

TRANSITION METAL ORGANOMETALLICS IN ORGANIC SYNTHESIS Volume 1

edited by HOWARD ALPER A Volume in the ORGANIC CHEMISTRY Series

The use of transition metal organometallics in organic synthesis is a field which has experienced vigorous growth in recent years. This two-volume work critically reviews the published literature in this area with particular emphasis on the most effective synthetic transformations.

CONTENTS: A. J. Birch and I. D. Jenkins, Transition Metal Complexes of Olefinic Compounds. R. Noyori, Coupling Reactions via Transition Metal Complexes. C. P. Casey, Metal-Carbene Corrplexes in Organic Synthesis. 1976, 256 pp., \$26.50/£ 16.15 ISBN: 0-12-053101-1

ART IN BIOSYNTHESIS

VOLUME 1: The Synthetic Chemist's Challenge

by DARSHAN RANGANATHAN and SUBRAMANIA RANGANATHAN
From the Preface:
"Art in Biosynthesis . . . pays tribute to the creativity associated with the construction of molecular frameworks. The style of presentation of this book is similar to that of Art in Organic Synthesis to enable a quick comparison of the specific synthetic strategies. Such a comparison cannot but profoundly influence us and lead the art to organic synthesis in a direction dictated by Nature. . . . Our book is intended to promote this highly de-
sirable transition. The largely pictorial illustrations are followed by, in addition to the author index and subject index, a glossary, and α-amino acid index, a reagent index and a reaction-type index to enable ready retrieval of information. In a large number of cases, biological reaction mechanisms are interpreted on the basis of in vitro experience.'

1976252 pp., $\$ 11.00 / £ 6.05$ ISBN: 0-12-580001-0

ORGANIC FUNCTIONAL GROUP ANALYSIS BY MEANS OF GAS CHROMATOGRAPHY

by T. S. MA and ATHANASIOS S. LADAS

From the Preface:

". . . Since the gas chromatographic apparatus was originally designed for the sole purpose of separating vapors, it is understandable that most investigators have devoted their efforts to improve the instrument or study the optimal conditions for the separation of specific gaseous mixtures. In the present monograph I wish to discuss a different aspect of gas chromatography, being concerned with the application of existing instruments and known separation techniques to the quantitative analysis of organic compounds through the formation of suitable derivatives.
"This book is an offshoot of my comprehensive project on micremetרods of organic functional group analysis which was undertaken during the 1950s. When the said project was near completion the gas chromatograph became an accepted analytical tool. . . . I called attention to its two distinct advantages, namely (a، gas chromatography provides a simple way to isolate the measurable product and (b) the high sensitivity of the instrument can be utilized to extend the lower limit of microdetermination of organic functional groups beyond the 0.1 millimole level."
1976. 184 pp., \$16.75/£ 6.80 ISBN: 0-12-462850-8

THE DETERMINATION OF SULPHUR-CONTAINING GROUPS

VOLUME 2: Analytical Methods for Thiol Groups

by M. R. F. ASHWORTH
This volume, the second on the determination of sulphurcontaining groups, presents analytical methods for compounds in which the thiol group is carried primarily by a carbon atom joined either to hydrogen or to another carbon atom. This comprises alkane- and arenethiols and also includes compounds which contain other functional groups, such as mercaptocarboxylic acid, mercaptoamines and mercaptoalcohols. Notable here are the amino acids cysteine and glutathione, as well as
penicillamine; as a general rule, analytical procedures for amino acids are given only when the thiol group, or at least the sulphur atom plavs a part. Professor Ashworth's aim has been to inform the reader of the wide range of methods which are available to detect, identify, separate, and determine such compounds quan:itatively.

1976, 296 pp., \$24.25/£9.80 ISBN: 0-12-065002-9

Special Offer . .
ORGANIC FUNCTIONAL GROUP PREPARATIONS
by STANLEY R. SANDLER and WOLF KARO
Volumes in the ORGANIC CHEMISTRY SERIES

These volumes are a convenient source of detailed modern laboratory procedures for the preparation of a given organic functional group utilizing various reaction types-condensation, elimination, oxidation, and reduction-and a variety of starting materials. The novel arrangement of chapters by functional groups will help the reader to rapidly and critically select the suitable preparative procedure to achieve a synthetic objective (particularly when the starting material of process limitations impose restrictions); and tables of data are included to indicate the scope of the reactions.

As a special offer, Organic Functional Group Preparations,

Volumes 1-3, may be purchased at the set discount price of $\$ 77.20$. This price reflects a 20% savings over individually purchased volumes. This special offer-valid only on orders received for all three books-expires December 31, 1976.

Volume 1/1968, 578 pp., \$29.50/£ 18.00 ISBN: 0-12-618550-6
Volume 2/1971, 508 pp., $\$ 32.50 / £ 19.80$ ISBN: 0-12-618552-2
Volume 3/1972, 520 pp., $\$ 34.50 / £ 21.05$ ISBN: 0-12-618553-0

EDITOR-IN-CHIEF: FREDERICK D. GREENE
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

SENIOR EDITORS

Werner Herz
Florida State University
Tallahassee, Florida

James A. Moore
University of Delaware
Newark, Delaware

Martin A. Schwartz
Florida State University
Tallahassee, Florida

ASSISTANT EDITOR: Theodora W. Greene

ADVISORY BOARD

Robert A. Benkeser	Neville Finch	William M. Jones	Albert I. Meyers	Henry Rapoport
John I. Brauman	Paul G. Gassman	Jay K. Kochi	John G. Moffatt	William Sheppard
Orville L. Chapman	Ralph Hirschmann	James A. Marshall	Roy A. Olofson	Robert V. Stevens
Stanton Ehrenson	Donald M. Jerina	James C. Martin	Leo A. Paquette	Barry M. Trost
David A. Evans	Carl R. Johnson		Marvin L. Poutsma	Nicholas J. Turro

EX-OFFICIO MEMBERS: George H. Coleman, Sanibel Island, Florida
Edward M. Burgess, Georgia Institute of Technology (Secretary.Treasurer of the Division of Organic Chemistry of the American Chemical Society)

Published by the

AMERICAN CHEMICAL SOCIETY

BOOKS AND JOURNALS DIVISION

D. H. Michael Bowen, Director

Editorial Department: Charles R. Bertsch, Head; Marianne C. Brogan, Associate Head; Eileen B. Segal, Production Editor; Fern S. Jackson, Assistant Editor; Andrew J. D'Amelio, Editorial Assistant
Graphics and Production Department: Bacil Guiley, Head
Research and Development Department: Seldon W. Terrant, Head

Advertising Office: Centcom, Ltd., 50 W . State St., Westport, Conn. 06880.
© Copyright, 1976, by the American Chemical Society. No part of this publication may be reproduced in any form without permission in writing from the American Chemical Society.
Published biweekly by the American Chemical Society at 20th and Northampton Sts., Easton, Pa. 18042. Second class postage paid at Washington, D.C., and at additional mailing offices.

Editorial Information

Instructions for authors are printed in the first issue of each volume. Please conform to these instructions when submitting manuscripts.
Manuscripts for publication should be submitted to the Editor, Frederick D. Greene, at his Cambridge, Mass., address.
Correspondence regarding accepted papers and proofs should be directed to the

Editorial Department at the ACS Easton address.
Page charges of $\$ 70.00$ per page are assessed for papers published in this journal. Ability to pay does not affect acceptance or scheduling of papers.
Bulk reprints or photocopies of individual articles are available. For information write to Business Operations, Books and Journals Division, at the ACS Washington address. Requests for permission to reprint should be directed to Permissions, Books and Journals Division, at the ACS Washington address.
The American Chemical Society and its Editors assume no responsibility for the statements and opinions advanced by contributors.

Subscription and Business Information

1976 subscription rates-including surface postage:

	Do- mestic	PUAS	Canada,
Foreign			

Air mail and Air freight rates are available from Membership \& Supscription Services, at the ACS Columbus address.
New and renewal subscriptions should be sent with payment to the Office of the Controller at the ACS Washington address. Changes of address must include both old and new addresses with ZIP code and a recent mailing label. Send all address changes to the ACS Columbus address. Please allow 6 weeks for change to become effective. Claims for missing numbers will not be allowed if loss was due to failure of notice of change of address to be received in the time specified; if claim is dated, (a)

North America, more than 90 days beyond issue date, (b) all other foreign, more than one year beyond issue date; or if the reason given is "missing from files". Hard copy claims are handled at the ACS Columbus address.

Microfiche subscriptions are available at the same rates but are mailed first class to U.S. subscribers, air mail to the rest of the world. Direct all inquiries to Business Operations, Books and Journals Division, at the ACS Washington address or call (202) 872-4444.

Single issues in hard copy and/or microfiche are available from Special Issues Sales at the ACS Washington address. Current year $\$ 5.00$. Back issue rates available from Special Issues Sales. Back volumes are available in hard copy and/or microform. Write to Specjal Issues Sales at the ACS Washington address for further information. Microfilm editions of ACS periodical publications are available from volume 1 to the present. For further information, contact Special Issues Sales at the ACS Washington address.
Supplementary material must be ordered directly from Business Operations, Books and Journals Division, at the ACS Washington address. Orders over 20 pages

	PUAS,		
	Uther		
Microfiche	$\$ 2.50$	$\$ 3.00$	$\$ 3.50$
Canada	Foreign		
Photocopy			
$\quad 1-7$ pages	4.00	5.50	7.00
8-20 pages	5.00	6.50	8.00

are available only on microfiche, 4×6 in., $24 \times$, negative, silver halide. Orders must state photocopy or microfiche if both are available. Full bibliographic citation including names of all authors and prepayment are required. Prices are subject to change.

American Chemical Society
1155 16th St., N.W.
Washington, D.C. 20036
(202) 872-4600

Membership \& Subscription Services
American Chemical Society
P.O. Box 3337

Columbus, Ohio 43210
(614) 421-7230

Editorial Department
American Chemical Society
20th and Northampton Sts.
Easton, Pa. 18042
(215) 258-9111
wne seamesus organic Chemistry

Arnold T. Nielsen,* Donald W. Moore,
Ronald L. Atkins, Daniel Mallory, John DiPol, and Jeanne Marie LaBerge
Harold W. Heine,* Leona M. Baclawski, Steven M. Bonser, and George D. Wachob

Babu George and Eleftherios P. Papadopoulos* Terry D. Lee and John F. W. Keana*

Norman H. Cromwell* and Hiu-Kwong Leung
B. A. Feit,* R. Pazhenchevsky, and B. Pazhenchevsky

Robert E. Lyle* and Daniel L. Comins
S. D. Ziman
J. K. Chang, M. Shimizu, and Su-Sun Wang*

Su-Sun Wang
Peter Bakuzis,* Olívia O. S. Campos, and Marinalva L. F. Bakuzis

Cecil R. Smith, Jr.,* Roger W. Miller, Davis Weisleder, William K.Rohwedder, Nancy Eickman, and Jon Clardy*
Yves Rolland, Nicole Kunesch, Jacques Poisson, Edward W. Hagaman, Fred M. Schell, and Ernest Wenkert*

Michel Daudon, M. Hachem Mehri, Michel M. Plat, Edward M. Hagamann, and Ernest Wenkert*

Philip E.Sonnet* and James E. Oliver*

Philip E. Sonnet* and James E. Oliver*

Gary L. Olson, * Ho-Chuen Cheung, Keith D. Morgan, Christian Neukom, and Gabriel Saucy

Judith S. Polley and Roger K. Murray, Jr.*
D. C. Berndt* and I. E. Ward

James L. Jensen* and Hassan Hashtroudi

3221 Stereochemistry and Mechanism of the Schmitz Diaziridine Synthesis Leading to 2,4,6-Trisubstituted 1,3,5-Triazabicyclo[3.1.0]hexanes

3229 Diaziridines. 5. Reaction of Some 1-Aroyl- and 1,2-Diacyldiaziridines

3233 Heterocycles from N-Ethoxycarbonylthioamides and Dinucleophilic Reagents. 1. Dihydro-1,2,4-triazolones and 1,2,4-Oxadiazolones and Addition of Ethyl [$\left.{ }^{2} \mathrm{H}\right]$ Alcohol to trans-Cinnamonitrile Catalyzed by Sodium Ethoxide
3250 Regioselective Nucleophilic Addition to 3,4-Lutidine

3253 Synthesis of Cyclic and Acyclic Tri- and Tetrasubstituted Hydroxyguanidines
3255 Fully Automated Solid Phase Synthesis of Protected Peptide Hydrazides on Recycling Hydroxymethyl Resin

3258 Solid Phase Synthesis of Protected Peptides via Photolytic Cleavage of the α-Methylphenacyl Ester Anchoring Linkage

3261

3264 Celorbicol, Isocelorbicol, and Their Esters: New Sesquiterpenoids from

- Celastrus orbiculatus

Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. 43. Carbon-13 Nuclear Magnetic Resonance Analysis of Bis-Indoline Alkaloids of Two Voacanga Species

3275 Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. 48. Dimeric Quinolinic Melodinus Alkaloids

3279 Olefin Inversion. 1. Reaction of Aliphatic Epoxides with Triphenylphosphine Dihalides

3299

Synthesis of 1,3-Bishomoadamantane

Kinetics and Mechanism of Acidic and Alkaline Hydrolysis of Hindered N-Methylarylhydroxamic Acids
Olefin Inversion. 2. Sodium Iodide Reductions of vic-Bromochlorides and vic-Dichlorides
Vitamin A Synthesis by Sulfone Alkylation-Elimination. C_{15} Halide, C_{5} Hydroxy Sulfone Approach Base-Catalyzed Hydration of α, β-Unsaturated Ketones

Synthetic Methods of Organic Chemistry

W. Theilheimer

Just published
the final velume of the sixth series
Unlimited
journal coverage

also

5-year cumulative
arrangements of titles

From the reviews of Vol. 28

Vol. 30 yarrook 1976

793 pages, \$212.25

Volume 30 of this well-known reference source of organic reactions again contains over 700 new abstracts. This brings the total material in the 30 volumes to

27,077 selected and coordinated key abstracts
kept up-to-date by more than
26,000 supplementary references.
This comprehensive reaction documentation in handy book form allows the searcher to browse and look up references in quick succession. The specially designed subject index, this time a

5-Year Cumulative Encyclopedic Subject Index,

provides easy access to all facets of the material covered by such entries as:

Carbanions, masked
Copper compounds, organo-
Dialkylchloroboranes
Dicarbanions
1,3-Dithianes
Merrifield syntheses

Nucleosides
1,3-Oxazines, dihydro-
Oxymercuration-demercuration
Peptides
Phase transler catalysis
Polymer-based reagents

Protection (of functional groups)
Radical reactions
Retention (of functional groups) Sodium tetracarbonylferrate(II) Stereospecific reactions
Sultonium ylids

There can hardly be anyone with modern graduate training in synthetic organic chemistry who has not browsed at one time or another through the library set of "'Synthetic Methods of Organic Chemistry," the continuing series masterfully edited by William Theilheimer.
J. Med. Chem. 18, 537 (1975)

The value of "Theilheimer" in saving man-hours of both library and laboratory work must surely be vastly greater than its cost for any active research group Librarians will be interested to know that the entire series is now in print, by virtue of the appearance of second editions of many earlier volumes, beginning with Volume 1 ; these second editions are relatively modest in price.
J. Am. Chem. Soc. 98, 1062 (1976)

S. Karger•Basel•London•München•New York•Paris•Sydney

Please order from Albert J. Phiebig, Inc., P. ©. Box 352, White Plaing, N. Y. 10602, U.S.A.

Semimonthly:	write to	Coded Synthetic Methods Vol. 1-30
Express Abstract Service	William Theilheimer	Now available as Magnetic Tape or Punch Cards, constituting a
For Research Laboratories	318 Hillside Ave.	Reaction Data Base going, back to 1946, coded by specialists.
Approx. 1000 Abstracts, $\$ 160.00$	Nutley N.J. 07110, U.S.A.	write to DERWENT PUBLICATIONS LTD.

Richard W. Holder,* Howard S. Freiman,	3303	Preparation of Vinylketene by 1,4-Elimination. Cycloaddition and Isomerization to Form α-Ethylidenecyclobutanones
and Michael F. Stefanchik		

NOTES

Jiří Žemlička* and Masayoshi Murata
N. R. Rosenquist and O. L. Chapman*

Robert O. Hutchins,* David Rotstein, Nicholas Natale, Joseph Fanelli, and Donald Dimmel
S. L. Huang, K. Omura, and D. Swern*

Günter Schmitt* and Sinan Özman
John W. Larsen* and Laurence W. Chang

Merle A. Battiste* and Robert G. Posey

David A. Evans,* Larry K. Truesdale, and Kurt G. Grimm

Stephen F. Martin
Larry E. Overman*
and Curt B. Campbell
S. Jackson and L. A. Hull*

3317 Some Transformations of DL-Phenylalanine Ortho Esters and N-Benzyloxycarbonyl-L-phenylalaninal
3321 Orientation of the Nitrogen Lone-Pair Electrons in Cannivonine
3322 Configuration of the Photoisomers of Benzylideneanilines

3325 Ring Expansion Reaction of 1,2-Dihydroquinolines to 1-Benzazepines. 2

3326 A General Method for the Synthesis of Reactive α, β-Unsaturated Diazomethyl Ketones: Allenyl Diazomethyl Ketone and Vinyl Diazomethyl Ketone

3328 Selective Reduction of α, β-Unsaturated Esters, Nitriles, and Nitro Compounds with Sodium Cyanoborohydride

3329 Oxidation of Sterically Hindered Alcohols to Carbonyls with Dimethyl Sulfoxide-Trifluoroacetic Anhydride
3331 Ferrocenecarboxylic Acids from Substituted Ferrocenes. A Convenient and Versatile Oxidation Method

3332 Hydrogenation of Cyclohexeze Catalyzed by First Row Transition Metal Stearates

3333 An Aberrant Rearrangement in the Reaction of 1,2-Dibromo-3,3-difluorocycopropene with Anthracene

3335 Carbonyl Insertion Reactions of Ethyl α-Trimethylsilydiazoacetate. An Improved Route to Diazoacetate Aldol Products

COMMUNICATIONS

3337 Carbonyl Homologation witk α Substitution. A New Approach to Spiroannelation
3338 Mercury(II) Catalyzed 3,3-Sigmatropic Rearrangements of Allylic

- N, N-Dimethylcarbamates. A Mild Method for Allylic Equilibrations and Contrathermadynamic Allylic Isomer Enrichments

3340 Reductive Trapping in the Oxonolysis of Diphenylacetylene

- Supplementary material for this paper is available separately (consult the masthead page for ordering information); it will also appear following the paper in the microfilm edition of this journal.
* In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addeessed.

AUTHOR INDEX

Atkins, R. L., 3221
Baclawski, L. M., 3229
Bakuzis, M. L. F., 3261
Bakuzis, P., 3261
Battiste, M. A., 3333
Berndt, D. C., 3297
Bonser, S. M., 3229
Campbell, C. B., 3338
Campos, O. O. S., 3261
Caswell, L. R., 3212
Chang, J. K., 3255
Chang, L. W., 3332
Chapman, O. L., 3326
Cheung, H.-C., 3287
Clardy, J., 3264
Comins, D. L., 3250
Cromwell, N. H., 3241
Daudon, M., 3275
Dimmel, D., 3328
DiPol, J., 3221
Eickman, N., 3264
Evans, D. A., 3335
Fanelli, J., 3328
Feit, B. A., 3246
Freiman, H. S., 3303

George, B., 3233
Grimm, K. G., 3335
Hagaman, E. W., 3270, 3275
Hashtroudi, H., 3299
Heine, H. W., 3229
Holder, R. W., 3303
Howard, M. F., 3312
Huang, S. L., 3329
Hull. L. A., 3340
Hutchins, R. O., 3328
Jackson, S., 3340
Jankowski, K., 3321
Jensen, J. L., 3299
Keana, J. F. W., 3237
Klein, J., 3307
Kobayashi, M., 3322
Kojima, H., 3325
Kunesch, N., 3270
LaBerge, J. M., 3221
Larsen, J. W., 3332
Lee, T. D., 3237
Leung, H.-K., 3241
Lyle, R. E., 3250
Mallory, D., 3221

Martin, S. F., 3337
Medlik-Balan, A., 3307
Mehri, M. H., 3275
Miller, R. W., 3264
Minato, H., 3322
Moore, D. W., 3221
Morgan, K. D., 3287
Murata, M., 3317
Murray, R. K., Jr., 3294
Natale, N., 3328
Neukom, C., 3287
Nielson, A. T., 3221
Oliver, J. E., 3279, 3284
Olson, G. L., 3287
Omura, K., 3329
Onisto, T. M., 3312
Overman, L. E., 3338
Özman, S., 3331
Papadopoulos, E. P., 3233
Pazhenchevsky, B., 3246
Pazhenchevsky, R., 3246
Plat, M. M., 3275
Poisson, J., 3270
Polley, J. S., 3294
Posey, R. G., 3333
Rohwedder, W. K., 3264

Rolland, Y., 3270
Rosenquist, N. R., 3326
Rotstein, D., 3328

Sato, Y., 3325
Saucy, G., 3287
Schell, F. M., 3270
Schmitt, G., 3331
Shimizu, M., 3255
Shirai, H., 3325
Smith, C. R., Jr., 3264
Sonnet, P. E., 3279, 3284
Stefanchik, M. F., 3303
Swern, D., 3329

Truesdale, L. K., 3335

Wachob, G. D., 3229
Wang, S.-S., 3255, 3258
Ward, I. E., 3297
Weisleder, D., 3264
Wenkert, E., 3270, 3275

Yoshida, M., 3322
Žemlička, J., 3317
Ziman, S. D., 3253

THE JOURNAL OF
 Organic Chemistrẙ

Stereochemistry and Mechanism of the Schmitz Diaziridine Synthesis Leading to 2,4,6-Trisubstituted 1,3,5-Triazabicyclo[3.1.0]hexanes ${ }^{1}$

Arnold T. Nielsen,* Donald W. Moore, Ronald L. Atkins, ${ }^{2}$ Daniel Mallory, John DiPol, and Jeanne Marie LaBerge
Organic Chemistry Branch, Chemistry Division, Code 3856, Michelson Laboratory, Naval Weapons Center, China Lake, Ca!ifornia 93555

Received April 20, 1976

Abstract

The Schmitz reaction of aldehydes with chloramine and methanolic ammonia leads to a mixture of two epimeric 2,4,6-trisubstituted 1,3,5-triazabicyclo[3.1.0]hexanes, each with exocyclic C-6 substituent; the major product (3ع) and minor one (3b) have substituents at C-2, C-4 with trans and at C-2, C-4 with cis exocyclic stereochemistry, respectively. Isolation of Schmitz products under alkaline (kinetic) conditions yields a mixture of $\mathbf{3 a}, \mathbf{b}$ and a small amount of an epimer (3c) with endocyclic C-6 substituent and C-2, C-4 cis exocyclic substituent stereochemistry. The acid-catalyzed equilibration of 3a-c generally yields a ca. 1:1 mixture of $\mathbf{3 a}$ and $\mathbf{3 b}$ (12 examples with alkyl, phenyl, and benzyl substituents); the equilibration mechanism is discussed. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy were employed in determination of product assay and stereochemistry. Oxidation of all equatorial $2,4,6$-trialkyl-1,3, 5 hexahydrotriazines (17) with tert-butyl hypochlorite in alkaline medium leads to a mixture of 3 a (predominantly) and $\mathbf{3 b}, \mathbf{c}$; the reaction mechanism of this oxidation is discussed. It is concluded that a diaziridine intermediate, nct a 2,4,6-trisubstituted 1,3,5-hexahydrotriazine, is involved in the Schmitz synthesis of 3 .

The Schmitz diaziridine synthesis involves reaction of a ketone or aldehyde and ammonia with a chloramine or hydroxylamine O-sulfonic acid. ${ }^{3}$ For example, to prepare 3,3 disubstituted diaziridines (1) a ketone is added to cold

$$
1\left(R, R^{\prime}=\text { alkyl, aryl }\right)
$$

methanolic ammonia containing chloramine (conveniently generated from tert-butyl hypochlorite ${ }^{4}$). The reaction was discovered independently by Abendroth and Henrich ${ }^{5}$ and by Paulsen. ${ }^{6}$ Many substituted diaziridines have been synthesized from imines including 1,3 -disubstituted and $1,2,3-$ and $1,3,3$-trisubstituted types. ${ }^{7-10}$ Diaziridine formation is described as an intramolecular displacement of chloride ion from an N-chloroaminal intermediate. ${ }^{3}$

The Schmitz reaction of aldehydes with ammonia and chloramine leads to 2,4,6-trisubstituted 1,3,5-triazabicyclo[3.1.0]hexanes (3), rather than monocyclic diaziridines as the isolated products (eq 1). ${ }^{7 e, g, 11} 3$-Substituted diaziridines (2) are proposed to be intermediates which give 3 by further reaction with ammonia and aldehyde; ${ }^{11}$ this suggestion has been confirmed in the present work. It has not been possible to prepare 2 directly by use of an excess of ammonia over aldehyde, nor from 3 by direct fractional hydrolysis. ${ }^{7 \mathrm{c}}$ Indirect methods are required to prepare $2 .{ }^{7 e, g}$ The present work is concerned principally with the stereochemistry and mechanism of formation of 3 .

Synthesis. 2,4,6-Trisubstituted 1,3,5-triazabicyclo[3.1.0]hexanes (3) were synthesized by two methods. The principal procedure, that of Schmitz, was employed with slight modi-

2

fications. ${ }^{7 \mathrm{~g}, 11,12}$ tert-Butyl hypochlorite was added to 10 M methanolic ammonia followed by addition of the aldehyde; reaction proceeded at ca. $-35^{\circ} \mathrm{C}$ for 1 h followed by warming to ambient temperature. Workup gave mixtures of epimers in high yields ($60-90 \%$) from which the less soluble, predominant isomer (trans) could be readily isolated in pure form by crystallization from hexane ($25-50 \%$ yield). Thirteen of these compounds (4a-16a) were prepared (Table I). Pure cis epimers were isolated with difficulty from the mother liquors by fractional crystallization.

In a second route to the title compounds, 2.4,6-trialkyl-1,3,5-triazacyclohexanes (17) were oxidized with tert-butyl hypochlorite in methanol containing 1 molar eqciv of sodium carbonate ($-35^{\circ} \mathrm{C}$), eq 2 . The reactant monocyclic hexahydrotriazines (17) were prepared by reaction of aldehydes with ammonia at $0^{\circ} \mathrm{C}$. ${ }^{12,13}$ Yields of 3 by this alternate procedure are poor $(2-20 \%)$. Mixtures of epimers are produced despite the steric homogeneity of the reactant, 17. ${ }^{12.13}$

The bicyclic triazines (Table I) are stable, white, crystalline

Table I. 2,4,6-Trialkyl-1,3,5-triazabicyclo[3.1.0]hexanes

Compd	R	Prepn method ${ }^{a}$	Yield $\%{ }^{b}$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}^{\text {c }}$	Molecular formula ${ }^{d}$
4 a	CH_{3}	A	75	113-114e	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{3}$
4 c	CH_{3}	B	(6)	133-134	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{3}$
5 a	$\mathrm{C}_{2} \mathrm{H}_{5}$	A (B)	90 (9)	98-100f	$\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{~N}_{3}$
6a	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	A (B)	90 (20)	$82-84{ }^{5}$	$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{3}$
7 a	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	A (B)	58 (16)	140-143	$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{3}$
8 a	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	A (B)	82 (6)	68-69	$\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{~N}_{3}$
9 a	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	A (B)	89 (6)	134-139	$\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{~N}_{3}$
10a	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	A	27	$93-95{ }^{h}$	$\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{~N}_{3}$
11 a	$n-\mathrm{C}_{5} \mathrm{H}_{11}$	A (B)	90 (6)	51-55	$\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~N}_{3}$
11 b	$n-\mathrm{C}_{5} \mathrm{H}_{11}$	A	10^{i}	50-54	$\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~N}_{3}$
12a	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CH}$	A	65	145-147	$\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~N}_{3}$
13a	$\mathrm{C}_{6} \mathrm{H}_{5}$	A	42	162-164 ${ }^{j}$	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3}$
14a	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	A (B)	86 (8)	65-67	$\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{~N}_{3}$
15a	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	A (B)	94 (4)	172-175 ${ }^{\text {k,l }}$	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3}$
16a	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right)- \\ & \mathrm{CH} \end{aligned}$	A (B)	3 (2)	$161-165^{k}$	$\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3}$

${ }^{a}$ Method A: from alkanal and chloramine in methanoiic ammonia. Method B: from 2,4,6-trialkyl-1,3,5-hexahydrotriazines by tert-butyl hypochlorite oxidation. ${ }^{b}$ Yields of crystalline product mixtures by method A. Values in parentheses are yields of recrystallized products prepared by method B. ${ }^{\text {c }}$ Capillary metling point of analytically pure sample crystallized from hexane, heptane, or ether; recovery yields are $30-50 \%$. ${ }^{d}$ Satisfactory analytical data ($\pm 0.3 \%$ for C, H, and N) and molecular weight data ($\pm 4 \%$, by vapor osmometry in chloroform) for all compounds were submitted for review. ${ }^{e}$ Lit. ${ }^{11} \mathrm{mp} 114-115{ }^{\circ} \mathrm{C}$. ${ }^{f}$ Lit. ${ }^{11} \mathrm{mp} 104-$ $104.5^{\circ} \mathrm{C} .{ }^{g}$ Lit. mp $84-86{ }^{\circ} \mathrm{C} .{ }^{h}{ }^{\text {Lit. }}{ }^{7 \mathrm{~g}} \mathrm{mp} 92-93{ }^{\circ} \mathrm{C} .{ }^{i}$ Prepared by fractional crystallization of product mixture. ${ }^{j}$ Lit. ${ }^{11} \mathrm{mp}$ $160-162^{\circ} \mathrm{C} .{ }^{k}$ Data reported in ref $12 .{ }^{\prime}$ A material, mp 133-145 ${ }^{\circ} \mathrm{C}$, isolated by fractional crystallization of the Schmitz reaction product was found to contain 73% of cis isomer 15 b (${ }^{13} \mathrm{C}$ NMR assay).
solids which may be stored indefinitely in air at ambient temperature, in contrast to the derived 3 -substituted diaziridines (2) which decompose rapicly under such conditions.

Results and Discussion

Stereochemistry of the Schmitz Reaction. The stereochemistry of 2,4,6-trisubstituted $1,3,5$-triazabicyclo[3.1.0]hexanes has not been studied by others. ${ }^{1}$ Schmitz assumed that the ethyl groups in 5a, obtained from propanal by his procedure, were all pseudoequatorial. ${ }^{7 f}$ No evidence was offered for this assignment, however. It has now been established that the predominant isomer formed (and isolated) in the Schmitz reaction is 3 a , with trans C-2 and C-4 substituents and an exocyclic C-6 substituent. ${ }^{14}$ Previously reported bicyclotriazines have now been shown to exist in this configuration. A second isomer formed in smaller amounts is the cis-exo form (3b), having all pseudoeccuatorial substituents. Virtually none of the cis-endo isomer (3c) is produced under the reported conditions of the Schmitz reaction.

Although spectroscopic evidence suggests that the parent hydrocarbon, bicyclo[3.1.0]hexane, ${ }^{15}$ and its diaziridine analogue, 1,5-diazabicyclo[3.1.0]hexane, ${ }^{16}$ exist in boat or

3c (cisendo)
twist-boat forms, the actual departure from planarity of the five-membered ring is not great and would doubtless be strongly influenced by the orientation of substituents. We have, accordingly, treated the five-membered ring in $1,3,5-$ triazabicyclo[3.1.0]hexane as nearly planar.

The assignment of stereochemistry in the title compounds rests on ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data as well as equilibration studies. ${ }^{1} \mathrm{H}$ NMR data are summarized in Table II and ${ }^{13} \mathrm{C}$ data in Table III. The trans compounds (3a) are each characterized by separate ${ }^{13} \mathrm{C}$ signals for the $\mathrm{C}-2$ and $\mathrm{C}-4$ ring carbons. In trans compounds having simple ring methine proton spectra (e.g., 4a, 7a, 10a, 13a) separate signals are readily observed for the $\mathrm{C}-2$ and $\mathrm{C}-4$ ring methine protons. In the cis compounds ($\mathbf{3 b}, \mathbf{c}$) only one signal is seen for the C-2, $\mathrm{C}-4$ carbons and ring methine protons. The differentiation of cis-exo ($\mathbf{3 b}$) and cis-endo (3c) forms rests on ${ }^{13} \mathrm{C}$ NMR, kinetic, and equilibration data.

The most striking chemical shift differences in the car-bon-13 spectra of the three epimers are seen at C-6, the diaziridine carbon (Table III). For typical alkyl substituents the shielding is greatest for the cis-exo form, 5 ppm less for the trans-exo, and 12 ppm less for the cis-endo. A possible explanation is the change in dihedral angle between the two rings caused by steric repulsion between endo substituents. Thus, in the cis-exo epimer with no endo substituents, the angle should approach the value of $116 \pm 5^{\circ}$ found for the parent hydrocarbon. ${ }^{15}$ The trans-exo epimer with the endocyclic C-4 substituent would show some steric repulsion and an increased angle. The cis-endo epimer with the C-6 substituent in the position of greatest steric interaction would have the largest dihedral angle. Apparently, as the molecule becomes more planar due to steric repulsion, the change in bond character at C-6 results in progressively greater deshielding. This effect is even more noticeable with bulky substituents. In the trans-exo epimer of the tert-butyl derivative (10b) the shielding at $\mathrm{C}-6$ is reduced 8.5 ppm ; little or no cis-endo form is found to be present. In the diethylmethyl derivative (12b) trans-exo substitution leads to a 6.5 ppm deshielding, and cis-endo substitution (12c) gives a 15.8 ppm reduction of the shielding value, the largest change observed.

The kinetic composition of epimer mixtures produced in the Schmitz reaction has been established (Table IV). A kinetic preference for the trans isomer is observed. Substantial amounts of the cis-exo and cis-endo forms are also present. Products were obtained by adding excess sodium hydroxide to the ammoniacal reaction mixture prior to workup; ammonium chloride, an equilibration catalyst, was thereby removed from the isolated products.

The transition state leading to the bicyclic triazine favors a repulsion of bulky groups in a monocyclic precursor at or removed from the bond-forming site (e.g., 18a favored over 18b). Aldol cyclization stereochemistry (formation of a C-C bond) exhibits a similar transition state. ${ }^{17}$ The presence of an

Table II. ${ }^{1} \mathrm{H}$ NMR Spectra of 2,4,6-Trisubstituted 1,3,5-Triazabicyclo[3.1.0] ${ }^{\text {- }}$ hexanes ${ }^{\text {a }}$

Compd	R	Chemical shift, δ, ppm		
		Ring CH at C-2; C-4	Ring CH at $\mathrm{C}-6$	R-Substituted protons ${ }^{\text {b }}$
4 a	CH_{3}	4.25 (q, 6.0); $4.14(\mathrm{q}, 6.0)^{\text {c }}$	2.20 (q, 4.8)	$\begin{aligned} & 1.38\left(\mathrm{~d}, 5.9, \mathrm{CH}_{3} \text { at } \mathrm{C}-2\right) ; 1.27\left(\mathrm{~d}, 4.9, \mathrm{CH}_{3} \text { at } \mathrm{C}-6\right) \text {; } \\ & \quad 1.26\left(\mathrm{~d}, 6.5, \mathrm{CH}_{3} \text { at } \mathrm{C}-4\right) \end{aligned}$
4 b	CH_{3}	4.39 (q, 6.0)	2.31 (q, 5.0)	1.36 (d. 5.8, CH_{3} at $\mathrm{C}-2,4$); 1.27 (d, 4.9, CH_{3} at $\mathrm{C}-6$)
4c	CH_{3}	4.42 (q, 6.5)	2.13 (q, 5.0)	1.26 (d. 6.4, CH_{3} at $\mathrm{C}-2,4$); 1.15 (d, 5.0, CH_{3} at $\mathrm{C}-6$)
5 a	$\mathrm{C}_{2} \mathrm{H}_{5}$	4.07 (t, 5.5); 3.99 (t, 5.0) ${ }^{\text {c }}$	2.09 (dd, 4.5, 6.5)	1.3-1.9 (m, CH_{2}) ; 1.15 (t, 6.5, $\left.\mathrm{CH}_{3}\right) ; 0.98\left(\mathrm{t}, 6.5, \mathrm{CH}_{3}\right.$)
5b	$\mathrm{C}_{2} \mathrm{H}_{5}$	4.05 (t, 7.0)	2.02 (t, 5.5)	1.2-1.8 (m, CH_{2}) ; 1.00 (t, 7.0, CH_{3})
6 a	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	4.13 (t, 5.5); 4.06 (t, 5.5)	2.11 (t, 4.5)	1.2-1.8 (m, $\mathrm{CH}_{2} \mathrm{CH}_{2}$); 0.9-1.1 (m, CH_{3})
7 a	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	3.75 (d, 7.0); 3.70 (d, 7.0) ${ }^{\text {c }}$	2.04 (d, 7.5)	$\begin{aligned} & 1.2-1.7(\mathrm{~m}, \mathrm{CH}) ; 1.12\left(\mathrm{~d}, 6.0, \mathrm{CH}_{3}\right) ; 1.01\left(\mathrm{~d}, 6.0, \mathrm{CH}_{3}\right) ; \\ & \quad 0.92\left(\mathrm{~d}, 6.0, \mathrm{CH}_{3}\right) \end{aligned}$
7b	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	3.60 (d, 8.5)	$1.90(\mathrm{~d}, 7.5)^{e}$	1.2-1.7 (m, CH); 0.98 (d, 6.0, CH_{3}); 0.90 (d, 6.0, CH_{3})
8 a	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	3.9-4.2 (m)	2.10 (m)	1.2-1.7 (m, CH_{2}) ; 0.8-1.2 (m, CH_{3})
9a	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	4.13 (t, 7.0) ${ }^{\text {c }}$	2.12 (t, 5.5)	1.2-1.8 (m, $\left.\mathrm{CH}_{2} \mathrm{CH}\right)$; 0.8-1.2 (m, CH_{3})
10a	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	3.92 (s); 3.60 (s) ${ }^{\text {c }}$	1.93 (s)	1.07 (s, $\left.\mathrm{CH}_{3}\right) ; 0.96\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; 0.94\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$
10b	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	3.70 (s) ${ }^{\text {d }}$	2.34 (s)	1.09 (s, CH_{3}); 0.95 (s, CH_{3})
10 c	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	3.52 (s)	2.32 (s)	1.03 (s, CH_{3}); 0.85 (s, CH_{3})
11a	$n-\mathrm{C}_{5} \mathrm{H}_{11}$	3.9-4.2 (m)	1.9-2.1 (m)	1.2-1.8 (m, CH_{2}); 0.9-1.2 (m, CH_{3})
11 b	$n-\mathrm{C}_{5} \mathrm{H}_{11}$	3.9-4.2 (m)	1.9-2.1 (m)	1.2-1.8 (m, CH_{2}); 0.9-1.2 (m, CH_{3})
12a	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CH}$	$\begin{aligned} & 3.92\left(\mathrm{dd}, 7.2,5.5^{d}\right) ; \\ & 3.84\left(\mathrm{dd}, 8.5,9.5^{d}\right) \end{aligned}$	$1.92(\mathrm{~d}, 6.7)^{e}$	1.2-1.8 (m, CH, CH_{2}); 0.7-1.2 (m, CH_{3})
12b	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CH}$	3.86 (d, 8.5)	2.12 (d, 7.0)	1.2-1.8 (m, $\left.\mathrm{CH}, \mathrm{CH}_{2}\right) ; 0.7-1.2\left(\mathrm{~m}, \mathrm{CH}_{3}\right)$
13a	$\mathrm{C}_{6} \mathrm{H}_{5}$	5.60 (d, $6.0^{\text {d }}$); 5.22 (d, 9.5 ${ }^{\text {d }}$)	3.20 (s)	7.2-7.9 (m, $\mathrm{C}_{6} \mathrm{H}_{5}$) ; 3.05 (broad t, NH)
13b	$\mathrm{C}_{6} \mathrm{H}_{5}$	5.51 (d, 10.5 ${ }^{\text {d }}$)	3.17 (s)	7.2-7.9 (m, $\mathrm{C}_{6} \mathrm{H}_{5}$)
14 a	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	4.0-4.3 (m)	2.1-2.3 (m)	1.2-1.8 (m, $\left.\mathrm{CH}_{2}\right) ; 0.8-1.2\left(\mathrm{~m}, \mathrm{CH}_{3}\right)$
15 a	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	4.26 (t, 4.2); 4.18 (t, 5.5)	2.20 (t, 5.5)	7.0-7.5 (m, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 2.6-3.2\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$
15b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	4.27 (t, 5.5)	2.08 (t, 6.0)	7.0-7.5 (${\left.\mathrm{m}, ~ \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 2.5-3.1\left(\mathrm{~m}, \mathrm{CH}_{2}\right)}^{\text {d }}$
16 a	$\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right)- \\ \mathrm{CH} \end{gathered}$	4.20 (d, ~ 8); 4.10 (d, ~8)	2.30 (d, ~8)	7.3 (m, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 2.0-3.0(\mathrm{~m}, \mathrm{CH}) ; 1.0-1.6\left(\mathrm{~m}, \mathrm{CH}_{3}\right)$

[^0]acyclic imine precursor related to 18 [i.e., $i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}=\mathrm{N}$ -$\left.\mathrm{CH}\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{NHCH}\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{NH}_{2}\right]$, derived from the very labile monocyclic triazine $17 \mathrm{~d}\left(\mathrm{R}=i-\mathrm{C}_{3} \mathrm{H}_{7}\right)$, is seen in the ${ }^{13} \mathrm{C}$ NMR spectrum (Table V, footnote b). ${ }^{13}$

18a

18b

Equilibration of the bicyclic triazines is observed in methanolic ammonium chloride or hydrogen chloride at ambient temperature; recovery of epimerized products is quantitative. No observed epimerization occurs in basic media. In neutral protic solvents such as methanol a slow epimerization is sometimes observed. At equilibrium the cis-endo isomer virtually disappears leaving trans-exo and cis-exo epimers $(3 a, b)$ in a nearly $1: 1$ ratio (Table IV). A preference for the trans-exo form at equilibrium is observed for compounds with substituents methyl, tert-butyl, and phenyl.
The rate of acid-catalyzed equilibration of the bicyclic triazines depends on reaction conditions, structure, and stereochemistry of reactants. In 1% methanolic ammonium chloride solution at $25^{\circ} \mathrm{C}$ equilibration is complete within 2-6 h in all cases examined except the cis- and trans-exo methyl and phenyl compounds 4 and 13 , which were unaffected after 48 h . However, these substances and all others are equilibrated in methanolic hydrogen chloride ($\mathrm{pH} 1-2,25^{\circ} \mathrm{C}$) very rapidly (less than 10 min). Prolonged exposure of the bicyclic triazines
to such strongly acidic conditions causes degradation (formation of aldehydes, hydrazine, and diaziridines). ${ }^{7}$

The rate of acid-catalyzed epimerization of cis-endo epimers ($\mathbf{3 c}$) is much more rapid than that of the exo isomers 3a,b. For example, although methanolic ammonium chloride will not equilibrate trans- or cis-exo methyl isomers ($\mathbf{4 a}, \mathbf{b}, \mathrm{R}$ $=\mathrm{CH}_{3}$) the cis-endo form (4c) is converted quantitatively into the trans-exo form in this medium within 10 min . Similar results are observed with other cis-endo isomers. Mixtures containing three isomers ($\mathbf{3 a - c}$) in methanolic ammonium chloride are converted into mixtures containing only two isomers ($\mathbf{3 a}, \mathbf{b}$) within 10 min . In each instance during this short reaction period the cis-endo form ($3 \mathbf{c}$) is converted exclusively into the trans-exo form; the amount of cis-exo form (3b) remains unchanged. Only on more extended exposure ($2-6 \mathrm{~h}$) is equilibrium attained involved interconversion of cis-exo and trans-exo forms. In methanol a slow, uncatalyzed cis-endo \rightarrow trans-exo conversion is observed. This epimerization is most rapid with the methyl compound (1-2 days), but very slow with others (several weeks).
Epimerization of bicyclic triazines was found to involve no incorporation of deuterium at the $\mathrm{C}-2$ or $\mathrm{C}-4$ positions when the reaction was conducted in methanol- $O-d$ containing ammonium chloride ($3, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, i-\mathrm{C}_{3} \mathrm{H}_{7}$) or hydrogen chloride ($3, \mathrm{R}=\mathrm{CH}_{3}$).
A mechanism for the acid-catalyzed equilibrations and epimerizations is suggested by the above observations (Scheme I). Acid-catalyzed ring opening of cis-endo 3c at $\mathrm{N}-1, \mathrm{C}-2$ would lead to iminium ion 19a. Diaziridine nitrogen inversion would provide invertomer 19 b ; ring closure would then give trans-exo 3a only. The other possible epimer derived by ring closure of 19 b would be an unobserved, disfavored cis isomer (3d), having two endocyclic substituents (at C-2, C-4).

Table III. ${ }^{13} \mathrm{C}$ NMR Spectra of 2,4,6-Trisubstituted 1,3,5-Triazabicyclo[3.1.0]hexanes ${ }^{\text {a }}$

R	Compd	Chemical shift, ppm						
		Ring carbons ${ }^{\text {b }}$				Substituent α carbon ${ }^{\text {b }}$		
		C-2		C-4	C-6	C-2	C-4	C-6
CH_{3}	4a	75.3		72.4	46.2	15.2	17.0	21.4
	4b		74.9		41.0			17.1
	4 c		75.7		53.2			23.0
$\mathrm{C}_{2} \mathrm{H}_{5}$	5a	81.1		78.2	52.1	24.1	24.3	28.1
	5b		80.2		47.0			24.2
	5c		81.9		59.2			24.6
$n-\mathrm{C}_{3} \mathrm{H}_{7}$	6 a	79.5		76.8	50.9	33.4	33.6	37.4
	6b		78.8		45.8			33.4
	6 c		80.4		58.2			33.6
$i-\mathrm{C}_{3} \mathrm{H}_{7}$	7a	84.2		86.1	58.2	32.0	33.1	30.4
	7 b		84.9		52.3			30.1
	7c		87.7		66.4			30.8
$n-\mathrm{C}_{4} \mathrm{H}_{9}$	8 a	79.6		77.0	50.9	30.8	31.0	34.8
	8 b		78.8		45.9			31.0
	8 c		80.3		57.9			31.2
$i-\mathrm{C}_{4} \mathrm{H}_{9}$	9 a	78.0		75.4	49.7	40.4	40.4	44.0
	9b		77.5		44.5			40.4
	9c		78.8		57.1			40.4
$t-\mathrm{C}_{4} \mathrm{H}_{9}$	10a	87.4		89.9	62.7	32.8	31.3	36.5
	10b		86.2		54.2			32.8
$n-\mathrm{C}_{5} \mathrm{H}_{11}$	11a	79.7		77.0	50.9	31.5	31.2	35.2
	11 b		78.9		45.8			31.7
	11c		80.4		58.1			30.9
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right){ }_{2} \mathrm{CH}$	12a	82.4		80.4	55.5	43.3	42.7	44.4
	12b		81.4		49.0			42.0
	12c		83.5		64.8			44.0
$\mathrm{C}_{6} \mathrm{H}_{5}$	13a	81.4		80.5	51.9	136.2	136.1	140.4
	13b		82.3		48.1			140.4
$n-\mathrm{C}_{6} \mathrm{H}_{13}$	14a	79.9		77.2	51.3	31.7	31.5	35.4
	14b		79.1		46.1			31.8
	14c		80.6		58.4			32.0
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	15 a	81.1		72.1	53.0	36.5	38.3	41.6
	15b		78.8		48.3			41.4
$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right) \mathrm{CH}$	$16 a^{c}$	84.7		81.4	58.3	44.4	42.9	41.0
	16a'	8.5 .3		82.8	58.6	45.1	43.4	41.6

${ }^{a}$ Fourier transform mode (proton decoupled) $25.14 \mathrm{MHz}, \mathrm{CDCl}_{3}$ solvent with tetramethylsilane internal reference. ${ }^{b}$ Substituent at $\mathrm{C}-2$ is assumed to be exocyclic in the trans compounds. ${ }^{c}$ Mixture of four diastereoisomers. Spectrum of recrystallized sample consists of the two sets of relatively strong lines shown and two sets of weaker lines that have not been assigned.

Table IV. Composition of Epimeric Mixtures of 2,4,6-Trisubstituted 1,3,5-Triazabicyclo[3.1.0]hexanes ($\pm \mathbf{2 \%}$) ${ }^{13} \mathbf{C} \mathbf{N M R}$ Assay

Compd	R	Kinetic mixture (base catalysisi			Equilibrium mixture (acid catalysis)			Schmitz reaction product mixture	
		$\begin{gathered} \text { Trans- } \\ \text { exo } \\ \mathbf{a} \end{gathered}$	Cis- exo b	Cisendo c	Transexo a	Cisexo ${ }^{a}$ b	Catalyst ${ }^{b}$	$\begin{gathered} \text { Trans- } \\ \text { exo } \\ \mathbf{a} \end{gathered}$	Cisexo ${ }^{a}$ b
4	CH_{3}	53	38	9	65	$35^{\text {c }}$	B	61	38^{c}
5	$\mathrm{C}_{2} \mathrm{H}_{5}$	61	31	8	55	45	A	69	31
6	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	57	32	12	55	45	A	69	32
7	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	71	20	9	45	$55^{\text {c }}$	A	80	$20^{\text {c }}$
8	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	55	33	12	45	55	A	67	33
9	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	49	35	16	47	53	A	65	35
10	$t-\mathrm{C}_{4} \mathrm{H}_{9}$	85	15	a, c	80	20	A, B	85	15
11	$n-\mathrm{C}_{5} \mathrm{H}_{11}$	56	31	13	50	50	A, B	69	31
12	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CH}$	81	13	6	53	47	A	87	13
13	$\mathrm{C}_{6} \mathrm{H}_{5}$	70	30	a, c	70	30^{c}	B	70	30^{c}
14	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	61	29	10	55	45	A	71	29
15	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	43	47	10	50	50	A	53	47

${ }^{a}$ Cis-endo (c) concentration $<3 \% .{ }^{b}$ Catalyst: (A) ammonium chloride, (B) hydrogen chloride. ${ }^{c}$ Assay by 'H NMR gave the same results, $\pm 2 \%$.

Table V. ${ }^{13}$ C NMR Spectra of 2,4,6-Trisubstituted 1,3,5-Triazacyclohexanes ${ }^{\text {a }}$

Compd	R	Chemical shift, ppm	
		Ring carbons	Substituent carbons
17a	CH_{3}	66.2	$22.8\left(\mathrm{CH}_{\varepsilon}\right)$
17b	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	71.6	$29.8\left(\mathrm{CH}_{2}\right) ; 9.3\left(\mathrm{CH}_{3}\right)$
17c	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	75.4	43.2, $21.3\left(\mathrm{CH}_{2}\right) ; 16.8\left(\mathrm{CH}_{3}\right)$
17d	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\text {b }}$	75.9	33.7 (CH); 18.2 ($\left.\mathrm{CH}_{3}\right)$
17 e	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	73.2	139.1, 131.8, 130.8, $128.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 45.1\left(\mathrm{CH}_{2}\right)$
17f	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right) \mathrm{CH}^{\text {c }}$	77.8, 77.6, 76.9	$\begin{aligned} & 144.9,130.6,130.3,129.9,129.8,128.8,\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 47.8,47.7 \text {, } \\ & \quad 47.2(\mathrm{CH}) ; 19.6,19.0,18.7\left(\mathrm{CH}_{3}\right) \end{aligned}$

${ }^{a}$ Fourier transform mode, $25.14 \mathrm{MHz}, \mathrm{CDCl}_{3}$ solvent with internal tetramethylsilane reference. ${ }^{b}$ On standing in CDCl_{3} solution at $25^{\circ} \mathrm{C}$ for 12 h , peaks appear which are attributed to the acyclic dissociation product, $i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}=\mathrm{NCH}\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{NHCH}\left(\imath-\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{NH}_{2}$: $168.4(\mathrm{C}=\mathrm{N})$; 96.8 , $91.8(\mathrm{NCHN}) ; 34.1,33.5\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right] ; 19.5,17.4\left(\mathrm{CH}_{3}\right) .{ }^{c}$ A statistical 1:3 mixture of two diastereoisomers. One component shows a single line of unit intensity. The other shows two lines with intensities in the ratio 1:2.

Scheme I

20
To achieve the slower cis-exo, trans-exo (3a,b) equilibration would involve iminium ion intermediate 20.

3d
The epimer composition of reaction products obtained under normal Schmitz reaction conditions is different from that observed under kinetic conditions (alkaline workup) or at equilibrium (Table IV). Schmitz reaction products contain a higher percentage of trans isomer (3a) than either kinetic or equilibrium conditions, and very little cis-endo isomer (3c). The results are understandable in light of the equilibration and stereochemical studies. The normal workup procedure involves removal of excess ammonia and methanol by concentration of the reaction mixture to dryness at temperatures near $25^{\circ} \mathrm{C}$. During the final stages of concentration the methanolic solution changes from basic (excess ammonia) to weakly acidic (excess ammonium chloride). Under these conditions the cis-endo isomer (3c) is rapidly epimerized to the trans-exo form 3a. The product contact time with am-monia-free methanolic ammonium chloride during workup is sufficiently short so that the relatively slower cis-exo to trans-exo ($\mathbf{3 b}, \mathbf{a}$) equilibration occurs only slightly. These conclusions were confirmed by ${ }^{13} \mathrm{C}$ NMR assay of Schmitz
reaction product mixtures. Also treatment of kinetic product mixtures (containing large amounts of cis-endo isomer) with ammonium chloride in 10 M methanolic ammonia followed by concentration to dryness (simulated Schmitz workup) gave reaction mixtures having compositions corresponding closely to those of Schmitz reaction products obtained by normal workup procedures.

Alternate structures with two or three endocyclic substituents could be written for the bicyclic triazines (e.g., 3d-f).

3 e

3f

There is evidence against such sterically unfavorable configurations, however. For example, in the related simple monosubstituted 2 -methyl-1,3-diazabicyclo[3.1.0]hexane the exo methyl structure (21a) is favored $3: 1$ over the endo ($21 \mathbf{b}$). ${ }^{18}$

21a

21b

2,4-Diethyl-6,6-pentamethylene-1,3,5-triazabicyclo[3.1.0]hexane (23) was prepared by reaction of 6,6 -pentamethylenediaziridine (22) with propanal under Schmitz re-

action conditions. The crude reaction product contained only one isomer with cis stereochemistry of the C-2, C-4 substituents. The structure is supported by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The ${ }^{1} \mathrm{H}$ NMR spectrum of 23 reveals a single triplet at $\delta 4.12$ for the triazolidine ring protons. The ${ }^{13} \mathrm{C}$ NMR spectrum reveals the expected cis isomer signals. The ring C-6 signal appears in the region corresponding to those found for other cis-endo compounds (Table III). A line at $\delta 38.0$ is assigned to the endocylic α-methylene carbon of the penzamethylene
group owing to its position 13 ppm downfield from the other carbons of this ring. A similar deshielded α-carbon signal is observed in the methyl cis-endo compound 4c, presumably arising from interaction with the triazolidine ring hydrogens. Such an interaction of the endocyclic methylene at C-6 disfavors a trans diethyl C-2, C-4 23 epimer with two endocyclic substituents.
Stereochemistry of $\mathbf{2 , 4 , 6 - T r i a l k y l}$-1,3,5-hexahydrotriazine Oxidations. Despite the steric homogeneity of reactant $2,4,6$-trialkyl-1,3,5-hexahydrotriazines (17) their oxidation with tert-butyl hypochlorite in basic medium leads to epimeric mixtures of $2,4,6$-trialkyl-1,3,5-triazabicyclo[3.1.0]hexanes (3, eq 2). No equilibration of products occurs under the reaction conditions. The all equatorial stereochemistry of the parent $2,4,6$-trialkyl-1,3,5-hexahydrotriazines (17) is indicated by their simple NMR spectra. The proton spectra of these materials have been discussed. ${ }^{12,13}$ Their ${ }^{13} \mathrm{C}$ NMR spectra have now been determined and support the structure assignments. For example, the spectrum of $2,4,6-$ trimethyl-1,3,5-hexahydrotriazine (17a) reveals two lines, one each for the three ring carbons and three methyl substituents (Table V).

The stereochemistry and mechanism of $2,4,6$-trialkyl-1,3,5-hexahydrotriazine oxidation was examined with the aid of ${ }^{13} \mathrm{C}$ NMR spectroscopy. Oxidation of anhydrous $2,4,6$-tri-methyl-1,3,5-hexahydrotriazine (17a) in methanol containing 1 equiv of sodium carbonate with 1 molar equiv of tert-butyl hypochlorite at $-35^{\circ} \mathrm{C}$ gave a crude reaction product containing only trans-exo and cis-endo bicyclic triazines (4a and $4 \mathbf{c}$, respectively). The reaction mixture is alkaline throughout; no epimerization occurs during the reaction period. The pure cis-endo form (4 c) is readily isolated from the reaction mixture by extraction with hexane.
When the crude original product mixture was dissolved in deuteriochloroform the cis-exo compound $4 \mathbf{b}$, which was absent initially, was observed to appear slowly on standing (${ }^{13} \mathrm{C}$ NMR). After 3 days a nearly $1: 1$ equilibrium mixture of trans and cis-exo forms ($4 \mathbf{a}, \mathbf{b}$) appeared; the cis-endo form ($4 \mathbf{c}$) had disappeared. The equilibration catalyst is believed to be hydrogen chloride formed from N-chloro-2,4,6-trimethyl-1,3,5-hexahydrotriazine (24a, $\mathrm{R}=\mathrm{CH}_{3}$, Scheme II) present

Scheme II

$$
17 \xrightarrow[\mathrm{Na}_{2} \mathrm{CO}_{3}]{t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OCl}}
$$

24

3b

25

3a
opening. The rate-limiting ring closure reactions in 25 lead to 3a and 3c by intramolecular chloride ion displacements (paths a and b, respectively); path a predominates.

With other triazines (17, $\mathrm{R}=$ alkyl) similar results are observed: the predominant reaction products are the trans-exo isomers (3a). However, in addition to the cis-endo form (3c), cis-exo form (3b) is also observed. The latter isomer could form by ring closure in 24 which may be favored to some extent over 25 when R is larger than methyl. Thus, depending on structure and method of workup, bicyclic triazines derived by oxidation of monocyclic triazines could have various epimer compositions. However, the predominant product isomer obtained is trans (3a). Our original report ${ }^{1}$ describing the hexahydrotriazine oxidation products as only cis-exo (3b) and trans-exo (3a) was incorrect. The present findings permit a distinction between cis-endo and cis-exo products, and the rather surprising conclusion that despite the all-equatorial configuration of reactant 17 , the oxidation initially yields products having little or none of this stereochemistry.

NH Stereochemistry. The ${ }^{1} \mathrm{H}$ NMR data of Table II provide evidence of two different orientations of the NH proton in rigid bicyclic triazines (CDCl_{3} solvent). Line broadening of one of the ring proton signals ($\mathrm{H}-2,4$) which is observed in some trans-exo compounds (group 1-4a, 5a, 7a; $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, i-\mathrm{C}_{3} \mathrm{H}_{7}$, respectively) is absent in the corresponding cis-exo and/or cis-endo epimers. This broadening, presumably arising from a weak unresolved spin coupling to the NH proton, disappears on addition of deuterium oxide. In a second group of compounds (group 2) characterized by bulky substituents, line broadening or an observable strong NH spin coupling is observed for $\mathrm{H}-2$ or $\mathrm{H}-4$ of the trans-exo compounds [10a, 12a, 13a; $\mathrm{R}=t$ - $\mathrm{C}_{4} \mathrm{H}_{9},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CH}$, and $\mathrm{C}_{6} \mathrm{H}_{5}$, respectively] and for both $\mathrm{H}-2$ and $\mathrm{H}-4$ in the cis-exo forms. In the phenyl-substituted trans compound 13a, -NH spincoupling values of 6.0 and 9.5 Hz were observed for $\mathrm{H}-2$ and $\mathrm{H}-4$, while the cis compound $\mathbf{1 3 b}$ showed only one splitting of 10.5 Hz for the two ring protons. In the remaining compounds studied the NMR spectra were not sufficiently resolved to reveal NH coupling information.
The above observations suggest an endocyclic NH in the group 1 compounds $(4,5,6)$ and an exocyclic NH in group 2 compounds (10, 12, 13) (Scheme III).
in the crude reaction mixture. This N-chloro compound is characterized by ${ }^{13} \mathrm{C}$ lines at $\delta 90.1$ and 145.3. After 3 days these lines had disappeared and a spectrum appeared corresponding only to trans-exo and cis-exo bicyclotriazines ($\mathbf{4 a , b}$). Oxidation of $2,4,6$-trimethyl-1,3,5-hexahydrotriazine-2,4,6- d_{3} in methanol- $O-d$ gave no CH deuterium incorporation into the bicyclic triazine products.
The above observations may be explained by the steps shown in Scheme II. The initially formed all-equatorial N chloro compound $24 \mathrm{a}\left(\mathrm{R}=\mathrm{CH}_{3}\right.$) rapidly epimerizes to yield a sterically favored 2 -axial methyl isomer $25 a\left(\mathrm{R}=\mathrm{CH}_{3}\right.$) via an acyclic iminium intermediate formed by acid-catalyzed ring

Scheme III
Group 1 (endo NH)

$$
\left(\mathrm{R}=\mathrm{CH}_{i ;}, \mathrm{C}_{2} \mathrm{H}_{i}, \mathrm{C}_{i} \mathrm{H}_{i}\right)
$$

3a (endo NH)

Group 2 (exo NH)
$\left[\mathrm{R}=t-\mathrm{C}_{4} \mathrm{H}_{9},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5}\right]$

3a (exo NH)
3b (exo NH)

In group 1 the endocyclic NH proton of 3a nearly eclipses $\mathrm{H}-2$ and a weak coupling would be predicted, while it is almost trans to H-4 and should couple strongly with it. In $\mathbf{3 b}$ both $\mathrm{H}-2$ and H-4 eclipse the endocyclic NH proton and only weak coupling is expected. In group 2 the spectra of $\mathbf{3 a}$ and $\mathbf{3 b}$ both show at least one strong coupling of $\mathrm{H}-2$ and $\mathrm{H}-4$ to the NH proton. Since the R groups should be exocyclic because of their bulk, it follows that the NH proton must also be exocyclic to permit the observed spin coupling. In the trans compounds of group 1 the ring proton signal at highest field represents exocyclic $\mathrm{H}-4$, while in the group 2 compounds it is the endocyclic H-2. In flexible heterocycles with 1,3-heteroatom substitution there is a preference for an axial NH. ${ }^{19,20}$ However, configurations in these and other heterocycles are known to depend on substituent bulk. ${ }^{21,22}$

Mechanism of the Schmitz Reaction. Two mechanisms may be considered for formation of $2,4,6$-trisubstituted 1,3,5-triazabicyclo[3.1.0]hexanes: (1) the Schmitz mechanism ${ }^{11}$ involving reaction of a 3 -substituted diaziridine (2) with aldehyde and ammonia to yield 3 (eq 1), and (2) oxidation of initially formed $2,4,6$-trisubstituted $1,3,5$-hexahydrotriazine (17) to yield 3 (eq 2).

Evidence obtained previously favoring the Schmitz mechanism includes trapping of a 3 -substituted diaziridine intermediate with chloral to form 1-(2-trichloromethyl-1-hy-droxyethyl)-3-propyldiaziridine (26) in low yield (8\%). ${ }^{7 e}$ The possibility that $\mathbf{2 6}$ had formed by cleavage of the bicyclic triazine 6 has been discounted. In the present study treatment

26
of bicyclic triazine $\mathbf{6 a}$ (trans-exo, $\mathrm{R}=n-\mathrm{C}_{3} \mathrm{H}_{7}$) in methanol with chloral at $25^{\circ} \mathrm{C}$ gave quantitative recovery of reactants after 20 h .

Other evidence favors the Schmitz mechanism. Certain bicyclic triazines are formed in the Schmitz reaction which form no monocyclic triazines (17) under the reaction conditions [e.g., 10a, $\mathrm{R}=t-\mathrm{C}_{4} \mathrm{H}_{9}, 12 \mathrm{a}, \mathrm{R}=\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, 13 \mathrm{a}, \mathrm{R}=$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right\} .{ }^{13}$ Also, the rate of bicyclic triazine formation in the Schmitz reaction ($1-2 \mathrm{~h}$) is more rapid than formation of comparable yields of most monocyclic triazines (17) under the same conditions (several days except for those derived from acetaldehyde and propanal). ${ }^{13}$

Finally, the stereochemistry of the Schmitz reaction leading to $\mathbf{3}$ is somewhat different from that found for 2,4,6-trialkyl-1,3,5-hexahydrotriazine oxidation under comparable conditions (basic medium, $-35^{\circ} \mathrm{C}$). The Schmitz reaction gives a mixture of three epimers ($\mathbf{3 a - c}$) under kinetic conditions (Table IV). The oxidation of 2,4,6-trimethyl-1,3,5-hexahydrotriazine, on the other hand, can yield trans-exo and cisendo isomers ($4 \mathbf{a}, \mathbf{c}$) only. All evidence of this study favors the originally proposed Schmitz mechanism involving a diaziridine intermediate (eq 1).

Experimental Section ${ }^{23}$

Aldehydes. All aldehydes were commercial samples, reagent grade, distilled immediately before use.
2,4,6-Trimethyl-1,3,5-hexahydrotriazine- $1,3,5-\boldsymbol{d}_{3}$ was prepared by dissolving a $2.5-\mathrm{g}$ sample of the anhydrous protiotriazine ${ }^{13}$ in 25 ml of deuterium oxide and concentrating the solution to dryness under reduced pressure at $25^{\circ} \mathrm{C}$; the process was repeated. Final drying in a vacuum desiccator over calcium chloride gave 2.25 g of trideuteriotriazine showing no NH or $\mathrm{H}_{2} \mathrm{O}$ in its ${ }^{1} \mathrm{H}$ NMR spectrum.

Preparation of 2,4,6-Trialkyl-1,3,5-triazabicyclo[3.1.0]hexanes. A. General Schmitz Procedure. The procedure of Schmitz was employed with slight modifications and is illustrated with preparation of cis- and trans-2,4,6-tris(n-pentyl)-1,3,5-triazabicyclo[3.1.0]hexanes (11b and 11a, respectively). A solution of tert -
butyl hypochlorite ($2.71 \mathrm{~g}, 0.026 \mathrm{~mol}$) in 3 ml of tert-butyl alcohol was added dropwise stirring magnetically during 5 min , to 25 ml of 10 M methanolic ammonia contained in a $125-\mathrm{ml}$ Erlenmeyer flask (reaction temperature maintained at ca. $-35^{\circ} \mathrm{C}$ by immersing the flask in an ethylene dichloride/dry ice bath). Hexanal ($5.0 \mathrm{~g}, 0.05 \mathrm{~mol}$) was added dropwise with stirring during 5 min and stirring continued (calcium chloride tube attached) for 1 h , maintaining the reaction temperature near $-35^{\circ} \mathrm{C}$. The flask was removed from the cold bath and allowed to stand at ambient temperature (no stirring) for 2.5 h . The mixture was concentrated to dryness under reduced pressure and the residue extracted thoroughly with boiling hexane: concentration of the extracts gave $4.26 \mathrm{~g}(87 \%)$ of a mixture of cis-exo and trans-exo triazines $11 \mathrm{~b}(33 \%)$ and 11 a (67%), respectively; assay by ${ }^{13} \mathrm{C}$ NMR. Fractional crystallization from heptane gave pure samples of the less soluble trans-exo $11 \mathrm{a}, 0.67 \mathrm{~g}, \mathrm{mp} 51-55^{\circ} \mathrm{C}$, and more soluble cis-exo $11 \mathrm{~b}, \mathrm{mp} 50-54^{\mathrm{c}} \mathrm{C}$.
The above procedure was employed to prepare the trans triazines listed in Table I, procedure A. Pure trans products were obtained by recrystallization from hexane, ethanol, or ether to constant melting point (assay by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR). Fractional crystallization of mother liquors gave material enriched in the cis-exo isomers. NMR data of these products are summarized in Tables II ($\left.{ }^{1} \mathrm{H}\right)$ and III $\left({ }^{13} \mathrm{C}\right)$.

To a $0.10-\mathrm{g}(0.50 \mathrm{mmol})$ sample of trans-exo- $2,4,6$-tri-n-propyl-1,3,5-triazabicyclo[3.1.0]hexane (6a) dissolved in 1.0 ml of methanol was added $0.080 \mathrm{~g}(0.50 \mathrm{mmol})$ of chloral hydrate. After standing at $25^{\circ} \mathrm{C}$ for 20 h tre solution was concentrated to dryness and the residue fractionally crystallized from hexane to yield $0.095 \mathrm{~g}(95 \%)$ of unreacted $6 \mathbf{a}$ in successive crops, $\mathrm{mp} 79-84^{\circ} \mathrm{C}$; chloral was also recovered
B. The general kinetic procedure is illustrated by preparation of 2,4,6-triisobutyl-1,3,5-triazabicyclo[3.1.0]hexane isomer mixture ($9 \mathrm{a}-\mathbf{c}$). The general Schmitz procedure above was followed (using 0.05 mol of isovaleraldehyde and 0.025 mol of tert-butyl hypochlorite) except that prior to concentration of the reaction mixture excess aqueous sodium hydroxide solution was added (2.5 mol of 50% solution, $1.9 \mathrm{~g}, 0.04^{7} \mathrm{~mol}$, of sodium hydroxide) to assure conversion of the ammonium chloride to sodium chloride. The alkaline reaction mixture was concentrated to dryness at $25^{\circ} \mathrm{C}$ and the residue extracted thoroughly with methylene chloride. Concentration of the extracts gave $3.75 \mathrm{~g}(89 \%)$ of crude product: small prisms, mp 124-131 ${ }^{\circ} \mathrm{C}$ [mixture of 48% trans-exo (9 a), 35% cis-exo (9 b), and 16% cis-endo (9c) by ${ }^{13} \mathrm{C}$ NMR assay]. Total yields of crude triazine mixtures by the above procedure were essentially the same as obtained by the general Schmitz procedure (A). Data are summarized in Table IV.

2,4,6-Trimethyl-1,3,5-triazabicyclo[3.1.0]hexane (4c, CisEndo). Oxidation of $\mathbf{2 , 4 , 6}$-Trimethyl-1,3,5-hexahydrotriazine (17a). A solution of anhydrous $2,4,6$-trimethyl- $1,3,5$-hexahydrotriazine ($17 \mathrm{a}, 2.58 \mathrm{~g}, 0.02 \mathrm{~mol})^{13}$ in methanol $(100 \mathrm{ml})$ mixed with sodium carbonate ($1.06 \mathrm{~g}, 0.01 \mathrm{~mol}$) was chilled to $-35^{\circ} \mathrm{C}$ (ethylene dichloride/dry ice bath). While stirring, tert-butyl hypochlorite ($2.2 \mathrm{~g}, 0.02$ mol)' was added dropwise during 2 min . A calcium chloride tube was attached and st-rring continued at ca. $-35^{\circ} \mathrm{C}$ for 1 h . The cold bath was removed and the mixture allowed to warm to $25^{\circ} \mathrm{C}$ during 1 h and then filtered. The filtrate was concentrated to dryness at $25^{\circ} \mathrm{C}$ and the residue extracted several times with hot hexane. The extracts were immediately concentrated under reduced pressure to ca. 20 ml and chilled at $-15^{\circ} \mathrm{C}$ to deposit a solid which was fractionally crystallized from hexane to vield $0.15 \mathrm{~g}(6 \%)$ of 4 c as long needles, $\mathrm{mp} 133-134^{\circ} \mathrm{C}$. A solution of 4 c dissolved in methanol was concentrated after standing at $25^{\circ} \mathrm{C}$ for 48 h to yield trans-exo $4 \mathrm{a}, \mathrm{mp} 111-114^{\circ} \mathrm{C}$.

In a parallel run employing $6.36 \mathrm{~g}(0.05 \mathrm{~mol})$ of anhydrous $2,4,6-$ trimethyl $1,3,5$-hexahydrotriazine the resulting hexane extracts were concentrated to dryness to yield 3.9 g of a solid mixture of products. The ${ }^{13} \mathrm{C}$ NMR spectrum (in CDCl_{3}) of this material showed the bicyclic triazine component to be a mixture of 66% trans-exo 4 a and 34% cis-endo $\mathbf{4 c}$. Additional strong peaks were observed in the ${ }^{13} \mathrm{C}$ spectrum at $\delta 90.1$ and 58.1 (intensity ratio $2: 1$) attributed to $\mathrm{C}-2, \mathrm{C}-4$, and $\mathrm{C}-6$ ring carbons, respectively, of all-equatorial 1 -chloro- $2,4,6$-tri-methyl-1,3,5-hexahydrotriazine (24a, $\mathrm{R}=\mathrm{CH}_{3}$); peaks for the corresponding C-2, C-4, and C-6 methyl carbons appeared at $\delta 23.5$ and 15.3, respectively, also in a $2: 1$ intensity ratio. On standing in deuteriochloroform the intensities of these N-chloro peaks diminished and after 72 h had completely disappeared. After 14 h the bicyclic triazine composition had changed to $80 \% \mathbf{4 a}, 15 \% \mathbf{4 b}$, and $5 \% \mathbf{4 c}$; after 72 h there was present $53 \% \mathbf{4 a}, 47 \% \mathbf{4 b}$, and $0 \% \mathbf{4 c}$. The N-chlorotriazine 24a ($\mathrm{R}=\mathrm{CH}_{3}$) was also prepared in deuteriochloroform (3.5 $\mathrm{ml})$ by reaction of anhydrous triazine $17 \mathrm{a}\left(\mathrm{R}=\mathrm{CH}_{3}\right)(0.42 \mathrm{~g})$ with tert-butyl hypochlorite (0.37 g) at $-35^{\circ} \mathrm{C}$; examination of the ${ }^{13} \mathrm{C}$ NMR spectrum of the solution at $30^{\circ} \mathrm{C}$ revealed the presence of allequatorial N-chlorotriazine; no bicyclic triazine formation was ob-
served in 1 h , and only the trans form (4a) was evident after 16 h . The reaction of triazine $17 \mathbf{a}\left(\mathrm{R}=\mathrm{CH}_{3}\right)(0.42 \mathrm{~g})$ and sodium carbonate $(0.18$ g) in methanol (3 ml) with tert-butyl hypochlorite (0.37 g) at $-35^{\circ} \mathrm{C}$ was followed by ${ }^{13} \mathrm{C}$ NMR; no N-chlorotriazine peaks were evident and after 1 h only the trans bicyclotriazine (4a) spectrum appeared.
$2,4,6$-Trimethyl-1,3,5-hexahydrotriazine- $1,3,5-d_{3}(1.30 \mathrm{~g}, 0.01 \mathrm{~mol})$ was oxidized in the same manner as the protio compound 17a in methanol- $O-d$ to yield a crude product (0.62 g) showing a ratio of $\mathrm{CH}_{3} / \mathrm{CH}$ of $3: 1$ by ${ }^{1} \mathrm{H}$ NMR. Crystallization from hexane gave crude cis-endo triazine $4 \mathrm{c}-\mathrm{N}-\mathrm{d}, 0.05 \mathrm{~g}, \mathrm{mp} 90-106^{\circ} \mathrm{C}$, showing no deuterium incorporation at ring CH positions.
Oxidation of $2,4,6$-Trialkyl-1,3,5-hexahydrotriazines. The procedure employed with the trimethyltriazine $17 \mathrm{a}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ was used with other anhydrous triazines, prepared as described previously. ${ }^{13}$ 2,4,6-Triisopropyl-1,3,5-hexahydrotriazine (17d, i - $\mathrm{C}_{3} \mathrm{H}_{7}$) gave a crude product, $\mathrm{mp} \mathrm{131-134}{ }^{\circ} \mathrm{C}$ (16% yield), of a mixture containing $77 \% \mathbf{7 a}, 16 \% \mathbf{7 b}$, and $6 \% \mathbf{7 c}$ by ${ }^{13} \mathrm{C}$ NMR; recrystallization from hexane gave trans-exo 7a, mp $140-143^{\circ} \mathrm{C}$.

The crude product obtained from 2,4,6-triethyl-1,3,5-hexahydrotriazine ($\mathbf{1 7 b}, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$) contained $70 \% \mathbf{5 a}, 30 \% \mathbf{5 b}$, and only traces of $5 \mathbf{c}$; recrystallization from ether gave a 9% yield of crystalline trans $\mathbf{5 a}, \mathrm{mp} 99-102{ }^{\circ} \mathrm{C}$. The crude product from the anhydrous tri- n-propyl compound ($17 \mathbf{c}, \mathrm{R}=n-\mathrm{C}_{3} \mathrm{H}_{7}$) contained 90% trans $\mathbf{6 a}$ and $10 \% \mathbf{6 b}$; one recrystallization from hexane gave trans $6 \mathbf{a}, \mathrm{mp} 78-82^{\circ} \mathrm{C}$. Other 2,4,6-trialkyl-1,3,5-hexahydrotriazines were oxidized to yield trans bicyclotriazines after recrystallization from hexane. Yields are listed in Table I.

Epimerization Experiments. Procedure A. Methanolic Ammonium Chloride. A sample of $2,4,6$-tri- n-propyl-1,3,5-triazabicyclo[3.1.0] hexane ($6 \mathrm{a}, 0.30 \mathrm{~g}$) was added to a solution of ammonium chloride (300 mg) in 30 ml of methanol. After standing at ambient temperature $\left(25^{\circ} \mathrm{C}\right)$ for 30 h the solution was concentrated to dryness and the mixture extracted with methylene chloride. Concentration of the extracts gave 0.30 g of recovered triazine which was assayed by ${ }^{13} \mathrm{C}$ NMR revealing a mixture of 51% trans $\mathbf{6 a}$ and $49 \% \mathbf{6 b}$, and only trace amounts of $\mathbf{6 c}$. The same procedure was employed with other triazines (pure cis or trans or mixtures of two or three epimers; reaction times 6-74 h). No epimerization was observed with the pure trans phenyl compound 13 a during 68 h nor with the trans methyl compound 4a during 16 h (reactants recovered). Data are summarized in Table IV.

The rate of epimerization of the tri-n-pentylbicyclotriazine 1la was evaluated using the same procedure. Starting with a mixture of 70% trans-exo 11a and 30% cis-exo 11b, samples were removed at intervals, quenched with excess sodium hydroxide, and assayed by ${ }^{13} \mathrm{C}$ NMR; observed time in hours followed by percent trans-exo 11 a in parentheses were as follows: 0 (70), 0.1 (68), 0.35 (60), 2.5 (54), 6 (50), 30 (50).

The ammonium chloride catalyzed epimerization of mixtures containing appreciable amounts of cis-endo isomer was examined using short reaction times. The equilibration reaction was stopped by addition of 50% aqueous sodium hydroxide to adjust the pH to ca. 10. A tri-n-propylbicyclotriazine mixture ($57 \% \mathbf{6 a}, 32 \% \mathbf{6 b}, 12 \% \mathbf{6 c}$) gave after $5 \mathrm{~min} 64 \% \mathbf{6 a}, 32 \% \mathbf{6 b}, 4 \% \mathbf{6 c}$. A tris-isobutylbicyclotriazine mixture ($49 \% \mathbf{9 a}, 35 \% \mathbf{9 b}, 16 \% \mathbf{9 c}$) gave after $5 \mathrm{~min} 67 \% \mathbf{9 a}, 33 \% \mathbf{9 b}$, and 0\% 9c.

Pure cis-endo trimethylbicyclotriazine ($4 \mathbf{c}, \mathrm{mp} 133-134^{\circ} \mathrm{C}$) in 1% methanolic ammonium chloride for 30 min gave the trans epimer only (4a, mp 111-114 ${ }^{\circ} \mathrm{C},{ }^{13} \mathrm{C}$ NMR assay).

A modified ammonium chloride catalyzed epimerization procedure was employed which approximates the workup procedure employed in the Schmitz reaction. A mixture of 0.36 g of n-pentylbicyclotriazine (containing $56 \% 11 \mathbf{a}, 31 \% 11 \mathbf{b}$, and $13 \% 11 \mathbf{c}$), 0.36 g of ammonium chloride, and 36 ml of 10 M methanolic ammonium chloride was concentrated to dryness under reduced pressure during ca. 12 min . The residue was extracted with methylene chloride and the extracts concentrated to dryness to yield a product $(0.36 \mathrm{~g})$ containing $64 \% 11 \mathbf{a}$, $31 \% 11 \mathbf{b}$, and $5 \% 11 \mathbf{c}$ (the crude product isolated from a $0.05-\mathrm{mol}$ Schmitz reaction run requiring ca. 1 h concentration time during workup gave a mixture of $67 \% 11 \mathbf{a}, 33 \% 11 \mathbf{b}$, and less than $2 \% 11 \mathbf{c}$). In a parallel experiment with a tri-n-propylbicyclotriazine sample containing $57 \% \mathbf{6 a}, 32 \% \mathbf{6 b}$, and $12 \% \mathbf{6 c}$ there was obtained after ca. 12 min concentration time a mixture of $64 \% \mathbf{6 a}, 32 \% \mathbf{6} \mathbf{b}$, and $4 \% \mathbf{6} \mathbf{c}$.

Procedure B. Methanolic Hydrogen Chloride. A 0.30 g gample of 2,4,6-tri-n-pentyl-1,3,5-triazabicyclo[3.1.0]hexane (70% trans-exo, $11 \mathbf{a}$, and 30% cis exo, $11 \mathbf{b}$) was dissolved in methanol (30 ml). Hy drochloric acid (12 N) was added dropwise (5 drops) to adjust to pH ca. 2. After 10 min aqueous sodium hydroxide solution (50%) was added dropwise to adjust the pH to ca. 9. The solution was concen-
trated to dryness and the residue extracted with methylene chloride. Concentration of the extracts gave 0.30 g of epimerized product (48% trans, 11a; 49%; cis-exo, $11 \mathbf{b}$; and 3% cis-endo, $11 \mathbf{c}$). Samples of certain other triazines were epimerized using the same conditions for 10 min . Product equilibrium mixture compositions agreed ($\pm 2 \%$) with values obtained using methanolic ammonium chloride (procedure A). Data are summarized in Table IV.

Procedure C. Epimerizations in Methanol-O-d. A $0.20-\mathrm{g}$ sample of trimethylbicyclotriazine (67% trans $\mathbf{4 a}, 33 \%$ cis $\mathbf{4 b}$) was dissolved in 20 ml of methanol- $O-d$. Hydrochloric acid was added dropwise to adjust to pH 1 . After standing for 2 h the solution was made alkaline (pH 8) by addition of 50% aqueous sodium hydroxide solution. The mixture was concentrated to dryness and the residue extracted with deuteriochloroform. The CH proton NMR spectrum was identical with that of the reactant mixture; the ratio of integrals for the $\mathrm{C}-2$, $\mathrm{C}-4, \mathrm{C}-6$ ring CH and methyl protons remaining unchanged at 1:3.

A $0.10-\mathrm{g}$ sample of triethylbicyclotriazine (55% trans $5 \mathrm{a}, 45 \%$ cis 5b) was exchanged with $\mathrm{D}_{2} \mathrm{O}$ several times to prepare the N-deuterio compound. This material and deuterioammonium chloride (0.10 g) in 15 ml of methanol- $O-d$ after standing at $25^{\circ} \mathrm{C}$ for 16 h was concentrated to dryness and the residue extracted with deuteriochloroform. Except for the absence of an NH signal, the ${ }^{1} \mathrm{H}$ NMR spectrum of the product was identical with that of the reactant (no CH deuterium incorporation).
2,4-Diethyl-6,6-pentamethylene-1,3,5-triazabicyclo[3.1.0]hexane (23). 3,3-Pentamethylenediaziridine ${ }^{4}(2.0 \mathrm{~g}, 0.018 \mathrm{~mol})$ was dissolved in 100 ml of dry methanol and cooled to $-35^{\circ} \mathrm{C}$. To the stirred solution was added methanolic ammonia (4.46 ml of 8 N solution, 0.036 mol) in one portion. Propanal ($2.32 \mathrm{~g}, 0.040 \mathrm{~mol}$) was added in one portion to the stirred solution. The solution was stirred for 1 h at $-30^{\circ} \mathrm{C}$ and an additional 1 h at $25^{\circ} \mathrm{C}$. Removal of solvent gave 3.55 g of clear mobile oil. The oil was taken up in 40 ml of isopentane and dried over Drierite; its ${ }^{13} \mathrm{C}$ NMR spectrum shows 23 in one configuration only. Filtration and concentration gave $3.1 \mathrm{~g}(82 \%)$ of white solid: mp $37-41^{\circ} \mathrm{C}$; ir $3320 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 4.18 (t, 2 H , ring CH), 2.52 [s (broad), $1 \mathrm{H}, \mathrm{NH}$], 1.87 [s (broad), 14 H , CH_{2}], 1.17 ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$); the ${ }^{1} \mathrm{H}$ NMR spectrum in pyridine $-d_{5}$ showed one exchangeable proton upon addition of $\mathrm{D}_{2} \mathrm{O} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 77.3$ (ring C-2, C-4), 64.6 (ring C-6), 38.0 [endocyclic α-C of $\left.\left(\mathrm{CH}_{2}\right)_{5}\right], 31.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.9,25.4,24.8,24.1\left[\left(\mathrm{CH}_{2}\right)_{5}\right.$ carbons except endocyclic $\alpha-\mathrm{C}], 10.7\left(\mathrm{CH}_{3}\right)$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{3}$: C, 68.85; H, 11.08; $\mathrm{N}, 20.08$; mol wt, 209.33. Found: C, 68.66; H, 11.04; N, 19.95; mol wt, 212 (osmometry, CHCl_{3}).

Registry No.-4a, 41807-88-9; 4b, 41807-89-0; 4c, 59829-85-5; $4 \mathbf{c}-N-d\left(\mathrm{R}=\mathrm{CH}_{3}\right), 59812-99-6 ; 5 \mathrm{a}, 41807-90-3 ; \mathbf{5 b}, 41807-91-4 ; \mathbf{5 c}$, 59829-86-6; 6a, 41807-92-5; 6b, 41807-93-6; 6c, 59829-87-7; 7a, 41807-94-7; 7b, 41807-95-8; 7c, 59829-88-8; 8a, 41807-96-9; 8b, 49829-89-9; 8c, 59829-90-2; 9a, 41807-97-0; 9b, 59829-91-3; 9c, 59829-92-4; 10a, 41807-98-1; 10b, 59829-93-5; 10c, 59829-94-6; 11a, 41807-99-2; 11b, 59829-95-7; 11c, 59829-96-8; 12a, 41808-00-8; 12b, 59829-97-9; 12c, 59829-98-0; 13a, 41808-01-9; 13b, 59830-03-4; 13c, 59830-04-5; 14a, 41808-02-0; 14b, 59829-99-1; 14c, 59830-00-1; 15a, $51003-11-3$; 15b, 59830-01-2; 15c, 59830-02-3; 16a $\left[\mathrm{R}=\mathrm{Ph}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\right]$, 51003-93-1; 17a, 41808-03-1; 17b, 41808-70-9; 17c, 41808-04-2; 17d, 41808-05-3; 17e, 59830-05-6; 17f, 51003-91-9; 23, 59813-00-2; 24a (R $=\mathrm{Me}$), 59813-01-3; 2,4,6-trimethyl-1,3,5-hexahydrotriazine-1,3,5- d_{3}, 59813-02-4; 3,3-pentamethylenediaziridine, 185-79-5.

References and Notes

(1) Preliminary communication: A. T. Nielsen, R. L. Atkins, D. W. Moore, D Mallory, and J. M. LaBerge, Tetrahedron Lett., 1167 (1973).
(2) National Research Council Postdoctoral Research Associate, 19711973.
(3) (a) E. Schmitz, Adv. Heterocycl. Chem., 2, 104-122 (1963); (b) E. Schmitz, Angew. Chem., Int. Ed. Engl., 3, 333 (1964); (c) E. Schmitz, Angew. Chem.. 73, 23 (1961): (d) E. Schmitz, ibid., 71, 127 (1959).
(4) E. Schmitz and R. Ohme, "Organic Syntheses", Collect. Vol. V. Wiley, New York, N.Y., 1973, p 897; (b) E. Schmitz and R. Ohme, Chem. Ber., 94, 2166 (1961).
(5) (a) H. J. Abendroth and G. Henrich, German Patent 1082889 (June 9, 1960); Chem. Abstr., 55, 16930 (1961); (b) H. J. Abendroth, German Patent 1127907 (April 19, 1962); Chem. Abstr., 57, 9664 h(1962); (c) H. J. Abendroth and G. Henrich, Angew. Chem., 71, 283 (1959).
(6) S. R. Paulsen and G. Huck, Chem. Ber., 94, 968 (1961).
(7) (a) E. Schmitz and R. Ohme, Tetrahedron Lett., 612 (1961); (b) E. Schmitz and D. Habisch, Chem. Ber., 95, 680 (1962); (c) E. Schmitz and R. Ohme, ibid., 95, 795 (1962); (d) C. Szántay and E. Schmitz, ibid., 95, 1759 (1962); (e) E. Schmitz and D. Habisch, Rev. Chim., Acad. Repub. Pop. Roum., 7, 1281(1962); Chem. Abstr., 61, 4330 (1964); (f) E. Schmitz and K. Schinkowski, Chem. Ber., 97, 49 (1964); (g) E. Schmitz, D. Habisch, and C. Gründemann, ibid., 100, 142 (1967).
(8) Solvay et Cie, French Demande 2009634 (Feb 6, 1970); Chem. Abstr., 74, 3600j (1971).
(9) A. Nabeya, Y. Tamura, T. Kodama, and Y. Iwakura, J. Org. Chem., 38, 3758 (1973).
(10) H. W. Heine, R. Henrie, II. L. Heitz, and S. R. Kovvali, J. Org. Chem., 39, 3187 (1974).
(11) E. Schmitz, Chem. Ber., 95, 688 (1962).
(12) A. T. Nielsen. R. L. Atkins, J. DiPol, and D. W. Moore, J. Org. Chem., 39, 1349 (1974).
(13) A. T. Nielsen, R. L. Atkins, D. W. Moore, R. Scott, D. Mallory, and J. M. LaBerge, J. Org. Chem., 38, 3288 (1973).
(14) The structure of trans-exo $4 \mathrm{a}\left(3 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{3}\right)$ has been established by x -ray crystallography: G. B. Ansell, forthcoming publication, this laboratory.
(15) R. L. Cook and T. B. Malloy, Jr., J. Am. Chem. Soc., 96, 1703 (1974).
(16) H.-P. Koopmann and P. Rademacher, Spectrochim. Acta, Part A, 32, 157 (1976).
(17) A. T. Nielsen, J. Org. Chem., 30, 3650 (1965).
(18) S. A. Giller, A. V. Eremeev, M. Yu. Lidak, V. A. Kholodnikov, and V. A.

Pestunovich, Khim. Geterotsikl. Soedin., 607 (1971).
(19) (a) M. J. Cook, R. A. Y. Jones, A. R. Katritzky, M. Moreno Mañas, A. C. Richards, A. J. Sparrow, and D. L. Trepanier, J. Chem. Soc., Perkin Trans. 2, 325 (1973); (b) I. D. Blackburne, R. P. Duke, R. A. Y. Jones, A. R. Katritzky, and K. A. F. Record, ibid., 332 (1973); (c) R. A. Y. Jones, A. R. Katritzky, D. L. Nicol, and R. Scattergood, ibid., 337 (1973)
(20) E. L. Eliel, Acc. Chem. Res., 3, 1 (1970).
(21) R. P. Duke, R. A. Y. Jones, A. R. Katritzky, and R. Scattergood, J. Chem. Soc., Perkin Trans. 2, 2109 (1973).
(22) E. Breuer and D. Melumad, J. Org. Chem., 38, 1601 (1973).
(23) Infrared spectra were determined on a Perkin-Elmer Model 137, ${ }^{1} \mathrm{H}$ NMR spectra on a Varian A-60 or XL-100, and ${ }^{13} \mathrm{C}$ NMR spectra on a Varian XL-100 spectrometer with Transform Technology TT-100 pulsed Fourier transform system. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shift-measurements were determined at ca. $30^{\circ} \mathrm{C}$ and are referenced to tetramethylsila ee internal standard. Melting points were determined on a Kofler hot stage and are corrected. Elemental analyses and molecular weights (vapor csmometry) were determined by Galbraith Laboratories, Knoxville, Tenn.

Diaziridines. 5. Reaction of Some 1-Aroyl- and 1,2-Diacyldiaziridines

Harold W. Heine,* Leona M. Baclawski, Steven M. Bonser, and George D. Wachob
Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837

Received April 27, 1976

Abstract

The diaziridine $4^{\prime}, 9^{\prime}$-dihydrospiro[cyclohexane- $1,1^{\prime}(1 H)$-diazirino $[1,2-c][3,4]$ benzodiazocine $]-3^{\prime}, 10^{\prime}$-dione (7) isomerizes in refluxing benzene into 3 -(cyclohexylideneamino)-1 H-3-benzazepine- $2,4(3 H, 5 H$)-dione (8) and rearranges in refluxing benzene containing triethylamine hydrochloride into 3 -(1-cyclohex-1-yl)-1,3,4,6-tetrahydrc-3,4-benzodiazocine-2,5-dione (9). 1-p-Nitrobenzoyl-2,3,3-trialkyldiaziridines isomerize in chloroform or acetonitrile at ambient temperatures into labile 2 -aryl-4,5,5-trialkyl- $\Delta^{2}-1,3,4$-oxadiazolines (11a-c). The latter compounds react with both electrophiles and nucleophiles such as aromatic aldehydes and ynamines to give 2,5-diaryl-4-alkyl-Δ^{2}-1,3,4-oxadiazolines and pyrazoline derivatives, respectively.

Several studies on 1,2-diaroyldiaziridines have appeared recently. Schmitz and co-workers ${ }^{1}$ reported the rearrangement of several 1,2 -diaroyldiaziridines (1) to β, β-diaroylhydrazones (2) (Scheme I) and we ${ }^{2,3}$ described the reactions of $1,1-$ dialkyl-1 H -diazirino [1,2-b]phthalazine-3,8-diones (3). The latter compounds isomerize to 2-(1-alken-1-yl)-4-hydroxy$1(2 \mathrm{H})$-phthalazinones (4) in refluxing toluene and react with ynamines and enamines to give compounds 5 and 6 , respectively (Scheme I).

The difference in thermal behavior of 1 and 3 prompted us to undertake the preparation and thermolysis of a N, N^{\prime}-diacyldiaziridine similar to 3 but less constrained, namely the benzodiazocine derivative 7 . For purposes of comparison with

N, N^{\prime}-diaroyldiaziridines we also prepared several 1-aroyl-2,3,3-trialkyldiaziridines. These substances isomerize in chloroform or acetonitrile to labile 2 -aryl-4,5,5-trialkyl- Δ^{2} -1,3,4-oxadiazolines which react readily with both electrophilic and nucleophilic substrates such as aromatic aldehydes and ynamines.

Results

Compound 7 was synthesized in 41% yield by reacting o phenylenediacetyl chloride with excess 3,3-pentamethylenediaziridine. The NMR spectrum of 7 is consistent with the structure proposed (see Experimental Section). When heated in benzene 7 isomerizes into the benzazepine 8 (Scheme II). The structure of 8 was elucidated by NMR spectroscopy, mass spectroscopy, and elemental analysis. The NMR spectrum taken in CDCl_{3} consists of two singlets at $\delta 7.25$ and 4.12 for the aromatic and methylene protons, respectively, and two broad multiplets centered at $\delta 2.50$ and 1.70. The two multiplets are characteristic of the cyclohexylidine moiety when bonded to nitrogen and they are observed in the NMR spectra of hydrazone derivatives of cyclohexanone ${ }^{4}$ and cyclohexanone oxime. Compound 7 when refluxed in benzene containing
a catalytic amount of triethylamine hydrochloride isomerizes into the benzodiazocine 9 (Scheme II).

The NMR spectrum of 9 is quite similar to that of 4 . For example, the spectrum shows the presence of a vinylic proton at $\delta 5.74$, an amido proton at $\delta 8.88$, and two broad absorption peaks at $\delta 2.27$ and 1.64 for the aliphatic protons of the cyclohexenyl group. In addition the two nonequivalent methylene groups of the benzodiazocine ring and the aromatic protons appear as multiplets at $\delta 4.17,3.47$, and 7.18 , respectively.

Solutions of 1-aroyl-2,3,3-trialkyldiaziridines 10a-c in dry methylene chloride, chloroform, or acetonitrile at ambient temperatures gradually change color from pale yellow to red within a few hours. In carbon tetrachloride at $80^{\circ} \mathrm{C}$ the change takes place within 10 min . The color change parallels the disappearance of the nuclear magnetic absorption bands of the diaziridines and the appearance of new bands assigned to the 2 -aryl-4,5,5-trialkyl- Δ^{2}-1,3,4-oxadiazolines 11a-c (Scheme III). Evaporation of the solvent under anhydrous conditions gives solid 11a-c but exposure of these substnces (or even solutions of these substances) to the atmosphere brings about their immediate hydrolysis to hydrazides 16 and ketones (Scheme III). In only the case of 11a was it possible to obtain a sample that was stable enough to obtain elemental analyses

Scheme III

although mass spectra for 11a-c were determined. The hydrolysis of the 2,5-diaryl-4-alkyl- Δ^{2}-1,3,4-oxadiazolines 14a,c also occurs rapidly but not as fast as that of the $4,5,5$-trialkyl analogues. The hydrolysis of $2,4,5$-triaryl- Δ^{2}-oxadiazolines has been reported to yield hydrazides and aldehydes. ${ }^{5}$ The infrared spectra of $11 \mathbf{a}-\mathbf{c}$ and $14 \mathrm{a}, \mathrm{c}$ and the known 2,4,5-tri-phenyl- Δ^{2}-1,3,4-oxadiazolines are quite similar. Significantly there is present an absorption band at $1600 \mathrm{~cm}^{-1}$ (Nujol) for the $-\mathrm{C}=\mathrm{N}$ - moiety and there are no bands attributable to carbonyl absorption.

Addition of 1-(N, N-diethylamino)propyne to chloroform solutions of $10 \mathrm{a}, \mathrm{b}$ either at the outset of the dissolution of 10a,b in chloroform or after NMR spectroscopy had revealed the formation of $11 \mathrm{a}, \mathrm{b}$ resulted in the formation of the pyrazolines 12a,b (Scheme III). Analytical and spectral data of $12 \mathrm{a}, \mathrm{b}$ together with the hydrolysis of 12 a to the pyrazolone 13a confirmed their structure. The hydrolysis of 3-diethyl-amino-3-pyrazolines to pyrazolones is a known reaction. ${ }^{2}$ The 2,5 -diaryl- Δ^{2}-1,3,4-oxadiazoline $\mathbf{1 4 a}$ also reacts with 1 (N, N-diethylamino) propyne to give the pyrazoline $15 a$.

Treatment of acetonitrile solutions of 10a-c or 11a-c with p-nitrobenzaldehyde at room temperature gives $2,5-\mathrm{di}(p$ -nitrophenyl)-4-alkyl- Δ^{2}-1,3,4-oxadiazolines 14a,c and a ketone (Scheme III). Compounds 14a,c were also prepared by condensing p-nitrobenzaldehyde with the appropriate $1-p$ -nitrobenzoyl-2-alkylhydrazine. As mentioned previously 14a,c hydrolyze to hydrazides 16a,c and p-nitrobenzaldehyde.

Discussion

One mechanistic scheme to account for the thermal conversions of 3 to 4 and of 7 to 8 involves the intermediacy of the azomethine imides 17 and 18 , respectively. The amido anion of 18 is less encumbered by ring constraint than the corresponding group of 17 and is thus able (unlike 17) to add to the carbonyl carbon of the other amido group and thereby form 8 (Scheme IV). That this pathway is preferred to the elimination of a proton from the positively charged cyclohexyl group (as is the case with 17) is borne out by the facile isomerization of the strain-free 1 to 2 via the intermediate $\mathrm{PhCON}^{+} \mathrm{N}^{-}(\mathrm{COPh}) \mathrm{C}_{6} \mathrm{H}_{11}$.

We attribute the conversion of 7 to 9 to the protonation of the amido group, subsequent opening of the diaziridine ring to 19 , followed by an elimination of a proton from 19 (Scheme IV).

The isolation of the labile 1la-c when the diaziridines Scheme IV

10a-c were dissolved in acetonitrile or chloroform suggests that 10 ring opened to the azomethine imide 20 which undergoes cyclization to 11 (Scheme V). A 1,3-dipolar species analogous to 20 has been proposed recently to rationalize the isomerization of 1-(anilinoformyl)-2-cyclohexyl-3-phenyl3 -methyldiaziridine to 1 -cyclohexyl-4,5-diphenyl-5-methyl-1,2,4-triazolid-3-one. ${ }^{6}$ The rearrangement of 10 to 11 bears a close resemblance to the thermal isomerizations of 2 -

acyloxaziridines to 1,3,4-dioxazole derivatives and of 1acylaziridines to Δ^{2}-oxazolines. ${ }^{8 a, b}$

Two mechanisms may be suggested for the formation of the pyrazoline derivatives 12a,b when 11a,b reacts with 1 (N, N-diethylamino) propyne. One pathway involves an equilibrium between 11 and the azomethine imide 20 . Once formed 20 could undergo a cycloaddition with the ynamine (Scheme V). Such an equilibrium between the $\Delta^{2}-1,3,4$-oxadiazoline 21 and the azomethine imide 22 has been proposed ${ }^{9}$ to explain the rearrangement of 21 to 23 (Scheme V). An alternate reaction scheme for producing 12 is a nucleophilic attack of the ynamine on $\mathrm{C}-5$ to 11 severing the carbon-oxygen bond to give a dipolar intermediate which then cyclizes to 12.

23
The reactions of $\Delta^{2}-1,3,4$-oxadiazolines with aldehydes and other electrophilic reagents are currently under investigation in our laboratories and will be reported at a later date.

It seems likely that the alternate synthesis of 14 a involving the reaction of p-nitrobenzaldehyde with a $1-p$-nitroben-zoyl-2-alkylhydrazine also proceeds through the intermediacy of 20. Thus Dorn and Otto ${ }^{10}$ have isolated stable cyclic azomethine imides in $80-90 \%$ yields by condensing 3 -pyrazolidones and carbonyl compounds and Oppolzer ${ }^{11}$ has even isolated the precursor to an azomethine imide, namely, N -hydroxymethyl- N-methyl- N^{\prime}-phenacetylhydrazine, when he treated N-methyl- N^{\prime}-phenacetylhydrazine with formaldehyde.

Experimental Section

Materials. 1,3-Dimethyl-3-benzyldiaziridine, ${ }^{12}$ 1-isopropyl-3,3dimethyldiaziridine, ${ }^{13}$ and 3,3-pentamethylene- and 1-methyl-3,3-
pentamethylenediaziridines ${ }^{14}$ were prepared according to known procedures.

Synthesis of $4^{\prime}, 9^{\prime}$-Dihydrospiro[cyclohexane-1, $1^{\prime}(1 H)$-diazirino[$1,2-c$][3,4]benzodiazocine]- $3^{\prime}, 10^{\prime}$-dione (7). A solution of $4.62 \mathrm{~g}(20 \mathrm{mmol})$ of o-benzenediacetyl chloride ${ }^{15}$ in 500 ml of dry $\mathrm{Et}_{2} \mathrm{O}$ and a solution of $6.73 \mathrm{~g}(60 \mathrm{mmol})$ of 3,3 -pentamethylenediaziridine in 500 ml of dry $\mathrm{Et}_{2} \mathrm{O}$ were simultaneously added drojwise over 7.5 h to a stirred mixture of 10 g of anhydrous MgSO_{4} in 2.51 . of $\mathrm{dry}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}$ at $5^{\circ} \mathrm{C}$. The reaction mixture was stirred for an additional 19 h and then filtered. Removal of the solvent left crude 7 which was recrystallized from anhydrous hexane ($2.20 \mathrm{~g}, 41 \%$), mp $108-109^{\circ} \mathrm{C}$. An analytical sample of 7 melted at $112-114^{\circ} \mathrm{C}$: NMR (CDCl_{3}) $\delta 7.25$ (s, 4), 3.98 (s, 4), 1.70 (broad s, 10 H).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 71.09; $\mathrm{H}, 6.71 ; \mathrm{N}, 10.36$. Found: C, 71.07; H, 6.73; N, 10.54.

Synthesis of 3-(Cyclohexylideneamino)-1 H-3-benzazepine$\mathbf{2 , 4 (3 H , 5 H}$)-dione (8). A solution of 132 mg of 7 in 10 ml of dry $\mathrm{C}_{6} \mathrm{H}_{6}$ was refluxed for 2.5 h . Evaporation of the solvent left $130 \mathrm{mg}(98.5 \%)$ of 8 , mp $140-147^{\circ} \mathrm{C} .8$ thrice recrystallized from petroleum ether (bp $110-115^{\circ} \mathrm{C}$) melted at $153-157^{\circ} \mathrm{C}$, molecular ion $\mathrm{m} / \epsilon 270$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $71.09 ; \mathrm{H}, 6.71 ; \mathrm{N}, 10.36$. Found: C, 71.42; H, 6.97; N, 10.36 .

Synthesis of 3-(1-cyclohexen-1-yl)-1,3,4,6-tetrahydro-3,4-benzodiazocine-2,5-dione (9). A mixture of 500 mg of 7 and 36 mg of triethylamine hydrochloride in 25 ml of dry $\mathrm{C}_{6} \mathrm{H}_{6}$ was refluxed for 3 h . The mixture was filtered and the solvent evaporated. The crude 9 ($493 \mathrm{mg}, 98 \%$) was recrystallized from benzene-petroleum ether (bp $65-110^{\circ} \mathrm{C}$) and then from 95% ethanol, $\mathrm{mp} 212.5-214^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 71.09; $\mathrm{H}, 6.71 ; \mathrm{N}, 10.36$. Found: C, 71.11; H, 6.90; N, 10.27.

Syntheses of 10a-c. To a stirred mixture of 5.5 mmol of triethylamine and 5 mmol of the appropriate diaziridine (1,3-dimethyl-3-benzyl-1-isopropyl-3.3-dimethyl- and 1 -methyl-3,3-pentamethy lenediaziridine) in 250 ml of dry $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise over a period of 15 min a solution of 4.9 mmol of p-nitrobenzoyl chloride in 50 ml of $\mathrm{Et}_{2} \mathrm{O}$. The mixture was stirred for 1 h and the triethylamine hydrochloride filtered. The solvent was concentrated to approximately 5 ml . The crude 10 was filtered and recrystallized. In this manner were obtained $10 \mathrm{a}(85 \%), \mathrm{mp} 102-104^{\circ} \mathrm{C}$; $\mathbf{1 0 b}(90 \%)$, mp $78-81^{\circ} \mathrm{C}$; 10 c (69%), mp $90-9{ }^{\circ} \mathrm{C}$. Ether was used to recrystallize 10 a and 10 c and cyclohexane was used to recrystallize 10 b .

10a. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 65.59 ; \mathrm{H}, 5.50 ; \mathrm{N}$ 13.49. Found: C, 65.35; H, 5.68; N, 13.45.
10b. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 61.06 ; \mathrm{H}, 6.22 ; \mathrm{N} .15 .27$. Found: C, 61.08; H, 6.25; N, 15.60 .
10c. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 59.29; H, 6.51; N. 15.96. Found: C, 59.17; H, 6.53; N, 16.04.

Isomerization of $10 \mathrm{a}-\mathrm{c}$ to $11 \mathrm{a}-\mathrm{c}$. A solution of 933 mg of 10 a in 25 ml of dry acetonitrile was stored in a desiccator for 24 h . The diaziridine dissolved very slowly. After several hours red crystals of 11a precipitated and were filtered under dry nitrogen (11a hydrolyzes rapidly in air). The melting point (sealed melting pcint tube) was $120-122^{\circ} \mathrm{C}$. No yield was recorded; ir (Nujol) 1600, 1500, 1300, 1350, $854,848 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.42\left(\mathrm{~s}, 3, \mathrm{CCH}_{3}\right), 2.81\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right)$, 3.13 (s, $2, \mathrm{CH}_{2}$), 7.18 (s, $5, \mathrm{C}_{6} \mathrm{H}_{5}$) $7.90\left(\mathrm{AB} \mathrm{q}, 4, p \cdot \mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right.$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 65.59 ; \mathrm{H}, 5.50 ; \mathrm{N}, 13.49$. Found: C , 65.69; H, 5.65; N, 13.13.

In a similar fashion a solution of 825 mg of $\mathbf{1 0 b}$ in 10 ml of $\mathrm{CH}_{3} \mathrm{CN}$ isomerized to 11 b in almost quantitative yield. The crystals of 11 b were red and they melted from 85 to $97^{\circ} \mathrm{C}$. Compound $11 \mathbf{b}$ could only be obtained by the complete evaporation of the solvent under a stream of dry nitrogen. 11b was extremely sensitive to atmospheric moisture. The NMR spectra revealed that all of 10b had isomerized to 11b: molecular ion $m / e 275$; ir (Nujol) $1600,1500,848,850 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.74$ (broad s, 10, $\mathrm{C}_{5} \mathrm{H}_{10}$), 2.81 ($\mathrm{s}, 3 \mathrm{NCH}_{3}$), $7.96(\mathrm{AB} \mathrm{q}, 4$, p- $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$).

Compound 11c was prepared in a similar manner to 11 b except that CCl_{4} was employed as the solvent and the reaction mixture was heated for 30 min .11 c was also very rapidly hydrolyzed when exposed to the atmosphere. It melted at $83-85^{\circ} \mathrm{C}$: molecular ion $\mathrm{m} / \mathrm{e} 263$; ir (Nujol) 1600, 1500, 1360, 1320. 1225, 1100, 1040, $1025 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.28\left[\mathrm{~d}, 6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.55\left[\mathrm{~s}, 6, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.2(\mathrm{~m}, \mathrm{1}, \mathrm{CH})$, $7.90\left(\mathrm{AB} \mathrm{q}, 4, p-\mathrm{O}_{2} \mathrm{~N}_{6} \mathrm{H}_{4}\right.$).
Preparation of 12 a . To a solution of $1.24 \mathrm{~g}(4 \mathrm{mmol})$ of 11 a in 20 ml of dry CHCl_{3} was added 0.44 g (4 mmol) of 1-(N, N-diethylamino) propyne. The mixture was kept in a desiccato- for 24 h and then the solvent was evaporated. The residue was slurried with a small quantity of 95% ethanol and filtered. The crude $12 \mathrm{a}(960 \mathrm{mg}, 57 \%)$ was filtered and recrystallized from 95% ethanol. The yellow crystals of 12a melted at $117-119^{\circ} \mathrm{C}$, molecular ion $\mathrm{m} / \mathrm{e} 422$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 68.22 ; \mathrm{H}, 7.15 ; \mathrm{N}, 13.26$. Found: C , 68.45; H, 7.06; N, 13.06.

Preparation of 12 b . To a solution of $550 \mathrm{mg}(2 \mathrm{mmol})$ of 10 b in 10 ml of dry CHCl_{3} which had been stored in a desiccator for 3 h was added 220 mg of 1 -(N, N-diethylamino) propyne. After the reaction mixture had stood for an additional 12 h the chloroform was removed by means of a stream of dry nitrogen. The crude 12 b was washed with 1 ml of cold ethanol and filtered to give $400 \mathrm{mg}(52 \%)$ of crude $\mathbf{1 2 b}$, $\mathrm{mp} 85-91^{\circ} \mathrm{C}$. Recrystallization from 95% ethanol gave 310 mg of $\mathbf{1 2 b}$, mp 107.5-109 ${ }^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, $65.25 ; \mathrm{H}, 7.85 ; \mathrm{N}, 14.49$. Found: C , 65.62; H, 7.77; N, 14.52.

Conversion of 12a to 13a. To a solution of $350 \mathrm{mg}(0.83 \mathrm{mmol})$ of 12a in 50 ml of methanol was added 10 ml of 3 N hydrochloric acid. The reaction mixture was heated for 15 min and then neutralized with sodium hydroxide. The solvent was evaporated and the crude 13a (230 $\mathrm{mg}, 0.63 \mathrm{mmol}, 76 \%$) was filtered. Recrystallization from acetone gave 13a, mp $234.5-237^{\circ} \mathrm{C}$, molecular ion $m / e ~ § 67$.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 65.39 ; \mathrm{H}, 5.76$. Found: C, $6 \overline{5} .47 ; \mathrm{H}$, 5.47.

Conversion of 11 a to 14 a . A solution of $933 \mathrm{mg}(3 \mathrm{mmol})$ of $\mathbf{1 0 a}$ in 30 ml of dry acetonitrile was stored in a desiccator overnight. During this time 10a slowly dissolved and 11a gradually precipitated. The solution was heated for 5 min to dissolve 11a and $450 \mathrm{mg}(3 \mathrm{mmol})$ of p-nitrobenzaldehyde added. The reaction mixture was kept in a desiccator overnight and then filtered. The crude $\mathbf{1 4 a}(490 \mathrm{mg}, 50 \%)$ was recrystallized from benzene and melted at $179-181^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5}$: $\mathrm{C}, 54.85 ; \mathrm{H}, 3.68 ; \mathrm{N}, 17.06$. Found: C , 54.85; H, 3.69; N, 16.81.

Alternate Preparation of 14 a . In a $50-\mathrm{ml}$ round-bottomed flask equipped with a reflux condenser and a Dean-Stark apparatus was placed a mixture of $390 \mathrm{mg}(2.6 \mathrm{mmol})$ of p-nitrobenzaldehyde, 510 mg of $1-p$-nitrobenzoyl-2-methylhydrazine, and 15 ml of benzene. The reaction mixture was refluxed for 3 h and then cooled. The crude 14a ($750 \mathrm{mg}, 88 \%$) was filtered and recrystallized from benzene. It melted at $177-180^{\circ} \mathrm{C}$ and was identical in all respects with 14 a prepared by the reaction of 11a with p-nitrobenzaldehyde.
Conversion of 11 c to 14 c . A tightly stoppered flask containing 262 mg (1 mmol) of 10 c in 5 ml of acetonitrile was kept in a desiccator for 2 days. To this solution was added $151 \mathrm{mg}(1 \mathrm{mmol})$ of p-nitrobenzaldehyde and the reaction mixture was allowed to stand for an additional 24 h . The crude 14c that precipitated during this time was filtered and the volume of the filtrate was concentrated to 2.5 ml and filtered again. The crude 14 c weighed $160 \mathrm{mg}(45 \%)$ and melted at $146-148^{\circ} \mathrm{C}$. It was purified by partially evaporating the solvent under a stream of dry nitrogen and filtering. The 14a so obtained melted at $154-156^{\circ} \mathrm{C}$, molecular ion $m / e 356$.
Alternate Preparation of $14 \mathbf{c}$. A mixture of $223 \mathrm{mg}(1 \mathrm{mmol})$ of $1-p$-nitrobenzoyl-2-isopropylhydrazine, 151 mg (1 mmol) of p-nitrobenzaldehyde, and 10 ml of dry chloroform was refluxed overnight. The solvent was evaporated and the residue was slurried with 2 ml of dry ether and was filtered. The 14 c was purified as described above.
Conversion of 14 a to 15 a . A mixture of $3.28 \mathrm{~g}(10 \mathrm{mmol})$ of 14 a and 1.11 g (10 mmol) of 1 -(N, N-diethylamino) propyne in 50 ml of dry CHCl_{3} was stored in a desiccator for 12 h . The solvent was evaporated under a stream of dry nitrogen and the crude $15 \mathrm{a}(4.24 \mathrm{~g}, 97 \%)$ was recrystallized thrice from absolute ethanol to give 15a, mp 163-164 ${ }^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{5}$: $\mathrm{C}, 60.11 ; \mathrm{H}, 5.73 ; \mathrm{N}, 15.93$. Found: C, 59.69; H, 5.26; N, 16.15.

Hydrolysis of 11 c to 16 c . A mixture of 243 mg of $\mathbf{1 0 c}$ in 10 ml of benzene was refluxed for 40 min during wh ch time it was converted to 11c. Evaporation of the solvent in the atmosphere gave 204 mg ($0.915 \mathrm{mmol}, 98 \%$) of 16c. Recrystallization of $16 \mathbf{c}$ from benzene gave crystals melting at $140-141^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$: $\mathrm{C}, 53.80 ; \mathrm{H}, 5.85 ; \mathrm{N}, 18.82$. Found: C , 53.55; H, 5.95; N, 18.60.

Alternate Synthesis of $16 \mathbf{c}$. A mixture of $3 \mathrm{~g}(17 \mathrm{mmol})$ of p-nitrobenzoylhydrazide and $2.7 \mathrm{~g}(16 \mathrm{mmol})$ of 2 -iodopropane in 20 ml of $\mathrm{Me}_{2} \mathrm{SO}$ was kept in the dark for 48 h . After the addition of water $(50 \mathrm{ml})$ the reaction mixture was saturated with sodium chloride and allowed to stand overnight. The precipitated hydriodide of 16 c was filtered and slurried with 50 ml of cold water and filtered again. The hydriodide of $16 \mathbf{c}$ weighed $2.9 \mathrm{~g}(51 \%)$ and decomposed at $250^{\circ} \mathrm{C}$. The 2.9 g of $16 \mathbf{c}$ was dissolved in 40 ml of absolute methanol to which 800 mg of triethylamine had been added. The mixture was stirred for 15 \min and the methanol was evaporated. The residue was heated in benzene and the undissolved triethylamine hydriodide was filtered. Evaporation of the benzene gave $1.7 \mathrm{~h}(48 \%)$ of $16 \mathrm{c}, \mathrm{mp}$ 138-140 ${ }^{\circ} \mathrm{C}$.
Synthesis of 16 a . A solution of $202 \mathrm{mg}(0.65 \mathrm{mmol})$ of 10 a in 15 ml of benzene was refluxed for 1 h . Evaporation of the solvent in the atmosphere caused rapid hydrolysis of 11a to 16 ($126 \mathrm{mg}, 100 \%$). Crude 16a melted at $140-141^{\circ} \mathrm{C}$ but 16 a recrystallized from chloroform melted at $148.5-152^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 49.22 ; \mathrm{H}, 4.64 ; \mathrm{N}, 21.53$. Found: C, 49.10; H, 4.85; N, 21.51.

Acknowledgments. We are indebted to Professor Charles C. Sweeley of Michigan State University and Dr. William VandenHeuvel of Merck and Co. for the mass spectra of many of the compounds described in this paper. We thank Messrs. Andy Kofke and Robert Henrie for preliminary studies on compounds 7 and 8 , and Dr. Kurt L. Loening for help on nomenclature. This work was supported by Grant CA 15880 from the National Cancer Institute.

Registry No.-7, 59811-77-7; 8, 59811-78-8; 9, 59811-79-9; 10a, 59811-80-2; 10b, 59811-81-3; 10c, 59811-82-4; 11a, 59811-83-5; 11b, 59811-84-6; 11c, 59830-67-0; 12a, 59811-85-7; 12b, 59811-86-8; 13a, 59811-87-9; 14a, 59811-88-0; 14c, 59811-89-1; 15a, 59811-90-4; 16a, 57676-56-9; 16c, 59811-91-5; o-benzenediacetyl chloride, 21062-19-1; 3,3-pentamethylenediaziridine, 185-79-5; 1,3-dimethyl-3-benzyldiaziridine, 59872-19-4; 1-isopropyl-3,3-dimethyldiaziridine, 17119-93-6; 1-methyl-3,3-pentamethylenediaziridine, 26177-34-4; p-nitrobenzoyl chloride, 122-04-3; 1-(N, N-diethylamino) propyne, 4231-35-0; p-nitrobenzaldehyde, 555-16-8; p-nitrobenzoylhydrazide, 636-97-5; 2-iodopropane, 75-30-9.

References and Notes

(1) E. Schmitz, D. Habisch, and C. Grundemann, Chem. Ber., 100, 142 (1967).
(2) H. W. Heine, R. Henrie. II, L. Heitz, and S. R. Kovvali, J. Org. Chem., 39, 3189 (1974).
(3) H. W. Heine and L. Heitz, J. Org. Chem., 39, 3192 (1974).
(4) H. W. Heine, T. R. Hoye, P. G. Williard, and R. C. Hoye, J. Org. Chem., 38, 2984 (1973).
(5) R. Huisgen, R. Grashey. M. Seidel, H. Knupper, and R. Schmidt, Justus Liebigs Ann. Chem., 658, 169 (1962).
(6) A. Nabeya, Y. Tamura, T. Kodama, and Y. Iwakura, J. Org. Chem., 38, 3758 (1973).
(7) E. Schmitz and S. Schramm, Chem. Ber., 100, 2593 (1967).
(8) (a) H. W. Heine, Angew. Chem., Int. Ed. Engl., 1, 528 (1962); (b) H. W. Heine and M. S. Kaplan, J. Org. Chem., 32, 3069 (1967).
(9) E. Fahr, K. Doppert, and F. Scheckenbach, Angew. Chem., Int. Ed. Engl., 2, 480 (1963).
(10) H. Dorn and A. Otto, Angew. Chem., Int. Ed. Engl., 7, 214 (1968).
(11) W. Oppoizer, Tetrahedron Lett., 2199 (1970)
(12) C. J. Paget and C. S. Davis, J. Med. Chem., 7, 626 (1964).
(13) E. Schmitz, Chem. Ber., 95, 680 (1962).
(14) E. Schmitz and R. Ohme, Org. Synth., 45, 85 (1965).
(15) A. I. Kiprianov and M. Yu. Kornilov, Zh. Obshch. Khim., 34, 77 (1964); Chem. Abstr., 60, 10665h(1964).

Heterocycles from N-Ethoxycarbonylthioamides and Dinucleophilic

Reagents. 1. Dihydro-1,2,4-triazolones and 1,2,4-Oxadiazolones

Babu George and Eleftherios P. Papadopoulos*
Department of Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131

Received April 12, 1976

Abstract

N -Ethoxycarbonylthioamides react with hydrazine or monosubstituted hydrazines to form 2,4-dihydro-3 H -1,2,4-triazol-3-ones (4-7), and with 1,2 -dimethylhydrazine to form 1,2 -dimethyl-1,2-dihydro-3H-1,2,4-triazol-3ones (8). Analogous reactions with hydroxylamine or N-methylhydroxylamine yield 1,2,4-oxadiazol-5(4H)-ones (9) or 2-methyl-1,2,4-oxadiazol-5(2H)-ones (10), respectively.

Through their condensation-cyclization reactions, alkoxycarbonyl isothiocyanates have proved valuable synthetic tools in heterocyclic chemistry. ${ }^{1}$ The carbamates resulting from addition of alcohols or amines to ethoxycarbonyl isothiocyanate ${ }^{2}$ and their S-methyl derivatives ${ }^{3}$ have been found to undergo cyclization reactions with difunctional nucleophilic reagents. However, analogous reactions of the somewhat less easily accessible N-ethoxycarbonylthioamides (1) have not attracted attention. Treatment of 1 with primary or secondary amines results in elimination of $\mathrm{H}_{2} \mathrm{~S}$ and formation of N^{\prime} ethoxycarbonylamidines (2). ${ }^{4}$ These compounds may be expected to undergo cyclization with loss of EtOH , if the amine used as reagent contains a suitably located, second nucleophilic group YH. The present paper describes such reactions of 1 leading to heterocycles 3 with 1,2,4-triazole and 1,2,4oxadiazole ring systems.

3
Treatment of an N-ethoxycarbonylthioamide (1) with hydrazine or a monosubstituted hydrazine causes evolution of $\mathrm{H}_{2} \mathrm{~S}$ and formation of a 2,4-dihydro-3 H -1,2,4-triazol-3-one (4-7) in good to excellent yield (Tables I-IV). An analogous reaction with 1,2 -dimethylhydrazine yields 1,2 -dimethyl-1,2-dihydro-3H-1,2,4-triazol-3-ones (8) in moderate to good yields (Table V). Aqueous sodium hydroxide hydrolyzes carbamoyl derivatives 7 readily to the corresponding 4.

