THE JOURNAL OF Organic Chemistry

PUBLISHED BIWEEKLY BY THE AMERICAN CHEMICAL SOCIETY

Now your J.T. Baker distributor can also ship you things he doesn't have!

How can your Baker distributor ship you things he doesn't have? Easy. He now can immediately contact the Baker Super Service Center and in almost every instance-have the desired item shipped directly to you within 24 hours. It's as though your J. T. Baker distributor has just added the largest reagent warehouse in the world to his backyard to serve you. (To super-serve you.)

Now depend on your nearest Baker distributor for all of your laboratory reagent needs.

And do you have our new 428-page Catalog 750 featuring thousands of Baker quality laboratory chemicals? If not, please write. Thanks.

And, of course, J. T. Baker's Super Service is also available for...

NEW ORGANICS.

J. T. Baker continues to expand its line of high-quality organics with compounds like these:
N.N'-Bis-(3-aminopropyl)-1,3-propanediamine, 1-Bromo-4-iodobenzene.

Ethyl Aceto(1-adamantyl)acetate
Plus new "Baker Analyzed" Reagents for organic chemistry with the lot analysis on the label. Examples:
2,4-Pentanedione, Ether, Insta-Start ${ }^{\text {tn } * *}$, THF insta-Start ${ }^{\text {re* }}$, Ammonium Sulfamate, 2-Methoxyethanol

J. T. Baker Chemical Co., 222 Red School Lane. Phillipsburg, N J 08865 201859-5411

ADVANCES IN HETEROCYCLIC CHEMISTRY

edited by A. R. KATRITZKY and A. J. BOULTON
SUPPLEMENT 1/ THE TAUTOMERISM OF HETEROCYCLES
by J. ELGUERO, CLAUDE MARZIN, f. R. KATRITZKY, and PAOLO LINDA
CONTENTS: 7uthors' Preface (or How to Use the Book). Aims and Purpose (or Why You Should Use the Book). The Nature or Heteroatomic Tautomerism. Six-Membered Rings. Five-Nembered Rings and One Heteroatom. Five-
Membered Rngs with Two or More Heteroatoms. Purines
and Other Condensed Ring Systems with Heteroatoms in Both Rings. Tautomerism Involving Rings Other Than Five-and Six-Membered Rings. Bibliography and Explanation of the Reference System.
1975, 672 pp., $\$ 54.00 / £ 27.80$

ALDEHYDES-PHOTOMETRIC ANALYSIS

VOLUMES 1, 2, and 3
by EUGENE SAWICKI and CAROLE F:. SAWICKI
(Number 9 in The Analysis of Organiz Materials/An International Series of Monographs/series editors: R Belcher and D. M. W. Anderson)

Volumes \uparrow and 2 deal with the current state of the art, and describe the photometric analysis of aldehydes (as photometry i_{s}, by far, the most popular analytical technique used wor this purpose); there are discussions on spectro-photometric, colorimetric, fluor metric, phosphorimetric, quenchofluorimetric and quenchophosphorimetric methods The content includes analytical data for 66 aldehydes, ajproximately 165 figures, 142 tables, about 2050 references and a very large number of detailed ana-
lytical procedures Volume 3 is the first of a set of five volumes which will discuss the many aspects of the photometric analysis of precursors through their derived aldehydes and also the formation of aldehydes through a variety of reactions.

Volume 1/1975, 312 pp., \$27.25/£ 10.50
Volume 2/1975, 368 pp., \$28.00/£ 10.80
Volume 3/1975, 332 pp., $\$ 28.00 / £ 10.80$

CHEMICAL ANALYSIS OF ORGANOMETALLIC COMPOUNDS

VOLUME 4
by T. R. CROMPTON
(Number 4 in The Analysis of Organic Materials/An Internationa Series of Monographs/series editors: R. Belcher and D. M. W. Anderson)

This is the fourth volume in this critcal review of the organometalic compounds of all the elements, compounds which are attracting increasinc interest all over the world. Tr ere is a main chapter on the analysis of organophospherus compounds, and minor chapters on organoarsenic, organoantimony and organobismuth com-
pounds. Each chapter provides a complete review of all aspects of the analysis of the organocompounds in question, together with critical comments on the relative importance, merits and demerits of the various methods.

1975, 292 pp., $\$ 24.25 / £ 9.40$

ADVANCES IN ORGANOMETALLIC CHEMISTRY

VOLUME 14

edited by F. G. A. STONE and ROBE QT WEST

CONTENTS: E. O. Fischer, On the Way to Carbene and Carbyne Complexes. S. D. Ittel and J. A. Ibers, Coordination of Unsa urated Molecules to Trans tion Metals. V'. S. Petrosyan e^{-}al., Methyltin Halides and Their Molecular Complexes. D. Seyferth, Chemistry of Sarbon-Functional Alkylidynetrisobalt Nonacarbonyl Clusters Complexes. K. P. Callahan ョnd M. F. Hawthorne, Ten Years of Metallocarboranes. R. Okawara and Y. Matsumura, Recent Ad-
vances ir Organjantimony Chemistry. H. Schmidbaur, Pentalkylidene Trialkyls of the Group V Elements. S. Otsuka and A. Nakamura, Acetylene and Allene Complexes: Their Imp ication in Homogeneous Catalysis. P. Chini et al., High Nuclearity Meial Carbonyl Clusters. M. F. Lappert and P. W. Lednor, Free Radicals in Organometallic Chemistry.
1976, in preparation

DETERMINATION OF ORGANIC STRUCTURES BY PHYSICAL METHODS

VOLUME 6
edited by F. C. NACHOD, J. J. ZUCKERMAN, and EDWARD W. RANDALL

CONTENTS: P. J. Arpino and F. W. McLafferty, Amino Acid Sequercing of Oligopeptides by Mass Spectrometry. G. M. Pesyns and F. W. McLafferty, Computerized Structure Retrieval and Interpretation of Mess Spectra. R. L. Strong, Flas) Photolysis and Structure. J. Schraml and J.
M. Bel!ama, ${ }^{29} \mathrm{~S}$ Nuclear Magnetic Resonance. J. K. Saunders and J. W. Easton, The Nuclear Overhauser Effect. L. Lunazzi, Molecular Structures by NMR in Liquid Crystals.
1976, about 500 pp ., in preparation

the journal of Organic Chemistry

EDITOR-IN-CHIEF: FREDERICK D. GREENE
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

SENIOR EDITORS

Werner Herz
Florida State University
Tallahassee, Florida
James A. Moore
University of Delaware
Newark, Delaware
Martin A. Schwartz
Florida State University
Tallahassee, Florida

ASSISTANT EDITOR: Theodora W. Greene

Robert A. Benkeser	Neville Finch	Willizm M. Jones	Albert I. Meyers	Henry Rapoport
John I. Brauman	Paul G. Gassman	Jzy K. Kochi	John G. Moffatt	William Sheppard
Orville L. Chapman	Ralph Hirschmann	James A. Marshall	Roy A. Olofson	Robert V. Stevens
Stanton Ehrenson	Donald M. Jerina	James C. Martin	Leo A. Paquette	Barry M. Trost
David A. Evans	Carl R. Johnson		Marvin L. Poutsma	Nicholas J. Turro

EX-OFFICIO MEMBERS: George H. Coleman, Sanibel Island, Florida
Edward M. Burgess, Georgia Institute of Technology (Secretary-Treasurer of the Division of Organic Chemistry of the American Chemical Society)

\section*{Published by the}
 AMERICAN CHEMICAL SOCIETY

BOOKS AND JOURNALS DIVISION

D. H. Michael Bowen, Director

Editorial Department: Charles R. Bertsch, Head; Marianne C. Brogan, Associate Head; Eileen B. Segal, Production Editor; Fern S. Jackson, Assistant Editor: Andrew J. D’Amelio, Editorial Assistant; Jane U. Lutick, Production Assistant.
Graphics and Production Department: Bacil Guiley, Head
Research and Development Department: Seldon W. Terrant, Head

Advertising Office: Centcom, Ltd., 50 W. State St., Westport, Conn. 06880.
(C) Copyright, 1976, by the American Chemical Society. No part of this publication may be reproduced in any form without permission in writing from the American Chemical Society.

Published biweekly by the American Chemical Society at 20th and Northampton Sts., Easton, Pa. 18042. Second class postage paid at Washington, D.C., and at additional mailing offices.

Editorial Information

Instructions for authors are printed in the first issue of each volume. Please conform to these instructions when submitting manuscripts.

Manuscripts for publication should be submitted to the Editor, Frederick D. Greene, at his Cambridge, Mass., address.

Correspondence regarding accepted papers and proofs should be directed to the

Editorial Department at the ACS Easton address.

Page charges of $\$ 70.00$ per page are assessed for papers published in this journal. Ability to pay does not affect acceptance or scheduling of papers.

Bulk reprints or photocopies of individual articles are available. For information write to Business Operations, Books and Journals Division, at the ACS Washington address. Requests for permission to reprint should be directed to Permissions, Books and Journals Division, at the ACS Washington address.

The American Chemical Society and its Editors assume no responsibility for the statements and opinions advanced by contributors.

Subscription and Business Information

1976 subscription rates-including surface postage:

	Do-	Canada,	
mestic	PUAS	Foreign	
Member	$\$ 26.00$	$\$ 33.25$	$\$ 34.25$
Nonmember	104.00	111.25	112.25
Supplementary	15.00	19.00	20.00
\quad material			

Air mail and Air freight rates are available from Membership \& Subscription Services, at the ACS Columbus address.

New and renewal subscriptions should be sent with payment to the Office of the Controller at the ACS Washington address. Changes of address must include both old and new addresses with ZIP code and a recent mailing label. Send all address changes to the ACS Columbus address. Please allow 6 weeks for change to become effective. Claims for missing numbers will not be allowed if loss was due to failure of notice of change of address to be received in the time specified; if claim is dated, (a)

North America, more than 90 days beyond issue date, (b) all other foreign, more than one year beyond issue date; or if the reason given is "missing from files". Hard copy claims are handled at the ACS Columbus address.

Microfiche subscriptions are available at the same rates but are mailed first class to U.S. subscribers, air mail to the rest of the world. Direct all inquiries to Business Operations, Books and Journals Division, at the ACS Washington address or call (202) 872-4444.

Single issues in hard copy and/or microfiche are available from Special Issues Sales at the ACS Washington address. Current year $\$ 5.00$. Back issue rates available from Special Issues Sales. Back volumes are available in hard copy and/or microform. Write to Special Issues Sales at the ACS Washington address for further information. Microfilm editions of ACS periodical publications are available from volume 1 to the present. For further information, contact Special Issues Sales at the ACS Washington address.

Supplementary material must be ordered directly from Business Operations, Books and Journals Division, at the ACS Washington address. Orders over 20 pages

> PUAS, Other
U.S. Canada Foreign
$\begin{array}{lrrr}\begin{array}{l}\text { Microfiche } \\ \text { Photocopy } \\ 1-7 \text { pages }\end{array} & \$ 2.50 & \$ 3.00 & \$ 3.50 \\ 8.00 & 5.50 & 7.00\end{array}$

$1-7$ pages	4.00	5.50	7.00
$8-20$ pages	5.00	6.50	8.00

are available only on microfiche, 4×6 in., $24 \times$, negative, silver halide. Orders must state photocopy or microfiche if both are available. Full bibliographic citation including names of all authors and prepayment are required. Prices are subject to change.

American Chemical Society
1155 16th St., N.W.
Washington, D.C. 20036
(202) 872-4600

Membership \& Subscription Services
American Chemical Society
P.O. Box 3337

Columbers, Ohio 43210
(614) 421-7230

Editorial Department
American Chemical Society
20th and Northampton Sts.
Easton, Pa. 18042
(215) $258-9111$

mwa somano or Organic Chemistry์

Volume 41, Number 5
MARCH 5, 1976

Joseph Wolinsky,* Gregory W. Clark, and Patricia C. Thorstenson	745	Alkylidenecarbenes from Acyclic Vinyl Bromides and Potassium tert-Butoxide
William Adcock, B. D. Gupta, T. C. Khor, David Doddrell, and William Kitching*	751	Carbon-13 Nuclear Magnetic Resonance Studies of Benzocycloalkenes and Fluorobenzocycloalkenes
Maxwell Bullpitt, William Kitching,* David Doddrell, and William Adcock	760	The Substituent Effect of the Bromomethyl Group. A Carbon-13 Magnetic Resonance Study
Neal O. Brace* and James E. Van Elswyk	766	Evidence for Free-Radical Reductive Dehalogenation in Reaction of Zinc and Acid with 1-Perfluoroakyl-2-iodoalkanes and with 1-Perfluoroalkyl-2-iodoalkenes
Naotake Takaishi, Yoshiaki Inamoto,* Kiyoshi Tsuchihashi, Koji Aigami, and Yoshiak: Fujikura	771	Hydride Transfer Reduction-Rearrangements of Tricyclodecylcarbinols and Tricycloundecanols. Formation of Tricyclo[6.2.1.0 ${ }^{2}$] undec-2(6)-ene under Phosphoric Acid Catalysis
Benjamin Bartman, Edward C. Gordon, Maria Gonza ez-Kutas, Donald S. Neyce,* and Bonnie B. Sandel	776	Transmission of Substituent Effects. Correlation of Methyl to Hydrogen Rate Ratios in Diverse Heterocyclic Systems with CNDO/2 Parameters
Peter J. Stang* and Albert G. Anderson	781	Hammett and Taft Substituent Constants for the Mesylate, Tosylate, and Triflate Groups
S. Richter, I. Bregovec, and D. E. Sunko*	785	Secondary Deuterium Isotope Effects in the Solvolysis of cis- and trans-2-Acetoxycyclohexyl 2,, 2 -Trifluoroethanesulfonates
T. W. Gibson* and P. Strassburger	791	Sulfinic Acid Catalyzed Isomerization of Olefins
John $\mathrm{F}^{\text {. Knifton }}$	793	Linear Carboxylic Acid Esters from α Olefins. I. Catalysis by Homogeneous Platinum Complexes
Guilford Jones, II,* and B. R. Ramechandran	798	Catalytic Activity in the Reversion of an Energy Storing Valence Photoisomerization
William H. Pirkle* and J. R. Hauske	801	Conformational Control by Carbinyl Hydrcgens. Implications and Applications
Howard Alper* and Daniel Les Roches	806	Dehalogenation and Condensation Reactions of Molybdenum Carbonyls with Activated Halides
L. F. Charbonneau and Stanley G. Smith*	808	Kinetics of the Reaction of n-Butyllithium with 4-Methylmercaptoacetophenone in Benzere
K. T. Potts, ${ }^{*}$ J. Baum, S. K. Datta, and E. Houghton	813	Mesoionic Compounds. XXXV. Cycloaddition Reactions of the anhydro-4-Hydroxythiazolium Hydroxide and anhydro-5-Hydroxyoxazolium Hydroxide Systems with Heterocurrulenes
K. T. Potts, * J. Baum, and E. Houghton	818	Mesoionic Compounds. XXXVI. Reaction of Mesoionic Systems with Diphenylcyclopropene Derivatives
Gary M. Coppola, Goetz E. Hardtnann,* and Oskar R. Pfister	825	Chemistry of 2 H -3,1-Benzoxazine-2,4(1 H)-dione (Isatoic Anhydride). 2. Reactions with Thiopseudcureas and Carbanions
Larry A. Wendling and Robert G. Bergman*	831	Thermal Decomposition of 2 H -Azirines. Formation of Products Resulting from Carbon-Carbon Bond Cleavage
Alexander L. Johnson	836	A Convenient Two-Step Synthesis of 4-(2-Imidazolyl)phthalazones from o-Phthaloyl Dichloride $\text { - 2. 2ิ.!. } 2510$

MAKING IT WITH SULFUR

Sultur activated methylenes undergo typical reactions of other activated methylenes (Aldol. Alkylation, Mannich. Thorpe, Claisen, etc.) In addition they impart unique qualities to the molecules they inhabit, making them some of the most versatile of all synthetic intermediates

1. Bis Sulfur Activated Methylenes: Bis sulfur activated methylenes form stable carbanions, can be alkylated, and can be hydrolized to carbonyls. They are the equivalents of ACYL ANIONS Typical of this group are Methyl methylsulfinylmethyl sulfide (MMSMS) and m-Dithiane. They are readily aklylated or diakylated, yielding aldehydes or ketones

$$
\mathrm{CH}_{3} \stackrel{\mathrm{O}}{\mathrm{O}}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{3} \frac{\text { I) } 2 \mathrm{KH}}{2) \times\left(\mathrm{CH}_{2}\right)_{3} \mathrm{X}} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\oplus}} \square^{\mathrm{O}} \text { ref } 1
$$

MMSMS may also be used to prepare esterš. phenylacelic acids ${ }^{3}$. and amino acids. ${ }^{4}$ m-Dithiane may be used to prepare $\|$-diketones. β-ketoaldehydes "-ketoacids. and 2 -hydroxy-1.3-diketones ${ }^{5}$. m-Dithiane offers the additiona advantage that it is stable to aqueols acid allc.wing the selective protection of one carbonyl in a dicarbonyl system.

Alkylated dithianes may also be corverted to hydrocarbons by Raney nickel desulfurization

2-Aryl-m-dithianes are prepared from the reaction of the appropriate aldehyde with 1, 3-Propanedithiol', and are useful for the preparation of aryl ketones and cyclophanes. It has recently been shown that 2, 2'-Ethylene bis (mdithiane) is readily monoaklylated and that I may subsequently be further alkylated to yield γ-diketones ${ }^{7}$

II. Preparation of Allylic Alcohols: Alkylation of allyl phenyl sulfoxide Followed by treatement with sodium thiophenoxide or trialkylphosphite yields higher allylic alcohols in good yield. ${ }^{8}$

III. Introduction of an Optically Active Center. The methylene protons of Benzyl methyl sulfoxide are not equivalent. and only one is extracted to form a stable. optically active carbanion. Alkylation with a carbonyl compound and eventual displacement of the sulfur moiety provides an optically active product. The actual isomer obtained may be predicted from projection diagrams provided by Dorst. who tirst described this technique.'

IV. 1, 5-Dienes (Head to Head Coupled Allylics): It is often useful to prepare 1. 5 -dienes without disturbing the stereochemistry of the starting "ene's. Sulfonyl activated methylenes provide two timely techniques by which this may be accomplished. (A) Methyl phenylsulfonylacetate is alkylated with an aldehyde and then with the palladium chloride complex of an alkene. The ester and the sulfone moieties are then removed stepwise ${ }^{9}$.

(B) Allyl phenyl sulfone may be alkylated with any allylhalide (geranyl bromide, farnesyl bromide, etc.) and the aryl sulfone removed Larger ally phenyl sulfones may be prepared by reacting Benzene or Toluene sulfinic acid sodium salt with the appropriate allyl halide This technique has been used to prepare all trans Squalene in high yield ${ }^{10}$

1) Tetrahedron Lett. 3653 (1974): 2) Tetrahedron Lett., 659 (1974); 3) Tet rahedron Lett., 1383 (1972): 4) J. Amer. Chem. Soc., 96. 1960 (1974): 5) J Org Chem., 40, 231 (1975): 6) J. Org. Chem., 31, 4303 (1974): 7) J Org Chem., 40, 1131. (1975): 8) J. Amer. Chem. Soc., 93, 4956(1971): 9) J. Org Chem., 40 (1975): 10) J. Org. Chem, 39, 2135 (1974): 11) J. Amer. Chem Soc.. 93. 3077 (1971). Chem Comm., 1334 (1971)

For a more complete review of these and many more usetul and unique reactions of sulfur activiated methylenes. write for a free brochure entitled - Making it With Sulfur

For a complete listing of the more than 1000 compounds we offer write for our catalog "The Philosopher's Stone, then rest easy knowing that you never pay more than the price we list in our catalog.

OVER 130 SULFUR ACTIVATED METHYLENES AVAILABLE
 (Partial listing)

1984	Methyl methylsulfinylmethyl sulfide (MMSMS. MMTS, FAMSO)	12.0025 g	$36.75 / 100 \mathrm{~g}$
1966	m -Dithiane	12.75i25g	39.25/100g
1556	1.3-Propanedithol	9.65/259	$26.00 / 100 \mathrm{~g}$
1478	2,2'Ethylenebis(m-Dithiane)	19.75/25g	
1238	Allyl phenyl sulloxide	19.85:25g	$61.15 / 100 \mathrm{~g}$
1318	Methyl phenyls: lifonylacetate	12.95/25g	39.95/100g
1237	Allyl Phenyl sulfone	14.85/25g	45.75/100g
1479	Geranyl bromide	21.15/25g	
1480	Farnesyl bromide	$13.50 / 10 \mathrm{~g}$	
2265	Benzene sulfinic acid sodium salt		10.50/100g
2266	p-Toluene sulfinic acid sodium salt		$9.95 / 100 \mathrm{~g}$
1241	Benzyl methyl sulfoxide	16.95/25g	$52.20 / 100 \mathrm{~g}$
2600	Farnesyl p-tolyl sulfone	11.75 5g	
2601	Geranyl p-tolyl sulfone	17.50:109	

2601 Geranyl p-tolyl sulfone
17.50:10g

Oswald \subseteq Tee* and Ghanshyam V. Patil
J. M. Bobbitt,* L Noguchi, H. Yagi, and K. H. Veisgraber
Glo -ia G. Lyle
Herbert O. House, ${ }^{*}$ Davic Manning, David G. Melillo, Len F. Lee, O. R. Haynes, and Bruce E. Wilkes
Herbert O. House,* and Len F. Lee
Thaddeus J. Novak, David N Kramer,* Harold Klapper, Lester ${ }^{\text {W }}$. Daasch, and Brown L. Murr, Jr.
Boris Weirstein* and Alen R. Craig
M. V. Lakshnikantham and Michaصl P. Cava*
838 The Mechanism of Bromination of 4(3H)-Quinazolinone. Its 3-Methyl and Its 1,3-Dimethyl Derivatives in Aqueous Acidic Solutions
845 Electrochemistry of Natural Products. IV.
Electrochemical and Chemical Oxidative Dimerizatior of 1,2-Dimethyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline
850 The Chiroptical Properties of Bistetrahydroisoquinolines and Polycyclic Biaryl Derivatives
Cyclization of Unsaturated Hydroxylamine Derivatives
863 A New Synthesis of 2-Alkylpyrrolidines and 2-Alkylpiperidines
870 Studies on the Formation of Dyes Derived from
Diiadolylpyridylmethanes
875 A Synthetic Approach to the Cephalotaxine Skeleton
879 The Isomeric Ethylene Selenodithiocarbonates
\section*{NOTES}
M. V. Lakshrikantham and Michael P. Cava*
Guido H Daub and Thomas V]. Whaley*
Seemın H. Pines
James H. Babler* and Anthony J. Tortorello
W. G. Dauben, ${ }^{*}$ G T. Rivers, R. J. Tweig, and W. T. Zimmerman
William L. Waters,* Anthony J. Rollin, Cindy M Bardwell, Jeffrey A. Schceider, and Thomas W. Aanerud
Urs Leuenberger, Ivan Stewart,* and Roy W. King
K. L. Gallaher and
Robert L. Kaczkowski*

J. H. P. Tyman

Willian F. Michne

John E. Mc Murry* and
Michael P. Fleming
Franklin A. Davis* and Arthur d. Friedman

891 Isolation and Identification of β-Citraurol, a C_{30} Carotenoid in Citrus

892 M \in chanism of Ozonolysis. Triphenylphosphine Reduction of M ϵ thylisopropylethylene Ozonide $-{ }^{18} \mathrm{O}$

CGMMUNICATIONS

882 An Alternate Synthesis of Tetraselenafulvalene

883 An Improved Synthesis of 4-Ethylsulfonyl-1-naphthalenesulfonamide

884 Reinvestigation of the Acetylation of Thioanisole. Effect of the Mole Ratio of Aluminum Chloride

885 Reioselectivity in the Cyclization of β, γ-Epoxy Carbanions.
Apolication to the Total Synthesis of trans-Chrysanthemic Acid
887 Efficient Syntheses of Barrelene and Nenitzescu's Hydrocarbon

889 Ox dation of Secondary Alcohols with Ozone

Syathesis of $6-\left[8^{\prime}-(Z)\right.$-Pentadecenyl]salicylic Acid, "Anacardic Acid Monoene" (Ginkgolic Acid)
894 A 2,6-Methano-3-benzazocine Related to the Thebaine Diels-Alder Adduct Derivatives

896 Improved Procedures for the Reductive Coupling of Carbonyls to Olefins and for the Reduction of Diols to Olefins

897 Trimethylsilyl 2-Nitrobenzenesulfenate (2-Nitrobenzenesulfenic Acid)

■ Supplementary material for this paper is available separately (consult the masthead page fcr ordering information); it will also appear following the paper in the microfilm edition of this journal.
*In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

AUTHOR INDEX

Aanerud, T. W., 889
Adcock, W., 751, 760
Aigami, K., 771
Alper, H., 806
Anderson, A. G., 781
Babler, J. H., 885
Bardwell, C. M., 889
Bartman, B., 776
Baum, J., 813, 818
Bergman, R. G., 831
Bobbitt, J. M., 845
Brace, N. O., 766
Bregovec, I., 785
Bullpitt, M., 760
Cava, M. P., 879, 882
Charbonneau, L. F., 808
Clark, G. W., 745
Coppola, G. M., 845
Craig, A. R., 875
Daasch, L. W., 870
Datta, S. K., 813
Daub, G. H., 883
Dauben, W. G., 887
Davis, F. A., 897
Des Roches, D., 806
Doddrell, D., 751, 760

Fleming, M. P., 896
Friedman, A. J., 897
Fujikura, Y., 771
Gallaher, K. L., 892
Gibson, T. W., 791
Gonzalez-Kutas, M., 776
Gordon, E. C., 776
Gupta, B. D., 751
Hardtmann, G. E., 825
Hauske, J. R., 801
Haynes, O. R., 855
Houghton, E., 813, 818
House, H. O., 855, 863
Inamoto, Y., 771
Johnson, A. L., 836
Jones, G., II, 798
Khor, T. C., 751
King, R. W., 891
Kitching, W., 751, 760
Klapper, H., 870
Knifton, J. F., 793
Kramer, D. N., 870
Kuczkowski, R. L., 892

Lakshmikantham, M. V., 879, 882
Lee, L. F., 855, 863
Leuenberger, U., 891
Lyle, G. G., 850
Manning, D. T., 855
Mc Murry, J. E., 896
Melillo, D. G., 855
Michne, W. F., 894
Murr, B. L., Jr., 870
Noguchi, I., 845
Novak, T. J., 870
Noyce, D. S., 776
Patil, G. V., 838
Pfister, O. R., 825
Pines, S. H., 884
Pirkle, W. H., 801
Potts, K. T., 813, 818
Ramachandran, B. R., 798
Richter, S., 785
Rivers, G. T., 887
Rollin, A. J., 889
Sandel, B. B., 776
Schneider, J. A., 889

Smith, S. G., 808
Stang, P. J., 781
Stewart, I., 891
Strassburger, P., 791
Sunko, D. E., 785

Takaishi, N., 771
Tee, O. S., 838
Thorstenson, P. C., 745
Tortorello, A. J., 885
Tsuchihashi, K., 771
Tweig, R. J., 887
Tyman, J. H. P., 894
Van Elswyk, J. E., 766
Waters, W. L., 889
Weinstein, B., 875
Weisgraber, K. H., 845
Wendling, L. A., 831
Whaley, T. W., 883
Wilkes, B. E., 855
Wolinsky, J., 745
Yagi, H., 845

Zimmerman, W. T., 887

Akkylidenecarbenes from Acyclic Vinyl Bromides and Potassium tert-Butoxide

Josəph Wolinsky,* Gregory W. Clark, and Patricia C. Thorstenson ${ }^{1}$
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
Received August 29, 1975

Abstract

The reaction of acyelic terminal vinyl bromides with potassium tert-butoxide afforded acetylenes, cyclopentenes, and lesser amounts of tert-butyl vinyl ethers. The reactive intermediate, an alkylidene arbene, was seen as giving rise to the major products via two pathways: 1,5 -carbon-hydrogen insertion leading to cyclopentenes and alkyl migration leading to acetylenes. In several instances 1,3 -carbon-hydrogen insertion was also observed. The relative amount of $1,5-\mathrm{C}-\mathrm{H}$ insertion was found to depend on the $\mathrm{C}-\mathrm{H}$ bond uncergoing insertion, the ease of insertion decreasing in the order tertiary $>$ secondary benzylic > secondary > primary.

A previous report ${ }^{2}$ from this laboratory elucidated the overall course of the reaction of terminal vinyl bromides with potassium tert-butoxide. The nature of the products and trapping experiments provided compelling evidence for the intermediacy of alkylidenecarbenes.
Other workers have independently reported the generation of alkylidenecarbenes. ${ }^{3-9}$ The evidence for their claims includes trapping experiments, ${ }^{3,4,6-8}$ dimerization, ${ }^{5}$ and intra- and intermolecular insertions. ${ }^{5,7,9}$ The present work was begun with the aim of providing additional information regarding the behavior of alkylidenecarbenes.
The terminal vinyl bromides employed in this study were prepared from the corresponding olefin via a bromi-nation-dehydrobromination procedure. ${ }^{10}$ In all cases the terminal vinyl bromide so prejared was a mixture of two geometric isomers.

The product mixtures obtained by heating vinyl bromides with potassium tert-but.oxide at $240{ }^{\circ} \mathrm{C}$ were readily separated by GLC, and the iidividual components were identified on the basis of spect-al data. Cyclopentene dervvatives characteristically exhibit absorption near 6.1μ in the infrared and 5.3 ppm in the NMR. Acetylenes were identified by an NMR triplet near $1.7 \mathrm{ppm}, J=2 \mathrm{~Hz}$, which is diagnostic for a $-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$ type methyl group. tert-Butyl vinyl ethers can be recognized by their infrared absorption at 6.0 and 8.7μ, NMR signals at 5.9 ($-\mathrm{C}=\mathrm{CHO}-$) and 1.2 ppm , and a substantial $\mathrm{P}-56$ ion in their mass spectra.

The major products isolatec from the reaction of vinyl bromides $1,2,3$, and 4 with porassium tert-butoxide at 240 ${ }^{\circ} \mathrm{C}$ are illustrated in Chart I. The same proportion of products were obtained from fractions of 1 rich in the E or Z isomers, indicating that the p:oducts are not determined by the geometry of the starting material.

Although 1,4-dimethylcyclorentene could have been one of the three minor unidentifiec materials observed by GLC (8% total), it is not among the major products from vinyl bromide 4. This demonstrates that 1,5 insertion into an

Table I. Ratio of 1,5-Carbon-Hydrogen Insertion to 1,2-Alkyl Migration in the Reaction of Vinyl Bromides with Potassium tert-Butoxide

Vinyl bromide	H-C- 5 bond type	1,5 insertion $/$ alkyl migration	Per H
$\mathbf{4}$	Primary	0.05^{a}	0.01
$\mathbf{3}$	Secondary	1.13	0.28
$\mathbf{2}$	Secondary	0.67	0.33
$\mathbf{1}$	Tertiary	2.4	2.4

${ }^{a}$ Estimated assuming the formation of 3% of 1,5 -insertion product, 1,4-dimethylcyciopentene.
unactivated primary C-H bond is not a major reaction of alkylidenecarbenes. Such behavior is in marked contrast to alkylcarbenes, which readily undergo intramolecular insertion into primary C-H bonds. ${ }^{11}$
Table I compares the relative amount of 1,5 C-H insertion as a function of the C-5 hydrogen bond type. It is clear that 1,5 insertion into a tertiary $\mathrm{C}-\mathrm{H}$ bond is favored over insertion into a secondary $\mathrm{C}-\mathrm{H}$ bond. The selectivity of alkylidenecarbenes is to be contrasted with alkylcarbenes whose insertion reactions are statistical, ${ }^{11}$ or show only a slight degree of selectivity. ${ }^{12}$

Simple acyclic carbenes arə reported to undergo intramolecular insertion via a 1,3 r.Jute to form cyclopropanes. ${ }^{11}$ In the case of large ring carbenes, both 1,5- and 1,6 -insertion reactions have been observed. ${ }^{13}$ When a choice is possible, 1,5 insertion is favored over, but does not exclude, 1,6 insertion. The action of potassium tert-butoxide on 1 -bromo-2,6-dimethyl-1-heptens (2) was examined since 1,6 insertion would occur at a tertiary center, whereas 1,5 insertion would necessitate attack at a secondary position. The reaction produced no detectable amount of $1,3,3$-trimethylcyclohexene. ${ }^{14}$ The isclation of 17% of 3 -isopropyl1 -methylcyclopentene (5) suggests that whatever the reason for the preference for 1,5 insertion, it is more important in determining the overall course of carbon-hydrogen in-

Chart I

2

5
(27\%)

4

(4\%)

(15\%)
sertion than is the nature of the $\mathrm{C}-\mathrm{H}$ bond undergoing insertion.

A series of reactions of 1-bromo-2,6-dimethyl-1-heptene (2) with potassium tert-butoxide carried out at temperatures ranging from 50 to $240^{\circ} \mathrm{C}$ (see Experimental Section, Table IV) demonstrated that the product spread was insensitive to changes in temperature.

1-Bromo-2-methyl-5-phenyl-1-pentene (6) reacts with potassium tert-butoxide to give the product mixture illus-

Chart II

trated in Chart II. 2-Methyl-5-phenylpentanal (11) most likely arises by hydrolysis of the vinyl ether normally produced in these reactions. 1-Phenyl-3-methylcyclopentene (8) and 1-phenyl-1,3-hexadiene (10) are most likely formed by base-catalyzed isomerization of the initially formed cyclopentene (7) and acetylene 9 , respectively.
Comparison of the total amount of cyclopentene derivatives formed by 1,5 insertion (58%) to the total amount of products produced by alkyl migration (38%) suggests that a secondary benzylic $\mathrm{C}-\mathrm{H}$ is intermediate in reactivity between a secondary and tertiary C-H bond. This enhanced reactivity is also contrary to the observation that alkyl carbenes form cyclopropanes with increased difficulty when insertion occurs at a benzylic C-H bond. ${ }^{15}$
The reaction of 1-bromo-2-methyl-3-cyclohexyl-1-propene (12) with potassium tert-butoxide afforded 1 -cyclo-hexyl-1-butyne (13), 1-cyclohexyl-2-butyne (14), cis-8-methylbicyclo[4.3.0]non-7-ene (15), and 2-cyclohexyl-1methylenecyclopropane (16). The identity of 15 was estab-

lished by comparison with an authentic sample. The major hydrocarbon product, 16, exhibited infrared absorption at 5.8^{16} and 11.2μ and a terminal methylene signal at 5.3 ppm ${ }^{17}$ in the NMR. The structure of 16 was confirmed by an independent synthesis from cyclohexylallene.
Methylenecyclopropane 16^{18} most likely forms by way of a 1,3 insertion followed by isomerization of the resulting cyclopropene derivative. ${ }^{21}$ Methylenecyclopropanes are also minor products in the reaction of 1,2 , and 4 . There is no apparent reason for the dominant formation of 16 in the reaction of 12 .
An attempt to maximize cyclopropane formation by making available a tertiary $\mathrm{C}-\mathrm{H}$ bond for 1,3 insertion failed as the only hydrocarbon obtained in sufficient quan-

Table II. Properties of Vinyl Bromides $a . g$

Bromide	$\mathrm{Bp},{ }^{\circ} \mathrm{C}(\mathrm{mm})$	$\eta^{20} \mathrm{D}$	Mass spectrum, ${ }^{2}$ m / e (rel intensity
1	78-81 (23)		$\begin{aligned} & 190^{*}(11), 133^{*} \\ & (7), 111(20), \\ & 95(15), 69 \\ & (100), 57(51), \\ & 56(93), 55 \\ & (64) \end{aligned}$
$2^{\text {b }}$	44-45 (1)	1.4648	$\begin{aligned} & 204^{*}(7), 183 \\ & (20), 125(7), \\ & 83(20), 8 \\ & (13), 70(16), \\ & 69(100), 57 \\ & (10), 56(11), \\ & 55(34) \end{aligned}$
4	43-44 (7.5)	1.4631	$\begin{gathered} 176^{*}(21), 134^{*} \\ (31), 97(34), \\ 56(26), 55 \\ (68), 53(26), \\ 43(100) \end{gathered}$
3^{c}	40-41.5 (0.3)		$\begin{gathered} 218^{*}(18), 134^{*} \\ (26), 97(23), \\ 83(26), 81 \\ (17), 69(20), \\ 67(23), 57 \\ (15), 56(66), \\ 55(92), 41 \\ (100) \end{gathered}$
6^{d}	116-118 (1.7)	$-.5412$	$\begin{aligned} & 238^{*}(6), 159 \\ & (9), 117((-6), \\ & 105(28), 104 \\ & (100), 92(23), \\ & 91(69), 77 \\ & (17), 65(25), \\ & 53(24) \end{aligned}$
19^{e}	102-103 (10)	-. 5602	$\begin{aligned} & 210 *(22), 31 \\ & (32), 129(40), \\ & 128(33), 116 \\ & (56), 115 \\ & (100), 91(95), \\ & 89(26), 77 \\ & (26), 65(31), \\ & 64(21), 63 \\ & (46) \end{aligned}$
$12 f$	96-98 (5.5)		$\begin{aligned} & 216^{*}(9), 83 \\ & (85), 82(47), \\ & 81(27), \in 7 \\ & (21), 55 \\ & (100), 54(10), \\ & 53(17) \end{aligned}$
17	47-48(24)		$\begin{aligned} & 162 *(34), 147 \\ & (17), 85(35), \\ & 83(100), 67 \\ & (84), 65(17), \\ & 55(83), 53 \\ & (21) \end{aligned}$

a The vinyl bromides described above showed an ir band at 6.12-6.18 μ and NMR signals for the $\mathrm{CH}_{3} \mathrm{C}=\mathrm{C}$ between 1.75 and 1.78 ppm and for $\mathrm{C}=\mathrm{CH}$ at $5.84-5.90 \mathrm{ppm}$. b NMR and GLC analysis indiceted a cis/trans ratio of ci:3. c 2-Butyl-1-hexene was prepared by the reaction of 5 -nonanone with methylenetriphenylphosphorane in refluxing ether for 2 days followed by reslacement of the ether with THF and heating for an additional 6 days. d The reaction of methyllithium with 4 -phenylbutyric acid gave 5 -phenylpen-tan-2-one, bp $92-93{ }^{\circ} \mathrm{C}\left(2 \mathrm{~mm}, n^{20} \mathrm{D} 1.5094\right.$. A Wittig reaction converted this ketone to 2 methyl-5-phenyl-1-pentene. e An attempt to purify the inte-mediate dibromide by distillation led to dehydrobrominetion and the formation of allyl bromide (75%) and vinyl kromide (25\%). f 2-Methyl-3-cyclohexyl-1-propene was prepared in 78% yield by a Wittig reaction using cyclohexylaceto e. g Satisfactory analytical data ($\pm 0.3 \%$ for C, H) for all compounds listed were sus. mitted for review. ${ }^{n}$ An asterisł indicates presence of bromine.
tity for identification from the reaction of 1-bromo-2,3-dimethyl-1-butene (17) was 4-methyl-2-pentyne (18).

Finally, the reaction of 1-bromo-2-(o-tolyl)-1-propene (19) with potassium tert-butoxide gave 93% of 1 -(o-tolyl)1 -propyne (20), demonstrating that $\mathrm{C}-\mathrm{H}$ insertion does not compete with the extremely rapid ${ }^{8 \mathrm{~b}} 1,2$ migration of an ary] group.

Experimental Section ${ }^{22}$

General Procedure for the Preparation of Vinyl Bromides. 1-Bromo-2,5-dimethyl-1-hexene (1). To a solution of 10.0 g (0.079 mol) of 2,5-dimethyl-1-hexene in 100 ml of hexane and 4 ml of pyridine at $0^{\circ} \mathrm{C}$ was slowly added $12.8 \mathrm{~g}(0.080 \mathrm{~mol})$ of bromine. The mixture was then stirred at ambient temperature for 30 min . The solution was decanted from the yellow solid and washed with 150 ml of 5% aqueous sodium bicarbonate and 100 ml of saturated sodium chloride solution. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under diminished pressure to afford 20.9 g of 1,2 -di-bromo-2,5-dimethylhexane which was dissolved in 50 ml of ethanol containing $4.5 \mathrm{~g}(0.080 \mathrm{~mol})$ cf potassium hydroxide. After stirring for 16 h at ambient temperature the solution was diluted with water and extracted with ether. The ether solution was washed with. saturated salt solution and dried $\left(\mathrm{MgSO}_{4}\right)$. Distillation gave 13.2 g of 1-bromo-2,5-dimethyl-1-2exene, bp $78-81^{\circ}(23 \mathrm{~mm})$. The presence of Z and E isomers ($35: 65$ ratio) was revealed by GLC using a SE- 30 column. An analytical sample containing both isomers was obtained by GLC using a 20% Carbowax column at 140°. For properties and NMR shifts of vinyl bromides, see Tables II and III.

General Procedure for Reaction of Vinyl Bromides with Potassium tert-Butoxide. A. 1-Bromo-2,5-dimethyl-1-hexene (1). A $2.0-\mathrm{g}(0.018 \mathrm{~mol})$ sample of potassium tert-butoxide (MSA Research Corp.) was added to a $50-\mathrm{ml}$ side-armed flask, capped with a stoppule and equipped with a distillation head leading to a pair of dry ice-isoprcpyl alcohol cooled traps whose exit was protected by a calcium chloride drying tube. A slow stream of nitrogen was passed through the system throughout the course of the reactior. The flask was heated to 240° employing a silicone oil bath and then 3.0 g (0.016 mol) of 1-bromo-2,5-dimethyl-1-hexene (1) was injected, using a syringe via the side arm under the surface of the hot potassium tert-butoxide. The flask was heated for another 1 min and allowed to cool to roon temperature. Water was added and the mixture extracted with ether. The ether was combined with the ether wasinings from the two traps and the resulting solution was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. The ether was carefully distilled to leave 1.52 g of liquid whose analysis by GLC (20% Carbowax, 125°) showed the presence of at least six components.
Component 1 (retention time $1.6 \mathrm{~min}, 36 \%$) was identified as 1,3.3-trimethylcyclopentene: ir $\left(\mathrm{CCl}_{4}\right) 3.40,6.09,6.91,7.31,7.40$, and $8.99 \mu ;$ NMR $\left(\mathrm{CCl}_{4}\right) 0.99\left[\mathrm{~s}, \epsilon,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right] ; 1.65(\mathrm{~d}, 5, J=1 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}$ - superimposed on $-\mathrm{CH}_{2}$), 2.24 (distorted $\mathrm{t}, 2$, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}-$), and 5.05 ppm ($\mathrm{m}, 1, \mathrm{C}=\mathrm{CH}$-); mass spectrum (7 C eV) m / e (rel intensity) $1=0$ (13), 95 (100), 67 (17).

Component 2 (retention time $3.9 \mathrm{~min}, 15 \%$) was identified as 6 -methyl-2-heptyne: ir (CCl_{4}) 3.40. 6.92, 7.24, 7.33, 7.60 , and 8.59μ; NMR (CCl_{4}) $0.88\left[\mathrm{~d}, 6, J=5.5 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\right], 1.39(\mathrm{~m}, 2$, $\left.-\mathrm{CH}_{2}-\right), 1.72\left(\mathrm{t}, 4, J=2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}_{-} \mathrm{CH}_{2}\right.$ - superimposed on CH), and $2.09 \mathrm{ppm}\left(\mathrm{m}, 2,-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$-); mass spectrum (70 eV) m / e (rel intensity) 110 (3), 95 (72), 81 (10), 67 (33), 65 (58), 55 (22), 53 (58), 52 (20), 51 (32), 43 (25), 41 (95), and 39 (100).

Table III. NMR Shifts for gem-Dimethyl Groups of Vinyl Bromides

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{n}-\underset{\mathrm{C}}{\mathrm{C}=\mathrm{CHBr}}$			
	CH_{3}	$\delta_{\text {trans }}, \mathrm{ppm}$	$\delta_{\text {cis }}, \mathrm{ppm}^{a}$
n	0.96	1.07	Δ, ppm
0	0.88	0.93	0.11
1	0.92	0.95	0.05
2	0.89	0.89	0.03
3		0.00	

${ }^{a}$ The stereochemistry was assigned on the basis that the bromine should deshield the cis gem-dimethyl group. The E isomers were also shown to be the less volatile ${ }^{7}$ by GLC.

Table IV. Temperature Dependence of the Reaction of 1-Bromo-2,6-dimethyl-1-heptene (2) with Potassium tert-Butoxide

Temp, ${ }^{\circ} \mathrm{C}$	1-Methyl- 3-isopropyl- cyclopentene	7-Methyl- 2-octyne	1-tert- Butoxy- 2,6-dimethyl- 1-heptene
240	30	45	25
200	29	45	26
160	33	40	26
100	38	37	26
50	33	34	34

Component 3 (retention time $8.2 \mathrm{~min}, 7 \%$) was identified as one of the isomeric 1-tert-butoxy-2,5-dimethyl-1-hexenes, ir 6.00 and 8.70μ.

Component 4 (retention time $10 \mathrm{~min}, 5 \%$) was the other geometric isomer of 1 -tert-butoxy-2,5-dimethyl-1-hexene: ir 5.98 and 8.70 μ; NMR $\left(\mathrm{CCl}_{4}\right) 0.88\left[\mathrm{~d}, 6, J=5.5 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\right], 1.20[\mathrm{~s}, 9$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}-\right], 1.50\left(\mathrm{~d}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}-\right), 1.80\left(\mathrm{~m}, 2,-\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}-\right)$, and $5.91 \mathrm{ppm}(\mathrm{m}, 1, \mathrm{C}=\mathrm{CHO}$); mass spectrum m / e (rel intensity) 184 (15), 128 (48), 110 (46), 99 (30), 95 (53), 85 (29), 72 (15), 71 (100), 69 (26), 68 (15), 59 (16), 58 (28), 57 (95), 56 (27), 55 (30), 43 (63), 41 (69), 39 (27).

Components 5 and 6 (retenticn time 13.1 and $14.9 \mathrm{~min}, 39 \%$) were the starting vinyl bromides. The relative proportions of the two vinyl bromides were essentially identical with the proportions present in the original starting material.
When the experiment was repeated using 4.5 equiv of potassium tert-butoxide the proportion of vinyl ethers rose to 20% and the amount of recovered vinyl bromides dropped to 7%. The use of vinyl bromide fractions with differing isomeric composition resulted in identical product spreads.
B. 1-Bromo-2,6-dimethyl-1-heptene (2). Treatment of 3.22 g $(0.016 \mathrm{~mol})$ of 1 -bromo-2,6-dimethyl-1-heptene (2) with 2.0 g (0.018 mol) of potassium tert-butoxide as previously described gave 1.85 g of crude product whose analysis by GLC (Carbowax, 110°) indicated the presence of seven components (Table IV).

Component 1 (retention time $2.6 \mathrm{~min}, 4 \%$) was too vo-atile to collect.
Component 2 (retention time $4.6 \mathrm{~min}, 17 \%$) proved to be a mixture of two components. This fraction was collected and then rechromatographed on a freshly prepared Carbowax column a $=80$ ${ }^{\circ} \mathrm{C}$. Approximately 90% of this mixture was identified as 1 -methyl-3-isopropylcyclopentene: ir $\left(\mathrm{CCL}_{4}\right) 6.08 \mu$; NMR $\left(\mathrm{CCl}_{4}\right) 0.87$ [d, $6, J$ $\left.=5.5 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\right], 1.72\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}-\right)$, and $5.27 \mathrm{ppm}(\mathrm{m}, 1$, $\mathrm{CH}=\mathrm{C}-$); mass spectrum m / e (rel intensity) 124 (11), 109 (6), 82 (7), 81 (100), 80 (8), 79 (10), 69 (7), 67 (5), 53 (5) and 41 (10). The remaining 10% of this fraction was collected and identified as 2 isoamylmethylenecyclopropane: ir (CCl_{4}) 3.40, 5.80 (w), 6.85, 7.26, $7.35,8.89$, and $11.24 \mu(\mathrm{~s})$. This infrared spectrum was identical with that of isoamylmethylenecyclopropane prepared by an independent route. ${ }^{23}$

Component 3 (retention time $10.3 \mathrm{~min}, 26 \%$) was identified as 7-methyl-2-octyne: ir $4.90 \mu(\mathrm{w})$; NMR $\left(\mathrm{CCl}_{4}\right) 0.89$ [d, $6, J=5.5$ $\left.\mathrm{Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\right], 1.1-1.6\left(\mathrm{~m}, 5,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}-\right), 1.72(\mathrm{t}, 3, J=2.2$ $\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-$), and $2.04 \mathrm{ppm}\left(\mathrm{m}, 2,-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}-\right.$; mass spectrum m / e (rel intensity) 124 (0.1), 109 (100), 81 (30), 69 (70), 68 (37), 67 (43), 55 (28), 54 (16), 53 (12), 43 (43), and 39 (19).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16}$: C, 87.04; H, 12.98. Found: C, 87.29; H, 13.12.

Components 4 and 5 (retention times 25 and $28 \mathrm{~min}, 27 \%$) were identified as geometric isomers of 1 -tert-butoxy-2,6-dimethyl-1heptene contaminated with a small amount of 2,6 -dimethylheptanal: ir $5.80(w)$ and 5.99μ; NMR $\left(\mathrm{CCl}_{4}\right) 0.88$ [d, 6, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\right]$, $1.20\left[\mathrm{~s},-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 5.90(\mathrm{~m},-\mathrm{C}=\mathrm{CHO}-)$, and $9.50 \mathrm{ppm}(-\mathrm{CHO})$.

Components 6 and 7 (retention times 32 and $35 \mathrm{~min}, 27 \%$) proved to be the original vinyl bromides.

The GLC retention time of an authentic sample of $1,3,3$-trimethylcyclohexene ${ }^{14}$ was found to be different from that of component 1 and did not correspond with any of the significant peaks found in the product mixture described above.
C. 1-Bromo-2,4-dimethyl-1-pentene (4). The reaction of 3.0 g $(0.017 \mathrm{~mol})$ of 1-bromo-2,4-dimethyl-1-pentene (4) with 2.0 g (0.018 mol) of potassium tert-butoxide gave 1.3 g of light brown liquid which was separated using a 20% Carbowax column at 104°. The first fraction (retention time $1.5-[2.5 \mathrm{~min}, 12 \%$) was a mixture of at least four components. Infrared absorption at 5.82 and 11.30 μ and an NMR signal at 5.3 ppm suggested that one of these components was 2-isopropyl-1-methylenecyclopropane. The mass spectrum of a carefully collected sample of this 4% component showed a molecular ion at $m / e 96(33 \%)$ and a base peak at $m / e 81$.

The second fraction (retention time $3.3 \mathrm{~min}, 63 \%$) was identified as 5 -methyl-2-hexyne: NMR $\left(\mathrm{CCl}_{4}\right) 0.93[\mathrm{~d}, 6, J=5.5 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\right], 1.73\left(\mathrm{t}, 3, J=2.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\right.$), and 1.95 ppm (m, 2, $-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}-$); mass spectrum m / e (rel intensity) 96 (100), 81 (75), 79 (15), 68 (11), 67 (12), 55 (15), 54 (48), 53 (34), 51 (13), 43 (53), 41 (40), 39 (36), and 27 (24).

Fraction 3 (retention time $8.9 \mathrm{~min}, 3 \%$) was identified as one of the isomeric 1-tert-butoxy-2,4-dimethyl-1-pentenes: ir 5.99, 8.09, and 8.70μ.

Fraction 4 (retention time $9.2 \mathrm{~min}, 12 \%$) was identified as the other geometric isomer of 1-tert-butoxy-2,4-dimethyl-1-pentene: ir $5.99,8.09$, and 8.70μ; NMR $\left(\mathrm{CCl}_{4}\right) 0.85[\mathrm{~d}, 6, J=5.5 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\right], 1.20\left[\mathrm{~s}, 9,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}\right], 1.50(\mathrm{~d}, 3, J=1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}-\right), 1.72(\mathrm{~m}, 3)$, and $5.90 \mathrm{ppm}(\mathrm{m}, 1,-\mathrm{C}=\mathrm{CHO})$; mass spectrum m / e (rel intensity) 170 (8), 114 (35), 71 (100), 57 (37), 55 (14), 43 (40), 41 (33), and 39 (11).

Fraction 5 (retention time $12.2 \mathrm{~min}, 10 \%$) proved to be unreacted vinyl bromide.
D. 1-Bromo-2-n-butyl-1-hexene (3). Treatment of $2.19 \mathrm{~g}(0.01$ mol) of 1-bromo-2-n-butyl-1-hexene (3) with $3.40 \mathrm{~g}(0.03 \mathrm{~mol})$ of potassium tert-butoxide gave 1.2 g of yellow liquid. Separation by GLC (20% Carbowax, $113^{\circ} \mathrm{C}$) revealed the presence of five major components. Component 1 (retention time $5 \mathrm{~min}, 44 \%$) was identified as 1 -n-butyl-3-methylcyclopentene: ir 6.10μ; NMR $\left(\mathrm{CCl}_{4}\right)$ 0.98 (d, 3, $J=6.5 \mathrm{~Hz},-\mathrm{CHCH}_{3}$), $1.0-1.7\left(\mathrm{~m}, 7,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.9-2.4 [m, 4, $\left.\left(-\mathrm{CH}_{2}\right)_{2} \mathrm{C}=\mathrm{C}-\right], 2.67(\mathrm{~m}, 1, \mathrm{CHC}=\mathrm{C}-)$, and 5.19 ppm ($\mathrm{m}, 1,-\mathrm{CH}=\mathrm{C}-$); mass spectrum m / e (rel intensity) 138 (39), 93 (28), 82 (25), 81 (100), 79 (27), 67 (35), 55 (39), and 41 (43).

Component 2 (retention time $7 \mathrm{~min}, 6 \%$) was an allene, ${ }^{26}$ ir 5.11 μ.

Component 3 (retention time $9 \mathrm{~min}, 39 \%$) was identified as 5 decyne: ${ }^{27}$ ir 3.40, $6.85,7.29$, and 10.21μ; NMR $\left(\mathrm{CCl}_{4}\right) 0.91$ (dist $\mathrm{t}, 6$, $-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.44 (m, 8, $-\mathrm{CH}_{2-}$), 2.10 ppm (dist t, $4,-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}-$ $\mathrm{CH}_{2}-$). This compound and an authentic sample of 5 -decyne ${ }^{28}$ showed identical retention times on Carbowax and tricresyl phosphate columns. Catalytic hydrogenation of component 3 gave a product whose mass spectrum was identical with that of n-decane.

Component 4 (retention time $14 \mathrm{~min}, 10 \%$) was not identified, ir 6.05μ, molecular ion at $m / e 184$.

Component 5 (retention time $24 \mathrm{~min}, 9 \%$) was not identified, ir strong 9.10μ, molecular ion at $m / e 184$.
E. 1-Bromo-2-methyl-5-phenyl-1-pentene (6). The reaction of 1.60 g (6.7 mmol) of 1-bromo-2-methyl-5-phenyl-1-pentene (6) with $1.03 \mathrm{~g}(9.2 \mathrm{mmol})$ of potassium tert-butoxide gave 0.95 g of crude product which was separated using a 20\% Carbowax column at 200°. Component 1 (retention time $13.6 \mathrm{~min}, 34 \%$) was identified as 1 -methyl-3-phenylcyclopentene (7): ir $6.02,6.24$, and 6.70μ; NMR $\left(\mathrm{CCl}_{4}\right) 1.81$ (broad $\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}-$), 1.5-2.7 (m, 4, $-\mathrm{CH}_{2} \mathrm{CH}_{2-}$), $3.85\left(\mathrm{~m}, 1, \mathrm{C}=\mathrm{C}-\mathrm{CHC}_{6} \mathrm{H}_{5}\right), 5.35(\mathrm{~m}, 1, \mathrm{C}=\mathrm{CH}-)$, and $7.10 \mathrm{ppm}(\mathrm{s}, 5, \mathrm{ArH}$); mass spectrum m/e (rel intensity) 158 (24), 143 (70), 128 (75), 115 (87), $105(26), 102(32), 91$ (100), 78 (55), 77
(94), 65 (54), 63 (61), 52 (34), 51 (69, 50 (66), 43 (36), 41 (61), and 39 (43).
Component 2 (retention time $19.3 \mathrm{~min}, 22 \%$) was identified as 6 -phenyl-2-hexyne (9): $:^{29}$ ir 3.30, 3.41, 6.26, 6.71, 6.91, 9.23, and 9.66 μ; NMR (CCl_{4}) 1.75 ($\mathrm{t}, 3, J=2.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2-}$), 2.1 ($\mathrm{m}, 4$, $-\mathrm{CH}_{2} \mathrm{CH}_{2-}$), $2.68\left(\mathrm{t}, 2, J=7.5 \mathrm{~Hz}, \mathrm{E}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, and 7.13 ppm (m, 5, $\mathrm{C}_{6} \mathrm{H}_{5-}$); mass spectrum m / e (nel intensity) 158 (43), 143 (55), 130 (28), 129 (55), 128 (25), 105 (31〕 104 (100), 92 (29), 91 (99 ;, 77 (24), and 65 (27).

Component 3 (retention time $2 \mathrm{C} 8 \mathrm{~min}, 24 \%$) was identified as 1 -phenyl-3-methylcyclopentene (8) ir 6.15, 6.26, and 6.71μ; NMR $\left(\mathrm{CCl}_{4}\right) 1.10\left(\mathrm{~d}, 3, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}-\right), 6.01\left(\mathrm{~m}, 1, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{CH}\right)$, and $7.23 \mathrm{ppm}\left(\mathrm{m}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right.$); mass s sectrum m / e (rel intensity) 158 (14), 143 (47), 129 (38), 128 (70), - 15 (100), 102 (34), 91 (42), 78 (38), 77 (63), 65 (33), 63 (55), 51 (98), 50 (59), 41 (34), 39 (38), and 27 (31).

Component 4 (retention time $28 \mathrm{~min}, 16 \%$) was identified as 1 -phenyl-1,3-hexadiene (10): ir $3.30,3.40,5.96,6.11,6.30,6.71,7.71$, $9.32,9.71,10.15$, and 10.99μ; uv (E.tOH) $\lambda_{\max } 285 \mathrm{~nm}\left(\epsilon 2 \times 10^{4}\right)$; NMR 1.04 ($\mathrm{t}, 3, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2-}$), $2.17\left(\mathrm{~m}, 2, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2-}\right.$), $5.9,6.4$, and 7.2 ppm (m's, $9, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}-$); mass spectrum m/e (rel intensity) 158 (46), 113 (36), 131 (24), 129 (100), 128 (51), 115 (22), 91 (17), and 77 (19).

Component 5 iretention time $40 . j \mathrm{~min}, 4 \%$) was identified as 2 -methyl-5-phenylpentenal (11): ir $\left(\mathrm{Cl}_{4}\right) 3.33,3.45,3.75,5.75,5.25$, and 6.70μ.
F. 1-Bromo-2-methyl-3-cyclot exylpropene (12). The zeaction of 1.37 g of 1-bromo-2-methyl-3-cyclohexylpropene with 0.71 g of potassium tert-butoxide gave 0.95 g of crude product which was separated using a 20% Carbovax column at 130°. The first component (retention time $4.5 \mathrm{~min} 39 \%$) proved to be a mixture of two olefins which was separated by rechromatography employing a freshly prepared 20% carbowax cclumn. The major olefin (65\%) was identified as 2-cyclohexylm thy ylenecyclopropane (16): ir $\left(\mathrm{CCl}_{4}\right) 3.40,5.82(\mathrm{w})$, and 11.23μ; ГMR $\left(\mathrm{CCl}_{4}\right) 1.1-1.7(\mathrm{~m}, 14)$ and $5.30 \mathrm{ppm}\left(\mathrm{m}, 2,-\mathrm{C}=\mathrm{CH}_{2}\right.$); mass sfectrum m / e (rel intensity! 136 (5), 121 (46), 107 (21), 94 (30), 93 (53), 81 (100), 80 (31), 79 (54), 67 (32), 55 (21), 41 (33), and 39 (24). This compound was identical in all respects with a sample of 2-cyclohexylmethylenecyclopropane prepared by an independent method. The minor olefin (35%) in the first fraction was identified as $c s$-8-methylbicyclo[4.3.0]non-7ene (15) on the basis of the following spectral data and by comparison with an authentic sample prepered by an independent route: ir $\left(\mathrm{CCl}_{4}\right) 3.29,3.4 \mathrm{C}$, and 6.10μ; NMR $\left(\mathrm{CCl}_{4}\right) 1.39(\mathrm{~m}, 8), 1.70(\mathrm{~d}, 3, J$ $=1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}-$), 1.9-2.7 (m, 4) and $5.22 \mathrm{ppm}(\mathrm{m}, 1, \mathrm{C}=\mathrm{CH}-)$; mass spectrum m/e (rel intensity) 136 (45), 121 (100), 107 (18), 94 (56), 93 (83), 91 (23), 81 (21), 80 (22), 79 (51), 77 (25), 67 (15), 41 (17), and 39 (16).

Fraction 2 (retention time $6.4 \mathrm{~min}, 15 \%$) was identified as $1-\mathrm{cy}-$ clohexyl-1-butyne (13): ir $\left(\mathrm{CCl}_{4}\right) 3.39$ and 5.09μ; NMR $\left(\mathrm{CCl}_{4}\right) 1.10$ ($\mathrm{t}, 3, J=7 \mathrm{~Hz},-\mathrm{CH}_{3}$), $2.10\left(\mathrm{q}, 2, J=7 \mathrm{~Hz},-\mathrm{CH}_{2}\right.$), and 0.8-2.0 ppm (broad m); mass spectrum r / e (rel intensity) 136 (59), 121 (31), 107 (67), 94 (32), 93 (48), 91 (30), 82 (20), 81 (45), 80 (20), 79 (100), 77 (29), 68 (26), 67 (46), 55 ($\check{〔}$), and 41 (28).

Fraction 3 (retention time $9.8 \mathrm{~min}, 25 \%$) was identified as $1-\mathrm{cy}$ -clohexyl-2-butyne (14): ir 3.41 and 6.90μ; NMR $\left(\mathrm{CCl}_{4}\right) 0.8-1.6$ (m, 10), $1.71\left(\mathrm{t}, 3, J=2 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$, and $1.90 \mathrm{ppm}(\mathrm{m}, 3,-\mathrm{CH}-$ and $-\mathrm{CH}_{2}$); mass spectrum m / e (rel iatensity) 136 (39), 121 (34), 107 (42), 94 (36), 92 (20), 83 (76), 82 (19), 81 (31), 79 (21), 67 (41), 55 (100), and 41 (31).

Fraction 4 (retention time $17.2 \mathrm{~min}, 21 \%$) was identified as a mixture of 1-t-butoxy-2-methyl-čcyclohexylpropene (ir absorption at 6.0 and 8.7μ) and an unidentified impurity which was present in the original vinyl bromide.
cis-8-Methylenebicyclo[4.3.0] ionane. A $6.2-\mathrm{g}$ sample of 2indanone was hydrogenated in ethanol using platinum oxide as catalyst (3 days). The catalyst was removed and the filtrate added to water and extracted with ethe'. The ether solution was dried (MgSO_{4}) and evaporated. The resilue was taken up in acetone and treated with chromic acid in sulfuric acid-water. The usual workup gave 5 g of a mixture which wa: largely cis-bicyclo[4.3.0]nonan 8 -one. A GLC sample of the ketone showed ir 5.73μ; NMR 1.3-1.6 ($\mathrm{m}, 8$), $1.9-2.4 \mathrm{ppm}$ (broad with sŁarp spike at $2.09,6$); mass spectrum m/e 138 (32).
To a solution of methylenet-iphenylphosphorane (prepared from 10.8 g of methyltriphenylph sphonium bromide and 11.4 ml of 2.25 M butyllithium in hexanes was added 4.62 g of the crude ketone. The mixture was refluxed for $15 \mathrm{~h}, 75 \mathrm{ml}$ of dry THF was added, and heating was continued for 24 h , after which 25 ml of dimethyl sulfoxide was added and the mixture was heated at reflux
for an additional 36 h . Work-up in the usual manner gave 1.87 g of a liquid which was found to be a four-component mixture by GLC using a 20% Carbowax column at 210°. The four components were separated by preparative GLC. Component 1 (retention time 4 $\min , 23 \%$) was identified as cis-bicyclo[4.3.0]nonane, NMR (CCl_{4}) two envelopes at 1.57 and 1.40 ppm . Component 2 (retention time $5.5 \mathrm{~min}, 18 \%$) was identified as cis-8-methylenebicyclo[4.3.0]nonane: ir $\left(\mathrm{CCl}_{4}\right) 3.23,3.42,6.03$, and 11.33μ; NMR $\left(\mathrm{CCl}_{4}\right) 1.41(\mathrm{~m}$, 8), $2.15(\mathrm{~m}, 6)$, and 4.31 ppm (quintet, $2, \mathrm{C}=\mathrm{CH}_{2}$). Component 3 (retention time $8 \mathrm{~min}, 14 \%$) was identified as indan: $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right)$ 2.04 (quintet, 2), 2.83 t, 4), and $7.05 \mathrm{ppm}(\mathrm{m}, 4$, ArH). Component 4 (retention time $23.5 \mathrm{~min}, 44 \%$) was identified as cis-bicyclo-[4.3.0]nonan-8-one.
cis-8-Methylbicyclo[4.3.0]non-7-ene (15). To a solution of methylmagnesium iodide (prepared from 0.725 g of methyl iodide and 0.124 g of magnesium) in dry ether was added an ether solution of 0.7 g of cis-bicyclo[4.3.0]nonan-3-one. The resulting solution was heated at reflux for 2 h , and then a 2% solution of hydrochloric acid was added and the ether layer was separated, washed with 5% sodium bicarbonate solction, and dried $\left(\mathrm{MgSO}_{4}\right)$. The ether was removed, affording an oil which showed strong infrared absorption at 2.90μ, in addition to weak absorption at 5.74μ (carbonyl). The reaction mixture was dehydrated by passage through a Carbowax GLC column at $210^{\circ} \mathrm{C}$ affording a broad band collected between retention times of 5 and -0 min . Analysis of this material indicated it to be mixture of cis-8-methylbicyclo[4.3.0]non-7-ene (80%) and cis-8-methylenebicyclo[4.3.0]nonane (20%). A pure sample of the major product obtained jy careful GLC showed ir $\left(\mathrm{CCl}_{4}\right)$ 6.05μ; NMR (CDCl_{3}) 1.70 (s, 3, $\mathrm{CH}_{3} \mathrm{C}=\mathrm{C}-$), 2.0-2.7, and 5.27 ppm ($\mathrm{m}, \mathrm{l}, \mathrm{CH}=\mathrm{C}-$).
trans-8-Methylenebicyclo[4.3.0]nonane. To a suspension of 5.66 g of triphenylphosphonium bromide in ether was added 6.2 ml of a 2.25 M solution of n-butyllith um in hexane. An ether solution of trans-bicyclo[4.3.0]nonan-8-one ${ }^{30}$ was added and the mixture was refluxed for 1 h , at which time 13 ml of $\mathrm{Me}_{2} \mathrm{SO}$ was added. Heating was continued for 15 h and the mixture was worked up in the usual manner to efford $0.74 \mathrm{~g}(39 \%)$ of trans-8-methylenebicyclo[4.3.0]nonane. A pure sample isolated by GLC showed $n^{20} \mathrm{D}$ 1.4721 (lit. ${ }^{31} n^{20} \mathrm{D} 1.4720$); ir 3.23, 3.40, and 6.00μ; NMR (CCl_{4}) $1.0-2 . \epsilon^{(14)}$ and $4.78 \mathrm{ppm}\left(\mathrm{m}, 2, \mathrm{C}=\mathrm{CH}_{2}\right)$.
Cyclohexylallene. Attempts to prepare cyclohexylallene by the reaction of cyclohexylmagnesium bromide or chloride with propargyl bromide gave only a small amount of allene and cyclohexyl bromide as the major product. ${ }^{32}$ The allene was prepared in good yield from propargyl chloride as follows.

To a 0.4 M solution of cyclohexylmagnesium bromide in ether (prepared from 6.52 g of cyclohexyl bromide and 1.22 g of magnesium) was added 2.4 g of propargyl chloride in ether. Saturated ammonium chloride solution was added, the layers were separated, and the ether layer was washed with 5% sodium bicarbonate solution and water and dried $\left(\mathrm{MgSO}_{4}\right)$. The ether was removed to leave $2.0 \mathrm{~g}(50 \%)$ of crude cyclohexylallene, contaminated with a small amount of the isomeric terminal \&cetylene. An analytical sample of the allene was obtained by GLC: mass spectrum m / e (rel intensity) 122 (42), 107 (60), 93 (62), 81 (73), 80 (83), 79 (100), 77 (41), 67 (67), 55 (78), 41 (63), and 39 (65).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14}$: C, 88.45; H, 11.55. Found: C, 88.66; H, 11.38.

2-Cyclohexylmethylenecyclopropane (16). A slurry of 0.6 g of active zinc-copper couple ${ }^{33}$ in 15 ml of ether containing 2.43 of diiodomethane and a crystal of iodine was refluxed for 30 min and then 1.0 g of cyclohexylallene was added. After heating for 40 h , the reaction mixture was workec up as described in the preparation of 2-isoamylmethylenecyclopropane to afford 1.1 g of liquid which proved to be a six-component mixture by GLC analysis (SF-96 at $130^{\circ} \mathrm{C}$). The first component was the terminal acetylene cortaminant in the starting allene; the second component was diood omethane. Component 3 (retention time $16 \mathrm{~min}, 36 \%$) was identified as unreacted allene and component 4 (retention time 22 $\mathrm{min}, 6 \%$) was the desired 2 -cyclohexylmethylenecyclopropane: ir $\left(\mathrm{CCl}_{4}\right) 3.25,3.41,5.76(\mathrm{w}), 11.01$, and 11.24μ; NMR $\left(\mathrm{CCl}_{4}\right) 5.29$ ppm (m, 2, $\mathrm{C}=\mathrm{CH}_{2}$); mass spectrum m / e (rel intensity) 136 (1.6), 121 (50), 107 (22), 94 (29), 93 (41), 81 (100), 80 (30), 79 (52), 67 (32), 55 (23), 41 (35), and 39 (30).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16}$: C, 88.16; H, 11.84. Found: C, 87.90; H, 12.00 .

Component 5 (retention time $29 \mathrm{~min}, 25 \%$) was tentatively identified as cyclohexvlspiropentane: ir $3.40,6.89$, and 9.70μ. Component 6 (retention time $35 \mathrm{~min}, 13 \%$) was not identified.
G. 1-Bromo-2,3-dimethyl-1-butene (17). Reaction of 4.89 g of

1-bromo-2,3-dimethyl-1-butene (17) with 3.50 g of potassium tertbutoxide was carried out in the usual manner and the ether was distilled off through a $16-\mathrm{in}$. Vigreux column to afford a liquid which proved to be a seven-component mixture by GLC (20% Carbowax at $110^{\circ} \mathrm{C}$). Component 1 (retention time $3.3 \mathrm{~min}, 22 \%$) was identified as 4 -methyl-2-pentyne: ir 3.35, 6.80, $7.22,7.33$, and 7.58 $\mu ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) 1.10(\mathrm{~d}, J=6 \mathrm{~Hz}), 1.71(\mathrm{~d}, 3, J=2.2 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-$), and $2.50 \mathrm{ppm}(\mathrm{m}, 1,-\mathrm{CHC} \equiv \mathrm{C}-$); mass spectrum m / e (rel intensity) 82 (69), 67 (100), 65 (22), 41 (66), and 39 (48).

Components 2 and 3 together amounted to about 4% of the product and were not further examined. Component 4 (retention time $9.5 \mathrm{~min}, 3 \%$) was an impurity present in the starting vinyl bromide. Component 5 (retention time $12.5 \mathrm{~min}, 13 \%$) was identified as 1 -tert-butoxy-2,3-dimethyl-1-butene, ir $\left(\mathrm{CCl}_{4}\right) 6.00$ and 8.70μ. Components 6 and 7 (retention times 16.2 and 18.1 min , 56%) were unreacted vinyl bromides.
H. Reaction of 1-Bromo-2-(o-tolyl)propene (19). A 2.1-g sample of 1-bromo-2-(o-toly)propene (19) was treated with 1.3 g of potassium tert-butoxide to yield 1.25 g of crude product. GLC analysis using a Carbowax column at $180^{\circ} \mathrm{C}$ showed the material to be an eight-component mixture; however, one component comprised 93% of the mixture and the largest of the remaining seven amounted to 2%. The major component, 1-(o-tolyl)-1-propyne (20), was isolated by GLC and showed ir 4.42, 6.26, and 6.73μ; NMR (CCl_{4}) $2.05\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CAr}\right), 2.38\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{Ar}\right)$, and 6.9$7.3 \mathrm{ppm}(\mathrm{m}, 4, \mathrm{ArH})$; mass spectrum m / e (rel intensity) 130 (100), $129(57), 128(48), 127(23)$, and $115(56)$. None of the minor products were examined.

Registry No.-(E)-1, 57496-96-5; (Z)-1, 57496-97-6; (E)-2, 57496-98-7; (Z)-2, 57496-99-8; 3, 54265-12-2; (E)-4, 57497-00-4; (Z)-4, 57497-01-5; 5, 13828-12-1; 6, 57497-02-6; 7, 57497-03-7; 8, 57497-04-8; 9, 34298-75-4; 10, 41635-77-2; 11, 36613-11-3; 12, 57497-05-9; 13, 57497-06-0; 14, 57497-07-1; 15, 57497-08-2; 16, 57497-09-3; (E)-17, 57497-10-6; (Z)-17, 57497-11-7; 18, 21020-27-9; 19, 57497-12-8; 20, 57497-13-9; 4-phenylbutyric acid, 1821-12-1; 5-phenyl-2-pentanone, $2235-83-8 ; 2$-methyl-5-phenyl-1-pentene, 6683-49-4; 2-methyl-3-cyclohexyl-1-propene, 3990-93-0; cyclohexylacetone, 103-78-6; 2,5-dimethyl-1-hexene, 6975-92-4; bromine, 7726-95-6; 2,6-dimethyl-1-heptene, 3074-78-0; 2,4-dimethyl-1-pentene, 2213-32-3; 2-o-tolylpropene, 7399-49-7; 2,3-dimethyl-1-butene, 563-78-0; potassium tert-butoxide, 865-47-4; 1,3,3-trimethylcyclopentene, 57497-14-0; 6-methyl-2-heptyne, 51065-64-6; (E)-1-tert-butoxy-2,5-dimethyl-1-hexene, 57497-15-1; (Z)-1-tert-bu-toxy-2,5-dimethyl-1-hexene, 57497-16-2; 2-butyl-1-hexene, 6795-79-5; 2-isoamylmethylenecyclopropane, 57497-17-3; 7-methyl-2octyne, 57497-18-4; (E)-1-tert-butoxy-2,6-dimethyl-1-heptene, 57497-19-5; (Z)-1-tert-butoxy-2,6-dimethyl-1-heptene, 57497-208; 2-isopropyl-1-methylenecyclopropane, 57497-21-9; 5-methyl-2hexyne, 53566-37-3; (Z)-1-tert-butoxy-2,4-dimethyl-1-pentene, 57497-22-0; (E)-1-tert-butoxy-2,4-dimethyl-1-pentene, 5?497-231; 1-n-butyl-3-methylcyclopentene, 57497-24-2; 5-decyne, 1942-46-7; cis-8-methylenebicyclo[4.3.0]nonane, 57497-25-3; 2-indanone, 615-13-4; cis-bicyclo[4.3.0]nonan-8-one, 5689-04-3; cis-bicyclo[4.3.0]nonane, 4551-51-3; indan, 496-11-7; trans-8-methylenebicyclo[4.3.0]nonane, 57497-26-4; trans-bicyclo[4.3.0]nonan-8-one, 16484-17-6; cyclohexyl bromide, 108-85-0; cyclohexyl chloride, 542-18-7; propargyl bromide, 106-96-7; propargyl chloride, 624-65-7; cyclohexylallene, 5664-17-5; cyclohexylspiropentane, 57497-27-5; 5-nonanone, 502-56-7.

References and Notes

(1) Abstracted from part of the thesis submitted by P.C.T. in partial fulfillment of the requirements for the Ph.D. degree, Purdue University, Jan 1971. 3M Fellow, 1968-1969
(2) K. L. Erickson and J. Wolinsky, J. Am. Chem. Soc., 87, 1142 (1965).
(3) For a collection of leading references see P. J. Stang, M. G. Mangum, D. P. Fox, and P. Haak, J. Am. Chem. Soc., 96, 4562 (1974); P. J. Stang and M. G. Mangum, ibid., 97, 1459 (1975).
(4) T Sakakibara, Y. Odaira, and S. Tsutsumi, Tetrahedron Lett., 503 (1968)
(5) D. Y. Curtin, J. A Kampmeier, and E. O'Connor, J. Am. Chem. Soc., 87, 863 (1965).
(6) M. S. Newman and A. O. M. Okorodura, J. Am. Chem. Soc., 90, 4189 (1968): J. Org. Chem., 34, 1220 (1969): M. S. Newman and T. B. Patrick, J. Am. Chem. Soc., 91, 6461 (1969); 92, 4312 (1970); M. S. Newman and C. D. Beard, ibid, 91, 5677 (1969); T. B. Patrick, E. C. Haynie, and W J. Probst, J. Org Chem., 37, 1553 (1972); M. S. Newman and Z. U. Din, ibid., 38, 547 (1973).
(7) M. Tanabe and R. A. Walsh. J. Am. Chem. Soc., 85, 3522 (1963): R. A Walsh and A. T. Bottini, J. Org. Chem., 35, 1086 (1970)
(8) (a) H. D. Hartzler. J. Am. Chem. Soc., 86, 526 (1964); (b) G. Kobrich, Angew. Chem., Int. Ed. Engl., 6, 41 (1967), and references cited therein.
(9) J. C. Gilbert and J. R. Butler, J. Am. Chem. Soc., 92, 7493 (1970)
(10) J. Wolinsky and K. L. Erickson, J. Org. Chem., 30, 2208 (1965)
(11) W. Kirmse and G. Wachtershauser. Tetrahedron, 22, 63 (1966)
(12) G. L. Closs, J. Am. Chem. Soc., 84, 809 (1962).
(13) L. Friedman and H. Schechter, J. Am. Chem. Soc., 83, 3159 (1961).
(14) J. Wolinsky, R. Lau, J. J. Hamsher, and C. M. Cimarusti, Synth. Commun., 2, 327 (1972).
(15) W. Kirmse, H. Schladetsch, and H. Bucking. Chem. Ber., 99, 2579 (1966).
(16) J. Gragson, K. Greenlee, J. Derfer, and C. Boord. J. Am. Chem. Soc., 75, 3344 (1953).
(17) B. L. Anderson, J. Org. Chem., 27, 2720 (1962).
(18) Methylenecyclopropane 16 is found in spite of the fact that methylenecyclopropanes are prone to undergo thermal isomerization. ${ }^{19,20}$
(19) J. J. Gajewski, J. Am. Chem. Soc., 90, 7178 (1968).
(20) J. R. Chesick, J. Am. Chem. Soc., 85, 2720 (1963).
(21) C. L. Osborn, T. C. Shields, B. H. Shoulders, J. F. Krause, H. V. Cortez, and P. D. Gardner. J. Am. Chem. Soc., 87, 3158 (1965); W. E. Billups, T. C. Shields. W. Y. Chow, and N. C Deno, J. Org. Chem., 37, 3676 (1972).
(22) All melting and boiling points are uncorrected. Infrared spectra were obtained with a Perkin-Elmer Infracord. NMR spectra were recorded with a Varian Associates A-60 spectrometer. Mass spectra were measured by the Purdue University Spectral Service using a Hitachi RMU6A spectrometer. Microanalyses were performed by Dr. C. S. Yeh and associates.
(23) Isoamylmethylenecyclopropane was obtained in low yield by a Sim-mons-Smith reaction ${ }^{24}$ of isoamylallene with diiodomethane and a zinc-copper couple. Isoamylallene was prepared by the reaction of isoamy/magnesium bromide and propargyl bromide. ${ }^{25}$
(24) H. E. Simmons and R. D. Smith, J. Am Chem. Soc., 80, 5323 (1958).
(25) M. Gaudemar, Ann. Chim. (Paris), 1, 161 (1956)
(26) The aliene was identical with the aliene resulting from the action of potassium tert-butoxide on 5 -decyne.
(27) E. Bried and G. Hennion, J. Am. Chem. Soc., 59, 310 (1937).
(28) Prepared from the reaction of 1-hexyne with sodium amide and n-butyl bromide in liquid ammonia.
(29) The infrared spectrum was identical with that of 5-phenyl-2-hexyne found in the Sadler Index (32859).
(30) A. Kandiah. J. Chem. Soc., 922 (1931).
(31) R. J. Tudor and A. I. Vogel, J. Chem. Soc., 1250 (1934).
(32) It was independently demonstrated that cyclohexylmagnesium bromide or chloride undergoes metal interchange with propargyl bromide to afford propargylmagnesium bromide. An experiment conducted by Michael B. Smith involving addition of acetone at 0° to the mixture resulting from cyclhexylmagnesium bromide and propargyl bromide gave 2-methyl-4-pentyn-2-ol as a major product.
(33) R. Shank and H. Schechter, J. Org. Chem., 24, 1825 (1959).

Carbon-13 Nuclear Magnetic Resonance Studies of Benzocycloalkenes and Fluorobenzocycloalkenes ${ }^{1}$

William Adcock, B. D. Gupta, and T. C. Khor
School of Physical Sciences, Flir.ders University, Adelaide, South Australia
David Doddrel
School of Science, Griffi ih University, Nathan, Q. Australia
William Kitching*2
Department of Chemistry, University of Queensland, Brisbane, Australia

Received August 11, 1975

The ${ }^{13} \mathrm{C}$ NMR spectra of o-xylene, tetralin, indan, benzocyclobutene, and o-di-tert-butylbenzene and (excluding the latter) their 3 - and 4 -fluoro analogues have been obtained ard assigned. In the hydrocarbon cases, aromatic carbon assignments were confirmed by examination of tactically deuterated compounds, while considerations of ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ couplings an ${ }^{19} \mathrm{~F}$ contributions to carton screenings permitted complete assignments of all aryl and essentially all aliphatic zarbon signals in the fluorobenzocycloalirenes. It is concluded that fluoro substitution in aromatic systems is manifested by sufficiently regular trends in ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ couplings and contr:butions to carbon screenings as to be a useful strategy for spectral assignment of the unfluorinatec aromatic. Trends in chemical shifts with the size of the fused ring ("ring stain") are discussed in the light of existing chemical shift theory, and available quantum chemical calculations for these systems. Some examination of tie ${ }^{1}$ H NMR spectra of the deuterated benzocycloalker es and ${ }^{13} \mathrm{C}$ satellite spectra have been conducted and whi.e confirming the previous proton assignments for indan demand reversal of the assignments for o-di-tert-butylbenzene and benzocyclobutene. Preliminary studies of ralaxation phenomena in these systems (T_{1} measurements) indicate a useful basis for spectral assignments, as C_{α} in all cases examined has a longer T_{1} than C_{β}. A qualitative explanation in terms of preferred modes of molecular rotation is advanced.

Much effort has been expended in determining the chemical and physical properti ss of benzocycloalkenes (I) since the initial observations of Mills and Nixon some 45 years ago. ${ }^{3 \mathrm{a}, \mathrm{b}}$

I
Changes in properties at positions in the aromatic -ing are usually associated with "ring strain" effects as the size of the 1,2 -fused ring decreases, and a number of explanations involving bond fixation, ${ }^{3, b}$ bond-order changes ${ }^{1}$ in intermediates in electrophilic substitutions, orbital electronegativities, ${ }^{5}$ etc., have been advanced. Direct evidence of the effects of strain on molecuiar properties ${ }^{6}$ of unsubstituted benzocycloalkenes is no: abundant, but Gunther's liquid crystal ${ }^{1} \mathrm{H}$ NMR studies ${ }^{2}$ of benzocyclopropene ($n=$ 1 in I) suggest significant distcrtion with internal angular increase at $\mathrm{C}_{4}, \mathrm{C}_{5}$ and decrease at $\mathrm{C}_{3}, \mathrm{C}_{6}$ in the direction of theoretical estimates. X-ray studies of related systems, e.g., benzo[1,2:4,5]dicyclobutene, ${ }^{8}$ confirm more profcund changes in structural parameters compared with an "ideal" or unstrained system.
One thorough analysis of the effects of strain in benzocycloalkenes on certain proton-proton spin coupling constants has been reported. ${ }^{3 b}$ Cocper and Manatt determined that strain exerted an ambivalent effect on $J_{1,2}\left({ }^{3} J_{\mathrm{H}, \mathrm{H}}\right)$ but $J_{1,3}\left({ }^{4} J_{\mathrm{H}, \mathrm{II}}\right)$ decreased and $J_{1, \dot{c}}\left({ }^{5} J_{\mathrm{H}, \mathrm{H}}\right)$ increased substantially, and the effects of bond length, angle, and electronegativity changes were discussed Using CNDO/2 minimized geometries, ${ }^{9}$ impressive agreersent in trends in the various $J_{\mathrm{H}, \mathrm{H}}$ was obtcined, and indicated to the authors that the calculated geometries and charge densities by CNDO/2 were, in all likelihood, close to the truth.

In connection with an investigation of the ${ }^{13} \mathrm{C}$ NMR spectra of certain silicon analcgues ${ }^{10}$ of the benzocycloalkenes, the question of "ring-st-ain" effects on aryl-carbon
chemical shifts arose, and we therefore commenced an examination of the spectra of the benzocycloalkenes themselves. This study seemed potentially illuminating since rather substantial variations ir the aryl ${ }^{13} \mathrm{C}$ shifts were expected, and could be construed as a reflection of bondorder and charge density fluctuations at the nuclei directly in the ring. In any ϵ vent, the data were of considerable importance, since they would need to be accommodated in some way by more refined theories of the ${ }^{13} \mathrm{C}$ chemical shift. Scattered pieces of data on one or two benzocycloalkenes did exist in an obscure fashion in the literature, but critical spectral assignments were not substantiated. It emerged that twc other parallel investigations in the same area were being conducted and were reported, ${ }^{11,12}$ but some of the assignments in one report ${ }^{11}$ are now known to require modification. In our work, it became clear that strategically fluoro-substituted derivatives of the benzocycloalkenes were of much assistance in the vexing question of assigrments in the hydrocarbons, but in addition afforded data of other interest. The necessity to synthesise certain deuterated derivatives stimulated a curiosity in previous suggestions ${ }^{3 b, 13}$ of ${ }^{1} \mathrm{H}$ NMR essignments and our conclusions in this direction are also presented.
With the increasing appreciation of the insight available from ${ }^{13} \mathrm{C}$ relaxation measurements, ${ }^{14}$ we have conducted such studies with some of the benzocycloalkenes, and the systematics of the results are rationalized in terms of differing contributions to relaxation from specific rotational modes.

Experimental Section

Compounds. o-Xvlene, indan and tetralin were commercial samples, and after distillation were of high purity as judged by vapor phase chromatography and ${ }^{1} \mathrm{H}$ NMR spectra. o-Di-tert-butylbenzene was kindly provided by Professor E. M. Arnett of the Unive-sity of Pittsburgh. Benzocyclobutene was prepared as described by Oliver and Ongley. ${ }^{15}$
4-Deuteriobenzocyclobutene. Benzocyclobutene ($10.4 \mathrm{~g}, 0.1$ mo.) was iodinated according to the procedure outlined for toluene

Figure 1. The aromatic portion of the $60-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of the separated 4 -iodobenzocyclobutene (a) and 3 -iodobenzocyclobutene (b) showing the characteristic pattern of the 1,2,4-proton substitution pattern in a.
by Wirth and co-workers. ${ }^{16}$ Distillation of the crude product afforded three fractions: (a) unreacted benzocyclobutene (2 g); (b) a mixture of 3 - and 4 -iodobenzocyclobutenes ($10 \mathrm{~g}, 56 \%$ yield based on consumed benzocyclobutene), bp $55{ }^{\circ} \mathrm{C}$ (0.01 Torr) [lit. ${ }^{17} 55{ }^{\circ} \mathrm{C}$ (0.01 Torr)], $n^{24} \mathrm{D} 1.6393$ (lit. 1.6395); (c) o-iodophenethyl acetate ($1 \mathrm{~g}, 6 \%$), bp $55{ }^{\circ} \mathrm{C}$ (0.01 Torr), $n^{24} \mathrm{D} 1.5784,{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.98\left(3 \mathrm{H}\right.$, singlet, $\left.\mathrm{CH}_{3} \mathrm{CO}\right)$, $3.03(2 \mathrm{H}$, triplet, $J=7 \mathrm{~Hz}$, Ar$\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}\right), 4.23\left(2 \mathrm{H}\right.$, triplet, $\left.J=7 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{OAc}\right)$, and 7.0-7.82 (4 H, multiplet, Ar).

Fraction b was previously reported ${ }^{17}$ to be pure 4 -iodobenzocyclobutene. However, the ${ }^{1} \mathrm{H}$ NMR spectrum showed an impurity at $\delta 3.04$ and a satisfactory integral ratio (4:3) was obtained only if the impurity signal was included in the calculation. This suggested the presence of an isomer. Combined gas chromatography-mass spectral analysis revealed two components in the ratio of 6.7:1, both exhibiting $m / e 230\left(\mathrm{M}^{+}\right)$, and similar fragmentation patterns. The two components were separated on a $20 \mathrm{ft} \times 0.375 \mathrm{in} .30 \%$ SE-30 on Chromosorb W 45/60 column operating at 180°. The major component was shown to be the 4 isomer by conversion to the known ${ }^{17} 4$-carboxylic acid. The 4 -iodo and 4 -carboxyl compounds both displayed aryl ${ }^{1} \mathrm{H}$ NMR patterns requiring a $1,2,4$ disposition of the protons.

The physical properties of the separated iodo isomers and the reported ${ }^{17}$ mixture are as follows: (a) 3-iodobenzocyclobutene, bp $74{ }^{\circ} \mathrm{C}$ (0.9 Torr), $n^{24} \mathrm{D} 1.6333$ (lit. 1.6335); (b) 4-iodobenzocyclobutene, bp $55^{\circ} \mathrm{C}$ (0.1 Torr), $n^{24} \mathrm{D} 1.6403$; (c) mixture, bp $55^{\circ} \mathrm{C}(0.01$ Torr), $n^{24} \mathrm{D} 1.6395$. The aromatic regions of the ${ }^{1} \mathrm{H}$ NMR spectra are reproduced in Figure 1.

The Grignard reagent prepared from the mixture of iodobenzocyclobutenes was decomposed with $\mathrm{D}_{2} \mathrm{O}(99.8 \%)$ and manipulated in the usual way to give a mixture of predominantly 4-deuteriobenzocyclobutene. The deuterium content was 67% by ${ }^{1} \mathrm{H}$ NMR and mass spectrometry.

5-Deuterioindan. Indan ($100 \mathrm{~g}, 0.85 \mathrm{~mol}$) was acetylated according to the method of Vaughan and co-workers. ${ }^{18}$ Distillation of the crude product provided 5 -acetylindan as a colorless oil $(80.0 \mathrm{~g}$, 60%), bp $80^{\circ} \mathrm{C}$ (0.2 Torr) [lit. ${ }^{18} 142^{\circ} \mathrm{C}$ (15 Torr)], the constitution of which had been established by synthesis. ${ }^{18,19}$ This is absolutely in agreement with the ${ }^{1} \mathrm{H}$ NMR spectrum ($60 \mathrm{MHz}, \mathrm{CCl}_{4}, \mathrm{Me}_{4} \mathrm{Si}$): s 1.80-2.4 (unsymmetrical quintet, $2 \mathrm{H}, J_{\text {app }}=7 \mathrm{~Hz},-\mathrm{CH}_{2}$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.45 (singlet, $3 \mathrm{H}, \mathrm{COCH}_{3}$), 2.9 (unsymmetrical triplet, $4 \mathrm{H}, J_{\mathrm{app}}=7 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); the aryl portion consisted of an AB pattern centered at $\delta 7.2$ and $7.65, J_{\mathrm{AB}}=8.5 \mathrm{~Hz}$, with the lowField resonance of the $\delta 7.65$ pattern underlying a "singlet" ($\delta 7.71$,
br, 1 H). This aryl pattern is consistent only with a $1,2,4$ disposition of the protons.

The above ketone was transformed via its oxime and amine to 5 -bromoindan, bp $64-65^{\circ} \mathrm{C}$ (1 Torr) [lit. ${ }^{20} 113^{\circ} \mathrm{C}$ (14 Torr)], by well-documented procedures. The physical properties of the intermediates encountered in this conversion are as follows: 5 -indanylmethylketooxime, $\mathrm{mp} 112-113{ }^{\circ} \mathrm{C}$ (lit..$^{21} 114{ }^{\circ} \mathrm{C}$); 5-acetamidoindan, mp $106{ }^{\circ} \mathrm{C}$ (lit..$^{22} 107{ }^{\circ} \mathrm{C}$); 5-aminoindan, mp 35-36 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{23} 37-38^{\circ} \mathrm{C}$).
The Grignard reagent from the bromide was prepared (in THF) in the standard way and quenched with $\mathrm{D}_{2} \mathrm{O}$, to provide 5-deuterioindan, bp $64^{\circ} \mathrm{C}$ (15 Torr). A 70% incorporation of deuterium was indicated by ${ }^{1} \mathrm{H}$ NMR and mass spectrometry.

4-Fluoro-o-xylene, 6-fluorotetralin, and 5-fluoroindan have been described previously, ${ }^{24}$ as has 4-fluorobenzocyclobutene. ${ }^{25}$ 3-Flu-oro-o-xylene, 5 -fluorotetralin, 4 -fluoroindan, and 3 -fluorobenzocyclobutene were available from another investigation, and will be described elsewhere. ${ }^{26}$
${ }^{13} \mathrm{C}$ Spectra. The spectra were obtained for CDCl_{3} solutions ($\sim 25 \%$ solutions) and chemical shifts are referred to internal $\mathrm{Me}_{4} \mathrm{Si}$. In a few cases, cyclohexane was used as internal reference and the data connected to the $\mathrm{Me}_{4} \mathrm{Si}$ scale by using $\delta_{\mathrm{C}}=27.5+$ $\delta_{\mathrm{C}_{6} \mathrm{H}_{12}}$. The spectra were recorded either at $15.086 \mathrm{MHz}(\mathrm{CW})$ using a modified ${ }^{27}$ HA-60 spectrometer, or a Bruker HX-90 using the PFT technique. J values are considered accurate to $\pm 0.1 \mathrm{~Hz}$ on small couplings and $\pm 1 \mathrm{~Hz}$ on the larger one-bond couplings. Chemical shifts are accurate to $\pm 0.1 \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ spin-lattice relaxation times were determined using the PRFT method ${ }^{28}$ on solutions containing $5 \% \mathrm{C}_{6} \mathrm{D}_{6}$ for internal lock. The 90° pulse time was set beforehand on a sample of $\mathrm{C}_{6} \mathrm{H}_{6}$ and was found to be $18 \mu \mathrm{~s}$. A recycle time at least four times the longest T_{1} to be determined was used in data acquisition. At least eight τ values in the ($180-\tau-90^{\circ}$) pulse sequence were used in determining any T_{1} value. Narrow spectral widths were used to ensure sufficient data points to define the line shape and thus to yield accurate values of the peak intensities at different τ settings.
${ }^{1} \mathrm{H}$ Spectra. These were determined for CCl_{4} or CDCl_{3} solutions (5-10\%) with internal $\mathrm{Me}_{4} \mathrm{Si}$, using a JEOL MH-100 spectrometer.

Results and Discussion

Assignments. General. A number of techniques and criteria are now available and applied in a routine fashion. For example, off-resonance noise decoupling ${ }^{29}$ is successful for identifying quaternary carbons, which in addition generally occur at substantially lower field than protonated carbons. Off-resonance decoupling is similarly useful, but of course cannot distinguish between various $=\mathrm{CH}-$ aryl groupings, which is the chief assignment problem in the present work. Deuterium substitution, ${ }^{30}$ when synthetically feasible, is unambiguous and has been employed in crucial aspects of this work, but other approaches are also useful, and particular mention of Gunther's so-called "fingerprint" method ${ }^{31}$ is warranted. The bases for our assignments are presented below.
o-Xylene. The spectrum has been assigned quite definitely by examination of both the $3-10,11$ and 4 -deuterio ${ }^{10}$ derivatives.
o-Di-tert-butylbenzene. We utilized the technique (reported by Günther) ${ }^{31 \mathrm{a}}$ that the splitting patterns observed for the ${ }^{13} \mathrm{C}$ signals in the ${ }^{1} \mathrm{H}$-coupled spectra of symmetrically ortho-disubstituted benzenes differ characteristically for carbons α and β, i.e., $\mathrm{C}_{3,6}$ and $\mathrm{C}_{4,5}$, respectively, and give rise to "fingerprints". ${ }^{31 \mathrm{~b}}$ Examination of our $22.63-\mathrm{MHz}$ spectrum revealed a close similarity in forms to Günther's calculated spectra ${ }^{31}$ and those of other symmetric orthodisubstituted benzenes for which $\mathrm{C}_{\alpha}, \mathrm{C}_{\beta}$ assignments had been established. Other workers ${ }^{11}$ arrived at the same assignments by using the coherent ${ }^{1} \mathrm{H}$ decoupling method, assuming the correctness of the ${ }^{1} \mathrm{H}$ shifts (vide infra).

This approach (i.e., the "fingerprint" method) is also the basis for the assignments of entries 3 and 7 in Table I.

Tetralin. The assignments in Table I have been confirmed by specific deuteration, as well as the characteristic $\mathrm{C}_{\alpha}, \mathrm{C}_{\beta}$ "fingerprints" in the ${ }^{1} \mathrm{H}$-coupled spectrum. It will be

Table I. Carbon-13 Assignments ${ }^{a}$ of Benzocycloalkenes and 1,2-Dialkylbenzenes

Registry no.	Entry	Compd	Aromatic carbons						Aliphatic carbons		
			1	2	3	4	5	6	α	β	γ
95-47-6	1		136.3	136.3	129.8	126.0	126.0	129.8	19.4		
1012-76-6	$1{ }^{b}$		136.21	136.21	129.84	126.11	126.11	129.84	19.44		
	2	1	148.4	148.4	129.4	125.6	125.6	129.4	$37.75{ }^{\text {b }}$	$35.27{ }^{\text {b }}$	
	3^{c}		142.7	142.7	128.7	125.7	125.7	128.7	36.6	28.2	32.6
119-64-2	4	\bigcirc	137.0	137.0	129.2	125.2	125.2	129.2	29.7	23.6	
496-11-7	5		144.0	144.0	124.4	126.2	123.2	124.4	33.8	25.4	
694-87-1	6		145.6	145.6	122.1	126.6	126.5	122.1	29.4		
	$7 c$	II	125.4	125.4	114.7	128.8	123.8	114.7	18.4		

${ }^{a}$ Numbering system for convenience only. Chemical shifts relative to $\mathrm{Me}_{4} \mathrm{Si}$. More positive values correspond to lower shielding. With cyclohexane as nternal reference, $\delta_{\mathrm{C}}=27.5+\delta_{\mathrm{C}_{6} \mathrm{H}_{12} .} . b$ From ref 11. ${ }^{c}$ From 12.

Table II. Carbon- -3 Assignments ${ }^{a, b}$ of Fluorobenzocycloalkenes and Fluoro-1,2-dialkylbenzenes

Registry no.	En- try	Compd	A.romatic carbons						Aliphatic carbons			
			1	2	3	4	5	6	α	β	β^{\prime}	α^{\prime}
443-82-3			139.1	123.4	-61.7	112.67	127.0	125.32	1).55			19.39
		CH_{4}	(4.6)	(16.0)	(242.90)	(23.9)	(9.76)	(2.44)	(6.10)			(3.66)
452-64-2	2	\bigcirc°	131.6	138.2	-15.9	161.5	111.9	130.4	13.9			18.0
		,	(2.5)	(7.2)	(21.2)	(244)	(20.3)	(7.4)	(1.5)			(n.o)
700-45-8	3	$)^{\prime}$	139.67	124.55	161.41	111.88	126.26	124.59	22.14	22.60	23.03	29.43
			(4.88)	(16.8)	(244.14)	(21.97)	(8.5 5)	(3.66)	(3.66)	(n.o)	(n.o)	(3.66)
2840-40-6	4	\bigcirc	132.4	139.0	114.9	161.1	112.1	130.2	29.4	22.8	23.2	28.6
			(2.3)	(7.0)	(20.3)	(245.9)	(20.9)	(7.6)	(1.4)	(n.o)	(n.o)	(n.o)
57526-99-5	5	4	148.11	130.09	160.03	112.77	128.15	120.16	28.81	25.46		33.28
		F	(6.10)	(18.31)	(245.36)	(20.75)	(6.1C)	(3.66)	(n.o)	(n.o)		(2.44)
37530-82-8	6	(1)	139.5	146.1	111.0	162.4	112.5	124.9	32.0	25.8		33.0
			(2.11)	(8.3)	(22.1)	(244.2)	(23.0)	(8.6)	(2.2)	(n.o)		(n.o)
51736-79-9	7		148.89	129.6	156.47	113.75	129.23	119.06	27.08			30.00
			(9.76)	(15.6)	(255.1)	(20.75)	(6.10)	(4.89)	(n.o)			(2.44)
51736-78-8	8		140.5	146.6	110.0	163.1	113.8	123.7	28.6			28.5
		F	(2.0)	(7.5)	(22.2)	$(2 \leq 5.3)$	(23.6)	(8.2)	12.0)			(n.o)

a Chemical shifts relative to $\mathrm{FJ}_{4} \mathrm{Si}$. More positive values correspond to lower shielding. With cyclohexane as internal reference, $\delta_{\mathrm{C}}=27.5+\delta_{\mathrm{C}_{6} \mathrm{H}_{12}}{ }^{b}$ Values in parentheses are ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ couplings. Numbering system for convenience only.
instructive to consider how the data for the fluorotetralins (entries 3 and 4 in Table II) cas be scrutinized to reveal the correct assignments for tetralir itself (vide infra).

Indan. The aromatic carbons were distinguished by examination of 5 -deuterioindan (D at position 4 in entry 5 , Table I) which was synthesized from authentic 5 -acetylindan by an unambiguous sєquence. (See Experimental Section.)

The same order of aryl carbon shifts has been obtained by Günther. ${ }^{12}$ Previously we had correctly deduced ${ }^{10}$ these assignments from examination of the fluoroindans. Incorrect assignments have been reported, ${ }^{11}$ based on the coherent ${ }^{1} \mathrm{H}$ decoupling technique, which is somewhat surprising as the ${ }^{1} \mathrm{H}$ chemical shifts ${ }^{3 b}$ uilized in this work have since been demonstrated to be correct (vide infra). Buchanan and Wightman, ${ }^{32 \mathrm{a}}$ in a quite separate study, did correctly
tabulate the shifts for indan, but these were unproven. ${ }^{32 b}$ Some time ago, the comparative data for indan and $1,3-$ dimethylindan were available, ${ }^{10,33}$ but generally overlooked, and consideration of the γ effect (shielding) oî the CH_{3} group at C_{α} leads directly to the assignments given.

Benzocyclobutene. Deuterium introduction into benzocyclobutene was achieved via the iodo compound using standard organic transformation. Examination of a system with predominant D location at C_{β} confirmed the assignments in Table I. Another approach has given identical assignments. ${ }^{12}$

Maciel and co-workers reported ${ }^{11}$ reversed assignments for $\mathrm{C}_{3,6}, \mathrm{C}_{4,5}$ but their coherent decoupling technique was based on an assumed correctness of the previously suggested order of the ${ }^{1} \mathrm{H}$ chemical shifts. Our examination of the deuterated benzocyclobutene and ${ }^{13} \mathrm{C}$ satellite studies shows that the previous suggested order of ${ }^{1} \mathrm{H}$ shifts ${ }^{3 \mathrm{~b}}$ need reversal, and ipso facto any soundly determined ${ }^{13} \mathrm{C}$ assignments based on these ${ }^{1} \mathrm{H}$ shifts. The correct set of assignments have also been reported by Jones, Garratt, and Vollhardt, ${ }^{34}$ in another connection, apparently on the basis of differential Overhauser effects.
Benzocyclopropene. These data are based on the "fingerprint" criterion of Gúnther for $\mathrm{C}_{\alpha}, \mathrm{C}_{\beta}$ resonances. ${ }^{12}$

Benzosuberane. The spectrum was similarly assigned ${ }^{12}$ and the correct assignments were suggested by Maceel, ${ }^{11}$ on the basis presumably that the more remote $\mathrm{C}_{4,5}$ should resemble $\mathrm{C}_{4,5}$ in a relatively "strain-free" o-dialkylbenzene.

With the various approaches that have been applied to the problem of distinguishing $\mathrm{C}_{3,6}\left(\mathrm{C}_{\alpha}\right)$ and $\mathrm{C}_{4,5}\left(\mathrm{C}_{\beta}\right)$ in entries 1-7 (Table I), there is no doubt that the listed aromatic assignments are correct. Regarding aliphatic carbon assignments (entries 2-5, Table I) no difference of opinion exists and considerations of one or a combination of offresonance decoupling, selective deuteration, chemical shifts, and relative intensities, etc., yield concordant conclusions. ${ }^{1,10,11,12}$
${ }^{13} \mathrm{C}$ Assignments in Fluorobenzocycloalkenes (Table II). Aryl Carbons. Under conditions of broad-band proton decoupling, all aromatic carbons in Table II appear as doublets due to ${ }^{13} \mathrm{C}_{-}{ }^{19} \mathrm{~F}$ coupling. This apparent spectral complexity is a blessing since it has been established quite clearly that in phenyl systems this coupling declines in a regular way with the number of intervening bonds. ${ }^{1,10,35}$ One-bond couplings usually are in the range $240-250 \mathrm{~Hz}$, while coupling to secondary ortho carbons (i.e., ${ }^{2} J_{C_{-F}}$) are $20-24 \mathrm{~Hz}$. A reduced ortho $\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}\right)$ coupling to tertiary carbons is observed (ca. $15-18 \mathrm{~Hz}$), but substantially larger than coupling ($\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}\right)$ to tertiary meta carbons, typical values being in the range $4-9 \mathrm{~Hz}$. Coupling to secondary meta carbons is generally somewhat larger ($6-10 \mathrm{~Hz}$), but this similarity in values never poses a problem since the chemical shifts are quite different. Easily resolved coupling to para carbons is also observed $\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}\right)$ ranging from 2 to 4 Hz . Intensity variations are pronounced as well, and the signals of the much less intense nonprotonated carbons are assigned without difficulty. An added benefit of fluorine substitution is the pronounced effect on the chemical shift. Carbon bearing fluorine, besides having a large one-bond coupling diagnostic in itself, is quite deshielded (by ~ 32 ppm) whereas carbons ortho to fluorine are shifted upfield by $13-14 \mathrm{ppm}$. Carbons para to fluorine are also shielded by a lesser amount ($\sim 4-5 \mathrm{ppm}$) whereas meta carbons appear always to be deshielded by about $1-2 \mathrm{ppm}$. Considerations of these data lead generally to a unique assignment for a fluorophenyl system. ${ }^{1,10,35}$

Consider the assignments for the fluorotetralin (entry 3) in Table II. Six doublets at $161.41 \mathrm{ppm}\left(J_{\mathrm{C}-\mathrm{F}}=244.1 \mathrm{~Hz}\right)$, 139.67 (4.88), 126.2 (8.54), 124.59 (3.66), 124.55 (16.8), and
111.88 (21.97) are observed in the aromatic region. C_{3} (bearing fluorine) corresponds to 161.41 (244.14) on the basis of chemical shift and coupling, and C_{4} to 11.888 (21.97) since this coupling is typical of ${ }^{2} J_{\mathrm{C}-\mathrm{F}}$ to a secondary carbon. A coupling of 16.8 Hz is too large to be ${ }^{3} J_{\mathrm{C}-\mathrm{F}}$ but is appropriate for ${ }^{2} J_{\mathrm{C}-\mathrm{F}}$ to a quaternary carbon. C_{2} is therefore identified and confirmed by intensity considerations. The $8.54-\mathrm{Hz}$ coupling is appropriate for ${ }^{3} J_{\mathrm{C}-\mathrm{F}}$ (secondary) and locates C_{5}. The remaining resonances 139.67 (4.88) and 124.59 (3.66) are straightforwardly allocated to C_{1} and C_{6} on the basis of chemical shift and coupling constants. With these assignments for entry 3 , and considering the substituent effects of fluorine in phenyl systems (vide supra), we can calculate the following aromatic shifts (parts per million) for tetralin itself: $\mathrm{C}_{1}, 138.17 ; \mathrm{C}_{2}, 138.00 ; \mathrm{C}_{3}, 129.41 ; \mathrm{C}_{4}$, 125.4; $\mathrm{C}_{5}, 124.76 ; \mathrm{C}_{6}, 129.09$. [In tetralin the carbon pairs are $\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right),\left(\mathrm{C}_{3}, \mathrm{C}_{6}\right)$, and $\left.\left(\mathrm{C}_{4}, \mathrm{C}_{5}\right)\right]$. The agreement between these and those rigorously assigned demonstrates how regular ${ }^{19} \mathrm{~F}$ contributions to carbon screenings are. Although some variations must occur depending on the particular phenyl system, ${ }^{36}$ these seem to be minor and it is clear that these well-behaved effects of ${ }^{19} \mathrm{~F}$ substitution are extremely useful for assignment purposes in the parent hydrocarbon, particularly when there is $3-4 \mathrm{ppm}$ difference in shifts of contentious resonances. This can be confirmed by examining appropriate sets of other data in Tables I and II. Strategic D substitution ${ }^{30}$ is in principle a better tactic since very minor perturbation of the system results. While carbon bearing deuterium is hence readily assigned, some care is required if adjacent carbons are to be assigned by isotope shifts, signal broadening (${ }^{13} \mathrm{C}-\mathrm{D}$ coupling), etc., and a satisfactorily high D incorporation is required. Since fluorine can be introduced easily into aryl systems by manipulation of readily installed functionality, its use in the presently described connection is worthy of note.

Aliphatic Carbons. Chemical shifts and ${ }^{13} \mathrm{C}^{19} \mathrm{~F}$ couplings lead to acceptable assignments in all cases, except the β, β^{\prime} carbons in entries 3 and 4 : for 3 -fluoro-o-xylene (entry 1) resonances at 19.39 (3.66) and $10.55 \mathrm{ppm}(6.10)$ are observed compared with 19.4 ppm for the methyl carbon in o-xylene. As the methyl ortho to fluorine should experience substantial shielding, the indicated assignments are arrived at. These data provide values of ${ }^{4} J_{\mathrm{C}-\mathrm{F}}$ and ${ }^{3} J_{\mathrm{C}-\mathrm{F}}$ of 3.66 and 6.10 Hz , respectively. In the fluorobenzocycloalkenes this latter value (i.e., ${ }^{3} J_{\mathrm{C}-\mathrm{F}}$) depends strongly on the fused ring, and may be vanishingly small. In 4 -flu-oro-o-xylene (entry 2 , Table II) the CH_{3} signals are less separated and one has significant coupling (1.5 Hz). Two lines of reasoning provide the indicated assignments. α CH_{3} is attached to a more electronegative aryl carbon (meta to fluorine) than is $\alpha^{\prime} \mathrm{CH}_{3}$ (para to fluorine) and the $1.5-\mathrm{Hz}$ coupling is consistent with a preferred "zigzag" array of coupled atoms and shorter internuclear path (I). In

agreement with this, Weigert and Roberts ${ }^{35}$ observed fluorine coupling to the methyl carbon in m-fluorotoluene, but
not in p-fluorotoluene. Simila ${ }^{13} \mathrm{C}-19 \mathrm{~F}$ couplings across a "zigzag" path have been observed in other fluoroaliphatic compounds, ${ }^{37}$ and the suggestion has been made that such ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ scalar coupling is tran:mitted by a "back orbital" lobe on the fluorine interacting directly with the carbon orbital. Such an interaction is farored by a "zigzag" array of the coupled nuclei. The validity of this suggestion is clear from the fluorotetralin data (entry 4) where coupling to C_{α} but not to $\mathrm{C}_{\alpha}{ }^{\prime}$ is observed (II). In entry $3, \mathrm{C}_{\alpha}, \mathrm{C}_{\alpha^{\prime}}$ are distinguished by their large chemical shift difference, but again "zigzag" coupling over four bands is similar to a less preferred geometry spanning three bonds (III). $\delta_{\mathrm{C}_{\beta_{1}} \mathrm{C}_{\beta^{\prime}}}$ in entries 3 and 4 are very similar and are not distinguished. Regarding the fluoroindans (ertries 5 and 6) C_{β} is assigned on the basis of its similar cherrical shifts ($25.46,25.8 \mathrm{ppm}$) to C_{β} in indan (25.4 ppm) and the lack of ${ }^{19} \mathrm{~F}$ coupling. In entry $5, \mathrm{C}_{\alpha^{\prime}}, \mathrm{C}_{\alpha^{\prime}}$ are allocated nambiguously on the basis of chemical shifts (C_{α} shielded by $5 \mathrm{ppm}, \mathrm{C}_{\alpha^{\prime}}$ similar to C_{α} in indan) and again coupling s observed to $\mathrm{C}_{\alpha^{\prime}}(2.44 \mathrm{~Hz})$ (IV) with the favorable geomet ic array, but not to C_{α}, with one less intervening bond. In entry $6, \mathrm{C}_{\alpha}$ and $\mathrm{C}_{\alpha^{\prime}}$ are separated on the basis of the prefered coupling to $\mathrm{C}_{\alpha}(\mathrm{V})$. Similar strategies apply to the fluorobenzocyclobutenes where zigzag coupling ${ }^{4} J_{\mathrm{C}^{\prime}}(2.44 \mathrm{~Hz})$ is observed but ${ }^{3} J_{\mathrm{C}}$ is not (entry 7) and in entry $8, \alpha \mathrm{C}$ is seen to have the requisite geometry with respect to fluorine for coupling. These geometrical dependences of ${ }^{3} J_{\mathrm{C}-\mathrm{F}}$ and ${ }^{4} J_{\mathrm{C}-\mathrm{F}}$ seem to have sufficient generality as to be usefal considerations for assignment in fluoroarylalkyl system:

Benzocycloalkenes. Chemical Shift Trends. Aromatic Carbons. It is useful to desermine whether any trends energe in these shifts with gemmetrical factors, and what relation these trends may hare with available theoretical parameters and explanations of "ring strain". A previous analysis of some of these shifts which indicated somewhat irregular response to strain is mo longer relevant because of misassignment of key signals. Scrutiny of the data in Table I reveals the following.
$\mathbf{C}_{1,2}$. These carbon shifts sfan a range of some 23 ppm (148.4 ppm for o-di-tert-but-lbenzene to 125.4 ppm for benzocyclopropene) but a smonth trend is not exhibited as the size of the fused ring al ers. Dissection of the shift change into a "strain" component is very difficult since α, β, γ screening effects differ with ring size. Nevertheless, with decreasing ring size and therefore more planar structures, and also less effective and essentially constant β effects, the sequence 137.0 (tetralin), 144.0 (indan), 145.6 (benzocyclobutene), and 125.1 (benzocyclopropene) must be substantially a manifestatic n of bond order, change density, and hybridization effects, rather than steric effects from the alkyl ring. Increased strain then seems to be associated with a deshielding effect at $\mathrm{C}_{1,2}$ except for benzocyclopropene. However, in this case, $\mathrm{C}_{1,2}$ is part of the cyclopropane ring system, and it is established that cyclopropyl carbons experience substan ial shielding. Therefore a major contribution to the shie_ding of $\mathrm{C}_{1,2}$ in this case must be associated with the special rature of this ring system.
$\mathrm{C}_{3,6}\left(\mathrm{C}_{\alpha}\right)$ and $\mathrm{C}_{4,5}\left(\mathrm{C}_{\beta}\right)$. A clearer picture emerges here since the increasing strain s associated with increased shielding, from ca. 129 ppm for "strain-free" cases (entries $1-4$, Table I) to 114.7 ppm in a regular fashion. Reduced effects operate at $\mathrm{C}_{4,5}$ but a slight ($\sim 3 \mathrm{ppm}$) decrease in shielding occurs. Clearly $\mathrm{C}_{4,5}$ is not very sensitive at all to ring-size effects and this is consistent with very similar reactivities at β positions in Jenzocycloalkenes in conventional electrophilic substitutions. ${ }^{38}$ As rate measurements reflect details of the transition state, more meaningful comparisons may be made wi $\cdot \mathrm{h}{ }^{19} \mathrm{~F}$ shieldings, known to be highly sensitive to (ground-state) electron density fluctua-
tions in aromatic systems. Relative to fluorobenzene, the ${ }^{19} \mathrm{~F}$ chemical shifts of 4 -fluoro-o-xylene, 6 -fluorotetralin, and 5 -fluoroindan are very similar, $+5.57,+5.45$, and 5.23 ppm , respectively ${ }^{25}$ (+ indicates to higher field in ${ }^{19} \mathrm{~F}$ shielding convention). Similar trends emerge in the fluorobenzocycloalkenes and attention is best focussed on entries 2, 4, 6, and 8 in Table II, i.e., the 4 -fluoro series, since some nonbonded effects between fluorine and the adjacent methylene in the 3 series could occur conceivably. C_{1} in this series ranges from 131.6 to $140.5 \mathrm{ppm}, \mathrm{C}_{6}$ from 130.4 to 123.7 ppm , and C_{5} from 1.1 .9 to 113.8 ppm . Assuming fluorine contributions to screanings to be essentially constant, these trends are very similar to these for the hydrocarbons.

The relation between π-electron density and carbon-13 chemical shifts has been explored for some time and an early LCAO analysis concluded that there was a local charge dependence agreeing in sign and order of magnitude with experiment. ${ }^{39}$ In substituted benzenes, for example, para-carbon shifts correlate well with other measures of substituent effects and with calculated (CNDO/2) total and π-charge density. ${ }^{40}$ In these cases apparently other terms change in proportion with charge density, or in a minor way, so overall correlation is observed. That the situation is more complex for polycyclic aryl systems was revealed by the work of Alger, Grant, and Paul, ${ }^{41}$ who considered other effects in their treatment. A general expression of the form

$$
\delta_{13 \mathrm{C}}=\frac{1}{\Delta E}\left(A \pi \Delta Q \pi+B_{\sigma} \Delta Q_{\sigma}-C_{\mathrm{p}} \Delta P\right)
$$

where $\Delta Q \pi, \Delta Q_{\sigma}$, and ΔP are the π charge, σ charge, and total mobile bond order relative to the benzene values, was developed and applied to sone alternate aromatic molecules.

In the present cases of the benzocycloalkenes, contributions from both charge densities and bond-order changes with ring size presumably occur. Fortunately, careful scrutiny of the data for the tetralin and indan systems provides the key to a meaningful analysis of the problem. Compared with fluorobenzene, ${ }^{19} \mathrm{~F}$ shieldings of $+5.03,+6.12$, and +5.42 ppm are observed ${ }^{26}$ fcr 3 -fluoro-o-xylene, 5 -fluorotetralin, and 4 -fluoroindan, respectively, indicating modest charge density and $\mathrm{C}-\mathrm{F} \pi$-bond order differences at $\mathrm{C}_{\text {cr }}$ for the tetralin-indan duo. The values of $. J^{13} \mathrm{C}_{\alpha}-\mathrm{H}$ for the pair are also essentially identical. ${ }^{12}$ In impressive contrast, the less sensitive ${ }^{13} \mathrm{C}_{c}$ probe registers a -4.8 ppm difference (i.e., to higher field) for the same pair (Table I). These results seem to demand that some factor very modestly (if at all) affecting the ${ }^{19} \mathrm{~F}$ shifts is having a substantial effect on the related ${ }^{13} \mathrm{C}_{\alpha}$ shifts. The direction of this effect is to higher field, opposite to that expected on the basis of diminished charge density at $\mathrm{C}_{\alpha}{ }^{40}$ We therefore conclude that the ΔP term above must exercise a decisive influence on the resultant C_{α} shieldings and it is possible to extrapolate in a qualitative way from the proposal of Streitweiser ${ }^{5}$ regarding these systems. As the "ring strain" increases the decreasing angles about carbon in the fused ring are associated with higher " p character" in these carbon orbitals, and hence the orbitals directed toward C_{α} have higher " s character". This increase in orbital electronegativity causes a polarization of electrons away from C_{α} which becomes more electronega-ive. This ground-state change accounts for $J_{\mathrm{C}_{\alpha-1}{ }^{1}}>J_{\mathrm{C}-1 \mathrm{H}}$ in benzocyclobutene ${ }^{12}$ and increased acidity at the α positions. ${ }^{5,6}$ As pointed out above, it does not rationalize the shift trends if charge density alone is invoked. However, there must also be changes in p-bond orders about C_{α} and the bridgehead carbons, and as strain increases, this term must increase between bridgehead carbons, but decrease between these carbons and C_{α}. This
would suggest decreased shielding for bridgehead carbons, but increased shielding for C_{α}.
"Strain" has significant effects on ${ }^{13} \mathrm{C}$ shifts in naphtho systems also. Naphtho[b]cyclopropene has been examined and the fully proton-coupled spectrum ${ }^{12}$ provides the assignments shown below. (Values in parentheses are ${ }^{1} J_{\mathrm{C}-\mathbf{H}}$.)

On comparison with naphthalene, fusion of the strained ring has consequences very similar to those observed in the benzocyclopropene case. C_{α} experiences substantial shielding (-16.14 ppm) while C_{β} (now the quaternary carbon) is deshielded (+2.45 ppm). The assignments recently listed for 1,8 -methanonaphthalene (1 H -cyclobuta[de]naphthalene) have been reproduced above, and confirm 1,8 bridging to have serious effects also.
Quantitative assessment of the situation in terms of the theory is difficult for several reasons. Firstly, as described by Alger, Paul, and Grant, ${ }^{41}$ and polarization and bondorder coefficients $\mathrm{A}_{\pi}, \mathrm{B}_{\delta}$, etc., are functions of the assumed overlap integrals, and the character of the wave functions chosen. Secondly, accurate structural data for the lower members of the benzocycloalkenes are lacking, as are refined MO calculations for these molecules. However, Cheung, Cooper, and Manatt ${ }^{9}$ have applied the CNDO/2 semiempirical method to these cases, and it is of interest to summarize their findings. Regarding bond orders, both the $\mathrm{C}_{2 \mathrm{~s}}$ and $\mathrm{C}_{2 p \pi}$ components to the $\mathrm{C}_{5}-\mathrm{C}_{6}$ bond decrease, yielding a substantial decrease in bond order while the $\mathrm{C}_{2 \mathrm{~s}}$ component to the $\mathrm{C}_{1}-\mathrm{C}_{6}$ bond increases but also does the $\mathrm{C}_{2 \mathrm{p} \pi}$ component.

I
This latter result is surprising in view of the p-orbital reorganization toward the fused ring. The effect of increasing strain is to increase total electron density at C_{5} and C_{6} (largely because of changes in $2 \mathrm{p} \pi$ density with irregular $\mathrm{C}_{2 \mathrm{~s}}$ contributions) while at C_{1}, total charge density decreases with strain, as does the $\mathrm{C}_{2 \mathrm{~g}}$ component, but the $\mathrm{C}_{2 \mathrm{p} \pi}$ portion fluctuates. While there are some encouraging aspects in these result, and some accord with experimental findings, it is necessary to point out that others considered the CNDO/2 approach somewhat crude, with drastic and unreal assumptions, to contribute anything meaningful to the interpretation of strain in these molecules. This is jecause the semiempirical methods (CNDO, INDO, MINDO) are parameterized with respect to nonstrained systems, but Streitweiser recently established ${ }^{43}$ that ab initio methods confirm the earlier qualitative proposal that compression of bond angles results in enhanced acidity of adjacent C-H bonds. Accurate molecular geometries are required for $n=$ 1, 2 to allow more refined theoretical treatment of these molecules. However, the ${ }^{13} \mathrm{C}$ data reported herein do confirm that special care is required in interpreting such shifts
in cases where bridgehead carbons and substantial bondorder fluctuations occur, and the simple correlations with π or total charge may break down.
${ }^{13} \mathbf{C}^{19}$ F Couplings. Most features of the spectra of the fluorobenzocycloalkenes have been outlined but there are trends in ${ }^{13} \mathrm{C}^{19} \mathrm{~F}$ couplings with ring size that are worthy of note. In the 4 -fluoro derivatives (entries $2,4,6$, and 8 , Table II) the one-bond $J_{\text {C-F }}$ are $245 \pm 1 \mathrm{~Hz}$, suggesting rather minor variations in $\mathrm{C}-\mathrm{F}$ bond character and effective nuclear charge. However, in the 3 -fluoro derivatives, a wider range is encountered from 244.0 Hz (entry 3, Table II) to 255.1 Hz for the benzocyclobutene (entry 7, Table II). One other aromatic $J_{\mathrm{C}-\mathrm{F}}$ in excess of $255 \mathrm{~Hz}(255.3 \mathrm{~Hz})$ has been reported ${ }^{44}$ (for 1,8 -difluoronaphthalene) and steric effects were regarded as the likely cause of the exalted value. In the present case, the steric environment of the 3 -fluorine does not seem congested enough to explain completely this large exaltation, and the altered s character and effective nuclear charge at C_{α} is probably largely responsible. ${ }^{45}$ Some other variations with ring size in ${ }^{n} J_{C-F}$ in the aryl ring are also evident but in view of the poor understanding of factors responsible for ${ }^{n>1} J_{\text {C-F }}$, discussion of these trends is not pursued here, although possible factors are outlined elsewhere. ${ }^{46}$

Relaxation (T_{1}) Measurements. As a further possible aid to the ${ }^{13} \mathrm{C}$ chemical shift assignments and in order to investigate the microdynamics of this type of molecule in solution we have measured the ${ }^{13} \mathrm{C} T_{1}$ values of the protonated carbons. (We have excluded from discussion the T_{1} values of the methyl carbons because of the additional effect of internal motion. ${ }^{47}$) There is convincing evidence from previous studies ${ }^{48}$ that the relaxation mechanism of protonated carbons in compounds of this type will be dominated by the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ dipolar interactions. We assume this to be so in the following discussion.

Inspection of the results in Table III shows that for the benzocycloalkenes and o-xylene, the T_{1} of C_{α} is always longer than that of C_{β}. We ascribe this behavior to anisotropic rotational reorientation of the molecule. Although the theoretical description of the situation is often difficult to treat quantitatively, that such a result is reasonable can be appreciated in a qualitative way from inspection of models of these compounds and consideration of the relative magnitudes of the reorientation rates about the various principal axes.

We have depicted above what we believe is a reasonable approximation to the principal reorientation axes of the molecules. Not drawn is the rotation axis perpendicular to the plane of the molecule. Grant ${ }^{49}$ has applied Woessner's treatment of an ellipsoidal tumbler to analyze motion in some near-ellipsoidal molecules such as trans-decalin and has demonstrated a good correlation between the ellipticity about a rotation axis and the reorientation rate about the same axis and this treatment predicts $R_{2}>R_{i}$, where R_{2} and R_{i} are the reorientation rates about the appropriate axes shown above. (An alternative approach would involve consideration of relative moments of inertia about C_{2} and C_{i} axes.) The effect these rates have on the various ${ }^{13} \mathrm{C} T_{1}$

Table III. Carbon-13 Spin-La tice Relaxation Times ${ }^{a}$ for the Protonated Carbons of o-X.lene and Benzocycloalkenes

	$T_{1}, \mathrm{~s}$			
Compd	$\mathrm{Ar}-\mathrm{C}_{\alpha}$	$\mathrm{Ar}-\mathrm{C}_{\beta}$	$\alpha-\mathrm{CH}_{2}$	$\beta-\mathrm{CH}_{2}$
-Xylene	10.8	8.9		
Tetralin	7.1	5.7	3.7	3.6
Indan	10.1	8.0	5.3	6.4
Benzocyclobutene	10.5	8.9		
$\quad a$ Determined using PRFT me chod as per Experimental				
Section.				

values depends on the angle the $\mathrm{C}-\mathrm{H}$ vector makes with these axes. If the angle is zero (as is the case of the $\mathrm{C}_{\alpha}-\mathrm{H}$ vector and C_{i} axis) then motion about this axis will not contribute to the relazation as 10 change in the $\mathrm{C}-\mathrm{H}$ vector occurs. As an approximation, t se larger the angle the more influence reorientation about the axis has on T_{1}.

Consider motion about the C_{2} axis: the $\mathrm{C}_{\alpha}-\mathrm{H}$ vector makes an angle of 90° while the $\mathrm{C}_{\beta}-\mathrm{H}$ vector makes an angle of 30°. Thus, fast motior about the C_{2} ax-s will have a larger influence on the $\mathrm{C}_{\alpha} T_{1}$ than on the $\mathrm{C}_{\beta} T_{1}$. As a consequence, the T_{1} of C_{α} will be tonger given the inverse relation between T_{1} and the corredation time. A similar result has been observed ${ }^{50}$ in subst tuted biphenyls where the para carbon has the shortest T_{1}, internal motion of the phenyl groups not having any influence on the relaxation processes of this carbon.

The effect described above is operative in other compounds with the appropriate symmetry level and this technique, if applied correctly, may be generally useful for spectral assignments, e.g.

The pattern of the T_{1} values (Table III) for the protonated aromatic carbons is in accord with rigorously established assignments presented n this paper, ard those in the literature for naphthalene ${ }^{41}$ and 2,3-dimethylnaphthalene. ${ }^{52}$

The variation of the T_{1} values between the aromatic and aliphatic carbons is interesting. They are not related simply to the number of attached protons, the aliphatic carbon T_{1} 's being somewhat longer than expected. There is no difference in the T_{1} 's for these carbons in tetralin (nonplanar fused ring) and only a slight variation for incan (planar fused ring). It appears that anisotropic reorientation has less of an influence on the relazation processes of these carbons.
${ }^{1} \mathrm{H}$ Chemical Shifts. The necessity to synthesize certain deuterium-labeled benzocycloalkenes prompted examination of their ${ }^{1} \mathrm{H}$ NMR spectra, since it seemed that positive conclusions would result. Previously Mannatt and Cooper, ${ }^{3 b}$ in their thorough study of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling in these molecules, had analyzed the $\mathrm{Aa}^{\prime} \mathrm{BB}^{\prime}$ system of the aromatic protons, but δ_{A} and δ_{B} are not explicit from such an analysis. It was suggested that the broadened half of the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern corresponded to H_{α}, on the basis of preferred coupling (over H_{β}) to the methylene protons. In this way, suggested assignments for indan, benzocyclobutene, and benzocyclopropere were presente 1 , and shown be ow (δ from $\mathrm{Me}_{4} \mathrm{Si}$).

?

Subsequently, Maciel ${ }^{11}$ was guided by these assignments in his approach to the corresponding ${ }^{13} \mathrm{C}$ assignments, which were contrary to ours and Günther's ${ }^{12}$ for $n=1,2,3$. It was therefore a matter of interest whether the ${ }^{1} \mathrm{H}$ assignments were in error, and therefore the major cause of the discrepancies in the ${ }^{13} \mathrm{C}$ data. It should be made clear that the main thrust of Mannatt and Cooper's work concerned the variation of ${ }^{1} \mathrm{H}_{-}{ }^{1} \mathrm{H}$ couplings with structural factors, and the order of ${ }^{1} \mathrm{H}$ assignments was not necessary for any of their conclusions.

We have utilized two approaches to distinguish $\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}$ in the ${ }^{1} \mathrm{H}$ spectra of indan and benzocyclobutene. The first is unambiguous, and involves careful examination and integration of the tactically deuterated analogue. 5-Deuterioindan ($\sim 70 \% \mathrm{D}$) was examined and it was quite clear that the higher field part of the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system (270 Hz sweep width at 100 MHz) had suffered an intensity loss. The same system has also been examined by Günther, ${ }^{52}$ with concordant conclusions. The assignments suggested by Manatt and Cooper ${ }^{3 \mathrm{~b}}$ for indan are therefore established. At the time that we were examining approaches for assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ frequencies in some $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ spectra, Günther kindly disclosed ${ }^{53}$ a very useful technique, which is based on observation of the ${ }^{13} \mathrm{C}$ satellite pattern. The overall width must be larger for β protons than α protons, as $\left(2 J_{\mathrm{o}}+J_{\mathrm{m}}\right)>\left(J_{\mathrm{o}}+J_{\mathrm{m}}+J_{\mathrm{p}}\right)$. We applied this technique to the ${ }^{13} \mathrm{C}$ satellites of indan, but the very similar values of $J_{13}{ }^{\mathrm{C}-\mathrm{H}_{\alpha}}$ and $J^{13}{ }^{\mathrm{C}-\mathrm{H}_{\beta}}$ and small $\delta_{\alpha}-\delta_{\beta}$ resulted in some overlapping. Nevertheless, the higher field portion of the complete low-field satellite pattern was more spacious, corresponding to H_{β} at higher field, as already rigorously established.

Deuteriobenzocyclobutene was synthesized from a mixture of 4-iodo- (87%) and 3-iodobenzocyclobutene (13\%) (as indicated in the Experimental Section) resulting in overall $67 \% \mathrm{D}$ incorporation (mass spectrum). The relative intensities of $\mathrm{H}_{\alpha}: \mathrm{H}_{\beta}$ signals in the ${ }^{1} \mathrm{H}$ spectrum should be ca. 1.25-1.30. Scrutiny of the sjectral trace (540 Hz sweep width, 100 MHz) (Figure $2 \mathrm{a}, \mathrm{b}$) shows quite definitely the lower field portion to be of reduced intensity, and several integrations confirm this ($\mathrm{H}_{\alpha}{ }^{\prime} \mathrm{H}_{\beta} \sim 1.35$). $\mathrm{H}_{i 5}$ is therefore at lower field, contrary to the previous suggestion. The highand low-field ${ }^{13} \mathrm{C}$ satellite patterns for benzocyclobutene are relatively easy to identify, and it is quite clear (Figure $2 \mathrm{c}, \mathrm{d}$) that the more spacious patterns are associated with the lower field resonance, i.e., H_{β} at lower field, in agreement with the conclusion above.
o-Di-tert-butylbenzene was of particular interest, since althcugh both reported assignments ${ }^{1,11}$ of the ${ }^{13} \mathrm{C}$ spectrum were in agreement (vide supra), that of Maciel ${ }^{11}$ was based on the application of coherent ${ }^{1} \mathrm{H}$ decoupling to the reported (now shown to be incorrect) aryl ${ }^{1} \mathrm{H}$ assignments. Castellano and Kostelnik ${ }^{13}$ ir. a study of the various ${ }^{1} \mathrm{H}_{-}{ }^{1} \mathrm{H}$ couplings in substituted benzenes, analyzed the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern of o-di-tert-butylbenzene, and reported without comment the following shifts.

Molecular models indicate substantial steric (nonbonded) interactions between the $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ group and H_{1}, and in the light of present knowledge, "steric deshielding" ${ }^{54}$ would be consistent with a reversed order of these chemical shifts. This alsc yields a chemical shift for $\mathrm{H}_{2}(6.97 \mathrm{ppm})$ almost identical with that for H_{2} in tetralin (6.99 ppm).

Figure 2. The aromatic portion of the $100-\mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of benzocyclobutene selectively deuterium enriched at the 4 position on $1080-\mathrm{Hz}$ sweep width (a) and $540-\mathrm{Hz}$ sweep width (b). Integral traces for b are shown. (c) High-gain spectrum ($080-\mathrm{Hz}$ sweep width) showing ${ }^{13} \mathrm{C}$ satellite patterns about H_{α} (higher field) and H_{β}. (d) As in c but $540-\mathrm{Hz}$ sweep width.

This is expected, since H_{2} is remote from the region of steric congestion.

Our proton-coupled ${ }^{13} \mathrm{C}$ spectrum of o-di-tert-butylbenzene, in addition to settling the $\mathrm{C}_{\beta}, \mathrm{C}_{\beta}$ assignments (vide supra), provides values of $J^{13}{ }^{\mathrm{C}-\mathrm{H}_{1}}=154.8$ and $J^{13} \mathrm{C}-\mathrm{H}_{2}=$ 160.5 Hz (see numbering above). The difference in these coupling constants $(5.7 \mathrm{~Hz})$ is small in comparison with the chemical shift difference between H_{1} and H_{2} at 100 MHz $(47.4 \mathrm{~Hz})$, confirming that no "crossover" of the ${ }^{13} \mathrm{C}$ satellite patterns could occur. From the data of Kostelnik and Castellano, ${ }^{13}$ it can be shown that the ${ }^{13} \mathrm{C}$ satellites about H_{1} should have a total spacing of ca. $9-10 \mathrm{~Hz}$, while those about H_{2} should be ca. $16-17 \mathrm{~Hz}$ wide. In the $100-\mathrm{MHz}{ }^{1} \mathrm{H}$ spectrum of o-di-tert-butylbenzene, the low-field satellites about H_{1} and H_{2} were identified, and were separated by ca.
45.5 Hz [calculated $47.4-1 / 2(160.5-154.8)=44.6 \mathrm{~Hz}$]. (Slight impurities to the high-field side of the main aryl ${ }^{1} \mathrm{H}$ spectrum prevented identification of the high-field satellites.) The lowest field satellite pattern had a "spread" of ca. 10 Hz while the higher field one had a total spacing of ca. 16 Hz , demanding that H_{1} be at lower field than H_{2}, as deduced from the chemical shift difference above. The suggestion of Kostelnik and Castellano ${ }^{13}$ therefore requires reversal.

The spectrum of o-bis(trimethylsilyl)benzene also exhibits ${ }^{55}$ a substantial chemical shift difference (ca. 0.4 ppm) for the sets of aromatic protons. Although no analysis was reported, chemical shifts of ca. $\delta 7.1$ and 7.5 appear to apply, and it would seem that protons ortho to $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ are also sterically deshielded in this system, as expected. No studies of the ${ }^{13} \mathrm{C}$ satellite spectra were reported.

There are two aspects relating to the orders of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts now established in this series of molecules. Firstly, the ${ }^{13} \mathrm{C}$ shifts faithfully reflect the ${ }^{1} \mathrm{H}$ shifts within a molecule, and this type of correlation in substituted benzenes has been noted widely, particularly for para-carbon shifts. ${ }^{40,56-58}$ In the present cases, a lack of correlation at the α position would not have been surprising, in view of the possible additional perturbations that might operate in this vicinity. Secondly, the ${ }^{1} \mathrm{H}$ assignments now established for benzocyclobutene indicate that the preferential broadening of one-half of the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ aromatic pattern (the criterion used by Manatt and Cooper ${ }^{3 b}$ in their suggested H_{α}, H_{β} assignments) must involve H_{β} and the methylene protons, where a preferable geometry presumably exists. This is reminiscent of the situation in the fluorobenzocyclobutenes B and C , where observable ${ }^{4} J_{\mathrm{C}_{\alpha-\mathrm{F}}}$ is observed $(\mathrm{B}, 2.0$

A

C

B

D

Hz), but not ${ }^{3} J_{\mathrm{C}_{\alpha-\mathrm{F}}}(\mathrm{C})$. While many factors affecting longer range proton-proton and carbon-fluorine coupling are undoubtedly different, ${ }^{46}$ the geometry of the coupled nuclei is clearly of importance.

The situation for benzocyclopropene is unclear, as the aryl ${ }^{1} \mathrm{H}$ assignments have not been established, e.g., by selective deuteration. It would not be surprising, however, if H_{α} was more strongly coupled to the methylene protons than H_{β} since the geometry is now different (D) from the benzocyclobutene case. ${ }^{59}$ Special electronic effects associated with the cyclopropyl ring may also be important.

Acknowledgments. The authors at the three institutions are grateful to the Australian Research Grants Committee for support. Some of the early work was conducted at the University of New England at Armidale, and the cooperation of Professor N. V. Riggs was appreciated. The sample of naphtho[b]cyclopropene was kindly provided by Professor Billups of Rice University, Houston, Texas.

Registry No.-o-Iodophenethyl acetate, 57527-00-1; 3-iodobenzocyclobutene, 38122-16-6; 4-iodobenzocyclobutene, 1004-07-5; 5-acitylindan, 4228-10-8.

References and Notes

(1) A portion of this material was reported previously: W. Adcock, B. D. Gupta, T. C. Khor, D. Doddrell, D. Jordan, and W. Kitching, J. Am. Chem. Soc., 96, 1595 (1974).
(2) To whom inquiries should be direcred
(3) For some lecding references see ea) V. H. Meier, J. Heiss, H. Suhr, and E. Muller, Tetrahedron, 24, 2307 1968), and references cited therein; (b) M. A. Cocper and S. L. Manatt, J. Am. Chem. Soc., 92, 1605 (1970), and references cited therein.
(4) J. Vaughan and G. J. Wright, J. Oag. Chem., 33, 2580 (-968); J. Vaughan, J. Welch, and G. J. Wright, Tetrahedron, 21, 1665 (1965)
(5) A. Streitweiser, G. R. Ziegler, P. C Mowery, A. Lewis, and R. G. Lawler, J. Am. Cherr. Soc., 90, 1357 (1963)
(6) Chemical manifestations of ring sttain are widespread ard include rates of protodetritiation of aryl position= adjacent to the fused ring, ref 5 and K. C. C. Bancroft, R. W. Bott, aad C. Eaborn, J. Chem. Soc., 4806 (1964); ESR hyperfine coupling constants, R. D. Rieke, C. F. Meares, and L. I. Rieke, Tetrahedron Lett., 5275 (1968), and R. D. Rieke and S. E. Bales, ibid., 2439 (1972); ${ }^{1} \mathrm{H}-\mathrm{H}$ and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ scalar coupling constants, ref 3t, G. Fraenkel, Y. Osaki, M. J Mitchell, and M. P. Cava, Tetrahedron, 20, 1179 (1964), and M. Randic and Z. B. Maksic, J. Am. Chem. Soc., 93, 64 (1971).
(7) (a) J. B. Pawliczek and H. Günt er, J. Am. Chem. Soc., 93, 2050 (1971). (b) The crystal structure of naphtho[b]cyclopropene has been determined, but does not appear to resolve any difficulties regarding "bond fixation", since there is no evidence for bond localization in the direction of either mesomeric limiting siructure. W. E. Billups, W. Y. Chow, K. H. -eavel, E. S. Lewis, J L. Margrove. R. L. Sass, J. J. Shieh, P. J. Werness, and J. L. Wood, J Am. Chem. Soc., 95, 7878 (1973). See also E. Jarstensen-Ceser, B. Muller, and H. Durr, Angew. Chem., 84, 434 (1972); Angew. Chem., In. Ed. Engl., 11, 422 (1972), and references cited therein. For a general discussion see B. Halton, Chem. Rev., 73, 113 (1973)
(8) J. L. Lawrence and S. G. G. Macdonald, Acta Crystallogr., Sect. B. 25, 978 (1969).
(9) C. S. Cheung, M. A. Cooper, anc S. L. Manatt, Tetrahedron, 27, 701 (1971).
(10) S. Q. A. Rizvi, B. D. Gupta, W. Adsock, D. Doddrell, and W. Kitching, J. Organomet. Chem., 63, 67 (1973).
(11) E. L. Motell, D. Lauer, and G. E Maciel, J. Phys. Chem., 77, 1865 (1973).
(12) H. Günther, G. Jikeli, H. Schmicker, and J. Prestien, Angew. Chem., 85, 826 (1973).
(13) S. M. Castellano and R. Kostelnik, Tetrahedron Lett., 5211 (1967),
(14) See, for example, G. C. Levy, Acc Chem. Res., 6, 161 (1973), and references cited therein.
(15) J. A. Oliver and P. A. Ongley, Chem. Ind. (London), 1024 (1965)
(16) H. O. Wirth, O. Konigstein, and W. Kern, Justus Llebigs Ann. Chem., 634, 84 (1960)
(17) L. Horner, P. V. Subramanium, and K. E. Eiben, Tetrahedron Lett., 247 (1965).
(18) J. Vaughan, G. J. Welch, and G. J. Wright. Tetrahedron, - 669 (1965).
(19) L. F. Fieser and A. M. Seligman, d. Am. Chem. Soc., 5?, 2174 (1935); 62, 49 (1940).
(20) L. A. Bigelow, Org. Synth., 5, $21(-923)$
(21) K. Schofield, T. Swain, and J. Therbald, J. Chem. Soc., 2399 (1949).
(22) E. C. Hornig and V. L. Stromberg, J. Am. Chem. Soc., 74, 2680 (1952).
(23) R. A. Barnes and G. R. Buckwatter, J. Am. Chem. Soc., 74, 4199 (1952).
(24) W. Adcock, J. D. Bettess, and S. 2. A. Rizvi. Aust. J. Chem., 23, 1921 (1970); W. Adcock, S. Q. A. Rizvi, and W. Kitching, J. A.n. Chem. Soc. 94, 3657 (1972).
(25) W. Adcock, M. J. S. Dewar, R. Golden, and M. A. Zeb. J. Am. Chem. Soc., 97, 2173 (1975)
(26) W. Adcock, B. D. Gupta, and T. D. Khor, Aust. J. Chem., to be published.
(27) D. Doddrell, F. B. Hanson, A. Merker, R. J. Kenny, and N. V. Riggs, Aust. J. Chein., 27, 2175 (1974)
(28) A. Allerhand, D. Doddrell, V. Glusiko, D. W. Cochran, E. Wenkert, P. J Lawson, and F. R. N. Gurd, J. Am. Chem. Soc., 93, 544 (1971).
(29) E. Wenkert, A. O Clouse, D. W. Cochran, and D. Doddrell, J. Am Chem. Soc., 91, 6887 (1969).
(30) See, for example, D. Lauer, E. L. Motell, D. D. Traficante, and G. E. Mac el, J. Am. Cherr. Soc., 94, 5335 (1972); W. Kitching, M. Bullpitt, D. Doddrell, and W Adcock, Org. Magn. Reson., 6, 289 (1974)
(31) (a) H. Günther, -1. Schmickler, and G. Jikeli, J. Magn. Reson., 11, 344 (-973). (b) In symmetric ortho-cisubstituted benzenes, $\mathrm{C}_{r s}$ is synonymous with $\mathrm{C}_{3,6}$ and C_{3} with $\mathrm{C}_{4.5}$. Both identifications are used, depending on circumstance and convenience.
(32) (a) G. W. Buchanan and R. H. Wightman, Can. J. Chem., 51, 2357 (-973). (b) The possibility of reve-sed assignments was raised. More recently it was stated \mathbf{J}^{52} that the assignments tabulated by Buchanan and Wightman ${ }^{32}$ were incorrect. This is not the case.
(33) H. L. Retcofsky and R. A. Friedel in R. A Friedel, Ed., "Spectrometry of Fjels", Plenum Press, New York, N.Y., 1970, p 90 (quoted in J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, N.Y., 1972, p 99).
(34) A. J. Jones, P. J. Garratt, and K. P. Vollhardt, Angew. Chem., Int. Ed. Engl., 12, 241 ($-9 \overline{1} 3$).
(35) F. J. Weigert and J. D. Roberts, J Am. Chem. Soc., 93, 2361 (1971)
(36) However, signif cant variations can occur in naphthyl and anthryl systems (unpublished results).
(37) D. Doddrell, C. Charrier, and J. D. Roberts, Proc. Natl. Acad. Sci. L'.S.A., 67, 1649 (1970), and references cited therein
(38) See, for examp e, H. Tanida and R. Muneyuki, J. Am. Chem. Soc., 87, 4794 (1965); F. R. Jensen and G. Maciel, J. Org. Chem., 25, 640 (-960); A. R. Bassindale. C. Eaborn, and D. R. M. Walton. J. Chem Soc. E. 12 (1969)
(39) M. Karplus and J. A. Pople. J. Chem. Phys., 38, 2803 (1963). See also P. D. Ellis, G. E. Maciel, and J. W Mclver, J. Am. Chem. Soc., 94, 4069 (-972).
(40) See G. C. Levy and G. L. Nelson, '"Carbon-13 Nuclear Magnetic Resonance for Organic Chemists'", Wiley-Interscience, New York, N.Y.. 1972.
(41) T. D. Alger, D. M. Grant, and E. İ. Paul, J. Am. Chem. Soc., 88, 5397 ("966).
(42) R. J. Bailey and H. Shechter, J. Am. Chem. Soc., 96, 8116 (1974).
(43) A Streitweiser, P. H. Owens, R. A. Wolf, and J. E. Williams, J. Am. Chem. Soc., 965448 (1974).
(44) S. L. Manatt, M. A. Cooper, C. W. Mallory, and F. B. Mallory, J. Am. Chem. Soc., 95. 975 (1973).
(45) C. M. Grant and W. M. Litchman, J. Am. Chem. Soc., 87, 3994 (1965).
(46) C. Doddrell, M. Barfield, W. Adcock, M. Avrangzeb, and D. Jordan, J. Chem. Soc., Perki.7 Trans. 2, submitted for publication.
(47) K. F. Kuhlaman and D. M. Grant, J. Chem. Phys., 55, 2998 (1971).
(48) A. Allerhand, D Doddrell, and R Komoroski, J. Chem. Phys., 55, 189 (1971); J. R. Lyenla, D. M. Grant and R. K. Harris, J. Phys. Chem., 75, 585 (1971).
(49) L. M. Grant, R. J. Pugmire, E. P. Black, and K. A. Christensen, J. Am. Chem. Soc., 95, 8467 (1973)
(50) G. C. Levy, D. M. White, and F. A. L. Anet, J. Magn. Reson., 6, 453 (1972).
(51) [. Doddrell and P. R. Wells, J Chem. Soc., Perkin Trans. 2, 1333 (1973); N. K. Wilson and J. B. Stcthers, J. Magn. Reson., 15, 31 (1974).
(52) G. Jikeli, W. Herric, and H. Günther, J. Am. Chem. Soc., 96, 323 (1974).
(53) Professor H. Guntrer, private communication, Oct 26, 1973
(54) See L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Fesonance Spectroscopy in Organic Chemistry", 2d ed, Pergamon Press, Oxford, 1969, p 69
(55) D. Seyferth and D. L. White, J. Am. Chem. Soc., 94, 3132 (1972).
(56) H. Spiesecke and W. G. Schneider. J. Chem. Phys., 35, 731 (1961).
(57) G. E. Maciel and J. J. Natterstad, J. Chem. Phys., 42, 2427 (1965).
(58) E. M. Schulman, K. A. Christensen, D. M. Grant, and C. Walling, J. Org. Chem., 39, 2686 (1974).
(5S) For some caref الـ measurements of long-range proton-proton couplings in toluene and similar molecules see M. P. Williamson, R. Kostelnik, and S. M. Castellano, J. Chem. Phys., 49, 2218 (1968); G. Kotowycz and T. Schaefer, Can J. Chem., 44, 2743 (1966). in toluene the methyl group has very similar couplings to ortho $(-0.75 \mathrm{~Hz})$ and para (-0.62 Hz) protons, bu: in the benzocycloalkenes, the orientation of the methylene $\mathrm{C}-\mathrm{H}$ bonds to the ring plare is different (and fixed). It is therefore likely that significant differences in long-range couplings occur.

The Substituent Effect of the Bromomethyl Group.

A Carbon-13 Magnetic Resonance Study

Maxwell Bullpitt and William Kitching*1
Department of Chemistry, University of Queensland, Brisbane, Australia
David Doddrell
School of Science, Griffith University, Nathan, Q. Australia
William Adcock
School of Physical Sciences, Flinders University, Adelaide, Australia

Received August 11, 1975

Abstract

The natural abundance carbon-13 NMR spectra of benzyl bromide, 1- and 2-bromomethylnaphthalenes, 6-methyl-2-bromomethylnaphthalene, 4-bromomethylbiphenyl, and 9-bromomethylanthracene have been obtained and assigned. At each carbon position chemical shift differences $(\Delta \delta)$ for the structural change $\mathrm{ArCH}_{3} \rightarrow$ $\mathrm{ArCH}_{2} \mathrm{Br}$ have been tabulated, and for formally conjugated positions significant downfield shifts occur. The magnitudes of $\Delta \delta$ are very dependent on the aryl group and disposition, and correlate with theoretical measures of the change in π-charge density for $\mathrm{ArCH}_{3} \rightarrow \mathrm{ArCH}_{2}{ }^{+}$. This deshielding is considered to be associated with removal of π charge by $\mathrm{C}-\mathrm{Br}$ hyperconjugative electron withdrawal, and parallels trends previously established by ${ }^{19} \mathrm{~F}$ NMR measurements. This removal of π charge is not inconsistent with predominant (ortho, para) electrophilic substitution in benzyl halides if in the transition state rotation in $-\mathrm{CH}_{2} \mathrm{X}$ occurs to promote $\mathrm{C}-\mathrm{H}$ hyperconjugative electron release, but necessarily impeding $\mathrm{C}-\mathrm{Br}$ electron withdrawal.

The substituent effects of halogenated methyl groups are of much current interest, and a variety of approaches have been employed to assess them. Regarding electrophilic aromatic substitution, Ridd and co-workers ${ }^{2}$ established that the $-\mathrm{CH}_{2} \mathrm{Cl}$ group had a definite ortho-para directing effect in nitration, and very recently Symons ${ }^{3}$ regarded this as evidence for electron release from the carbon-halogen bond

$$
-\mathrm{C}^{\delta+} \mathrm{H}_{2}-\mathrm{\delta}_{\mathrm{X}}
$$

despite the indicated polarization. The greater acidifying effect of $-\mathrm{CH}_{2} \mathrm{X}$ when para compared with meta on benzoic acid has been attributed by Exner to a π-inductive mechanism. ${ }^{4}$ Studies ${ }^{5}$ of electron-density distributions (in the ground state) in bromomethylaromatics by ${ }^{19} \mathrm{~F}$ chemical shifts, and related computational work, ${ }^{5,6}$ have indicated quite strongly that such groups are hyperconjugatively electron withdrawing, involving interaction of aryl-ring MO's with the polarized

$$
\begin{aligned}
& \delta+\delta- \\
& \mathrm{C}-\mathrm{X}
\end{aligned}
$$

σ-bonding MO. Additional ${ }^{19} \mathrm{~F} \mathrm{SCS}^{7 a}$ data have been provided for a wide range of bicyclic systems, incorporating the benzylic $\mathrm{C}-\mathrm{X}$ fragment ${ }^{7 \mathrm{~b}}$ (where X is appreciably more electronegative than carbon) in such a manner that $\mathrm{C}-\mathrm{X}$ hyperconjugation was essentially impossible. As monitored by ${ }^{19} \mathrm{~F}$ SCS, electron withdrawal was substantially reduced, but residual polar components still operated. Some earlier NQR (chlorine) results ${ }^{8}$ were in line with the above conclusions.

In closely related series of aromatic compounds, ${ }^{13} \mathrm{C}$ chemical shifts have provided important insight into π electron distributions, and such shifts correlate well with other measures of substituent-substrate interactions. ${ }^{9-12}$ While in some respects complementing ${ }^{19} \mathrm{~F}$ SCS, ${ }^{13} \mathrm{C}$ SCS provides simultaneous measures of perturbations at all carbons in the system, and provided care is exercised, therefore unveils a more detailed canvas. In view of our disinclination ${ }^{7}$ to accept the proposal of Symons ${ }^{3}$ regarding the mode of behavior of $-\mathrm{CH}_{2} \mathrm{X}$ ($\mathrm{X}=$ halogen), we deemec it essential to provide another measure of this substituent effect and to attempt to correlate the results with an established quantum mechanical description.

Experimental Section

Compounds. Toluene, 1- and 2-methylnaphthalenes, 2,6-dimethylnaphthalene, 4-methylbiphenyl, and 9-methylanthracene were commercially available, and samples utilized were of high purity as judged by vapor phase chromatography and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.
o-Deuteriotoluene was obtained by treating the Grignard reagent from o-bromotoluene with $\mathrm{D}_{2} \mathrm{O}$ in the standard way. The mass spectrum indicated 85% D.

4-Deuterio-1-methylnaphthalene was obtained by quenching the lithio derivative (n-butyllithium) from 4-bromo-1-methylnaphthalene with $\mathrm{D}_{2} \mathrm{O}$ ($80 \% \mathrm{D}$ by mass spectrum).

Arylmethyl Bromides. Method 1. To 0.1 mol of the appropriate methylaromatic in dry $\mathrm{CCl}_{4}(100 \mathrm{ml})$ was added N-bromosuccinimide (18.5 g) and a little benzoyl peroxide. The mixture was refluxed, and the progress of the bromination monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy (appearance of $\mathrm{CH}_{2} \mathrm{Br}$ resonance at ca. $\delta 4.5$) so that formation of dibromide ($-\mathrm{CHBr}_{2}$) (ca. $\delta 6.6$) was not significant. The cooled reaction mixture ($0^{\circ} \mathrm{C}$) was filtered (to remove succinimide), and then washed with cold dilute NaOH solution and cold water (100 ml). The CCl_{4} solution was separated, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and then evaporated under reduced pressure. The arylmethyl bromide was either distilled or recrystallized for purification purposes.
o-Deuteriobenzyl bromide was obtained in 76% yield (method 1).

1-Bromomethylnaphthalene (method 1) was furnished in 62% yield and two recrystallizations from hexane yielded material with $\mathrm{mp} 55-56{ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} 55-56{ }^{\circ} \mathrm{C}$) showing ${ }^{1} \mathrm{H}$ NMR absorptions $\left(\mathrm{CCl}_{4}\right)$ at $\delta 4.71\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right)$ and 7.2-8.0 (Ar).
4-Deuterio-1-bromomethylnaphthalene (method 1), \% D ~ 80\% (mass spectrum).

2-Bromomethylnaphthalene (method 1) was obtained as a white solid, $\mathrm{mp} 54^{\circ} \mathrm{C}$ (lit. ${ }^{15} 54-55^{\circ} \mathrm{C}$), after two recrystallizations from hexane: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.46\left(\mathrm{CH}_{2} \mathrm{Br}\right)$ and $7.2-7.7$ (Ar).

6-Methyl-2-bromomethylnaphthalene was obtained from 2,6-dimethylnaphthalene using method 1 , in 67% overall yield. The crude material was recrystallized twice from hexane to provide a white solid: $\operatorname{mp} 89-90{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{14} 90{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.51$ $\left(\mathrm{CH}_{3}\right), 4.63\left(\mathrm{CH}_{2} \mathrm{Br}\right), 7.2-7.8$ (Ar).

4-Bromomethylbiphenyl was obtained in 52% yield from 4 methylbiphenyl (method 1). After two recrystallizations from ethanol, a white, crystalline solid of $\mathrm{mp} 84-85{ }^{\circ} \mathrm{C}$ was obtained: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.48\left(\mathrm{CH}_{2} \mathrm{Br}\right), 7.4-7.6$ (Ar).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Br}$: C, 63.18; H, 4.46. Found: C, 63.01; H, 4.41.

9-Bromomethylanthracene (Method 2). To triphenylphosphine ($2.8 \mathrm{~g}, 0.108 \mathrm{~mol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml})$ was added slowly bromine ($1.6 \mathrm{~g}, 0.01 \mathrm{~mol}$) until a faint persistence of the orange

Figure 1. Proton decoupled ${ }^{13} \mathrm{C}$ spectrum (22.63 MHz) of 4-deuterio-1-naphthylmethyl bromide (CDCl_{3} solvent). The deuterium isotope effect on the chemical shifts of C_{4} and C_{3} is apparent and results from inccmplete 4 -deuteration. The brcadened signals correspond to C_{2}, C_{5}, and C_{9} (compare with C_{10}) which are vicinal to $4-\mathrm{D}$, and experience ${ }^{13} \mathrm{C}^{2}{ }^{2} \mathrm{H}$ coupling of ca. 1 Hz . A full listing of chemical shifts is given in Table I. (Methylene carbon reso ance omitted.)
color. 9-Hydroxymethylanthracent $(2.08 \mathrm{~g}, 0.01 \mathrm{~mol}$ was added slowly (as a solid) and after abou 1.0 g of the alcohol had been added, the solution became quite cear and a yellow solid then precipitated. The remainder of the alohol was added, and the solution was stirred for an additional 1 h . The flask was cooled $\left(0^{\circ} \mathrm{C}\right)$ and the yellow solid was filtered and recrystallized from chloroform. The overall yield was 86% : mp $147-148{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.46\left(\mathrm{CH}_{2} \mathrm{Br}\right), 7.5\left(\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{6}, \mathrm{H}_{7}\right), 8.0\left(\mathrm{H}_{4}, \mathrm{H}_{5}\right), 8.3\left(\mathrm{H}_{1}\right.$, $\left.\mathrm{H}_{8}\right)$, and $8.4\left(\mathrm{H}_{10}\right)$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Br}$: C, 66.15; H, 4.06. Found: C, 66.47 ; H , 4.13.

