby and coworkers, ${ }^{3}$ who showed that, while the
(1) H. Haubenstock and E. L. Eliel, J. Amer. Chem. Soc. 84, 2363 (1962).
(2) H. C. Brown and H. R. Deck, ibid., 87, 5620 (1965); for a review on alkoxyaluminum hydrides, see J. Malek and M. Cerny, Syntheeis, (5), 217 (1972).
(3) E. C. Ashby, J. P. Sevenair, and F. R. Dobbs, J. Org. Chem., 36, 197 (1971).
reagents 1 may be associated in tetrahydrofuran, clithium aluminum tri-tert-butoxyhydride was mononeric over a wide concentration range. Furthermore, association was shown to be an important factor in determining stereoselectivity.

The second conclusion was that the reductions of certain ketones with LiAlH_{4} do not appear to involve the intervention of lithium aluminum alkoxyhydrides (1) as active reducing species owing to a proposed rapid disproportionation of such species to LiAlH_{4}, the only effective reducing agent, and to $\operatorname{LiAl}(\mathrm{OR})_{4},{ }^{1}$ for example, eq 1.

$$
\begin{equation*}
4 \mathrm{LiAlH}(\mathrm{OR})_{3} \longrightarrow 3 \mathrm{LiAl}(\mathrm{OR})_{4}+\mathrm{LiAlH}_{4} \tag{1}
\end{equation*}
$$

The main evidence for the above proposal involves the following: (1) an insensitivity of stereoselectivity to method of reduction, i.e., direct addition using excess hydride or inverse addition of an equivalent quantity of hydride; ${ }^{1,4,5}$ (2) instability of 1 when R is isopropyl or sec-butyl; ${ }^{6}$ (3) $\mathrm{AlH}_{4}{ }^{-}$is more reactive than LiAlH$(\mathrm{OR})_{3}{ }^{6,7}$ (4) the intermediate species 1 presumably formed by reaction of LiAlH_{4} with 3 mol of addend isopropyl alcohol or cyclohexanone showed the same stereoselectivity in the reduction of dihydroisophorone (2) as LiAlH_{4} itself. ${ }^{1,8,9}$

This paper reports studies of the stereoselectivities of alkoxyhydrides (1) formed from the reaction of 3 mol of primary or secondary alcohols (or ketone) with LiAlH_{4}, using dihydroisophorone (2) as the model

ketone substrate. It extends the scope of the earlier work, ${ }^{1}$ describes a new, highly stereoselective reagent, and discusses the effect of the steric requirements of the reagent as a factor in stereoselective reductions. The results are shown in Table I, which also includes some earlier data ${ }^{1}$ for comparison.

Results

Entry 1, Table I, shows the reduction of 2 with LiAlH_{4} itself, entries $2-5$ show the effects on stereoselectivity of a series of primary alkoxy groups of increasing steric size, while entries $6-10$ do the same for secondary alkoxy groups.

Considering the primary alkoxyhydrides, it is seen from Table I that the reagents formed from methyl alcohol and ethyl alcohol (entries 2 and 3) show greater stereoselectivity than LiAlH_{4} itself. The more highly hindered isobutyl alcohol (entry 4) and neopentyl alcohol (entry 5), however, form less stereoselective reagents. The reason is probably that given by Ashby, ${ }^{3}$ that the methoxyhydride (and probably also ethoxyhydride) reagents are highly associated. This would
(4) D. J. Cram and F. D. Greene, J. Amer. Chem. Soc., 75, 6005 (1953).
(5) Y. Senda, S. Mitsui, R. Ono, and S. Hosokawa, Bull. Chem. Soc. Jap., 44, 2737 (1971).
(6) H. C. Brown and C. J. Shoaf, J. Amer. Chem. Soc., 86, 1079 (1964).
(7) G. Hesse and R. Schrödel, Justus Liebigs Ann. Chem., 607, 24 (1957).
(8) E. L. Eliel and Y. Senda, Tetrahedron, 26, 2411 (1970).
(9) For further support of the disproportionation, see D. C. Ayres and R. Sawdaye, Chem. Commun., 527 (1966).

Table I
Reduction of 2 with LiAlH4 and Modified Reagents ${ }^{a}$

Entry	Addend ${ }^{\text {b }}$	Reagent concn ${ }^{\text {c }}$	$\begin{gathered} \text { trans-(axial) } 3, \\ \% \end{gathered}$
1		0.76	52-55, ${ }^{\text {d,e }} 53^{\text {d }}$
2	$\mathrm{CH}_{3} \mathrm{OH}$		$75^{\text {d }}$
3	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$		$83^{\text {d }}$
4	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$	0.31	$57^{1.8}$
5	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}$	0.19, 0.48	$600^{\text {, ¢ }} 60^{\text {f,i, }}$
6	$\mathrm{CH}_{3} \mathrm{CHOHCH}$	0.40	$54,{ }^{d} 55^{\prime . k}$
7	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}$	0.19	$63^{\prime, 1}$
8	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHOHCH}$	0.19	$59^{\text {/.m }}$
9	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHOHCH}$	0.31, $0.19,0.06$	$75,^{\prime} 77,{ }^{\text {f,n }} 80^{\text {f,o }}$
10	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOC}\left(\mathrm{CH}_{3}\right)_{3}$	0.48	$98^{\prime \text {,p }}$
11	Cyclohexanone		58.9
12	Cyclopentanol	0.31	$57^{\text {f,r }}$

${ }^{a}$ In diethyl ether. ${ }^{b} 3 \mathrm{~mol}$ addend per mole ketone. ${ }^{c}$ Molarity after addition of addend to LiAlH_{4}. ${ }^{d}$ Reference 1. ${ }^{\bullet}$ Includes direct and inverse method of addition. ' This work. ${ }^{-}$Ca. $1 \% 2$ in product. ${ }^{h} 34 \% 2$ in product. ${ }^{i}$ Separate experiment. ${ }^{j} 10 \% 2$ in product. ${ }^{k}$ Trace of 2 in product. ${ }^{l} 48 \% 2$ in product. ${ }^{m} 16 \% 2$ in product. ${ }^{n} 9 \% 2$ in product. ${ }^{\circ} 31 \%$ 2 in product. ${ }^{p} 6 \% 2$ in product. \quad \& $48 \% 2$ in product. ${ }^{r} 13 \%$ 2 in product.
imply that the isobutoxyhydride and neopentoxyhydride are less associated and possibly monomeric. This is consistent with the greater bulk of these latter two reagents, which may reduce association effects. The highly hindered lithium aluminum tri-tert-butoxyhydride was found to be monomeric in THF. ${ }^{3}$

The data for the secondary alkoxyhydrides are quite interesting. Reagents formed from isopropyl alcohol, sec-butyl alcohol, 3-methyl-2-butanol, cyclohexanone, and cyclopentanol (entries 6-8, 11, 12) showed the same or slightly higher stereoselectivities as LiAlH_{4}. This could either mean that the disproportionation mechanism ${ }^{1}$ of hydride reduction is correct or it could be that these alkoxyhydrides are simply not stereoselective in the reduction of 2. However, the reagents formed from 3,3-dimethyl-2-butanol (entry 9) and di-tert-butyl ketone (entry 10) are highly selective, with the latter giving the less stable axial alcohol ${ }^{10}$ almost exclusively. Clearly, with these two more hindered secondary addends, disproportionation cannot be a major factor. It may be that steric hindrance (B strain) lowers the stability of the disproportionation product, i.e., the tetraalkoxyaluminum species. ${ }^{11}$ While experiments establishing the degree of association of these reagents would be useful, ${ }^{3}$ it does not appear likely that the increase in stereoselectivity in going from entry 8 to entry 9 and then to entry 10 can be due to a significant increase in association, and the increase is attributed to steric approach control ${ }^{8}$ due to the bulky alkoxy groups. It should be noted that lithium aluminum tri-tert-butoxyhydride is quite highly selective in the reduction of 2 in both ether (73% trans-3) and tetrahydrofuran (88% trans-3). ${ }^{1}$

While considerable amounts of unreacted 2 were found in some of the reduction products (Table I), equilibration of the products is known not to occur in these hydride reductions. ${ }^{9,12,13}$ Duplicate experiments showed that the results are highly reproducible.

[^127]In summary, the steric bulk of primary alkoxy groups in alkoxyhydrides (1) does not appear to have a major effect on their stereoselectivities. However, bulky secondary (and tertiary) alkoxy groups provide reagents with considerable steric requirements. The reagent formed from di-tert-butyl ketone is a remarkably highly selective one and should prove useful in synthetic applications. The great preference for formation of the less stable isomer, trans-3, compares with that observed in the kinetically controlled reduction of 2 with triisobutylaluminum. ${ }^{14}$

Experimental Section

Isopropyl alcohol, sec-butyl alcohol, isobutyl alcohol, and cyclopentanol were chromatoquality reagents purchased from Matheson Coleman and Bell. The other addends were commercially obtained and their purities were checked by glc. Gasliquid partition chromatography was carried out with a HewlettPackard 5750 gas chromatograph. For the analyses of the reduction product, a $10-\mathrm{ft} 10 \%$ Carbowax 20 M acid washed and silanized column was used at 145°.

Reaction of LiAlH4 with 3,3-Dimethyl-2-butanol. Reduction of Dihydroisophorone (2).-The procedure for this reaction is typical of that used in all the reductions. Standardized lithium aluminum hydride in ether ($40 \mathrm{ml}, 0.28 \mathrm{M}, 0.011 \mathrm{~mol}$ of LiAlH_{4}) was added by pipet to a $250-\mathrm{ml}$ reactor equipped with a magnetic stirrer, equilibrated addition funnel, and condenser. A solution of the alcohol ($3.373 \mathrm{~g}, 0.033 \mathrm{~mol}$) in 15 ml of diethyl ether was added dropwise, with stirring. After stirring for 20 min , a solution of $2^{10}(1.54 \mathrm{~g}, 0.011 \mathrm{~mol})$ in 10 ml of ether was added dropwise. After 30 min , the cooled reaction mixture was hydrolyzed with water, followed by 10% sulfuric acid. The aqueous portion was extracted with ether and the combined ether solution was washed with saturated sodium bicarbonate and salt solution and dried over anhydrous MgSO_{4}. The solution was concentrated by distillation through a $18-\mathrm{in}$. helix packed fractionating column (oil bath temperature to 63°). The concentrated solution was directly analyzed by gle showing 77% of the trans (axial)-3 and 23% of $\mathrm{cis}-3$. Unreacted 2 represented 9% of the three components.

Registry No.-1 $(\mathrm{R}=\mathrm{H}), 16853-85-3$; $1(\mathrm{R}=\mathrm{Me})$, 12076-93-6; 1 ($\mathrm{R}=\mathrm{Et}$), 17250-30-5; 1 ($\mathrm{R}=i$ - Bu), 38884-26-3; $1 \quad\left[\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}\right], 38884-27-4 ; 1$ ($\mathrm{R}=i-\mathrm{Pr}$), 38960-86-0; $1(\mathrm{R}=\sec -\mathrm{Bu}), 38884-28-5$; $1\left[\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHCH}_{3}\right], 38884-29-6 ; 1\left[\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3}-\right.$ $\left.\mathrm{CCHCH}_{3}\right], 38884-30-9 ; 1$ ($\mathrm{R}=t$-BuCHBu- t), 38884-31-0; 1 ($\mathrm{R}=$ cyclohexyl), 38884-32-1; 1 ($\mathrm{R}=$ cyclopentyl), $38884-33-2$; 2, 873-94-9; cis-3, 933-48-2; trans-3, 767-54-4; 3,3-dimethyl-2-butanol, 464-07-3.
(14) H. Haubenstock and E. B. Davidson, J. Org. Chem., 28, 2772 (1963).

Base-Induced Cyclizations of Diethyl 4-Oxa-6-heptyne-1,1-dicarboxylate ${ }^{1}$

Albert T. Bottini,* Juhn Gl. Maroski, and Vasu Dev
Department of Chemistry, University of California, Davis, California 95616

Received December 12, 1972

As a continuation of efforts ${ }^{2}$ directed toward determining the scope and limitations of reactions with

[^128]base of compounds that can be represented generally by 1 , we prepared diethyl 4 -oxa- 6 -heptyne-1,1-di-
$$
\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{Y}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{ZH}
$$

1
carboxylate [1a, $\mathrm{Y}=\mathrm{O}, \mathrm{Z}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}, n=2$] and studied its reaction with sodium ethoxide in ethanol and potassium tert-butoxide in dimethyl sulfoxide.

Eglinton and Whiting ${ }^{3}$ reported that it was possible to isolate 1,1-dicarbocthoxy-2-methylenecyclopentane (2) from the reaction of diethyl malonate, sodium ethoxide, and 4-pentynyl p-toluenesulfonate in refluxing ethanol, and they showed that the product arose by cyclization of the intermediate diethyl 5 -hexyne-1,1-dicarboxylate $\left[1 \mathrm{~b}, \mathrm{Y}=\mathrm{CH}_{2}, \mathrm{Z}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}, n=1\right] .{ }^{4}$ They ob-

served that, when more than 1 equiv of sodium ethoxide was used, decarboethoxylation of the cyclic diester and migration of the double bond took place.

Significantly, Eglinton and Whiting ${ }^{3}$ found that diethyl 6-heptyne-1,1-dicarboxylate [1, Y $=\mathrm{CH}_{2}, \mathrm{Z}=$ $\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}, n=2$] would not cyclize under cenditions which converted 1 b to 2.
la was prepared conveniently by alkylation of diethyl malonate with 6-bromo-4-oxa-1-hexyne. ${ }^{5}$ Treatment of la with a slight excess of sodium ethoxide in boiling cthanol for 8 hr gave a 78% conversion to a $1: 1.4$ mixture of 4-carboethoxy-5,6-dihydro-3-methyl-1,4-oxin (3) and 4-carboethoxy-2,3,6,7-tetrahydrooxepin (4), which could be senarated by fractional distillation. In a separate experiment a 74% yield of diethyl carbonate was also obtained. Structures were assigned to 3 and 4 on the basis of their spectroscopic properties and analytical data.

By analogy with the behavior of propargyloxyethanols ($1, \mathrm{Y}=\mathrm{Z}=\mathrm{O}, n=2$) when treated with base in hydroxylic solvents, ${ }^{2 \mathrm{a}}$ the first step in formation of 3 and 4 can be pictured as intramolecular nucleophilic addition of substituted malonate anion to the internal and terminal acetylenic carbons to give the diesters 3a and 4a. ${ }^{6}$ In the presence of excess base, this is followed by decarbocthoxylation of the diesters with formation of diethyl carbonate and migration of the double bonds. It seems likely that decarboethoxylation

[^129] carbons more susceptible to nucleophilic attack.
of 3a first gives the α, β-unsaturated cster, which is then converted to more stable 3.

The reaction of $1 \mathbf{l a}$ with potassium tert-butoxide in dimethyl sulfoxide was also investigated. This reaction gave a relatively poor yield ($<20 \%$) of a complex mixture of six cyclic products, and the major products were identified as 3, 4-carboethoxy-5,6-dihydro-3-ethoxycar-bonylmethyl-1,2-oxin (5), and the tert-butyl homolog

5
of 3. The last product was identified solely on the basis of its nmr spectrum.

The absence of the scven-membered ring product 4 from the product mixture indicated that 3 may have been formed in dimethyl sulfoxide by a pathway that did not involve direct cyclization of 1a. Again by analogy with the behavior of propargyloxyethanols under comparable reaction conditions, ${ }^{2 \mathrm{a}}$ an alternative mechanism leading to $\mathbf{3}$ can be pictured. In this mechanism, la first undergoes prototropic rearrangement to give diethyl 4-oxa-5,6-heptadiene-1,1-dicarboxylate (6), which cyclizes by intramolecular nucleophilic addition of malonate to the central allene carbon to give the diester 3b; decarboethoxylation of $\mathbf{3 b}$ then gives $\mathbf{3}$.
Intermediacy of the allene 6 also yrovides a reasonable explanation for the novel trans carboethoxylation leading to 5. In addition to undergoing protonation to give 3b, the cyclic carbanionic intermediate can also

give 5 via a bicyclic intermediate formed by addition of the carbanion to carbonyl carbon.
In addition to 1 a , several related compounds (1 , $\mathrm{Y}=\mathrm{O}, \mathrm{Z}=\mathrm{CHCO}_{2} \mathrm{H}, n=2 ; 1, \mathrm{Y}=\mathrm{O}, \mathrm{Z}=\mathrm{CHCO}-$
$\mathrm{CH}_{3}, n=2 ; 1, \mathrm{Y}=\mathrm{O}, \mathrm{Z}=\mathrm{CO}_{2}^{-}, n=2$) were prepared and their reactions with base were investigated. None of the reactions gave a cyclic product formed by intramolecular nucleophilic addition to unsaturated carbon. ${ }^{7}$

Experimental Section

Temperatures are uncorrected. Ir spectra were obtained with a Beckman IR-8 spectrophotometer. Uv spectra were recorded using a Beckman DB spectrophotometer for solutions prepared from 95% EtOH. Mass spectra were obtained with a Consolidated Electrodynamics Corp. type 21-104 mass spectrometer; an ionizing voltage of 70 eV was used. Nmr spectra were obtained of CCl_{4} solutions with a Varian Associates A-60A spectrometer; resonance frequencies were determined relative to $1-2 \%$ internal TMS. Vpc chromatograms were obtained with an Aerograph Model A-700 or A-90. Microanalyses were performed at Galbraith Laboratories, Inc., Knoxville, Tenn. Potassium tert-butoxide (KO-t-Bu) was obtained from MSA Research Corp.

Diethyl 4-Oxa-6-heptyne-1,1-dicarboxylate (1a).-To a stirred solution of 30.6 g (0.19 mol) of 6-bromo-4-oxa-1-hexyne, ${ }^{6} 161 \mathrm{~g}$ $(1.0 \mathrm{~mol})$ of diethyl malonate, and 50 ml of PhH was added 4.13 $\mathrm{g}(0.17 \mathrm{~mol})$ of PhH -washed sodium hydride at 35° in 3 hr . During the addition NaBr precipitated. When the addition was complete, the mixture was heated at $50-55^{\circ}$ for 41 hr . The mixture was cooled and filtered, and the filtrate was washed with saturated $\mathrm{NaCl}(150 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Distillation gave $19.9 \mathrm{~g}(49 \%)$ of the diester: bp 94-96 ${ }^{\circ}(0.1 \mathrm{~mm}) ; n^{23} \mathrm{D} 1.4425$; $\mathrm{nmr} \delta 4.21\left(\mathrm{q}, 4, J=7.4 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 4.12 (d, $2, J=2.4$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 3.58\left(\mathrm{t}, 2, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.49(\mathrm{t}, 1$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.43(\mathrm{t}, 1, J=2.4 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.32-2.05$ ($\mathrm{m}, 2, J=6.0$ and $7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), and $1.34 \mathrm{ppm}(\mathrm{t}, 6$, $J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 59.52; H, 7.43. Found: C, 59.25 ; H, 7.41 .

