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T H IO  A C T IV A T E D  M E T H Y L E N E S
L E T ’ S  T A L K  A B O U T  S U L F U R

"Life would certainly be sweeter without bivalent sulfur! After all, who needs rotten eggs, skunks, sour gas and mother-in-laws."

"Yet without sulfur there would probably be little or no life at all. We need only consider some of the sulfur containing amino acids, cofactors, hormones, and enzymes to realize that this is 
the case.”

"So Organo-sulfur chemistry is something you don’t like to do with but can’t do without!"

"Wrong again! Bivalent sulfur compounds make a real contribution to some of the more esthetic aspects of life. Such compounds are in part responsible for the flavor and aroma of such 
diverse delectables as blue cheese, coffee, fried chicken, pineapples, shiitake mushrooms, soy sauce, garlic and green onions. Sulfur compounds also contribute to the fragrance of 
essential oils such as geranium, peppermint, eucalyptus and asafetida."

“ Co nslder the Thio Activated Methylenes. We can't say they don't smell, but at the same time the odors aren't all bad either. Pure phenylthioacetonitrile, for instance, has a cinnamon like 
odor reminiscent of cinnamic acid derivatives. The thio activated methylenes are also highly versatile synthetic intermediates. The sulfides may be oxidized to sulfoxides and sulfones or 
converted to sulfonium salts. Unoccupied low energy molecular orbitals on the sulfide provide for enhanced stabilization of anions and many of the reactions common to the classical 
activated methylenes are thus also possible with the thio activated methylenes. In addition the classical activating groups in these molecules undergo the standard reactions of ketones, 
carboxylic acids, esters, amides and nitriles. Then there is the added attraction tjf potential biological significance confired by the presence of bivalent sulfur.

" If you’re involved in the synthesis or formulation of fragrances, flxitives, flavors, flavor enhancers/ cosmetics, perfumes, sex attractants, drugs, pharmaceuticals, pesticides, 
accelerators, antioxidants, detergents, lubricants, catalyst poisons, wetting agents or polymerization modifiers, you can't afford to do without that something you don't like to do with. If 
you haven’t considered thio activated methylenes you’ re missing something."
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Conformation of Acyclic Vicinal Dinitriles and Diacids. 
Carbon-13 Nuclear Magnetic Resonance Correlations

Chao-huei W ang and Charles A. Kingsbury*

Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68508 

Received August 8, 1974

The conformations of certain acyclic dinitriles of the general structure RCH(CN)CH(CN)R' were studied using 
1H NMR techniques in conjunction with dipole moment techniques. The conformation of the dinitriles was mark­
edly solvent sensitive. Under conditions in which the carbons bearing CN become less conformationally pure, an 
R' = benzyl group attains a greater conformational purity. The relative stabilities of the isomeric dinitriles were 
determined (the threo isomer was usually the more stable). The diacids analogous in structure to the dinitriles 
were considerably more conformationally pure. In deuteriochloroform, the conformation of the diacids was very 
sensitive to l,8 -bis(dimethylamino)naphthalene. 13C coupling constants were determined for various compounds 
for certain CN or CH3 groups; other groups gave indistinct or difficultly interpreted splitting patterns. The 13C 
data for methyl groups were generally in accord with other data with regard to conformation.

The nature o f  the interaction o f two electronegative 
groups X  (as in structure 1) has received considerable at-

X X
I I

R— CH— CH— R'
1

tention. L ow e 1 and W olfe2 and their respective co-workers 
were among the first to call attention to  the widespread 
preference o f  many types o f  groups X  for a gauche confor­
m ation .3 Abraham and co-workers have calculated and ex­
perimentally determined the conform ational preferences 
for a variety o f  molecules having electronegative groups .4-5 

Phillips and W ray have com m ented upon the fact that 
W olfe ’s “ gauche e ffect”  fails for certain molecules in which 
Abraham ’s approach is successful, and vice versa .3“6 P h il­
lips and W ray have correlated the tendency for a molecule 
to have gauche X  groups with the total electronegativity o f 
the two groups. In one case, Kagarise and co-workers have 
shown that bond angle changes are an im portant considera­
tion.6'  Furthermore, it seems fairly clear that certain polar 
groups, e.g., carbonyl groups, do not necessarily prefer a 
gauche conform ation. Zefirov and co-workers have shown 
that second-row periodic chart atoms have a much lower 
tendency to  be near one another in space than first-row 
atom s . 7 Rouvier and co-workers showed that cyano and 
amino groups prefer a trans orientation by a small 
am ount.8 Chen and Lin have shown that 3-m ethoxypropi- 
onitrile is more stable in the gauche conform ation .9

Eliel and Kaloustian attributed the tendency for oxygen 
containing groups X  to be near one another in space to van 
der Waals attractions . 10 Later, Eliel discussed the con for­
mation o f 1,3-dioxanes having other electronegative groups 
X  in terms o f the interesting idea o f mutual solvation . 1 1

Pople et al. have advanced a hyperconjugative explana­
tion to account for the tendency o f vicinal fluoride groups 
to be gauche, but they consider the interaction o f  the fluo­
ride groups themselves to be repulsive . 12 Apparently H o ff­
man entertains similar ideas. 13 On the other hand, Epiotis 
considers the interaction o f gauche fluoride groups to be at­
tractive . 14 The interaction o f the lone pairs on the two X ’s 
forms bonding and antibonding com binations o f  energy 
levels. The destabilizing effect o f  the antibonding com bina­
tion is reduced owing to  charge transfer from this orbital 
into an antibonding orbital o f the ethanic skeleton. Since 
the destabilizing interaction is thus reduced, whereas the 
bonding interaction is unaffected, the net interaction o f the 
two fluorides is attractive, according to Epiotis.

Neither the Pople hyperconjugation argument nor the 
Epiotis argument appears to be sufficient to explain the 
tendency for the two chlorine groups in 2 ,2 '-diehlorobi- 
phenyls to lie in virtual contact with one another . 15  Thus, 
the question remains whether some new all-encompassing 
explanation should be sought to explain all cases, or wheth­
er the biphenyls are an unrelated situation.

M ore recently, Abraham has reproduced the conform a­
tional preferences o f  a series o f  fluorocarbons using a con ­
ventional molecular mechanics program . 16 It was stated 
that no special explanations were necessary to account for 
the conform ational preferences o f  the fluoride groups.

The purpose o f  this work was to study the conform ation­
al preferences in molecules having vicinal cyanide groups, 
in which the nonbonded pairs central to the Epiotis argu­
m ent are lacking (although form ation o f  bonding and anti­
bonding com binations are still possible through interaction 
o f the bonded  ir electrons) . 17  In the cyanides, the position 
o f highest electron density is closer to nitrogen, and not 
carbon. W hile we have no firm data, our impression is that
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Table I
100-MHz ‘ H NMR Data for 2-9

Coupling constants, Hzc Chemical shifts, ppmc

Compd Solvent J AE JAB Jßc JßD Ha h b Hc h d He c h 3

CN CN

Ph— CHa-- c h b- —CH3

eryth ro-2 CDCI3 7.4 4.07 3.13 1.52
Pyridine 7.2 4.83 3.68 1.38
Me2SO 7.2 4.78 3.70 1.30

threo-3 CDC1, 5.5 4.05 3.13 1.52
Pyridine 5.8 4.73 3.65 1.46
Me2SO 5.8 4.77 3.70 1.40

CN CN

(c h ,) 2c h e— c h a— c h b— c h 3

eryth ro-4 ch ci3 4.2 1 0 . 6 2.74 2.93 2.25 1.15, 1.19, 
1.58

Pyridine 4.8 9.2 3.09 3.24 ~ 2 . 1 0.98, 1.01, 
1.41

Me,SO 7.0 8.7 3.25 3.33 ~ 2 . 0 1.03, 1.03, 
1.39

threo-5 CDC13 8 . 2 5.2 2.48 3.02 2.15 1.12, 1.23, 
1.5

Pyridine 7.8 5.2 2.79 3.25 ~ 2 . 0 0.96, 1.08, 
1.3

Me3SO 7.4 5.5 3.02 3.34 1.96 1 .0 2 , 1.08, 
1.3

CN CN Hd

(CH3 ),CHe— CHa— CHb— CHc Ph
eryth ro-6 CDC13 ~4 ~ 1 1 d d ~2.7 ~ 2.5 ~2.5 ~ 2.5 2.26

Pyridine 4.5 9.9 4.3 9.7 3.22 3.68 3.35 3.11 2.25
Me,SO 4.7 9.2 4.6 1 0 . 6 3.32 3.66 3.16 2.94 2.14

threo-1 CHCh 8 . 8 4.2 ~ 8 ~ 8 . 8 2.34 2.98 3.23 3.06 2.14
Pyridine 8 . 2 4.8 6.9 8.9 2.94 3.63 3.31 3.19 2.14
Me, SO 7.6 4.7 5.9 10.3 3.02 3.55 3.08 2.96 2.04

CN CN Hd

P h --CHA— CHb— CHc-—Ph

erythro-S CDC13 8 . 1 ~ 5 . 2  d ~ 8 .8 <* 3.98 3.31 3.13 3.09
Pyridine 7.5 5.0 10.4 4.87 4.09 3.20 3.03
Me,SO 7.2 4.8 1 1 . 1 4.81 4.07 3.06 2.75

threo-9 CDC136 5.0 a a 4.24 3.37 3.16 3.15
Pyridine 5.4 a a 4.87 3.97 3.29 3.29
Me,SO 5.6 5.6 1 1 . 1 4.87 3.89 3.13 2.96

a May be “ deceptively simple” . ®Some CH3CN added to separate the resonances of B from C and D. c These solutions were 
usually 5.0% w/v. In the one case tested (th reo -7), JAb diminished by ca. 0.2 Hz in moving from a 5% to a 20% solution. 

d  Nearly superposed resonances prevent obtainment of accurate values.

the interaction o f the electrons in the two vicinal cyanides 
would be smaller than in the fluorides, owing to greater 
separation o f the nitrogens from one another. Several 
workers have com m ented upon the presumed attractive na­
ture o f  gauche CN groups. In a recent intensive study, 
B odot and co-workers considered the interaction to be 
weakly attractive . 18 Peterson showed, however, that the in­
teraction was strong enough to affect relative isomer stabil­
ity .19

In this study, we hoped to compare 13C techniques for 
conform ational analysis to the more widely used 1H and d i­
pole m om ent techniques ,20“24 since the cyanide group is 
particularly convenient for study by 13C N M R. A secon­
dary objective o f  this work was to study the conform ational 
preferences o f the benzyl group. The type o f  com pounds o f 
interest is indicated in structure 1 (X  = CN; R  or R ' = 
alkyl, aryl, or benzyl). The XH N M R  data are listed in 
Table I. T he conform ations o f  these com pounds will be in­

terpreted in terms o f the conformers shown in Scheme I, in 
which the dihedral angles are arbitrarily shown as 60°. As 
before, Jab values o f 10-13 Hz are taken as indicative o f 
predom inately trans hydrogens, whereas J ab values o f  1-3 
Hz are taken as indicative o f gauche hydrogens .25 Interm e­
diate values usually indicate weighted means o f these con ­
formations. In Scheme I, the notation Et  signifies the con- 
former o f the erythro diastereomer having trans hydrogens, 
etc.

Magnitude of the Dipole Moments. Comparison to 
NMR Results. In succinonitrile, the dipole m om ent o f the 
conform er having gauche CN functions is 5.6 D, owing to 
the partial reinforcement o f  the individual CN group vec­
tors . 20 The conform er having trans CN groups will have a 
resultant mom ent o f near 0 D (however, owing to libration- 
al effects the actual m om ent will probably be larger, ca. 0.3 
D ) . 20

In the case o f ery th ro -2  (R  =  Ph; R ' = CH 3; structure
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CN CN
I I

R— CH— CH— R'

Table II
Dipole Moment and Equilibration Data of the Isomeric Dinitriles

Compd R R' Mobsd MG MT % E-p or % T qj
Equilibrium 
% erythro0

eryth ro -2 Ph CH3 3.7 5 .7 5 -5 .0 1.0 5 3  ± 7 41
threo-3 Ph c h 3 (35 F 41
eryth ro-4 i-C3 H7 c h 3 2.2 5.8 0.3 86 ± 2 50
threo-5 /-C3H7 c h 3 5.3 5 .8 -5 .6 0.4 18 ±4 50
eryth ro -6 ¿-c 3 h „ CH.Ph 1.6 5 .8 -5 .6 0.5 92 ±4 42
threo-7 ¡-c 3 h 7 CH.Ph 5.3 5 .7 -5 .6 0.3 12 ± 2 42
eryth ro-8 Ph CH.Ph 3.3 5 .6 -5 .0 0.7 63 ±5 40
threo-9 Ph CH,Ph 4.3 5 .6 -4 .9 0.9 32 ±10 40

d Estimated from NMR data. b % erythro of an erythro—threo mixture produced by NaOCH , catalyzed equilibration of 
the individual diastereomers (average of duplicate runs); confidence level ±3%.

HB
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Tt

Scheme I

-H b
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R
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given in Table I), the observed dipole m om ent is 3.7 D 
(Table II), indicating a sizable population o f conformers 
with gauche CN groups ( E g i  and/or Eg 2)- The N M R  J ab 
value in CDCI3 (7.6 Hz) is indicative o f  a sizable population 
o f  conformers having gauche hydrogens (also Egi and/or 
E q2)- The theoretical maximum dipole m om ent should be 
adjusted to account for the varying effect o f  the R and R ' 
groups. The dipole vector for Ph is directed toward Ph, and 
its magnitude is 0.8 D .20 The vector for CH 3 is directed 
from CH 3 toward the ethanic backbone, and its magnitude 
is smaller, 3.3 D. Calculations, taking into consideration 
the angles these subsidiary dipoles make with the CN d i­
poles, give 5.75 D as the m om ent expected for E g i , and 5.0 
D for E q2- The fraction o f molecules having trans CN 
groups, N t  (which is the population o f E t ), may be calcu­
lated from  eq. I 20 using both extreme values for the magni­
tude o f the dipole o f  conformers having gauche C N ’s, and 
averaging the results.

N r  =
M G 2 -  M ob sd 2

2 2 
M G -  M T

( l )

Thus, the weight o f  Et  for ery th ro - 2 is 0.53 ±  0.07, in 
agreement with the N M R  data which suggests about 50% 
Et -

For eryth ro- 4 (R  = i-C 3H 7; R ' =  CH 3), a much larger 
J ab value is observed in CDCI3 ( 1 0 . 6  Hz) indicative o f  a 
very strong preference for Et - Correspondingly, the dipole 
mom ent (2.2 D) for 4 is much smaller than for 2  since the 
CN groups are trans in the predom inant conform er, Et - E i­
ther Egi or EG 2  would have the same m om ent, 5.8 D. Using 
eq I, the weight o f  Et  is calculated to be 0 .8 6 .

For ery th ro - 6 (R  = ¿-C3H 7 ; R ' = P hC H 2), the dipole m o­

ments for the various conform ers are approxim ated as indi­
cated in Table II. Conform er E r  is calculated to have a 
weight o f  0.92 ±  0.04. The J ab value, ca. 1 1  Hz, is in agree­
ment with the high predom inance o f Et . For ery th ro - 8 (R  
= Ph and R ' = P hC H 2), the weight o f  E t  is much lower 
(0.63 ±  0.05), also in agreement with N M R  data. Thus, 
com pounds having R  = Ph show a much smaller preference 
for E t  than com pounds having alkyl or benzyl substitu­
ents. The error limits indicated above may be somewhat 
low, since the above analysis utilizes dihedral angles o f  60°, 
which is an idealized value, seldom present.

An exact identification o f  the limiting N M R  coupling 
constant for pure trans protons (J t ) or pure gauche pro­
tons (J q ) is not possible. However, using the weights o f  the 
individual conformers determined from  dipole m om ent 
data, and using the theoretical prediction 26 that the ratio o f 
J t  to J g is 5.5, the calculated values for Jq- and J g may be 
checked for consistency. For 8 , J t  is calculated to be 11.8 ±
0.7 Hz, and J q 2 . 1  ±  0 .2  Hz (8  has the highest uncertainty); 
for 2 , J t  =  1 2 .0 , and J g = 2 .2  Hz; for 4, J t  =  1 2 .2 , and J q 
= 2 .2  Hz; and for 6 , J t  = 11.8 and J g =  2.1 Hz. The consis­
tency o f J t  and J g suggests that the geometry o f the trans 
or gauche conformers in 2, 4, 6 , and 8 is not grossly d iffer­
ent.

For the threo isomers, the dipole m om ent data also may 
be used to calculate the weight o f  the conform ers having 
trans CN groups ( T g i ). These data are indicated in Table
II. In order to roughly differentiate between T t  and T q 2, 
the average values for Jt and J q roughly determined for 
the erythro isomers were used in a set o f  simultaneous 
equations using the weight o f  T g i  determ ined by dipole 
m om ent studies. The weights o f  T t , T g i , and T g 2 are 
found to be 0.4, 0.2, and 0.4 for 5; 0.3, 0.1, and 0.6 for 7; and
0.4, 0.3, and 0.3 for 9, with confidence limits o f  ca. ± 0 .1 .27 

T he conform er having trans CN groups ( T g i ) is m ost fre­
quently the minor conform er. However, none o f  these threo 
isomers show really strong conform ational preferences.

Equilibration Studies. Equilibrium  was approached 
from erythro and from threo extremities using m ethoxide 
as catalyst. The results are tabulated in T able II. In all 
cases except 3, the threo isomer predom inated at equilibri­
um . 19 ’28 It is noteworthy that the threo isomers usually 
contain a greater weight o f  the conform ers having gauche 
CN groups.

Solvent Effects on Conformation. A change to solvents 
o f  increased polarity results in sharply reduced J ab values 
for the erythro isomers 4, 6 , and 8 . e ry th r o -2, which is al­
ready highly conform ationally mixed, undergoes only a 
small change. As others have noted ,3’4’1 1 ’18 ’29 polar solvents 
are able to support conformers having large dipole mo-
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Table III
100-MHz ‘ H NMR Coupling Constants (JAB, H z ) o f  the Isomeric Diacids

COOH COOH
I I

R— CHa —  CHg R

D 20  solvent
CDC13 solvent

*■0
 2 **

* 
00

 + Na+S Ba2+7>

Compd R R' Free acid DAN<* APe DAN"-0 APC (pH 9) (pH 11)

erythro-12 Ph c h 3 11.3 6.2 10.3 12.0 10.8 10.1 11.1 ~ 10.7"
threo-13 Ph c h 3 10.6 3.5 6.6 10.2 11.5 11.5 11.5 11.6
erythro-14 i-C3H7 c h 3 8.4 3.8 4.6 9.0 10.9 9.2 10.8 a
eryth ro -16 Ph CH2Ph 11.0' 11.2'

11.4threo -17 Ph CH2Ph 11.2' ~ 3 5.2 11.2'

a Insolubility was a severe problem. ¿E xcess DAN [l,8-bis(dim ethylam ino)naphthalene] present. c Excess AP (2-amino- 
pyridine) present. d One equivalent o f  DAN present. e One equivalent o f  AP present. /T h e  diammonium salts were prepared 
and dissolved in D 20 . S Anhydrous Na,CO, added to  acid until pH ~ 9 . h BaO added to pH ~ 11; the solution was filtered 
before use. 'V ery  similar to the data o f  Opara and Read, ref 38f.

ments better than nonpolar solvents, since d ipole-d ipole  
repulsion is reduced by solvation o f  the individual dipoles. 
Thus, confofm ers such as E g i  becom e more im portant in 
polar solvents. The threo isomers appear to undergo a 
slight change in J ab to higher values indicative o f  a slightly 
greater preference for T t . This conform er permits a closer 
contact o f  CN with solvent.

Conformation of the Benzyl Group. In earlier work, 
and in several com pounds o f this study, whenever part o f  a 
m olecule assumes greater conform ational purity (through a 
change in solvent or tem perature), other parts o f  the m ole­
cule do the same .30 For example, in e ry th r o -4, the m agni­
tude o f  J ab (10.6 Hz) is near maximum, and the magnitude 
o f  J ae (4.2 Hz) is near minimum. Cooling the sample to 
—57° results in a further increase in J ab (10.9 H z) and a 
decrease in J ae (3.6 H z ) .31

Similar unified changes occur on solvent variation. Thus, 
for eryth ro - 4, J ab varies from  10.6 (CDCI3) to  8.7 Hz 
(M ejSO ) whereas J ae changes from  5.2 (CDCI3 ) to 7.0 Hz 
(M e2SO). The origin o f  these variations in J ab and J ae in 
opposite directions has been discussed earlier in terms o f 
minim ization o f 1,3 interactions between large groups (cf. 
4a ) .30,32 A similar variation might have been expected for 
J bc and J bd o f the benzyl group in com pounds 6 -9 . 33 The 
extended conform ational diagrams in Scheme II illustrate 
the conform ational possibilities for 8 . As the polarity o f the 
solvent is increased (see Table I), J ab for 8 moves toward 
the averaged value o f  7 Hz, showing that E qi and possibly 
E g2 becom e present in sizable concentrations. H ow ever, as 
conform ational p u rity  dim inishes at th e carbons bearing  
C N , the conform ational p u rity  o f th e b en zyl group  a p ­
p ea rs to increase. A  change in J bd from  5.2 (CDCI3) to 4.8 
Hz (M e2SO), coupled with a change in J bd from  ca. 8 .8  

(CDCI3 ) to 11.1 Hz (M e2SO), is observed. Thus, conform a­
tions o f  the benzyl group as in 8d (Scheme II) appear to be­
com e increasingly excluded. The rather incom plete data for 
ery th ro - 6  and th reo -7  suggest similar behavior.

Although an explanation similar to Brow n’s “ windshield 
wiper”  is possible in which rotational changes at the car­
bons bearing CN would tend to  exclude certain regions o f  
space from  the phenyl group o f  benzyl,34 it is difficult to 
believe that rotation about one C -C  bond o f a propane 
skeleton could be that much faster than rotation about a 
less sterically hindered C -C  bond.

Although no certain explanation seems readily evident, 
we suggest that the effect o f  the solvent molecules as they 
aggregate near the CN functions may tend to restrict the 
benzyl group .29 It is noteworthy that a large change in 
chem ical shift o f  H A and H b occurs in moving to polar sol-

Scheme II
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/  \ /  \
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H, C Ph CH3 C CH;

/ \ / \
H b CN Ha CN
8c (EG2) 4a

Ph Hr
\ /  V

/ \
H b CN

8 d

vents, whereas the chemical shifts o f  H e and H d change 
but slightly.

T o  the extent that conformers such as 8c becom e more 
im portant in polar solvents, the benzyl group would be 
forced to  occupy the position shown (and not that shown in 
8d) in order to minimize 1,3 interactions.

W ith regard to effective size, the benzyl group appears 
rather similar to methyl (compare com pounds 2  and 8  and 
com pounds 4 and 6 ), rather than phenyl owing to  the na­
ture o f  the carbon attached to  the ethanic skeleton.

Conformation of the Diacids. Table III lists the N M R  
data for certain diacids o f  similar structure to the dinitriles 
discussed earlier. It is evident that a considerably higher 
degree o f  conform ational purity is present in the diacids. 
Specifically, Et  and T t  are now strongly favored .35 The 
data also show that com pounds having R  or R ' = Ph  now 
have a higher degree o f  conform ational purity than R  or R ' 
=  alkyl.

The strong preference and E t  or T t  is quite com m on for 
com pounds having carbonyl groups,301" and other sp2-hy- 
bridized groups such as phenyl30 or groups such as halo­
gen ,23’36 sulfoxide ,36 sulfone ,37 phosphine oxide ,37 and oth-
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ers.38 Generally, the preference for the conform er having 
trans vicinal hydrogens (Et  or TV), termed type II behav­
ior, is found for com pounds having few alkyl groups at­
tached to the ethanic backbone. Com pounds with R  and R ' 
=  alkyl frequently show a preference for the conform er 
with trans alkyl groups (E t  or T G 2 ) .39 This behavior, 
termed type I, minimizes the quite large repulsion between 
the alkyl groups .40 Both  type I and type II behavior may be 
overridden if substantial attractive interactions occur be ­
tween various substituents, such as intramolecular hydro­
gen bonding .41

M any subtle changes in molecular geometry occur be ­
tween different com pounds, and between different con- 
formers o f the same com pounds. Crystal structures and 
other absolute m ethods are slowly clarifying these changes. 
For example, Allinger and co-workers showed that the con­
form er with gauche hydrogens in 2,3-dimethylbutane is 
preferred owing to a widening o f the dihedral angle be ­
tween geminal methyl groups .60 Thus, the interaction be ­
tween vicinal methyl groups is worsened in 1 0 a, leading to 
a preference for 1 0 b .42

H

c h , -■..

c h :!̂ Y ^ c h ,

H
10a

H

CH3

c h 3

CH3 

10 b

However, in studies o f  a considerable number o f te- 
trasubstituted ethanes, no general tendency for gauche hy­
drogens was noted. A large number o f com pounds, such as 
the diacids 12, 13, 16, and 17, prefer trans hydrogens .38 W e 
tentatively suggest that an angle contraction between gem ­
inal groups may be present as in structure 1 la . T he highly

polarizable ir electron clouds on phenyl and carboxyl may 
not result in the degree o f  repulsion found in geminal 
methyl groups in 2,3-dimethylbutane. T he contracted dihe­
dral angle would reduce the repulsion between vicinal 
C O O H -C O O H  or PI1-C H 3 groups. T he dim inished dihe­
dral angle would require that the smallest group possible, 
namely hydrogen, be situated between Ph and COOH. 
This, in turn, would result in trans vicinal hydrogens.

The frequent involvem ent o f  phenyl in type II behavior 
may be due to  a second factor, which is the result o f  the 
distinctive shape o f phenyl. One ortho hydrogen o f phenyl 
is eclipsed with one geminal substituent (probably another 
hydrogen); the other ortho hydrogen bisects the angle be ­
tween the R  groups as shown in l i b .43 In 11a, if  H e is 
eclipsed with Ha, Hd extends toward the center o f  the 
ethanic skeleton and impinges upon one o f the vicinal sub­
stituents. The least unfavorable interaction would occur 
with H b - Again the result is a preference for a conform er 
having trans hydrogens H a  and H b .

The cyanides 2 -9  do not easily fit into type I or type II 
behavior patterns. T he anomalous behavior is very likely 
the result o f  the weak attraction between cyanides, and due 
to  the fairly small size o f  cyanide. However, com pounds 4

and 6  strongly prefer Er- Thus, the repulsion o f  the alkyl 
groups overcom es any attractive interaction o f  the two cya­
nides .44

A phenyl group and an alkyl group will tolerate a gauche 
orientation much more readily than two alkyl groups. 
Thus, 2  and 8  show a much higher population o f  the con- 
formers with gauche CN  functions (Eg ) as indicated by the 
smaller J a b  values and dipole mom ents. T he attraction o f 
the cyanides may release the com pound from  any angle 
contractions associated with type II behavior, and the 
small size o f  cyanide may perm it the ortho hydrogen o f 
phenyl to  be eclipsed with cyanide rather than H a (cf. l i b ) .

For the threo isomers, the optim um  arrangement pre­
sumably should be trans alkyl groups and gauche cyanides 
as found in T G2. This conform er is indeed highly populated 
for 7, which has the largest alkyl groups. However, the rea­
son for the general lack o f conform ational purity in other 
com pounds remains obscure.

Effect of Ionization upon Conformation. In Table III, 
it is seen that the dianions o f ery th ro - 12 and th reo - 13 in 
D 20  have approximately the same conform ational prefer­
ence as the free acids in CDCI3, nam ely for Et  or Tt . 4 5  The 
divalent cation, barium, does not draw the carboxylate an­
ions together in the erythro isomer, since a decrease in J ab 
was not observed in the presence o f  this cation. T he con ­
centration o f d i-d i ion pairs is sizable at the concentrations 
o f  substrate utilized, but the separation o f the barium cat­
ion from  the organic dianion would be on the order o f  8-14
A.46 Thus, several water molecules may separate the cation 
from  the anion, and both  the attraction between the cation 
and dianion and the repulsion between the carboxylates is 
reduced.

T he most dramatic change observed recently in our labo­
ratory occurred upon addition o f  l , 8 -bis(dim ethylam i- 
no)naphthalene (D AN ) to  solutions o f  the diacids in 
CDCI3 . For e r y th r o -12, the J ab value dim inished from  11.3 
to  6.2 Hz upon addition o f 1 equiv o f  D A N  (an additional 
though smaller decrease was observed upon addition o f  ex­
cess D AN ). For th r e o -13, a decrease in J ab from  1 0 . 6  to  3.5 
H z was observed.

The exact state o f  ionization o f  these diacids in the pres­
ence o f  D A N  remains uncertain. T o  test whether hydrogen 
bonding, and not ionization, m ight be the cause o f  these 
strong changes in Jab, 2 -am inopyridine (AP) was utilized 
in parallel experiments. A  small decrease in J ab was o b ­
served for 12, but sizable decreases were observed for 13, 
14, and 17. The pyridine derivative, A P , is a bifunctional 
hydrogen bond acceptor, but it is not sufficiently basic to 
cause ionization. On the other hand, D AN , although b i­
functional, is not expected to be a good double hydrogen 
bond acceptor, because o f steric hindrance to proper orien­
tation o f the lone pairs. D A N  (proton sponge) is, o f  course, 
a strong base .47

W e tentatively suggest that the monoanion is form ed to 
a significant extent in the D A N  solutions. Intramolecular 
hydrogen bonding is believed to  hold the COOH and COO-  
in a gauche conform ation in the monoanion. In the AP so­
lutions, hydrogen bonding to the bifunctional base also 
would lead to gauche carboxyl functions. In aqueous solu­
tions, neither D A N  or A P  has a large effect upon the con ­
form ation o f 12 or 13, since water is the primary agent for 
solvation or hydrogen bonding.

The threo isomers also undergo pronounced changes 
upon addition o f  D A N  or AP, even though the preferred 
conform ation in CDC13 (T t ) already has gauche carboxyl 
groups. The reason for the change o f conform ation (proba­
bly to  T G2) is not im mediately obvious. Possibly the intra­
molecular hydrogen bonding between carboxyl functions
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releases the molecule from  the angle deformations (as in 
structure 1 1 ) that gave rise to  the preference for T t -

13C N M R  D ata . T he 13C chem ical shifts for the com ­
pounds o f  this study are shown in Table IV. The chemical 
shifts show the expected changes as structure is varied, and 
these will not be considered further.

It was possible to determine 13 C -H  coupling constants 
between certain types o f  carbons and vicinal hydrogens. 
Perlin and co-workers have indicated that a Karplus type 
o f  relationship exists for the dihedral angle between 13C 
and a vicinal hydrogen and the magnitude o f the coupling 
constant 3J Gh -48 For trans nuclei, 3J  was found to  be ca. 8  

Hz, whereas for gauche nuclei, 3J  was ca. 1 Hz. These 
values were considered to  be quite sensitive to  such inter­
nal factors as strain, electronegativity, etc., as indeed was 
shown by  the earlier work o f Karabatsos and co-workers.48d 
For carbonyl-hydrogen coupling constants, 3J t  ~  13, 3J g ~  
2 H z.48f

In order to apply 3J  values to  problem s in conform ation, 
it is necessary to  observe these values for com pounds o f 
near conform ational purity having functional groups simi­
lar to  2 -9  and 12-17. Com pounds 18 and 19 were used to 
partially satisfy this objective.

CN CN
18 19

In studies on 18 and 19 and a number o f similar com ­
pounds coupling constants from  trans (diaxial) cyanide and 
hydrogen groups were 9.2 ±  0.5 Hz. In 18, the equatorial 
cyanide at C-2 showed a coupling constant to  H -3 o f  1.7 Hz. 
This value should be reasonably characteristic o f  gauche 
nuclei.

T he diacids 1 2  and 13 showed very high J ab values in 1H 
spectra, and these molecules are also close to  conform ation­
al purity. Observation o f the 13C spectrum o f  the methyl 
group in 12 and 13 (disodium salts in D 2O) showed split­
tings o f  3.1 and 4.6, and 2.9 and 4.1 Hz, respectively, in ad­
dition to the larger splitting due to the directly bound hy­
drogens ( 4 J ch =  128 Hz). These values are considered good 
to  ±0 .4  Hz. The smaller splitting (~ 3  H z) is believed to be 
due to  3J ch , and the larger due to 2J ch (this assignment 
was made on the basis o f  consistency with other results 
from  our laboratory). The small 3J  is in qualitative agree­
m ent with the large J ab in requiring a very high population 
o f  conform ers E t  and T t  as shown in structure 12 and 13.

12 13

For 12 and 13, it was also possible to  obtain sharp spec­
tra for certain carboxyl groups. In 12, the carboxyl nearest 
methyl was poorly resolved, but the carboxyl nearest Ph 
was a double doublet from  which assignments o f  2J  =  6.4 
and 3J  =  1.4 H z were made (18 gave similar values). T he 
latter is in agreement with the preference for Et  since 
gauche COOH  and H b nuclei would be in evidence.

In 14, a double-triplet splitting pattern was observed for 
one carboxyl, most likely the carboxyl nearest isopropyl. 
This carboxyl must have one tw o-bond coupling and two 
three-bond couplings. The proton spectrum indicates a 
predom inance o f E t  (redrawn in 14a).

In agreement with 14a, the coupling constant between 
methyl and H a was found to be 2.8 Hz, indicative o f  gauche 
nuclei. For the carboxyl one possible assignment is 3J co- hb 
=  1.1, 3J co- he ~  5.8, and 2J co-Ha ~  5.8 Hz. The coupling 
to  H b is consistent with conform er 14a, but the coupling to 
H e seems much too low.48f A similar double-triplet pattern 
was noted for com pounds 4 -6  (i.e., through observation o f 
one CN in each com pound). It is difficult to believe that 
3J ch  would be equivalent to  2J ch in so many com pounds, 
and we have reservations about the im plications from  these 
double triplets. Com puter simulation o f the spectra showed 
that larger or smaller coupling constants resulted in split­
tings o f  nearly the proper magnitude in the simulated spec­
tra, however.

For the dinitriles 2 -5 , the J ab values indicated a greater 
mixture o f  conform ers than for the diacids. In e r y th r o -2, 
the weight o f  Et  is roughly 0.5. It was o f  interest to  see how 
closely the carbon couplings agree with this population and 
the conform ational weights in other structures. In 2, the cy ­
anide couplings, 3J ch- hb = 5.4 and 3J cn ha — 4.6 Hz, do 
indeed indicate considerable conform ation averaging. I f the 
weight o f  Et  is taken as 0.5 and using a set o f  simultaneous 
equations with 3J T = 9 Hz, the weights o f  EGi and E G 2 are 
roughly 0 .2  and 0.3. Observing the methyl group o f  2, 
3 JCH3-HA is 3.5 Hz, which is consistent with the low popula­
tion Of Eq 2-

For th reo -3, 3J cn-Hb — 6 .8  and 3J ch3-Ha =  3.1 Hz. 
These data are consistent with sizable populations o f  T t  
and T g2 but a very low population o f T g i-

3a (T G2 shown)

For e ry th r o -4, a multiplet was found for one cyanide and 
a double triplet for the other. One possible assignment o f 
the coupling constants is shown in the diagram (4a). In this 
case, the cyanide couplings are in good agreement with the 
conform ation suggested from  the proton spectra and dipole 
m om ent (ca. 8 6 % Et ). O f the m inor conform ers, E q2 is ex-
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Table IV
13C Chemical Shifts 

CN CN

R — a C H — g C H — R '

Isomer R R' 6 r Sr ' 5c a 5c b 5cn

erythro-2 Ph CH3 15.5 40.9 31.5 117.9, 118.1
threo-3 
erythro-4 ¿-C3H7 c h 3 CH 28.6

16.1
16.7

40.9
43.2

31.9
26.5

117.0, 118.5 
116.8, 119.1

threo-5 i-C3H7 c h 3

CH3 17.1 
CH3 17.3 
CH 29.3 16.9 43.3 26.5 117.3, 118.7

erythro-6 i-C3H7 CH3Ph

CH3 19.9 
CH3 20.2 
CH3 28.6 36.40 40.9 34.7 117.3, 117.8

threo-1 ¿-c 3h 7 CH2Ph

CH3 17.1 
CH3 21.3 
CH 29.6 37.2« 40.9 34.3

erythro-8 Ph CH7Ph

CH3 20.1 
CH3 20.6

35.80 39.6* 39.2 b 117.1, 118.9
threo-9 Ph CH2Ph 36.60 39.1 40.3 117.0, 118.5

a Chemical shift o f  the benzylic carbon. * Tentative assignment.

pected to be the more im portant as R  isopropyl is very hin­
dered in Eg i- Rough calculations bear this out, suggesting 
that E G 2 is about 14% populated.

In th reo -5 , the coupling constants 3J c n - h b — 6 and 
3J c h 3- h a = 2.4 Hz were determined. These data are in 
agreement with the data o f T able II, which indicate that 
the weight o f  T qi (which has trans CH 3 and H a  groups) is 
quite small ( ~ 2 0 %).

5a (TG2 shown)

In conclusion we would point out that 13C coupling con ­
stants involving methyl groups are in good qualitative 
agreement with conform ational preferences derived from  
XH  and dipole m om ent data. Som e reservations have been 
indicated above about 13C couplings involving cyanide or 
COOH, but agreement is satisfactory in many cases with 
other lines o f  evidence. As greater understanding o f 13 C -H  
coupling constants is attained, these data should becom e as 
im portant as H -H  couplings as a conform ational probe. 
T he 13C couplings have an added advantage that a number 
o f  different carbons in a given molecule may be studied in 
contrast to  the more lim ited proton couplings.

The conform ational weights derived from  XH  and dipole 
m om ent data can be accom m odated with trans and gauche 
3Jcn h couplings o f  9-9.5 and 2-3 Hz, respectively, and by 
3Jch:i h couplings o f  6-7 and 2-3 Hz. It does seem that the 
carbon coupling constants are subject to  rather wide varia­

tions from compound to compound. Thus far, only methyl 
groups among alkyl groups can be successfully studied in 
our hands (benzyl carbons are extensively coupled to pro­
tons in the ring).

All three lines of evidence suggest a preference for con- 
formers having gauche CN groups in the threo isomers, and 
a strong contribution from such conformers in certain 
erythro isomers, especially in polar solvents. With regard to 
the Pople et al. hyperconjugative explanation of the reason 
for gauche X  groups,12 no consistent preference is noted for 
conformers such as TG2 (which has hydrogen trans to cya­
nides) over T t .49 It is rather difficult to assess the Epiotis 
explanation for gauche X  groups, but, as discussed earlier, 
the positions of greatest electron density (nitrogen of the 
cyanides) tend to be rather distant from one another even 
if the cyanides are gauche, and it is questionable whether 
the interaction of the electrons would be large enough to 
account for the tendency for cyanides to be gauche.

Experimental Section

The general method of synthesis was the condensation of an ap­
propriately substituted ethyl cyanoacetate with the cyanohydrin of 
the appropriate aldehyde. The resulting product was hydrolyzed 
and decarboxylated according to the following equations.

CN OH

C2H5 0 2C— CH“ +  R—  CH—  CN — ►
Na+

f  CN CN 1 RY
I I —

_C,H5 0 2C— C — CH— R_

CN CN ! -oh CN CN
I I  2 H + I I

C„H60 2C— C— CH— R  ------* R— CH— CH— R
| 3. A

R

The general method was that of Higson and Thorpe.50
1 ,2 -D ic y a n o -l-p h e n y lp r o p a n e  (2 a n d  3 ). P r o c e d u r e  A . To a

500-ml flask fitted with condenser and magnetic stirrer was added
5.8 g (0.25 g-atom) of sodium metal and 100 ml of absolute ethanol. 
After reaction, 28 g (0.25 mol) of ethyl cyanoacetate was added to 
the cooled solution followed by 32.8 g (0.247 mol) of benzaldehyde 
cyanohydrin (the latter was added gradually with stirring and 
cooling). The solid sodium salt of ethyl cyanoacetate gradually
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went into solution during addition of the cyanohydrin, leaving a 
brown solution at the end of addition. The resulting solution was 
allowed to stand for 12 hr at room temperature. To this solution,
42.6 g (0.3 mol) of methyl iodide was added with cooling, and the 
mixture was warmed on a water bath until a test portion was neu­
tral to litmus. The reaction mixture was poured into water. The oil 
that separated was extracted into ether. The ether solution was 
washed with water, dried (MgS04), and evaporated to give the 
crude product, ethyl 2-methyl-3-phenyl-2,3-dicyanopropionate, 
yield 22.4 g (75%). The NMR spectrum of the crude product 
showed it to be a roughly equal mixture of erythro and threo iso­
mers.

Procedure B. In a 250-ml round-bottom flask fitted with a con­
denser, 10 g of potassium hydroxide in 100 ml of dry methanol was 
added plus 24.2 g (0.1 mol) of ethyl 2-methyl-3-phenyl-2,3-dicy- 
anopropionate. The mixture was stirred overnight, during which 
time a precipitate formed. The precipitate was filtered off and 
washed with ether, and then dissolved in water. The aqueous solu­
tion was acidified with concentrated hydrochloric acid, which 
yielded a heavy oil which was extracted into ether. The ether solu­
tion was washed with water, dried (MgSfTi), and evaporated. The 
gummy oil that resulted was decarboxylated by heating under re­
duced pressure. When gas evolution ceased, the remaining oil was 
dissolved in a small amount of chloroform and added to a chroma­
tography column [150 g of silica gel (Baker)]. From the fourth frac­
tion of 75 ml (chloroform eluent), 5 g of a mixture of diastereomer- 
ic products was collected. The diastereomers were separated by re­
peated crystallization from chloroform and petroleum ether. The 
erythro isomer (2) separated as small white needles, mp 76-78° 
(lit.50 mp 80°), mass spectrum m/e 170 (parent ion).

Anal. Calcd for CnH 10N2: C, 77.64; H, 5.88. Found: C, 77.77; H, 
5.93.

The threo isomer separated as a brown oil, contaminated with 
ca. 20% of the erythro isomer. Repeated attempts at separation 
from the erythro isomer were unsuccessful.

Anal. Calcd for CUH10N2; C, 77.64; H, 5.88. Found: C, 77.73; H, 
5.88.

4-Methyl-2,3-dicyanopentane (4 and 5). Ethyl 2,4-dimethyl-
2,3-dicyanopentanoate was prepared by the procedure A as out­
lined above. From 6.25 g (0.27 g-atom) of sodium, 28.25 g (0.25 
mol) of ethyl cyanoacetate, 24.9 g (0.25 mol) of isobutyraldéhyde 
cyanohydrin, and 42.4 g (0.3 mol) of methyl iodide, 27.8 g (54%) of 
the product ester was obtained, by 115-117° (4 mm).

The above ester was hydrolyzed by mixing 26 g (0.13 mol) of the 
ester with 15 g of potassium hydroxide in 100 ml of dry methanol, 
following procedure B. After the solvent was removed the remain­
ing oil was distilled, during which the vigorous evolution of carbon 
dioxide occurred. The product was collected at 105° (2.5 mm), giv­
ing 3.5 g of the mixed diastereomers as determined by NMR. The 
diastereomers were separated using preparative VPC techniques 
(specifically, using a 1.5-m, 9.4-mm diameter column packed with 
Chromosorb W having ca. 10% QF-1 as the liquid phase at 200°). 
In a larger scale run, the diastereomers were separated by using a 
50-cm spinning band distillation column. The fraction collected at 
92° (2.3 mm) proved to be the erythro isomer (ca. 57% of the total 
mixture), mass spectrum (70 eV) m/e 136 (parent ion).

Anal. Calcd for C8H12N2: C, 70.59; H, 8.82. Found: C, 70.32; H,
9.09.

The threo isomer distilled at 110° (2.3 mm), and accounted for 
ca. 43% of the mixture, mass spectrum (70 eV) m/e 136 (parent 
ion).

Anal. Calcd for C8H12N2: C, 70.59; H, 8.82. Found: C, 70.37; H,
9.09.

l-Phenyl-4-methyl-2,3-dicyanopentane (6 and 7). According 
to procedure A, 12.5 g (0.54 g-atom) of sodium, 56.5 g (0.5 mol) of 
ethyl cyanoacetate, 49.5 g (0.5 mol) of isobutyraldéhyde cyanohy­
drin, and 63.1 g (0.5 mol) of benzyl chloride were allowed to react 
to form 100 g (70%) of crude ethyl 2-benzyl-4-methyl-2,3-dicy- 
anopentanoate.

The above ester was hydrolyzed by procedure B using 28.4 g (0.1 
mol) of the above ester mixed with 10 g of potassium hydroxide in 
100 of dry methanol. After decarboxylation under vacuum, the res­
idue was taken up with carbon tetrachloride and chloroform. On 
cooling some crystals appeared which were filtered off and recrys­
tallized from carbon tetrachloride and chloroform, yielding 9.5 g of 
product, mp 90-98°. However, the NMR spectrum showed this 
material to be a mixture of diastereomers. Chromatography on 75 
g of silica gel (Baker) using benzene as eluent afforded a solid, mp
99-101°, in fractions 4 and 5 (75 ml each). This material was re­
crystallized from the same solvents, giving a material later identi-

B

Figure 1. Coupled spectrum of 14 in D20  (carbonyl region only).

fied as the erythro isomer, mp 104-107°, mass spectrum (70 eV) 
m/e 212 (parent ion).

Anal. Calcd for CuH i6N2: C, 79.25; H, 7.55. Found: C, 79.07; H,
7.74.

Fraction 8 of the chromatography contained the threo isomer, 
mp 70-72°, mass spectrum (70 eV) m/e 212 (parent ion).

Anal. Calcd for Ci4H16N2: C, 79.25; H, 7.55. Found: C, 79.17; H,
7.65.

l,3-Diphenyl-l,2-dicyanopropane. According to procedure A,
5.8 g (0.25 g-atom) of sodium, 28 g (0.25 mol) of ethyl cyanoace­
tate, 32.9 g (0.25 mol) of benzaldehyde cyanohydrin, and 31.3 g 
(0.247 mol) of benzyl chloride yielded 73 g (93%) of the crude ethyl
2-benzyl-3-phenyl-2,3-dicyanopropionate.

According to procedure B, the above ester (31.8 g, 0.10 mol), was 
mixed with 10 g of potassium hydroxide in 100 ml of dry methanol. 
After decarboxylation in vacuo, the remaining oil was taken up in 
hot ethanol. Upon cooling, a material subsequently shown to be 
the erythro isomer separated as long needles (3.2 g) mp 138-140°, 
mass spectrum (70 eV) m/e 246 (parent ion).

Anal. Calcd for Ci7Hi4N2: C, 82.93; H, 5.65. Found: C, 83.06; H, 
5.69.

The filtrate was evaporated to yield a gummy oil which was dis­
solved in a 3:1 mixture of chloroform and carbon tetrachloride. On 
cooling, the threo isomer separated as long needles (2.7 g), mp 85- 
87°, mass spectrum (70 eV) m/e 246.

Anal. Calcd for Ci7Hi4N2: C, 82.93; H, 5.65. Found: C, 82.88; H, 
5.57.

3-Methyl-2-phenylbutanedioic Acid (12 and 13). Ethyl 2- 
methyl-3-phenyl-2,3-dicyanopentanoate (22.0 g, 0.091 mol) was re­
fluxed in 200 ml of concentrated hydrochloric acid for ca. 12 hr. 
The product (a mixture of the two diastereomers) appeared as 
crystals upon cooling. There were filtered off, and yielded 9.0 g 
(48%) of the crude diacids, mp 175-185°. The crystals were dis­
solved in dilute sodium hydroxide and the solution was neutralized 
to pH 5 with dilute hydrochloric acid. The monosodium salt of the 
erythro succinic acid crystallized out, mp >320°. The free acid was 
recovered by redissolving the monosodium salt in dilute sodium 
hydroxide and acidifying to pH 1, followed by recrystallization 
from ether: mp 199-201° (lit.51 mp 192-193°); NMR (CDCI3-TFA) 
6 1.11 (d, 3, CH3), 3.34 (m, 1, CHCH3), 3.86 (d, 1, CHPh), and 7.34 
(s, 5, Ph); ir (KBr) 3200-3500,1710 cm“ 1.
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After removing the erythro monosodium salt, the filtrate was 
acidified to pH ca 1. Crystals formed which proved to be about 
80% threo and 20% erythro diacid. The pure threo isomer was ob­
tained by repeating the dissolution in base, and precipitation of 
the erythro monosodium salt, followed by acidification to precipi­
tate the mixture enriched in the threo form. The pure threo-13 
had mp 197-199° (lit.51 mp 170-178°); NMR (CDC13-TFA) b 1.49 
(d, 3, CH3), 3.48 (dq, 1, CHCH3), 3.98 (d, 1, CHPh), and 7.38 (s, 5, 
Ph); ir (KBr) 3200-2500, 1710 cm-1; mass spectrum (70 eV) m/e 
208 (parent ion).

In another run, 1.6 g (0.093 mol) of erythro-2 was mixed with 50 
ml of concentrated hydrochloric acid and 0.1 ml of hydrogen per­
oxide (30%). The mixture was heated at reflux for 48 hr. The reac­
tion mixture was cooled and diluted with a large volume of water, 
whereupon the product precipitated, mp 184-186°. The NMR 
spectrum showed that this material was ca. 90% of the erythro di­
acid. The diacid was dissolved in ca. 30 ml of water and made basic 
to a pH of 11; the solution was filtered. To the filtrate was added 
barium acetate in increments until no further precipitation seemed 
evident. The mixture was digested upon the steam bath for ca. 1 
hr, allowed to cool, and then filtered. The mother liquor was treat­
ed with additional barium acetate, but only a slight precipitation 
occurred. The precipitate was treated with concentrated hydro­
chloric acid in ca. 30 ml of water. The resulting precipitate was vig­
orously stirred and filtered. The resulting diacid 12 was air dried, 
giving 0.9 g (54%) of product, mp 198.5-199.5°.

2-Methyl-3-isopropylbutanedioic Acid (14 and 15). This 
compound can be prepared from hydrolysis of 5 or 6, or by hydrol­
ysis of ethyl 2,4-dimethyl-2,3-dicyanopentanoate. In a typ.cal run, 
3 g (0.022 mol) of a mixture of 5 and 6 in 20 ml of concentrated hy­
drochloric acid was refluxed overnight (ca. 12 hr), after which some 
white crystals were noticeable. The solution was cooled and the 
crystals were collected by filtration, yielding 1.3 g of the erythro 
product (34% yield): mp 178-180° (lit.52 mp 171°); NMR (CDCI3-  
TFA) b 1.06 (d, 3, CH3), 1.08 [d, 3, (CH3)2CH], 1.36 [d, 3, 
(CH3)2CH], 2.05 [m, 1, (CH3)2CH], 2.78 (dd, 1, CH-t'-Pr), and 3.04 
(dq, 1, CHCH3); ir (KBr) 3200-2500, 1700 cm“ 1.

The filtrate was evaporated to dryness giving the impure threo 
isomer, 15, which was exceedingly difficult to purify or handle (this 
isomer appeared to be quite water soluble).

2-Phenyl-3-benzylbutanedioic Acids (16 and 17). Hydrolysis 
of ethyl 2-benzyl-3-phenyl-2,3-dicyanopropanoate with hydrochlo­
ric acid, or with combinations of various acids, was not successful. 
This material was prepared by hydrolysis of the dinitriles 8 or 9. 
To a solution of 80 ml of concentrated hydrochloric acid, 40 ml of 
concentrated sulfuric acid, and 40 ml of concentrated acetic acid 
(these must be mixed with care, as gaseous hydrochloric acid is 
evolved) was added 1.5 g (0.006 mol) of 9 and the mixture was re­
fluxed for ca. 12 hr. On cooling the diacids (1.75 g) precipitated. In 
other runs some phenyl benzylsuccinimide, mp 126-130°, mass 
spectrum (70 eV) m/e 265 (parent ion), was also formed.

The best purification of these acids was belatedly found to be by 
means of preferential precipitation of the barium salt of one iso­
mer. In a typical run, 2.5 g of the mixture of 16 and 17 (mp 178- 
180°) (shown by NMR to be a ca. 35-65% mixture) was dissolved 
in dilute sodium hydroxide solution. The calculated molar equiva­
lent of barium acetate (with respect to the minor component), ca. 1 
g, was added to the solution of the diacids. An immediate precipi­
tate formed, and the mixture was digested on a steam bath for ca. 
0.5 hr, allowed to cool, and filtered. Additional barium acetate was 
added in the same manner in increments followed by filtration, 
until no further material precipitated. The first two crops of pre­
cipitate were used and the much smaller third and fourth crops 
were discarded. This barium salt was acidified with dilute hydro­
chloric acid, and the resulting precipitate stirred for ca. 0.5 hr and 
filtered. This material was readded to dilute sodium hydroxide 
and precipitated again as the barium salt. The barium salt was 
washed with water and acidified. The free acid was collected by fil­
tration, giving 0.5 g of 16 as the first crop, mp 184-187°, and 0.55 g 
as the second crop, mp 182-184°.

The mother liquor from the original barium salt precipitations 
was acidified to pH 1 with hydrochloric acid, and the fluffy precip­
itate was filtered off and allowed to air dry, mp 196-203°. This 
acid (17) was redissolved in dilute sodium hydroxide, and addi­
tional barium acetate was added in increments; and the precipi­
tates (very slight) were discarded. Reacidification and filtration 
gave 1.4 g of 17: mp 200-202° (lit.38h-53 mp 176°); NMR (CDCI3-  
TFA) 6 2.85 (m, 2, CH2Ph), 3.6 (m, 1, CHCH2Ph), 4.02 (d, 1, 
CHPh), and 7.0-7.5 (m, 10, Ph). The threo diacid 17 from other 
runs, purified by a recrystallization route, had mp 172-175°, very

close to the literature value. The NMR spectrum was very similar 
to the mp 200° material.

In another run, erythro-S (1.5 g, 0.059 mol) was heated in 40 ml 
of concentrated hydrochloric acid, 20 ml of acetic acid, and 20 ml 
of sulfuric acid at reflux for 48 hr. On cooling, a precipitate ap­
peared which was collected by filtration. The NMR spectrum 
showed it to be mostly 16. The acid was dissolved in dilute sodium 
hydroxide, and precipitated as the barium salt as described above; 
this was done twice. The resulting diacid, 16 (1.35 g, 80%), had mp 
187-189° (lit.38h mp 183°); NMR (CDC13-TFA) b 3.1 (m, 2, 
CH2Ph), 3.6 (m, 1, CHCH2Ph), 4.05 (d, 1, CHPh), and 7.2-7.5 (m, 
10, Ph).

Dipole Moments. The dipole moments were determined using a 
WSW DM 01 Dipolmeter. The cell was calibrated using benzene, 
cyclohexane, and carbon tetrachloride solvent pairs. Five solutions 
of the unknown compound were made up in carbon tetrachloride 
as solvent. The dielectric constant of these solutions were deter­
mined using the calibration as determined above.20 The refractive 
indices of these solutions were determined on an Abbe’ refractom- 
eter. The dipole moment was calculated from eq 2, where a,, is the 
slope of the plot of change in dielectric constant relative to pure 
solvent vs. weight fraction of substrate, and an is a plot of change 
in refractive index (quantities squared) vs. weight fraction of sub­
strate.

M2 = 27 kT  1
47rlV2 d\ (ri + 2)2

(ae -  an) M2 (2)

NMR Data. The NMR data was taken on a Varian XL-100 in­
strument, or less often, on a Varian A-60D. The coupling constants 
were determined from 100-Hz expansions of the spectral region in 
question. The spectra were simulated at 500 and at 100 Hz using 
the LAOCOON III program.54 Variations of the parameters were 
made until the computer-generated plot was superimposable on 
the original spectrum, although in some cases a good fit of the orig­
inal spectrum was not possible either due to the complexity of the 
spectra or due to extreme closeness of certain chemical shifts; cases 
in point were 7 and 2 in CDC13. The vicinal coupling constant J a b  
is good to ±0.3 Hz, however. The data have been omitted from 
Table I where the uncertainty was large.

The 13C data were also determined on the XL-100 spectrometer 
(at 25.2 MHz). In normal runs (data given in Table IV), a 5K spec­
tral width was used with a 0.4-sec acquisition time and a 0.2-sec 
pulse delay. From 5 to 10K of transients were collected. The sam­
ple solutions were as concentrated as possible, usually from 0.1 to 
0.3 g of substrate per 3.0 ml of CDC13. The maximum resolution as 
indicated by the computer was 0.09 ppm. Assignments were made 
by observation of the splittings determined from undecoupled 
spectra.

The coupling constants were determined using highly concentra­
tion solutions. The “ gated” mode of operation of the decoupler was 
used or, less frequently, the decoupler was simply not used. A typi­
cal run (13, carbonyl region) involved a IK spectral width, a 2.5-sec 
acquisition time, a 2.0-sec pulse delay (gated mode of decoupler 
operation), and a 40-iusec pulse width. Considerable difficulty was 
encountered in these spectra from folded peaks, and only the 
clearest examples are reported in this paper. For this particular 
sample 10.2K of transients were collected. The spectrum resulting 
from a similar run is given in Figure 1. The 13C splittings were also 
simulated using the LAOCOON program.54 The splittings were first 
order for the carbonyl groups of the acids 9 and 10, and almost 
first order for 11 (i.e., the line separations taken from the spectrum 
reproduced the spectrum when fed back into the computer pro­
gram). First-order splittings were observed for certain CN spectra, 
and not for others. In some cases, computer simulation was impos­
sible owing to an insufficient number of spins in the program. Cou­
pling constants that were not simulated for this or other reasons 
and coupling constants whose exact value is unclear are indicated 
with an approximate sign.

The decisions as to which line separations were related to 2J  and 
which were 3J  were aided by the study of model compounds. Thus, 
observation of the cyanide carbon of phenylacetonitrile showed a 
triplet pattern (two-bond couplings to the CH2 unit) of 10.8 Hz. 
The larger splittings of CN in 2-5 were assigned as 2J. For propa­
noic acid, observation of the methyl showed a 2J  of ca. 4 Hz, and 
the methylene gave a similar value. Observation of the carbonyl 
gave 2JCO-CH2 as 6.9 Hz and 3Jco-CH3 as 5.8 Hz.
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Stereochemical results from the reduction of 4-tert-butyl-, 4-methyl-, 3-methyl-, 2-methyl-, and 3,3,5-trimeth- 
ylcyclohexanones by mono-, di-, and tri-n-alkylsilanes and by a-, and "--branched trialkylsilanes in aqueous 
sulfuric acid-ethyl ether and trifluoroacetic acid media are reported. Alcohols are formed by silane reductions in 
aqueous sulfuric acid-ethyl ether. Both trifluoroacetates and symmetrical ethers are produced in trifluoroacetic 
acid media; alkyl branching at the a positions of alkylsilanes or of cyclohexanones and increasing the number of 
n-alkyl groups bonded to silicon dramatically decreases the relative yield of ether products. Steric factors govern 
the stereochemical outcome of silane reductions of ketones to alcohols and alcohol derivatives. Increasing the 
number, but not the length, of linear carbon chains and increasing the branching at the a and 0 positions of alk­
ylsilanes increases the relative yield of the thermodynamically less stable alcohol. Factors influencing the stereo­
selectivity of hydride transfer to O-alkyloxonium ions resulting in symmetrical ethers have also been determined. 
The stereoselectivities in organosilane reductions are compared to those from other hydride reducing agents, and 
the relative importance of conformational equilibria on the stereoselectivity in reductions of methylcyclohexa- 
nones is discussed.

Stereoselective control o f  reaction products in the reduc­
tion o f cyclic ketones has been the subject o f  numerous in­
vestigations.2 Hydride reducing agents, such as lithium alu­
minum hydride, sodium borohydride, and their alkoxy de­
rivatives, undergo predom inant axial attack on the rela­
tively unhindered carbonyl group o f  cyclic ketones, such as
4-ferf-butylcyclohexanone, to give predominantly the more 
stable alcohol;3 diborane and aluminum hydride similarly 
produce a preponderance o f  the more stable equatorial al­
cohol.4 M ixtures o f  isomeric alcohols are usually obtained 
in these reductions. However, nearly exclusive production 
o f the more stable alcohol (>95% ) from  cyclic ketones has 
been achieved in dissolving metal reductions using lithium 
in ammonia.5

Few reducing agents are capable o f  effecting stereoselec­
tive control in ketone reductions that result in a prepon­
derance o f  the less stable alcohol. T he general approach 
that has been successfully applied to reductions o f  cyclic 
ketones to the less stable axial alcohol has been to increase 
the steric bulk o f  the reducing agent. Trialkyl- and diaryl- 
borohydrides,6 for example, have shown marked success in 
reversing the usual tendency for hydride transfer to the 
carbonyl group from  the axial direction.7

Like the more com m only used aluminum and boron hy­
drides, silicon hydrides are effective reducing agents for the 
carbonyl group o f  ketones.1® However, except for the light- 
induced hydrosilation o f  cyclic ketones with trichlorosi- 
lane,8 there has been no report on the stereoselectivity o f 
ketone reductions by silanes. Alkylsilanes are conveniently 
prepared by substitution reactions at silicon using chlorosi- 
lanes and organometallic com pounds; in these reactions the 
steric bulk o f  alkyl substituents can be varied widely. C on­
sequently, the effect o f  increasing the steric bulk o f  silane 
reducing agents on the stereoselectivity o f  ketone reduc­
tions can be examined systematically. Such a study o f  the 
structural variations o f  alkyl-substituted organosilanes on 
the stereoselectivity o f  product form ation is expected to 
provide inform ation essential to  the proper design o f truly 
highly selective reducing agents.

Unlike the more com m only used aluminum and boron 
hydrides, ketone reductions by the silicon hydrides are cat­
alyzed by Bronsted acids. Activation o f  the carbonyl car­
bon by an acid is required before hydride transfer can 
occur. In order to determine the stereoselectivity in ketone

reductions by organosilanes we have examined the reduc­
tions in protonic acid media o f alkyl-substituted cyclohexa­
nones by m ono-, di-, and trialkylsilanes having different 
steric requirements.

Results

Reductions in Aqueous Sulfuric Acid-Ethyl Ether 
Mixtures. Aldehydes and ketones are conveniently re­
duced to alcohols without structural rearrangement by alk­
ylsilanes in aqueous sulfuric acid using ethyl ether as the 
solvent.1® The alkylsilanes are, in turn, oxidized to the cor­
responding alkylsilanols. T he relative yields o f  the therm o­
dynamically less stable alcohol from  the reductions o f  se­
lected alkyl-substituted cyclohexanones by m ono-, di-, and 
trialkylsilanes in aqueous sulfuric acid-ethyl ether media 
(eq 1) are presented in Table I. W ith the exception o f re-

0
R'jSiH 

H20, H+

la, R =  4-t-Bu
b, R =  4-Me
c, R = 3-Me
d, R =  2-Me
e, R =  3, 3, 5 TriMe

ductions by triethylsilane, the rapidly stirred reaction m ix­
tures were heterogeneous. Ketone reductions under the re­
action conditions reported in Table I were generally com ­
plete within 24 hr at room temperature.

n-Butylsilane is capable o f  three individual hydride 
transfer reactions. However, only two o f  the three hydro­
gens are rapidly transferred in reductions o f  carbonyl com ­
pounds. W hen 1 molar equiv o f  n-butylsilane was used to 
reduce the ketones listed in T able I, nearly 0.3 equiv o f  n -  
butylsilane remained unreacted. W hen 0.36 molar equiv o f 
ra-butylsilane (1.1 molar equiv o f  hydride) was em ployed
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Stereoselectivities o f  Organosilane Reductions o f  Alkyl-Substituted Cyclohexanones in 
Aqueous Sulfuric A cid—Ethyl Ether Mixtures0

Relative yield, % cyclohexanol&.c

Table I

mmol o f  m m ol o f  cis-4-tert- cis-4- trans-3- cis-2- trans-3,3,5-
Registry no. Silane (m m ol) ketone acid Butyl-«# Methyl- Methyl- Methyl- Trimethyl-

1600-29-9 n-BuSiHj (5 .5 ) 5.0 3.5 10 18 19 31 74
(1 .8 ) 5.0 3.5 13

542-91-6 Et2SiH2 (5 .0 ) 5.0 3.5 20 26 29 41 85
617-86-7 Et3SiH (6 .0) 5.0 3.5 32 35 39 54 (90)°
998-41-4 n-BujSiH (5 .5 ) 5.0 3.5 22 25 35 51 (89)°

2929-52-4 n-HeXjSiH (10 ) 5.0 3.5 21 32
° Reactions were run at room  temperature (28 ± 3°). Aqueous sulfuric acid (0.5 g o f  a 73 g % solution o f  aqueous sulfuric 

acid prepared from  0.5 m ol o f  96% H2S 0 4 and 1.0 m ol o f  water) was added to the silane and ketone in 0.6 ml o f  ethyl 
ether. * Unless indicated otherwise the yield o f  alcohol products was essentially quantitative. Recovered yields o f  alcohol 
products after work-up approaching 90% could be attained in these small-scale reactions. c The precision o f  analysis is 
within ±1% from  duplicate runs, d The yield o f  c/s-4-ferf-butylcyclohexanol from  the reduction o f  4-ferf-butylcyclohexa- 
none with phenylsilane was 9% and with tetramethyldisiloxane was 21% using similar reaction conditions. e Observed relative 
yield o f  alcohol product. Olefinic products are also obtained.

Table II
Stereoselectivities o f  Organosilane Reductions o f  Alkyl-Substituted Cyclohexanones in Trifluoroacetic A cid0

Relative yield, % cyclohexanol6.0

trans-

Registry no. Silane (m m ol)
mmol o f  
ketone

m m ol o f
c f 3c o 2h

cis-4-tert-
Butyl-

cis-4- 
Methyl-

trans-3-
Methyl-

cis-2- 
Methyl-

3,3,5-Tri­
methyl-

n-BuSiH3d (5 .0) 5.0 34 16
5.0 34 21

13154-66-0 n-PrSiH3e (2 .5) 2.4 5.0 20 37
Et3S iH / (6 .0) 5.0 34 32 36 42 4 8 i 84
n-Hex3SiH (6 .0) 5.0 10 44

17922-08-1 /-Pent3SiH (4 .0) 3.0 20 30 33 38 48 83
33729-87-2 c-Pent3SiH (4 .0 ) 3.0 21 44 48 51 59 95

6485-81-0 ¡-Bu3SiH (3 .0 ) 2.5 17.5 55 56 61 62s 93
6531-11-9 sec-BujSiFF1 (2 .5 ) 2.2 5.1 56 64

(2 .5 ) 3.0 21 (55 y (58 y (67)1 (64 )/ 96
30736-07-3 f-Bu3SiH2 (2 .5 ) 2.5 18 (68 y (67 y (73y (66 )* 89

0 Reactions were run at room  temperature (28 ± 3°). The ketone in trifluoroacetic acid was added to  the silane. b Relative 
yield o f  alcohol products; symmetrical ethers are also form ed (see Tables III and IV). c The precision o f  analysis is within 
±1% from  duplicate runs, d At —20° the relative yield o f  c/s-4-ferf-butylcyclohexanol was only 3% (44 hr reaction time). 
e Using a 14-fold excess o f  CF3CO,H the yield o f  c/s-4-ferf-butylcyclohexanol was 17%. With PMHS the yield o f  cis-4-tert- 
butylcyclohexanol was 19%. /Identical results from  4-ferf-butylcyclohexanone were observed when only 1 equiv o f  acid 
was em ployed. £Less than 1% m ethylcyclohexane (form ed from  1-m ethylcyclohexene by ionic hydrogenation) was o b ­
served. h The yield o f  c/s-4-ferf-butylcyclohexanol was 58% when 5 m m ol o f  ketone and silane were used with 34 m m ol o f  
acid. ' 3 m ol % olefin product(s) obtained. /4  m ol % m ethylcyclohexane. k 30 m ol % m ethylcyclohexane.

for the reduction o f 4-terf-butylcyclohexanone (Table I),
72% o f the ketone was reduced within 4 hr; an additional 40 
hr was required to reduce the remaining 28% o f  4-tert- 
butylcyclohexanone. The silane com pound form ed from  n- 
butylsilane after two hydride transfer reactions was a rela­
tively unreactive solid polym eric siloxane from  which the 
reduction products were conveniently isolated. Since un­
reacted n-butylsilane (bp 54 -56°) can be easily separated 
from  alcohol products by fractional distillation, the use o f  
n-butylsilane provides a simple, convenient m ethod for 
producing the more stable alcohol isomer predom inantly in 
reductions o f  relatively unhindered cyclic ketones.

W ith trisubstituted branched-chain alkylsilanes, such as 
tri-sec-butylsilane, and trialkylsilanes possessing more 
than 12 carbon atoms, such as tri-n-hexylsilane, reaction 
times for reductions o f  cyclic ketones are greater than 24 
hr. In addition, in these reductions acid-catalyzed dehydra­
tion o f  the alcohol products becom es important. Such d if­
ficulties can be circum vented if  reductions with these more 
bulky silanes are carried out in trifluoroacetic acid media.

Reductions in Trifluoroacetic Acid Media. The rela­
tive yields o f  the thermodynamically less stable alcohol 
from  the reductions o f  alkyl-substituted cyclohexanones by 
m ono-, di-, and trialkylsilanes in trifluoroacetic acid (eq 2)

R',SiH 
CFjOOOH

la, R =  4-f-Bu
b, R =  4-Me
c, R =  3-Me
d, R =  2-Me
e, R =  3, 3, 5-TriMe

H 0 2CCF3

IVa-e Va-e

are presented in Table II. T he reaction solutions were h o­
mogeneous, and the reactions were, with the exception o f 
those using di-fert-butylsilane and tri-sec-butylsilane, n o­
ticeably exothermic. The trifluoroacetate derivatives 
form ed in these reductions13 were usually converted by  a 
mild hydrolysis procedure to  the corresponding alcohols. 
Analysis o f  the trifluoroacetate products prior to  hydroly­
sis, and o f  the alcohol products after hydrolysis, showed
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Table III
Symmetrical Ether and 

Trifluoroacetate Product Distributions in 
Triethylsilane Reductions o f  Alkylcyclohexanones3

Symmetrical ethers
Trifluoroacetates

;tone
% % axial/

% yield % V /%  IV Yield % equatorial*
la 83 0.47 17 1.04
lb 83 0.56 17 c
Ic 87 0.72 13 c
Id >99 0.92 <1 c
Ie 84 8.1 16 3.65

a Reductions were run at room  temperature using 1.0 
mmol o f  ketone, 0.8 m ol o f  triethylsilane, and 6.5 mmol o f 
trifluoroacetic acid. Reaction time was 24 hr. * Ratio o f  
axial to  equatorial alkyl substitution o f  oxygen determined 
by ‘ H NMR spectroscopy or by GLC analysis. c Could not 
be determined.

amount o f  ether form ation is dependent on the structures 
o f  both  the ketone and silane. Organosilane reductions o f 
cyclohexanones with alkyl substituents in remote positions 
with respect to the carbonyl group, 4-ferf-bu ty l-, 4-m eth­
yl-, 3-m ethyl-, and 3,3,5-trimethylcyclohexanones, give a 
substantially higher proportion o f  sym m etrical ethers than
2-m ethylcyclohexanone, a ketoiie having an alkyl group 
that can effectively shield the carbonyl group. Reduction  o f
2-m ethylcyclohexanone by n-butylsilane in trifluoroacetic 
acid, for example, gives 46% symm etrical ethers, com pared 
to  74% symmetrical ethers from  the reduction o f 4 -ter t-  
butylcyclohexanone by n-butylsilane under similar reac­
tion conditions. The relative yield o f  symm etrical ethers is 
also dependent on the nature o f  alkyl substitution o f  the 
organosilane; the greater the num ber o f  alkyl groups and 
the greater the branching o f the alkyl groups, especially at 
the a position, the less is the relative proportion o f  sym ­
metrical ethers form ed during reduction. Significant con-

Table IV
Symmetrical Ether and Trifluoroacetate Product Distributions in Reductions o f

4-ferf-Butylcyclohexanone by  Organosilanes"

Symmetrical ethersc
Trifluoroacetates* .c

------------------------------------  trans,-

Silane (m m ol)
mmol o f  
ketone

m m ol o f
c f 3c o 2h

%
yieldd % cis/% trans

%
yields

trans,
%f.i

cis,trans
%f,i

cis, cis 
%f,k

% cis/ 
% transe

n-BuSiHj (5 .0 ) 5.0 34 37 0.19 63 44 46 10 0.49
( 1.8 ) 5.0 34 40 0.27 60 50 43 7 0.40
(50) 50 125 26 0.031? 74 67 29 4 0.23?

n-PrSiHj (2 .5) 2.4 5.0 50 0.25 50 53 40 7 0.37
PMHS (4 .0 ) 5.0 34 66 0.23 34 30 55 15 0.76
Et3SiH (18) 18 135 83 0.49 17 25 48 27 1.04

(2 2 ) 20 20 93 0.53 7 19 45 36 1.41
c-Pent3SiH (4 .0 ) 3.0 21 89 0.79 11 13 35 52 2.28
¡-Bu3SiH (2 .7) 2.5 17.5 86 1.08 14 18 43 39 1.53
sec-Bu3SiH (2 .5) 3.0 21 94 1.22 6 3 24 73 5.67
f-Bu2SiH2 (5 .2) 5.2 35 97* 2.12 0

“  See footn ote  a, Table II. * Analyzed as the alcohol unless indicated otherwise, c See footnote  c, Table II. d Unless indi­
cated otherwise, trifluoroacetates and symmetrical ethers were form ed in nearly quantitative yields. e 2(% cis,cis-) + % 
cis, trans-12(% trans,trans-) + % cis,trans-. /Relative yield o f  isomeric ether; duplicate runs show that the precision o f  analysis 
is within ± 2% o f  the reported value, g Reaction was run at —20° for 44 hr; isolated yield o f  ethers was 74%. h 3% cyclo- 
alkene. i Registry no., 56889-95-3. / Registry no., 56942-33-7. k Registry no., 56942-34-8.

that no change in the isomeric ratio o f  products occurred 
during the hydrolysis procedure. The primary silane prod ­
ucts were the corresponding silyl trifluoroacetates which 
form ed mixtures o f  silanols and disiloxanes upon hydroly­
sis.

Organosilane reductions o f  Ia -e  were generally com plete 
within 2 -4  hr when 7 molar equiv o f  trifluoroacetic acid 
was used. However, more than 2 days were required for 
com plete reduction o f 3- and 4-m ethyIcyclohexanones by 
di-ierf-butylsilane (1 molar equiv o f  silane), and reaction 
times o f more than 12 days were necessary for com plete re­
duction o f 2-m ethyl- and 3,3,5-trimethylcyclohexanones by 
the same reducing agent. In  k eto n e red u ction s d i-ter t-b u t-  
ylsila n e was a p p roxim a tely  100  tim es less reactive than  
tri-sec-bu tylsila n e. W hen 2 hydride equiv o f  d i-teri-bu t- 
ylsilane per ketone were em ployed, the silane products con ­
sisted o f di-ierf-butylsily l trifluoroacetate (4%) and either 
di-ferf-butylsilanediol or its trifluoroacetate derivative 
(96%). After hydrolysis o f  the reaction mixture di-tert- 
butylsilanediol was isolated in 91% yield. Thus the second 
hydride transfer is more rapid than the first, and both hy­
drides per molecule o f  di-tert-butylsilane are effective in 
reducing ketones.

In trifluoroacetic acid media symm etrical ether form a­
tion is a major com peting reaction in ketone reductions (eq
3).Ia As shown by the data in Tables III and IV, the relative

trol over reaction products can be achieved in these reduc­
tions by proper choice o f  silane, tem perature (low tem pera­
tures favor the ether), and acid concentration (high concen ­
trations favor the ether) so that ether or alcohol products 
can be produced selectively.

R '3SiH
(m  +  2n) R 2C = 0  — m R 2CH OO CCF 3 +

c f 3c o o h

n R 2C H O C H R 2 (3)

W ith the exception o f  those ethers form ed in reductions 
o f  2-m ethylcyclohexanone, symm etrical ethers were not n o­
ticeably converted to  trifluoroacetates under the reaction 
conditions em ployed, and the trifluoroacetates did not 
form  symmetrical ethers. Sym m etrical ethers were not 
form ed in the reductions o f  alkyl-substituted cyclohexa­
nones in aqueous sulfuric acid -ethyl ether.

W hen the 2-m ethylcyclohexyl ethers having an isomeric 
cis to  trans ratio o f  1.02 were treated with 6.0 equiv o f  tri­
fluoroacetic acid at room  tem perature for 24 hr, only 61% o f 
the ethers (cis/trans = 0.73) was recovered. Both  cis- and 
tra n s-2-m ethylcyclohexyl trifluoroacetates were produced 
(39% yield) in an isomeric ratio (cis/trans = 0.98) nearly 
identical with that o f  the reactant ethers, and 1-m ethylcy- 
clohexyl trifluoroacetate was also form ed in 39% yield. 
These results indicate that cleavage o f  the 2-m ethylcyclo-
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hexyl ethers occurs by elimination, that only the cis-substi- 
tuted 2-m ethylcyclohexyl ring o f the symmetrical ethers 
undergoes elimination, and that the unique ether cleavage 
reaction occurs with both cis,cis- and cis ,tra n s-2-m ethylcy­
clohexyl ethers but not with the trans,trans isomer (eq 4).

OR

H
Table IV  reports the relative yields o f  the three isomeric 

symmetrical ethers form ed in the organosilane reductions 
o f  4-£eri-butylcyclohexanone. Like the relative yield of 
symmetrical ethers in these reductions, the cis to trans 
ratio for the ether products reflects the nature o f  alkyl sub­
stitution o f the organosilane. The cis to trans ratio for the 
ethers magnifies the corresponding ratio for trifluoroace- 
tate products. W ithin experimental limits no changes in 
the relative yields o f  the isomeric ether products were o b ­
served when the reduction o f 4-£er£-butylcyclohexanone 
was monitored at intervals over a 27-hr period.

E xcept in reductions by tri-sec-butylsilane or di-£er£- 
butylsilane and o f 2-m ethylcyclohexanone, elimination 
products were not observed during the reductions o f  alkyl- 
substituted cyclohexanones by organosilanes. A pproxi­
mately 3 mol % o f cycloalkene was observed in reductions 
o f  4 -te r t -butyl-, 4-m ethyl-, and 3-m ethylcyclohexanones 
by tri-sec-butylsilane and di-tert-butylsilane when 7 molar 
equiv o f trifluoroacetic acid was used. T he olefin or olefins 
produced in each o f these reductions were relatively stable 
toward addition o f trifluoroacetic acid under the reaction 
conditions em ployed; no change in the yield o f  olefin was 
observed over a 20-hr period after com plete reduction o f 
each o f the 3- and 4-substituted cyclohexanones.10 From 
the results in Table II for the tri-sec-butylsilane reduction 
o f la  in which only 2 equiv o f  acid was used, and in which 
no elim ination-addition occurs, an estimate o f  a maximum 
o f 3-4%  olefin formation in reductions o f  Ia -c  is reasonable. 
Cycloalkene products were not obtained from  the reduc­
tions o f  3,3,5-trimethylcyclohexanone by any o f the orga­
nosilanes listed in Table II.11

The preferred orientation in elimination reactions o f  2- 
m ethylcyclohexanol derivatives results in the form ation o f
1-m ethylcyclohexene.12 Subsequent reduction o f 1-methyl- 
cyclohexene by organosilanes13 forms methylcyclohexane 
under the reaction conditions em ployed for reduction o f 2- 
methylcyclohexanone (eq 5). The yields o f  m ethylcyclohex-

O L
R3SiH +  | +  CF:iCOOH — <•

+  R.SiOOCCF, (5)

ane from organosilane (given in parentheses) reductions o f
2-m ethylcyclohexanone were <1%  (Et3SiH ), <1%  (i- 
Bu3SiH ), 4% (sec-B u3SiH), and 30% (£-Bu2SiH 2). N o 1- 
methylcyclohexyl trifluoroacetate, the expected addition 
product from 1-m ethylcyclohexene and trifluoroacetic acid, 
was observed.