There is considerable confusion in the literature concerning the location of the double bond in the dihydrotriazolone ring of compounds 4-6. Some authors place it between positions 1 and 5 , others between positions 4 and $5 .{ }^{5}$ Structure 4 for the dihydro-1,2,4-triazolones obtained in this study is supported by appearance of the carbonyl band in their ir spectra at a considerably higher wavenumber ($1700-1760 \mathrm{~cm}^{-1}$) than for dimethyl derivatives 8 ($1655-1660 \mathrm{~cm}^{-1}$), in which the carbonyl group has to be conjugated with the double bond. With regard to monomethyl derivatives 5 , no firm conclusion can
be drawn on the basis of the carbonyl band ($1670-1690 \mathrm{~cm}^{-1}$). However, the proposed structure is consistent with the close similarity between the uv spectra of 4 (maximum at 265-270 nm) and 5 (maximum at $270-275 \mathrm{~nm}$) and their significant difference from those of the corresponding 8 (maximum at $235-260$, shoulder at $275-280 \mathrm{~nm}$). The possibility that derivatives 5 are 1-methyl-1,2-dihydro- 3 H -1,2,4-triazol-3-ones may be excluded, since compounds of such structure are known to exist in the enol form as 3-hydroxy-1,2,4-triazoles. Furthermore, the melting point $\left(216.5-218.5^{\circ} \mathrm{C}\right)$ of the product of the reaction of N-ethoxycarbonylthiobenzamide with methylhydrazine agrees well with that of 2 -methyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (218-219 $\left.{ }^{\circ} \mathrm{C}\right)^{6}$ but differs considerably from that of 3 -hydroxy-1-methyl-5-phenyl-1, 2,4-triazole ($195-196{ }^{\circ} \mathrm{C}$) ${ }^{5}$, both of which have been prepared by unambiguous routes. In the case of compounds 6 and 7, the wavenumber of the carbonyl band (1685-1715 and $1700-1760 \mathrm{~cm}^{-1}$, respectively) is again compatible with a structure containing an unconjugated carbonyl. These conclusions concerning the position of the C, N double bond in compounds 4-7 are in complete agreement with the findings of a recent, systematic study of the structure of 5 -phenyl-dihydro-1,2,4-triazol-3-ones. ${ }^{5}$
N-Ethoxycarbonylthioamides (1) react similarly with hydroxylamine and N-methylhydroxylamine to form $1,2,4$ -oxadiazol- $5(4 H$)-ones (9), in excellent yield, and 2 -methyl-

1,2,4-oxadiazol-5(2 H)-ones ($\mathbf{1 0}$), in moderate yield, respectively (Tables VI, VII). Comparison of the ir spectra of 9 with those of the corresponding 10 , in which there is conjugation between carbonyl and C, N double bond, shows that the carbonyl bands of the former appear at a higher wavenumber than those of the latter. Although the difference ($10-45 \mathrm{~cm}^{-1}$) is not always large, it is nonetheless consistent with lack of conjugation in 9 . There are no characteristic differences between the uv spectra of 9 and 10 .
The NMR spectra of the compounds prepared in this study are consistent with the proposed structures and exhibit signals in the ranges of $\delta 10-13$ and 3-4 for NH and NCH_{3} protons, respectively.
In all cases, the progress of the reaction is followed easily by testing for evolution of $\mathrm{H}_{2} \mathrm{~S}$ with lead acetate paper. Because of their simplicity, good yield, and straightforward product isolation, the investigated reactions provide a method of preparation of compounds 4-10 which compares favorably with other approaches to these heterocycles. ${ }^{7}$

With regard to the reaction pathway, it undoubtedly involves initial interaction of the thiocarbonyl of 1 with an amino group of the reagent similar to the earlier mentioned reactions

Table I. ${ }^{a}$ 5-R-2,4-Dihydro-3H-1,2,4-triazol-3-ones

4

Registry no.	R	$\begin{gathered} \text { Yield, }{ }^{b} \\ \% \end{gathered}$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{Ir}, \mathrm{~cm}^{-1} \\ \mathrm{C}=\mathrm{O} \end{gathered}$
939-07-1	$\mathrm{C}_{6} \mathrm{H}_{5}$	87	323-324 (dec) ${ }^{c, d}$	1750
3214-02-6	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	97	384-386 (dec) ${ }^{c}, e$	1730
59812-14-5	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	94	357-359 (dec) ${ }^{c}$	1700
59812-15-6	$4-i-\mathrm{PrC}_{6} \mathrm{H}_{4}$	98	367-369 (dec) ${ }^{c}$	1700
59812-16-7	$4-t-\mathrm{BuC}_{6} \mathrm{H}_{4}$	99	397-399 (dec) ${ }^{c}$	1700
33199-43-8	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	96	334-335 (dec) ${ }^{c, f}$	1740
59812-17-8	$4-\mathrm{EtOC}_{6} \mathrm{H}_{4}$	91	371-373 (dec) ${ }^{c}$	1720
33199-40-5	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	93	$>400^{c . g}$	1760, 1730
59812-18-9	2-Pyrrolyl	90	333-335 (dec) ${ }^{h}$	1720
27050-49-3	2-Thienyl	95	336-337 (dec) ${ }^{\text {c,i }}$	1730
59812-19-0	$3-$ Indolyl	87	375-385 (dec) ${ }^{c}$	1740
931-37-3	Et	97	206-208 (dec) ${ }^{j, k}$	1740

${ }^{a}$ Satisfactory analytical data $(\pm 0.3 \%$ for $C, H, N)$ were reported for all new compounds listed in this table. ${ }^{b}$ Crude or partially purified product with melting point lower than that of the analytical sample by $2-5{ }^{\circ} \mathrm{C} . c$ Recrystallized from $n-\mathrm{BuOH}$. ${ }^{d}$ Lit. mp 321-322 ${ }^{\circ} \mathrm{C}$: G. Young and E. Witham, J. Chem. Soc., $\left.224(1900)\right)^{e}$ Lit. mp $372^{\circ} \mathrm{C}$: B.-G. Baccar and F. Mathis, C. R. Acad. Sci., 261,174 (1965). f Lit. mp $334^{\circ} \mathrm{C}$: ref $7 \mathrm{a} . g$ Lit. mp $410-412^{\circ} \mathrm{C}$: ref 7 c . ${ }^{h}$ Recrystallized from water. ${ }^{i}$ Lit. $\mathrm{mp} 337^{\circ} \mathrm{C}$ (dec): H. Gehlen, P. Demin, and K. H. Uteg, Arch. Pharm. (Weinheim Ger.), 303, 310 (1970). jSublimed. k Lit. $\operatorname{mp} 204{ }^{\circ} \mathrm{C}$ (dec): C.-F. Kröger, L. Hummel, M. Mutscher, and H. Beyer, Chem. Ber., 98, 3025 (1965).

Table II. a 5-R-2-Methyl-2,4-dihydro-3H-1,2,4-triazol-3-ones

5

	\mathbf{R}	Yield, b $\%$	$\mathbf{M p}^{\circ} \mathrm{C}$

a Satisfactory analytical data $(\pm 0.3 \%$ for $C, H, N)$ were reported for all new compounds listed in this table. b Crude or partially purified product with melting point lower than that of the analytical sample by $3-10^{\circ} \mathrm{C}$. c Recrystallized from EtOAc. ${ }^{d}$ Lit. mp 218-219 ${ }^{\circ} \mathrm{C}$: ref $6 .{ }^{e}$ Recrystallized from EtOH. f Recrystallized from EtOH-HzO. g Lit. mp $108-109{ }^{\circ} \mathrm{C}$: C.-F Kröger, L. Hummel, M. Mutscher, and H. Beyer, Chem. Ber., 98, 3025 (1965).
of 1 with simple amines. ${ }^{4}$ This is supported by isolation of the expected intermediate 11 from the reaction of N-ethoxycar-

bonyl-4-chlorothiobenzamide with phenylhydrazine when an ethanolic solution of the reagents is allowed to stand at room temperature. The presence of the carbonyl band at $1670 \mathrm{~cm}^{-1}$ in the ir spectrum of 11 is indicative of an α, β-unsaturated carbonyl group. When this compound is heated at its melting point, ethanol is eliminated to form the corresponding dihy-dro-1,2,4-triazolone ($6, R=4$-chlorophenyl).

Experimental Section ${ }^{8}$

N-Ethoxycarbonylthioamides (1). A. Aromatic. They were prepared by AlCl_{3}-catalyzed thioacylation of aromatic compounds with ethoxycarbonyl isothiocyanate. ${ }^{9}$
B. Heteroaromatic. The 2-pyrrolyl and 2-thienyl derivatives are known compounds. ${ }^{4} \boldsymbol{N}$-Ethoxycarbonyl-3-indolythioamide. ${ }^{10} \mathrm{~A}$ mixture of $11.7 \mathrm{~g}(0.10 \mathrm{~mol})$ of indole and $13.1 \mathrm{~g}(0.10 \mathrm{~mol})$ of ethoxycarbonyl isothiocyanate was allowed to stand at room temperature for 48 h . The resulting dark-colored solid was crushed into a powder and washed with ice-cold ethyl acetate to give $14.3 \mathrm{~g}(59 \%)$ of crude product, mp 162-163 ${ }^{\circ} \mathrm{C}$. Recrystallization from ethyl acetate gave the pure compound in the form of yellow crystals: mp $163-164^{\circ} \mathrm{C}$; ir $3250(\mathrm{NH}), 1720 \mathrm{~cm}^{-1}(\mathrm{C}=0$); NMR $\delta 1.3(\mathrm{t}, 3), 4.2(\mathrm{q}, 2), 7.1-7.7(\mathrm{~m}$, 3), 8.2-8.3 (m, 1), 8.4-8.7 (m, 1), $11.1(\mathrm{~s}, 1), 12.1(\mathrm{~s}, 1)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 58.05 ; \mathrm{H}, 4.87 ; \mathrm{N}, 11.28$. Found: C, 58.10; H, 4.91; N, 11.36.
C. Aliphatic. \boldsymbol{N}-Ethoxycarbonylthiopropanamide. A solution of ethylmagnesium bromide was prepared under nitrogen by slow addition (1 h) of $24.0 \mathrm{~g}(0.22 \mathrm{~mol})$ of ethyl bromide dissolved in 100 ml of ethyl ether to $4.80 \mathrm{~g}(0.20 \mathrm{~mol})$ of magnesium turnings covered by 50 ml of ethyl ether.

Table III. ${ }^{a}$ 5-R-2-Phenyl-2,4-dihydro-3H-1,2,4-triazol-3-ones

6

Registry no.	R	$\begin{gathered} \text { Yield, } b \\ \% \end{gathered}$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{Ir}, \mathrm{~cm}^{-1} \\ \mathrm{C}=0 \end{gathered}$
3346-44-9	$\mathrm{C}_{6} \mathrm{H}_{5}$	94	232.5-233.5 ${ }^{\text {c,d }}$	1700
3214-05-9	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	88	267-268c.e	1715
59812-28-1	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	98	249-250c	1705
59812-29-2	$4-i-\mathrm{PrC}_{6} \mathrm{H}_{4}$	97	236.5-238 ${ }^{\text {c }}$	1700
59812-30-5	$4-t-\mathrm{BuC}_{6} \mathrm{H}_{4}$	93	287-288c	1685
59812-31-6	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	96	235-237c	1700
59812-32-7	$4-\mathrm{EtOC}_{6} \mathrm{H}_{4}$	93	239-240.5 ${ }^{\text {c }}$	1705
27423-54-7	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	73	283-284 ${ }^{\text {c }}$	1700
59812-33-8	2-Pyrrolyl	91	237-238f	1700
19382-16-2	2-Thienyl	96	260-261	1680
59811-92-6	3-Indolyl	86	349-350 (dec)g	1710
28669-27-4	Et	60	121-122 ${ }^{\text {f.h }}$	1700

a Satisfactory analytical data $\left(\pm 0.3 \%\right.$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}$) were reported for all new compounds listed in this table. ${ }^{b}$ Crude or partially purified product with melting point lower than that of the analytical sample by $2-5{ }^{\circ} \mathrm{C}$. ${ }^{c}$ Recrystallized from EtOH . ${ }^{d}$ Lit. mp $229^{\circ} \mathrm{C}$: R. Fusco and C. Musante, Gazz. Chim. Ital., 68, 147 (1938). ${ }^{e}$ Lit. mp $264{ }^{\circ} \mathrm{C}$: C. Gastaldi and E. Princivalle, ibid., 56, 557 (1926). fRecrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O} . g_{\text {Recrystallized from } n-\mathrm{BuOH} .}{ }^{h}$ Lit. mp $122-123{ }^{\circ} \mathrm{C}$: ref 7 b .

Table IV. ${ }^{a}$ 5-R-2-Carbamoyl-2,4-dihydro-3H-1,2,4-triazol-3-ones

7

Registry no.	R	$\begin{gathered} \text { Yield, } b \\ \% \end{gathered}$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{Ir}, \mathrm{~cm}^{-1} \\ \mathrm{C}=0 \end{gathered}$
59811-93-7	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	98	$329-330$ (dec) ${ }^{\text {c }}$	1740
				1700
59811-94-8	2-Pyrrolyl	95	325-327 (dec) ${ }^{\text {d }}$	1760, 1720, 1715

${ }^{a}$ Satisfactory analytical data ($\pm 0.3 \%$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}$) were reported for the compounds listed in this table. ${ }^{b}$ Crude or partially purified product with melting point lower than that of the analytical sample by $2-5{ }^{\circ} \mathrm{C}$. c Recrystallized fom EtOH$\mathrm{H}_{2} \mathrm{O}$. ${ }^{d}$ Recrystallized from $\mathrm{H}_{2} \mathrm{O}$.

Table V.a 5-R-1,2-Dimethyl-1,2-dihydro-3H-1,2,4-triazol-3-ones

8

Registry no.	R	$\begin{gathered} \text { Yield, } b \\ \% \end{gathered}$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{Ir}, \mathrm{~cm}^{-1} \\ \mathrm{C}=\mathrm{O} \end{gathered}$
50369-46-5	$\mathrm{C}_{6} \mathrm{H}_{5}$	42	241-243c,d	1660
59811-95-9	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	60	214-215.5 ${ }^{\text {c }}$	1660
59811-96-0	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	65	226-227 ${ }^{\text {c }}$	1660
59811-97-1	$4-i-\mathrm{PrC} 6_{6} \mathrm{H}_{4}$	61	225-227 ${ }^{\text {c }}$	1660
59811-98-2	$4-t-\mathrm{BuC}_{6} \mathrm{H}_{4}$	57	$213-214^{e}$	1660
59811-99-3	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	64	235-236.5 ${ }^{\text {c }}$	1655
59812-00-9	$4-\mathrm{EtOC}_{6} \mathrm{H}_{4}$	60	210.5-212.5 ${ }^{c}$	1655

a Satisfactory analytical data ($\pm 0.3 \%$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}$) were reported for all new compounds listed in this table. b Crude or partially purified product with melting point lower than that of the analytical sample by $2-5{ }^{\circ} \mathrm{C} . c$ Recrystallized from EtOH. ${ }^{d}$ Lit. mp $255-256{ }^{\circ} \mathrm{C}$: ref $5 .{ }^{e}$ Recrystallized from EtOAc.

After the stirred solution had been cooled to -35 to $-45{ }^{\circ} \mathrm{C}$ (dry ice- CHCl_{3} bath $), 23.6 \mathrm{~g}(0.18 \mathrm{~mol})$ of ethoxycarbonyl isothiocyanate in 200 ml of ethyl ether was added slowly (1 h) while the temperature was kept at -35 to $-45^{\circ} \mathrm{C}$. The reaction mixture was stirred for an additional 3 h at the same low temperature and then was allowed to
warm up to room temperature. The precipitated salt was collected by filtration and washed with four $50-\mathrm{ml}$ portions of ethyl ether. It was then mixed with 200 ml of ether and hydrolyzed with 200 ml of saturated aqueous ammonium chloride. Following separation of layers, the aqueous layer was extracted with two $50-\mathrm{ml}$ portions of

Table VI. ${ }^{a}$ 3-R-1,2,4-Oxadiazol-5(4H)-ones

9

Registry no.	R	$\begin{gathered} \text { Yield, } b \\ \% \end{gathered}$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{Ir}, \mathrm{~cm}^{-1} \\ \mathrm{C}=\mathrm{O} \end{gathered}$
1456-22-0	$\mathrm{C}_{6} \mathrm{H}_{5}$	96	202-203 ${ }^{\text {c,d }}$	1755
31827-28-8	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	98	221-222.5 ${ }^{\text {c,e }}$	1760
59812-01-0	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	85	190.5-192 ${ }^{\text {c }}$	$\begin{aligned} & 1770, \\ & 1730 \end{aligned}$
59812-02-1	$4-i-\mathrm{PrC}_{6} \mathrm{H}_{4}$	98	197-198 ${ }^{\text {c }}$	$\begin{aligned} & 1775, \\ & 1735 \end{aligned}$
59812-03-2	$4-t-\mathrm{BuC}_{6} \mathrm{H}_{4}$	98	234-236 ${ }^{\text {c }}$	$\begin{aligned} & 1775, \\ & 1735 \end{aligned}$
59812-04-3	4-MeOC6 ${ }_{6} \mathrm{H}_{4}$	97	211-212 ${ }^{f}$	1795 1730
59812-05-4	$4-\mathrm{EtOC}_{6} \mathrm{H}_{4}$	93	222.5-224 ${ }^{f}$	1745
59812-06-5	2-Pyrrolyl	89	$\begin{gathered} 215-217 \\ (\mathrm{dec})^{g} \end{gathered}$	1760
35637-09-3	2-Thienyl	83	202-205.5g	1790
				1725
59812-07-6	3-Indolyl	90	233-234	1800
			(dec) ${ }^{h}$	1720
57689-63-1	Et	50	69-70.5 ${ }^{\text {i,j }}$	1770

${ }^{a}$ Satisfactory analytical data ($\pm 0.3 \%$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}$) were reported for all new compounds listed in this table. b Crude or partially purified with melting point lower than that of the analytical sample by $2-5{ }^{\circ} \mathrm{C} . c$ Recrystallized from EtOH. ${ }^{d}$ Lit. mp $198^{\circ} \mathrm{C}$: C. Musante, Gazz. Chim. Ital., 68, 331 (1938). e Lit. mp $220^{\circ} \mathrm{C}$: L. H. Schubart, Ber., 22, 2433 (1889). fRecrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O} .8$ Recrystallized from $\mathrm{H}_{2} \mathrm{O} .{ }^{h}$ Recrystallized from $n-\mathrm{BuOH} . i$ Following removal of EtOH from the reaction mixture, the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the dried $\left(\mathrm{MgSO}_{4}\right)$ extract was evaporated to a new residue which was distilled under reduced pressure (bp $154-156^{\circ} \mathrm{C}, 3$ Torr). ${ }^{j}$ Recrystallized from benzene-petroleum ether (bp 30-60 ${ }^{\circ} \mathrm{C}$).
ethyl ether and the combined ethereal solutions were dried over anhydrous magnesium sulfate. After removal of ether, the product was distilled at 3 Torr and the fraction boiling between 82 and $85^{\circ} \mathrm{C}$ was collected. There was obtained 15.4 g (54%) of product as a yellow oil: ir 3400, 3300, $3200(\mathrm{NH}), 1760 \mathrm{~cm}^{-1}(\mathrm{C}==0)$; NMR $\delta 1.0-1.4(\mathrm{~m}, 6)$, 2.9 (q, 2), 4.1 (q, 2), $11.4(\mathrm{~s}, 1)$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 44.70 ; \mathrm{H}, 6.88 ; \mathrm{N}, 8.69$. Found: C, 44.54; H, 7.11; N, 8.64.
\boldsymbol{N}-Ethoxycarbonylphenylthioacetamide. This was obtained in 50% yield following the procedure used for preparation of the previous compound. Thus, benzylmagnesium chloride from 6.30 g $(0.050 \mathrm{~mol})$ of benzyl chloride and $1.20 \mathrm{~g}(0.050 \mathrm{~mol})$ of magnesium was allowed to react with $5.90 \mathrm{~g}(0.045 \mathrm{~mol})$ of ethoxycarbonyl isothiocyanate in a total of 100 ml of ether at -45 to $-35^{\circ} \mathrm{C}$. The crude product $\left(5.0 \mathrm{~g}, \mathrm{mp} 39-42^{\circ} \mathrm{C}\right)$ was recrystallized from petroleum ether (bp 35-60 ${ }^{\circ} \mathrm{C}$) to give the pure compound as yellow crystals: mp 45-47 ${ }^{\circ} \mathrm{C}$; ir 3400, 3300, $3180(\mathrm{NH}), 1760 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\delta 1.2(\mathrm{t}, 3), 4.1$ (q, 2), 4.2 (s, 2), $7.1(\mathrm{~s}, 5), 11.8(\mathrm{~s}, 1)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 59.17 ; \mathrm{H}, 5.87 ; \mathrm{N}, 6.27$. Found: C, 59.32; H, 5.82; N, 6.32.

5-Substituted 2,4-Dihydro-3 H-1,2,4-triazol-3-ones (4). To a solution of 0.010 mol of N-ethoxycarbonylthioamide in 20 ml of ethanol was added 0.020 mol of 95% hydrazine in 5 ml of ethanol. The reaction mixture was heated on a steam bath until evolution of hydrogen sulfide had ceased ($10-30 \mathrm{~min}$), then it was cooled and filtered to yield the product.

5-Substituted 2-Methyl-2,4-dihydro-3 \boldsymbol{H}-1,2,4-triazol-3-ones (5). Methylhydrazine (1.0 ml) was added to 0.0050 mol of N-ethoxycarbonylthioamide dissolved in 5 ml of tetrahydrofuran and the solution was refluxed for 15 min , then cooled and poured into icewater. The resulting mixture was neutralized with acetic acid and the precipitated solid was collected by filtration. (In the case of the 5 -ethyl derivative, which is water soluble, equimolar amounts of reagents were used and the product was isolated by evaporation to dryness.)

5-Substituted 2-Phenyl-2,4-dihydro-3H-1,2,4-triazol-3-ones (6). To 0.010 mol of N-ethoxycarbonylthioamide dissolved in 20 ml

Table VII. ${ }^{a}$ 3-R-2-Methyl-1,2,4-oxadiazol-5(2H)-ones

	 10			
Registry no.	R	$\text { Yield, } b$ $\%$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{Ir}, \mathrm{~cm}^{-1} \\ \mathrm{C}=\mathrm{O} \end{gathered}$
59812-08-7	4-MeC C_{6}	$34^{c, d}$	121.5-122.5 ${ }^{e}$	1750
59812-09-8	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	50^{d}	$146-148{ }^{e}$	1750
52531-61-0	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	51^{d}	$168-170 f, g$	1750
59812-10-1	2-Pyrrolyl	50^{c}	214-215 ${ }^{e}$	1745

${ }^{a}$ Satisfactory analytical data ($\pm 0.3 \%$ for C, H,N) were reported for all new compounds listed in this table. ${ }^{b}$ Crude or partially purified product with melting point lower than that of the analytical sample by $2-5{ }^{\circ} \mathrm{C} . \mathrm{c}^{\mathrm{C}} \mathrm{NaOAc}$ used to free MeNHOH from its salt. ${ }^{d} \mathrm{NaOMe}$ used to free MeNHOH from its salt. e Recrystallized from $\mathrm{H}_{2} \mathrm{O}$. f Recrystallized from $i-\mathrm{PrOH} . g$ Lit. mp $168.5-170{ }^{\circ} \mathrm{C}$: ref 7 d .
of ethanol was added 0.020 mol of phenylhydrazine in 5 ml of ethanol and the solution was refluxed until evolution of hydrogen sulfide had ceased ($2-6 \mathrm{~h}$). After the mixture had been cooled, any solid product was collected by filtration. The filtrate was concentrated to a small volume and chilled or mixed with ice to yield a new precipitate which was combined with the first one.
\boldsymbol{N}^{\prime}-Ethoxycarbonyl- \boldsymbol{N}-phenylamino-4-chlorobenzamidine (11). A mixture of $1.1 \mathrm{~g}(0.0050 \mathrm{~mol})$ of N-ethoxycarbonyl-4-chlorothiobenzamide, 25 ml of 95% ethanol, and $1.1 \mathrm{~g}(0.010 \mathrm{~mol})$ of phenylhydrazine was let stand at room temperature for 12 h . The precipitated material was collected by filtration and washed with ice-cold ethanol to yield $1.0 \mathrm{~g}(63 \%)$ of pure 11 as white crystals: mp $171{ }^{\circ} \mathrm{C}$ (partial melting followed by solidification and further melting at $283-284^{\circ} \mathrm{C}$; recrystallization from ethanol did not change the melting behavior); ir $3340,3280(\mathrm{NH}), 1670 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\delta 1.2$ ($\mathrm{t}, 3$), $4.0(\mathrm{q}, 2), 6.5-7.5(\mathrm{~m}, 9), 8.8(\mathrm{~s}, 1), 9.4(\mathrm{~s}, 1)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}$: C, $60.47 ; \mathrm{H}, 5.08$; $\mathrm{N}, 13.22$. Found: C, 60.67; H, 5.15; N, 13.22.

Conversion of 11 into 2-Phenyl-5-(4-chlorophenyl)-2,4-di-hydro- $3 \boldsymbol{H}$-1,2,4-triazol-3-one. Compound $11(0.20 \mathrm{~g})$ was heated in an oil bath at $170-180^{\circ} \mathrm{C}$ for 5 min . After it had been cooled and recrystallized from ethanol, the product was identified as 2-phenyl-5-(4-chlorophenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one on the basis of its melting point, as well as its ir and NMR spectra.

5-Substituted 2-Carbamoyl-2,4-dihydro-3H-1,2,4-triazol-3ones (7). To 0.010 mol of N-ethoxycarbonylthioamide dissolved in 15 ml of ethanol was added a solution of 0.020 mol of semicarbazide hydrochloride and 0.020 mol of sodium acetate in 10 ml of aqueous ethanol and the resulting mixture was stirred magnetically until completion of hydrogen sulfide evolution ($15-24 \mathrm{~h}$). The precipitated product was collected by filtration and combined with a new precipitate formed when the filtrate had been concentrated to a small volume and mixed with ice.

Hydrolysis of 7 into 4. A mixture of 0.40 g of 7 and 10 ml of 10% aqueous sodium hydroxide was boiled for 10 min and the resulting solution was neutralized with dilute hydrochloric acid to yield a precipitate which was collected by filtration and washed with cold water. The products, obtained in 75% yield, were identified by their melting points, as well as their ir and NMR spectra.

5-Substituted 1,2-Dimethyl-1,2-dihydro-3H-1,2,4-triazol-3ones (8). A mixture of 0.0050 mol of 1,2 -dimethylhydrazine dihydrochloride, 0.010 mol of sodium methoxide, 0.0050 mol of N ethoxycarbonylthioamide, and 5 ml of methanol was refluxed for 1 h. The resulting mixture was cooled and treated with a slight excess of 10% aqueous sodium hydroxide to yield a solid product which was collected by filtration and washed with a little ice-cold water.

3-Substituted 1,2,4-Oxadiazol-5(4H)-ones (9). A mixture of 0.010 mol of N -ethoxycarbonylthioamide, 0.020 mol of hydroxylamine hydrochloride, 0.020 mol of sodium acetate trihydrate, and 20 ml of aqueous ethanol was refluxed until evolution of hydrogen sulfide had ceased (2-3 h). The resulting solution was concentrated to a small volume and mixed with ice to form a precipitate which was collected by filtration.
3-Substituted 2-Methyl-1,2,4-oxadiazol-5(2H)-ones (10). To a solution of 0.010 mol of N-ethoxycarbonylthioamide in 10 ml of ethanol was added 0.010 mol of N-methylhydroxylamine hydro-
chloride and 0.010 mol of sodium acetate dissolved in aqueous ethanol. The resulting solution was refluxed until evolution of hydrogen sulfide had ceased ($1-2 \mathrm{~h}$). In some cases (indicated in Table VII), sodium methoxide was used instead of sodium acetate. Then the reaction was carried out in 10 ml of methanol and the mixture was stirred magnetically ($22-24 \mathrm{~h}$).

Acknowledgments. Financial support by the Research Corporation, the Research Allocations Committee of the University of New Mexico, and the Department of Chemistry of the University of New Mexico is gratefully acknowledged.

Registry No.-1 ($\mathrm{R}=3$-indolyl), 59812-11-2; 1 ($\mathrm{R}=\mathrm{Et}$), 59812-$12-3$; 1 (r, ph), 5499-31-0; $11\left(\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right.$), 59812-13-4; indole, 120-72-9; ethoxycarbonyl isothiocyanate, 16182-04-0; ethyl bromide, 74-96-4; benzyl chloride, 100-44-7; methylhydrazine, 60-34-4; phenylhydrazine, 100-63-0; N-ethoxycarbonyl-4-chlorothiobenzamide, 57774-74-0; semicarbazide $\mathrm{HCl}, 563-41-7$; 1,2-dimethylhydrazine $2 \mathrm{HCl}, 306-37-6$; hydroxylamine $\mathrm{HCl}, 7803-49-8$; N-methylhydroxylamine $\mathrm{HCl}, 4229-44-1$.

References and Notes

(1) R. Esmail and F. Kurzer. Synthesis, 301 (1975).
(2) O. Kozo, N. M tsuo, T. Junzo, and S. Masataka, Japan KJkai 7407284 (1974); Chem. Abstr., 80, 108540s (1974).
(3) P. R. Atkins, S. E. J. Glue, and I. T. Kay, J. Chem. Soc., Perkin Trans. 1, 2644 (1973).
(4) E. P. Papadopoulos, J. Org. Chem., 38, 667 (1973); 39, 2540 (1974).
(5) S. Kubota and M. Uda, Chem. Pharm. Bull., 21, 1342 (1973), and references cited therein.
(6) G. Young and W. H. Oates, J. Chem. Soc., 659 (1901).
(7) (a) E. Hoggarth, J. Chem. Soc., 1918 (1949); (b) H. Gehlen and W. Schade, Justus Liebigs Ann. Chem., 675, 180 (1964): (c) F. L. Scott. T. M. Lambe, and R. N. Butler, J. Chem. Soc., Perkin Trans. 1, 1918 (-972); (d) P. W. Seale and W. K. Warburton, ibid., 85 (1974).
(8) Melting points lower than $300^{\circ} \mathrm{C}$ were determined in a Thomas-Hoover apparatus, and those higher than $300^{\circ} \mathrm{C}$ by use of a heated metal block; all are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 337 spectrophotometer using mineral oil mulls. NMR spectra were obtained on a Varian EM360 spectrophotometer using solutions in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ or in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}+\mathrm{CF}_{3} \mathrm{COOD}$ with tetramethylsilane as internal standard. Ultraviolet spectra were recorded in a Perkin-Elmer 402 spectrophotometer using solutions in 95% ethanol.
(9) E. P. Papadopoulos, J. Org. Chem., 41, 962 (1976).
(10) Originally prepared and characterized by S. A. Brueggemann, Department of Chemistry, University of New Mexico.

Nitrones and Nitroxides Derived from Oxazolines and Dihydrooxazines ${ }^{1}$

Terry D. Lee and John F. W. Keana*2
Department of Chemistry, University of Oregon, Eugene, Oregon 97403

Received May 18, 1976

A new synthetic route to several doxyl nitroxides 14 and two tetrahydro-1,3-oxazine nitroxides 26 and 27 is described. Oxidation of the representative oxazoline 1 with 1 equiv of MCPA gave oxaziridine 2. Excess MCPA led to nitro ester 4 and nitroso ester 6. Isomerization of 2 on silica gel afforded nitrone 3, reaction of which with moisture produced ester 5 . Analogous reactions applied to dihydrooxazine 7 led to oxaziridine 8 , nitroso ester 10 , nitro ester 11 , nitrone 9 , and ester 12. Treatment of 3 with a series of organometallic reagents followed by Cu^{2+}-catalyzed air oxidation of the intermediate 13 led to doxyl nitroxides. In contrast, reaction of 3 with vinylmagnesium bromide or vinyllithium at $25^{\circ} \mathrm{C}$ gave dienes 19 and 21 . With excess 1 -lithio-1-hexyne at $-15^{\circ} \mathrm{C}$, nitrone 3 gave open-chain nitrone 22. Allylmagnesium bromide and 3 at $25^{\circ} \mathrm{C}$ followed by oxidation gave nitroxide 23. Analogous reactions at $25^{\circ} \mathrm{C}$ of nitrone 9 with methyllithium and butyllithium afforded the nitroxides 26 and 27 .

Doxyl (4,4-dimethyloxazolidine- N-oxyl) nitroxide spin labels ${ }^{3}$ have played an important role in studies of biological systems using the spin labeling technique. ${ }^{4}$ Alternative, flexible synthetic entries to new stable nitroxides are central to continued progress in the spin labeling field. We recently communicated a new procedure for assembling doxyl nitroxides which bypasses the usual ketone precursors and which permits the synthesis of doxyl nitroxides having unsaturation in the doxyl chains ($1 \rightarrow 3 \rightarrow 14$). ${ }^{1}$ This procedure takes advantage of the wide variety of oxazolines made available through the elegant work of Meyers. ${ }^{5,6,7}$ We now present experimental details relating to our new doxyl synthesis, starting with the representative oxazoline 1 . We also describe for the first time analogous reactions of dihydrooxazine 7 and its conversion into a second series of stable nitroxide free radicals. ${ }^{17}$

Results and Discussion

The addition of an organometallic reagent to the requisite nitrone constitutes the key step in the new doxyl synthesis. ${ }^{8}$ Since the nitrones are derived from the corresponding oxazoline or dihydrooxazine, we have investigated the oxidation of these latter substances in some detail. ${ }^{9}$ Thus, oxidation of oxazoline 1 with 1 equiv of m-chloroperoxybenzoic acid (MCPA) in ether at $-10^{\circ} \mathrm{C}$ produced oxaziridine $2(\sim 95 \%)$ (Chart I). Small amounts of blue nitroso ester 6 could be observed visually and by NMR in samples of crude 2 , although

reaction of 1 with 2 equiv of MCPA still gave mostly 2 with minor amounts of 6 and nitro ester 4. Prolonged reaction of 1 with 3 equiv of MCPA gave a good yield of nitro ester 4 . In order to confirm the identity of compounds 4 and 6 , nitro ester 4 was synthesized by acylation of the corresponding alcohol with hexanoic acid and then reduced with zinc and $\mathrm{NH}_{4} \mathrm{Cl}$ to N-hydroxy ester 5 . Reaction of 5 with 1 equiv of MCPA gave blue nitroso ester 6 in good yield. Structure assignments throughout this paper are based on the highly characteristic NMR spectra together with other analytical data found in the Experimental Section.

Initial attempts to prepare nitrone 3 were patterned after Padwa's isomerization of certain oxaziridines into nitrones in acetonitrile at $80^{\circ} \mathrm{C} . .^{10}$ Under these conditions, oxaziridine 2 afforded a mixture which was shown by its NMR spectrum to consist of nitrone $3(8 \%)$, nitro ester $6(31 \%)$, nitro ester 4 (11\%), oxazoline 1 (48\%), and N-hydroxy ester 5 (3\%). Fortunately, during an attempted purification of oxaziridine 2 , it was discovered that chromatography over silica gel effected smooth isomerization of 2 to the desired nitrone 3 .
The oxidation of dihydrooxazine 7 (Chart II) with 1 equiv of MCPA in ether afforded oxaziridine 8 in good yield. When 2 equiv of MCPA was used, nitroso ester 10 was the major

product while 3 equiv of MCPA led in good yield to nitro ester 11. Oxaziridine 8 , like its five-membered ring counterpart 2 , also underwent smooth isomerization to its corresponding nitrone 9.

Nitrones 3 and 9 were quite hygroscopic. Nitrone 9 was obtained from the silica gel column as a white, crystalline solid which quickly melted on exposure to air. The NMR spectrum invariably contained peaks attributec to N-hydroxy ester 12. When samples were carefully protected from moisture, nitrones 3 and 9 could be isolated with only trace amounts of the corresponding N-hydroxy ester derivatives 5 and 12. Oxaziridines 2 and 8 , however, may be conveniently stored at - 20 ${ }^{\circ} \mathrm{C}$ for months without evidence of decomposition. Thus, the starting nitrones for the reactions described below were always freshly prepared from the oxaziridire immediately prior to use.

The reaction of nitrone 3 with a two- to threefold excess of organometallic reagent in ether solution at reduced temperatures afforded, after cold aqueous workup, the corresponding N-hydroxyoxazolidine 13 (eq 1). The crude mixture was immediately taken up in methanol containing a trace of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}^{11}$ and stirred under air in order to form the corresponding doxyl nitroxides 14 . Several doxyl nitroxides

prepared in this way are summarized in Table I. In those instances where the doxyl nitroxide may also be prepared from the requisite ketone utilizing our earlier method (eq 2), ${ }^{3}$ the yields by this present nitrone procedure are comparable. The nitrone procedure can afford at times two major advantages, however: (a) the synthesis does not depend on the availability of the requisite ketone and (b) addition to the nitrone produces the easily oxidized N-hydroxy amine intermediate.

Table I. Doxyl Nitroxides Prepared from Nitrone 3

Doxyl derivative 14	Organometallic reagent	Temp, ${ }^{\circ} \mathrm{C}$	Rxn time	Yield, ${ }^{c}$ $\%$
$\mathrm{R}=\mathrm{CH}_{3}{ }^{a}$	$\mathrm{CH}_{3} \mathrm{Li}$	25	1 h	43
$\mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{b}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$	-15	5 min	27^{d}
$\mathrm{R}=\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}{ }^{b}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2} \mathrm{MgBr}\right.$	-15	5 min	27^{d}
$\mathrm{R}=\mathrm{CH}_{2}=\mathrm{CH}$	$\mathrm{CH}_{2}=\mathrm{CHLi}_{2}$	-78	2 h	29^{d}

${ }^{a}$ Identical by ir with a sample prepared by our earlier method. ${ }^{3}$ ${ }^{b}$ All doxyl derivatives showed the expected mass spectral fragmentation patterns ${ }^{12}$ and each showed the typical three-line nitroxide ESR spectrum. ${ }^{\text {c }}$ Isolated yield, based on starting nitrone. ${ }^{d}$ Analytical sample obtained by preparative VPC on a 2 -ft 5% SE-30/Firebrick column.

Thus doxyls may be prepared which contain functional groups sensitive to MCPA (e.g., entry 4, Table I).

Interestingly, the course of the reaction between the nitrones and the organometallic reagents depended markedly on the reaction temperature and on the structure of the organometallic reagent. In general, when the organometallic reagent was added to the nitrone at $-78^{\circ} \mathrm{C}$ and then the mixture was allowed to warm to $25^{\circ} \mathrm{C}$, workup afforded significant quantities of recovered nitrone and its hydrolysis product. Thus, at lower temperatures the organometallic reagents tended to act as bases, generating the inert (to addition) anion of the nitrone. Quite possibly, this side reaction could be used to advantage through alkylation reactions, for example.

A second pronounced effect of temperature was observed in reactions between nitrone 3 and organometallic reagents containing unsaturation near the metal atom. With temperatures in excess of $-15^{\circ} \mathrm{C}$, the intermediate N-hydroxyoxazolidine (as the metal salt) apparently was capable of undergoing a ring-opening isomerization reaction in the reaction medium to give the corresponding open-chain nitrone ($15 \rightarrow$ 17). This latter substance in certain instances suffered addition of a second equivalent of organometallic reagent, leading to a new branched chain nitroxide after oxidation ($3 \rightarrow 23$). These reactions are illustrated by the following examples.

Reaction (Chart III) of nitrone 3 with vinyllithium at -78 ${ }^{\circ} \mathrm{C}$ followed by a cold aqueous workup afforded N-hydroxyoxazolidine 16, uncontaminated by its ring-opened isomer 18 (by NMR). While a quite pure sample of 16 could be obtained by rapid chromatography over alumina, chromatography over silica gel invariably afforded a mixture of 16 and 18 , in which the latter predominated. It was also not possible to prepare a sample of 18 , free of 16 .

The addition of vinyllithium or vinylmagnesium bromide to 3 at $25^{\circ} \mathrm{C}$ gave two stable products which were isolated by column chromatography and were tentatively assigned the interesting structures 19 and 21 based on their spectral properties and the observation that the predominant product 19 afforded an $O, \mathrm{~N}$-diacetyl derivative 20 upon treatment with acetic anhydride in pyridine. Alcohols 19 and 21 were likely formed by the route outlined in Chart III.

The reaction of two other unsaturated organometallic reagents with nitrone 3 with briefly investigated. Treatment of nitrone 3 with excess 1 -lithio- 1 -hexyne at $-15^{\circ} \mathrm{C}$ gave openchain nitrone 22 in 13% yield, while at $-78^{\circ} \mathrm{C}$, starting 3 was recovered unchanged. The reaction of excess allylmagnesium

bromide with 3 at $25^{\circ} \mathrm{C}$ followed by air oxidation gave nitroxide 23 in 20% yield.

In general, the N-hydroxyoxazolidines produced by the addition ($>-15{ }^{\circ} \mathrm{C}$) of saturated alkyl groups to nitrone 2 showed much less tendency toward isomerization to the corresponding open-chain nitrones. Indeed, the best yield (43\%) of $14\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ was obtained when the reaction was done at $25^{\circ} \mathrm{C}$. The product resulting from the addition of 2 mol of methyllithium was not detected. Even so, with the higher homologues, minor absorptions attributed to the open-chain nitrones could be observed in the NMR spectra of the crude N-hydroxyoxazolidines obtained from reactions done at 25 ${ }^{\circ} \mathrm{C}$.

Several reactions of the six-membered ring nitrone 9 with organometallic reagents have also been examined. Reactions involving Grignard reagents gave complex mixtures of products. The reaction (Chart IV) of 9 with methyllithium at 25

24. $\mathrm{R}=\mathrm{CH}_{3}$
26. $\mathrm{R}=\mathrm{CH}_{3}$

25, $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
27, $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
28, $\mathrm{R}=\mathrm{OH}$
29, $R=O$
${ }^{\circ} \mathrm{C}$ for 1 h followed by $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed air oxidation gave, in addition to nitroxide 26 , some nitroxide 29 resulting from the addition of 2 mol of methyllithium. Comparison of the NMR spectrum of the crude product mixture after workup of the methyllithium addition with the NMR spectra of N hydroxy compcunds 24 and 28 obtained via reduction of the corresponding nitroxides with phenylhydrazine ${ }^{13}$ indicated a relatively clean mixture of 24 and 28 . Much 26 was lost during isolation owing to its volatility. Nitroxide 27 was similarly prepared in 18% yield using butyllithium. As in earlier experiments, the objective was the preparation of the nitroxide and while several minor products were formed they were not isolated or characterized. None of the nitroxide resulting from the addition of 2 mol of the reagent was detected in the butyllithium reaction.

Nitroxides 26 and 27 are members of a recently described ${ }^{17}$ class of stable ritroxides which possess a tetrahydrooxazine ring system. Such nitroxides may prove useful in spin labeling studies though at present their overall synthesis starting from dihydrooxazine $\mathbf{7}$ is not as convenient as the five-membered ring doxyl syntt-esis herein described, and the presence of the ring methyl group leads to pesky isomer possibilities.

Experimental Section ${ }^{14}$

2-Pentyl-4,4-dimethyloxazoline 2,3-Oxide (2). To a solution of $1.69 \mathrm{~g}\left(10.0 \mathrm{mmol}\right.$ of oxazoline $1^{15} \mathrm{in} 20 \mathrm{ml}$ of dry ether at $-10^{\circ} \mathrm{C}$ was added dropwise with stirring under N_{2} a solution of $2.03 \mathrm{~g}(10.0 \mathrm{mmol})$ of 85% MCPA dissolved in 30 ml of ether. After standing at $8^{\circ} \mathrm{C}$ for 48 h the solution was washed well with aqueous $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Evajoration of the solvent gave $1.67 \mathrm{~g}(99 \%)$ of crude (94% by NMR) oxaziridine 2 as a pale blue oil: NMR $i 1.13$ (3 H , s, gem-Me), $1.36\left(3 \mathrm{H}, \mathrm{s}\right.$, gem-Me), $2.1\left(2 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{CH}_{2}\right), 3.46[1 \mathrm{H}, \mathrm{d}(J$ $\left.=8 \mathrm{~Hz}), \mathrm{CH}_{2} \mathrm{O}\right], 3.61\left[1 \mathrm{H}, \mathrm{d}(J=8 \mathrm{~Hz}), \mathrm{CH}_{2} \mathrm{O}\right]$; mass spectrum m / e (rel intensity) 185 (3), 184 (7), 170 (3), 156 (11), 142 (31), 129 (100), 114 (10), 99 (20), 71 (12), 56 (36), 43 (38), 41 (18). Crude 2 was used for subsequent reactions.

2-Nitro-2-methylpropyl Hexanoate (4). A. From 1. To a solution of $169 \mathrm{mg}(1.00 \mathrm{mmol})$ of 1 in 5 ml of ether at $0^{\circ} \mathrm{C}$ was added a solution of $608 \mathrm{mg}(3.00 \mathrm{mmol})$ of 85% MCPA dissolved in 3 ml of ether. After standing for 6 days at $8^{\circ} \mathrm{C}$ the colorless solution was washed well with aqueous $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine and then dried over $\mathrm{K}_{2} \mathrm{CO}_{33}$. Evaporation of the solvent gave 206 mg (95%) of a yellow oil which was $\sim 78 \%$ nitro ester 4 by NMR. The analytical specimen was obtained as an oil by preparative VPC: NMR $\delta 1.61$ ($6 \mathrm{H}, \mathrm{s}$, gem-Me), $2.33[2 \mathrm{H}, \mathrm{t}(J$ $\left.=7 \mathrm{~Hz}), \alpha-\mathrm{CH}_{2}\right], 4.41\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right)$; ir 1745, $1550 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, $55.28 ; \mathrm{H}, 8.81$: $\mathrm{N}, 6.45$. Found: $\mathrm{C}, 55.56 ; \mathrm{H}, 8.82$; N , 6.18 .
B. From 2-Nitro-2-methylpropanol. A mixture of $2.38 \mathrm{~g}(20$ mmol) of 2-nitro-2-methylpropanol, 1.162 g (10 mmol) of hexanoic acid, and 50 mg of $\mathrm{Ts} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$ in 50 ml of benzene was brought to reflux for 24 h , water being collected in a Dean-Stark trap containing $\mathrm{K}_{2} \mathrm{CO}_{3}$. The benzene solution was washed with water, aqueous saturated NaHCO_{3}, and brine and then dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Evaporation of the solvent and distillation of the yellow residue gave $1.215 \mathrm{~g}(61 \%)$ of $4, \mathrm{bp} 85-87^{\circ} \mathrm{C}(0.06 \mathrm{~mm})$.

2-(Hydroxyamino)-2-methylpropyl Hexanoate (5). A solution of $464 \mathrm{mg}(2.14 \mathrm{mmol})$ of 4 and $114 \mathrm{mg}(2.14 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{Cl}$ in 20 ml of $\mathrm{H}_{2} \mathrm{O}$ was coolec to $<10^{\circ} \mathrm{C}$ in an ice bath. To the stirred solution was added $688 \mathrm{mg}(10.7 \mathrm{mmol})$ of powdered zinc. After stirring for 4 h at $<15^{\circ} \mathrm{C}$, the mixture was filtered and the zinc cake was washed with methanol. Tie solution was concentrated and extracted with several portions of ether. The ether solution was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated to yield a blue oil, chromatography of which gave 120 $\mathrm{mg}(28 \%)$ of N-hydroxy ester 5 as a colorless oil: NMR $\delta 1.10$ ($6 \mathrm{H}, \mathrm{s}$, gem-Me), $2.37\left[2 \mathrm{H}, \mathrm{t}(J=7 \mathrm{~Hz}), \alpha-\mathrm{CH}_{2}\right], 4.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right)$; ir 3280 $(\mathrm{OH}), 1735 \mathrm{~cm}^{-1}$ (ester); mass spectrum m / e (rel intensity) 203.153 (2) (calcd for $\left.\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{3}, 203.152\right), 172^{\circ}(27), 99$ (26), 74 (100), 71 (19), 58 (39), 56 (26), 55 (12), 43 (22), 42 (18), 41 (16).
2-Nitroso-2-methylpropyl Hexanoate (6). To a solution of 17.2 $\mathrm{mg}(0.085 \mathrm{mmol})$ of N-hydroxy ester 5 in 3 ml of ether at $0^{\circ} \mathrm{C}$ was added dropwise with stirring under N_{2} a solution of $17.2 \mathrm{mg}(0.085$ mmol) of 85% MCPA dissolved in 1.0 ml of ether. After 10 min , the solution was diluted with ether and washed several times with aqueous $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and כrine. Evaporation of the solvent gave a blue oil which was chromatographed on a silica gel column to yield 13.1 mg (77%) of purified ϵ. An analytical sample of 6 as a dark blue oil was
prepared by preparative VPC: NMR $\delta 1.13$ ($6 \mathrm{H}, \mathrm{s}$, gem-Me), $2.22[2$ $\left.\mathrm{H}, \mathrm{t}(J=7 \mathrm{~Hz}), \alpha-\mathrm{CH}_{2}\right], 4.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right)$; ir 1745 (ester), $1567 \mathrm{~cm}^{-1}$ ($\mathrm{N}-\mathrm{O}$). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 59.68 ; \mathrm{H}, 9.52 ; \mathrm{N}, 6.96$. Found: C, 59.85; H, 9.66; N, 6.69.

2,4,4,6-Tetramethyl-5,6-dihydro-1,3-oxazine 2,3-Oxide (8). To a solution of $821 \mathrm{mg}(5.82 \mathrm{mmol})$ of 7^{16} in 2 C ml of dry ether at $-23^{\circ} \mathrm{C}$ under N_{2} was added with stirring dropwise over 20 min a solution of $1.18 \mathrm{~g}(5.82 \mathrm{mmol})$ of $85 \% \mathrm{MCPA}$ dissolved in 20 ml of ether. The bath was allowed to warm to $-10^{\circ} \mathrm{C}$ and then aqueous $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ was added. The ether layer was separated, washed with chilled aqueous $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$, and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Evaporation of the solvent gave 570 mg (64%) of the crude (84% by NMR) oxaziridine 8 as a blue oil (some loss due to volatility): NMR $\delta 1.26(\epsilon \mathrm{H}, \mathrm{s}, g e m-\mathrm{Me}), 1.17[3 \mathrm{H}$, $\mathrm{d}(J=6 \mathrm{~Hz})$, Me at $\left.\mathrm{C}_{6}\right], 1.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ at $\left.\mathrm{C}_{2}\right), 4.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$ at $\left.\mathrm{C}_{6}\right)$. Crude 8 was used for subsequent reactions.
2-Nitroso-2-methyl-4-acetoxypentane (10) and Dimer. To a solution of $119 \mathrm{mg}(0.84 \mathrm{mmol})$ of 7 in 2 ml of dry ether at $0^{\circ} \mathrm{C}$ was added dropwise over 15 min with stirring under N_{2} a solution of 341.2 $\mathrm{mg}(1.68 \mathrm{mmol})$ of 85% MCPA dissolved in 3 ml of ether. The solution was allowed to warm to $25^{\circ} \mathrm{C}$ and was stirred for 5 h , after which the ether solution was washed with four portions of aqueous $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and then with brine. Evaporation of the solvent and chromatography on silica gel yielded 115 mg (79%) of nitrosc ester 10 as a dark blue oil. Upon standing at $-20^{\circ} \mathrm{C}$, colorless crystals of the dimer separated out. These were washed with cold CCl_{4} and sublimed $\left(50^{\circ} \mathrm{C}, 0.025\right.$ mm) to obtain the analytical specimen: $\mathrm{mp} 65-67^{\circ} \mathrm{C}$; NMR $\delta 1.57$ (6 H, s, gem-Me), $1.22[3 \mathrm{H}, \mathrm{d}(J=6 \mathrm{~Hz})], 2.02(3 \mathrm{H}, \mathrm{s}$, acetyl), 4.95 (1 H, m, methine H). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 55.47 ; \mathrm{H}, 8.73 ; \mathrm{N}$, 8.09. Found: $55.26 ;$ H, 8.76; N, 7.93.

Complete dissociation to the blue moncmer occurred in CDCl_{3} in 1 h : NMR (monomer) $\delta 1.06(3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.13(3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.21[3 \mathrm{H}, \mathrm{d}(J=6 \mathrm{~Hz})], 1.87(3 \mathrm{H}, \mathrm{s}$, acetyl), $4.94(1 \mathrm{H}, \mathrm{m}$, methine H$)$; ir (CCl_{4}) 1745 (ester), $1565 \mathrm{~cm}^{-1}(\mathrm{~N}-0)$.

2-Nitro-2-methyl-4-acetoxypentane (11). To a solution of 238 mg (1.68 mmol) of 7 in 10 ml of ether was added at $25^{\circ} \mathrm{C}$ a solution of $1.01 \mathrm{mg}(5.00 \mathrm{mmol})$ of 85% MCPA dissolved in 10 ml of ether. After standing for 12 h the ether solution was washed well with aqueous 10% $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Evaporation gave $200 \mathrm{mg}(64 \%)$ of 11 as a pale yellow oil. The analytical specimen was obtained by preparative VPC: NMR $\delta 1.58(6 \mathrm{H}, \mathrm{s}$, gem-Me) $), 1.23[3 \mathrm{H}, \mathrm{d}(J=6 \mathrm{~Hz})]$, $1.96\left(3 \mathrm{H}, \mathrm{s}\right.$, acetyl), $5.09(1 \mathrm{H}, \mathrm{m}$, methine H$)$; ir ($\left.\mathrm{CCl}_{4}\right) 1750$ (ester), $1555 \mathrm{~cm}^{-1}$ (nitro); mass spectrum (30 eV) m / e (rel intensity) 189.102 (0.02) (calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{4}, 189.100$), 174 (1), 143 (3), 129 (4), 118 (4), 99 (5), 83 (53); 56 (11), 55 (24), 43 (100), 41 (29).

General Procedure for Isomerization of Oxaziridines 2 and 8. A solution of $\sim 150 \mathrm{mg}$ of crude oxaziridine in 2 ml of CHCl_{3} was placed on top of a dry silica gel column ($1.5 \times 10 \mathrm{~cm}$). After standing for 30 min , the column was successively eluted with 20 ml of CHCl_{3}, 20 ml of acetone, and finally 15 ml of methanol. Evaporation of the methanol at $20^{\circ} \mathrm{C}$ afforded the nitrone ($>85 \%$).
2-Pentyl-4,4-dimethyloxazoline N-oxide (3) was obtained as a pale yellow oil: NMR $\delta 1.50(6 \mathrm{H}, \mathrm{s}$, gem-Me), $2.62[2 \mathrm{H}, \mathrm{t}(J=7 \mathrm{~Hz}), \alpha-$ CH_{2}], $4.29\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right)$; uv (EtOH) $244 \mathrm{~nm}(\epsilon 4540)$; mass spectrum m / e (rel intensity) 185.139 (3) (calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}, 185.142$), 172 (9), 154 (25), 126 (29), 113 (100), 99 (35), 74 (45), 58 (62), 43 (43).

2,4,4,6-Tetramethyl-5,6-dihydro-1,3-oxazine N-oxide (9) was obtained as low-melting white crystals: NMR $\delta 1.51$ ($6 \mathrm{H}, \mathrm{s}$, gem-Me), $1.38[3 \mathrm{H}, \mathrm{d}(J=6 \mathrm{~Hz})], 2.25\left(3 \mathrm{H}, \mathrm{s}\right.$, Me at $\left.\mathrm{C}_{2}\right), 4.63(1 \mathrm{H}, \mathrm{m}$, methine H); mass spectrum m / e (rel intensity) 157.111 (13) (calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}, 157.110$), 141 (9), 115 (40), 100 (81), 83 (53), 74 (52), 73 (34), 58 (23), 56 (20), 55 (16), 43 (100).

Usually evident in samples of 9 by NMR was a small contaminant of N-hydroxy ester 12: NMR $\delta 1.09(6 \mathrm{H}, \mathrm{s}$, gem-Me) $) .1 .25[3 \mathrm{H}, \mathrm{d}(J$ $=6 \mathrm{~Hz})$], $2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ at $\left.\mathrm{C}_{2}\right), 5.12(1 \mathrm{H}, \mathrm{m}$, methine H$)$; ir $\left(\mathrm{CCl}_{4}\right)$ $3280(\mathrm{OH}), 1740 \mathrm{~cm}^{-1}$ (ester).
2-Pentyl-2,4,4-trimethyloxazolidine- \boldsymbol{N}-oxyl (14, $\mathrm{R}=\mathrm{CH}_{3}$). To a solution of $150 \mathrm{mg}(0.800 \mathrm{mmol})$ of freshly prepared nitrone 3 in 5 ml of dry ether at $25^{\circ} \mathrm{C}$ with stirring under N_{2} was added 3 equiv of 2 M methylmagnesium iodide in ether. After 1 h , aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added, the ether layer was separated, and the residue was washed thoroughly with fresh ether. Evaporation of the combined ether solutions afforded crude N-hydroxyoxazolidine $13\left(\mathrm{R}=\mathrm{CH}_{3}\right)$, which was taken up in 10 ml of methanol containing $\sim 2 \mathrm{mg}$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and stirred under air for 30 min at $25^{\circ} \mathrm{C}$. Evaporation of the solvent and column chromatography on silica gel afforded the nitroxide ($14 \mathrm{R}=\mathrm{CH}_{3}$). The pure specimen was obtained by preparative VPC and its infrared spectrum was identical with that of 14 ($\mathrm{R}=\mathrm{CH}_{3}$) prepared by our earlier method. ${ }^{3}$
2-Pentyl-2-ethyl-4,4-dimethyloxazolidine- \mathbf{N}-oxyl (14, $\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$). Similarly prepared using ethylmagnesium bromide at -15 ${ }^{\circ} \mathrm{C}$ was $14\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$: mass spectrum m / e (rel intensity) $214(7)$,

186 (5), 158 (16), 143 (21), 129 (100), 72 (22), 56 (33). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}_{2}$: C, $67.25 ; \mathrm{H}, 11.29 ; \mathrm{N}, 6.54$. Found: C, $67.38 ; \mathrm{H}, 11.69 ; \mathrm{N}$, 6.34.

2-Pentyl-2-heptyl-4,4-dimethyloxazolidine- \mathbf{N}-oxyl [14, R = $\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$]. Similarly prepared using heptylmagnesium iodide at $-15^{\circ} \mathrm{C}$ was $14\left[\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right]$: mass spectrum m / e (rel intensity) 284 (3), 228 (11), 210 (41), 199 (81), 198 (62), 186 (45), 170 (46), 99 (40), 85 (32), 71 (73), 57 (100), 43 (90). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{NO}_{2}: \mathrm{C}, 71.78$; H, 12.05; N, 4.92. Found: C, 71.99; H, 12.54; N, 4.69.

2-Pentyl-2-vinyl-4,4-dimethyloxazolidine- \boldsymbol{N}-oxyl (14, R = Vinyl). To a solution of $100 \mathrm{mg}(0.540 \mathrm{mmol})$ of freshly prepared 3 in 10 ml of dry ether at $-78^{\circ} \mathrm{C}$ was added with stirring dropwise under N_{2} a twofold excess of vinyllithium (2 M in THF). After 2 h , some ether saturated with water was added and then the mixture was allowed to warm to $25^{\circ} \mathrm{C}$. Water was added and the ether phase separated. The aqueous phase was extracted with ether and the combined ether solutions were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporated, affording crude N-hydroxyoxazolidine 13 ($\mathrm{R}=$ vinyl) along with some mineral oil from the vinyllithium reagent. The crude product was dissolved in 10 ml of MeOH containing $\sim 2 \mathrm{mg}$ of $\left(\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right.$ and stirred under air at $25^{\circ} \mathrm{C}$ for 2 h . The solvent was evaporated to yield a yellow oil. Column chromatography over silica gel followed by preparative TLC over silica gel afforded $33 \mathrm{mg}(29 \%)$ of pure title nitroxide. The analytical specimen was obtained as an orange oil by preparative VPC: mass spectrum m / e (rel intensity) 212 (8), 156 (12), 142 (16), 127 (100), 70 (17), 56 (36), 55 (32). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{2}: \mathrm{C}, 67.89 ; \mathrm{H}, 10.44$; N, 6.60. Found: C, 67.33; H, 10.81; N, 6.41.

Reaction of Nitrone 3 with Vinylmagnesium Bromide at $25^{\circ} \mathrm{C}$. To a solution of 85 mg of freshly prepared 3 in 10 ml of dry ether at $0^{\circ} \mathrm{C}$ was added with stirring under $\mathrm{N}_{2} 2$ equiv of vinylmagnesium bromide (2 M in THF). After the mixture was allowed to warm to 25 ${ }^{\circ} \mathrm{C}$, the usual workup with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ gave a yellow oil which consisted of two major components by TLC. Chromatography over silica gel using CHCl_{3} as the eluent gave $41 \mathrm{mg}(37 \%)$ of diene 19 as a colorless oil which crystallized upon standing at $-20^{\circ} \mathrm{C}$: mp 30-31 ${ }^{\circ} \mathrm{C}$; NMR $\delta 1.04$ ($6 \mathrm{H}, \mathrm{s}$, gem-Me), 2.25 ($2 \mathrm{H}, \mathrm{m}$, allylics), 3.46 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 4.33\left[2 \mathrm{H}, \mathrm{d}(J=7 \mathrm{~Hz}), \mathrm{C}=\mathrm{C}_{-} \mathrm{CH}_{2} \mathrm{O}\right], 5.60[1 \mathrm{H}, \mathrm{t}$ ($J_{\text {trans }}=18 \mathrm{~Hz}$), terminal vinyl], $6.30(1 \mathrm{H}$, dd, terminal vinyl); mass spectrum m / e (rel intensity) 241.201 (4) (calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{2}$, $241.204), 210$ (2), 137 (35), 95 (38), 81 (71), 74 (37), 67 (100), 55 (17), 41 (18); ir $\left(\mathrm{CHCl}_{3}\right) 3300-3600(\mathrm{NH}$ and OH$), 1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; uv (EtOH) $232 \mathrm{~nm}(\epsilon 18200)$.

Further elution with ether gave $14 \mathrm{mg}(12 \%)$ of diene 21 as a colorless oil: NMR $\delta 1.20(6 \mathrm{H}, \mathrm{s}$, gem-Me), 2.27 ($2 \mathrm{H}, \mathrm{m}$, allylics), 3.54 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 3.44\left[2 \mathrm{H}, \mathrm{d}(J=7 \mathrm{~Hz}), \mathrm{CH}_{2} \mathrm{~N}\right], 5.64(1 \mathrm{H}, \mathrm{t}(J=7 \mathrm{~Hz})$, vinyl], $5.02\left[1 \mathrm{H}, \mathrm{d}\left(J_{\text {cis }}=11 \mathrm{~Hz}\right)\right.$, terminal vinyl], $5.21\left[1 \mathrm{H}, \mathrm{d}\left(J_{\text {trans }}\right.\right.$ $=18 \mathrm{~Hz}$), termini 1 vinyl], 6.32 (dd, terminal vinyl); mass spectrum m / e (rel intensity) 241.202 (1) (calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{2}$, 241.204), 210 (32), 194 (13), 137 (18), 95 (38), 81 (67), 67 (100), 55 (43), 41 (40).

When the reaction and workup for the vinyl Grignard addition were done at $0^{\circ} \mathrm{C}$ rather than $25^{\circ} \mathrm{C}$, the major component by NMR was the open-chain nitrone 18: NMR $\delta 1.60(6 \mathrm{H}, \mathrm{s}$, gem-Me), $2.65(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{N}=\mathrm{C}-\mathrm{CH}_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}, 5.54\left[1 \mathrm{H}, \mathrm{d}\left(J_{\text {cis }}=11 \mathrm{~Hz}\right)\right.\right.$, terminal vinyl], $5.52\left[1 \mathrm{H}, \mathrm{d}\left(J_{\text {trans }}=17 \mathrm{~Hz}\right)\right.$, terminal vinyl], $5.99(1 \mathrm{H}$, dd, terminal vinyl). It was not possible to obtain a sample of 18 free from 16.

Acetylation of Diene 19. To a solution of $8.5 \mathrm{mg}(0.036 \mathrm{mmol})$ of 19 in 1 ml of acetic anhydride was added 1 drop of pyridine. The solution was left standing at $25^{\circ} \mathrm{C}$ for 5 days and then the solvent was evaporated. Preparative TLC on silica gel gave $5.0 \mathrm{mg}(44 \%)$ of diacetate 20 as a light yellow oil: NMR $\delta 1.44(6 \mathrm{H}, \mathrm{s}, \mathrm{gem}$-Me), 2.06 (3 H, s, acetyl), $2.16\left(3 \mathrm{H}, \mathrm{s}\right.$, acetyl), $4.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.51(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}=\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right), 5.16\left[1 \mathrm{H}, \mathrm{d}\left(J_{\text {cis }}=11 \mathrm{~Hz}\right)\right.$, terminal vinyl $], 5.32[1 \mathrm{H}$, $\mathrm{d}\left(J_{\text {trans }}=18 \mathrm{~Hz}\right)$, terminal vinyll, $5.56(1 \mathrm{H}, \mathrm{t}(J=7 \mathrm{~Hz})$, vinyll], 6.32 ($1 \mathrm{H}, \mathrm{dd}$, terminal vinyl); ir 1745 (ester), $1670 \mathrm{~cm}^{-1}$ (amide).
Reaction of Nitrone 3 with 1-Lithio-1-hexyne. To a solution of $41 \mathrm{mg}(0.50 \mathrm{mmol})$ of 1 -hexyne in 5 ml of dry ether at $0^{\circ} \mathrm{C}$ under N_{2} was added 1 equiv of methyllithium (1.7 M in ether). After 30 min at $25^{\circ} \mathrm{C}$, the solution was cooled to $-15^{\circ} \mathrm{C}$ and treated with 65 mg (0.35 mmol) of freshly prepared nitrone 3 in 2 ml of ether. After 5 min , the reaction mixture was worked up in the usual manner. Column chromatography of the crude product followed by preparative TLC produced $12 \mathrm{mg}(13 \%)$ of oily nitrone 22: NMR $\delta 1.69(6 \mathrm{H}, \mathrm{s}$, gem-Me), $2.52\left[4 \mathrm{H}, \mathrm{t}(J=7 \mathrm{~Hz}), \alpha-\mathrm{CH}_{2}\right], 3.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right)$; ir $\left(\mathrm{CCl}_{4}\right) 3350$ $(\mathrm{OH}), 1580 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{O})$; mass spectrum m / e (rel intensity) 267.220 (8) (calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{2}, 267.220$), 220 (34), 196 (41), 180 (66), 139 (26), 99 (100), 87 (32), 79 (90), 74 (50), 59 (95), 58 (66), 43 (63).

3-Aza-4,4-diallyl-2,2-dimethyl-1-hydroxynonane- N -oxyl (23). To a solution of $50 \mathrm{mg}(0.27 \mathrm{mmol})$ of nitrone 3 in 4 ml of ether at 25 ${ }^{\circ} \mathrm{C}$ with stirring under N_{2} was added 3 equiv of 1 M allylmagnesium bromide in ether. After 30 min , aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added,
the ether layer was separated, and the residue was washed thoroughly with fresh ether. Evaporation of the combined ether portions gave a yellow oil which after Cu^{2+}-catalyzed air oxidation and TLC on silica gel gave $15 \mathrm{mg}(20 \%)$ of 23: ir $3360(\mathrm{OH}), 1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; mass spectrum m / e (rel intensity) 268.229 (6) (calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{2}$, 268.228), 228 (18), 212 (19), 196 (27), 180 (30), 164 (41), 156 (43), 123 (42), 109 (56), 95 (85), 93 (84), 81 (100), 67 (84), 55 (74), 41 (73).

2,2,4,4,6-Pentamethyltetrahydrooxazine- \boldsymbol{N}-oxyl (26) and 3-Aza-6-hydroxy-2,2,4,4-tetramethylheptane- \boldsymbol{N}-oxyl (29). To a solution of $76 \mathrm{mg}(0.48 \mathrm{mmol})$ of 9 in 5 ml of dry ether with stirring at $25^{\circ} \mathrm{C}$ was added 4 equiv of 2 M methyllithium in ether. After 1 h , aqueous $20 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ was added and the ether phase was separated and combined with several ether washings of the aqueous residue. Evaporation of the solvent gave a nearly colorless oil (79.5 mg) which was taken up in 5 ml of $\mathrm{CH}_{3} \mathrm{OH}$ and stirred under air with 2 mg of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ for 30 min . Evaporation of the solvent and preparative tlc on silica gel gave 15 mg (18%) of nitroxide 26 (considerable loss due to volatility), mass spectrum m / e (rel intensity) 172.133 (5) (calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{2}, 172.134$), 157 (5), 142 (5), 114 (20), 84 (49), 69 (100), 59 (35), 43 (55), 41 (47); and 22 mg (24%) of nitroxide 29 , ir $3430 \mathrm{~cm}^{-1}$ (OH), mass spectrum 188.163 (12) (calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{2}, 188.165$), 158 (6), 132 (13), 114 (23), 88 (40), 84 (30), 83 (36), 74 (33), 56 (22), 57 (100), 45 (41), 43 (20), 41 (38).

Treatment of 26 with phenylhydrazine in $\mathrm{CDCl}_{3}{ }^{13}$ gave the corresponding N-hydroxylamine 24: NMR $\delta 1.18[3 \mathrm{H}, \mathrm{d}(J=6 \mathrm{~Hz})], 1.28$ ($6 \mathrm{H}, \mathrm{s}$, gem-Me), $2.45(3 \mathrm{H}, \mathrm{s}$, gem-Me), $2.47(3 \mathrm{H}, \mathrm{s}$, gem-Me), 5.04 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}$).

Treatment of 29 with phenylhydrazine in CDCl_{3} gave the corresponding N-hydroxylamine 28: NMR $\delta 1.28[3 \mathrm{H}, \mathrm{d}(J=6 \mathrm{~Hz})], 1.30$ ($3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.34 ($9 \mathrm{H}, \mathrm{s}$, tert-butyl), 4.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}$).

2-Butyl-2,4,4,6-tetramethyltetrahydrooxazine- \boldsymbol{N}-oxyl (27). Similarly prepared by the method above was nitroxide 27 in 18% yield: mass spectrum m / e (rel intensity) 214.183 (12) (calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}_{2}$, 214.181), 199 (3), 157 (25), 114 (43), 101 (32), 84 (84), 69 (83), 55 (29), 43 (93), 41 (100).

Acknowledgment. This research was supported by Public Health Service Research Grant CA-17338 from the National Cancer Institute.

Registry No.-1, 55011-28-4; 2, 55011-29-5; 3, 55011-30-8; 4, 59813-15-9; 5, 59813-16-0; 6, 59813-17-1; 7, 26939-18-4; 8, 59813-18-2; 9, 59813-19-3; 10, 59813-13-7; 10 dimer, 59813-14-8; 11, 59813-20-6; 12, 59813-21-7; $13\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 55011-32-0 ; 13\left[\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right]$, 55011-33-1; 13 ($\mathrm{R}=$ vinyl), 55011-34-2; $14\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 55011-35-3; $14\left[\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right], 55011-36-4 ; 14(\mathrm{R}=$ vinyl, 55011-37-5; 18,

56348-28-8; 19, 59813-22-8; 20, 59813-23-9; 21, 59813-24-0; 22, 59813-25-1; 23, 59813-26-2; 24, 59813-27-3; 26, 55179-45-8; 27, 59813-28-4; 28, 59813-29-5; 29, 59813-30-8; 2-nitro-2-methylpropanol, 76-39-1; hexanoic acid, 142-62-1; oxaziridine, 6827-26-5; 1-hexyne, 693-02-7; phenylhydrazine, 100-63-0.

References and Notes

(1) A preliminary account of portions of this work has been published: J. F. W. Keana and T. D. Lee, J. Am. Chem. Soc., 97, 1273 (1975).
(2) Alfred P. Sloan Foundation Fellow, NIH Research Career Development Award Recipient.
(3) J. F. W. Keana, S. B. Keana, and D. Beetham, J. Am. Chem. Soc.. 89, 3055 (1967).
(4) For reviews, see O. H. Griffith and A. S. Waggoner, Acc. Chem. Res., 2, 17 (1969); H. M. McConnell and B. G. McFarland, Q. Rev. Biophys., 3, 91 (1970); I. C. P. Smith, "Biological Applications of Electron Spin Resonance Spectroscopy"', J. R. Bolton, D. Borg, and H. Schwarz, Ed., Wiley-Interscience, New York, N.Y., 1972, pp 483-539; L. J. Berliner, Ed., "SpinLabeling: Theory and Applications", Academic Press, New York, N.Y., 1975.
(5) A. I. Meyers, D. L. Temple, R. L. Nolen, and E. D. Mihelich, J. Org. Chem., 39, 2778 (1974).
(6) A. I. Meyers, E. D. Mihelich, and R. L. Nolen. J. Org. Chem., 39, 2783 (1974).
(7) A. I. Meyers, D. L. Temple, D. Haidukewych, and E. D. Mihelich, J. Org. Chem., 39, 2^{787} (1974).
(8) E. Lund, Nitro Compd., Proc. Int. Symp., 291 (1963); Chem Abstr., 64, 676 (1966). Nitrones have also been used as free-radical trapping agents; see E. G. Janzen and C. A. Evans, J. Am. Chem. Soc., 95, 8205 (1973).
(9) For a related study of the peracid oxidation of several other iminoethers, see, D. H. Aue and D. Thomas, J. Org. Chem., 39, 3855 (1974).
(10) A. Padwa, Terrahedron Lett., 2001 (1964).
(11) See R. Bonnett, R. F. C. Brown, V. M. Clark, I. O. Sutherland, and A. Todd, J. Chem. Soc, 2094 (1959).
(12) S. Chow, J. A. Nelson, and T. A. Spencer, J. Org. Chem., 39, 2356 (1974).
(13) T. D. Lee and J. F. W. Keana, J. Org. Chem., 40, 3145 (1975).
(14) Melting points were determined on a Kofler hot stage or in a capillary in an oil bath and are uncorrected. Infrared spectra were recorded with either a Beckman IR-5 or IR-7 spectrophotometer. NMR spectra were recorded on a Varian X--100 high-resolution spectrometer in CDCl_{3} and only the characteristic peaks are reported. Chemical shifts were reported in parts per million (δ) Jownfield from internal $\mathrm{Me}_{4} \mathrm{Si}$. Mass spectra (70 eV) (m / e) are given followed by the relative peak height in parentheses and were determined on a CEC 110-2B double-focusing mass spectrometer equipped with a direct inlet. Elemental analyses were performed at the University of Oregon by Dr. R. Wielesek.
(15) Prepared by the method of P. Allen and J. Ginos, J. Org. Chem., 28, 2759 (1963). Anal. Caicd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 70.96 ; \mathrm{H}, 11.31$; N, 8.27. Found: C, 71.32; H, 11.61; N. 8.65.
(16) E. J. Tillmanns and J. J. Ritter, J. Org. Chem., 22, 839 (1957).
(17) A. Rassat and P. Rey, Tetrahedron, 30, 3315 (1974).

Mobile Activated Allyl Systems. 19. ${ }^{1}$ Reactions of Amines with α-(Bromomethyl)cinnamonitrile

Norman H. Cromwell* and Hiu-Kwong Leung
Department of Chemistry, University of Nebraska, Lincol., , Nebraska 68588

Received January 27, 1976

The reactions of a variety of amines with α-(bromomethyl)cinnamonitrile (1) in solvents of different polarities are reported. The ratio of the two products formed, namely the substitution-rearrangement (S-R) product 2 and the substitution product 3 , was found to vary with the polarity of the solvent as well as with the basicity and the steric effectiveness of the amine used. Except for the tert-butylamine reaction product $2 a$ and the diisopropylamine reaction product $2 e$, all S-R products 2 isomerized to the thermodynamical.y more stable substitution products 3 in a polar solvent. Product 2a was found to be susceptible to the attack of free amines to give the appropriate amine exchange product 3 . Product 2 e, however, was inert even to the highly reactive nucleophile piperidine.

Although primary allyl halides react with amines to give normal substitutions, Cromwell and Rebman ${ }^{2}$ observed substitution-rearrangement (S-R) products upon treatment of trans- α-(bromomethyl)chalcone (Ia) with tert-butylamine and piperidine in hydrocarbon solvents. The amine reaction has been extended to other mobile allyl systems, namely, α (bromomethyl)benzalacetone (Ib) ${ }^{3}$ and methyl α-(bromo-
methyl)cinnamate (Ic). ${ }^{4}$ In hydrocarbon solvents, morpholine and piperidine react with the above-mentioned mobile allyl systems to give both substitution and S-R products. With tert-butylamine, only the $\mathrm{S}-\mathrm{R}$ products were isolated. It has been shown that the amine molecule attacks the mobile keto allyl system in an SN2' manner, giving initially the S-R product (II). The substitution product (III) is a result of either

Table I. $\mathbf{6 0 - H M z}$ Proton Magnetic Resonance Data ${ }^{a}$

Compd	Aromatic b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}$	$\mathrm{C}=\mathrm{CH}_{2}$	$\mathrm{CH}_{2} \mathrm{~N}$

${ }^{a}$ Chemical shift in δ units from internal $\mathrm{Me}_{4} \mathrm{Si} .{ }^{b}$ Benzal proton hidden in this region also. ${ }^{c}$ Benzyl proton hidden in this region. ${ }^{d}$ Overlap of 2 quartet. ${ }^{e}$ Overlap of 2 triplet, believed to be attributable to the existence of two geometrical isomers of 3 d .
the autocatalytic rearrangement of the $\mathrm{S}-\mathrm{R}$ product in a more polar solvent like chloroform, or the attack of a second mole of the appropriate amine on the $\mathrm{S}-\mathrm{R}$ product in a second re-arrangement-substitution. The processes are summarized in Scheme I.

Scheme I

In the case of β-keto secondary allyl halides, the $\mathrm{SN} 2^{\prime}$ mechanism is by no means the only way an amine can attack the mobile allyl system. Previously it has been reported that the direct attack of an amine at the allylic position proceeded parallel with the expected $\mathrm{SN} 2^{\prime}$ reaction for the reaction of tert-butylamine with 2-(α-bromobenzyl)-4,4-dimethyl-1,4-dihydro-1-ketonaphthalene. ${ }^{5}$ It occurred to us that studies of the reaction of amines with α-(bromomethyl)cinnamonitrile, where the β-carbonyl group has been replaced by a nitrile group, might provide further insight into the nature of the competitive reaction pathways available to these mobile allyl systems.

Results

Preparation of the starting material α-(bromomethyl)cinnamonitrile (1) was performed by modifying the procedure reported by Wasserman et al. ${ }^{6}$ The base-catalyzed condensation of benzaldehyde and acrylonitrile yielded four products (Scheme II), three of which can be converted to 1 . Instead of isolating the useful compounds one by one, 4, 6, and 7 were separated from the resulting crude oil by vacuum distillation as a mixture. The mixture was then refluxed with 48% aqueous hydrobromic acid in glacial acetic acid. Compound 1 precipitated when the reaction mixture was poured into ice water.

Recrystallization from hot hexane gave white, scaly crystals.
The reactions of 1 with 2 molar equiv of amines were carried out in a number of solvents. The amine hydrobromide formed during the reaction precipitated upon replacement of the solvent with ether and was removed by filtration. Evaporation of the solvent in vacuo yielded the product(s), which was analyzed immediately by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

The two substitution products are readily distinguished from each other by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Table I). Compound 2 exhibits three singlets (slightly broadened due to geminal and allylic coupling), assigned to the benzylic and vinylic protons. For 3, the vinyl and methylene proton bands are characteristic (Table I).

Except in the cases when acetonitrile was used as solvent, 2 was found to be the exclusive or major product. A summary of the results is listed in Table II.

The S-R products $\mathbf{2 b}, \mathbf{2 c}$, and 2 d were observed to rearrange to their thermodynamically more stable isomers, i.e., the substitution products $\mathbf{3 b}, \mathbf{3 c}$, and $3 \mathbf{d}$, on standing in a polar

Table II. Amine Reaction with 1

Amount of substrate, mol	Amine	Amount of amine, mol	\% amine hydrobromide	Solvent (ml)	Reaction time, h	Product

Table III. Elemental Analysis and Infrared Data

Comp	Calcd			Found			$\nu_{\mathrm{C}} \equiv \mathrm{N}$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$
	C	H	N	C	H	N		
$2 \mathbf{a}^{\text {a }}$	67.06	7.50	11.17	67.00	7.73	11.40	2240	169
$3 \mathbf{a}^{a}$	67.06	7.50	11.17	67.02	7.79	11.30	2220	244
$3 \mathbf{b}^{\text {a }}$	68.57	7.20	10.67	68.58	7.39	10.77	2220	218
$3 \mathrm{c}^{\text {b }}$	52.52	4.16	15.31	52.57	4.29	15.34	2220	237
$3 \mathbf{d}^{b}$	54.18	4.70	15.80	54.13	4.83	15.78	2230	118
$3 \mathbf{e}^{\text {b }}$	56.05	5.31	14.86	55.96	5.07	14.82	2222	197

solvent $\left(\mathrm{CDCl}_{3}\right)$, in the absence of additional appropriate free amine. The rate of conversion was fastest for $2 b \rightarrow 3 b$, while that of $2 \mathbf{d} \rightarrow \mathbf{3 d}$ was found to be the slowest among the three. However, 2a and 2e were found not to convert to their other isomers autocatalytically.

The reaction of 2a with amines at room temperature in carbon tetrachloride was followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The results are listed in Table IV. S-R product 2a reacted with piperidine and morpholine to produce $3 b$ and $3 c$, quantitatively. However, treatment of 2 a with the sterically bulky diethylamine and tert-butylamine did not effect such a change under these conditions. Substitution product 3a was successfully prepared by the reaction of a large excess of tertbutylamine with $2 \mathbf{a}$ in acetonitrile over a period of 50 days.

On standing in a polar solvent with or without the presence of excess free amine, the sterically restricted 2 e was observed not to convert to $3 \mathbf{e}$ which might be expected to be the thermodynamically more stable isomer. Compound $3 \mathbf{e}$ was inert even to piperidine.

Discussion

Attack of amines on 1 can occur in two ways, namely, the amine molecule may attack the benzal carbon in a SN2'

Table IV. Amine Exchange Reaction with 2a

Amine used	$[$ Amine]/ [precursor]	Time necessary for $>90 \%$ conversion
tert - Butylamine	>3	No significant reaction
Piperidine	~ 3	11 h
Morpholine	~ 2.5	48 h
Diethylamine	~ 3	No significant reaction

manner, yielding 2 (Scheme III, path a), or the amine may attack the allylic position directly, yielding 3 (Scheme III, path d). The former route, which is the normal case in most of the mobile ketoallyl systems being studied, is shown by the reaction of various amines with 1 in nonpolar solvents. Compound 2 was observed to be the exclusive or major product in all cases. The latter route, although rare in other studies of similar systems, appears to occur with the mobile cyanoallyl system. Here when 1 is treated with tert-butylamine or di-

Scheme III

isopropylamine in a solvent more polar than a saturated hydrocarbon, both 2 and 3 were observed to form in parallel reactions. The rate for 2 a to convert to 3 a was negligible in the absence of free amine, and was slow compared to the formation of $3 a$ when the reaction of amine with 1 was run in a polar solvent. Also, under no circumstances could $2 e$ be converted to 3e. Evidently, both pathways (path a and path d) occur in a parallel manner in the reaction of tert-butylamine and diisopropylamine with 1 in polar solvents.

Product 3, arising from a second $\mathrm{SN}^{\prime} 2^{\prime}$ reaction, was also observed in the mobile cyano system (Scheme III, path c). Such a mechanistic pathway for $2 \rightarrow 3$ conversion was established previously with β-ketoallylamines. ${ }^{7,8}$ Results of the amine exchange reaction of different amines with 2a are summarized in Table III. The rate of conversion was found to be a function of the basicity of the amine used. The reaction of 1 with piperidine is much faster than the reaction of 1 with other amines with lower basicity. However, basicity is not the only factor that has to be taken into account in understanding these reactions. Steric size of the free amine used plays an important role also. Diethylamine is more basic than morpholine, but diethylamine is resistant to displacing the tertbutylamine from 2a, while morpholine is able to accomplish this, though slowly. Also, the fact that 2a converts to 3 a with difficulty (in large excess of free amine and after a period of 50 days) and $2 \mathbf{e}$ does not convert to $3 \mathbf{e}$ (even in the presence of free amine) is believed to be attributable to the steric effectiveness of the alkyl group of the two amino groupings. This point is further illustrated by 2 e being inert even to piperidine.

Isomer 3 can also arise from autorearrangement of 2^{10} (Scheme III, path b, no excess amine present). Compounds $\mathbf{2 b}, \mathbf{2 c}$, and $\mathbf{2 d}$ were observed to isomerize in this fashion to $\mathbf{3 b}$, 3c, and 3d, respectively, the thermodynamically more stable isomers. The fact that $\mathbf{2 a}$ and 2 e do not isomerize, respectively, to $\mathbf{3 a}$ and $3 \mathbf{e}$ is attributed again to the steric requirements of the alkyl group of the amino function.
The formation of S-R products from the reaction of amines with β-carboallyl halides has been considered to be a variant of an $\mathrm{SN} 2^{\prime}$ mechanism, in which carbon-nitrogen bond formation proceeds ahead of carbon-halogen bond breakage, ${ }^{3,4,9}$ Scheme IV. The oxygen atom of the β-carbo group accepts

Scheme IV

$\mathrm{Y}=\mathrm{Ph}, \mathrm{CH}_{3}, \mathrm{OCH}_{3}$

much of the developing negative charge which is ultimately carried away by the leaving halide ion.
Owing to the noninterconvertibility of 2 a and $2 \mathbf{e}$, respectively, to 3 a and 3e, autocatalytically, we suggest another mode of amine attack on the activated allyl halide in the reaction of tert-butylamine and diisopropylamine with the mobile cyano allyl bromide 1 . It is possible that in the more polar solvents, the carbon-bromine bond lengthens at a rate so fast that direct attack of the amine at the allylic carbon becomes a competitive pathway to the well-established $\mathrm{SN} 2^{\prime}$ pathway as described before; see Scheme V.

Experimental Section

Melting points were determined from a Mel-Temp apparatus, and were uncorrected. The infrared spectra were recorded on a PerkinElmer Model 621 spectrophotometer. The proton magnetic resonance spectra were determined from a Varian Model A-60 spectrometer, utilizing tetramethylsilane as an internal standard. Elemental analyses were performed by Micro-Tech Laboratories, Skokie, Ill., or by Chemalytics, Inc., Tempe, Ariz. ${ }^{1} \mathrm{H}$ NMR data obtained in deuteriochloroform are listed in Table I.
Preparation of α-(Bromomethyl)cinnamonitrile (1). To a mixture of $106 \mathrm{~g}(1 \mathrm{~mol})$ of benzaldehyde and 5 ml of $30 \% \mathrm{KOH} /$ MeOH solution in 100 g of tert-butyl alcohol at the temperature of ice was added $106 \mathrm{~g}(2 \mathrm{~mol})$ of acrylonitrile over a period of 1.5 h . The mixture was then stirred at room temperature for 8 h . The viscous solution was acidified with hydrochloric acid to $\mathrm{pH} 2-3$. The solution was diluted with 500 ml of diethyl ether, and was washed repeatedly with water. The ethereal solution was washed with saturated brine and dried over anhydrous sodium sulfate. Removal of the solvent in vacuo yielded a yellow, viscous oil, which was then subjected to vacuum distillation ($0.3-1 \mathrm{mmHg}$). At $120^{\circ} \mathrm{C}$, a colorless oil, which solidified on cooling, was distilled, ir $\nu_{\mathrm{C}=0} 1700 \mathrm{~cm}^{-1}$. Between 134 and $220^{\circ} \mathrm{C}, 148 \mathrm{~g}$ of yellow oil was distilled over, ir $\nu_{\mathrm{C}}-01115 \mathrm{~cm}^{-1}$.
A sample of 25.6 g of the yellow oil obtained in the previous reaction was refluxed with 140 ml of 48% hydrobromic acid and 200 ml of glacial acetic acid for 2 h . The cooled yellow solution was poured into ice water with vigorous stirring. The precipitate thus formed was filtered off, and was washed with a large quantity of water to remove the acid. Recrystallization from light petroleum yielded 19.39 g of 1 as white crystals: $\mathrm{mp} 44-49^{\circ} \mathrm{C}$ (lit. $54-55^{\circ} \mathrm{C}$); ir (KBr) $\nu($ Nujol $) 2225$, $540 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) 4.18$ (s, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Br}$), 7.17 (s, 1 H , benzal proton), $7.25-7.90 \mathrm{ppm}$ (m, 5 H , aromatic protons). A total of 106 g (48%, with respect to the benzaldehyde used) of 1 was obtained for a number of trials under similar conditions.
General Procedure for the Reaction of Amines with 1. A measured quantity of 1 dissolved in a specified quantity of solvent was treated with 2 molar equiv of the appropriate amine. After the reaction was complete the mixture was filtered to remove the amine hydrobromide, the weight of which was determined to estimate the percent yield of the reaction. In case a polar solvent, like chloroform or acetonitrile, was used, the solvent was replaced by an apolar solvent to precipitate the inorganic salt. The product oil was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Upon standing in chloroform for several days the stable product formed and was fully characterized. See Tables I-III for results and data.
Reaction of Diisopropylamine with 1 in Hexane and Then in Acetonitrile. To a solution of $1 \mathrm{~g}\left(4.50 \times 10^{-3} \mathrm{~mol}\right)$ of 1 in 300 ml of n-hexane was added $1.5 \mathrm{~g}\left(1.43 \times 10^{-2} \mathrm{~mol}\right)$ of diisopropylamine. The solution was stoppered and stirred for 12 h . No inorganic salt precipitated, implying that no reaction was taking place. The solution was then refluxed for 11 days and $440 \mathrm{mg}(53 \%)$ of the amine hydrobromide salt was removed by filtration. Removal of the solvent in vacuo yielded a yellow oil, which was immediately identified to be a mixture of $2 \mathbf{e}$ and starting material.
The acetonitrile solution of the above mixture was treated with another 1.5 g of diisopropylamine. The solution was stoppered and stirred for 4 days. The solvent was removed in vacuo. Treatment of the residue with diethyl ether yielded another 380 mg (47%) of amine hydrobromide salt. Removal of the ether in vacuo yielded a yellow oil, which was identified to be a mixture of $2 \mathbf{e}$ and $3 \mathbf{e}$. It was observed that
the absorption in the ${ }^{1} \mathrm{H}$ NMR spectrum corresponding to the vinyl protons of 2 e did not change in intensity after treatment with diisopropylamine the second time.
Attempted Conversion of 2a to 3a. A 70:30 mixture of 2a:3a was allowed to stand in deuteriochloroform for several days. No significant change was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the product mixture. The mixture was then refluxed in chloroform (15 h) and then in acetonitrile (7 h). In neither case could significant changes be observed in the ${ }^{1} \mathrm{H}$ NMR spectrum.

General Procedure for the Amine Exchange Reaction. To a solution of $164 \mathrm{mg}(0.000738 \mathrm{~mol})$ of $2 \mathbf{a}$ in 1.5 ml of carbon tetrachloride was added quickly approximately $2-3$ molar equiv of the appropriate amine. The solution was filtered into a ${ }^{1} \mathrm{H}$ NMR tube. The concentration of the amine could be estimated by the intensity of the ${ }^{1} \mathrm{H}$ NMR signal relative to that of 2a. The reaction was monitored by the relative intensity of the signals corresponding to respectively the vinylic protons of the precursor and the allylic protons of the product. Another tube holding only 2a in carbon tetrachloride was used as a control to the experiment. See Table IV for results and data.
Attempted Reaction of 2e with Diisopropylamine. To a solution of 160 mg (0.00061 mol) of a $30: 70$ mixture of $2 \mathbf{e}$ and $\mathbf{3 e}$ in 30 ml of acetonitrile was added $287 \mathrm{mg}(0.0028 \mathrm{~mol})$ of diisopropylamine. The solution was stoppered and stirred for 13 h . Removal of the solvent and unreacted amine yielded a yellowish oil (quantitative), which was spectrally equivalent to the unreacted precursor.

Attempted Reaction of 2 e with Piperidine. To a solution of 100 $\mathrm{mg}(0.00045 \mathrm{~mol})$ of a $30: 70$ mixture of $2 \mathbf{e}$ and $3 \mathbf{e}$ in 10 ml of benzene was added 360 mg (0.0042 mol) of piperidine. The solution was stoppered and stirred for 13 h . Removal of the solvent and the unreacted amine yielded a yellowish oil (quantitative) which was spectrally equivalent to the unreacted precursor.
Reaction of tert-Butylamine with a Mixture of 2a and 3a in Acetonitrile. To a solution of $220 \mathrm{mg}(0.001 \mathrm{~mol})$ of a mixture of 2 a and $3 \mathbf{a}$ (2a:3a, $70: 30$) in 30 ml of acetonitrile was added 690 mg (0.0094 mol) of tert -butylamine. The solution was stoppered and stirred for 53 h . Significant changes in the ratio of the two isomers were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the worked up material. Under similar conditions, the solution was stirred for another 50 days. Removal of the solvent and excess amine yielded $3 \mathbf{a}$ as a yellow oil $(200 \mathrm{mg}$, 91\%).

A hexane solution of the product was exposed to a stream of hydrogen chloride gas. A white solid was isolated, which on recrystallization from methanol-ether mixture yielded the crystalline amine hydrochloride salt of 3a.

Acknowledgment. This investigation was supported by Grant CA 02931 from the National Cancer Institute of the U.S. Public Health Service.

Registry No.-1, 59728-94-8; 2a, 59728-95-9; 2a HCl, 59728-96-0; 2b, 59728-97-1; 2c, 59728-98-2; 2d, 59728-99-3; 2e, 59729-00-9; 3a, 59729-01-0; 3a HCl, 59729-02-0; 3b, 4933-37-3; 3b HCl, 59729-03-2; 3c, 59729-04-3; 3c picrate, 59729-05-4; 3d, 59729-06-5; 3d picrate, 59729-07-6; 3e, 59729-08-7; 3e picrate, 59729-09-8; benzaldehyde, 100-52-7; acrylonitrile, 107-13-1; tert-butylamine, 75-64-9; piperidine, 110-89-4; morpholine, 110-91-8; diethylamine, 109-89-7; diisopropylamine, 108-18-9.

References and Notes

(1) For the previous paper in this series, see R. J. Murray and N. H. Cromwell, J. Org. Chem., in press. The general title of the series has now been
broadened from "Mobile Keto Allyl Systems" to "Mobile Activated Allyl Systems" to allow coverage of activating groupings other than the keto groups.
(2) R. P. Rebman and N. H. Cromwell, J. Org. Chem., 32, 3830 (1967).
(3) M. C. Eagen and N. H. Cromwell, J. Org. Chem., 39, 911 (1974).
(4) M. C. Eagen and N. H. Cromwell, J. Org. Chem., 39, 3863 (1974).
(5) (a) N. H. Cromwell and E-M. Wu, J. Org. Chem., 33, 1895 (1968); (b) G. Glaros and N. H. Cromwell, ibid., 37, 862 (1972); (c) ibid., 37, 867 (1972).
(6) H. H. Wasserman, B. Suryanarayana, and D. D. Gassetti, J. Am. Chem. Soc., 78, 2808 (1956).
(7) N. H. Cromwell, K. Matsumoto, and A. D. George. J. Org. Chem., 36, 272 (1971).
(8) G. Maury, E-M. Wu, and N. H. Cromwell, J. Org. Chem., 33, 1900 (1968).
(9) A. D. George, E. Doomes, and N. H. Cromwell, J. Org. Chem., 36, 3918 (1971).
(10) Rebman and Cromwell ${ }^{1,11}$ postulated an intramolecular mechanism for the autocatalytic rearrangement of α-(α-tert-butylaminobenzyl)acrylophenone. Doomes, ${ }^{12}$ on the basis of some rough kinetic data, suggested

that the process was not unimolecular. Eagen, ${ }^{13}$ by a crossover experiment, showed that Doomes' suggestion was correct. An equimolar mixture of α-(α-cyclohexylaminobenzyl)-4'-phenylacrylophenone (A) and $\alpha-(\alpha-N$ methylcyclohexylaminobenzyl)acrylophenone (B) was dissolved in chloroform. The rates of rearrangement of A and B, respectively, to their

thermodynamically more stable direct-substitution isomers are somewhat comparable. The solution of $A+B$ was allowed to stand to at room temperature for 72 h . The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture showed four compounds, C, D, E, and F, to be present.
(11) R. P. Rebman and N. H. Cromwell, Tetrahedron Lett., 4833 (1965).
(12) E. Doomes, Ph.D. Thesis, University of Nebraska, 1968.
(13) M. Eagen, Ph.D. Thesis, University of Nebraska, 1972.

Vinyl Carbanions. 2. Simultaneous Hydrogen-Deuterium Exchange and Addition of Ethyl [$\left.{ }^{2} \mathrm{H}\right]$ Alcohol to trans-Cinnamonitrile Catalyzed by Sodium Ethoxide

B. A. Feit,* R. Pazhenchevsky and B. Pazhenchevsky
Department of Chemistry, Tel-Aviv University, Tel-Aviv, Israel
Received February 23, 1976

Abstract

The kinetics of the simultaneous addition of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to trans-cinnamonitrile and the $\mathrm{H}-\mathrm{D}$ exchange at C_{α} catalyzed by sodium ethoxide have been studied. The observed rate equation for the addition is $R=A$ [trans cinnamonitrile] $+B$, where A and B are constants which depend on the initial concentrations of olefin and base. The forward $\left(k_{1}\right)$ and the backward $\left(k_{-1}\right)$ rate constants of the nucleophilic addition step are $(3.72 \pm 0.51) \times 10^{-4}$ l. $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$ and $(9.58 \pm 1.20) \times 10^{4} \mathrm{~s}^{-1}$, respectively. The equilibrium constant for the overall addition reaction is $K=(3.9 \pm 0.2) \times 10^{-2} \mathrm{l} . \mathrm{mol}^{-1}$. The $\mathrm{H}-\mathrm{D}$ exchange is faster than the addition reaction and takes place via the vinyl carbanion derived from the olefin. Cis to trans isomerization occurs during the addition of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to ciscinnamonitrile. Based on kinetic data, it is suggested that this isomerization takes place by an addition-elimination mechanism.

Kinetic studies of the addition of alcohols to activated olefins catalyzed by the derived sodium alkoxides have established that the rate-determining step is a nucleophilic attack of the alkoxide ion on the double bond followed by a fast protonation ${ }^{1-4}$ as follows:

Equilibrium is established if the rate of decomposition of the intermediate carbanion is comparable with the rate of its protonation. This is the case in the addition of alcohols to vinyl sulfones, ${ }^{5}$ to alkyl vinyl ketones, ${ }^{6-9}$ and to β-nitrostyrene. ${ }^{10}$

Rate constants of the rate-limiting step (k_{a}) only and overall equilibrium constants were obtained from kinetic studies of the above-mentioned and some other Michael addition systems. ${ }^{11}$ An appropriate treatment of the kinetic data in the case of the ethoxide-catalyzed addition of ethanol to β-nitrostyrene ${ }^{10}$ made it possible to obtain the values of both k_{a} and k_{-a} as well as the overall equilibrium constant. This approach is being also used in the present work.
An acid-base type reaction may occur in Michael addition reaction systems in which an active olefin having an α-vinyl hydrogen is involved (eq 3). Recent kinetic and stereochemical

studies with β, β-disubstituted olefins have confirmed that vinyl carbanions are intermediates in the base-catalyzed hy-drogen-deuterium exchange of $2,2,4,6,6$-pentamethylcyclohexylineneacetonitrile, ${ }^{12}$ of the corresponding ketone, ${ }^{13}$ and of fluorene-9-ylideneacetonitrile. ${ }^{14}$ Active olefins which are not sterically hindered at C_{β} are subjected to nucleophilic attacks at this position, but vinyl carbanions are also involved in competing base-catalyzed reactions of such olefins. This has been suggested to be the case in the dimerization of acrylic ${ }^{15}$ and crotonic ${ }^{16}$ esters to yield such dimers as $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{COOR}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOR}$ and $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}(\mathrm{COOR})$ $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOR}$, respectively. A vinyl carbanion is also involved in a chain transfer reaction to monomer in the anionic polymerization of acrylonitrile. ${ }^{17}$

The acid-base type equilibrium (eq 3) has not been taken into account in any of the previous kinetic studies of Michael addition reactions. It was the purpose of the present work to study kinetically both the hydrogen-deuterium exchange at C_{α} and the nucleophilic addition reaction with such an olefin where these two may occur simultaneously.

Results and Discussion

The addition of ethyl [$\left.{ }^{2} \mathrm{H}\right]$ alcohol to trans-cinnamonitrile catalyzed by sodium ethoxide was accompanied by a simultaneous hydrogen-deuterium exchange reaction to yield the α-deuterated olefin trans $-\mathrm{PhCH}=\mathrm{CDCN}$. The rate of the exchange reaction was followed by infrared spetroscopy, and the rate of the addition reaction was followed by determined the concentrations of both the total (exchanged and unexchanged) olefin and the addition product by VPC. The rate of addition R_{t} was measured both as $-\mathrm{d}[\mathrm{TCN}] / \mathrm{d} t$ and $\mathrm{d}[$ add $] / \mathrm{d} t$, where [TCN] and [add] are the concentrations at time t of the total olefin and of the addition product, respectively. For each run a plot of R_{t} against [TCN] and against [add] gave straight lines with slopes A and A^{\prime} and intercepts B and B^{\prime}, respectively (Figures 1 and 2). The experimental rate equations are

$$
\begin{gather*}
R_{t}=-\mathrm{d}[\mathrm{TCN}] / \mathrm{d} t=A[\mathrm{TCN}]+B \tag{4}\\
R_{t}^{\prime}=\mathrm{d}[\mathrm{add}] / \mathrm{d} t=A^{\prime}[\text { add }]+B^{\prime} \tag{5}
\end{gather*}
$$

The values of R_{t} and R_{t}^{\prime} for each run are the slopes of the conversion curves at different t values. On integration of eq 4 and 5, eq 6 and 7 are obtained:

$$
\begin{gather*}
{[\mathrm{TCN}]=\frac{\left(A[\mathrm{TCN}]_{\mathrm{e}}+B\right) e^{-A t}-B}{A}} \tag{6}\\
{[\text { add }]=B^{\prime}\left(e^{-A^{\prime} t}-1\right) / A^{\prime}} \tag{7}
\end{gather*}
$$

Using a computer, the best conversion curves were plotted according to eq 6 and 7 , and the values of A, B, A^{\prime}, and B^{\prime} were calculated. The deviations of the measured values of [TCN] from those computed according to eq 6 were small ($\pm 1 \%$) indicating the reliability of the experimental method used. The same deviations for the adduct were somewhat higher ($\pm 3 \%$). Detailed data for some of the kinetic runs are presented in the Experimental Section (Table II). ${ }^{24}$

In view of the evidence presented regarding the formation of vinyl carbanions in nucleophilic addition reactions to activated olefins, ${ }^{12-17}$ the following reaction scheme may represent the ethoxide-trans-cinnamonitrile-ethyl [$\left.{ }^{2} \mathrm{H}\right]$ alcohol system.

Figure 1. Plots of R_{t}, rate of addition of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to trans cinnamonitrile (TCN), against $[\mathrm{TCN}]_{t}: \bullet$, run $10 ; \mathbf{\Delta}$, run 11 .

This scheme takes into account only the nucleophilic addition and the hydrogen-deuterium exchange reactions, assuming that the trans to cis isomerization occurs to a negligible extent. This assumption will be justified later on presenting and discussing the problem of isomerization. The kinetic isotope effect is also being neglected for both the vinyl carbanion formation and the nucleophilic addition reaction. This is justified by the very low isotope effects observed in basecatalyzed hydrogen-isotope exchange in carbon acids. ${ }^{18,19}$ This is also the case, for example, in the hydrogen-deuterium exchange of 2-methyl-3,3-diphenylpropionitrile ${ }^{20}\left(k_{\mathrm{H}} / k_{\mathrm{D}}\right)=$ 2.60), of 2,2-diphenylcyclopropanecarbonitrile ${ }^{20}\left(k_{\mathrm{H}} / k_{\mathrm{D}}=\right.$ 1.50), and of the α, β-unsaturated nitrile $2,2,4,6,6$-pentamethylcyclohexylideneacetonitrile ${ }^{12}\left(k_{\mathrm{H}} / k_{\mathrm{D}}=2.05\right)$. Regarding the nucleophilic addition, it is quite reasonable to assume that the rate constants for this reactior involving either the hydrogen or the deuterium derivatives of the olefin are practically the same.

According to the above reaction scheme, the rates by which

Figure 2. Plots of R_{t}, rate of addition of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to trans cinnamonitrile, against [adduct] ${ }_{t}$, the concentration of the addition product at time $t: \bullet$, run $6 ; \mathbf{\Delta}$, run 7 .
the olefins and adducts react are given by the following equations:

$$
\begin{align*}
-\mathrm{d}[\mathrm{TH}] / \mathrm{d} t=\left(k_{1}+k_{3}\right)\left[\mathrm{EtO}^{-}\right][\mathrm{TH}] & -k_{1}[\mathrm{HC}] \\
& -k_{3}[\mathrm{VC}][\mathrm{EtOH}] \tag{8}
\end{align*}
$$

$$
\begin{align*}
&-\mathrm{d}[\mathrm{TD}] / \mathrm{d} t=\left(k_{1}+k_{3}\right)\left[\mathrm{EtO}^{-}\right][\mathrm{TD}]-k_{-1}[\mathrm{DC}] \tag{9}\\
&-k_{-3}[\mathrm{VC}][\mathrm{EtOD}] \\
&-\mathrm{d}[\mathrm{AA}] / \mathrm{d} t=k_{-2}\left[\mathrm{EtO}^{-}\right][\mathrm{AA}]-k_{2}([\mathrm{EtOD}][\mathrm{HC}] \\
&+[\mathrm{EtOH}][\mathrm{DC}]) \\
&-\mathrm{d}[\mathrm{AB}] / \mathrm{d} t=k_{-2}\left[\mathrm{EtO}^{-}\right][\mathrm{AB}]- k_{2}\left[\mathrm{EtOH}^{-}[\mathrm{HC}]\right. \\
&-\mathrm{d}[\mathrm{AC}] / \mathrm{d} t=k_{-2}\left[\mathrm{EtO}^{-}\right][\mathrm{AC}]-k_{2}[\mathrm{EtOD}][\mathrm{DC}]
\end{align*}
$$

The overall rate of addition of EtOD to trans-cinnamonitrile is given by

$$
\begin{aligned}
R_{t} & =-\mathrm{d}[\mathrm{TCN}] / \mathrm{d} t=-\mathrm{d}[\mathrm{TH}] / \mathrm{d} t-\mathrm{d}[\mathrm{TD}] / \mathrm{d} t \\
& =\left(k_{1}+k_{3}\right)([\mathrm{TH}]+[\mathrm{TD}])\left[\mathrm{EtO}^{-}\right]+k_{1}([\mathrm{HC}]+[\mathrm{DC}])
\end{aligned}
$$

$$
-k_{3}[\mathrm{VC}][\mathrm{S}]
$$

where [TCN] is the total concentration of trans-cinnamonitrile at time t and $[\mathrm{S}]=[\mathrm{EtOH}]+[\mathrm{EtOD}]$. Assuming steady state conditions for the intermediate carbanions, namely $\mathrm{d}[\mathrm{HC}] / \mathrm{d} t=0, \mathrm{~d}[\mathrm{DC}] / \mathrm{d} t=0$, and $\mathrm{d}[\mathrm{VC}] / \mathrm{d} t=0$, the corresponding expressions for the values of [HC], [DC], and [VC] can be derived. By substituting these values in eq 13 the following rate equation is obtained

$$
\begin{align*}
&\left.-\frac{\mathrm{d}[\mathrm{TCN}]}{\mathrm{d} t}=k_{1}[\mathrm{TCN}][\mathrm{EtO})^{-}\right] \\
&-\frac{k_{1} k_{-1}[\mathrm{TCN}]+k_{-1} k_{-2}[\mathrm{add}]}{k_{2}[\mathrm{~S}]+k_{-1}}\left[\mathrm{EtO}^{-}\right] \tag{14}
\end{align*}
$$

Table I. Rate Constants for the Addition of Ethyl [$\left.{ }^{2} \mathrm{H}\right]$ Alcohol to trans-Cinnamonitrile Catalyzed by Sodium Ethoxide at $39{ }^{\circ} \mathrm{C}$

${ }^{a}$ The average values of the rate constants are $k_{1}=(3.72 \pm 0.51) \times 10^{-4} 1 . \mathrm{mol}^{-1} \mathrm{~s}^{-1} ; k^{\prime}{ }_{1}=(4.75 \pm 0.70) \times 10^{-4} \mathrm{l}^{2} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} ; k_{-1}=$ $(9.58 \pm 1.20) \times 10^{4} \mathrm{~s}^{-1}: k^{\prime}{ }_{-1}=(12.8 \pm 3.20) \times 10^{4} \mathrm{~s}^{-1}$.
where [add] is the total concentration of the addition products at time $t:[$ add $]=[\mathrm{AA}]_{t}+[\mathrm{AB}]_{t}+[\mathrm{AC}]_{t}$. Since an addition product is formed, it may be assumed that $k_{2}[\mathrm{~S}]>k_{-1}$. Taking this into account and substituting [TCN] $]_{0}-[T C N]$ for [add], eq 14 changes into a rate equation which is similar to the experimental rate eq 4

$$
\begin{align*}
-\frac{\mathrm{d}[\mathrm{TCN}]}{\mathrm{d} t}=\left(k_{1}+\frac{k_{-1} k_{-2}}{k_{2}[\mathrm{~S}]}\right) & {\left[\mathrm{EtO}^{-}\right][\mathrm{TCN}] } \\
& -\frac{k_{-1} k_{-2}}{k_{2}[\mathrm{~S}]}\left[\mathrm{EtO}^{-}\right][\mathrm{TCN}]_{0} \tag{15}
\end{align*}
$$

where the constants A and B of eq 4 are given by

$$
\begin{gather*}
A=\left(k_{1}+\frac{k_{-1} k_{-2}}{k_{2}[\mathrm{~S}]}\right)\left[\mathrm{EtO}^{-}\right] \tag{16}\\
B=-k_{-1} k_{-2}\left[\mathrm{EtO}^{-}\right][\mathrm{TCN}]_{0} / k_{2}[\mathrm{~S}] \tag{17}
\end{gather*}
$$

A rate equation (eq 18) for the formation of the addition product can be derived in a similar way from the general reaction scheme:

$$
\begin{align*}
\mathrm{d}[\text { add }] / \mathrm{d} t=-\left(k_{1}+k_{-1} k_{-2} / k_{2}[\mathrm{~S}]\right) & {\left[\mathrm{EtO}^{-}\right][\mathrm{add}] } \\
& +k_{1}\left[\mathrm{EtO}^{-}\right][\mathrm{TCN}]_{0} \tag{18}
\end{align*}
$$

This rate equation is similar to the experimental rate eq 5 where A^{\prime} and B^{\prime} are therefore given by

$$
\begin{gather*}
A^{\prime}=-\left(k_{1}+k_{-1} k_{-2} / k_{2}[\mathrm{~S}]\right)\left[\mathrm{EtO}^{-}\right] \tag{19}\\
B^{\prime}=k_{1}\left[\mathrm{EtO}^{-}\right][\mathrm{TCN}]_{0} \tag{20}
\end{gather*}
$$

Since the value of A, B, A^{\prime}, and B^{\prime} were obtained experimentally for each kinetic run, the values of k_{1} and k_{-1} could be calculated using eq 21 and 22 , respectively, which were

$$
\begin{align*}
& k_{1}=\left(A+\frac{B}{[\mathrm{TCN}]_{0}}\right) /\left[\mathrm{EtO}^{-}\right]=B^{\prime}!\left[\mathrm{EtO}^{-}\right][\mathrm{TCN}]_{0} \tag{21}\\
& k_{-1}=-k_{2} B[\mathrm{~S}] / k_{-2}\left[\mathrm{EtO}^{-}\right][\mathrm{TCN}]_{0} \\
& =k_{2}[\mathrm{~S}]\left(A^{\prime}+\frac{B}{[\mathrm{TCN}]_{0}}\right) / k_{-2}\left[\mathrm{EtO}^{-}\right] \tag{22}
\end{align*}
$$

derived from eq $16,17,19$, and 20 . It can be shown that the ratio k_{2} / k_{-2} needed for these calculations is given by k_{2} / k_{-2} $=K_{\mathrm{a}(\mathrm{EtOD})} / K_{\mathrm{a}\left(\mathrm{PhCH}(\mathrm{OEt}) \mathrm{CH}_{2} \mathrm{CN}\right) \text {. Since } K_{\mathrm{a}(\mathrm{EtOD})} \approx 10^{-18} \text { and } . ~}^{\text {a }}$
 trile ($\mathrm{p} K_{\mathrm{a}}=10^{-25}$), a value of $k_{2} / k_{-2} \approx 10^{7}$ is obtained. The calculated values of k_{1} and k_{-1} for each run (Table I) are quite constant. This indicates that the reaction scheme and the derived rate equations (eq 15 and 18) indeed represent correctly the presently studied addition reaction of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to trans-cinnamonitrile. Experimentally found values of A, B, and B^{\prime} and known concentrations of reagents appear in eq 21 . As a result, the calculated values of k_{1} should be quite accurate. k_{-1} is not as accurate as k_{1} because only an approximate value of k_{2} / k_{-2} is available.

Four distinct conditions may be associated with the suggested reaction scheme, from which rate eq 15 has been derived, namely (a) $k_{1} \gg k_{-1}, k_{2} \gg k_{-2}$; (b) $k_{1} \gg k_{-1}, k_{2} \ll k_{-2}$; (c) $k_{1} \ll k_{-1}, k_{2} \gg k_{-2}$; (d) $k_{1} \ll k_{-1}, k_{2} \ll k_{-2}$. If condition a holds, the result will be that $k_{1} \gg k_{-1} k_{-2} / k_{2}[\mathrm{~S}]$ and $k_{1}\left[\mathrm{EtO}^{-}\right][\mathrm{TCN}] \gg B$, so that rate eq 15 will change to a sec-ond-order rate equation $R=k_{1}\left[\mathrm{EtO}^{-}\right][\mathrm{TCN}]$, which is different from the observed rate eq 4. Condition a was found to apply in case of the addition of methanol and/or ethanol to acrylontrile, ${ }^{2,4}$ acrylic esters, ${ }^{4}$ and methacrylonitrile, ${ }^{4}$ catalyzed by the derived sodium alkoxides. Conditions b and d cannot be applied at all since k_{2} should be much larger than k_{-2} as $\mathrm{p} K_{\mathrm{a}(\mathrm{AA})} \gg \mathrm{p} K_{\mathrm{a}(\mathrm{EtOD})}$. As a consequence, condition c is the one which may hold for this reaction system. It requires that k_{1} should be much smaller than k_{-1}, which is indeed the case.

The addition of ethyl alcohol to acrylonitrile catalyzed by sodium ethoxide was almost quantitative and much faster (k_{1} $=11.7 \times 10^{-2} 1 . \mathrm{mol}^{-1} \mathrm{~s}^{-1}$ at $\left.25^{\circ} \mathrm{C}\right)^{4}$ than the presently investigated addition of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to trans-cinnamonitrile $\left[k_{1}=(3.72 \pm 0.51) \times 10^{-4} \mathrm{l}\right.$. $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$]. This is of course due to the fact that $k_{-1} \gg k_{1}\left(k_{1} / k_{-1} \approx 10^{-8}\right)$ resulting from the phenyl group at C_{β}. However, such steric hindrance does not necessarily lead to k_{-1} being larger than k_{1}. The reverse order was found for the addition of ethyl alcohol to β-ni-
trostyrene catalyzed by sodium ethoxide $\left(k_{1} / k_{-1} \approx 10^{6}\right) .{ }^{10}$ indicating that the electronegativity of the substituent at C_{α} also affects this ratio to a large extent. One can, in fact, predict the relation between k_{1} and k_{-1} for such equilibrium nucleophilic additions of BH to activated olefins catalyzed by the conjugate base, by comparing the acidities of BH and of the addition product. It is obvious, in line with the abovementioned conditions associated with the reaction scheme, that if the addition product is more acidic than $\mathrm{BH}\left(k_{2} \gg k_{-2}\right)$ k_{1} should be larger than k_{-1}, and if the reverse is true ($k_{2} \gg$ k_{-2}), k_{1} should be smaller than k_{-1}. In accordance with these considerations, it was found for the addition of ethyl alcohol to β-nitrostyrene ${ }^{10}$ (for which $k_{2} \ll k_{-2}$) that $k_{1} \gg k_{-1}$.
The equilibrium concentrations of the addition product and of trans-cinnamonitrile are given by [add] ${ }_{e q}=B^{\prime} / A^{\prime}$ and $[\mathrm{TCN}]_{\mathrm{eq}}=B / A$, respectively (eq 4 and 5). The equilibrium
trans $-\mathrm{Ph}+\mathrm{CH}=\mathrm{CH}+\mathrm{CN}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OD}$

$$
\stackrel{ }{\mathrm{K}\left(\mathrm{EtO}^{-}\right)} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}+\mathrm{CH}(\mathrm{Ph})+\mathrm{CH}_{2} \mathrm{CN}
$$

constant K for the overall addition reaction (eq 23) is given by

$$
\begin{equation*}
K=[\mathrm{add}]_{\mathrm{eq}} /[\mathrm{TCN}]_{\mathrm{eq}}[\mathrm{~S}]=\mathrm{A}^{\prime} \mathrm{B}^{\prime} / \mathrm{A}^{\prime} \mathrm{B}[\mathrm{~S}] \tag{24}
\end{equation*}
$$

By substituting the expressions of A, B, A^{\prime}, and B^{\prime} (as derived from eq $17,18,20$, and 21) in eq 24 this equation is changed to

$$
\begin{equation*}
K=k_{1} k_{2} / k_{-1} k_{-2} \tag{25}
\end{equation*}
$$

The value of $K=(3.9 \pm 0.2) \times 10^{-2} \mathrm{l} . \mathrm{mol}^{-1}$ obtained from eq 24 is relatively more accurate than the value of $K=(4.1 \pm 0.7)$ $\times 10^{-2} 1 \mathrm{l} \mathrm{mol}^{-1}$ obtained from eq 25 . This is due to the fact that A, A^{\prime}, B, and B^{\prime} are experimentally obtained data, whereas some inaccuracy is involved in the values of k_{-1} and k_{2} / k_{-2}.
Hydrogen-Deuterium Exchange. As mentioned, a simultaneous hydrogen deuterium exchange of the α-vinyl hydrogen occurred during the addition of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to trans-cinnamonitrile catalyzed by sodium ethoxide. Two alternative pathways are possible for this exchange, namely via the derived vinyl carbanion ${ }^{12-14}$ or by an addition-elimination mechanism (see scheme). The exchange reaction is faster than the addition reaction, as can be seen from the corresponding conversion curves (Figure 3). ${ }^{24}$ This by itself cannot be regarded as evidence in favor of the vinyl carbanion mechanism. It is obvious that such a behavior may also result from an addition-elimination mechanism, only if the addition product is unstable and decomposes at a relatively high rate to trans -cinnamonitrile. This, in turn, can be the case only if the condition $k_{1} \ll k_{-1} k_{-2} / k_{2}[\mathrm{~S}]$ holds for the rate eq 26.

$$
\begin{equation*}
-\mathrm{d}[\mathrm{TCN}] / \mathrm{d} t=\left(k_{1}[\mathrm{TCN}]-k_{-1} k_{-2}[\mathrm{add}] / k_{2}[\mathrm{~S}]\right)\left[\mathrm{EtO}^{-}\right] \tag{26}
\end{equation*}
$$

Equation 26 is obtained from eq 15 by substituting [add] = $[T C N]_{0}-[T C N]$. It follows from eq 17 that $k_{-1} k_{-2} / k_{2}[\mathrm{~S}]=$ $-B /[\mathrm{TCN}]_{0}\left[\mathrm{EtO}^{-}\right]$, so that the value of $k_{-1} k_{-2} / k_{2}[\mathrm{~S}]$ can be calculated for each run. It was found by this way that $k_{-1} k_{-2} / k_{2}[\mathrm{~S}] \approx k_{1}$ (see Table I), which means that the above-mentioned condition does not apply for the exchange reaction. It should, therefore, be concluded that the hydro-gen-deuterium exchange in the presently investigated system and its relatively higher rate as compared to that of the addition reaction is not due to an addition-elimination mechanism, but to the alternative vinyl carbanion mechanism. This depression of the addition-elimination mechanism is due to the combined effects of the steric hindrance to the nucleophilic attack ($k_{1} \ll k_{-1}$, see Table I), to the fact that $k_{2} \gg k_{-2}$, and to the lower value of k_{-2} as compared to k_{3} (which is assumed by us to be so).

Isomerization. Isomerization was observed while carrying out kinetic rate measurements of the addition of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to cis-cinnamonitrile. In a typical run, starting with the cis isomer, the percentage of trans-cinnamonitrile in the mixture of the unreacted cis and trans isomers increased gradually up to a value of 55% at equilibrium (Figure 4). ${ }^{24}$ It has been shown that vinyl carbanions derived from α, β-unsaturated nitriles have a very high configurational stability. ${ }^{12-14}$ It may be therefore assumed that this cis to trans isomerization does not occur via the derived vinyl carbanion (eq 27) but rather by an addition-elimination mechanism (eq 28).

The isomerization involves an inversion of the carbanionic intermediate and rotation of the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond (eq 29). The

activation energy for the inversion of the carbanion is very low ($\sim 10^{-2} \mathrm{kcal} / \mathrm{mol}$). ${ }^{21}$

It is obvious that the conformational equilibrium of the anionic intermediates a and b is highly in favor of b. In accordance with this, very small amounts of the cis isomer were detected while measuring the rates of addition of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to trans-cinnamonitrile. At equilibrium the mixture of olefins consisted only of $4-6 \%$ of the cis isomer, its concentration being practically constant for each run during the whole reaction period (Table II). ${ }^{24}$

The transformation of the carbanionic intermediate a to b may be regarded as practically irreversible so that the backward reaction (k_{-4}) of (HC) or (DC) (eq 28) to the cis isomer is assumed to be negligible. The rate of the nucleophilic addition involving cis-cinnamonitrile (CCN) should therefore be given by

$$
\begin{equation*}
-\mathrm{d}[\mathrm{CCN}] / \mathrm{d} t=k_{4}\left[\mathrm{EtO}^{-}\right][\mathrm{CCN}] \tag{30}
\end{equation*}
$$

A detailed representative kinetic run is given in Table II. ${ }^{24}$ First-order rate plots of $\log [\mathrm{CCN}]_{t} /[\mathrm{CCN}]_{0}$ against t yielded straight lines in all cases studied (Figure 5). ${ }^{24}$ The secondorder rate constants were determined by dividing the pseudo-first-order rate constants by base concentration.

It may be argued that the trans olefin does indeed isomerize to the cis olefin, but that the very minor accumulation of the cis isomer is due to its faster consumption in the addition reaction, as compared to that of the trans olefin. This, however, is not the case as is evident from the fact that the second-order rate constants for the nucleophilic attack step of the ethoxide anion on the cis- and on the trans-cinnamonitrile are about the same: $k_{4} \approx 3.50 \times 10^{-4} 1 . \mathrm{mol}^{-1} \mathrm{~s}^{-1}$ and $k_{1}=(3.72 \pm 0.51)$ $\times 10^{-4} \mathrm{l} . \mathrm{mol}^{-1} \mathrm{~s}^{-1}$.

Experimental Section

The infrared spectra were obtained with a Perkin-Elmer Model 257 spectrophotometer. NMR spectra were recorded on a JEOL 60 MHz spectrometer. VPC measurements were done on a Varian Aerograph Model 1800 gas chromatograph. Mass spectra were recorded on a Hitachi Perkin-Elmer Model RMV-6 (70 eV) mass spectrometer.

Materials. A mixture of cis- and trans-cinnamonitrile was synthesized ${ }^{22}$ and separated by distillation on a spinning band column. The cis and trans isomers were each obtained at 98% purity (VPC). Absolute dry ethyl [$\left.{ }^{2} \mathrm{H}\right]$ alcohol (Miles-Yeda), 99.9% isotopically pure, was used. Ethanolic sodium ethoxide solutions were prepared by adding sodium metal to ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol under reflux and nitrogen. The base concentration was determined by titration with hydrochloric acid. Liquid materials and solutions were kept under pure nitrogen in flasks fitted with self-sealing rubber caps. Aliquot portions were removed from these flasks with syringes by applying nitrogen pressure.

Kinetic Runs. The reactions of trans-cinnamonitrile with ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol catalyzed by sodium ethoxide were carried out in a $150-\mathrm{ml}$ flask connected to high vacuum and nitrogen lines. The flask was fitted with a self-sealing rubber cap through which liquids were introduced by syringes. The system was dried, evacuated, and flushed with dry nitrogen prior to the introduction of solvent and reactants. The required amounts of cinnamonitrile and ethyl [$\left.{ }^{2} \mathrm{H}\right]$ alcohol were introduced into the flask which was then immersed in a constanttemperature bath at $(39 \pm 0.5)^{\circ} \mathrm{C}$. A solution of sodium ethoxide in ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol was then introduced and time recorded. Portions of the homogeneous mixture were withdrawn at measured intervals through a capillary stopcock, by applying a nitrogen pressure. The samples withdrawn were quenched with excess acetic acid and subjected to quantitative VPC and ir measurements. Some representative results of kinetic rate measurements of the addition reaction are presented in Table II. ${ }^{24}$ The kinetic rate measurements of the addition of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to cis-cinnamonitrile and its simultaneous isomerization to the trans isomer were followed by VPC.

Quantitative Ir Analysis. The baseline density method ${ }^{23}$ was used to determine the percentage of deuterium (\% D) in the samples
withdrawn from the reaction mixture. The ir spectrum of each of several mixtures composed of weighted amounts of α-deuterated and nondeuterated trans-cinnamonitrile was recorded using no solvent in sodium chloride cells (0.025 cm thickness). The transmittance T at $975 \mathrm{~cm}^{-1}$ (due to the $\mathrm{C}=\mathrm{CH}$ bond) and the transmittance T^{\prime} at 955 cm^{-1} (due to the $\mathrm{C}=\mathrm{CD}$ bond) were determined. The \% D of each of the same samples was determined from their mass spectra. A standard curve for the quantitative ir analysis was prepared by plotting $\log T / T^{\prime}$ against \% D. Solvents (ethyl [$\left.{ }^{2} \mathrm{H}\right]$ alcohol and acetic acid) were evaporated from each of the quenched samples withdrawn from the reaction mixture and the residue was distilled under vacuum into a cooled trap. This distillate consisted of a mixture of the addition product of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to trans-cinnamonitrile and the α-deuterated and nondeuterated olefins. The ir spectrum of the liquid was recorded, $\log T / T^{\prime}$ determined, and the \% D then directly read from the standard curve.

Registry No.-Ethyl [$\left.{ }^{2} \mathrm{H}\right]$ alcohol, 925-93-9; trans-cinnamonitrile, 1885-38-7; sodium ethoxide, 141-52-6; cis-cinnamonitrile, 24840-05-9.

Supplementary Material Available. Figures 3, 4, and 5 and Table II describing the addition of ethyl $\left[{ }^{2} \mathrm{H}\right]$ alcohol to trans- and cis-cinnamonitrile (4 pages). Ordering information is given on any current masthead page.

References and Notes

(1) C. A. Fyfe, "The Chemistry of the Hydroxyl Group", S. Patai, Ed., Interscience. New York. N.Y., 1971, p 62.
(2) B. A. Feit and A. Zilkha, J. Org. Chem., 28, 3245 (1963).
(3) R. N. Ring, G. G. Tesoro, and R. R. Moore, J. Org. Chem., 32, 1091 (1967).
(4) B. A. Feit and Z. Bigon. J. Org. Chem., 34, 3942 (1969).
(5) W. G. Davies, E. W. Hardisty, T. P. Nevell, and R. H. Peters, J. Chem. Soc. B, 998 (1970).
(6) N. Ferry and F. McQuillin, J. Chem. Soc., 103 (1962).
(7) P. Chamberlain and G. H. Whitham, J. Chem. Soc. B, 1131 (1969).
(8) R. Lutt, S. Delattre, and J. Basso, C. R. Acad. Sci., Ser. C. 271, 1623 (1970).
(9) R. Luft, S. Delattre, and J. E. Armando, Bull. Soc. Chim. Fr., 1317 (1971).
(10) B. A. Feit and L. Bohor, J. Chem. Soc., Perkin Trans. 2, 1823 (1974).
(11) S. Patai and Z. Rappaport, "The Chemistry of Alkenes', S. Patai, Ed., Interscience, New York, N.Y., 1964, p 469.
(12) H. M. Walborsky and L. M. Turner, J. Am. Chem. Soc., 94, 2273 (1972).
(13) J. F. Arnett and H. M. Walborsky, J. Org. Chem., 37, 3678 (1972).
(14) B. A. Feit, L. Bohor, and S. Rubinraut, J. Chem. Soc., Perkin Trans. 2, 253 (1976).
(15) B. A. Feit, Eur Polym. J., 3, 523 (1967).
(16) J. Shabtai and H. Pines. J. Org. Chem., 30, 3854 (1965).
(17) B. A. Feit and A. Zilkha, J. Appl. Polym. Sci., 7, 287 (1963).
(18) D. J. Cram and L. Gosser, J. Am. Chem. Soc., 85, 3696 (1963).
(19) R. Stewart, J. P. O'Donell, D. J. Cram, and B. Rickborn, Tetrahedron, 18, 917 (1962).
(20) H. M. Walborsky and J. M. Motes, J. Am. Chem. Soc., 92, 2445 (1970).
(21) G. W. Koeppl, D. S. Sagatys, G. S. Krishnamurthy, and S. I. Miller, J. Am. Chem. Soc., 89, 3396 (1967).
(22) J. Goshes, Bull. Soc. Chim. Belg., 41, 477 (1932)
(23) C. N. R. Rao in "Chemical Applications of Infrared Spectroscopy", Academic Press, New York, N.Y., 1963, p 538.
(24) See paragraph at end of paper regarding supplementary material.