NMR Spectra. ${ }^{13} \mathrm{C}$ spectra were obtained using a Bruker HX-90 spectrometer operating ir the FT mode, and chemical shifts are relative to internal $\mathrm{Me}_{4} \mathrm{Ji}$ and accurate to $\pm 0.05 \mathrm{ppm}$. Concentration effects on these ${ }^{13} \mathrm{C}$ shifts at the $10-20 \%$ concentration level were very small for tertiary carbons (i.e., CH) and were disregarded. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on an MH-100 instrument for CCl_{4} or CDCl_{3} solutions with internal $\mathrm{Me}_{4} \mathrm{Si}$. Measurements of relaxation times $\left(T_{1}\right)$ were conducted as previously described. ${ }^{16}$

Results and Discussion

${ }^{13}$ C Shifts. A. Methylaromatics. The chemical shifts of all carbons in the parent meth Jlaromatics are tabulated in Table I. For toluene, the assignments are secure ${ }^{17,18}$ and in the case of 1-methylnaphthalene the only doubt involves C_{6} and C_{7}, ${ }^{19-21}$ but possible reversal of these shifts does not alter any conclusions. The assignments for 2 -methylnaphthalene and 2,6-dimethymaphthalene have been reported by two groups, ${ }^{20,21}$ but our chemical shifts agree closely with those reported by Wilson and Stothers, ${ }^{21}$ who also employed dilute solutions in CDCl_{3}. For 4-methylbiphenyl, the key 4 carbon was readily assigned by its relative intensity, while the other assig 7 ments were based on additivity considerations and agree with those already published. ${ }^{22}$ The latter published d ta^{22} were based on detailed statistical and parameterized analyses of substituent effects for a range of 4 -substitt ted biphenyls. The assignments for 9 -methylanthracene were based upon signal intensities, substituent effects, and chemical shifts and agree with those recently published ${ }^{* 3}$ for enriched 9 -methyl-9${ }^{13} \mathrm{C}$-anthracene.
B. Bromomethylaromatics. Assignments for the bromomethylaromatics are located also in Table I to facilitate comparisons with the methyl series. For benzyl bromide and 1-naphthylmethyl bromide, tactical deuteration (ortho and position 4, respectively) and consideration ${ }^{19}$ of deuterium isotope effects on chemical shifts and ${ }^{13} \mathrm{C}-{ }^{2} \mathrm{H}$ coupling, led to the recorded assignments. The only possible ambiguity concerns C_{6} and C_{7} in the 1 -naphthylmethyl bromide. A fully proton-coupled spectrum ${ }^{19 a}$ (67.8 MHz) of 1 naphthylmethyl bromide provided assignments absolutely consistent with those deduced from effects of deuterium substitution at the 4 position. "Multiplet patterns" due to long-range vicinal coupling ($\mathbf{C}-\mathrm{C}-\mathrm{C}-\mathbf{H}$) differ for carbons in different ring positions (Figares 1 and 2). C_{3}, assigned on the basis of a high-field 4 -deuterium-induced shift in 4 -deuterio-1-naphthylmethyl bromide, should appear as a sharp doublet in the ${ }^{1} \mathrm{H}$-coupled spectrum, because C_{3} is forbidden structurally from experiencing vicinal ${ }^{1} \mathrm{H}$ coupling. C_{8}, previously assigned at highest field on the basis of a substantial δ effect, appears as a doublet of doublets, with vicinal coupling to $\mathrm{H}_{6} . \mathrm{C}_{6}$ and C_{7}, expected to have very similar chemical shifts, appear as overlapping dou-ble-s of doublets, as anticipated for β carbons in such a ber.zo fragment. C_{4}, previously assigned by direct deuteration, experiences two different vicinal H couplings $\left(\mathrm{H}_{2}, \mathrm{H}_{5}\right)$ and hence has a "pseudotriplet" appearance, in each componert of the overall doublet (i.e., one-bond coupling). C_{5}, somewhat broadened in the (${ }^{1} \mathrm{H}$ decoupled) spectrum of the 4 -deuterio compound, now displays a "broadened" doublet of doublets due to coupling to H_{7} and $\mathrm{H}_{4} . \mathrm{H}_{2}$, previously assigned on the basis of braodening (vicinal ${ }^{2} \mathrm{H}$ coupling) in the 4 -deuterio analogue, would be anticipated to extibit considerable fine structure in each half of the (onebond) doublet, as vicinal couplings to H_{4} and $-\mathrm{CH}_{2} \mathrm{Br}$ are possible. This anticipation is realized in the form of "quartets" for C_{2}. The three quaternary carbons are not well resolved and these assignments in Table I are tentative. Nevertheless, the least coupled carbon would be C_{1}, and this agrees with the features of Figure 1. It is clear that proton-
Table I. Carbon-13 Assignments ${ }^{a}$ for Methyl-and Bromomethylaromatics

Figure 2. Proton coupled spectrum of 1-naphthylmethyl bromide at $67.83 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right.$ solvent) illustrating the characteristic coupling patterns. Assignments are as mark ad and correspond with those in Figure 1. The low-field half of the C_{4} doublet is superimposed on a quaternary carbon resonance. (Methyl nne carbon resonan ze omitted.)
coupled spectra provide an additional and powerful approach for assignments in substituted naphthalenes, and complement the effects of specific deuterium substitution.

For 2-alkyl substituted naphthenes additivity effects on ${ }^{13} \mathrm{C}$ shifts have been established. ${ }^{20,21}$ The procedure then was to assign as reasonably as possible the spectrum of 2 bromomethylnaphthalene and knowing the effect of 2 methyl substitution at all positions in naphthalene, to calculate the signal positions fo- 6-methyl-2-bromomethylnaphthalene, using the chosen assignments for the 2 -bromomethyl compound. These aszignments were then adjusted until the calculated and abserved signals for the 6 -methyl-2-bromomethyl compoand harmonized. No deviation greater than 0.5 ppm occurred, and except 气or two positions, deviations were 0.2 ppn or less. No other combinations could afford such impresaive consistency, and we regard the assignments for these systems as estabished. The 4^{\prime} carbon in 4-bromomethylbiphenyl was ident.fied by its relative intensity compared with other tertiary (protonated carbons). The effects of the $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}$ group at ring positions in benzyl bromide were applizd to the directly attached ring in the biphenyl compound. Additivity considerations of phenyl and $-\mathrm{CH}_{2} \mathrm{Br}$ substitution on benzene shifts then led to the indicated allocations For 9-bromomethylanthracene, C_{10} was identified by its intensity (22.6 and 67.8 MHz spectra) relative to other tertary carbons. Ot-er assignments were based essentially on compressional and chemical shift arguments, and, while in all probability correct, cannot be regarded as definitel δ established. Our main concern in this system was with C_{1}.

Quaternary carbons in all systems were identified by their characteristically lower iztensities and longer relaxation times and in some cases, quite positively assigned by deuterium effects on the spectra and substitueat chemical shifts. The CH_{3} and $-\mathrm{CH}_{2} \mathrm{Br}$ signals were the conly ones at higher field.

An assessment of the substituent effect of $-\mathrm{CH}_{2} \mathrm{Br}$ requires comparison with the corresponding methylaromatic,
and the chemical shift changes ($\Delta \delta$) for all carbons in these systems, associated with the structural change $\mathrm{ArCH}_{3} \rightarrow$ $\mathrm{ArCH}_{2} \mathrm{Br}$, are tabulated in Table I. For purposes of analysis, data pertaining to ortho-type positions are rejected since steric and compressional effects at these sites may mask any bona fide electronic effect. The data in Table I show quite definitely the desiielding effect of $\mathrm{CH}_{2} \mathrm{Br}$ (vs. CH_{3}) at conjugative unencumbered positions ${ }^{24}$ and in view of available evidence ${ }^{9-12}$ relating ${ }^{13} \mathrm{C}$ shift and π-charge density, $\Delta \delta$ is logically associated with removal of such charge density by the $\mathrm{C}-\mathrm{Br}$ bond. A very striking aspect of the data in Table I is the variation in $\Delta \delta$ with the nature of the aryl group in $\mathrm{ArCH}_{2} \mathrm{Br}$.

The Theoretical Model. The above dependence of $\Delta \delta$ on the aryl system in $\mathrm{ArCH}_{2} \mathrm{Br}$, and previous information ${ }^{7}$ indicating a strong stereoelectronic dependence of $\mathrm{C}-\mathrm{X}$ substituent effects generally, pointed to a $\sigma-\pi$ or hyperconjugative mode ${ }^{25}$ of π-charge removal by $-\mathrm{CH}_{2} \mathrm{Br}$. Therefore it seemed attractive to examine the $\Delta \delta$ trends with Ar in the framework of a conjugative model. Considering that the hyperconjugative effect is due to interaction of aryl ring MO's with the (polarized) $\mathrm{C}-\mathrm{Br} \sigma$-bonding MO, a very simplified approach would be to use $\mathrm{ArCH}_{2}{ }^{+}$as the model, and obtain a measure of the transmission of mesomeric effects between ring positions and CH_{2}. The ${ }^{13} \mathrm{C}$ shift differences ($\Delta \delta$) are taken as a reflection of π-charge levels in the immediate region of the carbon atom.
π-Charge Densities in $\mathrm{ArCH}_{2}{ }^{+}$. A. HMO Technique. The special properties of the NBMO of odd alternate hydrccarbon systems ArCH_{2} allow ready calculation of the NBMO coefficients ($a_{0 i}$) at the more numerous "starred" set of atoms. ${ }^{26,27}$ In an odd alternant cation, the charge density is ($1-a_{C i}{ }^{2}$), $a_{0 i}$ being the NBMO coefficient of atom $i .{ }^{27}$ In Figure 3 the quantity $\Delta \hat{o}$ is plotted against the change in charge density $(\Delta q), a_{0 i}{ }^{2}$. The data for the $6-$ methyl-2-naphthyl system (Table I) have not been plotted, but the trends in $\Delta \delta$ for $\mathrm{C}_{6}, \mathrm{C}_{8}$, and C_{10} (and other positions) closely parallel those for the parent 2 -naphthyl sys-

Figure 3. Plot of carbon-13 chemical shift changes ($\Delta \delta$) for the change $\mathrm{ArCH}_{3} \rightarrow \mathrm{ArCH}_{2} \mathrm{Br}$ at the indicated ring positions against the HMO-derived changes in π-charge density (Δq) at those sites. The heights of rectangular "points" correspond to uncertainties $(\pm 0.2 \mathrm{ppm})$ in $\Delta \delta$. Statistical treatment of the data (omitting 4biphenyl, 5α - and 7α-naphthyl data) yields a correlation coefficient of 0.93 , significant at the 95% level. Inclusion of the 4 -biphenyl datum yields $r^{2} \leadsto 0.94$, significant at the 99% level. The best straight line in the latter circumstance has an intercept of 0.44 (Y axis) and passes through $X=0.20, Y=3.05$.
tem. Data for quaternary carbons have not been employed as we and others ${ }^{21,28}$ have noted that these carbons are far more sensitive to concentration and bond-order changes. In these circumstances, the prudent course seemed to be to confine attention to tertiary carbons but it should be noted that $\Delta \delta$ values for quaternary carbons (Table II) are not glaringly out of line with $a_{0 i}{ }^{2}$. The data for positions 2 and 4 in anthracene are not plotted owing to the unproven nature of these assignments. ${ }^{29}$
The general dependence of $\Delta \delta$ on $a_{0 i}{ }^{2}$ (in Figure 3) is immediately apparent, and, considering the gross nature of this treatment, constitutes impressive evidence for a conjugative mode of electron withdrawal by the $\mathrm{C}-\mathrm{Br}$ bond. Sev eral pieces of data are somewhat poorly correlated, particularly the points 7α-naphthyl, 4 -biphenyl, and 5α-naphthyl. We shall see that these deviations have a most convincing explanation or agreement with other experiment. that strengthens the general conclusion.

The $\Delta \delta$ values for 4 -benzyl and 4α-naphthyl are of interest, as although all treatments of conjugative interactions in these positions show 4α-naphthyl to be superior, ${ }^{30}$ the $\Delta \delta$ values are, within error (± 0.2 in $\Delta \delta$), identical 12.7 and 3.0 ppm). The explanation in part may involve the regulating action of the peri hydrogen (at position 8) on the conformational populations of the $-\mathrm{CH}_{2} \mathrm{Br}$ system ir. the α naphthyl case. That conformation drawn below (A) may be

A

B
favored as it most effectively alleviates nonbonded $8 \mathrm{H}-\mathrm{Br}$ interactions, but this geometry prohibits (hyperconjugative) σ C- $\mathrm{Br}-\pi$ mixing, which is pronoted, however, in B . More extensive studies of these effects are proceeding. These effects on properties of other α-naphthyl and related systems have been well documented. ${ }^{31,32}$ Since A represents an energy well for rotation about $\mathrm{C}_{1}-\mathrm{CH}_{2}$ bond, it seemed that evidence for an exalted population of this conformer might result from T : (relaxation time) measurements of the methylene carbon. Such an experiment would

Figure 4. Plot of carbon-13 chemical shift changes ($\Delta \delta$) for the change $\mathrm{ArCH}_{3} \rightarrow \mathrm{ArCH}_{2} \mathrm{Br}$ at the indicated ring positions against the SCF- π derived changes in π-charge density (Δq) at those sites. The heights of rectangular "points" correspond to uncertainties $(\pm 0.2 \mathrm{ppm})$ in $\Delta \delta$. The hatched rectangle for 4 -biphenyl corresponds to $\Delta q=0.065$ calculated for an interannular angle of $\theta=$ 45°. Statistical treatment of the data (including the "hatched" 4biphenyl datum but omitting 5α - and 7α-naphthyl data) yields a correlation coefficient $r^{2}=0.96$, significant at the 99% level. The best straight line has an intercept $Y=0.11$ and passes through X $=0.20, Y=2.46$. Treatment of all data (in Figure 4) (eight observations) yields $r^{2}=0.92$, again within the 99% level. The intercept is now $Y=0.67$, and the best line passes through $X=0.2, Y=$ 2.26.
be definitive if the rate of overall molecular reorientation was less than the rate of $-\mathrm{CH}_{2} \mathrm{Br}$ group rotation for benzyl bromide but faster in the 1 -naphthyl derivatives. ${ }^{33}$ Direct comparison of $-\mathrm{CH}_{2} \mathrm{Br} T_{1}$ values in the two cases is not valid because the overall molecular microdynamics are different. However, it should be possible to compare T_{1} $\left(-\mathrm{CH}_{2} \mathrm{Br}\right) / T_{1}$ (backbone) in the two cases to indicate any differences in $\mathrm{CH}_{2} \mathrm{Br}$ group rotation. When this is done we conclude that in both cases the rate of $\mathrm{CH}_{2} \mathrm{Br}$ rotation is slower than that of overall reorientation. This result is to be compared with other T_{1} studies on CH_{3} group rotation where the internal motion of the CH_{3} group is important. ${ }^{34}$ We conclude that, in general, the rotation of $\mathrm{CH}_{2} \mathrm{Br}$ is much slower, probably the consequence of a larger moment of inertia.
For 1-naphthylmethyl bromide, ${ }^{13} \mathrm{C}$ spectra were recorded at $323 \mathrm{~K}\left(50^{\circ} \mathrm{C}\right)$ and $223 \mathrm{~K}\left(-50^{\circ} \mathrm{C}\right)$, in the expectation that conformation A would experience significant population changes, with attendant variations in the ${ }^{13} \mathrm{C}$ chemical shifts. ${ }^{35}$ Over this temperature range, however, the changes were very modest indeed, ${ }^{36}$ and not reliably interpreted. ${ }^{37}$ The barrier to $\mathrm{CH}_{2} \mathrm{Br}$ rotation seems to be low and would require study at much lower temperatures. Here, however, the problems of aggregation and molecular ordering could be most distressing. ${ }^{38}$

As indicated above, the point for 5α-naphthyl appears to be disturbingly misbehaved, particularly since both HMO and SCFMO calculations place significant charge density in odd AH systems at this site. However, for this disposition in naphthalene, experiment is well ahead of theory since the evidence (both NMR and reactivity studies) is overwhelming that any conjugation here is trifling. For example, Schreiber and Byers ${ }^{39}$ demonstrated that whereas 1-chloromethyl-4-methoxynaphthalene solvolyzes 38×10^{4} times faster than 1 -chloromethylnaphthalene, 1-bromo-methyl-5-methoxynaphthalene solvolyzes only 2.4 times as fast as 1 -bromomethylnaphthalene. More recently, in an extensive assessment of ${ }^{19} \mathrm{~F}$ SCS in naphthyl systems, Adcock and co-workers ${ }^{40}$ reported that replacement of the hydrogens in NH_{2} by CH_{3} groups in 1-fluoro-5-aminonaphthalene produced a negligible effect, confirming the ab-
sence of 1,5 mesomerism. ${ }^{41}$ Hence this lack of correlation in Figure 3 for 5α-naphthyl is in fact consoling and additional support that $-\mathrm{CH}_{2} \mathrm{Br}$ is mim:cking the behavior of other authentic conjugating substituents. ${ }^{42}$ Deviations for 7α naphthyl and to a lesser exten: 8β-naphthyl are also apparent. Regarding the biphenyl sustem, the lack of correlation was anticipated, since the valce of $a_{0 i}^{2}(\Delta q)$ is based on an assumed planar molecule, wh ch is certainly incorrect for the liquid phase. ${ }^{5}$ Other assumptions regarding geometry, e.g., interannular bond lengtr, and a general overestimation of mesomerism to the seccnd ring, also contribute.
B. SCFMO Approach. While the foregoing HMO-based treatment provides a convincing analysis to the problem, it was considered desirable to obtain π charges by a more rigorous SCFMO approach, with particular hope that some of the deviant data may be "rescaed". A program was already available ${ }^{43}$ which assigns the exocyclic C-C bond the fully conjugated benzene bond length of $1.39 \AA$, and which treats all $\mathrm{C}-\mathrm{C}$ lengths as such. In the biphenyl case, a planar geometry was assumed and the interannular bond was assigned a length of $1.39 \AA$. This procedure has had impressive success ${ }^{44,45}$ in correlating other spectral parameters and details of the method car be found elsewhere. ${ }^{27,46}$ In Figure 4, the quantities $\Delta \delta$ cormelate exceptionally well with the SCFMO π-charge densitics (Δq), except for $4 \alpha-, 7 \alpha$-, and 5α-naphthyl and 4 -bipher yl. Cogent reasons for these deviations have been presentec (vide infra), but it is apparent that the 5α disposition in naphthalene cannot be regarded as a "conjugated" position, and more refined calculations are required to reproduce experimental facts in the second ring of α-naphthyl systems. The situation is that inter-ring communication for some dispositions, notably 5α, is far less than available salculations indicate. Treatment ${ }^{40}$ of substituent behavior by the DSP approach ${ }^{47}$ (Dual Substituent Parameter) at various positicns provides the following sensitivity factors for resonance: $4 \alpha,-31.42$; $6 \beta,-12.54 ; 7 \alpha,-4.43 ; 8 \beta,-4.71$; and $5 \alpha,+0.096$. These parameters correspond generally with π charges (cr mesomeric transmission factors) listed in Table II, except for 7α and 5α, which we have noted are poorly correlated in Figures 3 and 4.49 Reduction in the value of $a_{0 i}{ }^{2}$ for 4-biphenyl to a more realistic value, ${ }^{48}$ e.g., 0. . 65 , indicates acceptable behavior for this system. A somewhat interesting conclusion from Figure 4 is that any com oonent of $\Delta \delta$, otker than the hyperconjugative one, must $b \in$ quite small as the best correlation line passes very close to the origin.

The HMO and SCF π charses employed are located in Table II.

Previously, the demonstration was made ${ }^{5}$ that the ${ }^{19} \mathrm{~F}$ NMR substituent chemical shifts for bromomethyl substituted fluroraryl systems correlated handsomely with the π-charge densities in the benz-l, α - and β-naphthyl, and 4biphenyl systems. In view of the general correspondence between ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ SCS in aryl systems in situations of strong conjugation, e.g., $4 \alpha, 6 \beta^{40}$ it is reassuring that in the present cases this type of dependence is also observed.

In general, the trends in Table III can be rationalized on the basis that ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ SCS incorporate a different blend of mesomeric and field $\cong f f e c t s$, with the latter more important for ${ }^{19} \mathrm{~F}$ SCS. For example, the increase in the ${ }^{19} \mathrm{~F}$ SCS on proceeding from 4 -benzyl to 4α-naph-hyl (Table III) is in all probability due tc an increase in the π-polari-

Table III. ${ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C} \mathrm{SCS}$ for Arylmethyl Bromides

Disposition	${ }^{1} \mathrm{~F}$ SCS	${ }^{13} \mathrm{C} \mathrm{SCS}$
4-Benzyl	5.07	3.0
4 α-Naphthyl	5.60	2.7
6 β-Naphthyl	2.48	1.6
4,4'-Biphenyl	0.89	0.4

zation component of the field effect which apparently compensates for any reduction ir $\mathrm{C}-\mathrm{Br}$ hyperconjugation. The ${ }^{13} \mathrm{C}$ probe, on the other hand, being less influenced by field effects, more effectively reflects the reduction in $\mathrm{C}-\mathrm{Br}$ hyperconjugation.

If $-\mathrm{CH}_{2} \mathrm{Br}$ is conjugatively electron withdrawing, how then can we rationalize greatly preferred ortho-para electrophilic substitution in benzyl halides? ${ }^{2}$ The answer lies in the sotentially multicomponent nature of the overall $\mathrm{CH}_{2} \mathrm{X}$ substituent effect: ${ }^{7}$ (a) hyperconjugative electron withdrawal by the C-halogen σ bond; (b) hyperconjugative electron release by $\mathrm{C}-\mathrm{H} \sigma$ bonds; and (c) electron withdrawal by an inductive field ϵ ffect. (For an essentially noncharged polar system this latter effect is minor). Depending on the confirma-ion of $\mathrm{CH}_{2} \mathrm{X}$ with respect to the ring, it is clear that either a or b could be dominant. In aromatic electrophilic substitution which appreciable charge development, rotation about the $\mathrm{C}-\mathrm{C}$ bond generates an arrangement favoring $\mathrm{C}-\mathrm{H}$ electron release, but essentially prohibiting C-X electron withdrawal. In the neutral ground state, however, it seems reasonable that the conformation favoring $\mathrm{C}-\mathrm{Br}$ electron withdrawal will be favored. Careful vibrational spectroscopic studies of arylmethyl halides could prove illuminating in this regard.

The change $\mathrm{ArCH}_{3} \rightarrow \mathrm{ArCH}_{2} \mathrm{Br}$ results in downfield shifts of ca. 12-13 ppm for C_{c}, somewhat less than the normal " α " effect of bromine substitution ($\sim 20 \mathrm{ppm}$) in saturated alkyl systems. ${ }^{50}$ A rehybridization effect, $\mathrm{sp}^{3} \rightarrow \mathrm{sp}^{2}$, with charge deficiency ${ }^{51}$ may be partly responsible, but other "special" effects may also contribute. The $\Delta \delta$ values for ipso carbons are irregular and small, and "special" influences of various sorts would need to be considered, in addition to π-charge variations.

While we believe that the present data pertaining to the grourd-state behavior of $\mathrm{CH}_{2} \mathrm{Br}$ groups are most persuasive, final justification must await ${ }^{13} \mathrm{C}$ chemical shifts particularly for α - and β-naphthelmethyl cations. Our analysis would predict (a) a feeble interaction at C_{5} in the α cation and (b) an essentially linear correlation between our $\Delta \delta$ values for $\mathrm{ArCH}_{2} \mathrm{Br}$ (vs. ArCH_{3}) and $\Delta \delta$ for $\mathrm{ArCH}_{2}{ }^{+}$vs. ArCH_{3}. Further studies of conformationally constrained arylmethyl systems are in progress.

Acknowledgments. The a athors are particularly grateful to Mr. Ronald Farmer anc. Dr. T. Peacock for their collaboration with the SCFMO calculations. This research has been supported in part by the Australian Research Grants Committee. One of us (M.B.) is grateful for the award of a Commonwealth of Australia Fostgraduate Award.

Registry No.-N-Bromosuccinimide, 128-08-5; 9-hydroxy. methylanthracene, 1468-95-7.

References and Notes

(1) To whom inquiries should be directed.
(2. F. De Sarlo, G. Grınkiewiz, A. Ricci, and J. H. Ridd, J. Chem. Soc. B. 719 (1971); A. Ricci, R. Danieli, and J. H. Ridd, J. Chem. Soc., Perkin T:ans. 2, 1547 (1972).
(3) M. C. R. Symons, Tetrahedron Lett., 4919 (1971)
(4) O. Exner and J. Jones, Collect. Czech. Chem. Commun., 27, 2296 (1962); O. Exner, Tetrahedron Lett., 815 (1963): A. Talvik, O Zuman, and O. Exner, Collect. Czech Chem. Commun., 29, 11266 (1964).
(5. W'. Kitching, A. J. Smith, W. Adcock, and S. Q. A. Rizvi, J. Organomet. Chem., 42, 373 (1972).
(6: E. T. McBee, I. Serfaty, and T. Hodgins, J. Am. Chem. Soc., 93, 5711 (1971): P. A. Scherr, M. D. Glick, J. H. Siefert, and R. D. Bach, ibid., 97, 1782 (1975).
(7) (a) Defined as the difference in chemical shiff between the substituted fluoroaromatic and related fluoroaromatic. (b) W. Adcock, M. J. and B D. Gupta, J. Am Chem. Soc., 95, 7353 (1973).
(8) M. J. S. Dewar, "Hyperconjugation", Ronald Press, New York, N.Y. 1962, pp 79-86; E. A. C. Lucken, "Nuclear Quadrupole Coupling Constants', Academic Press, New York, N. Y. 1969.
(9) For a discussion of ${ }^{13} \mathrm{C}$ chemical shitts see G. Maciel, Top. Carbon- 13 NMR Spectrosc., 1, 53 (1974).
(10, H. Spiesecke and W. G. Schneider, J. Chem. Phys., 35, 731 (1961).
(11, G. E. Maciel and J. J. Natterstad. J. Chem. Phys., 42, 2427 (1965).
(12) G. L. Nelson, G. C. Levy, and J. D. Cargioli, J. Am. Chem. Soc., 94, 3089 (1972).
(13) W. Adcock, M. Aurangzeb, W. Kitching, N. Smith, and D. Doddrell, Aust. J. Chem., 27, 1817 (1974)
(14) Ng. Ph. Buu-Hoi and J. Lecocq. J. Chem. Soc., 830 (1946).
(15) N. B. Chapman and J. F. A. Williams, J. Chem. Soc., 5044 (1952).
(16) A Allerhand, D. Doddrell, V Glushko. D. W. Cochran, E. Wenkert, P. J. Lawson, and F. R. N. Gurd, J. Am Chem. Soc., 93, 544 (1971)
(17) S. Q. A. Rizvi, B. D. Gupta, W. Adcock, D. Doddrell, and W. Kitching. J. Organomet Chem., 63, 67 (1973).
(18) A. M. Ihrig and J. L. Marshall. J. Am. Chem. Soc., 94, 1756 (1972).
(19) (a) W. Kitching. M. Bullpitt, D. Doddrell, and W. Adcock, Oig. Magn. Reson., 6, 289 (1974). (b) See H Gunther, H. Schmickler, and G. Jikell, J. Magn. Reson., 11, 344 (1973), for the report of this valuable technique for aromatics and olefins.
(20) D. Doddrell and P. R. Wells, J. Chem. Soc., Perkin Trans. 2, 1333 (1973).
(21) N K Wilson and J. B. Stothers, J. Magn. Reson., 15, 31 (1974)
(22) E. M. Schulman, K. A. Christensen, D. M. Grant, and C Walling, J. Org. Chem., 39, 2686 (1974).
(23) J. L. Marshall, A. M. Ihrig, and D E. Miller, J. Magn. Reson. 16, 439 (1974).
(24) The conjugative unencumbered positions are 4-benzyl, 4α-, 5α - and 7α-naphthyl, 6β - and 8β-naphthyl, 4^{\prime}-biphenyl, and 10 -anthryl.
(25) See also H. Schmidt and A. Schweig, Tetrahedron Lett., 981 (1973).
(26) H. C Longuet-Higgins, J. Chem. Phys., 18, 265 (1950).
(27) M. J. S. Dewar, "The Molecular Orbital Theory of Organic Chemistry", McGraw-Hill, New York. N. Y, 1969
(28) Private communication from Dr. P. R. Wells.
(29) However, if the data for these positions are plotted, they fall into the pattern in either Figure 3 or Figure 4.
(30) For example, inspect Table II and see ref 27.
(31) M. J. S. Dewar and R. J. Sampson, J. Chem. Soc., 2789 (1956i.
(32) B. G. van Leuwen and R. J. Ouellette, J. Am Chem. Soc., 90, 7056 (1968), and references cited therein.
(33) A. Allerhand, D. Doddrell, and R. Komoraski, J. Chem. Phys.. 55, 189 (1971).
(34) For a general discussion see E. Breitmaier, K. H. Spohn, and S. Berger, Angew. Chem., Int. Ed. Engl., 14, 144 (1975), especially p 153.
(35) For example, with an increase in population of A, our analysis would predict a relative shift of C_{4} to higher field at lower temperature. If B were favored, a low-field shiff of C_{4} would result.
(36) C_{4} appears to have undergone no shift change, while C_{8} and C_{α} have suffered -0.02 and +0.9 ppm shifts, respectively.
(37) The proton spectrum of 1 -naphthylmethyl bromide has been examined at lower temperatures [M. D. Bentley and M. J. S. Dewar, J. Org. Chem., 35, 2707 (1970)] and over the range 40 to $-100^{\circ} \mathrm{C}$, the $-\mathrm{CH}_{2} \mathrm{Br}$ resonance suffered a 0.4 ppm low-field shift. This was interpreted in terms of a steric effect displacing the Br group cut of the plane of the ring, apparently implying B to be favored at lower temperatures. However, the possibility of significant molecular layering at lower temperatures and the effects of specific molecular organization would need careful evaluation. The effects of lower temperatures on the ring-
proton shifts were not discussed, but may have indicated aggregation. or specific collision complexes. ${ }^{38}$
(38) P. R. Wells and V Lucchini, J. Magn. Reson., in press, and references cited therein.
(39) K. C. Schreiber and R. G. Byers, J. Am. Chem. Soc., 84, 859 (1962).
(40) W. Adcock. J. Alste, S. Q A. Rizvi, and M. Aurangzeb, J. Am. Chem. Soc., submitted for publication.
(41) (a) For a discussion and examples of the effect of this structural manipulation on mesomerism in other naphthyl systems see W. Adcock and M. J. S. Dewar. J. Am Chem. Soc., 89, 379 (1967). (b) The 'H NMR spectra of arylmethyl anions have been investigated in some detail [F. J. Kronzer and V. R. Sandel, Chem. Ind. (London), 210 (1972): F. J. Kronzer and V. R. Sandel, J. Am. Chem. Soc., 94, 5750 (1972): V. R. Sandel and H. H. Freedman, ibid., 85, 2328 (1963)], and in the case of 1-naphthylmethyllithium (THF) (compared with 1-methyinaphthalene ${ }^{21}$ in CDCl_{3}) H_{4} and H_{5} suffer high-field shifts of 1.90 and 0.74 ppm , respectively. These relative shifts are in somewhat poor agreement with HMO parameters (0.200 and 0.05 , respectively) but more agreeably with SCF- π parameters (0.263 and 0.092 , respectively) (Table III). Ion pairing and specific molecular aggregation could be troublesome, as could the known sensitivity of ${ }^{1} \mathrm{H}$ shifts to long-range magnetic perturbations of various kinds In addition, substantial field effects may also operate in addition to any conjugation. Careful studies of the ${ }^{13} \mathrm{C}$ spectra of 1 - and 2 -naphthylmethyllithium would be most informative.
(42) There is evidence (ref 40) that in the case of ${ }^{19} \mathrm{~F}$ shielding in the 5α naphthyl system, field effects and steric crowding may contribute to the overall ${ }^{19} \mathrm{~F}$ SCS. These would be less important for ${ }^{13} \mathrm{C}$ SCS.
(43) Kindly adapted by Mr. Ronald Farmer, University of Queensland.
(44) T. E. Peacock and P. T. Wilkinson, Proc. Phys Soc., London, 83, 525 (1964)
(45) L. T. Johnston and T. E. Peacock, Mol. Phys., 20, 849 (1971).
(46) T. E. Peacock. "Electronic Properties of Aromatic and Heterocyclic Molecules' ${ }^{\prime \prime}$, Academic Press, New York, N. Y., 1965.
(47) S. Ehrenson, R. T. C. Brownlee, and R. W. Taft, Prog. Phys. Org. Chem., 10, 000 (1973).
(48) This reduction would be associated with a cosine dependence of the interannular angle, and a correction for the interannular bond length, etc. For example, with an interannular angle, $\theta=45^{\circ}$, an interannular bond length $\left(C_{1}-C_{1}{ }^{\prime}\right)$ of $1.50 \AA$ and all other C - C bonds at $1.39 \AA, \pi$-charge at the 4^{\prime} position is 0.065 , compared with 0.086 for the planar case. A calculation, self-consistent in bond lengths, leads to increased inter-ring mesomerism. (We thank Mr. N. Bofinger and Dr. T. Peacock for these calculations.)
(49) We at first suspected that the assumptions regarding bond lengths in the naphthyl framework may have been partly to blame for the overestimation of mesomerism to the second ring. A calculation with self-consistency in bond lengths was not enlightening, and if anything, aggravated the situation. More thorough (and expensive) calculations are required.
(50) J. B. Stothers, "Carbon- 13 NMR Spectroscopy". Academic Press, New York, N.Y., 1972, p 134.
(51) For a related situation, see K. Takahashi, Y Kondo, and R. Asami, Org. Magn. Reson., 6, 580 (1974).

Evidence for Free-Radical Reductive Dehalogenation in Reaction of Zinc and Acid with 1-Perfluoroalkyl-2-iodoalkanes and with 1-Perfluoroalkyl-2-iodoalkenes ${ }^{1}$

Neal O. Brace* and James E. Van Elswyk

Wheaton College, Wheaton, Illinois 60187
Received September 9, 1975

Abstract

Reductive dehalogenation of 7-perfluorobctyl-6-iodo-1-heptene by either tri-n-butyltin hydride or zinc and acid gave partial cyclization to cis- and trans-1-methyl-2-(perfluorobutyl)methylcyclopentane, and at a rate consistent with previously studied free-radical cyclizations. Cyclization was slower for 8-perfluorobutyl-7-iodo-1octene, while 6-perfluorobutyl-5-iodo-1-hexene gave only unrearranged product. Reductive dehalogenation of 1-perfluoropropyl-2-iodo-1-hexene was not stereospecific but inversion of the intermediate vinyl radicals occurred. Free-radical addition of perflioropropyl iodide to 1 -heptyne did not give internal hydrogen transfer and cyclization as had been observed for analogous reaction of CCl_{4} or of HCCl_{3}.

The purpose of this research was (1) to synthesize io-dine-free perfluoroalkyl-substituted alkanes and alken ϵ s of various types; (2) to compare the behavior of a homologous series of 1-perfluoroalkyl-2-iodo terminal alkenes and of 1 -perfluoroalkyl-2-iodo-1-alkenes during dissolving metal reduction, in which free radicals might be involved; and (3) to
compare reductive dehalogenation of tri- n-butyltin hydride with that given by zinc and acid in this series of compounds. ${ }^{2}$

It is important to recognize that in most chemical reactions the perfluoroalkyl group retains its integrity, as a result of the high C-F bond strength. Rearrangement, loss of
fluorine, or C-C bond clearage are seldom observed. Hence, reductive defluorination is not anticipated in these reactions, in which C-I bonds are broken.

By way of background it would be helpful to review the state of the art as summarized in a recent text. ' The mechanism of carbon-halogen cleavage has been studied extensively for reductions effected with solutions of alkali metals, with chromium(II) salts, ziac, magnesium ard iron, and by electrolysis. Dissolving metal reductions are considered to involve transfer of an electron from the metal surface (or from metal in solution), or from a lower valence state of certain metal ions, e.g. $\mathrm{Cr}(\mathrm{II})$. Juch reactions are probably related to the formation of organometallic derivatives (or dimeric products) when alkyl halides are allowed to react with metals. The possibility that free radicals or organometallic derivatives may be short-lived intermediates in these reductive cleavage reactions is suggested, since elimination rather than cleavage is usually observed if a substituent (halogen, -OH, -OR, -OCOR) that can be lost as a stable anion is present at an adjacert carbon atom." The reaction paths have been diagrammed as follows. ${ }^{3}$

Results

Free-radical addition of iocoperfluoroalkanes $\left(\mathrm{R}_{\mathrm{F}} \mathrm{I}\right)$ to terminal alkenes provided novəl 1-perfluoroalkyl-2-iodoalkanes in excellent yield. ${ }^{4}$ Sim lar reaction with 1-alkynes gave (Z)- and (E)-1-perfluoroalkyl-2-iodo-1-alkenes (la,b and $2 \mathbf{a}, \mathbf{b}$). Addition was sterecselective but not stereospecific as it was formerly believec to be. ${ }^{4}$ In the case of terminal alkadienes, structure of the reaction produc: depended on the distance between the end groups. With 1,6 -heptadiene cyclization of the intermediate radical occurred in part and a mixture of open-ct ain (3) and cyclic products (4) was isolated ${ }^{5}$ (Chart I). Wh le reductive dehalogenation of certain 1-perfluoroalkyl-2-icdoalkanes by zirc and acid has already been described, ${ }^{4-7}$ evidence has now been obtained which tends to confirm the suspected free-radical nature of the process.

In orientation experiments 2 -iodooctane and 5-iodo-1hexene were dehalogenated using the well-known free-radical reducing agent, tri- n-buty tin hydride (TETH). ${ }^{8} \mathrm{Re}$ duction in both cases gave the normal products (n-octane and 1-hexene). With 7-perf uorobutyl-6-iodohept-1-ene (3), however, a substantial am sunt of cyclization occurred (Chart II). Gas-liquid phase chromatography showed that 32.5% of open-chain product 5 was formed and 67.5% of cyclic product $6 \mathrm{a}, \mathrm{b}$; the ratio of $5 / 6$ was 0.480 . This is consistent with abundant evidence from previous studies ${ }^{9-12}$ showing the intermediacy of radicals in this reaction. The next higher homologue, 8 -pe-fluorobutyl-7-iodooct-1-ene (7), with TBTH gave 98% of linear product 8 and not more than 2% of cyclic product $\mathbf{9 a}, \mathbf{b}$.

These same reductions were then performed using zinc and acetic acid in ether as the :educing system; ${ }^{13}$ see Chart III. 6-Perfluorobutyl-5-iodohey-1-ene (10) gave only openchain product 11 . There were mo extraneous peaks in GLC analysis and the NMR spectra showed no methyl group resonance. However, 3 again cyclized during reduction and the ratio of $5 / 6$ formed was 0297 . Area measurements in GLC analysis and NMR spectra were in good agreement.

Chart I. Preparation of 1-Perfluoroalkyl-2-iodo-1-alkenes and of 7 -Perfluoroalkyl-6-iodohept-1-ene and

1-Iodomethyl-2-(perfluoroalkyl)methylcyclopentanes

Chart II. Tri- n-Butyltin Hydride Reduction of Iodoalkenes

Proton resonances for the $\mathrm{CH}_{3} \mathrm{CH}$ coupling (doublet, $J=7$ Hz) in the cis ard trans isomers of 6 were clearly defined; cis/'trans $=1: 2$. Zinc reduction of 7 gave a significant amount of cis and trans isomers of 1-methyl-2-(perfluorobutyl)methylcyclohexane ($9 \mathbf{a}, \mathfrak{b}$). Proper choice of GLC column and operating conditions permitted separation of two peaks of identical area (8.0%). NMR spectra also showed the expected resonances for two methyl groups, and ir spectra gave CH_{3} group absorption bands.

Clearly, reductive dehalogenation of iodoalkenes by zinc and acid has characteristics of a free-radical process.

Reduction of 1-Perfluoroalkyl-2-iodo-1-alkenes. De-

Chart III. Zinc and Acid Dehalogenation of Iodoalkenes

halogenation of 1-perfluoroalkyl-2-iodo-1-alkenes afforded additional evidence for the intermediacy of free radicals. 1-Perfluoropropyl-2-iodo-1-hexene ($90 \% E$ isomer, 1a) gave $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}, 71 \% \mathrm{Z}$ isomer 12a, and $29 \% E$ isomer 12b, by reaction with zinc and hydrogen chloride in alcohol solution at 78° (Chart IV). A similar reaction of 1-perfluoropropyl-2-iodo-1-heptene ($95 \% E$ isomer 2a) gave reduction to 1-perfluoropropyl-1-heptene, $69.3 \% Z$ isomer 13 a and $30.7 \% E$ isomer 13 b . These reactions show that a substantial loss of configuratior occurs during reduction. Evidence for structures was obtained by synthesis of $12 \mathbf{a}, \mathbf{b}$ from 1-perfluoropropyl-2-iodohexane (14) by dehydrohalogenation. Isomers of $12 a, b$ obtained by GLC trapping were distinguished by their ir spectra; Z isomer 12a had double bond stretching frequency at 1660 cm^{-1} and E isomer 12 b had this band at $1680 \mathrm{~cm}^{-1}$. Two additional points of interest should be noted. Exclusive α dehydrohalogenation was observed, as shown by the identity of $12 a, b$ obtained from $1 a, b$ and from 14 , and the $a b-$ sence of significant side products (GLC analysis). There was a preference for E isomer 12b, from anti elimination of 14 in the conformation having the R_{F} and alkyl groups also anti to each other, to minimize crowding. The ratio of 12a/12b was 1:2.67.
In most of these experiments using zinc and acid small amounts of higher boiling products were formed. They are believed to be the result of radical coupling, as indicated previously. Such products have been frequently obtained and appear to be favored by slow reaction and minimal contact of the iodoalkane at the reacting metal surface. These are conditions which would obtain in a two-phase liquid system. A further example is the reduction of 1-per-fluoroheptyl-2-iodohexadecane (15) in benzene and aqueous hydrochloric acid by zinc and magnesium powder to 1 perfluoroheptylhexadecane (16) in 62% yield and to 15,16 [bis(perfluoroheptyl)methyl]triacontane in 28% yield.

The homogeneous organic phase which is formed using an anhydrous alcohol and hydrogen chloride (gas) has given less coupling, rapid reaction, and high yields of reduced, uncoupled product ($85-92 \%$). ${ }^{14,15}$ In several of the experiments reported herein the solvent system acet:c acid-

Chart IV. Nonstereospecific Reduction of
1-Perfluoroalkyl-2-iodo-1-alkenes. Exclusive α-Dehydrohalogenation of 1-Perfluoroalkyl-2-iodoalkanes

$\mathbf{1 2 b}, n=3,29 \%$
$13 \mathbf{b}, n=4,30.8 \%$$\quad E$ isomers

$\xrightarrow{\mathrm{KOH} . \text { elthanol }}(Z)-12 \mathrm{a}, 27 \%$
(E)-12b, 72%

14 (preferred conformation)
diethyl ether, recommended by Hassner, ${ }^{13}$ was used with good success. However, removal of the acetic acid was somewhat troublesome. It may be of interest to note that in one attempted Grignard reaction using endo-2-iodo-exo3 -perfluoropropylnorbornane, where crowding may have been a problem, a good yield of coupling product, $2,2^{\prime}$-bis(3perfluoropropylnorbornyl), was obtained. ${ }^{6}$ Here, too, loss of configuration occurred, as two forms having syn and anti fusion of the two rings were isolated.

Discussion

These experiments closely link the solid evidence ${ }^{9-12}$ for free-radical mechanism of dehalogenation by TBTH with the zinc and acid heterogeneous systems we have frequently used. Since the rate constant for transfer of hydrogen from TBTH to an alkyl radical was determined ${ }^{10}$ to be k_{2} $=1.1 \times 10^{6} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ at 25°, it is possible to estimate the rate constant for cyclization at 50° of 3:

$$
5 / 6=k_{2} / k_{\mathrm{c}}[\mathrm{TBTH}] ; k_{\mathrm{c}}=4 \times 10^{6} \mathrm{M}^{-1} \mathrm{sec}^{-1}
$$

For the 5-hexenyl radical $k_{\mathrm{c}}=1 \times 10^{-1} \mathrm{sec}^{-1}$ and for the 4 -(cyclohexenyl)butyl radical $k_{\mathrm{c}} \simeq 4 \times 10^{4} \mathrm{sec}^{-1} .{ }^{10}$ The rate constant for cyclization of 7 at 50° is similarly

$$
8 / 9=k_{2} / k_{\mathrm{c}}[\mathrm{TBTH}] ; k_{\mathrm{c}}=4 \times 10^{4} \mathrm{sec}^{-1}
$$

These values are indeed close to the previously determined constants for related reactions.

By comparing the $5 / 6$ ratio in zinc reduction of 3 with that obtained in TBTH reduction we may estimate the "effective concentration" of active reducing agent. Using the calculated value for k_{c} we have

$$
5 / 6=0.297=\frac{1.0 \times 10^{6}}{4 \times 10^{6}}[\text { reducing agent }]
$$

From this the [reducing agent] is found to be about $1.2 M$. The iodooctene 7 yields an estimate for [reducing agent] of about 0.21 M . Of course, one would expect that the "effective concentration" would vary widely according to the experimental conditions employed.

It had previously been reported ${ }^{16}$ that zinc and acid gave stereospecific reduction of 1-perfluoroalkyl-2-iodo-1-alkenes such as $1 \mathbf{a}, \mathbf{b}$ and $2 \mathbf{a}, \mathbf{b}$. The present results show that such is not the case. It was necessary to be able to separate

Table I
Sources and Physical Constants of Starting Materials

Compd	Code	$\mathrm{Bp},{ }^{\circ} \mathrm{C}$ (mm)	$n^{25} \mathrm{D}$	Source
Tri-n-butyltin hydride		80 (0.50)		ref 20
5-Iodo-1-hexene		38-40 (15)	1.5100	ref 22
$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CH}=\mathrm{CI}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	1a,b	94 (50)	$1.40 \cdot 95$	ref 4
$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CH}=\mathrm{CI}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	2a,b	95 (25)	1.41 .35	This paper
$\mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C} I=\mathrm{CH}_{2}$,	90 (8)	1.4055	ref 6
$\mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{CHI}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2}$	7	56 (0.25)	1.4080	ref 21
$\mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CHI}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	14	85 (23)	1.4029	ref 23

the two isomers by GLC, since the ir spectra cculd not be used to distinguish them in a nixture. Both Z and E isomers of 1 or 2 had the double bond stretching frequency at $1640 \mathrm{~cm}^{-1}$. Once the two isomess were separated the fingerprint region did show significalt differences. The reduced product $12 \mathrm{a}, \mathrm{b}$ from 1 a was more readily identified by ir, but there was considerable merit in using the more accurate and sensitive GLC method to determine product composition.

Isomerization of the vinyl racical from 1a or $2 a$ is not expected to be a high-energy process. Similar radicals also equilibrate. Hay summarizes some recent work involving isomerization and cyclization of substituted vinyl radicals. ${ }^{17}$ In this connection it was surprising to finc that radical addition of $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ to 1-heptyme did not give any cyclization product analogous to that obtained by Heiba and Dessau in the reaction of CCl_{4} or HCCl_{3} with 1-heptyne. ${ }^{18}$ It appears that the rate of transfei from $\mathrm{R}_{\mathrm{F}} \mathrm{I}$ to the intermediate vinyl radical is considerably faster than hydrogen abstraction. This finding may in act make it possible to determine rate constants for tranifer from these small molecules to carbon radicals.

Experimental Section ${ }^{19}$

Source of Materials and Physical Measurements. Table I lists the sources and physical constants of starting materials. TBTH was prepared from tri- $n-b$ tyltin chloride (Aldrich) and lithium aluminum hydride (Ventren) in 52% yield, ${ }^{20}$ and redistilled in a $3-\mathrm{ft}$ spinning band colunan. Less pure material did not react properly. Infrared spectra we e recorded on a Perkin-Elmer Model 337 spectrophotometer. NMR spectra were done using a Varian A-60 spectrophotometer. Gas chromatographic analyses were performed using a Sargent-W elch thermal condcctivity or a Perkin-Elmer Model 881 unit fittec with a hydrogen flame detector, and under conditions which are listed as appropriate.

Reduction of $\mathbf{5}$-Iodo-1-hexene with Tri-n-butyltin Hydride. A $50-\mathrm{ml}$ flask was fitted with a varicble takeoff, total reflux distilling head, thermometer, magnetic stirrer, Claisen ad ε pter, dropping funnel, and a dry ice cooled trap. 2,2'-Azobis-2-1methylpropionitrile) (ABN, $0.25 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 5 -iodo-1-hexene ${ }^{22}(10.01 \mathrm{~g}$, 47.20 mmol) were added and while cooling to $0-10^{\circ}$ with an ice bath, TBTH ($14.8 \mathrm{~g}, 51.1 \mathrm{mmol}$) wes added cautiously over a period of 5 min . The mixture was stirred for 4 hr while heating to 50° with an oil bath. 1-Hexene $\left(2.75 \mathrm{~g}, ~\left(9.3 \%, n^{25} \mathrm{D} 1.3850\right)\right.$ was collected in the dry ice trap at 20 mm of nercury pressure, using a water aspirator. Characteristic infrared assorption of 1-hexene at 3075 , 1645,998 , and $914 \mathrm{~cm}^{-1}$ was observed.

Reduction of 7-Perfluorobutyl-6-iodohept-1-ene (3) with TBTH. In similar fashion 3 (6 -iodc- $8,8,9,9,10,10,11,11,11$-nonaflu-oro-1-undecene, $2.43 \mathrm{~g}, 5.50 \mathrm{mmol}$) containing 4 [1-iodomethyl-2(perfluorobutyl)methylcyclopentan $=1.99 \mathrm{~g}, 4.50 \mathrm{mmol}], \mathrm{ABN}$ ($0.0328 \mathrm{~g}, 0.200 \mathrm{mmol}$), and TBTH $3.77 \mathrm{~g}, 13.0 \mathrm{mmol}$, a 1.93 M solution) gave $8,8,9,9,10,10,11,11,11-\mathrm{r}$ onafluoro-1-undecene (5) and cis- and trans-1-methyl-2-(perfuorobutyl)methylcyclopentane ($\mathbf{6 a}, \mathbf{b}$), bp $62-66^{\circ}(15 \mathrm{~mm}), 2.63 \mathrm{~g}_{\tau} n^{25} \mathrm{D} 1.3504(83 \%)$. Ir showed ν_{CH} (olefinic) at $3100, \nu_{\mathrm{C}=\mathrm{C}}$ at 1640 weak), and out-of-plane bending at 992 and $910 \mathrm{~cm}^{-1}$. GLC analsis (using a $6 \mathrm{ft} \times \mathrm{C} .125 \mathrm{in}$. column packed with 20% "Ucon Polar" LB 550-X on 60-\&0 mesh Gas Pack WA at 60°) showed 5, retention time $11.2 \mathrm{~min}, 17.8 \%$ relative area, and 6 at $15.7 \mathrm{~min}, 81.5 \%$ relative area (replicate analyses). The conversion of 3 to 6 was 67.5% and of 3 to 5 was 32.5%; 5/6 then was 0.480 .

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~F}_{9}$: C, 41.78; $\mathrm{H}, 4.14$. Found ($5 / 6$ mixture): C, 41.77; H, 4.0 C .

Zinc Reduction of 7-Perfluorobutyl-6-iodohept-1-ene (3). Using a similar apparatus but with a $100-\mathrm{ml}$ flask, $3(4.86 \mathrm{~g}, 11.0$ $\mathrm{mmol})$ and $4(3.98 \mathrm{~g}, 9.00 \mathrm{mmol})$, and, while stirring, powdered zinc ($100 \mathrm{mesh}, 5.0 \mathrm{~g}, 80 \mathrm{mmol}$) and glacial acetic acid (25 ml , dropwise) were added and the mixture heated to reflux temperature (62 ${ }^{\circ}$) using an oil bath, for $\leq \mathrm{hr}$. The slurry was cooled and decanted, the zinc washed with 10 ml of ether, and the layers separated with the aid of 25 ml of saturated salt solut.on. Saturated sodium bicarbonate solution (25 ml) was added to the organic layer, 5 ml at a time, shaken carefully. Tie water layer was washed with 10 ml of ether, and the combined ether extracts dried over magnesium sulfate. Distillation gave 5 and $\mathbf{6 a}, \mathrm{b}, \mathrm{bp} 65^{\circ}(14 \mathrm{~mm}), 4.33 \mathrm{~g}, n^{25} \mathrm{D} 1.3517$ (68.5%). A residue of 1.31 g of oil =emained. GLC analysis showed $\mathbf{5}, 12.6 \%$ relative area, and $\mathbf{6 a}, \mathbf{b}, 875 \%$. Ir spectra were identical for both reduction procuct mixtures. An NMR spectrum of the $5 / 6 \mathrm{a}, \mathrm{b}$ mixture gave resonances at $\delta 0.85, \mathrm{~d}, J=7 \mathrm{~Hz}, 1.81$ proton, $\mathrm{CH}_{3} \mathrm{CH}$ of 6 ; $1.10, \mathrm{~d}, J=7 \mathrm{~Hz}, 0.57$ proton, $\mathrm{CH}_{3} \mathrm{CH}$ of $6 \mathbf{b}$; $1.2-2.6$, $\mathrm{m}, 10$ protons, $\left(\mathrm{CH}_{2}\right)_{n}$ and $\mathrm{CH} ; 4.8-6.2, \mathrm{~m}, 0.5$ proton, $\mathrm{CH}_{2}=\mathrm{CH}$ of 5. Correcting for the amount of 4 originally present, the conversion of 3 to 5 was 22.9% and of 3 to 6 was 77.1%; hence, the ratio of $5 / 6$ was 0.297 .

Reduction of 8 -Perfluorobutyl-7-iodooct-1-ene (7) with TBTH. 7 (7 -iodo-9,9,10,10,11,11, 2, 12,12-nonafluoro-1-dodecene, $11.0 \mathrm{~g}, 24.1 \mathrm{mmol})$, ABN ($0.0203 \mathrm{~g}, 1.25 \mathrm{mmol}$), and TBTH $(9.00 \mathrm{~g}$, $31.0 \mathrm{mmol}, 1.90 \mathrm{M}$ in the resulting solution) gave exothermic reaction at $31-43^{\circ}$ under a nitrogen atmosphere. Distillation in a $16-\mathrm{in}$. spinnirg band column affordec $9,9,10,10,11,11,12,12,12$-nona-fluoro-1-dodecene (8) and cis- and trans-1-methyl-2-(perfluorobutyl)methylcyclohexane (9), bp 83° (13 mm), $6.41 \mathrm{~g}(81 \%)$. Tri-n-butyltin iodide (13.92 g) remained in the pot flask. GLC analysis ($10 \mathrm{ft}, 10 \%$ QF-1 fluorosilicone oil on Chromosorb W, at 90°) showed $8,98 \%$, and $9,2 \%$ relative areas.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~F}_{9}$: C, 43.64; H, 4.58. Found: C, 43.81; H, 4.76

Zinc Reduction of 8-Perfluorobutyl-7-iodooct-1-ene (7) to 8 and $9 \mathrm{a}, \mathrm{b} .7(7.66 \mathrm{~g}, 1 € .8 \mathrm{mmol})$, zinc dust ($1.57 \mathrm{~g}, 26.0 \mathrm{mmol}$), acetic acid (15 ml), and ether (15 ml , were heated to reflux for 5 hr . Distillation gave 8 and $9 \mathrm{a}, \mathrm{b}$, bp $79-83^{\circ}(14 \mathrm{~mm}), n^{25} \mathrm{D} 1.3551,3.57$ $\mathrm{g}(64 \%)$, and a liquic residue of 2.44 g . Ir showed ν_{CH} (olefinic) 3070, $\nu_{\mathrm{C}=\mathrm{C}} 1640, \delta_{\mathrm{CH}_{3}} 1460$ and $1380 \mathrm{~cm}^{-1}$, and bands at 1440 , $1415,1350,1300,1250-1200,1140,1040,1020,996,918,880,850$, and $720 \mathrm{~cm}^{-1}$. An NMR spectrum showed proton resonances at δ $0.90 \mathrm{~d}, 0.28$ proton. $\mathrm{CH}_{3} \mathrm{CH}$ of $9 \mathrm{a}: 1.2-2.6, \mathrm{~m}, 11.9$ proton, $\left(\mathrm{CH}_{2}\right)$, CH : and $\mathrm{CH}_{3} \mathrm{CH}$ of $9 \mathbf{b}$); $4.9, \mathrm{~m}, 1.75, \mathrm{CH}_{2}=\mathrm{CH}$ of $8 ; 5.2-6.2, \mathrm{~m}, 1.0$ proton, $\mathrm{CH}=$ of 8 . GLC analysis ($10-\mathrm{ft} \mathrm{QF}-1$ column, 90°) gave peaks for 9 a, $14.6 \mathrm{~min}, 8.41 \%$; $9 \mathrm{~b}, 15.8 \mathrm{~min}, 8.04 \%$; and $9,18.8 \mathrm{~min}$, 83.25% relative area. GLC analysis using the "Ucon Polar" column and several others failed to resolve the mixture.
Preparation of 6-Perfluorobutyl-5-iodohex-1-ene (10). 1,5Hexadiene ($16.4 \mathrm{~g}, 200 \mathrm{mmol}$), 1-iodoperfluorobutane ($17.8 \mathrm{~g}, 50.0$ $\mathrm{mmol})$, and $\mathrm{ABN}(0.300 \mathrm{~g}, 1.82 \mathrm{mmol})$ were charged to a FischerPorter aerosol tube, cooled to -78°, evacuated and filled with nitrogen three times, and heated in an oil bath for 21 hr at 70.0°. Distillation in a 2 -ft platinum spinning band column gave 1,5 -hexadiene ($11.6 \mathrm{~g}, 70.6 \%$ of the amount charged) and 5 -iodo-$7,7,8,8,7,9,10,10,10$-nonafluoro-1-dəcene (10), bp 85° (12.0 mm), $n^{25} \mathrm{D} 1.4010,13.88 \mathrm{~g}(64.8 \%)$ in three fractions: the bis adduct, ${ }^{6,21}$ $\mathrm{bp} 54^{\circ}(0.10 \mathrm{~mm}), n^{25} \mathrm{D} 1.4350,2 . .7 \mathrm{~g}$, and residual oil, mostly bis adduct, 2.3 g . GLC analysis (6 ft "Ucon Polar" column, 128°) showec $10,98.7 \%$, ir $\nu \mathrm{CH}=\mathrm{CH} 1640 \mathrm{~cm}^{-1}$ and bands at $990,920,880$, $850,740,730,690$, and $515 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10}$ F9I: C, 28.05; H, 39.94. Found: C, 28.23; H, 2.48 .
Zinc Reduction of $\mathbf{1 0 . 1 0 (6 . 6 0 ~ g , ~} 15.4 \mathrm{mmol})$, acetic acid (15
ml), and diethyl ether (15 ml) were stirred while zinc dust (100 mesh, $1.57 \mathrm{~g}, 24.9 \mathrm{mmol}$) was added. Work-up and distillation gave $7,7,8,8,9,9,10,10,10$-nonafluoro-1-decene (11), bp 39-44 (18 mm), n^{25} D $1.3374,2.02 \mathrm{~g}(44 \%)$. Part of the volatile product was lost. A residue of 0.56 g remained. Ir showed bands similar to 8. An NMR spectrum gave proton resonances at $\delta 1.3-3.2, \mathrm{~m}, 8$ protons, and at 4.8-6.1, m, 3 protons, in agreement with structure 11. The $\mathrm{R}_{\mathrm{F}} \mathrm{CH}_{2}$ group was indicated by a triplet at $\delta 2.75$, the last of a triplet of triplets at $\delta 2.4 ; J_{\mathrm{HF}}=22$ and $J_{\mathrm{HH}}=7 \mathrm{~Hz}$. No methyl group resonance appeared at $\delta 0.8-1.2$. GLC analysis ($6-\mathrm{ft}$ "Ucon Polar" column, 62°) gave a single peak at 6.4 min .

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{9}$: C, 39.75; H, 3.67. Found: C, 39.85; H, 3.80 .

Zinc Reduction of 1-Perfluoropropyl-2-iodohex-1-ene (1a,b). la,b (1,1,1,2,2,3,3-heptafluoro-5-iodonon-4-ene, 89.8\% E isomer $1 \mathbf{l a}$ and $10.9 \% Z$ isomer $1 \mathbf{b}, 10.9 \mathrm{~g}, 39.2 \mathrm{mmol}$), zinc (30 mesh, $10.0 \mathrm{~g}, 154 \mathrm{mmol}$), and ethanol (75 ml) were stirred in a flask fitted with a gas inlet tube, reflux condenser, and a paddle stirrer. Hydrogen chloride was introduced above the slurry occasionally, until gas evolution began, and the zinc began to react. The mixture was kept at $76-78^{\circ}$ by heating as necessary. Samples taken after 1 and 2 hr both showed that very little of $\mathbf{l a}, \mathrm{b}$ remained. The cooled liquid was decanted into 100 ml of water and extracted three times with dichloromethane (25 ml) and dried $\left(\mathrm{MgSO}_{4}\right)$. Distillation (16 -in. spinning band column) gave (Z)- and (E)-1,1,1,2,2,3,3-hep-tafluoro-4-nonene ($12 \mathrm{a}, \mathrm{b}$), bp 77° (138 mm), $n^{25} \mathrm{D} 1.3400,5.35 \mathrm{~g}$ (63.2%). There was no residue. GLC analysis ($10-\mathrm{ft}$ QF-: column, 85°) showed 12 a at $6.4 \mathrm{~min}, 70.6 \%$, and $\mathbf{1 2 b}$ at $7.2 \mathrm{~min}, 29.4 \%$. $\mathbf{1 a}, \mathrm{b}$ was at 23.5 min retention time. Varying ratios of $12 \mathbf{a}, \mathbf{b}$ appeared in the distilled fractions. NMR gave proton resonances at $\delta \mathrm{j} 9.94, \mathrm{~m}, 3$ protons, $\mathrm{CH}_{3} ; 1.4,4$ protons, $\mathrm{m},\left(\mathrm{CH}_{2}\right)_{2} ; 2.3,2$ protons, m , $\mathrm{CH}_{2} \mathrm{CH}=; 5.0-7.0, \mathrm{~m}, 2$ protons, $\mathrm{CH}=\mathrm{CH}$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~F}_{7}$: C, 42.86; H, 4.40. Found: C, 42.98; H, 4.35.

Preparation of 1-Perfluoropropyl-2-iodo-1-heptene (2a,b) by Addition of 1 -Iodoperfluoropropane to 1 -Heptyne. 1 -Iodoperfluoropropane $(12.0 \mathrm{~g}, 40.0 \mathrm{mmol})$, 1 -heptyne ($4.80 \mathrm{~g}: 50.0$ $\mathrm{mmol})$, and $\mathrm{ABN}(0.0820 \mathrm{~g}, 0.500 \mathrm{mmol})$ were charged to a pressure tube and processed as for 10 . Fractionation gave 2a,b, bp 95° (26 mm), $n^{25} \mathrm{D} 1.4135,14.3 \mathrm{~g}(91 \%)$, in four fractions; the first three fractions contained 90.3% of $\mathbf{2 a}$ and 9.67% of $\mathbf{2 b}$. The last fraction $(1.9 \mathrm{~g})$ contained 60.0% of 2 a and 40.0% of 2 b and was used for trapping these isomers on a GLC column ($6-\mathrm{ft}$ QF-1, $125^{\circ}, 4-\mu \mathrm{l}$ injections). A drop of $2 \mathbf{a}$ ($3.8-\mathrm{min}$ retention time) on KBr plates showed ir bands: $\nu_{\mathrm{CH}} 3080,2980,2950.2880 ; \nu_{\mathrm{CH}=\mathrm{CI}}-64 \mathrm{C}^{\circ}$; δ_{CH} 1480, 1380, 1350; $\nu_{\text {CF }} 1270,1230,1180,1140,1120$; bands at 1080 , $975,950,940,915,820,740,725,680$, and $640 \mathrm{~cm}^{-1}$. 2b (5.6-min retention time) gave ir bands at $\nu_{\mathrm{CH}=\mathrm{CI}} 1640 ; \delta_{\mathrm{CH}} 1470,1380,1350$; $\nu_{\text {CF }}$ same; bands at $1050,1020,970,948,915,850,820,790,740$, 675 , and $655 \mathrm{~cm}^{-1}$. An NMR spectrum of 2a (96%) showed proton resonances at $\delta 0.9, \mathrm{t}, J=5 \mathrm{~Hz}, 3$ protons, $\mathrm{CH}_{3} ; 1.4, \mathrm{~m}, 6$ protons, $\left(\mathrm{CH}_{2}\right)_{3} ; 2.68, \mathrm{~m}, 2$ protons, $\mathrm{CH}_{2} \mathrm{CI}=\mathrm{C} ; 6.40, \mathrm{t}, J=15 \mathrm{~Hz}, 1$ proton, $\mathrm{CF}_{2} \mathrm{CH}=\mathrm{CI}$.

Zinc Reduction of 1-Perfluoropropyl-2-iodo-1-heptene (2a,b). 2a,b (1,1,1,2,2,3,3-heptafluoro-5-iodo-4-decene, $6.50 \mathrm{~g}, 16.6$ $\mathrm{mmol}, 95.5 \%$ of E and 4.5% of Z isomers), zinc (30 mesh, 15.3 g in three portions, 230 mmol), ethanol (75 ml), and hydrogen chloride were employed as in the experiment with la,b. Distillation afforded (Z) - and $(E)-1,1,1,2,2,3,3$-heptafluoro-4-decene (13a,b), bp $141-143^{\circ}$ (1 atm), $n^{25} \mathrm{D} 1.3535$, and bp $81^{\circ}(95 \mathrm{~mm}), n^{25} \mathrm{D} 1.3501$, $3.40 \mathrm{~g}(77 \%)$. A residue of 1.2 g remained. GLC analysis ($10-\mathrm{ft} \mathrm{QF}-1$ column, 85°) gave (Z)-13a at $10.8 \mathrm{~min}, 69.3 \%$, and $(E)-13 \mathrm{~b}$ at 12.5 $\min , 30.7 \%$; $\mathbf{2 a} \mathbf{a}, \mathbf{b}$ was at $16.1-\mathrm{min}$ retention time. For NMR and ir spectra see below.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~F}_{7}$: C, 45.11; H, 4.92. Found: 44.91; H, 5.09.

Preparation of 1,1,1,2,2,3,3-Heptafluoro-5-iodononane (14). ${ }^{23}$ 1-Hexene ($16.82 \mathrm{~g}, 200 \mathrm{mmol}$), 1-iodoperfluoropropane $(29.6 \mathrm{~g}, 100 \mathrm{mmol})$, and ABN $(0.164 \mathrm{~g}, 1.00 \mathrm{mmol})$ were charged to a pressure tube, processed as for the preparation of 10 . Distillation (2 - ft platinum spinning band column) gave 1 -hexene ($7.55 \mathrm{~g}, 90.0$ mmol), 1,1,1,2,2,3,3-heptafluoro-5-iodononane (14), bp 85° (23 $\mathrm{mm}), n^{25} \mathrm{D} 1.4029,36.1 \mathrm{~g}$; and bp $73^{\circ}(12 \mathrm{~mm}), n^{25} \mathrm{D} 1.4036,1.2 \mathrm{~g}$ (98%); and an oil residue (1.3 g). GLC analysis (6 - ft Carbowax $1500,20 \%$ on Chromosorb WA, 150°) gave 14 at $6.0 \mathrm{~min}, 98.14 \%$; and an unknown at $7.6 \mathrm{~min}, 1.86 \%$. NMR $\delta 0.92, \mathrm{~m}, 3$ protons, CH_{3}; $1.12-2.2, \mathrm{~m}, 6$ protons, $\left(\mathrm{CH}_{2}\right)_{3} ; 2.82,6$ lines, 2 protons, $J_{\mathrm{HF}}=20$, $J_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{CF}_{2} \mathrm{CH}_{2} ; 4.33,5$ lines, 1 proton, $J=7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CHICH}_{2}$.

Preparation of (Z)- and (E)-1,1,1,2,2,3,3-Heptafluoro-4-
nonene ($12, a, b$) by Dehydrohalogenation of 14 . A solution of $\mathrm{KOH}(3.00 \mathrm{~g}, 53.5 \mathrm{mmol})$ in 60% aqueous ethanol (75 ml) was stirred by magnet bar while $14(10.0 \mathrm{~g}, 26.4 \mathrm{mmol})$ was added and kept at 70° for 22 hr . Two layers formed which were poured into water $(50 \mathrm{ml})$ and $6 \mathrm{~N} \mathrm{HCl}(10 \mathrm{ml})$. The mixture was extracted into CCl_{4} (three times, 10 ml) and dried $\left(\mathrm{MgSO}_{4}\right)$. Distillation ($16-\mathrm{in}$. spinning band column) gave (Z)- and (E)-12a,b, bp $129^{\circ}, n^{25}$ D $1.3392,4.48 \mathrm{~g}$, in three fractions (68%); and a residual oil (1.5 g). GLC analysis and trapping of peaks was done using a $10-\mathrm{ft}$ QF-1 fluorosilicone column at 85°. (Z)-12a at $9.2 \mathrm{~min}, 27 \%,(E)-12 \mathrm{~b}$ at $10.9 \mathrm{~min}, 72 \%$, and two peaks in small amount were obtained. (Z) 12a gave ir bands at 2970, 2940, 2890, 2870; $\nu_{\mathrm{CH}}=\mathrm{CH} 1660 ; \delta_{\mathrm{CH}}$ 1470,1350 ; $\nu_{\text {CF }} 1230,1180,1120$; bands at $960,670,650$, and 535 cm^{-1}. (E)-12b gave $\nu_{\mathrm{CH}}=\mathrm{CH} 1680 ; \delta_{\mathrm{CH}} 1465,1350 ; \nu_{\mathrm{CF}} 1230,1180$, 1115 ; and bands at $970,925,735,710$, and $540 \mathrm{~cm}^{-1}$.

Addition of 1-Iodoperfluoroheptane to 1-Hexadecene. Zinc Reduction of 1 -Perfluoroheptyl-2-iodohexadecane (15) to 1 Perfluoroheptylhexadecane (16) and to $\mathbf{1 5 , 1 6 - B i s}$ [(perfluoroheptyl)methyl]triacontane (17). 1-Iodoperfluoroheptane (24.8 g , 50.0 mmol), 1-hexadecene (Humphrey Chemical Co, $22.4 \mathrm{~g}, 100$ $\left.\mathrm{mmol}, n^{20} \mathrm{D} 1.4388\right)$, and $\mathrm{ABN}(0.200 \mathrm{~g}, 1.20 \mathrm{mmol})$ were heated at 80° under nitrogen for 7 hr . GLC showed only a trace of unreacted $\mathrm{R}_{\mathrm{F}} \mathrm{I}$. The product (15) was a white solid; it was converted directly to 16 and 17. A slurry of 15 , hexadecene (47.0 g , combined), zinc dust ($65 \mathrm{~g}, 1.0 \mathrm{~mol}$), magnesium powder $(4.0 \mathrm{~g}, 120 \mathrm{mmol})$, and benzene (25 ml) was heated to 70° and stirred rapidly while 16% hydrochloric acid (42 ml) was added dropwise during 0.75 hr . Exothermic reaction occurred. Zinc dust (10 g), magnesium powder $(1.0 \mathrm{~g})$, and hydrochloric acid (43 ml) were added after 1 hr at 75°. After 3 hr , benzene (100 ml) was added, the slurry decanted and the organic layer rinsed with water twice, dried $\left(\mathrm{MgSO}_{4}\right)$, and distilled in a $3-\mathrm{ft}$ spinning band column. 1-Hexadecene ($10.6 \mathrm{~g}, 100 \%$) was recovered, bp 87.5-90 $(0.45 \mathrm{~mm}), n^{25} \mathrm{D} 1.4390$; an intermediate fraction, bp $108-127.5^{\circ}(0.6 \mathrm{~mm}), n^{25} \mathrm{D} 1.3959,1.4 \mathrm{~g}$; and 1-perfluoroheptylhexadecane (16), bp $122-124^{\circ}(0.3 \mathrm{~mm}), 18.3 \mathrm{~g}$ (61.6%), a white solid. The high-boiling residue was distilled without a column, giving 15,16-bis[(perfluoroheptyl)methyl]triacontane (17), bp $240^{\circ}(0.1 \mathrm{~mm}), 6.1 \mathrm{~g}$, and bp $260^{\circ}(0.1 \mathrm{~mm}), 2.2 \mathrm{~g}$ (total 28% of theory). The structures of 16 and of 17 were assumed to be consistent with their properties and molecular weight determination.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~F}_{15}$: C, 46.47; H, 5.6; F, 47.94. Found: C, 46.5; H, 5.4; F, 44.3.

Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{64} \mathrm{~F}_{30}$: C, 46.5; H, 5.4; F, 47.9; mol wt, 1187. Found: C, 48.7; H, 6.0; F, 45.8; mol wt (bp in acetone) 1088, 1062.

Acknowledgment. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Registry No.-1a, 57325-27-6; 1b, 57325-28-7; 2a, 57325-29-8; 2b, 57325-30-1; 3, 40735-24-8; 4, 57325-31-2; 5, 57325-32-3; 6a, 57325-33-4; 6b, 57325-34-5; 7, 13105-45-8; 8, 57325-35-6; 9a, 57325-36-7; 9b, 57325-37-8; 10, 40735-22-6; 11, 57325-38-9; 12a, 57325-39-0; 12b, 57325-40-3; 13a, 57325-41-4; 13b, 57325-42-5; 14, 755-48-6; 15, 57325-43-6; 16, 57325-44-7; 17, 57325-45-8; 5-iodo-1hexene, 22212-06-2; tri-n-butyltin hydride, 688-73-3; 1,5-hexadiene, 592-42-7; 1-iodoperfluorobutane, 423-39-2; 1-iodoperfluoropropane, 754-34-7; 1-heptyne, 628-71-7; 1-iodoperfluoroheptane, 335-58-0; 1-hexadecene, 629-73-2.

References and Notes

(1) Presented in part at the 7th International Symposium on Fluorine Chemistry, Durham, England, 1971.
(2) For the previous paper in this series, see ref 6
(3) H. O. House, "Modern Synthetic Reactions", 2nd ed, W. A. Benjamin, Menlo Park, Calif., 1972, pp 145, 219, 221, 222.
(4) N. O. Brace, U.S. Patent $3,145,222$ (1964).
(5) N. O. Brace, J. Org. Chem., 27, 3027 (1962).
(6) N. O. Brace. J. Org. Chem., 38, 3167 (1973).
(7) N. O. Brace J. Am. Chem. Soc., 86, 2428 (1964).
(8) H. G. Kuivila, Acc. Chem. Res., 1, 299 (1968).
(9) H. G. Kuivila, L. W. Menapace, and C. R. Warner, J. Am. Chem. Soc., 84, 3584 (1962).
(10) C. Walling, J. H. Cooley, A. A. Ponaras, and E. J. Racah, J. Am. Chem. Soc., 88, 5361 (1966).
(11) D. J. Carlsson and K. U. Ingold, J. Am. Chem. Soc., 90, 7047 (1968).
(12) C. L. Jenkins and J. K. Kochi, J. Org. Chem., 36, 3103 (1971).
(13) A. Hassner, R. P. Hoblitt, C. Heathcock, J. E. Kropp, and M. Lorber, J. Am. Chem. Soc., 92, 1326 (1970).
(14) N. O. Brace, J. Org. Chem., 34, 2441 (1969).
(15) N. O. Brace, J. Org. Chem., 40, 851 (1975).
(16) K. Leedham and R. N. Haszeldine, J. Chem. Soc., 1634 (1954).
(17) J. M. Hay, "Reactive Free Radicals' , Academic Press, New York, N.Y., 1974, p 124 ff.
(18) E. A. J. Heiba and R. M. Dessau, J. \& m. Chem. Soc., 89, 3772 (1967)
(19) Satisfactory elemental analyses were obtained for all new compounds reported in this paper.
(20) G. J. M. van der Kerk, J. G. Noltes, and J. G. A. Luiften, J. Appl. Chem. 7, 366 (1957); cf. Inorg. Synth., 12, 45 (1970).
(21) N. O. Brace, J. Org. Chem., 31, 2879 (1966)
(22) N. O. Brace, J. Org. Chem., 32, 2711 (1967).
(23) N. O. Brace, U.S. Patent 3,016,406 (1962).

Hydride Transfer Reduction-Rearrangements of Tricyclodecylcarbinols and Tricycloundecanols. Formation of Tricyclo[6.2.1.0 ${ }^{2,6}$]undec-2(6)-ene under Phosphoric Acid Catalysis

Naotake Takaishi, Yoshiaki Inamoto,* Kiyoshi Tsuchihashi, Koji Aigami, and Yoshiaki Fujikura
Industrial Research Lat-ratories, Kao Soap Company, Ltd., 1334 Minatoyakushubata, Wakayama 640-91, Japan

Received August 8, 1975

Abstract

Hydride transfer recuction-rearrangements of 5,6 -exo-trimethylene-2-norbornylcarbinol (1), 2- and 3 -hy-droxy-6,7-exo-trimethy enebicyclo[3.2.1]octane (2 and 3), and 2-hydroxy-5,6-endo-trimethylenebicyclo[2.2.2]octane ($4 x$ and $4 n$) in 95% sulfuric acid and excess n-pentane at room temperature gave 4 -homoisotwistane (tricyclo $\left(5.3 .1 .0^{3,8}\right]$ undecane, 5) with high selectivity ($92-97 \%$). In contrast to this, treatment of $1,2,3$, and 4 with refluxing 85% phosphore acid- n-heptane resulted in the predominant formation of a rovel olefin, tricyclo[6.2.1.0 ${ }^{2,6}$]undec-2(6)-ene (6). The structure of 6 was established by an independent synthesis of the hydrogenation product (6 h) of 6 . The olefin 6 selectively (94%) isomerized to 5 in sulfuric acid- n-pentane. The result suggests that tricyclo[$6.2 .1 .0^{2,6}$]undec-2-yl cation (6 c) would be a key intermediate in the rearrangement sequence leading to 5 .

In the course of the identifica-ion of intermediates in adamantane rearrangement of $2,3-3 x 0$-tetramethylenenorbornane and 2,3-trimethylenebicyclo[2.2.2]octane, it was necessary for us to prepare an autkentic specimen of 6,7 -exotrimethylenebicyclo[3.2.1]octant. ${ }^{1}$ A synthesis was planned involving hydride transfer reduction-rearrangement ${ }^{2-4}$ of 5,6 -exo-trimethylene-2-norborn jlcarbinol (1). This route seemed quite promising, since tye isomerization of the cation (1a) from the carbinol 1 couid give rise to the hoped-for 6,7-exo-trimethylenebicyclo[3.2.1] octane system, in view of the well-documented ring expansion of 2 -norbornylcarbinyl to bicyclo[3.2.1]octyl cation. ${ }^{5}$

Sulfuric Acid Catalyzed Rearrangements of Carbinols. 5,6-exo-Trimethylene-2-korbornylcarbinol (1) was prepared from 2-exo-chloro-56-exo-trimethylenenorbornane ${ }^{6}$ via Grignard reaction follewed by addition to formaldehyde. ${ }^{7}$ The carbinol thus obtained consisted of two epimers in 53:47 ratio, as shown on conventional VPC The mixture 1 was then stirred with $95 \neq$ sulfuric acid and n-pentane at room temperature. Samples were withdrawn at intervals from the pentane layer of the reaction mxture and examined on Golay column GC-MS, which determined the composition and established the identities of the products. Results are shown in Table I. Contrary to our expectation, no 6,7-exo-trimethylenebicyclo 3.2.1] octane was obtained, but 4 -homoisotwistane (tricyclo[5.3.1.0 ${ }^{3,8}$]undecane, 5$)^{1,3,4}$ was found to be the main produ:t (95%) (Scheme I).

Since the first step in the rearrangement of 1 should be ring expansion to a bicyclo[3.2.:]octyl cation ($2 a$ a), ${ }^{4,5,8}$ reaction of 2-hydroxy-6,7-exo-trimethylenebicyclo[3.2.1]octane (2) was also examined. The alcohol 2 was prepared from 5,6-exo-trimethylene-2-norbornene (7$)^{6}$ by the epplication of the method of Bergman ${ }^{9}$ (dichlorocarbene ring expansion, ${ }^{1}$ hydrolysis of allylic chlorine atom, and cechlorina-tion-hydrogenation). The alcohol 2 thus synthesized was a mixture (89:11) of two epimers separable on conventional VPC. Reaction of 2 with sulfusic acid and n-pentane also gave 5 predominantly (90%) ($\mathrm{T} \varepsilon$ ble I).

Table I. Sulfuric Acid Catalyzed Hydride Transfer Reduction-Rearrangement ${ }^{a}$

Run	Reactant	Reaction time, \min	Product, ${ }^{\text {b }}$ \% c			
			15	Unknown D^{d}	5	Others ${ }^{e}$
1	1	1	2.1	3.1	93.7	1.1
		10	2.0	2.9	94.9	0.2
		30	1.7	2.4	95.0	$0.9 f$
2	2	1	1.8	2.8	89.7	5.7
		10	2.2	2.8	89.2	5.8
		S0	1.8	2.7	89.0	6.58
3	3	1	1.1	2.9	94.0	2.0
		15	0.8	1.3	96.8	1.1
4	4x	1	1.9	2.7	89.7	$5.7{ }^{h}$
		10	2.1	2.6	89.8	$5.5{ }^{i}$
		30	1.9	2.7	89.8	$5.6{ }^{j}$
5	4n	1	0.8	2.5	94.4	2.3
		10	2.0	2.4	92.1	$3.5{ }^{k}$
11	2Δ	30	1.1	2.2	85.0	11.71
12	6	1	1.6	2.3	92.3	3.8
		5	1.4	2.1	91.7	4.5
		10	1.1	2.2	91.8	$5.8{ }^{m}$

a 100 mg of reactant, 1 g of 95% sulfuric acid, and 5 ml of n-pentane stirred vigorously at room temperature (~ 25 ${ }^{\circ} \mathrm{C}$). Combined yields of pentane-soluble products were $25-35 \%$, the balance being tarry materials. b Identified on Golay GC-MS by comparison with authentic specimens. ${ }^{13}$ c Calculated from Golay VPC peak areas. ${ }^{d}$ A tricycloundecane ($\mathrm{M}^{+} \mathrm{m} / e 150$) of unknow. structure detected in adamantane rearrangement of various precursors. ${ }^{1,12,13}$ ${ }_{e}$ Consisting of several, unident fied compounds with M^{+} $m / e 146 ; 148$, or 150 . f Including $0.8 \% 2$-methy ladamantane (2 -Me-Ad). $g_{0.4 \%}^{2-M e-A d . ~} h 0.3 \% 1,2$-exo-tetramethylener.orbornane $\left(\mathrm{B}_{2}\right)^{13}$ and 1.0% 1,2-endo-tetramethylenenorbo:nane (B_{3}). ${ }^{1{ }^{1}}{ }^{2} 0.6 \% \mathrm{~B}_{2}, 0.4 \% \mathrm{~B}_{3}, 0.5 \% 2 \mathrm{Me}-\mathrm{Ad}$, and 0.3% 6,7-exo-trimethylenebicyclo[3.2.1] octane (2 h). ${ }^{1}$ $j 0.5 \% \mathrm{~B}_{2}, 0.5 \% \mathrm{~B}_{3}, \mathrm{~J} .2 \% 2-\mathrm{Me}-\mathrm{Ad}$, and $0.1 \% 2 \mathrm{~h} .{ }^{k} 1.0 \%$ 1,2-exo-trimethylene-cis-bicyclo[3.3.0]octane (B_{1}). ${ }^{13}$ ${ }^{1} 0.7 \% 2-\mathrm{Me}$-Ad and two tricycloundecadienes ($\mathrm{M}^{+} \mathrm{m} / \mathrm{e}$ 146) in 6.2 and 1.4%, respectively. $m 0.4 \% 2-\mathrm{Me}-\mathrm{Ad}$.
Scheme I

3-endo-Hydroxy-6,7-exo-trimethylenebicyclo[3.2.1]octane (3), ${ }^{10}$ obtained by lithium aluminum hydride reduction of the corresponding ketone, ${ }^{1}$ behaved similarly as its 2 -hydroxy isomer (2) on treatment with sulfuric acid-npentane, giving 5 with 97% selectivity (Table I).

2-exo-Hydroxy-5,6-endo-trimethylenebicyclo[2.2.2]octane ($4 \mathbf{x}$), prepared by hydroboration of 5,6-endo-trimeth-ylenebicyclo[2.2.2]oct-2-ene, ${ }^{11}$ and 2 -endo-hydroxy- 5,6 -endo-trimethylenebicyclo[2.2.2]octane (4n), obtained from the corresponding ketone ${ }^{11}$ by lithium aluminum hydride reduction, ${ }^{11}$ also gave 5 with $92-95 \%$ selectivity (Table I, Scheme I).

Phosphoric Acid Catalyzed Rearrangements of Carbinols. It has been shown in acid-catalyzed rearrangements of tricycloundecanes that product distributions varied appreciably with the kind of the catalyst used. ${ }^{1,12,13}$ Therefore, 85% phosphoric acid in place of sulfuric acid was employed as catalyst for the hydride transfer reduction-rearrangement of the alcohols 1-4. Since the phosphoric acid was found in preliminary experiments to catalyze the reaction quite slowly at room temperature, the reactions were run at reflux ($\sim 100^{\circ} \mathrm{C}$). It was necessary at this higher reaction temperature to change the hydride source from n pentane to n-heptane.

Major products of the reaction under phosphoric acid catalysis were entirely different from those under sulfuric acid catalysis (Table II, Scheme I). Two tricycloun decenes, tricyclo[6.2.1.0 ${ }^{2,6}$]undec-2(6)-ene (6) and 6,7-exo-trimethy-lenebicyclo[3.2.1]oct-2-ene (2^{Δ}), consisted $70-90 \%$ of the product mixtures. The olefin 2^{Δ} was identified by comparison of its ir, ${ }^{1} \mathrm{H}$ NMR, and mass spectra with those of an authentic specimen prepared from 3,4-dichloro-5,6-exo-tri-methylenebicyclo[3.2.1]oct-2-ene (8) by dechlorination ${ }^{12,14}$ (Scheme II).

Hydrogenation of the olefin 6 over palladium on charcoal catalyst gave two major products in 50 and 20% yields, respectively. The more abundant component was idertical with an authentic 2,3 -trimethylenebicyclo[3.2.1]octane ($6 \mathbf{h}$) of yet undetermined configuration, which was prepared from a cyclopentanone enamine (10) and 1-formylcyclopentene (11) by two-step condensations and the subsequent Wolff-Kishner reduction (Scheme II). The less

Scheme II

abundant hydrogenation product was eluted on VPC immediately after 6 h and showed an almost identical mass spectrum as that of 6 h . This suggests that 6 h and the less abundant product are configurational isomers, and an exo structure, that would presumably be more stable, might be assigned to 6 h on the basis of the abundance as well as the shorter retention time on VPC. ${ }^{13}$

Rearrangements of Intermediate Olefins. In the phosphoric acid catalyzed reaction of $1-4$, the ratio of the olefins $2^{\boldsymbol{A}}$ to $\mathbf{6}$ was fairly small for the carbinol 1 (12:72), as

compared to those for the alcohols 2-4 (20-30:70-50i. A long reaction time (7 h) required for the disappearance of 1 may have caused a secondary conversion of once formed 2^{Δ} into 6. This was found to be actually the case, treatmert of 2^{Δ} with phosphoric acid for 7 h giving a $6: 80$ ratio of $2^{\Delta}: 6$ (Table II, Scheme I).

Olefins 2^{Δ} and 6 formed under phosphoric acid catalysis were not found among products of sulfuric acid catalyzed reactions. An explanation for this difference in the product would be that the olefins, if ever formed at all, fur:her isomerize to 5 and other minor products in the presence of sulfuric acid. Indeed, treatment of these olefins with sulfuric acid-n-pentane gave 5 selfctively ($85-94 \%$) (Table I, Scheme I), as expected.

Discussion

Since all the alcohols 1-4 gave an almost identical proportion of the three main products in sulfuric acid catalyzed hydride transfer reduction-rearrangements, it would be reasonable to presume the formation of a common cationic species from these reactarts. This species would most probably be 6,7-exo-trimethyle eebicyclo[3.2.1]oct-2-yl cation (2a), or a symmetrical bic rclooctyl cation ${ }^{5,15}$ (2b), a nonclassical equivalent of 2 a :(Scheme III). Ionization of 2 directly leads to 2 a , and any other reactant may be isomerized to $2 a$ in a single step by 1,2 -alkyl or -hydride shift. Charge delocalization in $2 a$ to form a stabilized $2 b$ might be a driving force for these isomerizations.

The next key intermediate in the rearrangement sequence seems to be a tricyclo[6.2.1.0 ${ }^{2,6}$] undecyl cation ($\mathbf{6 b}$ or 6 c , or both), which may be derived from 2 a via 6 a by 1,2-alkyl shift followed by intramolecular hydride shift. Alternatively, intramolecular hyd-ide shift in the nonclassical cation $2 b$ might lead to the formation of $\mathbf{6 b}$ and $6 c$, thus eliminating the supposition for the existence of 6 a . Inter-

Table II. Phosphoric Acid Catalyzed Rearrangement ${ }^{a}$

Run	Reactant		Product, ${ }^{\text {b }}$ \% ${ }^{\text {c }}$		
			2Δ	6	Others ${ }^{\text {d }}$
21^{e}	1	(7)	11.5	71.8	16.78
22	2	17	33.2	51.5	15.3
23	3	45	28.0	46.1	25.98
$24{ }^{\text {h }}$	4x	25	£0.6	45.5	23.9
25	4 n	10	22.9	68.8	$8.3{ }^{\text {i }}$
31	2Δ	(7)	6.3	80.2	13.5

$a=00 \mathrm{mg}$ of reactant, 3 g of 85% phosphoric acid, and 5 ml of n-heptane stirred at reflux ($\sim 100^{\circ}$). ${ }^{b}$ Identified on Golay GC-MS by comparison with authentic specimens. ${ }^{c}$ Calculated from Golay VPC peak areas. ${ }^{d}$ Consisting of several, unidentified compounds with $\mathrm{M}^{+} m / e 146,148$, or 150. ${ }^{e}$ Combined yield of the isolated heptane-soluble products was 66%. Containing 4.6% 5. 8 Including 18.2% 5. h Combined yielc, 80%. Including $4.5 \% 5$.
mediacy of $\mathbf{6 b}$ or $\mathbf{6 c}$ would be kighly probable in view of the predominant formation of the olefin 6 in phosphoric acid catalyzed reactions as well as of the isomerization of 6 to 5 in sulfuric acid with almost the same selectivity as those for the alcohols 1-4. Since phosphoric acid has been known as an effective dehydrating agent for alcohols, ${ }^{16}$ while their isomerizations are best accomplished in sulfuric acid, the same intermediate $\mathbf{6 b}$ or $\mathbf{6 c}$ may give rise to diverse products according to the change in catalyst. Similarly, deprotonation in the cation $2 \mathbf{a}$ (or 2 b) under the influence of phosphoric acid would lead oo 6,7-exo-trimethylenebicy-clo[3.2.1]oct-2-ene (2^{Δ}).

A higher selectivity of $\mathbf{4 n}$ for the formation of 6 (69\%) than those of 2,3 , and $4 x: 52,46$, and 46%, Table II) suggests that ionization of endo hydroxyl group (formation of 4 a) and migration of the exo ethano bridge (rearrange-
ment of 4a to 6a) might be concerted, probably with the participation of the ethano methylene in the ionization. This same process should be unfavorable for $4 \mathbf{x}$, in which participation of the methine to form $2 a^{15,17}$ (as indicated by a broken arrow in 4a) would rather be expected.

Isomerization of 2^{Δ} to 5 under sulfuric acid catalysis (run 11, Table I) occurred with a somewhat low selectivity (85%), compared to those ($90-97 \%$) in other alcohols $1-4$ and olefin 6. This result, however, does not seem to invalidate the supposition of the intermediacy of the cation $2 \mathbf{a}$ (2b) in the rearrangement sequence, because the olefin 2^{Δ} itself would not be involved in the main pathways of the sulfuric acid catalyzed reaction. On the other hand, most of the neutral olefin 2^{Δ} may ionize in sulfuric acid to $2 \mathbf{a}(2 b)$ which enter the rearrangement reaction leading to 5 , while the remaining, small proportion could react along different pathways, that might cause the formation of a fairly large amount (7.6%) of diolefinic products (Table I, footnote l).

Out of a number of conceivable pathways from the cation 6 b or 6 c to 5 , the one involving 1,2 -trimethylenebicyclo[2.2.2]octyl cation (15a) seems to be the most probable (Scheme III). Only two main intermediates, 15 and unknown D, were detected in the present rearrangement reactions (Table I). However, 15 could be considered to be the only true intermediate to 5 , since unknown D was shown ${ }^{1}$ to be formed from and in equilibrium with 5 under sulfuric acid catalysis. In addition, 15 was demonstrated to be one of a variety of true intermediates in the trifluoromethanesulfonic acid catalyzed tricycloundecane rearrangement, ${ }^{1,12,13}$ that would exclude the possibility of 15 being in a mechanistic dead end, as was the case for 2,4-exo-ethanobicyclo[3.3.1]nonane. ${ }^{4}$ Detection of 15 as the only intermediate, in turn, may suggest that the route from 6 c to 5 should be relatively simple, possibly being a single pathway containing no competitive reaction. Thus $15 a$ might isomerize with appropriate hydride transfers and 1,2 -alkyl shifts to 2,7-endo-trimethylenebicyclo[3.2.1]octyl cations and then to a cation of 5 , as imagined in our previous work. ${ }^{13}$

Experimental Section

All melting and boiling points are uncorrected. Instruments for the measurement of spectra and for Golay GC-MS were the same as used in the previous works, ${ }^{1,12,13}$ except that ${ }^{13} \mathrm{C}$ NMR spectra were recorded in a Fourier transform mode at 15.03 MHz on a JEOL JNM FX-60 spectrometer. Deuteriochloroform wes used as the solvent for NMR spectroscopy, and chemical shifts were reported in δ for protons and in parts per million downfield from the internal tetramethylsilane standard for ${ }^{13} \mathrm{C}$ nuclei.
5,6-exo-Trimethylene-2-norbornylcarbinol (1), ${ }^{7}$ 3,4-dichloro-6,7-exo-trimethylenebicyclo[3.2.1]oct-2-ene (8), ${ }^{1}$ 6,7-exo-trimethy-lenebicyclo[3.2.1]octan-3-one, ${ }^{1}$ and 2-exo- and endo-hydroxy5,6 -endo-trimethylenebicyclo[2.2.2]octane (4 x and 4 n) ${ }^{11}$ were prepared before.

3-Chloro-4-hydroxy-6,7-exo-trimethylenebicyclo[3.2.1]oct-2-ene (9). A mixture of $63 \mathrm{~g}(0.29 \mathrm{~mol})$ of 3,4-dichloro-6,7-exo-tri-methylenebicyclo[3.2.1]oct-2-ene (8), $87 \mathrm{~g}(0.87 \mathrm{~mol})$ of calcium carbonate, and 130 ml of water was heated under reflux overnight. The organic layer was separated, and the aqueous layer was extracted with two $300-\mathrm{ml}$ portions of ether. The combined organic layer and ether extracts were washed with water and dried over anhydrous sodium sulfate. Evaporation of the ether and fractional distillation of the residue gave $21 \mathrm{~g}(34 \%$ yield) of 9 , which solidified on standing at room temperature: bp 91-96 ${ }^{\circ} \mathrm{C}$ (0.15 mm); mp $49-52^{\circ} \mathrm{C}$; ir (neat) 3350 (br), 3040, 2940, 2870, 1630, 1040 (sh), $1020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.9-2.8$ (complex m, 12 H), 3.08 (s, 1 H , vanished on treatment with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 3.85(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH})$, 6.24 ($\mathrm{d}, J=7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH} \Rightarrow$); mass spectrum m / e (rel intensity) $200\left(8, \mathrm{M}^{+}\right), 198\left(12, \mathrm{M}^{+}\right), 163(100), 145(50), 129(35), 95(83), 91$ (39), 85 (54), 79 (46), 77 (37), 67 (67), 41 (37).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{OCl}$: C, 68.4; $\mathrm{H}, 7.2 ; \mathrm{Cl}, 16.8$. Found C, 68.8; H, 7.5; Cl, 17.3.

2-Hydroxy-6,7-exo-trimethylenebicyclo[3.2.1]octane (2). In
an autoclave were placed $11.4 \mathrm{~g}(0.054 \mathrm{~mol})$ of 3 -chloro-4-hydroxy-6,7-exo-trimethylenebicyclo[3.2.1]oct-2-ene (9), 75 ml of tetrahydrofuran, 50 ml of 13% sodium hydroxide solution, and 6.5 g of 10% palladium on charcoal catalyst. The reaction mixture was vigorously stirred for 5 h at ambient temperature under $10 \mathrm{~kg} / \mathrm{cm}^{2}$ pressure of hydrogen. The catalyst was filtered off, and the filtrate was extracted with three $100-\mathrm{ml}$ portions of ether. The combined ether extracts were washed with water and dried over anhydrous sodium sulfate. The ether solution was concentrated and fractionally dis tilled to give 6.1 g (67% yield) of 2 , which solidified on standing at room temperature: bp $22^{\circ}\left(0.4 \mathrm{~mm}\right.$); mp $58-60^{\circ} \mathrm{C}$; ir (neat) 3330 (br), 2940, 2860, 1470, 1450, 1020, $960 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.8-2.4$ (complex m, 16 H), 2.71 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 3.86 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHOH}$).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}$: C, 79.5; H, 10.9. Found: C, 79.3; H, 10.6.

The alcohol 2 thus obtained was found to consist of two isomers in 89:11 ratio, which were separable on conventional VPC. These isomers were considered to be epimers because of the similarity in their mass spectra: the major component, m / e (rel intensity) 166 (33, M^{+}), 148 (44), $120(56), 107$ (100), 81 (33), $80(55), 79(86), 67$ (72), 44 (56), 41 (61), 39 (34); the minor component, m / e (rel intensity) 166 (33), 148 (42), 122 (37), 120 (56), 107 (100), 81 (44), 80 (74), 79 (96), 67 (84), 41 (72), 39 (45).

6,7-exo-Trimethylenebicyclo[3.2.1]oct-2-ene (2^{Δ}). Freshly cut sodium ($35.4 \mathrm{~g}, 1.54 \mathrm{~g}$-atom) was added in small portions to 285 $\mathrm{ml}(168 \mathrm{~g})$ of liquid ammonia with efficient stirring in a period of 30 min , and the mixture was stirred for a further 20 min . A solution of $17.4 \mathrm{~g}(0.08 \mathrm{~mol})$ of 3,4-dichloro-6,7-exo-trimethylenebicy-clo[3.2.1]oct-2-ene (8) in 50 ml of ether was added dropwise to the above mixture in a period of 30 min , and the reaction was stirred for a further 1 h . Ether (200 ml) was added dropwise to the reaction mixture while ammonia was allowed to evaporate freely. Unreacted sodium and sodium amide were decomposed by the addition of 100 ml of methanol-ether (50:50), and then by 500 ml of water. The mixture was extracted with four $200-\mathrm{ml}$ portions of ether. The combined ether extracts were washed with four $200-\mathrm{ml}$ portions of water and dried over anhydrous calcium chloride. Evaporation of the solvent and fractional distillation of the residue gave 5.1 g (43% yield) of $2^{\Delta}(91 \%$ purity, as measured on Golay GC-MS): bp 62-63 ${ }^{\circ} \mathrm{C}$ (5 mm); ir (neat) 3020, 2940, 2920 (sh), $2850,2820,1640,1470,1450,1430,780,700,680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 0.8-2.7 (complex m, 14 H), 5.3 (m, 1 H), 5.9 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR (multiplicity) 28.30 (t), 30.01 (t), 33.34 (t), 34.72 (t), 36.26 (t), 40.24 (d), 40.81 (d), 50.15 (d), 54.82 (d), 123.61 (d), 135.63 ppm (d); mass spectrum m / e (rel intensity) $148\left(20, \mathrm{M}^{+}\right.$), 91 (15), 80 (35), 79 (100), 78 (74), 77 (15), 67 (16), 41 (20), 39 (18), 18 (17).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16}$: C, 89.1; $\mathrm{H}, 10.9$. Found: C, 88.7; $\mathrm{H}, 10.6$.
3-endo-Hydroxy-6,7-exo-trimethylenebicyclo[3.2.1]octane (3). A solution of $2.4 \mathrm{~g}(0.0146 \mathrm{~mol})$ of 6,7 -exo-trimethylenebicy-clo[3.2.1]octan-3-one in 10 ml of ether was dropped into a suspension of $0.56 \mathrm{~g}(0.0147 \mathrm{~mol})$ of lithium aluminum hydride in 60 ml of ether under reflux, and the reaction was heated at reflux for a further 1.5 h . After unreacted metal hydride had been destroyed by the addition of ethyl acetate, the mixture was treated with methanol and then with water. Precipitates were filtered off, and the filtrate was washed with water and dried over anhydrous sodium sulfate. Evaporation of the solvent left 1.6 g (66% yield) of crude 3, which was purified on preparative VPC to give a pure sample: mp $82-83^{\circ}$; ir (neat) 3300 (br), 2940, 2860, 1470, 1370, 1270, 1050, 970 , $800 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.8-2.6$ (complex $\mathrm{m}, 16 \mathrm{H}$), $2.28(\mathrm{~s}, 1 \mathrm{H}$, vanished on treatment with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 3.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})$; mass spectrum m / e (rel intensity) 148 (61), 119 (33), 107 (100), 106 (61), 94 (26), 81 (30), 80 (53), 79 (58), 78 (23), 67 (47).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}$: C, 79.5; H, 10.9. Found: C, 79.6; H, 11.2 .

2-(2-Formylcyclopentyl)cyclopentanone (12). A solution of $9.0 \mathrm{~g}(0.094 \mathrm{~mol})$ of 1 -formylcyclopentene (11) ${ }^{18}$ in 25 ml of dry ether was dropped in a period of 40 min to a stirred solution of 21.3 $\mathrm{g}(0.14 \mathrm{~mol})$ of cyclopentanone morpholine enamine (10$)^{19}$ in 125 ml of dry ether kept at $-7^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for a further 2 h , and then set aside at ambient temperature overnight. The reaction mixture was mixed with 5 ml of water and stirred for 2 h . The mixture was washed with two $50-\mathrm{ml}$ portions of 1% hydrochloric acid and then with water, and dried over anhydrous sodium sulfate. Ether was evaporated off from the mixture, and the residue was fractionally distilled to give 3.1 g (18% yield) of 2-(2-formylcyclopentyl)cyclopentanone (12): bp $107-111^{\circ}(0.6 \mathrm{~mm})$; ir (neat) $2950,2860,2700,1730,1710 \mathrm{~cm}^{-1}$.

7-Hydroxytricyclo[6.2.1.0 ${ }^{\mathbf{2}, 6}$]undecan-11-one (13). To 50 ml of 30% potassium hydroxide solution kept at 0° was dropped with
efficient stirring a solution of $3.0 \mathrm{~g}(0.017 \mathrm{~mol})$ of 2-(2-formylcyclopentyl)cyclopen anone (12) in 5 m of ether in a peric d of 30 min , and the mixture was stirred overnight at ambient temperature. The organic layer was separated, and the aqueous layer was extracted with three $20-\mathrm{ml}$ portions of ether. The combined organic layer and ether extracts were wash ϵ d with water and dried over anhydrous sodium sulfate. Ether wis evaporated, and the residue was analyzed or conventional VPC to consist of $74 \% 13$ and 26% unreacted 12. Pure 13 was isolated by fractionation or preparative VPC: ir (neat) $3430,2940,2860,: 740 \mathrm{~cm}^{-1}$; mass spectrum m / e (rel intensity) $180\left(20, \mathrm{M}^{+}\right.$), 162 (14), 97 (30), 84 (100), 83 (30), 67 (35), 55 (40), 41 :30), 39 (25).

Tricyclo[6.2.1.0 ${ }^{2,6}$]undeca-7,11 dione (14). To a solution of 1.6 g (0.0089 mol) of 7-hydroxytricycl. $\left[6.2 .1 .0^{2,6}\right]$ undecan-11-one (13) in 10 ml of acetone was dropped at ambient temperature a mixture of 1.0 g (0.01 mol) of chromium trioxide, 0.9 ml of 95% sulfuric acid, and 7 ml of water in a peric of 1 h , and the mixture was stirred for another 30 min . The seaction mixture was extracted with three $10-\mathrm{ml}$ portions of ether, and the combined ether extracts were washed with water and dried over anhydrous sodium sulfate. Evaporation of ether gave 3.8 g (51% yield) of crude 14: ir (neat) $2950,2880,1750,1740,1720,1680 \mathrm{~cm}^{-1}$.
Tricyclo[6.2.1.0 $0^{2,6}$]undecane (fi). A mixture of $0.44 \mathrm{~g}(0.0025$ mol) of crude tricyclo[6.2.1.0 ${ }^{2,6}$]undeca-7,11-dione (14), 3 ml of 80% hydrazine hydrate, 2.2 g of potassium hydroxide, and 25 ml of diethylene glycol was heated under reflux for 3 h . Water and excess hydrazine hydrate were distiled off, and the residue was refluxed for a further 4 h . After addi ion of 100 ml of cold water, the mixture was extracted with five $20-\mathrm{ml}$ portions of ether. The combined ether extracts were washed with a saturated sodium chloride solution and dried over anhydrous calcium chloride. Evaporation of the ether gave 0.17 g (45% yield) of crude 6 h . Fractionation on preparative VPC gave a pure sample: ir (neat) 2950, 2870, 1470, $1450,1350,1320,1310,1250,890,870 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.8-2.4$ (complex m); ${ }^{13} \mathrm{C}$ NMR (multiplici;y) 24.08 (t), 27.45 't), 27.86 (t), 31.39 (t), 32.37 (t$), 33.30$ (t$), 33.74$ (d), 34.84 (d), 37.24 (t), 37.93 (d), $47.55 \mathrm{ppm}(\mathrm{d})$; mass spectrum $\approx n / e$ (rel intensity) $150\left(66, \mathrm{M}^{+}\right)$, 94 (33), 93 (51), 81 (52), 80 (98), 7؟ (78), 67 (100), 66 (60), 41 (73), 39 (51).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18}$: C, 87.9; H, 12.1. Found: C, 87.6; H, 11.8 .
Tricycio[6.2.1. $0^{2,6}$]undec-2(6)-ene (6). A sample of tricyclo[6.2.1.0 ${ }^{2,6}$]undec-2(6)-ene (6) wes isolated from combined mixtures of phosphoric acid catalyzed rearrangement product on preparative VPC (retention time 15.0 min ; column $0.37 \mathrm{f} \mathrm{in} . \times 10 \mathrm{ft}$, packed with 30% Carbowax 20M an Chromosorb W AW, at 144°; He pressure $1.5 \mathrm{~kg} / \mathrm{cm}^{2}$; injection port temperature $20^{\circ} \mathrm{C}$; detector temperature $240^{\circ} \mathrm{C}$). This sample of 6 consisted of $88.6 \% 6$ and three tricycloundecenes of unknown structure in the amount of $9.1,1.5$, and 1.2%, respectively: ir (meat) 3050 (sh), 294J, 2860, 1660 (w), 1450, 1290, 1050, $940 \mathrm{~cm}^{-1} ;{ }^{1}$ I NMR $\delta 0.8-3.0$ (complex m); ${ }^{13} \mathrm{C}$ NMR (mul-iplicity, rel intensity) 22.54 (t, 1), 30.74 (t, 1), 33.75 (d, 1), 34.60 (t, 2), 35.37 (t, 1, 36.30 (d, 1), 36.7 I (t, 1), 37.12 $(\mathrm{t}, 1), 130.11(\mathrm{~s}, 1), 142.29 \mathrm{ppm}(\mathrm{s}, 1)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16}$: C, 89.1; H, 10.9. Found: C, 88.9; H, 11.0.
The mass spectrum of 6 was taken in the Golay GC-MS instrument: m/e (rel intensity) 148 ($35 \mathrm{M}^{+}$). 120 (23), 119 (100), 105 (14), 92 (18), 91 (72), 80 (15), 79 (3ヶ), 77 (16), 66 (14), 53 (8), 51 (8), 41 (20), 39 (19).

Hydrogenation of Tricyclo[6 2.1.0 $\mathbf{0}^{2,6}$]undec-2(6'-ene (6). A sample of $6(0.43 \mathrm{~g}, 0.0029 \mathrm{~mol})$ solated in the preceding paragraph was mixed with 0.11 g of a 5 S palladium on charcoal catalyst and 15 ml of ethyl acetate, and hydrogenated at 120° under 50 $\mathrm{kg} / \mathrm{cm}^{2}$ of hydrogen for 18 h . The catalyst was filterec off, and the filtrate was concentrated to give $042 \mathrm{~g}(96 \%$ yield) of the residue. This residue was analyzed on Golay GC-MS to contain four major components in the amount of $1.9,-1.0,51.6$, and 21.3%, as listed in the order of increasing retention time. The three, early eluted components were identified as unreacted 6, 1,2-trimethylenebicyclo[2.2.2]octane (15), and tricyclo[3.2.1.0 $0^{2,6}$]undecane (6 h), respectively, by comparison of their retention times and nass spectra with those of authentic specimens.

The last eluted component was of unknown structure, and had a mass spectrum $m / e 150\left(84, \mathrm{M}^{+}\right) 122(69), 121$ (100), 93 (60), 80 (82), 79 (88), 67 (99), 66 (54), 41 (77), 39 (49). This mass spectrum was almost identical with that of 6 h , except that two peaks with $m / e 122$ and $121 w \in r e$ of low intensity in the spectrum of 6 h .

Hydride Transfer Reduction-Rearrangement under Sulfuric and Phosphoric Acid Catalysis. A reactant (0.1 g) dissolved in 5 ml of n-pentane was mixed with 1 g of 95% sulfuric acid, and the mixture was stirred vigorously at room temperature. Samples were withdrawn from the pentane layer of the reaction mixture whiee stirring was incerrupted, and examined on Golay GC-MS. After the reaction was completed, the pentane layer was separated, washed with water, and dried over anhydrous sodium sulfate. Pentane was evaporated off from the solution, and the residue was weighed to calculate yields. The ratio of reactants to pentane and sulfuric acid was the same for preparative as for analytical runs.

In phosphoric acid catalyzed rearrangement reactions, 5 ml of n-heptane and 3 g of 85% phosph sric acid were used for 0.1 g of a reactant. Reactions were run at reflux. Analysis and treatment of the reaction mixture were the same as for sulfuric acid catalyzed reactions.

Acknowledgment. The auzhors thank Mr. K. Yashima for assistance in Golay GC-MS measurements.

Registry No.-1, 57526-50-8; 2 exo- OH, 57496-69-2; 2 endoOH. 57526-51-9; 2^{Δ}, 57526-52-0; 3, 57526-98-4; 4n, 56846-34-5; 4x, 56804-83-2; 6, 57496-70-5; 6h, 51027-86-2; 8, 53432-47-6; 9, 57496-$71-6$; 10, 936-52-7; 11, 6140-65-4; 12, 57496-72-7; 13, 57496-73-8; 14, 57496-74-9; 6.7-exo-trimethylenebicyclo[3.2.1] octan-3-one, 53432-46-5; sulfuric acid, 7664-93-Э; phosphoric acid, 7664-38-2.

References and Notes

(1) N. Takaishi, Y. Inamoto, and K. Aigami, J. Org. Chem., 40, 276 (1975).
(2) W. D. Graham and P. v. R. Schley3r, Tetrahedron Lett., 1179 (1972); T M. Gund and P. v. R. Schleyer, ibic., 1959 (1973): J. S. Wishnok. P. v. R. Schleyer, E. Funke, G. D. Pandit, R. O. Williams, and A. Nickon, J. Org. Chem., 38, 539 (1973); J. Janjatovic, D. Skare, and Z. Majerski, ibid., 39, 651 (1974).
(3) K. M. Majerski and Z. Majerski, Tetrahedron Lett., 4915 (1973).
(4) N. Takaishi, Y. Inamoto, and K. Aigami, J. Chem. Soc., Perkin Trans. 1. 789 (1975).
(5) (a) J. A. Berson and R. Raynolds-Warnhoff, J. Am. Chem. Soc., 84, 682 (1962); (b) J. A. Berson and D. Willner, ibid., 675 (1962); R. R. Sauers and R. T. Tucker. J. Org. Chem., 28, 876 (1963); M. A. McKinney and P. P. Patel, ibid., 38, 4059 (1973); C. D. Gutsche and D. Redmore, "Carbocyclic Ring Expansion Reaction', Aademic Press. Now York, N.Y., 1968, p 3.
(6) G. T. Youngblood and P. Wilder, Jr., J. Org. Chem., 21, 1436 (1956).
(7) N. Takaishi, Y. Inamoto, K. Tsuchihashi, and K. Aigami, Synth. Commun., 5, 369 (1975).
(8) indeed solvolysis of the tosylate of 1 in 80% aqueous diglyme at reflux for 102 h gave $76.2 \% 2$ and 19.2% 1: N. Takaishi, K. Tsuchihashi, and Y. Inamoto, unpublished work.
(9) E. Bergman, J. Org Chem., 28, 2210 (1963).
(10) Preferential exo attack by the reagent is the only basis for the assignment of the enco configuration to the hydroxyl group in 3. Cf. H. C. Brown and W. J. Hammar, J. Am. Chem. Soc., 89, 1524 (1967); G. R. Wenzinger and J. A. Ors, J. Org. Shem., 39, 2060 (1974): P. E. SchuelIer and Y. E. Rnodes, ibid., 39, 2053 (1974).
(11) N. Takaishi, Y. Fujikura, and Y. Inamoto. J. Org. Chem., in press.
(12) N. Takaishi, Y. Inamoto, K. Aigarni, and E. Osawa, J. Org. Chem., 40, 1483 (1975).
(13) N. Takaishi, Y. Inamoto, K. Tsuchihashi, K. Yashima, and K. Aigami, J. Org. Chem., 40, 2929 (1975).
(14) R. C. De Selms anc C. M. Comb, J. Org. Chem., 28, 2206 (1963)
(15) H. L. Goering and M. F. Sloan, J. Am. Chem. Soc., 83, 1397, 1992 (1961): R. W. Thes and L. E. Schisk, ibid., 96, 456 (1974).
(16) H. A. Bruson and T. W. Riener, J. Am. Chem. Soc., 70, 2809 (1948): P v. R. Schleyer and M. M. Donaldson, Ibid., 78, 5702 (1956).
(17) H. M. Walborski. M. E. Baum, and A. A. Youssef, J. Am. Chem. Soc., 83, 988 (1961).
(18) J. English, Jr., and G. W. Barber, J. Am. Chem. Soc., 71, 3310 (1949).
(19) G. Stork. A. A. Brizzolara, H. Landesman, J. Szmuszkovicz, and R. Terrell, J. Am. Chem. Soc., 85, 20 - (1963); L. W. Haynes in "Enamines: Synthesis, Structure, and Reactions", A. G. Cook, Ed., Marcel Dekker, Now York, N.Y., 1969, p 55.

Transmission of Substituent Effects. Correlation of Methyl to Hydrogen Rate Ratios in Diverse Heterocyclic Systems with CNDO/2 Parameters ${ }^{1 a}$

Benjamin Bartman, ${ }^{1 \mathrm{~b}}$ Edward C. Gordon, Maria Gonzalez-Kutas, Donald S. Noyce,* and Bonnie B. Sandel ${ }^{1 \mathrm{c}}$

Department of Chemistry, University of California, Berkeley, California 94720
Received August 20, 1975

Abstract

A modification of the Dewar-Grisdale equation, parameterized with Brown's electrophilic substituent constants, σ^{+}, and CNDO/2 regional charge distributions, is successful in correlating reactivity ratios for the solvolysis of a wide variety of heteroarylethanol derivatives and nuclear substituted analogues. The equation $\log k_{\mathrm{Me}} / k_{\mathrm{H}}$ $=1.41 \rho \Delta q_{i j}$, predicted by this development, is closely obeyed by the observed reactivity ratios for 34 pairs of compounds.

Recent reports from this laboratory have explored the possibilities for correlating the reactivity of a variety of heterocyclic systems with simple benzene derivatives. We have successfully applied a modification of the DewarGrisdale equation ${ }^{2}$ to benzofuran, ${ }^{3,4}$ furan, ${ }^{5}$ thiophene, ${ }^{6}$ and benzothiophene ${ }^{7}$ systems. We examined substituent effects on the rates of solvolysis of heteroarylmethyl derivatives; generally excellent correlations resulted.

It is the purpose of the present report to extend these observations and, in particular, to explore a further consequence of the earlier derivations: namely, that the methyl group, as a substituent, will exert its influence almost entirely through its ability to stabilize an electron-deficient species (carbonium ion).

The modified Dewar-Grisdale equation developed by Noyce and Nichols is given in eq $1 .{ }^{3,6}$

$$
\begin{equation*}
\left(\sigma_{i j}^{+}\right)=\frac{F_{\mathrm{x}}^{+}}{r_{i j}}+M_{\mathrm{x}}^{+} \Delta q_{i j} \tag{1}
\end{equation*}
$$

Here, $\left(\sigma_{i j}^{+}\right)_{\mathbf{x}}$ is the substituent constant for any substituent $\mathrm{X} ; r_{i j}$ is the distance (in benzene bond lengths) between the reaction center located at ring position j and the substituent at position $i ; \Delta q_{i j}$ is the regional charge developed at the point of substitution as determined from CNDO/2 calculations (see below). F_{x}^{+}and M_{x}^{+}, the field and resonance capabilities of substituent X , are determined by substituting into eq 1 the σ_{p}^{+}and σ_{m}^{+}values from the benzene series ${ }^{8}$ and their associated $r_{i j}$ and $\Delta q_{i j}$ values generated by CNDO/2 calculations and solving the resulting pair of simultaneous equations. In this manner unique values of F_{x}^{+} and M_{x}^{+}for each substituent are obtained. This procedure removes the necessity for considering any set of special σ values for substituents on heterocyclic rings. The possibilities for extension to other aromatic systems are obvious.

Regional charges are determined by molecular orbital calculations for the transformation $\mathrm{ArCH}_{3} \rightarrow \mathrm{ArCH}_{2}^{+}$. The methyl and methylene groups located at position j represent a model for the starting state and the transition state along the reaction coordinate of the limiting solvolysis reaction. The regional charges are determined from the differences between the gross atomic populations at position i in ArCH_{3} and ArCH_{2}^{+}. Since Ar can be any aromatic or heteroaromatic nucleus, regional charges at many positions for a large number of aromatic systems may be determined.
The effective response to the introduction of a substituent at any position may then be predicted. For the methyl group as a substituent, F^{+}is determined to be -0.028 and M^{+}is determined to be -1.41 . Insertion of these values into eq 1 yields eq 2 .

$$
\begin{equation*}
\left(\sigma_{i j}^{+}\right)_{\mathrm{CH}_{3}}=\frac{-0.028}{r_{i j}}-1.41 \Delta q_{i j} \tag{2}
\end{equation*}
$$

Inasmuch as the field component (F^{+}) for the methyl group is quite small, ${ }^{9}$ and $r_{i j}$ is always greater than 1.0 , the resonance component (M^{+}) dominates and eq 2 can be approximated by eq 3 .

$$
\begin{equation*}
\left(\sigma_{i j}^{+}\right)_{\mathrm{CH}_{3}}=-1.41 \Delta q_{i j} \tag{3}
\end{equation*}
$$

Thus the modified Hammett equation, eq 4, can be written for the correlation of the methyl substituent effect in a variety of systems.

$$
\begin{equation*}
\log \frac{k\left(\mathrm{CH}_{3}\right)}{k(\mathrm{H})}=\rho\left(\sigma_{i j}^{+}\right)_{\mathrm{CH}_{3}} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\log \frac{k\left(\mathrm{CH}_{3}\right)}{k(\mathrm{H})} \cong-1.41 \rho \Delta q_{i j} \tag{5}
\end{equation*}
$$

Inspection of eq 5 reveals that the solvolytic rate enhancement observed upon methyl substitution in the aromatic nucleus should be directly predictable from the regional charge developed at the point of substitution. Data with which to test this hypothesis are available from a wide range of aromatic systems (see Table I), including data from previous studies from this laboratory. The plots shown in Figures 1 and 2 show the quality of the linear correlation of methyl rate enhancement and regional charge predicted by eq 5 .

We have combined data from several sources to generate the results presented in Table I. It is well known that ρ is temperature sensitive; for solvolysis reactions it decreases in magnitude with increasing temperature. Hence, the data are presented in two groups, at 25° or at 75°.

On the other hand, the value of ρ for the solvolysis of 1 phenylethanol derivatives shows very little sensitivity to the leaving group, be it p-nitrobenzoate ion, chloride, or tosylate. The value of ρ is also relatively insensitive to modest changes in solvent for these systems. Thus we have combined data for p-nitrobenzoate solvolysis for the most reactive aromatic substrates, with data for chlorides, and even for tosylates, involving the least reactive aromatic substrates.

A number of the individual cases reported in Table I merit additional comment. The solvolysis of the 5 -methyl analogue of 1-(3-thienyl)ethyl p-nitrobenzoate (entry 20) shows a relatively large rate acceleration for introduction of a methyl group at a nonconjugating position (compare benzene, entries 3,8 , and 21). This magnitude of acceleration is predicted by the value of Δq. Such an effect is also observed with the furan system (entries 18 and 19). Most striking is the result for imidazole (entry 16). Again the magnitude of the acceleration is in line with the value of Δq.

Table I. Me:hyl Rate Enhancements and Regional Charges for 1-Aryl-1-ethyl Systems ${ }^{a}$

Entry	Compd	Learing group ${ }^{a}$	$i^{\text {b }}$	j^{c}	$k\left(\mathrm{CH}_{3}\right) / k(\mathrm{H})$	$\Delta q_{i j}$	Ref
$25^{\circ} \mathrm{C}$							
1	Furan	OPNB	5	2	212	0.2763	10
2	Thiophene	OPNB	5	2	81	0.2051	6
3	Benzene	Cl	3	1	2.20	0.0368	e
4	Benzene	Cl	4	1	58.0	0.2115	e
5	Thiazole	OPNB	2	5	45.5	0.2030	11
6	Thiazole	OPNB	5	2	89.5	0.2268	11
7	Toluene	Cl	5	2	45.5	0.2028	e
8	Toluene	Cl	4	2	2.00	0.0337	e
9	Benzothiazole	$\mathrm{O}_{-\mathrm{s}}$	4	2	4.47	0.1036	e
10	Benzothiazole	$\mathrm{O}-\mathrm{s}$	5	2	2.80	0.0371	e
11	Benzothiazole	OTs	6	2	10.09	0.1238	e
12	Benzimidazole	Cl	5	2	8.15	0.0600	e
13	Benzimidazole	Cl	5, 6	2	82.8	$0.1880{ }^{d}$	e
14	Pyrazole	Cl	3	5	3.74	0.0479	e
15	Imidazole	OPNB	5	2	59.7	0.2396	12
16	Imidazole	OPNB	4	2	20.3	0.1111	12
17	Imidazole	OPNB	4, 5	2	1013	0.3507^{d}	12
$75^{\circ} \mathrm{C}$							
18	Furan	OPNB	5	3	8.85	0.1076	5
19	2-Methylfura 1	OPNB	5	3	7.53	0.1166	e
20	Thiophene	OPNB	5	3	3.92	0.0735	e
21	Benzene	Cl	3	1	2.02	0.0368	e
22	Benzene	OPNB	4	1	58.00	0.2115	e
23	Benzo[b]thic•phene	OPNB	5	2	2.57	0.0398	7
24	Benzo[b]thicophene	OPNB	6	2	9.00	0.1246	7
25	Benzo[b]thiophene	OPNB	7	2	1.59	0.0323	7
26	Benzo[b]furàn	OPNB	5	2	2.78	0.0473	4
27	Benzo[b]furan	OPNB	6	2	11.70	0.1377	4

a Solvent, 80% ethanol $; \mathrm{Cl}=$ chloride, $\mathrm{OPNB}=p$-nitrobenzoate, $\mathrm{OTs}=$ tosylate. $b i=$ position of methyl substitution. $c j=$ position of 1 -ethyl side chain. ${ }^{c}$ Assuming additivity. e Present study. $f k\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) / k$ (H$)$.

The slope of the line in Figure 1, for secondary systems at $25^{\circ} \mathrm{C}$, is 7.9 (correlation coe ficient $r=0.973$). This compares favorably with the slope of 8.6 predicted by eq 5 (-1.41×-6.1). At $75^{\circ} \mathrm{C}$ the sbserved slope (Figure 2) of $8.0(r=0.992)$ compares equally favorably with a predicted value of 7.8 . The results seem eminently satisfactory, considering the very wide diversit J of compound types brought together for this correlation.

There are also appreciable cata available on tertiary systems, and this information is collected in Table II. The naphthalene case (33) is inst-uctive; treating the data of Baliah and Nadar ${ }^{14}$ in this feshion is particularly satisfy-

Figure 1. $\log \left[k\left(\mathrm{CH}_{3}\right) / k(\mathrm{H})\right]$ vs. $\Delta q_{i j}$ for solvolysis of 1-arylethanol derivatives in 80% ethanol at $25^{\prime}(r=0.973)$.

Table II. Methyl Rate Erhancements and Regional Charges for 2-Aryl-2-propyl Systems at $25^{\circ} \mathrm{C}$

Entry	Compd	Leaving group ${ }^{a}$	$i^{b} j c$	$\begin{gathered} k\left(\mathrm{CH}_{3}\right) / \\ k(\mathrm{H}) \end{gathered}$	$\Delta q_{i j}$	Ref
28	Pyridine ${ }^{d}$	Cl	24	1.85	0.0286	13
29	Pyridine ${ }^{d}$	Cl	25	19.00	0.2212	13
$31)$	Pyridine ${ }^{\text {d }}$	Cl	35	1.96	0.0441	13
31	Benzene ${ }^{e}$	CI	31	2.00	0.0368	8
32	Benzene ${ }^{e}$	Cl	41	26.00	0.2115	8
33	Naphthalene f	Cl	62	6.10	0.1232	14
34	Furan ${ }^{\text {d }}$	OPNB	53	6.00	0.1076	5

${ }^{a} \mathrm{Cl}=$ chloride; $\mathrm{OPNB}=p$-nitrobenzoate. $b_{i}=$ position of methyl substitution. $c_{j}=$ posizion of 2 -propyl side chain. ${ }^{d}$ Solvent, 80% ethanol. ${ }^{e}$ Solvent, 90% acetone. f Solvent, 95% acetone, $30^{\circ} \mathrm{C}$.

Figure 2. $\log \left[k\left(\mathrm{CH}_{3}\right) / k(\mathrm{H})\right]$ vs. $\Delta q_{i j}$ for solvolysis of 1-arylethanol derivatives in 80% ethanol at $73^{\circ}(r=0.992)$.

Figure 3. $\log \left[k\left(\mathrm{CH}_{3}\right) / k(\mathrm{H})\right]$ vs. $\Delta q_{i j}$ for solvolysis of tertiary systems at $25^{\circ}(r=0.990)$.
ing, as it immediately explains their "unexpected" cifficulty with high reactivity for 6-methoxy-2-naphthyl-2chloropropane. The results for the tertiary systems are presented graphically in Figure 3. The observed slope, 5.8 ($r=$ 0.990) is to be compared with the predicted slope of 6.3 [ρ $=-4.5$ (from Brown's studies) $\times-1.41$].

Since ρ incorporates influences such as variatior of solvent, temperature, and reaction center (primary, secondary, or tertiary) on the magnitude of the response to the influence of the substituent, eq 5 can be reorganized to give eq 6 .

$$
\begin{equation*}
\frac{1}{\rho} \log \frac{k\left(\mathrm{CH}_{3}\right)}{k(\mathrm{H})}=-1.41 \Delta q_{i j} \tag{6}
\end{equation*}
$$

Equation 6 permits all of the data presented above to be correlated by a single function. When the data are reated together in this fashion, the best slope of the line is -1.33 , which is in excellent agreement with the theoretical slope of -1.41 .

The correlations presented in Figures 1-3 support the assumption introduced in eq 3 , that the resonance cepability of the methyl group is the predominant component of the methyl substituent effect. Furthermore, the use of regional charges to obtain a quantitative picture of charge delocalization in the solvolysis transition state is supported by these correlations.

The relationship between methyl rate enhancement and regional charge seen in eq 6 is not solely applicable to the limiting solvolysis of substituted heteroarylcarbinyl systems. With suitable transition state models, which are necessary for the calculation of regional charges, methyl rate enhancements observed for other reactions, e.g., elecrophilic bromination, should also be successfully predicted by eq 5. In a reverse manner, the methyl group might be used as a sensitive probe for charge delocalization in the transition states of many organic reactions.

Experimental Section

Melting points were determined on a Fisher-Johns melting point apparatus and are uncorrected as are boiling points. Proton magnetic resonance spectra were obtained on a Varian T-60 instrument with tetramethylsilane as the internal standard. Ciemical shifts are given in parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si}$ (δ values), and the following legend is used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; and b, broad. All elemental analyses were performed by the Analytical Services Laboratory, College of Chemistry, University of Califorria, Berkeley.

Kinetic rate constants were evaluated from the raw experimental titers by the LSKIN 1 program. ${ }^{15}$

1-(2-Methylphenyl)ethyl chloride ${ }^{16}$ (1) was prepared, using thionyl chloride with the alcohol, which was from o-methylbenzaldehyde and methylmagnesium bromide. 1-(2,4-Dimethylphen-
yl)ethyl chloride ${ }^{16}$ (2) was prepared from the corresponding alcohol ${ }^{16}$ using thionyl chloride. 1-(2-,5-Dimethylphenyl)ethyl chloride (3) was prepared from 1-(2,5-dimethylphenyl)ethanol, ${ }^{17}$ using thionyl chloride in dichloromethane.

1-(2-Methyl-3-furyl)ethyl p-Nitrobenzoate (4). 2-Methyl-3acetylfuran ${ }^{18}$ was reduced with sodium borohydride in anhydrous methanol, and the 1-(2-methyl-3-furyl)ethanol was obtained in 91% yield: bp $38-40^{\circ}(0.3 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33$ [d, $3, J=6$ $\mathrm{Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 1.87 (s, 3, 2- CH_{3}), 3.63 (broad singlet, 1, -OH), $4.67\left[\mathrm{q}, 1, J=6 \mathrm{~Hz},-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right], 6.23(\mathrm{~d}, 1, J=2 \mathrm{~Hz}, 4-\mathrm{H}), 7.13$ (d, $1, J=2 \mathrm{~Hz}, 5-\mathrm{H}$).
The alcohol was converted directly to the p-nitrobenzoate, using p-nitrobenzoyl chloride in pyridine. 1-(2-Methyl-3-furyl)ethyl p nitrobenzoate was purified by crystallization from mixed hexanes: $\mathrm{mp} 84-85^{\circ}$; yield 61%; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.62[\mathrm{~d}, 3, J=6 \mathrm{~Hz}$, $\left.{ }^{-} \mathrm{CH}(\mathrm{OPNB}) \mathrm{CH}_{3}\right], 2.35\left(\mathrm{~s}, 3,2-\mathrm{CH}_{3}\right), 6.05[\mathrm{q}, 1, J=6 \mathrm{~Hz}$, - $\mathrm{CH}(\mathrm{OPNB}) \mathrm{CH}_{3}$], 6.32 (d, $\left.1, J=2 \mathrm{~Hz}, 4-\mathrm{H}\right), 7.15$ (d, $1, J=2 \mathrm{~Hz}$, 5-H), 8.12 (s, 4, ArH).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5}$: C, $61.09 ; \mathrm{H}, 4.73$; N, 5.09. Found: C, 61.11; H, 4.93; N, 4.98.

1-(2,5-Dimethyl-3-furyl)ethyl p-Nitrobenzoate (5). Reduction of 2,5-dimethyl-3-acetylfuran ${ }^{19}$ with sodium borohydride in methanol afforded 1-(2,5-dimethyl-3-furyl)ethanol, NMR $\left(\mathrm{CCl}_{4}\right) \delta$ $1.22\left(\mathrm{~d}, 3, J=6 \mathrm{~Hz},>\mathrm{CHCH}_{3}\right), 2.13\left(\mathrm{~s}, 6,2-\mathrm{CH}_{3}\right.$ and $\left.5-\mathrm{CH}_{3}\right), 3.52$ (broad, $1, \mathrm{OH}), 4.45\left(\mathrm{q}, 1, J=6 \mathrm{~Hz}>\mathrm{CHCH}_{3}\right), 5.70(\mathrm{~s}, 1,4-\mathrm{H})$, which was converted directly to the p-nitrobenzoate using p-nitrobenzoyl chloride and pyridine. The crude ester 5 was purified by recrystallization from mixed hexanes: $\mathrm{mp} 79-80^{\circ}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta$ $1.58\left[\mathrm{~d}, 3, J=6 \mathrm{~Hz},-\mathrm{CH}(\mathrm{OPNB}) \mathrm{CH}_{3}\right.$], 2.20 and 2.28 (two singlets, $6,2-\mathrm{CH}_{3}$ and $5-\mathrm{CH}_{3}$), $5.88(\mathrm{~s}, 1,4-\mathrm{H}), 5.93[\mathrm{q}, 1, J=6 \mathrm{~Hz},-$ $\mathbf{C H}(\mathrm{OPNB}) \mathrm{CH}_{3}$], 8.08 (s, $4, \mathrm{C}_{6} \mathrm{H}_{4}$).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{5}$: $\mathrm{C}, 62.28 ; \mathrm{H}, 5.23 ; \mathrm{N}, 4.84$. Found: C , 62.52; H, 5.20; N, 4.72.

1-(3-Thienyl)ethyl p-Nitrobenzoate (6) was prepared as previously reported. ${ }^{20}$

1-(5-Methyl-3-thienyl)ethanol. 4-Bromo-2-methylthiophene, prepared by the method of Gol'dfarb, Vol'kenshtein, and Lopa$\operatorname{tin}^{21}(22 \mathrm{~g})$, was dissolved in 100 ml of dry ether and added dropwise to a solution of n-butyllithium ether (90 ml of 15%) under nitrogen at -78°. The reaction mixture was stirred for 1 h . Acetaldehyde ($17.0 \mathrm{ml}, 13.2 \mathrm{~g}, 0.30 \mathrm{~mol}$) in 50 ml of ether was added. The mixture was stirred for another 1 h and then removed from the dry ice bath and quenched with 100 ml of water. The ether layer was separated and the aqueous phase was washed with $3 \times 50 \mathrm{ml}$ of ether. The combined ether layers were dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and filtered, and the ether was removed on the rotary evaporator. The residue was distilled to yield 1-(5-methyl-3-thienyl)ethanol: 6.0 g (34\%); bp 65-66 ${ }^{\circ}(0.03 \mathrm{~mm}) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.32[\mathrm{~d}, 3, J=6 \mathrm{~Hz}$, $-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$], 2.38 (s, 3, 5- CH_{3}), 6.52 (broad doublet, 1, 4-H, coupled to $5-\mathrm{CH}_{3}$ with $\left.J<1 \mathrm{~Hz}\right), 6.63(\mathrm{~d}, 1, J<1 \mathrm{~Hz}, 2-\mathrm{H})$.

Anal. Calcd for $\mathrm{H}_{7} \mathrm{H}_{10} \mathrm{OS}$: C, 59.11 ; $\mathrm{H}, 7.09 ; \mathrm{S}, 22.55$. Found: C, 58.96; H, 7.09; S, 22.36.

1-(5-Methyl-3-thienyl)ethyl p-Nitrobenzoate (7). The alcohol was treated with freshly recrystallized p-nitrobenzoyl chloride in dichloroethane solution to which triethylamine had been added. The crude product was crystallized from mixed hexanes to yield ester 7: mp 45.5-47 ; NMR (CCl_{4}) $\delta 1.65[\mathrm{~d}, 3, J=6 \mathrm{~Hz}$, $\left.\mathrm{CH}(\mathrm{OPNB}) \mathrm{CH}_{3}\right], 2.45$ (bs, $\left.5-\mathrm{CH}_{3}\right), 6.03[\mathrm{q}, 1, J=6 \mathrm{~Hz}$, $\left.\mathrm{CH}(\mathrm{OPNB}) \mathrm{CH}_{3}\right], 6.62-6.75\left(\mathrm{~m}, 1,4-\mathrm{H}\right.$, coupled to $5-\mathrm{CH}_{3}$ and $2-\mathrm{H}$), 6.92 (d, $1, J<1 \mathrm{~Hz}, 2-\mathrm{H}), 8.07\left(\mathrm{~s}, 4, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$: C, 57.72; H, 4.50; $\mathrm{N}, 4.81 ; \mathrm{S}, 11.01$. Found: C, 57.67; H, 4.39; N, 4.90; S, 10.92 .

1-(2-Benzothiazolyl)ethanol was prepared from benzothiazole by metalation with butyllithium and addition of acetaldehyde to the lithio derivative. Work-up and distillation gave a viscous liquid, bp $112-116^{\circ}(0.4 \mathrm{~mm})$, which slowly solidified at room temperature ($12.2 \mathrm{~g}, 68 \%$). The solid was recrystallized from hexaneether to give white needles: $\mathrm{mp} 62-63.5^{\circ}$ (lit. ${ }^{2 L} 68^{\circ}$); NMR ($\left.\mathrm{CCl}_{4}\right) \delta$ $1.62\left(\mathrm{~d}, 3,-\mathrm{CHCH}_{3}, J=7 \mathrm{~Hz}\right), 4.33(\mathrm{~s}, 1,-\mathrm{OH}), 5.13$ (s, 1 , $\left.-\mathrm{CHCH}_{3}, J=6.5 \mathrm{~Hz}\right), 7.15-7.44(\mathrm{~m}, 2,5-\mathrm{H}$ and $6-\mathrm{H})$, and $7.64-$ 7.90 ($\mathrm{m}, 2,4-\mathrm{H}$ and $7-\mathrm{H}$).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9}$ NOS: C, 60.34; H, 5.03; N, 7.82; S, 17.88. Found: C, 60.25; H, 4.98; N, 7.64; S, 18.02.

1-(2-Benzothiazolyl)ethyl Tosylate (8). A solution of 1-(2benzothiazolyl)ethanol (5.00 g) and triethylamine (2.82 g) was prepared in 10 ml of 1,2 -dichloroethane. Recrystallized p-toluenesulfonyl chloride (5.32 g) dissolved in 15 ml of 1,2 -dichloroethane was added in portions to the alcohol-amine solution. The resulting solution was stirred for 1 h at room temperature. The mixture was refrigerated for 24 h , after which time it was warmed to room temperature and filtered. The triethylammonium chloride precipitate
was washed with fresh solvent, and the combined organic portions were concentrated under vacuum The orange oil thus obtained was taken up in several portions of boiling hexane (ca. 800 ml total), and the combined hexane extracts were set aside to crystallize. Filtration afforded 8 as a fine white solid ($4.7 \mathrm{~g}, 51 \%$): mp 59$60^{\circ}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.77\left(\mathrm{~d}, 3,-8 \mathrm{HCH}_{3}, J=6 \mathrm{~Hz}\right), 2.35(\mathrm{~s}, 3$, $\left.\mathrm{ArCH}_{3}\right), 5.77\left(\mathrm{q}, 1,-\mathrm{CHCH}_{3}, J=6.5 \mathrm{~Hz}\right), 7.06-7.35(\mathrm{~m}, 4,5-\mathrm{H}$ and $6-\mathrm{H}$ and $m-\mathrm{ArH}$), and $7.61-7.89$ ($\mathrm{m}_{-} 4,4-\mathrm{H}$ and $7-\mathrm{H}$ and $o-\mathrm{ArH}$).
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}_{2}$: $\mathrm{C}_{-} 57.66 ; \mathrm{H}, 4.50 ; \mathrm{N}, 4.20 ; \mathrm{S}, 19.22$. Found: C, $57.59 \mathrm{H}, 4.51$; N, 4.31; C 19.32.

6-Methylbenzothiazole 6-Nethylbenzothiazole-2-carboxylic acid, mp 108-110 ${ }^{\circ}(7.3 \mathrm{~g}),{ }^{23}$ was decarboxylated by steam distillation. The stean distillates were extracted with choroform and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of solvert gave a yellow oil .5 .2 g$)$, which was distilled to give a colorless lic uid ($4.6 \mathrm{~g}, 81 \%$): bj $81-82^{\circ}(1.4$ mm) [lit. ${ }^{24} 118-120^{\circ}(1.3 \mathrm{~mm})$]; M MR $\left(\mathrm{CCl}_{4}\right) \delta 2.36\left(\mathrm{~s}, 3,6-\mathrm{CH}_{3}\right)$, 7.15 (dd, 1, 5-H), 7.47-7.54 (m, 1, 7-H), $7.93(\mathrm{~d}, 1,4-\mathrm{H}, J=8 \mathrm{~Hz}$), and 8.77 (s, 1, 2-H).

Anal. Calcd 三or $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NS}: \mathrm{C}, 64.43 ; \mathrm{H}, 4.70 ; \mathrm{N}, 9.40 ; \mathrm{S}, 21.48$. Found: C, 64.21. H, 4.67; N, 9.49; $\subseteq 21.34$.

1-(6-Methyl-2-benzothiazolyl ethanol was prepared by metalation of 6-methylbenzothiazole with butyllithium at -78° and subsequent addition of acetaldet yde. The isolated product was crystallized from hexane to afford white crystals (50\%): mp 108.5$110.5^{\circ} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.68\left(\mathrm{~d}, 3-\mathrm{CHCH}_{3}, J=6 \mathrm{~Hz}\right), 2.47(\mathrm{~s}, 3$, $\left.6-\mathrm{CH}_{3}\right), 5.18\left(\mathrm{q}, 1,-\mathrm{CHCH}_{3}, J=6.5 \mathrm{~Hz}\right), 7.15-7.31(\mathrm{~m}, 1,5-\mathrm{H})$, and 7.65-7.89 (m, 2, 4-H and 7-H).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11}$ NOS: C, 62.18: H, 5.70; N, 7.25; S, 16.58. Found: C, 62.05; H, 5.88; N, 7.03; 〔, 16.62.

1-(6-Methyl-2-benzothiazolyliethyl tosylate (9) was prepared from the alcohol as above. The crude materia isolated was found by NMR to be a mixture of alcohol (30%) and tosylate 9 (70\%). Further purification was extremely tedious. Hence, this mixture was used in kinetic rues without further purification: NMR $\left.\left(\mathrm{CCl}_{4}\right) \delta 1.75\left(\mathrm{~d}, 3,-\mathrm{CHCH}_{3}, J=6 \mathrm{~Hz}\right), 2.45 \mathrm{is}, 3, \mathrm{ArCH}_{3}\right)$, $5.78\left(\mathrm{q}, 1,-\mathrm{CHCH}_{3}, J=6 \mathrm{~Hz}\right), 711-7.24(\mathrm{~m}, 3, m-\mathrm{ArH}$ and $5-\mathrm{H})$, and $7.54-7.80(\mathrm{~m}, 4, o-\mathrm{ArH}$ and $4-\mathrm{I}$ and $7-\mathrm{H})$.

1-(5-Methyl-2-benzothiazolylsethanol. Metalation of 5.6 g of 5 -methylbenzothiazole ${ }^{25}$ with butyllithium at -78° was followed by addition of acetaldehyde (3.31 y). The dry ice bath was then removed and stirring was continuec for 15 min . The yellow mixture was poured into saturated ammo iium chloride (200 ml), and the resulting solution was extracted v ith ether. After drying $\left(\mathrm{MgSO}_{4}\right)$ and removing solvent, a golden cil was obtained, which was distilled to give a light yellow solid $(6.0 \mathrm{~g})$, bp $124-12^{\circ}{ }^{\circ}(0.05 \mathrm{~mm})$. Recrystallization from hexane gave white needles ($4.0 \mathrm{~g}, 55 \%$): mp $83-85^{\circ}$; NMR (CDCl_{3} and $\mathrm{CCl}_{4} \mathrm{~m}$ xture) $\delta 1.60\left(\mathrm{~d}, 3,-\mathrm{CHCH}_{3}, J=\right.$ $6 \mathrm{~Hz}), 2.38\left(\mathrm{~s}, 3,5-\mathrm{CH}_{3}\right), 4.83(\mathrm{~b}, \mathrm{I},-\mathrm{OH}), 5.10\left(\mathrm{q}, 1,-\mathrm{CHCH}_{3}, J=\right.$ $6 \mathrm{~Hz}), 6.98(\mathrm{bd}, 1,6-\mathrm{H}), 7.50(\mathrm{bs}, \mathrm{J}, 4-\mathrm{H})$, and $7.51(\mathrm{~d}, 1,7-\mathrm{H}, J=8$ Hz).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11}$ NOS: C, 62.18; H, 5.70; N, 7.25; S, 16.58 . Found: C, 61.99; H, 5.55; N, 7.12; $\subseteq 16.45$.

1-(5-Methyl-2-benzothiazolyl ethyl tosylate (10) was prepared in the usual fashion. The crude product was crystallized from hexane to give fine white netdles (75%): mp 11f-117 ${ }^{\circ}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.78\left(\mathrm{~d}, 3,-\mathrm{CHCH}_{3}, J=6 \mathrm{~Hz}\right), 2.36\left(\mathrm{~s}, 3, \mathrm{Ar}^{\circ} \mathrm{H}_{3}\right), 2.47(\mathrm{~s}$, $3,5-\mathrm{CH}_{3}$), 5.78 (q, $\left.1,-\mathrm{CHCH}_{3}, J=6 \mathrm{~Hz}\right), 7.00-7.24(\mathrm{~m}, 3,6-\mathrm{H}$ and $m-\mathrm{ArH})$, and $7.51-7.81(\mathrm{~m}, 4,4-\mathrm{H}$ and $7-\mathrm{H}$ and $\mathrm{o}-\mathrm{ArH}$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}_{2}$: $\mathrm{C} 58.79 ; \mathrm{H}, 4.90 ; \mathrm{N}, 4.03 ; \mathrm{S}, 18.44$. Found: C, 58.72; H, 4.82; N, 4.17; $\subseteq 18.32$.

1-(4-Methyl-2-benzothiazolyl vethanol. Decarbozylation of 4-methylbenzothiazole-2-carboxylic acid ${ }^{23}$ gave 4-methylbenzothiazole. ${ }^{25}$ Metalation with butyllithium and subsequent addition of acetaldehyde gave 1-(4-methyl-£-benzothiazolyl)ethanol in 73\% yield: mp $65-68^{\circ}$ (white crystals f -om hexane); NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.60$ $\left(\mathrm{d}, 3,-\mathrm{CHCH}_{3}, J=6 \mathrm{~Hz}\right), 2.62\left(\mathrm{~s}, 3,4-\mathrm{CH}_{3}\right), 4.12(\mathrm{~b}, 1,-\mathrm{OH}), 5.09$ $\left(\mathrm{q}, 1,-\mathrm{CHCH}_{3}, J=6 \mathrm{~Hz}\right), 6.97-7.21(\mathrm{~m}, 2,5-\mathrm{H}$ and $6-\mathrm{H})$, and 7.34-7.54 (m, 1, 7-H).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11}$ NOS: C, 62.18; H, 5.70; N, 7.25; S, 16.58. Found: C, 62.37; H, 5.68; N, 7.14; S , 16.74. 2

1-(4-Methyl-2-benzothiazolyl)ethyl tosylate (11) was prepared in the usual fashion. Crysta lization of crude 11 from hexane was induced by chilling in dry ice and scratching, which produced a fine white solid: $\mathrm{mp} 74-75^{\circ} ; \mathrm{NM} \mathrm{R}\left(\mathrm{CCl}_{4}\right) \delta 1.77\left(\mathrm{~d}, 3,-\mathrm{CHCH}_{3}, J\right.$ $=7 \mathrm{~Hz}), 2.34\left(\mathrm{~s}, 3, \mathrm{ArCH}_{3}\right), 2.60\left(3,3,4-\mathrm{CH}_{3}\right), 5.80\left(\mathrm{q}, 1,-\mathrm{CHCH}_{3}\right.$, $J=6 \mathrm{~Hz}), 7.0 j^{-}-7.22(\mathrm{~m}, 4,5-\mathrm{H}$ and $6-\mathrm{H}$ and $m-\mathrm{ArH})$, and 7.44 7.75 (m, 3, $7-\mathrm{H}$ and $o-\mathrm{ArH}$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}_{2}$: $\mathrm{C}, 58.79 ; \mathrm{H}, 4.90 ; \mathrm{N}, 4.03 ; \mathrm{S}, 18.44$. Found: C, 58.7^{7}; H, 5.05; N, 4.22; S, 18.62.

1-(1-Methyl-2-benzimidazolyt)ethyl Chloride (12). This preparation followed the procedu: e of Skolnick, Miller, and Day. ${ }^{26}$

1-(1,5-Dimethyl-2-benzimidazolyl)ethanol. This procedure followed the sequence used by Beaven et al. ${ }^{27}$ The N-methyl-2-amine-4-methylaniline was treated with lactic acid by the Phillips method ${ }^{28}$ to give the title compound, mp 94-95 ${ }^{\circ}$, NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.65 (d, 3, $-\mathrm{CHCH}_{3}$), 2.45 ($\mathrm{s}, 3,5-\mathrm{CH}_{3}$), $3.70\left(\mathrm{~s}, 3, \mathrm{NCF}_{3}\right.$), 3.95 (bs, 1, OH), $5.10\left(\mathrm{q}, 1, \mathrm{CHCH}_{3}\right), 7.20(\mathrm{~m}, 3, \mathrm{ArH})$, which was converted directly to the chloride.

1-(1,5-Dimethyl-2-benzimidazolyl)ethyl Chloride (13). To a stirred solution $0: 1$-(1,5-dimethyl-2-benzimidazolyl) ethanol (4.0 g) in 50 ml of methylene chloride was added 4.4 g of phosphorus pentachloride. The exothermic reaction gently refluxed during the 1-h stirring period. The solution was then concentrated to a light yellow oil which was digested in 100 ml of methylene chloride and stirred with a slurry of aqueous sodium bicarbonate ($5-10 \mathrm{ml}$) to neutralize the remaining acid. Af-er effervescence ceased, the solution was diluted with methylene chloride (25 ml) and dried over MgSO_{4}. Rotary evaporation yielded 1.98 g (45%) of 13 as very light beige crystals: mp 107-109; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.15$ [d, 3, $\left.\mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{3}\right], 2.55\left(\mathrm{~s}, 3,5-\mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 5.40[\mathrm{q}, 1$, $\mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{3}$], 7.50 (m, 3, H-4, $-6,-7$).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClN}_{2}$: $\mathrm{C}, 63.31 ; \mathrm{H}, 6.24 ; \mathrm{N}, 13.43 ; \mathrm{Cl}, 17.02$. Found: C, 63.11; H, 6.17 ; N, 13.26; Cl, 17.24.

1-(1,5,6-Trimethyl-2-benzimidazolyl)ethyl Chloride (14). Treatment of 4,5-dimethyl-1,2-diaminobenzene with lactic acid and HCl^{29} gave 1-(5,6-dimethyl-2-benzimidazolyl)ethanol in 68% yield, mp 219-2210 (lit. $^{30} 221-222^{\circ}$). Following the procedures of Skolnick, Miller, and Day, ${ }^{26}$ dimethyl sulfate and base gave 1 -(1,5,6-trimethyl-2-benzimidazolyl)ethanol, mp 138-140 ${ }^{\circ}$ (93% yield), which was converted to 14 by the procedure of Skolnick, Miller, and Day, ${ }^{26} \mathrm{mp} \mathrm{127-130}^{\circ}$. The crude chloride was used directly for kinetic measurements.

1-(1-Methyl-5-pyrazolyl)ethanol. A solution of 6.6 g of 1 methylpyrazole in 450 ml of anhydrous ether was stirred under nitrogen in an ice bath as $0.1 \mathrm{~mol}(59 \mathrm{ml}$ of a 1.69 M solution of n bucyllithium in hexane) in 50 ml of ether was added dropwise. Stirring was continued for 2 h , as formation of a bright yellow precipitate was observed. Acetaldehyde (11.9 g) was added cautiously. The ice bath was removed and the reaction mixture was stirred for an additional 15 min . Water (150 ml) was added, the layers were separated, and the aqueous layer was washed with chloroform $(4 \times$ $75 \mathrm{ml})$. The organic layers were collected and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvents were evaporated. The residue was distilled under vacuum to yield 3.5 g (3) of 1-(1-methyl-5-pyrazolyl)ethanol: bp 93$94^{\circ}(0.5 \mathrm{~mm})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.48\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 3, \mathrm{CH}_{3} \mathrm{CHOH}-\right)$, $3.68\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 4.4$ (bs, $\left.1,-\mathrm{OH}\right), 4.73(\mathrm{q}, J=6 \mathrm{~Hz}, 1$, $\left.\mathrm{CH}_{3} \mathrm{CHOH}-\right), 5.98(\mathrm{~d}, J=2 \mathrm{~Hz}, 1,4-\mathrm{H}), 7.03(\mathrm{~d}, J=2 \mathrm{~Hz}, 1,3-\mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 57.20 ; \mathrm{H}, 7.99 ; \mathrm{N}, 22.20$. Found: C, 57.27: H, 7.72; N, 22.34.

1-(1-Methyl-5-pyrazolyl)ethyl Chloride (15). To a solution of 0.6 g of thionyl chioride in 10 ml of 1,2 -dichloroethane was carefully added 0.63 g of 1 -(1-methyl-5-pyrazolyl)ethanol in ca. 1 ml of the solvent. The mixture was stirred and heated under reflux for 30 min . It was cooled and $0.5 \mathrm{~g}(0.005 \mathrm{~mol})$ of triethylamine was added dropwise. The solution was cooled and the precipitated triethylamine hydrochloride was removed by filtration and then rinsed with a small amount of cold solvent. Evaporation of the solvent gave 0.70 g (98%) of crude 1-(1-methyl-5-pyrazolyl)ethyl chloride (15) which was used directly for kinetic studies: NMR (CDCl_{3}) (no alcohol present) $\delta 7.47(\mathrm{~d}, J=2 \mathrm{~Hz}, 1,3-\mathrm{H}), 6.22(\mathrm{~d}, J=2 \mathrm{~Hz}$, $1,4-\mathrm{H}), 5.12\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1, \mathrm{CH}_{3} \mathrm{CHCl}-\right), 3.85\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 1.87$ (d, $J=6.5 \mathrm{~Hz}, 3, \mathrm{CH}_{3} \mathrm{CHCl}-$).

1-(1,3-Dimethyl-5-pyrazolyl)ethanol. The procedure of Burness ${ }^{31}$ for the preparation of 1,3-dimethylpyrazole led to a mixture of the 1,3 - and :,5-dimethyl isomers composed of roughly twothirds of the 1,3 product by NMR. A solution of 14 g of this mixture (ca. 9.3 g or 0.097 mol of the 1,3 -dimethylpyrazole) in 450 ml of anhydrous ether was stirred in an ice bath as $0.11 \mathrm{~mol}(65 \mathrm{ml}$ of a -.69 M solution) cf butyllithium in 50 ml of anhydrous ether was added dropwise. Ccoling and stirring were continued for 2 h after addition was complete. Three $5-\mathrm{ml}$ portions of acetaldehyde were syringed into the flask, and stirring was continued for 15 min . Saturated ammonium chloride solution (150 ml) was added and the layers were separated. The aqueous layer was extracted with methylene chloride ($4 \times 75 \mathrm{ml}$). The organic layers were combined and driec, and the solvents were removed. Distillation af:orded first a mixture of 1,5 -dimethylpyrazole and unreacted 1,3-dimethylpyrazole boiling at $37-43^{\circ}(1 \mathrm{~mm})$. The higher boiling fraction $\left[>90^{\circ}(1\right.$ $\mathrm{mm})$] was redistilled to yield $3.55 \mathrm{~g}(26 \%$, based on the amount of 1,3-dimethylpyrazole originally present) of 1 -(1,3-dimethyl-5-pyrazolyl)ethanol: bp 125-127. $(1 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right)$ ò $1.45(\mathrm{~d}, ~ J=$ $6.5 \mathrm{~Hz}_{3}, \mathrm{CH}_{3} \mathrm{CHOH}-$), $2.08\left(\mathrm{~s}, 3, \mathrm{C}_{3} \mathrm{CH}_{3}\right), 3.62\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 4.70$

Table III. Rate Constants for Solvolyses in $\mathbf{8 0 \%}$ Ethanol

Compd solvolyzed	Temp, ${ }^{\circ} \mathrm{C}$	$k, \mathrm{~s}^{-1}$
1	24.83	$1.28 \pm 0.02 \times .10^{-4}$
	24.83	$1.27 \pm 0.02 \times 10^{-4}$
2	24.93	$5.88 \pm 0.03 \times 10^{-3}$
3	24.93	$2.56 \pm 0.01 \times 10^{-4}$
4	75.10	$1.65 \pm 0.02 \times 10^{-3}$
	75.10	$1.69 \pm 0.02 \times 10^{-3}$
5	75.03	$1.21 \pm 0.02 \times 10^{-2}$
	75.03	$1.19 \pm 0.02 \times 10^{-2}$
6^{a}	75.50	$1.10 \pm 0.01 \times 10^{-s}$
	75.50	$1.08 \pm 0.01 \times 10^{-5}$
$7{ }^{a}$	75.45	$4.34 \pm 0.2 \times 10^{-5}$
	75.45	$4.20 \pm 0.2 \times 10^{-5}$
8	$25.00{ }^{\text {b }}$	2.55×10^{-5}
	45.01	$2.38 \pm 0.01 \times 10^{-4}$
	45.02	$2.32 \pm 0.01 \times 10^{-4}$
	59.97	$1.05 \pm 0.01 \times 10^{-3}$
	75.00	$4.15 \pm 0.02 \times 10^{-3}$
9	25.30	$2.59 \pm 0.02 \times 10^{-4}$
	25.31	$2.56 \pm 0.02 \times 10^{-4}$
10	24.98	$7.19 \pm 0.03 \times 10^{-s}$
	24.99	$7.07 \pm 0.01 \times 10^{-5}$
11	25.06	$1.14 \pm 0.01 \times 10^{-4}$
	25.08	$1.13 \pm 0.01 \times 10^{-4}$
12	$25.00^{\text {b }}$	7.45×10^{-6}
	45.0	$8.84 \pm 0.10 \times 10^{-5}$
	60.0	$3.62 \pm 0.10 \times 10^{-4}$
	75.0	$1.83 \pm 0.06 \times 10^{-3}$
13	$25.00{ }^{\text {b }}$	6.07×10^{-5}
	45.0	$5.57 \pm 0.06 \times 10^{-4}$
	60.0	$2.81 \pm 0.03 \times 10^{-3}$
14	25.00	$6.17 \pm 0.01 \times 10^{-4}$
15	25.04	$3.38 \pm 0.03 \times 10^{-4}$
	25.08	$3.45 \pm 0.01 \times 10^{-4}$
16	25.08	$1.269 \pm 0.002 \times 1 \mathrm{C}^{-3}$
	25.08	$1.282 \pm 0.009 \times 1 \mathrm{C}^{-3}$

${ }^{a}$ Rates measured using sealed ampules. ${ }^{b}$ Extrapolated from data at other temperature.
($\mathrm{q}, J=6.5 \mathrm{~Hz}, 1, \mathrm{CH}_{3} \mathrm{CHOH}-$), 5.13 (bs, $1, \mathrm{OH}$), 5.78 ($\mathrm{s}, 1,4-\mathrm{H}$). The alcohol was characterized as the p-nitrobenzoate de-ivative: $\mathrm{mp} 106-107^{\circ}$ (from hexane); NMR (CDCl_{3}) $\delta 1.73$ (d, $J=7 \mathrm{~Hz}, 3$, $\mathrm{CH}_{3} \mathrm{CHOPNB}-$), 2.23 (s, 3, $\mathrm{C}_{3} \mathrm{CH}_{3}$), 3.83 ($\mathrm{s}, 3, \mathrm{NCH}_{3}$), 6.12 (superimposed on q, 1, 4-H), 6.29 (q with superimposed $\mathrm{s}, J=7 \mathrm{~Hz}, 1$, $\mathrm{CH}_{3} \mathrm{CHOPNB}-$).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 58.12; $\mathrm{H}, 5.23 ; \mathrm{N}, 14.53$. Found: C, 57.96; H, 5.09; N, 14.64 .