Discussion
Stereoselectivity of Alcohol Formation. T he results 

reported in Tables I and II describe the im portance o f ste- 
ric factors from  both the ketone and the silane reducing 
agent in determining the stereochemical outcom e o f  orga­
nosilane reductions o f  alkyl-substituted cyclohexanones.

Increasing the steric bulk o f the organosilane reducing 
agent increases the relative yield o f  the therm odynam ically 
less stable alcohol or alcohol derivative.

T h e relative y ie ld  o f the less sta ble isom er, I l l a - e  or 
V a -e , increases with increasing su bstitu tion  o f n -a lk yl  
groups at silicon. An increase o f approxim ately 10% in the 
proportion o f hydride transfer that results in the produc­
tion o f  axial alcohol occurs with each successive n-alkyl 
substitution at silicon when silane reductions are per­
form ed in aqueous sulfuric acid-ethyl ether; smaller in ­
creases are observed when the corresponding reductions 
occur in trifluoroacetic acid. In general, the effect o f  in­
creasing n-alkyl substitution is additive, suggesting that 
steric interference to hydride transfer is dependent on the 
com posite steric bulk o f the organosilane and that hydride 
transfer does not occur preferentially from  fixed geom e­
tries, such as A and B, in which the larger alkyl substitu­
ents, especially o f  m ono- and dialkylsilanes, are positioned 
to  avoid steric crowding with the ketone during hydride 
transfer.14

R/

A B
Branching at th e a and f) p osition s o f  tria lkylsilanes in ­

creases the relative yie ld  o f the less stable alcohol p rod u ct  
in k eton e reductions. Only small differences in product 
yields from  reductions o f  Ia -e  in trifluoroacetic acid were 
observed with triisobutylsilane and tri-sec-butylsilane 
(Table II). However, when the relatively free rotation o f 
each o f  the alkyl groups o f  an «-branched trialkylsilane is 
restricted, as in tricyclopentylsilane, the increase in the rel­
ative yields o f  V a -e  is significantly less than the corre­
sponding yields in reductions by tri-sec-butylsilane. As 
with the effect o f  increasing the chain length o f tri-n -alk- 
ylsilanes, the effect o f  tricyclopentylsilane com pared to tri- 
sec-butylsilane (a branching) on the stereoselectivity o f  ke­
tone reductions is most evident with 3- and 4-alkylcyclo- 
hexanones. Branching at the y  position o f trialkylsilanes is 
not effective in altering the relative yields o f  V a -e  from 
those obtained using triethylsilane.

n-Butylsilane and di-ieri-butylsilane rapidly undergo 
two hydride transfer reactions; the third hydride transfer 
from  n-butylsilane is relatively slow. A comparison o f  the 
results from  Tables I and II for reduction o f la by 1.1 and
0.36 molar equiv o f  n-butylsilane show a 3-5%  increase in 
the relative yield o f  Ilia  or Va due to the transfer o f  the 
third hydride. Although the exact stereochemical outcome 
from  the transfer o f  the first hydride is unknown, these re­
sults are predictably similar to those observed by  R ickborn 
and W uesthoff for reductions o f  sodium borohydride:3b in 
su ccessive h ydride transfer reactions from  p o lyh yd rid e  re ­
ducing agents, th e transfer o f  th e first h yd rid e resu lts in 
the higher y ie ld  o f  the m ore sta ble alcohol isom er.

T he stereochemical outcom e o f reductions o f  alkyl-sub­
stituted cyclohexanones by n-alkylsilanes in aqueous sulfu­
ric acid-ethyl ether or in trifluoroacetic acid is com parable 
to  similar results from reductions with boron and alum i­
num hydrides (Table V). Equatorial attack is preferred in 
reductions o f  3,3,5-trim ethylcyclohexanone because o f the 
steric interference toward attack from  the axial side due to
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Table V
Comparative Stereoselectivities o f  Boron, Aluminum, and Silicon Hydrides

Reducing agent

Relative yield, % cyclohexanol

cfs-4-ferf-Butyl- C!S-4-Methyl-c ' d
trans-3- 

Methyl-C' e CíS-2-Methyl-
frans-3,3,5
Trimethyl-

LiAlH4, Et20 l l 3d 176a (16 ) 166a (16 ) 2 4 3d 55
NaBH,, i-PrOH, 0% reaction-3b — 11 13 25 58
NaBH4, ¡-PrOH, 100% reaction311 2016 24 (25 ) 2 4 (2 5 ) 40 62
B2H64b’c 10 15 12 (17 ) 25 66
rc-BuSiH3a 10 18 19 (16) 31 74
A1H3 13,464e 26 8 8 17
L iA lH (0-f-B u)33e 10 14 17 (18 ) 37 88 ,943f
Et2SiH2a 20 26 29 (27) 41 85
EtjSiH« 32 35 39 (38) 54 90
EtjSiH* 32 36 42 (37 ) 48 84
LiAlH (OM e)3 41>8 6 9 3d 73>9

a Data taken from  Table I. b Data taken from  Table II. c Values in parentheses are calculated using the conform ational en-
ergies for conform ers o f  m ethylcyclohexanones21 with the values from  reductions o f  4-ferf-butylcyclohexanone as the 
model for the equatorial conform er and 5tt-cholestan-3-one20 or 3,3,5-trim ethylcyclohexanone as the model for the axial 
conform er. d Calculated yield = 0.94 (% cis-4-ferf-butyl-) + 0.06 (% /3-3-cholestanol). e Calculated yield = 0.90 (% cis-4-tert- 
butyl-) + 0.10 (% trans-3,3,5-trimethyl-).

the axial methyl group in the 3 position.2 H ydride transfer 
which avoids torsional strain2'15 is generally predom inant 
in reductions o f  Ia-d.

The relative yields o f  the less stable alcohol from  reduc­
tions o f  4-m ethyl- and 3-m ethylcyclohexanones are consis­
tently greater than those from  4-ferf-butylcyclohexanone. 
Unlike the conform ationally biased 4-ferf-bu ty lcycloh exa­
none, conform ations o f  m ethylcyclohexanones in which the 
alkyl substituent is in the axial position are not negligi­
ble.21 For example, in the equilibrium  mixture at room 
temperature the equatorial-m ethyl chair conform er o f  3- 
methylcyclohexanone is present to the extent o f  only 90%; 
the axial-methyl chair conform er accounts for more than 
9% o f 3-m ethylcyclohexanone. If the assumption is made 
that hydride transfer to the equatorial-m ethyl conform er 
o f  3-m ethylcyclohexanone occurs with the same ratio o f 
axial to equatorial attack as 4-ferf-butylcyclohexanone and 
that the m odel for the axial-3-m ethyl conform er is 3,3,5- 
trim ethylcyclohexanone, the relative yields o f  alcohol prod­
ucts from  reductions o f  3-m ethylcyclohexanone can be pre­
dicted within ±1%  for the m ajority o f  the reducing agents 
in Table V .22 Using suitable m odel com pounds the same 
procedure can be applied to  estimate the product yields 
from  reductions o f  4-m ethylcyclohexanone.

T he relative yields o f  the less stable cis isomer from  re­
ductions o f  2-m ethylcyclohexanone are uniform ly 10-30% 
greater than those from  the corresponding reductions o f  4- 
fert-butylcyclohexanone. In the equatorial conform ation 
the 2-m ethyl substituent has an additional axial fi hydro­
gen (C) which increases the steric requirem ent for axial at-

H

C

tack. Stereochem ical results from  reductions o f  a m odel 
com pound, c is -2-m ethyl-4-ferf- butylcyclohexanone,23 in 
which the 2-m ethyl substituent is fixed in the equatorial 
position indicate, however, that the effect o f  the additional 
axial 0  hydrogen cannot com pletely account for the higher 
yields o f  the less stable isomer found in reductions o f  2- 
m ethylcyclohexanone. N or can the conform ational equilib­
rium o f the reactant ketone com pletely account for the ob-

iTfMflUf)

served higher yields o f  cis alcohol. Ashby has shown that 
com plexation with the carbonyl group in reductions o f  2- 
m ethylcyclohexanone by com plex metal hydrides causes an 
increase in the relative yield o f  cis- 2-m ethylcyclohexanol. 
This increase has been explained as being due to a change 
in the relative proportion o f  the metal ion com plexed axial-
2-m ethylcyclohexanone conform er with the increasing bulk 
o f  the com plexing agent.23 In silane reductions utilizing 
Bronsted acids, protonation o f the ketone carbonyl group 
may also change the conform ational equilibrium o f  the 
reactant 2-m ethylcyclohexanone.

Strikingly different stereochemical results are obtained 
in reductions o f  alkyl-substituted cyclohexanones by bulky 
boron and silicon hydrides. The boron hydrides are espe­
cially sensitive toward 3,3,5-trim ethylcyclohexanone and
2-m ethylcyclohexanone, yielding the thermodynamically 
less stable isomer in high stereochemical purity. In con ­
trast, the silicon hydrides show no such differentiation and, 
in fact, exhibit less ability to discrim inate stereochemically 
between alkyl-substituted cyclohexanones as the steric re­
quirement o f  the silane is increased. Unlike boron hy­
drides, such as lithium tri-sec-butylborohydride and lithi­
um perhydro-9b-boraphenalylhydride (L iP B P H ), whose 
approach to  the carbonyl group o f 4 -feri-butylcycloh exan ­
one appears to be influenced by rem ote alkyl substituents, 
silicon hydrides show no similar steric influence in reduc­
tions o f  4 -t e r t -butylcyclohexanone. The differences in the 
stereoselectivities o f  the bulky boron and silicon hydrides 
is explained by the differences in the mechanisms for bor- 
ohydride and silane reductions and will be discussed in a 
subsequent paper.25

Stereoselectivity of Ether Formation. T he yields o f 
symmetrical ethers and trifluoroacetates reported in Table 
III indicate the relative im portance o f steric effects on 
ether form ation in the triethylsilane reduction o f  alkyl-sub­
stituted cyclohexanones. T he relative yields o f  ethers 
form ed in reductions o f  cyclohexanones having alkyl sub­
stituents in the 3 and 4 positions are nearly identical (13— 
17%). In contrast, reduction o f  2-m ethylcyclohexanone by 
triethylsilane gives less than 1% o f symm etrical ethers.26

W e have previously described ether form ation as occur­
ring by hydride transfer to the oxonium  ion, VI, form ed 
from  the nucleophilic addition o f  an alcohol to  the proton- 
ated carbonyl group, followed by elimination o f  a molecule 
o f  water (Schem e I).la>27 Ether form ation com petes with 
trifluoroacetolysis o f  the alcohol. T he decreased yield o f 
ethers from  the reduction o f  2-m ethylcyclohexanone (Id) 

<r
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Scheme I
. +  Et,SiH

R ,C = 0  +  H 1" ^  R ,C = O H  — ----->- R2CHOH

„ OH
R ,C = 0  +  RCHOH R ,C \

OCHR,

/ ° H
R . /<  +  H+ ^  R ,C=O CH R2 +  H,0

OCHR,

( 6)

(7)

(8)

R2C = 0 C H R , Et;SlH> R2CHOCHR, (9)

Scheme II

Av i 
H +

la +  Ha = * =  -H O

la +  Ilia -H O  
A v i

irons-VI a

trans, trans-4-tert- 
butylcyclohexyl ether

cis, trans-4-tert- 
butylcyclohexyl ether

cis-VIa

cis, cis-4-tert- 
butylcyclohexyl ether

com pared to that from  4-feri-butylcyclohexanone indicates 
either (1) that steric factors in reactions leading to  VI de­
crease the effective concentration o f  VI, (2) that there is 
steric hindrance to hydride transfer from  triethylsilane to  
VI, or (3) that the decreased yield o f  ethers is due to a com ­
bination o f  1 and 2. Since reduction o f  Id by n-butylsilane 
gives a 46% yield o f  symm etrical ethers, the lower yield o f  
ethers in silane reductions o f  Id indicates that there is in­
deed steric hindrance to hydride transfer from  alkylsilanes 
to VI.

As seen from  the data in Tables III and IV, the isomeric 
ratio o f  symm etrical ether products is also governed by the 
steric requirem ent o f  the organosilane. W ith the exception 
o f  the triethylsilane reduction o f  3,3,5-trim ethylcyclohexa- 
none, the cis to trans ratio for ethers magnifies the cis to  
trans alcohol ratio. Am ong the trialkylsilanes in reductions 
o f  4-fer£-butylcyclohexanone this magnification is on the 
order o f  two to three. T he cis to trans ratio o f  ethers in re­
ductions o f  la by triisobutylsilane, however, is only a factor 
o f  1.5 times that o f  the alcohol, possibly reflecting different 
steric requirements for hydride transfer to protonated ke­
tone and VI in this case.

Since two isomeric alcohols are form ed in silane reduc­
tions o f  alkyl-substituted cyclohexanones, two isom eric ox- 
onium  ion intermediates are form ed in the reaction scheme 
leading to ether form ation. Reduction  o f  the two isomeric 
oxonium  ions gives three isomeric ethers (Schem e II). If 
there is no discrim ination in oxonium  ion form ation (Kt-via 
=  Ac-via) the yields o f  symm etrical ethers will reflect the 
relative concentrations o f  alcohol products form ed by sil­
ane reduction, and the relative rates o f  hydride transfer to 
each oxonium  ion (ktc/k tt and kcc/k ct) can be determined. 
T able VI lists the selectivity ratios, ktc/k tt and kcc/k ct, 
which were calculated by assuming that [IIIa]/[IIa] =  [cis- 
V Ia ]/[tran s-V ia ].28

Com parison o f  the isomeric ratios in T able VI shows that 
hydride transfer to V ia  is much more sensitive to the steric 
bulk o f  the organosilane reducing agent than is hydride 
transfer to  the corresponding protonated ketone, and that 
reduction o f cis-V Ia gives a higher yield o f  the less stable 
isomer than does the reduction o f  tran s- V ia .29 Thus 
changing th e steric  bulk o f  th e  acid required  to  activate  
th e ca rbon yl group  in silane red u ction s dram atically af-

Table VI
Stereoselectivities o f  Organosilane Reductions o f  

trans-Via and cis-VIa in Reductions o f
4-terf-Butylcyclohexanone

Silane (m m ol)

mmol
o f

ketone

m m ol 
o f  CF3- 
COOH

Ilia0/
Ila

k tcl
k t tb

k eel
k-CtC

n-BuSiH3 (5 .0 ) 5.0 34 0.19 0.91 1.7
( 1 .8 ) 5.0 34 0.27 0.58 2.0
(50 ) 50 125 0.031 0.45 d

n-PrSiH3 (2 .5 ) 2.4 5.0 0.25 0.51 0.54
PMHS (4 .0 ) 5.0 34 0.23 1.4 3.8
EtjSiH (18 ) 18 135 0.49 1.7 4.5

( 2 2 ) 20 20 0.53 2.6 d
c-PentjSiH (4 .0 ) 3.0 21 0.79 3.3 d
¡-BUjSiH (2 .7 ) 2.5 17.6 1.08 1.4 2.3
sec-BujSiH (2 .5 ) 3.0 21 1.22 14 d

a Data taken from  Table IV. b k tc/ktt = (% Ha — % trans,- 
trans ether)/%  trans,trans ether. c k c c /kct  = (% Ilia  — % 
cis,cis ether)/%  cis,cis ether. d % cis,cis ether > % Ilia ; does 
not necessarily imply that the reducing agent discriminated 
in favor o f  cis-VIa; in nearly every case either the yield o f  
the cis,cis isomer was relatively low  or the total yield o f  
ethers was low  and the experimental yields obtained rela­
tively uncertain.

fe c ts  th e  stereo selec tiv ity  o f  h yd rid e transfer. Similar ef­
fects are becom ing increasingly evident in reductions by 
metal hydrides68'23’30 and by metal alkoxides.31

Experimental Section

Instrumentation. Infrared spectra were obtained on a Perkin- 
Elmer Model 621 grating spectrophotometer. Mass spectra were 
obtained using a Finnigan Model 1015 gas chromatograph-mass 
spectrometer operated at 70 eV. Proton magnetic resonance spec­
tra were obtained with a Varian Model A-60A spectrometer; chem­
ical shifts are reported in 6 units using tetramethylsilane as the in­
ternal reference. Analytical GLC analyses were performed on Var­
ian Aerograph Models 1864 and 2720 gas chromatographs using 
thermal conductivity detectors. Use was made of 5-ft columns of 
10% SE-30, 25% glycerol, and 20% Carbowax 20M and 10-ft col­
umns of 20% Carbowax 20M, all on Chromosorb P. Melting points 
were obtained on a Thomas-Hoover apparatus and were uncorrect­
ed. Elemental analyses were performed by Galbraith Laboratories, 
Knoxville, Tenn.

Materials. Commercial samples of 3- and 4-methylcyclohexa- 
nones were used without further purification. 2-Methylcyclohexa- 
none and 4-teri-butylcyclohexanone were purified by distillation 
prior to use. A sample of 3,3,5-trimethylcyclohexanone was pre­
pared by a standard Jones oxidation procedure from commercially 
available 3,3,5-trimethylcyclohexanol. Isomeric mixtures of each of 
the methylcyclohexanols and 4-ieri-butylcyclohexanol were com­
mercially available and used without further purification. A mix­
ture of 3,3,5-trimethylcyclohexanols (52% cis, 48% trans) was pre­
pared by a lithium aluminum hydride-ether reduction of 3,3,5-tri­
methylcyclohexanone. Diethyl-, triethyl-, tri-n-butyl-, and tri-n- 
hexylsilanes, polymethylhydrogensiloxane (PMHS), and tetra- 
methyldisiloxane were commercially available and used without 
further purification. Phenyl-, n-butyl-, and n-propylsilanes were 
prepared by standard lithium aluminum hydride reductions of the 
corresponding organotrichlorosilanes.1“ Triisobutyl- and triiso- 
pentylsilanes were prepared by standard methods from the corre­
sponding Grignard reagents and trichlorosilane. Tri-sec-butyl- and 
tricyclopentylsilanes were prepared by standard methods from or- 
ganolithium reagents and trichlorosilane. The preparation of di- 
tert-butylsilane has been described.32 The physical constants and 
spectra of organosilanes prepared by these methods were consis­
tent with their structure and with the reported literature values.

2-Methylcyclohexyl Ether. To a solution of 5.60 g (50.0 mmol) 
of 2-methylcyclohexanone and 1.76 g (20.0 mmol) of n-butylsilane 
cooled at 0° was added dropwise 9.2 ml (125 mmol) of trifluo- 
roacetic acid over a 40-min period. The flask containing the homo­
geneous reaction solution was then stoppered and stored in a freez­
er at —40° for 144 hr, at which time 'H  NMR analysis indicated 
that all of the ketone had been reduced. Excess sodium hydroxide 
(50 ml of 3 N  NaOH) was added, and the reaction mixture was 
stirred rapidly for 5 hr. The organic materials were extracted five
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'H  NMR Absorptions o f  Reaction Products from  Silane Reductions o f  Ia -e  in Trifluoroacetic Acid
Table VII

Chemical shift, 8°

A lkylcyclo- Cyclo- Trifluoroacetates* Symmetrical ethers*
hexanone alkene IV V Axialc Equatorial^

la 5.71 5.37 4.97 4.05 3.62
lb 5.70 5.37 5.04 4 .1—3.8*
Ic 5.67 5.47 5.08 4.15 3.8
Id f 5.31 4.74 3.79 3.18
Ie 5.53 5.46 5.2 4.08 g

a Relative to  internal Me4Si in trifluoroacetic acid; temperature 37°. 6 Multiplet absorptions; peak width ±0.1 ppm  for 
axial-substituted isomers, ±0.2 ppm for equatorial-substituted isomers. c Contribution from  axial—axial and axial—equatorial 
substituted isomers. d Contribution from  axial—equatorial and equatorial—equatorial substituted isomers. e Broad un- 
resolvable absorptions. /N o t  observed in trifluoroacetic acid owing to  form ation o f  1-m ethylcyclohexyl trifluoroacetate. 
g N ot observed owing to  broad linewidth and low  concentration o f  this isomer.

times with 10-ml portions of pentane, and the combined pentane 
extract was stirred over solid potassium hydroxide for 3 hr. The 
potassium hydroxide was filtered, and the pentane solution was 
concentrated under reduced pressure. Vacuum distillation gave
2.41 g (11.5 mmol, 46% yield) of 2-methylcyclohexyl ether: bp
76.5-78.0° (0.3 Torr); ir (film) 1075 cm“ 1 (C-O-C); ‘ H NMR 
(CCLj) multiplets centered at 8 3.43 and 2.79 (1 H) and complex 
absorptions between 8 0.7 and 2.1 (12 H); mass spectrum m/e (rel 
intensity) 211 (0.033, P + 1), 210 (0.20, parent ion), 114 (3.9), 97
(27), 55 (100).

Anal. Calcd for Ci4H260: C, 79.94; H. 12.46. Found: C, 79.72; H, 
12.35.

4-tert-Butylcyclohexyl Ether. To a stirred solid-liquid mix­
ture of 7.70 g (50.0 mmol) of 4-terf-butylcyclohexanone and 4.40 g 
(50.0 mmol) of rc-butylsilane at 0° was added 0.2 ml (125 mmol) of 
trifluoroacetic acid dropwise over a 60-min period. The heteroge­
neous mixture slowly became homogeneous during the addition of 
trifluoroacetic acid. After complete addition of trifluoroacetic acid 
the reaction mixture was cooled to —40° for 44 hr, at which time 
*H NMR analysis indicated complete reduction of 4-terf-butylcy- 
clohexanone. Vacuum distillation of the reaction mixture at 30 
Torr removed trifluoroacetic acid, water, and unreacted n-butylsil- 
ane. Continued distillation at 0.3 Torr gave 5.34 g (18.5 mmol, 74% 
yield) of 4-teri-butylcyclohexyl ether, bp 147-160° (0.3 Torr). 
GLC analysis on a 2-ft 20% Carbowax 20M column at 205° gave 
three peaks with retention times of 2.9, 4.9, and 7.4 min and having 
relative peak areas of 4, 29, and 67%, respectively. Each of these 
compounds was collected and analyzed separately.

cis,cis-4-tert-Butylcyclohexyl ether was a viscous liquid: 2.9 
min retention time; ir (film) 1398, 1370, 1240 (tert-butyl), and 
1050 cm“ 1 (C-O-C); *H NMR (CC14) 8 3.58 (m, 2 H), 1.9 (m, 4 H),
I. 75-1.1 (m, 14 H), and 0.87 (s, 18 H); mass spectrum m/e (rel in­
tensity) 295 (0.04, P +  1), 294 (0.17, parent ion), 156 (2.0), 139 
(5.8), 123 (6.0), 99 (14), 83 (30), and 57 (100).

Anal. Calcd for C20H38O: C, 81.56; H, 13.00. Found: C, 81.70; H,
13.04.

cis,trans-4-tert-Butylcyclohexyl ether was a white solid: mp 
61.0-62.2°; 4.9 min retention time; ir (film) 1399, 1370, 1240, 1230 
(tert-butyl), and 1085 cm“ 1 (C-O-C); ‘ H NMR (CCL,) 8 3.62 (m, 1 
H), 3.10 (m, 1 H), 1.9 (m, 4 H), 1.67-0.9 (m, 14 H), and 0.87 (s, 18 
H); mass spectrum m/e (rel intensity) 295 (0.025, P + 1), 294 (0.09, 
parent ion), 156 (0.83), 139 (5.5), 123 (6.0), 99 (11.5), 83 (28.5), 57 
( 100).

Anal. Calcd for C20H38O: C, 81.56; H, 13.00. Found: C, 81.77; H,
13.00.

tr a its ,trans-4-tert-ButyIcyclohexyl ether was a white solid: 
mp 85.2-86.0°; 7.4 min retention time; ir (KBr) 1395, 1370, 1240, 
1225 (tert-butyl) and 1090 cm“ 1 (C-O-C); ‘ H NMR (CC14) 8 3.55 
(m, 2 H), 1.83 (m, 8 H), 1.6-0.9 (m, 10 H), and 0.85 (s, 18 H); mass 
spectrum m/e (rel intensity) 295 (0.01, P + 1), 294 (0.048, parent 
ion), 156 (0.42), 139 (4.7), 123 (6.2), 99 (9.5), 83 (35), 57 (100).

Anal. Calcd for C20H38O: C, 81.56; H, 13.00. Found: C, 81.43; H, 
12.96.

4-tert-Butylcyclohexyl Trifluoroacetate. To 7.80 g (50.0 
mmol) of 4-tert-butylcyclohexanol (mixture of isomers) was added
II. 40 g (100.0 mmol) of trifluoroacetic acid. The homogeneous re­
action solution was allowed to remain at room temperature for 24 
hr and was then quenched with an excess of a saturated sodium bi­
carbonate solution. The organic materials were extracted twice 
with 25-ml portions of ether. The combined ether extract was

dried over anhydrous magnesium sulfate, and the ether was re­
moved under reduced pressure after filtering the magnesium sul­
fate. Vacuum distillation gave 7.10 g (28.0 mmol, 56% yield) of 4- 
fert-butylcyclohexyl trifluoroacetate (36% cis and 64% trans by 
GLC analysis): bp 97-102 (18 Torr); ir (film) 1785 cm-1 (C = 0 ); 
>H NMR (CC14) 8 5.24 and 4.83 (m, 1 H), 2.35-1.0 (m, 9 H), and 
0.90 (s, 9 H). Trifluoroacetate esters of other alkyl-substituted cy- 
clohexanols were prepared by a similar procedure.

General Reduction Procedure in Aqueous Sulfuric Acid- 
Ethyl Ether. The reduction of 4-feri-butylcyclohexanone by tri- 
ethylsilane illustrates the general reduction procedure. To a rapid­
ly stirred solution of 0.78 g (5.0 mmol) of 4-tert-butylcyclohexan- 
one and 0.70 g (6.0 mmol) of triethylsilane in 0.6 ml of ether was 
added 0.5 g of aqueous H2SO4 (prepared by adding 0.5 mol of 96% 
sulfuric acid to 1.0 mol of H2O) at room temperature. The exother­
mic, initially heterogeneous reaction mixture became homogenous 
after several minutes. The reaction solution was quenched with 25 
ml of a saturated sodium bicarbonate solution 15 min after the ad­
dition of aqueous sulfuric acid and was extracted three times with
16-ml portions of ether. The combined ether extract was dried over 
and filtered from anhydrous magnesium sulfate, and the magne­
sium sulfate filter cake was rinsed several times with small por­
tions of ether. The combined ether washes and extract was concen­
trated under reduced pressure. GLC analysis of the product mix­
ture indicated the presence of unreacted triethylsilane, triethylsi- 
lanol, and a 90% recovered yield of 4-tert-butylcyclohexanol (32% 
cis, 68% trans); no other compounds were evident.

The optimum acid concentration used in these reductions was 
selected as 3.5 mmol of sulfuric acid (0.50 g of 73 g % aqueous 
H2SO4) per 5.0 mmol of I, when 0.6 ml of ethyl ether was used, 
based on reaction times for the reduction of 4-tert-butylcyclohexa- 
none by triethylsilane. When 1.75 mmol of sulfuric acid was used, 
complete reduction was observed only after 20 hr at room temper­
ature. With 3.5 mmol of sulfuric acid reduction was complete with­
in 1 hr; and when 5.25 mmol of sulfuric acid was employed, less 
than 15 min reaction times were required. No change in the ratio 
of cis- to trans-4-tert-butylcyclohexanol was observed over the pe­
riod of time required for each of these reductions.

General Reduction Procedure in Trifluoroacetic Acid. The 
reduction of 3,3,5-trimethylcyclohexanone with tri-sec- butylsilane 
illustrates the general reduction procedure. To a stirred solution of 
0.70 g (5.0 mmol) of 3,3,5-trimethylcyclohexanone and 1.10 g (5.5 
mmol) of tri-sec-butylsilane was added 2.5 ml (34 mmol) of trifluo­
roacetic acid at room temperature. The mildly exothermic, initially 
heterogeneous reaction mixture became homogeneous within 5 
min. Reduction was complete in 2 hr by 'H NMR analysis. Analy­
sis by 1H NMR spectroscopy indicated 98% 3,3,5-trimethylcyclo- 
hexyl trifluoroacetate (only the trans isomer was observed) and 2% 
ether products.33 Excess 3 N  sodium hydroxide was added to the 
reaction solution and the mixture was rapidly stirred for 12 hr. 
The organic materials were extracted three times with 15-ml por­
tions of ether. The combined ether extract was dried over and fil­
tered from anhydrous magnesium sulfate, and the magnesium sul­
fate filter cake was rinsed several times with small portions of 
ether. The combined ether washes and extract was concentrated 
under reduced pressure. Analysis by GLC gave a 90% recovered 
yield of 3,3,5-trimethylcyclohexanol (4% cis, 96% trans). An alter­
nate procedure, adding the silane to a stirred solution of ketone 
and trifluoroacetic acid, gave identical results.

Product Analyses. Reaction solutions from reductions in triflu-
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oroacetic acid were analyzed by 'H NMR spectroscopy prior to 
quenching. Reaction products were identified from the chemical 
shifts and characteristic splittings of absorptions in the b 3-6 spec­
tral region (Table VII). Structural assignments were verified by 
GLC analysis followed by GLC collection and identification of 
products in those cases where particular standards were not avail­
able.

Product yields were determined by GLC analyses for the vast 
majority of reactions reported in this study. Isomeric alcohols from 
2-, 3-, and 4-methylcyclohexanone reductions were separated and 
analyzed on 5-ft, 25% glycerol columns at 100°. Isomeric alcohols 
from 4-feri-butylcyclohexanone reductions were separated and 
analyzed on a 5-ft 20% Carbowax 20M column programmed from 
135 to 180° at 4°/min. Isomeric alcohols from 3,3,5-trimethylcyclo- 
hexanone reductions were separated and analyzed on a 10-ft 20% 
Carbowax 20M column at 180°. In each separation the axial isomer 
eluted first, as determined by the agreement between 1H NMR 
and GLC analyses and by *H NMR analyses of the separate iso­
mers of 4-methylcyclohexanol and 2-methylcyclohexanol from 
GLC collections. The individual thermal conductivities of alcohol, 
symmetrical ether, and trifluoroacetate products were determined 
and used to obtain absolute yields. The thermal conductivities of 
the geometrical isomers of each alcohol were assumed to be identi­
cal;34 those of symmetrical ether and trifluoroacetate geometrical 
isomers were identical within experimental error. GLC results 
were reproducible within ± 1% on duplicate runs.

Yields of olefinic products were determined by !H NMR spec­
troscopy through comparison with the known absolute yields of al­
cohol products. For many reactions product yields were deter­
mined both by GLC analysis and by ’ H NMR spectroscopy. Yields 
from 'H  NMR spectral analyses were calculated from averaged in­
tegrations of proton absorptions by comparison to an internal 
standard. Excellent agreement between 1H NMR and GLC yields 
was observed; for example, compared to the results from GLC 
analyses, the relative percent of alcohol isomers from 1H NMR 
analyses agreed within 2% for 2-methyl- and 4-iert-butylcyclohex- 
anone reductions.

Control experiments and specific product analyses are included 
as supplementary material.36

Reduction of 4-tert-Butylcyclohexanone by Di-tert-but- 
ylsilane. Silane Products. Di-feri-butylsilane (3.0 mmol) and 4- 
tert- butylcyclohexanone (2.5 mmol) were added to 17.5 mmol of 
trifluoroacetic acid, and the reaction mixture was kept at room- 
temperature for 91 hr. A product identified as di-ieri-butylsilyl 
trifluoroacetate by ‘ H NMR analysis of the reaction mixture (Si­
ll, s, b 4.63) was observed in low yield (3.5% of reacted silane). Di­
ferí- butylsilanediol was isolated in 91% yield from the reaction 
mixture after quenching with aqueous sodium bicarbonate and ex­
traction with ether as a white, crystalline solid, mp 151.5-152.0° 
(lit.36 mp 152°).
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Results are reported for the reductions of alkyl-substituted cyclohexanones by di-tcrt-butylsilane, di-tert- 
butylmethylsilane, and tri-ferf-butylsilane in trifluoroacetic acid. The reactivities of di- and tri-ieri-butylsilanes 
reflect the steric bulk of the tert-butyl groups. However, the inductive effect of alkyl substituents is pronounced; 
tri-ferf-butylsilane reacts faster than di-ferf-butylsilane in reductions of cyclohexanones. The thermodynamical­
ly less stable isomers are formed predominantly in tert-butylsilane reductions of cyclic ketones with remote sub­
stituents. However, silyl alkyl ethers formed in these reductions undergo trans elimination of silanol in competi­
tion with nucleophilic displacement at silicon. The relative rate for elimination increases with the increased steric 
bulk of alkyl groups bonded to silicon.

The reactivities o f  organosilicon com pounds are strongly 
influenced by the steric bulk o f  tert-butyl substituents.2-4 
T h e terf-butyl group shields silicon from  nucleophilic re­
agents that normally attack silicon.4® This steric effect 
should also be evident in the relative rates for reduction o f 
ketones by tert-butylsilanes and in the stereoselectivities 
o f  these reductions. Indeed, in reductions o f  alkyl-substi­
tuted cyclohexanones di-ferf-butylsilane is observed to  be 
approxim ately 100 times less reactive than tri-sec-butylsil- 
ane.la

Silyl alkyl ethers have been observed previously in orga- 
nosilane reductions o f  carbonyl com pounds when limited 
am ounts o f  Bronsted acids are em ployed, and are pre­
sumed intermediates in these reactions.5 Such com pounds, 
which have proven to  be highly useful in protecting the al­
cohol functional group in synthetic transformations,6 are 
quantitatively solvolyzed in acidic media to alcohols. Alk- 
oxy-feri-butyldim ethylsilanes,6c although significantly 
more stable toward solvolysis, also react quantitatively 
with nucleophilic reagents to  form  alcohols. N ucleophilic 
attack at silicon in silyl alkyl ethers occurs in preference to 
attack at carbon. However, when silicon is shielded by 
m ore than one bulky tert-butyl group the rate o f  nucleo­
philic substitution at silicon may be sufficiently low so as to 
allow alternate pathways to becom e dominant.

In this paper we wish to report that highly hindered di- 
and tri-tert-butylsilanes do undergo selective hydride 
transfer reactions with alkyl-substituted cyclohexanones 
but that these reactions are com plex owing to reactions 
caused by the shielding o f silicon by tert-butyl groups. A 
novel elim ination reaction o f  d i- and tri-tert-butylsilyl 
alkyl ethers occurs in these reactions in com petition with 
nucleophilic substitution at silicon.

R e su lts

D i-te rt-b u ty lm e th y ls ila n e . T he reactions o f  alkyl-sub­
stituted cyclohexanones with di-tert-butylm ethylsilane are 
significantly and unexpectedly faster than those with d i­
fe r í-butylsilane. Using 6.6 equiv o f  trifluoroacetic acid, re­
ductions o f  4-tert-butyl, 4-m ethyl-, 2-m ethyl-, and even
3,3,5-trim ethylcyclohexanone are com plete within 20 hr at 
room  temperature. D i-tert-butylm ethylsilane is 20 to 40 
times more reactive than di-tert-butylsilane in these reac­
tions.

In T able I product yields from  reductions o f  alkyl-substi­
tuted cyclohexanones by di-tert-butylm ethylsilane are pre­
sented and com pared to those from  reductions by di-tert- 
butylsilane under the same reaction conditions. Only cy- 
cloalkene and cyclohexyl trifluoroacetate products are o b ­
served at 20 hr in reductions o f  alkylcyclohexanones by di- 
tert-butylm ethylsilane when 6.6 equiv o f  trifluoroacetic 
acid is used. Cycloalkene form ation is significant when di- 
tert-butylm ethylsilane is em ployed under these reaction 
conditions and occurs to  a greater extent than in reductions 
by di-tert-butylsilane. T he relatively high yield o f  olefinic 
products in these reactions is surprising since under the 
same reaction conditions elimination processes are minimal 
(<1% ) when less bulky silane reducing agents are used.1®

T o  determine the source o f  elim ination processes in ke­
tone reductions, lower acid concentrations were em ployed 
in order to decrease the rate o f  reduction and o f  solvolysis 
o f  the presumed silyl ether intermediates. Prior determ ina­
tions had shown that alcohol, alkyl ether, and trifluoroace­
tate reaction products could not be the source o f  the alk- 
enes form ed in reductions by tert-butylsilanes. 4-tert- 
Butylcyclohexanone was treated with di-tert-butylm eth-
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Di-ferf-butylmethylsilane and Di-ferf-butylsilane Reductions o f  Alkylcyclohexanones

% yield from  (f-B u)2MeSiH"> b % yield from  (f-B u)2SiH26’ c

Table I

Registry
no. Alkycyclohexanone

%
cyelo-

alkened

%
trifluoro­
acetate

Rei % cis- 
trifluoro- 

acetate

%
cyclo-

alkened

%
trifluoro­

acetate

Rei % cis- 
trifluoro- 

acetate

98-53-3 4-ferf-Butyl- 13? 87 67 3 97 68
589-92-4 4-Methyl- 5 95 65 3 97 67
583-60-8 2-Methyl- 6 0 e ’ h 40 35 3 0 / 70 66
873-94-9 3,3,5-Trimethyl- 40 ' 60 < 1 0 100 11

a R eductions were run at room  temperature with 1.5 m m ol o f  ketone, 1.5 m m ol o f  silane, and 9.9 m m ol o f  trifluoroacetic 
acid. Reaction times were 20 hr. R eduction  o f  4-ferf-butylcyclohexanone was com plete within 2 hr at room  temperature. 
b N o reaction products other than alkenes and trifluoroacetates were observed. c Reaction times for com plete reduction 
varied from  72 hr (4-m ethylcyclohexanone) to  more than 300 hr (2-m ethyl- and 3,3,5-trim ethylcyclohexanone). d Absolute 
yield. e Sum o f  m ethylcyclohexane and 1-m ethylcyclohexyl trifluoroacetate. /  Analyzed as m ethylcyclohexane; no 1-methyl- 
cycloh exyl trifluoroacetate was observed. S Registry no., 2228-98-0. h Registry no., 591-49-1. 'R egistry no., 503-45-7.

Table II
Di-ferf-butylmethylsilane Reduction o f  4-ferf-Butylcyclohexanone"

Relative yield, % b

Time,
hr

CIS-I
(56889-82-8)

frans-I
(56889-83-9)

cis-II + 
cis-IV

frans-II + 
frans-IV III

2  cisT, II, 
IV, + III

0.6 70 27 1.8 0.5 0.7 72.5
21 41 18 27 7 6 74
46 28 10 38 16 8 74
96 27 8 39 20 8 73

a R eduction  was run at room  temperature with 3.0 m m ol o f  4-ferf-butylcyclohexanone, 3.5 m m ol o f  di-ferf-butylm ethyl­
silane, and 9.0 m m ol o f  trifluoroacetic acid and was com plete within 3 hr. b Product yields based on  GLC analyses and con ­
sistent with those obtained by  ‘ H NMR analyses at 15, 105, and 270 min and at 96 hr. Corrections have been made for  the 
amounts o f  addition products from  trifluoroacetolysis o f  III; at 96 hr the yield o f  3-ferf-butyleyclohexyl trifluoroacetates 
was 3%.

ylsilane at room  temperature in the presence o f  1.0, 1.5, 
and 3.0 equiv o f  trifluoroacetic acid, and these reactions 
were follow ed with time. T h e isomeric 4-ferf-bu ty lcyclo- 
hexyl di-ferf-butylm ethylsily l ethers (I) and 4 -ferf-bu ty l-

J3i(C(CH,h),
o '

cyclohexanols (II) were observed in addition to  4-terf- 
butylcyclohexene (III) and the isomeric 4-ferf-bu ty lcyclo- 
hexyl trifluoroacetates (IV ). T ypical results are given in 
T able II for the reduction in which 3.0 equiv o f  trifluo­
roacetic acid was used. T he silyl ethers, cis- and frans-I, 
are, by far, the predom inant reduction products from  these 
reactions; subsequent transformations o f  the silyl ethers 
yield the trifluoroacetate and alkene products observed in 
organosilane reductions o f  ketones in trifluoroacetic acid 
m edia (Table I).

The stereoselectivity in the reduction o f  4 -fert-butylcy- 
clohexanone by di-ferf-butylm ethylsilane should be con ­
stant with time.7 However, from  T able II the observed sum 
o f  cis products (cis-I +  cis-II +  c is-IV ) decreases with in-

Table III
Stereoselectivities in Cyclohexanone Reductions 

by  Di-ferf-butylsilane and Di-ferf-butylmethylsilane in 
Trifluoroacetic A cid "

% less stable isom er6

A lkylcyclohexanone (f-B u)2MeSiH (f-B u)2SiH.

4-ferf-Butyl 72 69
4-Methyl- 67 68
2-Methyl- 74 76
3,3,5-Trim ethyl- > 9 9 8 9 c

a Calculated by  assuming that olefin  products result solely 
from  diaxial elimination o f  silyl cyclohexyl ethers. 6 From  
the data in Table I. c Although alkene products were not o b ­
served in this reaction, olefin  form ation with subsequent 
addition o f  trifluoroacetic acid may have occurred during 
the long reaction time required for  com plete reduction.
Such a process might explain the unexpectedly low  selec­
tivity in this reduction.

creasing time, but the sum o f  the relative yields o f  cis-1, 
cis-II, III, and cis-IV  is constant within experim ental error 
throughout the 96-hr period during which the reaction 
products were analyzed. These results, which were con ­
firm ed by similar comparisons for reductions run with 1.0 
equiv o f  trifluoroacetic acid, indicate that 4-fert-butylcy - 
cyclohexene is form ed specifically from  cis-1.

The yield o f  4-ferf-butylcyclohexene was sensitive to 
both  the concentration o f  acid, ranging from  13% (6.6 equiv 
o f  CF3 CO2 H) to  6% (1.0 equiv o f  CF3 CO2H), and to  the re­
action temperature, 11% at 25° and 4% at —40° (3.0 equiv 
o f  CF3 CO2 H). However, the stereoselectivity in form ing 
cis-4 -ferf-buty lcyclohexyl products, calculated by assum­
ing that 4-ferf-butylcyclohexene is form ed solely from  cis- 
I, did not change over the range o f  reaction conditions em ­
ployed and averaged 72 ±  1%. Similar calculations perm it 
an estimate o f  the stereoselectivities in reductions o f  other
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Table IV
Trifluoroacetolysis o f  4-ferf-Butylcyclohexene

Yield, %a

CF3C 0 2H/4- 
tert-butyl- 

cyclohexene
Temp,

°C

trans-V
(31003-

52-8)

cis-V
(31003-

51-7)

cis-IV
(7556-
86-7)

trans-IV 
(7600- 

15-9)
trans-V/

cis-V
cis TV/ 

trans-lV
IV /
V

20 25* 53 9 30 8 5.9 3.7 0.61
4.0 25 c 50 9 31 10 5.6 3.1 0.70
2.0 8 0 » 45 15 28 12 3.0 2.3 0.67

a Relative product yields based on ‘ H NMR and GLC analyses. No products other than those reported were observed in 
significant yields. * Analyzed after 24 h r> ll%  olefin remained unreacted. c Analyzed after 120-hr reaction time; 18% cyclo- 
alkene was unreacted.

Table V
Reduction o f  4-ferf-Butylcyclohexanone by  Tri-ferf-butylsilane**'/

Time,
hr

% re­
duction b

Relative yield, % c

VI lid III cis-TV frans-IV e trans-V cis-V e

21 50 64 9 5.5 10 8.0 3.0 0.5
27 53 57 10 7.4 12 9.3 3.7 0.6
93 85 51 22 13 9.0 4.2 0.8

264 94 20 50 13 9.3 6.5 1.2
720 97 10 38 21 10 18 3.0

a Reduction was run at room  temperature with 2.5 m m ol o f  4-ferf-butylcyclohexanone, 3.0 m m ol o f  tri-ferf-butylsilane, 
and 7.5 m m ol o f  trifluoroacetic acid. » Based on tri-ferf-butylsilane. c Product yields based on 'H  NMR analyses. GLC anal­
yses o f  the quenched reaction solutions gave results which agreed substantially with the ‘ H NMR data. Yields obtained at 
145, 436, and 693 hr reaction time were in agreement with trends observed at reaction times reported here, d Only cis-II 
was observed. The relative yield o f  irons-II was not determined. e 'H  NMR analysis was used to give the sum o f  frons-IV and 
eis-V. The yields o f  the individual products were calculated using the trans-V I cis-V  ratio in Table IV. f  Registry no., 
18159-55-2.

alkyl-substituted cyclohexanones. These calculations are 
given for both di-ferf-butylsilane and di-tert-butylm eth- 
ylsilane in Table III. *

In the reduction o f 2-m ethylcyclohexanone by di-fert- 
butylmethylsilane the elim ination process from  the cis 
alkyl silyl ether yielding 1-m ethylcyclohexene is dom inant 
(60%); subsequent trifluoroacetolysis and ionic hydrogena­
tion8 o f  the 1-m ethylcyclohexene gives 1-m ethylcyclohexyl 
trifluoroacetate (23%) and m ethylcyclohexane (37%), re­
spectively.9 Neither 3-m ethylcyclohexene nor the 3-meth- 
ylcyclohexyl trifluoroacetates were detected. D i-tert-butyl- 
methylsilanol, d i-ferf-butylm ethylsilyl trifluoroacetate, 
and the 2-m ethylcyclohexyl di-fert-butylm ethylsilyl ethers 
are the only silane products.

Trifluoroacetolysis of 4 -tert-Butylcyclohexene.
Since olefin production is significant in reductions o f  4- 
ferf-butylcyclohexanone by  tert-butylsilanes in trifluo­
roacetic acid, the selectivities o f  the addition o f  trifluo­
roacetic acid to  4-ieri-butylcycloJiexene were investigated. 
N o previous study o f  the trifluoroacetolysis o f  alkylcyclo- 
hexenes has been reported; and, consequently, the stere­
oselectivities o f  trifluoroacetate products observed in silane 
reductions could be thought to reflect the stereoselectivi­
ties o f  the products from  trifluoroacetolysis o f  alkyl-substi­
tuted cyclohexenes.

Trifluoroacetolysis o f  4-fert-butylcyclohexene produces 
the geometrical isomers o f  both 3 -ferf-butylcyclohexyl tri­
fluoroacetate (V) and the 4 -ferf-buty lcyclohexyl trifluo­
roacetate (IV). T h e yields o f  these products under cond i­
tions com parable to those used in reductions o f  4-tert- 
butylcyclohexanone are given in T able IV. A ddition  prefer­
entially occurs to  give V, and axial-trifluoroacetate prod ­
ucts are favored over equatorial-substituted trifluoroace­
tates. T he ratio o f  the yields o f  IV  to  V  are not affected 
within experimental limits either by changes in the concen ­
tration o f trifluoroacetic acid or by changes in temperature. 
The cis to trans ratio o f  V  and IV, however, does reflect

changes in temperature but not changes in trifluoroacetic 
acid concentration.

The low yield o f  3-tert-butylcyclohexyl trifluoroacetate 
products in reductions o f  4-tert-butylcyclohexanone by ei­
ther d i-feri-butylsilane or di-terf-butylm ethylsilane under 
reaction conditions reported earlier indicates that trifluo­
roacetic acid addition to  4-fert-butylcyclohexene is not an 
im portant process in 4-tert-butylcyclohexyl trifluoroace­
tate production. This is further substantiated by the re­
sults from  the reduction o f 4-tert-butylcyclohexanone by 
di-terf-butylm ethylsilane using 3 equiv o f  trifluoroacetic 
acid; the yield o f  3-tert-butylcyclohexyl trifluoroacetate, 
after a reaction time o f  96 hr, is only 3% (Table II).

Tri-ferf-butylsilane. Am ong the tert-butylsilanes sili­
con is shielded to the greatest extent in tri-fert-butylsil- 
ane.4a Y et nearly com plete reduction o f  4 -tert-butylcyclo- 
hexanone (>95% ) by this highly hindered silane occurs 
within 95 hr at room  temperature when 4 equiv o f  trifluo­
roacetic acid is em ployed. The rate o f  hydride transfer 
from  tri-tert-butylsilane is greater than that from  d i-ferf- 
butylsilane. The reaction products, however, are com posed 
almost solely o f  4 -fert-butylcyclohexene (31%) and the 3- 
and 4-tert-butylcyclohexyl trifluoroacetates (64%), indicat­
ing that the elim ination process, observed as a com peting 
reaction in reductions by the di-tert-butylsilanes, is the 
dom inant reaction in reductions by tri-tert-butylsilane.

T he yields o f  products from  the reduction o f 4-tert- 
butylcyclohexanone by tri-tert-butylsilane using 3 equiv o f 
trifluoroacetic acid were obtained by 'H  N M R  and GLC 
analyses o f  the reaction mixture at various times and are 
reported in Table V. Relatively low  yields o f  4-tert-butyl- 
cyclohexanol (~5% ) were observed at reaction times o f less 
than 30 hr (~50%  reduction); at longer reaction times this 
alcohol could not be detected. T he isomeric 4-tert-buty lcy ­
clohexyl tri-terf-butylsilyl ethers (VI) were predom inant 
initially (< 100  hr) but were slowly converted to 4 -fe r t-  
butylcyclohexene and to  trifluoroacetate products. T he rel­
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ative yields o f  cis-V I at 21, 93, 168, and 720 hr were 96, 95, 
94, and 73%, respectively, indicating that the rate o f  solvol­
ysis o f  c is-V I is com parable to  that o f  irons-V I.

Trifluoroacetolysis o f  4 -ieri-butylcyclohexene accounts 
for the production o f 3-ieri-butylcyclohexyl trifluoroace- 
tate (V ) and for a fraction o f  the 4-ieri-butylcyclohexyl tri- 
fluoroacetate (IV) obtained in the reduction process. Using 
the product ratios from  Table IV  for IV /V  and for c is -IV / 
tr a n s -IV  the relative yields o f  the isom eric 4 -ieri-buty lcy - 
clohexyl trifluoroacetates resulting from  trifluoroacetolysis 
o f  4 -t e r t -butylcyclohexene can be calculated and substract- 
ed from  the observed values given in T able V. Using this 
m ethod the relative yields o f  c is-IV  (9.2 ±  1.7%) and tran s­
i t  (7.6 ±  1.5%) are found to be relatively constant over the 
720 hr reaction period; no trend is detectable. T h e yield o f  
tr a n s -lV  is identical, within experim ental error, with that 
o f  tr a n s -V I (4-6% ), indicating that under the reaction con ­
ditions em ployed iron s-V I is converted solely to  iron s-IV  
and does not undergo elim ination to 4 -t e r t -butylcyclohex­
ene. Similar results were obtained when 4 -ieri-butylcyclo- 
hexanone was treated with tri-ieri-butylsilane at room  
tem perature using 4.0 and 2.0 equiv o f  trifluoroacetic acid 
and at 80° using 2.0 equiv o f  trifluoroacetic acid.

T ri-ieri-buty lsilane reductions were run at —30° in an 
attem pt to m inim ize olefin form ation. Using 4 equiv o f  tri­
fluoroacetic acid the silane reduction o f 4 -ieri-butylcyclo- 
hexanone gave after 2 months reaction time 71% VI (97% 
cis), 23% IV  (65% cis), and 6% III. T he sum o f the yields o f  
c is-V I and those products resulting from  cis-V I, cis-IV , 
and III was 90%. Similarly, the tri-ieri-butylsilane reduc­
tion o f  4-m ethylcyclohexanone under com parable condi­
tions gave 78% 4-m ethylcyclohexyl tri-ieri-butylsily l ether 
(93% cis), 20% 4-m ethylcyclohexyl trifluoroacetate (65% 
cis), and 2% 4-m ethylcyclohexene (2 m onths reaction time). 
T he sum o f the yields o f  cis-V II ahd those products result-

o f  alkyl substituents. Qualitatively, the rates o f  cyclohexa­
none reductions by tri-sec-butylsilane are faster than those 
by di-ieri-butylm ethylsilane, which are greater than those 
by tri-ieri-butylsilane. The rates for reductions by  d i-ter t-  
butylsilane, however, are slower than those for similar re­
ductions by tri-ieri-butylsilane; an increase in th e  n u m ber  
o f  a lk yl su b stitu en ts dram atically increases th e rea ctivity  
o f  alkylsilanes in reduction  p rocesses. An estimate o f  the 
relative reactivities o f  hindered organosilanes (given in pa­
rentheses) can be made through a com parison o f  reaction 
times for reduction: sec-B u 3SiH (100), i-B u 2M eSiH  (30),
i-B u 3SiH (3), t-B u 3SiH 2 ( l ) .10

Reductions o f  alkyl-substituted cyclohexanones by di- 
and tri-ieri-butylsilanes yield predom inantly the less sta­
ble cyclohexyl derivative, either the cyclohexyl trifluo­
roacetate or silyl ether. The selectivity for the less stable 
isomer increases in the order s e c -B u3SiH  <  ( i-B u )2SiH 2, 
(t-B u )2M eSiH  <  (i-B u )3SiH. Indeed, the stereoselectivity 
for hydride transfer in tri-ieri-butylsilane reductions o f  4- 
ieri-butylcyclohexanone (90% cis products) and 4-m ethyl­
cyclohexanone (88% cis products) is similar to  that 
achieved by either lithium tri-sec-butylborohydride11 or 
lithium dim esitylborohydride bis(dim ethoxyethane).12 T he 
usefulness o f  tri-ieri-butylsilane in ketone reductions, 
however, is severely lim ited by the same factor which pro­
vides the exceptionally high degree o f  stereoselectivity in 
hydride transfer. T he bulky t e r t -butyl groups not only p ro­
vide steric hindrance to hydride transfer from  the axial d i­
rection in cyclohexanone reductions but, also, effectively 
shield silicon from  nucleophilic attack.

T he dom inant reaction pathway for silyl ethers produced 
in the reduction o f  4 -t e r t -butylcyclohexanone by tri-ter t-  
butylsilane at or above room  temperature is elimination. In 
this process elim ination o f the elements o f  tri-ieri-butylsil- 
anol occurs in acidic m edia only from  cis-V I (Schem e I).

Scheme I

ing from  cis-V II, cis-4-m ethylcyclohexyl trifluoroacetate 
and 4-m ethylcyclohexene, was 88%. T he major silicon 
product from  these reductions was tri-ieri-butylsilanol.

Attem pts to displace the tri-ieri-butylsily l group from 
VI without elim ination by alternative procedures were un­
successful. T he m ethod successfully em ployed to  remove 
the t e r t -butyldim ethylsilyl protecting group did not affect 
VI even when significantly longer reaction times were used. 
Similarly, lithium aluminum hydride failed to reduce the 
tri- t e r t -butylsilyl ether even after heating at 55° for 4 days.

Discussion

Organosilane Reductions. T he reactivities o f  di- and
tri-ferf-butylsilanes in ketone reductions reflect both the 
steric bulk o f  the ieri-bu ty l group and the inductive effect

Reductions by di-ieri-butylm ethylsilane and, to  a lesser 
extent, di-ieri-butylsilane also occur with elimination com ­
peting with substitution at silicon.13 The relative im por­
tance o f  the elim ination reaction increases with an increase 
in the steric bulk about silicon. T he relative rates for sub­
stitution at silicon (fes) com pared to  those for elimination 
(fee) can be determined from the ratios o f  cis-trifluoroace­
tate to alkene and are estimates for the shielding o f  silicon 
by t e r t -butyl groups. In reductions o f  4 -ie r i-butylcyclo­
hexanone the ratios, fes/fee, from  c is -4-ieri-butylcyclohexyl 
silyl ethers are observed to be 22 for (i-B u )2SiH 2, 4.5 for 
(t-B u )2M eSiH , and 0.11 for (i-B u )3SiH. For reductions o f
2-m ethylcyclohexanone similar calculations o f  fes/fee for ( i-  
B u )2SiH 2 (1.5) and (i-B u )2M eSiH  (0.23) show qualitative 
agreement with those from  reductions o f  4 -ieri-bu ty lcyclo -
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hexanone. Nucleophilic substitution is, therefore, highly 
sensitive to the steric environm ent about silicon, m ore so 
than are the rates for ketone reductions.

T he observation o f  exclusive elim ination from  cis alkyl 
silyl ethers form ed in silane reductions o f  4-ter£-butylcy- 
clohexanone is consistent with a trans-elimination m echa­
nism and implies that, if the chair cyclohexane conform er 
is assumed, the 4 -te r t -butyl group is conform ationally larg­
er than the -O S iR 3 substituent. In agreement with this 
prediction, th e /H  N M R  spectrum  o f  the isomeric mixture 
o f  4-£er£-butylcyclohexyl di-£er£- butylm ethylsilyl ethers
(I) exhibits two proton absorptions for the -S i(£ -B u )2-  
groups with intensities expected from  the relative amounts 
o f  axial- and equatorial-substituted isomers; only one sig­
nal for the 4 -te r t -butyl group is observed. T he chem ical 
shifts o f  the methine hydrogens (CH O Si) o f  I are 5 4.08 
(cis-I) and 3.64 (tra n s-1), respectively, substantially the 
same as those from  the isomeric 4 -feri-butylcyclohexyl 
triethylsilyl ethers, 8 4.00 (cis isomer) and 3.57 (trans iso­
mer). In contrast, the corresponding methine hydrogen o f 
ci's-VI absorbs at 8 4.37 and those o f  V II absorb at 8 4.33 
(cis-V II) and 3.77 (iron s-V II). The downfield shift for the 
methine hydrogen o f  tri-terf-butylsily l ethers o f  alkylcyclo- 
hexanols can be explained by a long-range deshielding e f­
fect by the conform ationally restricted tri-tert-butylsilyl 
group. Similar effects have been noted in other molecular 
systems.14’15 However, molecular m odels o f  either VI or VII 
do not provide a clear distinction between the chair cyclo ­
hexane conform ation and alternate conform ations, and the 
observed chem ical shift difference between VI or VII and I 
may be due to a change in ring conform ation.

Trifluoroacetolysis of 4 -ieri-Butylcyclohexene. A l­
though addition reactions have received considerable at­
tention in the literature, there have been few studies o f  the 
stereochemical outcom e o f addition reactions and none o f 
the addition o f carboxylic acids to  cycloalkenes. T riflu oro­
acetolysis o f  4-£ert-butylcyclohexene (III) produces the 
geometrical isomers o f  both  3- and 4-terf-butylcyclohexyl 
trifluoroacetates. T he preference for the production  o f  3- 
tert-butylcyclohexyl trifluoroacetate (Table IV) indicates 
that the remote tert- butyl group plays a directive role in 
the addition process. T he addition o f  diborane to  III,16 on 
the other hand, does not occur with a similar directive in­
fluence.

T he influence o f  the te r t -butyl group is also observed in 
the axial/equatorial trifluoroacetate ratios for IV  (3.4 at 
25°) and V  (5.8 at 25°). A lthough the reason for the d iffer­
ence between these values is not obvious from  our present 
results, the high axial/equatorial ratios are consistent with 
an ionic mechanism for addition in which the t e r t -butylcy­
clohexyl cations are preferentially trapped from  the axial 
side. Similar selectivities are not observed in either the hy- 
droboration16 or epoxidation18 reactions o f  III.

Experimental Section
General. Instrumentation has been previously described.18 4- 

tert-Butylcyclohexene was synthesized from 4-ter£-butylcyclohex- 
yl methanesulfonate using standard procedures. The syntheses of 
tert-butylsilanes, the general reaction procedure, and product 
analyses are described elsewhere.18’4“

Reductions of 4-tert-Butylcyclohexanone by Di-tert-butyl- 
methylsilane. Product Analyses. Reactions were run as pre­
viously described.1“ 4-£er£-But.ylcyclohexene and the isomeric 3- 
and 4-tert-butylcyclohexyl trifluoroacetates were identified by :H 
NMR and GLC methods. Product yields based on the integration 
of characteristic NMR absorptions were within 2% of those ob­
tained by the integration of GLC peaks assigned to the same prod­
ucts.

For reductions using di-ferl-butylmethylsilane, di-ierl-butyl- 
methylsilanol and di-tert - butylmethylsilyl trifluoroacetate were 
identified by 1H NMR and GLC comparison with authentic sam­

ples. The GLC peaks assigned to the isomeric 4-ier£-butylcyclo­
hexyl di-£er£-butylmethylsilyl ethers (I) were collected together 
and analyzed: viscous, colorless liquid; NMR (CDCI3) 8 4.08 
and 3.64 (m, 1 H, 81% cis-I and 19% Irons-1, respectively), 2.13- 
1.17 (m, 9 H), 0.98 and 0.96 (two sharp singlets, 18 H, 80 and 20%, 
respectively), 0.86 (s, 9 H), and 0.3 (s, 3 H); ir (film) 2950, 2890, 
1440 and 1375 (CH3), 1390 and 1365 (i-Bu), 1245 and 797 (SiCH3), 
1110 (C-O), and 1050 cm-1 (Si-O-C); mass spectrum m/e (rel in­
tensity) 257 (0.45) 256 (1.60), 255 (7.00), 215 (0.45), 214 (1.74), 213 
(8.50), 75 (100), 57 (23).

Anal. Calcd for CighLoOSi: C, 73.00; H, 12.90; Si, 8.98. Found: C, 
73.08; H, 12.83; Si, 9.02.

Reduction of 2-Methylcyclohexanone by Di- tert-butylme- 
thylsilane. Product Analyses. Methylcyclohexane, 1- and 2- 
methylcyclohexyl trifluoroacetates, di-£eri-butylmethylsilanol, 
and di-£er£-butylmethylsilyl trifluoroacetate were analyzed by XH 
NMR and GLC comparison with authentic samples. The GLC 
peak assigned to the 2-methylcyclohexyl di-£eri-butylmethylsilyl 
ethers was collected and analyzed: XH NMR (CCI4) 8 3.33 (m, 11 
H), 2.2-1.2 (m, 12 H), 1.0 and 0.97 (singlets, 18 H), and 0.04 (s, 3 
H).

Addition of Trifluoroacetic Acid to 4-tert-Butylcyclohex- 
ene. The following illustrates the reaction procedure and method 
of analysis for the isomeric 3- and 4-£er£-butylcyclohexyl trifluo­
roacetates. To 0.160 g (1.15 mmol) of 4-£er£-butylcyclohexene was 
added 2.61 g (23.0 mmol) of trifluoroacetic acid with stirring at 
room temperature. The initially heterogeneous light-orange mix­
ture became homogeneous upon continued stirring and slowly 
turned to a red-brown color after 24 hr. XH NMR analysis of the 
reaction mixture indicated four trifluoroacetate products: 50% 
trans-V (8 5.57), 28% cis-IV (5 5.43), and 22% of a mixture of cis-V 
and trans-IV (8 5.08). The 4-£eri-butylcyclohexyl trifluoroacetates
(IV) were identified from their characteristic chemical shifts by 
comparison with authentic samples; the identities of the 3-tert- 
butylcyclohexyl trifluoroacetates were inferred.

The reaction mixture was quenched with 25 ml of saturated 
aqueous sodium bicarbonate, and the resulting mixture was ex­
tracted five times with 5-ml portions of pentane. The combined 
pentane extract was dried over anhydrous magnesium sulfate and 
filtered, the filter cake was washed several times with small por­
tions of pentane, and the combined pentane washes and extract 
were concentrated under reduced pressure. GLC analysis on a 5-ft 
15% SE-30 column at 130° gave peaks for the following compounds 
(retention times given in parentheses): unknown (3.8%, 4.1 min), 
III (11.2%, 4.9 min), trans-V (45.0%, 9.0 min), cis-IV (25.5%, 9.7 
min), cis-V (7.7%, 10.4 min), and trans-TV (6.8%, 11.2 min). The 
assignments of III and cis- and irons-IV were made by retention 
time comparisons and peak enhancements with authentic samples. 
The assignments for cis- and trans-V were consistent with the ob­
servation that the less stable isomer eluted prior to the more stable 
equatorial isomer.1“

Analyses of the alcohols formed after saponification of the 
worked-up reaction mixture using 3 N  aqueous sodium hydroxide 
confirmed the results obtained by 1H NMR and GLC analyses of 
the trifluoroacetate mixture. The use of the shift reagent 2,2,6,6- 
tetramethyl-3,5-heptanedioneeuropium(III) [Eu(Thd)3] provided 
a superior method for determining product yields from the com­
plex mixture. Enough Eu(Thd)3 was added to a 'H NMR sample 
to completely separate trans-V-OH and cis-IV-OH CHOH absorp­
tions (570 and 595 Hz, respectively, relative to internal Me4Si). 
The cis-IV-OH isomer experienced a larger shift than did the 
trans-V-OH isomer; the differential shift was easily observed upon 
successive additions of small portions of the shift reagent to the 
sample. The relative proportions of trans-V-OH and cis-IV-OH 
were obtained by integration of the shifted absorptions: 62 and 
38%, respectively (compared with 64% trans-V and 36% cis-IV by 
GLC analysis).

GLC analysis of the saponification mixture on a 5-ft 20% Carbo- 
wax 20M column programmed at 4°/min from 130 to 180° gave 
two alcohol peaks (84 and 16%, respectively) having the same re­
tention times as cis-IV-OH and £rans-IV-OH. Assuming that both 
axial alcohols (cis-IV-OH and trans-V-OH) have the same reten­
tion time and that both equatorial alcohols, likewise, have the 
same retention times, there is excellent agreement between these 
results and the GLC results for the trifluoroacetates (overall, 83% 
axial and 17% equatorial isomers).

Reduction of 4-tert-Butylcyclohexanone by Tri-tert-but- 
ylsilane. Product Analyses. To 0.38 g (2.5 mmol) of 4-fcrt-butyl- 
cyclohexanone and 0.60 g (3.0 mmol) of tri-terf-butylsilane was 
added 0.90 g (7.5 mmol) of trifluoroacetic acid at room tempera­
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ture. The homogeneous light yellow reaction mixture was analyzed 
by 'H  NMR spectroscopy and GLC at various times, and the iden­
tities and yields of reaction products were determined. Products 
not identified by retention time comparison and peak enhance­
ment with authentic samples were collected and analyzed.

Tri-tert-butylsilanol (82% yield) was identified spectroscopical­
ly. ‘ H NMR (CC14) S 1.42 (s, 1 H) and 1.12 (s, 27 H); ir (film) 3720, 
3680 (weak, sharp) and 3460 cm-1 (broad, strong).

Tri-tert-butylsilyl trifluoroacetate (18% yield) was also detect­
ed: 'H  NMR (CC14) S 1.21 (s); ir (film), 1775 cm' 1 (C = 0 ).

The cis- and irons-4-ferf-butylcyclohexyl tri-fert-butylsilyl 
ethers were assigned to two peaks separable on a 5-ft 10% FFAP 
column. A mixture consisting of 97% of the cis isomer was collected 
as a white, crystaline solid: mp 91-92°; ’ H NMR (CDCl.i) b 4.37 
(m, 1 H), 2.23-1.33 (m, 9 H), 1.13 (s, 27 H), and 0.86 (s, 9 H); ir 
(film) 1385, 1360 and 1225 (t-Bu), 1110 (C-O), 1055 (SiOC), and 
810 cm-1 (Si—C); mass spectrum m/e (rel intensity) 297 (M — 57, 
0.40), 255 (1.5), 213 (5.3), 75 (100), 73 (14), 57 (38), 41 (22), 29 (26).

Anal. Calcd for C22H46OSi: C, 74.50; H, 13.07; Si, 7.92. Found: C, 
74.20; H, 12.97; Si, 8.16.

Reduction o f 4-Methylcyclohexanone by Tri-tert-butylsil- 
ane. Product Analyses. To 0.11 g (1.0 mmol) of 4-methylcyclo- 
hexanone and 0.30 g (1.5 mmol) of tri-terf-butylsilane was added 
0.46 g (4.0 mmol) of trifluoroacetic acid at 0°. The homogeneous, 
light yellow solution was transferred to a freezer (—30°). After 
cooling a viscous, colorless liquid separated to the top of the reac­
tion mixture. After 2 months 1H NMR analysis indicated approxi­
mately 60% reduction. The reaction mixture was quenched with an 
excess of 3 N  sodium hydroxide and worked up in the usual man­
ner. Analysis by GLC showed one peak that could not be identified 
by comparison with authentic samples. The unidentified peak, 
which was homogeneous on Carbowax 20M, SE-30, and FFAP col­
umns, was collected as a colorless, viscous liquid and analyzed as
4-methylcyclohexyl tri-tert-butylsilyl ether: 'H  NMR (CDCI3) b
4.33 and 3.77 (multiplets, 1 H), 2.2-1.2 (m, 9 H), 1.13 (s, 27 H), and 
0.92 (broadened s, 3 H); ir (film) 1387, 1360 and 1230 (f-Bu), 1130 
(C-O), 1055 (SiOC), and 810 cm-1 (Si-C); mass spectrum m/e (rel 
intensity) 257 (0.09), 256 (0.34), 255 (1.7), 215 (0.42), 214 (1.1), 213 
(5.8), 173 (1.1), 172 (3.8), 171 (22), 75 (100), 73 (16), 57 (14), 55 
(21), 45 (13), 41 (17), and 29 (10).

Anal. Calcd for C19H40OSi: C, 73.00; H, 12.90; Si, 8.98. Found: C, 
72.87; H, 12.77; Si, 8.77.

Registry No.—cis-II, 937-05-3; trans-II, 937-06-4; cis-VI, 
56889-86-2; trans-VI, 56889-87-3; (t-Bu)2MeSiH, 56310-20-4; (f- 
Bu)2SiH2, 30736-07-3; cis-4-methylcyclohexyl trifluoroacetate, 
31003-53-9; trans-4-methylcyclohexyl trifluoroacetate, 31003-54-0; 
cis-2-methylcyclohexyl trifluoroacetate, 31003-40-4; trans-2-meth- 
ylcyclohexyl trifluoroacetate, 31003-41-5; cis-3,3,5-trimethylcyclo- 
hexyl trifluoroacetate, 56889-88-4; trans-3,3,5-trimethylcyclohexyl- 
trifluoroacetate, 56889-89-5; cis-2-methylcyclohexyl di-tert-butyl-

methylsilyl ether, 31003-40-4; trans-2-methylcyclohexyl di-fert-
butylmethylsilyl ether, 31003-41-5; tri-tert-butylsilanol, 56889-
90-8; tri-tert-butylsilyl trifluoroacetate, 56889-91-9; 4-methylcy­
clohexyl tri-tert-butylsilyl ether, 56889-92-0.
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The hydride transfer step in reductions of carbonyl compounds by hindered organosilanes yields alkyl silyl 
ethers in a four-center process involving the silicon hydride and the protonated carbonyl group. Rapid equilibra­
tion between silyl ether, alcohol, and silyl trifluoroacetate occurs in trifluoroacetic acid when triethylsilane is em­
ployed. Subsequent reactions of alcohol, silyl ether, and silyl trifluoroacetate products are identified. The impli­
cations of these results for the stereoselectivities of hydride transfer to substituted cyclohexanones are discussed. 
The sensitivity of bulky reducing agents toward 2-methyl and axial 3,5 substituents is proposed to result from dif­
ferences in the transition state geometries for the hydride transfer step. The mechanism for the formation of alkyl 
ethers in silane reductions is also discussed.

Organosilanes are effective reducing agents for the car­
bonyl group o f aldehydes and ketones when these reactions 
are perform ed in acidic media. T he nature o f  the hydride 
transfer step has not, however, been investigated. Such in ­
formation would have particular relevance to an under­
standing o f  the stereoselectivity in ketone reductions by or­
ganosilanes2 and to potential uses o f  organosilanes in selec­
tive syntheses.

Tw o mechanisms can be considered for the hydride 
transfer step in carbonyl group reductions by organosilanes 
perform ed in Bronsted acids, the media usually em ployed 
for these reactions. In Schem e I (counterion mechanism)

Scheme I
R 2C = 0  + HA R 2C = O H * + A- (1)

R 2C = O H * + A ' + R 'jSiH  — *- R 2CHOH + R '3SiA (2)

nucleophilic substitution by the counterion (A - ) o f  the acid 
used to catalyze the reaction is involved in the rate-limiting 
hydride transfer step (eq 2). W hen the anion o f the B ron­
sted acid is relatively nonnucleophilic, an additional step, 
involving alcohol in the displacem ent o f  hydrogen from  sili­
con through a chain process (eq 3), may be important. E i­
ther inversion or retention o f  configuration at silicon may 
be involved by analogy to  the stereochem ical course o f  hy­
dride transfer in com parable organosilane reactions.4 9

R 2C = O H +  +  RzCH -OH  +  R '3SiH  —
R 2CH O H  +  R '3SiO C H R 2 +  H + (3)

In the alternate mechanism for alcohol form ation 
(Scheme II, four-center mechanism) nucleophilic attack by

Scheme II
r 2c = o  + HA — *■ R 2C = O H * + A ' (1)

R 2C = O H * + R'jSiH — ► R 2CHOSiR' 3 + H* (4)

R 2CHOSiR' 3 + HA — ► R 2CHOH + R 'jS iA  (5)

the oxygen o f  the carbonyl group occurs with hydride 
transfer to the carbonyl carbon. Subsequent solvolysis o f 
the silyl alkyl ether forms the alcohol product. A  similar 
mechanism for hydride transfer has been suggested for the 
deoxygenation o f sulfoxides by silanes,10 and to  explain the 
retention o f configuration at silicon observed in reductions 
o f  silyl derivatives by isobutylalum inum hydride.11

The fundamental difference between the mechanisms for 
silane reductions o f  carbonyl com pounds in Schemes I and 
II is the nucleophile that displaces hydride from  silicon. In 
Scheme II the nucleophile is the oxygen o f  the carbonyl

group; the first-form ed reaction product is an alkyl silyl 
ether. In Scheme I the anion o f the protonic acid is the nu­
cleophile; alcohol and R 3SiA  are form ed in the hydride 
transfer step. Alternatively, from  eq 3, silyl ether should be 
the dom inant reaction product; in this case, however, if  a 
structurally different alcohol is em ployed in the ketone re­
duction, the nucleophilic alcohol need not be identical with 
that produced by hydride transfer. Thus the reaction prod ­
ucts produced directly in the hydride transfer step d iffer­
entiate between the pathways for silane reduction.

In this paper we wish to report the results o f  our studies 
on the mechanism o f the hydride transfer step in silane re­
ductions o f  carbonyl com pounds and on the subsequent 
fate o f  reaction intermediates in trifluoroacetic acid media. 
T he im plications o f  these results for the stereoselectivities 
o f  hydride transfer to substituted cyclohexanones are d is­
cussed.

R esu lts

The determination o f the rate-limiting step in organosil­
ane reductions is a com plex problem  owing to  the nature o f  
the reaction medium. The first-form ed reduction products 
may subsequently react to form  additional products sug­
gestive o f  alternative mechanistic pathways. T o  m inim ize 
such difficulties trifluoroacetic acid was chosen as the 
Bronsted acid, and minimal am ounts o f  this acid were em ­
ployed in order to decrease the rates o f  reactions subse­
quent to the rate-limiting step.

An additional com plication was suggested in studies at 
room  temperature o f  the reduction o f  4 -feri-butylcycloh ex- 
anone by triethylsilane in which only 1 equiv o f  trifluo­
roacetic acid was em ployed. T he data obtained from  these 
studies12 suggested that a exchange process o f  silyl alkyl 
ether and trifluoroacetic acid with alcohol and silyl trifluo­
roacetate (eq 6, R  = 4-ierf-butylcyclohexyl) was occur­
ring.13 T he unsubstituted cyclohexyl system was chosen to 
examine this process in greater detail.

RO SiEt3 +  CF3C 0 2H ^  R O H  +  Et3S i0 2CC F3 (6)

Either treatment o f  cyclohexyl triethylsilyl ether with 
trifluoroacetic acid or mixing cyclohexanol and triethylsilyl 
trifluoroacetate in trifluoroacetic acid resulted in the same 
equilibrium mixture o f  products (eq 6, R  = cyclohexyl, K  =
1.4 ±  0.2). W hen 10 equiv o f  trifluoroacetic acid based on 
either silyl ether or silyl trifluoroacetate was used, equ ilib­
rium was achieved within 25 sec; when 1 equiv o f  trifluo­
roacetic acid was used, equilibration occurred only after a 
reaction period o f 5 min. Yields o f  solution com ponents
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Table I
Di-tert-butylmethylsilane Reduction o f  

4-tert-Butylcyclohexanone0

Yield, %

Time,
min

%
reduction0

ROSiMe-
(f-Bu) ROH Alkene't r o 2c c f :

35 62 54 8 <1 <1
60 88 68 5 4. 11

160 91 68 3 5 15
344 94 63 2 7 22

22 hr 100 58 0 8 34

a Reduction was run at room  temperature with 1.0 m m ol
o f  4-ferf-butylcyclohexanone (98-53-3), 0.75 m m ol o f  di- 
tert-butylmethylsilane (56310-20-4), and 1.5 mm ol o f  tri- 
fluoroacetic acid. b Based on  reacted silane. c Actual prod­
uct yields based on  'H  NMR analyses and confirm ed by 
GLC methods. Isomeric yields were comparable to those 
previously observed.13 R  = 4-terf-butylcyclohexyl. d 4 -tert- 
Butyl cyclohexene.

were determined at more than four different times for each 
o f four separate reactions. T he form ation o f cyclohexyl tri- 
fluoroacetate from  cyclohexanol occurred at a slower rate 
than the interconversion between silyl ether and alcohol, 
Triethylsilyl trifluoroacetate was converted to hexaethyl- 
disiloxane by the water produced from  the trifluoroaceto- 
lysis o f  cyclohexanol.

T he value o f K  obtained for the cyclohexyl system is 
nearly identical with that calculated for the 4-tert-butylcy- 
clohexyl system (K  =  1.7 ±  0.2). In either system the a lco­
hol product is favored over the silyl ether, and the equilib­
rium exchange described in eq 6 is rapidly attained even 
when minimal amounts o f  trifluoroacetic acid are used.