Regioselective Nucleophilic Addition to 3,4-Lutidine

Robert E. Lyle* and Daniel L. Comins
Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824

Received March 24, 1976

Abstract

The usual orientation of nucleophilic addition at the 2 position of a 3 -alkylpyridine can be changed by increasing the steric requirements of the nitrogen substituent. Thus the addition of phenylmagnesium bromide to the alkyl chloroformate ester salts of 3,4 -lutidine is regioselective giving up to 90% addition of the aryl group at the 6 position. The large steric requirements of the 1-phenoxycarbonyl group or an ortho-substituted phenyl Grignard reagent gave 95% or greater rezioselectivity of reaction at the less hindered α position of the 3,4 -lutidine salt.

The reactions of nucleophiles with pyridines and pyridine derivatives may occur by addition at the 2,4 , or 6 position of the ring. ${ }^{1}$ When the nucleophile is an organometallic reagent
the addition usually takes place adjacent to the nitrogen, at the 2 or 6 positions, ${ }^{2}$ and with the unsymmetrical ring having a 3 -alkyl group, the addition is primarily at the 2 position.

Table I

Compd	R^{\prime}	Ar	4/5	Overall yield, \%	Solvent
	$\mathrm{CH}_{3} \mathrm{CH}_{2}$			31	Ether
b	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{C}_{6}^{6} \mathrm{H}_{5}^{5}$	$75 / 25$	27	THF
c	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$90 / 10$	32	Ether
d	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	92/8	35	THF
e	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	62/38	40	THF
f	$\mathrm{C}_{6} \mathrm{H}_{5}$	$p-\mathrm{ClC}_{6} \mathrm{H}_{6}$	95/5	55	THF
g	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$95 / 5$	46	THF
h	$\mathrm{C}_{6} \mathrm{H}_{5}$	$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$>95{ }^{\text {a }}$	56	THF

${ }^{a}$ Only a trace of 5 could be detected in the NMR spectrum.

Thus the reactions of phenyllithium with 3 -picoline, ${ }^{3} 3$ -alkyl-1-ethoxypyridinium bromides with Grignard reagents, ${ }^{4}$ and 3,4-lutidine methiodide with benzylmagnesium chlori$\mathrm{de}^{2 c, 5}$ all give as the sole or major product compounds resulting from addition of the organometallic reagent at the 2 position. This unexpected regiospecificity has been rationalized as resulting from an "ortho" effect of the 3-alkyl group probably related to London forces. ${ }^{3}$

The requirement for a series of 2 -aryl-4,5-lutidines for a synthetic problem in this laboratory would be facilitated if the regiospecificity of the addition of an organometallic reagent to a 3,4-lutidine derivative could be controlled to give predominently reaction at the less hindered, 6 position. To make use of this steric factor to govern the regiospecificity of the nucleophilic addition it was evident from the literature that a group with large steric requirements would have to be introduced on the nitrogen. Since the pyridines were the desired product, the nitrogen substituent must be easily lost in the aromatization of the intermediate dihydropyridine. The activation of the pyridine ring to reaction with a Grignard reagent by salt formation with a chloroformate, recently reported by Fraenkel and co-workers ${ }^{6}$ with 4 -substituted pyridines, seemed to provide a possible method for controlling the regiospecificity.

The steric requirements of the nitrogen substituent were varied by changing the nature of the alkyl group of the ester of the chloroformate, and the various 1-alkoxycarbonyl3,4 -lutidinium salts (1) were treated with an aryl Grignard reagent. The NMR spectrum of the mixture of 1 -alkoxycar-bonyl-2-aryl-1,2-dihydro-3,4-lutidine (3) and 1 -alkoxycar-bonyl-2-aryl-1,2-dihydro-4,5-lutidine (2) was not resolved sufficiently to allow analysis of the product. Thus aromatization of the mixture by heating with sulfur gave the pyridines 4 and 5 which could be analyzed by the NMR. The results of the study are given in Table I.

Results and Discussion

The reaction of 3,4-lutidine with the chloroformates gave the salts which in turn were treated with a Grignard reagent to give a mixture of dihydropyridines (2 and 3). Except for the product from the reaction of p-chlorophenylmagnesium bromide and the phenyl chloroformate salt of 3,4-lutidine, which was largely the solid 1 -phenoxycarbonyl-2- p-chloro-phenyl-4,5-dimethyl-1,2-dihydropyridine ($\mathbf{2 f}$), the oily mixtures of dihydropyridines were not analyzed. The products
were aromatized by heating with sulfur rather than by reaction with n-butyllithium, the procedure previously described, ${ }^{6}$ since the former procedure is more convenient fo: preparative scale reactions.

The reactions of unhindered aryl Grignard reagents with the lutidine salts from ethyl and isobutyl chloroformate, alkyl groups with no branching near the carbonyl group, gave significant amounts of reaction at the 2 position of the pyridine ring ($\mathbf{l} \mathbf{a}, \mathbf{b}, \mathbf{e}$). The alkoxycarbonyl salts of 3,4 -lutidine (1) gave a much greater ratio of addition of the aryl Grignard reagent at the 6 position than did other derivatives of 3,4 -lutidine or the base itself. An increase in the steric requirements of the ester ($\mathbf{l c}, \mathbf{d}, \mathbf{f}$) or in the Grignard reagent (\mathbf{g}) gave much greater regioselectivity with nearly exclusive reaction at the 6 position. Thus with the hindered Grignard reagent, o-tolylmagnesium bromide, even the smallest ester, ethoxycarbonyllutidinium salts, gave nearly exclusively a single isomer. This orientation is particularly noteworthy when compared with the reaction of o-tolyllithium or o-ethylphenyllithium with 3-picoline which was reported to give about 95% addition at the 2 position. ${ }^{7}$ Similar high regiospecificity was achieved with any aryl Grignard reagent with the phenyl chloroformate salt of $3,4-$ lutidine.

These results clearly show that orientation of nucleophilic arylation of 3 -alkylpyridines can be controlled to give substitution at the position ortho to the alkyl group using the base or by using our procedure to give substitution "para" to the alkyl substituent.

Experimental Section

Melting points were determined using a Thomas-Hoover capillary melting point apparatus or a Mel-Temp apparatus and were not corrected for thermometer stem exposure. Elemental analyses were determined using an F and M Model $185 \mathrm{C}, \mathrm{H}$, and N analyzer. Infrared spectra were determined using Perkin-Elmer Model 137 or 337 spectrometers with samples prepared as mulls or KBr pellets. The nuclear magnetic resonance spectra were determined using a JEOL Model MH-100 spectrometer.

2-Aryl-3,4- and -4,5-dimethylpyridines (4 and 5). A solution of 3,4-lutidine ($5.36 \mathrm{~g}, 0.05 \mathrm{~mol}$) in 150 ml of dry THF (ether) under nitrogen was cooled in a carbon tetrachloride-dry ice bath. An alkyl chloroformate (0.05 mol) was added dropwise over 5 min to the stirred solution, forming a white precipitate. An aryl Grignarc reagent (0.06 mol) in 55 ml of THF (ether) was then added dropwise at such a rate as not to allow the temperature to rise above $0^{\circ} \mathrm{C}$. After the addition was completed, the mixture was stirred at $0-5^{\circ} \mathrm{C}$ (ice bath) for 1 h and hydrolyzed with 50 ml of 20% ammonium chloride sol ation. The or-
ganic layer was washed with $50-\mathrm{ml}$ portions of $5 \% \mathrm{NaOH}$, water, 5% HCl , water, and brine, and then was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. Evaporation of the solvent gave yellow oils as a residue wioh were treated with 1 equiv of sublimed sulfur at $190-200^{\circ} \mathrm{C}$ for 45 min . The reaction mixture was cooled, dissolved in 150 ml of ether, and extracted with three $50-\mathrm{ml}$ portions of 10% hydrochloric acid. The acid extracts were washed with 50 ml of ether, made basic with $20 \% \mathrm{NaOH}$, and extracted with four $50-\mathrm{ml}$ portions of ether. The organic layer was washed with brine and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The solution was filtered and concentrated and the residue was distilled, giving a mixture of 2 -aryl-3,4-dimethylpyridine (5) and 2-aryl-4,5-dimethylpyridine (4). The percentages of the isomeric pyridines 4 and 5 were determined from the NMR spectrum of the mixture. The combined quantities of 4 and 5 were given from the integration of the signcl for the α protons which were accidentally identical at $\delta 8.54$ for $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$ or $p-\mathrm{ClC}_{6} \mathrm{H}_{4}$ or at $\delta 8.64$ for $\mathrm{Ar}=o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$. The relative amount of 5 in the mixture was obtained from the integration of the signal for the 5 proton, a doublet at $\delta 7.14$ for $\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$ or $o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$ or at $\delta 7.08$ for Ar $=\mathrm{C}_{6} \mathrm{H}_{5}$.

1-Phenoxycarbonyl-2-p-chlorophenyl-4,5-dimethyl-1,2-dihydropyridine (2f). A solution of 3,4 -lutidine ($10.71 \mathrm{~g}, 0.1 \mathrm{~mol}$) in 200 ml of dry THF under nitrogen was cooled in a carbon tetrachlo-ride-dry ice bath. Phenyl chloroformate $(15.66 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added dropwise over 5 min to the stirred solution giving a white precipitate. A solution of p-chlorophenylmagnesium bromide (0.12 mol) in 100 ml of THF was added dropwise at a rate which kept the temperature below $0^{\circ} \mathrm{C}$. After the addition was completed, the mixture was stirred at $0-5^{\circ} \mathrm{C}$ (ice bath) for 1 h and then was hydrolyzed with 100 ml of $20 \% \mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was washed with 50 ml of 5% NaOH solution and 50 ml of saturated brine solution and then was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporated. The residual yellow oil crystallized on standing under pentane to give $25.7 \mathrm{~g}(75 \%)$ of $\mathbf{2 f}$ as a light yellow solid. The product was recrystallized twice from isopropyl alcohol to give an analytical sample of 2f: mp $111-114{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.08-7.80 (m, 9 H$), 6.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.03(\mathrm{~d}, 1 \mathrm{H}), 5.68(\mathrm{~d}, 1 \mathrm{H}), 1.70-$ 2.08 ($2 \mathrm{~s}, 6 \mathrm{H}$); ir (KBr) $1705 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClNO}_{2}$: C, $70.69 ; \mathrm{H}, 5.34 ; \mathrm{N}, 4.12$. Found: C , 70.95; H, 5.26; N, 4.07.

2-Phenyl-4,5-dimethylpyridine (4d). A solution of 3,4-lutidine $(5.36 \mathrm{~g}, 0.05 \mathrm{~mol})$ in 150 ml of dry THF under nitrogen was cooled in a carbon tetrachloride-dry ice bath. Phenyl chloroformate (7.83 g , 0.05 mol) was added dropwise over 5 min to the stirred solution, forming a white precipitate. A solution of phenylmagnesium bromide (0.06 mol) in 55 ml of THF was added dropwise at a rate to keep the temperature below $0^{\circ} \mathrm{C}$. After the addition was complete, the mixture was stirred at $0-5^{\circ} \mathrm{C}$ (ice bath) for 1 h and then was hydrolyzed with 50 ml of $20 \% \mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was washed with $50-\mathrm{ml}$ portions of $5 \% \mathrm{NaOH}$, water, $5 \% \mathrm{HCl}$, water, and brine, and then was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The mixture was filtered and evaporated to yield 12.32 g of a yellow oil. The crude yellow oil was treated with sublimed sulfur ($1.29 \mathrm{~g}, 40.37 \mathrm{mmol}$) at $190-200^{\circ} \mathrm{C}$ for 45 min . The reaction mixture was cooled, dissolved in 150 ml of ether, stored over sodium hydroxide pellets overnight, and filtered. The filtrate was washed with 50 ml of 10% sodium hydroxide and 50 ml of water, and was extracted with three $50-\mathrm{ml}$ portions of 10% hydrochloric acid. The acid extracts were washed with 50 ml of ether, made basic with 20% sodium hydroxide and extracted with four $50-\mathrm{ml}$ portions of ether. The organic layer was washed with water and brine and was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The solution was filtered, concentrated, and distilled, giving $3.23 \mathrm{~g}(35 \%)$ of 4 d as a light yellow oil: bp $117-120{ }^{\circ} \mathrm{C}(0.35 \mathrm{~mm})$; picrate mp $203-204^{\circ} \mathrm{C}$ [lit. $.^{8} \mathrm{bp} 146-150^{\circ} \mathrm{C}(6 \mathrm{~mm})$, picrate mp $202-203{ }^{\circ} \mathrm{C}$]; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.28(\mathrm{~m} .2 \mathrm{H}), 7.44-7.70(\mathrm{~m}, 4 \mathrm{H})$, 2.16 (s, 6 H).

2-p-Chlorophenyl-4,5-dimethylpyridine (4f). A mixture of 15.0
$\mathrm{g}(44.14 \mathrm{mmol})$ of crude 2 f and $1.27 \mathrm{~g}(39.73 \mathrm{mmol})$ of sublimed sulfur was heated with stirring at $190-200^{\circ} \mathrm{C}$ for 45 min . The reaction mixture was cooled, dissolved in 150 ml of ether, and placed over sodium hydroxide pellets overnight. The solution was filtered and washed with 50 ml of 20% sodium hydroxide solution and 50 ml of water. The solution was extracted with three $50-\mathrm{ml}$ portions of 10% hydrochloric acid. The acid extracts were filtered, washed with 25 ml of ether, made basic with 20% sodium hydroxide, and extracted with four $50-\mathrm{ml}$ portions of ether. The ether extracts were washed with saturated brine solution, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and evaporated to give a brown solid. Distillation of the solid (bp $125-130^{\circ} \mathrm{C}, 0.06 \mathrm{~mm}$) yielded $6.9 \mathrm{~g}(72 \%)$ of $\mathbf{4 f}$ as a light yellow solid. The solid was recrystallized twice from hexane-Norite to give 4 f as white crystals: $\mathrm{mp} 61.5-62^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, 2 \mathrm{H}), 7.46(\mathrm{~d}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H})$, 2.20 (s, 6 H).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{CIN}$: C, 71.72; $\mathrm{H}, 5.56 ; \mathrm{N}, 6.43$. Found: C, 71.71; H, 5.65; N, 6.56.

2-(o-Tolyl)4,5-dimethylpyridine (4 g). Using the procedure for the preparation of $4 \mathbf{f}, 10.71 \mathrm{~g}(0.1 \mathrm{~mol})$ of 3,4 -lutidine, $11.19 \mathrm{~g}(0.1 \mathrm{~mol})$ of ethyl, chloroformate, and 0.12 mol of o-tolylmagnesium bromide in 100 ml of THF gave, after vacuum distillation, 16.2 g of a yellow oil. Treatment with 1.91 g (59.7 mmol) of sublimed sulfur gave, after vacuum distillation, $9.0 \mathrm{~g}(46 \%)$ of a yellow oil. The oil was treated with Norite-chloroform and redistilled to give an analytical sample of $\mathbf{4 g}$: bp $110-115^{\circ} \mathrm{C}(0.35 \mathrm{~mm})$; picrate, $\mathrm{mp} 166-167^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $8.64(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 6$ H).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}: \mathrm{C}, 85.24 ; \mathrm{H}, 7.66 ; \mathrm{N}, 7.10$. Found: C, 85.28; H, 7.65; N, 7.12.

Acknowledgment. The authors wish to express appreciation to the National Cancer Institute of the NIH for partial support of this project from Grant CA-12149. One author, D.L.C., further expresses appreciation to the Graduate School of the University of New Hampshire for a Summer Fellowship for Graduate Teaching Assistants. The authors also wish to thank Reilly Tar and Chemical for a generous supply of 3,4lutidine.

Registry No.-2f, 59463-69-3; 4d, 27063-84-9; 4d picrate, 27063-85-0; 4f, 59463-70-6; 4g, 59463-71-7; 3,4-lutidine, 583-58-4; phenyl chloroformate, 188-14-9; p-chlorophenyl bromide, 106-39-8; phenyl bromide, 108-86-1; o-tolyl bromide, 95-46-5; ethyl chloroformate, 541-41-3.

References and Notes

(1) R. A. Abramovitch and G. M. Singer in "Pyridine and Its Derivatives", Vol. 14, Part 1, R. A. Abramovitch, Ed., Wiley-interscience, New York, N.Y., 1974, p 45.
(2) (a) R. E. Lyle in ref 1, p 147; (b) U. Eisner and J. Kuthan, Chem. Rev., 72, 1 (1972); (c) "Synthetic Analgesics", J. Hellerbach, O. Schnider, H. Besendorf, and B. Pellmont, Part IIA, "Morphinans"', and N. B. Eddy and E. L. May, Part IIB, ' 6,7 -Benzomorphans'", Pergamon Press, Oxford, 1966, pp 117-137; (d) R. E. Lyle and E. White V, J. Org. Chem., 36, 772 (1971).
(3) (a) Reference 1. p 50; (b) R. A. Abramovitch and J. G. Saha, Adv. Heterocycl. Chem., 6, 229 (1966); (c) R. A. Abramovitch and C. S. Giam, Can. J. Chem. 42, 1627 (1969).
(4) O. Cervinka, Chem. Ind. (London), 1482 (1960).
(5) (a) Reference 3b, p 304; (b) M. Alverez, J. Bosch, and J. Canak, An. Quim., 71, 807 (1975).
(6) G. Fraenkel, J. W. Cooper, and C. M. Fink, Angew. Chem., Int. Ed. Engl, 9, 523 (1970).
(7) R. A. Abramovitch, C. S. Giam, and G. A. Poulton, J. Chem. Soc. C, 128 (1970).
(8) G. J. Janz, and W. J. H. McCulloch, J. Am. Chem. Soc., 77, 3143 (1955).

Synthesis of Cyclic and Acyclic Tri- and Tetrasubstituted Hydroxyguanidines

S. D. Ziman ${ }^{1}$
C'ontribution No. 2323 from the Central Research \& Development Department, Experimental Station, E. I. du Pont de Ne.nours \& Co., Wilmington, Delaware 19898

Received December 16, 1975

Acyclic trisubstituted and previously unknown tetrasubstituted hydroxyguanidines 6 have been prepared from C-chloroformamidinium chlorides 3 (available from ureas or thioureas) via reaction with O-(tetrahydro-2-pyranyl)hydroxylamine (4), followed by removal of the protecting group by acid hydrolysis. Cyclic tri- and tetrasubstituted hydroxyguanidines 11 have been prepared by the reaction of phosgene- O-(tetrahydro-2-pyranyl)oxime (7) or phos-gene- O-(N-methylcarbamoyl)oxime (8) with a diamine, followed by removal of the protecting group by acid or base hydrolysis.

Hydroxyguanidines and their derivatives may be active pharmaceutical agents and agrichemicals. ${ }^{2}$ Synthetic routes to acyclic 1,1,3-trisubstituted hydroxyguanidines ${ }^{3}$ are limited and the $1,1,3,3$-tetrasubstituted analogues are unknown. Known cyclic hydroxyguanidines are limited to the acid salts of 1,3-ethylene- and 1,3-trimethylene-2-hydroxyguanidine; the neutral compounds are unstable. ${ }^{4}$ This paper describes two useful methods for preparing these compounds.

While selected acyclic 1,1,3-trisubstituted hydroxyguanidines have been made by nucleophilic displacement of either a chlorine or S-methyl group of 1 with hydroxylamine ${ }^{3}$ (eq 1), yields of 2 are low and the urea is a major by-product.

These problems can be avoided and the scope of synthesis expanded to tetrasubstituted and cyclic compounds as follows. C-Chloroformamidinium chloride salts 3 are prepared in the standard way from reaction of the appropriate urea (or thiourea) with phosgene. ${ }^{5}$ Reaction of 3 with O-(tetrahydro-2pyranyl)hydroxylamine (4) ${ }^{6}$ (a masked hydroxylamine soluble in most aprotic solvents) and a tertiary amine base gives O -(tetrahydro-2-pyranyl)hydroxyguanidines 5. The yield is high for acyclic compounds, and low for cyclics. ${ }^{7}$ The protecting group can then be cleaved by acid to generate the desired product 6 (eq 2, 3, 4). Acyclic examples are given in Table I.
$R^{1} R^{2} N^{2} C O N R{ }^{3} R^{4}$
or $\quad+\mathrm{COCl}_{2}$
$R^{1} R^{2} \mathrm{NCSNR}^{3} \mathrm{R}^{4}$

A better route to the cyclic hydroxyguanidines has been developed. Reaction of either phosgene O-(tetrahydro-2pyranyl)oxime (7) or phosgene O-(methylcarbamoyl)oxime $(8)^{8}$ (carbonyl oxime synthons) with the appropriate diamine and tertiary amine base, followed by acid or base hydrolysis, gives 11 (eq 5 and 6). Cyclic examples are given in Table II.

Experimental Section

General. Melting points were taken on a Mel-Temp melting point apparatus and are uncorrected. NMR spectra were recorded on a Varian A-60 in deuteriochloroform unless otherwise stated. All shifts are reported in δ with tetramethylsilane as an internal standard. Mass spectra were determined with a Du Pont CEC 110 B. Analyses were performed by the Central Research and Developmen: Department Analytical Section.
All experiments were carried out under a dry nitrogen atmosphere unless otherwise noted. Solvents were dried with 4A molecular sieve. All equipment was dried with a heat gun while under vazuum. All new compounds were purified by chromatography on Silic4R CC-7, and shown to be single compounds by two different thin layer solvent systems. Oils were converted into their hydrochloride salt with dry hydrogen chloride in ether.

Table I. Acyclic Tri- and Tetrasubstituted Hydroxyguanidines

R^{1}	R^{2}	R^{3}	R^{4}	Yield, \%	$\begin{gathered} \mathrm{Mp},{ }^{\circ} \mathrm{C} \\ \text { (registry no. } \end{gathered}$	NMR	Mass spectrum, m / e
$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	CH_{3}	CH_{3}	31	$\begin{aligned} & 112-114 \\ & \quad(59812-83-8) \end{aligned}$	$\begin{aligned} & 2.67(\mathrm{~s}, 6 \mathrm{H}), 3.17 \\ & (\mathrm{~s}, 3 \mathrm{H}), 6.65-7.40 \\ & \text { (m, H H) (phenyl } \\ & \text { and NOH) } \end{aligned}$	Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: 193.1214$ Found: 193.1220
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	50	$\begin{aligned} & \mathrm{HCl} \text { salt } \\ & \quad 149 \mathrm{dec} \\ & (59812-84-9) \end{aligned}$	$1.12(\mathrm{t}, J=7 \mathrm{~Hz}, 6$ H), $2.70(\mathrm{~s}, 3 \mathrm{H})$, 2.93-3.45 (m, 4 H), 4.35 (s, 2 H), 7.23 (s, 5 H)	Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}: 235.1683$ Found: 235.1689
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	CH_{3}	CH_{3}	H	42	$\begin{aligned} & \mathrm{HCl} \text { salt } \\ & \quad 132-137 \\ & (59812-85-0) \end{aligned}$	$\begin{aligned} & 1.62(\mathrm{bs}, 2 \mathrm{H}), 2.52 \\ & (\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \\ & \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}) \\ & 7.34(\mathrm{~s}, 5 \mathrm{H}) \end{aligned}$	Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: 193.1214$ Found: 193.1202
$\mathrm{C}_{6} \mathrm{H}_{5}^{\prime}$	CH_{3}	CH_{3}	H	48	$\begin{aligned} & \mathrm{HCl} \text { salt } \\ & \quad 164-168 \\ & (59812-86-1) \end{aligned}$	$\begin{aligned} & 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.15 \\ & (\mathrm{~s}, 3 \mathrm{H}), 6.43-7.40 \\ & (\mathrm{~m}, 6 \mathrm{H}) \end{aligned}$	Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: 179.1058$
$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	65	$\begin{aligned} & 86-88 \\ & (59226-52-7) \end{aligned}$	$\begin{aligned} & 0.98(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \\ & \mathrm{H}), 2.86(\mathrm{q}, J=7 \\ & \mathrm{Hz}, 2 \mathrm{H}), 3.16(\mathrm{~s}, \\ & 3 \mathrm{H}) \end{aligned}$	Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: 193.1214$ Found: 193.1224

Table II. Cyclic Tri-and Tetrasubstituted Hydroxyguanidines

R^{1}	R^{2}	n	NMR	$\begin{gathered} \mathrm{Mp},{ }^{\circ} \mathrm{C} \\ \text { (registry no.) } \end{gathered}$	Mass spectrum, m / e
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	CH_{3}	3	1.40-2.20 (m, 2 H$)$	$\begin{aligned} & 108-110 \\ & (59812-87-2) \end{aligned}$	Calcd for $\mathrm{C}_{12} \mathrm{H}_{1}, \mathrm{~N}_{3} \mathrm{O}: 219.1371$ Found: 219.1369
			$2.86(\mathrm{~s}, 3 \mathrm{H})$		
			2.87-3.30 (m, 4 H)		
			4.45 (s, 2 H)		
			7.28 (s, 5 H)		
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	CH_{2}	2	$2.84(\mathrm{~s}, 3 \mathrm{H})$	$94-96$	Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: 205.1214$
$\mathrm{C}_{6} \mathrm{H}_{5}$			$3.08(\mathrm{~ns}, 4 \mathrm{H})$	$(59812-88-3)$	Found: 205.1202
			4.58 (s, 2 H)		
			7.33 (s, 5 H)		
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	H	2	3.12-3.28($\left.\mathrm{A}^{2} \mathrm{~B}^{2}, 4 \mathrm{H}\right)$	$\begin{aligned} & 118-120 \\ & (59812-89-4) \end{aligned}$	Caled for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: 190.1058$ Found: 190.1045

All new compounds have been characterized by spectral techniques and their structures are consistent with spectral data.

General Procedure for Preparation of Acyclic Tri- and Tetrasubstituted Hydroxyguanidines via 2-Chloroformamidinium Chlorides. Preparation of 1-Phenyl-1,3,3-trimethyl-2-hydroxyguanidine. Starting materials are either the corresponding urea or thiourea prepared by standard procedures using either isocyanates or isothiocyanates and amines, or carbamoyl chlorides and amines.
N-Phenyl- $N, N^{\prime}, N^{\prime}$ - trimethylurea ($8.9 \mathrm{~g}, 0.05 \mathrm{~mol}$) was dissolved in 50 ml of toluene and cooled to $-22^{\circ} \mathrm{C}$. To it was added $4.9 \mathrm{~g}(0.05$ mol) of liquid phosgene. The reaction was run overnight and the 2 chloroformamidinium chloride (3) formed as a white solid. The moisture-sensitive white solid could be either isolated by filtration in a drybox or, after decanting the liquid, redissolved in dry acetonitrile and carried on to the next step.

In some instances the salt did not crystallize but formed an oil and was carried on to the next step.

After removal of toluene, followed by solution in 50 ml of acetonitrile, the salt solution was added dropwise to a cool $\left(-22^{\circ} \mathrm{C}\right)$ solution of $5.85 \mathrm{~g}(0.05 \mathrm{~mol})$ of O-tetrahydropyranylhydroxylamine (4) ${ }^{6}$ and 10.1 g (0.1 mol) of triethylamine. The reaction mixture was warmed to $25^{\circ} \mathrm{C}$, stirred for 2 h , then poured into 100 ml of methylene chloride. The methylene chloride layer was extracted six times with 100 ml of water and dried, and the solvent was removed. The resultant liquid was dissolved in 55 ml of 1 N HCl and 100 ml of water and heated on a steam bath for 1 h . The aqueous phase was extracted twice with 100
ml of methylene chloride, then made basic with 60 ml of 1 N NaOH and extracted twice with 100 ml of methylene chloride. The organic layer was dried over MgSO_{4} and evaporated to give a white solid: 3.0 $\mathrm{g}(31 \%) ; \mathrm{mp} 112-114^{\circ} \mathrm{C} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.67(\mathrm{~s}, 6 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H})$, 6.65-7.40 (m, 5 H); mass spectrum $193.1220\left(\right.$ calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$, 193.1214).

Preparation of Phosgene \boldsymbol{O}-(Tetrahydro-2-pyranyl)oxime (7). Dihydropyran $(2.52 \mathrm{~g}, 0.03 \mathrm{~mol})$ and phosgene oxime ${ }^{9}(3.6 \mathrm{~g}, 0.03$ mol) were dissolved in 100 ml of dry tetrahydrofuran. Two drops of phosphorus oxychloride was added, and the mixture was heated at reflux for $4-12 \mathrm{~h}$. The reaction was followed by TLC. The solvent was then evaporated and the residue distilled. A colorless liquid ($3.4 \mathrm{~g}, 58 \%$ yield) was collected: bp $62-63^{\circ} \mathrm{C}(0.7 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.32-2.10$ (m, 6 H), 3.40-4.20 (m, 2 H), 5.35 (bs, 1 H); mass spectrum M^{+}m/e 197 (too small to measure), $139,113,96,85$, measured for $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NOCl}_{2}$ 138.9590 , calcd 138.9591, for $\left(\mathrm{CH}_{2}=\mathrm{CHON}=\mathrm{CCl}_{2}\right)^{+}$.

General Procedure for Preparation of Tri- and Tetrasubstituted Cyclic Hydroxyguanidines. I. Preparation of 1 -Ben-zylimidazolidin-2-one Oxime from a Diamine and 8. To a refluxing solution of N-benzylethylenediamine $(1.40 \mathrm{~g}, 0.01 \mathrm{~mol})$ and triethylamine ($2.02 \mathrm{~g}, 0.02 \mathrm{~mol}$) in 100 ml of chloroform was added dropwise $(0.5 \mathrm{~h}) 1.70 \mathrm{~g}(0.01 \mathrm{~mol})$ of 8^{8} in 50 ml of chloroform. The solution was allowed to reflux for 12 h and cooled, and the organic layer was worked up with $2 \times 100 \mathrm{ml}$ of water. After drying $\left(\mathrm{MgSO}_{4}\right), 2.33 \mathrm{~g}(94 \%$ yield $)$ of brown oil was recovered. The oil was dissolved in 100 ml of meth anol and $1.08 \mathrm{~g}(0.02 \mathrm{~mol})$ of potassium hydroxide was added. The
solution was heated to reflux for 24 h , poured into 500 ml of water, acidified to pH 1 , and extracted with $2 \times 100 \mathrm{ml}$ of methylene chloride. The aqueous layer was then made basic (pH 9) and extracted with 2 $\times 100 \mathrm{ml}$ of methylene chloride; the extracts wert dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, then chromatographed to give an off-white crystalline substance ($0.6 \mathrm{~g}, 31 \%$ yield).
II. 1-Benzylimidazolidin-2-one Oxime from a Diamine and 7. To a refluxing solution of N-benzylethylenediamize ($0.75 \mathrm{~g}, 0.005 \mathrm{~mol}$) and triethylamine ($1.01 \mathrm{~g}, 0.01 \mathrm{~mol}$) in 100 ml of ctloroform was added dropwise over 5 h 1.0 g (0.0051 mol) of 7 in 10 ml of chloroform. After the solution was heated at reflux for 4 h , the solwent was evaporated and the residue hydrolyzed with 20 ml of 1 NHC on a steam bath for 1 h . The workup is the same as part I (from aciaification step). The yield was $0.55 \mathrm{~g}(58 \%)$.

Registry No.-7, 59812-90-7; 8, 24248-83-7; 10($n=2$), 59812-91-8; dihydropyran, 110-87-2; phosgene oxime, 1794-86-1; N-benzylethylenediamine, 4152-09-4.

References and Notes

(1) Chevron Chemical Co., Richmond, Calif. 94804.
(2) (a) D. M. Bailey and C. G. DeGracia, J. Med. Chem., 16, 151 (1973); (b) A Heesing and R. Peppmoller, Z. Naturforsch., 22, 820 (1967); (c) G. Zimmer and H. Grass, Chem. Ber., 105, 1709 (1972); (d) H. Bruer, U.S. Patent 3632 333; (e) G. Voss, E. Fisher, and A. Werchan, Z. Chem., 13, 58 (1973); (f) S. Cherkofsky, German Patent 2342331 (1974); 2342312 (1974).
(3) M. Gross, P. Held, and H. Werchan, German Patent 2 04C 628 (1972)
(4) G. Belzechi and J. Troynar, Tetrahedron Lett., 1879 (1979).
(5) (a) A. Eilingsfeld, G. Newbauer, M. Seefelder, and H. Weidinger, Chem. Ber., 97, 1232 (1964); (b) H. Z. Lecher and E. M. Hardy. U.S. Patent 2845459 (1956); (c) A. Eilingsfeid, M. Seefelder, and H. Weidinger Angew. Chem. 72, 836 (1960;; (d) A. Kessler and D. Liebfritz, Justus Liebigs Ann. Chem., 737, 53 (1970!
(6) R. N. Warrener and E. N. Cain, Angew. Chem., Int. EJ. Engl., 5, 511 (1966)
(7) Reference 5d reports good yields of the cyclic chloroformamidinium chloride with other nuc eophiles.
(8) R. W. Addor, U.S. Patent 3553264 (1970)
(9) E. Gryskiewicz-Trochemowski, K. Dymowaki, and E. Schmidt, Mem. Pres. Soc. Chem., 597 (1948).

Fully Autonated Solid Phase Synthesis of Protected Peptide Hydrazides on Recycling Hydroxymethyl Resin

J. K. Chang and M. Shimizu
Bioproducts Depar ment, Beckman Instruments Inc., Palo Alto. California 94304
Su-Sun Wang*
Chemical Research Lepartment, Hoffmann-La Roche Inc., Nutley, New Jersey 07110

Received March 15, 1976

A fully automated solid phase synthesis of Boc-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl)- HNNH_{2} (I) on hydroxymethyl resin (II) is described. All of the op arations, including esterification of the first amino acid residue to the resin, deprotection of α-amino protecting g oup followed by coupling reaction with the next amino acid residue, as well as hydrazinolytic cleavage of I from the solid support, have been automated. The regenerated resin II was reused several times for the synthesis of the seme compound to give automatically several batches of I. Results of this process are compared with results of other olid phase and classical syntheses of the Gly-Phe-Phe-Tyr-Thr sequence.

In solid phase peptide synthesis, ${ }^{1}$ the process of assembling the peptide chain anchored to a pol-mer support has been quite effectively automated. ${ }^{2}$ Howeve-, the attachment of the first amino acid residue to the resin a ad the cleavage of the anchoring linkage in order to release the products from the solid support have to be carried out individually in separate vessels. ${ }^{3-5}$ In the following, a completely automatic recycled synthesis of the protected pentapeptide hydrazide Boc-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl)-HNNH ${ }_{2}{ }^{6}$ (I) on the hydroxymethyl resin ${ }^{7,8}$ (II) is described. The results of five consecutive syntheses of I on the same batich of resin II are presented and compared with results of seweral experiments in which the same pentapeptide sequence Gly-Phe-Phe-Tyr-Thr was prepared by different proced ares.

For the fully automated synthesis of I, a Beckman Model 990 peptide synthesizer ${ }^{9}$ was programmed .o perform all operations described below within the same reaction vessel. $\mathrm{Boc}-\mathrm{Thr}(\mathrm{Bzl})-\mathrm{OH}$ was esterified to resir II by the 4 -dimethylaminopyridine catalyzed dicycloh $3 x y l c a r b o d i i m i d e$ (DCC) procedure. ${ }^{8}$ After benzoylation to block remaining unreacted alcoholic functions on the resin, F oc-Tyr(Bzl)-OH, Boc-Phe-OH, Boc-Phe-OH, and Boc-Gly- JH were sequentially coupled to the growing peptide chaiz on the resin according to general principles of the solid phase method. ${ }^{1-5}$ In each coupling cycle, the tert-butyloxycarbonyl group was removed by a $20-\mathrm{min}$ treatment with 33% tifluoroacetic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the coupling reaction was effected with 2.5 -fold excess each of Boc-amino acid and DCC f©r 2 h . Upon completion of the chain assembly the pentareptide resin was
stirred with $10 \% \mathrm{H}_{2} \mathrm{NNH}_{2}$ in DMF for 16 h . Product I released from the polymer support was obtained in crystalline form after evaporation of the reaction and wash fluids collected from the vessel outlet. The hydrazinolysis reaction served also to regenerate resin II which remained in the reaction vessel. It was recycled four times through the entire synthetic protocol to give a total of five batches of I, which was purified by recrystallization. Overall yields from each run were approximately 60% with no sign of decreasing (see Table I). The resin particles survived all operations as evident from inspection of the beads before and after these experiments under a microscope. There was no indication of any disintegration of resin particles. The completeness of the hydrazinolytic cleavage was checked after each run by ir spectrophotometry. ${ }^{8}$ The rate of hydrazinolysis was found to be surprisingly rapid with a half-life of about 45 min .

Thus, with the possible exception of aspartic or glutamic acid containing peptides, the process described a oove appears to be rather versatile and generally applicable to rapid synthesis of protected oligopeptide hydrazides. These are useful intermediates for polypeptide synthesis by the azide method ${ }^{10}$ allowing effective combination of solid phase techniques and classical procedures ${ }^{11,12}$ with retention of the best features of each. ${ }^{4}$

In Table II, the results of recycled automated synthesis of I are compared with those of other processes for the synthesis of the same sequence. ${ }^{13}$ A dramatic increase in speed, efficiency, and simplicity can be noted.

The manual solid phase synthesis of I on hydroxymethyl

Table I. Recycled Automated Synthesis of Boc-Gly-Phe-Phe-Tyr(Ezl)-Thr(Bzl)-HNNH ${ }_{2}$ on $\mathrm{HOCH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Resin}^{a}$

						Anal.		
Run no.	Product wt, g	Yield, \%b	$\mathrm{Mp},{ }^{\text {c }} \mathrm{C}$	$\underset{. \alpha]^{25} \mathrm{D}}{ }$	Calcd	$\begin{gathered} 67.30 \\ \mathrm{C} \end{gathered}$	$\begin{gathered} 6.63 \\ H \end{gathered}$	$\begin{gathered} 10.56 \\ \mathrm{~N} \end{gathered}$
1	1.80	54.0	229-230	-2.24		67.10	6.68	10.43
2	2.09	62.4	228-230	-2.12		67.05	6.73	10.32
3	2.01	60.2	229-230	-2.35		67.32	6.76	10.39
4	2.04	61.1	229-230	-2.38		67.04	6.63	10.43
5	2.05	61.4	229-230	-2.16		67.47	6.52	10.33

a Hydroxymethylated copolystyrene -1% divinylbenzene $: 6.0 \mathrm{~g}, 0.70 \mathrm{mmol} / \mathrm{g}$) was used. The degree of substitution was 0.55 mmol Thr/g. ${ }^{b}$ Theoretical yield, $3.6 \mathrm{mmol}=3.34 \mathrm{~g}$.

Table II. Synthesis of Gly-Phe-Phe-Tyr-Thr Sequence by Solid Phase Techniques and Classical Method

Compd	Synthetic method	Time consumed	Overall yield, \%
$\begin{aligned} & \text { Bzl Bzl } \\ & \text { Boc-Gly-Phe-Phe-Tyr-Thr- } \mathrm{HNNH}_{2} \text { (I) } \\ & \left(\mathrm{mp} \mathrm{229-230}{ }^{\circ} \mathrm{C}, \text { cryst }\right) \end{aligned}$	HOCH - - Resin(automated)	30 h	$59.2{ }^{\text {a }}$
Bzl Bzl $\begin{array}{c}\text { Boc-Gly-Phe-Phe-Tyr-Thr-HNNH } \\ (\mathrm{mp} \mathrm{2} 227-229\end{array}{ }^{\circ} \mathrm{C}$, cryst) $)$	$\mathrm{H}\left(\mathrm{CH}_{2}\right.$-Resin(manual) ${ }^{\text {b }}$	5 days	61.5
$\begin{gathered} \mathrm{Bzl} \mathrm{Bzl} \\ \text { Z-Gly-Phe-Phe-Tyr-Thr-HNNH } \\ \text { (mp 215-218 }{ }^{\text {(III) }} \text {; cryst) } \end{gathered}$	$\mathrm{ClCH}_{4}-$ Resin	6 days	34.0
```Bzl Bzl Z-Gly-Phe-Phe-Tyr-Thr-OH (IV) (mp 205-208 ' C, cryst)```	HOCH2	4 days	61.2
$\begin{gathered} \text { Bzl Bzl } \\ \text { Fmoc-Gly-Phe-Phe-Tyr-Thr-HNNH }{ }_{2}(\mathrm{~V}) \\ \left(\text { mp } 196-198{ }^{\circ} \mathrm{C} \text {, cryst) }\right) \end{gathered}$		4 days	36.1
```Bzl Z-Gly-Phe-Phe-Tyr-Thr-HNNH2 (VI) (mp 241-243 ' C, cryst)```	Classical synthesis (3+2)	40 days ${ }^{\text {c }}$	33.0

a Average of five synthetic runs. b For experimental details, see ref 8 . c The time consumed includes purification and characterization of intermediates. The actial time spent on the synthetic operations was about 15 days.
resin as well as the preparation of Fmoc-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl)- HNNH_{2} (V) on 3-(p-benzyloxy-phenyl)-1,1-dimethylpropyloxycarbonylhydrazide resin have already been described previously. ${ }^{8}$ Preparation of Z-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl)-HNNH 2 (III) by the standard Merrifield technique ${ }^{14}$ on chloromethyl resin gave the desired compound in 34% overall yield. This synthesis was started by refluxing Boc-Thr(Bzl)-OH triethylamine salt with $\mathrm{ClCH}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{4}$-resin. The pentapeptide chain was subsequently built up in the usual manner ${ }^{3,14}$ with Boc-Tyr(Bzl)-OH, Boc-Phe$\mathrm{OH}, \mathrm{Boc}-\mathrm{Phe}-\mathrm{OH}$, and Z-Gly-OH. The low yield of this process probably is attributable to the fact that the clevage product is heavily contaminated with hydrazine hydrochloride which tends to reduce the recovery of the desired compound by crystallization.

For the synthesis of Z-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl)-OH (IV), Bpoc-Thr(Bzl)-OH was esterified to p-alkoxybenzyl alcohol resin ${ }^{15}$ through the 4 -dimethylaminopyridine catalyzed DCC method. ${ }^{8}$ The synthesis was then continued by sequential incorporation of Bpoc-Tyr(Bzl)-OH, Bpoc-PheOH , Bpoc-Phe-OH, and Z-Gly-OH into the resin uncer the conditions identical with those described above except that the deblocking of the Bpoc groups was effected by 0.5% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~min})$. Product IV was obtained in 61.2% overall yield as a pure, crystalline solid after cleavage from the polymer support by 50% TFA (30 min) and crystallization.

For a classical synthesis of Z-Gly-Phe-Phe-Tyr(Bzl)-

Thr- HNNH_{2} (VI), a $3+2$ fragment condensation approach was chosen. Boc-Tyr(Bzl)-OH was coupled to $\mathrm{H}-\mathrm{Thr}-\mathrm{OCH}_{3}$ by the DCC procedure ${ }^{16}$ to provide Boc-Tyr(Bzl)-Thr- OCH_{3} which on treatment with $\mathrm{HCl}-\mathrm{THF}$ gave the dipeptide ester salt $\mathrm{HCl} \cdot \mathrm{H}-\mathrm{Tyr}(\mathrm{Bzl})-\mathrm{Thr}-\mathrm{OCH}_{3}$. Reaction of phenylalanine with Boc-Phe-OSu yielded Boc-Phe-Phe-OH, which was treated with TFA and the resulting dipeptide H-Phe-Phe-OH was subsequently acylated with Z-Gly-OSu to give Z-Gly-Phe-Phe-OH. This tripeptide was then condensed with the dipeptide ester $\mathrm{HCl} \cdot \mathrm{Tyr}(\mathrm{Bzl})-\mathrm{Thr}-\mathrm{OCH}_{3}$ obtained above by the DCC-HOBT procedure ${ }^{17}$ to afford the pentapeptide methyl ester Z-Gly-Phe-Phe-Tyr(Bzl)-Thr- OCH_{3}. On hydrazinolysis, the desired product VI was obtained in 33\% overall yield. A total of 40 days were required for completing this synthesis, including the time spent on purification, crystallization, and analytical characterization of the intermediates and the product. It is obvious that the time requirement would be appreciably reduced if the classical synthesis were to be repeated, and it could readily be scaled up. However, the method is far less adaptable to automation than solid phase synthesis.

Reuse of the same hydroxymethyl resin (II) after synthesis of one compound for he preparation of another is also demonstrated. The resin II that had been used as the polymer support for synthesis I was utilized in solid phase synthesis of Z-Gly-His(Tos)-Lys(Z)- OCH_{2} - $\mathrm{C}_{6} \mathrm{H}_{4}$-resin. Ammonolysis of this material produced crystalline pure Z-Gly-His-Lys(Z)-
NH_{2} in 64.2% overall yield. The p-toluenesulfonyl protecting group of the histidine side chain was cleanly removed at the same time during ammonolytic cleavage.

Experimental Section

Melting points are uncorrected. Thin layer chromatography was carried out on precoated silica gel plates (Merck, F-254) using the solvent system n - $\mathrm{BuOH}-\mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$ (4:1:1), n - BuOH -pyridine-$\mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$ (15:10:3:12), and n - $\mathrm{BuOH}-\mathrm{EtOAc}-\mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$ (1:1:1:1). Elemental analyses, amino acid analyses, and other physicochemical measurements (uv, ir, NMR, specific rotation) were performed by the Physical Chemistry Department.
Merrifield resin (chloromethylated copolystyrene-1\% divinyl benzene beads, $200-400 \mathrm{mesh}, 0.70 \mathrm{mmol} \mathrm{Cl} / \mathrm{g}$) was purchased from Lab Systems, Inc., San Mateo, Calif. Hydroxymethyl resin was prepared from Merrifield resin as described previously. ${ }^{8}$ Boc-amino acids were obtained from Bachem Inc., Marina Del Ray, Calif., or from Beckman Instruments, Inc. Bpoc-amino acids were prepared according to the literature. ${ }^{18,19}$ Other chemicals and solvents used were all of reagent grade materials available form commercial sources.
Boc-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl)-HNNH $\mathbf{2}^{(I)}$). Hydroxymethyl resin II ($6.0 \mathrm{~g}, 4.2 \mathrm{mmol}$) was placed in the reaction vessel of a Beckman Model 990 peptide synthesizer and the machine was programmed to perform the following steps automatically with $100-\mathrm{ml}$ portions of solvents or reagents: (1) three washings with $\mathrm{CH}_{2} \mathrm{Cl}_{2},(2)$ stir 120 min with 10 mmol each of 4-dimethylaminopyridine, Boc-$\mathrm{Thr}(\mathrm{Bzl})-\mathrm{OH}$, and DCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (3) three washings with $\mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{20}$ (4) stir 15 min with 4.5 mmol each of pyridine and benzoyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (5) three washings with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (6) prewash with 33% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (7) stir 20 min with $33 \% \mathrm{TFA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (8) three washings each with 33% dioxane in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (9) prewash with $10 \% \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (10) stir 10 min with $10 \% \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (11) three washings with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (12) stir 120 min with 10 mmol each of Boc-$\mathrm{Tyr}(\mathrm{Bzl})-\mathrm{OH}$ and DCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (13) three washings each with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF, MeOH, (14) repeat steps 5-13 using Boc-Phe-OH (10 $\mathrm{mmol})$ in step 12 instead of $\mathrm{Boc}-\mathrm{Tyr}(\mathrm{Bzl})-\mathrm{OH},(15)$ repeat steps $5-13$ with Boc-Phe-OH (10 mmol) in 12th step, (16) repeat steps $5-13$ with Boc-Gly- $\mathrm{OH}(10 \mathrm{mmol})$ in 12th step, (17) three washings with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (18) stir $990 \min$ in 10% anhydrous $\mathrm{H}_{2} \mathrm{NNH}_{2}$ in DMF, collect the filtrate, (19) rinse with DMF, collect the filtrate, (20) rerun steps 1-19 four more times.
The filtrates from steps 18 and 19 in each run wer separately evaporated to dryness and the residue treated with ether. The crude solid material obtained was triturated with boiling MeOH and crystallized from DMF (60 ml) and EtOH (120 ml). The materials obtained from five runs were analyzed and then results listed in Table I.

Z-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl)-HNNH \mathbf{H}_{2} (III). Boc-$\mathrm{Thr}(\mathrm{Bzl})-\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin ($25 \mathrm{~g}, 3.5 \mathrm{mmol}$) prepared from chloromethyl resin ($0.70 \mathrm{mmol} \mathrm{Cl} / \mathrm{g}, 1 \%$ DVB) and Boc-Thr(Bzl)-OH (4.7 g) according to the literature procedure ${ }^{3}$ was deprotected ($50 \% \mathrm{TFA}$, 30 min), neutralized ($10 \% \mathrm{Et}_{3} \mathrm{~N}, 10 \mathrm{~min}$) and coupled with Boc-$\mathrm{Tyr}(\mathrm{Bzl})-\mathrm{OH}(2.7 \mathrm{~g}, 8.7 \mathrm{mmol})$ in the presence of DCC $(1.81 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (120 min). The synthetic cycle was repeated with 8.7 mmol each of Boc-Phe-OH (2.3 g), Boc-Phe-OH, and Z-Gly-OH (1.83g) to give Z-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl)- $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$-resin (26.2 g). It was suspended in DMF and stirred with $\mathrm{H}_{2} \mathrm{NNH}_{2}(8 \mathrm{ml})$ for 66 h . The peptide in the filtrate was then concentrated to near dryness and treated with ether, whereupon 5.7 g of solid precipitated. The crude material was triturated in MeOH and crystallized from DMF and EtOH: yield, $1.15 \mathrm{~g}(34 \%)$; $\mathrm{mp} 215-218^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-3.94^{\circ}$ ((1, DMF); NMR spectrum agreed with the structure.
Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{59} \mathrm{~N}_{7} \mathrm{O}_{9}$ (962.1): C, 68.66; $\mathrm{H}, 6.18 ; \mathrm{N}, 10.19$. Found: C, 68.67; H, 6.16; N, 9.91 .
Z-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl)-OH (IV). Bpoc-$\mathrm{Thr}(\mathrm{Bzl})-\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin ($1.1 \mathrm{~g}, 0.43 \mathrm{mmol}$) prepared from Bpoc-Thr(Bzl)-OH, $\mathrm{HOCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin ${ }^{15}$ by the dimethylaninopyridine catalyzed DCC procedure ${ }^{8}$ was deprotected (0.5% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~min}$), neutralized ($10 \% \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and coupled (120 min) with Bpoc-Try (Bzl)-OH ($0.55 \mathrm{~g}, 1.08 \mathrm{mmol}$) in the presence of DCC (0.277 g). The coupling cycle was repeated with 1.08 mmol each of Bpoc-Phe-OH (0.44 g), Bpoc-Phe-OH, and Z-Gly- OH $(0.26 \mathrm{~g})$ to give Z-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl) $-\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-$ $\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin (1.21 g). During the synthesis, 0.5% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 min) was utilized as deprotecting agent for Bpoc group. The peptide was released from the resin with 50% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 min) and isolated as an amorphous solid when the solvents were removed and the residue was treated with ether. The compound was crystal-
lized from MeOH : yield, $0.25 \mathrm{~g}(61.2 \%)$; $\mathrm{mp} 205-208{ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}$ $+13.97^{\circ}$ (c 1. HOAc); NMR spectrum agreed with the structure.

Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{10}$ (948.0): $\mathrm{C}, 69.68 ; \mathrm{H}, 6.06 ; \mathrm{N}, 7.39$. Found: C, 69.39; H, 5.90; N, 7.35 .
\mathbf{H}-Thr- $\mathbf{O C H}_{3}$. A suspension of L-threonine (50 g) in 500 ml of MeOH was nearly saturated with HCl gas. The mixture was then refluxed at $85^{\circ} \mathrm{C}$ for 30 min . The solvent was evaporated at $40^{\circ} \mathrm{C}$ and the residue taken up in 300 ml of fresh MeOH which was again evaporated. After two repetitions of the entire process, 85 g of a clear oil was obtained. It was dispersed in $\mathrm{CHCl}_{3}(280 \mathrm{ml})$ and treated with an equal volume of NH_{3} saturated CHCl_{3} at $0^{\circ} \mathrm{C}$. A white precipitate of $\mathrm{NH}_{4} \mathrm{Cl}$ formed which was filtered off. Concentration at $15{ }^{\circ} \mathrm{C}$ provided a heavy oil which solidified on standing. Crystalization from ether and petroleum ether yielded $44.4 \mathrm{~g}(79 \%)$ of the desired compound: $\mathrm{mp} 68-70^{\circ} \mathrm{C}$ (lit. $.^{11} \mathrm{mp} 70-72^{\circ} \mathrm{C}$); $[\alpha]^{25} \mathrm{D}+14.61^{\circ}$ (c 1 , MeOH).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3}$ (133.15): C, 45.11; $\mathrm{H}, 8.33 ; \mathrm{N}, 10.52$. Found: C, 45.01; H, 8.40; N, 10.46.

Boc-Tyr(Bzl)-Thr-OCH3. $\mathrm{Boc}-\mathrm{Tyr}(\mathrm{Bzl})-\mathrm{OH}(15.8 \mathrm{~g})$ was stirred with $\mathrm{H}-\mathrm{Thr}-\mathrm{OCH}_{3}(5.67 \mathrm{~g})$ and $\operatorname{DCC}(9.65 \mathrm{~g})$ at $0^{\circ} \mathrm{C}$ for 1 h and at 25 ${ }^{\circ} \mathrm{C}$ for 2 h . After removal of the insoluble by-products the solvent was evaporated to form a syrup. It was taken up in 200 ml of ethyl acetate, filtered, and evaporated again to an oil. The compound crystallized when stored under petroleum ether. Recrystallized from THF and petroleum ether: yield $17.2 \mathrm{~g}(83 \%)$; $\mathrm{mp} 110-112{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-2.72^{\circ}$ (c $1, \mathrm{MeOH})$.
Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}$ (486.6); C, 64.18; $\mathrm{H}, 7.04 ; \mathrm{N}, 5.76$. Found: C, 64.40; H, 7.08; N, 5.71.
$\mathrm{H}-\mathrm{Tyr}(\mathrm{Bzl})-\mathrm{Thr}-\mathrm{OCH}_{3} \cdot \mathrm{HCl}$. The above compound (11.4 g) was dissolved in 500 ml of freshly prepared 2.6 N HCl in THF. After standing for 90 min with occasional shaking, the accumulated solid product was collected and washed with ether. The crude product was recrystallized from MeOH and ether: yield $7.0 \mathrm{~g}(71 \%) ; \mathrm{mp} 232-234$ ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+2.09^{\circ}(c 1, \mathrm{MeOH})$.
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl}$ (422.9): C, $59.64 ; \mathrm{H}, 6.44 ; \mathrm{N}, 6.62$. Found: C, 59.43; H, 6.42; N, 6.54 .
Boc-Phe-Phe-OH. L-Phenylalanine (13.2 g) was ground in a motar and pestle and suspended in 250 ml of DMF. It was stirred with 29 g of Boc-Phe-OSu for 24 h in the presence of 9.5 g of tetramethylguanidine. The reaction mixture was then partitioned between 600 ml of 2% citric acid and 800 ml of ethyl acetate. The organic layer was washed with 2% citric acid followed by three washings with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to an oil which solidified gradually. The compound was crystallized from ethyl acetate by addition of petroleum ether: yield $17.5 \mathrm{~g}(53 \%) ; \mathrm{mp} 145-146{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-2.67^{\circ}$ (c 1, MeOH).
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$ (412.5): C, 66.98; H, 6.84; $\mathrm{N}, 6.79$. Found: C, 66.93; H, 6.81; N, 6.79 .
Z-Gly-Phe-Phe-OH. Boc-Phe-Phe-OH (12.5 g) was dissolved in 120 ml of TFA and left standing for 15 min . After evaporation of the solvents, the residue was treated with ether upon which the dipeptide salt precipitated as white solid. It was collected and washed with ether and then stirred with 9.5 g of Z -Gly-OSu for 24 h in the presence of 6.5 ml of $\mathrm{Et}_{3} \mathrm{~N}$. The product was worked up as usual ad crystallized from ethyl acetate: yield $12.2 \mathrm{~g}(80 \%) ; \mathrm{mp} 180-182^{\circ} \mathrm{C} ;[\alpha]{ }^{25} \mathrm{D}+16.74^{\circ}$ (c 1, HOAc).
Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$ (503.6): C, 66.79; H, 5.81; N, 8.34. Found: C, 66.72; H, 5.69; N, 8.34 .
Z-Gly-Phe-Phe-Tyr(Bzl)-Thr- $\mathbf{O C H}_{3}$. The dipeptide salt H-$\mathrm{Tyr}(\mathrm{Bzl})-\mathrm{Thr}-\mathrm{OCH}_{3} \cdot \mathrm{HCl}(6.25 \mathrm{~g})$ and the tripeptide Z-Gly-Phe-Phe-OH (7.43 g) were dissolved in 120 ml of DMF and cooled to - 10 ${ }^{\circ} \mathrm{C}$ when 1.66 ml of N-methylmorpholine, 4.0 g of HOBT, and 3.7 g of DCC were added. The mixture was stirred at $-10^{\circ} \mathrm{C}$ for 4 h and then at $25^{\circ} \mathrm{C}$ for 48 h . Removal of the insoluble by-product and evaporation of the solvent $\left(40^{\circ} \mathrm{C}\right)$ left a solid mass. It was triturated with ethyl acetate and crystallized from MeOH : yield 8.5 g (66%); mp $181-184^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-16.58^{\circ}$ (c 1, DMF).
Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{10}$ (871.99): C, $67.49 ; \mathrm{H}, 6.13 ; \mathrm{N}, 8.03$. Found: C, 66.97; H, 6.11; N, 8.08 .
Z-Gly-Phe-Phe-Tyr(Bzl)-Thr-HNNH $\mathbf{2}_{\mathbf{~ (V I)}}$. The pentapeptide methyl ester above (8.5 g) was stirred in $10 \% \mathrm{H}_{2} \mathrm{NNH}_{2}$ in DMF (140 $\mathrm{ml})$ for 24 h . Upon dilution with 1500 ml of MeOH a heavy white precipitate formed. The product was crystallized from DMF (115 ml) and $\mathrm{MeOH}(250 \mathrm{ml})$: yield $6.8 \mathrm{~g}(78 \%)$; $\mathrm{mp} 241-243^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-16.73^{\circ}$ (c 1, DMF); NMR spectrum agreed with the structure. Amino acid analysis after hydrogenation and digestion with leucine amino peptidase: Gly, 1.02, Thr, 1.01; Tyr, 0.97; Phe, 2.11.
Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{53} \mathrm{~N}_{7} \mathrm{O}_{9}$ (871.96): C, 66.11; H, 6.12; N, 11.24. Found: C, 65.95; H, 6.19; N, 11.09 .
Z-Gly-His-Lys(Z)-nh \mathbf{h}_{2} Resin II (5 g) that had been used for the
synthesis of I as described ${ }^{8}$ was allowed to react with Boc-Lys(Z)-OH $(1.95 \mathrm{~g})$, pyridine (0.4 ml), and DCC (1.1 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 2 h to give 6.0 g of $\mathrm{Boc}-\mathrm{Lys}(\mathrm{Z})-\mathrm{OCH}_{2}-\mathrm{C}_{6}-\mathrm{H}_{4}$-resin (3.24 mmol). After benzoylation ${ }^{15}$ at $0^{\circ} \mathrm{C}$ for 15 min with 0.83 ml of pyridine and 0.98 ml of benzoyl chloride in 60 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the resin was deprotected (50% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}$), neutralized ($10 \% \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~min}$), and coupled (120 min) with Boc-His(Tos)-OH-DCHA ($5.4 \mathrm{~g}, 8.1$ $\mathrm{mmol})^{22}$ in the presence of DCC $(1.69 \mathrm{~g})$. Th.e synthetic cycle was repeated again with 8.1 mmol each of Z-Gly-CH (1.7 g) and DCC (1.69 g) to give 6.9 g of Z -Gly-His(Tos)-Lys(Z)- $\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin. Ammonolysis in 450 ml of NH_{3}-saturated MeOH for 70 h provided a partially crystalline precipitate. It was concentrated to a smaller volume, diluted with an equal volume of DMF, filtered to remove the resin particles, and evaporated to a solid mass. Crystallization from DMF with MeOH gave 1.31 g (64%) of the desired compound: mp $210-212^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-8.51^{\circ}$ (c 1, DMF); the NMR spectrum agreed with the structure.

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{7}$ (607.6): C, $59.30 ; \mathrm{H}, 6.14 ; \mathrm{N}, 16.14$. Found: C, 59.24; H, 6.09; N, 16.16.

Acknowledgments. The authors thank Dr. R. B. Merrifield and Dr. J. Meienhofer for discussions, and Dr. F. Scheidl, Dr. T. Williams, Dr. V. Toome, Mr. Traiman, and their colleagues for physicochemical measurements.

Registry No.-I, 54276-64-1; III, 59790-71-5; IV, 54647-58-4; V, 54276-67-4; VI, 57471-75-7; Boc-Thr(Bzl)-OH, 15260-10-3; Boc-Tyr(Bzl)-OH, 2130-96-3; Boc-Phe-OH, 13734-34-4; Boc-Gly-OH, 4530-20-5; Z-Gly-OH, 1138-80-3; Bpoc-Tyr(Bzl)-OH, 25692-91-5; Bpoc-Phe-OH, 40099-50-1; H-Thr-OCH3, 59790-72-6; H-Thr-OH, 72-19-5; Boc-Tyr(Bzl)-Thr-OCH3, 3373-59-9; H-Tyr(Bzl)-Thr$\mathrm{OCH}_{3} \cdot \mathrm{HCl}, 57471-73-5$; Boc-Phe-Phe-OH, 13122-90-2; H-Phe-OH, 63-91-2; Boc-Phe-OSu, 3674-06-4; Z-Gly-Phe-Ph-OH, 57471-71-3; Z-Gly-OSu, 2899-60-7; Z-Gly-Phe-Phe-Tyr(Bzl)-Thr(Bzl)-Thr-
$\mathrm{OCH}_{3}, 57471-74-6 ; \mathrm{Z}-\mathrm{Gly}-\mathrm{His}-\mathrm{Lys}(\mathrm{Z})-\mathrm{NH}_{2}, 59790-73-7$; $\operatorname{Boc}-\operatorname{Lys}(\mathrm{Z})-$ OH, 2389-45-9; copolystyrene-divinylbenzene, 9003-70-7.

References and Notes

(1) R. B. Merrifield, J. Am. Chem. Soc., 85, 2149 (1963).
(2) R. B. Merrifield, J. M. Stewart, and N. Jernberg, Anal. Chem., 38, 1905 (1966).
(3) J. M. Stewart and J. D. Young, "'Solid Phase Peptide Synthesis'", W. H. Freeman, San Francisco, Calif., 1969.
(4) R. B. Merrifield in "Chemistry of Polypeptide", P. G. Katsoyannis, Ed., Plenum Press, New York, N.Y., 1973, pp 335-361.
(5) J. Meienhofer in "Hormonal Proteins and Peptides", Vol. II, C. H. Li, Ed., Academic Press, New York, N.Y., 1973, pp 45-267.
(6) Abbreviations used are those recommended by IUPAC-IUB Commission on Biological Nomenclature: J. Biol. Chem., 247, 977 (1972). Others are: dcc, dicyclohexylcarbodiimide; DMF, dimethylformamide; DVB, divinylbenzene; HOBT. 1 -hydroxybenzotriazole; HOSu, N-hydroxysuccinimide; $\mathrm{Et}_{3} \mathrm{~N}$, triethylamine; TFA, trifluoroacetic acid; THF, tetrahydrofuran.
(7) M. Bodanszky and J. T. Sheehan, Chem. Ind. (London), 1597 (1966)
(8) S. S. Wang. J. Org. Chem., 40, 1235 (1975).
(9) Beckman Instruments, Inc., Spinco Division, Palo Alto, Calif. 94304.
(10) T. Curtius, Ber. 35, 3226 (1902).
(11) E. Schroder and K. Lubke, "The Peptides", Vol. I, Academic Press, New York, N.Y., 1965.
(12) Houben-Weyl, "Methoden der Organischen Chemie'", Vol. 15, Part 1 and Part 2, "Synthese von Peptiden", E. Wunsch, Ed., Georg Thieme Verlag. Stuttgart, 1974.
(13) Although the comparisons were not made on an identical compound, the minor differences in their side chain protecting groups on Gly-Phe-Phe-Tyr-Thr sequence probably are not as important as to make the conclusions meaningless. The processes studied here dictated suitable combinations of protecting groups that could safely be used.
(14) B. Gutte and R. B. Merrifield, J. Biol. Chem. 246, 1922 (1971).
(15) S. S. Wang. J. Am. Chem. Soc., 95, 1328 (1973).
(16) J. C. Sheehan and G. P. Hess, J. Am. Chem. Soc., 77, 1067 (1955)
(17) W. König, and R. Geiger, Chem. Ber., 103, 788 (1970).
(18) P. Sieber and B. Iselin, Helv. Chim. Acta, 51, 614, 622 (1968).
(19) S. S. Wang and R. B. Merrifield, Int. J. Protein Res., 1, 235 (1969).
(20) The resin contained 0.55 mmol of Thr per gram according to N and amino acid analyses.
(21) F. Marchiori, R. Rochi, and E. Scoffone, Gazz. Chim. Ital., 93, 834 (1963).
(22) The dicyclohexylamine salt was converted into free acid prior to use.

Solid Phase Synthesis of Protected Peptides via Photolytic Cleavage of the α-Methylphenacyl Ester Anchoring Linkage

Su-Sun Wang
Chemical Research Department, Hoffmann-La Roche Inc., Nutley, New Jersey 07110

Received March 15, 1976

Abstract

Photolysis of α-methylphenacyl esters was adapted to solid phase peptide synthesis. Cleavage of the peptide to resin α-methylphenacyl ester anchoring bond by irradiation at 350 nm provided protected peptides in good yields. The process is examplified by the synthesis of Z-Lys (Z)-Phe-Phe-Gly-OH. For comparison, the same peptide was also prepared through photolytic cleavage of the o-nitrobenzyl ester anchoring linkage.

Studies on several photolyzable protecting groups that are potentially useful in peptide chemistry have recently been described in the literature. ${ }^{1-11}$ Among these, the α-methylphenacyl ester ${ }^{8}$ is of particular interest since it can readily be introduced into polymer matrices ${ }^{12}$ and thus serve as an anchoring linkage between peptide chain and polymer support in solid phase synthesis. ${ }^{13-17}$ Photolytic cleavage of this bond would therefore provide protected peptide intermediates that could subsequently be utilized in the synthesis of polypeptides by fragment condensation. ${ }^{18-21}$

In this report, the development of an efficient and convenient procedure for the preparation of protected peptides based on photolysis of the polymer linked α-methylphenacyl ester bond is described. A similar process involving photolytic cleavage of peptides from the o-nitrobenzyl ester resin ${ }^{13}$ has recently been outlined. ${ }^{10}$

2-Bromopropionyl chloride was allowed to react with co-
polystyrene- 2% divinylbenzene beads (200-400 mesh) in the presence of AlCl_{3} as catalyst to form 2-bromopropionyl resin $\mathrm{BrCH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin (I). The product contained 0.94 mmol of Br per gram of resin according to microanalysis. It showed an intense absorption band at $1685 \mathrm{~cm}^{-1}$ in the ir spectrum. The incorporation of Boc amino acids ${ }^{22}$ into the resin was achieved by stirring I with a slight excess of Boc amino acid cesium salt ${ }^{23}$ in dimethylformamide. The resultant Boc-HN-CHR-COO-CH-(CH_{3})-CO- $\mathrm{C}_{6} \mathrm{H}_{4}$-resin (II) showed strong absorption bands at 1750 and $1725 \mathrm{~cm}^{-1}$ in addition to that at $1685 \mathrm{~cm}^{-1}$ in the ir spectrum. The degree of substitution is normally in the range of $0.5-0.7 \mathrm{mmol} / \mathrm{g}$. There was practically no residual Br remaining after this treatment.

As outlined in Scheme I, Boc-Gly-OCH $\left(\mathrm{CH}_{3}\right)$-CO$\mathrm{C}_{6} \mathrm{H}_{4}$-resin (II) was deprotected, neutralized, and coupled with Boc-Phe-OH. The synthetic cycle was repeated with Boc-Phe-OH and then again with $\mathrm{Z}-\mathrm{Lys}(\mathrm{Z})-\mathrm{OH}$. The

Z-Lys(Z)-Phe-Phe-Gly-OH (70\% overall) IV
protected tetrapeptide resin Z-Lys(Z)-Phe-Phe-Gly$\mathrm{OCH}\left(\mathrm{CH}_{3}\right)$ - $\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin (III) thus obtained was then suspended in dimethylformamide and irradiated at 350 nm in a Rayonet photochemical reaction chamber for 72 h at 20 ${ }^{\circ} \mathrm{C}$. The product Z-Lys(Z)-Phe-Phe-Gly-OH (IV) released from the resin was crystallized to give an analytically pure material in 70% overall yield. It was shown to be identical with a reference compound prepared by an alternate route. ${ }^{24}$ The residual resin after photolysis retained $0.047 \mathrm{mmol} / \mathrm{g}$ of peptide according to amino acid analysis which indicated 92% photolytic cleavage under these conditions.
The stability of the α-methylphenacyl ester anchoring linkage of III under various conditions was studied. Rates of photolysis, hydrazinolysis, and acidolysis are shown in Figure 1. Photolysis proceeded rapidly with a half-life of approximately 5 h . The anchoring bond was completely stable against 50% trifluoroacetic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ but surprisingly labile toward hydrazinolysis. For comparison, similar experiments were conducted with Z -Lys (Z)-Phe-Phe-Gly- OCH_{2} $\mathrm{C}_{6} \mathrm{H}_{3}\left(3-\mathrm{NO}_{2}\right)$ - $\mathrm{CO}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin (VII) and also with Z-Lys(Z)-Phe-Phe-Gly- OCH_{2} - $\mathrm{C}_{6} \mathrm{H}_{4}$-resin (VIII), Figure 1. As expected, the polymer-bound benzyl ester linkage was completely stable to photolysis (350 mm) but rapidly cleaved by hydrazinolysis $\left(10 \% \mathrm{H}_{2} \mathrm{NNH}_{2}\right.$ in dimethylformamide). In agreement with observations made by several investigators, ${ }^{14,25}$ the benzyl ester anchoring linkage was cleaved slowly by 50% trifluoroacetic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The polymer bound o-nitrobenzyl ester in VII was photolyzed sluggishly under the conditions used. However, this bond is extremely sensitive to hydrazinolysis and completely inert toward 50% trifluoroacetic acid.

For preparation of Z-Lys(Z)-Phe-Phe-Gly-OH (IV) using $\mathrm{BrCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\left(3-\mathrm{NO}_{2}\right)$ - $\mathrm{CO}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$-resin (V), Merrifield resin ($0.7 \mathrm{mmol} \mathrm{Cl} / \mathrm{g}, 1 \%$ cross-linked, $200-400$ mesh) was allowed to react with n-propylamine (see Scheme II). The amine resin was then acylated with 3 -nitro- 4 -bromomethylbenzoic acid ${ }^{10}$ to form V. Reaction of this material with the cesium salt ${ }^{23}$ of Boc-Gly-OH afforded Boc-Gly-$\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\left(3-\mathrm{NO}_{2}\right)$ - $\mathrm{CO}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin (VI). Solid phase synthesis was then continued by sequen-

Figure 1. Cleavage of peptide resin α-methylphenacyl, o-nitrobenzyl, and benzyl ester anchoring bonds by photolysis, acidolysis, and hydrazinolysis ($10 \% \mathrm{H}_{2} \mathrm{NNH}_{2}$ in DMF). The rate of decrease in the peptide content (by amino acid analyses) of a resin was taken as the rate of cleavage of an anchoring bond.
tial incorporation of Boc-Phe-OH, Boc-Phe-OH, and Z-$\mathrm{Lys}(\mathrm{Z})-\mathrm{OH}$ into the resin. The ensuing protected tetrapeptide resin VII was photolyzed at 350 nm to produce the desired compound IV in 40% overall yield. The lower yield of this process is due primarily to the slower rate of photolysis of this anchoring bond.

Preliminary experiments indicated that photolysis of the α-methylphenacyl ester anchoring linkage involving peptides with carboxyl terminal amino acids other than glycine (Ala, $\mathrm{Leu}, \mathrm{Thr}(\mathrm{Bzl})$, Ile) was two to five times slower under similar conditions. Thus the process utilizing resin I as solid support would appear best suited for the synthesis of protected peptide fragments posessing carboxyl-terminal glycine residues.

Experimental Section

Melting points are uncorrected. Infrared spectra were taken on a Perkin-Elmer Model 137 spectrophotometer using KBr pellets. Thin layer chromatography was carried out on precoated silica gel plates (Merck F254) using solvent systems described previously. ${ }^{26}$ Microanalyses, amino acid analyses, and other physicochemical measurements were performed by the Physical Chemistry Department.

Copolystyrene- 2% divinylbenzene beads ($200-400$ mesh, Bio-Beads S-X2) was purchased from Bio-Rad Laboratories, Richmond, Calif. Amino acid derivatives were obtained from Bachem, Inc., Marina Del

Ray, Calif., or prepared in this laboratory and were of L configuration. 2-Bromopropionyl chloride was bought from Aldrich Chemical Company, Milwaukee, Wis., and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was from GallardSchlesinger Corp., N.Y. Other chemicals and solvents were reagent grade products from various commercial sources.
$\mathrm{BrCH}\left(\mathrm{CH}_{3}\right)$-CO-C $\mathbf{C}_{6} \mathbf{H}_{4}$-Resin (I). 2-Bromopropionyl chloride (50 $\mathrm{g}, 243 \mathrm{mmol})$ was added slowly to a suspension of $\mathrm{AlCl}_{3}(39 \mathrm{~g})$ in 250 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with gentle stirring. The solid dissolved after a brief period of time, forming a light brown solution. It was cautiously added to a suspension of Bio-Beads S-X2 $(216 \mathrm{~g}, 200-400 \mathrm{mesh})$ in 2200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ during a period of approximately 30 min . The mixture was stirred for an additional 17 h . The acylated resin thus obtained was collected and washed successively with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, nitrobenzene, and THF. The slightly brownish resin was stirred in a mixture of THF$\mathrm{H}_{2} \mathrm{O}(6000 \mathrm{ml}, 2: 1)$ for 30 min and collected by filtration. The operation was repeated twice more and the resin again washed with $\mathrm{H}_{2} \mathrm{O}$, THF, and then MeOH to give 248,3 g of light buff colored material: ir (KBr) $1685 \mathrm{~cm}^{-1} ; \mathrm{Br}, 7.50(0.94 \mathrm{mmol} / \mathrm{g}) ; \mathrm{Cl}, 0.06$.
Boc-Gly-OCH $\left(\mathbf{C H}_{3}\right)$-CO-C $\mathbf{C}_{6} \mathbf{H}_{4}$-Resin (II). Boc-Gly-OH (4.38 $\mathrm{g}, 25 \mathrm{mmol}$) was dissolved in a mixture of 40 ml of EtOH and 10 ml of $\mathrm{H}_{2} \mathrm{O}$. The solution was titrated to pH 7.0 with $20 \% \mathrm{Cs}_{2} \mathrm{CO}_{3}$. The mixture was evaporated to dryness ($35^{\circ} \mathrm{C}$) and the residual solid was evaporated twice with fresh DMF. Boc-Gly-O ${ }^{-}$. Cs^{+}thus obtained was stirred with 20 g of I (18.8 mmol) in 80 ml of DMF for 17 h . The esterified resin was then collected and washed successively with DMF, DMF- $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$, THF- $\mathrm{H}_{2} \mathrm{O}$, THF, and MeOH to give 20.5 g of the desired product II. Amino acid analysis indicated the presence of 0.57 $\mathrm{mmol} \mathrm{Gly} / \mathrm{g} ; \mathrm{Br}, 0.11 \%$ ($0.014 \mathrm{mmol} / \mathrm{g}$); ir (KBr) 1750, 1725,1685 cm^{-1}.

Similarly prepared were the resin analogues of Boc-Ala-OH (0.60 $\mathrm{mmol} \mathrm{Ala} / \mathrm{g} ; 0.08 \% \mathrm{Br})$; Boc-Leu-OH (0.58 mmol Leu $/ \mathrm{g} ; 0.13 \% \mathrm{Br}$) and $\mathrm{Boc}-\mathrm{Thr}(\mathrm{Bzl})-\mathrm{OH}(0.62 \mathrm{mmol}$ Thr/g; $0.07 \% \mathrm{Br})$.

Z-Lys(Z)-Phe-Phe-Gly-OH (IV). A. Ten grams of II (5.7 mmol) was deprotected (50% TFA, 30 min), neutralized ($10 \% \mathrm{Et}_{3} \mathrm{~N}, 10 \mathrm{~min}$), and coupled with Boc-Phe-OH ($4.77 \mathrm{~g}, 18 \mathrm{mmol}$) for 120 min in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using DCC ($3.7 \mathrm{~g}, 18 \mathrm{mmol}$) as coupling reagent. Solid phase synthesis was continued by sequential incorporation of Boc-Phe-OH
(4.77 g) and Z-Lys $(\mathrm{Z})-\mathrm{OH}(7.5 \mathrm{~g}, 18 \mathrm{mmol})$ to produce tetrapeptide resin III (12.7 g). Amino acid analysis indicated that this product contained 0.41 mmol of peptide per gram of resin. Amino acid composition Gly, 1.11; Phe, 1.94; Lys, 0.95 . Nitrogen analysis, 3.04% (0.44 mmol peptide/g).
The protected tetrapeptide resin III ($10 \mathrm{~g}, 4.1 \mathrm{mmol}$) was suspended in 250 ml of DMF that had been treated with argon gas ($2 \mathrm{ml} / \mathrm{s}$) for 15 min inside a jacketed Pyrex tube ($3.5 \times 30 \mathrm{~cm}$). The suspension was further flushed with argon for an additional 60 min with gentle magnetic stirring. The reaction mixture was then tightly stoppered and irradiated at $350 \mathrm{~nm}(16 \times 24 \mathrm{~W})$ in a Rayonet photochemical reaction chamber for 72 h with efficient water cooling $\left(20^{\circ} \mathrm{C}\right)$. The released peptide was separated by suction filtration and the solvent removed at $40^{\circ} \mathrm{C}$ under reduced pressure to give 3.5 g of clear oil which solidified immediately on treatment with ethyl acetate. It was crystallized from THF and water: yield $2.42 \mathrm{~g}(77 \%)$; mp $218-220^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-25.12^{\circ}$ (c 1, DMF) $\left[\right.$ lit. ${ }^{24} \mathrm{mp} 220-222^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-25.55^{\circ}$ (c 1, DMF)]; NMR and ir spectra identical with those of the reference compound. ${ }^{24}$ No depression in mixture melting point.
Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{9}$ (765.9): C, $65.87 ; \mathrm{H}, 6.19 ; \mathrm{N}, 9.14$. Found: C, 65.82; H, 6.16; N, 9.24.
Amino Acid Anal. Gly, 0.96 ; Phe, 2.00; Lys, 1.03. Average recovery, 98\%.
The residual resin (7.3 g) after photolytic cleavage contained 0.047 mmol of peptide according to amino acid analysis. It had amino acid composition of Gly, 0.88 ; Phe, 2.00; Lys 1.07. Thus, the photolysis can be calculated as 92% complete.
B. Resin VI ($6.0 \mathrm{~g}, 2.94 \mathrm{mmol}$) was deprotected ($50 \% \mathrm{TFA}, 30 \mathrm{~min}$), neutralized ($10 \% \mathrm{Et}_{3} \mathrm{~N}, 10 \mathrm{~min}$), and coupled with Boc-Phe-OH (1.93 $\mathrm{g}, 7.3 \mathrm{mmol})$ in the presence of DCC $(1.54 \mathrm{~g}, 7.5 \mathrm{mmol})$ for 120 min . Solid phase synthesis was then continued with Boc-Phe-OH (1.93g), followed by Z-Lys $(\mathrm{Z})-\mathrm{OH}(3.11,7.5 \mathrm{mmol})$ in the next two cycles to give protected tetrapeptide resin VII (7.9 g). Amino acid analysis indicated that there was 0.305 mmol of peptide per gram of resin. Resin VII ($7.0 \mathrm{~g}, 2.14 \mathrm{mmol}$) was photolyzed as described in A at 350 nm for 72 h . The released peptide was worked up as above: yield 0.80 g (48.7\%); mp 211-215 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-25.32^{\circ}$ (c 1, DMF); NMR and ir spectra identical with those of the reference. ${ }^{24}$

Anal. Found: C, 65.94; H, 6.28; N, 9.04 .
$\mathrm{BrCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\left(3-\mathrm{NO}_{2}\right)-\mathrm{CO}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$-Resin
(V). Chloromethyl resin ($10 \mathrm{~g}, 7 \mathrm{mmol}$) was suspended in DMF (100 ml) and stirred with 11 ml of n-propylamine for 70 h . The resin was washed with DMF, THF, and MeOH to provide 10.1 g of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin ($\mathrm{N}, 0.97 ; \mathrm{Cl}, 0.09$). It was washed several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and suspended in 150 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ when 2.35 g of 3 -nitro- 4 -bromomethylbenzoic acid ${ }^{10}(9 \mathrm{mmol})$ and 2.0 g of DCC (9.7 mmol) were added. After stirring for 2 h the resin was collected and washed as usual yielding 11.5 g of desired product $\mathrm{V}(\mathrm{N}$, $0.86 ; \mathrm{Br}, 4.88$). The resin absorbed strongly at $1600 \mathrm{~cm}^{-1}$ in the ir spectrum.
Boc-Gly- $\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\left(3-\mathrm{NO}_{2}\right)$ - $\mathrm{CO}-\mathrm{N}\left(\mathrm{CH}_{2} \mathbf{C H}_{3} \mathbf{C H}_{3}\right)-\mathrm{CH}_{2}-$ $\mathrm{C}_{6} \mathbf{H}_{4}$-Resin (VI). Boc-Gly-OH ($0.7 \mathrm{~g}, 4 \mathrm{mmol}$) was dissolved in 8 ml of $i-\mathrm{PrOH}$ plus 2 ml of $\mathrm{H}_{2} \mathrm{O}$ and the mixture titrated to pH 7.0 with $20 \% \mathrm{Cs}_{2} \mathrm{CO}_{3}$. The solution was evaporated to dryness, reevaporated twice with DMF ($40^{\circ} \mathrm{C}$), and then stirred in DMF (25 ml) with 6 g of $\mathrm{V}(3.68 \mathrm{mmol})$ for 24 h . The resin was then washed as usual and dried to give 6.2 g of material. Amino acid analysis indicated that there was 0.49 mmol of glycine per gram of resin. There was virtually no residual bromide left (0.13%). There were strong absorption bands at 1750 , 1710 , and $1600 \mathrm{~cm}^{-1}$.
Z-Lys(Z)-Phe-Phe-Gly- $\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$-Resin (VIII). Hydroxymethyl resin ($4 \mathrm{~g}, 2.8 \mathrm{mmol}$), prepared as described before, ${ }^{26}$ was allowed to react with Boc-Gly-OH ($0.98 \mathrm{~g}, 5.6 \mathrm{mmol}$), 4-dimethylaminopyridine ($0.69 \mathrm{~g}, 5.6 \mathrm{mmol}$), and DCC ($1.2 \mathrm{~g}, 5.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(55 \mathrm{ml})$ for 120 min . The resin was collected and washed to give 4.32 g of material. Amino acid analysis indicated that the product, Boc-Gly- $\mathrm{OCH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$-resin, contained $0.58 \mathrm{mmol} \mathrm{Gly} / \mathrm{g}$. After benzoylation, ${ }^{26}$ the resin was deprotected (50% TFA, 30 min), neutralized (10% $\mathrm{Et}_{3} \mathrm{~N}, 10 \mathrm{~min}$), and coupled (120 min) with Boc-Phe-OH ($1.32 \mathrm{~g}, 5$ $\mathrm{mmol})$ in the presence of DCC $(1.03 \mathrm{~g}, 5 \mathrm{mmol})$. Continuation of solid phase synthesis with Boc-Phe-0H (1.32 g) in the next cycle followed by Z-Lys $(\mathrm{Z})-\mathrm{OH}(2.07 \mathrm{~g}, 5 \mathrm{mmol})$ in another cycle gave Z -Lys (Z) -Phe-Phe-Gly- OCH_{2} - $\mathrm{C}_{6} \mathrm{H}_{4}$-resin (4.9 g). Amino acid analysis showed that the resin contained 0.51 mmol peptide $/ \mathrm{g}$ with an amino acid composition of Gly, 1.02; Phe, 1.98; Lys, 1.00 .

Rates of Cleavage of Peptide α-Methylphenacyl, o-Nitrobenzyl, and Benzyl Ester Anchoring Bonds by Photolysis, Acidolysis, and Hydrazinolysis. The protected tetrapeptide resin III $(2.0 \mathrm{~g})$ was suspended in 50 ml of argon-saturated DMF and irradiated at 350 nm in the manner described for the preparation of IV. At dif-
ferent time intervals aliquots (4 ml) were withdrawn (under argon) and the resin separated immediately by suction filtration, washed thoroughly with DMF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and MeOH , and then subjected to amino acid analysis. The rate of decrease in amino acid content was taken as the rate of photolysis of the α-methylphenacyl ester anchoring bond. Exactly the same experiments were performed on tetrapeptide resins VII and VIII to determine the rate of photolytic cleavage of the o-nitrobenzyl and benzyl ester linkages. The results are summarized in Figure 1. For the studies of the rates of acidolysis or hydrazinolysis of the resins III, VII, and VIII, 0.5 g each of the samples were stirred individually in 20 volumes each of TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) or $10 \% \mathrm{H}_{2} \mathrm{NNH}_{2}$ (DMF) in six separate flasks. Aliquots (1 ml) from each reaction were taken at different times and treated as described above for the photolysis experiments. The results are also shown in Figure 1.

Acknowledgment. The author wishes to thank Dr. R. B. Merrifield and Dr. J. Meienhofer for suggestions and discussions; Dr. F. Scheidl, Dr. T. Williams, Dr. V. Toome, Mr. S. Traiman, and their colleagues for physicochemical measurements and determinations; and Dr. C. C. Wei for discussions concerning some of the photochemical techniques.

Registry No.-IV, 40099-54-5; copolystyrene divinylbenzene, 9003-70-7; 2-bromopropionyl chloride, 7148-74-5; Boc-Gly-OH, 4530-20-5; Boc-Phe-OH, 13734-34-4; Z-Lys(Z)-OH, 405-39-0

References and Notes

(1) J. A. Barltrop, P. J. Plant, and P. Schofield, Chem. Commun., 822 (1966).
(2) J. W. Chamberlin, J. Org. Chem., 31, 1658 (1966).
(3) A. Patchornik, B. Amit, and R. B. Woodward, J. Am. Chem. Soc., 92, 6333 (1970).
(4) J. C. Sheehan, R. M. Wilson, and A. W. Oxford, J. Am. Chem. Soc., 93, 7222 (1971).
(5) C. Birr, W. Lochinger, G. Stahnke, and P. Lang, Justus Liebigs Ann. Chem., 763, 162 (1972)
(6) U. Zehavi and A. Patchornik, J. Am. Chem. Soc., 95, 5673 (1973)
(7) B. Amit and A. Patchornik, Tetrahedron Lett., 2205 (1973)
(8) J. C. Sheehan and K. Umezawa, J. Org. Chem., 38, 3771 (1973).
(9) B. Amit, U. Zehavi and A. Patchornik, J. Org. Chem., 39, 192 (1974); Isr. J. Chem., 12, 103 (1974).
(10) D. H. Rich and S. K. Gurwara, J. Am. Chem. Soc., 97, 1575 (1975)
(11) D. H. Rich and S. K. Gurwara, Tetrahedron Lett., 301 (1975).
(12) T. Mizoguchi, K. Shigezane, and N. Takamura, Chem. Pharm. Bull., 18, 1465 (1970).
(13) R. B. Merrifield, J. Am. Chem. Soc., 85, 2149 (1963)
(14) R. B. Merrifield in "The Chemistry of Polypeptides", P. G. Katsoyannis, Ed., Plenum Press, New York, N.Y., 1973, pp 335-361.
(15) G. R. Marshall and R. B. Merrifield in "Biochemical Aspects of Reactions on Solid Supports'". G. R. Stark, Ed., Academic Press, New York, N.Y., 1971, pp 111-169.
(16) J. Stewart and J. D. Young, "Solid Phase Peptide Synthesis"', W. H. Freeman, San Francisco, Calif., 1969
(17) J. Meienhofer in "Hormonal Proteins and Peptides", Vol. 2, C. H. Li, Ed., Academic Press, New York, N.Y., 1973, pp 45-267.
(18) S. S. Wang and R. B. Merrifield, Int. J. Pept. Protein Res., 4, 309 (1972).
(19) E. Schroder and K. Lübke, "The Peptides". Vol. 1, Academic Press, New York, N.Y., 1965.
(20) M. Bodanszky and M. A. Ondetti, "Peptide Synthesis", Interscience, New York, N.Y., 1966.
(21) Houben-Weyl, "Methoden der Organischen Chemie", Vol. 15, Part 1 and Part 2, "Synthese von Peptiden"', E. Wünsch, Ed., Georg Thieme Verlag, Stuttgart, 1974
(22) Abbreviations used: Boc, tert-butyloxycarbonyl; Bzl, benzyl; DCC, dicyclohexylcarbodiimide; DMF, dimethylformamide; THF, tetrahydrofuran; TFA, trifluoroacetic acid; Z, benzyloxycarbonyl.
(23) B. F. Gisin, Heiv. Chim. Acta, 56, 1476 (1973).
(24) S. S. Wang, J. Am. Chem. Soc., 95, 1328 (1973).
(25) B. Gutte and R. B. Merrifield, J. Biol. Chem., 246, 1922 (1971).
(26) S. S. Wang, J. Org. Chem., 40, 1235 (1975).

Total Synthesis of Sativene and Copacamphene via a Free Radical Cyclization

Peter Bakuzis,* Olívia O. S. Campos, and Marinalva L. F. Bakuzis
Departamento de Quimica, Universidade de Brasilia, Brasilia, D. F., 70.000, Brazil
Received April 2, 1976

A synthesis of the tricyclic sesquiterpenes sativene (1) and copacamphene (2) is described, the key carbon-carbon bond formation being effected via a free-radical cyclization of the bicyclic compound $3(\mathrm{X}=\mathrm{O} ; \mathrm{Y}=\mathrm{H})$. A new method for transforming a terminal olefin to an aldehyde via the corresponding alkyl phenyl sulfide followed by oxidation with N-chlorosuccinimide and hydrolysis of the resulting chloroalkyl phenyl sulfide is used to prepare the aldehyde precursor of 3 .

The tricyclic sesquiterpenes sativene (1) and copacamphene (2) possess five chiral centers and thus offer interesting substrates to test and develop synthetic methodology. ${ }^{1}$ While schemes based on heterolytic processes leading to carboncarbon bond formation have been responsible for all but a handful of synthesis, one can expect ${ }^{2}$ that homolytical processes, at least in isolated steps, will become more and more common as traditional prejudices against free-radical intermediates are removed. ${ }^{3}$ Accordingly, we sought to develop a synthetic scheme based on free-radical intermediates which might be used to synthetize not only sativene and copacamphene, but also structurally related compounds such as cyclosativene, isosativene, and longifolene.

The key intermediate of our projected synthesis was the free radical 3 , which could be expected ${ }^{4}$ to cyclize to the tricyclic skeleton found in 1 and 2 . Unfortunately, the factors controlling stereoselectivity of free-radical cyclizations are not understood, but because of the strained nature of the 7 -norbornyl radical ${ }^{5}$ and the expected stability of the tertiary radical produced, the product ratio should reflect kinetic and

1

2

3
not thermodynamic factors. However, no clear prediction of the stereoselectivity expected could be made by consulting Dreiding models of radical 3 . This steric ambiguity was offset by the choice of the norbornanone skeleton as the starting point of the synthesis, the other four asymmetric centers being controlled by the topological and steric restraints of the bicyclic ring structure.
Of the variety of methods that could be used to synthesize the desired radical 3, the Barton reaction appeared to have several advantages since the desired precursors should be
readily prepared and, additionally, the cyclized product from 3 ($\mathrm{Y}=\mathrm{CH}_{2} \mathrm{OH}$) should be convertible into the tetracyclic sesquiterpenoids cyclosativine and cyclocopacamphene by an additional free-radical cyclization of radical 4.

As a model system, we examined the Barton reaction on compound 5 , but found no evidence of functionalization at

C-7. This result is consistent with that obtained with compound $6,{ }^{6}$ although the alkoxy radical derived from the latter system is expected to be more prone to fragmentation reactions. Accordingly, we decided to prepare the desired radical in a less ambigouous manner from the corresponding 7-bromo compound.

The readily available ${ }^{7}$ syn-7-bromenorbornanone (7) was methylated in DME using the conditions developed by House ${ }^{8}$ to give a $3: 1$ mixture of $8 \mathbf{a}$ and $8 \mathbf{b}$, the stereochemistry being assigned on the basis of H NMR data as follows. The chemical shifts of the methyl groups in exo- and endo-3-methylbicy-clo[2.2.1]heptan-2-one are nearly identical ${ }^{9}$ and substitution

7
8a, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{H}$
b, $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{CH}_{\mathrm{i}}$
c. $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}$
d. $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} ; \mathrm{R}^{\prime}=\mathrm{CH}_{*}$
e. $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$

9, $\mathrm{X}=\mathrm{Br}, \mathrm{I}, \mathrm{OTs}$
10
of the syn hydrogen at C-7 by a bromine atom would be expected ${ }^{10}$ to deshield an exo methyl group more than the endo methyl substituent. The observed difference, 0.31 ppm , of the chemical shifts of the methyl groups in compounds $\mathbf{8 a}$ and $\mathbf{8 b}$ permits assignment of the stereochemistry. Collaboration for this assignment comes from the multiplicies of the bromomethine peaks, compound 8a, capable of a "W"-type coupling between the hydrogens at $\mathrm{C}-3$ and $\mathrm{C}-7$, presenting a multiplet while in $8 \mathbf{b}$ the peak appears as an apparent triplet. ${ }^{1:}$

The relatively low stereoselectivity in the alkylation step is in contrast to the stereospecific methylation of norbornanone, ${ }^{9}$ although we cannot be certain that our ratio does not reflect some postalkylation equilibration. ${ }^{12}$ In the event, while the isomers could be separated, this is not necessary since the synthetically important stereoselectivity is determined in the subsequent alkylation step.

Unfortunately, the alkylation of $8 \mathbf{a}$ and 8 b with 9 ($\mathrm{X}=\mathrm{Br}$, I, or OTS) failed under a great variety of conditions, in sharp contrast to the success in the debromo case. ${ }^{9}$ Conditions that were examined included bases such as potassium tert-butoxide and tert-amyl oxide, in various solvents, NaH in benzene, DMF, or $\mathrm{Me}_{2} \mathrm{SO}$, lithium diisopropylamide in DME, and butylmagnesium bromide in HMPA. In all cases, only the endo starting material $\mathbf{8 b}$, or products that indicated ring cleavage and elimination, were isolated. Equally disappointing
were attempts to alkylate 8 a and 8 b with the three-carbon synthon 10 or effect Michael reaction with acrolein. ${ }^{13}$

Successful alkylation was affected by allylation of the magnesium enolate ${ }^{15}$ of $8 \mathbf{a}$ and $\mathbf{8 b}$ in HMPA at $60^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product mixture indicated a ca. 3:5 ratio of O - and C -alkylated products, the alkylated compounds $8 \mathbf{d}$ and 8 e being formed in a $4: 1$ ratio, respectively. Use of higher temperatures to effect a postalkylation Claisen rearrangement increased the amount of C-alkylated product, but the exo to endo ratio decreased and with prolonged reaction times, the syn bromo substituent suffered SN2 attack by magnesium bromide (see Experimental Section).

Hydroboration followed by oxidation of the exo allyl compound $8 \mathbf{d}$ and subsequent oxidation of the resulting alcohol by CrO_{3}-pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{16}$ gave the unstable aldehyde 12

in 35% overall yield. The yield for the hydroboration-oxidation steps was not improved by use of other hydroboration reagents such as $9-\mathrm{BBN}$ or diborane in dimethyl sulfide. Equally disappointing were other olefin to aldehyde transformations via the corresponding epoxides, ${ }^{17}$ thus forcing us to develop an alternate sequence of reactions. ${ }^{18}$

Treatment of $8 \mathbf{d}$ with thiophenol at $80^{\circ} \mathrm{C}$ in the presence of AIBN (azobisisobutyronitrile) led to sulfide 11, which was oxidized with N-chlorosuccinimide by refluxing in carbon tetrachloride for 20 min . The crude chloro sulfide was hydrolized in the presence of $\mathrm{Cu}^{\mathrm{II}}$ (to oxidize the thiophenol formed) ${ }^{19}$ to give the aldehyde 12 in 60% isolated yield (87% yield by NMR). ${ }^{20}$ Treatment of the crude aldehyde 12 with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ in $\mathrm{Me}_{2} \mathrm{SO}$ at $60^{\circ} \mathrm{C}$ led to a nearly quantitative retro-Michael reaction, the major product being $\mathbf{8 b}$. However, reaction of the Wittig reagent at $-65^{\circ} \mathrm{C}$ and in ether as solvent gave the desired isopropylidene compound $8 \mathbf{c}$ in 64% yield, shown to be free of its epimer at C-3 by the absence of a low-field methyl group.

The key carbon-carbon bond formation reaction, cyclization via the intermediate $3(\mathrm{X}=\mathrm{O} ; \mathrm{Y}=\mathrm{H})$, was conveniently carried out in 62% yield by the catalyzed reaction of 8 c and tributyl stannane in benzene at $36^{\circ} \mathrm{C}$. The resulting products, norsativone (13) ${ }^{21}$ and copacamphenilone (14), ${ }^{22}$ formed in a 3:2 ratio, respectively, were separated by careful chromatography on silica gel. The separated ketones 13 and 14 were

transformed into sativene (1) and copacamphene (2) by published ${ }^{21,22}$ procedures and found to be identical in all respects examined with the authentic natural products.

Experimental Section

syn-7-Bromo-3-methylbicyclo[2.2.1]heptan-2-ones (8a and $\mathbf{8 b})$. To a solution of excess lithium diisopropylamide in 350 ml of dry DME ${ }^{8}$ at $0^{\circ} \mathrm{C}$, under N_{2}, containing 200 mg of triphenylmethane as indicator, was added 8.9 g of syn-7-bromobicyclo[2.2.1]heptan-2-one (7) in 15 ml of DME over a $15-\mathrm{min}$ period. To the resulting pink solution was added 15 ml of methyl iodide and the mixture allowed to come to room temperature. After standing overnight, the mixture was poured into water, extracted with ether, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and solvent was removed to give 7.6 g of crude product, shown by GLC (DC 550 column at $170^{\circ} \mathrm{C}$) to be a mixture of starting material and exo and endo methylated ketones $8 \mathbf{a}$ and 8 b ($3: 1$ exo:endo ratio). Chromatography on 250 g of silica with $1: 5$ benzene-petroleum ether gave 4.37 g of monomethylated ketones $8 \mathbf{a}$ and $8 \mathbf{b}$ (56% yield based on unrecovered starting material) and 1.60 g of starting material. Rechromatography of the methylated ketones separated the two isomers, the endo isomer $\mathbf{8 b}$ eluting first. Analytical samples of $8 \mathbf{a}$ and $8 \mathbf{b}$ were prepared by bulb to bulb distillation at $0.05 \mathrm{~mm}\left(75^{\circ} \mathrm{C}\right.$ bath temperature). 8 a : ir (neat) 5.70μ; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.04(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHBr}), 2.67$ (m, $2 \mathrm{H}, \mathrm{C}-1$ and C-4 methines), $1.38\left(\mathrm{~d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$). 8b: ir (neat) $5.70 \mu ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.25(\mathrm{t}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{CHBr})$, 2.68 (m, 2 H, C-1 and C-4 methines), 1.07 (d, $3 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrO}$ (8a): C, 47.31; H, 5.46. Found: C, 47.43; H, 5.55.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrO}$ (8b): C, 47.31; $\mathrm{H}, 5.46$. Found: $\mathrm{C}, 47.35$; H, 5.45.

Allylation of syn-7-Bromo-3-methylbicyclo[2.2.1]heptan2 -ones ($8 \mathbf{a}$ and $8 \mathbf{b}$). A solution of 6.25 g of butyl bromide in 50 ml of ether was added to 1.13 g of Mg , under N_{2}. Ether was removed from the resulting Grignard solution at $60^{\circ} \mathrm{C}$, under vacuum, replaced with 50 ml of freshly distilled (from Na) HMPA, and stirred at $80^{\circ} \mathrm{C}$ for 10 min . To this solution was added 8.66 g of ketone $8 \mathbf{a}$ or $8 \mathbf{b}$ in 10 ml of HMPA, dropwise, over 5 min . After stirring for an additional 30 min, the mixture was cooled to $60^{\circ} \mathrm{C}$; to it was added 11 ml of allyl bromide and the mixture was stirred overnight at $60^{\circ} \mathrm{C}$. The cooled mixture was diluted with water and extracted with ether; the extract was washed several times with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed to give 9.00 g of crude product, shown by ${ }^{1} \mathrm{H}$ NMR to be a mixture of C - and O -allylated compounds. Chromatography on 250 g of silica gel with 2:1 petroleum ether-benzene gave 1.50 g of starting material and 4.85 g of a $4: 1$ mixture of exo and endo allylated product (57% yield, based on unrecovered starting material). The isomers were separated upon careful rechromatography, the endo allyl compound $8 \mathbf{e}$ eluting first. Analytical samples were prepared by bulb to bulb distillation. Exo allyl compound 8d: ir (neat) 5.72, 6.09 $\mu ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 4.15(\mathrm{t}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}, \mathrm{CHBr}), 1.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Endo allyl compound 8 e : ir (neat) $5.72,6.09 \mu ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 4.14$ (t, $1 \mathrm{H}, J=1.0 \mathrm{~Hz}, \mathrm{CHBr}$), 1.44 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}$ (8d): C, 54.33 ; $\mathrm{H}, 6.22$. Found: $\mathrm{C}, 54.48$; H, 6.25.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}$ (8e): C, $54.33 ; \mathrm{H}, 6.22$. Found: $\mathrm{C}, 54.23$; H, 6.15.

The alkylation could be forced to completion by heating the crude reaction mixture at $130-150{ }^{\circ} \mathrm{C}$ for $3-6 \mathrm{~h}$. However, the exo to endo allylation ratio decreased to about $2: 1$, and after prolonged reaction times anti-7-bromo-exo-3-allyl-endo-3-methylbicyclo-[2.2.1]heptan-2-one became an important by-product. It was isolated and purified as above, bulb to bulb distillation providing an analytical sample: ir (neat) $5.70,6.08 \mu ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHBr})$, 1.06 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}$: C, 54.33; $\mathrm{H}, 6.22$. Found: C, 54.49; H, 6.26.

Addition of Thiophenol to syn-7-Bromo-exo-3-allyl-endo3 -methylbicyclo[2.2.1]heptan-2-one (8d). A mixture of 750 mg of olefin 8d, 225 mg of AIBN, and 5 ml of thiophenol was stirred at 77 ${ }^{\circ} \mathrm{C}$ under N_{2} for 2.5 h , cooled, poured into $10 \% \mathrm{KOH}$ solution, and extracted with ether. The extract was washed three times with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was removed to give 1.275 g of crude product. Two chromatographies on 65 g of alumina neutral, activity $2-3$, elution with $2: 1$ petroleum ether-benzene to $1: 1$ petroleum ether-benzene separated, in order of elution, 210 mg of diphenyl disulfide, 120 mg of starting material $8 \mathbf{d}$, and 783 mg of sulfide 11 (86% yield, based on unrecovered starting material). An analytical sample was prepared by bulb to bulb distillation at $0.1 \mathrm{~mm}\left(165{ }^{\circ} \mathrm{C}\right.$ pot temperature): ir (neat) $5.70,6.27,13.5$, and $14.45 \mu ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right)$ $\delta 7.22(\mathrm{~m}, 6 \mathrm{H}$, aromatic), $4.06(\mathrm{t}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{CHBr}), 2.84(\mathrm{t}, 2 \mathrm{H}$, $J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SPh}$), 1.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21}$ BrOS: C, 57.79; H, 5.99. Found: C, 57.67 ; H , 5.91.

Preparation of syn-7-Bromo-endo-3-methyl-exo-3-(4-methyl-3-pentenyl)bicyclo[2.2.1]heptan-2-one (8c). A mixture of 164 mg of sulfide $11,70 \mathrm{mg}$ of N-chlorosuccinimide, and 5 ml of CCl_{4} was refluxed under N_{2} for 20 min , cooled and filtered and solvent was removed. To the residue was added 170 mg of $\mathrm{CuO}, 170 \mathrm{mg}$ of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 5 \mathrm{ml}$ of acetone, and 0.1 ml of $\mathrm{H}_{2} \mathrm{O}$ and the mixture was refluxed under N_{2} for 15 min , cooled, poured into water, and extracted with ether. The extract was washed with $10 \% \mathrm{KOH}$, three times with water, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed to give 146 mg of crude aldehyde 12 (see below), used without puri-ication in the next step.

The above aldehyde, in 3 ml of ether, was added over 6.5 min to a Wittig solution at $-65^{\circ} \mathrm{C}$ (prepared at room tmperature by treating a suspension of 430 mg of triphenylisopropylphosphonium iodide in 10 ml of $\mathrm{Et}_{2} \mathrm{O}$, under N_{2}, with 490μ l of $1.9 \mathrm{M} \mathrm{n}-\mathrm{BuLi}$ in hexane). After the mixture was stirred at $-65^{\circ} \mathrm{C}$ for an additional 0.5 h , it was allowed to come to room temperature over 1 h and then poured into water and extracted with ether. The extract was washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed to give 187 mg of crude product, purified by chromatography on 15 g of silica gel by eluting with $1: 1$ petroleum ether-benzene to $1: 2$ petroleum etherbenzene. The resulting oil, 64 mg (48% overall yield ̇rom 11), was distilled at $0.2 \mathrm{~mm}\left(100^{\circ} \mathrm{C}\right.$ pot temperature) to give an analytical sample of $8 \mathbf{c}$: ir (neat) $5.71 \mu ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 5.08(\mathrm{~m}, 1 \mathrm{H}$, vinyl), $4.13(\mathrm{t}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{CHBr}), 1.67$ and $1.61(\mathrm{~s}, 6 \mathrm{H}$, isopropylidine), 1.07 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BrO}$: C, $58.95 ; \mathrm{H}, 7.42$. Found: C, $58.85 ; \mathrm{H}$, 7.44

Purification of the aldehyde 12 used above resulted in lower overall yields for the three steps, presumably because of the instability of the aldehyde for which acceptable C, H analyses were not obtained. ${ }^{1} \mathrm{H}$ NMR analysis of the products of the oxidation and hydrolysis steps indicated yields of aldehyde up to 87% but isolated yields never exceeded 60%, while the maximum yield for the Wittig reaction on purified aldehyde was 64%. For 12: ir (neat) $3.65,5.72,5.78 \mu ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 9.71$ (broad s, 1 H , aldehyde), $4.19(\mathrm{t}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{CHBr})$, $1.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Free-Radical Cyclization of 8 c to Norsativone (13) and Copacamphenenilone (14). A mixture of 235 mg of the olefin $8 \mathrm{c}, 220$ mg of freshly distilled tributylstannane, and 10 mg of tert-butyl perbenzoate in 20 ml of benzene was irradiated at $36^{\circ} \mathrm{C}$ in a Merry-Go-Round apparatus with the $257-\mathrm{mm}$ source for 1.5 h (quartz tube). Removal of solvent left 530 mg of residue, which was chromatographed on 60 g of silica gel using 1:1 petroleum ether-benzene as eluent to give, in order of elution, 340 mg of tributyltin bromide, 9 mg of starting olefin $8 \mathrm{c}, 47 \mathrm{mg}$ of a mixture of norsativene and copacamphenilone enriched in norsativone, and 53 mg of a mixture favoring copacamphenilone (62% yield of cyclized material). Chromatography of the latter fraction on 45 g of silica gel gave 20 mg of a mixture of 13 and 14 and 29 mg of copacamphenilore ${ }^{1 \mathrm{~b}}$ (14). The above two mixtures were combined and rechromatographed on 45 g of silica gel to give 58 mg of norsativone ${ }^{1 \mathrm{ag}}(13)$ and 5 mg of copacamphenilone (14). The separated ketones 13 and 14 were transformed into sativene and copacamphene, respectively, by published procedures. ${ }^{1 \mathrm{a}, 1 \mathrm{lc}}$ Sativene was identified by comparison of ir, ${ }^{1} \mathrm{H}$ NMR, mass spectrum, and TLC behavior with an authentic sample, while copacamphene was identified by spectral comparison (ir, ${ }^{1} \mathrm{H}$ NMR, mass spectrum).

Acknowledgment. We thank Professor Piers for a generous sample of sativene, Professors McMurry and Dalton for spectral data, Professor Moriatity for unpublished experimental details, and Professor Baker of the Centro de Pesquisas de Produtos Naturais for mass spectra de-ermination. The partial support of this work by the Conselho Nacional de Pesquisas is gratefully acknowledged.

Registry No. -3, 59796-80-4; 7, 7176-91-2; 8a, 59796-81-5; 8b, 59796-82-6; 8c, 59796-83-7; 8d, 59796-84-8; 8e, 5£796-85-9; 11, 59796-86-0; 12, 59796-87-1; allyl bromide, 106-95-6; cnti-7-bromo-exo-3-allyl-endo-3-methylbicyclo[2.2.1]heptan-2-one, 59796-88-2; thiophenol, 108-98-5: sativene, 6813-05-4; copacamphene, 16641-59-1.

References and Notes

(1) For previous synthesis of sativene and copacamphere see (a) J. E. McMurry. J. Am. Chem. Soc., 90, 6821 (1968); (b) J. Org. Shem., 36, 2826 (1971); (c) C. R. Eck, G. L. Hodgson, D. F. Mac Sweeney, R. W. Mills, and T. Money, J. Chem. Soc., Perkin Trans. 1, 1938 (1974); (d) E. Piers, M. B.

Geraghty, R. D. Smillie, and M. Soucy, Can. J. Chem., 53, 2849 (1975). (2) See the preface in J. K. Kochi, Ed., "Free Radicals', Wiley, New York, N.Y. 1973
(3) Notable exceptions are the Barton reaction, allylic oxidations with NBS, and oxidative couplings. The recent work of Breslow on 'remote oxidations" should stimulate synthetic activity of a different sort since it illustrates the synthetic potential of designing specific reagents based on homolytica pathways that are not only efficient, but highly regiospecific as well.
(4) J. W Wilt in "Free Radicals", Vol. I. J. K. Kochi, Ed., Wiley, New York, N.Y. 1973, Chapter 8. For recent work, see M. Julia, C. Descoins, M. Baillarge B. Jacquet, D. Uguen, and F. A. Groeger, Tetrahedron, 31, 1737 (1975): A. L. J. Beckwith and G. Moad, J. Chem. Soc., Perkin Trans. 2, 1726 (1975); and eferences cited therein.
(5) J. K. Kochi, P. Bakuzis, and P. J. Krusic, J. Am. Chem. Soc., 95, 1516 (1973).
(6) R. R. Sauers, K. W. Kelly, and B. R. Sickles, J. Org. Chem., 37, 537 (1972).
(7) L. H. Zalkow and A. C. Oechlschlager, J. Org. Chem., 29, 1625 (1964); D R. Dalton, R. K. Rodebaugh, and C. W. Jefford, ibid., 37, 362 (1972).
(8) H. O. House, L. J. Czuba, M. Gall, and H. D. Olmstrad, J. Org. Chem., 34, 2324 (1969).
(9) E. J. Corey, R. Hartmann, and P. A. Vatakencherry, J. Am. Chem. Soc., 84, 2611(1962).
(10) C. Johnson and R. W. Herr, J. Org. Chem., 38, 3153 (1973); J. Wolinsky, ibid. 26, 704 (1961)
(11) A complete ${ }^{1}$ H NMR analysis of bicyclo[2.2.1]heptan-2-one has appeared: J. L. Marshall and S. R. Walter, J. Am. Chem. Soc., 96, 6358 (1974).
(12) In some of our alkylations we isolated a compound whose 'H NMR spectra was consistent with dialkylated material; thus postalkylation equilibration is a definite possibility. The results of our allylation experiments (vide infra) are equally ambiguous, since we cannot be sure that the endo to exo product ratio does not reflect a Claisen rearrangement contribution.
(13) The simplest rationale to explain the failures of these alkylations is the steric hindrance offered by the syn bromo substituent. This would presumably increase O-alkylation, but should also have resulted in endo alkylation, which was not observed. The anti bromo compound corresponding to 8a or $\mathbf{8 b}$ is not expected to be more useful, since it could be expected ${ }^{14}$ to undergo intramolecular alkylation.
(14) J. T. Lumb and G. H. Whithan, Chem. Commun., 400 (1966).
(15) J. Fauvarque and J.-F. Fauvarque, Bull. Soc. Chim. Fr., 160 (1969)
(16) R. Ratcliffe and R. Rodehorst, J. Org. Chem., 35, 4000 (1970).
(17) D. Bethell, G. W. Kenner, and P. J. Powers, Chem Commun., 277 (1968); R. E. Parker and N. S. Isaac, Chem. Rev., 59, 737 (1959)
(18) P. Bakuzis, M. L. F. Bakuzis, C. C. Fortes, and R. Santos, J. Org. Chem., 41, 2769 (1976).
(19) This is essentially an adaptation of Mukaiyama's method for thioketai and acetal hydrolysis: K. Narashaka, T. Sakashita, and T. Mukaiyama, Bull. Chem. Soc., Jpn., 45, 3724 (1972).
(20) The sequence of reactions starting with ketone $\mathbf{8 a}$ or $\mathbf{8 b}$ and ending with aldehyde 12 corresponds to a formal Michael reaction where the key step, the oxidation of sulfide 11 and the subsequent hydrolysis, is done under conditions where the Michael product is stable
(21) References 1a, c. and d
(22) References 1b-d.

Celorbicol, Isocelorbicol, and Their Esters: New Sesquiterpenoids from Celastrus orbiculatus

Cecil R. Smith, Jr.,* Roger W. Miller, David Weisleder, and William K. Rohwedder
Northern Regional Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604 Nancy Eickman and Jon Clardy*1b
Ames Laboratory-USERDA and Department of Chemistry, Iowa State University, Ames, Iowa 50010

Received March 12. 1976

Esters of two new sesquiterpenoid polyalcohols-celorbicol (1a) and isocelorbicol (2a)—have been isolated from Celastrus orbiculatus. Structures of the parent alcohols have been established by x-ray crystallography, and those of the derived esters have been assigned by NMR spectroscopy. These compounds are structurally related to other polyesters and ester alkaloids from the Celastraceae, all of which are based on the dihydroagarofuran ring system.

In a previous paper, ${ }^{1 \text { a }}$ we reported the isolation of a series of sesquiterpenoid polyol esters from seeds of Celastrus orbiculatus (Celastraceae). In this present paper, we report the complete structural elucidation of the parent alcohols and present evidence for the structures of three of their naturally occurring esters.
The occurrence of sesquiterpenoid esters in the seed oil of Celastrus paniculatus was first suggested by Gunde and Hilditch in 1938. ${ }^{2}$ Recently, several esters of this sesquiterpenoid group from various celastraceous genera have been characterized, including examples from Celastrus, ${ }^{3,4} \mathrm{Eu}$ onymus, ${ }^{5-10}$ Maytenus, ${ }^{11}$ and Catha. ${ }^{12,13}$ The parent alcohols of several of these esters have been characterized, including malkanguniol, ${ }^{3,4}$ celapanol, ${ }^{4}$ euonyminol, ${ }^{5}$ isoeuonyminol, ${ }^{5}$ evonincl, ${ }^{5,7-9}$ alatol, ${ }^{5 \mathrm{e}}$ maytol, ${ }^{11}$ deoxymaytol, ${ }^{11 \mathrm{a}}$ 8-epideoxymaytol, ${ }^{8} 3,4$-dideoxy- 7β-hydroxymaytol, ${ }^{8}$ and cathol. ${ }^{12,13}$ Apparently, all of these alcohols have the same ring system, but they vary in the number, position, and configuration of hydroxyl substituents. This ring system ${ }^{14}$ has been considered to be identical with that of β-dihydroagarofuran; however, the widely accepted stereochemistry of β-dihydroagarofuran has been questioned recently. ${ }^{15}$ As isolated from their natural sources, the hydroxyl groups of these polyalcohols are acylated with acetic acid and various other carboxylic acids. ${ }^{3-13}$ Since certain of these acyl groups contain nitrogen, some of the esters of this series are classed as alkaloids. ${ }^{4-13}$

Isolation of Polyalcohols. After alkaline hydrolysis of Celastrus orbiculatus seed oil, a neutral fraction was isolated which provided two isomeric polyalcohols-celorbicol (1a) and isocelorbicol ($2 \mathbf{a})^{16}$-when subjected to preparative TLC. Alcohols 1a and 2a are high-melting, crystalline solids with the empirical formula $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}$, as shown by high-resolution mass spectra. Their ir spectra showed strong hydroxyl absorptions, but none for carbonyl groups. General features of the NMR and mass spectra of $1 \mathbf{a}, 2 \mathrm{a}$, and their various esters (vide infra) led us to infer that la and 2 a are closely related to malkanguniol, ${ }^{3}$ and that la is a 1,6,9-trihydroxy derivative of the dihydroagarofuran system. ${ }^{1 a}$ The complete structure and stereochemistry of $1 \mathbf{a}$ and 2 a were established subsequently by single crystal x-ray crystallography.
X-Ray Crystallographic Analysis. Celorbicol was converted to a mono- p-bromobenzoate derivative (1f) which was used to elucidate its absolute stereostructure by x-ray diffraction experiments. A computer-generated drawing of the final x-ray model is presented in Figure 1. Table I lists fractional coordinates for If. Figure 1 clearly shows both of the cyclohexane rings in the chair conformation. The hydroxyl at C-1 is equatorial while the one at C-9 is axial. The C-14 and $\mathrm{C}-15$ methyl groups are both axial. The absolute configuration we assign to this structure is the same as that previously reported by Sasaki and Hirata ${ }^{6,17}$ for neoevonine. Bond distances and angles agree with generally accepted values and
Scheme I

la, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$

d, $\mathrm{R}_{1}=\mathrm{Ac} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
e, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ac} ; \mathrm{R}_{3}=\mathrm{H}$
$\mathfrak{f}, \mathrm{R}_{1}=p$-bromobenzoyl; $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$

$2 \mathrm{a}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$

c, $\mathrm{R}_{1}=\mathrm{Ac} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
d, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ac} ; \mathrm{R}_{3}=\mathrm{H}$
e, $\mathrm{R}_{1}=p$-bromobenzoyl; $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$.

Figure 1. Computer-generated drawing of celorbicol mono-p-bromobenzoate (1f). Hydrogens are omitted for clarity.
there are no abnormally short intermolecular contacts. ${ }^{18}$
The structure of isocelorbicol was similarly solved by x-ray diffraction. Use of underivatized 2a proved advantageous, even though its mono- p-bromobenzoate (2e) was available. A computer-generated drawing of 2a is given in Figure 2, and Table II gives the final fractional coordinates. ${ }^{18}$ The overall

Table I. Final Fractional Coordinates for the p-Bromobenzoate of Celorbicol (1f) ${ }^{a}$

C(1)	1.065 (2)	0.066 (2)	0.2294 (9)
C(2)	1.083 (2)	0.109 (2)	0.118 (1)
C(3)	1.206 (2)	0.205 (2)	0.1368 (9)
C(4)	1.110 (2)	0.285 (2)	0.2009 (9)
C(5)	1.073 (1)	0.241 (2)	0.3109 (9)
C(6)	0.976 (2)	0.314 (2)	0.383 (1)
C(7)	1.068 (1)	0.276 (2)	0.4990 (9)
C(8)	0.964 (2)	0.174 (2)	0.511 (1)
C(9)	0.969 (1)	0.095 (2)	0.420 (1)
C(10)	0.956 (1)	0.135 (2)	0.3002 (9)
C(11)	1.294 (1)	0.264 (2)	0.4902 (9)
C(12)	1.414 (2)	0.191 (2)	0.580 (1)
C(13)	1.405 (2)	0.363 (3)	0.494 (1)
C(14)	0.930 (2)	0.335 (2)	0.119 (1)
C(15)	0.731 (2)	0.148 (2)	0.245 (1)
O (16)	0.944 (1)	-0.029 (2)	0.2128 (7)
O(17)	1.2712 (8)	0.218 (2)	0.3810 (6)
$\mathrm{O}(18)$	1.011 (1)	0.419 (2)	C. 3628 (7)
O(19)	1.131 (1)	0.021 (2)	C. 4550 (6)
C(20)	1.039 (2)	-0.117 (2)	0.206 (1)
$\mathrm{O}(21)$	1.218 (1)	-0.125 (2)	C. 2169 (9)
C(22)	0.892 (1)	-0.201 (2)	C. 1801 (9)
C(23)	0.684 (2)	-0.186 (2)	C. 1516 (9)
C(24)	0.55 (2)	-0.266 (2)	C. 126 (1)
C(25)	0.636 (2)	-0.363 (2)	C. 136 (1)
C(26)	0.835 (2)	-0.383 (2)	C. 165 (1)
C(27)	0.959 (2)	-0.299 (2)	(1.187 (1)
$\mathrm{Br}(28)$	0.4520 (2)	-0.476 (2)	C. 1045 (2)
H (1)	$1.207^{\text {b }}$	0.054	C. 268
H (2A)	0.948	0.124	(1.077
H (2B)	1.149	0.056	C. 080
$\mathrm{H}(3 \mathrm{~A})$	1.220	0.229	C. 063
H(3B)	1.344	0.185	(.183
H(4)	1.203	0.342	(1.226
H(6)	0.828	0.313	(1.366
H (7)	1.054	0.316	(1.565
$\mathrm{H}(8 \mathrm{~A})$	0.822	0.188	0.513
H(8B)	1.033	0.143	0.586
H(9)	0.839	0.055	0.412
$\mathrm{H}(12 \mathrm{~A})$	1.428	0.219	0.657
H (12B)	1.551	0.175	0.566
$\mathrm{H}(12 \mathrm{C})$	1.341	0.121	0.580
H(13A)	1.543	0.347	0.478
H(13B)	1.421	0.392	0.571
H(13C)	1.332	0.409	0.436
$\mathrm{H}(14 \mathrm{~A})$	0.874	0.389	0.157
H(14B)	0.823	0.278	0.095
H (14C)	0.973	0.358	0.050
H (15A)	0.665	0.077	0.239
H(15B)	0.716	0.177	0.170
H (15C)	0.663	0.190	0.294
$\mathrm{H}(18 \mathrm{~A})^{\text {c }}$	0.963	0.430	0.299
H (18B)	0.957	0.451	0.404
H(19)	1.129	0.000	0.518
H(23)	0.629	-0.117	0.149
H(24)	0.406	-0.259	0.100
H (26)	0.890	-0.455	0.167
H(27)	1.107	-0.314	0.211

${ }^{a}$ Hydrogen atoms are given the same number as the heavy atom to which they are attached. The estimated standard deviation of the least significant figure is given in parentheses. ${ }^{b}$ The hydrogen positions were not varied in refinement. ${ }^{c}$ Since this hydrogen appeared twice in the difference map, both positions were included, each with an occupancy factor of one-half.
molecular conformation of isocelorbicol (2a) is identical with that of celorbicol. The hydroxyl groups are located at C-1, C-2, and C-9, and they are equatorial, axial, and axial, respectively. The molecular geometry agrees well with generally accepted values, and there are no abnormally short intermolecular contacts. ${ }^{18}$ We have assumed the same absolute configuration for $2 \mathbf{2 a}$ as we have determined for la.

Figure 2. Computer-generated drawing of isocelorbicol (2a). Hydrogens are omitted for clarity.

Celoribicol can now be described as a $1 \alpha, 6 \beta, 9 \beta$-trihydroxy derivative of β-dihydroagarofuran while isocelorbicol is the corresponding $1 \alpha, 2 \alpha, 9 \beta$-triol.

Esters of Celorbicol and Isocelorbicol. The most polar fractions from countercurrent distribution of C. orbiculatus seed oil contained esters of la and 2a. ${ }^{1 a}$ This mixture of esters was resolved into three discrete compounds by preparative TLC; traces of some related esters also were observed. Esters A (1b) and C (1c), partially characterized previously, ${ }^{1 a}$ yielded 1a when subjected to alkaline hydrolysis, and ester $B(2 b)$ gave 2a when treated similarly. The nature of the acyl groups of $\mathbf{1 b}$, $\mathbf{1 c}$, and 2 b was determined by GLC, mass spectra, and NMR. ${ }^{1 a}$

When acetylated under mild conditions, la afforded a monoacetate (1d) together with a diacetate (1e); monoacetate 2 c and diacetate 2 d were prepared similarly from 2 a . In both cases, one monoacetyl and one diacetyl derivative were the predominant products isolated by preparative TLC, although minor amounts of other isomers were apparent. Similarly, la and 2a each yielded mainly one mono-p-bromobenzoate (1f and $2 e$) under mild acylating conditions.

NMR Spectra of Celorbicol and Its Esters. From inspection of their NMR spectra (Table III), it is obvious that compounds la-f contain no hydroxymethylene function; no AB quartet corresponding to such a grouping is observed. Celorbicol and its various esters ($\mathbf{1} \mathbf{a} \mathbf{- f}$) show three sets of signals which, within the framework of the dihydroagarofuran ring system, may be attributed to methine protons α to secondary hydroxyl groups. Each of these signals exhibits the expected downfield shift upon acylation of the corresponding hydroxyl group. Decoupling experiments revealed that none of these three methine protons is coupled to another of this group. These observations indicated that none of the hydroxyls has a vicinal relationship, and were consistent with a 1,6,9 arrangement of hydroxyl substituents.