1-(1,3-Dimethyl-5-pyrazolyl)ethyl Chloride (16). The 1 -(1,3-dimethyl-5-pyrazolyl)ethanol was converted to the chloride as above, using dichloroethane as solvent. The solvent was evaporated to yield the chloride quantitatively. The compound was utilized directly for kinetic studies: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.82(\mathrm{~d}, J=7 \mathrm{~Hz}$, $3, \mathrm{CH}_{3} \mathrm{CHCl}-$), $2.14\left(\mathrm{~s}, 3, \mathrm{C}_{3} \mathrm{CH}_{3}\right.$), 3.73 ($\mathrm{s}, 3, \mathrm{NCH}_{3}$), 4.98 ($\mathrm{q}, J=7$ $\left.\mathrm{Hz}, 1, \mathrm{CH}_{3} \mathrm{CHCl}-\right), 5.87(\mathrm{~s}, 1,4-\mathrm{H})$.

Kinetic Methods. Kinetic methods have been descrited previously. ${ }^{4.13 .32}$ All rate methods were carried out at constant pH using a Radiometer automatic titrator (Model TTT 1c). The newly determined rate constants are assembled in Table III.

Registry No.-1, 55968-39-3; 2, 51270-91-8; 3, 57527-74-9; 4, 57527-75-0; 5, 57527-76-1; 6, 23516-72-5; 7, 57527-77-2; 8, 57527-78-3; 9, 57527-79-4; 10, 57527-80-7; 11, 57527-81-8; 12, 58282-03-4;

13, 57527-82-9; 14, 57527-83-0; 15, 57527-84-1; 16, 57527-85-2; 2-methyl-3-acetylfuran, 16806-88-5; 1-(2-methyl-3-furyl)ethanol, 57527-86-3; p-nitrobenzoyl chloride, 122-04-3; 2,5-dimethyl-3-acetylfuran, 10599-70-9; 1-(2,5-dimethyl-3-furyl)ethanol, 38422-61-6; 1-(5-methyl-3-thienyl)ethanol, 57527-87-4; 4-bromo-2-methylthiophene, 29421-92-9; 1-(2-benzothiazolyl)ethanol, 17147-80-7; ben zothiazole, 95-16-9; p-toluenesulfonyl chloride, 98-59-9; 6-methylbenzothiazole, 2942-15-6; 6-methylbenzothiazole-2-carboxylic acid, 3507-18-4; 1-(6-methyl-2-benzothiazolyl)ethanol, 54469-51-1; 1-(5-methyl-2-benzothiazolyl)ethanol, 57527-88-5; 5-methylbenzothiazole, 2942-16-7; 1-(4-methyl-2-benzothiazolyl)ethanol, 57527-89-6; 4-methylbenzothiazole-2-carboxylic acid, 3507-47-9; 1-(1,5-dimethyl-2-benzimidazolyl)ethanol, $\quad 57527-90-9 ; \quad N$-methyl-2-amino-4-methylaniline, 39513-19-4; lactic acid, 50-21-5; phosphorus pentachloride, 10026-13-8; 4,5-dimethyl-1,2-diaminobenzene, 3171-45-7; 1-(1,5,6-trimethyl-2-benzimidazolyl)ethanol, 57527-910; 1-(1-methyl-5-pyrazolyl)ethanol, 57527-92-1; 1-methylpyrazole, 930-36-9; 1-(1,3-dimethyl-5-pyrazolyl)ethanol, 57527-93-2; 1,3dimethylpyrazole, 694-48-4; 1,5-dimethylpyrazole, 694-31-5; 1-(1,3-dimethyl-5-pyrazolyl)ethanol p-nitrobenzoate, 57527-94-3.

References and Notes

(1) (a) Supported in part by a grant from the National Science Foundation (GP-6133X); (b) National Institutes of Health Predoctoral Fellow, 19701973 (GM 49, 154): (c) National Science Foundation Predoctoral Fellow, 1970-1972
(2) M. J. S. Dewar and P. J. Grisdale, J. Am. Chem. Soc., 84, 3539 (1962).
(3) D. S. Noyce and R. W. Nichols, Tetrahedron Lett., 3889 (1972).
(4) D. S. Noyce and R. W. Nichols, J. Org. Chem., 37, 4306, 4311 (1972)
(5) D. S. Noyce and H. J. Pavez, J. Org. Chem., 37, 2620, 2623 (1972).
(6) D. S. Noyce, C. A. Lipinski, and R. W. Nichols, J. Org. Chem., 37, 2615 (1972).
(7) D. A. Forsyth, J. Am. Chem. Soc., 95, 3594 (1973).
(8) H. C. Brown and Y. Okamoto, J. Am. Chem. Soc., 79, 1913 (1957): H C. Brown and Y. Okamoto, ibid., 80, 4979 (1958); L. M. Stock and H. C. Brown. Adv. Phys. Org. Chem., 1, 35 (1963).
(9) C. D. Ritchie and W. F. Sager, Prog. Phys. Org. Chem., 2, 323 (1964); cf. pp 346-348. These authors have shown that the purely inductive component of the σ value for an alkyl group must be effectively zero.
(10) D. S. Noyce and G. V. Kaiser, J. Org. Chem., 34, 1008 (1969)
(11) D. S. Noyce and S. A. Fike, J. Org. Chem., 38, 3318 (1973).
(12) D. S. Noyce and G. T. Stowe, J. Org. Chem., 38, 3762 (1973).
(13) D. S. Noyce. J. A. Virgilio, and B. Bartman, J. Org. Chem., 38, 2657 (1973); D. S. Noyce and J. A. Virgilio, ibid., 38, 2660 (1973).
(14) V. Baliah and P. A. Nadar, Indian. J. Chem., 9, 1339 (1971).
(15) D. F. DeTar and C. E. DeTar, "Computer Programs in Chemistry", Vol 1. D. F. DeTar, Ed., W. A. Benjamin, New York, N.Y., 1968.
(16) J. C. Charlton and E. D. Hughes. J. Chem. Soc., 850 (1956)
(17) A. M. Kuliev, B. M. Mirzoev. H. Nguyen, and V. M. Farzaliev, Zh. Org Khim., 7, 992 (1971).
(18) E. Bisogni, J.-P. Marquet, J. Andendre-Louisfert, A. Cheuten, and F Feinte, Bull. Soc. Chim. Fr., 2796 (1967)
(19) P. H. Williams, G. B. Payne, W. J. Sullivan, and P. R. VanEss. J. Am. Chem. Soc., 82, 4883 (1960).
(20) D. S. Noyce. C. A. Lipinski, and G. M. Loudon, J. Org. Chem., 35, 1718 (1970).
(21) Y. L. Gol'dfarb, Yu. B. Bol'kenshtien, and B. V. Lopatin, Zh. Obshch. Khim., 34, 969 (1964)
(22) V. M. Zubarovsky. Zh. Obshch. Khim., 21, 2199 (1951).
(23) P. E. Todesco and P. Vivarelli, Boll. Sci. Fac. Chim. Ind. Bologna, 22, 1 (1964).
(24) A. T. Blomquist and L. I. Duiguid, J. Org. Chem., 12, 718 (1947)
(25) F Taddei, P. E. Todesco, and P. Vivarelli, Gazz. Chim. Ital., 95, 499 (1965).
(26) H. Skolnick, J. G. Miller. and A. R. Day, J. Am. Chem. Soc., 65, 1954 (1943).
(27) G. H. Beaven, E R. Holiday, E. A. Johnson, B. Ellis, P. Mamalis, V. Petrow, and B. Sturgeon. J. Pharm. Pharmacol., 1, 957 (1943).
(28) M. A. Phillips, J. Chem. Soc., 2820 (1929).
(29) M. A. Phillips, J. Chem. Soc., 2393 (1928)
(30) W. J. van Rhijn. German Patent 1216 105; Chem. Abstr., 65, 9073a (1966)
(31) D. M. Burness, J. Org. Chem., 21, 97 (1956)
(32) D. S. Noyce and S. A. Fike, J. Org. Chem., 38, 3316 (1973).

Hammett and Taft Substituent Constants for the Mesylate, Tosylate, and Triflate Groups

Peter J. Stang* and Albert G. Anderson
Chemistry Department, The University of L'tah, Salt Lake City, Utah 84112

Received September 23, 1975

Abstract

The Hammett σ_{p} velues for the mesylate (1), tosylate (2), and triflate groups (3) were determined by titration of the appropriate benzoic acids and found to be $+0.33,+0.29$, and +0.47 , respectively. Taft σ_{1} values were determined by ${ }^{19} \mathrm{~F}$ NMR of the appropriately substituted 3 -fluorophenylsulfonate esters and found to be $1,+0.61 ; 2$, $+0.54,3,+0.84$. By in erpolation using $\mathrm{p} K_{\mathrm{g}}$ data for a number of substituted acetic acids, the value of σ^{*} for the $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OCH}_{2}-$ group vas found to be +198 . The possible nature and origin of these values are discussed and applied to the relative lec ving group ability of the various sulfonate esters in SN1 reactions.

Sulfonate esters are often used in synthetic reaction schemes and mechanistic stud es because of their superior leaving ability and ease of displacement by a wide variety of nucleophiles. Despite their widespread use, little is known about the electronic ef ects of the most important groups, namely, methanesulfonate (mesylate, 1), p-toluenesulfonate (tosylate, 2), and the recently developed trifluoromethanesulfonate (triflate, ${ }^{1} 3$), which give rise to their superior leaving ability ard ease of displacement. The electronic effects of a substituent group can be conveniently divided into those of electron donation and withdrawal and are commonly expressed in terms of the Hammett σ_{p} and Taft σ_{I} and σ_{R} parameters. ${ }^{2}$ Although a $\mathrm{f} \in \mathrm{w} \sigma$ values for some sulfonate esters have appeared in widely scattered reports, ${ }^{3-5}$ no systematic data exist on the substituent constants of sulfonate groups. We have, therefore, determined $\sigma_{\mathrm{p}}, \sigma_{\mathrm{I}}$, and σ_{R} for the groups 1-3 and have also employed a number of chemical probes in order to elucidate the possible origin and nature of the electronic effects of these groups and thereby possess sone basis for comparison not only of sulfonate esters among themselves but also among other sulfur containing groups such as the sulfones and thioethers.

Results and Discussion

Hammett σ_{p} constants wer \geqslant obtained by the standard technique ${ }^{6}$ of titration of appropriately para-substituted benzoic acids in $50 \%(\mathrm{v} / \mathrm{v})$ aqueous ethanol. A least-squares plot of the $\mathrm{p} K_{\mathrm{g}}{ }^{\prime}$ vs. o_{p} for a ser es of standard compounds is shown in Figure 1. Measurement ${ }^{7}$ of $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ for the desired sulfonyloxy-substituted benzcic acids and interpolation using Figure 1 resulted in the σ_{p} values shown in Table I. Taft σ_{I} values were also obtained by standard techniques ${ }^{8}$ using the ${ }^{19} \mathrm{~F}$ NMR shift of appropriately substituted m -
fluorobenzenes. These results are also shown in Table I. The values of σ_{p} obtained in this study are in good agreement with the values in the literature for 1^{5} and for $3,{ }^{4}$ as is the value of σ_{I} for $2 .{ }^{2,3}$ Howevər, our value of $\sigma_{\mathrm{I}}=0.84$ for 3 determined by ${ }^{19} \mathrm{~F}$ NMR differs substantially from the value of 0.58 given by Yagupol'skii. ${ }^{4,9}$ Because of this discrepancy and because of some questions regarding the theoretical validity ${ }^{13}$ of ${ }^{19} \mathrm{~F}$ NMR as a tool for determining σ_{I}, we determined σ_{I} for 3 by a second independent means. This involved measurement of the $\mathrm{p} K_{\mathrm{a}}$'s of appropriately substituted acetic acids by nonaqueous titration in 2-propanol, correlation of the $\mathrm{p} K_{\mathrm{a}}$'s with known σ^{*} values, ${ }^{14}$ and interpolation of the $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OCH}_{2} \mathrm{COOH}$. The results are given in Figure 2 and Table II. The Taft σ_{I} value can be computed from the experimentally observed σ^{*} value by means of the well-known relationship ${ }^{2} \sigma_{\mathrm{I}(\mathrm{x})}=$ $0.450 \sigma^{*}{ }_{\left(\mathrm{x}_{\mathrm{CH}}^{2}\right)}$ to be $\sigma_{\mathrm{I}(3)}=0.89$, which is in substantial agreement with the value found by ${ }^{19} \mathrm{~F}$ NMR in Table I.

The substituent constants and the nature of sulfonate esters can best be discussed by division of their properties into those of electron-withdrawing and donating ability and comparison with sulfone and alkoxy substituents. The relevant data are assembled and summarized in Table III. As seen by examiration of the data in Table III, the positive sign of the Hammett σ_{p} constants for the mesylate, tosylate, and triflate groups indicates that the sulfonate esters are deactivating toward electrophilic aromatic substitution, but ortho-para directing because of the negative sign of σ_{R}. Indeed, this observation is in accord with experimental evidence that phenyl tosylate is nitrated simply with concentrated nitric acid, ${ }^{15}$ whereas phenyl mesylate requires treatment with a mixture of KNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ for $24 \mathrm{~h} ;{ }^{16}$ by varying the ratio of $\mathrm{KNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$, either a 4nitro or a 2,4-dinitrophenyl mesylate could be obtained.

Table I. Hanmett σ_{p} and Taft σ_{I} Values for the Mesylate, Tosylate, and Triflate Groups

Substituent	$\mathrm{pK}_{\mathrm{a} \text { of }}$ O $\mathrm{CH}_{3} \mathrm{SO}$ O 1	5.18	σ_{p}

[^0] $25-3,51804-15-0,32578-34-0 \quad d$ Registry no. are, respectively, 57606-63-0, 57606-64-1, 57606-65-2. e This value of σ_{I} is further confirmed by a least-sc uares plot of $\pi_{i-\left(\mathrm{CH}_{2} \mathrm{X}\right)}$ vs. $\sigma_{\mathrm{I}(\mathrm{X})} .^{14}$

Figure 1. $\log K_{\mathrm{a}}$ vs. σ_{p} for $p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{COOH}$.

Figure 2. $\log K_{\mathrm{a}}$ vs. σ^{*} for XCOOH .
Phenyl triflate, possessing the most positive σ_{p} of the three esters, nitrates first at the 4 position and next at the 2 position, but only under forcing conditions. The strong inductive electron-attracting ability of the triflate group is also shown by the relative rate of bromination of 2 -bromo- 3 -methyl-2-butene (4) and 3 -methyl-2-buten- 2 -yl triflate (5), with $\mathbf{4}$ brominating three times as fast as 5 in CCl_{4} at 25 ${ }^{\circ} \mathrm{C} .{ }^{17}$

4

5
The inductive effect, arising out of differences in electronegativity of the elements, involves the σ framework of the molecule and is measured by the Taft parameter σ_{I}. The resonance effect operates through the π orbitals of the molecule and is a crude measure of the $p_{\pi}-p_{\pi}$ interactions occurring within the molecule. The σ_{R} values for the triflate, mesylate, and tosylate groups indicate that all three groups are capable of donating electrons. What is somewhat surprising is the magnitude of the effect in the case of triflate, when contrasted to the behavior of other groups atzached to a phenyl ring via an oxygen atom. It is well known that the σ_{R} value for the methoxy group is negative; the methoxy group interacts with the phenyl ring via $2 p_{\pi}-2 p_{\pi}$ interactions, donating electrons from the p atomic orbitals of oxygen. It is also known from photoelectron spectroscopy ${ }^{20}$ that the two highest occupied molecular orbitals of the phenyl ring in anisole become split in energy, indicating strong interaction of the oxygen with the phenyl ring. In the case of the OCF_{3} group, photoelectron spectrosccpy reveals that the two highest occupied molecular orbitals are degenerate. The σ_{R} value (see Table III) for the CF_{3} grcup indicates that the CF_{3} group is strongly electron witr.drawing by resonance. Even when present as the ether, OCF_{3}, its effect is dominant. ${ }^{21}$ Sheppard has found the $\mathrm{O}=\mathrm{S}$ -

Table II. $\mathbf{p} K_{\mathrm{a}}$ of Substituted Acetic Acids in $i-\mathrm{PrOH}$ at $25^{\circ} \mathrm{C}$

Registry no.	Compd	$\mathrm{p} K_{\mathrm{a}}$	$\sigma * a$
$79-09-4$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$	8.61	-0.100
$64-19-7$	$\mathrm{CH}_{3} \mathrm{COOH}$	8.27	0.000
$79-14-1$	$\mathrm{HOCH}_{2} \mathrm{COOH}$	6.94	0.555
$79-08-3$	$\mathrm{BrCH}_{2} \mathrm{COOH}$	6.25	1.000
$79-11-8$	$\mathrm{ClCH}_{2} \mathrm{COOH}$	6.16	1.050
$79-43-6$	$\mathrm{Cl}_{2} \mathrm{CHCOOH}_{3}$	4.81	1.940
$57606-66-3$	$\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OCH} \mathrm{COOH}_{2} \mathrm{COOH}$	4.50	$1.947 b$
$76-05-1$	$\mathrm{CF}_{3} \mathrm{COOH}^{\circ}$	3.31	2.58
a From ref $14 . b$ This work.			

$(=\mathrm{O}) \mathrm{CF}_{3}$ group to be one of the most electron-withdrawing neutral groups ($\sigma_{\mathrm{p}}=0.93$) known. ${ }^{18}$ Thus, when substituted for the CF_{3} group in a phenyl "ether", its effect should be at least as great as the CF_{3} group, and no $\mathbf{p}_{\pi}-\mathbf{p}_{\pi}$ interaction of the oxygen p atomic orbitals with the benzene ring should be expected. However, as shown by experiment, exactly the opposite is observed. One must then either assume that the $\mathrm{O}=\mathrm{S}(=0) \mathrm{CF}_{3}$ group has no effect on the oxygen atom and that the electron donation from the triflate group is occurring solely from the p atomic orbitals of the oxygen atom or, more likely, that extensive delocalization of electrons is occurring through the sulfur atom of the triflate group out to the "sulfone" oxygen atoms. The sulfur atom of a sulfonate has no electrons to donate by resonance, since all of its electrons are used in forming the approximately tetrahedral σ framework of the sulfonate group and in double bonds to the two "sulfone" oxygen atoms. If the sulfur atom could itself donate electrons, then sulfone groups would be expected to have a negative σ_{R}, which they do not have (see Table III).

Recently, Crossland ${ }^{22}$ has presented evidence that the leaving ability of various sulfonate esters under limiting SN1 solvolysis conditions is correlated with the inductive effect of the group, G, on sulfur. However, Crossland used

σ_{m} to estimate the inductive effect of the group, G. If only inductive effects were operating, then σ_{I} would be a far better estimate of electron-withdrawing ability than σ_{m}, which contains about 22% resonance contribution. ${ }^{23}$ However, inspection of the σ_{I} data for the group, G , on sulfur would lead one to predict that, contrary to fact, fluorosulfonates solvolyze faster than triflates.
Perhaps a better explanation of leaving ability and electronic influence of the sulfonate esters can be had by examining the effect of the group, G, on the d orbitals of sulfur, through which sulfur can interact with oxygen by virtue of $3 \mathrm{~d}_{\pi}-2 \mathrm{p}_{\pi}$ bonding. ${ }^{24}$ It is well known that attachment of electronegative ligands to sulfur contracts the d orbitals of sulfur. ${ }^{24}$ In a sulfonate ester the sulfur is bonded to three oxygen atoms; the effect of the fourth group, G, as an electronegative ligand would be to further contract the d orbitals of sulfur, allowing still better overlap of the "sulfone" and "ester" oxygen 2p atomic orbitals with the sulfur 3d orbitals, and thus further enhancing the $3 \mathrm{~d}_{\pi}-2 \mathrm{p}_{\pi}$ interactions. Indeed, the σ_{R} for the tosylate and mesylate groups are approximately equal, but the σ_{R} for the triflate group is much larger. This increase in resonance is probably due to the greater effect of the CF_{3} group as an electronegative ligand on the $3 \mathrm{~d}_{\pi}-2 \mathbf{p}_{\pi}$ interactions of the "sulfone" and "ester" oxygen atoms. In effect, a greater delocalization of

Table III. Summary of Substituent Constants for Various Sulfur and Oxygen Containing Substituents

Substituent (x)	$\sigma_{\mathrm{p}(z)}$	$\sigma_{R(x)}$	$\sigma_{\mathrm{I}(\mathrm{x})}$	$\sigma_{\text {m(x) }}$	$C^{*}\left(\mathrm{xCH}_{2}\right)$	Ref
O						
$\mathrm{CH}_{3} \mathrm{SO}-$	+0.33	-0.28	+0.61			This work
0	+0. 56			+1. 39		5
O						
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}-$	+0.33			+ 0.36		5
0						
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}-$	+0.29	-0.21	+0.54			This work
O			+0.59		+1.31	3
O						
$\mathrm{CF}_{3} \mathrm{SO}-$	+0.47	-0.36	+0.84 (0.89)		+1.98	This work
0	+0.53	-0.05	+0.58	+1). 56		4
O						
$\begin{gathered} \mathrm{CH}_{3} \mathrm{~S}- \\ \mathrm{O} \end{gathered}$	+0.72	+0.14	+0.62	+1). 65		2, 18
\bigcirc						
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}-$	+0.67	+0.12	+0.55			19
O						
$\begin{gathered} \mathrm{CF}_{3} \mathrm{~S}- \\ \mathrm{O} \end{gathered}$	+0.03	+0.22	+0.69			18
$\mathrm{CH}_{3} \mathrm{O}-$	-0.27	-0.47	+0.21	$+1.12$		2,18
$\mathrm{CF}_{3} \mathrm{O}-$	+0.35	-0.13	+0.51	+1. 40		18
$\mathrm{CH}_{3}-$	-0.17	-0.10	+0.06	$\bigcirc 0.07$	0.00	2
$\mathrm{CF}_{3}-$	+0.54	+0.12	+0.39			2, 18

electrons from the R groups via the single $\mathrm{S}-\mathrm{OR}$ bond through sulfur to the "sulfone" oxygens occurs in the triflate group than in the mesylate or tosylate groups.

Using a methyl sulfonate as a model, a qualitative mechanism can be inferred for the liniting SN1 solvolysis of sulfonate esters. As the O-R bond lengthens, the "ester" oxygen begins to rehybridize from sp^{3} to sp^{2}. As the lone pair electrons on the "ester" oxygen begin to develop more p character, aided by delocalization into the lowest lying empty d orbital of sulfur, the σ framework begins to contract owing to its increase in s character. Eventually, the $\mathrm{O}-\mathrm{R}$ bond is broken and the charge spread equally over the three oxygen atoms of the sulfonate anion. Internal return and scrambling of the ester oxygen can then occar depending on the nucleophilicity of tae sulfonate anion and the stability of the carbonium ion g?nerated.
Using such a mechanism, it can readily be seen why a fluorosulfonate ester solvolyzes slower under limiting SN1 conditions than a triflate ester During the initial stage of the reaction, the developing p lobe of the "ester" oxygen must compete with back-bondiag from the fluorine atom of the fluorosulfonate for the low?r lying empty d orbitals of sulfur. The σ_{I} of a fluorine aton is +0.52 whereas that of a CF_{3} group is +0.41 . Thus, althc ugh the electron-withdrawing ability of a fluorine atom is much greater than that of a CF_{3} group, and presumably the d orbitals of sulfur in a fluorosulfonate ester are more contracted wita fluorine present, a fluorosulfonate solvolyzes slightly slower owing to $3 \mathrm{~d}_{\pi}-2 \mathrm{p}_{\pi}$ backbonding from fluorine to sulfur. ${ }^{25}$
The carbon atoms of mesylate and tosylate would be expected to have less of an effect on the sulfur d orbitals and thus would be expected to have a smaller negative σ_{R} and solvolyze slower, as found by experiment. Since the σ_{R} constants for the tosylate and mesplate groups are nearly identical, this implies that the tolyl and methyl groups affect $3 d_{\pi}-2 \mathrm{p}_{\pi}$ interactions approximately to the same extent, and leaving ability then becomes dependent on the difference in σ_{I} of these two substitu n nts.

As an extension of these ideas, a tentative explanation for the electron-withdrawing effect of the $\mathrm{CH}_{3} \mathrm{SO}_{2}$ or $\mathrm{CF}_{3} \mathrm{SO}_{2}$ groups can be offered. In these groups fewer electronegative ligands are present than in the sulfonate esters. The effect on $3 \mathrm{~d}_{\pi}-2 \mathrm{p}_{\pi}$ bonding may be to raise the energy
of the lowest unoccupied d orbital on sulfur to such a level that resonance through sulfur to the sulfone oxygens is inhibited, thus making the sulfur atom which is still in a promoted hexavalent state into an electron sink via its empty d orbitals. With even fewer ligands on sulfur, as in the case of substituted sulfides, spare pairs of electrons become available for donation via $3 p_{\pi}-2 p_{\pi}$ interactions and the sign of σ_{R} jecomes negative for most groups incapable of strong interactions with sulfur, i.e., $\sigma_{\mathrm{R}\left(\mathrm{S}-\mathrm{CH}_{3}\right)}=-0.28$ vs. $\sigma_{\mathrm{R}\left(\mathrm{S}-\mathrm{CF}_{3}\right)}$ $=+0.17$, although the net flow of electrons using an spd basis set is still in the direction of sulfur, ${ }^{26}$ i.e., $\sigma_{\mathrm{p}\left(\mathrm{S}-\mathrm{CH}_{3}\right)}=$ 0.00 . 2

Experimental Section

General. All boiling points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Associates A-60 spectrometer and data are given in δ (parts per million) relative to internal tetramethylsilane ($\delta 0$) as indicated. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian Associates A-56/60A spectrometer operating at 56.40 Hz at 25 ± 1 ${ }^{\circ} \mathrm{C}$ relative to internal fluorobenzene ($\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}, \hat{o} 0$). All ir spectra were recorded on a Beckman IR-5A and are reported in wavenumbers (cm^{-1}) calibrated to the $1603-\mathrm{cm}^{-1}$ line of polystyrene. Either a Varian Aerograph $90-\mathrm{P}$ or 920 gas chromatograph using a $5 \mathrm{ft} \times$ 0.25 in. 10% SF-96 on 60/80 Chrcmosorb W was used for preparative work. A $6 \mathrm{ft} \times 0.125 \mathrm{in}$. 10% UC-W98 column was used for flame ionization GLC analysis performed on a Hewlett-Packard 700 laboratory chromatograph coupled to a Hewlett-Packard 3370B integrator. Titration curves were recorded on a Metrohm Herisau E 436 potentiograph using an E 436 D automatic pipet and EA 120X combination glass electrode.

Reagents. p-Nitrobenzoic acid, p-hydroxybenzoic acid, p-chlorobenzoic acid, p-methoxybenzoiz acid, p-methylbenzoic acid, dichloroacetic acid, and bromoacet:c acid were purchased from Matheson Coleman and Bell. p-Bromobenzoic acid and propanoic acid were purchased from Eastman. p-Toluenesulfonic acid was purchased from both Eastman and Matheson Coleman and Bell and was used without further purification. m-Fluorophenol was purchased from Sigma Chemical Co. and was distilled before use. Acetic acid was purchased from Allied Chemical Co. Trifluoroacetic acid, glycolic acid, glycine, and methanesulfonyl chloride were purchased from Aldrich Chemical Co. p-Toluenesulfonyl chloride was purchased from Matheson Coleman and Bell and was purified according to Pelletie:.${ }^{27}$ Bromine, sodium nitrite, chloroacetic acid, sodium hydroxide, and potassiun hydroxide were purchased from Mallinckrodt.

Purification of Benzoic Acids Used. With the exception of anisic acid, the benzoic acids were recrystallized first from ethanol and then from water, pretreating each solution with charcoal, then
sublimed at 0.01 mm . Anisic acid was purified by dissolution in water made alkaline with excess NaOH , the solution warmed to 40 ${ }^{\circ} \mathrm{C}$, and KMnO_{4} crystals added with stirring until the purple color of MnO_{4}^{-}persisted for 5 min . The solution was then cooled to 25 ${ }^{\circ} \mathrm{C}$ and NaHSO_{3} crystals added until the purple color was discharged. The MnO_{2} produced was filtered and the anisic acid precipitated from the colorless filtrate by addition of excess concentrated HCl . The anisic acid was then recrystallized from water to yield $3.8-\mathrm{cm}$ needles which were collected by suction filtration, air dried, and sublimed in vacuo at $0.01 \mathrm{~mm} .{ }^{28}$ All of the benzoic acids used had melting points in good agreement with accepted literature values.

Acetic, propanoic, chloroacetic, bromoacetic, dichloroacetic, and trifluoroacetic acids were fractionally distilled either at ambient pressure or at reduced pressure through a $10-\mathrm{cm}$ Vigreux column taking only a center cut whose boiling point corresponded to accepted literature values. Glycolic acid and glycine were of reagent quality and were used without further purification.

Determination of $\mathbf{p} K_{\mathrm{a}}{ }^{\prime} \cdot{ }^{29}$ Distilled water was treated with KMnO_{4}, refluxed for 1 h , and then twice distilled using an Ascarite tube for protection from atmospheric CO_{2}. Ethanol was dried according to Manske ${ }^{30}$ and protected during distillation from a:mospheric moisture and CO_{2} by tubes filled with Drierite and Ascarite. The water and ethanol were thermostated to $20^{\circ} \mathrm{C}$ in i-l. volumetric flasks prior to mixing to make 50% aqueous ethanol (v / v). Approximately 0.07 g of the substituted benzoic acids were dissolved in 100 ml of the solvent and then $30-\mathrm{ml}$ aliquots were titrated at $25 \pm 1^{\circ} \mathrm{C}$ with carbonate-free NaOH prepared in the same solvent. The midpoint of the titration curve was read grephically to determine the $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$. In no titration run did the resultant $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ differ by more than 0.01 pH unit from the average and in most runs no detectable difference was observed. Prior to each determination the glass electrode used was standardized against two known buffers, rinsed well with distilled water, gently dried with a tissue, immersed in a blank of 50% aqueous ethanol (v / v), and finally immersed in the sample to be titrated. After each titration the electrode was again checked against two known buffers. No drift was observed in the electrode. ${ }^{31}$

Determination of σ^{*} of the Trifluoromethanesulfonyloxy Group. Owing to observed leveling of dichloroacetic acid anc trifluoroacetic acid in 50% aqueous ethanol (v / v) and 80% aqueous ethanol (v / v), anhydrous 2-propanol was chosen as the titration solvent. Reagent grade anhydrous isopropyl alcohol was fractionally distilled before use while protected from atmospheric CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ by an Ascarite tube and Drierite tube. Potassium hydroxide from a freshly opened bottle was dissolved in anhydrous 2 -propanol and was used to titrate 0.003 M samples of substituted acetic acids dissolved in 2-propanol in a manner similar to that descr:bed for the p-substituted benzoic acids. The $\mathrm{p} K_{\mathrm{a}_{(1 . \mathrm{PrOH})}}$ was determined graphically from the midpoint of the titration curve.

Determination of Relative Bromination Rate. 2-Bromo-3-methyl-2-butene was prepared ${ }^{32}$ and purified by GLC. 3-Methyl2 -buten-2-yl trifluoromethanesulfonate was prepared ${ }^{33}$ and purified by GLC. Approximately equal volumes of 2-bromo-3-methyl-2-butene and 3-methyl-2-buten-2-yl trifluoromethanes alfonate were injected into a serum-capped vial at $25^{\circ} \mathrm{C}$ containing 4 ml of CCl_{4}. Then five samples were withdrawn and analyzed on a flame ionization GLC to determine the relative ratio of the two components. A small amount of Br_{2} in CCl_{4} was injected into the vial and after complete discharge of the color of $\mathrm{Br}_{2}(\sim 10 \mathrm{~min})$ five samples were withdrawn with a syringe and analyzed as before, resulting in an average value of $k_{\mathrm{Br}} / k_{\mathrm{OHf}}=2.9$. Since the bromination products were not stable to the GLC conditions, the disappearance of the starting materials was used for the rate measurement.

Synthesis of Compounds. The phenylsulfonic esters were synthesized either by the pyridine method, A, or by a Schotten-Baumann reaction, B.

3-Fluorophenyl p-Toluenesulfonate. Method A. To 1.00 g of freshly distilled 3 -fluorophenol was added an equal volume of pyridine, followed by 1.71 g of freshly purified p-toluenesulfonyl chloride. The mixture became warm and was heated on the stecm bath for 10 min , cooled, and poured into 10 ml of $\mathrm{H}_{2} \mathrm{O}$. The ester precipitated at once and was filtered, dissolved in ethanol, and treated with charcoal, the charcoal was removed by filtration, and the filtrate was evaporated to dryness on the steam bath. The white solid was recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ to give $1.52 \mathrm{~g}(57 \%)$ of colorless needles: mp 47.5-48.5 ${ }^{\circ}$; ir (Nujol mull) 1370, 1191, 1177 ($\mathrm{S}=\mathrm{O}$), 1242 (aromatic C-F); ${ }^{19} \mathrm{~F}$ NMR $\delta 155.5 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SJ}-d_{5}$) δ 2.43 (s, 3), 7.60 (d of q, 8), 13.1 (br s, 1); mass spectrum m/e (rel intensity) $266\left(\mathrm{M}^{+}, 30\right), 202(22), 156$ (49), 155 (52), 91 (100).

Phenyl Trifluoromethanesulfonate. Method B. To 6.00 g of phenol in 60 ml of $\mathrm{H}_{2} \mathrm{O}$ was added 6.00 g of NaOH and the mixture was shaken until dissolved. Then 20.22 g of trifluoromethanesulfonic anhydride dissolved in 20 ml of CCl_{4} was added while stirring and cooling in an ice bath. The mixture was stirred for an additional 1.5 h , the CCl_{4} layer separated in a separatory funnel, and the aqueous layer washed with 5 ml of CCl_{4}. The CCl_{4} solution was dried over MgSO_{4}, the MgSO_{4} filtered off, and the CCl_{4} removed on a rotary evaporator at aspirator pressure: crude yield 11.72 g (81%), redistilled $9.10 \mathrm{~g}(63 \%)$; bp $87-88^{\circ} \mathrm{C}(13 \mathrm{~mm})$ [lit. ${ }^{34} \mathrm{bp} 99-$ $100^{\circ} \mathrm{C}(60 \mathrm{~mm})$ and $51-53^{\circ} \mathrm{C}(1 \mathrm{~mm})^{35}$]; ir (neat) 1421,1212 ($\mathrm{S}=\mathrm{O}$), $1248(\mathrm{C}-\mathrm{F}), 1600,1585,1484,1456 \mathrm{~cm}^{-1}$ (aromatic $\mathbf{C}=\mathrm{C}$).

3-Fluorophenyl Methanesulfonate. Method A. The product was recrystallized four times from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ at $-70^{\circ} \mathrm{C}$ to obtain $0.41 \mathrm{~g}(21 \%)$ of colorless needles: mp 23.5-24.5${ }^{\circ}$; ir (Nujol mull) 1379, $1182(\mathrm{~S}=\mathrm{O}), 1248 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{F}) ;{ }^{19} \mathrm{~F}$ NMR $\delta 181.3 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 3.47$ (s, 3), 7.83 ($\mathrm{q}, 4$), 12.7 ($\mathrm{br} \mathrm{s}, 1$); mass spectrum m / e (rel intensity) 190 (M.+ ${ }^{+}$56), 126 (10), 112 (100), 96 (22).
$\mathbf{3}$-Fluorophenyl Trifluoromethanesulfonate. Method B. The product was purified by distillation to obtain a colorless oil: bp $46-47^{\circ} \mathrm{C}(3.6 \mathrm{~mm})$ [lit..$\left.^{6} 60^{\circ} \mathrm{C}(20 \mathrm{~mm})\right]$; mp $11.5-12.4^{\circ} \mathrm{C}$; ir (neat) $1429,1214 \mathrm{~cm}^{-1}(\mathrm{~S}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR $\delta 259 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) δ 7.90 ($\mathrm{q}, 4$), 12.87 (br s, 1); mass spectrum m / e (rel intensity) 244 (M.+ 62), 180 (50), 152 (11), 111 (100).

4-Carboxyphenyl p-Toluenesulfonate. Method B. The product was recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ as needles, 11.5 g (54\%), sublimed at $149{ }^{\circ} \mathrm{C}(0.5 \mathrm{~mm})$: mp $168-168.5^{\circ} \mathrm{C}$ uncorrected (lit. ${ }^{36}$ $167-169^{\circ} \mathrm{C}$ uncorrected); ir (Nujol mull) $1686(\mathrm{C}=0), 1429,1201$, $1174 \mathrm{~cm}^{-1}(\mathrm{~S}=0)$.

4-Carboxyphenyl Methanesulfonate. Method B. The product was recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$, sublimed at $185^{\circ} \mathrm{C}(0.2$ mm): mp 219-220 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{16} \mathrm{mp} 224^{\circ} \mathrm{C}$ corrected); ir (Nujol mull) 1684 ($\mathrm{C}=\mathrm{O}$), 1425, 1199, $1168 \mathrm{~cm}^{-1}$ ($\mathrm{S}=\mathrm{O}$).

4-Carboxyphenyl Trifluoromethanesulfonate. Method B. The product was recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, 6.12 \mathrm{~g}(31.2 \%)$, sublimed at $140{ }^{\circ} \mathrm{C}(0.2 \mathrm{~mm}): \mathrm{mp} 168-170{ }^{\circ} \mathrm{C}$ uncorrected (lit. ${ }^{4}$ $175-177{ }^{\circ} \mathrm{C}$ corrected); ir (Nujol mull) $1686(\mathrm{C}=0), 1418,1212$ ($\mathrm{S}=0$) , $1250 \mathrm{~cm}^{-1}\left(\mathrm{CF}_{3}\right)$.

4-Nitrophenyl Trifluoromethanesulfonate. Phenyl trifluoromethanesulfonate (1.00 ml) was added to a mixture of 6 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 6 ml of concentrated HNO_{3}, precooled to $0-5$ ${ }^{\circ} \mathrm{C}$ in an ice bath. The mixture was left at $0-5^{\circ} \mathrm{C}$ for 14 h and ice then added to precipitate a white solid. This was recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ to give white plates, $\mathrm{mp} 54-55^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp} \mathrm{51-52}$ ${ }^{\circ} \mathrm{C}$, lit. ${ }^{35} \mathrm{mp} 53-54^{\circ} \mathrm{C}$).
2,4-Dinitrophenyl Trifluoromethanesulfonate. Phenyl trifluoromethanesulfonate (0.5 ml) was added to 6 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a $25-\mathrm{ml}$ Erlenmeyer flask and stirred. Very little ester appeared to dissolve in the $\mathrm{H}_{2} \mathrm{SO}_{4}$. Then 3 ml of concentrated HNO_{3} was added at room temperature and the reaction mixture was heated for 2 h on the steam bath and quenched with ice, and the product was worked up in the same manner as 4 -nitrophenyl trifluoromethanesulfonate to give plates, $\mathrm{mp} 52-53{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp}$ $51-52^{\circ} \mathrm{C}$). The plates were treated with 1 g of NaOH dissolved in 10 ml of EtOH and 10 ml of $\mathrm{H}_{2} \mathrm{O}$, heated for 30 min on the steam bath, made acidic with concentrated HCl , and concentrated on a rotary evaporator to 10 ml , and the faint yellow crystals were isolated and recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(1: 5 \mathrm{v} / \mathrm{v})$ to give crystals, $\mathrm{mp} 114-115{ }^{\circ} \mathrm{C}$. A mixture melting point with authentic 2,4-dinitrophenol was undepressed. An ir taken was identical with that of authentic 2,4-dinitrophenol.

Glycolic Acid Trifluoromethanesulfonate. Glycine benzyl ester p-toluenesulfonate ${ }^{37}$ was diazotized ${ }^{38}$ and treated with trifluoromethanesulfonic acid, ${ }^{39}$ the benzyl ester removed by catalytic hydrogenolysis, ${ }^{40}$ and the product recrystallized from CCl_{4} to give white needles: mp $58-59{ }^{\circ} \mathrm{C}$; ir (melt) $3000,1750(\mathrm{C}=0), 1413$, $1214,1142(\mathrm{~S}=\mathrm{O}), 1242\left(\mathrm{CF}_{3}\right), 1032,861,814,769 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.98(\mathrm{~s}, 2), 10.52(\mathrm{~s}, 1)$.

Determination of Taft σ_{I} and σ_{R} substituent Parameters. The literature ${ }^{8}$ procedure using $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ as an internal standard in CCl_{4} solution was followed; σ_{1} was determined from the average of six runs by the equation $\delta_{\mathrm{m}}{ }^{\mathrm{F}}=0.61 \sigma_{\mathrm{I}}-0.05$. The Taft σ_{R} parameter was determined from the equation $\sigma_{\mathrm{p}}=\sigma_{\mathrm{I}}+\sigma_{\mathrm{R}}$.

Acknowledgments. This investigation was supported by Public Health Service Research Grant 1-RD-CA1690301 from the National Cancer Institute. We are grateful to Dr. James McCloskey for mass spectrometric determinations and Mr. Sim D. Lessley for the ${ }^{19} \mathrm{~F}$ spectra.

Registry No.-3-Fluorophenol, 372-20-3; p-toluenesulfonylchloride, 98-59-9; phenyl trifluoromethanesulfonate, 17763-67-6; phenol, 108-95-2: trifluoromethanesulfonic anhydride, 358-23-6; glycine benzyl ester p-toluenesulfon ate, 1738-76-7.

References and Notes

(1) R. D. Howells and J. C. McCown, Crem. Rev., in press
(2) C. D. Ritchie and W. F. Sager, Prog. Phys. Org. Chem., 2, 323 (1964)
(3) J. Hine and O. B. Ramsay, J. Am. Crem. Soc., 84, 973 (1S62).
(4) L. M. Yagupol'skii and V. P. Naza etyan, J. Org. Chem. USSR, Engl. Transl., 7, 1016 (1971).
(5) O. Exner and J. Lakomý, Collect. Jzech. Chem. Commun., 35, 1371 (1970).
(6) (a) J. D. Roberts, E. A. McElhill, anc R. Armstrong, J. Am Chem. Soc., 71, 2923 (1949); (b) D. H. McDaniel and H. C. Brown, J Org. Chem., 23, 420 (1958).
(7) All $p K_{a}$ measurements were carries out in triplicate on carefully purified compounds with a reproducibility of $1-2 \%$.
(8) R. W. Taft, Jr., et al., J. Am. Chem. Joc., 81, 5343, 5352 (1959).
(9) Assuming σ_{p} to be correct, substitution of the value for σ_{1} cbtained from ${ }^{19} \mathrm{~F}$ NMR in the equation given by laft ${ }^{8}$ yields a σ_{m} value higher than that obtained in ref 4 or 5 , implying that the dissociation of the meta sulfonate substituted benzoic acids is being repressed; th is may arise through intramolecular hydrogen bciding between the "sulfone" oxygens and the carboxylate group, which possesses an O-O distance of $2.8 \AA$, as revealed by models, in good agreement with the average H bond $\mathrm{O}-\mathrm{O}$ distance of 2.78 ± 0.10 as found by x -ray diffraction ${ }^{10}$. A similar situation exists in $\mathrm{H}_{2} \mathrm{O}$ for Λ N-dimethylanthranilic acid, $\mathrm{p} K_{\mathrm{a}}=$ 8.59 ± 0.02, vs. benzoic acid, $\mathrm{p} K_{\mathrm{a}}=4.24 .^{11}$ The repression may also be due to a variation in hydration; the $\mathrm{p} K_{\mathrm{a}}$ of pyruvic aciy varies with hydration, i.e., ΣK_{a} (unhydrated) $=1 \overline{\mathrm{I}}, \mathrm{p} K_{\mathrm{a}}$ (hydrated) $\left.=3.1\right)^{12}$
(10) S. N. Vinogradov and R. H. Linnell, 'Hydrogen Bonding', Van NostrandReinhold, Princeton, N.J., 1971, p 177.
(11) J. L. Haslam, Ph.D. Thesis, Universit ${ }^{-1}$ of Utah, 1966.
(12) N. Hellstrom and S. Almqvist, J. Chen. Soc. B, 1396 (197C).
(13) W. Adcock, M. J. S. Dewar, R. Golden, and M. A. Zeb, u. Am. Chem. Soc., 97, 2198 (1975), and references cited therein.
(14) R. W. Taft, Jr., in "Steric Effects in Crganic Chemistry". M. S. Newman, Ed., Wiley, New York, N. Y., 1956, p 556; J. W. Dallinga a 1 J. B. F. N. Engberts, Spectrochim. Acta, 30A, -923(1974).
(15) F. Reverdin and P. Crepieux, Ber., 35, 1439 (1902).
(16) C. Schall, J. Prakt. Chem., 48, 241 (1893).
(17) Steric factors and differential solvaion may also play a role in this rate difference.
(18) W. A. Sheppard, J. Am. Chem. Soc. 85, 1314 (1963).
(19) C. Y. Meyers, B. ©remonini, and L. Maioli, J. Am. Chem. Soc., 86, 2944 (1964).
(20) A. D. Baker. D. P May, and D. W. Turner, J. Chem. Soc. B, 22 (1968).
(21) One might speculate that the p atomic orbital of oxygen is drawn toward the CF_{3} group by acceptance of its p electrons into the antibonding orbitals of the perfluoroalkyl group's C-F bonds.
(22) R. K. Crossland, W. E. Wells, and V. J. Shiner, Jr., J. Am. Chem. Soc., 93. 4217 (1971).
(23) C. S. Swain and E. C. Lupton, Jr., J. Am. Chem. Soc., 90, 4328 (1968).
(24) For discussion of c-orbital effects see (a) R. G. A. R. Maclagan, J. Chem. Soc. A, 22 (1971); (b) G. Cilento, Chem. Rev., 60, 146 (1960); (c) H. Bock and E. Solouki, Angew. Chem., Int. Ed. Engl., 11, 436, 927 (1972); (d) R. L. DeKock, D. R. Lcyd, I. H. Hillier, and V. F. Saunders, Proc. R. Soc., Ser. A, 401 (1972); 'e) R. J. Gillespie and E. A. Robinson, Ca.7. J. Chem., 41, 2074 (1963); (f) A. Rauk, S. Wolfe and I. G. Csizmadia. ibid., 47, 113 (1969); (g) F. Bernardi et al., J. Am. Chem. Soc., 97, 2209 (1975).
(25) Competitive back-bonding has been observed in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NSO}_{2} \mathrm{~N}_{(}\left(\mathrm{CH}_{3}\right)_{2}$. T. Jordan. H. W. Smith, L. L. Lohr, Jr., and W. N. Lipscomb, J. Am. Chem. Soc., 85, 846 (1963).
(26) O. Kajimoto, M. <obayashi. and -. Fueno, Bull. Chem. Soc. Jpn., 46, 2316 (1973).
(27) S. W. Pelletier, Chem. Ind. (Londo7). 1034 (1953).
(28) We thank Mr. K. L. Smouse for suggesting this procedure.
(29) The term $\mathrm{p} K_{\mathrm{a}}^{\prime}$ refers to the observed $\mathrm{p} K_{\mathrm{a}}$ in 50% aquezus ethanol $(\mathrm{v} / \mathrm{J}){ }^{6 \mathrm{~b}}$
(30) R. H. Manske, J. Am. Chem. Soc., 53, 1106 (1931).
(31) It should be noted that the $p K_{a}^{\prime}$ values determined in this manner for known para-substituted benzoic acids differ slightly from those already in the literature that were determined either by the glass electrode or by the hydrogen elect-ode. We have chosen not to correc: our values since only relative $p K_{a}$ values are important in determining Hammett σ_{p} constants and since we also feel that slight variations $\mathrm{n} \mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ most likely arise from differences in somposition and conditioning of the glass electrode and not through fa alty technique
(32) W. Krestinsky. Ber., 55, 2770 (1922).
(33) P. J. Stang, R. J. Hargrove, and T. E. Dueber, J. Chem. Soc., Perkin Trans. 2, 843 (1974).
(34) E. Effenberger and K. E. Mack, Te:rahedron Lett., 3947 (1970).
(35) R. L. Hansen, U.S. Patent 3346612 (1967).
(36) W. J. Dale and H. E. Hennis, J. Am. Chem. Soc., 78, 2544 (1956).
(37) L. Zervas, M. Winitz, and J. P. Greenstein, J. Org. Chem., 22, 1515 (1〔57).
(38) N. E. Searie, "Organic Syntheses'", Collect. Vol. IV, Wiley, New York, N.Y., 1963, p 424.
(39) B. Holmberg. Ber., 41, 1341 (1908)
(40) W. H. Hartung and R. Simonoff, Ory. React., 7, 263 (1953).

Secondery Deuterium Isotope Effects in the Solvolysis of cisand trans-2-Acetoxycyclohexyl 2,2,2-Trifluoroethanesulfonates

S. Rich-er, I. Bregovec, and D. E. Sunko*
Labora:ory of Organic Chemistry, Faculty of Natural Sciences and Mathematics, University of Zagreb, 41000 Zagreb, Yugoslavia

Received October 1, 1375

The 2,2,2-trifluoroetzanesulfonates (tresylates) of specifically deuterated cis-2-acetoxycyclohexanol (cis-1 $\beta \mathrm{d}$, cis-1 αd, cis-1 $\beta^{\prime} d_{2}$) and trans-2-acetoxycyclohexanol (trans-1 βd, trans-1 αd, trans-1 $\beta^{\prime} d_{2}$) were solvolyzed in 97 wt $\%$ trifluoroethanol at $9:$ and $55^{\circ} \mathrm{C}$, respectively, and the secondary deuterium isotope effects were measured. The solvolysis products from the trifluoroethanolysis of the unlabeled isomeric tresylates cis-1 ard trans-1 were also determined. The α effect in trans $1 \alpha d$ is similar in magnitude to the effects observed in SN2 reactions ($k_{\mathrm{H}} / k_{\mathrm{D}}=$ 1.03). The β effects in :rans-1 βd and trans $-1 \beta^{\prime} d_{2}$ are also small ($k_{H} / k_{D}=0.98$ and 1.04. respectively), reflecting the absence of significant hyperconjugative stabilization. These results are in agreement with a transition state structure closer to the oxonium ion intermediate than to the reactants. The results obtained in the solvolysis of the corresponding cis derivatives are significantly different. The α effect is large ($k_{\mathrm{H}} / k_{\mathrm{D}}=1.20$) indicating that ionization to the solver t-separated ion pair is rate determining, while the β effects are "normal" but larger for cis$1 \beta d$ (1.34) than for $c i s-1 \beta^{\prime} d_{2}$ (1.23). On the basis of these results it was concluded that the cis derivative solvolyzes via a twist-boat transition state. The present work demonstrates the sensitivity of secondary deuterium isotope effects to structural ch anges of solvolytic transition states.
"The deuterium isotope effect has become one of the most important of the tools wich physical organic chemists employ in the elucidation of the mechanisms of chemical reactions", but "a dilemma has plagued the :nterpretation of the experimental data" In 1961 when Westheimer wrote these lines, ${ }^{1}$ the dilemma was associated with a spectrum of values of the ratio $k_{\mathrm{H}} / k_{\mathrm{D}}$. Regretfully, a lack of understanding of the meaning of differences in the magni-
tudes of observed isotope effects still pertains today. ${ }^{2}$ In spite of a satisfactory theore-ical treatment of isotope effects, primary ${ }^{3}$ as well as secondary, ${ }^{3,4}$ the interpretation of isotopic rate data rests mostly on the empirical comparison of these effects in systematically varied and closely related systems. The success of such an approach has been amply demonstrated by Shiner and co-workers ${ }^{5}$ in their studies of nucleophilic substitution reactions.

We have shown ${ }^{6}$ that the magnitude of secondary isctope effects changes in a predictable manner with the degree of bond breaking and bond making in the transition states of reactions proceeding with neighboring group participation. These studies involved mostly π and σ participation, whereas only a few data are known for n-participating systems. ${ }^{7}$ In the present paper, we report kinetic and product studies on the trifluoroethanolysis of specifically deuterated cis- and trans-2-acetoxycyclohexyl 2,2,2-trifluorcethanesulfonates (tresylates). The solvolysis mechanism of the corresponding tosylates was elucidated in detail by Winstein, ${ }^{8}$ which makes this substrate particularly appropriate for systematic studies of the mechanistic meaning of small differences in the $k_{\mathrm{H}} / k_{\mathrm{D}}$ values.

Results

Undeuterated cis- and trans-2-acetoxycyclohexyl tresylates (trans-1, cis-1) were prepared according to Scheme I

Scheme I

using a slightly modified version of the published procedures. ${ }^{9,10}$

The synthesis of specifically deuterated substrates (cis$1 \beta d$, trans- $1 \beta d$, cis-1 αd, trans $-1 \alpha d$, cis $-1 \beta^{\prime} d_{2}$, trans $-1 \beta^{\prime} d_{2}$) could not be accomplished by the more convenient tresylation of deuterated 2-acetoxycyclohexanol, because preliminary examinations have shown that any method involving the preparation of sulfonate esters from 2-acetoxycyclohexanols leads to migration of the acetyl group. ${ }^{11}$ In our case such a migration results in distribution of deuterium between positions 1 and 2 in the cyclohexane ring:

Therefore indirect synthetic routes, shown in Schemes II-IV, were developed for the preparation of specifically deuterated 2 -acetoxycyclohexyl tresylates.
The synthetic scheme required the introduction of the tresyl group at an early stage of the synthesis. Fortunately no significant loss of material due to hydrolysis was observed during subsequent steps. However, some unavoidable loss of deuterium was observed during the conversion of 8 to 10 .

Solvolyses of trans-2-acetoxycyclohexyl tresylates (trans-1, trans-1 βd, trans-1 αd, trans- $1 \beta^{\prime} d_{2}$) were accomplished in $97 \mathrm{wt} \% 2,2,2$-trifluoroethanol at $55^{\circ} \mathrm{C}$ for 3 h (about 3 half-lives). The rates were measured potentiometrically at a constant $\mathrm{pH} .{ }^{12}$ Standard ampule technique in the presence of 2,6 -lutidine had to be used for the less reactive tresylates cis-1, cis-1 βd, cis-1 αd, and cis-1 $\beta^{\prime} d_{2}$ (see Experimental Section for details). Clear first-order kinetic behavior was observed in all cases. The kinetic results are presented in Table I.

Table II gives the composition of solvolysis products as

Scheme II

Scheme III

Scheme IV

Table I. Deuterium Isotope Effects in the Solvoylsis of Some 2-Acetoxycyclohe $\Sigma y l$ Tresylates in G7\% TFE

Compd	Temp, ${ }^{\circ} \mathrm{C}$: $\times 10^{5}, \mathrm{~s}^{-1}$	$k_{\mathrm{H}}, k_{\mathrm{D}}{ }^{a}$
cis $1 \beta d$	93	$1.81(1)^{b}$	1.34 (3) ${ }^{\text {b }}$
trans-1 βd	55	21.0 (1)	0.98. 1 ()
cis-1 αd	93	2.01 (5)	$1.2 C^{\prime}$ (3)
	25^{c}		$1.25{ }^{\text {c }}$
trans-1ad	55	20.00 (8)	1.0: (1)
	25^{c}		$1.0 ¢ 3^{c}$
cis-1 $\beta^{\prime} d^{\prime}$	93	1.98 (5)	1.2 (6)
trans-1 $\beta^{\prime} d_{2}$	55	19.75 (8)	1.04 (1)

a The values are corrected to 100% deuterium content. Rate constants for undeuterate d compounds trains- 1 and cis- 1 were $2.050 \pm 0.006 \times 10^{-4} \mathrm{~s}^{-1}$ at $55^{\circ} \mathrm{C}$ and $2.43 \pm$ $0.04 \times 10^{-5} \mathrm{~s}^{-1}$ at $93^{\circ} \mathrm{C}$, respe stively. b The errors are given as standard errors, e.g., $1.34(31=1.34 \pm 0.03$. The values of the isotope effects were calculated using three (for cis$1 \beta d$, cis-1 αd, cis- $1 \beta^{\prime} d_{2}$) to six (or trans- $1 \beta d$, trans $-1 \alpha d$, trans-1 $\beta^{\prime} d_{2}$) individual rate constants for both deuterated and undeuterated compounds. = Calculated from the osserved values at higher temperaiures assuming no isotope effect in the Arrhenius preexpc nential factor. For the relative temperature independencき of β-deuterium $\supseteq f$ fects see ref 5, p 148.
established by gas chromatography. For comparison the necessary trifluoroethyl ethers $(20,21)$ were synthesized as shown below:

Discussion

The results obtained in the course of this wcrk leave litthe doubt tha: in the solvolysis of cis- and trans-2-cyclohexyl tresylate small differences in the values of secoadary deuterium isotope effects can be correlated with different transition state structures.

Only the trans isomer of the two isomeric acetoxy tresyl-

Table II. Solvolysis Products of cis- and trans-2-Acetoxy cyclohexyl Tresylates in $97 \mathrm{wt} \%$ TFE
Substrate
ates solvolyzes by acetoxy participation and the formation of a bridged intermediate. ${ }^{8,13}$

trans 1

In concert with this mechanism the magnitude of the observed α effect is characteristic for direct displacement reactions involving partial bond formation with the entering in eernal nucleophile. Such small effects have been observed
previously in SN2 reactions ${ }^{14}$ and in n-participating solvolyses. ${ }^{6}$ The rate effects of deuterium substitution in the β positions also support the established mechanistic pathway. The structure of the bridged cation, and consequently of the transition state leading to it, implies charge delocalization. In a delocalized bridged ion stereoelectronic factors render additional hyperconjugative stabilization by adjacent $\mathrm{C}-\mathrm{H}(\mathrm{D})$ bonds superfluous. ${ }^{12 a, 15}$ The β-isotope effects reflect this situation in detail. Labeling at C_{2} affords a small rate increase indicative of greater inductive electron withdrawal from the C-D bond relative to the C-H bond. ${ }^{16}$ The steric orientation of this bond also minimizes hyperconjugation. The rate effect of replacing deuterium for protium at C_{6} is also small but positive ($k_{\mathrm{H}} / k_{\mathrm{D}}=1.04$) revealing some hyperconjugative interaction with C_{1}. This is not surprising since bridging is probably not complete in the transition state and steric orientation of the $\mathrm{C}_{6}-\mathrm{D}$ bonds does not preclude hyperconjugation. The observed effect parallels those in other delocalized transition states. ${ }^{17}$ It is likely that here, as in cis-4-tert-butylcyclohexyl tosylate solvolysis, ${ }^{5}$ only the axial $\mathrm{C}_{6}-\mathrm{D}$ bond is properly oriented for interaction with the reaction center.

From the product composition it can be inferred that 97% TFE behaves similar to wet acetic acid. For this solvent Winstein proposed ${ }^{9}$ the intermediacy of orthoacetate which is formed from the initial acetoxonium ion by attack of water and loss of proton. This reaction affords cis-2-acetoxycyclohexanol, which was in our case the only procuct formed.

Inspecting the results obtained with the cis isomer an entirely different picture emerges. Here acetoxy participation is absent and the solvolysis is $\sim 10^{3}$ times slower (at $50^{\circ} \mathrm{C}$). The α effect is close to its maximum value for the solvolysis of sulfonate esters (~ 1.23) which is characteristic for ratedetermining formation of the solvent separated ion pair. ${ }^{28}$

The stereochemistry of the substitution products (90% inversion and 10% retention) also supports the formation of the solvent separated ion-pair intermediate. The substitution pathway should in this case be similar to the one observed in reactions of simple cyclohexyl derivatives in solvents of high ionizing power and low nucleophilicity. ${ }^{19}$

Both β effects are normal in magnitude and direction. However the $\mathrm{C}_{6}-d_{2}$ compound cis- $1 \beta^{\prime} d_{2}$ shows a smaller effect than the $\mathrm{C}_{2}-d_{1}$-tresylate cis-1 βd (1.23 vs .1 .34). This, we believe, can be rationalized as follows. In a chair conformation the axial and equatorial deuteriums at C_{6} are not equivalent for hyperconjugation ${ }^{20}$ and the effects should be 0.944 (equatorial) and 1.174 (axial), respectively. ${ }^{21}$ The maximal effect in this configuration should be 0.94×1.174 $=1.11$, which is considerably less than observed. However, cis-2-acetoxycyclohexyl tresylate, with two bulky groc.ps cis to each other, should prefer a twist-boat conformation. In this conformation the dihedral angles between the $\mathrm{C}_{6}-\mathrm{D}$ bonds and the developing p orbital at C_{1} are not optimal

$c i s-1$

for hyperconjugation but both deuteriums can interact partially, leading to an effect of intermediate value. ${ }^{22}$
The larger effect with the d_{1} compound can be ascribed to rate-determining elimination in combination with hyperconjugation. The elimination product, acetoxycyclohexene, was shown to be unstable under the reaction conditions. It affords cyclohexanone, which could be detected among the reaction products (6% from the unlabeled tresylate). Thus, this relatively large β effect could be ascribed to a partial rate-determining elimination in addition to hyperconjugation. Although the hydrogen participation cannot be precisely assessed, ${ }^{23}$ an alternative rationalization based on hyperconjugation only is also conceivable. Shiner ${ }^{16}$ reported β effects as high as 1.30 for cases where the dihedral angle between the C-D bond and the vacant p orbital is close to zero. In our particular case owing to the presence of an electron-withdrawing group a conformation favoring maximal C-H(D) hyperconjugation should be preferred ${ }^{24}$ and the β effect could be even larger as to account entirely for the observed value of 1.34 . However, the present set of experimental data does not allow us to distinguish between these two interpretations.

Experimental Section

Melting points are uncorrected. The progress of all reactions was followed by thin layer chromatography on silica gel. Infrared spectra were recorded on a Perkin-Elmer Infracord 137 spectrometer. For NMR spectra a Varian A-60 instrument was used. Chemical shifts are quoted in δ values against tetramethylsilane as internal standard. Mass spectra were taken on a Varian MAT CH7 mass spectrometer. Gas chromatography was performed on a Pye Unicam 104 instrument. A $5 \mathrm{ft} \times 0.25 \mathrm{in}$. column of 20% PEG 20 M on 60-80 mesh Chromosorb W HP was used. Kinetic measurements were made on a Radiometer, Copenhagen, automatic titrator TTT2 with autoburette ABU11 and titrigraph SBR3. The deuterium content was determined by integration of the proton signals obtained on a Varian A-60, and the deuterium signals on a Varian HR-220 spectrometer and confirmed by mass spectrometry.
Materials. 2,2,2-Trifluoroethanesulfonyl chloride (tresyl chloride) (Willow Brook Laboratories, Inc., for synthetic purpose) and silica gel Merck ($0.08-0.2 \mathrm{~mm}$) for column chromatography were used. Lithium aluminum deuteride was Fluka A.G. (>99 atom \% D).
trans-2-Acetoxycyclohexanol (2). This material was prepared from trans-1,2-cyclohexanediol according to the method previously described. ${ }^{9}$ The original procedure was modified insofar as isolation and purification were carried out by chromatography on a column of silica gel with ether-chloroform (4:1) as the eluent. In addition to 2 (31% yield) the corresponding diacetate (32%) was also obtained: ir (neat) $3500,1740 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.90-2.15(\mathrm{~m}, 8$ H), 1.97 ($\mathrm{s}, 3 \mathrm{H}$), 3.10 ($\mathrm{s}, 1 \mathrm{H}$), 3.17-3.64 (m, 1 H), 4.24-4.70 (m, 1 H).
trans-2-Acetoxycyclohexyl Tresylate (trans-1). To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $550 \mathrm{mg}(3.5 \mathrm{mmol})$ of trans-2-acetoxycyclohexanol and 430 mg (4.3 mmol) of triethylamine in 30 ml of dry dichloromethane, $680 \mathrm{mg}(3.7 \mathrm{mmol})$ of tresyl chloride was added dropwise with stirring. The temperature of the reaction mixture was kept below $0^{\circ} \mathrm{C}$ during the addition. The mixture was then washed with water followed by cold 10% sulfuric acid, water, saturated sodium bicarbonate, and saturated sodium chloride solution. After drying $\left(\mathrm{MgSO}_{4}\right)$ and removal of the solvent in vacuo, recrystallization from petroleum ether afforded $409 \mathrm{mg}(38 \%)$ of pure product: $\mathrm{mp} 66-67{ }^{\circ} \mathrm{C}$; ir (KBr) 1740, 1380, 1250, 1185, 1095, $930 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.10-2.40(\mathrm{~m}, 8 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{q}, 2 \mathrm{H}, J=9$ $\mathrm{Hz}), 4.50-4.73(\mathrm{~m}, 2 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 42.35 ; \mathrm{H}, 5.28$. Found: C, 42.60; H, 5.39.
cis-2-Acetoxycyclohexanol (3). This compound was prepared from cis-1,2-cyclohexanediol according to the same procedure ${ }^{9}$ described above for the trans isomer, 2 . In addition to the corresponding diacetate (32%) 26% of the desired product was obtained: ir (neat) $3500,1750 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.10-2.15(\mathrm{~m}, 8 \mathrm{H}), 2.04$ ($\mathrm{s}, 3 \mathrm{H}$) , 3.65-3.94 (m, 1 H), 4.67-4.95 (m, 1 H).
cis-2-Acetoxycyclohexyl Tresylate (cis-1). Following the same procedure described for the corresponding trans isomer, trans-1, 40% of pure product was obtained; $\mathrm{mp} 68-69^{\circ} \mathrm{C}$; ir (KBr)
$1760,1370,1340,1250,1185,1140,1095,1060,985,945,920 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.42-2.20(\mathrm{~m}, 8 \mathrm{H}), \underline{3} .01(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{q}, 2 \mathrm{H}, J=9$ Hz), 4.54-5.23 (m, 2 H).
trans-2-Hydroxycyclohexyl Tresylate (4). trans-1,2-Cyclohexanediol $(5.7 \mathrm{~g}, 49 \mathrm{mmol})$ and $30 \mathrm{~g}(30 \mathrm{mmol})$ of triethylamine were dissolved in 350 ml of dry dichloromethane and the solution cooled to $-5^{\circ} \mathrm{C}$. Tresyl chloride ($c .5 \mathrm{~g}, 25 \mathrm{mmol}$) was then added dropwise with stirring, keeping the temperature of the reaction mixture below $0^{\circ} \mathrm{C}$. The resulting solution was then washed with water followed by saturated sodium bicarbonate solution and dried (MgSO_{4}). The solvent was evapo ${ }^{-a t e d}$ in vacuo, and the crude product chromatographed on a colımn of silica gel with benzeneether ($4: 1$) yielding $3.7 \mathrm{~g}(57 \%)$ of pure product: $\mathrm{mp} 61-65{ }^{\circ} \mathrm{C}$; ir (KBr) 3480, 1375, 1270, 1195, 11<0, 1095, 980, $935 \mathrm{~cm}^{-1}$; NMR $\left.\left(\mathrm{CDCl}_{3}\right) \delta 1.00-2.59(\mathrm{~m}, 8 \mathrm{H}), 2.50 \mathrm{~s}, 1 \mathrm{H}\right), 3.47-3.93(\mathrm{~m}, 1 \mathrm{H}), 4.18$ (q, $2 \mathrm{H}, J=9 \mathrm{~Hz}$), 4.47-4.85 (m, 1 B).

2-Oxocyclohexyl Tresylate (5 . To a solution containing 400 mg (1.5 mmol) of 2-hydroxycyclot exyl tresylate in 15 ml of acetone, Jones reagent $\left(\mathrm{CrO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ was added with stirring at room temperature until the TLC control showed the absence of starting material (6 h). The reaction mixture was then diluted with 25 ml of ether and 20 ml of water, and the ethereal layer was separated, washed twice with water, and drie $1\left(\mathrm{MgSO}_{4}\right)$. The evaporation of the solvent in vacuo left $330 \mathrm{mg}(85 \%)$ of product which recrystallized from petroleum ether showe $1 \mathrm{mp} 88-90{ }^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) 1730$, $1390,1280,1260,1190,935 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50-2.72(\mathrm{~m}, 8$ H), $4.27(\mathrm{q}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 5.00-5 . c 0(\mathrm{~m}, 1 \mathrm{H})$.
cis- and trans-2-Hydroxycyclohexyl-2-d d_{1} Tresylate (6, 7). To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $600 \mathrm{mg}(2.3 \mathrm{mmol})$ of 2-oxocyclohexyl tresylate in 25 ml of methanol, .00 mg (1.2 mmol) of sodium borodeuteride was added. After the reaction was complete, 100 ml of ether and 40 ml of water was added to the reaction mixture. The ethereal layer was separated and tie aqueous layer extracted with ether. The combined ethereal extracts were washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent in vacuo left 580 mg (96%) of a mixture of isomeric alcchols: ir (neat) $3600,1380,1325$, $1255,1180,1140,935 \mathrm{~cm}^{-1}$.

The isomers were not separated at this stage but used as such in the next step.
cis- and trans-2-Acetoxycyc ohexyl-2- d_{1} Tresylate (cis$1 \beta \mathrm{~d}$, trans $-1 \beta d$). To a cooled $\left(0^{\circ} \mathrm{C}\right.$ solution of 580 mg of the mixture of cis- and trans-2-hydroxycyclohexyl-2-d tresylate, dissolved in 15 ml of dry pyridine, ezcess of acetyl chloride (2.0 ml) was added dropwise, with stirring. After $6 \mathrm{~h}, 100 \mathrm{ml}$ of ether and 20 g of crushed ice were added to the reaction mixture. The organic layer was separated, washed with cold 10% sulfuric acid followed by water, and dried $\left(\mathrm{MgSO}_{4}\right)$ and ether removed in vacuo. The resulting 596 mg of crude solid (99%) was purified by chromatography on a column of silica gel witk benzene-ether (4:1) as the eluent.

The separation of isomers was achieved mechanically. After slow crystallization from petroleum ether two different types of crystals of convenient size were obtained. Jareful separation with the aid of a microscope gave 312 mg of massive blocks (cis isomer, cis- βd) and 60 mg of fine clustered needles (trans isomer, trans- $1 \beta d$) with the following characteristics. Cis Eomer: $\mathrm{mp} 68-69{ }^{\circ} \mathrm{C}$; ir (KBr) $1740,1370,1360,1255,1190,1140,1100,970,945,925 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.36-2.16(\mathrm{~m}, 8 \mathrm{H}), 1.98(\varsigma, 3 \mathrm{H}), 3.91(\mathrm{q}, 2 \mathrm{H}, J=9 \mathrm{~Hz})$, 4.92-5.12 (m, 1 H). Trans isomer $\mathrm{mp} 66-67^{\circ} \mathrm{C}$; ir (KBr) 1740 , $1370,1250,1185,1145,1095,930 \mathrm{~mm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.14-2.43$ $(\mathrm{m}, 8 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{q}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 4.43-4.81(\mathrm{~m}, 1 \mathrm{H})$; deuterium content 0.85 atom D per molecule (NMR).

2-Hydroxycyclohexanone-2-d (9). To a suspension of 3.0 g (70 mmol) of lithium aluminum ceuteride in 50 ml of dry ether, $11.2 \mathrm{~g}(100 \mathrm{mmol})$ of 1,2 -cyclohezanedione was added at such a rate that gentle boiling was maintained. The resulting mixture was refluxed with stirring for $30 \mathrm{~min}, 15 \mathrm{ml}$ of water was then added, and the precipitate was filtered and washed with ether. The aqueous layer of the filtrate was sepa•ated and extracted thoroughly with ether, the ethereal layers wers combined and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and ether was removed in vacuo. Cn standing for 24 h from 6.3 g of a crude oily product, 0.6 g of crystalline hemiketal 8 was filtered off and washed with ether. The cily residue was then chromatographed on a column of silica gel w ith ether-benzene (4:1) yielding 1.5 g of the solid dimer $8: \mathrm{mp} 143-150^{\circ} \mathrm{C}$; ir (KBr) 3400, 1220, $1130,1100,985,950,860 \mathrm{~cm}^{-1}$. As by-products 2.0 g of 1,2 -cyclohexanediol and 1.1 g of a product u hose identity was not examined were obtained.

On heating in a sealed tube und $\underset{r}{ }$ nitrogen to the melting point the dimeric product 8 was conver ed into the liquid monomer 9 ,
which was immediately used in the next step: ir (neat) 3500,1710 , $11 \mathrm{C} 0,890 \mathrm{~cm}^{-1}$.
2-Oxocyclohexyl-1-d Tresylate (10). To a cooled ($0^{\circ} \mathrm{C}$) solution of 1.5 g (13 mmol) of freshy prepared 2 -hydroxycyclohexa-none-2- d_{1} and 1.5 g of triethylamine in 40 ml of dry dichloromethane, 2.4 g (13 mmol) of tresyl chloride was added dropwise with stirring during 15 min . Stirring uas prolonged for 15 min , and the result:ng solution was washed with water, followed by 10% sulfuric acid, water, saturated sodium bicarbonate, and saturated sodium chloride solution, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After the removal of solvent, chromatography on a column of silica gel with benzene-ether (7:3) as eluent gave $1.5 \mathrm{~g}(44 \%)$ of pure product: $\mathrm{mp} 89-90^{\circ} \mathrm{C}$; ir (KBr) $1715,1390,1330,1260,1190,1140,1095,965 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDC}_{3}^{-}\right) \delta 1.40-2.65(\mathrm{~m}, 8 \mathrm{H}), 4.28(\mathrm{q}, J=9 \mathrm{~Hz}), 5.00-5.40(\mathrm{~m}, 1$ H).
cis- and trans-2-Hydroxycyclohexyl-1-d, Tresylate (11, 12). 2-Oxocyclohexyl-1- d_{1} tresylate ($-.3 \mathrm{~g}, 5 \mathrm{mmol}$) was reduced with 0.15 g (4 mmol) of scdium borohvdride under the same conditions as described above fcr the preparation of isomeric alcohols 6 and 7. The cinromatography on a column of silica gel with benzene-ether (7:3) yielded $0.9 \mathrm{~g}(69 \%)$ of the mxture of isomeric alcohols 11 and 12 which was used as such in the next step.
cis- and trans-2-Acetoxycyclohexyl-1- d_{1} Tresylate (cis$1 \alpha d$, trans- $1 \alpha d$). The mixture o_{-}^{*} cis- and trans-2-hydroxycyclo-hexyl-1- d_{1} tresylate (0.9 g) was esterified with 3.0 ml of acetyl chloride in 20 ml of dry pyridine following the procedure described abcve for corresponding β-deuterated compounds cis- $1 \beta d$ and trans-1 β d. After careful separation of the crystals 250 mg of the cis anc 50 mg of the trans isomer were obtained. Cis isomer: ir (KBr) $1740,1390,1340,1250,1185,1140,1095,1055,925 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.37-2.15(\mathrm{~m}, 8 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz})$, $4.73-5.17(\mathrm{~m}, 1 \mathrm{H})$; deuterium content 0.70 atom D per molecule. Trans isomer: ir (KBr) 1740, 1380, 1250, 1180, 1145, 1090, 925 cm^{-1}; deuterium conient 0.70 atom D per molecule.

1,4-Dioxa-6-oxospiro[4.5]decane (13). A solution of 10 g of 1,2 -cyclohexanedione in 300 ml of benzene, an equimolar amount of 1,2 -dihydroxyethane, and 100 mg of p-toluenesulfonic acid was heated at reflux for 8 h . Water was continuously separated. The resulting solution was washed with sodium hydroxide solution, and dried (MgSO_{4}) and the solvent evaporated in vacuo. Ten grams (62%) of a crude oily product was obtained. The crude product cortaining a certain amount of the diketal was used without further purification in the next step: ir (neat) 1740, 1200, 1100, 1028, 957, $905 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.4-2.05(\mathrm{~m}, 6 \mathrm{H}), 2.34-2.72(\mathrm{~m}, 2$ H), $3.94(\mathrm{~s}, 4 \mathrm{H})$.

1,4-Dioxa-6-oxospiro[4.5]decane-7,7-d \mathbf{d}_{2} (14). A reaction mixture containing $5 \mathrm{~g}(32 \mathrm{mmol})$ of the crude monoketal 13 and 20 mg of sodium deuteroxide in 50 ml of $\mathrm{D}_{2} \mathrm{O}$-dioxane ($1: 1$ mixture) was heated at $50^{\circ} \mathrm{C}$ for 10 h . Solven= was then removed in vacuo and the oily residue was treated twice as described before. After final removal of the solvent 50 ml of tenzene was added to the residue, and the resulting solution was washed with $5 \times 5 \mathrm{ml}$ of $\mathrm{D}_{2} \mathrm{O}$. After drying $\left(\mathrm{MgSO}_{4}\right)$ and the removal of benzene in vacuo $4.5 \mathrm{~g}(89 \%)$ of an oily product was obtained: ir (neat) $2220,2130,1735,1190$, $1100,1050,1030,955 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.4-2.05(\mathrm{~m}, 6 \mathrm{H}), 3.92$ $(\mathrm{s}, 4 \mathrm{H})$; deuterium content better than 1.90 atoms D per molecule (by ${ }^{1} \mathrm{H}$ NMR).

1,4-Dioxa-6-hydroxyspiro[4.5]decane-7,7- d_{2} (15). To a suspension of 540 mg (14 mmol) of lithium aluminum hydride in 60 ml of dry ether, 4.5 g (28 mmol) of crude ketone 14 dissolved in 5 ml of ether was acded dropwise. Then 0.6 ml of water followed by 0.6 ml of 15% sodium hydroxide solution and 2 ml of water were added to the reaction mixture. The inorganic precipitate was filtered off, the ether layer separated, and the water layer extracted with ether. The combined ethereal extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, ether removed in vacuo, and the crude product chromatographed on silica gel with tenzene-ether ($1: 1$); $2.9 \mathrm{~g}(64 \%)$ of pure oily product was obtained, ir (neat) $3140,2220,2130,1165,1100,1030,955$, $985 \mathrm{~cm}^{-1}$.

2-Hydroxycyclohexanone-3,3- \boldsymbol{d}_{2} (16). Ketal 15 (1.8 g) was dissolved in 15 ml of acetone, 15 ml of 20% sulfuric acid was added, and the resulting solution kept at $50^{\circ} \mathrm{C}$ for 30 min . Acetone was then removed in vacuo and the residual aqueous solution extracted with dichloromethane ($4 \times 25 \mathrm{ml}$). The combined extracts were washed with sodium bicarbonate solution followed by water and dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated in vacuo to a volume of ca. 40 ml . Complete removal of solvent was avoided because it causes the formation of the dimeric product 8 . The identity of the product was ciecked by TLC using the corresponding nondeuterated compound as a standard.

2-Oxocyclohexyl-6,6- d_{2} Tresylate (17). To a cooled ($\left({ }^{\circ}{ }^{\circ} \mathrm{C}\right.$) dichloromethane solution of the keto alcohol 16 from the previous step an equimolar amount of dry pyridine was added calculated on the basis of a 100% yield in the preceding ketal hydrolysis. An equimolar amount of tresyl chloride was then added dropwise with stirring. Isolation and purification as described for compound 10 afforded 1.1 g of crystalline product: ir (KBr) 1740, 1395, 1335, $1265,1190,1020,935,840 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40-2.75(\mathrm{~m}, 6$ $\mathrm{H}), 4.25(\mathrm{q}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 5.17(\mathrm{~s}, 1 \mathrm{H})$.
cis- and trans-2-Hydroxycyclohexyl-6,6- d_{2} Tresylate (18, 19). Using the procedure described for the preparation of compounds 11 and 12 (Scheme III), 1.1 g of keto tresylate 17 gave 0.8 g (73\%) of a mixture of isomeric alcohols, which was used without further purification in the next step.
cis- and trans-2-Acetoxycyclohexyl-6,6- d_{2} Tresylate icis$1 \beta^{\prime} d_{2}$, trans $1 \beta^{\prime} d_{2}$). Applying the same method of preparation and separation as described for corresponding compounds cis- $1 \alpha d$ and trans-1 αd in Scheme III, $293 \mathrm{mg}(32 \%)$ of pure cis and $70 \mathrm{mg}(8 \%)$ of trans product was obtained. Cis isomer: ir (KBr) 22 20 , 2130, $1780,1390,1250,1175,1145,1080,915 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.15-2.00(\mathrm{~m}, 6 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{q}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 4.65-5.25$ ($\mathrm{m}, 1 \mathrm{H}$); deuterium content 1.95 atoms D per molecule (NMR). Trans isomer: ir (KBr) 2220, 2130, 1745, 1380, 1250, 1185, 1145, $1095,930 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-2.00(\mathrm{~m}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{q}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 4.45-4.80(\mathrm{~m}, 1 \mathrm{H})$; deuterium content 1.95 atoms D per molecule (NMR).
trans-2-Hydroxycyclohexyl 2,2,2-Trifluoroethyl Ether (20). A solution of $0.98 \mathrm{~g}(10 \mathrm{mmol})$ of cyclohexene oxide in 30 ml of 2,2,2-trifluoroethanol and one drop of sulfuric acid was heated to reflux for 1 h . Barium carbonate was added to the cooled reaction mixture to neutralize the acid and the resulting precipitate filtered off. The filtrate was concentrated in vacuo and the resid ue chromatographed on column of silica gel with benzene-ether (4:1) yielding $0.4 \mathrm{~g}(50 \%)$ of oil: ir (neat) $3460,1280,1180,1160,1120$, $970 \mathrm{~cm}^{-1}$.
trans-2-Acetoxycyclohexyl 2,2,2-Trifluoroethyl Ether (21). trans-2-Hydroxycyclohexyl trifluoroethyl ether (197 mg, 0.1 mmol) in 10 ml of dry pyridine was treated with excess of acetyl chloride following the procedure for preparation of cis-1 $1 \beta d$ and trans $1 \beta d$ described above. The chromatography on a column of silica gel with benzene-ether (9:1) as the eluent afforded 150 mg (63%) of pure oil: ir (neat) $1745,1280,1245,1160,1125,1060,1045$, $974 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.77-2.18(\mathrm{~m}, 8 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 3.10-$ $3.58(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{q}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 4.43-4.98(\mathrm{~m}, 1 \mathrm{H})$. A small amount of the corresponding cis ether was also isolated and characterized by ir. It was used as a standard in the GLC analysis of solvolysis products.

Acetoxycyclohexene. This compound was prepared from cyclohexanol and acetic anhydride according to the published procedure. ${ }^{25}$

Kinetic Measurements. 2,2,2-Trifluoroethanol, 97 wt \% (Fluka), was used as solvent in solvolyses. Measurements of the titrimetric rates for the trans derivatives trans-1, trans-1 $1 \beta d$, trans$1 \alpha d$, and trans- $1 \beta^{\prime} d_{2}$ were carried out by means of a pH-Stat Radiometer, Copenhagen, TTT2 titrator with ABU11 autcburette and SBR3 recorder.

The titrimetric cell with solvent was allowed to stabilize at the desired temperature ($55^{\circ} \mathrm{C}$) prior to addition of substrates. The concentration of substrate was $6-7 \mathrm{mg} / 15 \mathrm{ml}$ of solvent in all experiments. The titration solution was 0.02 N sodium hydroxide in $97 \mathrm{wt} \% \mathrm{TFE}$.

Six kinetic measurements were performed for each compound alterating the solvolysis of labeled and unlabeled substance.

Rate measurements for cis tresylates cis-1, cis-1 βd, cis-1 αd, and cis- $1 \beta^{\prime} d_{2}$ were accomplished by the usual ampule technique at 93° using 6 mg of substrate, 2 equiv of 2,6 -lutidine, and 5 ml of solvent (97% TFE) in each ampule. The titration was accomplished potentiometrically with 0.02 N sulfuric acid as titration solution.

Rate data were evaluated by a nonlinear least-square sum-fitting program.

Product Studies. trans-2-Acetoxycyclohexyl tresylate (470 mg) in 180 ml of $97 \mathrm{wt} \%$ trifluoroethanol was solvolyzed at 55° under the same conditions as in the kinetic runs for at least 8 half-lives. GLC analysis showed only one product with identical retention time with cis-2-acetoxycyclohexanol. After dilution of the reaction mixture with water and subsequent ether extraction, the sclvolysis product was isolated and identified as 2-acetoxycyclohexarol by ir spectroscopy.
cis-2-Acetoxycyclohexyl tresylate (608 mg) was solvolyzed in 130 ml of $97 \mathrm{wt} \%$ trifluoroethanol in the presence of 321 mg of 2,6 -lutidine in sealed ampules at $93^{\circ} \mathrm{C}$. The products were identified by GLC and the major products isolated by column chromatography over silica gel and identified as trans-2-acetoxycyclohexyl trifluoroethyl ether (28.4%) by ir, NMR, and comparison with authentic samples. By separate experiments the stability of all products under the solvolytic conditions was determined. With the exception of acetoxycyclohexane all were found to be stable.

Acknowledgment. This work was supported by the Research Council of Croatia and by Grant 02-011-1 (PL-480) administered by the National Institutes of Health. The authors are indebted to Professors V. J. Shiner, Jr., and K. Humski for helpful suggestions and comments and to Professor J. K. Crandall for proofreading the manuscript.

Registry No.-trans-1, 57573-63-4; cis-1, 57573-64-5; trans-1d, 57573-65-6; cis-1d, 57573-66-7; trans-1 βd, 57573-67-8; cis-1 βd, 57573-68-9; trans-1 $\boldsymbol{\beta}^{\prime} d_{2}$, 57573-69-0; cis-1 $\boldsymbol{\beta}^{\prime} d_{2}, \quad 57573-70-3$; 2, 20520-69-8; 3, 13858-62-3; 4, 57573-71-4; 5, 57573-72-5; 6, 57573-73-6; 7, 57573-74-7; 8, 57573-75-8; 9, 57573-76-9; 10, 57573-77-0; 11, 57573-78-1; 12, 57573-79-2; 13, 4746-96-7; 14, 57573-80-5; 15, 57573-81-6; 16, 57573-82-7; 17, 57573-83-8; 18, 57573-84-9; 19, 57573-85-0; 20, 57573-86-1; 21, 57573-87-2; trans-1,2-cyclohexanediol, 1460-57-7; tresyl chloride, 1648-99-3; cis-1,2-cyclohexanediol, 1792-81-0; 1,2-cyclohexanedione, 765-87-7; 1,2-dihydroxyethane, 107-21-1; cyclohexene oxide, 286-20-4; trifluoroethanol, 75-89-8.

References and Notes

(1) F. H. Westheimer, Chem. Rev., 61, 265 (1961).
(2) For a recent critical review of this problem see, e.g., S. E. Scheppele, Chem. Rev., 72, 511 (1972).
(3) (a) J. Bigeleisen and M. G. Meyer, J. Chem. Phys., 15, 261 (1947); (b) L. Melander. Ark. Kemi, 2, 211 (1950).
(4) C. J. Collins and N. S. Bowman, Ed, "Isotope Effects in Chemical Reactions'", Van Nostrand-Reinhold, New York, N.Y., 1970.
(5) V. J. Shiner, Jr., in ref 4, Chapter II.
(6) D. E. Sunko and S. Borcic in ref 4, Chapter III.
(7) (a) R. Eliason, M. Tomić, S. Borcić, and D. E. Sunko, Chem. Commun., 1490 (1968); (b) I. Mihel, M.S. Thesis, University of Zagreb, 1973.
(8) (a) S. Winstein, C. Hanson, and E. Grunwald, J. Am. Chem. Soc., 70, 812 (1948); (b) S. Winstein, E. Grunwald, R. E. Buckles, and C. Hanson, ibid., 70, 816 (1948); (c) S. Winstein and R. Heck, ibid., 74, 5584 (1952); (d) R. M. Roberts, J. Corse, R. Boschan, D. Seymour, and S. Winstein, ibid., 80, 1247 (1958).
(9) S. Winstein, H. V. Hess, and R. E. Buckles, J. Am. Chem. Soc., 64, 2796 (1942).
(10) R. K. Crossland, W. E. Wells, and V. J. Shiner, Jr., J. Am. Chem. Soc., 93, 4217 (1971).
(11) P. de Mayo, Ed., "Molecular Rearrangements", Vol. 2, Wiley-Interscience, New York, N. Y., 1964, p 763.
(12) (a) M. Nikoletic, S. Borcic, and D. E. Sunko, Tetrahedron, 23, 649 (1967); (b) K. Humski, V. Sendijarevic, and V. J. Shiner, Jr., J. Am. Chem. Soc., 95, 7722 (1973).
(13) K. B. Gash and G. U. Yuen, J. Org. Chem., 31, 4234 (1966).
(14) V. J. Shiner, Jr., J. Am. Chem. Soc., 74, 5285 (1952).
(15) M. Tarie, S. Borcic, and D. E. Sunko, J. Org. Chem., 40, 2949 (1975).
(16) V. J. Shiner, Jr., and J. S. Humphrey, Jr., J. Am. Chem. Soc., 85, 2416 (1963).
(17) In the solvolysis of $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}(\mathrm{OBs}) \mathrm{CD}_{3}$ the observed β effect was 1.03 per atom D (R. Eliason, unpublished results). For other examples see ref 6.
(18) V. J. Shiner, Jr., and W. Dowd, J. Am. Chem. Soc., 93, 1029 (1971); V J. Shiner, Jr., M. W. Rapp, E. A. Halevi, and M. Wolfsberg, ibid., 90, 7171 (1968).
(19) For a detailed discussion of the mechanism of cyclohexyl tosylate solvolysis see J. B. Lambert and G. Putz, J. Am. Chem. Soc., 95, 6313 (1973). In our case elimination was much less pronounced than with cyclohexyl tosylate but the formation of products with retained configuration could indicate the existence of a hydrogen bridged species. The present experiments cannot answer this question.
(20) S. Hirsl-Starcević, Z. Majerski, and D. E. Sunko, J. Am. Chem. Soc., 96, 3658 (1974), and references cited therein.
(21) It is reasonable to assume that the values obtained in the solvolysis of specifically deuterated 3 - β-cholestanyl brosylate provide reliable calibration for β-effects of cyclohexyl derivatives having a chair conformation ${ }^{22}$ in the transition state.
(22) M. Tarle, S. Borcić, and D. E. Sunko, J. Org. Chem., 40, 2954 (1975).
(23) For model calculations of isotope effects in hydrogen bridged carbonium ions see C. F. Wilcox, Jr., I. Szele, and D. E. Sunko, Tetrahedron Lett., 4457 (1975), and references cited therein.
(24) R. Hoffmann, L. Radom, J. A. Pople, P. V. R. Schleyer, W. J. Hehre, and L. Salem, J. Am. Chem. Soc., 94, 6221 (1972).
(25) I. V. Mashinskaya, Zh. Obshch. Khim., 22, 1159 (1952).

Sulfinic Acid Catalyzed Isomerization of Olefins

T. W. Gibson* and P. Strassburger

The Procber \& Gamble Company, Miami Valley Laboratories, Cincinnati, Ohio 45247
Received August 5, 1975

Abstract

Arenesulfinic acids cetalyze the cis-trans equilibration of disubstituted olefins in high yield and without double bond migration, as evidenced by studies of the reaction of various sulfinic acids with methyl 9 -octadecenoate and 4 -octene. Equilibrium s attained within 15 min in refluxing dioxane at the lowest catalyst level investigated. None of the known decomposition products of sulfinic acids, including sulfinyl suifones, appears to be responsible for the isomerization. Sulfinyl sulfones, which are formed from sulfinic acids in the initial ste of the decomposition process, also catalyse the isomerization, but at a slower rate than the sulfinc acids.

Chemists have long sought mild, efficient methods for the conversion of naturally occurring cis unsaturated fatty acids to the trans isomers, and "or the equilibration of isolated double bonds in general. ${ }^{1}$ Most catalysts suffer from some disadvantage, such as toxi iity, a high temperature requirement, or double bond migration. Probably the mildest and most convenient catalyst leveloped is nitrous acid. ${ }^{1}$ More recently, isomerization by photochemically generated thiyl radicals ${ }^{2-4}$ and by mercaptans in aqueous solution have been developed. ${ }^{5}$ While in search of a new and more convenient method, we encoun ered two references to the use of p-toluenesulfinic acid for this purpose. During a study of reduction of olefins by diimide, generated by thermal decomposition of p-toluenesulfonylhydrazine, Garbisch et al. noted that the p-toduenesulfinic acid by-product of the decomposition caused the isomerization of the double bond, without specifying the nature of the isomerization. ${ }^{6}$ It was found that the somerization could be prevented by the addition of trie-hylamine to the reaction, presumably by neutralization of the sulfinic acid. Nozaki et al. found that when methyl oleate was treated with an excess of p-toluenesulfinic acid for 7 h in dioxane at $90^{\circ} \mathrm{C}$, an "equilibrium" mixture, contain ng 55% of methyl elaidate, the trans isomer, was obtained in 60% yield. ${ }^{7}$ We chose to examine this process in more detail, to answer such questions as: Is the process catalytic, and if so, what is the nature of the catalytic species? Is thermodynamic equilibrium actually attained, since under Nozaki's conditions methyl elaidate should comprise about 75% of the oleateelaidate mixture at equilibrium? Does double bond migration occur? And are there more favorable conditions under which the isomerization can be effected? This paper presents an initia examination which answers some of the above questions and serves to tliminate some of the more obvious candidates for the species responsible for the isomerization.

Results and I iscussion

Treatment of a solution of eit.er methyl oleate or methyl elaidate in dioxane at reflux for 2 h with $10 \mathrm{~mol} \%$ of p-toluenesulfinic acid gave an equilibrium mixture comprised of 76% of the trans isomer. The catalytic nature of the process is shown in Table I, which shows that equilibration is possible with varying catalyst-clefin ratios. Gas chromatographic analysis showed that ir each instance equilibrium was obtained in less than 15 min . The incomplete equilibration observed at the lowest ratio examined suggests that the catalytic species is itself consumed by some competing process.

The influence of sulfinic acid catalyst structure on the isomerization is shown in Table II. It is apparent that catalytic activity is relatively independent of the structure of the sulfinic acid. The low degree of isomerization with 0 -

Table I. Isomerization of Methyl Oleate with p-Toluenesulfinic Acid ${ }^{a}$

Catalyst ratio b	\% trans
1.49	78.7
0.148	81.0
0.0148	78.1
0.0580	69.1

$a_{-}^{-} \mathrm{h}$ at reflux, in dioxane, $0.385 \mathrm{M} .{ }^{b}$ Molar equivalents of sulfinic acid per mole of methyl oleate.

Table II. Effect of Sulfinic Acid Structure on Isomerization of Methyl Oleate ${ }^{a}$

Registry no.	Sulfinic acid	$\%$ yield b	$\%$ trans
$618-41-7$	Benzene-	91	80.8
$535-57-2$	p-Toluene-	88	80.0
$100-03-8$	p-Chlorobenzene-	95	81.0
$1195-33-1$	p-Bromobenzene-	91	79.3
$1709-60-0$	p-Methoxybenzene-	91	79.6
$1199-67-3$	o-Nitrobenzere-	93	26.6
$a 10$ mol \% catalyst, refluxing dioxane, $3 \mathrm{~h}, 0.43$	$M . b$ Dis-		
tilled product.			

nitrobenzenesulfinic acid is reproducible, but as yet unexplained.

The absence of double bond migration in the substrate was demonstrated by oxidation of the product from the p bromobenzenesulfinic acid catalyzed reaction with the per-manganate-periodate reagent. ${ }^{8}$ Esterification of the resulting carboxylic acids with diazomethane followed by gas chromatographic analysis showed that less than $0.5 \% \mathrm{mi}-$ gration to the C_{8} or C_{10} positicns had occurred.

With the preliminary questions concerning the reaction thus answered, we began attempts to determine the nature of the catalytic species responsible for the isomerization. Both methyl p-toluenesulfinate and the sodium salt proved to be ineffective as catalysts under the conditions used in Table II and the oleate proved to be stable in refluxing dioxane in the absence of added materials. This suggests that the free sulfinic acid is required, but does not identify the catalytic species. Aromatic sulfinic acids are known to decompose thermally by disproportionation to sulfonic acid and thiolsulfonate: ${ }^{9}$

$$
3 \mathrm{ArSO}_{2} \mathrm{H} \rightarrow \mathrm{ArSO}_{3} \mathrm{H}+\mathrm{ArSO}_{2} \mathrm{SAr}+\mathrm{H}_{2} \mathrm{O}
$$

Nozaki had noted that neither p-toluenesulfonic acid nor the neutral products of the decomposition of p-toluenesulfinic acid causec the isomerization of methyl oleate. ${ }^{7}$ We confirmed this observation with regard to p-toluenesulfonic acid. However, 4,4'-dibromodiphenyl thiolsulfonate (1) did cause isomerization of methyl oleate in refluxing dioxane, but at a much slower rate than that shown by the sulfinic acid. Thus, equilibration of methyl oleate requires 5 h
in the presence of 0.1 equiv of 1 , compared with less than 15 min with the sulfinic acids.

Another attractive hypothesis is that the radical intermediates in the disproportionation of the sulfinic acic are responsible for the olefin isomerization. Kice has shown, in a detailed study of this disproportionation, ${ }^{10}$ that arenesulfinic acids form sulfinyl sulfones, 2 , which cleave thermally to sulfinyl and sulfonyl radicals:

Recombination and further reactions can also generate the arylthiyl radical, ArS-, as well. All of these radicals are candidates for the species responsible for the isomerization.

In an attempt to gain some information concerning this point, we obtained data for the initial rates of isomerization of cis-4-octene in the presence of p-toluenesulfinic acid and the sulfinyl sulfone 3 . Both reactions proved to be too fast at the reflux temperature of dioxane to conveniently obtain more than two data points before equilibrium was reached. That equilibrium was in fact obtained was determined by carrying out the isomerization of both sis- and trans-4-octene with both catalysts, giving in each case 76\% trans isomer. The reaction with cis-4-octene was more conveniently studied at $70^{\circ} \mathrm{C}$, at which temperature the isomerization was found to follow good first-order kinetics for isomerization to about 20% trans isomer. The first-order rate constants for the disappearance of cis-4-octene in the presence of 0.1 molar equiv of either 3 or p-toluenesulfinic acid are shown in Table III.

Table III ${ }^{a}$

Catalyst	$k_{1} \times=0^{4}, \mathrm{~s}^{-1}$
p-Toluenesulfinic acid p-Toluenesulfinyl- p-toluene sulfone (3)	9.3 ± 0.5
	0.58 ± 0.01

a $70 \pm 1^{\circ} \mathrm{C}, 0.107 \mathrm{M}$ in cis-4-octene, 0.0107 M in catalyst. Average of three runs in anhydrous dioxane.

Kice has shown that an equilibrium concentration of a few percent of the sulfinyl sulfone exists in solutions of the sulfinic acid, but that the rate of attainment of this equilibrium is very slow in the absence of strong acids. In addition, the rate of thermal cleavage of the sulfinyl sulfone is independent of the presence of sulfinic acid, and represents the rate-determining step in the sulfinic acid disproportionation reaction. Therefore, while the sulfinyl sulfone does promote isomerization of olefins at a moderate rate, presumably via the radical cleavage products, these radicals do not represent major catalytic species when sulfinic acid is used. The rapid and clean isomerization observed
with the sulfinic acid must be due to the action of the acid itself or to some as yet unobserved species which is formed in competition with or prior to sulfinyl sulfone.

The nature of the catalytic species must await more thorough kinetic studies and complete product analysis to determine the fate of the sulfinic acid. An initial investigation of the latter point showed the presence of a multitude of sulfur-containing products, none of which has been identified. Whatever their nature, the reaction represents a convenient method for the equilibration of olefins in high yield and excellent purity, and should find application as a synthetic method in a variety of substrates.

Experimental Section

Materials. Methyl oleate was obtained by esterification of oleic acid which had been purified by urea adduction to remove saturated acids. Gas chromatographic analysis indicated $95-98 \%$ purity. Methyl elaidate was obtained from Applied Science Laboratories. Benzenesulfinic acid and p-toluenesulfinic acid were obtained by acidification of aqueous solutions of the commercially available sodium salts with HCl . The other sulfinic acids were obtained by reduction of the sulfonyl chlorides with $\mathrm{Na}_{2} \mathrm{SO}_{3} .{ }^{9}$ Recrystallization gave in each case material whose melting point was in good agreement with that cited in ref 9. trans-4-Octene was purchased from Aldrich and used as is. cis-4-Octene was prepared by reduction of 4 -octyne with $\mathrm{Pd} / \mathrm{BaSO}_{4}$ catalyst poisoned with quinoline. GLC analysis showed the presence of 3.5% trans- 4 -octene.

Analytical Procedures. Melting points were determined on a micro hot stage and are corrected. Boiling points are uncorrected. Infrared spectra were determined on a Perkin-Elmer 257 instrument as mulls in mineral oil or in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. High-resolution mass spectra were determined with an Atlas SM-1 spectrometer. GLC analyses for methyl oleate-methyl elaidate reactions were performed at $180^{\circ} \mathrm{C}$ on a $150 \mathrm{ft} \times 0.01 \mathrm{in}$. stainless steel column coated with polyphenyl ether. The instrument used was a PerkinElmer 126 with flame ionization detectors. GLC analyses for the 4 -octene isomers were carried out at $50{ }^{\circ} \mathrm{C}$ on a $20 \mathrm{ft} \times 0.25 \mathrm{in}$. stainless steel column packed with $20 \% \beta, \beta^{\prime}$-oxydipropionitrile on Gas Chrom P. The instrument used was a Varian Aerograph Model 202B with thermal conductivity detectors.

Isomerization of Methyl Oleate with Varying Amounts of p-Toluenesulfinic Acid. To a solution of 1.0 g of methyl oleate in 40 ml of dry dioxane was added 0.78 g of p-toluenesulfinic acid. The system was flushed with argon and heated to reflux for 1 h . After cooling, the solution was diluted with pentane and extracted with 1 N NaOH solution, then washed twice with saturated sodium chloride solution. The pentane solution was dried over MgSO_{4}, filtered, and concentrated on a rotary evaporator. GLC analysis of a pentane solution of the residue on the PPE column showed only methyl oleate and methyl elaidate in a ratio of 21.3:78.7. Reaction of the same amount of methyl oleate with p-toluenesulfinic acid at lower levels gave the results shown in Table I.

Equilibration Studies. Methyl oleate and methyl elaidate (0.20 ml) were treated separately with 2.87 ml of 0.0216 M p -toluenesulfinic acid in dioxane at reflux for 2 h . Duplicate runs with each ester gave averages of 75.2 and 76.0% elaidate, respectively, by quantitative infrared analysis.

Preparative Scale Isomerization of Methyl Oleate. A solution of $0.068 \mathrm{~mol}(20 \mathrm{~g})$ of methyl oleate and 0.0068 mol of a sulfinic acid in 135 ml of dry dioxane was heated to reflux under argon for 3 h . After work-up similar to that already described, vacuum distillation gave high yields of methyl oleate-elaidate mixtures with compositions given in Table II as determined by GLC analysis. TLC of samples of distilled products at high load levels revealed the presence of trace impurities, estimated to be on the order of $\leq 0.1 \%$.

Preparation of 4 -Bromobenzenethiol 4^{\prime}-Bromobenzenesulfonate (1). A solution of 0.76 g of p-bromobenzenesulfinic acid in 400 ml of toluene was refluxed for 1 h . The cooled solution was washed with 1 N NaOH and saturated sodium chloride solution and dried over MgSO_{4}. Chromatography of the residue after removal of solvent was carried out on 20 g of silica gel. Elution with ether gave 52.6 mg of crystals, $\mathrm{mp} 134-137^{\circ} \mathrm{C}$. Recrystallization from ether-pentane raised the melting point to $175-178{ }^{\circ} \mathrm{C}$. TLC of this material on silica gel showed a single spot with ir (mull) $\lambda_{\text {max }} 6.40,7.52,8.77,9.40$, and 9.94μ, NMR signals at $\tau 2.7-3.0$ $\left(\mathrm{CDCl}_{3}\right)$, and molecular ions at $m / e 406,408$, and 410 in accord with the molecular formula $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}$. In addition, the mass
spectrum showed major fragment ions in accord with cleavages of the $\mathrm{C}-\mathrm{S}$ and $\mathrm{S}-\mathrm{S}$ bonds in structure 1.

Isomerization of Methyl Oleate with Thiolsulfonate (1). A solution of $1.0 \mathrm{~g}(0.0034 \mathrm{~mol})$ of methyl oleate and $0.139 \mathrm{~g}(0.00034$ mol) of 1 in 40 ml of dioxane was heated to reflux for a total of 5 h . Periodic withdrawal of $5-\mathrm{ml}$ aliquots, normal work-up, and GLC analysis gave the following results, with time in minutes and percent trans isomer: 61 (51), 126 (60), 178 (73), 249 (77), and 306 (77.5).

Isomerization of cis- and trans-4-Octene with 3 and p-Toluenesulfinic Acid. The sulfinyl sulfone 3 was prepared as previously described and gave an infrared spectrum identical with that published. ${ }^{11}$

For the kinetic runs, 5.0 ml of a 0.0214 M solution of 3 or the sulfinic acid in dry dioxane was added to 5.0 ml of 0.214 M cis -4 -octene in dioxane in a round-bottom three-neck flask which had been oven dried and flushed with dry nitrogen. The octene solution was also 0.10 M in decane for use as an internal standard. The flask was immersed in an oil bath held at $70 \pm 1^{\circ} \mathrm{C}$ with a relay, and aliquots were withdrawn periodically via syringe through a rubber cap. After dilution with pentane and washing once with 1 N NaOH and twice with water, gas chromatographic analysis gave the amount of isomerization with an accuracy of $\pm 0.5 \%$. The averages of the least-squares first-order plots of three runs, taken up to $20-30 \%$ isomerization, were determined to give the initial rate constants shown in Table III. Gas chromatographically determined
yields were 93% for the sulfinic acid process at equilibrium but were lower when the sulfinyl sulfone was used. A blank reaction carried out in the absence of either isomerization reagent showed no trans isomer formation after 20 h .

Registry No.-1, 3347-03-3; 3, 788-86-3; methyl oleate, 112-629; methyl elaidate, 1937-62-8; toluene, 108-88-3; cis-4-octene, 7642-15-1; trans-4-octene, 14850-23-8.

References and Notes

(1) C. Litchfield, R. D. Harlow, A. F. Isbell, and R. Reiser, J. Am. Oil Chem. Soc., 42, 73 (1965). This reference contains a reasonably thorough bibliography of previous work.
(2) C. Moussebois and J. Dale, J. Chem. Soc. C, 262 (1966).
(3) D. S. Sgoutas and F. A. Kummerow, Lipids, 4, 283 (1969).
(4) F. D. Gunstone and I. A. Ismael, Chem. Phys. Lipids, 1, 264 (1967).
(5) W. G. Niehaus, Jr., Bioorg. Chem., 3, 302 (1974).
(6) E. W. Garbisch, Jr., S. M. Schildkraut, D. B. Patterson, and C. M. Sprecher, J. Am. Chem. Soc., 87, 2932 (1965).
(7) H. Nozaki, Y. Nisikawa, M. Kawanisi, and R. Noyori, Tetrahedron, 23, 2173 (1967).
(8) D. F. Kuemmel, Anal. Chem., 36, 426 (1964).
(9) F. Muth in Houben-Weyl. "Methoden der Organischem Chemie", Vol. 9 . 4th ed, Georg Thieme Verlag, Stuttgart, 1955, p 299.
(10) J. L. Kice. G. Guaraldi, and C. G. Venier, J. Org. Chem., 31, 3561 (1966), and previous references in this series.
(11) H. Bredereck, A. Wagner, H. Beck, and R-J. Klein. Chem. Ber., 93, 2736 (1960).

Linear Carboxylic Acid Esters from α Olefins. I. Catalysis by Homogeneous Platinum Complexes

John F. Knifton
Beacon Research Laboratories, Texaco Inc., P.O. Box 509, Beacon, New York 12508

Received August 18, 1975

Abstract

Ligand-stabilized platinum(II)-Group 4B metal halide complexes have been found to catalyze the homogeneous carbonylation of α olefins to carboxylic acids and esters, with up to $98 \mathrm{~mol} \%$ selectivity to the linear ester. Preferred catalysts include $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtCl}_{2}-\mathrm{SnCl}_{2},\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{ClAs}_{2} \mathrm{PtCl}_{2}-\mathrm{SnCl}_{2}\right.$, and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}-\mathrm{SnCl}_{2}\right.$. The activity of each of these regioselective catalysts is highly sensitive to changes in coordinated ligand structure. The effects of catalyst and olefin composition, the nature of the nucleophilic coreactant, and other experimental variables upon both the activity and selectivity of the platinum have been examined, and are discussed in relation to the mode of this catalysis.

Carbonylation, the addition of CO to unsaturated compounds to yield carboxylic acid derivatives, may be catalyzed by a variety of soluble metal carbonyl species, including those of nickel, cobalt, iron, rhodium, ruthenium, palladium, and platinum. ${ }^{1-8} \alpha$-Olefin carbonylation, as catalyzed by Reppe-type nickel and cobalt catalysts, is characterized by (a) the production of large quantities of branched, as well as linear, acid derivatives (eq 1), ${ }^{3,5-7}$ (b) the importance of competing olefin polymerization, isomerization, and reduction reactions, and (c) severe operating conditions. ${ }^{2}$ More recently, improved palladium catalysts have been found active under milder conditions where competing side reactions are of lesser importance,,4,9 and normal esters predominate. ${ }^{10,11}$ Linear carboxylic acid esters have also been prepared in $67-85 \%$ selectivity with the $\mathrm{H}_{2} \mathrm{PtCl}_{6}-\mathrm{SnCl}_{2}$ couple. ${ }^{12,13}$

As part of a program to develop new routes to linear carboxylic acid derivatives, we report here the use of certain li-
gand-stabilized platinum(II)-Group 4B metal halide complexes as catalysts for the highly selective carbonylation of α olefins to linear carboxylic acid esters. ${ }^{14}$

Results

Effect of Platinum Catalyst Structure. In multistep reaction sequences such as carbonylation, modification of the catalyst metal center by changes in coordinated ligand structure may dramatically affect the activity and stability of the catalyst, the selectivity to straight-chain products, and competing side reactions. ${ }^{2,4,8,9,15,16}$ In this work, a broad range of ligand-stabilized platinum(II) complexes in combination with Group 4B metal halide cocatalysts have been screened for carbonylation activity, and methyl octanoate synthesis from 1-heptene has been selected as the model reaction (see Tables I and II).
The first distinguishing feature of this class of catalysts is their ability to produce linear acid esters, such as methyl octanoate, in at least $90 \mathrm{~mol} \%$ selectivity. This selectivity is consistently higher than has been reported previously, ${ }^{1-10,12,13}$ even for related palladium bimetallic catalysts. ${ }^{17}$ The highest selectivity to methyl octanoate achieved here ($98 \mathrm{~mol} \%$) is with dichlorobis(triphenyl phosphite)platin-um(II)-tin(II) chloride (expt 5). The highest yield of meth-

Table I. 1-Heptene Carbonylation Catalyzed by Various Platinum(II) Complexes I ${ }^{a}$

Expt	Composition of platinum complex	1-Heptene conversion, mol \%	Yield of 2,3-heptenes, $\mathrm{mol} \%$	Methyl octanoate	
				Yield, mol \%b	Selectivity, $\mathrm{mol} \% \mathrm{c}$
1	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}^{2}{ }_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}_{2}\right.$	95	4.2	86	93
2	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{ClAs}\right]_{2} \mathrm{PtCl}^{2}{ }^{d}-10 \mathrm{SnCl}_{2}$	89	19	59	92
3	(DIARS) $\mathrm{PtCl}_{2}{ }^{e}-10 \mathrm{SnCl}_{2}$	28	4.7	21	91
4	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}^{2} \mathrm{~S}_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}_{2}-5 \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right.$	91	18	61	91
5	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}_{2}$	34	<2	28	98
6	$\left[\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}_{2}$	9.3	<2	6.1	95
7	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}_{2}$	21	16	3.4	91
8	$\left[\left(p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}_{2}$	15	8.7	0.8	94
9	$\left[\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{P}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}_{2}$	3.5	<2	None	
10	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sb}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}_{2}$	12	<2	3.0	95
11	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{~S}^{2} \mathrm{~S}_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}_{2}\right.$	72	8.5	52	92
12	($1,10-\mathrm{PHEN}$) $\mathrm{PtCl}_{2} \mathrm{~g}-10 \mathrm{SnCl}_{2}$	41	8.0	32	96
13	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{4} \mathrm{Pt}-10 \mathrm{SnCl}_{2}$	$3.5{ }^{\prime}$	<2	2.2	90

a Run conditions: [1-heptene], $0.52 \mathrm{M} ;$ [Pt$]:\left[1\right.$-heptene] :[methanol] 1:100:740; $240 \mathrm{~atm}, 80^{\circ} \mathrm{C}, 6 \mathrm{~h}$. b Methyl octanoate yield based on 1 -heptene charged. c Selectivity calculated basis: methyl octanoate yield/total methyl C_{8} acid esters. d Prepared in situ. e DIARS, $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} . f$ Run at $105^{\circ} \mathrm{C}$, no reaction at $80^{\circ} \mathrm{C} .81,10-\mathrm{PHEN}, 1,10-\mathrm{phen}-$ anthroline.

Table II. 1-Heptene Carbonylation Catalyzed by Various Platinum(II) Complexes II ${ }^{a}$

Expt	Composition of platinum complex	1-Heptene conversion, $\mathrm{mol} \%$	Yield of 2,3-heptenes, mol \%	Methyl octanoate	
				Yield, mol \%	Selectivity, mol \%
14	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}_{2}$	95	4.2	86	93
15	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{GeCl}_{2}{ }^{\text {b }}$	3.6	<2	1.0	94
16	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{PbCl}_{2}$	2.0	<2	1.6	90
17	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{SbCl}_{3}$	2.6	<2	None	
18	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtCl}_{2}-10 \mathrm{SnCl}$ 。	52	<3	44	92
19	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtI}_{2}-10 \mathrm{SnI}_{2}$	7.0	<2	6.5	>90
20	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtCl}_{2}$	<2	<2	None	
21	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{Pt}(\mathrm{CN})_{2}$	<2	<2	None	
22	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtCl}_{2}-30 \mathrm{SnCl}_{2}$	64	8.6	35	92
23	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtCl}_{2}-5 \mathrm{SnCl}_{2}$	63	5.9	56	92
24	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtCl}_{2}-1 \mathrm{SnCl}_{2}$	33	6.9	22	94

${ }^{a}$ Run conditions: [1-heptene], $0.52 \mathrm{M} ;$ [Pt]:[1-heptene]:[methanol] 1:100:740, $240 \mathrm{~atm}, 80^{\circ} \mathrm{C}, 6 \mathrm{~h} .{ }^{b}$ Added as CsGeCl_{3}.
yl octanoate ($86 \mathrm{~mol} \%$) is with dichlorobis(triphenylarsine)-platinum(II)-tin(II) chloride (expt 1).

The nature of the Group 5B or 6B donor ligands (Table I) and the Group 4B metal halides (Table II) generally has a marked effect upon the platinum carbonylation activity, but a far smaller effect upon the selectivity to the linear esters, and the degree of competing double bond migration. While no simple correlation has been found, or even anticipated, between the performance of the platinum(II)-tin(II) chloride complexes and either the steric ${ }^{18}$ or electron donor-acceptor properties ${ }^{19}$ of the coordinated Group 5B and 6B ligands, generally improved yields of linear ester have been obtained with strong π-acceptor ligands of low basicity such as triphenylarsine and triphenyl phosphite. In a homologous series of platinum-phosphine complexes (expt 5-9), decreasing basicity of the coordinated ligands ${ }^{19}$ leads to increasing yields of ester in the order

$$
\begin{align*}
& \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}<\mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)_{3}< \\
& \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}<\mathrm{P}\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3}<\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{3} \tag{2}
\end{align*}
$$

with complexes of strongly basic ligands, such as $\mathrm{P}(n$ $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}$ and $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, being inactive under these conditions. For ligands of different donor atoms, however, the observed trends (e.g., eq 3) may best be rationalized in terms of competing steric and electronic factors. ${ }^{20,22}$

Analogous platinum(0) complexes, e.g., $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pt}-$ SnCl_{2}, expt 13 , provide poor catalyst precursors. Complexes of bidentate ligands such as bis(diphenylarsino)ethane and 1,10 -phenanthroline show improved thermal stability, but this is accompanied by a marked reduction in activity that may be attributed either to the limited solubility of these complexes, or the increased difficulty in ligand substitution.
Dichlorobis(triphenylarsine)platinum(II), in the absence of a Group 4B metal halide cocatalyst, fails to carbonylate α olefins (Table II, expt 20). Significant yields of methyl octanoate are afforded, however, with metal chloride cocatalysts such as tin(II) chloride, tin(IV) chloride, and lead(II) chloride; the highest yields of linear ester are obtained with $\operatorname{tin}(\mathrm{II})$ chloride (expt 14) at $\mathrm{Sn}: \mathrm{Pt}$ mole ratios of around 10 (expt 14, 22-24). Similarly, among different $\operatorname{tin}(\mathrm{II})$ halides, SnCl_{2} is more effective than SnI_{2}. This order of effectiveness (eq 4 and 5) parallels that found for the bimetallic hydroformylation catalysts $\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{PtX}_{2}-\mathrm{MX}_{2}{ }^{22}$, and the order of stability of platinum-Group 4B metal bonds. ${ }^{23,24}$ It should be noted, nevertheless, that no carbonylation is evident when $\mathrm{SnCl}_{3}-$ is replaced by other powerful π-acceptor ligands ${ }^{25,26}$ such as antimony trichloride, cyanide ion, and CO itself.

$$
\begin{equation*}
\mathrm{GeCl}_{2}<\mathrm{SnCl}_{2}>\mathrm{PbCl}_{2} \tag{4}
\end{equation*}
$$

$\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \approx \mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}<\mathrm{S}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}<$

$$
\begin{equation*}
\mathrm{AsCl}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}<\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{SnCl}_{2}>\mathrm{SnI}_{2} \tag{5}
\end{equation*}
$$

Table III. Olefin Carbonylation Catalyzed by Solutions of $\left.\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right)\right], \mathrm{PtCl}_{2}-\mathrm{SnCl}_{2}{ }^{a}$

Expt	Alkene	Registry no.	Initial Reacmole tion ratio time, alkene/Pt min		Alkene conversion, $\%$	Major carbonylation products		
					Identity	Selectivity, mol \%		
25	Propylene	115-07-1	100	360		30	Methyl butyrate	76
26	1-Heptene	592-76-7	100	360	51	Methyl octanoate	95	
27	1-Tetradecene	1120-36-1	100	360	34	Methyl pentadecanoate	88	
28	1-Eicosene	3452-07-1	50	300	29	Methyl heneicosanoate	>95	
29	3-Methyl-1-pentene	760-20-3	50	480	74	Methyl 4-methylhexanoate	>99	
30	4-Methyl-1-pentene	691-37-2	50	360	50	Methyl 5-methylhexanoate	97	
31	2,4,4-Trimethyl-1-pentene	107-39-1	50	360	No reacticn			
32	Cyclohexene	110-83-8	50	360	No reacticn			
33	$\underset{\text { 2-Decene }}{\text { 1-Heptene }}$	6816-17-7	100	180	No reacticn			
34	$\left\{\begin{array}{l}\text { 1-Heptene } \\ \text { trans-2-Heptene }\end{array}\right.$	14686-13-6	100 100	180	41 <1	Methyl octanoate None	92	
	trans-5-Decene	7433-56-9	50	180	<1	None	-	

Table IV. 1-Heptene Carbonylation Catalyzed by Solutions of $\left.\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right) \mathrm{As}_{3}\right]_{2} \mathrm{PtCl}_{2}-\mathrm{SnCl}_{2}$. Effect of Changes in Nucleophilic Coreactant

| | $\begin{array}{c}\text { Nucleoph} \\ \text { coreactant }\end{array}$ | $\begin{array}{c}\text { Heptene } \\ \text { conversion, } \\ \text { mol } \%\end{array}$ | | Major carbonylation product | | |
| :---: | :--- | :---: | :--- | :---: | :---: | :---: |$]$| Identity |
| :---: |

${ }^{a}$ Run conditions: [1-heptene], $0.47 \rightarrow 0.59 \mathrm{M},[\mathrm{Pt}]:\left[1\right.$-heptene] $:[\mathrm{ROH}] 1: 100: 300,240 \mathrm{~atm}, 80^{\circ} \mathrm{C}, 6 \mathrm{~h} .{ }^{b}$ Identified as methyl octanoate by treating crude product solution with methanol $-\mathrm{BF}_{3}$ reager.t.

For the more active platinum catalysts, the principal side reactions are (a) the formation of small quantities of branched (α-methyl) acid esters, in this case methyl 2methylheptanoate, and (b) isomerization of the 1-heptene to internal isomers, notably cis-and trans-2-heptene. Normally less than 10% of the 2 -heptene is isomerized further to cis- and trans-3-heptene, and there is negligible n-heptane formation.

Effect of Olefin Structure. The sensitivity of the $\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}-\mathrm{SnCl}_{2}\right.$ catalyst to substrate structure has been noted previously for both olefin hydrogenation ${ }^{27}$ and hydroformylation; ${ }^{22}$ here the preferred carbonylation catalyst, $\left(\mathrm{Ph}_{3} \mathrm{As}\right)_{2} \mathrm{PtCl}_{2}-\mathrm{SnCl}_{2}$, shows even greater sensitivity to the stereochemical requirements of the alkene (see Table III). Generally, monoalkenes are found to carbonylate readily only where the double bond is terminal. In the case of typical $\mathrm{C}_{3}-\mathrm{C}_{20}$ linear 1-alkenes, the selectivity to desired linear carboxylic acid ester improves with increasing chain length (eq 6, mole selectivity in parenthesis), whereas the rate appears to reach a maximum around C_{7}.

$$
\begin{equation*}
\mathrm{C}_{3}(76 \%)<\mathrm{C}_{7}-\mathrm{C}_{14}(88-95 \%)<\mathrm{C}_{20}(95 \%) \tag{6}
\end{equation*}
$$

The substitution of alkyl groups into the 1-alkene molecule acts to change both the activity and selectivity of the $\left(\mathrm{Ph}_{2} \mathrm{As}_{3}\right)_{2} \mathrm{PtCl}_{2}-\mathrm{SnCl}_{2}$. The observed pattern of behavior reflects primarily the steric effect of the alkyl substituent. ${ }^{27}$ No carbonylation has been detected, for example, when the double bond is hindered by substituent groups on the α or β carbons (expt 31-33); this includes 2 - and 5 -decenes, cyclic olefins like cyclohexene, and β-substituted alkenes such as $2,4,4$-trimethyl-1-pentene. On the other hand, where the substitution is one carbon removed from the double bond, as in the case of 3 -methyl-1-pentene, carbonylation proceeds smoothly in high selectivity to give almost 100% methyl 4 -methylhexanoate (expt 29). Even for δ-sub-
stituted materials, such as 4 -methyl-1-pentene, selectivity for anti-Markownikoff addition remains close to $97 \mathrm{~mol} \%$.

Effect of Nucleophile Structure. Carbonylation has been effected with a range of nucleophilic coreactants having mobile hydrogen atoms, including alcohols, water, mercaptans, and hydrogen halides. The trends parallel those for nickel and cobalt carbonyl catalysts. ${ }^{2}$ Here the nucleophile structure has very little effect upon the catalyst selectivity, be it primary, secondary, or substituted alcohol, water, or thiol (Table IV), but the catalytic effectiveness varies by a factor of at least 20 . Where oxygen is the attacking atom of the nucleophile, increased nucleophilicity ${ }^{28}$ leads to improved yields of ester (eq 7). Competing addition reactions are prevalent with thiol (expt 35), but complexation with the platinum catalyst may account for the low conversion in this case. For methanol, at least, the rate of carbonylation is independent of the initial alkanol concentration provided that sufficient is present to satisfy the stoichiometry of eq 1.

$$
\begin{equation*}
\mathrm{ROH}>\mathrm{HOH}>\mathrm{PhOH} \tag{7}
\end{equation*}
$$

Attempts to prepare fatty acid amides and anilides led to the formation of intractable tars. Carboxylic acid halogenides, such as octanoyl chloride, may be synthesized using HCl -treated solutions of the platinum salts in halogenated solvents such as methylene chloride. ${ }^{29}$

Temperature-Pressure Effects. While methyl octanoate synthesis may be carried out at temperatures of 25 ${ }^{\circ} \mathrm{C}$ or higher, end CO pressures up to 300 atm or more, a narrower range of conditions is necessary for preparative yields of ester with the $\left(\mathrm{Ph}_{3} \mathrm{As}\right)_{2} \mathrm{PtCl}_{2}-\mathrm{SnCl}_{2}$ catalyst. ${ }^{14}$ The rate of carbonylation is slow below $60^{\circ} \mathrm{C}$ and, as with related CO insertion reactions catalyzed by platinum, ${ }^{30}$ ester preparations normally required pressures of about 70 atm.

a Where $\mathrm{L}=\mathrm{SnCl}_{3}{ }^{-}, \mathrm{CO}$, chloride ion, or a solvent species.

No attempt has been made to correlate carbonylation activity with the nature of the solvent media, ${ }^{2}$ but a range of moderately polar and nonpolar solvents has been found suitable for this synthesis. Methyl isobutyl ketone and dimethoxyethane were the standard solvents; p-dioxane, methylene chloride, and benzene also proved satisfactory. ${ }^{14}$ N, N-Dimethylformamide inhibits carbonylation by forming stable adducts with the platinum complex. ${ }^{31}$

Discussion

The addition of tin (II) chloride to solutions of the complex $\left(\mathrm{Ph}_{3} \mathrm{As}^{2}\right)_{2} \mathrm{PtCl}_{2}$ in non- or moderately polar solvents generates an active and very regiospecific carbonylation catalyst. This high regioselectivity is relatively insensitive to reaction parameters such as temperature, CO pressure, and solvent, ${ }^{14}$ and the nature of the nucleophllic coreactant, but is significantly influenced by the structure of the alkene and the composition of the active catalysts. The observed trends, summarized in Tables I-IV, may be rationalized in terms of Scheme I, similar to that proposed for related catalysis. ${ }^{4,32}$ Among stabilized $\mathrm{Pt}(\mathrm{II})-\mathrm{SnCl}_{3}$ catalysts the highest yields of linear carboxylic acid esters have been obtained with ligands of low basicity and high π-acceptor strength, such as $\mathrm{AsPh}_{3}, \mathrm{AsClPh}_{2}$, and $\mathrm{P}(\mathrm{OPh})_{3}$ (eq 2 and 3). Likewise there appears to be a close parallel between catalyst activity and the π-acceptor strength of the $\mathrm{MX}_{3}{ }^{-}$ cocatalyst (eq 4 and 5). For the preferred composition then, $\left(\mathrm{Ph}_{3} \mathrm{As}\right)_{2} \mathrm{PtCl}_{2}-\mathrm{SnCl}_{2}$, this combination of ligands, by lowering the electron density of the platinum, should favor both initial platinum hydride formation ${ }^{20,21}$ and subsequent attack by nucleophiles such as CO and the multiple bonds of the olefin. ${ }^{33}$

With regard to the regioselectivity of the carbonylation, removal of electron density from the platinum metal center may also be expected to lower the hydridic character of the catalyst, ${ }^{15}$ thereby favoring Markownikoff addition of $\mathrm{Pt}-\mathrm{H}$ to the olefin (step 9) and branched acid ester formation via intermediates such as E and G. This increased
acidity of the hydride is generally small, ${ }^{15}$ however, and for $\mathrm{AsPh} h_{3}$ and SnCl_{3}^{-}more than offset by the combined steric effects of these bulky ligands. Molecular models show that a combination of such ligands provides a particularly sterically hindered Pt complex, A , in which steric constraints should act to favor both anti-Markownikoff $\mathrm{Pt}-\mathrm{H}$ addition (step 3) and high equilibrium concentrations of the less sterically hindered straight-chain σ-alkyl and σ-acyl Pt complexes such as D and F.
Similar reasoning based on the steric requirements of these highly crowded platinum catalysts may account for the observed selective carbonylation of only terminal olefins and the changes in product linearity with α-olefin structure (Table III), for example, the improvement in ester linearity from a low of $76 \mathrm{~mol} \%$ for the least hindered homologue, propylene (expt 25), to near 100% for certain partially hindered α olefins such as 3 -methyl-1-pentene (expt 29). Since internal, cyclic, and β-substituted α olefins are not carbonylated under these conditions, branched acid ester products likely originate not from 1-alkene isomerization and carbonylation of free internal isomer, but rather via Markownikoff $\mathrm{Pt}-\mathrm{H}$ addition to the olefin (step 9) and/ or isomerization of the σ-alkyl and σ-acyl intermediates to less favored forms (e.g., $\mathrm{D} \rightarrow \mathrm{E}$ and $\mathrm{F} \rightarrow \mathrm{G}$). Preferential complexation of the platinum catalyst with 1 -alkenes is consistent also with the observed selective carbonylation of internal-terminal olefin mixtures ${ }^{34}$ (expt 34).
It may be noted that analogues of the hydridoplatinum species A and B have been prepared previously, ${ }^{20,35}$ as have phosphine-stabilized platinum-alkyl complexes ${ }^{36,37}$ and platinum-acyl species analogous to F , under more forcing conditions. ${ }^{30}$ Intermediate platinum carbonyls such as $\mathrm{Pt}(\mathrm{CO})(\mathrm{EtOH})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SnCl}_{3}\right)_{2}$ have also been isolated by the carbonylation of phosphine treated platinum-tin solutions. ${ }^{38}$ However, while maximum catalyst activity is realized in this work at $\mathrm{Sn}: \mathrm{Pt}$ mole ratios of about 10 (expt 14, $22-24)$, no $\mathrm{Pt}-\mathrm{Sn}$ complexes with Group 5B ligands have been isolated having more than two $\mathrm{SnCl}_{3}{ }^{-}$ions per plati-
num. ${ }^{24}$ As in related catalysis, ${ }^{33}$ it is likely that several interdependent equilibria exist prior to carbonylation, with at least partial displacement of the organoarsine ligand being consistent with (a) the relatively low sensitivity of the isomer distribution (selectivity $90-98 \mathrm{~mol} \%$) to significant changes in Group 5B ligand structure (Table I) and (b) the slower carbonylation rate in the presence of excess organoarsine (expt 4). Mixed complexes such as $\left(\mathrm{Ph}_{3} \mathrm{As}\right){ }_{2} \mathrm{PtCl}\left(\mathrm{SnCl}_{3}\right)$ are known, ${ }^{39}$ although SnCl_{2} may be readily displaced by other strong back-bonding ligands ${ }^{24}$ such as CO .

Experimental Section

Materials. Carbon monoxide was CP grade. Reagents and solvents were commercial samples, and olefins were generally of high purity, and were freed of peroxides prior to use by passage through a column of neutral alumina. The platinum halide complexes, $\mathrm{PtCl}_{2}\left(\mathrm{AsPh}_{3}\right)_{2},{ }^{40} \quad \mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2},{ }^{40} \quad \mathrm{PtCl}_{2}\left(\mathrm{SbPh}_{3}\right)_{2},{ }^{40} \quad \mathrm{PtCl}_{2}-$ $\left[\begin{array}{llll}\left.\mathrm{P}(\mathrm{OPh})_{3}\right]_{2},{ }^{21} & \mathrm{PtCl}_{2}\left(\mathrm{SPh}_{2}\right)_{2},{ }^{20} & \mathrm{PtCl}_{2}(o \text {-phenanthroline }){ }^{41} \text { and }\end{array}\right.$ $\mathrm{Pt}(\mathrm{CN})_{2}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{21}$ were prepared by the published methods. Similar techniques were used to prepare $\mathrm{PtCl}_{2}\left(\mathrm{PPh}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$, $\mathrm{PtCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right), \mathrm{PtCl}_{2}\left(\mathrm{AsPh}_{2} \mathrm{Cl}_{2}\right)_{2}$, and $\mathrm{PtI}_{2}\left(\mathrm{AsPh}_{3}\right)_{2}$. Hydrated tin (II) chloride, $\mathrm{SnCl}_{2}-2 \mathrm{H}_{2} \mathrm{O}$, was used throughout as cocatalyst, except where specified.

General Procedures. The extent of carbonylation and the distribution of products were estimated by GLC. Olefin and ester analyses were both carried out with $4-10-\mathrm{ft}$ columns of $10-20 \%$ polyphenyl ether (five rings, Analabs Inc. GP77) on $60 / 80$ mesh Chromosorb G. High molecular weight fractions were also analyzed with the aid of a 4 -ft column of 7% SE-30 on Chromosorb G. The esters were isolated by preparative GLC and by distillation, and identified by a combination of GLC, ir, NMR, mass spectrometric, and elemental analyses techniques.
After some preliminary experiments to establish suitable carbonylation conditions, most catalyst screening was carried out in a $600-\mathrm{ml}$ glass-lined rocking autoclave under the conditions specified in Tables I and II. Rates of carbonylation were measured using a $300-\mathrm{ml}$ capacity, glass-lined autoclave equipped with Magnadrive stirrer and sampling valve.
Synthesis of Methyl Octanoate. Dichlorobis(triphenylarsine)platinum(II) ($0.5-20 \mathrm{mmol}$) and $\operatorname{tin}($ II $)$ chloride dihydrate ($2.5-20 \mathrm{mmol}$) were added to a N_{2}-saturated mixture of methyl isobutyl ketone (75 ml), methanol ($5-15 \mathrm{ml}$) and 1-heptene ($50-$ 200 mmol). The mixture was stirred for $2-5 \mathrm{~min}$ to dissolve the solid catalyst, and the loaded liner containing the deep red liquid charge was transferred to the autoclave. The autoclave was sealed, deozygenated with a purge of N_{2}, and heated to $80^{\circ} \mathrm{C}$ under 200 atm of carbon monoxide. After the reactor was rocked at this temperature for 3-6 h , the apparatus was allowed to cool, and the clear reddish-brown, liquid product recovered. Typical analyses data were as follows: 1 -heptene conversion 95%, yield of methyl C_{8} acid ester 92%, selectivity to linear methyl octanoate $93 \mathrm{~mol} \%$, material balance 97%.
The methyl C_{8} acid ester may be recovered from the crude product liquid by fractional distillation in vacuo. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{COOCH}_{3}: \mathrm{C}, 68.3 ; \mathrm{H}, 11.4$. Found: $\mathrm{C}, 68.4 ; \mathrm{H}, 11.6$.

Acknowledgments. The author wishes to thank Texaco Inc. for permission to publish this paper, and Messrs. T. S. Strothers and C. A. Dondaro for experimental assistance.

Registry No.- $\left(\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}_{2}{ }_{2} \mathrm{PtCl}_{2}\right.$, 16242-55-0; (DIARS) PtCl_{2}, 14647-20-2; $\quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}, \quad 16337-54-5 ; \quad[(p-\mathrm{Cl}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}, \quad 57606-46-9 ; \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}, \quad 10199-34-5 ;[(p-\right.$ $\left.\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}, \quad 57606-47-0 ; \quad\left[\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{P}_{2} \mathrm{PtCl}_{2}, \quad 30759-\right.$ 88-7; $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sb}_{2} \mathrm{PtCl}_{2}, 16337-53-4 ;\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{~S}_{2} \mathrm{PtCl}_{2}, 50525-38-7\right.\right.$; (1,10-PHEN) $\mathrm{PtCl}_{2}, \quad 18432-95-6 ; \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{4} \mathrm{Pt}, \quad$ 14221-02-4; $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{ClAs}_{2}\right]_{2} \mathrm{PtCl}_{2}, \quad 57606-48-1 ; \mathrm{SnCl}_{2}, 7772-99-8 ; \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, 603-32-7; $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{PtI}_{2}, \quad 24151-00-6 ; \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}\right]_{2} \mathrm{Pt}(\mathrm{CN})_{2}$, 16242-57-2; SnI_{2}, 10294-70-9; GeCl_{2}, $10060-11-4 ; \mathrm{PbCl}_{2}, 7758-95-4$; $\mathrm{SbCl}_{3}, 10025-91-9 ; \mathrm{SnCl}_{4}, 7646-78-8$; methyl octanoate, 111-11-5; methyl isobutyl ketone, 108-10-1.

References and Notes

(1) W. Reppe, Justus Liebigs Ann. Chem., 582, 1 (1953).
(2) J. Falbe, "Carbon Monoxide in Organic Synthesis", Springer-Verlag New York, New York, N.Y., 1970, Chapter II.
(3) C. W. Bird, Chem. Rev., 62, 283 (1962).
(4) J. Tsuji, Acc. Chem. Res., 2, 144 (1969).
(5) W. Reppe and H. Kroper, Justus Liebigs Ann. Chem., 582, 38 (1953).
(6) W. R. Gresham and R. E. Brooks, U.S. Patent 2448368 (1948).
(7) H. J. Hagemeyer, U.S. Patent 2739169 (1956).
(8) F. R. Hartley, Chem. Rev., 69, 799 (1969).
(9) K. Bittler, N. V. Kutepow, D. Neubauer, and H. Reis, Angew. Chem., Int. Ed. Engl., 7, 329 (1968).
(10) J. Tsuji, M. Morikawa, and J. Kiji, Tetrahedron Lett., 1437 (1963).
(11) S. A. Butter, U.S. Patent 3700706 (1972).
(12) E. Jenner and R. V. Lindsey. U.S. Patent 2876254 (1959).
(13) L. J. Kehoe and R. A. Schell, J. Org. Chem., 35, 2846 (1970).
(14) J. F. Knifton, U.S. Patent 3819669 (1974).
(15) F. E. Paulik, Catal. Rev., 6, 49 (1972).
(16) M. Orchin and W. Rupilius, Catal. Rev., 6, 85 (1972).
(17) J. F. Knifton, British Patent 1374941 (1974).
(18) C. A. Tolman, J. Am. Chem. Soc., 92, 2956 (1970).
(19) G. Henrici-Olive and S. Olive, Angew. Chem., Int. Ed. Engl., 10, 105 (1971); J. Halpern and P. F. Phelan, J. Am. Chem. Soc., 94, 181 (1972).
(20) H. A. Tayim and J. C. Bailar. J. Am. Chem. Soc., 89, 4330 (1967).
(21) J. C. Bailar and H. Itatani, J. Am. Chem. Soc., 89, 1592 (1967).
(22) I. Schwager and J. F. Knifton, German Patent 2322751 (1973).
(23) E. Maslowsky, Chem. Rev., 71, 507 (1971).
(24) J. F. Young, Adv. Inorg. Chem. Radiochem., 11, 91 (1968).
(25) R. V. Lindsey, G. W. Parshall, and U. G. Stolberg, J. Am. Chem. Soc., 87, 658 (1965).
(26) W. D. Horrocks and R. C. Taylor, Inorg. Chem., 2, 723 (1963).
(27) R. W. Adams, G. E. Batley, and J. C. Bailar, J. Am. Chem. Soc., 90, 6051 (1968)
(28) E. S. Gould, 'Mechanism and Structure in Organic Chemistry", Holt, Rinehart and Winston, New York, N.Y., 1959, p 258.
(29) J. F. Knifton, U.S. Patent 3880898 (1975).
(30) A. Wojcicki, Adv. Organomet. Chem., 11, 138 (1973).
(31) R. D. Gillard and M. F. Pillrow, J. Chem. Soc., Dalton Trans., 2320 (1974).
(32) R. F. Heck, J. Am. Chem. Soc., 85, 2013 (1963)
(33) H. A. Tayim and J. C. Bailar, J. Am. Chem. Soc., 89, 3420 (1967).
(34) J. F. Knifton, U.S. Patent 3892788 (1975).
(35) J. C. Bailar and H. Itatani, Inorg. Chem., 4, 1618 (1965).
(36) R. Cramer and R. V. Lindsey. J. Am. Chem. Soc., 88, 3534 (1966).
(37) H. C. Clark and H. Kurosawa, Inorg. Chem., 11, 1275 (1972).
(38) J. V. Kingston and G. R. Scollary, J. Chem. Soc. A, 3765 (1971).
(39) J. F. Young, R. D. Gillard. and G. Wilkinson, J. Chem. Soc., 5176 (1964).
(40) K. A. Jensen, Z. Anorg. Allgem. Chem., 229, 225 (1936)
(41) G. T. Morgan and H. H. Burstall, J. Chem. Soc., 965 (1934).

Catalytic Activity in the Reversion of an Energy Storing Valence Photoisomerization

Guilford Jones, II,* and B. R. Ramachandran

Department of Chemistry, Bcston University, Boston, Massachusetts 02215

Received September 16, 1975

Abstract

The quantum yield of valence photoisomerization of endo-tricyclo[5.2.1.0 $0^{2,6}$]deca-4,8-dien-3-one (1) to cage isomer 2 is $0.35-0.40$ in several solvents. Upon irradiation at $330-380 \mathrm{~nm}$ the chemical yield of isomer 2 is essentially quantitative. Cage isomer 2 is thermally stable to $295^{\circ} \mathrm{C}$ where slow decomposition occurs to give a mixture of products. Upon treatment with catalytic amounts of complexes of $\mathrm{Rh}(\mathrm{I})$ at $140-180^{\circ} \mathrm{C}, 2$ may be reverted to 1 in high yield. Catalysis kinetics are well behaved and first order in $\mathrm{Rh}(\mathrm{I})$ complex and substrate 2 during the initial stages of isomerization, after which the rate of reaction slows precipitously owing to catalyst instability. Initial isomerization rates establish relative cataly ic activity: $\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}>\mathrm{Rh}_{2}(\mathrm{NOR})_{2} \mathrm{Cl}_{2} \sim \mathrm{Rh}(\mathrm{PPh})_{3} \mathrm{Cl}(\mathrm{NOR}=$ norbornadiene). The slow rate of satalyzed isomerization for 2 is striking in comparison with that for quadricyclenes, hexamethylprismane, cubanes, and fomocubanes especially in view of the exothermicities for these reactions which are similarly large. A crude ordering of substrate activity ($40^{\circ} \mathrm{C}$) obtains: quadricyclenes \sim prismane \sim cubanes $>$ homocubanes >2 (a 1,8,4,7-bishomocubane). The system $1 \rightarrow 2(\Delta H=16 \mathrm{kcal} / \mathrm{mol})$ stores 8% of absorbed electronic excitation energy as chemical fotential energy.

Although the capability to produce thermodynamically unstable molecules in organic photochemical reactions has been so widely exploited to be even taken for granted, a systematic quantitative assessment of the extent to which electronic excitation energy can be converted to shemical potential energy has not been made. Such a survey that might extend over many classes of photoshemical reaction has direct relevance to possible photochemical conversion of solar energy and gains theoretical importance upon recognition of the intimacy of ground and excited state potential surfaces for highly endoergic photoreactions which are potentially thermally reversible. Important among criveria ${ }^{1}$ for an efficient energy storage system employing an interconversion of isomers A and B are (1) system photochromism, i.e., a change in light absorption properties during photoreaction such that for certain wavelengths cf excitation a photostationary state rich in B is assured; ($\mathcal{\varepsilon}$) a large positive ground state enthalpy $A \rightarrow B$; (3) a quantum efficiency for $A \rightarrow B$ approaching unity; (4) a kinetic stability for B which matches the objective of energy storage (e.g., synthesis or energy conversion, normally significant stability for B somewhat above room temperature). We assess here the excitation energy storage capability of one system, $1 \rightarrow 2$, with focus on the mode of retrieval of latent heat in the thermal back reaction which is catalyzed by transition metal complexes and for which several important struc-ture-reactivity relationships are apparent

$$
\mathrm{A} \underset{\Delta}{\stackrel{h_{\nu}}{\rightleftarrows}} \mathrm{B}
$$

Results and Discussion

Dienone 1 was prepared and photolyzed as previously reported ${ }^{2}$ and cage isomer 2 was obtained on a preparative scale as sole product in good yield. Irradiation of 1, which displays an n, π^{*} maximum at 340 nm , using a Rayonet chamber reactor and RUL 3500 lamps ($330-380 \mathrm{~nm}$), was followed as a function of time. Monitoring of absorbance of 1 and 2 revealed an isosbestic point at 310 nm , and GLC analysis of photolysis mixtures confirmed that the photoisomerization was remarkably clean. With $330-380 \mathrm{~nm}$ excitation the "photostationary" ${ }^{3}$ mixture consisted of $>99 \%$ isomer $2 .{ }^{4}$ The material balance during irradiation of 1 vs . a GLC internal standard was $>98 \%$. Quantum yields for photoisomerization in several solvents (valerophencne actinometry ${ }^{5}$) are shown in Table I. The progress of photoisomerization at constant lamp intensity revealed that the
yield is undiminished as a function of time to very high conversion for moderately concentrated samples.

The assessment of energy storage capability follows with the simple calculation of " Q value", as suggested by Calvert ${ }^{1 a}$

$$
Q=\frac{(\phi)(\Delta F)(100)}{E(h \nu)_{\mathrm{av}}}
$$

Table I. Quantum Yields for Photoisomerization $1 \rightarrow \mathbf{2}^{a}$

Solvent	Quantum yield b
Acetonitrile	0.37 ± 0.02
Benzene	0.38 ± 0.02
Diglyme	0.40 ± 0.02

a 0.07 M samples, $330-380 \mathrm{rm}, 30 \pm 1^{\circ} \mathrm{C} . b$ Valerophenone actinometer ($\phi=0.33$, re: 5).
where $\phi, \Delta F$, and $E(h \nu)_{\mathrm{av}}$ are quantum yield, the groundstate free-energy change (kca-/mol) for the photoreaction, and the average energy/photon absorbed (kcal/Einstein), respectively. We may confine our attention to the amount of energy stored only as lateat, recoverable heat and replace ΔF with $\Delta H(2 \rightarrow 1)$, o- $-16.4 \mathrm{kcal} / \mathrm{mol}$ determined by combustion calorimetry. ${ }^{6}$ With $\phi=0.4$ and $E(h \nu)_{\mathrm{av}}=80$ $\mathrm{kcal} /$ Einstein (350 nm), $Q=8 \%$. Thus, storage of electronic excitation energy as chemical potential energy in the 1,2 couple is appreciable (particuarly in view of the relatively high excitation energy involved) and compares favorably with the capabilities noted for inorganic systems ${ }^{19}$ (Q generally $<10 \%$).

Sealed-tube pyrolysis of 2 in diphenyl ether (DPE) at 295° led to slow decomposition. The production of some tarry material was apparent, and NMR analysis showed that a mixture of products was obtained. This mixture was not identified but presumed to be akin to the products (including 1) reported ${ }^{7}$ for the flow pyrolysis of 2 at very high temperatures. The rate of dec mposition of 2 was estimated ($k=1 \times 10^{-4} \mathrm{sec}^{-1}$).

The thermal isomerization of $2 \rightarrow 1$ could be carried out more respectably in the prese ace of transition metal catalysts at moderately high temp 3 ratures. For example, 5 mol $\%$ of $\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}$ affected virtually quantitative reversion to 1 in diglyme- d_{14} (DG) or diphenyl ether (DPE) at 140°. While NMR analysis indicated a $>95 \%$ organic material balance, the separation of a rray-black metallic material (unidentified) during isomerisation suggested catalyst instability. In a control experiment, $\mathrm{Rh}_{2}(\mathrm{CO})_{2} \mathrm{Cl}_{2}$ slowly deposited a gray-black substance on heating in solvents alone, at $140^{\circ} \mathrm{C}$. At high catalyst concentrations ($\sim 5 \mathrm{~mol} \%$) the rate of isomerization could be followed (NMR) over 2 halflives and shown to be first orcer in substrate. At low catalyst concentrations ($\sim 0.5 \mathrm{~mol} \%$) first-order substrate disappearance plots were linear initially but deviated at about 1 half-life, with catalyzed isomerization finally coming to an end before completion. Under these circumstances the 1,2 pair could not be "cycled" through sequential photoly-sis-pyrolysis steps. Attempts oo bring about isomerization using $\operatorname{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}, \mathrm{AgClO}_{4}, \mathrm{Rh} / \mathrm{C}, \mathrm{Pd} / \mathrm{C}, \mathrm{K}_{2} \mathrm{PtCl}_{4}$, CuSO_{4}, and p-toluenesulfonic acid under a variety of heterogeneous and homogeneous conditions at elevated temperatures were unsuccessful.

The catalysts which uniformly brought about isomerization $2 \rightarrow 1$ were the complexes of $\mathrm{Rh}(\mathrm{I})$. A ranking of these catalysts was attempted using initial disappearance rates for 2. First-order plots were quite good at $10-40 \%$ conversion, giving rate constants which along with initial catalyst concentrations produced seccnd-order rate constants as shown in Table II. (See paragraph at end of paper regarding supplementary material.) That a classical second-order catalytic rate law was obeyed s supported by experiments in which initial catalyst and substrate concentrations were varied. Thus, a plot of the first-order rate constants for disappearance of 2 vs. [$\mathrm{Rh}_{2}\left(\mathrm{CO}_{4} \mathrm{Cl}_{2}\right.$] (sevenfold range) was linear, and in experiments w th $\mathrm{Rh}_{2}(\mathrm{NOR})_{2} \mathrm{Cl}_{2}$ (NOR $=$ norbornadiene) a nearly threesold change in substrate concentration did not affect the calculated first- and secondorder rate coefficients. Apparently the catalyst destruction

Table II. Kinetic Data ${ }^{a}$ for the Catalyzed Isomerization $2 \rightarrow 1$

Substrate conen, M	Catalyst (concn, M)	Sol- vent	Temp, ${ }^{\circ} \mathrm{C}$	$k, \mathrm{M}^{-1} \mathrm{sec}^{-1}$
1.7	$\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}$ $(0.02-0.14)$	DG	140	$1.0 \times 10^{-2 b}$
1.3	$\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}$ (0.005)	DG	160	7.1×10^{-2}
1.7	$\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}$ (0.007)	DPE	180	1.0×10^{-1}
$1.0-2.6$	$\mathrm{Rh}_{2}(\mathrm{NOR})_{2} \mathrm{Cl}_{2}$ (0.061)	DG	180	1.8×10^{-3}
1.7	$(0.061$ $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ (0.07)	DPE	180	3.0×10^{-3}

${ }^{a}$ Obtained from pseudo-first-order rates at low conversion. Estimated rate constant error $\pm 20 \%$. b Obtained graphically from plot of first-order rate constant for appearance of 1 vs . catalyst concentration.
which mitigated high conversion and cycling experiments was slow enough at the required temperatures (perhaps requiring an induction period) that the initial portion of the catalyzed isomerization was kinetically well behaved. Within the range of substrate concentration used, we did not observe Michaelis-Menten type kinetic behavior (denoting a rapid preequilibrium of substrate and catalyst) which has been documented in several transition metal catalyzed valence isomerization systems. ${ }^{8}$

The extreme reluctance of 2 to isomerize is somewhat surprising in view of the facile catalyzed ring openings of quadricyclenes $(3,4)$ to norbornadienes, hexamethylprismane (5) to hexamethyl(Dewar benzene), and cubanes (6, 7) and homocubane (8) to their tricyclic diene isomers. ${ }^{9}$ In order to make a semiquantitative comparison of the organic substrates we have calculated relative rates for valence isomerization catalyzed by $\mathrm{Rh}_{2}(\mathrm{NOR})_{2} \mathrm{Cl}_{2}$ at $40^{\circ} \mathrm{C}$, a temperature for which rate data for $6-8$ were available (Table III). For $2-5$ the rates at $40^{\circ} \mathrm{C}$ were obtained by extrapolation from data at other temperatures. Since activation parameters for these systems are not available, we have used for the extrapolation a frequency factor ($\log A=7$) similar to those reported for relevant valence isomerizations catalyzed by $\mathrm{Rh}(\mathrm{I})$ complexes. ${ }^{14}$ Also included for reference in Table III are enthalpies of valence isomerization. Reasons for the markedly low reactivity of 2 in comparison with a family of caged substrates are not readily apparent. The presence of the carbonyl group in 2 might be responsible for a rate retardation of only about two orders of magnitude. ${ }^{18}$ This deceleration has been noted previously for the quadricyclene (compare 3 and 4) ${ }^{14 \mathrm{a}}$ and cubane (compare 6 and 7$)^{13}$ series and has been rationalized (with particular reference to the homocubane series, 8 vs. 9) in terms of electronic and steric factors. ${ }^{9 \mathrm{~d}}$ Solvent effects are not likely a significant contributor to rate differences in view of the modest acceleration in more polar solvent noted for catalyzed isomerization of $4 .{ }^{11}$

Early theories concerning transition metal catalyzed valence isomerization ${ }^{19}$ suggest a role for ring strain release in determining rate. However, the measured or calculated negative enthalpies of isomerization for 2-6 are similarly large. Comparison among ring types reveals the relative reactivity order, quadricyclenes \sim prismane \sim cubanes $>$ homocubanes >2 (a 1,8,4,7-bishomocubane) (compare 3, 5, 6 with 8 and in the carbonyl-substituted series 4,7 with 9 and 2). Although overall molecular strain appears not to be a rate-determining factor, the degree and kind of local bond deformation must influence the reactivity order. Thus, as models show that the bond angle requirements become less severe in the series cubanes $>$ homocubane $>$ bishomocubane (the cyclobutane rings begin to pucker in-

Table III. Comparative Kinetics and Heat of Reaction Data for Valence Isomerization of Cage Compounds Catalyzed by $\mathbf{R h}_{2}(\mathrm{NOR})_{2} \mathrm{Cl}_{2}$

Cage substrate	$\begin{gathered} k_{\text {obsd },} \mathrm{M}^{-1} \mathrm{sec}^{-1} \\ \left(\text { temp },{ }^{\circ} \mathbf{C}\right) \end{gathered}$	Solvent	Ref	$k_{\text {rel }}\left(40{ }^{\circ} \mathrm{C}\right)^{a}$	$\Delta H, \mathrm{kcal} / \mathrm{mol}$
2	$1.8 \times 10^{-3}(180)$	DG	This work	1	-16.0^{c}
3	$5.5 \times 10^{-2}(-26)$	CDCl_{3}	10	1×10^{8}	-21.2^{d}
4	$2.8 \times 10^{-2}(60)$	CDCl_{3}	11	3×10^{5}	-18.5^{d}
5	$9.7 \times 10^{-3}(-30)^{b}$	CHCl_{3}	12	3×10^{7}	$-31.7{ }^{\text {e }}$
6	14 (40)	CDCl_{3}	13	4×10^{8}	$-16.7{ }^{\text {f }}$
7	$1.1 \times 10^{-1}(40)$	CDCl_{3}	13	3×10^{6}	
8	$1.4 \times 10^{-2}(40)$	$\mathrm{C}_{6} \mathrm{H}_{6}$	9 a	4×10^{5}	

a Except for 6-8 calculated from absolute values extrapolated to $40^{\circ} \mathrm{C}$, using the Arrhenius equation and $\log A=7$. ${ }^{b}$ Calculated from the reported half-life. ${ }^{c}$ From heats of combustion, ref 6. ${ }^{d}$ From DSC measurements, ref 15. ${ }^{e}$ From DSC measurements, ref 16. f From MINDO/3 calculations of heats of formation, ref 17.
creasingly), so do the relative rates of rhodium-catalyzed decomposition vary, with a rate retardation of $\sim 10^{3}$ for each replacement of a zero-carbon bridge with a one-carbon bridge. This dependence on the degree of local bond angle deformation (and on the number of deformed bonds) is no doubt related to the ability of the strained ring to act as a base, ${ }^{9 e, 20}$ an oxidizing agent,,${ }^{13,21}$ a nucleophile, ${ }^{28}$ or as an electron donor, ${ }^{20}$ types of interaction of strained σ bonds with metals which have been considered. We wish to emphasize that the remarkable reactivity of caged saturated substrates with metals may be confined to a rather small group of compounds. ${ }^{23}$ High energy content is insufficient ground for reactivity while an effect related to the enforcement of bond angles in the cage structure is largely rate determining.

We have examined the reversibility of one other system capable of storing electronic excitation energy. For the photochromic isomerization of $10^{25}(350 \mathrm{~nm})$, one can estimate an impressively large energy storage efficiency ($Q=$ 25%) from the reported quantum yield ($\phi=1)^{25}$ and an estimate ${ }^{26}$ of the heat of reaction $17 \rightarrow 16$ ($\Delta H \sim-20 \mathrm{kcal} /$ mol). Dione 11 is thermally stable to 150° and resists catalytic reversion to 10 at elevated temperatures in the presence of $\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}, \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}, \mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$, or p toluenesulfonic acid despite a large potential exothermicity. The reverse valence isomerization is no doubt mitigated by those same inductive and steric substituent effects and bond angle deformation effects already discussed for 2 and other cage substrates.

Experimental Section

Melting points were determined on a Fisher-Johns hot stage melting point apparatus and are uncorrected. Proton magnetic resonance spectra were recorded with a Joelco C-60-HL spectrometer. Gas chromatography was performed on a Varian Aerograph 1400 instrument (FI detector) equipped with a disc integrating recorder.
Thiophene-free benzene was washed with sulfuric acid until no further coloration of the acid layer appeared, then with aqueous NaHCO_{3} solution and distilled water, and finally distilled over phosphorus pentoxide. Valerophenone (Aldrich) and diglyme were distilled under reduced pressure. Acetonitrile (spectroquality, Matheson Coleman and Bell), dodecane (spectrophotometric grade, Aldrich), diglyme- d_{14} (DG) (Merck), $\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}$ (Alfa), and anhydrous and hydrated rhodium trichloride (Alfa) were used without further purification.
$\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2},{ }^{27} \mathrm{Rh}_{2}(\mathrm{NOR})_{2} \mathrm{Cl}_{2},{ }^{28}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}^{29}$ and tricyclo[5.2.1. $0^{2,6}$]deca-4,8-dien-3-one (1) ${ }^{30}$ were prepared according to literature procedures. The 1,4-naphthoquinone-cyclopentadiene adduct 16 was prepared and photolyzed to give 17 as previously described. ${ }^{25}$
Preparative Irradiation of Dienone $1 .{ }^{2}$ A nitrogen-purged solution of $1(1.0 \mathrm{~g}, 6.8 \mathrm{mmol})$ in 330 ml of acetonitrile was irradiated with a 450-W Hanovia medium pressure lamp (Pyrex filter). Over 250 min of irradiation, an isosbestic point at 305 nm and a "photostationary" ${ }^{3}$ state (some 10% of 1 remaining) developed (uv analysis). Removal of solvent in vacuo gave a viscous oil which was crys-
tallized from light petroleum. The waxy solid was sublimed (~ 2 mm) to give 750 mg of $2(75 \%), \mathrm{mp} 118-121^{\circ} \mathrm{C}$ (lit. mp 124-126 ${ }^{\circ} \mathrm{C}$), $\lambda_{\text {max }} 295 \mathrm{~nm}(\epsilon 22)$.

Quantum Yield Determinations. Solutions containing known concentrations of dienone 1 and dodecane (internal standard for GLC analysis) were prepared for irradiation in $15-\mathrm{mm}$ Pyrex tubes. The solutions were deoxygenated by bubbling nitrogen for 30 min through long syringe needles inserted through rubber serum caps. The Rayonet RS photochemical reactor was fitted with four RUL 3500 lamps. The temperature in the reaction chamber was maintained at $30 \pm 1^{\circ} \mathrm{C}$ by means of a fan which circulated air from the bottom of the chamber. A Merry-Go-Round unit (Southern New England Ultraviolet) provided a sample tube mounting for parallel irradiation.

The conversion of valerophenone to acetophenone ${ }^{5}(\phi=0.33)$ in irradiations in parallel with 1 was monitored for actinometric purposes. Small differences in absorbance for actinometer and 1 over the lamp emission range ($330-380 \mathrm{~nm}$) were calculated using solution percent transmittance values and lamp relative intensity (data from the supplier) at intervals of $2-5 \mathrm{~nm}$. GLC analysis (8 ft $\times 0.125$ in. 3% FFAP on $80-100$ Chromosorb W column at $90-150$ ${ }^{\circ} \mathrm{C}$) of actinometer and sample product (vs. dodecane) provided relative conversion values which were corrected for differential detector response.

Catalyzed Pyrolysis of 2. Solutions of 2, catalyst, solvent, and diphenylmethane (NMR internal standard) were prepared in heavy-wall NMR tubes (Wilmad) which had been washed with acid, base, distilled water, and acetone and dried. The sample tubes were evacuated through several freeze-thaw cycles and sealed. Pyrolyses were carried out in an oil bath insulated and thermoregulated ($\pm 0.5^{\circ} \mathrm{C}$) using an $I^{2} R$ Therm-o-watch as described previously. ${ }^{31}$ Pyrolysis tubes were totally immersed in the well-stirred baths and examined periodically after quenching in ice water.

NMR analysis for the appearance of 1 (vinyl protons) vs. diphenylmethane (methylene protons) provided conversion data (generally $10-40 \%$) from which rate constants could be calculated using the integrated first-order rate equation. Second-order rate constants derived from these values and catalyst concentrations. (See supplementary material.)