The rapid equilibration o f triethylsilyl ether and alcohol 
in trifluoroacetic acid sets a severe limitation on the deter­
mination o f the mechanism for hydride transfer in trieth- 
ylsilane reductions. A t equilibrium it is not possible to  de­
termine from  which direction equilibration has been 
achieved. However, prior to equilibrium observation o f  a 
value for the ratio, [R 0H ][E t3Si02C C F3]/[R 0 S i- 
E t3][C F 3C 0 2 H], that is greater than the equilibrium  value 
would be suggestive o f  the counterion mechanism (Schem e
I), whereas if  the ratio is less than the equilibrium  value, 
the four-center mechanism (Scheme II) or hydride transfer 
by eq 3 would be implied. Attem pts to  determine the direc­
tion from  which equilibration occurs in the reduction o f  cy ­
clohexanone by triethylsilane were unsuccessful. Equilibri­
um (eq 6, R  = cyclohexyl) was established prior to 5 min 
reaction times (<2%  reduction) even when only 0.5 equiv o f  
trifluoroacetic acid was employed.

W hen the rate o f  equilibration o f  silyl ether-alcohol is 
com parable to the rate o f  reduction, as in the case o f  cyclo­
hexanone reductions by triethylsilane, the mechanism o f 
the hydride transfer step cannot be determ ined with con fi­
dence. However, a reliable distinction between Schemes I 
and II is attainable if  (1) the rate o f  reduction is faster than 
the rate o f  equilibration and (2) the reduction product is 
not the predom inant form  at equilibrium. From previous 
studies both criteria appeared possible in reactions with 
tert-butylsilanes.1® Both di-ieri-butylm ethylsilane and tri- 
te r t -butylsilane yield silyl ethers as the exclusive or nearly 
exclusive reduction product at short reaction times (<50%  
reduction) in reactions with cyclohexanones.

T he reduction o f  4-tert-butylcyclohexanone by d i-ieri- 
butylm ethylsilane was perform ed and the reaction prod ­
ucts analyzed at various times to  determ ine the exact levels 
o f  silyl ether and alcohol present during reduction.14 The 
results o f  this study are given in Table I and clearly show 
that silyl ether and alcohol are the initially form ed reaction

products. However, although the relative yield o f  the silyl 
ether is as high as 87%, indicating that this com pound is 
the primary reduction product, the ratio o f  alcohol to silyl 
ether may in fact reflect the relative equilibrium  concen ­
trations o f  these two com ponents under the reaction con d i­
tions employed.

T o  determine the extent o f  the silyl ether-alcohol inter­
conversion (eq 7) di-tert-butylm ethylsilyl trifluoroacetate 
was prepared and added to an equal am ount o f  4 -tert- 
butylcyclohexanol (26% cis, 74% trans), follow ed by  3 equiv 
o f  trifluoroacetic acid. After 20 and 280 min, a longer time 
than was required for com plete reduction o f  4-ier£-butyl- 
cyclohexanone,1® no 4-tert-butylcyclohexyl d i-tert-bu ty l- 
methylsilyl ether was observed. Only 4-tert-butylcyclohex- 
anol, the corresponding trifluoroacetates, and the silyl tri­
fluoroacetate were detected, indicating that, if  equilibra­
tion occurred, the equilibrium constant for eq 7 m ust be 
greater than 50. In reductions o f  4-£ert-butylcyclohexanone 
by di-iert-butylm ethylsilane under com parable conditions 
the product ratio from  eq 7 was observed to  be less than
0.005, a factor o f  10000 from  the minim um  estimate o f  the 
equilibrium value. From these experiments, which show 
that the silyl ether is the first-form ed reduction product, a 
distinction between Schemes I and II can be made. H ow ­
ever, these data do not perm it a choice between eq 3 and 4 
for the hydride transfer step.

R 2C H O S iM e(f-B u )2 +  CF3C 0 2H —
R 2CH O H  +  (i-B u )2M e S i0 2CCF3 (7)

In a separate experim ent 4-ier£-butylcyclohexanone was 
reduced by  di-tert-butylm ethylsilane in the presence o f
0.84 equiv o f  tra n s-4-m ethylcyclohexanol. Analysis o f  the 
reaction products throughout the time for com plete reduc­
tion showed the presence o f  cis- and trans-4 -tert-butylcy- 
clohexyl di-£eri-butylm ethylsilyl ether (74% cis at 16% re­
duction) and other reaction com ponents previously o b ­
served in the reduction o f  4-ierf-butylcyclohexanone. N o 
trace o f  tra n s-4-m ethylcyclohexyl di-£erf-butylm ethylsilyl 
ether, the silyl ether product expected from  eq 3, could be 
detected. Under the same reaction conditions 4-m ethylcy- 
clohexanone yielded the isomeric 4-m ethylcyclohexyl d i­
fe r í-butylm ethylsilyl ethers at levels com parable to  those 
for the 4-ier£-butylcyclohexyl silyl ethers observed in re­
ductions o f  4-tert-butylcyclohexanone.

Separate experiments were perform ed to  determ ine if 
the symm etrical ethers form ed by silane reductions in tri­
fluoroacetic acid could be produced in reactions involving 
silyl alkyl ethers or alcohols. A  mechanism for symm etrical 
ether form ation has been previously described and requires 
hydride transfer to an O-alkylated carbonyl com pound.15 
Symm etrical ethers were not produced within the limits o f  
detectability from  the reaction o f  alcohol with trifluo­
roacetic acid, from  a mixture o f  alcohol and trifluoroacetic 
acid, from  silyl alkyl ethers in trifluoroacetic acid, or from 
mixtures o f  silyl alkyl ethers and alcohols in trifluoroacetic 
acid. Symm etrical ethers are form ed by  reduction rather 
than by substitution on silyl alkyl ethers or alcohols.

Discussion

T he mechanism for alcohol form ation in reductions o f 
carbonyl com pounds by di- and tri-ter t-butylsilanes is ade­
quately described by Scheme II. The hydride-transfer step 
occurs in a four-center arrangement between the proton- 
ated carbonyl group and the silicon hydride and does not 
involve either the counterion o f  the acid em ployed or the 
alcohol form ed during the reduction process. Owing to  the 
rapid equilibration between alcohol and silyl ether (eq 6), 
however, the mechanism o f  the hydride transfer step with
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less hindered silanes, such as triethylsilane, could not be 
directly determined with confidence by the same m ethod 
successfully used with more hindered silanes.

The hydride transfer step resulting in symm etrical 
ethers is consistent with that o f  the counterion mechanism 
(eq 8, A -  = alcohol or conjugate base o f  acid). Neither silyl 
ethers nor alcohols are directly converted to  ethers under 
the same reaction conditions used for reductions o f  carbon­
yl com pounds. The relative yield o f  symm etrical ether is 
dependent not only on the concentration o f  alcohol, but 
also, on the relative rates for hydride transfer to proton- 
ated and O-alkylated carbonyl com pound.

R 2C = O R ' +  R " 3SiH +  A -  —  R 2C H O R ' +  R "3SiA (8)

A general mechanism for silane reductions o f  carbonyl 
com pounds in Bronsted acids is given in Scheme III. Acti-

Table II
Comparative Stereoselectivities o f  Bulky Boron 

and Silicon Hydrides

Relative yield, % cyclohexanol 

cis-4- trans-

Reducing agent
tert-

Butyl
cis-4-

Methyl
cis-2- 

Methyl-
3,3,5-

Trimethyl

EtjSiH2 32 36 48 84
IPC2BHfl’ 22 37 33 94
LiPBPH0-23 54 52 97 99
sec-Bu3SiH2 55 58 64 96
(f-B u)2SiH2ia 69 68 76 89
(f-B u)2MeSiHia 72 67 74 99
Li-sec-BUjBH, 0° 24 93 80 99 99.8

a Diisopinocampheylborane. * Lithium perhydro-9b- 
boraphenalylhydride.

Scheme III
R 2C = 0  + HA =;=*= R 2C = O H  + A '

R 2CHOSiR'3 + H*

R iC = O H  + R',SiH

R 2CHOH + R 'jS iA  

R 2CHOH + HA R 2CHA + HzO 

R 'jS iA  + H ,0  =5=*= R'jSiOH + HA 

R '3SiA + R'jSiOH ------ (R '3Si)20  + HA

vation o f the carbonyl group is usually required before hy­
dride transfer can occur.16 W hen protonic acids are used to 
catalyze silane reductions, these acids are also involved in 
subsequent reactions o f  the primary reduction products. 
These secondary reactions occur by displacem ent at silicon; 
displacem ent at carbon is not involved.17 Lewis acids, such 
as zinc chloride18 and aluminum chloride,19 also catalyze 
silane reduction yielding mainly alkyl silyl ethers, presum ­
ably by a four-center mechanism; however, these reactions 
are similarly com plicated by symm etrical ether and alkene 
product formation.

Previous studies have indicated that silicon-hydrogen 
bond breaking is not extensive in the transition state for 
hydride transfer.910’20 T he approach o f  organosilanes to 
the carbonyl group, therefore, should not be as sensitive to 
steric repulsions from  substituents o f  the carbonyl com ­
pound as would be reagents for which closer approach o c ­
curs in the transition state. In addition, however, in the 
four-center mechanism the carbonyl oxygen is involved in 
the hydride transfer step, form ing a bond to  silicon as the 
hydride is released. This dem ands that the silicon atom  be 
bent toward the carbonyl oxygen in the transition state 
(structure A). In contrast, metal hydride reductions are

H—SiR3
.

C— OH

usually described by collinear C -H  bond form ation and 
M -H  bond cleavage (structure B ),21 although such a geom ­
etry is not dem anded (structure C).

H—M

V  z'*'c = o
✓ c

In reductions o f  substituted cyclohexanones, groups 
bonded to  the metal will be significantly more sensitive to 
steric effects from  axial 3,5 positions in the transition state 
described by structure B than in that described by struc­
ture C. Since the transition state geom etry in reductions by 
hindered organosilanes parallels C rather than B, the stere­
oselectivities in silane reductions should provide a reason­
able m odel for the transition state geometries o f  other 
structurally com parable reducing agents.

The relative yields o f  the less stable isomers from  reduc­
tions o f  alkyl-substituted cyclohexanones by selected bulky 
boron and silicon hydrides are given in T able II. By com ­
parison with the results from  4-ierf-butylcyclohexanone or
4-m ethylcyclohexanone, the yields o f  the less stable a lco­
hols from reductions o f  2-m ethylcyclohexanone and 3,3,5- 
trim ethylcyclohexanone by the alkyl borohydrides and d i­
isopinocam pheylborane are enhanced relative to those by 
the organosilanes. This difference in the sensitivities to 
axial 3-m ethyl and 2-m ethyl substituents is attributable to 
differences in the geometries o f  the reducing agents in the 
transition state for hydride transfer. T he results for the 
boron hydrides in Table II are consistent with hydride 
transfer through a geometry resembling B rather than C.

Experimental Section
General. Instrumentation has been previously described.2 A 

Varian Model 485 digital integrator was used to determine peak 
areas in GLC analyses; reported yields were calculated with the 
use of experimentally determined thermal conductivity ratios. Cy­
clohexyl triethylsilyl ether and 4-iert-butylcyclohexyl triethylsilyl 
ether were prepared from the respective alcohols and triethylsilyl 
chloride in dry pyridine. Organosilanes were obtained commercial­
ly or were prepared as previously described.25

Triethylsilyl Trifluoroacetate. Triethylsilane (15.0 g, 0.13 
mol) was added to a stirred solution of trifluoroacetic acid (29.4 g, 
0.26 mol) and trifluoroacetic anhydride (3 ml), causing an immedi­
ate exothermic reaction. After 72 hr no triethylsilane was detected. 
Distillation at 17 Torr through a 17-cm Vigreux column yielded 
52% of triethylsilyl trifluoroacetate, bp 61-66° [lit.26 bp 153° (760 
Torr)]. Even at the low temperature used for distillation hexaeth 
yldisiloxane was formed in measureable quantities; redistillation 
through a short-path column gave triethylsilyl trifluoroacetate 
which was >99% pure by GLC analysis.

Equilibrium Measurements. Stirred solutions of trifluoroacet­
ic acid and cyclohexyl triethylsilyl ether or of trifluoroacetic acid, 
cyclohexanol, and triethylsilyl trifluoroacetate were analyzed by 
GLC at various times. Reactions using 1 and 10 equiv of trifluo­
roacetic acid (based on cyclohexyl triethylsilyl ether or equivalent 
amounts of cyclohexanol and triethylsilyl trifluoroacetate) were 
performed at 25°. Samples were quenched with excess saturated 
aqueous sodium bicarbonate and extracted twice with ether. (Con­
trol experiments showed that triethylsilyl trifluoroacetate was con­
verted quantitatively to triethylsilanol by aqueous bicarbonate 
and that the silyl ether and cyclohexyl trifluoroacetate were not 
hydrolyzed during the work-up procedure.) The combined ether
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extract was dried over anhydrous magnesium sulfate and filtered, 
and the ether was evaporated under reduced pressure. In a typical 
run samples were removed at 25 sec, 1, 5, 10, and 30 min. The equi­
librium ratio from eq 6 was constant until cyclohexyl trifluoroace- 
tate had begun to form (> 10 min when 1 equiv of trifluoroacetic 
acid was used; 3 min when 10 equiv of acid was employed). When 1 
equiv of trifluoroacetic acid was used the equilibrium ratio was at­
tained at 5 min; equilibrium was achieved prior to the removal of 
the first sample (<30 sec) when 10 equiv of trifluoroacetic acid was 
employed.

Triethylsilane Reduction of Cyclohexanone. Product Anal­
ysis with Time. Trifluoroacetic acid (17.8 mmol) was added to a 
stirred solution of cyclohexanone (34.3 mmol), triethylsilane (33.5 
mmol), and two GLC standards, phenylcyclohexane and 1-octyl 
ether. Aliquots were removed at intervals and quenched with ex­
cess “ Tri-Sil” , hexamethyldisilazane, trimethylchlorosilane in pyr­
idine. This quenching procedure was used to enhance GLC separa­
tion of reaction components and to provide symmetrical peaks for 
analysis. Control experiments showed that cyclohexyl triethylsilyl 
ether and cyclohexyl trifluoroacetate were not affected by the 
quenching procedure and that cyclohexanol was quantitatively 
converted to the trimethylsilyl derivative. Quenched samples were 
stored in a freezer prior to analysis. At reaction times between 5 
min and 6 hr GLC analysis gave product yields which corre­
sponded to the equilibrium value for eq 6. Similar results were ob­
tained using a quenching procedure similar to that described for 
the equilibrium studies, but analyses were significantly more diffi­
cult owing to unsymmetrical and overlapping peaks. For the ali­
quot removed at 250 sec the product ratio was determined to be 
0.4; however, at this and shorter reaction times GLC peaks having 
similar areas to those of the reaction components (—0.2 mmol) and 
retention times overlapping with cyclohexyl trimethylsilyl ether 
interfered with the silyl ether and prevented an accurate determi­
nation of this compound. At no time was the level of cyclohexyl 
triethylsilyl ether greater than that of the trimethylsilyl derivative 
of cyclohexanol.

Di-teri-butylmethylsilanol and Di-fert-butylmethylsilyl 
Trifluoroacetate. Di-iert-butylmethylsilanol was prepared by 
the di-ferf-butylmethylsilane reduction of acetone. The reaction 
mixture was quenched with excess 3 N sodium hydroxide, refluxed 
under the basic conditions for 24 hr, cooled, and extracted three 
times with pentane. The combined pentane extract was washed 
three times with water, dried over anhydrous magnesium sulfate, 
and filtered, and the pentane was evaporated under reduced pres­
sure. The resulting solid was sublimed at 0.2 Torr to give a waxy 
white solid, mp 45-48° (46.5-48.5° after GLC purification), in 62% 
yield: ir (film) 3480 (broad, O-H), 1380, 1360 (f-Bu), 1250, and 800 
cm“ 1; 'H  NMR (CCL,) 5 1.24 (s, 1 H, OH), 1.02 (s, 18 H, f-Bu), and 
0.03 (s, 3 H, CHs).

Anal. Caled for C9H22SÍO: C, 62.00; H, 12.72; Si, 16.11. Found: C, 
62.18; H, 12.71; Si, 16.24.

Trifluoroacetolysis of ái-tprl - butylmethylsilanol with trifluo­
roacetic anhydride gave di-fert-butylmethylsilyl trifluoroacetate: 
ir (film), 1780, 1470, 1390, 1365 and 820 c m 1; 'H NMR (CC14) b
1.09 (s, 18 H) and 0.42 (s, 3 H).

Anal. Caled for C11H21F3O2SÍ: C, 48.87; H, 7.83; Si, 10.39. 
Found: C, 49.02; H, 7.93; Si, 10.19.

Cyclohexanone Reductions by Di-tert-butylmethylsilane. 
Product Analyses. Reductions of 4-feri-butylcyclohexanone and
4-methylcyclohexanone were run as previously described.2 Alkene, 
alcohol, trifluoroacetate, and silyl ether products were identified 
by *H NMR and GLC methods through comparison with authentic 
samples. For the reduction of 4-ferf-butylcyclohexanone in the 
presence of trans -4-methylcyclohexanol, ketone (3.0 mmol), di­
ferí- butylmethylsilane (3.2 mmol), and alcohol (2.5 mmol) were 
weighed into a round-bottom flask and 8.7 mmol of trifluoroacetic 
acid was added. The homogeneous solution was stirred at room 
temperature, and aliquots were removed at various times over a
3-hr period. Concurrently, 4-methylcyclohexanone (2.8 mmol) was 
reduced by di-ferf-butylmethylsilane (3.2 mmol) in trifluoroacetic 
acid (8.7 mmol), and aliquots were removed at reaction times com­
parable to those for the 4-terf-butylcyclohexanone reduction. The

isomeric 4-methylcyclohexyl di-terf-butylsilyl ethers were identi­
fied by 'H NMR (b 3.95 and 3.35 for the methine hydrogen of the 
cis and trans isomers, respectively) and GLC methods. No trace of 
the 4-methylcyclohexyl silyl ethers (<0.5% of the 4-terf-butylcy- 
clohexyl silyl ether) was observed during the 3-hr reaction period 
for the reduction of 4-fert-butylcyclohexanone. Although frans-4- 
methylcyclohexanol was slowly converted to the corresponding tri­
fluoroacetate, the amount of this alcohol present during the reduc­
tion of 4-tert-butylcyclohexanone was always greater than that of
4-ferf-butylcyclohexanol.

Registry No.—cis-ROSiMe(f-Bu)2, 56889-82-8; trans ROSi 
Me(f-Bu>2, 56889-83-9; cis-R 02CCF3, 7556-86-7; trans-R 0 2CCF3, 
7600-15-9; di-terf-butylmethylsilanol, 56889-84-0; di-fert-butyl- 
methylsilyl trifluoroacetate, 56889-85-1.
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The carbanion obtained from the ethylene ketal of 4-carbomethoxycyclohexanone (LDA) was treated with ben­
zyl chloride to give the corresponding 4-benzylated derivative. Protecting groups were removed and the resulting 
keto acid cyclized to spiro[cyclohexane-l,2'-indan]-l',4-dione. This was converted in several steps to spiro[cyclo- 
hexane-l,2'-indan]-4-one. Preparation of analogues substituted by methoxyl in the aromatic ring is described. 
The ketone was transformed to the primary amine in several steps. Preparation of derivatives of the amines in­
cluding the p-fluorobutyrophenones is described. Analogues containing hydroxy and exomethylene substituents 
in the five-membered ring were prepared by a modification of the synthesis. The stereochemistry of the exo­
methylene compound is discussed.

W e have reported earlier on the preparation and CNS 
activity o f a series o f  derivatives o f  4-arylcyclohex-3-en- 
ylamines ( l ) 1 and 4-arylcyclohexylam ines (2).2 The obser­
vation that the ortho-substituted derivatives (la,b, 2a,b) in

la, X = o-CR, 2a, X = o-CH;,
b, X = o-OCH;, b, X = o-OCH,

each series showed considerable biological activity was con ­
sidered o f  particular interest; interaction o f  the ortho sub­
stituent with the equatorial proton on the adjacent alicyclic 
ring make it likely that the preferred conform ation o f  these 
molecules is one in which the two rings are in some skewed 
arrangement. W e thus decided to  prepare analogues o f  
those com pounds in which those rings would be actually 
locked orthogonal to  each other. The classic means for 
achieving this— at the cost o f  a slight increase in the ring to 
ring distance— lies in the preparation o f  the corresponding 
benzospirans.

The key to entry to  the desired carbon skeleton was pro­
vided by the recently developed strong nonnucleophilic 
base, lithium diisopropylam ide (LD A). Thus, treatment o f 
the ethylene ketal (3) obtained from  4-carbom ethoxycyclo­
hexanone3 with LD A follow ed by benzyl chloride afforded 
the alkylation product (4a) in good yield (Scheme I).

T he highly hindered ester grouping o f  4, not surprisingly, 
proved refractory to saponification; the transformation 
was, however, achieved in good yield by means o f  sodium 
hydroxide in refluxing ethylene glycol. Deketalization o f 
the crude acidic product (dilute hydrochloric acid in ace­
tone) afforded the keto acid 6a. Cyclization to  the benzos- 
piran skeleton (7a) was effected in m odest yield by means 
o f liquid hydrogen fluoride. T he parent com pound (7a) was 
accom panied by a trace o f  a product whose mass spectrum 
and elemental analysis suggested that the carbonyl group 
o f  the cyclohexane had reacted to  form  the corresponding 
difluoro derivative (10), an unusual reaction under the mild 
conditions em ployed.

Treatm ent o f  the diketone 7a with 1 equiv o f  ethylene 
glycol under the usual conditions for ketalization went in 
straightforward manner to afford the m onoketal 8a; the ir 
spectrum o f the product (cmax 1690 cm -1 ) confirm s that the 
more reactive cyclohexanone carbonyl has in fact under­
gone reaction. Reduction o f the free carbonyl group was 
then achieved by means o f the H uang-M inlon m odification 
o f the W olff-K ishn er reaction. T he amazingly simple N M R  
spectrum o f the product, 9a, which consists o f  but four sin­
glets (ArH, & 7.12, 4 H; ketal & 4.0, 4 H; ArCH 2, 5 2.8, 4 H;

Scheme I

/ — \ 0 - ,
c r a c — \ _ y (

CM

4a, R = H; R' = CH;i 
b, R =  m-OCH,; R '=  CH, 

5a, R = R' = H 
b, R = m-OCH,; R' = H

6a, R = H 
b, R = m-OCH, 7a, R = H

b. R = OCR.

x t p M T C o :
0

8a, R = H 
b, R = OCH ,

9a. R = H
b. R = OCH,

cyclohexane C H 2, <5 1.67, 8 H ), at the same time confirm s 
the structure o f  the product and attests to  the high degree 
o f  symm etry o f the molecule. T he corresponding analogue 
substituted by m ethoxyl (9b) group was prepared in the 
same manner by Using the m eta-substituted benzyl ch lo­
rides in the initial alkylation step. W olff-K ish n er reaction 
o f  the m ethoxy analogue (8b) afforded the phenolic hydra-

8b
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Scheme II

9a-c

l

12a, R =  H 13a, R =  R' =  H
b. R =  OCH, b, R =  OCH3; R' =  H

14a, R =  H; R' =  SO.CH, 
b, R =  OCH;,; R' =  SOoCH;,

20 15a, R =  H
b, R =  OCH;,

18a, R =  R' =  H 
b, R =  OCH,,; R' =  H 

19a, R =  H; R' =  CH; 
b, R =  OCH,,; R' =  CH,,

zone 11 in significant amounts. It is considered likely that 
som e portion o f  the starting material or its hydrazone may 
undergo base-catalyzed ether cleavage under the strongly 
basic conditions;4 the presence o f the negative charge on 
the phenoxide may then inhibit form ation o f  the hydrazine 
anion required for com pletion o f the reduction.

Rem oval o f the ethylene ketal by means o f dilute aque­
ous acid in acetone followed by reduction o f the resulting 
ketones (12a,b) by means o f sodium borohydride afforded 
the corresponding alcohols (13a,b) (Schem e II). These last 
were converted to the primary amines (15a,b) by a conve­
nient three-step sequence which consists o f  conversion o f 
the alcohol to its mesylate, displacem ent o f  the leaving 
group by means o f sodium azide in D M F, and finally reduc­
tion o f  the crude azide with lithium aluminum hydride. R e ­
action o f the parent amine 15a with 1,5-diiodopentane gave 
the corresponding piperidine 20.

Each o f the primary amines was then converted to its 
carbamate by means o f  ethyl chloroform ate. Reduction o f 
these acylated products with lithium aluminum hydride 
gave the N-m ethylated analogues (17a,b). It has been fre­
quently shown that central nervous system activity o f 
amines is maximized by conversion o f these to the p -flu o - 
robutyrophenone derivatives.5 Both primary and secondary 
amines were thus alkylated with the neopentyl glycol ketal 
o f  4-chloro-p-fluorobutyrophenone. B rief exposure o f  the 
alkylation product to  aqueous methanolic acid afforded the 
butyrophenone derivatives (18a,b, 19a,b).

Turning our attention to the functionality present in the 
five-m em bered ring in one o f the intermediates, we found 
the carbonyl group o f 8a to  be surprisingly inert toward so­
dium borohydride. Reduction by means o f lithium alum i­
num hydride afforded an oily alcohol, which was character­
ized as its crystalline acetate 23. Reduction  o f  the cyclo­
hexanone obtained on deketalization (23) again afforded an 
oily product; both  N M R  and T L C  suggested that this con ­
sisted largely o f  one o f  the two possible hydroxy acetates 
(syn and anti OH and OAc). Isolation o f a hom ogeneous 
crystalline mesylate in 65% yield from  treatment o f  the 
m ixture with methanesulfonyl chloride in pyridine con ­
firms the predom inance o f one isomer. It is, however, haz­
ardous to  assign configurations in this case without both  
isomers in hand.6 The mesylate 25 was then taken on to the 
amine 26 by the azide displacem ent scheme. Alkylation as 
above afforded the p -fluorobutyrophenone 27.

OH OR
21 22, R =  H

23, R =  Ac

24, R =  H 26, R =  H
25, R = S02CH„ 0

27, R =  CH2CH,CH2C(p-FC6H4)

Reaction o f  ketone 8a with méthylmagnésium brom ide 
proceeds uneventfully to afford the tertiary alcohol 28. An 
attem pt to deketalize this com pound under the usual mild 
conditions, surprisingly resulted in dehydration o f the a lco ­
hol to afford the e x o -methylene ketone 29. The ketone was

HO CH,, CH,
28 29

then reduced by means o f sodium borohydride. Careful 
chrom atography o f the product afforded first a trace o f  an 
alcohol whose N M R  spectrum was consistent with an axial 
hydroxyl group; the bulk o f the product had an N M R  con ­
sistent with an equatorial group. Exam ination o f molecular 
m odels o f  the starting ketone reveals two conform ations 
which contain a chair cyclohexane (A, B). O f these, B is 
perhaps slightly favored since it does not contain the inter­
action o f the exomethylene group with the axial protons on 
the 3 positions on the cyclohexane. Granting this assum p­
tion, the equatorial alcohol obtained from  this conform er 
would be formulated as in 30. Form ation o f the mesylate 
gave 31. This is o f course inverted in the azide displace­
m ent step; the amine obtained by reduction o f the azide is 
thus tentatively formulated as 32. Alkylation o f  this last 
product with 1,5-diiodopentane affords the piperidine 33; 
reaction with the neopentyl glycol ketal o f  4 -ch loro-p -fluo- 
robutyrophenone followed by hydrolysis gives butyrophen­
one 34.

Finally, nitrogen was introduced as an attachm ent to the 
aromatic ring. Treatm ent o f  a solution o f  the ketone 12a in 
trifluoroacetic acid in the cold with a lim ited am ount o f n i­
tric acid gave the corresponding nitro com pound in modest 
yield. Reduction o f 35 was accom plished by catalytic hy-
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CH,
34

drogenation. Since the free amine proved rather unstable, 
the com pound was characterized as its acetamide (37).

36. R =  H
37, R =  Ac

Experimental Section7
4-Carbomethoxycyclohexanone Cyclic Ethylene Acetal (3).

A mixture of 17.41 g (0.11 mol) of 4-carbomethoxycyclohexanone,:i
6.25 ml of ethylene glycol, and 0.25 g of p-toluenesulfonic acid in 
200 ml of benzene was heated at reflux under a Dean-Stark trap 
for 5 hr. The mixture was allowed to cool, washed in turn with sat­
urated aqueous sodium bicarbonate, water, and brine, and taken to 
dryness. The residual oil was distilled at 0.5 mm to afford 20.0 g 
(91%) of product: bp 96-100°; ir 2960, 1735, 1195, 1170, 1135, 1105, 
and 925 cm-1.

Anal. Calcd for C10H16O4: C, 59.98; H, 8.06. Found: C, 60.15; H,
8.45.

4-Benzyl-4-carbom ethoxy-l-cyclohexanone Cyclic Ethyl­
ene Acetal (4a). To a solution of 5.0 g (0.05 mol) of diisopro­
pylamine in 50 ml of THF cooled in ice-MeOH there was added 
over 5 min 32 ml of 1.57 N  BuLi in pentane. There was then added 
in turn 10.0 g (0.05 mol) of 4-carbomethoxy-l -cyclohexanone cyclic 
ethylene acetal in 50 ml of THF (15 min) and 8.50 g (0.05 mol) of 
a-bromotoluene in 15 ml of THF (5 min). The clear solution was 
stirred at room temperature for 1 hr, cooled in ice again, and treat­
ed with 50 ml of saturated NH4CI. The organic layer was sepa­
rated, diluted with CgHs, and washed in turn with H2O, ice-cold 1 
N  HC1, NaHCOg, and brine. The oil which remained when the or­
ganic layer was taken to dryness was distilled at 0.25 mm to afford 
13.57 g (93.5%) of product as a viscous oil: bp 155-156°; NMR i> 1.7 
(m, 8, CH,), 2.8 (s, 2, ArCH*), 3.58 (s, 3, OCH;t), 3.93 (s, 4, ketal),

7.18 (m, 5, ArH); ir 2950, 1725, 1210, 1190, 1150, 1105, and 705 
cm-1.

Anal. Calcd for C17H22O4: C, 70.32; H, 7.64. Found: C, 69.94; H, 
7.60.

4 -(m -M ethoxybenzyl)-4 -carbom ethoxy-l-cyclohexanone 
Cyclic Ethylene Acetal (4b). The ester (19.6 g, 0.0995 mol) was 
alkylated as above with 15.3 g of m-methoxybenzyl chloride to give 
22.32 g (70%) of ester acetal: bp 159-165° (0.2 mm); ir 2950, 1725, 
1260,1205,1190, 1155, and 1105 cm“ 1.

Anal. Calcd for C18H24O5: C, 67.48; H, 7.55. Found: C, 67.71; H, 
7.81.

l-Benzyl-4-cyclohexanone-l-carboxylic Acid (6a). A mix­
ture of 16.64 g (0.057 mol) of the ester ketal and 2.5 g of KOH in 
100 ml of ethylene glycol was stirred at reflux overnight. The mix­
ture was then allowed to cool and diluted with H ,0. The solution 
was washed once with H2O and then made strongly acidic with 
concentrated HC1. The precipitated gum was extracted with Et20 
and this solution washed in turn with H2O and brine and taken to 
dryness. A solution of the residue and 13 ml of 2.5 N  HCI in 130 ml 
of Me2CO was stirred at room temperature for 20 hr. The bulk of 
the solvent was then removed under vacuum and the residue dis­
solved in ether. The organic layer was washed with water and brine 
and taken to dryness. The residual gum was chromatographed on 
800 ml of acid-washed silica gel (elution with 4% AcOH in CH2CI2). 
The crystalline fractions were combined and recrystallized twice 
from CH2Cl2-cyclohexane. There was obtained 5.62 g (42%) of the 
keto acid: mp 120-123°; ir 3160, 1730, 1690, 1220, 1180, and 705 
cm-1.

Anal. Calcd for C14Hie0 3: C, 72.39; H, 6.94. Found: C, 72.24; H,
6.86.

4-(m -M ethoxybenzyl)-l-cyclohexanone-l-carboxylic Acid 
(6b). Ester ketal 4b (24.3 g, 0.076 mol) was saponified and isolated 
as above. The resulting solid was recrystallized twice from EtaO- 
Skellysolve B (SSB)8 to give 7.8 g (36%) of the desired keto acid, 
mp 109-112.5°, and a second crop of 3.82 g (19%) of product: mp
109-111°; ir 3040,1730, 1690, 1260, 1185, 1155, and 1050 cm "1.

Anal. Calcd for Ci5H 180 4: C, 68.68; H, 6.92. Found: C, 68.30; H, 
6.92.

Spiro[cyclohexane-l,2 '-indan]-l',4-dione (7a). To 100 ml of 
freshly distilled hydrogen fluoride there was added 14.63 g (0.063 
mol) of the keto acid. The solution was allowed to stand at room 
temperature for 18 hr and then poured cautiously into saturated 
NaHCOs. The precipitated gum was extracted with CbH6. The or­
ganic layer was washed with H2O, NaHCOs, and brine and taken 
to dryness. The residue was chromatographed over 1.5 1. of silica 
gel (elution with 20% Me2CO in SSB). There was obtained first a 
small amount of by-product followed by 10.50 g (78%) of spiro di­
ketone, mp 70.5-72°. A small sample from another run was ob­
tained as polymorph to mp 61-64°; ir 1705, 1600. 1285, and 740 
cm-1.

Anal. Calcd for C14H1402: C, 78.48; H, 6.59. Found: C, 78.43; H, 
6.59.

The less polar by-product was recrystallized from petroleum 
ether to give 0.28 g of product (10): mp 77-78°; ir 1705, 1290, 1270, 
1115, 1065, 1000, 915, and 730 c m '1.

Anal. Calcd for C14H14F2O: C, 71.17; H, 5.97; mol wt, 236. 
Found: C, 71.18; H, 6.01; mol wt, 236.

5 '-M ethoxyspiro[cyclohexane-l,2 '-indan]-l',4-dione (7b). A 
suspension of 15.63 g (0.060 mol) of keto acid and 12.5 g of PCI5 in 
190 ml of CgHsCl was stirred mechanically under reflux for 1.5 hr 
and at room temperature for 1.5 hr. The mixture was then cooled 
in ice and treated with 6.85 ml of SnCR. Following 0.5 hr of stirring 
in the cold and 18 hr at room temperature there was added 96 ml 
of 2.5 N  HCI over 10 min. Following an additional 1 hr of stirring, 
the organic layer was separated, washed with H ,0, NaHCOs, and 
brine, and taken to dryness. The residue was chromatographed on 
1.2 1. of silica gel (elution with 10% EtOAc in CHsCl,). The crystal­
line fractions were combined to give 7.51 g (51%) of product: mp 
105-107°; ir 1710, 1685, 1600, 1275, 1250, and 1095 cm“ 1.

The analytical sample melted at 110-112°.
Anal. Calcd for C15H16O3: C, 73.75; H, 6.60; mol wt, 244. Found: 

C, 73.75; H, 6.65; mol wt, 244.
Spiro[cyclohexane-l,2 '-indan]-l',4-dione Cyclic 4-(Ethyl- 

ene Acetal) (8a). A mixture of 1.77 g (0.0083 mol) of the diketone, 
0.51 g (0.46 ml, 0.0082 mol) of ethylene glycol, and 0.10 g of p-TSA 
in 50 ml of Cc,He was heated at reflux under a Dean-Stark trap for 
4 hr. The mixture was allowed to cool, washed in turn with 
NaHCOs, HsO, and brine, and taken to dryness. The residual solid 
was recrystallized from cyclohexane to afford 1.67 g (75%) of mo­
noacetal: mp 158-160.5°; NMR <5 1.90 (m, 8, CH2), 3.05 (s, 2,
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ArCH2), 4.0 (s, 4, ketal) 7.5 (m, 4, ArH); ir 1700, 1295, 1115, 1075, 
935, 890, and 735 cm -1.

Anal. Calcd for C16H18O3: C, 74.39; H, 7.02; mol wt, 258. Found: 
C, 73.99; H, 6.98; mol wt, 258.

5'-Methoxyspiro[cyclohexane-l,2'-indan]-l',4-dione Cyclic 
4-(Ethylene Acetal) (8b). The diketone (4.89 g, 0.0196 mol) was 
ketalized as above to yield 4.13 g (73%) of monoacetal: mp 142- 
144°; ir 1695, 1600, 1280, 1255,1100, and 1080 cm“ 1.

Anal. Calcd for C17H20O4: C, 70.81; H, 6.99. Found: C, 71.06; H,
7.19.

Spiro[cyclohexane-l,2'-indan]-4-one Cyclic Ethylene Ace­
tal (9a). A mixture of 5.0 g (0.0194 mol) of the ketone, 2.6 ml of 
N2H4-H20 , and 3.76 g of KOH in 50 ml of ethylene glycol was heat­
ed at reflux for 1.5 hr. Material was then removed by distillation to 
bring the pot temperature to 200°. At the end of an additional 5 hr 
heating at reflux, the mixture was allowed to cool and diluted with 
H20. The precipitated solid was collected on a filter, dried, and re­
crystallized from petroleum ether. There was obtained 4.00 g (85%) 
of reduced product: mp 70-74°; ir 1100, 1065, 1040, 755, and 735 
cm“ 1.

Anal. Calcd for C16H2o02: C, 78.65; H, 8.25. Found: C, 78.39; H,
8.19.

5'-Methoxyspiro[cyclohexane-l,2'-indan]-4-one Cyclic Eth­
ylene Acetal (9b) and 5'-Hydroxyspiro[cyclohexane-l,2'- 
indan]-l',4-dione Cyclic 4-(Ethylene Acetal) l'-Hydrazone 
(11). A mixture of 4.57 g (0.0158 mol) of ketone, 2.45 g of N2H4- 
H20, and 3.15 g of KOH in 40 ml of ethylene glycol was heated at 
reflux for 1 hr. Solvent was removed by distillation to bring the re­
action mixture to 200°. Following 1.5 hr at this temperature the 
mixture was poured into H20, and this was extracted well with 
Et20 . The organic fractions were combined and taken to dryness. 
The residue was chromatographed on 250 ml of silica gel (elution 
with 10% Me2CO in SSB). There was obtained 2.07 g (48%) of 
product, mp 59-61°. The analytical sample from an earlier run 
melted at 65-66.5°: ir 1495,1265,1100,1030, and 820 cm-1.

Anal. Calcd for Ci7H220 3: C, 74.22; H, 8.08. Found: C, 74.57; H, 
8.24.

The aqueous portion above was “ acidified” with solid C 02. The 
precipitated solid was collected on a filter and recrystallized from 
MeOH. There was obtained 0.51 g of by-product: mp 243-246°, 
285-290°; ir 3340,1605,1595, and 1275 cm“ 1.

Anal. Calcd for Ci6H2oN203: C, 66.69; H, 6.99; N, 9.71; mol wt, 
288. Found: C, 66.16; H, 7.14; N, 9.96; mol wt, 288.

Spiro[cyclohexane-l,2'-indan]-4-ol (13a). A mixture of 4.0 g 
(0.016 mol) of acetal and 8 ml of 2.5 N  HC1 in 80 ml of Me2CO was 
heated at reflux for 4 hr. The bulk of the solvent was removed 
under vacuum and Et20  was added. The organic layer was sepa­
rated, washed with H20  and brine, and taken to dryness. The resi­
due was chromatographed on 350 ml of silica gel (elution with 
CH2C12). Those fractions similar by TLC were combined to afford 
the ketone as an amorphous gum: NMR 5 2.18 (A2B2, 8, CH2), 2.95 
(s, 4, ArCH2), 7.18 (s, 4, ArH).

To a solution of 8.33 g (0.042 mol) of the crude oily ketone in 85 
ml of EtOH there was added 1.60 g of NaBH4. Following 6 hr stir­
ring at room temperature the bulk of the solvent was removed 
under vacuum. The residue was taken up in Et20  and H20. The 
organic layer was washed with H20  and brine and taken to dry­
ness. The residue was chromatographed on 800 ml of silica gel (elu­
tion with 1% Me2CO in CH2C12). The crystalline fractions were 
combined and recrystallized from petroleum ether to give 5.52 g 
(66%) of product: mp 76-78°; ir 3270, 1080, 1050, and 735 
cm-1.

Anal. Calcd for C14Hi80 : C, 83.12; H, 8.97. Found: C, 83.33; H, 
8.92.

5'-Methoxyspiro[cyclohexane-l,2'-indan]-4-ol (13b). The
acetal (2.87 g, 0.0105 mol) was hydrolyzed as above to give 1.95 g 
(81%) of ketone: mp 89-91°; ir 1715, 1495, 1290, 1245, and 1030 
cm-1.

Anal. Calcd for C15His02: C, 78.23; H, 7.88. Found: C, 77.96; H,
7.96.

This was reduced (NaBH4) to give the alcohol as an oil.
Spiro[cyclohexane-l,2'-indan]-4-ol Methanesulfonate 

(14a). A mixture of 5.52 g (0.027 mol) of the alcohol in 50 ml of ice- 
cold pyridine was treated with 5.5 ml of CH3SO2CI. Following 7 hr 
standing in the cold the mixture was diluted with ice-H20. The 
precipitated solid was recrystallized from Me2CO-SSB to give 7.15 
g (93%) of mesylate: mp 100-102°; ir 1355, 1345, 1340, 1330, 1185, 
1160, 920, and 905 cm -1.

Anal. Calcd for C15H20O3S: C, 64.25; H, 7.19. Found: C, 63.87; H, 
7.50.

5'-Methoxyspiro[cyclohexane-l,2'-indan]-4-ol Methanesul­
fonate (14b). The alcohol (1.86 g, 0.0080 mol) was acylated as 
above to give 2.10 g (85%) of mesylate: mp 63-67; ir 1490, 1350, 
1245,1170,950, and 855 cm“ 1.

Anal. Calcd for C16H220 4S: C, 61.91; H, 7.14. Found: C, 61.80; H, 
7.14.

Spiro[cyclohexane- l,2'-indan]-4-amine Hydrochloride 
(15a). A mixture of 7.15 g (0.0256 mol) of the mesylate and 7.0 g of 
sodium azide in 70 ml of DMF was stirred in an oil bath at 90° for 
17 hr. The solvent was then removed under vacuum and the resi­
due dissolved in C6H6 and H20. The organic layer was washed 
with H20  and brine and taken to dryness.

A solution of the crude azide in 75 ml of THF was added to a 
well-stirred suspension of 1.0 g of LiAlH4 in 25 ml of THF. Fol­
lowing 5 hr of stirring at room temperature, the mixture was 
cooled in ice and treated in turn with 1 ml of H20 , 1 ml of 15% 
NaOH, and 3 ml of H20. The inorganic gel was removed by filtra­
tion and the filtrate taken to dryness. The residue was dissolved in 
Et20  and this treated with 5 N  HC1 in Et20 . The precipitated 
solid was recrystallized from MeOH-EtOAc to give 4.58 g (76%) of 
amine: mp 280-282°; ir 3000, 1500,1485, 755, and 740 cm-1.

Anal. Calcd for Ci4H20ClN: C, 70.71; H, 8.48; N, 5.89. Found: C, 
70.68; H, 8.55; N, 5.69.

5'-Methoxyspiro[cyclohexane-l,2'-indan]-4-amine Hydro­
chloride (15b). The mesylate (2.10 g, 0.0068 mol) was converted 
to the azide and this reduced as above to give 0.69 g (38%) of prod­
uct: mp 274-277°; ir 3130, 1580, 1495, 1290,1250, and 1035 cm "1.

Anal. Calcd for Ci5H22C1NO: C, 67.27; H, 8.28; N, 5.23. Found: 
C, 67.25; H, 8.18; N, 4.98.

Concentration of the mother liquors afforded 0.43 g (23%) of an 
apparently polymorphic form of the product, mp 246-248°.

Anal. Found: C, 66.98; H, 8.50; N, 4.87; m/e 231.
4'-Fluoro-4-(spiro[cyclohexane-l,2'-indan]-4-yl)amine 

Butyrophenone Hydrochloride (18a). To a solution of 1.12 g 
(0.0047 mol) of the amine hydrochloride in 30 ml of DMF there 
was added 0.22 g of NaH. Following 1 hr of stirring at room tem­
perature there was added 0.81 g of KI, 1.32 g of K2CC>3, and 1.14 g 
of 4-chloro-p-fluorobutyrophenone 2,2-dimethylpropylene acetal. 
The mixture was then stirred overnight in an oil bath at 90°. The 
solvent was removed under vacuum and the residue dissolved in 
CeHe and H20. The organic layer was washed with H20  and brine 
and taken to dryness. The residue was then stirred with 15 ml of 
MeOH and 7.5 ml of 2.5 N  HC1 for 2 hr. The bulk of the MeOH 
was removed under vacuum and the solid collected on a filter. Two 
recrystallizations from CH2Cl2-EtOAc afforded 0.84 g (46%) of 
product: mp 195-198°; ir 2760, 2500,1680,1595,1155, 835, and 770 
cm-1.

Anal. Calcd for C24H29C1FN0: C, 71.71; H, 7.27. Found: C, 71.68; 
H, 7.14.

4'-Fluoro-4-[5’-methoxyspiro[cyclohexane-l,2'-indan]-4- 
yl)aminobutyrophenone Hydrochloride (18b). The amine hy­
drochloride (0.69 g, 0.0026 mol) was alkylated and the product iso­
lated as above to give 0.52 g (46%) of product: mp 190-193°; ir 
2760,1680,1600,1495,1290,1275, and 1240 cm“ 1.

Anal. Calcd for C25H3iC1FN02: C, 69.51; H, 7.23; N, 3.24. Found: 
C, 69.62; H, 7.20; N,3.11.

Spirofcyclohexane-1,2'-indan]-4-methylamine Hydrochlo­
ride (17a). A suspension of 3.03 g (0.0128 mol) of the salt in 
CH2C12 was shaken with 1 N  NaOH until the solid had all dis­
solved. The organic layer was separated and taken to dryness. To 
an ice-cooled solution of the residue in 25 ml of pyridine there was 
added dropwise 2 ml of ClC02C2Hs. At the end of 5 hr in the cold 
the mixture was poured onto ice-H20. The precipitated solid was 
recrystallized from SSB to give 2.90 g (83%) of carbamate, mp 70- 
73°.

A solution of 2.90 g (0.0106 mol) of the carbamate in 50 ml of 
THF was added to a well-stirred suspension of 0.50 g of LiAlH4 in 
25 ml of THF. The mixture was heated at reflux for 6 hr and then 
cooled in ice. There was added in turn 0.5 ml of H20, 0.5 ml of 15% 
NaOH, and 1.5 ml of H20. The inorganic gel was collected on a fil­
ter and the filtrate taken to dryness. A solution of the residue in 
Et20  was treated with 6 JV HC1 in Et20 . The precipitate was re­
crystallized from CH2Cl2-l(leOH-EtOAc to give 1.80 g (66%) of 
product, mp 251-254°.

Anal. Calcd for C15H22C1N-1/JH20: C, 69.88; H, 9.22; N, 5.43. 
Found: C, 69.99; H, 8.55; N, 5.25. 

5'-Methoxyspiro[cyclohexane-l,2'-indan]-4-methylamine
Hydrochloride (17b). Reduction of the waxy carbamate, pre­
pared as above, afforded on work-up a 35.1% yield of the secondary 
amine hydrochloride, mp 225-229°.
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Anal. Calcd for Ci6H24CLNO-%CH3OH: C, 66.53; H, 8.80; N, 
4.70. Found: C, 66.74; H, 8.54; N, 4.82.

4'-Fluoro-4-[methyl(spiro[cyclohexane-l,2'-indan]-4-yl)- 
aminojbutyrophenone Hydrochloride (19a). Alkylation of the 
secondary amine (1.0 g, 0.0040 mol) with the neopentyl glycol ace­
tal of 4-chloro-p-fluorobutyrophenone followed by hydrolysis and 
work-up afforded 0.77 g (45%) of product: mp 195-197°; ir 2450, 
1675,1595,1225,1150, 830, and 730 cm "1.

Anal. Calcd for C25H31C1FN0: C, 70.65; H, 7.35; N, 3.29. Found: 
C, 71.10; H, 7.44; N, 3.20.

4'-Fluoro-4-[methyl(5'-methoxyspiro[cycIohexane-l,2'-in- 
dan]-4-yl)amino]butyrophenone, Hydrochloride (19b). Pro­
ceeding exactly as above, alkylation of the amine (0.84 g, 3.0 mmol) 
with 4-chloro-p-fluorobutyrophenone-2,2-dimethylpropylene ace­
tal followed by hydrolysis afforded 0.45 g (33.6%) of the butyro- 
phenone as an amorphous foam.

l-Spiro[cyclohexane-l,2'-indan]-4-yl Piperidine Hydro­
chloride (20). To a suspension of 1.53 g (0.0065 mol) of the amine 
hydrochloride in 30 ml of EtOH there was added 1.58 ml of 4.2 N  
NaOMe in MeOH. Following 1 hr of stirring 1.62 g of K2CO3 and 
0.97 ml of 1,5-diiodopentane were added and the mixture brought 
to reflux. At the end of 18 hr the mixture was allowed to cool and 
the bulk of the solvent removed under vacuum. The residue was 
partitioned between Et20  and H20. The organic layer was washed 
with H20  and brine and taken to dryness. The residual solid was 
dissolved in Et20  and this treated with 5 N  HC1 in Et20. The re­
sulting precipitate was recrystallized from CH2Cl2-EtOAc to af­
ford 1.53 g (77%) of product: mp 282-286°; ir 2620, 2520, 1038, 755, 
and 730 cm-1.

Anal. Calcd for Ci9H28C1N: C, 74.60; H, 9.23; N, 4.58. Found: C, 
74.33; H, 9.27; N, 4.71.

l'-Hydroxyspiro[cyclohexane-l,2'-indan]-4-one Cyclic Eth­
ylene Acetal (21). A solution of 2.60 g (0.010 mol) of the ketone in 
50 ml of THF was added to a well-stirred suspension of 0.50 g of 
LiAlH4 in 10 ml of THF. The mixture was stirred at room temper­
ature for 5 hr, cooled in ice, and treated in turn with 0.5 ml of H20, 
0.5 ml of 15% NaOH, and 1.5 ml of H20. The inorganic gel was re­
moved by filtration and the filtrate taken to dryness. The residue 
was recrystallized from cyclohexane to give 2.45 g (95%) of prod­
uct: mp 125-128°; ir 3450,1090, 1035, 1025, 755, and 725 cm“ 1.

Anal. Calcd for Ci6H20O3: C, 73.82; H, 7.74. Found: C, 73.48; H,
7.78.

l'-Acetoxy(cyclohexane-l,2'-indan)-4-one (23). A solution of
2.45 g (0.0094 mol) of the ketal and 5 ml of 2.5 N  HC1 in 50 ml of 
Me2CO was allowed to stand overnight at room temperature. The 
bulk of the solvent was then removed under vacuum and the resi­
due dissolved in H20  and Et20 . The organic layer was washed with 
H20  and brine and taken to dryness to afford the product as a 
gum, vmra 3500,1705 cm-1.

A solution of the gum and 4 ml of Ac20  in 16 ml of pyridine was 
allowed to stand at room temperature for 7 hr and then poured 
onto ice-H20. The precipitate was extracted with Et20 . This ex­
tract was washed in turn with H20, ice-cold 2.5 N  HC1, H20, and 
saturated NaHC03 and taken to dryness. The residual solid was 
recrystallized from SSB to give 1.82 g (75%) of acetoxy ketone: mp 
87-89°; NMR 5 2.05 (s, 3, COCH3), 2.10 (m, 9), 3.0 (s, 2, ArCH),
3.10 (s, 1, ArCH), 7.25 (s, 4, ArH); ir 1725, 1240, 1210, 1020, 975, 
770, and 755 cm-1.

Anal. Calcd for Ci6H180 3: C, 74.39; H, 7.02. Found: C, 73.99; H, 
6.95.

l'-Acetoxy(cyclohexane-l,2'-indan)-4-ol Methanesulfonate
(25). To a solution of 1.82 g (0.0071 mol) of acetoxy ketone in 25 ml 
of 95% ¿-PrOH there was added 0.32 g of NaBHi. Following 1 hr 
stirring at room temperature the bulk of the solvent was removed 
under vacuum. The residue was dissolved in Et20  and H20; the or­
ganic layer was washed with H20  and brine and taken to dryness.

The residual gum was dissolved in 15 ml of pyridine. This solu­
tion was cooled in ice and treated with 1.7 ml of CH3S 02C1. Fol­
lowing 17 hr of standing in the cold the mixture was poured onto 
ice-H20. The precipitated gum was extracted with Et20 . The or­
ganic layer was washed in turn with H20, 2.5 N  HC1, H20, and 
brine and taken to dryness. The residue was recrystallized twice 
from Et20-petroleum ether to give 1.54 g (65%) of mesylate: mp 
97-100°; ir 1725, 1350,1345, 1245, 1180,1170, and 905 cm -1.

Anal. Calcd for Ci7H220 5S: C, 60.69; H, 5.99; mol wt, 338. 
Found: C, 60.60; H, 6.58; mol wt, 338.

l'-Hydroxyspiro[cyclohexane-l,2'-indan]-4-amine (26). The 
mesylate (5.0 g, 0.015 mol) was converted to the azide and this re­
duced (LiAlH4) exactly as above. The product was recrystallized 
from a small amount of EtOAc to afford 1.71 g (53%) of amino al­

cohol, mp 156-160°; the analytical sample melted at 158-161°.
Anal. Calcd for Cu H19NO: C, 77.38; H, 8.81; N, 6.45. Found: C, 

76.98; H, 8.79; N, 6.41. Ir 3340, 3270, 2710, 1600, 1035, 770, 750, 
and 720 cm-1.

4'-Fluoro-4-[(l'-hydroxyspiro[cyclohexane-l,2'-indan]-4- 
yl)amino]butyrophenone Hydrochloride. The amino alcohol 
(1.71 g, 0.0079 mol) was alkylated with the neopentyl glycol acetal 
of 4-chloro-p-fluorobutyrophenone as above. There was obtained 
1.03 g (33%) of product, mp 190-193°.

Anal. Calcd for C24H29C1FN02: C, 68.97; H, 6.99; N, 3.35. Found: 
C, 69.37; H, 7.77; H, 3.11.

l'-Hydroxy-l'-methylspiro[cyclohexane-l,2'-indan]-4-one 
Cyclic Ethylene Acetal (28). A solution of 5.0 g (0.019 mol) of the 
ketone in 60 ml of THF was added to 67 ml of 3 M  CH3MgBr in 
Et20 . Following 17 hr standing at room temperature, the mixture 
was cooled in ice and treated cautiously with 50 ml of saturated 
NH4C1. The organic layer was separated, diluted with CgHs, and 
washed in turn with H20  and brine. The solid which remained 
when the solution was taken to dryness was recrvstallized from 
CH2Cl2-cyclohexane to give 3.70 g (71%) of product: mp 140-143°; 
NMR h 1.48 (s, 3, CH3), 1.78 (m, 8, CH2), 2.95 (d, 2, ArCH2), 4.0 (s, 
4, ketal), 7.4 (m, 4, ArH); ir 3490,1215, 1115, 1095, and 775 cm“ 1.

Anal. Calcd for Ci7H220 3: C, 74.47; H, 8.08. Found: C, 74.21; H.
8.09.

l'-exo-Methylenespiro[cyclohexane-l,2'-indan]-4-one (29).
A solution of 9.82 g (0.036 mol) of the acetal and 25 ml of 2.5 N 
HC1 in 250 ml of Me2CO was stirred at room temperature over­
night. The solvent was then removed under vacuum and the resi­
due dissolved in Et20  and H20. The organic layer was washed with 
H20  and brine and taken to dryness. The residue was recrystal­
lized from petroleum ether to give 5.12 g (67%) of solid: mp 60-62°; 
NMR 5 2.18 (A2B2, 8, CH2), 3.17 (s, 2, ArCH2), 4.88 (s, 1, vinyl),
5.42 (s, 1, vinyl), 7.28 (m, 4, ArH).

Anal. Calcd for C15H 16O: C, 84.86; H, 7.60. Found: C, 84.46; H,
7.97.

l'-exo-Methylenespiro[cyclohexane-l,2'-indan]-3-ol (30). A
mixture of 2.17 g (0.010 mol) of the ketone and 0.75 g of NaBH4 in 
40 ml of ¿-PrOH was stirred at room temperature for 6 hr. The sol­
vent was removed under vacuum and the residue dissolved in H20  
and Et20 . The organic layer was washed with H20  and brine and 
taken to dryness. The residue was chromatographed on 250 ml of 
silica gel (elution with 20% Me2CO-SSB). There was obtained first
0. 08 g of solid: mp 65-69°; NMR 5 1.84 (m, 8, CH2), 2.90 (s, 2, 
ArCH2), 4.10 (m, lVi/2 = 10 Hz, 1, CHOH), 5.10 (s, 1, vinyl), 5.50 
(s, 1, vinyl), 7.28 (m, 4, ArH). This was followed by a gum which 
crystallized only in the presence of H20: 1.71 g (78%); mp 57-61°; 
NMR 6 1.72 (m, 8, CH2), 2.90 (s, 2, ArCH2), 3.70 (m, W m  = 20 Hz,
1, CHOH), 4.92 (s, 1, vinyl), 5.50 (s, 1, vinyl), 7.22 (m, 4, ArH). No 
satisfactory analysis could be obtained for this material.

l'-exo-Methylenespiro[cyclohexane-l,2'-indan]-4-ol Meth­
anesulfonate (31). The major alcohol (4.26 g, 0.020 mol) was con­
verted to the mesylate in the usual way. There was obtained 4.82 g 
(83%) of solid: mp 72-74°; ir 1350, 1335, 1175, 970, 935, 870, and 
790 cm-1.

Anal. Calcd for Ci6H20O3S: C, 65.72; H, 6.89; mol wt, 292. 
Found: C, 65.32; H, 7.12; mol wt, 292.

l'-exo-Methylenespiro[cyclohexane-l,2'-indan]-4-amine 
Hydrochloride (32). The mesylate (5.65 g, 0.019 mol) was taken 
on to the amine via the azide as above. There was obtained 3.08 g 
(61%) of product: mp 250-253°; ir 3000, 1640, 1600, 1510, 875, 775, 
735, and 720 cm-1.

Anal. Calcd for C16H20ClN-H2O: C, 67.29; H, 8.28; N, 5.23. 
Found: C, 67.50; H, 7.92; H, 5.21.

l'-exo-Methylenespiro[cyclohexane-l,2'-indan]piperidine
(33). The amine prepared from 1.41 g (0.0056 mol) of the hydro­
chloride, 1.81 g of 1,5-diiodopentane, and 1.55 g of K 2C 03 in 15 ml. 
of EtOH was stirred at reflux for 18 hr. The mixture was allowed 
to cool and diluted with water and the solid was collected on a fil­
ter. This was recrystallized from MeOH to give 1.05 g (67%) of 
solid: mp 93-95°; ir 1630, 985, 865, 775, and 730 cm-1 .

Anal. Calcd for C20H27N: C, 85.35; H, 9.67; N, 4.90. Found: C, 
85.58; H, 9.99; N, 5.24.

4'-Fluoro-4-[(l'-methylenespiro[cyclohexane-l,2'-indan]-
4-yl)amino]butyrophenone Hydrochloride (34). The amine hy­
drochloride (2.0 g, 0.0080 mol) was converted to the butyrophen- 
one as above. There was obtained 0.95 g (29%) of product: mp 
208-211°; ir 2780,1680, 1600, 1230, and 735 cm“ 1.

Anal. Calcd for C25H29C1FN0: C, 72.53; H, 7.06; N, 3.38. Found: 
C, 72.20; H, 7.19; N, 3.68.

3'-Nitrospiro[eyclohexane-l,2'-indan]-4-one (35). To an ice-
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cooled solution of 9.04 g (0.045 mol) of the ketone in 45 ml of TFA 
there was added 9 ml of HNOri. At the end of 2 hr reaction in the 
cold, the solution was poured onto ice-H20. The precipitated solid 
was chromatographed on 1 1. of silica gel (elution with 25% 
Me2CO-SSB). The crystalline fractions were combined and recrys­
tallized from Me2CO-SSB. There was obtained 7.23 g (65%) of 
product, mp 124-128°. The analytical sample melted at 126- 
127.5°; ir 1710,1515,1345, 1330, 825, and 740 cm“ 1.

Anal. Calcd for C14H15N0 3: C, 68.55; H, 6.16; N, 5.71. Found: C, 
68.38; H, 6.24; N, 5.95.

3'-Acetamidospiro[cyclohexane-l,2'-indan]-4-one (37). A
suspension of 0.50 g of 10% Pd/C in a solution of 7.89 g (0.032 mol) 
of nitro ketone in 150 ml of EtOAc was shaken under H2. At the 
end of 3 hr an additional 0.50 g of catalyst was added and shaking 
resumed. When the theoretical uptake had been observed the cata­
lyst was removed by filtration and a solution of 6.1 g of p-TSA in a 
small amount of MeOH added. The solvent was removed under 
vacuum and an attempt made to recrystallize the residue from 
MeOH-Me2CO. On standing in the cold over the weekend exten­
sive decomposition occurred. The material was then reconverted to 
the free base. A solution of this in 40 ml of pyridine was treated 
with 10 ml of AC2O. At the end of 5 hr the mixture was poured onto 
ice-H20. The precipitate was extracted with CH2CI2. This solution 
was washed with H2O, 2.5 N HC1, H20, and brine and taken to 
dryness. The residue was chromatographed on 700 ml of silica gel 
(elution with 25% Me2CO-CH2Cl2). The crystalline fractions were 
combined and recrystallized from MeOH. There was obtained 3.15 
g (38%) of product: mp 169-171°; ir 3340, 1695, 1680, 1600, 1540, 
1490, and 1290 cm-1.

Anal. Calcd for C16H19NO2: C, 74.68; H, 7.44; N, 5.44; mol wt, 
257. Found: C, 74.36; H, 7.54; N, 5.48; mol wt, 257.
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The cyclic ethylene acetal of 4-benzyl-4-carbethoxycyclohexan-l-one was homologated to the corresponding 
acetic acid via the nitrile. Removal of the acetal followed by cyclization gave spiro[cycloheXane-l ,2'( 1 '/7)-naph- 
thalene]-4,4'(3'//)-dione. Taking advantage of the differing reactivities of the two carbonyl groups that compound 
was converted in several steps to 3',4'-dihydrospiro[cyclohexane-l,2'(l'H)-naphthalen]-4-one. The two isomeric 
amines were prepared from the ketone. The configuration of these products was assigned the basis of NMR. Dou­
ble homologation via Wittig reaction on 4-oxo-l-phenylcyclohexanecarboxaIdehyde 4-cyclic ethylene acetal fol­
lowed by reduction gave the corresponding propionic acid. This was taken in a series of steps analogous to those 
above to 3',4'-dihydrospiro[cyclohexane-l,l'(2'/i)-naphthalen]-4-one. The ketone was converted to the corre­
sponding amine via the mesylate. The configuration of these amines is discussed as well.

T he subtle stereochemical effects observed in the course 
o f  the preparation o f the spirocyclohexylindans ( l ),1 partic­
ularly when those com pounds bore substitution on the ben- 
zylic carbon (2), encouraged us to  examine the correspond­
ing spirocyclohexyltetralins (3, 4).

\  /
N

Derivatives of 3',4'-Dihydrospiro[cyclohexane-l,- 
2'(l'fï)iiaphthaleii]-4-one. Preparation o f the spiran con ­
taining the cyclohexyl group attached to the 2 position o f 
the tetralin 3 is rendered easier by the fact that this carbon 
skeleton differs from  that o f  1, which we had prepared ear­
lier, only by the interposition o f a methylene group. The 
first task thus consisted in the preparation o f a hom ologue 
o f the acid used to prepare the spiro indan (Schem e I). R e ­
duction o f  the ester 5 used as source o f  the carbon skeleton 
in the earlier work by means o f lithium aluminum hydride 
sm oothly gave the corresponding alcohol 6 ; this was con ­
verted to its methanesulfonate by conventional means. Ini­
tial attem pts to effect displacem ent o f  the mesylate with 
cyanide ion under a variety o f  conditions bore evidence for
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Scheme I Scheme II

6, R =  OH
7, R =  OSO,CR
8, R =  CN
9, R =  CO..H

12, R =  0
13, R =  R

the highly hindered milieu of the reaction site. Starting 
material was thus recovered unchanged from treatment of 
7 with potassium cyanide in DMF at 140°C. Simple substi­
tution of hexamethylphosphoric triamide (HMPA) for 
DMF in this last reaction unexpectedly resulted in com­
plete disappearance of starting material with the appear­
ance of a single product. The oily nitrile 8 was isolated by 
chromatography; this material was saponified to the acid 9 
without further characterization (potassium hydroxide in 
ethylene glycol). The high overall yield for the conversion 
of mesylate to acid (77%) attests to the efficacy of HM PA  
as solvent in this displacement. Removal of the ketal af­
fords the desired homologated keto acid 10.

Cyclization to the spiro diketone 11 was effected in work­
able yield by means of liquid hydrogen fluoride. The prod­
uct was then converted to the monoketone 14 by first selec­
tive protection of the cyclohexanone as its ethylene ketal; 
reduction of the aromatic ketone by Wolff-Kishner reac­
tion followed by deketalization afforded the desired prod­
uct as an oil.

In earlier work on the preparation of cyclohexylamines 
containing geminal substituents at the 4 position we had 
developed stereoselective schemes for the preparation of 
the isomeric compounds.2 Thus, conversion of cyclohexa­
none 15 to its oxime acetate followed by reduction with di- 
borane afforded the isomer containing the cis amine and 
ether groups (18). Reduction of the ketone by means of so-

Q R  c6r

)C H  -  )C hnoac
CRO CRO

15 17

16 18

dium borohydride affords largely the alcohol with the same 
stereochemistry as the amine. This was then taken on to

25, R =  H 27, R =  H
26, R =  Ac 24 +  28, R =  -(C R )5-

20, R =  SO. OR

21, R =  N. 23, R1 =  H, R- =
22, R =  NH2 C R C R C R C O (p-C 6R F )

24, R1 =  R2 =  -(CH,li­

the epimeric amine 16 by conversion to the mesylate, inver­
sion by displacement with azide, and finally reduction.

We thus anticipated that application of analogous 
schemes to ketone 14 would lead to the isomeric amines 
(Scheme II). Treatment of the spiro ketone with sodium 
borohydride followed by chromatography of the product 
afforded alcohol 19 as a crystalline solid. The NM R spec­
trum of this product showed the carbinyl proton as a broad 
band (W 1/2 = 15 Hz) centered at 8 3.55, suggestive of an 
equatorial hydroxyl group. This assignment must remain 
tentative in view of our failure to isolate any of the axial 
isomer for purpose of comparison. The mesylate 20 showed 
a similar signal in the NM R though now displaced to 8 4.7. 
Contrary to our expectations, the corresponding proton in 
the azide 21, obtained by treatment of the mesylate with 
sodium azide, also seemed to have the equatorial configura­
tion. The 100-MHz NM R spectrum of that compound re­
solved that band (5 3.25) into a seven-line pattern charac­
teristic of axial protons on cyclohexanes.3 Setting this 
puzzle aside for the moment, the azide was reduced to the 
corresponding amine 22 by means of lithium aluminum hy­
dride. Alkylation by means of the neopentyl glycol ketal of
4-chloro-p-fluorobutyrophenone followed by hydrolysis af­
forded the derivative 23. Treatment of the primary amine 
with 1,5-diiodopentane afforded the corresponding piperi­
dine 24, mp 293°C; the 100-MHz N M R  spectrum of this 
last again shows a signal for the proton on carbon bearing 
nitrogen (5 2.25) with a multiplicity suggesting an axial hy­
drogen.

In the scheme intended to obtain the isomeric amine, the 
ketone 14 was converted to its oxime (25) in high yield. 
Acetylation (26) followed by reduction of the total crude 
acetate by means of diborane in THF afforded on work-up 
a modest yield of a mixture of isomeric amines which re­
sisted attempts at separation by conventional means. This 
mixture was thus converted to the corresponding piperi­
dines by alkylation with 1,5-diiodopentane. Fractional 
crystallization of the hydrochloride salt afforded first a 
compound which proved identical with the piperidine, mp 
293°C, obtained by the azide route (24). There was ob­
tained in addition a second piperidine, mp 263°C, whose
100-MHz spectrum also showed a signal (8 2.25) with mul­
tiplicity suggestive of an equatorial piperidine group.

More detailed examination of the 100-MHz NM R spec-
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tra of the isomeric piperidines shows the signal for protons 
on the one carbon benzyl bridge (H a) in the high-melting 
isomer to occur as a singlet at 5 2.62; the signal for the cor­
responding protons in the low-melting isomer is observed 
as a singlet at & 2.46. An examination of Dreiding models 
reveals that there exist two isomeric amines for the gross 
structure (24, 28) each of which carries the piperidine 
group in the equatorial position. Structure 24a shows sig­
nificant interaction between Ha and the axial protons on 
the 3 position of the cyclohexane (H b ); 28a is free of this in­
teraction. It has been recently shown that such steric com­
pression is often expressed in a downfield shift for the sig­
nal of the affected protons.4 On this basis it is thus possible 
to assign structure 24a to that isomer which shows the 
lower field benzyl signal. Some confirmation for this as­
signment comes from the observation that Ha of 24 shows a 
barely significant downfield shift (0.05 ppm) displacement 
on treatment with Eu(thd)3; the isomer 28 shows no effect 
whatever.

We rationalize these findings by the assumption that 
both the alcohol 19 and the mesylate 20 can be represented 
as equatorial isomers derived from the apparently pre­
ferred conformer of the spiran. Displacement by azide does 
indeed initially afford the inverted axial isomer 21a; this 
then apparently undergoes a flip to the equatorial isomer 
21b. The remaining steps to 24a do not affect the stereo-

IT Hi

28a

1

I

I

chem ical outcome. Diborane reduction o f the oxim e acetate 
apparently affords both axial and equatorial isomers o f  the 
amine. The former can by a simple flip go to the amine 22; 
the equatorial isomer goes on unchanged to  the amine 
which affords finally the low-m elting piperidine hydrochlo­
ride. No ready explanation occurs for the lack o f  stereo­
selectivity for the diborane reduction.5

Scheme III

o X ) o J
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X X — X X
NC/ V - / ^ ° J R = H C  0
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CH,CH2CO,H
32

Derivatives of 3',4'-Dihydrospiro[cyclohexane-l,- 
l'(2JT')-naphthalen]-4-one. The route chosen for the 
preparation of the remaining spirotetralincyclohexanone is 
conceptually quite similar to that described above. W e re­
quired, however, a keto acid in which, at least in principle, 
a methylene group was transferred from the benzylic posi­
tion to the acid side chain (Scheme III). Though an­
nounced quite some time ago,6 the partial reduction of ni­
triles to aldehydes by means of lithium aluminum hydride 
has in fact only recently proven of synthetic value, and 
then mainly for highly hindered nitriles.7 Thus treatment 
of the nitrile ketal 298 with 0.5 molar equiv of that hydride 
at room temperature followed by carefully controlled hy­
drolysis of the intermediate imine afforded aldehyde 30 ad­
mixed with small amounts of starting material and amine. 
Though the aldehyde was isolated for characterization, in 
practice the crude product was used for further elabora­
tion. Condensation of that crude aldehyde with the ylide 
obtained from triethyl phosphonoacetate (sodium hydride) 
afforded the acrilic ester 31 as an oil whose NMR spectrum 
suggested that this consisted of a single isomer of the de­
sired product. This intermediate was then subjected in 
turn to catalytic reduction, saponification, and deketaliza- 
tion to give the desired keto acid 32 as a crystalline com­
pound. The intermediates were all characterized by spec­
tral means.

Cyclization of the keto acid 32 to the spiro diketone 33 
was again accomplished by means of liquid hydrogen fluo­
ride (Scheme IV). Treatment of that diketone with 1 equiv 
of neopentyl glycol under conditions for ketal formation re­
sulted in selective reaction at the alicyclic ketone to afford 
34 (vniax 1680 cm-1 ). This last was then converted to the 
monoketone 36 by first reduction under Wolff-Kishner 
conditions and the removal of the protecting group. Reduc­
tion of the ketone by means of sodium borohydride in this 
case afforded a mixture of the isomeric alcohols. The stere­
ochemistry in this series can thus be assigned in relatively 
straightforward manner. Chromatographic separation gave 
first 6.0% of the axial alcohol (NMR 5 4.1, W/y2 =  7 Hz) 
followed by 75.6% of the equatorial isomer (NM R 5 3.85, 
W/1/2 =  14 Hz).

Examination of Dreiding models reveals conformers A 
(and B) to be relatively free of nonbonding hydrogen-hy­
drogen interactions; conformer C, on the other hand, shows
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Scheme IV

33 34, R =  0
35. R =  H,

42, R =  H
43, R =  CH,

serious interaction between the proton on the peri position 
of the teraiin with the axial hydrogens at the 3 position of 
the cyclohexane ring. These considerations lead us to as­
sign the structure A (R =  OH) to the major alcohol. The al­
cohol was then taken on to the amine 39 via its mesylate
(38) and azide. The inversion which accompanies the dis­
placement step will, of course, cause that amine and its de­
rivatives to have the stereochemistry depicted by B. Even 
in the event that these compounds would undergo a flip in­
terconversion of the type described above, the relative 
stereochemistry remains unchanged. The primary amine 
wak then converted to its carbamate 40 by means of ethyl 
chloroformate; reduction of the urethane with lithium alu­
minum hydride afforded the AT-methyl derivative 41. Both 
the primary and secondary amines were then converted to 
the butyrophenone derivatives (42, 43) exactly as in the 
case of 22.

Experimental Section9

4-Benzyl-4-hydroxymethylcyclohexan-l-one Cyclic Ethyl­
ene Acetal (G). A solution of 22.3 g (0.077 mol) of methyl 4-ben- 
zyl-4-carbomethoxycyclohexanone ethylene acetal in 220 ml of 
THF was added to 3.0 g of LiAlHi in 30 ml of THF. The mixture 
was stirred at reflux for 5.5 hr and then cooled in ice. There was 
added in turn 3 ml of H2O, 3 ml of 15% NaOH, and 9 ml of H2O. 
The inorganic gel was collected on a filter and the filtrate taken to 
dryness. The residue was recrystallized from CH2Cl2-Skellysolve 
B (SSB) to give 18.8 g (93%) of the alcohol: mp 76-78°; NMR 5 1.6 
(m, 8, CH2), 2.68 (s, 2, ArCH2), 3.32 (d, J = 5 Hz, 2, CHOH), 3.90 
(s, 4, ketal), 7.25 (s, 5, ArH).

Anal. Calcd for Ci6H220 3: C, 73.25; H, 8.45. Found: 73.08; H,
8.65.

4-Benzyl-4-hydroxymethylcyclohexan-l-one Cyclic Ethyl­
ene Acetal Methanesulfonate (7). To an ice-cold solution of 18.8 
g (0.072 mol) of the alcohol in 100 ml of pyridine there was added

19 ml of CH3SO2CI. Following 5.5 hr of standing in the cold, the 
mixture was poured onto ice-H20. The precipitated gum was ex­
tracted with Et20 . The organic layer was washed with H20, ice- 
cold 2.5 N  HC1, H20, saturated NaHCO.a, and brine. The residual 
solid was recrystailized from CH2CI2-SSB to give 21.1 g (86%) of 
mesylate: mp 94-97°; NMR t> 1.60 (m, 8, CH2), 2.68 (s, 2, ArCH2),
2.95 (s, 3, SO2CH3), 2.83 (s, 2, -C H 20 S 0 2), 2.85 (s, 4, ketal), 7.20 (s, 
5, ArH).

Anal. Calcd for C17H24O5S: C, 59.97; H, 7.11. Found: C, 60.00; H, 
7.17.

l-Benzyl-4-oxocyclohexaneacetic Acid Cyclic Ethylene Ac­
etal (9). A mixture of 18.6 g (0.055 mol) of the mesylate and 18 g of 
KCN was heated in 200 ml of HMPA overnight in an oil bath at 
145°. The resulting gel was then allowed to cool, diluted to 800 ml 
with H20, and extracted with CcHg. The organic layer was washed 
with H20  and brine and taken to dryness. The residue was chro­
matographed on 1 1. of silica gel (elution with 25% EtOAc in SSB). 
Those fractions which were similar by TLC were combined and 
heated overnight with 14.5 g of KOH in 105 ml of ethylene glycol. 
The mixture was then allowed to cool, diluted with H20, and 
washed once with Et20. The aqueous layer was then covered with 
Et20  and cautiously acidified. The organic layer was separated, 
washed with brine, and taken to dryness. The residue was recrys­
tailized from cyclohexane to give 12.3 g (77%) of acid, mp 116- 
118°. The analytical sample melted at 118-120°: NMR 5 1.65 (s, 8, 
CH2), 2.26 (s, 2, CH2C 02H), 2.80 (s, 2, ArCH2), 4.0 (s, 4, ketal),
7.31 (s, 5, ArH).

Anal. Calcd for Ci7H22C>4: C, 70.32; H, 7.64. Found: C, 70.50; H,
7.83.

l-Benzyl-4-oxocyclohexaneacetic ACID (10). A solution of
12.3 g (0.042 mol) of the ketal and 18 ml of 2.5 N  HC1 in 180 ml of 
Me2CO was stirred at room temperature for 62 hr. The bulk of the 
solvent was removed under vacuum and the residue dissolved in 
Et20  and H20. The organic layer was washed with H20  and brine 
and taken to dryness. The residue was recrystailized from Et20 -  
SSB to give 7.94 g (76%) of product: mp 85-87°; analytical sample, 
mp 91-92°; ir 1720,1680,1270, 1230, and 1175 cm "1.

Anal. Calcd for Ci6Hi80 3: C, 73.15; H, 7.37. Found: C, 73.01; H, 
7.58.

Spiro[cyclohexane-l,2'(Tif)-naphthalene]-4,4'(3'if)-dione 
(11). Hydrogen fluoride (200 ml) was added from an inverted cyl­
inder to 34.58 g (0.14 mol) of the keto acid. Following 48 hr stand­
ing at room temperature the residual syrup was poured into satu­
rated aqueous NaHC03. Sufficient solid NaHCOa was then added 
to neutralize the mixture. The precipitated gum was extracted 
with methylene chloride. These extracts were washed in turn with 
water and brine and taken to dryness. The residue was chromato­
graphed over 4 1. of silica gel (elution with 20% acetone in SSB) to 
afford 19.19 g (60%) of product, mp 157-159°.

A small sample was recrystailized from acetone-SSB to afford 
diketone: mp 158-160°; NMR 6 A2B2 pattern centered at 2.12 (8, 
cyclohexanone), 2.72 (s, 2, ArCH2), 3.10 (s, 2, COCH2Ar), 7.48 (m, 
3, ArH), 8.05 (m, 1, ArH); ir 1710,1675,1595,1285, and 775 cm "1.

Anal. Calcd f(»  C15H16O2: C, 78.92; H, 7.06; mol wt, 228. Found: 
C, 78.69; H, 7.31; mol wt, 228.