One downfield methine proton appears as a slightly broadened singlet, only weakly coupled ($J<1 \mathrm{~Hz}$) to any other proton. The axial proton at C-6 uniquely accommodates this observation with $\phi_{6,7}=80^{\circ}$, a dihedral angle corresponding to a value of $J<1 \mathrm{~Hz}$. ${ }^{19}$ Spectra of related esters from other sources exhibit comparable singlets for the corresponding C-6 protons. ${ }^{3,4,8}$

The axial proton at $\mathrm{C}-1$ appears as a pair of doublets, the X portion of an ABX system, at $\delta 4.3$ (1a) or 5.26-5.53 (1b-f). These multiplets have couplings appropriate for an axial-axial interaction ($J=10-12 \mathrm{~Hz}$) together with one that is axialequatorial $(J=4-6 \mathrm{~Hz}) ;{ }^{20}$ they are similar to those ascribed to the axial $\mathrm{C}-1$ proton for esters of celapanol. ${ }^{4}$ We assign the remaining methine-associated multiplet for $1 \mathbf{b}$ and $1 \mathbf{c}$ to the

Table II. Final Fractional Coordinates for Isocelorbicol $(2 a)^{a}$

C(1)	0.3625 (2)	0.4618 (2)	0.3953 (2)
$\mathrm{C}(2)$	0.3876 (2)	0.4697 (2)	0.5614 (2)
$\mathrm{C}(3)$	0.5049 (2)	0.4557 (2)	0.5853 (2)
C(4)	0.5496 (2)	0.3516 (2)	0.5184 (2)
C(5)	0.5178 (1)	0.3395 (1)	0.3527 (2)
C(6)	0.5561 (2)	0.2345 (2)	0.2807 (3)
C(7)	0.5697 (2)	0.2725 (2)	0.1195 (3)
C(8)	0.4591 (2)	0.2894 (2)	0.0549 (3)
$\mathrm{C}(9)$	0.3864 (2)	0.3667 (2)	0.1439 (2)
C(10)	0.3990 (1)	0.3567 (2)	0.3184 (2)
C(11)	0.5318 (2)	0.3763 (2)	0.1448 (2)
C(12)	0.6359 (2)	0.4539 (2)	0.0125 (3)
C(13)	0.7448 (2)	0.3556 (3)	0.1967 (3)
C(14)	0.5288 (2)	0.2524 (2)	0.5174 (3)
C(15)	0.3302 (2)	0.2605 (2)	0.3666 (3)
$\mathrm{O}(16)$	0.2536 (1)	0.4810 (2)	0.3679 (2)
$\mathrm{O}(17)$	0.3263 (1)	0.3940 (1)	0.6444 (2)
O(18)	0.5732 (1)	0.4253 (1)	0.2684 (2)
$\mathrm{O}(19)$	0.3971 (1)	0.4754 (1)	0.0914 (2)
H(1)	0.400 (2)	0.523 (2)	0.350 (3)
$\mathrm{H}(2)$	0.363 (2)	0.544 (2)	0.594 (3)
$\mathrm{H}(3 \mathrm{~A})$	0.518 (2)	0.459 (2)	0.695 (3)
H(3B)	0.539 (2)	0.519 (2)	0.537 (3)
H(4)	0.631 (2)	0.365 (2)	0.513 (3)
H(6A)	0.504 (2)	0.176 (2)	0.291 (3)
H(6B)	0.624 (2)	0.212 (2)	0.329 (3)
H (7)	0.610 (2)	0.222 (2)	0.056 (3)
$\mathrm{H}(8 \mathrm{~A})$	0.459 (2)	0.312 (2)	-0.054 (3)
H (8B)	0.425 (2)	0.213 (2)	0.057 (3)
$\mathrm{H}(9)$	0.314 (2)	0.347 (2)	0.120 (3)
$\mathrm{H}(12 \mathrm{~A})$	0.567 (3)	0.471 (3)	-0.040 (3)
H(12B)	0.673 (4)	0.518 (4)	0.045 (6)
$\mathrm{H}(12 \mathrm{C})$	0.682 (3)	0.428 (3)	-0.065 (5)
$\mathrm{H}(13 \mathrm{~A})$	0.777 (3)	0.419 (4)	0.213 (5)
H (13B)	0.780 (4)	0.319 (4)	0.115 (6)
H(13C)	0.748 (3)	0.305 (3)	0.292 (5)
$\mathrm{H}(14 \mathrm{~A})$	0.454 (3)	0.239 (3)	0.641 (4)
$\mathrm{H}(14 \mathrm{~B})$	0.557 (3)	0.181 (3)	0.562 (4)
$\mathrm{H}(14 \mathrm{C})$	0.568 (3)	0.261 (3)	0.711 (4)
H (15A)	0.351 (3)	0.227 (3)	0.465 (4)
H(15B)	0.259 (3)	0.283 (3)	0.359 (5)
H(15C)	0.225 (3)	0.203 (3)	0.301 (4)
H(16)	0.216 (3)	0.469 (3)	0.447 (4)
H(17)	0.298 (2)	0.424 (2)	0.715 (4)
H(19)	0.453 (3)	0.504 (2)	0.131 (4)

${ }^{a}$ Hydrogen atoms are given the same number as the heavy atom to which they are attached. The estimated standard deviation of the least significant figure is given in parentheses.
equatorial proton at C-9; this appears as a doublet of doublets with $J_{\mathrm{ae}}=6$ and $J_{\mathrm{ee}}=1 \mathrm{~Hz}$ due to couplings with methylene protons at C-8 (compare with esters B-1 and B-4 from Euonymus europaeus. ${ }^{8}$)
Upfield signals (Table III) include proton singlets for angular or geminal methyl groups-C-12, C-13, and C-15-and doublets ($J=7 \mathrm{~Hz}$) for the secondary methyl group, C-14; singlets associated with the various acetyl functions also occur. The $\mathrm{H}-14$ doublets are in accord with corresponding signals for esters of celapanol, as are the singlets generated by H-15. ${ }^{3,4}$ In the spectra summarized in Table III (except that of 1e), signals for $\mathrm{C}-12$ and $\mathrm{C}-13$ protons have the same chemical shift and appear as one six-proton singlet. The coincidence of these two peaks is not generally observed among spectra of related compounds; this overlap may result from a fortuitous balancing of shielding effects from axial oxygen functions at C-6 and C-9.
NMR proton integrals together with mass spectral data indicate that ester A (1b) contains two acetate and one benzoate groups, whereas ester C (1c) has one acetate and two

Table III. Proton Chemical Shifts for Celorbicol (1a) and Derived Esters ${ }^{\text {a }}$

Protons	1 a	1b	1 c	1 d	1 e	1 f
H-1	4.3, m	$\begin{aligned} & 5.43, \mathrm{dd} \\ & \quad(J=11,4) \end{aligned}$	$\begin{aligned} & 5.49 \mathrm{dd} \\ & \quad(J=12,4) \end{aligned}$	$\begin{aligned} & 5.26, \mathrm{dd} \\ & \quad(J=11,6) \end{aligned}$	$\begin{aligned} & 5.28, \mathrm{dd} \\ & \quad(J=11,6) \end{aligned}$	$\begin{aligned} & 5.53, \mathrm{dd} \\ & \quad(J=10,5) \end{aligned}$
H-6	4.3 , bs	5.28, bs	5.55 , bs	4.34 , bs	5.26, bs	4.37 , bs
H-9	3.4 dd (?)	$\begin{aligned} & 4.99, \mathrm{dd} \\ & \quad(J=6,1) \end{aligned}$	$\begin{aligned} & 5.04, \mathrm{dd} \\ & \quad(J=6,1) \end{aligned}$	$\begin{aligned} & 3.29, \text { dd } \\ & \quad(J=5,1) \end{aligned}$	$\begin{aligned} & 3.34, \mathrm{dd} \\ & \quad(J=6,1) \end{aligned}$	$\begin{aligned} & 3.34, \mathrm{dd} \\ & \quad(J=6,1) \end{aligned}$
$\mathrm{H}-12$ $\mathrm{H}-13$	\}1.47, s	1.38, s	\}1.41, s	1.46, s	$\begin{aligned} & 1.49, \mathrm{~s}^{b} \\ & 1.35, \mathrm{~s}^{b} \end{aligned}$	$\} 1.46, \mathrm{~s}$
H-14	$\begin{aligned} & 1.11, \mathrm{~d} \\ & \quad(J=7) \end{aligned}$	$\begin{aligned} & 0.98, \mathrm{~d} \\ & (J=7) \end{aligned}$	$\begin{aligned} & 1.00, \mathrm{~d} \\ & \quad(J=7) \end{aligned}$	$\begin{aligned} & 1.14, \mathrm{~d} \\ & (J=7) \end{aligned}$	$\begin{aligned} & 0.95, \mathrm{~d} \\ & \quad(J=7) \end{aligned}$	$\begin{aligned} & 1.17, \mathrm{~d} \\ & \quad(J=7) \end{aligned}$
H-15	1.04, s	1.30, s	1.36, s	1.13, s	1.16, s	1.28, s
1-O-Acyl		$\begin{aligned} & 7.2-7.6, \mathrm{~m} \\ & 7.9-8.1, \mathrm{~m} \end{aligned}$	$\left\{\begin{array}{l}7.2-7.7, \mathrm{~m} \\ 8.0-8.2, \mathrm{~m}\end{array}\right.$	1.96, s	1.96, s^{c}	$\left\{\begin{array}{c} 7.50,7.82 \\ \mathrm{~A}_{2} \mathrm{~B}_{2} \text { system } \end{array}\right.$
6-O-Acyl		2.08, s			2.03, ${ }^{\text {c }}$	
9-O-Acyl		1.58, s	1.59, s			

${ }^{a}$ Spectra were determined in CDCl_{3}. Chemical shifts (δ) are expressed in parts per million from tetramethylsilane. Letters following the shifts indicate the number and types of peaks observed before decoupling. ${ }^{b, c}$ The assignment of these shifts is uncertain and possibly should be reversed.

Table IV. Proton Chemical Shifts for Isocelorbicol (2a) and Derived Esters ${ }^{\text {a }}$

Protons	2a	2b	2c	2d	2 e
H-1	4.16, s (?)	5.52 , bs	$\begin{aligned} & 5.28, \mathrm{~d} \\ & \quad(J=3) \end{aligned}$	$\begin{aligned} & 5.36, \mathrm{~d} \\ & \quad(J=3) \end{aligned}$	$\begin{aligned} & 5.56, \mathrm{~d} \\ & \quad(J=3) \end{aligned}$
H-2	4.20, m	5.52 , bs	$\begin{aligned} & \text { 4.32, ddd } \\ & \quad(J=3,3,3) \end{aligned}$	$\begin{aligned} & 5.50 \text { ddd } \\ & \quad(J=3,3,3) \end{aligned}$	$\begin{aligned} & 4.47, \text { ddd } \\ & \quad(J=3,3,3) \end{aligned}$
H-9	3.2, m	$\begin{aligned} & 4.73, \mathrm{dd} \\ & \quad(J=6,2) \end{aligned}$	3.25, m	3.27, m	3.33, m
H-12	$1.18, \mathrm{~s}^{\text {b }}$	$1.35, \mathrm{~s}^{\text {c }}$	1.27, $\mathrm{s}^{\text {d }}$	$1.21, \mathrm{~s}^{e}$	1.40, sf
H-13	1.46, s ${ }^{\text {b }}$	$1.38, \mathrm{~s}^{\text {c }}$	1.45, $\mathrm{s}^{\text {d }}$	$1.45, \mathrm{~s}^{e}$	1.43, sf
H-14	$\begin{aligned} & 1.23, \mathrm{~d} \\ & \quad(J=7) \end{aligned}$	$\begin{aligned} & 1.28, \mathrm{~d} \\ & (J=7) \end{aligned}$	$\begin{aligned} & 1.19, \mathrm{~d} \\ & (J=7) \end{aligned}$	$\begin{aligned} & 1.18, \mathrm{~d} \\ & \quad(J=7) \end{aligned}$	$\begin{aligned} & 1.30, \mathrm{~d} \\ & \quad(J=7) \end{aligned}$
H-15	1.18, $\mathrm{s}^{\text {b }}$	$\begin{aligned} & 1.22, \mathrm{~s} \\ & 6.33,7.66, \end{aligned}$	$1.17, \mathrm{~s}^{\text {d }}$	$1.18, \mathrm{~s}^{e}$	$1.19, \mathrm{~s}$
1-O-Acyl		$\left\{\begin{array}{c} \mathrm{AB} \mathrm{q}(J=16) \\ 7.2-7.7, \mathrm{~m} \end{array}\right.$	2.03, s	1.95, s	$\begin{aligned} & 7.51,7.87 \\ & \mathrm{~A}_{2} \mathrm{~B}_{2} \text { system } \end{aligned}$
2-O-Acyl		$1.82, \mathrm{~s}^{g}$		1.99, s	
9-O-Acyl		2.02, s^{g}			

benzoate moieties. ${ }^{\text {1a }}$ By comparing chemical shifts (Table III) for the various sets of three methine protons, the complete structures for esters lb-f may be assigned as depicted. Downfield shifts for $\mathrm{H}-1$ signify that the corresponding hydroxyl is acylated in all five esters ($\mathbf{l b} \mathbf{b} \mathbf{f}$); this conclusion is consistent with x-ray crystallographic analysis of If. From similar considerations, the C-6 hydroxyl must be acylated in esters 1b, 1c, and le but not in 1d and 1f. Differences in downfield shifts for $\mathrm{H}-1$ and $\mathrm{H}-6$ indicate that 1c has benzoate groups attached at both C-1 and C-6 hydroxyl functions, and that 1 b has its single benzoate moiety at C-1. Similarly, the C-9 hydroxyl is not acylated in 1d, 1e, and $1 \mathbf{f}$.

Previous workers ${ }^{4 a, 5 b, 11 a}$ have drawn attention to the anomalous upfield shift of signals associated with acetate functions in certain polyalcohol esters of the dihydroagarofuran group. This shift has been attributed to the anisotropic shielding influence ofaromatic rings in neighboring acyl groups. One acetate resonance of $\mathbf{1 b}$ and $1 \mathbf{c c}(\delta 1.59)$ shows this effect, while other acetate signals recorded in Table I have more typical shifts in the range $\delta 1.96-2.08$. Accordingly, the high-field acetate signals of $1 \mathbf{b}$ and $1 \mathbf{c}(\delta 1.59)$ are considered to be generated by an acetoxy group at C-9 where it can be shielded by the benzoate moiety at C-1.

NMR Spectra of Isocelorbicol and Its Esters. The spectra (Table IV) of isocelorbicol and its esters (2a-e) indi-
cate the absence of primary hydroxyl functions. As with celorbicol and its esters, there are three sets of signals due to methine protons which are shifted downfield when the adjacent secondary hydroxyl groups are acylated. Two of these resonances are coupled to each other, as revealed by irradiation experiments, but the third is coupled to neither of the other two; a 1,2,9-triol structure is consistent with these results. In the case of $\mathbf{2 c}$, for example, there was a doublet at δ 5.28 coupled to an apparent quartet at $\delta 4.32$. The quartet collapsed to an apparent triplet when the spectrum was irradiated near $\delta 5.3$, thus signifying three different couplings with adjacent protons, each with approximately the same coupling constant ($J=3 \mathrm{~Hz}$). H-2 is coupled equally with the C-3 protons and also shows an axial-equatorial coupling with $\mathrm{H}-1$; conversely, $\mathrm{H}-1$ appears as a doublet, $J=3 \mathrm{~Hz}$ (compare with ddd for $\mathrm{C}-2$ proton in euolalin ${ }^{5 \mathrm{~d}}$). Overlap of signals for $\mathrm{H}-1$ and $\mathrm{H}-2$ obscured the multiplicity of both in the spectra of 2a and 2 b .

The third methine proton, attached at C-9, appeared as a poorly defined multiplet near $\delta 3.2$ except in the case of $\mathbf{2 b}$, where it formed a pair of doublets, $J_{\mathrm{ae}}=6$ and $J_{\mathrm{ee}}=2 \mathrm{~Hz}$, due to coupling with C-8 protons.

In contrast to those in the celorbicol series, singlets for $\mathrm{C}-12$ and C-13 protons are well resolved. However, identification of upfield signals (Table IV) associated with methyl groups
of isocelorbicol and its derivatives is not as straightforward as with $1 \mathbf{a}-\mathbf{f}$ and assignments of the singlets for $\mathrm{C}-12, \mathrm{C}-13$, and C-15 protons are uncertain.
NMR and mass spectral data indicated that ester B contains two acetate and one trans-cinnamate groups. ${ }^{12} \mathrm{~A}$ comparison of the chemical shifts for the C-1 and C-2 methine protons leaves no doubt that the C-1 hydroxyl is acylated in $\mathbf{2 b}, \mathbf{2 c}, \mathbf{2 d}$, and $\mathbf{2 e}$, and that the $\mathrm{C}-2$ hydroxyl likewise is acylated in $\mathbf{2 b}$ and $2 \mathbf{d}$. From similar considerations, the C-9 hydroxyl must be acylated only in the case of $2 \mathbf{b}$. H-1 is shifted farther downfield in $\mathbf{2 b}$ than in diacetate $\mathbf{2 d}$, and is displaced to about the same extent as in 2 e (the mono- p-bromobenzoate). From these comparisons, it seems likely that ester B has the structure that we have depicted as $2 \mathbf{b}$.

Mass Spectra of Celorbicol and Isocelorbicol. In their discussions of the mass spectra of malkanguniol and its esters, both den Hrtog et al. ${ }^{3 \mathrm{a}}$ and Wagner et al. ${ }^{4 \mathrm{~b}}$ have stressed the importance of fragments at $m / e 137$ and 124 (or 125) which embrace the original furanoid ring. However, the $m / e 137$ ion is not prominent in the spectra of celapanol derivatives examined by Wagner and co-workers, ${ }^{4 \mathrm{~b}}$ nor in the polyalcohols investigated by Budzikiewicz and Römer. ${ }^{8}$ In contrast, both the m / e 137-138 and 124-125 ions are conspicuous in spectra of $1 \mathbf{a}$ and 2 a , despite the fact that 1 a carries an oxygen substituent at C-6 which must be eliminated. Apparently, the diagnostic value of the $m / e 137$ ion is limited.

Discussion

Celorbicol and isocelorbicol contain four oxygen atomsfewer than any other of the series of polyalcohols from the Celastraceae. Others contain at least five and as many as ten oxygens. However, mono- and dihydroxy derivatives of dihydroagarofuran have been isolated from Aquillaria agallocha wood (family Thymeleaceae). ${ }^{21}$ Isocelorbicol is the first of the series found to be acylated with trans-cinnamic acid.

ORD curves for la and 2a were recorded with both chloroform and methanol solutions to provide comparisons with optical rotations reported by den Hertog et al. ${ }^{3 b}$ and by Wagner et $\mathrm{al} .^{4 \mathrm{~b}}$ In all cases, values for $[\alpha] \mathrm{D}$ were negative; these results suggest that the sesquiterpenoid ring system of 1 a and 2a has the same absolute configuration in C. paniculatus and C. orbiculatus.

Experimental Section

NMR spectra were recorded with a Varian ${ }^{22}$ HA-100 instrument, and ir spectra with a Perkin-Elmer Model 137 instrument. Mass spectra were obtained with a Nuclide 12-90G spectrometer. A Beckman DK-2A spectrophotometer was used to measure uv spectra. ORD spectra were recorded with a Cary Model 60 spectropolarimeter. TLC, both preparative and analytical, was carried out on silica gel GF- 254 plates (E. Merck, Darmstadt). Components were located under uv light after spraying with ethanolic dichlorofluroescein solution. Melting points were determined with a Fischer-Johns block and are uncorrected.
Isolation of Celorbicol (1a) and Isocelorbicol (2a). Extraction and hydrolysis of C. orbiculatus seed oil were described in a previous paper. ${ }^{19}$ A $0.514-\mathrm{g}$ portion of the crude polyalcohol mixture isolated after hydrolysis with methanolic barium hydroxide was subjected to preparative TLC (five $20 \times 20 \times 0.2 \mathrm{~cm}$ plates) with the solvent system chloroform-acetone (3:1); la appeared as a major component at R_{f} 0.5 , and $2 \mathbf{a}$ at $R_{f} 0.3$. In addition, three minor bands appeared which were not investigated.
Celorbicol. Elution of the $R_{f} 0.5$ bands with chloroform-methanol (3:1) provided 0.205 g of 1a: $\mathrm{mp} 222-223^{\circ} \mathrm{C}$ after recrystallization from chloroform-acetone; ir $\left(\mathrm{CHCl}_{3}\right) 3598,3450(\mathrm{OH}), 2940,1133$, $1110,1009,965,900,855$ (broad) cm^{-1}; ORD $[\alpha]^{26} \mathrm{D}-24,[\alpha]_{560}-27$, $[\alpha]_{440}-46,\left[\left.\alpha\right|_{400}-59,[\alpha]_{350}-83,[\alpha]_{300}-126,[\alpha]_{270}-177,[\alpha]_{250}\right.$ $-236^{\circ}\left(c \quad 0.47, \mathrm{CH}_{3} \mathrm{OH}\right) ;[\alpha]^{26} \mathrm{D}-27,[\alpha]_{880}-38,[\alpha]_{400}-59,[\alpha]_{320}$ -100 , $[\alpha]_{280}-145,[\alpha]_{260}-188^{\circ}$ (c $0.37, \mathrm{CHCl}_{3}$); NMR, CDCl_{3} shifts in Table III; $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, \delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.0 \mathrm{~J}(\mathrm{~d}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 1.34 ($\mathrm{s}, 3 \mathrm{H}$), 1.41 ($\mathrm{s}, 3 \mathrm{H}$), 3.32 (dd, $1 \mathrm{H}, J=4,1 \mathrm{~Hz}$), 3.74 (d, 1 H on hydroxyl, $J=4 \mathrm{~Hz}$), $4.0(\mathrm{~m}, 3 \mathrm{H}), 4.76(\mathrm{~d}, 1 \mathrm{H}$ on hydroxyl, $J=5 \mathrm{~Hz}$); MS $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e}$ (rel intensity) $270\left(\mathrm{M}^{+}, 12\right), 255\left(\mathrm{M}-\mathrm{CH}_{3}, 100\right), 159$
(50), 149 (35), 138 (36), 125 (34), 109 (38), 97 (23), 95 (25), 85 (28), 83 (29), 69 (27), 57 (22), 55 (35), 43 (61), 41 (24). Found: $\mathrm{M}^{+}, 270.182$; $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}$ requires 270.183 .

Isocelorbicol. Elution of the $R_{f} 0.3$ band from TLC with chloro-form-methanol (3:1) afforded 0.206 g of 2a: $\mathrm{mp} 240-241^{\circ} \mathrm{C}$ after recrystallization from chloroform-acetone; ir $\left(\mathrm{CHCl}_{3}\right) 3680,3480(\mathrm{OH})$, 2940, 1380, 1361, 1135, 1093, 1063, 1010, 980, 960, 862 (broad) cm^{-1}; ORD $[\alpha]^{26} \mathrm{D}-8,[\alpha]_{440}-14,[\alpha]_{360}-21,[\alpha]_{300}-25$ (minimum), $[\alpha]_{260}$ $-16,[\alpha]_{250}-7,[\alpha]_{245} 0,[\alpha]_{240}+12,[\alpha]_{235}+29^{\circ}(c 0.54, \mathrm{MeOH}) ;\left[\alpha{ }^{26} \mathrm{D}\right.$ $-18,[\alpha]_{520}-22,[\alpha]_{440}-31,[\alpha]_{360}-43,[\alpha]_{280}-69,[\alpha]_{260}-78^{\circ}(c 0.30$, CHCl_{3}); NMR, CDCl_{3} shifts in Table IV; $\mathrm{Me}_{2} \mathrm{SO}-d_{6}, \delta 1.03$ (s, 3 H), 1.06 (s, 3 H), 1.16 (d, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 1.41 (s, 3 H), 3.34 (dd, $1 \mathrm{H}, J=$ $4,1 \mathrm{~Hz}$), 3.63 ($\mathrm{d}, 1 \mathrm{H}$ on hydroxyl, $J=6 \mathrm{~Hz}$), 3.96 (bm, 4 H); MS (70 eV) m/e (rel intensity) $270\left(\mathrm{M}^{+}, 28\right), 255\left(\mathrm{M}-\mathrm{CH}_{3}, 22\right), 252$ ($\mathrm{M}-$ $\mathrm{H}_{2} \mathrm{O}, 21$), 237 (34), 219 (30), 208 (29), 183 (23), 168 (100), 154 (27), 151 (25), 137 (65), 135 (26), 125 (47), 124 (44), 123 (46), 121 (41), 119 (41), 109 (94), 97 (84), 95 (51), 93 (37), 85 (39), 83 (30), 71 (31), 69 (62), 57 (34), 55 (49), 43 (92), 41 (66), 18 (25). Found: $\mathrm{M}^{+}, 270.186 ; \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}$ requires 270.183 .
X-Ray Analyses. A. Celorbicol p-Bromobenzoate (1f). The unit cell of 1 f belonged to the monoclinic space group $P 2_{1}$ with $a=6.818$ (4), $b=13.111$ (9), $\mathrm{c}=12.147$ (9) \AA, and $\beta=101.91$ (5) ${ }^{\circ}$. A calculated and measured density were interpreted to mean two molecules of $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BrO}_{5}$ in the unit cell or one molecule per asymmetric unit. All unique diffraction maxima with $\theta \leq 57^{\circ}$ were collected using a fully automated four-circle diffractometer and monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($1.54178 \AA$). A total of 1494 reflections were measured and after correction for Lorentz, polarization, and background effects, 1144 were judged observed $\left[F_{\mathrm{o}} \geq 3 \sigma\left(F_{\mathrm{o}}\right), 77 \%\right.$ observed].
Structure solution proceeded routinely. The bromine was located in the Patterson synthesis and careful inspection of the centrosymmetric Br -phased electron density synthesis revealed a plausible starting fragment. ${ }^{23}$ The remaining nonhydrogen atoms were located in subsequent electron density syntheses. Hydrogen atoms were located on a difference synthesis after refinement. Full matrix leastsquares refinement with nonhydrogen atoms anisotropic, hydrogens isotropic, and with anomalous scattering corrections for Br lowered the conventional discrepancy index to 0.074 for the structure and 0.076 for the enantiomorph. ${ }^{18,24}$
B. Isocelorbicol (2a). Crystals of 2 a are orthorhombic with $a=$ 12.770 (1), $b=12.374$ (3), and $c=8.9233$ (9) \AA and systematic extinctions indicating space groups $P 2_{1} 2_{1} 2_{1}$. A calculated and measured density indicated one molecule of $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}$ per asymmetric unit. Because of the excellent quality of the crystals, all reflections with $\theta \leq 78^{\circ}$ were collected on a four-circle diffractometer using $\mathrm{Cu} \mathrm{K} \alpha$ ($1.54178 \AA$) radiation. After correction for Lorentz, polarization, and background effects, 1535 of the 1628 measured reflections were judged observed (94\%).
A starting x -ray model was found by a multiple solution, weighted, tangent formula approach. ${ }^{25}$ Refinement with anisotropic nonhydrogen atoms and isotropic hydrogens converged to a final R factor of 0.045 for the observed reflections. ${ }^{18}$
Isolation of Ester A (1b), Ester B (2b), and Ester C (1c). The countercurrent fractionation of C. orbiculatus seed oil was described in a previous paper. ${ }^{\text {1a }}$ Material from combined transfers 1461-1469 (0.271 g) was applied to a preparative TLC plate, and was subjected to double development with the solvent system methylene chlorideethyl ether (95:5); 1c appeared as major component at $R_{f} 0.65,1 \mathrm{~b}$ at $R_{f} 0.55$, and 2 b at $R_{f} 0.37$.
Ester A (1b). Elution of the $R_{f} 0.55$ band with chloroform-methanol (3:1) yielded 0.116 g of $\mathbf{1 b}: \mathrm{mp} 179-180^{\circ} \mathrm{C}$ after recrystallization from ethyl ether-hexane; ir $\left(\mathrm{CHCl}_{3}\right) 2940,1730,1710,1390,1375$, 1285, 1136, 1107, 1087, 1023, $977,967,868 \mathrm{~cm}^{-1}$; NMR, see Table III; MS $(70 \mathrm{eV}) \mathrm{m} / e$ (rel intensity) $458\left(\mathrm{M}^{+}, 2\right) 443\left(\mathrm{M}-\mathrm{CH}_{3}, 6\right), 416$ (47), 206 (29), 159 (19), 138 (25), 105 (90), 77 (38), 43 (100). Found: M ${ }^{+}$, 458.231; $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{7}$ requires 458.230 .

Ester B (2b). Elution of the $R_{f} 0.37$ band from preparative TLC with chloroform-methanol ($3: 1$) gave 25 mg of $\mathbf{2 b}$, an amorphous solid which resisted efforts to crystallize it: ir $\left(\mathrm{CHCl}_{3}\right) 2970,2930,1740$, $1710,1640,1450,1370,1163,1135,1110,1092,1070,1046,1020,880$ (broad) cm^{-1}; NMR, see Table IV; MS (70 eV) m / e (rel intensity) 484 $\left(\mathrm{M}^{+}, 9\right), 469\left(\mathrm{M}-\mathrm{CH}_{3}, 2\right), 353(79), 233(30), 131$ (100), 105 (23), 103 (24,43 (56). Found: $\mathrm{M}^{+}, 484.246 ; \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{7}$ requires 484.246 .
Ester C (1c). The $R_{f} 0.65$ band from preparative TLC was eluted with chloroform-methanol (3:1) to give 23 mg of $\mathbf{1 c}$, a syrup: ir $\left(\mathrm{CHCl}_{3}\right) 2950,2930,1730,1710,1450,1390,1370,1105,1093,1065$, 1021, 980, 892, $875 \mathrm{~cm}^{-1}$; NMR, see Table III; MS (70 eV) m/e (rel intensity) $520\left(\mathrm{M}^{+}, 11\right), 505\left(\mathrm{M}-\mathrm{CH}_{3}, 4\right), 416$ (7), 294 (11), 206 (14), 159 (11), 138 (9), 105 (100), 77 (18), 43 (17). Found: $\mathrm{M}^{+}, 520.247$; $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{7}$ requires 520.246 .

Hydrolysis of Esters A, B, and C. A few milligrams each of 1b, lc, and 2a were hydrolyzed by refluxing for 3 h with 0.2 M methanolic barium hydroxide. Alcohols, isolated by extracting the hydrolysates with chloroform, were examined by analytical TLC [solvent system, chloroform-acetone (75:25)]. The alcohol portion of the hydrolyzates from esters $\mathrm{A}(\mathbf{1 b})$ and $\mathrm{C}(1 \mathbf{c})$ were identical in R_{f} with $1 \mathbf{a}$, whereas that from ester $\mathrm{B}(\mathbf{2 b})$ corresponded to $2 \mathbf{a}$.

Acetylation of Celorbicol (1a). A 0.100 -g portion of 1a was treated overnight at ambient temperature with acetic anhydride-pyridine (2:1). The resulting product was applied to a preparative TLC plate which was developed with chloroform-acetone (95:5). Elution of a band at $R_{f} 0.40$ provided a 53% yield of a monoacetate (1d), and an $R_{f} 0.60$ band gave 29% of a diacetate (le); other minor bands were observed.

Monoacetate 1d had mp 137-139 ${ }^{\circ} \mathrm{C}$ after recrystallization from chloroform-acetone; ir $\left(\mathrm{CHCl}_{3}\right) 3590,3460,2940,1720,1377,1362$, $1133,1113,1093,1011,961,862 \mathrm{~cm}^{-1}$; NMR, see Table III; MS (70 eV) m/e (rel intensity) $312\left(\mathrm{M}^{+}, 16\right), 297\left(\mathrm{M}-\mathrm{CH}_{3}, 18\right), 252(38), 243$ (33), 237 (52), 219 (30), 210 (23), 206 (36), 194 (32), 191 (38), 177 (31), 176 (64), 159 (70), 155 (46), 140 (38), 138 (75), 137 (57), 125 (91), 109 (96), 97 (63), 95 (37), 85 (36), 83 (72), 72 (43), 69 (39), 55 (39), 43 (100), 41 (39), 28 (49), 18 (83). Found: $\mathrm{M}^{+}, 312.194 ; \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5}$ requires 312.194.

Diacetate le had mp $154-157{ }^{\circ} \mathrm{C}$ after recrystallization from chloroform-hexane; ir $\left(\mathrm{CHCl}_{3}\right) 3590,3470$ (sh), 2940, 1720, 1358, 1135, 1087, 1013, 962, $866 \mathrm{~cm}^{-1}$; NMR, see Table III; MS (70 eV) m/e (rel intensity) $354\left(\mathrm{M}^{+}, 4\right), 339\left(\mathrm{M}-\mathrm{CH}_{3}, 3\right) 252(21), 234(23), 176$ (51), 159 (27), 138 (32), 137 (21), 125 (21), 124 (12), 109 (27), 43 (100). Found: $\mathrm{M}^{+}, 354.204 ; \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6}$ requires 354.204 .

Acetylation of Isocelorbicol (2a). A 0.100 -g portion of 2a was acetylated as described for la, and the resulting product was similarly fractionated by TLC, except that the developing solvent was chlo-roform-acetone (90:10). Elution of a band at $R_{f} 0.28$ afforded a 72% yield of a monoacetate ($2 \mathbf{c}$), while an $R_{f} 0.52$ band gave 16% of a diacetate (2 d); minor amounts of other components were noted.

Monoacetate 2chad mp $176-178{ }^{\circ} \mathrm{C}$ after recrystallization from chloroform-hexane; ir $\left(\mathrm{CHCl}_{3}\right) 3570,2940,1725,1360,1135,1065$, 1013, 987, 957, $863 \mathrm{~cm}^{-1}$; NMR, see Table IV; MS (70 eV) m/e (rel intensity) $312\left(\mathrm{M}^{+}, 1\right), 297\left(\mathrm{M}-\mathrm{CH}_{3}, 3\right), 252(24), 237(23), 234$ (15), 219 (21), 208 (18), 137 (41), 124 (21), 123 (23), 121 (22), 109 (48), 97 (27), 95 (24), 69 (27), $55(24), 43(100), 41$ (37), 28 (20). Found: \mathbf{M}^{+}, $312.194 ; \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5}$ requires 312.194 .

Diacetate 2d was isolated as a syrup that did not solidify; ir $\left(\mathrm{CHCl}_{3}\right)$ $3570,2940,1725,1363,1135,1110,1077,1070,1015,978,967,855$ cm^{-1}; NMR, see Table IV; MS (70 eV) m/e (rel intensity) 354 (M^{+}, 1), 339 ($\mathrm{M}-\mathrm{CH}_{3}, 1$), 234 (9), 137 (10), 120 (9), 109 (10), 87 (11), 85 (64), 83 (100), 48 (10), 47 (21), 43 (44), 36 (15). Found: $\mathrm{M}^{+}, 354.203$; $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6}$ requires 354.204 .

Preparation of Celorbicol p-Bromobenzoate (1f). Alcohol 1a $(37 \mathrm{mg})$ was treated with p-bromobenzoyl chloride in pyridine as described by Arora et al. ${ }^{26}$ The crude product was applied to a preparative TLC plate which was developed with chloroform-acetone (90:10). Elution of a major component with $R_{f} 0.47$ provided 32 mg of If: mp 223-226 ${ }^{\circ} \mathrm{C}$ after recrystallization from chloroform; ir $\left(\mathrm{CHCl}_{3}\right) 3590,3450(\mathrm{sh}), 2920,1710,1585,1402,1225,1100,1013,960$, $864 \mathrm{~cm}^{-1}$; NMR, see Table III; MS was not recorded because of thermolytic instability of the compound.
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BrO}_{5} ; \mathrm{c}, 58.3 ; \mathrm{H}, 6.5 ; \mathrm{Br}, 17.6$. Found: $\mathrm{C}, 58.1$; H, 6.5; Br, 17.9.

Preparation of Isocelorbicol p-Bromobenzoate (2e). Alcohol $\mathbf{2 a}(50 \mathrm{mg})$ was treated with p-bromobenzoyl chloride in pyridine as described by Arora et al. ${ }^{26}$ and the crude product was fractionated by preparative TLC as described for If. Elution of a band at $R_{f} 0.56$ yielded 70 mg of $2 \mathbf{e}: \mathrm{mp} 178-180^{\circ} \mathrm{C}$ after recrystallization from ethyl ether-hexane; ir $\left(\mathrm{CHCl}_{3}\right) 3730,3590,2940,1715,1575,1470,1145$, 1112, 1105, 1065, 1012, 1000, 990, 957, $863 \mathrm{~cm}^{-1}$; NMR, see Table IV; MS was not recorded because of thermolytic instability of the compound.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BrO}_{5}$: C, 58.3; H, 6.5. Found: C, 58.7, H, 6.4.

Registry No.- la, 59812-41-8; 1b, 59812-42-9; 1c, 59812-43-0; Id, 59812-44-1; 1e, 59812-45-2; 1f, 59812-46-3; 2a, 598-2-47-4; 2b, 59812-48-5; 2c, 59812-49-6; 2d, 59812-50-9; 2e, 59812-ј1-0; p-bromobenzoyl chloride, 586-75-4.
Supplementary Material Available. A listing of bord distances, bond angles, and observed and calculated structure factors for the p-bromobenzoate of celorbicol (1f) and for isocelorbi:ol (2a) (16 pages). Ordering information is given on any current masthead page.

References and Notes

(1) (a) R. W. Miller, C. R. Smith, D. Weisleder, R. Kleiman, and W. K. Rohwedder, Lipids, 9, 928 (1974). (b) Camille and Henry Dreyfus Teacher-Scholar Grant Awardee, 1972-1977, and Fellow of the Alfred P. Sloan Foundation, 1973-1975.
(2) B. G. Gunde and T. P. Hilditch, J. Chem. Soc., 1980 (1938).
(3) (a) H. J. den Hertog, J. T. Hackmann, D. D. Nanavati, and S. Dev, Tetrahedron Lett., 845 (1973); (b) H. J. den Hertog, C. Kruk, D. D. Nanavati, and S. Dev, ibid., 2219 (1974).
(4) (a) H. Wagner, E. Heckel, and J. Sonnenbichler, Tetrahedron Lett., 213 (1974); (b) Tetrahedron, 31, 1949 (1975).
(5) (a) K. Sugiura, K. Yamada, and H. Hirata, Tetrahedron Lett, 113 (1973); (b) Y. Shizuri, K. Yamada, and Y. Hirata, ibid., 741 (1973); (c) Y. Shizuri, H. Wada, K. Sugiura, K. Yamada, and Y. Hirata, Tetrahedoon, 29, 1773 (1973); (d) K. Sugiura, Y. Shizuri, K. Yamada, and Y. Hirata, Chem. Lett., 471 (1975); (e) K. Sugiura, Y. Shizuri, K. Yamada, and Y. Hirata, Tetrahedron Lett., 2307 (1975).
(6) K. Sasaki and Y. Hirata, J. Chem. Soc., Perkin Trans. 2, 1268 (1972).
(7) M. Pailer, W. Streicher, and J. Leitich, Monatsh. Cherr., 102, 1873 (1971).
(8) H. Budzikiewicz and A. Römer, Tetrahedron, 31, 1761 (1975).
(9) L. Dúbraková, L. Dolejs, and J. Tomko. Collect. Czech. Chem. Commun. 38, 2132 (1973).
(10) L. Crombie. P. J. Ham, and D. A. Whiting, Phytochemistry, 12, 703 (1973).
(11) (a) S. M. Kupchan, R. M. Smith, and R. F. Bryan, J. Am. Chem. Soc., 92, 6667 (1970); (b) R. F. Bryan and R. M. Smith, J. Chem. Soc. B, 2159 (1971).
(12) H. Luftmann and G. Spitteler, Tetrahedron, 30, 2577 (1974).
(13) M. Cais, D. Ginsburg, A. Mandelbaum, and R. M. Smith, Teirahedron, 31, 2727 (1975).
(14) This ring system has been numbered in several different ways by various authors. The system used by us, and also by den Hertog et al., conforms to Chemical Abstracts specifications for eudesmane and ts derivatives [cf. Chem. Abstr., Index Guide, 75, 940g (1971)].
(15) A. F. Thomas and M. Ozainne, Tetrahedron Lett., 1717 (1976).
(16) In our previous paper, ${ }^{\text {1a }}$ celorbicol and isocelorbicol were referred to as alcohol I and alcohol II, respectively.
(17) In comparing our structural assignments with those of others, it should be noted that some investigators ${ }^{3,4,7,8}$ have depicted the dihydroagarofuran ring system in the absolute configuration opposite to our representation.
(18) See paragraph at end of paper regarding supplementary material.
(19) (a) M. Karplus, J. Chem. Phys., 30, 11 (1959); (b) R. M. Fraser, M. Kaufmann, P. Morand, and G. Govil, Can. J. Ohem., 47, 403 (1969).
(20) B. Coxon in "Methods in Carbohydrate Chemistry", Vol. VI, R. L. Whistler and J. N. BeMiller, Ed., Academic Press, New York, N.Y., 1972, p 513.
(21) M. L. Maheshwa-i, K. R. Varma, and S. C. Bhattachạraya, Tetrahedron, 19, 1519 (1963).
(22) The mention of 'irm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firm names or trade products not mentioned.
(23) The following library of crystallographic programs was used: C. R. Hubbard, C. O. Quicksall, and R. A. Jacobson, "The Fast Fourier Algorithm and the Programs ALFF, ALFFDP, ALFFT, and FRIEDEL'', USAEC Repot IS-2625, lowa State University-Institute for Atomic Research, Ames, Iowa, 1831 ; W. R. Busing, K. O. Martin, and H. A. Levy, "A Fortran Crystallographic Least Squares Program'", USAEC Report ORNL-TM-305, Oajk Ridge National Laboratory. Oak Ridge. Tenn., 1965; C. Johnson, "ORTEP, A Fortran Thermal-Elipsoid Plot Program''. U.S. Atomic Energy Commission Report ORNL-3794, Oak Ridge, Tenn., 1965.
(24) W. Hamilton, Acta Crystallogr., 18, 502 (1965).
(25) G. Germain, P. Main, and W. W. Woolfson, Acta Crystallogr., Sect. B, 24, 274 (1970).
(26) S. K. Arora, R. B. Bates, R. A. Grady, and R. G. Powell, J. O-g. Chem., 39, 1269 (1974).

Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. 43. Carbon-13 Nuclear Magnetic Resonance Analysis of Bis-Indoline Alkaloids of Two Voacanga Species ${ }^{1-3}$

Yves Rolland, Nicole Kunesch, and Jacques Poisson
Faculté des Sciences Pharmaceutiques et Bioiogiques, Université de Paris-Sud, 92290 Châtenay-Malabry, France

Edward W. Hagaman, Fred M. Schell, and Ernest Wenkert*
Departments of Chemistry, Indiana University, Bloomington, Indiana 47401, and Rice University, Houston, Texas 77001

Received March 8, 1976

The ${ }^{13} \mathrm{C}$ NMR spectra of the bis-indoline alkaloids vobtusine, vobtusine lactone, and 2^{\prime}-deoxyvobtusine lactone were recorded and their carbon shifts assigned. With the collected data and those of models the structures of the following natural bases were determined: vobtusine 3-lactam, vobtusine 3-lactam $N_{b_{b}^{\prime}}$-oxide, voafolidine, voafoline, isovoafoline, folicangine, subsessiline, and subsessiline lactone.

Several indole alkaloids of high molecular weight were isolated recently from two Voacanga species ${ }^{4,5}$ one of which proved to be vobtusine, a $\mathrm{C}_{43} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{~N}_{4}$ alkaloid isolated earlier from Callichilia subsessilis ${ }^{6}$ and Hedranthera barteri ${ }^{7}$ and shown by x-ray analysis of its dibromo derivative ${ }^{8}$ to possess structure la, a molecular framework composed of a spiro-

fused combination of 11-demethoxyvandrikine-like (2a) skeleta and a C_{1} unit. In order to facilitate the structure analysis of the congeners of vobtusine, all of which were suspected to be based on the same structure pattern, the study was initiated by the ${ }^{13} \mathrm{C}$ NMR analysis of the alkaloids of known constitution vobtusine (1a), vobtusine lactone (1b), ${ }^{4}$ and 2^{\prime}-deoxyvobtusine lactone ($\mathbf{1 c}$). ${ }^{4}$ In this connection an earlier study of the Aspidosperma bases vandrikine (2b), tabersonine (3a), and related substances ${ }^{9}$ proved very helpful.

2a, $Y=H$
b. $\mathrm{Y}=\mathrm{OMe}$

3a. $\Delta^{14,1 ;}$
b, 14 $\beta, 15 \beta$-oxide

[^1]Since the three indole alkaloid "dimers" are 14,14-disubstituted 11-demethoxyvandrikines (2a), comparison of their ${ }^{13} \mathrm{C}$ NMR spectra with those of vandrikine (2b) ${ }^{9}$ and tabersonine (3a) ${ }^{9}$ allows direct signal matching for all carbons of ring A, B, C, and E. Whereas C(17) can be confused with C(14') in vobtusine (1a), the ambiguity is relieved on comparison of the shifts of like carbons in the lactones. The identification of vobtusine's $\mathrm{C}(18)$ and $\mathrm{C}(19)$ shifts and their distinction from the similar $\mathrm{C}\left(18^{\prime}\right)$ and $\mathrm{C}\left(19^{\prime}\right)$ shifts rest on the δ values of like carbons in the monomer vandrikine (2 b) and the modification of the latter pair on introduction of the lactone carbonyl group.

With the use of the aromatic carbon shifts of N_{a}-methyl$2 \beta, 16 \beta$-dihydrotabersonine ${ }^{10}$ and methoxy substitution parameters ${ }^{11}$ the methoxylated ring A^{\prime} carbon shifts can be assigned. Carbons 2^{\prime} and 16^{\prime} and the carbons of rings C^{\prime} and D^{\prime} can be recognized by the field position and multiplicity of their signals and relationship with like carbons of model 2 b . The $C\left(3^{\prime}\right)$ shift of vobtusine (1a) differs from that of other aminomethylenes by its perturbation in vobtusine lactone (1b) in which, for example, the $\mathrm{C}\left(23^{\prime}\right)$ shift, close in magnitude to the δ value of $\mathrm{C}\left(3^{\prime}\right)$, is unaffected. The ca. 2 ppm lower field position of $C\left(3^{\prime}\right)$ than that in model $2 \mathbf{b}$ can be ascribed to a diminished γ effect from the ring F^{\prime} oxygen of vobtusine (1a) in part as a consequence of the conformational transmission induced by the removal of trigonality at the $\mathrm{C}\left(2^{\prime}\right)$ and $\mathrm{C}\left(16^{\prime}\right)$ sites. As a spectral comparison of vobtusine (1a) and its lactone ($1 \mathbf{b}$) as well as $2 \beta, 16 \beta$-dihydrovobtusine ($1 \mathbf{d}$) and its lactone ($\mathbf{l e}$) indicates, conversion of ring F^{\prime} from a tetrahydrofuran to a γ-lactone unit introduces small, constant shift modifications which with the exception of $\mathrm{C}\left(17^{\prime}\right)$ are confined to ring D^{\prime} carbons. The shift alteration of $C(5)$ in the dihydro derivatives $1 \mathbf{d}$ and 1 e provides a means of distinguishing this center from $\mathrm{C}\left(5^{\prime}\right)$ in the natural product. Carbon 6^{\prime} is difficult to differentiate from $\mathrm{C}\left(22^{\prime}\right)$. Whereas these two centers and $C\left(17^{\prime}\right)$ and $C\left(23^{\prime}\right)$ have hydrogens 1,3 -diaxially disposed toward the 2^{\prime}-hydroxy group, the expected γ effect is distributed unsymmetrically to the four sites. The shifts of the remaining carbons, those of ring D perturbed by $C(14)$ disubstitution from like centers in vandrikine (2b), are constant among the three alkaloid "dimers". All δ values of these compounds are listed in Table I. ${ }^{12}$

A vobtusine (1a) congener in Voacanga thouarsii Roehm and Schult was shown to be a $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{~N}_{4}$ substance possessing the infrared absorption characteristics of the vinylogous amide function of la-c and a six-membered lactam. ${ }^{1,5}$ These facts suggest that the new base could be vobtusine with $\mathrm{C}(3)$ or $\mathrm{C}\left(3^{\prime}\right)$ in the form of a carbonyl group, a proposal easily tested by the compounds' ${ }^{13} \mathrm{C}$ NMR spectra. Were C(3) in-

Table I. Carbon Shifts of Compounds la-e ${ }^{a}$

	$3 a^{b}$	1a	1 b	1 c	1 d	1 e		$\mathbf{2 b}^{\text {b,c }}$	1 a	1b	1 c	1d	1 e
C(2)	166.7	166.6	166.6	166.7	67.5	67.6	$\mathrm{C}\left(2^{\prime}\right)$		93.7	93.3	75.6	93.7	93.4
C(3)		53.7	53.8	53.8	53.0	53.1	C(3)	45.7	48.7	48.0	47.8	48.6	48.2
C(5)		50.9	50.9	51.2	55.0	55.1	$\mathrm{C}\left(5^{\prime}\right)$	51.2	51.9	51.8	52.7	51.9	51.8
C(6)		44.9	44.9	45.0	42.1	42.1	C(6)	45.1	31.1	30.8	37.7	31.2	31.0
C(7)		54.8	54.8	55.0	52.2	52.2	$\mathrm{C}\left(7^{\prime}\right)$	54.2	55.9	55.8	51.0	55.8	55.9
C(8)	137.8	137.6	137.5	137.5	135.4	135.5	$\mathrm{C}\left(8^{\prime}\right)$		134.2	133.0	135.6	134.3	133.1
C(9)	121.4	121.2	121.2	121.4	118.3	118.5	$\mathrm{C}\left(9^{\prime}\right)$		114.5	114.6	114.8	114.5	114.4
C(10)	120.5	120.4	120.4	120.5	122.8	122.9	$\mathrm{C}\left(10^{\prime}\right)$		118.1	118.8	118.3	118.3	119.2
C(11)	127.6	127.4	127.5	127.6	127.7	127.9	C(11')		110.8	111.1	110.9	110.1	110.7
C(12)	109.2	109.1	109.1	109.2	108.5	108.6	C(12')		144.9	144.9	145.1	145.2	145.2
C(13)	143.1	142.8	142.8	142.9	150.1	150.2	C(13)		137.2	136.9	137.9	136.9	136.7
C(14)		39.6	39.5	40.0	39.5	39.6	C(14')	26.6	25.7	24.7	25.3	25.7	24.8
C(15)		87.4	87.3	87.5	90.0	90.0	C(15')	79.8	80.3	81.4	82.0	80.3	81.5
C(16)	92.2	94.3	94.2	94.1	38.3	38.4	C(16')		31.5	31.1	29.4	30.9	30.7
C(17)		27.3	27.3	27.5	26.5	26.6	C(17)	27.4	32.4	31.7	33.7	32.4	31.8
C(18)		64.2	64.2	64.3	64.6	64.8	C(18)	64.7	65.1	175.3	175.5	65.1	175.3
C(19)		34.8	34.8	34.8	40.4	40.5	C(19')	34.6	36.6	41.4	41.5	36.5	41.6
C(20)		47.6	47.6	47.8	40.4	40.5	$\mathrm{C}\left(20^{\prime}\right)$	46.4	44.1	43.4	44.0	44.1	43.4
C(21)		68.9	68.8	68.8	69.8	69.9	C(21)	68.7	63.6	63.9	65.3	63.5	64.0
$\mathrm{C}=\mathrm{O}$	168.8	168.3	168.3	168.4	175.8	175.8	C(22')		34.1	33.5	39.0	34.1	34.0
OMe	50.8	50.9	50.9	51.0	51.6	51.8	$\mathrm{C}\left(23^{\prime}\right)$		46.1	46.0	52.7	45.4	45.4
							OMe		55.0	55.0	54.9	54.6	54.7

${ }^{a}$ In parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si} ; \delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm} .{ }^{b}$ From ref 9. ${ }^{c}$ The previously undifferentiated $\mathrm{C}(14)$ and $\mathrm{C}(17)$ shifts are resolved by the present study.

Table II. Carbon Shifts of Vobtusine 3-Lactam and Its $\boldsymbol{N}_{\mathrm{b}^{\prime}}$-Oxide ${ }^{a}$

	1 f	1 g		1 f	1g
C(2)	162.6	162.7	$\mathrm{C}\left(2^{\prime}\right)$	93.3	91.3
C(3)	171.2	171.5	$\mathrm{C}\left(3^{\prime}\right)$	48.7	58.9
C(5)	39.1	39.1	C(5)	51.8	66.9
C(6)	44.9	45.2	$\mathrm{C}\left(6^{\prime}\right)$	31.9	44.9
C(7)	57.4	57.4	C(7)	55.8	54.9
C(8)	137.5	138.1	$\mathrm{C}\left(8^{\prime}\right)$	133.0	132.3
C(9)	121.2	121.2	$\mathrm{C}\left(9^{\prime}\right)$	113.9	112.7
$\mathrm{C}(10)$	120.8	120.8	$\mathrm{C}\left(10^{\prime}\right)$	118.4	117.9
C(11)	128.4	128.5	$\mathrm{C}\left(11^{\prime}\right)$	112.2	112.7
C(12)	109.5	109.6	$\mathrm{C}\left(12^{\prime}\right)$	146.8	146.8
C(13)	142.8	142.8	C(13)	135.1	135.2
C(14)	49.0	48.9	C(14)	25.6	22.6
C(15)	87.2	87.2	$\mathrm{C}\left(15^{\prime}\right)$	80.3	78.5
C(16)	92.4	92.6	$\mathrm{C}\left(16^{\prime}\right)$	31.9	31.0
C(17)	27.1	27.4	C(17)	32.5	$33.4{ }^{\text {b }}$
C(18)	67.6	67.5	$\mathrm{C}\left(18{ }^{\prime}\right)$	65.2	64.8
C(19)	36.2	36.3	$\mathrm{C}\left(19^{\prime}\right)$	36.2	$33.9{ }^{\text {b }}$
C(20)	47.8	48.0	C (20)	43.9	39.2
C(21)	67.1	66.9	C(21)	63.5	72.2
$\mathrm{C}=0$	167.9	168.0	$\mathrm{C}\left(22^{\prime}\right)$	29.4	29.3
OMe	51.0	51.0	C(23)	44.1	44.1
			OMe	56.1	56.2

${ }^{a}$ In parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si} ; \delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=$ $\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm} .^{b}$ Signals may be interchanged.
volved in the structural change, an aminomethylene signal can be expected to be replaced by a keto signal and serious shift changes introduced at the spiro carbon and its close neighbors. Inspection of the spectra shows this expectation to be fulfilled and thus the alkaloid to be vobtusine 3-lactam (lf). The dramatic shielding of $C(5)$ is in consonance with observations on lactam models. ${ }^{14}$ All shifts of $\mathbf{1 f}$ are listed in Table II.

A second vobtusine (1a) congener in V. thouarsii, a $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{~N}_{4}$ substance, has been reported to possess closely related infrared absorption bands to those of vobtusine 3lactam (1f). ${ }^{1,5}$ The extra oxygen thus most likely is part of an ether linkage or amine oxide moiety. The ${ }^{13} \mathrm{C}$ NMR spectrum
of the alkaloid reveals the carbons of the 11-demethoxyvandrikine (2a) 3-lactam portion of $1 \mathbf{f}$ and $\mathrm{C}\left(22^{\prime}\right)$ and $\mathrm{C}\left(23^{\prime}\right)$ to be unchanged and all other nonaromatic carbon shifts to be modified. The $9-15-\mathrm{ppm}$ deshielding of the amino carbons of rings C^{\prime} and D^{\prime} is in agreement with the shift behavior on conversion of a tertiary amine into an amine oxide. ${ }^{15,16}$ Thus the natural base is vobtusine 3-lactam $N_{b^{\prime}}$-oxide (1 g). Its shifts are cited in Table II. The drastic shift differences between vobtusine 3 -lactam (1f) and its $N_{\mathrm{b}^{\prime}}$-oxide ($\mathbf{1 g}$) points up the usefulness of monoamine oxide formation as a means of differentiation of individual monomer units of a "dimeric" alkaloid.
Voafolidine (4a) and its 2^{\prime}-deoxy derivative voafoline (4b), leaf alkaloids of Voacanga africana Stapf., have been shown

$$
\begin{aligned}
\mathbf{4 a}, \mathrm{Y} & =O H \\
\mathbf{b}, \mathrm{Y} & =\mathrm{H}
\end{aligned}
$$

to be related to vobtusine (1a), the 15^{\prime}-oxy substituent being bridged to $\mathrm{C}\left(14^{\prime}\right)$ instead of $\left.\mathrm{C}\left(18^{\prime}\right)\right)^{2,4} \mathrm{As}$ a consequence pachysiphine (3b) ${ }^{17}$ serves as a good ${ }^{13} \mathrm{C}$ NMR spectral model for most of the ring D^{\prime} carbons of the alkaloids. The δ values for the monomer base 3b, shown in Table III, were derived from the aromatic shifts of tabersonine (3a) ${ }^{9}$ and the nonaromatic shifts of hazuntinine (10,11-dimethoxy-3b). ${ }^{9}$ The vandrikine-like portion of voafolidine ($\mathbf{4 a}$) is ${ }^{13} \mathrm{C}$ NMR spectrally identical with the same part of the molecular framework of vobtusine ($1 \mathbf{l}$.. The same relationship exists between voafoline (4b) and vobtusine (1a). The aromatic carbon shifts of

Table III. Carbon Shifts of Pachysiphine, Voafolidine, and Voafoline ${ }^{a}$

	$\mathbf{2 b}^{b}$	$\mathbf{4 a}$	$\mathbf{4 b}$		$\mathbf{3} \mathbf{b}^{c}$		$\mathbf{4 a}$
	$\mathbf{4} \mathbf{4}$						
$\mathrm{C}(2)$	167.4	166.6	166.1	$\mathrm{C}\left(2^{\prime}\right)$	164.9	93.9^{d}	76.0
$\mathrm{C}(3)$	45.7	53.7	53.4	$\mathrm{C}\left(3^{\prime}\right)$	49.4	53.4^{e}	53.0
$\mathrm{C}(5)$	51.2	50.6	50.3	$\mathrm{C}\left(5^{\prime}\right)$	51.0	52.6^{e}	53.0
$\mathrm{C}(6)$	45.1	44.1	44.6	$\mathrm{C}\left(6^{\prime}\right)$	43.9	31.8	39.0
$\mathrm{C}(7)$	54.2	54.6	54.4	$\mathrm{C}\left(7^{\prime}\right)$	54.7	55.4	51.5
$\mathrm{C}(8)$		137.5	137.1	$\mathrm{C}\left(8^{\prime}\right)$	137.5	133.8	135.6
$\mathrm{C}(9)$		121.2	121.5	$\mathrm{C}\left(9^{\prime}\right)$	121.3	121.8	120.8
$\mathrm{C}(10)$		120.5	120.2	$\mathrm{C}\left(10^{\prime}\right)$	120.3	117.4	116.2
$\mathrm{C}(11)$		127.6	127.3	$\mathrm{C}\left(11^{\prime}\right)$	127.6	127.3	127.0
$\mathrm{C}(12)$		109.2	108.9	$\mathrm{C}\left(12^{\prime}\right)$	109.2	107.3	106.3
$\mathrm{C}(13)$		142.9	142.5	$\mathrm{C}\left(13^{\prime}\right)$	142.9	148.8	149.8
$\mathrm{C}(14)$	26.6	40.4	40.3	$\mathrm{C}\left(14^{\prime}\right)$	52.0	53.0	52.5
$\mathrm{C}(15)$	79.8	87.3	87.0	$\mathrm{C}\left(15^{\prime}\right)$	56.2	56.7	56.5
$\mathrm{C}(16)$	93.9	94.1^{d}	93.7	$\mathrm{C}\left(16^{\prime}\right)$	90.4	28.5	25.6
$\mathrm{C}(17)$	27.4	27.7	27.4	$\mathrm{C}\left(17^{\prime}\right)$	23.5	28.1	29.9
$\mathrm{C}(18)$	64.7	64.4	64.0	$\mathrm{C}\left(18^{\prime}\right)$	7.1	7.6	7.3
$\mathrm{C}(19)$	34.6	34.9	34.6	$\mathrm{C}\left(19^{\prime}\right)$	26.5	28.1	28.0
$\mathrm{C}(20)$	46.4	47.5	47.3	$\mathrm{C}\left(20^{\prime}\right)$	37.0	36.1	35.9
$\mathrm{C}(21)$	68.7	69.8	69.4	$\mathrm{C}\left(21^{\prime}\right)$	70.9	66.3	67.5
$\mathrm{C}=\mathrm{O}$	168.5	168.0	167.8	$\mathrm{C}\left(22^{\prime}\right)$		33.2	38.1
OMe	50.8	51.0	50.6	$\mathrm{C}\left(23^{\prime}\right)$		44.9	48.2

${ }^{a}$ In parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si} ; \delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=$ $\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm}$. ${ }^{b}$ From ref 9. ${ }^{c} \delta(\mathrm{C}=0)=168.6 \mathrm{ppm} ;$ $\delta(\mathrm{OMe})=50.8 \mathrm{ppm} .^{d, e}$ Signals may be reversed.
N_{a}-methyl- $2 \beta, 16 \beta$-dihydrotabersonine ${ }^{10}$ lead to those of ring A^{\prime} of $4 \mathbf{a}$ and $\mathbf{4 b}$, while the shifts of carbons $14^{\prime}, 15^{\prime}, 18^{\prime}, 19^{\prime}$, and 20^{\prime} are derived from resonances of like carbons in pachysiphine (3b). The aminomethylenes of voafolidine, $\mathrm{C}\left(3^{\prime}\right)$ and $\mathrm{C}\left(5^{\prime}\right)$, are undifferentiated, the alkaloid's $\mathrm{C}\left(6^{\prime}\right)$ and $\mathrm{C}\left(22^{\prime}\right)$ shifts are similar to those of vobtusine (1a), and of the remaining pairs of methines and nonprotonated carbons one each is deshielded by a directly bound heteroatom. Carbons 17^{\prime} and 23^{\prime} are shielded in voafolidine (4a) vs. vobtusine ($\mathbf{1 a}$) by the proximate epoxide, as in pachysiphine ($\mathbf{3 b}$) vs. vandrikine (2b), and the removal of a δ effect from the 12^{\prime}-methoxy group of vobtusine (1a), respectively. The fact of the $\Delta \delta\left(\mathrm{C}-21^{\prime}\right)$ values of voafolidine (4a) vs. pachysiphine (3b) being nearly identical with those of vobtusine (la) vs. vandrikine ($\mathbf{2 b}$) shows the stereochemistry of the epoxide unit of 4 a to be the same as that in pachysiphine (3b). The strong similarity of the shift differences of all carbons of voafolidine (4a) and voafoline (4b) vs. those of vobtusine lactone (1b) and 2^{\prime}-deoxyvobtusine lactone (1c), except the $\Delta \delta\left(\mathrm{C}-23^{\prime}\right)$ values, vouch for the identity of the stereoconfigurations of 4 a and 4b. The conformational environment around $\mathrm{C}\left(23^{\prime}\right)$ is different in compounds with the sterically encumbering 12^{\prime} methoxy group from those lacking this function, as indicated by a variance of the strength of the γ effect on $\mathrm{C}\left(23^{\prime}\right)$ due to the 2^{\prime}-hydroxy group in the two cases. The carbon shifts of voafolidine (4a) and voafoline (4b) are listed in Table III.

Isovoafoline, a congener of voafolidine (4a) and voafoline (4b) in Voacanga africana Stapf., has been shown to be an isomer of voafoline (4b) without the origin of the isomerism having been established. ${ }^{2,4}$ A comparison of the ${ }^{15} \mathrm{C}$ NMR spectra of the two isomeric alkaloids establishes the identity of the chiral centers on the periphery of the bases and reveals significant shift differences only of $\mathrm{C}(18)$ and ring D and F^{\prime} centers, carbons $3,14,15,16^{\prime}, 22^{\prime}$, and 23^{\prime}. Among these only $C(3)$ and $C\left(23^{\prime}\right)$ have identical substituents, but can be differentiated by the γ effect of the 2^{\prime}-hydroxy group on $\mathrm{C}\left(23^{\prime}\right)$ in related substances (vide infra). Thus isovoafoline is the $\mathrm{C}(14)$ epimer of voafoline (4b), as depicted in formula $\mathbf{5 b}$. Its shifts are listed in Table IV.

As the conformational representations of rings D and F^{\prime} of

$$
\begin{aligned}
5 \mathrm{a}, \mathrm{Y} & =\mathrm{OH} \\
\mathbf{b}, \mathrm{Y} & =\mathrm{H}
\end{aligned}
$$

voafoline (4b), i.e., $\mathbf{6 a}$ and $\mathbf{6 b}$, respectively, and isovoafoline (5b), i.e., $7 \mathbf{a}$ and $\mathbf{7 b}$, respectively, illustrate, $\mathrm{N}_{\mathrm{a}}{ }^{\prime}$ and $\mathrm{C}\left(16^{\prime}\right)$ of

6a

7a

6b

$7 b$
voafoline (4b) are involved in 1,3-diaxial interactions with $C(3)$, while $C(15)$, equatorially oriented toward ring F^{\prime}, feels no such effects. Contrastingly, N^{\prime} and $\mathrm{C}\left(16^{\prime}\right)$ of isovoafoline (5b) perturb $\mathrm{C}(15)$, while leaving $\mathrm{C}(3)$ unaffected. Owing to these specific γ effects $\mathrm{C}(3)$ is upfield and $\mathrm{C}(15)$ downfield in voafoline (4b) with respect to isovoafoline (5b). The 1,3 -diaxial interactions of the N_{b} electron pair and $\mathrm{C}(17)$ with $\mathrm{C}\left(23^{\prime}\right)$ in voafoline (4b), i.e., a strongly shielding γ effect and a mild deshielding δ effect, appears to be nearly balanced by the 1,3-diaxial involvement of the $\mathrm{C}(15)$ ether oxygen with $\mathrm{C}\left(22^{\prime}\right)$, i.e., a strong γ effect. In view of this balance the inverted interactions of isovoafoline ($\mathbf{5 b}$) lead to only minimal shift differences at $\mathrm{C}\left(22^{\prime}\right)$ and $\mathrm{C}\left(23^{\prime}\right)$. Thus the $\mathrm{C}(3)$ and $\mathrm{C}(15)$ shifts establish the C(14) stereochemistry (see Table V). Had these alkaloids been 15 -deoxy compounds, the $\mathrm{C}\left(22^{\prime}\right)$ and $\mathrm{C}\left(23^{\prime}\right)$ shifts would have been equally diagnostic.

Folicangine, another V. africana alkaloid, has been shown to be converted into isovoafolidine, an isomer of voafolidine (4a), on reduction with sodium borohydride. ${ }^{2,4}$ Inspection of the ${ }^{13} \mathrm{C}$ NMR spectra of the reduction product showed it to be 14 -isovoafolidine ($5 a$). As in the case of voafoline (4b) and isovoafoline (5b) only the carbons sensitive to a configurational change at $\mathrm{C}(14)$ exhibit shift differences (cf. Table V). A similar study of the borohydride reduction products of subsessiline ${ }^{1,2,4}$ and subsessiline lactone, ${ }^{1,2}$ alkaloids of Callichilia subsessilis, proved them to be 14 -isovobtusine ($8 \mathbf{a}$) and 14 -isovobtusine lactone ($8 \mathbf{b}$), respectively (cf. Table V). Thus the alkaloids isovoafoline (5b), folicangine, subsessiline, and subsessiline lactone, whose detailed structures were unknown, possess a common $\mathrm{C}(14)$ configuration opposite to that of vobtusine ($\mathbf{1 a}$). All carbon shifts of the 14 -iso compounds $\mathbf{5 a}, 5 \mathbf{b}, 8 \mathbf{a}$, and $8 \mathbf{b}$ are listed in Table IV.

The following general comments can be made on the basis of the shift difference data. In agreement with observations

Table IV. Carbon Shifts of Isovoafolidine, Isovoafoline, Isovobtusine, and Isovobtusine Lactone ${ }^{a}$

	5a	5b	$8 \mathbf{a}^{\text {b }}$	$8 \mathbf{b}^{\text {b }}$		5a	5b	$8 a^{\text {b }}$	$8 \mathbf{b}^{\text {b }}$
C(2)	166.6	166.1	166.7	166.7	$\mathrm{C}\left(2^{\prime}\right)$	94.1	76.9	$94.4{ }^{\text {c }}$	$94.3{ }^{\text {d }}$
C(3)	58.0	57.7	58.0	58.3	C(3)	$53.5{ }^{\text {e }}$	$53.1{ }^{e}$	48.8	48.2
C(5)	51.4	51.0	51.4	50.9	C(5)	$52.8{ }^{\text {e }}$	$52.7{ }^{\text {e }}$	52.0	51.9
C(6)	44.4	44.1	44.4	44.4	$\mathrm{C}\left(6^{\prime}\right)$	31.7	39.1	31.3	31.3
C(7)	55.0	54.5	54.8	54.8	$\mathrm{C}\left(7^{\prime}\right)$	55.5	51.6	56.4	56.4
C(8)	137.8	137.4	137.9	137.8	$\mathrm{C}\left(8^{\prime}\right)$	133.5	135.9	134.2	133.1
C(9)	121.4	121.0	121.5	121.4	$\mathrm{C}\left(9^{\prime}\right)$	121.2	121.0	113.5	113.6
$\mathrm{C}(10)$	120.5	120.2	120.5	120.5	$\mathrm{C}\left(10^{\prime}\right)$	117.4	116.3	118.5	119.4
$\mathrm{C}(11)$	127.5	127.4	127.5	127.6	$\mathrm{C}\left(11^{\prime}\right)$	127.1	126.8	110.3	110.6
C (12)	109.1	108.8	109.1	109.2	$\mathrm{C}\left(12^{\prime}\right)$	109.0	108.1	146.0	146.1
C(13)	142.9	142.6	142.8	142.9	C(13)	148.3	149.4	136.8	136.4
C(14)	39.0	38.8	38.9	38.9	$\mathrm{C}\left(14^{\prime}\right)$	53.0	52.5	25.5	25.0
C(15)	80.2	80.6	81.5	81.5	C(15')	56.6	56.4	80.4	81.4
C (16)	94.3	93.9	$94.3{ }^{\text {c }}$	$93.9^{\text {d }}$	C(16)	28.8	26.1	$32.4{ }^{\text {e }}$	32.0
$\mathrm{C}(17)$	27.9	27.9	28.1	28.4	$\mathrm{C}\left(17^{\prime}\right)$	29.6	29.6	$32.6{ }^{\text {e }}$	32.0
C(18)	62.7	62.5	63.7	64.0	C(18)	7.6	7.3	65.3	175.4
C (19)	34.8	34.6	35.1	34.9	$\mathrm{C}\left(19^{\prime}\right)$	28.1	27.9	36.8	41.7
C(20)	47.1	46.8	47.9	47.9	$\mathrm{C}\left(20^{\prime}\right)$	36.3	36.0	44.4	43.5
C(21)	70.0	69.6	69.9	69.9	$\mathrm{C}\left(21^{\prime}\right)$	66.5	67.9	63.7	63.6
$\mathrm{C}=0$	168.1	167.6	168.1	168.2	C(22')	34.8	39.9	35.1	34.9
OMe	50.9	50.5	50.9	50.9	$\mathrm{C}\left(23^{\prime}\right)$	44.2	49.1	46.5	46.3
					OMe			55.0	55.0

${ }^{a}$ In parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si} ; \delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm}$. ${ }^{b}$ Based on only a proton-decoupled spectrum because of low sample size. ${ }^{c, d}$ Signals may be reversed. ${ }^{e}$ Signals in any vertical column may be reversed.

Table V. Carbon Shift Differences Indicative of C(14) Configuration ${ }^{\alpha}$

	4a	5a	4b	5b	18	8a	1 b	8b
$\delta(\mathrm{C}-3)$	53.7	58.0	53.4	57.7	53.7	58.0	53.8	58.3
$\delta(\mathrm{C}-14)$	40.4	39.0	40.3	38.8	39.6	38.9	39.5	38.9
$\delta(\mathrm{C}-15)$	87.3	80.2	87.0	80.6	87.4	81.5	87.3	81.5
$\delta(\mathrm{C}-18)$	64.4	62.7	64.0	62.5	64.2	63.7	64.2	64.0
$\delta\left(\mathrm{C}-16^{\prime}\right)$	28.5	28.8	25.6	26.1	31.5	32.4	31.1	32.0
$\delta\left(\mathrm{C}-22^{\prime}\right)$	33.2	34.8	38.1	39.9	34.1	35.1	33.5	34.9
$\delta\left(\mathrm{C}-23^{\prime}\right)$	44.9	44.2	48.2	49.1	46.1	46.5	46.0	46.3
$\Delta \delta(\mathrm{C}-3)$								
$\Delta \delta(\mathrm{C}-14)$								
$\Delta \delta(\mathrm{C}-15)$								
$\Delta \delta(\mathrm{C}-18)$								
$\Delta \delta\left(\mathrm{C}-16^{\prime}\right)$								
$\Delta \delta\left(\mathrm{C}-22^{\prime}\right)$								
$\Delta \delta\left(\mathrm{C}-23^{\prime}\right)$								

${ }^{a} \Delta \delta=\delta($ iso $)-\delta($ normal $)$, in parts per million.
on quaternary carbon shifts ${ }^{11}$ the δ values of the spiro carbon common to the two monomer units of the bis-indoline alka-

loids suffers only minor perturbation from the normal to the 14 -iso series, being slightly shielded in the latter. The aforementioned difference of ring F^{\prime} conformation depending on
$\mathrm{C}\left(12^{\prime}\right)$ substitution, as indicated by the magnitude of the γ effect of the 2^{\prime}-hydroxy group on $\mathrm{C}\left(23^{\prime}\right)$, is reflected also by the shift differences of $C(15), C(18)$, and $C\left(16^{\prime}\right)$. The presence of a 12^{\prime}-methoxy group reduces the magnitude of the reciprocal γ effects at $\mathrm{C}(15)$ and $\mathrm{C}\left(16^{\prime}\right)$. The subtle conformational distortion of ring F^{\prime} is even observable through the shift of the distant $\mathrm{C}(18)$, presumably by conformational transmission via $\mathrm{C}(15)$ - H . In contrast to the sensitivity of all ring F^{\prime}-related centers involved in strong steric interactions the sterically unencumbered $\mathrm{C}(3)$ is insensitive to ring F^{\prime} conformation.

As the shift analysis of anhydrovobtusine ${ }^{18,19}$ (cf. numbers on formula 9) indicates, dramatic substitution changes of ring F^{\prime} and consequent alteration of the interaction of ring F^{\prime} centers with ring D sites lead to shift modification of the carbons shown above to be diagnostic of the $\mathrm{C}(14)$ stereochemistry. Whereas the absence of models precludes complete shift assignment of the carbons, the $\mathrm{C}(15)$ shift can be recognized and is found to be anomalous for the normal vobtusine series.

The chemical tie-up of folicangine with isovoafolidine (5a) by borohydride reduction ${ }^{4}$ and the liberation of a 2^{\prime}-hydroxy

Table VI. Carbon Shifts of Folicangine, Subsessiline, and Subsessiline Lactone ${ }^{a}$

	10	11 a	11 b		10	11 a	11 b
C(2)	165.8	165.9	165.7	C(2')	$93.9{ }^{\text {b }}$	$94.6{ }^{\text {c }}$	$93.9{ }^{\text {d }}$
C(3)	91.8	91.9	91.9	C(3^{\prime})	$53.7{ }^{\text {e }}$	49.0	48.4
C(7)	59.1	59.1	h	C(5)	$53.3{ }^{\text {e }}$	53.2	52.9
C(8)	136.1	137.1	h	$\mathrm{C}\left(6^{\prime}\right)$	30.5	31.1	31.5
C(9)	121.4	122.4	122.3	C(7)	53.7	54.4	54.4
C(10)	121.0	120.9	120.9	$\mathrm{C}\left(8^{\prime}\right)$	135.9	136.0	135.8
C(11)	127.8	127.7	127.8	$\mathrm{C}\left(9^{\prime}\right)$	122.2	114.6	114.6
C(12)	109.1	109.0	109.1	$\mathrm{C}\left(10^{\prime}\right)$	118.1	118.8	119.1
C(13)	142.9	142.9	142.8	$\mathrm{C}\left(11^{\prime}\right)$	127.8	111.1	111.6
C(14)	38.1	38.1	38.2	$\mathrm{C}\left(12^{\prime}\right)$	106.9	145.8	145.9
C(15)	87.5	87.6	87.5	$\mathrm{C}\left(13^{\prime}\right)$	147.8	136.2	136.0
C(16)	$93.0{ }^{\text {b }}$	$92.8{ }^{\text {c }}$	$92.7{ }^{\text {d }}$	$\mathrm{C}\left(14^{\prime}\right)$	52.9	26.1	25.2
C(18)	67.3	67.2	67.3	$\mathrm{C}\left(15^{\prime}\right)$	56.5	80.9	81.9
C(20)	49.9	49.9	50.0	$\mathrm{C}\left(16^{\prime}\right)$	32.2	32.8	32.2
C(21)	70.6	70.6	70.7	$\mathrm{C}\left(17^{\prime}\right)$	29.6	$34.4{ }^{\prime}$	33.78
$\mathrm{C}=0$	168.1	168.1	168.0	$\mathrm{C}\left(18{ }^{\prime}\right)$	7.6	65.0	175.2
OMe	51.0	50.9	51.0	$\mathrm{C}\left(19^{\prime}\right)$	28.0	35.8	40.6
				$\mathrm{C}\left(20^{\prime}\right)$	35.5	44.1	43.4
				C(21)	67.7	65.8	65.9
				OMe		55.6	55.6
	10		11 a		11 b		
NCH_{2}	$\begin{aligned} & 47.5,51.2 \\ & 33.9,38.0,38.6, \\ & 41.6 \end{aligned}$		49.0, 50.9		48.9, 50.8		
CH_{2}			$\begin{gathered} 34.0, f 38.1,38.6, \quad 3 \\ 41.5 \end{gathered}$			$\begin{aligned} & 34.0, g 37.7,38.6, \\ & 41.4 \end{aligned}$	

${ }^{a}$ In parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si} ; \delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=$ $\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm} .{ }^{b-g}$ Signals may be reversed. ${ }^{h}$ Signal missing because of low sample size.

group in this reaction indicates the tetradecacyclic, $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{~N}_{4}$ alkaloid to be a didehydroisovoafolidine whose $\mathrm{C}\left(2^{\prime}\right)$ oxygen is bridged to an amino carbon. In accord with this view the ${ }^{13} \mathrm{C}$ NMR spectra of folicangine differ from those of isovoafolidine (5 a) primarily by the absence of one aminomethylene and the presence of a methine substituted by two heteroatoms. The spectra of monodeuterated isovoafolidine, prepared by the reduction of folicangine by sodium borodeuteride, ${ }^{4}$ reveal the disappearance of the $\mathrm{C}(3)$ signal. Thus the structure of folicangine is $10 .{ }^{20}$ The relationship of folicangine to isovoafolidine (5 a) is mimicked by that of subsessiline (amataine ${ }^{19}$) to isovobtusine (8a), even to the extent of sodium borodeuteride reduction of subsessiline placing a deuterium at $C(3)$ of isovobtusine (8a). ${ }^{1}$ Therefore the structure of subsessiline is $11 \mathrm{a} .{ }^{20}$ Since the difference of the shifts of subsessiline and subsessiline lactone are like those of vobtusine (la) and vobtusine lactone (1b), the structure of subsessiline lactone is $11 \mathbf{b} .{ }^{20}$

The chemical shifts of rings $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$, and E^{\prime} of the three $3,2^{\prime}$ ethers, $10,11 \mathrm{a}$, and $11 \mathbf{b}$, are altered only minimally from
the values of their 2^{\prime}-hydroxy alkaloid counterparts of either normal or 14 -iso configuration. However, the introduction of the $3,2^{\prime}$-ether bridge causes dramatic shift changes at many of the carbons of the remaining rings, precluding rigorous shift assignment of the leftover methylenes (see Table VI). The drastic shift perturbations of the carbons of rings C, D, E, and the D -attached tetrahydrofuran cannot be accommodated by a $\mathrm{H}(3 \alpha)$ configuration, since this stereochemistry, depicted in conformation 12 , introduces merely a ring F^{\prime} boat form into the skeleta of the 2^{\prime}-hydroxy- 14 -iso compounds, thus affecting, at worst, only the $\mathrm{C}(3), \mathrm{C}(5), \mathrm{C}(14), \mathrm{C}(15)$, and $\mathrm{C}(21)$ shifts. More deep-seated conformational changes must be involved in shift alteration of centers far removed from the ether-bridging site, such as the lower limit $\Delta \delta$ values of 3,4 , 6 , and 4 ppm for $\mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(17)$, and $\mathrm{C}(19)$, respectively. Thus it appears that folicangine, subsessiline, and subsessiline lactone possess a $\mathrm{H}(3 \beta)$ configuration, as illustrated in formulas 10, 11a, and 11b. This stereochemistry demands that

10

ring D be constrained into a boat form. However, the resultant, strong, nonbonded interactions of $\mathrm{H}(21)$ and $\mathrm{H}\left(23^{\prime} \beta\right)$ (cf.

conformation 13) can be expected to convert the usual C/D trans configuration of the Aspidosperma bases ${ }^{21}$ to a cisindolizidine system. The consequently new nonbonded interactions in conformation 14 of the alkaloids 10, 11a, and $11 b$ are sufficiently complex and all-pervasive to lead to the observed general shift changes.

Experimental Section

The ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian XL-100-15 spectrometer operating at 25.2 MHz in the Fourier transform mode. All samples were run in $0.05-0.5 \mathrm{M}$ deuteriochloroform solutions. Except for substances $\mathbf{8 a}, \mathbf{8 b}$, and $\mathbf{1 1 \mathbf { b }}$, all compounds were submitted to proton-noise decoupling, single-frequency off-resonance decoupling, and low-power, noise-modulated decoupling, ${ }^{22}$ to establish carbon shifts and degrees of protonation. In select instances partially relaxed Fourier transform spectra, obtained by the $180^{\circ}{ }_{-\tau-} 90^{\circ}$ inversion recovery method, were recorded for verification of the latter. For the alkaloids examined by this technique τ intervals in the range of $0.070-0.080 \mathrm{~s}$ were found to distinguish qualitatively methine from methylene carbons by making the latter null. The shifts enumerated on formula 9 are in parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si}\left[\delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)\right.$ $\left.=\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm}\right]$. The starred numbers indicate possible signal reversal.

Anhydrovobtusine (9). The following represents an improved method of preparation of $9 .{ }^{18,19} \mathrm{~A}$ solution of 1.0 g of vobtusine (1a) in a minimum of methylene chloride was added to a solution of 2 g of p-toluenesulfonic acid in 200 ml of anhydrous benzene in the presence of a Dean-Stark water separator and the mixture refluxed for 4 h . It then was poured into 200 ml of water, made basic to pH 10 , and extracted with chloroform. The extract was washed with water, dried over sodium carbonate, and evaporated. Chromatography of the resin, 1 g , on Baker silica gel (activity I) and elution with methylene chlo-ride-methanol yielded 700 mg of 9 and 100 mg of apovobtusine, identical in all respects with the reported compounds. ${ }^{18}$

Registry No.-la, 19772-79-3; Ib, 19772-81-7; 1c, 19772-80-6; 1d, 59803-47-3; 1e, $59796-71-3$; 1f, $50924-04-4$; lg, $50924-05-5$; 3b, 2447-58-7; 4a, 32063-91-5; 4b, 31947-67-8; 5a, 33055-38-8; 5b, 31947-66-7; 8a, 59829-32-2; 8b, 59829-33-3; 10, 32340-00-4; 11a, 31148-60-4; 11b, 59796-72-4.

References and Notes

(1) Alkaloides des Voacanga. 16. For part 15 see Y. Rolland. N. Kunesch, F. Libot, J. Poisson, and H. Budzikiewicz, Bull. Soc. Chim. Fr., 2503 (1975).
(2) J. Poisson et al., manuscript in preparation.
(3) For the previous paper see E. Wenkert, E. W. Hagaman, N. Kunesch, N. Wang, and B. Zsadon, Helv. Chim. Acta, in press
(4) N. Kunesch, B. C. Das, and J. Poisson, Bull. Soc. Chim. Fr., 4370 (1970).
(5) Y. Rolland, G. Croquelois, N. Kunesch, P. Boiteau, M. Debray, J. Pecher, and J. Poisson, Phytochemistry, 12, 4370 (1973).
(6) R. Goutarel, A Rassat, M. Plat, and J. Poisson, Bull. Soc Chim. Fr., 893 (1959).
(7) A. A. Gorman, V. Agwada, M. Hesse, and H. Schmid, Helv. Chim. Acta, 50, 1939 (1967).
(8) O. Lefebvre-Soubeyran, Acta Crystallogr., Sect. B, 29, 2855 (1973).
(9) E. Wenkert. D. W. Cochran, E. W. Hagaman, F. M. Schell, N. Neuss, A. S. Katner, P. Potier, C. Kan, M. Plat, M. Koch, H. Mehri, J. Poisson, N. Kunesch, and Y. Rolland, J. Am. Chem. Soc., 95, 4990 (1973).
(10) G. Lukacs, M. de Bellefon, L. LeMen-Olivier, J. Levy, and . LeMen, Tetrahedron Lett., 487 (1974).
(11) J. B. Stothers, '"Carbon-13 NMR Spectroscopy', Academic Press, New York, N.Y., 1972.
(12) After completion of this work there appeared a preliminary account on the carbon shifts of vobtusine (1a) without explanation in connection with the structure determination of quimbelline, a vobtusine-like, "dimeric" indole alkaloid. ${ }^{13}$ The Italian workers misassigned the shifts of carbons $16,17$. $2^{\prime}, 6^{\prime}, 8^{\prime}, 13^{\prime}, 14^{\prime}, 19^{\prime}$, and 22^{\prime} to carbons $2^{\prime}, 14^{\prime}, 16,22^{\prime}, 13^{\prime}, 8^{\prime}, 17,6^{\prime}$. and 19^{\prime}, respectively, and left undifferentiated the shifts of carbons 5, 6 , and 18 from those of carbons $5^{\prime}, 23^{\prime}$, and 18^{\prime}, respectively. In the absence of more than :hree shifts for quimbelline it is impossible to check the structure of the new alkaloid and especially difficult to rationalize the reported 58.3 ppm doublet for $\mathrm{C}\left(16^{\prime}\right)$ on introduction of a $\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(22^{\prime}\right)$ oxetane bridge.
(13) E. Bombardelli, A. Bonati, B. Danieli, B. Gabetta, E. M. Martinelli, and G Mustich, Experientia, 31, 139 (1975).
(14) A. H. Heckendorf, K. C. Mattes. C. R. Hutchinson, E. W. Hagaman, and E. Wenkert. J. Org. Chem., 41, 2045 (1976)
(15) E. Wenkert, J. S. Bindra, C.J. Chang, D. W. Cochran, and F. M. Schell, Acc. Chem. Res., 7, 46 (1974).
(16) D. W. Cochran, Ph.D. dissertation, Indiana University, 1971
(17) M. B. Patel and J. Poisson, Bull. Soc. Chim. Fr., 427 (19€6).
(18) A. A. Gorman, V. Agwada, M. Hesse, U. Renner, and H. Schmid, Helv. Chim. Acta, 49, 2072 (1966).
(19) V. Agwada, M. B. Patel, M. Hesse, and H. Schmid, Helv. Chim. Acta, 53, 1567 (1970).
(20) Without distinction of the $\mathrm{C}(3)$ configuration
(21) M. Daudon. M. H. Mehri, M. M. Plat, E. W. Hagaman, and E. 'Nenkert, J. Org Chem., following paper in this issue.
(22) E. Wenkert, A. O. Clouse, D. W. Cochran, and D. Doddrel , J. Am. Chem. Soc., 91, 6879 (1969).

Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. 48. Dimeric Quinolinic Melodinus Alkaloids ${ }^{1}$

Michel Daudon, M. Hachem Mehri, and Michel M. Plat
U. E. R. de Chimie Thérapeutic, Faculté de Pharmacie, 92290 Châtenay-Malabry, France

Edward W. Hagaman and Ernest Wenkert*
Department of Chemistry, Rice University, Houston, Texas 77001
Received March 22, 1976

The Melodinus C_{41} alkaloids scandomelonine and episcandomelonine are shown by ${ }^{13} \mathrm{C}$ NMR spectroscopy to be 19 epimers of 10 -($3^{\prime} \alpha$-pachysiphinyl)meloscandonine. A similar study of the C_{42} Melodinus bases scandomeline and episcandomeline reveals them to be structurally related, 19 -epimeric carbinolamines.

The New Caledonian plant Melodinus scandens Forst. has been shown to produce a large array of alkaloids containing inter alia the two unusual quinolones scandine (1) and meloscandonine (2). ${ }^{2-7}$ Further fractionation of the plant extract now has yielded four "dimeric" alkaloids, scandomelonine, ${ }^{6}$ episcandomelonine, scandomeline, ${ }^{6}$ and episcandomeline. The present communication presents their structure analysis mostly by the use of ${ }^{13} \mathrm{C}$ NMR spectroscopy.

Scandomelonine and episcandomelonine are $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{~N}_{4}$

1

isomers whose common infrared bands at $3370,1745,1675$, and $1610 \mathrm{~cm}^{-1}$ reveal the alkaloids to possess NH groups, two keto groups characteristic of meloscandonine (2), and a vinylogous amide unit reminiscent of vincadifformine (3), a congener of these alkaloids. ${ }^{4,5}$ The altraviolet absorption characteristics common to both compounds, $\lambda_{\max } 214 \mathrm{~nm}$ (log $\epsilon 4.40), 264$ (4.08), 296 (4.03), 329 (4.18), $\lambda_{\text {shoulder }} 233$ (4.11), can be interpreted to be a composite of the chromophores of meloscandonine (2) and vincadifformine (3). The exhibition of a peak of 456 mass units, corresponding to the loss of a $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}$ fragment represented by 4 , in the mass spectra

3

of the alkaloids shows the latter to possess the ABE ring system of vincadifformine (3). ${ }^{8}$ Finally, the methyl doublet (J $=7 \mathrm{~Hz}$) at 1.21 and 0.93 ppm in the ${ }^{1} \mathrm{H}$ NMR spectra of scandomelonine and episcandomelonine, respectively, is identical with $\mathrm{H}(18)$ shifts and multiplicities of meloscandonine (2) ${ }^{4}$ and its 19 isomer ${ }^{9}$ and suggests the two new bases to be 19 epimers of each other.

The above data facilitated the interpretation of the ${ }^{13} \mathrm{C}$ NMR spectra of especially scandomelonine by suggesting an early comparison with the ${ }^{13} \mathrm{C}$ NMR spectra of meloscandonine (2). ${ }^{7}$ Such comparison showed all carbons of the monomer represented in the spectra of the "dimer", the aromatic carbon shifts and multiplicities having been modified. The last fact indicates that the second alkaloid monomer unit is attached to the aromatic ring of meloscandonine (2). The interdependent problem of the center of attachment and aromatic methine shift allocation can be solved nost readily by analysis of the coupling characteristics of the aromatic methines. Single-frequency off-resonance decoupled (sford) spectra can be run under conditions in which aromatic methine carbons display coupling only with ipso and meta hydrogens, i.e., one-bond and three-bond carbon-hydrogen interactions. These conditions are met when the ${ }^{1} J_{\mathrm{CH}}$ value is reduced to ca. one-half its normal size. ${ }^{10}$ Since every methine carbon of an ortho-disubstituted benzene has a hydrogen meta oriented to it, the sford spectrum of such an aromatic substance reveals the methines as doublets of doublets. This behavior is common to all ring A unsubstituted indole alkaloids as well as to meloscandonine (2). Carbon 12 of the meloscandonine portion of the "dimer" is recognized easily in view of its ortho relationship to the quinolone nitrogen placing its signal at a high field position. In contrast to all aromatic methines it appears as a sharp doublet in the sford spectrum, thereby showing $\mathrm{C}(10)$ to be the site of the tie-up with the nonmeloscandonine monomer unit and the latter to be unsubstituted on ring A of its indolic nucleus.

All resonances of the trigonal carbon centers of rings A, B and E of vincadifformine (3) ${ }^{11}$ appear unchanged in the ${ }^{13} \mathrm{C}$ NMR spectra of scandomelonine. The one-bond coupling constants of $142 \pm 2,156 \pm 2,178 \pm 2$, and $179 \pm 2 \mathrm{~Hz}$ of the tetrahedral methine carbons of the vincadifformine-like portion of the alkaloid reveal these carbons to be attached to heteroatom centers ${ }^{12}$ and those of ${ }^{1} J_{\mathrm{CH}}=\mathrm{ca} .180 \mathrm{~Hz}$ to be part of an epoxide moiety. ${ }^{12,13}$ To be incorporated into a vincad-ifformine-like structure, the remaining methines must be aminomethines, thus limiting the second site of coupling of the two monomer alkaloid units to $C(3)$ or $C(5)$ of 3 . These facts invited comparison of the shift data of scandomelonine

Table I. Carbon Shifts of Scandomelonine and Episcandomelonine ${ }^{a}$

					$\mathbf{5 a}$	$\mathbf{5 b}$	$\mathbf{3 \mathbf { a } ^ { \prime }}$
	$\mathbf{2}^{b}$	$\mathbf{5 a}$	$\mathbf{5 b}$				
$\mathrm{C}(3)$	47.2	47.3	47.0	$\mathrm{C}\left(2^{\prime}\right)$	164.6	164.7	164.9
$\mathrm{C}(5)$	54.8	54.7	54.9	$\mathrm{C}\left(3^{\prime}\right)$	57.4	57.6	49.4
$\mathrm{C}(6)$	38.1	37.9	38.0	$\mathrm{C}\left(5^{\prime}\right)$	47.8	47.5	51.0
$\mathrm{C}(7)$	54.8	54.7	56.7	$\mathrm{C}\left(6^{\prime}\right)$	42.1	42.3	43.9
$\mathrm{C}(8)$	130.5	130.7	130.3	$\mathrm{C}\left(7^{\prime}\right)$	53.8	53.6	54.7
$\mathrm{C}(9)$	123.5^{d}	124.7	125.0	$\mathrm{C}\left(8^{\prime}\right)$	137.2	137.1	137.5
$\mathrm{C}(10)$	123.4^{d}	129.1	128.6	$\mathrm{C}\left(9^{\prime}\right)$	121.2	121.6	121.3
$\mathrm{C}(11)$	127.6	127.1	126.8	$\mathrm{C}\left(10^{\prime}\right)$	120.8	121.1	120.3
$\mathrm{C}(12)$	116.3	116.0	115.8	$\mathrm{C}\left(11^{\prime}\right)$	127.3	127.2	127.6
$\mathrm{C}(13)$	136.5	136.3	136.3	$\mathrm{C}\left(12^{\prime}\right)$	108.9	108.7	109.2
$\mathrm{C}(14)$	124.0	123.9	125.5	$\mathrm{C}\left(13^{\prime}\right)$	142.5	142.3	142.9
$\mathrm{C}(15)$	127.4	127.7	128.0	$\mathrm{C}\left(4^{\prime}\right)$	56.2	56.2	52.0
$\mathrm{C}(16)$	67.7	67.6	67.6	$\mathrm{C}\left(5^{\prime}\right)$	53.5	53.5	56.2
$\mathrm{C}(17)$	36.0	36.0	40.0	$\mathrm{C}\left(16^{\prime}\right)$	90.2	90.1	90.4
$\mathrm{C}(18)$	11.0	11.1	8.6	$\mathrm{C}\left(17^{\prime}\right)$	23.6	23.2	23.5
$\mathrm{C}(19)$	50.7	50.8	52.6	$\mathrm{C}\left(18^{\prime}\right)$	7.3	7.27 .1	
$\mathrm{C}(20)$	44.3	44.5	45.4	$\mathrm{C}\left(19^{\prime}\right)$	26.6	26.3	26.5
$\mathrm{C}(21)$	69.9	70.4	61.5	$\mathrm{C}\left(20^{\prime}\right)$	36.5	36.7	37.0
$\mathrm{NC}=\mathrm{O}$	169.0	169.0	168.7	$\mathrm{C}\left(1^{\prime}\right)$	61.5	61.5	70.9
$\mathrm{C}=\mathrm{O}$	210.0	209.8	208.4	$\mathrm{C}=\mathrm{O}$	168.4	168.4	168.6
				OMe	50.8	50.8	50.8

${ }^{a}$ In parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si} ; \delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=$ $\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm} .{ }^{b}$ From ref 7. ${ }^{c}$ From ref $14 .{ }^{d}$ Signals may be reversed.
with those of pachysiphine ($14 \beta, 15 \beta$-oxido-3) ($3 \mathbf{a}$)..14 This comparison leads to the formulation of the "dimer" alkaloid as $10-\left(3^{\prime} \alpha\right.$-pachysiphinyl)meloscandonine (5a). ${ }^{15}$ All its carbon shifts are listed in Table I.

Comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of episcandomelonine with those of scandomelonine (5a) indicates that not only is

5a, $19 \alpha-\mathrm{H}$
b, $19 \beta-\mathrm{H}$
the $3^{\prime} \alpha$-pachysiphinyl moiety common to both alkaloids, but they also are very similar in the meloscandonine unit except within the vicinity of $\mathrm{C}(19)$. The shift changes at $\mathrm{C}(17), \mathrm{C}(18)$, and $\mathrm{C}(21)$ provide conclusive evidence for the conversion of an exo- α-methylnorbornanone fragment to one of an endo-α-methyl structure. ${ }^{16}$ Thus episcandomelonine proves to be 10-(3' α-pachysiphinyl)-19-epimeloscandonine (5b). Its chemical shifts are presented in Table I.

Scandomeline and episcandomeline are $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{~N}_{4}$ isomers with common infrared absorptions at $3540,3340,1725$, 1665 , and $1610 \mathrm{~cm}^{-1}$, characteristic of hydroxy and NH groups, an ester keto function, and a vinylogous amide moiety as that in vincadifformine (3). Their superimposable ultraviolet spectra, $\lambda_{\max } 214 \mathrm{~nm}(\log \epsilon 4.23), 257$ (3.86), 300 (3.86), 325 (3.95), $\lambda_{\text {shoulder }} 233$ (3.91), are a composite of the chromophores of vincadifformine (3) and o-toluidine. The mass spectra exhibit a peak at 488 mass units, representative of the loss of the $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}$ fragment 4. Finally, the ${ }^{1} \mathrm{H}$ NMR spectra reveal the alkaloids to possess a carbomethoxy group
in view of the presence of a 3.68 -ppm three-proton singlet and methyl doublets ($J=7 \mathrm{~Hz}$) at different field positions, 1.18 ppm for scandomeline and 0.75 ppm for its isomer. These facts show that the third and fourth "dimeric" alkaloids differ from the other two by the replacement of the quinolone and cyclopentanone carbonyl groups by an ester function and nonacylated aniline system and, formally, by the addition of methanol.

The ${ }^{13} \mathrm{C}$ NMR spectra of scandomeline and episcandomeline indicate the alkaloids to possess a $3^{\prime} \alpha$-pachysiphinyl unit attached to $\mathrm{C}(10)$ of the nonlactam equivalent of the quinolone unit. The aromatic shift modifications of the latter are reminiscent (in direction, albeit not in magnitude) of the shift differences of the aromatic oxindole and indoline carbons of gelsemine and its 2-deoxo-2,2,18,19-tetrahydro derivative. ${ }^{17}$ The spectra reveal further the presence of a carbomethoxy function and the attachment of the remaining two heteroatoms to a single nonprotonated carbon site, i.e., a carbinolamine unit. Finally, the only difference between scandomeline and episcandomeline is their C-methyl orientation, ascertained by the shift differences between the compounds, as in the distinction between $\mathbf{5 a}$ and $\mathbf{5 b}$. Interpretation of the combined physical data leads to structures $\mathbf{6 a}$ and $\mathbf{6 b}$ for scandomeline

6a, $19 \alpha-\mathrm{H}$
b, $19 \beta-\mathrm{H}$

Table II. Carbon Shifts of Scandomeline and Episcandomeline ${ }^{a}$

	$\mathbf{6 a}^{b}$	$\mathbf{6 b}$		$\mathbf{6 a}^{b}$	$\mathbf{6 b}$
$\mathrm{C}(3)$	49.2	49.4	$\mathrm{C}\left(2^{\prime}\right)$	164.9	164.9
$\mathrm{C}(5)$	52.7	52.9	$\mathrm{C}\left(3^{\prime}\right)$	58.2	58.2
$\mathrm{C}(6)$	38.1	36.7	$\mathrm{C}\left(5^{\prime}\right)$	48.2	47.8
$\mathrm{C}(7)$	50.9^{c}	51.4	$\mathrm{C}\left(6^{\prime}\right)$	42.4	42.5
$\mathrm{C}(8)$	124.5	124.6	$\mathrm{C}\left(7^{\prime}\right)$	54.1	53.8
$\mathrm{C}(9)$	127.7^{d}	127.4^{e}	$\mathrm{C}\left(8^{\prime}\right)$	137.8	137.7
$\mathrm{C}(10)$	123.5	123.2	$\mathrm{C}\left(9^{\prime}\right)$	121.6	121.2
$\mathrm{C}(11)$	127.1^{d}	127.3^{e}	$\mathrm{C}\left(10^{\prime}\right)$	120.4	120.2
$\mathrm{C}(12)$	114.6	112.8	$\mathrm{C}\left(11^{\prime}\right)$	127.4	127.3
$\mathrm{C}(13)$	139.8	140.8	$\mathrm{C}\left(12^{\prime}\right)$	109.0	108.9
$\mathrm{C}(14)$	125.8^{d}	127.4	$\mathrm{C}\left(13^{\prime}\right)$	142.8	142.7
$\mathrm{C}(15)$	129.4	129.9	$\mathrm{C}\left(14^{\prime}\right)$	56.4	56.3
$\mathrm{C}(16)$	59.1	59.0	$\mathrm{C}\left(15^{\prime}\right)$	54.1	54.0
$\mathrm{C}(17)$	40.3	41.9	$\mathrm{C}\left(16^{\prime}\right)$	90.6	90.5
$\mathrm{C}(18)$	10.5	8.9	$\mathrm{C}\left(17^{\prime}\right)$	23.5	23.2
$\mathrm{C}(19)$	49.8^{c}	51.4	$\mathrm{C}\left(18^{\prime}\right)$	7.4	7.2
$\mathrm{C}(20)$	46.5	47.6	$\mathrm{C}\left(19^{\prime}\right)$	26.9	26.7
$\mathrm{C}(21)$	82.0	74.6	$\mathrm{C}\left(20^{\prime}\right)$	36.6	36.7
OCN	88.1	88.4	$\mathrm{C}\left(21^{\prime}\right)$	62.2	62.0
$\mathrm{C}=\mathrm{O}$	171.9	171.9	$\mathrm{C}=\mathrm{O}^{\mathrm{O}}$	168.6	168.6
OMe	51.9	51.7	OMe	50.9	50.9

${ }^{a}$ In parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si} ; \delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=$ $\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm} .{ }^{b}$ Based solely on a proton-decoupled spectrum due to sample limitation. ${ }^{c-e}$ Signals may be reversed.
and episcandomeline, respectively. Their carbon shifts are listed in Table II.

The relative stereochemistry of rings C and D of vincadifformine (3) and related Aspidosperma bases in solution has not been noted before. Models show that this indolizidine system remains unstrained in either cis or trans configuration. The association of the meloscandonine unit of $5 \mathbf{a}$ and $\mathbf{5 b}$ or its equivalent in $\mathbf{6 a}$ or $\mathbf{6 b}$ with the indolizidine part of pachysiphine offers some insight toward a choice between the

two configurations. The $\mathrm{C}\left(3^{\prime} \alpha\right)$ substituent of all four "dimeric" alkaloids shields both $\mathrm{C}\left(5^{\prime}\right)$ and $\mathrm{C}\left(21^{\prime}\right)$, a phenomenon possible only in a trans configuration. ${ }^{18}$

The Melodinus alkaloids are structurally unusual by incorporating a quinoline moiety within the framework of an Aspidosperma skeleton. The biogenetic origin of such structure pattern has been ascribed to an oxidative rearrangement of 18,19-dehydrotabersonine (7). ${ }^{2}$ Analysis of this oxidation and semibenzilic acid rearrangement along stereochemical lines suggests that 16α-oxidation (via 10) of 7 is conducive to forming scandine (1) and 16β-oxidation (via 11) 16 -episcandine (16 -epi-1). In order to formulate the origin of the biogenetically exceedingly unusual structure of meloscandonine (2) or its equivalent in 6, an analogy can be drawn with the derivation of vindolinine (9). ${ }^{19}$ If it be assumed that the enzymic reduction of the vinyl group, normally proceeding toward tabersonine, involves a sterically well-disposed, neighboring positive carbon center, coupling would ensue causing 8,1 , and 16 -epi- 1 to yield 9,12 , and 2 , respectively. Finally, since the unraveling of the carbinolamine of 12 , yielding an aniline and norbornanone, followed by lactam formation, leading to 2, is facile (see Experimental Section), alkaloids of both structure types 2 and 12 may be produced as a consequence of solely the sterically more favorable 16α-oxidation of 7.

Experimental Section

The ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian XL-100-15 spectrometer operating at 25.20 MHz equipped to operate in the pulsed Fourier transform mode with Transform Technology Inc. computer and pulse hardware.

Chromatography of the crude alkaloid extract $(59.76 \mathrm{~g})$ from 5.80 kg of dry stems and leaves of Melodinus scandens Forst. ${ }^{5}$ was chromatographed on Sephadex LH 20 (2 g of extract on 65 g of absorbent) and eluted with 7:3 methanol-chloroform. The eluates were monitored by TLC on Kieselgel H (50:1 ether-methanol). This procedure gave two fractions, 12.70 and 5.56 g , rich in "dimeric alkaloids". The first fraction was chromatographed on 400 g of Merck alumina (activity I) and eluted with ether up to 9:1 ether-methanol. This led to 536 mg of $\mathbf{6 a}, 120 \mathrm{mg}$ of $\mathbf{6 b}$, and 1.014 g of a mixture of $\mathbf{5 a}, \mathbf{5 b}, \mathbf{6 a}$, and $\mathbf{6 b}$. Chromatography of the second fraction on 180 g of Merck Kieselgel 60 (30-70 mesh) and elution with 20:1 ethyl acetate-methanol yielded 806 mg of a mixture of the four alkaloids, 682 mg of a mixture of $\mathbf{5 a}$ and $\mathbf{5 b}$, and 1.435 g of $\mathbf{6 a}, \mathbf{6}$ b, and another alkaloid. Finally, preparative TLC on Merck Kieselgel G and elution with 9:1 ether-methanol led to the separation of $\mathbf{5 a}$ and $\mathbf{5 b}$ and preparative TLC on Merck alumina and elution with $20: 1$ ether-methanol separated $6 \mathbf{a}$ and 6b.

Scandomelonine (5a), crystallized from acetone: $\mathrm{mp}>300^{\circ} \mathrm{C} \mathrm{dec}$; $[\alpha]_{578^{22}}-25^{\circ}$ (c 1, CHCl_{3}); ir (KBr) NH $3370(\mathrm{~m}), \mathrm{C}=\mathrm{O} 1745$ (s), 1675 (s), $\mathrm{C}=\mathrm{C} 1620 \mathrm{~cm}^{-1}(\mathrm{~m})$; uv (EtOH) $\lambda_{\max } 264 \mathrm{~nm}(\log \epsilon 4.08), 296$ (4.03), 329 (4.18), $\lambda_{\text {shoulder }} 235$ (4.11); (EtOH-NaOH) $\lambda_{\max } 287 \mathrm{~nm}$ (log $\epsilon 4.21), 329$ (4.19); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.84\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, 19^{\prime}-\mathrm{Me}\right)$, 1.19 (d, $3, J=7 \mathrm{~Hz}, 19-\mathrm{Me}), 2.56\left[\mathrm{~s}, 1, \mathrm{H}\left(21^{\prime}\right)\right], 3.80(\mathrm{~s}, 3, \mathrm{OMe}), 4.58$ [s, 1, H($\left.3^{\prime}\right)$], 5.98 (m, 2, olefinic H's), 6.18 [dd, $1, J=7,1.5 \mathrm{~Hz}, \mathrm{H}(12)$], 6.6-7.3 ($\mathrm{m}, 6$, aromatic H's); MS m/e $670\left(\mathrm{M}^{+}, 5\right), 292$ (72), 291 (42), 221 (43), 214 (base); accurate mass measurements ${ }^{20}$ calcd for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{~N}_{4}, 670.3155$ (found, 670.3122); $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{~N}_{4}, 641.3128$ (found, 641.3111); $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~N}_{3}, 456.2287$ (found, 456.2268); $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}, 214.0868$ (found, 214.0881).

Episcandomelonine (5b), amorphous: $[\alpha]_{578^{22}}+25^{\circ}\left(\mathrm{c} \mathrm{1}, \mathrm{CHCl}_{3}\right)$; ir, uv, and ${ }^{1} \mathrm{H}$ NMR the same as those of 5 a except for 0.81 (d, $3, J=$ $7 \mathrm{~Hz}, 19-\mathrm{Me}$); MS m/e $670\left(\mathrm{M}^{+}, 11\right), 227$ (45), 214 (base); accurate mass calcd for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{~N}_{4}, 670.3155$.

Scandomeline (6a), crystallized from acetone: $\mathrm{mp}>300^{\circ} \mathrm{C} \mathrm{dec}$; $[\alpha]_{578^{22}}-170^{\circ}\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$; ir (KBr) NH $3340(\mathrm{w}), \mathrm{C}=\mathrm{O} 1722$ (s), 1660 (s), $\mathrm{C}=\mathrm{C} 1610(\mathrm{~m}), 1590 \mathrm{~cm}^{-1}(\mathrm{~m})$; uv (EtOH) $\lambda_{\text {max }} 259 \mathrm{~nm}(\log \epsilon 3.94)$,

302 (3.92), 3.28 (4.01), $\lambda_{\text {shoulder }} 232$ (3.93); (EtOH-HCl) $\lambda_{\max } 270 \mathrm{~nm}$ (log $\epsilon 4.08), 296$ (3.92), 327 (3.94), $\lambda_{\text {shoulder }} 234$ (3.85); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.76\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, 19^{\prime}-\mathrm{Me}\right), 1.16(\mathrm{~d}, 3, J=7 \mathrm{~Hz}, 19-\mathrm{Me}), 3.63(\mathrm{~s}, 3$, saturated ester OMe), 3.76 ($\mathrm{s}, 3$, unsaturated ester OMe), 4.51 [$\mathrm{s}, 1$, $\mathrm{H}\left(3^{\prime}\right)$], 5.73 (m, 2, olefinic H's), 6.3-7.1 (m, 7, aromatic H's); m/e 702 (M^{+}, base), 673 (80), 606 (40), 392 (60); accurate mass calcd for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{~N}_{4}, 702.8581$ (found, 702.8563).

Episcandomeline (6b), crystallized from acetone: $\mathrm{mp}>300^{\circ} \mathrm{C} \mathrm{dec}$; $[\alpha]_{578}{ }^{22}-112^{\circ}\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$; ir (KBr) OH $3540(w)$, NH $3340(w)$, $\mathrm{C}=01725(\mathrm{~s}), 1655(\mathrm{~s}), \mathrm{C}=\mathrm{C} 1600 \mathrm{~cm}^{-1}(\mathrm{~m})$; uv and ${ }^{1} \mathrm{H}$ NMR the same as those of 6 except for 0.77 (d, $3, J=7 \mathrm{~Hz}, 19-\mathrm{Me}$); MS m/e $702\left(\mathrm{M}^{+}, 72\right), 685(47), 684(86), 673(66), 655(71), 626(50), 588(62)$, 488 (63), 470 (94), 392 (51), 375 (base); accurate mass calcd for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{~N}_{4}, 702.8581$.

Conversions of $\mathbf{6 a}$ and $\mathbf{6 b}$ into 5 a and 5 b , Respectively. A solution of 47 mg of scandomeline ($6 \mathbf{a}$) in 10 ml of acetic anhydride was heated at $100^{\circ} \mathrm{C}$ for 6 h . Evaporation of the solvent under vacuum, preparative chromatography of the residue on Merck Kieselgel H, and elution with 12:1 ether-methanol yielded 3 mg of uninvestigated material, 12 mg of N-acetylscandomeline, and 7 mg (15%) of scandomelonine (5a), spectrally identical in all respects with 5 a above.

The same treatment of 200 mg of episcandomeline (6b) with 50 ml of acetic anhydride, preparative chromatography on Merck Kieselgel G, and elution with 13:1 ether-methanol yielded 62 mg of starting compound, 11 mg of N-acetylepiscandomeline, and 26 mg (13%) of episcandomelonine ($\mathbf{5 b}$), spectrally identical in all respects with $\mathbf{5 b}$ above.

Registry No.-5a, 59813-31-9; 5b, 59830-06-7; 6a, 59813-32-0; 6b, 59830-07-8.

References and Notes

(1) For the preceding publication see R. A. Archer, D. W. Johnson, E. W. Hagaman, L. N. Moreno, and E. Wenkert, J. Org. Chem., in press
(2) K. Bernauer, G. Englert, W. Vetter, and E. Weiss, Helv. Chim. Acta, 52, 1886 (1969), and references cited therein.
(3) W. E. Oberhansli, Helv. Chim. Acta, 52, 1905 (1969).
(4) M. Plat, H. Mehri, M. Koch, U. Scheidegger, and P. Potier, Tetrahedron Lett., 3395 (1970)
(5) H. Mehri, M. Plat, and P. Potier, Ann. Pharm. Fr., 29, 291 (1971)
(6) H. Mehri and M. Plat, Plant. Med. Phytother., 8, 143 (1974).
(7) M. Daudon, H. M. Mehri, E. W. Hagaman, F. M. Schell, and E. Wenkert, J. Org. Chem., 40, 2838 (1975)
(8) J. Poisson, M. Plat, H. Budzikiewicz, L. J. Durham, and C. Djerassi, Tetrahedron, 22, 1075 (1966).
(9) K. Bernauer, private communication.
(10) The 50% reduction serves only as an upper limit, since larger reduction of one-bond coupling may introduce second-order transitions which destroy the interpretable, first-order coupling patterns. However the reduction may be significantly less without the reintroduction of the two- and four-bond coupling patterns.
(11) E. Wenkert, D. W. Cochran, E. W. Hagaman, F. M. Schell, N. Neuss, A. S. Katner, P. Potier, C. Kan, M. Plat, M. Koch, H. Mehri, J. Poisson, N. Kunesch, and Y. Rolland, J. Am. Chem. Soc., 95, 4990 (1973).
(12) J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press. New York, N.Y., 1972.
(13) E. Wenker, E. W. Hagaman, B. Lal, G. E. Gutowski, A. S. Katner, J. C. Miller, and N. Neuss, Helv. Chim. Acta, 58, 1560 (1975).
(14) Y. Rolland, N. Kunesch, J. Poisson, E. W. Hagaman, F. M. Schell, and E. Wenkert, J. Org. Chem., preceding paper in this issue. The assignment of the carbon shifts of 3a rests on that of hazuntinine. ${ }^{11}$
(15) The arguments establishing the site and stereochemistry of attachment of meloscandonine (2) to the pachysiphine (3a) moiety are those used in the determination of the structure of criophylline, 10-($3^{\prime} \alpha$-pachysiphinyl)andrangine (A. Cave, J. Bruneton, A. Ahond, A.-M. Bui, H.-P. Husson, C. Kan, G. Lukacs, and P. Potier, Tetrahedron Lett., 5081 (1973)].
(16) J. B. Grutzner, M. Jautelat, J. B. Dence, R. A. Smith, and J. D. Roberts, J. Am. Chem. Soc., 92, 7107 (1970).
(17) E. Wenkert. C.-J. Chang. A. O. Clouse, and D. W. Cochran, Chem. Commun., 961 (1970).
(18) For a description of γ effects by π-bond systems on a C-H bond see E Wenkert, C.-J. Chang, H. P. S. Chawla, D. W. Cochran, E. W. Hagaman, J. C. King, and K. Orito, J. Am. Chem. Soc., 98, 3645 (1976).
(19) A. Ahond, M.-M. Janot, N. Langlois, G. Lukacs, P. Potier, P. Rasoanaivo, M. Sangarè, N. Neuss, M. Plat, J. Le Men, E. W. Hagaman, and E. Wenkert, J. Am. Chem. Soc., 96, 633 (1974)
(20) The authors are indebted to Dr. P. Bladon (University of Glasgow) for this measurement.

Olefin Inversion. 1. Reaction of Aliphatic Epoxides with Triphenylphosphine Dihalides

Philip E. Sonnet* ${ }^{* \dagger}$ and James E. Oliver*
Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705

Received April 14, 1976

Abstract

Triphenylphosphine dibromide and dichloride $\left(\mathrm{Ph}_{3} \mathrm{PBr}_{2}\right.$ and $\left.\mathrm{Ph}_{3} \mathrm{PCl}_{2}\right)$ reacted with epoxides to produce the corresponding vic-dihalides in excellent yields. $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ reacted with cis epoxides in benzene to produce erythro dibromides exclusively, but less selectively with trans epoxides to give mixtures of threo and erythro dibromides. $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$ reacted stereospecifically with both cis and trans epoxides in benzene or methylene chloride, in each case providing the dichloride derived from SN2 displacement on each C-O bond. By reacting epoxides first with hydrochloric acid and then with $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$, it was possible to stereospecifically prepare vic-bromochlorides that were also products of two SN2 displacements. Zinc reduction of erythro dibromides was stereospecifically trans; thus the process (1) epoxidation, (2) $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ bromination, (3) Zn reduction affected a clean overall inversion of olefin geometry from Z to E. Reduction of threo bromochlorides to Z olefins could be made approximately 90% selective if carried out at $0-5^{\circ} \mathrm{C}$ in dimethylformamide.

The ability to control and invert olefin geometry deservedly receives continuing attention in the chemical literature. Our own interest in such processes stems from the frequent uncertainty of the exact geometry of insect sex pheromones. The identities of pheromone components may be assigned by classical isolation-identification methods, or logical screening of synthetics, ${ }^{1}$ but, in extreme cases, final adjustments have had to be made following ambiguous, or unsatisfactory, field tests. ${ }^{2}$ Currently it is not clear whether the best use of a sex pheromone involves mimicking the exact composition of the natural product, or whether some other ratio of components might be more useful in an attempted disruption of mating processes. A convenient method of converting a sex pheromone, often an unsaturated acetate, to a geometric isomer would expedite the processes of determining pheromone isomer content and optimizing insect behavioral responses.

An elegant method of inverting olefin geometry has been described by Vedejs and Fuchs. ${ }^{5}$ Epoxides were allowed to react with lithium diphenylphosphide, and the resulting oxy anions were alkylated on phosphorus with methyl iodide to produce betaines which, in turn, underwent cis eliminations to produce olefins of geometry opposite to those of the starting epoxides. A related method, described by Bridges and Whitham, ${ }^{6}$ involved hydrogen peroxide oxidation of the same oxyanions; the resulting anions then eliminated the watersoluble lithium diphenylphosphinate. Very recent literature describes inversion via epoxides employing potassium selenocyanate, ${ }^{7 \mathrm{a}}$ or hexamethyldisilazane/ $\mathrm{KOMe},{ }^{7 \mathrm{~b}}$ and inversion via seleniranes and thiiranes. ${ }^{7 c}$ These processes involve addition of a single reagent to an epoxide (selenirane, thiirane in one case), with a stereochemical inversion, followed by cis eliminations from the initial adducts (Scheme I, path 1). A logical alternative would be a net cis addition (zero or two inversions) followed by trans elimination of the added groups (Scheme I, path 2). We describe here a route for olefin inversion via epoxides that is based on the latter principle and is thus complementary to those described earlier.

Results and Discussion

Prior literature concerning reactions of epoxides with triphenylphosphine dihalides is sparse; information on stereochemistry is lacking, and indications were that mixtures of dihalides, haloalkenes, and other materials could be expected. ${ }^{8}$ The few reaction conditions reported, however, had been quite

[^2]
${ }^{a}$ Path 1: one inversion, cis elimination. Path 2: two inversions, trans elimination.
vigorous. We recently observed that tetrahydropyranyl ethers were smoothly converted by triphenylphosphine dibromide ($\mathrm{Ph}_{3} \mathrm{PBr}_{2}$) to the corresponding bromides within minutes at room temperature, ${ }^{9}$ and thus anticipated that milder conditions might be advisable in the application of this reagent to epoxides. The epoxide of (Z)-9-pentacosene (95% cis by ir, 965 cm^{-1} band) was therefore exposed to a slurry of $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ in benzene for 4 h . A dibromide was obtained nearly quantitatively; treatment with zinc in acetic (or propionic) acid produced (E)-9-pentacosene (94% trans by ir). The overall yield, olefin-olefin, was ca. 75%, and, within the limits of error of the infrared method of analysis, the transformations were stereospecific. Assuming that the elimination of bromine was trans, ${ }^{10}$ the dibromide must have been the erythro isomer.
The diastereomeric threo dibromide formed in considerable proportion, however, if more polar solvents were used for the $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ trearment. Thus when methylene chloride was substituted for benzene, the ultimate product was a $61: 39$ mixture of (E)- and (Z)-9-pentacosenes; a 48:52 E:Z mixture of alkenes was ultimately derived from reaction in acetonitrile.
Although pentacosenes were of interest to use [the sex pheromone of the "little housefly", Fannia canicularis (L.), is (Z)-9-pentacosene], ${ }^{11}$ greater precision in measuring isomer content would be realized if olefins were used the epoxides of which could be examined by gas chromatography; all data described hereafter were obtained in that manner.

Epoxidation of (Z)-7-octadecene ${ }^{12}$ with m-chloroperbenzoic acid gave the corresponding epoxide (90% cis) which was converted under the conditions described ($\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ in benzene, $\mathrm{Zn} / \mathrm{HOAc}$, m-chloroperoxybenzoic acid) to give 7,8 -
epoxyoctadecane which was 94% trans. The sex pheromone of the gypsy moth, Lymantria dispar (L.), (Z)-7,8-epoxy-2methyloctadecene (95% cis), ${ }^{13}$ similarly gave the epoxide of opposite geometry (97.5% trans). A sample of 85% cis- 7,8 -epoxy-2-methyloctadecane provided 93% trans epoxide. The apparent stereoselectivity of $>100 \%$, while gratifying, was suspicious and was subsequently traced to a lack of selectivity in the conversion of the few percent of trans epoxides present in the starting cis epoxides.

Two trans epoxides were then subjected to the three-step sequence: trans-7,8-epoxyoctadecene (94% trans) gave an epoxide mixture that was only 65% cis; trans-7,8-epoxy-2methyloctadecane (97.5% trans) produced a $1: 1$ mixture of the cis and trans epoxides. The conditions of bromination and debromination were as stated, and overall yields were good (70-80\%), but the stereoselectivity, if any, was clearly inadequate to be useful for $E-Z$ conversions of olefins.

Since we had evaluated only the end product of a threereaction sequence ($\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ bromination, $\mathrm{Zn} / \mathrm{HOAc}$ reduction, and peracid epoxidation), we now had to ascertain at what point the loss of specificity had occurred. Epoxidation with peracids is known to be highly selectively cis, ${ }^{14}$ and we had encountered no exception in performing the oxidations of olefins with known geometry. Also reductive debromination with zinc in acetic acid is generally accepted to proceed trans, though Young and co-workers ${ }^{10}$ had observed a few percent of diastereomer formation in their studies of zinc debromi-nation-rebromination. To evaluate the zinc reduction under our conditions, we added bromine to (Z)-7-octadecene $(90 \%$ cis) to produce the threo dibromide that we had sought to obtain from trans-7-octadecene oxide and $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$. $\mathrm{Zinc} /$ acetic acid reduction of this threo dibromide and epoxidation of the product gave the cis epoxide (80% cis). Thus, as the earlier work had demonstrated, ${ }^{10}$ the bromination, zincdebromination sequence was not completely stereospecific for the threo dibromide. However, the deviation from specificity was insufficient to explain the results of our attempted trans-cis conversions.

We also examined the stereochemical stability of the threo-7,8-dibromooctadecane under the $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ bromination
conditions. $5 \alpha, 6 \beta$-Dibromocholesterol and some of its derivatives (trans-diaxial bromines) are known to isomerize spontaneously to the more stable $5 \alpha, 6 \beta$-coprostane isomers, ${ }^{15}$ but this type of isomerization is believed to involve a β-bro-mine-assisted ionization ${ }^{15}$ and does not seem to have been considered important for aliphatic dibromides. When a sample of our threo-7,8-dibromooctadecane was exposed to a mixture of $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ and triphenylphosphine oxide in benzene for 24 h , reduction with zinc followed by epoxidation gave epoxide that was 73% cis. Whether the difference between the 80% cis realized earlier and the 73% cis obtained in this case was the result of dibromide isomerization or whether it indicated some limit of reproducibility in the reduction was not determined. What did become apparent was that the major stereochemical problem was encountered in the reaction of trans epoxides with $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$, and not in the Zn reduction.

The reactions of cis and trans epoxides with $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ in benzene may be envisioned as shown in Scheme II. The trans epoxide reacts to produce the phosphorylated bromide 2a. Direct SN2 displacement of triphenylphosphine oxide is possible, perhaps after an internal rotation to the more crowded rotamer $\mathbf{2 b}$ in order to avoid eclipsing of bromine by incoming bromide; this would produce the threo dibromide. Alternatively, the triphenylphosphine oxide can be lost solvolytically with assistance from the adjacent bromine atom, generating a bromonium ion 2c that would produce the erythro dibromide (a net front-side replacement of oxygen and thus a single inversion of configuration). The rotamer 2a from which bromonium ion formation would be anticipated is probably more favored sterically than $\mathbf{2 b}$. The initial intermediate obtained from the cis epoxide, on the other hand, is the less sterically favored one $3 \mathbf{a}$; rotation to $3 \mathbf{b}$ relieves crowding and also avoids potential eclipsing of bromine and incoming bromide. However, the functionalities of $\mathbf{3 b}$ are not aligned for bromine-assisted solvolysis of triphenylphosphine oxide, and, in nonpolar solvents, the SN2 displacement occurs cleanly to provide the erythro dibromide. The loss of stereospecificity observed in the cis-trans isomerizations in the more polar solvents presumably results from the formation of the cisoid bromonium ion $3 \mathbf{c}$ under those conditions.