Acknowledgments. This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by the Office of Naval Research under Contract N00014-67-A-0280. We thank Professors Warren P. Giering and K. W. Barnett for helpful discussions and Mr. Allen H. Pachtman for technical assistance.

Supplementary Material Available. Tables of rate data for catalyzed isomerization of 2 (3 pages). Ordering information is given on any current masthead page.

Registry No.—1, 5530-96-1; 2, 15584-52-8.

References and Notes

(1) (a) J. G. Calvert in "Introduction to the Utilization of Solar Energy", A. M. Zarem, Ed., McGraw-Hill, New York, N.Y., 1993, p 190; (b) F. Daniels, "Direct Use of the Sun's Energy'", Yale University Press, New Haven, Conn., 1964, p 299; (c) R. J. Marcus, Sclence, 123, 399 (1956).
（2）（a）R．C．Cookson，J．Hudec，and R．O．Williams，J．Chem．Soc．C， 1382 （1967）．（b）The sensitized isomerization has also been reported；see R O．Campbell and R．S．H．Liu，J．Am．Chem．Soc．，95， 6560 （1973）．
（3）Photochemical isomerization $2 \rightarrow 1$ was unobserved both at 350 and 254 nm ．
（4）The isomerization $1 \rightarrow 2$ was driven on a small scale cleanly but slowly likewise to $\mathbf{> 9 9 \%}$ conversion by Pyrex filtered direct December sun－ light（Boston，Mass．）．
（5）P．J．Wagner，P．A．Kelso，and R．G．Zepp．J．Am．Chem．Soc．，94， 7480 （1972）．
（6）R．C．Cookson，E．Crundwell，R．R．Hill，and J．Hudec，J．Chem．Soc． 3062 （1964）．
（7）R．C．Cookson，J．Hudec，and R．O．Williams．J．Chem．Soc．C， 1382 （1967）．
（8）（a）L．A．Paquette，J．S．Ward．R．A．Boggs，and W．B．Farnham，J．Am． Chem．Soc．，97， 1101 （1975）；（b）L．A．Paquette and J．S．Ward，Tetra－ hedron Lett．， 4909 （1972）；（c）H．Hogeveen and B．J．Nusse，ibid．， 159 （1974）：（d）L．A．Paquette．S．E．Wilson，R．P．Henzel，and G．R．Allen， Jr．，J．Am．Chem．Soc．，94， 7761 （1972）．
（9）For a compilation of references on valence isomerizations catalyzed by transition metal complexes，see ref 8 a and（a）L．A．Paquette and R．S． Beckley，J．Am．Chem．Soc．，97， 1084 （1975）；（b）L．A．Paquette，R．S． Beckley，and W．B．Farnham，ibid．，97， 1089 （1975）；（c）L．A．Paquette， R．A．Boggs，W．B．Farnham，and R．S．Beckley，ibid．，97， 1112 （1975）； （d）L．A．Paquette，R．A．Boggs，and J．S．Ward，ibid．，97， 1118 （1975）： （e）R．Noyori，I．Umeda，H．Kawauchi，and H．Takaya，ibid．，97， 812 （1975）．
（10）H．Hogeveen and H．C．Volger．J．Am．Chem．Soc．，89， 2486 （1967）
（11）H．Hogeveen and B．J．Nusse，Tetrahedron Lett．， 159 （1974）．
（12）H．Hogeveen and H．C．Volger，Chem．Commun．， 1133 （1967）
（13）L．Cassar，P．E．Eaton，and J．Halpern，J．Am．Chem．Soc．，92， 3515 （1970）．
（14）（a）H．Hogeveen and B．J．Nusse，Tetrahedron Lett．， 3667 （1973）；（b）H C．Volger and H．Hogeveen．Recl．Trav．Chim．Pay－Bas，86， 830 （1967）．
（15）D．S．Kabakoff，J．－C．G．Bunzli，J．F．M．Oth，W．B．Hammond，and J．A． Berson，J．Am．Chem．Soc．，97， 1510 （1975）．
（16）J．F．M．Oth，Recl．Trav．Chim．Pays－Bas，87， 1185 （1968）；for a some－
what different enthalpy value and activation parameters，see W．Adam and J．C．Chang，Int．J．Chem．Kinet．，1， 487 （1969）．
（17）R．C．Bingham，M．J．S．Dewar，and D．H．Lo，J．Am．Chem．Soc．，97， 1294 （1975）
（18）Hogeveen has calculated a larger substituent deceleration $\left(5000 \times\right.$ ）．${ }^{14 \mathrm{a}}$ However，the extrapolated rate for 3 apparently derived from previously reported ${ }^{0}$ Eyring parameters（ $\Delta \mu ⿱ 䒑 廾=21 \mathrm{kcal} / \mathrm{mol}, S^{\ddagger}=45 \mathrm{eu}$ ）which appear dubious
（19）F．D．Mango．J．Am．Chem．Soc．，93， 1123 （1971）；Tetrahedron Lett．， 505 （1971）．
（20）K．L．Kaiser，R．F．Childs，and P．M．Maitlis，J．Am．Chem．Soc．，93， 1270 （1971）．
（21）（a）L．Cassar and J．Halpern，Chem．Commun．， 1082 （1970）；（b）T．J Katz and S．Cerefice，J．Am．Chem．Soc．，91， 2405 （1969）．
（22）For a suggestion of electrophilic ring opening by Ag^{+}．see ref 8 a and 9 b ．
（23）1，3－Bishomocubane appears to react with $\mathrm{Rh}(1)$ more sluggishly than 6 or $\mathbf{8}^{24}$ only at the site of fusion of small rings in line with a dependence on local bond angle deformation
（24）J．Blum，C．A．Zlotogorski，and A．Zoran．Tetrahedron Lett．， 1117 （1975）．
（25）（a）N．Filipescu and J．M．Menter，J．Chem．Soc．B． 616 （1969）；（b）A．S． Kushner，Tetrahedron Lett． 3276 （1971）．
（26）The isomerization of the p－benzoquinone－cyclopentadiene adduct anal－ ogous to 16 to its cage isomer is exothermic as calculated from heat of combustion data（ $\Delta H=-11.3 \mathrm{kcal} / \mathrm{mol}$ ）．${ }^{6}$ For the heat of reaction 17 $\rightarrow 16$ this value must be substracted from $\sim 30 \mathrm{kcal} / \mathrm{mol}$ ，the reso－ nance energy difference between benzene and cyclohexadiene，to ob－ tain $\Delta H(17 \rightarrow 16)=-20 \mathrm{kcal} / \mathrm{mol}$ ．
（27）M．S．Kharasch，R．C．Seyler，and F．R．Mayo，J．Am．Chem．Soc．，60， 882 （1938）．
（28）E．W．Abel，M．A．Bennett，and G．Wilkinson，J．Chem．Soc．， 3178 （1959）．
（29）M．A．Bennett and P．A．Longstaff，Chem．Ind．（London）， 846 （1965）
（30）L．A．Paquette and J．S．Ward，J．Org．Chem．，37， 3569 （1972）．
（31）G．Jones，II，M．E．Fantina，and A．H．Pachtman，J．Org．Chem．，41， 329 （1976）．

Conformational Control by Carbinyl Hydrogens． Implications and Applications

William H．Pirkle＊and J．R．Hauske
School of Chemical Sciences，University of Illinois，Urbana，Illinois 61801

Received July 9， 1975

Abstract

＂Acylation shifts＂and Eu（fod）${ }_{3}$ gradients of the carbinyl hydrogens of a variety of esterlike derivatives of sec－ ondary alcohols are substantially enhanced when the carbinyl carbon bears a trifluoromethyl group．This en－ hancement is not steric in origin and is attributed to weak intramolecular bonding between the carbinyl hydrogen and the carbonyl oxygen which populates conformations placing the carbinyl hydrogen near to and approximately in the plane of the magnetically anisotropic carbonyl．Here，this hydrogen may be deshielded（acylation shift）or shifted downfield（gradient）upon coordination of the carbonyl oxygen to $\mathrm{Eu}(\mathrm{fod})_{3}$ ．The concept of conformation－ al control by carbinyl hydrogen bonding can be used to account for prior instances of chemical behavior such as chromatographic properties，NMR chemical shifts，and asymmetric induction．

Prior papers dealing with chiral NMR solvents have ex－ plained the ability of these solvating agents to cause the spectra of enantiotopic solutes to become nonequivalent as a consequence of the formation of transient diastereomeric solvates．${ }^{1-6}$ Further，it has been proposed that these sol－ vates assume conformations which place enantiomeric so－ lute nuclei in different orientations with respect to a mag－ netically anisotropic substituent of the chiral solvating agent．Accurate knowledge of the conformational behavior of these diastereomeric solvates would enable one to direct－ ly relate the observed spectral differences to the stereo－ chemical differences of the solvates．${ }^{7}$ For chiral solvents of known absolute configuration，this type of spectral inter－ pretation would amount to simultaneous determination of the absolute configuration and enantiomeric purity of the solute．Clearly，an understanding of the factors underlying the conformational behavior of the transient diastereomer－ ic solvates is essential to the successful employment of this technique．

Specific solvation models have been advanced ${ }^{1,2}$ to ac－ count for the NMR nonequivalence shown by enantiomeric sulfoxides or enantiomeric tertiary amine oxides in the presence of chiral type 1 alcohols．After initial intermolecu－ lar hydrogen bonding，a weaker but intramolecular bonding between the carbinyl hydrogen of 1 and a second basic site in the solute is postulated to afford chelatelike conforma－ tions exemplified by $2 \mathbf{a}, \mathbf{b}$ and $\mathbf{3 a}, \mathbf{b}$ ．Such conformations would place enantiomeric solute nuclei（ R_{1} or R_{2} ）in differ－ ent orientations with respect to the aromatic substituent of chiral alcohol 1．Hence，the resultant average chemical shift

1

$2 a$

2b

differences between solute enantiomers stem from differential shielding effects in the diastereomeric solvates and are easily relatable to solute stereochemistry.

While the ability of the hydroxyl of a type 1 alcohol to hydrogen bond to basic solutes is easily demonstrated, the ability of the carbinyl hydrogen of 1 to exert a secondary bonding interaction on weakly basic sites such as π electrons or unshared electron pairs is less obvious. The question of the existence of this latter type of bonding is a rather important one, for the conformational control proposed to result thereby does account for the occurrence of enantiomeric spectral nonequivalence and does correctly correlate the senses of this nonequivalence with the ajsolute configurations of a wide variety of solute classes, these models not being restricted solely to sulfoxides or amine oxides. ${ }^{12}$ Inasmuch as the determination of absolute configuration is a frequently encountered problem, the development of a convenient, reliable, easily understood method for simultaneously determining absolute configuration and enantiomeric purity would be quite useful. For this reason, we have investigated several systems where such weak intramolecular bondings might result in demonstrable conformational control, an observation which would have considerable bearing upon the merits of the proposed sclvation models.

In the case of esterlike derivatives of type 1 acohols, weak intramolecular bonding between the carbinyl hydrogen and the carbonyl oxygen would be quite analogous to the previously postulated chelating interactions and should exert some degree of conformational control.
There are two reasons to anticipate this conformational control. First, the case for intermolecular hydrogen bonding between chloroform and several bases has been reviewed by Pimentel and McClelland and judged to be sound. ${ }^{13}$ Equally relevant, evidence for the intermolecular hydrogen bonding of chloroform to the π cloud of benzene has been offered. ${ }^{14}$ Secondly, the $T \Delta S$ term for intramolecular hydrogen bonding is essentially zero, whereas it has been estimated to be ca. $3 \mathrm{kcal} / \mathrm{mol}$ for intermolecular hydrogen bonding in solution. ${ }^{15}$ Thus, a weak bonding interaction of a given enthalpy will be rather more effective in controlling conformation populations in the intramolecular case than in controlling extent of association in the intermolecular case.

In a sense, the carbinyl hydrogen of 1 is analogous to the methine hydrogen of chloroform in that both have three inductively electron-withdrawing groups in the α position. To the extent that the "acidity" of the carbinyl hydrogen plays a role in the postulated CHB, the presence or absence of the electronegative trifluoromethyl group should have predictable consequences in terms of the extent of corformational control arising through CHB.

Several years ago, the acylation shift undergone by carbinyl hydrogen resonances upon acylation of alcohols was related by Culvenor ${ }^{16}$ to the population of conformers similar to 4 which place the carbinyl hydrogen in or near the

4
plane of the magnetically anisotropic acyl carbonyl group. Culvenor offers no forthright explanation as to the reasons underlying the population of conformer 4, although it was known at that time from microwave data that the methoxyls of methyl formate and methyl acetate are cis to carbonyl oxygen but ca. 25° out of the carbonyl plane. ${ }^{17}$ X-ray data for several crystalline esters also indicates close approach ($2.22 \AA$) of the carbinyl hydrogen to carbonyl oxygen in the solid state. ${ }^{18}$ Conformations approximating 4 have been used by Karger ${ }^{19}$ and Helmchen ${ }^{10}$ to account for the elution order of diastereomeric esters and amides upon gas and thin layer chromatography. Almost invariably, the reasons for the population of conformers like 4 are assumed to be steric or else not mentioned at all. An exception to this is Mathieson, who contemplated, on the basis of his x-ray work, the possible existence of a weak intramolecular bonding force between the carbinyl hydrogen and carbonyl oxygen of an ester. ${ }^{18}$ However, Mathieson concluded that "repulsive forces" are dominant in determining ester conformation although "subsidiary local forces" play a role as well. If real, CHB could play a substantial role in populating conformations like 4.

Results and Discussion

On steric grounds, the conformational behavior of $1,1,1-$ trifluoro-2-propyl acetate (6) is expected to be intermediate between that of 2 -propyl acetate (7) and 3,3-dimethyl2 -butyl acetate (8), since the van der Waals diameter of the trifluoromethyl group ($5.1 \AA$) is intermediate between that of methyl ($4.0 \AA$) and tert-butyl ($6.2 \AA$). If steric effects alone are responsible for population of conformations like 4, then the acetylation shifts are expected to occur in the order $7<6<8$. However, if the presence of the trifluoromethyl group in 6 results in increased population of conformations like 4, a greater acetylation shift would be observed for the fluoro alcohol than for the other two alcohols. ${ }^{20}$ In actuality, the acetylation shift of $1,1,1$-trifluoro-2-propanol is 1.48 ppm vs. 1.25 ppm for 2-propanol and 1.20 ppm for 3,3-dimethyl-2-butanol. Similar arguments apply to the N, N-dimethyl carbamates of these three alcohols, but, again, the fluoro alcohol undergoes the greater (1.10 vs. 0.80 and 1.06 ppm) "acylation shift".

Further studies were conducted on 2,2,2-trifluoro-1-(1naphthyl)ethanol ${ }^{22}$ (10) (of interest as a chiral NMR additive for determining absolute configurations and enantiomeric purities ${ }^{1}$) and its nonfluorinated analogues, 1-(1naphthyl)ethanol (11) and 2,2-dimethyl-1-(1-naphthyl)propanol (12). Conversion of these alcohols respectively into acetates, $13 \mathrm{a}-\mathrm{c}, \mathrm{N}, \mathrm{N}$-dimethyl carbamates, $14 \mathrm{a}-\mathrm{c}$, chloroformates, $15 \mathrm{a}, \mathrm{b}$, or carbonate 16^{23} results in a greater "acylation shift" for fluoro alcohol 10 than for alcohols 11 or 12 (see Table I). This result is consistent with the view that trifluoromethyl group more heavily populates conformations which place the carbinyl hydrogen near the deshielding carbonyl oxygen. It is obvious that these greater acylation shifts do not stem solely from steric origins, since trifluoromethyl is intermediate in size between methyl and tert-butyl. Only in the case of the sulfinates $17 \mathrm{a}, \mathrm{b},{ }^{23} \mathrm{de}$ rived from reaction of 10 and 11 with 2-propylsulfinyl chlo-

Table I. Carbinyl Hydrogen "Acylation Shifts" and Eu(fod) ${ }_{3}$ Gradients of Some Alcohol Derivatives

Compd	R'	R	Acylation shift $\mathrm{H}_{\mathrm{a}}, \mathrm{ppm}^{a}$	$\begin{aligned} & \mathrm{Eu}(\mathrm{fod})_{3} \\ & \mathrm{H}_{\mathrm{a}}, \mathrm{ppm} \end{aligned}$	Gradient b H_{b}, ppm
	$\stackrel{0}{10}$				
13a-c	$-\mathrm{C}-\mathrm{CH}_{3}$		1.33 1.15	9.4 5.9	6.4 7.4
		$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.15	6.7	7.0
14a-c		CF_{3}	1.30	17.	8.7
	CH_{4}	CH_{3}	1.05	11.	12.
		$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.05	13.	10.
	$\stackrel{0}{10}$				
15a,b	$-\mathrm{C}-\mathrm{Cl}$	CF_{3}	1.28		
		CH_{3}	1.00		
16		CF_{3}	$\begin{aligned} & 1.20\left(\mathrm{H}_{\mathrm{a}}\right) \\ & 1.05\left(\mathrm{H}_{\mathrm{b}}\right) \end{aligned}$	2.6	0.8
	0				
17a,b	$-\mathrm{S}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	$\begin{aligned} & \mathrm{CF}_{3} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & 0.58 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 19 . \\ & 10 . \end{aligned}$	

${ }^{a}$ Chemical shifts were obtained for quite dilute carbon tetrachloride solutions at $28{ }^{\circ} \mathrm{C} .{ }^{b}$ Gradients are presented as leastsquares slopes of the essentially linear portion of the curves noted for $\mathrm{Eu}(\mathrm{fod})_{3}$: substrate ratios of less than 0.2 . The correlation coefficients of the least-squares slopes range from 0.99 to 0.97 .
ride, are the acylation shifts similar. By the preceding criteria, one might conclude that there is no significant difference in the conformational behavior of these sulfinates. Data to be subsequently presented make this seem unlikely, and it is tentatively concluded that the asymmetric magnetic anisotropy about the sulfinyl group coincidentally occasions the similar "acylation" shifts. A relevant observation here is that the preferred conformation of thiacyclohexane 1 -oxides places the sulfinyl oxygen in an axial position. ${ }^{24,25}$ It has been suggested ${ }^{24,25}$ and supported ${ }^{26}$ by calculations that there is an attractive interaction between the axial oxygen and the axial γ hydrogens amounting to $0.37 \mathrm{kcal} / \mathrm{mol}$, even though the γ hydrogens would not be expected to be especially acidic.

Lanthanide Shift Studies. Independent supportive evidence for the ability of an α-trifluoromethyl group to preferentially populate type 4 conformations comes from a study of the effect of $\mathrm{Eu}(\mathrm{fod})_{3}$ upon the chemical shifts of the carbinyl hydrogens of the aforementioned derivatives of alcohols 10,11 , and $12 . \mathrm{Eu}(\mathrm{fod})_{3}$ is known to coordinate to the carbonyl oxygen in a variety of carbonyl containing compounds. While thus coordinated, it exerts a deshielding influence on nearby protons which diminishes with increasing distance from the lanthanide. The effect of $\mathrm{Eu}(\mathrm{fod})_{3}$ concentration upon the chemical shifts of the carbinyl hydrogen and acetyl methyl resonances of dilute carbon tetrachloride solutions of acetates $13 a-c$ was determined. At low ratios of $\mathrm{Eu}(\mathrm{fod})_{3} / \mathrm{substrate}$, these plots are essentially straight lines, the least-squares slopes of which ε re given in Table I. If one uses the slope (gradient) of the acetyl methyls as an index of the extent of coordination by the $\mathrm{Eu}(\mathrm{fod})_{3}$, one infers that acetates $13 \mathrm{~b}, \mathrm{c}$ coordinate more strongly than fluorinated acetate 13a. This is expected a priori since the electron-withdrawing trifluoromethyl should reduce the basicity of the carbonyl oxygen of 13a relative to $\mathbf{1 3 b}, \mathbf{c}$. Nevertheless, the gradient for the carbinyl hydrogen of fluoroacetate 13 a is greater than those of 13b or 13c even before allowance is made for 13a's reduced
degree of coordination. Competition experiments between equal concentrations of $13 a$ and $13 b$ show that $E u(f o d) 3$ coordinates preferentially to $\mathbf{1 3 b}$ by a factor of ca. 7:1. Judging from the acetyl methyl gradients, the more hindered 13c is complexed to a slightly lesser degree than 13 b . However, from the carbinyl hydrogen gradients, the additional steric bulk appears to favor conformations placing the carbinyl hydrogen near the lanthanide while complexed.

Other data in Table I show that the rates at which the carbinyl hydrcgens are shifted downfield by $\mathrm{Eu}\left(\mathrm{fod}_{3}{ }_{3}\right.$ addition varies from derivative to derivative as changes in the basicities of the carbonyl oxygens influence the extent of coordination to $\mathrm{Eu}(\mathrm{fod})_{3}$. For example, the carbonate 16 appears to cocrdinate more weakly than any of the carbamates. Note however, that within a class, the carbinyl hydrogen of the derivative of fluoro alcohol 10 is shifted more strongly than that derived from 11 or 12 despite the fact that the carbonyl basicities of the derivatives of $\mathbf{1 0}$ must be less than those of 11 or 12. As further illustration of this point, note that the N-methyl group cis to the carbonyl oxygen in N, N-dimethyl carbamate 14a (derived from fluoro alcohol 10) is not shifted downfield as strongly as those in carbamates 14 b and 14 c , derived from 11 and 12 . A competition experiment employing equal concentrations of 14 a and 14 b shows that $\mathrm{Eu}(\mathrm{fod})_{3}$ preferentially coordinates to 14b by a $3: 1$ margin. Use of the mixed carbonate 16 avoids problems of differing extents of coordination to $\mathrm{Eu}(\mathrm{fod})_{3}$ since both types of carbinyl hydrogens are present in the same molecule. Again, it is the carbinyl hydrogen derived from 10 which is most strongly influenced by the addition of $\mathrm{Eu}(\mathrm{fod})_{3}$, the initial slope of its $\Delta \delta$ vs. $\mathrm{Eu}(\mathrm{fod})_{3}$ curve being over twise that of its less acidic partner. Finally, despite probable basicity differences, the greater $\mathrm{Eu}(\mathrm{fod})_{3}$ gradient of the carbinyl hydrogen of fluoro alcohol 10 is especially evident for sulfinates 17a and 17b which, it may be recalled, show no difference in their "acylation" shifts.
The preceding results clearly indicate that the carbinyl
hydrogens of the derivatives of fluoro alcohol 10 are, on the average, closer to the complexed $\mathrm{Eu}(\mathrm{fod})_{3}$ than their counterparts in the derivatives of 11 and 12. Again, this is most readily explained in terms of a weak bonding between the carbinyl hydrogen and the carbonyl oxygen. The scrength of this interaction would appear to increase with increased "acidity" of the carbinyl hydrogen. Presumably, the carbonyl (or sulfinyl) oxygen retains some basic character during coordination to $\mathrm{Eu}(\mathrm{fod})_{3}$ and still serves as an acceptor for CHB. ${ }^{27}$ While one must not be unmindful of the ability of shift reagents to influence conformational equilibria, ${ }^{28}$ it seems reasonable that CHB in the uncoordinated derivative would be even stronger.

The preceding data clearly demonstrate that the α-trifluoromethyl group plays a substantial role in preferentially populating type 4 conformations of esterlike derivatives of type 1 alcohols. This demonstration is of considerable importance, since it furnishes analogy for the conformations, $2 \mathbf{a}, \mathbf{b}, 3 \mathbf{a}, \mathbf{b}$, invoked to account for the ability of chiral type 1 alcohols to promote ${ }^{1} \mathrm{H}$ NMR spectral nonequivalence for enantiomeric sulfoxides and amine oxides. This analogy does not hinge upon the correctness of the rationale (i.e., CHB) for the reason underlying the population of these conformations, although this too is important in that real understanding of the origin of the conformational preference might suggest structural modifications which would further bias this conformational preference.

The results of Karger et al. ${ }^{29}$ on the correlation of stereochemistry with gas chromatographic elution order of diastereomeric esters of secondary alcohols can be rationalized on the basis of preferred conformations in which the carbinyl hydrogen is in or near the plane of the carbonyl group. Similar conformations have been used by Helmchen et al. ${ }^{10}$ in correlating stereochemistry with chromatographic and NMR behavior of some diastereomeric amides and by Moser et al..8,9 in correlating stereochemistry and ${ }^{1} \mathrm{H}$ NMR spectral differences between diastereomeric esters of secondary alcohols.

It is suggested that carbinyl hydrogen bonding may play an active role in causing the population of the aforementioned conformers and may also manifest itself during some asymmetric induction reactions.

Experimental Section

Melting points were determined on a Büchi apparatus and are uncorrected. Proton NMR spectra were obtained with Varian Associates A-60A, A56-60, or HA-100 instruments. Infrared spectra were obtained with a Beckman IR-12. Mass spectra were determined using a Varian MAT CH-5 spectrometer. Microanalyses were performed by J. Nemeth and his colleagues.
Acetates. All of the acetates used in this study were prepared using the following procedure. Acetyl chloride ($0.517 \mathrm{~g}, 6.63 \mathrm{mmol}$) was added via syringe to a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of racemic alcohol (ca. 4.5 mmol) and triethylamine ($0.67 \mathrm{~g}, 6.6 \mathrm{mmol}$) in 30 ml of fluorotrichloromethane. After 15 min , the amine hydrochloride was removed, the solvent evaporated, and the crude acetate molecularly distilled. In some instances, the acetates were purified by chromatography on silica gel with methylene chloride using a system similar to that described. ${ }^{30}$

1-(1-Naphthyl)-2,2,2-trifluoroethyl acetate (13a) was an oil (95\% yield): NMR (CCl_{4}) $\delta 2.13$ (s, $\mathrm{C}-\mathrm{CH}_{3}$), 6.95 (quartet, CH), $7.30-8.15 \mathrm{ppm}$ (multiplet, $\mathrm{C}_{10} \mathrm{H}_{7}$); ir (neat) 3090, 2970, 1760 ($\mathrm{C}=0$) , 1370, 1270, 1215, 1135, $1065 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m / e (rel intensity) 268 ($69.05, \mathrm{M}^{+}$), 225 (4.5), 209 (12.5), 157 (100).

1-(1-Naphthyl)ethyl acetate (13b) was an oil ($>95 \%$ yield): NMR (CCl_{4}) $\delta 1.6$ (d, $\mathrm{C}-\mathrm{CH}_{3}$), 1.97 ($\mathrm{s}, \mathrm{C}-\mathrm{CH}_{3}$), 6.55 (quartet, CH), 7.15-8.10 ppm (multiplet, $\mathrm{C}_{10} \mathrm{H}_{7}$); ir (neat) 3090, 3000, 1745 ($\mathrm{C}=0$), $1450,1360,1250,1175,1110 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m / e (rel intensity) 214 ($61.99, \mathrm{M}^{+}$), 172 (37.38), 155 (91.86), 154 (99), 128 (34).

1-(1-Naphthyl)-2,2-dimethylpropyl acetate (13c) was a yellow oil (85% yield): NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.96$ [singlet, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], 2.00 [singlet, $\mathrm{C}(=0) \mathrm{CH}_{3}$], 6.45 (singlet, CH), $7.30-8.20 \mathrm{ppm}$ (multiplet,
$\mathrm{C}_{10} \mathrm{H}_{7}$); ir (neat) 3060, 2990, 1750, 1640, 1550, 1370, 1350, 1120 cm^{-1}; mass spectrum (70 eV)m/e (rel intensity) $256\left(11.70, \mathrm{M}^{+}\right.$), 199 (22.53), 157 (100), 129 (21.86), 127 (7.80).

Carbamates. All of the carbamates used in this study were made by the following procedure. Sodium hydride-mineral oil dispersion (5.0 mmol) was added to the alcohol (ca. 4.5 mmol) in 10 ml of dry tetrahydrofuran. When gas evolution ceased, N, N-dimethylcarbamoyl chloride ($0.60 \mathrm{~g}, 5.6 \mathrm{mmol}$) was added in small portions. After $15 \mathrm{~min}, 100 \mathrm{ml}$ of water was added and the solution was extracted twice with $25-\mathrm{ml}$ portions of methylene chloride. The dried extracts were concentrated and the residual material chromatographed on silica gel with methylene chloride using a system similar to that described. ${ }^{30}$
1-(1-Naphthyl)-2,2,2-trifluoroethyl- \mathbf{N}, \mathbf{N}-dimethyl carbamate (14a) was straw-colored crystals (90% yield): mp 65.6-66.2; NMR (CCl_{4}) $\delta 2.91$ (broad s, NCH_{3}), 6.94 (quartet, CH), $7.32-8.14$ ppm (multiplet, $\mathrm{C}_{10} \mathrm{H}_{7}$); ir (KBr) 3000, 2070, $1740(\mathrm{C}==\mathrm{O}$), 1410, $1578,1190,1100 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) 297 (35.7, M ${ }^{+}$), 209 (100), 159 (26.5), 121 (100).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2}: \mathrm{C}, 60.89 ; \mathrm{H}, 4.73 ; \mathrm{N}, 4.73$. Found: C, 61.35; H, 4.74; N, 4.80 .

1-(1-Naphthyl)ethyl- N, N-dimethyl carbamate (14b) was an oil ($>90 \%$ yield): NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.69$ (d, C- CH_{3}), 2.90 (s, NCH_{3}), 6.45 (quartet, CH), $7.3-8.1 \mathrm{ppm}$ (multiplet, $\mathrm{C}_{10} \mathrm{H}_{7}$); ir (neat) 3050 , 2970, 2900, $1705(\mathrm{C}=\mathrm{O}), 1600,1380 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m / e (rel intensity) $243\left(95.09, \mathrm{M}^{+}\right), 155$ (100).

1-(1-Naphthyl)-2,2-dimethylpropyl- N, N-dimethyl carbamate (14 c) was an oil (65% yield): NMR (CCl_{4}) $\delta 1.00$ [singlet, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], 2.92 (broad singlet, NCH_{3}), 6.39 (singlet, CH), 7.3-8.2 ppm (multiplet, $\mathrm{C}_{10} \mathrm{H}_{7}$); ir (neat) 3050, 2990, 1710, 1625, 1390, $1370,1190 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) 285 (9.47, M^{+}), 228 (16.8), 127 (3.09), 72 (100).

Chloroformates. Chloroformates were prepared in a manner analogous to that used by Altner. ${ }^{31}$
1-(1-Naphthyl)-2,2,2-trifluoroethyl chloroformate (15a) was purified by gel permeation chromatography on Bio-Beads SX-12 with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and was obtained as a yellow liquid (71% yield): NMR (CCl_{4}) $\delta 6.90$ (quartet, CH), $7.2-8.1 \mathrm{ppm}$ (multiplet, $\mathrm{C}_{10} \mathrm{H}_{7}$); ir (neat) $3075,1775(\mathrm{C}=0$), $1540,1358,1260,1240,1190$, $1140 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) 288 (76 , M^{+}), 219 (26), 209 (100), 188 (35), 182 (45).
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{O}_{2}$: $\mathrm{C}, 54.30 ; \mathrm{H}, 2.78 ; \mathrm{Cl}, 12.15$. Found: C, 54.36; H, 2.79; Cl, 12.20 .
1-(1-Naphthyl)ethyl chloroformate (15b) was purified by gel permeation chromatography on Bio-Beads SX- 12 with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and was obtained as a yellow liquid (60% yield): NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.0$ (d, C-CH33), 6.40 (quartet, CH), 7.2-8.2 ppm (multiplet, $\mathrm{C}_{10} \mathrm{H}_{7}$); ir (neat) $3050,2980,1730(\mathrm{C}=0), 1510,1445,1380,1275,1220 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) 192 (73), 191 (37), 190 (100, M - CO_{2}), 174 (35), 157 (24), 156 (100), 155 (100), 150 (78), 138 (46), 126 (99), 115 (67), 86 (11).
1-(1-Naphthyl)-2,2,2-trifluoroethyl $\quad 1^{\prime}$-(1^{\prime}-Naphthyl)ethyl Carbonate (16). 1-(1-Naphthyl)-2,2,2-trifluoroethyl chloroformate ($15 \mathrm{a}, 2 \mathrm{~g}, 6.95 \mathrm{mmol}$) and racemic 1-(1-naphthyl) ethanol (11 , $1.19 \mathrm{~g}, 6.95 \mathrm{mmol}$) were dissolved in 50 ml of benzene. After addition of pyridine ($0.549 \mathrm{~g}, 6.95 \mathrm{mmol}$), the reaction mixture was refluxed for 48 h . This mixture was then filtered and the filtrate was concentrated and chromatographed on a Bio-Bead SX-12 gel permeation column. The effluent was monitored at 280 nm . The first major fraction to be eluted was carbonate 15 (yield 40%): NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.98$ (d, $\mathrm{C}_{-} \mathrm{CH}_{3}$), 6.45 (quartet, $\mathrm{CH}_{3} \mathrm{CH}$), 6.82 (quartet, $\mathrm{CF}_{3} \mathrm{CH}$), 7.1-8.1 ppm (multiplet, $\mathrm{C}_{20} \mathrm{H}_{14}$); ir (neat) 3090, 3000, $1745(\mathrm{C}=0), 1450,1400,1380,1270,1250,1140 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m / e (rel intensity) 424 ($57.78, \mathrm{M}^{+}$), 173 (94.45), 172 (100), 129 (100), 128 (54).

Sulfinates. The sulfinate esters described in this paper were prepared following a procedure developed by Hoekstra. ${ }^{32}$
1-(1-Naphthyl)-2,2,2-trifluoroethyl 2-Propyl Sulfinate (17a). Racemic fluorocarbinol $10(0.994 \mathrm{~g}, 4.39 \mathrm{mmol})$ and pyridine ($0.372 \mathrm{ml}, 0.365 \mathrm{~g}, 4.61 \mathrm{mmol}$) were dissolved in 6 ml of CFCl_{3} in a serum-stopped flask and cooled to $-78{ }^{\circ} \mathrm{C}$. 2-Propylsulfinyl chloride (5.0 mmol) was then added via syringe and the reaction mixture was shaken for 15 min . The reaction mixture was chromatographed on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Recrystallization of the high R_{f} diastereomer from 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane afforded colorless crystals: $\mathrm{mp} 61.5-64.5^{\circ} \mathrm{C}$; NMR (CCl_{4}) $\delta 1.22$ (d, $\mathrm{C}_{-\mathrm{CH}_{3}}$), 2.76 (septet, CH), 6.19 (quartet, CH), $7.25-8.15 \mathrm{ppm}$ (multiplet, $\mathrm{C}_{10} \mathrm{H}_{7}$); ir (KBr) $3060,2995,1635,1515,1470,1400,1345,1240,1120 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m / e (rel intensity) $316\left(3.22, \mathrm{M}^{+}\right.$), 209 (100), 127 (12.33).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 57.09 ; \mathrm{H}, 4.70$. Found: C, 57.10 H, 4.65.

Although the high R_{f} diastereomer was used for NMR studies, its carbinyl hydrogen has essentially the same chemical shift as that of the low R_{f} diastereomer: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.19\left(\mathrm{~d}, \mathrm{C}-\mathrm{CH}_{3}\right)$, 2.72 (septet, CH), 6.14 (quartet, CH), $7.25-8.15 \mathrm{ppm}$ (multiplet, $\mathrm{C}_{10} \mathrm{H}_{7}$).

1-(1-Naphthyl)ethyl 2-Propy. Sulfinate (17b). An oily mixture of diastereomers was obtained, inseparable by chromatography on silica gel ($>90 \%$ yield): NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.15\left[\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 1.75 (d, $\mathrm{C}-\mathrm{CH}_{3}$), 2.58 (septet, CF_{-}), 5.92 (quartet, CH), 7.22-8.15 ppm (multiplet, $\mathrm{C}_{10} \mathrm{H}_{7}$); ir (neat) $£ 070,2970,1540,1235,1135,1070$ cm^{-1}; mass spectrum (70 eV) m / ϵ (rel intensity) $262\left(14.87, \mathrm{M}^{+}\right.$), 155 (96.74), 154 (100), 128 (100).

Acknowledgment. This work has been supported in part by grants from the Netional Institutes of Health (Grant GM 14518) and from the National Science Foundation (Grant MPS 74-21812).

Registry No. $-10,17556-44-4 ; 11,57605-95-5 ; 12,57573-88-3$; 13a, 57573-89-4; 13b, 57573-90-7; 3c, 57573-91-8; 14a, 57573-92-9; 14b, 57573-93-0; 14c, 57573-94-1; 15a, 57573-95-2; 15b, 57573-96-3; 16, 57573-97-4; 17a diastereomer a, 57573-98-5; 17a diastereomer b, 57573-99-6; 17b diastereomer a. 57574-00-2; 17b diastereomer b, 57574-01-3; acetyl chloride, 75-36-5; N,N-dimethylcarbamoyl chloride, 79-44-7.

References and Notes

(1) W. H. Pirkle and R. L. Muntz, J. Arr. Chem. Soc., 93, 2817 (1971).
(2) W. H. Pirkle, S. D. Beare, and F. L. Muntz, Tetrahedron Lett., 2295 (1974).
(3) W. H. Pirkle and S. D. Beare, J. Ara. Chem. Soc., 89, 5485 (1967).
(4) W. H. Pirkle, T. G. Burlingame, anc S. D. Beare, Tetrahedron Lett., 5849 (1968).
(5) W. H. Pirkle and S. D. Beare, J. Ara. Chem. Soc., 91, 5150 (1969).
(6) W. H. Pirkle and M. S. Hoekstra, J. Magn. Reson., in press.
(7) It should be made clear that this same basic approach can be used with covalent diastereomers as well us diastereomeric solvates. Indeed, Mosher ${ }^{8,9}$ and Helmchen ${ }^{10.11}$ have recently applied this type of logic to relate the 'H NMR spectral differences between diastereomeric esters and amides to known stereochemi ial differences.
(8) J. A. Dale and H. S. Mosher, J. A n. Chem. Soc., 95, 512 (1973). This paper references additional examoles of configurational correlation of diastereomers by means of NMR s jectroscopy.
(9) G. R. Sullivan, J. A. Dale, and H. S. Mosher, J. Org. Chem., 38, 2143 (1973).
(10) G. Helmchen, R. Ott, and K. Saube; Tetrahedron Lett., 3973 (1973).
(11) G. Helmchen, Tetrahedron Lett., 1527 (1974).
(12) A detailed account of this work wil appear elsewhere.
(13) G. C. Pimental and A. L. McClellar , "The Hydrogen Bond", W. H. Freeman, San Francisco, Calif., 1960.
14) C. J. Creswell and A. L. Allred, J. Phys. Chem., 66, 1469 (1962).
(15) H. H. Jaffe, J. Am. Chem. Soc., 792373 (1957).
(16) C. C. J. Culvenor, Tetrahedron Let.., 1091 (1966).
(17) E. L. Eliel, N. L. Allinger, S. J. Ançyal, and G. A. Morrison, "Conformational Analysis", Interscience, Ne-v York, N.Y., 1965, p 21, and references cited therein.
(18) A. M. Mathieson, Tetrahedron Lett.. 4137 (1965),
19) H. C. Rose, R. L. Stern, and B. L. Karger, Anal. Chem., 38, 469 (1966) See also ref 29.
(20) An additional factor contributing toward the population of conformations placing ester alkoxyls cis to the carbonyl oxygen is likely to be simple antiparallel alignment of the bond dipoles associated with the C-O and $\mathbf{C}=\mathbf{O}$ bonds as shown in 5 . This rationalization is similar to that used by

5
Bothner-By to explain why the methyl of propionaldehyde prefers to be cis to the carbonyl oxygen. ${ }^{21}$ On the other hand, the electronegativity of the trifluoromethyl group will cause the ground-state basicities of both the alkoxyl and carbonyl oxygens of acetate 6 to be less than those of acetates 7 and 8 . Hence, the latter will be better able to support reso nance as depicted in 9 and better able to serve as an intramolecular hy-

drogen bond acceptor. Moreover, the electronegativity of the trifluoromethyl group should also tend to diminish the magnitudes of the bond dipoles shown in 5 and hence possibly reduce the population of the cis conformer. On the basis of the latter three effects only, the acetylation shift of the fluoro alcohol would be expected to be less than that of the two other alcohols.
(21) A. A. Bothner-By, C. Naar-Colin, and H. Gunther, J. Am. Chem. Soc., 84, 2748 (1962).
(22) W. H. Pirkle and M. S. Hoekstra, J. Org. Chem., 39, 3904 (1974).
(23) While this derivative is obtained as a mixture of diastereomers, the corresponding carbinyl hydrogens of the diastereomers are essentially iso chronous.
(24) C. R. Johnson and D. McCants, Jr., J. Am. Chem. Soc., 86, 2935 (1964).
(25) J. C. Martin and J. J. Vebel, J. Am. Chem. Soc., 86, 2936 (1964).
(26) N. L. Alliger, J. A. Hirsch, M. A. Miller, and I. J. Tyminski, J. Am. Chem Soc., 91, 337 (1969).
(27) Coordination to Eu(fod) $)_{3}$ will make the carbonyl oxygen a poorer recep tor for CHB and some loss of CHB presumably results. This loss could conceivably be greater for the less acidic carbinyl hydrogens than for the more acidic carbinyl hydrogens and hence explain the substantially larger gradients of the latter.
(28) Since coordination to lanthanide makes the region about the carbonyl (sulfinyl) oxygen sterically more congested, one could conceivably preferentially populate the rotamer which places the smallest carbinyl substituent (i.e., the hydrogen) toward the lanthanide. Two aspects of this hypothesis worth contemplating are (a) the entire alkoxyl substituent could simply rotate away from lanthanide if steric interactions were too severs; (b) the carbinyl hydrogen gradients do not simply parallel the bulk of the alkyl substituent. The consequences of electronic interac tions between the trifluoromethyl and the lanthanide shift reagent occurring in concert with steric forces cannot yet be predicted.
(29) B. L. Karger, R. L. Stern, H. C. Rose, and W. Keane, "Gas Chromatography, 1966", A. B. Littlewood, Ed., Institute of Petroleum, London, 1967. p 240.
(30) W. H. Pirkle and R. W. Anderson, J. Org. Chem., 39, 3901 (1974)
(31) W. Altner, E. Meisert, and G. Rockstroh, German Patent 1117598 (1961); Chem. Abstr., 57, 11106 (1962)
(32) W. H. Pirkle and M. S. Hoekstra, J. Am. Chem. Soc., in press.

Dehalogenation and Condensation Reactions of Molybdenum Carbonyls with Activated Halides

Howard Alpe:* and Daniel Des Roches
Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Received August 19, 1975

Abstract

Molybdenum hexacarbonyl reacts with α-halo ketones in 1,2 -dimethoxyethane to form monoketones and α, β unsaturated carbonyls in generally good combined yields. Triphenylphosphine molybdenum pentacarbonyl and tetrabutylammonium pentacarbonyl molybdenate (0) are also useful reagents, but chromium and tungsten hexacarboxyls exhibit low reactivity toward α-halo ketones. Coupling products were obtained by treatment of dichlorodiphenylmethane or 9 -bromofluorene with $\mathrm{Mo}(\mathrm{CO})_{6}$.

Reaction of iron pentacarbonyl with α-halo ketones (1) affords 1,4 -diketones (2), monoketones (3), and, in several instances, β-epoxy ketones (4). 1,4-Diketones were usually

the major products of these reactions. Evidence has been presented for initial oxidative addition of the trigonal bipyramidal $\mathrm{Fe}(\mathrm{CO})_{5}$ by the α-halo ketone to give an octahedral intermediate. ${ }^{1}$ It was of considerable interest to learn the effect of metal carbonyl configuration on the reaction course. Oxidative addition to octahedral group 6 metal carbonyls such as molybdenum hexacarbonyl $\left[\mathrm{Mo}(\mathrm{CO})_{6}\right]$ is a much less common process than for $\mathrm{Fe}(\mathrm{CO})_{5}$, since formation of a neutral seven-coordinate intermediate would be required for $\mathrm{Mo}_{0}(\mathrm{CO})_{6}$. Rather, treatment of certain halides with $\mathrm{Mo}(\mathrm{CO})_{6}$ under stoichiometric or catalytic conditions results in the generation of radical (from $\mathrm{CCl}_{4}, \mathrm{CBr}_{4}$, $\left.\mathrm{CCl}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right)^{2}$ or ionic (from RCOCl) ${ }^{3}$ intermediates. We now wish to report that α-halo ketones react in a different, and interesting, manner with group 6 metal carbonyls as compared to $\mathrm{Fe}(\mathrm{CO})_{5}$.

Results and Discussion

Monoketones (3) and α, β-unsaturated ketones (5) were obtained by treatment of α-halo ketones with an equimolar amount of $\mathrm{Mo}(\mathrm{CO})_{6}$ in refluxing 1,2 -dimethoxyethane (DME, 48 hr) and then with water. The yields, melting

1

points of new compounds, and pertinent spectral data for the reaction products are given in Table I.

The α-halo ketone- $\mathrm{Mo}(\mathrm{CO})_{6}$ reaction afforded the methyl ketone as the major or only product, except for $1, \mathrm{R}=$ $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$, which gave the chalcone $5, \mathrm{R}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, as the major product. The other group 6 metal carbonyls, chromium hexacarbonyl and tungsten hexacarbonyl, were much less reactive than $\mathrm{Mo}(\mathrm{CO})_{6}$ giving low conversions
even after reaction times of 6 days with 2 -chloro$2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$-pentamethylacetophenone. However, treatment of the latter with triphenylphosphine molybdenum pentacarbonyl resulted in the formation of pentamethylacetophenone in 76% yield.

There are several important differences in the behavior of iron and molybdenum carbonyls toward α-halo ketones: (1) monoketones (3), usually the major products formed using $\mathrm{Mo}(\mathrm{CO})_{6}$, were generally obtained as minor products with $\mathrm{Fe}(\mathrm{CO})_{5}$; (2) coupling to 1,4 -diketones is the major reaction pathway for $\mathrm{Fe}(\mathrm{CO})_{5}$, while $\mathrm{Mo}(\mathrm{CO})_{6}$ affords α, β unsaturated carbonyls and no 1,4 -diketones; (3) the $\mathrm{Mo}(\mathrm{CO})_{6}-1$ reaction can be effected in the presence of a nitro group, while such a functionality undergoes reduction on treatment with $\mathrm{Fe}(\mathrm{CO})_{5}{ }^{4}{ }^{4}$ (4) substitution of a carbon monoxide ligand by triphenylphosphine in the reactant $\mathrm{Mo}(\mathrm{CO})_{6}$ results in increased product yields, while α-halo ketones were inert to triphenylphosphine iron tetracarbon$y l^{1}$

The different reactivity patterns, products, and product distributions for the iron and molybdenum carbonyl- α halo ketone reactions suggest that these reactions are likely occurring via different pathways. However, the mechanistic details, for the group 6 metal carbonyl reactions, are not clear. It seemed conceivable that the α, β-unsaturated ketones (5) could arise by deoxygenation of a β-epoxy ketone (4) to the β, γ-unsaturated ketone 6 , followed by isomerization to 5 . The major reaction pathway, however, for epox-

ide- $\mathrm{Mo}(\mathrm{CO})_{6}$ reactions is rearrangement rather than deoxygenation. ${ }^{5}$ Conversion of an α-halo ketone such as $1, \mathrm{R}=$ $p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$, to 3 and 5 was also observed using tetrabutylammonium bromopentacarbonyl molybdenate $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}^{+} \mathrm{Mo}(\mathrm{C})_{5} \mathrm{Br}^{-}\right]$. The latter did not effect aldol condensation of 3 to $5 .{ }^{8}$
Molybdenum hexacarbonyl did effect coupling of several other types of activated halides. Tetraphenylethylene (8) was formed in 65% yield by treatment of dichlorodiphenylmethane (7) with $\mathrm{Mo}(\mathrm{CO})_{6}$. No chlorodiphenylmethane, diphenylmethane, or 1,2-dichloro-1,1,2,2-tetraphenylethane was isolated in this reaction. Tetraphenylethylene was also obtained by treatment of 1,2 -dichloro-1,1,2,2-tetraphenylethane with $\mathrm{Mo}(\mathrm{CO})_{6}$. Iron pentacarbonyl also reacts with 7 or with 1,2-dichloro-1,1,2,2-tetraphenylethane to give tetraphenylethylene. ${ }^{1}$
Treatment of 9 -bromofluorene (9) with $\mathrm{Mo}(\mathrm{CO})_{6}$ gave bisfluorenyl (10) in 40% yield, but no fluorene. The lack of
Table I. Products Obtained from Reaction of Group 6 Metal Caïbonyls with α-Halo Ketones in DME ${ }^{a}$

α-Halo ketone (1)	Registry no.	Metal carbonyl	Registry no.	Products ${ }^{b}$	Registry no.	New compd $\mathrm{mp},{ }^{c}{ }^{\circ} \mathrm{C}$	Yield, \%	$\begin{gathered} \mathrm{Ir}, \nu_{\mathrm{CO}} \\ \mathrm{~cm}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{NMR} \\ \left(\mathrm{CH}_{3}\right), \\ \delta, \text { p.p.r } \end{gathered}$	MS, $m / e, \mathrm{M}^{+}$
2-Bromo-4'-phenylacetophenone	135-73-9	$\mathrm{Mo}(\mathrm{CO})_{6}$	13939-06-5	$3, \mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$	92-91-1		51	1685	2.60	196
				5, $\mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$	57196-64-2	196-197	16	1650	2.56	374
2-Chloro-2', $3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$-pentamethylacetophenone	57196-63-1	$\mathrm{Mo}(\mathrm{CO})_{6}$		$\begin{gathered} 3, \mathrm{R}=2,3,4,5,6- \\ \left(\mathrm{CH}_{3}\right)_{5} \mathrm{C}_{6} \end{gathered}$	2040-01-9		51	1680	2.44	190
				$\begin{gathered} 5, \mathrm{R}=2,3,4,5,6- \\ \left(\mathrm{CH}_{3}\right)_{5} \mathrm{C}_{6} . \end{gathered}$	57196-65-3	177-178	<1	1662		362
		$\mathrm{W}(\mathrm{CO})_{6}$	14040-11-0	$\begin{gathered} 3, \mathrm{R}=2,3,4,5,6- \\ \left(\mathrm{CH}_{3}\right)_{5} \mathrm{C}_{6} \end{gathered}$			$12 f$			
		$\mathrm{Cr}(\mathrm{CO})_{6}$	13007-92-6	None						
		$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PMo}(\mathrm{CO})_{5}$	14971-42-7	$\begin{gathered} 3, \mathrm{R}=2,3,4,5,6- \\ \left.\mathrm{CH}_{3}\right)_{5} \mathrm{C}_{6} \end{gathered}$			76			
2,4'-Dibromoacetophenone	99-73-0	$\mathrm{Mo}(\mathrm{CO})_{6}$		3, $\mathrm{R}=p-\mathrm{BrC}_{6} \mathrm{H}_{4}^{-}$	99-90-1		25	1683	2.58	
				5, $\mathrm{R}=p-\mathrm{BrC}_{6} \mathrm{H}_{4}^{-}$	7509-25-3		14	1655	2.54	380
2-Bromo-4'-methoxyacetophenone	2632-13-5	$\mathrm{Mo}(\mathrm{CO})_{6}$		$3, \mathrm{R}=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}^{-}$	100-06-1		46	1678	2.54	150
				5, $\mathrm{R}=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	16197-83-4		18	1652	2.51	282
2-Bromo-4'-nitroacetophenone	99-81-0	$\mathrm{Mo}(\mathrm{CO})_{6}$		$3, \mathrm{R}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4-}{ }^{-}$	$100-19-6$		20	1682	2.67	165
1-Adamantyl bromomethyi ketone				5, $\mathrm{R}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}^{-}$	$7509-21-9$		26	1660	2.70	312
1-Adamantyl bromomethyi ketone	5122-82-7	$\mathrm{Mo}(\mathrm{CO})_{6}$		$5, R=1$-adamantyl $3, \mathrm{R}=1$-adamantyl $5, \mathrm{R}=1$-adamantyl	$\begin{array}{r} 1660-04-4 \\ 57196-66-4 \end{array}$	185-186	$\begin{array}{r} 14 \\ 6 \end{array}$	$\begin{aligned} & 1712 \\ & 1680 \end{aligned}$	$\begin{aligned} & 2.07 \\ & 1.97 \end{aligned}$	338

formation of fluorene indicates that 9 (and 7) are generating different intermediates than those produced in α-halo ketone $-\mathrm{Mo}(\mathrm{CO})_{6}$ reactions. For 9 and 7, halogen atom transfer may be occurring to form a radical, which then undergoes coupling. ${ }^{2}$

Experimental Section

General. Melting points were determined on a Fisher-Johns apparatus and are uncorrected. Elemental analyses were carried out by Drs. F. and E. Pascher, Bonn, West Germany, and by Galbraith Laboratories Inc., Knoxville, Tenn. Infrared spectra were obtained on a Beckman IR20A spectrometer. NMR spectra were obtained on a Varian T-60 spectrometer, with tetramethylsilane used as the internal standard. Mass spectra were recorded on a Varian MS902 spectrometer.
We are grateful to the Climax Molybdenum Co. for providing generous quantities of molybdenum hexacarbonyl. This metal carbonyl was sublimed prior to use. Tungsten and chromium hexacarbonyls were purchased from Pressure Chemical Co. and used as received. Mr. C. C. Huang supplied us with a sample of tiriphenyl phosphine molybdenum pentacarbonyl. ${ }^{3}$ The organic reactants were commercial products and were recrystallized or distilled prior to use. Solvents were dried and purified by standard techniques All reactions were run under an atmosphere of dry nitrogen.
Reaction of $\mathrm{Mo}(\mathrm{CO})_{6}$ with α-Halo Ketones. A mixture of the α-halo ketone ($8-10 \mathrm{mmol}$) and an equimolar amount of $\mathrm{Mo}(\mathrm{CO})_{6}$, in dry DME ($40-70 \mathrm{ml}$), was heated with stirring at $85-90^{\circ}$ (oil bath temperature) for 48 hr . The solution was cooled and filtered (inorganic material) into $200-350 \mathrm{ml}$ of ice water. The resulting precipitate was filtered and dried. Work-up was effected for the particular reactions as follows (see Table I for yields and pertinent physical data for the products).
A. $1\left(R=p-\mathbf{C}_{6} \mathbf{H}_{5} \mathrm{C}_{6} \mathbf{H}_{4}\right)$. Continuous extraction (Soxhlet) of the solid with petroleum ether ($\mathrm{bp} 30-60^{\circ}$) afforded the methyl ketone $3, \mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$. The α, β-unsaturated ketone $5, \mathrm{R}=p$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$, was isolated by treatment of the Soxhlet residue with chloroform, filtration, and evaporation of the filtrate.
B. $1\left(\mathrm{R}=2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, \mathbf{6}^{\prime}-\left(\mathrm{CH}_{3}\right)_{5} \mathrm{C}_{6}\right)$. Compound 3, $\mathrm{R}=2,3,4,5,6$ $\left(\mathrm{CH}_{3}\right)_{5} \mathrm{C}_{6}$, was obtained by continuous extraction of the precipitate with petroleum ether. Extraction of the residue in the thimble with ether or ether-chloroform gave a trace amount of $5, \mathrm{R}=$ 2,3,4,5,6-($\left.\mathrm{CH}_{3}\right)_{5} \mathrm{C}_{6}$.
C. 1 ($\mathbf{R}=p-\mathrm{BrC}_{6} \mathrm{H}_{4}^{-}$). Continuous extraction of the solid with petroleum ether gave $3, \mathrm{R}=p-\mathrm{BrC}_{6} \mathrm{H}_{4}^{-}$. The nonextractable ma terial was then continuously extracted with chloroform to give $5, \mathrm{R}$ $=p-\mathrm{BrC}_{6} \mathrm{H}_{4}$. Pure 5 was obtained by recrystallization from petroleum ether-benzene.
D. 1 ($\mathrm{R}=\mathrm{p}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}^{-}$). Extraction of the aqueous filtrate (no precipitate formed here) with ether gave an oil which was chromatographed on Florisil. Elution with benzene-petroleum ether gave $3, \mathrm{R}=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$. Elution with benzene or benzene-chloroform (4:1) afforded pure 5, $\mathrm{R}=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$.
E. 1 ($\mathrm{R}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$). The milky aqueous filtrate was extracted with ether, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a yellow semisolid. p-Nitroacetophenone ($3, \mathrm{R}=p \cdot \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) was obtained by treating the semisolid mixture with 100 ml of petroleum etherbenzene ($1: 1$) and decanting the solution, which was then evaporated in vacuo. Crystallization of the petroleum ether-benzene in soluble oil from hexane afforded $5, \mathrm{R}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$
F. 1 ($\mathbf{R}=1$-Adamantyl). The solid was dissolved in petroleum ether and chromatographed on Florisil. Elution with petroleum ether-benzene (2:1) gave 3, R = 1-adamantyl. Elution with ben zene afforded the unsaturated carbonyl $5, \mathrm{R}=1$-adamantyl.
Reaction of 2-Chloro-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{5}^{\prime}, 6^{\prime}$-pentamethylacetophenone with $\mathrm{W}(\mathrm{CO})_{6}$. A mixture of $1, \mathrm{R}=$ pentamethylphenyl $(1.80 \mathrm{~g}$,
$8.00 \mathrm{mmol})$, and $\mathrm{W}(\mathrm{CO})_{6}(2.81 \mathrm{~g}, 8.00 \mathrm{mmol})$ in DME (40 ml) was heated to 90° for 48 hr . Work-up as described for the reaction of the same α-chloro ketone with $\mathrm{Mo}(\mathrm{CO})_{6}$ gave $3, \mathrm{R}=$ pentamethylphenyl, in 2% yield, along with recovered starting materials. Using a reaction time of 6 days resulted in the formation of methyl ketone in 12% yield.

Reaction of 2-Chloro- $\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$-pentamethylacetophenone with Triphenylphosphine Molybdenum Pentacarbonyl. A DME (60 ml) solution of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PMo}(\mathrm{CO})_{5}(2.611 \mathrm{~g}, 5.20 \mathrm{mmol})$ and α-chloro ketone ($1.17 \mathrm{~g}, 5.20 \mathrm{mmol}$) was heated at $85-90^{\circ}$ for 46 hr . The solution was cooled and filtered into ice-water. The resulting precipitate was filtered and dried. Continuous extraction of the solid with petroleum ether gave reasonably pure methyl ketone $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PMo}(\mathrm{CO})_{5}\right.$ as impurity] which could be furthur purified by column chromatography on Florisil using petroleum ether as eluent. No α, β-unsaturated carbonyl was obtained by treatment of the nonextractable material with ether-chloroform.

Reaction of 2-Bromo-4'-phenylacetophenone with Tetrabutylammonium Pentacarbonyl Molybdenate(0). A mixture of tetrabutylammonium pentacarbonyl molybdenate (0) ${ }^{6}$ (0.918 g , $2.10 \mathrm{mmol})$ and 2-bromo-4'-phenylacetophenone $(0.578 \mathrm{~g}, 2.10$ mmol) in DME (45 ml) was heated at 90° for 48 hr . The reaction mixture was worked up as described in procedure A to give 3 and 5 , $\mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$.

Reaction of Dichlorodiphenylmethane (7) with Mo(CO) $\mathbf{6}$. A mixture of dichlorodiphenylmethane $(1.90 \mathrm{~g}, 8.00 \mathrm{mmol})$ and $\mathrm{Mo}(\mathrm{CO})_{6}(4.20 \mathrm{~g}, 16.0 \mathrm{mmol})$ in dry DME (40 ml) was heated at $85-90^{\circ}$ for 48 hr . The solution was cooled and poured into cold water. The resulting solid was filtered to give crude tetraphenylethylene (8). Chromatography of the latter on silica gel, using benzene as eluent, gave $0.864 \mathrm{~g}(65 \%)$ of pure 8 : $\mathrm{mp} \mathrm{223.5-225.0}^{\circ}$ (lit. ${ }^{1}$ $\mathrm{mp} 226-227^{\circ}$); mass spectrum $m / e 332\left(\mathrm{M}^{+}\right)$.
Reaction of 1,2-Dichloro-1,1,2,2-tetraphenylethane with
$\mathbf{M o (C O})_{6}$. A mixture of 1,2-dichloro-1,1,2,2-tetraphenylethane $(2.02 \mathrm{~g}, 5.00 \mathrm{mmol})$ and $\mathrm{Mo}(\mathrm{CO})_{6}(2.37 \mathrm{~g}, 9.00 \mathrm{mmol})$ in DME (40 $\mathrm{ml})$ was heated at $85-90^{\circ}$ for 42 . hr. Work-up as described for 7 gave tetraphenylethylene in 81% yield.

Reaction of 9 -Bromofluorene with $\mathbf{M o}(\mathrm{CO})_{6}$. A solution of 9 -bromofluorene ($2.14 \mathrm{~g}, 8.60 \mathrm{mmol}$) and $\mathrm{Mo}(\mathrm{CO})_{6}(2.29 \mathrm{~g}, 8.65$ mmol) in DME (30 ml) was heated at $90-95^{\circ}$ for 45 hr . The solution was cooled and filtered (inorganic) into ice water to give a white solid which was subsequently filtered. Recrystallization from benzene-ethanol gave 0.580 g (40%) of bisfluorenyl (10), mp 246$248^{\circ}$ (lit. ${ }^{7} \mathrm{mp} 246^{\circ}$). Spectral data for 10 were in accord with data for authentic material.

Acknowledgments. We are grateful to the National Research Council of Canada for support of this work. We are indebted to Messrs. Jake Blair and Raj Capoor for mass spectral and NMR spectral determinations, respectively.

Registry No.-7, 2051-90-3; 8, 632-51-9; 9, 1940-57-4; tetrabutylammonium bromopentacarbonyl molybdenate, 32592-48-6; 1,2-dichloro-1,1,2,2-tetraphenylethane, 1600-30-2.

References and Notes

(1) H. Alper and E. C. H. Keung, J. Org. Chem., 37, 2566 (1972).
(2) C. H. Bamford, G. C. Eastmond, and F. J. T. Fildes, Chem. Commun. 144, 146 (1970), and references cited therein.
(3) H. Alper and C. C. Huang, J. Org. Chem., 38, 64 (1973).
(4) H. Alper and J. T. Edward, Can. J. Chem., 48, 1543 (1970): H. Alper and E. C. H. Keung, unpublished results.
(5) H. Alper and D. Des Roches, unpublished results
(6) E. W. Abel, I. S. Butler, and J. G. Reid, J. Chem. Soc., 2068 (1963).
(7) C. Graebe, and H. Stindt, Justus Liebigs Ann. Chem., 291, 1 (1896).
(8) Note Added In Proof. Methylmanganese pentacarbonyl has recently been shown to induce aldol condensation of benzyl methyl ketone [R. L. Bennett and M. I. Bruce, Aust. J. Chem., 28, 1141 (1975)].

Kinetics of the Reaction of n-Butyllithium

 with 4-Methylmercaptoacetophenone in Benzene ${ }^{1}$L. F. Charbonneau and Stanley G. Smith*
Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

Received August 13, 1975

Abstract

Kinetics of the reaction of 4-methylmercaptoacetophenone (2) with excess n-butyllithium in benzene at $25.0^{\circ} \mathrm{C}$ have been studied by ir and uv stopped-flow spectrophotometric techniques. The observed first-order rate constant increases rapidly as the concentration of n-butyllithium is increased from 0.014 to ca. 0.1 M , but the rate is not greatly enhanced by further increases in the concentration of alkyllithium. The rate of the reaction is increased by the presence of alkoxides in the alkyllithium reagent; addition of 0.001 M of the product alcohol to 0.1 $\mathbf{M} n$-butyllithium increases the measured first-order rate constant by a factor of about 2 . Some mechanistic implications of these observations are outlined.

The reaction of the ketone 2,4-dimethyl-4'-methylmercaptobenzophenone (1) with methyllithium in diethyl ether has been shown ${ }^{2}$ to be first order in ketone and one-fourth order in methyllithium. These data are consistent with a mechanism for addition proceeding through monomer in equilibrium with tetrameric methyllithium. Other examples of reactions occurring through monomeric organolithium, which is in equilibrium with higher aggregates in ethereal solvents, include the addition of n-butyllithium ${ }^{3}$ and phenyllithium ${ }^{3}$ to benzonitrile, the addition of methyllithium to transition metal carbonyls, ${ }^{4}$ the initiation of vinyl polymerization, ${ }^{5,6}$ and the metalation of triphenylmethane. ${ }^{7}$ The addition of alkyllithium reagents to styrene ${ }^{8-10}$ and to 1,1 -diphenylethylene ${ }^{11,12}$ in aromatic solvents is also believed to proceed through monomeric species; however, for the addition of n-butyllithium to butadiene ${ }^{13}$ and ethyllithium to 1,1 -diphenylethylene ${ }^{14}$ in aromatic sol-
vents, monomer may not be the sole reactive species. In aliphatic solvents, alkyllithium reagent aggregates species appear to react with isoprene ${ }^{15-17}$ and ethylene. ${ }^{18}$

The addition of lithium halides to diethyl ether solutions of methyllithium has been shown ${ }^{2}$ to retard the rate of addition to ketone 1 . This is the expected result because the incorporation of lithium halides into methyllithium aggregates lowers the fraction of the organolithium present in monomeric form. ${ }^{2}$

In contrast to the rate-depressing effect of lithium halides in diethyl ether on the addition to ketones, alkoxides have been reported to either increase or decrease the reactivity of alkyllithium reagents in hydrocarbons. For example, the initiation of styrene polymerization in aromatic solvents, ${ }^{19-21}$ the propagation of olefin polymerizations, ${ }^{15,16,19,21,22}$ and the alkylation of naphthalene ${ }^{23}$ are depressed by lithium alkoxides, while in contrast alkoxides

Figure 1. Transmission spectra of the reaction of $8 \times 10^{-3} \mathrm{M} n$ butyllithium with $6.1 \times 10^{-5} \mathrm{M} 2,4$-dimethyl-4'-methylmercaptobenzophenone in benzene at $25.0^{\circ} \mathrm{C}$: A, transmission spectrum of $8 \times 10^{-3} \mathrm{M} n$-butyllithium in benzene; B , transmission spectrum of $6.1 \times 10^{-5} \mathrm{M}$ 2,4-dimethyl-4'-methylmercaptobenzophenone in benzene; C, transmission spectrum of the reaction mixture of $8 \times$ $10^{-3} \mathrm{M} n$-butyllithium and $6.1 \times 10^{-5} \mathrm{M} 2,4$-dimethyl-4'-methylmercaptobenzophenone in benzene at $25.0^{\circ} \mathrm{C}$, recorded 18.2 times per second. The first. recorded line is the continuous flow spectrum, recorded at 0.03 s after mixing.
accelerated the rate of the initiation of olefin polymerization in aliphatic solvents, ${ }^{15-17}$ the addition of ethyllithium ${ }^{14}$ and n-butyllithium ${ }^{24}$ to 1,1-diphenylethylene in benzene, the pyrolysis of sec-butyllithium ${ }^{25}$ in octane and tertbutyllithium ${ }^{26}$ in decalin, and the cleavage of n-butyl and tert-butyl ethers by n-butyllithium in heptane. ${ }^{27,28}$

In the present study, the kinetics of the reaction of n butylithium with 4-methylmercaptoacetophenone (2) in benzene are examined, eq 1 . Reacting solutions were ob-

served by ir and uv stopped flow spectrophotometric techniques. The effect of added alkoxides is also considered.

Results and Discussion

The continuous flow uv spectrum of the reaction mixture of n-butyllithium and 4 -methylmercaptoacetophenone (2) in benzene at $25.0^{\circ} \mathrm{C}$, recorded ca. 1 ms after mixing, indicates that the $\pi-\pi^{*}$ absorption of ketone 1 is broadened, compared to the spectrum of ketone in the absence of n -

Table I. Reaction of $0.13 \mathrm{M} n$-Butyllithium with $1.3 \times$ $10^{-3} \mathrm{M} 4$-Methylmercaptoacetophenone in Benzene at $25.0^{\circ} \mathrm{C}$

Time, s	Absorbance at 330 nm	$k_{\text {obsd }, ~} \mathrm{~s}^{-1}$ (integrated)
0.0	0.917	
0.01	0.602	42
0.02	0.394	42
0.03	0.255	43
0.04	0.159	44
0.05	0.093	46
0.06	0.056	47
0.07	0.040	45
0.08	0.022	47
	Least-squares rate constant	46.7

Table II. Effect of Ketone Concentration on the Observed First-Order Rate Constant for the Reaction of 0.19 M n-Butyllithium with 4-Methylmercaptoacetophenone (1) in Benzene at $25.0^{\circ} \mathrm{C}$

10^{3} ketone $1, \mathrm{M}$	$k_{\text {obsd }}, \mathrm{s}^{-1}$
0.125	115
0.25	91
0.56	61
1.0	51
1.8	46
9.5	44
10.2	50

butyllithium, and the apparent $\lambda_{\max }$ is shifted toward longer wavelengths. However, the ir spectrum of reacting solutions could not be distinguished from the spectrum of ketone 2 in the carbonyl stretching region. Only the band at $1690 \mathrm{~cm}^{-1}$ was observed. The use of the more hindered ketone, 2,4-dimethyl-4'-methylmercaptobenzophenone (1), makes it possible to record several spectra during the course of the reaction. This is illustrated in Figure 1 for the reaction of $8 \times 10^{-3} \mathrm{M} n$-butyllithium with $6.1 \times 10^{-5} \mathrm{M}$ ketone 1 in benzene at $25^{\circ} \mathrm{C}$. The rapid scan uv spectrum of this reaction, recorded 18.2 times per second (1), indicated that the absorbance remained broad as it disappeared.

The presence of enhanced absorbance at longer wavelengths in the uv spectrum noted here is similar to the development of a resolved new absorbance in both the uv and ir in the reaction of ketones with methylmagnesium bromide. ${ }^{29}$ In the case of the Grignard reagent, the long-wavelength uv absorbance was attributed to a complex between the organomagnesium reagent and the carbonyl oxygen which was subsequently converted to product. ${ }^{29}$

The kinetics of the reaction of 4 -methylmercaptoacetophenone with n-butyllithium in benzene were studied by stopped-flow spectroscopy. A typical run, recorded at 330 nm , is illustrated in Figure 2. The integrated first-order rate constant calculated from Figure 2 is summarized in Table I. The reaction is first order in ketone under these concentration conditions, as shown in Figure 2 and Table I. The observed first-order rate constant for the reaction $0.125 \mathrm{M} n$-butyllithium with 5.6×10^{-4} to $1.8 \times 10^{-2} \mathrm{M} 4$ methylmercaptoacetophenone in benzene at 25.0° was appropriately independent of the ketone concentration provided ketone was at least $10^{-3} \mathrm{M}$. A competing reaction, probably caused by alkoxides in the n-butyllithium reagent, caused $k_{\text {obsd }}$ to be dependent on ketone concentration when ketone was less than $10^{-3} \mathrm{M}$ (Table II).

Figure 3 is a plot of the observed first-order rate constant, $k_{\text {obsd }}$ (Table III), vs. n-butyllithium concentration, measured under the conditions of excess lithium reagent. This plot shows that the reaction is not first order in alkyllithium because the rate of the reaction increases rapidly as the concentration of n-butyllithium is increased from 0.014

10 -butyllithium, M	10^{3} ketone, M	$k_{\text {obsd }}, \mathrm{s}^{-1}$
0.14	1.50	30
0.19	1.60	33
0.21	1.45	$3 \leq$
0.26	1.45	$3 \leq$
0.27	1.45	33
0.29	2.26	37
0.32	1.60	31
0.37	1.50	32
0.41	2.26	39
0.47	1.60	34
0.50	1.50	34
0.64	1.60	37
0.65	2.28	36
0.67	1.60	34
0.85	2.28	40
0.92	1.6	40
1.5	2.28	46
2.6	1.32	4
3.8	1.32	44
4.0	1.32	44
6.3	1.32	48
7.0	1.32	50
7.7	1.22	50
8.8	1.22	49

to ca. 0.1 M , but the rate is not greatly enhanced by further increases in lithium reagent concentration.

These data are consistent with either of the idealized cases of reaction predominantly through a less associated species than the hexamer, eq $2-4$, as we found earlier for methyllithium in diethyl ether ${ }^{28}$ or by a mechanism involving a ketone lithium reagent complex as was found in the analogous reactions of Grignard reagents, eq 5-729 The

$$
\begin{gather*}
\frac{1}{6}(n-\mathrm{BuLi})_{6} \stackrel{K_{2}}{\rightleftharpoons} n-\mathrm{BuLi} \tag{2}\\
n-\mathrm{BuLi}+\text { ketone } \stackrel{k_{2}}{\longrightarrow} \text { product } \tag{3}\\
k_{\text {obsd }}=k_{2} K_{2}(n-\mathrm{BuLi})_{6}{ }^{1 / 6} \tag{4}\\
(n-\mathrm{BuLi})_{6}+\text { ketone } \stackrel{K_{1}}{\rightleftharpoons} \text { complex } \tag{5}\\
\text { complex } \xrightarrow{k_{1}} \text { product } \tag{6}
\end{gather*}
$$

$$
\begin{equation*}
k_{\text {obsd }}=\frac{k_{1} K_{1}(n-\mathrm{BuLi})_{6}}{1+k_{1}(n-\mathrm{BuLi})_{6}} \tag{7}
\end{equation*}
$$

present data do not, of course, unambiguously distinguish between other fractional orders in butyllithium. Hcwever, the hexameric character of the butyllithium and the known one-fourth in the reaction of tetrameric methyllithium makes the one-sixth order a reasonable choice. The perturbation of the uv specirum in the presence of n-butyllithium is consistent with the presence of complex; however, a quantitative assessment of its importance has not yet been possible because of considerable uncertainty in initial absorbance data which is attributed to variable amounts of alkoxide in different preparations of n-butyllithium. Other roles for a complex between n-butyllithium and the ketone in benzene suggested by the uv spectrum than the simple case outlined in eq 5-7 can be proposed. Furthermore, it should be noted that these equations suggest just one of many possible types of complex and pathway to product.

Trace amounts of lithium alkoxides were found to increase the rate of reaction of 4 -methylmercaptoacetophenone with n-butyllithium (Table IV). For example, the addition of 0.001 M of the product alcohol to 0.1 M butyllithi-

Figure 2. Plot of percent transmission vs. time for the reaction of $0.13 \mathrm{M} n$-butyllithium with $1.3 \times 10^{-3} \mathrm{M} 4$-methylmercaptoacetophenone in benzene at $25.0^{\circ} \mathrm{C}$, recorded at 330 nm .

Figure 3. Plot of observed pseudo-first-order rate constant vs. n butyllithium for the reaction of n-butyllithium with 1.22 to $2.28 \times$ $10^{-3} \mathrm{M} 4$-methylmercaptoacetophenone in benzene at $25.0{ }^{\circ} \mathrm{C}$, Table II. The solid line is calculated from eq 7 with $K_{1}=600$ and $k_{1}=50$. The dotted line is calculated from eq 4 with $k_{2} K_{2}=70$.
um increases the measured first-order rate constant by a factor of about 2 . However, if the alkoxide is generated by addition of alcohol to the ketone so that alkoxide is formed upon rapid mixing with the lithium reagent in the stopped flow apparatus, the reaction is found to be independent of alkoxide concentration (Table V). Alkoxide is, of course, also generated during the course of the reaction by the addition of the lithium reagent to the carbonyl group. However, even with 0.01 M ketone, the reaction was not autocatalytic within the accuracy of the measurements.
The failure of alkoxide generated during the reaction to have the same accelerating effect as that of alkoxide added to the lithium reagent prior to the addition of the ketone suggests that the rate of addition to the carbonyl group of ketone is fast relative to the equilibration of the lithium alkoxide with n-butyllithium which produces the species responsible for the enhanced reactivity. This is consistent with available data on intermolecular exchange of ethyllithium in toluene, ${ }^{30-32}$ which shows an exchange time of ca.

Figure 4. Plot of observed rate constant vs. the concentration of lithium 2-(4-methylmercaptophe nyl)-2-hexoxide for the reaction of $0.15 \mathrm{M} n$-butyllithium with $5.75 \times 10^{-4} \mathrm{M} 4$-methylmercaptoacetophenone, in the presence of lithium 2-(4-methylmercapto-phenyl)-2-hexoxide, in benzene at $25.0^{\circ} \mathrm{C}$.
0.1 s at room temperature, which is slow compared to the rate of addition of n-butyllithium to ketone 2 . However, it is clear that more information on the composition and rates of equilibration of n-butyllithium solution containing alkoxides is needed to further elarify the course of the reaction.

The products of the reaction of 4-methylmercaptoacetophenone with n-butyllithium were analyzed under conditions employed in the kinetic study. A sample of ketone 2, containing biphenyl as an internal standard, was mixed with n-butyllithium in benzene in a stopped-flow apparatus. The stopped-flow effluen: was quenched with ice, acidified to pH 7 , then analyzed by GLC. The GLC chromatogram consisted of three peaks with retention times identical with those of the addition alcohol, 2-(4-methylmercap-tophenyl)-2-hexanol, and smell amounts of the alcohol dehydration products, 2-(4-methylmercaptophenyl)-2-hexene and 2-(4-methylmercaptopheayl)-1-hexene. The pinacol of ketone 2, which was not eluted from the GLC column, was not detected by thin layer chromatography, indicating that less than 1.5% of the pinacol was present since 1.5% of the pinacol in a control sample was detected.

Product studies of the reac-ion of n-butyllithium-alkoxide mixtures with 4-methylnercaptoacetophenone and of the reaction of n-butyllithium with 4 -methylmercaptoacetophenone containing product alcohol were performed under the reaction conditions employed in the kinetic studies. In all cases, only the addition product alcohol, 2-(4-methylmercaptophenyl)-2-heranol, was found by GLC analysis, using biphenyl as the internal standard.

Experimental Section

n-Butyllithium. n-Butyllithiu n was prepared from Foote Mineral Co. Reactor Grade lithium ($79.99 \% \mathrm{Li}$) and degassed freshly distilled n-butyl chloride on a varuum line that was under a positive pressure of argon. Lithium chips were cut in an argon atmosphere, under mineral oil, and then the oily pieces were transferred to the vacuum line. After evacuat.ng and flushing the vacuum line with argon, the lithium chips we e washed three times with benzene solution, and the washings were expelled from the vacuum line. Fresh benzene was admitted to the reaction vessel and the halide was slowly added over ca. 1 h , while the reaction was main-

Table IV. Summary of Observed Pseudo-First-Order Rate Constants for the Reaction of $0.15 \mathrm{M} n$-Butyllithium with $5.8 \times 10^{-4} \mathrm{M} 4$-Methylmercaptoacetophenone in the Presence of Lithium 2-(4-Methylmercaptophenyl)-2hexoxide, in Benzene at $25.0^{\circ} \mathrm{C}$

10^{3} alkoxide, M	$k_{\text {obsd }}, \mathrm{s}^{-1}$
0.35	70
1.2	88
5.0	113
11.0	153
13.5	174

Table V. Effect of Product Alkoxide on the Reaction of $0.151 \mathrm{M} n$-Butyllithium with $10^{-3} \mathrm{M}$
4-Methylmercaptoacetophenone in Benzene at $25.0^{\circ} \mathrm{C}$

10^{3} alkoxide a	$k_{\text {obsd, } \mathrm{s}^{-1}}$
1.27	50
2.23	56
5.97	53
9.68	54

a Alkoxide formed by reaction of 2-(4-methylmercapto-phenyl)-2-hexanol, contained in the ketone solution, with n-butyllithium in the stopped-flow apparatus.
tained at room temperature. The reaction mixture was allowed to stir for ca. 12 h after the halide addition was complete. The reagent was filtered twice through glass fritted filters and transferred via argon pressure into silicon rubber septum topped vials. The samples were used within 2 h after they were removed from the vacuum line, and titrated within 8 h after use.
n-Butyllithium reagents were analyzed by total base titration with standard standardized hydrochloric acid solutions. The lithium reagent cortent, analyzed with standard solutions of sec-butyl alcohol in xylene containing 1,10-phenanthroline as an indicator, agreed with the total base titer. Tared vials used in kinetic experiments were weighed to determine the amount of n-butyllithiumbenzene solution they contained. Then the titration mixture, which was stored under argon, was admitted to vials via a syringe needle on a microburet. A red-orange alkyllithium indicator complex forms and when all lithium reagent has been converted to lithium sec-butoxide, the solution becomes lime green. ${ }^{33}$

Alkoxide corcentrations were calculated from the weight of alcohol added to the reagent vials. The alcohols were vacuum dried for at least 1 day before n-butyllithium solutions were added.

4-Methylmercaptoacetophenone. The preparation of 4-methylmercaptoacetophenone has been described elsewhere. ${ }^{29}$ Alternatively, ${ }^{34}$ the ketone was prepared by placing $0.26 \mathrm{~mol}(31 \mathrm{ml})$ of thioanisole and $0.48 \mathrm{~mol}(100 \mathrm{~g})$ of trifluoroacetic anhydride in a 1-I. flask equipyed with magnetic stirrer, condenser, addition funnel, and nitrog $\in \mathrm{n}$ inlet. The flask was cooled in an ice bath and 0.38 mol (23 ml) of acetic acid was added. The mixture was extracted with ether, and the ether was subsequently washed with bicarbonate and water. The ether was dried over sodium sulfate and removed from the product on a rotary evaporator. The resulting orange crystals were purified by distillation at $125^{\circ} \mathrm{C}$ and 0.05 mm pressure. The white, crystalline distillate was recrystallized once from hexane, giving 22.1 g of crystals (51%), $\mathrm{mp} 80.5-81.5^{\circ} \mathrm{C}$.
The concentrations of ketone samples used in kinetic studies were calculated from the weight of ketone and the weight of added solvent. The ketone dried on a vacuum line (0.05 mm) for at least 1 day before freshly distilled solvent was added to the vials.

2,3-Dimethyl-4'-methylmercaptobenzophenone. The preparation of 2,4 -d:methyl-4'-methylmercaptobenzophenone has been described elsewhere. ${ }^{29 c}$

2-(4-Methylmercaptophenyl)-2-hexanol. A 2-l. flask was equipped with a magnetic stirrer, syringe port, dropping funnel, condenser, and argon inlet. Benzene (350 ml) dried over 4-A molecular sieves, was added to the flask; then 150 ml of $1.3 \mathrm{~N} n$-butyllithium in hexene (Foote Mineral Co.) was added through the syringe port. Ten grams of $4-$ methylmercaptoacetophenone in 200 ml of benzene was added to the flask over a $45-\mathrm{min}$ period. After standing overn ght the reaction mixture was quenched with water and neutralized with dilute sulfuric acid. The layers were separated, and the hydrocarbon layer was washed with $2 \times 50 \mathrm{ml}$ of
aqueous potassium carbonate solution and $3 \times 150 \mathrm{ml}$ of water and dried over sodium sulfate. The solvent was removed on a rotary evaporator, yielding a viscous brown oil. Distillation at 0.75 mm through a short-path micro distillation head yielded 7 ml of a pale yellow oil containing some starting ketone. and 3 ml of oil free of ketone: ir $\left(\mathrm{CCl}_{4}\right) 3430 \mathrm{~cm}^{-1}(-\mathrm{OH})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.15(\mathrm{~m}, 4, \mathrm{Ar})$, 2.6 (s, 1, -OH), $2.32\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{~S}-\right), 0.6-1.9(\mathrm{~m}, 12$, alkyl). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{OS}: \mathrm{C}, 69.50 ; \mathrm{H}, 8.99$; S, 14.29. Found: C, 68.94: H, 8.95; S, 13.87.

2,3-Di(4-methylmercaptophenyl)-2,3-butanediol. 4-Methylmercaptoacetophenone (10 g) was dissolved in 75 ml of absolute ethanol and 50 ml of benzene. Aluminum foil (3 g), cut in $0.5-\mathrm{in}$. squares, was added to the solution. Mercuric chloride (0.15 g) was added to the mixture, and then the reaction mixture was stirred and cooled to ice-bath temperature as described by Sisido and Nozaki. ${ }^{35}$

The flask was allowed to warm, and an exothermic reaction began, causing the reaction to reflux for approximately 1 h . The mixture was heated to reflux for an additional 1 h . The resulting gray viscous mixture was poured onto ice and neutralized with dilute hydrochloric acid. The benzene layer was separated from the aqueous phase, combined with benzene extracts of the aqueous phase, and dried over sodium sulfate. The solvent was removed on a rotary evaporator. The resulting solid was recrystallized twice from benzene (69% yield): $\mathrm{mp} \mathrm{127-129;} \mathrm{ir} \mathrm{(} \mathrm{CCl}_{4}$) $3600 \mathrm{~cm}^{-1}(-\mathrm{OH})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta$ 7.08. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 64.63; H, 6.63; S, 19.17; O, 9.57 . Found: C, $64.36 ;$ H, $6.45 ;$ S, 19.24; O, 9.95 by difference

Product Studies. A $1.8 \times 10^{-2} \mathrm{M}$ solution of 4-methylmercaptoacetophenone in benzene, containing biphenyl in the molar ratio ketone/biphenyl 1.23 , was mixed with a 0.27 M solution of n-butyllithium in a stopped-flow apparatus. The effluent of the stoppedflow instrument was quenched with ice so that the time of reaction was less than 1 min . The ice-benzene mixture was warmed to room temperature and titrated to pH 6 with dilute sulfuric acid. The benzene layer was then separated, combined with an ether extract of the aqueous phase, and dried over sodium sulfate. Solvent was removed by gently boiling off ether on a steam bath, then by bubbling dry nitrogen through the solution overnight. Quantitative GLC analysis, with biphenyl as the standard, on a 2-m 20\% Carbowax 20 M on Chromosorb W column indicated that the addition product was formed in 99% yield. Less than 1% of the addition product had dehydrated. No evidence for ketone reduction or enol ization was found by this procedure, placing the limits of these products at 2%. No evidence for ketone dimerization product was found when the reaction product was analyzed on a $2-\mathrm{m}, 1.5 \%$ SE-30 on Fluorapak 80 column or by thin layer chromatography The limit of detection by the TLC method was ca. 1.5%. A $10^{-2} \mathrm{M}$ ketone solution, containing triphenylmethanol in the ratio ketone/ $\mathrm{Ph}_{3} \mathrm{COH} 2.595$, was treated with $018 \mathrm{M} n$-butyllithium solution. GLC analysis indicated that only addition product was formed Similarly, a $10^{-2} \mathrm{M}$ ketone solution containing the ketone dimerization product in the ratio ketone/pinacol 71.24 was found to yield only addition product. A $10^{-2} \mathrm{M}$ ketone solution was allowed to react with a $0.18 \mathrm{M} n$-butyllithium solution that was saturated
with the lithium salt of triphenylmethanol and found to yield only addition product

Kinetics and Spectroscopy. The two uv stopped-flow spectrophotometers with dead times of 0.03 and 0.001 s as well as the rapid-scan spectrometer have been described elsewhere. ${ }^{2,29 b}$ The stopped-flow ir spectrophotometric experiments were performed with the apparatus previously described; ${ }^{29 a}$ however, the ir chopping frequency has been increased to ca. 10000 Hz .

Registry No.-2, 1778-09-2; 2-(4-methylmercaptophenyl)-2hexanol, 57560-00-6; n-butyllithium, 109-72-8; 2,3-di(4-methyl-mercaptophenyl)-2,3-butanediol, 57560-01-7; benzene, 71-43-2

References and Notes

(1) This work was supported by a grant from the National Science Foundation.
(2) S. G. Smith, L. F. Charbonneau, D. P. Novak, and T. L. Brown, J. Am. Chem. Soc., 94, 7059 (1972)
(3) (a) T. Holm, Acta Chem. Scand., 23, 1829 (1969); (b) ibid., 25, 833 (1971).
(4) G. R. Dobson and J. R. Paxon, J. Coord. Chem., 1, 321 (1972)
(5) R. Waack and M. A. Doran, J. Am. Chem. Soc., 91, 2456 (1969).
(6) R. Waack and M. A. Doran, J. Organomet. Chem., 29, 329 (1971).
(7) P. West, R. Waack, and J. I. Purmort, J. Am. Chem. Soc., 92, 840 (1970).
(8) D. J. Worsfold and S. Bywater, J. Organomet. Chem., 10, 1 (1967)
(9) D. J. Worsfold and S. Bywater, Can. J. Chem., 38, 1891 (1960).
(10) R. C. P. Cubbon and D. Margerison, Proc. R. Soc. London, Ser. A, 268, 260 (1962).
(11) A. G. Evans and D. B. George, J. Chem. Soc., 4653 (1961)
(12) R. A. H. Casling. A. G. Evans, and N. H. Rees, J. Chem. Soc. B, 519 (1966).
(13) H. L. Hsieh and W. H. Glaze, Rubber Chem. Technol., 43, 22 (1970).
(14) M. York, Ph.D. Thesis, University of Illinois, Urbana, III., 1967.
(15) J. E. L. Roovers and S. Bywater, Macromolecules, 1, 328 (1968)
(16) A. Guyot and J. Vialle. J. Macromol. Sci.-Chem., Part A-4, 79 (1970)
(17) H. L. Hsieh, J. Polym. Sci., Part A-3, 163 (1965).
(18) P. D. Bartlett, C. V. Goebel, and W. P. Weber, J. Am. Chem. Soc., 91, 7425 (1969).
(19) H. L. Hsieh, J. Polym. Sci., Part A-1, 8, 533 (1970)
(20) F. J. Welch, J. Am. Chem. Soc., 82, 6000 (1960)
(21) S. Bywater and J. E. L. Roovers, Trans. Faraday Soc., 62, 1876 (1966)
(22) H. S. Makowski and M. Lynn, J. Macromol. Sci.-Chem., Part A-2, 683 (1968).
(23) R. L. Eppley and J. A. Dixon, J. Am. Chem. Soc., 90, 1606 (1968)
(24) L. Lochmann, R. Lukas, and D. Lim, Collect. Czech. Chem. Commun., 37, 569 (1972).
(25) W. H. Glaze and G. M. Adams, J. Am. Chem. Soc., 90, 1606 (1968).
(26) R. L. Eppley and J. A. Dixon, J. Organomet. Chem., 11, 174 (1968).
(27) Y. N. Baryshmikor, G. I. Vesnovakaya, and V. A. Shushunov, Dokl. Akad. Nauk SSSR, 185, 580 (1969).
(28) Y. N. Baryshnikov and G. I. Vesnovakaya. Teor. Eksp. Khim., 6, 373 (1970).
(29) (a) S. E. Rudolph, L. F. Charbonneau, and S. G. Smith, J. Am. Chem. Soc., 95, 7083 (1973); (b) J. Billet and S. G. Smith, ibid., 90, 4108 (1968); (c) S. G. Smith and G. Su, ibid., 88, 3995 (1966)
(30) T. L. Brown, Acc. Chem. Res, 1, 23 (1968)
(31) H. L. Lewis and T. L. Brown, J. Am. Chem. Soc., 92, 4664 (1970)
(32) T. L. Brown. Adv. Organomet. Chem., 3, 365 (1966)
(33) J. F. Eastham and S. C. Watson, J. Organomet. Chem., 9, 165 (1967).
(34) E. J. Bowne, M. Stacey, J. C. Tatlow, and J. M. Tadder, J. Chem. Soc., 718 (1951).
(35) K. Sisido and H. Nozaki, J. Am. Chem. Soc , 70, 766 (1948)

Mesoionic Compounds. XXXV. Cycloaddition Reactions of the anhydro-4-Hydroxythiazolium Hydroxide and anhydro-5-Hydroxyoxazolium Hydroxide Systems with Heterocumulenes ${ }^{1}$

K. T. Potts,* J. Baum, S. K. Datta, and E. Houghton
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181

Received June 3, 1975

Abstract

Activated isocyanates underwent ready reaction at room temperature with anhydro-2-p-chlorophenyl-4-hy-droxy-3-phenylthiazolium hydroxide yielding 1:1 primary cycloadducts assigned a 2,6 -diaza-7-thiabicyclo[2.2.1]heptane structure. Analogous adducts were also obtained with anhydro-5-hydroxy-3-methyl-2-phenyloxazolium hydroxide. Phenyl isocyanate and phenyl isothiocyanate, however, required elevated temperatures ($80^{\circ} \mathrm{C}$) for the formation of $1: 1$ adducts with the former system.

Heterocumulenes have been shown to undergo a variety of cycloaddition reactions ${ }^{2}$ and, with the mesoionic anhy-dro-5-hydroxythiazolium hydroxide system, provided several interesting $1: 1$ cycloadducts as well as a convenient route to the anhydro-4-mercaptoimidazolium hydroxide system. ${ }^{3}$ We now describe the reactions of several isocyanates and isothiocyanates with the isomeric anhydro-4-hydroxythiazolium hydroxide system 1 and with the anhy-dro-5-hydroxyoxazolium hydroxide system 10, the adducts from the latter being particularly interesting in that they retain the elements of carbon dioxide, an unusual feature in products derived from this ring system. ${ }^{4}$

Phenyl isothiocyanate, phenyl isocyanate, benzoyl isocyanate, p-chlorobenzoyl isocyanate, trichloroacetyl isocyanate, p-toluenesulfonyl isocyanate, and N-chlorosulfonyl isocyanate all underwent ready reaction with anhydro-2-aryl-4-hydroxy-3-phenylthiazolium hydroxide ${ }^{5}$ (1, R $=\mathrm{Ph}$ and $p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) forming crystalline cycloadducts. Analytical and mass spectral data (Table I) established that these were $1: 1$ adducts, and structural formulas have been assigned on the basis of the following considerations.

With phenyl isothiocyanate and $1(\mathrm{R}=\mathrm{Ph})$ an orangeyellow, crystalline product (Table I) separated from the hot benzene reaction mixture after 15 min . Its molecular formula, $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}_{2}$, corresponded to a simple 1:1 adduct but the spectral data excluded any substitution into the 5 position of 1 . Its infrared spectrum, devoid of OH, SH, or NH absorptions, showed $\nu_{\mathrm{CO}} 1630 \mathrm{~cm}^{-1}$ and $\nu_{\mathrm{C}=\mathrm{s}} 1135$ cm^{-1}, and the ultraviolet spectrum [203 nm ($\log \epsilon 4.65$), 277 (4.10), 306 sh (3.85), 424 (4.06)] showed a considerable shift to longer wavelength from that of $1(\mathrm{R}=\mathrm{Ph})$, and also from the absorption of an N-phenylthioamide such as N phenylthioacetamide ${ }^{6}$ [$218 \mathrm{~nm}(\log \epsilon 4.15$), 301 (4.01)]. The NMR spectrum was very simple, consisting of aromatic protons (15) at $\delta 7.63$ and a singlet proton at an exceptionally low chemical shift, $\delta 12.06$.

Several structural representations for an adduct of this composition are possible, including those containing an SH or OH group, but all may be excluded on the basis of the above spectral data except 2 and $3\left(R=R^{1}=P h ; X=S\right)$, representing different modes of addition of phenyl isothiocyanate to the thiocarbonyl ylide dipole of 1 . Structure 3 can be discarded, as in the corresponding adduct from 1 (R $=\mathrm{Ph}$) and phenyl isocyanate, the singlet proton moved upfield, albeit still at an exceptionally low value, to $\delta 10.27$. This indicates that the bridgehead proton at C-4 is being strongly deshielded by the $\mathrm{C}=\mathrm{O}$ and the $\mathrm{C}=\mathrm{S}$ groups at the 3 and 5 positions, respectively, being in the deshielding zone of both groups. As the $\mathrm{C}=\mathrm{S}$ group is known ${ }^{7}$ to exert a stronger deshielding influence than the $\mathrm{C}=\mathrm{O}$ group, such a shift is consistent with structure 2, 3-oxo-1,2,6-triphenyl-

2,6-diaza-7-thiabicyclo[2.2.1] heptane-5-thione ($\mathrm{R}=\mathrm{R}^{1}=$ $\mathrm{Ph} ; \mathrm{X}=\mathrm{S}$).

A low chemical shift in the region of $\delta 12.06$ is usually associated with a proton attached to an electronegative element such as oxygen, nitrogen, or sulfur, or to an aldehydic proton. In 2, the 4 proton is not readily exchanged with deuterium, requiring base catalysis for exchange to occur.

1

3

2

4

The inductive effects exerted by the carbonyl groups and thiocarbonyl groups, as well as the bridgehead sulfur atom, alone cannot account for this low chemical shift. In similar cycloadducts obtained from heterocumulenes and anhy-dro-1,3-dimet'iyl-4-hydroxy-1,2,3-triazolium hydroxide, ${ }^{8}$ anhydro-2,3-diphenyl-4-hydroxy-1-methylimidazolium hydroxide, ${ }^{3}$ and anhydro-5-hydroxy-3-methyl-2-phenylthiazolium hydroxide, ${ }^{3}$ similar chemical shifts were observed for the analogous bridgehead hydrogen atoms.

The ultraviolet spectrum of $2\left(R=R^{1}=P h ; X=S\right)$ is also consistent with this structure. Interaction between a β-thio group and a carbonyl group has been shown ${ }^{9}$ and in β-keto sulfides causes a shift of the perturbed CO absorption to 300 nm , ${ }^{10}$ and interaction between the bridge sulfur atom and the thiocarbonyl group also explains unsuccessful attempts to remove cleanly the sulfur bridge (see below).

Phenyl isocyanate and $1(\mathrm{R}=\mathrm{Ph})$ readily formed a yellow $1: 1$ cycloadduct (Table I) over 1 hr in refluxing benzene. Its spectral characteristics are consistent with structure $2\left(\mathrm{R}=\mathrm{R}^{1}=\mathrm{Ph} ; \mathrm{X}=0\right)$. The infrared spectrum showed $v^{c} \mathrm{CO} 1650$ and $1625 \mathrm{~cm}^{-1}$, the latter most likely the result of interaction of the sulfur bridge with one of the carbonyl groups, an effect which is also reflected in the ultraviolet spectrum having a long wavelength absorption at 400 nm . The NMR spectrum, in addition to the aromatic
Table I. Cycloadducts Obtained from Heterocumulenes and the anhydro-4-Hydroxythiazolium Hydroxide System ${ }^{a}$

Registry no.	R	R ${ }^{\prime}$	$\mathrm{X} \quad \begin{gathered} \text { Yield, } \\ \% \end{gathered}$		$\mathrm{Mp}, b^{\circ} \mathrm{C}$	Molecular formula	Anal., \%						Spectral data				
					Calcd		Found			$\begin{array}{r} \mathrm{M}^{++}(\mathrm{rel} \\ \text { intensity }) \\ \hline \end{array}$	Ir (KBr) cm^{-1}	$\begin{gathered} \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right), \\ \mathrm{nm}(\log E) \\ \hline \end{gathered}$	NMR, δ				
					C		H	N	C					H	N		
57513-19-6	Ph	Ph	S	88		$230{ }^{\circ}$	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}_{2}$	68.03	4.15	7.21	67.99	3.99	7.19	388 (65)	$\begin{gathered} 1630(\mathrm{CO}) \\ 1135(\mathrm{CS}) \end{gathered}$	$\begin{gathered} 203(4.65), \\ 277(4.10), \\ 306^{d}(3.85), \\ 424(4.06), \end{gathered}$	$\begin{gathered} 12.06(\mathrm{~s}, 1, \\ \left.H_{4}\right), 7.63 \\ (\text { m, 15, } \\ \text { aromatic })^{e} \end{gathered}$
57513-20-9	Ph	Ph	0	73		215-216f	$\mathrm{C}_{2} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	70.96	4.33	7.52	71.24	4.33	7.69	372 (17)	1650, 1625 (CO)	$\begin{gathered} 203(4.58), \\ 234(4.20), \\ 268(4.15), \\ 400(4.20) \end{gathered}$	$\begin{gathered} 10.27(\mathrm{~s}, 1 \\ \left.\mathrm{H}_{4}\right), 7.40 \\ (\mathrm{~m}, 15 \\ \text { aromatic })^{e} \end{gathered}$
57513-21-0	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	PhCO	O	74	273-276	$\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$	63.52	3.48	6.44	62.57	3.52	6.18	434 (6)	$\begin{array}{r} 1740,1690 \\ 1640(\mathrm{CO}) \end{array}$	$\begin{aligned} & 225(4.33) \\ & 245 \dot{a} \\ & (4.25), 399 \\ & (4.04) \end{aligned}$	8.3-7.2 (m, H_{4} and aromatic)g	
57513-22-1	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{SO}_{3} \mathrm{Et}$	O	61	184-187	$\mathrm{C}_{1} \mathrm{~s} \mathrm{H}_{15} \mathrm{CLN} \mathrm{O}_{2} \mathrm{~S}_{5} \mathrm{~S}_{2}$	49.25	3.44	6.38	49.14	3.43	6.38		1700, 1650 (CO)	$\begin{gathered} 260(4.15), \\ 285^{d}(3.86), \\ 411(4.13) \end{gathered}$	$\begin{aligned} & 1.3(\mathrm{t}, 3, \\ & \left.\mathrm{SO}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \\ & 4.3-4.4(\mathrm{dq}, \\ & 2, \mathrm{SO}_{3} \mathrm{CH}_{2}- \\ & \left.\mathrm{CH}_{3}\right), 7.4- \\ & 7.5(\mathrm{bs}, 9, \\ & \text { aromatic), } \\ & 9.8(\mathrm{~s}, 1, \\ & \left.\mathrm{H}_{4}\right)^{h} \end{aligned}$	
57513-23-2	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$	0	36	252-257	$\mathrm{C}_{2}, \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$	56.96	3.53	5.78	57.05	3.47	5.66	485 (3)	$\begin{aligned} & 1660,1640(\mathrm{CO}) \\ & 1350,1170 \\ & \left(\mathrm{SO}_{2}\right) \end{aligned}$	$\begin{gathered} 223(3.82), \\ 259(3.79), \\ 395(3.75) \end{gathered}$	$\begin{aligned} & 2.4\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), \\ & 7.0-8.1(\mathrm{~m}, \\ & 13, \text { aromat- } \\ & \text { ic }), 10.8(\mathrm{~s}, \\ & \left.1, \mathrm{H}_{4}\right) \end{aligned}$	
57513-24-3	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}$	0	74	273-275	$\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	58.85	3.01	5.97	59.15	2.94	5.84	469 (9)	$\begin{array}{r} 1730,1680, \\ 1630(\mathrm{CO}) \end{array}$	$\begin{gathered} 232(4.32), \\ 254(4.32), \\ 399(4.16) \end{gathered}$	$\begin{gathered} \text { 7.00-8.17 } \\ \text { (rn, } \mathrm{H}_{4} \text { and } \\ \text { aromatic) } \end{gathered}$	
57513-25-4	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{Cl}_{3} \mathrm{CCO}$	0	92	$250{ }^{i}$	$\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{SO}_{3}$	45.38	2.11	5.88	45.02	2.21	5.69		$\begin{array}{r} 1760,1680 \\ 1625(\mathrm{CO}) \end{array}$		$\begin{gathered} 12.43(\mathrm{~s}, 1, \\ \left.\mathrm{H}_{4}\right), 7.60- \\ 7.22(\mathrm{~m}, 9 \\ \text { aromatic }) \end{gathered}$	

12.0 (broad s,
$\left.1, \mathrm{H}_{4}\right), 7.8-$
$7.1(\mathrm{~m}, 9$,
aromatic),

 $g \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D} .{ }^{h} \mathrm{Me}_{2} \mathrm{SO}-d_{6} . j{ }^{\prime} \mathrm{F}_{3} \mathrm{COOH}$.
Table II. 1:1 Primary Cycloadducts Derived from anhydro-5-Hydroxy-3-methyl-2-phenyloxazolium Hydroxide and Activated Isocyanates ${ }^{a}$

Registry no.	R	$\underset{(\mathrm{dec})}{\mathrm{Mp},}$	Yield,\%	Habit	Formula	Anal., \%						Spectral data		
						Calcd			Found			$\underset{(\mathrm{KBr})}{\nu_{\mathrm{CO}}, \mathrm{~cm}^{-1}}$	$\begin{gathered} \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right), \\ \mathrm{nm}(\log \epsilon) \\ \hline \end{gathered}$	$\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), \delta$
						C	H	N	C	H	N			
57513-28-7	PhCO	193-196	16	Yellow irreg prisms	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{\text {b }}$	67.07	4.38	8.69	67.01	4.35	8.62	$\begin{aligned} & 1720,1700- \\ & 1690 \end{aligned}$	$\begin{aligned} & 323(3.75), 259^{c} \\ & (4.05), 240(4.42) \end{aligned}$	10.95 (bs, $1, \mathrm{C}_{4} \mathrm{H}$, exchanged with $\mathrm{D}_{2} \mathrm{O}$), 7.27-8.13 (m, 10, aromatic), 4.27 (s, $3, \mathrm{NCH}_{5}$)
5751.3-9.9-8	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}$	209-211	60	Yellow needles	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{4}$	60.60	3.67	7.85	60.39	3.64	7.82	$1720,1700$ (b)	$\begin{aligned} & 330(3.76), 263^{c} \\ & (4.21), 246(4.42) \end{aligned}$	10.90 (hs, $1, \mathrm{C}_{4} \mathrm{H}, \mathrm{ex}-$ changed with $\mathrm{D}_{2} \mathrm{O}$), 7.27-8.02 (m, 9, aromatic), 4.27 (s, 3, NCH_{3})
57513-30-1	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$	189-192	68	Colorless prisms	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$	58.05	4.33	7.52	58.18	4.24	7.51	1710, 1680	230 (4.23)	$\begin{aligned} & 9.80\left(\mathrm{bs}, 1, \mathrm{C}_{4} \mathrm{H},\right. \text { ex- } \\ & \text { changed with } \left.\mathrm{D}_{2} \mathrm{O}\right) \\ & 7.27-8.10(\mathrm{~m}, 9, \\ & \text { aromatic }), 4.13(\mathrm{~s}, 3 \\ & \text { NCH } \left._{3}\right), 2.45(\mathrm{~s}, 3 \\ & \text { aryl } \left.\mathrm{CH}_{3}\right) \end{aligned}$

a All recrystallized from 1,2-dichloroethane. $b \mathrm{M}^{++} 322$ (3). c Shoulder.
protons at $\delta 7.40$, consisted of a sharp singlet at $\delta 10.27$ which required base catalysis for deuterium exchange.
An immediate reaction was observed when benzoyl isocyanate and $1\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ were mixed in dry benzene at room temperature, a 1:1 cycloadduct being obtained as yellow needles (Table I). The infrared spectrum showed carbonyl absorptions at $1740(\mathrm{COPh}), 1690(\mathrm{CON}<)$, and 1640 $\mathrm{cm}^{-1}(\mathrm{CON}<)$, the ultraviolet spectrum a long-wavelength absorption at 399 nm , but in this case the chemical shift of the bridgehead proton, characteristic of the above adducts, was not observed owing to use of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as the NMR solvent. These data are best accommodated by structure 2 ($\mathrm{R}=\mathrm{Ph} ; \mathrm{R}^{1}=\mathrm{COPh} ; \mathrm{X}=0$).

An equally ready reaction was observed between 1 ($\mathrm{R}=$ $p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) and N -chlorosulfonyl isocyanate. This adduct, obtained as an unstable, hygroscopic, greenish solid, was converted into the corresponding ethyl ester which was isolated as yellow needles (Table I). Two carbonyl abso:ptions at 1700 and $1650 \mathrm{~cm}^{-1}$, and a long-wavelength ultraviolet absorption at 411 nm , are consistent with the spectral parameters associated with the structure 1-p-chlorophenyl-6-ethoxysulfonyl-2-phenyl-2,6-diaza-7-thiabicyclo[2.2.1] heptane-3,5-dione ($2, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=\mathrm{SO}_{2} \mathrm{Et} ; \mathrm{X}$ $=0)$. The NMR spectrum, in addition to the aromatic protons and those of an OEt group, showed a singlet at $\delta 9.8$, assignable to the $\mathrm{C}-4$ bridgehead proton.
p-Toluenesulfonyl isocyanate also readily formed a $1: 1$ cycloadduct with $1\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ in dry benzene at room temperature within 5 min . This yellow product's spectral characteristics (Table I) are fully in accord with its representation as 1-p-chlorophenyl-2-phenyl-6-p-tolylsulfonyl-2,6-diaza-7-thiabicyclo[2.2.1]heptane-2,5-dione ($2, \mathrm{R}=p$ $\left.\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} ; \mathrm{X}=0\right)$.

The data described above indicate 2 as the structure for these cycloadducts, a possible alternative ylidic structure 5 that cannot be definitely excluded on the basis of these data being eliminated on the basis of ${ }^{13} \mathrm{C} N \mathrm{MR}$ and chemical data. The ylide $\mathbf{5}$ is plausible for the $1: 1$ adduct, being

5

6

8
analogous to a similar type betaine $1: 1$ complex postulated ${ }^{11}$ in the reaction of pyridine N-oxide with sulfonyi diisocyanate, and it should readily undergo protonation with perchloric acid, or alkylation with suitable reagents, in analogy with similar N-imines and C-ylides derived from $1,2,4$-triazole ${ }^{12}$ and other such systems. The adducts described above were remarkably inert to protonation and alkylation. In particular the p-toluenesulfonyl isocyanate adduct did not react with perchloric acid, methyl iodide, triethyloxonium fluoroborate, and methyl trifluoromethanesulfonate and on the basis of these results the ylide structure 5 must be discarded.

The p-toluenesulfonyl derivative was inert to m-chloroperbenzoic acid, sulfoxide formation not being observed,
although it would be expected that in structure 2 ($\mathrm{R}=p$ $\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$) with a sulfide bridge, oxidation would occur readily as has been observed with the $1: 1$ adducts derived from these mesoionic systems and several olefins. ${ }^{13}$ The spectral data for these compounds described above, however, reflect the unusual nature of the adducts in that the lone pair electrons on the bridge sulfur atom are not readily available for reaction with oxidizing agents.
A major premise in our structural arguments is that the bridgehead proton at C-4 is strongly deshielded by the C-3 carbonyl group and the C-5 carbonyl or thiocarbonyl group. Accordingly, change in the nature of the group at C-5 should have a pronounced effect on the chemical shift of this bridgehead proton as well as on the properties of the system, and it was found that the 1:1 cycloadduct obtained from $1\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ and trichloroacetyl isocyanate was a particularly useful substrate upon which to bring about the desired transformations.
Hydrolysis of the adduct $2\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=\right.$ $\mathrm{COCCl}_{3} ; \mathrm{X}=0$), formed at room temperature in 92% yield, with hot aqueous sodium carbonate solution over 15 min gave a product $2\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=\mathrm{H} ; \mathrm{X}=\mathrm{O}\right)$ in 80% yield which, with Meerwein's reagent, afforded 1-p-chloro-phenyl-3-ethoxy-6-phenyl-2,6-diaza-7-thiabicyclo[2.2.1]-hept-2-en-5-one (6). Thermolysis of 6 at $170^{\circ} \mathrm{C}(0.5 \mathrm{~mm})$ could have resulted in extrusion of sulfur or elimination of phenyl isocyanate, the latter being anticipated on the basis of the behavior of the initial cycloadducts of this ring system with acetylenic dipolarophiles. ${ }^{5}$ Two products were isolated from the thermolysis, identified as $2(\mathrm{R}=p$ $\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=\mathrm{H} ; \mathrm{X}=\mathrm{O}$) and 2-p-chlorophenyl-4-ethoxy-thiazole-5-carboxanilide (7). Analytical and spectral data substantiating the above structures are shown in Table I and the Experimental Section. The trichloroacetyl group in 2 ($\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{O}$) was necessary for this facile hydrolysis to occur. The adduct $2\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=\right.$ $\left.\mathrm{COCH}_{3} ; \mathrm{X}=\mathrm{S}\right)$, obtained from $1\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ and acetyl isothiocyanate, could not be hydrolyzed except under conditions that resulted in a more deep-seated degradation of the adduct.

The variation of the chemical shift of the bridgehead proton at $\mathrm{C}-4$ in this series of products is particularly informative. In $2\left(\mathrm{R}=p \cdot \mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=\mathrm{COCCl}_{3} ; \mathrm{X}=0\right)$ a \sin glet proton at $\delta 12.43$ may be attributed to the bridgehead proton; conversion of this adduct into $2\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}\right.$ $=\mathrm{H} ; \mathrm{X}=\mathrm{O}$) resulted in this proton being obscured by the aromatic protons ($\delta 7.5-7.3$), there being a complete absence of a signal at lower field. This large chemical shift may be due in part to an appreciable contribution from the enolic form of the newly generated amide. A further upfield shift occurs on formation of 6 . No signal was found in the region $\delta 18-10$ but a one-proton singlet occurred at $\delta 7.10$. Although this signal cannot be assigned with absolute certainty, there are strong indications that it can be assigned to the bridgehead proton at C-4. The NMR spectrum of the thermolysis product 7 also showed an interesting feature. The 4-ethyl group gave rise to two quartets at $\delta 3.8$ and 3.1 ($J=8.0 \mathrm{~Hz}$) that collapsed to two singlets on irradiation of the triplet resonance, and this nonequivalency of the methylene protons was no doubt due to a steric interaction with the neighboring 5 -carboxanilide group.

The ${ }^{13} \mathrm{C}$ NMR spectra of several of these products were also helpful in these structural studies, particularly in providing additional evidence for the elimination of the ylide structure 5 for these cycloadducts. The ylide structure requires the presence of a $>\mathrm{C}=\mathrm{N}^{+}<$entity with the carbon being attached to an aromatic ring and a sulfur atom. Such a partial structure is present in the S-methylthioamide ${ }^{14}$ derivative 8 and the carbon chemical shift in this product

Table III. ${ }^{13} \mathrm{C}$ Chemical Shifts for Several Heterocumulene Cycloadducts (ppm Downfield from $\mathrm{Me}_{4} \mathrm{Si}$)

Compd	Carbon atom number					
	1	3	4	5	8	9
$2, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ;$						
$\mathrm{R}^{1}=\mathrm{COCH}_{3} ; \mathrm{X}=\mathrm{S}$	125.78	156.83	110.34	184.52	169.41	25.87
6	125.96	137.62	88.72	156.83	60.48	14.04
$11, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}$	120.61	161.75	92.85	163.63	36.43	157.35
8	194.04	48.74	18.10			

was observed at 194.04 ppm . In anhydro-5-hydroxy-3-methyl-2-phenylthiazolium hydroxide the analogous carbon atom (C-2) was observed at 141.3 ppm and in anhydro-2-ethyl-5-mercapto-3-phenyl-1,3,4-thiadiazolium hydroxide the analogous carbon had shifted to $173.8 \mathrm{ppm} .{ }^{15}$ These spectral data, as well as the chemical transformations above, clearly establish the bicyclic structure 2 for these heterocumulene cycloadducts.

In the reaction of anhydro-5-hydroxy-3-methyl-2-phenyloxazolium hydroxide (10) with p-toluenesulfonyl, benzoyl , and p-chlorobenzoyl isocyanate, the mesoionic system ${ }^{3.4}$ was generated in situ from N-benzoylsarcosine (9) and acetic anhydride at $40^{\circ} \mathrm{C}$. These all formed $1: 1$ cycloadducts,

described in Table II, and assigned structure 11 ($\mathrm{R}=p$ $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{COPh}$, and $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}$) on the basis of the spectral data and by analogy with the adducts discussed above. A similar product has been obtained from anhydro-2,4-diphenyl-5-hydroxy-3-methyloxazolium hydroxide and phenyl isocyanate. ${ }^{16}$

The above adducts (Table II) decomposed with gas evolution at their melting points and on electron impact the predominant fragmentation pathway was a disassociation process. Refluxing $11\left(\mathrm{R}=p-\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ with methanol resulted in an hydrolysis product 12 and use of warm 10% sodium hydroxide solution as the hydrolysis medium gave 13, which was also obtained from 12 and 10% sodium hydroxide solution.

Just as some five-membered mesoionic systems can be converted into other representatives of this class of compounds by reaction with phenyl isothiocyanate, ${ }^{8}$ removal of the sulfur bridge in $2\left(\mathrm{R}=\mathrm{R}^{1}=\mathrm{Ph} ; \mathrm{X}=0\right)$ would provide a simple route to anhydro-4-hydroxy-6-oxo-1,2,3-triphenylpyrimidinium hydroxide ${ }^{17}$ (4). However, all attempts to remove the sulfur with reagents such as triphenylphosphine, tris(dimethylamino)phosphine, Raney nickel, etc., were unsuccessful, probably reflecting the interaction of the sulfur with the C-3 or C-5 carbonyl groups. Oxidation with peracetic acid was successful, but, in this case, the product obtained was PhNHCOCHOHCOPhCOPh , formed by hydrolysis of 4 under the reaction conditions. ${ }^{18}$

Experimental Section ${ }^{19}$

Reaction of anhydro-1-Hydroxy-2,3-diphenylthiazolium Hy droxide with Phenyl Isothiocyanate (and Phenyl Isocyanate). The mesoionic compound ${ }^{5} 1(\mathrm{R}=\mathrm{Ph})(2.2 \mathrm{~g}, 0.087 \mathrm{~mol})$ and phenyl isothiocyanate ($1.5 \mathrm{~g}, 0.011 \mathrm{~mol}$) in dry benzene (100 ml) were heated together under reflux and, within 15 min , product started to separate. After an additional 1 h , the reaction mixture was cooled, anhydrous ether added, and the product collected. 3-Oxo-1,2,6-triphenyl-2,6-diaza-7-thiabicyclo[2.2.1]heptane-5-thione (2, $\mathrm{R}=\mathrm{R}^{1}=\mathrm{Ph} ; \mathrm{X}=\mathrm{S}$) crystallized from chloroform-ether as or-ange-yellow needles, $88 \%, \mathrm{mp} 230^{\circ} \mathrm{C}$ dec (Table I). Acetyl isothiocyanate ${ }^{20}$ and $1\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ required a 3 -h reflux period and, on cooling, red prisms of the adduct separated, $\mathrm{mp} 217-218^{\circ} \mathrm{C}$.

General Procedure for the Reaction of anhydro-2-p-Chlo-rophenyl-4-hydroxy-3-phenylthiazolium Hydroxide (1, $\mathbf{R}=$ $\boldsymbol{p}-\mathrm{ClC}_{6} \mathbf{H}_{4}$) and Activated Isocyanates. The mesoionic compound and a slight excess of the isocyanate were mixed in benzene with stirring at room temperature. After several minutes the products separated and were collected and recrystallized from chloro-form-ether (Table I).

With N-chlorosulfonyl isocyanate the precipitated product was extremely unstable and it was converted into the corresponding ester by the addition of excess ethanol.

Hydrolysis of 1-p-Chlorophenyl-2-phenyl-6-trichloro-acetyl-2,6-diaza-7-thiabicyclo[2.2.1]heptane-3,5-dione (2, $\mathrm{R}=$ $\left.\boldsymbol{p}-\mathrm{ClC}_{6} \mathbf{H}_{4} ; \mathbf{R}^{1}=\mathbf{C O C C}_{3} ; \mathbf{X}=\mathbf{O}\right)$. The adduct $(4.76 \mathrm{~g}, 0.01 \mathrm{~mol})$ was heated under reflux with aqueous sodium carbonate (4 g in 40 ml of $\mathrm{H}_{2} \mathrm{O}$) for $=5 \mathrm{~min}$. On cooling, an orange solid separated that crystallized from absolute ethanol as orange prisms and was identified as $2\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=\mathrm{H} ; \mathrm{X}=\mathrm{O}\right), 2.7 \mathrm{~g}(80 \%), \mathrm{mp} 279-$ $280^{\circ} \mathrm{C} \mathrm{dec}$ (Table I).

1-p-Chlorophenyl-3-ethoxy-6-phenyl-2,6-diaza-7-thiabicy-clo[2.2.1]hept-2-en-5-one (6). A slurry of $2\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=\right.$ $\mathrm{H} ; \mathrm{X}=0)(3.30 \mathrm{~g}, 0.01 \mathrm{~mol})$ in dry methylene chloride (100 ml) was treated with triethyloxonium fluoroborate ${ }^{21}(1.90 \mathrm{~g}, 0.01 \mathrm{~mol})$ added in one portion and, after 2 h , a homogeneous solution had formed. After addition of aqueous potassium carbonate $(5.6 \mathrm{~g}$ of 50% solution), the organic portion was separated and dried over anhydrous MgSO_{4}. Removal of the solvent in vacuo afforded an orange oil that crystallized from ether-pentane as orange prisms: $2.25 \mathrm{~g}(62 \%)$; mp 88°; ir (KBr) $1650(\mathrm{CO}), 1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 7.5-7.2\left(\mathrm{~m}, 8\right.$, aromatic), $7.1\left(\mathrm{~s}, 1, \mathrm{H}_{4}\right), 4.5(\mathrm{qt}$, $\left.2, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.4\left(\mathrm{t}, 3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{M}^{+} .358(20)$.
Anal. Calcd $=$ or $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{SO}_{2}$: C, $60.21 ; \mathrm{H}, 4.21 ; \mathrm{N}, 7.80$. Found: C, 59, 99; H, 4.30; N, 7.69.

Thermolysis of 6 . The above 3 -ethoxy compound (400 mg) was heated at $170^{\circ} \mathrm{C}(0.5 \mathrm{~mm})$. On cooling, the crude melt was dissolved in acetone and purified by chromatography on preparative silica gel (0.5 mm) using ethyl acetate. Crystallization of the first band from 1,2 -dichloroethane afforded $1-p$-chlorophenyl-2-phe-nyl-2,6-diaza-7-thiabicyclo[2.2.1]heptane-3,5-dione ($2, \mathrm{R}=p$ $\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{1}=\mathrm{H} ; \mathrm{X}=0$) as yellow prisms, 100 mg (ca. 10%), mp $280^{\circ} \mathrm{C}$. The second major band crystallized from ether-pentane as orange prisms and was identified as $2-p$-chlorophenyl-4-ethoxythi-azole-5-carboxanilide (7): $210 \mathrm{mg}\left(50 \%\right.$); $\mathrm{mp} 222^{\circ}$; ir (KBr) 3325 (NH), 2975 (aromatic CH), and $1625 \mathrm{~cm}^{-1}(\mathrm{CO})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 8.0 (broad s, 1, NH), 7.5-7.0 (m, 9, aromatic), 3.7-3.1 (two qt, 2, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.2 ($\mathrm{t} .3, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=8.0 \mathrm{~Hz}$); $\mathrm{M}^{+} .358$ (62).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{SO}_{2}$: C, $60.21 ; \mathrm{H}, 4.21 ; \mathrm{N}, 7.80$. Found: C, 60.34; H, 4.08; N, 7.80.

General Procedure for Reaction of \boldsymbol{N}-Benzoylsarcosine with Activated Isocyanates. Reaction with \boldsymbol{p}-Toluenesulfonyl Isocyanate. N-Benzoylsarcosine ${ }^{22}(1.93 \mathrm{~g}, 0.01 \mathrm{~mol})$ in acetic anhydride (30 ml) at $40^{\circ} \mathrm{C}$ was stirred and p-toluenesulfonyl isocyanate ($1.97 \mathrm{~g}, 0.01 \mathrm{~mol}$) added in small portions. Within 5 min a light yellow product had separated. Recrystallization from 1,2 -dichloroethane afforded 7 -methyl-1-phenyl-6-p-toluenesulfonyl-6,7-diaza-2-oxabicyclo[2.2.1]heptane-3,5-dione (11, $\mathrm{R}=p$ -
$\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$) as colorless prisms, 1.0 g (68\%), mp $189-192^{\circ} \mathrm{C}$ dec (with gas evolution).

Hydrolysis of $11\left(\mathbf{R}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}\right)$. A. With Methanol. The adduct ($0.7 \mathrm{~g}, 0.0019 \mathrm{~mol}$) was refluxed in dry methanol for 4 h. Solvent was removed in vacuo and the residue recrystallized from ethanol, affording 2-methoxycarbonyl-2-(N-benzoyl- N -methylamino)acet-p-toluenesulfonamide (12) as small, colorless, clustered needles: 0.55 g (57%); mp $157-159{ }^{\circ} \mathrm{C}$; ir (KBr) 3000 (broad, CH), 1750, $1720 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 226 \mathrm{~nm}(\log \epsilon$ 4.45); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.93$ (bs, $1, \mathrm{NH}$, exchanged with $\mathrm{D}_{2} \mathrm{O}$), 7.17-7.97 (m, 9, aromatic), 5.33 ($\mathrm{s}, 1, \mathrm{C}_{2} \mathrm{H}$, exchanged with $\mathrm{D}_{2} \mathrm{O}$), 3.73 (s, $3, \mathrm{OCH}_{3}$), $3.00\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 2.42\left(\mathrm{~s}, 3\right.$, aryl $\left.\mathrm{CH}_{3}\right) ; \mathrm{M}^{+} .403$ (2).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 56.56 ; \mathrm{H}, 4.75 ; \mathrm{N}, 6.95$. Found: C, 56.45 ; H, 4.73; N, 6.83 .
B. With 10% Sodium Hydroxide Solution. The adduct (1.0 g, 0.0027 mol) was heated on a steam bath with 10% sodium hydroxide (15 ml) for 5 min . The reaction mixture was cooled, neutralized with 3 N HCl , and extracted with chloroform. The chlcroform layer was separated, dried over sodium sulfate, and evaporated in vacuo, leaving a colorless, crystalline residue which recrys-allized from 1,2 -dichloroethane-anhydrous ether yielding 2 -(N-benzoyl-N-methylamino)acet- p-toluenesulfonamide (13) as colorless prisms: 0.2 g (20%); mp 156-1570; ir (KBr) 3000 (broad), 1710 , $1625 \mathrm{~cm}^{-1} ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 226 \mathrm{~nm}(\log \epsilon 4.32) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 7.17-7.92 (m, 9, aromatic), 4.13 (bs, 2, CH_{2}), 3.02 (s, 3, NCH_{3}), 2.43 (s, 3, aryl CH_{3}); $\mathrm{M}^{+} .346$ (6).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 58.94 ; \mathrm{H}, 5.24 ; \mathrm{N}, 8.09$. Found: C, 58.86; H, 5.13; N, 8.25.

Hydrolysis of 12. Treatment of 12 with 10% sodium hydroxide on a steam bath for 15 min , extraction of the reaction with chloroform, and evaporation of the chloroform extract afforded a colorless, crystalline solid identical ${ }^{23}$ with 13 above.

Acknowledgments. It is a pleasure to acknowledge the assistance of Dr. E. Williams, G. E. Corporate R \& D Center, Schenectady, N.Y., in the determination of the ${ }^{13} \mathrm{C}$ NMR data.

Registry No.-1 $(\mathrm{R}=\mathrm{Ph})$, 13288-67-0; $1\left(\mathrm{R}=\mathrm{p}-\mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 52730-97-9; 6, 57513-31-2; 7, 57513-32-3; 8, 57513-33-4; 9, 2568-345 ; 12, 57513-34-5; 13, 57513-35-6; phenyl isothiocyanate, 1C3-72-0;
phenyl isocyanate, 103-71-9; benzoyl isocyanate, 4461-33-0; p chlorobenzoyl isocyanate, 4461-36-3; trichloroacetyl isocyanate, 3019-71-4; p-toluenesulfonyl isocyanate, 4083-64-1; N-chlorosulfonyl isocyanate, 1189-71-5; acetyl isothiocyanate, 13250-46-9.

References and Notes

(1) (a) Support of this work by U.S. Public Health Service Research Grant CA 08495, National Cancer Institute, is gratefully acknowledged; (b) abstracted in part from the Ph.D. Thesis of J.B., 1973; (c) NSF Trainee.
(2) H. Ulrich, "Cycloaddition Reactions of Heterocumulenes", Academic Press, New York, N.Y., 1967.
(3) K. T. Potts. J. Baum, E. Houghton, D. N. Roy, and U. P. Singh, J. Org. Chem., 39, 3619 (1974).
(4) H. Gotthardt and R. Huisgen, Chem. Ber., 103, 2625 (1970); R. Knorr, R. Huisgen and G. K. Staudinger, ibid., 103, 2639 (1970).
(5) K. T. Potts, E. Houghton, and U. P. Singh, J. Org. Chem., 39, 3627 (1974).
(6) A. J. Speziale and L. R. Smith, J. Org. Chem., 28, 3492 (1963)
(7) K. T. Potts and R. Armbruster, J. Org. Chem., 36, 1846 (1971); R. Hull, J. Chem. Soc. C, 1777 (1968).
(8) K. T. Potts and S. Husain, J. Org. Chem., 37, 2049 (1972).
(9) N. J. Leonard, T. W. Milligan, and T. L. Brown, J. Am. Chem. Soc., 82, 4075 (1960).
(10) G. Bergson and A. L. Delin, Ark. Kemi, 18, 489 (1962).
(11) R. Appel and H. Rittersbacher, Chem. Ber., 97, 852 (1964).
(12) G. V. Boyd and A. J. H. Summers, J. Chem. Soc. B, 1648 (1971); H. J. Timpe, Adv. Heterocycl. Chem., 17, 213 (1975).
(13) K. T. Potts, J. Baum, and E. Houghton, J. Org. Chem., 39, 3631 (1974).
(14) D. A. Peak and F. Stansfield, J. Chem. Soc., 4067 (1952).
(15) M. T. W. Hearn and K. T. Potts, J. Chem. Soc., Perkin Trans. 2, 875 (1974).
(16) T. Shiba and H. Kato. Bull. Chem. Soc. Jpn., 43, 3941 (1970).
(17) K. T. Potts and M. Sorm, J. Org. Chem., 37, 1422 (1972).
(18) We are indebted to Dr. U. P. Singh for this experiment.
(19) Spectral characterizations were carried out with the following instrumentation: ir, Perkin Elmer Model 337 infrared spectrophotometer; uv. Cary Model 14 spectrophotometer; NMR, Varian A-60, T-60, and HA100 spectrometers using $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard; mass spectra, Hitachi Perkin-Elmer RMU-6E mass spectrometer at 70 eV using the direct insertion probe at a temperature of ca. 150°. Evaporations were done under reduced pressure using a Rotavap apparatus, and melting points were determined in capillaries. Analyses are by Galbraith Laboratories, Knoxville, Tenn., and Instranal Laboratories, Inc., Rensselaer, N.Y.
(20) A. Takamizawa, K. Hirai, and K. Matsui, Bull. Chem. Soc. Jpn., 36, 1214 (1963)
(21) H. Meerwein, Org. Synth., 46, 113 (1966).
(22) J. O'Brien and C. Niemann, J. Am. Chem. Soc., 79, 84 (1957).
(23) Criteria used for establishing identity were superimposable infrared spectra, no depression in mixture melting point, and Identical R_{f} values.

Mesoionic Compounds. XXXVI. Reaction of Mesoionic Systems with Diphenylcyclopropene Derivatives ${ }^{1}$

K. T. Potts, ${ }^{*}$ J. Baum, and E. Houghton
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181

Received June 3, 1975

Abstract

anhydro-2,3-Diphenyl-4-hydroxythiazolium hydroxide and diphenylcyclopropenone at 80° gave a 1:1 cycloadduct shown to be 2,3,5,6-tetraphenyl-6-aza-8-thiabicyclo[3.2.1]oct-2-ene-4,7-dione which, on thermolysis, lost the elements of COS forming $1,4,5,6$-tetraphenyl- $2(1 H)$-pyridone. With diphenylcyclopropenethione at room temperature the corresponding 7-oxo-2,3,5,6-tetraphenyl-6-aza-8-thiabicyclo[3.2.1]oct-2-ene-4-thione was formed which, on thermolysis, gave $3,4,6$-triphenyl- 2 H -thiopyran- 2 -thione and 4 -oxo-2,3,6,7-tetraphenyl- 2 H -1,3-thiazocinium 8-thiolate. anhydro-2-p-Chlorophenyl-4-hydroxy-3-phenylthiazolium hydroxide gave an analogous series of p chlorophenyl substituted products. anhydro-2,4-Diphenyl-5-hydroxy-3-methyl-1,3-oxazolium hydroxide, generated in situ from N-benzoyl- N-methyl- C-phenylglycine and $\mathrm{Ac}_{2} \mathrm{O}$, and diphenylcyclopropenone gave 1-methyl-2,3,5,6-tetraphenyl-4(1H)-pyridone, and the corresponding thione was formed with diphenylcyclopropenethione. Reaction with 1,2,3-triphenylcyclopropene gave 1-methyl-2,3,4,5,6-pentaphenyl-1,4-dihydropyridine. anhydro-5-Hydroxy-3-methyl-2-phenylthiazolium hydroxide and diphenylcyclopropenethione underwent reaction at room temperature giving 1 -methyl-2,3,5-triphenyl-4(1H)-pyridinethione, whereas with diphenylcyclopropenone no reaction occurred. Chemical and spectral evidence used to establish these structures is described.

In the short time since the initial synthesis ${ }^{2}$ of diphenylcyclopropenone, it has found applications as a versatile intermediate in organic synthesis. ${ }^{3}$ As would be anticipated from its physical characteristics, it is a particularly interesting substrate in cycloaddition reactions and this proper-
ty is shared to some degree by its thio analogue. Cycloadducts have been formed with carbonyl ylides, ${ }^{4}$ heteroaromatic ring systems such as pyridine, pyridazine, etc., ${ }^{5}$ some 1,3 -dipolar systems, ${ }^{6}$ and also with enamines and other electron-rich olefinic systems. ${ }^{7}$ Recently 1 -azirines were
shown to react with diphenylcyclopropenone forming 4pyridones. ${ }^{8}$

Previous papers in this series on mesoionic compounds described the reactions of the anhydro-2,3-disubstituted 4 -hydroxythiazolium hydroxide system with acetylenic ${ }^{9}$ and olefinic ${ }^{10}$ dipolarophiles and, as a part of the study of the chemistry of mesoionic compounds, ${ }^{11}$ we have investigated the reaction of this and several other mesoionic rings systems with diphenylcyclopropene derivatives.
anhydro-2,3-Diphenyl-4-hydroxythiazolium hydroxide ($1, \mathrm{R}=\mathrm{Ph}$) contains a "masked" thiocarbonyl ylide $1,3-$ dipole. Annelation of the three-carbon system of cyclopropene to the mesoionic ring offers the opportunity for a [3+ 3] cycloaddition with possible thermal ring expansions to six-membered and larger ring systems. Reaction of diphenylcyclopropenone with 1,3 -dipoles has been observed to occur in three ways: addition across the carbonyl group; 6,12 addition across the carbon-carbon double bond; ${ }^{13}$ a $\mathrm{C}-\mathrm{C}$ insertion reaction such that the final product is an α, β-unsaturated ketone. ${ }^{2 c, 4,7}$ The first two addition modes are usually accompanied by further skeletal rearrangement and, in the last, the initial reaction probably occurs at the $\mathrm{C}-2$ atom of the three-membered ring.

Reaction of the mesoionic system $1(\mathrm{R}=\mathrm{Ph})$ and diphenylcyclopropenone in refluxing benzene gave a stable 1:1 adduct. Its molecular formula, $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$, established by analytical and mass spectral data, may be accommodated by structures $2,3,4$, or $5(R=P h ; X=0)$, repre-

2

3

4

5

6
senting $1: 1$ adducts formed by the various addition modes described above. Structures 2 and 3 may be excluded immediately on the basis of the infrared spectral data. A carbonyl absorption at $1650 \mathrm{~cm}^{-1}$ attributed to the amide carbonyl group and an additional absorption at $1725 \mathrm{~cm}^{-1}$ are not consistent with a carbonyl group in a cyclopropane ring
(for structure 2, $\nu_{\mathrm{CO}} \mathbf{c a}$. 1875-1800 cm^{-1}) ${ }^{14}$ nor with structure 3. Structures 4 and 5 are, however, compatible with the additional carbonyl absorption at $1725 \mathrm{~cm}^{-1}$, an analogous chromophore absorbing ${ }^{15}$ at $1727 \mathrm{~cm}^{-1}$ in 4,5-epoxy-$2,3,4,5$-tetraphenylcyclopenten-1-one (6) and in 2,3-di-phenylcyclopenten-2-one at $1681 \mathrm{~cm}^{-1}$. This same chromophore in 6 has an ultraviolet absorption at 233 nm ($\log \epsilon$ 4.23) and 338 (3.85), whereas the cycloadduct above exhibits absorption maxima at $205 \mathrm{~nm}(\log \epsilon 4.64), 246$ (4.45), 300 (4.26), and 353 (4.17). This shift to longer wavelength may be attributed to interaction of the bridge sulfur atom with the carbonyl chromophores of the amide and α, β-unsaturated ketone systems, a feature observed previously with adducts from 1 and heterocumulenes. ${ }^{16}$

A distinction between structures 4 and 5 can be made, however, on the basis of NMR data. In addition to the aromatic multiplet at $\delta 7.8-6.7$ a singlet proton resonance was observed at $\delta 6.1$ and this proton was not exchanged with $\mathrm{D}_{2} \mathrm{O}-\mathrm{NaOD}$. This is more consistent with structure 4 than 5 , for in the latter this bridgehead proton would be expected to be at much lower field, being in the deshielding zones of the two flanking carbonyl groups. Though there is a change in the geometry of the bicyclo[3.2.1]octane system compared to the bicyclo[2.2.1]heptane system present in the cycloadducts from 1 and heterocumulenes, ${ }^{16}$ it should not be sufficient to result in a chemical shift change from ca. $\delta 10$ to δ 6.1.

The mass spectrum of $4(R=P h ; X=0)$ is particularly informative. A fragmentation of the molecular ion, m/e 459.1291, involves the loss of CO giving an ion $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{NOS}$ (m / e 431.1396) corresponding to the product anticipated from the reaction of $1(\mathrm{R}=\mathrm{Ph})$ and diphenylacetylene. The cycloreversion of this process was observed with the formation of the diphenylacetylene ion $\mathrm{C}_{14} \mathrm{H}_{10}$ (m/e 178.0803) and the ion corresponding to $1(\mathrm{R}=\mathrm{Ph})$, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NOS}$ ($m / e 253.0580$). ${ }^{17}$ These processes can only be interpreted in terms of structures 4 or 5 . Additional evidence in support of 4 comes from the formation of $1,4,5,6-$ tetraphenyl-2(1 H)-pyridone ($9, \mathrm{R}=\mathrm{Ph}$) on thermolysis of $4(\mathrm{R}=\mathrm{Ph} ; \mathrm{X}=0)$. Cleavage of the 4,5 bond in 4 to the intermediate ketene $7(\mathrm{R}=\mathrm{Ph} ; \mathrm{X}=0)$, followed by rearrangement through the resonance-stabilized betaine $8(\mathrm{R}=$ $\mathrm{Ph} ; \mathrm{X}=0)$ and its valence tautomer $8 \mathrm{a}(\mathrm{R}=\mathrm{Ph} ; \mathrm{X}=0)$, provides a satisfactory explanation for the formation of 9 ($\mathrm{R}=\mathrm{Ph}$). An alternative route, initiated by loss of S from 4 to give an intermediate betaine $10(\mathrm{R}=\mathrm{Ph})$ followed by rearrangement to 10a $(\mathrm{R}=\mathrm{Ph})$ with subsequent loss of CO , is relatively unlikely. Experience has shown that loss of S from adducts such as 4 only occurs readily when an aromatic ring system is formed in the process. ${ }^{10,16}$ This thermal rearrangement dictates against the alternative formulation of the adduct as structure 5. Although cleavage of the 4,5 bond in 5 would give rise to a ketene intermediate $17(\mathrm{X}=0)$ that, by ring closure and elimination of COS as above, would give the pyridone 9, the intermediate 17 would be anticipated to be an extremely unstable product with little tendency to undergo ring closure to an intermediate analogous to $8(\mathrm{X}=0)$.

The structure of the pyridone 9 was assigned on the basis of analytical and spectral data. Mass spectrometry and analytical data established the molecular formula as $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{NO}$ and, in addition to the aromatic proton multiplet at δ 7.1-7.8 in the NMR spectrum, a sharp singlet occurred at $\delta 6.4$. The analogous 3 proton in 2 -pyridone has been observed ${ }^{18}$ at $\delta 6.57$, substituents in the ring having only minor effects on this chemical shift.

Reaction of anhydro-2-p-chlorophenyl-4-hydroxy-3phenylthiazolium hydroxide ($1, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) with diphenylcyclopropenone gave rise to the $5-p$-chlorophenyl

10a

9

8b

15

16

17
analogue of $4\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ with spectral characteristics consistent with those of $4(\mathrm{R}=\mathrm{Ph})$.

The action of NaBH_{4} on $4\left(\mathrm{R}=\mathrm{Ph}\right.$ or $\left.p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{O}\right)$ gave a product of molecular formula $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{2}$, requiring loss of the C_{5} atom as some combination of RCS . The isolation of a small amount of sulfur-containing polymeric substance indicates that this species was most likely the appropriate thioaldehyde. Structure 12 readily accommodates two carbonyl groups at 1740 and $1670 \mathrm{~cm}^{-1}$, and may be formed by hydride ion attack at the C_{1} bridgehead position in preference to the more sterically hindered C_{5} position with formation of 11 , followed by ring closure to 12 . In agreement with this structure, the NMR spectrum of 12 , 1,3,4-triphenyl-2,6-dioxo-1,2,5,6-tetrahydropyridine, showed a two-proton singlet at $\delta 4.00$ in addition to the aromatic protons at $\delta 6.87-7.60$.

Diphenylcyclopropenethione also reacted readily with 1 forming $1: 1$ cycloadducts at room temperature in anhydrous benzene over 18 h , these adducts being assigned the structure of 7-oxo-2,3,5,6-tetraphenyl-6-aza-8-thiabicyclo[3.2.1] oct-2-ene-4-thione ($4, \mathrm{R}=\mathrm{Ph} ; \mathrm{X}=\mathrm{S}$). The chemical shift of the C_{1} bridgehead proton was observed at $\delta 6.2$, a chemical shift inconsistent with the alternative structure $5(\mathrm{R}=\mathrm{Ph} ; \mathrm{X}=\mathrm{S})$ in which the bridgehead proton would be in the deshielding zone of both the C_{7} carbonyl group and the C_{2} thiocarbonyl group. Absorptions consistent with a $\mathrm{C}=\mathrm{S}$ group were observed in the $1020-1250-\mathrm{cm}^{-1}$-egion

13
14
and an absorption at $1650 \mathrm{~cm}^{-1}$ may be attributed to the C_{7} carbonyl group.

On thermoylsis, $4\left(\mathrm{R}=\mathrm{Ph}, p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{S}\right)$ formed two brilliant-red products. The first product isolated from chromatography of the reaction mixture was identified as 6 -aryl-3,4-diphenyl- 2 H -thiopyran-2-thione ($13, \mathrm{R}=\mathrm{Ph}$, $p-\mathrm{ClC}_{6} \mathrm{H}_{4}$). Its spectral characteristics, especially the NMR data and ultraviolet absorption, were consistent with data reported for analogous structures in the literature, and the $3,4,6$-triphenyl derivative $13(\mathrm{R}=\mathrm{Ph})$ was synthesized by an alternative route utilizing the reaction of 1 -(benzoylmethyl)pyridinium bromide and diphenylcyclopropenone ${ }^{19}$ to give the $3,4,6$-triphenyl- 2 H -pyran- 2 -one which was converted into the 2 -thione with $\mathrm{P}_{4} \mathrm{~S}_{10}$-pyridine, and the 2 H -pyran-2-thione isomerized ${ }^{20}$ to the corresponding $2 H$ -thiopyran-2-one which finally with $\mathrm{P}_{4} \mathrm{~S}_{10}$-pyridine gave the $2 H$-thiopyran- 2 -thione $13(\mathrm{R}=\mathrm{Ph})$. Reaction with Meerwein's reagent gave the corresponding 2 -ethylthio derivative 14.

The second product formed in the thermolysis was isomeric with $4\left(\mathrm{R}=\mathrm{Ph}, p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{S}\right)$. Structure $8(\mathrm{R}=$ $\mathrm{Ph}, p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{S}$), 2-aryl-4-oxo-3,6,7-triphenyl- 2 H 1,3 -thiazocinium 8 -thiolate, was consistent with its chemical and spectral properties, and it reacted readily with Meerwein's reagent to give the corresponding SEt product 15. The chemical shift of the methylene protons at $\delta 3.3$ (qt) correlates well with an SEt group adjacent to a posi-
tively charged sulfur atom rather than with those of an OEt group. ${ }^{21}$

In the thermolysis of $4(X=O, S)$, the intermediate ketene $7(X=0)$ and thioketene $7(X=S)$ satisfactorily explain all the observed products. Ring closure to 8 ($\mathrm{X}=\mathrm{O}$) ultimately leads ${ }^{22}$ to the pyrid $\quad 9$ whereas in $8(X=S)$ an alternative valence isomerization to 8 b and subsequent loss of phenyl isocyanate give the thiopyranthione 13. A product 16 isomeric with 13 could conceivably be derived by elimination of PhNCO from $4(\mathrm{X}=\mathrm{S})$ but, as shown above, this retrocycloaddition is not favored in this thermolysis over fission of the 4,5 bond. Similarly the intermediacy of the ketene $17(\mathrm{X}=\mathrm{O})$ or thioketene $(\mathrm{X}=\mathrm{S})$ derived from 5 can be excluded by the above results.

In contrast to the ready reaction of 1 with diphenylcyclopropenone and diphenylcyclor ropenethione, the 5 -phenyl derivative of 1 did not undergo any reaction, an observation also noted by others. ${ }^{23}$
The isomeric thiazole mesoicnic system 18 and diphenylcyclopropenone in refluxing tenzene did not form a cycloadduct. Instead the diphenvlcyclopropenone dimer was isolated. In view of the reaction reported recently ${ }^{23}$ for its 4 -phenyl derivative, this failure to isolate a product is probably due to the thermal instability of 18 , a not uncommon occurrence in cycloadditions with this ring system. However, with diphenylcyclopropenethione, $18(\mathrm{R}=\mathrm{Ph}$, $p-\mathrm{ClC}_{6} \mathrm{H}_{4}$), readily gave a product in benzene at room temperature identified as 2 aryl-3,5-diphenyl-1-methyl$4(1 H)$-pyridinethione ($20, \mathrm{R}=\mathrm{Ph}, p-\mathrm{ClC}_{6} \mathrm{H}_{4}$). The most direct route to this product involves an intermediate such as 19 (see below) which loses COS to form the observed product.

The following spectral data for 20 are consistent with a thiopyridone structure. In the infrared spectrum a $C=C$ absorption at $1610 \mathrm{~cm}^{-1}$ and absorption maxima in its ultraviolet spectrum [360 nm ($\operatorname{lcg} \epsilon 3.96$), 267 (3.71), and 226 (4.13)] were analogous to those reported for the thiopyridone $24(\mathrm{X}=\mathrm{S})$. The $\mathrm{C}_{6} \mathrm{H}$ was masked in the aromatic multiplet between $\delta 7.00$ and 8.00 in the NMR spectrum, and the mass spectrum gave a fragmentation pattern analogous to that obtained for $24(\mathrm{X}=\mathrm{S})$. When 20 was converted into a methylated derivative 21 with methyl iodide, the C_{6} proton was shifted downfield to $\delta 8.74$.

The different modes of cycloaddition of the isomeric thiazolium mesoionic systems suggested extension of these studies to other mesoionic sys:ems. 3-Phenyl- and 3-methylsydnone were found to be ur reactive with diphenylcyclopropenone and its thione but anhydro-2,4-diphenyl-5-hy-droxy-3-methyl-1,3-oxazolium hydroxide (22) reacted readily. This mesoionic system can be utilized most effectively

Table I. ${ }^{13} \mathrm{C}$ Chemical Shifts of 1-Methyl-2,3,5,6-tetraphenyl-4-pyridone ${ }^{25 b}$

Assigned carbon	Chemical shift, ppm	Assigned carbon	Chemical shift, ppm
1	189.7	5	134.9
2	175.3	$6-11$	$126.2-131.3$
3	149.5	12	41.3
4	135.5		

by generation in situ from N-benzoyl- N-methyl- C-phenylglycine and acetic anhydride ${ }^{24}$ and when this mixture was heated at $85^{\circ} \mathrm{C}$ for 10 min with diphenylcyclopropenone, 1 -methyl-2,3,5 6-tetraphenyl-4(1 H)-pyridone ($24, \mathrm{X}=0$) was obtained as colorless needles. The reaction may proceed through the intermediacy of a cyclopropanone 23 (X $=0)$ with concomitant loss of CO_{2} to the pyridone $24(\mathrm{X}=$ O). However, alternative modes of addition to 22 are possible, and would result in the formation of the isomer, anhy-dro-3-hydroxy-1-methyl-2,4,5,6-tetraphenylpyridinium hydroxide (25, X $=0$). Spectral data (Experimental Section), especially $\nu_{\mathrm{CO}} 1620 \mathrm{~cm}^{-1}$, do not allow an unambiguous assignment of structure but favor structure 24 over 25.

The simplic:ty of the ${ }^{13} \mathrm{C}$ PFT spectrum of the product is indicative of the symmetry within 24 which theoretically should give rise to a 12 -line spectrum. Chemical shifts (downfield from $\mathrm{Me}_{4} \mathrm{Si}$) and carbon assignments are shown in Table I. The pyridone $24(\mathrm{X}=0)$ was characterized further by conversion with Meerwein's reagent into 4 -ethoxy1 -methyl-2,3,5,6-tetraphenylpyridinium tetrafluoroborate (26, $\mathrm{X}=\mathrm{OEt} ; \mathrm{Y}=\mathrm{BF}_{4}$) whose spectral data are fully consistent with this structural assignment. An interesting feature of the mass spectrum of the salt $26(\mathrm{X}=0 \mathrm{Ot}$; $\mathrm{Y}=$ BF_{4}) was the incorporation of fluorine into the pyridine ring. It may be speculated that, after initial, thermal loss of BF_{3}, the residual fluorine covalently bonds with the pyridine ring, most likely at the 2 position, and accounts for a
series of ions, $\mathrm{C}_{32} \mathrm{H}_{28}$ FNO, $m / e 461$ (11), $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{FNO}, m / e$ 460 (5), and $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{FNO}$, m/e 432 (2).

Confirmation of the structure of the product from 22 and diphenylcyclopropenone as $24(\mathrm{X}=0)$ was obtained by its synthesis by an alternative route from 2,3,5,6-tetraphenyl$4(4 H)$-pyrone and methylamine. ${ }^{25 a}$

When diphenylcyclopropenethione and N-benzoyl- N -methyl- C-phenylglycine were heated in acetic anhydride at $40^{\circ} \mathrm{C}$ for 5 min , a product crystallized from solution and corresponded to the loss of CO_{2} from a primary cycloadduct. Ambiguity in structural assignment exists in this case as well, depending upon the mode of cycloaddition to 22 . If $\mathrm{C}=\mathrm{C}$ addition to 22 had occurred, then 1-methyl-2,3,5,6-tetraphenyl-4($1 H$)-pyridinethione ($24, \mathrm{X}=\mathrm{S}$) would result. If C-CS insertion had occurred. then anhydro-3-mer-capto-1-methyl-2,4,5,6-tetraphenylpyridinium hydroxide $(25, \mathrm{X}=\mathrm{S})$ would be formed. That $\mathrm{C}=\mathrm{C}$ addition had occurred was demonstrated by the synthesis of $24(\mathrm{X}=\mathrm{S})$ from $24(\mathrm{X}=\mathrm{O})$ and $\mathrm{P}_{4} \mathrm{~S}_{10}$ in refluxing pyridine. This reaction, and that of 18 with diphenylcyclopropenethione, represent the first examples of addition to the $\mathrm{C}=\mathrm{C}$ bond of diphenylcyclopropenethione, insertion between $\mathrm{C}_{1}-\mathrm{C}_{2}$ being the usual mode of reaction. The spectral data, consistent with this structure, are described in the Experimental Section. The thione was readily converted into the corresponding S-methyl product 26 ($\mathrm{X}=\mathrm{CH}_{3} \mathrm{~S} ; \mathrm{Y}=\mathrm{I}$) with methyl iodide and alkylated with triethyloxonium tetrafluoroborate to 4 -ethylthio-1-methyl-2,3,5,6-tetraphenylpyridinium tetrafluoroborate ($26, \mathrm{X}=\mathrm{EtS} ; \mathrm{Y}=\mathrm{BF}_{4}$). ${ }^{26}$
$1,2,3$-Triphenylcyclopropene reacted in an analogous fashion with 22 , giving 1 -methyl-2,3,4,5,6-pentaphenyl1,4 -dihydropyridine (27), this product being reported recently as having been prepared from an isolated sample of 22 and the cyclopropene. ${ }^{27}$

Experimental Section ${ }^{28}$

2,3,5,6-Tetraphenyl-6-aza-8-thiabicyclo[3.2.1]oct-2-ene-4,7-dione ($4, \mathbf{R}=\mathbf{P h} ; \mathbf{X}=\mathbf{0}$). anhydro-2,3-Diphenyl-4-hydroxythiazolium hydroxide ($1, \mathrm{R}=\mathrm{Ph}$) ($5.0 \mathrm{~g}, 0.02 \mathrm{~mol}$) and diphenylcyclopropenone ($4.0 \mathrm{~g}, 0.02 \mathrm{~mol}$) in dry benzene were refluxed for 30 min . The solvent was removed in vacuo and the residue chromatographed on Kieselgel G (benzene) using CHCl_{3} as eluent. Crystallization from chloroform-cyclohexane afforded yellow needles of 4 $(\mathrm{R}=\mathrm{Ph} ; \mathrm{X}=0): 2.0 \mathrm{~g}(27 \%) ; \mathrm{mp} 198-200^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) 1725,1650$ $\mathrm{cm}^{-1}(\mathrm{CO}) ; \lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 353 \mathrm{~nm}(\log \in 4.17), 300(4.26), 246$ (4.45); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.71-7.83$ ($\mathrm{m}, 20$, aromatic), 6.10 ($\mathrm{s}, 1, \mathrm{C}_{4}$ H); mass spectrum m / e (rel intensity) $\mathrm{M}^{+}{ }^{+} 459.1291$ (0.34), [M COJ. ${ }^{+} 431.1396$ (2).
Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 78.41 ; \mathrm{H}, 4.61 ; \mathrm{N}, 3.05$. Found: C, 78.49; H, 4.66; N, 2.94.

5-p-Chlorophenyl-2,3,6-triphenyl-6-aza-8-thiabicyclo[3.2.1] oct-2-ene-4, 7 -dione ($4, \mathrm{R}=\boldsymbol{p}-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathbf{X}=\mathbf{O}$) was prepared from $1\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ in a similar manner. It crystallized from benzene-anhydrous ether as yellow needles: mp $137-139^{\circ} \mathrm{C}$ dec; ir (KBr) $1720,1660 \mathrm{~cm}^{-1}(\mathrm{CO})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.70-7.62(\mathrm{~m}$, 19, aromatic), 6.10 (s, $1, \mathrm{C}_{4} \mathrm{H}$).
Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{ClNO}_{2} \mathrm{~S}: \mathrm{C}, 72.94 ; \mathrm{H}, 4.05 ; \mathrm{N}, 2.84$. Found: C, 72.59; H, 4.62; N, 2.71.

Thermolysis of 2,3,5,6-Tetraphenyl-6-aza-8-thiabicy-clo[3.2.1]oct-2-ene-4,7-dione (4, $\mathbf{R}=\mathbf{P h} ; \mathbf{X}=\mathbf{O}$). The above cycloadduct (500 mg) was heated at $200^{\circ} \mathrm{C}(1 \mathrm{~mm})$ for 20 min . After melting and gas evolution ($\sim 15 \mathrm{~min}$) the oil solidified. This product was chromatographed on Kieselgel G (benzene) using chloroform as eluent. 1,4,5,6-Tetraphenyl-2(1 H)-pyridone ($9, \mathrm{R}=\mathrm{Ph}$) crystallized from chloroform-ether as colorless needles: 350 mg $(80 \%) ; \mathrm{mp} 279-281^{\circ} \mathrm{C}$; ir (KBr) $1650 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $340 \mathrm{~nm}(\log \epsilon 4.05), 243$ (4.28); NMR (CDCl_{3}) $\delta 7.14-7.81(\mathrm{~m}, 2$, aromatic), $6.40\left(\mathrm{~s}, 1, \mathrm{C}_{3} \mathrm{H}\right.$); mass spectrum m / e (rel intensity) M. ${ }^{+}$ 399 (100).
Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{NO}$: C, 87.19; H, 5.30; N, 3.51. Found: C, 86.57; H, 5.26; N, 3.27.

Sodium Borohydride Reduction of $4(\mathbf{R}=\mathbf{P h} ; \mathbf{X}=\mathbf{O})$. The
cycloadduct $4(\mathrm{R}=\mathrm{Ph} ; \mathrm{X}=\mathrm{O})(500 \mathrm{mg})$ in ethanol $(100 \mathrm{ml})$ was treated with a solution of $\mathrm{NaBH}_{4}(120 \mathrm{mg})$ in ethanol (20 ml). After 4 h at room temperature, the solvent was removed, water added, and the aqueous solution extracted with $\mathrm{CHCl}_{3}(2 \times 50 \mathrm{ml})$. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ the chloroform extract was evaporated to dryness and the residue chromatographed on Kieselgel G (benzene) using CHCl_{3} as eluent. The product 12 crystallized from chloroform-petroleum ether or benzene-petroleum ether (bp $35-60^{\circ} \mathrm{C}$) as colorless needles: $250 \mathrm{mg}, \mathrm{mp} 228-230^{\circ} \mathrm{C}$; ir (KBr) 3050 (CH), $1740,1670 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 356 \mathrm{~nm}(\log \epsilon$ 4.07), 246 sh (4.19); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.87-7.60$ ($\mathrm{m}, 15$, aromatic), $4.00\left(\mathrm{~s}, 2, \mathrm{CH}_{2}\right)$; mass spectrum m / e (rel intensity) M. ${ }^{+} 339.1284$ (44), [M - PhNCO$]^{+}+220.0889$ (100).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 81.39; $\mathrm{H}, 5.05 ; \mathrm{N}, 4.13$. Found: C , 81.55; H, 5.13; N, 3.88 .

5- p-Chlorophenyl-2,3,6-triphenyl-6-aza-8-thiabicyclo[3.2.1]oct-2-ene-4,7-dione ($4, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{X}=0$) was treated with NaBH_{4} as above. The product isolated was identical ${ }^{29}$ with 14.

Reaction of anhydro-2-Aryl-4-hydroxy-3-phenylthiazolium Hydroxide (1) with Diphenylcyclopropenethione. The mesoionic compound $1\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)(2.8 \mathrm{~g}, 0.01 \mathrm{~mol})$ and diphenylcyclopropenethione ($2.2 \mathrm{~g}, 0.01 \mathrm{~mol}$) were stirred in dry benzene $(200 \mathrm{ml})$ for 18 h . The solvent was removed in vacuo, and the residue chromatographed on silica gel (chloroform). The first band was collected, solvent removed in vacuo, and the red, oily residue dissolved in anhydrous ether, from which orange needles of $5-p$ -chlorophenyl-7-oxo-2,3,6-triphenyl-6-aza-8-thiabicyclo[3.2.1]oct-2-ene-4-thione ($4, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{S}$) separated on standing overnight: $2.5 \mathrm{~g}(43 \%)$; $\mathrm{mp} 163-165{ }^{\circ} \mathrm{C}$ dec; ir $(\mathrm{KBr}) 1650 \mathrm{~cm}^{-1}$ (CO); $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 427 \mathrm{~nm}(\log \epsilon 4.05), 294(4.43), 237 \mathrm{sh}(4.41)$ NMR (CDCl_{3}) $\delta 6.83-7.66$ (m, 19, aromatic), 6.23 ($\mathrm{s}, 1, \mathrm{C}_{4} \mathrm{H}$).

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{ClNOS}_{2}: \mathrm{C}, 70.64 ; \mathrm{H}, 3.95 ; \mathrm{N}, 2.75$. Found: C, 70.79; H, 4.01; N, 2.75.
Similarly, $\quad 7$-oxo- $2,3,5,6$-tetraphenyl-6-aza-8-thiabicyclo[3.2.1]-oct-2-ene-4-thione ($4, \mathrm{R}=\mathrm{Ph} ; \mathrm{X}=\mathrm{S}$) crystallized from benzenepetroleum ether ($\mathrm{bp} 60-80^{\circ}$) as orange prisms: $30 \%, \mathrm{mp} 170-172$ ${ }^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) 1650 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 425 \mathrm{~nm}(\log \epsilon 4.01)$, 293 (4.38), 239 (4.32); NMR (CDCl_{3}) $\delta 7.8-6.7$ (m, 20, aromatic), $6.29\left(\mathrm{~s}, 1, \mathrm{C}_{4} \mathrm{H}\right.$); mass spectrum m / e M. $+^{+} 475.1063$, $[\mathrm{M}-\mathrm{PhNCO}]$ $+356.0643$.
Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NOS}_{2}$: $\mathrm{C}, 75.78 ; \mathrm{H}, 4.45 ; \mathrm{N}, 2.95$. Found: C, 75.69; H, 4.38; N, 2.88 .