Spiro[cyclohexane-l,2'(l'H)-naphthalene]-4,4'(3'Ii)-dione 
Cyclic 4-(Ethylerie Acetal) (12). A mixture of 2.65 g (0.012 mol) 
of diketone, 0.72 g (0.65 ml) of ethylene glycol, and 0.20 g of prTSA 
in 100 ml of CfiHf, was heated at reflux under a Dean-Stark trap for
4.5 hr. The mixture was allowed to cool, washed with NaHC03 and 
brine, and taken to dryness. The residue was chromatographed on 
300 ml of silica gel (elution with 25% EtOAc-SSB). The crystalline 
fractions were combined and recrystailized from Et20-SSB. There 
was obtained 2.20 g (70%) of monoketal: mp 90-91.5°; ir 1685, 
1290, 1115,1100, and 770 cm“ 1.

Anal. Calcd for Ci7H2o03: C, 74.97; H, 7.40. Found: C, 75.00; H,
7.66.

3',4'-Dihydrospiro[cyclohexane-l,2'(l'H)-naphthalen]-4- 
one Cyclic Ethylene Acetal (13). A mixture of 2.20 g (0.0081 
mol) of the ketone, 1.2 ml of N2H4-H20 , and 1.6 g of KOH in 20 ml 
of ethylene glycol was heated at reflux for 1 hr. Solvent was then 
removed by distillation to bring the temperature to 200°, and re­
flux continued for 17 hr. The mixture was then poured into H20  
and this was extracted with Et20 . The organic layer was washed 
with H20  and brine and taken to dryness. The residue was recrys­
tailized from petroleum ether to give 1.86 g (88%) of product: mp 
79-81°; NMR S 2.60 (m, 10, CH2), 2.62 (s, 2, ArCH2), -2 .78  (m, 2, 
ArCH2CH2), 4.0 (s, 4, ketal), 7.08 (s, 4, ArH).

Anal. Calcd for Cn H220 2: C, 79.03; H, 8.59. Found: C, 79.14; H,
8.72.



3',4'-Dihydrospiro'[cyclohexane-l,2'(l'H)-naphthalen]-4-ol
(19). A mixture of 1.86 g (0.0072 mol) of the ketal and 2 ml of 2.5 N  
HC1 in 40 ml of Me2CO was heated at reflux overnight. The bulk of 
the solvent was removed under vacuum and the residue dissolved 
in H2O and Et20. The organic layer was washed with H2O and 
brine and taken to dryness to afford the ketone as an oil whose 
NMR spectrum was in accord with the structure.

A solution of the residue in 50 ml of 95% ¿-PrOH was treated 
with 1.0 g of NaBRj. At the end of 5 hr the solvent was removed 
under vacuum and the residue worked up as above. The crude 
product was chromatographed on 170 ml of silica gel (elution with 
CH2CI2). There was obtained first 0.24 g of recovered ketal. The 
product fractions were combined and recrystallized from SSB to 
give 0.65 g (42%) of alcohol: mp 78-82°; NMR 5 1.5 (m, 10, CH2),
2.6 (m, 4, ArCH2), 3.56 (seven-line pattern, 1, CHOH), 7.0 (s, 4, 
ArH).

Anal. Calcd for C15H20O: C, 83.28; H, 9.32; mol wt, 216. Found: 
C, 83.37; H, 9.43; mol wt, 216.

3',4'-Dihydrospiro[cyclohexane-l,2'(l'H)-naphthalen]-4-ol 
Methanesulfonate (20). To an ice-cold solution of 2.16 g (0.01 
mol) of the alcohol in 10 ml of pyridine there was added 2 ml of 
CH3S02C1. Following 4 hr in the cold the mixture was poured onto 
ice-H20. The solid was collected on a filter and recrystallized from 
Et20-petroleum ether. There was obtained 2.52 g (86%) of mesyl­
ate: mp 66-69°; NMR 5 1.7 (m, 10, CH2), 2.7 (m, 4, ArCH2), 3.0 (s, 
3, SO2CH3), 4.70 (seven-line pattern, 2, CHO), 7.05 (s, 4, Ar 
H).

Anal. Calcd for Ci6H2203S: C, 65.27; H, 7.53. Found: C, 65.38; H,
7.54.

3',4'-Dihydrospiro[cyclohexane-l,2'(l'fi)-naphthalen]-4- 
amine Hydrochloride (22). A mixture of 2.52 g (0.0085 mol) of 
the mesylate and 2.5 g of NaN3 in 25 ml of DMF was heated over­
night in an oil bath at 90°. The solvent was then removed under 
vacuum and the residue taken up in H20  and CcHe. The organic 
layer was washed with H20  and brine and taken to dryness. A so­
lution of the residue in 60 ml of THF was added to 0.35 g of 
LiAlH4 in 10 ml of THF. Following 4 hr of stirring at room temper­
ature, the mixture was cooled in ice and treated with 0.35 ml of 
H20, 0.35 ml of 15% NaOH, and 1.05 ml of H20. The inorganic gel 
was collected on a filter and the filtrate was taken to dryness. A so­
lution of the residue in Et20  was treated with 6 N  HC1 in Et20. 
The resulting solid was recrystallized from CH2Cl2-EtOAc to give 
1.65 g (77%) of product: mp 208-211°; ir ca. 2950 br, 1615, 1495, 
1035, and 760 cm-1.

Anal. Calcd for Ci5H22C1N: C, 71.75; H, 8.83; N, 5.58. Found: C, 
71.52; H, 8.79; N, 5.54.

4'-Fluoro-4-[(3',4'-dihydrospiro[cyclohexane-l,2’ (l 'i /) -  
naphthalen]-4-yl)amino]butyrophenonc Hydrochloride (23).
The free base from 1.65 g (0.0066 mol) of the amine hydrochloride,
1.34 g of KI, 2.06 g of K2CO3, and 1.90 g of the neopentyl glycol ac­
etal of 4-chloro-p-fluorobutyrophenone in 35 ml of DMF was heat­
ed in an oil bath at 90°. At the end of 18 hr the bulk of the solvent 
was removed under vacuum. The residue was dissolved in C(;H(; 
and H20. The organic layer was washed with H20  and brine and 
taken to dryness.

A mixture of the residue and 10 ml of 2.5 N HC1 in 20 ml of 
MeOH was stirred at room temperature for 4 hr. The MeOH was 
then removed under vacuum and the solid collected on a filter. 
This was recrystallized twice from CH2Cl2-EtOAc to afford 1.07 g 
(39%) of the butyrophenone: mp 182-184°; ir 2760, 1690, 1600, 
1245, 1160, 835, and 755 cm-1.

Anal. Calcd for C25H3iClFNO: C, 72.18; H, 7.51; N, 3.37; mol wt, 
379. Found: C, 72.20; H, 7.53; N, 3.47; mol wt, 379.

(3',4'-Dihydrospiro[cyclohexane-l,2'(l'.H)-naphthaIen]-4- 
yl)piperidine Hydrochloride. Isomer A (24). A mixture of the 
free base prepared from 1.81 g (0.0072 mol) of the free base 22, 2.34 
g of 1,5-diiodopentane, and 2.0 g of potassium carbonate in 20 ml 
of ethanol was heated at reflux for 17 hr. The solvent was then re­
moved under vacuum and the residue partitioned between water 
and ether. The organic layer was washed with water and brine and 
taken to dryness. The residue was dissolved in a small amount of 
ether and treated with excess 3 N  ethereal hydrogen chloride. The 
precipitated solid was recrystallized twice from methanol-ethyl ac­
etate to afford 0.78 g (34%) of product: mp 290-293°; ir 2640, 2500, 
2420,1495, 745, and 735 cm“ 1.

Anal. Calcd for C2oH30C1N: C, 75.08; H, 9.45; N, 4.38. Found: C, 
75.07; H, 9.56; N, 4.23.

3',4'-Dihydrospiro[cyclohexane-l,2'(l'H)-naphthalen]-4- 
one Oxime (25). A mixture of 8.33 g (0.039 mol) o f the ketone,
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5.40 g of hydroxylamine hydrochloride, and 10.7 g of K2C 03 in 100 
ml of methanol was heated at reflux for 6 hr. The solvent was then 
removed under vacuum and the residue partitioned between meth­
ylene chloride and water. The organic layer was washed with water 
and brine and taken to dryness. The residue was recrystallized 
from methylene chloride-Skellysolve B to give 8.52 g (95%) of 
product, mp 105-106.5°.

Anal. Calcd for C15H19NO: C, 78.56; H, 8.35; N, 6.11. Found: C, 
78.36; H, 8.31; N, 6.05.

(3',4'-Dihydrospiro[cyclohexane-l,2'(l'ff)-naphthalen]-4- 
yl)amine Hydrochloride. Isomeric Mixture (27). To a solution 
of 2.50 g (0.011 mol) of the oxime in 12.5 ml of pyridine there was 
added 2.5 ml of acetic anhydride. At the end of 6 hr the solution 
was poured into ice water. The precipitated gum was extracted 
with ether and the organic layer washed in turn with water, 2.5 N  
hydrochloric acid, aqueous sodium bicarbonate, and brine. The ex­
tract was then taken to dryness to afford the product as a viscous 
gum whose NMR spectrum is in accord with the structure.

An ice-cold solution of the crude oxime acetate in 60 ml of THF 
was treated with 12 ml of IV-diborane in THF. At the end of 6 hr 
there was added 1 ml of water; as soon as effervescence ceased, the 
bulk of the solvent was removed under vacuum. A mixture of the 
residue and a small amount of ether was stirred with 50 ml of 2.5 N 
hydrochloric acid for 17 hr, and then made strongly basic. The 
mixture was extracted with ether; the organic layer was washed 
with water and brine and taken to dryness. A solution of the resi­
due in ether was treated with a solution of 2.2 g of p-toluenesul- 
fonic acid in the same solvent. The gummy precipitate was recrys­
tallized several times from methylene chloride-ethyl acetate to 
give 1.58 g (34%) of product, mp 203-207°.

Anal. Calcd for C22H29N0 3S: C, 68.19; H, 7.54; N, 3.62. Found: 
C, 67.81; H, 7.43; N, 3.39.

(3',4'-Dihydrospiro[cyclohexane-l,2'(l'i/)-naphthalen]-4- 
yl)piperidine Hydrochloride (24, 28). A mixture of the free base 
from 1.58 g (0.0042 mol) of the tosylate, 1.36 g of 1,5-diiodopen­
tane, and 1.16 g of potassium carbonate in 10 ml of ethanol was 
heated at reflux for 17 hr. The solvent was removed under vacuum 
and the residue partitioned between water and ether. The organic 
layer was washed with water and brine and taken to dryness. A so­
lution of the residue in ether was treated with excess 3 N  ethereal 
hydrogen chloride.

The precipitated solid was recrystallized twice from methanol- 
ethyl acetate to give 0.40 g (30%) of isomer A, mp 290-293°, mmp 
with authentic material 290-293°.

The solid which was obtained on taking the mother liquors to 
dryness was recrystallized several times from methylene chloride- 
ethyl acetate to give 0.37 g (28%) of isomer B: mp 260-263°; ir 
2640, 2610, 2490, 2410, 1495, 1485, and 750 cm-1; mmp with isomer 
A 255-258°.

Anal. Calcd for C2oH3oC1N: C, 75.08; H, 9.45; N, 4.38. Found: C, 
75.02; H, 9.66; N, 4.71.

4-Oxo-l-phenylcyclohexanecarboxaldehyde Cyclic 4-(Eth- 
ylene Acetal) (30). To a suspension of 0.16 g (0.0041 mol) of 
LiAlH4 in 10 ml of THF was added 2.0 g (0.0082 mol) of cyano 
ketal in 100 ml of THF over 15 min. The mixture was stirred at 
room temperature for 1.75 hr and cooled in an ice bath. There was 
added in turn 0.16 ml of H20, 0.16 ml of 15% NaOH, and 0.48 ml of 
H20. The inorganic gel was collected on a filter and rinsed with 
Et20  and the combined filtrates taken to dryness.

The residue in 30 ml of THF and 3 ml of 2.5 N  HC1 was stirred 
at room temperature for 15 min, treated with 1.0 g of NaHC03, 
and taken to dryness under vacuum. Et20  was added to the resi­
due, and the organic fraction was separated and taken to dryness. 
This material proved suitable for use in the next step.

The residue was chromatographed on silica gel (elution with 1% 
EtOAc-CH2Cl2) and the more polar crystalline fractions combined 
to yield 0.87 g (86.4%) of aldehyde: mp 59-64°; ir 1710, 1110, 1030, 
825, and 700 cm -’ .

The analytical sample melted at 68.5-71°.
Anal. Calcd for CiSH ,80 3: C, 73.14; H, 7.37. Found: C, 73.43; H,

7.56.
4-Oxo-l-phenylcyclohexanepropionic Acid (32). To a solu­

tion of 4.74 g (0.021 mol) of triethyl phosphonoacetate in 60 ml of 
THF was added 0.89 g of 57% NaH. Following 10 min stirring at 
room temperature there was added a solution of 5.20 g (0.021 mol) 
of the aldehyde in 60 ml of THF. The solution was stjrred at reflux 
for 4 hr and at room temperature for 18 hr. The bulk of the solvent 
was removed under vacuum, and the residue was dissolved in Et20  
and H20. The organic fraction was washed with H20  and brine
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and taken to dryness. The residue was chromatographed over 700 
ml of silica gel (elution with 1600 ml of SSB, then 4 1. of 5% 
Me2CO-SSB). Those uv-absorbing fractions alike by TLC were 
combined to yield 6.38 g (96%) of acrylic ester as a gum.

A mixture of 6.38 g (0.020 mol) of the ester obtained above, 0.63 
g of 10% Pd/C, and 150 ml of EtOAc was shaken under an atmo­
sphere of H2 until the theoretical amount was consumed. The cata­
lyst was collected on a filter and the filtrate taken to dryness to 
yield 6.38 g (~100%) of product as an oil.

A solution of 6.38 g (0.020 mol) of the reduced product and 8.0 
ml of 50% NaOH in 80 ml of MeOH was heated at reflux for 20 hr. 
The bulk of the MeOH was removed under vacuum, H2O was 
added to the residue, and the latter was washed with Et20. The 
aqueous fraction was then made strongly acidic. The precipitated 
material was extracted with Et20 and the combined extracts 
washed with brine and taken to dryness.

The residue was dissolved in 50 ml of Me2CO and 5.0 ml of 2.5 N  
HC1 and allowed to stand at room temperature for 48 hr. The solu­
tion was taken to near dryness under vacuum and the residue dis­
solved in H2O and Et20. The organic fraction was washed with 
H2O and brine and taken to dryness. The residue was recrystal­
lized from CH2CI2-SSB to yield 1.70 g (34.5%) of keto acid: mp 
143-144.5°; ir 1708, 1698, 1230, and 780 cm "1.

Anal. Calcd for C15H180 3: C, 73.15; H, 7.37. Found: C, 73.04; H, 
7.40.

Spiro[cyclohexane-l,l'(2'U)-naphthalene]-4,4'(3'H)-dione 
(33). HF (5.0 ml) was distilled onto 5.0 g (0.0203 mol) of the keto 
acid and the resulting solution allowed to stand at room tempera­
ture for 20 hr. The residue was dissolved in Et20, washed with 
H2O, saturated aqueous NaHCOg, and brine, and taken to dryness. 
The residue was recrystallized from Et20 to give 1.13 g (28%) of 
spiro diketone: mp 145.5-148°; ir 1705, 1685, 1595, 1290, 1275, and 
780 cm-1.

Anal. Calcd for Ci5H,602: C, 78.23; H, 7.88. Found: C, 78.39; H, 
7.18.

Spiro[cyclohexane-l,l'(2'H)-naphthalene]-4,4'(3'Ji)-dione 
4-2,2-Dimethylpropylene Acetal (34). A solution of 3.19 g (0.014 
mol) of the spiro diketone, 1.45 g (0.014 mol) of 2,2-dimethylpro- 
panediol, and 0.06 g of p-TSA in 57 ml of benzene was heated at 
reflux under a Dean-Stark trap for 5.5 hr. The solution was washed 
with saturated aqueous NaHCO;i and brine and taken to dryness. 
The residue was chromatographed over 400 ml of Florisil (elution 
with 7.5% EtOAc-SSB). The crystalline fractions were combined 
to yield 3.29 g (75%) of product, mp 136-138°. An analytical sam­
ple from an earlier run recrystallized from Et20-SSB melted at
138.5-142°; ir 1690, 1295,1115, 930, 870, and 780 cm“ 1.

Anal. Calcd for C20H26O3: C, 76.40; H, 8.34. Found: C, 76.49; H, 
8.38.

3',4'-Dihydrospiro[cyclohexane-l,l'(2'H)-naphthalen]-4- 
one 2,2'-Dimethylpropylene Acetal (35). A solution of 3.63 g 
(0.0115 mol) of ketone, 1.54 ml of hydrazine hydrate, and 2.23 g of 
KOH in 28 ml of ethylene glycol was heated at reflux. Distillate 
was collected until the pot temperature rose to 200° and reflux was 
continued for 18 hr. The mixture was poured into H20  and a pre­
cipitated material extracted with Et20 . The combined extracts 
were washed with H20  and brine and taken to dryness. The resi­
due was recrystallized from petroleum ether to yield 2.39 g (69.5%) 
of product: mp 109-111°; ir 1110, 1020, 910, 860, 760, and 755 
cm-1.

Anal. Calcd for C2oH2802: C, 79.95; H, 9.39. Found: C, 79.95; H, 
9.51.

3')4,-Dihydrospiro[cyclohexane-l,l'(2'/i)-naphthalen]-4- 
one (36). A mixture of 2.39 g (0.008 mol) of ketal and 2.4 ml of 2.5 
N  HC1 in 24 ml of Me2CO was stirred at room temperature for 6 
hr. H20  (15 ml) was added and the bulk of the Me2CO was re­
moved under vacuum. Et20  was added to the residue, and the or­
ganic fraction was washed with H20 , saturated aqueous NaHCOa, 
and brine and taken to dryness. The residue was recrystallized 
from petroleum ether to yield 1.19 g (70%) of ketone, mp 115-120°. 
An analytical sample from a previous run melted at 120.5-123°; ir 
1710,1495,1160, 765, and 735 cm "1.

Anal. Calcd for Cl5Hi80 : C, 84.07; H, 8.47. Found: C, 83.83; H, 
8.48.

3',4'-Dihydrospiro[cyclohexane-l,l'(2'H)-naphthalen]-4-ol
(37). To a partial solution of 5.10 g (0.024 mol) of ketone in 105 ml 
of 95% EtOH was added 2.59 g of NaBH4 and the mixture was 
stirred at room temperature for 4 hr. The bulk of the solvent was 
removed under vacuum and H20  added to the residue. A precipi­
tated material was extracted with Et20  and the combined extracts

washed with H20  and brine and taken to dryness. The residue was 
recrystallized once from SSB and then chromatographed over 500 
ml of silica gel (elution with 10% Me2CO-SSB). On the basis of 
TLC the less polar fractions were combined and recrystallized 
from CsHg-cyclohexane to give 0.31 g (6.0%) of product: mp
144.5-146°; NMR b 4.1 (m, W1/2 = 7 Hz, 1, CHOH).

Anal. Calcd for Ci5H20O: C, 83.28; H, 9.32. Found: C, 83.53; H, 
9.61.

On the basis of melting point the polar fractions were combined 
and recrystallized from SSB to give 3.89 g (74.9%) of product: mp 
80-83°; NMR 6 3.85 (m, Wm  = 12 Hz, 1, CHOH).

Anal. Calcd for C15H20O: C, 83.28; H, 9.32. Found: C, 83.47; H,
9.55.

3',4'-Dihydrospiro[cyclohexane-l,l'(2'H)-naphthalen]-4-ol 
Methanesulfonate (38). To an ice-cooled solution of 3.89 g (0.018 
mol) of the alcohol in 40 ml of pyridine was added 4.0 ml of metha- 
nesulfonyl chloride. The mixture was allowed to stand in the cold 
for 6 hr and then diluted with H20. A precipitated material was 
extracted with Et20  and the combined extracts washed with ice- 
cold 2.5 N  HC1, H20, saturated aqueous NaHCOa, and brine and 
taken to dryness. The residue was recrystallized from cyclohexane 
to yield 5.0 g (94.3%) of mesylate: mp 118-120°; ir 1345, 1170, 980, 
935, 865, and 760 cm-1.

Anal. Calcd for C16H 220 3S: C, 65.27; H, 7.53; S, 10.89. Found: C, 
65.17; H, 7.61; S, 10.70.

3',4'-Dihydrospiro[cyclohexane-l,l'(2'H)-naphthalen]-4- 
ylamine Hydrochloride (39). A mixture of 5.0 g (0.017 mol) of 
the mesylate and 5.0 g of NaN3 in 50 ml of DMF was heated in an 
oil bath at 90° for 20 hr. The bulk of the solvent was removed at 
vacuum pump pressure and the residue dissolved in H20  and 
C6H6. The organic fraction was washed with H2O and brine and 
taken to dryness to yield the crude azide as an oil.

A solution of the above in 75 ml of THF was added to a suspen­
sion of 0.65 g of LiAlH4 in 8 ml of THF, stirred at room tempera­
ture for 5.5 hr, and cooled in an ice bath. There was added in turn 
0.65 ml of H20, 0.65 ml of 15% NaOH, and 1.95 ml of H20. The re­
sulting gel was collected on a filter and washed with Et20 , and fil­
trates were taken to dryness. The residue was dissolved in a small 
amount of Et20  and an excess of 6.4 N  HC1 in Et20  added. The 
precipitate was collected on a filter and recrystallized from MeOH- 
EtOAc to yield 1.76 g (40.5%) of amine salt: mp 271-273°; ir 3000, 
1590,1505,1490, 755, and 725 cm "1.

Anal. Calcd for C16H22ClN.y4H20: C, 70.29; H, 8.85; N, 5.47. 
Found: C, 70.48; H, 8.78; N, 5.55.

Ethyl Spiro[cyclohexane-l,l'(2'i/)-naphthalene]-4-carba- 
mate (40). To an ice-cooled solution of the amine free base [pre­
pared from 1.53 g (6.1 mmol) of the amine salt] in 12 ml of pyridine 
was added 0.95 ml of ethyl chloroformate. The mixture stood in 
the cold for 5 hr and then was poured into ice-H20. A solid precip­
itate was collected on a filter and recrystallized from CH2Cl2-  
C8H12 to yield 1.36 g (77.7%) of the carbamate: mp 163.5-165°; ir 
3270, 1695, 1335, 1090, and 760 cm“ 1.

Anal. Calcd for C18H25N 02: C, 75.22; H, 8.77; N, 4.87. Found: 
74.91; H, 8.77; N, 4.83.

3',4'-Dihydrospiro[cyclohexane-l,l'(2'Ii)-naphthalen]-4- 
yl-IV-methylamine Hydrochloride (41). To a suspension of 0.22 
g (5.8 mmol) of LiAlH4 in 10 ml of THF was added a solution of 
1.30 g (4.5 mmol) of the carbamate. The mixture was stirred at re­
flux for 6 hr and at room temperature for 18 hr, and then cooled in 
an ice bath. There was added in turn 0.22 ml of H20 , 0.22 ml of 
15% NaOH, and 0.66 ml of H20. The resulting inorganic gel was 
collected on a filter and rinsed with Et20  and the filtrates were 
taken to dryness. The residue was dissolved in a small amount of 
Et20  and treated with an excess of 6.4 N  HC1 in Et20 . The result­
ing precipitate was collected on a filter and recrystallized from 
MeOH-EtOAc to yield 0.81 g (52.7%) of the secondary amine, mp 
285-286°.

Anal. Calcd for Ci6H24ClN: C, 72.29; H, 9.10; N, 5.25. Found: C, 
72.60; H, 9.16; N, 5.35.

4'-Fluoro-4-(3',4'-dihydrospiro[cyclohexane-l,l'(2'Ii)- 
naphthalen]-4-ylamino)butyrophenone Hydrochloride (42). A
mixture of the free base [prepared from 1.0 g (3.97 mmol) of the 
amine salt], 0.81 g of KI, 1.24 g of K2CC>3, and 1.14 g of 4-chloro- 
p-fluorobutyrophenone 2,2-dimethylpropylene acetal in 20 ml of 
DMF was heated together in an oil bath at 90° for 20 hr. The sol­
vent was removed under vacuum and the residue dissolved in H20  
and CeHe. The organic layer was washed with H20  and brine and 
taken to dryness.

A mixture of the residue, 8.0 ml of 2.5 N  HC1, and 16 ml of
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MeOH was stirred at room temperature for 2 hr and the bulk of 
the MeOH removed under vacuum. A residual suspended solid was 
collected on a filter, washed with Et20, and recrystallized from 
MeOH-EtOAc to give 0.65 g (39.5%) of the butyrophenone: mp 
194-197°; ir 2760, 2720, 1685, 1600, 835, and 770 cm "1.

Anal. Calcd for C25H31CIFNO: C, 72.18; H, 7.51; N, 3.37. Found: 
C, 72.42; H, 7.66; H.3.14.

4'-Fluoro-4-(3',4'-dihydrospiro[cyclohexane-l,l'(2'H)- 
naphthalen]-4-yl-lV-methylainino) butyrophenone Hydro­
chloride (43). A mixture of the amine free base [prepared from 
0.81 g (3.06 mmol) of the amine salt], 0.63 g of KI, 0.96 g of K2CO3, 
and 0.87 g of 4-chloro-p-fluorobutyrophenone 2,2-dimethylpropy- 
lene acetal in 15 ml of DMF was heated together in an oil bath at 
90° for 20 hr. The solvent was removed under vacuum and the res­
idue dissolved in H20  and CfiHe. The organic layer was washed 
with H20  and brine and taken to dryness.

A mixture of the residue, 6.0 ml of 2.5 N  HC1, and 12 ml of 
MeOH was stirred at room temperature for 1.5 hr and the bulk of 
the MeOH was removed under vacuum. A residual suspended solid 
was collected on a filter, washed with Et20 , and recrystallized from 
MeOH-EtOAc to yield 0.59 g (44.8%) of the butyrophenone: mp 
204-205.5°; ir 2660, 1675,1225, 1210, 1150, and 755 cm“ 1.

Anal. Calcd for C26H33CIFNO: C, 72.62; H, 7.74; N, 3.26. Found: 
C, 72.69; H, 7.93; N, 3.03.

Registry No.—5, 56868-61-2; 6, 56868-62-3; 7, 56868-63-4; 9, 
56868-64-5; 10, 56868-65-6; 11, 56868-66-7; 12, 56868-67-8; 13, 
56868-68-9; 19, 56868-69-0; 20, 56868-70-3; 22, 56868-71-4; 23, 
56868-72-5; 24, 56868-73-6; 25, 56868-74-7; cis-27 tosylate, 56868-
76-9; irons-27 tosylate, 56868-78-1; 28, 56868-79-2; 29, 51509-98-9; 
30, 56327-24-3; 32, 2572-26-1; 33, 56868-88-3; 34, 56868-89-4; 35,

56868-90-7; 36, 56868-91-8; cis-37, 56868-80-5; irons-37, 56868-
81-6; 38, 56868-82-7; 39, 56868-83-8; 40, 56868-84-9; 41, 56868-85-
0; 42, 56868-86-1; 43, 56868-87-2; 4-chloro-p-fluorobutyrophenone
neopentyl glycol acetal, 36714-65-5; 2,2-dimethylpropanediol,
126-30-7.
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a,/3-Methyl migrations were found to occur smoothly in trifluoroacetic acid in seven polymethylnaphthalenes 
with methyl substituents in peri positions and with at least one adjacent 8 position unsubstituted. For example,
l,2,3,4,5,8-Me6-naphthalene gave the 1,2,3,4,5,7 isomer, which, in turn, gave the 1,2,3,4,6,7 isomer; 1,4,5,8-Me.i- 
naphthalene gave the 1,3,5,8 isomer, which further gave a mixture (10:1) of 1,3,5,7 and 1,4,6,7 isomers. In naph­
thalenes without peri position methyl groups, little rearrangement occurred but, instead, intermolecular methyl 
and hydride transfer took place at slow rates; e.g., 1,2,3,4-Me.j-naphthalene in CF3COOH gave 1,2,3-Me3- and a 
Mes-naphthalene as well as l ,2,3,4-tetrahydro-5,6,7,8-Me4-naphthalene; Meg-naphthalene, though with peri posi­
tion methyl groups, gave 1,2,3,4,5,6,7-Me7- and l,2,3,5,6,7-Me6-naphthalene. The basicity of polymethyl­
naphthalenes, structures of naphthalenium ions, and methyl migrating forces were discussed in terms of peri di­
methyl interaction. A kinetic study of the rates of rearrangement for seven naphthalenes showed that the rates do 
not always follow a first-order rate equation.

It has been well known that introduction of two bulky 
groups in the peri position of a naphthalene causes steric 
crowding (so-called peri interaction)1 as most evident in 
the crystal structure of octamethyl- and octachlorona- 
phthalene.2 Hart and one of the authors (A.O.)3 observed 
the formation of stable naphthalenium ions of octamethyl- 
naphthalene and 1,2,3,4,5,8- and 1,2,3,4,5,6-hexamethyl- 
naphthalene by NM R in trifluoroacetic acid (CF3COOH), 
and suggested that the observed increase in basicity is 
characteristic of naphthalenes with methyl substituents in 
peri positions and that the primary force to increase the 
stability of carbocations must be the relief of steric strain 
in peri interaction. In the present study, we have found 
that a smooth migration of peri methyl groups can be in­
duced from naphthalenium ions where the 0 position adja­
cent to the protonated peri position is unsubstituted. On 
the assumption that the peri interaction not only increases 
the basicity of a naphthalene but also accelerates the mi­

gration of peri substituents, we have carried out the experi­
ments reported here in order to clarify the characteristics 
of this effect.

Protonation and rearrangements in carbocyclic systems 
promoted by the accompanying relief of steric strain have 
often been encountered.4 Additionally, methyl migration in 
methylbenzenes as well as in mono- and dimethylnaph- 
thalenes has been known to occur at a slow rate measurable 
only in such strong acids as H F-B F3 or superacids.5 Our 
work, however, found a significant difference in the ease of 
methyl migration between polymethylnaphthalenes with 
and without methyl substituents in peri positions; for ex­
ample, the former naphthalenes undergo methyl rearrange­
ment readily in such relatively weak acids as CF3COOH or 
HC1, but the latter do not. It was also found even among 
peri-substituted naphthalenes that the rate of rearrange­
ment depends markedly upon the number and position of 
methyl substituents. Therefore, with the purpose of reveal-
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Figure 1. Rearrangement of l,2,3,4,5,8-Me6-naphthalene in 
CF3COOH at 77°: 1, 1,2,3,4,5,8-Mes; 2, 1,2,3,4,5,7-Me6-; 3, 
l,2,3,4,6,7-Me6-naphthalene.

Reaction Time (h r)
Figure 2. Rearrangement of l,4,5,8-Me4-naphthalene in 
CF3COOH at 11°: 4, 1,4,5,8-Me4-; 5, 1,3,5,8-Me4-; G, 1,3,5,7-Me4-- 
7, l,4,6,7-Me4-naphthalene.

ing the interrelationship between the existence of peri 
methyls and the substituent effect of other methyl groups, 
a kinetic study has been conducted.

The rearrangement reported here provides simple meth­
ods for the preparation of some polymethylnaphthalenes—
1,2,3,4,5,7- and l,2,3,4,6,7-Me6-naphthalene, 1,2,3,4,6- 
Mes-naphthalene, 1,3,5,8-, 1,3,5,7-, 1,4,6,7-, and 1,3,6,7- 
Me4-naphthalene, and l ,7-M e2-naphthalene— starting
from those whose efficient preparative routes have been 
known.

Results
When l,2,3,4,5,8-Me6-naphthalene (1) was heated in 

boiling CF3COOH (0.34 mol/1.) for 1 hr, 1,2,3,4,6,7-Me6- 
naphthalene (3) was obtained (70%) as the final rearranged

product besides some by-products.6 Analogous treatment 
at 25° gave an intervening isomer, 1,2,3,4,5,7-Me6-naphtha- 
lene (2), which, isolated, proved to be the precursor of 3. 
Figure 1 shows the change in naphthalene distribution in 
this rearrangement. Thus, the optimum preparation of 2 
was attained (72%) in 15 min at 77°.

The composition of by-products was complex. It was 
found by GLC-mass spectroscopy that they consisted of 
three Mes- (m/e 198) and two Me7-naphthalenes (m/e 
226), dihydro- and tetrahydro-Me6-naphthalenes (m/e 214 
and 216, respectively), and a polymeric product. Their for­
mation, however, was suppressed by dilution. There are 
only two possible structures for Me7 isomers, i.e.,
1,2,3,4,5,6,7- (19) and l,2,3,4,5,6,8-Me7-naphthalene (38). 
As for Mes isomers, two of them were identified with 12 
and l,2,3,5,7-M e5-naphthalene (40) by comparison with the 
authentic compound and the reported data.7

Other acidic media than CF3COOH were also examined 
for the rearrangement (see Table I). Hydrogen chloride was 
found to induce the rearrangement with relatively low 
yields of by-products in acetic acid and more effectively by 
the addition of Lewis acid [AICI3, BF3, Zn(CN)28]. How­
ever, they are still not so effective as CF3COOH with re­
gard to yields, reaction time, and simplicity of products.

1,4,5,8-M e4-Naphthalene (4) gave 1,3,5,7 (6, 87%) and
1,4,6,7 (7, 8%) isomers as the final rearrangement products

Table I
Rearrangement of 1,2,3,4,5,8-Hexamethylnaphthalene in 

Various Acids (1.4 mmol/10 g acid)

Product

Tem p, Time,
Run Acid °C hr 1 2 3

1 AcO H , HCH 115 4 100 0 0
2 AcOH, HC1 115 4 75 25 0
3 AcO H , H2SO„ (10% ) 115 1 15 82 3
4 115 2 0 75 25
5 AcOH , HCl, AICI36 80 20 39 61 1
6 AcOH , HC1, B F3 Et20 * 80 20 56 44 0
7 Cl—AcOH 135 3 19 78 3
8 CFjCOOH 77 0.25 4 86 10
9 77 1 0 25 75
aHCl was passed through the solution at 115° in run 1, 

saturated at 0° and sealed in other runs. & Lewis acid; 0.86 
mol/1. c Based on  1 + 2 + 3 = 100%, determined after re­
moving polym eric products, which weighed 15—20% in 
runs 3 and 4, less than 5% in other runs. d l ,  1,2 ,3 ,4 ,5 ,8- 
M e6-; 2, 1,2,3,4,5,7-M e6-; 3, 1,2,3,4,6,7-Me^-naphthalene.

after heating in CF3COOH for 60 hr (0.42 mol/1.). A GLC 
analysis of the reaction proved that l,3,5,8-M e4-naphtha- 
lene (5), isolated, was an intervening precursor of both 6 
and 7. Although the rate was slower than that of 1, the total

7

yield of 6 plus 7 ,^as over 90% unless the reaction was car­
ried out at high concentrations. Figure 2 shows the change 
in product distribution in this rearrangement and the opti­
mum preparation of 5 (76%) was attained in 5 hr at 77°. 
The main by-products were two tetrahydro-Me4-naphtha- 
lenes (m/e 188), three Me3-naphthalenes (m/e 170), and a 
Mes-naphthalene (m/e 198), as analyzed by GLC-mass 
spectroscopy.

Treatment of l,3,6,8-M e4-naphthalene (8) in boiling 
CF3COOH (0.172 mol/1.) for 110 hr gave l,3,6,7-M e4-naph- 
thalene (9) in 90% yield. Under the above conditions, fur-
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Table II
Rates of Rearrangement of Polymethylnaphthalenes in CF ,COOH Calculated from the First-Order Rate Equation

k, X 105 sec-

Rearrangement6 [A 0] , mmol/1. 40° 50° 60° 70° In A

1 ->■ 2 15.1 6.20 18.6 52.3 114 20.9 23.9
2 -> 3 15.1 1.60 3.94 9.46 19.5 17.9 17.7
4 -> 5 16.8 3.50 10.4 27.5 74.6 21.7 24.7
5 -> 6 14.8 0.245 0.786 2.40 6.20 23.2 24.3
5 -» 7 14.8 0.0205 0.0687 0.222 0.501 24.1 23.4
8 -  9 16.9 0.217

10 -> 11 96 0.0028 0.0102 0.0275 0.0718 22.1 22.7
12 -> 13 84 3.20
21 -> 1,3-M e, < 10-4

'.2 - -0.5 kcal/m ol. *1,, 1,2 ,3,4,!»,8 -M e.-; 2 , 1,2 ,3 ,4 ,5 ,7-M es-;; 3, 1,2 ,3 ,4 ,6 ,7-M es-;; 4, 1,4,5,8-M e,-:; 5, 1,3 ,5 ,8-M e4 ; 6 ,
1,3,5,7-M e4-; 7, 1,4,6,7-M e4-; 8 , 1,3,6,8-Me, 
1 ,2 ,3 ,4 ,6-M es-; 21, l,4 -M e2-naphthalene.

9, 1,3,6,7-M e„-; 10 , 1,8-M e,-; 11, 1,7-M e,-; 12, 1 ,2 ,3,4,5-M e,-; 13,

-A x
8 9

ther rearrangement of 9 did not occur but, instead, a trace 
amount of by-product (methyl disproportionation and re­
duction products) was formed (< 2%).

Although at a very slow rate, l ,8-M e2-naphthalene (10) 
rearranged into the 1,7 isomer (11) without forming by­
products. Similarly, despite structural similarity to 1,
l ,2,3,4,5-M e5-naphthalene (12) rearranged into the
1,2,3,4,6 isomer (13) more slowly than 1 or 4 (see Table II).

10 11

12 13

However, 13 was the only product not accompanied by an 
appreciable amount of by-products.

It was independently confirmed that the rearrangements 
mentioned above were irreversible processes.

In all the naphthalenes examined above, a,/3-methyl mi­
gration was the main reaction. However, the formation of 
some anomalous products, though in low yields, necessi­
tated the examination of such naphthalenes as 1.2,3,4-Me4-
(14) and Meg-naphthalene (18). In 14, essentially no rear­
rangement was observed as predicted from the lack of peri 
strain. However, treatment of 14 in boiling CFgCOOH over 
1100 hr gave a mixture of 1,2,3-Meg-naphthalene (15,13%),
l ,2,3,4-tetrahydro-5,6,7,8-Me4-naphthalene (16, 4%), and a 
M es-naphthalene (17, 1%) besides unreacted 14 (80%).

14

These products were isolated and their structures were de­
termined by the comparison of their N M R  and mass spec­
tra and melting point of picrates with those reported.9

When a CF3COOH solution of Mes-naphthalene (18,
0.05 molA.) was heated for 72 hr, a Me6-naphthalene (20, 
20%) and a Me7-naphthalene (19, 2%), whose precursory 
role to the formation of 20 was confirmed independently, 
were obtained besides unreacted 18 (38%) and polymeric

18 19 20

materials (40%). Both 19 and 20 were isolated and their 
structures determined as 1,2,3,4,5,6,7-M e7- and 1,2,3,5,6,7- 
M e6-naphthalene for 19 and 20, respectively, by spectros­
copy joined with a rational mechanistic account.10

Analogously, the main reaction of the following naphtha­
lenes, none of which has any methyl substituents in peri 
positions, was the dealkylation. Thus, 1,4- (21, 0.254 mol/1.) 
and 2,3-M e2-naphthalene (22, 0.190 mol/1.) in CF3COOH  
produced a very small amount of Mei-naphthalene (1- and
2-Me, respectively) in less than 0.1% yield after heating for 
720 hr.11 1,4 ,6,7-Me4- (7, 0.08 mol/1.) and l ,3,5,7-M e4-naph- 
thalene (6, 0.09 molA.), after heating for 720 hr, produced 
methyl disproportionation products (Me3- and Mes-naph- 
thalenes, m/e 170 and 198, respectively) in relatively high 
yields (12.7% from 7, 8% from 6, and ratios Mes/Meg slight­
ly lower than unity in both cases). Similarly, 3 gave a Mes- 
naphthalene (m/e 198, 4%). Its structure is assumed to be

6, 7 — *■ (Meh-C.JR +  (Me)5-C,0H .

1,2,3,6,7-Mes, since it is not identical with 13 and the possi­
bility of 1,2,4,6,7-Me5 seems unlikely when compared with 
the result from 14.

In order to estimate a quantitative character of peri di­
methyl interaction as well as substituent effects of other 
methyl groups participating in the rearrangement, the 
rates of rearrangement of seven polymethylnaphthalenes,
i.e., 1, 2, 4, 5, 8, 10, and 12, were measured in CF3COOH. 
All rearrangements were carried out in diluted solutions 
(<20 mmolA.) to suppress the formation of by-products. In 
fact, 1, which is most susceptible to side reactions, did not 
form an appreciable amount of by-products under this con­
dition. Thus, neglecting side reactions, we assumed that16
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Table III
Rate Constants Recalculated from the Rate Equation d[B ]/d f =kn[A ]n (n < 1 )

Rearrange­
ment0

Reaction 
order, n

kn X 105, (l./m o l)1- "  sec-1
Ea,

kcal/m ol In A

OOTÌ4 OOLO 60°

OO

2 -> 3 0.82 0.866 1.85 4.08 8.17 15.8 ± 0.3 14.0
4 ^ 5 0.70 0.84 2.48 7.50 23.7 22.6 ± 0.5 24.5
5 ->• 6 0.86 0.132 0.437 1.31 3.04 21.3 ± 0.3 19.7
5 ^ 7 0.86 0.0111 0.0382 0.121 0.291 22.1 ± 1.5 20.8

°2 ,  1,2,3,4,5,7-M e6-; 3, 1,2 ,3 ,4,6,7-M e6-; 4,, 1,4 ,5 ,8-M e.-; 5', 1,3,5,8-M e„-; 6 , 1,3,5,7-M e4-; 7, l,4 ,6 ,7 -M e4-naphthalene.

ICQ (Aq)
Figure 3. Plots of log R (R = k ([Aq] ) for the rearrangements of
1.2.3.4.5.8- Me6- (O), 1,2,3,4,5,7-Me6- (a ), 1,4,5,8-Me4- (X),  and
1.3.5.8- Me4-naphthalene (•) at 60° in CF3COOH. [Ao] is initial 
substrate concentration.

the total molar amount of substrates was unchanged 
throughout the treatment. Results are listed in Table II, 
where rate constants K\ are calculated based on the first- 
order rate equation

d[product]/df =  [starting naphthalene] (1)

However, careful examination of k\ values at 60° resulting 
from changes in the initial substrate concentration showed 
that they were not constant in the cases of 2, 4, 5, and 8, as 
long as they were calculated from eq 1. For example, as to 
the rearrangement of 2 —* 3, k\ values were 1.08 X 10-4 , 
7.37 X 1 0 -5, and 6.83 X 10~5 sec“ 1, for 3.97 X 10~3, 2.03 X
10-2 , and 3.40 X 10-2  mol/1. concentrations, respectively. 
In contrast, k\ for 1 —  2 remained unchanged over various 
concentrations. Therefore, kinetic orders, n, were calculat­
ed for five rearrangements (1 —► 2, 2 —» 3, 4 —► 5, 5 —* 6, 5 —
7) according to the rate equation R =  d[B]/dt =  fen[A]n, for 
the reaction A -»• B. By plotting log R against log [A0] (see 
Figure 3), the n values were found: 1.05 ±  0.02 (1 —► 2), 0.82 
±  0.07 (2 - *  3), 0.70 ±  0.06 (4 —  5), 0.86 ±  0.05 (5 —  6, 7). 
The rearrangements, except 1 —* 2, seem to follow the 
equation where n =  0.8 on the average. The calculated rate 
constants kn, which remained almost constant over various 
concentrations, are listed in Table III.

Discussion

Rearrangement. It has been known that the general- 
acid-catalyzed a,0-alkyl shifts in naphthalene systems are 
caused by protonation on an a position though the kineti-

cally controlled first <r protonation may not necessarily be 
on the same a position but may be on the other unsubsti­
tuted position as indicated by the NM R study of methylar- 
enes.12’5 On the other hand, the first kinetically controlled 
a protonation seems to occur on the substituted a position 
in such naphthalenes as 18, 1, and 1,2,3,4,5,6-Meg-naphtha- 
lene (50) according to the NM R observation of their corre­
sponding stable arenium ions, e.g., 24 from l .3 However, 
the observed intramolecular rearrangement of 1 indicates 
that another naphthalenium ion, 25, which alone can give 
rise to the formation of 2, must be involved in the protona­
tion equilibrium (Scheme I), although its stability must be 
relatively lower than that of 24. The higher basicity of the 
peri carbons of 1 than that of other naphthalenes, such as 
3, which do not have any methyl substituents in peri posi­
tions, can reasonably be attributed to the strain release of 
peri interaction as the result of protonation.13'14 Between 
the two peri positions in 1, the basicity of C -l (or C-4) is 
higher than that of C-5 (C-8), which is caused mainly by 
differences in hyperconjugative and inductive effects of 
methyl groups and, secondly, by differences in the extent of 
strain release between naphthalenium ions 24 and 25.15

With this logic, protonation and rearrangement of 4 can 
be explained in terms of peri interaction. In the first step 
(Scheme II), naphthalenium ion 28 seems to be the sole 
protonated species but the basicity of 4 is not high enough 
to enable NM R observation of 28 in CF3COOH. Protona­
tion of 5 can take place on either C -l or C-8. The predomi­
nant formation of 6 over 7 (k^y/ks-^6 =  0.105) indicates 
that naphthalenium ion 30 predominates over the alterna­
tive 31. This is because, though the peri interactions in 
both 30 and 31 are essentially the same, the basicity of C-8 
is higher than that of C -l because of the difference in the 
position of methyl substitution.

The unexpectedly slow rate of rearrangement of 12 indi-
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Scheme II

31

cates another substituent effect. Naphthalenium ion 32, 
which must be the rearrangement precursor but may not be 
as major a carbocation as 33 (or 34), has no methyl group in

the C-8 position but four methyl groups on the A ring. If 
the A ring contributes significantly to delocalize the posi­
tive charge, then the rate would not be remarkably slower 
than that of 1. However, the observed slow rate, even slow­
er than that of 4, implies that this is not the case and that 
the presence of methyl substituent in the para position to 
the reacting site, together with the peri interaction, is a re­
quirement for increasing basicity. This is in accord with the 
reported effect for monomethylnaphthalenes.12

The rate of rearrangement of 8 was as slow as that of 5 —► 
7 owing to the structural similarity of 35 to 31. Naphtha­
lene 8 could also give rise to the formation of other ions 36 
and 37 judging from the report of thermodynamically fa­
vored 2,4-dimethyl-l-hydronaphthalenium ion from 2 1 .6 
However, we have not yet obtained information enough to 
predict the priority among these three cations.

In relation to this argument, the apparent lack of migrat­
ing power in 6, 7, 9, and 21 (their rates of rearrangement 
were more than 10 ~ 2 times slower than that of 10 ) will 
partly enable us to differentiate carbocation stability and 
methyl migrating force: that is, the migrating force mainly 
derives from the strain release of peri interaction, and the 
carbocation stability from both the strain release and the 
electronic effects of methyl substitution.

On the above assumption as well as taking into account 
the positive charge being delocalized mainly in the proton- 
ated ring, the rate of 4 —* 5 would be comparable to that of 
1 —* 2. In fact, this speculation seems supported by the ob­
servation that the rate of 4 is slightly lower than that of 1 
(see Table II). The slight difference in rate may be attrib­
uted to the difference in the way the unprotonated ring

participates partially in sharing the positive charge. In ad­
dition, the difference can be explained by referring to the 
crystal structure of 18 where both a and (1 methyl (as well 
as ring carbons) are largely displaced from the mean 
plane.2 Analogous to 18, the strength of nonbonded peri in­
teraction in 1 must be higher than in 4 where 0 positions 
are unsubstituted, and this difference in strain will be re­
flected in the basicity; and the secondary peri interaction 
which still remains around the protonated sp3 carbon of 
naphthalenium ions15 must be greater in 25 than in 28, 
being reflected in the methyl migrating rate.

The formation of polymeric products was not negligible 
in 1, 4, and 18, whose peri positions are all substituted by 
methyl groups, and was promoted by increasing the sub­
strate concentration as well as by lowering the tempera­
ture. The sequence most rationally accounting for this in- 
termolecular reaction with a low activation energy seems to 
involve the formation of ArH+Ar complex16 in which a pair 
of peri strains are relieved simultaneously without the mol­
ecule’s undergoing the high energy rearrangement; and, 
consequently, a telomerization is induced.

Methyl Disproportionation and Reduction. As most 
typically illustrated by the behavior of l,2,3,4-Me4-naph- 
thalene (14), polymethylnaphthalenes undergo methyl dis­
proportionation (dealkylation and alkylation) and reduc­
tion. These side reactions became major for 21, 6, 7, and 9 
and the a,/3-methyl migrations were negligible.

Intermolecular alkyl shifts for arenes have been widely 
reported17’18 in the cases of tert-butyl, isopropyl, ethyl, and 
their homologues as the migrating groups, but the methyl 
group has been known to hardly migrate intermolecularly. 
Roberts proposed that the disproportionation of primary 
alkylarenes proceeds by the chain mechanism via benzyl- 
type carbocations.19 This sequence, however, seems not ap­
plicable to the peri-substituted polymethylnaphthalenes 
and, instead, the methyl migration via ArH+Ar complexes 
resulting in the strain relief seems most likely.20 According 
to this sequence, «-methyl was eliminated much faster 
than /3-methyl in 18 to give 19, which in turn gave 20.

The ratio of two heptamethylnaphthalenes formed from 
1 was time dependent. In the light of the argument for the 
relief of peri strain, the increasing isomer must be 19, 
which was identical with the product formed from 18, and 
the decreasing isomer must be 38. The formation of 12 in­
dicates that naphthalenium ion 25 undergoes déméthyl­
ation as well, and the formation of 40 suggests the existence

Scheme III

19
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of its precursor 39 whose rate of rearrangement must be 
similar to that of 1 (see Scheme III).

The isolation of 16 from 14 as well as the detection of di­
hydro- and tetrahydronaphthalenes in the product mixture 
of 1, 4, and 18 demonstrates that the reduction of naphtha­
lene nuclei took place almost with the same ease as the 
methyl disproportionation. Although some examples of the 
reduction of alkenes by the hydride transfer from alkylar- 
enes have been known,21 very few have been reported for 
the reduction of arene nuclei.32 The reaction proceeds via 
the intermolecular hydride shift (Scheme IV) where methyl

Scheme IV

43 15

groups are the hydride donor, thus resulting in the forma­
tion of hydronaphthalenes and naphthylcarbinyl cation 47 
(which can be the precursor of methyl disproportiona­
tion19). It is also interesting that 14 undergoes reduction 
preferentially on the ring that has no methyl substituent. 
Presumably, hydride transfer occurs through the ArH+Ar 
complex where the sterically less crowded transition state 
may be favored.16

Kinetics. The rate of reaction for the present type of re­
arrangement, seemingly accountable in terms of an unimo- 
lecular protonation-deprotonation mechanism, is supposed 
to be proportional to the first order of substrate concentra­
tion. In order to interpret the smaller order of the reaction 
observed in the cases of 2, 4, and 5, we postulate a sequence 
in which the basic naphthalene molecule participates in 
both the deprotonation (reversible) and irreversible side 
reactions (Scheme V); that is, the rate of deprotonation de­
pends upon both first- and second-order terms of sub­
strates as expressed in eq 2. Then, by the method of sta­
tionary state approximation, eq 3 is derived from eq 2 for 
the rate of formation of the product C. This equation ob­
viously indicates that the observed rate constant depends 
on [A]; as [A] increases the apparent rate constant de­
creases and vice versa. Consequently, it can be re-formulat- 
ed with approximation into eq 4. Thus, in the cases of 2, 4, 
and 5, rt appeared between 0.7 and 0.86 since [A] must be 
considerably higher than [B], However, in 1, n = 1.0, since
[A] must be much lower than [B] or almost negligible owing 
to the extraordinarily higher basicity in C-l positions, as 
evidenced by the NMR observation of 24 in CF3COOH.3

Results in either Table II or III lead to the following se­
quence for decreasing rate of rearrangement: 1 > 4 > 2 > 5 
— 6 > 12 > 5 — 7 > 10 > 21. Since the rate depends not on 
the total basicity of a naphthalene molecule but mainly on 
the basicity of the peri carbon on which protonation can in­
duce the rearrangement, we can estimate the factors neces-

Scheme V

k

(3)

(4)

sary and/or facilitating the reaction: (a) existence of at 
least a pair of peri dimethyl substituents; (b) the position 
ortho to the protonated peri carbon being unsubstituted;
(c) existence of a methyl group in the position para to the 
protonated site; (d) the unprotonated ring of a cation pos­
sessing many methyl groups. Usually, protonated species 
that satisfy the above conditions are not observed by NMR 
in CF3COOH and a predominant species in a protonated 
equilibrium is not necessarily the one that causes rear­
rangements.

Activation parameters, Ea and A, were obtained by fit­
ting rate constants to the Arrhenius equation (Tables II 
and III). The average value of Ea (21-23 kcal/mol) is al­
most the same as that reported for methylbenzenium 
ions.31 However, since the present calculation is based on 
the consumption and formation of naphthalenes but not on 
the concentration of arenium ions, the values for the meth­
yl migration in ions would be lower than those in the tables.

Preparative Utilization. Although relatively easy prep­
arations of (^-symmetric polymethylnaphthalenes have 
been known,22 the procedures hitherto known for unsym- 
metric homologues23 seem troublesome. Instead, the 
present rearrangement can be used as a simple method to 
prepare such unsymmetrical polymethylnaphthalenes as 2, 
5, 6, 9, and 13 from the corresponding isomers whose prep­
arations are easy. The isolation and purification of prod­
ucts can be achieved by column chromatography and re- 
crystallization.

Experimental Section
General. All melting points are uncorrected. Mass spectra were 

taken on a Hitachi Model RMU-6L spectrometer, which was con­
nected to a Hitachi Model 063 gas chromatograph equipped with a 
single column of Apiezon Grease L, 5%, 3 mm X 4 m. NMR spectra 
(60 and 100 MHz) were recorded on either a Varian T-60A or a 
Jeol 4H-100 spectrometer in carbon tetrachloride solution, unless 
otherwise stated. All chemical shifts are given in x units. Uv and ir 
spectra were taken on a Hitachi Model 124 and a Jasco Model 
IRA-I spectrometer, respectively.

Polymethylnaphthalenes. 1,2,3,4,5,8-Me6- (1), 1,2,3,4,6,7-Mer,-
(3), 1,2,3,4,5,6-Mes- (50), 1,2,3,4,5-Me5- (12), 1,2,3,4-Me4- (14), and 
Mes-naphthalene (18) were prepared from hexamethyl-2,4-cyclo- 
hexadienone (53)24 and methylbenzynes according to the proce­
dure reported.22 1,4,5,8-Me4- (4), 1,4,6,7-Me4- (7), and 1,4-Me2- 
naphthalene (21) were prepared according to Mosby’s procedure,25
1,3,6,8-Me4-naphthalene (8) from 3,5-dimethylbenzyl bromide and 
diethyl allylmalonate,26 and l,8-Me2-naphthalene (10) from

I
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naphthalic anhydride.27 Preparative procedures for 12 and 50 will 
be described in this section.

A General Procedure for the Rearrangement. Commercially 
available CF3COOH of guaranteed grade with the same batch 
number was used in all treatments. A CF3COOH solution of a po- 
lymethylnaphthalene was heated under solvent reflux (11°) for a 
certain period. After cooling, the reaction mixture was poured into 
an excess amount of cold 5% aqueous sodium carbonate and the 
precipitate separated was extracted with diethyl ether three times. 
The ethereal solution was again washed with aqueous sodium bi­
carbonate and then with water three times. After drying over an­
hydrous MgSC>4, ether was removed in vacuo and the residue was 
dissolved in cyclohexane and chromatographed through a silica gel 
column (Merck silica gel 60, 70-230 mesh) by using cyclohexane as 
eluent to remove polymeric by-products. The eluted substance was 
dissolved in benzene and then analyzed by GLC (using a 3 mm X 3 
m column packed with Apiezon Grease L, 10%, on Chromosorb W).

Kinetics. Rates of rearrangement of seven polymethylnaph- 
thalenes, 1, 2, 4, 5 (at 40, 50, 60, and 70°), and 8, 10, 12 (at 70°), in 
CF3COOH were measured by GLC analysis of the reaction mix­
tures whose initial substrate concentrations were kept as low as in­
dicated below to suppress the formation of by-products; 1 and 2 
(15.1 mmol/1.), 4 (16.8-17.1), 5 (14.8-17.4), 8 (16.9), 10 (96), 12 
(84). In all analyses, molar change of substrates vs. reaction time 
was measured by the method of calibration curves. The number of 
sample collections per reaction at a temperature was more than six 
in all cases. Work-up procedure for the collected samples was the 
same as the above-mentioned general procedure for the rearrange­
ment. The 0.8-order rate constants ko.8, for example, were calculat­
ed according to eq 5, which can be derived by integrating eq 4.

1 -  ([A]/[A0])0'2 = ¿o.8t/5[A0]0-2 (5)

Rearrangement of l,2,3,4,5,8-Me6-naphthalene (1). A solu­
tion of 1 (0.51 g, 2.4 mmol) dissolved in 7 ml of CF3COOH was 
heated under reflux for 10 min. After work-up, about 20% of the 
initial weight was lost by column chromatography. The substance 
which was trapped in the column was then extracted with benzene 
to give a resinous material,28 whose NMR spectrum showed a com­
plex pattern between 7.0 and 8.5 ppm. The eluted substance con­
sisted of 1 (17%), 2 (69%), and 3 (5%) besides a small amount of by­
products. Column chromatography followed by recrystallization 
from methanol afforded 2,29 mp 79.5-81.0°, NMR (all singlet) Me 
at 7.74, 7.71, 7.64, 7.53, 7.43, and 7.29, 1 H at 3.16 and 2.59. When 
the solution was heated for 1 hr, the obtained column eluate con­
sisted of 2 (19%) and 3 (58%) and the latter was identified with the 
authentic sample. As to the composition of by-products, see the re­
sults in the text.

Rearrangement of l,4,5,8-Me4-naphthalene (4). A solution of 
4 (1.56 g, 8.5 mmol) in 19 ml of CF3COOH was heated at 11° for 5 
hr. After work-up, the product mixture was chromatographed (ca. 
10% was trapped in the column) and the eluate was analyzed by 
GLC to find that it consisted of unreacted 4 (9.5%), 5 (75.6%), 6 
(12.4%), and 7 (1.2%). Column chromatography (or a preparative 
GLC) of the mixture afforded 5, whose melting point (57°) and uv 
were identical with those reported. NMR of 5: 7.59 (Me, s), 7.49 
(Me, s), 7.20 (2 Me, br s), 3.06 (3 H, br s), and 2.51 ppm (H, s). 
When the same solution of 4 was heated for 100 hr, the obtained 
product mixture (93% of the initially charged weight of 4) consist­
ed of 6 (88.2%) with a small amount of 7 (9%) which was removed 
by recrystallization from methanol. The melting point and other 
spectral data of 6 were identical with those reported.26

Rearrangement of l,3,6,8-Me4-naphthalene (8). A solution of 
8 (0.41 g/15 ml CF3COOH) was heated for 110 hr. The product 
mixture consisted of 9 (93%) and 8 (7%). 9: mp 46-47°; Xmflx (etha­
nol) 283 nm (« 5200); NMR 7.59 (3 Me, s), 7.41 (Me, s), 3.03 (H, s), 
2.73 (H, s), 2.63 (H, s), 2.44 ppm (H, s).

Rearrangement of l,8-Me2-naphthalene (10). A solution of 
10 (0.50 g/20 ml CF3COOH) was heated for 24 hr. The product 
mixture consisted of unreacted 10 (85%) and 11 (15%), whose melt­
ing point and NMR were identical with those reported.7

Preparation of l,2,3,4,5-Me5-naphthalene (12). A stirred mix­
ture of 53 (62 mmol), propylene oxide (0.25 mol), 3-methylbenzen- 
ediazonium 2-carboxylate hydrochloride (62 mmol), and 1,2-di- 
chloroethane (150 ml) was heated under reflux for 30 min. After 
work-up in the same manner as reported before,3 a mixture of 
two isomers of l,3,3,4,7,8-hexamethyl-5,6-(methylbenzo)bicy- 
clo[2.2.2]octa-5,7-dien-2-one (51 and 52) was obtained, t> (C = 0 ) 
1705 cm-1. NMR chemical shifts corresponding to each isomer are 
obtained by comparing spectrum intensity on the basis that is ap­
plied in distinguishing two isomers 54 and 55 in the following para­

graph. 51: gem-Me at 9.46 and 8.96, Ar-Me 7.53, other Me 8.2-8.45, 
ArH 3.0-3.25 ppm. 52: gem-Me 9.39 and 9.02, ArMe 7.49, other Me
8.2-8.45, ArH 3.0-3.25 ppm. 51/52 = 1.75. The above mixture of 51 
and 52 (not separated) was treated with a Me2SO solution of dim- 
syl sodium30 to give 12 (4.2 g, 35%) in white crystals, mp 75-76°. 
Further purification was done by column chromatography.

Rearrangement of 1,2,3,4,5-Mes-naphthalene (12). A solu­
tion of 12 (0.5 g/20 ml CF3COOH) was heated for 5 hr. The prod­
uct mixture consisted of 13 (88%) and 12 (12%). 13: mp 85°;10 
NMR 7.70 (2 Me, s), 7.54 (Me, s), 7.50 (2 Me, s), 2.85-3.0 (H), 2.2- 
2.4 ppm (2 H).

Preparation of l,2,3,4,5,6-Me6-naphthalene (50). A mixture 
of two structural isomers of 1,3,3,4,7,8-hexamethyl-5,6-(dimethyl- 
benzo)bicyclo[2.2.2]octa-5,7-dien-2-one (54 and 55) was obtained 
according to the previous report.3 Separation of the isomers was 
possible by recrystallization from methanol. With varying amount 
of Eu(fod)3 in carbon tetrachloride, one of the isomers exhibited a 
more sensitive separation of two aromatic hydrogens (which ap­
peared equivalent without the shift reagent) than the other isomer. 
Therefore, this was assigned to 55 where the aromatic hydrogens 
are placed closer to the carbonyl group than in 54. 54: mp 154- 
156.5; NMR gem-Me at 9.44 and 9.00, allylic Me 8.27, bridgehead 
Me 8.48 and 8.20, ArMe 7.79 and 7.63, ArH 3.17 ppm, with relative 
areas 3:3:6:3:3:3:3:2; v (C = 0 ) 1710 cm-1 (for both isomers). 55: mp
127-130°, NMR gem-Me 9.38 and 9.03, allylic Me 8.33 and 8.23, 
bridgehead Me 8.48 and 8.16, ArMe 7.77 and 7.59, ArH 3.19 ppm, 
with relative areas 3:3:3:3:3:3:3:3:2. Isomer ratio 54/55 = 1.71. 
Treatment of the above mixture, or separated isomer, with dimsyl 
sodium gave 50 (98%): mp 55.5-56.5°; NMR 7.69 (Me, s), 7.68 (Me, 
s), 7.66 (Me, s), 7.49 (3 Me, brs), 2.98 and 2.44 (H for each, AB 
type, J = 9 Hz).

Rearrangement of 1 in Acetic Acid. In each of five tubes 10 g 
of acetic acid and 0.30 g (1.4 mmol) of 1 were placed. Three of 
them were saturated with dry HC1 at 0°; the first of the three 
tubes was sealed without additives. To the second and third tubes 
were added AICI3 (1.0 g) and boron trifluoride etherate (1.1 g), re­
spectively. Two remaining tubes were sealed after adding to each
1.0 g of H2SO4. Another tube containing chloroacetic acid and 1 
was also prepared. Six tubes, thus prepared, were heated under the 
conditions cited in Table I.

Treatment of l,2,3,4-Me4-naphthalene (14) in CF3COOH. A
solution of 14 (0.584 g/11 ml CF3COOH) was heated for 1100 hr. 
The originally colorless solution turned to dark blue during the 
above period. The reaction mixture, after work-up, was chromato­
graphed through a silica gel column (cyclohexane). About 20% of 
the original weight was removed as a cyclohexane-insoluble mate­
rial. The eluted mixture was then analyzed to find that it consisted 
of 15 (15%), 16 (4%), 17 (1%), and unreacted 14 (82%). A prepara­
tive GLC afforded 15 and 16. 15: mp 140.5-142° (picrate); NMR 
7.65 (Me, s), 7.59 (Me, s), 7.42 (Me, s), 2.0-2.8 ppm (5 H, m); P+ 
m/e 170. 16: mp 77.5-78.50;9 NMR 8.27 (4 H, m), 7.92 (2 Me, s),
7.84 (2 Me, s), 7.41 ppm (4 H, m); P+ m/e 188. 17: P+ m/e 198.

Treatment of Meg-naphthalene (18) in CF3COOH. A solu­
tion of 18 (0.52 g/30 ml CF3COOH) was heated for 30 hr. By chro­
matographing the reaction mixture through a silica gel column (cy­
clohexane), about 40% of the original weight was removed as poly­
meric materials. The eluted mixture consisted of several compo­
nents in which 20 and 19 (2 and 20%, respectively) were the main 
products. 20: P+ m/e 226; mp 133-136°; NMR 7.68 (3 Me, br s),
7.61 (Me, s), 7.48 (3 Me, s), 2.54 (H, s). 19: P+ m/e 212; mp 176- 
177°;10 Xmax (ethanol) 274 nm (e 6450), 284 (6080); NMR 7.67 (2 
Me, s), 7.58 (2 Me, s), 7.46 (2 Me, s), 2.49 ppm (2 H, s). When the 
heating was stopped after 8 hr, a mixture of 20 (4%) and 19 (14%) 
was obtained.

Treatment of Other Polymethylnaphthalenes in CF3COOH.
Solutions of 3, 6, 7, 21, and 22 (0.08-0.25 mol/1.) in CF3COOH were 
heated for 720 hr. After work-up and column chromatography, the 
product mixtures were analyzed by GLC-mass spectroscopy as 
well as by GLC. Results are shown in the text.
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19063-11-7; 17, 56908-81-7; 18, 18623-61-5; 19, 56908-82-8; 20, 
51958-57-7; 21, 571-58-4; 22, 581-40-8; 50, 56908-83-9; 51, 56908- 
84-0; 52, 56908-85-1; 54, 56908-86-2; 55, 56908-87-3; 3,5-dimethyl- 
benzyl bromide, 56908-88-4; diethyl allylmalonate, 2049-80-1; 
naphthalic anhydride, 81-84-5; dimsyl sodium, 15590-23-5; 1,3- 
dimethylnaphthalene, 575-41-7.

sp3 carbon at the peri position. The extent of this effect seems to be in 
the following order: 18-H+ >  24 >  25 >  28.

(16) One of the tentative models for the hypothetical complex ArH+Ar is il­
lustrated below as an overlapping double-layered form. (1) Telomerlza-
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Thianthrene cation radical perchlorate (1) and phenoxathiin cation radical perchlorate (3) react with ketones 
to give, in most cases, a /3-ketoalkylsulfonium perchlorate and the parent heterocycle (thianthrene or phenoxathi­
in) in equimolar amounts. Reaction with diketones or /3-keto esters leads, in some cases, directly to a sulfur ylide. 
Some of the /3-ketosulfonium perchlorates were themselves easily converted into sulfur ylides by treatment with 
base. Reaction of selected /3-ketosulfonium perchlorates with nucleophiles led easily, also, to displacement of the 
parent heterocycle and formation of an a-substituted ketone bearing the nucleophile at the a-carbon atom.

Several methods of preparing /3-ketosulfonium salts are 
to be found in the literature. Most common among these is 
the reaction of a dialkyl or alkyl aryl sulfide with an a-halo- 
geno ketone or ester. Phenacyl bromide3-6 and a-bromo es­
ters5’7 are often used. This method is quite old, having been 
used years ago by Clarke in measuring the reactivities of 
some dialkyl and cyclic sulfides,8 but in those cases the 
salts were not isolated. Alternatively, in another common 
method, a /S-ketoalkyl sulfide is alkylated. Methylation is 
most common, dimethyl sulfate,9 methyl tosylate,9 and tri- 
methyloxonium fluoroborate10,11 having been used.

Carbonyl-stabilized sulfur ylides are not as long known. 
In fact, until 1965-1966 these ylides appear to have been 
unknown as isolable compounds,12-14 having been prepared 
and used until then only in situ.15’16 Isolable carbonyl-sta­
bilized sulfur ylides are prepared usually by the deprotona­
tion of /3-ketosulfonium ions with bases such as triethyl- 
amine.17 This method, and direct ones, such as the reac­
tions of Me2SO and dicyclohexylcarbodiimide (DCC) with 
activated methylene groups (such as in 1,3-diketones), have 
been reviewed by Ratts.18 More recently, reaction of car­
bonyl-containing carbenes with a sulfide, e.g., in the pho-
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tolysis of (M eC 0)2C =N += N -  in the presence of Me2S, 
has given some varieties of /3-carbonyl sulfur ylides.19

Recently we reported an entirely new and different 
method of preparing /3-ketoalkvlsulfonium salts of the 
thianthrene series by reaction of thianthrene cation radical 
perchlorate (1) with ketones in acetonitrile solution.20 Re­
action with acetone and methyl ketones, MeCOR, in which 
R does not have an « -H, followed the stoichiometry of eq 1.

2

2a. R =  Me; b, R =  i-Bu; c, R =  C6H5; d, R =  2-naphthyl

The products, 2, and thianthrene, were obtained in almost 
quantitative yields, the only other product being a small 
amount of thianthrene 5-oxide, formed presumably by the 
reaction of 1 with water in the solvent or liquid ketones. 
Reactions with butanone, tetralone-1, dimedone, and ethyl 
benzoylacetate were also described, the last two leading di­
rectly to ylides rather than the corresponding sulfonium 
salts.

We now report some further reactions of 1 with ketones, 
and analogous reactions of the recently isolated phenoxa- 
thiin cation radical perchlorate (3).la Thus, reaction of 3 
with a series of methyl ketones has given the sulfonium 
perchlorates 4a-d. Phenoxathiin was also formed (see eq

CH2COR

4

a. R =  Me; b, R =  t-Bu; c, R =  C6H5; d, R =  2-naphthyl

1). Reaction with butanone, 3-pentanone, cyclohexanone, 
cyclopentanone, and dibenzoylmethane gave the products 
5, 6, 7, 8, and 9, respectively. Reaction with 1,3-pentane-

dione led directly to the ylide 10. Reactions of 1 with inda- 
none and 4-iert-butylcyclohexanone gave the sulfonium 
salts 11 and 12. Reaction of 1 with cyclohexanone, cyclo-

12

pentanone, diisopropyl ketone, and ethyl acetoacetate gave 
an oil in each case. The oils were not analyzed, but in the 
cases of diisopropyl ketone and ethyl acetoacetate the 
structures of the oils were deduced to be /J-ketosulfonium 
perchlorates from their reactions with nucleophiles. These 
cases and the reactions of 2c and 2d with nucleophiles are 
discussed below.

Discussion

As far as we are aware, prior to our first communication20 
the only report in the literature indicating that a cation 
radical may react with a ketone concerns the cyclization of 
the 6-/?-ketopropionic ester side chain of a magnesium por­
phyrin derivative during oxidation by iodine. This reaction 
is thought to occur within the metalloporphyrin cation rad­
ical,21 but whether or not the cation radical is involved has 
not been made certain. It is, in fact, uncommon also for or­
ganic carbocations of the usual type (i.e., nonradical) to 
react with ketones. Alkylation of ketones on the carbonyl 
oxygen occurs in reaction with trialkyloxonium salts. For 
example, triethyloxonium fluoroborate leads to salts of the 
type R 2 C = 0 +Et BF4- .22 Corresponding ions, i.e., M e2- 
C = O R +, have been implicated in certain solvolyses in ace­
tone in which acetone is believed to behave as a nucleo­
phile.23,24

In the cation radical reactions we have reported, we be­
lieve that the carbonyl compound behaves as a nucleophile 
also, but that reaction occurs at the «-carbon atom rather 
than at the carbonyl oxygen atom.

These reactions are viewed as electrophilic substitutions 
involving the enol, but a full discussion of mechanism must 
await the results of kinetic studies in progress.

Most of our reactions led to sulfonium salts. The sulfoni- 
um salts are nicely susceptible to reactions with strong nu­
cleophiles. Displacement of the heterocycle occurs and an 
«-substituted carbonyl compound is formed (eq 2). We 
have carried out such reactions mostly with 2c and 2d.

X- ">
CH.COR

+  XCH2C0R (2)

In most cases the products X C H 2COR which were ob­
tained were already known, and we carried out the reac­
tions to find how easily «-substituted carbonyl compounds
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may be made by this method. In some cases, the products 
were new. That is, the ketones 13 and 14 were obtained

.COCTLX

13
a, X = p-MeC6H4SO,;

XCH2CO—

14
b, X = EtOCS,

from reactions with sodium p-toluenesulfinate and potassi­
um ethyl xanthate, and appear to be new. Ketone 14a was 
made more easily by reaction of phenacyl bromide with so­
dium p-toluenesulfinate, but we were unable to obtain 14b 
from reaction of phenacyl bromide with potassium ethyl 
xanthate. Our conclusion is that this displacement method 
(eq 2) may be useful for making «-substituted ketones 
which are not as readily accessible by more conventional 
routes.

The displacement method may have wider implications, 
however, in reactions with conformationally stable ketoalk- 
ylsulfonium ions. The 'H  NM R spectra of 12 and 15 indi­

cate that the proton in the 2 position of each cyclohexyl 
ring is in the axial configuration. For 12 we obtain two well- 
resolved doublets centered at 5 5.42 with J  =  7 and 13 Hz, 
while for 15 we obtain two very sharp doublets centered at 
8 5.68 with J  =  7 and 14 Hz. The peak-to-peak width of the 
doublets is 19 and 20 Hz, respectively, and the data are in­
dicative of an axial 2 proton coupling with an adjacent 
axial-equatorial methylene group.25 Sn 2 displacement re­
actions of 12 and 15 with nucleophiles, therefore, may give 
«-substituted ketones in which the nucleophile is in the 
axial and the 2 proton in the equatorial configuration, pro­
vided that epimerization does not occur after substitution. 
Exploration of these features of the displacement reaction 
is being undertaken.

The sulfonium salt (16) obtained by reaction of 1 with 
diisopropyl ketone was a solid which appeared to decom­
pose during attempts at recrystallization. Elemental analy­
sis was waived, therefore. *H NM R and infrared (CIO4-  
band) indicated that 16 had the anticipated structure, and 
this was confirmed by reaction with sodium p-toluenesulfi­
nate. Thianthrene (103%) and the ketone 17 (33%) were ob­
tained (eq 3).

MejCCO-i-Pr

i-Pr
17

Ethyl acetoacetate reacted with 1 to give thianthrene 
and an oil (assumed to be 18). The oil was treated with so­

dium p-toluenesulfinate and in this case thianthrene was 
not obtained; i.e., reaction did not follow eq 3. Instead, a 
sulfonium perchlorate was obtained which, from *H NMR  
and elemental analysis, appears to be 20. Reaction of 18 
with p-toluenesulfinate ion (X - ) appears to have followed 
the path in eq 4. Protonation of the ylide 19 in situ would

o -

Ujy[e-----Q
MeC»CHC02Et 1 'j-C H C 0 2Et

I I  VI

lead to the isolated product (20). Attempts to make 20 by 
direct reaction of 1 with ethyl acetate failed. A dimer of 1 
was formed, instead, whose nature, and that of analogous 
dimers, will be discussed in a later publication. We failed 
also to obtain 20 by reaction of thianthrene with ethyl a- 
bromoacetate both in the absence and presence of silver 
perchlorate. Thianthrene was recovered quantitatively in 
each case.

Confirmation that 18 had been formed in reaction of 1 
with ethyl acetoacetate was obtained by treating the oil 
produced with triethylamine, whereupon the ylide 21 was 
obtained.

MeCOOCO, Et

21

CHCOR

22
22b, R =  trBu

d, R =  2-naphthyl

Ylides were obtained similarly from treating other sulfo­
nium salts with triethylamine in ethanol; 2b gave 22b, and 
2d gave 22d.

In view of the apparent scope of these ketone reactions, 
it is possible that the product of reaction of 1 with cyano- 
acetamide, formulated earlier as a sulfilimine derivative, 
namely 5-[(cyanoacetyl)imino]-5,5-dihydrothianthrene,26 
may be instead an ylide (23) analogous to 10. This possibil-

NC CONH,

23

ity and reactions with analogous activated amides is being 
investigated.

Experimental Section
Thianthrene cation radical perchlorate (1) was prepared as de­

scribed earlier.27 Attention is called to the warning of explosive 
hazard.27 Phenoxathiin cation radical perchlorate was prepared by 
a modification of this procedure.1® Acetonitrile was Eastman anhy­
drous grade and was stored over molecular sieve in a septum-
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capped bottle. Acetone, reagent grade, was boiled with KMnOj for
2 hr and distilled over 3 A molecular sieve. All other carbonyl com­
pounds were either distilled at atmospheric or reduced pressure as 
appropriate or recrystallized, except methyl 2-naphthyl ketone (J.
T. Baker, photosensitizer grade, mp 53-54°) and dimedone (Al­
drich, 99%), which were used without further treatment. Nucleo­
philic reactants were from standard sources except potassium 
ethyl xanthate, which was prepared by the standard route.28 Sodi­
um p-toluenesulfinate dihydrate was from Aldrich. Me2SO was re­
agent grade (J. T. Baker) and hydriodic acid was Eastman, 50%.

Reactions o f 1 and 3 with Carbonyl Compounds. General 
Procedure. Between 1 and 3 mmol of the cation radical perchlo­
rate was dissolved in about 30 ml of acetonitrile and to this was 
added an excess of the carbonyl compound (50-200%). Stirring was 
continued for a variable period, since some reactions were rapid 
and other's were -quite slow as judged by the disappearance of the 
purple color of 1 and 3. The solutions were usually colored at the 
end of the reaction. In the cases of reactions of 1 the colors varied 
from light purple to red, while in most reactions of 3 the final color 
of the solution was yellow. In most cases the solution was concen­
trated to small volume and placed on a column of silica gel (Merck 
No. 7733). In the cases of 1, elution with benzene gave thianthrene, 
while elution next with ether gave thianthrene 5-oxide. The oxide 
was always formed in small amounts. Finally, elution with acetone 
gave the /3-ketosulfonium perchlorate. The products of reactions of
3 were similarly separated by chromatography with the exception 
of some cases in which the (J-ketosulfonium salt was precipitated 
before chromatographic separation of the phenoxathiin and phe- 
noxathiin 5-oxide. Also, after use of benzene to remove phenoxa­
thiin, the column was first treated with chloroform to begin the 
downward separation of phenoxathiin 5-oxide and this was then 
removed more quickly with ether. Data for individual reactions are 
given below.