Reactions of Diethyl 4-Oxa-6-heptyne-1,1-dicarboxylate (1a). A. With Sodium Ethoxide in Ethanol.-To 4.73 g (19.5 mmol) of 1 a was added 15 ml of 1.3 M NaOEt in EtOH . The mixture was stirred and heated under reflux for 8 hr . During this time, $20-\mu$ aliquots were taken and analyzed by vpc (SE-30). The reaction mixture was cooled and neutralized with glacial acetic acid, and the resulting mixture was added to 30 ml of ice water and extracted with ether $(3 \times 30 \mathrm{ml})$. The ether solutions were combined, washed with saturated $\mathrm{NaCl}(15 \mathrm{ml})$, and dried (MgSO_{4}). Analysis by vpc before distillation indicated the presence of 4-carboethoxy-5,6-dihydro-3-methyl-1,4-oxin (3) and 4-carboethoxy-2,3,6,7-tetrahydrooxepin (4) in a ratio of 1:1.4. Also present were diethyl carbonate, la, and a product with retention time near that of 1a, which was identified tentatively as diethyl 4-oxa-5,6-heptadiene-1,1-dicarboxylate (6). Distillation gave a fraction with bp $46-56^{\circ}(30 \mathrm{~mm})$ and $45-91^{\circ}(0.1 \mathrm{~mm})$, which contained $0.70 \mathrm{~g}(21 \%)$ of the dihydrooxin, $1.00 \mathrm{~g}(30 \%)$ of the tetrahydrooxepin, 0.32 g of 1 a and 6 , and $1.70 \mathrm{~g}(74 \%)$ of diethyl carbonate. The components of the mixture were isolated by preparative vpc, and diethyl carbonate and la were identified by comparison with known samples.

3 had $n^{23.5_{\mathrm{D}}} 1.4561$; ir $1730(\mathrm{vs}, \mathrm{C}=\mathrm{O}), 1665 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{C})$; $\mathrm{nmr} \delta 6.19(\mathrm{q}, 1, J=1 \mathrm{~Hz}, \mathrm{OCH}=), 4.45-3.81\left(\mathrm{~m}, 4, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.80\left(\mathrm{t}, 1, J=5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHCO}_{2}\right), 2.30-1.74$ (m, 2, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.59\left(\mathrm{~d}, 3, J=1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCH}_{3}\right)$, and $1.25 \mathrm{ppm}\left(\mathrm{t}, 3, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 170 (12), 97 (100), 69 (10).
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}$: C, $63.55 ; \mathrm{H}, 8.23$. Found: C, 63.89 ; H, 7.93 .

4 had $n^{24} \mathrm{D}$ 1.4742; uv $\lambda_{\text {max }} 223 \mathrm{~m} \mathrm{\mu}$ ($\epsilon 6440$); ir 1710 (vs, $\mathrm{C}=\mathrm{O}$) and $1645 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{C}=\mathrm{C}) ; \mathrm{nmr} \delta 7.08(\mathrm{t}, 1, J=6.0 \mathrm{~Hz}$, $\mathrm{C}=\mathrm{CH}), 4.12\left(\mathrm{q}, 2, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.68-3.52(\mathrm{~m}, 4$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 2.78-2.31 (m, 4, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}$), and $1.28 \mathrm{ppm}\left(\mathrm{t}, 3, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) $170(13), 140(81), 125(31), 112$ (99), 111 (12), 97 (22), 96 (10), 95 (12), 94 (20), 83 (10), 68 (14), 67 (100), 66 (47), 65 (23).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 63.55; H, 8.23. Found: C, 63.46; H, 8.37.

6 had ir $1950(\mathrm{C}=\mathrm{C}=\mathrm{C})$ and $1730 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\mathrm{nmr} \delta 6.61$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{C}=\mathrm{C}), 5.37(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{C}=$ $\left.\mathrm{CH}_{2}\right), 4.12\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.54(\mathrm{t}, J=6.0 \mathrm{~Hz}$,

[^130] University of California, Davis, 1971.
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.40 [t, $J=7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CO}_{2}\right)_{2}$], $2.41-1.98(\mathrm{~m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), and $1.25 \mathrm{ppm}\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{8}\right.$). A satisfactory analysis of 6 was not obtained.

A larger scale reaction was carried out for 8 hr . From 28.9 g $(0.12 \mathrm{~mol})$ of $1 \mathrm{a}, \mathrm{NaOEt}$ prepared from 3.0 g (0.13 g -atom) of sodium, and 130 ml of EtOH was obtained $4.86 \mathrm{~g}(24 \%)$ of 3, bp $105-106^{\circ}(19 \mathrm{~mm}), n^{24} \mathrm{D} 1.4562,3.55 \mathrm{~g}(18 \%)$ of 4 , bp 108-110 ${ }^{\circ}$ (11 mm), $n^{24} \mathrm{D} 1.4742,3.91 \mathrm{~g}$ of intermediate fractions containing varying amounts of 3 and 4 , and 6.10 g of residue, which contained 1.95 g of $4,0.85 \mathrm{~g}$ of 6 , and 2.68 g of la. The conversion of la to 3 and 4 was 78%.
B. With Potassium tert-Butoxide in Dimethyl Sulfoxide.-A mixture prepared from 11 ml of dry DMSO, 2.35 g (21 mmol) of $\mathrm{KO}-t-\mathrm{Bu}$, and $5.1 \mathrm{~g}(21 \mathrm{mmol})$ of 1 a was heated at 100° for 4 hr and then worked up as described for the reaction with NaOEt in EtOH. Vpc analysis of the ether solution indicated the presence of diethyl carbonate, 3,6 , compounds subsequently identified as the tert-butyl homolog of 3 and 4-carboethoxy-5,6-dihydro-3-ethoxycarbonylmethyl-1,2-oxin (5), and at least three other products which had retention times similar to those of the cyclic products and which were not identified. Distillation gave a $1.2-\mathrm{g}$ fraction, bp $50-65^{\circ}(0.4 \mathrm{~mm})$, which was estimated by vpc to consain $0.36 \mathrm{~g}(10 \%)$ of $3,0.06 \mathrm{~g}(1.5 \%)$ of the tert-butyl homolog of $3,0.14 \mathrm{~g}(2.8 \%)$ of 5 , and $0.18 \mathrm{~g}(3.5 \%)$ of 6 . These products were isolated by preparative vpc, and 3 and 6 were identified by comparison with previously identified material.

4-Carbo-tert-butoxy-5,6-dihydro-3-methyl-1,4-oxin had nmr δ $6.16(\mathrm{q}, J=1 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{C}), 1.61\left(\mathrm{~d}, J=1 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{CCH}_{3}\right)$, and $1.43 \mathrm{ppm}\left[\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.

5 had $n^{23} \mathrm{D} 1.4705$; uv $\lambda_{\max } 223 \mathrm{~m} \mu(\epsilon 7380)$; ir 1735 (vs, unconjugated $\mathrm{C}=\mathrm{O}$), 1710 (conjugated $\mathrm{C}=0$), $1655 \mathrm{~cm}^{-1}$ (conjugated $\mathrm{C}=\mathrm{C}$); nmr $\delta 4.12$ (q, J $=7.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CCO}_{2}-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.08\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{8}\right), 4.05-4.00(\mathrm{~m}$, $\mathrm{OCH}_{2} \mathrm{C}=$), $3.69\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.29\left(\mathrm{~s},=\mathrm{CCH}_{2}-\right.$ CO_{2}), 2.54-2.20 ($\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}=$), $1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $=\mathrm{CCO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.23\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{8}\right)$; mass spectrum m / e (rel intensity) 197 (29), 196 (78), 169 (34), 168 (45), 140 (62), 111 (25), 29 (100).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 59.52; H, 7.43. Found: C, 59.36; H, 7.57.

The reaction was repeated using $2.17 \mathrm{~g}(19.4 \mathrm{mmol})$ of KO -t-Bu and $4.80 \mathrm{~g}(19.8 \mathrm{mmol})$ of 1 a except that heating at 100° was maintained for 1 rather than 4 hr . Work-up gave a $2.1-\mathrm{g}$ fraction with bp $45-124^{\circ}(0.2 \mathrm{~mm})$, which was estimated by vpc to contain $0.20 \mathrm{~g}(6 \%)$ of $3,0.08 \mathrm{~g}(2.1 \%)$ of the tert-butyl homolog of $3,0.47 \mathrm{~g}(10 \%)$ of 5 , and $0.87 \mathrm{~g}(18 \%)$ of 6 .

Registry No.--1a, 38858-63-8; 3, 38858-64-9; 3 tertbutyl homolog, 38858-65-0; 4, 38858-66-1; 5, 38858-$67-2$; 6, 38858-68-3; 6-bromo-4-oxa-1-hexyne, 18668-74-1; diethyl malonate, 105-53-3; sodium ethoxide, 141-52-6; potassium tert-butoxide, 865-47-4.

Acknowledgments.-Availability of the mass spectrometer was made possible by a grant from the National Science Foundation. We wish to thank Mr. J. Voth for determination of the mass spectra.

o-Dibenzoyl Heterocycles via Cycloaddition
 Reactions. A Convenient Route to
 Fused Pyridazine Systems ${ }^{1}$

K. T. Potts* and A. J. Elliott

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181

Received November 9, 1972
The synthesis of pyridazines from 1,4 diketones and hydrazine hydrate is well-established procedure, ${ }^{2}$ its

[^131]major limitation being the availability of the required 1,4 -dicarbonyl precursors. These are especially difficult to obtain in heterocyclic ring systems and this study was undertaken to evaluate cycloaddition procedures as routes to heterocycles with the requisite vicinal dicarbonyl substituents, as well as the final ring closure to the fused pyridazine derivatives themselves.

Utilizing Michael additions ${ }^{3}$ as well as a variety of 1,3-dipolar cycloadditions ${ }^{4}$ with the acetylenic dipolarophile dibenzoylacetylene, it has been possible to obtain several heterocyclic systems with the requisite substitution pattern. The following reactions illustrate a procedure which should be capable of extension to the synthesis of other heterocycles with analogous substitution patterns.

Condensation of benzoin (1) with dibenzoylacetylene in the presence of potassium carbonate gave the hydrated furan 2 , which was readily dehydrated with methanolic hydrochloric acid to 2,3-dibenzoyl-4,5diphenylfuran (3). Treatment of 3 with hydrazine hydrate afforded 2,3,4,7-tetraphenylfuro [2,3-d $]$ pyridazine (4) in 80% yield. The analytical and spectral data described in Table I and the Experimental Section for this series of products clearly establish their structures.

Similarly, condensation of o-aminoacetophenone with dibenzoylacetylene gave 2,3-dibenzoyl-4-methylquinoline (5), which was converted into 1,4-diphenyl-10-methylbenzo [g[pyrido[2,3-d]pyridazine in quantitative yield.

Two isomeric dibenzoylpyrazoles are readily synthesized by 1,3 -dipolar cycloaddition techniques. We have recently shown ${ }^{5}$ that the reaction of N-phenyl-

[^132]Table I

Some Ring-Fused Pyridazines					
Fused pyridazine derived from	Yield, \%	$\underset{{ }^{\circ} \mathrm{C}}{\mathrm{Mp}}$	Formula ${ }^{\text {f }}$	$\begin{gathered} \text { M }^{+} \\ \text {(rel intensity) } \end{gathered}$	$\begin{gathered} \text { Uv data, } \\ \left.\lambda_{\text {max, }} \text { nm (log } \epsilon\right) \end{gathered}$
2,3-Dibenzoyl-4,5diphenylfuran	80	203-204 ${ }^{\text {a }}$	$\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$	424 (100)	$\begin{aligned} & 222^{b}(4.35), 274(4.25) \\ & 310(4.27) \end{aligned}$
3,4-Dibenzoyl-1-phenylpyrazole	100	251-252 ${ }^{\text {c }{ }^{\text {d }} \text { d }}$	$\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{4}$	348 (52)	237 (4.35), 304 (4.38)
4,5-Dibenzoyl-1-(2,4-dibromophenyl)-3phenylpyrazole	100	224-225 ${ }^{\text {a }}$	$\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{4}$	580 (66)	$224{ }^{\text {b }}$ (4.69), 305 (4.14)
2,3-Dibenzoyl-4-methylquinoline	100	$240^{\text {c,e }}$	$\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3}$	347 (100)	$\begin{aligned} & 212(4.45), 255(4.64) \\ & 360(3.73) \end{aligned}$
${ }^{a}$ Colorless needles. ${ }^{b}$ Sho $\left(\mathrm{CDCl}_{3}\right) \tau 7.30(\mathrm{~s}, 3,10-\mathrm{CH}$ all compounds. Ed.	c Yello 8 (m,	les from be matic).	${ }^{d} \mathrm{Nmr}$ (C actory analy	$\begin{aligned} & \tau 1.27(\mathrm{~s}, 1, \mathrm{~F} \\ & \text { lues }(\pm 0.3 \mathrm{f} \end{aligned}$	-2.7 (m, aromatic). $\bullet \mathrm{N}$, and N) were reported

sydnone with dibenzoylacetylene is a convenient route to 3,4-dibenzoyl-1-1-phenylpyrazole (6), and the isomeric system, 4,5-dibenzoyl-1-(2,4-dibromophenyl)3 -phenylpyrazole (8), was obtained from the reaction of the nitrilimine ${ }^{6} 7$ with dibenzoylacetylene. Both these pyrazoles underwent ready ring closure with hydrazine hydrate to give the anticipated 2,4,7triphenylpyrazolo [3,4- d]pyridazine and 1-(2,4-dibro-mophenyl)-3,4,7-triphenylpyrazolo $[3,4-d]$ pyridazine, respectively, in quantitative yields (Table I). This ring system has been synthesized previously ${ }^{7}$ by ring closure of pyrazine-3,4-dicarboxaldehyde with hydrazine hydrate.
The possibility that these ring-fused pyridazine derivatives would undergo cycloadditions was also of interest. Despite its inherent o-quinoidal structure, 3,4,7-triphenylpyrazolo [3,4-d]pyridazine did not undergo cycloaddition with N-phenylmaleimide and the stability of such systems may be attributed to the introduction of two nitrogen atoms. ${ }^{8}$ Thus 2-methyl$2 H$-pyrrolo [3,4-b]quinoxaline is a stable entity, ${ }^{9}$ whereas $2 H$-naphtho $[2,3-c]$ pyrrole can only be trapped as its N-phenylmaleimide product. ${ }^{10}$ The incorporation of two or more heteroatoms into the five-membered ring may also inhibit the cycloaddition reactions, as naphtho $[2,3-c][2,1,3]$ thiadiazole is unreactive toward dienophiles. ${ }^{11}$

Experimental Section ${ }^{12}$

4,5-Dibenzoyl-1-(2,4-dibromophenyl)-3-phenylpyrazole (8, $\mathrm{Ar}=2,4-\mathrm{Br}_{2} \mathrm{C}_{5} \mathrm{H}_{3}$). $-N$ - α-Bromobenzylidene- N^{\prime}-(2,4 -dibromophenyl)hydrazine ${ }^{13}$ ($4.33 \mathrm{~g}, 0.01 \mathrm{~mol}$), dibenzoylacetylene (2.34 g , $0.01 \mathrm{~mol})$, and anhydrous acetonitrile (100 ml) were stirred together at room temperature, and triethylamine (5 ml) was

[^133](13) F. D. Chattaway and A. J. Walker, J. Chem. Soc., 127, 975 (1925).
added. After the solution had stirred overnight, the solvent was removed and the residue was washed well with water. Two crystallizations from ethanol gave colorless needles: 60%; mp $174-175^{\circ}$; ir (KBr) $3080,3045(\mathrm{CH}), 1670,1650 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\lambda_{\text {ma }}^{\mathrm{CH} 2 \mathrm{O}} 242 \mathrm{~nm}(\mathrm{sh}, \log \epsilon 4.41), 302(4.08) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.9-2.1$ (m , aromatic); mass spectrum m / e (rel intensity) M.+ 584 (95).
Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $59.41 ; \mathrm{H}, 3.10 ; \mathrm{N}, 4.78$. Found: C, 59.18; H: 2.94; N, 4.67.
2,3-Dibenzoyl-4,5-dihydro-4,5-diphenyl-4-hydrozyfuran (2).Benzoin (0.6 g), dibenzoylace:ylene (0.7 g), anhydrous sodium carbonate $(0.4 \mathrm{~g})$, and dry acetone (20 ml) were boiled together under reflux for 24 hr . The mixture was cooled, poured into water (250 ml), and extracted with ether. The extract was dried (MgSO_{4}), the ether was removed, and the residue was crystallized from methanol (charcoal), forming colorless needles: 39%; $\mathrm{mp} 171^{\circ}$; ir $(\mathrm{KBr}) 3500(\mathrm{OH}), 3080,3045(\mathrm{CH}), 1680 \mathrm{~cm}^{-1}$ (CO); $\lambda_{\text {max }}^{\text {chaid }} 255 \mathrm{~nm}(\log \epsilon 4.19)$, 305 ($\mathrm{sh}, 3.80$); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau$ $5.77(\mathrm{~s}, 1, \mathrm{OH}), 4.17\left(\mathrm{~s}, 1, \mathrm{H}_{5}\right), 2.8-2.0(\mathrm{~m}, 20$, aromatic); mass spectrum m / e (rel intensity) M +446 (27).
Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 80.70 ; \mathrm{H}, 4.97$. Found: C, 80.87; H, 4.96 .

2,3-Dibenzoyl-4,5-diphenylfuran (3) was prepared from 2 by the action of boiling methanolic hydrochloric acid during 5 min. Upon concentration the product separated as colorless, matted needles: 100%; $\mathrm{mp} \mathrm{157}{ }^{\circ}$; ir (KBr) $3080(\mathrm{CH}), 1680 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\lambda_{\text {max }}^{\mathrm{CH}_{\text {H. }}^{\mathrm{OH}}} 256 \mathrm{~nm}(\log \epsilon 4.19), 342(3.68) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.9-1.8$ (m , aromatic); mass spectrum m / e (rel intensity) M.+ 428 (100).

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 84.09; $\mathrm{H}, 4.71$. Found: C, 84.08; H, 4.64 .

2,3-Dibenzoyl-4-methylquinoline (5).-Equivalent amounts of o-aminoacetophenone and dibenzoylacetylene were refluxed in methanol for 10 min . On cooling, yellow needles of an adduct were deposited. Without further characterization the product was dissolved in methanolic hydrochloric acid and refluxed for 30 min . Partial removal of the methanol gave a colorless solid which crystallized from benzene as colorless needles: $40 \% ; \mathrm{mp}_{\mathrm{CHOB}}$ $204-205^{\circ}$; ir (KBr) $3090(\mathrm{CH}), 1680,1660 \mathrm{~cm}^{-1}$ (CO); $\lambda_{\max }^{\mathrm{HmoH}}$ $207 \mathrm{~nm}(\log \epsilon 4.62), 255(4.54) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 7.42\left(\mathrm{~s}, 3, \mathrm{CH}_{8}\right)$, ${ }^{2.8-1.6}$ (m, 14, aromatic); mass spectrum m / e (rel intensity) M +351 (58).
Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}_{2}$: $\mathrm{C}, 82.03 ; \mathrm{H}, 4.88 ; \mathrm{N}, 3.99$. Found: C, 82.37; H, 4.66; N, 3.85.
Ring-Fused Pyridazines.-The following method illustrates the general procedure used. The dibenzoyl compound was dissolved in the minimum quantity of boiling ethanol, hydrazine hydrate (85%, twofold excess) was added, and the solution, after refluxing for 15 min , was filtered and allowed to cool, whence the products described in Table I separated.
Registry No.-1, 119-53-9; 2, 38974-10-6; 3, 38899-31-9; 4, 38899-32-0; 5, 38899-33-1; 6, 37687-10-8; 8 ($\mathrm{Ar}=2,4-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$), 38899-35-3; 1,4-diphenyl-10methylbenzo $[g]$ pyrido $[2,3-d]$ pyridazine, 38899-36-4; 2,-4,7-triphenylpyrazolo [3,4-d]pyridazine, 38974-11-7; 1-(2,4-dibromophenyl)-3,4,7-triphenylpyrazolo [3,4-d]pyridazine, 38899-37-5; N - α-bromobenzylidine- N^{\prime}-($2,-$ 4-dibromophenyl)hydrazine, 2516-46-3; dibenzoylacetylene, 1087-09-8; 0 -aminoacetophenone, 551-93-9.