Thermolysis of $4\left(\mathbf{R}=\boldsymbol{p}-\mathrm{ClC}_{6} \mathbf{H}_{\mathbf{4}} ; \mathbf{X}=\mathbf{S}\right)$. The $1: 1$ adduct $\mathbf{4}(\mathrm{R}$ $\left.=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{S}\right)(1.0 \mathrm{~g}, 0.002 \mathrm{~mol})$ was heated under vacuum (ca. 25 mm) to $170^{\circ} \mathrm{C}$ and left at that temperature for 10 min until the gas evolution subsided. The dark residue was chromato graphed on silica gel (benzene). The first dark band was collected, the solvent removed in vacuo, and the dark-red residue recrystallized from ethanol forming a three-component product. This product was chromatographed on preparative silica gel (chloroform), the first band isolated, and recrystallized from ethanol yielding deep-red, irregular prisms of 6 - p-chlorophenyl-3,4-diphenyl- 2 H -thiopyran-2-thione (13, $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$): $150 \mathrm{mg}(21 \%) ; \mathrm{mp} 148-155$ ${ }^{\circ} \mathrm{C}$ dec; ir $(\mathrm{KBr}) 3050 \mathrm{~cm}^{-1}(\mathrm{CH})$; $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 477 \mathrm{~nm}(\log \epsilon$ 3.90), 338 sh (4.07), 312 (4.23), 250 (4.45); NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 7.00-$ 7.66 (m, aromatic).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ClS}_{2}$: C, 70.66; H, 3.87. Found: C, 70.77; H, 3.87.
The second dark band was collected, solvent removed in vacuo, and the residue recrystallized from benzene yielding $2-p$-chloro-phenyl-4-oxo-3,6,7-triphenyl-3H-1,3-thiazocinium 8 -thiolate ($8, \mathrm{R}$ $=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) as dark brown needles: 300 mg (30\%); mp 249-251 ${ }^{\circ} \mathrm{C}$; ir (KBr) $3080(\mathrm{CH}), 1670(\mathrm{CO}), 1630 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; $\lambda_{\text {max }}$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right) 460 \mathrm{~nm}(\log \epsilon 3.68), 328$ (3.95), 244 (4.39); NMR (CDCl_{3}) $\delta 6.50-7.46$ (m , aromatic); mass spectrum m / e (rel intensity) M. ${ }^{+}$ 509 (25).

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{ClNOS}_{2}$: $\mathrm{C}, 70.64 ; \mathrm{H}, 3.95 ; \mathrm{N}, 2.75$. Found: C, 70.58; H, 3.87; N, 2.59 .
Similarly, thermolysis of $4(\mathrm{R}=\mathrm{Ph} ; \mathrm{X}=\mathrm{S})$ gave 3,4,6-triphenyl2 H -thiopyran-2-thione ($13, \mathrm{R}=\mathrm{Ph}$) as deep maroon needles from benzene-petroleum ether: 27%; mp $160-162{ }^{\circ} \mathrm{C}$; ir (KBr) 1560 , $1460,1205,752,695 \mathrm{~cm}^{-1} ; \lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 480 \mathrm{~nm}(\log \epsilon 4.14), 330$ sh (4.30), 308 (4.44), 245 (4.63); mass spectrum m / e (rel intensity) M $\cdot^{+} 356$ (70), $[\mathrm{M}-1]^{+} 355$ (100).
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~S}_{2}$: C, 77.49; H, 4.52. Found: C, 77.83; H, 4.53.

The second product from this thermolysis, 4 -oxo-2,3,6,7-tetra-phenyl-3H-1,3-thiazocinium 8 -thiolate ($8, \mathrm{R}=\mathrm{Ph}$), was likewise obtained as deep maroon prisms: 20%; mp $248-250{ }^{\circ} \mathrm{C}$; ir (KBr)
$1650,1600,1540,1440,1050,750,685 \mathrm{~cm}^{-1}$; $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 463 \mathrm{~nm}$ ($\log \in 3.88$), 328 (4.11), 240 (4.56); mass spectrum m / e (rel intensity) $\mathrm{M} \cdot+475(100),[\mathrm{M}-1\}^{+} 474(63),[\mathrm{M}-93]^{+} 382$ (89).

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NOS}_{2}$: C, 75.75; H, 4.45; N, 2.95. Found: C, 75.34; H, 4.31; N, 2.81.
Reaction of 6-p-Chlorophenyl-3,4-diphenyl-2H-thiopyran-2-thione (13, $\mathrm{R}=\boldsymbol{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}$) with Triethyloxonium Tetrafluoroborate. The above thione ($0.3 \mathrm{~g}, 0.0008 \mathrm{~mol}$) in dry methylene chloride (20 ml) was treated with an excess of triethyloxonium tetrafluoroborate added in small portions at room temperature. After 5 days anhydrous $\mathrm{Et}_{2} \mathrm{O}$ was added causing an orange solid to separate. Recrystallization from ethanol afforded 6-p-chlorophenyl-3,4-diphenyl-2-ethylthio- 2 H -thiopyrylium tetrafluoroborate (14) as rust-colored plates: $0.25 \mathrm{~g}(27 \%)$; mp 204-207 ${ }^{\circ} \mathrm{C}$ dec; ir (KBr) $1350,1050 \mathrm{~cm}^{-1}\left(\mathrm{BF}_{4}^{-}\right) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 436 \mathrm{~nm}(\log \in 4.04), 304$ (4.06), 253 (4.29); NMR (CDCl_{3}) $\delta 8.17$ (s, 1, $\mathrm{C}_{6} \mathrm{H}$), $7.73\left(\mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{qt}\right.$, $4, p-\mathrm{ClC}_{6} \mathrm{H}_{4}$), 7.30 (bs, 10, aromatic), 3.45 (qt, 2, $\mathrm{SCH}_{2} \mathrm{CH}_{3}$), 1.47 ($\mathrm{t}, 3, \mathrm{SCH}_{2} \mathrm{CH}_{3}$).
Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BClF}_{4} \mathrm{~S}_{2}$: $\mathrm{C}, 59.24 ; \mathrm{H}, 3.98$. Found: C , 59.07; H, 3.93.

Reaction of 2-p-Chlorophenyl-4-oxo-3,6,7-triphenyl-3H-1,3-thiazocinium 8-Thiolate (8, $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) with Triethyloxonium Tetrafluoroborate. The thiolate $(0.25 \mathrm{~g}, 0.005 \mathrm{~mol})$ in dry methylene chloride (40 ml) was treated with triethyloxonium tetrafluoroborate $(0.4 \mathrm{~g}, 0.002 \mathrm{~mol})$ added in small portions with an immediate lightening in color of the reaction mixture. Stirring was continued for 30 min , anhydrous ether (100 ml) added, and excess triethyloxonium tetrafluoroborate filtered off. Evaporation of the solvent left a yellow oil that was dissolved in $\mathrm{EtOH}(10 \mathrm{ml})$ and treated with perchloric acid ($20 \mathrm{ml}, 70 \%$). The resultant yellow solid crystallized from ethanol, giving 2-p-chlorophenyl-8-ethyl-thio-4-oxo-3,6,7-triphenyl-3H-1,3-thiazocinium perchlorate (15) as yellow-orange prisms: 0.7 g (74%); mp $160-165^{\circ} \mathrm{C}$ dec; ir (KBr) $1690 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{N}^{+}\right) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 428 \mathrm{~nm}(\log \epsilon 3.63), 305 \mathrm{sh}$ (3.64), 244 (4.14); NMR (CDCl_{3}) $\delta 9.05$ (з, 1, $\mathrm{C}_{5} \mathrm{H}$), 7.00-8.06 (m, 19, aromatic), 3.37 (qt, 2, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.55 ($\mathrm{t}, 3, \mathrm{OCH}_{2} \mathrm{CH}_{3}$).
Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}_{2}$: $\mathrm{C}, 60.18 ; \mathrm{H}, 3.95 ; \mathrm{N}, 2.19$. Found: C, 60.33; H, 3.95; N, 2.19.
Reaction of anhydro-5-Hydroxy-3-methyl-2-phenylthiazolium Hydroxide (18) with Diphenylcyclopropenethione. At room temperature, a mixture of the mesoionic compound $18(\mathrm{R}=$ $\mathrm{Ph})(1.2 \mathrm{~g}, 0.005 \mathrm{~mol})$, diphenylcyclopropenethione $(1.4 \mathrm{~g}, 0.005$ mol), and dry benzene (25 ml) was stirred for 12 h . Filtration of the precipitated solid, chromatography on preparative silica gel (ethyl acetate), and crystallization from chloroform-petroleum ether (bp $60-90{ }^{\circ} \mathrm{C}$) gave 1 -methyl-2,3,5-triphenyl-4(1 H)-pyridinethione (20, $\mathrm{R}=\mathrm{Ph}$) as yellow needles: 450 mg (20%); $\mathrm{mp} \mathrm{240-245}{ }^{\circ} \mathrm{C} \mathrm{dec;}$ ir (KBr) $3030(\mathrm{CH}), 1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 360 \mathrm{~nm}$ (log $\epsilon 3.96$), 267 (3.71), 226 (4.13); NMR (CDCl_{3}) $\delta 7.00-8.00$ (m, 16, aromatic and $\mathrm{C}_{6} \mathrm{H}$), $3.40\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right.$); mass spectrum m / e (rel intensity) M. ${ }^{+} 353$ (58), 352 (100), $\mathrm{M}^{2+} 176.5$ (5).

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NS}: \mathrm{N}, 3.96$. Found: N, 4.01.
It was characterized further by reaction with methyl iodide in methanol at room temperature for 6 h . Concentration of solvent under reduced pressure and addition of anhydrous ether precipitated a yellow solid which was filtered, washed with several portions of anhydrous ether, and recrystallized from ethanol-anhydrous ether affording yellow needles of 4-methylthio-1-methyl-2,3,5-triphenylpyridinium iodide ($21, \mathrm{R}=\mathrm{Ph}$): 72\%; mp 207-210 ${ }^{\circ} \mathrm{C} \mathrm{dec}$; ir (KBr) $3060(\mathrm{CH}), 1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 325$ nm ($\log \epsilon 3.56$), 271 (3.77), 219 sh (4.05); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.74$ (s, 1, $\mathrm{C}_{6} \mathrm{H}$), 7.10-7.92 (m, 15, aromatic), 4.04 (s, 3, NCH_{3}), 1.72 ($\mathrm{s}, 3$, SCH_{3}).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22}$ INS: C, 60.61 ; H, 4.48; N, 2.83. Found: C, 60.87; H, 4.45; N, 2.92 .

Similarly, reaction of anhydro-2-p-chlorophenyl-5-hydroxy-3methylthiazolium hydroxide ($18, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) and diphenylcyclopropenethione afforded 2-p-chlorophenyl-3,5-diphenyl-1-methyl-4($1 H$)-pyridinethione ($20, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) as yellow needles: 34%; mp $265-268{ }^{\circ} \mathrm{C}$ dec; ir (KBr) $3050(\mathrm{CH}), 1630 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N}) ; \lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 359 \mathrm{~nm}(\log \epsilon 4.01), 287$ (3.95), 247 (4.27); NMR (CDCl_{3}) $\delta 7.00-7.71$ (m, 15, aromatic and $\mathrm{C}_{6} \mathrm{H}$), 3.38 (s, 3, NCH_{3}); mass spectrum m / e (rel intensity) M. ${ }^{+} 387$ (74), 386 (100), $\mathrm{M}^{2+} 193.5$ (2).

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{CINS}: \mathrm{N}, 3.61$. Found: $\mathrm{N}, 3.32$.
It was characterized as above by conversion into $2-p$-chlorophe-nyl-3,5-diphenyl-4-methylthio-1-methylpyridinium iodide (21, R $=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) obtained as yellow, irregular prisms from ethanolanhydrous ether: 65%; mp $204-207{ }^{\circ} \mathrm{C}$ dec; ir (KBr) $1610 \mathrm{~cm}^{-1}$
$(\mathrm{C}=\mathrm{N}) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 325 \mathrm{~nm}(\log \in 4.09), 272$ (4.16), 218 sh (4.57); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.73$ (s, 1, $\mathrm{C}_{6} \mathrm{H}$), 7.17-8.00 (m, 14, aromatic), 4.03 ($\mathrm{s}, 3, \mathrm{NCH}_{3}$), $1.75\left(\mathrm{~s}, 3, \mathrm{SCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21}$ CIINS: C, 56.66 ; $\mathrm{H}, 4.00$; N, 2.64. Found: C, 56.52; H, 3.87; N, 2.61 .
Alkylation of 2-p-Chlorophenyl-3,5-diphenyl-1-methyl-4pyridinethione ($20, \mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) with Triethyloxonium Tetrafluoroborate. The title compound ($0.6 \mathrm{~g}, 0.0016 \mathrm{~mol}$) in methylene chloride (25 ml) was treated with an excess of triethyloxonium tetrafluoroborate, and the reaction mixture stirred at room temperature for 24 h . Addition of excess anhydrous ether, filtration, and recrystallization from ethanol gave $2-p$-chlorophenyl-3,5-diphenyl-4-ethylthio-1-methylpyridinium tetrafluoroborate as yellow needles: 0.8 g (100%); $\mathrm{mp} 198-200^{\circ} \mathrm{C} \mathrm{dec}$; ir (KBr) 3050, 2975, $2940(\mathrm{CH}), 1620 \mathrm{~cm}^{-1}(\mathrm{CN})$; $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 326 \mathrm{~nm}(\mathrm{log} \epsilon$ 3.96), 276 (4.08), $237 \mathrm{sh}(4.25)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.23$ (s, 1, $\mathrm{C}_{6} \mathrm{H}$), 6.97-7.90 (m, 14, aromatic), 3.90 (s, 3, NCH_{3}), 2.07 (qt, 2, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.85\left(\mathrm{t}, 3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{BClF}_{4} \mathrm{NS}: \mathrm{C}, 61.98 ; \mathrm{H}, 4.60 ; \mathrm{N}, 2.78$. Found: C, 62.10; H, 4.62; N, 2.81.

Reaction of anhydro-2,4-Diphenyl-5-hydroxy-3-methyloxazolium Hydroxide (22) with Diphenylcyclopropenone. N -Benzoyl- N-methyl- C-phenylglycine ($3.6 \mathrm{~g}, 0.013 \mathrm{~mol}$), diphenylcyclopropenone ($2.4 \mathrm{~g}, 0.012 \mathrm{~mol}$), and acetic anhydride (50 ml) were stirred and heated to $85^{\circ} \mathrm{C}$. After 10 min a colorless solid separated and heating was discontinued. Recrystallization from chloro-form-anhydrous ether gave 1-methyl-2,3,5,6-tetraphenyl-4(1 H$)$ pyridone (24, $\mathrm{X}=\mathrm{O}$) as colorless needles: 1.4 g (29%); mp 309-310 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{25 a} \mathrm{mp} 309-310^{\circ} \mathrm{C}$, sealed tube $317-318^{\circ} \mathrm{C}$); ir (KBr) 3050 (CH), $1620 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 276 \mathrm{~nm}(\log \epsilon 4.12), 236 \mathrm{sh}$ (4.36); NMR (CDCl_{3}) $\delta 7.23$ (s, 10, aromatic), 7.07 (s, 10, aromatic), 3.03 (s, 3, NCH_{3}); mass spectrum m/e (rel intensity) M.+ 413 (58), $[\mathrm{M}-1]^{+} 412$ (100), $\mathrm{M}^{2+} 206.5$ (5).
Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 87.14 ; \mathrm{H}, 5.60 ; \mathrm{N}, 3.39$. Found: C, 87.07; H, 5.56; N, 3.26.

Alkylation of $24(X=O)$ with Triethyloxonium Tetrafluoroborate. The pyridone ($0.5 \mathrm{~g}, 0.0012 \mathrm{~mol}$) in methylene chloride (25 ml) was treated with an excess of triethyloxonium tetrafluoroborate and stirred at room temperature for 48 h . Anhydrous ether was added and the resultant precipitate recrystallized from ethanol, forming colorless needles of 4 -ethoxy-1-methyl-2,3,5,6-tetraphenylpyridinium tetrafluoroborate (26, $\mathrm{X}=\mathrm{OEt} ; \mathrm{Y}=\mathrm{BF}_{4}$): 0.65 $\mathrm{g}(100 \%)$; mp 275-278 ${ }^{\circ} \mathrm{C} \mathrm{dec}$; ir (KBr) 3050, $2980(\mathrm{CH}), 1610 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N})$; $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 290 \mathrm{sh} \mathrm{nm}(\log \epsilon 3.94)$, 243 (4.41); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.00-7.73\left(\mathrm{~m}, 20\right.$, aromatic), $3.63\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 3.55$ (qt, 2, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.67\left(\mathrm{t}, 3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 412 (100).
Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{2 \mathrm{~S}} \mathrm{BF}_{4} \mathrm{NO}: \mathrm{C}, 72.60 ; \mathrm{H}, 5.33 ; \mathrm{N}, 2.65$. Found: C, 72.51 ; H, 5.35 ; N, 2.53 .
Formation of 1-Methyl-2,3,5,6-tetraphenyl-4(1 H)-pyridinethione (24, $\mathbf{X}=\mathbf{S}$). N-Benzoyl- N-methyl- C-phenylglycine $(1.5 \mathrm{~g}, 0.0056 \mathrm{~mol})$ was dissolved in acetic anhydride (20 ml) and to this solution at $40^{\circ} \mathrm{C}$ was added diphenylcyclopropenethione (1.24 $\mathrm{g}, 0.0056 \mathrm{~mol}$). Within 5 min an orange solid had precipitated and was filtered after stirring for 2 h . Recrystallization from chloro-form-anhydrous ether afforded $24(\mathrm{X}=\mathrm{S})$ as yellow-orange, irregular prisms: $2.9 \mathrm{~g}(68 \%)$; mp 320-322 ${ }^{\circ} \mathrm{dec}$; ir (KBr) $3040(\mathrm{CH})$, $1605 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 360 \mathrm{~nm}(\log \epsilon 4.18), 272 \mathrm{sh}$ (3.80), 238 (4.18); NMR (CDCl_{3}) $\delta 7.10,7.23,7.27$ (3, s, 20, aromatic), $3.05\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right)$; mass spectrum m / e (rel intensity) $\mathrm{M} \cdot{ }^{+} 429$ (60) $[\mathrm{M}-1]^{+} 428(100), \mathrm{M}^{2+} 214.5$ (5).

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{23}$ NS: C, 83.88; H, 5.40; N, 3.26. Found: C, 83.89; H, 5.29; N, 3.07. ।

Treatment of 1 -methyl-2,3,5,6-tetraphenyl-4(1H)-pyridone (24, $\mathrm{X}=\mathrm{O}$) with a 1.5 -fold excess of $\mathrm{P}_{4} \mathrm{~S}_{10}$ in refluxing pyridine afforded, after preparative thin layer chromatography, a product identical 29 with 1 -methyl-2,3,4,5-tetraphenyl-4(1H)-pyridinethione (24, $\mathrm{X}=\mathrm{S}$) obtained above.
Alkylation of $24(X=S)$ with Methyl Iodide. The thione (1.0 $\mathrm{g}, 0.0023 \mathrm{~mol}$) was stirred with an excess of methyl iodide in dry methanol (25 ml) overnight at room temperature. Filtration and recrystallization from ethanol gave 4-methylthio-1-methyl-2,3,5,6-tetraphenylpyridinium iodide ($26, \mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{Y}=\mathrm{I}$) as yellow needles: $1.1 \mathrm{~g}(83 \%)$; mp $240-242^{\circ} \mathrm{C}$ dec; ir (KBr) $3050(\mathrm{CH})$, $1600 \mathrm{~cm}^{-1}(\mathrm{CN}) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 323 \mathrm{~nm}(\log \epsilon 3.93)$, 248 (4.02); NMR (CDCl_{3}) $\delta 7.00-7.84\left(\mathrm{~m}, 20\right.$, aromatic), $3.60\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 1.63$ (s, $3, \mathrm{SCH}_{3}$).
Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{26}$ NIS: $\mathrm{C}, 65.14 ; \mathrm{H}, 4.59 ; \mathrm{N}, 2.45$. Found: C, 64.97; H, 4.38; N, 2.70.

Alkylation of $24(\mathrm{X}=\mathrm{S})$ with Triethyloxonium Tetrafluoroborate. The thione ($0.65 \mathrm{~g}, 0.0015 \mathrm{~mol}$) in methylene chloride (25 ml) was treated with an excess of triethyloxonium tetrafluoroborate with stirring at room temperature. After 42 h excess anhydrous ether was added. The product was filtered, washed with several portions of anhydrous ether, and recrystallized from ethanol, giving light-yellow needles of 4 -ethylthio-1-methyl-2,3,5,6-tetraphenylpyridinium tetrafluoroborate ($26, \mathrm{X}=\mathrm{SEt} ; \mathrm{Y}=\mathrm{BF}_{4}$): 0.8 g (100%); mp 293- $295^{\circ} \mathrm{C}$; ir (KBr) $3080,2990,2950$ (CH), $1610 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N}) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 322 \mathrm{~nm}(\log \epsilon 4.06), 248(4.18) ; \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 7.00-7.83$ ($\mathrm{m}, 20$, aromatic), $3.60\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right.$), 1.97 ($\mathrm{qt}, 2$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.80\left(\mathrm{t}, 3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$); mass spectrum m / e (rel intensity) 428 (100).

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NBF}_{4} \mathrm{~S}: \mathrm{C}, 70.46 ; \mathrm{H}, 5.17 ; \mathrm{N}, 2.57$. Found: C, 70.62; H, 5.18; N, 2.55.

Reaction of \boldsymbol{N}-Benzoyl- \boldsymbol{N}-methyl- \boldsymbol{C}-phenylglycine with Triphenylcyclopropene. To N-benzoyl- N-methyl- C-phenylgly cine ($1.0 \mathrm{~g}, 0.005 \mathrm{~mol}$) dissolved in acetic anhydride (15 ml) at 40 ${ }^{\circ} \mathrm{C}$ was added triphenylcyclopropene ($1.0 \mathrm{~g}, 0.004 \mathrm{~mol}$) and the reaction mixture heated to $132^{\circ} \mathrm{C}$ for 5.5 h . The reaction mixture was cooled, poured into water, and extracted with chloroform. The chloroform layer was extracted in turn with 10% sodium bicarbonate and water, dried over sodium sulfate, and evaporated in vacuo. The residue was either recrystallized from chloroform-ethanol or sublimed ($203{ }^{\circ} \mathrm{C} 1 \mathrm{~mm}$) to yield yellow prisms of 1 -methyl-2,3,4,5,6-pentaphenyl-1,4-dihydropyridine (27): 0.25 g (14%); mp $206-207^{\circ} \mathrm{C}$ (lit. ${ }^{27} \mathrm{mp} 20{ }^{\circ} \mathrm{C}$); ir (KBr) $3050,2930 \mathrm{~cm}^{-1}(\mathrm{CH})$; $\lambda_{\text {max }}$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right) 343 \mathrm{sh} \mathrm{nm}(\log \in 3.81), 275(4.13)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.93-$ $7.75\left(\mathrm{~m}, 25\right.$, aromatic), $4.40\left(\mathrm{~s}, 1, \mathrm{C}_{4} \mathrm{H}\right), 2.53\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right)$; mass spectrum m / e (rel intensity) M. ${ }^{+} 475$ (8).

Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~N}$: C, $90.91 ; \mathrm{H}, 6.15 ; \mathrm{N}, 2.94$. Found: C, 90.83; H, 6.19; N, 2.80.

Registry No.-1 ($\mathrm{R}=\mathrm{Ph}$), 13288-67-0; $1\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$, 52730-97-9; $4(\mathrm{R}=\mathrm{Ph} ; \mathrm{X}=0), 57550-38-6 ; 4\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\right.$ O), 57550-39-7; $4(\mathrm{R}=\mathrm{Ph} ; \mathrm{X}=\mathrm{S}), 57550-40-0 ; 4\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right.$; $\mathrm{X}=\mathrm{S}), 57550-41-1 ; 8(\mathrm{R}=\mathrm{Ph}), 57587-13-0 ; 8\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$, 57550-42-2; $9(\mathrm{R}=\mathrm{Ph}), 57550-43-3$; 12, $57550-44-4 ; 13(\mathrm{R}=\mathrm{Ph})$, $57550-45-5 ; 13\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right), 57550-46-6 ; 14,57550-48-8 ; 15$, 57550-50-2; $18(\mathrm{R}=\mathrm{Ph}), 1280-28-0 ; 18\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right), 51787-62-$ 3; $20(\mathrm{R}=\mathrm{Ph}), 51787-66-7 ; 20\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right), 51787-68-9 ; 21(\mathrm{R}$ $=\mathrm{Ph}), 51787-67-8 ; 21\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right), 51808-61-8 ; 22,13712-75-9$; $24(\mathrm{X}=\mathrm{O})$, 51787-63-4; $24(\mathrm{X}=\mathrm{S}), 51787-64-5 ; 26(\mathrm{X}=0 \mathrm{Et} ; \mathrm{Y}=$ BF_{4}), 51808-60-7; 26 ($\mathrm{X}=\mathrm{SMe}$; Y = I), 51787-65-6; 26 ($\mathrm{X}=\mathrm{SEt}$; Y $=\mathrm{BF}_{4}$), 57550-52-4; 27, 39235-55-7; diphenylcyclopropenone, 886-$38-4 ; \mathrm{NaBH}_{4}, 16940-66-2$; diphenylcylopropenethione, 2570-01-6; 2 -p-chlorophenyl-3,5-diphenyl-4-ethylthio-1-methylpyridinium tetrafluoroborate, 57550-54-6; N-benzoyl- N-methyl- C-phenylglycine, 28544-45-8; methyl iodide, 74-88-4; triphenylcyclopropene, 16510-49-9.

References and Notes

(1) (a) Partial support of this work by U.S. Public Health Service Research Grant CA 08495, National Cancer Institute, is gratefully acknowledged. (b) Abstracted in part from the Ph.D. Thesis of J.B., Rensselaer Polytechnic Institute, June 1973. (c) First presented at the Vth International Symposium on Sulfur Chemistry, Lund, Sweden, June 5-9. 1972. (d) Presented in part in a preliminary communication: K. T. Potts and J. Baum, J. Chem. Soc., Chem. Commun., 833 (1973).
(2) (a) R. Breslow, R. Haynie, and J. Mirra, J. Am. Chem. Soc., 81, 249 (1959); (b) M. E. Vol'pin, Y. D. Koreshkov, and D. N. Kursanov, Dokl.

Akad. Nauk SSSR, 506 (1959); (c) R. Breslow, T. Eicher, A. Krebs, R Peterson, and J. Posner, J. Am. Chem. Soc., 87, 1320 (1965).
(3) For a recent review see K. T. Potts and J. Baum, Chem. Rev., 74, 189 (1974); see also A. W. Krebs, Angew. Chem., Int. Ed. Engl., 4, 19 (1965); G. Closs, Adv. Alicyclic Chem., 53 (1966).
(4) J. W. Lown and K. Matsumoto, Can. J. Chem., 49, 3444 (1971).
(5) J. W. Lown and K. Matsumoto, Can. J. Chem., 49, 1165, 3119 (1971)
(6) J. W. Lown. T. W. Maloney, and G. Dallas, Can. J. Chem., 38, 584 (1970); J. W. Lown, R. K. Smalley, G. Dallas, and T. W. Maloney, ibid., 48, 89 (1970); J. W. Lown and K. Matsumoto, ibid., 50, 534, 584 (1972).
(7) M. A. Steinfels and A. S. Dreiding, Helv. Chim. Acta, 55, 702 (1972); V. Bilinski, M. A. Steinfels, and A. S. Dreiding, ibid., 55, 1075 (1972); V. Bilinski and A. S. Dreiding, ibid., 55, 1271 (1972); M. A. Steinfels, H. W. Krapf, P. Riedl, J. Sauer, and A. S. Dreiding, ibid., 55, 1759 (1972); M. H. Rosen, I. Fengler, and G. Bonet, Tetrahedron Lett., 949 (1973); T. Eicher and S. Bohm, ibid., 2603 (1972).
(8) A. Hassner and A. Kascheres, J. Org. Chem., 37, 2328 (1972)
(9) K. T. Potts, E. Houghton, and U. P. Singh, J. Org. Chem., 39, 3627 (1974).
(10) K. T. Potts, J. Baum, and E. Houghton, J. Org. Chem., 39, 3631 (1974).
(11) For a recent review see M. Ohta and H. Kato in ' Nonbenzenoid Aromatics' ', J. P. Snyder, Ed., Academic Press, New York, N.Y., 1969, Chapter 4: W. Baker and W. D. Ollis, Q. Rev., Chem. Soc., 11, 15 (1957)
(12) T. Eicher and A. Hansen, Tetrahedron Lett., 1169 (1967)
(13) P. T. Izzo and A. S. Kende, Chem. Ind. (London), 839 (1964)
(14) R. Breslow and M. Oda, J. Am. Chem. Soc., 94, 4788 (1972)
(15) J. M. Dunstan and P. Yates, Tetrahedron Lett., 505 (1964)
(16) K. T. Potts, J. Baum, S. K. Datta, and E. Houghton, J. Org. Chem., preceding paper in this issue.
(17) The mass spectral data were obtained in an AEI MS-9 instrument at Battelle's Columbus Laboratories' High Resolution Mass Spectrometry Center supported by the National Institutes of Health, Contract NIH-712483.
(18) W. Brugel, Ber. Bunsenges. Phys. Chem., 66, 159 (1962); J. A. Elvidge and L. M. Jackman, J. Chem. Soc., 859 (1961).
(19) T. Eicher, E. vonAngerer, and A. M. Hanson, Justus Liebigs Ann. Chem., 746, 102 (1971).
(20) E. E. El-Kholy, F. K. Refla, and M. M. Mushrikey, J. Chem. Soc. C, 1950 (1969).
(21) D. H. Williams and I. Fleming, "Spectroscopic Methods in Organic Chemistry' ", McGraw-Hill, New York, N.Y., 1965, p 126, and similar products reported in this paper
(22) B. P. Stark and A. J. Duke, "Extrusion Reactions'", Pergamon Press, Oxford, 1967.
(23) H. Matsukubo and H. Kato, J. Chem. Soc., Chem. Commun., 412 (1974).
(24) K. T. Potts, J. Baum, E. Houghton, D. N. Roy, and U. P. Singh, J. Org. Chem., 39, 3619 (1974); H. O. Bayer, R. Huisgen, R. Knorr, and F. C. Schaefer, Chem. Ber., 103, 2581 (1970).
(25) (a) N. Ishibe and J. Masui, J. Am. Chem. Soc., 95, 3396 (1973). We are indebted to Professor Ishibe for a sample of his product. (b) Obtained using a Varian XL-100-15 spectrometer operating in the Fourier transform (FT) mode at 25.16 MHz for ${ }^{13} \mathrm{C}$. We thank Dr. E. Williams, G. E. Corporate R \& D Center, Schenectady, N.Y., for this spectrum.
(26) Since our preliminary communication two other reports on the condensation of "munchnone" derivatives with cyclopropenones have appeared: T. Eicher and B. Schafer, Tetrahedron, 30, 4025 (1974); ref 23.
(27) H. D. Martin and M. Hekman. Angew. Chem., Int. Ed. Engl., 11, 932 (1972).
(28) Spectral characterizations were carried out with the following instrumentation: ir, Perkin-Elmer Model 421 and 337 infrared spectrophotometers; uv, Cary Model 14 spectrophotometer; NMR, Varian A-60 and HA-100 NMR spectrometers using $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard; mass spectra, Hitachi Perkin-Elmer RMU-6E mass spectrometer at 70 eV using the direct insertion probe at a temperature of ca. 150°. Evaporations were done under reduced pressure using a rotatory evaporatory, and melting points were determined in capillaries. Analyses are by Galbraith Laboratories, Knoxville, Tenn., and Instranal Laboratories, Inc., Rensselaer, N.Y
(29) Criteria for establishing product identity were superimposable infrared spectra, no depression in mixture melting point, and identical R_{f} values in two different solvent systems.

Chemistry of $\mathbf{2 H}$-3,1-Benzoxazine-2,4(1 H)-dione (Isatoic Anhydride).
 2. Reactions with Thiopseudoureas and Carbanions

Gary M. Coppola, Goetz E. Hardtmann,* and Oskar R. Pfister
Department of Medicinal Chemistry, Pharmaceutical Division, Sandoz, Inc., East Hanover, New Jersey 07936

Received August 14, 1975

Abstract

The reaction of $2 H-3,1$-benzoaxazine- $2,4(1 H)$-diones with substituted thioureas leads to the formation of 2-aminoquinazolin-1 H-4-ones. In the case of N -functionalized benzoxazines tricyclic systems are obtained. Carbanions derived from diethyl malonate and activated ethyl acetate derivatives produce substituted quinoline-2,4diones on reaction with 2 H -3,1-benzoxazine-2,4(1H)-diones.

During the past 30 years several groups have described the use of $2 H$-3,1-benzoxazine- $2,4(1 \mathrm{H})$-dione (isatoic anhydride $)^{1}$ for the synthesis of quinazolinediones, ${ }^{2} 4$-quinazolinones, ${ }^{3}$ pyrroloquinazolinones, ${ }^{4}$ and 1,4 -benzodiazepine2,5 -diones. ${ }^{5}$ Most recently Ziegler ${ }^{6}$ and our group ${ }^{7,8}$ reported the utilization of isatoic anhydrides in the synthesis of fused quinazolinones, e.g., 3. ${ }^{8}$

In this publication we wish to report our investigations into the reactions of isatoic anhydrides with thiourea derivatives (Scheme I) and carbanions (Scheme III).

Discussion

Reactions with Thiopseudoureas. During our earlier work we had been concerned with the reaction of isatoic anhydrides with mono- and bicyclic thioureas. In this publication we wish to report some reactions of various isatoic anhydrides we have observed, including those bearing functional groups on the nitrogen atom, with thiopseudoureas (Scheme I). When symmetrically substituted thiopseudoureas are allowed to react with isatoic anhydrides (e.g., 4) in refluxing dioxane the expected products (5 or 6) are isolated in satisfactory yields.

The question arises as to the course of the reaction when unsymmetrically substituted thiopseudoureas are employed (Scheme II). We assume that the initial step of the reaction involves a nucleophilic attack of one of the N atoms of the thiopseudourea onto the isatoic anhydride

and that the first intermediate collapses, with concomitant loss of carbon dioxide, to yield 13 or 16 . Whether 13 or 16 is the product will depend on which of the N atoms (of the thiopseudourea) reacts with the anhydride. In the case of 2,3-dimethyl-2-thiopseudourea, $\mathrm{N}-3$ might be the more basic nitrogen atom but would, on the other hand, be more sterically hindered during the inital step of the reaction. When 2,3-dialkyl-2-thiopseudoureas were allowed to react with isatoic anhydrides one final product 14 or 17 Scheme II) was isolated. Considering the tautomeric forms in which compounds 14 may exist, interpretation of the NMR spectra did not permit a firm structure assignment. Cur hope was therefore to be able to isolate the reaction intermediate 13 or 16 whose spectra might aid us in making an assignment as to the structure of the final product.

By the use of somewhat milder reaction conditions we were able to isolate the otherwise elusive intermedates (13 or 16) and fully characterize them in the cases where $\mathrm{R}_{1}=$ $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$ (13b) and $\mathrm{CH}_{2} \mathrm{COOEt}$ (13c), and $\mathrm{R}=\mathrm{CH}_{3}$. In the NMR spectra of both compounds the N-methyl group appeared as a doublet which collapsed to a singlet upon $\mathrm{D}_{2} \mathrm{O}$ exchange. This finding strongly suggests that the isatoic anhydride is attacked by the less substituted nitrogen atom of the thiopseudourea and that 13 rather than 16 is the intermediate. It is interesting to note that the appearance of the N-methyl peak is also solvent dependent. The doublet is observed when CDCl_{3} is used, but when the more polar solvent $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ is employed, only a singlet is seen. Subsequent cyclization of 13 yields compounds of the general structure 14 or 15 .

The question now arises as to the actual tautomeric form of these products. Upon comparison of the observed in-
frared carbonyl absorption frequencies with models where the $\mathrm{C}=\mathrm{N}$ bond is unequivocally exocyclic to the quinazoline ring (namely 6), it is found that the $\mathrm{C}=0$ absorption occurs at $1640 \mathrm{~cm}^{-1}$ accompanied by an additional band at $1680 \mathrm{~cm}^{-1}$ of almost equal intensity. This second band is assigned to stretching vibrations of the nonconjugated $\mathrm{C}=\mathrm{N}$ group. ${ }^{9}$
Compounds which do not have an exocyclic $\mathrm{C}=\mathrm{N}$ bond (e.g., 18) do not show this second band at $1680 \mathrm{~cm}^{-1}$. We therefore conclude that the reaction products of 2,3 -dial-kyl-2-thiopseudoureas with isatoic anhydrides exist in the tautomeric structure 14.

Compound 14a can be alkylated with methyl iodide in the presence of sodium hydride to produce the N, N-dimethyl compound 18.

18
Alkylation occurs predominantly on the exocyclic nitrogen, but traces of 6 , formed by alkylation of the ring nitrogen, can be detected in the reaction mixture. As expected, in the NMR spectrum the methyl groups of 18 appear as a singlet whereas those of 6 appear as two distinct singlets. The infrared spectrum of 18 does not show the $\mathrm{C}=\mathrm{N}$ band at $1680 \mathrm{~cm}^{-1}$, which is in agreement with the conclusions drawn previously concerning product 14 .

In cases where the isatoic anhydride contains a highly reactive functional group on the nitrogen (e.g., 2-chloroethyl) no products of type 14 were isolated. Instead, concomitant reaction of the 2 -amino function with the reactive group of the side chain leads to the formation of an additional ring (e.g., 7). When N-(2-propynyl)isatoic anhydride (27) was allowed to react with 2,3 -dimethyl-2-thiopseudourea in diglyme at reflux temperature, the product which was isolated lacked N-H absorption in its infrared spectrum and the characteristic features of the propynyl group. The appearance in the NMR spectrum of a C-methyl group at $\delta 2.3$ and an olefinic proton at $\hat{o} 7.5$ strongly suggested structure 8. Similar cyclizations of propynyl groups have been described and an allenic intermediate has been proposed. ${ }^{10}$ Interestingly, the homologous isatoic anhydride 19 does not yield the corresponding ethyl analogue of 8 , but rather the six-membered derivative 9 . If indeed this cyclization proceeds through an allenic intermediate, the "terminal" allene 20 should be the precursor.

19

Not unexpectedly, the primary product of the reaction between a 3 -allyl-2-methyl-2-thiopseudourea and N -phenacylisatoic anhydride was 21. Treatment with trifluo-

21
roacetic acid transformed 21 into 10 (Scheme I). Having observed the ease of formation of the third ring in compounds such as 7, we expected that a haloalkyl substituent in the side chain of the isatoic anhydride (e.g., 22) could quaternize $\mathrm{N}-1$ in the tricyclic intermediate 23 yielding the tetracyclic ammonium salt 24 . The isolation of 23 was not

possible, 24 being formed directly. The crude 24 was reduced to 12 in moderate yield with sodium borohydride.

Reactions with Carbanions. To our knowledge the only reported reaction of 2 H -3,1-benzoxazine-2,4(1H)dione with a β-dicarbonyl compound is that with the anion of ethyl acetoacetate which leads to the formation of 3 -carbethoxy-4-hydroxyquinaldine. ${ }^{11}$ It was of interest to us to investigate the reactions of other carbanions with this substrate, particularly those of malonates, which should lead to the formation of quinoline-2,4-diones. These are otherwise only accessible through the acid-catalyzed reaction of malonic acid dianilids. ${ }^{12}$ This standard method fails, however, in cases where the dianilids are substituted with strongly deactivating groups (e.g., NO_{2}). Also the N alkylmalonic acid anilids are sometimes difficult to prepare, and reactive or acid-sensitive N substituents will not withstand the vigorous cyclization conditions. Furthermore, N-alkylquinoline-2,4-diones cannot be prepared by standard synthetic methods from quinoline-2,4-diones because alkylation occurs preferentially on oxygen, producing 4-alkoxyquinolin-2-ones (41, see Experimental Section).

In general we obtained the N-alkylquinolinediones (26) by allowing the sodium salt of diethyl malonate to react with the corresponding isatoic anhydrides at $120^{\circ} \mathrm{C}$ in dimethylacetamide followed by alkaline hydrolysis and decarboxylation of the ester group of 25.

Since various N-alkylisatoic anhydrides are readily available ${ }^{13}$ and the mildly basic reaction conditions do not interact with potentially reactive groups on the nitrogen, our synthesis avoids most of the difficulties inherent in the standard procedures.

In the case of the N-propynyl derivative 28a, concomi-

e.g. $\mathrm{R}=\mathrm{CH}_{3}$
tant hydration of the acetylenic bond occurred on hydrolysis, yielding 30 probably via the intermediate 29 . This reaction could be circumvented by use of di-tert-butyl malonate in the reaction with isatoic anhydride followed by the thermal decarboxylation of ester 28b, thus giving the desired product 31.

The malonic esters can be replaced by various other compounds possessing an active methylene group and an electrophilic group capable of reacting with the liberated anilino nitrogen. The introduction of nitrogen, sulfur, and phosphorus substituents into the 3 position of the quinoline system can be accomplished by the reaction of isatoic anhydrides with the carbanion of the appropriate nitroacetate, phosphonoacetate, phosphonoacetonitrile, or β-ketosulfones (Scheme III).

When 32 was treated with ethyl isocyanoacetate, the intermediate 37 spontaneously cyclized to yield 36 whose NMR spectrum ($\mathrm{CDCl}_{3}-\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) showed an olefinic proton at $\delta 8.4$ besides the expected aromatic and methyl protons.

When the sodium salt of malononitrile was allowed to react with N-(3-chloropropyl)isatoic anhydride, the pyri-mido[1,2-a]quinoline (39) was isolated (Scheme IV). Similarly, N-(2-propynyl)isatoic anhydride yielded the tricyclic
Scheme III

product 40. Contrary to our earlier observation (namely, the formation of 8), the carbon-carbon double bond in the imidazole portion of this cyclization product was found to be exocyclic to the ring, as evident from the presence of a methylene group at $\delta 3.5$ and two vinylic protons at $\delta 5.2$ in the NMR spectrum.

Further investigations are presently being conducted into the formation of new heterocyclic ring systems using functionalized isatoic anhydrides.

Experimental Section ${ }^{14}$

Melting points were determined on a Thomas-Hoover Unimelt apparatus and are uncorrected. The infrared spectra were recorded on Perkin-Elmer Model 257 and 457 spectrophotometers. Absorption frequencies are quoted in reciprocal centimeters. NMR spectra were determined on Varian A-60 and T-60 spectrophotometers using $\mathrm{Me}_{4} \mathrm{Si}$ as an internal reference. Chemical shifts are quoted in parts per million ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $\mathrm{m}=$ multiplet).

Unless otherwise stated, all solutions of organic compounds were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. No attempt has been made to optimize the yields of the described reactions.

Procedure A (Preparation of Intermediates of Type 13). A suspension of 0.1 mol of the appropriate N -substituted isatoic anhydride, 0.1 mol of a 2,3-disubstituted 2 -thiopseudourea hydriodide, and $11.7 \mathrm{~g}(0.11 \mathrm{~mol})$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 300 ml of $\mathrm{CH}_{3} \mathrm{CN}$ was refluxed for 30 min . The solvent was removed under reduced pressure, and the residue suspended in 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The insoluble material was filtered off and washed twice with 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was exchanged for $\mathrm{CH}_{3} \mathrm{OH}$; and, upon cooling, crystallization occurred. The product was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried.
Procedure B (Cyclization of Intermediates of Type 13). A solution of 0.05 mol of intermediate 13 in 100 ml of diglyme was refluxed for 2 h (catalyzed by one pellet of NaOH). Upon cooling to room temperature, precipitation occurs. The resulting solid was filtered, washed with a small amount of EtOAc, and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{3} \mathrm{OH}$.

Procedure \mathbf{C} (Preparation of Quinazolin-4-ones from Substituted Isatoic Anhydrides). A suspension of 0.1 mol of the appropriate N -substituted isatoic anhydride, 0.1 mol of a 2,3 -disubstituted 2-thiopseudourea hydriodide, and $11.7 \mathrm{~g}(0.11 \mathrm{~mol})$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 300 ml of $\mathrm{CH}_{3} \mathrm{CN}$ was refluxed for 30 min . The solvent was removed under pressure, and the residue suspended in 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The insoluble salts were filtered off and washed twice with 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then replaced by 150 ml of diglyme and the reaction mixture (catalyzed by one pellet of NaOH) was heated under reflux for 2 h . Upon cooling to room temperature, precipitation occurs. The resulting solid was filtered, washed with a small amount of EtOAc, and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{3} \mathrm{OH}$.
1-(p-Fluorobenzyl)-2-aminoquinazolin-1 \boldsymbol{H}-4-one (5). Using procedure C, $27.1 \mathrm{~g}(0.1 \mathrm{~mol})$ of N-(p-fluorobenzyl)isatoic anhydride (4) and $21.8 \mathrm{~g}(0.1 \mathrm{~mol})$ of 2 -methyl-2-thiopseudourea hydriodide yielded 11.9 g of 5 (44\%): mp 265-267 ${ }^{\circ}$; ir (KBr) 3330, $3170,1600 \mathrm{~cm}^{-1}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}$) $\delta 8.0(\mathrm{~m}, 1), 7.3(\mathrm{~m}, 9), 5.4(\mathrm{~s}, 2)$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OF}: \mathrm{C}, 66.9 ; \mathrm{H}, 4.5 ; \mathrm{N}, 15.6$. Found: C, 67.0; H, 4.6; N, 15.4.

2,3-Dihydro-1-(p-fluorobenzyl)-3-methyl-2-methylimino4 -(1 H)-quinazolinone (6). Using procedure $C, 27.1 \mathrm{~g}(0.1 \mathrm{~mol})$ of 4 and 24.6 g (0.1 mol) of 1,2,3-trimethyl-2-thiopseudourea hydriodide yielded 13.1 g of 6 (44\%): mp 71-73 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1640 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.1(\mathrm{~m}, 1), 7.1(\mathrm{~m}, 7), 5.2(\mathrm{~s}, 2), 3.5(\mathrm{~s}, 3), 3.3(\mathrm{~s}, 3)$.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{OF}: \mathrm{C}, 68.7 ; \mathrm{H}, 5.4 ; \mathrm{N}, 14.1$. Found: C, 68.5; H, 5.5; N, 14.1.

2,3-Dihydro-3-(2-trifluoromethylphenyl)imidazo[1,2-a]-quinazolin-5(1H)-one (7). Using procedure C, 24.0 g of (2-bromoethyl)isatoic anhydride and 36.2 g of 3 -(o-trifluoromethyl-phenyl)-2-methyl-2-thiopseudourea ${ }^{15}$ yielded 8.6 g of 7 '(free base) (26\%): mp 222-224웅 ; KBr) $1605 \mathrm{~cm}^{-1}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}$) $\delta 7.6$ (m, 8), 4.2 ($\mathrm{m}, 4$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OF}_{3}$: C, 61.6; $\mathrm{H}, 3.7 ; \mathrm{N}, 12.7$. Found: C, 61.5; H, 4.1; N, 12.9.

2,3-Dimethylimidazo[1,2-a $]$ quinazolin-5(3H)-one (8). A. Using procedure $\mathrm{B}, 13 \mathrm{~b}$ yielded 5.3 g of 8 (49\%): mp 237-240 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1610 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}\right) \delta 8.1(\mathrm{~m}, 1), 7.8(\mathrm{~m}, 3), 7.5(\mathrm{~m}$, 1), 3.4 ($\mathrm{s}, 3$), 2.3 (d, 3).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 67.6 ; \mathrm{H}, 5.2 ; \mathrm{N}, 19.7$. Found: C, 67.3; H, 5.2; N, 19.9.
B. Using procedure C, N-acetonylisatoic anhydride and 2,3 -di-
methyl-2-thiopseudourea hydriodide yielded 5.8 g of 8 (27\%). All physical constants and spectra were identical with those from the above route.

4-Allyl-3-methyl-1,4-dihydro-6 \mathbf{H}-pyrimido[$1,2-\mathrm{a}$]quinazo-lin-6-one (9). Using procedure $\mathrm{C}, 21.5 \mathrm{~g}$ of N-(2-butynyl) isatoic anhydride and 25.8 g of 3 -allyl-2-methyl-2-thiopseudourea hydriodide ${ }^{16}$ yielded 5.1 g of 9 (20\%): $\mathrm{mp} 131-135^{\circ}$; ir $\left(\mathrm{CDCl}_{3}\right) 1640 \mathrm{~cm}^{-1}$; NMR ($\mathrm{CF}_{3} \mathrm{COOH}$) $\delta 8.0(\mathrm{~m}, 5), 5.9(\mathrm{~m}, 1), 5.5(\mathrm{~m}, 2), 5.0(\mathrm{~d}, 2), 4.4$ ($\mathrm{t}, 2$), 1.9 (s, 3).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$: C, 71.1; $\mathrm{H}, 6.0 ; \mathrm{N}, 16.6$. Found: C, 70.8; H, 6.3; N, 16.6.

3-Allyl-2-phenylimidazo[$1,2-\mathrm{a}$]quinazolin- $5(3 \mathrm{H})$-one (10). A solution of $6.4 \mathrm{~g}(0.02 \mathrm{~mol})$ of 21 in 40 ml of $\mathrm{CF}_{3} \mathrm{COOH}$ was stirred at room temperature for 30 min . The solution was evaporated to dryness and the residue was dissolved in 100 ml of 2 N aqueous NaOH . The solution was extracted three times with 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the resulting solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ to yield 5.4 g of 10 (89\%): mp 198-200 ${ }^{\circ}$, ir (KBr) $1595 \mathrm{~cm}^{-1}$; NMR ($\mathrm{CF}_{3} \mathrm{COOH}$) $\delta 8.7$ (m, 1), 8.1 (m, 4), 7.7 (s, 5), 6.0 (m, 1), 5.5 (d, 2), 5.0 (d, 2).
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 75.7 ; \mathrm{H}, 5.0 ; \mathrm{N}, 14.0$. Found: C, 75.9; H, 5.0; N, 13.7.

3-Methylimidazo[1,2-a]quinazoline-2,5(1 $\mathrm{H}, 3 \mathrm{H}$)-dione (11). Using procedure B, 13 c yielded 6.2 g of 11 (28\%): mp 285-288 ; ir (KBr) $1620 \mathrm{~cm}^{-1}$; $\mathrm{NMR}^{\left(\mathrm{CF}_{3} \mathrm{COOH}\right) ~ \delta 8.5-7.4(\mathrm{~m}, 4), 5.2(\mathrm{~s}, 2), 3.6}$ ($\mathrm{s}, \mathrm{3}$).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 61.4; $\mathrm{H}, 4.2 ; \mathrm{N}, 19.5$. Found: C, 61.3; H, 4.4; N, 19.6.

2,3,4,4a-Tetrahydro-1 H-4,5-ethanopyrimido[1,2 -a]quinazo-lin-6-($\mathbf{5 H}$)-one (12). A solution of $12 \mathrm{~g}(0.05 \mathrm{~mol})$ of $22,5.8 \mathrm{~g}(0.05$ mol) of 2-methylthio-2-imidazoline, and a catalytic amount of KOH in 250 ml of dioxane was refluxed for 2.5 h . Upon cooling to room temperature the resulting precipitate (24) was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dissolved in 200 ml of 50% aqueous EtOH . This was then added to a solution of 2.4 g of sodium borohydride in 40 ml of $80 \% \mathrm{EtOH}$ at -15° and the mixture was stirred at -10° for 30 min . After 200 ml of cold $\mathrm{H}_{2} \mathrm{O}$ was added to the mixture, the solvent was concentrated to 50 ml under reduced pressure. The resulting precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ to yield 3.7 g of 12 (32\%): mp 144-146 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1645 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.9(\mathrm{~m}, 1), 7.0(\mathrm{~m}, 3), 4.5(\mathrm{~s}$, $1), 4.1-1.5(\mathrm{~m}, 10)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 68.1 ; \mathrm{H}, 6.6 ; \mathrm{N}, 18.3$. Found: C, 68.3; H, 6.6; H, 18.6.

1-[2-(\boldsymbol{p}-Fluorobenzylamino) benzoyl]-2,3-dimethyl-2-thiopseudourea (13a). Using procedure A, 27.3 g of 4 and 23.2 g of 2,3-dimethyl-2-thiopseudourea hydriodide yielded 23.6 g of 13 a (73\%): mp 101-102 ${ }^{\circ}$, ir $\left(\mathrm{CHCl}_{3}\right) 3320,1620 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta$ $8.1(\mathrm{~m}, 1), 8.4(\mathrm{~m}, 1), 6.9(\mathrm{~m}, 7), 4.4(\mathrm{~d}, 2), 3.0(\mathrm{~d}, 3) 2.4(\mathrm{~s}, 3)$.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OSF}: \mathrm{C}, 60.2 ; \mathrm{H}, 5.7 ; \mathrm{N}, 13.2 ; \mathrm{S}, 10.0$. Found: C, 60.1; H, 5.8; N, 12.8; S, 9.9 .

1-[2-(2-Propynylamino)benzoyl]-2,3-dimethyl-2-thiopseudourea (13b). Using procedure A, 20.1 g of N-(2-propynyl) isatoic anhydride (27) and 23.2 g of 2,3-dimethyl-2-thiopseudourea hydriodide yielded 23.9 g of 13b (91\%): mp 93-96 , ir $\left(\mathrm{CHCl}_{3}\right) 3300$, $1615 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 8.7(\mathrm{t}, 1), 8.1(\mathrm{~m}, 1), 7.3(\mathrm{~m}, 1), 6.7(\mathrm{~m}$, $2), 4.0(\mathrm{q}, 2), 3.3(\mathrm{~m}, 1), 3.0(\mathrm{~m}, 4), 2.4(\mathrm{~s}, 3)$.
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$: C, 59.7 ; $\mathrm{H}, 5.8$; $\mathrm{N}, 16.1 ; \mathrm{S}, 12.3$. Found: C, 59.8; H, 5.7; N, 15.7; S, 11.9.

1-[2-(Ethoxycarbonylmethylamino)benzoyl]-2,3-dimethyl-2-thiopseudourea (13c). Using procedure B, 24.9 g of N-ethoxycarbonylmethylisatoic anhydride and 23.2 g of 2,3-dimethyl-2-thiopseudourea hydriodide yielded 28.7 g of $\mathbf{1 3 c}(93 \%)$: $\mathrm{mp} 67-70^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1750,1620 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 10.8(\mathrm{~m}, 1), 9.0(\mathrm{~m}, 1)$, $8.3(\mathrm{~m}, 1), 7.3(\mathrm{~m}, 1), 6.5(\mathrm{~m}, 2), 4.2(\mathrm{~m}, 4), 3.0(\mathrm{~d}, 3), 2.5(\mathrm{~s}, 3), 1.2$ (t, 3).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 54.3 ; \mathrm{H}, 6.1 ; \mathrm{N}, 13.6 ; \mathrm{S}, 10.4$. Found: C, $54.3 ; \mathrm{H}, 6.5 ; \mathrm{N}, 14.1$; S, 10.9 .

1-(p-Fluorobenzyl)-2-methylaminoquinazolin-1 \boldsymbol{H}-4-one (14a). Using procedure B, 13 a yielded 11.1 g of 14 a (74%): mp $253-256^{\circ}$; ir (KBr) 3250, $1600 \mathrm{~cm}^{-1}$; NMR (Me ${ }_{2} \mathrm{SO}$) $\delta 8.1$ (m, 1), 7.3 (m, 8), 5.4 ($\mathrm{s}, 2$), $2.9(\mathrm{~d}, 3)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OF}: \mathrm{C}, 67.8 ; \mathrm{H}, 5.0$; N, 14.8. Found: C, 67.6; H, 5.2; N, 14.7.

1-(\boldsymbol{p}-Fluorobenzyl)-2-dimeth ylaminoquinazolin-1 \boldsymbol{H}-4-one (18). To a suspension of 0.4 g of $\mathrm{NaH}(57 \%$, pentane washed) in 30 ml of dimethylacetamide was added $2.83 \mathrm{~g}(0.01 \mathrm{~mol})$ of 14 a in portions. After the evolution of hydrogen ceased $1.55 \mathrm{~g}(0.011 \mathrm{~mol})$ of $\mathrm{CH}_{3} \mathrm{I}$ was added and the mixture was stirred at room temperature
for 3 days. The reaction mixture was poured onto ice-water and the resulting precipitate was filtered off (this was found to be mostly 6). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated and upon the addition of $\mathrm{Et}_{2} \mathrm{O}$ furnished 1.15 g of 18 (38\%): mp $166-170^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1645 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}-\mathrm{Me}_{2} \mathrm{SO}\right) \delta 8.0(\mathrm{~m}, 1), 7.1(\mathrm{~m}, 7)$, 5.25 (s, 2), $3.0(\mathrm{~s}, 6)$.

Anal. Caled for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{OF}: \mathrm{C}, 68.7$; $\mathrm{H}, 5.4$; $\mathrm{N}, 14.1$. Found: C, 68.8; H, 5.6; N, 14.2.

2-Allylamino-1-phenacylquinazolin-4(1 \boldsymbol{H})-one (21). Using procedure C, N-phenacylisatoic anhydride and 3 -allyl-2-methyl2 -thiopseudourea hydriodide yielded 16.6 g of 21 (52%): $\mathrm{mp} 245^{\circ}$ dec; ir (KBr) 3060, $1610 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 71.4; H, 5.4; N, 13.2. Found: C, 71.4; H, 5.2; N, 13.0.

1,2-Dihydro-4-hydroxy-1-methyl-2-oxo-3-quinolinecarboxylic Acid Ethyl Ester (25). To a solution of $21.0 \mathrm{~g}(0.13 \mathrm{~mol})$ of diethyl malonate in 75 ml of dimethylacetamide was added 5.3 g $(0.13 \mathrm{~mol})$ of $\mathrm{NaH}(57 \%$, pentane washed) in portions. When the evolution of hydrogen ceased, the solution was stirred for 15 min and was placed in an oil bath at 80°. To this a solution of 22.0 g (0.125 mol) of 32 in 125 ml of dimethylacetamide was added dropwise over a period of $15 \mathrm{~min}\left(\mathrm{CO}_{2}\right.$ evolution occurs). The mixture was stirred at 120° for 18 h . The resulting precipitate was filtered, washed twice with $\mathrm{Et}_{2} \mathrm{O}$, and then dissolved in 600 ml of warm $\mathrm{H}_{2} \mathrm{O}$. After treatment with charcoal, the solution was acidified with 6 N HCl and the precipitate was filtered, washed with water, and crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ to yield 20.5 g of 25 (67\%): mp $100-102^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1650,1625 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.9$ (s, 1), $8.1(\mathrm{~m}, 1), 7.8-7.1(\mathrm{~m}, 3), 4.5(\mathrm{q}, 2), 3.6(\mathrm{~s}, 3), 1.5(\mathrm{t}, 3)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 63.2; H, 5.3; N, 5.7. Found: C, 63.2; H, 5.6; N, 5.4.

4-Hydroxy-1-methyl-2(1H)-quinolinone (26). A mixture of $2.0 \mathrm{~g}(0.008 \mathrm{~mol})$ of 25 in 40 ml of 2 N aqueous NaOH was refluxed for 3 h . The resulting solution was cooled and acidified with 6 N HCl . Precipitation and CO_{2} evolution occurred. The precipitate was filtered, washed well with water, and dried in vacuo to yield 1.2 g of 26 (86%), mp $266-270^{\circ}$ (lit. ${ }^{12} \mathrm{mp} 265^{\circ}$).

1,2-Dihydro-4-hydroxy-1-(2-propynyl)-2-oxo-3-quinolinecarboxylic Acid Ethyl Ester (28a). Using the procedure for 25, but a reaction time of $4 \mathrm{~h}, 8.0 \mathrm{~g}(0.04 \mathrm{~mol})$ of 27 and $6.5 \mathrm{~g}(0.04$ mol) of diethyl malonate yielded 7.8 g of 28a (70\%): mp 171-174 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 3330,1665,1635 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 14.4$ (s, 1), 8.25 (m, 1), 7.5 (m, 3), 5.1 (d, 2), 4.5 (q, 2), $2.25(\mathrm{t}, 1), 1.5(\mathrm{t}, 3$).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 66.4; H, 4.8; N, 5.2. Found: C, 66.3; H, 5.0; N, 4.8 .

1,2-Dihydro-4-hydroxy-1-(2-propynyl)-2-oxo-3-quinolinecarboxylic Acid tert-Butyl Ester (28b). Using the procedure for 25 but a reaction time of $5 \mathrm{~h}, 21.0 \mathrm{~g}(0.105 \mathrm{~mol})$ of 27 and 25.0 g (0.115 mol) of di-tert-butyl malonate yielded 18.0 g of $\mathbf{2 8 b}(57 \%)$: $\mathrm{mp} \mathrm{168-170}{ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 3300,1650,1620 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 14.6 ($\mathrm{s}, 1$), 8.25 (m, 1), 7.5 (m, 3), $5.05(\mathrm{~d}, 2), 2.25(\mathrm{t}, 1), 1.7(\mathrm{~s}, 9)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}: \mathrm{C}, 68.2 ; \mathrm{H}, 5.7 ; \mathrm{N}, 4.7$. Found: C, 68.0; H, 5.9; N, 4.6.

1-Acetonyl-4-hydroxy-2(1H)-quinolinone (30). A mixture of 7.7 g of 28 a in 125 ml of 2 N NaOH was refluxed for 90 min . The resulting solution was cooled and acidified with 6 N HCl (precipitation and CO_{2} evolution occurred). The precipitate was filtered, washed well with water, and dried in vacuo to yield 5.5 g of 30 (90\%): mp 257-260 ; ir (Nujol) 1720, $1640 \mathrm{~cm}^{-1}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}$) δ 11.6 (s, broad, 1), 8.0 (m, 1), 7.4 (m, 3), 5.95 (s, 1), 5.2 (s, 2), 2.25 (s, $3)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}, 66.4 ; \mathrm{H}, 5.1 ; \mathrm{N}, 6.4$. Found: C, 66.0; H, 4.8; N, 6.3.

4-Hydroxy-1(2-propynyl)-2(1H)-quinolinone (31). A suspension of 5.0 g of 28 b in 85 ml of o-dichlorobenzene was heated slowly from 100 to 170° (a solution forms) and was kept at 170° for 2 h (when the temperature reached 170° gas evolution begins and a precipitate forms). The reaction mixture was cooled and the precipitate was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$, and recrystallized from MeOH to yield 3.0 g of 31 (90\%): mp 211-214 ${ }^{\circ}$; ir (Nujol) 3290, $1650 \mathrm{~cm}^{-1}$; NMR (Me ${ }_{2} \mathrm{SO}$) $\delta 11.1$ (s, broad, 1), $8.0(\mathrm{~m}, 1), 7.5(\mathrm{~m}$, 3), 5.9 ($\mathrm{s}, 1$), 5.1 (d, 2), 3.2 (t. 1).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{2}$: C, 72.4; H, 4.5; N, 7.0. Found: C, 72.0; H, 4.8; N, 6.7.

4-Hydroxy-1-methyl-3-nitro-2(1H)-quinolinone (33). The reaction was carried out similarly to that of compound 25 . The solvent from the reaction mixture was removed under reduced pressure, and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$. After acidification with 6 N HCl the resulting precipitate was filtered, washed with water,
and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ to yield 33 (42\%): mp 169$170^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1670,1630,1540,1430 \mathrm{~cm}^{-1}$; NMR ($\mathrm{CDCl}_{3^{-}}$ $\mathrm{Me}_{2} \mathrm{SO}$) $\delta 11.3$ (s, broad, 1), 8.1 (m, 1), 7.9-7.1 (m, 3), $3.65(\mathrm{~s}, 3)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 54.6; $\mathrm{H}, 3.7 ; \mathrm{N}, 12.7$. Found: C, 54.3; H, 3.9; N, 12.4.
(2-Amino-1,4-dihydro-1-methyl-4-oxoquinolin-3-yl)phosphonic Acid Diethyl Ester (34). To a solution of $8.8 \mathrm{~g}(0.05 \mathrm{~mol})$ of diethyl cyanomethylphosphonate in 75 ml of dimethylacetamide, $2.1 \mathrm{~g}(0.05 \mathrm{~mol})$ of $\mathrm{NaH}(57 \%$, pentane washed) was added in portions. When the evolution of hydrogen ceased, the solution was stirred for 15 min . A solution of $8.8 \mathrm{~g}(0.05 \mathrm{~mol})$ of 32 in 75 ml of dimethylacetamide was then added. The resulting mixture was placed in an oil bath, and the temperature was raised slowly to 120° and kept there for $4 \mathrm{~h}\left(\mathrm{CO}_{2}\right.$ evolution occurs). The solvent was removed under reduced pressure, and water was added to the residue. The mixture was extracted into EtOAc, washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure to produce 15 g of an oil which was readily crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to yield 11.4 g of 34 (74\%): mp 193-196 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right)$ 3490, 3300, 3140, 1620, 1570, $1510 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $8.3(\mathrm{~m}, 1), 8.1(\mathrm{~s}, 2), 7.8-7.1(\mathrm{~m}, 3), 4.2(\mathrm{~m}, 4), 3.8(\mathrm{~s}, 3), 1.3(\mathrm{t}, 6)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}: \mathrm{C}, 54.2 ; \mathrm{H}, 6.2 ; \mathrm{N}, 9.0$. Found: C, 53.8; H, 6.2; N, 9.0.

1-Methyl-2-phenyl-3-phenylsulfonylquinolin-4(1H)-one (35). To a solution of $10.0 \mathrm{~g}(0.038 \mathrm{~mol})$ of phenyl phenacylsulfone in 100 ml of dimethylacetamide, $1.85 \mathrm{~g}(0.038 \mathrm{~mol})$ of $\mathrm{NaH}(50 \%$, pentane washed) was added in portions. When the evolution of hydrogen ceased, the solution was stirred for 15 min and placed in an oil bath at 120°. To this, a solution of $6.8 \mathrm{~g}(0.038 \mathrm{~mol})$ of 32 in 50 ml of dimethylacetamide was added dropwise over a period of 10 $\min \left(\mathrm{CO}_{2}\right.$ evolution occurs). The mixture was stirred at 120° for 18 h. The solvent was removed under reduced pressure, and water was added to the residue. The resulting precipitate was washed twice with water and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ to yield 5.2 g of 35 (36\%): mp 268-270 ${ }^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1620,1600,1390,1160,1145$ cm^{-1}; NMR ($\left.\mathrm{CDCl}_{3}-\mathrm{Me}_{2} \mathrm{SO}\right) \delta 8.3(\mathrm{~m}, 1), 8.0-7.3(\mathrm{~m}, 13), 3.4(\mathrm{~s}, 3)$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$: C, 70.4; H, 4.6; N, 3.7; S, 8.5. Found: C, 70.0; H, 4.8; N, 3.6; S, 8.5.
5-Methyloxazolo[4,5-c]quinolin-4(5H)-one (36). To a solution of $5.7 \mathrm{~g}(0.05 \mathrm{~mol})$ of ethyl isocyanoacetate ${ }^{17}$ in 75 ml of dimethylacetamide, $2.1 \mathrm{~g}(0.05 \mathrm{~mol})$ of $\mathrm{NaH}(57 \%$, pentane washed) was added in portions. When the evolution of hydrogen ceased, the solution was stirred for 15 min . A solution of $8.8 \mathrm{~g}(0.05 \mathrm{~mol})$ of 32 in 75 ml of dimethylacetamide was then added. The resulting mixture was placed in an oil bath. The temperature was raised slowly to 120° and kept there for $5 \mathrm{~h}\left(\mathrm{CO}_{2}\right.$ evolution occurs). The solvent was removed under reduced pressure, and $\mathrm{H}_{2} \mathrm{O}$ was added to the residue. The resulting precipitate was filtered, washed well with $\mathrm{H}_{2} \mathrm{O}$, and crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ to yield 2.6 g of 36 (45\%): $\mathrm{mp} 191-194^{\circ}$; ir $\left(\mathrm{CHCl}_{3}\right) 1670,1585 \mathrm{~cm}^{-1}$; NMR (CDCl $\left.{ }_{3}-\mathrm{Me}_{2} \mathrm{SO}\right) \delta$ $8.4(\mathrm{~s}, 1) 8.0-7.2(\mathrm{~m}, 4), 3.8(\mathrm{~s}, 3)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{C}, 66.0 ; \mathrm{H}, 4.0 ; \mathrm{N}, 14.0$. Found: C, 66.1; H, 4.0; N, 14.1.

5-Cyclopropylmethyloxazolo[4,5-c]quinolin-4(5 H)-one. Using the procedure for that of compound $36, N$-cyclopropylmethylisatoic anhydride ${ }^{13}$ and ethyl isocyanoacetate yielded 38% of product, mp 164-167 ${ }^{\circ}$

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 70.0; H, 5.0; N, 11.7. Found: C, 69.6; H, 5.3; N, 11.6.

8-Chloro-5-methyloxazolo[4,5-c]quinolin-4(5H)-one. Using the procedure for that of compound 36, 6-chloro-1-methyl- 2 H -3,1-benzoxazine-2,4(1H)-dione and ethyl isocyanoacetate yielded 33% of product mp $210-213^{\circ}$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$: $\mathrm{C}, 56.3 ; \mathrm{H}, 3.0 ; \mathrm{N}, 11.9 ; \mathrm{Cl}, 15.1$. Found: C, 55.9 ; $\mathrm{H}, 3.3 ; \mathrm{H}, 11.7$; Cl, 15.2.

5-Methyl-7,8-methylenedioxyoxazolo[4,5-c]quinolin$4(5 H)$-one. Using the procedure for that of compound 36,1 -methyl-6,7-methylenedioxy-2H-3,1-benzoxazine-2,4(1H)-dione ${ }^{13}$ and ethyl isocyanoacetate yielded 35% product, $\mathrm{mp}>310^{\circ}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 59.0; H, 3.3; N, 11.5. Found: C, 58.8; H, 3.5; N, 11.4.

2,3,4,6-Tetrahydro-6-oxo- \boldsymbol{H}-pyrimido[1,2-a]quinoline-5carbonitrile (39). To a solution of $1.4 \mathrm{~g}(0.021 \mathrm{~mol})$ of malononitrile in 20 ml of dimethylacetamide, $0.9 \mathrm{~g}(0.021 \mathrm{~mol})$ of $\mathrm{NaH}(57 \%$, pentane washed) was added in portions. When the evolution of hydrogen ceased, the solution was stirred for 15 min . A solution of 5.0 $\mathrm{g}(0.021 \mathrm{~mol})$ of 22^{13} in 45 ml of dimethylacetamide was then added dropwise over a period of 30 min . The mixture was stirred at room temperature for 30 min , then at 120° for $18 \mathrm{hr}\left(\mathrm{CO}_{2}\right.$ evolution occurs). The mixture was then poured on $\mathrm{H}_{2} \mathrm{O}$. The resulting precipitate was filtered and washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, and $\mathrm{Et}_{2} \mathrm{O}$ to
yield 2.7 g of 39 (58\%). A sample was crystallized from EtOAc: mp 267-269 ${ }^{\circ}$; ir (Nujol) 3300, 2200, 1600, 1550, $1460 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}\right) \delta 8.15(\mathrm{~m}, 1), 7.8-7.2(\mathrm{~m}, 4), 4.3(\mathrm{~m}, 2), 3.85(\mathrm{t}, 2), 2.2(\mathrm{~m}$, 2).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 69.3 ; \mathrm{H}, 4.9$; $\mathrm{N}, 18.7$. Found: C, 69.0; H, 5.1; N, 18.8 .

1,2,3,5-Tetrahydro-2-methylene-5-oxoimidazo[1,2-a]quino-line-4-carbonitrile (40). To a solution of $1.7 \mathrm{~g}(0.026 \mathrm{~mol})$ of malononitrile in 20 ml of dimethylacetamide was added 1.1 g $(0.026 \mathrm{~mol})$ of $\mathrm{NaH}(57 \%$, pentane washed) in portions. When the evolution of hydrogen ceased, a solution of $5.0 \mathrm{~g}(0.025 \mathrm{~mol})$ of 27^{13} in 30 ml of dimethylacetamide was added dropwise over a period of 5 min . The mixture was stirred at room temperature for 15 min and then at 120° for 2 h . The reaction mixture was concentrated to one-fourth volume and was poured onto 100 ml of cold $\mathrm{H}_{2} \mathrm{O}$. The solution was acidified with 2 N HCl and the resulting precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and triturated with hot EtOH to yield 4.5 g of 40 (82%): $\mathrm{mp} 285^{\circ}$ (then resolidifies); ir (Nujol) 3340, $3200,2210,1680 \mathrm{~cm}^{-1}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}$) $\delta 8.2(\mathrm{~m}, 1), 8.0-7.3(\mathrm{~m}, 4)$, 5.2 (d, 2), $3.5(\mathrm{~s}, 2)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 69.9 ; \mathrm{H}, 4.1 ; \mathrm{N}, 18.8$. Found: C, 70.2; H, 4.0; N, 18.5.

4-Ethoxy-2(1H)-quinolinone (41). To a suspension of 6.0 g of 2,4-quinolinediol in 50 ml of dimethylacetamide was added 1.6 g of $\mathrm{NaH}(57 \%$, pentane washed) in portions. When the evolution of hydrogen ceased, 6.0 g of ethyl iodide was added. The mixture was stirred at $30-35^{\circ}$ for 5 min and then at room temperature for 18 h . The resulting precipitate was filtered and crystallized from MeOH to yield 2.8 g of $41(40 \%): \mathrm{mp} 223-226^{\circ}$; ir (Nujol) $1640 \mathrm{~cm}^{-1}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}$) $\delta 11.6$ (s, broad, 1), $7.5(\mathrm{~m}, 4), 6.0(\mathrm{~s}, 1), 4.3(\mathrm{q}, 2)$, $1.5(\mathrm{t}, 3)$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$: C, 69.8; $\mathrm{H}, 5.9 ; \mathrm{N}, 7.4$. Found: C, 69.9; H, 5.5; N, 7.3.

Acknowledgment. The authors wish to thank Dr. Sandor Barcza and his associates for running all ir and NMR spectra and Mr. William Bonkoski and associates for performing the microanalyses. The authors also wish to express their gratitude to Mrs. Wizorek for her typing of the manuscript.

Registry No.-1, 118-48-9; 2, 20112-79-2; 4, 40534-52-9; 5, 55536-40-8; 6, 57513-41-4; 7, 57513-42-5; 8, 57513-43-6; 9, 57513-44-7; 10, 57513-45-8; 11, 57513-46-9; 12, 56895-55-7; 13a, 57513-47-0; 13b, 57513-48-1; 13c, 57513-49-2; 14a, 57513-50-5; 18, 57513-51-6; 19, 57384-45-9; 21, 57513-52-7; 22, 57384-63-1; 24, 57513-538; 25, 57513-54-9, 26, 1677-46-9; 27, 50784-22-0; 28a, 57513-55-0; 28b, 57513-56-1; 30, 37144-44-8; 31, 57513-57-2; 32, 10328-92-4; 33, 36949-55-0; 34, 57513-58-3; 35, 57513-59-4; 36, 57513-60-7; 39, 57513-61-8; 40, 57513-62-9; 41, 20886-13-9; 2-methyl-2-thiopseudourea hydriodide, 4338-95-8; 1,2,3-trimethyl-2-thiopseudourea hydriodide, 6966-83-2; (2-bromoethyl)isatoic anhydride, 57384-62-0; $\quad 3$-(o-trifluoromethylphenyl)-2-methyl-2-thiopseudourea, 57513-63-0; N-acetonylisatoic anhydride, 57384-79-9; 2,3-di-methyl-2-thiopseudourea hydriodide, 41306-45-0; 3-allyl-2-methyl-2-thiopseudourea hydriodide, 57513-64-1; N-ethoxycarbonylmethylisatoic anhydride, 57384-71-1; N-phenacylisatoic anhydride, 57385-09-8; diethyl malonate, 14851-10-6; di-tert-butyl malonate, 57513-65-2; diethyl cyanomethylphosphonate, 25117-54-8; phenyl phenacylsulfone carbanion, 57513-66-3; ethyl isocyanoacetate, 57513-67-4; 5-cyclopropylmethyloxazolo[4,5-c]quinolin-4(5H)-one, 57513-68-5; N-cyclopropylmethylisatoic anhydride, 42239-89-4; 8-chloro-5-methyloxazolo[4,5-c]quinolin-4(5H)-one, 57513-69-6; 6-chloro-1-methyl-2H-3,1-benzoxazine-2,4(H)-dione, 14529-12-5; 5-methyl-7,8-methylenedioxyoxazolo[4,5-c]quinolin4(5H) -one, 57513-70-9; 1-methyl-6,7-methylenedioxy-2H-3,1-ben-zoxazine-2,4(1 H)-dione, 57384-37-9; malononitrile carbanion, 41470-37-5; 2,4-quinolinediol, 86-95-3; ethyl iodide, 75-03-6; ethyl nitroacetate, 55713-71-0.

References and Notes

(1) Throughout this paper the names "isatoic anhydride" and " $2 H-3,1$-ben-zoxazine-2,4 (1t)-dione" are used interchangeably. Commercial sources still prefer the first name whereas Chemical Abstracts subscribes to the latter. We have adopted the Chemical Abstracts numbering system for substituted isatoic anhydrides, but we feel that it will be easier to read if we use the expression " N -substituted isatoic anhydride" rather than " N -substituted 2H-3,1-benzoxazine-2.4(1H)-dione".
(2) R. P. Staiger, C. L. Moyer, and G. R. Pitcher, J. Chem. Eng. Data, 8, 454 (1963).
(3) J. Meyer and E. Wagner, J. Org. Chem., 8, 239 (1943)
(4) E. Spath and N. Pfalzer, Chem. Ber, 68, 2221 (1935).
(5) P. Carabateas and L. Harris, J. Med Chem., 9, 6 (1966)
(6) E. Ziegler, W. Steiger, and T. Kappe, Monatsh. Chem., 99, 1499 (1968).
(7) G. E. Hardtmann, G. Koletar, O. R. Jfister, J. H. Gogerty, and L. Iorio, J. Med. Chem., 18, 447 (1975).
(8) G. E. Hardtmann, B. Huegi, J. H. Gcgerty, L. C. Iorio, and H. W. Barnes, J. Med. Chem., 14, 878 (1971)
(9) L. J. Bellamy, "The Infra-red Spectra of Complex Molecules'", 2nd ed, Wiley, New York, N.Y., 1958, p. $26 B$.
(10) For example, K. K. Balasubramanian and B. Venugopalan, Tetrahedron Lett., 2643 (1974); Castaigne, J. P. Maffrand, G. Ferrand, F. Eloy, and F. Toulouse, Eur. J. Med. Chem., 9, 509 (1974).
(11) R. P. Staiger and E. B. Miller, J. Org. Chem., 24, 1214 (1959).
(12) E. Ziegler, R. Wolf, and T. Kappe, Monatsh. Chem., 96, 418 (1965)
(13) For the preparation of the isatoic anhydrides utilized in this publication: G. E. Hardtmann, G. Koletar, and O. R. Pfister, J. Hererocycl. Chem., 12, 565 (1975).
(14) No attempts were made to optimize yields of the reactions
(15) Prepared in 93% yield by the alkylation of 2-thio-1-(α, α, α-trifluoro-o tolyl)urea [F. Kurzer and J. Canell, Tetrahedron, 19, 1603 (1963)] with methyl iodide in ethanol. The material was used without further purification.
(16) W. G. Finnegan, R. A. Henry, and E. Lieber, J. Org. Chem., 18, 779 (1953).
(17) I. Ugi, U. Fetzer, U. Eholzer, H. Knupfer, and K. Offermann, Angew Chem., 77, 492 (1965).

Thermal Decomposition of $\mathbf{2 H}$-Azirines. Formation of Products Resulting from Carbon-Carbon Bond Cleavage ${ }^{1}$

Larry A. Wendling and Robert G. Bergman*2
Contribution No. 5166 from the Laboratories of Chemistry, California Institute of Technology, Pasadena, California 91125

Received September 9, 1975

Abstract

The synthesis and thermal decomposition of 2-methyl-3-phenyl- (19a), 2-ethyl-3-phenyl- (19b), 2,2-dimethyl3 -phenyl- (19c), and ¿ऽ3-dimethyl-2-phenyl-2H-azirines (19d) is described. Previously, products formed on thermal decomposition of $3 H$-azirines have been derived from initial $\mathrm{C}-\mathrm{N}$ bond cleavage; in contrast, the products observed on heating 19a-c (styrenes, benzonitrile, and HCN or acetonitrile) are formed by C-C cleavage, leading initially to iminocarbene intermediates. Evidence is presented that the primary mode of product formation from such an intermediate is 1,4 -hydrogen shift, giving a 2 -azabutadiene. The azabutadiene then fragments (via a small equilibrium concentra-ion of substituted 1 -azacyclobutene) leading to the final products. At higher temperatures, the azabutadienes are :onverted to dihydroisoquinolines as well.

Photochemical and thermal jond cleavage preferences in 2 H -azirines appear to be quite distinct. Products formed during photochemical isomerizations appear to always involve carbon-carbon bond cleavage (path A, Scheme I), while thermal isomerization products arise from initial car-bon-nitrogen bond cleavage (path B, Scheme I).

Scheme I

Azirine photochemistry has been extensively investigated by several groups. Padw ε^{3} and Schmid, ${ }^{4}$ for example, have shown in independent studies that upon photolysis 3 -phenyl- 2 H -azirines undergo cycloadditions with a variety of 1,3 -dipolarophiles. These reactions apparently all proceed by initial C-C cleavage in the azirines, leading to dipolar species. Schmid and co-workers have also photolyzed triphenyl- 2 H -azirine in a 2,2 -d methylbutane-pentane matrix at $-185{ }^{\circ} \mathrm{C}$ and observed a new uv maximum at ca. 350 $\mathrm{nm}\left(\epsilon \sim 10^{4}\right)$. The authors ass gned this band to a nitrile ylide species. They further slowed that the ylide rearranged to starting azirine only photochemically, and were able to trap it at low temperatures using methyl trifluroacetate. Recent ab initio MO calculations by Salem, ${ }^{5}$ utilizing a configuration interaction treatment, suggest that upon cleaving a $\mathrm{C}-\mathrm{C}$ azirine bond, the ground state nitrile ylide energy surface is best reached by internal conversion from a singlet n, π^{*} state at a $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angle of 100°.

Salem's calculations also predict a large barrier for thermal conversion of the ylide to azirine, but suggest a facile photochemical conversion.

Relative to the well-defined photochemistry of 2 H -azirines, their thermal behavior is not as well understood. The first report of a 2 H -azirine pyrolysis was made by Isomura and co-workers in 1968. ${ }^{6}$ These workers prepared 2-phenyl2 H -azirine (1) and 3 -methyl-2-phenyl- 2 H -azirine (2) by photolytic and thermal decomposition of cis- and trans-1-azido-2-phenylethene (3 c and 3 t) and cis- and trans-2-azido-1-phenylpropene (4 c and 4 t), respectively. Thermal decomposition of 1 in boiling hexadecane yielded a $1: 1 \mathrm{mix}$ ture of indole (5) and phenylacetonitrile (6) in 86% isolated yield. Similar treatment of 2 gave only 2 -methylindole (7). The most obvious mechanism for formation of 5,6 , and 7 involved a vinyl nitrene intermediate generated by rupture of the carbon-nitrogen bond, followed by insertion into the phenyl group or α-carbon-hydrogen bond (see Scheme II).

Scheme III

$\mathrm{R}_{1} \quad \mathrm{R}_{2} \quad \mathrm{R}_{3} \mathrm{R}_{4}$
b $\mathrm{H} \quad \mathrm{Ph} \quad \mathrm{H} \quad \mathrm{CH}_{3}$
c $\mathrm{CH}_{3} \mathrm{Ph} \mathrm{Ph} \mathrm{Ph}$
d $\mathrm{H} \quad \mathrm{Ph} \mathrm{Ph} \mathrm{Ph}$
In 1972, the Isomura research group published a study of the thermal rearrangements in dilute solution of a series of 2 -vinyl- 2 H -azirines. ${ }^{7}$ The results of this study, which can again be explained by $\mathrm{C}-\mathrm{N}$ cleavage leading to a vinyl nitrene, are displayed in Scheme III.

Rees and co-workers have subjected the series of 2 H -azirines 9a-d to flash-vacuum pyrolysis at $400-500{ }^{\circ} \mathrm{C} .8^{8}$ Their results may also be accounted for by initial carbon-nitrogen bond cleavage (Scheme IV). Nishiwaki and co-workers ${ }^{9}$

9a. $\mathrm{R}_{1}=\mathrm{Ptl} ; \mathrm{R}_{2}=\mathrm{Ph} ; \mathrm{R}_{3}=\mathrm{Me}$
b, $\mathrm{R}_{1}=\mathrm{Ptl} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Ph}$ c, $\mathrm{R}_{1}=\mathrm{Ptl} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Me}$ d, $\mathrm{R}_{1}=\mathrm{Ptl} ; \mathrm{R}_{2}=\mathrm{Me} ; \mathrm{R}_{3}=\mathrm{Ph}$

$$
(\mathrm{Ptl}=\text { phthalimid } \sigma)
$$

have reported results describing the neat pyrolysis of 2 H -azirine-2-carboxamides (14) and 5 -aminoisoxazoles (15). The authors suggest that intermediate 17 has diradical character, but a vinyl nitrene would also be consistent with the reaction products. Nishiwaki points out that cleavage of the azirine C-C bond to form intermediate 18 is also a mechanistic possibility (Scheme V).

As a result of our interest in bond-breaking phenomena in small ring compounds, ${ }^{10}$ we chose to study the thermal decompositions of substituted 2 H -azirines. The original intent of this work was to elucidate the nature of the inter-

Scheme V

mediate formed upon thermal $\mathrm{C}-\mathrm{N}$ bond cleavage in 2 H azirines. However, the formation of unexpected products indicated that we had uncovered the first clear-cut example of products formed from carbon-carbon bond cleavage as a major pathway in 2 H -azirine thermal decomposition, leading to formation of iminocarbenes.

Results

In the course of our work, it was necessary to synthesize azirines 19a-d. Compounds 19a and 19b were prepared via

19a, $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Me} ; \mathrm{R}_{3}=\mathrm{H}$
$b, R_{1}=P h ; R_{2}=E t ; R_{3}=H$
c, $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Me}$
$\mathrm{d}, \mathrm{R}_{1}=\mathrm{Me} ; \mathrm{R}_{2}=\mathrm{Ph} ; \mathrm{R}_{3}=\mathrm{Me}$
the vinyl azide route of Hassner ${ }^{11 a, b}$ and 19c and 19d were synthesized from the appropriate dimethylhydrazone methiodide. ${ }^{12 \mathrm{a}, \mathrm{b}}$ These materials were subjected to pyrolysis in a quartz flow system at atmospheric pressure using helium as a carrier gas. Typical residence times in the pyrolysis zone were approximately 10 s . Products were condensed in a double U-tube trap at $-196^{\circ} \mathrm{C}$.

Polymerization of some of the pyrolysis products in the collection trap was a troublesome problem in this work. Extensive efforts were made to minimize polymerization; nevertheless $30-40 \%$ polymeric material was isolated from every pyrolysis. Even though the yield of polymer varied by as much as 10%, the proportions of apparently nonpolymerizing products remained constant in separate pyrolyses at a given temperature.

Pyrolysis (cf. Chart I) of 2-methyl-3-phenyl-2H-azirine (19a) at $565{ }^{\circ} \mathrm{C}$ consumed all the starting material. The monomeric products formed were styrene (56%) and benzonitrile (2\%) (presumably HCN was also formed; vide infra). Fragmentation products of styrene comprised 4% of the pyrolysate and included ethylbenzene, toluene, and benzene. The pyrolysis of 19a at several lower temperatures was monitored by vapor phase chromatography. No buildup of intermediate products was observed at 320 (0% conversion), 390,466 , or $523^{\circ} \mathrm{C}$.

Chart I. Products of the $565{ }^{\circ} \mathrm{C}$ Pyrolysis of
2-Methyl-3-phenyl-2 H -azirine (19a)

The apparent generality of this unexpected fragmentation for 2 -alkyl-3-phenyl- 2 H -azirines was demonstrated by pyrolysis of 19 b at $565{ }^{\circ} \mathrm{C}$ (Chart II) ("other" includes

Chart II. Products of the $565{ }^{\circ} \mathrm{C}$ Pyrolysis of
2-Ethyl- 3 -phenyl-2H-azirine (19b)

mainly fragmentation products of β-methylstyrene, i.e., ethylbenzene, toluene, and benzene). trans- and cis- β methylstyrene equilibrate thermally at $565{ }^{\circ} \mathrm{C}$; the observed trans:cis ratio of $2: 1$ is the equilibrium mixture at this temperature.

In order to explain the formation of styrenes from 19a and 19 b , bonding between $\mathrm{C}-3$ of the azirine ring and the substituent carbon attached to C-2 must occur during the course of reaction. Two possible mechanistic routes which accomplish the observed transformation are shown in Scheme VI; however, neither path seems particularly reasonable as written. In path A, the azirine 20 (which has a hydrogen substituent at the 3 position) would be expected to rapidly decompose under our reaction conditions. ${ }^{8,13}$ However, the first step in this mechanism involves an unprecedented 1,3 -alkyl shift in an unsaturated ring. Path B involves carbon-carbon bond cleavage and 1,4 -carbene insertion into a C-H bond to form azetine $22 .{ }^{14}$ Jones ${ }^{15}$ has observed a case in which a carbene does presumably insert to form a four-membered ring; however, hydrogen abstraction would be expected to be a more facile process than C-H insertion in our system. In 1971 Hassner reported that cyclopropyl azides smoothly decompose to azetines and olefinic fragmentation products. ${ }^{16} \mathrm{He}$ suggested that the olefins could be coming from azetine decomposition, but does not rigorously prove it.

Scheme VI

Chart III. Products of the $472^{\circ} \mathrm{C}$ Pyrolysis of

 2, 2 -Dimethyl-3-phenyl-2 H -azirine (19c)

Path A is relatively easy to test. Pyrolysis of 19 c should result in formation of 19d (isolable at partial conversion temperatures) if 1,3 -alkyl shifts are important in 2 H -azirine decomposision. Also, acetonitrile should be the other fragmentation product, analogous to the presumed HCN obtained from decomposition of 19a.

In analogy with 19 a and 19 b , pyrolysis of 19 c at $472^{\circ} \mathrm{C}$ (60% conversion) also gave styrene and benzonitrile (Chart III). No methyl-shifted azirine 19d was observed (nor was its thermal decomposition product; vide infra) but acetonitrile in variable amounts was detected in this case. In addition, a significant new product was obtained in 24% yield; its spectral data were consistent with azabutadiene 25. In confirmation of this assignment, hydrolysis ${ }^{17}$ of 25 in aqueous mineral acid gave benzaldehyde and acetone.

Formation of 25 provided the needed clue to understanding the mechanism of these pyrolyses, since we were able to show that it was converted to styrene under the reaction conditions. At higher temperatures ($545{ }^{\circ} \mathrm{C}$), 25 gave a 14:1 ratio of styrene and 3-methyldihydroisoquinoline (26). Pyrolysis of the 2 H -azirine 19 c at $545{ }^{\circ} \mathrm{C}$ gave an $\sim 11: 1$ ratio of styrene and 26 (Chart IV). The similar ratios

26
of styrene and 26 in the azirine 19c and azabutadiene (25) $545{ }^{\circ} \mathrm{C}$ pyrolyses strongly implicate 25 as the major primary pyrolysis product of 19 c .

Chart IV. Products of the $545^{\circ} \mathrm{C}$ Pyrolysis of 2,3-Dimethyl-3-phenyl- 2 H -azirine (19c)

We were unable to isolate an azabutadiene intermediate from the pyrolysis of 2-methyl-3-phenyl- 2 H -azirine (19a). Apparently the azabutadiene is involved in the polymerization process, ard its rate for polymerizing or fragmentation
to styrene precludes its isolation. Nevertheless, the higher temperature conversion of azabutadiene (25) to the new product, dihydroisoquinoline (26), provided a possible test for the presence of an azabutadiene in the pyrolysis of 19 a . Since formation of 26 became competitive with fragmentation to styrene at higher temperatures, 19a was pyrolyzed at $580^{\circ} \mathrm{C}$ in anticipation of isolating 3,4-dihydroisoquinoline. Our hopes were realized, as demonstrated in Chart V.

The oxidation of dihydroisoquinoline (27) to isoquinoline (28) at these temperatures is precedented by the high-temperature dihydronaphthalene to naphthalene conversion. ${ }^{18}$ Isolation of the dihydroisoquinoline at higher temperatures strongly suggests that 19a is also isomerizing to an ezabutadiene.

The intervention of a competing alkyl-shift isomerization path (path A, Scheme VI) was rigorously ruled out by independent synthesis and pyrolysis of the "alkyl-shifted azirine" 19d (Chart VI). Quantitative conversion of 19d to

Chart VI. Products of the $480^{\circ} \mathrm{C}$ Pyrolysis of 2,3-Dimethyl-2-phenyl-2 H -azirine (19d)

the indole 29 is indicative of ring opening to the vinyl nitrene which then inserts into a phenyl C-H bond (Scheme II).

The formation of acetonitrile from 19c suggests that HCN is, in fact, the small molecule which is extruded during the pyrolysis of 19 a and 19 b . Our inability to isolate acetonitrile in an amount equivalent to styrene (from the 19c pyrolyses) initially proved disconcerting, especially when control experiments established that acetonitrile could be recovered quantitatively after passing it through the pyrolysis system at $545^{\circ} \mathrm{C}$. However, when a $\sim 5: 1$ mixture of azirine 19 c and acetonitrile was pyrolyzed at $470^{\circ} \mathrm{C}$, no acetonitrile was isolated. This more accurate control experiment suggests strongly that acetonitrile is in fact polymerizing under the reaction conditions. Also, the propertion of azabutadiene (25) was reduced from 24% (Chart III) to 7% in this pyrolysis; it appears that azabutadiene is also involved in the polymerization.

Efforts to retard the polymerization by copyrolysis of 19 c with solvent (and also by trapping the pyrolysate in solvent) were attempted with some success. A tenfold excess of diethyl ether was mixed with azirine 19c in the vapor phase just outside the oven. The product traps con-
tained an additional threefold excess of frozen diethyl ether prior to pyrolysis. In this manner, acetonitrile was isolated in 55% yield relative to styrene in one pyrolysis at $470{ }^{\circ} \mathrm{C}$. However, these results were not reproducible; recovery of acetonitrile in 10% yield relative to styrene was a more typical result. Control experiments demonstrated the stability of diethyl ether to the reaction conditions.

Discussion

The results outlined above indicate that (1) carbon-carbon bond cleavage occurs upon thermolysis of 3-phenyl-2-alkyl- 2 H -azirines, (2) azabutadienes are primary pyrolysis products and precursors to the fragmentation products (styrenes and presumably nitriles), and (3) the azabutadiene to dihydroisoquinoline rearrangement is a competitive process at higher temperatures. Mechanistic questions which we will try to answer include (1) How do azabutadienes lead to the observed fragmentation products? (2) What is the nature of the species formed upon carbon-carbon bond rupture? (3) Why does this particular family of azirines (19a-c) display this behavior? (4) How does dihydroisoquinoline formation from azabutadienes occur?

The detection of azabutadienes as pyrolysis products makes reconsideration of path B in Scheme VI worthwhile. However, rather than postulating $\mathrm{C}-\mathrm{H}$ insertion by the initially formed ${ }^{22}$ carbene 21 , we believe that hydrogen abstraction occurs to form the imine 25 (1,4-hydrogen abstraction by vinyl carbene- or 1,3 -diradical-like species, generated from thermal ring opening of substituted cyclopropenes, has ample precedent; ${ }^{10,19-21} 1,3$-butadienes comprise a significant portion of the pyrolysis products of alkyl-substituted cyclopropenes and have been postulated as being formed from vinyl carbene or 1,3-diradical species). An endothermic thermal electrocyclization may then generate a small steady state amount of azetine (22), which fragments to the observed products (Scheme VII);

Aue and Thomas have recently invoked a similar azetineazabutadiene equilibrium to explain results in the gasphase pyrolysis of 2 -alkoxy-1-azetines. ${ }^{23 a}$ Additional support for 1,4 -hydrogen transfer in iminocarbenes is provided by the very recent work of Ghosez and co-workers. ${ }^{23 b}$ These workers have shown that 3 -amino- 2 -alkyl- 2 H -azirines 31a and 31b appear to be undergoing a similar C-C bond cleavage with subsequent formation of azabutadienes 32a and 32b (Scheme VIII). These authors report no fragmentation products analogous to the ones we observed, but this may be rationalized by considering that Ghosez' pyrolysis temperatures were $100-200^{\circ} \mathrm{C}$ lower than in our work (where fragmentation was significant). ${ }^{23 b}$
Our postulated azabutadiene-azetine equilibrium parallels the butadiene-cyclobutene thermal conversion. Brauman and Stephenson ${ }^{24}$ have presented strong evidence that butadiene is in equilibrium with a small amount of cyclobutene at $637^{\circ} \mathrm{C}$ in the gas phase.

Scheme VIII

In our system the initial bond-breaking preference ($\mathrm{C}-\mathrm{N}$ vs. $\mathrm{C}-\mathrm{C}$) has not been determined. $\mathrm{N}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{\text {² }}\right.$) bonds are probably $5-10 \mathrm{kcal} / \mathrm{mol}$ weaker than $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bonds. This guess is based solely on analogy to $\mathrm{sp}^{3}-\mathrm{sp}^{3}$ bond dissociation energies ${ }^{25}$ in carbon and nitrogen systems; there are no values in the literature for the particular bond strengths in question. For all thermal azirine rearrangements investigated, other than ours and Ghosez', ${ }^{23}$ carbon-nitrogen bond cleavage to form a vinyl nitrene seems to be the preferred bond-breaking process. It seems reasonable that $\mathrm{C}-\mathrm{N}$ bond cleavage is also the lowest energy pathway in our system. However, by analogy with the work of Rees ${ }^{8}$ (9c and 9d, Scheme IV), the nitrene generated from 19a-c will not undergo 1,4 -hydrogen abstractions. The independent work of Isomura ${ }^{6,7}$ and Rees ${ }^{8}$ suggests that 1,2 abstraction by the nitrene (to form ketenimines) only occurs when hydrogen is the group being transferred. Consequently it is reasonable that no product-formation path, other than regeneration of the azirine, is available to the nitrene. Thus, reaction products are observed only when pyrolysis temperatures high enough to cause C-C cleavage are reached (Scheme IX). A test of this hypothesis awaits a more so-

phisticated experiment, such as the thermal racemization ${ }^{10}$ of an optically active azirine.

The conversion of azabutadiene (25) to dihydroisoquinoline (26) is a novel transformation in its own right. The first step of this process can be viewed as an electrocyclic ring closure of an azahexatriene to a 1,3 -azacyclohexadiene. The second step simply involves a symmetry allowed, 1,5 -suprafacial sigmatropic hydrogen migration (Scheme X). Weber and co-workers have recently observed the all-carbon ana-

Scheme X

logue of this rearrangement; i.e., the conversion of phenyl1,3 butadiene to dihydronapthalene. ${ }^{26}$

Experimental Section

A. Synthesis of Starting Azirines. 2-Ethyl-3-phenyl-2 H-azirine (19b). Compound 19a was prepared by photolysis of the corresponding azoalkene as described by Hassner, ${ }^{11}$ and the same procedure was then applied to the synthesis of 19 b . After the solvent was removed by rotary evaporation, the azirine 19 b was vacuum transferred and purified by preparative VPC on column A (130 ${ }^{\circ} \mathrm{C}, 100 \mathrm{ml} / \mathrm{min}$): ir $3090,3060,2980,2960,2900,1746,1615,1508$, $1480,1470,1395,1340,1321,1165,1088,1045,1003,940,910,895$, $705 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.92\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.35-1.90(\mathrm{~m}, 2$ $\mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.13 ($\mathrm{t}, 1 \mathrm{H},>\mathrm{CHCH}_{2}$), $7.38-8.00$ ($\mathrm{m}, 5 \mathrm{H}$, phenyl).

2,3-Dimethyl-2-phenyl-2H-azirine (19d). Compound 19c was prepared as described by Leonard, ${ }^{12}$ and the method was then extended to the synthesis of 19d (starting with 3-phenyl-2-butanone). This azirine was obtained in 30% yield and was purified by preparative VPC on column A ($130^{\circ} \mathrm{C}, 100 \mathrm{ml} / \mathrm{min}$): ir 3050, 2980, 2960, 2890, 1775, 1615, 1510, 1460, 1445, 1392, 1380, 1279, 1082, $1045,823,710 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.60\left(\mathrm{~s}, 3 \mathrm{H},(\mathrm{Ph}) \mathrm{C}-\mathrm{CH}_{3}\right), 2.34$ [s, $3 \mathrm{H},-(\mathrm{CN}) \mathrm{CH}_{3}$], 6.90-7.50 (m, 5 H , phenyl); high-resolution mass calcd, 145.089145; high-resolution mass observed, 145.0888 .
B. Vapor Phase Chromatographic Analysis. All analytical vapor phase chromatography was performed on a Hewlett-Packard 5750 research chromatograph equipped with a Hewlett-Packard 3370A digital integrator. The chromatograph was equipped with a flame ionization detector. Preparative vapor phase chromatography was performed on a Varian Aerograph 90-P3 chromatograph equipped with a thermal conductivity detector. The following columns were used: column A, $10 \mathrm{ft} \times 0.375$ in., 20% UCW-98, on 60/80 Chromosorb WAW-DMCS, glass; column B, $10 \mathrm{ft} \times 0.25 \mathrm{in}$., 10% DEGS on 60/80 Chromosorb P-NAW, glass; column C, $10 \mathrm{ft} \times$ 0.25 in., 30\% SE-30 on 60/80 Chromosorb WAW-DMCS, glass; column D, $8 \mathrm{ft} \times 0.125$ in., 10% SE- 30 on $100 / 120$ Chromosorb WAWDMCS, aluminum; column E, $12 \mathrm{ft} \times 0.125$ in., 15% DEGS on 100/120 Chromosorb WAW-DMCS, aluminum.
C. Pyrolyses. Flow pyrolyses were carried out utilizing a 1.2 cm o.d. quartz tube flow system contained in a Hoskin's tube furnace. Auxiliary heating wires, wrapped with asbestos tape, prevented sample condensation in the flow system at both the inlet and outlet sides. The pyrolysis products were collected in a double U-tube trap filled with Pyrex helices and maintained at $-196^{\circ} \mathrm{C}$. Drying towers attached to the traps prevented condensation of moisture in the traps. The temperature of the quartz tube was monitored by an iron-constantan thermocouple. The neat reactants were introduced into the pyrolysis zone by a flow of helium $(200 \mathrm{ml} / \mathrm{min})$.

In a typical pyrolysis, $50-500 \mathrm{mg}$ of VPC-purified starting mate. rial was carried through the reaction zone over the course of several hours. The pyrolysate was immediately taken up in diethyl ether to minimize polymerization in the collection traps.

Initial pyrolyses were carried out at a temperature where a given azirine was just quantitatively consumed. At these temperatures (typically $500-600^{\circ} \mathrm{C}$) monomeric product accounted for $55-65 \%$ of the pyrolysate. A reddish polymeric material comprised the remainder of the pyrolysate. Mass balance experiments confirmed that all starting material is accounted for by the trapped monomers and polymer. Relative flame ionization detector sensitivities were determined for all pyrolysis products by analysis of a solution containing known amounts of the products.

The possibility of materials reacting on the surface of the flow system was ruled out by performing a packed-tube pyrolysis. The quartz tube was packed with $1 \times 0.2 \mathrm{~cm}$ o.d. pieces of quartz tubing. Comparison of open- and packed-tube pyrolyses showed no surface-enhanced reactions to be occurring.

1-Phenyl-3-methyl-2-aza-1,3-butadiene (25). 25 was isolated from a concentrated diethyl ether solution of the $472{ }^{\circ} \mathrm{C}$ flow pyrolysis products of 19 c by preparative VPC on column $\mathrm{B}\left(100^{\circ}, 80\right.$ $\mathrm{ml} / \mathrm{min}$): ir 3040, 3005, 2950, 2900, 2850, 1642, 1616, 1571, 1488 , 1447, 1360, 1304, 1257, 1205, 1165, 967, 950, 870, 845, 711, 682 cm^{-1}; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.00\left(\mathrm{~s}, 3 \mathrm{H}\right.$, vinyl $\left.-\mathrm{CH}_{3}\right), 4.48(\mathrm{~s}, 1 \mathrm{H}$, vinyl H), 4.69 (s, 1 H , vinyl H), $7.30-8.90(\mathrm{~m}, 5 \mathrm{H}$, phenyl), 8.18 (s, 1 H , imino H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}: \mathrm{C}, 82.76 ; \mathrm{H}, 7.59 ; \mathrm{N}, 9.66$. Found: C, 82.42; H, 7.74; N, 9.84.

The structure of 25 was proved by hydrolysis ${ }^{17}$ of a solution of 0.010 g of 25 in 0.100 g of 2 -butanone with 1.250 ml of a 10% aqueous HCl solution. The reaction mixture was stirred for 48 h at room temperature. Work-up involved neutralizing with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extraction into ether. Rigorous spiking experiments on two analytical VPC columns [columns D and E (various tem-
peratures, $80-115^{\circ} \mathrm{C}, 30 \mathrm{ml} / \mathrm{min}$)] showed the hydrolysis products to have VPC retention times identical with those of authentic samples of benzaldehyde and acetone. The later eluting product was isolated from the hydrolysis extracts by preparative VPC on column $\mathrm{B}\left(70^{\circ} \mathrm{C}\right.$ and $\left.70 \mathrm{ml} / \mathrm{min}\right)$. This compound's ir spectrum correlated exactly with that of an authentic sample of benzaldehyde.

2,3-Dimethylindole (29). The indole was isolated by preparative VPC from an ether solution of the $480^{\circ} \mathrm{C}$ pyrolysate of 19 d . The ir spectrum correlated exactly with ir spectrum 911 G , Aldrich Library, for 2,3-dimethylindole: ir 3492. 3060, 2940, 2880, 1625, 1550, 1476, 1346, 1310, 1270, 1253, 101J, 932, $730 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.19\left(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 6.50-6.85$ (broad, $1 \mathrm{H}, \mathrm{NH}), 6.90-7.45$ (m, 4 H , phenyl).

3,4-Dihydroisoquinoline (27). This compound was isolated by preparative VPC of the $580^{\circ} \mathrm{C}$ pyrolysate of 19a on column C (100 ${ }^{\circ} \mathrm{C}, 100 \mathrm{ml} / \mathrm{min}$); ir $3100,3040,2970,2920,2878,1626,1576,1484$, $1452,1443,1426,1294,1272,1204,1188,1113,1051,1029,1000$, $951,918,873,857,683 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{\varsigma}\right) \delta 2.67(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.73 (t of $\mathrm{d}, J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 6.95-7.42 (m, 4, aromatic), 8.17 (t, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, imino H). The structure proof was confirmed by oxidation at $530^{\circ} \mathrm{C}$ over Pd / C in a quartz flow system. Oxidized product spectra correlated exactly with those of authentic isoquinoline.

Isoquinoline (28). The $580^{\circ} \mathrm{C}$ pyrolysis of 19 a produces isoquinoline, presumably from oxidation of 3,4-dihydroisoquinoline. ${ }^{18}$ This pyrolysis product was isolated by preparative VPC of a concentrated ether solution of the pyrolysate (column $\mathrm{C}, 100^{\circ} \mathrm{C}, 100$ $\mathrm{ml} / \mathrm{min}$): ir $3080,3002,2987,1628,1589,1574,1505,1382,1375$, 1270, 1247, 1213, 1136, 1033, 1011, 941, $853,816 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 6.90-8.2(\mathrm{~m}, 6 \mathrm{H}), 5.58(\mathrm{~d}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H})$. The spectral data correlated exactly with the spectra of an authentic sample of isoquinoline.

3,4-Dihydro-3-methylisoquinoline (26). 26 was isolated from a concentrated ether solution of 19c by preparative VPC on column C ($100^{\circ} \mathrm{C}, 100 \mathrm{ml} / \mathrm{min}$): ir 3078, $3040,2980,2943,2897,2840$, $1670,1585,1500,1468,1439,1390,1368,1327,1304,1227,1211$, 1141, 1130, 1058, 1043, 960, 943, 930, 898, 820, $709 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.31\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.68(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$) , $3.32-4.90\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}_{3}\right), 6.90-7.40(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 8.18 ($\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, imino H); mass spectrum $\mathrm{M}^{+} \mathrm{m} / e$ $145,144,130,117,103,90,76,77,51,27$. This dihydroisoquinoline was oxidized in the same manner as described for 3,4-dihydroisoquinoline (27). In the course of oxidation, the methyl group was cleaved, and isoquinoline was obtained.

Acknowledgments. We acknowledge financial support of this work by the Chevron Research Corp. and the National Science Foundation (Grant MPS 74-14711).

Registry No.-19a, 16205-14-4; 19b, 51209-52-0; 19c, 14491-02-2; 19d, 57573-53-2; 25, 51209-53-1; 26, 14123-78-5; 27, 3230-657; 28, 119-65-3; 29, 91-55-4.

References and Notes

(1) A prellminary account of this work has been published. L. A. Wendling and R. G. Bergman, J. Am. Chem. Soc., 96, 308 (1974)
(2) Camille and Henry Dreyfus Foundation Teacher-Scholar Grant Awardee, 1970-1975
(3) (a) A. Padwa and S. I. Wetmore, Jr., J. Am. Chem. Soc., 96, 2414 (1974); (b) A. Padwa and J. Smolanoff, ibid., 93, 549 (1971); (c) A. Padwa and J. Smolanoff, J. Chem. Soc., Chem. Commun., 342 (1973); (d) A. Padwa, J. Smolanoff, and A. Tremper, J. Am. Chem. Soc., 97, 4682 (1975).
(4) (a) H. Giezendanner, M. Marky, B. J. Jackson, H.J. Hansen, and H. Schmid, Helv. Chim. Acta, 55, 545 (1972); (b) B. Jackson, H.J. Hansen, and H. Schmid, ibid., 119 (1972); (c) N. Gakis, M. Marky, and H. Schmid, Ibid., 748 (1972); (d) B. Jackson, N. Gakis, M. Marky, H.J. Hansen, W. von Philipsborn, and H. Schmid, ibld., 916 (1972); (e) W. Sleber, P. Gilgen, S. Chaloupka, H.J. Hansen, and H. Schmid, Helv. Chim. Acta, 56, 1679 (1973).
(5) L. Salem, J. Am. Chem. Soc., 96, 3486 (1974).
(6) K. Isomura, S. Kobayashi, and H. Taniguchi, Tetrahedron Lett., 3499 (1968).
(7) K. Isomura, M. Okada, and T. Taniguchi, Chem. Lett., 629 (1972),
(8) D. J. Anderson, T. L. Gilchrist, G. E. Gymer, and C. W. Rees, Chem. Commun., 1518 (1971).
(9) (a) T. Nishiwaki, Tetrahedron Lett., 2049 (1969); (b) T. Nishiwaki, A. Nakano and H. Matsuoka, J. Chem. Soc. C, 1825 (1970).
(10) E. J. York, W. Dittmar, J. R. Stevenson, and R. G. Bergman, J. Am. Chem. Soc., 95, 5680 (1973).
(11) (a) A. Hassner and F. W. Fowler, J. Am. Chem. Soc., 90, 2869 (1968); (b) F. W. Fowler, Ph.D. Thesis, University of Colorado, Boulder, Colo., 1968.
(12) (a) N. J. Leonard and B. Zwanenburg, J. Am. Chem. Soc., 89, 4456 (1967); (b) R. F. Parcell. Chem. Ind. (London), 1396 (1963).
(13) K. Isomura, M. Okada, and H. Taniguchi, Tetrahedron Lett., 4073 (1969).
(14) We do not know of any precedent for a nitrene C-H insertion to form a four-membered ring.
(15) D. C. Richardson, M. E. Hendrick, and M. Jones, Jr., J. Am. Chem. Soc., 93, 3790 (1971).
(16) A. B. Levy and A. Hassner, J. Am. Chem. Soc., 93, 2051 (1971)
(17) A. Hassner, J. O. Currie, Jr., A. S. Steinfeld, and R. F. Atkinson, J. Am. Chem. Soc., 95, 2982 (1973).
(18) (a) G. M. Badger and T. M. Spotswood, J. Chem. Soc., 1635 (1959); (b) T. M. Spotswood, ibid., 4427 (1960).
(19) (a) R. Srinivasan, J. Am. Chem. Soc., 91, 6250 (1969); (b) R. Srinivasan, J. Chem. Soc. D, 1041 (1971).
(20) M. A. Battiste, B. Halton, and R. H. Grubbs, Chem. Commun., 907 (1967).
(21) R. D. Streeper and P. D. Gardner, Tetrahedron Lett., 767 (1973).
(22) (a) Because of the extremely high energies required to generate zwitterlons in the gas phase, ${ }^{226}$ we prefer to write species such as 26 as neutral carbene or diradical, rather than dipolar, intermediates; (b) L. Salem and C. Rowland, Angew. Chem., 11, 92 (1972).
(23) (a) D. H. Aue and D. Thomas, J. Org. Chem., 40, 1349 (1975); (b) A. Demoulin, H. Gorissen, A.-M. Hesbian-Frisque, and L. Ghosez, J. Am. Chem. Soc., 97, 4409 (1975).
(24) L. M. Stephenson, R. V. Gemmer, and J. I. Brauman, J. Am. Chem Soc., 94, 8620 (1972).
(25) S. W. Benson, "Thermochemical Kinetics", Wiley, New York, N.Y., 1968, p 215.
(26) P. B. Valkovich, J. L. Conger, F. A. Castiello, T. D. Brodie, and W. P. Weber. J. Am. Chem. Soc., 97, 90 (1975).

A Convenient Two-Step Synthesis of 4-(2-Imidazolyl) phthalazones from o-Phthaloyl Dichloride

Alexander L. Johnson
Contribution No 2303 from the Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898

Received September 19, 1975

The imidazo[1,2-b]isoquinoline-5,10-diones (3) derived from the condensation of equimolar amounts of o phthaloyl dichloride (1) and an imidazole (2) in the presence of 2 molar equiv of $E t_{3} \mathrm{~N}$, react readily with hydrazines $\mathrm{R}_{3} \mathrm{NHNH}_{2}\left(\mathrm{R}_{3}=\mathrm{H}\right.$, alkyl, aryl) to form 4-(2-imidazolyl)phthalazones (4), a new class of compounds. The reactions of these carbonyl reagents differ from those of nucleophiles such as hydroxide ion, alcohols, and amines which attack 3 at the lactam carbonyl group and form the carboxylic acid derivatives (5-7).

The patent literature ${ }^{1,2}$ describes the condensation of equimolar amounts of o-phthaloyl dichloride (1) and imidazoles or benzimidazoles (2) possessing unsubstituted 1
and 2 positions in $\mathrm{CH}_{3} \mathrm{CN}$ containing 2 molar equiv of $\mathrm{Et}_{3} \mathrm{~N}$ to produce imidazo[1,2-b]isoquinoline-5,10-diones (3), which react with nucleophiles such as hydroxide ion,

alcohols, and amines at the lactam carbonyl group to form the corresponding carboxylic acids (5), esters (6), and amides (7) (Scheme I). We have verified these observations, and have included a few representative examples of structures 3 and 5-7 in the Exper mental Section to illustrate their spectral characteristics, which were not described in the Bayer patents. We have also shown structure 3 ($\mathrm{R}_{1}+$ $\mathrm{R}_{2}=\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$) to be identical with the CrO_{3} oxidation product of α-(2-benzinidazolyl)-o-toluic acid ${ }^{3}$ by mixture melting point and spectra.

The reaction products of 3 with carbonyl reagents have not been previously described, and we have discovered a convenient two-step synthesis of the new 4-(2-imidazol$y \mathrm{yl}$)phthalazones (4) from 1 as a consequence of this work. Reactive difunctional carbonyl reagents such as hydrazine and its monosubstituted analogues ($\mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}$) attack both the ketonic and lac:am carbonyl groups of 3 to form the new heterocyclic ring in 4 and leave the imidazole moiety as a pendant group. This reaction has some similarities to our recent synthesis o: 2-aryl-3,3a-dihydro-8H-py-razolo[5,1-a]isoindol-8-ones from 3-phenacylphthalides ${ }^{4}$ where hydrazine attacks both a ketonic and a lactone carbonyl group to form a new heterocyclic ring.

A few comments are in order concerning the interconversions of structures 3 and 5-7, which are not evident from the Bayer work. We have found that the carboxylic acid 5 ($\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}=H$) is readily cyclized to $3\left(\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}\right.$ $=\mathrm{H}$) with excess SOCl_{2}. Ring opening of the imidazo $[1,2-$ b]isoquinoline-5,10-diones (3) with alcohols does not occur as readily as that of the more strained 2 -aryl- 8 H -pyrazolo[5,1a isoindol-8-ones which we recently described. ${ }^{4,5}$ The latter compounds have some structural similarity to 3 . Attempts to cleave $3\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}\right)$ with MeOH containing traces of methoxide at 25° produced racovered 3 on evaporation. ${ }^{5}$ However, the uv spectrum of 3 in DMF differs from that in MeOH , indicating that the first step in the methanolysis is formation of structure 8. Unlass considerable amounts of acid or base are present, 8 reverts to 3. More vigorous conditions, such as refluxing the elcoholic solvent containing 3 and molar amounts of base ${ }^{2}$ or mineral acid, are required to convert 3 to 6.

Experimental Section ${ }^{6}$

Imidazo (1,2-b]isoquinoline-5,10-dione (3, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$) was prepared from 1 and imidazole according to the literature ${ }^{1}$ in 32% yield (0.1 mol scale) after recrystallization (DMF). The crude product is a green powder, but after repeated recrystallization it forms yellow prisms with $\mathrm{mp} 238-239^{\circ} \mathrm{C}$ dec (lit. ${ }^{1} \mathrm{mp} 236{ }^{\circ} \mathrm{C}$); $\nu_{\max } 1720,1670$, and $1580 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }}$ (DMF) $365 \mathrm{~nm}(\epsilon 2040)$ and 322 (3980); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 8.33-7.85$ (m) 5 H and 7.48 ppm (d, $J=2 \mathrm{~Hz}$) 1 H . Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 66.66; H , 3.05; N, 14.14. Found: C, 67.42; H, 3.05; N, 14.25.

2(3)-Phenylimidazo[1,2-b] isoquinoline-5,10-dione ${ }^{7}$ (3, $R_{1}=$ $\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}=\mathrm{H}$) was prepared similarly from 1 and 4-phenylimidazole (Aldrich) in $32-49 \%$ crude yield as a green powder. Recrystallization (DMF) gave pure material as olive-bronze crystals with mp $285-288{ }^{\circ} \mathrm{C}$ dec; $\nu_{\text {max }} 1715$ and $1670 \mathrm{~cm}^{-1} ; \lambda_{\text {max }}$ (DMF) $402 \mathrm{~nm}(\epsilon$ 2400) and 274 (23800); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.58-8.37(\mathrm{~m})$ and $8.20-7.88(\mathrm{~m}) 4 \mathrm{H}, 7.67(\mathrm{~m}) 4 \mathrm{H}, 7.53(\mathrm{~m})$ and $7.40 \mathrm{ppm}(\mathrm{m}) 2 \mathrm{H}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 74.44; H, 3.68; N, 10.21. Found: C, 74.19; H, 3.82; N, 10.26.

Benzimidazo[1,2-b]isoquinoline-5,12-dione (3, $\mathrm{R}_{1}+\mathrm{R}_{2}=$ $\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$) was prepared similarly from 1 and benzimidazole in 64% yield after recrystallization (DMF). The pure material was a yellow, crystalline solid with $\mathrm{mp} 268-271^{\circ} \mathrm{C}$ dec (lit. ${ }^{1,3} 270$, $261-262{ }^{\circ} \mathrm{C}$); $\nu_{\max } 1710$ and $1670 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }}$ (DMF) $418 \mathrm{~nm}(\epsilon$ 2170) and $283(20600)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \delta 8.33-7.88(\mathrm{~m}) 3 \mathrm{H}$ and 7.67-7.45 ppm (m) 5 H . Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.57; H, 3.25; N, 11.29. Found: C, 72.46; H, 3.37; N, 11.28.

4-(2-Imidazoly) phthalazone ($4, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$). A mixture of $3\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}\right)(10.0 \mathrm{~g}, 50.5 \mathrm{mmol})$, EtOH $(100 \mathrm{ml})$, and hydrazine hydrate $(5.0 \mathrm{~g}, 0.10 \mathrm{~mol})$ was stirred at reflux for 3 h and cooled to $0^{\circ} \mathrm{C}$, and the crystalline product was filtered. Recrystallization (DMF) gave an 87\% yield of colorless, crystalline phthalazone with mp $>300^{\circ} \mathrm{C}$; $\nu_{\text {max }} 3420$ and $1650 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ $310 \mathrm{~nm}(\epsilon 6700), 300(9600)$, and 292 nm (10200); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \delta 8.77-8.00(\mathrm{~m}) 4 \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $8.03 \mathrm{ppm}(\mathrm{s}) 2 \mathrm{H}$ ($\mathrm{CH}=\mathrm{CH}$). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 62.25 ; \mathrm{H}, 3.80 ; \mathrm{m} / \mathrm{e}$ 212.0698. Found: C, $62.20 ; \mathrm{H}, 3.70 ; \mathrm{m} / \mathrm{e} 212.0695$.

2-Methyl-4-(2-imidazolyl)phthalazone (4, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$; $\mathrm{R}_{3}=$ CH_{3}) was prepa-ed similarly from $3\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}\right.$) and methylhydrazine in 55% yield after recrystallization ($\mathrm{CH}_{3} \mathrm{CN}$). It formed colorless crystals with $\mathrm{mp} 241-242{ }^{\circ} \mathrm{C}$; $\nu_{\max } 1660 \mathrm{~cm}^{-1}$; $\lambda_{\max }$ $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 313 \mathrm{~nm}(\epsilon 10400)$ and 302 (12000); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \delta 8.65-7.90(\mathrm{~m}) 4 \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.57(\mathrm{~s}) 2 \mathrm{H}(\mathrm{CH}=\mathrm{CH})$, and 4.07 ppm (s) $3 \mathrm{H}\left(\mathrm{NCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$: C, 63.70; H, 4.46; m/e 226.0854. Found: C, 63.72; H, 4.28; m/e 226.0814.

2-Phenyl-4-(2-imidazolyl)phthalazone (4, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=$ $\mathrm{C}_{6} \mathrm{H}_{5}$) was prepared similarly in aqueous HOAc from $3\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\right.$ H) and phenylhydrazine in 60% yield after recrystallization (50% DMF). It formed orange crystals with $\mathrm{mp} 210-211^{\circ} \mathrm{C}$; $\nu_{\text {max }} 3340$, 3210 , and $1700 \mathrm{~cm}^{-1} ; \lambda_{\max }$ (DMF) 443 nm ($\epsilon 1910$) and 284 (3250); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \delta 8.58-7.58(\mathrm{~m}) 4 \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.43$ (s) 2 H ($\mathrm{CH}=\mathrm{CH}$), and 7.22 ppm (s) $5 \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.65 ; \mathrm{H}, 4.61 ; \mathrm{N}, 18.29$. Found: C, 67.37; H, 4.84; N, 18.65.

2-Methyl-4-(4-phenyl-2-imidazolyl)phthalazone (4, $\mathrm{R}_{1}=$ $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CH}_{3}$) was prepared similarly from $3\left(\mathrm{R}_{1}=\right.$ $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{H}$) and methylhydrazine in 45% yield after recrystallization (80% DMF). It formed yellow crystals with $\mathrm{mp} 307{ }^{\circ} \mathrm{C} \mathrm{dec}$; $\nu_{\text {max }} 3400,3250$, and $1630 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }}(\mathrm{DMF}) 413 \mathrm{~nm}(\epsilon 2380)$ and 339 (12000); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 12.82$ (broad) 1 H (NH), $9.75-7.25(\mathrm{~m}) 10 \mathrm{H}$ (aromatic), and 3.83 ppm (s) $3 \mathrm{H}\left(\mathrm{NCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 71.51 ; \mathrm{H}, 4.67 ; \mathrm{N}, 18.53$. Found: C, 71.52; H, 4.54; N, 18.98.

4-(2-Benzimidazolyl)phthalazone (4, $\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{CH}=$. $\mathrm{CHCH}=\mathrm{CH} ; \mathrm{R}_{3}=\mathrm{H}$) was prepared similarly from $3\left(\mathrm{R}_{1}+\mathrm{R}_{2}=\right.$ $\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$) and hydrazine hydrate in 87% yield after recrystallization (75% DMF). It formed colorless crystals with mp $>315^{\circ} \mathrm{C}$; $\nu_{\text {max }} 3220$ and $1660 \mathrm{~cm}^{-1} ; \lambda_{\text {max }}$ (DMF) $324 \mathrm{~nm}(\epsilon 18000)$ and $281(14100)$) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \delta 8.33-8.12(\mathrm{~m}) 1 \mathrm{H}$ and 7.73-7.17 (m) 7 H. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 68.69 ; \mathrm{H}, 3.84 ; \mathrm{N}$, 21.37. Found: C, 68.79; H, 3.87; N, 21.12.

2-Methyl-4-(2-benzimidazolyl)phthalazone (4, $\mathrm{R}_{1}+\mathrm{R}_{2}=$ $\left.\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH} ; \mathrm{R}_{3}=\mathrm{CH}_{3}\right)$ was prepared similarly from $3\left(\mathrm{R}_{1}+\right.$ $\mathrm{R}_{2}=\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}$) and methylhydrazine in 81% yield after recrystallization (45% DMF). It formed yellow crystals with mp $253-255^{\circ} \mathrm{C}$; $\nu_{\text {max }} 3290$ and $1630 \mathrm{~cm}^{-1} ; \lambda_{\max }$ (DMF) $401 \mathrm{~nm}(\epsilon 830)$, 332 (17 700), and 281 (14100); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \delta 8.30-8.10$ (m) $1 \mathrm{H}, 7.72-7.22(\mathrm{~m}) 7 \mathrm{H}$, and $3.67 \mathrm{ppm}(\mathrm{s}) 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 69.55 ; \mathrm{H}, 4.38$. Found: C, 69.39; $\mathrm{H}, 4.32$.

2-(2-Carboxybenzoyl)imidazole (5, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$). A mixture of $3\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}\right)(5.77 \mathrm{~g}, 29 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml}), \mathrm{MeOH}(30 \mathrm{ml})$, and $\mathrm{NaOH}(2.0 \mathrm{~g}, 50 \mathrm{mmol})$ was stirred at $25^{\circ} \mathrm{C}$ for 2 h . Neutralization of the resulting solution (pH 7) gave a colorless precipitate which was recrystallized (210 ml of MeOH) to give 4.31 g (20 $\mathrm{mmol}, 69 \%$) of product as colorless needles with mp $228-229^{\circ} \mathrm{C}$ dec (lit. ${ }^{2} 200^{\circ} \mathrm{C}$); $\nu_{\max }$ (Nujol) 3290 and $1670 \mathrm{~cm}^{-1} ; \lambda_{\max } \mathrm{MeOH}$) 287 nm ($\epsilon 13300$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 12.17$ (broad) 2 H $\left(\mathrm{CO}_{2} \mathrm{H}, \mathrm{NH}\right), 8.03-7.80(\mathrm{~m})$ and $7.67-7.53(\mathrm{~m}) 4 \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, and 7.27 ppm (s) $2 \mathrm{H}(\mathrm{CH}=\mathrm{CH})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 61.11 ; H , 3.73; N, 12.96. Found: C, 61.17; H, 3.75; N, 13.23.

2-(2-Carboxybenzoyl)-4-phenylimidazole ${ }^{7}$ ($5, \mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{2}$ $=H)$ was prepared similarly from $3\left(\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}=\mathrm{H}\right)$ in 82% yield after recrystallization from a mixture of $\mathrm{MeOH}(20 \mathrm{ml})$, $\mathrm{Me}_{2} \mathrm{SO}(10 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$. The product was a colorless solid with $\mathrm{mp} 280{ }^{\circ} \mathrm{C}$ dec; $\nu_{\max }$ (Nujol) 3350 and $1670 \mathrm{~cm}^{-1}$; $\lambda_{\max }$ (MeOH) $323 \mathrm{~nm}(\epsilon 16300)$ and 250 (12 700); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 8.00-7.58(\mathrm{~m}) 7 \mathrm{H}$ and $7.47-7.17 \mathrm{ppm}(\mathrm{m}) 3 \mathrm{H}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 69.85; H, 4.14; N, 9.59. Found: C, 69.54; H, 4.23; N, 9.32 .

2-(2-Carboxybenzoyl)benzimidazole (5, $\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{CH}=$ $\mathrm{CHCH}=\mathrm{CH})$ was prepared similarly from $3\left(\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{CH}=\right.$ $\mathrm{CHCH}=\mathrm{CH}$) in 92% yield after recrystallization ($67 \% \mathrm{MeOH}$). The product was a colorless solid with $\mathrm{mp} 270-271{ }^{\circ} \mathrm{C}$ (lit. ${ }^{2} 250$ ${ }^{\circ} \mathrm{C}$); $\nu_{\text {max }} 3380,3320$, and $1680 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }}(\mathrm{MeOH}) 310 \mathrm{~nm}(\epsilon$ 15300) and 240 (10200); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 13.40$ (brcad) 2 H $\left(\mathrm{CO}_{2} \mathrm{H}, \mathrm{NH}\right)$ and $8.12-7.17 \mathrm{ppm}(\mathrm{m}) 8 \mathrm{H}$ (aromatic). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $67.66 ; \mathrm{H}, 3.79 ; \mathrm{N}, 10.52$. Found: C, $65.86 ; \mathrm{H}$, 3.70; N, 10.23.

Cyclization of 2-(2-Carboxybenzoyl)-4-phenylimidazole. A mixture of $5\left(\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}=\mathrm{H}\right)(1.0 \mathrm{~g}, 3.45 \mathrm{mmol})$ and $\mathrm{SOCl}_{2}(20$ ml) was warmed on a steam bath for 5 min , then evaporated to leave $0.8151 \mathrm{~g}(2.98 \mathrm{mmol}, 87 \%)$ of $2(3)$-phenylimidazo[1.2-b]iso-quinoline-5,10-dione ($3, \mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}=\mathrm{H}$) as a yellow solid, mp 288-290.5 ${ }^{\circ} \mathrm{C}$. Recrystallized material (DMF) was identical spectrally with material prepared from 1 and $2\left(\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}=\mathrm{H}\right.$) above.
Treatment of $3\left(R_{1}=R_{2} \approx H\right)$ with MeOH. A mixture of $3\left(R_{1}\right.$ $\left.=\mathrm{R}_{2}=\mathrm{H}\right)(1.0 \mathrm{~g}, 5.05 \mathrm{mmol}), \mathrm{MeOH}(20 \mathrm{ml})$, and a small chip of sodium was stirred at $25^{\circ} \mathrm{C}$ for 1.5 h . The yellow color faded and the dione went into solution, but isolation by evaporation gave only starting material. Comparison of the uv spectra of $3\left(\mathrm{R}_{1}=\mathrm{R}_{\mathbf{2}}\right.$ $=\mathrm{H}$) in DMF [$\lambda_{\max } 365 \mathrm{~nm}(\epsilon 2040)$ and 322 (3980)], where no reaction can occur, and in MeOH [$\lambda_{\max } 290 \mathrm{~nm}(\epsilon 14200)$] with an authentic sample of ester $6\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{\mathrm{i}}\right)$ [$\lambda_{\text {max }}(\mathrm{EtOH})$ $290 \mathrm{~nm}(\epsilon 13100)]$ suggests the presence of species 8 in methanol solutions of $3 ; 8$ reverts to 3 on isolation.
2-(2-Carboethoxybenzoyl)imidazole ($6, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}=$ $\mathrm{C}_{2} \mathrm{H}_{5}$) was prepared by stirring a mixture of $3\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}\right)(5.77$ $\mathrm{g}, 29.0 \mathrm{mmol}$), $\mathrm{EtOH}(50 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{ml})$ at reflux for 2 h , during which time the solid dissolved. The mixture was diluted
$\left(\mathrm{H}_{2} \mathrm{O}\right)$ and neutralized (pH 7) to give 8 as a colorless precipitate, yield $4.97 \mathrm{~g}(20.4 \mathrm{mmol}, 70 \%)$ after recrystallization (160 ml of 25% EtOH). Pure 6 had mp $156-158^{\circ} \mathrm{C}$ (lit..$^{2} 170^{\circ} \mathrm{C}$); $\nu_{\max } 1700,1600$, and $1270 \mathrm{~cm}^{-1} ; \lambda_{\max }(\mathrm{EtOH}) 290 \mathrm{~nm}(\epsilon 13 \mathrm{100})$ and 214 (13800); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.67$ (broad) $1 \mathrm{H}(\mathrm{NH}), 8.42-7.77$ (m) 4 H $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.18(\mathrm{~s}) 2 \mathrm{H}(\mathrm{CH}=\mathrm{CH}), 4.12(\mathrm{q}, J=7 \mathrm{~Hz}) 2 \mathrm{H}\left(\mathrm{OCH}_{2}\right)$, and $1.07 \mathrm{ppm}(\mathrm{t}, J=7 \mathrm{~Hz}) 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 63.92; H. 4.95; N, 11.47. Found: C, 63.81; H, 4.80; $\mathrm{N}, 11.84$.

2-(2-Carbamoylbenzoyl)imidazole (7, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}^{\prime}=\mathrm{H}$). A mixture of $3\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}\right)(5.77 \mathrm{~g}, 29 \mathrm{mmol})$ and liquid $\mathrm{NH}_{3}(100$ ml) was stirred at $-33^{\circ} \mathrm{C}$ for 1 h . The solid dissolved to form a colorless solution, evaporation of which gave the crude amide. Recrystallization from a mixture of $\mathrm{MeOH}(90 \mathrm{ml}), \mathrm{Me}_{2} \mathrm{SO}(70 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}$ (150 ml) gave $4.59 \mathrm{~g}(21.4 \mathrm{mmol}, 74 \%)$ of colorless, crystalline product with $\mathrm{mp} 193-194^{\circ} \mathrm{C} \mathrm{dec} ; \nu_{\max }$ (Nujol) 3290 and $1675 \mathrm{~cm}^{-1}$; $\lambda_{\max }(\mathrm{MeOH}) 275 \mathrm{~nm}(\epsilon 1265) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 12.22$ (broad) $1 \mathrm{H}(\mathrm{NH}), 9.13$ and 7.12 (broad) $2 \mathrm{H}\left(\mathrm{NH}_{2}\right), 7.82-7.42$ (m) $4 \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, and 6.92 ppm (s) $2 \mathrm{H}(\mathrm{CH}=\mathrm{CH})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 61.39; $\mathrm{H}, 4.22$. Found: C, 61.11; $\mathrm{H}, 4.28$.

Registry No.-1, 88-95-9; $2\left(\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}=\mathrm{H}\right)$, 670-95-1; 2 $\left(\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}\right), 51-17-2 ; 3\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}\right)$, 36142-27-5; 3 ($\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5}$; $\mathrm{R}_{2}=\mathrm{H}$), 57594-19-1; $3\left(\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{CH}=\right.$ $\mathrm{CHCH}=\mathrm{CH}), 6659-72-9 ; 4\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}\right), 57594-20-4 ; 4\left(\mathrm{R}_{1}\right.$ $\left.=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{CH}_{3}\right), \mid 57594-21-5 ; 4\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 57594-22-6; $4\left(\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{CH}_{3}\right), 57594-23-7 ; 4\left(\mathrm{R}_{1}\right.$ $\left.+\mathrm{R}_{2}=\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH} ; \mathrm{R}_{3}=\mathrm{H}\right),|57594-24-8 ;| 4^{\prime}\left(\mathrm{R}_{1}+\mathrm{R}_{2}=\right.$ $\left.\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH} ; \mathrm{R}_{3}=\mathrm{CH}_{3}\right), \backslash 57594-25-9 ; \mid 5\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}\right)$, 41200-40-2; 5 ($\left.\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{2}=\mathrm{H}\right)$, $57594-26-0 ; 5\left(\mathrm{R}_{1}+\mathrm{R}_{2}=\right.$ $\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH})$, 41200-57-1; $6\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{C}_{2} \mathrm{H}_{5}\right)$, 41200-53-7; $7\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}^{\prime}=\mathrm{H}\right)$, 57594-27-1; 8, 57594-28-2; methylhydrazine, 60-34-4; phenylhydrazine, 100-63-0; hydrazine hydrate, 10217-52-4.

References and Notes

(1) Belgian Patent 772186 (1971) to Bayer A.G.
(2) E. Regel, K. Lürssen, and K. Büchel, West German Patent 2145456 (1973) to Bayer A.G.
(3) M. F. Sartori, A. Oken, and H. E. Schroeder, J. Org. Chem., 31, 1498 (1966).
(4) E. W. Bousquet, M. D. Moran, A. L. Johnson, J. Harmon, and J. W. Summers, J. Org. Chem., 40, 2208 (1975).
(5) This chemistry should be compared with that of 3-aryl-5-pyrazolyibenzoic acids: A. L. Johnson and P. B. Sweetser, J. Org. Chem., 41, 110 (1976).
(6) Melting points are uncorrected, and were determined in a Mel-Temp capillary apparatus; ir spectra were determined in KBr on a Perkin-Elmer 621 instrument; uv spectra were determined on a Cary Model 14 instrument; NMR spectra were determined vs. internal $\mathrm{Me}_{4} \mathrm{Si}$ on a Varian Associates A-60 instrument; mass spectra were determined by direct injection into a Consolidated CEC-110 instrument.
(7) These compounds are not described in ref 1 and 2.

The Mechanism of Bromination of $4(\mathbf{3 H})$-Quinazolinone, Its 3-Methyl and Its 1,3-Dimethyl Derivatives in Aqueous Acidic Solutions

Oswald S. Tee* and Ghanshyam V. Patil
Department of Chemistry, Sir George Williams Campus, Concordia University, Montreal, H3G 1M8, Quebec, Canada
Received July 18, 1975

Abstract

The kinetics of bromination of $4(3 \mathrm{H})$-quinazolinone, 3 -methyl-4-quinazolinone, and 1,4-dihydro-1,3-dimethyl4 -oxoquinazolinium perchlorate have been measured in dilute aqueous acid media. The kinetic order of the reactions, the acidity dependence of the rates, the inverse dependence of the rates on bromide ion, and the relative reactivities of the substrates are all consistent with a mechanism in which the rate-determining step is attack by molecular bromine upon the covalent hydrate (or pseudobase) of the substrates.

Relatively little has been done on the mechanistics as pects of quinazoline chemistry, although many derivatives have been prepared for potential medicinal purposes. ${ }^{1}$ It is known, ${ }^{2}$ however, that several simple quinazolines show appreciable covalent hydration, ${ }^{2,3}$ particularly in their pro-
tonated forms. In aqueous solution $2(1 \mathrm{H})$-quinazolinone ${ }^{4}$ exists to the extent of 25% as the covalent hydrate formed by addition of water across the $\mathrm{C}_{4}-\mathrm{N}_{3}$ double bond, ${ }^{5}$ but there is no direct evidence for the covalent hydration of $4(3 H)$-quinazoline ($1, \mathrm{R}=\mathrm{H}$). However, it is interesting to
note that the oxidation of $1(\mathrm{R}=\mathrm{H})$ to $2,4(1 H, 3 H)$-quinazolinedione ${ }^{6}$ may occur via its covalent hydrate $3\left(R=R^{\prime}=\right.$ H).

Earlier work on $2(1 \mathrm{H})$-pyrimidinones ${ }^{7}$ and $4(3 \mathrm{H})$-pyrimidinones ${ }^{8}$ has pointed to the ir volvement of covalent hydrates in the hydrogen-deuterivm exchange ${ }^{7 a, 8 a}$ reactions and the brominations ${ }^{7 b, 8 b, c}$ of these substrates in aqueous media. The object of the present work was to study the bromination of $4(3 H)$-quinazolinone ($1, \mathrm{R}=\mathrm{H}$) and to ascertain the involvement, or otherwise, of its covalent hydrate $3\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}\right)$ in this reacion.

Such studies may have ramifications with respect to oxidations catalyzed by the enzym ϵ xanthine oxidase, e.g., aldehydes to acids, purines to hydroxypurines, and pteridines to hydroxypteridines, ${ }^{9}$ since it is a reasonable hypothesis that covalent hydrates ε re involved in these oxidations. Various heterocyclic systems which are known to undergo covalent hydration are easily oxidized to hydroxy derivatives. ${ }^{3}$

Results and D:scussion

Bogert and Geiger ${ }^{10}$ reported that attempts to brominate $1(\mathrm{R}=\mathrm{H})$ with bromine in aqueJus potassium bromide solution, in glacial acetic acid, cr in acetic anhydride all failed. However, they did obtair a monobromo product by carrying out the bromination in sulfuric acid, but the position of the bromine in their prod act was not specified.

Contrary to their report ${ }^{10}$ we ind that $1(\mathrm{R}=\mathrm{H})$ can be synthetically brominated by bromine in aqueous potassium bromide solution and the 6 -bromo product $7(\mathrm{R}=\mathrm{H})$ can be isolated in high yield. The prcduct so obtained was identical with material made by cyclization of 5 -bromoanthranilic acid. ${ }^{11}$ Similarly synthetic brominations of $1(\mathrm{R}=$ $\mathrm{Me})$ and $2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ perchlorate in aqueous methanol gave good yields of $7(R=M e)$ and $6\left(R=R^{\prime}=M e\right)$ perchlorate, respectively.

Spectral changes occurring during a bromination of 1 (R $=\mathrm{H}$) carried out in dilute acid ($0.01 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{pH} 2.23$)

Scheme I

6

Table I. Variation of Rate of Bromination of 4(3H)-Quinazolinone (1, $\mathrm{R}=\mathrm{H}$) with Substrate Concentration ${ }^{a}$

$[1] \times 10^{3}, \mathrm{M}$	$\left[\mathrm{Br}_{2}\right] \times$ $10^{4}, \mathrm{M}$	$\mathrm{k}_{1} \times 10^{3}$, $\min ^{-1}$	$\mathrm{Av} k_{1} \times$ $10^{3}, \min ^{-1}$
5.0	4.91	114	
	6.51	115	115
4.0	4.94	93.7	
2.5	5.20	94.3	94
	2.27	56.0	
1.25	2.91	56.5	56.3
	1.22	28.4	
	1.33	30.9	29.7

${ }^{a}$ At $30^{\circ} \mathrm{C},[\mathrm{KBr}]=0.01 \mathrm{M}$, acetate buffer pH 3.97 . These data are plotted in Figure 1.
were completely consistent with the simple conversion of 1 $(\mathrm{R}=\mathrm{H}) \rightarrow \mathbf{7}(\mathrm{R}=\mathrm{H})$. Uv spectra traced at various times after mixing equimolar quantities $\left(4.5 \times 10^{-5} \mathrm{M}\right)$ of $1(\mathrm{R}=$ H) and bromine showed a gradual diminution in absorbance due to these substrates, a clean isosbestic point at 304 nm , and a final spectrum identical with that of an authentic sample of $7(\mathrm{R}=\mathrm{H})$ of the appropriate concentration in the same medium. In neither the synthetic work nor in spectral studies was there any evidence of the formation of any 8 -bromo- $4\left(3 \mathrm{H}\right.$)-quinazolinone (8). ${ }^{12}$

8

9

We also ruled out the formation of the 6,8 -dibromo derivative (9) during the bromination of $1(\mathrm{R}=\mathrm{H})$. It was found that the apparent rate of the bromination $7(\mathrm{R}=\mathrm{H})$ $\rightarrow 9$ is very much slower than that of the parent $1 \rightarrow 7(R=$ H). At $30^{\circ} \mathrm{C}, 7(\mathrm{R}=\mathrm{H})$ did not decolorize an equivalent amount of bromine even after 4 days. An attempted synthetic scale dibromination of $1(\mathrm{R}=\mathrm{H})\left(10 \mathrm{~h}\right.$ at $\left.85^{\circ} \mathrm{C}\right)$ was unsuccessful with only the 6 -bromo derivative ($7, \mathrm{R}=\mathrm{H}$) being obtained. However, 9 was obtained by prolonged heating of $7(\mathrm{R}=\mathrm{H})$ and bromine for 1 week at $50^{\circ} \mathrm{C}$. From these observations the possibility of significant dibromination of $1(\mathrm{R}=\mathrm{H})$ during the course of the kinetic studies can be safely eliminated, particularly since these were carried out with a tenfold excess of substrate over bromine.

Order of Reaction. Initial titration kinetics suggested a second-order reaction: first order in substrate, and first order in bromine. For convenience, therefore, subsequent kinetics were measured under pseudo-first-order conditions, with an approximate tenfold excess of substrate over bromine. Rate constants (k_{1}) thus obtained were for the pseudo-first-order disappearance of bromine due to the reaction $1 \rightarrow 7$ (or $2 \rightarrow 6$).

That this reaction is truly second order is shown by the data in Table I (plotted in Figure 1). The pseudo-firstorder rate constants (k_{1}) diminish linearly with the substrate concentration, and within experimental error, the least-squares line in Figure 1 goes through the origin. ${ }^{13}$

Bromide Ion Dependence. Brominations of the type under consideration produce bromide ion, and thus complex kinetics may be observed since there is a progressive reduction in the concentration of free bromine owing to the formation of tribromide ion. ${ }^{14}$ Moreover, there are examples known where tribromide ion acts as an electrophile and gives rise to $1-3 \%$ of the product. ${ }^{15}$

Figure 1. Variation of the rate of bromination of $4(3 \mathrm{H})$-quinazolinone ($1, \mathrm{R}=\mathrm{H}$) with substrate concentration.

To swamp the effect of bromide ion produced during kinetic runs all solutions used contained about a 20 -fold excess of potassium bromide. In order to see if molecular bromine is the sole brominating agent, or if tribromide ion also makes a contribution, ${ }^{16}$ the variation of rate with bromide ion concentration was studied for the bromination of 1 (R $=\mathrm{H}$) (Table II).

The situation may be expressed by the equations

$$
\begin{gathered}
\mathrm{Br}_{3}-\stackrel{K}{\rightleftharpoons} \mathrm{Br}^{-}+\mathrm{Br}_{2} \\
1+\mathrm{Br}_{2} \xrightarrow{k_{2}} 7 \\
1+\mathrm{Br}_{3}-\xrightarrow{k_{2}^{\prime}} 7
\end{gathered}
$$

where $K=\left[\mathrm{Br}_{2}\right]\left[\mathrm{Br}^{-}\right] /\left[\mathrm{Br}_{3}^{-}\right]$. When bromide ion is present in excess, the observed second-order rate constant should have the form

$$
\begin{equation*}
k_{2}{ }^{\text {obsd }}=\frac{k_{2} K+k_{2}{ }^{\prime}\left[\mathrm{Br}^{-}\right]}{K+\left[\mathrm{Br}^{-}\right]} \tag{1}
\end{equation*}
$$

However, if reaction via tribromide ion is negligible ($k_{2}{ }^{\prime}$ $\simeq 0$) eq 1 reduces to

$$
\begin{equation*}
k_{2}{ }^{\mathrm{obsd}}=k_{2} K /\left(K+\left[\mathrm{Br}^{-}\right]\right) \tag{2}
\end{equation*}
$$

and thus $k_{2}{ }^{\text {obsd }}$ should diminish as the concentration of bromide ion is increased. This trend is evident in the observed data shown in Table II which is best analyzed in terms of the reciprocal form of eq 2

$$
\begin{equation*}
\frac{1}{k_{2}{ }^{\text {obsd }}}=\frac{1}{k_{2}}+\frac{\left[\mathrm{Br}^{-}\right]}{k_{2} K} \tag{3}
\end{equation*}
$$

As shown in Figure 2 a plot of $1 / k_{2}{ }^{\text {obsd }}$ vs. $\left[\mathrm{Br}^{-}\right]$vields an excellent straight line ${ }^{19}$ from whose slope and intercept ${ }^{19}$ we calculate $k_{2}=30.3 \mathrm{M}^{-1} \mathrm{~min}^{-1}$ and $K=0.0554 \mathrm{M}$. This value of K, which applies to $30^{\circ} \mathrm{C}$, is very close to that obtained by Bell ${ }^{20}(0.0562)$ for $25^{\circ} \mathrm{C}$. If reaction via tribromide ion were appreciable ($>1 \%$) the plot in Figure 2 would show significant curvature at the higher bromide ion concentrations.

Table II. Variation of the Rate of Bromination of $4(3 H)$-Quinazolinone ($1, \mathrm{R}=\mathrm{H}$) with [$\left.\mathrm{Br}^{-}\right]^{a}$

$\left[\mathrm{Br}^{-}\right]$,	k_{2} obsd, M^{-1},	$1 / k_{2}$ obsd, Min^{-1}	k_{2} obsd $(K+$ $\left.\left[\mathrm{Br}^{-}\right]\right), b$ $\min ^{-1}$
0.01	25.7	0.0389	1.68
0.02	22.1	0.0453	1.67
0.03	19.6	0.0510	1.67
0.05	16.0	0.0625	1.69
0.10	10.8	0.0926	1.68
0.15	8.16	0.1226	1.68

${ }^{a}$ At $30^{\circ} \mathrm{C},[1]=5.0 \times 10^{-3} \mathrm{M}$, acetate buffer pH 3.55 . Each k_{2} obsd is the average of two determinations differing by 2% or less. Reciprocal data plotted in Figure 2. ${ }^{b}$ Uses $K=0.0554 \mathrm{M}$ derived from Figure 2.

Table III. Variation of Rates of Bromination of 1

Substrate	pH	$\begin{gathered} k_{2} \text { obsd }, \\ M^{-1}, \\ \min ^{-1} \end{gathered}$	$\underset{k_{2}}{\operatorname{Lobsd}}$	$\begin{aligned} & \text { No. } \\ & \text { of } \\ & \text { runs } \end{aligned}$
1 ($\mathrm{R}=\mathrm{H}$)	0.29	0.333	-0.476	3
	0.59	0.685	-0.164	3
	0.98	1.55	0.190	3
	1.27	2.39	0.378	3
	1.66	6.49	0.812	2
	1.94	9.32	0.969	3
	2.23	15.9	1.20	2
	2.63	21.1	1.32	3
	2.80	21.2	1.33	2
	3.07	25.4	1.40	2
	3.55	25.7	1.41	2
	3.97	25.9	1.41	2
$1(\mathrm{R}=\mathrm{Me})$	0.30	0.512	-0.291	2
	0.60	0.945	-0.025	2
	0.99	2.32	0.365	2
	1.27	4.39	0.642	2
	1.60	8.38	0.923	2
	1.78	12.7	1.10	2
	2.24	19.3	1.29	2
	2.40	25.6	1.41	2
	2.82	30.3	1.48	2
	3.14	36.3	1.56	2
	3.38	41.1	1.61	2
	3.61	40.0	1.61	2
$2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$	0.29	1.56	0.193	4
	0.58	3.53	0.548	4
ClO_{4}^{-}	0.96	7.41	0.870	2
	1.23	15.1	1.18	2
	1.50	$28.5{ }^{\text {b }}$	1.46	2
	1.84	$68.1{ }^{\text {b }}$	1.83	4

${ }^{a}$ At $30^{\circ} \mathrm{C}$, [substrate] $=5.0 \times 10^{-3} \mathrm{M},\left[\mathrm{Br}_{2}\right] \simeq 5.0 \times$ $10^{-4} \mathrm{M},[\mathrm{KBr}]=0.01 \mathrm{M}$. For $\mathrm{pH} 0 \rightarrow 2$ dilute sulfuric acid, $\mathrm{pH} 2 \rightarrow 3$ chloroacetate buffers, $\mathrm{pH} 3 \rightarrow 4$ acetate buffers. The values of k_{2} obsd are the average of two or more determinations as indicated in column 5. ${ }^{b}$ [Substrate] $=2.5 \times$ $10^{-3} \mathrm{M},\left[\mathrm{Br}_{2}\right] \simeq 3.0 \times 10^{-4} \mathrm{M}$.

As a further check on the unimportance of reaction via tribromide ion we note that eq 2 requires that the term $k_{2}{ }^{\text {obsd }}$ ($K+\left[\mathrm{Br}^{-}\right]$) remain constant over a range of bromide ion concentration. Column 4 of Table II shows that for the present data this term does indeed remain constant. If tribromide ion had $k_{2}^{\prime}=0.3 \mathrm{M}^{-1} \mathrm{~min}^{-1}$ (i.e., 1% of k_{2}) the term would rise from 1.68 to 1.72 over the range of bromide ion concentration studied.

In summary, we conclude that bromination by tribromide ion is negligible ($<1 \%$) with respect to reaction via molecular bromine.

Acidity Dependence. The rates of bromination of 1 (R

Figure 2. Variation of the rate of bromination of $4(3 H)$-quinazolinone $(1, \mathrm{R}=\mathrm{H})$ with [Br^{-}].

Figure 3. Acidity dependence of the rates of bromination of the substrates: $O, 1(R=H) ; \Delta, 1(R=M e) ; 2\left(R=R^{\prime}=M e\right)$ perchlorate.
$=H), 1(R=M e)$, and $2\left(R=R^{\prime}=M e\right)$ perchlorate were measured at various acidities in dilute sulfuric acid and in buffer solutions. ${ }^{21}$ The data oblained are given in Table III and are plotted in Figure 3.

The rate data for the 1,3-dimethyl cation ($2, \mathrm{R}=\mathrm{R}^{\prime}=$ Me) increase linearly ${ }^{22}$ with pF_{-}^{-}in the manner appropriate for the reaction taking place u oon the pseudobase $3(\mathrm{R}=$ $R^{\prime}=\mathbf{M e}$). As described in the Experimental Section this pseudobase may be observed, and the $\mathrm{p} K$ for its formation is about 7 .

The rate profiles for the parent $1(\mathrm{R}=\mathrm{H})$ and the 3 methyl derivative $1(R=M e)$ are consistent with reaction taking place upon their free base forms, since the
known ${ }^{23,24} \mathrm{pK}_{\mathrm{a}}$'s for their conjugate acids $2\left(\mathrm{R}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}^{\prime}\right.$ $=\mathrm{H}$) are 2.12 and 2.18 (at $20^{\circ} \mathrm{C}$), respectively. However, the rate profiles are also consistent with the reaction taking place upon species, such as the covalent hydrates $3(R=H$, $\left.\mathrm{Me} ; \mathrm{R}^{\prime}=\mathrm{H}\right)$, that are in equilibrium with the free bases 1 ($\mathrm{R}=\mathrm{H}, \mathrm{Me}$) in a manner that is independent of acidity. ${ }^{7 \mathrm{a}}$

In the region $\mathrm{pH}<2$ where all three substrates exist predominantly as cations they react with bromine at very similar rates. For example at pH 0.29 the relative rates of $1(\mathrm{R}$ $=\mathrm{H})$ to $1(\mathrm{R}=\mathrm{Me})$ to $2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ are 1.00:1.54:4.68. These similarities are strongly suggestive that the three substrates react via very similar mechanisms, with the small rate differences being attributable to the normal acti-

Table IV. Uv Spectral Data and Ionization Constants of the Substrates and Their Bromination Products

Compd	$\mathrm{p} K_{\mathrm{a}}$	pH	$\lambda_{\text {max }}, \mathrm{nm}(\log \epsilon)$	Ref
$1(\mathrm{R}=\mathrm{H})$		$2 . £ 3$	$\begin{aligned} & 255(3.76), 261(3.77), 283(3.68), \\ & 291(3.65) \end{aligned}$	This work
	2.12	7.C0	$\begin{aligned} & 226(4.42), 231(4.39), 263(3.75), \\ & 269(3.71), 292(3.46), 311(3.61), \\ & 313(3.54) \end{aligned}$	23, 44
$1(\mathrm{R}=\mathrm{Me})$	2.18	$1 . \mathrm{C}$	$\begin{aligned} & 229(4.34), 234(4.39), 279(3.78), \\ & 293(3.74), 303(3.59) \end{aligned}$	24
		$7 . \mathrm{C}$	$\begin{aligned} & 225(4.42), 266(3.80), 272(3.78), \\ & 290(3.43), 301(3.56), 313(3.49) \end{aligned}$	44
2 ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$), ClO_{4}^{-}		2.10	273 (3.77), 283 (3.77), 294 (3.67)	This work
7 (R = H)		0.29	266 (3.97), 293 (3.72), 302 (3.56)	This work
$7(\mathrm{R}=\mathrm{Me})$		2.10	264 (3.85), 297.5 (3.37), 311.3 (2.23)	This work
$6\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right), \mathrm{ClO}_{4}^{-}$		2.10	274 (3.96), 294 (3.80), 305 (3.66)	This work

vating effect on methyl groups upon electrophilic substitution. Since the cation $2\left(R=R^{\prime}=M e\right)$ almost certainly reacts via its pseudobase $3\left(R=R^{\prime}=M e\right)$, this requires that $4(3 H)$-quinazolinone ($1, \mathrm{R}=\mathrm{H}$) and its 3-methyl derivative $1(\mathrm{R}=\mathrm{Me})$ react via their covalent hydrates $3(\mathrm{R}=$ $\mathrm{H}, \mathrm{Me} ; \mathrm{R}^{\prime}=\mathrm{H}$).
The mechanism proposed, then, is that shown in Scheme I. In this, the covalent hydrates (or pseudobase) 3, in equilibrium with the cations 2 , react with molecular bromine to give intermediates 4 in the rate-determining step. ${ }^{25}$ Proton loss ${ }^{25}$ from 4 gives the covalent hydrates (or pseudobase) 5 in equilibrium with the product cations 6.

The kinetically significant steps of the mechanism are

$$
\mathbf{1}+\mathrm{H}^{+} \stackrel{K_{\mathrm{g}}}{\rightleftharpoons} \mathbf{2} \stackrel{K}{\rightleftharpoons} \mathrm{H}^{+}+3 \stackrel{k_{2}, \mathrm{Br}_{2}}{\rightarrow} \text { products }
$$

For this sequence

$$
\begin{equation*}
\text { rate }=k_{2}{ }^{\text {obsd }}[2]_{\mathrm{S}}\left[\mathrm{Br}_{2}\right]=k_{2}[3]\left[\mathrm{Br}_{2}\right] \tag{4}
\end{equation*}
$$

where $[2]_{\mathrm{S}}$ is the stoichiometric concentration of the cation $([1]+[2]+[3])$. If we define $K_{\mathrm{a}}=[1]\left[\mathrm{H}^{+}\right] /[2]$ ard $K=$ $[3]\left[\mathrm{H}^{+}\right] /[2]$ then it follows from eq 4 that

$$
\begin{equation*}
k_{2}{ }^{\text {obod }}=\frac{k_{3} K}{\left(K_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]+K\right)} \tag{5}
\end{equation*}
$$

In the region of acidity studied, the observed data (Table III, Figure 3) are completely in accord with this equation.

For the dimethyl cation $2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ the equi.ibrium $1 \rightleftarrows 2$ does not exist and so the term K_{a} disappears from eq 5. Moreover, the equilibrium constant $K \simeq 10^{-7} \ll\left[\mathrm{H}^{+}\right]$at the acidities used, and so eq 5 simplifies to

$$
\begin{equation*}
k_{2}{ }^{\mathrm{absd}}=k_{2} K /\left[\mathrm{H}^{+}\right] \tag{6}
\end{equation*}
$$

This equation requires that a plot of $\log k_{2}{ }^{\text {obsd }}$ vs. pH should give a straight line of unit slope. The least-squares line ${ }^{22}$ through the data in Figure 3 has a slope of 1.04.

For the substrates $1(\mathrm{R}=\mathrm{H}, \mathrm{Me})$ the constant $K_{\mathrm{a}} \simeq$ 10^{-2}, whereas K is probably $10^{-5}-10^{-6}$ [since for the dimethyl cation $\left.2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right) K \simeq 10^{-7}\right]$, and so eq 5 may be reduced to

$$
\begin{equation*}
k_{2}{ }^{\mathrm{obsd}}=k_{2} K /\left(K_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]\right) \tag{7}
\end{equation*}
$$

The logarithmic form of this equation

$$
\log k_{2}{ }^{\text {obsd }}=\log k_{2} K-\log \left(K_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]\right)
$$

generates curves such as those shown by the observed data in Figure 3. The curve drawn through experimental points for $1(\mathrm{R}=\mathrm{H})$ was calculated from eq $7 \mathrm{usir} . \mathrm{g}^{27} k_{2} K=0.171$ $\min ^{-1}$, and $K_{\mathrm{f}}=10^{-2.21}$. The agreement between the calculated curve and the experimental points is excellent. Similarly, the curve drawn for $1(\mathrm{R}=\mathrm{Me})$ using ${ }^{27} k_{2} K=0.256$ $\min ^{-1}$ and $K_{a}=10^{-2.21}$ gives an exceller.t fit to the ob-
served data. The slight differences between the $\mathrm{p} K_{\mathrm{a}}$'s used here ($2.21,2.21$) and those determined experimentally ($2.12,2.18)^{23,24}$ are probably not significant, although, of course, the former apply to $30^{\circ} \mathrm{C}$, whereas the latter apply to $20^{\circ} \mathrm{C}$.