Reaction o f 1 with Indanone-1. Formation o f 11. The sulfoni- 
um perchlorate (11) had mp 156-157° (ethanol-MeCN); Xmal 
(MeCN) (10- 4 e) 255 nm (4.13), 243 (2.50), and 291 br, (0.41); 4H 
NMR (acetone-ds) S 7.9 (m, 12 H, aromatic), 5.2 (t, 1 H, J  = 6 Hz, 
-C H -), and 3.1, 3.2 (2 d, 2 H, J  = 6 Hz, -CH 2-).

Anal. Calcd for CaiH^SaClOs: C, 56.4; H, 3.38; S, 14.3; Cl, 7.93. 
Found: C, 56.6; H, 3.40; S, 14.6; Cl, 7.76.

Reaction o f 1 with 4-teri-Butylcyclohexanone. Formation 
o f 12. The sulfonium perchlorate (12) was isolated from the col­
umn as an oil. This was dissolved in a small amount of acetonitrile 
and diluted with a large volume of ether. An oil precipitated which 
solidified overnight in the refrigerator. Reprecipitation from aceto­
nitrile with ether gave a white, crystalline solid: mp 122.5-123°; 
Xmax (MeCN) (10- 4 e) 225 nm (4.48), 255 (2.38), 290-312 br (0.95); 
‘ H NMR (CD3CN) 5 7.98 (m, 8 H, aromatic), 5.42 (2 d, 1 H, C2H),
2.48 (m, 2 H, -CH 2-) ,  1.60 (m, 5 H), 0.76, (9 H, i-Bu).

Anal. Calcd for C22H25S2CIO5: C, 56.3; H, 5.37; S, 13.7; Cl, 7.55. 
Found: C, 56.2; H, 5.46; S, 13.6; Cl, 7.57.

Reaction o f 3 with Acetone. Formation o f 4a. To a solution of 
807 mg (2.69 mmol) of 3 in 30 ml of acetonitrile was added 2 ml of 
acetone. The purple color became brown after 1 hr of stirring. The 
solution was evaporated and the residue was dissolved in acetone, 
to which solution petroleum ether (bp 30-60°) was added to cause 
turbidity, and crude, white 4a (444 mg, 1.24 mmol, 99%) crystal­
lized out: mp 179-180° dec (aqueous Me2SO); Xmax (MeCN) (10~3 
H 235 nm (14.6), 287 (4.7); *H NMR (Me2SO-d6) « 8.2-7.0 (m, 8 H, 
aromatic), 5.15 (s, 2 H, -C H 2-), and 2.15 (s, 3 H, Me).

Anal. Calcd for C15H13SC106: C, 50.5; H, 3.68; S, 8.97; Cl, 9.94. 
Found: C, 50.6; H, 3.66; S, 9.22; Cl, 9.99.

The filtrate from 4a precipitation was concentrated and chro­
matographed to give 269 mg (1.35 mmol, 100%) of phenoxathiin 
and 21 mg (0.096 mmol, 7.1%) of phenoxathiin 5-oxide.

Reaction o f 3 with Pinacolone. Formation o f  4b. Reaction as 
above was carried out with 745 mg (2.48 mmol) of 3 and overnight 
stirring. After evaporation of the mixture and washing with water 
to remove excess of pinacolone, the residue was dissolved in a 
small amount of acetone and chromatographed, giving phenoxathi­
in (100%), phenoxathiin 5-oxide (7.8%), and 479 mg (1.21 mmol, 
105%) of crude 4b: mp 192-193° dec (acetone-ether); Xmax (MeCN) 
287 nm (« 4.85 X 103); 4H NMR (Me2SO-d6) 6 7.4-8.3 (m, 8 H, aro­
matic), 5.45 (s, 2 H, -CH 2-) , and 0.95 (s, 9 H, ¿-Bu).

Anal. Calcd for Ci8H19SC106: C, 54.2; H, 4.80; S, 8.04; Cl, 8.89. 
Found: C, 54.5; H, 4.97; S, 7.87; Cl, 8.99.

Reaction o f 3 with Acetophenone. Formation o f 4c. Reaction 
with 603 mg (2.01 mmol) of 3 for 3 hr and work-up as above (see 
4b), without water wash, gave 98% of phenoxathiin, 5.6% of phe­
noxathiin 5-oxide, and 410 mg (0.98 mmol, 103%) of crude 4c: mp

165-166° dec (acetone-ether); Xmax (MeCN) (IQ 3 e) 287 nm 
(6.26), 252 sh (37.9), and 241 (23.3); ‘ H NMR (Me2SO-d6) 5 7.5-8.8 
(m, 13 H, aromatic) and 5.1 (s, 2 H, -CH 2-).

Anal. Calcd for C2oH15SC10e: C, 57.4; H, 3.61; S, 7.66; Cl, 8.47. 
Found: C, 57.3; H, 3.67; S, 7.89; Cl, 8.49.

Reaction o f  3 with 2-Acetonaphthone. Formation o f 4d. Re- 
, action of 1.05 g (3.5 mmol) of 3 for 30 min and work-up as above 
gave 100% of phenoxathiin, 4.3% of phenoxathiin 5-oxide, and 741 
mg (1.58 mmol, 90%), of crude 4d: mp 154-154.5° dec (ethanol); 
Xmax (MeCN) (10- 3 c) 292 nm (11.6), 252 sh (34.8), and 245 (39.7); 
'H  NMR (Me2SO-d6) 5 8.5-7.0 (m, 15 H, aromatic), 5.9 (s, 2 H, 
-C H 2-).

Anal. Calcd for C24H17SCIO6: C, 61.5; H, 3.66; S, 6.84; Cl, 7.56. 
Found: C, 61.4; H, 3.90; S, 6.60; Cl, 7.24.

Reaction o f 3 with Butanone. Formation o f 5. After reaction 
of 1.12 g (3.73 mmol) of 3 for 20 min, ether was added to the medi­
um to give a precipitate of crude 5. The filtrate was evaporated 
and the residue was washed with water and chromatographed, giv­
ing 101% of phenoxathiin, 4% of phenoxathiin oxide, and a further 
portion of 5, amounting to a total of 525 mg (1.42 mmol, 76%): mp 
149° dec (acetone-ether); X,nax (MeCN) (10~3 e) 289 nm (5.17) and 
234 (18.4); JH NMR (Me2SO-dg) & 6.9-8.1 (m, 8 H, aromatic), 5.05 
(q, 1 H, -C H -), 2.2 (s, 3 H, Me), and 1.3 (d, 3 H, Me).

Anal. Calcd for Ci6Hi5SC106: C, 51.8; H, 4.08; S, 8.63; Cl, 9.56. 
Found: C, 51.6; H, 4.03; S, 8.53; Cl, '9.33.

Reaction o f 3 with Pentan-3-one. Formation o f 6. Reaction 
of 724 mg (2.41 mmol) of 3 for 1 hr was followed by evaporation to 
small volume and addition of ether. The precipitate of 6 was fil­
tered and the filtrate was chromatographed to give 105% of phe­
noxathiin, 19% of phenoxathiin 5-oxide, and a further small 
amount of 6. The combined portions of crude 6 amounted to 252 
mg (0.66 mmol, 55%): mp 122° dec (acetone-ether); Xmax (MeCN) 
(10-3 e) 291 nm (4.86) and 234 (19.9); *H NMR (Me2SO-d6) X 6.95 
(m, 8 H, aromatic), 5.1 (q, 1 H, -CH -), 1.35 (d, 3 H, Me), 0.91 (t, 3 
H, Me). The -CH 2-  group signal was obscured by a solvent peak.

Anal. Calcd for C17H17SC106: C, 53.0; H, 4.46; S, 8.32; Cl, 9.22. 
Found: C, 52.8; H, 4.30; S, 8.27; Cl, 9.08.

Reaction o f 3 with Cyclohexanone. Formation o f 7. Reaction 
of 712 mg (2.37 mmol) of 3 for 5 min and addition of ether to the 
medium gave 277 mg of crude 7. Chromatography gave 95% of phe­
noxathiin, 9.5% of phenoxathiin 5-oxide, and 83 mg of crude 7, to­
taling 0.91 mmol (76%): mp 121-122° dec (acetone-ether); Xmax 
(MeCN) 291 nm (t 5.05 X 103); 4H NMR (Me2SO-d6) S 6.8-8.1 (m, 
8 H, aromatic), 5.1 (t, 1 H, a-CH), and 1.5 [br s, 8 H, -(CH 2)4-).

Anal. Calcd for C18H17SC106: C, 54.5; H, 4.32; S, 8.08; Cl, 8.93. 
Found: C, 54.7; H, 4.30; S, 8.28; Cl, 8.89.

Reaction o f 3 with Cyclopentanone. Formation o f 8. Reac­
tion of 762 mg (2.54 mmol) of 3 for 10 min and addition of ether 
gave 225 mg of crude 8. Chromatography gave 91% of phenoxathi­
in, 11% of phenoxathiin 5-oxide, and 132 mg of crude 8, totaling 
0.95 mmol (75%), mp 96.0-96.5° (acetone-ether).

Anal. Calcd for Ci7Hi5SC106: C, 53.3; H, 3.95; S, 8.37; Cl, 9.26. 
Found: C, 53.3; H, 4.20; S, 8.50; Cl, 8.98.

Reaction o f  3 with Dibenzoylmethane. Formation o f  9. After 
reaction of 771 mg (2.57 mmol) of 3 for 15 min the solvent was re­
moved and the residue was dissolved in a small amount of acetone. 
Addition of ether gave 556 mg (1.1 mmol, 85%) of crude 9: mp 186° 
dec (acetone-ether); Xmax (MeCN) (10—3 c) 319 nm (4.73), 277
(15.3), and 241 (40.5).

Anal. Calcd for C27H19SC107: C, 62.0; H, 3.66; S, 6.13; Cl, 6.78. 
Found: C, 61.7; H, 3.60; S, 6.09; Cl, 6.69.

Reaction o f 3 with 2,4-Pentanedione. Formation o f Ylide 10. 
After reaction of 843 mg (2.8 mmol) of 3 for 15 min the solvent was 
removed and the residue was washed with water to remove excess 
of ketone. The residue was treated as above (see 9) to give 309 mg 
of crude 10: mp 236° (acetone); Xmax (MeCN) (10~3 e) 301 (5.73), 
256 (19.7), and 227 (32.4); 4H NMR (CDCI3) <5 7.3 (m, 8 H, aromat­
ic), 2.45 (s, 6 H, Me).

Anal: Calcd for Ci7H14S 03: C, 68.4; H, 4.73; S, 10.75. Found: C, 
68.2; H, 4.81; S, 11.0.

Reactions o f 2d with Nucleophiles. Formation o f «-Substi­
tuted Methyl 2-Naphthyl Ketones (13). Approximately 150-250 
mg (0.3-0.5 mmol) o f 2d was dissolved in 10-15 ml of acetonitrile 
and to the stirred solution was added a severalfold excess of the 
nucleophile and approximately 1 ml of water. The mixture was 
stirred for an additional period o f time depending on the nucleo­
phile. TLC was carried out to monitor the reaction and when two 
spots (thianthrene and an unknown one) appeared only or pre­
dominantly, the solvent was evaporated under vacuum at room 
temperature. The times of stirring are given in parentheses, and
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they may or may not be significant. After evaporation of the sol­
vent the residue was chromatographed on a column of silica gel 
(Merck 7733). Elution with benzene gave thianthrene and elution 
with ether gave the «-substituted methyl 2-naphthyl ketone (13). 
The results of reactions which led to known compounds are listed 
in abbreviated form (reagent (time), % yield of thianthrene, X  in 
XCH2CO-2-naphthyl, % yield, mp (lit. mp)]: KCN (24 hr), 98, 
-CN, 98, 126-127° (126.6-128.20);29 NaSCN (2 hr), 95, -SCN, 94, 
105-106° (109-1100);29 NaN3 (1.5 hr), 99, -N 3, 100, 63-64° (66-  
67°);3° Me4NCl (30 min), 92, -Cl, 97, 64-65° (65-66°);31 Bu4NI (2 
min), 101, -I, 97, 90-91° (91-91.5°);32 AgN02 (10 min), 94, -OH, 
96, 114° (114°);33 NaN02 (20 min), 90, -OH, 54, 114°; AgN03 (16 
hr), 93, -OH, 63, 114°; NaN03 (11 hr), 47, -OH, 73, 105-112°; 
Me2SO (2 hr), 99, -OH, 98, 109-110°; concentrated HC1 (16 hr), 
111, -Cl, 81, 61-62°; concentrated HBr (30 min), 97, -Br, 96, 78- 
80° (80-82°);33 50% HI (5 hr), 103, -I, 87, 90-91°.

Reaction o f 2d with Sodium p-ToIuenesulfinate Dihydrate. 
Formation o f 13a. Reaction carried out as above (15 hr) gave 99% 
of thianthrene and 78% of a-(p-toluenesulfinyI)methyl 2-naphthyl 
ketone (13a): mp 149-150° (methanol); Amax (MeCN) (10-4 c) 228 
nm (2.15), 253 (4.04), 285 (1.00), and 294 (1.05); 'H  NMR (CDC13) 
b 7.67 (m, 11 H, aromatic), 4.86 (s, 2 H, -CH 2-), 2.39 (s, 3 H, Me).

Anal. Calcd for Ci9H160 3S: C, 70.3; H, 4.97; S, 9.88. Found: C, 
70.2; H, 5.19; S, 10.1.

Reaction o f 2d with Potassium Ethyl Xanthate. Formation 
o f 13b. Reaction gave 85% of thianthrene and 86% of the ethyl 
ester of S-(2-naphthoyl)methylxanthic acid (13b) (X = EtOCS2~): 
mp 92-93° (aqueous methanol); Amax (MeCN) (10—4 r) 243 nm 
(4.63), 248 (5.20), and 282 (2.05); >H NMR (CDC13) b 7.7 (m, 7 H, 
aromatic), 4.81 (s, 2 H, -CH 2-), 4.65 (q, 2 H, -CH s-), 1.37 (t, 3 H, 
Me).

Anal. Calcd for Ci5H140 2S2: C, 62.0; H, 4.85; S, 22.1. Found: C, 
62.2; H, 4.93; S, 22.2.

Reactions o f  2c with Nucleophiles. Formation o f «-Substi­
tuted Acetophenones (14). The same procedure was used as with 
2d except that cyclohexane instead of benzene was used to elute 
thianthrene from the column. Known phenacyl compounds, 
XCHjCOCeHr, (14), were formed: Me4NCl (1 min), 104, -Cl, 99, 
54-55° (55-56°);34 Me4NBr (2 min), 95, -Br, 100, 48-49° (50°);34 
BU4NI (17 min), 99, -I, 81, oil (34.40);34 NaSCN (10 min), 100, 
-SCN, 103, 71-72° (74.1-74.60);29 NaN3 (75 min), 101, -N 3, 101, 
oil (17°).35

Reaction o f 2c with Sodium p-Toluenesulfinate Dihydrate. 
Formation o f 14a. Reaction gave 99% of thianthrene and 99% of 
«-(p-toluenesulfinyl)acetophenone (14a): mp 106.5-107.5° (aque­
ous methanol); Amax (MeCN) (10—4 t) 228 nm (1.25), 251 (1.42); 'H 
NMR (CDC13) b 7.57 (m, 9 H, aromatic), 4.70 (s, 2 H, -C H ^ ), 2.40 
(s, 3 H, Me).

Anal. Calcd for Ci5HI40 3S: C, 65.7; H, 5.14; S, 11.7. Found: C, 
65.8; H, 5.25; S, 12.3.

Reaction o f  2c with Potassium Ethyl Xanthate. Formation 
o f 14b. Reaction gave 100% of thianthrene and 97% of the ethyl 
ester of phenacylxanthic acid (14b): mp 32-32.5° (aqueous etha­
nol); Amai (MeCN) (10- 4 t) 241 nm (0.29), 277 (0.26); 'H NMR 
(CDC13) b 8.12 (m, 3 H, aromatic), 7.63 (m, 2 H, aromatic), 4.71 (s, 
2 H, -COCH j-), 4.64 (q, 2 H, -CHa-), 1.40 (t, 3 H, Me).

Anal. Calcd for CnH i20 2S2: C, 55.0; H, 5.03; S, 26.7. Found: C, 
54.9; H, 5.29; S, 27.0.

Reaction o f 1 with Diisopropyl Ketone. Formation o f  2,4- 
Dimethyl-2-(p-toluenesulfinyl)pentan-3-one (17). Reaction of 
1 with 2,4-dimethylpentanone followed by column chromatogra­
phy gave 86% of thianthrene and a yellow oil from which tritura­
tion with ethyl acetate gave 164 mg (37%) of a white solid which we 
believe to be the anticipated /3-ketoalkylsulfonium perchlorate
(16), mp 93° dec, infrared C104_ band. Attempts to recrystallize 
this solid from common solvents (ethyl acetate, methanol, ethanol, 
Me2SO) caused its decomposition. Therefore, the solid was treated 
in acetoritrile with sodium p-toluenesulfinate dihydrate and gave 
on column chromatography with cyclohexane 103% of anticipated 
thianthrene and 33% of the anticipated 17: mp 76-77°; Amax 
(MeCN) (10- 4 e) 227 nm (1.83); 4H NMR (CDC13) b 7.37 (2 d, 4 H, 
aromatic), 3.45 (heptet, 1 H, -C H -), 2.44 (s, 3 H, Me), 1.54 (s, 6 H, 
Me), 1.15 (d, 6 H, Me).

Anal. Calcd for Ci4H20O3S: C, 62.7; H, 7.51; S, 11.9. Found: C, 
62.8; H, 7.45; S, 12.1.

Reaction o f 1 with Ethyl Acetoacetate. A. Formation o f 5- 
(Ethoxycarbonylmethyl)thianthreniumyl Perchlorate (20).
Reaction of 1 with ethyl acetoacetate was carried out and the yel­
low oil (18) was obtained as in B below. A solution o f 814 mg of this 
in 10 ml of acetonitrile was stirred for 1 min with 323 mg of sodium

p-toluenesulfinate dihydrate. Work-up and column chromatogra­
phy gave no thianthrene (cyclohexane elution). Acetone elution 
gave a yellow oil from which trituration with methanol gave 132 
mg (39%) of what we believe to be 20: mp 169.5-170.5° (methanol); 
Amax (MeCN) (10- 4 f) 227 nm (1.39), 255 (1.73), 291 (0.38); 'H 
NMR (Me2SO-de) b 7.86 (m, 8 H, aromatic), 4.94 (s, 2 H, -C H ^),
4.18 (q, 2 H, -C H ^ ), 1.19 (t, 3 H, Me).

Anal. Calcd for Ci6H15S2C106: C, 47.7; H, 3.75; S. 15.9; Cl, 8.80. 
Found: C, 47.3; H, 3.68; S, 15.7; Cl, 8.56.

Attempts to make 20 by direct reaction of 1 with ethyl acetate 
failed. The only product was from the dimerization of l .36 At­
tempts to prepare 20 by reaction of thianthrene with ethyl a-bro- 
moacetate, both in the presence and absence of silver perchlorate, 
also failed. Thianthrene was recovered quantitatively.

Reactions o f (J-Ketoalkylsulfonium Perchlorates with T ri- 
ethylamine. Formation o f Ylides 21 and 22. 1. Reaction o f  1 
with Ethyl Acetoacetate (B). Use of 1.1 g (3.51 mmol) of 1 and 
an excess of ethyl acetoacetate followed by column chromatogra­
phy, as described earlier, gave a brownish-yellow oil, assumed to be 
the anticipated /S-ketoalkylsulfonium perchlorate. However, in 
that case the yield (1.42 g, 3.19 mmol) is far too high. The oil could 
not be rendered crystalline, and it was treated with 1.6 ml of tri- 
ethylamine in 10 ml of acetonitrile. The solvent was removed after 
20 hr and the residue was chromatographed on silica. Elution with 
benzene gave 327 mg of thianthrene, while elution with ether gave 
542 mg (1.57 mmol) of what we deduce to be the ylide 21: mp 
179-180° (petroleum ether-CCLt); Amax (MeCN) (10-4 <) 236 nm 
(2.77); 'H  NMR (CDC13) b 7.47 (m, 8 H, aromatic), 4.14 (q, 2 H, 
-C H 2), 2.70 (s, 3 H, Me), and 1.03 (t, 3 H, Me).

Anal. Calcd for C,8Hi60 3S2: C, 62.8; H, 4.68; S, 18.6. Found: C, 
62.7; H, 4.73; S, 18.6.

Elution of the column with acetone gave 749 mg of a reddish- 
yellow gum which has not been identified.

2. To a solution of 214 mg (0.51 mmol) of 2b in 10 ml of ethanol 
was added 1 ml (ca. 7.2 mmol) of triethylamine. After stirring for 
14 hr TLC showed only very weak spots corresponding to thian­
threne and 2b, but a large spot of an unknown. The solvent was re­
moved under vacuum and the white residue was chromatographed 
on a column of silica. Elution with benzene gave 3 mg of thian­
threne and 77 mg (0.24 mmol, 47%) of the ylide 22b: mp 189-190° 
(petroleum ether-CCl4); Amax (MeCN) (10—4 t) 238 nm (0.52) 249 
(0.47), 286 (0.21); 'H  NMR (CDC13) b 7.44 (m, 8 H, aromatic), 4.06 
(s, 1 H, = C H -), 1.35 (s, 9 H, t-Bu).

Anal. Calcd for Ci8Hi8OS2: C, 68.7; H, 5.53; S, 20.39. Found: C, 
68.9; H, 5.83; S, 20.43.

3. A similar reaction with 2d gave the ylide 22d: mp 81-86° 
(from petroleum ether-CCl4); 'H NMR (CDC13) b 7.86 (m, 15 H, 
aromatic), 4.76 (s, 1 H, = C H -).

Registry No.— 1, 21299-20-7; 2b, 55116-86-4; 2c, 55116-88-6; 
2d, 55116-90-0; 3, 56817-58-4; 4a, 56817-60-8; 4b, 56817-62-0; 4c, 
56817-64-2; 4d, 56817-66-4; 5, 56817-68-6; 6, 56817-70-0; 7, 56817-
72-2; 8, 56817-74-4; 9, 56817-76-6; 10, 56817-77-7; 11, 56817-79-9; 
12, 56817-81-3; 13a, 56817-82-4; 13b, 56817-83-5; 14a, 31378-03-7; 
14b, 56817-84-6; 17, 56817-85-7; 20, 56817-87-9; 21, 56817-88-0; 
22b, 55116-97-7; 22d, 55116-98-8; indanone-1, 83-33-0; 4-tert- 
butylcyclohexanone, 98-53-3; acetone, 67-64-1; pinacolone, 75-97- 
8; acetophenone, 98-86-2; 2-acetonaphthone, 93-08-3; butanone,
78-93-3; pentan-3-one, 96-22-0; cyclohexanone, 108-94-1; cyclopen- 
tanone, 120-92-3; dibenzoylmethane, 120-46-7; 2,4-pentanedione, 
123-54-6; sodium p-toluenesulfinate, 824-79-3; potassium ethyl 
xanthate, 140-89-6; diisopropyl ketone, 565-80-0; ethyl acetoace­
tate, 141-97-9.

References and Notes

(1) (a) Part XXXIV: S. R. Mani and H. J. Shine, J. Org. Chem., 40, 2756
(1975). (b) Part XXXIII: B. K. Bandllsh, A. G. Padilla, and H. J. Shine, J. 
Org. Chem., 40, 2590 (1975).

(2) Supported by the National Science Foundation, Grant GP-25989X, and 
Texas Tech University, Grant 191-4710.

(3) B. M. Trost, J. Am. Chem. Soc., 88, 1587 (1966); 89, 138 (1967).
(4) H. Nozaki, M. Takaku. and K. Kondo, Tetrahedron, 22, 2145 (1966).
(5) A. W. Johnson and R. T. Amel, J. Org. Chem., 34, 1240 (1969)
(6) T. Mukaiyama, K. Hosoi, S. Inokuma, and T. Kumamoto, Bull. Chem. 

Soc. Jpn., 44, 2453(1971).
(7) G. B. Payne, J. Org. Chem., 32, 3351 (1967).
(8) H. T. Clarke, J. Chem. Soc., 101, 1788 (1912).
(9) T. Mukaiyama, T. Adachi, and T. Kumamoto, Bull. Chem. Soc. Jpn., 44, 

3155(1971).
(10) K. W. Ratts, J. Org. Chem., 37, 848 (1972).
(11) C. Kissel, R. J. Holland, and M. C. Caserio, J. Org. Chem., 37, 2720 

(1972).
(12) H. Nozaki, K. Kondo, and M. Takaku, Tetrahedron Lett., 251 (1965).



3862 J. Org. Chem.., Vol. 40, No. 26, 1975 Hayatsu, Chikuma, and Negishi

(13) A. W. Johnson and R. T. Amel, Tetrahedron Lett., 819 (1966).
(14) K. W. Ratts and A. N. Yao, J. Org. Chem., 31, 1185 (1966).
(15) A. J. Speziale, C. C. Tung, K. W. Ratts, and A. N. Yao, J. Am. Chem. 

Soc., 87, 3460 (1965).
(16) A. W. Johnson, "Ylid Chemistry” , Academie Press, New York, N.Y., 

1966, pp 310-344.
(17) G. B. Payne, J. Org. Chem., 33, 3517 (1968).
(18) K. W. Ratts, Mech. React. Sulfur Compd., 2, 167 (1968).
(19) W. Andò, Int. J. Sulfur Chem., Part B, 7, 189 (1972).
(20) K. Kim and H. J. Shine, Tetrahedron Lett., 4413 (1974).
(21) M. T. Cox, T. T. Howarth, A. H. Jackson, and G. W. Kenner, J. Am. 

Chem. Soc., 91, 1232 (1969).
(22) H. Meerwein et al., Chem. Ber., 89, 2060 (1956); J. Prakî. Chem., 147, 

251 (1937); 154, 83(1939).
(23) S. Winstein, B. Appel, R. Baker, and A. Diaz, “ Organic Reaction Mecha­

nisms", Chem. Soc., Spec. Pubi., No. 19, 109 (1965).
(24) H. Weiner and R. A. Sneen, J. Am. Chem. Soc., 87, 287 (1965).
(25) L. M. Jackman and S. Sternhell, “ Applications of Nuclear Magnetic Res­

onance Spectroscopy in Organic Chemistry” , 2nd ed, Pergamon Press,

Elmsford, N.Y., 1969, p 291. We thank Dr. Sternhell for helpful discus­
sions.

(26) K. Kim and H. J. Shine, J. Org. Chem.. 39, 2537 (1974).
(27) Y. Murata and H. J. Shine, J. Org. Chem., 34, 3368 (1969).
(28) A. I. Vogel, “ A Textbook of Practical Organic Chemistry", Longmans, 

Green and Co., New York, N.Y., 1954, p 483.
(29) I. Rabcewicz-Zubkowski and H. Kaflinska, Rocz. Chem., 10, 555 

(1930); Chem. Abstr., 25, 505 (1931).
(30) J. H. Boyer and D. Straw, J. Am. Chem. Soc., 74, 4506 (1952).
(31) E. D. Sych, Ukr. Khim. Zh., 22, 80 (1956); Chem. Abstr., 50, 16751/

(1956).
(32) I. Rabcewicz-Zubkowski, Rocz. Chem., 9, 538 (1929); Chem. Abstr., 

24, 106(1930).
(33) M. L. Tamayo and F. P. Guerrero, An. Pis. Quim, 40, 390 (1944); Chem. 

Abstr., 44, 1470f (1950).
(34) H. Rheinboldt and M. Perrier, Quimica, 110 (1951); Chem. Abstr., 46, 

7553/1(1952); J. Am. Chem. Soc., 69, 3148 (1947).
(35) J. FI. Boyer and D. Straw, J. Am. Chem. Soc., 75, 1642 (1953).
(36) To be described in detail at another time.

Different Reactivities of 5-Bromo-2'-deoxyuridine 
and 5-Bromouracil in the Bisulfite-Mediated Debromination

Hikoya Hayatsu,* Toshiyuki Chikuma, and Kazuo Negishi

Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan 113

Received June 2, 1975

Sodium bisulfite mediated debromination of 5-bromo-2'-deoxyuridine, l-methyl-5-bromouracil, and 5-bro- 
mouracil was studied. Spectroscopic determination of the velocity at pH 7.0 and 17° showed that 5-bromo-2'-de- 
oxyuridine undergoes debromination two orders of magnitude more slowly than 5-bromouracil. The debromina­
tion of l-methyl-5-bromouracil in this system was also slow, only several times faster than that of 5-bromo-2'- 
deoxyuridine. The optimum pH for the debromination of both 5-bromo-2'-deoxyuridine and 5-bromouracil was 
about 7. In the debromination of 5-bromo-2'-deoxyuridine, the existence of the intermediate 5,6-dihydro-5- 
bromo-2'-deoxyuridine 6-sulfonate was proved by NMR and by the reversal to 5-brom'o-2'-deoxyuridine upon 
dilution of the reaction mixture. The formation of the intermediate from 5-bromo-2'-deoxyuridine was a rapid 
process, whereas the subsequent debromination was a slow process which was the rate-limiting step of the overall 
reaction. The facile debromination of 5,6-dihydro-5-bromouracil 6-sulfonate, in contrast to its N1-substituted de­
rivatives, was explained in terms of participation of an intermediate formed by elimination of HSO3-  from the 
N’ -C 6 linkage of this dihydro compound.

Recent research in several laboratories has shown that 
sulfur nucleophiles, such as bisulfite and cysteine, bring 
about dehalogenation of 5-halogenouracil derivatives under 
mild conditions in aqueous solution.1-4 Sander and co- 
workersla>b reported that the bisulfite-mediated decompo­
sition of 5-bromouracil proceeds as illustrated in Scheme I,

Scheme I

which involves addition of bisu^ite across the 5,6 double 
bond of the pyrimidine ring followed by elimination of bro- 
mopium and sulfite ions to give uracil. The uracil in turn 
produces 5,6-dihydrouracil 6-sulfonate upon reaction with 
bisulfite.

The formation of the intermediate, 5,6-dihydro-5-bro- 
mouracil 6-sulfonate, was assumed by the analogy to the 
well-established 5,6-dihydrouracil 6-sulfonate formation 
from uracil and bisulfite.6’6 This assumption was supported 
by the fact that in the case of the reaction between 5-fluo- 
rouracil and bisulfite, the formation of 5,6-dihydro-5-fluo- 
rouracil 6-sulfonate was demonstrated both by NM R stud­
ies and by reversal to 5-fluorouracil.la However, since the 
bisulfite adduct of 5-bromouracil cannot be observed as a 
discrete species, it was not possible to determine whether 
the rate-determining step of the bisulfite-promoted de­
bromination was the addition of bisulfite to 5-bromouracil 
or the subsequent dehalogenation.

Although Fourrey2 reported that 5-bromouridine can 
also be converted to 5,6-dihydrouridine 6-sulfonate by 
treatment with sodium bisulfite, the study was not per­
formed under kinetically controlled conditions. When we 
compared reactivities of 5-bromouracil, l-methyl-5-bro- 
mouracil, and 5-bromo-2'-deoxyuridine toward bisulfite 
under defined conditions, a great difference was observed 
between these substrates; the N 1-substituted substrates 
react much more slowly than 5-bromouracil, and the inter­
mediate 5,6-dihydro-5-bromo-2'-deoxyuridine 6-sulfonate 
can be detected as a discrete species. This paper reports 
the results of tbn«e studies, which show that in the bisul­
fite-promoted debromination 'f 5-bromo-2,-deoxyuridine 
the rate-determining step is the debromination reaction
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Figure 1. Comparison of absorbance changes of 5-bromouracil, 1- 
methyl-5-bromouracil, and 5-bromo-2'-deoxyuridine in the reac­
tion with sodium bisulfite. Concentration of the bromouracil deriv­
atives at time zero was 1.0 X 10-3 M. Incubations were at pH 7.0 
and 17°. (s) represents total bisulfite buffer concentration.

but not the initial addition of bisulfite to the pyrimidine 
ring.

Results

The reactions were carried out with 1.0 X 10-3  M  brU 
(see ref 7), m'brU or brUdRib, in sodium bisulfite buffer [5 
X 10~2 to 1.25 M  (see ref 8)] at 17°, and the progress of the 
reactions was followed spectrophotometrically. The change 
in ultraviolet spectra of brU that occurred on treatment 
with 0.10 M bisulfite at pH 7.0 was similar to that pre­
viously reported:1® a rapid decrease of the absorbance at 
the 280-290-nm region and transient appearance of a 260- 
nm peak, which indicated uracil formation, were observed, 
followed by a final establishment of an end absorption. On 
the other hand, in the reaction of brUdRib only a very slow 
spectroscopic change was detected under identical condi­
tions. At higher bisulfite concentrations, spectral changes 
of brUdRib were more evident, but in such conditions in­
termediate formation of 2'-deoxyuridine was difficult to 
detect since any deoxyuridine formed would have been rap­
idly converted to 5,6-dihydro-2'-deoxyuridine 6-sulfonate 
(see below). Thus, the spectra of a solution of brUdRib in
1.0 M  sodium bisulfite, pH 7.0, did not give any detectable 
260-nm peak during the course of the reaction and became 
finally an end absorption. When the reaction mixture was 
treated with sodium hydroxide and then analyzed by paper 
chromatography (solvent, 1-butanol-acetic acid-water, 
2:1:1 v/v), 2'-deoxyuridine war recovered as a sole uv-ab- 
sorbing product. The identification of 2'-deoxyuridine was 
made by comparing the Rf value and the uv spectra in neu­
tral and alkaline media with those of an authentic speci­
men.

The progress of the reactions was determined by the de­
crease in absorbance of the derivatives at 290 nm where 
uracil, 1-methyluracil, or 2'-deoxyuridine, if they were 
formed, do not exhibit any absorbance. Typical examples 
are shown in Figures 1 and 2, in which A 290 is plotted on a 
semilogarithmic scale against time of reaction. Both in the 
brUdRib- and the ndbrU-bisulfite reactions, a rapid, ini­
tial drop and a subsequent, slow and linear decrease of the 
absorbance were observed. In contrast, the brU reaction 
did not show such an initial drop and instead gave a 
straight line, consistent with the previous observation of

T I M E (  mi  n)
Figure 2. Reaction of 5-bromo-2'-deoxyuridine (1.0 X 10~:i M) 
with sodium bisulfite as functions of the bisulfite buffer concentra­
tion (s) and the pH. Reaction temperature was 17°.

other workers.1® This linear decrease should represent the 
decrease of the starting material, brU. As can be seen from 
the figures, the extent of the initial drop was a function of 
both the bisulfite concentration and the pH of the solution. 
Thus, the drop was larger at higher bisulfite concentrations 
and at more acidic conditions. The drop was obviously due 
to the equilibrium between brUdRib (or ndbrU) and 5,6- 
dihydro-5-bromo-2'-deoxyuridine 6-sulfonate (la) (Scheme
II). It is known that bisulfite adds reversibly to the 5,6 dou-

Scheme II

R =  2'-deoxyribofuranosyl (a).
CH, (b), or H (c) rate-limiting step

in the case of la 
and lb

(debromination product)

ble bond of uracil, thymine, and cytosine forming 5,6-dihy- 
dropyrimidine 6-sulfonates, and that the latter compounds 
are stable in acid.5,6 The formation of the bisulfite adduct 
la  was demonstrated by the following experiments. A solu­
tion of 1.0 X 10-3 M  brUdRib in 1 M  sodium bisulfite, pH
5.7, was allowed to stand at 17° for 10 min. The A 290 value 
of this solution measured in a cuvette of 1 mm light path 
was approximately 30% of the value for 1.0 X 10-3 M brU­
dRib in water. When the solution was diluted 100 times 
with 0.1 M sodium phosphate buffer of pM 5.8, and the 
A 290 was measured in a 10-mm light-path cuvette, a grad­
ual increase of the absorbance was observed. On standing 
for 90 min, the spectral curve of the solution became iden­
tical with that of 1.0 X 10~5 M  brUdRib (both at pH 5.8 
and pH 13), indicating quantitative regeneration of brU­
dRib from the adduct la. Furthermore, the JH NM R spec­
trum of a 10-min incubated solution of brUdRib in 1 M so­
dium bisulfite (pD 5.7) in D2O gave two singlets at <5 5.23
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CONCENTRATION OF BISULFITE BUFFER(s)

( M )

Figure 3. Pseudo-first-order rate constants of the reaction be­
tween 5-bromouracil derivatives and sodium bisulfite as a function 
of the bisulfite buffer concentration. In the inset, the relative rates 
for the brUdRib-bisulfite reaction are shown in semilogarithmic 
scale against concentration of bisulfite buffer. The curve in the 
inset was drawn by the calculation described in the text and the 
points represent the experimentally observed values.

and 5.35 ppm, assignable5"6 to the protons at position 6 of 
two epimers of the adduct la. When the sum of the areas of 
these two singlets was compared with that of the 6-H signal 
(8.23 ppm) of brUdRib in this solution, it was found that 
the ratio of the former to the latter was 7:3. This value is 
coincident with that (69:31) obtained by the uv measure­
ment (Figure 2).

It can therefore be concluded that the initial rapid de­
crease of the A 290 value in the brUdRib and m1brU reac­
tions represents the accumulation of the bisulfite adduct
(1). Subsequent slow, linear decrease must be a reflection 
of further decomposition of the adduct (1) into debromi- 
nated product(s). Furthermore, it is clear that this debro- 
mination is the rate-determining step of the overall reac­
tion for brUdRib.

By extrapolating the linear portions to time zero, the 
A 290 values at the equilibrium were determined and the 
values of [la]/[brUdRib] [total bisulfite] were found to be
0.51 M -1 with 0.5 M  bisulfite, 0.47 M -1 with 0.75 M  bisul­
fite, 0.44 M -1 with 1.0 M  bisulfite, and 0.45 M -1 with 1.25 
M  bisulfite. The equilibrium constant for buUdRib +  sodi­
um bisulfite <=± la  was thus estimated at 0.47 ±  0.02 M -1 
(pH 7.0, 17°).

In the brU-bisulfite reaction, in which no initial drop of 
A 290 was noted, there are two possibilities concerning the 
rate-determining step. First the addition of bisulfite to the
5,6 double bond of brU is the rate-determining step in the 
overall reaction sequence, and the subsequent debromina- 
tion of the adduct l c  is faster than the first step. In this 
case, the linear decrease in A 290  should represent the veloc­
ity of addition of bisulfite across the 5,6 double bond of 
brU [assuming that the reverse reaction (elimination) is 
much slower than the forward reaction]. Second, the

amount of the intermediate lc is undetectably small and 
the rate-determining step is the debromination rather than 
the formation of lc . These two alternatives cannot be dis­
tinguished by the present data.

Figure 3 summarizes the apparent pseudo-first-order 
rate constants obtained from the linear portions of the 
curves such as those in Figures 1 and 2, and shows them as 
a function of the bisulfite concentration. A strikingly great 
difference in the reactivity of brU and brUdRib is obvious 
from this figure. At one bisulfite concentration the rates for 
these three substrates were compared. Thus, the fe()bsd 

values in 0.20 M  sodium bisulfite, pH 7.0, were 0.154,
0.0059, and 0.00072 min-1 for brU, m'brU, and brUdRib. It 
can therefore be estimated that the debromination of brU 
is two orders of magnitude faster than that of brUdRib. It 
should be noted that the rates for brU may represent mere­
ly the velocity of the adduct lc  formation and, if so, the 
rate of the subsequent debromination step must be larger 
than the observed rate. m1BrU was more reactive than 
brUdRib but the difference between brU and ndbrU was 
much larger than that between m'brU and brUdRib.

We examined the possibility that the pH profile of the 
reaction might be greatly different among the substrates 
and the phenomenon we were observing was an extreme 
case. That this was not so was shown by the fact that both 
the brUdRib- and the brU-bisulfite reactions are optimal 
at pH about 7. Thus, the &0bsd (min-1 ) values follow: with 
brUdRib (in 1.0 M  bisulfite), 0.0061 at pH 5.7, 0.018 at pH
6.2, 0.021 at pH 7.0, and 0.003 at pH 7.9; with brU (in 0.10 
M  bisulfite), 0.0077 at pH 5.7, 0.029 at pH 7.0, and 0.0088 
at pH 8.0.

The results in Figure 3 also indicate that the rate for ei­
ther of the three substrates is a function of more than first 
order of the total bisulfite-buffer concentration. A similar 
relationship was previously observed for the brU-bisulfite 
system.1*3

In the reaction of brUdRib (and m'brU) with bisulfite, 
the expression

kohsd =  kK(s)2/[l +  JRT(s)] (1)

can be derived, where k represents the rate constant for the 
debromination, K  the equilibrium constant for brUdRib +  
HSO3-  (total buffer) <=> la , and (s) total bisulfite buffer 
concentration. Expression 1 indicates that the experimen­
tally determined &<,bsd values at various bisulfite concentra­
tions should be related by [&0bsd at buffer concn (s)]/[fe0bsd 
at buffer concn (s')] =  (s)2[1 +  E’(s ')]/(s ')2[l +  if(s)]. 
Employing the K  value 0.47 M -1 experimentally deter­
mined as already described, theoretical relative rates were 
plotted against (s) and compared with those observed. As 
shown in the inset of Figure 3, the experimental values 
were reasonably coincident with the theoretical ones. It was 
therefore concluded that the reaction scheme illustrated in 
Scheme II is basically correct.

By use of expression 1 and the fe0 b sd  values, the rate con­
stant k can be calculated. From the &0bsd values found for 
the 0.5, 0.75,1.0, and 1.25 M  bisulfite reactions, the k value 
was estimated to be 0.061 ±  0.008 1. mol-1 min-1 .

We measured velocity of bisulfite addition to 2'-deoxy- 
uridine under conditions identical with those employed in 
the brUdRib-bisulfite reaction and found that it is greater 
than the velocity of the decomposition of the adduct la . 
The apparent pseudo-first-order rate constants found were
0.0533 min- 1/1.0 M  sodium bisulfite, and 0.0147 min-1 /
0.50 M  sodium bisulfite at pH 7.0 and 17°, the initial de- 
oxyuridine concentration being 0.010 M. This finding indi­
cates that if ever deoxyuridine is produced from the adduct 
la  it will escape detection.
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Discussion

The results presented above showed that the breakdown 
of the adduct lc is very much faster compared with the 
N 1-substituted adducts la  and lb. Although the different 
reactivities of these substrates might be attributable to ste- 
ric hindrance of the N 1 substituents, a more likely explana­
tion for the very large reactivity difference is provided by 
postulating the intermediate 2 in the brU-bisulfite reaction 
(Scheme III). Sulfite will reductively subtract the bromine

Scheme III

atom1*3 of 2 to give uracil and 5,6-dihydrouracil 6-sulfonate. 
It is known that the 5,6-dihydrouracil 6-sulfonate is pro­
duced not necessarily via uracil.4 Support for the possibili­
ty of the existence of intermediate 2 is found in the recent 
finding that titration of uracil with bromine results in the 
formation of an uracil-bromo (1:2) adduct, whereas titra­
tion of 1-methyluracil gives a 1:1 adduct.10 In explanation, 
the intermediate 2 was postulated, whose formation is the

Scheme IV

(1:1 adduct) ^

0  0

(l:2adduct)

crucial step for the generation of the 1:2 adduct (Scheme
IV). In contrast to the sulfite-mediated debromination, in 
which a bromonium ion rather than a proton is subtracted 
at position 5 of 2, bromine deprotonates 2 to give brU. The 
workers10 postulated that this occurs via the formation of 
an N-bromo derivative of 2.

In the brUdRib- and m'brU-bisulfite reactions, the for­
mation of intermediate 2 would be blocked or extremely 
difficult because it requires quaternization of the nitrogen 
at position 1. Direct reduction of the adduct 1 by sulfite 
anion will also be a slow reaction owing to electronic repul­
sion by the sulfonate group at position 6. Therefore, the de­

bromination of brUdRib and m'brU will proceed much 
more slowly than that of brU, by taking either the direct 
route or the indirect route to the final product.

Besides bisulfite, cysteine debrominates both brU and 
brUdRib under mild conditions. In the case of cysteine, 
however, no great difference is existent between the reac­
tivities of brUlc and brUdRib.3 An explanation for this is 
the following. In the cysteine-mediated debromination of 
brUdRib, the initial addition of the nucleophile across the
5,6 double bond of the pyrimidine was supposed to be the 
rate-determining step. In this regard, the bisulfite-mediat- 
ed debromination of brUdRib is different from the cysteine 
reaction, because its rate-determining step is not the initial 
addition of the nucleophile but the subsequent debromina­
tion.

It is interesting that the reactivity at the position /3 to 
the glycosidic linkage is so much different between a nucle­
oside and the corresponding base. The present finding indi­
cates that reactions at position 5 of pyrimidine nucleosides 
and bases should always be carefully compared.

Experimental Section

General. BrUdRib and brU were products of Sigma Chemical 
Co. and were used without further purification. m'BrU was pre­
pared according to the literature.11 Proton magnetic resonance 
spectra (100 MHz) were measured on a Jeol NM-4H-100 spec­
trometer.

Kinetic Measurements. All reactions were performed in deion­
ized, distilled water. Sodium bisulfite buffers were always freshly 
prepared before use. The pH was fixed by mixing appropriate 
amounts of NaHSOa and Na2SC>3. The reactions were run under 
nitrogen atmosphere at room temperature which was maintained 
at 17 ±  0.5°. Progress of the reaction was monitored by determin­
ing A290 in a cuvette of 1-mm light path against a reference in 
which brU derivative was omitted from the reaction mixture, using 
a Beckman Acta CIII spectrophotometer. The pH of the reaction 
mixture was measured both at zero time and after the incubation 
was over. The value generally did not exhibit any change, except in 
the case where 0.050 M bisulfite buffer was used, and the pH was
7.0 at zero time and 6.85 after 180-min incubation. The zero time 
A290 values employed were those obtained with solutions omitting 
the bisulfite buffer from the reaction mixture (reference, H2O).
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Synthesis in the Pyrrolizidine Class of Alkaloids. t/7-Supinidine1

Joseph J. Tufariello* and James P. Tette

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214

Received June 26, 1975

A nitrone based entry to the pyrrolizidine class of alkaloids is described. The synthesis of supinidine (3), the ne- 
cine base obtained from supinine (la) and heleurine (lb), illustrates the approach used.

Pyrrolizidine alkaloids, also referred to as the Senecio al­
kaloids, occur naturally in various plant species and have 
been the subject of several excellent reviews.2-5 Many of 
the alkaloids of this class are toxic, causing liver tumors 
and lung damage in animals feeding on plants containing 
these compounds. The alkaloids usually consist of a pyrrol­
izidine (“ necine”) base and a carboxylic (“ necic”) acid cou­
pled by an ester linkage (cf. 1).

CH3
I

RO— C— H

la, R =  H 2 3
b, R =  CH3

The necine bases embody a pyrrolizidine nucleus with a 
one-carbon side chain and usually one or more hydroxyl 
groups positioned as shown in structure 2, where X , Y, and 
Z may be H or OH, and a double bond is frequently located 
(i.e., when Z =  H) at the position indicated by a dotted line. 
It is the unsaturated pyrrolizidine alkaloids that are princi­
pally involved in the hepatotoxicity of these compounds.5 
Although considerable synthetic effort has been directed 
toward the pyrrolizidine bases, the synthesis of supinidine6 
(3), the necine base derived from supinine (la) and heleur­
ine (lb), was not achieved7-10 at the outset of this work.'

Synthetic Approach. Initially, we sought a nitrone 
based approach to supinidine which would involve an addi­
tion to a symmetrical dipolarophile, thereby avoiding any 
potential problems involving the regioselectivity of the cy­
cloaddition. Toward this end, we examined the reaction of 
1-pyrroline 1-oxide (4) with both diethyl fumarate and di­
ethyl maleate. Each reaction provided two isomeric ad­
ducts in a 2:1 ratio (e.g., 6 and 7 from diethyl maleate and 
4). The stereochemistry of the hydrogen at C,3a in adduct 5a 
is unspecified in Chart I. In an effort to simplify the NMR  
spectra of the adducts, the cycloaddition of the nitrone 4 
with dimethyl fumarate was investigated. Once more a 
mixture of two isomeric adducts was produced with proper­
ties similar to those observed for the diethyl fumarate ad­
ducts. No effort was made to separate these adducts since 
both isomers would, by the synthetic plan, lead to the same 
target. Hydrogenolysis of the nitrogen-oxygen bond in the 
dimethyl maleate adduct mixture led to the formation of 
hydroxylactam 9, presumably as a mixture of two stereoiso- 
meric adducts. This mixture was dehydrated via the corre­
sponding tosylate according to the procedure of Nair and 
Adams.9 A solid unsaturated ester (i.e., 11) was obtained 
which did not exhibit olefinic protons in its NM R spectrum 
but which did have spectral properties identical with those 
of 11 previously reported by Goldschmidt.10 Thus, the

Chart I

ro2c h

a ,  ♦  ï  ■
c

/  \
H COR

+ \ 0

H CO,R

C M  H

0 CO,R

5 a, R =  C>H,-, 
b, R =  OCH:1

GOCH

elimination apparently proceeded through the intermedia­
cy of the desired cross conjugated keto ester 10 on the way 
to the undesirable vinylogous lactam 11.

Several attempts were made to dehydrate 9 directly. 
Geissman’s method11 (employing barium hydroxide), phos­
phorus pentoxide in benzene, or p-toluenesulfonic acid in 
benzene did not lead to readily identifiable material.

The facility of the isomerization of 10 —  11, coupled 
with the failure of a similar dehydration to occur in Geiss­
man’s retronecine synthesis,11 suggests that the cross con­
jugated nature of 10 may be responsible for its facile trans­
formation into 11. Thus, we sought to explore synthetic 
possibilities which precluded the existence of a carbonyl 
group at C3 in 10. This led us to explore the reaction of 1- 
pyrroline 1-oxide (4) with unsymmetrical dipolarophiles.

Unsymmetrical Dipolarophiles. The major difficulty 
envisioned with the use of unsymmetrical dipolarophiles, 
such as 7 -substituted crotonates (e.g., 12), was the possibil­
ity of a substantial stereochemical preference for the unde­
sirable o-oxy ester isomer 14.12’13
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C02CH3

C
II
c

/  \
x c h 2 h

12a, X =  H, 
b, X =  OH

13a, X = H
b, X =OH
c, X =  OMs

14a. X =  H
b. X =  OH

Our initial regiochemical probe was 1-butenolide14 (15). 
Reaction of nitrone 4 with 15 resulted in the isolation of a 
single adduct, 16, the orientation of which encouraged fur­

ther exploration of this approach. The orientation was as­
signed on the basis of a spin decoupling experiment. The 
NM R spectrum of 16 exhibits a seven-line pattern at 4.9 
ppm, attributed to the proton at C2. Double irradiation of 
this signal caused the signal due to the adjacent methylene 
protons at 4.4 ppm to collapse to a singlet. Similarly, dou­
ble irradiation of the methylene signal caused the multiplet 
at 4.9 ppm to collapse to the expected doublet (J2 ,3  =  7, 
^ 2,8e = 5 Hz). Clearly, one would expect H2 for the alter­
nate adduct 17 to be a doublet prior to irradiation, and the 
downfield methylene protons should not have been coupled 
to the proton at C2. While efforts to convert 16 into supini- 
dine met with difficulty, the regiochemistry of the cycload­
dition involving 1-butenolide encouraged us to pursue simi­
lar chemistry using substituted crotonates of the type 12. 
We found that the addition of methyl crotonate (12a) to ni­
trone 4 afforded 13a, consistent with similar findings of 
Murray and Turner15 in a related reaction. Hydrogenolytic 
cleavage of 13a gave a compound which exhibited a posi­
tive iodoform test. In addition, the NM R spectrum of 13a 
shows the H 2 proton signal to be a multiplet (J2.3 — 8.6, 
J23 =  6.1 Hz) rather than the doublet anticipated for 14a.

The cyclization was studied using methyl 7 -hydroxycro- 
tonate (12b). A light yellow liquid was obtained in 80% 
yield which, upon chromatography through Florisil, afford­
ed the adduct 13b as colorless crystals. The NM R spectrum 
of this adduct contained a six-line pattern at 4.23 ppm in­
tegrating for one proton, strongly suggesting that the ad­
duct had the orientation depicted by 13b, and not by 14b. 
Conversion to the methanesulfonate proceeded in 94% 
yield. Hydrogenolysis occurred over 10% palladium on car­
bon to give /3-hydroxy ester 19 as a white solid in 95% yield, 
presumably via the amino alcohol 18. Thus, the pyrroliz-

CO.CH 

OH 

19

idine system has been assembled with functionality appro­
priate for the subsequent elaboration into supinidine. To 
effect this transformation, 19 was subjected to dehydration 
conditions with phosphorus oxychloride in pyridine at 20° 
or below. A pale yellow liquid was isolated which exhibited 
an olefinic stretching band at 6.08 p in its ir spectrum and a 
band at Xmax (ethanol) 214 nm (t 7375) in its uv spectrum. 
The NM R spectrum contained a one-proton multiplet at <5 
(Me4Si, carbon tetrachloride) 6.7 ppm attributed to the 
vinyl proton in 20. The /3-vinyl protons in methyl croto-

COXH;

20
nate, methyl 7 -hydroxycrotonate, methyl 7 -chlorocroto- 
nate, and methyl 1-cyclopentenecarboxylate fall in the 
range (Me4Si) 6.7-7.0 ppm in carbon tetrachloride solution.

Finally, the unsaturated ester 20 was converted into dl- 
supinidine (3) using a mixed hydride reagent prepared 
from lithium aluminum hydride and aluminum chloride.17 
Reduction with lithium aluminum hydride also led to ex­
tensive reduction of the double bond.18 The mixed hydride 
method led to a 3:2:6 mixture, the major constituent of 
which was dl -supinidine, purified by preparative gas-liquid 
phase chromatography, as determined by spectral compari­
sons with authentic material. The dZ-supinidine (3) so ob­
tained possessed NMR, ir, and mass spectra virtually iden­
tical with those of supinidine obtained by hydrolysis of su- 
pinine (la). The other constituents of the reduction mix­
ture were presumably trachelanthamidine (21) and isore- 
tronecanol (22). The infrared spectra of both compounds

21 22

were very similar to the published spectrum8 of 1-hydroxy - 
methylpyrrolizidine. A mass spectrum of the major saturat­
ed isomer was virtually identical with the corresponding 
spectrum of trachelanthamidine (21).

Experimental Section

All melting points were determined on a Mel-Temp apparatus 
and are uncorrected. Infrared spectra were recorded on the Beck­
man IR-5a spectrophotometer and calibrated using the 6.24-m 
band of polystyrene. Proton magnetic resonance spectra were ob­
tained using a Varian A-60 spectrometer using tetramethylsilane 
as the internal standard. Notations s, d, t, q, m, and hr designate 
singlet, doublet, triplet, quartet, multiplet, and broad, respective­
ly. Mass spectra were recorded on a CEC-120 spectrometer at an 
ionization potential of 77.5 V. Ultraviolet spectra were obtained on 
a Perkin-Elmer Model 202 spectrophotometer.

1-Pyrroline 1-Oxide (4). 1-Pyrroline 1-oxide was prepared ac­
cording to the method of Thesing and Sirrenberg20 in an overall 
yield of 40%: bp 74-76° (0.1 mm) [lit.20 bp 65° (0.07 mm)]; ir (film)
6.32 (s), 7.98/x ( s ).

Addition o f 1-Pyrroline 1-Oxide to Diethyl Maleate. A 1.3-g 
(15 mmol) sample of 1-pyrroline 1-oxide was dissolved in 150 ml of 
chloroform and to this was added 2.53 g (15.3 mmol) of diethyl ma­
leate. The solution was stirred at 25° for 1 hr. A 10% excess of di­
ethyl maleate was then added and the solution was refluxed for 1 
hr. Evaporation of the chloroform under reduced pressure afforded 
a light yellow liquid. Distillation gave 1.17 g (24% yield) of a clear 
liquid, bp 95-97° (4 mm). Chromatography ofthe liquid through 
Florisil afforded two fractions, both liquids, which appeared to be 
isomers. Isomer A obtained from elution with 1:1 ether-acetone 
gave an analytical sample with ir (film) 5.75-5.80 (s), 8.3-8.55 fi (s);18
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\max (EtOH) 206 nm (( 383); NMR (CCU) X 4.7 (d, 1), 4.15 (cp, 5), 
2.95-3.25 (j, 3), 1.6-2.2 (m, 4), and 1.15-1.45 ppm (two overlapping 
triplets, 6).

Anal. Calcd for Ci2H19N 05: C, 56.02; H, 7.44; N, 5.44. Found 
(isomer A): C, 56.24; H, 7.66; N, 5.78. Found (isomer B): C, 55.90; 
H, 7.41; N, 5.75.

Addition o f 1 -Pyrroline 1-Oxide to Diethyl Fumarate. To a
well-stirred solution of 6.65 g (78 mmol) of 1-pyrroline 1-oxide and 
75 ml of chloroform was added 13.4 g (78 mmol) of diethyl fuma­
rate and the resulting solution was refluxed for 1 day. Evaporation 
of the chloroform under reduced pressure followed by distillation 
of the liquid residue gave a light yellow liquid: 18 g, 90% yield; bp 
116-117° (0.4 mm); ir (film) 5.71-5.75 (s), 8.3-8.35 p (s); NMR 
(CCI4) X 4.75 (d, J  = 5 Hz) and 4.55 ppm (d, J = 8 Hz) in a 1:2 area 
ratio, respectively, corresponding to H2 of two different stereoiso­
mers. No attempt was made to separate the isomers.

Dimethyl Hexahydropyrrolo[l,2-b]isoxazole-2,3-carboxyl- 
ate (5b). Dimethyl fumarate (2.1 g, 15 mmol) was added to a 
stirred solution of 25 ml of chloroform and 1.3 g (15 mmol) of 1- 
pyrroline 1-oxide. A 24-hr reflux period afforded a light yellow so­
lution. The chloroform was evaporated under reduced pressure 
and the remaining liquid distilled under vacuum. A yellow liquid 
was obtained: 2.17 g, 62% yield; ir (film) 5.69-5.76 p (s); NMR 
(CDC13) X 1.6-2.25 (cp, 4), 2.83-3.55 (cp, 3), 3.75-4.18 (cp, 7), and 
4.58-4.98 (cp, 1).

Methyl 2-H ydroxy-3-oxopyrrolizidine-l-carboxylate (9). A
solution of 2 g (8.7 mmol) of dimethyl hexahydropyrrolo[l,2- 
b]isoxazole-2,3-carboxylate (5b) in 60 ml of methanol was hydroge­
nated for 4 hr using 100 mg of 10% palladium on carbon. Filtration 
through Celite followed by removal of the methanol under reduced 
pressure afforded a greenish-white solid. Recrystallization from 
acetone-hexane gave a brownish solid: mp 118-128°; ir 2.96 (m),
5.75 (s), and 5.92 p (2).

Dehydration o f  Methyl 2-H ydroxy-3-oxopyrrolizine-l- 
carboxylate. Following the procedure of Nair and Adams,9 500 
mg (2.5 mmol) of methyl 2-hydroxy-3-oxopyrrolizidine-l-carboxyl - 
ate (9) in 5 ml of pyridine was cooled to —10°. To this was added 
477 mg (2.5 mmol) of toluenesulfonyl chloride in one portion and 
the resulting solution was stored at 0° for a short time. Small piec­
es of ice were slowly added until ca. 25 ml of water had been intro­
duced. The solution was then acidified with 20% HC1 and extract­
ed with chloroform. The chloroform solution was dried over anhy­
drous magnesium sulfate. Evaporation of the chloroform under re­
duced pressure afforded a brown liquid which was chromato­
graphed through alumina (Woelm). Elution with 50:50 ether-chlo­
roform gave a pale yellow solid: uv Xmax (ethanol) 218 nm (e 4600) 
and 289 (12700) [lit.10 Xmax (ethanol) 218 nm (< 4600) and 288 
(12000)]; ir (CHCI3) 5.84 (s), 5.98 (s), and 6.02 p (m), very similar 
to that reported by Goldschmidt.10

Methyl y-Brom ocrotonate. A well-stirred mixture of 20.5 g 
(0.205 mol) of methyl crotonate, 110 ml of carbon tetrachloride,
29.1 g (0.164 mol) of Af-bromosuccinimide, and a small amount (ca. 
10 mg) of benzoyl peroxide was refluxed for 48 hr. Filtration and 
evaporation of the carbon tetrachloride under reduced pressure af­
forded a yellow liquid. Distillation of the liquid gave a clear liquid: 
23 g, 80% yield; bp 92-95° (10 mm) [lit.19 bp 83-85° (13 mm)]; ir 
(film) 5.77 (s), 5.97 (w), 10.22 p (m); NMR (CCL,) X 3.72 (s, 3), 409 
(q, 2), 606 (m, 1), 7.0 (m, 1).

1-Butenolide (15). The unsatured lactone 1-butenolide was 
prepared in a two-step synthesis according to the method of Judge 
and Price14 in an overall yield of 16%: ir (film) 5.63 (s), 5.73 (s), 
6.20 p (w); NMR (CCL,) X 4.95 (q, 2), 6.15 (m, 1), 7.8 (m, 1); bp 88-  
89° (2 mm) [lit.14 bp 94-98° (2 mm)].

H exahydro-2-(hydroxyjnethyl)pyrrolo[l,2-h ]isoxazole-3- 
carboxylate Lactone (16). A stirred solution of 2.7 g (3.3 mmol) 
o f 1-pyrroline 1-oxide, 2.7 g (3.3 mmol) of 1-butenolide, and 70 ml 
of chloroform was refluxed for 8 hr and stirred at 25° for 24 hr. 
Evaporation of the chloroform under reduced pressure left a 
brown solid. Recrystallization using hexane afforded white nee­
dles: 2.3 g, 43% yield; mp 87-89°; ir (film) 5.59-5.66 (s), 8.46 p (s); 
uv Xmax (MeOH) 206 nm (e 422); NMR (CDCI3) X 1.5-2.4 (cp, 4), 
3.0-3.58 (cp, 3), 3.68-4.02 (broad triplet, 1), 4.35-4.5 (t, 2), 4.8-5.08 
(m, 1).

Anal. Calcd for C8H11NO3: C, 56.80; H, 6.55; N, 8.28. Found: C, 
57.08; H, 6.58; N, 8.26.

Methyl Hexahydro-2-m ethylpyrrolo[l,2-h]isoxazole-3-car- 
boxylate (13a). A solution of 2.7 g (31 mmol) of 1-pyrroline 1- 
oxide and 10 g of methyl crotonate was stirred at 25° for 24 hr. The 
excess methyl crotonate was removed under reduced pressure and

the remaining liquid was distilled under vacuum. A clear liquid,
5.0 g (87% yield), was obtained: bp 77-79° (0.2 mm); ir (film) 5.74 
(s), 8.31 p (s); NMR (CCL,) X 4.25 (m, 1), 3.6-4.0 (m, 1), 3.7 (s, 3),
3.05 (m, 3), 1.5-2.0 (cp, 4), and 1.25 ppm (d, 3, J = 7 Hz).

Methyl 2-(Pyrrolidin-2-yl)-3-hydroxybutyrate. Catalytic 
hydrogenation using 160 mg of 10% Pd/C was carried out on a so­
lution of 4.4 g (24 mmol) of methyl hexahydro-2-methylpyrrolo[l,2- 
b]isoxazole-3-carboxylate in 150 ml of methanol for 6 hr. The 
methanol was removed under vacuum and the residue taken up in 
ether and dried over calcium chloride. Evaporation of the ether 
under reduced pressure afforded a yellow liquid: 4.3 g, 96% yield; ir 
(fdm) 2.97 (m), 5.77 (s), 9.04 p (s); NMR (CCL,) X 1.05 (d, 30), 1.4- 
1.97 (cp, 4), 2.32-2.96 (cp, 3), 3.18-3.38 (cp, 2), 3.56 (s, 3), 3.77-4.32 
(cp, 2). The OH proton signal at 3.77-4.32 ppm disappeared on 
shaking with D20. The product also gave a positive iodoform test.

Methyl y-Hydroxycrotonate (12b). An adaptation of the 
method of Rambaud16 was employed. To a well-stirred mixture of 
105 ml of water and 11.6 g (0.05 mol) of silver oxide was added 17.9 
g (0.1 mol) of methyl y-bromocrotonate. The mixture was stirred 
for 24 hr at 25° and then heated for 6 hr at 60°. Filtration and 
evaporation of the water under reduced pressure gave a liquid resi­
due which was distilled under vacuum. A clear liquid was obtained:
6.0 g, 51%; bp 77-80° (0.3 mm) [lit.16 bp 118° (15 mm)]; ir (film)
2.9 (s), 5.77 (s), and 5.98 p (m); NMR (CC14) X 3.65 (s, 3), 4.8 (s, 3),
6.0 (m, 1), 7.0 (m, 1).

Methyl Hexahydro-2-hyd roxymethylpyrrolo] 1,2-b]isoxa- 
zole-3-carboxylate (13b). To a stirred solution of 19 g (0.164 mol) 
of methyl y-hydroxycrotonate in 65 ml of chloroform was added 14 
g (0.164 mol) of 1-pyrroline 1-oxide under a nitrogen atmosphere. 
The mixture became warm on addition and was stirred for 4 hr at 
25°, then refluxed for 12 hr. The chloroform was evaporated under 
vacuum and the residue chromatographed through 340 g of silica 
gel. Elution with chloroform, ethyl acetate, and acetone, respec­
tively, afforded a yellow liquid: 26.4 g, 80%; ir (film) 2.96 (s), 5.73 
(s), 6.91 p (s); NMR (CC14) X 1.5-2.25 (cp, 4), 3.0-3.4 (cp, 2), 3.45-
4.1 (cp, 7), 4.2-4.5 (sextet, 1), 4.75 (s, 1, a hydroxyl proton). Careful 
chromatography of a small amount of this liquid through Florisil 
afforded a white, crystalline material on elution with benzene- 
ether. Recrystallization of the solid using ether afforded white 
prisms: mp 61-63°; ir (KBr) 3.12 (m), 5.75 (s), 6.94 p (m); the 
NMR spectrum of the solid was the same as that of the liquid; 
NMR (CDCI3) X 4.35 (m, 1), 4.15 (s, 1, OH), 3.70 (s, 3) 3.50-4.00 
(cp, 4), 3.18 (cp, 2), and 1.5-2.3 (cp, 4).

Anal. Calcd for C9H15N 0 4: C, 53.72; H, 7.14; N, 6.96. Found: C, 
53.42; H, 7.17; N, 7.20.

The Methanesulfonate o f Methyl Hexahydro-2-hydroxy- 
methylpyrrolof 1,2- b]isoxazole-3-carboxylate (13c). Methyl 
hexahydro-2-hydroxymethylpyrrolo[l,2-b]isoxazole-3-carboxylate 
(13b, 5 g; 24.8 mmol) was dissolved in 50 ml of anhydrous pyridine 
and the solution was cooled to —15°. To this solution was added
3.1 g (27.5 mmol) of methanesulfonyl chloride and the solution was 
kept at 0° for 3 hr. Small pieces of ice were then introduced until 
ca. 10 ml of water had been added. Ice-water (50 ml) was then 
added and the resulting aqueous solution was extracted with four
125-ml portions of chloroform. The combined chloroform extracts 
were shaken with 200 ml of a sodium bicarbonate solution. The 
chloroform layer was dried over anhydrous magnesium sulfate. 
Evaporation of the chloroform and pyridine under vacuum afford­
ed a light yellow liquid: 6.5 g, 94% yield; ir (film) 5.75 (s), 6.92 (m), 
7.38 (s), 8.50 p (s); NMR (CDCI3) X 1.45-2.3 (cp, 4), 2.9-4.15 (cp, 
includes two singlets, 10), 4.2-4.4 (d, 2), 4.42-4.8 (cp, 1).

Methyl 2-H ydroxypyrrolizidine-l-carboxylate (19). Com­
pound 13c, the methanesulfonate of methyl hexahydro-2-hydroxy- 
methylpyrrolo[l,2-6]isoxazole-3-carboxylate (6.58 g, 24 mmol), was 
dissolved in 50 ml of methanol and to this was added 300 mg of 
10% Pd/C. The mixture was hydrogenated for 24 hr and filtered 
and the methanol was removed under vacuum. A light yellow oil 
remained which was dissolved in chloroform (150 ml) and shaken 
with 35 ml of a 1 A1 sodium hydroxide solution. The chloroform 
layer was dried over anhydrous magnesium sulfate. Evaporation of 
the chloroform left 4.2 g (95% crude yield) of a white solid. Recrys­
tallization from hexane gave white crystals, mp 97- 101°. Sublima­
tion, followed by two successive recrystallizations, afforded white, 
powdery needles: mp 100-101°; ir (KBr) 2.90 (m), 5.77 (s), 8.61 p 
(s); NMR (CDCI3) X 1.6- 2.2 (cp, 4), 2.7-3.5 (cp, 5), 3.65-4.0 (cp, in­
cludes a singlet, 4), 4.35-4.65 (cp, 1), and 5.85 (s, 1, OH proton); 
mass spectrum m/e 185, 154, 136, 126, 108, 98, 83 (100), 70, and 55.

Anal. Calcd for C9H15N03: C, 58.36; H, 8.16; N, 7.56. Found- C 
58.03; H, 8.31; N, 7.04.
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Methyl Pyrrolizid-l-ene-l-carboxylate (20). To an ice- 
cooled, stirred solution of 11 g (50 mmol) of methyl 2-hydroxypyr- 
rolizidine-l-carboxylate (19) in 100 ml of anhydrous pyridine was 
slowly added 11.3 g (73 mmol) of phosphorus oxychloride over a 
15-min period. The dark brown solution was stirred for 12 min at 
0° and the pyridine was then removed under reduced pressure, 
leaving a dark brown oil. This material was dissolved in 15 ml of 
ice-cold water and the solution made basic with potassium carbon­
ate. The basic solution was then extracted with six 150-ml portions 
of ether and the combined ether extracts were dried over magne­
sium sulfate. Evaporation of the ether under vacuum afforded a 
dark brown liquid which distilled at reduced pressure. A light yel­
low liquid was obtained, bp 61-62° (0.05 mm), which was 90% pure 
as determined by GLC analysis using a 4 ft X 0.25 in. 15% QF-1 
column at 140°: yield 3.7 g (35%); ir (film) 5.79 (s), 6.08 (m), 6.92 
(m), 7.91 is), 12.90 (m), 13.42 \i (m); uv Amax (EtOH) 214 nm (t 
7375); NMR (CDCI3) 5 6.70 (m, 1), 4.3 (m, 1), 3.75 (s, 3), 1.0-4.0 
ppm (m, 8); picrate, mp 160-161° (methanol).

Anal. Calcd for picrate Ci5Hi6N409: C, 45.46; H, 4.07; N, 14.14. 
Found: C, 45.64; H, 4.26; N, 14.45.

dl-Supinidine (3). A mixture of 700 mg of lithium aluminum 
hydride, 600 mg of aluminum chloride, and 50 ml of anhydrous 
ether was prepared according to the method of Jorgenson.17

To this cooled, stirred solution was slowly added 2.1 g (12.5 
mmol) of methyl pyrrolizid-l-ene-l-carboxylate in 10 ml of ether. 
The mixture was then stirred for 15 min at room temperature and 
the excess hydride destroyed by adding successive portions of 1 ml 
of water, 2 ml of 10% sodium hydroxide solution, and 2 ml of water. 
The ether solution was then filtered and dried over magnesium 
sulfate. Evaporation of the ether afforded a light yellow liquid 
which was distilled through a short-path distillation apparatus to 
give 900 mg of a clear liquid which turned yellow on exposure to 
air. Gas-liquid chromatographic analysis using a 6 ft X 0.25 in. 
20% FFAP-4% KOH column at 160° showed the material to be 50% 
dl-supinidine. The di-supinidine was separated and collected 
using this column. The infrared spectrum was identical with that 
of natural supinidine. The NMR spectrum and the mass spectrum 
were also identical with those of the natural material: ir (neat) 3.2, 
3.5, 6.8, 7.5, 8.4, 8.6, 9.0, 9.2, 9.5, 9.8, 11.2, 11.6, 12.4, and 12.7 M; 
NMR (CDCI3) 5.8 (br s, 1, OH), 5.50 (m, 1), 2.3-4.5 (cp, 7), 1.3-2.2 
ppm (cp, 4); MS m/e 139, 138, 122, 111, 108, 94, and 80 (100); pic­
rate mp 124-126° (methanol).

Anal. Calcd for picrate C14H16N4O8: C, 45.60; H, 4.38; N, 15.21. 
Found: C, 45.60; H, 4.42; N, 15.22.

Also separated on the above column, under the same conditions, 
were two compounds in a 3:2 ratio, which afforded ir spectra virtu­
ally identical with the published8 spectrum of 1-hydroxymethyl- 
pyrrolizidine. A mass spectrum of the major constituent was virtu­
ally identical with the mass spectrum- of trachelanthamidine 
(21).21
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Steroidal 3/3- or lla-3-pyridinesulfonates and various o- and p-(alkyloxycarbonyl)benzenesulfonates undergo 
facile displacement. Elimination of these sulfonates, and particularly of o-nitrobenzenesulfonate, is very rapid 
and results in the corresponding olefins with very good yield under mild conditions.

In the course of chemical synthesis and structural modi­
fication one is occasionally faced with cases of extremely 
difficult displacements of sulfonates, typically, meth- 
anesulfonates or the better leaving p-toluenesulfonates.1 
The displacement of methanesulfonate esters of 1 lo-hy- 
droxy steroids is particularly difficult and, in the past, the 
conversion of 1 la-hydroxy functions into 11/3-fluoro and 
with lesser efficacy into other substituents was carried out 
employing N-(2-chloro-l,l,2-trifluoroethyl)diethylamine 
with the corresponding lithium salt in great excess.2 In the 
above case one starts from the alcohol and proceeds to the 
final product without isolating an intermediate. Other sim­
ilar approaches are known (examples can be found in ref 3). 
It is not apparent, however, how applicable they might be 
to certain polyfunctional molecules of interest to us. An al­
ternative approach, presented here, would be the utiliza­
tion of sulfonates with better leaving group properties.4 
These might be advantageous also in providing us with fac­
ile eliminations. Our study included lla-sulfonates and 
also the less hindered 3/3-sulfonates.

Results and Discussion

Compounds 1 and 2 were prepared by treating the corre­
sponding nitrobenzyl alcohol with p-(chlorosulfonyl)ben- 
zoyl chloride.5 Compounds 4 and 5 were prepared through

NO,
alcoholysis of sulfobenzoic anhydride with o-nitrobenzyl al­
cohol or with methanol6 followed by treatment with phos­
phoric pentachloride. All the sulfonates described (com­
pounds 6, 7, 8, 9, 13, 14, and 15) were prepared by allowing 
the parent alcohol and the corresponding sulfonyl chloride 
to react in pyridine at room temperature.

p-Toluenesulfonates, and in particular steroidal 3/3-p- 
toluenesulfonyloxy compounds, are known7 to undergo 
both displacement and elimination in dimethylformamide. 
When sulfonates 7, 8, 9, and the corresponding p-tolu- 
enesulfonate were heated in dimethylformamide, they gave

0

2,5a-cholestene and the 3-formate 10 in approximately 1:1 
ratio. While a complete reaction for compound 7 required 
heating at 95° for 1 hr, the p-toluenesulfonate reaction 
proceeded under identical conditions to the extent of only 
5%. The order of reactivity is 7 >  8, 9 »  3-p-toluenesulfon- 
ate. Elimination in hexamethylphosphoramide proceeded 
in a similar fashion. The reaction in dimethylformamide 
was further studied with compound 8. The major products, 
2,5a-cholestene and the formate 10 (apparently a result of 
inversion accompanied to a small extent by retention), 
were characterized.

Azide displacement of sulfonates in hexamethylphospho­
ramide occurs readily at the 3 position,8 thus compound 6 
was easily transformed to compound 12. At the sterically 
hindered 11 position it is still a smooth reaction when the 
appropriate leaving groups are selected. Compounds 13 and
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16, R =  CH3S02—

15 were converted to compounds 17 (displacement and in­
version) and 18 (elimination) in 30 min at 90°. Traces of 
the parent alcohol accompany these two major products. 
The configuration of compound 17 at C -l l  was ascertained 
by NMR, employing a shift reagent. H -l l  appears as a nar­
row multiplet, indicating that H -l l  is equatorial. The reac­
tion of the methanesulfonate 16 appears to be about 20 
times slower. o-Nitrobenzenesulfonyloxy (compound 14) 
can be considered to be an excellent leaving group. It leads, 
however, to a complication of aromatic ring substitution: 
formation of the partially characterized compound 19 con­
taining nitro, azide, sulfur, and aromatic ring protons.

With respect to elimination (in hexamethylphosphoram- 
ide) the order is o-nitrobenzenesulfonyl >  3-pyridinesul- 
fonyl >  o-nitrobenzyl o'-(sulfonyl)benzoate »  p-toluene- 
sulfonyl. The elimination of these improved leaving groups 
is not only fast; after 40 min at 85° compound 14 eliminates 
quantitatively. As the result, compound 11 was isolated in 
93% yield and compound 18 in 87% yield.

It is pertinent to note that while in the sterically crowded 
11a position elimination led always to compound 18, azide 
displacement could be complicated by undesired reactions. 
Thus, in analogy with the results of Wu, Anderson, Slife, 
and Jensen,9 which appeared while this work was in prog­
ress, the o-nitrobenzenesulfonate (14) gave elimination, ar­
omatic ring substitution,10 and cleavage to the 1 la-alcohol. 
We overcame this difficulty by selecting the somewhat less

reactive 3-pyridine sulfonate (15) and the o-nitrobenzyl 
o'-(sulfonyl)benzoate derivative (13) that were considered 
less likely to undergo aromatic ring substitution. As expect­
ed, these lead smoothly to the required 11/3-azido deriva­
tive (17).

The reactions discussed may be carried out on various 
intermediates of steroidal hormones and could lead to a 
host of biologically interesting products. The reaction con­
ditions used are mild and compatible with the usually very 
sensitive side chain of corticosteroids, protected as a 21- 
ester, and with the dienone system. These rapid reactions 
lead to displacements at reasonable yields and eliminations 
in very good yields.

Experimental Section

Melting points were determined on a Reichart instrument and 
are not corrected. Infrared spectra were recorded on a Perkin- 
Elmer Model 137 spectrophotometer in methylene chloride solu­
tions. NMR spectra were obtained at 60 or 100 MHz on a Varian 
Model A-60A or on a XL-100-15 spectrophotometer, respectively. 
Mass spectra were recorded on a Varian MAT CH-5 spectrometer.

TLC was run on silica gel GF (Analtech, 250 ^m) and materials 
were detected by uv, sulfuric acid, or phosphomolybdate sprays. 
Column chromatography was performed on silica gel (J. T. Baker, 
60-200 mesh) presaturated with the indicated solvent.

p-(Chlorosulfonyl)benzoyl Chloride. This compound was 
prepared according to ref 5, starting from p-(chlorosulfonyl)ben- 
zoic acid or starting from p-sulfobenzoic acid monopotassium salt 
and using a mixture of phosphoric oxychloride and phosphoric 
pentachloride. The product was crystallized from hexane, mp 58° 
(lit. 58°).

p-Nitrobenzyl p'-(Chlorosulfonyl)benzoate (1). p-(Chloro- 
sulfonyl)benzoyl chloride (2.2 g) and p-nitrobenzyl alcohol (1.28 g) 
were dissolved at room temperature in benzene (60 ml). Triethyl- 
amine (1.28 ml) was then added while the solution was stirred 
under a calcium sulfate seal. Immediate formation of a precipitate 
was observed. After a few minutes, the reaction mixture was dilut­
ed with benzene, washed with dilute hydrochloric acid and water, 
dried over magnesium sulfate, and concentrated. The product 
(2.04 g) crystallized as prisms following the addition of some hex­
ane, mp 123-130°. For analysis it was recrystallized from benzene, 
mp 134°.