We next treated trans-7,8-epoxy-2-methyloctadecane with 48% hydrobromic acid in tetrahydrofuran. The resulting bromohydrin, presumed to be erythro resulting from SN2 attack by bromide on the protonated oxirane, ${ }^{16}$ was reacted with $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ in benzene. The resulting dibromide was reduced with zinc, and the olefin was epoxidized; the resulting epoxide was only 23% cis. The erythro bromohydrin would also be expected to form an intermediate of the type 2a. Formation of the bromonium ion 2 c seems to account for more of the product in this case, perhaps because of the presence of HBr in the reaction mixture.

Subsequent experiments further supported the idea of the bromonium intermediate. Since it is generally accepted that chloronium ions are of considerably higher energy than bromonium ions, ${ }^{17}$ dichloride formation from epoxides and triphenylphosphine dichloride $\left(\mathrm{Ph}_{3} \mathrm{PCl}_{2}\right)$ might be expected to be stereochemically more specific than the corresponding reactions in the $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ series. Indeed this was the case. We chose as models the cis- and trans-4,5-epoxyoctanes because we could analyze the dihalides directly by gas chromatography. In these cases, each epoxide reacted with $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$ in either benzene or methylene chloride to produce a single dichloride; the dichlorides from the cis and trans epoxides corresponded to those obtained by direct (trans) addition of chlorine to the trans and cis olefins, respectively. Thus the reaction of the 1,2 -disubstituted aliphatic epoxides with $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$ had proceeded with the anticipated back-side displacement of both $\mathrm{C}-\mathrm{O}$ bonds to give the equivalent of cis addition of chlorine to the alkenes. Chloronium ions evidently did not occur as intermediates.
The intermediacy of bromonium, but not chloronium, ions was further emphasized by converting trans-4,5-epoxyoctane to 4-bromo-5-chlorooctane. Samples of the trans epoxide were treated with hydrochloric and hydrobromic acids to give the erythro chlorohydrin 4a and bromohydrin 5a, respectively (Scheme III). The chlorohydrin 4 a was then treated with

$\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ and the bromohydrin 5a with $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$. The bromochloride obtained from 4a via 4b was entirely threo (no chloronium ion participation), whereas that from 5a via 5b consisted of approximately equal parts of erythro and threo isomers (bromonium ion participation).

The reactions of triphenylphosphine dihalides with $1,2-$

Table I. Reductions of vic-Dichlorides and Bromochlorides
${ }^{a}$ Estimated from purity of epoxides from which the dihalides were derived. ${ }^{b}$ These conditions were for the most part approximately the mildest that would permit complete reduction in less than 24 h . Aliquots were worked up and examined by GLC; hence yields were not calculated except for the activated zinc reduction, which gave $80-87 \%$ yields. ${ }^{c}$ Determined by GLC data using the epoxides. ${ }^{d}$ Mixtures of 7 -bromo-8-chloro and 7 -chloro-8-bromo compounds. ${ }^{e}$ Zinc was activated by brief treatment with dilute HCl as described by Tsuda et al., ${ }^{20}$ and 3 drops of acetic acid $/ 5 \mathrm{ml}$ of DMF was required to catalyze the reduction.
epoxycyclohexane were also briefly examined. The epoxide reacted with $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ in such solvents as acetonitrile, benzene, and chlorobenzene to produce various mixtures of cis- and trans-1,2-dibromocyclohexane that often also contained some trans-1,2-bromohydrin. The latter could possibly be avoided by proper manipulation of reaction conditions, e.g., by using excess phosphorane, but a mixture of dibromides seemed unavoidable. On the other hand, $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$ and cyclohexane epoxide in benzene or carbon tetrachloride produced cis-1,2-dichlorocyclohexane uncontaminated by the trans isomer. This reaction appears to be superior to the reported ${ }^{18}$ conversion of cyclohexane epoxide to cis-1,2-dichlorocyclohexane with sulfuryl chloride in that the yields are better and the stereospecificity is much less subject to minor variations in the reaction conditions.

Since the means of converting epoxides to dichlorides with the required two inversions of configuration was now available, we turned our attention to reductive eliminations of the threo dichlorides. trans-7,8-Epoxyoctadecane was converted to the threo dichloride, and a variety of reaction conditions were investigated to effect a trans elimination. The dichloride required more vigorous reduction conditions than had the dibromides, and in all cases the reaction failed to exhibit the desired stereospecificity (Table I). Interestingly, sodium iodide in refluxing dimethylformamide (DMF) converted the threo dichloride to an olefin the epoxide of which was 91% trans; thus a cis elimination had occurred. This reaction and its potential for olefin interconversions are described in an accompanying paper. ${ }^{19}$

Since the transformations of epoxide to chlorohydrin to bromochloride with triphenylphosphine dibromide were proven to be stereospecific, threo bromochlorides were prepared from both trans-7,8-epoxyoctadecane and trans $-7,8$ -epoxy-2-methyloctadecane in this manner. Various reduction procedures were studied and the results are given in Table I. The reductions of the bromochlorides proceeded under less vigorous conditions than those required for dichlorides but were still not completely stereospecific. To date the best procedure for converting trans epoxides to cis olefins via threo
dihalides appears to be the activated zinc ${ }^{20}-$ DMF treatment of bromochlorides which, at $0-5{ }^{\circ} \mathrm{C}$, produced 87% cis alkene from 97.5% trans (ca. 90% selectivity).
The procedures thus far developed for inverting double bonds were then extended to unsaturated esters by examining their application to (Z) - and (E)-11-tetradecen-1-ol acetates. These two esters, which have been implicated repeatedly as sex attractants for lepidoptera, ${ }^{21}$ were epoxidized (m-chloroperbenzoic acid). The trans epoxide was converted to the threo bromochloride via the two-step procedure (1) $\mathrm{HCl} / \mathrm{THF}$, (2) $\mathrm{PPh}_{3} \cdot \mathrm{Br}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); and the cis isomer was treated directly with $\mathrm{PPh}_{3} \cdot \mathrm{Br}_{2} /$ benzene to give the erythro dibromide. Each dihalide was then reduced with activated zinc in DMF at 0-5 ${ }^{\circ} \mathrm{C}$; the resulting unsaturated acetates were analyzed by GLC. The trans ester ($99+\%$ trans) gave the cis ester (92% cis); the cis ester (94% cis) gave the trans ester ($>96 \%$ trans). The overall yields of these conversions were $70-80 \%$.
Since the sensitivity of esters to lithium diphenylphosphide ${ }^{5}$ appears to require protection of that group before an attempted olefin inversion via epoxide, the use of triphenylphosphine dihalides followed by zinc reduction of the resulting vic-dihalides should have considerable application. Triphenylphosphine dibromide is the reagent of choice when the object is to convert a Z alkene to a E isomer. Inversion in the opposite direction is best accomplished with HCl cleavage of the trans epoxide followed by reaction of the resulting chlorohydrin with triphenylphosphine dibromide. The vic-bromochloride may then be reduced with zinc-DMF at $0-5{ }^{\circ} \mathrm{C}$ with stereoselectivity of about 90%.

Experimental Section ${ }^{22}$

Infrared spectra were obtained with a Perkin-Elmer 457A spectrophotometer as 3% carbon tetrachlorice solutions. More concentrated solutions were employed to estimate trans olefin content. NMR spectra were obtained with a Varian Associates T60 spectrometer; resonance frequencies were determined relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. Gas chromatograms were obtained with Varian Aerograph 1520B, Hewlett-Packard 5700A, and Perkin-Elrmer 3920 instruments. The following columns were employed: (1) SE-30, 5% on Chromosorb W (ABS), $92 \mathrm{~cm} \times 6 \mathrm{~mm}$; (2) Carbowax 201M, 5% on Chromosorb W (ABS), $1.83 \mathrm{~m} \times 6 \mathrm{~mm}$; (3) DEGS, 10% on Chromosorb W (AW), 1.83 $\mathrm{m} \times 6 \mathrm{~mm}$; (4) EGGS-X SCOT column. $15 \mathrm{~m} \times 0.5 \mathrm{~mm}$. Column chromatography was monitored with thin layer chromatography by using Brinkmann Instruments plates precoated with 0.25 mm of Sil G-25 UV 254 and employing 15% ether/ 85% petroleum ether as the eluting solvent. Samples of (Z) and (E)-4-octenes were obtained commercially; (Z)-9-pentacosene ${ }^{11}$ and (Z)-7-octadecene ${ }^{12}$ were synthesized by Wittig condensation of ar appropriate phosphorane with an aldehyde using HMPA-THF solvent to maximize the $Z: E$ ratio. ${ }^{23}$ Chemical analyses were performed by Galbraith Laboratories Inc., Knoxville, Tenn.

Epoxidations with m-Chloroperbenzoic Acid. The following procedure was typical. (Z)-9-Pentacosene ($6.0 \mathrm{~g}, 17 \mathrm{mmol}$) was added to a stirred and ice-cooled solution of $85 \% \mathrm{~m}$-chloroperbenzoic acid ($4.1 \mathrm{~g}, 20 \mathrm{mmol}$) in methylene chloride (50 ml). The mixture was allowed to attain room temperature and, af ter 4 h , was washed with 25 ml of $5 \% \mathrm{NaOH}$ and 25 ml of $\mathrm{H}_{2} \mathrm{O}$. The sclution was dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed yielding (Z)-9,10-epoxypentacosane (5.3 $\mathrm{g}, 86 \%$). Recrystallization from petroleum ether provided a sample: $\mathrm{mp} 40-42^{\circ} \mathrm{C}$; NMR $\delta 0.90\left(\mathrm{t}, 6, \mathrm{CH}_{3}\right), 2.68$ (bs, 2, CHO). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{50} \mathrm{O}: \mathrm{C}, 81.89 ; \mathrm{H}, 13.75$, Found: C. 82.20; H, 13.98.

Epoxides of (Z)- and (E)-4-octenes ($96 \% Z$ and $99 \% E$, respectively) were similarly prepared. The (E)-7-octadecene was synthes zed from the Z isomer as described below. Relative GLC retention for (Z) - and (E)-4,5-epoxyoctanes using column 2 at $100^{\circ} \mathrm{C}$ was $1.25: 1.00$; for (Z) and (E)-7,8-epoxyoctadecanes using column 4 at $160^{\circ} \mathrm{C}$, it was 1.11:1.00; for (Z)- and (E)-7,8-epoxy-2-methyloctadecane ${ }^{13}$ using column 4 at $160^{\circ} \mathrm{C}$, it was 1.10:1.00. These epoxides were sufficiently pure to be used directly for subsequent reactions.

Reactions of Epoxides with Triphenylphosphine Dibromide. The following procedure was typical. Bromine ($2.7 \mathrm{~g}, 16.5 \mathrm{mmol}$) was added dropwise as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ to a stirred, ice-cooled solution of triphenylphosphine ($4.4 \mathrm{~g}, 16.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. Use of methylene chloride gave a visual end point, and the phosphine could be titrated with the bromine which obviated an exact weighing
of the latter and produced a homogeneous solution. The solvent was removed and replaced with benzene (60 ml) to which was then added (Z)-9,10-epoxypentacosane ($5.5 \mathrm{~g}, 15 \mathrm{mmol}$). The resulting slurry was stirred at room temperature for 4 h during which time the solid markedly changed character. The solvent was removed and the residue broken up under petroleum ether. Most of the triphenylphosphine oxide was removed by suction filtration. Removal of petroleum ether from the filtrate and recrystallization from petroleum ether (bp $30-60^{\circ} \mathrm{C}$) gave erythro-9,10-dibromopentacosane ($6.5 \mathrm{~g}, 85 \%$): mp $48-49^{\circ} \mathrm{C}$; NMR $\delta 4.02(\mathrm{~m}, 2, \mathrm{CHBr})$. The CHBr resonance is consistent with an erythro as opposed to threo diastereomer. ${ }^{24}$ Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{50} \mathrm{Br}_{2}$: $\mathrm{C}, 58.82 ; \mathrm{H}, 9.87 ; \mathrm{Br}, 31.31$. Found: $\mathrm{C}, 58.92 ; \mathrm{H}, 10.04$; $\mathrm{Br}, 31.15$.
erythro-7,8-Dibromo-2-methyloctadecane and erythro-7,8-dibromooctadecane were prepared similarly. Each was obtained as a liquid and was purified by passage through silica gel ($\sim 10 \mathrm{~g} / \mathrm{g}$ dibromide) by elution with petroleum ether. After the solvent was removed and the purity was confirmed by TLC and GLC (column 1 at $250^{\circ} \mathrm{C}$), each was employed directly for reduction. A sample of erythro-7,8-dibromo-2-methyloctadecane was further purified by bulb-to-bulb distillation: bp $160^{\circ} \mathrm{C}(0.02 \mathrm{~mm}) ; n^{25} \mathrm{D} 1.4803$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{Br}_{2}$: C, $53.53 ; \mathrm{H}, 8.98 ; \mathrm{Br}, 37.49$. Found: C, $53.86 ; \mathrm{H}, 9.15 ; \mathrm{Br}$, 37.34.

Conversion of Epoxides to vic-Dichlorides with Triphenylphosphine Dichloride. The reactions of (E)- and (Z)-4,5-epoxyoctanes are typical. A $100-\mathrm{ml}$, three-necked flask fitted with a dry ice condenser, gas inlet, and addition funnel was charged with a solution of triphenylphosphine ($2.0 \mathrm{~g}, 7.6 \mathrm{mmol}$) in anhydrous benzene (20 ml). The solution was stirred magnetically with external cooling (icewater) and chlorine was admitted through the gas inlet until the mixture developed a permanent yellow color. A solution of the epoxide ($0.64 \mathrm{~g}, 5 \mathrm{mmol}$) in benzene (5 ml) was added dropwise, then the dry ice condenser was replaced by a water-cooled condenser and the mixture was refluxed for 3.5 h . It was then cooled and treated with a little methanol to destroy excess $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$. The benzene was stripped and replaced with petroleum ether ($\mathrm{bp} 30-60^{\circ} \mathrm{C}$) which caused the precipitation of triphenylphosphine oxide that was removed by filtration. The filtrate was concentrated, and the residue was added to a column of silica gel (15 g) and eluted with 100 ml of a solution of 15% ether in petroleum ether. Consentration of the eluate gave the 4,5dichlorooctanes in $50-60 \%$ yields. The two dichlorooctanes were conveniently examined by gas chromatography on column 3. Each of the two products (from the isomeric epoxides) contained three minor, longer retention time impurities, but each was free from the isomeric dichloride. Samples of the two dichlorides were also prepared by chlorinating (E) - and $(Z)-4$-octenes with Cl_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$; the chlorination product of the E olefin corresponded to the dichloride from the Z epoxide, and vice versa.
Conversions of Epoxides to Bromochlorides. A solution of (Z) 4,5 -epoxyoctane ($0.50 \mathrm{~g}, 3.9 \mathrm{mmol}$) in tetrahydrofuran (THF, 5 $\mathrm{ml})$ was chilled to $0-5^{\circ} \mathrm{C}$. Concentrated $\mathrm{HCl}(0.5 \mathrm{ml})$ was added, and the solution was allowed to stand for 3 h at room temperature. The mixture was diluted with water and extracted thoroughly with ether. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the crude chlorohydrin which was then added to a solution of triphenylphosphine dibromide (6 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ prepared as described previously. The resulting mixture was stirred overnight at ambient temperature, concentrated, and worked up with petroleum ether as previously described for the vic-dibromides. Purification, achieved by passage through silica gel as described for the vic-dibromides, gave, after solvent removal, erythro-4-bromo-5-chlorooctane ($0.60 \mathrm{~g}, 67 \%$): bulb-to-bulb distillation, bath temperature $125^{\circ} \mathrm{C}(17 \mathrm{~mm}) ; n^{25} \mathrm{D}$ 1.4729; ir and NMR not distinct from those of the threo isomer. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrCl}: \mathrm{C}, 42.22 ; \mathrm{H}, 7.08 ; \mathrm{Br}, 35.12 ; \mathrm{Cl}, 15.58$. Found: C, $42.50 ; \mathrm{H}, 7.10 ; \mathrm{Br}, 34.96 ; \mathrm{Cl}, 15.30$.

The threo isomer was similarly prepared ($0.55 \mathrm{~g}, 62 \%$): $n^{25} \mathrm{D} 1.4714$; relative GLC retention using column 2 was 1.15:1.00 (threo:erythro). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{BrCl}: 42.22 ; \mathrm{H}, 7.08 ; \mathrm{Br}, 35.12 ; \mathrm{Cl}, 15.15$. Found: C, 42.48; H, 7.04; Br, 34.95; Cl, 15.32.

The (E)- and (Z)-4,5-epoxyoctanes were similarly converted to erythro and threo bromohydrin, respectively (distinct from, and free from, each other, GLC column $3,150^{\circ} \mathrm{C}$), with $48 \% \mathrm{HBr}$ in dimethoxyethane (THF gave 4-bromo-1-butanol as a by-product that was bothersome to separate). The erythro bromohydrin was treated with a solution of $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$ in methylene chloride as described for the conversion of epoxides to dichlorides. The product was an approximately equimolar mixture of erythro- and threo-4-bromo-5-chlorooctanes.

The threo bromochlorides derived from (E)-7,8-epoxyoctadecane and (E)-7,8-epoxy-2-methyloctadecane were similarly prepared and
purified. Purities were confirmed by TLC and GLC (column 1 at 250 ${ }^{\circ} \mathrm{C}$).

Reductions of vic-Dihalides. A. Zinc-HOAc. The following procedure was typical. erythro-7,8-Dibromo-2-methyloctadecane (3.8 g, 8.9 mmol) was dissolved in acetic (or propionic) acid (40 ml). Zinc dust (3.8 g) was added, and the mixture was vigorously stirred. The reaction was mildly exothermic, and stirring was continued for 0.5 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with petroleum ether. The extract was washed with $5 \% \mathrm{NaHCO}_{3}$ until the washes were slightly alkaline, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give $(E)-7,2$ methyloctadecene $(2.16 \mathrm{~g}, 91 \%)$: bulb-to-bulb distillation, bath temperature $105^{\circ} \mathrm{C}(0.02 \mathrm{~mm}) ; n^{25} \mathrm{D} 1.4545$; ir $965 \mathrm{~cm}^{-1}$; NMR $\delta 5.3$ (m, $2 \mathrm{H}, \mathrm{CH}=$); GLC analysis (column 4) of the epoxide indicated that the product was $97.5 \% E$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{38}$: C, 85.63; H, 14.37. Found: C, 85.67; H, 14.37. erythro-9,10-Dibromopentacosane and erythro-7,8-epoxyoctadecane were reduced in the same manner and gave (E)-9-pentacosene ($95 \% E$ by ir) and (E)-7-octadecene ($92 \% E$ judged by GLC analysis of its epoxide by using column 4 as described above).
B. Zinc-Dimethylformamide. The following procedure was employed in an attempt to achieve reduction under as mild conditions as possible. A solution of a vic-bromochloride (0.5 g) in dimethylformamide (DMF, 8 ml) was stirred and cooled with an ice bath. Activated ${ }^{20}$ zinc dust (0.6 g) was pulverized with a mortar and pestle and added to the solution, then a solution of acetic acid (2-3 drops) in DMF (0.5 ml) was added dropwise (the reduction did not proceed at $0^{\circ} \mathrm{C}$ in the absence of the acetic acid). The mixture was stirred magnetically in a refrigerator overnight $\left(0^{\circ} \mathrm{C}\right)$; then the solution was decanted from the metal (which was in the form of small, irregular spheres). Water was added, the product was extracted into hexane, and the hexane solution was washed with water, dried, and concentrated. In a few cases the residual zinc and zinc halides remained rather amorphous; in those instances the reaction mixtures were diluted with cold, dilute HCl , and the products were then extracted in hexane.

Conversion of (Z) - to (E)-11-Tetradecen-1-yl Acetate. The (Z)-11-tetradecen-1-yl acetate ${ }^{2}$ was epoxidized by m-chloroperbenzoic acid as described. The crude epoxide ($1.0 \mathrm{~g}, 3.7 \mathrm{mmol}$) was added to a slurry of triphenylphosphine dibromide (5.0 mmol) in benzene (25 ml) prepared as described previously. The mixture was stirred at ambient temperature overnight, concentrated, and worked up with petroleum ether, filtering to remove most of the triphenylphosphine oxide. The filtrate was concentrated, and the crude dibromoacetate was passed through silica gel $(20 \mathrm{~g})$ with 60 ml each of petroleum ether, 7.5% ether-petroleum ether, and 15% ether-petroleum ether. The eluate was concentrated, and the compound so obtained was added to a slurry of activated inc ${ }^{20}(1.0 \mathrm{~g})$ in DMF (10 ml) containing acetic acid (5 drops) at $5-10^{\circ} \mathrm{C}$. Stirring was continued at that temperature for 2 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, and the product was obtained by extraction with petroleum ether in the usual manner $(0.61 \mathrm{~g}, 70 \%)$. GLC analysis using column $4\left(150^{\circ} \mathrm{C}\right)$ indicated $>96 \%$ E; relative retentions of the isomeric 11-tetradecen-1-yl acetates are 1.04:1.00 (Z:E).

Conversion of (E) - to (Z)-11-Tetradecen-1-yl Acetate. The E ester $(99 \% E)^{2}$ was epoxidized in the usual way, and the epoxide was treated sequentially with hydrochloric acid and $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ as described earlier. The mixture of bromochlorides was reduced by the zinc/DMF procedure to give 11-tetradecen-1-yl acetate ($92: 8 \mathrm{Z}: E$) in an overall yield of ca. 70%.

Registry No.-m-Chloroperbenzoic acid, 937-14-4; (Z)-9-pentacosene, 51865-00-0; (Z)-9,10-epoxypentacosane, 59906-99-9; (Z)-4-
octene, 7642-15-\% (E)-4-octene, 14850-23-8; (Z)-4,5-epoxyoctane, 1439-06-1; (E)-4,5-epoxyoctane, 1689-70-9; (E)-7-octadecene, 7206-23-7; (Z)-7-octadecene, 7206-35-1; (Z)-7,8-epoxyoctadecane, 59907-00-5; (E)-7,8-epoxyoctadecane, 59907-01-6; (Z)-7,8-epoxy-2-methyloctadecane, 29804-22-6; (E)-7,8-epoxy-2-methyloctadecane, 42991-03-7; triphenylphosphine dibromide. 1034-39-5; erythro-9,10-dibromopentacosane, 59907-02-7; erythro-7,8-di bromo-2-methyloctadecane, 59840-28-7; erythro-7,8-dibromooctadecane, 59907-03-8; triphenylphosphine dichloride, 2526-64-9; erythro-4-bromo-5-chlorooctane, 59840-29-8; threo-4-bromo-5chlorooctane, 59340-30-1; (E)-7,2-methyloctadecene, 40302-56-5; (Z)-11-tetradecen-1-yl acetate, 20711-10-8; (E)-11-tetradecen-1-yl acetate, 33189-72-9; threo-7,8-dichlorooctadecane, 59840-26-5; threo-7-bromo-8-chlorooctadecane, 59840-21-0; threo-7-chloro-8bromooctadecane, 59840-22-1; threo-7-bromo-8-chloro-2-methyloctadecane, 59840-17-4; threo-7-chloro-8-bromo-2-methyloctadecane, 59840-18-5; DMF, 68-12-2; zinc, 7440-66-6.

References and Notes

(1) W. L. Roelofs, A. Comeau, A. Hill, and G. Milicevic, Science, 174, 297 (1971).
(2) J. A. Klun, O. L. Chapman, K. C. Mattes, P. W. Wojtkowski, M. Beroza, and P. E. Sonnet, Science, 181, 661 (1973).
(3) M. Jacobson, "'nsect Sex Pheromones"', Academic Press, New York, N.Y., 1972.
(4) (a) B. A. Bierl, M. Beroza, R. T. Staten, P. E. Sonnet, and V. E. Adler, J. Econ. Entomol., 67, 211 (1974); (b) M. Beroza, G. M. Muschik, and C. R. Gentry. Nature (London), New Biol., 244, 149 (1973).
(5) (a) E. Vedejs and P. L. Fuchs, J. Am. Chem. Soc., 95, 822 (1973); (b) E. Vedejs, K. A. J. Snoble, and P. L. Fuchs, J. Org. Chem., 38, 1178 (1973).
(6) A. J. Bridges and G. H. Whitham, J. Chem. Soc., Chem. Commun., 142 (1974).
(7) (a) J. M. Behan, R. A. W. Johnstone, and M. J. Wright, J. Chem. Soc., Perkin Trans. 1, 1216 (1975); (b) P. B. Dervan and M. A. Shippey, J. Am. Chem. Soc., 98, 1265 (1976); (c) D. Van Ende and A. Krief, Tetrahedron Lett., 2709 (1975).
(8) A. G. Anderson, Jr., and F. J. Freenor, J. Org. Chem., 37, 626 (1971).
(9) (a) M. Schwarz, J. E. Oliver, and P. E. Sonnet, J. Org. Chem., 40, 2410 (1975); (b) P. E. Sonnet, Synth. Commun., in press.
(10) W. G. Young, S. J. Cristol, and T. Skei, J. Am. Chem. Soc., 65, 2099 (1943).
(11) E. Uebel, R. E. Menzer, P. E. Sonnet, and R. W. Miller, 47th Annual Meeting, Eastern Branch, Entomological Society of America, Philadelphia, Pa., Oct 2. 1975.
(12) B. B. Elsner ard P. F. M. Paul, J. Chem. Soc., 3156 (1953).
(13) B. A. Bierl. M. Beroza, and C. W. Collier, Science, 170, 87 (1970).
(14) E. S. Gould in "Mechanism and Structure in Organic Chemistry", Holt, Rinehart and WJinston, New York, N.Y., 1959, p 534.
(15) D. H. R. Barton and E. Miller, J. Am. Chem. Soc., 72, 1066 (1950).
(16) R. J. Gritter in "The Chemistry of the Ether Linkage"', S. Patai Ed., Interscience, New York, N.Y., 1967, p 395. In the present study, (E)- and (Z)-4,5-epoxyoctanes were similarly treated with $48 \% \mathrm{HBr}$, and each gave a single (and cifferent) bromohydrin resulting from SN2 displacement of oxygen by bromide.
(17) D. M. Singleton and J. K. Kochi, J. Am. Chem. Soc., 89, 6547 (1967).
(18) J. R. Campbell, J. K. N. Jones, and S. Wolfe, Can. J. Chem., 44, 2339 (1966).
(19) P. E. Sonnet and J. E. Oliver, J. Org. Chem., following paper in this issue.
(20) K. Tsuda, E. Ohki, and S. Nozoe, J. Org. Chem., 28, 783 ;1963).
(21) W. L. Roelofs and A. Comeau in "Chemical Releasers in insects", "Pesticide Chemistry", Vol. III, A. S. Tahori, Ed., Gordon and Breach, New York, N.Y., 1971, p 91.
(22) Mention of a proprietary product or company does not imply endorsement by the U.S. Department of Agriculture.
(23) P. E. Sonnet, Org. Prep. Proced. Int., 6, 269 (1974).
(24) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry". 2d ed, Pergamon Press, Oxford, 1969, p 163.

Olefin Inversion. 2. Sodium Iodide Reductions of vic-Bromochlorides and vic-Dichlorides

Philip E. Sonnet* ${ }^{*}$ and James E. Oliver*
Agricultural Research Service, U.S. Department of Agriculture, Beltsuille, Maryland 20705

Received April 14, 1976

Abstract

The stereochemistry of sodium iodide dehalogenations of vic-bromochlorides and vic-dichlorides was investigated and was found to be stereospecifically cis. This is opposite to the previously observed trans eliminations of vic-dibromides. It is proposed that the "cis" eliminations involve an initial SN 2 displacement of Cl^{-}or Br^{-}by I^{-}, and that the resulting iodohalides then rapidly undergo trans elimination of ICl or IBr . A simple two-step sequence of halogenation (with Cl_{2} or BrCl) and dehalogenation (with I^{-}) thus provides an efficient method of interconverting geometric isomers of olefins.

In the accompanying paper ${ }^{1}$ we briefly reviewed methods of inverting geometries of olefins via their epoxides. Procedues that had been previously described involved SN2 openings of the epoxide by phosphides followed ultimately by cis eliminations of the oxygen and phosphorus moieties ${ }^{2,3}$ (Scheme I,

Scheme I. Olefin Inversion (Exemplified by $Z-E$ Conversions)

path A). Unsaturated hydrocarbons and acetates have frequently been identified as insect pheromones, ${ }^{4}$ and simple means of inverting double bonds of pheromones would be extremely useful. Unfortunately, the methods just mentioned are not compatible with base-sensitive groups such as esters, ${ }^{2}$ and we described complementary methods that did not affect that functional group. ${ }^{1}$ In our processes, epoxides were converted to vic-dihalides with inversion of configuration at each of the oxygenated carbons (Scheme 1, path B). Trans elimination of the two halogens then provided olefins of geometries opposite those of the initial epoxides.

Reductive eliminations of bromine from vic-dibromides initiated either by metals such as zinc ${ }^{5}$ or by iodide ion ${ }^{6}$ generally proceed in a trans fashion, and have occasionally been utilized as means of purifying olefins via (trans) bromina-tion-(trans) debromination sequences. ${ }^{7}$ However, deviations from absolute overall stereospecificity have been noted, ${ }^{8}$ a dramatic one being the observation that the ethylene produced by sodium iodide reduction of isotopically labeled 1,2-dibromoethane was formed entirely by a net cis elimination. ${ }^{9}$ We noted that vic-dichlorides and vic-bromochlorides were reduced less readily than were vic-dibromides by any of several reagents and that zinc reductions of the less reactive

[^3]dihalides were less stereoselective than those of the dibromides. ${ }^{1}$ In contrast, the $\mathrm{NaI} / \mathrm{DMF}$ reduction of a vic-bromochloride was highly stereospecific, but not in the anticipated (trans) sense: the threo 7,8-bromochlorides of 2-methyloctadecane (a mixture of threo-7-bromo-8-chloro and threo-8-bromo-7-chloro) were cleanly converted to (E)-2-methyl-7octadecene. Thus a net cis elimination had occurred. This was interesting and appeared potentially useful. Since direct additions of halogens to olefins proceed trans, ${ }^{10}$ a general procedure for cis elimination of the added halogens would provide an even simpler means of inverting double bonds (Scheme I, path C). We therefore investigated iodide-promoted eliminations of a few dichlorides, bromochlorides, and dibromides to evaluate their potential for olefin inversions.

Typical NaI reductions of vic-dibromides have utilized large excesses of I^{-}in an alcoholic medium, e.g., refluxing 2-propanol. ${ }^{11}$ The only dibromide we investigated, erythro-7,8-dibromo-2-methylocatadecane, was completely reduced by excess NaI in DMF at $50-55^{\circ} \mathrm{C}$ (overnight). As noted previously, bromochlorides and dichlorides were reduced less readily. Bromochlorides required overnight exposure to a tenfold excess of NaI in DMF at $>80^{\circ} \mathrm{C}$ for complete reduction, and an entire week was required for the same reaction to proceed to completion in refluxing 2-propanol ($82^{\circ} \mathrm{C}$). The vic-dichlorides were still less reactive, and refluxing DMF was found to provide a suitable medium. A few other conditions were briefly investigated for NaI reductions of erythro-7,8-dichloro-2-methyloctadecane, all employing excess NaI: the reduction was incomplete in refluxing acetonitrile after 4 days, and the reaction in $\mathrm{Me}_{2} \mathrm{SO}$ was slow at $90^{\circ} \mathrm{C}$ and appeared to offer no advantage over the reactions in DMF or hexamethylphosphoric triamide (HMPA). Indeed, in HMPA reduction was complete (and stereospecifically cis) after 2 h at $100-110^{\circ} \mathrm{C}$. Substitution of LiI for NaI appeared to offer no advantage. The results of I^{-}reductions of several dihalides are given in Table I. With the exceptions of the single dibromide (entry 10) and the one reaction in 2-propanol (entry 3), the reductions were at least 93% stereoselectively cis, and many were completely stereospecific within the limits of our analyses (2-4\%).

Hine ${ }^{6}$ has reviewed the subject of NaI reductions of vicdibromides (dichlorides and bromochlorides apparently have not been investigated). Reduction of meso-1,2-dibromo-1,2-dideuterioethane gave cis-1,2-dideuterioethylene ${ }^{9}$ (cis elimination). Since the reaction rate had almost exactly the value expected for nucleophilic displacement of primary bromide by iodide ion, ${ }^{12}$ the reaction mechanism was rationalized as involving an initial SN 2 displacement of Br^{-}by I^{-} followed by nucleophilic attack of a second iodide ion upon the iodine of the resulting vic-bromoiodide (Scheme II, path $B, R=D$). Since such an elimination would be expected to be trans antiplanar, the result is a net cis elimination (one in-

Table I. Elimination of vic-Dihalides

				Conditions	Yield, $\%$	Stereo- specificity, $\%^{a}$
Run	Dihalide	Olefin				

${ }^{a}$ Product olefins were epoxidized with m-chlorobenzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the epoxides were analyzed by GLC (EGGS-X SCOT column, $1.5 \mathrm{~m} \times 5 \mathrm{~mm}$ at $140-170^{\circ} \mathrm{C}$). Unsaturated esters were analyzed directly with this column. ${ }^{b}$ vic-Bromochlorides are presumably mixtures of positional isomers. For example, threo-7,8-bromochlorooctadecane would be a mixture of threo-7-bromo-8-chlorooctadecane and threo-8-bromo-7-chlorooctadecane. ${ }^{c}$ Yield not determined (in several cases the reactions were followed by periodically withdrawing samples for GLC analysis). ${ }^{d} 82 \%$ trans elimination.

Scheme II. Iodide-Induced Eliminations of vic-Dihalides (Exemplified for Meso/Erythro Dihalides)

version, trans elimination). The more general case for dibromides of 1,2 -disubstituted ethylenes is that of trans elimination. ${ }^{10}$ Evidently direct displacement of Br^{-}by I^{-} (Scheme II, path B) is less favored than the attack by I^{-}on bromine with a concomitant expulsion of olefin and bromide (Scheme II, path A). At higher temperatures, losses in stereospecificity for this reaction were observed that were ascribed to a significant contribution from path B.

We feel that the reductions of vic-dichlorides and vic-bromochlorides probably proceed via path B. Evidently the replacement of bromine by chlorine either markedly increases the susceptibility of the other halogen to SN 2 displacement, or, more probably, decreases the ability of the vic-dihalide to undergo the concerted reduction (path A). Interestingly, if the presumed intermediate vic-iodohalides are to eliminate stereospecifically, it is necessary that the iodide ion attack the bound iodine and initiate the concerted elimination (path B)
much faster than it displaces the bound iodine from carbon (thus inverting that center a second time, i.e., $K_{3}>K_{4}$). Yet iodide must first displace a chloride or bromide ion much faster than it can attack a bound bromine or chlorine to initiate a concerted elimination ($K_{2}>K_{1}$). Apparently the nature of the halogen molecule being formed during the concerted elimination step is quite important, and the formation of I_{2} is highly favored over that of IBr or ICl .
We also considered the possibility of a cis elimination with both halogens departing, more or less simultaneously, from the same side of the molecule. In the dibromide series, meso compounds react faster with I^{-}then do their $d l$ isomers (trans eliminations), presumably because it is easier to attain the desired trans antiplanar alignment of bromines. If both halogens were to leave from the same side, the threo (or $d l$)

isomer should more easily attain the conformation with the halogens in close proximity, and thus undergo cis elimination more readily.

Accordingly, we compared the rates of reaction of the erythro- and threo-4-bromo-5-chlorooctanes with NaI in DMF at $80-85^{\circ} \mathrm{C}$. The two reactions were run simultaneously under identical conditions, and were followed by gas chromatographic analysis of quenched aliquots. Although absolute temperature control of the heating bath was not precise enough to allow the calculation of a meaningful rate constant,
it was evident that the erythro isomer was reduced more rapidly. Thus we have no evidence to support any kind of concerted cis elimination of halogen.
The dihalides we initially reduced with NaI were those synthesized from epoxides as described in the accompanying paper. ${ }^{1}$ Since their preparation had involved two SN2 reactions on epoxides, cis elimination of halogen simply regenerated the olefin from which the epoxide had been prepared. To illustrate the utility of the cis eliminations for olefin inversions we subjected several olefins to the two-step halogenationdehalogenation sequence. Chlorinations of 1,2-disubstituted ethylenes can generally be controlled, ${ }^{13}$ and entries 8 and 9 in Table I describes results of reductions of dichlorides prepared in that manner. Both the unsaturated acetate and the unsaturated hydrocarbon were efficiently inverted by this simple sequence. erythro-7,8-Dichloro-2-methyloctadecane, entry 9 , was prepared both by chlorination of the corresponding E olefin and by treating trans-7,8-epoxy-2-methyloctadecane [the sex pheremone of the gypsy moth, Porthetria dispar (L.)] with triphenylphosphine dichloride. ${ }^{1}$ Identical results were realized from both pathways.

Hageman and Havinga ${ }^{14}$ described the in situ preparation of bromine chloride and the trans addition of the mixed halogen to several cyclohexene derivatives. We found their method, which consists of simply adding N-bromosuccinimide to a HCl -saturated solution of the olefin, both efficient and convenient. For example, the erythro- and threo-4-bromo5 -chlorooctanes were synthesized in 82 and 73% yields from (E) - and (Z)-4-octenes, respectively; the isomers were readily distinguished by gas chromatography, and each bromochloride was found to be free of its isomer. Entry 5, Table I illustrates an application to the principal component of the sex pheromone of the oriental fruit moth, Grapholita molesta (Busck). (E)-8-Dodecen-1-ol acetate was converted to the erythro bromochloride, and the bromochloride was treated with $\mathrm{NaI} / \mathrm{DMF}$ without purification. (Z)-8-dodecen-1-ol acetate was obtained in an overall yield of 93%; the conversion was $>93 \%$ stereospecific.
To date these methods have been successful only for inversions of 1,2 -disubstituted olefins. We briefly examined (E)-3-methyl-3-hexene; predictably, ${ }^{13}$ however, chlorination provided primarily substitution instead of addition products. Hageman and Havinga ${ }^{14}$ successfully added BrCl to several 1-alkylcyclohexenes, but our single attempt to apply their procedure to (E)-3-methyl-3-hexene was unsuccessful since HCl addition to the double bond evidently occurred faster than BrCl was generated.

Experimental Section ${ }^{15}$

General experimental details (instrumentation, GLC analyses, epoxidation procedures, etc.) are described in the accompanying paper. ${ }^{1}$
vic-Bromochlorides were prepared from epoxides as described, ${ }^{1}$ or from olefins by the $\mathrm{HCl}-\mathrm{N}$-bromosucciminide method. ${ }^{14}$ For the latter conversions, a solution of the olefin in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} / \mathrm{g}$ of olefin) was cooled to $-78^{\circ} \mathrm{C}$ and was saturated with anhydrous HCl . Freshly recrystallized $\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{N}$-bromosuccinimide ($1.05 \mathrm{~mol} / \mathrm{mol}$ of olefin) was added in a single portion, and the mixture was stirred and allowed to warm slowly to ca. $-20^{\circ} \mathrm{C}$ (while maintaining saturation of HCl). After the mixture assumed a permanent color, it was poured onto a mixture of ice and aqueous NaHSO_{3}. The layers were separated, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, aqueous NaHCO_{3}, and again with $\mathrm{H}_{2} \mathrm{O}$; then it was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The bromochlorides thus obtained were sufficiently pure for NaI reductions. Trans addition of the two halogens was established by applying the procedure to (E). and (Z)-4-octenes (purchased from Chemical Samples Co.). In these cases the products were distilled; the former
gave an 82% yield of erythro-4-bromo-5-chlorooctane, bp $100-105^{\circ} \mathrm{C}$ (25 mm); the latter gave a 73% yield of threo-4-bromo-5-chlorooctane, bp $107-112^{\circ} \mathrm{C}(24 \mathrm{~mm})$. The isomeric bromochlorides were identical with those prepared from the epoxides, ${ }^{1}$ and each isomer appeared to be free of the other as judged by gas chromatography (Carbowax or DEGS) whereby 5% would have been readily detected.
vic-Dichlorides were prepared by bubbling Cl_{2} through $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of the appropriate olefins at $-78^{\circ} \mathrm{C}$ until a yellow color persisted, warming to ca. $-20^{\circ} \mathrm{C}$, and following the workup procedure described for bromochlorides. Crude dichlorides were reacted with NaI without purification.
Sodium Iodide Reductions of vic-Dihalides. Typically, the dihalides (1 g) and $\mathrm{NaI}(10 \mathrm{~g}$) were combined in DMF (or HMPA) (50 ml), and the resulting solutions were heated as described in Table I. It was convenient to follow the reactions by perioically withdrawing small aliquots and shaking them with hexane and $\mathrm{H}_{2} \mathrm{O}$; the hexane layer was examined by GLC for disappearance of dihalide. Workup consisted of cooling the dark solutions, pouring into $\mathrm{H}_{2} \mathrm{O}$, and extracting with hexane. The organic layers were washed with aqueous NaHSO_{3}, then washed twice with $\mathrm{H}_{2} \mathrm{O}$, and finally were dried and concentrated. The olefins thus obtained were purified by distillation or column chromatography on silica gel or were epoxidized directly for GLC analysis.
Comparative Eliminations of erythro- and threo-4-Bromo5 -chlorooctanes. Reaction mixtures containing the appropriate bromochloride (100 mg), 1 -tetradecene (100 mg), $\mathrm{NaI}(1.00 \mathrm{~g})$, and DMF (10.0 ml) were prepared in $25-\mathrm{ml}$ flasks, and the flasks were heated simultaneously in an oil bath maintained at $78-85^{\circ} \mathrm{C}$. Aliquots (0.10 ml) were removed from each flask after $0,1,2,4$, and 7 h and added to small vials containing water (0.3 ml) and hexane (0.3 ml). The vials were shaken, and the hexane layers were withdrawn by pipet and analyzed by gas chromatography (SE-30, $125^{\circ} \mathrm{C}$). Peak areas of remaining bromochlorides and of the tetradecene standard were measured by planimetery. Although smooth curves were not obtained, it was evident that the erythro isomer reacted approximately twice as fast as did the threo isomer (that the erythro compound reacted faster was also apparent by visually observing the formation of iodine in the reaction mixtures).

Registry No.-threo-7-Bromo-8-chloro-2-methyloctadecane, 59840-17-4; threo-7-chloro-8-bromo-2-methyloctadecane, 59840-18-5; erythro-7-bromo-8-chloro-2-methyloctadecane, 59840-19-6; erythro-7-chloro-8-bromo-2-methyloctadecane, 59840-20-9; threo7 -bromo-8-chlorooctadecane, 59840-21-0; threo-7-chloro-8-bromooctadecane, 59840-22-1; erythro-8-bromo-9-chlorododecan-1-ol acetate, 59840-23-2; erythro-8-chloro-9-bromododecan-1-ol acetate, 59840-24-3; erythro-7,8-dichloro-2-methyloctadecane, 59840-25-4; threo-7,8-dichlorooctadecane, 59840-26-5; erythro-8,9-dichlorodo-decan-1-ol acetate, 59840-27-6; erythro-7,8-dibromo-2-methyloctadecane, 59840-28-7; erythro-4-bromo-5-chlorooctane, 59840-29-8; threo-4-bromo-5-chlorooctane, 59840-30-1; NaI, 7681-82-5.

References and Notes

(1) P. E. Sonnet and J. E. Oliver, J. Org. Chem., preceding paper in this issue.
(2) E. Vedejs and P. L. Fuchs, J. Am. Chem. Soc., 94, 822 (1972); E. Vedejs, K. A. J. Snable, and P. L. Fuchs, J. Org. Chem., 38,1178 (1973).
(3) A. J. Bridges and G. H. Whitham, J. Chem. Soc., Chem. Commun., 142 (1974).
(4) M. Jacobson, "Insect Sex Pheromones", Academic Press, New York, N.Y.. 1972.
(5) W. G. Young and S. Winstein, J. Am. Chem. Soc., 58, 102 (1936).
(6) J. Hine, "Physical Organic Chemistry", McGraw-Hill, New York, N.Y., 1962, p 209.
(7) See, for example, J. W. McCutcheon, "Organic Syntheses", Collect. Vol. III, Wiley, New York, N.Y., 1955, pp 526 and 531.
(8) W. G. Young, S. J. Cristol, and T. Skei, J. Am. Chem. Soc., 65, 2009 (1943).
(9) W. M. Schubert, H. Steadly, and B. S. Rabinovitch, J. Am. Chem. Soc., 77, 5755 (1955).
(10) H. O. House, "Modern Synthetic Reactions', W. A. Benjamin. New York, N.Y., 1965, p 136.
(11) S. Winstein, D. Pressman, and W. G. Young, J. Am. Chem. Soc., 61, 1645 (1939).
(12) J. Hine and W. H. Brader, Jr., J. Am. Chem. Soc., 77, 361 (1955)
(13) M. L. Poutsma, Science, 157, 997 (1967).
(14) H. J. Hageman and E. Havinga, Recl. Trav. Chim. Pays-Bas, 85, 1141 (1966).
(15) Mention of a proprietary product or company does not imply endorsement by the U.S. Department of Agriculture.

Vitamin A Synthesis by Sulfone Alkylation-Elimination. C_{15} Halide, C_{5} Hydroxy Sulfone Approach

Gary L. Olson,* Ho-Chuen Cheung, Keith D. Morgan, Christian Neukom, and Gabriel Saucy

Chemical Research Department, Hoffmann-La Roche, Inc., Nutley, New Jersey 07110
Received April 22, 1976

Abstract

Condensation of 1-arylsulfonyl-2-methyl-4-hydroxy-2-butenes (1) with 1-chloro- and 1-bromo-3-methyl-5-(2,6,6-trimethylcyclohexen-1-yl)-penta-2,4-diene (2) to afford 1-hydroxy-3,7-dimethyl-4-arylsulfonyl-9-(2,6,6-tri-methylcyclohexen-1-yl)nona-2,6,8-triene (3) and the subsequent elimination of sulfinic acid from 3 to give vitamin A alcohol has been studied. An efficient and stereoselective synthesis of halide 2 from vinyl- β-ionol (14) using HX in ether at low temperature has been achieved. The use of diethyl- and disilylamides with the p-tolyl sulfone compound $\mathbf{1 b}$ and bromide $\mathbf{2 b}$ gave $\mathbf{3 b}$ in $83-84 \%$ isolated yield. Sodamide-ammonia-tert-butyl alcohol effected elimination of sulfinic acid in $\mathbf{3 b}$ to afford, after acetylation, vitamin A acetate in 75% yield from $\mathbf{3 b}$. In a through process, crystalline, all-trans vitamin A acetate was obtained in $67-68$ and $72-73 \%$ yield based on 14 and $1 \mathbf{b}$, respectively.

The alkylation of allylic sulfones and their subsequent 1,2 elimination to form olefins ${ }^{1}$ is a synthetic method particularly suited to the synthesis of polyenes and vitamin A. This sequence was originally used by Julia to prepare the ester of vitamin A acid. ${ }^{2}$ Because of the nutritional and commercial importance of all-trans vitamin A alcohol (β-retinol), strategic combinations of sulfone and halide directed toward the preparation of vitamin A alcohol have received great attention. ${ }^{3}$ Approaches utilizing $\mathrm{C}_{13}{ }^{3 \mathrm{~b}}$ and C_{15} sulfones ${ }^{3 \mathrm{c}}$ and the appropriate halo alcohol partners have recently been described. An alternative in which the dianion of a C_{5} hydroxy sulfone (1) is alkylated by a C_{15} halide (2) has now been studied in detail, and with appropriate choices of base, aryl sulfone, and C_{15} halide, this route affords a highly efficient and stereoselective synthesis of all-trans vitamin A (4) via the C_{20} hydroxy sulfone 3 (Scheme I).

Scheme I

3

4

Results and Discussion

Preparation of C_{5} Hydroxy Sulfones 1. Treatment of the isoprene hypochlorination product 5^{4} with sodium or lithium salts of sulfinic acids in warm dimethylformamide solution gives trans-acetoxy sulfones 6 in good yield (Table I). Reduction with LiAlH_{4} or base hydrolysis affords the hydroxy sulfones 1 in high yield (Table II). The saponification, however, must be done under carefully controlled conditions to avoid elimination, particularly for the substituted sulfones.

Thus, phenyl sulfone 6 a was unaffected by sodium carbonate in 80% aqueous ethanol but was cleanly hydrolyzed in 80% aqueous methanol, as was tolyl sulfone $\mathbf{6 b}$. Under more
basic conditions (potassium carbonate- 95% aqueous methanol) 6a gave hydroxy sulfone 1a contaminated with 25% of diene 7a. Saponification of the p-methoxyphenyl derivative 6 c (sodium carbonate, 80% aqueous ethanol) was slow, but stronger base (potassium carbonate) in the same solvent gave exclusively diene 7 c . The 2 -pyridyl sulfone $\mathbf{6 f}$ gave 20% diene $\mathbf{7 b}$ even with sodium carbonate in 80% aqueous ethanol.

A second route to hydroxy sulfones was via solvolysis or acetolysis of halo sulfones (8) obtained from the copper(I)catalyzed addition of sulfonyl halides to isoprene. ${ }^{5}$ Thus, p toluenesulfony chloride reacted with isoprene ${ }^{6}$ to afford a mixture of chloro sulfones 8,9 , and 10 in 95% yield. The regioand stereochemistry of the products of this reaction had not previously been rigorously established, and in the original report ${ }^{5} 9$ and 10 were not identified, so the structures of these adducts were proved by correlation with known compounds. trans-1-p-Toluenesulfonyl-4-acetoxy-2-methyl-2-butene (6b) was prepared from pure 8 by acetolysis and was identical with the product prepared from chloro acetate 5. 1,4-Dichloro-2-methyl-2-butene reacted with sodium p-toluenesulfinate in ethanol to give a mixture of 1,4-disulfone and trans-1-p-tol-uenesulfonyl-3-methyl-4-chlorobut-2-ene. This latter compound displayed a methyl resonance in the NMR spectrum at 1.36 ppm (vs. 1.83 ppm in trans 8) and was thus shown to be the compound which cocrystallizes with the desired trans 8 from ether. The crystallization mother liquors were repurified until the other compound, assumed to be the cis isomer 9 , was enriched to ca. 80% purity. The structure of this material was proved by correlation with cis- and trans-4-chlorosenecioic esters 11^{7} by displacement of the halide with p toluenesulfinic acid to afford a cis/trans mixture of sulfone esters 12 from which a single isomer crystallized. Diisobutylaluminum hydride reduction of this crystalline compound followed by acetylation afforded the trans hydroxy and acetoxy sulfones $\mathbf{1 b}$ and $\mathbf{6 b}$. Identical treatment of the mother liquors (80% cis isomer) afforded the cis acetoxy sulfone 13.

Table I. Preparation and Properties of C_{5} Acetoxy Sulfones

Method A: $\mathrm{ArSO}_{2} \mathrm{Na}+$

5

Method B: $\quad \operatorname{ArSO}_{2} \mathrm{Cl}+$

8

Compd	Ar	\% yield		$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	$\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), \delta$	Anal., found, \%	
		A	B				
6	$\mathrm{C}_{6} \mathrm{H}_{5}$	95^{a}		93-94	7.95-7.45 (m, 5, aromatic), 5.22 ($\mathrm{t}, 1, J=7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}$), 4.48 (d, 2, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OAc}\right), 3.75(\mathrm{~s}, 2$, $\mathrm{CH}_{2} \mathrm{SO}_{2}$), 2.00 (s, $3, \mathrm{CH}_{3} \mathrm{CO}$), and 1.83 ppm (s, $3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}$)	$\begin{array}{ll} \text { C } 58.14 \\ \text { S } 11.86 \end{array}$	H 6.32
6b	p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	95^{a}	70^{a}	56.5-59	7.71 and $7.31\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4, J=8 \mathrm{~Hz}\right.$, aromatic), 5.25 (t, $1, J=7 \mathrm{~Hz}$, $\mathrm{HC}=\mathrm{C}), 4.48(\mathrm{~d}, 2, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{OAc}$), 3.74 (s, $2, \mathrm{CH}_{2} \mathrm{SO}_{2}$), 2.43 (s, $\left.3, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.00\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}\right)$, and $1.80 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right)$	$\begin{aligned} & \text { C } 59.72 \\ & \text { S } 11.25 \end{aligned}$	H 6.31
6 c	$p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	96^{a}	61	55-56	7.70 and $6.95\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4, J=10 \mathrm{~Hz}\right.$, aromatic), $5.23(\mathrm{t}, 1, J=7 \mathrm{~Hz}$, $\mathrm{HC}=\mathrm{C}), 4.45(\mathrm{~d}, 2, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{OAc}$), 3.83 ($\mathrm{s}, 3, \mathrm{OCH}_{3}$), 3.72 (s, $2, \mathrm{CH}_{2} \mathrm{SO}_{2}$), $1.97\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}\right)$, and $1.82 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right)$	$\begin{aligned} & \text { C } 56.41 \\ & \text { S } 10.67 \end{aligned}$	H 6.08
6d	$p-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	99^{a}		82-84	7.60 and $6.62\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4, J=9 \mathrm{~Hz}\right.$, aromatic), $5.26(\mathrm{t}, 1, J=7 \mathrm{~Hz}$, $\mathrm{HC}=\mathrm{C}), 4.49(\mathrm{~d}, 2, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{OAc}$), 3.68 ($\mathrm{s}, 2, \mathrm{CH}_{2} \mathrm{SO}_{2}$), 3.04 $\left[\mathrm{s}, 6, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.00\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}\right)$, and $1.81 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right)$	$\begin{array}{rr} \mathrm{C} & 57.74 \\ \mathrm{~N} & 4.45 \end{array}$	$\begin{array}{lr} \text { H } & 6.72 \\ \mathrm{~S} & 10.09 \end{array}$
6 e	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	86		Oil	$\begin{aligned} & 8.12-7.50(\mathrm{~m}, 4, \text { aromatic }), 5.22(\mathrm{t}, 1, \\ & J=7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}), 4.48(\mathrm{~d}, 2, \\ & \left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OAc}\right), 3.78(\mathrm{~s}, 2, \\ & \left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.00\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}\right), \text { and } \\ & 1.88 \mathrm{ppm}\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 49.77 \\ & \mathrm{~S} \quad 9.71 \end{aligned}$	H 4.68
6 f	1	47		59-61	$\begin{aligned} & 8.74-7.58(\mathrm{~m}, 4, \text { pyridine }), 5.39 \\ & (\mathrm{t}, 1, J=7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}), 4.49(\mathrm{~d}, 2, \\ & \left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OAc}\right), 4.09(\mathrm{~s}, 2, \\ & \left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 1.98\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}\right) \text {, and } \\ & 1.88 \mathrm{ppm}\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right) \end{aligned}$	$\begin{array}{r} \mathrm{C} 53.48 \\ \mathrm{~N} \quad 5.06 \end{array}$	H 5.71

${ }^{a}$ Crude material, $>95 \%$ pure by NMR.

Fortuitously, the cocrystallized mixture of 8 and 10 upon acetolysis with sodium acetate-acetic acid yields mainly trans acetate 6 which after saponification and crystallization gives pure hydroxy sulfone $\mathbf{1 b}$ in 70% yield from the mixture of 8 and 10 . The hydroxy sulfones 1 could also be obtained directly from chloro sulfone 8 by solvolysis with aqueous silver carbonate at room temperature.

Preparation of $\mathbf{C}_{15} \mathbf{H a l i d e s} 2$. Reaction of vinyl- β-ionol (14), readily available from β-ionone, ${ }^{8}$ with phosphorus trihalides generally affords the corresponding C_{15} halide 2 in ca. 60% yield together with a substantial amount of the hydrocarbon $15 .{ }^{2,9}$ We find that 14 is virtually quantitatively converted to the chloride $\mathbf{2 a}$ or bromide $\mathbf{2 b}$ by its reaction

with ethereal HCl or HBr , respectively, at low temperature ${ }^{10}$ and that these halides, while unstable at more than ca. 50% concentration at room temperature, are remarkably unaffected by base at low ($-30^{\circ} \mathrm{C}$ or below) temperature and are essentially inert to displacement by the lithium dialkyl- or disilylamides in THF at $-70^{\circ} \mathrm{C}$. In addition, the stereochemistry (by NMR in CCl_{4}) about the trisubstituted double bond in these halides is $>95 \%$ trans. By inference from the stereochemistry of the vitamin A produced (vide infra), the halides vary from 95 to 99% trans stereoisomer.

Alkylation Studies. Hydroxy sulfone 1 undergoes alkylation cleanly at the carbon α to the sulfonyl group, presumably owing to the displacement of the equilibrium between dianions 16 and 17 toward the more favorably charge-separated dianion 16. By contrast, the sulfone ester 18 was reported ${ }^{2}$ to

Table II. Preparation and Properties of C_{5} Hydroxy Sulfones 1

Compd	Ar	\% yield		$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	$\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), \delta$	Anal., found, \%	
		A	B				
1 a	$\mathrm{C}_{6} \mathrm{H}_{5}$		$97 a$	55-56.5	$\begin{aligned} & 7.90-7.45(\mathrm{~m}, 5, \text { aromatic, }), 5.34 \\ & (\mathrm{t}, 1, J=7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}), 4.05(\mathrm{~d}, 2, \\ & J=7 \mathrm{~Hz}, \mathrm{CH} \mathrm{OH}), 3.75(\mathrm{~s}, 2, \\ & \left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right), \text { and } 1.81 \mathrm{ppm}(\mathrm{~s}, 3 \\ & \left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { C } 58.26 \\ & \text { S } 14.09 \end{aligned}$	H 6.16
1 b	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$(69)^{b}$	$\begin{aligned} & 97 a \\ & (42.5)^{c} \end{aligned}$	62.5-65	7.71 and 7.32 ($\mathrm{AA}^{\prime} \mathrm{XX'}^{\prime}, 4, J=8 \mathrm{~Hz}$, aromatic, $), 5.39(\mathrm{t}, 1, J=7 \mathrm{~Hz}$, $\mathrm{HC}=\mathrm{C}), 4.07(\mathrm{~d}, 2, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{OH}$), 3.72 ($\mathrm{s}, 2, \mathrm{CH}_{2} \mathrm{SO}_{2}$), 2.43 (s, $3, \mathrm{CH}_{3} \mathrm{Ar}$), and 1.78 ppm $\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right)$	$\begin{aligned} & \text { C } 60.16 \\ & \text { S } 13.19 \end{aligned}$	H 6.88
1c	$p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$		$\begin{gathered} 94^{a} \\ (60)^{b} \end{gathered}$	45.5-47	7.67 and $7.25\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4, J=7 \mathrm{~Hz}\right.$, aromatic), 5.33 ($\mathrm{t}, 1, J=7 \mathrm{~Hz}$, $\mathrm{HC}=\mathrm{C}), 4.03\left(\mathrm{~d}, 2, \mathrm{CH}_{2} \mathrm{OH}\right), 3.70$ (s, 2, $\mathrm{CH}_{2} \mathrm{SO}_{2}$), $2.75(\mathrm{~s}, 1, \mathrm{OH})$, 2.33 (s, 3, $\mathrm{CH}_{3} \mathrm{Ar}$), and 1.75 ppm (s, $3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}$)	C 56.02	H 6.29
1 d	$p-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$		$\begin{gathered} 96^{a} \\ (60)^{b} \end{gathered}$	160-164	7.65 and $6.62\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4, J=9 \mathrm{~Hz}\right.$, aromatic), 5.36 ($\mathrm{t}, 1, \mathrm{HC}=\mathrm{C}$), 4.08 (d, 2, $\mathrm{CH}_{2} \mathrm{OH}$) 3.68 (s, 2, $\left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 3.08\left[\mathrm{~s}, 6, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right]$, and $1.80 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right.$)	$\begin{array}{lr} \text { C } 57.91 \\ \text { N } & 5.14 \end{array}$	$\begin{array}{lr} \text { H } & 7.14 \\ \text { S } & 11.89 \end{array}$
1 e	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$		93^{a}	63-68	$\begin{aligned} & 8.17-7.54(\mathrm{~m}, 4, \text { aromatic }), 5.33(\mathrm{t}, 1, \\ & J=7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}), 4.05,(\mathrm{~d}, 2, \\ & \left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.78(\mathrm{~s}, 2, \\ & \left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right) \text {, and } 1.82 \mathrm{ppm}(\mathrm{~s}, 3, \\ & \left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { C } 48.95 \\ & \text { S } 10.87 \end{aligned}$	$\begin{array}{lr} \text { H } & 4.43 \\ \text { F } & 19.49 \end{array}$
1f	El	$\begin{aligned} & 53 \\ & (25)^{b} \end{aligned}$		53-54	8.83-7.43 (m, 4, aromatic), 5.43 (t, $1, J=7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}$), 4.03 (s, 2, $\mathrm{CH}_{2} \mathrm{SO}_{2}$), 4.02 (d, $2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), and $1.75 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right.$)	$\begin{aligned} & \mathrm{C} 52.97 \\ & \mathrm{~N} \quad 6.21 \end{aligned}$	H 5.63

${ }^{a}$ Crude product, $>95 \%$ pure by NMR. b Overall yield of pure compound based on chloro acetate 5. c Overall yield of pure compound based on p-toluenesulfonyl chloride via chloro sulfone 8.

undergo almost exclusive γ-alkylation. The acetoxy sulfones 6 (precursors of 1) do not alkylate by either mode, but eliminate acetate rapidly under alkylation conditions to afford dienes 7.

The yield of C_{20} hydroxy sulfone 3 obtained in this reaction was found to depend to some extent upon the arylsulfonyl substituents and particularly upon the reaction conditions.

Substituent Variations (Table III). In initial studies, 2 equiv of n-butyllithium was added to a solution of the hydroxy sulfone in THF at $-70^{\circ} \mathrm{C}$ followed by slow, dropwise addition of the C_{15} chloride $2 \mathbf{a}$ in ether. After 1 h at $-70^{\circ} \mathrm{C}$ and then warming to $0-25^{\circ} \mathrm{C}$, the reaction mixtures were quenched with water and extracted with ether. The crude products were chromatographed to give the substituted C_{20} sulfones 3 . The various substituted sulfones alkylated similarly to the phenyl sulfone 1a except for the trifluoromethyl compound 1c (low yield, 3c unstable toward chromatography) and 2-pyridyl compound If (eliminated to form diene 7f). The somewhat higher yield observed with the dimethylamino compound 1d may result from the amino group scavenging HCl from the decomposition of some excess C_{15} chloride prior to chromatography.

Since the p-tolyl (1b) and p-methoxy (1c) compounds gave the highest yields of vitamin A in the subsequent elimination
step (vide infra), the alkylation of these two compounds was studied in detail with respect to base, halide, temperature, and mode of addition.

Alkylation with p-Tolyl Hydroxy Sulfone 1b. Variations of Base and \mathbf{C}_{15} Halide (Table IV). In the alkylation of the p-tolyl hydroxy sulfone $\mathbf{1 b}$ with the C_{15} chloride $2 \mathbf{a}$ and n-butyllithium, unreacted 1b was isolated after alkylation even though the dianion formation was complete at $-70^{\circ} \mathrm{C}$ ($\mathrm{D}_{2} \mathrm{O}$-DOAc exchange). Apparently, the rates of alkylation and base-promoted dehydrohalogenation of 2a are similar at $-70^{\circ} \mathrm{C}$. Higher reaction temperatures isomerized both C_{5} and C_{20} sulfones. Thus, generation of the dianion 1c with n-butyllithium at $-20^{\circ} \mathrm{C}$ in THF led to isomerization of the C_{5} component prior to alkylation with C_{15} chloride 2a. Similarly, formation of the dianion and alkylation at $-70^{\circ} \mathrm{C}$ followed by warming the mixture to room temperature overnight gave mainly the 2-cis C_{20} sulfone. No difference was seen between reactions run at -50 and $-70^{\circ} \mathrm{C}$. Apparently, the dianion 1 has considerable stability toward cis/trans isomerization below $-50^{\circ} \mathrm{C}$.

Because of its probable greater reactivity, the C_{15} bromide $\mathbf{2 b}$ was substituted for the chloride 2 a in a butyllithium alkylation with little effect on the yield (33\%). Changes in the base used, however, had a dramatic effect on the yield of sulfone in alkylation with the bromide $\mathbf{2 b}$. Thus reaction of sulfone $\mathbf{1 b}$ and bromide 2b with 2 equiv of lithium diisopropylamide in tetrahydrofuran at $-70^{\circ} \mathrm{C}$ gave the desired C_{20} product $\mathbf{3 b}$ in $83-84 \%$ yield. Under the same conditions, chloride 2a gave a 38% yield of product, while a mixture of chloride 2a and $10 \mathrm{~mol} \%$ of lithium bromide gave a 50% yield

Table III. Preparation of C_{20} Sulfones via C_{15} Chloride with Butyllithium

2a
3

Compd	Ar	Yield, \%	$\mathrm{Uv}, \lambda_{\text {max }}(\epsilon)$		NMR (CDCl_{3}), δ	Anal., found, \%	
			Triene	Aryl			
3a	$\mathrm{C}_{6} \mathrm{H}_{5}$	42	272-273 (16 800)	215 (18 200)	$\begin{aligned} & 7.95-7.43(\mathrm{~m}, 5 \text {, aromatic }), \\ & 5.93\left(\mathrm{~s}, 2, \mathrm{C}_{8} \text { and } \mathrm{C}_{9}\right. \text { vinyl } \\ & \mathrm{H} \text { 's }), 5.33(\mathrm{t}, 1, J=7 \mathrm{~Hz}, \\ & \left.\mathrm{C}_{2} \text { vinyl } \mathrm{H}\right), 5.17(\mathrm{t}, 1, \\ & \left.J=7 \mathrm{~Hz}, \mathrm{C}_{6} \text { vinyl } \mathrm{H}\right), 4.03 \\ & (\mathrm{~d}, 2, J=7 \mathrm{~Hz}, \mathrm{CH} \mathrm{OH}), \\ & 3.57\left(\mathrm{~m}, 1, \mathrm{C}_{4} \mathrm{H}\right), 2.83 \\ & \left(\mathrm{~m}, 2, \mathrm{C}_{5} \mathrm{CH}_{2}\right) \text {, and } 0.98 \\ & \mathrm{ppm}\left(\mathrm{~s}, 6, \mathrm{gem}^{2}-\mathrm{CH}_{3}\right) \end{aligned}$	C 72.77	H 8.47
3b	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	41	262 (17070)	228 (25 740)	7.70 and $7.30\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4\right.$, $J=8 \mathrm{~Hz}$, aromatic), 5.97 (s, 2, C_{8} and C , vinyl H), $5.42\left(\mathrm{t}, 1, J=6 \mathrm{~Hz}, \mathrm{C}_{2}\right.$ vinyl H), 5.14 (t, $1, J=7$ $\mathrm{Hz}, \mathrm{C}_{6}$ vinyl H), 4.10 (d, 2, $\left.J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.56$ (m, 1, C 4 H), 2.44 ($\mathrm{s}, 3$, $\mathrm{CH}_{3} \mathrm{Ar}$), 1.77, 1.73, and 1.66 ($3 \mathrm{~s}, 9$, vinyl CH_{3} 's), and 0.98 ppm ($\mathrm{s}, 6, \mathrm{gem}$ CH_{3} 's)	$\begin{array}{r} \text { C } 73.51 \\ \text { S } 6.79 \end{array}$	H 8.95
3 c	$p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	35-40	260 (16 515)	241-242 (24 625)	7.74 and 6.96 ($\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4$, $J=8 \mathrm{~Hz}$, aromatic), 5.96 (s, $2, \mathrm{C}_{8}$ and C , vinyl H), $5.31\left(\mathrm{t}, 1, J=7 \mathrm{~Hz}, \mathrm{C}_{2}\right.$ vinyl H), $5.12(\mathrm{t}, 1, J=7$ $\mathrm{Hz}, \mathrm{C}_{6}$ vinyl H), 4.06 (d, $\left.2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.84$ (s, $3, \mathrm{OCH}_{3}$), 3.50 (m, 1, $\left.\mathrm{C}_{4} \mathrm{H}\right), 2.81\left(\mathrm{~m}, 2, \mathrm{C}_{5} \mathrm{CH}_{2}\right)$, $1.63,1.71,1.75$ ($3 \mathrm{~s}, 9$, vinyl CH_{3} 's), and 0.97 ppm (s, 6, gem- CH_{3} 's)	$\begin{array}{r} \mathrm{C} 71.29 \\ \mathrm{~S} \quad 6.51 \end{array}$	H 8.35
3d	p- $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	57		283-284 (35 600)	7.63 and $6.63\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4\right.$, $J=9 \mathrm{~Hz}$, aromatic), 5.96 ($\mathrm{s}, 2, \mathrm{C}_{8}$ and C_{9} vinyl H), 5.41 (t, $1, J=7 \mathrm{~Hz}, \mathrm{C}_{2}$ vinyl H), 5.15 ($\mathrm{t}, 1, \mathrm{~J}=7$ $\mathrm{Hz}, \mathrm{C}_{6}$ vinyl H), 4.10 (d, $\left.2, J=7 \mathrm{~Hz} . \mathrm{CH}_{2} \mathrm{OH}\right), 3.50$ ($\mathrm{m}, 1, \mathrm{C}_{4} \mathrm{H}$), 3.03 [s, 6, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$], and $0.99 \mathrm{ppm}(\mathrm{s}$, $6, \mathrm{gem}-\mathrm{CH}_{3}$'s)	$\begin{aligned} & \mathrm{C} 71.05 \\ & \mathrm{~N} \quad 2.81 \end{aligned}$	$\begin{aligned} & \text { H } 8.65 \\ & \text { S } 6.51 \end{aligned}$
3 e	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	3.5	264-266	200-205	8.13-7.50 (m, 4, aromatic), 5.97 ($\mathrm{s}, 2, \mathrm{C}_{8}$ and C_{9} vinyl H), 5.33 (t, $1, J=7 \mathrm{~Hz}$, C_{2} vinyl H), 5.10 ($\mathrm{t}, 1$, $J=7 \mathrm{~Hz}, \mathrm{C}_{6}$ vinyl H), $4.04(\mathrm{~d}, 2, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{OH}$), 3.57 (m, 1, $\mathrm{C}_{4} \mathrm{H}$), and $0.99 \mathrm{ppm}(\mathrm{s}, 6$, gem- CH_{3} 's).		

0
of product. Yields with other hindered amine bases were similarly high, regardless of the mode of addition (preformation of the dianion was unnecessary). These carefully defined working conditions for the tolyl sulfone $1 \mathbf{b}$ were subsequently tried with the p-methoxyphenyl compound 1 c with a resulting 38% yield of adduct 3 c . Clearly the alkylation of C_{5} hydroxy sulfones 1 is a reaction in which a delicate balance between rates of alkylation and dehydrohalogenation exists
so that slight changes in the acidity of the sulfone ${ }^{11}$ and its nucleophilicity due to substituent and medium effects can dramatically influence the product yield.

Elimination Step. Vitamin A Acetate Preparation (Table V). The elimination of sulfinic acid in 3 to afford vitamin A alcohol occurs smoothly and in high yield for the p-tolyl and p-methoxyphenyl sulfones $\mathbf{3 b}$ and $3 \mathbf{c}$ with an excess of sodamide (5 equiv) in liquid ammonia containing

Table IV. Alkylation of p-Tolyl Sulfone lb with C_{15} Halides 2. Comparison of Bases

No.	Base	mmol	C_{15} halide,	mmol	C_{5} sulfone, mmol	Mode of addition		Yield, \%
1	BuLi	26.0	Cl	19.7	13.0	Cl to dianion	41	
2	BuLi	9.5	Br	5.3	4.2	Base to substrates	33	
3	LDA	9.8	Cl	5.7	4.2	Base to substrates	31.5	
4	LDA	44.0	Br	25.0	21.0	Base to substrates	84	
5	LDA	44.0	Br	25.0	21.0	Rapid addition of Br to dianion	83	
6	LDA	9.8	$\begin{gathered} \mathrm{Cl} \\ \substack{+10 \mathrm{~mol} \% \\ \mathrm{LiBr})} \end{gathered}$	5.7	4.2	Base to substrates	50	
7	LiNEt_{2}	19.7	Br	11.4	8.3	Base to substrates	68	
8	KO-t-Am	9.6	Br	5.5	4.2	Base to substrates	14.4	
9	$\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$	19.0	Br	8.75	8.33	Base to substrates	74	(16\% unreacted lb)
10	$\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$	11.5	Br	4.3	4.2	Base to substrates	62	(21% unreacted lb)
11	NaNH_{2}	21.0	Br	15.8	8.3	Bromide to dianion	14.4	
12	$\mathrm{NaC}_{6} \mathrm{H}_{5}$	11.6	Br	5.40	4.15	Bromide to dianion	35	(43\% unreacted lb)

Table V. Preparation of Vitamin A Acetate

3
4
i
Yields ${ }^{a}$ (HPLC analysis) ${ }^{12}$
9-cis +

Compd	Ar	Conditions	$\begin{gathered} 9-\mathrm{cis}+ \\ 9,13 \text {-di-cis } \end{gathered}$	11-cis	13-cis	Retro ${ }^{\text {b }}$	All-trans	Total
3a	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, n-\mathrm{BuOH}, 120^{\circ} \mathrm{C}$	2	10			17	29
		$\mathrm{NaNH}_{2}, \mathrm{NH}_{3}$ anhydrous						0
		$\mathrm{NaNH}_{2}, \mathrm{NH}_{3}, t-\mathrm{BuOH}$	4	2			45	51
3 b	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{NaNH}_{2}, \mathrm{NH}_{3}, t-\mathrm{BuOH}$	3	1	0.2	4	67	75.2
3 c	$p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{NaNH}_{2}, \mathrm{NH}_{3}, t$ - BuOH	1		1	6	65	73
3 d	$p-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{NaNH}_{2}, \mathrm{NH}_{3}, t$ - BuOH	2		1	4	50	57
3 e	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{NaNH}_{2}, \mathrm{NH}_{3}, t$ - BuOH					1.4	1.5

a Of derived acetate; see Experimental Section. ${ }^{b}$ Retro vitamin $A=i$. Found to be due to isomerization of vitamin A alcohol during prolonged reaction times in the elimination step.
tert-butyl alcohol. In the absence of alcohol, sulfone is recovered unchanged, suggesting that reprotonation of the acidic α-sulfonyl anion formed in a rapid initial step is essential. Substituent effects on the yield of vitamin A alcohol are observed (Table V), and although the yield is not a measure of reaction rate, the expected trend toward elimination of more acidic sulfinic acids faster and in higher yields is observed. Other alkaline conditions ${ }^{3 \mathrm{c}}$ afford lower yields, and interestingly, the isomeric sulfones $3 \mathbf{c}$ (sulfonyl at C_{50}) do not eliminate under sodamide-ammonia-tert-butyl alcohol conditions.
Crude vitamin A alcohol obtained from the elimination reaction was acetylated with acetic anhydride-triethylamine and the crude vitamin A acetate was analyzed by HPLC ${ }^{12}$ to determine yields and isomeric composition. The results (Table V) show the crude reaction product to be surprisingly free of isomeric impurities. A small amount of "retro" vitamin A acetate observed in some cases was found to be due to prolongation of the reaction time after complete elimination. The low content of 9 -cis $/ 9,13$-di-cis isomers reflects the stereochemical integrity of the C_{15} halide prepared by the abovedescribed procedure.
The high yield in the alkylation and the very pure crude vitamin A acetate obtained by the elimination-acetylation procedure utilizing the p-tolyl sulfone $\mathbf{1 b}$ suggested that the synthesis could be carried out without chromatographic purification of the intermediates. Indeed, alkylation of the crude C_{15} bromide $\mathbf{2 b}$ with p-tolyl sulfone $\mathbf{1 b}$ afforded the crude C_{20} sulfone $\mathbf{3 b}$ which, after trituration with hexane and remove
a small amount of C_{15} hydrocarbon by-product (17), was eliminated and acetylated to afford crude vitamin A acetate in an overall yield (by HPLC) of $67-68 \%$ based on vinyl- β ionol (14) and $72-73 \%$ based on hydroxy sulfone 1 b .
By virtue of the high all-trans isomer content, the crude acetate crystallized from cold methanol in a very high weight yield. Crystalline samples were assayed by direct uv and Morton-Stubbs procedures ${ }^{13}$ relative to the standard ${ }^{14}$ for all-trans vitamin A acetate ($2.906 \times 10^{6} \mathrm{IU} / \mathrm{g}$). Thus, crystallization of the crude acetylation product from methanol afforded all-trans vitamin A acetate (assay 91.2-91.4\%) in $63-65$ and $67-70 \%$ overall yield based on vinyl- β-ionol (14) and hydroxy sulfone 1 b , respectively.

Experimental Section

Melting points were determined on a Kofler hot stage microscope and are uncorrecied. Spectral measurements were performed on the following instruments: NMR, Varian T-60, HA-100, and XL-100 spectrometers using $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard and CDCl_{3} as solvent; ir, Beckman IR 9 and Perkin-Elmer Model 621 and 237B spectrophotometers with CHCl_{3} as solvent or as a liquid film; uv, Cary Model 14 and Perkin-Elmer Model 202 spectrophotometers with 2-propanol as solvent. Gas chromatographic analyses were performed on Hew-lett-Packard Model 402B or 5721A instruments equipped with flame ionization detectors. High-pressure liquid chromatographic analyses (HPLC) were performed on apparatus constructed by members of our Physical Chemistry Department on silica gel columns impregnated with oxydipropionitrile ${ }^{12}$ with uv monitoring at 254,280 , and 350 nm and using naphthalene as internal standard and crystalline, all-trans vitamin A acetate (Hoffmann-La Roche Inc.) as reference compound. The progress of reactions was generally followed by TLC
on Brinkmann silica gel GF 254 plates using uv and ceric sulfate spray followed by heating to detect spots. Products were isolated in general by extraction or dilution of the reaction mixture with the indicated solvent, washing, where appropriate, with $\mathrm{H}_{2} \mathrm{O}, 20 \% \mathrm{HCl}$, saturated NaHCO_{3}, and brine, drying $\left(\mathrm{MgSO}_{4}\right)$, and solvent removal on a rotary evaporator at $30-50^{\circ} \mathrm{C}$. Column chromatography was carrizd out on Merck 0.05-0.2 mm silica gel or Woelm alumina, grade III. Tetrahydrofuran (THF) was dried by passage through Woelm neutral alumina, grade I. Lithium diisopropylamide (LDA) solutions were prepared from diisopropylamine (distilled from CaH_{2}) and n-butyllithium (Ventron Corp.) and were titrated ${ }^{15}$ before use.

Preparation of trans-1-Arylsulfonyl-2-methyl-4-acetoxy-2-butenes (6) from 5. General Procedure. Acetoxy sulfones 6 (Table I, method A) were prepared by warming a suspension of the sodium or lithium arylsulfinate (1.2 mol) in dry dimethylfo:mamide (DMF) at $60^{\circ} \mathrm{C}$ with chloro acetate $5(1.0 \mathrm{~mol})$ for $3-6 \mathrm{~h}$. Ccncentration of the suspension to $1 / 3$ the original volume and dilution of the concentrate by pouring onto 10 volumes of ice water precipitated the crude product 6. Filtration and dissolution of the filtrate in ethyl acetate, drying $\left(\mathrm{MgSO}_{4}\right)$, and evaporation of the solvent afforded sulfones 6 in $90-95 \%$ yield, $>95 \%$ pure by NMR. Analytically pure samples were obtained by recrystallization from methanol, ether, and/or ethyl acetate.
trans-1-p-Toluenesulfonyl-2-methyl-4-acetoxy-2-butene (6b). By the above method, sodium p-toluenesulfinate ($273.0 \mathrm{~g}, 1.54 \mathrm{~mol}$, Aldrich, 97%) and chloro acetate $5(215.4 \mathrm{~g}, 1.33 \mathrm{~mol})$ in 1.00 ml of DMF at $60^{\circ} \mathrm{C}$ for 4.75 h afforded 357.0 g of crude acetoxy sulfone $\mathbf{6 b}$ as a waxy solid (95% yield). Recrystallization of a portion from methanol afforded an analytical sample, mp $56.5-59^{\circ} \mathrm{C}$.

Preparation of 1 lb from Isoprene via Chloro Sulfone 8 (Table I, Method B). By the published procedure ${ }^{5 a}$, p-toluenesulfonyl chloride ($38.2 \mathrm{~g}, 0.2 \mathrm{~mol}$) and isoprene $(15.0 \mathrm{~g}, 0.22 \mathrm{~mol})$ afforded a mixture of chloro sulfones $8-10(49.4 \mathrm{~g}, 95 \%), \mathrm{mp} 59-79.5^{\circ} \mathrm{C}$. Recrystallization of a $47.1-\mathrm{g}$ portion from ether (235 ml) gave zolorless crystals of the mixture of 8 and $10(34.74 \mathrm{~g}, 74 \%), \mathrm{mp} 68-8{ }^{\circ}{ }^{\circ} \mathrm{C}$, in a 4:1 ratio. In a similar experiment, slow crystallization from ethanol of 20.7 g of crude product afforded pure $8\left(6.95 \mathrm{~g}, \mathrm{mp} 86-88^{\circ} \mathrm{C}\right)$: NMR $\delta 7.29$ and $7.68\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4, J=8.5 \mathrm{~Hz}\right.$, aromatic), $5.30\left(\mathrm{t}, 1, e^{\top}=8 \mathrm{~Hz}\right.$, $\mathrm{HC=}=\mathrm{C}$), $3.96\left(\mathrm{~d}, 2, J=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.70\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.40(\mathrm{~s}, 3$, $\mathrm{CH}_{3} \mathrm{Ar}$), and 1.82 ppm (s, $3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}$); ir $1320\left(\mathrm{SO}_{2}\right)$ and 1175-1138 $\mathrm{cm}^{-1}\left(\mathrm{SO}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{SO}_{2} \mathrm{Cl}$: C, $55.70 ; \mathrm{H}, 5.84 ; \mathrm{Cl}, 13.70 ; \mathrm{S} 12.39$. Found: C, 55.77; H, 5.87 ; Cl, 13.68; S, 12.22.

Chromatography of the mother liquor from the ether crystallization afforded cis isomer 9 (85% pure) as an oil: NMR $\delta 7.78$ and 7.32 ($\mathrm{AA}^{\prime}-$ $\mathrm{XX}^{\prime}, 4, J=8 \mathrm{~Hz}$, aromatic), $5.76(\mathrm{t}, 1, J=8 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}), 3.85(\mathrm{~s}, 2$, $\mathrm{CH}_{2} \mathrm{SO}_{2}$), 3.77 (d, 2, $J=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}$), 2.45 ($\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{Ar}$), and 1.85 ppm (s, $3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}$).

To a mixture of chloro sulfones 8 and $10(25.59 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added sodium acetate ($51.2 \mathrm{~g}, 0.62 \mathrm{~mol}$) and glacial acetic acid (360 ml). The mixture was refluxed for 5.25 h , poured into water, and neutralized. The crude acetate ($26.35 \mathrm{~g}, 94 \%$) was filtered off and a $20-\mathrm{g}$ portion was warmed in methanol, filtered to remove insoluble mate-ial, and saponified (60 ml of methanol, 60 ml of water, 20.0 g of sodium carbonate; $3 \mathrm{~h}, 0-5^{\circ} \mathrm{C}$). Isolation with ethyl acetate gave crude hydroxy sulfone $1 \mathrm{lb}(15.45 \mathrm{~g}, 94 \%)$. Crystallization of a 15.22 -g portion from ether gave pure 1 b (10.82 g , 43% based on p-toluenesulforyl chloride).

Reaction of $9(0.101 \mathrm{~g}, 0.39 \mathrm{mmol})$ with sodium acetate $(0.214 \mathrm{~g}, 2.6$ mmol) in acetic acid (1.5 ml) at reflux for 28 h afforded cis acetoxy sulfone 13 ($0.105 \mathrm{~g}, 95 \%$ crude): NMR $\delta 7.79$ and 7.35 ($\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4, J$ $=8 \mathrm{~Hz}$, aromatic), $5.65(\mathrm{t}, 1, J=7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C}), 4.20(\mathrm{~d}, 2, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{OAc}$), 3.93 ($\mathrm{s}, 2, \mathrm{CH}_{2} \mathrm{SO}_{2}$), 2.47 ($\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{Ar}$), $2.00\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}\right)$, and 1.87 ppm (s, $3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}$).
Preparation of Cis Acetoxy Sulfone 13 from $12 .{ }^{2}$ To a solution of diisobutylaluminum hydride (1.24 ml of a 25% toluene solution, 2.2 $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ was added the ester $12(0.209 \mathrm{~g}, 0.73 \mathrm{mmol}, 1: 1$ cis $/$ trans mixture) in toluene (1.8 ml). After 30 min at $0-5^{\circ} \mathrm{C}$ the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and the products isolated with ethyl acetate to give 0.145 g (82%) of a colorless solid from which the trans hydroxy sulfone 16 crystallized. To a solution of the mother liquors from a similar crystallization (80% cis isomer, 0.156 g) in pyricine (1.5 $\mathrm{ml})$ was added acetic anhydride (0.36 ml). The solution was warmed to $45{ }^{\circ} \mathrm{C}$ for 3 h and poured onto ice and the acetoxy sulfones (0.167 $\mathrm{g}, 92 \%, 3: 2$ mixture of $\mathbf{6 b}$ and 13) were isolated using ethyl acetate. The NMR peaks not assignable to $\mathbf{6 b}$ were identical with the resonances observed in the product 13 of acetolysis of the cis chloro sultone 9 .

Preparation of trans-1-p-Toluenesulfonyl-3-methyl-4-chloro-2-butene (10). Compound 10 was prepared ${ }^{6}$ from sodium p-toluenesulfinate and 1,4-dichloro-2-methyl-2-butene: NMR $\delta 7.77$
and $7.35\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4, J=8 \mathrm{~Hz}\right.$, aromatic), $5.60(\mathrm{t}, 1, J=7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C})$, 3.98 (s, $2, \mathrm{CH}_{2} \mathrm{Cl}$), 3.83 (d, $2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}$), 2.48 ($\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{Ar}$), and $1.48 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right)$.

Preparation of trans-1-Arylsulfonyl-2-methyl-4-hydroxy-2-butenes (1) from 6. General Procedure, LiAlH_{4} Reduction. Hydroxy sulfones 1 (Table II, method B) were prepared by addition of a THF solution of the crude acetoxy sulfones $6(1 \mathrm{~mol})$ to a $-20^{\circ} \mathrm{C}$ suspension of lithium aluminum hydride (0.5 mol) in THF. After 0.5 h at $-20^{\circ} \mathrm{C}$ excess hydride and aluminates were decomposed with saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or MgSO_{4} and the supernatant solutions were filtered, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give the crude hydroxy sulfones in the yields given in Table II.

Saponification of Acetoxy Sulfones 6 to Hydroxy Sulfones 1 with Sodium Carbonate. General Procedure. Hydroxy sulfones 1 (Table II, method A) were prepared by adding a 25% aqueous solution of sodium carbonate in portions to a cold $\left(0-5^{\circ} \mathrm{C}\right)$ solution of the crude acetoxy sulfones 6 in methanol such that the resulting solution was 20% water and 80% methanol. After stirring for $3-5 \mathrm{~h}$ the mixture was filtered, concentrated to $1 / 3$ volume, and poured onto 3-4 volumes of $\mathrm{H}_{2} \mathrm{O}$. Isolation with ethyl acetate gave crude hydroxy sulfones 1 which were purified by crystallization from ether-ethyl acetate mixtures to afford 1 in the yields given in Table II.
trans-1-p-Toluenesulfonyl-2-methyl-4-hydroxy-2-butene (1b). By the above method a solution of crude acetoxy sulfone $\mathbf{6 b}$ ($346.8 \mathrm{~g}, 1.22 \mathrm{~mol}$) in methanol (2.2 l .) was cooled to $5^{\circ} \mathrm{C}$ and a solution of sodium carbonate ($194 \mathrm{~g}, 1.83 \mathrm{~mol}$) in water (555 ml) was added with stirring in four portions, maintaining a temperature of $0-5^{\circ} \mathrm{C}$ during the addition and for an additional 4.25 h . The mixture was filtered to remove sodium acetate and the filter cake was washed with ethyl acetate (100 ml). The filtrate was concentrated to a $600-\mathrm{ml}$ volume, diluted with water (21.), and extracted with ethyl acetate ($3 \times 700 \mathrm{ml}$). The combined extracts were washed with brine, dried (MgSO_{4}), and concentrated to give 288 g (97%) of crude Ib as a white solid (80% pure by NMR). The crude $\mathbf{1 b}$ was recrystallized from ether (1800 ml) containing ethyl acetate (50 ml) to give $198.8 \mathrm{~g}(69 \%$ yield) of $1 \mathrm{~b}, \mathrm{mp}$ $59-64^{\circ} \mathrm{C}$. Recrystallization of a small portion from ether afforded analytically pure $1 \mathrm{~b}, \mathrm{mp} 62.5-65^{\circ} \mathrm{C}$.
Preparation of 1 b by Silver Carbonate Solvolysis of 8. A mixture of chloro sulfone $8(0.1 \mathrm{~g}, 3.86 \mathrm{mmol})$, silver carbonate (0.1 g), water (1.0 ml), and acetone (3 ml) was warmed to $60^{\circ} \mathrm{C}$ for 5 h . The mixture was cooled, filtered, and concentrated. The resulting oil was dissolved in ethyl acetate and the solution was washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent gave hydroxy sulfone 1 b as a white solid $(0.09 \mathrm{~g}, 97 \%,>90 \%$ pure by NMR $)$.
Preparation of 1 -Bromo-3-methyl-5-(2,6,6-trimethylcyclo-hexen-1-yl)penta-2,4-diene (2b). To a $-70^{\circ} \mathrm{C}$ cooled solution of vinyl- β-ionol ($14,26.75 \mathrm{~g}$, assay $92.2 \%, 0.112 \mathrm{~mol}$ as 100%) in anhydrous ether (275 ml) was added over 1.5 min an ethereal solution of hydrogen bromide (32 ml of 4.12 M solution, 0.132 mol , prepared by bubbling HBr into ether at $0^{\circ} \mathrm{C}$ until approximately 4 M and then titrating). The solution became pink and warmed to $-60^{\circ} \mathrm{C}$ during the addition and a red liquid was deposited on the walls of the flask $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{HBr}\right)$. After 15 min at -70 to $-75^{\circ} \mathrm{C}$, the cooling bath was removed and the solution was warmed to $-15^{\circ} \mathrm{C}$ over 15 min with a warm air blower. After 3 min at $-15^{\circ} \mathrm{C}$, the reaction was quenched by the addition of water (100 ml) whereupon the temperature rose to $5^{\circ} \mathrm{C}$. The mixture was transferred to a separatory funnel and the aqueous layer was drawn off. The pale yellow ether solution was washed with saturated sodium bicarbonate (75 ml) and was dried over MgSO_{4} to which $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ had been added. The solution was filtered into a 1-l. flask and the solvent was removed on a rotary evaporator with the bath kept below $30^{\circ} \mathrm{C}$ until a volume of ca. 60 ml was reached. The weight of the solution was 63 g .
In another experiment, an aliquot of the ether solution was replaced by CCl_{4} by successive dilutions and evaporations in an N_{2} stream: NMR $\delta 1.00\left(\mathrm{~s}, 6\right.$, gem- CH_{3} 's), $1.65\left(\mathrm{~s}, 3\right.$, ring $\left.\mathrm{CH}_{3}\right), 1.86(\mathrm{~s}, 3$, vinyl $\left.\mathrm{CH}_{3}\right), 4.03\left(\mathrm{~d}, 2, J=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 5.63\left(\mathrm{t}, 1, J=8 \mathrm{~Hz}, \mathrm{H}_{2}\right)$, and 6.00 ppm (s, 2, H_{3} and H_{4}).
1-Chloro-3-methyl-5-(2,6,6,-trimethylcyclohexen-1-yl)pen-ta-2,4-diene (2a). The chloride was prepared in the same manner as the bromide $2 \mathbf{b}$ except ethereal HCl was used intead of HBr : NMR $\delta 1.00\left(\mathrm{~s}, 6\right.$, gem $-\mathrm{CH}_{3}$'s), $1.65\left(\mathrm{~s}, 3\right.$, ring $\left.\mathrm{CH}_{3}\right) 1.86\left(\mathrm{~s}, 3\right.$, vinyl $\left.\mathrm{CH}_{3}\right), 4.07$ $\left(\mathrm{d}, 2, J=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 5.53\left(\mathrm{t}, 1, J=8 \mathrm{~Hz}, \mathrm{H}_{2}\right), 6.00 \mathrm{ppm}\left(\mathrm{s}, 2, \mathrm{H}_{3}\right.$ and H_{4}).

Preparation of 1-Hydroxy-3,7-dimethyl-4-arylsulfonyl-9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,6,8-trienes (3). General Procedure for Butyllithium Alkylation with Chloride 2a. A solution of butyllithium in hexane was added over $30-45 \mathrm{~min}$ to a stirred, $-70^{\circ} \mathrm{C}$ solution of the C_{5} hydroxy sulfones 1 dissolved in THF. After an additional $30-40 \mathrm{~min}$, a solution of the C_{15} chloride 2 a was added
in THF at $-70^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-70^{\circ} \mathrm{C}$ for ca. 1 h . The product was isolated by allowing the reaction mixture to warm to $0^{\circ} \mathrm{C}$ over 15 min , pouring onto dilute HCl , and extracting with ethyl acetate or ether. After washing with bicarbonate and brine and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated to give the crude product which was chromatographed on alumina (III) or silica gel to give the pure C_{20} hydroxy sulfones 3 in the yields and with the properties given in Table III.

Alkylation with Other Bases (Table IV). The sulfone $1 \mathbf{b}$ and freshly prepared C_{15} halide $\mathbf{2 a}$ or $\mathbf{2 b}$ were stirred in THF at $-70^{\circ} \mathrm{C}$ during the addition of a freshly prepared solution of base over 15-60 min , or in the indicated experiments, the base was added at $-70^{\circ} \mathrm{C}$ to a THF solution of the hydroxy sulfone and the resulting solution was stirred for $15-45 \mathrm{~min}$ prior to addition of the freshly prepared C_{15} halide. Crude products were isolated by chromatography as described in the butyllithium procedure above. Yields of C_{20} sulfone $\mathbf{3 b}$ are given in Table IV.

Elimination Reactions (Table V). To a suspension of sodamide ($4-10 \mathrm{~mol}$) in liquid NH_{3} at reflux was added tert-butyl alcohol followed by an ether solution of the C_{20} hydroxy sulfones 3 (1 mol) (Table V). After $1-1.5 \mathrm{~h}, \mathrm{NH}_{4} \mathrm{Cl}$ was added and the NH_{3} was evaporated. Water was added to the residue and the mixture was extracted with ether. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give crude vitamin A alcohol. The crude alcohol was dissolved in pyridine and was treated at $-20^{\circ} \mathrm{C}$ with acetyl chloride in dichloromethane and stirred at -15 to $-20^{\circ} \mathrm{C}$ for 20 min . The mixture was poured onto ice water and was extracted with ether. The extracts were washed with bicarbonate, saturated cupric sulfate, and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. A crystal of BHT and a drop of pyridine were added and the solvent was removed to give crude vitamin A acetate which was assayed ${ }^{12,13}$ by uv and HPLC (Table V).

Preparation of Vitamin A Acetate through Process via Bromide 2 b and \boldsymbol{p}-Tolyl Sulfone $\mathbf{1 b}$. To a solution of hydroxy sulfone $1 \mathrm{~b}\left(25.0 \mathrm{~g}, 0.104 \mathrm{~mol}, \mathrm{mp} 59-64^{\circ} \mathrm{C}\right)$ prepared as described above in dry THF (125 ml) at $-70^{\circ} \mathrm{C}$ was added the crude bromide solution (2 b plus ether, 63 g) from 0.112 mol of vinyl $-\beta$-ionol (14). The solution was stirred in a dry ice-acetone bath and a THF solution of lithium diisopropylamide ($1.33 \mathrm{M}, 0.226 \mathrm{~mol}$) was added with vigorous stirring over 5 min . After 25 min at $-75^{\circ} \mathrm{C}$ the cooling bath was removed and the reaction mixture (at ca. $-60^{\circ} \mathrm{C}$) was poured into a separatory funnel containing 1 l. of ice and $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with ether $(2 \times 750 \mathrm{ml})$ and the combined extracts were washed with HCl $(2.4 \%, 1 \mathrm{l}$.$) and brine (2 \times 500 \mathrm{ml})$ and were dried $\left(\mathrm{MgSO}_{4}\right)$. Pyridine $(1.0 \mathrm{ml})$ was added, and the mixture was filtered and concentrated in vacuo to give a crude orange oil (50.71 g). To the crude oil was added hexane (50 ml) and the two-phase mixture was stirred and cooled to $-20^{\circ} \mathrm{C}$ for 2 h . The mixture was briefly cooled in a $-70^{\circ} \mathrm{C}$ bath to solidify the crude sulfone and the hexane was decanted. The trituration was repeated (50 ml of hexane) and the residual crude sulfone $(48.2 \mathrm{~g})$ was dissolved in ether (225 ml).
The solution was added over 15 min to a rapidly stirred suspension of powdered sodamide ($21.65 \mathrm{~g}, 0.555 \mathrm{~mol}$, Ventron) in 450 ml of liquid NH_{3} to which tert-butyl alcohol (96 ml) had been added. The mixture was stirred at reflux $\left(-33^{\circ} \mathrm{C}\right)$ for 70 min . Ammonium chloride (18.5 g) was added followed by ether (250 ml) and the NH_{3} was evaporated (adding ether as needed to replenish that lost by evaporation) until the mixture came to $0^{\circ} \mathrm{C}$. The mixture was poured into a separatory funnel containing ice water (500 ml). The organic layer was separated and the aqueous layer extracted with ether (300 ml). The combined organic solutions were washed with brine $(600,300 \mathrm{ml})$ and were dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the ether at aspirator pressure and the tert-butyl alcohol at 0.1 mm afforded crude vitamin A alcohol (35.62 g).

The crude material was dissolved in hexane (106 ml) and the solution was degassed (Ar) and triethylamine (21.61 ml) was added. Acetic anhydride (19.35 ml) was added to the solution over 15 min and the solution was degassed again and was stirred at room temperature overnight in the dark. The solution was then cooled to $0-10^{\circ} \mathrm{C}$ during the addition (10 min) of 10% sodium carbonate solution (106 ml). After stirring for 30 min at room temperature, additional 10% sodium carbonate (30 ml) was added to bring the pH of the aqueous layer to 7.5 The layers were separated and the hexane layer was washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 35 \mathrm{ml})$. The aqueous washes were extracted with hexane (30 ml)
and the combined hexane solutions were dried $\left(\mathrm{MgSO}_{4}\right)$. After filtration, pyridine (0.3 ml) and a few crystals of BHT were added and the hexane was removed on a rotary evaporator under subdued light at $<30^{\circ} \mathrm{C}$ to afford crude vitamin A acetate as a dark orange oil (36.34 g). The crude acetate was dissolved in methanol (35 ml) and the solution was stirred mechanically at $2-3^{\circ} \mathrm{C}$ and after 1 h was seeded with a crystal of all-trans vitamin A acetate whereupon crystallization

	Yield, \%		Purity (uv), \%	Isomer ratio (HPLC),
	Based on lb	Based on 16		$\begin{gathered} \text { 9-cis/ } \\ 9,13 \text {-di-cis } \end{gathered}$
Crude oil	106		73.4	98.5:1.5
Crystals	70.3	65.3	91.4	98.8:1.2

commenced. After 18 h at $2-3^{\circ} \mathrm{C}$ and 4 h at $-20^{\circ} \mathrm{C}$ the slurry was filtered and the crystals were washed with cold $\left(-20^{\circ} \mathrm{C}\right)$ methanol (35 ml). The solid was dried in vacuo to afford 24.01 g of light yellow, crystalline vitamin A acetate, mp $53-58^{\circ} \mathrm{C}$ (lit. ${ }^{14} 57-58^{\circ} \mathrm{C}$).

Recrystallization of a $10-\mathrm{g}$ sample of the $\mathrm{mp} 53-58^{\circ} \mathrm{C}$ acetate from 85:15 methanol-pentane at $0^{\circ} \mathrm{C}$ overnight afforded a first crop of 6.10 g of crystals, mp $56.5-60^{\circ} \mathrm{C}$, uv assay 99%.

Acknowledgment. We are grateful to members of our Physical Chemistry Department for spectral and microanalytical services, especially to Dr. C. G. Scott (Mr. F. Lo) for HPLC analyses and Dr. V. Toome for uv determinations. We also thank Dr. D. Andrews of our Technical Development Division for abundant supplies of vinyl- β-ionol. We are greatly indebted to Dr. Michael Rosenberger for the procedure to prepare C_{15} halides from vinyl- β-ionol.

Registry No.-1a, 59830-37-4; 1b, 59830-38-5; 1c, 59830-39-6; 1d, 59830-40-9; le, 59830-41-0; 1f, 59830-42-1; 2a ($\mathrm{X}=\mathrm{Cl}$), 55732-70-2; 2b (X = Br), 38987-92-7; 3a, 59830-43-2; 3b, 59830-44-3; 3c, 59830 45-4; 3d, 59839-81-5; 3e, 59830-46-5; $4(\mathrm{R}=\mathrm{H}), 68-26-8$; $4(\mathrm{R}=\mathrm{Ac})$, 127-47-9; 9-cis-4 ($\mathrm{R}=\mathrm{Ac}$), 29584-22-3; 9,13-di-cis-4 ($\mathrm{R}=\mathrm{Ac}$), 29444-27-7; 5, 24529-80-4; 6a, 59830-31-8; 6b, 59830-32-9; 6c, 59830-33-0; 6d, 59830-34-1; 6e, 59830-35-2; 6f, 59830-36-3; 8, 59830-48-7; 9, 59830-47-6; 10, 59830-49-8; trans-11, 3621-52-1; cis-11, 3927-06-8; trans-12, 59830-50-1; cis-12, 59830-51-2; 13, 59830-52-3; 14, 31821-03-1; sodium p-toluenesulfinate, 824-79-3; p-toluenesulfonyl chloride, 98-59-9; isoprene, 78-79-5; 1,4-dichloro-2-methyl-2butene, 29843-58-1.

References and Notes

(1) M. Julia and D. Arnould, Bull. Soc. Chim. Fr., 743 (1973).
(2) M. Julia and D. Arnould, Bull. Soc. Chim. Fr., 746 (1973).
(3) (a) P. Chabardes, M. Julia, and A. Menet, German Offen. 2305267 (Aug 16, 1973); (b) A. Fischli, H. Mayer, W. Simon, and H.J. Stroller, Helv. Chim. Acta, 59, 397 (1976); (c) P. S. Manchand, M. Rosenberger, G. Saucy, P. A. Wehrli, H. Wong, L. Chambers, M. P. Ferro and W. Jackson, Helv. Chim. Acta, 59, 387 (1976).
(4) W. Oroshnik and R. A. Mallory, J. Am. Chem. Soc., 72, 4608 (1950).
(5) W. E. Truce, C. Goralski, L. Christensen, and R. Bavry, J. Org. Chem., 35, 4217 (1970).
(6) M. Asscher and P. Vofski. J. Chem. Soc., 4962 (1964).
(7) D. Besserre, Bull. Soc. Chim. Fr., 963 (1965); A. Loffler, F. Norris, W. Taub K. L. Svandholt, and A. S. Dreiding, Helv. Chim. Acta, 53, 403 (1970).
(8) Y. Ishikava, Bull. Chem. Soc. Jpn., 37, 207 (1964); W. Oroshnik and A. D Mebane, J. Am. Chem. Soc., 71, 2062 (1949); H. Pasedach, W. Himmele L. Vogel, and K. Weinerth, German Patent 1768877 (1971); Chem. Abstr., 75, 129972w (1971).
(9) G. Wittig and H. Pommer, German Patent 954247 (1956); Chem. Abstr., 53, 2279 (1959); H. Pommer, W. Sarnecki, and G. Wittig, German Patent 1025869 (1958); Chem. Abstr., 54, 22713 (1960); L. A. Yanovskaya, Bull. Acad. Sci. USSR, Div. Chem. Sci., 8, 1333 (1960).
(10) M. Rosenberger, Belgian Patent 816747 (Dec 24, 1974).
(11) R. T. Amel and P. J. Marek, J. Org. Chem., 38, 3513 (1973)
(12) M. Vecchi, J. Vesely. and G. Osterhelt, J. Chromatogr., 83, 447 (1973).
(13) S. R. Ames, J. Am. Chem. Soc., 77, 4134 (1955); R. A. Morton and I. M. Heilbron. Biochem. J., 22, 987 (1928).
(14) U. Schwieter and O. Isler in "The Vitamins'", Vol. 1 W. H. Sebrell, Jr., and R. S. Harris, Ed., Academic Press, New York, N.Y., 1967, p 14.
(15) R. A. Ellison. J. Organomet. Chem., 209 (1972).

Synthesis of 1,3-Bishomoadamantane ${ }^{1}$

Judith S. Polley and Roger K. Murray, Jr.*

Departmert of Chemistry, University of Delaware, Newark, Delaware 19711
Received May 3, 1976

Abstract

Three routes leading to 1,3-bishomoadamantane (3) have been developed. Homologation of homoadamant-4-en-2-one (9) by the Evans modification of the Tiffeneau-Demjanov ring expansion reaction gives a $90: 10$ mixture of tricyclo[4.4.1.1 ${ }^{3,9}$]dodec-7-en-4-one (11) and tricyclo[4.4.1.1 ${ }^{3,9}$]dodec-7-en-5-one (12), respectively. Reduction of 11-12 with sodium borohydride, followed by treatment of the resulting mixture of alcohols with phosphoryl chloride in pyridine, provides tricyclo[4.4.1.1 ${ }^{3,9}$]dodeca-4,7-diene (23). Catalytic hydrogenation of 23 affords 3 . Alternatively, homologation of 2-homoadamantanone by the same sequence of reactions employed for $9 \rightarrow 11-12$ gives a mixture of tricyclo[4.4.1.1 ${ }^{3,9}$] dodecan-4-one (25) and tricyclo[4.4.1.1 ${ }^{3,9}$]dodecan-5-one (26) which upon WolffKishner reduction provides 3 . Finally, subjecting $25-26$ to the same sequence of reactions utilized for 11-12 $\rightarrow 23$ affords tricyclo[4.4.1.1 ${ }^{3,9}$]dodec-4-ene which gives 3 upon catalytic hydrogenation.

Insertion of a methylene group into any one of the carboncarbon bonds in adamantane (T_{d} symmetry) gives but a single "homoadamantane" (1). By contrast, analogous homologation of 1 ($C_{2 v}$ or C_{2} symmetry $)^{2}$ can afford three bishomoada-

mantanes (2-4). Sasaki has suggested the trivial names of 1,1-, 1,3 -, and 1,5 -bishomoadamantane, respectively, for these hydrocarbons. ${ }^{3}$ Unequivocal syntheses of 2^{3} and 4^{4} have appeared and these compounds have been thoroughly characterized. However, the only reported synthesis of 3 is tenuous. ${ }^{3}$ Treatment of an alcohol, presumed to have structure 5, with phosphorus tribromide in n-hexane-benzene at $5-30^{\circ} \mathrm{C}$ for 20 h gave in 25% yield a $6.5: 1$ mixture of 3 -bromomethylhomoadamantane (6) and a "bridgehead bromide" (7), respectively. Subsequent reduction of this bromide mixture with

tri- n-butyltin hydride in cyclohexane at $80-85^{\circ} \mathrm{C}$ for 20 h and with Raney Ni catalyst at $40-50^{\circ} \mathrm{C}$ for 2 days provided 3-
methylhomoadamantane (8) and a minor product in a ca. 7.5:1 ratio, respectively. Since the minor product was not 2 , it was presumed to be 3 . However, the minor product was not isolated or characterized. We now wish to report an independent and unequivocal synthesis of 1,3-bishomoadamantane.

Results and Discussion

The skeletal framework of 1,3-bishomoadamantane was readily generated by Tiffeneau-Demjanov ring expansion of homoadamant-4-en-2-one (9). ${ }^{5}$ Treatment of 9 with trimethylsilyl cyanide, ${ }^{6}$ followed by reduction of the resulting trimethylsilyl cyanohydrin ether with lithium aluminum hydride, gave β-aminomethyl alcohol 10 . The stereochemical

assignment of the substituents at $\mathrm{C}-2$ in 10 follows from our earlier observation that sodium borohydride reduction of enone 9 gives 2 -endo-homoadamant-4-enol (13) exclusively. ${ }^{5}$ Treatment of 10 with nitrous acid provided in ca. 75% overall yield from 9 a $90: 10$ mixture of tricyclo[4.4.1.1 ${ }^{3,9}$]dodec-7-en-4-one (11) and tricyclo[4.4.1.1 ${ }^{3,9}$]dodec-7-en-5-one (12), respectively. Each of these enones shows a nonconjugated carbonyl absorption in the infrared at $1696 \mathrm{~cm}^{-1}$. The assignment of the major product as the γ, δ-unsaturated ketone and the minor product as the β, γ-unsaturated ketone follows from the difference in chemical shift of the olefinic carbons in these compounds. As might well be expected, the difference
in chemical shift of the olefinic carbons in the γ, δ-unsaturated ketone (3.07 ppm) is significantly less than that for the $\beta, \gamma-$ unsaturated ketone (10.14 ppm). ${ }^{7}$ Moreover, the difference in chemical shift of the olefinic carbons in enone 9 , a β, γ unsaturated ketone with a structure closely related to 12 , is 10.84 ppm. ${ }^{7}$

Recently, Schleyer and his co-workers have noted that homologation of 2 -noradamantanone (14) with diazomethane proceeds with regioselective ring expansion of 14 to give 5protoadamantanone (17) in $90-96 \%$ yield and 95% purity with no detectable amount of 4-protoadamantanone (15) present. ${ }^{8}$

The complete migrational selectivity in intermediate 16 suggests a strong conformational preference of the two-carbon bridge in the protoadamantane products, i.e., migration of $\mathrm{C}_{1}-\mathrm{C}_{2}$ in 16 would lead to a transition state resembling ketone 15 , whereas $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond migration in 16 would give 17. Indeed, force field calculations on protoadamantane indicate that the conformation similar to 15 is ca. $6 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the conformation resembling $17 .{ }^{8}$ It would appear that a similar analysis might explain the preferred migration of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond in 18 to give 11 as the major product. It follows

18

12

11
that the preferred conformation of tricyclo[4.4.1.1 ${ }^{3,9}$]dodec4 -ene (27) probably resembles 11 rather than 12.
The synthesis of 1,3 -bishomoadamantadiene (23) from 11-12 is straightforward. Sodium borohydride reduction of a $90: 10$ mixture of 11-12 gives a mixture of the corresponding alcohols (19-20) which when treated with phosphoryl chloride in pyridine at $5-15^{\circ} \mathrm{C}$ affords a mixture of the corresponding chlorides (21-22) and diene 23 in a ratio of $45: 55$, respectively. If the mixture of reaction products is stirred with 1,5 -diaza-bicyclo[4.3.0]non-5-ene (DBN) at $110^{\circ} \mathrm{C}$ for 5 days, ${ }^{9}$ the exclusive product is 23 . By this sequence of reactions, 23 can be obtained in ca. 40% overall yield from 11-12. Consistent with the presence of a plane of symmetry in 23 , the ${ }^{13} \mathrm{C}$ NMR

spectrum of 23 contains only eight signals with four of the signals being twice as intense as the others.

Catalytic hydrogenation of diene 23 affords 1,3 -bishomoadamantane (3). The ${ }^{13} \mathrm{C}$ NMR spectrum of 3 is consistent with the assigned structure. Alternative synthetic routes to 3 are summarized in Scheme I. Tiffeneau-Demjanov ring

Scheme I

27

24

3
2. NOCl_{3}

3. HNO_{2}

25-26
expansion of 2 -homoadamantanone ${ }^{5}$ (24) by the same sequence of reactions employed for $9 \rightarrow 11-12$ provides in ca. 70% yield a mixture of tricyclo[4.4.1.1 ${ }^{3,9}$]dodecan-4-one (25) and tricyclo[4.4.1.1 ${ }^{3,9}$]dodecan-5-one (26). Attempts to separate 25 and 26 by GLC were unsuccessful. However, it is apparent that the mixture is highly enriched in 25 as catalytic reduction of a $90: 10$ mixture of 11-12 gives a mixture of $\mathbf{2 5}$ and 26 that cannot be differentiated from the product mixture obtained upon homologation of 24 . Wolff-Kishner reduction of $\mathbf{2 5 - 2 6}$ gives 3 .
A third route to 3 is via 1,3 -bishomoadamantene (27). Subjecting a mixture of $\mathbf{2 5}$ and 26 to the sequence of reactions employed for $11-12 \rightarrow 23$ gives 27 in ca. 50% yield. Olefin 27 can also be obtained by Clemmensen reduction of 11-12 or by dechlorination of 21-22 with lithium in tert -butyl alcoholtetrahydrofuran. ${ }^{10}$ Catalytic hydrogenation of 27 gives 3.

Experimental Section

Infrared spectra were obtained on Perkin-Elmer 180 or 337 spectrophotometers and proton magnetic resonance spectra were recorded with Varian A-60A or Perkin-Elmer R-12B $60-\mathrm{MHz}$ spectrometers. Carbon magnetic resonance spectra were taken at an operating frequency of 22.63 MHz on a Bruker HFX-90 spectrometer equipped for Fourier transform pulsed NMR with a Nicolet 1085 data system. Electron-impact mass spectra were obtained with a Du Pont CEC $21-110 \mathrm{~B}$ mass spectrometer. Unless noted otherwise, yields were obtained by integration of appropriate signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of the product(s) vs. the signal of a predetermined amount of added standard (generally trichloroethylene) and are regarded as being accurate to ca. $\pm 10 \%$. Elemental analyses were performed b-Micro-Analysis, Inc., Wilmington, Del.

Tricyclo[4.4.1.13,9]dodec-7-en-4-one (11) and Tricyclo[4.4.1.1 ${ }^{3,9}$]dodec-7-en-5-one (12). 18-Crown-6 (106 mg) and potassium cyanide (25 mg) were dissolved in 2 ml of anhydrous methanol. Evaporation of the solvent at reduced pressure gave a white, waxy solid. This catalyst and trimethylsilyl cyanide ($4.3 \mathrm{~g}, 0.04 \mathrm{~mol}$) were added to homoadamant-4-en-2-one ${ }^{5}(9,2.0 \mathrm{~g}, 12 \mathrm{mmol})$ and the reaction mixture was stirred at room temperature under nitrogen for 72 h . The excess trimethylsilyl cyanide was removed from the reaction mixture by evaporation at reduced pressure to give a rust-colored viscous oil which showed no carbonyl absorption in the infrared. The resulting unpurified α-silyloxynitrile was dissolved in 10 ml of anhydrous ether and added dropwise under nitrogen to a stirred slurry of $1.0 \mathrm{~g}(26 \mathrm{mmol})$ of lithium aluminum hydride in 30 ml of anhydrous ether at a rate which maintained a gentle reflux of the reaction mixture. Stirring was continued for 2 h after the addition had been completed. The excess lithium aluminum hydride present was destroyed by cautious dropwise addition of 1.0 ml of water, followed by 1.5 ml of 10% sodium hydroxide and 3.2 ml of water. Stirring was continued until a granular white precipitate formed. Filtration provided a clear yellow ether solution which was dried over anhydrous magnesium sulfate. Evaporation of the solvent at reduced pressure provided the crude amino alcohol as an orange solid.

A solution of $940 \mathrm{mg}(13.6 \mathrm{mmol})$ of sodium nitrite in 10 ml of water was added over 15 min to a solution of the crude amino alcohol in 110 ml of water and 4 ml of acetic acid which was maintained at $5^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at $5^{\circ} \mathrm{C}$ for 1 h and then at 20 ${ }^{\circ} \mathrm{C}$ for 1 h and $60^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with water $(100 \mathrm{ml})$, saturated with sodium chloride, and extracted with ether ($5 \times 75 \mathrm{ml}$). The combined ether extracts were washed with 5% aqueous sodium bicarbonate ($2 \times 50 \mathrm{ml}$) and saturated aqueous sodium chloride ($2 \times 50 \mathrm{ml}$) and then dried over anhydrous magnesium sulfate. Evaporation of the solvent at reduced pressure gave 1.68 g of a yellowish solid which by ${ }^{1} \mathrm{H}$ NMR analysis contained a ca. 75% overall yield of olefinic products. GLC analysis ($10 \mathrm{ft} \times 0.25 \mathrm{in}$. DC-550 column, $200^{\circ} \mathrm{C}$) showed the presence of three components in a ratio of ca. 1:1:8 with retention times of $7.2,11.5$, and 12.8 min , respectively. The products were purified by GLC (above conditions). The compound of shortest retention time proved to be unreacted 9 . The other minor component of the reaction mixture was isolated as a white solid and identified as $12: \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.5-5.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$ and 3.65-1.2 (br m, 14 H); $\nu\left(\mathrm{CCl}_{4}\right) 3020,2925,2850,1696,1655,1440,1275$, $1245,1150,1115,1080,1015$, and $930 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 81.77$; H, 9.15. Found: C, 82.04; H, 8.98 .

The major product was also obtained as a white solid and identified as 11: ${ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.19-5.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$ and 3.24-1.27 (br m, 14 H); ${ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 217.0(\mathrm{C}-4), 136.2$ (C-8), 133.0 (C-7), 51.7 (C-5), 44.9 (C-3), 39.5 (t), 35.5 (d), 34.5 (t), 33.2 $(\mathrm{t}), 32.7(\mathrm{~d}), 31.4(\mathrm{~d})$, and $30.7(\mathrm{t}) ; \nu\left(\mathrm{CCl}_{4}\right) 3015,2915,2900,2850,1696$, $1445,1330,1270,1190,1090$, and $1035 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 81.77$; H, 9.15. Found: C, 81.78; H, 9.09 .

Tricyclo[4.4.1.1 ${ }^{3.9}$]dodeca-4,7-diene (23). A solution of $1.53 \mathrm{~g}(8.7$ mmol) of a ca. 90:10 mixture of 11-12 in 20 ml of methanol was added dropwise to a stirred solution of $1.64 \mathrm{~g}(42.6 \mathrm{mmol})$ of sodium borohydride in 75 ml of methanol at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and then for 6 h at room temperature, at which point 150 ml of water was added. The resulting white suspension was saturated with sodium chloride and extracted with ether ($5 \times 100 \mathrm{ml}$). The combined ether extracts were dried over anhydrous magnesium sulfate and the solvent was evaporated at reduced pressure to give 1.52 g of a solid residue. Sublimation afforded 1.32 g (ca. 85% yield) of a white solid which was homogeneous by GLC analysis ($10 \mathrm{ft} \times 0.25 \mathrm{in}$. DC- 550 column, $200^{\circ} \mathrm{C}$). This material was purified by GLC to give a white solid which is presumed to be a mixture of tricyclo[4.4.1.1 ${ }^{3,9}$]-dodec-7-en-4-ol (19) and tricyclo[4.4.1.1 ${ }^{3,9}$]dodec-7-en-5-ol (20) that is highly enriched in 19: $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.38-5.77(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}$), 4.45-3.88 (br m, $1 \mathrm{H}, \mathrm{CHOH}$), and 2.88-1.25 (br m, 15 H); $\nu\left(\mathrm{CCl}_{4}\right) 3580,3010,2910,2850,1450,1400,1195,1130,1120,1075$, 1050 , and $1015 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 80.85$; $\mathrm{H}, 10.18$. Found: C, 80.79; H, 9.91.

Phosphoryl chloride ($1.604 \mathrm{~g}, 10.45 \mathrm{mmol}$) was added in five portions to a stirred solution of $1.24 \mathrm{~g}(6.97 \mathrm{mmol})$ of a mixture of 19 and

58 ml of pyridine. The temperature of the reaction mixture was
$5^{\circ} \mathrm{C}$ before each addition of phosphoryl chloride and ia. $15^{\circ} \mathrm{C}$ after each addition. When the addition was suspension was stirred for 12 h at $25^{\circ} \mathrm{C}$ and then for The reaction mixture was then cooled, diluted with 250 and extracted with ether ($4 \times 100 \mathrm{ml}$). The combined
ether extracts were washed with water and saturated aqueous sodium chloride, and then dried over anhydrous magnesium sulfate. Evaporation of the solvent at reduced pressure gave a yellowish oil which formed a precipitate when added to water. This precipitate was filtered and sublimed $\left(60^{\circ} \mathrm{C}, 5 \mathrm{~mm}\right)$ to afford 611 mg of a white solid. GLC analysis ($10 \mathrm{ft} \times 0.25 \mathrm{in}$. DC- 550 column, $200^{\circ} \mathrm{C}$) indicated two major products with retention times of 4.0 and 10.2 min and some very minor components of intermediate retention times. Purification by GLC (above conditions) gave 23 (shorter t_{R}) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.74-5.92(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$ and 3.3-1.3 (br m, 12 H$)$; ${ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 137.4,134.5,39.5,35.2,33.8,32.9,32.1$, and 27.2 in the ratio of 2:2:1:2:1:1:2:1, respectively; $\nu\left(\mathrm{CCl}_{4}\right) 3015,2905$, 2840, 1650, 1430, 950, and $865 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16}: \mathrm{C}, 89.94 ; \mathrm{H}, 10.06$. Found: C, $90.10 ; \mathrm{H}$, 9.76.

The product with $t_{\mathrm{R}} 10.2 \mathrm{~min}$ was also isolated by GLC (above conditions) as a white solid and is presumed to be a mixture of 7 chlorotricyclo[4.4.1.1. ${ }^{3,9}$]dodec-4-ene (21) and 8-chlorotricyclo[4.4.1.1 $1^{3,9}$]dodec-4-ene (22) that is highly enriched in $21: \delta_{\mathrm{Me}_{4} \mathrm{Si}}$ $\left(\mathrm{CDCl}_{3}\right) 6.48-5.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 4.74-4.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCl})$, and $3.22-1.08(\mathrm{br} \mathrm{m}, 14 \mathrm{H}) ; \nu\left(\mathrm{CCl}_{4}\right) 3010,2920,2850,1445,1195$, and 945 $\mathrm{cm}^{-1} ; m / e 196 / 198=\mathrm{P} / \mathrm{P}+2=3 / 1$. Treatment of this material with lithium in tert-butyl alcohol-tetrahydrofuran (see below) gave 27.

Analysis of the sublimed material by ${ }^{1} \mathrm{H}$ NMR showed that the ratio of 21-22:23 was 45:55.

The mixture of 21-22 and 23 (715 mg) and 1,5-diazabicyclo[4.3.0]-non-5-ene ($1.362 \mathrm{~g}, 10.98 \mathrm{mmol}$) was stirred under a nitrogen atmosphere at $110{ }^{\circ} \mathrm{C}$ for 5 days. The reaction mixture was cooled, quenched in 250 ml of water, and then extracted with ether $(6 \times 75$ $\mathrm{ml})$. The combined ether extracts were washed with water ($2 \times 50 \mathrm{ml}$) and saturated aqueous sodium chloride $(2 \times 50 \mathrm{ml})$ and dried over anhydrous magnesium sulfate. Evaporation of the solvent at reduced pressure provided a white solid which by GLC analysis ($10 \mathrm{ft} \times 0.25$ in. DC- 550 column, $200^{\circ} \mathrm{C}$) contained only 23 . Sublimation $\left(60^{\circ} \mathrm{C}\right.$, 4 mm) of the residue gave 484 mg ($3.03 \mathrm{mmol}, 74 \%$ yield) of 23.

Tricyclo[4.4.1.1 ${ }^{3,9}$]dodecan-4-one (25) and Tricyclo[4.4.1.1 ${ }^{3,9}$]dodecan-5-one (26). A. A solution of $60 \mathrm{mg}(0.34 \mathrm{mmol})$ of a $90: 10$ mixture of $11-12$ in 50 ml of ethanol was stirred with 20 mg of 10% palladium on charcoal under an atmosphere of hydrogen for 24 h . The reaction mixture was then filtered to remove the catalyst. The catalyst was washed several times with methanol and the filtrate and washings were combined. Evaporation of the solvent at reduced pressure gave 56 mg (93% yield) of a white solid. This material appeared to be homogeneous under a variety of GLC conditions: 10 ft $\times 0.25 \mathrm{in}$. DC- 550 column at 225,200 , and $175^{\circ} \mathrm{C}$; $10 \mathrm{ft} \times 0.25 \mathrm{in}$. SE- 30 column at $225^{\circ} \mathrm{C} ; 5 \mathrm{ft} \times 0.25 \mathrm{in}$. OV- 1 column at 225,200 , and $170^{\circ} \mathrm{C}$; and $5 \mathrm{ft} \times 0.25 \mathrm{in}$. Porapak Q column at 260,225 , and $200^{\circ} \mathrm{C}$. The ketone mixture was purified by GLC ($10 \mathrm{ft} \times 0.25 \mathrm{in}$. DC-550 column, $190^{\circ} \mathrm{C}$) to give a mixture of 25 and 26 as a white solid which was highly enriched in 25: $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCL}_{3}\right) 2.88-2.54(\mathrm{~m}, 2 \mathrm{H}$, $-\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$) and 2.54-1.28 (br m, 16 H); $\nu\left(\mathrm{CCl}_{4}\right) 2910,2850,1686$, $1445,1405,1355,1180,1075,1025$, and $930 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 80.85 ; \mathrm{H}, 10.18$. Found: C, $80.75 ; \mathrm{H}$, 10.21.
B. Treatment of $1.0 \mathrm{~g}(6.1 \mathrm{mmol})$ of 2-homoadamantanone ${ }^{5}$ (24) by the sequence of reactions described for $9 \rightarrow 11-12$ gave in ca. 70% yield (by ${ }^{1} \mathrm{H}$ NMR analysis) a white solid whose infrared and ${ }^{1} \mathrm{H}$ NMR spectra were identical with those obtained for the 90:10 mixture of 25-26 generated in A.

Tricyclo[4.4.1.1 ${ }^{3,9}$]dodec-4-ene (27). A. Reduction of a mixture of 250 mg of 25 and 26 with sodium borohydride by the procedure described for 11-12 \rightarrow 19-20 gave 253 mg of a white solid which was homogeneous by GLC analysis ($10 \mathrm{ft} \times 0.25 \mathrm{in}$. DC- 550 column, 200 ${ }^{\circ} \mathrm{C}$). This material was purified by GLC to give a white solid which is presumed to be a mixture of tricyclo[4.4.1.1 ${ }^{3,9}$]dodecan-4-ol (28) and tricyclo[4.4.1.1 ${ }^{3,9}$]dodecan-5-ol (29) that is highly enriched in 28: $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 4.21-3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})$ and 2.77-1.18 (br m, 19 $\mathrm{H}) ; \nu\left(\mathrm{CCl}_{4}\right) 3630,3400$ (br), 2905, 1450, 1050, and $1020 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 79.95 ; \mathrm{H}, 11.18$. Found: C, $80.03 ; \mathrm{H}$, 11.01 .