The Synthesis of Some 2,2'-Dioxa-Bridged
 Biphenyls and $1,1^{\prime}$-Binaphthyls ${ }^{1 \mathrm{a}}$

J. Ernest Simpson, ${ }^{\text {b }}$ Guido H. Daub,* and F. Newton Hayes ${ }^{\text {ic }}$
Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87106, and
Biomedical Research Group, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

Received August 14, 1972

In the course of a study involving the synthesis and evaluation as liquid scintillator solutes of a number of bridged p-quaterphenyls of the type 1 it was necessary to prepare a number of $2,2^{\prime}$-bridged biphenyls (2). The $2,2^{\prime}$-bridged $1,1^{\prime}$-binaphthyls (3) were also of interest to us as scintillators and their synthesis is reported here along with the biphenyl derivatives (2).

$\begin{aligned} 1, \mathrm{R} & =\mathrm{C}_{6} \mathrm{H}_{5} ; n=1,2,3,4 \\ 2 \mathrm{a}, \mathrm{R} & =\mathrm{H} ; n=1 \\ \mathrm{~b}, \mathrm{R} & =\mathrm{H} ; n=2 \\ \mathrm{c}, \mathrm{R} & =\mathrm{H} ; n=3 \\ \mathrm{~d}, \mathrm{R} & =\mathrm{H} ; n=4\end{aligned}$

3a, $n=1$
b, $n=2$
c, $n=3$
d, $n=4$

The dioxepins (a), dioxocins (b), dioxonins (c), and dioxecines (d) in the biphenyl series (2) and $1,1^{\prime}$ binaphthyl series (3) were each obtained from $2,2^{\prime}$ dihydroxybiphenyl (4) and 1,1'-bi-2-naphthol (5), respectively. In each case, depending on the desired number of methylenes in the bridge, a solution of methylene iodide, 1,2-dibromoethane, 1,3-dibromopropane, or 1,4 -dibromobutane in anydrous N, N-dimethylformamide (DMF) was added to a heated mixture of the appropriate dihydroxy compound and potassium carbonate in anhydrous N, N-dimethylformamide to yield the folowing: dibenzo $[d, f][1,3]$ dioxepin (2a), 6,7-dihydrodibenzo $[e, g][1,4]$ dioxocin (2 b), 7,8-dihydro6 H -dibenzo $[f, h][1,5]$ dioxonin (2c), 6,7,8,9-tetrahydrodibenzo $[g, i][1,6]$ dioxecine (2d), dinaphtho $\left[2,1-d: 1^{\prime}\right.$,-$\left.2^{\prime}-f\right][1,3]$ dioxepin (3a), 4,5-dihydrodinaphtho [2,1-e: 1^{\prime},-$\left.2^{\prime}-g\right][1,4]$ dioxocin (3b), 5,6-dihydro-4 H -dinaphtho-[2,1-f: $\left.1^{\prime}, 2^{\prime}-h\right][1,5$-]dioxonin (3c), and 4,5,6,7-tetrahydrodinaphtho $\left[2,1-g: 1^{\prime}, 2^{\prime}-i\right][1,6]$ dioxecine (3d). See Table I.

Thus, the yields of the bridged ethers in the biphenyl
(1) (a) From the dissertation presented by J. Ernest Simpson to the graduate faculty of the University of New Mexico in partial fulfillment of the requirements for the degree of Doctor of Philosophy. This investigation was supported in part by a Research Grant from the Division of Biology and Medicine of the U. S. Atomic Energy Commission, Contract No. AT(29-2)915. (b) Graduate Research Assistant, June 1963 to August 1967. (c) Work performed under the auspices of the U. S. Atomic Energy Commission.

Table I
Dioxa-Bridged Biphenyls and Binaphthyls ${ }^{a}$

Compd	Time ${ }^{\prime}$	Temp, ${ }^{\circ} \mathrm{C}$	Yield, \%	Mp, ${ }^{\circ} \mathrm{C}$
2a	1.0 (18)	80-90	56	36.5-37.5 (reported ${ }^{\text {g }} 35-36$)
2b	2.5 (16)	90-100	38	$97.8{ }^{\text {b }}$ (reported ${ }^{0, h} 98$)
2c	5.0 (15)	100-110	53	72.5-73.5 ${ }^{\text {b }}$ (reported ${ }^{\theta}$ 67-69)
2d	6.0 (14)	75-80	38	109-110 ${ }^{\text {(reported }}{ }^{0} 110-111$)
3a	1.0 (4)	100-110	52	178.5-179.5 ${ }^{\text {d }}$
3b	7.0 (14)	75-85	7	197-198.5 ${ }^{\text {d }}$ (reported ${ }^{\text {i }}$ 196-197)
3 c	3.0 (18)	80-90	49	272.5-273.5 ${ }^{\text {e }}$
3d	3.0 (18)	80-90	76	256.5-257.5 ${ }^{\text {e }}$

${ }^{a}$ Analytical samples of all of the compounds reported here gave satisfactory analytical data ($\pm 0.4 \frac{\%}{\%}$ for C and H). All products were chromatographed in benzene or cyclohexane-benzene over Woelm neutral activity grade I alumina prior to recrystallization. ${ }^{b}$ Recrystallization solvent was petroleum ether (bp 30-60 ${ }^{\circ}$. ${ }^{c}$ Recrystallization solvent was petroleum ether (bp 60-90 $)$. ${ }^{d}$ Recrystallization solvent was cyclohexane-benzene. ${ }^{\text {e }}$ Recrystallization solvent was benzene. / Time of addition of halide in hours (time of heating in hours after addition). \quad D. W. Allen, P. N. Braunton, I. T. Millar, and J. C. Tebby, J. Chem. Soc. C, 3454 (1971). ${ }^{h}$ O. Diels and A. Bibergeil, Ber., 35, 302 (1902). i M. R. Fosse, Bull. Soc. Chim. Fr., 19, 611 (1898).
series (2) were superior to those reported recently ${ }^{2}$ in which the diol was treated with sodium hydroxide and the appropriate dihalide in aqueous dimethyl sulfoxide. In all cases the biphenyl derivatives 2a-2d obtained in our work had physical properties and ultraviolet absorption spectra essentially identical with those reported. ${ }^{2,3}$ The compounds 3a, 3c, and 3d are new compounds and the dioxocin 3 b had physical properties in agreement with those previously reported. ${ }^{4}$

Experimental Section

All melting points were taken in Pyrex capillary tubes in a Hoover-Thomas melting point apparatus and are uncorrected. Ultraviolet absorption spectra were taken in cyclohexane solution and were run on a Cary Model 14 spectrophotometer.

General Procedure.-The prejaration of dibenzo[d,f][1,3]dioxepin (2a) is described in detail, and the synthesis of the other compounds was carried out in a similar fashion.
Dibenzo[d,f][1,3]dioxepin (2a).-A solution of 2.95 g (0.011 mol) of methylene iodide in 35 ml of DMF was added dropwise over 1.0 hr to a stirred mixture of $1.86 \mathrm{~g}(0.01 \mathrm{~mol})$ of $2,2^{\prime}$ dihydroxybiphenyl (4), mp $108-110^{\circ}$, and $3.04 \mathrm{~g}(0.022 \mathrm{~mol})$ of anhydrous potassium carbonate in 50 ml of DMF maintained between 80 and 99°. After the reaction mixture has been heated for an additional 18 hr , it was poured into water and extracted with ether, and the ether layer was washed with 5% sodium hydroxide and water. The ether layer was dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), the solvent was removed on a steam bath, and the residue was chromatographed from a 10:1 cyclohexane-benzene solution through a Woelm alumina column (neutral activity, grade I). Removal of the solvent left an oil which solidified upon cooling; after several unsuccessful crystallization attempts, the solid was evaporatively distilled ($90^{\circ}, 0.05$ Torr) yielding $1.1 \mathrm{~g}(56 \%$ yield) of dibenzo[d,f][1,3]dioxepin (2a) as a colorless solid, mp $36.5-37.5^{\circ}$.

Registry No.-2a, 220-11-1; 3a, 188-35-2; 3c, 38896-36-5; 3d, 38896-37-6; 4, 1806-29-7.
(2) D. W. Allen, P. N. Braunton, I. T. Millar, and J. C. Tebby. J. Chem Soc. C, 3454 (1971).
(3) P. N. Braunton, I. T. Millar, and J. C. Tebby, J. Chem. Scc., Perkin Trans. 2, 138 (1972).
(4) M. R. Fosse, Bull. Soc. Chim. Fr. 19, 611 (1898).

Concertedness: a Function of Dynamics or the Nature of the Potential Energy Surface?

Summary: Whether or not a given reaction is concerted depends on molecular size and reaction conditions as well as the depth of local potential energy minima between reactant and product wells; any proposed quantitative definition of concertedness must, therefore, stress maximum lifetimes of potential intermediates in relation to molecular size and reaction conditions.

Sir: The orbital symmetry approach ${ }^{1}$ to chemical reactivity recognizes only two types of reaction channel: allowed (symmetry correlation of all bonding reactant molecular orbitals with bonding product molecular orbitals) and forbidden (symmetry correlation of at least one bonding reactant orbital with one antibonding product orbital). To fully explore the limits of this theory, and also to escape irrefutability, ${ }^{2}$ would require a quantitative definition of concertedness. ${ }^{3}$

Thus, the question has been posed: ${ }^{6}$ Should some time limit (say $10^{-12} \mathrm{sec}$) be defined as the maximum allowable lifetime for intermediates in concerted cycloreactions, or should concertedness rely on the fact that no potential energy well on the hypersurface connecting reactant and product exceeds some maximum depth (say $1 / 2 h \nu_{0}$)?

It is the intention here to pursue two theoretical points initially raised by Wolfgang ${ }^{7,8}$ which lead to the conclusions that a reaction is a one-step process when (1) there are no potential energy minima between reactant and product wells, (2) there is an energy minimum on the reaction coordinate, but the reacting system contains too few atoms to exist as an intermediate complex, or (3) a potential well separates reactant and
(1) R. B. Woodward and R. Hoffmenn, Angew. Chem., Int. Ed. Engl., 8, 781 (1969); "The Conservation of Orbital Symmetry," Academic Verlag Press, 1970.
(2) If all allowed reactions were assumed to be concerted, and similarly all forbidden reactions were nonconcerted when observed, then a failure to observe the orbital-symmetry-predicted reaction stereochemistry could be interpreted as either a violation of the theory or as a nonconcerted reaction Hence, the theory could never be refuted, unless concertedness is placed on a quantitative basis and uncoupled from allowedness. Consideration of electronic state symmetry and configuration interaction has lead to a theoretical uncoupling of concertedness and orbital symmetry: J. E. Baldwin A. H. Andrist, and R. K. Pinschmidt, Jr., Accounts Chem. Res., 6, 402 (1972).
(3) A reaction is generally considered to be "concerted" if the transition state is characterized by (1) equal bond making and bond breaking for unimolecular isomerization, (2) equal bond breaking at two reaction termini in a cycloelimination, or (3) equal bond making at the reaction termini in a cycloaddition. (An anslogous definition based on the synchroneity of bond cleavage and formation is also frequently employed.) Such bond breaking aided by bond making should require a lower activation energy than the corresponding dissocistion-recombination process. Since the most elusive molecular property (which is even more elusive for transition states) is the distribution of electrons, ${ }^{4}$ concertedness has defied quantification in an empirical sense. ${ }^{6}$
(4) Cf. W. H. Flygare, Science, 140, 1179 (1963)
(5) Cf. S. H. Bauer, J. Amer. Chem. Soc., 91, 3688 (1969).
(6) Informal discussions, 14th Conference on Reaction Mechanisms, University of Vermont, Burlington, Vt., June 13-16, 1972.
(7) R. Wolfgang, Accounts Chem. Res., 2, 248 (1969).
(8) R. Wolfgang, Accounts Chem. Res., 3, $\leqslant 8$ (1970), and references therein.
product wells but the reacting system possesses a large internal energy such that in the absence of collisional deactivation the intermediate complex is unstable and transforms directly into product.

While it is well-known that an energetically concerted reaction, ${ }^{9}$ characterized by a potential energy surface in configuration space with no energy minima between reactant and product wells, is a one-step process, it is not generally appreciated that a potential energy hypersurface containing a distinct potential energy minimum on the way to product may correspond to either a one-step or two-step process ${ }^{10}$ depending on the depth of the well, the density of energy states available to the intermediate, and the activation imparted to the reacting system. ${ }^{11}$

The actual experimental differentiation of a transition state from a true intermediate remains a fundamental problem in "reaction spectroscopy." The lifetime (τ) of a transition state is given by the reciprocal sum of all rate constants which lead to decay, one vibration leading to product and another leading to reactant, each approximately $10^{13} \mathrm{sec}^{-1}$: $\tau_{\mathrm{TS}}=5 \times 10^{-14} \mathrm{sec}$.

From, Rice-Ramsperger-Kassel (RRK) theory ${ }^{12,13}$ one can obtain an estimate of the requirements for formation of an intermediate in a thermally activated reaction. ${ }^{8}$ The rate constant, k_{c}, for unimolecular decay of a vibrationally excited molecule of internal energy ϵ is given by eq 1 , where ϵ^{*} is the minimum activation

$$
\begin{equation*}
k_{\epsilon}=A\left[\left(\epsilon-\epsilon^{*}\right) / \epsilon\right]^{s-1} \tag{1}
\end{equation*}
$$

energy for spontaneous decay (see Figure 1) and s is the number of "active" vibrational modes. A more accurate RRK equation (2) only allows two-thirds of

$$
\begin{equation*}
k_{\epsilon}=A\left[\left(\epsilon-\epsilon^{*}\right) / \epsilon\right]^{2 N-5} \tag{2}
\end{equation*}
$$

the total number of vibrational modes to be active; i.e., $s=2 / 3(3 N-6)=2 N-4$ for a nonlinear N atomic molecule. The lifetime follows from eq 2 with

$$
\begin{gather*}
\tau_{\epsilon}=1 / k_{\epsilon}=\left[\left(\epsilon-\epsilon^{*}\right) / \epsilon\right]^{5-2 N} \times 10^{-13} \mathrm{sec} \\
\tau_{\epsilon}=\left[1-\left(\epsilon^{*} / \epsilon\right)\right]^{5-2 N} \times 10^{-13} \mathrm{sec} \tag{3}
\end{gather*}
$$

(9) J. E. Baldwin and R. H. Fleming, Fortsch. Chem. Forschung, 15, 281 (1970).
(10) It would not be inconsistent for such a two-step, energetically nonconcerted process simultaneously to be bondingly and orbitally concerted. 9
(11) While this conclusion has its most direct applications to reactions in the gas phase, it surely applies whenever collisional deactivation is unable to compete with progress along the reaction coordinste.
(12) Quslitative estimates bssed on RRK theory have, on the whole, been fully substantiated within the refined Rice-Ramsperger-Kassel-Marcus (RRKM) theory; cf. H. S. Johnston, "Gas Phase Reaction Rate Theory," Ronald Press, New York, N. Y., 1966; G. L. Pratt, "Gas Kinetics," Wiley. New York, N. Y., 1969; and P. J. Robinson and K. A. Holbrook, "Unimolecular Reactions," Wiley-Interscience, New York, N. Y., 1972.
(13) Professor R. G. Bergman has pointed out that the use of exact A factors and the expanded equation given by Setser and Rabinovitch ${ }^{14}$ leads to improved estimates of absolute rate constants, but the method is not so easily applied as the modified RRK approach used here since zero-point energies of the energized molecule and the activated complex are required.
(14) D. W. Setaer and B. S. Rabinovitch, Can. J. Chem., 40, 1425 (1962)

Figure 1-Energy vs. reaction coordinate diagram illustrating ϵ and ϵ^{*}.
inclusion of a "normal" A factor. ${ }^{8}$ If a true intermediate, as opposed to a transition state, must have $\tau>$ $10^{-12} \mathrm{sec}$, then eq 4 obtains. Table I lists minimum

$$
\begin{equation*}
\epsilon^{*} / \epsilon=1-10^{x /(5-2 N)}(x>1.0) \tag{4}
\end{equation*}
$$

Table I

${ }^{\text {Values of }} \epsilon^{*} / \epsilon$ vs. N from EQ 4 with $x=1.0$							
N	3	4	5	9	14	52	
ϵ^{*} / ϵ	0.90	0.54	0.37	0.16	0.10	0.02	

values of ϵ^{*} / ϵ which allow an intermediate to exist with $\tau=10^{-12} \sec v s$. N calculated from eq 4; Figure 2 gives the corresponding plot of $\epsilon^{*} / \epsilon v s . N$.

An interesting result is revealed by the plot in Figure 2. As the number of atoms increases, the activation energy required to contain an intermediate for $10^{-12} \mathrm{sec}$ falls off rapidly for any given internal energy. For example, a $27.0-\mathrm{kcal} \mathrm{mol}^{-1}$ activation energy is required to contain a 4 -atom transient with $50 \mathrm{kcal} \mathrm{mol}^{-1}$ internal energy, while a mere $5.0-\mathrm{kcal} \mathrm{mol}^{-1}$ barrier will contain a 14 -atom intermediate of the same internal energy for $10^{-12} \mathrm{sec}$.