Anal. Calcd for CuHmCINOeS-^CeHg (C15H „C1N06S): C, 
48.85; H, 3.00; Cl, 9.61; N, 3.80; S, 8.70. Found: C, 48.31; H, 2.84; 
Cl, 9.32; N, 3.90; S, 8.41.

o-Nitrobenzyl p’-(Chlorosulfonyl)benzoate (2). This com­
pound was prepared in the same manner as compound 1 but using 
o-nitrobenzyl alcohol. After recrystallization from benzene 2.0 g of 
prisms, mp 122°, was obtained.

Anal. Calcd for CuHioClN06S-1JfeC6H6 (C i5H „C1N06S): C, 
48.85; H, 3.00; Cl, 9.61; N, 3.80. Found: C, 48.31; H, 3.42; Cl, 9.54;
N..3.82.

o-Nitrobenzyl o'-(Sulfonyl)benzoate (3). Sulfobenzoic anhy­
dride (18.4 g) and o-nitrobenzyl alcohol (15.3 g) in benzer.e (1000 
ml) were refluxed for 4 hr and then allowed to crystallize at room 
temperature, yield 25.6 g of hygroscopic material, mp 102°, after 
recrystallization from benzene, mp 105-106°.

Anal. Caicd for CuHnNCbS-^HsO: C, 48.55; H, 3.49; N, 4.04; S, 
9.26; H20 , 2.59. Found: C, 48.42; H, 3.73; N, 3.95; S, 9.27; H20  
(Karl Fischer), 2.2.

o-Nitrobenzyl o'-(Chlorosulfonyl)benzoate (4). Compound 3 
(18 g) was mixed with phosphoric pentachloride (42 g), fitted with 
a condenser and a calcium chloride seal (Teflon sleeves), and was 
immersed into a 170° bath for 10 min. The reaction mixture was 
then poured into ice-water (600 ml), extracted with chloroform 
(600 ml), and washed with water. The chloroform solution was 
dried over magnesium sulfate and evaporated, yielding 20.4 g of an 
oil that was crystallized from a mixture of benzene and hexane, mp 
104-105° (12.8 g).

Anal. Calcd for C14H ioC1N06S: C, 47.26; H, 2.83; Cl, 9.97; N, 
3.94; S, 9.01. Found: C, 47.79; H, 2.93; Cl, 10.37; N, 3.85; S, 8.79.

Methyl o-(sulfonyl)benzoate was prepared according to ref 6.
Methyl o-(Chlorosulfonyl)benzoate (5). Methyl o-(sulfon- 

yl)benzoate (10 g) and phosphoric pentachloride (25 g) were treat­
ed as described for the preparation of compound 4, yield 14.4 g of 
oil that failed to crystallize and contained a slow-moving impurity 
(TLC, benzene or chloroform).
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3-Pyridinesulfonyl chloride was prepared according to ref 11.
3a-Sulfonate Derivatives o f 5a-Androstan-3$-ol-17-one 

(Epiandrosterone) and o f 5a-Cholestan-3/S-ol (/S-Cholestanol).
The steroid (2.0 mmol) and the respective sulfonyl chloride (2.25 
mmol) were dissolved in pyridine (6.0 ml) at room temperature; 
the reaction mixture was then left at room temperature overnight. 
A few crystals of ice were added and after 1 hr the reaction mixture 
was extracted with chloroform (350 ml) and washed with dilute hy­
drochloric acid, water, dilute sodium hydroxide, and water. The 
chloroform solution was dried over magnesium sulfate and evapo­
rated.

A. 5a-Androstan-3/J-ol-17-one 3-[(Benzoic acid o-nitroben- 
zyl ester)-2-sulfonate] (6). This material was further purified on 
a column of silica gel (45 g, 1.5 cm in diameter) and eluted with 
chloroform-ethyl acetate (1:20), yield 0.95 g (77%), recrystallized 
from ethyl acetate, mp 146° (microcrystalline, light yellow), [a]26D 
+37.0° (c 0.4, chloroform), Xmax (CHCI3) 246 nm (e 7.2S X 103).

Anal. Calcd for C33H39NO8S: C, 65.01; H, 6.45; N, 2.30. Found: 
C, 65.06; H, 6.51; N, 2.09.

B. 5a-Cholestan-3/3-ol 3-[ (Benzoic acid o-nitrobenzyl ester)-
2-sulfonate] (7). The residue crystallized as elongated yellow nee­
dles, mp 129-131°. It was recrystallized from ethyl acetate, mp 
133-134°, [a]26D + 8.6° (c 0.32, chloroform), yield 580 mg (42%), 
Xmax (CHCI3) 265 nm (e 6.96 X 103).

Anal. Calcd for C4iH57N0 7S: C, 69.55; H, 8.11; N, 1.98. Found: 
C, 69.54; H, 8.50; N, 2.25.

C. 5a-Cholestan-3/3-ol 3-[ (Benzoic acid methyl ester)-2-sul- 
fonate] (8). The oily residue was purified on a silica gel column 
(20 g, 1.5 cm in diameter) using chloroform as the eluent. The 
product emerged as a broad peak starting after the initial 15 ml, 
yield 0.257 g (23%) of yellowish oil, homogeneous by TLC.

D. 5a-Cholestan-3/S-ol 3-[ (Benzoic acid o-nitrobenzyl ester)-
4-sulfonate] (9). The solid residue was recrystallized from ethyl 
acetate-hexane, yielding 0.70 g (57%) of yellowish product, mp
126-127°, [a]26D +8.9° (c 0.34, chloroform).

Anal. Calcd for C41H57NO7S: C, 69.55; H, 8.11; N, 1.98. Found: 
C, 69.61; H, 8.37; N, 2.07.

Comparative Dimethylformamide Reaction, Compounds 7, 
8, 9, and 5a-Cholestan-3/S-ol 3-p-Toluenesulfonate. Each com­
pound (0.014 mmol/ml in dimethylformamide) was kept in a 
closed vial at 95°. Equal volumes (marked capillaries of ca. 3 pi) 
were drawn and (a) applied directly to TLC (chloroform-ethyl ace­
tate, 20:1) and the residual starting material and the products 
(sometimes not well separated) could be observed; (b) an equal 
volume of 0.2 N  NaOMe was added to each capillary and the con­
tent was spotted after 10 min. Following this treatment, the faster 
moving 2,5a-cholestene remained unchanged, and compound 10 
disappeared to yield mostly 5a-cholestan-3a-ol. For compounds 7 
and 9 it was also apparent (unexplained) that the amount of 2-ni- 
trobenzyl alcohol released increased when the dimethylformamide 
reaction proceeded.

The proportion of products was similar for the different sulfo­
nates. A complete reaction for compound 7 required approximate­
ly 1 hr. The order of reactivity was 7 >  8, 9 »  p-toluenesulfonate 
(approximately 5% reaction in 1 hr).

Comparative Elimination, Compounds 7, 9, and 5a-Choles- 
tan-3/S-ol 3-(p-Toluenesulfonate). Solutions were made in hex- 
amethylphosphoramide and handled as described for the dimeth­
ylformamide reaction, section a. 2,5a-Cholestene was formed in 
the three cases. Ninety minutes were required for complete reac­
tion of compound 7, compound 9 eliminated somewhat slower, and 
the p-toluenesulfonate reacted to the extent of not more than 5% 
during the same time.

Reaction o f Compound 8 in Dimethylformamide. Compound 
8 (100 mg) was dissolved in dimethylformamide (0.2 ml) and was 
kept in a closed vial under argon at 85° for 3 hr. The reaction mix­
ture was evaporated in vacuo and applied to a silica gel column 
(6.0 g, 1.0 cm in diameter), eluted with chloroform, 1.0 ml per frac­
tion, and monitored by TLC (chloroform-ethyl acetate, 20:1).

A. Fractions 1-7 contained 32 mg (48%) of 2,5a-cholestene, mp 
72°, giving no depression in mixture melting point with an authen­
tic sample (mp 68-69°). The ir and mass spectrum (M 370) were 
also as required for this compound.

B. Fractions 8-14 contained a solid, mp 64-70°, identified as the 
5a-cholestan-3a- (or 3/3-) ol 3-formate (10) in 14-mg (20%) 
yield. The material had ir absorbances at 1190 (O-R) and 1720 
cm-1 (C = 0 ). The mass spectrum indicated a molecular peak at 
m/e 416 (C28H48O2) and fragmentation that supports the proposed 
structure. When treated with 0.2 N  NaOMe, product 10 was con­
verted to 5a-cholestan-3a-ol and to 5a-cholestan-3/3-ol in a

ratio of 9:1 (TLC). The reaction mixture was extracted with ethyl 
acetate and washed with water and the ethyl acetate solution was 
dried with magnesium sulfate and evaporated. The residue was 
crystallized from ethyl acetate to yield almost pure (TLC) 5a-cho- 
lestan-3a-ol, mp 179°, giving no depression in mixture melting 
point with an authentic sample (mp 183-184°). Ir and the mass 
spectrum were as required.

C. Fractions 22-30 contained ca. 10% of 5a-cholestan-3a-ol and 
5a-cholestan-3/3-oI.

2,5a-Androsten-l 7-one (11). Compound 6 (107 mg) was dis­
solved in hexamethylphosphoramide (0.5 ml) and kept in a closed 
vial under argon for 120 min at 85°. From TLC (chloroform-ethyl 
acetate, 20:1) it was apparent that the starting material was con­
verted to product 11 at least to the extent of 95%. The reaction 
mixture was extracted with chloroform, washed with water, dried 
over magnesium sulfate, evaporated, and applied to a column of 
silica gel (10 g, 1.0 cm in diameter). Fractions of 1.6 ml were 
checked by TLC (as above) and fractions 8 -1 4  contained the pure 
product, yield 44.7 mg (93%), mp 103-104°, [a ]26D +143.2° c 0.38, 
ethanol). The product gave no depression of mixture melting point 
with an authentic sample (mp 103-106°, [a ]D  + 1 3 7 °  in ethanol). Ir 
spectra of the two were superimposable and the product gave the 
required mass spectrum with a molecular peak at m/e 272.

3a-Azido-5a-androstan-17-one (12). Compound 6 (105 mg) 
and sodium azide (700 mg) in hexamethylphosphoramide (5.0 ml) 
were stirred in a closed vial, under argon, at 80° and for 90 min. 
TLC (chloroform-ethyl acetate) indicated the formation of two 
major products: compound 11 and the 3a-azide 12 in a ratio of 1:1. 
The reaction mixture was extracted with ether and washed with 
water. The ether solution was dried and evaporated to yield 42.6 
mg of crude mixture. Product 12 was crystallized from methanol as 
plates, yielding 23 mg (43%), rap 118-120°, [a ]26D +70.7° (c 0.2, 
chloroform) (lit.8a mp 116-117°, [a ]D  +79.8°). The product had a 
strong absorbance at 2100 cm-1 (N3). In the NMR (100 MHz, 
CDCI3) H-3 appears as a narrow (10 Hz) multiplet at r 6.14.

1 la,17a,21-Trihydroxy-16/3-methyl-l,4-pregnadiene-3,20- 
dione ll-[(B enzoic  acid o-nitrobenzyl ester)-2-sulfonate] 21- 
Cathylate (13). 11 «,17a,21 -Trihydroxy-16/3-methyl-l ,4-pregnadi- 
ene-3,20-dione 21-cathylate12 (893 mg) and the sulfonyl chloride 4 
(1.6 g) were dissolved in pyridine (6 ml) and left at room tempera­
ture for 72 hr. A crystal of ice was added to the reaction mixture 
and after 1 hr the pyridine was evaporated in vacuo. The residue 
was extracted into ethyl acetate and washed with saturated sodi­
um hydrogen carbonate solution and with water. The solution was 
dried over magnesium sulfate, evaporated in vacuo, and applied to 
a column of silica gel (35 g, 1.6 cm in diameter). The column was 
eluted with chloroform-ethyl acetate (1:2) and 1.2-ml fractions 
were collected. Fractions 33-53 contained the product (0.4 g) that 
was obtained as an amorphous solid from a mixture of chloroform 
and hexane, mp 101-104°, [a ]26D +32.6° (c 0.17, chloroform).

Anal. Calcd for CagH.taNOoS: N, 1.83. Found: N, 1.87.
I la , 17a, 21 -T rih ydroxy -16/8-methy 1-1,4-pr egnadiene-3,20- 

dione 21-Cathylate ll-(o-N itrobenzenesulfonate) (14). This 
compound was prepared with o-nitrobenzenesulfonyl chloride (0.5 
g) by the procedure used for compound 13. Similar fractionation 
was carried out by the use of 38 g of silica gel and collecting 1.5-ml 
fractions. Fractions 60-81 were pooled and evaporated to yield the 
pure product as needles (0.4 g), mp 101-104° dec. Recrystallization 
from ethyl acetate-hexane yielded the analytical sample, mp 104- 
106° dec, [a ]26D +80.4° (c  0.25, chloroform).

Anal. Calcd for C31H37NO11S: C, 58.94; H, 5.90; N, 2.22; S, 5.08. 
Found: C, 59.38; H, 6.07; N, 2.16; S, 4.75.

II a,17a,21-Trihydroxy-16|8-methyl-l,4-pregnadiene-3,20- 
dione ll-(3-Pyridinesulfonate) 21-Cathylate (15). This com­
pound was prepared like compound 13 but using 470 mg of 3-pyri- 
dinesulfonyl chloride. The product was slower on TLC (chloro­
form-ethyl acetate, 1:2) than the starting material. It was eluted 
from the silica gel column as a wide peak at least partially contam­
inated with the starting material, yield 0.75 g. For analysis, com­
pound 15 was obtained from a center cut and recrystallized from 
chloroform-hexane, mp 103°, [a ]2eD +110.3° (c  0.49, chloroform).

Anal. Calcd for C30H37O9NS: N, 2.38. Found: N, 2.04.
Comparative Azide Substitution. Compounds 13, 14, and 15.

A. The reactivities of compound 13 and of the corresponding 11a- 
methanesulfonate 16 were compared. Each sample (0.013 mmol/ml 
in hexamethylphosphoramide) and sodium azide (100 mg/ml) were 
stirred in a closed vial at ,90° and samples (5 pi 1) were drawn for 
TLC (chloroform-ethyl acetate, 1:2). After 30 min the conversion 
of compound 13 to the 11/3-azido derivative 17 and to the triene 18 
(ratio 6:4) was complete with only minute traces of slower moving
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material. At the same time the conversion of the lla-methanesul- 
fonate 1G to the same products proceeded in ca. 5% yield. Even 
after 240 min approximately 30% of the latter compound remained 
unchanged and the reaction was accompanied by degradation.

B. In an analogous experiment, compound 14 was shown to con­
vert completely to compound 19 and to compound 18 (ratio 6:4) in 
30 min.

C. Compound 15, under similar conditions, reacted very similar­
ly (rate and products) to compound 13. Since compound 15 is slow­
er on chromatography than any of the other sulfonates described 
here, it provided improved separation of the starting material from 
compound 17 and the still faster compound 18.

Comparative Elimination. Compounds 14, 15, and 13. A. 
Compounds 14 and 15 (0.015 mmol/ml in hexylmethylphosphora 
mide) were kept in closed vials at 85°. Samples (5 nl) were applied 
to TLC (chloroform-ethyl acetate, 2:1). After 40 min, compound 
14 was almost completely converted into compound 18 while com­
pound 15 was converted into compound 18 to the extent of ap­
proximately 70%.

B. Under similar conditions, compound 13 eliminated to com 
pound 18 to the extent of approximately 20%.

17a,21-Dihydroxy-16/5-methyl-l,4,9-pregnatriene-3,20-di- 
one 21-Cathylate (18). Compound 14 (211 mg) was dissolved in 
hexamethylphosphoramide (1 ml) in a closed vial and heated in a 
80° bath for 80 min. The total reaction mixture was applied to a 
silica gel column (35 g, 1.6 cm in diameter) and was eluted with 
chloroform-ethyl acetate (2:1). The product (needles), homoge­
neous according to TLC, mp 217-221° dec, emerged after 25 ml 
and was eluted with an additional 40 ml of solvent mixture, yield 
125 mg (87%). The product was shown to be identical with an au­
thentic sample (TLC, ir, mass spectrum).

11/3-Azido-17a,21 -dihydroxy- 16/3-methyl-1,4-pregnadiene-
3.20- dione 21-Cathylate (17). A. Compound 13 (164 mg) and so­
dium azide (200 mg) in hexamethylphosphoramide (1 ml) were 
stirred in a closed vial at 85° (bath temperature) for 3 hr. TLC 
(chloroform-ethyl acetate, 1:2) indicated that compounds 17 and 
18 were formed in a ratio of 7:3 and a minute amount of the 11a- 
hydroxy compound was also formed. The reaction mixture was ex­
tracted with ether, washed with water, and dried over magnesium 
sulfate. Product 17 was then isolated after chromatography on two 
thick (2 mm, 20 X 20 mm) plates and using the same solvent sys­
tem. The yield was 42 mg (41%) of needles, mp 203-205°, after re- 
crystallization from methylene chloride-hexane: mp 209°; ir shows 
absorbances at 1745 and 1760 (C = 0 ), 2120 cm-1 (N3); mass spec­
trum m/e 471 (M), 443 (M — N2), 428 (M — HN3) followed by frag­
mentation similar to compound 18; NMR (100 MHz, CDCI3) r 2.84 
(1 H, d, J  1,2 = 10 Hz, H -l), 3.67 (1 H, q, J 2A = 2 Hz, H-2), 3.96 (1 
H, d, H-4), 5.02 (2 H, d, J  = 1 Hz, H-21), 5.73 (3 H, apparent q, J 
= 7 Hz, OCH2CH3 and H -ll). Eu(fod)3 was added to the sample 
and the following resonances were recorded: r 1.45 (1 H, apparent 
d, broad lines, J  = 10 Hz, H-2), 1.83 (1 H, apparent s, H-4), 2.28 (1 
H, d, J\ 2 = 10 Hz, H -l), 4.92 (2 H, apparent s, H-21), 5.34 (1 H, 15 
Hz wide m, H -lla ), 5.69 (2 H, q, J = 7 Hz, OCH2CH3).

B. Compound 15 (78 mg) was treated as described in section A, 
yield 6.0 mg of the azido derivative (17), mp 208°. It gave no de­
pression of mixture melting point with compound 17 (section A) 
and these materials had identical ir spectra.

11/3-Azido-17a,21-dihydroxy-16/3-methyI-l,4-pregnadiene-
3.20- dione 17a,21-Dibutyrate (20). A. Compound 17 (40 mg) was 
dissolved in a mixture of methanol (2.5 ml) and chloroform (0.5 
ml). Aqueous sodium hydroxide (1 N , 0.09 ml) was added and the 
reaction mixture was kept in an ice bath for 65 min. It was then 
acidified with dilute acetic acid, extracted with ethyl acetate, 
washed with saturated sodium hydrogen carbonate and water, 
dried over magnesium sulfate, and evaporated in vacuo. TLC 
(chloroform-ethyl acetate, 1:2) showed a major slow-moving prod­
uct that was purified on a thick plate (same solvent system): ir 
1660, 1720 (C = 0 ), 2100 cm-1 (N3). The 1760-cm_1 absorbance in 
the starting material had disappeared.

B. The dihydroxy derivative of stage A was esterified according 
to Shapiro et al.13 p-Toluenesulfonic acid (10 mg) was added to the 
sample followed by butyric acid and trifluoroacetic anhydride (1.0 
ml, 10:4). The reaction mixture was allowed to stand overnight at 
room temperature. It was then poured into water, extracted with 
methylene chloride, washed with water, saturated sodium hydro­

gen carbonate, and water, and dried over magnesium sulfate. The 
product, almost pure by TLC, chloroform-ethyl acetate (1:2), was 
purified by using the same system, yield 7.2 mg of oil. The ir spec­
trum contained absorbances at 2100 (N3), 1750 cm-1 (C = 0 , 
broad). Mass spectrum includes m/e 567 (M), 539 (M — N2), 511, 
494, 487, but also m/e 609 (M + N3), 581 (M + N) that might re­
sult from an ion-molecule reaction.

Reaction of Compound 14 with Sodium Azide. Compound 14 
(0.39 g) and sodium azide (400 mg) in hexa­
methylphosphoramide (3 ml) were stirred in a closed vial at 85° 
(bath temperature) for 30 min. TLC (chloroform-ethyl acetate, 
1:2) indicated the formation of the substitution product 19 and the 
faster moving elimination product 18 alongside some lla-iydroxy 
compound (6:3:2). The reaction mixture was extracted with ether, 
washed with water, dried over magnesium sulfate, evaporated, ap­
plied to a column of silica gel (35 g, 1.6 cm in diameter), and eluted 
with chloroform-ethyl acetate, 1:1. Fractions of 2.5 ml were col­
lected. Fractions 36-41 contained product 19 homogeneous accord­
ing to TLC (oil, 57 mg, more in mixed fractions). It was crystallized 
from chloroform-hexane), amorphous, mp 97-101°. Ir includes 
2100 cm-1 (N3) but different from compound 17. The mass spec­
trum includes m/e 519, 501, 471, 428; NMR (100 MHz, CDC13) in­
cludes t 1.8-2.7 (4 H, m, aromatic).

Anal. Calcd for C3iH36N40iiS: N, 8.33; S, 4.76. Found: N, 7.50; 
S, 3.30
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2-Amino-3-alkyl- (or aryl-) 1,4-quinones are shown to react with nitrous acid (sodium nitrite in glacial acetic 
acid) to give 5-diazo-6-alkyl- (or aryl-) 6-hydroxycyclohex-2-ene-l,4-diones 2. Analogous reactions are observed 
for the related vinylogous amides, 4-amino-2,5-di-feri-butyl-2-cyano-4-cyclopentene-l,3-dione (7) and 2,5H-3- 
amino-4-methyl-6,7-benzoazepine-2,5-dione (9). The chemistry of the cyclic diazo compounds is discussed, and of 
particular interest are the thermal rearrangements of 2a, 2b, and 4 to the corresponding ring-contracted 4-cyclo- 
pentene-l,3-diones, 24, 25, and 27, respectively. Also discussed is the thermal rearrangement of 4-acetyl-3-diazo-
4-hydroxycarbostyril (12) to 3-acetyl-4-hydroxycarbostyril (26), the reductive cyclization of 12 to 3H,5H-l-meth- 
ylpyrazolo[3,4-c]quinolin(4H)-one (19), and the acid-catalyzed conversion of 12 to 4H,6H(lH,5//)-dioxo-3,4-diaz- 
ino[3,4-c]quinoline (30).

A vast methodology exists in the iiterature for the syn­
thesis of aminoquinones. In fact, during the past 35 years 
alone well over 150 substituted primary amino-1,4-qui- 
nones have been reported. However, there is a paucity of 
information regarding the chemistry of these compounds. 
Our interest in the utility of quinones in organic synthesis1 
along with the plethora of such readily available starting 
materials2 and the rich chemistry of the amino group3 has 
stimulated an investigation of aminoquinones as potential­
ly useful reagents. Reported here is a study of the reactions 
of selected 2-amino-1,4-quinones and certain related cyclic 
vinylogous amides with nitrous acid, a reaction resulting in 
the formation of cyclic a-diazo ketones. Also described is 
the pyrolytic ring contraction of such compounds. Of par­
ticular interest is the thermal rearrangement of the diazo 
ketones 2 to 2-acyl-4-cyclopentene-l,3-diones, a ring sys­
tem found in a number of natural products.4

Synthetic Scope. Treatment of the aminoquinones la-d 
with sodium nitrite in glacial acetic acid results in a rapid, 
exothermic reaction and gives fair to excellent yields of the 
corresponding diazo ketones 2a-d. 2-Amino-3,6-di-terf- 
butyl-l,4-benzoquinone (3), having a bulky substituent ad­
jacent to the amino group, behaves anomalously in that the 
acetoxy derivative 4 was obtained in 92% yield. The de­
tailed scope of this reaction of aminoquinones has not been 
studied in detail. However, we have observed that 2-amino- 
1,4-quinones which are unsubstituted at the 3 position give 
complex reaction mixtures and that 2-amino-6-anilino-3- 
carbomethoxy-l,4-benzoquinone, a compound having a 
very nonnucleophilic amino group, fails to react. In addi­
tion, Mosby and Silva5 found that 2-amino-3-chloro-l,4- 
naphthoquinone (5a) gave the diazo oxide 6 when treated 
with sodium nitrite in sulfuric acid. We have observed the 
same product when 2-amino-3-chloro- (5a), 2-amino-3- 
methoxy- (5b), 2-amino-3-azido- (5c), and 2-amino-3-thio- 
phenyl-1,4-naphthoquinone (5d) are diazotized as de­
scribed here.

To further probe the utility of these diazotization reac­
tions, the scope was widened to include some nonquinoid 
cyclic 2-aminoenediones. Treatment of 4-amino-2,5-di- 
terf-butyl-2-cyano-4-cyclopentene-l,3-dione (7) with sodi­
um nitrite in glacial acetic acid gave a 62% yield of the ace- 
toxydiazo derivative 8. A more interesting transformation 
was observed when 3-amino-2,5//-4-methyl-6,7-benzoaze- 
pine-2,5-dione (9) was subjected to the above reaction con­
ditions. Here, rather than the seven-membered cyclic diazo 
compound 10, the ring-contracted quinoline 12 was isolat­
ed. However, a dichloromethane extract of the reaction 
mixture showed (*H NMR) two products in a ratio of 3:2 as 
evidenced by methyl absorptions at & 1.52 and i5 2.20, re-

a
b
c
d

R,
ch3

R,
-C H =C H C H =C H -

r3 Yield % 
91

CI I, H CH;j 81
CH, n 3 ch3 92
c6h . H c6h5 36

5 6

R Yield %
a Cl 82
b OCH, 85
c n 3 65
d sc6h5 61

spectively, and the minor product was the quinoline 12. 
The major product is assumed to be the azepine 10 which 
rearranges to 12 via the ring-opened intermediate 11. Such 
a transformation was easily induced when the above di­
chloromethane solution was treated with 3% methanolic 
potassium hydroxide. This resulted in the disappearance of 
the 5 1.52 absorption and the 5 2.20 peak increased in in­
tensity. It was possible to interrupt the diazotization of 9 at 
the azepine stage when the reaction was carried out in 1:1 
acetic acid-methanol. Here, the methoxy adduct 13 was 
isolated in 90% yield. (See Scheme I).

M ech an ism . The products observed from the diazotiza­
tion reactions described here are consistent with a mecha­
nism (Scheme II) in which the vinylogous amide is initially 
converted to a diazonium salt 15 which then suffers nucleo-
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Scheme I
O

thoquinone (la) and 2-amino-3,6-di-teri-butyl-1,4-benzo- 
quinone (3), respectively, when subjected to hydrogenation 
conditions. This reductive cleavage of the diazo nitrogen- 
nitrogen bond appears to be rare but not unprecedented; 
Birkofer7 reported that «-diazoacetophenone gives «-ami- 
noacetophenone when subjected to hydrogenation under 
slightly acidic condition in the presence of Pd/C. Hydroge­
nation of the diazoquinoline derivative 12 also resulted in 
the reduction of the diazo nitrogen linkage. In this case, 19 
was obtained in >90% yield and is envisaged as arising 
from an intermediate hydrazine derivative which suffers 
intramolecular condensation.

O

H,

Pd/C

(CH3)3C

Scheme II

0

òcch3

0

0

R

OCOCH3
16

Wenkert and McPherson6 have shown that acyclic a- 
diazo-/3-hydroxy ketones and esters thermally rearrange 
with carbon or hydrogen migration as illustrated below. In

OH
0

-CCO,C,Hs

N2
20

co3c2h5

21

0  0
II

—c h 2— coch3

23

philic attack by solvent (CH3CO2H) to give the acetoxy de­
rivative 16. For those compounds having a relatively small 
substituent adjacent to the diazo linkage (2a-d, 9), hydrol­
ysis of the acetoxy group during the aqueous work-up 
would result in the observed /S-hydroxydiazo compounds. 
Steric retardation of such hydrolysis by the bulky tert- 
butyl groups in 4 and 8 would account for the interception 
of these esters. For those compounds having a potential 
leaving group (R =  Cl, OCH3, N 3, SC6H 5) adjacent to the 
diazo linkage, hydrolysis and subsequent elimination would 
give the diazo oxide 18.

Chemistry. Wenkert and McPherson6 have shown that 
catalytic hydrogenation (Pd/C) of acyclic «-diazo-d-hy- 
droxycarbonyl compounds gives the corresponding (t-hy- 
droxycarbonyl compounds. Therefore, an analogous trans­
formation was anticipated for 2a and 4. However, these 
compounds were converted to 2-amino-3-methyl-l,4-naph-

analogy to these rearrangements it was found that 2a and 
2b thermally rearranged in refluxing chlorobenzene with 
acyl migration to give 2-acetyl-l,3-indandione8 (24, 97%) 
and 2-acetyl-4-methyl-4-cyclopentene-l,3-dione (25, 86%), 
respectively. Also, 12 gave a 28% yield of 3-acetyl-4-hy- 
droxycarbostyril (26)9 and 4 gave a 90% yield of 27 when 
subjected to the thermolysis conditions.

The acid-catalyzed decomposition of two of the diazo 
compounds described here was also studied. Decomposi­
tion of 2a in cold (5°) concentrated sulfuric acid gave the 
same product, i.e., 24, that resulted from its thermolysis. 
An entirely different transformation was observed for the 
acid-catalyzed decomposition of 12. Here, a fascinating ring 
closure to 30 took place in nearly quantitative yield. This 
product is viewed as arising from the diazonium salt 28 
which electrophilically attacks the enol double bond. Such 
a ring closure to a diazine is well documented in that one of
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29 30
the standard synthetic routes to the cinnoline nucleus in­
volves the intramolecular cyclization of an aryldiazonium 
salt which contains a reactive unsaturated ortho substitu­
ent.10,11

Experimental Section
2-D iazo-3-hydroxy-3-m ethylbenzocyclohexane-l,4-dione

(2a). To a solution of 1.0 g (5 mmol) of 2-amino-3-methyl-l,4- 
naphthoquinone (la) in 50 ml of glacial acetic acid was added 0.5 g 
(12 mmol) of sodium nitrite. After stirring for approximately 5 min 
at ambient temperature the solution turned yellow and was then 
diluted with 200 ml of water and extracted three times with dichlo- 
romethane. The combined organic extract was washed twice with 
5% sodium bicarbonate and dried (MgS04). The solvent was re­
moved in vacuo (25°) to give 1.0 g (91%) of the yellow, crystalline 
diazo compound 2a: mp 106-107° (from pentane-ether); ir (Nujol) 
3300, 2110, 1705, 1660, 1620 cm“ 1; 'H  NMR (CDC13) & 1.65 s (3),
4.32 b r (l) , 7.65-8.25 m (4).

Anal. Calcd for CnH8N20 3: C, 61.11; H, 3.70; N, 12.96. Found: 
C, 60.99; H, 3.64; N, 12.89.

6-D iazo-5-hydroxy-2,5-dim ethylcyelohex-2-ene-1,4-dione 
(2b). To a solution of 0.5 g (3.3 mmol) o f 2-amino-3,6-dimethyl-
1,4-benzoquinone (lb) in 20 ml of glacial acetic acid was added 0.3 
g (4.3 mmol) of sodium nitrite. The initially purple solution turned 
yellow after approximately 5 min and was then diluted with 200 ml 
of an aqueous saturated sodium chloride solution and extracted 
four times with dichloromethane. The combined organic extract

was washed twice with 5% sodium bicarbonate and dried (M gS04), 
and the solvent was removed in vacuo (25°) to give a yellow-orange 
oil. Trituration of this oil with cold pentane-ether gave 0.48 g 
(81%) of the yellow, crystalline diazo compound 2b:anp 79-80° dec 
(pentane-ether); ir (Nujol) 3450, 2100, 1675, 1640, 1610 cm "1; 'H  
NMR (CDCI3) 1.62 s (3), 2.11 d (3) J = 2 Hz, 3.91 br (1), 6.60 q (1) 
J = 2 Hz.

Anal. Calcd for C8H8N20 3: C, 53.33; H, 4.44; N, 15.56. Found: C, 
53.43; H, 4.41; N, 15.39.

3- Azido-6-diazo-5-hydroxy-2,5-dim ethylcyclohex-2-ene-
1.4- dione (2c). Treatment of 2-amino-5-azido-3,6-dimethyl-l,4- 
benzoquinone (lc , 0.5 g, 2.6 mmol) with sodium nitrite (0.24 g, 3 
mmol) was carried out as described above for lb  to give 0.54 g 
(92%) of the diazo compound 2c as a golden, crystalline solid: mp
107- 109° dec (pentane-ether); ir (Nujol) 3200, 2120, 1690, 1585 
cm“ 1; 'H  NMR (CDCI3) 1.68 s (3), 2.03 s (3), 3.52 br (1).

Anal. Calcd for C8H7N503: C, 43.44; H, 3.17; N, 31.67. Found: C, 
43.55; H, 3.09; N, 31.57.

6-D iazo-5-hydroxy-2 ,5-diphenylcyclohex-2-ene-l,4 -dione 
(2d). To a solution of 1.0 g (3.6 mmol) o f 2-amino-3,6-diphenyl-
1.4- benzoquinone (Id) in 50 ml of glacial acetic acid was added
0.48 g (7.2 mmol) of sodium nitrite. After stirring at ambient tem­
perature for 15 min the initially purple solution turned yellow and 
the solution was diluted with 200 ml of water and extracted three 
times with diethyl ether. The combined organic extract was 
washed twice with 5% sodium bicarbonate and dried (MgS04) and 
the solvent was removed in vacuo (25°). The resulting orange oil 
was chromatographed on silica gel using 1:1 benzene-chloroform 
as the eluent to give 0.40 g (36%) of the diazo compound 2d: mp
108- 109° dec; ir (Nujol) 3400, 2100, 1700, 1625, 1600 cm“ 1; >H 
NMR (CDCI3) & 4.65 br (1), 6.77 s (1), 7.25-7.70 m (10).

Anal. Calcd for Cr8H]2N203: C, 71.05; H, 3.95; N, 9.21. Found: C, 
71.07; H, 3.93; N, 9.25.

5-Acetoxy-6-diazo-2,5-di(l,l-dim ethylethyl)cyclohex-2- 
ene-l,4-dione (4). A solution of 1.0 g (4.2 mmol) of 2-amino-3,6- 
di-iert-butyl-l,4-benzoquinone (3) in 75 ml of glacial acetic acid 
was treated with 0.44 g (6.3 mmol) of sodium nitrite at ambient 
temperature. After 15 min the reaction solution was diluted with 
200 ml of water and extracted with three portions of dichlorometh­
ane. After drying (MgS04) the solvent was removed and the prod­
uct recrystallized from methanol to give 1.3 g (92%) of the yellow 
diazo compound 4: mp 83-84°; ir (Nujol) 2100, 1745, 1680, 1630, 
1600 cm -1; ]H NMR (CDCI3) 5 1.03 s (9), 1.32 s (9), 2.14 s (3), 6.59 
s (1).

Anal. Calcd for C16H22N20 4: C, 62.72; H, 7.24, N, 9.15. Found: C, 
62.55; H, 7.28; N, 8.93.

2-Diazobenzocyclohexane-l,3,4-trione (6). Treatment of ace­
tic acid solutions of 2-amino-3-chloro- (5a),5 2-amino-3-methoxy- 
(5b),5 2-amino-3-azido- (5c),5 and 2-amino-3-thiophenyl-l,4- 
naphthoquinone (5d) with a twofold molar excess of sodium nitrite 
gave the diazo oxide 6 in yields ranging from 61 to 85%. The prod­
uct showed spectral and physical properties that were identical 
with those reported by Mosby and Silva.5

4- D iazo-5-acetoxy-2-eyano-2,5-di(l,l-dim ethyIethyl)cyclo- 
pentene-l,3-dione (8). A solution of 1.0 g (4.4 mmol) of 4-amino-
2-cyano-2,5-di-ierf-butyl-4-cyclopentene-l,3-dione (7) and 1.5 g of 
sodium nitrite in 70 ml of glacial acetic acid was stirred at ambient 
temperature for 12 hr. The solution was then diluted with 200 ml 
of water and extracted three times with dichloromethane. After 
drying, the solvent was removed in vacuo (25°) and the resulting 
yellow oil was crystallized from pentane-ether to give 0.87 g (62%) 
of the diazo compound 8: mp 99-101°; ir (Nujol) 2220, 2120, 1760, 
1725, 1675 cm“ 1; 'H NMR (CDCI3) 6 1.18 s (9), 1.23 s (9), 2.15 s
(3).

Anal. Calcd for Ci6H21N30 4: C, 60.19; H, 6.58; N, 13.17. Found: 
C, 60.25; H, 6.60, N, 13.36.

2,5-Di(l,l-dim ethylethyl)-2-cyano-4-am ino-4-cyclopen- 
tene-l,3-dione (7). A solution of 1 g (4.2 mmol) of 2,5-di-ieri- 
butyl-3,6-diamino-l,4-benzoquinone and 3.72 g (8.4 mmol) of lead 
tetraacetate in 50 ml of chloroform was stirred at ambient temper­
atures for 5 min and then 5 ml of ethylene glycol was added. The 
reaction solution was then washed three times with water and 
dried (MgS04) and the solvent was removed in vacuo. The result­
ing residue was recrystallized from hexane to give 0.7 g (71%) of 7: 
mp 82-84°; ir (Nujol) 3450, 3330, 2250, 1760, 1680 cm“ 1; >H NMR 
(CDCI3) <5 1.13 s (9), 1.40 s (9), 5.55 br (2).

Anal. Calcd for Ci4H20N2O2: C, 67.74; H, 8.06; N, 11.29. Found: 
C, 67.84; H, 8.12, N, 11.18.

2,5ff-3-Azido-4-methyl-6,7-benzoazepine-2,5-dione. To a so­
lution of 1.87 g (10 mmol) of 2,5T/-4-methyl-6,7-benzoazepine-2,5-
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dionel:! and 2.6 g (40 mmol) of sodium azide in 35 ml of dimethyl- 
formamide was added 5.08 g (20 mmol) of iodine and the resulting 
reaction mixture was stirred at ambient temperature. The course 
of the reaction was followed by ir spectroscopy and the mixture 
was worked up after all of the starting azepine had been consumed 
(~16 hr). Water was then added and the resulting white precipi­
tate was collected and washed with methanol to give 1.67 g (73%) 
of 2,5H,-3-azido-4-methyl-6,7-benzoazepine-2,5-dione, mp 161° 
dec. The analytical sample was obtained by recrystallization (30°) 
from dimethyl sulfoxide-methanol: ir (Nujol) 3125, 3005, 2130, 
1650, 1585,1315 cm "1; >H NMR (Me2SO-d6) & 2.05 s (3), 7.00-7.70 
m (4), 11.32 br (1) exchanges with D20 ; mass spectrum (70 eV) m/e 
(rel abundance) 200 (40.9), 119 (100), 117 (27.8), 92 (53.6), 64 
(39.0).

Anal. Calcd for CiiH8N40 2: C, 57.89; H, 3.51; N, 24.56. Found: 
C, 57.86; H, 3.53; N, 24.56.

2,5i/-3-Amino-4-methyl-6,7-benzoazepine-2,5-dione (9). A
suspension of 2.28 g (10 mmol) of 2,5H-3-azido-4-methyl-6,7-ben- 
zoazepine-2,5-dione and 50 mg of platinum oxide in 100 ml of 95% 
ethanol was treated with hydrogen at 50 psi for 9 hr. The catalyst 
and solvent were then removed to give 2.0 g (99%) of the amine 9: 
mp 241-243° (95% ethanol); ir (Nujol) 3380, 3270, 3060, 1680, 1595 
cm-1; *H NMR (Me2SO-d6) « 2.17 s (3), 6.67 br (2), 7.67-7.10 m
(3), 8.23-7.98 m (1), 11.50 br (1).

Anal. Calcd for Cn Hi0N2O2: C, 65.34; H, 4.95, N, 13.86. Found: 
C, 65.49; H, 4.97; N, 13.89.

4-Acetyl-3-diazo-4-hydroxycarbostyril (12). To a stirred so­
lution of 1.04 g (15 mmol) of sodium nitrite in 20 ml of water was 
added a suspension of 2.02 g (10 mmol) of 2,5//-3-amino-4-methyl-
6,7-benzoazepine-2,5-dione (9) in 60 ml of acetic acid. After 15 min 
the reaction solution was diluted with 200 ml of water and extract­
ed with 200 ml of dichloromethane. The organic extract was 
washed with water and saturated sodium bicarbonate and then 
dried over anhydrous sodium sulfate. The dichloromethane extract 
was analyzed by 'H NMR, which showed two methyl absorptions 
in a ratio of 3:2 coming at b 1.52 and 2.20, respectively. The former 
absorption is assigned to the methyl group in the azepine 10 and 
the latter to the carbostyril 12. The dichloromethane solution was 
then treated with 20 drops of 3% methanolic potassium hydroxide. 
The solvent was then removed by rotoevaporation at ambient tem­
perature. The resulting residue (2.3 g) was analyzed by 'H NMR 
(CH2C12) which showed only the b 2.20 absorption in the methyl 
region of the spectrum. The crude product was recrystallized from 
benzene to give 1.02 g of pure 12: mp 171° dec; ir (Nujol) 3380, 
3100, 2105, 1720, 1675, 1605 cm "1; JH NMR (CDC13) b 2.22 s (3), 
5.40 s (1), 7.78-6.90 m (4), 9.93 br (1).

Anal. Calcd for C11H9N3O3: C, 57.14; H, 3.90; N, 18.18. Found: 
C, 57.16; H, 4.02; N, 18.07.

2,3,4,5H-3-Diazo-4-m ethoxy-4-m ethyl-6,7-benzoazepine-
2,5-dione (13). A solution of 0.57 g (2.5 mmol) of 2,5//-3-amino-4- 
methyl-6,7-oenzazepine-2,5-dione (9) in 40 ml of anhydrous meth­
anol and 40 ml of glacial acetic acid (35°) was treated with 3.5 g of 
sodium nitrite in 0.5-g portions over a period of 4 hr. The reaction 
mixture was then diluted with 100 ml of water and extracted four 
times with 15-ml portions of dichloromethane. The combined or­
ganic extract was then washed twice with saturated aqueous sodi­
um bicarbonate and dried (Na2S 04) and the solvent was removed 
in vacuo (40°). The resulting residue (0.70 g) was shown by 1H 
NMR analysis to be composed of approximately 90% of 13, 3% of 
the starting amine, and several unidentified minor products. It was 
then subjected to column chromatography on silica gel using ethyl 
acetate-petroleum ether (1:1) to give 13 as a yellow, crystalline 
solid: mp 133° dec; ir (Nujol) 3250, 3150, 2990, 2090, 1690, 1640, 
1610, 1580 cm -'; 4H NMR (CDCI3), 1.67 s (3), 3.17 s (3), 6.93-7.87 
m 4), 9.40 br (1) exchanges with D20.

Anal. Calcd for C12H „N 303: C, 58.78; H, 4.49; N, 17.14. Found: 
C, 58.84; H, 4.55; N, 16.70.

Catalytic Reduction o f 2-Diazo-3-hydroxy-3-methylbenzo- 
cyclohexane-l,4-dione (2a). A suspension of 1.0 g (4.8 mmol) of 
2a and 0.5 g of 10% palladium on charcoal was subjected to 40 psi 
of hydrogen for 1.5 hr. After removal of the catalyst and solvent 
the residue was chromatographed on silica gel using chloroform as 
the eluent to give 0.4 g (47%) of 2-amino-3-methyl-l,4-naphthoqui­
none (la) which was identical with an authentic sample.

Catalytic Reduction o f 5-Acetoxy-6-diazo-2,5-di-tert- 
butylcyclohex-2-ene-1,4-dione (4). Catalytic reduction of 4 (0.5 
g, 1.6 mmol) using 10% palladium on charcoal (0.2 g) in 30 ml of 
methanol fcr 1 hr gave a quantitative yield of 2-amino-3,6-di-ieri- 
butyl-l,4-benzoquinone (3) which was identical with an authentic 
sample.

3//,5ff-l-M ethylpyrazolo[3,4-c]quinolin-(4 JT)-one (19). A
suspension of 1.25 g (5.4 mmol) of 4-acetoxy-3-diazo-4-hydroxy- 
carbostyril (12) and approximately 10 mg of platinum oxide in 25 
ml of 95% ethanol was treated with hydrogen at 35 psi for 5 hr. Fil­
tration and removal of the solvent in vacuo gave 1.0 g (93%) of 19, 
mp 330-340°. This product was recrystallized from 95% ethanol to 
give the analytical sample: mp 356-358, sinter 345°; ir (Nujol) 
3080, 1690, 1630 cm "1; 'H  NMR (Me2SO-d6) 2.68 s (3), 7.58-7.15 
m (3), 8.10-7.80 m (1), 11.73 br (1) exchanges with D20, 14.05 br
(1) exchanges with D20; mass spectrum (70 eV) m/e (rel abun­
dance) 200 (15.4), 199 (100), 170 (14.6), 130 (12.8), 115 (12.2), 103 
(25.2), 76 (11.3).

Anal. Calcd for C11H9N3O: C, 66.33; H, 4.52; N, 21.11. Found: C, 
66.61; H, 4.72; N, 21.00.

2-Acetyl-l,3-indandione (24). A solution of 0.50 g (2.5 mmol) 
of 2-diazo-3-hydroxy-3-methylbenzocyclohexane-l,4-dione (2a) in 
50 ml of dioxane was refluxed for 2 hr. Evaporation of the solvent 
in vacuo and recrystallization of the residue from methanol gave 
0.42 g (97%) of 24: mp 109-110 (lit.8 mp 110-112°): ir (Nujol) 1720, 
1700, 1660 cm-1; ]H NMR (CDC13) 6 2.52 s (3), 7.75 m (4), 10.92 br 
(1).

2- Acetyl-4-m ethyl-4-cycIopentene-l,3-dione (25). The title 
compound was prepared as described above for 24 except benzene 
was used as the solvent, i.e., 0.270 g (1.54 mmol) of 2b give 0.20 g 
(86%) of 25: mp 53-55° (methanol); ir (Nujol) 1710, 1670, 1640 
cm "1; >H NMR (CDCI3) b 2.05 d (3), J  = 1.5 Hz, 2.35 s (3), 6.51 q
(1), J = 1.5 Hz, 11.51 br (1).

Anal. Calcd for CgHgC :̂ C, 63.16; H, 5.26. Found: C, 63.05; H, 
5.32.

Acid-Catalyzed Rearrangement o f  2-Diazo-3-hydroxy-3- 
methylbenzocyclohexane-l,4-dione (2a). To vigorously stirred, 
cold (5°) concentrated sulfuric acid was slowly added (20 min) 0.25 
g (1.2 mmol) of 2a. After gas evolution had ceased, the reaction 
mixture was diluted with ice water and the resulting precipitate 
was collected and dried to give 80 mg (38%) of 2-acetyl-l,3-indan- 
dione which was shown to be identical with an authentic sample.8

3- Acetyl-4-hydroxycarbostyril (26). A solution of 13.5 mg 
(0.05 mmol) of 12 in 5 ml of anhydrous benzene was refluxed for 72 
hr. Upon cooling 3.5 mg of 26, mp 254-257° (lit.9 mp 258-259°), 
precipitated. This product was shown to be identical with an au­
thentic sample of 3-acetyl-4-hydroxycarbostyril which was kindly 
supplied by Calvin M. Foltz.9 This same compound was obtained 
in 74% yield when 50 mg of 2,3,4,5-tetrahydro-3-diazo-4-methyl-
4-methoxy-6,7-benzoazepine-2,5-dione (13) was decomposed in 5 
ml of refluxing chlorobenzene. After 10 min at the reflux tempera­
ture the solution was cooled to 80-100° and a few drops of water 
were added. The solvent was then removed and the residue was 
subjected to dry column chromatography over silica gel using 
methanol as the eluent to give 31 mg (74%) of 26.

2-( 1 -Acetoxy-2,2-dimethylpropylidine)-4-(2,2-dimethyl- 
ethyl)-4-cyclopentene-l,3-dione (27). A solution of 1 g (3.75 
mmol) of 5-acetoxy-6-diazo-2,5-di(l,l-dimethylethyl)cyclohex-2- 
ene-l,4-dione (4) in 25 ml of chlorobenzene was refluxed for 2 hr 
and the solvent was removed in vacuo. The resulting yellow solid 
was recrystallized from heptane to give 0.83 g (90%) of 27: mp 61- 
62°; ir (Nujol) 1815, 1750, 1710, 1625 cm“ 1; ‘ H NMR (CDC1:1) b
1.25 s (18), 2.46 s (3), 5.16 s (1).

Anal. Calcd for CieH220 4: C, 69.04; H, 7.97. Found: C, 69.16; H,
8.09.

4H ,6H (lfi,5ii)-D ioxo-3,4-diazino[3,4-c]quinoline (30). Con­
centrated sulfuric acid (5 ml, 0.5°) was vigorously stirred while 
0.231 g (1.0 mmol) of l,2,3,4-tetrahydro-4-acetyl-3-diazo-4-hy- 
droxy-2-oxoquinoline (12) was added over a period of 20 min. Dur­
ing the course of this addition, the temperature of the reaction so­
lution raised to 30°. Thirty minutes after the addition was com­
plete, the reaction solution was poured onto 20 ml of crushed ice. 
The resulting precipitate was collected to give 0.22 g of 29 as a 
light yellow solid, mp 430° dec, which was recrystallized from di- 
methylformamide to give the pure product as white microcrystals: 
mp 430° dec; ir (Nujol) 3160, 1675, 1580, 1570, 1545 cm -'; >H 
NMR (Me2SO-dG) b 7.57-7.17 m (3), 8.00 s (1), 9.60-9.37 m (1), 
12.77 br (1), 14.20 br (1); mass spectrum m/e (rel abundance) 213 
(100), 186 (14.6) 158 (12.5), 103 (15.6).

Anal. Calcd for CnH7N30 2: C, 61.97; H, 3.31; N, 19.71 Found: 
C, 61.91; H, 3.33; N, 19.63.

2-Amino-3-thiophenyl-1,4-naphthoquinone (5d). To a stirred 
solution of 1.0 g (5.0 mmol) of 2-azido-l,4-naphthoquinone14 in 70 
ml of absolute ethanol was added 0.83 g (7.5 mmol) of thiophenol 
in one portion; gas evolution was observed and the reaction solu­
tion gradually turned from yellow-orange to red. After 12 hr the re­
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suiting precipitate was collected to give 1.15 g (82%) of the quinone 
5d: mp 164-166° (lit.15 mp 172°); ir (Nujol) 3475, 3275, 1685, 1590 
cm“ 1; 'H  NMR (CDC13) 6.05 br (2), 7.25 br (5), 7.62-8.33 m (4).

2-Amino-5-azido-3,6-dimethyl-1,4-benzoquinone (lc ). A so­
lution of 1.1 g (5.0 mmol) of 2,5-diazido-3,6-dimethyl-l,4-benzo- 
quinone14 in 200 ml of ether was treated with 100 ml of a saturated 
aqueous solution of sodium dithionite, and the mixture was vigor­
ously stirred for 60 min under an atmosphere of nitrogen. The or­
ganic layer was washed several times with water and dried and the 
solvent was then removed in vacuo (25°). The resulting 2,5-dia- 
zido-3,6-dimethylhydroquinone was dissolved in 75 ml of acetone 
and small amount of sodium azide was added. This caused the 
rapid disproportionation16 of the hydroquinone and gave the crude 
product, lc , after approximately 1 hr. Chromotography of this 
crude product on 100 g of silica gel using.chloroform as the eluent 
gave 0.72 g (74%) of lc , which turns from purple to white at 132- 
134° with gas evolution and the white solid then melts at 150- 
151°: ir (Nujol) 3310, 3220, 2100, 1630, 1590 cm "1; ]H NMR 
(CDC13) 1.84 s (3), 1.89 s (3), 5.00 br (2).

Anal. Calcd for C8H8N40 2: C, 50.00; H, 4.17; N, 29.17. Found: C, 
49.83; H, 4.29; N, 28.93.

2-Amino-3-methyI-l,4-naphthoquinone (2a), 2-Amino-3,6- 
dimethyl- (2b), 2-Amino-3,6-diphenyl- (2d), 2-Amino-3,6- 
di(l,l-dim ethylethyl)- (3) and 2,5-Diamino-3,6-di(l,l-dimeth- 
ylethyl)-1,4-benzoquinone. The above aminoquinones were pre­
pared in good yields (>75%) by catalytic reduction (Pt02, 30-40 
psi) of ethanolic solutions of the respective azidoquinones.12'14'17

2-Amino-3-methyl-l,4-naphthoquinone (la), mp 164-165° (lit.18 
mp 162-163°).

2-Amino-3,6-dimethyl-l,4-benzoquinone (lb): mp 194-196°; ir 
(Nujol) 3420, 3300, 1640,1600 c m '1; 'H  NMR (CDCI3) 5 1.82 s (3), 
1.98 d (3), J = 2 Hz, 4.79 br (2), 6.42 q (1), J = 2 Hz.

Anal. Calcd for C8HgN02: C, 63.57; H, 5.96; N, 9.27. Found: C, 
63.71; H, 6.17; N, 9.12.

2-Amino-3,6-diphenyl-l,4-benzoquinone (Id): mp 244-246°; ir 
(Nujol) 3410, 3250, 1630, 1560 cm -1; 'H NMR (Me2SO-d6) S 6.14 
br (2), 6.65 s (1), 7.15-7.52 m (10).

Anal. Calcd for CI8H13N 02: C, 78.54; H, 4.72; N, 5.09. Found: C, 
78.39; H, 4.71; N, 4.92.

2-Amino-3,6-di(l,l-dimethylethyl)-l,4-benzoquinone (3): mp
111-113°; ir (Nujol) 3450, 3320, 1675, 1600 cm "1; >H NMR 
(CDClg) S 1.22 s (9), 1.38 s (9), 5.49 br (2), 6.44 s (1).

Anal. Calcd for C14H2iN 02: C, 71.49; H, 8.94; N, 5.96. Found: C, 
71.37; H, 9.10; N, 5.73.

2,5-Diamino-3,6-di(l,l-dimethylethyl)-l,4-benzoquinone: mp
192-193°; ir (Nujol) 3440, 3320, 1540 cm-1; >H NMR (CDC13) 6
1.34.

Anal. Calcd for Ci4H22N202: C, 67.20; H, 8.80; N, 11.20. Found: 
C, 67.15; H, 8.94; N, 11.12.

Acknowledgment. The authors gratefully acknowledge 
the financial support of the National Science Foundation 
(GP43712X) and the National Institutes of Health (CA 
11890).

Registry No.— la, 7427-09-0; lb, 31679-93-3; lc , 26351-46-2; 
Id, 56908-60-2; 2a, 56908-61-3; 2b, 56908-62-4; 2c, 56908-63-5; 2d, 
56908-64-6; 3, 35612-59-0; 4, 56908-65-7; 5d, 56908-66 8; 7, 56908- 
67-9; 8, 56908-68-0; 9, 56908-69-1; 12, 56908-70-4; 13, 56908-71-5; 
19, 56908-72-6; 24, 1133-72-8; 25, 4056-72-8; 26, 26138-64-7; 27, 
56908-73-7; 30, 56908-74-8; 2,5-di-teri-butyl-3,6-diamino-l,4-ben- 
zoquinone, 56908 75-9; 2,5H-3-azido-4-methyl-6,7-benzoazepine-
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Oxidation of Schiff bases formed by the reaction of chiral (fi)-(+)-a-phenylethylamine and carbonyl compound 
using m-chloroperbenzoic acid gives rise to the formation of nonracemic diastereomeric 3,3-disubstituted oxaziri­
dines in a high optical yield. Oxidation of (£)-(R)-(-)-N-benzylidene-a-phenylethylamine yields a mixture of all 
four possible nonracemic diastereomers with predominance of E products.

The relatively small group of oxaziridines, containing the 
stable chiral N atom, is characterized by a high energy bar­
rier for inversion, thus permitting the separation of enan­
tiomers.1“6

Until now, optically active oxaziridines have been ob­
tained by the oxidation of imines, using optically active pe- 
roxy acids.2,3 Depending upon the substrate used, mixtures 
of compounds obtained represented nonracemic diastereo­
mers or enantiomers with the presence of a small excess of 
one of them.2’3 Such mixtures were usually separated by

physical methods; in the case of a mixture of enantiomers, 
multiple recrystallizations afforded compounds which did 
not show a marked change of optical rotation after further 
recrystallizations.4’6

Two alternative mechanisms of imine oxidation have 
been postulated: (a) olefin type epoxidation (one step) in­
volving nucleophilic reaction of 7r electrons of the C = N  
bond,7’8 (b) Baeyer-Villiger (two step) type, through cleav­
age of ir bonding followed by the elimination of one mole­
cule of carboxylic acid used as peroxy acid.9
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Chart I

R\  / R2
/ c = N C

R1̂
1

The next factor of influence in the course of reaction, is 
the kind and configuration of the imine used (Chart I).

Using ¡mines derived from symmetrical ketones (1, R = 
R 1) a mixture of N enantiomers is obtained regardless of 
the mechanism. When aldimines or ¡mines derived from 
unsymmetrical ketones are employed (1, R R 1) one can 
expect (a) in the case of the one-step mechanism two enan­
tiomers (assuming that there is no inversion of the N atom 
in the intermediate stage and that the imine used was one 
of the isomers Z or E), (b) in the case of the two-step mech­
anism a mixture of four compounds, two enantiomers each 
of Z and E.

In our asymmetric synthesis of oxaziridines Schiff bases 
were used as substrates. These were obtained from (R )- 
(+)-a-phenylethylamine and a series of carbonyl com­
pounds. We have observed that the oxidation of this type 
of imine by m-chloroperbenzoic acid yields a mixture of di- 
astereomers with an excess of one of them.10 The results 
obtained using ketimines of type I (R =  R1) and (f?)-(+)- 
a-phenylethylamine are summarized in Scheme I.

Scheme I

C = N

i
diastereomers (I and 

Starting 1 % diastereomers

RV
I II

Me
82 18

O 87 13

0 =
97 3

II)

These results have been obtained by separation of nonra- 
cemic diastereomers through column chromatography 
(S i02) or HPLC (high performance liquid chromatogra­
phy). The chemical yields have been determined by iodo- 
metric titration of the reaction mixture after removal of ex­
cess peroxy acid. The purity of the reaction products was 
determined by TLC and 1H NM R spectroscopy.

In the case of the derivative of acetone (1, R = R 1 =  Me), 
the ratio of I/II was also confirmed by integration of methyl 
signals in the 1H NM R spectra. The signals from diastereo- 
topic methyl groups originating from the presence of the 
acetone residue have the following value: I, 1.32 (s, 3, CH3),
1.40 (s, 3, CH3); II, 1.43 (s, 3, CH3), 1.61 ppm (s, 3, CH3). 
The signals from methyl group of residual amine are found: 
I, 1.47 (d, 3, CH3), II, 1.32 ppm (d, 3, CH3).

On the basis of our results one cannot assign configura­
tion RR or SR to one of diastereomers I or II, since, so far 
as we could determine, no absolute configuration has as yet 
been determined for the N atom in oxaziridines. It has only 
been determined that the sign of the Cotton effect of the

Chart II

E ( I I I  and IV ) Z  (V  and V I)

enantiomer product in excess agreed with the chiral peroxy 
acid used.3,6

In order to obtain more information in regard to the 
mechanism of imine oxidation we have used Schiff bases 
from benzaldehyde and (R)-(+)-a-phenylethylamine (1, R 
= H; R 1 = Ph). The resulting imine compound represent a 
pure E isomer (XH NM R, TLC). This compound, oxidized 
as in former cases, gave a mixture of four nonracemic dia­
stereomers, which were separated by column chromatogra­
phy (Chart II).

The quantitative composition of the mixture was as fol­
lows.

Product 
(III, IV, V , VI)

\RRR) 61.1% (III)
(SSR J 22 .2% (IV)
RSiU 11 .1% (V)

(SRiiS 5.5% (VI)

The composition of diastereomeric mixture E (III and
IV) and Z (V and VI) could be confirmed by integration of 
signals produced by proton at C-3. The & values (CC14, s) 
follow: III, 4.35, IV, 4.40 (£ ); V, 5.05, VI, 5.20 (Z).

The stability of the diastereomers was checked by heat­
ing their mixture in acetonitrile at 80° for ca. 60 hr. The 
samples of this solution investigated periodically did not 
show any quantitative change of the ’H NM R signals of 
protons at C-3. We found only that after prolonged heating 
a thermal decomposition took place (titration of active oxy­
gen).

The formation of four nonracemic stable diastereomers 
(III, IV, V, and VI) is not a convincing proof of a “ two- 
step” mechanism.

We cannot exclude however, that in the cyclic intermedi­
ate postulated in the “one-step” mechanism8 in which the 
free electron pair of nitrogen was engaged, an inversion of 
configuration on nitrogen takes place, which would lead to 
the additional formation of two diastereomers.

The “two-step” mechanism seems to be more probable. 
Its first step is the addition of peracid molecule to the 
C = N  double bond with the formation of chiral center at 
C-3 (imine carbon atom). The preference of R or S attack 
depends on the chiral substituent (R) at nitrogen (Chart
III).

Chart III

OCOAr

OCOAr
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,H

AJ*>
r i
^ 0 — COAr

Chart IV
H

—ArCOO

Thus formed two diastereomeric intermediates undergo 
elimination of the free acid, and this reaction requires an 
eclipsed configuration of the free electron pair at nitrogen 
with respect to oxygen atom in the peracid residue (Chart
IV). Such an arrangement can occur in two ways: (a) rota­
tion of the C -N  bond or (b) inversion at nitrogen atom. 
The latter possibility leads consequently to the formation 
of two further diastereomers in the resulting reaction mix­
ture.

In. the case of an imine formed from a symmetric ketone,
i.e., cyclohexanone, the addition of the peracid to the C = N  
double bond does not create a chiral center at C-3; how­
ever, the second reaction step involves a stereospecific in­
tramolecular elimination of the acid and this particular re­
action is responsible for the high stereospecificity observed 
in our experiments.

Experimental Section13
Schiff bases were prepared according to known procedures.11'12 

Active oxygen contents of oxaziridines were determined by iodo- 
metric titration with potassium iodide in a stirred mixture of di- 
chloromethane, water, and glacial acetic acid.

Typical Preparation o f Oxaziridine. A small excess of m- 
chloroperbenzoic acid (0.022 mol) in 40 ml of methylene chloride 
was added with stirring and cooling (0-5°C) to a solution of 0.02 
mol of imine in 10 ml of methylene chloride. After the peroxy acid 
had been added, the reaction mixture was stirred for an additional 
5 hr at 0-5°C. After that time the formed m-chlorobenzoie acid 
was removed by filtration. The filtrate was washed two times with 
a dilute solution of Na2SC>3, then twice with a solution of Na2CC>3, 
and finally with water. After drying over MgS04 (anhydrous), the 
solvent was evaporated and the residue was chromatographed over 
a column of SiC>2 using hexane-ethyl ether (9:1) as a solvent.

( K)-( + )-jV-Isopropylidene-ff-phenylethylamine ( 1, R = R 1 
= Me): [«]43622 +82.3° (c 1, CHClg); bp 60-62°C (0.9 mm); ir 1660 
cm“ 1 (C=N ); n 20D 1.517; :H NMR 1.34 (d, 3, CH3), 1.78 (s, 3, CH3 
at C—N), 1.97 (s, 3, CH3 at C =N ), 4.48 ppm (m, 1, CH).

(/£)-( + ) -TV-Cyclopentylidene-a-phenylethylamine (1, R, R 1 
= Tetramethylene): [a]43622 + 221.2° (c 1, CHC13); bp 93.5-94°C 
(0.7 mm); ir 1675 cm' 1 (C=N ); n 20D 1.537; !H NMR 1.37 (d, 3, 
CH3), 4.51 ppm (m, 1, CH at N).

( !? ) - (+ )-IV-Cyclohexylidene-a-phenylethylamine (1, R, R 1 
= Pentamethylene): [a]43622 +102.6° (c 1, CHCI3); bp 102.5- 
104°C (0.8 mm); ir 1670 cm“ 1 (C =N ); 'H NMR 1.35 (d, 3, CH3), 
4.63 ppm (m, 1, CH at N).

(R )-(—)-AT-Benzylidene-a-phenylethylamme (1, R = H; R 1 
= Ph):12 [a ]20D -8 3 ° (c 1.03, benzene); bp  115-116°C (0.5 m m ); ir 
1650 cm “ 1 (C=N ); n 20D 1.5881; >H NMR 1.48 (d, 3, CH3), 4.38 (m, 
1, CH at N), 8.15 ppm  (s, 1, CH =N).

2-[( R)-«-Phenylethyl]-3,3-dimethyloxazirane. Diastereom- 
er I: [a]43622 +98.5° (c 1, CHClg); n 20D 1.503; uv max (95% EtOH) 
208 nm (r 8675), 215 (5184), 242 (227), 248 (228), 252 (274.7), 258 
(265), 264 (213.1), 268 (126.7); 'H NMR 1.32 (s, 3, CH3 at C-3), 
1.40 (s, 3, CH3 at C-3), 1.47 (d, 3, CH3 at CHN), 3.43 ppm (m, 1, 
CH).

Anal. Calcd for C11H15NO: C, 74.54; H, 8.53; N, 7.90. Found: C, 
74.89; H, 8.72; N, 7.95; m/e 177.

Diastereomer II: [«|4362i +271.9° (c 1, CHCI3); n 2llD 1.508; uv 
max (95% EtOH) 207 nm (t 8287), 211 (7432), 215 (4183), 247 
(249), 252 (262), 257 (272), 264 (214), 268 (155.1); >H NMR 1.43 (s, 
3, CH3 at C-3), 1.61 (s, 3, CH3 at C-3), 1.32 (d, 3, CH3 at CHN), 3.4 
ppm (m, 1, CH at N); m/e 177.

Anal. Calcd for Cn H15NO: C, 74.54; H, 8.53; N, 7.90. Found: C, 
74.61; H, 8.69; N, 7.81.

2-[ (fi)-«-P henyl ethyl ]-3,3-tetramethyleneoxazirane. Dia­
stereomer I: [or]43G22 +63.0° (c 1, CHC13); n 22D 1.518; uv max (95% 
EtOH) 208 nm (c 8063), 216 (4866), 242 (143.1), 248 (152), 253 
(186), 259 (220.4), 264 (179.4), 268 (102); >H NMR 1.47 (d, 3, CH3),

3.22 ppm (m, 1, CH at N); m/e 203.
Anal. Calcd for CujHivNO: C, 76.81; H, 8.43; N, 6.89. Found: C, 

76.97; H, 8.45; N, 6.77.
Diastereomer II: [a]43622 + 295.4° (c 1, CHC13); n22D 1.522; uv 

max (95% EtOH) 208 nm (r 8501), 211 (7911), 215 (4668), 247 
(270), 251 (295), 258 (307), 264 (248.1), 268 (165.8); 'H  NMR 1.30 
(d, 3, CH3), 3.17 ppm (m, 1, CH at N); m/e 203.

Anal. Calcd for Ci3H17NO: C, 76.81; H, 8.43; N, 6.89. Found: C, 
76.93; H, 8.72; N, 7.16.

2-[(R)-a-Phenylethyl]-3,3-pentamethyleneoxazirane. D i­
astereomer I: [a]43622 +118.5° (c 1, CHC13); n20D 1.523; uv max 
(95% EtOH) 208 nm (c 9000), 216 (5426.3), 241 (203.5), 248 (189), 
252 (223), 258 (259), 264 (211), 268 (119); XH NMR 1.5 (d, 3, CH3),
3.54 ppm (m, 1, CH at N); m/e 217.

Anal. Calcd for Ci4H19NO: C, 77.38; H, 8.81; N, 6.45. Found: C, 
77.17; H, 9.07; N, 6.47.

Diastereomer II: [a]43622 + 205.4° (c 1, CHC13); n20n 1.529; uv 
max (95% EtOH) 208 nm (e 10401), 210 (9929), 214 (6273), 247
(240.5), 252 (260), 258 (271), 264 (200), 268 (103); ]H NMR 1.3 (d, 
3, CH3), 3.54 (m, 1, CH at N); m/e 217.

Anal. Calcd for Ci4Hi9NO: C, 77.38; H, 8.81; N, 6.45. Found: C, 
77.68; H, 9.1; N, 6.64.

2-[(R)-a-Phenylethyl]-3-phenyloxazirane. Diastereomer
III: [a]43620 -  238.2° (c 1.08, EtOH); oil; uv max (95% EtOH) 211 
nm U 12400), 216 (11500), 247 (666), 253 (770), 258 (8. 45), 271 
(535), 310 (230); ‘ H NMR 1.58 (d, 3, CH3), 3.14 (m, 1, CH at N),
4.35 ppm (s, 1, H-3); m/e 225.

Anal. Calcd for C15H ,5NO: C, 79.97; H, 6.71; N, 6.22. Found: C, 
80.40; H, 7.07; N, 6.07.

Diastereomer IV: |«|43<;20 +188.4° (c 1.42, EtOH); mp 52-53°C 
(from hexane); uv max (95% EtOH) 209 nm (< 14000), 211 (13730), 
216 (12150), 247 (300), 253 (400), 259 (500), 260 (473), 264 (482), 
272 (304); 2H NMR 1.45 (d, 3, CH3) 3.25 (m, 1, CH at N), 4.40 ppm 
(s, 1, H-3); m/e 225.

Anal. Calcd for C15H 15NO: C, 79.97; H, 6.71; N, 6.22. Found: C, 
80.08; H, 6.90; N, 6.20.

Diastereomer V: [«]43620 + 350.9° (c 1.18, EtOH); oil; uv max 
(95% EtOH) 209 nm (f 29000), 217 (21200), 247 (685), 252 (665), 
259 (612), 264 (481), 271 (254); JH NMR 1.52 (d, 3, CH3), 3.15 (m, 
1, CH at N), 5.05 ppm (s, 1, H-3); m/e 225.

Anal. Calcd for Ci5H i5NO: C, 79.97; H, 6.71; N, 6.22. Found: C, 
80.21; H, 7.07; N, 6.75.

Diastereomer VI: [or]43620 +630.0° (c 0.94, EtOH); mp 98° 
(from hexane); uv max (95% EtOH) 207 nm (e 27550), 211 (26056), 
215 (21410), 252 (647), 259 (732.4), 264 (642.2), 271 (293); "H NMR
1.02 (d, 3, CH3), 3.17 (m, 1, CH at N), 5.20 ppm (s, 1, H-3); m/e 
225.

Anal. Calcd for C15H i5NO: C, 79.97; H, 6.71; N, 6.22. Found: C, 
79.48; H, 6.68; N, 6.18.

Registry No.— 1, R = R 1 = Me, 56424-40-9; 1, R, R 1 = tetra­
methylene, 56424-41-0; 1, R, R1 = pentamethylene, 56424-42-1; 1, 
R = H, R 1 = Ph, 56941-77-6; I, R = R 1 = Me, 56907-09-6; II, R = 
R1 = Me, 56424-43-2; I, R, R1 = tetramethylene, 56907-10-9; II, R, 
R1 = tetramethylene, 56424-44-3; I, R, R 1 = pentamethylene, 
56907-11-0; II, R, R1 = pentamethylene, 56424-45-4; III, 56830-
31-0; IV, 56907-12-1; V, 56907-13-2; VI, 56907-14-3.
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Numerous studies of the reactions of 4-nitrobenzyl chlo­
ride and various derivatives thereof with alkali in mixed 
aqueous solvents have so far failed to determine unequivo­
cally the mechanism of formation of 4,4'-dinitrostilbene (or 
derivatives thereof) under these conditions.1-4 The reac­
tions of the corresponding bromide and iodide analogs are 
reported to yield bis(4-nitrobenzyl) ether6 but we are una­
ware of any similar studies of 4-nitrobenzyl fluoride, except 
the study of its reaction with sodium ethoxide in ethanol, 
in which an unidentified, high-melting product was ob­
tained,6 possibly the stilbene. In view of the considerable 
product sensitivity of these base-catalyzed reactions to the 
halide ion, it is of interest to study the reaction of 4-nitro­
benzyl fluoride in an effort to provide evidence contribut­
ing toward a unifying, and acceptable, mechanistic scheme 
for these reactions. Accordingly we report here some results 
for reactions of the fluoride, together with product analyses 
for reactions of all four halides in the presence of p-dinitro­
benzene. This reagent is well known as both a radical trap 
and an acceptor of one electron from a carbanion,7 the lat­
ter role causing reactions to proceed via radical anion inter­
mediates. Thus, these studies should indicate the probabil­
ity, or otherwise, of the occurrence of a radical mechanism.

Reaction of 4-nitrobenzyl fluoride with excess sodium 
hydroxide in carefully purified aqueous dioxane 50% (v/v) 
under air gave cis- (40%) and trans-4,4'-dinitrostilbene ep­
oxide (40%), ca. 5% trans-4,4'-dinitrostilbene, and traces of
4-nitrobenzyl alcohol and several other unidentified prod­
ucts. A similar reaction under nitrogen gave cis- (ca. 2%) 
and trans-4,4'-dinitrostilbene (20%), bis(4-nitrobenzyl) 
ether (24%), and a tar containing at least four other compo­
nents (see Table I). These products may be contrasted with 
the cis- and trans- 4,4'-dinitrostilbene obtained from the 
chloride and bis(4-nitrobenzyl) ether reported5’8 from the

bromide or iodide under air. The products from reactions 
of 4-nitrobenzyl fluoride thus differ markedly from those of 
the other halides and imply that the reaction proceeds via a 
different pathway or via more than one pathway. A possi­
ble alternative mechanism involves radical anion interme­
diates even though no product arising from the dimeriza­
tion of 4-nitrobenzyl radicals was found. Thus, initial for­
mation of the conjugate base, followed by electron transfer 
to either a neutral reactant molecule or to oxygen (eq 1-3), 
could initiate these reactions.

A rC H 2F + ‘ OH 3 = t  A rC H F  +  H 20  (1)

A rC H F  +  Oa — *  A rC H F  - +  0 2 • ' (2)

A rC H F  +  A rC H 2F — *■ A rC H F  + A rC H 2F - ‘  (3)
ArCH2F

A rC H F  - +  0 2 — -  A rC H F O ?- ---------- -
A rC H F O jH  + A rC H F - (4)

“h2°
A rC H F 0 2H +  “OH ----- ► A rC H F 0 2" — *

A rC H O  +  |o ,_  +  F ‘  (5)

O '
I

A rC H O  + A rC H F  — -  A rC H —C H F A r — ►
O

/  \
A rC H —C H A r +  F '  (6) 

A r  =  4 - 0 2NC6H 4

If reaction of the fluoride proceeds via radical anion in­
termediates, then the addition of a radical-trapping agent, 
e.g., p-dinitrobenzene, should cause the reaction rate to de­
crease and competing reaction pathways to become evident 
(cf. the effect of o-dinitrobenzene on base-catalyzed elimi­
nation from 4-nitrobenzyldimethylsulfonium ion9). The 
similar addition of such a compound to the bromide or io­
dide should allow some reaction to occur via a radical anion 
pathway as a result of electron transfer from the a-halo 
carbanion to the added nitroaromatic10 to give the stilbene 
and the corresponding epoxides, viz.

Table I
Percentage Yields of Products from Base-Catalyzed Reactions of 4-Nitrobenzyl 

Halides in Aqueous Dioxane (50% v/v)d

Registry no .

4 - 0 2N C6H s CH 2X

Product

X  = 

N 2

F°
A ir

X

n 2

= C l 

A ir

X =

n 2

Br

A ir

X  =

n 2

I
A ir

X -  

N 2

Fc
A ir

619-93-2  (c is) 4 ,4 ' -D initrostilbene 22 5 43 26 33 17 28 12 26 13
736-31 -2  (trans) (c is  -  and tra n s-)

14688-37-0 cis  -4 ,4 ' -D initrostilbene 40 20 29 23 b
epoxide

968-01-4 trans-4 ,4 ' -D initrostilbene 40 21 32 25 b
epoxide

56679-04-0 B is(4 -n itroben zy l) ether 24 5 6 14 52 47
619-73-8 4 -N itrobenzyl alcohol b 9 b 13 b 16 b 15 21

2735 -14 -0 4 ,4 ' -D initr ot olane b 5 5 5

Reactions in the absence of p-dinitrobenzene. [aryl halide] - 1 x 10 2 M; [base] =  3 x 10 2 M. 6.Trace product. ' [Aryl halide] =  1 x
10-2 M; [base] = 3 x 10-2 M. d [Aryl halide] = 1 x 10-2 M, [base] = 1 x 10"1 M; [p-dinitrobenzene] = 1 x 10 2 Af.
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A rC H X  + A rN O z — *  A rC H X  • + A rN 0 2 •" (7)

A rC H 2X  +  A rN 0 2 •" — ► A rC H 2X - '  +  A rN 0 2 (8)

Acknowledgment. We are grateful to the National Re­
search Council of Canada for financial support, and to a re­
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A rC H 2X  •“
A rC H X

X - +  A rC H 2* --------- ► A rC H 2C H X A r •"

A rC H 2C H X A r • ' + A rN Q 2

(9)

A rC H jC H X A r +  A rN 0 2 • ' (10) 

A rC H 2C H X A r +  ‘ OH — *  A r C H = C H A r  + H 20  + X '

( ID
X  =  C l, B r .  o r  I

The results of reactions in the presence of p-dinitroben- 
zene are shown in Table I, from which the change in prod­
ucts obtained is immediately evident. Under nitrogen,
4,4,-dinitrostilbene is obtained from reactions of all four 
halides together with small amounts of 4-nitrobenzyl alco­
hol and 4,4'-dinitrotolane.2 Low yields of bis(4-nitrobenzyl) 
ether are obtained from all compounds except the fluoride 
from which a large amount of this product is formed. Reac­
tions under air gave large amounts of the cis- and trans- 
4,4'-dinitrostilbene epoxides but decreased amounts of 
4,4'-dinitrostilbene from the chloride, bromide, and iodide.

The epoxide presumably arises via 4-nitrobenzaldehyde 
(eq 5 and 6). No evidence of 4,4'-dinitrobenzyl was ob­
tained, suggesting that 4,4'-dinitrostilbene is only formed 
by oxidation of this intermediate if this oxidation is 100% 
efficient (cf. base-catalyzed oxidation of 4-nitrotoluene10). 
It is of interest to note that formation of the epoxides ap­
parently occurs only at the surface of the solution.