Treatment of 187 mg of a mixture of 28 and 29 according to the conditions employed for $19-\mathbf{2 0} \rightarrow \mathbf{2 3}$ afforded 87 mg (51% yield) of 27 which was isolated by GLC ($10 \mathrm{ft} \times 0.25 \mathrm{in}$. DC-550 column, 175 $\left.{ }^{\circ} \mathrm{C}\right)$ as a white solid: $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.30-5.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$ and 2.93-1.25 (br m, 16 H); $\nu\left(\mathrm{CCl}_{4}\right) 3010,2900,2845,1445,1190,1155$, $1000,950,940$, and $930 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18}$: C, 88.82; H, 11.18. Found: C, 89.07; H, 10.98.
B. A solution of 50 mg of a $90: 10$ mixture of $11-12$ in 1 ml of toluene was added to a mixture of 400 mg of amalgamated zinc, 0.5 ml of water,
and 1 ml of hydrochloric acid. The resulting mixture was vigorously refluxed for 4 days with portions of HCl and amalgamated zinc being added every 6 h . After cooling, the reaction mixture was diluted with 40 ml of water and extracted with ether ($6 \times 25 \mathrm{ml}$). The combined ether extracts were washed several times with 5% aqueous sodium bicarbonate, then with saturated aqueous sodium chloride ($2 \times 25 \mathrm{ml}$), and finally dried over anhydrous magnesium sulfate. Evaporation of the solvent at reduced pressure gave a white solid which GLC analysis ($10 \mathrm{ft} \times 0.25 \mathrm{in}$. DC- 550 column, $200^{\circ} \mathrm{C}$) showed contained some unreacted starting material, a minor component which was not identified, and a major component with a relatively short retention time. Purification of the major product by GLC (above conditions) gave a white solid whose ir spectrum was identical with that of 27 obtained by procedure A.
C. Lithium ($54 \mathrm{mg}, 7.7 \mathrm{mmol}$) was added to a stirred solution of 19 mg (0.1 mmol) of a mixture of 21 and 22 in 2 ml of tert-butyl alcohol and 10 ml of dry tetrahydrofuran. The reaction mixture was stirred at room temperature for 3.5 h . Water (10 ml) was then added and stirring was continued for 30 min . The resulting solution was extracted with ether $(3 \times 40 \mathrm{ml})$ and the combined ether extracts were dried over anhydrous magnesium sulfate. Evaporation of the solvent at reduced pressure gave a white solid which by GLC analysis ($10 \mathrm{ft} \times 0.25 \mathrm{in}$. DC-550 column, $200^{\circ} \mathrm{C}$) contained a trace of starting material and a single major product. Purification of the product by GLC provided 3.5 mg of a white solid whose mass spectrum was identical with that of 27 obtained by procedure A.

Tricyclo[4.4.1.1 ${ }^{3,9}$]dodecane (3). A. A solution of 110 mg of 23 in 50 ml of ethanol was stirred at room temperature with 660 mg of 10% palladium on charcoal under an atmosphere of hydrogen for 24 h . The reaction mixture was filtered to remove the catalyst and the catalyst was washed several times with methanol. The filtrate and washings were combined and the methanol was removed by distillation to leave a solid residue which by GLC analysis ($10 \mathrm{ft} \times 0.25 \mathrm{in}$. DC- 550 column, $175{ }^{\circ} \mathrm{C}$) contained a single component. Isolation of the product by GLC (above conditions) gave 47 mg of 3 as a white solid: ${ }^{1} \mathrm{H}$ NMR. $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 2.5-1.4$ (br m); ${ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 44.65(\mathrm{t}), 40.99$ (t), $36.62(\mathrm{~d}), 34.35(\mathrm{t}), 32.57(\mathrm{~d}), 31.76(\mathrm{t}), 31.06(\mathrm{t})$, and $29.55(\mathrm{~d})$ in the ratio of $1: 1: 1: 2: 1: 2: 2: 2$, respectively; $\nu\left(\mathrm{CCl}_{4}\right) 2910,1450,1260,1200$, 1140, 1110, and $1060 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20}$: C, 87.73; H, 12.27. Found: C, 87.84; H, 12.09.
B. Hydrogenation of 27 under the conditions employed for $\mathbf{2 3} \rightarrow$ 3, followed by purification of the product by GLC, provided a white solid whose mass spectrum was identical with that of 3 obtained by procedure A.
C. A solution of 50 mg of $\mathbf{2 5 - 2 6}, 264 \mathrm{mg}$ of potassium hydroxide, and 230 mg of 95% hydrazine in 1.5 ml of diethylene glycol was heated with stirring at $110^{\circ} \mathrm{C}$ for 30 min , and then for 3 h at $180^{\circ} \mathrm{C}$. During this time, a white solid appeared on the water-cooled condenser. The system was cooled and the material on the condenser was dissolved in ether and then dried over anhydrous magnesium sulfate. Evaporation of the solvent at reduced pressure afforded 30 mg of a white solid which by GLC analysis ($10 \mathrm{ft} \times 0.25 \mathrm{in}$. DC- 550 column, $175^{\circ} \mathrm{C}$) was homogeneous. Isolation of the product by GLC gave a white solid whose ir spectrum was identical with that of 3 obtained by procedure A.

Acknowledgment. This work was supported by grants from the Research Corporation and the University of Delaware Research Foundation.

Registry No.-3, 36071-59-7; 9, 55638-05-6; 11, 59839-97-3; 12, 59839-98-4; 19, 59839-99-5; 20, 59840-00-5; 21, 59840-01-6; 22, 59840-02-7; 23, 59840-03-8; 24, 55638-10-3; 25, 59840-04-9; 26, 59840-05-0; 27, 59840-06-1; 28, 59840-07-2; 29, 59840-08-3; phosphoryl chloride, 10025-87-3.

References and Notes

(1) A preliminary report of this work was presented at the 10th Middle Atlantic Regional Meeting of the American Chemical Society, Philadelphia, Pa., Feb 25, 1976.
(2) S. H. Liggero, P. v. R. Schieyer, and K. C. Ramey, Spectrosc. Lett., 2, 197 (1969).
(3) T. Sasaki, S. Eguchi, T. Toru, and E. K. Itoh, J. Am. Chem. Soc., 94, 1357 (1972).
(4) F. Stepanow, M. Nowikowa, and A. Jurtschenko, Synthesis, 653 (1971); D. Skare and Z. Majerski, Tetrahedron Lett., 4887 (1972); H. Gerlach, Helv. Chim. Acta, 55, 2962 (1972)
(5) R. K. Murray, Jr., K. A. Babiak, and T. K. Morgan, Jr., J. Org. Chem., 40, 2463 (1975)
(6) D. A. Evans, G. L. Carroll, and L. K. Truesdale, J. Org. Chem., 39, 914 (1974).
(7) ${ }^{13} \mathrm{C}$ NMR chemical shifts are given in parts per million from $\mathrm{Me}_{4} \mathrm{Si}: 9, \mathrm{C}-4$, 129.70; C-5, 140.54; 11, C-7, 133.10; C-8, 136.17; 12, C-7, 128.84; C-8, 138.98
(8) M. Farcasiu, D. Farcasiu, J. Slutsky, and P. v. R. Schleyer, Tetrahedron Lett., 4059 (1974).
(9) B. D. Mookherjee, R. R. Patel, and W. O. Ledig, J. Org. Chem., 36, 4124 (1971).
(10) P. Bruck, D. Thompson, and S. Winstein, Chem. Ino. (London), 405 (1960).

Kinetics and Mechanism of Acidic and Alkaline Hydrolysis of Hindered \boldsymbol{N}-Methylarylhydroxamic Acids

D. C. Berndt* and I. E. Ward
Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
Received January 22, 1976

Abstract

Thg kinetics of acidic and basic catalyzed hydrolysis of ortho-substituted N-methylbenzohydroxamic acids have been investigated at moderate acidity and high basicity. The results are interpreted in terms of a bimolecular mechanism for acidic catalysis and as reaction of the hydroxamic acid conjugate base with water and hydroxide ion for basic catalysis in the catalytic range investigated. Specific salt effects are reported.

We have investigated the kinetics and mechanism of the acidic and basic catalyzed hydrolysis of hindered benzohydroxamic acids in order to learn the effect of this increased hindrance upon the mechanisms of the reactions, the range of catalyst concentration required, and the importance of salt effects at these higher concentrations. The increased hindrance is provided by use of ortho-substituted N-methylbenzohydroxamic acids in comparison to unsubstituted benzohydroxamic acid. Smith and Yates ${ }^{1}$ have studied the acid-catalyzed hydrolysis of benzamide, N-methyl- and N, N-dimethylbenzamide and have inferred from their data that all three compounds probably do not react via the oxygen
protonated form or that benzamide does hydrolyze via oxygen protonation while the other N -substituted compounds do not. McClelland 's ${ }^{2}$ recent report of small but detectable ${ }^{18} \mathrm{O}$ exchange for the acidic hydrolysis of benzamide supports the latter conclusion.

Our present results indicate that there is no mechanism change in the acid-catalyzed hydrolysis upon introduction of an N -methyl and ortho groups in hydroxamic acids. There appears to be a significant rate of reaction in the absence of added acid or alkali at high salt concentrations. Specific sal effects are also observed.

Acidic Catalysis. Equation 1 expresses the reaction ,

Table I. Rate Data for Acid-Catalyzed Hydrolysis of 2- and 4-Methyl- N-methylbenzohydroxamic Acids

HCl, M	Temp, ${ }^{\circ} \mathrm{C}$	$10^{5} k^{a}$
$2-$ Methyl- N-methylbenzohydroxamic Acid		
0.149	90.0	1.48
0.150	90.0	1.33^{b}
0.225	90.0	2.04
0.451	90.0	2.99
0.595	90.0	3.78
0.751	90.0	4.61
0.751	80.0	1.86
0.751	70.0	0.818
$4-$ Methyl- N-methylbenzohydroxamic Acid		
0.225	84.0	29.0
0.225	71.7	10.8
0.225	61.1	4.16

${ }^{a}$ Average pseudo-first-order rate constant, s^{-1}. Ionic strength maintained at 0.751 M with KCl except as noted. b Ionic strength maintained with CsCl .

Table II. Activation Parameters ${ }^{a}$ for Acidic Hydrolysis of

R_{1}	R_{2}	R_{3}	$\Delta \mathrm{H}^{\dagger}, \mathrm{kcal} / \mathrm{mol}$	$\Delta S^{\ddagger}, \mathrm{eu}$
CH_{3}	CH_{3}	H	20.8	-21.2
CH_{3}	H	CH	19.4	-17.8
H	H	H	19.4	-20.2^{b}
H	H	H	20.2	-17.9^{c}

a Calculated from second-order rate constants. ${ }^{b}$ Calculated from data from ref 4 at two temperatures, HCl , ionic strength $0.577 \mathrm{M}(\mathrm{KCl})$. c Reference $5,1.00 \mathrm{M} \mathrm{HClO}_{4}$

acidic conditions. The reaction is cleanly pseudo-first-order in the presence of excess hydrochloric acid (Table I). A graph of the data for the o-methyl compound in Table I shows first-order dependence upon hydrochloric acid (extrapolation of the data outside the range studied is unwarranted owing to the specific salt effects discussed below). This dependence is similar to that observed for the hydrolysis of unsubstituted hydroxamic acids at comparable acidities. ${ }^{3-5}$ Table II compares activation parameters for the compounds in Table I with those for the acid-catalyzed hydrolysis of benzohydroxamic acid under similar conditions.

These results are consistent with the acid-catalyzed bimolecular mechanism reported before for the unhindered RCONHOH compounds. ${ }^{3-5}$ A tetrahedral intermediate likely is involved analogous to benzamide hydrolysis. ${ }^{2,6}$ The activation parameters listed in Table II are in the usual range ${ }^{1}$ for the bimolecular mechanism for amides. Furthermore, the enthalpy of activation is higher and the entropy of activation is more negative for the o-methyl- N-methylbenzohydroxamic acid hydrolysis than for the hydrolysis of the corresponding p-methyl compound. These results are consistent with the lecular mechanism with the more hindered compound higher enthalpy and lower entropy of activa-
er reaction of 2 -methyl- N-methylbenzohyd occurs in the absence of added hydrochloric se presence of 0.751 M potassium chloride and is

Table III. Rate Data for Base-Catalyzed Hydrolysis of 2-Chloro- N-methylbenzohydroxamic Acid at $90.0^{\circ} \mathrm{C}$

$\mathrm{NaOH}, \mathrm{M}$	$10^{6} k_{\mathrm{obsd}^{a}}$
7.31	2.57
6.58	2.28
5.47	1.89
4.40	1.44
3.23	0.92

a Average pseudo-first-order rate constant, s^{-1}. Ionic strength maintained at 7.31 M with NaCl .
about 6% of the rate observed with 0.149 N hydrochloric acid at ionic strength 0.751 M .

Specific ion effects ${ }^{7}$ as well as ionic strength effects on reaction rates are expected at moderate salt concentrations. Specific cation effects, outside experimental error, can be seen by comparing the first two entries in Table I. Nonlinear specific cation effects have been reported for the acidic hydrolysis of 4-nitroacetanilide. ${ }^{8}$

Basic Catalysis. Pseudo-first-order rates are observed according to the equation $-\mathrm{d} S / \mathrm{d} t=k_{\text {obsd }} S$, where S is the total stoichiometric amount of hydroxamic acid present at any time. The data for N-methyl-2-chlorobenzohydroxamic acid are in Table III. A graph of this data shows linear dependence of the pseudo-first-order rate constant upon hydroxide ion concentration (extrapolation of the data outside the range studied is unwarranted owing to specific ion effects-see below).

$$
\begin{gathered}
\mathrm{ArCON}\left(\mathrm{CH}_{3}\right) \mathrm{OH}+\overline{\mathrm{O}} \mathrm{H} \rightleftharpoons \operatorname{ArCON}\left(\mathrm{CH}_{3}\right) \mathrm{O}^{-}+\mathrm{H}_{2} \mathrm{O} \\
\mathbf{1}
\end{gathered}
$$

Under the strongly alkaline conditions used in the kinetic studies 1 will be almost completely converted into 2 . (The $\mathrm{p} K_{a}$'s of N-tert-butylbenzohydroxamic ${ }^{9}$ and N-phenylbenzohydroxamic ${ }^{10}$ acids are 10.1 and 9.15 , respectively.) A reasonable mechanism consistent with the data is represented by eq $3-5$.

$$
\begin{align*}
& \mathbf{1}+\overline{\mathrm{O}} \mathrm{H} \stackrel{K}{\rightleftharpoons} \mathbf{2}+\mathrm{H}_{2} \mathrm{O} \tag{3}\\
& \mathbf{2}+\overline{\mathrm{O}} \mathrm{H} \xrightarrow{k_{2}} \text { products } \tag{4}\\
& \mathbf{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{k_{3}} \text { products } \tag{5}
\end{align*}
$$

The linear dependence upon hydroxide concentration for N -methyl-2-chlorobenzohydroxamic acid is similar to the rate law obtained at high base strengths for hydrolysis of the unhindered benzohydroxamic acid. ${ }^{4}$ Thus the mechanisms for hydrolysis of these compounds in strong base are probably similar. Tetrahedral intermediates presumably are involved as they are in alkaline hydrolyses of amides; ${ }^{6,11}$ however, the kinetic results cannot distinguish between these possibilities.

Ahmad, Socha, and Vecera ${ }^{12}$ have recently reported a study of the alkaline hydrolysis of benzohydroxamic acid over a wide hydroxide ion concentration range and have considered various mechanisms. They have incompletely and incorrectly graphed our earlier data ${ }^{4}$ on the alkaline hydrolysis of benzohydroxamic acid and state that attack of hydroxide on the acid anion is insignificant. Our present and earlier work ${ }^{4}$ demonstrates a positive slope for a graph of the pseudo-first-order constant vs. hydroxide concentration in the range studied as does Ahmad and co-worker's curve 2 of their own Figure 1 for benzohydroxamic acid. Mechanisms will of course vary as the hydroxide ion concentration range changes; however, for the hydroxide ion concentration ranges reported in our earlier work and herein the hydroxamic acids will exist as

Table IV. Rate Data for the Uncatalyzed Hydrolysis of 2-Chloro- N-methylbenzohydroxamic Acid in the Presence of Salts at $90.0^{\circ} \mathrm{C}$

Salt	Concn, M	$10^{6} k_{\mathrm{obsd}^{a}}$
NaCl	3.00	1.11
NaCl	6.31	1.94
NaBr	6.31	1.33
a Average first-order rate constant, s^{-1}.		

${ }^{a}$ Average first-order rate constant, s^{-1}.
their conjugate bases and the rate laws are best interpreted according to the mechanism of eq $3-5$ for that range.

Specific salt effects ${ }^{7}$ are expected at the high concentrations employed to maintain constant ionic strength in the alkaline hydrolyses. These effects are illustrated in Table IV. Note that the rate constants reported in Table IV are for reactions in the absence of any added hydroxide. Direct comparison of the rate constants in Tables III and IV is not possible since in one case the reaction involves the hydroxamic acid reacting with water and in the other its conjugate base reacting with hydroxide ion or water. These two cases involve different charge types; however, at the concentrations of catalytic acid or base employed in this study, there will be specific salt effects for all charge types.

Experimental Section

The N-methylbenzohydroxamic acids were synthesized by adaptation of the method used by Ulrich and Sayigh ${ }^{13}$ for the preparation of N-methylacetohydroxamic acid. ${ }^{1} \mathrm{H}$ NMR and ir spectra are consistent with the structures listed. Analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn.
N-Methyl-2-methylbenzohydroxamic acid, crystallized successively from benzene and carbon tetrachloride, had mp $120-121^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$: C, $65.45 ; \mathrm{H}, 6.72$; $\mathrm{N}, 8.48$. Found: C, 65.14 ; H , 6.48; N, 8.47.

N-Methyl-2-chlorobenzohydroxamic acid, crystallized as above,
had mp 118-119 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2}$: $\mathrm{C}, 51.77$; $\mathrm{H}, 4.34$; N, 7.55. Found: C, 51.61 ; H, 4.38; N, 7.59.
N-Methyl-4-methylbenzohydroxamic acid had mp 119-120 ${ }^{\circ} \mathrm{C}$ dec (lit. ${ }^{14} 122^{\circ} \mathrm{C}$).

Kinetic measurements were made by the spectrophotometric method reported previously ${ }^{4}$ employing a Beckman DU spectrophotometer set at 520 nm for the 2-methyl- and 4-methyl- N-methylbenzohydroxamic acid runs and at 500 nm for the N-methyl-2chlorobenzohydroxamic acid runs. The acidity of the FeCl_{3} solution was adjusted as before ${ }^{4}$ for the alkaline runs.

Pseudo-first-order rate constants were obtained from the slope of the appropriate graph ${ }^{4}$ with numerical values computed by the method of least squares.

Each rate constant listed in Tables I, III, and IV is the average of two to five runs. Average deviation from the mean is less than 4.5%. Temperature control was $\pm 0.1^{\circ} \mathrm{C}$. Initial hydroxamic acid concentrations were 0.01 M .

Registry No.-2-Methyl- N-methylbenzohydroxamic acid, 24962-87-6; 4-methyl- N-methylbenzohydroxamic acid, 1613-85-0; benzohydroxamic acid, 495-18-1; 2-chloro- N-methylbenzohydroxamic acid, 59686-63-4.

References and Notes

(1) C. R. Smith and K. Yates, J. Am. Chem. Soc., 94, 8811 (1972).
(2) R. A. McClelland, J. Am. Chem. Soc., 97, 5281 (1975).
(3) D. C. Berndt and J. K. Sharp, J. Org. Chem., 38, 396 (1973).
(4) D. C. Berndt and R. L. Fuller, J. Org. Chem., 31, 3312 (1966)
(5) A. J. Buglass, K. Hudson, and J. G. Tillett, J. Chem. Soc. B, 123 (1971).
(6) C. O'Connor, Q. Rev., Chem. Soc., 24, 553 (1970).
(7) L. P. Hammett, "Physical Organic Chemistry", 2d ed, McGraw-Hill, New York, N.Y., 1970, Chapter 7.
(8) P. Van Brandt, A. Bruylants, and S. Leroy, Anal. Quim., 70, 1172 (1974).
(9) O. Exner and W. Simon, Collect. Czech. Chem. Commun., 30, 4078 (1965).
(10) W. Cohen and B. F. Erlanger, J. Am. Chem. Soc., 82, 3928 (1960).
(11) U. Meresaar and L. Bratt, Acta Chem. Scand., Ser. A, 28. 715 (1974).
(12) A. Ahmad, J. Socha, and M. Vecera, Collect. Czech. Chem. Commun., 39, 3293 (1974).
(13) H. Ulrich and A. A. R. Sayigh, J. Chem. Soc., 1098 (1963).
(14) O. Exner and J. Holubek, Collect. Czech. Chem. Commun., 30, 940 (1965).

Base-Catalyzed Hydration of α, β-Unsaturated Ketones

James L. Jensen* and Hassan Hashtroudi
Chemistry Department, California State University, Long Beach, Long Beach, California 90840

Received February 17, 1976

Abstract

Homologues of 3-buten-2-one hydrate in dilute aqueous base to produce aldols, which in some cases undergo retro aldol condensation under the hydration conditions. Hydration of 3 -busen-2-one proceeds with rate-controlling attack of hydroxide ion on $\mathrm{C}_{4}, k_{\mathrm{H}_{2} \mathrm{O}} / k_{\mathrm{D}_{2} \mathrm{O}}=0.6, \Delta H^{\ddagger}=13.6 \mathrm{kcal} \mathrm{mol}^{-1}$, and $\Delta S^{\ddagger}=-30.1$ eu. Hydration of 4 -methyl-3-penten-2-one is 10^{-2} as fast and proceeds via rate-controlling proton transfer from water to C_{3} of the enolate ion formed by attack of hydroxide ion at C_{4} of the substrate, $k_{\mathrm{H}_{2} \mathrm{O}} / k_{\mathrm{D}_{2} \mathrm{O}}=1.1, \Delta H^{\ddagger}=15.2 \mathrm{kcal} \mathrm{mol}^{-1}$, and ΔS^{-} $=-25.6$ eu. Rates of hydration, dehydration, and retroaldol condensation were competitive for 3-penten-2-one and were calculated to be $7.6 \times 10^{-3}, 2.3 \times 10^{-3}$, and $1.6 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, respectively, at $40^{\circ} \mathrm{C}$. Equilibrium ratios calculated for the dehydration of aldols, [alkenone]/[aldol], show that dehydration is thermodynamically unfavorable for aldol condensation products of aliphatic aldehydes and ketones; kinetic measurements show the rate of dehydration to be comparable to or faster than the aldol condensation in many cf these cases. Thus self-condensation of acetone (using a Soxhlet extractor) leads to the aldol product rather than the dehydration product for thermodynamic rather than kinetic reasons.

The acid-catalyzed hydration of α, β-unsaturated carbonyl compounds has received considerable study in recent years. ${ }^{1-5}$ For a variety of aliphatic 3 -alken- 2 -ones the hydration proceeds via a 1,4 addition of water to the conjugated $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ system followed by rate-controlling proton transfer to the enol thus formed. The hydration is characterized by a large solvent isotope effect (indicative of a primary isotope effect) and a large negative entropy (indicative of the covalent binding of a solvent molecule to the substrate prior
to the rate-con rolling step). The change in rate with acidity shows the carbonyl group to be significantly protonated in acidities beyond $4-6 \mathrm{M} \mathrm{HClO}_{4} .{ }^{5}$ The $\mathrm{p} K_{\mathrm{a}}$'s of several α, β unsaturated compounds have been measured recently and found to be adequately described by the Bunnett-Olson treatment. ${ }^{6}$

Studies of base-catalyzed hydrations are rare; apparent ${ }^{\prime}$ there are only two previous reports of base-catalyzed addit; of water to α, β-unsaturated carbonyl systems. Fedor
shown that 4 -aryloxy-3-buten-2-ones hydrate in base via rate-controlling attack of hydroxide ion (Michael addition). This hydration is characterized by very small substituent effects ($\rho=0.1$) and solvent isotope effects ($k_{\mathrm{H}_{2} \mathrm{O}} / k_{\mathrm{D}_{2} \mathrm{O}}=0.94$). In a more limited study, Vik^{7} has shown propenals to be hydrated in base with a large negative entropy of activation. Base-catalyzed hydration is thus seen to be a two-step process formally resembling a Michael addition (Scheme I).

Scheme I

The above results form a basis for reporting a study of the base-catalyzed hydration of the same 3 -alken- 2 -ones for which the acid-catalyzed mechanism has been elucidated. ${ }^{5}$ Of particular interest is determination of the rate-controlling step (k_{1} or k_{2}) and elucidation of factors leading to a change in rate-determining step.

Experimental Section

All substrates were obtained from Aldrish Chemical Co. and were molecularly distilled just prior to each kinetic run. The general kinetic method (including calculation of rate constants for reversible reactions and calculation of activation parameters) was that described earlier. ${ }^{8}$ Sodium deuterioxide solutions were made by diluting a 40% sodium deuterioxide solution (99% D, Stohler Isotope Chemicals) with deuterium oxide ($99.8 \% \mathrm{D}_{2}$ O, Stohler Isotope Chemicals).

Results

The reactions observed are reversible and at equilibrium the concentration of 3 -alken-2-one is low (Scheme II).

Scheme II

Pseudo-first-order rate constants were measured spectrophotometrically in the traditional manner. ${ }^{8}$

Equilibrium ratios for step 1, [4-hydroxy-2-alkanone]/[3-alken-2-one], are known to be large from the earlier studies in acid solution. ${ }^{5}$ Ratios vary from 3 to 20 depending on substrate and temperature (though exact comparisons cannot be made because of medium and acidity effects introduced by the rather concentrated acid solution required for acid-catalyzed hydration to occur at a convenient rate). ${ }^{5}$ Equilibrium ratios for step 2, [cleavage products] ${ }^{2} /[4$-hydroxy- 2 -alkanone], are also known to be large. For example, the equilibrium for benzaldehyde + acetone and 10^{4} for acetone + .ge products identified). Because of (a) the stration term in the numerator of the equilibstep 2, (b) the low substrate concentration $\mathrm{l}, 10^{-4} \mathrm{M}$), and (c) the large magnitude of the ratios for steps 1 and 2 , tae overall equilibrium
in Scheme II lies almost totally (99.9\%) to the right when the reverse aldol reaction (step 2) is kinetically important.

Experimentally, then, the observation is that about 5-10\% of the reactant remains at equilibrium (similar to the acidcatalyzed hydration) for those cases where the reverse aldol condensation is not kinetically important whereas no reactant remains when it is kinetically important. Thus the conclusion is that reversible base-catalyzed hydration (step 1) occurs with 3 -buten-2-one and 3-methyl-3-buten-2-one whereas a reverse aldol condensation (step 2) is predominant in determining the products of hydration of 4 -methyl-3-penten-2-one. For 3 -penten-2-one the two processes (steps 1 and 2) are competitive. The kinetic observations are a smooth pseudo-first-order partial disappearance of 3 -buten-2-one and 3-methyl-3-buten-2-one, a smooth pseudo-first-order total disappearance of 4-methyl-3-penten-2-one, and a biphasic pseudo-first-order total disappearance of 3-penten-2-one.
Thus

$$
\begin{equation*}
k_{\mathrm{obsd}}=k_{\mathrm{hyd}}+k_{\mathrm{dehyd}} \tag{1}
\end{equation*}
$$

for 3-buten-2-one and 3-methyl-3-buten-2-one

$$
\begin{equation*}
k_{\mathrm{obsd}}=k_{\mathrm{hyd}} \tag{2}
\end{equation*}
$$

for 4-methyl-3-penten-2-one
As eq 1 and 2 show, incursion of the reverse aldol condensation actually simplifies the measurement of rate of hydration by "draining off" the hydration product as formed.
Sorting out the experimental rate expression for hydration of 3-penten-2-one is somewhat more complex because of the biphasic nature of the rate plot. Early in the reaction (prior to attainment of steady-state concentration levels), the rate constant measured is essentially that expressed by eq 1 above. For the latter portion of the reaction, however, steady-state conditions apply and the appropriate rate expression is given by eq 3 (where k_{2} is the rate constant for the reverse aldol condensation, step 2 of Scheme II).

$$
\begin{equation*}
k_{\text {obsd }}=\frac{k_{\text {hyd }} k_{2}}{k_{\text {dehyd }}+k_{2}} \tag{3}
\end{equation*}
$$

All of the rate constants in eq 3 are calculable: $k_{\text {obsd }}$ and $k_{\text {hyd }}$ $+k_{\text {dehyd }}$ are measured experimentally; $k_{\text {hyd }}$ and $k_{\text {dehyd }}$ can be calculated from $k_{\text {hyd }}+k_{\text {dehyd }}$ and the equilibrium ratio. (Equilibrium ratio $=k_{\text {hyd }} / k_{\text {dehyd }}$ and was measured in the acid-catalyzed hydration study; ${ }^{5}$ since the position of an equilibrium is independent of pathway, equilibrium ratios for acid- and base-catalyzed hydrations should be equal.) Thus for 3-penten-2-one in 0.10 N NaOH at $40^{\circ} \mathrm{C}, k_{\text {obsd }}=5.0 \times$ $10^{-5} \mathrm{~s}^{-1}, k_{\text {hyd }}=7.6 \times 10^{-4} \mathrm{~s}^{-1}, k_{\text {dehyd }}=2.3 \times 10^{-4} \mathrm{~s}^{-1}, k_{2}=$ $1.6 \times 10^{-5} \mathrm{~s}^{-1}$. The value of $k_{\text {dehyd }}$ is probably smaller than calculated because of the medium effect on the measured equilibrium ratio; i.e., $k_{\text {hyd }} / k_{\text {dehyd }}=3.35$ at $40^{\circ} \mathrm{C}$ in 1.05 M HClO_{4} but the ratio increases as acidity decreases (a medium effect). ${ }^{5}$ The net conclusion is that $k_{\text {dehyd }}$ and k_{2} are of the same order of magnitude; however, $k_{\text {dehyd }}$ is slightly the larger.

Subsequent discussion is based on values of $k_{\text {hyd }}$ (Tables I and II) calculated from $k_{\text {obsd }}$ using eq $1-5$, as appropriate.

$$
\begin{equation*}
\frac{[4 \text {-hydroxy-2-alkanone] }}{[3 \text {-alken-2-one] }}=\frac{A_{0}-A_{e}}{A_{e}} \tag{4}
\end{equation*}
$$

[4-hydroxy-2-alkanone] $=$ molarity of the hydration product at equilibrium; [3-alken-2-one] = molarity of the reactant at equilibrium; $A_{0}=$ absorbance at time zero (i.e., upon mixing); $A_{\mathrm{e}}=$ absorbance at equilibrium (i.e., at time "infinity").

$$
\begin{equation*}
\frac{[4 \text {-hydroxy- } 2 \text {-alkanone] }}{[3 \text {-alken-2-one] }}=\frac{k_{\text {hyd }}}{k_{\text {dehyd }}} \tag{5}
\end{equation*}
$$

Table I. Values of $k_{\text {obsd }}$ and $k_{\text {hyd }}$ in Aqueous NaOH Solution ${ }^{a}$

$\mathrm{N}_{\mathrm{NaOH}}$	Temp, ${ }^{\circ} \mathrm{C}$	$10^{4} k_{\text {obsd }}=10^{4} k_{\text {hyd }}$
3 -Buten-2-one ${ }^{b}$		
0.010	30	$2.67(4.43)$
	40	$5.71(9.4)$
	50	$11.5(20.6)$
0.10	60	35.5
	30	$27.2(48.4)$
	4 -Methyl-3-penten-2-one ${ }^{c}$	
0.50	50	4.43
1.00	40	$3.87(3.54)$
	50	$8.91(7.18)$
	60	$17.9(14.7)$

${ }^{a}$ Means of replicate determinations, average deviations from mean values $\leqslant \pm 3 \%$. Values in parentheses are for $\mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O}$ solutions. ${ }^{b}$ Followed at 220 nm . Equilibrium ratios (eq 4 and 5) are sufficiently large so that $k_{\text {obsd }}$ and $k_{\text {hyd }}$ are not meaningfully distinguishable. c Followed at 250 nm . See discussion of eq 2.
$k_{\text {hyd }}=$ rate constant for step 1 (forward), Scheme II; $k_{\text {dehyd }}$ $=$ rate constant for step 1 (reverse), Scheme II.

Discussion

Hydration. The mechanism described by Scheme I is consistent with our data; either step may be rate controlling depending on substrate structure. The solvent isotope effect ($k_{\mathrm{H}_{2} \mathrm{O}} / k_{\mathrm{D}_{2} \mathrm{O}}=0.6$) for the hydration of 3-buten-2-one indicates rate-controlling attack of hydroxide ion; the solvent isotope effect ($k_{\mathrm{H}_{2} \mathrm{O}} / \mathrm{k}_{\mathrm{D}_{2} \mathrm{O}}=1.2$) for the hydration of 4-methyl-3-penten-2-one indicates rate-controlling proton transfer from water to the enolate ion. The kinetically important step in the hydration of 3 -buten- 2 -one is formally similar to a nucleophilic substitution reaction at carbon, as illustrated in Scheme III.

Dependent on transition state structure, Bunton and Shiner ${ }^{10}$ have calculated a solvent isotope effect of 0.54-0.88. A value of 0.6 indicates maximum $\mathrm{C}-\mathrm{OH}$ covalent interaction consistent with minimal negative charge on the incipient enolate oxygen. That is, the transition state is neither very "early" nor very "late". Although a solvent isotope effect of 0.6 for this general type of reaction appears to be the smallest yet observed, Pocker ${ }^{11}$ reported a value of 0.67 for rate-controlling attack of hydroxide on the carbonyl carbon of 2-pyridinecarboxaldehyde; Jones ${ }^{12}$ reported 0.75 for rate-controlling attack of hydroxide on the carbonyl carbon of ethyl acetate; Long ${ }^{13}$ reported 0.86 for the SN2 reaction of hydroxide with an alkyl sulfonic ester.

The kinetically important steps in the hydration of 4-methyl-3-penten-2-one give rise to a solvent isotope effect composed of secondary and primary effects, as illustrated in Scheme IV.

A Bunton-Shiner ${ }^{10}$ calculation of the expected solvent isotope effect on the first step of Scheme IV (an equilibrium) yields $k_{\mathrm{H}_{2} \mathrm{O}} / k_{\mathrm{D}_{2} \mathrm{O}}=0.76$, requiring a small isotope effect on the second step of about 1.6. Using the Bunton-Shiner procedure again on step 2 of Scheme IV produces a primary isotope effect

Table II. Values of $\boldsymbol{k}_{\text {obsd }}$ Equilibrium Ratios, and $\boldsymbol{k}_{\text {hyd }}$ in Aqueous NaOH Solution ${ }^{a}$

$\mathrm{N}_{\mathrm{NaOH}}$	Temp, ${ }^{\circ} \mathrm{C}$	$10^{4} k_{\text {obsd }}$	[4-hydroxy 2-alkanone]/ [3-alken-2-one]	$10^{4} k_{\text {hyd }}$
3-Methyl-3-penten-2-one				
0.75	50	2.08	4.7	1.77
	60	3.80	9.0	3.40
	70	7.23	9.3	6.53
	80	13.6	12.7	12.0
0.50	≤ 0	1.94	6.6	1.68
	50	3.85	10.1	3.51
	60	7.80	7.0	6.83
1.00	30	1.88	13.5	1.75
	40	3.26	10.2	2.97
	50	7.72	9.4	7.01
3-Penten-2-one ${ }^{\text {c }}$				
0.10	40	0.50		9.5
	50	1.1		21

${ }^{a}$ Means of replicate determinations; average deviations from mean value $\leqslant \pm 5 \%$. b Followed at 240 nm . See eq 1, 4, and 5 for method of calculation. c Followed at 230 nm . See eq $1,3,4$, and 5 discussion.

Table III. Activation Parameters for Base-Catalyzed Hydration of Alkenones ${ }^{a}$

Reactant	$\mathrm{N}_{\mathrm{NaOH}}$	ΔH^{\ddagger}	ΔS^{\ddagger}
3-Buten-2-one	0.010	13.6 ± 0.1	-30.1 ± 0.2
4-Methyl-3-perten-2-one	1.00	15.2 ± 0.5	-25.6 ± 1.6
3-Methyl-3-penten-2-one	0.25	13.8 ± 0.1	-33.1 ± 0.4
	0.50	13.9 ± 0.2	-31.5 ± 0.5

a Values calculated at $25{ }^{\circ} \mathrm{C}, \pm$ standard deviation. Enthalpy and entropy of activation were calculated by a leastsquares treatment of data in Tables I and II. Calculations were carried out on a CDC 3150 computer.

Scheme IV

of 2.3. ${ }^{14}$ Though somewhat smaller than expected for such a proton transfer, ${ }^{16}$ the value is reasonable considering the extended calculation required to produce it.

The change in rate-controlling step arises because of rather different effects on k_{-1} (Schemes I and IV) with substrate structural changes: k_{-1} is the rate constant for a process which may have many of the features of an SN1 reaction and thus when the leaving group (OH) is located on a tertiary carbon (4-methyl-3-penten-2-one), k_{-1} is much larger than when the leaving group is on a primary carbon (3-buten-2-one). An alternate picture of this process produces the same conclusion: the k_{-1} process produces an alkene and thus the most highly

Table IV. Solvent Isotope Effects for Base-Catalyzed Hydration of Alkenones

Reactant	$\mathrm{N}_{\mathrm{NaOH}}=\mathrm{N}_{\mathrm{NaOD}}$	Temp, ${ }^{\circ} \mathrm{C}$	$k_{\mathrm{H}_{2} \mathrm{O}} / k_{\mathrm{D}_{2} \mathrm{O}}$
3-Buten-2-one	0.010	30	0.60
	0.010	40	0.61
4-Methyl-3-	0.010	50	0.56
penten-2-one	0.10	30	0.56
	1.00	40	1.1
	1.00	50	1.2
	1.00	60	1.2

Table V. Equilibrium Ratios for Dehydration of Aldols at Room Temperature ${ }^{a}$

Registry no.	Aldol	[alkenone]/[aldol]
590-90-9		0.05
4161-60-8	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CCH}_{3} b \\ \mathrm{OH} \end{gathered}$	$0.25{ }^{5}$
123-42-2	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2} \mathrm{CCH}_{3}{ }^{b}$	$0.11,{ }^{5} 0.06^{9}$
565-79-7		0.07
2134-29-4	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$	$0.1{ }^{7}$
38433-80-6		14^{7}
107-89-1	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CHO} \\ \mathrm{OH} \end{gathered}$	25^{7}
59434-71-8	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CHO}$	50^{7}
5381-93-1	$\mathrm{PhCHCH}_{2} \mathrm{CCH}_{3}$	40^{9}

${ }^{a}$ Last five entries measured at $25{ }^{\circ} \mathrm{C}$, others at $30{ }^{\circ} \mathrm{C}$. Ratios increase with increasing temperature. b Values taken from ref 5 in $2.57 \mathrm{M} \mathrm{HClO}_{4}$ and thus incorporate a medium effect.
substituted (most stable) alkene is produced fastest. ${ }^{18}$ The second step in Schemes I and IV, proton transfer from water to enolate ion (k_{2} process), is much less sensitive to changes in structure at C_{4} since this step of the reaction involves changes only at the incipient carbonyl group (C_{2}) and the carbon α to it (C_{3}). That is, k_{2} for 3 -buten- 2 -one and 4-methyl-3-penten-2-one are similar in magnitude. Thus for 3-buten-2-one $k_{2}>k_{-1}$ whereas for 4-methyl-3-penten-2-one $k_{2}<k_{-1}$. Other studies ${ }^{4,7}$ have rather implicitly assumed k_{2} $>k_{-1}$ (i.e., k_{1} rate controlling) but it is not possible to establish the rate-controlling step apart from determination of the solvent isotope effect, since relative rates and activation parameters are inconclusive (Tables I-III).

Dehydration in the Aldol Condensation. It is widely recognized that the aldol condensation is synthetically useful for self-condensation of aldehydes or in those cases when a favorable equilibrium can be established by converting the aldol product to another; commonly dehydration of the aldol is convenient. ${ }^{19}$ However, values of equilibrium constants for the dehydration process are scarce. Table V lists equilibrium ratios, [alkenone]/[aldol], for a variety of unsaturated aldehydes and ketones in aqueous solution. Of course these ratios are temperature and solvent dependent, but for the cases given in Table V equilibrium ratios increase somewhat with increasing temperature (i.e., raising the temperature favors dehydration). For condensation of aliphatic aldehydes and ketones with acetones, dehydration is thermodynamically unfavorable in aqueous solution. Dehydration of 4-hydroxy-2-pentanone, 4-methyl-4-hydroxy-2-pentanone, ${ }^{9}$ and 4-phenyl-4-hydroxy-2-butanone ${ }^{9}$ occurs faster than condensation of the respective aldehydes and ketones, but only for the latter case is the dehydration/hydration equilibrium favorable.

Acknowledgments. This research was supported by the Long Beach Heart Association and the California State University, Long Beach Research Foundation.

Registry No.-3-Buten-2-one, 78-94-4; 4-methyl-3-penten-2-one, 141-79-7; 3-methyl-3-penten-2-one, 565-62-8; 3-penten-2-one, 625-33-2.

References and Notes

(1) D. S. Noyce and W. L. Reed, J. Am. Chem. Soc., 80, 5539 (1958).
(2) D. S. Noyce and K. E. DeBruin, J. Am. Chem. Soc., 90, 372 (1968).
(3) L. R. Fedor and J. McLaughlin, J. Am. Chem. Soc., 91, 3594 (1969).
(4) L. R. Fedor, N. C. De, and S. K. Gurwara, J. Am. Chem. Soc., 95, 2905 (1973).
(5) J. L. Jensen and D. J. Carre, J. Org. Chem., 39, 2103)1974).
(6) J. L. Jensen, manuscript in preparation.
(7) J. E. Vik, Acta Chem. Scand., 27, 251 (1973).
(8) J. L. Jensen and D. J. Carre, J. Org. Chem., 36, 3180 (1971).
(9) D. S. Noyce and W. L. Reed, J. Am. Chem. Soc., 81, 624 (1959).
(10) C. A. Bunton and V. J. Shiner, J. Am. Chem. Soc., 83, 3207 (1961).
(11) Y. Pocker and J. E. Meany, J. Phys. Chem., 73, 1857 (1969).
(12) (a) K. Wiberg, Chem. Rev., 55713 (1955); (b) W. Jones, J. Chem. Soc., 115 (1936).
(13) J. G. Pritchard and F. A. Long. J. Am. Chem. Soc., 78, 6008 (1956).
(14) The secondary isotope effect on step 2 is calculated to be 0.71 based on the "free proton" model transition state with significant enolate ion character.
(15) F. A. Long and D. Watson, J. Chem. Soc., 2019 (1958).
(16) Proton transfer from acetic acid to methylacetylacetonate produces a primary isotope effect of 4.3; the difference in basicity between acetate ($\mathrm{p} K_{\mathrm{b}} 9.3$) and methyl acetylacetonate ($\mathrm{p} K_{\mathrm{b}} 4.7$) is comparable to that between hydroxide ion ($\mathrm{p} K_{\mathrm{b}} 15.7$) and enolate ion ($\mathrm{p} K_{\mathrm{b}} 20$). ${ }^{10.15}$
(17) W. H. Saunders and A. F. Cockerill, "Mechanisms of Elimination Reactions", Wiley, New York, N.Y., 1973.
(18) The reverse of Scheme l is an $E 1 c B$ process and thus k_{-1} is dependent on the alkene nature of the transition state. ${ }^{17}$
(19) (a) H. O. House, "Modern Synthetic Reactions", 2d ed, W. A. Benjamin, Menlo Park, Calif., 1972; (b) J. March, "Advanced Organic Chemistry", McGraw-Hill, New York, N.Y., 1968.

Preparation of Vinylketene by 1,4-Elimination. Cycloaddition and Isomerization to Form α-Ethylidenecyclobutanones ${ }^{1,2}$

Richard W. Holder, ${ }^{* 3}$ Howard S. Freiman, and Michael F. Stefanchik
Departments of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, and Vassar College, Poughkeepsie, New York 12601

Received March 29, 1976

Abstract

Vinylketene (1) was shown to result from triethylamine initiated 1,4-dehydrochlorination of trans-2-butenoyl chloride. In the presence of 1,3 -cyclopentadiene $a_{\pi} 2+{ }_{\pi} 2$ cycloaddition occurred to form adduct 2 . With a trace of excess triethylamine 2 isomerized chiefly to a $73: 27$ mixture of the E and Z isomers 3 and 4 , whose structures were securely assigned using lanthanide induced shift nuclear magnetic resonance techniques. The possible participation of ethylideneketene $\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}=\mathrm{C}=\mathrm{O}\right)$ was judged remote since triethylamine, 3-butenoyl chloride, and 1,3 -cyclopentadiene gave an identical reaction mixture. With either isomeric acid chloride if less than 1.0 molar equiv of triethylamine was used a 60:01:39 mixture of 2:3:4 was formed, which upon addition of triethylamine equilibrated to the $73: 27$ mixture of 3 and 4.

Ketenes ($\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{C}=\mathrm{O}$) react with conjugated dienes in a highly perispecific and regiospecific manner to form 3vinylcyclobutanones. ${ }^{4}$ Since the olefinic component reacts suprafacially, the fusion geometry is consistently cis. When the two ketene substituents differ in steric bulk the larger one tends to assume the more hindered position in the product. ${ }^{5,6}$ Ketene cycloadditions represent one of the few synthetic approaches to four-membered rings, ${ }^{7}$ and also serve as sensitive mechanistic probes of the rare and difficult ${ }_{\pi} 2_{s}+{ }_{\pi} 2_{\mathrm{a}}$ allowed concerted ${ }^{8}$ pathway. A review of the available evidence ${ }^{4}$ and recent theoretical analyses ${ }^{9,10}$ indicate that both concerted and nonconcerted routes may be traversed, depending on the steric and electronic characteristics of ketene and ketenophile.

It is, therefore, of considerable synthetic importance and mechanistic interest to explore further the scope and nature of the ketene cycloaddition reaction. One approach is to study the reactions of especially unstable ketenes, such as the vinylketenes ${ }^{11}$ and the alkylideneketenes ($\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{O}$) ${ }^{12,13}$ in which an additional carbon-carbon double bond is conjugated or cumulated with the ketene moiety. Although alkylideneketenes have been proposed as possible intermediates in the Einhorn reaction of α, β-unsaturated acid chlorides, ${ }^{14-16}$ and may have been formed by dehydrochlorination of 3 -methyl-2-butenoyl chloride, ${ }^{17}$ the only unambiguous preparations involve photochemical ${ }^{13}$ or flash vacuum pyrolytic ${ }^{12}$ methods. Even with these techniques the simpler members of the class, such as the parent methyleneketene ($\mathrm{CH}_{2}=$ $\mathrm{C}=\mathrm{C}=\mathrm{O}$) and ethylideneketene ($\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}=\mathrm{C}=0$), have not been detected.
We wish to describe our results involving a simple in situ preparation and subsequent cycloaddition of vinylketene (1), which acts as an ethylideneketene surrogate to afford cyclobutanones conveniently functionalized at the α position.

Results

When trans-2-butenoyl chloride was treated with 0.95 molar equiv of dry triethylamine in the presence of 6.0 molar equiv of 1,3 -cyclopentadiene and worked up after 3 h a product mixture of $60 \% 7$-vinylbicyclo[3.2.0]hept-2-en-6-one (2), ${ }^{18} 1 \%$ (E)-7-ethylidenebicyclo[3.2.0]hept-2-en-6-one (3), and 39% (Z)-7-ethylidenebicyclo[3.2.0]hept-2-en-6-one (4) resulted (Scheme I). The adduct isomer 2 could be detected by NMR or rapid analytical vapor phase chromatography (VPC) at temperatures below $100^{\circ} \mathrm{C}$, but could not be isolated by preparative VPC since at temperatures above $100^{\circ} \mathrm{C}$ or with long retention times it suffered apparent cycloreversion. ${ }^{19}$ The entire adduct mixture, after purification by distillation in vacuo (yield 41%), took up 1.9 ± 0.1 molar equiv

Scheme I

of H_{2} over Pd / C to form only endo- and exo-7-ethylbicyclo[3.2.0]heptan-6-one (5), identified by independent synthesis (hydrogenation of the adducts of ethylketene and 1,3-cyclopentadiene; see Experimental Section).
The cycloaddition procedure was repeated with 3-butenoyl chloride replacing trans-2-butenoyl chloride and an identical adduct mixture was isolated (Scheme I).
When a trace of triethylamine was added to the above adduct mixtures before workup, equilibration occurred to give, ultimately, a mixture of $0.4 \% 2,63.7 \% 3,24.0 \% 4$, and two unidentified components (A, B). This isomerization is quite
complex, and we have not investigated it completely. The rate of equilibration seems to depend on surface effects, as well as the solvent and the particular equilibration catalyst present. We have established, however, that in pentane at $25^{\circ} \mathrm{C}$ in the presence of triethylamine adduct 2 disappears very rapidly (half-life $<30 \mathrm{~min}$) to form chiefly 4 with some 3 present. ${ }^{22}$ The composition of this mixture continues to change for about 7 days, at the end of which time the $3: 4$ ratio has reached the equilibrium value of $72.6 \pm 0.1: 27.4 \pm 0.1\left(K_{\mathrm{eq}}=0.38, \Delta G_{25}\right.$ $=+0.58 \mathrm{kcal} / \mathrm{mol})$.
When a trace of triethylamine was added to pentane solutions bf VPC-purified samples of 3 or 4 (vide infra) isomerization occurred at room temperature within 7 days to afford the same equilibrium mixture of the five components $(2,3,4$, A, B). When the entire cycloaddition was carried out beginning with either isomeric acid chloride and 1.05 molar equiv of triethylamine the relative amount of 2 in the mixture decreased with increasing reaction time. Delaying workup for 1 week or more (not an uncommon procedure with ketene cycloadditions ${ }^{23}$) again provided the equilibrium mixture.

Isomeric adducts 3 and 4 were obtained in $>98 \%$ purity by preparative vpc; each gave an acceptable C, H analysis and each took up 2.0 ± 0.1 molar equiv of H_{2} over Pd / C to give 5 . Mass, infrared (ir), nuclear magnetic resonance (NMR), and ultraviolet (uv) spectra confirmed the gross structural features of 3 and 4. Lanthanide induced shift (LIS) NMR using a serial doping technique ${ }^{24}$ and plots of shifts vs. added lanthanide reagents for H_{8} and methyl (Table I) served to assign the exocyclic double bond geometry. It is noteworthy that these LIS-NMR studies support earlier assignments of double-bond geometry of α-ethylidene ketones made by comparisons of chemical shift data alone. ${ }^{25,26}$

Discussion

Although both mechanistic pathways b and c shown in Scheme II could operate when trans-2-butenoyl chloride

Scheme II

reacts with triethylamine and 1,3-cyclopentadiene, since the equilibrium between adduct 2 and the 3,4 pair lies almost entirely toward the conjugated species ${ }^{27}$ the ethylideneketene route c can at most be minor. Actually, no unambiguous evidence implicating the presence of this elusive alkylideneketene has been found in this work, and the evident failure to prepare it by flash-vacuum pyrolysis (a method successful for other alkylideneketenes) ${ }^{12}$ indicates that its participation here is unlikely. All of our data are most economically explained as illustrated by routes b and c in which both trans- 2 - and

Table I. NMR Chemical Shift Values for Ketones 3 and 4 Doped with Successive Amounts of $\mathrm{Eu}(\mathrm{fod})_{3}$

	Ketone 3			Ketone 4	
Ratio of ketone:Eu(fod)	H_{8}	CH_{3}		H_{8}	CH_{3}
No doping	6.23	1.81		5.60	2.05
$161.04: 1.00$	6.25	1.81		5.60	2.08
$53.68: 1.00$	6.36	1.86		5.63	2.15
$23.01: 1.00$	6.52	1.93		5.67	2.27
$10.74: 1.00$	6.86	2.06		5.77	2.52
$4.42: 1.00$	7.70	2.41	6.01	3.13	

-3-butenoyl chlorides react with triethylamine to form (presumably different) acylammonium salts, ${ }^{29}$ which decompose by 1,4 - and 1,2 -elimination, respectively, to afford vinylketene (1). This species is trapped by 1,3 -cyclopentadiene as adduct 2 , which subsequently provides 3 and 4 by isomerization.

This view is supported by CNDO/2 charge density calculations for 2-butenoyl chloride, ${ }^{33}$ which confirm the intuitive view of a much higher acidity for H_{4} (lost in 1,4-elimination \rightarrow vinylketene) than for H_{2} (lost in 1,2-elimination \rightarrow ethylideneketene):

We have devised no control experiment which can rule out the formal possibility that triethylamine catalyzes the equilibration of 3-butenoyl chloride and 2-butenoyl chloride prior to acylammonium salt formation. The known facility of the latter reaction, however, ${ }^{29-32}$ and the slow isomerization of the corresponding esters ${ }^{22}$ makes it a relatively unlikely mechanistic alternative.

In any case, owing to the facile isomerization subsequent to cycloaddition, vinylketene has been shown to be an effective ethylideneketene surrogate. When the reaction is carried out in the normal manner only adducts 3 and 4 are isolated. This reaction seems of some potential value, since (1) 1,4-dehydrochlorination of trans-2-butenoyl chloride represents a straightforward and economical route to vinylketene; and (2) cyclobutanones functionalized at the α carbon are obtained in moderate yields. Baeyer-Villager oxidation of species like 3 and 4 might provide a favorable synthetic approach to close analogues of α-methylene- γ-lactones, ${ }^{34}$ some of which show antitumor activity. ${ }^{35}$

Experimental Section

Elemental analyses were performed by Ms. Ruby Ju of the University of New Mexico. Melting points are uncorrected. Mass spectra were measured ${ }^{36}$ on a Du Pont Model 21-491 double focusing instrument at an ionizing voltage of 70 eV . Infrared (ir) spectra were recorded as thin films between NaCl plates on Perkin-Elmer 237, 337, or 521 spectrophotometers; all recorded absorptions were corrected by reference to polystyrene bands in the appropriate spectral regions. Nuclear magnetic resonance (NMR) spectra were obtained on Varian T-60, EM-360, or A-60 instruments. Ultraviolet (uv) measurements were made with a Perkin-Elmer Model 402 spectrophotometer. Preparative VPC separations were obtained with a Varian Aerograph Model 920 instrument equipped with a thermal conductivity detector with helium as the carrier gas. Analytical VPC determinations were measured using a Hewlett-Packard Model 5750 gas chromatograph equipped with flame ionization detector with nitrogen as the carrier gas. Quantitative VPC analyses resulted from automatic integration of peak areas by a Varian digital integrator Model 480 and calibration of detector response factors from known mixtures. ${ }^{37,38}$ The VPC columns used are identified as column A, $10 \mathrm{ft} \times 0.25 \mathrm{in}$. 10% FFAP on 60-80 Chromosorb W; column B, $5 \mathrm{ft} \times 0.125 \mathrm{in} .4 \%$ FFAP on 100-120 Chromosorb P (AW, DMCS).

Analytical hydrogenations were carried out in ethyl acetate solutions over prereduced $10 \% \mathrm{Pd} / \mathrm{C}$ at atmospheric pressure. The volume H_{2} adsorbed was compared with a control determination for cyclohexene $+1.0 \mathrm{H}_{2} \rightarrow$ cyclohexane measured the same day. Thus for a typical determination $0.0408 \mathrm{~g}\left(4.967 \times 10^{-4} \mathrm{~mol}\right)$ of cyclohexene adsorbed 13.40 ml of H_{2}. Immediately afterward 0.0318 g ($2.370 \times$ $10^{-4} \mathrm{~mol}$) of VPC-purified 4 took up 13.35 ml of H_{2}. Adduct 4 thus has $(4.967)(12.35) /(2.370)(13.40)=1.93$ double bonds. Repetitive determinations established a reproducibility estimated as ± 0.1 double bond.

Reactions of trans-2-Butenoyl Chloride with Excess Triethylamine. Preparation of (E)-7-Ethylidenebicyclo[3.2.0]-hept-2-en-6-one (3) and (Z)-7-Ethylidenebicyclo[3.2.0]hept-2-en-6-one (4). Under anhydrous conditions a solution of 15.25 g (0.15 mol) of dry (over KOH) triethylamine in 100 ml of low-boiling petroleum ether was added dropwise to a well-stirred mixture of 15.00 $\mathrm{g}(0.14 \mathrm{~mol})$ of trans-2-butenoyl chloride, $57.11 \mathrm{~g}(0.86 \mathrm{~mol})$ of freshly dedimerized 1,3 -cyclopentadiene, and 600 ml of dry petroleum ether. Immediate formation of white solid was evident; the addition required 1.5 h , at the end of which time the mixture was brown in color and contained much solid. Stirring was continued for another 1.5 h , and the reaction mixture then sealed and allowed to stand at room temperature for 7 days. At the end of the time VPC analysis (column B, $95^{\circ} \mathrm{C}$) of the supernatant liquid showed (besides solvent and dicyclopentadiene) five components in the area ratio (order of elution times) 1.37:1.67:23.70:63.90:10.00.
Suction filtration afforded $9.1 \mathrm{~g}(46 \%)$ of triethylamine hydrochloride (mp 253-255 ${ }^{\circ} \mathrm{C}$). The filtrate was washed with water, dried over MgSO_{4}, and concentrated to a brown oil by rotary evaporation. Distillation in vacuo resulted first in a large fraction of dicyclopentadiene and a second fraction of a pale yellow oil, 7.85 g (41%), bp $45-46{ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. VPC analysis showed a small amount of dicyclopentadiene and the five components previously noted (area ratios essentially unchanged).

Preparative VPC (column A, $133^{\circ} \mathrm{C}$) resulted in isolation of the two major (third and fourth eluting) components in pure ($>98 \%$ upon reinjection on column B) form. These were identified, respectively, as adducts 4 and 3 as described below. The second-eluting minor component had VPC retention time identical with adduct 2, later identified by spectral analysis of an enriched mixture. The other two minor products remain unidentified.
(Z)-7-Ethylidenebicyclo[3.2.0]hept-2-en-6-one (4). The third-eluting component, which constituted 23.7% of the mixture, was assigned structure 4: mass spectrum m / e (rel intensity) 134 (32), 106 (13), 105 (15), 91 (41), 69 (16), 68 (11), 66 (100), 65 (14), 51 (13), 41 (17), 40 (17), 39 (28); ir 3060, 2940, 2860, 1741, 1661, 1605, 1440, 1170, 1047, $896,776,741,695 \mathrm{~cm}^{-1}$; NMR (0.0392 g in $350 \mu \mathrm{l}$ of $\left.\mathrm{CDCl}_{3}\right) \delta 5.8, \mathrm{~m}$, $2 \mathrm{H}\left(\mathrm{H}_{2}, \mathrm{H}_{3}\right) ; 5.60, \mathrm{q}(J=7 \mathrm{~Hz})$ further split into ad $(J=1.5 \mathrm{~Hz}), 1$ $\mathrm{H}\left(\mathrm{H}_{8}\right) ; 3.8, \mathrm{~m}, 2 \mathrm{H} ; 2.6, \mathrm{~m}, 2 \mathrm{H} ; 2.05$, d of $\mathrm{d}(J=7.0,1.5 \mathrm{~Hz}), 3 \mathrm{H}$ $\left(-\mathrm{CH}_{3}\right)$. LIS NMR: to the above solution was added aliquots of a CDCl_{3} solution of $0.0680 \mathrm{~g}(0.066 \mathrm{mmol})$ of $\mathrm{Eu}(\mathrm{fod})_{3}{ }^{39}$ After each addition the NMR spectrum was run. Table I presents the chemical shifts of H_{8} and $-\mathrm{CH}_{3}$ as a function of the increasing $\mathrm{Eu}(\mathrm{fod})_{3}$ concentration. The $\Delta \delta$ values extrapolated to a $1: 1$ molar ratio of 4 : $\mathrm{Eu}(\text { fod })_{3}$ are $\mathrm{H}_{8}=106 \mathrm{~Hz},-\mathrm{CH}_{3}=288 \mathrm{~Hz}$. Taken with the complementary results of the other isomer these are sufficient to assign isomer 4 the Z configuration about the exocyclic double bond. Uv (95% ethanol) $209 \mathrm{~nm}(\log \epsilon 3.32), 238(3.36) .{ }^{40}$
Reduction to 5. VPC-purified $4(0.0318 \mathrm{~g})$ took up 12.35 ml of H_{2}, thus having 1.9 ± 0.1 double bond. A larger sample of 0.40 g was hydrogenated in a Parr apparatus at 50 psi . After removal of the catalyst by suction filtration through sintered glass and concentration by rotary evaporation the residual oil showed by analytical VPC (column $\mathrm{B}, 135^{\circ} \mathrm{C}$) two components in a ratio (order of elution time) of 28.9: 71.1. These were isolated by preparative VPC (column A, $130^{\circ} \mathrm{C}$) and had ir and NMR spectra congruent, respectively, with exo- and endo-7-ethylbicyclo[3.2.0]heptan-6-one (5), prepared and identified as described below.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$: C, 80.56 ; H, 7.51. Found: C, 80.30; H, 7.43.
(E)-7-Ethylidenebicyclo[3.2.0]hept-2-en-6-one (3). The fourth-eluting component, which constituted 63.29% of the mixture, was assigned structure 3: mass spectrum m / e (rel intensity) 134 (28), 106 (11), 105 (12), 91 (35), 78 (10), 69 (9), 68 (9), 67 (8), 66 (100), 65 (11), 51 (10), 41 (13), 40 (16), 39 (23); ir 3030, 2930, 2860, 1745, 1668, $1605,1442,1171,1075,793,735,690 \mathrm{~cm}^{-1}$; NMR (0.0395 g in $350 \mu \mathrm{l}$ of $\left.\mathrm{CDCl}_{3}\right) \delta 6.23$, $\mathrm{q}(J=7 \mathrm{~Hz})$ further split into a doublet $(J=1.0 \mathrm{~Hz})$, $1 \mathrm{H}\left(\mathrm{H}_{8}\right) ; 5.8, \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}_{2}, \mathrm{H}_{3}\right) ; 3.7, \mathrm{~m}, 2 \mathrm{H} ; 2.6, \mathrm{~m}, 2 \mathrm{H} ; 1.81$, d of d (J $=7,1.0 \mathrm{~Hz}), 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$. LIS NMR: sequential addition of a CDCl_{3} solution of $\mathrm{Eu}(\mathrm{fod})_{3}{ }^{39}$ and spectral measurements were made as de-
scribed above for isomer 4. The results, presented in Table I, give shifts extrapolated to a 1:1 molar ratio of $\mathrm{H}_{8}=398 \mathrm{~Hz},-\mathrm{CH}_{3}=158$ Hz . Taken with the complementary results of the other isomer these assign for adduct 3 the E configuration about the exocyclic double bond. Uv 223 nm ($\log \epsilon 4.10$)

Reduction to 5. VPC-purified $3\left(0.0297 \mathrm{~g}, 2.214 \times 10^{-4} \mathrm{~mol}\right)$ took up 12.10 ml of H_{2}, thus having 2.03 ± 0.1 double bond. A larger sample of 0.40 g was hydrogenated in a Parr apparatus at 50 psi . After removal of the catalyst by suction filtration through sintered glass and concentration by rotary evaporation the residual oil showed by analytical VPC (column B, $135{ }^{\circ} \mathrm{C}$) two components in a ratio of 29.1:70.9. These were isolated by preparative VPC (column A, $130^{\circ} \mathrm{C}$) and had ir and NMR spectra congruent, respectively, with exo- 5 and endo- 5, prepared and identified as described below.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$: C, 80.56; H, 7.51. Found: C, 80.50 ; H , 7.64.

Reaction of trans-2-Butenoyl Chloride with Insufficient Triethylamine. Identification of 7-Vinylbicyclo[3.2.0]hept-2-en-6-one (2) in the Product Mixture. The reaction was carried out as described above except that $13.84 \mathrm{~g}(0.134 \mathrm{~mol})$ of triethylamine was used, and workup was commenced after 3.0 h . Only 7.4 g (37%) of triethylamine hydrochloride ($\mathrm{mp} 252-254^{\circ} \mathrm{C}$) was obtained, and distillation afforded $2.5 \mathrm{~g}(13 \%)$ of pale yellow oil, bp $\left.46-50^{\circ} \mathrm{C}\right)(0.1$ mm). VPC (column B, $95^{\circ} \mathrm{C}$) showed evidence of some thermal decomposition (peak coincident with separately injected cyclopentadiene, polymer formation in injector sleeve), but eluted three components in the area ratio (order of elution times) 59.8:1.1:39.1. These corresponded (corrparison of retention times) with the second-, third-, and fourth-eluting components, respectively, from the excess triethylamine cycloaddition. All attempts to isolate the major component of this mixture resulted either in irreversible cycloreversion (preparative VPC) or isomerization to 3 and 4 (column, thin layer, and high-pressure liquid chromatography). The identification of the first-eluting component as vinylketene adduct 2 was deduced from the following evidence. Ir: besides bands assigned previously to compound 4 there appeared absorptions at $1770,1645,970$, and 930 cm^{-1}. NMR $\left(\mathrm{CDCl}_{3}\right)$: compatible with a $60: 40$ mixture of 2:4. Subtracting the contr butions of 4 the difference spectrum of 2 is $\delta 6.3$, $\mathrm{m}, 1 \mathrm{H} ; 5.8, \mathrm{~m}, 2 \mathrm{H} ; 5.2, \mathrm{~m}, 2 \mathrm{H} ; 3.7, \mathrm{~m}, 2 \mathrm{H} ; 2.5, \mathrm{~m}, 3 \mathrm{H}$. The splitting pattern in the vinyl region is recognizably that of a $\mathrm{CH}=\mathrm{CH}_{2}$ moiety, but overlapping signals from minor component 4 preclude exact assignments.

Reduction to 5. The isomeric mixture ($0.0513 \mathrm{~g}, 3.824 \times 10^{-4} \mathrm{~mol}$) absorbed 20.22 ml of H_{2}, thus indicating 1.96 ± 0.1 double bond. A larger sample of 0.40 g of the mixture was reduced in the Parr apparatus as described for isomers 3 and 4. Workup provided a yellow oil which had VPC (column B, $135{ }^{\circ} \mathrm{C}$) characteristic of 12.0% exo- 5 and 88.0% endo- $5 .^{44}$ Ir and NMR spectra of VPC-collected samples (column $\mathrm{A}, 130^{\circ} \mathrm{C}$) were congruent with those of authentic material, prepared and identified as described below.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$: C, 80.50; H, 7.51. Found: C, 80.27; H, 7.31 .

Pyrolysis. Heating the mixture to $85^{\circ} \mathrm{C}$ for 2.5 h resulted in formation of 1,3 -cyclcpentadiene and disappearance of the NMR signals assigned to adduct 2. Analysis of VPC (column B, $95^{\circ} \mathrm{C}$) showed, besides cyclopentadiene and its dimer, the five previously observed components in the area ratio (order of elution times) 1.37 (unknown A):1.64 (componert 2):7.61 (component 4):79.38 (component 3):10.00 (unknown B).
Isomerization Experiments. A. $2 \rightarrow 3+4$. Addition of $2 \mu \mathrm{l}$ of triethylamine to a CDCl_{3} solution of $59.8 \% \mathbf{2}, 1.1 \% 4$, and $39.1 \% 3$ after 8 h resulted in the virtual disappearance of 2 as measured by NMR. VPC (column B, $95^{\circ} \mathrm{C}$) showed that the equilibrium mixture had been reached (1.37:1.65:23.70:63.29:10.00). Repetition of the experiment in a dry pentane solution afforded the same equilibrium mixture, but required nearly 7 days at room temperature before stabilization.
$\mathbf{B . ~} 3 \rightarrow 3+4$. Addition of $2 \mu \mathrm{l}$ of triethylamine to a CDCl_{3} solution of VPC-purified 3 resulted after less than 30 min in attainment of equilibrium between 3 and 4 ($73: 27$ by NMR and VPC). Only trace amounts of the other three components were observed.
C. $4 \rightarrow 3+4$. Addition of 2μ l of triethylamine to a CDCl_{3} solution of VPC-purified 4 resulted after less than 30 min in attainment of the 3:4 equilibrium (73:27). Again, only trace amounts of the other three components were detected.

Reaction of 3-Butenoyl Chloride with excess Triethylamine. Under anhydrous conditions a solution of $0.51 \mathrm{~g}(5.02 \mathrm{mmol})$ of dry triethylamine in 10 ml of low-boiling petroleum ether was added dropwise to a well-stirred mixture of $0.50 \mathrm{~g}(4.8 \mathrm{mmol})$ of 3-butenoyl chloride, $1.60 \mathrm{~g}(24.3 \mathrm{mmol})$ of freshly dedimerized 1,3-cyclopentadiene, and 50 ml of petroleum ether. A heavy, flocculent white solid
was formed immediately. Stirring was continued for 1.5 h , and then the mixture allowed to stand at room temperature for 7 days. VPC analysis (column B, $95^{\circ} \mathrm{C}$) of the supernatant liquid showed the five product components previously observed, in the area ratio lorder of elution times) 1.38:1.62:23.71:63.29:10.00, and was virtually superimposable with that obtained from the analogous reaction of trans2 -butenoyl chloride with excess triethylamine.

Suction filtration provided $0.52 \mathrm{~g}(79 \%)$ of triethylamine hydrochloride ($\mathrm{mp} 251-255^{\circ} \mathrm{C}$). The filtrate was washed with water, dried over MgSO_{4}, and concentrated to an orange oil. Distillation in vacuo afforded $0.17 \mathrm{~g}(27 \%)$ of yellow oil, bp $46-55^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. Analysis by VPC showed no significant change in the area ratios of the five components due to fractionation during distillation.

Reaction of 3-Butenoyl Chloride with Insufficient Triethylamine. The reaction was carried out as described above except that $0.46 \mathrm{~g}(4.54 \mathrm{mmol})$ of triethylamine was used, and workup begun after 3.0 h . Filtration gave $0.45 \mathrm{~g}(68 \%)$ of triethylamine hydrochloride (mp $253-256{ }^{\circ} \mathrm{C}$), and VPC analysis of the filtrate (column B, $95^{\circ} \mathrm{C}$) showed components 2:3:4 to be present in the area ratio 59.7:1.2:39.1. Concentration and distillation afforded $0.14 \mathrm{~g}(22 \%)$ of yellow oil, bp $45-55^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$.

Preparation of 7-Ethylbicyclo[3.2.0]hept-2-en-6-one (6). Under anhydrous conditions a solution of $11.98 \mathrm{~g}(0.118 \mathrm{~mol})$ of dry triethylamine was added dropwise to a well-stirred mixture of $11.30 \mathrm{~g}(0.106$ $\mathrm{mol})$ of butanoyl chloride, $19.44 \mathrm{~g}(0.294 \mathrm{~mol})$ of freshly dedimerized cyclopentadiene, and 100 ml of dry benzene. There was immediate formation of a white precipitate, and the solution turned very dark. Addition required 20 min and stirring was continued for another 2.0 h . The reaction mixture was then allowed to stand for 42 h at room temperature.

Suction filtration afforded $14.75 \mathrm{~g}(100 \%)$ of triethylamine hydrochloride ($\mathrm{mp} 254-256^{\circ} \mathrm{C}$). The filtrate was concentrated by rotary evaporation to 14.20 g of dark oil, which was distilled in vacuo to provide $9.28 \mathrm{~g}(64 \%)$ of pale yellow oil, bp $30-145^{\circ} \mathrm{C}(20 \mathrm{~mm})$. The material was chromatographed on 34 g of silica gel using hexanes as eluent to remove 3.7 g of dicyclopentadiene. The remaining material was shown by VPC (column B, $135^{\circ} \mathrm{C}$) to be composed of three components in area ratio (order of elution times) 70.0:0.9:29.1. The first and third components were isolated by preparative VPC (column $\mathrm{A}, 130^{\circ} \mathrm{C}$) in $>98 \%$ purity (checked by reinjection on column B) and assigned structures, respectively, as ethylketene β-lactone dimer 7

and endo-7-ethylbicyclo[3.2.0]hept-2-en-6-one (endo-6) on the basis of the following data.

Ethylketene β-Lactone Dimer (7): ir 2970, 2940, 2880, 1890, 1880, $1850,1730,1455,1290,1195,938,910,845 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.72$, d of $\mathrm{t}(J=7.5,1.5 \mathrm{~Hz}), 1 \mathrm{H} ; 3.91$, broadened $\mathrm{t}(J=7 \mathrm{~Hz}), 1 \mathrm{H} ; 2.4-1.6$, $\mathrm{m}, 4 \mathrm{H} ; 1.06$ and 1.03, overlapping triplets $(J=7.5,7 \mathrm{~Hz}), 6 \mathrm{H}$.

Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 68.55 ; H, 8.63. Found: C, $68.73 ; \mathrm{H}$, 8.70 .
endo-7-Ethylbicyclo[3.2.0]hept-2-en-6-one (endo-6): ir 3050, 2960, 2930, 2870, 1770, 1559, 795, $700 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.82$, broad s, $2 \mathrm{H} ; 2.5, \mathrm{~m}, 3 \mathrm{H}, 2.53$, broad s, $2 \mathrm{H} ; 1.42, \mathrm{~m}, 2 \mathrm{H} ; 0.93, \mathrm{t}(J=$ $7 \mathrm{~Hz}), 3 \mathrm{H}\left(-\mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 79.37$; $\mathrm{H}, 8.88$. Found: C, 79.62; H , 9.07.
exo-7-Ethylbicyclo[3.2.0]hept-2-en-6-one (exo-6). To a solution of 100.3 mg of VPC-purified endo- 6 in 10 drops of methanol was added 4 drops of 0.4 M sodium hydroxide in methanol. VPC analysis (column $\mathrm{B}, 100^{\circ} \mathrm{C}$) showed that after 2 days equilibration had occurred to form a 37.18:62.82 mixture of the second-eluting component from the cycloaddition described above and endo-6. The yellow solution was taken up in 8 ml of ether, washed with two $1-\mathrm{ml}$ portions of water, dried over sodium sulfate, transferred by pipet, and concentrated by flash distillation to leave a cloudy, colorless oil, 99.3 mg . The minor, first-eluting component was isolated by preparative VPC (column A, $112^{\circ} \mathrm{C}$) and identified as exo-7-ethylbicyclo[3.2.0]hept2 -en-6-one (exo-6) from its method of preparation and on the basis of the following properties: ir $3070,2980,2945,2890,2865,1780,1603$, $740,720 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.77$, broadened s, $2 \mathrm{H} ; 3.7, \mathrm{~m}, 1 \mathrm{H} ; 3.2$, $\mathrm{m}, 1 \mathrm{H} ; 3.0-2.3, \mathrm{~m}, 3 \mathrm{H} ; 1.62$, q $(J=6.5 \mathrm{~Hz}), 2 \mathrm{H} ; 1.00, \mathrm{t}(J=6.5 \mathrm{~Hz})$, 3 H .

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 79.37$; $\mathrm{H}, 8.88$. Found: $\mathrm{C}, 79.08$; H , 8.83.
endo-7-Ethylbicyclo[3.2.0]heptan-6-one (endo-5). A mixture of 1.50 g of partially isomerized 6 (5% exo, 95% endo) was dissolved in 100 ml of 95% ethanol and hydrogenated in a Parr apparatus over $10 \% \mathrm{Pd} / \mathrm{C}$ at 45 psi . After 4.0 h a 0.8 -psi pressure drop had occurred (ca. 1 molar equiv with this apparatus) and 1.51 g of yellow oil was isolated by suction filtration and rotary evaporation. VPC analysis (column B, $135^{\circ} \mathrm{C}$) showed two components in the area ratio (order of elution) 5:95. The larger, second-eluting component was isolated by preparative VPC (column A, $135{ }^{\circ} \mathrm{C}$) and identified as endo-5: ir $2960,2860,1780 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.45, \mathrm{~m}, 1 \mathrm{H} ; 3.02, \mathrm{~m}, 2 \mathrm{H}$; $1.02-2.22, \mathrm{~m}, 8 \mathrm{H} ; 0.90$, $\mathrm{t}(J=6.5 \mathrm{~Hz}), 3 \mathrm{H}$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 78.21 ; \mathrm{H}, 10.21$. Found: C, 78.09 ; H , 10.11.
exo-7-Ethylbicyclo[3.2.0]heptan-6-one (exo-5). To a solution of 95.0 mg of VPC-purified endo- 5 in 0.5 ml of methanol was added 5 drops of 0.4 M sodium hydroxide in methanol. After 4.0 h VPC analysis (column $\mathrm{A}, 135^{\circ} \mathrm{C}$) showed two components in the area ratio (order of elution times) 71.6:28.4. The latter component corresponded in retention time to reactant endo- 5 . The mixture was taken up in 5 ml of ether, washed with two $1-\mathrm{ml}$ portions of water, dried over sodium sulfate, transferred by pipet, and concentrated by flash distillation to provide 85.0 mg of clear, colorless oil. The first-eluting, major component was isolated by preparative VPC (column A, $112^{\circ} \mathrm{C}$) and identified as exo- 5 from its method of preparation and on the basis of the following properties: ir 2955, 2865, $1770 \mathrm{~cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 3.42$, broad s, $1 \mathrm{H} ; 2.52, \mathrm{~m}, 2 \mathrm{H} ; 2.4-1.3, \mathrm{~m}, 8 \mathrm{H} ; 0.98, \mathrm{t}(J=6.5 \mathrm{~Hz})$, 3 H .
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 78.21 ; \mathrm{H}, 10.21$. Found: C, 78.49; H, 10.37.

Registry No.-1, 50888-73-8; 2, 59796-68-8; 3, 59796-69-9; 4, 59796-70-2; exo-5, 54276-01-6; endo-5, 54235-96-0; exo-6, 54275-98-8; endo-6, 25975-87-5; 7, 5659-15-4; trans-2-butenoyl chloride, 33603-82-6; 1,3-cyclopentadiene, 542-92-7; triethylamine hydrochloride, 554-68-7; 3-butenoyl chloride, 1470-91-3; butanoyl chloride, 141-75-3.

References and Notes

(1) Presented in preliminary form: R. W. Holder and H. S. Freiman, Abstracts, 170th National Meeting of the American Chemical Society. Chicago, III., August 25-29, 1975, No. ORGN-99.
(2) Acknowledgment Is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, the Research Corporation, the University of New Mexico Research Allocations Committee, and the Vassar College Beadle Fund for the support of this research.
(3) Address comments to this author at the University of New Mexico.
(4) R. W. Holder, J. Chem. Educ., 53, 81 (1976), and earlier reviews cited therein.
(5) M. Rey, S. Roberts, A. Dieffenbacher, and A. S. Dreiding. Helv. Chim. Acta, 53, 417 (1970).
(6) (a) W. T. Brady and R. Roe, Jr., J. Am. Chem. Soc., 93, 1662 (1971); (b) ibid., 92, 4618 (1970).
(7) J. D. Roberts and C. M. Shorts, Org. React., 12, 26 (1962).
(8) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry", Verlag Chemie, Weinheim/Bergstr., Germany, 1970.
(9) (a) K. N. Houk, Acc. Chem. Res., 8, 361 (1975); (b) K. N. Houk, R. W. Strozier, and J. A. Hall, Tetrahedron Lett., 897 (1974).
(10) R. Sustmann, A. Ansmann, and F. Vahrenholt, J. Am. Chem. Soc., 94, 8099 (1972).
(11) G. Rousseay, R. Bloch, P. Le Perchec, and J. M. Conia, J. Chem. Soc., Chem. Commun., 795 (1973).
(12) R. F. C. Brown, F. W. Eastwood, and K. J. Harrington, Aust. J. Chem., 27, 2372 (1974).
(13) H. Hart, D. L. Dean, and D. N. Buchanan, J. Am. Chem. Soc., 95, 6294 (1973).
(14) P. W. Hickmott, J. Chem. Soc., 883 (1964).
(15) (a) T. Ozeki and M. Kusaka, Bull. Chem. Soc. Jpn., 39, 115 (1966); (b) ibid., 40, 1232 (1967); (c) ibid., 40, 2686 (1967).
(16) Y. Iwakura, F. Toda, R. Iwata, and Y. Torii, Bull. Chem. Soc. Jpn., 42, 841 (1969).
(17) G. B. Payne, J. Org. Chem., 31, 718 (1966).
(18) Probably the endo isomer. $4.5,44$
(19) Facile thermal cycloreversions of vinylketene precursors have been described previously. ${ }^{20,21}$ In this case 1,3-cyclopentadiene, polymeric materials, and an unknown product (ca. 10%) with similar VPC retention time were formed.
(20) E. F. Jenny and J. D. Roberts, J. Am. Chem. Soc., 78, 2005 (1956).
(21) (a) W. F. Erman. J. Am. Chem. Soc., 91, 779 (1968); (b) W. F. Erman, R. S. Treptow, P. Bakuzis, and E. Wenkert, ibid., 93, 657 (1971).
(22) Triethylamine causes only a very slow equilibration of methyl vinylacetate and methyl trans-2-butenoate. ${ }^{15 \mathrm{~b}}$
(23) H. A. Wasserman, J. U. Piper, and E. V. Dehmlow, J. Org. Chem., 38, 1451 (1973).
(24) M. R. Willcott, III, R. E. Davis, and R. W. Holder, J. Org. Chem., 40, 1952 (1975).
(25) L. A. Paquette and R. F. Eizember, J. Am. Chem. Soc., 89, 6205 (1967).
(26) J. K. Crandall, J. P. Arrington, and J. Hen, J. Am. Chem. Soc., 89, 6208
(1967).
(27) Not unexpected since the increase in total strain for one additional trigonal center in a four-membered ring is only about $1 \mathrm{kcal} / \mathrm{mol} .{ }^{28}$
(28) K. B. Wiberg and R. A. Fenoglio, J. Am. Chem. Soc., 90, 3395 (1968).
(29) Most nonhalogenated ketenes are formed from acyl halides by way of acylammonium salt intermediates ${ }^{30-32}$
(30) H. Adkins and Q. E. Thompson, J. Am. Chem. Soc., 71, 2242 (1949).
(31) D. Cook, Can. J. Chem., 40, 2362 (1962).
(32) W. T. Brady and G. A. Scherubel, J. Am. Chem. Soc., 95, 7447 (1973).
(33) We are grateful to Professor W. T. Brady and Dr. G. A. Scherubel for performing these calculations for us.
(34) We thank Professor Owen Asplund for drawing our attention to this potential.
(35) For a review see P. A. Grieco, Synthesis, 67 (1975).
(36) We thank Professor Ulrich Hollstein for making the mass spectral measurements.
(37) H. M. McNair and E. J. Bonelli, "Basic Gas Chromatography", Varian Aerograph, Walnut Creek, Calif., 1968, pp 140-142.
(38) The response factors for compounds 3 and 4 were equal, within our experimental error.
(39) $\mathrm{Eu}(\mathrm{fod})_{3}$ is europium(III) tris(1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6octanedione)
(40) The low-wavelength absorption may be analogous to the weak charge transfer band of norbornen-5-one. ${ }^{41-43}$
(41) J. Meinwald, S. L. Emerman, N. C. Yang, and G. Buchi, J. Am. Chem. Soc., 77, 4401 (1955).
(42) P. D. Bartlett a nd B. E. Tate, J. Am. Chem. Soc., 78, 2473 (1956).
(43) C. H. DePuy and P. R. Story, J. Am. Chem. Soc., 82, 627 (1960).
(44) The ratio of exo-5 to endo-5 observed from hydrogenation of the 60:40 2:4 mixture, together with that measured from hydrogenation of pure 4, allows the estimation that vinylketene cycloadds to $1,3-\mathrm{c}_{\mathrm{y}}$ clopentadiene with better than 99% endo vinyl stereospecificity

Metalation Reactions. 18. Polymetalation Substituted Acetophenones

J. Klein* and A. Medlik-Balan
Department of Organic Chemistry, The Hebrew University, Jerusalem, Israel

Received April 26, 1976

The lithium enolates of methyl-substituted acetophenones are metalated further by butyllithium in the presence of TMEDA to di- and trilithium derivatives. The sequence of preferential proton abstraction is 0 -methyl $>0-\mathrm{F}$ $>p$-methyl $>m$-methyl. A second proton can also be abstracted from the carbon α to the carbonyl group. The compound dilithiated α to the carbonyl undergoes a lithium oxide elimination to yield an acetylene. Abstraction of two protons from two o-methyl groups, or from one 0 - and one p-methyl groups, or from one o-methyl group and the α-methylene group, was also observed. The directive effects in these metalations are discussed in terms of charge alternation.

A preferential proton abstraction by base in hexamethylphosphoric triamide from the p-methyl group in 4 -methylacetophenone (I) was reported by Dubois. ${ }^{1}$ On the other hand, abstraction of two protons from the methyl α to the carbonyl in 2,4,6-trimethylacetophenone (II) by butyllithium was claimed. ${ }^{2}$ This last result was not entirely reliable, since it was proved only by the production of III, which contained two deuterium atoms in the acetyl group, as confirmed by the NMR spectrum. However, the second proton could have been exchanged during the deuteration.

Our interest in polymetalation ${ }^{3}$ has prompted us to investigate the possibility of polymetalation of the substituted acetophenones. Several other ketones such as acetophenone (IV), 2-(V) and 3-methylacetophenone (VI) were studied in addition to I and II.

In order to avoid the attack of butyllithium on the carbonyl group, it was necessary (except in the case of $2,4,6$-trimethylacetophenone, that was hindered enough to avoid addition of butyllithium to the carbonyl group) to carry out the abstraction of the first proton with a different base to form the enolate. The following procedure was adopted. The enolates, obtained by the action of sodium hydride or lithium diisopropylamide on the ketones, were converted into trimethylsilyl enol ethers. Addition of 1 equiv of butyllithium to a solution of these o ethers transformed them into lithium enolates. ${ }^{4}$ Further metalation of these enolates was performed by an excess of butyllithium in the presence of TMEDA.

Results

Metalation of II with butyllithium in hexane-TMEDA and subsequent treatment with trimethylchlorosilane yielded the disilyl (VIIb) and two trisilyl (VIIIb and IXb) derivatives, that are the products of the reaction of the dilithium (VIIa) and the trilithium (VIIIa and IXa) intermediates. Hydrolysis of these derivatives gave the corresponding ketones Xb, XIb, and XIIb.

The metalation of II in ether made it possible to follow by NMR the transformation of II into XIIIa and, after the addition of TMEDA, the further lithiation to VIIa. In the first stage the signals of XIIIa appeared: aromatic at 6.63 (s), $=\mathrm{CH}_{2}$ at $3.9(\mathrm{~s}, 1 \mathrm{H})$ (the second vinylic proton was hidden by ether), the o-methyls at 2.24 (s), and the p-methyl at 2.07 $\mathrm{ppm}(\mathrm{s})$. These signals disappeared on further metalation, giveing place to two aromatic signals at 5.37 (s) fo the proton para and at 59.97 ppm ortho to the $\mathrm{CH}_{2} \mathrm{Li}$. Meta coupling was observed by broadening of the singlets. The intensity of the o-methyls singlet was reduced and a new singlet for the $\mathrm{CH}_{2} \mathrm{Li}$ appeared at 1.84 ppm . (s). Silylation of the ether solution led to VIIb. Similar results were obtained in THF (without TMEDA), but with an additional minor product XIVb formed by metalation of the p-methyl and subsequent silylation and hydrolysis of the enol ether.

The appearance of two aromatic signals in the product of dimetalation proved its structure VIIa, since ring metalation or at the p-methyl would have led to a product showing one aromatic signal only. Quenching of the enolate XIIIa with $\mathrm{D}_{2} \mathrm{O}$ in our hands led to a mixture of mono-, di-, tri-, and undeuterated products in the α-methyl group as shown by he M^{+} peaks obtained in the mass spectrum. In our conditions, the reported ${ }^{2}$ dideuterated II was not the product of dmetalation, but an artifact of exchange.

Preferential -ing metalation at the position crtho to the enolate group was obtained on metalation of XVb in hex-ane-TMEDA. Treatment of the product of metalation with trimethylchlorosilane yielded preponderantly XVIb and two products of dimetalation, XVIIb (9%) and XVIПb (10%). A small amount of an unidentified product was also formed.

The metalation at the ortho position was proved by the NMR of the ketone, product of deuterolysis of the metalated mixture. Instead of the $\mathrm{A}_{2} \mathrm{~B}_{2}$ pattern of the aromatic protons in I, there appeared one proton only at the ortho position in this product. Metalation of XVb with butyllithiam in THF

I

VII

XIII

II
a, $R=\mathrm{Li}$
b, $\mathrm{R}=\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$

V

VIII

XI

XIV

III
c. $\mathrm{R}=\mathrm{K}$
d, $\mathrm{R}=\mathrm{OCOCH}_{3}$

IX

XII

XV

and subsequent treatment with trimethylchlorosilane and hydrolysis yielded XIXb as the major product derived from the product of metalation at the p-methyl XIXa.

Metalation of the trimethylsilyl ether XXb derived from IV gave one product only, XXIa, metalated at the ortho position. Silylation of the product of metalation yielded XXIb. Alkylation of XXIa with methyl bromide gave a mixture of 2-methylacetophenone (V), 2-methylpropiophenone (XXII), and 2-methylisobutyrophenone (XXIII). The two ketones V and XXIII were products of transmetalation during the alkylation. The occurrence of transmetalation was proved by treatment of the enolate of 2 -methylacetophenone with methyl bromide, that yielded the starting material, XXII, and XXIII.

A mixture of products was obtained on metalation of the silyl ether XXIVb of V and subsequent treatment with trimethylchlorosilane, the most abundant being XXVb. In addition, there was obtained XXVIb, formed from the product of dimetalation XXVIa at the o-methyl, XXVIIb from the product of dimetalation XXVIIa at the methyl α to the carbonyl, and an acetylenic derivative XXVIIIb devoid of oxygen. XXIX was clearly formed by elimination of lithium oxide from the intermediate XXVIIa yielding then XXVIIIa with butyllithium and subsequently XXVIIIb with trimethylchlorosilane. An intermediate formed by abstraction of the lost
proton from the carbon α to the carbonyl in XXVIIa is less probable.

No attack on the methyl was observed in the reaction of the enolate of VI, that yielded a product XXXIa of metalation at the ortho position exclusively and XXIb on subsequent treatment with trimethylchlorosilane. The NMR spectrum of this compound in the aromatic range consisted of a doublet, part of an AB signal at 7.35, and a not well-separated doublet at $\sim 7 \mathrm{ppm}$, as well as a singlet at ~ 7.05. Hydrolysis of the enol silyl group of XXXIb to the ketone XXXII confirmed the structure assigned. The NMR spectrum of XXXII showed a doublet at $7.22(1 \mathrm{H}, J=8 \mathrm{~Hz})$, showing additional splitting of 2 Hz by a meta proton, a doublet at $7.52(1 \mathrm{H}, J=8 \mathrm{~Hz})$, and a singlet at $7.58 \mathrm{ppm}(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. Addition of $\mathrm{Eu}(\mathrm{fod})_{3}$ produced a better resolved spectrum. The low-field singlet of the proton ortho to the carbonyl was shifted to lowerfield and the aromatic pattern showed in addition to it two doublets of the AB system. Deuterolysis of XXXIa introduced deuterium also at the ortho position. Alkylation with methyl bromide yielded a mixture of XXXIII, XXXIV, and XXV, which were separated and their structure determined by NMR. The aromatic pattern in the NMR spectra of these ketones showed a singlet $(1 \mathrm{H})$ at lower yield, and a higher field singlet (2 H) in agreement with the NMR spectra of a series of similar compounds ${ }^{3,5}$ with a $1,2,4$-trisubstituted benzene ring. The NMR spectra

Table I. Products of Metalation-Silylation of Acetophenones

Substrate	Solvent	Catalyst: Ratio 1; ratio 2^{a}	Duration of metalation, h	Products
II	Hexane	TMEDA: 4 ; 4	24	VII (56\%); VIII (22\%); IX (11\%); 11\% not identified.
II	Hexane	TMEDA: 2; 2	24	XIII (23\%); VII (77¢\%)
II	Hexane	TMEDA: $4 ; 1$	48	VII (45.5\%); VIII (34.5\%); IX (17\%)
II	THF	-: 4; -	24	II (28\%); X (62.5\%); XIV (9\%)
II	THF	$i-\mathrm{Pr}_{2} \mathrm{NLi}: 4 ;-$	24	XIII (90\%)
XV	Hexane	TMEDA: 4; 2	24	XVI (71\%); XVII (10\%); XVIII (10\%)
XV	THF	-: 4; -	24	I (50\%); XIX (50\%)
XX	Hexane	TMEDA: 4; 2	24	XXI (90\%)
XX ${ }^{\text {b }}$	Hexane	TMEDA: 4; 2	24	IV (8\%); V (34\%); XXII (26\%); XXIII (26\%)
XXIV	Hexane	TMEDA: 4; 2	24	XXV (55\%); XXVIII (20\%); XXVI (13\%); XXVII (6.5\%)
XXIV	Hexane	TMEDA: 4; 1	24	XXV (85\%)
$\mathrm{V}^{\text {b }}$	THF	$i-\mathrm{Pr}_{2} \mathrm{NLi}: 1 ;-$	1	V (25\%); XXII (50\%); XXIII (25\%)
XXX	Hexane	TMEDA: 4; 2	24	XXXI (90\%)
XXX	Hexane	TMEDA: 4; 1	24	XXXI (90\%)
$\mathrm{XXX}^{\text {b }}$	Hexane	TMEDA: 4; 1	24	VI (7.5\%); XXXIII (24.5\%); XXXIV (18\%); XXXV (38\%)

${ }^{a}$ Ratio 1, between BuLi considered as a monomer, and the substrate; ratio 2, between BuLi and TMEDA. ${ }^{b}$ Alkylation with methyl bromide was performed instead of silylation.

XIX

XXII

XXV

XXVIII

XXXI

XXXIV
of these ketones were resolved in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$, and in all of them the signals of the aromatic protons consisted of a singlet shifted to low field (1 H) and an AB quartet $(2 \mathrm{H})$ in the usual aromatic range. The other possible isomeric products, e.g., 2,3-dimethylacetophenone (XXXVI), would have shown an entirely different pattern in the NMR spectrum.

XX

XXIII

XXVI

XXIX

XXXII

CH_{3}
XXXV

XXI

XXIV

XXVII

XXX

XXXIII

XXXVI
Metalation of XXXb in ether made it possible to follow its transformation ir to the enolate XXXa, and, after the addition of TMEDA, the further lithiation to XXXIa. In the first stage, the signals of the enolate appeared: aromatic at 6.78-7.24 (m), $=\mathrm{CH}_{2}$ at 3.91 (s) and 3.62 (s), and the methyl at 2.11 ppm (s). These signals disappeared on further metalation, giving place
to an interesting pattern in the aromatic range: two doublets each of 1 H at 7.70 and at $6.66 \mathrm{ppm}(J=6 \mathrm{~Hz})$, and a singlet $(1 \mathrm{H})$ at 7.14 ppm . This spectrum confirmed the structure XXXIa, in which one proton ortho to the lithium is shifted to lower field ${ }^{6} 7.70$, and coupled with its neighbouring proton at 6.66 ppm . The proton between the enolate and the methyl appears as a singlet. Meta coupling was observed by broadening of the singlet and the higher field doublet.
Metalation with lithium diisopropylamide of an 0 -methyl in benzamides was reported. ${ }^{7}$ However, no such metalation could be performed by us in the case of the enolates studied here.

Discussion

The lithium enolates of aryl methyl ketones undergo further metalation in ether-TMEDA, despite the negative charge of the side chain, which is also partially delocalized into the aromatic ring. Abstraction of two additional protons with organolithium compounds is observed in hexane-TMEDA. These metalations are strongly directed to the position ortho to the enolate, with a methyl at this position being metalated preferentially to the carbon ortho in the ring. These enolates therefore enter the class of directing groups in the metalation like amides ${ }^{7-10}$ or benzylamines. ${ }^{11-14}$ Chelation is probably the driving force for ortho metalation. The observation that abstraction of an additional proton occurs at the carbon of the side chain α to the carbonyl is of great interest. This is the first case observed for dimetalation of a methyl α to the carbonyl. Metalation is also observed in the p-, but not at the m methyl.
We have therefore an additional directing effect to that for metalationat the ortho position. This effect discriminates between the m - and p-methyls, and we ascribe it to the preference shown by conjugated systems to introduce additional charges on the same set of starred carbons, conserving in that manner the charge alternation that was present in the initial odd alternating ion. This can occur when a proton is abstracted from a p-but not a m-methyl. The same charge alternation is maintained after an additional abstraction of a proton from the carbon α to the carbonyl, or from the o methyl in preference to that from the ortho carbon. The preference for creating polyanions by proton abstraction in such a manner as to create conjugated systems with charge alternation was observed previously in olefins leading to trimethylenemethane dianions, ${ }^{15}$ to allyl dianion, ${ }^{16}$ add to propargylic di- ${ }^{17}$ and trianions. ${ }^{18}$ In the last case, proton abstraction was shown to occur three times consecutively from the same carbon rather than from the other propargylic position that would have led to a more even charge distribution.

The influence of chelation and its dependence on the solvent is illustrated by the preferential metalation of the enolate of 4 -methylacetophenone at the ortho position in hexaneTMEDA and at the p-methyl in THF. It was observed before ${ }^{19}$ that TMEDA solvates lithium salts of delocalized carbanions very strongly externally to a solvated tight ion pair, but THF can produce solvent separated ion pairs. The cation in the solvent separated ion pair is cbviously less effective in chelation, and the electronic effects, that prefer charge alternation, are therefore determining in THF the position of proton abstraction. The coordination of the cation in the tight ion pair with one molecule of TMEDA only, thus leaving a site on the lithium free for chelation, may be an additional reason for the difference between the chelating efficiency of lithium in the presence of TMEDA and THF. In THF solution all the available sites on the lithium cation of an ion pair are probably coordinated with this ligand. The chelation through a separated ion pair in THF is sufficient to prefer metalation at the o - to that at the p-methyl, since in both reactions an ion with
charge alternation is formed. However, the metalation rate at the p-relative to the o-methyl is larger in THF that in hexane-TMEDA, where tight ion pairs are present.

Steric effects intervene also in the metalation promoted by chelation. The attack on the enolate of 3 -methylacetophenone by butyllithium takes place exclusively at the ortho position away from the ring methyl.

A charge in a π-conjugated system not only does not prevent the addition of further charges to this system, if the charge is introduced on the same set of starred atoms, ${ }^{3,17,18,20}$ but makes it sometimes easier than the introduction of the first charge. Abstraction of a proton to create a carbon-metal σ bond that is perpendicular to the π system containing a charge is not prevented. It is of interest hat the presence of such a carbonmetal bond in aryllithium compounds interferes not only with further metalation by abstraction of protons of the ring and the formation of additional σ carbon-lithium bonds in the same plane as the first one, but also with the introduction of charges into the perpendicular π system, ${ }^{21}$ if the C-Li bond is on a carbon belonging to the unstarred set.

The conjugation between the enolate group and the ortho or para benzylic methylenes in the polyanions is of the crossed-conjugation type. This kind of conjugation was found to be more stable than the linear one in the polyanions, e.g. trimethylenemethane dianion ${ }^{15,20}$ relative to butadiene dianion or m-xylylene dianion relative to its para isomer. ${ }^{3,5}$

Experimental Section

NMR spectra of all compounds except the lithium derivatives were recorded in CCl_{4} on a Varian T60 apparatus using $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Gas chromatographic separations were performed on a Varian Aerograph A-90-P-3. Ir spectra were recorded on a PerkinElmer 337, and uv spectra on Unicam SP 800A spectrophotometers. Analyses were performed by Mrs. M. Goldstein of the Microanalytical Laboratory of the Hebrew University.

2,4,6-Trimethylacetophenone, 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, and acetophenone were commercial samples (Aldrich) that were tested by us by GLC

The enol silyl ethers were prepared by the procedure recommended by Stork ${ }^{4}$ using sodium hydride, but better yields were obtained when lithium diisopropylamide ${ }^{22}$ was used as the base for proton abstraction. The first but not the second procedure failed with m-methylacetophenone.

An example for the general procedure for preparation of the enol silyl ethers is given for m-methylacetophenone.

Butyllithium ($35 \mathrm{ml}, 1.5 \mathrm{M}$) was added dropwise to 6.5 ml of diisopropylamine in 20 ml of dry THF under an inert atmosphere and cooled to $0^{\circ} \mathrm{C}$ in an ice bath; then 5 g of VI was added. After the addition was complete, the mixture was left for $30-60 \mathrm{~min}$ at $0^{\circ} \mathrm{C}$; then 5.5 g of trimethylchlorosilane was added. After 30 min the reaction mixture was filtered. The organic phase was washed rapidly with water and an aqueous solution of sodium bicarbonate. After evaporation of the solvent, the residue was distilled at $110-120^{\circ} \mathrm{C}(25 \mathrm{~mm})$, yield $6.5 \mathrm{~g}(84 \%)$ of [$1-(m$-methylstyryl)oxy]trimethylsilane (XXX): NMR $\delta 7.08-7.05(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 4.85(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.38(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 0.28\left[\mathrm{~s}, 9 \mathrm{H}, 0 \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{SiO}: \mathrm{C}, 69.9 ; \mathrm{H}, 8.7$. Found: C, 69.61; H, 8.68. Ir 850, 1020, 1250 $1310,1490,1590,1600,1620 \mathrm{~cm}^{-1}$. The other enol silyl ether derivatives were obtained by this procedure.
[1^{\prime}-(2,4,6-Trimethylstyryl)oxy]trimethylsilane (XIII): NMR $\delta 6.68$ $(\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}), 4.54(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.11(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 2.34(\mathrm{~s}, 3 \mathrm{H}$, $\left.{ }^{\prime} \mathrm{ArCH}_{3}\right), 0.28\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right] ; m / e 162\left[\mathrm{M}^{+}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
[1-(p-Methylstyryl)oxy]trimethylsilane (XV): NMR $\delta 7.01$ (d, J $=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.38(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.75(\mathrm{~d}, J=2 \mathrm{~Hz}, 1$ $\mathrm{H},=\mathrm{CH}), 4.35(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 0.21[\mathrm{~s}$, $9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}$]. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{SiO}: \mathrm{C}, 69.9 ; \mathrm{H}, 8.7$. Found: 69.7, H, 8.9. Ir 850, 1020, 1250, $1620 \mathrm{~cm}^{-1}$.
[1-(Phenylvinyl)oxy]trimethylsilane (XX): NMR $\delta 7.61-7.15$ (m, $5 \mathrm{H}, \mathrm{ArH}), 4.83(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.36(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$ $=\mathrm{CH}), 0.25\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right]$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{OSi}$ C, 68.7 ; H, 8.3. Found: C, 68.90; H, 8.64, Ir 850, 1010, 1120, 1250, 1320, 1620 cm^{-1}.
[1'-(2-Methylstyryl)oxy]trimethylsilane (XXIV): NMR δ 7.08-7.05 $(\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}), 4.85(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.38(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$ $=\mathrm{CH}), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 0.28\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right]$. Anal. Calcd for
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{SiO}: \mathrm{C}, 69.9 ; \mathrm{H}, 8.7$. Found: C, $69.80 ; \mathrm{H}, 8.86$. Ir 850, 1020, 1090, $1140,1250,1270,1310,1620 \mathrm{~cm}^{-1}$
Metalation. All metalations were carried out by a standard procedure. An example for XXX is given. To 13 ml of 1.5 M butyllithium in hexane under an inert atmosphere and cooled to -20 to $-30^{\circ} \mathrm{C}$, 2.6 ml of TMEDA was added, and then 1 g of XXX. The reaction mixture was left at room temperature for 24 h , then cooled to $0^{\circ} \mathrm{C}$ in an ice bath and 5 g of trimethylchlorosilane was added. The reaction mixture was left at room temperature for several hours, then filtered and the organic solution washed rapidly with water. The solvent was evaporated and the product in the residue (1.4 g) separated by preparative GLC at $180^{\circ} \mathrm{C}$ on a $2 \mathrm{~m} \times 0.25 \mathrm{in}$. column of 15% SE-30 on Chromosorb W, mesh size 60/80. The following products of metalation and subsequent silylatiion were obtained in this manner.
[1-(2^{\prime}-Trimethylsilylmethylene- $4^{\prime}, 6^{\prime}$-dimethylsytryl)oxy]trimethylsilane (VII): NMR $\delta 6.64$ (brs, $2 \mathrm{H}, \mathrm{ArH}$), 4.54 (s, $1 \mathrm{H},=\mathrm{CH}$), 4.11 ($\mathrm{s}, 1 \mathrm{H},=\mathrm{CH}$), 2.28 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}$), 2.21 ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\right), 0.18[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right],-0.03\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right] ; m / e 234\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$; ir $850,1050,1080,1170,1250,1300,1600,1620 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{OSi}_{2}$: $\mathrm{C}, 66.3 ; \mathrm{H}, 9.8$. Found: $\mathrm{C}, 66.38 ; \mathrm{H}, 9.96$.
[1-Bis ($2^{\prime}, 6^{\prime}$-trimethylsilylmethylene)-4-methylstyryl)oxy]trimethylsilane (VIII): NMR $\delta 6.51$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}$), 4.47 ($\mathrm{s}, 1 \mathrm{H},=\mathrm{CH}$), $4.07(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\right), 0.21$ $\left[\mathrm{s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right],-0.06\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \mathrm{m} / e 306\left[\mathrm{M}^{+}-\right.$ $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$]; ir $850,1050,1075,1160,1250,1300,1620 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{OSi}_{3}$: $\mathrm{C}, 63.4 ; \mathrm{H}, 10$. Found: $\mathrm{C}, 63.42 ; \mathrm{H}, 10.33$.
[1-(2'-Trimethylsilyl-4'-methylstyryl)oxy]trimethylsilane (XVI): NMR $\delta 7.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 4.32\left(\mathrm{brs}, 2 \mathrm{H}=\mathrm{CH}_{2}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $0.31\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArSi}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.21\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right]$; ir $845,1255,1260$, $1260 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{OSi}_{2}$: $\mathrm{C}, 64.7 ; \mathrm{H}, 9.36$. Found: C , 64.65; H, 9.27

1-(Trimethylsiloxy)-2-(trimethylsilyl)-1-(2'-trimethylsilyl-4'methylphenyl)ethylene (XVII): NMR $\delta 7.09$ (s, 1 H, ArH), 6.93 (s, 2 H, ArH), $4.41(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 0.30[\mathrm{~s}, 9 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.14\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right],-0.06\left[\mathrm{~s}, 9 \mathrm{H},=\mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
[1 -(2^{\prime}-Trimethylsilyl-4'-trimethylsilylmethylenestyryl)oxy]trimethylsilane (XVIII): NMR δ 6.7-6.9 (m, $3 \mathrm{H}, \mathrm{ArH}$), $4.26(\mathrm{~s}, 2 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 2.0\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}^{(}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.30\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{ArSi}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.22[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.04\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
[1-(2'-Trimethylsilylstyryl)oxy]trimethylsilane (XXI): NMR δ 7.44-7.24 (m, 1 H, ArH), 7.03-7.08 (m, 3 H, ArH), 4.38 (brs, 2 H , $\left.=\mathrm{CH}_{2}\right), 0.31\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{ArSi}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.21\left[\mathrm{~s}, 9 \mathrm{H}, 0 \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right]$; ir 840,1130 , $1260,1620 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi}_{2}: \mathrm{C}, 63.6 ; \mathrm{H}, 9.09$. Found: C, 64.31; H, 9.64.
[1-(2'-Trimethylsilylmethylenestyryl)oxy]trimethylsilane (XXV): NMR $\delta 6.98(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 4.41(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.28(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH})$, 2.25 (s, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}$), $0.11\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $-0.05[\mathrm{~s}, 9 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{CHSi}\left(\mathrm{CH}_{3}\right)_{3}\right]$; ir $850,1015,1110,1250,1310,1620 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{OSi}_{2}$: $\mathrm{C}, 64.7 ; \mathrm{H}, 9.36$. Found: C, 65.1; H, 9.4.
[1 -($2^{\prime}, 2^{\prime}$-Bis(trimethylsilylmethylenestyryl)oxy]trimethylsilane (XXVI): NMR $\delta 6.71-6.81(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 4.25(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.08$ (s , $1 \mathrm{H},=\mathrm{CH}), 1.98\left[\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArCH}(\mathrm{Si})_{2}\right], 0.15\left[\mathrm{~s}, 9 \mathrm{H}, 0 \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right],-0.01$ [s, $18 \mathrm{H}, \mathrm{ArCH}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}$].
1-(Trimethylsiloxy)-2-(trimethylsilyl)-1-(2'-trimethylsilylmethylene) styrene (XXVII): NMR $\delta 6.85-6.98$ (m, $4 \mathrm{H}, \mathrm{ArH}$), 4.45 ($\mathrm{s}, 1 \mathrm{H}$, $=\mathrm{CH}), 2.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\right), 0.15\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right],-0.01[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Si}_{\mathrm{Si}}\left(\mathrm{CH}_{3}\right)_{3}\right],-0.05\left[\mathrm{~s}, 9 \mathrm{H},=\mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
1-(2^{\prime}-Trimethylsilymethylenephenyl)-2-(trimethylsilyl)acety-
lene (XXVIII): NMR $\delta 6.98-7.2\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}\right.$), 2.26 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}$), $0.2\left[\mathrm{~s}, 9 \mathrm{H}, \equiv \mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.0\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$; ir $\mathrm{C} \equiv \mathrm{C} 2160$ cm^{-1}.
[1-(2 2^{\prime}-Trimethylsilyl- 5^{\prime}-methylstyryl)oxy]trimethylsilane (XXXI): NMR $\delta 7.35(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}), 7.05(\mathrm{~s}, 1 \mathrm{H}$, ArH), 4.38 (brs, $2 \mathrm{H},=\mathrm{CH}_{2}$), 2.34 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), 0.21 ($\mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.24\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{ArSi}\left(\mathrm{CH}_{3}\right)_{3}\right]$; ir $860,1020,1265,1320 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{OSi}_{2}$: C, 64.7 ; H, 9.3. Found: C, $64.81 ; \mathrm{H}$, 9.33 .

The hydrolysis of the enol silyl ethers to the corresponding ketones was carried out with p-toluenesulfonic acid in an aqueou methanolic solution. ${ }^{4}$
2-Trimethylsilylmethylene-4,6-dimethylacetophenone (X): NMR $\delta 6.63(\mathrm{~m}, 2 \mathrm{H} . \mathrm{ArH}), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.15$ (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\right),-0.03\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$; $m / e 234\left(\mathrm{M}^{+}\right)$; ir $850,1250,1350,1700 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{OSi}$ C. $71.8 ; \mathrm{H}, 9.4$. Found: C, 71.99 ; $\mathrm{H}, 9.38$.
2,6-Bis(trimethylsilylmethylene)-4-methylacetophenone (XI): NMR $\delta 6.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}\right.$), $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right.$), 1.88 (s, $\left.4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\right),-0.03\left[\mathrm{~s}, 18 \mathrm{H}, \mathrm{Ar}\left[\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right]_{2}\right] ; m / e 306$ $\left(\mathrm{M}^{+}\right)$; ir $850,1150,1250,1350,1420,1695 \mathrm{~cm}^{-1}$.
2,4-Bis(trimethylsilylmethylene)-6-methylacetophenone (XII):

NMR $\delta 6.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, 1.98 ($\left.\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\right), 1.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\right), 0.02\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right)_{3}\right]$, 0.0 [s, $9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$]; ir 850, 1160, $12501350,1420,1690 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{e}$ $306\left(\mathrm{M}^{+}\right)$.
Reaction with Methyl Bromide. The metalation mixture was cooled in an ace-one-dry ice bath and gaseous methyl bromide was bubbled through the solution for 10 min . The reaction mixture was brought to room temperature and left for several hours. Water was then added, and the organic layer was separated and washed with aqueous 5% hydrochloric acid and with aqueous sodium bicarbonate. The solvent was evaporated and the products in the residue (1.1 g) separated by GLC at $145{ }^{\circ} \mathrm{C}$ on a $2 \mathrm{~m} \times 0.25 \mathrm{in}$. column of $15 \% \mathrm{SE}-30$ on Chromosorb W. The products of metalation and subsequent alkylation of acetcphenone were separated preparatively at $155^{\circ} \mathrm{C}$ on a $5 \mathrm{~m} \times 0.25 \mathrm{in}$. column of 20% Carbowax 20 m on Chromosorb W, total yield 75%.

2,5-Dimethylacetophenone (XXXIII): NMR $\delta 7.41$ (s, $1 \mathrm{H}, \mathrm{ArH}$), $7.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}\right.$), $2.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.48(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{COCH}_{3}$).

2,5-Dimethylpropiophenone (XXXIV): NMR $\delta 7.38$ (s, $1 \mathrm{H}, \mathrm{ArH}$), 7.06 (s, $2 \mathrm{H}, \mathrm{ArH}$), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.8(\mathrm{q}$, $2 \mathrm{H}, \mathrm{COCH}_{2}$), $1.15\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
2,5-Dimethylisobutyrophenone (XXXV): NMR $\delta 7.28$ (s, 1 H , ArH), 7.11 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}$), $2.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right.$), 3.31 [quintet, 1 H , $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.12\left[\mathrm{~d}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}\right]$.

2-Methylacetophenone (V): NMR data were compared with a commercial sample (Aldrich).

2-Methylpropiophenone (XXII): NMR $\delta 7.41-7.61$ (m, $1 \mathrm{H}, \mathrm{ArH}$), $7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.8(\mathrm{q}, J=6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}$), 1.19 (t. $3 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CH}_{2}$).

2-Methylisobutyrophenone (XXIII): NMR $\delta 7.41-7.61$ (m, 1 H, $\mathrm{ArH}), 7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 2.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.3$ (quintet, 1 H , $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.16\left[\mathrm{~d}, J=6 \mathrm{~Hz}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]$.
Metalation with Butyllithium in THF. Hexane was evaporated in vacuo from 16.5 ml (24.7 mmol) of a 1.5 M solution of butyllithium in hexane. The residue was cooled in an acetone-dry ice bath and 15 ml of dry THF was added. The temperature was brought to $0^{\circ} \mathrm{C}$ by changing the dry ice-acetone bath to an ice bath and 1 g of II was added. (The same procedure was used for XV.) Subsequent silylation and isolation of products was performed by the same procedure as described before, but only ketones were isolated from THF.
2,6-Dimethyl-4-(trimethylsilylmethylene) acetophenone (XIVb); NMR $\delta 6.4$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}$), 2.3 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}$), 2.13 ($\mathrm{s} .6 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.93 ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\right), 0.0\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right.$.

4-(Trimethylsilylmethylene)acetophenone (XIXb): NMR $\delta 7.86$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.06(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 2.53 (s, 3 H , $\left.\mathrm{COCH}_{3}\right), 2.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\right), 0.0\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right] ; m / e 206$ (M^{+}); ir $1680 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.
The NMR spectra of XIIIa, VIIa, XXXa, and XXXIa were recorded by carrying out the metalation of II and XXXb, respectively, in NMR tubes. The metalation was also performed with BuLi in ether in the presence of TMEDA. Under this procedure it was possible to use catalytic amounts of TMEDA and to overcome the difficulties caused by precipitates formed when catalytic amounts of TMEDA in hexane were used. Chemical shifts have been determined relative to added $\mathrm{Me}_{4} \mathrm{Si}$.
The shift reagent used was $\operatorname{Eu}\left(\right.$ fod $_{3}$, i.e., $\operatorname{tris}(6,6,7,7,8,8$-hep-tafluoro-2,2-dimethyl-3,5-octanedionato)europium. Small portions of this shift reagent were added to CCl_{4} solutions of the samples in NMR tubes until well-resolved spectra were obtained, and addition of further catalytic amounts had no significant influence on the spectra. (Excess must be avoided so as not to cause considerable line broadening.)
Registry No.-II, 1667-01-2; V, 577-16-2; VI, 585-74-0; VIIb, 59796-73-5; VIIIb, 59790-43-1; Xb, 59790-44-2; XIb, 59790-45-3; XIIb, 59790-46-4; XIIIb, 59790-47-5; XIVb, 59790-48-6; XVb, 54731-27-0; XVI, 59790-49-7; XVII, 59790-50-0; XVIII, 59790-51-1; XIXb, 1833-48-3; XXb, 13735-81-4; XXIb, 59790-52-2; XXII, 2040-14-4; XXIII, 2040-21-3; XXIVb, 59790-53-3; XXVb, 59790-54-4; XXVIb, 59790-55-5; XXVIIb, 59790-56-6; XXVIIIb, 59790-57-7; XXXb, 59790-58-8; XXXIb, 59790-59-9; XXXIII, 2142-73-6; XXXIV, 35031-52-8; XXXV, 5445-46-5; trimethylchlorosilane, 75-77-4.

References and Notes

(1) J. E. Dubois and G. Dodin, J. Am. Chem. Soc., 94, 7520 (1972)
(2) E. M. Kaiser, L. E. Solter, R. A. Swarz, R. D. Beard, and C. R. Hauser, J. Am. Chem. Soc., 93, 4237 (1971).
(3) J. Klein, A. Medlik, and A. Y. Meyer, Tetrahedron, 32, 51 (1976).
(4) G. Stork and P. F. Hudrlik, J. Am. Chem. Soc., 90, 4462.4464 (1968) (5) J. Klein and A. Medlik-Balan, to be published.
(6) J. A. Ladd, Spectrochim. Acta, 22, 1157 (1965); J. A. Ladd and R. G. Jones, ibid., 22, 1964 (1966); J. Parker and J. A. Ladd, J. Organomet. Chem., 19, 1 (1969).
(7) R. E. Ludt, J. S. Griffiths, K. N. McGrath, and C. R. Hauser, J. Org. Chem., 38, 1668 (1973).
(8) W. H. Puterbaugh and C. R.Hauser, J. Org. Chem., 29, 853 (1964).
(9) R. L. Vaulx, W. H. Puterbaugh, and C. R. Hauser, J. Org. Chem., 29, 3514 (1964).
(10) D. W. Slocum and F. E. Stonemark, J. Org. Shem., 38, 1677 (1973).
(11) F. N. Jones, M. F. Zinn, and C. R. Hauser, J. Org. Chem., 28, 663 (1963); F. N. Jones, R. L. Vaulz, and C. R. Hauser, ibid., 28, 3461 (1963); K. P. Klein and C. R. Hauser, ibid., 32, 1479 (1967); R. L. Gay and C. R. Hauser, J. Am. Chem. Soc., 89, 2297 (1967); R. E. Ludt and C. R. Hauser, J. Org. Chem., 36, 1607 (1971).
(12) N. S. Narasimahan and A. C. Ranade, Tetranedron Lett., 603 (1966).
(13) A. R. Lepley et al., J. Org. Chem., 31, 2047, 2061 (1966).
(14) R. T. Hawkins and D. B. Stroup, J. Org. Chem., 34, 1173 (1969)
(15) J. Klein and A. Medlik, J. Chem. Soc., Chem. Commun., 275 (1973).
(16) J. Klein and A. Medlik-Balan, J. Chem. Soc., Chem. Commun., 877 (1975).
(17) J. Klein and S. Brenner, J. Am. Chem. Soc., 91, 3094 (1969); J. Organomet Chem., 18, 291 (1969); Tetrahedron, 26, 2345 (1970); 26, 5807 (1970); J. Klein and E. Gurfinkel, J. Org. Chem., 34, 3952 (1969); J. Klein and J. Y. Becker, Tetrahedron, 5385 (1972).
(18) J. Klein and J. Y. Becker, J. Chem. Soc., Perkin Trans. 1, 599 (1973).
(19) J. Smid in "lons and Ion Pairs in Organic Reactions", M. Szwarc, Ed., Wiley-Interscience, New York, N.Y., 1972, p. 105
(20) J. Klein and A. Medlik-Balan, submitted for publication.
(21) R. West and P. C. Jones, J. Am. Chem. Soc., 90, 2656 (1968).
(22) P. L. Greger, J. Am. Chem. Soc., 92, 1396 (1970); 89, 2500 (1967).

Solvent and Substituent Effects upon the $n \rightarrow \pi^{*}$ Transition of Aliphatic Carboxylic Acids and Esters

Lyman R. Caswell,* M. Francine Howard, and Therese M. Onisto
Department of Chemistry, The Texas Woman's University, Denton, Texas 76204
Received April 20, 1976

Abstract

The near-ultraviolet spectra of 13 aliphatic carboxylic acids, 13 ethyl esters, and 16 alkyl acetates were determined for solutions in n-hexane, acetonitrile, and water. The carbonyl $n \rightarrow \pi^{*}$ transition for these compounds was found in the vicinity of 206 nm under hydrogen-bonding conditions, and around 212 nm in the absence of hydrogen bonding. The spectra of the carboxylic acids in acetonitrile solution showed that the carboxyl group is not involved in hydrogen bonding in this solvent. The absorption band of alkyl acetates was red shifted by increasing bulkiness of the O-alkyl group. The values of $\epsilon_{\max }$ ranged from 40 to 100 and were determined principally by the electron-donating abilities of the C-alky. groups, for both acids and esters. The spectra of these compounds as neat liquids showed a very weak transitior $\left(\epsilon_{\max } \simeq 10^{-2}\right)$ in the vicinity of 275 nm .

The electronic absorption spectra of saturated aliphatic carboxylic acids and their alkyl esters display three absorption bands. The best known of these bands is the transition observed between 200 and 220 nm , with a molar absorptivity of $50-60 .{ }^{1} \mathrm{~A}$ variety of arguments have been used to assign this band to the carbonyl $n \rightarrow \pi^{*}$ transition of both the acids ${ }^{2,3}$ and the esters. ${ }^{4}$ In agreement with this assignment, this band in the spectra of esters is blue shifted with increasing solvent polarity. ${ }^{5}$ Variation of either the C-alkyl or the O-alkyl group in the ester structure produces variations in the transition energy which appear to be more closely related to the overall conformation of the molecule than to variation of the electrical effects of these substituents. ${ }^{5,6}$

The $n \rightarrow \pi^{*}$ absorption band is superimposed upon the end absorption of a much stronger band with its peak in the vacuum ultraviolet. This absorption band has been studied by Nagakura and his co-workers, ${ }^{7,8}$ who found peaks in the range $155-165 \mathrm{~nm}$, with molar absorptivities from 2500 to 4200 , in the spectra of the vapors of formic and acetic acids, and of ethyl acetate. Theoretical considerations led these authors to the conclusion that this band is of mixed character, involving intramolecular charge transfer from the singly bonded oxygen to the carbonyl group, combined with a smaller contribution from the $\pi \rightarrow \pi^{*}$ transition of the carbonyl. ${ }^{8}$

In 1931, Hartleb published a study of the absorption spectra of neat liquid carboxylic acids. ${ }^{9}$ This study showed the presence of a shoulder on the end absorpticn, at $270-280 \mathrm{~nm}$. The molar absorptivity at this shoulder was of the order of magnitude of 10^{-2}. The only ester which was examined in the study, tributyrin, failed to show this shoulder, which led Hartleb to the conclusion that the shoulder was due to an absorption band of the carboxylate anion. Since the spectra of salts of carboxylic acids do not show an absorption band in the vicinity of this shoulder, this interpretation is not tenable.

No further mention of this shoulder has appeared in the literature.
Although Closson and co-workers ${ }^{5,6}$ made an extensive examination of solvent and substituent effects upon the spectra of aliphatic esters, no comparable study of the spectra of the corresponding acids has been described. Since the hydrogen bonding and steric interactions in carboxylic acids are quite different from those of esters, it is to be expected that solvent and substituent variation will have different effects upon the $\mathrm{n} \rightarrow \pi^{*}$ transition of acids than upon this transition of esters. In order to examine these effects, we have undertaken the measurement of the spectra of a number of carboxylic acids and their esters in three different solvents. These solvents were n-hexane, as a representative nonpolar solvent, acetonitrile, as a representative polar aprotic solvent, and water, as a representative polar hydrogen-bonding solvent. With supplies of these carboxylic acids and their esters available, it was also convenient to examine the spectra of these compounds as neat liquids, in the region of the shoulder described by Hartleb. ${ }^{9}$

Results and Discussion

The near-ultraviolet absorption spectra of 13 aliphatic carboxylic acids (Table I), 13 ethyl esters (Table II), and 16 alkyl acetates (Table III) were determined for solutions in n-hexane, acetonitrile, and water, and for neat liquids. All of the measurements were made with the samples thermostated at $20.0^{\circ} \mathrm{C},{ }^{10}$ in $1-\mathrm{cm}$ rectangular cells. The wavelengths of the peaks, $\lambda_{\text {max }}$, were reproducible within $\pm 0.3 \mathrm{~nm}$; and the molar absorptivities, $\epsilon_{\max }$, of these peaks for the solution spectra were reproducible within ± 8. Since the excitation energies are proportional to the wavenumbers of the peaks, $\bar{\nu}_{\text {max }}$, these latter values expressed in kilokaysers have been calculated, and are recorded in the tables.