The observed kinetic data, then, are entirely consistent with the mechanism proposed in Scheme I in which the substrates 1 (or 2) react with bromine via their covalent hydrates (or pseudobase) 3. Similar conclusions were arrived at earlier for the hydrogen-deuterium exchanges and brominations of $2(1 \mathrm{H})$-pyrimidinones ${ }^{7}$ and $4(3 \mathrm{H})$-pyrimidinones. ${ }^{8}$

Relative Reactivities. As a final point we look at the relative reactivities of the three substrates in terms of the proposed mechanism. The numerator term $k_{2} K$ of eq 6 and 7 is not separable except for the dimethyl cation $2\left(R=R^{\prime}\right.$ $=\mathrm{Me})$. However, this composite term may be obtained ${ }^{27,28}$ and compared for the three cations 2.

Cation $2 \quad R=R^{\prime}=H \quad R=M e ; R^{\prime}=H \quad R=R^{\prime}=M e$

$k_{2} K, \min ^{-1}$	0.171	0.256	0.800
Rel	1.00	1.50	4.68

The introduction of $R=M e$ at N_{3} causes only a slight increase in rate. It should decrease the equilibrium constant K, and so there must be a compensating increase in k_{2}. A more substantial increase in rate is caused by the introduction of $\mathrm{R}^{\prime}=\mathrm{Me}$ at N_{1}. Again its effect should be to decrease K, but clearly this is overshadowed by a larger increase in k_{2} due to the ability of the methyl group at N_{1} to help stabilize the cationic intermediate $4\left(R=R^{\prime}=M e\right)$.
V. P^{2}. For the dimethyl cation $2\left(\mathrm{R}_{2}=\mathrm{R}^{\prime}=\mathrm{Me}\right) K \simeq 10^{-7}$, and
 value is quite reasonable since second-order rate constants for the attack of bromine upon simple alkyl anilines fall in the range $10^{6}-10^{10} \mathrm{M}^{-1} \mathrm{sec}^{-1}$. 18,20

In summary, both the relative reactivities and the absolute reactivities of the three substrates are compatible with the proposed mechanism.

Experimental Section

The melting points given below are uncorrected. Uv measurements were made on a Cary 14 instrument, ${ }^{1} \mathrm{H}$ NMR spectra were obtained from a Varian A-60 spectrometer, and ir spectra were run on a Perkin-Elmer 425 spectrophotometer as KBr disks. Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn.

Ultraviolet spectral data for the substrates and their 6 -bromo derivatives are presented in Table IV.
$4(3 H)$-Quinazoline ($1, R=H$), which was prepared by the reaction of anthranilic acid and formamide, ${ }^{30}$ was methylated to produce 3 -methyl-4-quinazolinone ($1, \mathbf{R}=\mathbf{M e}$). ${ }^{10}$

6-Bromo-4(3H)-quinazolinone ($\mathbf{7}, \mathrm{R}=\mathrm{H}$) was prepared by cyclization, ${ }^{11}$ and by direct bromination.
$1(\mathrm{R}=\mathrm{H})(1.46 \mathrm{~g}, 0.01 \mathrm{~mol})$ wes stirred overnight in 30 ml of water containing bromine $(1.6 \mathrm{~g},(.01 \mathrm{~mol})$ and $\mathrm{KBr}(1.19 \mathrm{~g}, 0.01$ $\mathrm{mol})$. The resulting orange-white slurry was warmed until the orange color due to bromine disappecred, cooled, filtered off, washed with a little acetone, and dried a- $75^{\circ} \mathrm{C}$. Recrystallization from methanol-DMF gave fine white crystals ($2.1 \mathrm{~g}, 94 \%$), mp 260-264 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{11} 261-273^{\circ} \mathrm{C}$). The ir spectrum was identical with that of material made from the cyclization ${ }^{11}$ of 5 -bromoanthranilic acid.

5-Bromoanthranilic acid was prepared by a modification of the method of Wheeler and Oates. ${ }^{39}$

Anthranilic acid ($13.7 \mathrm{~g}, 0.1 \mathrm{~mol} \cdot$ in 120 ml of glacial acetic acid was stirred until all the solid dissolved $(0.5 \mathrm{~h})$. Bromine ($16.0 \mathrm{~g}, 0.1$ mol) in 50 ml of acetic acid was added dropwise over a period of 1.25 h . The resulting light yellow sLurry was filtered off and washed with water and then with benzene. Recrystallization from 95% ethanol gave 15.4 g (71.4%) of the desired compound, mp $210-.213^{\circ} \mathrm{C}$ (lit..$^{32} 213^{\circ} \mathrm{C}$). The ir spectrum was identical with that in the Sadtler Index ${ }^{32}$ (No. 39347).

6,8-Dibromo-4(3H)-quinazolir one (9). 3,5-Dibromoanthranilic acid ($14.7 \mathrm{~g}, 0.05 \mathrm{~mol}$) and formamide $(6.75 \mathrm{~g}, 0.15 \mathrm{~mol})$ were heated together at $210^{\circ} \mathrm{C}$ for 30 m in. After cooling the crystalline slurry was filtered off, washed with water and then with ethanol, and recrystallized from methanol-JMF to give $16.0 \mathrm{~g}(86.3 \%)$ of 9 , $\mathrm{mp} 340^{\circ} \mathrm{C} \operatorname{dec}\left(\right.$ lit. ${ }^{32} 337^{\circ} \mathrm{C}$). The ir spectrum was identical with that in the Sadtler Index ${ }^{32}$ (No. 45518).

3,5-Dibromoanthranilic acid sequired for the above was prepared as follows.

A solution of bromine ($32 \mathrm{~g}, 0.5 \mathrm{~mol}$) in 50 ml of glacial acetic acid was added dropwise to anthra ilic acid ($13.7 \mathrm{~g}, 0.1 \mathrm{~mol}$) in 200 ml of the same solvent. The resulcant slurry was stirred for 40 h , and then heated on a water bath for 2 h . The yellow precipitate was filtered off, washed with benzene, and dried at $75^{\circ} \mathrm{C}$. Recrystallization from 90% aqueous ethanol gave $21.9 \mathrm{~g}(74.9 \%)$ of product, mp $229-231^{\circ} \mathrm{C}$ (lit. ${ }^{32} 230-232{ }^{\circ} \mathrm{C}$). The ir spectrum was identical with that in the Sadtler Index ${ }^{32}$ (No. 43810).

6-Bromo-3-methyl-4-quinazol none (7, $\mathrm{R}=\mathrm{Me}$) (as $\mathbf{H B r}$ salt). Bromine ($0.8,5 \mathrm{mmol}$) in 10 ml of 80% aqueous methanol was added to $1(\mathrm{R}=\mathrm{Me})(0.8 \mathrm{~g}, 5 \mathrm{mmol})$ in 10 ml of the same solvent. The yellow solution was stirsed for 5 h at room temperature and then the white precipitate was filtered off and washed with water. Recrystallization from 95\% aqueous ethanol gave 1.1 g (68.8%) of $6\left(\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{\prime}=\mathrm{H}\right)$ brcmide: $\mathrm{mp} 338-340^{\circ} \mathrm{C}$; ir (KBr) $1700(\mathrm{C}=\mathrm{O}), 1610(\mathrm{C}=\mathrm{N}), 1360 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{Me})$; uv, see Table IV; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 3.5 \approx$ (s, $\mathrm{N}_{3} \mathrm{CH}_{3}$), 7.63-8.35 (m, aromatic), 8.63 ($\mathrm{s}, \mathrm{C}_{2} \mathrm{H}$).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OBr}_{2}$: C. $33.78 ; \mathrm{H}, 2.52 ; \mathrm{N}, 8.75$. Found: C, 33.79; H, 2.67; N, 8.76.

Attempts to prepare this compornd ($7, \mathrm{R}=\mathrm{Me}$) by methylation or by cyclization failure, but it was successfully converted to 6 (R $\left.=R^{\prime}=M e\right)$ iodide and thence $t c\left(R=R^{\prime}=M e\right)$ perchlorate which was identical with the material obtained by direction bromination of $2\left(R=R^{\prime}=M e\right)$ perchlorate.

1,4-Dihydro-1,3-dimethyl-4-oxoquinazolinium (2, $\mathbf{R}=\mathbf{R}^{\prime}=$ Me) iodide was prepared by the method of Bogert and Geiger. ${ }^{33}$ The corresponding $2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right.$) perchlorate ${ }^{34}$ was prepared as follows.

A solution of silver perchlorate ($4.15 \mathrm{~g}, 0.02 \mathrm{~mol}$) in 10 ml of methanol was added to $2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ iodide $(6.04 \mathrm{~g}, 0.02 \mathrm{~mol})$ in 200 ml of warm methanol, and was stirred at $40^{\circ} \mathrm{C}$ for 0.5 h . The mixture was cooled, the silver iod:de was filtered off, and the filtrate was evaporated. Recrystallization of the residue from etha-nol-water gave 4.67 g (85%) of $2 \mathrm{CR}=\mathrm{R}^{\prime}=\mathrm{Me}$) perchlorate: mp $254-257^{\circ} \mathrm{C}$; ir (KBr) 1715 ($\mathrm{C}=(1), 1654(\mathrm{C}=\mathrm{N})$, 1386 ($\mathrm{N}-\mathrm{Me}$), $1110-1060 \mathrm{~cm}^{-1}\left(\mathrm{ClO}_{4}^{-}\right)$; uv in Tat le IV.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Cl} \mathrm{C}, 43.73 ; \mathrm{H}, 4.04 ; \mathrm{N}, 10.20$. Found: C, 43.90; H, 3.91; N, 10.20.

6-Bromo-1,4-dihydro-1,3-dimethyl-4-oxoquinazolinium (6, $\left.\mathbf{R}=\mathbf{R}^{\prime}=\mathbf{M e}\right)$ Iodide. Methyl iocide ($1.0 \mathrm{~g}, 7 \mathrm{mmol}$) and $7(\mathrm{R}=$ Me) $(1.2 \mathrm{~g}, 5 \mathrm{mmol})$ were heated together at $120^{\circ} \mathrm{C}$ in a sealed tube for 12 h . The crystalline mass was washed with methanol and recrystallized from ethanol-water to give $1.64 \mathrm{~g}(86 \%)$ of the desired compound: mp $287-288{ }^{\circ} \mathrm{C}$; ir (KBr) $1700(\mathrm{C}=0$), 1645 $(\mathrm{C}=\mathrm{N}), 1375 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{Me}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 3.66$ (s, $\left.\mathrm{N}_{3} \mathrm{CH}_{3}\right), 4.08\left(\mathrm{~s}, \mathrm{~N}_{1} \mathrm{CH}_{3}\right), 7.96-8.49$ (m, aromatic), $9.99\left(\mathrm{~s}, \mathrm{C}_{2} \mathrm{H}\right)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OBrI}$: C, 31.52; $\mathrm{H}, 2.65 ; \mathrm{N}, 7.35$. Found: C, 31.58; H, 2.62; N, 7.32 .

The corresponding $6\left(R=R^{\prime}=M e\right)$ perchlorate ${ }^{34}$ was made in two ways.
A. From the Iodide. Silver per :hlorate ($0.207 \mathrm{~g}, 1 \mathrm{mmol}$) in 10 ml of ethanol was added to the above $6\left(R=R^{\prime}=M e\right)$ iodide
($0.381 \mathrm{~g}, 1 \mathrm{mmol}$) in hot aqueous ethanol, and the silver iodide precipitate was filtered off. Cooling the filtrate gave crystals of the perchlorate, which were recrystallized from aqueous ethanol to yield $0.332 \mathrm{~g}(94 \%)$ of $6\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ perchlorate: $\mathrm{mp} 395-397$ ${ }^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) 17 \mathrm{C} 8(\mathrm{C}==\mathrm{O}), 1650(\mathrm{C}=\mathrm{N}), 1381(\mathrm{~N}-\mathrm{Me}), 1100-1050$ $\mathrm{cm}^{-1}\left(\mathrm{ClO}_{4}^{-}\right)$; uv in Table IV; ${ }^{1} \mathrm{H}$ NMR identical with that of the iodide.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{BrCl}: \mathrm{C}, 33.97 ; \mathrm{H}, 2.85 ; \mathrm{N}, 7.92$. Found: C, 34.23; H, 2.71; N, 7.94 .
B. By Bromination. Bromine ($0.8 \mathrm{~g}, 5 \mathrm{mmol}$) in methanol was added to $2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ perchlorate $(1.37 \mathrm{~g}, 5 \mathrm{mmol})$ dissolved in warm 80% aqueous methanol. The mixture was stirred for 2 h until the yellow color disappeared. The crystalline precipitate was filtered off, washed with methanol, and recrystallized from 80% aqueous ethanol to give $1.62 \mathrm{~g}(91.5 \%)$ of $6\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ perchlorate, $\mathrm{mp} 394-397^{\circ} \mathrm{C}$, spectral properties as in A above.
o-(Methylamino)- \boldsymbol{N}-methylbenzamide (10) was made by two different routes which gave identical materials, even though our melting points d :ffer considerably from those in the literature.
A. From $2\left(\mathbf{R}=\mathbf{R}^{\prime}=\mathbf{M e}\right)$ Iodide. ${ }^{35,36}$ Twenty milliliters of 2 N NaOH solution was added to $2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ iodide $(1.51 \mathrm{~g}, 5$ mmol) in 20 ml cf water, and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 1 h. After cooling, the white slurry precipitate was filtered off, washed with water, and recrystallized from cyclohexane to give 0.80 g (98%) of $10: \mathrm{mp} 83-85^{\circ} \mathrm{C}$ (lit. ${ }^{36,37} 43-45,70-72{ }^{\circ} \mathrm{C}$); ir (KBr) 3280 (amide NH), 2870 (N-Me), 2800 (N-Me), $1610 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 2.87$ (s, - NHMe), 2.78 (s , -CONHMe), 7.60 (-NHMe), 6.17 ($\mathrm{s},-\mathrm{CONHMe}$), 6.27-7.32 (m, aromatic).
B. From \boldsymbol{N}-Methylisatoic Anhydride. ${ }^{37}$ To N-methylisatoic anhydride ($11.7 \mathrm{~g}, 0.066 \mathrm{~mol}$) in 30 ml of water was added 15 ml of 30% aqueous methylamine, and the mixture was stirred and heated for 30 min . The clear top layer was decanted off, and upon cooling it gave white needles which were filtered off and recrystallized from cyclohexane to give $10.25 \mathrm{~g}(95 \%)$ of $10, \mathrm{mp} 84-86^{\circ} \mathrm{C}$ (lit. ${ }^{37}$ $\left(43-45^{\circ} \mathrm{C}\right)$, spectral properties identical with those given in A above.

Kinetic Procedures. All inorganic reagents were of analytical grade. Sulfuric acid, sodium thiosulfate, and starch solutions were prepared from commercial standard volumetric concentrates. Buffer solutions (0.2 M) were prepared after Vogel ${ }^{38}$ and Perrin. ${ }^{39}$ The acidities of all substrate solutions were measured using a Beckman Expandomatic pH meter. The pH values thus obtained for sulfuric acic solutions were, within experimental error, the same as those calculated ${ }^{40}$ on the basis of the known $\mathrm{p} K_{\mathrm{a}}$'s of $1(\mathrm{R}$ $=H)$ and $1(R=M e)$ where applicable.

Initial experiments suggested a second-order reaction between the substrates and bromine, and so subsequently all kinetic runs were carried out under pseudo-first-order conditions with an approximate tenfold excess of substrate. The reaction was most conveniently ${ }^{40}$ followed by monitoring the disappearance of bromine titrimetrically as follows.

A stock solution containing potassium bromide (0.01 M) in the desired acid or buffer solution made up. Using this medium separate $50-\mathrm{ml}$ solutions of bromine ($1.0 \sim 1.6 \times 10^{-3} \mathrm{M}$) and of substrate $\left(1.0 \times 10^{-2} \mathrm{M}\right)$ were then prepared. The pH of the substrate solution was recorded. The flasks containing the bromine and the substrate solutions were wrapped in foil to prevent deterioration due to light, and were then equilibrated in a constant-temperature bath at $30.0 \pm 0.2^{\circ} \mathrm{C}$ for at least 15 min . At the start of a timer the substrate solution was added to the bromine solution, and the mixture was thoroughly shaken ${ }^{41}$ and returned to the bath.

At appropriate time intervals $5-\mathrm{ml}$ aliquots of the reaction mixture were withdrawn and quenched in 20 ml of 5% potassium iodide solution. The liberated iodine was titrated immediately against a standard 0.01 M sodium thiosulfate solution contained in a Metrohm E274 semiautomatic microburet ($5-\mathrm{ml}$ capacity, graduated in 0.005 ml ; using 1% starch indicator.

Depending upon the rate of the reaction between 7 and 17 aliquots were drawn over a period extending well beyond 1 half-life. For the fast runs, the aliquots were quenched in the potassium iodide solution, and stored in the dark until time permitted their titration in rapid succession.

From the titration data $\left[\mathrm{Br}_{2}\right]$ was calculated for various times t, and linear least-squares analysis in terms of the equation $\ln \left[\mathrm{Br}_{2}\right]$ $=\ln \left[\mathrm{Br}_{2}\right]_{0}-k_{1} t$ was used to obtain a pseudo-first-order rate constant k_{1}. All kiretic runs were carried out at least twice, and only those were accepted which gave correlation coefficients >0.9998 in the least-squares analysis.

Strictly speaking the second-order rate constant k_{2} should be
obtainable from the pseudo-first-order rate constant by $k_{2}=k_{1} /$ $[\mathrm{S}]$. However, following Bell, ${ }^{20}$ we used $k_{2}=k_{1} /\left([\mathrm{S}]-\left[\mathrm{Br}_{2}\right]_{0}\right)$ to give a better estimate of k_{2}, since the excess of substrate over bromine is not particularly large.

The best curves to fit the data for $1(\mathrm{R}=\mathrm{H}$ or Me$)$ in Figure 3 were obtained by an iterative technique. Equation 7 requires that the term $k_{2}{ }^{\text {obsd }}\left(K_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]\right)=k_{2} K=$ a constant. A computer program was written which, given a value of $\mathrm{p} K_{\mathrm{a}}$, calculates values of this constant for the observed data set of $k_{2}{ }^{\text {obsd }}$ and pH , and then computes the average value of this constant. Using this averaged value of $k_{2} K$ in eq 7 the program then calculates a value of k_{2} obsd ($k_{2}{ }^{\text {calcd }}$, say) for each pH and the standard deviation of $\log k_{2}{ }^{\text {obsd }}$ with respect to $\log k_{2}{ }^{\text {calcd }}$. This process is repeated for various values of $\mathrm{p} K_{\mathrm{a}}$, and the best value is chosen such that the standard deviation of $\log k_{2}{ }^{\text {obsd }}$ from $\log k_{2}{ }^{\text {calcd }}$ is a minimum. In the present instances this also coincides with the lowest standard deviation of $k_{2}{ }^{\text {obsd }}\left(K_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]\right)$values from their average.

Pseudobase Formation. Since it is postulated that bromination of the cation $2\left(R=R^{\prime}=M e\right)$ proceeds via the pseudobase $3(R=$ $\left.R^{\prime}=M e\right)$, attempts were made to observe the equilibrium between these two species.
The solubility of $2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ perchlorate in $\mathrm{D}_{2} \mathrm{O}$ is too low to obtain decent NMR spectra. The salt can be dissolved in dilute NaOD solution, but in this medium it underwent ring opening and irreversible hydrolysis to o-(methylamino)- N-methylbenzamide (10) (cf. ref 35,37).

Registry No.-1 ($\mathrm{R}=\mathrm{H}$), 491-36-1; $1(\mathrm{R}=\mathrm{Me})$, 2436-66-0; $2(\mathrm{R}$ $\left.=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ perchlorate, 57573-55-4; $2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ iodide, 2453-94-3; $6\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ perchlorate, 57573-56-5; $6\left(\mathrm{R}=\mathrm{R}^{\prime}=\right.$ Me) iodide, 57573-58-7; $7(\mathrm{R}=\mathrm{H})$, 32084-59-6; $7(\mathrm{R}=\mathrm{Me})$, 57573-59-8; 7 (R = Me) HBR, 57573-60-1; 10, 32212-33-2; N-methylisatoic anhydride, 10328-92-4.

References and Notes

(1) W. L. F. Armarego, Adv. Heterocycl. Chem., 1, 253 (1963); "Fused Pyrimidines, Part I: Quinazolines", Vol. XXIV, "The Chemistry of Heterocyclic Compounds", A. Weissberger, Ed., Interscience, New York, N.Y., 1967.
(2) D. D. Perrin, Adv. Heterocycl. Chem., 4, 43 (1965).
(3) A. Albert and W. L. F. Armarego, Adv. Heterocycl. Chem., 4, 1 (1965).
(4) Our attempts to study the bromination of this substrate have so far been frustrated by solubility problems.
(5) A. Albert and C. F. Howell, J. Chem. Soc., 1591 (1962).
(6) M-C. Chiang and C. Li, Hua Hsueh Hsueh Pao, 23, 391 (1957); Chem. Abstr., 52, 15539 (1958). 1484
(7) (a) A. R. Katritzky, M. Kingsland,/and O. S. Tee, Chem. Commun., 289 (1968); J. Chem. Soc. B, Mghari968); (b) O. S. Tee and S. Banerjee, J. Chem. Soc., Chem. Commun., 1032 (1972); Can. J. Chem., 52, 451 (1974).
(8) (a) O. S. Tee, Ph.D. Thesis, University of East Anglia, 1967; (b) O. S. Tee and S. Banerjee, Abstracts, 58th Conference of the Chemical Institute of Canada, Toronto, May 1975, p 83; (c) S. Banerjee, Ph.D. Thesis, Sir George Williams University, 1974.
(9) F. Bergmann and H. Kweitny, Biochim. Biophys. Acta, 33, 29 (1959); F. Bergmann, H. Kweitny, G. Levin, and D. J. Brown, J. Am. Chem. Soc., 82, 598 (1960).
(10) M. T. Bogert and G. A. Geiger, J. Am. Chem. Soc., 34, 524 (1912)
(11) B. R. Baker, R. E. Schaub, J. P. Joseph, F. J. McEvoy, and J. H. Williams, J. Org. Chem., 17, 141 (1952).
(12) The formation of 8 would presumably occur by the same sort of mechanism as that shown in Scheme I and so its rate should be subject to the same sort of acidity dependence and bromide ion dependence as the rate of formation of 7 . Under these circumstances the formation of a few percent of 8 during our kinetic runs would in no way affect our results nor our interpretation of them.
(13) Least-squares slope $23.07 \mathrm{M}^{-1} \mathrm{~min}^{-1}$ (SD 0.58), intercept $0.20 \mathrm{~min}^{-1}$ (SD 0.83), correlation coefficient 0.9994 .
(14) A. E. Bradfield, B. Jones, and K. J. P. Orton, J. Chem. Soc., 2810 (1929).
(15) R. P. Bell and T. Spencer, J. Chem. Soc., 1156 (1959); R. P. Bell and D J. Rawlinson, ibid., 63 (1963).
(16) Under the experimental conditions used ($\mathrm{pH}<4,\left[\mathrm{Br}^{-}\right]>0.01 \mathrm{M}$) less than 1% of Br_{2} exists as $\mathrm{HOBr}{ }^{17}$ Thus the involvement of HOBr is almost certainly negligible since it is generally a much less reactive electrophile than molecular bromine. ${ }^{18}$
(17) $[\mathrm{HOBr}]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right] /\left[\mathrm{Br}_{2}\right]=9.6 \times 10^{-9} \mathrm{M}^{2}\left(25^{\circ} \mathrm{C}\right)$. J. M. Pink. Can. J. Chem., 48, 1169 (1970).
(18) R. Taylor in "Comprehensive Chemical Kinetics", VoI. XIII, C. H. Bamford and C. F. H. Tipper, Ed., Elsevier, Amsterdam, 1972
(19) Least-squares slope 0.5961 (SD 1.98×10^{-3}), intercept 3.304×10^{-2} (SD 9.81×10^{-5}), correlation coefficient 0.999978 .
(20) R. P. Bell and E N. Ramsden, J. Chem. Soc., 161 (1958).
(21) In acetate buffers of $\mathrm{pH}>4$ the rate of bromination of $1(R=H)$ decreases owing to the onset of significant ($>1 \%$) formation of $\mathrm{HOBr},{ }^{17}$ and also owing to a process involving acetate ion. This was shown by carrying out kinetic runs at fixed pH (5.32), but with varying buffer concentration. With increasing acetate concentration (0.085, 0.128, 0.17 M) the rate constant ($k_{2}{ }^{\text {obsd }}$) diminished ($12.5 .8 .25,5.76 \mathrm{M}^{-1} \mathrm{~min}^{-1}$). The formation of acetyl hypobromite from $\mathrm{AcO}^{-}+\mathrm{Br}_{2} \rightleftharpoons \mathrm{AcOBr}+$ Br^{-}would require a linear relationship between $1 / k_{2}{ }^{\text {obsd }}$ and $\left[\mathrm{AcO}^{-}\right.$]. whereas the data more closely fit a relationship between $1 / k_{2}{ }^{\text {obsd }}$ and [AcO^{-}] squared. A similar, but numerically different, reduction in rate was obtained for a bromination in a phosphate buffer. Again the reduction is not solely attributable to HOBr formation.
(22) Least-squares slope 1.04 (SD 0.02), intercept -0.0969 (SD 0.0116), correlation coefficient 0.9991.
(23) A. Albert and J. N. Phillips, J. Chem. Soc., 1294 (1956).
(24) A. Albert and G. Barlin, J. Chem. Soc., 3129 (1962).
(25) By analogy with most aromatic brominations, ${ }^{18,26}$ the proton loss $4 \rightarrow$ 5 is probably quite fast and non-rate determining. In view of this no attempt was made to determine the primary hydrogen isotope effects for these brominations
(26) R. O. C. Norman and R Taylor, "Electrophilic Substitution in Benzenoid Compounds", Elsevier. Amsterdam, 1965, Chapter 5.
(27) The values of $k_{2} K$ and K_{B} were arrived at as described in the Experimental Section.
(28) The $k_{2} K$ term for the dimethyl cation is derived from the intercept (log $\left.k_{2} K\right)$ of the straight line ${ }^{22}$ in Figure 3
(29) If we take into account the reduction (15.3%) in free bromine concentration due to tribromide formation, this value is raised to $1 \mathbf{5} \times 10^{5}$ $A^{-1} \mathbb{N}^{-1} \quad M^{-1} j^{-1}$.
(30) W. F. L. Armarego, J. Appl. Chem., 11, 70 (1961).
(31) A. S. Wheeler and W. M. Oates, J. Am. Chem. Soc., 32, 770 (1910).
(32) "The Sadtler Standard Spectra", Sadtler Research Laboratories. Philadelphia, Pa
(33) M. T. Bogert and G. A. Geiger, J. Am. Chem. Soc., 34, 683 (1912).
(34) In the kinetic studies perchlorate salts were used to preclude problems which might arise due to the formation of interhalogen compounds from bromine and iodide ion
(35) J. C. E. Simpson and J. S. Morley. J. Chem. Soc., 1354 (1949)
(36) M. Vincent, J. Mailland, and M. Benard, Bull. Soc. Chim. Fr., 119 (1963).
(37) D. J. Fry, J. D. Kendall, and J. Morgan, J. Chem. Soc., 5062 (1960).
(38) A. I. Vogel, "A Textbook of Quantitative Inorganic Analysis'", 2nd ed, Longmans, London, 1951, p 868
(39) D. D. Perrin, Aust. J. Chem., 16, 572 (1963).
(40) G. V. Patil, M.S. Thesis, Concordia University, 1975.
(41) NB. The concentrations of the substrate and of bromine in this mixture were thus half that in the initial solutions.
(42) Sadtler ${ }^{32}$ uv spectrum no. 16495
(43) A. Albert and E. P. Serjeant, "The Determination of lonization Constants' ', Methuen, London, 1962.

Electrochemistry of Natural Products. IV. Electrochemical and Chemical Oxidative Dimerization of 1,2-Dimethyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline ${ }^{1}$

J. M. Bobbitt,* I. Noguchi, H. Yagi, and K. H. Weisgraber
Department of Chemistry, The University of Connecticut, Storrs, Connecticut 06268

Received May 22, 1974

Abstract

Racemic 1,2-dimethyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline (1) has been oxidatively coupled by controlled-potential electrolysis in excess base to yield one (3) of three possible isomers of the carbon-carbon dimer. The reaction was carried out at +0.16 V (vs. SCE) in wet acetonitrile at a graphite felt anode with tetraethylammonium perchlorate as an electrolyte. Other reaction conditions gave the same stereochemical results in poor yields. During the oxidation, only molecules of 1 having the same configuration at C-1 coupled with each other to form product (R with R and S with S). Furthermore, only one of two possible rotational isomers was formed. The structure of the single product was established by the chemical $\left[\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\right]$ and electrochemical oxidation of racemic 1 and its enantiomers. Additional products of the chemical oxidation are described.

In a previous paper of this series, ${ }^{2}$ we studied the electrochemical and catalytic oxygenation of 1 -alkyl-7-hydroxy-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolines (A) and established the general structures of the products as B, C, and D (Scheme I). All three products were formed as
Scheme I

A

B

C
mixtures of stereoisomers, but only B could be resolved into its components. The centers of chirality at $\mathrm{C}-1$ of B (when $\mathrm{R}=\mathrm{CH}_{3}$) and the newly formed center caused by restricted biphenyl rotation lead to the possible formation of three sets of enantiomers: 2,3 , and 4 , designated as $R S, S S$ rotamer A, $S S$ rotamer B, and their enantiomers, respectively (Scheme II). All three isomers of $B\left(R=\mathrm{CH}_{3}\right)$ were obtained from the catalytic oxygenation of $\mathrm{A}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ although specific stereochemical structures were not established. When the electrooxidation of 1 was carried out in
acetonitrile solution, ${ }^{3}$ only one of the three possible isomers of B was obtained. In this paper, we would like to describe the structure elucidation of the single stereochemical product and to discuss the implications of its formation.

Structures of the Three Carbon-Carbon Dimers 2, 3, and 4. Three dimers were isolated from the catalytic oxygenation of racemic 1 over a Pt catalyst: two crystalline compounds melting at $132-134$ and $222-224^{\circ}$ and one noncrystalline glass, all of which had characteristic spectral properties. ${ }^{2}$ The general structures of the three dimers were confirmed in the present work by equilibrating them via oxygenatior. over platinum on carbon ${ }^{2}$ of 3 to give a mixture of bis-3,4-dihydroisoquinolinium salts ${ }^{5 a}$ (the open form of a type D compound). The mixture was reduced with NaBH_{4} to give a mixture of compounds 2, 3, and 4, shown by direct chromatographic comparison.

Electrooxidation of racemic 1 under a variety of conditions yielded only the isomer melting at $226-227^{\circ} .^{4}$ Of the three dimers, only 3 and 4 have the same configuration at $\mathrm{C}-1$ of both isoquinoline rings. Since oxidation of the separated enantiomers of 1 (both R and S) yielded the enantiomers of the same products as obtained from racemic 1, the single electrochemical product must be 3 or 4 , and must result from the coupling of identical stereoisomers of 1 . Oxidation of the separated enantiomers of 1 with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (which is not stereospecific) ${ }^{5}$ yielded the appropriate enantiomers of 3 and 4 having the melting points of the two crystalline isomers ($132-134^{6}$ and $224-226^{\circ}$). Since both of these products must have identical configurations in the isoquinoline rings, the third noncrystalline dimer from the catalytic oxygenation of racemic 1 must have structure 2. When the NMR spectra of the two crystalline dimers were measured in deuterated dimethyl sulfoxide, the $\mathrm{C}-\mathrm{CH}_{3}$ protons appeared at $\delta 0.71$ for the compound melting at $226-227^{\circ}$ and at $\delta 1.17$ for the one melting at $132-134^{\circ}$ (as compared with $\delta 1.22$ in 1). Molecular models of the two possibilities show that the CH_{3} in 3 is located on top of the benzene ring whether the methyl group is axial or equatorial. In 4, the methyl group is well away from the benzene ring when in the axial position but fairly close to it when

Table I. Oxidation of Racemic 1 and Its Enantiomers

Substrate, method	Products \% yield (\% conversion ${ }^{a}$)						Potential, V vs. SCE
	2	3	4	$\mathrm{C}, \mathrm{R}=\mathrm{CH}_{3}$	D, $\mathrm{R}=\mathrm{CH}_{3}$	$\begin{gathered} \mathrm{C}-\mathrm{C} / \\ \mathrm{C}-\mathrm{O}-\mathrm{C}^{b} \end{gathered}$	
rac-1							
$\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6} c$ in $\mathrm{NH}_{4} \mathrm{OAc}$	11.4	8.3	4	2.8	1.8	8.5	
Electrolytic							
Excess NaOMe							
1 compartment		40.8 (44.4)		24.3 (26.5)		1.7	+0.16
2 compartment		68.9 (76.9)		6.8 (7.7)		10	+0.04
Sodium salt							
1 compartment		31.9 (32.9)		16.8 (17.8)		1.8	+0.01
2 compartment		41.1 (44.6)		22.2 (24.1)		1.8	+0.01
Neutral							
1 compartment		18.5 (24.7)		22.9 (30.4)		0.8	$+0.22$
2 compartment		47.0 (58.0)		14.8 (18.3)		3.1	+0.24-0.36
Hydrochloride $10.1(17.9)$							
1 compartment		10.1 (17.9)		13.8 (24.0)		0.7	+0.8
2 compartment		13.8 (17.4)		8.7 (11.6)		1.6	+0.6-0.8
Excess HCl^{d}							
1 compartment		8.4 (21.3)		15.3 (31.6)	8.7 (19.7)	0.5	+1.16
2 compartment		11.1 (18.1)		8.0 (13.9)		1.4	+0.68
$(R)-(+)-1$							
Electrolytic				4.4 (4.7)	1.7 (1.8)	8.6	
Excess NaOMe in two compartments		65.5 (87.3)		6.2 (8.3)		10	+0.16
$(S)-(-)-1$							
Electrolytic Excess NaOMe		25.9 (27.8)	23.5 (25.5)	6.1 (6.6)	2.3 (2.7)		
in two compartments		62.2 (71.8)		5.5 (6.3)		10	+0.16

$a^{\text {Corrected for recovered starting material. }}{ }^{b}$ This ratio is the sum of the conversion yields of 2,3 , and 4 divided by $C, R=$ $\mathrm{CH}_{3} . c$ Previous chemical oxidations of this compound are summarized in ref $5 .{ }^{d}$ Oxidized in 0.1 N HCl .

equatorial. Since the NMR shift is very much like starting material for 4 , it seems reasonable to assign structure 4 to the low-melting isomer with the less shielded methyl group. It would also follow that the methyl group is more likely to be in a pseudoaxial position in both compounds, a good possibility in such a sterically hindered situation. Thus, the product of the electrochemical oxidation is 3 . The chiroptical properties of the enantiomers of both 3 and 4 have been studied ${ }^{7}$ and found to be in general agreement wi-h the assigned structures. It should be noted, however, that the assignments are based entirely on spectral properties and are not really definitive in a chemical sense.

Preparation and Resolution of 1. The racemic benzyl ether of 1 was prepared by a Bischler-Napieralski sequence as described by Strukov. ${ }^{8}$ Treatment of this ethe: with di-
p-toluoyl-d-tartaric acid and crystallization from ethanol yielded the less soluble salt of the R isomer. Similar treatment of the partially resolved bases recovered from the d tartaric acid reaction with di-p-toluoyl-l-tartaric acid yielded the crystalline salt of the S base. The two salts had identical melting points and opposite rotations and were decomposed and debenzylated to yield the enantiomers of 1. These enantiomers had identical properties and equal and opposite rotations and ORD curves. The absolute configuration of the enantiomers was established by methylation to yield carnegine (6,7-dimethoxy-1,2-dimethyl-1,2,3,4-tetrahydroisoquinoline) of known configuration. ${ }^{9}$

Potassium Ferricyanide Oxidation of 1 and Its Enantiomers. Racemic 1 was oxidized with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ in an $\mathrm{NH}_{4} \mathrm{OAc}$ system to yield the products shown in Table I. All three isomers of $\mathrm{B}\left(2,3\right.$, and $\left.4, \mathrm{R}=\mathrm{CH}_{3}\right)$ were separable and were characterized. Although C surely exists as a mixture of diastereomers, they could not be separated. A low yield of the polycyclic ether $\mathrm{D}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ was also obtained. ${ }^{5}$ Corresponding oxidation of the enantiomers of 1 yielded the enantiomers of 3 and 4 , presumably one enantiomer of $\mathrm{C}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$, and an optically active form of $\mathrm{D}(\mathrm{R}$ $\left.=\mathrm{CH}_{3}\right) .{ }^{10}$

Electrolytic Oxidation of 1 and Its Enantiomers. The oxidations were carried out under various conditions and yielded the products shown in Table I. Except for the acid oxidations, the solvent was wet acetonitrile and the electrolyte was tetraethylammonium perchlorate. Graphite felt anodes and platinum cathodes were used as previously described. ${ }^{3}$ As portions of other work, the effect of platinum anodes ${ }^{2,11 \mathrm{a}}$ and carbon paste anodes ${ }^{11 \mathrm{~b}, 11 \mathrm{c}}$ in this reaction were studied. In both cases, very low yields of carbon-carbon dimer were isolated. Isomer 3 was the only carbon-carbon dimer isolated from any of the electrochemical reactions. The absence of isomers 2 and 4 was shown by direct comparison of the NMR spectra of the crude reaction mix-
tures with those of the pure isomers and by direct TLC comparison using wedge-shaped layers. Attempts were made to equilibrate the isomers 2,3 , and 4 at 30° in aqueous acetonitrile containing electrolyte and acid or base, but no change was observed. Only in the case of the acid oxidations was any of compound $\mathrm{D}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ obtained.

The enantiomers of 1 were oxidized under the optimum conditions (excess NaOMe) found for racemic 1 with the results shown in Table I.

Discussion

Three aspects of the data in Table I merit discussion: the stereoselectivity of the reaction; the variation of the ratio of carbon-carbon to carbon-oxygen-carbon dimers under various conditions; and the general mechanism of the electrolytic oxidation. The stereochemistry will be considered first since it may well underlie a discussion of the other aspects.

The stereochemical results of this work can best be explained as arising from a surface reaction, presumably at or near the electrode surface. While it seems logical to assume that electrochemical reactions are surface phenomena, this has not usually been thought to be the case. Most of the electrochemical reactions studied for stereochemical reasons have been reductions as recently summarized by Fry, ${ }^{12}$ although oxidation has received attention from Eberson and Nyberg. ${ }^{13}$ In all of this work as well as in recent experiments concerning asymmetric induction in electrochemical systems, ${ }^{14}$ only a partial control has been attained, and there has been some controversy about whether electrochemical reactions involve surfaces at all.
It is generally accepted ${ }^{15}$ that the electrode surface is covered with a more or less highly ordered system of solvent molecules and solvated electrolyte ions known as the electric double layer or more recently the electrified interface. This coating may extend into the solvent as much as $50 \AA$ and is covered in turn with a second layer known as the diffuse layer which may extend another $100 \AA .{ }^{13}$ Reactions can be visualized as taking place in the outer regions of these layers where the actual electrode surface would play a minimal role or in the inner region where the surface may play a major role. Thus, in order to observe surface phenomena similar to those found in catalytic hydrogenation, substrate molecules would have to show an attraction for the electrode surface sufficiently strong to penetrate the double layer before reaction. In the reactions described in this paper, the attraction between electrode and substrate should be quite strong, at least in base solutions. The working electrode, the anode in this case, is positively charged and the isoquinoline substrate (1) is an extremely electron-rich system with two oxygens (one an anion), an aromatic ring, and one nitrogen. Furthermore, the electronrich centers or binding sites are spread over the whole molecule so that the molecule should be arranged in a plane parallel to the surface. This has, in fact, been shown for some of our isoquinoline molecules by Braun and Stock ${ }^{16}$ using solid graphite electrodes and methylene blue as a standard. It has recently been shown that adsorption of aromatic rings to the anode plays a role in the product distribution from the Kolbe reaction, ${ }^{17}$ and amine adsorption has been used extensively by Weinberg to explain reaction products. ${ }^{18}$ Such an explanation is less valid in acid, but, as shown in Table I, the experimental conditions and results are also quite different in acid. Higher potentials must be used and the overall yields are relatively low. It should be noted that the best yields of carbon-carbon dimers are obtained in strong base where the phenol is present as an anion.

If one assumes a surface reaction of molecules in a near-

Figure 1. Oxidative coupling of $(S)-1$ to $S S$-rotamer A, 3.
planar conformation, the electrolytic oxidation of 1 to 3 can be easily explained. Two facts must be accommodated: only molecules having the same configuration at $\mathrm{C}-1$ can couple to form carbon-carbon dimers; and of the two possible configurations around the biphenyl bond (3 and 4), only one is formed. Reasoning from experience in catalytic hydrogenation, one would assume that the isoquinoline molecules would be adsorbed to the surface with the C-1 methyl group sticking up as shown in Figure 1. Under these conditions, only molecules having like configurations can come close enough together for carbon-carbon coupling to take place at $\mathrm{C}-8$. When molecules having unlike configurations at $\mathrm{C}-1$ are involved, a serious methyl-methyl interference prevents reaction. Thus, either 3 or 4 should result from the coupling of 1 .

The formation of 3 rather than 4 requires more subtle argument. On the basis of steric reasoning alone, one might expect 4 to be formed since the two methyl groups would then be pointed away from one another and would be in a separate quadrant of the molecule (assuming that the benzene rings are perpendicular to one another and that the molecule is bisected by two planes through them). In the actual product, 3, the methyl groups face one another in the same quadrant. The formation of 3 can be explained superficially ${ }^{1 a}$ if one assumes that the isoquinoline rings are not completely parallel with the surface, but are tilted so that the more planar aromatic ring is closer to the surface than the aliphatic heterocyclic ring (Figure 1). If coupling takes place from these tilted conformations and rotation around the biphenyl bond is forbidden after coupling, 3 will be formed exclusively.

It has been pointed out by a reviewer, however, that such a superficial view may not be correct. The following rationale is a blend of his ideas and ours. The intermediate arising from the coupling of 1 will have either structure 6 or 7 depending upon whether the coupling is free radical (6) or ionic (7) (see below). If 6 is formed first, it must go by suc-

6

7
cessive deprotonation to 7 and to 3 . The exact nature of this deprotonation would determine the structure of 3 . Since the stereospecificity is lost when the oxidation is carried out in solution with ferricyanide (which should also proceed through intermediates 6 and 7), it seems that the surface or its coatings must still play a role in the deprotonation. If the protons are removed from the intermediate from the surface side of the dimer while it is in place on the surface, or is just leaving, the product should be 3, possibly owing to the superficial "tilting" argument given above. Since the electrode would be expected to contain base sites, either methoxide ions or water molecules, in its double layer (see above), such a deprotonation is quite plausible. This deprotonation by surface adsorbed base sites could then explain a stereospecific removal of protons and would be tantamount to arguing that deprotonation takes place from a least hindered side. If the "tilting" argument is rejected, it could be rationalized that the conformation of intermediate 7 is such as to produce 3 when the proton is least hindered and most subject to removal. From a study of the Dreiding models of 7 , this would be çuite reasonable.

The question of whether carbon-carbon (B) or carbon-oxygen-carbon dimers (C) are formed has been quite important in natural systems ${ }^{19}$ where both do occur, tut generally not simultaneously. In chemical systems ${ }^{5 \mathrm{c}}$ attempts have been made, with limited success, to find experimental conditions leading to one type of bonding or the o-her. In electrochemical systems, we have observed in simple isoquinoline systems ${ }^{2}$ that steric hindrance around the bond being formed plays a strong role in prodact distribution. Furthermore, in simple isoquinoline systems (ref 2 as compared with this paper) and in 1-benzylisoquinolines ${ }^{20}$ we have found that carbon-carbon dimers are formed predominantly but not exclusively in wet acetonitrile systems whereas the reverse is true in aqueous systems. From the arguments presented above, it is reasonable to assume that carbon-carbon dimer formation is a surface reacticn. As a corollary, one might assume that carbon-oxygen-carbon dimer formation might take place away from the surface. If this were true, no stereochemistry would be involved and one should obtain both isomers of the carbon-oxygen-carbon dimer (C) owing to the two asymmetric centers when R is a substituent other than hydrogen. Although such isomers were not obtained when $\mathrm{R}=\mathrm{CH}_{3}$ (probably owing to the difficulties of the separation), they were obtained when $R=$ benzyl ${ }^{20}$ or when $R=$ ethyl. ${ }^{2}$ Thus, it seems fairly reasonable to assume that carbon-carbon dimers are surface products and carbon-oxygen-carbon dimers are not. Some type of adsorption, or lack thereof, which is controlled by solvent factors appears to be involved.

The mechanism of phenol coupling has generally been assumed ${ }^{19,21}$ to be a radical coupling reaction. Radical intermediates have been observed by electron spin resonance and coupled products have been obtained. McDonald and Hamilton ${ }^{22}$ have categorized the various radical processes which might take place, but they have also suggested that biosynthetic coupling processes may take place by concerted migrations of electron pairs. Ronlán and his co-workers^{23} have made a detailed study of the electrochemical oxidation of phenols and have found that phenoxonium ions, as formed by loss of two electrons, seem to explain the results best. The phenoxonium ions attack a neutral molecule to form a coupled product ${ }^{23 \mathrm{a}}$ or can react with a convenient nucleophile such as hydroxide to form hydroxydienones. ${ }^{23 b}$

Since our isoquinoline substrates are quite similar to natural substrates and there should be a similarity between enzyme-surface reactions and electrode-surface reactions, we believe that the carbon-carbon coupling as shown in Figure 1 takes place by a two-electron migration process.

The carbon-oxygen coupling (to form C) may take place by a similar two-electron migration, or it may be a radical coupling reaction.

Finally, we would like to suggest that stereoselective electrochemical reactions are more likely to take place under the following conditions. First, oxidations should be more promising than reductions since one has a possible electrostatic attraction between the positively charged anode and the type of electron-rich molecules which are likely to undergo oxidation in the first place. Furthermore, most of the molecules dealt with in organic chemistry have π electron systems in double bonds or aromatic rings ${ }^{17}$ and oxygen or nitrogen atoms with their free pairs of electrons. Second, stereoselective reactions are more likely to take place with polyfunctional molecules where there are a number of binding sites spread over the molecule to help penetrate the double layer and to bring about a tight, highly oriented conformation on the electrode. Finally, of course, the molecule must be sufficiently complex that a preferred type of adsorption will take place.

Experimental ${ }^{24}$ Section

Resolution of the Benzyl Ether of 1. A solution of 2.702 g of (-)-O,O-di-p-toluoyl- d-tartaric acid in 20 ml of ethanol was combined with 2.079 g of racemic benzyl ether ${ }^{8}$ in 200 ml of ethanol. The crystalline precipitate which formed was collected by filtration and recrystallized from methanol to give $0.960 \mathrm{~g}(40 \%)$ of the tartrate of the R isoquinoline (as shown later) as colorless needles, $\mathrm{mp} 177-178^{\circ},[\alpha]^{22} \mathrm{D}-68.7^{\circ}$ (c 1.0 , methanol).

Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{NO}_{10}$: $\mathrm{C}, 68.36 ; \mathrm{H}, 6.03 ; \mathrm{N}, 2.04$. Found: C , 67.97; H, 6.09; N, 2.01.

The mother liquor from the preceding experiment was evaporated to dryness, basified with 10% aqueous KOH , and extracted with CHCl_{3}. The CHCl_{3} layer was washed ($\left.\mathrm{H}_{2} \mathrm{O}\right)$, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and evaporated to yield 1.1 g of pale yellow gum. This gum was dissolved in 100 ml of ethanol and treated with 1.35 g of $(+)-0, O-$ di-p-toluoyl- l-tartaric acid dissolved in 10 ml of ethanol. The crystalline compound which formed was collected by filtration and recrystallized from methanol to give $1.1 \mathrm{~g}(46 \%)$ of the tartrate salt of the S isomer of the isoquinoline as colorless needles, $\mathrm{mp} \mathrm{177-178}^{\circ}$, $[\alpha]^{22} \mathrm{D}+69.4^{\circ}(c 1.0$, methanol).
Anal. Found: C, 68.05; H, 6.05; N, 1.89.
The tartrates were decomposed by suspending them in benzene (3 g in 200 ml) and basifying with 10% aqueous KOH . The benzene layer was washed ($\mathrm{H}_{2} \mathrm{O}$), dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), and evaporated to yield a colorless gum. The R isomer was obtained in quantitative yield and had a rotation of $[\alpha]^{22} \mathrm{D}+30.1^{\circ}$ (c 1.0, methanol). The S isomer was obtained in 82% yield and had a rotation of $[\alpha]^{22} \mathrm{D}-29.7^{\circ}$ (c 1.0, methanol).
(R)- and (S)-1,2-Dimethyl-7-hydroxy-6-methoxy-1,2,3,4tetrahydroisoquinoline (1). The optically active benzyl ethers $(1.0 \mathrm{~g})$ were dissolved in 10 ml of ethanol, and 10 ml of concentrated HCl was added. The mixture was heated under reflux for 1.5 h and evaporated to dryness. The residue was basified with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with CHCl_{3}. The extract was washed ($\mathrm{H}_{2} \mathrm{O}$), dried (MgSO_{4}), and evaporated to a residue which was crystallized from acetone to give the optically pure enantiomers of 1 . The R isomer was obtained in 58% yield as colorless needles: $\mathrm{mp} 182-183^{\circ}$; $[\alpha]^{22} \mathrm{D}$ $+29.2^{\circ}$ (с 1.0, CHCl_{3}); ORD (c $1.0, \mathrm{CHCl}_{3}$) $[\phi](\lambda, \mathrm{nm})+130^{\circ}$ (370), 0° (335), -2320° (290), $+1680^{\circ}$ (260 sh), $+1770^{\circ}$ (245), $+620^{\circ}$ (240); ir (KBr) $2950 \mathrm{~cm}^{-1}(\mathrm{OH})$; NMR (CDCl_{3}) $\delta 6.73$ ($\mathrm{s}, 1$, aromatic), 6.64 (s, 1, aromatic), $3.89\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right.$), $3.57(\mathrm{q}, 1, J=7$ $\mathrm{Hz}, \mathrm{CHCH}_{3}$), 2.50 (s, 3, NCH_{3}), 1.37 (d, $3, J=7 \mathrm{~Hz}, \mathrm{CHCH}_{3}$); NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 6.57$ (s, 1, aromatic), 6.53 (s, 1, aromatic), 3.72 (s, $3, \mathrm{OCH}_{3}$), $2.34\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right.$), $1.22\left(\mathrm{~d}, 3, J=7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$).
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}: \mathrm{C}, 69.53 ; \mathrm{H}, 8.26 ; \mathrm{N}, 6.76$. Found: C , 69.37; H, 8.23; N, 6.89.

The S isomer was obtained in 67% yield as colorless needles: mp $182-183^{\circ}$; $[\alpha]^{22} \mathrm{D}-29.8^{\circ}$ (1.0, CHCl_{3}); ORD (c $1.0, \mathrm{CHCl}_{3}$) $[\phi]$ (λ, $\mathrm{nm})-220^{\circ}(370), 0^{\circ}(335),+2380^{\circ}(290),-1690^{\circ}(260 \mathrm{sh}),-1880^{\circ}$ (245), -770° (240); ir and NMR spectra were identical with those of the R isomer.
Anal. Found: C, 69.30; H, 8.22; N, 6.48.
The S isomer of $1(0.07 \mathrm{~g})$ in 2 ml of methanol-dioxane ($1: 1$) was added to 100 ml of diazomethane solution (derived from 3.0 g of N, N^{\prime}-dimethyl- N, N^{\prime}-dinitrosoterephthalamide). After 2 days at room temperature, the solvent was removed to yield a pale yellow
residue which was dissolved in benzene, washed (10% aqueous KOH followed by $\mathrm{H}_{2} \mathrm{O}$), dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), and evaporated to give (S)-(-)-carnegine $\left(0.06 \mathrm{~g}\right.$) as a colorless oil, $[\alpha]^{22} \mathrm{D}-28.0^{\circ}$ (c 1.1, ethanol) [lit. ${ }^{9}[\alpha]^{22} \mathrm{D}-24.9^{\circ}$ (c 4.45, ethanol)]. The base was converted to a hydrochloride, mp 209-210 (lit. $.^{25} 210-211^{\circ}$). In a similar manner the R isomer of 1 was methylated to give (R)-(+)-carnegine with an opposite rotation of and identical melting point with that of its hydrochloride.

Potassium Ferricyanide Oxidation of Racemic 1. Racemic 1 ($750 \mathrm{mg}, 3.6 \mathrm{mmol}$) in 30 ml of 8% aqueous $\mathrm{NH}_{4} \mathrm{OAc}$ and 4 ml of 1 $\mathrm{N} \mathrm{H}_{2} \mathrm{SO}_{4}$ was added, dropwise, to $2.3 \mathrm{~g}(9 \mathrm{mmol})$ of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ in 75 ml of 8% aqueous $\mathrm{NH}_{4} \mathrm{OAc}$. The mixture was stirred for 1.5 h , basified with $\mathrm{NH}_{4} \mathrm{OH}$, and extracted with CHCl_{3}. The extract was washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to yield a gum, 470 mg , which was separated by preparative TLC (methanol- $\mathrm{NH}_{4} \mathrm{OH}$, $95: 5$, on six layers $20 \mathrm{~cm} \times 20 \mathrm{~cm} \times 1 \mathrm{~mm}$) into six bands. The adsorbent containing bands were visualized with uv light, removed from the glass plates, and eluted with methanol. The top band yielded, after crystallization from ether-hexane, 13 mg (1.8%) of the diether $\mathrm{D}, \mathrm{R}=\mathrm{CH}_{3}$: mp 201-203 ${ }^{\circ}$ (lit. ${ }^{5 \mathrm{a}}$ 200-205 ${ }^{\circ}$); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.64$ (s, 2, aromatic), 3.88 (s, 6, OCH_{3}), 2.78 (s, $6, \mathrm{NCH}_{3}$), 1.58 (s, 6, C-CH3); mass spectrum M^{+}m/e 408 (calcd 408), 391 base peak.

The second band (from the top) yielded 53 mg of unchanged 1 .
The third band yielded $20 \mathrm{mg}(2.8 \%)$ of the carbon-oxygen-carbon dimer, $\mathrm{C}, \mathrm{R}=\mathrm{CH}_{3}$, as a powder, $\mathrm{mp} 97-100^{\circ}$, from ether-hexane. The material is unquestionably a mixture of stereoisomers, but was identical spectroscopically with the previously characterized material. ${ }^{2}$
The fourth band yielded 60 mg (8.3%) of the carbon-carbon dimer, $3, \mathrm{mp} 226-227^{\circ}$, identical spectroscopically in all respects with the previously characterized compound. ${ }^{2}$

The fifth band yielded $29 \mathrm{mg}(4 \%)$ of the carbon-carbon dimer, 2, as a glass, again identical spectroscopically with previously characterized material. ${ }^{2}$

The sixth band yielded 80 mg (11\%) of the carbon-carbon dimer, $4, \mathrm{mp} 133-135^{\circ}$ as crystallized from hexane-ether. The compound was identical spectroscopically with the previously characterized substance. ${ }^{2}$

Potassium Ferricyanide Oxidation of the Enantiomers of 1. Similar oxidations of the R and S enantiomers of 1 gave the results shown in Table I. The NMR spectra of the enantiomers of the four products were identical with those of the racemic products. However, the melting points were somewhat different. For the products of the R isomer, they follow: $212-213^{\circ}$ for $\mathrm{D}, \mathrm{R}=\mathrm{CH}_{3} ; 109-110^{\circ}$ for the carbon-oxygen-carbon dimer $\mathrm{C}, \mathrm{R}=\mathrm{CH}_{3} ; 164-165^{\circ}$ for 3 ; and $175-178^{\circ}$ for 4 . For the products of the S isomer, they follow: $209-211^{\circ}$ for $\mathrm{D}, \mathrm{R}=\mathrm{CH}_{3} ; 111^{\circ}$ for $\mathrm{C}, \mathrm{R}=\mathrm{CH}_{3} ; 162-165^{\circ}$ for 3 ; and $176-178^{\circ}$ for 4 . Since 2 requires isoquinolines with opposite configurations at $\mathrm{C}-1$, it could not be formed from the enantiomers and was not, in fact, observed.

Electrooxidation of Racemic 1 and Its Enantiomers in Excess Sodium Methoxide. ${ }^{26}$ Racemic $1(600 \mathrm{mg}, 2.9 \mathrm{mmol})$ was dissolved in 115 ml of 0.1 M NaOCH 33 in methanol and evaporated to a slightly colored gum. This gum was dissolved in a mixture of 300 ml of $\mathrm{CH}_{3} \mathrm{CN}$ and 10 ml of $\mathrm{H}_{2} \mathrm{O}$, and 4.0 g of tetraethylammonium perchlorate was added. The solution was cooled to $5-10^{\circ}$ and oxidized in a two-compartment cell using a graphite felt anode ($6 \times$ $20 \mathrm{~cm}),{ }^{27}$ a platinum cathode, and an SCE reference electrode. ${ }^{28}$ The compartments were separated by a fritted glass disk; nitrogen was continuously bubbled through the cooled mixture; and the potential was controlled at +0.04 V . The initial current of 35 mA fell to 15 mA over a period of 4 h , when TLC showed that very little starting material remained. The solution was removed from the cell, and the felt electrode was washed with methanol. ${ }^{28}$ The reaction mixture and washings were acidified with HCl and concentrated to a pale brown gum which was subsequently basified with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with CHCl_{3}. The CHCl_{3} extract was washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness. Preparative TLC was used as described previously to separate the mixture into starting material (63 mg), carbon-oxygen-carbon dimer (42 mg , 6.8%), and 3 ($413 \mathrm{mg}, 68.9 \%$). Careful TLC of the crude reaction mixture as well as the various bands as they were removed failed to show the presence of either 2 or 4 . The yields as corrected for starting material are given in Table I.

Oxidations of the enantiomers of 1 under identical conditions gave the results in Table I. The melting points of the products were the same as those found in the ferricyanide oxidations. The optical properties of the products are as follows: for $\mathrm{C}, \mathrm{R}=\mathrm{CH}_{3}$, from the R isomer, $[\alpha]^{22} \mathrm{D}+12.0^{\circ}\left(c 0.11, \mathrm{CH}_{3} \mathrm{OH}\right)$; for 3 as derived
from the R isomer, $[\alpha]^{23} \mathrm{D}-17.8^{\circ}$ (c 1.0, $\mathrm{CH}_{3} \mathrm{OH}$), ORD (c 0.02, $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)[\phi](\lambda, \mathrm{nm}) 0^{\circ}(330),+80^{\circ}$ (306), -1280° (292), $+640^{\circ}$ $(271),+350^{\circ}(254),+470^{\circ}(246),+260^{\circ}(240)$; for $\mathrm{C}, \mathrm{R}=\mathrm{CH}_{3}$, from the S isomer, $[\alpha]^{22} \mathrm{D}-11.2^{\circ}\left(\mathrm{c} 0.25, \mathrm{CH}_{3} \mathrm{OH}\right)$; for 3 as derived from the S isomer, $[\alpha]^{23} \mathrm{D}+16.9^{\circ}\left(c 0.25, \mathrm{CH}_{3} \mathrm{OH}\right)$, ORD (c 0.029, $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)[\phi](\lambda, \mathrm{nm})-100^{\circ}$ (330), -270° (306), +1370 ${ }^{\circ}$ (292), $-1000^{\circ}(271),-650^{\circ}(254),-800^{\circ}(246),-600^{\circ}(240){ }^{30}$ The optical properties of $\mathrm{D}, \mathrm{R}=\mathrm{CH}_{3}$, are discussed elsewhere. ${ }^{7}$

Electrooxidation of Racemic 1 under Other Conditions. The oxidations in one compartment are self-explanatory. ${ }^{28}$ The sodium salts ${ }^{28}$ were prepared from equimolar amounts of 1 and NaOCH_{3} and were oxidized in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$-TEAP as described above. In this case the drop-off of current was almost complete (38 to 2 mA) during the experiment. The reactions were stopped when the current fell to $2-5 \mathrm{~mA}$ or when TLC showed that starting material was essentially gone. The neutral reactions were carried out in the same system. In the neutral reactions, the potential was increased from +0.24 to +0.36 V to maintain the current at 31 mA during the $6.5-\mathrm{h}$ experiment (on 400 mg of 1). The hydrochloride reactions were carried out in the same $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$-TEAP system on salts prepared with HCl gas in ether. A much higher potential was required as expected, ${ }^{28}$ and yields were poor. The excess acid reactions were carried out in 0.1 N HCl . In all cases, the products were isolated as described, and the results are given in Table I.

Equilibration of Isomers 2, 3, and 4. Air was bubbled through a mixture of $3(150 \mathrm{mg}), 200 \mathrm{ml}$ of MeOH , and 750 mg of $10 \% \mathrm{Pt}$ on carbon ${ }^{31}$ for 3 days. The catalyst was removed by filtration, and the solvent was evaporated to a brownish residue. The residue was chromatographed by $\mathrm{MeOH}-12 \mathrm{~N} \mathrm{HCl}$ (10:1), and the major zone was isolated to give a crude mixture of 3,4-dihydroisoquinolinium salts. The mixture (43 mg) in 50 ml of MeOH was treated with 100 mg of NaBH_{4} and heated to reflux for 30 min . The mixture was acidified, concentrated to dryness, and partitioned between CHCl_{3} and basified $\left(\mathrm{NH}_{4} \mathrm{OH}\right) \mathrm{H}_{2} \mathrm{O}$. The CHCl_{3} extract was washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give 22 mg of a colorless gum. Chromatography on shaped layers and direct comparison by chromatographic "spiking" showed that the gum consisted of the three isomers 2,3 , and 4.

Acknowledgment. In addition to the financial support previously acknowledged, the authors would like to thank Professors S. J. Huang and J. T. Stock of this Department for their many helpful suggestions and Dr. Richard Hallcher for carrying out the equilibration studies.

Registry No.—rac-1, 19641-12-4; (R)-1, 35048-35-2; (S)-1, 35053-29-3; rac-1 benzyl ether, 57550-06-8; (R)-1 benzyl ether, 57527-65-8; (S)-1 benzyl ether, 57527-66-9; (R)-1 benzyl ether tartrate, 57527-67-0; (S)-1 benzyl ether tartrate, 57527-68-1; 2, 57550-07-9; rac-3, 57550-08-0; (SS)-3, 35053-14-6; (RR)-3, 35068-21-4; rac-4, 575.50-09-1; (SS)-4, 35048-36-3; (RR)-4, 35048-37-4; 5, 57550-10-4; $\mathrm{C}\left(\mathrm{R}=\mathrm{CH}_{3}\right), 19626-08-5$; rac- $\mathrm{D}\left(\mathrm{R}=\mathrm{CH}_{3}\right), 57605-21-$ 7; $\mathrm{D}\left(\mathrm{R}=\mathrm{CH}_{3}\right.$) from (R)-1, 57550-05-7; (-)-O,O-di-p-toluoyl-dtartaric acid, 32634-66-5; (+)-O,O-di-p-toluoyl-l-tartaric acid, 32634-68-7.

References and Notes

(1) (a) Partially published in a preliminary communication as part III [J. M. Bobbitt, I. Noguchi, H. Yagi, and K. H. Weisgraber, J. Am. Chem. Soc., 93, 3551 (1971)] and has been reviewed: J. M. Bobbitt, Heterocycles, 1, 181 (1973). (b) This work was sponsored, in part, by Grants CA10494 and GM-1139 from the National Institutes of Health, U.S. Public Health Service.
(2) J. M. Bobbitt, K. H. Weisgraber, A. S. Steinfeld, and S. G. Weiss, J. Org. Chem. 35, 2884 (1970)
(3) J. M. Bobbitt, H. Yagi, S. Shibuya, and J. T. Stock, J. Org. Chem., 36, 3006 (1971).
(4) Since our preliminary observation, ${ }^{2}$ we have found that this materia sometimes exhibits a second melting point at 164-166 ${ }^{\circ}$. After melting at the lower temperature, the compound resolidifies and melts at the higher temperature.
(5) (a) M. Tomita, Y. Masaki, and K. Fujitani, Chem. Pharm. Bull., 16, 257 (1968); (b) B. Umezawa, O. Hoshino, H. Hara, and J. Sakakibara, ibid. 16, 566 (1968); (c) O. Hoshino, H. Hara, M. Wada, and B. Umezawa, ibld., 18, 637 (1970).
(6) The enantiomers of the racemic dimer melting at $132-134^{\circ}$ had melting points of $175-178^{\circ}$ for the RR isomer and $176-178^{\circ}$ for the $S S$ isomer. NMR and chromatographic properties were identical for all three.
(7) G. G. Lyle, \imath^{\prime}. Org. Chem., following paper in this issue.
(8) I. T. Strukov, Zh. Obshch. Khim., 31, 2709 (1961); Chem. Abstr., 56, 11567 (1962).
(9) The methylated base from (-)-1 gave the $S-(-)$ isomer of carnegine which has been correlated with L-alanine: A. R. Battersby and T. P.Ed-
wards, J. Chem. Soc., 1214 (1960). Correspondingly, (+)-1 jave the $R-(+)$ isomer of carnegine.
10) The optical properties of the enantiomers of $\mathrm{D}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ and the chemistry of their formation has been discussed in ref 7 and structures have been proposed (i.e., 5 from (S)-1, Scheme II). It is probably derived from the further oxidation of 3 by a mechanism not understood as yet. ${ }^{2}$
(11) (a) A. S. Steinfeld, Ph.D. Dissertation, University of Connectic.t. 1968; (b) J. F. Colaruotolo, Ph.D. Dissertation, University of Connecticut, 1974; (c) J. M. Bobbitt, J. F. Colaruotolo, and S. J. Huang, J. Electrochem. Soc., 120, 773 (1973).
(12) A. J. Fry, Foitschr. Chem. Forsch., 34, 1 (1972).
(13) L. Eberson and K. Nyberg, Acc. Chem. Res., 6, 106 (1973).
(14) (a) E. Kariv, H. A. Terni, and E. Gileadi, J. Electrochem. Soc., 120, 639 (1973); (b) L. Horner, D. Degner, and D. Skaletz, Chem.-Ing.-Tech., 44, 209 (1972); (c) R. N. Gourley, J. Grimshaw. and P. G. Miliar, J. Chem Soc. C, 2318 (1970).
(15) J. O'M. Bockris and A. K. N. Reddy, "Modern Electrochemistry", Vol. 2, Plenum Press, New York, N. Y., 1970.
(16) R. D. Braun and J. T. Stock, Anal. Chim. Acta, 65, 117 (1973).
(17) G. E. Hawkes, J. H. P. Utley, and G. B. Yates, J. Chem. Soc., Chem Commun., 305 (1973)
(18) N. L. Weinberg and E. A. Brown. J. Org. Chem., 31, 4058 (196E).
(19) W. I. Taylor and A. R Battersby, 'Oxidative Coupling of Pheno s'', Marcel Dekker, New York, N.Y., 1967.
(20) R. C. Hallcher, Ph.D. Dissertation, University of Connecticut, 1972. In this case also only one carbon-carbon dimer was formed, presumably corresponding to 3 . Since samples of dimer corresponding to 2 and 4 were not available for reference, we cannot claim another stereoselective reaction. However, the single carbon-carbon dimer was formed in good yield and was crystalline.
(21) F. R. Hewgill, MTP Int. Rev. Sci.: Org. Chem., Ser. One, 1973, 10, 167 (1973).
(22) P. A. McDonald and G. A. Hainilton in "Oxidation in Organic Chemis-
try", W. S. Trahanovsky, Ed., Academic Press, New York, N.Y., 1973, p 97.
(23) (a) A. Ronlán, Chem. Commun., 1643 (1971); (b) A. Nilsson, A. Ronián, and V. D. Pakker, J. Chem. Soc. C, 2337 (1973).
(24) Melting points were taken on a Kofier hot-stage apparatus and are corrected. The NMR spectra were taken on a Varian A-60 instrument in CDCl_{3} using tetramethylsilane as an internal standard unless noted. Mass spectra were measured on an AEI MS-12 instrument. Microanalyses were carried out by Baron Consulting Co., Orange, Conn. TLC was carried out on silica gel GF 254 layers and visualized with Dragendorff's reagent. All of the potentials were measured against a standard calomel electrode and controlled with a Wenking potentiostat No. 61TR. Tetraethylammonium perchlorate, the toluoyl tartaric acid, and $\mathrm{CH}_{3} \mathrm{CN}$ were commercial materials used without purification. The solvent evaporations were carried out on a rotary vacuum evaporator. The ORD curves were measured through the courtesy of Professor T. Kametani, Tohoku University, Sendai, Japan.
(25) T. Kametani, "The Isoquinoline Alkaloids", Hirokawa Publishing Co., Tokyo, 1968, p 26.
(26) This experiment will be described in detail since it was found to give the best yields.
(27) WDF graphite felt, Carbon Products Division, Union Carbide Corp., New York, N.Y.
(28) For general cell design see ref 2 and G. F. Kirkbright, J. T. Stock, R. D. Pugliese, and J. M. Bobbitt, J. Electrochem. Soc., 116, 219 (1969).
(29) This is generally done by shredding the electrode in a Waring Blendor with methanol followed by suction filtration.
(30) The ORD curves for these compounds and for the enantiomers of 1 were not corrected for zero lines and are therefore not exactly equal and opposite. A better criterion for purity is probably the more accurately measured rotations at the D line of sodium.
(31) R. L. Augustine, "Catalytic Hydrogenation", Marcel Dekker, New York, N.Y., 1965, p 151.

The Chiroptical Properties of Bistetrahydroisoquinoline and Polycyclic Biaryl Derivatives ${ }^{1}$

Gloria G. Lyle
Department of Chemistry, Parsons Hall, University of New Hampshire, Durhcm, New Hampshire 03824

Keceived May 22, 1974

The ORD and CD spectra are described for the atropisomers of 8,8'-bis-1,2-dimethyl-7-hydroxy-6-methoxy-$1,2,3,4$-tetrahydroisoquinoline (2), which were prepared by the electrochemical and chemical oxidation of (S) -(-)-1,2-dimethyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline (1). The anticlinal isomer 2a, mp 164 165°, probably has the ($1 S, 1^{\prime} S$, biphenyl- S) configuration and gives CD curves with moderate Cotton effects while the curves of the synclinal isomer $2 \mathrm{~b}, \mathrm{mp} 176-178^{\circ}$, of ($1 S, 1^{\prime} S$, biphenyl- R) configuration vary more significantly with pH . A third product, which may result from cyclization of one of the atropisomers, probably has hexacyclic structure 3 b and is assigned the S configuration at both chiral centers and the R configuration (P helicity) of the biaryl chromophore based on the signs of the high-intensity Cotton effects.

The helicity of ortho-substituted biphenyls has been correlated with chiroptical properties [circular dichroism (CD) and optical rotatory dispersion (ORD)] by Mislow and his collaborators. ${ }^{2-4}$ These workers observed that the nature of the substituents had profound effects on the chiral properties, but the inherently dissymmetric chromophore dominated the ORD and CD curves. The ortho,ortho' substituents were then cyclized to yield bridged biphenyls of known ${ }^{4 \mathrm{a}}$ absolute configuration and helical sense. The size of the ring and nature of the bridge determined the angle from coplanarity (angle of torsion) of the benzene rings. When the bridge stabilized the helicity and lacked additional elements of dissymmetry, the sign of the strongest Cotton effect could be related to the absolute configuration or sense of twist of the molecule. ${ }^{4 \mathrm{~b}}$ Since these first observations were made, a number of investigators have discussed the correlation of the ORD and CD spectra in a variety of systerns with the helicity of the chromophore. ${ }^{5,6}$

The study of the chiroptical properties of biaryl derivatives produced by coupling of phenolic tetrahydroisoquino-
lines was undertaken to ascertain the stereochemical consequences of inducing helicity in the biaryl moiety. Since the starting monomeric species possessed a single chiral center at $\mathrm{C}-1$, the dimeric products contain an additional center of dissymmetry, the biaryl, whose helical sense may be predicted from the signs of the circular dichroism Cotton effects. A doubly bridged biaryl also resulted from the electrochemical oxidation, and its helicity may be deduced from ORD and CD measurements which would suggest some steps in the mechanism for its formation.

Bobbitt and co-workers have synthesized chiral biaryl derivatives by the methods described in the accompanying paper. ${ }^{7}$ The configurations were assigned from NMR evidence, and confirmation of the assignments was sought by the chiroptical methods described below.

The compounds were prepared by the electrochemical and chemical dimerization of 1,2 -dimethyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline $[(\pm)-1]$, and its enantiomers. ${ }^{7,8}$ Bobbitt and co-workers ${ }^{9}$ have shown that a bond is formed at the 8 positions, ortho to the hydroxyl
group. Rearomatization produces the biaryl 2. The presence of the substituents at the chiral center at the ortho,ortho' positions creates steric interference to rotation about the biphenyl bond and adds a new element of dissymmetry. As a result two biaryls, $\mathbf{2 a}$ and $\mathbf{2 b}$, result from the coupling

of a single enantiomer $[(S)-(-)-1]$, but the product has a new element of dissymmetry (the helicity of the biaryls) which results in the formation of two diastereomers which are atropisomers ${ }^{10 \mathrm{a}}$ and have been called rotamers. ${ }^{8} \mathrm{~A}$ second pair of diastereomers would arise from the $(R)-(+)-1$ enantiomer. ${ }^{10 \mathrm{~b}} \mathrm{~A}$ recent report cited evidence for the existence of diastereomeric conformations in solution for an enantiomer of a chiral biphenyl. ${ }^{10 c}$
If rotation about the bond joining the aromatic rings permits the ortho substituents to pass each other, the rotamers will be interconverted. This energy barrier is probably high because of the size of the chiral ortho substituents. A number of conformations are possible, but those derived from $(S)-(-)-1$ which have the probable minimal nonbonded interactions have the left-handed helical sense of the biphenyl as shown in 2a and 2b. Both enantiomers were studied for all compounds, but the discussion will concern the products from the $(S)-(-)-1$ series. Data from the enantiomeric series derived from $(R)-(+)-1$ will be used in some examples with appropriate sign changes.

The third biaryl compound isolated from the oxidative coupling reactions resulted most likely from cyclization of the rotamers. The phenolic oxygen formed a bridge to the 1 position of 2 which created an aminoketal type of functional group. Since both hydroxyl groups produced the ethereal bonds, the doubly bridged biphenyl 5,11-dimethoxy-6a,12a-dimethyl-1,2,3,6,6a,7,8,9,12,12a-decahydro-6,12-di-oxa-1,7-diazadibenzo[def,mno]chrysene (3) was formed. ${ }^{7}$
The configurations of the products of the phenolic coupling can be derived from that of the starting material whose rotation, $(+)$ or $(-)$, is specified by the observed rotation at 589 nm in chloroform solution. When $(S)-(-)-1$ is coupled with itself by a phenolic oxidation process, the products 2 retain the S configuration at the asymmetric carbon atoms, but the configuration of the biphenyl will be R in one isomer and S in the other. ${ }^{11}$ The assignment of configuration to the two products isolated in this reaction is complicated by the fact that each isomer has syn and anti conformations. Because of the dissymmetry produced
by the chiral carbon centers at $\mathrm{C}-1$ and $\mathrm{C}-1^{\prime}$ of the tetrahydroisoquinoline moieties, the nonbonded interactions destabilize one conformer appreciably leading to the predominant structures 2a and 2b. The anticlinal ${ }^{11 b}$ isomer 2a has thg ($1 S, 1^{\prime} S$, biphenyl S) absolute configuration, while the synclinal ${ }^{11 \mathrm{~b}}$ isomer $\mathbf{2 b}$ has the ($1 S, 1^{\prime} S$,biphenyl R) configuration. On the basis of NMR data the racemate melting at $226-227^{\circ}$ was assigned the anticlinal structure 2a and its enantiomer. ${ }^{8}$ The CD data discussed below will support this assignment.

The helical sense of 3 is determined by the absolute configuration at the asymmetric carbons, 6a and 12a. A similar observation was made by Shamma ${ }^{12}$ in the case of the aporphine alkaloids 4 and 5 . When the bridge between the biphenyl carried the R configuration (C-6a in aporphine 4), the biphenyl moiety could only achieve a left-handed twist. The absolute configuration of the biphenyl moiety of 4 is also R by the Cahn-Ingold-Prelog nomenclature system ${ }^{11}$ when no other substituents are present at C-1 or C-11, while that of 5 would be S. A more satisfactory terminology which is not dependent on substituents but only on the sense of twist is to describe $\mathbf{4 a}, \mathbf{b}$ as having M helicity and $\mathbf{5}$ with P helicity. ${ }^{10}$

4a, nuciferine. OCH_{3} at $\mathrm{C}-1 . \mathrm{C}-2$
4b, apomorphine dimethyl ether, OCH_{3} at $\mathrm{C}-10, \mathrm{C}-11$

The stereochemistry of the cyclized product 3 cannot be assigned unless the mechanism by which cyclization occurs is known or the configuration at the asymmetric carbons can be determined by other methods. The cyclization of 2 a would yield 3 a by retention of configuration where oxygen replaces hydrogen but would yield 3b only by inversion at all chiral centers. Hence, 2b or its precursor must lead to $\mathbf{3 b}$. As long as the pathway yields an optically active product, the configurations at both carbons must be the same and will determine the helical sense of the molecule. This results from the same strains Shamma found for the aporphine alkaloids. ${ }^{12 \mathrm{~b}}$ In 3 a this is a left-handed screw sense, M helicity, and $\mathbf{3 b}$ has the right-handed or P sense. ${ }^{10}$ A correlation of the helical sense with the signs of the Cotton effects of chiral molecules has been discussed from several theoretical approaches by Brewster ${ }^{13}$ and, more recently, by Hug and Wagnière. ${ }^{6}$ Mason et al. have assigned absolute configurations to open biphenyls, ${ }^{5 b}$ binaphthyls, ${ }^{5 b}$ and bianthryls ${ }^{5 c, 14}$ on the theoretical treatment of CD results. Utilization of the rules formulated for biphenyls by Hug and Wagnière ${ }^{6}$ leads to the proposition that the helical sense of the product 3 obtained from (S)-(-)-1 is probably P. This helicity must result from inversion of configuration at the asymmetric carbons and produce the $6 \mathrm{a} S, 12 \mathrm{a} S$ absolute configuration shown in $\mathbf{3 b}$.

Experimental Section

Absorption spectra were recorded on the Cary 15 or a Beckman DK-2A with 95% ethanol as solvent. Measurement at 27° of the ORD and CD spectra was accomplished with the Cary 60 equipped with a 6001 circular dichroism attachment. The CD spectra were recorded in 95% ethanol and concentration and path length were varied by diluting the concentrations given in the figures or by using cells of light path $1.0,0.1$, or 0.05 cm . The solutions showed pH about 5. After the spectrum was recorded, a drop of concen-

Figure 1. Uv spectra of 3 in 95% ethanol: -, fresh solution and pH $9 ; \cdots, \mathrm{pH} 3 ;-\cdot-\mathrm{pH} 6 ; \cdots, \mathrm{pH} 8$. The pH may be changed in either direction with duplication of curves.
trated HCl was added to pH 2 , and the spectrum was remeasured. Neutralization with solid KOH gave solutions whese spectra appeared essentially identical with the original curves (pH 8)., Additional KOH was added to obtain strongly basic solutions ($\mathrm{0H} 10$). Reported spectra were recorded at least twice and by different analysts with agreement in wavelength and sign and 10% meximum variation in amplitude. The CD spectra and some ORD curves of both enantiomers were obtained, and the figures show cuives for only the enantiomer comparable to or derived from (S)-(-)-1.

The compounds were obtained as previously described ${ }^{7}$ by the electrochemical or chemical dimerization of 1.2 -dimethyl-7-hy-droxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline $[(\pm)-1]$ and each enantiomer of 1 . Purity of the products was confirmed by measur ing spectra of both enantiomers of each structure. The absoute configuration S was assigned to (-)-1 on the basis of chemical correlation. ${ }^{8}$

Results and Discussion

Uv Spectra. The electronic spectra of biphenyl derivatives ${ }^{15}$ usually show a large band at about 250 nm which has been called the conjugation band, one or more weak bands at longer wavelength characterized as the ${ }^{1} L_{b}$ band in Platt's notation, ${ }^{16}$ a band at ca. 230 nm which may be the ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ band, and the bands at 220 nm and below corresponding to the ${ }^{1} \mathrm{~B}$ bands of benzene. The ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ and ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ bands of biphenyl apparently overlap in a broad 250 nm conjugation band. ${ }^{15}$ The substitution of hydroxyl or ether groups on the aromatic ring causes red shifts. ${ }^{17}$ The combination of two tetrahydroisoquinoline moieties into the biphenyl structure was expected to give spectra similar to that of 1 plus the intensive biphenyl conjugation band. The hexacyclic product 3, which is formally a doubly bridged biphenyl, should also absorb at 250 nm as well as show pienolic bands.

The complex spectra of the cyclized product 3 shown in the study of pH variation (Figure 1) contrasted with the relatively featureless spectra of the monomer 1 and dimers 2 (Figures 2-4). The spectra of 1 and 2 showed the ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ band of monomethylated catechol at 288 nm , which is the only significant peak at long wavelength in neutral or acid media. A shoulder at $255-260 \mathrm{~nm}$ which is not present in the spectra of 1 appeared on acidification, indicatirg further biphenyl interaction.

In contrast to these very simple spectra, 3 on dissolution in alcohol ($\mathrm{pH} 8.5-9$) absorbed $\left(\epsilon \sim 10^{4}\right)$ at $330,283,273$, and 240 nm with a shoulder at 317 nm (Figure 1:. The

Figure 2. CD and ORD of (S)-(-)-1, c $0.417 \mathrm{mg} / \mathrm{ml}, 95 \%$ ethanol $(-)$ and $\mathrm{CD}(--)$ in acidified ethanol.

Figure 3. CD and uv of $S S$ rotamer A (2a), c $0.162 \mathrm{mg} / \mathrm{ml}, 95 \%$ ethanol (--) and in acidified ethanol, $\mathrm{pH} 2(-)$.
bands changed in intensity and structure on addition of acid and showed variation in extinction coefficient with pH $1-8$ which precluded equilibria studies. ${ }^{18}$ At pH 9 the spectrum changed, resembling that of the original solution. Acidification of this solution restored the curve at pH 3 with only a 5% loss of intensity in the $330-\mathrm{nm}$ band and no other change.

The absorption of the biphenyl chromophore at 240-245 nm was constant from pH 1 to 6 , increased from pH 6 to 8 , and was lost or hidden under the strong $230-\mathrm{nm}$ band at pH 9 . Since the conjugation band is expected to be inde-
pendent of pH , it was sought and found to be strong in the CD spectra (vide infra), and the wavelength did not change with pH . The presence of two bands, 330 and 300 nm , may indicate exciton splitting of the ${ }^{1} L_{b}$ band.
The curve of 3 obtained initially in alcohol very likely indicates only the molecular species which undergoes ring opening in both acid and base. An equilibrium shown in Scheme I is consistent with the uv spectra. In acid, the

Scheme I

3b
\|, OH^{-}

3e

3c ${ }_{1,} \mathrm{H}^{+}$

3d
ring-opened structures $3 \mathbf{c}$ and $3 \mathbf{d}$ have decreased conjugation of the biphenyl because the methyl group at C-1 is coplanar with the benzene ring. Thus the absorption decreases at 240,300 , and 330 nm with decreasing pH . Chirality is retained, however, because of the interference to free rotation. Basification leads to $3 \mathbf{e}$ and comparison of the spectrum at pH 9 with that of the original solution showed a similar curve which has a broadened band in the $300-$ $340-\mathrm{nm}$ region, possibly due te phenoxide absorption.

The small but possibly significant differences in the uv curves of the atropisomers 2 and the variation with pH shown by 3 suggested that the removal of some overlapping absorptions and presentation of signed maxima in the CD spectra should permit clarification of the uv spectra. In addition, the signs of the bands should test the validity of the conformational arguments and suggest the helicity of the twisted biphenyls in 2a, 2b, and 3 .

CD Spectra. The starting material $(S)-(-)-1$ has positive ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ Cotton effects at 290 and 280 nm (Figure 2). Snatzke and Ho^{19} assigned M helicity to the heterocyclic ring in a tetrahydroisoquinoline having oxygen substituents at $\mathrm{C}-6,7$ if the compound gave a positive ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ Cotton effect. This assignment requires the 1 -methyl substituent to assume an axial conformation which is plausible from examination of molecular models. A negative Cotton effect at 236 nm resulted from the ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ transition, and the ${ }^{1} \mathrm{~B}$ Cotton effect at 212 nm was positive. The acidified spectrum showed similar ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ and ${ }^{1} \mathrm{~B}$ bands, but the ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ band inverted to a positive ellipticity at 233 nm .

Dimerization should add the biphenyl bands to the spectra and produce a red shift of other bands. The anticlinal conformation of $2 a$ is consistent with the isomer, mp 226 227°, which showed very similar spectra in neutral and acidic solutions. Suzuki ${ }^{15}$ found that the dihedral angle of biphenyl (23°) was enlarged to 70° with ortho,ortho' disubstitution, and the angle in 2a may be even larger. Protonation of the diamine should not appreciably change the conformation or the CD spectra. The CD curves of 2 a in both neutral and acidic media (Figure 3) gave one band with a negative sign at 300 nm and a positive maximum at 284 nm which may result from exciton splitting of the ${ }^{1} L_{b}$ band. An

Figure 4. CD and uv of $S S$ rotamer B (2b), c $0.042 \mathrm{mg} / \mathrm{ml}, 95 \%$ ethanol (-) and in acidified ethanol, $\mathrm{pH} 2(-)$.
overlapping band at 279 nm increased the breadth of the positive half of the bisignate band. The second atropisomer 2b showed a negative, single Cotton effect at 284 nm (Figure 4) with $n \supset$ splitting. Acidification of the solution, however, gave a striking increase in ellipticity and the appearance of a long wavelength bisignate Cotton effect. The band was shifted to the red with maxima at 330 and 300 nm , the former being positive.
Use of the ${ }^{1} L_{b}$ traniition for assigning absolute configuration and helical sense to twisted biaryls has been calculated for a variety of systems since Kuhn^{20} first attempted to determine the absolute configuration of $2,2^{\prime}$-diamino-$6,6^{\prime}$-dimethylbiphenyl. The data were recently reexamined by Mason et al. ${ }^{5 b, 14}$ along with the studies of binaphthyls and bianthryls. The results of the theoretical treatment were consistent with the known configurations. Hug and Wagnière proposed ${ }^{6}$ that the helicity of a biaryl which shows an exciton split of the ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ Cotton effect can be correlated with the sign of the CD band. According to their rules, a bisignate Cotton effect with a positive long-wavelength maximum resulting from B-type symmetry of the electronic transition correlates with a biphenyl of P helicity. Exact identification of this transition, its symmetry type, and characterization as exciton splitting are essential. Assuming that these criteria are applicable to the spectra of 2a (Figure 3), the negative 300 nm and positive 280 nm exciton split Cotton effect indicates M helicity which was also predicted by Bobbitt et al. ${ }^{8}$ from the NMR data and absolute configuration at $\mathrm{C}-1$ and $\mathrm{C}-1^{\prime}$. If the acidified spectrum of $\mathbf{2 b}$ (Figure 4) also meets the criteria, the longwavelength positive maximum of the exciton split ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ band shows that $\mathbf{2 b}$ has P helicity in acid. Since 2 b probably has the syn relationship of the amino groups in neutral solution, diprotonation should cause repulsion of the ammo-

Figure 5. CD of 3 prepared from $(S)-(-)-1$ at $\mathrm{pH} 2(--)$, $\mathrm{pH} 5-8$ $(-)$, and $\mathrm{pH} 10(\cdots), c 0.076 \mathrm{mg} / \mathrm{ml} 95 \%$ ethanol.
nium ions and open the biphenyl to the anticlinal conformation. This is consistent with the P helicity of the salt which would be predicted from the knowledge of the absolute configuration and NMR data. ${ }^{8}$
The identification of the biaryl ${ }^{1} L_{a}$ band is not certain. Verbit ${ }^{21}$ proposed a CD bandwidth criterion for characterizing this band in benzene derivatives. Resolution of these curves on a Du Pont Model 310 instrument eliminated some bands on this basis but did not clearly identify the ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ band in either compound.

The very strong bands at $200-210 \mathrm{~nm}$ in the spectra of 2 which may be the result of the ${ }^{1} \mathrm{~B}_{\mathrm{b}}$ transition were proposed by Ferris et al. ${ }^{22}$ as diagnostic for helicity of some bridged biphenyls. Theory suggested ${ }^{5 c}$ that they should have the same sign as the ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ Cotton effect. In this case, both 2a and 2b have negative Cotton effects at about 210 nm in alcohol, but the acidic solution of $\mathbf{2 b}$ was no: readable in this region. Use of this band may become possible with further developments in instrumentation.
The CD spectra of 3 prepared from (S)-(-)-1 are quite complex (Figure 5), but the ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ transition gave a positive, unsplit Cotton effect at 318 nm with a shoulder at 310 nm . Acidification produced a very strong, bisignate Cotton effect with the positive maximum at 330 nm and the negative maximum at 298 nm . A longer wavelength negative Cotton effect appeared at 370 nm which may be a charge transfer band. The positive sign of the exciton split band at 330 nm requires assignment of P helicity to 3 according to the rules of Hug and Wagnière. ${ }^{6}$ The biphenyl conjugation band at 244 nm was almost constant with pH change but became stronger and shifted to 250 nm in base. It remained negative at all pH values. The similarity of the spectra in acid medium of 2 b and 3 prepared from (S)-(-)-1 is striking, especially in the long-wavelength region (Figures 4 and 5). The rules of Hug and Wagnière ${ }^{6}$ thus demand the assignment of P helicity to both compounds in acid soution. With P helicity, 3 must have the absolute configuration shown in $\mathbf{3 b}$, i.e., $6 \mathrm{a} S, 12 \mathrm{a} S$.

The aporphine structures 4 and 5 were expected to be models for 3 , but there were critical differences. The apor-

Figure 6. RD in 95% ethanol of 3 prepared from (S)-(-)-1, c $0.0676 \mathrm{mg} / \mathrm{ml}(-),(S)-(+)$-bulbocapnine (5), c $0.159 \mathrm{mg} / \mathrm{ml}$ and adapted from ref $23(\cdots)$, and $(R)-(-)$-apomorphine dimethyl ether hydriodide (4b), c $0.247 \mathrm{mg} / \mathrm{ml}(--)$.
phines have a two-carbon bridge between the benzene rings while 3 has an oxygen-carbon bridge. The helicity is governed in both systems, however, by the absolute configuration of the C-6a (and C-12a in 3) atom and its substituents. Thus knowledge of one leads to assignment to the other center. The oxygen substituents of the aromatic rings are on opposite sides of the rings (i.e., anti) and thus opposite to the syn arrangement in the aporphines which probably prevents the aporphines from being satisfactory models for 3. The similarity of the RD curves (Figure 6) of 3 prepared from $(S)-(-)-1$ and the alkaloid nuciferine ${ }^{23}$ (4a) led to the initial assignment of configuration based on M helicity. ${ }^{1 b}$ The conjugation bands are strong and negative, that of 3 being at slightly longer wavelength than that of $4 a$. The ${ }^{1} L_{b}$ bands in the aporphines have relatively low amplitudes and are of questionable value in assignment of configuration. ${ }^{23}$ Since 3 gave opposite signs of the ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ (positive, 320 nm) and conjugation (negative, 245 nm) bands, no assignment was possible based only on model aporphine compounds in which these bands have the same sign [e.g., bulbocapnine (5), positive, 320 and 240 nm]. Application to 3 of the method Mason used ${ }^{24}$ for boldine was also inapplicable because of the structural differences. In view of the strength of the ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ exciton split transition, the assignment of P helicity to 3 based on the rules of Hug and Wagnière ${ }^{6}$ seems plausible. It is certain that the aporphines are not satisfactory models for this compound, and an analysis of 3 would be desirable on a theoretical basis since it is a rare example of an anti oonfiguration of the oxygen in a bridged bicyclic analogous to the aporphine structure.
The mechanism by which $(S)-(-)-1$ is converted to 3 b is not established, but the hydrogen at $\mathrm{C}-1$ must be removed initially as the atom or ion causing loss of chirality at the carbon center. The chirality of 3 would, therefore, be determined by the twist of the biphenyl system in the intermediate. If $2 \mathbf{a}$ is the precursor to $\mathbf{3 b}$, this requires both a change in the twist of the biphenyl and formation of the $\mathrm{O}-\mathrm{C}$ bond leading to the S configuration. This is an unlikely pathway. If $2 \mathbf{b}$ or a precursor to $\mathbf{2 b}$ is the intermediate leading to $\mathbf{3 b}$, only the latter change is required which
would give the S configuration at C-6 and C-12 of 3 and would retain the P twist of the biphenyl.

Acknowledgment. The zuthor is grateful for the technical assistance of Mr. Ingo Hartmann in this study. Appreciation is due Professor James M. Bobbitt for supplying the compounds and for enligh eening discussion. She is most appreciative for the suggestions of the referees and discussion with Dr. A. Moscowitz, but she alone is responsible for the conclusions described berein. The author is grateful to the University of Virginia Chemistry Department for their courtesy during the preparation of this manuscript.

Registry No.-(-)-1, 35053-29-3; 2a, 35053-14-6; 2b, 35048-36-3; 3b, 57550-05-7.

References and Notes

(1) (a) Part VII of Rotatory Dispersion Studies Series. Part VI: G. G. Lyle and M. J. Piazza, J. Org. Chem., 33, 2478 (1968). (b) Presented in part before the 9th International Symf osium on the Chemistry of Natural Products, IUPAC, Ottawa, Canada, June 1974, Abstracts, 30B.
(2) (a) K. Mislow, Ann. N.Y. Acad. Sci., 93, 457 (1962): (b) K. Mislow in "Optical Rotatory Dispersion a nd Circular Dichroism in Organic Chemistry', G. Snatzke, Ed., Heyden and Son, London, 1967, pp 153-172.
(3) D. Muriel Hall, Prog. Stereochem. 4, 1-42 (1969)
(4) (a) K. Mislow, M. A. W. Glass, R. E. O'Brien, P. Rutkin, D. H. Steinberg, J. Weiss, and C. Djerassi, J. Am. Chem. Soc., 84, 1455 (1962); (b) K. Mislow, E. Bunnenberg, R. Records, K. Wellman, and C. Djerassi, ibld. 85, 1342 (1963).
(5) (a) P. Crabbé, "Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry", Holden-Day, San Francisco, Calif., 1965, pp $244-$ 256, 291; (b) S. F. Mason, R. H. Seal, and D. R. Roberts, Tetrahedron, 30, 1671 (1974); (c) S. F. Mason in ref 2b, pp 71-81.
(6) W. Hug and G. Wagniere, Tetrahedron, 28, 1241 (1972)
(7) J. M. Bobbitt, I. Noguchi, H. Yagi, and K. H. Weisgraber, J. Org. Chem., preceding paper in this issue.
(8) J. M. Bob jitt, I. Noguchi, H. Yagi and K. H. Weisgraber, J. Am. Chem. Soc., 93, 3551 (1971).
(9) J. M. Bobbitt, K. H. Weisgraber, A. S. Steinfeld, and S. G. Weiss, J. Org Chem., 35, 2884 (1970).
(10) (a) G. Krכw. Top. Stereochem., 5, 31-68 (1970). (b) Recently, G. Helmchen and V. Prelog [Helv. Chim. Acta, 55, 2599 (1972)] prepared biaryl atropisomers having pseudodissymmetry owing to the presence of enanticmeric chiral centers at the ortho,ortho' positions of one ring (c) J. J. Dannenberg and A. L. Blackwood, J. Am. Chem. Soc., 97, 4753 (1975).

11) (a) R. S. Cahn, C. K. Ingold, and V. Prelog, Angew. Chem., Int. Ed. Engl., 5, 385 (1966); (b) IUPAC Rules, J. Org. Chem., 35, 2849 (1970)
(12) (a) M. Shamma and W. A. Slusarchyk, Chem. Rev., 64, 59 (1964). (b) M. Shamma, Experientia, 16, 484 (1960).
(13) J. H. Brewster, Top. Stereochem., 2, 63-66 (1967).
(14) R. Grinter and S. F. Mason, Trans. Faraday Soc., 60, 274 (1964)
(15) H. Suzuki, Bull. Chem. Soc. Jpn., 32, 1340 (1959).
(16) J. R. Platt, J. Chem. Phys., 17, 484 (1949); 19, 263 (1951)
(17) A. L. Sklar, J. Chem. Phys., 7, 984 (1939); L. Goodman, I. G. Ross, and E. Shull, ibid., 26, 474 (1957).
(18) W. H. Jaffe and M. Orchin, "Theory and Applications of Ultraviolet Spectroscopy"', Wiley, New York, N.Y., 1962, pp 397-407
(19) G. Snatzk:e and P. C. Ho, Tetrahedron, 27, 3645 (1971).
(20) W. Kuhn and R. Rometsch, Helv. Chim. Acta, 27, 1080, 1346 (1944)
(21) L. Verbit and H. C. Price, J. Am. Chem. Soc., 94, 5143 (1972).
(22) J. P. Ferris, C. B. Boyce, R. C. Briner, U. Weiss, I. H. Qureshi, and N. E Sharpless, J. Am. Chem. Soc., 93, 2963 (1971).
(23) J. C. Craig and S. K. Roy, Tetrahedron, 21, 395 (1965)
(24) S. F. Mason in "Some Newer Physical Methods in Structural Chemistry", R. Eonnett and J. G. Davis, Ed., United Trade Press, London, 1967. pp 149--58.

Cyclization of Unsaturated Hydroxylamine Derivatives ${ }^{1}$

Herbert O. House, ${ }^{* 2 \mathrm{a}}$ David T. Manning, ${ }^{2 \mathrm{~b}}$ David G. Melillo, ${ }^{2 \mathrm{a}}$ Len F. Lee, ${ }^{2 \mathrm{a}}$ O. R. Haynes, ${ }^{2 \mathrm{~b}}$ and Bruce E. Wilkes ${ }^{2 b}$
School of Chemistry, Georgm Institute of Technology, Atlanta, Georgia 30332, and Research and Development Department, Union Carbide Corporation, South Charleston, West Virginia 25303

Received April 29, 1975

Abstract

Reaction of the x-allyl β-diketones 5 with excess HONH_{2} yielded the bicyclic pyrrolidine derivatives 7 in which a new $\mathrm{N}-\mathrm{C}$ bond had been formed by cyclization of an intermediate N-(4-pentenyl)hydroxylamine 14 . Study of conversion of the .V-alkenylhydroxylamine 20 to form the cyclic hydroxylamine $24 a$ and the electrochemical oxidation of hydroxytamines $20,24 \mathrm{a}$, and 31 suggested that these ring closures $14 \rightarrow 15$ occur by a radical chain process involving an intermediate nitroxide radical 37.

An earlier investigation ${ }^{3}$ of the reaction of 3,3 -disubstituted 2,4 -pentanediones (1 Scheme I) with excess hydroxylamine had provided the curious observation that although the dimethyl derivative la could be converted either to the isoxazoline 2 or the dioxime 3, the dipropargyl derivative 1b was remarkzbly resistant to conversion beyond the isoxazoline stage $\mathbf{2}$. In seeking further information relating to these observaticns, reaction of the diallyl derivative lc with excess hydroxylamine was also examined. Again, formation of an isolable dioxime 3 was unfavorable; treatment of the isoxazoline 2 ($\mathrm{R}=$ allyl) with hydroxyl amine under vigorous conditions led to the formation of an unexpected isomeric subst́nce subsequently shown to have the structure 4 . In this pajer we describe the evidence on which the assignment of siructure 4 is based and also described are our observations pertaining to the mode of formation of this substance.

Two 1,3-diketone substrates, 5a and 5b (Scheme II),

Scheme I

$5 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$

6a, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ b. $\mathrm{R}=\mathrm{CH}_{3}$

8a. $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
b. $\mathrm{R}=\mathrm{CH}_{3}$

10 HON

11
were selected for further study. Reaction of either of these products with 1 molar equiv of $\mathrm{NH}_{2} \mathrm{OH}$ (from $\mathrm{HONH}_{3} \mathrm{Cl}+$ NaOAc) in aqueous dioxane or aqueous EtOH afforded the corresponding isoxazoline 6 that was isolated and fully characterized. Reaction of either the diketone 5 or the corresponding isoxazoline 6 with excess $\mathrm{NH}_{2} \mathrm{OH}$ in refluxing aqueous EtOH or refluxing aqueous dioxane for a period of $6-24 \mathrm{~h}$ produced the bicyclic products 7 . In each case, the predominant product was one stereoisomer of structure 7; from the reaction with the diallyl ketone 5a, a second unidentified minor product, isomeric with 7 a , was isolated that appears to be a structural rather than a stereoisomer of $\mathbf{7 a}$. From reaction with the diketone $\mathbf{5 b}$, two stereoisomers of structure $\mathbf{7 b}$ and a third minor component identified as the dioxime 9 were also isolated. This saturated dioxime 9 is not further altered by the conditions of the reaction and, consequently, is not an intermediate in the formation of the bicyclic hydroxylamine 7b. When these same reaction conditions were applied to the α-al yl ketone 10 , only the expected oxime 11 was isolated indicating that the ring-closure reactions to form products 7 were not characteristic of prolonged reaction of simple α-allyl ketones with $\mathrm{NH}_{2} \mathrm{OH} .{ }^{4}$

The spectroscopic properties (see Experimental Section) of the cyclic hydroxylamine derivatives 7 and the corresponding O-benzoates 8 taken with the structures of the starting materials 5 and the intermediates 6 served to define completely the structures 7 . It was therefore protable that the reaction pathway involved in these transformations was the transformation of the isoxazoline 6 (Sckeme III) to the unsaturated hydroxylamine 13 (which is pre-
sumably in equilibrium with the dioxime 12) followed by closure to cyclic product 7. The unusual reaction in this sequence is the final cyclization $13 \rightarrow 7$ (or more generally, 14 $\rightarrow 15$) that results in the formation of a new $\mathrm{C}-\mathrm{N}$ bond at an unactivated olefinic carbon under mild conditions. In considering the nature of this reaction, we were attracted by the apparently analogous oxidative cyclizations ${ }^{5}$ of the unsaturated hydroxylamine 16 to the nitroxide $17^{5 \mathrm{a}}$ and the N-chloroamine 18 to the bicyclic amine $19 .{ }^{5 \mathrm{~b}}$ To examine this cyclization further, the unsaturated hydroxylamine 20 was synthesized by the route indicated in Scheme IV.

The synthesis of hydroxylamine 20 was initially complicated by the fact that the nitro olefin 22 was not reduced by a mixture of aluminum amalgam and $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{Et}_{2} \mathrm{O}$ or THF, conditions which reduce the seemingly analogous 3-nitro- 3 -methylpropane to 31 in high yield. ${ }^{6}$ Consequently, the more vigorous reducing system, Zn and aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, was employed ${ }^{7}$ resulting in partial overreduction of the nitro olefin 22 to form a mixture of the hydroxylamine 20 and the amine 23 . The synthesis was further complicated by the instability of 20 ; when mixtures sontaining this hydroxylamine 20 were either heated or allowed to stand, conversion to the cyclic hydroxylamine 24a occurred and exposure of mixtures containing 20 to air resulted in rapid oxidation either to the cyclized products 24 a or 27 or to a

18

volatile blue material believed to be the nitroso compound 36. These experimental diffi vulties were circumvented by acylating the mixture of th hydroxylamine 20 and the amine 23 to form mixtures o ? either the acetyl derivatives $25 a$ and 26 or the benzamide $25 b$ and the dibenzoyl derivative 28. Each of these mixtures was separable by chromatography and the N, O-diber zoyl derivative 28 was sufficiently stable to permit puri:ication and complete characterization. Although the the :mal instability of the liquid O-acetate 26 prevented us from obtaining it in analytically pure form, it was obtained ir. sufficient purity by chromatography to permit its use in a base-catalyzed methanolysis to generate solutions of the hydroxylamine 20 uncontaminated with the amine 23. So utions of this hydroxylamine 20, obtained either from the nitro compound 22 or from the O -acetate 26, underwent cyclization to the cyclic hydroxylamine 24a (characterized as the benzoate 24b) when either heated on a steam bath or allowed to stand overnight. Exposure of this cyclic hydroxplamine 24a to O_{2} (air), especially in the presence of a catalytic amount of a $\mathrm{Cu}(\mathrm{II})$ salt, resulted in oxidation to form the nitrone 27.

Authentic samples of the :yclic hydroxylamine 24a, the benzoate 24 b , and the nitrone 27 were obtained from the nitrone 30 as indicated in Scheme V. Deliberate exposure of solution of the hydroxylanine 20 to O_{2} resulted in the generation of a volatile, blue colored material (presumable the nitroso compound 36) and resulted in diminished yields of the cyclized products 24 हnd 27 . The best yield of benzoylated cyclized product 24 b (20% based on the O-acetate 26) ${ }^{8}$ was obtained when the nost precautions were taken to minimize the concentration of O_{2} present during the cyclization.

To examine the oxidation of N-alkyl hydroxylamines
electrochemically, we studied the behavior of hydroxylamine derivatives $20,24 \mathrm{a}, 26$, and also, as model compounds, hydroxylamine derivatives 31 and 33 (Scheme VI). It should be noted in passing that O -acylated N-alkyl hydroxylamines such as 26 and 33 , whose regioselective preparation has sometimes presented difficulty, ${ }^{9}$ were readily prepared by reaction of the N-alkyl hydroxylamines 20 and 31 with $\mathrm{Ac}_{2} \mathrm{O}$ in the absence of pyridine. By contrast, reaction of these hydroxylamines with either PhCOCl or $\mathrm{CH}_{3} \mathrm{COCl}$ in the presence of pyridine yielded the $\mathrm{N}, \mathrm{O}-\mathrm{di}$ acylated derivatives 28,34 , and 35 . Neither the O-acetates 26 and 33 in MeOH solution nor the hydroxylamine 31 in DMF or in neutral (pH 7) aqueous solution exhibited a polarographic oxidation wave at a potential less positive than +0.2 V vs. SCE. As aqueous or methanolic solutions of 31 were made more basic, the oxidative wave shifted to progressively more negative potentials (corresponding to increasing ease of oxidation) with $E_{1 / 2}$ values of -0.20 V vs. SCE and -0.51 V vs. SCE being obtained for aqueous solutions of 31 at pH 10.0 and ca. 13 , respectively. ${ }^{10}$ This observation, taken with the estimated ${ }^{9 \mathrm{~b}} \mathrm{p} K_{\mathrm{a}}$ values 6 and 12-13 for the transformations $\mathrm{RN}^{+} \mathrm{H}_{2} \mathrm{OH}-\mathrm{H}^{+} \rightarrow \mathrm{RNHOH}-$ $\mathrm{H}^{+} \rightarrow \mathrm{RNHO}^{-}$, suggest that the hydroxylamine anion, RNHO^{-}, is probably the species responsible for the very

Scheme VI

ready air oxidation of RNHOH compounds in neutral and alkaline solution. In alkaline MeOH solution the hydroxylamines 31 ($E_{1 / 2}=-0.39 \mathrm{~V}$ vs. SCE), $20\left(E_{1 / 2}=-0.42 \mathrm{~V}\right.$ vs. SCE, prepared from 26), and 24 a ($E_{1 / 2}=-0.47 \mathrm{~V}$ vs. SCE) are all oxidized with about equal ease.

Consequently, our data suggest that the ring closure reaction being studied proceeds from the acyclic hydroxylamine 14 (or 20) to the cyclic hydroxylamine 15 (cr 24a) and that subsequent formation of a nitrone such as 27 (or a nitroxide such as $17^{5 \mathrm{a}}$ where nitrone formation is not possible) is the result of oxidation of the intermediate cyclic hydroxylamine (e.g., 15). Since the transformation $14 \rightarrow 15$ involves no net change in oxidation level and yet appears to be promoted by traces of oxidizing agents, we believe that the most reasonable interpretation involves a radica. chain mechanism such as that illustrated in Scheme VII. ${ }^{11 c}$ In

this scheme only a catalytic amount of the intermediate nitroxide 37 is required to propagate the reaction chain and the subsequently formed carbon radical 38 (whose formation is analogous to the cyclization of a 5 -hexenyl radical and to cyclization of the N radical derived from 18) should be readily reduced by the hydroxylamine 15 present. Although the generation of the nitroxide 37 is formulated as a direct oxidation, it is also possible that the nitroxide arises by initial oxidation of a small amount of the starting hydroxylamine 40 to a nitroso compound 41 followed by the known ${ }^{11 a, b}$ interaction of 40 and 41 to produce a nitroxide 42. This latter equilibration involving a nitroso compound is consistent with our observations that a faint blue color (attributable to 36) was always observed when we generated a solution of the hydroxylamine 20 in the absence of a reducing agent.

We hope to define the scope and limitations of this cyclization reaction in synthesis from experiments now ir progress. One preliminary experiment (see Experimental Section) with a solution of the hydroxylamine 31 in cyclohexene suggested that intermolecular analogues of the reaction $14 \rightarrow 15$ are not favorable.

Experimental Section ${ }^{12}$

Reaction of the Diketone 5 a with $\mathbf{H O N H}_{2}$. The diallyl diketone 5 a , obtained by the alkylation of 2,4 -pentanedione, ${ }^{1.3}$ exhib-
ited the following NMR peaks $\left(\mathrm{CCl}_{4}\right): \delta 4.8-5.9(6 \mathrm{H}, \mathrm{m}$, vinyl CH$)$, $2.62\left(4 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}\right.$, allylic $\left.\mathrm{CH}_{2}\right)$, and $2.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$. A solution of $60.0 \mathrm{~g}(0.33 \mathrm{~mol})$ of the diketone $5 \mathrm{a}, 23.2 \mathrm{~g}(0.33 \mathrm{~mol})$ of $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$, and $27.9 \mathrm{~g}(0.33 \mathrm{~mol})$ of NaOAc in 175 g of $\mathrm{H}_{2} \mathrm{O}$ and 205 g of dioxane was refluxed for 6.5 h and then concentrated under reduced pressure. The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the $\mathrm{Et}_{2} \mathrm{O}$ solution was dried and concentrated to leave 67.1 g of residual yellow liquid containing (GLC, silicone SE-30 on Haloport F) the diketone 5 a (retention time 3.4 min , ca. 2%), an unknown component (4.9 min , ca. 12%), and the isoxazoline $6 \mathrm{a}(7.3 \mathrm{~min}$, ca. 86%). A $34-\mathrm{g}$ fraction of the crude product was distilled to separate 11.8 g of forerun [$\mathrm{bp} 84^{\circ} \mathrm{C}(1.5 \mathrm{~mm})-100^{\circ} \mathrm{C}(0.5 \mathrm{~mm})$], and 17.2 g of the pure (GLC) isoxazoline 6a: bp $100{ }^{\circ} \mathrm{C}(0.5 \mathrm{~mm})$; ir $\left(\mathrm{CCl}_{4}\right)$ 3590,3420 (broad, free and associated OH), and $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; NMR (CCL_{4}) $\delta 4.8-6.2(6 \mathrm{H}, \mathrm{m}$, vinyl CH), $4.22(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.9-2.9$ ($4 \mathrm{H}, \mathrm{m}$, allylic CH_{2}), $1.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $1.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 67.66; $\mathrm{H}, 8.78 ; \mathrm{N}, 7.17$. Found: C , 67.37; H, 8.66; N, 7.15.

After a solution of $485 \mathrm{mg}(2.69 \mathrm{mmol})$ of the diketone $5 \mathrm{a}, 1.87 \mathrm{~g}$ (26.9 mmol) of $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$, and $220 \mathrm{mg}(26.9 \mathrm{mmol})$ of NaOAc in 15 ml of $\mathrm{H}_{2} \mathrm{O}$ and 15 ml of dioxane had been refluxed for 6 h , the reaction solution was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and concentrated to leave 539 mg of colorless liquid that was chromatographed on silica gel with $\mathrm{Et}_{2} \mathrm{O}$-hexane mixtures as eluents. After separation of 8 mg of an early fraction containing an uncharacterized solid (mp $192-198^{\circ} \mathrm{C}$), the subsequent fractions contained $441 \mathrm{mg}(84 \%)$ of the liquid isoxazoline 6 a followed by 43 mg of the bicyclic hydroxylamine 7a. The latter fraction was crystallized from hexane- $\mathrm{Et}_{2} \mathrm{O}$ to separate 40 mg (7.1%) of one isomer of the bicyclic hydroxylamine 7 a as white prisms, $\mathrm{mp} 82-84^{\circ} \mathrm{C}$. When an analogous experiment was performed using $507 \mathrm{mg}(2.59 \mathrm{mmol})$ of the isoxazoline with $1.80 \mathrm{~g}(25.9 \mathrm{mmol})$ of $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$ and $2.13 \mathrm{~g}(25.9 \mathrm{mmol})$ of NaOAc , the bicyclic material 7a isolated after chromatography and crystallization amounted to $40 \mathrm{mg}(7.4 \%), \mathrm{mp} 81.5-83.5^{\circ} \mathrm{C}$. Recrystallization raised the melting point of the bicyclic hydroxylamine 7a to $88-89^{\circ} \mathrm{C}$: ir (CCl Cl_{4}) 3580,3420 (free and associated $\mathrm{OH})$, and $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.9-6.0(3 \mathrm{H}, \mathrm{m}$, vinyl $\mathrm{CH})$, 2.5-3.0 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NC}<), 2.42(2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$, further partially resolved splitting apparent, allylic $\left.\mathrm{CH}_{2}\right), 1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, and $1.1-2.0(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 62.83; $\mathrm{H}, 8.63 ; \mathrm{N}, 13.32$. Found: C, 62.88; H, 8.91; N, 13.24.

The natural abundance ${ }^{13} \mathrm{C}$ NMR spectrum of hydroxylamine 7a, measured in CDCl_{3} solution with added $\mathrm{Me}_{4} \mathrm{Si}$, is summarized in the following structure. The chemical shift assignments, indicated in parts per million, are consistent with the spectrum measured with off-resonance decoupling.

Reaction of the hydroxylamine 7a with excess PhCOCl in pyridine yielded a benzoate 8a: mp $87-88^{\circ} \mathrm{C}$ (mixture with 7a, mp $66-82^{\circ} \mathrm{C}$); ir $\left(\mathrm{CCL}_{4}\right) 1755 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=0$) with no absorption in the $3-\mu$ region attributable to NH or OH groups; uv maxima (95% EtOH) $225 \mathrm{~nm}(\epsilon 12500)$ and 271 (966); NMR (CCl_{4}) $\delta 8.0-8.3$ (2 H, m, aryl CH$), 7.3-7.7(3 \mathrm{H}, \mathrm{m}$, aryl CH$), 5.0-6.2(3 \mathrm{H}, \mathrm{m}$, vinyl $\mathrm{CH}), 3.0-3.6(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}<), 2.48\left(2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}\right.$, allylic CH_{2}, further partially resolved splitting apparent), $1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.3-2.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, and $1.13(3 \mathrm{H}, \mathrm{d}, J=6$ $\mathrm{Hz}, \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: $\mathrm{C}, 68.77 ; \mathrm{H}, 7.05 ; \mathrm{N}, 8.91$. Found: C , 68.89, H, 6.99; N, 8.90.

Reaction of the Diketone 5b with HONH \mathbf{H}_{2}. The reaction of 3-methyl-2,4-pentanedione with allyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone followed by fractional distillation afforded the diketone $5 b$ as a colorless liquid: bp $66-75^{\circ} \mathrm{C}(5.7 \mathrm{~mm}), n^{25} \mathrm{D} 1.4504$ [lit. ${ }^{14} \mathrm{bp} 85-89$ $\left.{ }^{\circ} \mathrm{C}(10 \mathrm{~mm}), n^{25} \mathrm{D} 1.4550\right]$; ir $\left(\mathrm{CCl}_{4}\right) 1720,1700(\mathrm{C}=\mathrm{O})$, and 1640 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.8-5.9(3 \mathrm{H}, \mathrm{m}$, vinyl CH$), 2.56(2 \mathrm{H}$, $\mathrm{d}, J=6.5 \mathrm{~Hz}$, allylic $\left.\mathrm{CH}_{2}\right), 2.3\left(6, \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, and $1.27(3 \mathrm{H}, \mathrm{s}$,
CH_{3}). A solution of $17.79 \mathrm{~g}(115 \mathrm{nmol})$ of the diketone $5 \mathrm{~b}, 8.35 \mathrm{~g}$ $(120 \mathrm{mmol})$ of $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$, and $\exists .84 \mathrm{~g}(120 \mathrm{mmol})$ of NaOAc in 100 ml of $\mathrm{H}_{2} \mathrm{O}$ and 100 ml of dioxane was refluxed for 5 h and then concentrated under reduced press $1 r e$. The residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and concentrated. Distillation of the residual liquid $(17.32 \mathrm{~g})$ separated 13.95 g (72\%) of the crude isoxazoline 6 b as a colorless liquid, bp $87-89^{\circ} \mathrm{C}(0.68 \mathrm{~mm})$, that contained (TLC, silica gel coating) the stereoisomeric isoxazolines and a second more rapidly eluted component. Chromatography on silica gel with 40% $\mathrm{Et}_{2} \mathrm{O}$ in hexane separated in the later fractions a mixture of the stereoisomeric isoxazolines 6 b as a colorless liquid: $n^{25} \mathrm{D} 1.4831$; ir $\left(\mathrm{CCl}_{4}\right) 3600,3420$ (broad, free and associated OH), and $1640 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}$); uv ($95 \% \mathrm{EtOH}$) end abssrption with $\in 2860$ at 210 nm ; NMR $\left(\mathrm{CCl}_{4}\right) \delta$ 4.8-6.3 (4 H, m, vinyl CH and $\mathrm{OH}, 1 \mathrm{H}$ exchanged with $\mathrm{D}_{2} \mathrm{O}$), 2.0-3.0 ($2 \mathrm{H}, \mathrm{m}$, allyliz CH_{2}), $1.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.46$ and 1.43 (two singlets, total $3 \mathrm{H}, \mathrm{CH}_{3}$ of epimers), 1.12 (s, 39% of 3 $\mathrm{H}, \mathrm{CH}_{3}$ of one epimer), and $0.97\left(3,61 \%\right.$ of $3 \mathrm{H}, \mathrm{CH}_{3}$ of one epimer); mass spectrum m / e (rel intensity) $169\left(11, \mathrm{M}^{+}\right), 152(42), 127$ (33), 112 (60), 110 (59), 108 (69), 37 (76), 94 (37), 82 (56), 69 (58), 68 (94), 67 (100), 55 (30), 53 (49), 43 (69), 42 (45), 41 (39), and 39 (33).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 63.88; H, 8.94; N, 8.28. Found: C, 63.86; H, 8.97; N, 8.32.

To establish the stability of the isoxazoline $6 \mathbf{b}$ to boiling $\mathrm{H}_{2} \mathrm{O}$, a solution of 111 mg of 6 b in 3 ml of $\mathrm{H}_{2} \mathrm{O}$ was refluxed for 3 h and then cooled and extracted with $\mathrm{C}_{-}-\mathrm{Cl}_{3}$. The extract was dried and concentrated to leave 109 mg of the unchanged isoxazoline $\mathbf{6 b}$ that was identified by TLC analysis and comparison of ir spectra. A solution of $2.087 \mathrm{~g}(12.4 \mathrm{mmol})$ of the isoxazoline $6 \mathrm{~b}, 8.59 \mathrm{~g}$ (124 $\mathrm{mmol})$ of $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$, and $10.12 \mathrm{~g}(124 \mathrm{mmol})$ of NaOAc in 45 ml of $\mathrm{H}_{2} \mathrm{O}$ was refluxed for 2.5 h and then cooled, treated with NaHCO 3 , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and concentrated to leave 1.125 g of colorless liquid. Fractional crystallization from a PhH -hexane mixture separated 669 mg of isomer A of the hydroxylamine $\mathbf{7 b}$ as white prisms, $\mathrm{mp} 85-92^{\circ} \mathrm{C}$, and 45 mg of isomer B of the hydroxylamine $\mathbf{7 b}$ as white prisms, mp $147-156^{\circ} \mathrm{C}$. The mother liquor from these crystallizations was chromatographed on silica gel. The early fractions (eluent, $40 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) contained 28 mg of the crude solid dioxime 9. Recrystalization ($\mathrm{Et}_{2} \mathrm{O}$-hexane) afforded the pure dioxime 9, mp 167.5-169 ${ }^{2}$, whose comparison with an authentic sample is described subsequently: ir $\left(\mathrm{CHCl}_{3}\right) 3580$ and $3290 \mathrm{~cm}^{-1}$ (broad, free and associated OH); NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta$ 9.67 and $2.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}\right.$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.67\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $0.8-1.9(7 \mathrm{H}, \mathrm{m}$, aliphatic CH$)$; mass spectrum m / e (rel intensity) 169 (18), 128 (100), 112 (34), 100 (21), 55 (32), 43 (37), 42 (47), and 41 (31).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 58.03; $\mathrm{H}, 9.74 ; \mathrm{N}, 15.04$. Found: C, 58.17; H, 9.82; N, 15.05 .

The next chromatographic fractions (eluent 70\% $\mathrm{Et}_{2} \mathrm{O}$ in hexane) contained 37 mg of isomer B of the hydroxylamine $\mathbf{7 b}, \mathbf{m p}$ $148-157{ }^{\circ} \mathrm{C}$ (total yield 82 mg or 3.6%). Recrystallization ($\mathrm{Et}_{2} \mathrm{O}-$ hexane) separated the pure isomer B of the hydroxylamine $\mathbf{7 b}$ as white prisms: mp $157-158.5^{\circ} \mathrm{C}$; iz $\left(\mathrm{CHCl}_{3}\right) 3570,3350$ (broad, free and associated OH), and $1620 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; uv ($95 \% \mathrm{EtOH}$) end absorption with $\in 2570$ at 210 nn ; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.25(1 \mathrm{H}$, s, OH , exchanged with $\mathrm{D}_{2} \mathrm{O}$), 2.6-3.3 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}<$), $1.88(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.21\left(3 \mathrm{~F}, \mathrm{~d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.18(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right)$, and $1.2-1.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$; mass spectrum m / e (rel intensity) $184\left(44 \mathrm{M}^{+}\right), 128(16), 127(10 \mathrm{C}), 126(13), 112$ (33), and 43 (13).
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $58.67 ; \mathrm{H}, 8.75 ; \mathrm{N}, 15.21$. Found: C, 58.79; H, 8.82; N, 15.33 .
The final fractions from the chromatography contained 143 mg of isomer A of the hydroxylamine $7 \mathrm{~b}, \mathrm{mp} 91-92^{\circ} \mathrm{C}$ (total yield 812 mg or 36%). Recrystallization (Ph^{-1}-hexane) afforded the pure isomer A of the hydroxylamine 7 b as white prisms: $\mathrm{mp} 91.5-92.5^{\circ} \mathrm{C}$; ir $\left(\mathrm{CHCl}_{3}\right) 3580,3430(\mathrm{OH})$, ard $1630 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; uv $(95 \%$ $\mathrm{EtOH})$ end absorption with $\epsilon 333$ at 210 nm ; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.7$ (broad, $1 \mathrm{H}, \mathrm{OH}$, exchanged with $\mathrm{D}_{2} \mathrm{O}$), 2.4-3.0 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}<$), $1.85\left(3, \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20(3 \mathrm{H}, \mathrm{d}$, $J=6 \mathrm{~Hz}, \mathrm{CH}_{3}$), and $1.2-2.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$; mass spectrum m / e (rel intensity) $184\left(23, \mathrm{M}^{+}\right), 127$ (100), 112 (58), 110 (28), and 43 (14).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $58.67 ; \mathrm{H}, 8.75 ; \mathrm{N}, 15.21$. Found: C, 58.82 ; H, 8.77; N, 15.10 .

The natural abundance ${ }^{13} \mathrm{C}$ NMR spectrum of hydroxylamine 7 b , measured in CDCl_{3} solution with added $\mathrm{Me}_{4} \mathrm{Si}$, is summarized in the following structure. The chomical shift assignments, indicated in parts per million, are consisient with the spectrum measured with off-resonance decoupling.

To a cold ($0^{\circ}{ }^{\circ} \mathrm{C}$) solution of $818 \mathrm{mg}(4.45 \mathrm{mmol})$ of the hydroxylamine $\mathbf{7 b}$, isom $\in \mathrm{r} \mathrm{A}$, in 3 ml of anhydrous pyridine was added 1.0 ml of freshly distilled PhCOCl . The mixture, from which a white solid separated, was stirred for 30 min at $25^{\circ} \mathrm{C}$ and then partitioned between CHCl_{3} and aqueous NaHCO_{3}. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and concentrated. The residual yellow liquid (1.724 g) was chromatographed on silica gel. The early fractions (473 mg , eluent $20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) contained benzoic acid and the later fractions (1.262 g , eluent $50 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) contained the benzoate 8 b as a pale yellow liquid. Short-path distillation $\left(150-152{ }^{\circ} \mathrm{C}\right.$ at 0.03 mm$)$ separated $981 \mathrm{mg}(77 \%)$ of the benzoate 8 b as \mathfrak{a} viscous liquid: ir $\left(\mathrm{CCl}_{4}\right) 1755 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=\mathrm{O}$) with no absorption in the $3-\mu$ region attributable to OH or NH groups; uv max ($95 \% \mathrm{EtOH}$) $229 \mathrm{~nm}(\epsilon 14300), 278$ (1050), and 280 (824); NMR (CCl_{4}) $\delta 7.8-8.3(2, \mathrm{H}, \mathrm{m}$, aryl CH), 7.2-7.7 (3 H , m, aryl CH), 2.9-3.6 (1 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NC}<), 1.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.34(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, and $1.4-2.2$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$); mass spectrum m / e (rel intensity) $288\left(3, \mathrm{M}^{+}\right), 125$ (20), 122 (47), $1: 1$ (27), 105 (100), 96 (27), 77 (42), and 43 (20).

Anal. Calcd fcr $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.64; H,6.99; N, 9.72. Found: C, 66.41; H, 7.00; N, 9.65.

Reaction of 3-Methyl-3-propyl-2,4-pentanedione with HONH_{2}. A soluision of 3.557 g (23.1 mmol) of the diketone 5 b in 20 ml of EtOAc was hydrogenated at 1 atm and $25^{\circ} \mathrm{C}$ over 745 mg of a $5 \% \mathrm{Pt}$ on carbon catalyst. After 4 h when 670 ml (1.3 equiv) of H_{2} had been absorted, the reaction was stopped and the reaction mixture was filtered and concentrated. A cold $\left(0^{\circ} \mathrm{C}\right)$ solution of the residual liquid in 35 ml of acetone was treated with excess aqueous 8 $\mathrm{N} \mathrm{H}_{2} \mathrm{CrO}_{4}$. After this mixture had been stirred at $0^{\circ} \mathrm{C}$ for 10 min , isopropyl alcohcl was added to destroy the excess oxidant, and the solution was corcentrated and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dilute aqueous HCl . The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, concentrated, end distilled to separate $3.084 \mathrm{~g}(83 \%)$ of 3 -methyl-3-propyl-2,4-pentanedione as a colorless liquid: bp $68-73^{\circ} \mathrm{C}(4.7$ $\mathrm{mm}) ;{ }^{25} \mathrm{D}$ 1.43E0-1.4369; ir $\left(\mathrm{CCl}_{4}\right) 1720$ and $1695 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; uv $\max (95 \% \mathrm{EtOH}) 291 \mathrm{~nm}(\epsilon 137)$; NMR (CCl_{4}) $\delta 2.02(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $0.8-2.0(7 \mathrm{H}, \mathrm{m}$, aliphatic CH$)$; mass spectrum m / e (rel intensity) 104 (97), 85 (100), 57 (21), 43 (68), and 41 (34)

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 69.19; H, 10.32. Found: C, 69.36; H , 10.38.

A solution of 830 mg (5.32 mmol) of 3-methyl-3-propyl-2,4-pentanedione, $1.11 \mathrm{~g}(15.9 \mathrm{mmol})$ of $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$, and $1.31 \mathrm{~g}(15.9$ mmol) of NaOAc in 20 ml of $\mathrm{H}_{2} \mathrm{O}$ was refluxed for 3 h and the resulting suspension was cooled and extracted with EtOAc. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and concentrated to leave 838 mg of semisolid residue. Recrystallization from EtOAchexane separated 313 mg (32%) of the dioxime 9 as white needles, $\mathrm{mp} 165.5-167^{\circ} \mathrm{C}$. The product was identified with the previously described material by a mixture melting point determination and by comparison of ir spectra.

Preparation of the Ketone 10 and Its Oxime 11. To a cold $\left(5-10{ }^{\circ} \mathrm{C}\right.$) solusion of the enolate, obtained by reaction of 332 mmol of MeLi ihalide-free, Foote Mineral Co.) in 350 ml of DME with 24.17 g (157 mmol) of 1-acetoxy-2-methylcyclohexene, ${ }^{15}$ was added, rapidly and with stirring, 40.2 g (332 mmol) of freshly distilled allyl bromide. The resulting solution was stirred for 3 min and then partitioned between hexane and aqueous NaHCO_{3}. The organic layer was dried, concentrated, and fractionally distilled to separate 11.7 g (48%) of the ketone 10 as a colorless liquid, bp 92$100^{\circ} \mathrm{C}(20 \mathrm{~mm}), n^{25} \mathrm{D} 1.4693$ [lit. ${ }^{16} \mathrm{bp} 85-87{ }^{\circ} \mathrm{C}(12 \mathrm{~mm})$]. This product 10 exhibited a single GLC peak (silicone gum, SE-30, on Chromosorb P ; at 7.5 min and did not contain any significant amount of 2-methylcyclohexanone (GLC retention time 3.5 min): ir $\left(\mathrm{CCl}_{4}\right) 1710(\mathrm{C}=\mathrm{O})$ and $1642 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; uv max $(95 \% \mathrm{EtOH})$ $288 \mathrm{~nm}(\epsilon 45)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.7-6.0$ ($3 \mathrm{H}, \mathrm{m}$, vinyl CH), 2.0-2.5 (4 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}$ and allylic $\left.\mathrm{CH}_{2}\right), 1.5-2.0\left(6 \mathrm{H}, \mathrm{m}\right.$, aliphatic $\left.\mathrm{CH}_{2}\right)$,
and $1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) $152\left(\mathrm{M}^{+}\right.$, 52), 137 (53), 109 (75), 95 (53), 93 (78), 83 (64), 81 (50), 68 (54), 67 (81), 55 (100), and 41 (68).

A solution of $1.271 \mathrm{~g}(8.37 \mathrm{mmol})$ of the ketone $10,1.81 \mathrm{~g}(26$ $\mathrm{mmol})$ of $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$, and $3.5 \mathrm{~g}(26 \mathrm{mmol})$ of NaOAc in 10 ml of $\mathrm{H}_{2} \mathrm{O}$ and 10 ml of EtOH was refluxed for 6 h and then cooled and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and aqueous NaHCO_{3}. The crganic solution was washed with aqueous NaCl , dried, and concertrated to leave 1.392 g of colorless liquid. Crystallization from $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ separated $1.069 \mathrm{~g}(77 \%)$ of the oxime 11 in fractions melting in the range $44-50{ }^{\circ} \mathrm{C}$. Recrystallization afforded the pure oxime 11 as white plates: $\mathrm{mp} 48.5-50^{\circ} \mathrm{C}$; ir $\left(\mathrm{CCl}_{4}\right) 3240$ (associated OH) and $1640 \mathrm{~cm}^{-1}$ (weak, $\mathrm{C}=\mathrm{C}$); uv ($95 \% \mathrm{EtOH}$) end absorption with ϵ 2790 at $204 \mathrm{~nm} ;$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.7-6.0(3 \mathrm{H}, \mathrm{m}$, vinyl CH), 1.5-3.1 ($10 \mathrm{H}, \mathrm{m}$, aliphatic CH), and $1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) $167\left(\mathrm{M}^{+}, 20\right), 152$ (32), 126 (100), 81 (32), 67 (25), 55 (26), and 41 (47).

Anal. Caled for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 71.81 ; \mathrm{H}, 10.25 ; \mathrm{N}, 8.38$. Found, C, 71.89 ; H, 10.06; N, 8.60.

Preparation of the Aldehyde $21 .{ }^{17} \mathrm{To}$ a cold $\left(-14{ }^{\circ} \mathrm{C}\right)$ mixture of 320 g (2.57 mol) of 2-nitropropane (freshly distilled) and 18 ml of methanolic $40 \% \mathrm{PhCH}_{2} \mathrm{~N}^{+} \mathrm{Me}_{3} \mathrm{OH}^{-}$was added, dropwise with stirring and cooling (-10 to $-14^{\circ} \mathrm{C}$) during 2 h , a solution of 27.0 g $(0.477 \mathrm{~mol})$ of acrolein in $110 \mathrm{~g}(1.26 \mathrm{~mol})$ of 2-nitropropane freshly distilled). The resulting dark green solution was acidified to pH 5 by the dropwise addition of aqueous 3 M HCl and the resulting pale yellow solution was washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated under reduced pressure (20 mm) to remove the excess 2-nitropropane. Short-path distillation of the residual yellow liquid separated 31.0 g of crade product as a yellow liquid, bp $85-90^{\circ}(3 \mathrm{~mm})$. The crude product was redistilled through a $17-\mathrm{cm}$ Vigreux column, keeping the still pot temperature in the range $78-90^{\circ} \mathrm{C}$, to separate $29.9 \mathrm{~g}(41 \%)$ of the nitro aldehyde 21 as a colorless liquid: bp $61-64{ }^{\circ} \mathrm{C}(0.12 \mathrm{~mm}), n^{25} \mathrm{D} 1.4460$ [lit. ${ }^{18} \mathrm{bp} 88.3-89.5^{\circ} \mathrm{C}(3 \mathrm{~mm}), n^{19} \mathrm{D} 1.4469$]; ir $\left(\mathrm{CCl}_{4}\right) 2721,2825$ (aldehyde CH), $1728(\mathrm{C}=\mathrm{O}), 1538$ and $1349 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 9.80(1 \mathrm{H}, \mathrm{s}$, aldehyde CH$), 2.0-2.7\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, and 1.57 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$); mass spectrum m/e (rel intensity) 99 (10), 81 (100), 70 (21), 69 (38), 57 (21), 56 (31), 55 (76), 53 (21), 43 (72), 41 (79), and 39 (39). The product exhibited one major GLC peak (silicone SE- 30 on Chromosorb P) at 4.8 min with a minor unidentified impurity at 3.7 min .

Preparation of the Nitro Olefin $22 .{ }^{17}$ A solution of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, prepared from $64.0 \mathrm{~g}(0.18 \mathrm{~mol})$ of $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{Br}^{-}$in 500 ml of THF and 0.17 mol of MeLi in 98 ml of $\mathrm{Et}_{2} \mathrm{O}$ was treated with a solution of $20.0 \mathrm{~g}(0.138 \mathrm{~mol})$ of the aldehyde 21 in 50 ml of THF. The resulting mixture, from which a white precipitate separated, was refluxed for 24 h and then cooled. After the reaction mixture had been washed with $\mathrm{H}_{2} \mathrm{O}$, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried and concentrated under reduced pressure. The residual brown liquid was triturated with pentane to separate the insoluble $\mathrm{Ph}_{3} \mathrm{PO}$ and the resulting pentane solution was concentrated to leave 17.0 g of crude product as a yellow liquid. Distillation separated 11.5 g (58\%) of the pure nitro olefin 22 as a colorless liquid: bp $45-47{ }^{\circ} \mathrm{C}$ (2 mm); $n^{25} \mathrm{D} 1.4392$; ir $\left(\mathrm{CCl}_{4}\right) 1640(\mathrm{C}=\mathrm{C}), 1530,1345\left(\mathrm{NO}_{2}\right), 992$, and $918 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.3-6.2(3 \mathrm{H} . \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 1.8-2.4\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, and $1.57\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 97 (32), 81 (51), 55 (65), 43 (41), 41 (55), 40 (42), and 39 (23). The product exhibits one major GLC peak (silicone SE-30 on Chromosorb P) at 4.9 min .

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2}$: $\mathrm{C}, 58.72 ; \mathrm{H}, 9.15 ; \mathrm{N}, 9.78$. Found: C, 58.74; H, 9.16; N, 9.74.

Reduction of the Nitro Olefin 22. To a cold $\left(10^{\circ} \mathrm{C}\right)$ mixture of $5.60 \mathrm{~g}(39 \mathrm{mmol})$ of the nitro olefin $22,5 \mathrm{ml}$ of $\mathrm{H}_{2} \mathrm{O}, 10 \mathrm{ml}$ of $\mathrm{Et}_{2} \mathrm{O}$, and $4.2 \mathrm{~g}(78 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{Cl}$ was added portionwise and with vigorous stirring during $20 \mathrm{~min}, 20.0 \mathrm{~g}$ (306 mg -atoms) of Zn dust. Throughout this reduction, the reaction mixture was kept under an N_{2} atmosphere and was cooled with an ice-water bath. During the addition of Zn , the reaction mixture assumed a light blue color and the temperature rose to 15°. After the mixture had been stirred at $15^{\circ} \mathrm{C}$ for 20 min , it was treated successively with 4 ml of $\mathrm{H}_{2} \mathrm{O}, 2.00 \mathrm{~g}$ (37.4 mmol) of $\mathrm{NH}_{4} \mathrm{Cl}$, and 5 ml of $\mathrm{Et}_{2} \mathrm{O}$. Then an additional 5.0 g (76.4 mg -atoms) of Zn dust was added, portionwise with cooling and stirring during 10 min . After addition of this second portion of Zn dust, the pale blue color disappeared and the resulting colorless reaction mixture was stirred at $15-20^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was filtered and the residue was washed repeatedly with $\mathrm{Et}_{2} \mathrm{O}$. The combined ethereal filtrates were dried
and added to 20 ml of $\mathrm{Ac}_{2} \mathrm{O}$. After the resulting solution had been allowed to stand for 20 min , it was stirred with 50 ml of saturated aqueous NaHCO_{3} for 20 min and then the $\mathrm{Et}_{2} \mathrm{O}$ layer was separated, washed successively with aqueous NaHCO_{3} and aqueous NaCl , and then dried and concentrated. Fractional crystallization of the residual yellow liquid (4.25 g) from pentane at dry ice temperature separated 1.5 g (15%) of the acetamide 25 a as colorless needles: mp $53-55^{\circ} \mathrm{C}$; ir $\left(\mathrm{CHCl}_{3}\right) 3415(\mathrm{NH}), 1670$ (amide $\mathrm{C}=\mathrm{O}$), $1640(\mathrm{C}=\mathrm{C})$, and $910 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.7-6.2(4$ $\mathrm{H}, \mathrm{m}, \mathrm{NH}$ and $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 1.6-2.3\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and a $\mathrm{CH}_{3} \mathrm{CO}$ singlet at 1.92), and $1.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) $155\left(\mathrm{M}^{+}, 4\right), 100(47), 98(22), 81(21), 60(37), 58(100)$, and 43 (20).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 69.63 ; \mathrm{H}, 11.04$; N, 9.02. Found: C, 69.84; H, 11.05; N, 9.07.

The mother liquors from this crystallization were concentrated and the residual liquid (2.5 g) was chromatographed on 80 g of silica gel with $\mathrm{Et}_{2} \mathrm{O}$-pentane mixtures as the eluent. After separation of 58 mg of early fractions of unidentified liquid [1:99 to $3: 97(\mathrm{v} / \mathrm{v})$ $\mathrm{Et}_{2} \mathrm{O}$-pentane eluent], subsequent fractions, eluted with a $1: 9(\mathrm{v} / \mathrm{v})$ $\mathrm{Et}_{2} \mathrm{O}$-pentane mixture, contained $1.98 \mathrm{~g}(30 \%)$ of the O -acetyl hydroxylamine 26 as a colorless liquid: $n^{25} \mathrm{D} 1.4410$; ir $\left(\mathrm{CCl}_{4}\right) 3220$ (NH), 1740 (ester $\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{C})$, and $915 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; NMR (CDCl_{3}) $\delta 7.42(1 \mathrm{H}$, broad NH$), 4.8-6.2\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 1.8-2.4 (5 H, m, allylic CH_{2} with a $\mathrm{CH}_{3} \mathrm{CO}$ singlet at 2.04$), 1.2-1.8$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), and $1.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$); mass spectrum m / e (rel intensity) 116 (22), 96 (23), 74 (49), 56 (96), 55 (100), and 43 (57). Our efforts to obtain an analytically pure sample of the O -actate 26 from these chromatographic fractions were thwarted by the partial thermal decomposition of this material during each attempt to distill it.

In another experiment $2.00 \mathrm{~g}(13.3 \mathrm{mmol})$ of the nitro olefin 22 was reduced with $1.50 \mathrm{~g}(28 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{Cl}, 10 \mathrm{ml}$ of $\mathrm{Et}_{2} \mathrm{O}, 4 \mathrm{ml}$ of $\mathrm{H}_{2} \mathrm{O}$, and 11.0 g (167 mg -atoms) of Zn dust. An $\mathrm{Et}_{2} \mathrm{O}$ solution of the product (141 ml) was divided into two aliquots (41 and 100 ml).
The $41-\mathrm{ml}$ aliquot was concentrated under reduced pressure to leave 353 mg of yellow liquid that contained (NMR analysis) a mixture of the hydroxylamine 20 (ca. 75%) and the amine 23 (ca. 25%): $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 4.8-6.2$ (ca. $5 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{NH}$, and OH), 1.3-2.4 (ca. $4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), and two singlets (total ca. 6 H) at 1.12 $\left(\mathrm{CH}_{3}\right.$ of amine 23) and $1.05\left(\mathrm{CH}_{3}\right.$ of hydroxylamine 20). After standing overnight under an N_{2} atmosphere, the NMR absorption of the sample was very different with much less intense absorption attributable to the vinyl group and replacement of the singlet at δ $1.05\left(\mathrm{CH}_{3}\right.$ of 20$)$ with a series of peaks in the region $\delta 1.0-1.3$ attributable to the CH_{3} signals of the cyclic hydroxylamine 24a. Because of the instability of the unsaturated hydroxylamine 20 , we were unable to separate the initially formed mixture of bases 20 and 23. The sample (containing 23 and 24a) was added to a cold (5 ${ }^{\circ} \mathrm{C}$) solution of 2 ml of PhCOCl in 4 ml of pyridine. After the resulting solution had been allowed to stand at $25^{\circ} \mathrm{C}$ for 1 h , it was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaHCO_{3}. The ethereal layer was dried, concentrated, and chromatographed on silica gel with PhH as an eluent. After removal of the initial fractions containing $(\mathrm{PhCO})_{2} \mathrm{O}$, subsequent fractions contained 459 mg of the crude benzoate 24b which was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, washed with aqueous $\mathrm{NaHCO}_{3,}{ }^{19}$ dried, and concentrated to leave 305 mg (34\%) of the benzoate 24b (ir and NMR analysis) as a yellow liquid. Further purification of this sample by preparative TLC [silica gel coating with a $5: 1(\mathrm{v} / \mathrm{v})$ hexane- $\mathrm{Et}_{2} \mathrm{O}$ eluent] and short-path distillation (at 0.3 mm with a Kragen tube) afforded a sample of the pure benzoate 24b as a colorless liquid, $n^{25} \mathrm{D} 1.5142$, that was identified with a subsequently described authentic sample by comparison of ir, NMR, uv, and mass spectra.

The $100-\mathrm{ml}$ aliquot of ethereal solution (containing 20 and 23) from the previously described reduction was mixed with 15 ml of acetic anhydride and allowed to stand at $25{ }^{\circ} \mathrm{C}$ for 2 h , and subjected to the previously described isolation procedure to give 1.25 g of product as a pale yellow liquid containing [TLC, silica gel coating with a $1: 1(\mathrm{v} / \mathrm{v}) \mathrm{PhH}-\mathrm{Et}_{2} \mathrm{O}$ eluent] a mixture of the acetate 26 ($R_{f} 0.64$) and the acetamide $25 a\left(R_{f} 0.30\right)$. A $520-\mathrm{mg}$ aliquot of this mixture was chromatographed on silica gel to separate 220 mg (31%) of the acetate 26 as a yellow liquid, $n^{25} \mathrm{D} 1.4420$. The remaining aliquot containing a mixture of 25 a and 26 was stirred at 25° with 10 ml of aqueous $10 \% \mathrm{NaOH}$ for 12 h . The resulting mixture was neutralized with aqueous HCl and extracted with $\mathrm{Et}_{2} \mathrm{O}$. After the ethereal extract had been dried and concentrated the residual liquid (360 mg) was crystallized twice from hexane at low tempera-
tures to separate 75 mg (9\%) of the amide 25a as white needles, mp $52-53^{\circ} \mathrm{C}$.

In another experiment, $1.50 \mathrm{~g}(10.5 \mathrm{mmol})$ of the nitro olefin 22 was reduced as described previously with a mixture of $\mathrm{Zn}, \mathrm{NH}_{4} \mathrm{Cl}$, $\mathrm{H}_{2} \mathrm{O}$, and $\mathrm{Et}_{2} \mathrm{O}$ and the crude product (TLC analysis, a mixture of unchanged 22, amine 23, and hydroxylamine 20) was obtained as 140 ml of an $\mathrm{Et}_{2} \mathrm{O}$ solution. An $80-\mathrm{ml}$ aliquot was concentrated under reduced pressure and the residual liquid (0.32 g) was added to a solution of 3 ml of PhCOCl in 6 ml of pyridine. After this solution had been allowed to stand for 1 h at $25^{\circ} \mathrm{C}$, it was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaHCO_{3}. The ethereal phase was dried, concentrated, and chromatographed on silica gel with a $1: 1$ (v / v) hexane- PhH eluent. After separation of the early fractions containing (PhCO$)_{2} \mathrm{O}$, subsequent fractions afforded 392 mg of a crude liquid product $\left(\mathrm{PhCO}_{2} \mathrm{H}, 25 \mathrm{~b}\right.$, and 28). An $\mathrm{Et}_{2} \mathrm{O}$ solution of this material was washed with aqueous NaHCO_{3}, dried, concentrated, and fractionally crystallized from pentane at low temperatures to separate $78 \mathrm{mg}(6 \%)$ of the benzamide $25 \mathrm{~b}, \mathrm{mp} 88-90^{\circ} \mathrm{C}$. Recrystallization afforded the pure benzamide 25b as colorless needles: $m p 90-91^{\circ}$; ir $\left(\mathrm{CCL}_{4}\right) 3420(\mathrm{NH}), 1670$ (amide $\mathrm{C}=0$), 1640 $(\mathrm{C}=\mathrm{C})$, and $910 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; uv max ($95 \% \mathrm{EtOH}$) $222 \mathrm{~nm}(\epsilon$ 11000); NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.0-7.8(5 \mathrm{H}, \mathrm{m}$, aryl CH$), 5.7-6.2(4 \mathrm{H}, \mathrm{m}$, NH and $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 1.7-2.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, and $1.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) $217\left(\mathrm{M}^{+}, 2\right), 162(20), 122$ (25), 105 (100), and 77 (36).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 77.38 ; \mathrm{H}, 8.81 ; \mathrm{N}, 6.45$. Found: C, 77.35; H, 8.85; N, 6.51.

The mother liquor from crystallization of the amide $\mathbf{2 5 b}$ was concentrated and the residual liquid (275 mg) was subjected to preparative TLC separation [silica gel coating with a $3: 7$ (v / v) $\mathrm{Et}_{2} \mathrm{O}$-pentane eluent]. The more rapidly moving component was separated as 119 mg of pale yellow liquid that crystallized from pentane at low temperatures to give $78 \mathrm{mg}(4 \%)$ of the dibenzoyl derivative 28 as colorless needles: $\mathrm{mp} 62.5-63.5^{\circ} \mathrm{C}$; ir $\left(\mathrm{CCL}_{4}\right) 1768$ (ester $\mathrm{C}=\mathrm{O}$), 1668 (broad, amide $\mathrm{C}=0$), and $910 \mathrm{~cm}^{-1}$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; uv max $(95 \% \mathrm{EtOH}) 232 \mathrm{~nm}(\epsilon 15000)$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta$ 7.0-7.9 (10 H, m, aryl CH), 4.8-6.0 (3 H, m, $\mathrm{CH}=\mathrm{CH}_{2}$), 1.7-2.7 (4 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), and $1.48\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 242 (1), 200 (9), 162 (11), 122 (17), 105 (100), and 77 (28).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 74.75; $\mathrm{H}, 6.87$; $\mathrm{N}, 4.15$. Found: C, 74.66; H, 6.87; N, 4.17.

From an additional reduction of $2.0 \mathrm{~g}(14 \mathrm{mmol})$ of the nitro olefin 22 with $\mathrm{Zn}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{Et}_{2} \mathrm{O}$), the crude product contained (NMR analysis) a mixture of the hydroxylamine 20 (ca. 45\%) and the amine 23 (ca. 55%). An aliquot (38% of the total) of this mixture was concentrated to leave 400 mg of crude product that was heated on a steam bath for 5 min after which NMR analysis indicated the crude product to be a mixture containing mainly the amine 23 and the cyclized hydroxylamine 24a. This crude product was dissolved in 5 ml of MeOH containing 2 mg of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and air was passed through the solution for 5 min to oxidize the hydroxylamine 24 a . The resulting solution was concentrated and the residue was distilled in a short-path still to separate 55 mg (8% based on the starting nitro olefin 22) of the nitrone 27 as a yellow liquid, $n^{25} \mathrm{D} 1.4842$. This product was identified with a subsequently described authentic sample of the nitrone 27 by comparison of ir, NMR, uv, and mass spectra.

Preparation of Authentic Samples of the Cyclic Hydroxylamine Derivatives 24 and the Nitrone 27. Following previously described procedures, ${ }^{20} 8.00 \mathrm{~g}(55.2 \mathrm{mmol})$ of the nitro aldehyde 21 was converted to $8.00 \mathrm{~g}(77 \%)$ of the nitro acetal 29 as a colorless liquid: bp 98-99 ${ }^{\circ} \mathrm{C}(1 \mathrm{~mm}), n^{25} \mathrm{D} 1.4535$ [lit. ${ }^{20 \mathrm{a}} \mathrm{bp} 105{ }^{\circ} \mathrm{C}(0.5$ $\mathrm{mm})$; ir $\left(\mathrm{CCl}_{4}\right) 1535$ and $1345 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; NMR ($\left.\mathrm{CCl}_{4}\right) \delta 4.78$ (1 $\mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}$, acetal CH$), 3.7-4.0\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 1.3-2.2(10 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$ and a CH_{3} singlet at 1.57). Subsequent reduction of 5.00 g (26.4 mmol) of the nitro acetal 29 with Zn dust and aqueous $\mathrm{NH}_{4} \mathrm{Cl}^{20 \mathrm{~b}}$ followed by acidification and cyclization yielded 2.32 g (76\%) of the nitrone 30 as a colorless liquid: bp $78{ }^{\circ} \mathrm{C}(1.4 \mathrm{~mm})$, $n^{25} \mathrm{D} 1.4940$ [lit. ${ }^{20 \mathrm{~b}} \mathrm{bp} 66-67{ }^{\circ} \mathrm{C}(0.6 \mathrm{~mm})$]; ir $\left(\mathrm{CHCl}_{3}\right) 1578 \mathrm{~cm}^{-1}$ $\left(\mathrm{CH}=\mathrm{N}^{+}-\mathrm{O}^{-}\right.$); uv max ($95 \% \mathrm{EtOH}$) $234 \mathrm{~nm}(\epsilon 8660)$ [lit. ${ }^{20 \mathrm{~b}} 234 \mathrm{~nm}$ ($\epsilon 7700$)]; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.78\left(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{N}^{+}-\mathrm{O}^{-}\right)$, 2.0-2.8 (4 H, m, CH_{2}), and $1.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 113 ($\mathrm{M}^{+}, 100$), 81 (34), 67 (33), 57 (46), 56 (30), 55 (70), 43 (36), 41 (89), and 39 (61). To 5 ml of an $\mathrm{Et}_{2} \mathrm{O}$ solution containing 8.5 mmol of MeLi was added a solution of 354 mg (3.13 mmol) of the nitrone 30 (dried by partial distillation of the solvent from a PhH solution) in 10 ml of $\mathrm{Et}_{2} \mathrm{O}$. The resulting solution was refluxed with stirring for 15 min and then hydrolyzed by addition of 0.5 ml of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The $\mathrm{Et}_{2} \mathrm{O}$ solution was separated,
dried, and concentrated to leave 320 mg of the crude hydroxylamine 24a as a yellow liquid: NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.7-3.3$ (ca. $1 \mathrm{H}, \mathrm{m}$, CHN), 0.9-2.1 [ca. $14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{OH}$, and CH_{3} singlets at 1.17 and 1.00 as well as a CH_{3} doublet $(J=6 \mathrm{~Hz})$ at 1.17]. This crude product (320 mg) was dissolved in 6 ml of pyridine, cooled in ice, and treated with 2 ml of PhCOCl . After the resulting solution had been stirred for 15 min , it was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaHCO_{3}. The $\mathrm{Et}_{2} \mathrm{O}$ phase was dried and concentrated to leave 872 mg of residual brown liquid that was chromatographed on silica gel. After removal of early fractions, which were eluted with PhH and contained $(\mathrm{PhCO})_{2} \mathrm{O}$ and $\mathrm{PhCO}_{2} \mathrm{H}$, subsequent fractions, eluted with $\mathrm{PhH}-\mathrm{Et}_{2} \mathrm{O}$ mixtures ($20: 1 \mathrm{v} / \mathrm{v}$), were partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaHCO_{3} and then dried and concentrated to leave 313 mg (43%) of the crude benzoate 24 b as a brown liquid. This material was further purified by preparative TLC (silica gel coating with a hexane- $\mathrm{Et}_{2} \mathrm{O}$ eluent, $5: 1 \mathrm{v} / \mathrm{v}$) followed by short-path distillation under reduced pressure in a Kragen tube to separate the pure benzoate 24 b as a pale yellow liquid: $n^{25} \mathrm{D} 1.5138$; ir $\left(\mathrm{CCl}_{4}\right) 1750 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=0$); uv max ($95 \% \mathrm{EtOH}$) $228 \mathrm{~nm}(\epsilon$ $12000), 273(1000)$, and $279(820)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.2-8.2(5 \mathrm{H}, \mathrm{m}$, aryl CH), 3.1-3.6 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$), $1.4-2.3\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, and three partially resolved CH_{3} signals (9 H total) consisting of two singlets at 1.20 and 1.17 with a partially resolved doublet ($J=\mathrm{ca} .6 \mathrm{~Hz}$) at ca. 1.17; mass spectrum m / e (rel intensity) 122 (82), 111 (40), 105 (89), 96 (36), 83 (68), 77 (58), 70 (55), 55 (56), and 42 (100).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 72.07; H, 8.21; N, 6.00. Found: C, 71.93; H, 8.27; N, 5.97.

After a comparable reaction of $1.0 \mathrm{~g}(8.9 \mathrm{mmol})$ of the nitrone 30 with 14.1 mmol of MeLi in 13 ml of $\mathrm{Et}_{2} \mathrm{O}$, the crude hydroxylamine product 24a (0.90 g) was dissolved in 5 ml of MeOH containing 1 mg of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and air was passed through the solution for 10 \min. After the resulting mixture had been allowed to stand for 24 h, it was concentrated and the residual liquid was distilled under reduced pressure in a short-path still to separate 0.44 g (40%) of the nitrone 27 as a yellow liquid: $n^{25} \mathrm{D} 1.4835$; ir $\left(\mathrm{CCl}_{4}\right) 1600 \mathrm{~cm}^{-1}$ $\left(>\mathrm{C}=\mathrm{N}^{+}-\mathrm{O}^{-}\right.$); uv max ($95 \% \mathrm{EtOH}$) $229 \mathrm{~nm}(\epsilon 7300)$ [lit. ${ }^{20 \mathrm{c}} 231 \mathrm{~nm}$ ($\epsilon 8400)$]; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.4-2.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right)$, 1.8-2.2 (5 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ and a broad CH_{3} singlet at 2.02), and $1.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) $127\left(\mathrm{M}^{+}, 77\right), 112(36), 95(24)$, 69 (23), 58 (37), 55 (46), 43 (85), 42 (39), 41 (100), and 39 (26).

Preparation of Acyl Derivatives of \boldsymbol{t}-BuNHOH (31). Samples of t-BuNHOH (31) and the dimer of t-BuNO (32) were prepared by previously described procedures. ${ }^{6}$ A solution of 1.00 g (11 mmol) of $t-\mathrm{BuNHOH}$ in 3.0 ml of $\mathrm{Ac}_{2} \mathrm{O}$ was allowed to stand at 25° for 20 min and then the mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaHCO_{3}. After the $\mathrm{Et}_{2} \mathrm{O}$ layer had been dried and concentrated, distillation of residual yellow oil (200 mg) under reduced pressure in a short-path still separated $157 \mathrm{mg}(11 \%)$ of the acetate 33 as a colorless liquid: $n^{25} \mathrm{D} 1.4100$; ir $\left(\mathrm{CCl}_{4}\right) 3210$ (NH) and $1735 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=0$); NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.37(1 \mathrm{H}$, broad, NH , exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, and $1.08(9 \mathrm{H}, \mathrm{s}, t$ Bu); mass spectrum m / e (rel intensity) 118 (1), 115 (4), 72 (15), 70 (16), 60 (25), 58 (100), 57 (73), 56 (42), 55 (31), 44 (38), 43 (62), 42 (45), 41 (60), and 39 (42).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, 54.94; H, 9.99; $\mathrm{N}, 10.68$. Found: C, 54.89; H, 10.01; N, 10.70 .

A solution of $0.50 \mathrm{~g}(5.6 \mathrm{mmol})$ of $t-\mathrm{BuNHOH}$ in 6.0 ml of pyridine was treated with 3.0 ml of $\mathrm{CH}_{3} \mathrm{COCl}$ and the resulting semisolid mixture was allowed to stand at $25^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaHCO_{3} and the $\mathrm{Et}_{2} \mathrm{O}$ layer was dried and concentrated. The residual liquid (310 mg) was chromatographed on silica gel. After separation of early unidentified fractions (8 mg), the crude ester amide 34 was eluted with hexane- $\mathrm{Et}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ as 220 mg of pale yellow liquid. Distillation under reduced pressure in a short-path still separated 200 mg (21%) of the pure ester amide 34 as a colorless liquid: $n^{25} \mathrm{D}$ 1.4350 [lit. ${ }^{21} \mathrm{bp} 102{ }^{\circ} \mathrm{C}(19 \mathrm{~mm})$]; ir $\left(\mathrm{CCl}_{4}\right) 1795$ (ester $\mathrm{C}=0$) and $1688 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=0$); NMR ($\left.\mathrm{CCl}_{4}\right) \delta 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}\right)$, $1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CON}\right)$, and $1.37(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu})$; mass spectrum m/e (rel intensity) $173\left(\mathrm{M}^{+}, 1\right), 131(24), 57(57), 56$ (28), and 43 (100).

A cold $\left(5^{\circ} \mathrm{C}\right)$ solution of $300 \mathrm{mg}(3.4 \mathrm{mmol})$ of $t-\mathrm{BuNHOH}$ in 6.0 ml of pyridine was treated with 3.0 ml of PhCOCl and the resulting mixture was allowed to stand at $25^{\circ} \mathrm{C}$ for 1 h . After the reaction mixture had been partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaHCO_{3}, the $\mathrm{Et}_{2} \mathrm{O}$ layer was dried and concentrated to leave 1.8 g of liquid. Chromatography on silica gel with a PhH-hexane eluent ($1: 1 \mathrm{v} / \mathrm{v}$) separated $(\mathrm{PhCO})_{2} \mathrm{O}$ in early fractions followed by 1.07 g of liquid containing the ester amide 35. Crystallization from pentane afforded 200 mg (20\%) of the pure ester amide 35 as colorless
needles: $\mathrm{mp} 97-99{ }^{\circ} \mathrm{C}$ (lit. ${ }^{21} \mathrm{mp} 98-99{ }^{\circ} \mathrm{C}$); ir $\left(\mathrm{CCl}_{4}\right) 1768$ (ester $\mathrm{C}=\mathrm{O}$) and $1678 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=0$); uv max ($95 \% \mathrm{EtOH}$) 233 nm ($\epsilon 17000$); NMR (CCl_{4}) $\delta 7.1-7.9(10 \mathrm{H}, \mathrm{m}$, aryl CH) and $1.58(9 \mathrm{H}$, $\mathrm{s}, t-\mathrm{Bu}$); mass spectrum m / e (rel intensity) 105 (100), 77 (31), 51 (11), and 41 (5).