The increasing strength of the carbon-halogen bond with 
decreasing atomic weight of the halogen increases the sta­
bility of the corresponding or-halo carbanions and shifts the 
equilibrium of eq 1 to the right. Reaction via the Sn 2 path­
way, which involves attack on neutral reactant molecules, is 
thus progressively disfavored on going from iodine through 
to fluorine, as is reaction via the a-ElcB mechanism, which 
requires carbon-halogen bond breakage. Although the for­
mation of radical anions from 4-nitrobenzyl and 4-nitro- 
cumyl chlorides has been observed in the presence of 2- 
nitro-2-propyl carbanions, etc,11 no evidence of reaction of
4-nitrobenzyl chloride via the radical anion is obtained ex­
cept in the presence of p-dinitrobenzene. Sn 2 reaction via 
an ion pair intermediate12 thus seems preferable to the a- 
ElcB mechanism for the chloride, whereas the poorer leav­
ing group in the fluoride results in reaction via the radical 
anion mechanism. These results are thus in good accord 
with our conclusions from kinetic, etc., studies of deriva­
tives of 4-nitrobenzyl chloride,3 4 i.e., that reaction via a 
radical mechanism in the absence of radical initiators (e.g., 
peroxides) is unlikely.

Experimental Section
4-Nitrobenzyl fluoride (1.0877 g) was dissolved in dioxane (300 

ml), sodium hydroxide solution (300 ml, 0.022 N ) was added, and 
the reaction mixture was kept thermostatted at 35°C for 1 month. 
Yellow needles were precipitated and, after isolation, were shown 
to be fr<ms-4,4'-dinitrostilbene oxide (40% based on substrate). 
The remaining solution was then acidified with concentrated hy­
drochloric acid and freeze dried, cis-4,4'-Dinitrostilbene epoxide 
(40%) and irans-4,4'-dinitrostilbene (5%) were isolated by prepar­
ative TLC using benzene as eluent. All compounds were identified 
by NMR, mass spectrometry, melting point, and mixture melting 
point with authentic samples.

Reactions of 4-nitrobenzyl chloride, bronvde, and iodide with 
sodium hydroxide in the presence of p -dinitrobenzene in aqueous 
dioxane, under air or nitrogen, were perforn 1 at room tempera­
ture. and products were analyzed after 4-5 hr. 35% of the added 
p-dinitrobenzene was recovered unchanged.

Registry No.—4-Nitrobenzyl fluoride, 500-11-8; sodium hy­
droxide, 1310-73-2; 4-nitrobenzyl chloride, 100-14-1; 4-nitrobenzyl 
bromide, 100-11-8; 4-nitrobenzyl iodide, 3145-86-6.
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As a part of a reinvestigation of the mechanisms of for­
mation of p,p'-dinitrostilbene (2) from p-nitrobenzyl chlo­
ride (l),5 we wish to report the products of base-induced 
reactions in several p-nitrobenzyl compounds. It has been 
repeatedly mentioned in the recent literature6 that the 
product of reacting 1 with hydroxide ion in aqueous diox­
ane (eq 1) is almost exclusively trans-2. In view of doubts

ArCH2Cl +  OH“  — ► A rC H = C H A r (1)

1 2 

A r= p -N 0 2C6H4

of this information,7 and in an attempt to elucidate the 
mechanism of this transformation, we carried out, in addi­
tion to kinetic and isotope effect measurements4 to be pub­
lished separately, a product analysis of the reactions of hy­
droxide ion with 1 and with p-nitrobenzyl bromide (3), io­
dide (4), and tosylate (5) in 50% aqueous diioxane. For com­
parative purposes,8 we also reinvestigated the products of 
reacting p-nitrobenzyldimethylsulfonium bromide (6) and 
tosylate (7) with sodium hydroxide in aqueous solution. 
The results are shown in Tables I—III. It is quite evident 
from inspection of Table I that the reputed5 almost quan­
titative yield of trans-2 from the reaction of 1 with sodium 
hydroxide in 50% aqueous dioxane is in error. The reaction 
given in eq 1 yields a yellowish precipitate whose weight 
corresponds to 98% of that expected for a quantitative yield 
of 2; however, TLC and its visible and uv spectra show that 
it contains the geometrical isomers of both 2 and p,p'-dini- 
trostilbene oxide (8) as well as smaller amounts of other 
compounds (Table I). On recrystallization of the crude 
product from nitrobenzene in the presence of a crystal of
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Table I
Products and Yields of the Reaction of p-Nitrobenzyl Chloride with Sodium Hydroxide in

Aqueous Dioxane (50% Water) at 25°

Entry
no.

ReactantSj, M
Conditions

Yields, %

CA1CH2CI] [NaOH] 2«»& 8“ ' 6 1 & 12 c Others

1 0.01 0.10 Degassed 52* 43® 3 Trace 17° and p-nitrotolane,“ trace
2 0.02 0.10 Oxygen 88/ 5 2 p-Nitrobenzoic acid,“ 4
3 0.01 0.10 p-DNB, 0.01 M 16 22 19 2 p,p'-Dinitrobibenzyl,“' c 11,17“
4 0.01 0.10 Nitr oxide, 41 35 12 1 p-Nitrotolane,“ trace

0.001 M
degassed

5 0.01 0.10 Nitr oxide, 34 49 6
0.005 M 
degassed

0 Detected by TLC. 6 Quantitated by uv. r Determined by VPC. d cis-2, 27.8%; trans-2, 24.2%. p cis-8, 24.5%; trans-8, 18.5%.' cis-8, 51%; 
trans-8, 37%.

Table II
Products and Yields of the Reactions of p-Nitrobenzyl Dimethylsulfonium Tosylate and Bromide,

0.01 M , with Sodium Hydroxide, 0.1 M, in Water at 60°

Y ie ld s , %
Entry Anion of ——— --------------------------------------

no. sulfonium salt 2 a» ̂  8 a> & Reaction conditions

6 OTs- 31 52 No precautions to exclude air
7“ OTs- 3 54 Saturated with 0 2
8 Br' 37 43 No precautions to exclude air
9 Br" 4 59 Saturated with 0 2

° Detected by TLC. b Quantitated by uv. c p-Nitrobenzyl alcohol (11%) and p-nitrotoluene (3%) were also detected.

iodine to isomerize cis-2 to trans-2,8 only trans-2 is ob­
tained. This is due to the fact that the other major product, 
viz. 8, is fairly soluble in nitrobenzene and remains in solu­
tion while only pure trans-2 crystallizes out. We tested this 
by mixing authentic samples of 2 and 8, dissolving in hot 
nitrobenzene, and cooling for crystallization. The crystal­
line material thus obtained was pure by TLC (silica), had 
undepressed melting point when mixed with pure trans-2, 
and had uv, NM R, and ir spectral characteristics identical 
with those of pure trans-2.

It is puzzling that the epoxide 8 is produced in thorough­
ly degassed solutions. Its formation may be accounted for 
by the reaction scheme shown in eq 2-6. The production of

ArCH2Cl +  OH' *= *  ArCHCl +  H,0 (2)
1 9

ArCHCl + ArCH2Cl — * ArCHCl +  ArCHCl“ (3)
10 11

ArCHCl +  H20 — ► ArC(OH)HCl +  H- (4)

ArC(OH)HCl +  OH- — <- ArCHO +  Cl-  +  HC (5)
12

ArCHO + ArCHCl

O
/  \

— ArCH— CHAr +  CF „(6)

8

the carbanion 9 in the reaction medium has been proven by 
deuterium labeling.5’9 The reaction of a radical, 10, with 
water (eq 4) to abstract a hydroxyl radical may seem 
strange; however, in the virtual absence of reduced prod­
ucts (Table I) eq 4 is necessary to account for the observed 
epoxide. An example of a similar hydroxyl abstraction is af­
forded by the oxidation of isobutyraldéhyde by Fremy’s 
salt in basic solution.10 The hydrogen atom generated in eq 
4 is presumably captured by unreacted 1 to give a transient 
radical anion11 (HArCH2Cl' ) which reacts with hydroxide

Table III
Products and Yields of the Reactions of 

p-Nitrobenzyl Bromide, Iodide, and Tosylate with 
Sodium Hydroxide“ in 50% Aqueous Dioxane at 25°

Entry
no.

¿-Nitrobenzyl
compd^ 2 C 8C 16d Other**

10 Bromide ~ i 10 67 18, 5; 12 and 17, traces
11 Iodide Trace 20 76 12, 3
12 Tosylate ~4 20 52 12, 2; 17, trace
“ [NaOH] = 0.1 M. 6 [ArCH2X] = 0.01 M. c Determined by 

TLC. “ Determined by VPC.

ion to give another radical anion, 11 in eq 3. The intercep­
tion of the carbanion 9 by p-nitrobenzaldehyde (12) to give 
8 (eq 6) is well documented.6

The possibility of intervention of radical anions in this 
system has been entertained previously.11 W e tested this 
possibility by conducting the reaction of 1 with hydroxide 
ion in the presence of p-dinitrobenzene (p-DNB), which is 
known to be a good electron acceptor, particularly from 
radical anions,12 and in the presence of oxygen is reported 
to react with p-nitrobenzyl radical to give 12.13 The pres­
ence of 0 2 inhibits completely the formation of 2 but en­
hances the formation of 8, while p-D N B lowers the yields 
of both 2 and 8 to 16 and 22%, respectively (Table I). It is 
quite probable that the fates of the radical 10 and the radi­
cal anion 11 of eq 3 follow the scheme represented by eq
7-13.

ArCHCl“ +  0 2 —*• ArCHCl +  O ,“ (7)
11 1

ArCHCl +  0 2 —  ArCH(Cb)Cl (8)
10

ArCH(0,)Cl +  ArCHCl — ► ArCH(O.F)Cl +  10 (0)
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ArCmO.DCl + H20 — - ArCH(02H )C1 +  OH (1 0 )

ArCH< OH )Cl + ArCHCI — -
ArCH(0 )Cl +  ArCH(OH)Cl (ID

> X O )CI —  ArCHO + CF (1 2 )
12

ArCH(0H)Cl + OH" — - 12 +  Cl" + H20 (13)
The above scheme serves to illustrate several points. The 

radical anion 11, which may be invoked in stilbene forma­
tion,11 is diverted back to 1 (eq 7). The radical 10 which, in 
the present scheme, is ultimately responsible for the pro­
duction of the epoxide 8 via the aldehyde 12 (eq 6), is re­
generated in what may be regarded as chain-propagation 
steps (eq 8 and 9). It is evident from eq 2, 3, 7, 8, and 9 that 
oxygen would divert 11 to give ultimately 8. In the absence 
of oxygen it is possible that 11 is responsible for the pro­
duction of 2 as indicated in the following scheme, eq 14-17.

ArCHLCK —* ArCH2 +  Cl" (14)
13

ArCHo + ArCHCI — *- ArCHCHClAr" (15)
14

ArCBTHClAr“ +  OH" — ►
ArCH=CHAr" + H20 + CT (16)

ArCH=CHAr~ +  1 — » ArCH=CHAr +  ArCHCI" (17)
2

Alternatively, 14 may react with 1 to give 15 which 
undergoes a ^-elimination to 2 (eq 18, 19).

ArCHCHClAr •" + ArCH2Cl — ►
ArCH2CHClAr + ArCHCI' (18) 

15
ArCHCHClAr +  OH" — ►

ArCH=CHAr +  H,0 +  01" (19)

To test the presence of free radicals, the reaction be­
tween 1 and hydroxide ion in 50% aqueous dioxane was car­
ried out in the presence of di-f erf-butyl nitroxide, which is 
known to be a radical scavenger.14 With added nitroxide, 
the yield of 2 is lowered while the amount of p-nitrobenzyl 
alcohol (16) is increased (Table I). This may reflect the 
scavenging of 13 by the nitroxide.

For comparison purposes, the products and yields of the 
reaction of the sulfonium salts 6 and 7 with hydroxide ion 
in aqueous solution are reported in Table II. Here, too, the 
products which were once thought to be exclusively 2 are 
actually mixtures of 2 and 8 as well as 16 and p-nitrotolu- 
ene (17) when no precautions to exclude oxygen are taken.

In Table III are reported the products and yields of the 
reactions of 3, 4, and 5 with sodium hydroxide in 50% aque­
ous dioxane. Previously, 3 and 4 were reported to give 
p,p'-dinitrobibenzyl ether (18) in quantitative yield.15

In summary, we wish first to call attention to the com­
plexity of base-induced transformations of p-nitrobenzyl 
compounds and second to correct some of the errors which 
are perpetually relayed in the literature. We wish also to 
emphasize that although the present work suggests that 
radicals and radical anions may be involved in the 1 to 2 
transformation, neither the carbene mechanism nor the al- 
kylation-dehydrohalogenation mechanism can be exclud­
ed. Indeed, the three mechanisms may be operative simul­
taneously. We will report on the pros and cons of each of 
these mechanisms in the light of kinetic and isotope effect 
data.

Experimental Section
Qualitative analysis of the reaction products was done by TLC. 

Silica plates with a fluorescent indicator (Brinkmann silica gel 
HF-254) were used and were developed with benzene; standards 
were run alongside the unknown mixtures. VPC was used to quan­
titate the readily volatile components of products (Varian Aero­
graph 600-D with a flame ionization detector; 5% SE-30 6 ft X 
0.125 in. column). Calibration curves, using irans-stilbene as an 
internal standard, were prepared for 1, 12, 16, 17, and p-DNB. 
Spectroscopic analyses (uv and visible on a Cary 14) were per­
formed in DMF for the quantitation of the dinitrostilbenes16 
[£rans-2, 368 nm (4.577); cis-2, 320 nm (4.193)] and the dinitrostil- 
bene oxides [frares-8, 291 nm (4.371); cis-8, 277 nm (4.264)]. Mix­
tures of cis- and trans-2 exhibited one maximum between 368 and 
320 nm.17 The amounts of the four components, cis- and trans-2 
and cis- and trans-8, were determined by solving simultaneous 
equations for the absorbances at 380, 340, 290, and 270 nm

Awo =  32300c, +  5350c2 +  266c:1

A mo =  25200c, +  15000c, +  1840c3 +  935c,

A ,9„ =  5700c, +  11750c2 +  23500c„ +  1600c4 
A  270 =  4200c, + 8 19 0 c2 +  14400c, +  17600c,

where ci, c% C3, and C4 refer to the concentrations in DMF of 
trans- and cis-2 and trans- and cis-8, respectively.

Materials. The compounds used in this study were either com­
mercially available and purified before using or prepared and puri­
fied by known procedures. The following compounds were used as 
chromatographic standards. Their melting points and spectral 
characteristics were in agreement with the literature: cis- and 
trans-2,16 cis- and trans-8,18 ArCH2CH2Ar,19 ArCH20CH2Ar,15 
ArC^CAr,20 12, 16, and 17.

Product Studies. All aqueous dioxane solutions were prepared 
from purified and freshly distilled dioxane and used immediately. 
Studies that involved degassed solutions were done on a vacuum 
line. Those studies involving the effect of O2 were performed by 
saturating the solutions with O2 and keeping the reaction mixture 
under an O2 atmosphere. All experiments were conducted in 50% 
aqueous dioxane (v/v) except those with the sulfonium salts, where 
water was used as the solvent.

In a typical experiment, 50 ml of a 0.02 M  solution of 1 in diox­
ane and 50 ml of a 0.20 M  NaOH solution were degassed separately 
by a series of freeze-thaw cycles and then mixed under vacuum. 
After 24 hr, the reaction mixture was opened to atmospheric pres­
sure, neutralized with dilute HC1, diluted with an equal volume of 
water, and stored in a refrigerator for 24 hr. The precipitate was 
isolated by filtration and dried; 0.132 of a yellow solid was ob­
tained. This was analyzed by TLC and uv. The yields of 2 and 8 
are given in Table I. The precipitate also contained a trace spot 
with the same Rf value as p,p'-dinitrotolane. A sample of this com­
pound obtained by preparative TLC had m/e 268. The filtrate was 
extracted with chloroform. The organic layer was dried (Na2S04), 
and the solvent removed on a rotary evaporator; the remaining 
solid (5 mg) was analyzed by TLC and shown to be 16, with traces 
of 12 and 17.

Registry No.— 1, 100-14-1; cis-2, 619-93-2; trans-2, 736-31-2; 3,
100-11-8; 4, 3145-86-6; 5, 1153-45-3; 6, 14182-26-4; 7, 19824-23-8; 
cis-8, 14688-37-0; trans-8, 968-01-4; 12, 555-16-8; 16, 619-73-8; so­
dium hydroxide, 1310-73-2; p-nitrotoluene, 99-99-0.
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Trichlorosilane1
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Trichlorosilane has been shown to be an efficient reagent 
for reducing simple aliphatic esters to the corresponding 
ethers under free-radical conditions.2 We recently demon­
strated the applicability of the reagent to the reduction of 
more complex bicyclic lactones and also the existence of 
significant selectivity when additional ester groupings were 
present.3 We now wish to report that under the appropriate 
conditions trichlorosilane can be an effective reagent for 
the reductive deoxygenation of esters of nonprimary ali­
phatic alcohols.

O
I! H S iC lj

R—C —OR' — — »- RCH?O R' + R'Hh V 4
1 2 3

In general we find that for the reaction of a given ester 1 
with trichlorosilane, two products, 2 and 3, are formed 
competitively. Ether 2 is the result of a “ normal” reaction 
with HSiCl3 while 3 is the product of reductive deoxygena­
tion. The relative amounts of 2 and 3 are most profoundly 
affected by the nature of R'. As shown in Scheme I for the 
acetates of several alcohols, irradiation with excess HSiCl3 
yields largely 2 for a primary acetate, exclusively 3 for a 
tertiary acetate, and a mixture of 2 and 3 for a secondary 
acetate.4’5 These results are consistent with a reaction 
mechanism which involves radical 16 as a common inter­
mediate for the formation of 2 and 3, with the proportion of 
16 which undergoes reductive deoxygenation being in­
fluenced by the stability of radical -R'. Thus tertiary ace­
tates give the highest proportion of reductive deoxygena­
tion and primary acetates the lowest.

H S iC lj

O
II S iC l3

R —C O R '--------
1

/
OSiClg

R—C OR'
\

Table I
Reaction of 1-Adamantyl Esters with HSiCl,

Ester HSiCl3/1 7 a T H F /17* % reaction 18/19^

lia ? 8 100 42//58S
17a 4 100 30/70
17a 4 24 100 18/82
17a 4 72 87 6/94
17a 2 72 58 2/98
17be 8 100 12^/88
17b 4 100 3/97
17b 8 29 7 1/99
a Moles of HSiCl3 per mole of ester, b Moles of THF per 

mole of ester. c Determined by GLC analysis. d Registry no., 
19066-22-9. ^Registry no., 56830-70-7. /Registry no., 
6221-75-6. ^Registry no., 281-23-2. ^Registry no., 
56830-71-8.

Scheme I
HSiCli

CH^CH2)10CH2OCOCH3
4

CH/CH2)10CH2OCH2CH3 +  CH3(CH2)10CH, (98/2)

, H

r  j  (0/ 100)

12

(CH3CH2CH2CH2)3C— o c o c h 3 — ►
13

(CH3CH2CH2CH2)3COCH2CH:1 +  (CH3CH2CH,CH,)3CH (0/100) 
14 15

In an effort to determine if a judicious choice of reaction 
conditions would render the method preparatively useful in 
instances where •R' was of intermediate stability (i.e., sec­
ondary esters), several experiments were performed with 
esters of 1-adamantanol. The tertiary 1-adamantyl radical 
has been shown to be slightly more stable than a normal 
secondary radical,6 and thus 1-adamantyl esters should 
provide a sensitive probe of the results of changes in reac­
tion conditions. It was expected that one could most effec­
tively maximize reductive deoxygenation by retarding the 
bimolecular second step of the ether-forming pathway 
(path A). For instance, a decrease in the HSiCl3 concentra­
tion should retard path A to the benefit of path B. In addi­
tion, an increase in the steric bulk of the ester (pivalates vs. 
acetates) should have a similar effect. The results summa­
rized in Table I are in general accord with these predic­
tions. It is seen that either decreasing the amount of

OSiClj 

R - C —OR' 

H

several

steps RCH2O R ' (path A) 
2

, OSiCL
R —C

O

H S iC lj
16 R'H (path B) 

3
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HSiCl3 or diluting the reaction medium with an inert sol­
vent (THF) increases the proportion of reductive deoxyge­
nation. A similar decrease is observed in going from 1-ada- 
mantyl acetate (17a) to 1-adamantyl pivalate (17b). At 
lower concentrations of HSiCl3 the reaction does not go to 
completion, presumably because the radical chains become 
unproductively shortened.

H S iC l,
l-A d-O C O C R ,--------► l-A d-O C H 2CR3 + 1-Ad-H

17a,b 18a, b 19
a, R =  H

b, R =  CH3

It should be mentioned that the application of these 
trends to 1-dodecyl pivalate and cyclododecyl pivalate 
gives parallel results as compared to acetates 4 and 7.7

In conclusion we have reported a new reaction of aliphat­
ic esters with trichlorosilane, reductive deoxygenation. We 
have shown that the reaction is responsive to experimental 
changes in a predictable manner, and that it can be made 
to be preparatively useful for esters of secondary and terti­
ary alcohols. It should be pointed out that the high reactiv­
ity of -SiCls toward many functional groups2 limits the gen­
erality of the method in some cases. We can see few exam­
ples where this reaction would be preparatively superior to 
other literature procedures for reductive deoxygenation,8 
except for the ease of preparation of the esters in question.

Experimental Section
The ir spectra were recorded on Perkin-Elmer 137 and 237 spec­

trophotometers. NMR spectra were determined on a Jeol MH-100 
spectrometer and are reported in b units downfield from Me4Si. 
GLC analyses were performed on a Hewlett-Packard Model 700 
laboratory gas chromatograph equipped with dual thermal con­
ductivity detectors. A flow rate (He) of 55 ml/min through 6 ft X 
0.25 in. columns (5% SE-30 on Chromosorb P) was employed. Mi­
croanalyses were performed by M-H-W Laboratories, Garden City, 
Mich.

Preparation o f Starting Materials. Dodecyl acetate (4),9 cy­
clododecyl acetate (7),10 1-methylcyclohexyl acetate (10),11 and 1- 
adamantyl acetate (17a)12 were prepared by standard procedures.

5-n-Butyl-5-nonyl Acetate (13). A solution of 5.0 g (25 mmol) 
of 5-n-butyl-5-nonanol in 25 ml of anhydrous THF was added to a 
stirred suspension of 2.0 g (51 mmol) of KH (8.2 g of a 24.04% sus­
pension) in 25 ml of dry THF under N2. The mixture was stirred 
for 2 hr at room temperature and then cooled to 0°, whereupon 4.8 
g (62 mmol) of acetyl chloride in 10 ml of dry THF was slowly 
added. The reaction mixture was stirred at 0° for 1 hr and at room 
temperature for 6 hr, and finally heated at reflux for 2 hr, where­
upon it was poured into 500 ml of ice water and extracted with 
ether (3 X 100 ml). The combined organic extracts were washed 
with brine (2 X 50 ml), dried (MgS04), and concentrated. Two dis­
tillations gave 3.89 g (63%) of pure acetate, bp 67-76° (0.15 mm): ir 
(neat) 1749 cm“ 1 (C =0); NMR (CC14) & 0.91 (t, J  = 7 Hz, 9 H, 
-CH.j), 1.05-1.57 (broad, 12 H, -CH2-), 1.57-1.88 (broad, 6 H, 
-OCH2-), 1.91 (s, 3 H, COCH3).

Anal. Calcd for Ci5H30O2: C, 74.32; H, 12.47. Found: C, 74.49; H, 
12.63.

1-Adamantyl Pivalate (17b). To a solution of 7.6 g (50 mmol) 
of 1-adamantanol in 75 ml of anhydrous THF under N2 was slowly 
added 23 ml (55 mmol) of a 2.14 M  hexane solution of n -butyllithi- 
um. After stirring the resulting suspension for 30 min at room tem­
perature, a solution of 6.7 g (55 mmol) of pivaloyl chloride in 50 ml 
of anhydrous THF was added dropwise and the resulting red-or­
ange mixture heated at reflux for 16 hr. To the cooled reaction 
mixture was added 100 ml of H20, the layers separated, and the 
aqueous phase extracted with ether ( 3 X 5  ml). The combined or­
ganic layers were washed with saturated NaHC03 (1 X 50 ml) and 
brine (1 X 50 ml), dried (MgS04), and concentrated. The crude 
product was chromatographed on silica gel, elution with benzene 
providing pure ester which was then distilled to give 7.3 g (62%) of 
viscous oil, bp 67-75° (0.05 mm). The oil solidified on standing: 
mp 25.5-27.0°; ir (neat) 1724 cm-1; NMR (CCI4) b 1.10 [s, 9 H,

(CH3)3C-], 1.61-1.79 (broad, 6 H, -CH2CO-), 1.95-2.24 (broad, 9
H, -CHCHa-).

Anal. Calcd for Ci5H240 2: C, 76.23; H, 10.24. Found: C, 76.14; H,
10.21.

Reduction Products. Dodecane (6), cyclododecane (9), methyl- 
cyclohexane (12), 5-(n-butyl)nonane (15), and adamantane (19) 
were commercial samples. 1-Adamantyl ethyl ether (18a) was pre­
pared according to the literature.13 Dodecyl ethyl ether (5)14 and 
cyclododecyl ethyl ether (8)15 have been prepared previously but 
full characterization was not readily available in the literature. We 
have prepared them by standard (Williamson) methods and report 
pertinent physical data below.

Dodecyl Ethyl Ether (5): bp 97° (1.25 mm, Kugelrohr); NMR 
(CCU) b 0.89 (t, J  = 6 Hz, 3 H, -CH3), 1.15 (t, J  = 7.5 Hz, 3 H, 
-CH3), 1.29 (broad s, 20 H, -CH2-), 3.35 (q, J  = 6 Hz, 2 H, 
-CH 2O-), 3.39 (q, J  = 7.5 Hz, 2 H, -OCH2-).

Anal. Calcd for CI4H30O: C, 78.43; H, 14.10. Found: C, 78.15; H, 
14.12.

Cyclodocecyl Ethyl Ether (8):16 bp 95° (0.65 mm, Kugelrohr) 
[lit.15 117-119° (3 mm)]; NMR (CC14) b 1.12 (t, J  = 7 Hz, 3 H, 
-CH3), 1.36 (broad s, 22 H, -CH2-), 3.32 (m, unresolved, 1 H, 
CHO-), 3.36 (q, J  = 7 Hz, 2 H, -OCHz-).

Anal. Calcd for Ci4H280: C, 79.18; H, 13.29. Found: C, 79.40; H, 
13.48.

1-Adamantyl Neopentyl Ether (18b).16 According to the gen­
eral method of Pettit,17 a solution of 0.375 g (0.01 mol) of NaBH4 
in 25 ml of anhydrous diglyme was placed in a three-neck 250-ml 
flask and cooled to 0° (ice bath) under a nitrogen atmosphere. To 
this was added over 20 min a solution of 1.19 g (0.005 mol) of 1- 
adamantyl pivalate and 21.25 g (0.15 mol) of freshly distilled boron 
trifluoride etherate in 50 ml of anhydrous THF. Stirring was con­
tinued for 1 hr at 0° and then an additional 1 hr at reflux where­
upon the reaction mixture was cooled and quenched by the careful 
successive addition of 2 AT HC1 (25 ml) and water (50 ml). The 
layers were separated, the aqueous layer extracted with ether (3 X 
50 ml), and the combined organic layers dried (MgS04) and con­
centrated. The residue (containing diglyme) was dissolved in 50 ml 
of petroleum ether and washed with water (3 X 25 ml), dried 
(MgS04), and again concentrated to give 0.843 g of crude product. 
GLC and NMR analysis showed the product to contain the desired 
ether, starting ester, and 1-adamantanol in the approximate ratio 
of 1:2:1. Chromatography (100 g of silica gel, benzene elution) af­
forded 0.212 g of ether (19%), homogeneous by GLC and TLC. The 
analytical sample was prepared by Kugelrohr distillation (85°, 
bath, 0.05 mmHg): NMR (CCI4) b 0.84 [s, 9 H, -C(CH3)3], 1.50-
I. 75 (broad, 12 H, -CH2-), 2.00-2.50 (broad, 3 H, -CH-), 2.95 (s, 2 
H, -OCHa-).

Anal. Calcd for Ci5H260: C, 81.02; H, 11.79. Found: C, 81.08; H, 
11.94.

When this reaction was performed using LiAlH4-boron trifluo­
ride etherate,17 the only observable product was 1-adamantanol 
plus a considerable amount of unreacted ester.

General Photolysis Procedure. The following experiment for 
the reaction of 1-adamantyl acetate with HSiCl3 is typical. Other 
experiments were performed similarly with the molar ratios of 
HSiCl3 and THF to starting ester being as indicated in Table I or 
ref 4.

A solution of 0.500 g (2.58 mmol) of 1-adamantyl acetate, 1.39 g 
(1.04 ml, 10.3 mmol) of HSiCl3, 0.192 g (0.244 ml, 1.29 mmol) of di- 
feri-butyl peroxide, and 4.4 g (5.0 ml, 61.5 mmol) of anhydrous 
THF (doubly distilled from I.1AIH4) was placed in a Pyrex tube 
(ca. 14 mm i.d.) and degassed with three to eight freeze-pump- 
thaw cycles (0.01 mm). After sealing, the tube was irradiated for 5 
hr at a distance of 12 mm from an Hanovia 450-W medium-pres­
sure ultraviolet lamp. The resulting clear solution was diluted with 
50 ml of CH2C12 and then the excess HSiCl3 was destroyed by the 
careful addition (0°, stirring) of 10 ml of water and 2.5 ml of 10% 
NaOH solution. The aqueous layer was extracted with CH2C12 (3 X 
25 ml) and the combined organic layers washed with brine (50 ml) 
and dried (MgSO.i). Gas chromatographic (150°) analysis 
(standardized) of this dilute solution showed two peaks at 79 and 
184 sec, respectively corresponding to adamantane (82%) and ada- 
mantyl ethyl ether (18%). Concentration of the organic material af­
forded 350 mg of crude product, which by NMR analysis was of 
the composition indicated above.

GLC data for the compounds from other experiments, which 
were conducted in a similar fashion, are as given: 1-dodecyl acetate 
(175°, 264 sec), 1-dodecyl ethyl ether (165 sec), dodecane (66 sec); 
cyclododecyl acetate (175°, 220 sec), cyclododecyl ethyl ether (171 
sec), cyclododecane (97 sec); 1-methylcyclohexyl acetate (100°, 168
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sec), 1-methylcyclohexane (74 sec); 5-butyl-5-nonyl acetate (150°, 
209 sec), 5-butylnonane (88 sec); 1-adamantyl pivalate (180°, 261 
sec), 1-adamantyl neopentyl ether (204 sec), adamantane (47 sec).

Registry No.—4, 112-66-3; 5, 3482-63-1; 7, 6221-92-7; 8, 2986- 
53-0; 10, 16737-30-7; 13, 56830-72-9; 15, 17312-63-9; trichlorosi- 
lane, 10025-78-2; 5-n-butyl-5-nonanol, 597-93-3; 1-adamantanol, 
768-95-6; dodecane, 112-40-3; cyclododecane, 294-62-2; 1-methyl- 
cyclohexane, 108-87-2.
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The use of dicarbanions from /3-dicarbonyl compounds 
like /3-diketones and /3-keto esters in y-alkylations and 7 - 
acylations has become a common procedure.1'2 The dicar­
banions 2a-c were investigated in an effort to dimerize 
them into bisacetylacetones (eq 1).

CH3COCH2COCH;, — ► CH.COCHMCOCH.M' — ►
1 2a. M =  M' =  Na

b. M =  Na; M' =  Li
c, M =  M' =  Li

CH ;COCH ,COCH,
(1)

CHCOCHXOCH.

Dimerization of 2,4-pentanedione (1) can lead to three 
possible compounds, 3, 4, and 5.

The 3,3' dimer or symmetrical tetraacetylethane 3 has 
been made by the self-condensation of the monoanion of
2,4-pentanedione in an ether solution of iodine.3'4 The un-

symmetrical 1,3' dimer or 3-acetyloctane-2,5,7-trione, 4, 
was obtained by Gritter and Patmore from copper acetyl- 
acetonate by a free-radical process.5®-11 As for the 1,1' dimer 
or decane-2,4,7,9-tetrone 5, there is no record of such a 
compound in the chemical literature.

0 0

C It C
/  \ H/  \

H,C C OH,

H.,C C CH
V HV

0 o

0

0 ,  CH
\  /

C

H.C

C C CH CH
/  \  /  \  /  \  /

CH CH C
II
0

0 0

c  c  
/  \  /  \  

H.C CH, CH

H.C CH, CH ;

' V  V

0  o
5

Table I provides a representative account of the at­
tempts to obtain 5 by Scheme I. When cuprous chloride or

2

Scheme I
Ou Cl or CoClj X
0° 45 min X = I. Br. O

X = Br. I

cobaltous chloride was used as a catalyst in the reaction be­
tween 2b and iodine, the reaction proceeded very efficient­
ly (entries 1-5). That the tan solid, mp 62-63°, obtained 
from the reactions has structure 5 is supported by several 
pieces of data. For example, this compound is enolic to 
FeCls solution (brown-red color), and its ir and uv spectra 
are similar to those of 1. The :H NM R spectrum of this 
solid has four proton centers, namely, at t 8.02 (singlet) 
and 7.84 (singlet), -C (= 0 )C H 3 (6 H), 7.45 (singlet), C ( =
0)C H zCH2C ( = 0 )  (4 H), 4.64 (singlet), C (= 0 ) C H =  
C ( = 0 )  (2 H), and a broad peak at —4.86 due to enolic pro­
tons (2 H). The mass spectrum (70 eV) of this material 
showed m/e 198 (M + ion). Elemental analysis is consistent 
with the formula C 10H 14O4 (see Experimental Section).

Dilithioacetylacetone (2c, entry 6) did not undergo oxi­
dative dimerization under the same conditions. Since 2c 
was generated in liquid ammonia, which was then replaced 
by THF, traces of ammonia could have interfered rather 
than 2c being inherently unreactive. The use of pyridine to 
solublize the cuprous chloride reduced the reaction period 
markedly, in addition to rendering the work-up procedure 
less tedious (entry 5).

The importance of the cuprous chloride or cobaltous 
chloride catalyst in these reactions as well as the conditions 
of the reactions is illustrated by entries 6-15. In these cases 
where the catalyst was not used, the conditions were 
changed, or other reagents that have been successful in 
coupling monoanions3'4'6-9 were used with the dianions, no 
coupled product 5 could be isolated.

This procedure can be applied to other /3-dicarbonyl 
compounds. As Scheme II illustrates, the method was suc­
cessfully applied to the syntheses of 1,1' dimers of benzo-
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Table I
Results o f  the Dimerization Reactions o f  Acetylacetone via Dianions

No. Dicarbanion Conditions X 2
Mole ratio o f  
dianion :X 2£ Catalyst

% yield o f  
1,1 dimer

1 2b THF, 0 ^  25°, 24 hr, N 2 h 2:1 CuCl« 3 5 -6 0
2 2b THF, 0 -  25°, 24 hr, N2 h 2:1 CuClc 2 0 -4 5
3 2b THF, 0 -  25°, 6 hr, N 2 I* 2:1 CoCld 35
4 2b THF, 0 -*  25°, 22 hr, N2 I. 2:1 C o C l / 33
5 2b THF, 0°, 2 hr, A I, 2:1 CuCl / 45
6 2a NH3, - 3 3 ° ,  1 hr h 2:1 None
7 2a NH3, —33°, 1 hr L 2:1 CuCla None
8 2c THF, 0 -  25°, 24 hr, N2 i. 2:1 CuClfl None
9 2b THF, 0 ->■ 24°, 24 hr, N 2 I, 2:1 None

10 2b THF, - 6 3  -  - 3 0 ° ,  0.5 hr, N 2 Br2 2:1 None
11 2b THF, 0 -  25°, 20 hr, N2 Br2 2:1 CuCH None
12 2b THF, 0 ^  25°, 24 hr, N 2 1 :1* KMnO„ None
13 2b THF, 0 -  25°, 24 hr, N 2 1 :1* CuCl2 None
14 2b THF, - 1 1 0  -+ - 5 0 ° ,  1.5 hr, N 2 o 2 1 :2* CuCl None
15 2b THF, 0 ^  25°, 12 hr, N 2; CoCl2 None

63°, 2 hr, N 2
a Catalytic amount o f  CuCl, 0.75 g. * Ratio o f  dianion to catalyst. c Stoichiom etric amounts o f  CuCl (1 :1  and 1 :2). 

d Stoichiom etric amount o f  CoCl2 (4 :1 ). e Catalytic amount o f  CoC l2, 0.5 g (3.85 m m ol). /2 5  ml o f  pyridine added to  di­
anion solution; catalytic amount o f  CuCl, 0.75 g. S All reactions were run on  0.05-m olar scale except entry 9, which was 
run on 0.025-m olar basis.

Scheme II
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ylacetone and ethyl acetoacetate, namely 6 and 7, in 75 and 
50% yields, respectively. However, the sodiolithio dianion 
o f  phenylacetone, PhCH N aCO CH 2Li, failed to  undergo d i­
merization by  this procedure.

Experimental Section
Infrared spectra were obtained with a Perkin-Elmer 257 grating 

infrared spectrophotometer using KBr pellets. The 1H NMR spec­
tra were obtained using a Varian Model A-60D spectrometer and 
samples dissolved in CCI4 with Me4Si as internal standard. The 
mass spectrum was recorded from a Bell & Howell instrument, 
Model 21-490."

Melting points were determined using open capillary tubes in a 
Thomas-Hoover melting point apparatus. The melting points are 
uncorrected. Elemental analysis of the products was done by Gal­
braith Laboratories Inc., Knoxville, Tenn.

All the reactions involving organometallic compounds were run 
in three-necked round-bottom flasks equipped with serum-capped 
addition funnels in an atmosphere of dry nitrogen. Prior to the in­
troduction of the reagents, the reaction vessel was thoroughly 
dried with a Bunsen burner flame while being purged with a 
stream of nitrogen. Tetrahydrofuran (THF) was refluxed over 
L1AIH4 for 24 hr and distilled in a dry nitrogen atmosphere into

vessels containing freshly drawn sodium ribbons. Commercially 
available anhydrous ether was stored over sodium ribbons. Cu­
prous chloride was freshly prepared and dried at 70° for 30 min. 
Anhydrous cobaltous chloride was kept in a vacuum oven at 150° 
for 24 hr and used immediately. n-Butyllithium (2.4 M  in hexane) 
from Alfa Inorganics was used directly from the bottle.

Dimerization o f 2b Using Cuprous Chloride as Catalyst and 
Iodine (Entry 1). A typical experimental procedure was as fol­
lows. A solution of 2,4-pentanedione (5.0 g, 0.05 mol) in dry THF 
(20 ml) was added dropwise to a stirred suspension of sodium hy­
dride (1.2 g, 0.05 mol) in 30 ml of THF at 0° in a nitrogen atmo­
sphere. The white sodium salt that was formed in 20 min was then 
treated with n-butyllithium in hexane (2.4 M  solution) (29.0 ml, 
0.05 mol). The n-butyllithium was added dropwise from a serum- 
capped addition funnel over 10-15 min. After the yellow solution 
had stirred for 15 min, the reaction flask was cooled to —10°. 
Freshly prepared dry cuprous chloride (0.75 g, 0.0076 mol) was 
added rapidly to the dianion solution and stirred for 45 min. A 
dark brown solution resulted. Prior to the addition of cuprous 
chloride about 30 ml of dry pyridine may be added to 2b in order 
to increase the solubility of the inorganic salt (entry 5). A solution 
of iodine (6.35 g, 0.025 mol) in anhydrous ether (75 ml) was added 
over 10-15 min. The dark brown reaction mixture slowly acquired 
a pale yellowish-brown hue. The reaction mixture was stirred for
8-12 hr and allowed to warm to room temperature. It was cooled to 
0°, poured into chopped ice (50 g), and acidified with cold concen­
trated hydrochloric acid to a pH of 2.0. The organic layer was sepa­
rated and the aqueous phase was extracted with three 35-ml por­
tions of ether in the presence of saturated ammonium chloride so­
lution. The ethereal extract was washed with two 30-ml portions of 
10% sodium thiosulfate solution, followed by washing with two
30-ml portions of saturated sodium chloride solution. Any insolu­
ble material was removed by filtration through glass wool. The or­
ganic extract was dried over anhydrous Na2S04.

The drying agent was removed by filtration and the filtrate on 
evaporation in a rotary evaporator at room temperature gave a yel­
lowish-brown syrup (4.8 g). This was recrystallized from cyclohex­
ane and methyl acetate to obtain 1.8-3.0 g (35-60%) of 5, mp 60- 
62°, a pale yellow crystalline solid. An analytical sample was pre­
pared by two recrystallizations from cyclohexane using Nuchar. 
The product was dried under vacuum at room temperature: mp
62-63°; ir (KBr) i>max 2960, 2900, 1670-1530 (broad), 1400, 1280, 
1190, 1110, 1010, 905, 795, 760 cm-1; uv Xmax (cylohexane) 227 nm 
(log e 4.37).

Anal. Calcd for C10H14O4: C, 60.6; H, 7.07. Found: C, 60.36; H,
7.19.

The compound 5 was converted into its dipyrazole derivative, 
mp 198-200°.

Preparation o f l,6-Dibenzoyl-2,5-diketohexane (6). A solu­
tion of benzoylacetone (8.1 g, 0.05 mol) in THF (30 ml) was added 
dropwise to a stirred suspension of sodium hydride (1.2 g, 0.05 
mol) and 75 ml of THF at 0° under a nitrogen atmosphere. A pale 
yellowish suspension of the monoanion was formed in 15 min.
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About 28.0 ml of n-butyllithium (2.4 M  solution in hexane) was 
then added dropwise over 15 min to form a dark green or greenish- 
blue solution, presumably the sodiolithio dianion of the (J-dike- 
tone. The solution was then cooled to —5° and cuprous chloride 
(0.75 g, 0.0076 mol) was introduced rapidly into the flask. The 
mixture was stirred for 45 min as it turned dark brownish red. As 
described earlier, an iodine solution (6.35 g, 0.025 mol) in ether was 
added and the reaction mixture stirred for 8 hr at room tempera­
ture. The usual work-up procedure gave 7.2 g of an orange-yellow 
syrup which solidified into a yellow mass. This was recrystallized 
(ether and cyclohexane) to obtain 6.0 g (75%) of a pale yellow crys­
talline product, mp 83-85°. An analytical sample was obtained by 
recrystallization from ether at -6 3 ° as yellow needles: mp 89-90° 
[lit.10 92-95° (ethanol)]: ir (KBr) ¿ w  3020, 1710-1620, 1400, 1290, 
750 cm“ 1; *H NMR (CC14) r 7.21 [C (=0)C H 2CH2C (= 0 ), 4 H] 
[whereas for bezoylacetone -C (= 0 )C H 3 is seen as singlet at 7.92], 
393 [s, -C (= 0 )C H = C 0 H , 2 H], 2.67 (ml and 2.30 (m) (-CGH5, 10 
H), and -5 .5  (hump), enolic protons (2 H); uv Amax (cyclohexane) 
315, 248, and 216 nm (log < 4.57, 3.6, and 4.32, respectively).

Anal. Calcd for C20H18O4: C, 74.60; H, 5.59. Found: C, 74.64; H,
5.77.

Preparation o f Bis(ethyl acetoacetate) (7). The dianion of 
ethyl acetoacetate (0.05 mol) was generated by the procedure of 
Weiler et al. After cooling the yellowish-red solution to —5°, a cu­
prous chloride (0.75 g) was added and stirred for 45 min to obtain a 
dark solution. This organocopper reagent was then oxidized as be­
fore with iodine solution. The reaction mixture was stirred at 0° 
for 1-5 hr. The reaction mixture was poured onto chopped ice (30 
g) and carefully neutralized with cold dilute 30% hydrochloric acid. 
The organic phase was separated and the aqueous layer was ex­
tracted with three 35-ml portions of ether. The ethereal solution 
was treated as before to obtain 6.8 g of a yellow-brown syrup.

This was triturated in petroleum ether (bp 35-60°) and ethyl ac­
etate (10:1 v/v) and cooled to —63° (chloroform slush bath) as a 
white solid formed. The solid was suction filtered and air dried, 3.2 
g (50%), mp 40-42°. An analytical sample was obtained by recrys­
tallizations from petroleum ether and absolute ethanol at —63°:

mp 47-48°; ir (KBr) ¡ w  2990, 1750-1690 cm“ 1; ‘ H NMR (CC14) r
8.8 (t, -OCH2CH:!, 6 H), 7.20 [s, C (= 0 )C H 2CH2C (= 0 ), 4 H], 6.65 
[s, C (= 0 )C H 2C (= 0 ), 4 H], and 5.9 (q, -OCH2CH3, 4 H).

Anal. Calcd for CioH isOb: C, 55.82; H, 6.98. Found: C, 55.68; H,
7.10.

Generation o f Dicarbanions 2a and 2c. The dianions were 
generated by the procedure of Hauser et al.lh from 5.0 g (0.05 mol) 
of 2,4-pentanedione and 2 molar equiv (0.1 mol) of MNH2 (M = 
Na or Li).

Non-Copper-Catalyzed Reactions. The dianions were treated 
as indicated in Table I, entries 6-15. In each case a viscous oil 
which could not be crystallized to produce any 5 was obtained. Gas 
chromatography showed several components, including in several 
cases some 1.

Registry No.— 1, 123-54-6; 2, 56830-65-0; 3, 56580-16-6; 4, 
56830-66-1; 5, 56830-67-2; 6, 56830-68-3; 7, 56830-69-4; cuprous 
chloride, 7758-89-6; benzoylacetone, 93-91-4; ethyl acetoacetate, 
141-97-9.
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1469
Aluminum alkyl catalyst metathesis 2983 
Aluminum hydride aryloxy 926 
Aluminum trialkyl alkylation 1099 
Amide alkali chlorotoluene 1835 
Amide bond conjugation transmission 1519 
Amide chloro photolysis chlorination 2186 
Amide hydrolysis 1187 
Amide lithium chlorobicyclic epoxide 1694 
Amide oxidative rearrangement 3554 
Amide reaction pentaphenylcyclopentadienol 

3015Amide thio cyclization chlorocarbonylphe— 
nylketene 2596

Amide vinylogous diazotization 3874 
Amidine nitroso nucleophile 153 
Amidosulfite hydrolysis kinetics 949 
Amidoxime rotational barrier 2979 
Amidyl hydrogen abstraction 2192 
Amination hydroxybenzylphosphine 1373 
Amination redn formyl lactone 3474 
Amine acetylenedicarbonyl fluoride 420 
Amine acylation solvation effect 378 
Amine addn isonitrile palladium chloride 

2981
Amine alkylation carboxylic acid borohydride 

3453
Amine configuration detn 3093 
Amine di arom 1090 
Amine diaryl 3349 
Amine diphenyl cyclization 1365 
Amine disulfonimide reductive deamination 

2018
Amine hindered acyclic stereochem 2710
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Amine hydrogen donor 237 
Amine hydrolysis phosphate micelle 2313 
Amine hydroxy fluorodehydroxylation 3808 
Amine lithio sulfur dioxide 3291 
Amine methyl photolysis soin 969 
Amine méthylation kinetics 1308 
Amine oxide redn 2282 
Amine phenothiazine cation reaction 2590 
Amine protonation hydrogen bond 1795 
Amine psychotomimetic configuration 1562 
Amine ring cleavage chloronitroisothiazole 

955
Amine secondary degrdn 2891
Amine terpene stereochem 2897
Amino acid acetoxyaldehyde condensation

3003
Amino acid acetoxystyrene adduct 3464 
Amino acid acylation 1260 
Amino acid butoxycarbonyl decompn 1507 
Amino acid coupling 2697 
Amino acid cyclohexane coupling 350 
Amino acid hydroxy fluorodehydroxylation 

3808
Amino acid indole 1260 
Amino acid methyl resolution 953 
Amino acid partial deesterification 3287 
Amino acid reaction cyclopropanone 1505 
Amino acid resolution 2635 
Amino ale bicyclic stereoisomer 3658 
Amino ale deamination 961 
Amino ale phosphorylation 2310 
Amino estër 2985 
Amino ether crown compd 151 
Aminoacetanilide hydrochloride dissocn 

const 1517
Aminoalkylphthalide redn 1427 
Aminoazetidinone reaction 3510 
Aminobenzanilide reaction const ionization 

1519
Aminobenzimidazole 438 
Aminobenzoate reaction pyrimidotriazine 

2205
Aminobenzoic acid hydrogenation 1074 
Aminobenzylimidazoquinazoline UV model

356
Aminocarbene palladium complex oxidn 

2981
Aminochloropropanol resoln antifertility 

1653
Aminocholesterol NMR 1674 
Aminocyclitol 456
Aminocycloalkyl sulfone hydrolysis 2282 
Aminocyclopropyl sulfide oxygenation photo 

3079
Aminodeoxyaltrose 2471 
Aminodihydropteridine alkylation 145 
Aminododecane redn nitrododecane 519 
Aminoenones isoxazole hydrogenation 526 
Aminoethanethiol aliph arom 1224 
Aminoethylphthalimidine 382 
Aminohydroxymethylpteridinedione 2336 
Aminoimidazoquinazoline 356 363 
Aminoisoquinolone fluorescence 1760 
Aminolactam ring expansion 3510 
Aminomaleonitrile reaction acetaldehyde 

2678
Aminomalonate cyclization isocyanate 3414 
Aminomethylbicyclononanol diazotization 

444
Aminomethylphenoxymethyl polymer pep° 

tide 2995
Aminonicotinaldehyde cyclization cyclohexa0 

nedione 3407
Aminonitrophenyl phosphate phosphoryla0 

tion ale 2310
AminooXadiaiolidinone 3112 
Aminophenol tetraacetyl cyclization 1495 
Aminophosphonate Mannich 2851 
Aminophosphonic acid dipeptide 470 
Aminopropanol conformation NMR IR 

3551'
Aminopteridinone 2332 
Ammopÿridine reaction diphenylcycloprope° 

none 1440
Aminopyridinium reaction azirine 544 
Aminopyrimidine oxide 3304 
Aminopyrimidinecarboxaldehyde reaction 

ketomethylene 2566 
Aminoquinone diazotization 3874 
Aminosulfenyl chloride racemization 752 
Amirlotetralin phenyl 1216 
Aminothymidine oligonucleotide 1659 
Ammonia lithium redn chlorooxanorcarane 

2238
Ammonium acetate cyclization phenanthre0 

nequinone 1641
Ammonium acetyl phosphate 2516 
Ammonium quaternary déméthylation 531 
Ammonium reaction organolithium stereo0 

chem 1457
Amphetamine chloro Cotton effect 1562 
Androstadienone trifluoromethyl 672

Androstanedione reaction allylnickel 593 
Androstanol hydroxymethylmethyl 2079 
Androstanone sodiobutadiyne 1420 
Androstenepropiolic acid decompn 1328 
Androstenolone formylation 1989 
Androstenone sodiobutadiyne 1420 
Anhydride cyclic sulfonate sulfate 1179 
Anhydride poly 1101 
Anhydride reaction pyridine oxide 1313 
Anhydride reation pyridine oxide 3196 
Anhydrogliotoxin activity stereochem 2147 
Anil salicylaldéhyde deriv electrochem 875 
Anilide methanolysis mechanism 2906 
Aniline acetylenedicarbonyl fluoride 423 
Aniline alkyldinitro redn rearrangement 

1863
Aniline complex rotation 2003 
Aniline cyanobenzal acylation 495 
Aniline cyclization phosphorus chloride 766 
Aniline dichloroalkylidene substitution rear° 

rangement 3749
Aniline hydrobromide indirect bromination 

1867
Aniline lithio silyl keto 1090 
Aniline nitrobenzene carbon monoxide cata° 

lyst 2819
Aniline oxide substituent effect 77 
Aniline protective group trimethylsilyl 1090 
Anilinium halide rearrangement 1677 
Anion aryl equiv synthesis 231 
Anion enolate oxidn 3253 
Anion radical butenedioate conformation 

2391
Anion radical oxabicycloheptenedione MO 

2443
Anion radical tetraquinocyclobutane ESR 

2300
Anionic addn dimethylamine isoprene 967 
Anisole fluorination xenon difluoride 807 
Anisole substitution phosphorus trichloride 

343
Anisotropy hydroxyl methylpropylcyclopen° 

tanediol 2241 
Anisylamine di 3349
Annélation photochem formyl ketone alkene 

1865
Annélation phthalazine 2901 
Annélation pyrroline vinyl ketone 3495 
Annélation Robinson enamino ketone 862 
Annélation sequence naphthyridine 2566 
Anodic acétoxylation dimethoxybenzene 

3805
Anodic acétoxylation methoxycarbonyl car° 

boxynorborane 2221 
Anodic furan oxidn 122 
Anodic oxidn coordination compd 804 
Anthracene fluorination xenon difluoride 

3796
Anthracene methylenebis 1800 
Anthracene nitrobenzene charge transfer 

3726
Anthracene silyl 3097 
Anthrone coupling 268 
Anthrylmethane cyclization irradn 1800 
Anthrylmethanol rearrangement 1800 
Antibiotic depsipeptide lactone quinoxaline 

3110
Antibiotic fervenulin 2321 
Antibiotic gentamicin 2830 
Anticoccidial norpyridoxol ester 1051 
Antifertility aminochloropropanol 1653 
Antifertility secoestratrienediol 685 
Antileukemic quassinoid Brucea 648 
Antileukemic quassinoid Pierreodendron 

654
Antitumor thiofolic acid 1745 
Antitumor vernolepin analog 2970 
Aplysia dactylomela dactylyne 665 
Apomorphine morphinan analogs precursors 

3810
Aporphine alkaloid dehydrogenation 3601 
App automatic gasimetry 3154 
Arabinofuranoside purinyl isonucleoside 

1923
Arabinopyranosylpurine 2372 
Arabinopyranosylpyrimidine 2372 
Arabinose oxidn vanadium 1248 
Arachidonic acid 348 
Araliph halo sulfone 3778 
Arene oxalate IR  chemiluminescence 330 
Arenesulfenyl chloride addn quadricyclene 

3032
Armepavine laudanosine Ullmann 1553 
Arom acyl chloride halogénation 3420 
Arom ale 593 
Arom ale fluorination 574 
Arom ale oxidn 1992 
Arom aldehyde hydroxylation -3427 
Arom amine alkylation 3453 
Arom aminoethanethiol 1224 
Arom ester reaction naphthalenide 3144 
Arom ether sulfide kinetics substitution 

3777

Arom hydrocarbon resonance reactivity 
ealen 3583

Arom Nef reaction mechanism 3746 
Arom nitrile 126
Arom thio ketone desulfurization 2694 
Aromatic hydrocarbons phénylation redn 

aldehydes ketones 3810 
Aromatic hydrocarbons redn aldehydes 

ketones 972
Aromatization enamino ester 800 
Aromatization silyldihydroanthracene 3097 
Arsenic trichloride diarylamine cyclization 

2684
Arsine trimethyl quaternization 3801
Artemisia chrysanthemol formation 2576
Aryl aldehyde 2021
Aryl anion equiv synthesis 231
Aryl azoalkane 1902
Aryl butanedione 1131
Aryl disulfide insertion reaction 2774
Aryl ethylenediamine 558
Aryl Grignard nitrosyl chloride 3349
Aryl halide displacement nickel 2267
Aryl halide redn 3159
Aryl halomethyl sulfone conversion 266
Aryl iodide nitro 3441
Aryl ketone 267
Aryl lauryl elimination selenoxide 947 
Aryl nitrenes addn olefins 3810 
Aryl nitro compd redn 761 
Aryl phosphine photoelectron spectra 1292 
Aryl phosphonous dichloride 343 
Aryl sulfinylamine 3291 
Aryi sulfone cyclization dibenzothiazepine 

889 ;
Aryl trithioorthoacetate acylation 963 
Arylacetate decarboxylation cobalt 3647 
Arylamine arsenic trichloride cyclization 

2684
Aryldibutylcarbinyl nitrobenzoate solvolysis 

3303
Aryldimethyliminosulfurane 2758 
Arylmercury hydrogenation carbonylation 

catalyst 1364
Arylnitrogen palladium carbonylation corn0 

plex 2667
Aryloxazoline lithiation 3158 
Aryloxyaluminum hydride redn cyclohexa0 

none 926
Aryloxydioxaphosphole oxide reaction ale 

2849
Arylphosphonous dichloride 3586 
Arylsulfonylmethyl perchlorate solvolvsis 

3292
Arylthallium trifluoroacetate 2351 
Arylthiopyridinedicarbonitrile 799 
Arylurea 28Ï9
Aspartate copper hydrolysis 3287 
Aspartate succinimide 2495 
Asperopterin B total synthesis 2336 
Aspidospermine didehydro 1588 
Astilbin configuration 1057 
Asym hydroboration benzonorbornadiene 

1533
Asym synthesis alkylbutyrolactone 1186 
Asym synthesis tetralindiol phenylcyclohexa0 

nediol 3467
Asymmetric synthesis oxaziridine 3878 
Asymmetric synthesis phenylbutanoic acid 

1649
Attractant insect heneicosenone 1593 
Automatic gasimetry quant alkene 3154 
Autoxidn fatty acid prostaglandin 3615 
Axerophtene dehydro demethyl 3460 
Azaaminopterin bacteriostat 2205 
Azaannulene valence tautomerism 902 
Azabenzoxiodolyl chloride 2129 
Azabidyclodecatriene oxymercuration 136 
Azabicyclohexane chloro benzyl cyclization 

2419
Azabicyclononane conformation NMR carbon

3222
Azabicyclononanedione ring contraction 

1264
Azabicyclooctanecarboxylic acid oxo 1264 
Azabicyclooctanone 1074 
Azabicyclooctyl halide solvolysis participation 

2567 >
Azabullvalene oxymercuration 136 
Azacyclazine electrophilic substitution 3065 
Azacyclazine MO ealen 1210 
Azacycloheptane dihydroxytetramethyl 

stereochem 2710
Azacyclooctane conformation NMR 369 
Azadithiole imino 1728 
Azaestratriene 50 
Azânorbornene 2551 
Azanorbornene bromination 161 
Azasilabicycloheptanone 582 
Azatricycloheptane phenyl 2419 
Azaxanthene hydroxylamine 1734 
Azëpinoquinazoline octahydro ring cleavage 

3062



3928 J. Org. Chem., Vol 40, 1975 KEYWORD INDEX

Azetidine 2990
Azetidine imino cycloaddn azide 2045 
Azetidine methoxy pyrolysis 1349 
Azetidinecarboxylate 2360 
Azetidinone amino reaction 3510 
Azetidinone' carboxy 1264 
Azetidinone dimethyl acylamino 909 
Azetidinone spiro 3502 
Azetidinopyridinedicarboxylate valence 

tautomerism 3363
Azetine addn toluenesulfonyl isocyanate 

2356
Azide acyl cyclization 1906 
Azide allenimine reaction 2045 
Azide benzenedisulfonyl thermolysis 883 
Azide benzenesulfonyl thermolysis 1525 
Azide carbamoyl Curtius photochem rear— 

rangement 2608
Azide cycloaddn diazabicycloheptene 563 
Azide cyclopropanecarbonyl cleavage 115 
Azide iodine addn tricyclodecadiene 3631 
Azide phenyl cyclization methylenecyelopro- 

panecarboxylate 2042 
Azide phenyl enamine cycloaddn 819 
Azide photolysis sensitizer 2243 
Azide reaction maleic anhydride 743 
Azide reaction pyrimidotriazine 2205 
Azido aminothymidine nucleotide 1659 
Azido ketone reaction oxo ester 1549 
Azidochlorobenzophenone cyclization acetyl= 

enedicarboxylate 894 
Azidocholesterol NMR 1674 
Azidodimethoxytriazine photocycloaddn 

1351
Azidoformate thermolysis dimethylbutene 

3396
Azidosulfonylcarbanilate hydroxyalkyl 802
Azine chlorination 1902
Azine cyclohexanone addn hydrogen sulfide

2573
Azine hydrogenation 2729 
Azine polybromo debromination 3285 
Azine reaction sodium methoxide 441 
Aziridine addn sulfonylacetylene stereochem 

3200
Aziridine carbaniloyl isomerization 3536 
Aziridine carbethoxy isomerization 224 
Aziridine cyclization sulfur ylide 2990 
Aziridine phenyl 1541 2048 
Aziridinobenzoxazine 1906 
Aziridinodiazabicycloheptene nitrogen extru^ 

sion 563
Aziridinopyrazine rearrangement 1683 
Azirine benzyne 3784 
Azirine cycloaddn carbon disulfide 1348 
Azirine reaction aminopyridinium 544 
Azo compd cycloaddn fiilvene 1201 
Azo dioxide 1409 
Azo dioxide bicyclic 1405 
Azo dioxide polycyclic 1395 
Azoalkane aryl 1902
Azoalkane chloro solvolysis kinetics 3529 
Azobenzene halo substitution reaction 2421 
Azobenzene MO eleetrochem 875 
Azodicar boxy late cycloaddn fulvene 1201 
Azoethene tetrabromo 3285 
Azoethynylbenzene phenyl 124 
Azole silanimidazothiazole 437 
Azomethine imine cycloaddn sulfene 2260 
Azulene tetracyanoethylene oxide mechanism 

3224
Azuleneethanol tosylate nosylate acetolysis 

kinetics 1689 
Azulenone 858
Backbone rearrangement cholestenyl acetate 

2005
Bactericide epimethylenethiopiperazinoindole 

stereochem 2147 
Bactericide pyranone 1610 
Bactericide thiofolic acid 1745 
Bacteriostat azaaminopterin 2205 
Baeyer Villiger oxidn tetracyclooctane 835 
Barbaralane methylene protonation NMR 

700
Barbiturate aminopropyl isomerization 

1576
Barrier rotation aryl sulfoxide 2537 
Barrier rotation nitrogen heterocycle 3547 
Barrier rotational paracyclophane 1946 
Basicity aniline oxide 77 
Basicity diamine 1795 
Basketene cycloaddn dichlorocarbene 3322 
Beckmann rearrangement methanoannule^ 

none oxime 902 
Bee pheromone 148
Behrend rearrangement mechanism 2504 
Benzal benzil monoazine reaction 441 
Benzalacetone oxime nitrosation cyclization 

816
Benzalacetone redn cyanoborohydride 2530 
Benzalacetophenone fluoro 935 
Benzaldehyde acetalation catalyst 959

Benzaldehyde acylhvdrazone hydrolysis 
3450

Benzaldehyde addn bisulfite sulfite 1632 
Benzaldehyde addn lithium lithioallyloxide 

2975
Benzaldehyde aldehyde group protection 

558
Benzaldehyde anil MO eleetrochem 875 
Benzaldehyde Darzens chlorodiazoacetone 

3521
Benzaldehyde Darzens condensation 3173 
Benzaldehyde hexyne irradn 529 
Benzaldehyde imine phosphine oxide 2053 
Benzaldehyde oxidn sulfonyl peroxide 2426 
Benzaldehyde phenalenonyl cyclization 

2650
Benzaldehyde phosphine oxide 2056 
Benzaldehyde reaction allylnickel 593 
Benzaldehyde Wittig lithiated sulfoxide 

1979
Benzaldoxime nitro dehydration displace^ 

ment 2878
Benzamide hydrolysis 1187 
Benzamide iodo dichloride disproportionation 

2129
Benzamidoxime rotational barrier 2979 
Benzanilide cyclization 1365 
Benzanthracenediol 3411 
Benzanthrone carbethoxymethyl 3283 
Benzazepinedione diazotization 3874 
Benzazine hydrogenation' 2729 
Benzazocine rearrangement indanoaziridine 

cycloadduct 175 
Benzene cycloalkyl 271 
Benzene deriv chlorométhylation 3101 
Benzene deriv nitrophenylsulfonoxylation 

kinetics 2426
Benzene dimethoxy anodic acétoxylation 

3805
Benzene méthylation homolytic 2099 
Benzene nitro deoxygenation 761 
Benzene nitrobenzene charge transfer 3726 
Benzene oxide addn oxygen 3743 
Benzene pyrazolyl radical 915 
Benzene pyridyl phenyl 3514 
Benzeneacylium tetrahalo electrophilic reac­

tiv ity  1101
Benzenecarboxamide oxidative rearrange­

ment 3554
Benzenedialkanoate Dieckmann condensation 

1493
Benzenedisulfonyl azide thermolysis 883 
Benzenemethanol trichloromethyl conversion 

methoxyphenylacetate 339 
Benzeneselenenamide addn aliph enone 

3313
Benzenesulfinate reaction diphenylthiirene 

dioxide 3189
Benzenesulfonyl azide thermolysis 1525 
Benzenesulfonyl peroxide decompn alkyl^ 

benzene 2278
Benzenesulfonylhydrazine dinitro cleavage 

ketone 579
Benzenethiol bromo reaction furan 966 
Benzethanobenzisoindolecarboxylate lactone 

2875
Benzhydryl ether photoreaction 2406 
Benzhydryl sulfide photoreaction 2406 
Benzhydryllithium reaction phenethylammo^ 

nium stereochem 1457 
Benzidine rearrangements 703 
Benzil 1990
Benzil benzal monoazine reaction 441 
Benzil reaction allylnickel 593 
Benzimidazo amino 438 
Benzimidazole mercapto bromomethyldimet- 

hylchlorosilane 437 
Benzimidazole oxide acylamination 41 
Benzimidazolone 552 
Benziodathiazole 797 
Benzisothiazolinone 2029 
Benzoadenine prox dist 363 
Benzoate acetvl cyclization naphthalene 

2996
Benzoate alkenyl condensation 1094 
Benzoate carbalkoxylation iodobenzene 532 
Benzoate carbonylation phenylmercury 

1364
Benzoate enol stereochem 2816 
Benzoate halogen reaction 2029 
Benzochlorophenium ion intermediate 1107 
Benzocrown amino ether 151 
Benzocycloalkenyl aldehyde decarbonylation 

3641
Benzocyclobutene propenyl 1355 
Benzocycloheptenone bromination dehydro^ 

bromination 2965
Benzodiazacycloundecine hexahydromethyl

3062
Benzodiazepine oxide nitrosomethylamino 

nucleophile 153 
Benzodiazepinone chloro 1508

Benzofuran cycloalkano 2859 
Benzofurancarboxylic acid polyphenolic 

1804
Benzofurandione 1166 
Benzofuranobenzopyranone 3169 
Benzofuranone tetrahydro 2402 
Benzofurazan irradn 2880 
Benzofurazan oxide reaction mercaptoketone 

157
Benzoheptafulvene 695 
Benzohydrazonyl bromide benzotriazine 

reaction 2131 
Benzoic acid 3803 
Benzoic acid deuterio 3158 
Benzoic acid protective group 2962 
Benzoic acid pyridyldiazomethane oxide 

1391
Benzoic hydrazide irradn 19 
Benzoin cyclization hexamethylphosphoric 

triamide 1672
Benzoin oxime cyclization fragmentation 

3735
Benzoin phenyl cleavage kinetics 318
Benzolog adenine 356
Benzologs adenine 363
Benzomorphan methyl déméthylation 1850
Benzonaphthalene cation precursor 1974
Benzonaphthyridine 3407
Benzonitrile 126
Benzonitrile oxide butenyloxy cycloaddn 

2403
Benzonorbornadiene asym hydroboration 

1533
Benzonorbornenecarboxylate 2542 
Benzonorbornenyl compd prepn configura­

tion 1533
Benzooxadiazole pyrimidinyl 1559 
Benzophenone anil acylation 495 
Benzophenone azido cyclization acetylenedi= 

carboxylate 894
Benzophenone cyanonitramine 1681 
Benzophenone thio desulfurization 2694 
Benzopinacol decafluoro 1173 
Benzopyran 2963
Benzopyranopyridinone hydroxylamine 

1734
Benzopyrazole ring contraction 3502 
Benzopyrene 2650 
Benzopyrenequinone 3283 
Benzopyridinophanol substitution 3142 
Benzoquinoline hydrogenation 2729 
Benzoquinone adduct epoxide Favorskii 

3519Benzoquinone dimethoxy déméthylation 
2548

Benzoquinone dioxime reaction pyruvaldeh= 
yde 157

Benzospirononatriene 695 
Benzothiazine alkylation 3453 
Benzothiazinylphosphonate 1731 
Benzothiazole 144 
Benzothienobenzopyranone 3169 
Benzothienoquinolinone dihydro crystal 

structure 3001
Benzothiophenecarboxanilide photocycliza= 

tion 3001
Benzotriazepinedione dihydro 1909 
Benzotriazine benzohydrazonyl bromide 

reaction 2131
Benzotropilidene cyclization migration irradn 

1280
Benzotropone 2965 
Benzoxazole 144 
Benzoxazole silylenebis 1495 
Benzoxazolinone hydro 1166 
Benzoyl chloride hydrazone anion 514 
Benzoyl chloride oxidn tropanol 2998 
Benzoyl halide insertion sulfur trioxide 

2937
Benzoylation methylthioimidazopyrazine 

3379
Benzoylmethanesulfonate condensation 

salicylaldéhyde 880
Benzoyloxybenzoate phenyl liq crystal 2998 
Benzyl acetoinyl alkyl phosphate 2849 
Benzyl ale 1678 
Benzyl ale chlorination 1669 
Benzyl ale nitrophenylsulfonoxylation kinet­

ics 2426
Benzyl ale redn lithium ammonia 3151 
Benzyl alkylene disulfoxide 3152 
Benzyl group eleetrochem removal 1356 
Benzyl phosphate hydrogenolysis catalytic 

3652
Benzyl sultam 1525
Benzylamine hydrochloride dissocn const 

1517
Benzylamine iodo cyclization 2883 
Benzylation débenzylation nucleoside 1856 
Benzylbromopyrrole 3161 
Benzylcyclohexaneacetic acid cyclization 

3844
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Benzylcyclohexanecarboxylic acid cyclization 
3839

Benzylic ale reductive coupling 2687 
Benzylidene trichloride hydrolysis surfactant

3803
Benzyloxyheptadecanoate 779 
Benzyloxymethyl protective group 2962 
Benzyloxypyridinium salt alkyl 2365 
Benzyloxyurea oxidn 552 
Benzyne cycloaddn pentadiene 1355 
Benzyne diphenylazirine 3784 
Beta lactone 3173 
Betaine crystal structure 3189 
Bicyclic amino ale stereoisomer 3658 
Bicyclic bromide bridgehead méthylation 

16?8
Bicyclic chloro epoxide rearrangement 1694 
Bicyclic lactam 1074 
Bicyclic nucleoside 2476 
Bicyclic sultone crystal structure 3308 
Bicyclo deriv pyrazole 1036 
Bicycloalkadiene rearrangement mechanism 

1702
Bicycloalkane polymethylene rearrangement 

1483
Bieycloalkanone 858
Bicyclodecane butadiene addn cyclohexene 

538
Bicyclodecanedione internal aldol cyclization 

2086
Bicyclodecatetraene cycloaddn dichlorocarb0 

ene 3322
Bicyclodecatrienone chem stereochem 2446 
Bicyclodecenedione 2841 
Bicycloheptane acetate hydroxy solvolysis 

2070
Bicycloheptane bromo méthylation 1638 
Bicycloheptane cleavage regioselectivity 

stereochem 3233
Bicycloheptanone enamine cycloaddn propy° 

noate 3319
Bicycloheptene chloromethyl 824 
Bicycloheptene oxide chloro lithium amide 

1694
Bicycloheptenyl nitrobenzoate solvolysis 

414
Bicycloheptenyl tosylate solvolysis steric 

effect 2656
Bicycloheptenylium stabilization homoallylic 

414
Bicycloheptyl semiquinone ESR 2255 
Bicyclohexane rearrangement 1017 
Bicyclohexenyl carbonium carbon NMR

3259
Bicyclononadienone 505 
Bicyclononanol aminomethyl deamination 

444
Bicyclononanol ammoniomethyl cyclization 

1183
Bicyclononatriene methylene protonation 

NMR 700
Bicyclononatrienone redn 505 
Bicyclononatrienyl cation 700 
Bicyclononatrienyl system nonbonded inter0 

action 2459
Bicyclonone cyclopropane unsatn interaction 

284
Bicyclononenone 3604 
Bicyclononenone conformation 3319 
Bicyclooctadienone vinyl 2446 
Bicyclooctane alkyl 1027 
Bicyclooctane aza 1264 
Bicyclooctane bromo méthylation 1638 
Bicyclooctane trimethylene rearrangement 

276
Bicyclooctanedione dimethyl 2681 
Bicyclooctanone methoxy NMR 1665 
Bicyclooctene oxide chloro lithium amide 

1694
Bicyclooctenol methyl NMR europium 1952 
Bicyclooctenone 215 806 
Bicyclooctenone bromobenzo prepn 1031 
Bicyclooctenone dimethyl strain tautomeri0 

zation 1699 
Bidithiole 2002
Biphenyl nitro deoxygenation 761 
Birch redn paracyclophanecarboxylate 1942 
Bisabolene 389
Bisallyl diradicai dimethylenecyclobutane 

interconversion 942 
Bisbenzyliscquinoline alkaloid 1553 
Bisbenzylisoquinoline alkaloid Abuta 2647 
Biscyclododecylidene cycloalkylidene triper° 

oxide pyrolysis 691 
Biscystine peptide 3697 
Bishomocubyl deriv NMR 2380 
Bishomotropylium cation 700 
Bismuthate oxidative coupling catalyst 

1515
Bisphosphate bromobutanonediol labeling 

enzyme 2638 
Bispidinone dimethyl 251

Bisquinazolinothiadiazole dioxide 2743 
Bisulfite addn benzaldehyde 1632 
Boll weevil pheromone cyclohexylidenemeth0 

anol 2154
Bond amide conjugation transmission 1519 
Bond double interaction cyclopropane 284 
Bond double monoterpene photooxygenation

2259
Bond formation metal assisted 3621 
Bond mercurinium 3638 
Bond NMR boron org 3434 
Bonding hydrogen intramol tropine 3694 
Borabicyclononane cyclohexenone carbonyl 

redn 1864
Borabicyclononane gasimetry 3154 
Borane catechol redn ketone 1834 
Borane dialkylchloro reaction aldimine 

3644
Borane org homologation 814 
Borane organo oxidn 1776 
Borane triphenyl redn amine oxide 2282 
Borate acyl halide transalkylation 1676 
Borate alkynyltrialkyl protonation 2845 
Borate ester induced decompn 1875 
Boric acid phenol coordination compd 804 
Borneol fluorination 574 
Borneol oxidn catalyst 1860 
Borodidiolate coordination compd salt 804 
Borohydride carboxylic acid alkylation amine 

3453
Borohydride cyano redn carbonyl 2530 
Borohydride redn ammonium salt 531 
Borohydride redn sulfonimide 2018 
Boron fluoride steroid NMR 1244 
Boron org NMR bond 3434 
Boron trifluoride complexation cyclic ketone 

3155
Boronate alpha chloro rearrangement elim i° 

nation 813
Boronic acid alkenyl bromination 1189 
Boronic acid thienothiophenyl oxidn 3384 
Botryodiplodin prepn 3309 
Branched carbohydrate configuration 1061 
Bridgehead méthylation bicyclic bromide 

1638
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Cyclization methylpyridinecarbonitrile 559 
Cyclization naphthylphthalide 3283 
Cyclization nitrosation benzalacetone oxime 

816
Cyclization oxadiazolamine sulfenyl chloride 

2600
Cyclization oxidn Schiff base 3878 
Cyclization pentaoxapentacosanodinitrile 

2863
Cyclization perfluoroalkyl malonate 851 
Cyclization phenalenonylbenzaldehyde 2650 
Cyclization phenanthrenequinone ammonium 

acetate 1641
Cyclization phenothiazinecarbonyl isothioc— 

yanate 1914
Cyclization phenyl ether acyl chloride 2304 
Cyclization phenylacetate bromo aldehyde 

3.139.Cyclization phenylhydroxybutanone 2692 
Cyclization phenylpentanol 1454 
Cyclization phenylpropionate 2974 
Cyclization phenylselenylpentanedione pho- 

tochem 3466
Cyclization phenylthioxopropylpyrimidinea0 

mine 1745
Cyclization phosphorus chloride aniline 766 
Cyclization photo benzothiophenecarboxani° 

lide 3001
Cyclization photo olefmic chloroamide 1287 
Cyclization photochem indole chloroacetyl 

2613
Cyclization phthalaldehydic acid naphthalene 

2996
Cyclization phthalide hydrazine 2208 
Cyclization polyene triterpene 1000 
Cyclization pyrazinemethanamine carbon 

disulfide 3379
Cyclization pyrolysis butynylcyclopentanone 

1699
Cyclization quinolinecarboxylate 796 
Cyclization reductive aminobenzoic acid 

1074
Cyclization secoestratrienedione 3124 
Cyclization stilbenediamine dibromopropa° 

none 1683
Cyclization sulfenamide 2029 
Cyclization sulfide halomethylphenanthrene 

477
Cyclization tetraacetyl aminophenol 1495 
Cyclization thiadiazole dioxide 2743 
Cyclization thiadiazolediamino sulfur chlo° 

ride 2749
Cyclization thianaphthenone salicylaldehyde 

3169

Cyclization thiazolineamine benzoyl isothio0 
cyanate 2000

Cyclization thiosemicarbazide trichlorome0 
thylmethanol 1917

Cyclization thiourea chlorocarbonylphenylk= 
etene 2596

Cyclization transannular cyclooctane 3312 
Cyclization transannular epoxytricyclodecene 

1642
Cyclization vinylphosphonium mercapto 

ketone 1294
Cycloabeocholestenone 3786 
Cycloaddn acetylene deriv 810 
Cycloaddn acetylene oxadiazinone oxide 

3402
Cycloaddn acetylenedicarboxylate mun° 

chnone 1260
Cycloaddn aliéné carbethoxynitrene 224 
Cycloaddn allonamidoxime 2481 
Cycloaddn azide diazabicycloheptene 563 
Cycloaddn azide imino azetidine 2045 
Cycloaddn azomethine imine sulfene 2260 
Cycloaddn benzyne pentadiene 1355 
Cycloaddn bicycloheptanone enamine propyl 

noate 3319
Cvcloaddn butenyloxybenzonitrile oxide 

2403
Cycloaddn carbene cyclic hydrocarbon 3322 
Cycloaddn carbene enamine 2282 
Cycloaddn carbon disulfide azirine 1348 
Cycloaddn cephem nitrone 2411 
Cycloaddn chloropropene cyclopentadiene 