Table I. Ultraviolet Absorption Spectra of Alkanoic Acids, $\mathrm{RCO}_{2} \mathrm{H}$, at $20.0^{\circ} \mathrm{C}$

R	Registry no.	Neat liquid			In n-hexane			In acetonitrile			In water		
		$\begin{gathered} \lambda_{\max }, \\ \mathrm{nm} \end{gathered}$	$\underset{\text { kK }}{\bar{\nu}_{\text {max }}}$	$\epsilon_{\text {max }}$	$\underset{\max }{\lambda_{\text {max }}},$	$\underset{\text { kK }}{\substack{\bar{\nu}_{\text {max }}}}$	$\epsilon_{\text {max }}$	$\begin{gathered} \lambda_{\max }, \\ \mathrm{nm} \end{gathered}$	$\bar{\nu}_{\text {max }}$, kK	$\epsilon_{\text {max }}$	$\begin{gathered} \lambda_{\max }, \\ \mathrm{nm} \end{gathered}$	$\underset{\text { kK }}{\bar{\nu}_{\text {max }},}$	$\epsilon_{\text {max }}$
H	64-18-6	a			206.8	48.36	45.1	214.5	46.62	48.3	205.9	48.57	48.2
$\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2}$	107-94-8	b			$\sim 208^{\text {c }}$	~ 48.1		a			$\sim 207{ }^{\text {c }}$	~ 48.3	
CH_{3}	64-19-7	a			202.6	49.36	50.3	210.8	47.44	36.7	a		
$\mathrm{C}_{2} \mathrm{H}_{5}$	79-09-4	273.6	36.55	0.0184	204.6	48.88	57.8	211.4	47.30	37.6	202.8	49.31	52.4
$n-\mathrm{C}_{3} \mathrm{H}_{7}$	107-92-6	268.9	37.19	0.0522	205.1	48.76	59.3	213.1	46.93	43.5	203.8	49.07	51.2
i - $\mathrm{C}_{4} \mathrm{H}_{9}$	503-74-2	273.8	36.52	0.0455	206.8	48.36	68.4	213.8	46.77	45.4	204.9	48.80	63.8
$n-\mathrm{C}_{4} \mathrm{H}_{9}$	109-52-4	$\sim 275{ }^{\text {c }}$	~ 36.4		206.5	48.43	63.9	211.7	47.24	48.1	205.0	48.78	61.3
$n-\mathrm{C}_{5} \mathrm{H}_{11}$	142-62-1	a			205.6	48.64	68.7	213.0	46.95	46.0	202.1	49.48	63.7
Cyclohexyl	98-89-5	a			207.0	48.31	87.5	218.8	45.70	66.9	$\sim 208{ }^{\text {c }}$	~ 48.1	
$i-\mathrm{C}_{3} \mathrm{H}_{7}$	79-31-2	270.2	37.01	0.0592	206.1	48.52	74.5	212.9	46.97	54.2	206.2	48.50	68.7
Cyclopentyl	3400-45-1	a			207.6	48.17	95.1	214.8	46.55	75.3	206.8	48.34	81.0
$\mathrm{sec}-\mathrm{C}_{4} \mathrm{H}_{9}$	116-53-0	$\sim 277{ }^{\text {c }}$	~ 36.1		206.4	48.45	86.5	213.4	46.86	60.4	208.2	48.03	77.0
$t-\mathrm{C}_{4} \mathrm{H}_{9}$	75-98-9	b			207.9	48.10	99.1	213.9	46.75	68.1	208.7	47.92	84.4
Average ${ }^{\text {d }}$		271.6	36.82	0.0438	206.1	48.53	71.4	213.5	46.84	52.5	205.4	48.68	65.2
		± 2.5	± 0.33	± 0.0178	± 1.5	± 0.33	± 17.5	± 2.1	± 0.45	± 12.5	± 2.2	± 0.48	± 12.6

${ }^{a}$ End absorption only. ${ }^{b}$ Solid at $20.0^{\circ} \mathrm{C} .{ }^{c}$ Shoulder. ${ }^{d} \pm$ One standard deviation; calculated only for peaks.

Table II. Ultraviolet Absorption Spectra of Ethyl Alkanoates, $\mathrm{RCO}_{2} \mathrm{C}_{2} \mathbf{H}_{5}$, at $20.0^{\circ} \mathrm{C}$

		Neat liquid			In n-hexane			In acetonitrile			In water		
R	Registry no.	$\lambda_{\max }$ nm	$\underset{\mathrm{kK}}{\bar{\nu}_{\text {max }},}$	$\epsilon_{\text {max }}$	$\begin{gathered} \lambda_{\max }, \\ \mathrm{nm} \end{gathered}$	$\underset{\mathrm{kK}}{\bar{\nu}_{\text {max }}}$	$\epsilon_{\text {max }}$	$\begin{aligned} & \lambda_{\max }, \\ & \mathrm{nm} \end{aligned}$	$\begin{gathered} \bar{\nu}_{\text {max }}, \\ \mathrm{kK} \end{gathered}$	$\epsilon_{\text {max }}$	$\begin{aligned} & \lambda_{\max }, \\ & \mathrm{nm} \end{aligned}$	$\bar{\nu}_{\text {max }}$, kK	$\epsilon_{\text {max }}$
H	109-94-4	a			215.6	46.38	78.9	213.6	46.82	68.5	208.1	48.05	73.3
$\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2}$	623-71-2	271.9	36.78	0.0956	212.8	46.99	58.3	211.2	47.35	58.1	202.6	49.36	65.6
CH_{3}	141-78-6	a			210.5	47.51	58.4	209.0	47.85	58.1	202.9	49.29	62.7
$\mathrm{C}_{2} \mathrm{H}_{5}$	105-37-3	$\sim 282{ }^{\text {b }}$	~ 35.50		208.0	48.08	67.3	208.1	48.05	65.3	204.3	48.95	77.6
$n-\mathrm{C}_{3} \mathrm{H}_{7}$	105-54-4	281.7	35.50	0.0208	213.3	46.88	66.2	212.4	47.08	63.8	206.2	48.50	74.3
$i-\mathrm{C}_{4} \mathrm{H}_{9}$	108-64-5	$\sim 272{ }^{\text {b }}$	~ 36.8		208.3	48.01	69.0	208.2	48.03	77.6	205.4	48.69	85.8
$n-\mathrm{C}_{4} \mathrm{H}_{9}$	539-82-2	271.8	36.79	0.0501	212.4	47.08	65.3	211.8	47.21	67.2	205.9	48.57	73.0
$n-\mathrm{C}_{5} \mathrm{H}_{11}$	123-66-0	$\sim 284{ }^{\text {b }}$	~ 35.2		211.6	47.26	71.8	209.2	47.80	73.6	204.4	48.92	c
Cyclohexyl	3289-28-9	a			218.0	45.87	90.4	215.7	46.36	92.0	207.0	48.31	${ }^{c}$
$i-\mathrm{C}_{3} \mathrm{H}_{7}$	97-62-1	279.3	35.80	0.0317	213.4	46.86	80.4	209.1	47.82	80.4	207.6	48.17	107
Cyclopentyl	5453-85-0	a			214.8	46.55	88.3	212.6	47.04	89.7	208.6	47.94	92.3
sec- $\mathrm{C}_{4} \mathrm{H}_{9}$	7452-79-1	$\sim 275{ }^{\text {b }}$	~ 36.4		214.0	46.73	77.1	212.2	47.13	90.3	207.9	48.10	102
$t-\mathrm{C}_{4} \mathrm{H}_{9}$	3938-95-2	a			215.0	46.51	101	214.3	46.66	95.0	208.1	48.05	96.7
Average ${ }^{\text {d }}$		276.2	36.22	0.0496	212.9	46.98	74.8	211.3	47.32	75.4	206.1	48.53	82.8
		± 5.1	± 0.67	± 0.0330	± 2.8	± 0.63	± 12.8	± 2.4	± 0.55	± 13.1	± 2.0	± 0.48	± 14.9

${ }^{a}$ End absorption only. ${ }^{b}$ Shoulder. ${ }^{c}$ Saturated solution. ${ }^{d} \pm$ One standard deviation; calculated only for peaks.

The only spectra which showed fine structure were those of formic acid, ethyl formate, and methyl acetate. The fine structure blurred with increasing polarity of the medium and disappeared from the spectra of methyl acetate in polar solvents. The fine structures of the spectra of formic acid ${ }^{11}$ and of alkyl formates ${ }^{5}$ have been described elsewhere.

Only four compounds provided high enough concentrations in the vapor phase, under the conditions of these measurements, to give satisfactory results in the determination of the vapor spectra. These compounds were formic acid, $\lambda_{\max } 204.0$ $\mathrm{nm}\left(\bar{\nu}_{\text {max }} 49.02 \mathrm{kK}\right.$); ethyl formate, $\lambda_{\text {max }} 215.5 \mathrm{~nm}$ ($\bar{\nu}_{\text {max }} 46.40$ kK); methyl acetate, $\lambda_{\text {max }} 208.7 \mathrm{~nm}$ ($\bar{\nu}_{\text {max }} 47.92 \mathrm{kK}$); and ethyl acetate, $\lambda_{\text {max }} 209.8 \mathrm{~nm}\left(\bar{\nu}_{\text {max }} 47.66 \mathrm{kK}\right.$). The red shifts of the spectra of these compounds in going from the vapor state to solutions in n-hexane are attributable to the dispersion effects of the solvent. ${ }^{12}$ These effects for a nonpolar solvent with low dielectric constant, such as n-hexane, are generally sufficiently small, in comparison with dipole-dipole and hydrogenbonding effects, that the spectra in this solvent may be taken as approximating the vapor spectrum for purposes of comparison with spectra for polar solvents.
Using a set of four methyl esters, Closson and Haug ${ }^{5}$ described a correlation between the excitation energies, E_{T}, and
the Taft polar substituent constants, ${ }^{13} \sigma^{*}$, for the C-alkyl groups of the esters. In order to facilitate search for such relationships, the data in Tables I-III were assembled in order of decreasing σ^{*} of the alkyl groups, that is, in order of increasing electron-donating ability. The wavenumbers of the excitations, $\bar{\nu}_{\text {max }}$, in kilokaysers, are directly projortional to the excitation energies, and can be converted to kilocalories per mole by multiplying by $2.859 .{ }^{14}$ If the correlation of E_{T} with σ^{*} of the C-alkyl group actually existed, we would expect to see a gradual decline in the values of $\bar{\nu}_{\text {max }}$ from top to bottom in Tables I and II, and constancy of $\bar{\nu}_{\text {max }}$ in Table III. In fact, the variation of $\bar{\nu}_{\text {max }}$ for the carboxylic acids (Table I) and for the ethyl esters (Table II) is no greater than the variation for the alkyl acetates (Table III), as long as all measurements are made in the same solvent.
It has therefore been assumed that for each set of compounds $\bar{\nu}_{\text {max }}$ has a constant value for each solvent, and, further, that the two sets of esters can be considered as a single group for purposes of comparing solvent effects and for comparison with the carboxylic acids. By comparing the average values of the transition energy for a set of compounds in two different solvents, using only those compounds which show well-defined peaks in both solvents, we can achieve a measure of the solvent

Table III. Ultraviolet Absorption Spectra of Alkyl Acetates, $\mathbf{C H}_{3} \mathbf{C O}_{2} \mathbf{R}$, at $20.0{ }^{\circ} \mathrm{C}$

R	Registry no.	Neat liquid			In n-hexane			In acetonitrile			In water		
		$\begin{gathered} \lambda_{\max }, \\ \mathrm{nm} \end{gathered}$	$\begin{gathered} \bar{\nu}_{\text {max }}, \\ \mathrm{kK} \end{gathered}$	$\epsilon_{\text {max }}$	$\begin{gathered} \lambda_{\max }, \\ \mathrm{nm} \end{gathered}$	$\bar{\nu}_{\text {max }}$, kK	$\epsilon_{\text {max }}$	$\begin{gathered} \lambda_{\max }, \\ \mathrm{nm} \end{gathered}$	$\bar{\nu}_{\text {max }}$, kK	$\epsilon_{\text {max }}$	$\lambda_{\text {max }}$, nm	$\bar{\nu}_{\text {max }}$, kK	$\epsilon_{\text {max }}$
$\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2}$	542-58-5	a			209.9	47.64	57.7	207.9	48.10	55.4	203.0	49.26	58.3
CH_{3}	79-20-9	276.5	36.17	0.0989	210.2	47.57	54.6	206.5	48.43	63.4	202.7	49.33	55.3
$\mathrm{C}_{2} \mathrm{H}_{5}$	141-78-6	a			210.5	47.51	58.4	209.0	47.85	58.1	202.9	49.29	62.7
$n-\mathrm{C}_{3} \mathrm{H}_{7}$	109-60-4	273.5	36.56	0.0465	211.3	47.33	57.9	207.8	48.12	57.5	203.0	49.26	59.4
$i-\mathrm{C}_{4} \mathrm{H}_{9}$	110-19-0	a			211.1	47.37	60.5	207.0	48.31	65.5	201.3	49.68	59.5
$i-\mathrm{C}_{5} \mathrm{H}_{11}$	123-92-2	313.4	31.91	0.106	212.1	47.15	59.9	209.4	47.76	59.0	201.3	49.68	60.7
$n-\mathrm{C}_{4} \mathrm{H}_{9}$	628-63-7	a			210.5	47.51	60.6	208.5	47.96	56.9	202.3	49.43	61.9
$n-\mathrm{C}_{5} \mathrm{H}_{11}$	142-92-7	$\stackrel{a}{b}$			212.6	47.04	53.8	209.2	47.80	62.7	202.5	49.38	57.6
Cyclohexyl	622-45-7	$\sim 324{ }^{\text {b }}$	$\sim 30.9{ }^{\text {b }}$		211.7	47.24	65.0	210.2	47.57	63.9	$\sim 208^{\text {b }}$	~ 48.1	
$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}- \\ & \left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \end{aligned}$	624-41-9	a			211.6	47.26	57.2	208.7	47.92	54.2	a		
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}$	926-41-0	277.6	36.02	0.115	208.7	47.92	66.8	209.1	47.82	64.2	a		
$i-\mathrm{C}_{3} \mathrm{H}_{7}$	108-21-4	a			211.4	47.30	58.8	208.5	47.96	56.1	204.2	48.97	59.5
Cyclopentyl	933-05-1	296.9	33.68	0.0846	212.2	47.13	63.2	210.4	47.53	61.8	a		
sec- $\mathrm{C}_{4} \mathrm{H}_{9}$	105-46-4	$\sim 281{ }^{\text {b }}$	~ 35.6		212.2	47.13	65.2	210.9	47.42	63.8	204.1	49.00	61.1
$t-\mathrm{C}_{4} \mathrm{H}_{9}$	540-88-5	a			218.0	45.87	57.2	215.2	46.47	66.0	208.9	47.87	55.4
$t-\mathrm{C}_{5} \mathrm{H}_{11}$	926-41-0	a			215.9	46.32	63.1	213.7	46.79	67.0	210.0	47.62	57.1
Average ${ }^{\text {c }}$		287.6	34.87	0.0902	211.9	47.21	60.0	209.5	47.74	61.0	203.8	49.06	59.0
		± 17.1	$\pm 2.00 \pm$	0.0268	± 2.3	± 0.50	± 3.8	± 2.3	± 0.51	± 4.2	± 2.8	± 0.65	± 2.4

${ }^{a}$ End absorption only. ${ }^{b}$ Shoulder. ${ }^{c} \pm$ One standard deviation; calculated only for peaks.
effects upon the spectra. In the case of the esters, the overall average value of the blue shift from n-hexane to acetonitrile was $0.45 \pm 0.27 \mathrm{kK}$, or $1.3 \pm 0.8 \mathrm{kcal} / \mathrm{mol} .{ }^{15}$ Such a shift is in agreement for the effect of a polar solvent on an $n \rightarrow \pi^{*}$ transition in the absence of hydrogen bonding.

Hydrogen-bonding effects must be considered in the case of water as the solvent and with the carboxylic acids, since the nonbonding pair of electrons of the carbonyl is the acceptor site for the hydrogen bond. Brealey and Kasha ${ }^{16}$ have shown that the excitation energy of an $n \rightarrow \pi^{*}$ transition in a hy-drogen-bonding solvent includes the energy which must be added to break the hydrogen bond. In water this hydrogenbond energy constitutes most of the energy difference of the blue shift from a nonpolar solvent. The overall average value of the blue shift for the esters in the current study was $1.71 \pm$ 0.48 kK , or $4.9 \pm 1.4 \mathrm{kcal} / \mathrm{mol}$, for the difference between n hexane and water.

Carboxylic acids exist as hydrogen-bonded dimers in the vaper state and in solution in nonpolar solvents, as well as having the ability for hydrogen-bonding interaction with water. Comparison of the spectra of the acids with those of the esters shows that the spectra of the acids in n-hexane and in water are very similar to the spectra of the esters in water, that is, under hydrogen-bonding conditions. An unanticipated finding is noted, however, in the spectra of the acids in acetonitrile, which are similar to those of the esters in n-hexane. It must be concluded that the carboxylic acids are not involved in hydrogen-bonding interactions of any sort in acetonitrile. This conclusion is supported by nuclear magnetic resonance ${ }^{17}$ and infrared ${ }^{18}$ spectral studies of acetonitrile solutions of carboxylic acids. A study ${ }^{19}$ of the vapor spectrum of acetic acid at elevated temperatures has shown a shift of $\lambda_{\text {max }}$ from 200 nm for the dimer at $75^{\circ} \mathrm{C}$, to 210 nm at $200^{\circ} \mathrm{C}$, where acetic acid is almost entirely monomeric. ${ }^{20}$ Reference to Table I shows 202.6 nm for the dimer in n-hexane, and 210.8 nm for the monomer in acetonitrile. These values are excellent agreements if one allows for the dispersion effects of the solvents. Similar solvent effects upon the $\pi \rightarrow \pi^{*}$ transitions of three α, β-unsaturated acids have also been observed, and similarly interpreted. ${ }^{21}$

Using only data for acids that gave well-formed peaks in each pair of solvents, calculation of the blue shift from mo-
nomer in acetonitrile to dimer in hexane, and of the blue shift from acetonitrile to water, gave the same value for both shifts, $1.69 \pm 0.35 \mathrm{kK}$, or $4.8 \pm 1.0 \mathrm{kcal} / \mathrm{mol}$, a remarkably good agreement with the value of the blue shift for esters. Using similar methods, Balasubramanian and Rao ${ }^{22}$ have obtained a value of $4.8 \mathrm{kcal} / \mathrm{mol}$ for the energy of the hydrogen bond between acetone and water. Two conclusions must be made from this remarkable coincidence of values: first, for the systems examined here (though not necessarily under all conditions), water and carboxylic acids have comparable hydro-gen-bond donating abilities; and, second, the nonbonding electrons of the singly bonded oxygen cannot be involved in either the hydrogen-bonding or the $n \rightarrow \pi^{*}$ excitation of the acids and esters. The latter conclusion is further supported by protonation studies. ${ }^{23}$ The infrared and Raman spectra of acetic acid in strong sulfuric acid solutions showed that the carboxyl is protonated on the carbonyl oxygen to give $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2}{ }^{+}$, rather than the less symmetrical $\mathrm{CH}_{3}(\mathrm{CO})$ $\mathrm{OH}_{2}{ }^{+}$ion which would result from the protonation of the singly bonded oxygen. This protonation of the carbonyl oxygen also suppressed the $n \rightarrow \pi^{*}$ absorption band. In the current study, it was found that protonation of ethyl acetate by hydrochloric acid at concentrations as low as 0.1 N was sufficient to suppress the $n \rightarrow \pi^{*}$ transition, leaving only end absorption.

Balasubramanian and Rao^{22} found that the solvent-induced blue shifts of the $n \rightarrow \pi^{*}$ transitions of methyl ketones, RCOCH_{3}, correlate fairly well with the σ^{*} values for the alkyl groups, R, of these ketones. Despite the evidence that an electronically comparable transition is present in the absorption spectra of the acids and the esters, no such correlations could be detected in the spectral data for these compounds. The Taft σ^{*} functions are measures solely of electronic influences of alkyl groups upon the carbonyl groups to which they are bonded. The failure of these functions to correlate with either the excitation energies or the solvent-induced changes in excitation energies means that other factors, in addition to the electronic effects of the C-alkyl groups, are significant in determining the experimental values of the excitation energies. Two such factors can be identified. The first of these is the increment of the experimental transition energy added by the end absorption of the $160-\mathrm{nm}$ absorption band.

No rational correction for this end absorption can be made without a knowledge of the course and shape of this band deep into the vacuum ultraviolet for each compound and for the same experimental conditions. Such information is not experimentally accessible for spectra of solutions.

The second influencing factor is steric distortion of the chromophore away from a fully coplanar geometry. Since the $n \rightarrow \pi^{*}$ transition of the carbonyl group is symmetry forbidden, some sort of small distortion of the group geometry, probably vibrational in origin, is necessary for the transition to be spectroscopically observable. Since the molar absorptivities of carboxylic acids and their esters are some five to six times larger than those of simple aldehydes and ketones, additional factors must be at work in the former compounds to enhance the probability of the transition. It has been shown ${ }^{24}$ that acyclic esters prefer the s-trans conformation (1) to the s-cis (2). The studies of Closson and co-workers ${ }^{6}$ with lactones

1

2
have shown that the s-cis conformation has a transition energy some $4 \mathrm{kcal} / \mathrm{mol}$ less than the s-trans. This difference is presumably largely due to the differences between the groundstate energies of the two conformations, with the s-trans conformation having the lower ground state energy. The preferred s-trans conformation places the O-alkyl group of the ester on the same side of the molecule as the carbonyl oxygen. The resulting steric interaction distorts the molecule out of coplanarity by an appreciable amount. ${ }^{24}$ In the carboxylic acids, this distortion should be much smaller, but the generally accepted structure for the hydrogen-bonded dimer of these compounds requires that they also have the s-trans conformation in the dimeric state.

Increasing bulk of the O-alkyl group should increase the steric interaction of this group with the carbonyl oxygen, and result in further deviation from coplanarity in the ester group. This will necessarily result in a decline of resonance stabilization energy, and will increase the energy of the ground state. The presence of bulky O-alkyl groups should thus produce a decline in excitation energy, assuming that these steric factors do not similarly affect the excited state energy. A good example of this effect may be observed with the alkyl acetates (Table III). Using dipole moment data, Pinkus and Lin^{25} have recently calculated the dihedral angles, or angles of twist about the $\mathrm{C}-\mathrm{O}$ single bond, in four alkyl acetates to be methyl acetate, 31°; ethyl acetate, 38°; isopropyl acetate, 39°; and tertbutyl acetate, 45°. The excitation energies of these esters, in kilocalories per mole, for solutions in n-hexane, acetonitrile, and water, respectively, are methyl acetate, 136.0, 138.5, and 141.0 ; ethyl acetate, $135.8,136.8$, and 140.9 ; isopropyl acetate, 135.2, 136.7, and 140.0; and tert-butyl acetate, 131.1, 132.9, and 136.9. The steric effect in the tert-butyl acetate is large enough that resonance interaction in this molecule is largely inhibited. It would be interesting to learn how this inhibition affects the charge-transfer band in the vacuum ultraviolet.

Ethyl formate has a smaller excitation energy than most of the other ethyl esters (Table II). The data of Closson and Haug ${ }^{5}$ show that methyl formate also has a lower excitation energy than other methyl esters, and that alkyl formates generally have smaller excitation energies than the corresponding alkyl acetates. If the inductive effect of the C-alkyl group, as measured by the σ^{*} function, were the dominating factor in determining the excitation energy, we would expect to see larger excitation energies for the alkyl formates, rather than smaller ones. There is evidence ${ }^{26}$ that the preferred
conformation of alkyl formates may be s-cis rather than strans. Such a conformation certainly appears reasonable, since the hydrogen atom should offer less steric hindrance to the O-alkyl group than the carbonyl oxygen. The excitation energies of alkyl formates may thus not be electronically comparable with those of other esters as the result of a quite different geometry of charge distribution. It is interesting to note that the excitation energy of formic acid is similar to that of other carboxylic acids in n-hexane, but is considerably smaller in acetonitrile. In n-hexane, the formic acid should be locked into the s-trans conformation in the hydrogenbonded dimer, but in the absence of hydrogen bonding in acetonitrile, each molecule is free to find its stablest conformation. In addition to these conformational effects, the excitation energies of formic acid and the formates are also lowered by the absence of C-alkyl hyperconjugation with the carbonyl group. The absence of this hyperconjugation, which raises the π^{*} level, has been used to explain why the excitation energy of acetaldehyde is less than that of acetone. ${ }^{27}$

Examination of the standard deviations for the average molar absorptivity values in each of the tables reveals an interesting difference. The average of the standard deviations from the average of each set of $\epsilon_{\max }$ values for carboxylic acids and ethyl esters is ± 13.9, while the average for the alkyl acetates is only ± 3.5, only one-fourth as much. Recalling that the estimated experimental error in measurement of $\epsilon_{\max }$ was ± 8, it must be concluded that $\epsilon_{\max }$ can be considered constant for the alkyl acetates, but is variable for the carboxylic acids and their ethyl esters. Generalizing this conclusion leads to the prediction that, under comparable conditions of measurement, the value of the molar absorptivity is determined by the C-alkyl group, and the contributions of the O-alkyl group to its value are negligible. The data of Closson and Haug ${ }^{5}$ for the molar absorptivities of six alkyl formates in isooctane, with an average value of 77 ± 4, support this conclusion.

Closer inspection of the data in Tables I and II shows that the $\epsilon_{\text {max }}$ values for each solvent increase rather regularly with increasing electron-donating ability of the C-alkyl group, in both the series of carboxylic acids and ethyl esters. Since this is the sequence of decreasing σ^{*} values, it was of interest to determine if the $\epsilon_{\max }$ values for these sets of compounds could be correlated with the $\epsilon_{\text {max }}$ values for the C-alkyl groups. We therefore assumed the simple straight-line relationship

$$
\epsilon_{\max }=\hat{\mu}^{*} \bar{v}^{*}+\stackrel{0}{\dot{c}}_{\max }
$$

and calculated the least-squares slopes ρ^{*}, intercepts $\epsilon^{0}{ }_{\text {max }}$, and correlation coefficients r, using the points for seven alkyl groups: ethyl, n-propyl, isobutyl, n-butyl, isopropyl, sec-butyl, and tert-butyl. Three of the data sets yielded correlation coefficients which met Jaffé's criterion ${ }^{28}$ for a "satisfactory" correlation, namely $r>0.95$. These sets were for the carboxylic acids in n-hexane, with $\rho^{*}=-209 \pm 9, \epsilon^{0}{ }_{\text {max }}=38$, and $r=$ 0.977; carboxyic acids in acetonitrile, with $\rho^{*}=-144 \pm 7$, $\epsilon^{0}{ }_{\text {max }}=27$, and $r=0.974$; and ethyl esters in n-hexane, with $\rho^{*}=-173 \pm 9, \epsilon_{\text {max }}^{(1)}=46$, and $r=0.965$. The correlation coefficients for the other three data sets, carboxylic acids in water, ethyl esters in acetonitrile, and ethyl esters in water, were all less than 0.9 , Jaffés minimum limit for a "fair" correlation. It is not surprising that the correlations are better with the carboxylic acids than with the esters, considering the difference between steric effects in the two classes of compounds. It is also not surprising that the best correlations exist where the magnitude of interaction with the solvent is least. But it is surprising that these correlations exist at all. Their existence supports the conclusion that $\epsilon_{\max }$ for carboxylic acids and their esters is determined mainly by the electrical effects of the C-alkyl group.

Since ethyl acetate was the reference compound in evaluation of the σ^{*} values, the methyl group is automatically as-
signed a σ^{*} value of zero. ${ }^{13}$ This leads to the expectation that the intercepts $\epsilon^{0}{ }_{\text {max }}$ should equate with the $\epsilon_{\text {max }}$ values for acetic acid and ethyl acetate. Inspection of Tables I and II shows that the experimental $\epsilon_{\max }$ values are significantly larger than the calculated $\epsilon^{0}{ }_{\text {max }}$ values for these compounds. The sparse data for the only two available groups with positive σ^{*} values, $\mathrm{ClCH}_{2} \mathrm{CH}_{2}$ and H , suggest that the $\epsilon_{\max }$ vs. σ^{*} curve may pass a minimum somewhere between $\sigma^{*}=-0.1$ and σ^{*} $=0$, and show a positive slope for positive σ^{*} values. An alternate explanation is that the methyl group is actually more electron donating than is implied by the zero value for σ^{*} that is obtained when methyl is compared with itself; that is, the "real" value of σ^{*} for the methyl group should lie between -0.1 and 0.0 .

A possible source of error which must be considered throughout these measurements is the effect of the rapid opening of the slits that occurs as the scan approaches the cutoff point of the instrument at 200 nm , especially in the 205-200-nm range. ${ }^{5}$ Measurements of the slit widths for the three solvents were determined at 5 -nm intervals between 215 and 200 nm and are recorded in the Experimental Section. The slit opening was serious only for n-hexane in the 200-$205-\mathrm{nm}$ range. Since, however, this affects only two spectra (acetic and propionic acids in n-hexane), we do not feel that the slit-opening effect has any seriously significant bearing on the experimental data or the general interpretation thereof.

The $n \rightarrow \pi^{*}$ transition of the carbonyl group is totally submerged when there is present in the molecule a stronger chromophore insulated from the carbonyl group, but with its $\lambda_{\text {max }}$ near that of the carbonyl group. We examined the absorption spectra of phenylacetic and β-phenylpropionic acids and their ethyl esters, and of benzyl and β-phenethyl acetates. The spectra of these compounds were very similar to the spectra of toluene and ethylbenzene, with a very small blue shift of the $\lambda_{\text {max }}$ values. This blue shift became smaller as the number of carbon atoms between the carbonyl group and the ring increased. The $\epsilon_{\max }$ values were nearly identical with the values for the $205-\mathrm{nm}$ band of the alkylbenzenes. Similar effects were observed for the $260-\mathrm{nm}$ aromatic absorption band.

All of the acids and esters which are liquid at $20^{\circ} \mathrm{C}$ showed evidence of an absorption band in the vicinity of the shoulder described by Hartleb ${ }^{9}$ in the spectra of neat liquid fatty acids. In many cases this band was detectable only as a straightening out of the curvature of the end absorption, for which no specific $\lambda_{\max }$ value could be defined. In other cases there were shoulders similar to those described by Hartleb. A few cases gave very broad, low peaks in the vicinity of $275 \mathrm{~nm} .{ }^{29} \mathrm{In}$ spection of the data for alkyl acetates (Table III) shows that this peak is subject to red shifts by bulky O-alkyl groups, suggesting that the excitation energy is decreased by steric interaction between the O-alkyl group and the carbonyl oxygen. The extremely small molar absorptivity for this absorption band suggests that it is due to a singlet \rightarrow triplet transition of the carbonyl group.

Experimental Section

The n-hexane used in these studies was Aldrich Gold Label spectrophotometric grade. The acetonitrile was Burdick and Jackson
"distilled in glass" uv grade. The carboxylic acids and most of the esters were the highest purity grades commercially available. Four esters, ethyl α-methylbutyrate, ethyl cyclohexanecarboxylate, ethyl cyclopentanecarboxylate, and cyclopentyl acetate, were also synthesized in our laboratory, using standard esterification methods.
All absorption spectra were determined with a Cary Model 15 recording spectrophotometer, using a matched pair of 1-cm rectangular cells. Solutions were prepared using volumetric glassware calibrated for $20^{\circ} \mathrm{C}$, and the sample cell was thermostated at $20.0 \pm 0.1^{\circ} \mathrm{C}$ during measurement of all spectra. ${ }^{10}$ Prior to each measurement, a baseline was established by a blank scan through the spectral region of interest, using solvent in both cells. The baseline absorbance at each peak was deducted from the absorbance at the peak. The resulting corrected absorbances were used for calculating absorptivities only if they fell within the range $0.2-0.9$. The spectra were determined with a scale expansion of 1 nm per division of the chart paper. Slit widths were those automatically programmed by the instrument. These were for n-hexane 0.13 mm at $215 \mathrm{~nm}, 0.19 \mathrm{~mm}$ at $210 \mathrm{~nm}, 0.29 \mathrm{~mm}$ at 205 nm , and 0.51 mm at 200 nm ; for acetonitrile, 0.12 mm at $215 \mathrm{~nm}, 0.14$ mm at $210 \mathrm{~nm}, 0.20 \mathrm{~mm}$ at 205 nm , and 0.31 mm at 200 nm ; and for water; 0.12 mm at $215 \mathrm{~nm}, 0.13 \mathrm{~mm}$ at $210 \mathrm{~nm}, 0.18 \mathrm{~mm}$ at 205 nm , and 0.24 mm at 200 nm .

Acknowledgments. We are grateful to The Robert A. Welch Foundation for support of these studies, through Research Grant M-101. Ms. Ellen J. Durrance assisted in the syntheses of esters.

References and Notes

(1) H. Ley and B. Arends, Z. Phys. Chem., Abt. B, 17, 177 (1932).
(2) H. Baba, J. Chem. Soc. Jpn., 72, 214 (1951).
(3) S. Nagakura, Bull. Chem. Soc. Jpn., 25, 164 (1952).
(4) P. Borrell, Nature (London), 184, 1932 (1959).
(5) W. D. Closson and P. Haug. J. Am. Chem. Soc., 86, 2384 (1964).
(6) W. D. Closson, P. J. Orenski, and B. M. Goldschmidt, J. Org. Chem., 32, 3160 (1967).
(7) S. Nagakura, Proc. Int. Symp. Mol. Struct. Spectrosc., B218, 79 (1962).
(8) S. Nagakura, K. Kaya, and H. Tsubomaya, J. Mol. Spectrosc., 13, 1 (1964).
(9) O. Hartleb, Strahlentherapie, 39, 442 (1931).
(10) There was considerable variation in ambient temperature during the course of these studies, and the reproducibility of the spectral measurements was improved by temperature control.
(11) B. Sugarman, Proc. R. Phys. Soc. London, 55, 429 (1943).
(12) E. G. McRae, J. Phys. Chem., 61, 562 (1957).
(13) R. W. Taft, Jr., in "Steric Effects in Organic Chemistry", M. S. Newman, Ed., Wiley, New York, N.Y., 1956, p 619.
(14) R. P. Wayne, "Photochemistry", American Elsevier, New York, N.Y., 1970, p 254.
(15) Except where otherwise noted, the \pm values reported in this paper are standard deviations.
(16) G. J. Brealey and M. Kasha, J. Am. Chem. Soc., 77, 4462 (1955).
(17) L. W. Reeves, Trans. Faraday Soc., 55, 1684 (1959).
(18) J. Lascombe, M. Haurie, and M. L. Josien, J. Chim. Phys., 59, 87 (1962).
(19) G. Briegleb and W. Strohmeier, Naturwissenschaften, 33, 344 (1946).
(20) R. H. Gillette and F. Daniels, J. Am. Chem. Soc., 58, 1139 (1936).
(21) W. D. Closson, S. F. Brady and P. J. Orenski, J. Org. Chem., 30, 4026 (1965).
(22) A. Balasubramanian and C. N. R. Rao, Spectrochim. Acta, 18, 1337 (1962).
(23) S. Hoshino, H. Hosoya, and S. Nagakura, Can. J. Chem., 44, 1961 (1966).
(24) R. J. W. LeFevre and A. Sundaram, J. Chem. Soc., 3094 (1962).
(25) A. G. Pinkus and E. Y. Lin, J. Mol. Struct., 24, 9 (1975).
(26) T. L. Pendred, A. M. Pritchard, and R. E. Richards, J. Chem. Soc. A, 1009 (1966).
(27) H. H. Jaffe and M. Orchin, "Theory and Applications of Ultraviolet Spectroscopy", Wiley, New York, N.Y., 1962, pp 180-181.
(28) H. H. Jaffé, Chem. Rev., 53, 191 (1953).
(29) A few esters obtained from commercial sources also showed a very sharp peak at 268 nm , suggesting an aromatic impurity. This peak was not found in esters synthesized in our laboratory.

Some Transformations of DL-Phenylalanine Ortho Esters and \boldsymbol{N}-Benzyloxycarbonyl-L-phenylalaninal ${ }^{1}$

Jiří Žemlička* and Masayoshi Murata
Michigan Cancer Foundation and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
Received March 29, 1976
Glycine ortho esters have found a wide use ${ }^{2}$ in the synthesis of glycyl derivatives of ribonucleosides, ${ }^{2 a, b}$ ribonucleotides, ${ }^{2 c}$ and ribooligonucleotides. ${ }^{2 \mathrm{~d}-\mathrm{h}}$ The application of the ortho ester exchange method which provides the basis of the synthetic approach ${ }^{2 a}$ to the above mentioned compounds for amino acids other than glycine has been hampered for a long time by a lack of general method for the preparation of amino acid ortho esters. ${ }^{3}$

A brief report ${ }^{4}$ describing a synthesis of some amino acid ortho esters has prompted us to investigate (a) N-protection of such derivatives, (b) synthesis of dipeptide ortho esters, and (c) synthesis of $2^{\prime}\left(3^{\prime}\right)-O$-aminoacyl ribonucleosides via the corresponding cyclic ortho ester derivatives. The resuls from all three areas are the subject of this communication. In addition, a facile preparation of N-benzyloxycarbonyl-Lphenylalaninal dimethyl acetal (17) as well as the reaction of aldehyde 16 with adenosine in the presence of ethyl orthoformate is also described.

Ethyl DL-orthophenylalaninate (4a) was prepared as in-
dicated in Scheme I ($1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ a) according to a procedure described briefly for some other amino acid ortho esters. ${ }^{4}$ Hydrocinnamonitrile (1) was converted in 98% yield to the corresponding imido ester hydrochloride ${ }^{5}$ (2) which, in turn, was chlorinated ${ }^{6}$ with aqueous NaClO at pH 7.0 to give an N-chloroimido ester (3) in 98% yield. The latter afforded the ortho ester $\mathbf{4 a}$ by heating with sodium ethylate in ethanol for 2 h at $80^{\circ} \mathrm{C}$ in 99% yield. Thus, the overall yield ($1 \rightarrow 4 \mathrm{a}$) was 95%. The structure of 4 a was confirmed by ir which revealed a strong band at $1065 \mathrm{~cm}^{-1}$ indicating C-O-C grouping but absence of ester. NMR indicated the undistilled $4 a$ to be of a high (ca. 95%) purity. Distillation of 4 a afforded an analytical sample but lec to an extensive decomposition. From the higher boiling fraction, a pyrazine derivative 5 was obtained and characterized by ir and NMR spectra. This observation contradicts the claim of the Soviet literature ${ }^{7}$ that amino acid ortho esters as free bases are "very stable compounds and do not change even on long heating".

The reaction of ortho ester 4 a with benzyloxycarbonyl chloride in ether and in the presence of triethylamine gave ethyl N-benzyloxycarbonyl-DL-orthophenylalaninate ($6 \mathbf{a}$) in 66% yield. The same reaction was extended to the preparation of ethyl N-benzyloxycarbonylorthoglycinate ${ }^{2 a}$ ($\mathbf{6 b}$) from ortho ester ${ }^{4} \mathbf{4 b}$ in 38% yield.

The structure of $6 \mathbf{a}$ was confirmed by ir (urethane carbonyl band, strong C-O-C absorption) and NMR spectra. The latter showed the methyl protons of the ethoxy function as a sharp triplet; however, the signal for the methylene protons (quartet) was split (Figure 1), which was not the case in ethyl N -

Figure 1. (a) Methylene proton signal of ethoxy group in ortho ester 6a; (b) methylene proton signal of ethoxy group in ester 7.
benzyloxycarbonylorthoglycinate (6b) or ethyl N-benzyl-oxycarbonyl-DL-phenylalaninate (7). The splitting pattern observed in our case (Figure 1) is also different from that described for some alicyclic ethyl esters. ${ }^{8,9}$ The most likely explanation for the splitting is the assumption of $Z-E$ isomerism of the urethane bond ${ }^{10}$ (cf. formulas 13 and 14). Additional

13
E-isomer
confirmation for the structure of $\mathbf{6 a}$ derives from its hydrolysis with $10 \% \mathrm{HCl}$ to the corresponding known ${ }^{11}$ ester 7 .

The condensation of ortho ester 4 a with N-benzyloxycar-bonyl-L-phenylalanine p-nitrophenyl ester ${ }^{12}(8)$ in the presence of triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the dipeptide ortho ester 9 in 63% yield. The latter was characterized by spectral (ir and NMR) data which confirmed the presence of urethane and amide groups in addition to ethoxy functions. Compound 9 was hydrolyzed with $10 \% \mathrm{HCl}$ to the corresponding dipeptide ester 10 whose structure was corroborated by NMR spectrum. Again, a secondary splitting of the methylene protons of the ethoxy group in 9 was observed althcugh the resolution was lower than in the case of ortho ester $6 \mathbf{a}$. Thus, the situation is analogous to that noted with the urethane derivative 6a. In addition to $Z-E$ isomerism of the urethane grouping, a possibility of a similar isomerism can readily be visualized for 9 in view of the fact that the partial double bond character of the peptide bond is well established. ${ }^{13}$ However, this case is more complex because 9 is a mixture of two diastereoisomers.

It is also of interest to utilize N-benzyloxycarbonyl ortho ester $6 \mathbf{a}$ for the synthesis of $2^{\prime}\left(3^{\prime}\right)-O$-phenylalanylribonucleosides. As shown previously, an ortho ester exchange reaction of ethyl N-benzyloxycarbonylorthoglycinate ($\mathbf{6 b}$) with ribonucleosides or ribonucleotides can be readily accomplished in dimethylformamide (DMF) using $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}^{2 \mathrm{a}}$ or $\mathrm{CF}_{3} \mathrm{COOH}^{2 \mathrm{c}}$ as catalysts. In a model experiment with uridine (catalysis with $\mathrm{CF}_{3} \mathrm{COOH}$), compound 6 a afforded the expected $2^{\prime}, 3^{\prime}$-cyclic ortho ester 11 in 51% yield. The starting ortho ester $6 \mathbf{a}$ is a racemate (DL mixture) and formation of the
$2^{\prime}, 3^{\prime}$-cyclic ortho ester creates a new asymmetric center at the "ortho ester" carbon which presents the possibility of four diastereoisomers for compound 11. TLC indicated, however, that such a mixture would be difficult to resolve. Compound 11 moved as a single spot. ${ }^{14}$ Hydrolysis of 11 in dioxane-acetic acid-water (2:3:3) mixture gave $2^{\prime}\left(3^{\prime}\right)-O$ - (N-benzyloxycar-bonyl)-DL-phenylalanyluridine ${ }^{15}$ (12) in 95% yield which had the same mobility on TLC as the corresponding L-phenylalanyl derivative. ${ }^{3 \mathrm{a}}$

In connection with our experiments on the ortho ester exchange of 6 a with ribonucleosides, it was of interest to examine an analogous acetalation reaction of aldehyde 16. N-Ben-zyloxycarbonyl-L-phenylalanine (15) was converted to the corresponding imidazolide which was reduced in situ with LiAlH_{4} to aldehyde 16 in 50% yield following the procedure described for N^{α}-benzyloxycarbonyl- N^{ω}-nitroargininal. ${ }^{16}$ In addition, N-benzyloxycarbonyl-L-phenylalaninol (19) ${ }^{17,18}$ was also obtained (23% yield) as the final reduction product of aldehyde 16 (Scheme II). The ir spectrum of 16 showed dis-

Scheme II

tinctly separate aldehyde and urethane carbonyl bands. The assignments follow from the spectrum of acetal 17 which contains only a urethane carbonyl band. The NMR exhibited a typical low-field singlet of an aldehyde group. The fact that the optical rotation of 19 was slightly higher than that of an authentic sample ${ }^{17,18}$ indicates that no racemization of the aldehyde 16 occurred during reaction with LiAlH_{4}. However, after isolation (chromatography on silica gel ${ }^{19}$) the aldehyde was almost completely (93%) racemized ${ }^{19}$ as shown by LiAlH_{4} reduction to alcohol 19 and comparing its rotation with optically pure L-compound. The reaction of 16 with dimethyl-formamide-dimethyl sulfate complex and methanol following the procedure ${ }^{20}$ for acetalation of simple aliphatic aldehydes gave the corresponding acetal 17 in 60% yield. ${ }^{21}$ Both the ir
and NMR spectra of 17 lack the bands characteristic of an aldehyde. It is of interest to note that the NMR spectrum of 17 exhibits two separate signals (singlets) for acetal methoxy groups. This finding probably reflects $Z-E$ isomerism of the urethane bond ${ }^{10}$ (cf. formulas 13 and 14). A similar splitting of signals was observed with ortho ester 6 (see Figure 1).

Acetalation of adenosine with aldehyde 16 in the presence of ethyl orthoformate and trifluroacetic acid as catalyst in DMF afforded only $2^{\prime}, 3^{\prime}-O$-ethoxymethyleneadenosine ${ }^{22}$ (18a) in 73% yield in addition to the N,O mixed acetal $\mathbf{1 8 b}$ obtained in 21% yield. The structure of the latter followed from analysis and uv max which is bathochromically shifted relative to 18a. NMR shows the presence of two phenyl groups and two ethoxy functions. The absence of a free amino group was confirmed by the failure of $\mathbf{1 8 b}$ to react with dimethylformamide dimethyl acetal. ${ }^{23,24}$ In acid, compound 18 b is hydrolyzed ${ }^{24}$ to adenosine $2^{\prime}\left(3^{\prime}\right)$-formate and aldehyde 16.
It is of interest to note that a similar reaction (formation of N, O mixed acetal derivative) was observed when adenosine was treated with p-nitrobenzaldehyde under similar conditions. ${ }^{24}$ It appears therefore that alkoxycarbonium ions (see Scheme I, ref 24) derived from aldehydes carrying an electronegative substituent in the vicinity of aldehyde function are less reactive toward $2^{\prime}, 3^{\prime}$-cis diol grouping of adenosine than toward a weakly basic amino group of the adenine moiety. Contrariwise, the corresponding dialkoxycarbonium ions derived from analogous ortho esters [e.g., from ethyl N-ben-zyloxycarbonyl-DL-orthophenylalaninate ($\mathbf{6 a}$)] react smoothly with the 2^{\prime} and 3^{\prime} hydroxy groups of ribonucleosides (cf. compound 11).

Experimental Section

General Methods. Evaporations were carried out in a Büchi rotary evaporator in vacuo at a bath temperature below $40^{\circ} \mathrm{C}$. Melting points were determined on a Thomas-Hoover apparatus (capillary method) and are uncorrected. Analyses were performed by Micro-Tech Laboratories, Inc., Skokie, Ill. Samples for analysis were dried at $10^{-3} \mathrm{~mm}$ over $\mathrm{P}_{2} \mathrm{O}_{5}$ at room temperature. Thin layer chromatography (TLC) was performed on $6 \times 2 \mathrm{~cm}$ precoated silica gel F-254 aluminum foils (Merck, Darmstadt, Germany) in solvent S_{1} (diethyl ether-petroleum ether, $1: 1$), S_{2} (chloroform-methanol, $9: 1$), S_{3} (chloroform-methanol, 4:1), $\mathrm{S}_{4}\left(\mathrm{CHCl}_{3}\right)$, and $\mathrm{S}_{5}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 97: 3\right)$. Preparative TLC and column chromatography were performed with silica gel 70-325 mesh ASTM (Merck, Darmstadt, Germany); for TLC 1% (w/w) fluorescent indicator, Lumilux Grün ZS Super (Riedel-De Haën AG, SeelzeHannover, Germany) was added. Detection was performed in uv light (Mineralight) or with iodine vapors. Petroleum ether was of a 30-60 ${ }^{\circ} \mathrm{C}$ boiling range. Optical rotations were determined with a PerkinElmer Model 141 polarimeter. The ir spectra were measured in CCl_{4} in a Perkin-Elmer Model 21 spectrometer. NMR spectra were obtained using a Varian A-60A spectrometer in CCl_{4} or $\mathrm{CD}_{3} \mathrm{COCD}_{3}$, unless stated otherwise; $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ was used as an internal standard. Ethanol and DMF were dried with Linde molecular sieves. Tetrahydrofuran (THF) was distilled from LiAlH_{4} and stored over sodium wire. N-Benzyloxycarbonyl-L-phenylalanine was a product of Sigma Chemical Co., St. Louis, Mo. N-Benzyloxycarbonyl-L-phenylalanine p-nitrophenyl ester was prepared according to the literature. ${ }^{12} \mathrm{Hy}$ drocinnamonitrile was a product of Eastman Kodak Co., Rochester, N.Y.

Ethyl Hydrocinnamimidate Hydrochloride (2). The described procedure ${ }^{5}$ was modified as follows. A solution of hydrocinnamonitrile [1, freshly distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ immediately before use, bp $98-100^{\circ} \mathrm{C}$ $(0.1 \mathrm{~mm}), 23.93 \mathrm{~g}, 0.182 \mathrm{~mol}$ in ethanol ($12.7 \mathrm{ml}, 0.22 \mathrm{~mol}$) was cooled in an ice bath and a slow stream of HCl was introduced directly from a tank with stirring to saturation. The resultant thick oil was kept overnight at $0^{\circ} \mathrm{C}$. The white, crystalline product 2 was filtered off after addition of dry ether (ca. 500 ml), and washed with ether and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ and KOH in a desiccator: yield $38.41 \mathrm{~g}(98 \%)$; $\mathrm{mp} 144{ }^{\circ} \mathrm{C}$ dec (lit. ${ }^{5} 130^{\circ} \mathrm{C}$); NMR ($\mathrm{CD}_{3} \mathrm{SOCD}_{3}$, sodium 2,2 -di-methyl-2-silapentane- 5 -sulfonate as an internal standard) $\delta 7.33$ (s, $5, \mathrm{C}_{6} \mathrm{H}_{5}$), $4.46\left(\mathrm{q}, 2,0 \mathrm{OCH}_{2}\right), 1.32\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right)$.

Ethyl \boldsymbol{N}-Chlorohydrocinnamimidate (3). The procedure described ${ }^{6}$ for the preparation of ethyl N-chlorophenylacetimidate was followed. To the cooled ($5^{\circ} \mathrm{C}$) solution of NaClO freshly made from
$\mathrm{NaOH}(100 \mathrm{~g}, 2.5 \mathrm{~mol})$ and chlorine ($114.4 \mathrm{~g}, 1.61 \mathrm{~mol}$) in water (800 ml) compound 2 was added portionwise with stirring ($32.1 \mathrm{~g}, 0.15 \mathrm{~mol}$) at $0-10^{\circ} \mathrm{C}$ (ice-salt bath was used). It is imperative to keep the pH of the NaClO solution at $7.0(\mathrm{pH}$ meter) during the addition of hydrochloride 2 to avoid concomitant hydrolysis to the corresponding ester. The mixture was then stirred for 30 min , petroleum ether (100 $\mathrm{ml})$ was then added, and the layers were separated. The aqueous portion was extracted with petroleum ether, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give 3 as a colorless oil: $31.04 \mathrm{~g}(98 \%)$; $n^{30} \mathrm{D} 1.5210$; ir no absorptionat $1650-1800$ (absence of CO ester) and $3: 00-4000$ (absence of NH), $1600 \mathrm{~cm}^{-1}$ (strong, $\mathrm{C}=\mathrm{N}-\mathrm{Cl}, \mathrm{cf}$. ref 6); $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 7.17\left(\mathrm{~s}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.09\left(\mathrm{q}, 2,0 \mathrm{OCH}_{2}\right)$, 2.84 (s, 4, CH_{2}), 1.20 (t. 3, CH_{3}).

Ethyl dL-Orthophenylalaninate (4a) and 2,5-Dibenzyl-3,6-diethoxy- 2,5 -dihydropyrazine (5). The procedure ${ }^{4}$ for preparation of amino acid ortho esters was extended to the phenylalanine derivative 4 a . The solution of compound $3(21.17 \mathrm{~g}, 0.1 \mathrm{~mol})$ in ethanol (50 $\mathrm{ml})$ was added dropwise with stirring and external ice cooling to 1.25 M sodium ethylate (freshly prepared from sodium, $2.88 \mathrm{~g}, 0.125 \mathrm{~mol}$, and 100 ml of ethanol). The solution was stirred for 1.5 h at $30-40^{\circ} \mathrm{C}$ (bath temperature, NaCl started to precipitate) and 2 h at $80^{\circ} \mathrm{C}$. The reaction mixture was kept overnight at room temperature, poured into water (250 ml), and extracted with dichloromethane ($3 \times 100 \mathrm{ml}$). Combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give 4 a as a yellow, rumlike smelling oil: $n^{28} \mathrm{D} 1.4790 ; 26.46 \mathrm{~g}(99 \%)$; ir no absorption between 1650 and 1800 (absence of CO ester), $1065 \mathrm{~cm}^{-1}$ (strong, C-O-C); NMR (CCl_{4}) $\delta 7.13\left(\mathrm{~s}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.65\left(\mathrm{q}, 6, \mathrm{OCH}_{2}\right)$, $3.03\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right) 2.35(\mathrm{q} .1, \mathrm{CH}), 1.13\left(\mathrm{t}, 11, \mathrm{CH}_{3}\right.$ overlapped with NH_{2}, after addition of $\mathrm{D}_{2} \mathrm{O}$ the triplet became symmetric and it integrated for 9 protons). This product was sufficiently pure (ca. 95%) to be used in subsequent steps (preparation of $\mathbf{6 a}$ and 9) without further purification. Distillaticn of this product at $107-110^{\circ} \mathrm{C}(0.25 \mathrm{~mm})$ afforded ortho ester 4 a in two fractions ($5.32 \mathrm{~g}, 20 \%$). The second fraction ($n^{27} \mathrm{D}$ 1.4813) was analyzed.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{3}$ (267.4): C, 67.38; H, 9.43; N, 5.24. Found: C, 67.30; H, 9.27; ..v, 5.48.
Continued distillation afforded an additional fraction (2.1 g) of $\mathbf{4 a}$ contaminated, according to ir, with 5 . The last fraction (thick syrup, n^{25} D 1.5469), which was analyzed, was dissolved in petzoleum ether and the solution cooled to $-20^{\circ} \mathrm{C}$ to give $5(0.975 \mathrm{~g}, 5.6 \%)$: mp^{25} $40-100{ }^{\circ} \mathrm{C}$; ir $1703 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.05\left(\mathrm{~m}, 10, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $4.07\left(\mathrm{~m}, 4, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right), 1.23\left(\mathrm{~m}, 6, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right) .{ }^{25}$
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 1_{4} \mathrm{H}_{2} \mathrm{O}(355.0): \mathrm{C}, 74.44 ; \mathrm{H}, 7.53 ; \mathrm{N}, 7.89$. Found: C, 74.50; H, 7.35; N, 8.15.
Ethyl \boldsymbol{N}-Benzyloxycarbonyl-DL-orthophenylalaninate (6a). A solution of benzyloxycarbonyl chloride ($7.5 \mathrm{~g}, 0.044 \mathrm{~mol}$) in dry ether (200 ml) was added dropwise with stirring and external ice cooling to a mixture of ortho ester $4 \mathrm{a}(10.68 \mathrm{~g}, 0.04 \mathrm{~mol})$, triethylamine (12 ml , 0.12 mol), and dry ether (200 ml) during 40 min . The stirring continued for 1 h at $0^{\circ} \mathrm{C}$ and after addition of ethanol (10 ml) for 30 min at room temperature. The precipitate (riethylamine hydrochloride) was filtered off and washed with ether and the filtrate was extracted with water (150 mll). Dried $\left(\mathrm{MgSO}_{4}\right)$ ether layer was evaporated and the resultant solid crystallized from petroleum ether (40 ml) at $0^{\circ} \mathrm{C}$ to give $10.49 \mathrm{~g}(66 \%)$ of ortho ester derivative 6: $\mathrm{mp} 77-79^{\circ} \mathrm{C}$; ir 3500 (NH), 1735 (CO, urethane), 1512, 1520 (amide II band of urethane plus aromatics), $1058 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{C})$; NMR (CCl_{4}) $\delta 7.15(2 \mathrm{~s}, 10$, $\mathrm{C}_{6} \mathrm{H}_{5}$), 4.9 ($\mathrm{s}, 2, \mathrm{CH}_{2}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}$), 3.65 (d of $\mathrm{q}, 6, \mathrm{CH}_{2}$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$), $2.8\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 113\left(\mathrm{t}, 9, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{5}$ (401.5): $\mathrm{C}, 68.80 ; \mathrm{H}, 7.78 ; \mathrm{N}, 3.49$. Found: C, 68.98; H, 7.90; N, 3.48.
Ethyl \boldsymbol{N}-Benzyloxycarbonylorthoglycinate (6b). The procedure described for ortho ester 6a was followed starting from ethyl orthoglycinate ${ }^{4} \mathbf{4 b}$ ($12.63 \mathrm{~g}, 0.071 \mathrm{~mol}$) to give, after crystallization from petroleum e-her, the N-benzyloxycarbonyl derivative $\mathbf{6 b}$ (11.82 $\mathrm{g}, 38 \%), \mathrm{mp} 35-40^{\circ} \mathrm{C}$ (lit. ${ }^{2 \mathrm{a}} 38-40^{\circ} \mathrm{C}$), which was identical with an authentic specimen: ${ }^{2 \mathrm{a}}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.19\left(\mathrm{~s}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.98\left(\mathrm{~d}, 2, \mathrm{CH}_{2}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}$), 3.50 ($\mathrm{q}, 6, \mathrm{CH}_{2}$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$, partially overlapped with CH_{2} of the glycine portion), 3.32 ($\mathrm{d}, 2, \mathrm{CH}_{2}$ of glycine, partially overlapped with CH_{2} of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$).
Ethyl N-Benzyloxycarbonyl-DL-phenylalaninate (7). A solution of ortho ester $6 \mathrm{a}(0.2 \mathrm{~g}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was stirred with $10 \% \mathrm{HCl}(10 \mathrm{ml})$ for 30 min at room temperature. The layers were then separated, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ portion was washed with water ($2 \times$ $10 \mathrm{ml})$ and satura-ed solution of $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase was evaporated to a syrup which was dissolved in ether (5 ml). Petroleum ether (5 ml) was added and the mixture containing a syrupy precipisate was kept overnight at $-20^{\circ} \mathrm{C}$ whereupon it crystallized. Evaporation in vacuo gave crystalline ester 7: mp 77-79 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{1{ }^{12}} 77-79^{\circ} \mathrm{C}$); mixture melting point with ortho ester $6 \mathbf{a}$ was 65
${ }^{\circ} \mathrm{C} ; 0.13 \mathrm{~g}(80 \%)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.25$ and $7.14\left(2 \mathrm{~s}, 10, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.03$ (s, $2, \mathrm{CH}_{2}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}\right), 4.53(\mathrm{~m}, 1, \mathrm{CH}), 4.09\left(\mathrm{q}, 2, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right), 1.17$ ($\mathrm{t}, 3, \mathrm{CH}_{3}$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$).

Ethyl N-Benzyloxycarbonyl-L-phenylalanyl-DL-orthophenylalaninate (9). The cooled solution of ortho ester $4 \mathrm{a}(0.536 \mathrm{~g}$, 2 mmol) and triethylamine ($0.202 \mathrm{~g}, 2 \mathrm{mmol}$) in dichloromethane (10 $\mathrm{ml})$ was treated with p-nitrophenyl ester ${ }^{12} 8(0.925 \mathrm{~g}, 2.2 \mathrm{mmol})$ in dichloromethane (10 ml). The reaction mixture was kept for 5 h at room temperature, whereupon it was extracted with a saturated solution of $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{ml})$ and $\mathrm{NH}_{4} \mathrm{OH}$ (dilute $\left.1: 1,3 \times 10 \mathrm{ml}\right)$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a solid which as filtered after addition of ethanol: $0.69 \mathrm{~g}(63 \%)$, homogeneous on TLC (S_{1}); mp 114-118 ${ }^{\circ} \mathrm{C}$ was unchanged after recrystallization from cyclohexane; $[\alpha]^{24} \mathrm{D}-27.4^{\circ}$ (c 0.5, acetone); ir (KBr) $3370(\mathrm{NH}), 1705$ (CO, urethane), 1660 (CO, amide), 1553, $1543 \mathrm{~cm}^{-1}$ (amide II bands of urethane and peptide bond and aromatics); NMR ($\mathrm{CD}_{3} \mathrm{COCD}_{3}$) δ ca. $7.22\left(\mathrm{~m}, 15, \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.95\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}$), 3.63 (poorly resolved d of $\mathrm{q}, 6, \mathrm{CH}_{2}$ of $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right), 1.08\left(\mathrm{t}, 9, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6}$ (548.7): C, 70.05; H, 7.35; N, 5.11. Found: C, 70.07 ; $\mathrm{H}, 7.38 ; \mathrm{N}, 5.13$.

Ethyl \boldsymbol{N}-Benzyloxycarbonyl-L-phenylalanyl-DL-phenylalaninate (10). A solution of dipeptide ortho ester $9(70 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was stirred with $10 \% \mathrm{HCl}(10 \mathrm{ml})$ for 30 min at room temperature. The layers were separated, the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, and the combined organic portions were washed with a saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$ and water (10 $\mathrm{ml})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ solution was evaporated, leaving a white solid $10, \mathrm{mp} 100-103^{\circ} \mathrm{C}, \mathrm{TLC}\left(\mathrm{S}_{1}\right)$ homogeneous and different (slower) from ortho ester 9. Crystallization from benzene-cyclohexane (2:1) gave $25 \mathrm{mg}(40 \%)$ of material: ${ }^{26} \mathrm{mp} 128-130^{\circ} \mathrm{C} ;[\alpha]^{24} \mathrm{D}+1.75^{\circ}$ (c 0.91 , ethyl acetate); NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 7.27$ and $7.20\left(2 \mathrm{~s}, 15, \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.98$ (s, $2, \mathrm{CH}_{2}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}\right), 4.55(\mathrm{~m}, 2, \mathrm{CH}), 4.09\left(\mathrm{q}, 2, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)$, $1.31\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)$.

Reaction of Uridine with Ortho Ester 6a. A solution of uridine $(0.12 \mathrm{~g}, 0.5 \mathrm{mmol})$, ortho ester $6 \mathrm{a}(0.4 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CF}_{3} \mathrm{COOH}$ (5 drops) in DMF (5 ml) was kept for 15 h at room temperature. Triethylamine (0.5 ml) was then added, the solution was evaporated at 0.1 mm , and the residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and saturated $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml), and the combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The syrupy residue was chromatographed on one $20 \times 20 \mathrm{~cm} 2-\mathrm{mm}$ thick layer of Stahl's silica gel GF-254 in solvent $\mathrm{S}_{2}(0.1 \mathrm{ml}$ of triethylamine $/ 100 \mathrm{ml})$. The major slower moving uv-absorbing band was eluted with the $4: 1$ mixture of the same solvents and the eluate was evaporated to give a syrup. Trituration with ether-petroleum ether afforded $2^{\prime}, 3^{\prime}$-cyclic ortho ester 11 as an amorphous solid, $0.14 \mathrm{~g}(51 \%)$, homogeneous on TLC ($\mathrm{S}_{2}, \mathrm{~S}_{3}$), uv max (ethanol) $260 \mathrm{~nm}(\epsilon 8700), \min 230(\epsilon 1800)$.

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{9}$ (553.6): C, $60.75 ; \mathrm{H}, 5.65 ; \mathrm{N}, 7.59$. Found: C, 60.61; H, 5.90; N, 7.33.
$\mathbf{2}^{\prime}\left(3^{\prime}\right)-O-(N$-Benzyloxycarbonyl-DL-phenylalanyl)uridine (12). A solution of $2^{\prime}, 3^{\prime}$-cyclic ortho ester $11(83 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dioxane-acetic acid-water (2:3:3) mixture (4 ml) was kept for 22 h at room temperature. The solution was then lyophilized, the residue dissolved in CHCl_{3}, and ether-petroleum ether added to precipitate 12 as an amorphous powder, 77 mg (95%); the mobility on TLC (S_{2}, S_{3}) was identical with that of an authentic sample ${ }^{3 a}$ of the corresponding L-phenylalanyl derivative.
\boldsymbol{N}-Benzyloxycarbonyl-L-phenylalaninal (16) and \boldsymbol{N}-Ben-zyloxycarbonyl-L-phenylalaninol (19). A solution of N-ben-zyloxycarbonyl-L-phenylalanine ($\mathbf{1 5}, 7 \mathrm{~g}, 0.023 \mathrm{~mol}$) in tetrahydrofuran (45 ml) was cooled to $10^{\circ} \mathrm{C}$ and N, N^{\prime}-carbonyldiimidazole (4 $\mathrm{g}, 0.025 \mathrm{~mol}$) was added. The resulting mixture was stirred for 20 min at $10^{\circ} \mathrm{C}$, then cooled to $-20^{\circ} \mathrm{C}$ and a solution of $\mathrm{LiAlH}_{4}(1.9 \mathrm{~g}, 0.050$ mol) in tetrahydrofuran (80 ml) was added dropwise over a period of 30 min . The stirring of the reaction mixture then continued for 15 min at $-20^{\circ} \mathrm{C}$ whereupon $2 \mathrm{M} \mathrm{HCl}(80 \mathrm{ml})$ was added. Evaporation in vacuo gave a solid which was extracted with chloroform (total 350 ml). The combined extracts were washed with water (100 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was dissolved in chloroform $(10 \mathrm{ml})$ and the solution was put on the top of the column made from silica gel ($120 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$). Elution with chloroform (250 ml) after evaporation gave a crystalline solid which was crystallized from ether-petroleum ether ($1: 2$) to afford aldehyde 16 ($3.3 \mathrm{~g}, 50 \%$): mp $76-77^{\circ} \mathrm{C} ;[\alpha]^{22} \mathrm{D}-1.8^{\circ}$ (c 0.45, CHCl_{3}); ${ }^{19}$ ir (KBr) 3370 (NH), 1736 (CO, aldehyde), $1683 \mathrm{~cm}^{-1}$ (CO, urethane); NMR (CDCl_{3}) $\delta 9.35$ (s, $1, \mathrm{CH}=0), 7.31-6.94\left(\mathrm{~m}, 10, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.03\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right.$ of benzyloxycarbonyl), $4.37(\mathrm{q}, \mathrm{l}, \mathrm{CH}), 3.04\left(\mathrm{~d}, 2, \mathrm{CH}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}$ (283.3): C, 72.07 ; $\mathrm{H}, 6.05 ; \mathrm{N}, 4.94$. Found: C, 71.91; H, 6.08; N, 4.87.

Further elution with chloroform (100 ml) gave N-benzyloxycar-bonyl-L-phenylalaninol ($19,1.53 \mathrm{~g}, 23 \%$), mp $92-92.5^{\circ} \mathrm{C}$ (lit. ${ }^{17.18} 90-92$ and $90^{\circ} \mathrm{C}$, respectively), $[\alpha]^{22} \mathrm{D}-45.9^{\circ}\left[\right.$ lit. ${ }^{17}-41.5^{\circ}$ (c 1.4, ethanol)], $[\alpha]^{22} \mathrm{D}-44.6^{\circ}$ [lit. $^{18}-42^{\circ}$ (c 2.0 methanol)).

The reduction of aldehyde 16 in a standard fashion (see above) with LiAlH_{4} gave alcohol $19, \mathrm{mp} 76-77^{\circ} \mathrm{C},\left[\alpha{ }^{22} \mathrm{D}-3.4^{\circ}\right.$ (c 1.4, ethanol), ir corresponded to that of optically pure 19.
\boldsymbol{N}-Benzyloxycarbonyl-L-phenylalaninal Dimethyl Acetal (17). Aldehyde 16 ($0.4 \mathrm{~g}, 1.4 \mathrm{mmol}$) was added portionwise to a mixture of dimethylformamide dimethyl sulfate complex ${ }^{28}(0.31 \mathrm{~g}, 1.55$ mmol) and anhydrous methanol ($65 \mathrm{mg}, 2 \mathrm{mmol}$) at room temperature with stirring which then continued for 2.5 h . The mixture was kept overnight, and the crystallized product was washed with petroleum ether and recrystallized from petroleum ether-ether (1:1) to give acetal $17(0.28 \mathrm{~g}, 60 \%)$: mp $58-60^{\circ} \mathrm{C} ;[\alpha]^{22} \mathrm{D}-8.4^{\circ}\left(c 1.22, \mathrm{CHCl}_{3}\right)$; ir (KBr) $3350 \mathrm{~cm}^{-1}(\mathrm{NH}), 1690$ (CO, urethane), 1550 (amide II band, urethane); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.25$ and 7.16 (two s, $10, \mathrm{C}_{6} \mathrm{H}_{5}$), 5.00 (s, 2, CH_{2} of benzyloxycarbonyl), 4.08 (m,2, CH), 3.41 and 3.35 (two s, 6 , OCH_{3}), $2.85\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right)$.
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4}$ (329.4): C, $69.28 ; \mathrm{H}, 7.04 ; \mathrm{N}, 4.25$. Found: C, 69.20; H, 7.10; N, 4.17.

Reaction of Adenosine, Aldehyde 16, and Ethyl Orthoformate. A solution of aldehyde $16(0.4 \mathrm{~g}, 1.4 \mathrm{mmol})$, ethyl orthoformate (0.46 $\mathrm{g}, 3.1 \mathrm{mmol})$, adenosine $(0.376 \mathrm{~g}, 1.4 \mathrm{mmol})$, and trifluoroacetic acid $(0.24 \mathrm{~g}, 2.1 \mathrm{mmol})$ in DMF (10 ml) was kept at room temperature for 39 h . Triethylamine was then added to adjust pH to $8-9$ (indicator paper) and the volatile components were evaporated at 0.1 mm and room temperature. The residue was chromatographed on two loose layers of silica gel ($35 \times 15 \mathrm{~cm}, 3 \mathrm{~mm}$ thick) in solvent S_{5} containing 0.2% of triethylamine (double development). The faster moving band was eluted with the solvent and evaporated to give amorphous product $18 \mathbf{b}(0.185 \mathrm{~g}, 21 \%)$: TLC $\left(\mathrm{S}_{2}\right)$ homogeneous; uv max (ethanol) 265 nm ($\epsilon 16500$), min 228 (2100); NMR ($\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta 8.15\left(\mathrm{~s}, 2, \mathrm{H}_{8}\right.$ $\left.+\mathrm{H}_{2}\right), 7.13\left(\mathrm{~m}, 10, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.35\left(\mathrm{~d}, 1, J=3.5 \mathrm{~Hz}, \mathrm{H}_{1^{\prime}}\right), 1.10$ and 1.42 (two $\mathrm{t}, \mathrm{CH}_{3}$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$).

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{8}$ (634.7): C, $60.55 ; \mathrm{H}, 6.04 ; \mathrm{N}, 13.24$. Found: C, 60.41; H, 6.17; N, 13.13 .

Elution of the slower moving band with solvent S_{2} containing 0.2% of triethylamine gave $2^{\prime}, 3^{\prime}-O$-ethoxymethyleneadenosine (18a, 0.33 $\mathrm{g}, 73 \%$) identical with an authentic sample ${ }^{22}$ (TLC, uv, and melting point).

Attempted Reaction of 18b with Dimethylformamide Dimethyl Acetal. A solution of compound $\mathbf{1 8 b}(2 \mathrm{mg})$ and dimethylformamide dimethyl acetal (0.05 ml) in DMF (0.2 ml) was kept for 16 h at room temperature. ${ }^{23}$ After evaporation the uv spectrum of the residue (ethanol) was identical with that of starting material $\mathbf{1 8 b}$.
Hydrolysis of Compound 18b. A solution of $18 \mathrm{~b}(5 \mathrm{mg})$ in 80% formic acid (0.5 ml) was kept at room temperature for 30 min . A sample of the mixture was chromatographed (TLC) in solvents S_{4} and S_{5} along with authentic samples of $\mathbf{1 8 b}$, adenosine $2^{\prime}\left(3^{\prime}\right)-O$-formate prepared in situ from 18a by the same procedure, ${ }^{24}$ and aldehyde 16.

Acknowledgments. Thanks are due to Dr. H. L. Chung and Messrs. N. Cvetkov, D. Marks, and J. Owens for spectral measurements and optical rotations. The authors are also grateful to Miss U. Mazur for the preparation of ethyl N benzyloxycarbonylorthoglycinate (6b).

Registry No.-1, 645-59-0; 2, 52353-64-7; 3, 59830-53-4; 4a, 59830-54-5; 4b, 24595-61-7; 5, 59830-55-6; 6a, 59830-56-7; 6b, 13347-35-8; 7, 3588-57-6; 8, 2578-86-1; 9, 59830-57-8; 10, 59830-58-9; 11, 59830-59-0; 15, 1161-13-3; 16, 59830-60-3; 17, 59830-61-4; 18b, 59830-62-5; $\mathrm{NaClO}, 7681-52-9$; sodium ethylate, 141-52-6; benzyloxycarbonyl chloride, 501-53-1; uridine, 58-96-8; N, N^{\prime}-carbonyldiimidazole, 530-62-1; dimethylformamide, 68-12-2; adenosine, 58-61-7; ethyl orthoformate, 122-51-0.

References and Notes

(1) This investigation was supported in part by U.S. Public Health Service Research Grant GM-19108 from the National Institute of General Medical Sciences, Bethesda, Md., and in part by an institutional grant to the Michigan Cancer Foundation from the United Foundation of Greater Detroit.
(2) (a) J. Zemlicka and S. Chládek, Collect. Czech. Chem. Commun., 31, 3775 (1966); (b) ibid., 33, 4299 (1968); (c) ibid., 33, 3293 (1968); (d) ibid., 32, 1776 (1967); (e) ibid., 33, 232 (1968); (f) ibid., 35, 89 (1970); (g) ibid., 35, 2398 (1970); (h) Biochemistry, 10, 1521 (1971).
(3) The use of amino acid ortho ester derivatives for the synthesis of aminoacyl oligonucleotides can be circumvented: S. Chládek and J. Zemlicka, J. Org. Chem., 39, 2187 (1974).
(4) W. H. Graham, Tetrahedron Lett., 2233 (1969).
(5) S. M. McElvain and H. F. McShane, J. Am. Chem. Soc., 74, 2664 (1952).
(6) H. E. Baumgarten, J. E. Dirks, J. M. Petersen, and R. L. Zey, J. Org. Chem., 31, 3708 (1966).
(7) S. V. Rogozhin, Yu. A. Davidovich, and V. V. Korshak, Izv. Akad. Nauk SSSR, Ser. Khim., 204 (1971); Bull. Acad. Sci. USSR, Div. Chem. Sci., 194 (1971).
(8) N. Balasubrahmanyam and M. Sivarajan, Tetrahedron Lett., 3355 (1971).
(9) Y. Sugimura, N. Soma, and Y. Kishida, Tetrahedron Lett., 91 (1971).
(10) M. Branik and H. Kessler, Chem. Ber., 108, 2176 (1975), and references cited therein
(11) (a) F. Wessely, K. Schlogl, and G. Korger, Monatsh. Chem., 82, 671 (1951); (b) K. Schlogl and G. Korger, ibid., 82, 799 (1951).
(12) M. Bodanszky and V. du Vigneaud, J. Am. Chem. Soc., 81, 6072 (1959).
(13) J. D. Roberts and M. C. Caserio, "Basic Principles of Organic Chemistry". W. A. Benjamin, New York, N.Y., 1964, p 676.
(14) On the other hand, two diastereoisomers of a similar $2^{\prime}, 3^{\prime}$-cyclic glycine ortho ester of adenosine were resolved by ILC (see footnote on page 4303, ref 2 b).
(15) D. H. Rammler and H. G. Khorana, J. Am. Chem. Soc., 85, 1997 (1963).
(16) B. Shimizu, A. Saito, A. Ito, K. Tokawa, K. Maeda, and H. Umezawa, J. Antibiot., 25, 515 (1972), and references cited therein.
(17) A. Ito, R. Takahashi, and Y. Baba, Chem. Pharm. Bull., 23, 3081 (1975). This reference also contains a useful compilation of literature on previous methods for preparation of amino acid aldehydes.
(18) E. Sandrin and R. A. Boissonas, Helv. Chim. Acta, 49, 76 (1966).
(19) Extensive racemization of N-benzyloxycarbonylamino acid aldehydes during chromatography on silica gel has been noted. ${ }^{17}$ Compound 16 has been described recently but it was characterized only by an R, value and optical rotation ($[\alpha]^{21} \mathrm{D}-2.7^{\circ}, c 2.3$, methanol). ${ }^{17}$ The latter also indicated an extensive racemization.
(20) W. Kantlehner, H.-D. Gutbrod, and P. Gross, Justus Liebigs Ann. Chem., 690 (1974).
(21) Some N-phthaloyl amino acid aldehyde acetals have been described earlier: K. Balenović, N. Bregant, D. Cerar, D. Fles, and I. Jambresić, J. Org. Chem., 18, 297 (1953)
(22) J. Zemlicka in "Synthetic Procedures in Nucleic Acid Chemistry", Vol. 1, W. W. Zorbach and R. S. Tipson, Ed., Wiley, New York, N.Y., 1968, p 202.
(23) J. Zemlicka and A. Holý, Collect. Czech. Chem. Commun., 31, 3159 (1967).
(24) J. Zemlicka and J. P. Horwitz, J. Org. Chem., 36, 2809 (1971).
(25) Unsharp melting point and complex splitting pattern of the NMR signals indicated a stereoisomeric mixture (three stereoisomers are possible).
(26) Compound 10 is a mixture of two diastereoisomers. Only one, LL form (mp $136-138^{\circ} \mathrm{C},\left[\alpha{ }^{23} \mathrm{D}+11^{\circ}\right.$), has been described. ${ }^{27}$ As indicated by the optical rotation, a partial separation of diastereoisomers was achieved.
(27) A. Barth. Justus Liebigs Ann. Chem.. 683, 216 (1965).
(28) H. Bredereck, F. Effenberger, and G. Simchen, Angew. Chem., 73, 493 (1961).

Orientation of the Nitrogen Lone-Pair Electrons in Cannivonine

K. Jankowski*

Centre d'Études Nucléaires de Saclay, Service de Biochimie, 91190 Gif-sur-Yvette, France

Received November 5, 1975
The structure of cannivonine b (1) has been reasonably established using ${ }^{1} \mathrm{H}$ NMR spectra recorded in the presence of shift reagents. ${ }^{1-3}$ The cannivonine b is a tricyclic alkaloid having a 1 -cyclohexen- 3 -ol ring fixed on the azabicyclo[2.2.2]octane skeleton. Such a tricyclic compound can undergo syn-anti equilibration (Scheme I).

In the presence of the shift reagents, syn oriented nitrogen lone-pair electrons contribute to the formation of the eightcoordinate two donor atoms complex that involves O and $\mathrm{N} .{ }^{3}$ Recently Morishima and Yoshikawa ${ }^{4}$ have found that the nitrogen lone pair of N-methyl-2-azabicyclo[2.2.2]oct-5-ene (and its dihydro derivative) is oriented in an anti position.

The NMR spectra, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, recorded in the presence of nickel bisacetylacetonate do not show the orientation of the

[^4]Table I. $\mathrm{Ni}(\text { acac })_{2}$ Induced ${ }^{13} \mathrm{C}$ Contact Shifts for $\mathbf{1 a}^{\text {a }}$

C	δ_{C}	Relative induced shift
1	52.17	+1.00
NCH_{3}	43.81	+1.62
3	56.24	+1.40
4	129.73	-0.52
5	131.34	-0.44
6	65.51	+0.84
7	25.40	+0.40
8	26.87	-0.33
9	25.65	+0.02
10	24.92	-1.38
11	25.17	-0.41
1^{\prime}	130.71	+0.08
2^{\prime}	121.37	-0.17
3^{\prime}	13.41	+0.14
$1^{\prime \prime}$	25.02	+0.08
$2^{\prime \prime}$	12.10	0.00

${ }^{a}$ Identification from off-resonance ${ }^{1} \mathrm{H}$; see Experimental Section for details of calculations.

Scheme I

metal relative to the double bond. The CNDO-MO calculations, carried out by the same authors, confirmed the preferential anti position of the nitrogen lone pair. ${ }^{5,6}$ However, for cannivonine b, acetylacetonate can easily lie between the nitrogen and oxygen atoms and force the nitrogen lone pair into syn orientation (endo using Morishima nomenclature).

The syn orientation of the nitrogen lone pair is deduced from the ${ }^{13} \mathrm{C}$ NMR spectra of cannivonine (Table I).

The acetylacetonate relative induced shift of β carbons, with respect to the _one pair, is bigger if the lone pair is oriented trans (anti-coplanar) to this carbon. However, the gauche or eclipsed orientation shows a rather small contact shift (Scheme II). There are four carbons atoms β to the nitrogen

Scheme II

trans
anti-coplanar

eclipsed

gauche
lone pair (C-4, C-8, C-10, and C-11) and two β to the oxygen lone pairs ($\mathrm{C}-5$ and $\mathrm{C}-7$). Thus, the large $\mathrm{C}-10$ relative induced shift of -1.38 is now understandable compared with the $\mathrm{C}-11$, $\mathrm{C}-8$, or $\mathrm{C}-4$ induced shifts.

The oxygen atom has lone pairs oriented in such a manner that at the same time they are trans and eclipsed to C-5 and C-7. As a result, an average (~ 0.4) relative induced shift is observed. ${ }^{7}$

Finally, examination of steric repulsion in the 1 -syn and 1 -anti conformers shows that the syn conformers is effectively more stable. The interaction of 10 -ethyl $-\mathrm{NCH}_{3}$ and $\mathrm{H}-9 \beta-$ NCH_{3} in the syn conformer is smaller than the total interac-
tion of the cyclohexene part- NCH_{3} in the anti conformer. Since the lone pair electrons of the nitrogen atom have such an important effect on the β carbon situated in the anti-coplanar position, this effect could be used in the investigation by C-13 spectroscopy of the preferential orientation of the nonbonded electrons in different cyclic amines.

Experimental Section

The cannivonine b (1) sample was isolated as previously described. ${ }^{1}$ Nickel bisacetylacetonate (Aldrich Chemical Co.) was dried under reduced pressure for 24 h at the temperature of boiling acetcne. The ${ }^{13}$ C NMR spectra were obtained on Brucker HF-X-10 and Jeolco FT spectrometers (22.6 and 25.1 MHz , respectively) with an internal lock ${ }^{2} \mathrm{H}$. The δ_{C} were measured in parts per million using $\mathrm{Me}_{4} \mathrm{Si}$ as a standard. Solutions of $1(10.0 \%)$ in CDCl_{3} in standard tubes (10 mm or 8 mm) at a temperature of $25 \pm 1^{\circ} \mathrm{C}$ were used. The $\mathrm{Ni}(\mathrm{acac})_{2}$ relative induced shifts for all carbons were measured from the slopes of linear plots of observed ${ }^{13} \mathrm{C}$ contact shifts vs. concentration of acetylacetonate (induced ${ }^{13} \mathrm{C}$ contact shifts in hertz plotted vs. concentration of Ni (acac) $)_{2}$ expressed in millimoles). The "true" shift of 2.20 ppm was observed for 0.025 mol of $\mathrm{Ni}(\mathrm{acac})_{2}$ for $\mathrm{C}-1$ and was normalized to unity.
Acknowledgment. The author thanks the National Research Council of Canada for a small research grant.

Registry No.-1, 52340-94-0.

References and Notes

(1) K. Jankowski and I. Jankowska, Experientia, 29, 1383 (1971).
(2) K. Jankowski, Bull. Acad. Pol. Sci., 21, 741 (1972).
(3) K. Jankowski, J. Israeli, and A. Rabczenko, J. Am. Chem. Soc., submitted.
(4) I. Morishima and K. Yoshikawa, J. Am. Chem. Soc., 97, 2950 (1975).
(5) I. Morishima, T. Yonezawa, and K. Goto, J. Am. Chem. Soc., 92, 6651 (1970).
(6) I. Morishima, K. Okada, T. Yonezawa, and K. Goto. J. Am. Chem. Soc., 93, 3922 (1971)
(7) 1-Cyclohexen-3-ol has been used as a model in these studies [${ }^{13} \mathrm{C}$ NMR signals at 130.33 (C-1 and $\mathrm{C}-2$), $65.50,32.08,25.16$, and 19.18 pm].

Configuration of the Photoisomers of Benzylideneanilines

Michio Kobayashi,* Masato Yoshida, and Hiroshi Minato
Department of Chemistry, Tokyo Metropolitan University, Setagaya, Tokyo 158, Japan
Received February 26, 1976
Benzylideneanilines ($\mathrm{ArCH}=\mathrm{NAr}^{\prime}$) are formally related to stilbenes ($\mathrm{ArCH}=\mathrm{CHAr}^{\prime}$) and azobenzenes $\left(\mathrm{ArN}=\mathrm{NAr}^{\prime}\right)$, but are different from the latter two in the respect that Z (cis) and E (trans) isomers have not been isolated. It was reported that the irradiation of a solution of benzylideneaniline at low temperature converts it reversibly to a photoisomer of different uv absorption, ${ }^{1 a}$ but no concrete evidence as to its structure has been presented although a Z structure has been assigned to the photoisomer of 4,4'-dichlorobenzylideneaniline on the basis of dipole moment measurements. ${ }^{2}$

We have determined the uv spectra of photoisomers of many substituted benzylideneanilines in an EPA matrix (ether-isopentane-ethanol) at $-196^{\circ} \mathrm{C}$ and showed that the imino arene ring of the photoisomer is about 90° rotated from the $\mathrm{ArCH}=\mathrm{N}$ - plane around the $\mathrm{N}-\mathrm{Ar}^{\prime}$ bond. ${ }^{3}$ However, it was not possible to determine whether or not the photosomer has a Z structure.
As described in our previous paper, ${ }^{3}$ the photoisomers are stable in a matrix at $-196^{\circ} \mathrm{C}$ for a long period and stable for several hours in solutions (EPA, methylcyclohexane, or ace-

Figure 1. NMR spectra of (a) 1 and (b) its photoisomer la.
tone) at $-72{ }^{\circ} \mathrm{C}$. Therefore, the configuration of the photoisomers was studied by determining ${ }^{1} \mathrm{H}$ NMR spectra in acetone- d_{6}. Since this photoisomerization is complete only in dilute concentrations ($\sim 10^{-3} \mathrm{M}$), spectra were determined by use of a Fourier transform instrument (accumulation, $500-1000$ sweeps). When the photoisomers produced at -196 or $-72{ }^{\circ} \mathrm{C}$ were warmed to room temperature, the ${ }^{1} \mathrm{H}$ NMR and uv spectra showed that the photoisomers were completely converted back to the original E isomers. This change can be reproduced many times.
p-Dimethylaminobenzylideneaniline (1) and its methyl

derivatives were chosen for our study because they have strong absorption maxima at wavelengths greater than 300 nm , and are almost completely converted to their photoisomers upon irradiation in acetone- d_{6} solutions with a high-pressure mercury lamp. In order to ascertain the assignments of aromatic NMR absorptions, some derivatives of 1 deuterated at suitable positions were synthesized and their spectra were determined.

Results and Discussion

Figure 1a is the NMR spectrum of 1 in acetone- d_{6} at -75 ${ }^{\circ} \mathrm{C} ; \mathrm{H}_{1}$ (s, 8.41 ppm from internal $\mathrm{Me}_{4} \mathrm{Si}$); H_{2} and H_{6} (q, 7.85 $\mathrm{ppm}) ; \mathrm{H}_{3}$ and $\mathrm{H}_{5}(\mathrm{q}, 6.84 \mathrm{ppm})$; other ArH (m, ca. 7.4 ppm). Figure 1 b is the NMR spectrum of the photoisomer of 1 (1a),

Table I. Chemical Shifts of Benzylideneanilines and Their Photoisomers ${ }^{a}$

	1	δ			$\begin{gathered} \Delta \delta \\ (1-1 \mathbf{a}) \end{gathered}$	δ		$\begin{gathered} \Delta \delta \\ (2-2 \mathbf{a}) \end{gathered}$	δ		$\begin{gathered} \Delta \delta \\ (4-4 \mathbf{a}) \end{gathered}$	δ		$\begin{gathered} \Delta \delta \\ (5-5 a) \end{gathered}$
		1-2', ${ }^{\prime}, 6^{\prime}-d_{3}$	1 a	$1 \mathbf{a}-2^{\prime}, 4^{\prime}, 6^{\prime}-d_{3}$		2	2a		4	4a		5	5 a	
H_{1}	8.41	8.41	8.21	8.21	0.20	8.15	8.37	-0.22	8.42	8.18	0.24	8.63	8.53	0.10
H_{2}	7.85	7.85		7.09	0.76	$7.87{ }^{\text {b }}$	$7.03{ }^{\text {b }}$	0.8	$7.88{ }^{\text {c }}$	$7.13{ }^{\text {c }}$	0.24			
H_{6}												$8.03{ }^{\text {d }}$	$6.65{ }^{\text {d }}$	1.38
H_{3}	6.84	6.84		6.59	0.25	e	$6.58{ }^{\text {b }}$		$6.8{ }^{\text {c }}$	$6.58{ }^{\text {c }}$	0.2	6.64	6.63	0.01
H_{5}												$6.71{ }^{\text {d }}$	$6.20^{1{ }^{\text {d }}}$	0.51
$\mathrm{H}_{2}{ }^{\prime}, \mathrm{H}_{6}{ }^{\prime}$	7.4								6.86	6.39	0.47	7.31	6.82	0.49
$\mathrm{H}_{3}{ }^{\prime}, \mathrm{H}_{5}{ }^{\prime}$	7.4	7.44		7.42	0.02	e	7.03					7.42	7.32	0.10
$\mathrm{H}_{4}{ }^{\text {' }}$	7.4					e			6.8			?	?	

${ }^{a}$ Downfield shift from internal $\mathrm{Me}_{4} \mathrm{Si}$ in acetone- d_{6} in parts per million. ${ }^{b} J_{\mathrm{H}_{2}, \mathrm{H}_{3}}=J_{\mathrm{H}_{5}, \mathrm{H}_{6}}=8.79 \mathrm{~Hz}$ (quartet). ${ }^{c} J_{\mathbf{H}_{2}, \mathrm{H}_{3}}=J_{\mathbf{H}_{5}, \mathrm{H}_{6}}$ $=8.79 \mathrm{~Hz}$ (quartet). ${ }^{d} J_{\mathrm{H}_{5}, \mathrm{H}_{6}}=8.79 \mathrm{~Hz}$ (quartet). ${ }^{e} 7.08-6.96$.

Figure 2. NMR spectra of (a) $1-2^{\prime}, 4^{\prime}, 6^{\prime}-d_{3}$ and (b) its photoisomer.
in which the absorption of H_{1} is shifted to higher field (8.21 $\mathrm{ppm})$. In order to assign other aromatic absorptions, $2^{\prime}, 4^{\prime}, 6^{\prime}$ trideuterated 1 was prepared, and its NMR spectrum and that of its photoisomer were determined (Figure 2). The chemical shifts of 1 and $2^{\prime}, 4^{\prime}, 6^{\prime}$-trideuterated 1 and their photoisomers are compared in Table I.

The absorptions of $\mathrm{H}_{2}, \mathrm{H}_{6}, \mathrm{H}_{3}$, and H_{5} are AA'BB' type quartets, and this shows that ring A freely rotates around the $\mathrm{Ar}-\mathrm{C}$ bond within the NMR time scale: $J_{\mathrm{H}_{2}, \mathrm{H}_{3}}=J_{\mathrm{H}_{5}, \mathrm{H}_{6}}=8.79$ Hz . In the NMR spectrum of $1-2^{\prime}, 4^{\prime}, 6^{\prime}-d_{3}, \mathrm{H}_{3}{ }^{\prime}$ and $\mathrm{H}_{5}{ }^{\prime}$ are equivalent, and this can be interpreted in two ways: ring B also rapidly rotates around the $\dot{\mathrm{A}}-\mathrm{N}$ bond, or as proposed in our previous paper ${ }^{3}$ the stable conformation of la has ring B about 90° rotated around the Ar-N bond. The data shown in Table I can be reasonably explained if one assumes that la has the Z structure shown in Figure 3. Although the possibility of the rapid rotation of ring B in la cannot be rejected from the NMR data alone, examination of its molecular model suggests that it is unlikely, since its uv spectrum shows that ring A and the $\mathrm{CH}=\mathrm{N}$-group lie in the same plane.
In the case of cis-stilbenes no such twist of ring B has been invoked. One of the factors for stabilizing this twisted conformation for the photoisomers of benzylideneanilines must be the conjugation between the lone pair of the imino nitrogen and ring B. An x-ray analysis showed that ring B of benzyli-

Figure 3. Structures proposed for photoisomers 1a and 5a: 1a, $\mathrm{R}_{2}=$ $\mathrm{H} ; \mathbf{5 a}, \mathrm{R}_{2}=\mathrm{ME}$.
deneaniline (E isomer) itself is rotated by about 50° from the $\mathrm{PhCH}=\mathrm{N}$ - plane. ${ }^{4}$
Although ring B in 1 is probably rotated around the Ar-N bond to some extent from the $\mathrm{ArCH}=\mathrm{N}$ - plane, ${ }^{5} \mathrm{H}_{1}$ must be strongly shifted to a lower field by the paramagnetic deshielding of the ring current. In accordance with such estimation, the methine proton H_{1} of $p-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{N}-t-\mathrm{Bu}$ (3) (to be discussed later) absorbs at 8.21 ppm at $-75^{\circ} \mathrm{C}$ in acetone- d_{6}. If 1a has the Z structure shown above, the H_{1} should not be affected by the ring current of ring B; the upfield shift (0.20 ppm) observed is quite reasonable.

The significant changes in H_{2} and $\mathrm{H}_{6}(0.75 \mathrm{ppm})$ can be ascribed to the diamagnetic shielding by ring B . If 1 a has the Z structure, H_{2} and H_{6} may be situated right above ring B , and such diamagnetic shielding is expected. H_{3} and H_{5} must be affected similarly by such diamagnetic shielding, but owing to the greater distance from ring B the upfield shift observed was smaller (0.25 ppm).

The comparison of the NMR spectra of 4-dimethylamino-benzylidene- $2^{\prime}, 6^{\prime}$-dimethylaniline (2) and its photoisomer (2a) shown in Table I further supports our assignment of 1a to the Z structure. 2 has an E structure as to the $\mathrm{C}=\mathrm{N}$ bond, but because of the steric repulsion between $2^{\prime}, 6^{\prime}$-methyls and H_{1} the ring B is greatly rotated around the $\mathrm{Ar}-\mathrm{N}$ bond from the $\mathrm{ArCH}=\mathrm{N}$ - plane. This can be readily understood from its molecular model, but is also further supported from the fact that the $u v$ spectrum of 2 is quite similar to those of p $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{N}-t-\mathrm{Bu}$ (3) and 1a. Therefore, H_{1} of 2 is affected by the diamagnetic shielding effect of ring B and the downfield shift upon irradiation (0.22 ppm) can be ascribed to the loss of such diamagnetic shielding in H_{1} of Z-structured 2a. The upfield shift (0.8 ppm) of H_{2} and H_{6} upon irradiation is about the same as that observed in the case of 1 to la.

Then, in order to clarify the changes in the absorptions of $\mathrm{H}_{2}{ }^{\prime}$ and $\mathrm{H}_{6}{ }^{\prime}$, the NMR spectra of 4-dimethylaminobenzyli-dene- $3^{\prime}, 5^{\prime}$-dimethylaniline (4) and its photoisomer (4a) were

Figure 4. NMR spectra of (a) $5-3,5,2^{\prime}, 4^{\prime}, 6^{\prime}-d_{5}$ and (b) its photoisomer (because of incomplete isomerization, a weak signal of the original azomethine signal is observed.)
investigated. The magnitude of the upfield shift in $\mathrm{H}_{1}(0.24$ ppm) upon irradiation is about the same as that observed in the case of 1. The large upfield shift in H_{2} and $\mathrm{H}_{6}(0.75 \mathrm{ppm})$ upon irradiation is comparable to those observed in the case of 1 and 2. The comparison of the NMR spectra of $\mathbf{4}$ and $\mathbf{4 a}$ shows that the absorptions of $\mathrm{H}_{2}{ }^{\prime}$ and $\mathrm{H}_{6}{ }^{\prime}$ of ring B suffer an upfield shift of 0.47 ppm . This upfield shift can be explained as follows. The paramagnetic deshielding due to the ring current of the $\mathrm{C}=\mathrm{N}$ bond affects the $\mathrm{H}_{2}{ }^{\prime}$ and $\mathrm{H}_{6}{ }^{\prime}$ in 4, but not the $\mathrm{H}_{2}{ }^{\prime}$ and $\mathrm{H}_{6}{ }^{\prime}$ in $\mathbf{4 a}$, which has a twisted Z structure as shown in the case of 1a. $\mathrm{H}_{2}{ }^{\prime}$ and $\mathrm{H}_{6}{ }^{\prime}$ are greatly rotated out of the $\mathrm{ArCH}=\mathrm{N}$ - plane.

In 1, 2, 4, or their photoisomers, ring A rotates around the $\mathrm{Ar}-\mathrm{C}$ bond rapidly within the NMR time scale. Therefore, the upfield shift observed in the absorptions of H_{2} and H_{6} of 1 and 4 upon irradiation must be the average of the shifts of the H_{6} affected by the diamagnetic shielding from the ring B and the H_{2} not affected by such shielding. If the rotation of ring A around the Ar-C bond could be restricted, the real upfield shift in H_{6} upon irradiation would be shown. Therefore, the changes in the NMR spectra of 2-methyl-4-dimethylaminobenzylideneaniline (5), its $2^{\prime}, 4^{\prime}, 6^{\prime}$-trideuterio derivative, and $3,5,2^{\prime}, 4^{\prime}, 6^{\prime}$-pentadeuterio derivative upon irradiation were investigated. If the photoisomer of 5 has a Z structure shown in Figure 3, the 2-methyl group should be situated far from ring B. Figure 4 shows the NMR spectra of $5-3,5,2^{\prime}, 4^{\prime}, 6^{\prime}-d_{5}$ and its photoisomer.
The absorption of H_{6} suffers a large upfield shift of 1.38 ppm, which is approximately twice the upfield shift observed in the H_{2} and H_{6} in 1,2 , or $4(0.75 \mathrm{ppm})$ in accordance with our expectation. The upfield shift in $\mathrm{H}_{5}(0.51 \mathrm{ppm})$ is also about two times that observed in the H_{3} and H_{5} in 1 or 4 ($0.2-0.25$ ppm). This is reasonable because H_{5} in 5 is not equivalent with H_{3} owing to the restriction of the rotation. The structure of 5a postulated is consistent with the fact that the absorption of the H_{3} was not shifted upon the photoisomerization. The upfield shift in $\mathrm{H}_{2}{ }^{\prime}$ and $\mathrm{H}_{6}{ }^{\prime}(0.49 \mathrm{ppm})$ is comparable to that
observed in 4 (0.47 ppm), and this can be explained in terms of the loss of the paramagnetic deshielding by the $\mathrm{C}=\mathrm{N}$ group upon isomerization.

Thus, the shifts observed in the absorptions of the methine proton and aromatic protons in $1,2,4$, and 5 upon irradiation can be rationalized if one assumes that the photoisomer has the Z structure and the ring B is rotated around the $\operatorname{Ar}-\mathrm{N}$ bond from the $\mathrm{ArCH}=\mathrm{N}$ plane by about 90°. Therefore, we may conclude that, as in the cases of stilbenes and azobenzenes, benzylideneanilines do have Z isomers, which are stable only below $-70^{\circ} \mathrm{C}$ and consequently have not been isolated as such.

Experimental Section

Materials. Benzylideneanilines $1,2,4$, and 5 and their deuterated derivatives were prepared by heating equimolar mixtures of the corresponding aldehydes and amines without solvent at $150^{\circ} \mathrm{C}$ for 10 h, and recrystallized several times from hexane. The melting points follow: 1, 98-99 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{7} 99-100.5^{\circ} \mathrm{C}$); 1-2', $4^{\prime}, 6^{\prime}-d_{3}, 97-100^{\circ} \mathrm{C}$; 2, 68-69 ${ }^{\circ} \mathrm{C} ; 4,68-70^{\circ} \mathrm{C} ; 5,83-85^{\circ} \mathrm{C} ; 5-2^{\prime}, 4^{\prime}, 6^{\prime}-d_{3}, 81.5-84^{\circ} \mathrm{C} ; 5-3,5,2^{\prime}, 4^{\prime}, 6^{\prime}-d_{5}$, $81-83^{\circ} \mathrm{C} .2,4$, and 5 are new compounds, and their identities are supported by their satisfactory elemental analyses data and NMR spectra. 3 was prepared by heating p-dimethylaminobenzaldehyde and tert-butylamine at the boiling point of the amine for 48 h , and purified by vacuum distillation at $143-145^{\circ} \mathrm{C}(7.5 \mathrm{mmHg})$.

4-Dimethylamino-2-methylbenzaldehyde, used for synthesizing 5, was prepared from m-toluidine by methylation with methyl phosphate and formylation of the 3-methyl- N, N-dimethylaniline ${ }^{8}$ with formaldehyde and p-dimethylaminonitrosobenzene according to the method of formylating N, N-dimethylaniline. ${ }^{9}$
$2,4,6$-Trideuterioaniline was prepared by refluxing anilinium chloride in $\mathrm{D}_{2} \mathrm{O}^{10}$ (the extent of exchange, over 95%). 2-Methyl-3,5-dideuterio-4-dimethylaminobenzaldehyde was prepared by refluxing 2-methyl-4-dimethylaminobenzaldehyde in excess $\mathrm{D}_{2} \mathrm{O}$ and acetic acid (the extent of exchange, over 95%).

An acetone- d_{6} solution of a benzylideneaniline in a Pyrex tube (10 mm) was cooled in a dry ice-acetone bath and irradiated through a quartz Dewar bottle with a 500 -W high-pressure mercury lamp till about 100% isomerization $(5-10 \mathrm{~h})$. Then its ${ }^{1} \mathrm{H}$ NMR spectrum was immediately determined at $-75^{\circ} \mathrm{C}$ with a JEOL Fourier transform NMR spectrophotometer FX-60.

Registry No.-1, 1613-99-6; 1-2', $4^{\prime}, 6^{\prime}-d_{3}, \quad 59812-52-1$; 1a, 40339-45-5; la-2', $4^{\prime}, 6^{\prime}-d_{3}, 59812-53-2$; 2, 59812-54-3; 2a, 59812-55-4; 3, 59812-56-5; 4, 59812-57-6; 4a, 59812-58-7; 5, 59812-59-8; 5$3,5,2^{\prime}, 4^{\prime}, 6^{\prime}-d_{5}, \quad 59812-60-1$; 5a, 59812-61-2; 5a-3,5,2', $4^{\prime}, 6^{\prime}-d_{5}$, 59813-33-1; p-dimethylaminobenzaldehyde, 100-10-7; tert-butylamine, 75-64-9; 4-dimethylamino-2-methylbenzaldehyde, 1199-59-3; 2,4,6-trideuterioaniline, 7291-08-9; 2-methyl-3,5-dideuterio-4dimethylaminobenzaldehyde, 59812-62-3.

References and Notes

(1) (a) E. Fischer and Y. Frei, J. Chem. Phys., 27, 808 (1959); (b) G. Wettermark, J. Weinstein, J. Sousa, and L. Dogliotti, J. Phys. Chem., 69, 1584 (1965). The activation energy for the backward step from the photoisomer to the original E isomer was reported: for $\mathrm{PhCH}=\mathrm{NPh}, 16-17 \mathrm{kcal} / \mathrm{mol}$ at about $-100{ }^{\circ} \mathrm{C}^{\text {1a }}$ and for $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NPh}, 14.2 \mathrm{kcal} / \mathrm{mol}$ at room temperature. ${ }^{1 \mathrm{~b}}$
(2) W. Gajewski, H. Wendt, and R. Wolfbauer, Ber. Bunsenges. Phys. Chem., 76, 450 (1972).
(3) M. Kobayashi, M. Yoshida, and H. Minato, Chem. Lett., 185 (1976).
(4) H. B. Bürgi and J. D. Dunitz, Helv. Chim. Acta, 53, 1747 (1970).
(5) The extent of rotation varies with the substituent, and the molecule of 4-nitrobenzylidene-4'-dimethylaminoaniline is almost planar with very little rotation. ${ }^{6}$ An x-ray analysis of 1 has not been reported in the literature, but the angle of rotation of ring B in 1 can be estimated as about $40-50^{\circ}$ since the wavelength of the absorption maximum in the uv spectrum of 1 (340 nm , in hexane) is greater than those in 2 or $\mathbf{3}$ ($\mathbf{3 2 4} \mathrm{nm}$, in hexane), and this suggests considerable conjugation between ring B and the $\mathrm{ArCH}=\mathrm{N}-$ system.
(6) K. Ezumi, H. Nakai, S. Sakata, K. Nishida, M. Shiro, and T. Kubota, Chem. Lett., 1393 (1974).
(7) K. Tabei and E. Saitou, Bull. Chem. Soc. Jpn., 42, 1440 (1969).
(8) D. G. Thomas, J. H. Billman, and C. E. Davies, J. Am. Chem. Soc., 68, 895 (1946).
(9) R. Adams and G. H. Coleman, "Organic Syntheses'", Collect. Vol. I, Wiley, New York, N.Y., 1941, p 214.
(10) W. C. Ripka and P. E. Applequist, J. Am. Chem. Soc., 89, 4035 (1967).

Ring Expansion Reaction of 1,2-Dihydroquinolines to 1-Benzazepines. 2

Yoshiro Sato,* Hiroyuki Kojima, and Hideaki Shirai
Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

Received April 26, 1976
In a previous paper, ${ }^{1}$ we reported a convenient synthetic method for the preparation of 1-benzazepines from 1,2dihydroquinolines by the use of ethyl azidoformate. It was also revealed that the reaction proceeded by way of the intermediate 1,3-dialkyl-2-alkylidene-1,2-dihydroquinolines which were easily prepared by the treatment of $1,2,3$-trialkylquinolinium chlorides with alkali. Successful employment of phenyl and benzoyl azides in the same ring expansion reaction is described in this paper with some mechanistic considerations.

When a mixture of 1,3-dimethyl-2-ethylidene-1,2-dihydroquinoline (3) with phenyl or benzoyl azide was heated at $110-120^{\circ} \mathrm{C}, 1,3,4$-trimethyl-2-phenylimino- (or benzoylim-ino-) 2,3-dihydro-1 H -1-benzazepine ($\mathbf{4 b}$ or $\mathbf{4 c}$) was produced in a good yield. Alkaline hydrolysis of $\mathbf{4 b}$ or 4 c gave a high yield of $1,3,4$-trimethyl-2-oxo-2,3-dihydro- 1 H -1-benzazepine (5) with elimination of aniline or benzamide. The yields are shown in Scheme I together with that previously reported for the case of ethyl azidoformate. ${ }^{1}$
compositions of the corresponding compounds $\mathbf{4 a}, \mathbf{4 b}$, and $\mathbf{4 c}$. When 8a-c were heated at $180^{\circ} \mathrm{C}$ for 1 h , excellent yields of 4a-c were obtained. These results together with the spectral data suggest that compounds 8 have the structures of $1,3-$ dimethyl-1,2-dihydroquinoline-2-spiro- 2^{\prime}-(1^{\prime}-substituted 3^{\prime}-methyl)aziridines. A similar thermal rearrangement of 1,2-diphenylazaspiro[2.2]pentane has been reported by Crandall et al. ${ }^{4}$

Because the aziridines 8 are stable at $120^{\circ} \mathrm{C}$, they are not intermediates in the thermal reaction of 3 with the azides. The azide addition via 6 and 7 may therefore be a more reasonable mechanism for the thermal reaction.

Experimental Section

NMR spectra were recorded using a JNM-MH-100 (JEOL) spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Ir spectra were taken on a IRA-2 (JASCO) spectrometer. Fractional distillation was accomplished by a Büchi GKR-5 Kugelrohr distillation apparatus. All procedures were carried out under a nitrogen atmosphere.
1,3,4-Trimethyl-2-phenylimino-2,3-dihydro-1 \boldsymbol{H}-1-benzazepine (4b). To a solution of 1,3 -dimethyl-2-ethylquinolinium chloride ${ }^{5}$ (2, $1.50 \mathrm{~g}, 6.8 \mathrm{mmol})$ in 10 ml of water was added 10 ml of 20% potassium hydroxide at $0-5{ }^{\circ} \mathrm{C}$. 1,3-Dimethyl-2-ethylidene-1,2-dihydroquinoline

Scheme I

4a, 94%
5
a, $\mathrm{R}=\mathrm{COOEt}$
b, 68%
b, $\mathrm{R}=\mathrm{Ph}$
c. 80%
c, $\mathrm{R}=\mathrm{PhCO}$

Compound $\mathbf{4 b}$ was also obtained in 40% yield by the reaction of 1,3 -dimethyl-2-ethyl-1,2-dihydroquinoline (1) with an excess of phenyl azide. However, a similar treatment of 1 with benzoyl azide gave no $4 \mathbf{c}$ but phenyl isocyanate which is a thermal decomposition product of the azide. ${ }^{2}$ This result would be attributable to the different thermal stabilities of azides employed. ${ }^{2}$

The half-life of the unimolecular decomposition of ethyl azidoformate to ethoxycarbonyl nitrene may be estimated to be $1-2 \mathrm{~h}$ at $120^{\circ} \mathrm{C}$ based on Breslow's work. ${ }^{3}$ The thermal reaction of 3 with azide may proceed either via a 1,3 -dipolar addition process giving the triazoline 6 or via a cycloaddition process of a nitrene to give the aziridine 8 (Scheme II). Uv irradiation of a mixture of 3 and an azide at low temperature was expected to direct the reaction exclusively into the nitrene pathway.

A solution of 3 and an azide (ethyl azidoformate, phenyl azide, or benzoyl azide) in petroleum ether was thus irradiated with a high-pressure mercury lamp at $0-10^{\circ} \mathrm{C}$ to give a yellow oil ($8 \mathbf{a}, 8 \mathbf{b}$, or $8 \mathbf{c}$), which could be distilled between 120 and $150^{\circ} \mathrm{C}$ under reduced pressure without appreciable decomposition. The empirical formulas of these oils agreed with the

Scheme II

8a, 74%
b, 62\%
c. 60%
(3) was liberated immediately as a yellow oil, which was extracted with 40 ml of ligroin (bp $110-120^{\circ} \mathrm{C}$). To the boiling ligroin solution was added dropwise $1.61 \mathrm{~g}(13.5 \mathrm{mmol})$ of phenyl azide and the mixture was refluxed for 3 h . Fractional distillation of the reaction mixture gave $1.28 \mathrm{~g}(68 \%)$ of 4 b : bp $152-156{ }^{\circ} \mathrm{C}(0.03 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 0.76 (d, $3, J=7.5 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{CH}_{3}$), 1.78 ($\mathrm{s}, 3, \mathrm{C}-4 \mathrm{CH}_{3}$), 3.49 (s, $3, \mathrm{NCH}_{3}$), $3.49(\mathrm{q}, 1, J=7.5 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{H}), 6.31$ (s, 1, C-5 H), and 6.63-7.30 (m, 9, aromatic H).
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}$: C, 82.57; H, 7.29; N, 10.14. Found: C, 82.38; H, 7.30; N, 10.31 .

1,3,4-Trimethyl-2-benzoylimino-2,3-dihydro-1 \boldsymbol{H}-1-benzazepine (4c). In a similar manner as described above for $4 b, 3$ prepared from $2(1.00 \mathrm{~g}, 4.5 \mathrm{mmol})$ was treated with benzoyl azide ($1.29 \mathrm{~g}, 8.8$ $\mathrm{mmol})$ to give $1.10 \mathrm{~g}(80 \%)$ of 4 c : bp $158-162{ }^{\circ} \mathrm{C}(0.03 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.81\left(\mathrm{~d}, 3, J=7.0 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{CH}_{3}\right), 1.98\left(\mathrm{~s}, 3, \mathrm{C}-4 \mathrm{CH}_{3}\right), 3.52$ (s, $3, \mathrm{NCH}_{3}$), 3.82 (q, $1, J=7.0 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{H}$), 6.38 (s, 1, C-5 H), and $6.80-8.20(\mathrm{~m}, 9$, aromatic H$)$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$: C, 78.92; H, 6.62; N, 9.20. Found: C, 78.63; H, 6.73; N, 9.25.

Hydrolysis of $\mathbf{4 b}$ or $\mathbf{4 c}$. A solution of $\mathbf{4 b}(550 \mathrm{mg}, 2.0 \mathrm{mmol})$ in 5% potassium hydroxide in 50% ethanol (20 ml) was refluxed for 12 h . After removal of the ethanol, the aqueous solution was extracted with chloroform. The extract was washed with water, dried, and concentrated. Fractional distillation of the residue gave $65 \mathrm{mg}(35 \%)$ of aniline and $362 \mathrm{mg}(90 \%)$ of 5 , bp $105-109{ }^{\circ} \mathrm{C}(0.03 \mathrm{~mm})$ [lit. ${ }^{1}$ bp 103-105 $\left.{ }^{\circ} \mathrm{C}(0.025 \mathrm{~mm})\right]$.
In a similar manner, $4 \mathrm{c}(257 \mathrm{mg}, 0.84 \mathrm{mmol})$ gave $49 \mathrm{mg}(48 \%)$ of benzamide and 158 mg (93%) of 5 .
1,3-Dimethyl-1,2-dihydroquinoline-2-spiro-2'-(1'-ethoxycar-bonyl-3'-methyl)aziridine (8a). Ethyl azidoformate $0.96 \mathrm{~g}, 9.0$ $\mathrm{mmol})$ was added to a solution of 3 [prepared from $1.00 \mathrm{~g}(4.5 \mathrm{mmol})$ of 2] in 40 ml of petroleum ether. The mixture was irradiated with a high-pressure mercury lamp (100 W) at $0-10^{\circ} \mathrm{C}$ for 6 h . The solvent was removed under reduced pressure. Distillation of the residue gave $832 \mathrm{mg}(74 \%)$ of $8 \mathrm{a}: \mathrm{bp} 118-125^{\circ} \mathrm{C}(0.03 \mathrm{~mm})$; ir (neat) $1708 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.86\left(\mathrm{~d}, 3, J=7.5 \mathrm{~Hz}, \mathrm{C}-3^{\prime} \mathrm{CH}_{3}\right), 1.37(\mathrm{t}, 3, J=7.0 \mathrm{~Hz}$, ethoxy CH_{3}), $2.16\left(\mathrm{~s}, 3, \mathrm{C}-3 \mathrm{CH}_{3}\right), 3.14\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 4.07(\mathrm{q}, 1, J=7.5$ $\left.\mathrm{Hz}, \mathrm{C}-3^{\prime} \mathrm{H}\right), 4.32\left(\mathrm{q}, 2, J=7.0 \mathrm{~Hz}\right.$, ethoxy CH_{2}), and 6.83-7.40 (m, 5, $\mathrm{C}-4$ and aromatic H).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 70.56; $\mathrm{H}, 7.40 ; \mathrm{N}, 10.29$. Found: C, 70.32; H, 7.41; N, 10.34.

1,3-Dimethyl-1,2-dihydroquinoline-2-spiro-2'-(1^{\prime}-phenyl- 3^{\prime} methyl)aziridine ($8 \mathbf{b}$). In a similar manner as described for $8 a$, a solution of 3 [prepared from $1.00 \mathrm{~g}(4.5 \mathrm{mmol})$ of 2] and phenyl azide $(1.08 \mathrm{~g}, 8.4 \mathrm{mmol})$ in petroleum ether was treated giving $772 \mathrm{mg}(62 \%)$ of 8b: bp $125-132{ }^{\circ} \mathrm{C}(0.03 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{~d}, 3, J=7.5$ $\mathrm{Hz}, \mathrm{C}-3^{\prime} \mathrm{CH}_{3}$), 1.72 ($\mathrm{s}, 3, \mathrm{C}-3 \mathrm{CH}_{3}$), 2.36 ($\mathrm{s}, 3, \mathrm{NCH}_{3}$), 4.28 ($\mathrm{q}, 1, J=$ 7. $\mathrm{Hz}, \mathrm{C}-3^{\prime} \mathrm{H}$), and 6.40-7.48 (m, 10, C-4 and aromatic H).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}$: C, 82.57; H, 7.29; N, 10.14. Found: C, 82.43; H, 7.29; N, 10.28 .

1,3-Dimethyl-1,2-dihydroquinoline-2-spiro-2'-(1'-benzoyl-3'methyl)aziridine (8c). In a similar manner as described above for 8 a , treatment of 3 [prepared from $1.00 \mathrm{~g}(4.5 \mathrm{mmol})$ of 2] with benzoyl azide $(1.33 \mathrm{~g}, 8.4 \mathrm{mmol})$ gave $821 \mathrm{mg}(60 \%)$ of 8 c : bp $143-149^{\circ} \mathrm{C}(0.04$ mm); ir (neat) $1660 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.82\left(\mathrm{~d}, 3, J=7.5 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right.$ CH_{3}), 2.23 (s, 3, C-3 CH_{3}), 2.98 ($\mathrm{s}, 3, \mathrm{NCH}_{3}$), 4.03 ($\mathrm{q}, 1, J=7.5 \mathrm{~Hz} \mathrm{C-3'}$ $\mathrm{H})$, and 6.73-8.05 ($\mathrm{m}, 10, \mathrm{C}-4$ and aromatic H).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 78.92 ; \mathrm{H}, 6.62$; $\mathrm{N}, 9.20$. Found: C, 78.74; H, 6.64; N, 9.23.

Thermal Rearrangement of $8 a, 8 b$, and $8 c$ to $4 a, 4 b$, and $4 c$. Five hundred milligrams of $8 \mathbf{a}, 8 \mathbf{b}$, or $8 \mathbf{c}$ was sealed in a glass tube under reduced pressure and heated at $180^{\circ} \mathrm{C}$ for 1 h . Distillation of the reactant gave $450 \mathrm{mg}(90 \%)$ of 4 a [bp $138-142^{\circ} \mathrm{C}(0.07 \mathrm{~mm})$, lit. ${ }^{1} \mathrm{bp}$ $\left.130-132{ }^{\circ} \mathrm{C}(0.03 \mathrm{~mm})\right], 490 \mathrm{mg}(98 \%)$ of $4 \mathbf{b}$, or $457 \mathrm{mg}(91 \%)$ of $4 \mathbf{c}$. They were identified by spectroscopic comparisons with authentic samples obtained by the thermal reaction of 3 with ethyl azidoformate, ${ }^{1}$ phenyl azide, or benzoyl azide, respectively.

Reaction of 1,3-Dimethyl-2-ethyl-1,2-dihydroquinoline ${ }^{5}$ (1) with Phenyl Azide or Benzoyl Azide. Phenyl azide ($4.76 \mathrm{~g}, 40 \mathrm{mmol}$) was added dropwise to a boiling solution of $1(1.87 \mathrm{~g}, 10 \mathrm{mmol})$ in 20 ml of ligroin (bp $110-120^{\circ} \mathrm{C}$). The mixture was heated at reflux for 6 h . Fractional distillation of the reaction mixture was repeated to give $1.11 \mathrm{~g}(40 \%)$ of $\mathbf{4 b}$, which was identified with an authentic sample prepared by the thermal reaction of 3 with phenyl azide.

A similar treatment of $1(1.87 \mathrm{~g}, 10 \mathrm{mmol})$ with benzoyl azide (5.88 $\mathrm{g}, 40 \mathrm{mmol})$ gave $3.82 \mathrm{~g}(80 \%)$ of phenyl isocyanate and 1.83 g (98\%) of 1 .

Registry No.-1, 51904-95-1; 2, 55539-76-9; 3, 57091-72-2; 4b, 59181-48-5; 4c, 59183-03-5; 5, 57091-65-3; 8a, 59181-49-6; 8b,

59813-04-6; 8c, 59181-51-0; phenyl azide, 622-37-7; benzoyl azide, 582-61-6; ethyl azidoformate, 817-87-8.

References and Notes

(1) Y. Sato, H. Kojima, and H. Shirai, J. Org. Chem., 41, 195 (1976).
(2) Y. Otsuji, M. Furukawa, and E. Imoto, Nippon Kagaku Zasshi, 80, 1307 (1959).
(3) D. S. Breslow, T. J. Prosser, A. F. Marcantonio, and C. A. Genge, J. Am Chem. Soc., 89, 2384 (1967).
(4) J. K. Crandall and W. W. Conover, J. Chem. Soc., Chem. Commun., 33 (1973).
(5) Y. Sato, H. Kojima, and H. Shirai, Tetrahedron, 30, 2695 (1974).

A General Method for the Synthesis of Reactive α, β-Unsaturated Diazomethyl Ketones: Allenyl Diazomethyl Ketone and Vinyl Diazomethyl Ketone ${ }^{1}$

N. R. Rosenquist and O. L. Chapman*
Department of Chemistry, University of California, Los Angeles, Los Angeles, California 90024

Received March 29, 1976
In the course of our photochemical studies, we required two unknown α, β-unsaturated diazomethyl ketones, allenyl diazomethyl ketone (1) and vinyl diazomethyl ketone (2).

1

2

Synthesis of α, β-unsaturated diazomethyl ketones poses special problems. The Arndt-Eistert reaction of diazomethane with α, β-unsaturated acid chlorides does not compete effectively with the cycloaddition of diazomethane to the conjugated double bond. ${ }^{2,3}$ The normal Arndt-Eistert reaction prevails only in a few highly substituted α, β-unsaturated acid chlorides. ${ }^{3-6}$ Alternative procedures based on diazo transfer, ${ }^{2.7}$ tosylhydrazone anion decomposition, ${ }^{8}$ and the modified Forster ${ }^{9}$ reaction have been developed for certain α, β-unsaturated diazo ketones. We wish to describe a facile method for the conversion of α, β-unsaturated carboxylic acids to the corresponding α, β-unsaturated diazomethyl ketones which is applicable to the synthesis of even the most reactive α, β unsaturated diazomethyl ketones. The method uses a protected double bond in the Arndt-Eistert reaction and takes advantage of the stability of diazomethyl ketones in base in the regeneration of the double bond.

Addition of hydrogen bromide to 2,3-butadienoic acid (3) ${ }^{10}$ gives 3 -bromo-3-butenoic acid (4). Successive treatment of 4 with oxalyl chloride and diazomethane gives 5 which on treatment with DBN (1,5-diazabicyclo[4.3.0]non-5-ene) ${ }^{11}$ in ether at $-20^{\circ} \mathrm{C}$ gives allenyl diazomethyl ketone (1). The maximum yield of allenyl diazomethyl ketone (1) was obtained when 5 was treated with 1 equiv of DBN in ether at $-20^{\circ} \mathrm{C}$ followed by warming to room temperature over 20 min . Use of potassium tert-butoxide in ether gave a lower yield of 1 .

A similar sequence starting from 3-bromopropionic acid ($\mathbf{6 a}$) gives vinyl diazomethyl ketone (2) via 7a. Vinyl diazomethyl ketone proved to be very reactive at room temperature. It forms a glassy solid in 30 min at room temperature even in

the absence of light and oxygen. The utility of our method for substituted vinyl diazomethyl ketones is illustrated by the

$$
2, R=H
$$

$$
8, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}
$$

synthesis of the previously described 1-diazo-4-phenyl-3-buten-2-one (8$)^{7,9}$ from commercially available 3-bromo-3phenylpropionic acid.

Experimental Section

3-Bromo-3-butenoic Acid (4). Anhydrous hydrogen bromide was passed for 3 min into a stirred solution of $3^{10}(3.75 \mathrm{~g}, 0.0447 \mathrm{~mol})$ in 150 ml of anhydrous ether at $0^{\circ} \mathrm{C}$. Removal of the solvent and excess acid under reduced pressure gave a solid residue, which when recrystallized from hexane gave $4(6.5 \mathrm{~g}, 88 \%)$ as white platelets: mp $45.5-47{ }^{\circ} \mathrm{C}$ (lit. ${ }^{12} \mathrm{mp} 46-47^{\circ} \mathrm{C}$); ir $\left(\mathrm{CHCl}_{3}\right) 1720(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1634 \mathrm{~cm}^{-1}$ ($\mathrm{m}, \mathrm{C}=\mathrm{C}$) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.54\left(\mathrm{~d}, 2 \mathrm{H}, J=1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.64(\mathrm{~d}$, $1 \mathrm{H}, J=2 \mathrm{~Hz}$, vinyl H), $5.78(\mathrm{~m}, 1 \mathrm{H}$, vinyl H); molecular ion $m / e 164$ and 166.

Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{BrO}_{2}$: $\mathrm{C}, 29.12 ; \mathrm{H}, 3.05 ; \mathrm{Br}, 48.43$. Found: C , 29.33; H, 3.10; Br, 48.22.

4-Bromo-1-diazo-4-penten-2-one (5). A solution of 4 ($3.30 \mathrm{~g}, 0.02$ mol) and oxalyl chloride ($2.8 \mathrm{~g}, 0.022 \mathrm{~mol}$) in benzene (12 ml) was stirred at $38^{\circ} \mathrm{C}$ until the ir spectrum of the solution showed no acid carbonyl bond (12-14 h). About 20% of the solvent was removed under vacuum, and the solution was added rapidly to a vigorously stirred solution of diazomethane $(2.0 \mathrm{~g}, 0.048 \mathrm{~mol})$ in 170 ml of ether at $0^{\circ} \mathrm{C}$. After 10 min of stirring, removal of the ether under reduced pressure at $0^{\circ} \mathrm{C}$ gave an orange liquid. Distillation in a cold finger still at 0.1 mm with pot temperature $50-75^{\circ} \mathrm{C}$ gave $5(3.21 \mathrm{~g}, 85 \%)$ as a yellow liquid: ir $\left(\mathrm{CHCl}_{3}\right) 2110\left(\mathrm{~s}, \mathrm{C}==\mathrm{N}_{2}\right), 1642(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1360 \mathrm{~cm}^{-1}(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.48\left(\mathrm{~d}, 1 \mathrm{H}, J<1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}_{2}\right), 5.66$ (d, $1 \mathrm{H}, J=2 \mathrm{~Hz}$, vinyl H), $5.80(\mathrm{~m}, 1 \mathrm{H}$, vinyl H); no molecular ion observable, fragment ion $m / e 147$ and 149 (loss of CHN_{2})..13

4-Bromo-1-diazo-2-butanone (7a). 3-Bromopropanoic acid (4.59 $\mathrm{g}, 0.03 \mathrm{~mol}$) was reacted by the procedure described for the preparation of 5 . The product was distilled in a short-path still to give 7a (4.2 g, 79%) as a yellow liquid: bp $43^{\circ} \mathrm{C}(0.03 \mathrm{~mm})$; ir $\left(\mathrm{CHCl}_{3}\right) 2112$ (s, $\left.\mathrm{C}=\mathrm{N}_{2}\right), 1640(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1375 \mathrm{~cm}^{-1}(\mathrm{~s}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.88(\mathrm{t}, 2$ $\left.\mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.58\left(\mathrm{t}, 2 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}_{2}\right)$, splitting is observable in each peak of the triplets; molecular ion m / e 175.9591 (calcd for $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{BrN}_{2} \mathrm{O}, 175.9586$). ${ }^{13}$

4-Bromo-1-diazo-4-phenyl-2-butanone (7b). 3-Bromo-3phenylpropanoic acid ($5.73 \mathrm{~g}, 0.025 \mathrm{~mol}$) was reacted by the procedure described for the preparation of 5 , except that the acid chloride was formed at $50^{\circ} \mathrm{C}$. The product, a yellow solid, when recrystallized from $1 / 6$ benzene/hexane gave $7 \mathrm{~b}(4.87 \mathrm{~g}, 77 \%)$ as light yellow needles: mp
$68.5-70^{\circ} \mathrm{C}$; ir $\left(\mathrm{CHCl}_{3}\right) 2110\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}_{2}\right), 1642(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1378 \mathrm{~cm}^{-1}(\mathrm{~s})$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ \& $3.14\left(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.22(\mathrm{~d}, 1 \mathrm{H}, J=8$ $\mathrm{Hz}, \mathrm{CH}_{2}$), $5.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}_{2}\right), 5.41(\mathrm{~d}$ of $\mathrm{d}, 1 \mathrm{H}, J=8$ and $6 \mathrm{~Hz}, \mathrm{CH}$), 7.32 (broad s, 5 H , phenyl); molecular ion $m / e 252$ and 254.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}$: C, 47.45; $\mathrm{H}, 3.58 ; \mathrm{Br}, 31.57$; $\mathrm{N}, 11.09$. Found: C, 47.76, H, 3.57; Br, 31.72; N, 11.04.