Equation 4 and the plot in Figure 2 reflect the principle that the density of vibrational states increases dirently with molecular size, and it is precisely this larger density of vibrational states which permits the complex molecule to form an intermediate while experiencing only a small barrier against spontaneous decomposition.
This conclusion forces a consideration of substituent effects on molecular rearrangements: Can the replacement of small groups with large groups make some nonconcerted reaction channel competitive with an otherwise dominant concerted path? Paquette and Epstein have suggested that replacement of two hydrogens with two phenyl groups perturbs the parent bicyclo[5.2.0]-nona- $2,5,8$-triene system too severely to establish any mechanistic analogy. ${ }^{15}$ This effect may contribute to the documented reactivity differences between ketene and diphenylketene, ${ }^{16}$ 2,3,3,4-tetramethyl- and 2,4-diphenyl-3,3-dimethyltricyclo [3.2.0. ${ }^{2,4} 0^{1,5}$]hept-6-ene, ${ }^{17}$ meso-3,4-dimethyl- and meso-3,4-diphenylhexa-1,5diene, ${ }^{18,19}$ and allene and phenyl-substituted allenes. ${ }^{20}$
(15) L. A. Paquette and M. J. Epstein, J. Amer. Chem. Soc., 93, 5936 (1971).
(16) J. E. Baldwin and J. A. Kapecki, J. Amer. Chem. Soc., 92, 4868 (1970), and references cited.
(17) L. A. Paquette and L. M. Leichter, J. Amer. Chem. Soc., 92, 1765 (1970); ibid., 93, 4922, 5128 (1971).
(18) W. von E. Doering and W. R. Roth, Tetrahedron, 18, 67 (1962).
(19) R. P. Lutz, S. Bernal, R. J. Boggio, R. O. Harris, and M. W. McNicholas, J. Amer. Chem. Soc., 93, 3985 (1971); see also M. J. S. Dewar and L. E. Wade, ibid., 95, 290 (1973).
(20) J. E. Baldwin and L. E. Walker, J. Org. Chem., 36, 1440 (1971), and references cited

Figure 2-Plot of $\epsilon^{*} / \epsilon \nu s . N$ from Table I.
Whether a given energized molecule may pass directly over a potential well separating it from isolable product while maintaining its internal energy above ϵ^{*} depends on the third pa:ameter in eq $4, \epsilon$, and what opportunities for collisional deactivation may be present. Molecular beam experiments ${ }^{8}$ on the energy dependence of bimolecular reactions have demonstrated the actual conversion of two-step, energetically nonconcerted reactions into one-step, fully concerted processes at higher internal energies. ${ }^{21}$ Thus, even if a potential well of sufficient depth presents an opportunity for intermediate formation, it does not require that such an intermediate be formed! ${ }^{22,25}$
In conclusion, concertedness depends not only on the nature of the potential energy surface itself, but also the motion of the system on this surface. Any empirical definition of concertedness which is adopted must focus on the dynamics of the reacting system and not simply intermediate potential well dep-h. Experiments aimed at distinguishing concerted from diradical or nonconcerted cycloreactions would be more meaningfully directed toward establishing maximum lifetimes of potential intermediates as a function of molecular size and reaction conditions.
Acknowledgment.-Helpful discussions with Professors John E. Baldwin and Robert G. Bergman are gratefully acknowledged.
(21) At higher ϵ it becomes more difficult to transfer the energy of reaction into internal vibrational modes.s Contrast this situation with chemical activation of atable species: B. S. Rabinovitch and M. C. Flowers, Quart. Rev. (London), 18, 122 (1984).
(22) Intermediate situations have been rationalized through a superposition of "quasiconcerted" processes ${ }^{28}$ and as a broad, flat plateau on the potential energy aurface termed a "twixtyl". ${ }^{24}$
(23) J. P. Freeman, D. G. Pucci, and G. Binsch, J. Otg. Chem., 37, 1894 (1972).
(24) R. Hoffmann, S. Swaminathan, B. G. Odell, and R. Gleiter, J. Amer. Chem. Soc., 92, 7091 (1970).
(25) Intermediste formation is not so easily avoided at higher a when a "spin barrier" is present; cf. L. M. Stephenson and J. I. Braumaz, J. Amer. Chem. Soc., 98, 1888 (1971).
Department of Chemistry A. Harry Andrist University of Colorado
Boulder, Colorado 80302
Received October 11, 1972

Flow Synthesis. A Substitute for the High-Dilution Steps in Cryptate Synthesis

Summary: Certain cyclization reactions, usually run under conditions of high dilution over long periods of time, give excellent yields in $<1 \mathrm{~min}$ when the reagents are efficiently mixed in a suitable flow cell.

Sir: In a recent synthesis of the polyoxa macrobicyclic diamine, 1 , which forms cage complexes (cryptates) with alkali and alkaline earth cations ${ }^{1-3}$ and which can be used to dissolve alkali metals in amines and ethers, ${ }^{4,5}$ we followed essentially the procedure of Dietrich, Lehn, and Sauvage. ${ }^{1,6}$ Synthesis of both of the intermediates, 2 and 3 , from the appropriate di-

amine and diacid chloride used the high-dilution method recommended by Stetter and Marx. ${ }^{7}$ Similar procedures were used by Simmons and Park ${ }^{8,9}$ in the synthesis of diazabicycloalkanes and by Lehn and coworkers ${ }^{10-13}$ in their continuing synthesis of a number of macrobicyclic and macrotricyclic ligands.

The recommended procedure requires the slow addition with vigorous stirring (over a period of $\sim 8 \mathrm{hr}$) of dilute $(\sim 0.1 M)$ solutions of the two reagents in benzene into a reaction flask under a nitrogen atmosphere. We found that the yields were not greatly reduced by speeding up the addition process, provided that the stirring was sufficiently vigorous. This suggested that the most important factor in these reactions is efficient stoichiometric mixing. This supposition was tested by using a flow cell to carry out these steps.

The mixing chamber is of the type used in our laboratory for stopped-flow kinetics studies. ${ }^{14,15}$ It has four tangential $1.0-\mathrm{mm}$ inlets "drilled" into a $2.0-\mathrm{mm}$ i.d. Pyrex capillary. An Airbrasive unit (S. S. White Co.), which uses helium to drive Alundum through a nozzle at supersonic velocities, was used to make the inlet holes. (Presumably, conventional mixing chambers made of Teflon or metal could be used.) The reactant solutions were driven through the mixing chamber at flow velocities high enough to ensure turbulent mixing by applying about 3 atm of nitrogen pressure to the stock solutions. The heavy-walled vessels which

[^134]contained the stock solutions were connected to the mixing chamber with $5-\mathrm{mm}$ Solv-Seal joints (FischerPorter Co.) through Teflon needle-valve stopcocks (Kontes). The entire apparatus was surrounded by a metal safety shield.

Completion of the reaction between an amine and an acid chloride requires a base to remove the HCl formed. In the high-dilution method, either a $2: 1$ ratio of diamine to diacid chloride is used or else a tertiary amine such as triethylamine is used to scavenge HCl . However, in the formation of both 2 and 3, we have found that triethylamine reduces the yield substantially. With the flow technique the required excess of amine may either be present in the amine stock solution or it may be in the receiver flask. The amine hydrochloride is removed by filtration and reconverted to the amine with very little net loss of material.

In a typical flow reaction, 200 ml of a 0.06 M solution of the diamine and 200 ml of a 0.03 M solution of diacid chloride in benzene were allowed to flow through the flow cell. The total flow time was $\sim 10 \mathrm{sec}$. Higher concentrations of reagents tended to cause blockage of the flow tube by the precipitated amine hydrochloride. The amine hydrochloride was removed by filtration and the dilactam, 2 , was recovered by removing the solvent in a rotary evaporator and purified by elution through an alumina column with benzene (mp 108$109^{\circ}$; pmr singlet at 3.90 , multiplet at 3.50 ppm). The purified yield was 70% which is the same as the yield obtained for similar concentrations by the highdilution method. Similar results were obtained in the synthesis of the bicyclic lactam, 3. In all cases the yield was sensitive to the purity of the diacid chloride which is susceptible to decomposition upon vacuum distillation. Recrystallization from a mixture of ether and petroleum ether as recommended by Lehn ${ }^{6}$ yields a pure product which can be stored for weeks at -10° without decomposition.

Consideration of the kinetics to be expected in cyclization reactions suggests the requirements which must be met if the flow method is to be a useful replacement for high-dilution techniques. (1) Mixing must be rapid and complete so that the proper stoichiometry is maintained. (2) The initial step in the reaction must be fast enough to be substantially complete during the time of flow. (3) The cyclization step must be fast enough to compete with intermolecular reactions. It is likely that the type of reaction considered in this paper meets criteria 2 and 3 by the rapid formation of a cyclic acid-base complex or hydrochloride salt. The fact that the HCl scavenger may be placed in the receiver flask shows that it need not be present at the point of initial reaction. The precipitation of an amine hydrochloride in the flow tube shows that the reaction proceeds at least to this point in $<10 \mathrm{msec}$.

Flow synthesis should be readily applicable to other than cyclization reactions. It would be a simple matter to add another mixer for sequential reactions or for the quenching of undesirable reactions. If the reaction of interest is fast and the products are sensitive to decomposition or secondary reactions under the conditions of the experiment, then we would expect flow methods to be applicable. The simplicity of the apparatus makes the method attractive for routine laboratory use.

Acknowledgments. -This work was supported by the U. S. Atomic Energy Commission under Contract No. AT(11-1)-958. We are grateful to Professors E. LeGoff, W. Reusch, and D. Farnum of this department for helpful discussions of the procedures. We also thank Dr .C. H. Park of E. I. du Pont de Nemours and Co. and Professor J. M. Lehn of the Institut de Chemie, Strasbourg, for their useful advice.

Department of Chemistry
Michigan State University
East Lansing, Michigan 48823

James L. Dfe*
Mei Tak Lok
Frederick J. Teran Joseph M. Ceraso
Kent J. Voorhees

Received March 9, 1973

The Regiospecific Alkylation of Cyclic β Diketone Enol Ethers. A General Synthesis of
 4-Alkylcyclohexenones

Summary: The alkylation of the kinetic enolate derived from 3-alkoxycyclohexenones is shown to take place in high yield at C_{6}, thus leading to a general synthesis of 4-alkyl-2-cyclohexenones free of double-bond isomers.

Sir: Enol ethers of cyclic β diketones are very valuable synthetic intermediates, e.g., in the construction of cyclohexenones. ${ }^{1}$ Unfortunately, there is no general method for the regiospecific formation of a given enol ether when the starting diketone is unsymmetrical. In such a situation, enol ether formation leads to mixtures of the two possible products ($c f .1 \rightarrow 2$ and 3 , eq 1).

We now wish to present a solution to this problem which should greatly extend the utility of cyclic β diketones as synthetic intermediates: We have found that monoalkylation of the enol ether of symmetrical cyclic β diketones, e.g., 4, can be effected regiospecifically to give 3, a result especially noteworthy as the alkylation of the related enamine has recently been reported to follow a different course (e.g., 5 $\boldsymbol{6},{ }^{2} \mathrm{eq} 2$).

The alkylations are especially clean with reactive (allylic) halides. For instance, the lithium enolate (made at -78° in tetrahydrofuran with lithium diisopropylamide) of $4\left(\mathrm{R}^{*}=\right.$ isobutyl $\left.{ }^{3}\right)$ was treated with 1.1 equiv of allyl bromide, finally at room temperature, to yield, in almost quantitative yield, the monoallylated product (7) of 3 ($\mathrm{R}^{*}=$ isobutyl; $\mathrm{R}_{1}=$ allyl), needles of $\mathrm{mp} 37-38^{\circ}$. The gross structure was only compatible with either 3 or 3^{\prime} because of the mass spectrum (m / e 208) and the obvious presence of one allyl residue in the

[^135]

5
6
nmr, which retained the vinyl hydrogen of the enone system as a singlet at $\delta 5.3$.

The correctness of structure $\mathbf{3}$ was demonstrated by a sequence which also serves to illustrate one of the important uses of substances of this type, the synthesis of pure 4-alkyl- Δ^{2}-cyclohexenones, essentially free from the (usually) more stable Δ^{3} isomer. Lithium aluminum hydride reduction (refluxing ether) and hydrolysis ($2 N$ hydrochloric acid, $30-\mathrm{min}$ stivring, room temperature), gave, in $\sim 80 \%$ overall yield from 4, 4-allyl-2-cyclohexenone (8, eq 3), bp $87-88^{\circ}(7 \mathrm{~mm})$, $m / e 136.0863$, free of β, γ isomer as shown by the nmr (1 H split doublet at $\delta 7.0$ due to the β hydrogen of the α, β system) and the ir absorption at 5.93μ.

Catalytic hydrogenation of $8(10 \% \mathrm{Pd} / \mathrm{C}$ in ethanol) gave 4-propylcyclohexanone 9, identical (by glc on 5% SE-30, 100°, and ir) with an authentic sample made from anethole (10) by the sequence Birch reduction (lithium-ammonia-methanol), hydrolysis (3 N hydrochloric acid-aqueous methanol), and hydrogenation of the $\alpha, \beta-\beta, \gamma$ mixture of 4-propylcyclohexenones (eq 3).

It is especially remarkable and synthetically useful that proton transfer reastions between the initial lithium enolates of 1,3 diketone enol ethers (e.g., of 4) and the monoalkylated product (e.g., 3) are extremely
slow, thus leading to excellent yields of monoalkylated products, in spite of the rather slow alkylation of these lithium enolates in tetrahydrofuran.
The low reactivity of the lithium enolate of $4\left(R^{*}=\right.$ isobutyl) in tetrahydrofuran, presumably due to aggregation, is illustrated by the fact that, using propyl bromide under the same conditions which lead to almost quantitative alkylation with allyl bromide, only starting enol ether is recovered. It is, however, possible to achieve alkylation by the use of alkyl iodides in the presence of some hexamethylphosphoramide. Thus, under the same condition as with allyl bromide, but in the presence of 1.1 equiv of hexamethylphosphoramide, $4\left(\mathrm{R}^{*}=\right.$ isobutyl) gave with 1 equiv of propyl iodide, in 24 hr at room temperature, a mixture consisting of $65 \% 11$, (eq 4), in addition to 29% starting enol ether and $\sim 6 \%$ dialkylated material. ${ }^{4}$

The alkylation of enol ethers derived from symmetrical cyclohexane-1,3-diones can lead to a great variety of cyclohexenone derivatives. Starting with readily available cyclohexane 1,3 -diones such as 12 in which R, R^{\prime}, and $\mathrm{R}^{\prime \prime}$ are either H or alkyl (aryl), the
(4) These products could be separated by silica gel chromatography which gave (benzene, then benzene-ethyl acetate) starting material, followed by the dialkylated product, and finally the monoalkylated product 11 . Retention times, on a $10-\mathrm{ft} .2 \%$ Carbowax column at 148°, were ~ 3, 7 , and 5 min , respectively. Structures followed from direct comparison and mass, nmr, and ir apectra. The monoalkylated compound 11 was also converted (cf. $7 \rightarrow 9$) to 4-propylcyclohexanone (9).
sequence involving alkylation of the corresponding enol ether with $R_{1} X$ leads first to 13 and then, via either lithium aluminum hydride reduction or Grignard addition followed by hydrolysis, to cyclohexenones 14 in which $R_{1}=$ alkyl and $R, R^{\prime}, R^{\prime \prime}$, and R_{2} are either alkyl, aryl, or hydrogen (eq 5).

The procedure for the large scale synthesis of 7 is given in detail. $4\left(\mathrm{R}^{*}=\right.$ isobutyl) $(84.1 \mathrm{~g})$ in 125 ml of dry tetrahydrofuran was added over 1.5 hr at -78° under nitrogen to a solution containing ~ 1 equiv of lithium diisopropylamide (made in situ at -20° from 229 ml of $2.29 M$-butyllithium and 55.8 g of diisopropylamine). After 45 min , a solution of 66.5 g of allyl bromide in 100 ml of tetrahydrofuran was added over 20 min . The solution was allowed to warm to room temperature in $\sim 4 \mathrm{hr}, 5 \mathrm{ml}$ of water was added, and the solvent was evaporated. Extraction and work-up as usual gave $103.5 \mathrm{~g}(\sim 98 \%)$ of 7 , pure by tlc (15% ethyl acetate-benzene on silica gel), which crystallized on standing in long colorless needles, mp 37$38^{\circ}$ after crystallization from ether-acetone at Dry Ice temperature.

Acknowledgment.-We thank the National Science Foundation for support of this work.

Department of Chemistry	Gilbert Stork*
Columbia University	Rick L. Danheiser
New York, New York 10027	

New York, New York 10027
Received March 13, 1973

ADVANCES IN CHEMISTRY
SERIES No. 110
A symposium sponsored by the Louisiana section of the American Chemical Society, chaired by David J. Miller and T. K. Wiewiorowski

Here is the most chalienging and up-to-date roundup of the current findings and progress being made in the field of sulfur research today. These studies report al the latest trends in this rapidly developing area. from theoretical calculations on synthesis, bonding, and structure to new practical and applied uses.

Sixteen papers probe varied aspects of sulfur research
THEORETICAL: molecular orbital calculations, electron dehavior, organosulfur structure

INORGANIC: spectrum of sulfur and its allotropes, transition metal complexes of donor ligands, sulfur nitrogen compounds, physical properties

ORGANIC: reactions with mercaptans, sulfur atoms and olefins, reactions with hydrogen

APPLIED: chalcogenide alloys, electrical conductivity. fluorinated polymers, elemental alteration, potential applications

This timely review has lasting reference value for those nvolved in all areas of sulfur research. Put this volume to work for you.

231 pages with index Cloth (1971) \$11.00 Postpaid in U.S. and Canada; plus 40 cents elsewhere. Set of L.C. cards with library orders upon request

Order from:

Special Issues Sales
American Chemical Society
1155 Sixteenth St., N.W.
Washington. D.C. 20036

ORGANIC

 MICROANALYSESMefals - Pesticides - P.C.B.
GALBRAITH LABORATORIES, INC.
P.O. Box 4187, Knoxville, Tenn. 37921

Phone: (615) 546-1335

Harry W. Galbraith, Ph.D.

CIRCLE 805 ON READER SERVICE CARD

Fate of Organic Pesticides inthe Aquatic Environment

ADVANCES

IN CHEMISTRY
SERIES No. 111
A symposium sponsored by the Division of Pesticide Chemistry of the American Chemical Society with Samuel D. Faust, Chairman.

Chemical contamination of the Great Lakes and evidence of DDT in Lake Michigan illustrate the serious problems presented by organic pesticide pollution in aquatic environments today.

This up-to-date collection of thirteen papers gathers together scientific evidence on the distribution and stability of o-ganic pesticides in aqueous systems. These studies report the latest and most challenging research on: occurrence; recovery by liquid-liquid extraction; confirmation by mass spectrometry and NMR techniques: interaction with particulate matter and with natural organic polyelectrclytes: sorption by organic clays; herbicidal residues; photodecomposition of picloram and other pesticides; chemical hyd-olysis and oxidation of parathion and paraxon; persistence of carbomate insecticides; and degradation of diazinon chlorinated hydrocarbons.

If you are a pesticide chemis:, industrial engineer, or ecology exper-, you will find this book invaluable

280 pages with index. Cloth (1972) $\$ 10.50$ Postpaid in U.S. and Canada, plus 40 cents elsewhere

Order from
Special Issues Sales. American Chemical Society 1155 16th St. A.W. Washington, D C 20036

Two remarkable Aldrich organo-metallics never before available commercially

9-BBN powder: the most stable hydroborating agent known

Now in SOLID form, 9-BBN can be handled with reasonable precautions in air. ${ }^{1}$ In addition to this important convenience factor, $9-\mathrm{BBN}$ displays greater selectivity than borane, yet hydroborates even hindered olefins. The organoboranes produced may be used to produce alcohols, aldehydes or methylol analogs with retention of stereochemistry. ${ }^{2}$

1. E.F. Knights and H.C. Brown. J. Amer. Chem. Soc., 90, 5280, 5281 (1968).
2. H.C. Brown, M.M. Rogic, M.W. Rathke and G.W. Kabalka, ib:d., 91, 2150 (1969)

Aldrich Chemical Company, Inc.

Craftsmen in Chemistry

In Great Britain:	In Continental Europe:
Ralph N. Emanuel Lid.	Aldrich-Europe
264 Water Rd., Wembley Middx.,	B-2340 Beerse,
HAO 1PY, England	Belgium

CIRCLE 803 ON READER SERVICE CARD

In Germany: Ega-Chemie KG 7924 Steinheim am Albuch Germany

In Continental Europe: Aldrich-Europe B-2340 Beerse,

[^0]: (1) R. W. Taft, Jr., "Steric Effects in Organic Chemistry," M. S. Newman Ed., Wiley, New York, N. Y., 1956, p 597.
 (2) K. Hancock, E. A. Meyers, and B. J. Yager, J. Amer. Chem. Soc., 8s, 4211 (1961).

[^1]: (3) T. Fujita, C. Takayama, and M. Nakajima, to be published
 (4) Reference 1, p 673.
 (5) K. Bowden, N. B. Chapman, and J. Shorter, J. Chem. Soc., 5239 (1963).