824
Cycloaddn diazomethane diphenylketene 

1046
Cycloaddn dichlorocarbene pyran 2234 
Cycloaddn diphenyldiazomethane norborna0 

diene 1036
Cycloaddn enamine butadienephosphonate 

2851
Cycloaddn enamine propiolactone 50 
Cycloaddn fulvene azo compd 1201 
Cycloaddn hydrazine isocyanatobenzoyl 

chloride 1909
Cycloaddn imino ether butylcyanoketene 

2552
Cycloaddn indanoaziridinimine irradn 175 
Cycloaddn isocyanate imino ether mechanism 

2356
Cycloaddn isothianaphthylene dioxide 72 
Cycloaddn methoxyethene indolone 117 
Cycloaddn nitrene olefin 1541 
Cycloaddn nitroisoquinolinium alkene 1195 
Cycloaddn oxazinone irradn 14 
Cycloaddn oxazolinum oxide quinone 2875 
Cycloaddn oxyallyl furan 806 
Cycloaddn phenacylimidazole isocyanate 

252
Cycloaddn phenyl azide enamine 819 
Cycloaddn photo chloropropene cyclopenta­

diene 831
Cycloaddn pyridocinnolinium salt acetylen­

edicarboxylate 2201
Cycloaddn pyrrolidine oxide crotonate 3866 
Cycloaddn silacyclobutane acrolein 229 
Cycloaddn thioacetamide trichloromethyl0 

methanol 1917 
Cycloaliph ale 593
Cycloaliph aldehyde hydroxylation 3427 
Cycloaliph ketone 267 
Cycloalkadiene cyclopropanation diphenyl­

diazomethane 2274
Cycloalkane oxidn titanium tetroxide 2539 
Cycloalkanecarboxamide oxidative rearrange0 

ment 3554
Cycloalkanedione vicinal 1990 
Cycloalkanobenzofuran 2859 
Cycloalkanol butylidene allylic ale 3073 
Cycloalkanol oxidn catalyst 1860 
Cycloalkanone 1860 3577 
Cycloalkanone butylidene hydride redn 

3073
Cycloalkanone cyclopropylcyclopropyl photo0 

lysis 817
Cycloalkanone Wittig lithiated sulfoxide 

1979
Cycloalkene fluoro reaction alkoxide 2791 
Cycloalkene fused butyrolactone 2070 
Cycloalkene halomethylmercury reaction 

1620
Cycloalkene Jones oxidn catalytic 3577 
Cycloalkenone conjugated addn benzenese0 

lenenamide 3313
Cycloalkenone Michael alkylation 1488 
Cycloalkenyl phosphate hydrogenolysis 

catalytic 3652
Cycloalkyl alkanoate redn silane 3885 
Cycloalkyl bromide bromine abstraction 

619
Cycloalkylidene biscyclododecylidene triper° 

oxide pyrolysis 691
Cycloandrostene deuteration stereochem 

1949

Cyclobutadiene donor acceptor MO 2121 
Cyclobutadipyridinedicarbonitrile rearrange °  

ment 559
Cyclobutane cyclobutylidene 2212 
Cyclobutane dibenzoyl cyclization sulfide 

970
Cyclobutaneacetic acid grandisol precursor 

120
Cyclobutanedione halotrialkyl 3417 
Cyclobutanone dimethyl phenyl 2692 
Cyclobutene fluoro phenyl 810 
Cyclobutyl ring cleavage 2282 
Cyclobutyl tosylate acetolysis kinetics 1046 
Cyclobutylidenecyclobutane 2212 
Cyclocoupling bromoacetone furan 806 
Cycloctadiene rearrangement vinylcyclohex° 

ene 3242
Cyclodecadiene methyl regiospecific hydro0 

peroxidn 1652
Cyclodecapolyenes oxymercuration rear0 

rangement 585
Cyclodehydrohalogenation bromomethylsilyl° 

thioimidazole 437
Cyclodinorcholanyl tosylate Grignard 1475 
Cyclododecanone allyl Jones oxidn 3577 
Cyclododecanone photolysis mechanism 

3315
Cycloheptanol chlorination 1669 
Cycloheptatrienecarboxaldehyde aminome° 

thyl 136
Cycloheptene hydrogenation indoline kinet° 

ics 240
Cycloheptenol allylic reductive coupling 

2687
Cycloheptenone alkylation acylation cleavage 

1488
Cyclohexadecanedione 3604 
Cyclohexadiene butanediyl 100 
Cyclohexadiene perfluorohexyl phenyl 810 
Cyclohexadienecarboxylic acid bromolactoni° 

zation 2843
Cyclohexadienephosphonate 2851 
Cyclohexadienones spirocyclopropyl ring 

opening 3810
Cyclohexane amino acid coupling 350 
Cyclohexane butyl deuterio NMR 112 
Cyclohexane cyclohexylidene 813 
Cyclohexane dimethyl reaction carbethoxy= 

nitrene 1972
Cyclohexane lactone protecting group 1181 
Cyclohexane methyl hydroxylation 2141 
Cyclohexane oxidn cobalt manganese 3338 
Cyclohexaneacetic lactone methylene 1670 
Cyclohexanecarboxaldehyde 2021 
Cyclohexanecarboxylic acid chlorination 

2960
Cyclohexanedicarboxylate decarboxylation 

stereochem 790
Cyclohexanediol phenyl asym synthesis 

3467
Cyclohexanedione cyclization aminonicoti0 

naldehyde 3407
Cyclohexanedione cyclization ethylene glycol 

2402
Cyclohexanespirotetralin 3844 
Cyclohexanetricarbonitrile trimethyl 1158 
Cyclohexanetriol monoester cyclization 956 
Cyclohexanol aminoethyl 381 
Cyclohexanol butyl sepn isomer 1252 
Cyclohexanol oxidn 1998 
Cyclohexanone addn lithium lithioallyloxide 

2975
Cyclohexanone alkylation aluminum alkyl 

1469
Cyclohexanone azine addn hydrogen sulfide

2573
Cyclohexanone cyano dialkyl 453 
Cyclohexanone Darzens condensation 3173 
Cyclohexanone enamine alkylation 607 
Cyclohexanone enolate butylation regiospe0 

cific 2156
Cyclohexanone hydrogen peroxide 2239 
Cyclohexanone imine oxetane 2963 
Cyclohexanone reaction allylnickel 593 
Cyclohexanone redn 1834 
Cyclohexanone redn aryloxyaluminum hy° 

dride 926
Cyclohexanone redn silane stereochem 3821 
Cyclohexanone redn silane tertbutyl 3829 

3835
Cyclohexanone thioacetal methylene addn 

1368
Cyclohexanone trialkyl mass spectrum 2160 
Cyclohexanone triazolyl 1549 
Cyclohexanone W ittig phosphonoacetate 

conformation 929 
Cyclohexanonespiroindan 3839 
Cyclohexene acetyl redn 923 
Cyclohexene condensation trichloroethylene 

2430
Cyclohexene cyclopropanation 756 
Cyclohexene deriv cyclization butenone 

1974
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Cyclohexene Diels Alder butadiene 538 
Cyclohexene oxidn cobalt manganese 3338 
Cyclohexene vinyl palladium complex 3242 
Cyclohexeneacetyl chloride cyclization 215 
Cyclohexenecarbonitrile photoaddn alkene 

1447
Cyclohexenecarboxylate addn malonate 

stereochem 34
Cyclohexenecarboxylate formation Diels 

Alder 1083
Cyclohexenecarboxylic acid alkene photolysis 

1447
Cyclohexenecarboxylic acid lactone bromo 

2843
Cyclohexenol octadienyl cyclization 1007 
Cyclohexenone alkyl 2694 
Cyclohexenone alkylation acylation cleavage 

1488
Cyclohexenone conjugate redn 146 
Cyclohexenone methyl 3606 
Cyclohexenone methylphenoxy hydrofuran 

photolysis 1371
Cyclohexenone nitrile irradn 3665 
Cyclohexenone NMR carbon 2540 
Cyclohexenone redn 788 3619 
Cyclohexenone redn carbonyl borabicyclono= 

nane 1864
Cyclohexenone redn cyanoborohydride 2530 
Cyclbhexyl butanedione 1131 
Cyclohexyl diazo ketone cyclization 1027 
Cyclohexyl Grignard coupling bromopropene 

599
Cyclohexyl sulfinylamine 3291 
Cyclohexylamine dimethylaminomethyl 289 
Cyclohexyldimethylamine méthylation ster­

eochemistry 1308
Cyclohexylethyne conversion bromo acetal 

1189
Cyclohexylideneacetate cyclization hydrazine 

3502
Cyclohexylidenecyclohexane photooxygena= 

tion 2575
Cyclohexylidenemethanol pheromone boll 

weevil 2154
Cyclohexylmethyl selenide elimination 947 
Cycloimmonium salt reaction indole 724 
Cyclononanonespirotetraoxanespirocyclonon= 

anone thermolysis 3604 
Cyclonucleoside didehydro 106 
Cyclooctadienemercurinium NMR 3638 
Cyclooctane tetramethylene ring closure 

2438
Cyclooctane transannular cyclization 3312 
Cyclooctanol fluorination 574 
Cyclooctanol oxidn 1998 
Cyclooctanone conformation NMR coupling 

940
Cyclooctene bromohydrin redn 3797 
Cyclooctene hexene metathesis catalyst 775 
Cyclopentadiene addn bromine chloride 

1358
Cyclopentadiene chloropropene cycloaddn 

photo 831
Cyclopentadiene cycloaddn chloropropene 

824
Cyclopentadiene cycloaddn nitroisoquinolini^ 

um 1195
Cyclopentadiene Diels Alder norbornene 

2542
Cyclopentadiene pentachloro dimerization 

stereochem 2380
Cyclopentadienedione cycloaddn oxazolium 

oxide 2875
Cyclopentadienol pentaphenyl reaction sodi= 

um amide 3015
Cyclopentadienone decarbonylation quinone 

1124
Cyclopentadienone pyridyl 3514 
Cyclopentane uracil 2488 
Cyclopentanediol methyl propyl NMR 2241 
Cyclopentanocycloheptene sesquiterpene 

479
Cyclopentaaoid monoterpene 3312 
Cyclopentanone carbomethoxymethyl 462 
Cy clopentaoxazoloisoquinoline 1198 
Cyclopentapyridazine electrophilic halogéna­

tion 2196
Cyclopentenoisoquinolinium nitro 1195 
Cyclopentenone alkylation acylation cleavage 

1488
Cyclopentenone diphenyl 1340 
Cyclopen tenothiophene 1840 
Cyclopentyl acetoinyl alkyl phosphate 2849 
Cyclopentyl homoallylic ale 2025 
Cyclopentylpentene 813 
Cyclopregnane ethanediyl 1475 
Cyclopropanation cycloalkadiene diphenyl- 

diazomethane 2274
Cyclopropanation olefin catalyst stereochem 

756
Cyclopropane 2238
Cyclopropane bromoarylmethylene solvolysis 

kinetics 1994

Cyclopropane diaryl cleavage bromine irradn 
3005

Cyclopropane dichloro dehydrochlorination 
1848

Cyclopropane fused carbinol solvolysis 2070 
Cyclopropane interaction unsatn bicyclonone 

284
Cyclopropane pyrrolidine reaction 114 
Cyclopropane ring expansion cleavage 845 
Cyclopropane spiro cyclohexane 1368 
Cyclopropaneacetate ester pyrolysis 527 
Cyclopropanecarbonyl azide cleavage 115 
Cyclopropanecarboxaldehyde 2021 
Cyclopropanecarboxylate methylene cycliza= 

tion azide 2042
Cyclopropanedicarboxylate rearrangement 

851
Cyclopropanedicarboxylic acid 2969 
Cyclopropanedicarboxylic reaction isoprope- 

nyl acetate 3807
Cyclopropanemethanol methylpropenyl 139 
Cyclopropanone hydroxyphenyl photolysis 

oxidn 2295
Cyclopropanone reaction amino acid 1505 
Cyclopropene diiodo difluoro 3791 
Cyclopropenecarboxaldehyde acetal 1848 
Cyclopropenone diphenyl reaction aminopy= 

ridine 1440
Cyclopropenone phenyl ring cleavage 1340 
Cyclopropenyl structure MO 624 
Cyclopropyl enol ether silyl 858 
Cyclopropyl isocyanate cleavage 115 
Cyclopropyl isocyanate ring cleavage 182 
Cyclopropyl migration deamination 961 
Cyclopropyl MO 624 
Cyclopropyl ring cleavage 2282 
Cyclopropylcyclopropyl cycloalkanone photo= 

lysis 817
Cyclopropylimine rearrangement 3495 
Cyclopropylketene dimer pyrolysis 527 
Cyclopropylmethyl phosphate nucleoside 

3444
Cyclosteroid butenyl bromide Grignard 

1475
Cyclotetrasiloxane 229 
Cyclotrisitoxane 229 
Cyclotron resonance aliéné mercurinium 

257
Cyprazine intermediate hydrolysis mechanism 

2215
Cysteine cyclization indolecarboxylate 2147 
Cysteine propenyl irradn 1567 
Cystine bis peptide 3697 
Cytidine adenosine 24 
Cytidine analog bicyclic 2476 
Cytochalasin nucleus synthesis 3311 
Cytosine didehydrolyxoturanosyl hypochlor­

ite 106
Cytotoxic nitrogen mustard aminoresorcinol 

1556
Dactylyne mol structure 665 
Darzens chlorodiazoacetone benzaldehyde 

3521
Darzens condensation thiol ester mechanism 

3173
Dealkylation alkylpyrazole 1353 
Deamination alkylamine dibenzenesulfonyl 

3288
Deamination amino ale 961 
Deamination aminomethylbicyclononanol 

444
Deamination reductive amine disulfonimide 

2018
Deazotization difuranylhydrazine phenyl 

rearrangement 545
Débenzylation ale protective group 1356 
Débenzylation benzylation nucleoside 1856 
Denomination org bromide 2554 
Debromination polybromo azine 3285 
Debromination uracil bromo reactivity 3862 
Decadiene metathesis hexene cyclooctene 

775
Decadienoic acid dimethyl 3617 
Decahydroquinoline trans 2734 
Decalin hydroxylation 2141 
Decalindione thioketal cleavage 534 
Decalyldimethylamine méthylation stereo^ 

chemistry 1308 
Decanoate dioxo 2151
Decarbonylation benzocycloalkenyl aldehyde 

3641
Decarbonylation oxidative resorcinol deriv 

1124Decarboxylation alkoxycarbonylimidazole
3279

Decarboxylation alkylation malonate 2556 
Decarboxylation arylacetate cobalt 3647 
Decarboxylation brominative halonorcarane^ 

carboxylate stereochem 3264 
Decarboxylation catalyst surfactant micelle 

1321
Decarboxylation cyanoacetate 3101

Decarboxylation cyclohexanedicarboxylate 
stereochem 790

Decarboxylation ethylphenylmalonic acid 
asymmetric 1649

Decarboxylation oxidative mandelic acid 
1625

Decarboxylation steroidal acid propiolic
1328

Decene bromohydrin redn 3797 
Decompn acylazide 1906 
Decompn butoxycarbonyl amino acid 1507 
Decompn dibenzoyldioxyidobenzene kinetics

3267
Decompn hydroperoxide mechanism 1875 
Decompn hydroxyalkylphosphorus compd

1373
Decompn hydroxybenzylphosphine oxide 

2053
Decompn phenylperacetate kinetics 3147 
Decompn thermal lithium organocuprate 

788
Décyanation nitrile oxidative 267 
Dedimerization azo dioxide entropy 1395 
Deesterification partial amino acid 3287 
Dehalogenation org halide 2554 
Dehalogenation reductive catalytic halobenz^ 

ene 3649
Dehydration diphenylpropanol stereochem 

1662
Dehydration hydroxy estratrienedione 3127 
Dehydration ketol mechanism 2017 
Dehydration methyl piperidineethanol 2151 
Dehydration nitro ale aliph 2138 
Dehydration thioxanthenol oxide 1737 
Dehydration vinylpregnenediol 516 
Dehydriodination iodobutane hindered al^ 

koxide 3138
Dehydroadamantanone photoisomerization 

protoadamantenone 1079 
Dehydroailanthone structure Pierreodendron

654
Dehydrobromination bromotetralone palladia 

um phosphine 2976
Dehydrobufalin Woodward hydroxylation 

2136
Dehydrocarbocamphenilone 2681 
Dehydrochlorination dichlorocyclopropane 

1848
Dehydroestradiol ether 3131 
Dehydrogenation aporphine alkaloid 3601 
Dehydrogenation estratetraenone 3131 
Dehydrogenation pyrazoloisoindolone 2208 
Dehydrohalogenation cyclo bromomethylsi= 

lylthioimidazole 437 
Dehydrohalogenation dihalobutane mass 

spectrum 511
Dehydrohelicene Diels Alder 1957 
Dehydrohelicene thio 3398 
Dehydrohomoadamantanone reaction stereo^ 

chem 2463
Dehydronorbornyl derivs photo redn 2179 
Deiodination org iodide 2554 
Delocalization azacyclazine 1210 
Deltacyclene cyano photolysis 845 
Demethoxycarbonylation azetidinedicarboxy^ 

late 2990
Déméthylation methylmorphinan 1850 
Déméthylation oxidative methoxybenzaldeh= 

yde 2548
Déméthylation quaternary ammonium 531 
Dendrobine partial synthesis 2165 
Deoxyanisoin Stobbe succinate 3411 
Deoxybenzoin irradn substituent effect 488 
Deoxydamsin total synthesis 1656 
Deoxyfruticin Tithonia 3118 
Deoxygenation carbonyl tosylhydrazone 923 
Deoxygenation chlorination pyrazine oxide 

2341Deoxygenation nitrobenzene disilane 761 
Deoxygraminiliatrin 199 
Deoxyisopicropodophyllic acid 2384 
Deoxyprostaglandin 206 
Deoxystreptamine 456 
Deprotonation aliph ester naphthalenide 

3144
Deprotonation iminium salt 2048 
Depsipeptide lactone quinoxaline antibiotic 

3110
Desthiomethyleneanhydrogliotoxin structure 

activity stereochem 2147 
Desulfonylation 72
Desulfurization hydridotetracarbonylferrate 

2694Desulfurization thiadispirotridecane 2573 
Deterioration flavor irradn 1567 
Deuterated decahydroquinoline 2734 
Deuteration bicyclodecatrienone enolate 

2446
Deuteration cycloandrostene stereochem 

1949
Deuteration methylpiperideine 663 
Deuterio benzoic acid 3158
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Deuterioallene 657 
Deuteriocyclohexane NMR 112 
Diacetyl peroxide acetophenone reaction 

mechanism 1883 
Diamine arom 1090 
Dianion vicinal acylation 495 
Diaryliodonium alkoxide reaction 3010 
Diastereomer dithiol 524 
Diastereomer NMR cyclic nitrosoamine 

1239
Diastereomer podophyllotoxin 2384 
Diazabicyclocycloheptene cleavage 1683 
Diazabicycloheptene cycloaddn azide 563 
Diazabicycloheptene dioxide 1405 
Diazabicyclononene dioxide 1409 
Diazabicyclooctene dioxide 1395 
Diazacyclohexene dioxide 1395 
Diazacyclopentadienone cycloaddn fulvene 

1201
Diazaheterocycle medium ring 3062 
Diazanorbornene bromination 161 
Diazaphospholene oxide redn chlorosilane 

2318
Diazaquadricyclononene dioxide 1405 
Diazathiadispiropentadeeene prepn pyrolysis 

stereochem 2573
Diazatricyclotridecapentaene 2446 
Diazenedicarboxamide thermolysis 1854 
Diazetine dioxide 1409 
Diazine benzil 441 
Diazinoquinoline 3874 
Diaziridinimine 3112 
Diazo coupling halopyrrole 3161 
Diazo ketone cyclohexyl cyclization 1027 
Diazoacetate chloroalkane photolysis me^ 

chanism 1527
Diazoalkane thienothiophenone coupling 

3392
Diazoazepinedione ring contraction 3874 
Diazocinecarboxylate 2360 
Diazocinodiphenothiazinedione 1914 
Diazocycloalkanone thermolysis 3874 
Diazocyclohexanedione ring contraction 

3874
Diazodioxocyclopentylbutanone phenethyl— 

borane addn 3135
Diazodiphenylmethane reaction acid steric 

. 407
Diazomethane cycloaddn diphenylketene 

1046
Diazomethane pyridyl oxide alkylation 

1391
Diazotate phenylethane hydrazinolysis co­

nfiguration 1213
Diazotization aminomethylbicyclononanol 

444
Diazotization aminoquinone 3874 
Diazotization thiophene heteroarylation 

3183
Diazouracil pyridine 3717 
Dibenzanthracene diepoxide 2307 
Dibenzazepine 2883 
Dibenzazocine 2883 
Dibenzhydrylamine photoreaction 2406 
Dibenzobicyclooctadiene addn rearrangement 

2171
Dibenzobicyclooctadieneethanol 1116 
Dibenzocycloheptenone cyclization hydrazine 

2982
Dibenzofuran 1365
Dibenzonorcaradiene ring expansion cleavage 

97
Dibenzophenanthroimidazoazepinone 1641 
Dibenzothiazepine cyclization aryl sulfone 

889
Dibenzotropylium ion substituent effect 

2108
Dibenzoxepine 2883
Dibenzoyldioxyidobenzene decompn kinetics 

3267
Diborane addn tricyclodecadiene 3631 
Diborane redn formylindole 1257 
Dibromocholestanone hydride redn 1361 
Dicentrine dehydrogenation 3601 
Dichlorine heptoxide ethyl iodide 2536 
Dichlorocarbene addn methylnaphthalene 

695
Dichlorocarbene cycloaddn pyran 2234 
Dichlorocarbene methylenecycloalkane addn 

kinetics 1636
Dichloroketene addn oxazoline 2408 
Dichlorotristriphenylphosphineruthenium 

cyclization catalyst 2402 
Dicyclohexylidene diperoxide 2239 
Dieyeiopentadiene tetrahydro hydroxylation 

2141
Didehydro cyclonucleoside 106 
Didehydroaspidospermine 1588 
Dieckmann cleavage retro 1488 
Dieckmann condensation benzenedialkanoate 

1493
Dieckmann cyclization phenylenedipropion= 

ate 2965

Diels Alder chloropropene cyclopentadiene 
824Diels Alder cyclohexene butadiene 538 

Diels Alder cyclohexenecarboxylate formation 
1083

Diels Alder dehydrohelicene 1957 
Diels Alder dichloroacetylene diphenyliso- 

benzofuran 261
Diels Alder methylcyclopentadiene 2565 
Diels Alder methylhexadienyl furoate 3311 
Diçjs Alder methylhexahydronaphthalene 

3670
Diels Alder norbornene cyclopentadiene 

2542
Diels Alder phenyldimethylenepyrrolidine

322
Diels Alder pyridylcyclopentadiene 3514 
Diels Alder regioselectivity theor 1111 
Diels Alder retro mechanism 1269 
Diels Alder retro spiroethanoanthraceneoxe- 

tane 1116
Diene conjugated aliph ester 1083 
Diene conjugated redn reactivity 3599 
Dienolate ester anions stereochem 3309 
Dienone spiro 2924 
Digitoxigenin hydroxy synthesis 793 
Digitoxin hydrolysis 793 
Dihalobutane stereochem mass spectrum 

511Dihydrocarvone condensation butenylphos= 
phonium 100

Dihydrohydroxyoxopurine 1547 
Dihydrojasmonate methyl synthesis electroa^ 

cetoxylation 2221 
Dihydromelampodin B 3480 
Dihydropyridine 563 
Dihydroxyphenylalanine resolution crystn 

3360
Diimide alkadiene redn 3599 
Diimide redn cyclic alkene stereochem 3589 
Diketone aliph 1131 
Diln effect nitrene reaction 1972 
Dimedonyliodone reaction ketene isocyanate 

1166
Dimer methylcyclopregnane 1475 
Dimerization butenenitrile catalyst 1158 
Dimerization catalytic pentanedione 3887 
Dimerization dithiolium 2002 
Dimerization methylpyridinecarbonitrile 

559
Dimerization mixed ketene 3417 
Dimerization oxazinone irradn 14 
Dimerization pentachlorocyclopentadiene 

stereochem 2380
Dimerization ribofuranosylimidazole 2920 
Dimethanonaphthalenecarboxylic acid 2542 
Dimethoxybenzene acétoxylation anodic 

3805
Dimethyl sulfoxide oxidn sulfide 3152 
Dimethyl sulfoxide trifluoroacetic anhydride 

# 2758
Dimethylallene lead tetraacetate addn ster= 

eochem 2559
Dimethylamine anionic addn isoprene 967 
Dimethylamine reaction diphenylthiirene 

dioxide 3189 
Dimethylbispidinone 251 
Dimethylcholestadienone photylysis 3786 
Dimethylenecyclobutane bisallyl diradical 

interconversion 942
Dimethylpentenal rearrangement mechanism 

514
Dimroth reaction azide acylacetate 1549 
Dinitrile lithioaniline 1090 
Dinitroanilines tin redn alkyl migration 

1863
Dinitrophenylhydrazone cleavage titanium 

1502
Dioxacycloheptene conformation NMR 450 
Dioxane direct perfluorination 3271 
Dioxane solvent photolysis 2689 
Dioxaphosphole aryloxy reaction ale mixt 

2849
Dioxaphosphorinane 2056 
Dioxaspirooctanedione cleavage racemization 

3807
Dioxazolidine diimine 3112 
Dioxide azo 1409 
Dioxide azo polycyclic 1395 
Dioxime benzoquinone reaction pyruvaldeh= 

yde 157
Dioxodecanoate 2151 
Dioxolane hydroxypropyl cyclization 892 
Dioxolanylethylbenzyl ale cyclization 520 
Dipeptide aminophosphonic acid 470 
Diperoxide cyclic cyclononanone thermolysis 

3604
Diperoxide dicyclohexylidene 2239 
Diphenyl compd cyclization 1365 
Diphenylcyclopropenone pyridinium imine 

reaction 2985
Diphenylcyclopropenone reaction aminopyri= 

dine 1440

Diphenyldiazomethane cycloaddn norboma= 
diene 1036

Diphenyldiazomethane cyclopropanation 
cycloalkadiene 2274 

Diphenylethyl mesityl ketone Grignard 
reaction 2816

Diphenylimidazole kinetics thermal rear= 
rangement 2562

Diphenylketene reaction phenyldimedonylio= 
done 1166

Diphosphatriptycene 3586 
Dipolar intermediate azetine 2356 
Dipolar ion trapping 2360 
Dipole stabilized carbanion 1094 
Dipyridophenanthroline 3407 
Diquinocyclopropanone prepn 2295 
Diradical bisallyl dimethylenecyclobutane 

interconversion 942 
Diselenoleselone 387 746 2016 
Diselenolethione 387 746 
Diselenolithium pentamethylenimino 2016 
Disilane deoxygenation nitrobenzene 761 
Displacement aryl halide nickel 2267 
Displacement methoxide phospholanium 

1779
Displacement nucleophilic methylsulfonyl 

glycoside 1054
Displacement octyl tosylate 1514 
Displacement reaction steroidal sulfonate 

387°
Disproportionation arylthallium bistrifluor^ 

oacetate 2351 3441
Disproportionation disulfide kinetics 711 
Disproportionation iodobenzamide dichloride 

2129
Dissocn const aminoacetanilide hydrochloride 

1517
Dist benzoadenine 363 
Disulfide 2096
Disulfide aryl insertion reaction 2774 
Disulfide disproportionation kinetics 711 
Disulfide reaction lithiopyridine 569 
Disulfide redn triphenylphosphine 2779 
Disulfone phenyl hydrazinolysis catalysis 

2128
Disulfoxide alkylene 3152 
Disulfoxide chlorination stereochem 1278 
Diterpene synthesis 1607 
Diterpene total synthesis 3686 
Ditertbutyl ketone photolysis 2946 
Dithiabisnorbiphenylene tetraphenyl 970 
Dithiane ethylenebis alkylation 1131 
Dithiane intermediate 462 
Dithiane lithio substitution electrophile 231 
Dithiocarbamate iodine complex rotation 

2003
Dithiol diastereomer 524 
Dithiolethione dicyano phosphonylation

2577
Dithiolium coupling hexacarbonylvanadate 

2002
Dithiolone dicyano phosphonylation 2577 
Dithiolselone 387 
Dithiolthione 387 
Dithiolyl bi 2002
Dithionite redn organomercury 1362 
Diumycinol total synthesis 2261 
DMF cyclization imidazopyridine 1210 
Dodecatriynoic acid Grignard coupling 348 
Dodecene bromohydrin redn 3797 
Dodecynediyl ditosylate solvolysis participa­

tion 633
Dopa méthylation 3611
DOPA resolution 3360
Double bond migration 923
Double bond monoterpene photooxygenation

2259
Double bond redn magnesium 127 
Drimenol 1607
Elec cond tetraathiafulvalenium TCNQ 

3544
Electroacetoxylation synthesis methyl dihy= 

drojasmonate 2221
Electrochem cyanation oxidn methylanisole 

63
Electrochem oxidn couphng isoquinoline 

2924
Electrochem oxidn dimethoxybenzene ace° 

tate 3805
Electrochem redn ketone dibromo 3625 
Electrochem removal benzyl group 1356 
Electrochem salicylaldéhyde anil deriv 875 
Electronic structure phenyl cation 3082 
Electronic structure phosphonium vinyl 

1650
Electrophile reaction lithioallyl selenide 

257°
Electrophile reaction lithiobutanesultam 

1342
Electrophile substitution lithiodithiane 231 
Electrophile tetrahalobenzenediacylium 

1101
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Electrophilic addn chlorophosphine olefin 
1170

Electrophilic addn imidazopyrazine 3376 
Electrophilic halogenation cyclopentapyrida= 

zine 2196
Electrophilic substitution azacyclazine 3065 
Electrophilic substitution halopyrrole 3161 
Electrophilic substitution imidazopyrazine 

3373
Electrophilic substitution naphthalene 2547 
Electrophilic substitution thioanisole 1920 
Elimination alpha chloro boronate 813 
Elimination aryl lauryl selenoxide 947 
Elimination butyloxazinone irradn 14 
Elimination chlorocinnamate kinetics me= 

chanism 3227
Elimination decalindione thioketal 534 
Elimination Hofmann curare alkaloid 539 
Elimination reaction methyl sulfoxide 2014 
Elimination reaction nitrobenzyl fluoride 

3881
Elimination reaction phenylseleno ketone

3313
Elimination reaction steroidal sulfonate 

3870
Elimination reaction ylide 144 
Elimination silanol silyloctanol 2263 
Elimination thiophenoxide thio acetal 812 
Elimination triflate methylallene 657 
Elson Morgan acylamido sugar 1647 
Enamine alkylation 607 
Enamine bicycloheptanone cycloaddn propy= 

noate 3319
Enamine chloro equil nitrile 3540 
Enamine cycloaddn butadienephosphonate 

2851
Enamine cycloaddn carbene 2282 
Enamine hydrazine cyclization 2720 
Enamine iron vinyl ketone reaction 3621 
Enamine phenyl azide cycloaddn 819 
Enamine propiolactone cycloaddn 50 
Enamino ester aromatization 800 
Enamino ketone Robinson annelation 862 
Endoperoxide fatty acid autoxidn 3615 
Ene reaction oxygenation methylcyclodecadi^ 

ene 1652
Engeletin configuration 1057 
Enol benzoate stereochem 2816 
Enol detn cvanocyclohexanones synthesis 

3810
Enol ether addn halogen 2133 
Enol ether ester aromatization 800 
Enol ether silyl pyrolysis 858 
Enol specifiiity formyl ketone 1865 
Enolate alkylation regiospecific 2156 
Enolate anion , oxidn 3253 
Enolate ester sulfenylation 148 
Enolate ketone condensation chloroaniline 

2859
Enolate ketone haloaniline condensation 

2853
Enolate magnesium structure 2816 
Enolate methoxycarbonylation 1488 
Enolization cyanocyclohexanone prepn 453 
Enone addr. lithium diorganocuprate 1460 
Enone aliph addn benzeneselenenamide 

3313
Enone redn lithium organocuprate 788 
Enthalpy azo dioxide dedimerization 1395 
Entropy azo dioxide dedimerization 1395 
Enzyme labeling bromobutanonediol bis= 

phosphate 2638 
Epiaromadendrene 809 
Epicanadensolide sesquiterpenoid structure 

revision 1932 
Epicholesterol 1361 
Epiglobulol 809 
Epiisopicropodophyllin 2384 
Epiisopodophyllic acid 2384 
Epiisopodophyllotoxin 2384 
Epijasmonate methyl synthesis 462 
EpimaalienDne dehydro rearrangement 809 
Epimeloscine NMR 2838 
Epimerization phenylethyl ether 688 
Epimethylenethiopiperazinoindole stereochem 

bactericide 2147 
Epiusambarensine 2572 
Epoxidation catalyst borate ester 1875 
Epoxide benzoquinone adduct Favorskii 

3519
Epoxide chloro bicyclic rearrangement 1694 
Epoxide NMR carbon 184 
Epoxide propiolate 1610 
Epoxide pyrene dibenzanthracene 2307 
Epoxide redn stereochem 2555 
Epoxide redn titanium 2555 
Epoxide ring cleavage 2764 
Epoxidn alkene xenon trioxide 1869 
Epoxidn bromocyclohexene selectivity 3331 
Epoxidn octalin steric effect 1536 
Epoxidn silyl enol ether 3427 
Epoxy ester photolysis solvent 1858

Epoxy ketone cleavage dinitrobenzenesulfon= 
ylhydrazine 579

Epoxy ketone rearrangement homoallylic 
1128

Epoxy nitrile decyanation 1162 
Epoxyalkadienoate 1773 
Epoxycyclohexane bromo ring cleavage 

3331
Epoxyestratriene 3124 
Epoxynaphthalene diphenyl dichloro 261 
Epoxynaphthalene oxidn redn 262 
Epoxyspicatin 199
Epoxytricyclodecene transannular cyclization 

1642
Equil azo dioxide 1409 
Equil nitrile chloro enamine 3540 
Equilenin Me ether 681 
Equilibration carboxycyclohexaneacetate 

isomer 34
Eremephilone total synthesis 1829 
Eremophilene deriv 1833 
Eremophilone isomerization 1833 
ESR bicycloheptyl semiquinone 2255 
ESR dibenzonorcaradiene redn cleavage 97 
ESR heterocirculene 1957 
ESR oxabicycloheptenedione radical anion 

2443ESR tetraquinocyclobutane anion radical
2300

ESR thioxanthene cation radical 103 
Ester aliph cleavage dichlorophosphorane 

3026
Ester aliph conjugated diene 1083 
Ester aliph deprotonation naphthalenide 

3144
Ester aliph direct perfluorination 3271 
Ester aliph redn trichlorosilane 3885 
Ester amino 2985
Ester borate induced decompn 1875 
Ester dienolate anions stereochem 3309 
Ester enamino aromatization 800 
Ester enolate sulfenylation 148 
Ester epoxy photolysis solvent 1858 
Ester fatty acid 779
Ester hydroxy Reformatskii indium 2253 
Ester lactam NMR europium 3208 
Ester malonic synthesis 2556 
Ester NMR carbon 3729 
Ester norbornyl solvolysis isotope effect 

412
Ester oxo reaction azido ketone 1549 
Ester phenyl hydrolysis ortho effect 2520 
Ester unsatd conjugate redn 2846 
Ester unsatd conjugated 3237 
Ester unsatd keto lactonization 1927 
Ester vicinal di conformation 1302 
Esterification norpyridoxol 1051 
Estrapentaenone 3136 
Estratetraenedione hydrogenation 3127 
Estratetraenone dehydrogenation 3131 
Estratrienedione 3124 
Estratrienedione hydroxy dehydration 3127 
Estrenedione synthesis 675 
Estrenetrione epimer 3127 
Estrogenic secoestratrienediol 685 
Estrone Me ether 681 
Ethanethiol amino 1224 
Ethanoanthracene methylene 1116 
Ethanol dibenzobicyclooctadienyl 1116 
Ethanol pyridyl 2365
Ethanolysis cholestanyl brosylate conforma­

tion 2949
Ethenoadenosine fluorescence 1066 
Ethenonaphthyridine sigmatropic shift 559 
Ether aliph direct perfluorination 3271 
Ether allyl vinyl Claisen rearrangement 86 
Ether amino crown compd 151 
Ether arom kinetics substitution 3777 
Ether chloro pyrolysis mechanism 3019 
Ether crown solubilization superoxide 1680 
Ether cyclic cleavage 3571 
Ether cyclic cleavage chlorosulfinate 2786 
Ether diphenyl cyclization 1365 
Ether enol addn halogen 2133 
Ether enol ester aromatization 800 
Ether imino cycloaddn butylcyanoketene 

2552
Ether imino vinyl 1349 
Ether mass spectrum 92 
Ether NMR carbon 3729 
Ether phenyl cyclization acyl chloride 2304 
Ether phenylethyl epimerization 688 
Ether pyrene dibenzanthracene 2307 
Ether silyl enol pyrolysis 858 
Ether sulfide pentadecane 1510 
Ether vinyl carbon NMR 2225 
Ether vinyl hydrolysis phosphate 3574 
Ethers cleavage versatile reagent 3810 
Ethoxycarbonyl substituent const 3778 
Ethyl iodide dichlorine heptoxide 2536 
Ethyl oxaspiroheptanecarboxylate photolysis 

1858

Ethylamine fluorodinitro oxidn 2626 
Ethylation chlorobromoalkane selectivity 

1099
Ethylene bromomethyl 142
Ethylene chloro condensation olefin 2430
Ethylene condensation trichloroethylene

2430
Ethylene dichlorophenyl sulfonation 1179 
Ethylene dicyclobutylidene 2212 
Ethylene glycol cyclization cyclohexanedione 

2402
Ethylene iminocarbonate 3810 
Ethylene tributylstannyl 3788 
Ethylenediamine aryl 558 
Ethyleneuracilium methanesulfonate 1713 
Ethylgonenedione synthesis 675 
Ethylnylbenzene azophenyl 124 
Ethylphenylmalonic acid decarboxylation 

asymmetric 1649 
Ethylpyrazine oxidn 1178 
Ethynylcarbinol hydration 381 
Europium NMR configuration pyrandicarb= 

oxylate 960
Europium NMR ester lactam 3208 
Europium NMR methylbicyclooctenol ster­

eochem 1952
Europium NMR nonequivalence sulfoxide 

3430
Exchange acetone ketone tosylhydrazone 

3302
Exchange halide 2304 
Exchange vinyl purine theophylline 3296 
Excited state alkene 2434 
Expansion ring aminolactam 3510 
Explosion methyl hyponitrite 1646 
Extrusion nitrogen aziridinodiazabicyclo- 

heptene 563 
Farnesol 3617
Farnesol reductive coupling 2687 
Fatty acid autoxidn prostaglandin 3615 
Fatty acid ester 779 
Favorskii benzoquinone adduct epoxide 

3519
Favorskii rearrangement chlorodecalone 

conformation 749 
Fenchone cyanonitramine 1681 
Fenfluramine configuration 1562 
Fenton reaction furan thiol 966 
Ferric chloride acetic anhydride 3810 
Ferrocene vinyl hydroboration 2416 
Ferrocenyl carbénium carbon NMR 1849 
Ferruginol total synthesis 3686 
Fervenulin antibiotic 2321 
Field effect bicyclononatrienyl system 2459 
Flavanoid glycoside configuration 1057 
Flavone methoxy NMR 1120 
Flavor deterioration irradn 1567 
Fluorene oxidn kinetics 615 
Fluorenone 1365 
Fluorenyl rotation rotamers 1298 
Fluorescence aminoisoquinolone 1760 
Fluorescence ethenoadenosine 1066 
Fluorescence pyrene dibenzanthracene 2307 
Fluorescent aminopropylpyrimidinedione 

1559
Fluoride nitrobenzyl elimination reaction 

3881
Fluoride substitution alkyl halide 782 
Fluorinated acetylene phenyl 810 
Fluorination ale aldehyde ketone 574 
Fluorination direct acid fluoride 3271 
Fluorination naphthalene xenon difluoride 

3796
Fluorination phenanthrene xenon difluoride 

3794
Fluorination phenol xenon difluoride 807 
Fluoroaeetaldehyde nitrate 1851 
Fluoroacetate diarylthallium 2351 
Fluoroacetylation trithiootrhoacetate 963 
Fluoroalkanoyl halide insertion sulfur triox= 

ide 2937
Fluorobenzalacetophenone UV IR 935 
Fluorobenzene nitrene singlet stabilization 

1972
Fluorobenzopinacol 1173 
Fluorocycloalkene reaction alkoxide conform 

mation 2791
Fluorodehydroxylation hydroxy amino acid 

3808
Fluorodinitroethylamine oxidn 2626 
Fluorodithiosuccinyl fluoride 129 
Fluorohydroquinone oxidn polarog 2543 
Fluoroisopropylimine tertbutyloxycarbonyl 

2414
Fluoromethanesulfonanilide bromination 

chlorination 428
Fluoromethylenephosphorane W ittig 2796 
Fluoropyrene 3793
Fluorosulfonate hydroxymethylpyridine

2092
Folic acid CD 3447
Folic acid thio bactericide 1745
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Formaldehyde imidazole 1837 
Formimidate acetylenedicarboxylate addn 

2360
Formolysis homoandrostanyl tosylate 3469 
Formycin analog 2825 
Formyl group oxidn 462 
Formyl ketone.photoreaction alkene 1865 
Formyl lactone amination redn 3474 
Formylation androstenolone 1989 
Formylation azacyclazine 3065 
Formylation halopyrrole 3161 
Formylbullvalene 1709 
Fragmentation benzoin oxime 3735 
Fragmentation secohomoandrostene 1784 
Free energy conformation quinolizidinol 

3214Friedel Crafts chlorométhylation thioanisole
1920

Friedel Crafts intramol 215 
Friedlaender condensation aminopyrimidine^ 

carboxaldehyde 2566 
Friedlaender reaction pyrimidinecarboxal^ 

dehyde ketone 1438 
Frontier orbital butadiene 1111 
Fructofuranose thio 639 
Fulvene cycloaddn azo compd 1201 
Fumarate addn ale 628 
Fumarate adduct 2360 
Fumarate radical anion conformation 2391 
Furamide imino 423 
Furan 800
Furan aniline phenylimino 423
Furan anodic oxidn 122
Furan cycloalkanobenzo 2859
Furan cyclocoupling bromoacetone 806
Furan dialkyl 542
Furan dibenzo 1365
Furan dihydro cyclopropanation 756
Furan methyl methoxyphenyl 386
Furan phenyl 1454
Furan reaction bromobenzenethiol 966 
Furan reaction bromofluorobenzene 262 
Furan tetrahydro cleavage 2801 3571 
Furandimethanol hydroxymethyl potassium 

complex 2978
Furanone spiroandrostane 1420 
Furanylhydrazine phenyl pyrolysis irradn 

545
Furnanone 3139
Furoate methylhexadienyl cyclization 3311 
Furoguaiacidin dimethyl ether 386 
Furoisoindoledione 3311 
Furopvran pyrroloquinoline condensation 

2140
Fusaric acid analog 2092 
Galactose oxidn vanadium 1248 
Galactose sulfide 1337 
Galactose thiobisthioformate 1331 
Gamma irradn propenylcysteine 1567 
Gasimetry quant automatic alkene 3154 
Geissoschizoamide indolylethyl cyclization 

2572
Geissoschizoate tryptamine condensation

2572
Gentamicin antibiotic 2830 
Gentamicin A2 structure 2835 
Geranie acid cyclization 2154 
Geraniol purifn 1252 
Germacradienolide Liatris 392 
Germacranolide Acanthospermum 3486 
Germacranolide Tithonia 3118 
Gibberellin lithium lithioallyloxide reagent 

2975
Glaucine purity enantiomer 1987 
Glucose dideoxyketo 3704 
Glucose oxidn vanadium 1248 
Glucose thiobisthioformate 1331 
Glucoside dithiocarbonate 1337 
Glutaconimide phenyl hydrolysis 2135 
Glutamate copper hydrolysis 3287 
Glutamic acid carboxy 2850 
Glutarimide bromopropyl cyclization 281 
Glutaronitrile ethylidenemethyl 1158 
Glycidate thiol ester rearrangement 1741 
Glycidic thiol ester 3173 
Glycine reaction cyclopropanone 1505 
Glycol tetraethylene thio 1510 
Glycoside flavanoid configuration 1057 
Glycoside methylsulfonyl nucleophilic dis= 

placement 1054 
Glycosyl nucleoside 2143 3352 
Glycyrrhetic acid trifluoromethyl hypofiuor= 

ite 2966
Gonatrienone ethylmethoxy 681 
Gonenedione ethyl 675 
Gorgonene synthesis 1755 
Graminichlorin 199 
Graminiliatrin 199
Grandisol precursor cyclobutaneacetic acid 

120
Grandisol total synthesis 2013 
Graph theory isomerization 942

Grignard addn propiolate mechanism 1773 
Grignard aryl nitrosyl chloride 3349 
Grignard bromobenzene thallium trifluor= 

oacetate 2351
Grignard coupling alkenyl halide 599 
Grignard coupling dodecatriynoic acid 348 
Grignard cyclodinorcholanyl tosylate 1475 
Grignard ketone bromoethyldioxolane 892 
Grignard nitrosamine mechanism reaction 

1070
Grignard reaction diphenylethyl mesityl 

ketone 2816
Grignard reaction fluorobenzalacetophenone

935
Grignard reaction lithium carboxylate 1770 
Grignard reaction nitrosyl chloride 3344 
Grignard reaction quinoline 2288 
Griseofulvin NMR carbon 2540 
Growth hormone peptide pituitary 1227 
Guaianolide Liatris 199 
Guanidine cyclization cyanoaminopyrazine 

2347
Halide alkyl halogen interchange 3295 
Halide alkyl superoxide 1678 
Halide aryl displacement nickel 2267 
Halide carbonylation catalyst 532 
Halide exchange 2304 
Halide org dehalogenation 2554 
Halide redn butyltin hydride 1966 
Halide redn titanocene magnesium 3159 
Halide vinyl reductive dehalogenation 3649 
Halide vinylic reaction olefin 1083 
Hallol structure Podocarpus 3789 
Halo sulfone araliph 3778 
Haloacetic acid reaction camphene methyl 

3654
Haloalkanoate cleavage dichlorophosphorane

3026
Haloaniline ketone enolate condensation

2853
Haloazobenzene nucleophilic substitution 

2421Halobenzene org sulfide ion mechanism
3740

Halobenzene reductive dehalogenation cata= 
lytic 3649

Halocarbon olefination methyl sulfoxide 
2014

Halogen addn enol ether 2133 
Halogen benzoate reaction 2029 
Halogen effect van der Waals 3580 
Halogen interchange molybdenum chloride

3295
Halogénation alpha acyl chloride 3420 
Halogénation electrophilic cyclopentapyrida= 

zine 2196
Halogénation pyrrole 3161 
Haloiododifluorocyclopropene 3791 
Haloketene alkylketene dimerization 3417 
Halomethyl aryl sulfone conversion 266 
Halomethyl mercury reagent 1620 
Halonitrobenzene substitution nitrite 2037 
Halonitrobenzene substitution phenoxide 

872
Halonorcaranecarboxylate brominative de= 

carboxylation stereochem 3264 
Halonorcaryl radical abstraction 3264 
Halooctane optically active 1514 
Halooxazinedione 743 
Halopyrrole 3161
Halopyrrole electrophilic substitution 3161 
Hammett sulfonoxylation benzyl ale aceto= 

phenone 2426
Heat complexation ketone nitroarom 1499 
Heimia quinolizidine alkaloid 656 
Helicene hetero cyclization 3398 
Heneicosenone insect attractant 1593 
Heptalene dihydro dimethyl 118 
Heptanal reaction allylnickel 593 
Heptanophenone irradn benzaldehyde hex= 

yne 529 
Heptenone 526
Heteroarylation thiophene diazotization 

3183Heterocirculene synthesis structure spectra 
1957

Heterocycle nitrogen 2667 
Heterocycle nitrogen rotation barrier 3547 
Heterocycles carbon phosphorus 3763 
Heterocyclic hydrazide alanine resolution 

3445
Heterocyclic resolution phosphonium salt 

1843
Heterohelicene cyclization 3398 
Heteronuclear stabilized cation 1713 
Heterophilic addn propenyl organometallic

3052
Hexacarbonylvanadate coupling dithiolium

2002
Hexadiyne coupling 348 
Hexamethylphosphoric triamide cyclization 

benzoin 1672

Hexanoic acid protective group 2962 
Hexapyridylbenzene 3514 
Hexene cyclooctene metathesis catalyst 775 
Hexenone 526
Hexenopyranoside methyl 2474 
Hexenopyranoside methylene 2823 
Hexofuranosulose acetamido deoxy 2630 
Hexosulose dideoxv 3704 
Hexyne benzaldehyde irradn 529 
Hindered acyclic amine stereochem 2710 
Hindered alkoxide dehydriodination iodobu= 

tane 3138
Histrionicotoxin hydro stereo synthesis 

2011
Histrionicotoxin perhydro stereo synthesis 

2009
Hofmann elimination 1183 
Hofmann elimination curare alkaloid 539 
Hofmann Martius rearrangement 1677 
Holotoxinogenin cryst structure 466 
Homo basketene snoutene bullvalene 3322 
Homoadamantane 276 
Homoadamantanone dehydro 2463 
Homoadamantene rearrangement mechanism 

3772
Homoallylic coupling phenanthridine NMR 

965
Homoallylic participation rearrangement 

ketone 1128
Homoallylic stabilization bicycloheptenylium 

414
Homoandrostanyl tosylate formolysis 3469 
Homobenzylic coupling phenanthridine 

NMR 965
Homocholestenone photoisomerization 3675 
Homoconjugation Diels Alder phenyldime^ 

thylenepyrrolidine 322 
Homocubanone 835 
Homocubanone rearrangement 841 
Homoisomorphinan 2033 
Homoisotwistane 276 
Homologation organoborane 814 
Homolysis phenylazo sulfone 140 
Homolytic méthylation benzene 2099 
Homomorphinan 2033 
Homoprostaglandin E l 1748 
Homosecoandrostene mass spectra 1784 
Hormone juvenile insect 1 
Horner W ittig benzaldehyde cycloalkanone 

1979
Horner W ittig reagent benzodiazepine 1508 
Humulene acid rearrangement 479 
Hydantoincarboxylate 3414 
Hydralumination acetylene regiochem stereo= 

chem 2064
Hydration alkyne kinetics 130 
Hydration cycloandrostene 1949 
Hydration ethynylcarbinol 381 
Hydration nitrobenzaldehyde 2545 
Hydrazide acetic benzoic irradn 19 
Hydrazide heterocyclic resolution alanine 

3445
Hydrazide peptide solid phase 1235 
Hydrazine 1070 
Hydrazine carbamoyl 552 
Hydrazine cyclization cyclohexylideneacetate

3502
Hydrazine cyclization dibenzocycloheptenone 

2982
Hydrazine cyclization phthalide 2208 
Hydrazine enamine cyclization 2720 
Hydrazine fluoromethanesulfonyl acyl alky12 

lation 3450
Hydrazine phenylethyl 1213 
Hydrazine reaction methylenenorbornanone 

289
Hydrazinolysis phenyl disulfone catalysis 

2128Hydrazinolysis phenylethane diazotate co^ 
nfiguration 1213

Hydrazinophthalazine acylation 2901 
Hydrazone aliph aldehyde hydrolysis 3450 
Hydrazone anion aroyl chloride 514 
Hydrazone dinitrophenyl cleavage titanium 

1502
Hydrazone redn 923
Hydrazonooxonitrile hydroxylamine 2604 
Hydride redn dibromocholestanone 1361 
Hydride redn indandione stereochem 1184 
Hydride redn stereochemistry 3798 
Hydride shift phenyl vinyl cation 2132 
Hydride transfer mechanism 3835 
Hydridotetracarbonvlferrate desulfurization 

2694
Hydroazulene sesquiterpene synthesis 1595 
Hydroboration asym benzonorbornadiene 

1533
Hydroboration cholestadienol 3680 
Hydroboration ferrocene vinyl 2416 
Hydroboration gasimetry 3154 
Hydroboration octalin steric effect 1536 
Hydrobromination cyclic aliéné 3452
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Hydrocarbon arom resonance reactivity 
calcn 3583

Hydrocarbon cyclic cycloaddn carbene 3322 
Hydrocarbon satd hydroxylation stereoselec= 

tive 2141
Hydrocarbon sesquifenchene synthesis Vale= 

riana Waalichi 3810
Hydrochlorination acetoxycholestene 2006 
Hydrocinnamic acid 1844 
Hydrofuran deriv methylphenoxycyclohexe -  

none photolysis 1371 
Hydrogen abstraction amidyl 2192 
Hydrogen abstraction phenethyl bromide 

3800
Hydrogen bond diamine protonation 1795 
Hydrogen bond isoindoline water 957 
Hydrogen bonding intramol tropine 3694 
Hydrogen donor org compd 237 
Hydrogen migration benzotropilidene irradn 

1280
Hydrogen peroxide ketone 2239 
Hydrogen shift chloro amide 2186 
Hydrogen shift pyrone pyranthione 1617 
Hydrogen sulfide addn cyclohexanone azine 

2573
Hydrogen transfer alkane cinnamic acid 

-1844
Hydrogen transfer rearrangement alkenyl^ 

dihydroquinoline 2288 
Hydrogenated quinoline redn stereospecific 

2734
Hydrogenation aminobenzoic acid 1074 
Hydrogenation arylmercury catalyst 1364 
Hydrogenation azine benzazine 2729 
Hydrogenation butylidenecycloalkanol allylic 

3073
Hydrogenation cycloheptene indoline kinet— 

ics 240
Hydrogenation estratetraenedione 3127 
Hydrogenation isoxazole aminoenones 526 
Hydrogenation methy Icy clopentylidenecyclo= 

pentane 3594
Hydrogenation nitrododecane catalyst 519 
Hydrogenation oxime catalyst 381 
Hydrogenation quinoline isoquinoline 1191 
Hydrogenation ruthenium catalyst 1887 
Hydrogenation sorbate catalyst 590 
Hydrogenation stereoselective unsatd sugar 

3357
Hydrogenolysis aryl phosphate redn 244 
Hydrogenolysis butyhal acetal mechanism 

530
Hydrogenolysis catalytic vinyl phosphate 

3652
Hydroheptalenedione sym 118 
Hydrolysis acetal kinetics 1478 
Hydrolysis adduct hexafluoroisopropylimine 

imidazole 2414 
Hydrolysis amide 1187 
Hydrolysis amidosulfite kinetics 949 
Hydrolysis aminocycloalkyl sulfone 2282 
Hydrolysis aspartate glutamate copper 

3287
Hydrolysis benzylidene trichloride surfactant 

3803
Hydrolysis ketene acetal mechanism 2940 
Hydrolysis kinetics acetal 2813 
Hydrolysis mechanism Cyprazine intermedi­

ate 2215
Hydrolysis methylthiopurinium 2652 
Hydrolysis oxabicycloheptenone 2688 
Hydrolysis phenyl ester ortho effect 2520 
Hydrolysis phenylglutaconimide 2135 
Hydrolysis phosphate amine micelle 2313 
Hydrolysis phosphate surfactant micelle 

1321
Hydrolysis phosphinic halide mechanism 

2059
Hydrolysis succinimide alk 1793 
Hydrolysis sulfonyl fluoride kinetics 2125 
Hydrolysis vinyl ether phosphate 3574 
Hydroperoxide decompn mechanism 1875 
Hydroperoxidn regiospecific cyclodecadiene 

1652Hydroperoxy carboxylic acid 3253 
Hydrophilicity org compd 292 
Hydroquinone oxidn 268 2543 
Hydroxamic acid pteridine 2332 
Hydroxamic ester quinoxaline NMR 157 
Hydroxide displacement phospholanium 

1779
Hydroxide mechanism nitrobenzyl halide 

3882
Hydroxy aldehyde protective group 2025 
Hydroxy amino acid fluorodehydroxylation 

3808
Hydroxy carboxylic acid 3253 
Hydroxy ester Reformatskii indium 2253 
Hydroxy estratrienedione dehydration 3127 
Hydroxyalkyl azidosulfonylcarbanilate 802 
Hydroxyalkylphosphorus compd decompn 

1373
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Hydroxy amine NMR 3145 
Hydroxybenzanthracene 3411 
Hydroxybicyclodecadienone 2841 
Hydroxybufalin 2136
Hydroxybutylphosphine intramol cyclization 

2801
Hydroxycholanoate acetylation kinetics 

1579
Hydroxycholestane NMR 2005 
Hydroxycholesterol NMR 1674 
Hydroxycholesterol stereochem 3680 
Hydroxydigitoxigenin synthesis 793 
Hydroxyestratrienedione 3124 
Hydroxylamine benzopyranopyridinone 

1734Hydroxylamine dibenzyl oxidn mechanism 
2508

Hydroxylamine hydrazonooxonitrile 2604 
Hydroxylation carbonyl silyl enol ether 

3427
Hydroxylation hydroxycardadienolide 793 
Hydroxylation tert carbon ozone 2141 
Hydroxylation Woodward dehydrobufalin 

2136
Hydroxymethylazacycloheptane stereochem 

2710
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Hydroxyoxopurine dihydro 1547 
Hydroxyphenylacetylene formation oxidn 

2295
Hydroxypyridopyrimidinedione prepn reac^ 

tion 3608
Hydroxypyrone méthylation mechanism 

147
Hydroxystylopine Corydalis alkaloid 644 
Hypochlorite ethyl alkyl iodide 2536 
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Mannich aminophosphonate 2851 Mannich reaction imidazopyrazine 3373 Mannich reaction norbornanone 289 
Mannopyranoside stereoselective 2823 Mannose oxidn vanadium 1248 
Mass spectra acetylenedicarbonyl fluoride 

420Mass spectra homosecoandrostene 1784 
Mass spectra org sulfur 2770 Mass spectra phosphonium halide 636 
Mass spectra pyrimidyl alkyl ketone 1500 Mass spectrum dibutylnaphthalene 327 Mass spectrum dihalobutane stereochem 

511Mass spectrum ion prediction 770 
Mass spectrum polyether 92 Mass spectrum pyrone pyranthione 1644 
Mass spectrum trialkylcyclohexanone 2160 Mass spectrum vinylogous imide 500 
Mass spectrum xanthone methyl halo 2088 Me radical source tertiary butanol 3665 
Mebanazine hydrazinolysis phenylethane diazotate 1213
Mechanism acetolysis azuleneethanol tosylate nosy late 1689
Mechanism acetolysis tricyclooctyl triflate 3326
Mechanism acetolysis tricycloundecatrienol 2806
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Mechanism Grignard nitrosamine reaction 

1070Mechanism homoadamantene rearrangement
3772Mechanism hydride transfer 3835 Mechanism hydrogenolysis butynal acetal
530Mechanism hydrolysis Cyprazine interm edia 
ate 2215Mechanism hydrolysis ketene acetal 2940 Mechanism hydrolysis phosphinic halide 
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3379M ethylthiopurinium hydrolysis 2652 Methylthiopyridine 569 
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2443Model prostaglandin biosynthesis radical cyclization 3614 
Mol ion prediction 770 Mol structure dactylyne 665 
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3810
Morphinanone redn 31 Morphine déméthylation 1850 Muconate isomerization mechanism 492 
Multiheterocycle 151 M ultistriatin configuration 1705 
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Naphthalene dibutyl irradn mass spectrum 327
Naphthalene dihydromethyl 1355 Naphthalene dimethoxy lithium redn 2841 
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Naphthalenebutyrate sulfenylation 148
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Naphthyridinamine protonation UV 2369 Naphthyridine 2566 Naphthyridine oxide bromination 3068 
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Nerol 269Nerol precursor diumycinol 2261 
Nickel displacement aryl halide 2267 
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Nitration azacyclazine 3065 
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Nitrile nitro Nef reaction 3746Nitrile oxidative decyanation 267
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Nitriles conjugated redn reagent 3810
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Nitrogen heterocycle 2667 Nitrogen heterocycle rotation barrier 3547 
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Nitrosobenzene phenylmagnesium bromide 3344
Nitrosyl chloride addn tricyclodecadiene 
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3810NM R spiroundecapropanonedione stereochem 
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stereochem 3264 
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Oxaadamantane oxahomoadamantane 444 
Oxaazabicyclononanone phenyl methyl 281 Oxaazadiol condensation chloromethyloxe— 
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Palladation ortho arylnitrogen compd 2667 
Palladium complex catalyst vinylation 1083 Palladium diaminocarbene complex oxidn 
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Phenylhydrazine redn nitroxide NMR 3145 
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mechanism 3344
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3486Sesquiterpene lactone Melampodium 3480 

Sesquiterpene lactone NM R 2557 
Sesquiterpene Ligatris 192 Sesquiterpene total synthesis 1450 1602 
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Solvent effect Michael addn 34 Solvent effect nitrene singlet 1972 Solvent effect NMR thioxanthene oxide 
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Solvolysis alkyl bromide kinetics 312 Solvolysis aryldibutylcarbinyl nitrobenzoate 3303
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Solvolysis bromoarylmethylene cyclopropane kinetics 1994
Solvolysis bromomethylpentane kinetics 307
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Solvolysis cholestanyl brosylate 2949 
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opening 3810
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Spiroindoleoxetane 117 Spiromorphanthridineoxirane rearrangement 3602
Spironaphthopyrannaphthalenone 3300 
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Stable rotamers terfluorenyls room temp 3810
Stannane ethylenediyl 3788 
Stannane trialkyl dehalogenation catalyst 2554
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Stereochem alkyldihydrothiophene 1294 Stereochem aziridine addn sulfonylacetylene 3200
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Stereochem borane addn diazo ketone 3135 Stereochem brominative decarboxylation 
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Stereochem cyclopropanation olefin 756 
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Stereochem dimethylnorbornenol 3276 
Stereochem diphenyltricyclooctene 1036 Stereochem epoxide redn 2555 
Stereochem heneicosenone 1593 Stereochem hindered acyclic amine 2710 
Stereochem hydralumination acetylene 2064
Stereochem hydride redn indandione 1184 
Stereochem hydrobromination cyclic aliéné 3452
Stereochem hydroxycholesterol 3680 
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Stereochem oxidative rearrangement amide 3554
Stereochem oxymercuration tricycloundeca0 diene 3767
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Stereochem sulfoxide NMR europium 3430 Stereochem tenulin 2557 
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Stereochem tricyclodecadiene addn 3631 Stereochemistry carbene addn 1529 
Stereochemistry cyclohexanone aluminum alkyl reaction 1469
Stereochemistry diazabicycloheptene 1683 Stereochemistry hydrogenation 3594 
Stereochemistry méthylation decalyldime0 thylamine 1308Stereochemistry redn oxabicyclononane 

3798
Stereoisomer bicyclic amino ale 3658 Stereoisomeric dehydrodemethylaxerophtene 3460
Stereoisomeric dibromodiphenylbutadiene 2248
Stereoisomerism diazaphospholene oxide 

2318Stereoisomers butylpyridine 2987 Stereoselective hydrogenation unsatd sugar 
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Stereoselective hydroxylation satd hydrocar0 bon 2141
Stereoselective mannopyranoside 2823 Stereoselective redn cyclohexanone 926 Stereoselective synthesis acrylic sesquiterp° 
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Steric effect diazodiphenylmethane acid 407Steric effect epoxidn octalin 1536 
Steric effect imine ketene 2552 Steric effect solvolysis bicycloheptenyl tosy° late 2656
Steric effect sulfone phosphine reaction 2587Steric hindrance dithiol 524 Steric hindrance substitution reaction 343 
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ylide 870Stibine trimethyl quaternization 3801 
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Stilbene para substituted 187 
Stilbenediamine cyclization dibromopropa0 none 1683
Stobbe deoxyanisoin succinate 3411 
Strain dimethylbicyclooctenone conjugation 1699
Strain tetracyclooctane 835 Streptamine dideoxy 456 
Structure activity desthiomethyleneanhydro0 gliotoxin stereochem 2147 
Structure crystal sultone bicyclic 3308 
Structure crystal twistane deriv 2086 Structure heterocirculene 1957 
Structure methoxyakuammicine 1367 
Structure mol triazabicyclooctanedione 1444
Structure palytoxin 540 
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Strychnos alkaloid synthesis 2572 
Stylopine hydroxy Corydalis alkaloid 644 Styrene bromination alkene 221 
Styrene bromo hydride shift 2132 
Styrene dialkylated double bond 132 Styrene dichloro sulfonation 1179 
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Styryl bromide coupling Grignard 599 Styryl methyl sulfoxide 1979 
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Substituent effect cyclobutadiene conforma0 tion 2121
Substituent effect decarboxylation arylace0 tate 3647
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Substituent effect ionization vol 1179 
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Substituent effect phenylbenzoin cleavage 318
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Substituent effect quinolylhydrazone isomer0 ization 2512
Substituent effect spectrum xanthone 2088 
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3373Substitution electrophilic naphthalene 2547 
Substitution electrophilic thioanisole 1920 Substitution halonitrobenzene nitrite 2037 Substitution halonitrobenzene phenoxide 
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Sugar oxidn chromium oxide 2630 Sugar oxidn vanadium 1248 
Sugar unsatd stereoselective hydrogenation 3357
Sulfadiazine ylide 2758 
Sulfanilamide ylide 2758 Sulfenamide cyclization 2029 
Sulfene cycloaddn azomethine imine 2260 Sulfenyl chloride 3540 
Sulfenyl chloride amino racemization 752 
Sulfenyl chloride cyclization oxadiazolamine 2600
Sulfenylation ester enolate 148 Sulfide alkylenedi oxidn 3152 
Sulfide aminocyclopropyl oxidn 2282 Sulfide arom kinetics substitution 3777 
Sulfide cyclization halomethylphenanthrene 477
Sulfide ether pentadecane 1510 Sulfide furyl phenyl 966 Sulfide galactose 1337 
Sulfide ion org halobenzene mechanism 3740
Sulfide mass spectra 2770 Sulfide phenyl vinyl 812 Sulfide phosphine NMR 3437 
Sulfilimine phenothiazine 2590 Sulfine phenyl sulfine 3540 Sulfino phosphonium betaine 3189 Sulfinyl chloride 3540 
Sulfinyl sulfone equil naphthalenedisulfinate 3623
Sulfinylamine aryl alkyl cyclohèxyl 3291 
Sulfite addn benzaldehyde 1632 Sulfite propargylic rearrangement 3308 
Sulfite propylene oxide reaction 375 
Sulfoacetate Knoevenagel reaction salicylal0 dehyde 880Sulfobutylphosphonium Wittig prostaglandin precursor 521
Sulfolane thermolysis mechanism 1842 
Sulfonanilide rearrangement sulfone 889 Sulfonate alkyl superoxide 1680 
Sulfonate condensation salicylaldéhyde 880 Sulfonate displacement reaction steroidal 3870
Sulfonate methyl fluoro hydroxymethylpyri° dine 2092
Sulfonation dichlorostyrene intermediate 1179
Sulfone aminocycloalkyl hydrolysis 2282 Sulfone halo araliph 3778 
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Sulfonyl carbanion alkylation 266 Sulfonyl fluoride hydrolysis kinetics 2125 
Sulfonyl peroxide benzene deriv 2426 
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1337Sulfonyliminothiaziridine reaction 1728 Sulfonylmethyl perchlorate solvolysis 3292 
Sulfoxide alkylenedi 3152 Sulfoxide aryl rotation barrier 2537 Sulfoxide dibenzyl dideuterio CD ORD UV 

3780Sulfoxide dimethyl trifluoroacetic anhydride 2758Sulfoxide methyl elimination reaction 2014 
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Sulfur dioxide lithioamine 3291 Sulfur trioxide insertion fluoroalkanoyl 
halide 2937Sulfur ylide cyclization aziridine 2990 Sulfuric acid thioxanthenol sulfoxide 1737 

Sultam benzyl 1525 Sultam butane metalation 1342 
Sultone bicyclic crystal structure 3308 Sultone redn 1766Sultone salicylaldéhyde methanesulfonate 

880Superoxide alkyl bromide sulfonate 1680 
Superoxide alkyl halide tosylate 1678 Supinidine prepn 3866 Surfactant micelle decarboxylation catalyst 

1321
Surfactant oxidn piperonal 3803 Symbolism reaction mechanism 402 
Synergistic carbene addn methylene 1368 Synthesis aryl anion equiv 231 Synthesis asymmetric oxaziridine 3878 Synthesis enol detn cyanocyclohexanones 
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Synthesis methyl jasmonate 462 Synthesis stereoselective cycloalkene fused 

butyrolactone 2070 Synthesis total asperopterin B 2336 
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Tabtoxinine lactam 3491 T aft Pavelich ketone complexation 3155 
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Tautomerization dimethylbicyclooctenone strain 1699
Tautomerization indanoaziridinimine irradn 

175TCNQ deriv 3101
TCNQ tetraathiafulvalenium elec cond 3544Tenulin carbon NMR spectra stereochem 

3810
Tenulin stereochem 2557 Terephthaldehyde redn selective 1966 
Terfluorenyls room temp stable rotamers 

3810Terpene amine stereochem 2897 Terpene biogenesis 2576 
Terpene chromic acid oxidn 1664 Terpene cyanonitramine 1681 Terpenoids 3810
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T ertiary butanol Me radical source 3665 
Tetraathiafulvalenium TCNQ elec cond 3544Tetracyanoethylene oxide azulene mechanism3224
Tetracyanoquinodimethane deriv 3101 Tetracyclononadione 2875 
Tetracyclooctane Baeyer Villiger oxidn 835 Tetradecadiene metathesis hexene cyclooct— ene 775
Tetraethylene glycol thio 1510 Tetrahydrofuran cleavage 2801 3571 Tetrahydroisoquinoline redn 1191 Tetrahydropalmatine purity enantiomer 1987
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3280Tetrahydroquinoline redn stereospecific 2734
Tetralin aminophenyl 1216 Tetralindiol asym synthesis 3467 Tetralinspirocyclohexane 3844 Tetralol redn 3151
Tetralone bromo dehydrobromination 2976 
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Theobromine alkylation phosphorus ester 
385Theophylline alkylation phosphorus ester 
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788Thermal decompn peroxynorcaranecarboxy- 
late 3264Thermal rearrangement diphenylimidazole 
kinetics 2562Thermal stability silylenebisbenzoxazole 
1495Thermolysis azidoformate dimethylbutene
3396Thermolysis benzenedisulfonyl azide 883 Thermolysis benzenesulfonyl azide 1525 Thermolysis diazenedicarboxamide 1854 

Thermolysis diazocycloalkanone 3874 Thermolysis pyrazoline deriv stereochem 
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Thermolysis sulfolane mechanism 1842 Thermolysis thiatriazoline 1728 TH F cleavage acetyl perchlorate 81 
TH F cleavage alkyl chlorosulfinate 2786 Thia'bicycloheptadiene diphenyl 970 
Thiacoumestan dihydro 3169 Thiadehydrohelicene 3398 
Thiadiazinone phenyl imino 1917 Thiadiazolamino cyclization sulfenyl chloride 

2600Thiadiazole 1728 
Thiadiazole dioxide 2743 Thiadiazolediamino cyclization sulfur chlo­ride 2749
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Thiadispirotridecane desulfurization 2573 Thiafolic acid CD 3447 
Thiahelicene cyclization 3398 
Thianaphthenone salicylaldéhyde cyclization 3169
Thianorbornene bromination 161 
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Thiaselenoleselone 387 Thiaselenolethione 387 
Thiatriazole alkylation 431 
Thiatriazoline thermolysis 1728 Thiazinium betaine rearrangement 2596 
Thiaziridine sulfonylimino reaction 1728 
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1275Thiazole imino 1728
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Thiazoline prepn hydroxy aldehyde 2025 
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Thiodycoside 1337 Thioketal decalindione cleavage 534 
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Thiol ester glycidic 3173 Thiol oxidn sulfoxide 2096 Thiolglycidate ester Wagner Meervein 1741 
Thionyl chloride addn cinnamate 3037 Thionyl chloride benzopyridinophanol 3142 Thionyl chloride oxidn ketone thietanone 
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Thionyl chloride reaction nitrile 3540 Thiophene 800
Thiophene dicyanovinyl cyclization 1840 Thiophene dihydro alkyl stereochem 1294 
Thiophene heteroarylation diazotization 
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Thiophenedicarbohydroxamate Lossen rear­
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Thiophenol addn methylstyrene 536 Thiophenoxide elimination thio acetal 812 Thiophenoxide protecting group 1181 
Thiophosphoric acid ester protonation 2582 
Thiopyridine 569 Thiopyridinedicarbonitrile 799 
Thiosemicarbazide cyclization trichlorome= thylmethanol 1917 
Thiosulfinate 58 Thiosulfonate 58 Thiosulfonate mass spectra 2770 Thiourea cyclization chlorocarbonylphenylk= 
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Tirotundin structure 3118 
Titanium cleavage dinitrophenylhydrazone ketone 1502Titanium redn bromohydrin 3797 
Titanium redn epoxide 2555 
Titanium tetroxide oxidn cycloalkane 2539 Titanocene magnesium halide redn 3159 
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Toluene chloro alkali amide 1835 Toluene dimethoxy oxidn 2548 Toluene nitration 187 
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Toluenesulfonimide redn 2018 
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Toluyne intermediate 1835 Tolylamine di 3349
Torsion bisphenylethylmandelamide diaster^ eomer 3093
Tosylate alkyl superoxide 1678 
Tosylate azuleneethanol acetolysis kinetics 1689
Tosylate cholesteryl alcoholysis 2954 Tosylate cyclobutyl acetolysis kinetics 1046 
Tosylate octyl displacement 1514 Tosylhydrazone carbonyl deoxygenation 923
Tosylhydrazone ketone acetone exchange 3302
Total synthesis deoxydamsin 1656 
Total synthesis diterpene 3686 Total synthesis diumycinol 2261 Total synthesis eremephilone 1829 
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S i l y l a t i n g  A g e n t s

I. As Analytical Tools
The combination of gas chromatography (GC) and mass spec­

trometry (MS) is a powerful tool for the identification of organic 
compounds. However, many compounds such as amino acids, car­
bohydrates and steroids have either high polarity or high molecular 
weights, making GC or MS unsuitable. This difficulty can often be 
overcome by the preparation of trimethylsilyl derivatives1-2 since 
their greater volatility facilitates GC and MS analyses.

,V.O-Bis(trimethylsilyl)acetamide (BSA>' and A,,0-bis(trimethyl- 
silyl)trifluoroaeetamide (BSTFA)4 are powerful silylating agents 
which readily silylate amides, ureas, amino acids, phenols, car­
boxylic acids and enols.' In addition, BSA and BSTFA can be used 
in the GC analysis of many water-soluble compounds of biological 
interest, e.g.. sugar phosphates,' hexosamines, 6 hexosaminitols, 7 

nucleic acid bases,* nucleosides,* and steroids.’
3-Aminopropyltriethoxysilane is used to prepare the amino- 

propyl derivative of glass which is becoming increasingly important 
as a bonded phase for affinity chromatography.1“

Tetramethylsilane (TMS) is a widely used nmr standard and we 
offer TMS of the highest quality.
II. Synthetic Applications

The importance of (err-butyldimethylsilyl ethers as hydroxyl pro­
tecting groups has been established by Corey and Venkateswarlu. 11 

(See Aldnch ad on ieri-butyldimethylsilyl chloride, J. Org. Chem., 
October 31, 1975 issue.)

Other synthetic applications of silylated compounds are high­
lighted by the following examples. The trimethylsilyl derivatives 
described can be prepared by silylation with one of the following 
reagents: BSA, BSTFA, TMCS(trimethylchlorosilane)and HMDS 
(hexamethyldisilazane).

a) a-Halogenocarboxylic esters are inert towards free imidazole, 
but are very reactive towards silylated imidazole. 12

(f~ J*  CICH,CO,SI(CH3),  ̂ ( f ~ j j  H, 0  ^ ( f  J 1

Si(CHj} 3 CHjCOjSî CHjJj CH,CO,H

d) I n acyloin condensations, the introduction of TMCS eliminates 
the Dieckmann and Claisen products, and the cyclization of 1,2- 
dicarboxylic esters gives good yields of the cyclobutane derivatives. 15

00,0, H,

Q O ;0 52% 

CO,C,H, 
r ° \ /  \ OSijCH,),

0 V ^ O S i(C H 3),
85%

CH,a CO,CH, 

CO,CH,
Na, CISHCHj), 

toluene **
CM, OSifCHj),

94%
OSifCM,),

e) Cyclic ureas cannot be prepared by cyclization of the free di­
amines with phosgene. However, silylated diamines undergo cycli-
ration.11'

R R
NH

(ÇHr)n
COC4

NfĈ t,), (CHjn
NH n = 3 or 4,
R R = SI(CH,), R

V  c,hsoh c=o ..............
y

n

(CH,)n >C
ñ

Similarly, uric acid can be prepared from 2,6-bis-O-trimethylsilyl- 
4,5-bisftrimethylsilylamino)uracil. 16

References:
I) Clin. Chim. Acta. 34,207(1971); 2) Clin. Chem.. 17,1083(1971); 3)/ Amer. Chem. Soc., 
8 8, 3390 ( 1966); 4) Biochem. Biophys. Res. Commun.. 31, 616 (1968); 5) Bbchim. Biophys. 
Acta. 82,408(1964); t)J Chromalogr.. 20,457(1965); T)ibid„ 21, 300(1966); l)ibid., 24, 
347 (1971); 9)it>ù/.,91, 407(1974); 18) Biochim. Biophys. Ada. 211 I (1970); U) J. Amer. 
Chem. Soc.. 94, 6190 (1972); 12) Chem Ber. 93, 2804 (I960); 13) ibid...91, 934 (1964); 
14) ibid.. 94, 3280(1963); 15) Tetrahedron Un.. 587, 591 (1968); 14) Chem. Ber., 93,2810 
(I960).

b) Acyl halogeno sugars react with O-silylated N-heterocycles to 
form N-glycosides.1’

aN^OSifCH,}, AflCIO, ' 0 U
R = 1 -(2,3,4,6-tetre- 0-ecetyl)g)ucot yl

c) Synthesis of ketonic acetylenes14 

ROCŜ CH,), ♦ R’COCI ___

ClOf + AgBr

Oo

RC=CCOR
R = Si(CH,)a, C.H, or C,H,
R- = CH,, C,H„ p-NO,C,H, or CH,CI

11,339-5 3-Aminopropyltriethoxysilane.....................100g $9.10
12,891-0 Bis<trimethylsilvl)acetamide ............. _.........10g $5.50

(BSA) 25g $10.00; 100g $35.00
15,519-5 Bis<trimethylsilyl)trifluoroacet- .....................5g $9.25

amide (BSTFA) 25g $30.55; 100g $92.40
19.050-0 (m-Butyldimethylsilyl chloride ................. 25g $25.00

100g $80.00
( 7285-4 Chlorotrimethylsilane (TMCS)....................100g $4.75

500g $10.00
D6082-6 Dichlorodimethylsilane ........... 100g S4.50; 500g $7.80
H1000-2 1,1,1,3,3,3-Hexamethvldisilazane .................25g $3.80

(HMDS) 100g $12.70
17,561-7 3-(Mercaptopropyl)trimethoxysilane............ 50g $4.80

250g $16.00
12400-7 Tetramethylsilane (TMS) ......25g $11.70; 100g $31.20
17,556-0 Triethoxyvinylsilane............. 100g $4.65; 500g $14.20
17,558-7 Tris-(2-methoxyethoxy)vinyl- .....................250g $8.40

silane 1kg $22.10
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