To examine the possibility of an intermolecular addition of t BuNHOH to an olefin, a solution of $1.0 \mathrm{~g}(11.2 \mathrm{mmol})$ of $t-\mathrm{BuN}-$ HOH and 1 mg of the dimer of $t-\mathrm{BuNO}$ in $10 \mathrm{~g}(122 \mathrm{mmol})$ of freshly purified cyclohexene was heated to 60° under an N_{2} atmosphere with stirring for 16 h and then concentrated under reduced pressure. The NMR spectrum $\left(\mathrm{CCl}_{4}\right)$ of the residual solid $(0.50 \mathrm{~g})$ exhibited only NMR peaks attributable to t - BuNHOH with no indication that N-tert-butyl- N-cyclohexylhydroxylamine had been formed.

Methanolysis of the \boldsymbol{O}-Acetates 26 and 33 and Cyclization of the Hydroxylamine 23. A solution of $30 \mathrm{mg}(0.22 \mathrm{mmol})$ of the O-acetate 33 in $150 \mu \mathrm{l}$ of MeOH exhibited NMR singlets at ò 2.08 $\left(\mathrm{COCH}_{3}\right)$ and $1.19(t-\mathrm{Bu})$. Upon dropwise addition of methanolic 1 $\mathrm{M} \mathrm{NaOH}, 10 \mu \mathrm{l}(0.01 \mathrm{mmol})$ was required to catalyze the complete conversion of the O-acetate 33 to $\mathrm{MeOCOCH}_{3}$ (NMR singlet at δ 2.02) and the hydroxylamine 31 (NMR singlet at $\delta 1.10$) at $25^{\circ} \mathrm{C}$. Similarly, when a solution of $30 \mathrm{mg}(0.18 \mathrm{mmol})$ of the O-acetate 26 in $200 \mu \mathrm{l}$ of MeOH at 25° (NMR singlets at $\delta 2.09$ and 1.01) was treated with $30 \mu \mathrm{l}(0.03 \mathrm{mmol})$ of methanolic 1 M NaOH , the solution contained $\mathrm{CH}_{3} \mathrm{OCOCH}_{3}$ (NMR singlet at $\delta 2.02$) and the hydroxylamine 26 (NMR singlet at $\delta 1.05$). When this solution of the hydroxylamine 26 was refluxed for 5 min , the NMR spectra of the solution exhibited a multiplet in the region $\delta 1.0-1.2$ characteristic of the cyclic hydroxylamine 24a.

This conversion was repeated on a larger scale by treating a solution of 445 mg (2.6 mmol) of the O-acetate 26 in 5 ml of MeOH with $200 \mathrm{mg}(5.0 \mathrm{mmol})$ of NaOH . The solution, which immediately turned pale blue in color, was stirred under N_{2} for 2 min , neutralized with CO_{2}, and filtered to remove the NaHCO_{3} precipitate. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic solutions were concentrated under reduced pressure to leave 220 mg of the crude liquid hydroxylamine 20 . This crude product was heated on a steam bath for 2 min and then cooled and treated with 1.0 ml of PhCOCl and 2.0 ml of pyridine. The resulting mixture was stirred for 10 min at 25° and then partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous 3 M HCl . After the ethereal layer had been washed with aqueous NaHCO_{3}, dried, and concentrated, the residual crude product (912 mg) was chromatographed on silica gel with $\mathrm{Et}_{2} \mathrm{O}$ pentane mixtures as eluents. After separation of the early fractions [mixtures of $(\mathrm{PhCO}){ }_{2} \mathrm{O}$ and $\mathrm{PhCO}_{2} \mathrm{H}$], the fractions (350 mg cf yellow liquid) eluted with $1: 1(\mathrm{v} / \mathrm{v}) \mathrm{Et}_{2} \mathrm{O}$-pentane mixtures were partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaHCO_{3}. The $\mathrm{Et}_{2} \mathrm{O}$ layer was dried and concentrated and the residue (308 mg) was rechromatographed on silica gel to separate 180 mg (20% yield based on the acetate 26) of the liquid benzoate $24 \mathrm{~b}, n^{25} \mathrm{D} 1.5130$, that was identified with the previously described authentic sample by comparison of ir and NMR spectra.

Electrochemical Measurements. The polarographic and cyclic voltammetry measurements employed a custom-made polarographic module, utilizing solid-state amplifiers, that followed the typical three-electrode design. Descriptions of the cells, working electrodes (Pt sphere electrode for cyclic voltammetry and dropping Hg electrode for polarography), reference electrodes, reagent purification procedures, and procedures used to calculate $E_{1 / 2}$ values have been published previously. ${ }^{22}$ The polarographic reduction of solutions of the nitroso compound $32\left(6.7-8.9 \times 10^{-3} \mathrm{M}\right)$ in anhydrous DMF containing 0.5 M n - $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ gave $E_{1 / 2}=-1.48$ V vs. $\operatorname{SCE}\left(n=0.8, i_{\mathrm{d}}=39-44 \mu \mathrm{~A}\right) .{ }^{23}$ Reduction of the same solution by cyclic voltammetry (scan rate $500 \mathrm{mV} / \mathrm{s}$) gave a cathodic peak at -1.86 V vs. SCE but no anodic peak was observed. When sufficient $\mathrm{H}_{2} \mathrm{O}$ was added to make the solution 1.0 M in $\mathrm{H}_{2} \mathrm{O}$, the cathodic peak was shifted to -1.75 V vs. SCE and an anodic peak, attributable to an unidentified reaction product, was observed at -0.87 V vs. SCE. Attempts to examine the oxidation of $t-\mathrm{BuN}$ HOH by cyclic voltammetry in a 0.5 M solution of $n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ in either anhydrous DMF or in DMF containing $1 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ gave no oxidation peak within the range -1.3 to +0.5 V . Similarly, a solution of t-BuNHOH in an aqueous buffer (pH 7.0) exhibited no polarographic oxidation wave in the range -0.5 to +0.2 V vs. SCE. In more basic solution, the oxidation wave was shifted to more negative values. ${ }^{24}$ In aqueous pH 10.0 buffer, the t-BuNHOH (8.3-8.5 $\times 10^{-3} \mathrm{M}$) solution exhibited an oxidation wave with $E_{1 / 2}-0.20 \mathrm{~V}$ vs. $\operatorname{SCE}\left(n=0.9, i_{\mathrm{d}}=48-52 \mu \mathrm{~A}\right)$ and in a more alkaline aqueous solution ($\mathrm{pH} \sim 13,1.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$ and 0.14 M KOH), ${ }^{25} t$-BuNHOH $\left(6.7-7.6 \times 10^{-3} \mathrm{M}\right)$ exhibited an $E_{1 / 2}$ value of -0.51 V vs. SCE (n
$\left.=1.5, i_{\mathrm{d}}=46-47 \mu \mathrm{~A}\right)$. A solution of the O-acetate $33(0.009 \mathrm{M})$ in aqueous $\mathrm{MeOH}(15: 85 \mathrm{v} / \mathrm{v})$ containing $0.5 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ exhibited no polarographic oxidation wave in the range -0.5 to 0.0 V ; when sufficient methanolic NaOH solution was added to saponify the O-acetate 33 and make the solution 0.05 M in NaOH , a polarographic oxidation wave attributable to 31 was observed with $E_{1 / 2}=$ -0.39 V vs. $\mathrm{SCE}\left(n=1.0, i_{\mathrm{d}}=24 \mu \mathrm{~A}\right)$. Comparable behavior was observed for the O-acetate $26\left(2.7-12 \times 10^{-3} \mathrm{M}\right)$ whose solution in aqueous MeOH containing $0.5 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ exhibited no polarographic oxidation wave in the range -0.5 to 0.0 V . After addition of methanolic NaOH to saponify the acetate 26 and make the solution 0.05 M in NaOH , this solution of the hydroxylamine 20 exhibited a polarographic oxidation wave at $E_{1 / 2}=-0.42 \mathrm{~V}$ vs. SCE (n $=1.1, i_{\mathrm{d}}=5-27 \mu \mathrm{~A}$). The polarographic oxidation of this solution was reexamined at intervals after the solution had been stirred under N_{2} and after the solution had been exposed to O_{2} of the air. The i_{d} value decreased regularly as the solution was stirred but no new oxidation peak was observed. After exposure to O_{2} of the air for 10 min , the oxidation wave attributable to hydroxylamines 20 and/or 24a was no longer observed indicating that oxidation of 20 to the corresponding nitroso compound or 24a to the nitrone 27 was complete. Polarographic oxidation of a solution of the cyclic hydroxylamine $24 \mathrm{a}\left(1.4-2.0 \times 10^{-2} \mathrm{M}\right.$) in aqueous MeOH (15:85 v / v) containing $0.5 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ and 0.05 M NaOH gave $E_{1 / 2}=$ -0.47 V vs. $\operatorname{SCE}\left(n=0.8, i_{\mathrm{d}}=19-24 \mu \mathrm{~A}\right)$. Since the $E_{1 / 2}$ values for oxidation of the hydroxylamine 20 before (-0.42 V) and after cyclization (to form 24a, $E_{1 / 2}=-0.47 \mathrm{~V}$) are very similar, our failure to observe two resolved oxidation waves during the change $20 \rightarrow$ $\mathbf{2 4 a} \rightarrow 27$ is understandable.

Registry No.-5a, 3508-79-0; 5b, 53315-95-0; 6a, 57620-40-3; 6b, 57620-41-4; 7a, 57620-42-5; 7b, 57620-43-6; 8a, 57620-44-7; 8b, $57620-45-8 ; 9,57620-46-9$; 10, 16178-87-3; 11, 57620-47-0; 20, 57620-48-1; 21, 57620-49-2; 22, 57620-50-5; 23, 819-45-4; 24a, 57620-51-6; 24b, 57620-52-7; 25a, 57620-53-8; 25b, 835-85-8; 26, 57620-54-9; 27, 4567-18-4; 28, 57620-55-0; 29, 57620-56-1; 30, $3317-61-1$; 31, 16649-50-6; 33, 51338-99-9; 34, 53242-00-5; 35, 51339-08-3; $\mathrm{HONH}_{2} \cdot \mathrm{HCl}, 5470-11-1$; $\mathrm{PhCOCl}, 98-88-4 ;$ 3-methyl-2,4-pentanedione, 815-57-6; allyl bromide, 106-95-6; 3-methyl-3-propyl-2,4-pentanedione, 57620-57-2; methyllithium, 917-54-4; 1-acetoxy-2-methylcyclohexene, 1196-73-2; 2-nitropropane, 79-46-9; acrolein, 107-02-8; methylenetriphenylphosphorane, 3487-44-3; acetic anhydride, 108-24-7; acetyl chloride, 75-36-5.

References and Notes

(1) This research has been supported in part by Public Health Service Grant 9-RO1-GM-20197 from the National Institute of General Medical Sciences. The execution of this research was also assisted by Institution Research Grants from the National Science Foundation for the purchase of a mass spectrometer and a Fourier transform NMR spectrometer.
(2) (a) Georgia Institute of Technology; (b) Union Carbide Corp.
(3) D. T. Manning and H. A. Coleman, J. Org. Chem., 34, 3248 (1969).
(4) This experiment was performed in our laboratories by Dr. R. A. Auerbach.
(5) (a) W. B. Motherwell and J. S. Roberts, Chem. Commun., No. 6, 328, 329 (1972). We are indebted to Dr. James S. Roberts, who supplied additional experimental details concerning the preparation and cyclization of hydroxylamine 16. (b) J. M. Surzur and L. Stella, Tetrahedron Lett., 2191 (1974). (c) For other examples of additions of N -centered radicals (derived from N -chloro amines) to olefins, see F. Minisci, Acc. Chem. Res., 8, 165 (1975); R. Furstoss, G. Esposito, P. Teissier, and B. Waegell, Bull. Soc. Chim. Fr., 2485 (1974).
(6) A Calder, A. R. Forrester, and S. P. Hepburn, Org. Synth., 52, 77 (1972).
(7) This same reducing system was also employed to prepare the hydroxylamine 16. See ref 5a.
(8) This relatively low isolated yield is attributable to the difficulties in isolating the hydrolytically and thermally unstable liquid benzoate 24b. NMR analysis of the reaction mixture indicated that hydroxylamine 24a is the major product formed from 20.
(9) For examples, see (a) T. R. Juneja and H. Dannenberg. Tetrahedron, 31, 695, 701 (1975); (b) P. A. S. Smith, "The Chemistry of Open-Chain Organic Nitrogen Compounds', Vol. 2, W. A. Benjamin, New York, N.Y., 1966, pp 2-3 and 10-11.
(10) The shift of $E_{1 / 2}$ values for the oxidation of PhNHOH to increasingly negative values with increasing pH has been noted previously by $\mathrm{J} . \mathrm{W}$. Smith and J. G. Waller. Trans. Faraday Soc., 46, 290 (1950).
(11) (a) T. A. J. W. Wajer, A. Mackor, and T. J. deBoer, Tetrahedron, 25, 175 (1969). (b) D. F. Bowman, J. L. Brokenshire, T. Gillan, and K. U. Ingold, J. Am. Chem. Soc., 93, 6551 (1971). (c) A referee has suggested that the ring-closure step, rather than involving the radical addition to an olefin indicated in structure 37, involves an initial H atom transfer ito yield an intermediate nitroso radical if that cyclizes to III. Although the second step, li \rightarrow iil, in this sequence would clearly be favorable, we
are unaware of precedent for the frst step, $\mathbf{i} \rightarrow \mathrm{i}$, the transfer of an H . atom from a radical to a double bond. Consequently, we presently prefer the radical addition mechanism (37 in Scheme VII) for which some precedent exists (ref $5 \mathrm{~b}, \mathrm{c}$) but have no experimental basis for excluding the alternative radical chain proces; involving $\mathrm{i} \rightarrow \mathrm{ii} \rightarrow \mathrm{iii}$.

ii
(12) All melting points are corrected ard all boiling points are uncorrected. Unless otherwise stated MgSO_{4} was employed as a drying agent. The ir spectra were determined with a Perkin-Elmer Model 237 or Model 257 infrared recording spectrophotome er fitted with a grating. The uv spectra were determined with a Cary Mzdel 14 or a Perkin-Elmer Model 202 recording spectrophotometer. The proton NMR spectra were determined at 60 MHz with a Varian Medel A-60 or Model T-60 NMR spectrometer and the ${ }^{13} \mathrm{C}$ NMR spectre were obtained with a JEOL Fourier transform spectrometer, Model $\mathrm{PF}^{-}-100$. The chemical shift values are expressed in δ values (parts per million) relative to a $\mathrm{Me}_{4} \mathrm{Si}$ internal standard. The mass spectra were cbtained with an Hitachi Perkin-Elmer Model RMU-7 or a Varian Model M-66 mass spectrometer. All reactions involving strong bases or reactive organometallic intermediates were performed under a nitrogen atmosphere.
(13) R. B. Davis and P. Hurd, J. Am. Chem. Soc., 77, 3284 (1955).
(14) I. I. Grandberg, S. V. Tabak, G. K. Faizova, and A. N. Kost, Zh. Obshch Khim., 33, 2585 (1963); Chem. Abstr., 60, 515 (1964).
(15) M. Gall and H. O. House, Org. Synth., 52, 39 (1972).
(16) J. M. Conia and F. Leyendecker, Bull. Soc. Chim. Fr., 830 (1967).
(17) Initial studies of this reaction were carried out in our laboratory by Drs Wei C. Liang ana James J. Good.
(18) H. Shechter, D. E. Ley, and L. Zeldin, J. Am. Chem. Soc., 74, 3664 (1952).
(19) When the benzoate 24b was heated, it slowly decomposed to form $\mathrm{PhCO}_{2} \mathrm{H}$, presumably accompanied by an imine.
(20) (a) R. Bonnett, V. M. Clark, A. Giddey, and A. Todd, J. Chem. Soc., 2087 (1959); (b) R. Bonnett, R. F. C. Brown, V. M. Clark, I. O. Sutherland, and A. Todd, ibid., 2094 (1959); (c) L. S. Kaminsky and M. Lamchen, J. Chem. Soc. B, 1085 (1968).
(21) F. Klages, R. Heinle, H. Sitz, and E. Specht, Chem. Ber., 96, 2387 (1963).
(22) (a) H. O. House and E. F. Kinloch, J. Org. Chem., 39, 1173 (1974); (b) H. O. House, D. Koepsell, and W. Jaeger, ibid., 38, 1167 (1973); (c) K. W. Bowers, R. W. Giese, J. Grimshaw, H. O. House, N. H. Kolodny, K. Kronberger, and D. K. Roe, J. Am. Chem. Soc., 92, 2783 (1970); (d) R. N. Adams, 'Electrochemistry at Solid Electrodes'", Marcel Dekker, New York, N.Y., 1969, pp 143-158.
(23) (a) An $E_{1 / 2}$ value of -1.36 V vs. SCE has been reported for t-BuNO in acetonitrile solution: H. Sayo, Y. Tsukitani, and M. Masui, Tetrahedron, 24, 1717 (1968). (b) The reduction of PhNO in aqueous solutions of varying pH has been studied polarographically (ref 10) and the reduction of PhNO in aprotic solvents has been studied by cyclic voltammetry [M. R. Asirvatham and M. D. Hawley, Electroanal. Chem., Interfacial Electrochem., 57, 179 (1974)].
(24) The shift of $E_{1 / 2}$ to more negative potentials with increasing pH has also been observed in the polarographic oxidation of PhNHOH. See ref 10.
(25) These conditions for the polarographic determination of \boldsymbol{N}-alkylhydroxylamines were described by P. E. Iverson and H. Lund, Anal. Chem., 41, 1322 (1969). These authors report an $E_{1 / 2}$ value of -0.47 V vs. SCE for t-BuNHOH.

A New Synthesis of 2-Alkylpyrrolidines and 2-Alkylpiperidines ${ }^{1}$

Herbert O. House* and Len F. Lee
Schaol of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332

Received September 5, 1975

Each of the N-(4-pəntenyl)hydroxylamine derivatives 7 and 17 underwent facile cyclization to the 2-methylpyrrolidine derivatives 10 and 18 when the starting materials were warmed briefly to $50-60^{\circ} \mathrm{C}$. Subsequently reduction and acetylatic n with $\mathrm{Zn}, \mathrm{HOAc}$, and $\mathrm{Ac}_{2} \mathrm{O}$ afforded the corresponding amides 12 and 19. Cyclization of the homologous N-(5-hexenyl)hydroxylamines 27 and 34 to the 2 -methylpiperidine derivatives 28 and 35 (isolated after conversion to the amides 29 and 22) required higher temperatures ($130-140^{\circ} \mathrm{C}$) and longer reaction times ($1-2 \mathrm{~h}$). Attempts to cy clize the unsaturated hydroxylamines 38 and 39 were unsuccessful. The ease and direction of these various cyclizations, believed to be radical chain reactions, parallels the behavior of related alkenyl carbon radicals 5.

In an accompanying paper ${ }^{2}$ we have described a study of the cyclization of certain unsaturated hydroxylamines 1 (Scheme I) to the correspondiag N-hydroxypyrrolidines 2. We believe this cyclization to be a radical chain process involving the intermediate radicals 3 and 4 in which the step $3 \rightarrow 4$ is analogous to the cyclization $5 \rightarrow 6$ of certain carbon radicals 5. ${ }^{3-5}$ In the previous study ${ }^{2}$ the synthetic attractiveness of the cyclization $1 \rightarrow 2$ was mitigated by the facts that synthesis of the staring hydroxylamines 1 by selective reduction of the corres oonding nitro olefins was tedious and isolation of the thermally unstable, easily oxidized cyclic hydroxylamines 2 was difficult. In this paper we describe alternative procedures that overcome these problems.
An especially simple and efficient synthesis of unsaturated hydroxylamine derivatives, e.g., 7 (Scheme II), from the corresponding unsaturated carbonyl compounds 8 utilized the selective reduction of the oxime 9 with $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$ in acidic $\mathrm{MeOH} .{ }^{\epsilon}$ Although the original procedure recommended ${ }^{6 \mathrm{a}}$ performing the reaction at pH 4 (bromocresol blue indicator), we found the reduction of ketox-

imes at this pH to be rather slow and recommend use of a reaction mixture at $\mathrm{pH} 3-4$ (methyl orange indicator). For our purposes the reduction of the unsaturated oximes tc hydroxylamines with BH_{3} in THF ${ }^{7}$ was not a suitable alternative because of a competing reaction of the olefin with BH_{3}. Although the reductions of oximes 9 and 16 with $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$ produced solutions of the unsaturated hydroxylamines 7 and 17 , even brief warming of these intermediates during product isolation, like previously studied N-(4-pentenyl)hydroxylamine derivatives, ${ }^{2}$ resulted in cyclization to form the pyrrolidine derivatives 10 and 18.

Although NMR analysis indicated that pyrrolidine 10 was the major, if not exclusive, product obtained on cyclization of 7, the isolation of pure samples of either the water-soluble, easily oxidized hydroxylamine 10 or its thermally unstable benzoyl derivative 11 was not satisfactory procedures. Consequently, we subjected the crude cyclized products 10 and 18 to reduction with Zn in a mixture of HOAc and $\mathrm{Ac}_{2} \mathrm{O}$ in order to produce the more easily isolated acetamide derivatives 12 and 19. Although both the intermediate hydroxylamine 18 (NMR analysis) and the final amide 19 were mixtures of stereoisomers, we presume that the composition of the final isolated product (ca. 35\% 19a and $65 \% 19 b$) does not necessarily reflect the stereoisomeric composition of the intermediate hydroxylamine 18 be-
cause the imine 20 is a probable intermediate in the reduction process. By use of an authentic sample of the isomeric piperidine derivative 22, we demonstrated that the amounts of this six-membered cyclic product present were below the limits we could detect by GLC analysis. Consequently, cyclization of the nitroxide radical from 17, like the analogous carbon radical $5(n=2),{ }^{3}$ proceeds to form predominantly, if not exclusively, a five-membered ring (analogous to $6 \mathbf{a}, n=2$) rather than a six-membered ring (analogous to $\mathbf{6 b}, n=2$). The overall yields of the amides 12 and 19, based on the starting oximes, were 51 and 65%, respectively.
To explore the use of this free-radical cyclization reaction for the preparation of six-membered rings, the two oximes 26 and 33 (Scheme III) were reduced with $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$ to form the unsaturated hydroxylamines 27 and 34. The cyclization of these materials 27 and 34 was clearly less facile than cyclization of the lower homologues 7 and 17 since the hydroxylamines 27 and 34 could be isolated after solutions containing them had been heated on a steam bath to remove solvents. Cyclization of these intermediates 27 and 34 was accomplished by adding them in xylene solution to refluxing xylene (ca. $145{ }^{\circ} \mathrm{C}$) under highdilution conditions. Although cyclization was observed when the hydroxylamines 27 and 34 were heated to $160^{\circ} \mathrm{C}$ without solvent, various by-products were formed under these conditions. Application of the $\mathrm{Zn}-\mathrm{HOAc}-\mathrm{Ac}_{2} \mathrm{O}$ re-

Scheme III

b, trans isomer

30a. cis isomer

b, trans isomer

duction procedure to the two crude cyclic products 28 and 35 yielded the amides 29 (mainly the trans isomer 29b) and 22. By use of an authentic sample of the amide 31, we were able to demonstrate that the cyclization of hydroxylamine 34 and subsequent reduction yielded the six-membered ring product 22 with none o^{*} the seven-membered ring product 31 being detected by our GLC analysis. Both the slower rates of cyclization of nitroxides from 27 and 34 compared to the nitroxides frcm 7 and 17 and the cyclizations to form six- rather than seven-membered products are again in accord with studies of analogous carbon-centered radicals $5(n=3))^{3,8} \mathrm{Tr}$ ese observations are also in agreement with the observation that N -centered radicals (from N-chloro amides) were successfully cyclized to form five-membered rings but not the isomeric six-membered rings. ${ }^{5 d}$ The overall yields of amides 22 and 29 , based on the starting oximes, were ca. 2ε and 40%, respectively.

Although the cyclization of the hydroxylamine 27 under high-dilution conditions followed by reduction and acetylation yielded the amide 29b eccompanied by only minor amounts of by-products, the ε nalogous reactions with the hydroxylamine 34 formed both the amide 22 and several by-products even when the cyclization was performed under high-dilution conditions. The principal by-products obtained from hydroxylamine 34 were mixtures of higher molecular weight materials and a volatile by-product shown to be amine 36. While the origin of this by-product 36 is uncertain, it may result from a bimolecular reaction of the hydroxylamine 34 with the oxime 33 (from oxidation of 34) to form a bimolecular product such as 37 that undergoes cyclization and reduction In any event, it is apparent that the cyclization is facilitated by the methyl substituent present in 27 but not 34 . The ability of alkyl substituents to facilitate ring closures (the Thorpe-Ingold effect) has been noted previously in cyclizatior of derivatives of the carbon radical $5(n=2) .{ }^{9}$

To further explore the scop ϵ of this cyclization, we examined the hydroxylamines 38 and 39 (Scheme IV). After the hydroxylamine 38 (characterized as the hydroxamic acid 43) had been heated to $170^{\circ} \mathrm{C}$ for 1 h , we could discern no evidence of cyclization (NMR analysis) suggesting that the extra strain involved in forming either of the two possible bicyclic hydroxylamines was sufficient to prevent cyclization. The hydroxylamine 39, obtained by the usual reduction of the oxime 46, was characterized as the crystalline hydroxamic acid 51 . Heating the hydroxylamine 39 under a variety of conditions failed (NMR analysis) to form either of the cyclized products $48 \subset 49$. Instead, the hydroxylamine 39 was partially conver-ed to the oxime 46 by oxidation to the nitroxide 52 which failed to cyclize and underwent disproportionation to form the oxime. This observation is again compatible with the behavior of the corre-

sponding carbon radical 5 ($n=1$) where cyclization (to form $\mathbf{6 b}, n=1$) usually is not observed. ${ }^{3}$ In the previously mentioned study ${ }^{5 d}$ of the photochemically induced cyclization of N-chloro amides, the N -centered radical analogous to that derived from hydroxylamine 38 did cyclize but the radical analogous to the nitroxide from hydroxylamine 39 failed to undergo cyclization.

Experimental Section ${ }^{10}$

Preparation and Cyclization of the Hydroxylamine 17. Reaction of $49 \mathrm{~g}(0.50 \mathrm{~mol})$ of the ketone 15 (Aldrich Chemical Co.), with a refluxing solution of $104 \mathrm{~g}(1.50 \mathrm{~mol})$ of $\mathrm{HONH}_{3} \mathrm{Cl}, 123 \mathrm{~g}$ (1.50 mol) of NaOAc , and 20 ml of EtOH in 500 ml of $\mathrm{H}_{2} \mathrm{O}$ for 40 h yielded $44.4 \mathrm{~g}(88 \%)$ of the oxime 16 as a colorless liquid: bp 64-66 ${ }^{\circ} \mathrm{C}(2.5 \mathrm{~mm}), n^{25} \mathrm{D} 1.4632$ [lit. bp 187, ${ }^{11 \mathrm{a}} 190^{\circ} \mathrm{C}^{11 \mathrm{~b}}$]; ir $\left(\mathrm{CCl}_{4}\right) 3580$, $3250(\mathrm{OH}), 1640(\mathrm{C}=\mathrm{N})$, and $920 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta$ $9.67(1 \mathrm{H}$, broad s, OH), 4.8-6.2 ($3 \mathrm{H}, \mathrm{m}$, vinyl CH), 2.1-2.7 (4 H , $\mathrm{m}, \mathrm{CH}_{2}$), and $1.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 113 ($\mathrm{M}^{+}, 11$), 112 (9), 98 (35), 96 (35), 81 (35), 73 (40), 55 (89), 54 (70), 53 (32), 43 (20), 42 (100), 41 (85), and 39 (63). The product exhibits two GLC peaks (Carbowax 20M on Chromosorb P) with retention times of 14.0 (ca. 8\%) and 21.2 min (ca. 92%) that presumably correspond to the two geometrical isomers of oxime 16.
To a solution of 5.65 g (50 mmol) of the oxime $16,3.4 \mathrm{~g}$ (54 mmol) of $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$, and 1 mg of methyl orange in 50 ml of MeOH was added, dropwise and with stirring, a mixture ($1: 1 \mathrm{v} / \mathrm{v}$) of MeOH and aqueous 12 M HCl . The rate of addition was controlled so that the color of the reaction mixture remained reddishorange $(\mathrm{pH} 3-4)^{6}$ for a period of 1 h . Then the solution was concentrated under reduced pressure, made basic by the addition of aqueous 6 M KOH , and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal extract was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated in a water bath $\left(50-70^{\circ} \mathrm{C}\right)$ to leave 5.54 g of crude liquid hydroxylamine 18. From two comparable reactions where the reduction was effected either at $\mathrm{pH} 3-4$ (methyl orange indicator) for 1 h or at $\mathrm{pH} 4-5$ (bromocresol blue indicator) ${ }^{6 \mathrm{~B}}$ for 5 h , the crude liquid product ($83-95 \%$ yield) was found to contain (NMR analysis) mainly the stereoisomers of the cyclic hydroxylamine 18: NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.63$ (ca. 1 H , broad s, OH), 1.2-3.5 (ca. $6 \mathrm{H}, \mathrm{m}$, aliphatic CH), and two doublets ($J=6.5$ Hz) at 1.18 (minor) and 1.13 (major) (ca. $6 \mathrm{H}, \mathrm{CH}_{3}$ groups of stereoisomers of 18). When the crude product was not heated during concentration of the solvents, the NMR spectrum of the crude
product also exhibited a multiplet in the region $\delta 4.8-6.2$ (vinyl CH) suggesting that the cyclization $17 \rightarrow 18$ was incomplete.

The crude hydroxylamine $18(5.54 \mathrm{~g})$ from the above experiment was dissolved in a mixture of $20.4 \mathrm{~g}(0.20 \mathrm{~mol})$ of $\mathrm{Ac}_{2} \mathrm{O}$ and 18 g $(0.30 \mathrm{~mol})$ of HOAc and then 14.0 g (0.15 g -atom) of Zn cust was added, portionwise with vigorous stirring during 30 min . The reaction mixture, whose temperature rose to $100^{\circ} \mathrm{C}$ during the addition of the Zn , was cooled to $70^{\circ} \mathrm{C}$ and then stirred at $60-70^{\circ} \mathrm{C}$ for an additional 3 h . The resulting mixture was filtered and the residue was washed thoroughly with $\mathrm{Et}_{2} \mathrm{O}$. The combined filtrate and washings were concentrated under reduced pressure and then made basic (aqueous NaOH) and continuously extracted with $\mathrm{Et}_{2} \mathrm{O}$. After the ethereal extract had been dried and concentrated, distillation of the residual liquid (6.3 g) separated $4.58 \mathrm{~g}(65 \%)$ of a mixture of the stereoisomers of amide 19 as a colorless liquid: bp $61-66{ }^{\circ} \mathrm{C}(1 \mathrm{~mm}) ; n^{25} \mathrm{D} 1.4662$; ir $\left(\mathrm{CCl}_{4}\right) 1645 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=\mathrm{O}$); NMR (CCl_{4}) $\delta 3.7-4.3(2 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 1.3-2.4\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ including a $\mathrm{CH}_{3} \mathrm{CO}$ singlet at 1.92), and three overlapping doublets ($J=$ $6.5 \mathrm{~Hz})$ at $1.22,1.17$, and $1.10\left(6 \mathrm{H}, \mathrm{CH}_{3}\right.$ of stereoisomeric amides); mass spectrum m / e (rel intensity) $141\left(\mathrm{M}^{+}, 66\right), 126$ (35), 99 (38), $98(18), 85(23), 84(100), 67(19), 57(25), 43(69), 42(35)$ and 41 (28). The product exhibited two GLC peaks (Carbowax 20M on Chromosorb P) with retention times of 32.9 (ca. 35%) and 34.8 min (ca. 65\%) attributable to the cis (19a) and trans (19b) iscmers of amide 19. However, no peak was observed at 46.4 min , the retention time of the structurally isomeric amide 22.

To obtain an authentic sample of the amide 19 , a cold $\left(5^{\circ} \mathrm{C}\right)$ solution of $500 \mathrm{mg}(5.05 \mathrm{mmol})$ of the amine 14 (a mixture of stereoisomers obtained from Aldrich Chemical Co.) and $2.0 \mathrm{~g}^{\text {of }} \mathrm{Et}_{3} \mathrm{~N}$ in 10 ml of PhH was treated with 2.0 g of $\mathrm{CH}_{3} \mathrm{COCl}$. After the resulting mixture had been allowed to stand for 30 min , it was partitioned between aqueous 6 M KOH and $\mathrm{Et}_{2} \mathrm{O}$, and the ethereal layer was dried and concentrated. Distillation of the residual liquid in a short-path still separated $249 \mathrm{mg}(35 \%)$ of the crude amide 19. A pure sample of the mixture of amide 19 stereoisorners was collected (GLC) as a colorless liquid, $n^{25} \mathrm{D} 1.4647$, that contained (GLC, 8 -m column of TCEP on Chromosorb P) the cis amide 19a (ca. $64 \%, 138.0 \mathrm{~min}$) and the trans amide 19 b (ca. $36 \%, 147.2 \mathrm{~min}$).

To complete the characterization of the amides 19, the mixture of amines 14^{12} (Aldrich Chemical Co.) was separated by collection from GLC ($8-\mathrm{m}$ column packed with Carbowax 20 M on basewashed Chromosorb P). The retention times follow: cis amine 14 a , 53.0 min ; trans amine $14 \mathbf{b}, 59.8 \mathrm{~min}$. The collected cis arrine $14 \mathbf{a}$ formed a picrate as yellow needles from $\mathrm{PhH}, \mathrm{mp} 118-119{ }^{\circ} \mathrm{C}$ (lit. ${ }^{12} \mathrm{mp} 116-118^{\circ} \mathrm{C}$), and the collected trans amine 14 b formed a picrate as yellow needles from $\mathrm{PhH}, \mathrm{mp} 130-131{ }^{\circ} \mathrm{C}$ (lit. ${ }^{12} \mathrm{mp}$ $126-127,130-131^{\circ} \mathrm{C}$). Reaction of 0.13 g of the cis amine 14 a with excess $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine for 2 h followed by separation of the neutral material gave 196 mg of crude product. A collected (GLC, Carbowax 20 M on Chromosorb P) sample of the pure cis amide 19a (yield 90 mg or 42%) was obtained as a colorless liquid: $n^{25} \mathrm{D}$ 1.4649 ; ir $\left(\mathrm{CCl}_{4}\right) 1640 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=0$); NMR $\left(\mathrm{CCl}_{4}\right) \delta 3.7-4.3$ (ε $\mathrm{H}, \mathrm{m}, \mathrm{CHN}$), 1.5-2.4 ($7 \mathrm{H}, \mathrm{m}$, aliphatic CH including a $\mathrm{CH}_{3} \mathrm{CO}$ singlet at 1.97), and $1.25\left(6 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 141 ($\mathrm{M}^{+}, 21$), 126 (9), 99 (11), 84 (100). and 43 (21).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 68.04 ; \mathrm{H}, 10.71 ; \mathrm{N}, 9.92$. Found: C. 68.04; H, 10.72; N, 9.85.

After reaction of 0.16 g of the trans amine 14 b with excess $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine, the crude neutral product was separated and 135 mg (51%) of the trans amide 19 b was collected (GLC) as a colorless liquid: $n^{25} \mathrm{D}$ 1.4700; ir $\left(\mathrm{CCl}_{4}\right) 1640 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=0$); NMR $\left(\mathrm{CCl}_{4}\right) \delta$ 3.7-4.4 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$), 1.4-2.4 ($7 \mathrm{H}, \mathrm{m}$, aliphatic CH including a $\mathrm{CH}_{3} \mathrm{CO}$ singlet at 1.97$), 1.21\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, and $1.15\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) $141\left(\mathrm{M}^{+}, 55\right), 126(34), 99(20), 98(18), 85(20), 84$ (100), 43 (64), 42 (33), and 41 (23).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{25} \mathrm{NO}$: C, 68.04; H, 10.71; N, 9.92. Found: C, 68.02; H, 10.74; N, 9.85 .

When mixtures of the two stereoisomeric amides 19 were subjected to GLC analysis ($8-\mathrm{m}$ column packed with TCEP on Chromosorb P), the retention times were as follows: cis amide 19a, 155 min , and trans amide $19 \mathrm{~b}, 165 \mathrm{~min}$. Comparison of the GLC retention times and ir, NMR, and mass spectra of the mixture of amides 19 obtained from the hydroxylamine 18 with the corresponding data for the pure amides $19 a$ and $19 b$ allowed us to confirm the identities of the amide products.
To obtain an authentic sample of the amide $22,10.1 \mathrm{~g}(102$ mmol) of 2-methylpiperidine (21, Aldrich Chemical Co.) was treated with $11.0 \mathrm{~g}(108 \mathrm{mmol})$ of $\mathrm{Ac}_{2} \mathrm{O}$ and the resulting mixture was
stirred for 1 h . Then 20 ml of aqueous 6 M KOH was added, stirring was continued for 30 min , and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. After the ethereal extract had been washed with aqueous 3 M HCl , dried, and concentrated, distillation separated $9.09 \mathrm{~g}(64 \%)$ of the amide $22, \mathrm{bp} 75-79{ }^{\circ} \mathrm{C}(2 \mathrm{~mm})$. This sample was washed with aqueous $5 \% \mathrm{NaOH}$, dried, and redistilled to afford 5.9 g of the pure amide 22 as a colorless liquid: bp $88-89^{\circ} \mathrm{C}(2.5 \mathrm{~mm}), n^{25} \mathrm{D}$ 1.4785 [lit. bp $55-56{ }^{\circ} \mathrm{C}(0.15 \mathrm{~mm}){ }^{13 \mathrm{a}} 86.5-87.5^{\circ} \mathrm{C}(3.5 \mathrm{~mm})^{13 \mathrm{~h}}$]; ir $\left(\mathrm{CCl}_{4}\right) 1640 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=\mathrm{O}$); NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.2-4.5(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{~N}$ and CHN), $1.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.3-1.9\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, and $1.15\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 141 $\left(\mathrm{M}^{+}, 20\right), 126(18), 84$ (100), 70 (11), 57 (10), 56 (22), 55 (10), 43 (49), 42 (20), and 41 (14).

Preparation of the Oxime 26. To a solution of the Na enolate, prepared from $47 \mathrm{~g}(0.36 \mathrm{~mol})$ of ethyl acetoacetate, $8.7 \mathrm{~g}(0.38 \mathrm{~g}$ atom) of Na , and 125 ml of EtOH , was added, dropwise and with stirring during $2 \mathrm{~h}, 50 \mathrm{~g}(0.37 \mathrm{~mol})$ of 4 -bromo-1-butene. The resulting mixture was refluxed with stirring for 1 h and then cooled, filtered, and concentrated. Fractional distillation of the residual liquid separated $33.5 \mathrm{~g}(51 \%)$ of the alkylated β-keto ester 23 as a colorless liquid: bp $111-116{ }^{\circ} \mathrm{C}(15 \mathrm{~mm}), n^{25} \mathrm{D} 1.4402$ [lit. ${ }^{14} \mathrm{bp}$ $103-110^{\circ} \mathrm{C}(22 \mathrm{~mm})$]; ir $\left(\mathrm{CCl}_{4}\right) 1740$ (ester $\mathrm{C}=0$), $1720(\mathrm{C}=\mathrm{O})$, $1640(\mathrm{C}=\mathrm{C})$, and $920 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta$ 4.7-6.1 (3 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.15\left(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}\right.$, ethoxyl $\left.\mathrm{CH}_{2}\right), 3.33(1 \mathrm{H}, \mathrm{t}$, $J=6.5 \mathrm{~Hz}, \mathrm{COCHCO}), 1.7-2.3\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ including a $\mathrm{CH}_{3} \mathrm{CO}$ singlet at 2.12), and $1.25\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}\right.$, ethoxyl $\left.\mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 184 ($\mathrm{M}^{+}, 2$), 130 (26), 73 (21), 55 (40), and $43(100)$. A mixture of $33 \mathrm{~g}(179 \mathrm{mmol})$ of the β-keto ester 23 and 400 ml of aqueous $5 \% \mathrm{NaOH}$ was refluxed with stirring for 10 h and then cooled and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal solution was dried and fractionally distilled to separate $15.7 \mathrm{~g}(79 \%)$ of the ketone 25 as a colorless liquid: bp $72-73^{\circ} \mathrm{C}(50 \mathrm{~mm}), n^{25} \mathrm{D} 1.4240$ [lit. ${ }^{14} \mathrm{bp} 71-73{ }^{\circ} \mathrm{C}(50 \mathrm{~mm}), n^{25} \mathrm{D} 1.4223$]; ir $\left(\mathrm{CCl}_{4}\right) 1720(\mathrm{C}=\mathrm{O})$, $1640(\mathrm{C}=\mathrm{C})$, and $920 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 4.7-6.1$ (3 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 2.37\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right)$, and 1.3-2.2 (7 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ including a $\mathrm{CH}_{3} \mathrm{CO}$ singlet at 2.00); mass spectrum m / e (rel intensity) $112\left(\mathrm{M}^{+}, 17\right), 94$ (10), 58 (72), 55 (12), 43 (100), 42 (22), and 39 (10). The product exhibited a single peak on GLC analysis (silicone SE- 30 on Chromosorb P). Our attempts to prepare this ketone 25 by the vapor phase pyrolysis (Cope rearrangement) of 3-methyl-1,5-hexadien-3-ol (from $\mathrm{CH}_{2}=\mathrm{CHCOCH}_{3}$ and $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{MgBr}$) in a tube heated to $400-450{ }^{\circ} \mathrm{C}$ resulted in the formation of a mixture (NMR and GLC analysis, AgNO_{3} in Carbowax 20 M on Chromosorb P) of the desired ketone 25 (ca. 64%, retention time 49.6 min) and three other components: 31.2 min , ca. 11%; 40.0 min (ca. 19%); and 54.2 min (ca. 1%). The second most abundant component in the mixture (a methyl ketone, ir and NMR analysis) is believed to be methyl 2-methylcyclobutyl ketone formed by thermal rearrangement of the ketone $25 .{ }^{15}$

To a cold $\left(5^{\circ} \mathrm{C}\right)$ mixture of 15.0 g (134 mmol) of the ketone 25 , $14 \mathrm{~g}(0.20 \mathrm{~mol})$ of $\mathrm{HONH}_{3} \mathrm{Cl}$, and 60 ml of $\mathrm{H}_{2} \mathrm{O}$ was added, dropwise and with stirring during 20 min , a solution of 9.9 g (94 mmol) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 80 ml of $\mathrm{H}_{2} \mathrm{O} \cdot{ }^{16}$ After the reaction mixture had been stirred in an ice bath for 1 h , and at $25^{\circ} \mathrm{C}$ for 1 h , it was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the ethereal extract was dried and concentrated. Distillation of the residual liquid separated $16.2 \mathrm{~g}(96 \%)$ of the oxime 26 as a colorless liquid: bp $73-75^{\circ} \mathrm{C}(2 \mathrm{~mm}), n^{25} \mathrm{D} 1.4652$; ir $\left(\mathrm{CCl}_{4}\right) 3580,3230(\mathrm{OH}), 1640(\mathrm{C}=\mathrm{N})$, and $920 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 9.5(1 \mathrm{H}$, broad $\mathrm{s}, \mathrm{OH}), 4.7-6.2\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, and $0.9-2.6\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ including a $\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}$ singlet at 1.82); mass spectrum m / e (rel intensity) $127\left(\mathrm{M}^{+}, 15\right), 112$ (24), 86 (10), 73 (100), 69 (10), 68 (12), 67 (11), 55 (44), 42 (36), 41 (47), and 39 (32).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 66.10 ; \mathrm{H}, 10.30 ; \mathrm{N}, 11.01$. Found: C, 66.20; H, 10.33; N, 10.94 .

Preparation and Cyclization of the Hydroxylamine 27. A solution of $674 \mathrm{mg}(5.3 \mathrm{~mol})$ of the oxime $26,346 \mathrm{mg}(5.5 \mathrm{mmol})$ of $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$, and cresol blue indicator in 20 ml of MeOH was treated with a 6 M HCl solution in $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ during 5 h to maintain a yellow (pH 4) reaction solution and then subjected to the previously described isolation procedure to yield $596 \mathrm{mg}(86 \%)$ of the crude solid hydroxylamine $27, \mathrm{mp} 38-42^{\circ} \mathrm{C}$. The crude hydroxylamine 27 was sublimed under reduced pressure to give the pure hydroxylamine 27 as colorless needles: $\mathrm{mp} 42-44{ }^{\circ} \mathrm{C}$; ir $\left(\mathrm{CCl}_{4}\right)$ $3590,3230(\mathrm{OH}, \mathrm{NH}), 1640(\mathrm{C}=\mathrm{C})$, and $920 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 6.29(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}, \mathrm{NH}), 4.8-6.2\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 2.7-3.2 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$), 1.2-2.3 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), and $1.07(3 \mathrm{H}, \mathrm{d}, J=$ $6 \mathrm{~Hz}, \mathrm{CH}_{3}$); mass spectrum m / e (rel intensity) $129\left(\mathrm{M}^{+}, 14\right), 114$ (100), 98 (11), 81 (13), 70 (14), 69 (12), 60 (33), 56 (15), 55 (41), 44 (24), 43 (26), 42 (73), 41 (53), and 39 (31).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 65 \mathrm{J7}$; H, 11.70; N, 10.84. Found: C, 65.19; H, 11.72; N, 10.78 .

In a subsequent experiment $3.8 \mathrm{~g}(30 \mathrm{mmol})$ of the oxime 26 in 50 ml of MeOH was reduced with $2.20 \mathrm{~g}(35 \mathrm{mmol})$ of $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$ at $\mathrm{pH} 3-4$ (methyl orange indica or) for 1 h to give 3.9 g of the crude hydroxylamine 27 . A solution of this hydroxylamine in 25 ml of xylene was added, dropwise during 40 min through a high-dilution head, ${ }^{17}$ to 25 ml of refluxing xylene. After the addition was complete, the solution was concertrated and the crude cyclic hydroxylamine 28 (NMR analysis) vas reduced with 5.9 g (90 mg atoms) of $\mathrm{Zn}, 12.2 \mathrm{~g}$ (120 mmol) ot $\mathrm{Ac}_{2} \mathrm{O}$, and $10.8 \mathrm{~g}(180 \mathrm{mmol})$ of HOAc following previously described reaction and isolation procedures. Distillation of the crude 1 quid product (2.6 g) separated $1.84 \mathrm{~g}(40 \%)$ of the trans amide $\mathbf{2}^{\mathrm{C}} \mathrm{b}$ as a colorless liquid, bp 85-90 ${ }^{\circ} \mathrm{C}(1.5 \mathrm{~mm}), n^{25} \mathrm{D} 1.4788$. Comparison of the GLC retention times and ir and NMR spectra of this product with the subsequently described samples of amide 29 estabiished that this material was the trans amide 29b. In another expesiment where 2.35 g (18.5 mmol) of the oxime 26 was reduced with $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$ and the crude hydroxylamine 27 was heated to $160^{\circ} \mathrm{C}$ for 1 h with no solvent, subsequent reduction with $\mathrm{Zn}, \mathrm{Ac}_{2} \mathrm{C}$, and AcOH yielded 42% of a crude product containing (GLC, Carbowax 20 M on Chromosorb P) the amide 29 (ca. 85%, retention time 52.0 min) accompanied by several minor unidentified impurities: 9.0 min , ca. 3%; 11.6 min , ca. 2%; 14.0 min , ca. 1%; 46.4 min , ca. 2%; and 61.2 min , ca. 5%.

To obtain an authentic sample of this cis amide 29 a , a mixture of 11.3 g (0.10 mol) of the cis amine $30 \mathbf{a}^{18}$ (Aldrich Chemical Co.) and 12 g of $\mathrm{Ac}_{2} \mathrm{O}$ was stirred for 1 h and then treated with 20 ml of aqueous 6 M KOH and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal extract was washed with aqueous 3 M HCl , dried, concentrated, and distilled to separate $4.07 \mathrm{~g}(26 \%)$ of the cis amide 29 a as a colorless liquid: bp $83-86^{\circ} \mathrm{C}(3.5 \mathrm{~mm}), n^{25}\left[1.4772\right.$ [lit. ${ }^{13 \mathrm{a}} \mathrm{bp} 62-63^{\circ} \mathrm{C}(0.15$ $\left.\mathrm{mm}), n^{25} \mathrm{D} 1.4785\right]$; ir $\left(\mathrm{CCl}_{4}\right) 1 € 45 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=0$); NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.1-4.7(2 \mathrm{H}, \mathrm{m}, \mathrm{CHN})$, $1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.4-1.9(6 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right)$, and $1.22\left(6 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) $155\left(\mathrm{M}^{+}, 24\right), 140(18), 112$ (14), 98 (100), 70 (21), 43 (32), and 42 (17).

Following a previously described procedure, ${ }^{18}$ a solution of 50 g (0.47 mol) of 2,6-dimethylpyridine in 800 ml of anhydrous EtOH was reduced by the portionwise addition of 86 g (3.74 g -atoms) of Na . The crude basic product was separated and distilled to give 29 $\mathrm{g}(55 \%)$ of colorless liquid, bp $137-139{ }^{\circ} \mathrm{C}$ (lit. ${ }^{18} \mathrm{bp} 125-132^{\circ} \mathrm{C}$) that contained (GLC, $8-\mathrm{m}$ colume packed with Carbowax 20M on base-washed Chromosorb P) the cis amine 30a (ca. 47\%, retention time 15.2 min), the trans amine 30 b (ca. $21 \%, 19.2 \mathrm{~min}$), a material believed to be a tetrahydropyrid ne (ca. $20 \%, 26.0 \mathrm{~min}$), and the starting 2,6 -dimethylpyridine (ca. $12 \%, 34.8 \mathrm{~min}$). Samples of the pure trans amine 30b were collected (GLC) from the mixture as a colorless liquid with NMR absor 3 tion corresponding to the published spectrum. ${ }^{18}$ Reaction of 15 C mg of this trans amine 30 b with excess PhCOCl in pyridine followed by separation of the crude neutral material and crystallization from cold hexane afforded 106 mg (37\%) of the N-benzoyl derivative of amine $\mathbf{3 0 b}$ as colorless needles, mp $53-55^{\circ} \mathrm{C}$. Recrystallization sharpened the melting point of this benzamide to $54-55{ }^{~} \mathrm{C}$ (lit. ${ }^{19} \mathrm{mp} 54-55{ }^{\circ} \mathrm{C}$); ir $\left(\mathrm{CCl}_{4}\right)$ $1650 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=\mathrm{O}$); NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.1-7.5(5 \mathrm{H}, \mathrm{m}$, aryl CH), 3.6-4.1 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$), and $1.0-20(12 \mathrm{H}, \mathrm{m}$, aliphatic CH including a CH_{3} doublet, $J=7 \mathrm{~Hz}$, at 1.23); mass spectrum m / e (rel intensity) $217\left(\mathrm{M}^{+}, 15\right), 205(16), 105(100)$, and 77 (30). A $70-\mathrm{mg}$ sample of the collected trans amine 30 b was treated with picric acid in PhH to yield 200 mg (99%;) of the picrate of the trans amine 30 b as yellow needles, mp 144-14f. ${ }^{\circ} \mathrm{C} .{ }^{20}$

A collected (GLC) sample of the trans amine 30 b was treated with excess $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine and the crude neutral product was separated in the usual way. A pure sample of the trans amide 29b was collected (GLC, Carbowax 2(M on Chromosorb P) as a colorless liquid: n^{25} D 1.4800 ; ir $\left(\mathrm{CCl}_{4}\right) 1640 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=0$); NMR $\left(\mathrm{CCl}_{4}\right)$) 3.8-4.3 (2 H, m, CHN) and 1.0-2.2 ($15 \mathrm{H}, \mathrm{m}$, aliphatic CH including a $\mathrm{CH}_{3} \mathrm{CO}$ singlet at 1.9 and a CH_{3} doublet, $J=7 \mathrm{~Hz}$, at 1.20); mass spectrum m / e (rel intensity) $155\left(\mathrm{M}^{+}, 15\right), 140$ (18), 98 (100), 70 (25), 55 (25), 44 (30), 4375), 42 (38), and 41 (35).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 67.63 ; \mathrm{H}, 11.04 ; \mathrm{N}, 9.02$. Found: C, 69.58; H, 11.07; N, 9.01.

The two stereoisomeric amides were partially resolved on an $8-m$ GLC column packed with TCEP on Chromosorb P. The retention times follow: trans amide 29b, $£ 00 \mathrm{~min}$; and cis amide $29 \mathrm{a}, 313$ min.
Preparation of the Oxime 33 The previously described ${ }^{21}$ reaction of $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{MgBr}$ with acrolein yielded 43% of the alcohol 24 as a colorless liquid: bp $50-52{ }^{\circ} \mathrm{C}(25 \mathrm{~mm}), n^{25} \mathrm{D} 1.4458$
[lit. ${ }^{21} \mathrm{bp} 42-48{ }^{\circ} \mathrm{C}(17 \mathrm{~mm})$]; ir $\left(\mathrm{CCl}_{4}\right) 3590,3400(\mathrm{OH}), 1645$ $(\mathrm{C}=\mathrm{C})$, and $930 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 4.8-6.2(6 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}_{2}$), 3.8-4.3 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}$), 3.17 (1 H , broad, OH , exchanged with $\mathrm{D}_{2} \mathrm{O}$), and 2.1-2.5 (2 H , m, allylic CH_{2}); mass spectrum m / e (rel intensity) 57 (100), 55 (6), 43 (5), 42 (6), 41 (10), and 39 (14). The alcohol 24 (57 g or 0.58 mol) was rearranged by passing it through a tube packed with glass beads and heated to $410^{\circ} \mathrm{C}$ as previously recommended. ${ }^{22}$ Distillation of the pyrolysate separated $23.8 \mathrm{~g}(42 \%)$ of the aldehyde 32 as a colorless liquid: bp 128$129^{\circ} \mathrm{C}, n^{25} \mathrm{D} 1.4236$ (lit. bp $120-121,{ }^{22} 118-118.5,{ }^{23} 118-121^{\circ} \mathrm{C},{ }^{14}$ $n^{20} \mathrm{D} 1.395,{ }^{22} 1.4109,{ }^{23} 1.4113^{14}$). The product exhibited one major GLC peak (Carbowax 20M on Chromosorb P) at 10.0 min with minor peaks at 5.8 (ca. 1\%, unidentified impurity) and 20.4 min (ca. 2%, alcohol 24) and had the following spectral properties: ir $\left(\mathrm{CCl}_{4}\right) 2690,2790$ (aldehyde CH$), 1725(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{C})$, and $910 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 9.75(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.3 \mathrm{~Hz}$, CHO), 4.7-6.2 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), and $1.4-2.6\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$; mass spectrum m / e (rel intensity) $98\left(\mathrm{M}^{+}, 2\right), 81$ (40), 57 (20), 55 (41), 54 (100), 44 (20), 42 (31), 41 (75), and 39 (58).

A solution of $15.3 \mathrm{~g}(144 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}, 20.1 \mathrm{~g}(205 \mathrm{mmol})$ of the aldehyde 32 , and 21.3 g (307 mmol) of $\mathrm{HONH}_{3} \mathrm{Cl}$ in 300 ml of $\mathrm{H}_{2} \mathrm{O}$ was stirred in an ice bath for 1 h and at $25^{\circ} \mathrm{C}$ for 14 h . After the usual isolation procedure, distillation separated the oxime 33 as 20.2 g (87.4\%) of colorless liquid: bp $63-64^{\circ} \mathrm{C}(2 \mathrm{~mm}), n^{25} \mathrm{D}$ 1.4612; ir $\left(\mathrm{CCl}_{4}\right) 3590,3260(\mathrm{OH}), 1640(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C})$, and 920 $\mathrm{cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 9.50(1 \mathrm{H}$, broad, OH , exchanged with $\mathrm{D}_{2} \mathrm{O}$), two triplets ($J=6 \mathrm{~Hz}$) at 7.32 and 6.63 (total 1 H , $\mathrm{CH}=\mathrm{N}$ of syn and anti isomers), 4.7-6.2 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, and 1.3-2.6 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$); mass spectrum m / e (rel intensity) $113\left(\mathrm{M}^{+}\right.$. 5), 98 (16), 59 (100), 55 (40), 41 (64), and 39 (41).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 63.68 ; \mathrm{H}, 9.80 ; \mathrm{N}, 12.39$. Found: C 63.61; H, 9.82; N, 12.28.

Preparation and Cyclization of the Hydroxylamine 34. Reduction of $5.65 \mathrm{~g}(50 \mathrm{mmol})$ of the oxime 33 , with $3.36 \mathrm{~g}(55 \mathrm{mmol})$ of $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$ in 50 ml of MeOH containing methyl orange at 25 ${ }^{\circ} \mathrm{C}$ for 1 h with periodic addition of 6 M HCl in $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ yielded $5.31 \mathrm{~g}(93 \%)$ of the crude hydroxylamine 34 (NMR analysis) as a liquid that solidified on cooling. A solution of this hydroxylamine 34 in 35 ml of xylene was added dropwise during 30 min to 35 ml of refluxing xylene and the resulting solution was refluxed for an additional 1 h and then concentrated under reduced pressure. A solution of the residual crude hydroxylamine 35 (NMR analysis) was reduced with 9.8 g (0.15 g -atom) of $\mathrm{Zn}, 20 \mathrm{~g}(0.20 \mathrm{~mol})$ of $\mathrm{Ac}_{2} \mathrm{O}$, and $18 \mathrm{~g}(0.30 \mathrm{~mol})$ of HOAc at $70-80^{\circ} \mathrm{C}$ for 9 h . After the usual isolation procedure, distillation separated 2.427 g of fractions, bp 73-81 ${ }^{\circ} \mathrm{C}(2.5 \mathrm{~mm}), n^{25} \mathrm{D} 1.4705-1.4770$, containing (GLC, Carbowax 20M on Chromosorb P) 70-98\% of the amide 22 (retention time 36.4 min , total yield ca. 27%), accompanied by $2-30 \%$ of several impurities $(6.4,7.6$, and 10.8 min). The major by-product was the subsequently identified amine 36 (retention time 10.8 min). However, the GLC curve did not exhibit a peak at 52.5 min , the corresponding retention time for the isomeric amide 31. A distillation fraction, bp $79-81^{\circ} \mathrm{C}(2.5 \mathrm{~min}), n^{25} \mathrm{D} 1.4770$, containing (GLC) $>98 \%$ of the amide 22 was identified with the previously described sample by comparison of ir, NMR, and mass spectra and GLC retention times.

In another experiment $2.07 \mathrm{~g}(18.3 \mathrm{mmol})$ of the oxime 33 was reduced and the crude hydroxylamine product $34(2.13 \mathrm{~g})$ was heated to $140^{\circ} \mathrm{C}$ for 20 min without solvent. After reduction with Zn and acetylation, distillation of the crude product gave 468 mg of a lower boiling fraction [bp $72-85^{\circ} \mathrm{C}(2.5 \mathrm{~mm}), n^{25} \mathrm{D} 1.4635$] containing (NMR analysis) mainly the amine 36 and 463 mg of a fraction [bp $85-160^{\circ} \mathrm{C}(2.5 \mathrm{~mm}), n^{25} \mathrm{D} 1.4730$] that contained (NMR analysis) mainly the amide 22. To explore the effect of high dilution, a solution of 6.7 g of the crude hydroxylamine 34 (from reduction of 6.35 g or 50 mmol of the oxime) in 25 ml of xylene was added, dropwise through a high-dilution head ${ }^{17}$ during 2 h , to 150 ml of refluxing xylene. After the resulting mixture had been refluxed for 4 h it was concentrated by fractional distillation and the residual crude liquid (3.9 g) was reduced in the usual way with 13.1 g (0.2 g -atom) of Zn dust, 25.5 g of $\mathrm{Ac}_{2} \mathrm{O}$, and 24.8 g of HOAc. Distillation of the resulting crude product separated 2.60 g of colorless liquid, bp $73-94^{\circ} \mathrm{C}(1 \mathrm{~mm}), n^{25} \mathrm{D} 1.4725$, that contained (GLC and NMR analysis) the amide 22 (ca. 75% of the mixture, retention time 14.8 min , yield ca. 28%), the amine 36 (ca. 21% of the mixture, 4.4 min), and a minor unidentified impurity (ca. $4 \%, 26.8 \mathrm{~min}$).

To obtain an authentic sample of the amide 31 , a solution of 9.9 $\mathrm{g}(0.10 \mathrm{~mol})$ of hexamethylenimine (Aldrich Chemical Co.) in 15 g (0.15 mol) of $\mathrm{Ac}_{2} \mathrm{O}$ was stirred at $25^{\circ} \mathrm{C}$ for 16 h , and then subjected to the usual isolation procedure. Distillation separated 1.70 g (11\%)
of the amide 31 as a colorless liquid: bp $88-93^{\circ} \mathrm{C}(2 \mathrm{~mm}), n^{25} \mathrm{~L}$ 1.4822 [lit. ${ }^{24}$ bp $113-115^{\circ} \mathrm{C}(8 \mathrm{~mm}), n^{25} \mathrm{D} 1.4890$]; ir $\left(\mathrm{CCl}_{4}\right) 164(1$ cm^{-1} (amide $\mathrm{C}=\mathrm{O}$); $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 3.2-3.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.95(\xi$ $\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$), and 1.3-1.9 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$); mass spectrum m/e (re. intensity) 141 ($\mathrm{M}^{+}, 31$), 98 (23), 84 (32), 70 (38), 57 (28), 56 (44), 44 (30), 43 (100), 42 (30), and 41 (27).

A collected (GLC) sample of the by-product, amine 36, was obtained as a colorless liquid: $n^{25} \mathrm{D} 1.4632$; ir $\left(\mathrm{CCl}_{4}\right) 1640(\mathrm{C}=\mathrm{C})$ anc $915 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 4.7-6.1\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$. 1.2-3.0 ($17 \mathrm{H}, \mathrm{m}$, aliphatic CH), and $1.00\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) $181\left(\mathrm{M}^{+}, 6\right), 166\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$. 32), $112\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{9}, 100\right), 84$ (13), 56 (13), 55 (25), 44 (21), 42 (18), and 41 (41).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}$: C, 79.49; H, 12.79; N, 7.73. Found: C. 79.40; H, 12.80; N, 7.79.

Employing a general reductive amination procedure describec previously, ${ }^{6 \mathrm{a}}$ a mixture of $1.35 \mathrm{~g}(13.6 \mathrm{mmol})$ of the amine $21,0.22$ $\mathrm{g}(2.2 \mathrm{mmol})$ of the aldehyde $32,145 \mathrm{mg}(2.2 \mathrm{mmol})$ of $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$, and 1.8 ml of an aqueous MeOH solution containing 4.4 mmol of HCl was stirred at $25^{\circ} \mathrm{C}$ for 5 days. After the resulting mixture had been concentrated and partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaOH , the ethereal layer was dried and concentrated to leave 190 mg of crude liquid product containing (GLC, KOH and Carbowax 20 M on Chromosorb P) the amine 36. The amine 36 was collected as 71 mg (18%) of colorless liquid, $n^{25} \mathrm{D} 1.4638$, that was identified with the previously described sample by comparison of ir and NMR spectra and GLC retention times.

Preparation of the Oxime 9. Reaction of $22.4(0.20 \mathrm{~mol})$ of the aldehyde 8^{25} with $20.8 \mathrm{~g}(0.30 \mathrm{~mol})$ of $\mathrm{HONH}_{3} \mathrm{Cl}$ and $14.9 \mathrm{~g}(0.14$ mol) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 150 ml of $\mathrm{H}_{2} \mathrm{O}$ at $0-5^{\circ} \mathrm{C}$ for 1 h and at $25^{\circ} \mathrm{C}$ for 2 h yielded $21 \mathrm{~g}(83 \%)$ of the oxime 9 as a colorless liquid: bp 64-65 ${ }^{\circ} \mathrm{C}(2 \mathrm{~mm}), n^{25} \mathrm{D} 1.4589$ [lit. $\left.{ }^{26} \mathrm{bp} 85^{\circ} \mathrm{C}(17 \mathrm{~mm}), n^{25} \mathrm{D} 1.4565\right]$; ir $\left(\mathrm{CCl}_{4}\right) 3580,3300(\mathrm{OH})$, and $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; NMR $\left(\mathrm{CCl}_{4}\right) \varepsilon$ 8.57 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, exchanged with $\mathrm{D}_{2} \mathrm{O}$), $7.27(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}), 4.8-$ $6.1(3 \mathrm{H}, \mathrm{m}$, vinyl CH$), 2.18\left(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}\right.$, allylic $\left.\mathrm{CH}_{2}\right)$, and $1.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) $127\left(\mathrm{M}^{+}, 2\right)$, 112 (3), 86 (40), 55 (25), 42 (20), 41 (100), and 39 (45).
Preparation and Cyclization of the Hydroxylamine 7. Reduction of $592 \mathrm{mg}(4.65 \mathrm{mmol})$ of the oxime 9 with 300 mg (4.76 mmol) of $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$ in 5 ml of MeOH (containing methyl orange) fur 1 h with the periodic addition of 6 M HCl in $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ yielded the crude hydroxylamine 7. From a comparable reaction, performed in $\mathrm{CH}_{3} \mathrm{OD}$ solution, the NMR of the reaction mixture (in $\mathrm{CH}_{3} \mathrm{OD}$) at this stage exhibited the following peaks attributable to the solvent and the hydroxylamine $7: \delta 4.8-6.3$ (m , vinyl CH, OH, and/or NH), 3.85 ($\mathrm{s}, \mathrm{CH}_{3} \mathrm{O}$ of solvent), $3.17\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.12\left(\mathrm{~d}, J=7 \mathrm{~Hz}\right.$, allylic $\left.\mathrm{CH}_{2}\right)$, and $1.08\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. The reaction mixture was concentrated in a water bath $\left(50-70^{\circ} \mathrm{C}\right)$ under reduced pressure and the residual mixture was made basic with aqueous NaOH , saturated with NaCl , and extracted with $\mathrm{Et}_{2} \mathrm{O}$. After the $\mathrm{Et}_{2} \mathrm{O}$ extract had been dried and concentrated, a solution of the residual yellow liquid (the crude hydroxylamine 10, NMR analysis) in 4.0 ml of pyridine was treated with 2.0 ml of PhCOCl and allowed to stand for 30 min . Then the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous 3 M HCl and the $\mathrm{Et}_{2} \mathrm{O}$ phase was washed with aqueous NaHCO_{3}, dried, and concentrated. The residual crude product (2.75 g) was chromatographed on silica gel to separate a mixture of $(\mathrm{PhCO})_{2} \mathrm{O}$ and $\mathrm{PhCO}_{2} \mathrm{H}$ in early fractions eluted with PhH. The subsequent fractions, eluted with PhH , were washed with aqueous NaHCO_{3}, dried, and concentrated to leave 878 mg of the crude benzoate 11 as a yellow liquid, $n^{25} \mathrm{D}$ 1.5096. This material was partially purified by preparative TLC (silica gel coating with a $\mathrm{PhH}-\mathrm{Et}_{2} \mathrm{O}$ eluent, $1: 10 \mathrm{v} / \mathrm{v}$) to separate 691 mg of the benzoate 11 as a yellow liquid, $n^{25} \mathrm{D} 1.5079$. Distillation under reduced pressure in a short-path still afforded 645 mg (60%) of the benzoate 11 as a yellow liquid: $n^{25} \mathrm{D} 1.5080$; ir $\left(\mathrm{CCl}_{4}\right)$, $1742 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; uv max ($95 \% \mathrm{EtOH}$) $225 \mathrm{~nm}(\epsilon 14200), 273$ (860), and 280 (710); NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.1-8.1(5 \mathrm{H}, \mathrm{m}$, aryl CH), 2.0-3.7 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$ and part of AB system for $\mathrm{CH}_{2} \mathrm{~N}$), $2.67(1 \mathrm{H}$, d, $J=9.5 \mathrm{~Hz}$, part of AB system for $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 1.0-2.5\left(11 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ with CH_{3} singlets at 1.15 and 1.22 and a CH_{3} doublet, $J=7 \mathrm{~Hz}$, at 1.20); mass spectrum m / e (rel intensity) 122 (26), 105 (40), 96 (21), 77 (38), 69 (24), 55 (100), 51 (27), and 41 (32). Our efforts to obtain an analytically pure sample of this benzoate 11 were thwarted by the partial decomposition that occurred during each attempt to distill the material.

Reduction of $6.35 \mathrm{~g}(50 \mathrm{mmol})$ of the oxime 9 with 3.46 g (55 mmol) of $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$ in 50 ml of MeOH with added methyl orange and 6 M HCl in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$, followed by concentration of the crude basic product on a steam bath under reduced pressure,
left 6.2 g (96%) of the crude liquid hydroxylamine 10 . Reduction of this crude product with 13.1 g (0.20 g -atom) of $\mathrm{Zn}, 25.5 \mathrm{~g}$ (0.25 mol) of $\mathrm{Ac}_{2} \mathrm{O}$, and $24 \mathrm{~g}(0.40 \mathrm{~mol})$ of HOAc at $80-90^{\circ} \mathrm{C}$ for 2 h yielded a crude neutral product. Fractional distillation separated 386 mg of a fraction, bp $70-71^{\circ} \mathrm{C}(1 \mathrm{~mm}), n^{25} \mathrm{D} 1.4570$, containing (GLC, Carbowax 20 M on Chromosorb P) ca. 95% of the amide 12 and 3.55 g (total yield 3.93 g or 51%) of the pure amide 12 as a colorless liquid: bp $72-75{ }^{\circ} \mathrm{C}(1 \mathrm{~mm}) ; n^{25} \mathrm{D} 1.4580$; ir $\left(\mathrm{CCl}_{4}\right) 1640 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=\mathrm{O})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.8-4.3\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right.$ and CHN$)$ and $0.8-$ $2.2\left[14 \mathrm{H}, \mathrm{m}\right.$, aliphatic CH including a $\mathrm{CH}_{3} \mathrm{CO}$ singlet at 1.90 , a CH_{3} doublet $(J=6 \mathrm{~Hz})$ at 1.25 , and two CH_{3} singlets at 1.12 and 1.01); mass spectrum m / e (rel intensity) 155 ($\mathrm{M}^{+}, 20$), 140 (20), 99 (22), 98 (100), 57 (70), 56 (26), 55 (18), 43 (52), 42 (18), and 41 (25).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 67.63$; H. 11.04; N, 9.02. Found: C, 69.67; H, 11.07; N, 9.07 .

Preparation of the Hydroxylamine 38. Following a previously described ${ }^{16}$ procedure with $20.32 \mathrm{~g}(0.20 \mathrm{~mol})$ of the aldehyde 40 , $20.85 \mathrm{~g}(0.30 \mathrm{~mol})$ of $\mathrm{HONH}_{3} \mathrm{Cl}, 14.8 \mathrm{~g}(0.14 \mathrm{~mol})$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and 50 ml of $\mathrm{H}_{2} \mathrm{O}$, the oxime 41 was obtained as $20.55 \mathrm{~g}(82 \%)$ of colorless liquid: bp $80-82^{\circ} \mathrm{C}(1.5 \mathrm{~mm}), n^{25} \mathrm{D} 1.5065$ [lit. ${ }^{16} \mathrm{bp} 106-100^{\circ} \mathrm{C}$ $(10 \mathrm{~mm}), n^{20} \mathrm{D} 1.5040$]; ir $\left(\mathrm{CCl}_{4}\right) 3570,3300(\mathrm{OH})$, and $1645 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{C}) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 9.25(1 \mathrm{H}$, broad, OH$)$, two doublets at $7.32(J=6 \mathrm{~Hz})$ and $6.58(J=7 \mathrm{~Hz})($ total $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$ of syn and anti isomers), $5.4-5.8(2 \mathrm{H}, \mathrm{m}$, vinyl CH$)$, and $1.3-3.5(7 \mathrm{H}$, m aliphatic CH); mass spectrum m / e (rel intensity) $125\left(\mathrm{M}^{+}, 16\right)$, 108 (20), 93 (64), 91 (40), 81 (31), 80 (100), 79 (69), 77 (32), 67 (35), 54 (76), 53 (32), 41 (53), and 39 (62). Reduction of 1.25 g (10 mmol) of the oxime 41 with $755 \mathrm{mg}(12 \mathrm{mmol})$ of $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$ in 10 ml of MeOH with added methyl orange and 6 M HCl in $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ for 1 h gave 1.28 g of the crude hydroxylamine 38 as a pale yellow liquid: NMR $\left(\mathrm{CCl}_{4}\right) \delta 6.22(2 \mathrm{H}$, broad, NH and OH$), 5.4-5.7(2 \mathrm{H}, \mathrm{m}$, vinyl CH), 1.3-3.0 ($9 \mathrm{H}, \mathrm{m}$, aliphatic CH). After a sample of this hydroxylamine 38 had been heated to $170^{\circ} \mathrm{C}$ for 1 h , NMR analysis of the crude product indicated that the vinyl CH absorption was undiminished and, consequently, cyclization had not occurred. A solution of 1.09 g of the crude hydroxylamine 38 and 4 ml of PhCOCl in 6 ml of pyridine was stirred for 30 min and then partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaHCO_{3}. The ethereal layer was dried and concentrated and the residue (4.2 g) was chromatographed on silica gel with PhH -hexane mixtures as eluents. After separation of early fractions containing (PhCO$)_{2} \mathrm{O}$, subsequent fractions contained 2.61 g of the crude dibenzoyl compound 42 as a yellow liquid, ir $\left(\mathrm{CCl}_{4}\right), 1765$ (ester $\mathrm{C}=\mathrm{O}$) and $1680 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=\mathrm{O}$). A solution of 1.75 g of this dibenzoyl compound 42 and 4 g of KOH in 10 ml of MeOH was stirred at $25^{\circ} \mathrm{C}$ for 24 h and then acidified, concentrated, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. After the ethereal extract had been dried and concentrated, the residual yellow solid ($868 \mathrm{mg}, \mathrm{mp} 105-109^{\circ} \mathrm{C}$) was recrystallized from a CHCl_{3} hexane mixture to separate $663 \mathrm{mg}(43 \%)$ of the hydroxamic acid 43 as colorless needles: $\mathrm{mp} 112-113{ }^{\circ} \mathrm{C}$; ir $\left(\mathrm{CCl}_{4}\right) 3220(\mathrm{OH})$ and $1610 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=\mathrm{O}$); NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.3-7.7(5 \mathrm{H}, \mathrm{m}$, aryl CH), 5.5-5.7 ($2 \mathrm{H}, \mathrm{m}$, vinyl CH$), 3.58\left(2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right)$, and 1.0-2.5 ($8 \mathrm{H}, \mathrm{m}, \mathrm{OH}$ and aliphatic CH); uv $\max (95 \% \mathrm{EtOH}) 235$ nm (broad, $\epsilon 4600$); mass spectrum m / e (rel intensity) $231\left(\mathrm{M}^{+}, 1\right)$, 213 (5), 150 (6), 105 (100). 94 (7), 77 (41), 41 (9), and 39 (7).
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 72.70; $\mathrm{H}, 7.41 ; \mathrm{N}, 6.06$. Found: C , 72.65; H, 7.42; N, 6.02.

Preparation of the Oxime 46. Following a previously described procedure, ${ }^{27}$ a THF solution of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH} \mathrm{CH}_{2} \mathrm{MgCl}$ was carbonated with crushed dry ice to yield 74% of the acid 44 as colorless liquid: bp $101-102^{\circ} \mathrm{C}(26 \mathrm{~mm}), n^{25} \mathrm{D} 1.4280$ [lit. bp $100-102^{\circ} \mathrm{C}(28$ $\mathrm{mm}),{ }^{27} \mathrm{n}^{25} \mathrm{D} 1.4272,{ }^{28} 1.4295^{27}$]; ir $\left(\mathrm{CCl}_{4}\right) 3000$ (broad, carboxyl $\mathrm{OH}), 1695(\mathrm{C}=\mathrm{O}), 1637(\mathrm{C}=\mathrm{C})$, and $925 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 12.15(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.8-6.3\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, and $1.28(6$ $\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$); mass spectrum m / e (rel intensity) 114 ($\mathrm{M}^{+}, 3$), 99 (14), 69 (72), 41 (100), and 39 (20). Although the same acid 44 was obtained by the previously described ${ }^{28}$ carbonation of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{MgBr}$, the overall yield (36\%) was lower. To a cold $\left(-40\right.$ to $\left.-60^{\circ} \mathrm{C}\right)$ solution of $22.8 \mathrm{~g}(200 \mathrm{mmol})$ of the acid 44 in 100 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added, dropwise and with stirring and cooling, 500 ml of an $\mathrm{Et}_{2} \mathrm{O}$ solution containing 0.46 mol of MeLi. ${ }^{29}$ After approximately 1 equiv of the MeLi solution had been added and the vigorous evolution of CH_{4} subsided, the mixture was warmed and maintained at $-10^{\circ} \mathrm{C}$ while the second equivalent of MeLi was added. Use of this procedure diminished the amount of alcohol 47 by-product that was formed. After the resulting suspension had been stirred at $25^{\circ} \mathrm{C}$ for 2 h , it was added, slowly with vigorous stirring, to dilute aqueous HCl and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal extract was washed with aqueous NaOH , dried, and fractionally distilled to separate $16.6 \mathrm{~g}(74 \%)$ of the pure (GLC) ketone

45, bp $52-55^{\circ} \mathrm{C}(55 \mathrm{~mm}), n^{25} \mathrm{D} 1.4221$ (lit. ${ }^{30} \mathrm{bp} 129.5^{\circ} \mathrm{C}$), and 1.3 g (6\%) of a fraction, bp $\left.56-58{ }^{\circ} \mathrm{C} 55 \mathrm{~mm}\right), n^{25} \mathrm{D} 1.4230$, that contained (GLC, Carbowax 20 M on C iromosorb P) the desired ketone 45 (ca. 95%, retention time 4.4 mir) accompanied by the alcohol 47 (ca. $5 \%, 6.8 \mathrm{~min}$). The spectral prcperties of the ketone 45 were: ir $\left(\mathrm{CCl}_{4}\right) 1710(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{C})$, and $935 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 4.8-6.2\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$, and $1.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. Reaction of $150 \mathrm{~g}(134 \mathrm{mmol})$ of the ketone 45 with $14.0 \mathrm{~g}(200 \mathrm{mmol})$ of $\mathrm{HONH}_{3} \mathrm{Cl}$ and $10.0 \mathrm{~g}(94 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 150 ml of $\mathrm{H}_{2} \mathrm{O}$ for 1 h at $0^{\circ} \mathrm{C}$ and for 1 h at $25^{\circ} \mathrm{C}$ yielded $7.44 \mathrm{~g}(43 \%)$ of the oxime 46 as a colorless liquid: bp $57-58^{\circ} \mathrm{C}(1$ $\mathrm{mm}), n^{25} \mathrm{D} 1.4670$; ir $\left(\mathrm{CCl}_{4}\right) 3580,8250(\mathrm{OH}), 1635(\mathrm{C}=\mathrm{N})$, and 920 $\mathrm{cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ;$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 3.45(1 \mathrm{H}$, broad, OH$)$, 4.8-6.2 (3 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right)$, and $1.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity) 112 (24), 69 (34), 68 (14), 67 (18), 42 (25), 41 (100), 40 (33), and 39 (29).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 6610 ; \mathrm{H} .10 .30 ; \mathrm{N}, 11.01$. Found: C, 66.15 ; H, 10.30; N, 11.00.

Preparation of the Hydroxylamine 39. Reduction of 508 mg $(4.0 \mathrm{mmol})$ of the oxime 46 with $234 \mathrm{mg}(45 \mathrm{mmol})$ of $\mathrm{NaB}(\mathrm{CN}) \mathrm{H}_{3}$ in 20 ml of MeOH at $\mathrm{pH} 3-4$, following previously described reaction and isolation procedures, yiflded the crude liquid hydroxylamine 39: NMR $\left(\mathrm{CCl}_{4}\right) \delta$ 4.7-6.1 ($£ \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{OH}$, and NH$)$, $2.75(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{CHN}), 1) .8(3 \mathrm{H}$, partially resolved $\mathrm{d}, J=$ $6.5 \mathrm{~Hz}, \mathrm{CH}_{3}$) and two partially resolved CH_{3} singlets (total 6 H) at 1.00 and 0.97 . This crude hydrox 7 lamine 39 was mixed with 1.0 g $(12.7 \mathrm{mmol})$ of pyridine and $2.0 \mathrm{~g}(14.2 \mathrm{mmol})$ of PhCOCl and allowed to stand for 10 min . After the resulting mixture had been stirred with 10 ml of aqueous 6 M KOH for 3 min , it was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the ethereal extract was dried and concentrated to leave a residual liquid contain ng (ir analysis) a mixture of $(\mathrm{PhCO})_{2} \mathrm{O}$ and the dibenzoyl deri-ative 50 . A solution of this crude product and 4.0 g of NaOH in 2 J ml of MeOH was heated on a steam bath for 5 min and then dluted with $\mathrm{H}_{2} \mathrm{O}$, concentrated to remove the MeOH , acidified, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. After the ethereal extract had been washe 1 with aqueous NaHCO_{3}, dried, and concentrated, the residue was crystallized from cold hexane to separate 615 mg (66% from the oxime 46) of the hydroxamic acid 51 as pale yellow needles, $\mathrm{mp} 72-75^{\circ} \mathrm{C}$. Recrystallization afforded $470 \mathrm{mg}(51 \%)$ of the pure hydroxamic acid 51 as colorless needles: mp 76-77 ${ }^{\circ}$; ir $\left(\mathrm{CCl}_{4}\right) 1640$ (shoulder, $\mathrm{C}=\mathrm{C}$), 1615 (hydroxamic acid $\mathrm{C}=\mathrm{O}$), and $920 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 8.33(1 \mathrm{H}$, broad, OH , exchanged with $\mathrm{D}_{2} \mathrm{O}_{*}^{\prime}, 7.2-7.6(5 \mathrm{H}, \mathrm{m}$, aryl CH$), 4.7-$ $6.2\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 3.88(1 \mathrm{H} \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{CHN}), 1.25(3 \mathrm{H}, \mathrm{d}$, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (rel intensity), 164 (4), 148 (12), 105 (100), 77 (36), 51 (13), 42 (14), and 41 (23); uv ($95 \% \mathrm{EtOH}$) end absorption ($\epsilon 7910$ at 210 nm) with shoulders at $219 \mathrm{~nm}(\epsilon 6940)$ and $240(5520)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 72.07; H, 8.21; N, 6.00. Found: C, 72.04; H, 8.22; N, 5.95.

A solution of the crude hydrox lamine 39 (uncontaminated with the oxime 46, NMR analysis), frcm $2.54 \mathrm{~g}(20 \mathrm{mmol})$ of the oxime 46 and 1.57 g (25 mmol) of $\mathrm{NaB}_{(}(\mathrm{CN}) \mathrm{H}_{3}$, in 25 ml of PhCH_{3} was added through a high-dilution head ${ }^{17}$ to 50 ml of refluxing PhCH_{3} during 40 min . After the resultirg solution had been refluxed for an additional 1 h , it was concer trated to leave a residual liquid with NMR absorption corresponding to the starting material 39. After a solution of the crude hyd oxylamine 39 in xylene had been refluxed for 4 h and concentrat sd, the residual liquid contained (NMR analysis) a mixture of the starting hydroxylamine 39 and the oxime 46 formed by oxidatio 7 of the hydroxylamine 39 during the heating process.

Registry No.-7, 57606-67-4; 8, 5497-67-6; 9, 10533-71-8; 10, 54408-36-5; 11, 57606-68-5; 12, 57606-69-6; 14a, 39713-71-8; 14b, 39713-72-9; 15, 109-49-9; syn-16 57606-70-9; anti-16, 57606-71-0; 17, 57606-72-1; cis-18, 57606-53-2; trans-18, 57606-74-3; 19a, 57606-75-4; 19b, 57606-76-5; 21, 109-05-7; 22, 4593-15-1; 23, 42185-42-2; 24, $924-41-4 ; 25,21889-88-3 ; 26,57606-77-6 ; 27$, 57606-78-7; 29a, 17037-67-1; 29b, 57606-79-8; 30a, 766-17-6; 30b, 10066-29-2; 30b picrate, 57606-80-1; 31, 5809-41-6; 32, 764-59-0; syn-33, 57606-81-2; anti-33, $77606-82-3$; 34, 57606-83-4; 36, 57606-84-5; 38, 57606-85-6; 39, 57606-86-7; syn-41, 57606-87-8; anti-41, 57606-88-9; 42, 57606-8؟-0; 43, 57606-90-3; 44, 10276-09-2; 45, 4181-07-1; 46, 57606-91-4; 50 57606-92-5; 51, 57606-93-6; ethyl acetoacetate, 141-97-9; 4-bromo-1-butene, 5762-44-7.

References and Notes

(1) This research has been supported by Public Health Service Grant 9-R01-GM-20197 from the National Institute of General Medical Sciences.

The execution of this research was also assisted by Institution Research Grants from the National Science Foundation for the purchase of a mass spectrometer and a Fourier transform NMR spectrometer.
(2) H. O. House, D. T. Manning, D. G. Melillo, L. F. Lee, O. R. Haynes, and B. E. Wilkes, J. Org. Chem., preceding paper in this issue
(3) For recent reviews, see (a) J. W. Wilt in "Free Radicals"', Vol. 1, J. K. Kochi, Ed., Wiley-Interscience, New York, N.Y., 1973, pp 418-446; (b) D. C. Nonhebel and J. C. Walton, "Free-Radical Chemistry", Cambridge University Press, New York, N.Y., 1974, pp 533-544.
(4) An alternative mechanism for the cyclization $1 \rightarrow 2$ involving an intramolecular H - transfer in the intermediate 3 is also presented in ref 2.
(5) For several recent examples of related reactions involving the cyclization of N-centered radicals, see (a) F. Minisci, Acc. Chem. Res., 8, 165 (1975); (b) R. Furstoss, G. Esposito, P. Teissier, and B. Waegell, Bull. Soc. Chim. Fr., 2485 (1974); (c) J. M. Surzur and L. Stella, Tetrahedron Lett., 2191 (1974); (d) M. E. Kuehne and D. A. Horne, J. Org. Chem., 40, 1287 (1975).
(6) (a) R. F. Borch, M. D. Bernstein, and H. D. Durst, J. Am. Chem. Soc., 93, 2897 (1971); (b) for a recent review, see C. F. Lane, Synthesis, 135 (1975).
(7) (a) H. Feuer, B. F. Vincent, Jr., and R. S. Bartlett, J. Org. Chem., 30, 2877 (1965); (b) H. Feuer, R. S. Bartlett, B. F. Vincent, Jr., and R. S. Anderson, ibid., 30, 2880 (1965).
(8) The cyclization of carbon radical $5(n=2)$ to a five-membered ring is approximately 40 times more rapid than the cyclization of radical 5 (n $=3$) to form a six-membered ring: A. L. J. Beckwith and G. Moad, Chem. Commun., 472 (1974).
(9) H. O. House and P. D. Weeks, J. Am. Chem. Soc., 97, 2778 (1975).
(10) All melting points are corrected and all boiling points are uncorrected. Unless otherwise stated MgSO_{4} was employed as a drying agent. The ir spectra were determined with a Perkin-Elmer Model 257 infrared recording spectrophotometer fitted with a grating. The uv spectra were determined with a Cary Model 14 or a Perkin-Elmer Model 202 recording spectrophotometer. The proton NMR spectra were determined at 60 MHz with a Varian Model A-60 or Model T-60-A NMR spectrometer and the ${ }^{13} \mathrm{C}$ NMR spectra were determined at 100 MHz with a JEOL Fourier transform spectrometer, Model PFT-100. The chemical shift values are expressed in δ values (parts per million) relative to a $\mathrm{Me}_{4} \mathrm{Si}$ internal standard. The mass spectra were obtained with an Hitachi Perkin-Elmer Model RMU-7 or a Varian Model M-66 mass spectrometer. All reactions involving strong bases or reactive organometallic intermediates were performed under a nitrogen atmosphere.
(11) (a) E. Nägeli, Ber., 16, 496 (1883); (b) J. v. Braun and F. Stechele, ibid., 33, 1474 (1900).
(12) C. G. Overberger, L. C. Palmer, B. S. Marks, and N. R. Byrd [J. Am. Chem. Soc., 77, 4100 (1955)] report for the trans amine 14b, bp 108$109^{\circ} \mathrm{C}, n^{23} \mathrm{D}$ 1.4291, picrate $\mathrm{mp} 130-131^{\circ} \mathrm{C}$. R. K. Hill and T. H. Chan [Tetrahedron, 21, 2015 (1965)] report for the trans amine 14b, hydrochloride mp 187-188 ${ }^{\circ} \mathrm{C}$ and picrate $\mathrm{mp} \quad 126-127^{\circ} \mathrm{C}$, and for the cis amine 14 a , hydrochloride $\mathrm{mp} 202-203^{\circ} \mathrm{C}$ and picrate $\mathrm{mp} 116-118^{\circ} \mathrm{C}$.
(13) (a) R. A. Johnson, J. Org. Chem:, 35, 3627 (1968); (b) L. A. LaPlanche and M. T. Rogers, J. Am. Chem. Soc., 85, 3728 (1963).
(14) N. A. LeBel, M. E. Post, and J. J. Whang, J. Am. Chem. Soc., 86, 3759 (1964).
(15) J. Brocard, G. Moinet, and J. M. Conia, Bull. Soc. Chim. Fr., 1711 (1973).
(16) We found this general procedure for the preparation of oximes, described by P. Kaibaris [Liet. TSR Mokslu Akad. Darb., Ser. B., 89 (1965); Chem. Abstr., 64, 6513 (1966)], to be superior to the more common procedure in which the ketone is refluxed with a solution of $\mathrm{HONH}_{3} \mathrm{Cl}$ and NaOAc in aqueous EtOH
(17) K. B. Wiberg, "Laboratory Technique in Organic Chemistry" McGraw-Hill, New York, N.Y., 1960. pp 217-218.
(18) A sample of this amine was converted to its picrate, mp 163-167 ${ }^{\circ} \mathrm{C}$. H. Booth, J. H. Little, and J. Feeney [Tetrahedron, 24, 279 (1968)] report mp 163-165 ${ }^{\circ} \mathrm{C}$ for the picrate of this cis amine 30a.
(19) R. K. Hill, T. H. Chan, and J. A. Joule, Tetrahedron, 21, 147 (1965). These authors report that the N-benzoyl derivative of the cis amine 30a melts at $110^{\circ} \mathrm{C}$. The same value, $\mathrm{mp} 109-110^{\circ} \mathrm{C}$, has also been reported subsequently (ref 13a).
(20) Although an earlier study (ref 18) reports mp $125-127^{\circ} \mathrm{C}$ for the picrate of the trans amine 30b, we have consistently found a higher value for the melting point of this derivative. A. Marcuse and R. Wolffenstein [Ber., 32, 2525 (1899); 34, 2426 (1901)] had originally reported mp $124-127.5^{\circ} \mathrm{C}$ for the picrate of the trans amine 30b. However, since these authors also reported $\mathrm{mp} 84^{\circ} \mathrm{C}$ for the N -benzoyl derivative of their product, which does not correspond to subsequently described values (ref 19), we believe that their value for the picrate is incorrect.
(21) L. W. Butz, E. W. J. Butz, and A. M. Gaddis, J. Org. Chem., 5, 171 (1940).
(22) A. Viola and L. A. Levasseur. J. Am. Chem. Soc., 87, 1150 (1965).
(23) M. S. Kharasch, J. Kuderna, and W. Nudenberg, J. Org. Chem., 18, 1225 (1953).
(24) G. S. Kolesnikov, T. V. Smirnova, L. I. Mizrakh, N. N. Mikhailovskaya, and L. I. Shcherbo, Zh. Obshch. Khim., 27, 3005 (1957); Chem. Abstr., 52, 8151 (1958).
(25) H. O. House, W. C. Liang, and P. D. Weeks, J. Org. Chem., 39, 3102 (1974).
(26) R. H. Wiley and B. J. Wakefield, J. Org. Chem., 25, 546 (1960).
(27) H. Kwart and R. K. Miller, J. Am. Chem. Soc., 76, 5403 (i954).
(28) D. Semenow, C.-H. Shih, and W. G. Young, J. Am. Chem. Soc., 80, 5472 (1958).
(29) The general procedure of P. S. Engel and M. A. Schexnayder, J. Am. Chem. Soc., 94, 9252 (1972).
(30) N. F. Cywinski and H. J. Hepp, J. Org. Chem., 30, 3814 (1965).

Studies on the Formation of Dyes Derived from Diindolylpyridylmethanes

Thaddeus J. Novak, David N. Kramer,* Harold Klapper, and Lester W. Daasch

Chemical Laboratory, Edgewood Arsenal, Aberdeen Proving Ground, Maryland 21010
Brown L. Murr, Jr.
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218
Received May 27, 1975

Abstract

Diindolylpyridylmethane derivatives $\mathbf{l a} \mathbf{a}$ (except $\mathbf{1 k}$) upon N -alkylation of the pyridine moiety and treatment with base produce dyes analogous to 3 . Unexpectedly, dye production from 2 was accompanied by rapid autoxidation to yield dye 4 followed by slow dealkylation to dye 5 . Dye 5 was also obtained by Pd / C dehydrogenation of la and alternatively by nitric acid oxidation of 1a. The corresponding 1 -methyldiindolyl le and $1,1^{\prime}$-dimethyldiindolyl 1c derivatives gave dyes analogous to 3 but not to 4 . The 3 -pyridyl derivative 1 m did not form dyes. The kinetics of methylation of seven diindolylpyridylmethane derivatives with methyl iodide in 1:1 (v/v) 2-methoxyetha-nol-acetonitrile solvent mixture were determined at $30^{\circ} \mathrm{C}$ spectrophotometrically and it was found that substituents in the indolyl moiety had little effect on the rate. The second-order rate constants varied between 5.2 and 6.0 $\times 10^{-4} \mathrm{I} . \mathrm{mol}^{-1} \mathrm{~s}^{-1}$. Second-order rate constants for methylation of eight 3 - and 4 -substituted pyridines with methyl iodide in methanol- d_{4} were determined at $30^{\circ} \mathrm{C}$ by NMR and were found to range from 0.2 to $5.6 \times 10^{-5} \mathrm{l}$. $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$.

While 4-(4-nitrobenzyl)pyridine has been extensively employed for the assay and detection of alkylating agents in the microgram range ${ }^{1-3}$, under certain conditions the reagent for unknown reasons displays an unacceptable blank in alkali. Also the rate of alkylation of 4-(4-nitrobenzyl)pyridine is relatively slow at ambient temperatures. Therefore a search was made for reagents that would obviate these disadvantages.
Diindolylpyridylmethane (1a) (Scheme I) was expected to yield a colored alkylation product 3 in basic solution. Unexpectedly, 3 has been found to undergo a rapid oxidation followed by a slower dealkylation.

The diindolylpyridylmethanes (Table I) were prepared by condensation of an indole (2 equiv) and 4 -pyridinecarboxaldehyde (1 equiv) in ethanolic hydrochloric acid, a method found superior to published procedures. ${ }^{4,5}$ All compounds were $3,3^{\prime}$-diindolylpyridylmethanes except for $\mathbf{1 k}$ which resulted from electrophilic attack at the 2 position of skatole. NMR data excluded $1 \mathbf{k}^{\prime}$ (indole N-H resonances, broad singlet δ 10.45). Compound 1 k differed from 1 c obtained by condensation of 2 -methylindole with 4 -pyridinecarboxaldehyde. Condensation of formaldehyde and benzaldehyde with skatole reportedly occurred at the 2 position. ${ }^{6}$ Unsymmetrical 1 e (accompanied by 1a and 1b) was prepared in low yield from equimolar quantities of indole, 1-methylindole, and 4-pyridinecarboxaldehyde. NMR and

1k

1c
mass spectral data were consistent with the proposed structure. An attempt to isolate the expected carbinol intermediate ${ }^{5}$ failed. Use of 2 - and 3 -pyridinecarboxaldehyde afforded 11 and 1 m .

Alkylation of 1a with methyl iodide gave principally the N-methyl pyridinium salt showing poor analytical data. NMR spectra showed an impurity ($\delta 3.2, \mathrm{Me}_{2} \mathrm{SO}-d_{6}$). Analytically pure N-methyl salt was prepared from 4-pyridinecarboxaldehyde methiodide and indole in ethanolic hydrogen iodide. The $\delta 3.2$ resonance was greatly reduced. A number of experiments were carried out to probe the structures of the various dyes. Scheme II summarizes these experiments and the structures presented appear to be the' only reasonable ones consistent with the following data.
Treatment of 1 a with excess methyl iodide produced colorless 2. Compound la with excess methyl iodide and base in the presence of oxygen produced a blue dye, 4 ($\lambda_{\text {max }} 575$ $\mathrm{nm}, \epsilon 1.4 \times 10^{4}$). Compound 2 with base under argon gave a yellow dye, 3 , which immediately turned blue upon exposure to oxygen.

In support of the proposed structures of 3 and 4, alkylation of di(1-methylindolyl)-4-pyridylmethane (1b) followed
Scheme II

1a

red
个
OH^{-}with time

colorless

yellow
$\ln =3$-indolyl
Py = 4-Fyridyl
by treatment with base in the presence of oxygen did not form a blue dye. This carbanios is incapable of oxidation to the rosindole chromophore because t lacks the indole NH.
The unsymmetrical le with one indole nitrogen substituted by a methyl group underwent alkylation with excess methyl iodide to produce a cclorless product that became red when treated with alkali. This compound can give a carbanion that is oxidized to a rosindole ($\lambda_{\max } 543 \mathrm{~nm}, \epsilon 1.6$ $\times 10^{3}$), but does not have the second indole NH needed to
produce blue dye 4 . These experiments showed that one indole NH is necessary for oxidation and two are necessary for the blue dye $4 .^{7 a}$

Compound 2 with $8 \mathrm{M} \mathrm{HNO}_{3}$ under argon produced a red dye, 8 ($\lambda_{\text {max }} 547 \mathrm{~nm}, \epsilon 2.1 \times 10^{4}$), which gave 4 on treatment with deoxygenated base. Compound 4 was converted to 8 on treatment with $8 \mathrm{M} \mathrm{HNO}_{3}$. Treatment of 1 a with 8 $\mathrm{M} \mathrm{HNO}_{3}$ also produced a red dye, 7 ($\lambda_{\max } 543 \mathrm{~nm}, \epsilon 2.0 \times$ 10^{4}) whose spectral properties were nearly identical with those of $8\left(\lambda_{\text {max }} 547 \mathrm{~nm}, \epsilon 2.1 \times 10^{4}\right)$.

In support of structure 7, 1 a in 6 M HCl gave a colorless solution, which became red (7) upon exposure to oxygen for several days. Compound 7 was not converted to la by base. This established that 7 was an oxidation product of $1 a$. Compound 7 ($\lambda_{\text {max }} 540 \mathrm{~nm}, \epsilon 2.6 \times 10^{4}$) was likewise produced by refluxing la in nitrobenzene in the presence of 5% Pd / C catalyst, ${ }^{7 \mathrm{~b}}$ isolation of the free base 7a, and dissolution in hydrochloric acid. Compound 7 obtained from 1a by treatment with $8 \mathrm{M} \mathrm{HNO}_{3}$ was converted to 7 a with ammonium hydroxide. While a satisfactory elemental analysis was not obtained, the mass spectrum of 7a showed a parent peak $m / e 321$ (rel intensity 1.0), $\mathrm{P}-1$ (rel intensity 0.6). The loss of a hydrogen atom from the parent cation would lead to a resonance-stabilized radical cation.

Compound 7a was converted to a dihydrochloride, 7, whose NMR showed a sharp two-proton resonance for the α-indole and indolinenyl protons ($\delta 8.6$) and no triarylmethinyl proton. This established the structure of 7. The monoprotonated form of 7 a showed $\lambda_{\max } 512 \mathrm{~nm}$. The

monoprotonated form of 7 a
NMR of 7a ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}-\mathrm{D}_{2} \mathrm{O}$) showed no triarylmethinyl proton and two equivalent α-indolyl protons ($\delta 8.0$) shifted upfield from 7, as expected. The absence of α-indolyl and indolinenyl proton resonances was due to rapid deuteron exchange with solvent. These observations were in accord with 7 and 7 a . Treatment of $7 \mathrm{a}\left(\lambda_{\text {max }} 450 \mathrm{~nm}, \epsilon 2.6 \times 10^{4}\right.$) with excess methanolic sodium hydroxide yielded 5 ($\lambda_{\text {max }}$ $521 \mathrm{~nm}, \epsilon 3.6 \times 10^{4}$). Thus, 7 a contained an acidic proton (a conjugated indole NH), two basic sites (pyridyl N and indolinenyl N), and no triarylmethinyl proton and had molecular weight 321 (mass spectrum). Coupled with the fact that 7a was obtained by oxidation or catalytic dehydrogenation, these data firmly established the structures of $7 a$ and 5.

TLC analysis of a preparative scale solution of 5 on silica gel gave a compound whose R_{f} value was identical with that of 7a. These data indicate the loss of an N-methyl group in the conversion of 4 to 5 . Compound 2 was treated preparatively with potassium hydroxide in methanol to produce 5 . The product was isolated by evaporation and extraction with benzene. TLC analysis of the solid recovered from an aliquot of the benzene solution indicated one component ($R_{f} 0.5,7 \mathrm{a}$) and a minor contaminant ($R_{f} 0.7$). A portion of the benzene solution was evaporated on the probe of the mass spectrometer. The mass spectrum showed a major $m / e 321$ and an unexplained weaker peak $m / e 323$. The latter m / e cannot be ascribed to la because the characteristic blue color was not obtained upon treatment with dimethyl sulfate and base. ${ }^{8}$

A portion of the benzene solution of 7 a obtained from 4 was extracted with aqueous hydrochloric acid and the extract was evaporated to dryness. The NMR in methanol- d_{4} showed the characteristic $\mathrm{A}_{2} \mathrm{~B}_{2}$ pattern of a 4 -substituted

Table I. Diindolylpyridylmethanes ${ }^{a}$

1

1e

1k

Compd	Ar	R_{1}	R_{2}	R_{3}	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Elemental anal., \%					
						Calcd			Found		
						C	H	N	C	H	N
1a	4-Pyridyl ${ }^{\text {c }}$	H	H	H	156-158 dec	81.7	5.3	13.0	81.9	5.5	13.0
1b	4-Pyridyl ${ }^{\text {d }}$	H	CH_{3}	H	184-185 dec	82.0	6.0	12.0	81.7	6.3	11.7
1 c	4 -Pyridyle	CH_{3}	H	H	241-244 dec	78.0	6.3	11.4	78.0	6.0	11.5
1 d	4-Pyridyl	H	H	CH_{3}	256-260 dec	82.0	6.0	12.0	81.7	5.9	12.0
$1 \mathrm{e}^{\text {b }}$					146-148 dec	81.9	5.7	12.4	80.1	5.7	12.0
1 f	4-Pyridyl	H	H	Cl	231-263 dec	67.4	3.9	10.7	67.1	4.0	10.5
$1 \mathrm{~g}^{b}$	4-Pyridyl	H	H	Br	275-277 dec	54.9	3.1	8.7	55.2	3.3	9.4
1 h	4-Pyridyl	H	H	CN	274-276 dec	77.2	4.0	18.8	77.0	4.2	18.8
1 i	4-Pyridyl	H	H	COOH	$185-188 \mathrm{dec}$	70.1	4.2	10.2	69.0	4.3	10.3
$1{ }^{\text {b }}$	4-Pyridyl	H	H	$\mathrm{CH}_{3} \mathrm{O}$	$131-185 \mathrm{dec}$	75.2	5.5	11.0	74.6	5.6	10.9
1 k					254-266 dec	82.0	6.0	12.0	81.9	6.2	12.2
11	2-Pyridyl	H	H	H	212 dec	81.7	5.3	13.0	81.9	5.3	13.1
1 m	3-Pyridyl	H	H	H	102-107 dec	81.7	5.3	13.0	83.1	5.7	10.7

${ }^{a}$ Substantial parent peaks were shown by these compounds. ${ }^{b}$ Analyses unsatisfactory; homogeneous by TLC under conditions that separate 1 a and $1 \mathrm{~b} .{ }^{c}$ Lit. $\mathrm{mp} 152-155^{\circ} \mathrm{C} \operatorname{dec}\left(r e f 4\right.$) and $155-156^{\circ} \mathrm{C} \operatorname{dec}$ (ref 5). ${ }^{d}$ Lit. mp $186-188^{\circ} \mathrm{C} \operatorname{dec}(\mathrm{ref} 4$). ${ }^{e}$ Lit. mp $249-250^{\circ} \mathrm{C}$ uncorrected (ref 13).

Table II. Second-Order Rate Constants for the Reaction of Dindolylpyridylmethanes and 4-(4-Nitrobenzyl)pyridine with Methyl Iodide at $30^{\circ} \mathrm{C}^{a}$

Compd	Substituent	$\begin{aligned} & k_{2} \times 10^{4} \\ & \text { 1. } \mathrm{mol}^{-1} \mathrm{~s}^{-1} \end{aligned}$	$\lambda_{\text {max }}, \mathrm{nm}$	$\epsilon \times 10^{-4}, \mathrm{M}^{-1} \mathrm{~cm}^{-1}$	
				Calcd	Corrected
1 a	H	5.9	$575{ }^{\text {b }}$	1.4	1.4
1 c	$2-\mathrm{CH}_{3}$	5.9	$644{ }^{\text {b }}$	1.0	1.1
1 d	$5-\mathrm{CH}_{3}$	5.9	$578{ }^{\text {b }}$	1.2	1.3
1 f	$5-\mathrm{Cl}$	5.2	$556{ }^{\text {b }}$	1.3	1.3
1g	$5-\mathrm{Br}$	5.7	$559{ }^{\text {b }}$	1.1	1.3
1 h	$5-\mathrm{CN}$	6.0	$532{ }^{\text {c }}$	1.4	1.4
1 j	$5-\mathrm{CH}_{3} \mathrm{O}$	5.9	$562{ }^{\text {b }}$	1.1	1.3
4-(4-Nitrobenzyl)pyridine ${ }^{e}$		4.5	$559{ }^{\text {d }}$	2.5	2.5

a Second-order rate constants were obtained by dividing the pseudo-first-order rate constants by the methyl iodide concentration. ${ }^{b}$ For compound 4. ${ }^{c}$ For compound 5. ${ }^{d}$ For the dye. ${ }^{3}{ }^{2}$ Registry no., 1083-40-3.
pyridine, the equivalent α tydrogens of indole, the eight benzenoid protons, and no triarylmethinyl proton. Signizicantly, the N-methyl resonance was present as only a minor feature ($<10 \mathrm{~mol} \%$) o: the spectrum. This spectrum had the significant features of the rosindole 7 prepared via the catalytic route except for an unexplained resonance at δ 7.5 , assigned to an impurity. All the evidence points to a loss of an N-methyl group in the conversion of 4 to 5 . While nucleophilic displacement on the pyridinium N-methyl group was not anticipated, there is ample evidence for carbanion formation at this s.te; ${ }^{9,10}$ and thus, a likely pathway is the oxidative cleavage of the methyl-nitrogen bond via a carbanion as suggested by Corwin et al. for viologen dealkylation. ${ }^{11}$ When compound 9, the N-benzyl chloride analogue of 2 , was treated with base, benzaldehyde was detected by GLC analysis. Alkylation of $7 \mathbf{a}$ was attempted with excess dimethyl sulfate followed by addition of base. This procedure, however, did not produce the characteristic blue color of 4 . The most likely side reaction to account for this failure was the alkylation of the indolenine nitrogen, the most basic site in $5 .{ }^{12}$
The presence of the pyridinium moiety in the rosindole has a marked effect on the rosindole chromophore. The rosindole 7 a in alkali has $\lambda_{\text {max }} 521 \mathrm{~nm}\left(\epsilon 3.6 \times 10^{4}\right)$ while 4 has $\lambda_{\max } 575 \mathrm{~nm}\left(\epsilon 1.4 \times 10^{4}\right)$. This bathochromic shift
seems unusually large for a substituent in a cross conjugated position.
In the 2-pyridyl series, the independently prepared N methylpyridinium compound on treatment with alkali and oxygen gave a dye with $\lambda_{\text {max }} 550 \mathrm{~nm}\left(\epsilon 2.8 \times 10^{4}\right)$. Qualitatively, the 2-pyridyl compound 11 underwent alkylation much more slowly than 1a. The corresponding 3 -pyridyl compound gave a colorless solution in base suggesting that neither a carbanion nor a rosindole was formed. Evidently conjugation of the triarylmethyl carbanion center with the pyridinium nitrogen is necessary for ready carbanion formation and carbanion formation is a prerequisite for facile oxidation to rosindole. The $\lambda_{\max }$ of the dye resulting from treatment of the 2 -pyridinium compound with base was 25 nm hypsochromically shifted compared to the 4 -pyridinium compound. The structure of the 2 -pyridinium dye would be expected to deviate from coplanarity more than that of the 4 -pyridinium dye.

All of the di(5-substituted indolyl)-4-pyridylmethane compounds $\mathbf{1 d}-\mathbf{g}$ (Table I) gave dyes upon alkylation and subsequent treatment with base. The spectral characteristics are given in Table II.

The N -methylated 5 -cyano derivative (1 h) formed a blue dye in base that was rapidly converted to the red dye ($\lambda_{\text {max }}$ $532 \mathrm{~nm}, \epsilon 2.8 \times 10^{4}$) presumably corresponding to the deal-

Table III. Second-Order Rate Constants for the Reaction of 3- and 4-Substituted Pyridines with Methyl Iodide at $30^{\circ} \mathrm{C}^{a}$

Substituent	H	$4-\mathrm{CH}_{3}$	$4-\mathrm{CN}$	$3-\mathrm{CN}$	$4-\mathrm{CH}_{2} \mathrm{OH}$	$3-\mathrm{CH}, \mathrm{OH}$	$4-\mathrm{C}_{6} \mathrm{H}_{5}$	$3-\mathrm{CONH}_{2}$
$k_{2} \times 10^{5}, 1 . \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	4.0	5.5	0.4	0.2	2.8	5.6	4.7	1.7
Registry no.	$110-80-1$	$108-89-4$	$100-48-1$	$100-54-9$	$586-95-8$	$100-55-0$	$939-23-1$	$98-92-0$

kylated product 5. The conversion of the blue dye from the methiodide of 1 h to the red dye was complete in 5 min while the conversion of 4 to 5 required ca. 8 h under the same conditions.

Kinetics of Alkylation of Substituted Pyridines. Kinetic studies were carried out on the rates of methylation with excess methyl iodide of the substituted diindolylpyridylmethanes. The reactions were carried out at $30^{\circ} \mathrm{C}$ in a 1:1 (v/v) 2-methoxyethanol-acetonitrile solvent mixture with a 1000 -fold excess of metiyl iodide. An aliquot of the reaction mixture was withdrawn pe-iodically, diluted with aqueous base, and the absorbence read at the appropriate $\lambda_{\max }$ (Table II). The reaction was followed for $2-3$ halflives. After approximately 45 ; the absorbance of an aliquot was read and the molar absorptivity was calculated assuming complete reaction. The molar absorptivities are recorded in Table II. The use of the $15-\mathrm{h}$ absorbance as the infinity value for the kinetic calculations resulted in poor pseudo-first-order plots. By trial and error a molar absorptivity value was chosen to give a straight-line first-order plot. The corrected molar absorptivities are shown in the last column of Table II. The second-order rate constants were calculated using the corrected molar absorptivities. The rate constants were found to be insensitive to substituents in the indole ring (Table I-).

For comparison, rates of alsylation of various pyridine compounds were determined ty NMR (Table III) by measurement of the rates of appearance of the N-methyl resonance and disappearance of the methyl iodide resonance. The reactions were carried out using equimolar concentrations of reactants.

The data in Table III show that substituents introduced directly into the pyridine ring show .ess than a 30 -fold variation in the rate of alkylation, so i: is not surprising that rates of alkylation of compounds la-j are relatively insensitive to substitution in the incole nucleus.

Quantitative comparison of the data in Table II and III is not possible owing to solven: difference.

Experimental Section

Melting points are corrected. Elemental analyses were performed by the Chemical Laboratory, Edgewood Arsenal. Infrared spectra were determined on a Perkin-Elmer 257 spectrophotometer. Electronic spectra were obtaiced on a Cary 14 spectrophotometer. The NMR spectra were messurec with a Varian A-60D instrument using $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$, acetone- d_{6}, or methanol $-d_{4}$ and $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard. Mass spectra were obtained on a PerkinElmer Hitachi Model RMU-6E at 70 eV . For gas chromatography a Hewlett-Packard 5750 instrument was used. Unless otherwise noted thin layer chromatography (TLC) was performed on Eastman silica gel chromatogram shet ts containing a fluorescent indicator. Compounds were visualized with $254-\mathrm{nm}$ light. Molar absorptivities are given in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$ units.
Melting points and analytical data for the diindolylpyridylmethanes are given in Table I.

3,3'-Diindolyl-4-pyridylmethane (1a) was prepared by dissolving indole ($2.34 \mathrm{~g}, 0.02 \mathrm{~mol}$, and 4 -pyridinecarboxaldehyde ($1.07 \mathrm{~g}, 0.01 \mathrm{~mol}$) in ethanol (100 ml). Acid (20 ml of concentrated HCl) was added and the solvent uas allowed to stand at $25^{\circ} \mathrm{C}$ for 2 h. Water (300 ml) was added giv ng a tine white precipitate. The milky suspension was neutralized with concentrated $\mathrm{NH}_{4} \mathrm{OH}$, yielding a yellow precipitate. After filtration and drying, 2.87 g (89% yield) of la was obtained. The solid was recrystallized from methanol to obtain white prisms. After a tenfold dilution of a methanolic solution of 1 a with $1:-(\mathrm{v} / \mathrm{v})$ concentrated $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$ no color was visible. However, the solution slowly turned red. After

198 min the spectrum was obtained: $\lambda_{\text {max }} 545 \mathrm{~nm}\left(\epsilon 8 \times 10^{1}\right)(1 \mathbf{a} \rightarrow$ $6 \rightarrow 7$ incomplete reaction). After diluting a methanolic solution of 1a tenfold with $1: 1(\mathrm{v} / \mathrm{v})$ concentrated $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{O}$ a red solution was obtained, $\lambda_{\text {max }} 543 \mathrm{~nm}\left(\epsilon 2.0 \times 10^{4}\right)(\mathbf{l a} \rightarrow 7)$.

3,3'-Di(5-cyanoindolyl)-4-pyridylmethane (1h) was prepared from 5 -cyanoindole ($2.84 \mathrm{~g}, 0.02 \mathrm{~mol}$) and 4 -pyridinecarboxaldehyde ($1.07 \mathrm{~g}, 0.01 \mathrm{~mol}$) in ethanol (150 ml) with 30 ml of concentrated HCl . After 1 week at $25^{\circ} \mathrm{C}$, water (300 ml) was added and the solution was neutralized with $\mathrm{NH}_{4} \mathrm{OH}$. The mixture was cooled and the white crystals of 1 h were filtered and dried $(2.29 \mathrm{~g}, 61.4 \%$ yield). The solid recrystallized from methanol.

The other symmetrical compounds in Table I, 1b, 1c, 1d, 1f, 1g, $1 \mathrm{i}, 1 \mathrm{j}, 1 \mathrm{k}, 1 \mathrm{l}$, and 1 m , were prepared similarly with reaction times varying from 2 h to 1 week with yields varying from 40 to 60%. Satisfactory analyses were generally obtained by slow recrystallization overnight from methanol at $25^{\circ} \mathrm{C}$. ${ }^{13}$
3,3'-Di(5-carboxyindolyl)-4-pyridylmethane (1i) was prepared on one-tenth the scale used for 1a. A mixture of five products resulted (TLC, hexane-ethyl ether-ethanol, 5:5:2). The crude product was chromatographed on neutral alumina (Woelm activity I) eluting with acetonitrile until all the impurities were removed (TLC). The product 1 i was eluted with methanol.
3-Indolyl- 3^{\prime}-(1-methylindolyl)-4-pyridylmethane (1e) was prepared by allowing indole ($1.17 \mathrm{~g}, 0.01 \mathrm{~mol}$), 1 -methylindole ($1.31 \mathrm{~g}, 0.01 \mathrm{~mol}$), and 4 -pyridinecarboxaldehyde ($1.07 \mathrm{~g}, 0.01 \mathrm{~mol}$) to react in ethanol (100 ml) containing concentrated $\mathrm{HCl}(20 \mathrm{ml})$ at $25^{\circ} \mathrm{C}$ for 2 h . Water (300 ml) was added and the mixture was neutralized with $\mathrm{NH}_{4} \mathrm{OH}$. The precipitate was filtered, dried, and chromatographed on basic alumina (Woelm activity I), eluting with dichloromethane.

3,3'-Diindolyl-4-pyridylmethane Methiodide (2). Method A. Compound 1a (1 g) was dissolved in acetone (20 ml) containing methyl iodide (20 ml). After 1 h the yellow crystals were filtered and dried, giving 0.35 g (24% yield) of 2 . The solid recrystallized from methanol gave an unsatisfactory elemental analysis. The purity of 2 was monitored by measuring the molar absorptivity of 4 at 575 nm by dissolving 2 in a $1: 1(\mathrm{v} / \mathrm{v})$ mixture of 2 -methoxyethanol and acetonitrile, diluting to $10^{-4} \mathrm{M}$, and adding an equal volume of 2 N NaOH . The molar absorptivities that were obtained using 2 after successive recrystallizations were $1.43 \times 10^{4}, 1.43 \times 10^{4}$, and 1.41×10^{4}, respectively.
Method B. Methyl iodide ($15.6 \mathrm{~g}, 0.11 \mathrm{~mol}$) was added to 4 -pyridinecarboxaldehyde ($10.7 \mathrm{~g}, 0.1 \mathrm{~mol}$) in 10 ml of acetonitrile. After refluxing for 15 h , the solution was cooled and poured into acetone $(300 \mathrm{ml})$. The precipitate was collected and dried. A portion of the crude 4 -pyridinecarboxaldehyde methiodide (0.01 mol) was dissolved in ethanol (100 ml) containing indole (0.02 mol and concentrated $\mathrm{HI}(10 \mathrm{ml})$. After 2 h at $25^{\circ} \mathrm{C}, 300 \mathrm{ml}$ of water was added. The precipitate was filtered, dried, and recrystallized from methanol, mp $200-208{ }^{\circ} \mathrm{C}$ dec (darkens above $116^{\circ} \mathrm{C}$). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{I}: \mathrm{C}, 59.4 ; \mathrm{H}, 4.3 ; \mathrm{N}, 9.0$; I, 27.3. Found: C, 59.3; H, 4.5; N, 9.1; I, 27.3. The NMR spectral data were in accord with the assigned structure except for an unexplained resonance at $\delta 3.2$. The molar absorptivity obtained for this product 2 after treatment with alkali at 575 nm was 1.43×10^{4}.

Preparation of the Benzyl Chloride Salt of la (9). Compound 9 was prepared by dissolving $1 \mathrm{a}(3.23 \mathrm{~g}, 0.01 \mathrm{~mol})$ and benzyl chloride ($1.27 \mathrm{~g}, 0.01 \mathrm{~mol}$) in benzene (50 ml). After refluxing for 18 h the precipitate was collected and dried to obtain 1.16 g (26% yield) of 9 . The product was recrystallized from water containing sodium chloride, $\mathrm{mp} 175^{\circ} \mathrm{C}$ dec (darkens above $150{ }^{\circ} \mathrm{C}$). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.4 ; \mathrm{H}, 5.6 ; \mathrm{N}, 9.0 ; \mathrm{Cl}, 7.6$. Found: $\mathrm{C}, 74.9 ; \mathrm{H}, 5.5 ; \mathrm{N}, 9.4 ; \mathrm{Cl}, 7.3$.

Reaction of 9 with Potassium Hydroxide in Methanol and Gas Chromatography of Products. Compound 9 (1 g) in 1 N methanolic $\mathrm{KOH}(20 \mathrm{ml})$ was stirred for 2 h at $25^{\circ} \mathrm{C}$ and acidified with $10 \% \mathrm{HCl}$. The mixture was evaporated in a stream of air. The semisolid mass was extracted with benzene (20 ml) and the solution was analyzed by GLC ($6-\mathrm{ft}$ column containing UCW 98 on $80-100$ mesh Chromosorb W at $110^{\circ} \mathrm{C}$). The single peak had the retention time of benzaldehyde.
Preparation of Rosindoles. 3-Indolinylidene- $\mathbf{3}^{\prime}$-indolyl-4-pyridylmethane (7 a). Method A . Compound la $(0.5 \mathrm{~g})$ in nitroben-

Table IV. Chemical Shifts of the Pyridinium Methiodides ${ }^{a}$

Pyridine substituent b	H	$4-\mathrm{CH}_{3}$	$3-\mathrm{CONH}_{2}$	$3-\mathrm{CN}$	$4-\mathrm{CN}$	$3-\mathrm{CH}_{2} \mathrm{OH}$	$4-\mathrm{CH}_{2} \mathrm{OH}^{4}$	$4-\mathrm{C}_{6} \mathrm{H}_{5}$
+								
$\stackrel{+}{\mathrm{O}}-\mathrm{Me}$ resonance, ppm	4.51	4.39	4.55	4.58	4.60	4.48	4.43	4.47
Registry no.	$930-73-4$	$2301-80-6$	$6456-44-6$	$1004-16-6$	$1194-04-3$	$42330-63-2$	$43330-64-3$	$36913-39-0$

a CH_{3} I resonance varied between $\delta 2.16$ amd 2.19 depending on the substituted pyridine that was used.
zene (60 ml) was treated with $5 \% \mathrm{Pd} / \mathrm{C}$ catalyst (Engelhard) (0.3 g). The mixture was refluxed under argon for 4 h . TLC (ethyl acetate) of a $1-\mu \mathrm{l}$ aliquot of the solution showed no starting material. The solution was extracted with 200 ml of $1: 4(\mathrm{v} / \mathrm{v})$ concentrated $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$. The acid solution was extracted with one $500-\mathrm{ml}$ and two $300-\mathrm{ml}$ portions of benzene. The aqueous phase was neutraized with $\mathrm{NH}_{4} \mathrm{OH}$. The air-sensitive product was filtered, washed with water, and dried in vacuo for 16 h . The dried solid (7a) weighed $0.37 \mathrm{~g}, \lambda_{\max }$ (methanol) $450 \mathrm{~nm}\left(\epsilon 1.6 \times 10^{4}\right)$. A solution prepared by dissolving $7 \mathbf{7 a}$ in a stoichiometric amount of HCl (aqueous) showed $\lambda_{\max } 512 \mathrm{~nm}\left(\epsilon 1.3 \times 10^{4}\right.$). A methanolic solution of 7 a diluted tenfold with $1: 1(\mathrm{v} / \mathrm{v})$ concentrated $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{O}$ showed $\lambda_{\max } 540 \mathrm{~nm}\left(\epsilon 2.6 \times 10^{4}\right)(7 \mathrm{a} \rightarrow 7$). The methanolic solution of 7 a diluted tenfold with 2 N NaOH (aqueous) gave $\lambda_{\text {max }} 521$ $\mathrm{nm}\left(\epsilon 3.6 \times 10^{4}\right)(7 \mathrm{a} \rightarrow 5)$. TLC of 7 a on silica gel (acetone) indicated a major spot, $R_{f} 0.5$, with a minor spot, $R_{f} 0.7$. The mass spectrum showed a major peak, m/e 321 (7a), and a weaker peak, $m / e 323$. The compound corresponding to $m / e 323$ was not identical with the starting 1a (mol wt 323) by TLC or colorimetric analysis. The $R_{f} 0.7$ spot on a TLC strip turned purple on exposure to acid vapors and on subsequent treatment with base it became deep red. Similar behavior was observed with the $R_{f} 0.5$ spot. Preparative chromatography (2.0 mm silica gel plates) using acetone gave two bands. The lower band was removed and extracted with methanol. Both the $R_{f} 0.5$ and the $R_{f} 0.7$ spots were evident in a TLC of the extract. Furthermore, the extract contained a relatively lerger proportion of the $R_{f} 0.7$ material as compared with the sample chromatographed. This result suggests that the two materials wera interconverted in the elution process.

Method B. Compound la (1 g) was stirred in $1: 1(\mathrm{v} / \mathrm{v})$ concentrated $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{O}$. The deep purple solution was neutralized with $\mathrm{NH}_{4} \mathrm{OH}$. The precipitate was filtered and washed with water. TLC on silica gel (acetone) showed spots at $R_{f} 0.5$ and 0.7 which showed the same color reactions and mass spectral data as the product from method A.

3-Indolinylidene-3'-indolyl-4-pyridylmethane Dihydrochloride (Dihydrochloride of 7a). The synthesis was the same as that for 7a (method A) except that the aqueous acid extract was evaporated without neutralization. The recovery of the purple dihydrochloride 7 was 96%. The NMR spectrum in methanol- d_{4} showed no triarylmethinyl proton ($\delta 6.0$), but showed a 4 -substituted pyridine $\mathrm{A}_{2} \mathrm{~B}_{2}$ quartet: $\delta 9.25(2 \mathrm{H}, \alpha$-pyridine, $J=6.0 \mathrm{~Hz}$), 8.42 ($2 \mathrm{H}, \beta$-pyridine, $J=6.0 \mathrm{~Hz}$), 8.60 (s, $2 \mathrm{H}, \alpha$-indole), 6.8-8.1 ($\mathrm{m}, 10 \mathrm{H}$, benzenoid).

Chemical and Spectral Characterization of Structures in Scheme II. A. Demonstration of an Oxidizable Intermediate 3 in the Conversion of $2 \rightarrow 4$. Compound 2 in 2 -methoxyethanol-acetonitrile-aqueous $2 \mathrm{~N} \mathrm{NaOH}(1: 1: 2 \mathrm{v} / \mathrm{v})$ was converted to the blue dye 4 in the presence of air, $\lambda_{\max } 393 \mathrm{~nm}\left(\epsilon 1.4 \times 10^{4}\right), 575(1.4$ $\times 10^{4}$). When the same solutions of 2 and NaOH were deoxygenated with argon (5 min) prior to mixing, there resuited a green solution with $\lambda_{\max } 367 \mathrm{~nm}$ (rel intensity 10) and 575 (rel intensity 1) (2 $\rightarrow 3$). The $575-\mathrm{nm}$ band was attributed to 4 resulting from incomplete deoxygenation. This solution upon exposure to air immediately turned blue, $\lambda_{\text {max }} 393$ and 575 nm (rel intensities 1:1) (3-4).
B. Demonstration of Demethylation in the Conversion of 4 \rightarrow 5. A blue solution of 4 in 1.8 N methanolic KOH became red [after $16 \mathrm{~h}, \lambda_{\max } 525 \mathrm{~nm}\left(\in 3.3 \times 10^{4}\right)(4 \rightarrow 5)$]. Treatment of 2 in methanol (1 ml) with 2.5 N NaOH (aqueous) (9 ml) for 1 h gave a red solution of $5, \lambda_{\max } 525 \mathrm{~nm}$. A sample of 7 a (prepared by catalytic dehydrogenation of $1 \mathbf{l a}$) in 10% methanol- 1.8 N NaOH (aqueous) showed the same spectral characteristics as 5 derived from 4, $\lambda_{\max } 521 \mathrm{~nm}\left(\epsilon 3.6 \times 10^{4}\right)$. An acidified solution of 5 derived from 4 showed $\lambda_{\max } 546 \mathrm{~nm}\left(\epsilon 1.5 \times 10^{4}\right)(5 \rightarrow 7)$ and an acidic solution of 7 a showed $\lambda_{\max } 540 \mathrm{~nm}\left(\epsilon 2.6 \times 10^{4}\right)(7 a \rightarrow 7)$. The lower extinctions of 5 and 7 derived from 4 were attributed to side reactions. ${ }^{8}$ On diluting a methanolic solution of 2 tenfold with $1: 1(\mathrm{v} / \mathrm{v})$ concentrated $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{O}$ there was obtained a red solution, $\lambda_{\max } 547$ $\mathrm{nm}\left(\epsilon 2.1 \times 10^{4}\right)(2 \rightarrow 8)$. A blue solution of 4 obtained by diluting a methanolic solution of 2 tenfold with 2.5 N NaOH (aqueous), upon acidification with $1: 1(\mathrm{v} / \mathrm{v})$ concentrated $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{O}$ gave a red solution, $\lambda_{\max } 546 \mathrm{~nm}\left(\epsilon 1.6 \times 10^{4}\right)(4 \rightarrow 8)$. Compound 8 was
prepared from 2 in the absence of oxygen using HNO_{3} and converted to 4 with $2: \mathrm{N} \mathrm{NaOH}$ (aqueous) in the absence of oxygen.

TLC Evidence for Structures in Scheme II. Compound 2 (1 $\mathrm{g}, 0.02 \mathrm{~mol}$) was dissolved in 60 ml of 0.33 N methanolic KOH . The blue solution was stirred in air for 30 min , giving a red solution. The methanolic solution was evaporated. The solid was triturated with 50 ml of water and extracted with benzene. The remaining violet solid, insoluble in benzene and water, was dissolved in acetone to yield a yellow-orange solution. TLC on silica gel (acetone) of the benzene- and the acetone-soluble materials each showed one major spot ($R_{f} 0.5$ for the benzene-soluble product and 0.7 for the ace-tone-soluble product). A minor spot in each TLC indicated that each of the materials was contaminated with the other. Evaporation of an aliquot of the benzene soluble product on the probe of the mass spectrometer and subsequent analysis showed a major $m / e 321$ (7a) with a weaker peak $m / e 323$ assigned to the contaminant. The acetone-soluble product showed a major $\mathrm{m} / \mathrm{e} 323$. The benzene solution containing 7a was extracted with $1: 4(\mathrm{v} / \mathrm{v})$ concentrated $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$ and the purple acidic extract was evaporated in a stream of air to dryness to obtain a dark purple solid. The NMR spectrum of this sample revealed all of the resonances of the dihydrochloride 7 , which was obtained catalytically (method A). The characteristic quaternary methyl resonance of 2 ($\delta 4.0$) was weak, corresponding to $<10 \mathrm{~mol} \%$. Furthermore, the triarylmethinyl proton ($\delta 6.0$) was not detected.

Kinetics of Alkylation of Diindolylpyridylmethanes. Into a $50-\mathrm{ml}$ volumetric flask was placed 45 ml of $1: 1(\mathrm{v} / \mathrm{v}) 2$-methoxyethanol and acetonitrile solvent mixture and the flask was thermostated at $30^{\circ} \mathrm{C}$. A solution of diindolylpyridylmethane (ca. 10^{-2} M) in the solvent mixture was added followed by methyl iodide ($0.5 \mathrm{ml}, 1.1 \mathrm{~g}$). The flask was filled to the mark with thermostated solvent mixture. Periodically a $1-\mathrm{ml}$ aliquot was withdrawn, placed in a $3-\mathrm{ml}$ cuvette, and treated with 1 ml of 2 N NaOH (aqueous). After 2 min the absorbance was read at the appropriate $\lambda_{\text {max }}$ (see Table II). The pseudo-first-order rate constants were calculated from $k=t^{-1} \ln \left(\mathrm{OD}_{\infty}-\mathrm{OD}_{0}\right) /\left(\mathrm{OD}_{\infty}-\mathrm{OD}_{t}\right)$ and second-order rate constants were obtained by dividing by $\left[\mathrm{CH}_{3} \mathrm{I}\right]$.

When the rate of alkylation of the 5 -cyano compound 1 h was determined, the procedure had to be modified owing to the instability of the blue dye analogous to 4 . After a $1-\mathrm{ml}$ aliquot was taken and treated with 1 ml of 2 N NaOH (aqueous), the solution was allowed to stand for 18 h (overnight) prior to reading the absorbance. During this period the solution became red (structure corresponding to 5) and the absorbance was read at 532 nm .

Kinetics of Alkylation of Substituted Pyridines. Pyridine or a substituted pyridine (0.16 mmol) was dissolved in methanol d_{4} $(0.4 \mathrm{ml})$, placed in an NMR tube, and thermostated at $30^{\circ} \mathrm{C}$ for 10 \min. To the solution was added $22.7 \mathrm{mg}(0.16 \mathrm{mmol})$ of methyl iodide using a $10-\mu \mathrm{l}$ syringe as a weight buret. Measures were taken to ensure thorough mixing. The samples were maintained at $30^{\circ} \mathrm{C}$ in a constant-temperature bath and read periodically in the NMR spectrometer for short periods of time at $33^{\circ} \mathrm{C}$. Where the kinetic runs required extended reaction times, the samples were quenched overnight in dry ice and thawed rapidly the following morning. Periodic determination was made of the $\mathrm{NMe} / \mathrm{MeI}$ resonance ratios as a function of time. Table IV summarizes the chemical shifts measured for the N-methylpyridines. The second-order rate constants were determined using the integrated form of the secondorder rate law for reactants at equal concentrations (eq 1)

$$
\begin{equation*}
k t=x / a(a-x) \tag{1}
\end{equation*}
$$

where $x(a-x)$ is the ratio of the N-methyl integral to the methyl iodide integral and a is the methyl iodide concentration determined by weight at $t=0$. Molarity of the methyl iodide was calculated assuming a volume of 0.4 ml with no adjustment for volume changes upon mixing. The run-to-run reproducibility was ca. 10% of the rate constant.

Acknowledgment. The technical assistance of Mr. R. Bato and Mrs. L. Szafraniec (NMR studies), Mr. J. J. Jones (gas chromatography), and Dr. R. Irino are acknowledged.

Registry No.-1a, 21182-09-2; 1b, 21182-15-0; 1c, 1053-39-0; 1d, 57637-71-5; 1e, 57637-72-6; 1f, 57637-73-7; 1g, 57637-74-8; 1h, 57637-75-9; li, 57637-76-0; 1j, 5 7637-77-1; 1k, 57637-78-2; 11, 57637-79-3; 1m, 21182-11-6; 2, 57637-80-є; 3, 57637-81-7; 4, 57637-82-8; 5, 57637-83-9; 7a, 1099-94-1; 7a $2 \mathrm{HCl}, 57637-84-0 ; 9,57637-$ 85-1; indole, 120-72-9; 4-pyridinecarboxeldehyde, 872-85-5; 5-cyanoindole, 15861-24-2; 1-methylindole, €03-76-9; benzyl chloride, 25168-05-2; methyl iodide, 74-88-4.

References ε nd Notes

(1) E. Sawicki and C. R. Sawicki, Ann. V.Y. Acad. Sci., 163, 895 (1969).
(2) E. Sawicki, D. F. Bender, T. R. Hauser, R. M. Wilson, Jr., and J. E. Meeker, Anal. Chem., 35, 1479 (1933).
(3) J. Epstein, R. W. Rosenthal, and R. J. Ess, Anal. Chem., 27, 1435 (1955).
(4) A. P. Gray and W. L. Archer, J. Am. Chem. Soc., 79, 3554 (1957).
(5) A. P. Gray, J. Org. Chem., 23, 1453 (1958).
(6) J. Joule and G. F. Smith, "Heterocyclic Chemistry"', Van Nostrand-Reinhold, Princeton, N.J., 1972, p 265.
(7) (a) The rapid conversion of the 2 witterion 3 to 4 appears analogous to other rapid anion oxidations [G. A. Russell and A. G. Bemis, J. Am. Chem. Soc., 88,5491 (1966)]. The slow autoxidation of alkylindoles reviewed in R. J. Sundberg. "The Chemistry of Indoles"', Academic Press, New York, N.Y., 1970, seems less relevant. (b) L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis", Wiley, New York, N.Y., 1967, pp 779-781.
(8) In another preparation of 5 there was obtained by quantitative column chromatography a $12 \mathrm{~mol} \%$ yield of methyl anthranilate based on the weight of starting material.
(9) H. Krauch and W. Kunz, '"Organic Name Reactions'", Wiley, New York, N.Y., 1962, p 283.
(10) D. N. Kramer, L. P. Bisauta, R. Bato, and B. L. Murr, Jr., J. Org. Chem., 39, 3132 (1974).
(11) A. H. Corwin, R. R. Arellano, and A. B. Chivvis, Biochim. Biophys. Acta, 162, 533 (1968).
(12) N. V. Sidgwick, "The Organic Chemistry of Nitrogen", Oxford University Press, London, 1966, p 650
(13) T. A. Scott. Nature (London), 204, 77 (1964)

A Synthetic Approach to the Cephalotaxine Skeleton

Boris Weinstein* and Alan R. Craig
Deparıment of Chemistry, University of Washington, Seattle, Washington 98195

Received September 11, 1975

Abstract

Several possible routes to the synthesis of the alkaloid cephalotaxine have been explored. Friedel-Crafts cyclization of 1-[2-(3,4-me-hylenedioxyphenyl)ethyl]pyrrole-2-carboxylic acid, followed by reduction with hydrogen over rhodium on charc sal, gave 8,9-methylenedioxy-1,2,3,6,11,11a-hexahydro-5 H-pyrrolo [2,1-b][3]benzazepine.

The alkaloid cephalotaxine 'I), found in the plum yew, has been assigned an absolute structure based on a combination of chemical, spectral, and x--ay diffraction data. ${ }^{1-6}$

1
Esters of cephalotaxine derived from substituted malic and tartaric acids are known as harringtonines, ${ }^{7-10}$ and are of interest because of their antitumor properties. ${ }^{11}$ With a view to potential medicinal applications, work was begun in the fall of 1971 on the synthesis of the parent ring system, which, if successful, could be extended to other alkaloids in this series.

Treatment of 1,2-methylenedioxybenzene (II) with bromine gave 3,4 -methylenedioxybromobenzene (III), as well as a small amount of 4,5 -methylenedioxy-1,2-dibromobenzene (IV). ${ }^{12}$ Generation of the Grignard reagent from the bromide III, followed by the addision of ethylene oxide, formed 3,4-methylenedioxyphenethyl alcohol (V). Refluxing alcohol V with phosphorls tribromide then produced 4-(2-bromoethyl)-1,2-methylenedicxybenzene (VI). Alkylation of benzyl prolinate (VI_{-}^{-}) by the bromide VI went smoothly; the intermediate benzyl ester (VIII) was not isolated, but was hydrogenated to the parent acid (IX).

$\mathrm{V}, \mathrm{X}=\mathrm{OH}$
VI, $\mathrm{X}=\mathrm{Br}$

VII

The next step, Friedel-Crafts cyclization of compound IX, rather surprisingly failed because decarbonylation of the proline carboxyl group occurred with remarkable ease when attempts were made to prepare the acid chloride X. Interestingly, the treatment of proline (XI) with thionyl chloride has been said to give prolyl chloride hydrochloride (XII); unfortunately, no analytical or spectral data were provided to support the assigned structure. ${ }^{13}$ By contrast, two other reports on the preparation of amino acid acyl chloride hydrochlorides are known and appear to be correct. ${ }^{14,15}$ Treatment of acid IX with thionyl chloride, phosphorus trichloride, or oxalyl chloride yielded in all cases a new compound (XIII). The structure assigned to XIII was supported by the absence of a carbonyl group in the infrared and a correct proton count in the nuclear magnetic resonance spectrum for both the methylenedioxyphenylethyl and prolyl groups. These results can be explained by postulating the existence of a "reverse-Koch" reaction (Scheme I). Here, we assume the initial conversion of the acid IX to the desired acyl chloride X, which then undergoes decomposition either by nucleophilic attack or by internal rearrangement to yield the iminium chloride XII. Some support for this idea was found when it was observed that a solution of IX in methylene dichloride at $-70^{\circ} \mathrm{C}$ on treatment with trifluoroacetic acid evolved carbon monoxide. The same result was obtained when other modes of ring cyclization were tried with IX, for example, treatment

Scheme I. The Reverse-Koch Mechanism

IX

X

with polyphosphoric acid or a dimethylformamide-sulfur trioxide complex.

In an alternative approach, piperonal (XIV) was reduced in a Parr shaker to 3,4-methylenedioxybenzyl alcohol (XV), which on treatment with hydrogen bromide-hydrobromis acid produced the corresponding bromide (XVI). Heating XVI with sodium cyanide in dimethyl sulfoxide afforded 3,4-methylenedioxyphenylacetonitrile (XVII); subsequent hydrolysis in ethanol-water containing sodium methoxide gave 3,4-methylenedioxyphenylacetic acid (XVIII). This route from aldehyde XIV to acid XVIII is essentially the same as one already described in the literature; ${ }^{16}$ however, our modification has the advantage that a low-pressure hydrogenation step is used on XIV, neither compounds XVI and XVII are isolated, and the overall yield of acid XVIII is quite high.

The coupling of acid XVIII to proline or proline esters was carried out by a variety of standard peptide techniques. It was found that optimum yields were obtained using an in situ formation of 2,4,5-trichlorophenyl 3,4methylenedioxyphenylacetate (XIX), followed by the addition of thallium prolinate (XX) to form N-(3,4-methylenedioxyphenylacetyl)proline (XXI). An attempt to cyclize XXI with trifluoroacetic acid afforded two new products (XXII and XXIII). Compound XXII gave a negative ferric

chloride test, and possessed absorptions at 1795, 1657, and $1638 \mathrm{~cm}^{-1}$ in the infrared. The very high carbonyl stretch at $1795 \mathrm{~cm}^{-1}$ in potassium bromide is characteristic of a trifluoroacetic ester, which is consistent with the unstable nature of this compound. Indeed, on recrystallization from moist solvents, or on preparative thin layer chromatography, XXII readily changed into XXIII. The latter product showed a broad band at $3300 \mathrm{~cm}^{-1}$, as well as the disappearance of the $1795-\mathrm{cm}^{-1}$ absorption. Other carbonyl absorptions were noted at 1760 (weak and sharp) and 1680 cm^{-1} (broad and very strong). The former can be attributed to an imide, ${ }^{17}$ while the latter is probably due to two superimposed peaks, which, to be consistent with the rather long wavelength, are amide or hydrogen bonded carbonyls. This suggestion was confirmed by a shift to 3500,1755 . and $1715 \mathrm{~cm}^{-1}$, respectively, when the spectrum was rede-

Scheme II. The Carbonium Ion Mechanism

termined in chloroform. Further, in the nuclear magnetic resonance spectrum of XXIII, a single, exchangeable proton was detected at $\delta 6.4$, which suggested a chelated hydroxyl proton such as $-\mathrm{COCHOH}-$. Compound XXIII still contains the methylenedioxy group, seen at $\delta 6.0$, as well as three aromatic protons at $\delta 6.6$; so cyclization to a sevenmembered ketone can be disregarded. These results can be rationalized by postulating the formation of a carbonium ion a that cyclizes to b ; nucleophilic attack by trifluoroacetate ion then forms the observed product XXII (and, on hydrolysis, XXIII) (Scheme II). This type of ring expansion has been noted before, i.e., the acid-catalyzed conversion of 2 -chloromethyl- N-methylproline to 3 -chloro- N methylpiperidine. ${ }^{18,19}$

On the principle that the basicity of the proline nitrogen is the cause of the above undesired sequences, an alternative solution could be formulated in terms of a pyrrole intermediate. Thus, the alcohol V was converted into the tosylate XXIV and on addition of sodium 2-carbethoxypyrrole (XXV) there was obtained the pyrrole ester XXVI, which, without isolation, was hydrolyzed to the parent acid XXVII. Cyclization of the acid XXVII to the benzazepine

XXVIII was smoothly effected with trifluoroacetic anhy-dride-stannic chloride. A variety of reaction conditions were tried in order to either selectively reduce the pyrrole ring or the keto group in compound XXVIII, but only limited success was achieved. For example, sodium borohydride treatment of XXVIII gave the hydrogenolyzed benzazepine XXIX. The intermediate alcohol was easily detected by thin layer chromatography, as the spot attributed to it turned red on exposure to air. Similar deoxygenations have been seen previously in this heterocyclic system. ${ }^{22}$ By contrast, the pyrrole ring in compounds XXVII or XXIX was rapidly reduced by a rhodium on charcoal
catalyst and the crystalline pyrrolidine (XXX) was produced in nearly quantitative yield. After the completion of this work, the same compounc was obtained by another group in the form of a labile cil. ${ }^{23}$ The reported spectral properties for this latter material were essentially identical with those measured on crystall ne XXX.
The last stage in the synthesis called for the conversion of the tetracyclic base XXX via mercuric acetate oxidation to the enamine XXXI. After isodation, the desired intermediate XXXI was found to be unstable in chlorinated solvents and decomposed on stancing. The same product has now been made by an alternative synthesis and a comparison of samples showed their mutual identity. ${ }^{24}$ Reaction of XXXI with propargyl bromide formed the acetylene XXXII, which on mercury(II)-catalyzed hydration gave ketone XXXIII. Treatment of XXXIII with several acid catalysts neither produced pentacyclic ketone (XXXIV) nor any other cyclopentanone-con-aining product. These results are in complete agreement with a recent synthetic venture in this area, ${ }^{24}$ but are ir contrast with an earlier report. ${ }^{23}$ Assuming that alternctive modes of cyclization exist, the resulting ketone XXXIV would be converted by two or more steps into the desir ${ }^{\text {d alkaloid I. }}$

XXXII, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
XXXIII, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{COCH}_{3}$

XXXIV
At this point the work termizated, as we were unable to secure any support necessary ts complete the synthesis or to begin analog studies. Note that within the past year two independent preparations of cephalotaxine have been published. ${ }^{24,25}$ One of these is parallel to our route and intersects it at the enamine stage. Subsequently, no further effort is planned in this area.

Experimenta \mid Section ${ }^{26}$

3,4-Methylenedioxybromobenzene (III). Bromine vapor (187 $\mathrm{g}, 1.17 \mathrm{~mol}$) was drawn through methylenedioxybenzene (143 g , 1.17 mol) in chloroform (600 ml) b= an aspirator over a 4-h period. The original procedure calls for cooling the reaction mixture with an ice bath, but this gives a slow reaction rate. ${ }^{12}$ Distillation afforded a small forerun of starting material, bp $57-68^{\circ} \mathrm{C}(10 \mathrm{~mm})$, followed by the product ($216 \mathrm{~g}, 919$) , bp $103-107^{\circ} \mathrm{C}(10 \mathrm{~mm})$. The residue in the still pot crystallized on cooling, and a recrystallization from methanol yielded a small quantity of 4,5 -methylenedi-oxy-1,2-dibromobenzene, $\mathrm{mp} 86^{\circ} \mathrm{C}$.
3,4-Methylenedioxyphenethyl Alcohol (V). 3,4-Methylenedioxybromobenzene ($80 \mathrm{~g}, 0.40 \mathrm{~mol}$) was added dropwise with stirring to magnesium ($10 \mathrm{~g}, 0.44 \mathrm{nol}$) in anhydrous tetrahydrofuran (300 ml) under dry nitrogen. The mixture was then refluxed for 0.5 h and cooled to $0^{\circ} \mathrm{C}$, and ethylene oxide ($21.8 \mathrm{ml}, 19.3 \mathrm{~g}$, 0.44 mol) was distilled into the reaction flask at such a rate that the temperature never rose above $5{ }^{\circ} \mathrm{C}$. When the addition was complete, the mixture was refluxed for 1 h and then worked up by acidification and extraction. Distillation gave a small forerun of methylenedioxybenzene (6 g), followed by the product (49.4 g , 75%), bp $115-125{ }^{\circ} \mathrm{C}(0.2 \mathrm{~mm}), \operatorname{mpp} 21-22^{\circ} \mathrm{C}$ [lit. bp $120-122^{\circ} \mathrm{C}$ $(2.5 \mathrm{~mm})$. ${ }^{27}$
4-(2-Bromoethyl)-1,2-methylenedioxybenzene (VI). To a solution of the aforementioned alcohol ($4 \mathrm{E} \mathrm{g}, 0.3 \mathrm{~mol}$) in ethyl ether (300 ml) cooled to $10^{\circ} \mathrm{C}$, phosphorus tribromide ($35 \mathrm{~g}, 0.13 \mathrm{~mol}$) was added dripwise while mainta ning the temperature below 10 ${ }^{\circ} \mathrm{C}$. The reaction mixture was th $\in \mathrm{n}$ refluxed for 1 h , followed by
work-up and distillation to yield the product ($44.4 \mathrm{~g}, 80 \%$), bp $142-144{ }^{\circ} \mathrm{C}(6 \mathrm{~mm})$ [lit. bp $144^{\circ} \mathrm{C}(6 \mathrm{~mm})$]. ${ }^{28}$
Benzyl \boldsymbol{N}-2-(3,4-Methylenedioxyphenyl)ethylprolinate (VIII). A solution of 4-(2-bromoethyl)-1,2-methylenedioxybenzene ($22.9 \mathrm{~g}, 0.10 \mathrm{~mol}$), benzyl prolinate hydrochloride ($41 \mathrm{~g}, 0.20$ $\mathrm{mol}){ }^{29}$ potassium carbonate ($20 \mathrm{~g}, 0.20 \mathrm{~mol}$), and potassium iodide ($23 \mathrm{~g}, 0.20 \mathrm{~mol}$) in dimethylformamide (40 ml) was heated to 100 ${ }^{\circ} \mathrm{C}$ until the evolution of carbon dioxide ceased. Work-up by extraction gave the product $(25.4 \mathrm{~g}, 75 \%$) as a nearly colorless yellow oil.
\boldsymbol{N}-2-(3,4-Methylenedioxyphenyl)ethylproline (IX). The benzyl ester ($6.15 \mathrm{~g}, 0.0175 \mathrm{~mol}$) was hydrogenated at atmospheric pressure using 10% palladium on charcoal catalyst (1 g) in methanol (200 ml). After the uptake of hydrogen had ceased, the catalyst was removed, the solvent evaporated, and the residue recrystallized from ethyl acetate-methanol to yield the product (3.8 g , 84%): mp $195-197^{\circ} \mathrm{C}$; ir (KBr) 3010, 2840, 1625,1490 , and 1250 cm^{-}; NMR ($\mathrm{D}_{2} \mathrm{O}+\mathrm{NaOD}$) $\delta 6.5(\mathrm{~m}, 3), 5.7(\mathrm{~s}, 2)$, and 3.9-1.7 (11).
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4}$ (263.17): $\mathrm{C}, 63.87 ; \mathrm{H}, 6.51 ; \mathrm{N}, 5.32$. Found: C, 64.38; H, 6.60; N, 5.04.
3,4-Methylenedioxybenzyl Bromide (XVI). Piperonal (100 g , $0.66^{7} \mathrm{~mol}$) was dissolved in methanol (200 ml) and hydrogenated for 12 h in a Parr shaker using platinum oxide (300 mg) activated with ferric sulfate ($150 \mathrm{mg}, 1.00 \mathrm{mmol}$) and sodium methoxide (108 $\mathrm{mg}, 2.00 \mathrm{mmol})$. On removal of the solvent in vacuo, the crystalline resicue, $\mathrm{mp} 57^{\circ} \mathrm{C}$, was treated with fuming hydrobromic acid prepared by saturating concentrated hydrobromic acid with gaseous hydrogen bromide at $0^{\circ} \mathrm{C}$. After about 1 min , the oil that formed resolidified into a mass of needles, which were filtered and dried in vacuo ($140 \mathrm{~g}, 98 \%$), mp $49-50^{\circ} \mathrm{C}$.
3,4-Methylenedioxyacetonitrile (XVI). 3,4-Methylenedioxybenzyl bromide ($21.6 \mathrm{~g}, 0.1 \mathrm{~mol}$) was added in portions to a stirred suspension of sodium cyanide ($10 \mathrm{~g}, 0.2 \mathrm{~mol}$) in dimethyl sulfoxide $(20 \mathrm{ml})$-water (5 ml) at such a rate that the temperature did not rise above $40^{\circ} \mathrm{C}$. When the last portion of bromide was added, the colorless slurry turned into a thick paste. Dilution with water (100 ml) and work-up by extraction yielded the product as a partially crystalline, pale yellow oil, which was used without further purification in the next step. A small portion was distilled for spectral purposes, bp $135-140^{\circ} \mathrm{C}(5 \mathrm{~mm})$.
3,4-Methylenedioxyphenylacetic Acid (XVIII). The aforementioned nitrile was refluxed overnight in ethanol (50 ml) containing water (5 ml) and sodium methoxide (10 g , ca. 0.2 mol). Work-up by extraction followed by crystallization from water and recrystallization from benzene yielded colorless needles (14.7 g , 82%), mp $128-129^{\circ} \mathrm{C}$ (lit. mp 128-129 ${ }^{\circ} \mathrm{C}^{16}$).

Thallium Prolinate (XX). Proline ($11.5 \mathrm{~g}, 0.100 \mathrm{~mol}$) was suspended in refluxing ethanol (50 ml) and treated with thallium ethoxice ($7.2 \mathrm{ml}, 0.10 \mathrm{~mol}$) and the resulting solution was cooled to 6 ${ }^{\circ} \mathrm{C}$ and diluted with ether (75 ml). The resulting mass of colorless crystals was collected and dried in vacuo ($29.9 \mathrm{~g}, 94 \%$).
\boldsymbol{N}-(3,4-Methylenedioxyphenylacetyl)proline (XXI). To a stirred solution of 3,4 -methylenedioxyphenylacetic acid $(1.8 \mathrm{~g}, 10$ mmol) dissolved in ethyl acetate (50 ml), N, N^{\prime}-dicyclohexylcarbodiimide ($2.1 \mathrm{~g}, 10 \mathrm{mmol}$) was added, followed by $2,4,5$-trichlorophenol ($2.6 \mathrm{~g}, 10 \mathrm{mmol}$). A white precipitate of N, N^{\prime}-dicyclohexylurea immediately formed, after which thallium prolinate $(3.18 \mathrm{~g}, 10.0 \mathrm{mmol})$ was added and the mixture allowed to stand for 20 h . A solution of sodium iodide was added to precipitate thallium ion; then the mixture was filtered and extracted with saturated sodium bicarbonate. The aqueous phase was neutralized, and the resulting crude product was collected, recrystallized from benzene, and sublimed ($1.8 \mathrm{~g}, 65.5 \%$): mp 165-168 ${ }^{\circ} \mathrm{C}$ dec; ir (KBr) 2700, 2570 (broad), 1735,1595 , and $1200 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 9.7$ (s, 1), 6.6 (s, 3), 6.0 (s, 2), 4.6 (b, 1), 3.7 (s, 2), 3.6 (b, 2), and 2.1 (b, 4).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{5}$ (277.16): C, $60.63 ; \mathrm{H}, 5.45 ; \mathrm{N}, 5.05$. Found: C, 60.32; H, 5.39; N, 4.81.
Reaction of \boldsymbol{N}-(3,4-Methylenedioxyphenylacetyl)proline with Trifluoroacetic Anhydride. The aforementioned acid (1.35 $\mathrm{g}, 5.00 \mathrm{mmol}$) was dissolved in tetrahydrofuran (40 ml) containing trifluoroacetic anhydride ($2 \mathrm{~g}, \mathrm{ca} .10 \mathrm{mmol}$). After 15 min , the solvent was removed and the residue was recrystallized from tetrahy-drofuran-ether to yield an unstable, minor component (XXII). On exposure to air or on heating the product rearranged into compound XXIII: ir (KBr) 1795,1657 , and $1638 \mathrm{~cm}^{-1}$; negative ferric chloride test.
The mother liquors were evaporated and the residue was recrystallized from chloroform to yield the second component (XXIII): mp 165-168 ${ }^{\circ} \mathrm{C}$ dec; ir (KBr) 3300 (broad), 1760 (sharp, weak), and $1680 \mathrm{~cm}^{-1}$ (broad, very strong); ir (CHCl_{3}) 3500,1755 , and 1715
cm^{-1}; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.85$ (s, 3), 6.41 (broad, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, 1\right), 6.02(\mathrm{~s}, 2), 4.55(\mathrm{~s}, 1), 3.6-4.2(\mathrm{~m}, 1), 2.15-3.5(\mathrm{~m}, 4)$, ard 1.9-2.15 (pentet, 3). No satisfactory analysis could be obtained owing to the labile nature of this product

2-(3,4-Methylenedioxyphenyl)ethyl Tosylate (XXIV). Pyridine $(8.0 \mathrm{~g}, 0.1 \mathrm{~mol})$ and 3,4 -methylenedioxyphenethyl alcohol $(16.5 \mathrm{~g}, 0.10 \mathrm{~mol})$ were dissolved in dichloromethane (50 ml) ard the solution was dried by distilling the solvent until the vapor temperature reached $40{ }^{\circ} \mathrm{C}$. After cooling to $0^{\circ} \mathrm{C}, p$-toluenesulfonyl chloride ($20 \mathrm{~g}, 0.105 \mathrm{~mol}$) was dissolved in dichloromethane (30 ml), filtered, and then added to the other reactants. After standing for 1 day at room temperature, the reaction mixture was cooled to $-6{ }^{\circ} \mathrm{C}$ and filtered to remove the pyridine hydrochloride (ca. 10 g , very hydroscopic). Work-up by extraction with dilute hydrochloric acid, followed by crystallization from ether at $-70^{\circ} \mathrm{C}$, gave the product ($29.2 \mathrm{~g}, 94 \%$): mp $59-60^{\circ} \mathrm{C}$; ir (KBr) $2900,1360,1165$, ar.d $770 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.7(\mathrm{~d}, 2), 6.6(\mathrm{~m}, 3), 5.9(\mathrm{~s}, 2), 4.2(\mathrm{t}, 2)$, $2.8(\mathrm{t}, 2)$, and $2.4(\mathrm{~s}, 3)$.
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~S}$ (320.23): C, $60.00 ; \mathrm{H}, 5.00 ; \mathrm{S}, 10.0$ J. Found: C, 59.77; H, 5.18; S, 9.80.
\boldsymbol{N}-[2-(3,4-Methylenedioxyphenyl)]ethylpyrrole-2-carboxylic Acid (XXVII). A solution of 2-carbethoxypyrrole ($39 \mathrm{~g}, 0.36$ mol) in diethylene glycol dimethyl ether (diglyme) was added dropwise to a stirred suspension of sodium hydride (50% suspension in mineral oil, $16 \mathrm{~g}, 0.36 \mathrm{~mol}$) in diglyme (200 ml) under a nitrogen blanket. When all of the sodium hydride has reacted, the aforementioned tosylate ($11.5 \mathrm{~g}, 0.358 \mathrm{~mol}$) was added and the mixture was heated for 3 days at $70^{\circ} \mathrm{C}$. After removal of most of the solvent in vacuo, the residue was saponified by refluxing in 2 M ethanolic potassium hydroxide (250 ml) overnight. Work-up ty extraction as before and recrystallization from benzene gave the product ($59.0 \mathrm{~g}, 63.5 \%$): $\mathrm{mp} \mathrm{127-130}{ }^{\circ} \mathrm{C}$; ir (KBr) 2700, 2630, 2560, and $1660 \mathrm{~cm}^{-1} ;$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.1$ (broad, 1), 7.3 (pair of doublets, 1), 6.7 (m, 4), 6.2 (pair of doublets, 1), $6.0(\mathrm{~s}, 2), 4.55(\mathrm{~m}, 2)$, and $3.05(\mathrm{~m}, 2)$.

Anal. Calcd for $\mathrm{C}_{1} \mathrm{H}_{13} \mathrm{NO}_{4} \cdot{ }^{1} / 2 \mathrm{H}_{2} \mathrm{O}$ (248.16): $\mathrm{C}, 62.90 ; \mathrm{H}, 5.24 ; \mathrm{N}$, 5.20. Found: C, 62.70; H, 4.77; N, 5.16.