[^2]: (9) D. Holtz, Progr. Phys. Org. Chem., 8, 1 (1971).
 (10) G. J. Karabatsos and D. J. Fenoglio, Top. Stereochem., 5, 167 (1870). (11) T. L. Brown, Spectrochim. Acta, 18, 1615 (1962).

[^3]: ${ }^{a}$ P. B. D. de la Mare and R. Bolten, "Electrophilic Additions to Unsaturated Systems," Elsevier, Amsterdam, 1966, p 84. ${ }^{6}$ J. R. Shelton and L. H. Lee, J. Org. Chem., 25, 428 (1960). ${ }^{c}$ R. P. Bell and M. Pring, J. Chem. Soc. B, 1119 (1966). d J. E. Dubois and G. Mouvier, Tetrahedron Lett., 1325 (1963); J. E. Dubois, P. Alcais, G. Barbier, and E. Bienvenue-Goetz, Bull. Soc. Chim. Fr., 2113 (1966). ${ }^{6}$ R. W. Taft, Q. N. Report 1960,

[^4]: (14) While structures 1, 2, and 3 may well represent points in a spectrum of intermediate type, it is certainly conceivable that for a given set of substrates the intermediate is closest to one of these species, and they are therefore very useful for purposes of discussion.

[^5]: (1) (a) This investigation was supported in part by Public Health Service Grants AM 06829 and 10378 from the National Institute of Arthritis and Metabolic Diseases and GM 18593 from the National Institute of General Medical Sciences. Abstracted in part from the Ph.D. Dissertation of K. W. Narducy, The Ohio State University, 1971. Direct correspondence to The Ohio State University. Part XIV in the series "Catalysis of α-Hydrogen Exchange." (b) For part XIII see J. Hine, E. F. Glod, R. E. Notari, F. E. Rogers, and F. C. Schmalstieg, J. Amer. Chem. Soc., 95, 2537 (1973). (c) NIH Predoctoral Fellow (No. F01 GM 41963), 1968-1971.
 (2) J. Hine, F. E. Rogers, and R. E. Notari, J. Amer. Chem. Soc., 90, 3279 (1968).
 (3) J. Hine, B. C. Menon, J. Mulders, and R. L. Flachakam, Jr., J. Org. Chem., 34, 4083 (1969).
 (4) J. Hine and K. W. Narducy, J. Amer. Chem. Soc., in press.

[^6]: a Total concentration. ${ }^{7} \quad$ Calculated.

[^7]: (8) Since nothing is gained in the present case by treating the aldehyde hydrate as a separate species, we shall define [AD] as the concentration of the deuterated aldehyde in both the free and hydrated form. This is analogous to the definitions of aldehyde concentrations used in calculating the various rate and equilibrium constants that we shall be using.

[^8]: (9) J. Hine and J. Mulders, J. Org. Chem., 32, 2200 (1967).
 (10) J. Hine, J. Mulders, J. G. Houston, and J. P. Idoux, ibid., 92, 2205 (1967).
 (11) Some of the values were negative. If the computer program was modified to prohibit negative values, some values were zero and some of the nonzero values had implausible relative magnitudes. Furthermore, some of the values could be changed greatly (provided others were also) with very little effect on the sum of the squares of the deviations from the $k_{\text {obsd }}$ values. (12) The value of k_{m} listed near the end of ref 10 resulted from an arithmetic error.

[^9]: (1) M. Jaffé and B. Kuhn, Chem. Ber., 27,1663(1894).
 (2) T. B. Johnson and C. O. Edens, J. Amer. Chem. Soc., 63, 1058 (1941); T. B. Johnson and C. O. Edens, ibid., 64, 2706 (1942).
 (3) H. Z. Lecher and K. Gubernator, J. Amer. Chem. Soc., 75, 1087 (1953)
 B. H. Chase and J. Walker, J. Chem. Soc., 4443 (1955).
 (4) G. I. Poos, J. Kleis, and C. K. Cain, J. Org. Chem., 24, 645 (1959).
 (5) W. Wilson, J. Chem. Soc., 1389 (1955).
 (6) S. R. Aspinall and E. J. Bianco, J. Amer. Chem. Soc., 79, 602 (1951).

[^10]: (7) S. B. Hendricks, Z. Kristallogr., 67, 42 (1928).
 (8) L. J. Bellamy, "'The Infra-red Spectra of Complex Molecules," 2nd ed, Wiley, New York, N. Y., Chapter 15.
 (9) The Sadtler Standard Spectra, Sadtler Research Laboratories, Inc., Philadelphia, Pa., 1967, Nmr Spectra No. 3599.
 (10) Reference 8, Chapter 22.

[^11]: (11) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, Elmsford, N. Y., 1969, p 164.

[^12]: (12) H. Pelster and E. Muehlbaver, German Patent 1,131,205 (1964); Chem. Abstr., 62, P6398b (1965).
 (13) A. F. McKay, M. N. Buchanan, and G. A. Grant, J. Amer. Chem. Soc., 71, 766 (1949)

[^13]: (14) R. R. Wittekind, T. Capiris, J. Fahey, and J. Shavel, Jr., to be submitted for publication in J. Med. Chem.
 (15) R. R. Wittekind, H. Kaplan, T. Capiria, J. Fahey, and J. Shavel, Jr., to be submitted for publication in J. Pharm. Sci.
 (16) Melting points were determined in open capillary tubes on a ThomasHoover Unimelt, previously calibrated against known standarda. The uv spectra were determined in 95% ethanol with a Beckman DK-1 spectrophotometer. The ir spectra were determined in Nujol mulls, unless otherwise indicated, on a Baird 455 spectrophotometer. The nmr spectra were measured in deuteriodimethyl sulfoxide, unless otherwise indicated, on a Varian A-60 spectrometer with tetramethylsilane as the internal standard. The mass spectra of all new compounds were determined on a Consolidated Electronics Corp. Model 21-103C or an Associated Electronic Industries MS 902 apectrograph and showed the expected molecular ion.

[^14]: (17) Relative to benzene as the internal standard.

[^15]: (1) Support of this work by the National Science Foundation (Grant GP-17642) is gratefully acknowledged.
 (2) National Science Foundation Undergraduate Research Fellow, summer 1971.
 (3) J. A. Deyrup, M. M. Vestling, W. V. Hagan, and H. J. Yun, Tetrahedron, 25, 1467 (1969).
 (4) Cf. S. Dayagi and Y. Degani in "'The Chemistry of the Carbon-Nitrogen Double Bond," S. Patai, Ed., Interscience, New York, N. Y., 1970, p 81.
 (5) One previous pubication reported the synthesis of an α-acyl- α-aminoketene. No mention was made of its tautomerization. ${ }^{8}$
 (B) H.-J. Kabbe, Chem. Ber., 104, 2629 (1971).
 (7) C. L. Stevens and J. C. French, J. Amer. Chem. Soc., 76, 4398 (1954).
 (8) C. L. Stevens and J. C. Singhal, J. Org. Chem., 29, 34 (1964).

[^16]: (9) V. S. Etlis, A. P. Sineokov, and M. E. Sergeeva, Khim. Geterotsikl., Soedin., 682 (1986); Chem. Abstr., 66, 551509 (1987).
 (10) Y. Noda, Bull. Chem. Soc. Jap., 40, 1554 (1967).
 (11) H. Takei, H. Shimizu, M. Higo, and T. Mukaiyama, Bull. Chem. Soc. Jap., 41, 1925 (1968).
 (12) J. A. Deyrup and C. L. Moyer, J. Org. Chem., 34, 175 (1969).
 (13) F. Wudl and T. B. K. Lee, Abstracts, 162nd National Meeting of the American Chemical Society, Washington, D. C., Sept 1971, No. ORGN 177.

[^17]: (14) Cf. J. A. Deyrup and K. K. Killion, J. Heterocycl. Chem., 9, 1045 (1972). (15) Uncertainties in ring and substituent conformation as well as in a precise knowledge of the $\mathrm{S}-\mathrm{O}$ anisotropic effect precluded assignment of the cis-trans stereochemistry.

[^18]: (16) E. K. Harvill, R. M. Herbst, and E. G. Schreiner, J. Org. Chem., 17, 1597 (1952).
 (17) E. Abderhalden, E. von Ehrenwell, S. Schwab, and O. Yumatein, Fermentforschung, 13, 408 (1932).
 (18) A. J. Speziale and P. C. Hamm, J. Amer. Chem. Soc., 78, 2556 (1956).
 (19) J. M. Sandri and E. K. Fields, I. S. Patent 3,280,032 (1966); Chem.

 Abstr., 66, 4733u (1967).
 (20) $C f$. reference 16.

[^19]: (1) Part III of this series: T. Sasaki, S. Eguchi, and T. Kiriyama, Tetrahedron Lett., 2651 (1971).
 (2) (a) R. Hoffmann, A. Imamura, and W. J. Hehre, J. Amer. Chem. Soc., 90, 1499 (1968); (b) R. Hoffmann, Accounts Chem. Res., 4, 1 (1971); (c) W.-D. Stohrer and R. Hoff mann, J. A mer. Chem. Soc., 94, 779 (1972).
 (3) R. C. Cookson, J. Henstock, and J. Hudec, ibid., 88, 1060 (1966).
 (4) J. Hudec, Chem. Commun., 829 (1970).
 (5) (a) However, for the lone-pair $\sigma_{c c}$ interactions in electrochemical oxidation of tertiary amines, see S. F. Nelson and P. J. Hintz, J. Amer. Chem. Soc., 94, 7114 (1972). (b) For the reactivity in the Grob fragmentation, see C. A. Grob, Angew. Chem., Int. Ed. Engl., 8, 535 (1969), and references cited therein; R. Gleiter, W.-D. Stohrer, and R. Hoffmann, Helv. Chim. Acta, 55, 893 (1972).
 (6) T. Sasaki, S. Eguchi, and T. Kiriyama, J. Org. Chem., 36, 2061 (1971).
 (7) (a) H. Stetter, J. Schafer, and K. Dieminger, Chem. Ber., 91, 598 (1958); (b) J. Kutham and J. Palecock, Collect. Czech. Chem. Commun., 28, 2260 (1963); (c) S. Chiavarelli, F. Toffler, P. Mazzeo, and L. Gramiccioni, Farmaco, Ed. Sci., 23, 360 (1968).
 (8) The ring-expansion reaction of adamantane derivatives is a general route to homoadamantane derivatives: R. C. Bingham and P. v. R. Schleyer, "Chemistry of Adamantanes," Springer-Verlag, New York, N. Y., 1971, p 30, and references cited therein. For azahomoadamantane, see T. Sasaki, S. Eguchi, and T. Toru, J. Otg. Chem., 35, 4109 (1970), and references cited therein.

[^20]: (9) This phenomenon was also reported in symmetrical molecules such as tropinone; see ref 4.
 (10) This is due to the formation of diethyl ketal in such a strongly acidic solution, as demonstrated by no characteristic carbonyl absorption in the ir spectrum and a molecular ion peak at $m / e 342$ in the mass spectrum.

[^21]: (16) The ready formation of the diethyl ketal of 2 a in strongly acidic ethanol suggests that the steric hindrance of 5,7-diphenyl substituents is not extremely severe; see ref 10 .
 (17) M. Makosza and M. Warzyniewiez, Tetrahedron Lett., 4659 (1969).
 (18) For reviews on diimide reductions, see (a) A. Furst, R. C. Berlo, and S. Hooton, Chem. Rev., 65, 51 (1965); (b) S. Hunig, H. R. Miller, and W. Thier, Angew. Chem., 77, 368 (1965); (c) C. E. Miller, J. Chem. Educ., 42, 254 (1965); (d) H. O. House, "Modern Synthetic Reactions," 2nd ed, W. A. Benjamin, Menlo Park, Calif., 1972, p 248.
 (19) For the formation of diimide from tosylhydrazide, see R. S. Dewery and E. E. van Tamelen, J. Amer. Chem. Soc., 83, 3729 (1961).
 (20) For an example of such a novel reduction of a very inert aromatic ketone with tosylhydrazide, see J. J. Looker, J. Org. Chem., 32, 472 (1967).

[^22]: (21) All melting points were obtained on a hot-stage type Yanagimoto micromelting point apparatus and are uncorrected. Nmr spectra were recorded on a JEOL JNM-C-60HL spectrometer at 60 MHz and mass spectra on a JEOL JMS-01SG mass spectrometer at 75 eV . Ir spectra were obtained with a JASCO IR-S spectrometer and uv spectra on a JASCO ORD/UV-5 spectrometer. Microanclyses were carried out with a PerkinElrner 240 Elemental Analyzer.

[^23]: (1) Taken in part from the dissertation presented by A. Makriyannis, March 1967, to the Graduate School of the University of Kansas in partial fulfilment of the requirements for the Doctor of Philosophy degree.
 (2) O. Diels, Justus Lie3igs Ann. Chem., 429, 1 (1922).
 (3) O. Diels and M. Paquin, Chem. Ber., 46, 2000 (1913)
 (4) O. Diels and P. Fritzsche, ibid., 44, 3018 (1911).
 (5) K. E. Cooper and E. H. Ingold, J. Chem. Soc., 1894 (1926).
 (6) G. S. Misra and S. B. Srivastava, J. Indian Chem. Soc., 37, 177 (1960).
 (7) O. Diels, Chem. Ber., 54, 213 (1921).

[^24]: (11) J. V. Hatton and R. E. Richards, Mol. Phys., B, 153 (1962).
 (12) L. A. LaPlanche and M. T. Rcgers, J. Amer. Chem. Soc., 86, 337 (1964).

[^25]: (13) The relative reactivities of the tertiary amines were based on their

[^26]: (14) G. O. Schenck and H. Formanek, Angew. Chem., 70, 505 (1958)
 (15) R. C. Cookson, I. D. R. Stevens, and C. T. Watts, Chem. Commun., 259 (1965).
 (16) Melting points were determined on a calibrated Thomas-Hoover capillary melting point apparatus and were corrected. Ir data were recorded on a Beckmann IR-8 spectrophotometer. Nmr data were recorded on a Varian Associates Model A-60 spectrophotometer using tetramethylsilane or 3 -(trimethylsilyl)-1-propanesulfonic acid sodium salt as internal standard. Gas chromatographic data were obtained on an F \& M Model 810-19, using a flame detector and columns packed with $12 \% \mathrm{w} / \mathrm{w}$ SE-30 (Wilkens Instrument and Research Inc.) on Chromosorb W, A. W., $60-80$ mesh (Matheson Coleman and Bell) ($4 \mathrm{ft} \times 0.25 \mathrm{in}$., column I). 12% Carbowax 20 M (Wilkens Instrument and Research Inc.) on Chromosorb W. A. W., 60-80 mesh (Matheson Coleman and Bell) ($4 \mathrm{ft} \times 0.25$ in., column II), and 40% Castorwax (Wilkens Instrument and Research, Inc.) plus 0.5% ATPEP- 80 (Perkin-Elmer) on Chromosorb W, A. W. DMCS 100-120 mesh ($\mathrm{F} \& \mathrm{M}$) ($10 \mathrm{ft} \times 0.125$ in., column III) (Table III). Microanalyses were performed on an F \& M 185 C, H, N analyzer Model 185 in this department.

[^27]: (17) E. Fahr and H. Lind, Angew. Chem., Int. Ed. Engl., B, 372 (1966).
 (18) R. J. Crawford and R. Raap, J. Org. Chem., 28, 2419 (1963).
 (19) W. Kesting, Chem. Ber., 57, 1321 (1924).

[^28]: (20) Less reactive amines required longer refluxing time.
 (21) M. Mouton, Bull. Sci. Pharmacol., 46, 148 (1939); Chem. Abstr., 33, 5128 (1939).

[^29]: (1) We gratefully acknowledge partial support of this work by the Public Health Service Cancer Institute. Grant CA 11967-09. This paper was presented in part at the First Rocky Mountain Regional Meeting of the American Chemical Society, Fort Collins, Colo., June 30, 1972. We are indebted to Dr. George R. Waller and Keith Kinneberg of the Biochemistry Department. Oklahoma State University, for the mass spectral data (National Science Foundation, Washington, D. C., Research Grant No. GB-20,296). We also express our thanks to the National Science Foundation (Grant No. GP 17641) for supplemental support for the purchase of the NL-100 NMR spectrometer. See Org. Prep. Proced. Int., 4, 237 (1972), for part II of this series.
 (2) National Science Foundation Faculty Fellow, 1971-1972; NSF Trainee. 1970-1972; Predoctoral candidate, 1970-1972.
 (3) T. E. Snider and K. D. Berlin, Phosphorus, 2, 43 (1972).

[^30]: (9) D. M. Coyne, W. E. McEwen, and C. A. VanderWerf, J. Amer. Chem. Soc., 78, 3061 (1956); K. L. Marsi, C. A. VanderWerf, and W. E. McEwen, ibid., 78, 3063 (1956).
 (10) C. H. Chen and K. D. Berlin, J. Org. Chem., 36, 2791 (1971).
 (11) G. Ostrogovich and F. Kerek, Anpew. Chem., 83, 496 (1971); Anoew Chem., Int. Ed. Enal., 10, 498 (1971).
 (12) R. P. Welcher, G. A. Johnson, and V. P. Wystrach, J. Amer. Chem Soc., 82, 4437 (1960); M. J. Gallagher and F. G. Mann, J. Chem. Soc., 5110 (1962).
 (13) M. N. Rauhut, I. Hechenbleikner, H. A. Currier, F. C. Schaefer, and V. P. Wystrach, J. Amer. Chem. Soc., 81, 1103 (1959); F. G. Mann and I. T. Millar, J. Chem. Soc., 4453 (1952).

[^31]: (14) E. C. Taylor and P. K. Loeffler, J. Amer. Chem. Soc., 82, 3147 (1960).
 (15) L. A. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, p 224.
 (16) E. J. Corey, Pure Appl. Chem., 14, 19 (1967).
 (17) E. J. Corey and E: Block, J. Oro. Chem., 34, 1233 (1969).
 (18) K. D. Rerlin and D. G. Hopper, Proc. Okla. Acad. Sci., 46, 85 (1966).
 (19) M. D. Martz and L. D. Quin, J. Oro. Chem., 34, 3195 (1969).

[^32]: (1) (a) These results were presented in part at the 161 st National Meeting of the American Chemical Society, Los Angeles, Calif., March 28 to April 2, 1971, Abstracts, ORGN 15; (b) National Science Foundation Undergraduate Research Participant, summer, 1971; (c) National Science Foundation Undergraduate Research Participant, summer, 1969.
 (2) M. P. Doyle, W. Wierenga, and M. A. Zaleta, J. Org. Chem., 37, 1597 (1972).
 (3) (a) J. Turcan, Bull. Soc. Chim. Fr., 2, 627 (1935); (b) R. M. Scribner, J. Org. Chem., 29, 3429 (1964).
 (4) M. P. Doyle and W. Wierenga, J. Amer. Chem. Soc., 94, 3901 (1972).

[^33]: (6) The N-alkylacetonitrilium ions, produced in high yields from alkyl azides and nitrosonium salts, have been detected under aimilar reaction conditions: M. P. Doyle and W. Wierenga, J. Amer. Chem. Soc., 94, 3869 (1972).
 (7) M. P. Doyle, D. J. DeBruyn, and D. A. Kooistra, ibid., 94, 3896 (1972).
 (8) G. A. Olah and J. M. Bollinger, ibid., 89, 2993 (1967).