1-Dizao-3,4-pentadien-2-one (1). A solution of 5 ($0.672 \mathrm{~g}, 0.0035$ $\mathrm{mol})$ and hydroquinone $(0.02 \mathrm{~g})$ in 40 ml of anhydrous ether was cooled to $-20^{\circ} \mathrm{C}$ under N_{2}. With vigorous stirring, freshly distilled DBN $(0.435 \mathrm{~g}, 0.0035 \mathrm{~mol})$ was added dropwise over 1 min . A precipitate formed immediately. The solution was warmed to room temperature over 20 min and filtered, and the solvent was removed urder vacuum at $0{ }^{\circ} \mathrm{C}$ giving a yellow liquid. The flask containing the liquid was immediately connected to a U-tube leading to a vacuum pump. With the tube at $15^{\circ} \mathrm{C}$ the system was evaporated to 0.1 mm , and the flask was warmed over 15 min to $70^{\circ} \mathrm{C}$. The product ($1,0.224 \mathrm{~g}, 59 \%$) was collected as a yellow liquid: ir $\left(\mathrm{CHCl}_{3}\right) 2112\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}_{2}\right), 1968$ and 1935 ($\mathrm{m}, \mathrm{C}=\mathrm{C}=\mathrm{C}$), $16 \angle 0(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1368 \mathrm{~cm}^{-1}(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR $\& 5.20$ (broad $\mathrm{d}, 2 \mathrm{H}, J=7 \mathrm{~Hz}$, allenyl $\left.\mathrm{CH}_{2}\right), 5.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}_{2}\right), 5.71(\mathrm{~d}$ of d, 1 H , $J=7$ and 8 Hz , allenyl CH) (the allenyl ${ }^{1} \mathrm{H}$ NMR pattern is similar to that of 3); molecular ion (1) $\mathrm{m} / \mathrm{e} 108.0331$ (calcd for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}$, 108.0324)..13 The product (1) could be kept for a few days at $-30^{\circ} \mathrm{C}$. Allenyl diazomethyl ketone ($1,0.025 \mathrm{~g}$) could be chromatographed on activity III alumina (2.0 g) with rapid elution by 20% benzene in pentane (75% recovery). Alumina of greater activity entirely decomposed 1.

1-Diazo-3-buten-2-one (2). Reaction of $7 \mathrm{a}(1.33 \mathrm{~g}, 0.0075 \mathrm{~mol})$ and DBN $(0.930 \mathrm{~g}, 0.0075 \mathrm{~mol})$ by the method used to prepare 1 gave, upon removal of solvent, a yellow liquid. This liquid was immediately transferred to a $5-\mathrm{ml}$ pear-shaped flask fitted with a N_{2} capillary ebullator and connected through a cold trap to a vacuum pump. The system was protected from light. The trap was cooled to $-7^{\circ} \mathrm{C}$, the system evacuated to 0.1 mm , and the flask warmed over 10 min to 35 ${ }^{\circ} \mathrm{C}$. The product $(2,0.23 \mathrm{~g}, 32 \%)$ was collected as a yellow liquid: ir $\left(\mathrm{CHCl}_{3}\right) 2100\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}_{2}\right), 1645(\mathrm{~s}, \mathrm{C}=\mathrm{C}), 1610(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1348 \mathrm{~cm}^{-1}$ (s); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.34\left(\mathrm{~s}, 1, \mathrm{CHN}_{2}\right), 5.56(\mathrm{~d}$ of d, $1 \mathrm{H}, J=5$ and 7 Hz , vinyl CH) $, 6.22,6.19$, and $6.11\left(\mathrm{~m}, 2 \mathrm{H}\right.$, vinyl CH_{2}) (the vinyl CH_{2} pattern is interpretable as two doublets, with their upfield peaks superimposed; the olefin ${ }^{1} \mathrm{H}$ NMR pattern is similar to that of 3 -buten-2-one); molecular ion (2) m/e 96.0326 (calcd for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}$, 96.0324). ${ }^{13}$ The product (2) decomposed significantly in 2 days when stored at $-30^{\circ} \mathrm{C}$.

1-Diazo-4-phenyl-3-butene-2-one (8). Reaction of 7b (1.52 g, $0.006, \mathrm{~mol})$ and DBN $(0.758 \mathrm{~g}, 0.0061 \mathrm{~mol})$ using the procedure for the preparation of 2 gave, on removal of solvent, a yellow solid, which when recrystallized from hexane gave $8(0.79 \mathrm{~g}, 77 \%)$ as yellow needles: $\operatorname{mp} 66.5-68.5^{\circ} \mathrm{C}$ (lit. ${ }^{9} \mathrm{mp} \mathrm{68-69}{ }^{\circ} \mathrm{C}$); ir $\left(\mathrm{CHCl}_{3}\right) 2102\left(\mathrm{C}=\mathrm{N}_{2}\right), 1642$ ($\mathrm{C}=\mathrm{C}$), $1592 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Acknowledgment. This research was supported by Grant HD09279 from the National Institute for Child Health and Human Development.

Registry No.-1, 59813-08-0; 2, 59813-09-1; 3, 5732-10-5; 4, 21031-45-8; 5, 59813-10-4; 6a, 590-92-1; 6b, 15463-91-9; 7a, 59813-11-5; 7b, 59813-12-6; 8, 24265-71-2; oxalyl chloride, 79-37-8; diazomethane, 334-88-3; DBN, 3001-72-7.

References and Notes

(1) Contribution No. 3624 from the Department of Chemistry, University of California, Los Angeles.
(2) M. Regitz, F. Menz, and A. Liedhegener, Justus Liebigs Ann. Chem., 739. 174 (1970).
(3) M. Regitz, Synthesis, 351 (1972).
(4) A. Roedig and R. Maier, Chem. Ber., 86, 1467 (1953).
(5) J. A. Moore, J. Org. Chem., 20, 1607 (1955).
(6) A. Nabeya, F. B. Cuip, and J. A. Moore, J. Org. Chem., 35, 2015 (1970)
(7) R. E. Harmon, V. K. Sood, and S. K. Gupta, Synthesis, 5 : 7 (1974).
(8) E. H. Condon, M. S. Thesis, Iowa State University. Ames, Iowa, 1960. The authors are indebted to Professor C. H. De Puy, University of Colorado, for details of this work; D. C. Roberts, unpublished work
(9) W. Kirmse, unpublished work. Referenced by B. Eistert, M. Regitz, G. Heck, and H. Schwall in Houben-Weyl, "Methoden der Organischen Chemie"', Vol. X/4. 4th ed, E. Müller, Ed., Georg Thieme Verlag, Stuttgart, 1968, p 584.
(10) G. Eglinton, E. R. H. Jones, G. H. Mansfield, and M. C. Whiting. J. Chem. Soc., 3197 (1354).
(11) E. Truscheit and K. Eiter, Justus Liebigs Ann. Chem., 658, 65 (1962); E. Vogel, R. Schubart. and W. A. Böll, Angew. Chem. Int. Ed. Engl., 3, 510 (1964).
(12) R. Vessière and F. Théron, C. R. Acad. Sci., 253, 676 (1961).
(13) Elemental analysis was not possible because the product was not sufficiently stable at room temperature.

Selective Reduction of α, β-Unsaturated Esters, Nitriles, and Nitro Compounds with Sodium Cyanoborohydride

Robert O. Hutchins,* David Rotstein, Nicholas Natale, and Joseph Fanelli
Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104
Donald Dimmel
Hercules Research Center, Wilmington, Delaware 19899
Received March 22, 1976

Our interest in the selective reducing properties of cyanoborohydride coupled with the recent attention accorded the reduction of α, β-unsaturated systems ${ }^{1}$ prompts this report of the capability of cyanoborohydride for the facile and selective reduction of certain conjugated double bonds to the corresponding saturated derivatives.

The reduction of alkenes conjugated with strong electronwithdrawing groups such as esters, ${ }^{5}$ nitriles, ${ }^{5}$ sulfonate esters, ${ }^{6}$ or nitro groups ${ }^{7}$ has been observed with borohydrides or lithium aluminum hydride. ${ }^{8}$ Thus, α, β-unsaturated esters are reduced by borohydride to the saturated derivatives if an additional cyano or ester is located at the α position. ${ }^{5}$ Furthermore, conjugated cyano esters are often reduced to the saturated cyano alcohols. ${ }^{\text {5d,e }}$ The highly electronegative cyano
group evidently renders the normally resistant carbethoxy substituent electrophilic enough to suffer attack by borohydride. Recently, lithium tri-sec-butylborohydride (L-Selectride) at low temperatures has been found to effectively reduce conjugated carbonyl compounds, including esters, to the saturated derivatives, ${ }^{9}$ Finally, Dittmer ${ }^{6 a}$ has reported reduction of the double bond in the strained ring thiete 1,1dioxide with borohydride; acetylenic sulfones, however, apparently are reduced clearly to trans α, β-unsaturated sulfones. ${ }^{6 \mathrm{~b}}$

Sodium cyanoborohydride is such an extremely nonaggressive reducing agent that even normally sensitive groups such as aldehydes and ketones are effectively reduced only when the electrophilicity of the carbonyl is increased by protonation. ${ }^{4,10}$ Even under acidic conditions, however, other carbonyl derivatives, including esters, acids, and amides, remain unmolested. We envisioned that the reactivity of car-bon-carbon double bonds of α, β-unsaturated carbonyl systems might be susceptible to activation by protonation and consequently enable the selective conversion of such systems to the saturated derivatives without affecting other functional groups. This note describes the successful realization of this conception using $\mathrm{NaBH}_{3} \mathrm{CN}$ in acidic ethanol at ambient temperature. The general procedure utilized was mild and convenient. The substrate, a 10% mole excess of $\mathrm{NaBH}_{3} \mathrm{CN}$, and a small quantity of bromocresol green were stirred in ethanol and concentrated HCl added dropwise until the solution was acidic as indicated by a color change to yellow.

Table I. Selective Reduction of Conjugated Alkenes with Sodium Cyanoborohydride ${ }^{a}$

Registry no. (alkene)	Entry	R	R^{\prime}	$\mathrm{R}^{\prime \prime}$	$\mathrm{R}^{\prime \prime}$	'Time, h	$\%$ yield b (GLC)	$\begin{aligned} & \text { Registry } \\ & \text { no. } \\ & \text { (product) } \\ & \hline \end{aligned}$
5292-53-5	1	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	1.0	(90)	607-81-8
	2	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	4.0	85	
	3	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	$2.0{ }^{\text {c }}$	(69)	
17422-56-9	4	o- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	1.0	78	59803-35-9
22399-00-4	5	$p \cdot \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	0.75	98	7598-70-1
6331-45-9	6	$m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	1.0	84	59803-36-0
22511-22-4	7	$p-\mathrm{CH}_{3} \mathrm{CONHC} 6 \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	2.5	80	59803-37-1
59803-31-5	8	$m-\mathrm{CNC}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{3}$	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	1.0	84	59803-38-2
2025-40-3		$\mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	CN	1.0	67	6731-58-4
18925-00-3	9	$m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	CN	1.0	82	59803-39-3
6629-53-4	10	$p-\mathrm{CH}_{3} \mathrm{CONHC}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	CN	1.0	80	59803-40-6
59803-32-6	11	o- $\mathrm{BrC}_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	CN	1.0	88	59803-41-7
7324-89-2	12	2,4-di-ClC ${ }_{6} \mathrm{H}_{5}$	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	CN	1.0	$99^{\text {d }}$	59803-4 2-8
709-79-5	13	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	CONH_{2}	CN	1.5	72	7216-46-8
705-60-2	14	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	NO_{2}	CH_{3}	1.0	67	17322-34-8
$6802-75-1$	15	CH_{3}	CH_{3}	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	5.0	$31{ }^{e}$	759-36-4
103-36-6	16	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	H	$\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	1.0	$0 f$	2021-28-5
59803-33-7	17					1.5	86	59803-4 3-9
59803-34-8	18					1.5	81	59803-44-0
1846-74-8	19					4.0	57	7216-47-9

[^5]Additional HCl was added as required to maintain the solution acidity. After an appropriate time period, usually 1 h , the products were isolated by dilution with water followed by filtration or extraction with ether. Table I presents results for a variety of structural types. As evident, the method appears suitable for conjugated derivatives which are activated by a nitro group (entry 14) or by two α-positioned electron-withdrawing substituents including ester, cyano, lactone, ketone, or amide in varying combinations. Singly substituted double bonds as in ethyl cinnamate (entry 16) are resistant and aryl substitution enhances the reduction rate (entry 15). The method is quite selective in that other functional groups are unaffected including amido (entries 7, 10, 13), aromatic and aliphatic nitro (entries $4-6,9,14,17$) or cyano (entries 8-13) moieties, esters (entries 1-12, 15, 16), lactones (entries 17-19), or aryl ketones (entries 17-19). Furthermore, in contrast to analogous reductions with $\mathrm{NaBH}_{4},{ }^{5 d, e}$ cyano esters are not further reduced to the corresponding cyano alcohols. The use of acid, although not essential, results in higher yields (compare entries 1 and 3), ostensibly by rapid protonation of initially produced stable α carbanions before side reactions can intervene. This is evidenced by the relatively high yield of 1-methyl-2-phenylnitroethane obtained (entry 14) compared to previous investigations ${ }^{7 \mathrm{a}, \mathrm{b}}$ coupled with the absence of dimeric Michael products which are concomitantly produced with other hydride reagents. ${ }^{7 a, 11}$

Experimental Section

Materials. $\mathrm{NaBH}_{3} \mathrm{CN}$ was obtained from Aldrich Chemical Co. and used without purification. Starting materials were either obtained commercially or prepared by standard procedures. ${ }^{12}$ All new compounds gave satisfactory elemental analysis and showed spectral (ir and NMR) data consistant with the structures. Elemental analyses were provided by Chemalytics, Inc., Tempe, Ariz., copies of which have been provided the Editor.
General Reduction Procedure. The general procedure utilized is presented in the text and is described below for the reduction of 6 -nitro-3-benzoylcoumarin.
6-Nitro-3-benzoyl-3,4-dihydrocoumarin. A slurry of 6 -nitro3 -benzoylcoumarin ($2.95 \mathrm{~g}, 10 \mathrm{mmol}$), $\mathrm{NaBH}_{3} \mathrm{CN}(0.69 \mathrm{~g}, 11 \mathrm{mmol})$, and a small amount of bromocresol green indicator in 25 ml of ethanol was magnetically stirred while concentrated HCl was added dropwise until the color changed to yellow. Periodically, additional HCl was added in order to maintain the yellow color. After 1.5 h the reaction mixture was diluted with ca. 150 ml of water and cooled and the resulting while needles were filtered and dried under vacuum (2.54 g , 86%). The ir and NMR indicated complete reduction of the double bond.
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{5}$: C, 64.65; H, 3.73. Found: C, $64.70 ; \mathrm{H}$, 3.55 .

Acknowledgment. The authors thank the donors of the Petroleum Research Fund, administrated by the American Chemical Society, for partial support of this work.

Registry No. $-\mathrm{NaBH}_{3} \mathrm{CN}, 25895-60-7$.

References and Notes

(1) Recent studies include the successful reduction of conjugated ketones to the corresponding saturated derivatives with potassium tri-sec-butylborohydride, ${ }^{\text {2a }}$ various $\mathrm{Cu}(\mathrm{I}) \mathrm{H}$ complexes, ${ }^{26-\theta}$ hydrosilanerhodium(l) complexes, ${ }^{2{ }^{2}}$ and ferrocene-HCI. ${ }^{29}$ Tetrahydroaluminate ${ }^{2 h}$ borohydride, ${ }^{3}$ and cyanoborohydride ${ }^{4}$ are less discriminate and carbonyl reduction competes favorably in most cases.
(2) (a) B. Ganem, J. Org, Chem., 40, 146 (1975); (b) S. Masamune, G. S. Bates, and P. E. Georghian, J. Am. Chem. Soc., 96, 3686 (1974); (c) R. K. Boeckman, Jr., and R. Michalak, ibid., 96, 1623 (1974); (d) M. F. Semmelhack and R. D. Stauffer, J. Org. Chem., 40, 3619 (1975); (e) E. C. Ashby and J. J. Lim, Tetrahedron Lett., 4453 (1975); (f) I. Ojima and T. Kogure, ibid., 5035 (1972); (g) K. Yamakawa and M. Moroe, J. Organomet. Chem., 50, C43 (1973); (h) R. F. Nystrom and W. G. Brown, J. Am. Chem. Soc., 70, 3738 (1948).
(3) (a) W. R. Jackson and A. Zurqiyah, J. Chem. Soc., 5280 (1965); (b) K. Iqbal and W. R. Jackson, J. Chem. Soc. C. 616 (1968).
(4) Cyanoborohydride apparently affords reduction of conjugated alkenes only when the system is cyclic; cf (a) R. F. Borch, M. D. Bernstein, and H. D. Durst, J. Am. Chem. Soc., 93, 2897 (1971); (b) R. O. Hutchins and D. Kandasamy, J. Org. Chem., 40, 2530 (1975); (c) M.-H. Boutique, R. Jac-
quesy, and Y. Petit, Bull. Soc. Chim. Fr., 11, 3062 (1973); (d) C. V. Grudzinskas and M. J. Weiss, Tetrahedron Lett., 141 (1973).
(5) (a) J. H. Schauble, G. J. Walter, and J. G. Moxin, J. Org. Chem., 39, 755 (1974); (b) S. B. Kadin, ibid., 31, 620 (1966); (c) H. Le Moal. R. Carrie, and M. Bargain, C. R. Acad. Sci., 251, 2541 (1960); (d) J. A. Meschino and C. H. Bond, J. Org. Chem., 28, 3129 (1963); (e) J. A. Marshall and R. D. Carroll, ibid., 30, 2748 (1965); (f) L. Berlinguet, Can. J. Chem., 33, 1119 (1955); G. W. K. Cavil and F. B. Whitfield, Proc. Chem. Soc. London, 380 (1962).
(6) (a) D. C. Dittme- and M. E. Christy, J. Am. Chem. Soc., 84, 399 (1962); (b) W. E. Truce, H. G. Klein, and R. B. Kruse, ibid., 83, 4636 (1961).
(7) (a) H. Schechter, D. E. Ley, and E. B. Roberson, Jr., J. Amf. Chem. Soc., 78, 4984 (1956); (b) A. I. Meyers and J. S. Sircar, J. Org. Chem., 32, 4134 (1967); (c) A. Hassner and C. Heathcock, ibid., 29, 1350 (1964).
(8) W. J. Bailey and M. E. Hermes, J. Org. Chem., 29, 1254 (1964).
(9) B. Ganem and J. M. Fortunato, J. Org. Chem., 40, 2846 (1975); ibid., 41, 2194 (1976).
(10) C. F. Lane, Synthesis, 135 (1975).
(11) The results further suggest the intriguing possibility of generating enolate ions in aprotic solvents with cyanoborohydrides which can subsequently be exploited for condensation or alkylation reactions. ${ }^{9}$ This tactic is being actively pursued.
(12) (a) α, β-Unsaturated cyanoacetates: F. D. Popp, J. Org. Chem., 25, 646 (1960). (b) α, β-Unsaturated malonates: C. F. H. Allen and F. W. Spangler, "Organic Syntheses", Collect. Vol. III, Wiley, New York. N.Y., 1955, p 377; Org. Synth., 25, 42 (1945). Benzoylcoumarins: ref 5b. α-Cyanocinnamamide: ref 5 b .

Oxidation of Sterically Hindered Alcohols to Carbonyls with Dimethyl Sulfoxide-Trifluoroacetic Anhydride

S. L. Huang, K. Omura, and D. Swern*

Fels Research Institute and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122

Received March 12, 1976
As an outgrowth of our earlier study of a new synthesis of iminosulfuranes, ${ }^{1}$ we have investigated a new reagent for the oxidation of alcohols to aldehydes or ketones which appears to be generally useful, operationally simple, highly selective, and efficient. ${ }^{2}$ This new reagent, dimethyl sulfoxide-trifluoroacetic anhyciride ($\mathrm{Me}_{2} \mathrm{SO}$-TFAA), complements previous reagents ${ }^{3-13}$ for the conversion of alcohols to dimethylalkoxysulfonium salt intermediates (I) which, on treatment with base under mild conditions, are rapidly converted to carbonyls in high yields eq 1):

$$
\begin{equation*}
R^{2}, R^{2}=\text { alkyl, aryl, aralkyl, } \mathrm{H}, \text { alicyclic, etc. } \tag{1}
\end{equation*}
$$

None of the previous methods gives satisfactory results with all classes of primary and secondary alcohols. The new reagent, dimethyl sulfoxide-trifluoroacetic anhydride, now appears to be a most generally useful reagent for the facile conversion of primary and secondary alcohols to carbonyls in high to quantitative yields. In assessing the scope and limitations of this new reagent, the oxidation of some model sterically hindered alcohols was studied. In this note we are reporting the results obtained thus far.

Yields of carbonyls from hindered alcohols ($>80-100 \%$) are higher than those from previously studied unhindered alcohols and by-product formation is reduced (usually to $<5 \%$) (Table I). We find that (a) the more hindered the alcohol, the higher the yield and alcohols (5,6) with bulky groups on both sides of the carbinol carbon give quantitative yields; (b) no difficulty is experienced in oxidizing primary and secondary

Table I

Alcohol	Carbonyl product	Procedure	Yield, \%		
			GLC	DNPa	Isolation
4-tert-Butylcyclohexanol (1) (mixture of cis and trans)		C	88	88	
2,2-Dimethyl-1-phenylpropanyl (2)	$\mathrm{Ph}^{\searrow}=0$	A	97	95	
3,3-Dimethyl-2-butanol (3)	$x=0$	C		84	
2,2-Dimethyl-1-propanol (4)	$X_{H}=0$	C		81	
2,4-Dimethyl-3-pentanol (5)	$=0$	C	100	42	86
2,6-Dimethylcyclohexanol (6) (mixture of isomers)	0	C	100	76	89
1-Borneol (7)		C	98	81	93
dl-Isoborneol (8)		A	93	85	88
8		C	88		
exo-Norborneol (9)		C	95	83	
Norborneol (10) (mixture of exo and endo)		C	96	85	
2-Adamantanol (11) ${ }^{\text {b }}$		C	96	95	
1-Adamantanemethanol (12) ${ }^{\text {c }}$		C		86	
2-Methylcyclohexanol (13) (mixture of cis and trans)	CH_{2}	C	84	80	
trans-2-Methylcyclohexanol (14)		C	80	71	

${ }^{a}$ By isolation of the 2,4-dinitrophenylhydrazone. ${ }^{b}$ Added as a solution in $\mathrm{Me}_{2} \mathrm{SO}(10 \mathrm{ml})-\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. c Additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was used in the reaction system to effect solution.
neopentyl-type alcohols (2, 3, 4, 12); (c) no substantial difference is noted in oxidizing both exo and endo hydroxyl groups ($7,8,9,10,13$); and (d) seemingly equally good results are obtained in the oxidation of both equatorial and axial hydroxyl groups ($1,6,13$). ${ }^{1}$

The literature is sparse on the oxidation of sterically hindered alcohols with the previously reported oxidizing reagents. $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{DCC}$ and $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{SO}_{3}$ are reported to oxidize highly hindered hydroxyl groups reluctantly owing to the bulk of the initial adducts and hence are inert, for example, to axial 11β-hydroxyprogestrone. ${ }^{4} \mathrm{Me}_{2} \mathrm{SO}-\mathrm{Ac}_{2} \mathrm{O}$ is often well suited for the oxidation of rather hindered alcohols; however, poor
results were obtained in the oxidation of two hindered alcohols, 3,3-dimethyl-2-butanol (3) ${ }^{14}$ and 2,2,3-trimethyl-2butanol. ${ }^{15}$
In view of the excellent yields of carbonyls from the hindered alcohols studied thus far, $\mathrm{Me}_{2} \mathrm{SO}$-TFAA is clearly superior to the other reagents and is the reagent of choice for the oxidation of highly hindered alcohols. We believe that this is a consequence both of the smaller size of the $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{TFAA}$ adduct and the outstanding leaving group property of trifluoroacetate ion.
In addition, the $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{TFAA}$ reaction occurs instantaneously at very low temperature ($<-50^{\circ} \mathrm{C}$) thus making it
possible to oxidize alcohols which form stable sulfonium salts only at low temperatures. The oxidation of $d l$-isoborneol is a good illustration of this point. The sulfonium salt (II) is solvolyzed at room temperature (or above) and camphene, the rearrangement-elimination product, is obtained when procedure C (room temperature addition of TEA) is employed. But $d l$-camphor, the anticipated oxidation product, can still be obtained in high yield by addition of TEA at low temperature ($<-65^{\circ} \mathrm{C}$). The reaction course is depicted as follows (eq 2):

Experimental Section

Procedures for Oxidation of Alcohols. Procedure A. To a solution of dry $\mathrm{Me}_{2} \mathrm{SO}(20 \mathrm{mmol})$ in distilled dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ cooled below $-65{ }^{\circ} \mathrm{C}$ with a dry ice-acetone bath, TFAA (15 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added with efficient mechanical stirring in ca. 10 min . After 10 min below $-65^{\circ} \mathrm{C}$, a solution of an alcohol (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5-10 \mathrm{ml})$ was added to the mixture in ca. 10 min . The rate of addition of TFAA or alcohol was controlled to keep the temperature below $-65^{\circ} \mathrm{C}$. The mixture was stirred below $-65{ }^{\circ} \mathrm{C}$ for 30 min , followed by addition of TEA (4 ml) dropwise in ca. 10 min . The temperature was maintained below $-65^{\circ} \mathrm{C}$ until addition of TEA was complete. The cooling bath was then removed and the reaction mixture was allowed to warm up to room temperature (ca. 40 min), then washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and the aqueous layer was backwashed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml). The combined organic solutions were subjected to GLC analysis as previously reported. ${ }^{2}$
Procedure C. This procedure was identical with procedure A through the addition of alcohol. Stirring was continued for an additional 5 min below $-65^{\circ} \mathrm{C}$; the dry ice bath was removed and the stirred mixture was allowed to warm up to room temperature (ca. 40 min). After another 30 min of stirring, at room temperature, TEA (4 ml) was added dropwise (ca. 10 min) at room temperature. The remainder of the workup was the same as in procedure A.
2,4-Dinitrophenylhydrazones. ${ }^{2}$ The precipitate was filtered, washed, and dried. Ir and melting point were compared with those of authentic samples.
Isolation of Carbonyls. Ether was added to the reaction mixture which was then washed with dilute $\mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$ in succession. The organic layer was dried over magnesium sulfate and, after evaporation of solvent, a crude product was obtained as a residue. The pure product was isolated either by distillation or short-column chromatography on silical gel with petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. Physical characteristics (ir, NMR, melting point) were compared with those of authentic samples of carbonyls.

Acknowledgment. This investigation was supported by Grant No. CA-07803 and 12227, awarded by the National Cancer Institute, DHEW, and the Samuel S. Fels Fund.

Registry No.-cis-1, 937-05-3; trans-1, 21862-63-5; 2, 3835-64-1; 3, 464-07-3; 4, 75-84-3; 5, 600-36-2; 6, 5337-72-4; 7, 507-70-0; 8, 24393-70-2; 9, 497-37-0; endo-10, 497-36-9; 11, 700-57-2; 12, 770-71-8; cis-13, 7443-70-1; 14, 7443-52-9; 4-tert-butylcyclohexanone DNP, 54532-12-6; 2,2-dimethyl-1-phenyl-1-propanone DNP, 59830-27-2; 3,3-dimethyl-2-butanone DNP, 964-53-4; 2,2-dimethylpropanol DNP, 13608-36-1; 2,4-dimethyl-3-pentanone DNP, 7153-35-7; 2,6-dimethylcyclohexanone DNP, 5074-27-1; 2-bornanone DNP, 2628-66-2; dl-2-bornanone DNP, 53567-66-1; camphene, 79-92-5; 2-norbornanone DNP, 3281-03-6; 2-adamantanone DNP, 10535-35-0; 1-adamantanecarboxaldehyde DNP, 18220-81-0; 2-methylcyclohexanone DNP, 5138-30-7.

References and Notes

(1) A. K. Sharma and D. Swern, Tetrahedron Lett., 1503 (1974); A. K. Sharma, T. Ku, A. D. Dawson, and D. Swern, J. Org. Chem., 40, 2758 (1975).
(2) K. Omura, A. K. Sharma, and D. Swern, J. Org. Chem., 41, 957 (1976).
(3) W. W. Epstein and F. W. Sweat, Chem. Rev., 67, 247 (1967).
(4) J. G. Moffatt in ' Oxidation'', Vol. 2. R. L. Augustine and D. J. Trecker, Ed., Marcel Dekker, New York, N.Y., 1971, pp 1-64
(5) E. J. Corey and C. U. Kim, J. Am. Chem. Soc., 94, 7568 (1972).
(6) E. J. Corey and C. U. Kim, Tetrahedron Lett., 919 (1973).
(7) J. D. Albright and L. Goldman, J. Am. Chem. Soc., 89, 2416 (1967).
(8) D. H. R. Barton, B. J. Garner, and R. H. Wightman, J. Chem. Soc., 1855 (1964).
(9) J. R. Parikh and W. von E. Doering, J. Am. Chem. Soc., 89, 5505 (1967).
(10) K. Onodera, S. Hirano, and N. Kashimura, J. Am. Chem. Soc., 87, 4651 (1965).
(11) U. Lerch and J. G. Moffatt, J. Org. Chem., 36, 3681 (1971); J. G. Moffatt and K. E. Pfitzner, J. Am. Chem. Soc., 87, 5661 (1965).
(12) J. D. Albright, J. Org. Chem., 39, 1977 (1974).
(13) J. B. Hendrickson and S. M. Schwartzman, Tetrahedron Lett., 273 (1975).
(14) W. H. Clement. T. J. Dangieri, and R. W. Tuman, Chem. Ind. (London), 23, 755 (1969).
(15) R. A. Schneider and J. Meinwald, J. Am. Chem. Soc., 89, 2023 (1967).

Ferrocenecarboxylic Acids from Substituted Ferrocenes. A Convenient and Versatile Oxidation Method ${ }^{1}$

Gunter Schmitt* and Sinan Özman
Institute of Technical Chemistry and Petrolchemistry, Aachen, University of Technology, Germany

Received May 7, 1976

There are only very few examples known in which ferrocenecarboxylic acids can be prepared via side chain oxidation of ferrocenes. The oxidation is limited to ferrocenecarboxaldehydes ${ }^{2}$ and acetylferrocenes ${ }^{3,4}$ giving only low yields of carboxylic acids.

We now wish to report a convenient and versatile method for the oxidation of hydroxymethyl, formyl, acetyl, and N, N-dimethylaminomethyl substituted ferrocenes to ferrocenecarboxylic acids. The oxidation is performed with molecular oxygen at $80^{\circ} \mathrm{C}$ in hexamethylphosphoric triamide (HMPT) as a solvent and in the presence of potassium tert -

la, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H}$
b, $\mathrm{R}_{1}=\mathrm{CHO} ; \mathrm{R}_{2}=\mathrm{H}$
c, $\mathrm{R}_{\mathrm{I}}=\mathrm{COCH}_{3} ; \mathrm{R}_{2}=\mathrm{H}$
d, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{2}=\mathrm{H}$
e, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OH}$
f, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CHO}$
g, $\mathrm{K}_{1}=\mathrm{R}_{2}=\mathrm{COCH}_{3}$
butoxide. The results which are summarized in Table I were obtained after a reaction time of 24 h by using 10 equiv of potassium tert-butoxide per equivalent of substituent to be oxidized. Lowering the amounts of base gave inferior yields and required longer reaction times.

The oxidation reaction with hydroxymethyl, formyl, and acetyl substituted ferrocenes proceeded with almost quantitative conversions. The lower yields of ferrocenecarboxylic acids (2a,b) (see Table I) obtained from the oxidation of ac-

Table I. Ferrocenecarboxylic Acids via Oxygenation

Reaction	Yield, a $\%$	Reaction	Yield, a $\%$
$\mathbf{l a} \rightarrow \mathbf{2 a}$	80	$\mathbf{l e} \rightarrow \mathbf{2 b}$	83
$\mathbf{1 b} \rightarrow \mathbf{2 a}$	86	$\mathbf{1 f} \rightarrow \mathbf{2 b}$	86
$\mathbf{l \mathbf { c }} \rightarrow \mathbf{2 a}$	51	$\mathbf{1 g} \rightarrow \mathbf{2 a}$	34
$\mathbf{1 d} \rightarrow \mathbf{2 a}$	25	$\mathbf{2 b}$	17

${ }^{a}$ Satisfactory analytical and ir data were obtained.
etylferrocenes are due to a keto cleavage which acetylferrocenes partially can undergo in the presence of strong base. ${ }^{5}$

Thus, oxidation of 1c gave 40% ferrocene and only $51 \% \mathbf{2 a}$. The oxidation of 1 g yielded 26% ferrocene, $34 \% 2 \mathrm{a}$, and only 17\% 2b.

The high conversions of $\mathbf{1 a - c}$ and $\mathbf{l e}, \mathbf{f}$ are very surprising because the corresponding oxidation of mono- and dimethylferrocenes to ferrocenecarboxylic acids never yielded more than 25%. ${ }^{6}$ As we could show the lower yields are due to an inhibiting effect caused by oxidation products of HMPT. ${ }^{7}$

Obviously this inhibiting effect does not exist during oxidation of hydroxymethyl, formyl, and acetyl substituted ferrocenes but seems to exist during oxidation of N, N-dimethylaminomethylferrocene (1d) which yielded only 25% of $\mathbf{2 a}$. This result leads to the assumption that oxidation products of N, N-dimethylamino groups, which are present in HMPT and in 1d, may inhibit the base-catalyzed oxidation. The inhibiting effect is under further investigation.

Experimental Section

General Procedure. To a solution of freshly sublimed potassium tert-butoxide (150 mmol , for one substituent to be oxidized) in 110 ml of freshly distilled HMPT was added under inert atmosphere a solution of $\mathbf{1 a - g}(15 \mathrm{mmol})$ in 20 ml of HMPT. After stirring for 30 min at room temperature dry oxygen was bubbled through the mixture which then was heated to $80^{\circ} \mathrm{C}$ for 24 h . The reaction products were poured on ice, and the resulting alkaline solution was extracted with ether. The aqueous phase was acidified with dilute hydrochloric acid. Ferrocenecarboxylic acids 2a,b precipitating upon acidification were filtered off and dried over phosphorus pentoxide. The acid solution was extracted with ether, and the compounds 2 were obtained after evaporation of the ether extracts. Recrystallization from ethanole was not necessary ($\mathbf{2 a}, \mathrm{mp} 202-204^{\circ} \mathrm{C}$, lit. ${ }^{2} \mathrm{mp} 205-210^{\circ} \mathrm{C}$; 2b, $\mathrm{mp} 250^{\circ} \mathrm{C}$ dec, lit. ${ }^{3 \mathrm{~b}} \mathrm{mp} 250^{\circ} \mathrm{C}$ dec). Mixtures from 2 a and 2 b , obtained from the oxidation of $1,1^{\prime}$-diacetylferrocene, can be separated by extraction with hot benzene, in which the monocarboxylic acid is soluble.

Registry No.-1a, 1273-86-5; 1b, 12093-10-6; 1c, 1271-55-2; 1d, 1271-86-9; le, 1291-48-1; 1f, 1271-48-3; lg, 1273-94-5; 2a, 1271-42-7; 2b, 1293-87-4.

References and Notes

(1) (a) Oxidation of Metallorganic Compounds. 5. (b) Part 4: G. Schmitt, S Ozman. B. Hoffmann, and J. Fleischhauer, J. Organomet. Chem., 114, 179 (1976).
(2) K. Schlogl and M. Walser, Monatsh. Chem., 100, 840 (1969).
(3) (a) R. B. Woodward, M. Rosenblum, and M. C. Whiting, J. Am. Chem. Soc., 74, 345 (1952); (b) A. Sonoda and J. Moritani, J. Organomet. Chem., 26, 133 (1971).
(4) V. Weinmayr, J. Am. Chem. Soc., 77, 3009 (1955).
(5) L. F. Fieser and M. Fieser, '"Organische Chemie'", 2d ed, Verlag Chemie, Weinheim/Bergstr., Germany, 1968, p 958
(6) G. Schmitt and S. Ozman, Tetrahedron Lett., 3689 (1975).
(7) The main oxidation product of HMPT was isolated and identified as N -bis(dimethylamino) phosphinyl- N-methylformamide; cf. P. H. Terry and A. B. Borkovec, J. Med. Chem., 11, 985 (1968).

Hydrogenation of Cyclohexene Catalyzed by First Row Transition Metal Stearates

John W. Larsen* and Laurence W. Chang
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916

Received April 9, 1976
Among the most unusual and promising catalysts for homogeneous hydrogenation of olefins and aromatics are the transition metal stearates reported by Tulupov. ${ }^{1-4}$ A good brief summary can be found in James' book ${ }^{5}$ and Tulupov has published on the kinetics and mechanism of the reaction ${ }^{6}$ and on the interaction of the metals with cyclohexene ${ }^{7}$ in addition to two reviews. ${ }^{8}$ We have attempted to repeat some of Tulupov's work and failed.

Briefly, Tulupov reported the reduction of cyclohexene in ethanol by hydrogen at ca. 1 atm at room temperature in the presence of stearate salts of $\mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Cr}(\mathrm{III})$, $\mathrm{Fe}(\mathrm{III}), \mathrm{Sc}(\mathrm{III}), \mathrm{Ti}(\mathrm{IV})$, and Zn (II). He also reports the hydrogenation of benzene catalyzed by stearate salts of $\mathrm{Ni}($ II $)$, $\mathrm{Co}(\mathrm{II}), \mathrm{Fe}(\mathrm{III})$, and $\mathrm{Pb}(\mathrm{II})$. There is little precedent for these observations in the literature. It is well known that $\mathrm{Cu}(\mathrm{I})$ carboxylate salts catalyze the reduction of benzoquinone ${ }^{9}$ in quinoline and this reaction has been studied by two groups. ${ }^{10,11}$ Also $\mathrm{Rh}(\mathrm{II})$ acetate is known to catalyze the hydrogenation of olefins in a variety of solvents. ${ }^{12} \mathrm{~A}$ number of salts reported as active in ethanol by Tulupov have been reported to be inactive in aqueous systems, ${ }^{13}$ consistent with Tulupov's claim of inhibition by water. Neither the Rh(II) nor $\mathrm{Cu}(\mathrm{I})$ work serves as confirmation of Tulupov's reports since the $\mathrm{Cu}(\mathrm{I})$ system was run in a solvent very different from ethanol and Tupulov did not study any rhodium systems. A thorough literature search yielded no reports of attempts to repeat Tulupov's studies.

Results

A number of stearate salts were prepared using Koenig's procedure, ${ }^{14}$ the same one used by Tulupov. After a number of washings, pure salts having acceptable analyses were obtained. When we attempted to dissolve the $\mathrm{Ni}(\mathrm{II})$ stearate in anhydrous ethanol (Tulupov ${ }^{2}$ reports the solubility as $4.21 \times$ $10^{-3} \mathrm{M} / \mathrm{l}$.), the ethanol remained colorless and all the salt was recovered by filtration. Two very tiny crystals of $\mathrm{Ni}(\mathrm{II})$ stearate were placed in an Erlenmeyer flask with ca. 100 ml of ethanol and allowed to stand for 6 h with occasional shaking. They did not dissolve. Warming the flask until the Ni (II) stearate melted did not result in any room temperature solubility. Similar observations were made with $\mathrm{Cu}(\mathrm{II})$ stearate (reported ${ }^{3}$ solubility $4.02 \times 10^{-4} \mathrm{M} / \mathrm{l}$.) except that we did note some small solubility in hot ethanol. Koenig ${ }^{14}$ reports that these two salts are insoluble in methanol but soluble in amyl alcohol.

A number of attempts were made to hydrogenate cyclohexene and some of them are reported in Table I. All reactions were run in Parr hydrogenators in which other catalytic hydrogenations had successfully been carried out. In no case was any reaction observed. With reaction no. 7, assuming that Tulupov's ${ }^{3}$ reported reaction rate in ethanol would be unchanged in isobutyl alcohol, we can calculate a pressure drop of ca. 5.3 psi under our reaction conditions. We could detect a pressure drop of ca. 0.2 psi . The reactions were run with commercial anhydrous ethanol and with ethanol dried by refluxing over Mg and distillation under dry N_{2} onto molecular sieves (3A). Two different batches of sodium stearate were used. The cyclohexene gave only two peaks on gas chromatography; one, having a slightly larger retention time than

Table I. Attempted Catalytic Hydrogenation of Cyclohexene Using Tulupov's Catalysts

Rxn	"Catalyst"	Solvent	Temp, ${ }^{\circ} \mathrm{C}$	H_{2} pressure, psia	Rxn time, h	Pressure drop, psi
,	$\mathrm{Ni}(\mathrm{II})$ stearate	Hexanes	~ 23	37	48	0
2	$\mathrm{Ni}(\mathrm{II})$ stearate	Hexanes	60	38	60	0
3	NiCl_{2}	Ethanol	~ 23	45	37	0
4	$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	Ethanol	~ 23	47	43	0
5	$\mathrm{NiCl}_{2} /$ stearic acid ${ }^{2}$	Ethanol	~ 23	45	36	0
6	$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} /$ stearic acid	Ethanol	~ 23	35	24	0
7	$\mathrm{Cu}(\mathrm{II})$ stearate	Isobutyl alcohol	50	38	28	0
8	CoCl_{2}	Ethanol	~ 23	46	67	0
9	$\mathrm{CoCl}_{2} /$ stearic acid	Ethanol	~ 23	47	36	0
10	Ni (II) stearate ${ }^{\text {a }}$	Hexanes	~ 23	49	42	0

cyclohexene, had an area less than 0.1% of the cyclohexene peak area.

Discussion

We have been unable to reproduce Tulupov's reported reactions or catalyst solubilities. Since both NiCl_{2} and stearic acid are quite soluble in ethanol, the reported solubility may be due to impure $\mathrm{Ni}(\mathrm{II})$ stearate contaminated with the compounds from which it is made. It does take extensive washing to remove these.

It is more difficult to explain our failure to hydrogenate cyclohexene. Obviously, neither the salts nor their precursors showed any catalytic activity. Since Tulupov observed reactivity with a variety of salts, and we with none, the place to look for the explanation is in those compounds common to all systems: the sodium stearate and cyclohexene. The use of two different batches of sodium stearate from two different manufacturers greatly reduces the probability that there was an inhibitor present. Likewise, use of a second olefin (norbornene, rxn 10) with the same results reduces the possibility of an inhibitor being present in the reactant. It is possible that something is present in Tulupov's stearic acid which is causing the reaction. Having been unable to obtain samples of catalyst from Tulupov, we are not able to investigate this aspect of the problem further. In any event, it is quite clear that all is not well with the reported use of transition metal stearate salts as homogeneous catalysts for olefin hydrogenation.

Experimental Section

Melting points were taken on a Mel-Temp apparatus and were uncorrected. Analytical gas chromatography utilized a Varian Aerograph Model 1400 instrument equipped with a flame ionization detector and using a $0.125 \mathrm{in} . \times 7 \mathrm{ft} 5 \%$ SE- 30 on $60-80$ mesh Chromosorb W column. Microanalyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn. Ethanol was dried by refluxing over magnesium and distillation under dry nitrogen onto molecular sieves (3A). Hexanes and isobutyl alcohol were dried over molecular sieves (3A).

Metal Stearates. Sodium stearate (13.5 g , Fischer) was dissolved in 900 ml of water and the mixture was heated and stirred until the solution was clear. The hot soap solution then was poured with vigorous stirring onto a solution containing 6 g of $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ or 4 g of CuSO_{4} in 600 ml of warm water. The precipitates were washed by decantation with water and dried in the air at $115^{\circ} \mathrm{C}$ for 15 h . Nickel stearate was also made from the sodium stearate prepared from stearic acid (Emery) and sodium hydroxide.

Nickel(II) stearate: green solid; $\mathrm{mp} 100^{\circ} \mathrm{C}$; yield 84%. Anal. Calcd for $\mathrm{NiC}_{36} \mathrm{H}_{70} \mathrm{O}_{4}$: C, 69.09; H, 11.34. Found: C, $69.77 ; \mathrm{H}, 10.70$.

Copper(II) stearate: light blue solid; mp $106-108^{\circ} \mathrm{C}$; yield 80%. Anal. Calcd for $\mathrm{CuC}_{36} \mathrm{H}_{70} \mathrm{O}_{4}: \mathrm{C}, 68.56 ; \mathrm{H}, 11.21$. Found: $\mathrm{C}, 68.51 ; \mathrm{H}$, 11.66.

Attempted Catalytic Hydrogenation of Cyclohexene. To a stearate salt $(\sim 1 \mathrm{~g})$ in $\sim 110 \mathrm{ml}$ of warm solvent was added 12 g of cyclohexene (Eastman Kodak). The solution was poured into a $500-\mathrm{ml}$ hydrogenation bottle and the bottle was then mounted on a low-
pressure Parr hydrogenator. Air was removed from the system by alternatively filling the system with hydrogen to 35 psi and venting it at least three times. The solution was shaken at ca. 3 atm hydrogen pressure. Similar procedure was also carried out for the hydrogenațion of bicyclo[2.2.1]-2-heptene (Aldrich). The pressure of the system was monitored.
Acknowledgment. We are grateful to the Energy Research and Development Administration for support of this work.

Registry No.-Sodium stearate, 822-16-2; nickel(II) stearate, 2223-95-2; copper(II) stearate, 660-60-6; cyclohexene, 110-83-8; bi-cyclo[2.2.1]-2-heptene, 498-66-8.

References and Notes

(1) (a) V. A. Tulupov, Zh. Fiz. Khim., 31, 519 (1957); (b) ibid., 32, 727 (1958); (c) Russ. J. Phys. Chem. (Engl. Transl.), 36, 873 (1962); (d) A. I. Tulupov and V. A. Tulupov, ibid., 37, 1449 (1963); (e) V. A. Tulupov, ibid., 39, 397 (1965); (f) ibid., 41, 456 (1967).
(2) V. A. Tulupov, Russ. J. Phys. Chem. (Engl. Transl.), 37, 365 (1963)
(3) V. A. Tulupov and M. I. Gagarvina, Russ. J. Phys. Chem. (Engl. Transl.), 38, 926 (1964).
(4) V. A. Tulupov and T. I. Evlasheva, Russ. J. Phys. Chem. (Engl. Transl.), 39, 41 (1965).
(5) B. R. James, "Homogeneous Hydrogenation". Wiley, New York, N.Y., 1973, p 384 ff .
(6) V. A. Tulupov, Russ. J. Phys. Chem. (Engl. Transl.), 37, 394 (1963); 38, 1601 (1964); 40, 1574 (1966).
(7) (a) V. A. Tulupov, D. N. Shigorin, and N. V. Verein, Russ. J. Phys. Chem. (Engl. Transl.), 40, 549 (1966); (b) V. A. Tulupov, ibid., 38, 585 (1964).
(8) (a) V. A. Tulupov, Proc. Symp. Coord. Chem., 1964 (1965); (b) V. A. Tulupov, Russ. J Phys. Chem. (Engl. Transl.), 39, 1251 (1965).
(9) M. Calvin, Trans. Faraday Soc., 34, 1181 (1938).
(10) M. Calvin and W. K. Wilmarth, J. Am. Chem. Soc., 78, 1301 (1956), and references cited therein.
(11) (a) S. Weller and G. A. Mills, J. Am. Chem. Soc., 75, 769 (1953); (b) L. W. Wright and S. Weller, ibid., 76, 3345 (1954).
(12) B. C. Y. Hui, W. K. Teo, and G. L. Rempel, Inorg. Chem., 12, 757 (1973).
(13) Reference 5, pp 388-389.
(14) A. E. Koenig, J. Am. Chem. Soc., 36, 951 (1914).

An Aberrant Rearrangement in the Reaction of 1,2-Dibromo-3,3-difluorocyclopropene with Anthracene ${ }^{1}$

Merle A. Battiste* and Robert G. Posey

Department of Chemistry, University of Florida, Gainesville, Florida 32611

Received April 9, 1976
In an attempt to develop a rational synthesis of the as yet unknown, but potentially useful synthon 3,3-difluorocyclopropene (1a), we have examined the reaction of anthracene with 1,2-dibromo-3,3-difluorocyclopropene (1b). ${ }^{2}$ It was anticipated that the $[4+2]$ cycloadduct 2 would permit a classical approach to the elusive ${ }^{3}$ cyclopropene (1a) via reductive
debromination and subsequent thermal cycloreversion of the dibenzohomobarrelene derivative 3. We now report that contrary to expectations the reaction of anthracene with $\mathbf{1 b}$ affords a rearranged adduct of a type previously unobserved in cycloadditions with tetrahalocyclopropenes.

The reaction of anthracene with excess 1 b was carried out in carbon tetrachloride solution in a sealed tube at 120-130 ${ }^{\circ} \mathrm{C}$ until complete consumption (NMR) of anthracene (7 days). Chromatography and recrystallization of the reaction residue afforded a crystalline $1: 1$ adduct (40%) whose ${ }^{19} \mathrm{~F}$ NMR spectrum immediately suggested a rearranged structure. Cycloadducts of $\mathbf{1 b}$ typically show well-separated (15-40 $\mathrm{ppm}) \mathrm{AB}$ quartets in their ${ }^{19} \mathrm{~F}$ spectra centered at around $110-120 \mathrm{ppm}$ (upfield from external CFCl_{3}). ${ }^{4}$ By contrast the anthracence- $\mathbf{1 b}$ adduct showed only a fluorine singlet at δ 47.0! The proton spectrum of this adduct consisted of two one-proton singlets at $\delta 5.27$ and 5.11 for the bridgehead hydrogens, in addition to complex aromatic absorptions, suggesting an unsymmetrical structure for the adduct.

la, $Y=H ; X=F$ b, $\mathrm{Y}=\mathrm{Br} ; \mathrm{X}=\mathrm{F}$

4

2, $\mathrm{X}=\mathrm{Br}$
$3, X=H$

5

6

While the above spectral results clearly eliminate adduct 2 from further consideration, the ${ }^{19} \mathrm{~F}$ data are equally inconsistent with the most obvious rearranged structure 4 which would be derived by electrocyclic ring opening with 1,2 -fluorine migration. This mode of ring opening has been frequently observed for tetrahalocyclopropene adducts where at least one of the geminal halogens is chlorine ${ }^{4.5}$ or bromine. ${ }^{4 a}$ However, owing to the low ionization propensity of the C-F bond all of the previous cycloadducts of 3,3-difluoro-substituted cyclopropenes have been observed to be thermally stable to electrocyclic ring-opening reactions. ${ }^{4,6}$

An alternative mode of ring opening involving rupture of one of the peripheral cyclopropane bonds of 2 could presumably lead to the dibenzobarralene derivative 5 , a structure consistent with the observation of a singlet in the fluorine spectrum. That 5 is indeed the structure of this unusual adduct is supported by spectral data for the tri- n-butyltin hydride debrominated adduct 6 . The $100-\mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 6 revealed a triplet centered at $\delta 6.1$ with a coupling constant (J_{HF}) of 56 Hz while the fluorine spectrum showed a doublet of doublets at $\delta 117.1, J_{\mathrm{HF}}=56$ and 4 Hz . These
results are in complete keeping with the presence of a- $\mathrm{CF}_{2} \mathrm{H}$ grouping. The smaller doublet splitting ($J_{\mathrm{HF}}=4 \mathrm{~Hz}$) is assigned to allylic fluorine coupling to the vinyl proton $\left(\mathrm{H}_{\mathrm{v}}\right)$ which is unfortunately obscured in the aromatic region of the proton spectrum. The bridgehead protons H_{a} and H_{b} are observed as a pair of doublets, $J_{\mathrm{H}_{2} \mathrm{H}_{\mathrm{v}}}=6 \mathrm{~Hz}$ and $J_{\mathrm{H}_{b} \mathrm{H}_{\mathrm{v}}}=2 \mathrm{~Hz}$, at 5.16 and 5.30 , respectively. ${ }^{7}$ Final corroboration of structure is provided by the mass spectrum of 6 , which shows a base peak at $m / e 203$ corresponding to loss of the $\mathrm{CF}_{2} \mathrm{H}$ radical.

Although diradical rupture of a peripheral cyclopropane bond of 2 followed by 1,2 -bromine shift provides an adequate rationale for formation of 5 , we cannot at present rule out the possible rearrangement of $\mathbf{1 b}$ to 1,3 -dibromo-3,3-difluoropropyne under the forcing conditions of the reaction. ${ }^{8}$ To our knowledge, however, such a rearrangement of a tetrahalocyclopropene, while not unreasonable, is unprecedented.

Experimental Section

Proton magnetic resonance spectra were recorded on Varian A-60A and Varian XL-100 spectrometers; chemical shifts are reported in parts per million downfield from internal $\mathrm{Me}_{4} \mathrm{Si}$. All ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on the XL-100 instrument at 94.1 MHz with chemical shifts reported in parts per million upfield from external CFCl_{3}. Infrared spectra were determined on a Perkin-Elmer Model 137 instrument as KBr wafers. Mass spectra were recorded on an AEI-MS 30 spectrometer at 70 eV . Elemental analyses were performed by Atlantic Microlabs, Inc., Atlanta, Ga.

1,2-Dibromo-3,3-difluorocyclopropene (1b) was prepared by a slight modification of the published procedure ${ }^{2}$ using freshly sublimed antimony trifluoride.

Reaction of Anthracene with 1b. Anthracene (0.890 g, 5.00 mmol), 1,2-dibromo-3,3-difluorocyclopropene ($1 \mathrm{~b}, 1.75 \mathrm{~g}, 7.47 \mathrm{mmol}$), and 25 ml of carbon tetrachloride were placed in a Fischer-Porter tube which was capped and heated at $120^{\circ} \mathrm{C}$ for 4 days. NMR analysis of the reaction mixture at this point indicated ca. 50% conversion of the anthracene. Additional $1 \mathbf{b}(1.0 \mathrm{~g})$ was added, the tube recapped, and heating resumed at $130^{\circ} \mathrm{C}$. After 3 days at this temperature the anthracene was completely consumed. The dark reaction mixture was concentrated and chromatographed on silica gel with benzene as elutant. Concentration of the first fraction gave $1.94 \mathrm{~g}(94 \%)$ of a oily brown solid which on crystallization from hexane afforded 0.823 g (39.9%) of hard brown crystals. Recrystallization from hexane afforded analytically pure $5: \mathrm{mp} 94-97^{\circ} \mathrm{C} \nu 1616,1456,1308,1276,1120,990$, $959,864,820,742,622 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 414 (3.1), 412 (6.7), 410 (3.5), 334 (49.5), 332 (50.5), 252 (82.6), 202 (100), 200 (74.5), 179 (65.5), 150 (78.9), 127 (30.3), 111 (44.8); $\delta\left(\mathrm{CDCL}_{3}\right)$ $7.5-6.8(\mathrm{~m}, 8$, aromatic $), 5.27\left(\mathrm{~s}, 1, \mathrm{H}_{\mathrm{b}}\right), 5.11\left(\mathrm{~s}, 1, \mathrm{H}_{\mathrm{a}}\right) ; \dot{o}_{\mathrm{CFCl}_{3}}\left(\mathrm{CDCl}_{3}\right)$ 47.01 (s, $-\mathrm{CF}_{2} \mathrm{Br}$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~F}_{2}$: C, 49.55; H, 2.45; Br, 38.79. Found: C, 49.65; H, 2.51; Br, 38.96.

7-Difluoromethyldibenzotricyclo[2.2.2]octa-2,5,7-triene (6). A magnetically stirred mixture of tri-n-butyltin hydride ($2.24 \mathrm{~g}, 7.68$ $\mathrm{mmol})$ and $5(1.06 \mathrm{~g}, 2.56 \mathrm{mmol})$ containing a catalytic amount of di-tert-butyl peroxide was heated at $90^{\circ} \mathrm{C}$ for 15 h . Chromatography of the reaction mixture on neutral alumina using benzene-hexane (1:1 v / v) as eluent followed by recrystallization from hexane afforded 0.245 $g(37.3 \%)$ of a yellow solid. A second recrystallization from hexanemethanol gave 0.137 g of $\mathbf{6 , ~} \mathrm{mp} 137.5-138^{\circ} \mathrm{C}$ as white flakes homogeneous to thin layer chromatography: $\nu 1640,1452,1368,1320,1288$, 1059, $994,738 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) 254 (54.6) 233 (6.6), 203 (100), 202 (63.5), 178 (12.7), 152 (3.2), 151 (3.3), 102 (5.0), 101 (8.5), 87 (3.2), 76 (3.2); $\delta\left(\mathrm{CCl}_{4}, 100 \mathrm{MHz}\right.$), 7.44-6.84 (m, 9, aromatic, $\left.\mathrm{H}_{\mathrm{v}}\right), 6.22\left(\mathrm{t}, J_{\mathrm{HF}}=56 \mathrm{~Hz},-\mathrm{CF}_{2} \mathrm{H}\right), 5.30\left(\mathrm{~d}, J_{\mathrm{H}_{\mathrm{h}} \mathrm{H}_{\mathrm{v}}}=2 \mathrm{~Hz}, 1, \mathrm{H}_{\mathrm{b}}\right)$, $5.16\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}_{\mathrm{e}} \mathrm{H}_{v}}=6 \mathrm{~Hz}, 1, \mathrm{H}_{\mathrm{a}}\right), \delta_{\mathrm{CFCl}_{3}}\left(\mathrm{CDCl}_{3}\right) 117.1\left(\mathrm{dd}, J_{\mathrm{HF}}=56, J_{\mathrm{FH}_{\mathrm{v}}}\right.$ $=4 \mathrm{~Hz}, 1,-\mathrm{CF}_{2^{-}}$).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{2}: \mathrm{C}, 80.30 ; \mathrm{H}, 4.76$. Found: C, $80.40 ; \mathrm{H}$, 4.75.

Acknowledgment. The authors express their appreciation to the National Science Foundation for financial support, and to Professor W. S. Brey and Dr. L. W. Jaques for their assistance in recording the $100-\mathrm{MHz}$ and ${ }^{19} \mathrm{~F}$ NMR spectra.

Registry No.-lb, 6262-46-0; 5, 59790-60-2; 6, 59790-61-3; anthracene, 120-12-7.

References and Notes

(1) Abstracted from the Ph.D. Dissertation of R. G. Posey, University of Florida, Dec 1975.
(2) S. W. Tobey and R. West, J. Am. Chem. Soc., 88, 2481 (1966).
(3) Initial attempts in our laboratory to directly generate 1a from 1 b by reductive debromination have not met with success. Most surprising was the failure of tri-n-butyltin hydride to produce any volatile products on reaction with $\mathbf{1 b}$ in mineral oil.
(4) (a) D. C. Law and S. W. Tobey, J. Am. Chem. Soc., 90, 2376 (1968); (b) related work described in ref 1 .
(5) (a) R. M. Magid and S. E. Wilson. J. Org. Chem., 36, 1775 (1971); (b) M. A. Battiste, L. A. Kapicak, M. Mathew, and G. J. Palenik, Chem. Commun., 1536 (1971); (c) M. A. Battiste and C. T. Sprouse, Tetrahedron Lett., 4661 (1970).
(6) P. B. Sargeant, J. Am. Chem. Soc., 91,3061 (1969).
(7) (a) With exception of the broad triplet for the -CF 2 H proton the pattern of the proton spectrum and the coupling constants for the bridgehead protons H_{a}. H_{0} were almost identical with that observed for the model system 7chiorodibenzobicyclo [2.2.2]octa-2,5,7-triene ${ }^{7 \mathrm{D}}$ in deuteriobenzene $\left[\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.\right.$, 60 MHz) $7.17-6.56$ ($\mathrm{m}, 8$, aromatic), $6.40(\mathrm{dd}, J=2.3,6.5 \mathrm{~Hz}, 1$, vinyl), 4.82 (d, $J=2.3 \mathrm{~Hz}, 1$, bridgehead), 4.50 (d, $J=6.5 \mathrm{~Hz}, 1$, bridgehead): δ (CDCl_{3}) $7.38-6.75$ ($\mathrm{m}, 8$, aromatic), 6.68 (dd, $J=2.2,6.4 \mathrm{~Hz}, 1$, vinyl), 4.94 (overlapping doublets, 2, bridgeheads)]. (b) Prepared by the method of S. J. Cristol, R. Caple, R. M. Sequeira, and L. O. Smith, Jr., J. Am. Chem. Soc., 87, 5679 (1965).
(8) As pointed out by a referee, an alternative ionic pathway for rearrangement of 2 involving carbon-bromine ionization with simulaneous electrocyclic cleavage of a peripheral cyclopropane ring bond cannot be excluded on the basis of the limited data. While this mechanistic possibility should not be ignored, the lack of literature precedent for cyclopropyl to allyl conversions of bridgehead halides and the energetically unfavorable accumulation of positive charge at the $-\mathrm{CF}_{2}$ carbon render it suspect in comparison with the postulated diradical mode of ring opening.

Carbonyl Insertion Reactions of Ethyl α-Trimethylsilyldiazoacetate. An Improved Route to Diazoacetate Aldol Products

David A. Evans,* ${ }^{* 3}$ Larry K. Truesdale, and Kurt G. Grimm
Contribution No. 5313 from the Laboratories of Chemistry, California Institute of Technology, Pasadena, California 91125

Received April 20, 1976
Interest in the carbonyl insertion ${ }^{1}$ chemistry of organosilicon compounds has only recently developed in spite of the central role the carbonyl function plays in organic synthesis. ${ }^{2-4}$ Of particular interest to us has been the generality of the anion-initiated carbonyl insertion process illustrated below (eq 1). To date we have demonstrated that the reaction of

trimethylsilyl cyanide ($1, \mathrm{X}=\mathrm{CN}$) with an extensive variety of aldehydes and ketones is readily initiated by both cyanide and fluoride ion. ${ }^{2 a, b}$ The only other silicon pseudohalide which has been found to react in an analogous fashion has been trimethylsilyl azide ($1, \mathrm{X}=\mathrm{N}_{3}$) which forms aldehyde adducts $2\left(\mathrm{X}=\mathrm{N}_{3} ; \mathrm{R}^{\prime}=\mathrm{H}\right)$ in excellent yields. ${ }^{2 b}$ Recently, we have found that thiosilanes $1(\mathrm{X}=\mathrm{SR})$, in the presence of anionic initiators, will also form aldehyde adducts $2(X=S R)$ in excellent yields. ${ }^{4 a}$ As has recently been demonstrated, these organosilane-carbonyl adducts are valuable intermediates in chemical synthesis. ${ }^{5,6}$

We now wish to report that the carbonyl insertion reactions of ethyl α-trimethylsilyldiazoacetate (3a) can be effected (eq 2), and that the reaction is subject to specific anion initiation. Wenkert and McPherson have shown ${ }^{7}$ that ethyl diazoacetate adds to aldehydes in the presence of a catalytic amount of sodium hydroxide. Unfortunately, the reaction affords an equilibrium mixture of the aldol product $\mathbf{4 b}$ and starting

materials where adduct formation is quite unfavorable for some aldehydes and most ketones. Based upon crude thermodynamic approximations, it was predicted that the silyldiazoacetate addition reactions $(\mathbf{3 a} \rightarrow \mathbf{4 a})$ should be more exothermic than the analogous diazoacetate addition processes $(\mathbf{3 b} \rightarrow \mathbf{4 b})$. These predictions have now been verified. The addition of $3 a^{8}$ to both aromatic and aliphatic aldehydes occurs exothermically at room temperature in nearly quantitative yield when catalyzed by the potassium cyanide-18-crown-6 complex. ${ }^{2 b}$ For sensitive substrates (i.e., the isobutyraldehyde adduct), which were unstable to the heat generated by the reaction, solvents such as chloroform were used to moderate the temperature. Removal of the solvent at room temperature afforded essentially pure aldol adduct 4a. Analytical samples were obtained by column chromatography on Florisil, but partial hydrolysis of $\mathbf{4 a}$ to the corresponding alcohol 4b was usually observed. Table I compares the chromatographed yields of the silyldiazo ester insertions with Wenkert's protiodiazo ester reactions where possible. Not only are the yields consistently higher, but the reaction conditions are nonaqueous and essentially neutral. Preliminary results indicate that even tigaldehyde survives the reaction to afford a moderate yield of the 1,2 adduct; no 1,4 adduct could be detected.

Less reactive carbonyl systems such as acetophenone, cyclohexanone, 3-pentanone, and 3-methyl-3-penten-2-one all failed to produce detectable adducts (by NMRi. In hope of achieving a still more favorable equilibrium, the analogous reactions of ethyl α-trimethylstannyldiazoacetate ${ }^{9}$ (3c) were examined, but 3 -pentanone was inert to the reagent and hexanal was slowly polymerized. ${ }^{10}$ Since the completion of our work, Schollkopf has shown that $3(\mathrm{Y}=\mathrm{Li}, \mathrm{MgX})$ will add to both aldehydes and ketones under very carefully controlled conditions to afford the corresponding aldol-type products in high and moderate yields, respectively. ${ }^{11}$ Both thermal and Lewis acid catalyzed reaction conditions failed to generate the aldol adducts 4 from either the silyl or stannyldiazo esters $\mathbf{3 a}$ or 3c. This is in marked contrast to related carbonyl insertions by other organosilanes. ${ }^{2-4}$

The presumed mode of catalysis by anionic initiators such as cyanide ion (Scheme I) involves the generation of catalytic amount of diazo ester enolate 5 via either of the processes illustrated in eq 3 and 4 followed by carbonyl addition and subsequent silicon transfer steps to regenerate 5 . It is pre-

Table I. Carbonyl Addition Reactions of 3a (Eq 1)

$\mathrm{RCH}=\mathrm{O}$	Registry no.	\% yield of $4 \mathbf{a}^{a, b}$	\% y ield of $\mathbf{4 b} c$				
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CHO}$	$66-25-1$	$86(63: 37)$	$68\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{13}\right)$				
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$	$78-84-2$	$93(76: 24)$	80				
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$100-52-7$	$86(84: 16)$	60				
$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	$104-88-1$	$93(78: 22)$	25				
$p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	$123-11-5$	$83(100: 0)$					
CH_{3}							
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CCHO}$	$497-05-0$	$44(100: 0)$					

a Calculated on isolated yields of adduct. b Values in parentheses refer to the ration of $4 a: 4 b$ isolated from chromatography. Prior to chromatography only 4 a was present. c Yields for the base-catalyzed addition of $\mathbf{3 b}$ to illustrated aldehydes (ref 7).

sumed that fluoride ion would also serve as an efficient initiation catalyst.

In conclusion, the use of silyldiazo ester $\mathbf{3 b}$ as a masked carbon nucleophile in carbonyl addition reactions establishes a valuable precedent for the design of related masked carbon nucleophiles. The extremely mild catalytic conditions under which these insertions occur make them particularly valuable in organic synthesis. In the present case not only is a carboncarbon bond formed, but the β-hydroxy- α-diazocarbonyl function created is of practical interest. ${ }^{7,11,12}$

Experimental Section

Ethyl 2-Diazo-3-trimethylsiloxy-3-phenylpropionate (4a, R $\left.=\mathrm{C}_{6} \mathrm{H}_{5}\right)$. To a nitrogen-blanketed solution of $0.176 \mathrm{~g}(1.66 \mathrm{mmol})$ of freshly distilled benzaldehyde and $0.308 \mathrm{~g}(1.66 \mathrm{mmol})$ of ethyl 2-trimethylsilyl-2-diazoacetate (3a) ${ }^{8}$ in 2 ml of chloroform was added 0.005 g (a catalytic amount) of 18 -crown-6-potassium cyanide complex. ${ }^{2 \mathrm{~b}}$ The solution warmed instantly upon the addition of the catalyst. The yellow solution was stirred at ambient temperature for 1.75 h whereupon the solvent was removed at reduced pressure and the yellow oil was chromatographed on 50 g of Florisil eluting with 1% ether, in hexane. This eluent afforded $0.348 \mathrm{~g}(72 \%)$ of product $4 \mathrm{a}(\mathrm{R}$ $=\mathrm{C}_{6} \mathrm{H}_{5}$) as a clear yellow oil. The eluting solvent was changed to $1: 1$ ether-hexane and 0.0955 g (14%) of the clear yellow alcohol 4 b ($\mathrm{R}=$ $\mathrm{C}_{6} \mathrm{H}_{5}$) was obtained. The trimethylsiloxy adduct had the following properties: ir (neat) $2100\left(\mathrm{C}=\mathrm{N}_{2}\right), 1695\left(-\mathrm{CO}_{2} \mathrm{Et}\right)$, and $1255 \mathrm{~cm}^{-1}$ $\left(\mathrm{SiGH}_{3}\right)$; NMR $\left(\mathrm{CCl}_{4}\right) 7.33$ (s, 5 , aryl H), 5.38 (s, $1, \mathrm{OCHC}_{6} \mathrm{H}_{5}$), 4.28 $\left(\mathrm{q}, 2, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.33\left(\mathrm{t}, 3, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.18 \mathrm{ppm}$ (s, $9, \mathrm{SiCH}_{3}$).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$: C, $57.51 ; \mathrm{H}, 6.89$. Found: C, 57.31; H, 6.71.
Ethyl 2-Diazo-3-trimethylsiloxy-3-(4-methoxyphenyl)propionate ($\mathbf{4 a}, \mathbf{R}=\boldsymbol{p}-\mathbf{C H}_{3} \mathbf{O C}_{6} \mathbf{H}_{4}$). The addition was carried out in 83% by the general method described above: ir (neat) $2090\left(\mathrm{C}=\mathrm{N}_{2}\right), 1685$ $\left(\mathrm{CO}_{2} \mathrm{Et}\right)$, and $1245 \mathrm{~cm}^{-1}\left(\mathrm{SiCH}_{3}\right) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 7.31(\mathrm{~d}, 2, J=9 \mathrm{~Hz}$, $\mathrm{OC}=\mathrm{C}-\mathrm{CH}), 6.84(\mathrm{~d}, 2, J=9 \mathrm{~Hz}, \mathrm{OC}=\mathrm{CH}), 5.78(\mathrm{~s}, 1, \mathrm{CHOSi}), 4.25$ $\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.77\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 1.30(\mathrm{t}, 3, J=7 \mathrm{~Hz}$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.15\left(\mathrm{~s}, 9, \mathrm{SiCH}_{3}\right)$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$: C, $55.87 ; \mathrm{H}, 6.88$. Found: C, 56.08 ; H, 6.95 .

Ethyl 2-Diazo-3-trimethylsiloxy-3-(4-chlorophenyl)propanoate ($4 \mathbf{a}, \mathbf{R}=\boldsymbol{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}$). The addition was carried out according to the general method described above in 73% yield along with 20% of the corresponding alcohol 4 b : ir (neat) $2105\left(\mathrm{C}=\mathrm{N}_{2}\right), 1695\left(\mathrm{CO}_{2} \mathrm{Et}\right)$,
and $1250 \mathrm{~cm}^{-1}\left(\mathrm{SiCH}_{3}\right) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.32$ (s, 4, aryl H), 5.82 (s, 1, $\left.\mathrm{OCHC}_{6} \mathrm{H}_{4} \mathrm{Cl}\right), 4.25\left(\mathrm{q}, 2, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.27(\mathrm{t}, 3, J=7.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), and $0.12\left(\mathrm{~s}, 9, \mathrm{SiCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Si}$: C, $51.45 ; \mathrm{H}, 5.86$. Found: $\mathrm{C}, 52.05$; H, 5.71.

Ethyl 2-Diazo-3-trimethylsiloxyoctanoate (4a, $\mathbf{R}=\boldsymbol{n}-\mathbf{C}_{5} \mathbf{H}_{11}$). Following the general procedure the adduct was obtained in 54% yield by the general method described above along with 32% of the corresponding alcohol 4b: ir (neat) $2085\left(\mathrm{C}=\mathrm{N}_{2}\right), 1690\left(-\mathrm{CO}_{2} \mathrm{Et}\right)$, and 1254 $\mathrm{cm}^{-1}\left(\mathrm{SiCH}_{3}\right) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 4.54(\mathrm{t}, 1, J=6 \mathrm{~Hz}, \mathrm{CHOSi}), 4.18(\mathrm{q}, 2$, $\left.J=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 0.06\left(\mathrm{~s}, 9, \mathrm{Si}=\mathrm{CH}_{3}\right)$.
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$: C, $54.51 ; \mathrm{H}, 9.15$. Found: C, 54.67 ; H, 9.22.

Ethyl 2-Diazo-3-trimethylsiloxy-4-methylpentanoate (4a, R $=i-\mathrm{C}_{3} \mathrm{H}_{7}$). Following the general procedure the adduct was obtained in 71% yield by the general method described above along with a 22% yield of the corresponding alcohol 4b: ir (neat) $2100\left(\mathrm{C}=\mathrm{N}_{2}\right), 1695$ $\left(-\mathrm{CO}_{2} \mathrm{Et}\right)$, and $1280 \mathrm{~cm}^{-1}\left(\mathrm{SiCH}_{3}\right) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 4.20(\mathrm{~d}, 1, J=7.0$ $\mathrm{Hz}, \mathrm{CHOSi}), 4.16\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.73\left[\mathrm{~m}, 1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.25$ $\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHCH}_{3}\right.$), 0.07 (s, $9, \mathrm{SiCH}_{3}$).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$: C, 51.13 ; $\mathrm{H}, 8.58$. Found: C, 51.16 ; H, 8.45
Ethyl 2-Diazo-3-trimethylsiloxy-4-methyl-(E)-4-hexenoate [$4 \mathrm{a}, \mathbf{R}=\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathbf{C H C H}_{3}$]. The adduct was prepared in 44% yield by the general method described above: ir (neat) $2100\left(\mathrm{C}=\mathrm{N}_{2}\right), 1695$ $\left(-\mathrm{CO}_{2} \mathrm{Et}\right)$, and $1250 \mathrm{~cm}^{-1}\left(\mathrm{SiCH}_{3}\right) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 5.64(\mathrm{q}, 1, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}$), $4.93(\mathrm{~s}, 1, \mathrm{CHOSi}), 4.20\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.65(\mathrm{~d}$, $3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}$), $1.58\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right), 1.28(\mathrm{t}, 3, J=7 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), and $0.12\left(\mathrm{~s}, 9, \mathrm{SiCH}_{3}\right)$. Combustion analysis was not obtained owing to the unstable nature of the adduct.

Acknowledgment. Research support from the donors of the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged.

Registry No.-3a, 17145-48-1; 4a ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$), 59840-31-2; 4a (R $\left.=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right), 59840-32-3 ; \mathbf{4 a}\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right), 59840-33-4 ; 4 \mathrm{a}(\mathrm{R}$ $\left.=n-\mathrm{C}_{5} \mathrm{H}_{11}\right), 59840-34-5$; 4a $\left(\mathrm{R}=i-\mathrm{C}_{3} \mathrm{H}_{7}\right), 59840-35-6$; 4a $[\mathrm{R}=$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{3}\right], 59840-36-7$.

References and Notes

(1) For an explanation of the term see M. F. Lappert and B. Prokai, Adv. Organomet. Chem., 5, 225 (1967).
(2) Silyl cyanides: (a) D. A. Evans, L. K. Truesdale, and G. L. Carroll, J. Chem. Soc., Chem. Commun., 55 (1973); (b) D. A. Evans and L. K. Truesdale, Tetrahedron Lett., 4929 (1973); (c) W. Lidy and W. Sundermeyer, Chem. Ber., 106, 187 (1973); (d) W. Lidy and W. Sundermeyer, Tetrahedron Lett., 1449 (1973); (e) Von H. Neff and R. Muller, J. Prakt. Chem., 315, 367 (1973); (f) Von H. Neff, ibid., 316, 817 (1974); (g) I. Ojima, S. Inaba, and Y. Nagai, J. Chem. Soc., Chem. Commun., 826 (1974); (h) U. Hertenstein and S. Hunig, Angew. Chem., Int. Ed. Engl., 14, 179 (1975); (i) I. Ojima, S. Inaba, K. Nakatsugawa, and Y. Nagai, Chem. Lett., 331 (1975).
(3) Silyl azides: (a) L. Birkofer, F. Muller, and W. Kaiser, Tetrahedron Lett., 2781 (1967); (b) H. R. Kricheldorf, Synthesis, 551 (1972); (c) S. S. Washburne and W. R. Peterson, Synth. Commun., 2, 227 (1972); (d) S. Washburne, W. R. Peterson, and D. A. Berman. J. Org. Chem., 37, 1738 (1972); (e) ref $2 b$.
(4) Silyl sulfides: (a) D. A. Evans, K. G. Grimm, and L. K. Truesdale, J. Am. Chem. Soc., 97, 3229 (1975); (b) T. Mukaiyama, T. Takeda, and K. Atsumi, Chem. Lett., 1013 (1974); (c) ibid., 187 (1974); (d) R. S. Glass, Synth. Commun., 6, 47 (1976); (e) T. H. Chan and B. S. Ong, Tetrahedron Lett., 319 (1976).
(5) (a) D. A. Evans, J. M. Hoffman, and L. K. Truesdale, J. Am. Chem. Soc., 95, 5822 (1973); (b) E. J. Corey, D. N. Crouse, and J. E. Anderson, J. Org. Chem., 40, 2140 (1975); (c) K. Deuchert. U. Hertenstein, and S. Hunig, Synthesis, 777 (1973); (d) S. Hunig and G. Wehner, ibid., 180 (1975); S. Shiotani, T. Kometani. and K. Mitsuhashi, J. Med. Chem., 18, 1266 (1975).
(6) (a) D. A. Evans, G. L. Carroll, and L. K. Truesdale, J. Org. Chem., 39, 914 (1974); (b) W. E. Parham and C. S. Roosevelt, Tetrahedron Lett., 923 (1971); (c) R. O. Klaus, H. Tobler, and C. Ganter, Helv. Chim. Acta, 57, 2517 (1974); (d) ibid., 58, 1455 (1975).
(7) E. Wenkert and C. A. McPherson, J. Am. Chem. Soc., 94, 8084 (1972)
(8) K. D. Kaufmann and K. Ruhlmann, Z. Chem., 8, 262 (1968)
(9) J. Lorberth, J. Organomet. Chem., 15, 251 (1968).
(10) These results are interesting in view of the known reactivity of α-stannylated carbonyl derivatives toward both aldehydes and ketones. J. G. Noltes, F. Verbeek, and H. M. J. C. Creemers, Organomet. Chem. Synth., 1, 57 (1970).
(11) U. Schollkopf, B. Banhidai, H. Frasnelli, R. Meyer, and H. Beckhaus, Justus Liebigs Ann. Chem., 1767 (1974).
(12) (a) T. T. L. Burkoth, Tetrahedron Lett., 5049 (1969); (b) N. F. Woolsey and D. D. Hammargren, ibid., 2087 (1970); (c) N. F. Woolsey and M. H. KhaliI, J. Org. Chem., 37, 2405 (1972); (d) ibid., 38, 4216 (1973); (e) N. F. Woolsey and M. H. Khalil, Tetrahedron Lett., 4309 (1974); (f) F. B. Culp, K. Kurita, and J. A. Moore, J. Org. Chem., 38, 2945 (1973); (g) N. F. Woolsey and M. H. Khalil, ibid., 40, 3521 (1975).
(13) Camille and Henry Dreyfus Teacher-Scholar (1971-1976).

Carbonyl Homologation with α Substitution. A New Approach to Spiroannelation

Summary. A novel approach is described for the geminal alkylation of a ketone carbonyl group to give a quaternary carbon atom bearing substituents suitably functionalized for the direct spiroannelation of a cyclohexenone ring.

Sir: Within the past few years, a wide variety of natural products belonging to the several classes of spiro sesquiterpenes have been discovered. Representative examples of these classes include acorone (an acorane) (1), ${ }^{1} \beta$-vetivone (a vetispirane) (2), ${ }^{2}$ and α-chamigrene (a chamigrane) (3). ${ }^{3}$ Since

2

3
these compounds, along with other members of their respective classes, exhibit a diversity of both skeletal and functional variations, there has been a demand for efficient, general methods for the construction of substituted spirocyclic systems. ${ }^{4,5}$ However, many recent approaches toward spiroannelation may be characterized as multistep procedures which are frequently limited in scope because they are designed for the synthesis of specific spiro sesquiterpenes. ${ }^{1-3,6}$

Owing to its synthetic utility, the carbonyl group has evolved as one of the most important and readily accessible functional groups in organic chemistry. Thus, a synthetic procedure for the transformation of a carbonyl group into a quaternary carbon center possessing substituents suitably functionalized for subsequent spiroannelation operations would be especially desirable. We now wish to report an efficient procedure for the direct conversion of ketones into 4,4 -disubstituted 2 -cyclohexen-1-ones. Application of this approach to cyclic ketones affords a facile method for the construction of spirocyclic ring systems. Furthermore, the newly formed six-membered ring possesses an α, β-unsaturated ketone which may be exploited by subsequent condensation or addition reactions to introduce additional substituents and functional groups.

We recently described the utility of diethyl pyrrolidinomethylphosphonate as a reagent for the conversion of ketones 4 into the pyrrolidine enamines of the homologous α disubstituted aldehydes 5. ${ }^{7}$ Treatment of these enamines with allyl bromide gave α-allyl dialkylaldehydes 6 in good yields (eq 1). Although the newly introduced alkyl appendages of 6

can be modified for eventual cyclization to spirocyclic systems, the procedure requires extensive functional group manipulation. ${ }^{5 \mathrm{~d}}$ A method for introducing geminal substituents suitably functionalized for direct elaboration to cyclic compounds would have obvious advantages. For example, the introduction of a 3 -oxobutyl group would afford a 1,5-dicarbonyl compound which could then be readily converted into a 2 -cyclohexen-1-one by aldol-cyclodehydration. ${ }^{8,9}$

Unfortunately, our initial efforts to react the pyrrolidine enamines 5 with methyl vinyl ketone gave unsatisfactory results. We invest:gated, therefore, the reaction of ketones 4 with diethyl lithiomorpholinomethylphosphonate ${ }^{10}$ (7) and obtained the expected morpholine enamines of the homologous aldehydes 8 , which were isolated by flash distillation. Treatment of the crude enamines 8 with methyl vinyl ketone (MVK) followed by acid-catalyzed hydrolysis of the intermediate adduct afforded the δ-keto aldehydes 9 which spontaneously underwent cycloaldolization and dehydration to give the 4,4-disubstituted 2 -cyclohexen-1-ones 10 (eq 2).

This spiroannelation procedure, which may be executed without the purification of any intermediates, is generally applicable to a wide variety of acyclic, cyclic, aromatic, and α, β-unsaturated ketones, and the product 4,4-disubstituted 2 -cyclohexenones may be isolated in fair to moderate overall yields (see Table I). ${ }^{11}$ Preliminary results have also indicated

Table I. Spiroannelation of Ketones
Ketone 4 \% yielda
a Isolated yield based upon ketone but not optimized. b Obtained as an $\sim 9 / 1$ mixture of diastereomers. c Obtained as an $\sim 9 / 1$ mixture of diastereomers. ${ }^{d}$ As judged by NMR, is $>95 \%$ one diastereomer.
that this synthetic sequence proceeds with a considerable degree of stereoselectivity. For example, 4-tert-butylcyclohexanone (11) was smoothly converted to a diastereomeric mixture of the spiro[5.5]undecenones 13 and 14 in a ratio of 9:1 (eq 3). ${ }^{12}$ This result is in accord with the expectation that

the initial reaction of methyl vinyl ketone with the enamine 12 will occur from the less hindered, equatorial face of 12.

The application of this new spiroannelation procedure to the synthesis of spiro sesquiterpene natural products as well as alkaloid natural products containing spirocyclic rings and quaternary carbon atoms is presently under investigation.

Acknowledgment. We wish to thank the Research Corporation and the University Research Institute of the University of Texas at Austin for their generous financial support of this program.

Supplementary Material Available. Characterization of all new compounds, together with representative experimental details (5 pages). Ordering information is given on any current masthead page.

References and Notes

(1) For a recent synthesis of acorone and related sesquiterpenes, see J. N. Marx and L. R. Norman, J. Org. Chem., 40, 1602 (1975), and references therein.
(2) For a recent synthesis of β-vetivone and related vetispiranes, see W. G. Dauben and D. J. Hart. J. Am. Chem. Soc., 97, 1622 (1975), and references therein.
(3) For a synthesis of α-chamigrene, see J. D. White, S. Torii, and J. Nogami, Tetrahedron Lett., 2879 (1974).
(4) (a) For a recent review of procedures for spiroannelation, see A. P. Krapcho, Synthesis, 383 (1974); (b) for a review of the application of sulfonium cyclopropylides to the construction of spirocyclic rings, see B. M. Trost, Acc. Chem. Res., 7, 85 (1974).
(5) For example see (a) J. R. Williams and G. M. Sarkisian, J. Chem. Soc., Chem. Commun., 1564 (1971); (b) V. Dave and J. S. Whitehurst, Tetrahedron, 30, 745 (1974); (c) R. D. Clark and C. H. Heathcock, Tetrahedron Lett., 529 (1975); (d) E. J. Corey and J. I. Shulman. J. Am. Chem. Soc., 92, 5522 (1970); (e) D. J. Dunham and R. G. Lawton, ibid., 93, 2074 (1971); (f) B. M. Trost, M. Preckel, and L. M. Leichter, ibid., 97, 2224 (1975); (g) F. Naf, R. Decorzant, and W. Thommen, Helv. Chim. Acta, 58, 1808 (1975); (h) G. Stork, R. L. Danheiser, and B. Ganem, J. Am. Chem. Soc., 95, 3414 (1973).
(6) For example see (a) H. Wolf and M. Kolleck, Tetrahedron Lett., 451 (1975); (b) P. M. McCurry, Jr., and R. K. Singh, ibid., 3325 (1973); (c) A. R. Pinder, S. J. Price, and R. M. Rice, J. Org. Chem., 37, 2202 (1972); (d) G. L. Lange, H. M. Campbell, and E. Neidert, ibid., 38, 2117 (1973); (e) B. M. Trost, K. Hiroi, and N. Holy. J. Am. Chem. Soc., 97, 5873 (1975); (f) J. M. Conia, J. P. Drouet, and J. Gore, Tetrahedron, 27, 2481 (1971); (g) W. Oppolzer and K. K. Mahalanabis, Tetrahedron Lett., 3411 (1975).
(7) S. F. Martin and R. Gompper, J. Org. Chem., 39, 2814 (1974).
(8) G. Stork, A. Brizzolora, H. Landesman, J. Szmuszkovicz, and R. Terrell, J. Am. Chem. Soc., 85, 207 (1963).
(9) H. Christol, F. Plenat, and J. Saloncon, Bull. Soc. Chim. Fr., 4468 (1970).
(10) E. K. Fields, J. Am. Chem. Soc., 74, 1528 (1952).
(11) All compounds were adequately characterized by spectral methods (ir, NMR, MS). and all new compounds gave satisfactory high resolution mass spectral and/or combustion analytical data.
(12) Although the two isomers 13 (major) and 14 (minor) were inseparable by preparative chromatographic techniques, their presence is easily detected by analytical GLC and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra: 13, ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCI}{ }_{3}$, TMS) $\delta 7.17(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}-)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, TMS) $\delta 155.4$ (-CH=CHCO-); 14, ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, TMS) $\delta 6.52$ (d, $J=10 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CHCO}-)$ and ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS) $\delta 160.7(-\mathrm{CH}=\mathrm{CHCO}-$. The
stereochemical assignment with respect to the newly created chiral center may be made on the basis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The β-vinyl proton of the major isomer 13 is deshielded relative to the β-vinyl proton of 14, owing to steric crowding. As expected the β-vinyl carbon of 13 is shielded relative to the β-vinyl carbon of 14 owing to steric compression.

Stephen F. Martin
Department of Chemistry
University of Texas at Austin, Austin, Texas 78712
Received March 11, 1976

Mercury(II)-Catalyzed 3,3-Sigmatropic Rearrangements of Allylic $\boldsymbol{N}, \boldsymbol{N}$-Dimethylcarbamates. A Mild Method for Allylic Equilibrations and Contrathermodynamic Allylic Isomer Enrichments

Summary: Allylic N, N-dimethylcarbamates undergo allylic equilibration in high yield when treated at $25^{\circ} \mathrm{C}$ in THF with catalytic amounts of mercuric trifluoroacetate. In certain cases the use of excess mercuric trifluoroacetate allows the less stable allylic isomer to be trapped.

Sir: The 1,3-isomerization of allylic alcohols and allylic alcohol derivatives has been investigated mechanistically for years, ${ }^{1-3}$ and plays a key role in several synthetic ${ }^{4}$ and commercial processes. ${ }^{5}$ Popular methods for affecting this transformation include Lewis acid, protic acid, and transition metal catalyzed isomerization of allylic alcohols, or the corresponding acetates. Overall yields vary from 25 to 85%, and isomer conversions often only approach the equilibrium values. ${ }^{1-5}$ Although methodology is well established ${ }^{6}$ for the contrathermodynamic isomerization of alkenes, to our knowledge, no method exists for achieving contrathermodynamic allylic isomerizations.

The first examples of mercuric ion catalyzed [3,3]-sigmatropic rearrangements were recently reported from our laboratory. ${ }^{7}$ This study revealed that trichloroacetimidic esters of 2-alken-1-ols $1\left(\mathrm{X}=\mathrm{O}, \mathrm{Y}=\mathrm{NH}, \mathrm{Z}=\mathrm{CCl}_{3}\right)$ underwent rapid isomerization to the corresponding allylic trichloroacetamides 3 ($\mathrm{X}=\mathrm{O}, \mathrm{Y}=\mathrm{NH}, \mathrm{Z}=\mathrm{CCl}_{3}$) when treated in an aprotic solvent, at room temperature, with a catalytic amount of mercuric trifluoroacetate. The intramolecular iminomercura-tion-deoxymercuration mechanism of eq 1 ($\mathrm{X}=\mathrm{O}, \mathrm{Y}=\mathrm{NH}$,

$\mathrm{Z}=\mathrm{CCl}_{3}$) was suggested for this catalyzed transformation. ${ }^{7-9}$ We anticipated that mercury(II) salts would catalyze the allylic isomerization ($1 \rightarrow 3$) of other functional groups, and subsequent work in this laboratory has confirmed this expectation. In this communication we wish to report that mercuric trifluoroacetate is an effective catalyst at room temperature for the allylic equilibrium of N, N-dimethylcarbamic esters of allylic alcohols. Moreover, we wish to report that in certain cases a modification of this process results in the first approach to achieving contrathermodynamic allylic isomerizations.

Treatment of the allylic carbamate isomers 4a and 5a at room temperature for $4-11 \mathrm{~h}$ with 0.4 equiv of anhydrous mercuric trifluoroacetate in dry tetrahydorfuran (THF) re-

Table I. Anhydrous Mercuric Trifluoroacetate Catalyzed Allylic Isomerization of 2-Alken-1-yl \mathbf{N}, \mathbf{N}-Dimethylcarbamates $\left(\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{OCONMe}_{2}\right)^{\boldsymbol{a}}$

| Starting internal alkene isomer | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{a}$ Carbamate, 0.1 M . Reactions were quenched by adding 3.6 equiv of $\mathrm{Ph}_{3} \mathrm{P}$, dissolvec in a small volume of the solvent, per equivalent of catalyst. Bis(triphenylphosphine)bis(trifluoroacetato)mercury(II) precipitates within minutes when induced by scratching and cooling. Chromatography is necessary to remove the last traces of this complex. ${ }^{6}$ Prepared by the procedure of Brown, ${ }^{20} \mathrm{mp} 166-167$ ${ }^{\circ} \mathrm{C}$, and stored in a desiccator over $\mathrm{KOH} .{ }^{c} \mathrm{THF}$ was distilled from sodium and benzcphenone immediately before use. Benzene was distilled from CaH_{2} and stored over molecular sieves. If water is not rigorously excluded considerable carbamate hydrolysis occurs. ${ }^{d}$ Isolated yields, after chromatography, of the isomer mixture. Yields in parentheses refer to percent recoveries based on GLC or ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{e}$ Internal/terminal isomer ratios were determined by both ${ }^{1} \mathrm{H}$ NMR and GLC analysis. In all cases the two methods agreed within 3%. ${ }^{\text {f }}$ An E / Z isomer mixture.
sulted in the formation, in $>90 \%$ yield, of the apparent equilibrium mixture ${ }^{10}$ of isomers shown in eq 2 . Similar treatment

of acetate $\mathbf{4 b}$ or anisate $4 \mathbf{c}$ with up to 1.2 equiv of Hg $\left(\mathrm{OCOCF}_{3}\right)_{2}$ afforded $<10 \%$ of the corresponding terminal isomers $\mathbf{5 b}$ or $5 \mathbf{c}$. A comparison of the initial rate of the catalyzed isomerization of $\mathbf{4 a}$ in THF with the thermal, gas phase isomerization of several 2-butenyl derivatives, ${ }^{12}$ allows one to make a rough estimate ${ }^{13}$ for the rate enhancement of the catalyzed process (1 M catalyst) of 10^{13}. Under similar conditions (0.3 equiv of $\mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}, 30 \mathrm{~min}, 25^{\circ} \mathrm{C}$) the tertiary allylic carbamate 7 is converted in 95% yield into a mixture of carbamate isomers containing 98.5% of the more stable ${ }^{2 b, 4 c}$ trisubstituted alkene isomer 8.

Permissive evidence that the mercuric catalyzed equilibrations are occuring by the two-step mechanism of eq 1 (X $=\mathrm{Y}=\mathrm{O}, \mathrm{Z}=\mathrm{NMe}_{2}$), comes from our inability to trap allylic carbonium ions in the mercuric catalyzed reaction. For example, treatment ($8 \mathrm{~h}, 25^{\circ} \mathrm{C}$) of carbamate $4 \mathbf{a}$ in m-xylene as solvent with 0.4 equiv of $\mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}$ resulted in production (93% recovery) of the equilibrium mixture of carbamate isomers shown in eq 2 . No trace of the allyl cation-Friedel-Crafts product, 9 , could be found. In contrast, treatment of carbamate $4 \mathbf{a}$ in m-xylene with 2.5 equiv of boron trifluoride eth-
erate ($25^{\circ} \mathrm{C}, 8 \mathrm{~h}$) yielded the product mixture shown in eq $4 .{ }^{14}$

Equilibrium constants for formation of covalent alkenemercuric trifluoroacetate adducts have been measured in THF ${ }^{15}$ and benzene, ${ }^{16}$ and are considerably higher for monothan for disubstituted alkenes. The addition of mercuriophilic reagents [for example norbornene, ${ }^{15}$ pyridine, ${ }^{15}$ or triphenylphosphine $\left.\left(\mathrm{P}_{3} \mathrm{P}\right)^{7}\right]$ to these covalent adducts has also been shown to result in quantitative liberation of the alkene. Thus, treatment of an internal allylic carbamate such as $4 a$ with an excess of $\mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}$, followed by the addition of a mercuriophile, should yield an isomer mixture rich in the contrathermodynamic terminal isomer 5 a . That is, the excess catalyst is expected to preferentially trap the terminal alkene isomer as a covalent adduct, ${ }^{17}$ thus selectively removing it from the equilibrating isomer pool. That this expectation has indeed been realized is apparent from the data in Table I. Thus, treatment of carbamate 4 a with 1.1 equiv of Hg $\left(\mathrm{OCOCF}_{3}\right)_{2}$ in benzene for 8 h at room temperature, followed by quenching with $\mathrm{Ph}_{3} \mathrm{P}$ and chromatographic workup, afforded, in 89% yield, an isomer mixture containing 83% terminal isomer, 5a. Two trends are apparent. The contrathermodynamic isomer preference in THF increases with increasing catalyst concentration, and, for the same catalyst concentration, this preference is higher in benzene than THF. Both trends wculd be expected if this isomerization occurred as we have suggested since a larger fraction of the alkene isomers should, at comparable catalyst concentrations, be bound as covalent adducts in benzene ${ }^{15,16}$ and also at higher catalyst concentrations. The mildness of this method is well demonstrated by the allylic isomerization of carbamate 10 to the corresponding terminal alkene isomer without the formation of even a trace of the more stable styrene isomer. This method fails, however, if the starting 2 -alken-1-yl carbamate is disubstituted at C -3. Thus carbamate 8 yields only a trace of the tertiary allylic isomer 7 (i.e., the reverse of eq 3) when treated with 1.2 equiv of $\mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}$ in THF. ${ }^{18}$

The mercuric trifluoroacetate promoted ${ }^{19}$ allylic carbamate equilibrium is notable for the mildness of the reaction conditions and the high isolated yields. Unwanted skeletal isomerizations would appear precluded since allylic carbonium ions are not intermediates. The method reported here for contrathermodynamic allylic isomer enrichment is limited to the conversion of carbamic esters of 2 -alken-1-ols, which contain a disubstituted double bond, to the correspondinng 1 -alken-3-ol derivatives. Although this method represents a general approach for achieving contrathermodynamic allylic isomerizations, the reaction conditions we have thus far investigated do not specifically afford only the contrathermodynamic isomer. One can imagine, however, that similar catalysts, which have even higher selectivities for binding specifically the terminal alkene isomer, may overcome this limitation.

Acknowledgment. We thank the National Science Foundation for support of this work under Grant No. GP38634X.

Supplementary Material Available. Experimental procedure (2 pages). Ordering information is given on any current masthead page.

References and Notes

(1) For reviews see E. A. Braude, Quart, Rev., 4, 404 (1950); H. L. Goering, Rec. Chem. Prog., 21, 109 (1960); P. B. O. de la Mare, "Molecular Rearrangements", Part 1. Interscience, New York, N.Y., 1963, Chapter 2; R. H. DeWolfe and W. G. Young in "The Chemistry of the Alkenes". E. S. Patai, Ed., Interscience, New York, N.Y., 1964, Chapter 10; A. R. Butler, G. V. Meehan, and M. J. Perkins in "Organic Reaction Mechanisms 1974", A R. Butler and M. J. Perkins, Ed., Wiley, New York, N.Y., 1976, pp 464466.
(2) Cf. (a) E. A. Braude and P. H. Gores, Nature, 173, 1091 (1954): (b) W. G. Young and I. D. Webb, J. Am. Chem. Soc., 73, 780 (1951); (c) H. L. Goering and M. M. Pombo, ibid., 82, 2515 (1960).
(3) Recent studies include K. Kogani, and J. Kiraelani, Bull. Chem. Soc. Jpn., 47, 226 (1974); R. G. Salih and M. V. Shandala, Collect. Czech. Chem. Commun., 41, 262 (1976).
(4) (a) H. W. Whitlock and G. L. Smith, J. Am. Chem. Soc., 89, 3600 (1967); (b) J. M. Grisar, K. R. Hickey, D. R. Meyer, and A. C. Levy, J. Med. Chem., 11, 615 (1968); (c) J. H. Babler and D. O. Olsen, J. Org. Chem., 40, 255 (1975): J. H. Babler and D. O. Olsen, Tetrahedron Lett., 351 (1974); (d) P. Morand and A. van Tongerloo, Steroids, 21, 47 (1973).
(5) Cf. R. J. Tedeschi, G. S. Clark, and W. F. Tiedge, J. Agr. Food Chem.. 19, 1118 (1971); C. Grard, P. Chabardes, and C. Schneider, British Patent 1256184 (1971).
(6) H. C. Brown and G. Zweifel, J. Am. Chem. Soc., 88, 1433 (1966).
(7) L. E. Overman. J. Am. Chem. Soc., 96, 597 (1974); L. E. Overman, ibid., 98, 2901 (1976).
(8) Since in this case Y contains a protic hydrogen, the ion pair 2 would be in equilibrium with HX and the neutral adduct i .

(9) A mechanism similar to that shown in eq 1 has been suggested for the palladium(III-catalyzed isomerization of allylic esters: P. M. Henry, J. Am. Chem. Soc., 94, 5200 (1972).
(10) Equilibration of the butenyl acetates in acetic acid by treatment with p toluenesulfonic acid $\left(0.3 \mathrm{M}, 60^{\circ} \mathrm{C}, 9-16 \text { days }\right)^{2 \mathrm{~b}}$ or perchloric acid $(8.3$ $\left.\mathrm{mM}, 75^{\circ} \mathrm{C}, 3-5 \mathrm{~h}\right)^{110}$ has been reported. ${ }^{11}$ Recoveries varied from 30 to 84% and the equilibrium composition ${ }^{11 \mathrm{~b}}$ was $38.2 \% \alpha$-methylallyl acetate, 51.4\% trans-crotyl acetate, and 10.4% cis-crotyl acetate.
(11) (a) Z. Rappoport, S. Winstein, and W. G. Young. J. Am. Chem. Soc., 94, 2320 (1972); (b) H. E. Green, Ph.D. Thesis, University of California, Los Angeles, Calif., 1965.
(12) E. S. Lewis, J. T. Hill, and E. R. Newman, J. Am. Chem. Soc., 90, 662 (1968).
(13) At $25^{\circ} \mathrm{C}$ in THF the rate constant for the catalyzed conversion of $\mathbf{4 a}$ to $\mathbf{5 a}$ was measured by the initial rate method: $k_{\text {cal }}=4 \pm 3 \times 10^{-3} \mathrm{~mol} \mathrm{I} .{ }^{-1} \mathrm{~s}^{-1}$ (five determinations). The extent of reaction ranged from 3 to 30% and the equivalent of catalyst varied from 0.05 to 1.0. ${ }^{14}$ The corresponding rate constant for the thermal, gas phase, isomerization was estimated by extrapolating rate constants ${ }^{12}$ for the conversion of $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{O}-$ $(\mathrm{C}=\mathrm{O}) \mathrm{Z}$ to $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{C}=\mathrm{O}) \mathrm{ZCH}=\mathrm{CH}_{2}\left(\mathrm{Z}=\mathrm{CF}_{3}, \mathrm{CH}_{3}\right.$, and $\left.\mathrm{OCH}_{3}\right)$ from 325 to $25^{\circ} \mathrm{C}$, plotting the logarithm of these extrapolated rate constants vs. σ_{m} (correlation coefficient, 1.00), and estimating $K_{\text {thermal }}$ for the conversion of 4 a to 5 a from this plot using the σ_{m} constant for the $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ group; $k_{\text {thermal }}=3 \times 10^{-17} \mathrm{~s}^{-1}$.
(14) Details will be reported in the subsequent full paper and the Ph.D. thesis of C. B. Campbell.
(15) H. C. Brown and M.-H. Rei, J. Chem. Soc., Chem. Commun., 1296 (1969).
(16) H. C. Brown, M.-H. Rei, and K.-T. Liu, J. Am. Chem. Soc., 92, 1760 (1970).
(17) A variety of structures would appear possible for these postulated covalent adducts. This aspect is under investigation.
(18) This result is not unexpected. The equilibrium constant for the formation of the mercuric trifluoroacetate complex of 3,3-dimethyl-1-butene is nine times less than that of 1 -hexene. ${ }^{15} \mathrm{~A}$ competing oxidation reaction also becomes important here at long reaction times.
(19) Winstein and coworkers ${ }^{116}$ have reported that the crotyl and α-methyl allyl acetates may be equilibrated by treatment at $75^{\circ} \mathrm{C}$ for 23 h with 1.1-1.3 equiv of mercuric acetate in acetic acid. Less than 48% of the allylic esters were recovered from this treatment. An intermolecular acetoxymercura-tion-deactoxymercuration mechanism was suggested for this process. (20) H. C. Brown and M.-H. Rei. J. Am. Chem. Soc., 91, 5646 (1969).
(21) A. P. Sloan Foundation Fellow, 1975-1977.

Larry E. Overman, ${ }^{* 21}$ Curt B. Campbell
Department of Chemistry, University of California Irvin, California 92664
Received July 27, 1976

Reductive Trapping in the Ozonolysis of Diphenylacetylene

Summary: Evidence is presented that establishes the existence of a relatively stable (half-life $\sim 35 \mathrm{~min},-42^{\circ} \mathrm{C}$) reducible intermediate in the ozonolysis of diphenylacetylene.

Sir: The reaction of ozone with alkenes has been the subject of extensive study. ${ }^{1}$ By comparison the number of mechanistic studies of the ozonolysis of alkynes has been relatively small, although recently there has been renewed interest. ${ }^{2-10}$ The mechanism suggested by Criegee and Lederer is analogous to that for alkenes and a slightly modified version is depicted in Scheme I. ${ }^{5}$

The intermediacy of I, an α-carbonyl carbonyl oxide, is supported by solvent trapping, ${ }^{5,6}$ reductive trapping, ${ }^{8,9}$ and spectroscopic work. ${ }^{7}$ The stability of I, whether it is a longlived intermediate, and its mode of rearrangement to the anhydride products are open questions. In this work the reaction of diphenylacetylene and ozone has been studied in an effort to answer some of those questions.
Previous work has shown the products of the reaction of diphenylacetylene and ozone to be benzil, benzoic anhydride,

Figure 1. Plot of product mixture composition vs. temperature for O_{3} + DPA with subsequent addition of $\mathrm{Ph}_{2} \mathrm{~S}:$ DPA (\square), $(\mathrm{PhCO})_{2} \mathrm{O}$ $+\mathrm{PhCO}_{2} \mathrm{H}(\bullet)$, and $(\mathrm{Ph}-\mathrm{CO})_{2}(\mathrm{O})$.
and benzoic acid. ${ }^{2-4,8}$ In addition Yang and Libman have shown that ozonolysis of diphenylacetylene in the presence of TCNE at low temperature ($-78^{\circ} \mathrm{C}$) in ethyl acetate gives rise to TCNE epoxide and benzil. ${ }^{8}$ Our results confirm the earlier work with yields of benzoic anhydride/benzoic acid in the range of $70-80 \%$. Solvents used include diethyl ether, acetone, and methycyclohexane. The ozonolyses, whether carried out at ambient temperatures or performed at low temperatures ($-93,-42^{\circ} \mathrm{C}$) and then warmed, yield approximately the same product mixtures (see Table I).

Table I. Product Compositions of $\mathrm{O}_{3}+$ Diphenylacetylene Reaction in Acetone

Expt	$T,{ }^{\circ} \mathrm{C}$	Benzil, \%Benhydride, $\%^{a}$	
1	20	26	45
2	-42	18	43
3	-93	27	35

${ }^{a}$ Benzoic acid present but not determined quantitatively.

In the low temperature reduction experiments using either $\mathrm{Ph}_{3} \mathrm{P}$ or $\mathrm{Ph}_{2} \mathrm{~S}$ as reductant (both of which are known to efficiently reduce peroxides), varying amounts of benzoic anhydride, benzil, and diphenylacetylene were recovered, depending on either the temperature of the reaction or the time before addition of the reducing agent. ${ }^{11,12}$ The product mixtures were independent of the amount of reducing agent added in excess of molar ratios of $1: 1$.

Figure 1 is a plot of the product mixture content vs. temperature in those experiments in which reducing agent $\left(\mathrm{Ph}_{2} \mathrm{~S}\right)$ was added after a fixed period of time (2 min) after ozone addition $(\sim 30 \mathrm{~min})$. The plot indicates the production of benzil reached a maximum ($\sim 85 \%$) at $-42^{\circ} \mathrm{C}$. At lower temperatures increasing amounts of diphenylacetylene were recovered, indicating insufficient time for the completion of reaction of ozone with the acetylene, and at higher temperatures increasing amounts of benzoic anhydride are isolated. The reactions of ozone with alkynes are known to be significantly slower than ozone's reactions with alkenes. ${ }^{10}$ The lack of reaction at the lowest temperature is therefore not surprising. The increasing benzil/benzoic anhydride ratios with

Table II. Ratio of Benzil to Benzoic Anhydride Acid on Addition of $\mathbf{P h}_{2} \mathbf{S} 2$ Min after Ozonolysis

	Benzil/ benzoic anhydride acid	$T,{ }^{\circ} \mathrm{C}$	Benzil// benzoic anhydride acid
+20	0.59	-42	5.7
0	1.8	-62	8.1
-23	3.8	-93	16.

decreasing temperature (see Table II) can only be explained by the trapping (by reduction) of some thermally unstable species. Reasonably stable at $-42^{\circ} \mathrm{C}$, it is, on warming or carrying out the reaction at higher temperatures, converted to benzoic anhydride.

Product trapping by reduction as a function of time at a fixed temperature was performed. Addition of ozone to a solution of diphenylacetylene in acetone kept at $-42 \pm 2^{\circ} \mathrm{C}$, with subsequent periodic withdrawals of aliquots of solution, was carried out. The aliquots were added to individual solutions of diphenyl sulfide in acetone at $-42^{\circ} \mathrm{C}$. Workup and analysis of the quenched (by reduction) aliquots showed decreasing amounts of benzil and increasing amounts of benzoic anhydride as shown in Table III. If it is assumed that at $-42{ }^{\circ} \mathrm{C}$ the

Table III. Percent Yield of Benzil on Addition of $\mathrm{Ph}_{2} \mathrm{~S}$ after Varying Periods of Time after Ozonolysis
T.me, min $\%$ yield of benzil $\left(-42^{\circ} \mathrm{C}\right)$

T.me, min	\% yield of benzil $\left(-42^{\circ} \mathrm{C}\right)$
0	79
15	59
30	55
45	31
60	25

ozone and diphenylacetylene reacted rapidly to give a thermally unstable species, and that the yield of benzil produced by reduction represents the concentration of that thermally unstable species, then the rate constant for disappearance of the unstable precursor can be obtained from a plot of the log of the benzil yield vs. time. Such a plot is linear (see supplementary material) and the slope gives a rate constant of 3.3 $\pm 0.8 \times 10^{-4} \mathrm{~s}^{-1}$ and a half-life of $\sim 35 \pm 10 \mathrm{~min}$ at $-42^{\circ} \mathrm{C}$.

The nature of the transformation of this precursor species to benzoic anhydride has been further probed using energy acceptors capable of fluorescence. A solution of the precursor was prepared in acetone at $-42^{\circ} \mathrm{C}$; excess or unreacted ozone was swept out by passing a stream of dry cooled nitrogen through the solution. To these solutions was added 9,10 -diphenylanthracene, a known singlet energy acceptor. ${ }^{13}$ On warming, the solutions were observed to chemiluminesce with the characteristic yellow-green color of the 9,10-diphenylanthracene fluorescence. Control experiments indicated the necessary presence of the benzoic anhydride precursor and the fluorescer to observe chemiluminescence.

Scheme II summarizes the suggested mechanism for the reaction. It is constructed in analogy with the well-studied reactions of alkenes, as well as solvent trapping and product study work done by others (already mentioned) on alkyneozone reactions. Species II, a $1,2,3$-trioxolene, is just the 1,3-dipolar cycloaddition product of ozone and the alkyne and is analogous to the $1,2,3$-trioxolane product from the addition of ozone to an alkene. Species III is an α-carbonyl carbonyl oxide. It is not clear whether II and III are in fact in equilibrium as suggested by Keay and Hamilton, and are the precursor to the benzoic anhydride. ${ }^{9}$

It is also possible species IV is the relatively stable benzoic anhydride precursor. Its formation is analogous to the addition of the carbonyl oxide to ketones and aldehydes in alkene ozonolyses to produce 1,2,4-trioxolanes (secondary ozonides) as shown below. Also the rate constant for transformation of

a species like IV to products would be relatively insensitive to polar substituent and solvent effects, a characteristic found for simple alkynes. ${ }^{10}$ The exceptional stability (considering their strain and peroxidic nature) of dioxetanes (for cis-diethoxydioxetane $t_{1 / 2}=10 \mathrm{~min}$ at $50^{\circ} \mathrm{C}$) also lends support for the possible existence of IV. ${ }^{13}$ In addition, the observation of chemiluminescence on decomposition of the precursor in the
presence of fluorescers serves as a direct indication of the presence of IV, even if only as a fleeting species.

It should be noted that the scheme presented in speculative. Other possibilities also present themselves. As noted by a referee species III may be a direct precursor to the chemiluminescence and the benzoic anhydride, although there is little precedent for the reaction. Also homolytic cleavage of species II to give a diradical is a possibility. This type of cleavage is suggested in gas phase ozone reactions. ${ }^{14}$

In conclusion the evidence presented lends supports for the existence of the relatively stable precursor $t_{1 / 2}=35 \mathrm{~min},-42$ ${ }^{\circ} \mathrm{C}$) to the isolable products from the ozonolysis of diphenylacetylene.

Acknowlegment. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.

Supplementary Material Available. Plot of the log of the benzil yield vs. time to addition of $\mathrm{Ph}_{2} \mathrm{~S}$ and experimental precedures (3 pages). Ordering information is given on any current masthead.

References and Notes

(1) R. Criegee, Angew. Chem., Int. Ed. Engl., 14, 745 (1975), and references therein.
(2) C. Hurd and R. D. Christ, J. Org. Chem., 1, 141 (1936).
(3) T. L. Jacobs, J. Am. Chem. Soc., 58, 2272 (1936).
(4) E. Dallwigh, H. Paillard, and E. Briner, Helv. Chim. Acta, 35, 1377 (1952).
(5) R. Criegee and M. Lederer, Justus Liebigs Ann. Chem., 583, 29 (1953).
(6) P. S. Bailey, Y.-G. Chang, and W. Kwie, J. Org. Chem., 27, 1198 (1962).
(7) W. B. DeMore and C.-L. Lin, J. Org. Chem., 38, 985 (1973).
(8) N. C. Yang and J. Libman, J. Org. Chem., 39, 1782 (1974).
(9) R. Keay and G. A. Hamilton, J. Am. Chem. Soc., 97, 6876 (1975).
(10) D. J. Miller, T. E. Nemo, and L. A. Hull, J. Org. Chem., 40, 2675 (1975).
(11) H. Wasserman and I. Sarto, J. Am. Chem. Soc., 97, 905 (1975).
(12) K. Gallaher and R. Kuczkowski, J. Org. Chem., 41, 892 (1976).
(13) T. Wilson, D. Golan, M. Harris, and A. Baumstark, J. Am. Chem. Soc., 98, 1086 (1976).
(14) H. E. O'Neal and C. Blumstein, Int. J. Chem. Kin., 5, 397 (1973).
S. Jackson, L. A. Hull*

Chemistry Department, Union College
Schenectady, New York 12308
Received July 6, 1976

CARBONIUM IONS, Vol. 5

 Miscellaneous Ions, Theory and StructureEdited by George A. Olah \& Paul von R. Schleyer
A supplementary volume which continues critical coverage of reactive intermediates from the perspectives of formation, isolation, physical characterization, and reactions CONTENTS: Tertiary Oxonium Ions Acylium Ions (Acyl Cations). Halogenated Carbocations Carbonium Ions Pi Complexed to Metal Atoms Molecular Orbital Theory of Carbocations. Crystal Structures of Carbonium Ions. Reactive Intermediates in Organic Chemistry Series. 544 pp . (0 471 65342-X) 1976 \$42.00

PROGRESS IN PHYSICAL ORGANIC CHEMISTRY,

Vol. 12

Edited by Robert W. Taft
PARTIAL CONTENTS: Nature and Analysis of Substituent Electronic Effects. Classic Mechanism for Aromatic Nitration. Analysis of Ortho Effect. Quantitative Models of Steric Effects. Alkyl Inductive Effect 400 pp (0 471 01738-8) 1976 \$32.95

THE BIOSYNTHESIS OF

 AROMATIC COMPOUNDS Ulrich Weiss \& J. Michael
Edwards

A comprehensive review of the chemical processes and substances involved in the formation of benzenoid rings by living organisms.
Emphasizes the chemical nature of low molecular compounds that form the substrates of the biosynthetic processes, rather than the enzymatic catalysts that usually promote these reactions.
approx. 832 pp .
(0 471 92690-6)
1976 \$24.95 (tent.)

PEPTIDE SYNTHESIS, 2nd Ed.

Miklos Bodansky, Yakir

Klausner, \& Miguel A. Ondetti An updated introduction to the concepts, problems, and literature of peptide synthesis, including a historical introduction, problems of protection, formation of the peptide bond, racemization, techniques, and detailed strategies and tactics
240 pp . (0 471 08451-4)
1976 \$19.50

INTRODUCTION TO POLYMER SCIENCE AND TECHNOLOGY
 An SPE Textbook

Edited by Herman S. Kaufman Associate Editor: Joseph J.

Falcetta

Provides a comprehensive background on making, characterizing. and using polymers.
approx. 624 pp. (0 471 01493-1)
1976 \$27.50

Organic Chemistry Highlights ... from WileyInterscience

VIBRATIONAL SPECTRA OF ORGANOMETALLIC COMPOUNDS
 Edward Maslowsky, Jr.

A comprehensive discussion of the application of infrared and Raman spectroscopy to the study of structures and bonding of organometallic compounds
approx. 448 pp (0 471 58026-0; $1976 \$ 24.95$ (tent.)

ORGANIC REACTION MECHANISMS
 1974 Reprint A,

Survey Covering the Literature from December 1973 to November 1974
\& Reprint B, Radical Reactions.
Oxidation and Reduction
Edited by A.R. Butler \& M.J.
Perkins
CONTENTS: Reprint A-
Reactions of Aldehydes and Ketones and their Derivatives. Reactions of Acids and their Derivatives
Reprint B-Radical Solutions.
Oxidation and Reduction
Reprint A 67 pp .
(0471 01531-8) 1976
Reprint B 156 pp
(0 471 01532-6) 1976
$\$ 3.95$
$\$ 5.95$

ORGANIC PHOTOCHEMICAL

SYNTHESES, Vol. 2
Edited by R. Srinivasan
Associate Editors: T.D. Roberts \&
Jan Cornelisse
Contains 41 examples of synthetic procedures in organic photochemistry. Reflects recent progress in discovery and investigation of new photochemical reactions.
144 pp.
1976
$\$ 1995$
1976 \$19.95

IMINIUM SALTS IN ORGANIC

CHEMISTRY, Part 1

Edited by H. Bohme \&

H.G. Viehe

PARTIAL CONTENTS: The Elec-
tronic Structure of Iminium Ions Structure Determination of Iminium Salts by Physical Methods. Methyleniminium Salts a-haloenamines and Keteniminium Salts. H-Heteroiminium Salts
592 pp.
(0471 90692-1)

1976
$\$ 42.50$

ORGANIC SYNTHESES VIA
METAL CARBONYLS, Vol. 2
Edited by Irving Wender \& Piero

Pino

Provides necessary background and points the way to areas neecing further research in carbon monoxide and homogeneous chemistry
736 pp. (0 471 93367-8)
$1976 \$ 45.00$

CONTAMINATION CONTROL IN TRACE ELEMENT ANALYSIS

Morris Zief \& James W. Mitchell
A state-of-the-art review of practical contamination control techniques.
272 pp. (0 471 61169-7)
1976 \$22.50

SYMMETRY RULES FOR CHEMICAL REACTIONS Orbital Topology and Elementary Processes

Ralph G. Pearson
Discusses the detailed paths of important elementary reactions (concerted processes) of both organic and inorganic molecules.
560 pp (0 471 01495-8) 1976 \$24.50

SPECTRAL AND CHEMICAL CHARACTERIZATION OF ORGANIC COMPOUNDS

A Laboratory Handbook

W.J. Criddle \& G.P. Ellis

Emphasizes spectral properties of organic compounds and recognition of unknown compounds by characteristic chemical reactions.
103 pp.
1976
(0 471-8767-4)
$\$ 12.00$ cloth
(0 471 01499-0) $\$ 5.50$ paper

SPECIAL TOPICS IN HETEROCYCLIC CHEMISTRY,

 Vol. 30Edited by Arnold Weissberger \& Edward C. Taylor
PARTIAL CONTENTS: Indolizine and Aza-Derivatives With Additional Nitrogens in the Five-Membered Ring. The Chemistry of Cyclazines. Dithiole and Dithiolium Systems. Heteropentalenes. Borazaronatic Compounds
608 pp . (0 471 67523-X)
1976 \$57.50

Available at your booksto e or write to Nat Bodian, Dept. 2091.

WILEY-INTERSCIENCE

a division of
John Wiley \& Sons, Inc. 605 Third Avenue
New York, N.Y. 10016
In Canada:
22 Worcester Road
Rexdale, Ontario
Prices subject to change without notice.
oc2 A 2091-51

EEDQ \{N-Ethoxycarbonyl-

 2-ethoxy-1,2-dihydroquinoline\}

EEDQ

EEDQ is a convenient coupling reagent for the synthesis of peptides and amides. It enables the coupling of acyl amino acids and amino acid esters in high yield in a single operation without racemization of products. ${ }^{1}$ This facile coupling reaction can be carried out at room temperature in benzene, ethanol, methanol, THF or any other nonacidic solvent. ${ }^{2}$

EEDQ is preferred to other coupling agents in that no solid by-products are formed, thereby eliminating complicated isolation procedures. The quinoline, carbon dioxide and ethanol formed as by-products are volatile and easily removed by flash-distillation of the reaction mixture.

In the Merrifield solid-phase coupling of BOC-amino acids and peptide resins, EEDQ is preferred over the commonly used dicyclohexylcarbodiimide (DCC) for the following reasons: ${ }^{3}$
a) All operations can be performed with a highly swollen resin to obtain better yield and quality of products.
b) A single solvent suffices as opposed to the several different solvents needed when DCC is used.
c) Only a 100% molar excess of BOC-amino acid and EEDQ is needed for quantitative coupling.
d) Threonine, serine, and tyrosine can be used without sidechain protection to give good yields of peptide.
EEDQ has also been incorporated into an insoluble polymer derived from styrene and divinylbenzene for the solid-phase coupling of peptides. The polymeric form,
although somewhat less effective than the monomeric form. is comparable to the widely used dicyclohexylcarbodiimideN -hydroxysuccinimide combination. ${ }^{4}$

The preparation of amides using EEDQ is superior to the classical acid anhydride method as well as the isocyanate and dicyclohexylcarbodiimide methods. Amides of lithocholic acid-3-formate were reported to be synthesized in satisfactory yields using EEDQ. ${ }^{5}$

EEDQ was found to be a powerful, centrally active, irreversible α-adrenergic blocking agent in animals when administered by the parenteral route. ${ }^{6-9}$

We also offer the analogous IIDQ (2 -isobutoxy-1-isobutoxycarbonyl-1.2-dihydroquinoline) as well as DCC and many other coupling reagents. For a complete listing of Aldrich Peptide Reagents, see p970 of the 1977-78 Catalog/Handbook.
References:

1) B. Belleau and G. Malek, J. Amer. Chem. Soc., 90, 1651 (1968).
2) N. Itumiya and M Muraoka, ibid.. 91, 2391 (1969).
3) F. Sipos and D.W. Gaston, Synthesis, 321 (1971).
4) J. Brown and R.E. Williams, Can. J. Chem., 49, 3765 (1971).
5) J.E. Herz and R.E. Mantecon, Org. Prep. Proc. Int., 4, 129 (1972)
6) R. Belleau, R. Martel, G. Lacasse, M. Ménard. N.L. Weinberg, and Y.G Perron. J. Amer. Chem. Soc., 90, 823 (1968).
7) R Belleau. Pharmacol. Rev.., 18, 131 (1966).
8) R. Martel, B Berman, and B Belleau. Can. J. Phisiol. Pharmacol., 47, 909 (1969)
9) B.M. Bloom and I.M. Goldman. Advan. Drug Res., 3. 121 (1966).

14,983-7 EEDQ, 99+\%, Gold Label*.
5g \$5.50
25g \$18.45
15,207-2 EEDQ, $97+\%$ *...............25g $\$ 7.20 ; 100 \mathrm{~g} \$ 18.95$
17,824-1 IIDQ............................25g \$11.55; 100g \$30.80
D8000-2 DCC 25g \$3.00; 100g \$10.00; 1kg \$64.00
*Licensed under U.S. Patent 3.389.142

Coupling Reactions with EEDQ ${ }^{1}$

	Starting Acid and Amine	Product
i)	Benzoic + Aniline	Benzanilide
ii)	L-Bz-Leu + Gly-OEt	L-Bz-Leu-Gly-OEt
iii)	Bz-Gly + Gly-OEt	Bz-Gly-Gly-OEt
iv)	Bz-Gly + Aniline	Bz-Gly-anilide
v)	CBZ-L-Ala + L-Ala-OEt	CBZ-L-Ala-L-Ala-OEt
vi)	CBZ-L-Ala + Gly-OEt	CBZ-L-Ala-Gly-OEt
vii)	p-Nitrobenzoic + DL-Ser-OEt	p-Nitro-Bz-Ser-OEt
viii)	Cinnamic + imidazole	Cinnamoylimidazole

Aldrich Chemical Company, Inc.

Craftsmen in Chemistry

Corporate Offices
Aldrich Chemical Co., Inc.
940 W. Saint Paul Ave.
Milwaukee, Wisconsin 53233
U. S. A.

Great Britain:
Aldrich Chemical Co., Lid. The Old Brickyard, New Road Gillingham, Dorset SP8 4JL England

Belgium/
Continental Europe:
Aldrich-Europe
B-2340 Beerse Belgium

[^6]
[^0]: ${ }^{a}$ All measurements at 60 or $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ solvent $\left(+1 \% \mathrm{Me}_{4} \mathrm{Si}\right)$ ca. $27^{\circ} \mathrm{C}$. Multiplicity of signal and coupling constant (Hz) in parentheses. ${ }^{b}$ A broad NH signal ($\sim 20 \mathrm{~Hz}$) appears near $\delta 2.0-2.5$ in all spectra except where noted otherwise. ${ }^{c}$ Broadened signal ($\sim 2 \mathrm{~Hz}$) which sharpens on addition of $\mathrm{D}_{2} \mathrm{O}$, apparently due to unresolved NH proton coupling. ${ }^{d}$ Indicated splitting due to NH proton, collapses on addition of $\mathrm{D}_{2} \mathrm{O}$.

[^1]: * Rice University.

[^2]: ${ }^{+}$Agricultural Research Service, U.S. Department of Agriculture, Laramie, Wyo. 82071.

[^3]: ${ }^{\dagger}$ Agricultural Research Service, U.S. Department of Agriculture, Laramie, Wyo. 82071.

[^4]: * Permanent address: Département de Chimie, Université de Moncton, Moncton, N. B., Canada.

[^5]: a The reductions were conducted at ambient temperature as 0.4 M solutions of the compound in ethanol using a 10% mole excess of $\mathrm{NaBH}_{3} \mathrm{CN}$. Bromocresol green was employed as an indicator and the solutions were acidified with concentrated $\mathrm{HCl} .^{b}$ Isolated yields, purified by distillation or recrystallization. GLC yields are corrected for detector response and utilized an internal standard. All known compounds corresponded to literature descriptions. New compounds gave satisfactory elemental analyses copies of which have been provided to the Editor (exception, entry 10). ${ }^{c}$ No acid used. ${ }^{d}$ Reaction was conducted in methanol; yield of crude product. ${ }^{e} 69 \%$ recovery of starting material. $f 93 \%$ recovery of starting material.

[^6]: West Germany/
 Continental Europe:
 EGA-Chemie KG
 7924 Steinheim am Albuch
 West Germany