[^34]: (9) D. N. Kursanov, A. N. Parnes, N. M. Loim, and G. V. Bakalova, Proc. Acad. Sci. USSR, 179, 328 (1968).
 (10) Unreported results from our laboratory.

[^35]: (14) (a) C. J. Thoman and I. M. Hunsberger, J. Org. Chem., 33, 2852 (1968); (b) J. Jappy and P. N. Preston, Tetrahedron Lett., 1157 (1970).

[^36]: (15) G. A. Olah and N. Friedman, J. Amer. Chem.Soc., 88, 5330 (1966)
 (16) F. Q. Kohant and F. W. Lamps, ibid., 87, 5795 (1965).
 (17) E. J. Strojny, R. T. Iwamasa, and L. K. Frevel, ibid., 99, 1171 (1971).

[^37]: (18) A. Lespagnol, S. Dicop, and J. Vanlerenberghe, Bull. Soc. Pharm. Lille, 49 (1945).
 (19) G. Mignonac, Ann. Chim. (Paris), [11], 2, 225 (1934).
 (20) E. Cordes and W. Jencks, J. Amer. Chem. Soc., 85, 2843 (1963).

[^38]: (21) G. A. Olah and P. Kreienbuhl, J. Amer. Chem. Soc., 89, 4756 (1967). (22) L. H. Amundsen and L. S. Nelson, ibid., 73, 242 (1951).

[^39]: (1) (a) Supported by the National Institutes of Health Grant No. CA 04455-11 from the National Cancer Institute, and by the National Science Foundation COSIP Grant No. GY-7677; (b) Department of Chemistry, VMI, Lexington, Va. 24450.
 (2) (a) This work represents part of the research of J. S. G., partially fulfilling the requirements for the Ph.D. degree at Duke University; (b) Undergraduate participant in NSF-COSIP program at VMI; (c) Deceased, January 6, 1970
 (3) F. H. Rash and C. R. Hauser, J. Org. Chem., 32, 3379 (1967).
 (4) H. M. Watanabe, unpublished data, 1970.
 (5) See E. E. Royals, "Advanced Organic Chemistry," Prentise-Hall, Englewood Cliffs, N. J., 1954, p 582.
 (6) V. Boekelheide and R. J. Windgassen, J. Amer. Chem. Soc., 86, 2020 (1958).
 (7) W. H. Puterbaugh and C. R. Hauser, J. Org. Chem., 29, 853 (1964).
 (8) R. L. Vaulx, W. H. Puterbaugh, and C. R. Hauser, J. Org. Chem., 29, 3514 (1964).

[^40]: (9) P. L. Creger, J. Amer. Chem. Soc., 92, 1398 (1970).

[^41]: (10) (a) R. C. Fuson and J. R. Larsen, J. Amer. Chem. Soc., 81, 2149 (1959); (b) R. C. Fuson, W. C. Hammann, and P. R. Jones, ibid., 79, 928 (1957).
 (11) T. H. Siddall and R. H. Garner, Can. J. Chem., 14, 2387 (1966).

[^42]: (12) N. N. Maxim, Bull. Soc. Chim. Romania, 11, 29 (1929); Chem. Abstr., 24, 94 (1930).

[^43]: (16) R. L. Sloriner, R. C. Fuson, and D. Y. Curtin, "The Systematic Identification of Organic Compounds," 5th ed, Wiley, New York, N. Y., 1965, p 253.

[^44]: (1) For parts I and II of this series $c f$. (a) D. W. Slocum, C. A. Jennings T. R. Engelmann, B. W. Rockett, and C. R. Hauser, J. Org. Chem., 36, 377 (1971); (b) D. W. Slocum, B. P. Koonsvitsky, and C. R. Ernst, J. Organometal. Chem., 38, 125 (1972).
 (2) J. D. Roberts and D. Y. Curtin, J. Amer. Chem. Soc., 68, 1658 (1946).
 (3) R. A. Finnegan and J. W. Altshuld, J. Organometal. Chem., 9, 193 (1967).
 (4) D. A. Shirley and J. P. Hendrix, J. Organometal. Chem., 11, 217 (1968).

[^45]: (12) I. J. Borowitz and G. J. Williams, J. Org. Chem., 31, 603 (1966).

[^46]: (5) Cf., for example, D. W. Slocum, C. A. Jennings, T. R. Engelmann B. W. Rockett, and C. R. Hauser, J. Org. Chem., 36, 377 (1971); D. W. Slocum, B. P. Koonsvitsky, and C. R. Ernst, J. Organometal. Chem., 38, 125 (1972).
 (6) M. D. Rausch, P. Shaw, D. Mayo, and A. M. Lovelace, J. Otg. Chem., 23, 505 (1958).

[^47]: (7) G. Haller and K. Schlogl, Monatsh. Chem., 98, 603 (1967); H. Falk, G. Haller, and K. Schlogl, ibid., 98, 592 (1967).
 (8) N. Weliky and E. S. Gould, J. Amer. Chem. Soc., 79, 2742 (1957).
 (9) G. Gokel, P. Hoffmann, H. Kleimann, H. Klusacek, C. Marquarding, and I. Ugi, Tetrahedron Lett., 1771 (1970).

[^48]: (10) L. S. Shilovtseva, E. G. Perevalova, V. A. Nefedov, and A. N Nesmeyanov, Dokl. Akad. Nauk SSSR, 7, 2175 (1986).
 (11) D. W. Slocum, W. E. Jones, T. F. Crimmins, and C. R. Hauser, J. Org. Chem., 34, 1973 (1969).

[^49]: (1) Paper V: P. M. Henry, J. Amer. Chem. Soc., 94, 7305 (1972).
 (2) Address correspondence to author at the Department of Chemistry, Univeraity of Guelph, Guelph, Ontario, N1G 2W1, Canada.
 (3) (a) I. I. Moiseev, M. N. Vargaftik, and Ya. K. Sirkin, Dokl. Akad. Nauk SSSR, 139, 377 (1960); (b) E. W. Stern and M. L. Spector, Proc. Chem. Soc., 370 (1961).
 (4) (a) M. N. Vargaftik, I. I. Moiseev, and Ya. K. Sirkin, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 930 (1962); (b) I. I. Moiseev, A. P. Belov, and Ya. K. Sirkin, Izv. Akad. Nauk SSSR, Ser. Khim., 1527 (1963).
 (5) W. Kitching. Z. Rappoport, S. Winstein, and W. G. Young, J. Amer Chem. Soc., 88, 2054 (1966).
 (6) (a) D. Clark, P. Hayden, and R. D. Smith, Amer. Chem. Soc., Div. Petrol. Chem., Prepr., 14 (2), B10 (1969); (b) P. M. Henry, J. Otg. Chem., 32, 2575 (1967).

[^50]: (7) M. Tamura and T. Yahui, Kogyo Kagaku Zasshi, 72, 578, 581 (1969)
 (8) P. M. Henry, J.Org.Chem., 36, 1886 (1971).

[^51]: (9) H. B. Copelin and M. J. Freamo, Canadian Patent 761,018 (1967).

[^52]: (10) J. Chatt, Chem. Rev., 48, 7 (1551).

[^53]: (12) P. M. Henry, J. Amer. Chem. Soc., 88, 1597 (1966).
 (13) W. C. Eichelberger and V. K. La Mer, ibid., 55, 3633 (1933).
 (14) P. M. Henry, ibid., 86, 3246 (1964).

[^54]: (1) One of the laboratories of the Southern Region, Agricultural Research Service, U. S. Department of Agriculture. References to specific commercial products do not constitute endorsement.
 (2) (a) J. Verghese, Perfum. Essent. Oil Rec., 876 (1968); (b) Y. Sakuda, Bull. Chem. Soc. Jap., 42, 3348 (1969); (c) A. F. Thomas and W. Bucher. Helv. Chim. Acta, 53, 770 (1970); (d) E. N. Trachtenberg and J. R. Carver, J. Org. Chem., 35, 1646 (1970); (e) G. L. K. Hunter and M. G. Moshonas, J. Food Sci., 31, 167 (1966)
 (3) M. Fieser and L. Fieser, "Reagents for Organic Synthesis," Vol. 2, Wiley, New York, N. Y., 1969, p 362.
 (4) See E. E. Royals and J. C. Leffingwell, J. Org. Chem., 31, 1937 (1966), for nomenclature.

[^55]: (5) R. N. Jones, "National Research Council Bulletin," No. 6, Ottawa,

[^56]: (6) G. L. K. Hunter and M. G. Moshonas, A nal. Chem., 37, 378 (1965).
 (7) O. L. Chapman and P. W. King, J. Amer. Chem. Scc., 86, 1256 (1964).
 (8) P. Garside, T. G. Halsall, and G. M. Hornby, J. Chem. Soc. C, 716 (1969).
 (9) J. L. Simonsen, "The Terpenes," Vol. 1, University Press, Cambridge, England, 1953, p 304.

[^57]: (10) W. Sonoda and S. Tsutsumi, Bull. Chem. Soc. Jap., 38, 958 (1965).
 (11) See Royals and Leffingwell, ${ }^{4}$ footnote 49.
 (12) G. Ohloff and G. Uhde, Helv. Chim. Acta, 48, 10 (1965).
 (13) J. Itakura, H. Tanaka, H. Ito. and T. Matsubara, Japanese Patent 19,894 (1970); Chem. Abstr., 73, $109375 j$ (1970).
 (14) A. Blumann and O. Zeitschel, Chem. Ber., 46, 1178 (1913); H. E. Eschnazi, Israel Res. Council Bull., 109 (1951).

[^58]: (15) (a) H. Schmidt, Chem. Ber., 82, 11 (1949); (b) W. F. Newhall, J. Org. Chem., 29, 185 (1964).
 (16) J. P. Schaefer, B. Horvath, and H. P. Klein, J. Org. Chem., 39, 2647 (1968); E. N. Trachtenberg, C. H. Nelson, and J. R. Carver, ibid., 36, 1653 (1970); K. B. Sharpless and R. F. Lauer, J. Amer. Chem. Soc., 94, 7154 (1972).

[^59]: (17) R. L. Coleman and P. E. Shaw, J. Agr. Food Chem., 19, 520 (1971).
 (18) H. E. Eschinasi, Israel J. Chem., 6, 713 (1968); T. Sakai, K. Yoshihars, and Y. Hirose, Bull. Chem. Soc. Jap., 41, 1945 (1968); S. Kusumoto, A. Ohsuks, and M. Kotake, ibid., 41, 1950 (1968).

[^60]: (19) J. C. Collins, W. W. Hess, and F. J. Frank, Tetrahedron Lett., 3363

[^61]: (1) This is part VI in the series of "Studies on Steroids." For part V ee Chem. Pharm. Bull., 21, 457 (1973).
 (2) D. N. Kirk and M. P. Hartshorn, "Steroid Reaction Mechanism," Elsevier, Amsterdam, 1968, Chapter 8, p 353.
 (3) L. H. Briggs, J. P. Bartley, and P. S. Rutledge, Tetrahedron Lett., 1237 (1970)
 (4) N. Ikekawa, Y. Honma, N. Morisaki, and K. Sakai, J. Org. Chem., 35, 4145 (1970).
 (5) N. Ikekawa, M. Morisaki, H. Ohtaka, and Y. Chiyoda, Chem. Commun, 1498 (1971).
 (6) M. Morisaki, H. Ohtaka, M. Okubayashi, N. Ikekawa, Y. Horie, and S. Nakasone, J. Chem. Soc., Chem. Commun., 1275 (1972).

[^62]: (10) N. Ikekawa, K. Tsuda, and N. Morisaki, Chem. Ind. (London), 1179 (1966).
 (11) All melting points are uncorrected. Nimr spectra were recorded on a Varian T-60 spectrometer and mass spectra on a Hitachi RMU-6E and 7L spectrometer. Ir spectra were taken as KBr or liquid films on NaCl plates using a Hitachi EPI-G2 spectrometer, and uv spectra were obtained with an Hitachi ESP-3T spectrometer in ethanol solution. Glc analyses were performed on a Shimadzu GC-5APF gas chromatograph with a flame ionization detector.
 (12) N. Ikekawa, N. Morisaki, K. Tsuda, and T. Yoshida, Steroids, 12, 41 (1968).

[^63]: (5) Satisfactory ir, nmr , and low-resolution mass spectral data were obtained for each new compound. A satisfactory elemental analysis was obtained for compound 1; all other compounds gave satisfactory high-resolution mass spectra.

[^64]: (10) M. I. Goryaev and G. A. Tolstikov, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 72 (1962); Chem. Abstr., 69, 6443g (1962).
 (11) 10% SE-30 Chromosorb P AW-DMCS at 260°.
 (12) V. K. Honwad and A. S. Rao, Tetrahedron, 21, 2593 (1965).
 (13) L. A. Zakharkin aad I. M. Khorlina, Tetrahedron Lett., 619 (1962).
 (14) J. Colonge and A. Perrot, Bull. Soc. Chim. Fr., 658 (1957).
 (15) 10% SE-30 Chromosorb P AW-DMCS at 110°.

[^65]: (1) M. Godchot and G. Cauquil, C. R. Acad. Sci., 206, 297 (1938).
 (2) M. Mousseron and F. Winternitz, Bull. Soc. Chim. Fr., 79 (1948), and references cited therein.
 (3) H. O. House and T. M. Bare, J. Org. Chem., 33, 943 (1968).

[^66]: (8) W. Parker and R. A. Raphael, J. Chem. Soc., 1723 (1955).
 (9) H. O. House, W. L. Respess, and G. M. Whitesides, J. Org. Chem., 81, 3128 (1966).
 (10) A. Segre and J. I. Musher, J. Amer. Chem. Soc., 89, 706 (1967); D. K. Dalling and D. M. Grant, ibid., 89, 6612 (1967).
 (11) E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, "Conformational Analysis," Wiley, New York, N. Y., 1965, pp 177-178, and references cited therein.
 (12) W. F. Erman and T. W. Gibson, Tetrahedron, 25, 2493 (1969).

[^67]: (10) O. Diels and K. Alder, Justus Liebigs Ann. Chem.. 490, 236 (1931).
 (11) R. B. Woodward and R. Hoffmann. "The Conservation of Orbital Symmetry." Academic Press, New York, N. Y., 1969, p 70.
 (12) On the basis of a measurement of the activation energy for the thermal rearrangement of the parent hydrocarbon, it has recently been suggested that this reaction might be concerted: J. E. Baldwin and J. Ollerenshaw. Tetrahedron Lett., 3757 (1972).
 (13) For a leading reference, see R. J. Roth and T. J. Katz, J. Amer. Chem. Soc., 94, 4770 (1972).
 (14) L. Cassar, P. E. Eaton, and J. Halpern, J. Amer. Chem. Soc., 92, 6366 (1970).

[^68]: (18) An attempt has been made to distinguish between the mechanisms presented in Schemes III and IV by conducting the reaction in acetic acidd_{4}. However, under these conditions the reaction proceeded much more alowly, and 10 and 11 were no longer the major products, but were accompanied by at least four additional components. Since it is likely that a different mechanism is cperating in acetic acid, any attempt to extrapolate the information obtained under these conditions to the reaction conducted in chloroform would be unrelisble.
 (19) J. Klein, E. Dunkelblum, and D. Avrahami, J. Org. Chem., 32, 935 (1967).
 (20) This reaction is a direct extension of the bicyclo[3.1.0]hexane synthesis developed by N. A. Nelson and G. A. Mortimer, J. Org. Chem., 22, 1146 (1957).

[^69]: (21) C. D. Poulter, R. S. Borkess, J. I. Brauman, and S. Winstein, J. Amer. Chem. Soc., 94, 2291 (1972).
 (22) P. G. Gassman, K. T. Mansfield, and T. J. Murphy, J. Amer. Chem. Soc., 91, 1684 (1969).
 (23) U. F. Kucherov, A. L. Shabanov, and A. S. Onishchenko, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 884 (1963).

[^70]: (1) Presented before the 41st National Meeting of the Israel Chemical Society, Tel Aviv, Oct 1971; V. Usieli, L. Friedman, and S. Sarel, Abstract of Papers, p 201.
 (2) (a) M. Smith in Rodd's "Chemistry of Carbon Compounds," Vol. II, 2nd ed, S. Coffey, Ed., Elsevier, Amsterdam, 1967, Part A, pp 19-70; (b) R. Breslow in "Molecular Rearrangements," Vol. 1, P. de Mayo, Ed., Interscience, New York, N. Y., 1963, p 233; (c) N. C. Deno, Progr. Phys. Org. Chem., 2, 129 (1964); (d) S. Sarel, J. Yovell, and M. Sarel-Imber, Angew. Chem., Int. Ed. Engl., 7, 577 (1968); (e) S. Sarel and R. Ben-Shoshan, Tetrahedron Lett., 1053 (1965); (f) J. A. Landgrebe and J. D. Shoemaker, J. Amer. Chem. Soc., 89, 4465 (1967); (g) A. Maercker, Justus Liebigs Ann. Chem., 732, 151 (1970).
 (3) For possible $\left[\sigma 2+\pi^{2}+\pi^{2}\right]$ cycloaddition see (a) S. Sarel and E. Breuer, J. Amer. Chem. Soc., 81, 6522 (1959); (b) F. W. Fowler, Angew. Chem., Int. Ed. Engl., 10, 135 (1971); (c) J. E. Baldwin and R. K. Pinschmidt, Jr., Tetrahedron Lett., 935 (1971); (d) R. Noyori, N. Hayashi, and M. Kato, J. Amer. Chem. Soc., 93, 4948 (1971).
 (4) For possible $\left[\sigma 2_{\mathrm{a}}+\sigma 2_{\mathrm{a}}+\pi 2_{\mathrm{a}}\right]$ cycloadditions, see C. D. Smith, ibid., 88, 4273 (1966).
 (5) (a) For a review of "ene" reaction, see H. M. R. Hoffmann, Angew. Chem., Int. Ed. Engl., 8, 556 (1969); (b) R. W. Hoffmann, "Dehydrobenzene and Cycloalkynes," Academic Press, London, 1967, p 197.
 (6) G. Wittig and H. Durr, Justus Liebigs Ann. Chem., 672, 55 (1964).
 (7) H. E. Simmons, J. Amer. Chem. Soc., 83, 1657 (1961); also ref 5b, p 235.
 (8) (a) M. Stiles, U. Burkhardt, and A. Haag, J. Org. Chem., 27, 4715 (1962); (b) S. F. Dyke, A. R. Marshall, and J. P. Watson, Tetrahedron, 22, 2515 (1966).
 (9) D. J. Cram, "Fundamentals of Carbanion Chemistry," Academic Press, New York, N. Y., 1965, p 19.

[^71]: (14) (a) W. Davies and J. R. Wilmshurst, J. Chem. Soc., 4079 (1961); (b) T. G. Corbett and Q. N. Porter, Aust. J. Chem., 18, 1781 (1965).
 (15) (a) M. Jones, Jr., and R. H. Levin, J. Amer. Chem. Soc., 91, 6411 (1969); (b) P. G. Gassman and H. P. Benecke, Tetrahedron Lett., 1089 (1969).

[^72]: (22) (a) I. A. D'yakonov and I. M. Stroiman, Zh. Obshch. Khim., 33, 4019 (1963); Chem. Abstr., 60, 9159g (1964). (b) S. Sarel, R. Ben-Shoshan, and B. Kirson, Israel J. Chem., 10, 787 (1972).
 (23) R. Van Volkenburgh, K. W. Greenlee, J. M. Derfer, and C. E. Boored, J. Amer. Chem. Soc., 71, 172 (1949).
 (24) S. Sarel, E. Breuer, Sh. Ertag, and R. Salomon, Israel J. Chem., 1, 451 (1963).
 (25) F. M. Logullo, A. H. Seitz, and L. Friedman. Org. Syn., 48, 12 (1968).

[^73]: (1) Presented in part at the 24th Annual Meeting of the Chemical Society of Japan, Osaka, Japan, April 1, 1971.
 (2) Preceding paper: A. Takeda, S. Tsuboi, T. Moriwake, and E. Hirata, Bull. Chem. Soc. Jap., 45, 3685 (1972).
 (3) I. Salkind, J. Russ. Phys. Chem. Soc., 30, 906 (1898).
 (4) S. P. Uschakow, ibid., 29, 113 (1897).
 (5) I. E. Muskat and B. C. Becker, J. Amer. Chem. Soc., 52, 812 (1930). Owing to its ease of polymer:zation it was not possible for these authors to get a sharp melting point.
 (6) A. Takeda and S. Tsuboi, J. Org. Chem., 35, 2690 (1970).
 (7) It appears that Favorskii rearrangements generally involve ionization of halide ion from the initially formed enolate ion to give a dipolar ion intermediate, which then callapses to a cyclopropanone: F. G. Bordwell, R. G. Scamehorn, and W. R. Springer, J. Amer. Chem. Soc., 91, 2087 (1969); F. G. Bordivell and R. G. Scamehorn, ibid., 93, 3410 (1971). Applied to compound 1 this mechanism predicts the formation of dipolar ion $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CH}$ ${ }^{+} \mathrm{CHCO}_{\mathrm{C}}^{\mathrm{H}}{ }_{2}{ }^{-}$, which then gives the cyclopropanone shown in Scheme I.

[^74]: (11) H. O. House and G. H. Rasmusson, J. Org. Chem., 26, 4278 (1961). The geometry of 18, trans-2, is estimated by the coupling constant ($J_{2,1}=$ 14.8 Hz).
 (12) Cis,trans mixture (3:7, or 7:3). Glpc analysis of its methyl ester (20) showed the presence of two components, which differed slightly in ir spectra at ca. 1340 and $790-800 \mathrm{~cm}^{-1}$.
 (13) (a) Cis,trans mixture (1:6 or 6:1). (b) The ir and nmr data indicate the geometry of this product to be trans-2: trans-4.10

[^75]: (18) Conditions of preparative tlc: support, silica gel G (E. Merk AG, Darmstadt), 0.8 mm ; developer, benzene-acetic acid-methanol (10:1:1 $\mathrm{v} / \mathrm{v}) ; R_{\mathrm{f}} 0.67$
 (19) This procedure to prepare 3-alken-2-one from acetylacetone and α-halogenoaldehydes has been explored by one of us (A. T.) recently: A. Takeda and T. Uno, to be published.
 (20) 2,2-Dichloropropanal was prepared by the chlorination of propanal with chlorine by the method of Dick: C. R. Dick, J. Org. Chem., 27, 272 (1962).

[^76]: (7) (a) M. E. Munk and Y. K. Kim, J. Org. Chem., 30, 370 (1965); (b) J. E. Mulvaney, Z. G. Garlund, and S. L. Garlund, J. Amer. Chem. Soc., 85, 3897 (1963).
 (8) (a) K. C. Yee and W. G. Bentrude, Tetrahedron Lett., 2775 (1971); (b) R. von Ammon and R. D. Fischer, Angew. Ciem., Int. Ed. Engl., 11, 675 (1972); (c) J. K. M. Sanders and D. H. Will 1 ms , Tetrahedron Lett., 2813 (1971); (d) J. R. Corfield and S. Trippett, Cr m. Commun., 721 (1971).

[^77]: (11) Performed on a Varian XL-100 at 100 MHz by Professor J. F. Oth and staff, ETH, Zurich.
 (12) H. H. Jaffé and M. Orchin, "Theory and Applications of Ultraviolet Spectroscopy." Wiley, New York, N. Y., 1962, pp 431-434.

[^78]: (18) See J. D. Morrison and H. S. Mosher, "Asymmetric Organic Reactions." Prentice Hall, Englewood Cliffs, N. J., 1971, Chapter 3, pp 84116, for an excellent discussion of the stereochemistry of addition of nucleophiles to acyclic ketones and aldehydes.

[^79]: (19) G. J. Karabatsos and D. J. Fenoglio, J. Amer. Chem. Soc., 91, 1124 (1969).
 (20) The greater inductive effect of chlorine $v s$. bromine may suffice to explain a more favorable equilibrium for carbonyl addition.
 (21) The postulate of rate-determining reversible carbonyl addition followed by stereochemistry-determining olefin formation is found in the Wittig reaction: A. J. Speziale and D. E. Bissing, J. Amer. Chem. Soc., 85, 3878 (1963).
 (22) It is assumed that the "effective" size decreases $\mathrm{OPOPh}_{2}>\mathrm{Ph}>$ OPO(OR) , based on Dreiding models.

[^80]: (23) I. J. Borowitz, S. Firstenberg, E. W. R. Casper, and R. K. Crouch,

[^81]: (1) M. B. Robin, F. A. Bovey, and H. Basch in "The Chemistry of Amides," J. Zabicky, Ed., Interscience, New York, N. Y., 1970, Chapter 1.
 (2) Throughout the subsequent discussion syn will be used to describe groups which are on the same side of the amide linkage as the carbonyl oxygen. The term anti will denote the opposite geometry. Such a convention will leave the terms cis and trans to describe the two stable conformers around the amide function

 (3) W. McFarlane, Chem. Commun., 418 (1970).
 (4) G. C. Levy and G. L. Nelson, J. Amer. Chem. Soc., 94, 4897 (1972).
 (5) D. E. Dorman and F. A. Bovey, in preparation.
 (6) D. R. Bauer, D. E. Dorman, and J. D. Roberts, in preparation.
 (7) H. Sternlicht and D. M. Zuckerman, Rev. Sci. Instrum., 43, 525 (1972).

[^82]: (11) L. A. LaPlanche and M. T. Rogers, J. Amer. Chem. Soc., 86, 337 (1964).

[^83]: (20). The plant material used in the present work contained neither helenalin nor dihydromexicanin E, although the latter compound was isolated before from the same plant species in almost the same season and at the same site. ${ }^{11}$
 (21) The formation of a diacetate (3) with acetic anhydride-pyridine suggested that a vicinal diol moiety was present, since under this mild reaction condition 3 could only be formed via a neighboring group participation mechanism.

[^84]: (22) The attempted purification of this compound was unsuccessful.
 (23) The authors are indebted to Dr. Ken-ichi Takeda, Shionogi Research Lab, Osaka, Japan, for a generous asmple of chamazulene trinitrobenzene adduct.

[^85]: (25) (a) It should be noted that the formation of the tiglate is due to the isomerization of the angelate during the alkaline hydrolytic procedure. We assigned the vinyl proton signal of carolenin to an angelate instead of a tiglate because the observed characteristic chemical shift of the former (δ 6.18) is comparable with those of the angeloyl esters of tomentosin, ${ }^{24}$ eriofertin, ${ }^{25 b}$ and fastigilin $\mathrm{A}^{25 \mathrm{c}}$ in the nmr spectra. (b) T. Saitoh, T. A. Geissman, T. G. Waddell, W. Herz, and S. V. Bhat, Rev. Latinoamer. Quim., 2, 69 (1971), and references cited therein. (c) W. Herz, S. Rajappa, S. K. Roy, J. J. Schmid, and R. N. Mirrington, Tetrahedron, 22, 1907 (1966).
 (26) The cooccurrence of carolenalin and carolenin, coupled with the fact that this epimeric compound was only isolated in small quantity, led to the conclusion that carolenin is the angelate ester of carolenalin and not of the C-11 epimer of carolenalin.
 (27) The authors wish to thank Mr. S. W. Leonard, Department of Botany, University of North Caroline at Chapel Hill, for collecting and identifying the plant material. A Voucher specimen has been placed in the herbarium of the Botany Department, UNC-CH.
 (28) K. H. Lee, S. Matsueda, and T. A. Geissman, Physochemistry, 10, 405 (1971).

[^86]: (29) Although carolenin and carolenalin could not be induced to crystallize, purification has been achieved by repeated column chromatography over silioa gel.

[^87]: (1) B. Carlason, H. Erdtman, A. Frank, and W. E. Harvey, Acta Chem. Scand., 6, 690 (1952).
 (2) H. Erdtman, W. E. Harvey, and J. G. Topliss, ibid., 10, 1381 (1956).
 (3) T. Norm, Ark. Kemi, 22, 123 (1964).
 (4) During the course of the work, a report appeared on the two-step conversion of 3 -hydroxy-4-methylene-7,7-dimethylbicyclo[4.1.0]heptane to chaminic acid. ${ }^{5}$ Since the bicyclo starting material had been derived before in several steps from Δ^{8}-carene, ${ }^{6,7}$ whose preparation in turn can be traced back through many steps to simple starting materials, ${ }^{8}$ a formal synthesis has already been achieved, although by a circuitous route.
 (5) K. Gollnick and G. Schade, Tetrahedron, 22, 133 (1966). Also see L. Borowiecki and W. Zacharewicz, Rocz. Chem., 37, 1143 (1963) [Chem. Abstr., 60, 4185 (1964)].
 (6) S. P. Acharya and H. C. Brown, J. Amer. Chem. Soc., 89, 1925 (1967). (7) P. J. Kropp, ibid., 88, 4926 (1966); K. Gollnick, S. Schroeter, G. Ohloff, G. Schade, and G. O. Schenck, Justus Liebigs Ann. Chem., 687, 14 (1965).
 (8) O. Wallach, H. Kruse, and Fr. Kerkhoff, ibid., 275,111 (1893); O. Wallach and H. Schrader, ibid., 279, 377 (1894); A. Baeyer, Chem. Ber., 27, 1915, 3485 (1894); K. N. Menon and J. L. Simonsen, J. Indian Inst. Sci., 10A, 1 (1927) [Chem. Abstr., 21, 3192 (1927)]; J. A. Simonsen, "The Terpenes," Vol. I, Cambridge University Press, New York, N. Y., 1957, pp 148, 150 .
 (9) Initial attempts by Cynthia L. Deyrup and Arthur P. Iodice at elaborating chaminic acid from cis-caronic acid, which already contains a three-membered ring, as well as attempts at forming both rings at once by application of an intramolecular diazo ketone cyclization directed specifically to ketone 11, proved unsuccessful.
 (10) Cf. K. Heine, Chem. Ber., 13, 491 (1880); H. Lonnies, ibid., 13, 203 (1880).

[^88]: (17) R. M. Silverstein and G. C. Bassler, "Spectroscopic Identification of Organic Compounds," Wiley, New York, N. Y., 1967.
 (18) E. J. Corey, T. H. Topie, and W. A. Wozniak, J. Amer Chem. Soc., 77, 5415 (1955).

[^89]: (19) Cf. F. A. Bovey, "Nuclear Magnetic Resonance Spectroscopy," Academic Press, New York, N. Y., 1969, p 135.

[^90]: (1) Visiting Scientist, 1970-1971, from the Department of Chemistry, Chapman College, Orange, Calif.
 (2) L. F. Fieser and M. Fieser, "Steroids," Reinhold, New York, N. Y., 1959.
 (3) E. H. Rodd, "Chemistry of Carbon Compounds," Vol. Ic, Elsevier, Amsterdam, 1985, p 129.
 (4) (a) P. Barbier and R. Locquin, C. R. Acad. Sci., 166, 1445 (1913); (b) H. Wieland, Z. Physiol. Chem., 161, 80 (1926).
 (5) Ch. Meystre, H. Frey, A. Wettstein, and K. Miescher, Helv. Chim. Acta, 27, 1815 (1944).
 (6) Y. Yanuka, R. Katz, and S. Sarel, Tetrahedron Lett., 1725 (1988).
 (7) Y. Yanuka, R. Katz, and S. Sarel, Chem. Commun., 849, 851 (1988).
 (8) L. H. Briggs, J. P. Bartley, and P. S. Rutledge, Tetrahedron Lett., 1237 (1970).
 (9) F. J. Kakis, D. Brase, and A. Oshima, J. Org. Chem., 36, 4117 (1971).
 (10) Fluka Chemical Co., Basel, Switzerland.

[^91]: (13) C. Pascual, J. Meir, and W. Simon, Helv. Chim. Acta, 49, 164 (1966).
 (14) V. Bazant, M. Capka, M. Cerny, V. Chralorsky, K. Kochloef, M. Krans, and J. Mulek, Tetrahedron Lett., 3303 (1968).
 (15) R. Ginsig and A. D. Gross, J. Org. Chem., 1761 (1966).
 (18) R. L. Augustine, "Oxidation," Marcel Dekker, New York, N. Y., 1969, p 303.

[^92]: (17) H. W. Wanzlick and W. Löckel, Ber., 86, 1463 (1953)

[^93]: (18) A. Jung and M. Brini, Bull. Soc. Chim. Fr., 693 (1964).

[^94]: (1) This investigation was supported in part by Research Grant CA12984 from the National Cancer Institute, National Institutes of Health, U. S. Public Health Service.
 (2) Taken in part from the Master of Science Thesis of S. D. L. submitted to The Graduate School, Rutgers University.
 (3) Part I: S. S. Hall and S. D. Lipsky, J. Chem. Soc., Chem. Commun., 1242 (1971).
 (4) As a matter of fact, the purity of some of the ether extracts made further purification steps unproductive
 (5) (a) S. S. Hall, S. D. Lipsky, F. J. McEnroe, and A. P. Bartels, J. Org. Chem., 36, 2588 (1971); (b) S. S. Hall, S. D. Lipsky, and G. H. Small, Tetrahedron Lett., 1853 (1971).
 (6) For a discussion of the possible mechanism see ref 5 a

[^95]: (9) J. D. Buhler, J. Org. Chem., 38, 904 (1973).
 (10) Spectral measurements were determined with the following instruments: ir, Beckman Model IR-10; nmr, Varian Associates Model A-60; mass spectra, Perkin-Elmer Model 270 with a Varian Associates Model 620/i computer attachment. Gas chromatographic analyses (glpc) were performed on a Hewlett-Packard Model 5750 research chromatograph (flame detector) using a $6 \mathrm{ft} \times 0.25 \mathrm{in} .10 \%$ Apiezon L on $60-80$ Chromosorb W (AW, DMCS) column. Separations and purifications were attained on absorption alumina ($80-200$ mesh) columns using petroleum ether (bp 38$58^{\circ}$). Further purification, when necessary, was accomplished by flash or short-path distillation.

[^96]: (11) The ammonium chloride was most conveniently introduced by attaching a glass tube filled with the salt to a side arm with tygon tubing. When the ammonium chloride is to be added the tube is raised and tapped gently to smoothly introduce the quenching agent. Should this step atart to become violent, the addition and the vigorous stirring should be momentarily stopped to avoid an eruption.
 (12) J. S. Reichert and J. A. Nieuwland, J. Amer. Chem. Soc., 45, 3090 (1923).

[^97]: (1) (a) Part I: S. S. Hall and S. D. Lipsky, J. Chem. Soc., Chem. Commun., 1242 (1971). (b) Part II: S. S. Hall and S. D. Lipaky, J. Otg. Chem., 38, 1735 (1973). (c) S. S. Hall and S. D. Lipsky, submitted for publication in "Organic Syntheses."
 (2) (a) S. S. Hall, S. D. Lipsky, and G. H. Small, T'etrahedron Lett., 1853 (1971): (b) S. S. Hall, S. D. Lipaky, F. I. McEnroe, and A. P. Bartels, J. Org. Chem., 36, 2588 (1971).

[^98]: (4) This can be viewed as the metal-ammonia reduction of a styrene which is known to reduce to the aromatic hydrocarbon in the absence of an added proton source. See (a) ref 3, pp 118-119; (b) H. Smith, "Organic Reactions in Liquid Ammonia. Chemistry in Nonaqueous Ionizing Solvents," Vol. I, Part 2, Wiley, New York, N. Y., 1963, p 228.

[^99]: (1) W. H. Hunter and A. A. Levine, J. Amer. Chem. Soc., 48, 1608 (1926).
 (2) W. H. Hunter and M. Morse, J. Amer. Chem. Soc., 48, 1615 (1926)
 (3) G. Staffin and C. C. Price, J. Amer. Chem. Soc., 82, 3632 (1960).
 (4) E. Muller, A. Rieker, and W. Beckert, Z. Naturforsch. B, 17, 567 (1962).
 (5) H. D. Becker, J. Org. Chem., 29, 3068 (1964).
 (6) C. J. R. Adderley and F. R. Hewgill, J. Chem. Soc. C, 2770 (1968), and earlier papers.
 (7) D. A. Bolon, J. Org. Chem., 95, 715 (1970).
 (8) D. A. Bolon, J. Org. Chem., 35, 3666 (1970).

[^100]: (9) J. F. Klebe, H. Finkbeiner, and D. M. White, J. Amer. Chem. Soc., 88, 3390 (1986).
 (10) E. Zbiral, F. Wessely, and E. Lahrmann, Monatsh. Chem., 91, 331 (1980).
 (11) M. Chanham, F. M. Dean, K. Kindley, and M. Robinson, J. Chem. Soc. D, 19, 1141 (1971).

[^101]: (12) H. Finkbeiner and A. Toothaker, J. Org. Chem., 39, 4347 (1968)

[^102]: (7) A similar hydrolysis was reported recently: P. A. Bartlett and W. S.

[^103]: (8) The conversion of 10 to hycanthone has been previously described;

[^104]: (9) All vpc analyses were run utilizing a glass column, $0.25 \mathrm{in} . \times 4 \mathrm{ft}$,

[^105]: (1) R. C. Elderfield and V. B. Meyer, "Heterocyclic Compounds," Vol. 2, R. C. EIderfield. Ed., Wiley, New York, N. Y., 1951, p 15.
 (2) C. K. Tbeng, J. H. Chan, D. R. Baker, and F. H. Walker, Tetrahedron, Lett., 3053 (1971).
 (3) J. H. Chan, F. H. Walker, C. K. Tseng, D. R. Arneklev, and F. J. Calderoni, to be submitted for publication.

[^106]: (4) J. W. Emsley, S. R. Salman, and R. A. Storey, J. Chem. Soc. B, 1513 (1970).
 (5) C. F. Koelsch, J. Amer. Chem. Soc., 53, 304 (1931).

[^107]: (1) The receipt of a Lafayette College Research Fund grant in support of this research is gratefully acknowledged.
 (2) A. T. Nielsen and S. J. Houlihan, "Organic Reactions," Vol. 16. Wiley, New York, N. Y., 1968, and references cited therein.

[^108]: (25) Melting points were taken on a Fisher-Johns block and are uncorrected. Infrared spectra were determined in CHCl_{3} on a Beckman IR-10 instrument and were calibrated againat the $1601-\mathrm{cm}^{-1}$ peak of polystyrene. Nmr apectra were recorded in CDCl_{a} on either a Perkin-Elmer R-24 instrument or on a JEOL MH-60 spectrometer. Glc analyses were performed on a Carle Model 8000 gas chromatograph using a $6 \mathrm{ft} \times 0.125 \mathrm{in} .8 \%$ G.E. SF96 on $90-100$ mesh Anakrom ABS column. Elemental microanalyses were performed by Dr. G. I. Robertson, Jr., Florham Park, N. J.
 (26) T. N. Ghosh, A. Bose, and A. Raychaudhuri, J. Indian Chem. Soc., 37, 93 (1960).

[^109]: (27) S. A. Fine and R. L. Stern, J. Org. Chem., 32, 4132 (1967)
 (28) Glc analyses were based on comparisons of peak areas of standardized solutions of the pure compounds with peak areas in solutions of the crude product mixtures. Nmr analysis was used as confirmatory evidence. The areas of suitable peaks due to III and VI in the nmr spectrum of the crude product mixtures were compared with the areas of peaks due to unreacted phenylacetone and/or unreacted aldehyde. Total yields obtained by the two methods always differed by less than 4%.
 (29) Since the glc retention times of VId-h in the crude product mixtures were precisely the same as the retention times of authentic samples, and since the nmr shifts due to VId-h in the crude product mixtures were identical with those in authentic samples, we conclude that the stereochemistry of VI in our product mixtures is identical with that of the authentic asmples, namely cis with respect to the aryl groups. Similar stereochemical results have been observed in a related base-catalyzed condensation: H. E. Zimmerman and L. Ahramjian, J. Amer. Chem. Soc., 81, 2086 (1959).
 (30) The retention times of type VI ketones ($\mathrm{d}-\mathrm{g}$) were almost exactly jouble the retention times of the corresponding type III ketones under the conditions used. The conclusion that IIIh was absent is based on the fact that no peak appeared on the chromatogram even after 15 times the retension time of VIh.

[^110]: (4) Under the same conditions a few years later Japp and Michie obtained a product melting at 134° which they considered to be a second crystalline modification. ${ }^{16}$ In the present work only the product of lower melting point was obtained.
 (5) (a) In a recent report it was mentioned briefly that reaction according to the original procedure gave 3 -methyl-1,2-diphenyl-2-pentene-1,4-dione rather than $\mathrm{b}^{5 \mathrm{~b}}$ No properties were given for the product, and the compound is not reported elsewhere in the literature. In the present work no difficulty was encountered in repeating the original experiment. A possible explanation for the discrepancy lies in the observation that under some conditions (e.g., $21 \mathrm{mg} / \mathrm{ml}$ in CCl_{i} at 35°) the signal for the hydroxylic proton is coincident with that for the accidentally equivalent methylene protons and the nmr spectrum of 5 contains two three-proton sing.ets. A deceptive spectrum and the tendency for 5 to remain noncrystalline may have caused misidentification of the product. (b) P. Bladon, S. McVey, P. L. Pauson, G. D. Broadhead, and W. M. Horspool, J. Chem. Soc. C, 306 (1966).

[^111]: (1) T. Saegusa and I. Murase, Syn. Commun., 2, 1 (1972).

[^112]: (2) T. Saegusa, Y. Ito, and S. Tomita, J. Amer. Chem. Soc., 93, 5656 (1971).
 (3) T. Saegusa, Y. Ito, S. Tomita, and H. Kinoshita, Bull. Chem. Soc. Jap., 45, 496 (1972).
 (4) M. Calvin, J. Amer. Chem. Soc., 61, 2230 (1939).
 (5) T. Cohen and A. H. Lewin, J. Amer. Chem. Soc., 88, 4521 (1966).
 (6) C. L. Arcus and G. V. Boyd, J. Chem. Soc., 1580 (1951).
 (7) R. Huisgen and C. Ruchardt. Justus Liebigs Ann. Chem., 601, 31 (1956).

[^113]: （8）W．Gerrard，J．Chem．Soc．， 848 （1945）．
 （9）D．G．Goodwin and H．R．Hudson，J．Chem．Soc．B， 1333 （1968）． （10）A．H．Lewin and N．L．Goldberg，Tetrahedron Lett．， 491 （1972）．

[^114]: (1) E. R. H. Jones, G. H. Mansfield, and M. C. Whiting, J. Chem. Soc., 4073 (1956).
 (2) P. G. Gassman and W. M. Hooker, J. Amer. Chem. Soc., 87, 1079 (1965).
 (3) (a) J. D. Roberte, E. R. Trumbull, Jr., W. Bennett, and R. Armstrong, J. Amer. Chem. Soc., 72, 3116 (1950); (b) D. R. Coulson, ibid., 91, 200 (1969); (c) J. K. Stille and L. F. Hines, ibid., 92, 1798 (1970).

[^115]: (4) W. E. Truce and L. B. Linday, J. Org. Chem., 26, 1463 (1961).
 (5) H. Prinzbsch and W. Eberbach, Helv. Chim. Acta, 52, 956 (1969).
 (6) (a) J. M. Stewart and H. H. Westjerg, J. Org. Chem., 30, 1951 (1965);
 (b) J. Meinwald and J. K. Crandall, J. Amer. Chem. Soc., 88, 1292 (1966); (c) S. J. Cristol and B. B. Jarvis, ibid., 89, 5885 (1967); (d) E. P. Blanchard, Jr., and A. Cairncross, ibid., 88, 487 (1966).
 (7) R. Baird and S. Winstein, J. Amer. Chem. Soc., 85, 567 (1963).
 (8) W. G. Dauben and F. G. Willey, Tetrahedron Lett., 893 (1962).

[^116]: (9) H. K. Hall, Jr., E. P. Blanchard, Jr., S. C. Cherkofaky, J. B. Sieja, and W. A. Sheppard, J. Amer. Chem. Soc., 93, 110 (1971).
 (10) M. S. Singer, Ph.D. Thesis, University of Colorado, 1966, pp 71-73.

[^117]: (1) (a) T. L. Bond, Tetrahedron Lett., 4255 (1965); (b) K. B. Wiberg and A. J. Ashe, J. Amer. Chem. Soc., 90, 63 (1968).

[^118]: (2) Solvolysis of the analogous seven-membered ring dinitrobenzoate has recently been reported: K. B. Wiberg and T. Nakihara, ibid., 93, 5193 (1971).
 (3) Unpublished work of E. Walton in these laboratories has shown that the analogous [5.1.0] bicyclic system does not give this two-carbon ring expansion. The syn (endo) isomers of the analogous [3.1.0] and [2.1.0] systems favor the ring expansion while the anti (exo) isomers show none of that process. ${ }^{14}{ }^{19}$
 (4) S. Winstein and C. D. Poulter. J. Amer. Chem. Soc., 92, 4282 (1970), and references cited therein.
 (5) Hydrogenation of the 3-cyclocecenols in ether over Adams catalyst is essentially quantitative (determined by internal glc standard).

[^119]: (6) E. B. Womack and A. G. Nelson, "Organic Syntheses," Collect. Vol III, Wiley, New York, N. Y., 1955, p 392.
 (7) S. Friedman and M. L. Kaufman, Anal. Chem., 38, 144 (1966).
 (8) Pierce Chemical Co.

[^120]: * Address correspondence to author at The Johns Hopkins University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Baltimore, Md. 21205.
 (1) T. Ríos, A. Romo de Vivar, and J. Romo, Tetrahedron, 23, 4265 (1967).
 (2) We are indebted to Mr. H. Quero-Rico from the Instituto de Biología, UNAM, for the classification of the plant.
 (3) Cited empirical formula was supported by satisfactory analysis and/or mass spectral molecular weight. We thank Mr. Cortés for the mass spectral data.

[^121]: (8) N. S. Bhacca and D. H. Williams, "Applications of NMR Spectroscopy in Organic Chemistry," Holden-Day, San Francisco, Calif., 1964. p 115 .
 (9) Reference 8, p 110.
 (10) Reference 8, p 100
 (11) S. M. Kupchan, J. E. Kelsey, M. Maruyama, J. M. Cassady, J. C. Heminway, and J. R. Knox, J. Org. Chem., 34, 3876 (1969); S. M. Kupchan, J. E. Kelsey, M. Maruyama, and J. M. Cassady, Tetrahedron Lett., 3517 (1968).

[^122]: (6) (a) B. C. Uff, J. R. Kershaw, and S. R. Chhabra, J. Chem. Soc., Perkin Ttans. 1, 479 (1972); (b) M. J. Bevis, E. J. Forrest, N. N. Naik, and B. C. Uff, Tetrahedron, 27, 1253 (1971).
 (7) A. H. Jackson and G. W. Stewart, Chem. Commun., 149 (1971).
 (8) We are indebted to Mr. John Lawson for technical assistance in this preparation.

[^123]: (8) A. A. Lamola and N. J. Turro, "Energy Transfer and Organic Photochemistry," Interscience, New York, N. Y., 1969, pp 92, 93, 105.
 (9) Rosenberg, et al., have used pyrene as the quencher in their reactions. ${ }^{2}$
 (10) M. S. Newman and G. Kaugars, J. Org. Chem., 30, 3295 (1965).
 (11) A. Schönberg, "Preparative Organic Photochemistry," 2nd ed, Springer-Verlag, New York, N. Y., 1968, p 492.

[^124]: (6) O. Hellinger, H. Heusinger, and O. Hug, Biophysik, 6, 193 (1970).
 (7) (a) G. R. Clemo, M. Keller, and J. Weiss, J. Chem. Soc., 3470 (1950); (b) J. Weiss and M. Keller, Experientia, 6, 379 (1950); (c) M. Keller and J. Weiss, J. Chem. Soc., 2709 (1850); (d) B. Coleby, M. Keller, and J. Weiss, ibid., 66 (1954).
 (8) Cholesterol 7 -hydroperoxides have been postulated as radical products. Cf. (a) S. Bergatröm and O. Wintersteiner, J. Biol. Chem., 145, 309 (1942); (b) S. Bergström, Ark. Kemi, Mineral. Geol., 16A, No. 10, 1 (1942); (c) F. Radt, Ed., "Elsevier's Encyclopedia of Organic Chemistry, Series III, Carboisocyclic Condensed Compounds," Vol. 14, Supplement, Steroids, Elsevier, Amsterdam/Houston/London/New York, 1854, pp 1585S-1586S.
 (9) (a) W. G. Dauben and P. H. Payot, J. Amer. Chem. Soc., 78, 5657 (1956); (b) J. R. Claude and J. L. Beaumont, C. R. Acad. Sci., 260, 3204 (1965); J. Chromatogr., 21, 188 (1966); (c) C. Horvath, ibid., 22, 52 (1966); (d) L. L. Smith, W. S. Matthews, J. C. Price, R. C. Bachmann, and B. Reynolds, ibid., 27, 187 (1967); (e) J. E. van Lier and L. L. Smith, J. Org. Chem., 36, 2627 (1970).
 (10) L. L. Smith and F. L. Hill, J. Chromatogr., 66, 101 (1972).

[^125]: (11) We have previously suggested radical pathways involving groundstate (triplet) molecular oxygen as means of formation of the cholesterol $20 \alpha-, 24-, 25$-, and 26 -hydroperoxides from choleaterol. ${ }^{9 \text { e, } 12}$
 (12) (a) J. E. van Lier and L. L. Smith, J. Org. Chem., 36, 1007 (1971): (b) J. E. van Lier and G. Kan, ibid., 37, 145 (1972).
 (13) (a) W. Gordy, Radiat. Res., Suppl. 1, 491 (1959): (b) H. N. Rexrod and W. Gordy, Proc. Nat. Acad. Sci. U. S., 45, 256 (1959); (c) A. Ehrenberg. L. Ehrenberg, and G. Loforth, Danish Atomic Energy Commission Research Establishment, Risö, Report No. 16, 1960, cited in B. H. J. Bielski and J. M. Gebicki, "Atlas of Electron Spin Resonance Spectra." Academic Press, New York/London, 1967, pp 146-147; (d) O. Hellinger, Biophysik, 6, 63 (1969).
 (14) The exceptional stability of a sample of cholesterol (purified via the dibromide) after 34 years of atorage in contact with air (cf. L. L. Engel and P. Brooks, Steroids, 17, 531 (1971)] remains unexplained. Our chromatographic examination of the sample kindly supplied by Professor Engel failed to demonstrate the presence of any sterol hydroperoxides or secondary autoxidation products.

[^126]: (15) Solvents were redistilled prior to use. All sterols used were of high purity as judged by melting point. infrared absorption spectral, and thin layer and gas chromatographic criteria. Thin layer chromatography was conducted on 0.25 mm thick $20 \times 20 \mathrm{~cm}$ chromatoplates of silica gel HF_{264} (E. Merck GmbH., Darmstadt) using benzene-ethyl acetate ($17: 8$) and triple ascending irrigation by techniques previously described in detail. ${ }^{\text {8d }}$ Typical mobility data with IIIa serving as unit mobility follow: IIIa, 1.00; IIa, 0.91; Ia, 0.91 ; IIb, 0.53 ; IIIb, 0.60 ; Ib, 0.76 . Sterol hydroperoxides were detected by N, N-dimethyl- p-phenylenediamine used as a spray. ${ }^{10}$ Sterols were also detected by their characteristic colors developed with 50% aqueous sulfuric acid used as a spray. ${ }^{\text {gd }}$

 Gas chromatography was conducted by procedures previously described in detail, ${ }^{16}$ but using 2-3\% SP-2401 and 2-3\% OV-210 liquid phases on 100-120 mesh Supelcoport (Supelco Inc., Bellefonte, Pa.) for the confident resolution of IIb and IIIb. 1 Retention data for the several sterols involved in this study were essentially the same as those previously reported. ${ }^{1}$
 (16) J. E. van Lier and L. L. Smith, Anal. Biochem., 24, 419 (1968).
 (17) L. L. Smith and J. C. Price, J. Chromatogr., 26, 509 (1967).

[^127]: (10) E. L. Eliel and H. Haubenstock, J. Org. Chem., 26, 3504 (1961).
 (11) See also O. Cervinka, Collect. Czech. Chem. Commun., 30, 2403 (1965).
 (12) A. H. Beckett, N. J. Harper, A. D. J. Balon, and T. H. E. Watta, Tetrahedron, 6, 319 (1959).
 (13) O. R. Vail and D. M. S. Wheeler, J. Org. Chem., 27, 3803 (1962).

[^128]: (1) Supported in part by Grant CA-10740 from the U. S. Public Health Service.
 (2) (a) A. T. Bottini and J. G. Maroski, J. Org. Chem., 38, 1455 (1973); (b) A. T. Bottini and E. F. Böttner, ibid., 31, 586 (1966), and references cited therein.

[^129]: (3) G. Eglinton and M. C. Whiting, J. Chem. Soc., 3052 (1953).
 (4) Similar cyclizations of cis-hex-5-yn-3-ene-1,1-dicarboxylates to $1,1^{-}$ dicarboethoxy-2-methylene-3-cyclopentenes have been reported. See M. V Mavrov and V. F. Kucherov, Izv. Akad. Nauk SSSR, Ser. Khim., 1559 (1967), and references cited therein.
 (5) D. Black, S. Landor, A. Patel, and P. Whiter, J. Chem. Soc. C, 2260 (1967).
 (6) The faster rate of cyclization of 1a relative to diethyl 6-heptyne-1,1dicarboxylate ${ }^{3}$ on treatment with sodium ethoxide in ethano is most likely due to the electron-withdrawing effect of oxygen, which makes the acetylenic

[^130]: (7) These reactions are described in the Ph.D. Thesis of J. G. Maroski,

[^131]: (1) Support of this work by U. S. Public Health Service Research Grant CA 08495, National Cancer Institute, is gratefully acknowledged.
 (2) M. Tisler and B. Stanovnik, Advan. Heterocycl. Chem., 9, 226 (1968).

[^132]: (3) J. B. Hendrickson, R. Rees, and J. F. Templeton, J. Amer. Chem. Soc., 86, 107 (1964).
 (4) E.g., see R. Huisgen, H. Gotthardt, and R. Grashey, Chem. Ber., 101, 536 (1968); K. T. Potts and D. N. Roy, Chem. Commun., 1061, 1062 (1968).
 (5) K. T. Potts and D. McKeough, J. Amer. Chem. Soc., 94, 6215 (1972).

[^133]: (6) R. Huisgen, Proc. Chem. Soc., 357 (1961).
 (7) C. V. Greco, F. C. Pellegrini, and M. A. Pesce, J. Heterocycl. Chem., 9, 967 (1972).
 (8) D. W. H. MacDowell, A. T. Jeffries, and M. B. Meyers, J. Org. Chem., 36, 1416 (1971).
 (9) R. C. Anderson and R. H. Fleming, Tetrahedron Lett., 1581 (1989).
 (10) J. E. Shields and J. Bornstein, Chem. Ind. (London), 1404 (1967).
 (11) M. J. Haddadin, A. Yauronian, and C. Issidorides, Tetrahedron Lett., 1409 (1970).
 (12) Spectral characterization of products was carried out on the following instrumentation: ir, Perkin-Elmer Model 337 spectrophotometer; uv, Cary Model 14 spectrophotometer; nmr, Varian T-60 spectrometer using TMS as internal standard; mass spectra, Hitachi Perkin-Elmer RMU-6E mass spectrometer using the direct inlet probe at about 165°. All evaporations were done under reduced pressure using a rotavap apparatus and melting points were taken in capillaries. Microanalyses were by Instranal Laboratories, Inc., Rensselaer, N. Y., and by Galbraith Laboratories, Knoxville, Tenn.

[^134]: (1) B. Dietrich, J. M. Lehn, and J. P. Sauvage, Tetrahedron Lett., 2885 2889 (1969).
 (2) J. M. Lehn, J. P. Sauvage, and B. Dietrich, I. Amer. Chem. Soc., 92, 2916 (1970).
 (3) J. M. Lehn and J. P. Sauvage, Chem. Commun., 440 (1971).
 (4) J. L. Dye, M. T. Lok, F. J. Tehan, R. B. Coolen, N. Papadakis, J. M. Ceraso, and M. DeBacker, Ber. Bunsenges. Phys. Chem., 75, 659 (1971).
 (5) M. T. Lok, F. J. Tehan, and J. L. Dye, J. Phys. Chem., 76, 2975 (1972).
 (6) J. M. Lehn, personal communication.
 (7) H. Stetter and J. Marx, Justus Liebigs Ann. Chem., 607, 59 (1957).
 (8) H. E. Simmons and C. H. Park, J. Amer. Chem. Soc., 90, 2428 (1968).
 (9) C. H. Park and H. E. Simmons, J. Amer. Chem. Soc., 90, 2429, 2431 (1968).
 (10) B. Dietrich, J. M. Lehn, and J. P. Sauvage, Chem. Commun., 1055 (1970).
 (11) J. M. Lehn, and F. Montavon, Tetrahedron Lett., 4557 (1972).
 (12) J. Cheney and J. M. Lehn, J. Chem. Soc., Chem. Commun., 487 (1972).
 (13) J. Cheney, J. M. Lehn, J. P. Sauvage, and M. E. Stubbs, J. Chem. Soc., Chem. Commun., 1100 (1972).
 (14) J. L. Dye and L. H. Feldman, Rev. Sci. Instr., 37, 154 (1966).
 (15) J. L. Dye, Accounts Chem. Res., 1, 306 (1968).

[^135]: (1) G. F. Woods, P. H. Griswold, Jr., B. H. Armbrecht, D. I. Blumenthal, and P. Planinger, J. Amer. Chem. Soc., 71, 2028 (1949); R. L. Frank and H. K. Hall, Jr., ibid., 72, 1645 (1950).
 (2) M. Yoshimoto, N. Ishids, and T. Hiraoka, Tetrahedron Lett., 39 (1973).
 (3) J. Panouse and C. Sanie, Bull. Soc. Chim. Fr., 1272 (1956).