11-Oxo-8,9-methylenedioxy-6-hydro-5 H-pyrrolo[2,1b][3]benzazepine (XXVIII). Trifluoroacetic anhydride (25 ml , ca. 0.2 mol) was added with stirring to a suspension of $N-[2-$ (3,methylenedioxyphenyl)]ethylpyrrole-2-carboxylic acid (25.9 g , 0.100 mol) in ethanol-free chloroform (500 ml) under nitrogen. The mixture turned deep red within 5 min , at which time thin layer chromatography indicated that the starting acid was absent in the reaction. After the mixture was cooled to 0°, stannic chloride (32.7 $\mathrm{ml}, 0.300 \mathrm{~mol}$) was added dropwise, and the mixture allowed to come to room temperature and stand for 4 h . After destruction of the stannic chloride-product complex by the addition of aqueous ammonia, the organic layer was separated and the solvent was removed in vacuo. The residue was recrystallized from ethyl acetate to give the product ($21.1 \mathrm{~g}, 88 \%$): $\operatorname{mp} 121-123^{\circ} \mathrm{C}$; uv (acetonitrile) $236 \mathrm{~nm}(\epsilon 32000), 277(16000)$, and 240 (38000); ir (КВг) 3070, 2960, 2910, 2780, 1640 (weak), 1595 (strong), and $1475 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.78(\mathrm{~s}, 1), 7.4(\mathrm{~m}, 1), 6.9(\mathrm{~m}, 1), 6.7(\mathrm{~s}, 1), 6.3(\mathrm{~m}, 1), 6.1$ $(\mathrm{s}, 2), 4.4(\mathrm{~d}, 1), 4.3(\mathrm{~d}, 1)$, and $3.2(\mathrm{~m}, 2)$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3}$ (241.16): C, 69.70; $\mathrm{H}, 4.60 ; \mathrm{N}, 5.81$. Found: C, 70.50; H, 4.61; N, 5.71.

8,9-Methylenedioxy-1,6-dihydro-5 \boldsymbol{H}-pyrrolo[2,1-b][3]benzazepine (XXIX). The aforementioned benzazepine ($1.2 \mathrm{~g}, 0.05$ $\mathrm{mol})$ was refluxed overnight in diglyme $(200 \mathrm{ml})$ containing sodium borohydride (12 g , large excess). At this time the intermediate alcohol, which was easily detectable by thin layer chromatography as a spot that rapidly turned dark red, was virtually absent. The mixture was then poured into water (500 ml), filtered, and recrystallized from methanol to yield the pale yellow product ($11 \mathrm{~g}, 97 \%$). Recrystallization from benzene-petroleum ether and sublimation $\left(95{ }^{\circ} \mathrm{C}, 0.02 \mathrm{~mm}\right)$ gave a pure sample: mp $120-122^{\circ} \mathrm{C}$; ir (KBr) 3130 (sharp), 2960, 2890, 2780, and $15 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 5.65$ 'd, 2), $6.4(\mathrm{t}, 1), 5.9(\mathrm{~m}, 2), 5.8(\mathrm{~s}, 2), 4.1$ (pair of doublets), $3.8(\mathrm{~s}$, 2), and 3.0 (pair of doublets).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$ (203.23): C, $70.91 ; \mathrm{H}, 6.45 ; \mathrm{N}, 6.89$. Found: C, 70.61 ; H, 6.44; N, 6.82.

8,9-Methylenedioxy-1,2,3,6,11,11a-hexahydro-5 \boldsymbol{H}-pyrrolo[2,1b][3]benzazepine (XXX). From XXIX. The aforementioned pyrrole ($227 \mathrm{mg}, 1 \mathrm{mmol}$) was hydrogenated at atmospheric pressure in acetic acid (40 ml) using 5% rhodium on charcoal catalyst (50 mg). After 1 h the hydrogen uptake dropped markedly, and the reaction mixture was worked up. The product was converted to the hydrochloride salt by addition of a few drops of concentrated hydrochloric acid to a solution of the acetate salt in an ether-ethano.
solution to give white needles ($250 \mathrm{mg}, 97 \%$), mp $260-270^{\circ} \mathrm{C}$ dec (lit. mp $265-266{ }^{\circ} \mathrm{C} \mathrm{dec}$). ${ }^{23}$

From XXVIII. The ketopyrrole ($480 \mathrm{mg}, 2.00 \mathrm{mmol}$) was dissolved in hot 95% ethanol (200 ml) and the solution was added to a stirred suspension of presaturated 5% rhodium on charcoal (10 g) in 95% ethanol (20 ml) containing perchloric acid (10 drops). After approximately 1 day, 8 equiv (17.9 ml) of hydrogen had been absorbed and no starting material or intermediate alcohol could be detected by thin layer chromatography. After filtration, the solvent was removed in vacuo, and the residue was extracted into chloroform following neutralization of the salt. The chloroform was evaporated and the residue was crystallized from methanol, followed by sublimation to give the product ($450 \mathrm{mg}, 98 \%$), mp $70-71^{\circ} \mathrm{C}$. The spectral properties of this compound were identical with those reported in the literature. ${ }^{23}$ Addition of hydrochloric acid to a solution of the amine in 2-propanol afforded the salt, mp $260-270^{\circ} \mathrm{C}$ dec

Acknowledgment. We thank the American Cancer So-ciety-University of Washington Institutional Cancer Grant Committee for partial support of this work and Professors L. J. Dolby and S. M. Weinreb for comparison samples.

Registry No.-II, 274-09-9; III, 2635-13-4; IV, 5279-32-3; V, 6006-82-2; VI, 57587-02-7; VII HCl, 16652-71-4; VIII, 57587-03-8; IX, 57587-04-9; XIV, 120-57-0; XVI, 2606-51-1; XVII, 4439-02-5; XVIII, 2861-28-1; XX, 57587-05-0; XXI, 57587-06-1; XXII, 57587-07-2; XXIII, 57587-08-3; XXIV, 57587-09-4; XXVII, 57587-10-7; XXVIII, 57587-11-8; XXIX, 57587-12-9; XXX, 35667-18-6; XXX HCl, 35667-19-7; 3,4-methylenedioxyphenylacetic acid, 2861-28-1; 2,4,5-trichlorophenol, 95-95-4; trifluoroacetic anhydride, 407-25-0; p-toluenesulfonyl chloride, 98-59-9; carbethoxypyrrole, 2199-43-1.

References and Notes

(1) W. W. Paudler, G. I. Kerley, and J. McKay, J. Org. Chem., 28, 2194 (1963).
(2) W. W. Paudler and J. McKay. J. Org. Chem., 38, 2110 (1973)
(3) R. G. Powell, D. Weisleder, C. R. Smith, Jr., and I. A. Wolff, Tetrahedron Lett., 4081 (1969).
(4) D. J. Abraham, R. D. Rosenstein, and E. L. McGandy, Tetrahedron Lett., 4085 (1969)
(5) S. K. Arora, R. B. Bates, R. A. Grady, and R. G. Powell, J. Org. Chem., 39, 1269 (1974).
(6) R. G. Powell, Phytochemistry, 11, 1467 (1972).
(7) R. G. Powell, D. Weisleder, C. R. Smith, Jr., and W. K. Rohwedder, Tetrahedron Lett., 815 (1970).
(8) K. L. Mikolajczak, R. G. Powell, and C. R. Smith, Jr., Tetrahedron, 28, 1995 (1972)
(9) S. Brandange, S. Josephson, and S. Vallen, Acta Chem. Scand., Ser. B, 28, 153 (1974).
(10) T. Ipaktchi and S. M. Weinreb, Tetrahedron Lett., 3895 (1973).
(11) R. G/ Powell, D. Weisleder, and C. R. Smith, Jr., J. Pharm. Sci., 61, 1227 (1972).
(12) F. Dallacker and H. Zegers. Justus Liebigs Ann. Chem., 689, 156 (1965).
(13) Y. Liwschitz, A. Zilka, H. Borensztain, and M. Frankel, J. Org. Chem., 21, 1531 (1956).
(14) S. Levine, J. Am. Chem. Soc., 76, 1382 (1954).
(15) E. Fischer, Ber., 38, 2914 (1905).
(16) E. R. Shepard, H. D. Porter, J. F. Noth, and C. K. Simmans, J. Org. Chem., 17, 568 (1952).
(17) C. J. Pouchert. "The Aldrich Library of Infrared Spectra", Aldrich Chemical Co., Milwaukee, Wis., pp 352-354.
(18) R. H. Reltsema. J. Am. Chem. Soc., 71, 2041 (1949)
(19) R. C. Fuson and C. L. Zirkle, J. Am. Chem. Soc., 70, 2760 (1948).
(20) R. Huisgen and E. Laschturka. Chem. Ber., 93, 65 (1960).
(21) E. Laschturka and R. Huisgen. Chem. Ber., 93, 81 (1960).
(22) K. H. Bell, Aust. J. Chem., 22, 601 (1969)
(23) L. J. Dolby. S. J. Nelson, and D. Senkovich, J. Org. Chem., 37, 3691 (1972).
(24) S. M. Weinreb and J. Auerbach. J. Am. Chem. Soc., 97, 2503 (1975).
(25) M. F. Semmelhack, B. P. Chong, R. D. Stauffer, T. D. Rogerson, A. Chong, and L. D. Jones, J. Am. Chem. Soc., 97,2507 (1975).
(26) All melting points were determined on a Reichert Thermopan apparatus, and are uncorrected; infrared spectra (ir) were determined on a Perkin-Elmer 257 spectrophotometer, nuclear magnetic resonance (NMR) on a Varian Associates A-60 instrument, and ultraviolet (uv) on a Cary 14. The following symbols are used in the presentation of NMR data: b , broad; s , singlet; d, doublet; t , triplet; q , quartet; m , multiplet. The solvents used were reagent grade unless otherwise noted. Microanalyses were furnished by Galbraith Laboratories, Knoxville. Tenn.
(27) T. Fujii, M. Tashiro, K. Ohara, and M. Kumai, Chem. Pharm. Bull., 8, 266 (1960).
(28) S. Sugasawa and Y. Suzuta, J. Pharm. Soc. Jpn., 71, 1159 (1951)
(29) R. E. Neumann and E. L. Smith. J. Biol. Chem., 93, 97 (1951).

The Isomeric Ethylene Selenodithiocarbonates

M. V. Lakshmikantham and Michael P. Cava*
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19174

Received October 21, 1975

Abstract

Syntheses of 1-selena-3-thiolane-2-thione (6) and 1,3-dithiolane-2-selone (4) are described. Both 6 and 4 react with dimethyl acetylenedicarboxylate to give a mixture of the isomeric esters 9 and 10 . The esters are thermally interconvertible in the presence of dimethyl acetylenedicarboxylate.

It has been known since 1965 that ethylene trithiocarbonate (1) reacts with dimethyl acetylenedicarboxylate to give ethylene and the isotrithione diester $2 ;{ }^{1}$ the latter ester has acquired considerable importarce recently as a readily prepared precursor of tetrathiafulvalene. ${ }^{2}$ A 1970 study of the action of dimethyl acetylenedicarboxylate on mixed sulfur-oxygen analogues of ethylene trithiocarbonate indicated that the dithio ester function ($-\mathrm{S}-\mathrm{C}=\mathrm{S}$) was essential for the success of the reaction. ${ }^{3}$

In connection with the broad projlem of the synthesis of selenium analogues ${ }^{4}$ of tetrathiafulvalene, we have studied the synthesis and dipolar addition reactions of various selenium analogues of ethylene trithiocarbonate. This paper describes the synthesis and some chemistry of the two isomeric monoselenium analogues, 1 -selena-3-thiolane-2thione (6) and 1,3-dithiolane-2-selone (4).

Results

Synthesis of the Isomeric Ethylene Selenodithiocarbonates. The synthesis of ethylene trithiocarbonate (1) from ethylene dibromide and sodium trithiocarbonate was reported more than a century ago, and affords a good yield of $1 .{ }^{5}$ The reaction of ethylene dibromide with the recently described selenodithiocarbonate ion ${ }^{6}$ was expected to take place in a similar manner, the anticipated major product being the thione isomer 6 because of the superior nucleophilicity of the selenium atom of the attacking anion. The yellow thione $6, \mathrm{mp} 50^{\circ} \mathrm{C}$, was ir. fact isolated in ca. 2% yield from this reaction. The majcr reaction course led to the precipitation of red selenium (75%), accompanied by the vigorous evolution of ethylene The latter process can be rationalized by assuming that the initially formed monoalkylated anion 5 is in equilibrium with carbon disulfide and the β-bromoethylselenide ion (7); the latter can rapidly cyclize to the extremely thermolabile ${ }^{7}$ ethylene episelenide (8).

Ethylene trithiocarbonate is easily converted, via its methiodide, into the known morpholinium iodide $3 ;{ }^{8}$ reaction of salt 3 with aqueous sodium hydrogen selenide ${ }^{9}$ afforded (63%) the coral-red selone $4, \mathrm{mp} 44-45^{\circ}$. Solutions of 4 in nonpolar solvents were a keautiful purple in color, owing to a fairly strong selenocarbonyl absorption maximum at $570 \mathrm{~nm} .{ }^{10}$

3
4

Reaction of the Ethylene Selenodithiocarbonates with Dimethyl Acetylenedicarboxylate. Selone 4 reacted with dimethyl acetylenedicarboxylate in refluxing toluene to give, in good yield, a red crystalline product, mp 85 ${ }^{\circ} \mathrm{C}$. Although this material seemed to be homogeneous by all ordinary criteria, including TLC, it was found to be a mixture of the isomeric esters 9 and 10 , which could be separated partially by very slow chromatography (over 2

weeks) on silica. The pure components consisted of the expected yellow thione ester $9, \mathrm{mp} 102^{\circ} \mathrm{C}$, and the unexpected maroon selone ester $10, \mathrm{mp} 79^{\circ} \mathrm{C}$; the deep color of the latter was attributed to selone absorption at 540 nm . The reaction of thione 6 with dimethyl acetylenedicarboxylate afforded a similar mixture of the isomeric esters 9 and 10 .

The structure 10 assigned to the maroon ester was supported by its deselenation by triphenylphosphine to give the known ${ }^{11}$ black tetracarbomethoxytetrathiafulvalene (11). Further confirmation of structure 10 was obtained by an unrelated synthesis. Thus, thione ester 2 was alkylated by methyl fluorosulfonate to give the salt 12 , which reacted with morpholine to give immonium salt 13. Reaction of 13 with sodium selenide-acetic acid gave the maroon ester 10.

Discussion

Although the reaction of dimethyl acetylenedicarboxylate with ethylene trithiocarbonate has been recognized as a 1,3-dipolar addition, ${ }^{1,12}$ no discrete chemical intermediate has hitherto been proposed. We suggest that the bicyclic "tetracovalent" sulfur heterocycle 14 is produced initially, ${ }^{13}$ and that this unstable species then either reverts reversibly to the starting materials, or collapses irreversibly to give the observed products.

The analogous reaction of thione 6 to give a mixture of esters 9 and 10 is readily accommodated by this mechanism, since addition of the acetylene to either the $-\mathrm{S}-\mathrm{C}=\mathrm{S}$ or the $-\mathrm{Se}-\mathrm{C}=\mathrm{S}$ moiety of 6 is possible, giving rise to the different bicyclic intermediates 15 and 16 . On the other

rand, the selone 4 would be expected to give only the thione ester 9 via intermediate 17. The explanation of this
apparent anomaly became clear when it was observed that, although esters 9 and 10 are quite stable in pure refluxing toluene, they are interconverted under the same conditions in the presence of dimethyl acetylenedicarboxylate. These facts point to the transient bicyclic tetraester 18 as the key species through which the isomers 9 and 10 equilibrate under the conditions of their formation from 4 and 6 .

Experimental Section

Melting points are uncorrected. Chromatography was carried out using dry column silica. All organic extracts were washed to neutrality and dried over anhydrous sodium sulfate. NMR spectra (CDCl_{3} solutions containing tetramethylsilane as internal standard), ultraviolet spectra (cyclohexane solutions), and mass spectra were determined using JEOL-JNH-PS-100, Perkin-Elmer 202 and 270 B spectrometers, respectively. Molecular ions containing selenium are reported based on ${ }^{80} \mathrm{Se}$.

1-Selena-3-thiolane-2-thione (6). To a stirred solution of selenium dioxide (1 g) in 70% aqueous dioxane (20 ml) at $0^{\circ} \mathrm{C}$ under nitrogen was added sodium borohydride (0.70 g) in portions. To the resulting sodium hydrogen selenide solution was added aqueous sodium hydroxide (0.4 g in 5 ml), followed by carbon disulfide $(2 \mathrm{ml})$. To the resulting reddish-violet solution was added, at $0^{\circ} \mathrm{C}$, ethylene dibromide (3 g) in dioxane (10 ml). After 1 hr , the mixture was diluted with water and benzene, and the precipitated selenium ($0.6 \mathrm{~g}, 75 \%$) filtered off. The crude product from the benzene layer was subjected to chromatography (benzene-cyclohexane, $3: 2$). The residue from the initial fraction crystallized from hexane to give $6(30 \mathrm{mg}, \sim 2 \%)$: mp $50^{\circ} \mathrm{C}$; mass spectrum $\mathrm{M}^{+} \mathrm{m} / \mathrm{e}$ 184 (100%); NMR $\delta 3.968-4.115(\mathrm{~m})$; $\lambda_{\max } 208 \mathrm{~nm}(\log \epsilon 3.97), 303$ (4.10), 326 (4.08), 476 (1.82). Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Se}$: 183.8919 . Found: 183.8919.

1,3-Dithiolane-2-selone (4). To a stirred aqueous solution (30 ml) of sodium hydrogen selenide ${ }^{9}$ (from 0.50 g of selenium) under nitrogen was added 40 ml of benzene followed by the morpholinium iodide $3^{8}(0.317 \mathrm{~g})$ in one portion. After 0.5 h the reddishviolet benzene layer was separated and the aqueous layer extracted with more benzene ($2 \times 25 \mathrm{ml}$). The residue from the benzene extracts was chromatographed (benzene-cyclohexane, 1:2) to yield selone $4(0.190 \mathrm{~g})$ as the major product. Recrystallization from ether-hexane yielded pure $4(0.115 \mathrm{~g}, 63 \%)$ as small, coral-red needles: mp 44-45 ${ }^{\circ}$; mass spectrum $\mathrm{M}^{+} m / e 184(100 \%)$; NMR $\delta 3.870$ (s); $\lambda_{\max } 217 \mathrm{~nm}(\log \epsilon 3.65), 298$ (3.96), 355 (4.11), 570 (2.08). Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Se}$: C, 19.68; H, 2.20. Found: C, 19.92; H, 2.39.

Reaction of 4 with Dimethyl Acetylenedicarboxylate (9 + $10)$. A mixture of selone $4(1.14 \mathrm{~g})$ and dimethyl acetylenedicarboxylate (1.1 ml) in dry toluene (15 ml) was refluxed for 1.5 h . Evaporation of solvent, followed by crystallization of the residue from methanol, yielded a $1: 1$ mixture of thione ester 9 and selone ester $10\left(0.695 \mathrm{~g}, \mathrm{mp} 85^{\circ} \mathrm{C}\right)$ as orange-red crystals. Chromatography of the residue from the mother liquor ($1: 1$ benzene-cyclohexane) followed by crystallization yielded more of the mixture of 9 and $10(0.405 \mathrm{~g}$; total yield $61 \%)$.

Separation of 9 and 10. The foregoing mixture of 9 and 10 (0.225 g) was chromatographed ve $\cdot y$ slowly in the dark using ben-zene-cyclohexane ($1: 20$). Evaporation of the first few milliliters of pure yellow eluate, followed by crystallization of the residue (MeOH), afforded pure thione ester $9(0.05 \mathrm{~g})$ as yellow needles: $\mathrm{mp} 102{ }^{\circ} \mathrm{C}$; mass spectrum $\mathrm{M}^{+} m_{\rho} e 298$ (100%); NMR $\delta 3.90$ (two barely discernible singlets); $\lambda_{\max } 250 \mathrm{~nm}$ (log $\epsilon 3.75$), 305, 360, 365 (3.97). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Se}$ 297.8872. Found: 297.8854.

The intermediate band gave a mixture of 9 and 10 while the last few milliliters of red eluate upon e-saporation followed by crystallization (MeOH) afforded pure sel. \cdot ne ester $10(0.03 \mathrm{~g}): \mathrm{mp} 79^{\circ} \mathrm{C}$; mass spectrum $\mathrm{M}^{+} m / e 298$; NMR $\delta 3.909$ (s); $\lambda_{\text {max }} 210 \mathrm{~nm}(\log \epsilon$ 4.33), 290, 295 (3.17), 392 (4.3C), 540 (2.51). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Se}: 297.8872$. Found: 297.8860 .

Thermal Behavior of 9. A yellow solution of thione diester (5 $\mathrm{mg}) 9$ in toluene (0.2 ml) was refl ixed for 1.5 h in the absence of light. Work-up of the yellow soluti on led to recovery of 9 (3 mg), ir, melting point.

Thermal Behavior of 10 . A rad solution of selone diester (6 $\mathrm{mg}) 10$ in toluene (0.2 ml) was ref uxed for 1.5 h in the absence of light. Work-up led to recovery of $14(3 \mathrm{mg})$, ir, melting point.

Synthesis of 10. A mixture of $2(50 \mathrm{~g})$ and methyl fluorosulfonate (25 ml) in 1:1 methylene rhloride-ether (100 ml) was refluxed with stirring to yield the thiolium salt 12 (72 g , quantitative), mp $125^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{FO}_{7} \mathrm{~S}_{4}$: C, 26.37; H, 2.49 . Found: C, 26.36; H, 2.66.

A stirred suspension of the above sal: $12(72 \mathrm{~g})$ in dry acetonitrile (50 ml) was cooled in ice, and was treated with morpholine (18 ml) dropwise. The clear solution was stirred at room temperature for 3 h . The crude immonium salt 13 (53 g) was precipitated with ether. Recrystallization from acetone yielded pure $13(30 \mathrm{~g}), \mathrm{mp}$ $115^{\circ} \mathrm{C}$. A second crop of slightly ess pure $13(20 \mathrm{~g})$ was obtained from the mother liquor of crystallization. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FNO}_{8} \mathrm{~S}_{3}$: C, 32.75; H, 3.50. Found: C, $32.83 ; \mathrm{H}, 3.64$.

To a stirred suspension of imme nium salt $13(0.20 \mathrm{~g})$ in benzene (75 ml) containing acetic acid (1 nl) under nitrogen was added sodium selenide (0.50 g) followed $3 y$ water (20 ml). The benzene layer turned red instantly. After stirring for 1 h , the mixture was filtered (Celite), and the benzene layer was separated. Evaporation yielded a red gum $(0.130 \mathrm{~g})$ which was purified by chromatography followed by crystallization, to yield pure $10(0.05 \mathrm{~g}, \sim 33 \%)$, identical (melting point, ir) with the sar ple from the cycloaddition.

Interconversion of 9 and 10. F mixtare of thione ester 9 (0.007 g) and dimethyl acetylenedicarboxylate (0.005 g) in toluene (0.05 ml) was refluxed at $110^{\circ} \mathrm{C}$ for 1.5 h . Chromatography of the reaction mixture led to the isolation of a mixture of 9 and $10(0.005 \mathrm{~g}$, approximately $2: 1$ as estimated by uv spectroscopy) which crystal-
lized from methanol to yield $0.003 \mathrm{~g}, 9+10, \mathrm{mp} 80-82^{\circ} \mathrm{C}$. Similarly synthetic selone ester $10(0.04 \mathrm{~g})$ and dimethyl acetylenedicarboxylate $(0.02 \mathrm{~g})$ in toluene $(0.50 \mathrm{ml})$ led to a mixture of 9 and 10 ($0.034 \mathrm{~g}, 1: 1$ as estimated by uv spectroscopy).
Reaction of 10 with Triphenylphosphine (11). A solution of $10(0.02 \mathrm{~g})$ and triphenylphosphine (0.02 g) in benzene (5 ml) was ref.uxed for 1.5 h . The solvent was removed and the residue was chromatographed (benzene-cyclohexane, 1:1). The major dark reddish-brown band was eluted separately to yield, after evaporation and crystallization (MeOH), tetraester $11, \mathrm{mp} 165{ }^{\circ} \mathrm{C}$, mass spectrum $\mathrm{M}^{+} m / \mathrm{e} 436$, identical in all respects (ir, uv, TLC, mass spectrum) with authentic $11 .{ }^{11}$
Reaction of 6 with Dimethyl Acetylenedicarboxylate. A mixture of $6(0.05 \mathrm{~g})$ and dimethyl acetylenedicarboxylate (0.03 g) in toluene (0.50 ml) was refluxed for 1.5 h . After work-up a $3: 1$ mixture of 9 and $10(0.034 \mathrm{~g})$ was isolated.

Acknowledgment. We thank the National Science Foundation for a grant (MPS 74-03279) in support of this work, and Dr. H. D. Hartzler of Du Pont for an authentic sample of 11 .

Registry No.-2, 7396-41-0; 3, 2080-54-8; 4, 57560-02-8; 6, $57560-03-9 ; 9,57560-04-0 ; 10,57560-05-1 ; 11,26314-39-6 ; 12$, 57560-07-3; 13, 57560-09-5; selenium dioxide, 7446-08-4; carbon disulfide, 75-15-0; ethylene dibromide, 106-93-4; sodium hydrogen selenide, 12195-50-5; dimethyl acetylenedicarboxylate, 762-42-5; $\mathrm{m} \epsilon$ thyl fluorosulfonate, 421-20-5; triphenylphosphine, 603-35-0.

References and Notes

(1) D. B. J. Easton and D. Leaver. Chem. Commun., 585 (1965)
(2) W. A. Sheppard, R. L. Melby, and H. D. Hartzler, J. Org. Chem., 39, 2456 (1974).
(3) B. R. O'Connor and F. N. Jones, J. Org. Chem., 35, 2002 (1970)
(4) E. M. Engler and V. V. Patel, J. Am. Chem. Soc., 96, 7376 (1974); K Bechgaard, D. O. Cowan, and A. N. Bloch, J. Chem. Soc., Chem. Commun., 937 (1974); M. V. Lakshmikantham, M. P. Cava, and A. F. Garito, ibid., 383 (1975).
(5) A. Husemann, Justus Liebigs Ann. Chem., 123, 83 (1862).
(6) G. Gattow and M. Dräger, Z. Anorg. Allg. Chem., 384, 235 (1971)
(7) T. H. Chan and J. R. Finkenbine, Tetrahedron Lett., 2091 (1974).
(8) R. Mayer and K. Schäfer, J. Prakt. Chem., 26, 279 (1964).
(9) D. L. Klayman and S. L. Griffin, J. Am. Chem. Soc., 95, 197 (1973).
(10) M. L. Shankaranarayana, Acta Chem. Scand., 24, 2065 (1970).
(11) H. D. Hartzler, J. Am. Chem. Soc., 95, 4379 (1973)
(12) D. B. J. Easton, D. Leaver, and T. J. Rawlings, J. Chem. Soc., Perkin Trans. 1, 41 (1972).
(13) For a recent review of other nonclassical sulfur heterocycles see M. P Cava and M. V. Lakshmikantham, Acc. Chem. Res., 8, 139 (1975).

An Alternate Synthesis of Tetraselenafulvalene

M. V. Lakshmikantham and Michael P. Cava*

Department of Chemistry and
Laboratory for Research on the Structure of Matter, University of Pennsyluania, Philadelphia, Pennsylvania 19174

Received August 12, 1975
There has been much interest recently in the synthesis of tetraselenafulvalene (4, TSeF) ${ }^{1}$ and its alkyl derivatives, ${ }^{\text { }}$ in view of the fact that these compounds are superior π donors in the preparation of highly conducting charge-transfer complexes. Only one synthesis of the parent TSeF has been reported to date. ${ }^{1}$ We now report a convenient alternate synthesis of this compound, employing its previously unknown tetracarbomethoxy derivative 3 as an intermediate.

Ethylene triselenocarbonate (1) ${ }^{3}$ reacted rapidly (10 \min) with dimethyl acetylenedicarboxylate in toluene at $100^{\circ} \mathrm{C}$ to give (86%) deep red needles of the selone diester $2, \mathrm{mp} 127^{\circ} \mathrm{C}$. Triphenylphosphine coupling of $2(10 \mathrm{~min})$ in refluxing benzene, gave (75%) dark brown needles of tetracarbomethoxy TSeF (3), mp $145^{\circ} \mathrm{C}$. Direct decarbomethoxylation of ester 3 was effected by lithium bromide in hot hexamethylphosphoramide ($10 \mathrm{~min}, 150^{\circ} \mathrm{C}$) to give (35%) tetraselenafulvalene (4) as pink plates, $\mathrm{mp} 133-134^{\circ} \mathrm{C}$, identical in properties (melting point, uv, mass spectrum) with the previously reported material.

Several aspects of this new synthesis are worthy of note. The first of these is the greatly accelerated rate of reaction of dimethyl acetylenedicarboxylate with triselenocarbonate 1 as compared with that of ethylene trithiocarbonate, the latter compound requiring a $6-\mathrm{h}$ reaction time at $110^{\circ} \mathrm{C} .{ }^{4}$ The second of these is the fact that a one-step lithium halide decarbomethoxylation has been reported previously only in the case of β-keto esters. ${ }^{5}$ The conversion of 3 to 4 by this procedure suggests that it should be applicable to the decarbomethoxylation of related sulfur-containing esters. We are currently exploring the scope of the method with such esters.

Experimental Section

Melting points were determined using a Thomas-Hoover apparatus and are uncorrected. Ultraviolet spectra (cyclohexane solutions) were recorded with a Perkin-Elmer Model 202 spectrometer.

NMR spectra were run in CDCl_{3} solution containing $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard, using a JEOL $100-\mathrm{MHz}$ instrument. Mass spectra were obtained using a Perkin-Elmer Model 270 instrument. Molecular ions are based on ${ }^{80} \mathrm{Se}$.

1,3-Diselenolane-2-selone (1). 1,3-Diselenolane-2-selone was prepared by the method of Henriksen. ${ }^{3}$ Carbon diselenide (2 g) was treated with ethylene dibromide (2.2 g) in 10% aqueous dimethyl sulfoxide (120 ml) in the presence of 3 g of potassium carbonate under nitrogen to yield 1.1 g of $1, \mathrm{mp} 100^{\circ} \mathrm{C}$ (lit. ${ }^{3} \mathrm{mp} 99-$ $101^{\circ} \mathrm{C}$), mass spectrum M^{+}m/e $280(85 \%)$.

4,5-Dicarbomethoxy-1,3-diselenole-2-selone (2). A mixture of $1(0.772 \mathrm{~g})$ and dimethyl acetylenedicarboxylate $(0.4 \mathrm{ml})$ in toluene (3 ml) was heated on the steam bath for 10 min . Removal of solvent followed by crystallization of the residue from methanol afforded 2 ($0.93 \mathrm{~g}, 86 \%$): mp $127-128^{\circ} \mathrm{C}$; mass spectrum $\mathrm{M}^{+} \mathrm{m} / \mathrm{e}$ 394 (86%); NMR $\delta 3.88 \mathrm{~s} ; \lambda_{\max }(\log \epsilon) 217 \mathrm{~nm}(4.02), 235$ (3.97), 252 $\operatorname{sh}(3.90), 405$ (4.02), 562 (2.17).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{Se}_{3}$: $\mathrm{C}, 21.50 ; \mathrm{H}, 1.54$. Found: C, 21.59; H , 1.72.

Tetracarbomethoxytetraselenafulvalene (3). To a boiling solution of $2(0.120 \mathrm{~g})$ in dry benzene (3 ml) under nitrogen was added a solution of triphenylphosphine $(0.080 \mathrm{~g})$ in benzene (3 ml) in portions, in the course of 10 min . The reaction mixture was concentrated and subjected to chromatography on silica, eluting with benzene. The initial colorless band yielded triphenylphosphine selenide $(0.100 \mathrm{~g})$ admixed with a small amount of triphenylphosphine. A pale red band led to recovery of $2(0.009 \mathrm{~g})$. The subsequent dark band upon evaporation yielded a residue (0.079 g) which was crystallized from methanol-benzene to give dark brown 3 ($0.069 \mathrm{~g}, 75 \%$): mp $144-145^{\circ} \mathrm{C}$; mass spectrum $\mathrm{M}^{+} 628$ (100%); NMR $\delta 3.83 \mathrm{~s} ; \lambda_{\max }(\log \epsilon) 212 \mathrm{~nm}(4.16), 260$ (4.39), 285 (4.43), 328 sh (3.70), 422 (4.00).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{8} \mathrm{Se}_{4}$: C, 26.94; $\mathrm{H}, 1.94$. Found: C, 27.36; H, 2.01 .

Tetraselenafulvalene (4). A mixture of $3(0.100 \mathrm{~g})$ and lithium bromide (0.216 g) in hexamethylphosphoramide (5 ml) was heated gradually to $80^{\circ} \mathrm{C}$. There was gas evolution and considerable lightening of color. When the gas evolution ceased, the temperature was raised to $155-160^{\circ}$ for 10 min by which time TLC indicated one spot corresponding to 4 . The cooled mixture was diluted with water and extracted with cyclohexane containing 5% benzene. The orange organic extract was washed, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to yield salmon-pink plates $(0.045 \mathrm{~g})$, which were recrystallized from hot hexane to give pink plates $(0.025 \mathrm{~g}, 35 \%)$ of TSeF (4), mp $134^{\circ} \mathrm{C}$, identical in all respects (melting point, mass spectrum, uv spectrum, and TLC) with an authentic specimen of $4 .{ }^{1}$ Low-temperature crystallization of 4 sometimes affords a labile crystalline modification (pale yellow needles) which reverts to the pink form on standing at room temperature in a hexane suspension.

Acknowledgment. This research was supported by the National Science Foundation, through Grant MPS 74 03279. We also thank Dr. E. M. Engler, IBM Laboratories, for an authentic sample of TSeF.

Registry No.-1, 17107-01-4; 2, 57653-12-0; 3, 57653-13-1; 4, 54489-01-9; dimethyl acetylenidicarboxylate, 762-42-5.

References and Notes

(1) E. M. Engler and V. V. Patel, J. Am. Chem. Soc., 96, 7376 (1974).
(2) K. Bechgaard, D: O. Cowan, and A. N. Bloch, J. Chem. Soc., Chem. Commun., 937 (1974); A. N. Bloch, D. O. Cowan, K. Bechgaard, R. E. Pyle, R. H. Banks, and T. O. Poehler. Phys. Rev. Lett., 34, 1561 (1975).
(3) L. Henriksen, Acta Chem. Scand., 21, 1981 (1967).
(4) W. A. Sheppard. R. L. Melby, and H. D. Hartzler, J. Org. Chem., 39, 2456 (1974).
(5) P. Müller and B. Siegfried, Tetrahedron Lett., 3565 (1973).

An Improved Synthesis of 4-Ethylsulfonyl-1-napLthalenesulfonamide

Guido H. Daub
Department of Chemistry, Lniversity of New Mexico, Albuquerque, New Mexico 87131

Thomas W. Whaley*
Organic and Biochemical Synthesis Group, Los Alamos Scientific Laboratory, University of California, Los Alames, New Mexico 87545

Received September Э, 1975

4-Ethylsulfonyl-1-naphthalenesulfonamide (1, ENS) has been reported ${ }^{1}$ to promote experimental bladder carcinogenesis. ENS has previously been synthesized from 4-amino-1-naphthalenesulfonic acid in an unspecified yield by Brimelow and Vasey. ${ }^{2}$ Turner and Dean ${ }^{3}$ have reported that the method of Brimelow end Vasey gives low chemical yields and have described their own synthesis of ENS starting from 4-nitro-1-napht iylamine. In our hands, the method of Turner and Dean, which introduces both sulfur functions by diazonium salt reactions, has given an overall yield on the order of 10%. We report here a convenient high-yield, five-step synthesis of ENS which we believe to be superior to both other methods.

Conversion of commercially available 1-naphthalenethiol (2) to the ethylthioether 3 wes accomplished by standard procedures. ${ }^{4}$ Sulfonation of 3 asing 1 equiv of chlorosulfonic acid gave the sulfonic acid 4 whici was isolated as the sodium salt 5. The acid chloride 6 was prepared from 5 according to the method of Boss rard et al. ${ }^{5}$ Direct conversion of 3 to 6 by using 2 equiv 0^{-}chlcrosulfonic acid was attempted, but a dark-colored, heterogeneous product was obtained and the one-step colversion was deemed unsuitable. Treatment of 6 with ammonia gave the thioether sulfonamide 7 which was converted to ENS by peroxide oxidation. The ir spectrum of EHS synthesized by these reactions was identical with that of ENS prepared by the method of Turner and Dean. ${ }^{3}$ This serves to establish that the sulfonation of 3 took place in the 4 position, since their starting material and products were known to have 1,4 -substituent orientation. The overall conversion of 2 to 1 was typically $50-60 \%$. Both 7 and ENS exhibited two different crystalline modifications: mp 128 or $141{ }^{\circ} \mathrm{C}$ for 7 and mp 184 or $198^{\circ} \mathrm{C}$ for ENS. In bcth cases, crystallization from alcohol produced the higher melting forms in instances where the previously unreported lower melting forms were obtained as crude reaction products.

1, $\mathrm{X}=\mathrm{SO}_{2} \mathrm{NH}_{2} ; \mathrm{Y}=\mathrm{SO}_{2} \mathrm{Et}$
2, $\mathrm{X}=\mathrm{H} ; \mathrm{Y}=\mathrm{SH}$
3, $\mathrm{X}=\mathrm{H} ; \mathrm{Y}=\mathrm{SEt}$
4, $\mathrm{X}=\mathrm{SO}_{3} \mathrm{H} \quad \mathrm{Y}=\mathrm{SEt}$
5, $\mathrm{X}=\mathrm{SO}_{3} \mathrm{~N}_{\mathrm{H}} ; \mathrm{Y} \Rightarrow \mathrm{SEt}$
6, $\mathrm{X}=\mathrm{SO}_{2} \mathrm{Cl} ; \mathrm{Y}=\mathrm{SEt}$
7, $\mathrm{X}=\mathrm{SO}_{2} \mathrm{NH}_{2} ; \mathrm{Y}=\mathrm{SEt}$

Experimental Section

General. Melting points and boiling points are uncorrected. Anhydrous solvents were prepared yy drying over molecular sieve. Infrared spectra were recorded on a Perkin-Elmer Model 710 spectrophotometer. Reactions were monitored and product purity checked by thin layer chromatcgraphy on precoated silica gel 60

F-254 plates (EM Laboratories) using toluene-ethyl acetate (1:1 v / v) as a developing solvent. The compounds and their approximate R_{f} values follow: 1 (0.47), 3 (0.91), 6 (0.91), 7 (0.64).

1-Ethylthionaphthalene (3). A mixture of $2(26.44 \mathrm{~g}, 0.165$ mol) and NaOH solution ($2.5 \mathrm{~N}, 138 \mathrm{ml}$) was cooled in an ice bath. Diethyl sulfate ($30.4 \mathrm{~g}, 0.197 \mathrm{~mol}$) was added, and the mixture was stirred for 20 min . The ice bath was removed, and the mixture was refluxed for 1 h . A pale-yellow oil separated upon cooling. The reaction mixture was extracted with ether, and the organic layer was separated, washed with water, and dried over anhydrous MgSO_{4}. After the ether was removed (steam bath), the residue was fractionated through a $6-\mathrm{cm}$ column packed with glass helices to give 3 as a colorless liquid ($28.2 \mathrm{~g}, 91 \%$), bp $98-105{ }^{\circ} \mathrm{C}$ (0.2 Torr) [reported ${ }^{6} 175-176^{\circ} \mathrm{C}$ (25 Torr)].

Sodium 4-Ethylthio-1-naphthalenesulfonate (5). A solution of $3(14.1 \mathrm{~g}, 75 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(75 \mathrm{ml})$ was placed in a flask equipped with a magnetic stirrer, addition funnel, condenser, and drying tube and was cooled in an ice bath. A solution of chlorosulfonic acid ($8.74 \mathrm{~g}, 75 \mathrm{mmol}$) in anhydrous $\mathrm{CHCl}_{3}(150 \mathrm{ml})$ was added dropwise over a period of 1.5 h . A colorless solid began to precipitate from the reaction mixture after ca. two-thirds of the chlorosulfonic acid had been added. (In another reaction, this solid was filtered to give 4 as a colorless powder, $\mathrm{mp} 81-83^{\circ} \mathrm{C}$). After stirring for 0.5 h , the ice bath was removed, and stirring was continued for 1 h . Evaporation of the CHCl_{3} under reduced pressure gave a colorless semisolid which was partitioned between ether (50 ml) and water (150 ml). The aqueous layer was separated, warmed to expel residual ether, and made basic by the addition of 50% NaOH solution (8 g), during which time a colorless precipitate formed. Saturated NaCl solution (100 ml) was added and the mixture cooled. The precipitate was filtered and washed sparingly with cold water to give $5(18.4 \mathrm{~g}, 82 \%)$ as a colorless solid containing one-half of a water of hydration: ir (KBr) $3400(\mathrm{OH}), 1200$ ($\mathrm{ArSO}_{3} \mathrm{Na}$), and $1070 \mathrm{~cm}^{-1}\left(\mathrm{ArSO}_{3} \mathrm{Na}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~S}_{2} \mathrm{O}_{3} \mathrm{Na} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 48.15 ; \mathrm{H} 4.00 ; \mathrm{Na}, 7.68$. Found: C, 48.38; H, 4.18; Na, 7.64.

4-Ethylthio-1-naphthalenesulfonyl Chloride (6). A mixture of $5(2.90 \mathrm{~g}, 9.7 \mathrm{mmol})$ and anhydrous DMF (4 ml) was placed in a flask equipped with a magnetic stirrer, condenser, and drying tube and was cooled in an ice bath. Thionyl chloride ($1.10 \mathrm{ml}, 15 \mathrm{mmol}$) was added, and after 5 min the ice bath was removed and the mixture allowed to warm to room temperature. Stirring was continued for 2.5 h . Evaporation of the DMF under reduced pressure gave a yellow oil which was extracted with warm benzene ($3 \times 40 \mathrm{ml}$). After centrifugation to remove precipitated salt, the organic extracts were combined, washed with water ($2 \times 15 \mathrm{ml}$), and dried over anhydrous MgSO_{4}. Evaporation of the benzene under reduced pressure gave $6\left(2.73 \mathrm{~g}, 98 \%\right.$, $\mathrm{mp} 78-80^{\circ} \mathrm{C}$) as a yellow solid which was sufficiently pure for the next reaction. Crystallization from acetonitrile gave 6 as yellow needles: $\mathrm{mp} 80-81^{\circ} \mathrm{C}$; ir (KBr) 1365 ($\mathrm{ArSO}_{2} \mathrm{Cl}$), 1195, $1165\left(\mathrm{ArSO}_{2} \mathrm{Cl}\right)$, and $1145 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{Cl}$: C, 50.26 ; $\mathrm{H}, 3.87$, Found: C, 50.29 ; H, 4.00.

4-Ethylthio-1-naphthalenesulfonamide (7). A solution of 6 ($1.43 \mathrm{~g}, 5 \mathrm{mmol}$) in anhydrous acetonitrile (20 ml) was placed in a flask equipped with a magnetic stirrer, gas inlet, and balloon and was cooled in an ice bath. Anhydrous ammonia was added through the gas inlet. A precipitate developed immediately in the reaction mixture. The mixture was stirred for 1 h with periodic additions of ammonia sufficient to keep the balloon slightly inflated. Water was added, and the acetonitrile was evaporated in a stream of air. Filtration of the precipitated solid gave 7 as colorless needles (1.25 $\mathrm{g}, 93 \%$), mp 141-142 ${ }^{\circ} \mathrm{C}$ (reported ${ }^{2} 141-142^{\circ} \mathrm{C}$). The material was sufficiently pure for conversion to ENS: ir (KBr) $3380(\mathrm{NH}), 3270$ (NH), $1305\left(\mathrm{ArSO}_{2} \mathrm{NH}_{2}\right), 1145 \mathrm{~cm}^{-1}\left(\mathrm{ArSO}_{2} \mathrm{NH}_{2}\right)$.

4-Ethylsulfonyl-1-naphthalenesulfonamide (1). A mixture of $7(1.34 \mathrm{~g}, 5 \mathrm{mmol})$, $\mathrm{HOAc}\left(7.5 \mathrm{ml}\right.$), and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{ml}, 37 \mathrm{mmol})$ was heated to $90^{\circ} \mathrm{C}$ for 1 h . Water (75 ml) was added to the hot, pale-yellow solution, and the product separated as fine crystals. The mixture was cooled in ice, filtered, and washed with water to give 1 as colorless needles ($1.37 \mathrm{~g}, 91 \%$): mp 198-199 ${ }^{\circ} \mathrm{C}$ (reported ${ }^{2,3} 198^{\circ} \mathrm{C}$); ir (KBr) $3345(\mathrm{NH}), 3250(\mathrm{NH}), 1335\left(\mathrm{ArSO}_{2} \mathrm{R}\right)$, $1310\left(\mathrm{ArSO}_{2} \mathrm{NH}_{2}\right), 1280,1190,1165\left(\mathrm{ArSO}_{2} \mathrm{R}\right), 1145\left(\mathrm{ArSO}_{2} \mathrm{NH}_{2}\right)$, and $1125 \mathrm{~cm}^{-1}$.

Acknowledgment. This work was performed under the auspices of the U.S. Energy Research and Development Administration. We wish to thank Mrs. Ruby Ju, University of New Mexico, for performing the elemental analyses.

Registry No.-1, 842-00-2; 2, 529-36-2; 3, 17539-31-0; 4, 57559 $91-8 ; 5,57559-92-9 ; 6,57559-93-0 ; 7,28177-06-2$; chlorosulfonic acid, 7790-94-5.

References and Notes

(1) (a) D. B. Clayson and G. M. Bonser, Br. J. Cancer, 19, 311 (1965); (b) D B. Clayson, J. A. S. Pringle, and G. M. Bonser, Biochem. Pharmacol., 16, 619 (1967); (c) P. E. Levi, J. C. Knowles, D. M. Cowan, M Wood, and E. H Cooper, J. Natl. Cancer Inst., 46, 337 (1971). The possibility of artifacts in bladder carcinogenesis has been discussed; see D. B. Clayson, ibid., 52, 1685 (1974)
(2) H. C. Brimelow and C. H. Vasey, British Patent 791529 (1958): Chem Abstr., 52, 16324e (1958)
(3) R Turner and H. G. Dean, J. Labelled Compd., 5, 156 (1969); Chem Abstr., 71, 49631m (1969).
(4) J. Jacques, Bull Soc. Chim. Fr., 231 (1955)
(5) H. H. Bosshard, R. Mory, M. Schmid, and H. Zollinger, Helv. Chim Acta, 42, 1653 (1959).
(6) F. Taboury, Ann. Chim. Phys., 15, 5 (1908); Chem. Abstr., 2, 33312 (1908).

Reinvestigation of the Acetylation of Thioanisole. Effect of the Mole Ratio of Aluminum Chloride

Seemon H. Pines

Merck Sharp \& Dohme Research Laboratories, A Division of Merck \& Co., Inc., Rahway, New Jersey 07065

Received August 21, 1975

In the chloromethylation of thioanisole with methylal and Lewis acids, ${ }^{1}$ it was shown that the ratio of the products, p - and o-methylthiobenzyl chloride, could be controlled over a wide range by choice of the Lewis acid and the mole ratio in which it was used. The phenomenon was attributed to reaction of thioanisole as its Lewis acid complex. ${ }^{2}$ The stronger the complex, the greater the para position specificity.
To my knowledge, this distinctive behavior of the methylthio substituent in electrophilic substutions has not previously been emphasized. An example of a different electrophilic reaction would lend credence to the idea which has, at the least, considerable synthetic value.

I now wish to report that when acetyl chloride is added to a solution of thioanisole and aluminum chloride in 1,2dichloroethane (EDC), the yield and isomer ratio of the methylthioacetophenones are influenced by the molar ratio of the reactants. Table I gives some idea of the magnitude of the effect. Increasing the ratio of thioanisole from unity to $11: 1$ drops the yield from near quantitative to 40%. At the same time the ratio of p - to o-methylthioacetophenone decreases from 500:1 to 6:1. The order of addition was not a

Table I. Acetylation ${ }^{a}$ of Thioanisole at $22-24^{\circ} \mathrm{C}$

	Mole ratio Reaction Rioanisole: AlCl_{3}	Para/ortho ratio b	Yield, $\%{ }^{c}$
1	1	$99.8-0.2$	95
2	2	$98-2$	95
3	5	$95-5$	80
4	11	$86-14$	40

${ }^{a}$ Acetyl chloride was equimolar with aluminum chloride. The amount of solvent EDC was changed slightly in order to maintain the same total reaction volume. Reaction 4 was run neat in the excess thioanisole. ${ }^{b}$ From GC area percent measurements. No meta isomer was detected with three different GC and two different TLC systems. ${ }^{c}$ Computed by GC internal standard method (heptadecane). Includes both isomers.
factor; mixing in all cases was at -10 to $-20^{\circ} \mathrm{C}$, and the reaction mixtures were worked up after $20-24 \mathrm{~h}$ at room temperature. ${ }^{3}$

Reactivity of thioanisole is markedly retarded by excess AlCl_{3}. When 1 equiv of AlCl_{3} was added for each reagent, the yield dropped to 14% without significant by-product formation. ${ }^{4}$ When 1 equiv of $1: 1$ acetyl chloride- AlCl_{3} complex was added to equimolar thioanisole, benzene, and aluminum chloride in EDC, approximately equal yields ${ }^{5}$ of acetophenone and methylthioacetophenone were formed. Had the previously reported ${ }^{6} K_{\text {rel }}$ thioanisole/benzene value of 7.2×10^{3} applied, the benzene would have remained essentially unreacted.
Two by-products of unusual structure were noted, especially in reactions which contained a large excess of uncomplexed thioanisole. The first one, fluorescent, was assigned the indene structure, 1 , on the basis of a variety of spectral analyses and chemical plausibility. It probably arose by some variant of the scheme below.

In particular, 1 shows in the ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ three distinguishable S-methyls ($\delta 2.4$), one C-methyl ($\delta 1.7$), one vinylic proton ($\delta 6.4$), and a complex pattern of 11 aromatic protons. Uv absorbance [$\log \epsilon 4.57(\mathrm{MeOH})$ at 277 nm$]$ and mass spectrum ($\mathrm{M}^{+} m / e 420$) are supportive. The positions of S-methyl substitution are only presumed to be as shown.

The second compound may be assigned a structure on the basis of its much simpler NMR and molecular ion at m/e 396.

2

The aromatic $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern, single S-methyl resonance, and a C-methyl signal n the overall ratio of 4:3:1 can fit only the symmetrical 2 . Condensation of p-methylthioacetophenone with two molzcules of an aromatic seems an unexceptional reaction; however, it does not appear to have been reported.
In summary, the type and extent of sulfur complexation in thioanisole, and presumably analogous compounds, with Lewis acids can markedly affect the rate and product of some electrophilic reactions.

Experimental Section ${ }^{7}$

Materials. Reagents and solvents were used as obtained from commercial suppliers.
Pure \boldsymbol{p}-methylthioacetophenone was obtained from an acetylation in EDC which was run equir olar in aluminum chloride, acetyl chloride, and thioanisole. The pure material showed mp 82$83^{\circ} \mathrm{C}$ (heptane) (lit. ${ }^{8} 79-80^{\circ} \mathrm{C}$); NNR $\left(\mathrm{CCl}_{4}\right) \delta 2.45\left(\mathrm{~s}, 6, \mathrm{CH}_{3}\right), 7.45$ ($\mathrm{m}, 4$, aromatic). The two methyl groups were resolved by the addition of a little pyridine. Mass sfectrum m / e (rel intensity) 166 ($\mathrm{M}^{+}, 59$), 151 (100), 123 (21), 108 (14).
Pure o-methylthioacetophenone was formed by reaction of methyllithium with o-methylthiobenzoic acid in ether. Crystals from hexane showed $\mathrm{mp} 44.5-4 \mathrm{E} .5^{\circ} \mathrm{C}$ (lit. ${ }^{9} \mathrm{mp} 45-47^{\circ} \mathrm{C}$). The NMR was as previously described. ${ }^{9}$ Mass spectrum m / e (rel intensity) $166\left(\mathrm{M}^{+}, 33\right), 151(100), 127(7), 108(10)$. While this compound was readily separated from its pera isomer on the GC column used, ${ }^{10}$ resolution by TLC on sommercial silica gel plates with hexane-benzene mixtures was unsetisfactory.
Acetylation Experiments. A. Entry 1, Table I. Two milliliters (28.1 mmol) of acetyl chloride was added over $2-3 \mathrm{~min}$ to a cold $\left(-10\right.$ to $-20^{\circ} \mathrm{C}$) solution of 28.4 mmol of AlCl_{3} and 30 mmol of thioanisole in 33 ml of EDC with stirring in a nitrogen atmosphere. The reaction mixture was warmed to anc stirred at room temperature for 20-24 h, then quenched or to ice and water and worked up conventionally. The dried $\left(\mathrm{MgSO}_{4}\right)$ solution was diluted to a standard volume with EDC for quantitation by GC. Experiment 2 used 56 mmol of thioanisole and 30 ml of EDC; 3 used 141 mmol of thioanisole and 20 ml of EDC; ard 4 was run with 311 mmol of thioanisole as reactant and solvent. All other aspects of these experiments were identical with $1 \mathrm{ab} \cdot \mathrm{ve}$.
B. Excess AlCl_{3}. Reaction was similar to A above, except that the mixture of 60.5 mmol of AlCl_{3} and 30 mmol of thioanisole in 32 ml of EDC was a slurry at first. Af er addition of 28.1 mmol of acetyl chloride, substantial solution oscurred. Work-up as before gave a product solution which represented a $98: 2$ para:ortho isomer ratio in 14% overall yield. Thin leyer chromatograms of the nonvolatile constituents showed no other appreciable products.
C. To cold $\left(-10\right.$ to $\left.-20^{\circ} \mathrm{C}\right)$ solutions of 28.1 mmol of acetyl chloride and 28.4 mmol of aluminum shloride in 27 and 32 ml of EDC were added 84.5 and 42.2 mmol of thioanisole, respectively. After completion and work-up as in A, the isomer ratios were 98.8:1.2 and 99.5:0.5, respectively.
D. Competitive Acetylation. To $4 \mathrm{~g}(30 \mathrm{mmol})$ of aluminum chloride in 18 ml of EDC were adoed $2.22 \mathrm{~g}(28.5 \mathrm{mmol})$ of benzene and $3.49 \mathrm{~g}(28.1 \mathrm{mmol})$ of thioanisole below $0^{\circ} \mathrm{C}$. The AlCl_{3} dissolved. A solution of electrophile was prepared by adding 2.21 g (28.2 mmol) of acetyl chloride to ε cold $\left(0\right.$ to $-10^{\circ} \mathrm{C}$) stirred slurry of $3.8 \mathrm{~g}(28.5 \mathrm{mmol})$ of aluminum chloride in 12 ml of EDC. The latter solution was added to the fcrmer below $-10^{\circ} \mathrm{C}$, and the reaction allowed to continue as with he others. After the same workup GC determination showed $4 \varepsilon .6: 51.4$ area ratios of p-methylthioacetophenone to acetophenore, equivalent to $43: 57$ molar ratios. The para/ortho ratio of methylthioacetophenones was 96:4.

By-Product Isolation. A reaction s.milar to entry 4 (Table I) was freed of most of the excess thioanisole by distillation under high vacuum following the normal work-up. The residue was crystallized from hot heptane to give impure methylthioacetophenone and a mother liquor enriched in the impurities. Fractional crystallization of the mother liquor resicue first with ether, then ethyl acetate and acetonitrile gave the fure 1.3-diaryl-1-methylindene 1 , $\mathrm{mp} 145.5-146.5^{\circ} \mathrm{C}$, needles from $\mathrm{CH}_{3} \mathrm{CN}$. The NMR is described in the text, as is the uv absorption spectrum. Mass spectrum m / e (rel intensity) $420\left(\mathrm{M}^{+}, 100\right), 405(15 \downarrow, 373(30), 166(13), 151$ (47), 149 (33).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~S}_{3}$: C, 7I.38; H, 5.97. Found: C, 71.39; H, 5.95.

The other component, 2, a triarylethane, was obtained from the
above ether crystallization almost pure. Recrystallization twice from acetonitrile gave single spot material: mp $142-144^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.13$ (s, 3, CCH_{3}), 2.44 (s, 9, SCH_{3}), 7.12 (q, 12, aromatic); mass spectrum m / e (rel intensity) $396\left(\mathrm{M}^{+}, 40\right), 381(100), 366$ (4.5), 287 (4.8), 273 (8.9), 272 (14), 178 (5.7), 174 (6.7).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~S}_{3}$: C, 69.65; H, 6.1. Found: C, 69.13; H, 5.79

A portion of another experiment was chromatographed on preparative layer SiO_{2} plates with hexane-benzene to give a fraction consisting almost exclusively of 1 and 2 . Integration of the ${ }^{1} \mathrm{H}$ NMR spectrum showed 11 and 15% conversions to 1 and 2 , respectively, from acetyl chloride.

Registry No.-1, 57559-89-4; 2, 57559-90-7; p-methylthioacetophenone, 1778-09-2; aluminum chloride, 7446-70-0; acetyl chloride, 75-36-5; thioanisole, 100-68-5; o-methylthioacetophenone, 1441-97-0; o-methylthiobenzoic acid, 3724-10-5.

References and Notes

(1) S. H. Pines, R. F. Czaja, and N. L. Abramson, J. Org. Chem., 40, 1920 (1975).
(2) AlCl_{3}-thioanisole complex: G. H. Smith and F. J. Hamilton, J. Phys. Chem., 72, 3567 (1968). SnCl_{4}-thioanisole complex: I. P. Goldshtein, E. N. Kharlamova, and E. N. Guryanova, Zh. Obshch. Khim., 38, 1925 (1968).
(3) Three hours at $25^{\circ} \mathrm{C}$ was deemed sufficient for essential completion in similar experiments with benzene: H. C. Brown, G. Marino, and L. M. Stock, J. Am. Chem. Soc., 81, 3310 (1959).
(4) H. C. Brown and G. Marino [J. Am. Chem. Soc., 84, 1658 (1962)] reported low yields in the acetylation of the halobenzenes in contrast to results with the more active aromatics. They note that the acetyl chlo-ride-aluminum chloride complex is "somewhat unstable". With excess uncomplexed thioanisole, by-products are formed (see further in text).
(5) See Experimental Section for details.
(6) S. Clementi and P. Linda, Tetrahedron, 26, 2869 (1970). The $K_{\text {ral }}$ was obtained by computation from competitive experiments with mesitylene and pentamethylbenzene. Mole ratios of reactants were not reported.
(7) Melting points are uncorrected. Elemental analyses are by Mr. J. P. Gilbert and his associates of these laboratories, NMR spectra were obtained with a Jeolco C-60 HL or Hitachi Perkin-Elmer R-24A spectrometer. Mass spectra were obtained with an LKB 9000 spectrometer at 70 eV . For the sake of brevity, only portions of some spectra are reported.
(8) L. C. King, M. McWhirter, and R. L. Rowland. J. Am. Chem. Soc., 70, 239 (1948)
(9) R. J. Crawford and C. Woo, J. Org. Chem., 31, 1655 (1966)
(10) $10 \mathrm{ft} \times 0.25$ in. 3% Poly A-103 on 100/120 Gas Chrom Q.

Regioselectivity in the Cyclization of β, γ-Epoxy Carbanions. Application to the Total Synthesis of trans-Chrysanthemic Acid ${ }^{1}$

James H. Babler* and Anthony J. Tortorello
Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626

Received September 8, 1975
It is generally found that three- and five-membered carbocycles form considerably faster than four-membered rings in intramolecular displacement reactions. ${ }^{2}$ A notable exception was recently reported ${ }^{3}$ after a study of the regioselectivity in δ-epoxynitrile cyclizations involving SN2 type transition states. Such systems are unique in that, with equal substitution at both ends of the oxirane ring, cyclobutanes are always formed in preference to cyclopentanes. In view of the fact that previous reactions involving the base-promoted cyclization of the corresponding epoxy esters were generally carried out in protic solvents, ${ }^{4}$ a study was undertaken to determine the site of attack in intramolecular alkylations undergone by β, γ - and γ, δ-epoxy carbanions in an aprotic solvent. The results of cyclizations undergone by a few representative β, γ-epoxy carbanions (7) are discussed in this note.

In two of the three systems (5a,b) examined, formation of a three-membered carbocycle requires substitution at a
tertiary carbon, whereas attack at the less hindered primary carbon would lead to a cyclobutanoid. In all systems examined, based on NMR and TLC analysis of the isolated reaction product, no evidence for formation of the fourmembered carbocycle (6) was obtained. ${ }^{5}$
Epoxides 5a and 5b were prepared as outlined in Scheme I. Alkylation of diphenylmethane (1a) and ethyl phenylace-

tate (1b) with methallyl chloride (2) afforded the corresponding olefins (3a,b) in moderate yield. Subsequent treatment of the latter with m-chloroperbenzoic acid (4) afforded the corresponding epoxides ($\mathbf{5 a}, \mathbf{b}$) in approximately 80% yield after purification via column chromatography. Base-promoted cyclization of these epoxides (5a,b) was achieved using anhydrous dimethyl sulfoxide as the solvent and sodium hydride to generate the intermediate anions (7a,b).

In one of the systems examined (5b), the only identifiable product after purification was a bicyclic lactone (10) whose formation from the intermediate cyclization product ($8 \mathbf{b}$) can be rationalized as shown below.

To illustrate the utility of this type of cyclization, a total synthesis of trans-chrysanthemic acid (9f), ${ }^{6}$ many esters of which have insecticidal properties, has been achieved using the carbanion derived from an appropriately substituted epoxy ester (5c) as the key intermediate. The synthesis was effected as outlined in Scheme I. Ethyl 4,5-epoxy-3,3-dimethylpentanoate (5c) was prepared in 68% overall yield from 3-methyl-2-buten-1-ol ${ }^{7}$ by a Claisen-type reaction ${ }^{8}$ using triethyl orthoacetate, followed by epoxidation of the resulting unsaturated ester (3c) with m-chloroperbenzoic acid (4). Treatment of the resulting epoxy ester (5c) with 2 equiv of lithium diisopropylamide ${ }^{9}$ and hexamethylphosphoramide in tetrahydrofuran at $-70^{\circ} \mathrm{C}$ afforded, after purification, only one identifiable product in 40% yield, cyclopropanoid 8c. Since the sole isolated cyclization product obtained from epoxy ester 5 b was lactone 10 rather than the expected hydroxy ester $\mathbf{8 b}$, the absence of any lactone in the cyclization product obtained from epoxy ester 5 c indicates the trans stereochemistry of hydroxy ester 8 c . Further evidence was obtained by subsequent oxidation of the latter alcohol (8 c) using chromium trioxide-pyridine complex in dichloromethane ${ }^{10}$ to give in 90% yield the corresponding aldehyde (9d), whose NMR spectrum was compared to that previously reported ${ }^{11}$ for methyl trans-2-for-myl-3,3-dimethylcyclopropanecarboxylate (9 e). Since the latter has been converted ${ }^{11}$ to trans-chrysanthemic acid (9f), this step completes a formal total synthesis of this important terpenoid.

Experimental Section ${ }^{12}$

4,4-Diphenyl-2-methyl-1-butene (3a). Sodium metal (0.64 g , 27 mg -atoms) was added in small pieces to 60 ml of liquid ammonia to which had been added a small crystal of ferric nitrate. This mixture was stirred and refluxed $\left(-33^{\circ} \mathrm{C}\right)$ until the blue color had been discharged. After dropwise addition of a solution of 4.20 g (25 mmol) of diphenylmethane (1 a) in 5 ml of anhydrous ether, the resulting deep red solution was stirred for an additional 30 min before 2.2 g (25 mmol) of methallyl chloride (2) in 5 ml of anhydrous ether was added dropwise over a period of 10 min . After the ammonia was allowed to evaporate slowly overnight, the mixture was partitioned between water and ether. Extraction with ether, followed by fractional distillation, afforded 2.38 g (43\%) of olefin 3 a ; bp $103-105{ }^{\circ} \mathrm{C}(0.40 \mathrm{~mm})$ [lit. ${ }^{13} \mathrm{bp} 78-80^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$]; $\lambda_{\max }$ (film) $1655(\mathrm{C}==\mathrm{C}), 1600,1495,890,745,695 \mathrm{~cm}^{-1} ; \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CCl}_{4}\right)$ 7.33 (s, 10 aromatic H's), 4.75 (broad s, $\mathrm{C}=\mathrm{CH}_{2}$), $4.23(\mathrm{t}, J=8 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}$), $2.80\left(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right.$), $1.67 \mathrm{ppm}\left(\mathrm{s}\right.$, vinyl $\left.\mathrm{CH}_{3}\right)$.

4,4-Diphenyl-2-methyl-1,2-epoxybutane (5a). A mixture of 2.22 g (10 mmol) of olefin 3 a and 2.10 g of $85 \% m$-chloroperbenzoic acid (4) ${ }^{7}$ in 50 ml of methylene chloride was refluxed for 15 h . After cooling this solution, it was washed twice with 1 M aqueous sodium hydroxide, and the crude product was isolated in the usual manner. ${ }^{12}$ Chromatography on Florisil (elution with 5% ether-hexane) afforded $1.85 \mathrm{~g}(78 \%)$ of epoxide 5 a : $\lambda_{\max }$ (film) 1660,1600 , $1070,1035,810,750,705 \mathrm{~cm}^{-1} ; \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CCl}_{4}\right) 7.35$ (10 aromatic H 's), $2.20\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right.$), $1.17 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}$, 85.67; H, 7.61. Found: C, 85.41 ; H, 7.60.
(2,2-Diphenyl-1-methylcyclopropyl)methanol (8a). Epoxide $5 \mathrm{a}(1.19 \mathrm{~g}, 5.0 \mathrm{mmol})$ in 10 ml of dimethyl sulfoxide was added dropwise over a period of 15 min to a vigorously stirred mixture of 6.0 mmol of sodium hydride in 40 ml of dimethyl sulfoxide. After this mixture was stirred at room temperature for 15 h , it was poured into 200 ml of $\mathrm{H}_{2} \mathrm{O}$ and acidified with dilute hydrochloric acid, and the product was isolated by extraction with ether. Recrystallization of the crude product from 5% ether-hexane afforded $0.69 \mathrm{~g}(58 \%)$ of solid alcohol 8a: $\mathrm{mp} 104-105^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{KBr}) 3250$ $(\mathrm{OH}), 1010,770,740,695 \mathrm{~cm}^{-1} ; \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CCl}_{4}\right) 3.46\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.57$ (s, OH), 1.28 (AB quartet, peaks at $1.43,1.35,1.21,1.13,2$ cyclopropyl H's), $1.11 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{3}\right.$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 85.67$; $\mathrm{H}, 7.61$. Found: C, 85.45 ; H, 7.77.

Ethyl 2-Phenyl-4-methyl-4-pentenoate (3b). A solution of $1.64 \mathrm{~g}(10 \mathrm{mmol})$ of ethyl phenylacetate ($1 \mathbf{b}$) in 10 ml of dimethyl sulfoxide was added dropwise to a vigorously stirred mixture of 12 mmol of sodium hydride in 50 ml of dimethyl sulfoxide. After evolution of hydrogen had ceased, a solution of $0.91 \mathrm{~g}(10 \mathrm{mmol})$ of methallyl chloride (2) in 10 ml of dimethyl sulfoxide was added
slowly. This mixture was subsequently stirred at room temperature for 2 h , after which it was diluted with 400 ml of water and the product was isolated by extractior with ether. Evaporative distillation afforded $1.34 \mathrm{~g}(62 \%)$ of unsaturated ester 3 b : bp $78-82^{\circ} \mathrm{C}$ (bath temperature, 0.1 mm) [lit. ${ }^{11}$ bp $\left.136-138{ }^{\circ} \mathrm{C}(16 \mathrm{~mm})\right] ; \lambda_{\max }$ (film) $1735(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1605,1500,1165,1035,900,740$, $700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CCl}_{4}\right) 7.41$ (s, 5 aromatic H 's), 4.82 (broad s, $\mathrm{CH}_{2}=\mathrm{C}$), 4.15 (quartet, $J=7 \mathrm{~Hz} \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.73 (s, vinyl CH_{3}), $1.16 \mathrm{ppm}\left(\mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$

Ethyl 2-Phenyl-4-methyl-4,5-epoxypentanoate (5b). Using the procedure described above fo the preparation of 5 a , epoxide $\mathbf{5 b}$ was obtained in 74% yield as a colorless oil: $\lambda_{\text {max }}$ (film) 1730 $(\mathrm{C}=0), 1160,1030,700 \mathrm{~cm}^{-1} ; \delta_{\text {Me4 }} \mathrm{Si}\left(\mathrm{CCl}_{4}\right) 7.43$ (s, 5 aromatic H's), 4.19 (quartet, $J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.28\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.17 \mathrm{ppm}$ ($\mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). Since ths oily epoxide (5b) proved in our hands to be unstable to vacuum distillazion, no attempt was made to further purify it.

1-Phenyl-2-oxo-5-methyl-3-oxabicyclo[3.1.0]hexane (10). Treatment of $0.600 \mathrm{~g}(2.56 \mathrm{mmcl})$ of crude epoxide 5 b with 3.1 mmol of sodium hydride in 50 ml of anhydrous dimethyl sulfoxide using the procedure described above for the preparation of alcohol 8a afforded, after chromatograph, on Florisil and recrystallization from 10% ether-hexane, 160 mg (34\%) of bicyclic lactone 10: mp $63-64{ }^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{KBr}) 1765(\mathrm{C}=0), 1165,1075,1010,755,695$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CCl}_{4}\right) 7.54\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .4 .41(\mathrm{AB}$ quartet, peaks at 4.60, $4.45,4.37,4.22, \mathrm{CH}_{2} \mathrm{O}$), $1.54(\mathrm{AB}$ quartet, peaks at 1.70, 1.62, 1.45, 1.37, 2 cyclopropyl H's), 1.09 Jpm is, CH_{3}). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 76.56; H, 6.43. Found: C, $7 \mathrm{j} .65 ; \mathrm{H}, 6.64$.

Ethyl 3,3-Dimethyl-4-pentenoate (3c). A mixture of 1.718 g (19.94 mmol) of 3-methyl-2-buter-1-ol,' 26 ml of triethyl orthoacetate, ${ }^{7}$ and 74 mg (1 mmol) of propionic acid was heated at 140° for 36 h under conditions that allowed dis-illative removal of ethanol through a Vigreux column. After cooling this solution, it was poured into 40 ml of $5 \%(\mathrm{v} / \mathrm{v})$ aq eeous sulfuric acid and this mixture was subsequently stirred (with cooling in a water bath to maintain the temperature at or below $25^{\circ} \mathrm{C}$) for 5 min to hydrolyze the excess triethyl orthoacetate. Extraction of the crude product with pentane, followed by ch-omatography on Florisil (elution with hexane-5\% ether), afforde 12.204 g (71%) of ester 3c: bp $35-45{ }^{\circ} \mathrm{C}$ (bath temperature, 0.10 mm); $\lambda_{\max }$ (film) 3120,1735 $(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{C}), 1230,12\left(0,1120,1025,905 \mathrm{~cm}^{-1} ; \delta_{\mathrm{Mes} \mathrm{Si}}\right.$ $\left(\mathrm{CCl}_{4}\right)$ 6.17-4.77 (complex patter 1, 3 vinyl H 's, peaks at $6.17,5.99$, $5.86,5.69,5.10,5.08,5.00,4.97,481,4.79$, and 4.77), 4.08 (quartet, $J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.21\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right.$), 1.22 (triplet, $J=7.0$ $\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.13 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{3} \mathrm{CCH}_{3}\right.$). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 69.21; H, 10.33. Found: C, 69.03; H, 10.29.

Ethyl 4,5-Epoxy-3,3-dimethylpentanoate (5c). A solution containing $1.214 \mathrm{~g}(7.78 \mathrm{mmol})$ of unsaturated ester 3 c and 10 mmol of m-chloroperbenzoic acic ${ }^{7}$ in 20 ml of anhydrous ether was refluxed for 18 h . After washing the ether layer with 5% aqueous sodium hydroxide and saturated brine, epoxide 5 c was isolated in the usual manner ${ }^{12}$ in 95% yield bp $45-55^{\circ} \mathrm{C}$ (bath temperature, $0.10 \mathrm{~mm}) ; \lambda_{\max }($ film $) 1730(\mathrm{C}=\mathrm{O}), 1260,1230,1115,1030 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CCl}_{4}\right) 4.12$ (quartet, $\left.J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.80$ (triplet, J $=3.5 \mathrm{~Hz}$, oxirane CH), $2.54\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}\right.$, oxirane CH_{2}), $2.23(\mathrm{~s}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.26\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 0.97 \mathrm{ppm}$ (s, CH_{3}). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 62.78 ; \mathrm{H}, 9.37$. Found: C , 62.66; H, 9.36.

Ethyl 2-Hydroxymethyl-3,3-dimethylcyclopropanecarboxylate (8 c). A solution of $944 \mathrm{mg}, 5.49 \mathrm{mmol}$) of ester 5 c and 2.0 ml of hexamethylphosphoramide in 10 ml of anhydrous tetrahydrofuran was added dropwise to a solation of 11 mmol of lithium diisopropylamide ${ }^{9}$ in 50 ml of anhyc rous tetrahydrofuran at $-70^{\circ} \mathrm{C}$. After stirring this mixture at $-70^{\circ} \mathrm{C}$ for 7 h , the reaction was quenched by pouring the solution into 50 ml of saturated aqueous ammonium chloride solution. Extraction of the crude product with ether, followed by chromatography on Florisil (elution with $1: 1$ ether-hexane), afforded $378 \mathrm{mg}(40 \%)$ of cyclopropanoid 8 c : bp $60-80{ }^{\circ} \mathrm{C}$ (bath temperature, 020 mm); $\lambda_{\max }($ film $) 3470(\mathrm{OH})$, $1722(\mathrm{C}=\mathrm{O}), 1205,1170,1110,1025 \mathrm{~cm}^{-1} ; \delta_{\mathrm{Mes}_{4} \mathrm{Si}}\left(\mathrm{CCl}_{4}\right) 4.08$ (quartet, $J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.57 ((dd, variable broadening, $\mathrm{CH}_{2} \mathrm{OH}$), $1.25\left(\mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 121 ppm (s, $2 \mathrm{CH}_{3}$'s). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 62.78; H, 9.37. Fcund: C, 62.59; H, 9.47.

Ethyl trans-2-Formyl-3,3-dimethylcyclopropanecarboxylate (9d). Oxidation of alcohol 8c was effected using the method developed by Ratcliffe and Rodehorst. ${ }^{10}$ affording the corresponding aldehyde (9 d) in 90% yield bp $5 \mathrm{~J}-63^{\circ} \mathrm{C}$ (bath temperature, $0.08 \mathrm{~mm}) ;>94 \%$ pure by VPC analysis, ${ }^{15}$ oven temperature $155^{\circ} \mathrm{C}$, retention time $3.0 \mathrm{~min} ; \lambda_{\max }$ (film) $2775(\mathrm{CHO}), 1725$ (ester $\mathrm{C}=\mathrm{O}$), $1700(\mathrm{HC}=\mathrm{O}), 1225,1170,1100 \mathrm{~cm}^{-1} ; \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CCl}_{4}\right) 9.60(\mathrm{~d}, J=2.0$
$\mathrm{Hz}, \mathrm{CHO}$), 4.12 (quartet, $J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 2.39 (d, $J=2.0$ $\mathrm{Hz}, \mathrm{CHCHO}$), 2.37 ($\mathrm{s}, \mathrm{CHCO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.35\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 1.30$ (s, CH_{3}), $1.27 \mathrm{ppm}\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$). Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{3}$: $\mathrm{C}, 63.51$: $\mathrm{H}, 8.29$. Found: $\mathrm{C}, 63.23 ; \mathrm{H}, 8.50$.

Acknowledgments. The authors are grateful to Research Corporation for financial support of this work. In acidition, the assistance of Douglas O. Olsen and Mark A. Turner in some of the experimental work directed toward the synthesis of trans-chrysanthemic acid is acknowledged.

Registry No.-la, 101-81-5; 1b, 101-97-3; 1c, 79-09-4; 2, 563-47-3; 3a, 33925-52-9; 3b, 14815-83-9; 3c, 7796-72-7; 5a, 54949-91-6; 5b, 57496-91-0; 5c, 57496-92-1; 8a, 27067-50-1; 8c, 40427-26-7; 9d, 38692-37-4; 9f, 827-90-7; 15, 57496-93-2; 3-methyl-2-buten-1-ol, 556-82-1.

References and Notes

(1) Abstracted in part from the Ph.D. dissertation of A.J.T., Loyola University of Chicago, 1975.
(2) A. C. Knipe and C. J. M. Stirling. J. Chem. Soc. B, 67 (1968).
(3) G. Stork, L. D. Cama, and D. R. Coulson, J. Am. Chem. Soc., 96, 5268 (1974); G. Stork and J. F. Cohen, ibid., 96, 5270 (1974); J. Y. Lallemand and M. Onanga, Tetrahedron Lett., 585 (1975).
(4) P. A. Cruickshank and M. Fishman, J. Org. Chem., 34, 4060 (1969); V. N. Yandovskii, Usp. Khim., 39, 571 (1970); V. N. Yandovskii and B. A. Ershov, Russ. Chem. Rev. (Engl. Transl.), 41, 403 (1972).
(5) Similar observations were reported after a study of an intramolecular homoconjugate addition involving a carbocyclic analogue of epoxyester 5b. See S. Danishefsky, J. Dynak, and M. Yamamoto, J. Chem. Soc., Chem. Commun., 81 (1973).
(s) For previous syntheses of trans-chrysanthemic acid see R. Sobti and S. Dev, Tetrahedron, 30, 2927 (1974); R. W. Mills, R. D. H. Murray, and R. A. Raphael, J. Chem. Soc., Perkin Trans. 1, 133 (1973); E. J. Corey and J. M. Jantelat, J. Am. Chem. Soc., 89, 3912 (1967); "The Total Synthesis of Natural Products", Vol. 2, J. ApSimon, Ed., Wiley, New York, N.Y., 1973, pp. 49-58; "Naturally Occurring Insecticides", M. Jacobsen and D. G. Crosby. Ed., Marcel Dekker, New York, N.Y., 1971. pp 2830.
(7) Available from Aldrich Chemical Co., Inc., Milwaukee, Wis.
(8) W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brocksom, T. Li, D. J. Faulkner, and M. R. Peterson, J. Am. Chem. Soc., 92, 741 (1970).
(9) R. J. Cregge, J. L. Herrmann, C. S. Lee, J. E. Richman, and R. H. Schlessinger, Tetrahedron Lett., 2425, 2429 (1973).
(10) R. Ratcliffe and R. Rodehorst, J. Org. Chem., 35, 4000 (1970).
(11) L. Crombie, C. F. Doherty, and G. Pattenden, J. Chem. Soc. C. 1076 (1970).
(12) Reactions were carried out under a nitrogen atmosphere. Unless indicated otherwise, the isolation of reaction products was accomplished by pouring the mixture into water or saturated brine and extracting thoroughly with the specified solvent. Anhydrous magnesium sulfate was used to dry the combined extracts, and the solvent was removed on a rotary evaporator under reduced pressure. Evaporative distillation refers to butb-to-bulb (Kugelrohr) short-path distillation. Melting points were determined on a Fisher-Johns block and are corrected. The NMR spectra were recorded with a Varian A-60 NMR spectrometer and infrared spectra were obtained using either a Beckman Acculab 1 or a Perkin-Elmer 700 A spectrophotometer. Microanalyses were performed by MicroTech Laboratories, Inc., Skokie, III.
(13) P. Yates, G. D. Abrams, M. J. Betts, and S. Goldstein, Can. J. Chem., 49, 2850 (1971).
(14) Netherlands Appl. 6606 515; cf. Chem. Abstr., 67, 2904e (1967).
(15) A $6 \mathrm{H} \times 0.125 \mathrm{in}$. SE-30 column was used for this analysis.

Efficient Syntheses of Barrelene and Nenitzescu's Hydrocarbon ${ }^{1}$

W. G. Dauben,* G. T. Rivers, R. J. Twieg, and W. T. Zimmerman

Department of Chemistry, University of California,
Berkeley, California 94720
Received September 12, 1975
Since their initial syntheses, the hydrocarbons barrelene (bicyclo[2.2.2]octa-2,5,7-triene, 1) ${ }^{2,3}$ and Nenitzescu's hydrocarbon (tricyclo[4.2.2.0 $0^{2,5}$]deca-3,7,9-triene, 2) ${ }^{4,5}$ have been of interest since they are of theoretical interest, themselves, and since they offered ready access to some $(\mathrm{CH})_{8}$ and $(\mathrm{CH})_{10}$ hydrocarbons, respectively. ${ }^{6}$ The studies related to 1 and 2 have been hampered owing to the inaccessibility of sizable quantities of the hydrocarbons. For example, the syntheses of barrelene were accomplished in less than

1

2
2% overall yield ${ }^{2,3}$ and the eariy preparations of Nenitzescu's hydrocarbon suffered from a low yield in the final lead tetraacetate oxidative bisdecarboxylation step ${ }^{4}$ or in the ability to scale up other oxidative bisdecarboxylation reaction sequences. ${ }^{5}$

Recently, the synthesis of 2 was accomplished via a sixstep sequence in an overall yield from cyclooctatetraene of 36%. ${ }^{7}$ The syntheses of related compounds in the laboratory using a $[4+2]$ cycloreversion reaction to transfer a fourcarbon unit from one moiety to another ${ }^{8}$ led us to examine again the synthesis of 1 and 2 by a more efficient method. Using a related two-carbon transfer reaction (1,2-photoaromatization $)^{9}$ the latter compound could serve as a precursor of 1 .

4a $\downarrow 160^{\circ}$

4b
4 b
$\downarrow 160^{\circ}$

$5 \mathbf{a}$

5b

The Diels-Alder adduct 3, prepared in 95% yield by allowing cyclooctatetraene and maleic anhydride to react at $170-180^{\circ}$, was oxidatively bisdecarboxylated with dicarbonylbis(triphenylphosphine)nickel ${ }^{10}$ in refluxing diglyme to give tricyclo[4.2.2.0 $0^{2,5}$ deca-3,7,9-triene (2) in 73% yield on a $20-25-\mathrm{g}$ scale. ${ }^{11}$ The overall yield for this two-step preparation from cyclooctatetraene was 69%.

The $[4+2]$ cycloaddition reaction between 2 and 2,5-dimethyl-3,4-diphenylcyclopentadienone was accomplished in refluxing benzene and gave in 90% yield a mixture of endo and exo isomers 4 a and 4 b ; the exo isomer was the predominant product and could be obtained pure in 70% yield. Upon heating to 160°, this pure isomer $4 b$ yielded the known exo ketone $\mathbf{5 b}$ in 90% yield. The exo isomer 4 b upon ultraviolet irradiation (Vycor filter) in dry tetrahydrofuran, after vacuum transfer, gave a solution of barrelene (1), contaminated with a trace of benzene and cyclooctatetraene; ${ }^{12}$ the yield of barrelene was 50%. As in all the earlier preparations, pure hydrocarbon was obtained by preparative gas chromatography. The yield of barrelene from cyclooctatetraene was 24%.
$3+$

7

Other obvious variations in the reaction sequence were investigated. For example, the Diels-Alder reaction between anhydride 3 and the dienone proceeded in near quantitative yield to give 6. This adduct upon 1,2 photoaromatization gave 7 in 50% yield. This "benzene DielsAlder" product, 7 , is a crystalline solid and is stable in the cold. In solution the product slowly undergoes a retro-Diels-Alder reaction ($t_{1 / 2} 25^{\circ} \sim 30 \mathrm{~h}$) to yield benzene and maleic anhydride. Alternatively, when the adduct 6 was subjected to electrolytic oxidative bisdecarboxylation, the diene 4 b was obtained in only 33% yield. The thermal process using dicarbonylbis(triphenylphosphine)nickel could not be used, since as discussed above, the first formed product $4 b$ was thermally unstable under the reaction conditions.

Experimental Section

Unless otherwise noted, the following general conditions were used in all reactions. Infrared spectra were recorded using either a Perkin-Elmer 137 Infracord or a 237 grating spectrometer. NMR spectra were obtained with a Varian T-60 spectrometer and tetramethylsilane as an internal standard. Mass spectral analyses and elemental analyses were obtained from The Analytical Laboratory, College of Chemistry, University of California, Berkeley, Calif.

Tricyclo[4.2.2.0 ${ }^{2,5}$]deca-3,7,9-triene (2). In a $500-\mathrm{ml}$, threenecked, round-bottomed flask equipped with a mechanical stirrer were placed endo-tricyclo[4.2.2.0 $\left.{ }^{2,5}\right]$ deca-3,5-diene-7,8-dicarboxylic anhydride ($3,22.5 \mathrm{~g}, 0.11 \mathrm{~mol}$), ${ }^{13}$ dicarbonyl bis(triphenylphosphine)nickel ($87 \mathrm{~g}, 0.14 \mathrm{~mol}$) ${ }^{14}$ and anhydrous diglyme (200 ml). The solution was heated under vigorous reflux (bath temperature 200°, nitrogen atmosphere) for 3.5 hr , during which time the color of the solution changed from yellow-green to dark black. ${ }^{15}$ The reaction was cooled to room temperature (some unreacted nickel catalyst precipitated), the condenser was replaced by a distillation head, and the diglyme and hydrocarbons were distilled under aspirator vacuum (bp $60-65^{\circ}$) into a dry ice cooled trap. An additional 50 ml of diglyme was added to the residue and distilled. The combined distillate was poured into water (1000 ml) and the mixture extracted with three $150-\mathrm{ml}$ portions of isopentane. The hydrocarbon phase was washed three times with water (the complete removal of the diglyme established by GC analysis) and the isopen-
tane solution dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was distilled at atmospheric pressure using a $12-\mathrm{cm}$ vacuum-jacket spiral wire filled column. The residue was distilled through a short-path still, bp 72$73^{\circ}(18 \mathrm{~mm})$, to yield $10.55 \mathrm{~g}(73 \%)$ of 98% (GC) pure hydrocarbon. The product displayed spectral characteristics identical with the reported values. ${ }^{4,5}$
exo-4,7-Dimethyl-5,6-diphen. 1 lpentacyclo[8.2.2.14,7.0 $\left.0^{2,9} .0^{3,8}\right]$ -pentadeca-5,11,13-trien-15-one (4b). In a $250-\mathrm{ml}$, round-bottomed flask equipped with a reflu $<$ condenser were placed tricyclo[4.2.2.0 ${ }^{2,5}$]deca-3,7,9-triene $(2,10.15 \mathrm{~g}, 0.078 \mathrm{~mol})$, 2,5-dimethyl3,4 -diphenylcyclopentadienone dimer ($20.0 \mathrm{~g}, 0.04 \mathrm{~mol}$), ${ }^{14}$ and dry benzene (100 ml). The solution wes refluxed with magnetic stirring under a nitrogen atmosphere unt 1 the red color disappeared (~ 40 h) and cooled to room temperature, and ether (75 ml) was added. The white precipitate was filtered, washed with cold ether, and dried under reduced pressure at 25° to yield $21.1 \mathrm{~g}(70 \%)$ of exo isomer 4b. An analytical sample was recrystallized from CCl_{4} $\mathrm{MeOH}: \mathrm{mp} 182-184^{\circ} \mathrm{dec}$; NMR (IDCl_{3}) $\delta 1.19$ (s, 6), 1.72-1.93 (m, 4), 3.62 (m, 2), 6.26-6.58 (overlapping triplets, apparent quintet, 4, $J=4 \mathrm{~Hz}$), 6.78-7.30 (m, 10); ir (kBr) 696, 722, 760, 781, 809, 1395, 1440,1755 , and $2930 \mathrm{~cm}^{-1}$; mass spectrum m/e $390\left(\mathrm{M}^{+}\right), 362\left(\mathrm{M}^{+}\right.$ - CO), 284 (M^{+}- CO - benzenel, 258.

Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 8 \mathrm{C} .19$; $\mathrm{H}, 6.71$. Found: C, 88.96 ; H , 6.76.

The filtrate was concentrated to a viscous oil, which was dissolved in hot $\mathrm{CCl}_{4}(25 \mathrm{ml})$, and diluted with hot absolute EtOH $(100 \mathrm{ml})$. The solution was rotary evapcrated to 60 ml , the precipitate filtered, and the solid washec with EtOH . The filtrate was further concentrated to yield a prod」ct of lesser purity. A total of 7.1 $\mathrm{g}(22 \%)$ of product was obtained from the ethanolic solution, and these crops were enriched in the endo isomer: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.34$ $(\mathrm{s}, 6), 1.88-2.30(\mathrm{~m}, 4), 3.50-3.94 \mathrm{~m}, 2), 6.25(\mathrm{t}, 2, J=3.5 \mathrm{~Hz}), 6.51$ $(\mathrm{t}, 2, J=3.5 \mathrm{~Hz}), 6.85-7.32(\mathrm{~m}, 1 \mathrm{C})$.

Bicyclo[2.2.2]octa-2,5,7-triene (1). To a quartz irradiation well equipped with a magnetic strrer and a dry ice condenser was added a solution of $4 \mathrm{~b}(7.80 \mathrm{~g},: 00 \mathrm{mmol})$ in dry tetrahydrofuran $(125 \mathrm{ml})$ and the solution was purged with dry nitrogen for 1 h . The solution was irradiated throngh a Vycor filter with a Hanovia 450-W lamp and the progress of the reaction followed by TLC ($10 \% \mathrm{EtOAc}-90 \%$ ligroin). After a $6-\mathrm{h}$ period only traces of starting material remained and the irrad ation was terminated. The reaction solution was transferred to a $250-\mathrm{ml}$, round-bottomed flask, the solution freeze-thaw degassed (five cycles, 25μ), and the volatile material vacuum transferred to a $250-\mathrm{ml}$, round-bottomed flask cooled in liquid nitrogen; a thick yellow residue remained in the distillation flask. An additio al 20 ml of tetrahydrofuran was added to the residue, and the vacuum transfer repeated. The combined tetrahydrofuran solution was concentrated by distillation through a $40-\mathrm{cm}$ spinning-band columr at atmospheric pressure to leave 7.26 g of solution ($10.7 \mathrm{~mol} \%$ barrelene by NMR analysis, yield $1.07 \mathrm{~g}, 51 \%$) which contained berzene and cyclooctatetraene as trace contaminants. Pure barrelene was isolated by preparative gas chromatography ($15 \mathrm{ft} \times 0.2 \mathrm{E}$ in., $2.5 \% \mathrm{SE}-30,120^{\circ}$) and a neat sample displayed spectral properties identical with the literature values. ${ }^{2,3}$
exo-1,6-Dimethyl-7,8-diphenyltricyclo[4.2.1.0 ${ }^{2,5}$]nona-3,7-dien-9-one (5b). A sublimer containing 4 a ($100 \mathrm{mg}, 0.256 \mathrm{mmol}$) was heated at 160° under aspirator vacuum for 2 h . The white sublimate was collected, yield $70 \mathrm{~m} \mathrm{\xi}(87 \%)$ of $5 \mathbf{b}$, and was resublimed under identical conditions: mp $132-135^{\circ} ;{ }^{16} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.19(\mathrm{~s}$, 6), 3.09 ($\mathrm{s}, 2$), 6.52 (s, 2), 6.88-7.32 (m, 0); ${ }^{17}$ ir $\left(\mathrm{CCl}_{4}\right) 699,848,891$, $907,928,970,1010,1070,1170,1185,1280,1370,1445,1485,1770$, 2900 , and $3000 \mathrm{~cm}^{-1}$; mass spectrum m/e $312\left(\mathrm{M}^{+}\right), 286\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{2}\right), 284$, ($\mathrm{M}^{+}-\mathrm{CO}$, base peat) , 258

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 88.43 ; \mathrm{H}, 6.45$. Found: C, $88.37 ; \mathrm{H}$, 6.29.
exo-4,7-Dimethyl-5,6-diphenylpentacyclo[8.2.2.1 $\left.{ }^{4,7} .0^{2, y} .0^{3,8}\right]$ -pentadeca-5,13-dien-15-onedicarboxylic Acid Anhydride (6). A suspension of crude endo-trizyclo[4.2.2.0 $0^{2,5}$]deca-3,9-diene-7,8dicarboxylic acid anhydride ($1 \angle 2 \mathrm{~g}, 0.06 \mathrm{~mol}$), 2,5-dimethyl-3,4diphenylcyclopentadienone dimer ($15.7 \mathrm{~g}, 0.03 \mathrm{~mol}$), and 100 ml of toluene was heated under refluz for $£ 4 \mathrm{~h}$; the bright red color of the monomeric dienone graduclly disappeared. The suspension was cooled in an ice bath, and the product filtered. To the filtrate there was added 100 ml of ether and a second crop of crystals was obtained. The combined crops were dred under vacuum: yield 27.6 $\mathrm{g}(98 \%) ; \mathrm{mp} 278-280^{\circ}$; NMR (CDCl_{3}) o $1.20(\mathrm{~s}, 6), 2.02$ (broad s, 4), $3.01(\mathrm{t}, 2, J=2 \mathrm{~Hz}), 3.35(\mathrm{~m}, 2), 6.45(\mathrm{t}, 2, J=4 \mathrm{~Hz}), 6.80-7.30(\mathrm{~m}$, 10); ir (KBr) 750, 809, 915, 1085, 1220, 1770, and $1850 \mathrm{~cm}^{-1}$; mass spectrum $m / e 462\left(\mathrm{M}^{+}\right), 434\left(\mathrm{M}^{-}-\mathrm{CO}\right), 258$.

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{4}$: C, 80.50; H, 5.67. Found: C, 80.71 ; H , 5.48.

Bicyclo[2.2.2]octa-2,5-diene-7,8-dicarboxylic Anhydride (7). A solution of $6(924 \mathrm{mg}, 2 \mathrm{mmol})$ in dry tetrahydrofuran (30 ml) was placed in a Vycor tube fitted with a stopcock, the tube was cooled in ice water in a transparent quartz Dewar flask, and the solution was degassed with nitrogen. At ice temperature, the solution was irradiated for 9 h in a Rayonet reactor using $254-\mathrm{nm}$ light sources. A small amount of solid material was filtered, and the solution treated twice with small portions of ligroin and the resulting solids removed. Finally, a $25-\mathrm{ml}$ portion of ligroin was added and the flocculent precipitate filtered and dried (0°, vacuum) to give $1 ؟ 0 \mathrm{mg}$ (54%) of material of about 90% purity (NMR analysis): mp $7 \mathrm{C}-80^{\circ} \mathrm{dec}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.20(\mathrm{t}, 2, J=1.5 \mathrm{~Hz}), 4.12(\mathrm{~m}, 2), 6.54$ (t. $2, J=3.5 \mathrm{~Hz}$); ir $\left(\mathrm{CHCl}_{3}\right) 824,914,930,960,1010,1080,1230$, $1295,1345,1775,1845,2920$, and $3020 \mathrm{~cm}^{-1}$.

A small amount of 7 was recrystallized by dissolving it in a minimal amount of tetrahydrofuran at room temperature, followed by the addition of 4 volumes of ether. The resulting solution was chilled for 12 h and the crystalline precipitate was filtered ($\sim 30 \%$ recovery), $\mathrm{mp} 70-80 \%$ (dependent upon heating rate).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{3}$: C, 68.18; H, 4.58. Found: C, 68.14; H, 4.33.

Registry No.-1, 500-24-3; 2, 21604-76-2; 3, 51447-09-7; 4a, 57496-75-0; 4b, 57526-53-1; 5b, 30450-25-0; 6, 57496-76-1; 7, 57496-77-2; 2,5-dimethyl-3,4-diphenylcyclopentadienone, 26307-17-5.

References and Notes

(1) This work was supported by the National Science Foundation, Grant MP573-04662.
(2) H. E. Zimmerman and R. M. Paufler, J. Am. Chem. Soc., 82, 1514 (1960): H. E. Zimmerman, G. I. Grunewald, R. M. Paufler, and M. A. Sherwin, ibid., 91, 2330 (1969)
(3) G. N. Taylor, J. Org. Chem., 37, 2904 (1972).
(4) M. Auram, E. Sliam, and C. D. Nenitzescu, Justus Liebigs Ann. Chem., 636, 184 (1960).
(5) H. H. Westburg and H. J. Dauben, Tetrahedron Lett., 5123 (1968); E. N. Cain, R. Vukov, and S. Masamune. Chem. Commun., 98 (1969); E. Vedejs, ibid., 536 (1971).
(6) L. T. Scott and M. Jones, Jr., Chem. Rev., 72, 182 (1972); L. A. Paquette, W. E. Volz, M. A. Beno, and G. D. Christoph, J. Am. Chem. Soc., 97, 2562 (1975); E. Vedejs and E. S. C. Wu, ibid., 97, 4706 (1975).
(7) T. Wickersham, J. P. Li, and E. J. Warawa, Synthesis, 399 (1975).
(8) W. G. Dauben and L. N. Reitman, J. Org. Chem., 40, 835 (1975).
(9) C. M. Anderson, J. B. Bremner, H. H. Westberg, and R. N. Warrener. Tetrahedron Lett., 1585 (1969).
(10) B. M. Trost and F. Chen, Tetrahedron Lett., 2603 (1971); K. Wiesner, P. Ho, R. C. Jain, S. F. Lee, S. Oida, and A. Phillip, Can. J. Chem., 51, 1448 (1973).
(11) A small amount of benzene is formed by thermal decomposition of the hydrocarbon 2. Thus, the thermolysis time should be kept to the minimum necessary for complete reaction.
(12) These compounds are known photoproducts of barrelene.
(13) W. Reppe, O. Schlichting, K. Klager, and T. Toepel, Justus Liebigs Ann. Chem., 560, 1 (1948).
(14) J. D. Rose and F. S. Statham, J. Chem. Soc., 69 (1950).
(15) Progress of the reaction is conveniently followed by the disappearance of carbonyl absorption in the infrared spectrum.
(-6) C. M. Anderson, I. W. McCay, and R. N. Warrener, Tetrahedron Lett., 2735 (1970).
(•7) The endo isomer was produced along with the exo isomer when a mixture of the pentacyclic ketones was pyrolyzed, but the endo isomer was never isolated in pure form. The new NMR bands attributed to it occurred at $\delta 1.26(\mathrm{~s}, 6), 2.96(\mathrm{~s}, 2), 6.06(\mathrm{~s}, 2)$, and 6.83-7.26 (m, 10).

Oxidation of Secondary Alcohols with Ozone ${ }^{1}$

William L. Waters,* Anthony J. Rollin, Cindy M. Bardwell, Jeffrey A. Schneider, and Thomas W. Aanerud
Department of Chemistry, University of Montana, Missoula, Montana 59801

Received October 15, 1975
The ozonation of alcohols has received only scattered attention throughout the literature. ${ }^{2}$ Primary interest has been a mechanistic interpretation of the oxidation process. However, since we ${ }^{1,3}$ and others ${ }^{2}$ have noted fairly rapid

Table I

Alcohol	Registry no.	\% ketone yifld	Alcohol	Registry no.	\% ketone yield
2-Propanol	67-63-0	83	2-Nonanol	628-99-9	57
2-Butanol	78-92-2	72	4-Nonanol	5932-79-6	68
2-Pentanol	6032-29-7	69	4-Decanol	2051-31-2	71
3-Pentanol	584-02-1	81	5-Decanol	5205-34-5	65
2-Hexanol	626-93-7	66	2,4-Dimethyl-3-pentanol	600-36-2	83
3-Hexanol	623-37-0	74	Cyclopentanol	96-41-3	53
2-Heptanol	543-49-7	62	Cyclohexanol	108-93-0	65
3-Heptanol	589-82-2	82	Cycloheptanol	502-41-0	74
4-Heptanol	589-55-9	70	Cycloheptanol		65^{4}
2-Octanol	123-96-6	71	Cyclooctanol	696-71-9	69
4-Octanol	589-62-8	66	Cyclododecanol	1724-39-6	61

and complete conversion of alcohols to ketones upon ozonation, it was decided that a potentially useful synthetic oxidation method had presented itself. We tested the general applicability of this method by ozonizing 21 acyclic and cyclic secondary alcohols in methylene chloride at 0 ${ }^{\circ} \mathrm{C}$.

Results and Discussion

Yield data for these oxidations are summarized in Table I.

The results indicate that ozonation gives ketone yields quite comparable to other oxidation methods. ${ }^{5}$ Moreover VPC and ir analysis showed no residual alcohol in the raw product mixtures, whereas the more common oxidation processes frequently leave some unreacted alcohol. ${ }^{6}$ Under the stated ozone flow conditions complete oxidation of $10-20 \mathrm{mmol}$ of alcohol required $40-60 \mathrm{~min}$ at $0{ }^{\circ} \mathrm{C} .{ }^{7}$ The ketone products were essentially inert to "overozonation". ${ }^{8}$

As noted previously, ${ }^{2,3}$ ozonation of alcohols, and most other functional groups, causes a certain amount of carboncarbon scission. Likewise the present study showed minor yields of mono- and dibasic acids from the acyclic and cyclic alcohols, respectively. The nonvolatile acids were conveniently removed by either an aqueous bicarbonate wash or flash distillation prior to analysis. No other product impurities could be detected. ${ }^{9}$

The general utility of alcohol oxidation via ozonation is, of course, somewhat limited. Since the oxidation rate of alcohols is clearly many times slower than the addition of ozone to a carbon-carbon π bond, ${ }^{2,3}$ the use of alkenols or alkynols is ruled out. The presence of other ozone reactive functional groups, e.g., aldehydes, amines, ${ }^{10}$ etc., is also excluded. Finally, the rather slow rate of alcohol oxidation itself, ${ }^{2}$ coupled with the necessity of ozonating at pressures close to atmospheric, appear to make large-scale oxidations impractical. ${ }^{4}$

However, ozonation, as an oxidation method, does offer some attractive advantages when compared to existing procedures. On a small preparative scale the alcohol is gently converted to ketone in a neutral organic medium ${ }^{11}$ at a relatively low temperature. The side reactions which sometime accompany highly acidic or basic media and/or high temperatures are therefore eliminated. The work-up following ozonation is obviously quite simple, involving only simultaneous ozone quenching and carboxylic acid removal with an aqueous basic iodide wash. ${ }^{9,12}$ Distillation to remove unreacted alcohol is unnecessary. Finally, the cost of the oxidizing agent itself, excluding the ozonator, ${ }^{13}$ is minuscule when compared to that for most of the common oxidants.

Experimental Section

Welsbach T-408 and Airox C2P-9C ozonators were used to generate $3-5 \% \mathrm{O}_{3}-\mathrm{O}_{2}$ mixtures at rates of $15-70 \mathrm{mmol}$ of O_{3} per hour.

Rate of ozone flow was calculated by the standard iodide-thiosulfate method. ${ }^{14}$

Ozonations were generally carried out at $0^{\circ} \mathrm{C}$ in a $100-\mathrm{ml}$ threenecked flask with $1-2 \mathrm{~g}$ ($10-20 \mathrm{mmol}$) of alcohol as a $1-2 \% \mathrm{w} / \mathrm{v}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction solution also contained $10-20 \mathrm{mmol}$ of nitromethane as an internal VPC standard. The reaction vessel was fitted with an inlet tube, magnetic stirrer, and a dry ice reflux condensor in series with an aqueous KI trap.

After ca. 45 min of ozonation, the reaction solution was washed with 20 ml of a 1 M aqueous $\mathrm{KI}-\mathrm{NaHCO}_{3}$ solution. The organic phase was dried with MgSO_{4} and analyzed by VPC on $10 \mathrm{ft} \times 0.25$ in. 10% SE-30, 20% DEGS, and 10% Carbowax columns. Identification of ketone products was accomplished by both comparing the peak retention times with those of the known ketones and by VPC collection and subsequent ir analysis of each peak. ${ }^{15}$ Yields were calculated by using the VPC integration data coupled with the detector sensitivity calibration curves for each nitromethane-ketone mixture.

Registry No.-Ozone, 10028-15-6; 2-propanone, 67-64-1; 2-butanone, 78-93-3; 2-pentanone, 107-87-9; 3-pentanone, 96-22-0; 2hexanone, 591-78-6; 3-hexanone, 589-38-8; 2-heptanone, 110-43-0; 3-heptanone, 106-35-4; 4-heptanone, 123-19-3; 2-octanone, 111-13-7; 4-octanone, 589-63-9; 2-nonanone, 821-55-6; 4-nonanone, 4485-09-0; 4-decanone, 624-16-8; 5-decanone, 820-29-1; 2,4-di-methyl-3-pentanone, 565-80-0; cyclopentanone, 120-92-3; cyclohexanone, 108-94-1; cycloheptanone, 502-42-1; cyclooctanone, 502-49-8; cyclododecanone, 830-13-7.

References and Notes

(1) This research was supported by the National Science Foundation, Grant GP-18317, and the University of Montana Foundation. A preliminary report of this work was presented at the 30th Annual NWRACS Meeting, Honolulu, Hawaii, June 1975.
(2) See, for example, C. Harries and K. Langheld, Hoppe-Seyler's Z. Physiol. Chem 51, 373 (1907); J. von Euw and T. Reichstein, Helv. Chim. Acta., 27, 821 (1944); A. Lardon and T. Reichstein, ibid., 37, 443 (1954); E. P. Oliveto, H. Q. Smith, C. Gerold, R. Rausser, and E. B. Hershberg, J. Am. Chem. Soc., 78, 1414 (1956); M. C. Whiting, A. J. N. Bolt, and J. H. Parish, Adv. Chem. Ser., 77, 4 (1968); T. M. Hellman and G. A. Hamilton, J. Am. Chem. Soc., 96, 1530 (1974); A. Y. Gerchikov, E. P. Kuznetsova, and E. T. Denisov, Kinet. Katal., 15, 509 (1974).
(3) W. L. Waters, P. E. Pike, and J. T. Rivera, Adv. Chem. Ser., 112, 78 (1972).
(4) This yield of ketone was obtained from the oxidation of $20 \mathrm{~g}(0.18 \mathrm{~mol})$ of alcohol. Complete disappearance of cycloheptanol required a 4-h reaction time.
(5) I. T. Harrison and S. Harrison, "Compendium of Organic Synthetic Methods". Wiley-Interscience, New York, N.Y., 1971, pp 386-396.
(6) For example, we have found that the two-phase Jones oxidation procedure [H. C. Brown, C. P. Garg, and K. Liu, J. Org. Chem., 36, 387 (1971)] commonly leaves 3-6\% unreacted alcohol.
(7) Oxidation was faster at higher temperatures, but was accompanied by an increase in the percentage of carbon-carbon scission. We are currently investigating Whiting's findings (ref 2) that a catalytic amount of sodium borohydride or sodium acetate reduces this unwanted side reaction.
(8) At $0^{\circ} \mathrm{C}$ the oxidation cleavage of ketones is five to ten times slower than alcohol oxidation.
(9) Since the by-products of the reaction are $\mathrm{O}_{2} \mathrm{H}_{2} \mathrm{O}$, and a small amount of RCOOH (see Whiting et al., ref 2), samples of the product mixture were analyzed by VPC after shaking either with a solid $\mathrm{KI}-\mathrm{NaS}_{2} \mathrm{O}_{3}$ mixture or with aqueous $\mathrm{KI}-\mathrm{NaHCO}_{3}$.
(10) P. S. Bailey, Chem Rev., 58, 925 (1958).
(11) Oxidations were also carried out in $\mathrm{CCl}_{4}, \mathrm{CHCl}_{3}$, and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$. All solvents gave identical products and similar reaction rates.
(12) Alternatively, excess O_{3} can be conveniently removed by purging the solution with N_{2}
(13) The appearance of a number of relatively inexpensive air-cooled ozon-
ators on the market, coupled with the expanding investigation of O_{3} water purification, has made ozor ation available to most laboratories.
(14) See, for example, E. P. Parry anc D. H. Jern, Environ. Sci. Technol., 7, 65 (1973).
(15) Ir spectra of the VPC collected k эtones agreed closely with those from the literature Sources: C. J. Pouchert, "The Aldrich Library of Infrared Spectra", Aldrich Chemical Co., , Milwaukee, Wis., 1970; "Sadtler Standard Spectra' ', Sadtler Research _aboratories, Philadelphia, Pa

Isolation and Identifieation of β-Citraurol, a C_{30} Carotensid in Citrus ${ }^{1}$

Urs Leuenberger end Ivan Stewart*

Agricultural Research and Education Center, University of Florida, IFAS Lake Alfred, Florida 33850

Roy W. King
Chemistry Department, University of Florida, Gainesville, Floridc 32611
Received July 10, 1975
Reported occurrences of 8^{\prime} apocarotenoids in nature are not common. From a known total of 311 naturally occurring carotenoids Straub ${ }^{2,3}$ lists only four C-30 compounds. Two of these, 8^{\prime}-apo- β-carotэn- 8^{\prime}-al (3a) and β-citraurin (3b), are found in citrus pe ϵ l. The latter pigment is the major contributor to the red color of tangerines and the bright color of oranges. ${ }^{4,5}$ Nore recently, 3 -hydroxy- 5,8 -epoxy-5,8-dihydro- 8^{\prime}-apo- β-ceroten- 8^{\prime}-al was found in orange juice ${ }^{6}$ and β-citraurinere (8 'apo- β-caroten- 3 -ol, 1a) was identified as a major pig nent in citrus peel. ${ }^{7}$ Also recently, Taylor and Davies ${ }^{8,9}$ reported a group of acyclic C-30 carotenoids from bacteria.

$$
\mathbf{4 a}, \mathrm{R}=\mathrm{H} \quad \mathbf{4 b}, \mathrm{R}=\mathrm{Ac}
$$

In this paper, we describe tie isolation and structure elucidation of a new C_{30} caroter oid, β-citraurol, from peel of the citrus hybrid Robinson (Orlando tangelo \times Clementine mandarin). This carotenoid with the structure of 8^{\prime}-apo- β -caroten- $3,8^{\prime}$-diol ($2 \mathbf{b}$) is not believed to have previously been reported to occur in nature. Curl reported the synthesis of β-citraurol from β-citraurin. ${ }^{10}$
β-Citraurol (2b) occurs as a diester in the peel as determined by a significant change in R_{f} on TLC following saponification. Acetylation of the carotenoid indicated two hydroxyl groups, yielding a monoester as an intermediate.

The natural diester (2a), the diol (2b), and the diacetate (2c) showed similar visible spectra typical for a β, ψ chromophore with $\lambda_{\max } 403,425$, and 450 nm in n-hexane. There was no shift in the visible spectrum after treatment with HCl in EtOH^{11} and a color test with HCl on TLC was negative. These tests along with a failure to reduce the oxygen with lithium aluminum hydride indicated the absence of an epoxide or a furanoid oxide.

Mcst of the studies on β-citraurol reported in this paper were made on the diacetate ester. The ester was more easily isolated than the alcohol and previous work with similar compounds would suggest that the esterified form is more stable. ${ }^{7} \beta$-Citraurol diacetate (2c) exhibited a molecular ion at $m / e 518$. Fragments due to the loss of acetic acid at m / e $458(\mathrm{M}-60)$ and $398(\mathrm{M}-120)$ confirmed the presence of two hydroxyl groups. Typical ester bands were exhibited in the infrared spectrum at 1740 and $1245 \mathrm{~cm}^{-1}$.

The positions of the OH groups were investigated by several means. Smooth saponification and acetylation reactions ruled out a tertiary alcohol as well as a hydroxyl group in position C-2. ${ }^{12}$ Oxidation with p-chloranil yielded a reddish compound with chromatographic and spectral properties identical with those of β-citraurin (3b) indicating one allylic hydroxyl group.

The above mentioned structural features were ultimately confirmed by the NMR data. The doublet of the geminal methyl groups at 1.08 and 1.12 ppm as well as the broad signal of the single proton at $\mathrm{C}-3$ at ca. 5.05 ppm point to a secondary ester configuration of a 3 -hydroxy- β-end group ring. A singlet at 1.98 ppm was associated with the three inchain methyl groups, while the end-of-chain methyl yielded a singlet at 1.85 ppm . These signals together with the singlet of two protons at 4.58 ppm demonstrated an ester of a primary alcohol group at C-8'. Finally, the structure was confirmed when the diacetate of β-citraurol was synthesized from β-citraurin and the synthetic product was found to have identical chromatographic, spectroscopic, and chemical properties with the diacetate made from the natural occurring diol.

The finding of β-citraurol brings the known 8^{\prime}-apocarotenoids to seven, with five of these found in citrus fruit. The presence of this number of similar compounds suggests that the biosynthesis of β-citraurin may not be a degradation product of C_{40} compounds as proposed ${ }^{13}$ but rather it may Eorm through a new pathway for C_{30} compounds.

A novel fragmentation of β-citraurol diacetate in the mass spectrometer was observed with both the natural and synthetic compounds. It is well known in carotenoid chemistry that acetic acid esters of nonallylic hydroxy carotenoids have a fragment $\mathrm{M}-60$ (M - acetic acid). The allylic ester of β-citraurol at $\mathrm{C}-8^{\prime}$ showed not only a loss of acetic acid but also two significant fragments, one at M 44 , loss of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$, and a second fragment at $\mathrm{M}-58$, loss of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$. The intensity of $m / e 474$ varied from 1.8 to 77% compared with the molecular ion and $m / e 460$ varied from 6.3 to 108% depending on the probe temperature.

The fragments $m / e 474$ and 460 have the same compositions as compounds $3 c$ and 1 b , respectively. Therefore, the decomposition of 2 c into 3 c and 1 b is not excluded. The relatively high temperatures required $\left(>200^{\circ} \mathrm{C}\right)$ and the variable fragment intensities suggest thermal rather than electron-impact induced reactions. Compound $1 \mathbf{b}$ does not exhibit a similar fragmentation, but gives only the $M-60$ peak. However, 8^{\prime}-apo- β-caroten -8^{\prime}-ol acetate (4b) also gives fragments of $\mathrm{M}-44$ and $\mathrm{M}-58$ as found with 2 c . This would suggest that these two fragments are characteristic for the allylic end-of-chain acetate ester. Gross et al. ${ }^{14}$ report for a similar allylic end-of-chain ester of 5,8 -epoxy5,8 -cihydro-10'-apo- β-caroten-3,10'-diol diacetate a frag-
ment M-42 (ketene). We did not observe any M - 42 peaks from 2 c or 4 b .

Experimental Section

Isolation of β-Citraurol. Robinson fruits grown in Florida were collected during December and January. The peels were frozen and then extracted with dichloroethane-methanol (1:1) and MgCO_{3} in a Waring blender. The filtered extract was dried, redissolved in ether, and saponified with 10% methanolic KOH. After washing and drying, the carotenoids were partitioned in hexanemethanol ($90: 10$). A preliminary separation of the pigments in the methanol layer was made on a column filled with MgO -Celite (1:1) activated at $240^{\circ} \mathrm{C}$ overnight. The solvent mixture consisted of starting with hexane and using increasing amounts of dichloroethane. β-Citraurol was slightly less polar than zeaxanthin. The fraction containing $\mathbf{2 b}$ was acetylated in pyridine with acetic anhydride. The β-citraurol acetate was purified by passing through a column packed with alumina Woelm W 200 basic acitivity II-III. Starting with a solvent mixture of 10% benzene in hexane, fractions were eluted, collected, and monitored by visible absorption spectra. By this means, the trans isomer was separated from the cis forms. The trans β-citraurol diacetate 2 c was crystallized from benzene-methanol yielding small, orange needles: $\lambda_{\text {max }}$ (n-hexane) $403,425,450 \mathrm{~nm}$; ir (KBr) $3040-2860(\mathrm{CH}), 1740(\mathrm{C}=\mathrm{O}), 1445$ $\left(\mathrm{CH}_{2}, \mathrm{CH}_{3}\right), 1365\left(\mathrm{CH}_{3}\right), 1245(\mathrm{CO}-), 1030$ and $970 \mathrm{~cm}^{-1}$ (trans $\mathrm{CH}=\mathrm{CH}-) \mathrm{cm}^{-1} ; \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta$ 6.7-6.1 (olefinic protons), ca. 5.05 (H of $\mathrm{C}-3$), $4.58 \mathrm{~s}\left(\mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}-8^{\prime}\right), 2.36$ and $2.24\left(\mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}-4\right), 2.10 \mathrm{~s}\left(\mathrm{CH}_{3}\right.$ of acetate at $\left.\mathrm{C}-8^{\prime}\right), 2.06 \mathrm{~s}\left(\mathrm{CH}_{3}\right.$ of acetate at $\mathrm{C}-3), 1.98 \mathrm{~s}\left(\mathrm{CH}_{3}\right.$ at $\mathrm{C}-9,13$ and $\left.13^{\prime}\right), 1.85\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-8^{\prime}\right)$, $1.73 \mathrm{~s}\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-5\right), 1.52 \mathrm{~s}$ (impurity $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.26 \mathrm{~s}$ (impurity), 1.12 and $1.08\left(2 \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-1\right), 0.89$ and 0.84 ppm (impurities); mass spectrum $\mathrm{M}^{+} 518.3430$ (calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{4}, 518.3393$); isotope ratio $\left(\mathrm{M}^{+}\right):(\mathrm{M}+1):(\mathrm{M}+2)$ 100:38:10 (calcd, 100:43:9), 474.3257 (M - 44 or $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$, calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{3}, 474.3133$), 460.3336 (M - 58 or $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$, calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{2}, 460.3340$), 458.3173 (M - 60 or $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{2}, 458.3184$), 426 (M 92), $414.2872\left(\mathrm{M}-44-60\right.$, calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}, 414.2923\right), 400.3052$ ($\mathrm{M}-58-60$, calcd for $\mathrm{C}_{30} \mathrm{H}_{40}, 400.3129$). 398 ($\mathrm{M}-60-60$), 366 ($\mathrm{M}-60-92$), 352 ($\mathrm{M}-60-106$), 263 ($\mathrm{M}-60-195$).
β-Citraurol Diacetate (2c). A solution of β-citraurin (3a) in tetrahydrofuran was reduced with lithium aluminum hydride, ${ }^{15,16}$ followed by acetylation with acetic anhydride in pyridine ${ }^{15,17}$ to obtain small, orange needles: $\lambda_{\text {max }}$ (hexane) 404, 426, 452 nm ; ir (KBr) $3040-2860(\mathrm{CH}), 1740(\mathrm{C}=0)$, $1445\left(\mathrm{CH}_{2}, \mathrm{CH}_{3}\right), 1365$ $\left(\mathrm{CH}_{3}\right), 1240(\mathrm{CO}-), 1025$ and $965 \mathrm{~cm}^{-1}$ (trans $\mathrm{CH}=\mathrm{CH}$); NMR ($100 \mathrm{MHz}_{2}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta 6.9-6.1$ (olefinic protons), ca. 5.05 (H of C-3), $4.56 \mathrm{~s}\left(\mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}-8^{\prime}\right), 2.36$ and $2.24\left(\mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}-4\right), 2.09 \mathrm{~s}$ (CH_{3} of acetate at $\mathrm{C}-8^{\prime}$), $2.05 \mathrm{~s}\left(\mathrm{CH}_{3}\right.$ of acetate at $\left.\mathrm{C}-3\right), 1.98 \mathrm{~s}\left(\mathrm{CH}_{3}\right.$ at $\mathrm{C}-9,13$ and $\left.13^{\prime}\right), 1.86 \mathrm{~s}\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-8^{\prime}\right), 1.74 \mathrm{~s}\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-5\right), 1.56$ (impurity $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.12$ and $1.08\left(2 \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-1\right)$; mass spectrum M^{+} 518.3426 (calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{4}, 518.3393$), 474.3158 ($\mathrm{M}-44$ or $\mathrm{M}-$ $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$, calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{3}, 474.3133$), 460.3355 ($\mathrm{M}-58$ or M $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$, calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{2}, 460.3340$), 458.3172 ($\mathrm{M}-60$ or M $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{2}, 458.3184$), 426 ($\mathrm{M}-92$), 414.3013 (M $-44-60$, calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}, 414.2923$), 400.3157 ($\mathrm{M}-58-60$, calcd for $\mathrm{C}_{30} \mathrm{H}_{40}, 400.3129$), 398 ($\mathrm{M}-60-60$), 366 ($\mathrm{M}-60-92$), 352 ($\mathrm{M}-60-106$).
8^{\prime}-Apo- β-caroten- 8^{\prime}-ol Acetate (4b). This compound was prepared by reducing 8^{\prime}-apo- β-caroten -8^{\prime}-al with lithium aluminum hydride followed by acetylation with acetic anhydride in pyridine: mass spectrum $\mathrm{M}^{+} 460.3340$ (calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{2}, 460.3340$), 416 ($\mathrm{M}-44$), 402.3260 ($\mathrm{M}-58$, calcd for $\mathrm{C}_{30} \mathrm{H}_{42}, 402.3286$), 400.3112 ($\mathrm{M}-60$, calcd for $\mathrm{C}_{30} \mathrm{H}_{40}, 400.3129$), 368.2725 ($\mathrm{M}-92$, calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{2}, 368.2714$), 354.2537 ($\mathrm{M}-106$, calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2}$, 354.2557), 310.2604 ($\mathrm{M}-58-92$, calcd for $\mathrm{C}_{23} \mathrm{H}_{34}, 310.2660$), 308.2517 ($\mathrm{M}-60-92$, calcd for $\mathrm{C}_{23} \mathrm{H}_{32}, 308.2503$), 296.2462 ($\mathrm{M}-$ 58 - 106, calcd for $\mathrm{C}_{22} \mathrm{H}_{32}, 296.2504$), 294.2341 ($\mathrm{M}-60-106$, calcd for $\mathrm{C}_{22} \mathrm{H}_{30}$, 294.2347).
Oxidation of β-Citraurol (2b). β-Citraurol was dissolved in 0.5 ml of benzene and treated with p-chloranil (1 mg). ${ }^{18}$ After 15 h there was almost complete conversion of $2 \mathbf{b}$ to β-citraurin (3b). Characterization of $\mathbf{3 b}$ was by visible spectrum in hexane and ethanol and by TLC using an authentic sample of β-citraurin (3b) for comparison.

Acknowledgment. We are grateful to Dr. W. Brey, Gainesville, Fla., for NMR spectra, and to Mr. G. Edwards, Lake Alfred, Fla., for the ir spectra. We are also indebted to

Hoffmann-La Roche, Basel, for a sample of 8^{\prime}-apo- β-caro-ten- 8^{\prime}-al.

Registry No.-2b, 57593-78-9; 2c, 57593-79-0; 3a, 650-69-1; 4b, 38699-13-7.

References and Notes

(1) Florida Agricultural Experiment Stations Journal Series No. 6005.
(2) O. Straub in "Carotenoids', O. Isler, Ed., Birkhäuser Verlag, Basel. Switzerland, 1971, Chapter XII.
(3) O. Straub, "Supplement to Lists of Natural Carotenoids", F. HoffmannLa Roche \& Co. Ltd., Basel, Switzerland, 1972.
(4) I. Stewart and T. A. Wheaton, J. Agric. Food Chem., 20, 448 (1972).
(5) I. Stewart and T. A. Wheaton, Phytochemistry, 12, 2947 (1973).
(6) J. Gross, M. Carmon, A. Lifshitz, and B. Sklarz. Phytochemistry, 14, 249 (1975).
(7) U. Leuenberger and I. Stewart, Phytochemistry, in press
(8) R. Taylor and B. Davies, Biochem. J., 139, 751 (1974).
(9) R. Taylor and B. Davies, Biochem. J., 139, 761 (1974).
(10) A. L. Curl, J. Food Sci., 30, 13 (1965).
(11) B. H. Davies in "Chemistry and Biochemistry of Plant Pigments", T. W. Goodwin, Ed.. Academic Press, New York, N.Y., 1965, p 529
(12) G. Nybraaten and S. Liaaen-Jensen, Acta Chem. Scand., 28, 485 (1974).
(13) B. C. L. Weedon in ref 2, p 48
(14) J. Gross, M. Gabai, A. Lifshitz, and B. Sklarz, Phytochemistry, 13, 1917 (1974).
(15) A. J. Aasen and S. Liaaen-Jensen, Acta Chem. Scand., 20, 1970 (1966).
(16) S. Liaaen-Jensen, Acta Chem. Scand., 17, 303 (1963).
(17) S. Liaaen-Jensen, S. Hertzberg, O. B. Weeks, and U. Schwieter, Acta Chem. Scand., 22, 1171 (1968).
(18) S. Llaaen-Jensen, Acta Chem. Scand., 19, 1166 (1965).

Mechanism of Ozonolysis. Triphenylphosphine Reduction of Methylisopropylethylene Ozonide- ${ }^{18} \mathrm{O}$

K. L. Gallaher and Robert L. Kuczkowski*

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104

Received October 30, 1975
When diisopropylethylene is ozonized in the presence of acetaldehyde $-{ }^{18} O$, methylisopropylethylene ozonide- ${ }^{18} O$ is produced. The position of ${ }^{18} \mathrm{O}$ enrichment in the ozonide provides mechanistic information. In one study, ${ }^{1}$ it was concluded that $68-77 \%$ of the ozonide formed by a pathway which placed the ${ }^{18} \mathrm{O}$ label at the peroxy site. This analysis included reduction of the ozonides by LiAlH_{4} or LiCH_{3} followed by mass spectrometry of the ethanol and isobutyl alcohol that was obtained.
In a subsequent report on the same compound, ${ }^{2}$ it was argued that such pathways are considerably less important. An upper limit of 10% was estimated for them by comparing the mass spectral intensities of the ozonide parent ions and the ether fragment ions (loss of O_{2}). Most of the total ${ }^{18} \mathrm{O}$ enrichment in the parent ion was also found in the ether fragment but a small difference was reported. This difference could be attributed to a competing process producing peroxy ${ }^{18} \mathrm{O}$ incorporation such as the aldehyde interchange mechanism ${ }^{3}$ or the enrichment of ozone by exchange with ${ }^{18} \mathrm{O}$-aldehyde. ${ }^{4}$ Other possible explanations are that small amounts of scrambling occurred between peroxide and ether oxygens upon fragmentation or that a systematic error occurred owing to the weak intensities of the mass peaks (perhaps arising from an undetected trace impurity contributing to the intensities).
In order to test the possibility of ${ }^{18} \mathrm{O}$ enrichment at the peroxide site more directly and clarify if there is as much as 10% competition from such pathways, several samples from our previous study ${ }^{2}$ were treated with $\mathrm{Ph}_{3} \mathrm{P}$. This produced $\mathrm{Ph}_{3} \mathrm{PO}$ which was analyzed for ${ }^{18} \mathrm{O}$ content. The basis of the method is the work of Lorenz and Park ${ }^{5,6}$ and Carles

Table I. Relative Intensities of Mass Peaks for $\mathbf{P h}_{3} \mathbf{P O}$ Produced from Reaction with Methylisopropylethylene Ozonide- ${ }^{18} O$

Fragment	$\mathbf{M}-1$	M	$\mathrm{M}+1$	$\mathrm{M}+2$	$\mathrm{M}+3$
m / e	277	278	279	280	281
Run 1^{a}	100^{b}	54	8.4	2	0.0
2	100	56	9.2	1	0.1
3	100	60	10.1	1	0.1
Stnd	100	57	9.4	1	0.1

${ }^{a}$ Ozonides used in runs $1-3$ ar \geq described in the text and ref 2. Stnd is the standard sample of $\mathrm{Ph}_{3} \mathrm{PO} .{ }^{b}$ Deviation in the relative intensity of the M and $M+1$ fragments was about 2 and 0.5 , respectively (90% confidence level). The $\mathbf{M}+2$ and $\mathrm{M}+3$ fragments were too weak to statistically estimate uncertainties.
and Fliszár ${ }^{7}$ which shows thet the reaction is quantitative and that $\mathrm{Ph}_{3} \mathrm{P}$ selectively attacks the peroxidic oxygens. ${ }^{8}$
The three samples of methylisopropylethylene ozonide${ }^{18} O$ that were used were estimated to contain the following percentages of total ${ }^{18} \mathrm{O}$ enrizhment and ${ }^{18} \mathrm{O}$ at the ether site: ${ }^{2}$ run 1, 54.7 and 52.1 ; ru $2,54.6$ and 53.0 ; run $3,54.7$ and 49.0. The pertinent mass spectrum for $\mathrm{Ph}_{3} \mathrm{PO}$ produced from these ozonides es we.l as a standard $\mathrm{Ph}_{3} \mathrm{PO}$ sample is listed in Table I.

The four runs in Table I gave essentially the same fragmentation patterns with no ejidence for ${ }^{18} \mathrm{O}$ enrichment in the $\mathrm{Ph}_{3} \mathrm{PO}$. From examination of the intensity ratios of the 277/279 fragments after correction for naturally occurring heavy isotopes, the upper limit of ${ }^{18} \mathrm{O}$ enrichment in the $\mathrm{Ph}_{3} \mathrm{PO}$ is estimated to be $0.7 \approx$. This gives an upper limit of 2.6% for pathways that produce ${ }^{18} \mathrm{O}$ at the peroxide site. This estimate assumes that attack by $\mathrm{Ph}_{3} \mathrm{P}$ is equally probable at either peroxide site and normalizes for the original ${ }^{18} \mathrm{O}$ content in the ozonides.
In summary, the $\mathrm{Ph}_{3} \mathrm{PO}$ ar alysis supports the main conclusion obtained by direct nass analysis of the ozonides themselves ${ }^{2}$ that most of the ${ }^{18} \mathrm{O}$ label occurs at the ether site. Compared to the direct analysis of the ozonides, the $\mathrm{Ph}_{3} \mathrm{PO}$ procedure sets a lower estimate for processes that produce ${ }^{18} \mathrm{O}$ label at a perox de site and it is quite consistent with such processes being mechanistically insignificant. Also, the small apparen: loss of ${ }^{18} \mathrm{O}$ enrichment at the ether site when the ozonides are mass analyzed is not recovered by ${ }^{18} \mathrm{O}$ enrichment at the peroxide site. It must arise from some other effect such as discussed above implying that caution should be ezercised when mass analyzing ozonides of this type.

Placing these results in a larger framework, the lack of evidence for peroxidic incorporation in this system and most others ${ }^{10,11}$ and the recent revision of the Criegee mechanism ${ }^{12}$ rationalizing much stereochemical data remove considerable support fcr competition by an aldehyde interchange mechanism. ${ }^{3}$ Another basis for that hypothesis
was the ${ }^{18} \mathrm{O}$ studies on the ozonide produced in the isobu-tyraldehyde-diisopropylethylene system. ${ }^{13}$ It is interesting to note that the mass spectral method of analysis and the estimated peroxy ${ }^{18} \mathrm{O}$ enrichments overall in that work are similar to that first discussed by us in ref 2 . Therefore it is attractive to extrapolate our present results to that system also whereupon the main isotopic evidence for peroxidic incorporation (and the aldehyde interchange pathway) would be removed. ${ }^{14}$

Experimental Section

The preparation of the ${ }^{18} \mathrm{O}$-labeled ozonides and determination of their ${ }^{18} \mathrm{O}$ content has been described elsewhere. ${ }^{2}$
$\mathrm{Ph}_{3} \mathrm{PO}$. Pure $\mathrm{Ph}_{3} \mathrm{PO}$ was obtained by passing ozone into a saturated solution of $\mathrm{Ph}_{3} \mathrm{P}$ in heptane at room temperature followed by recrystallization. The mass spectrum and melting point were used for identification.

Ozonide Reduction with $\mathbf{P h}_{3} \mathbf{P}$. The procedure in the literature was employed. ${ }^{5-7}$ Heptane was the solvent. Because of the small amounts of samples, transfers on a vacuum line were convenient. The reaction proceeded for $6-8 \mathrm{~h}$ followed by isolation of $\mathrm{Ph}_{3} \mathrm{PO}$ and mass analysis.
Mass Spectra. An AEI MS-902 mass spectrometer was used with ionizing voltage of 70 V and source temperature of about $175-200^{\circ} \mathrm{C}$. Direct introduction of the samples was employed and the vapor pressures were sufficient to easily obtain intense spectra.

Acknowledgments. We are grateful to Professor R. W. Murray for discussions and the suggestion that the $\mathrm{Ph}_{3} \mathrm{P}$ reduction procedure might clarify the question of peroxidic incorporation. The authors are grateful to the National Science Foundation and the donors of the Petroleum Researci Fund, administered by the American Chemical Society, for the support of this work.

Registry No. $-\mathrm{Ph}_{3} \mathrm{PO}, 791$-28-6; $\mathrm{Ph}_{3} \mathrm{P}, 603-35-0$; ozone, 10028-15-6; methylisopropylethylene ozonide- ${ }^{18} \mathrm{O}, 57719-20-7$.

References and Notes

(1) P. R. Story, C. E. Bishop, J. R. Burgess, R. W. Murray, and R. D. Youssefyeh, J. Am. Chem. Soc., 90, 1907 (1968).
(2) R. P. Lattimer and R. L. Kuczkowski, J. Am. Chem. Soc., 96, 6205 (1974).
(3) (a) P. R. Story, R. W. Murray, and R. D. Youssetyeh, J. Am. Chem. Soc., 88, 3144 (1966); (b) R. W. Murray, R. D. Youssefyeh, and P. R. Story, itid., 89, 2429 (1967).
(4) G. M. Klopman and C. M. Joiner, J. Am. Chem. Soc., 97, 5287 (1975).
(5) O. Lorenz and C. P. Parks, J. Org. Chem., 30, 1976 (1965).
(6) O. Lorenz, Anal. Chem., 37, 101 (1965).
(7) J. Carles and S. Fliszàr, Can. J. Chem., 47, 1113 (1969).
(8) Attack at the peroxidic site has been recently confirmed using the technique ${ }^{9}$ of labeling specifically at the peroxide site. R. W. Murray and D. P Higley, private communication.
(9) R. W. Murray and D. P. Higley, J. Am. Chem. Soc., 95, 7886 (1973).
(10) S. Fliszàr and J. Carles, J. Am. Chem. Soc., 91, 2637 (1969).
(11) C. W. Gillies, R. P. Lattimer, and R. L. Kuczkowski, J. Am. Chem. Soc., 95, 1536 (1974).
(12) R. P. Lattimer, R. L. Kuczkowski, and C. W. Gillies, J. Am. Chem. Soc., 98, 348 (1974).
(13) R. W. Murray and R. Hagen, J. Org. Chem., 36, 1103 (1971).
(14) The isobutyraldehyde-diisopropylethylene system is being currently reexamined on this point. R. W. Murray and D. P. Higley, private communication.

Communications

Synthesis of 6-[8'-(Z)-Pentadecenyl)salicylic Acid, "Anacardic Acid Monoene" (Ginkgolic Acid)

Summary: 3-Fluoroanisole has been used in a novel aryne type reaction with the lithium derivative of (OH -protected) 7 -chloroheptan-1-ol and subsequent further reaction steps for the synthesis of 6 -[8^{\prime}-(Z)-pentadecenyl]salicylic acid.

Sir: By means of a novel aryne synthesis the Z monoene of the $\mathrm{C}-15$ anacardic acid series (ginkgolic acid, " "anacardic acid monoene") ($\mathrm{I}, \mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{15} \mathrm{H}_{29}$) has been synthesized. Anacardic $\operatorname{acid}^{2}\left(\mathrm{I}, \mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{15} \mathrm{H}_{31-n}, n=0,2\right.$, 4,6) occurs widely as the major phenolic component in $A n$ acardium occidentale and is a precursor of the industrially useful cardanol ${ }^{3}$ formed by thermal decarboxylation. Similar substances are anagigantic $\operatorname{acid}^{4}\left(\mathrm{I}, \mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\right.$ $\mathrm{C}_{11} \mathrm{H}_{23}$), pelandjauic acid ${ }^{5}\left(\mathrm{I}, \mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{17} \mathrm{H}_{35-n}, n=\right.$ $0,2,4,6$), hydroginkgolinic acid $^{6}\left(\mathrm{I}, \mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{14} \mathrm{H}_{29}\right.$), and frutescin ${ }^{7}$ ($\mathrm{I}, \mathrm{R}=\mathrm{Me} ; \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{C}=\mathrm{CC} \equiv \mathrm{CCH}_{3}$), one of five related structures. 1,7-Heptanediol was converted into 7 -chloroheptan-1-ol with hot concentrated hydrochlcric acid. ${ }^{8}$ Interaction with ethyl vinyl ether in the presence of p-toluenesulfonic acid gave the ethyl 7-chloroheptyl acetal of acetaldehyde which reacted with lithium at 0° and subsequently with 3 -fluoroanisole to yield after carbonation ${ }^{9}$ and acid-catalyzed methanolysis, followed by selective methylation (ethereal diazomethane at 0°), methyl 6(7^{\prime} hydroxyheptyl) salicylate O-methyl ether (II, $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$; $\mathrm{R}^{\prime}=\mathrm{OH}$), accompanied by the diphenyl compound III, ${ }^{10}$

I

II

III
and a negligible proportion of the isomeric product of II (resulting from the reverse addition of the alkyllithium ${ }^{11}$). Simultaneous demethylation and bromide formation occurred by the action of boron tribromide in dichloromethane (at -80° to 0°) and 6-(7^{\prime}-bromoheptyl)salicylic acid (II, R $=R^{\prime}=H ; R^{\prime \prime}=B r$) was formed. Selective reesterification with ethereal diazomethane gave the phenolic methyl ester ${ }^{12}$ which underwent nucleophilic substitution with excess lithium 1 -octyne (from n-butyllithium and 1 -octyne) in tetrahydrofuran-hexamethylphosphoric triamide to give methyl 6-(8'-pentadecynyl)salicylate (II, $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}$ $=\mathrm{Me} ; \mathrm{R}^{\prime \prime}=\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{13}$) having the expected chromatographic (GLC, TLC) and spectroscopic properties (${ }^{\circ} \mathrm{H}$ NMR, ir). ${ }^{13}$ Selective hydrogenation with palladium/barium sulfate in ethyl acetate containing quinoline ${ }^{14}$ gave methyl 6-[8'-(Z)-pentadecenyl]salicylate identical, chromatographically and spectroscopically, with methyl "anacardate monoene" (II, R $=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{Me} ; \mathrm{R}^{\prime \prime}=$ $\mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{13}$). Hydrolysis with dilute ethanolic potassium hydroxide afforded "anacardic acid monoene ${ }^{1}$ " (I, R = $\left.\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{15} \mathrm{H}_{29}\right)$, identical with the natural product ${ }^{15}\left({ }^{1} \mathrm{H}\right.$ NMR, ir, GLC, argentation TLC).

Supplementary Material Available. Experimental analysis (6 pages). Ordering information is given on any current masthead page.

References and Notes

(1) B. Loev and C. R. Dawson, J. Am. Chem. Soc., 80, 643 (1958); S. Furukawa, Sci. Pap. Inst. Phys. Chem. Res., 24, 320 (1934).
(2) (a) P. T. Izzo and C. R. Dawson, J. Org. Chem., 15, 707 (1950); (b) V. J. Paul and L. M. Yeddanapalli, J. Am. Chem. Soc., 78, 5675 (1956); (c) J. L. Gellerman and H. Schlenk, Anal. Chem., 40, 739 (1968).
(3) D. Wasserman and C. R. Dawson, Ind. Eng. Chem., 37, 396 (1945).
(4) N. K. Sharma and V. N. Sharma, Indian J. Chem., 4, 304 (1966).
(5) J. A. Lamberton, Aust. J. Chem., 12, 234 (1959).
(6) F. .i. Fư. T.-C. Yu, W.-L. Sung, Y. F. Jai, and N.C. Sun, Hua Hsueh Hsueh Pao, 28, 52 (1964); Chem. Abstr., 60, 1634 (1964).
(7) FiZRohtmann and K. M. Kleine, Chem. Ber., 95, 602 (1962).
(8) G. M. Bennett and A. N. Mosses, J. Chem. Soc., 1697 (1931). The addition of cuprous chloride is unnecessary: T. D. Perrine, J. Org. Chem., 18, 1356 (1953); W. R. Coleman and W. G. Bywater, J. Am. Chem. Soc., 66, 1821 (1944).
(9) A. A. Durrani and J. H. P. Tyman, Chem. Ind. (London), 762 (1972). 4Fluoroanisole has given an isomer and 2-fluoroanisole has also given similar substances to II. H. Gilman, W. Langham, and F. W. Moore, J. Am. Chem. Soc., 62, 2327 (1940), have reported only the isolation of 2-methoxy-5-fluorobenzoic acid (13\%) from 4-fluoroanisole and n-butyllithium. The trityl ether of 7-chloroheptanol was used in the expectation that the weakly acidic α proton of the acetal would interfere as do the benzylic protons of aromatic acetals. Interaction was not observed.
(10) The proportion of III to II was dependent on the chloro compound:3-fluoroanisole mole ratio. With a mole ratio of $2.245(\%)$, the proportion of III to II was 3.73, and with a mole ratio of $1.252(\%)$, it was 1.35 . It is believed that RLi formation is proportional to the RCI present. II and III were inseparable by adsorption TLC but readily separable by GLC (230°, SE-52).
(11) J. H. P. Tyman and A. A. Durrani, Tetrahedron Lett., 4839 (1973).
(12) The reported simultaneous methylation of the phenolic group (J. L. Gellerman and H . Schenk) could not be confirmed with ethereal diazomethane at 0°. 3-(7'-Bromoheptyl)phenol was likewise unaffected.
(13) The $\mathrm{CO}_{2} \mathrm{Me}$ group was not attacked. The main required product was accompanied by an unidentified impurity with a slightly lower R_{f} value (TLC) which was separated preparatively.
(14) J. H. P. Tyman and S. W. D. Odle, Chem. Ind., (London) 88 (1975). A small proportion of the E isomer, $\nu_{\max } 960 \mathrm{~cm}^{-1}$, was removed by argentation TLC.
(15) J. H. P. Tyman and N. Jacobs, J. Chromatogr., 54, 83 (1971).

John H. P. Tyman
School of Chemistry, Brunel University Uxbridge, Middlesex, England

Received June 12, 1975

A 2,6-Methano-3-benzazocine Related to the Thebaine Diels-Alder Adduct Derivatives

Summary: A novel ring opening of a $1,2,3,4,4 \mathrm{a}, 5,10,10 \mathrm{a}-$ octahydro-2,5-methanobenzo[g]quinolin-3-yl methyl ketone is the key step of a stereoselective synthesis of a 1,2,3,4,5,6-hexahydro-2,6-methano-3-benzazocine possessing an $11 \beta-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{OH})\left(\mathrm{CH}_{3}\right)_{2}$ fragment.

Sir: The Diels-Alder adduct of thebaine and 3-buten-2-one leads to the most potent analgesics and narcotic antagonists (1) known. ${ }^{1}$ A unique structural feature of these molecules is the carbinol functionality at position 7 . In view of the clinical utility of pentazocine (2) as an analgesic ${ }^{2}$ it was of considerable interest to devise a synthesis of a 2,6 -meth-ano-3-benzazocine to which is attached a $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ $\mathrm{C}(\mathrm{OH}) \mathrm{RR}^{\prime}$ fragment at position 11β (e.g., 9a).

2

Of several reported ${ }^{3}$ syntheses of this ring system; the May and Fry extension of the Grewe morphinan synthesis seemed most amenable to modification in order to achieve this goal. Specifically, since 1,2-dihydropyridines have been observed to react with a varitty of dienophiles, ${ }^{4}$ the $1,2-$ dihydropyridine obtained from the reaction of 4 -ethyl-1methylpyridinium iodide and benzylmagnesium chloride was treated with ethyl acrylate in re-luxing benzene to give ethyl 3-benzyl-8-ethyl-2-methyl-2-azabicyclo[2.2.2]oct-7-ene-6-carboxylate (3), isolated as its hydrochloride salt in 30% overall yield. ${ }^{5}$ The gross structure of 3 was established by a study of the spin decoupled $100-\mathrm{MHz}$ NMR spectrum of the base. ${ }^{6}$ The configuration of $\mathrm{C}-6$ in 3 is unimportant in the present context as this carbon will eventually surrender its asymmetry. Note, howəver, that C-3 and C-4 in 3 possess the same relative configurations as $\mathrm{C}-2$ and $\mathrm{C}-11$, respectively, in 9a; thus the conversion of $3 \rightarrow 9 \mathrm{a}$ would constitute a stereospecific synthesis of the latter.

Treatment of 3 with anhydrous HF at room temperature for 24 h gave ethyl 5 -ethyl-1-methyl-1,2,3,4,4a,5,10,10a-octahydro-2,5-methanobenzo $[g]$ quinoline-3-carboxylate (4a), isolated as its hydrochloride sa.t in 90% yield. Saponification of $\mathbf{4 a}$ to the acid $\mathbf{4 b}$ follcwed by reaction with $\mathrm{CH}_{3} \mathrm{Li} / \mathrm{Et}_{2} \mathrm{O}$ gave the ketone 4 c .

Transformation of 4 c to 7 could conceivably be accomplished by an acid-catalyzed retro-Mannich reaction of the β-amino ketone system follow ϵ d by reduction of the intermediate iminium cation 5. A A analogous transformation $\left(\mathrm{R}_{\mathrm{a}} \mathrm{CONR}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{NR}_{\mathrm{c}} \mathrm{R}_{\mathrm{d}} \rightarrow \mathrm{R}_{\mathrm{a}} \mathrm{CONHR}_{\mathrm{b}}+\mathrm{CH}_{3} \mathrm{NR}_{\mathrm{c}} \mathrm{R}_{\mathrm{d}}\right)$ has been observed using the constant-boiling liquid salt trimethylammonium formate [TMAF, $5 \mathrm{HCOOH} \cdot 2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}$] as the acidic reducing agent. ${ }^{7}$ Heating 4 c in TMAF for 15 \min at $150-160^{\circ}$ gave two corr pounds which were isolated by fractional crystallization of their hydrochloride salts in yields of 58 and 11%, respectively. The major product was assigned the 3,5-ethenobenz) [g]quinoline structure 10 based on its elemental analysis and spectral properties. ${ }^{8}$ This compound presumably ar ses via a retro-Michael reaction of the β-amino ketone system of 4 c to give the intermediate 6 , followed by double-bond isomerization and condensation of the amino and kesone functions to give the intermediate 8 . Finally reduction of 8 gives 10 . This mechanism is speculative since neither of the intermediates 6 or 8 was actually observed.

The minor product was assigned structure 7 based on its elemental analysis and spectral properties, ${ }^{9}$ using $9 \mathbf{b b}^{10}$ as an NMR model compound. ${ }^{11}$ since the retro-Michael reaction leading to $\mathbf{1 0}$ presumably required the presence of a

3
$\begin{aligned} 4 \mathrm{a}, \mathrm{R} & =\mathrm{OC}_{2} \mathrm{H}_{5} \\ \mathrm{~b}, \mathrm{R} & =\mathrm{OH}\end{aligned}$
c, $\mathrm{R}=\mathrm{CH}_{3}$
retro-Michael

6

7
$\downarrow \mathrm{CH}_{3} \mathrm{Li}$

$9 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$

10
b, $\mathrm{R}=\mathrm{CH}_{3}$
base, experimental conditions free of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ were sought. It was found that treatment of $4 c$ with excess formic acid in mesitylene at $115-120^{\circ}$ for 24 h increased the yield of 7 to 65%. Finally, 7 reacted with $\mathrm{CH}_{3} \mathrm{Li} / \mathrm{Et}_{2} \mathrm{O}$ to produce 9a which was isolated as its $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ salt in 38% yield.

Compounds 7 and 9 a were screened for analgesic activity using the acetyl choline writhing procedure ${ }^{12}$ and both were found to be 40% as potent as morphine. The synthesis and analgesic evaluation of several compounds related to 7 and $9 a$ are in progress and the results will appear in the full paper.

Acknowledgment. We wish to thank Dr. S. D. Clemans for his aid with the spectral data and Mrs. A. K. Pierson for the biological measurements.
Supplementary Material Available. Appendix-Experimental Section (7 pages). Ordering information is given on any current masthead page.

References and Notes

(1i K. W. Bentley and D. G. Hardy, J. Am. Chem. Soc. 89, 3267 (1967); K. W. Bentley, D. G. Hardy, and B. Meek, ibid., 89, 3273 (1967); K. W. Bentley and D. G. Hardy. Ibid., 89, 3281 (1967); J. W. Lewis. Adr. Biochem. Psychopharm., 8 (1973).
(2i S. Archer, N. F. Albertson, L. S. Marris, A. K. Pierson, and J. G. Bird, J. Med. Chem., 7, 123 (1964).
(3) E. L. May and J. G. Murphy, J. Org. Chem., 20, 257 (1955); E. L. May and E. M. Fry, ibid., 22, 1366 (1957); E. M. Fry and E. L. May, ibid., 26, 2592 (1961); E. M. Fry, ibid., 28, 1869 (1963); K. Kanematsu, M. Takeda, A. E. Jacobson, and E. L. May, J. Med. Chem., 12, 405 (1969); H. Henecka and H. Schubert, British Patent 1078 286. For the cyclization
step see French Patent 1484542 or Canadian Patent 841616 ; P. A. J. Janssen, Adv. Biochem. Psychopharm., 8 (1973); T. Oh-ishi, A. E. Jacobson, P. S. Wilson, H. J. C. Yeh, and E. L. May, J. Org. Chem., 39, 1347 (1974); S. I. Sallay, Abstracts, 167th National Meeting of the American Chemical Society, Los Angeles, Calif., April 1974, No. MEDI 44.
(4) G. Büchi, D. L. Coffen, K. Kocsis, P. E. Sonnet, and F. E. Ziegler, J. A.n Chem. Soc., 88, 3099 (1966).
(5) All new compounds gave satisfactory combustion analyses.
(6) Spectra: NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 7.4-7.0(5 \mathrm{H}), 6.1(1 \mathrm{H}, \mathrm{d}), 4.1(2 \mathrm{H}$ q), $3.6(1 \mathrm{H}$, dd), $3.1(1 \mathrm{H}, \mathrm{m})$, 2.8-2.0 $(9 \mathrm{H}), 2.0-0.8(8 \mathrm{H})$; ir $(\mathrm{KBr}, \mathrm{HCl}$ salt) $2940,2440,1725,1650,1198,736,687 \mathrm{~cm}^{-1}$.
(7) M. Sekiya and Keiichi Ito, Chem. Pharm. Bull. (Tokyo), 12, 677 (1964).
(8) Spectra: NMR $\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta 7.3-6.8(4 \mathrm{H}), 6.0-5.4(2 \mathrm{H}), 3.5-2.6$ (2 H), 2.4-1.2 (11 H), $1.0(3 \mathrm{H}, \mathrm{d}), 0.5(3 \mathrm{H}, \mathrm{t})$; ir ($\mathrm{KBr}, \mathrm{HCl}$ salt) 29 CO. 2640, 1493, 1140, 999, 757, 730, $698 \mathrm{~cm}^{-1}$.
(9) Spectra: NMR $\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta 7.3-6.8(4 \mathrm{H}), 3.4-2.2(10 \mathrm{H}), 2.2-2.1$ $(4 \mathrm{H}), 2.1-1.5(4 \mathrm{H}) .1 .2-0.6(5 \mathrm{H})$; ir ($\mathrm{KBr}, \mathrm{HCl}$ salt) $2930,2670,17 \mathrm{C} 8$, $756,726 \mathrm{~cm}^{-1}$.
(10) A sample of this compund was kindly supplied by Dr. N. F. Albertson, who prepared it according to the procedure described by E. M. Fry, J Org. Chem., 28, 1869 (1963).
(11) Spectra: NMR $\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta 7.3-6.9(4 \mathrm{H}), 3.4-2.6(3 \mathrm{H}), 2.6-1.5$ (9 H), 1.3-1.6 (7 H).
(12) H. O. J. Collier, E. Dineen, C. A. Johnson, and C. Schneider, Brit. J. Pharmacol. Chemother. 32, 295 (1968).

William F. Michne
Sterling-Winthrop Research Instituie Rensselaer, New York 12144
Received October 7, 1975

Improved Procedures for the Reductive Coupling of Carbonyls to Olefins and for the

Reduction of Diols to Olefins

Summary: Active Ti^{0} powder is a superior reagent for coupling carbonyls to olefins and for reducing diols to olefins.

Sir: We recently reported that ketones, on treatment with a low-valent titanium reagent prepared from LiAlH_{4-} TiCl_{3}, undergo reductive dimerization to produce coupled olefinic products in high yield. ${ }^{1}$ Simultaneously, other workers found that low-valent titanium reagents prepared from $\mathrm{Zn}-\mathrm{TiCl}_{4}{ }^{2}$ or $\mathrm{Mg}-\mathrm{TiCl}_{3}{ }^{3}$ effect similar reductive couplings. Interestingly enough, however, whereas we found that both saturated aliphatic ketones and aromatic ketones couple to olefins, these other workers reported success only with aromatic ketones. Saturated aliphatic ketones were observed to undergo only pinacol dimerization to diols without subsequent deoxygenation. Although others have repeated our reactions, ${ }^{4}$ and indeed tetraisopropylethylene, one of the more hindered olefins yet synthesized, has been made by two groups ${ }^{5,6}$ using our method, we have nevertheless observed since our publication that the coupling of saturated aliphatic ketones to produce olefins can be erratic. Successful results seem to be dependent on the specific batches of reagents used.

We have expended considerable effort in attempts to overcome this problem, and we now report an improved procedure. We have found that an active Ti^{0} metal powder, prepared by Rieke's general method, ${ }^{7}$ smoothly couples saturated ketones and aldehydes to olefins. In a representative reaction, $\mathrm{TiCl}_{3}(1.54 \mathrm{~g}, 10.0 \mathrm{mmol})$ was slurried under nitrogen in 50 ml of dry tetrahydrofuran. Potassium pieces ($1.25 \mathrm{~g}, 32 \mathrm{mmol}$) were added and the mixture was refluxed for 45 min . Cyclohexanone ($0.25 \mathrm{~g}, 2.5 \mathrm{mmol}$) was added in 5 ml of THF and the reaction was refluxed 12 hr . After cautious quenching of the reaction with ethanol, filtration through sintered glass and evaporation of solvent provided the coupled olefin in 85% yield. We have repeated this reaction with different batches of TiCl_{3} from three

Table I. Reductive Coupling of Some Carbonyl Compounds to Olefins with Active $\mathrm{Ti}^{\mathbf{0}}$

$$
\mathrm{R}_{2} \mathrm{C}=\mathrm{O}+\mathrm{Ti}^{0} \rightarrow \mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2}
$$

Cyclopentanone (1)
Cyclohexanone (2)
Cycloheptanone (3)
Cyclooctanone (4)
Cyclododecanone (5)
Adamantanone (6)
Cholestanone (7)
Disopropyl ketone (8)
Valeraldehyde (9)
suppliers and have found it to be reproducible. Some of our results are given in Table I.
Perhaps the most interesting entries in Table I are the last three. Diisopropyl ketone gives tetraiisopropylethylene (40%) in a yield much higher than that reported ${ }^{5,6}$ using $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{3}$ as the coupling agent; so it is clear that quite hindered ketones can be made in acceptable yield. Aldehydes also couple in good yield, but a mixture of doublebond isomers is formed. A control experiment, in which pure cis-5-decene was submitted to coupling conditions, indicated that no isomerization of product occurs after the reaction. Intramolecular dicarbonyl coupling to form rings is also possible, although, in the case indicated, the yield is only moderate.

Since pinacol dianions are formed as intermediates in the coupling reaction, ${ }^{1-3}$ one would expect Ti^{0} to reduce other 1,2 diols to olefins, and we have found this to be the
case. It is not necessary to preform the dianions since free diols reduce directly (presumably the dianions are formed in situ by reaction with Ti^{0}). Some of our results are given in Table II.

Several of the examples require special comment, and provide information which bears on the reaction mechanism. Both the meso and $d l$ d ols from 5 -decene reduce in good yield, but neither reaction is stereospecific. Both the trans diequatorial diol 16 and the trans diaxial diol 18 reduce in good yield, although diol 20 is not reduced.

We wish to reserve a detailed discussion of our mechanistic studies for a full paper to be published later. We simply point out now, however, that all of our data are consistent with the suggestion that a five-membered ring intermediate is formed and then zollapses in a nonconcerted manner.

Diaxial glycol 18 can form the required intermediate via a boat conformer, but glycol 20 cannot and is therefore unreactive.

In summary, we have develc.ped new procedures for the reductive coupling of saturated ketones ${ }^{8}$ and aldehydes to olefins and for the reduction of 1,2 diols to olefins. These reactions may well be of considərable use in synthesis.

Acknowledgment is made to the donors of the Petroleum Research Fund, administesed by the American Chemical Society, for the support of this research.

References and Notes

(1) J. E. Mc Murry and M. P. Fleming, J. Am. Chem. Soc., 96, 4708 (1974).
(2) T. Mukaiyama, T. Sato, and J. Hanne, Chem. Lett., 1041 (1973).
(3) S. Tyrlik and I. Wolochowicz, Bull. Soc. Chim. Fr., 2147 (1973).
(4) H. Wynberg, K. Lammertsma, and L A. Hulshot, Tetrahedron Lett., 3749 (1975).
(5) R. F. Langler and T. T. Tidwell, Tetrahedron Lett., 777 (1975).
(6) D. S. Bomse and T. H. Morton, Tetrahedron Lett., 781 (1975).
(7) R. D. Rieke and P. M. Hudnall, J. Arr. Chem. Soc., 94, 7178 (1972).
(8) We have not carried out a careful study of the reduction of aryl ketones with Ti°, because the reaction can te carr ed out so easily with other titanium reagents (ref 1-3). In the cases we have studied, however (9 -fluorenone, benzaldehyde), we observed considerable overreduction of the products to saturated hydrocarbons.

John E. Mc Murry.* Michael P. Fleming
Thimann Laboratories, University of California
Eanta Cruz, California 95064
Received December 5, 1975

Trimethylsilyl 2-Nitrobenzenesulfenate (2-Nitrobenzenesulfenic Acid)

Summary: Trimethylsilyl 2-nitrobenzenesulfenate, prepared by heating N-benzylid $\because n e-2$-nitrobenzenesulfinamide with trimethylsilyl chlorid $\boldsymbol{\sim}$, is a convenient, high yield source of 2 -nitrobenzenesulfenic acid and 2 -nitrobenzenesulfenate ion when treated with alcohol and alkoxides, respectively.

Sir: Sulfenic acids are believed to be important intermediates in a variety of organic sulfur reactions including biological transformations. ${ }^{1}$ However, their high reactivity and the lack of mild methods to prepare them has hindered a systematic study of their reactions and properties. Of the aromatic sulfenic acids, 2-nitrobenzenesulfenic acid (1) has been the most studied. ${ }^{2}$ It is generally believed to be formed in the neutral or alkaline hydrolysis of sulfenyl halides, ${ }^{2 \mathrm{a}, \mathrm{c}}$ disulfides, ${ }^{2 \mathrm{~h}}$ and sulfenate esters. ${ }^{2 \mathrm{e}-\mathrm{g}}$ The major products isolated in these reactions are disulfide (ArSSAr), thiolsulfonate ($\mathrm{ArSO}_{2} \mathrm{SAr}$), and sulfinic acid ($\mathrm{ArSO}_{2} \mathrm{H}$). ${ }^{2}$ Under certain conditions, orthanilic acid is also obtained. ${ }^{2 a, c, g}$ These products are all believed to involve initial formation of the sulfenic acid, 1 , with the disulfide and thiolsulfonate being formed by reaction of the solvent with the intermediate thiolsulfinate $[\mathrm{ArS}(\mathrm{O}) \mathrm{SAr}] .{ }^{2-4}$ As a consequence of the methods used to generate 1 , neither the sulfenic acid nor the thiolsulfinate has ever been isolated.

Recently, we reported that the thermolysis of N-alkylidenearenesulfinamides is a useful method for generating arylsulfenic acids under mild nonaqueous conditions. ${ }^{3}$ We wish to report the use of this method to prepare trimethylsilyl 2-nitrobenzenesulfenate (2) which when treated with alcohol provides a convenient high-yield source of 1 . The reactions of 1 prepared in this way are reported.

Compound 2 is a bright-orange liquid obtained in 75$80 \%$ yield by heating $3^{3,5}\left(\mathrm{mp} 103-104^{\circ}\right)^{6}$ with trimethylsilyl chloride-hexamethyldisilazane ($2: 1)^{1 \mathrm{~d}}$ and is the first example of the trapping of an unstable sulfenic acid by these reagents. The similarity of the ir and NMR spectra of 2 with that of methyl 2 -nitrobenzenesulfenate ${ }^{7}$ is evidence for the proposed structure. ${ }^{8}$

When 2 was treated with 4 equiv of ethanol in the presence of methyl propynoate, $4\left(\mathrm{mp} 153-154^{\circ}\right)^{6}$ was obtained in 82% yield confirming that 2 is an unequivocal, high-yield source of 1 . The formation of 1 from 2 in ethanol-waterHCl and ethanol-water mixtures gave orthanilic acid (5, $54-66 \%$) and 6 (mp $53-54^{\circ},{ }^{6} 15-20 \%$) as major products. Disulfide and thiolsulfonate were minor products. These conditions are similar to those in which 1 is believed to be formed from sulfenyl halides. ${ }^{2 \mathrm{a}, \mathrm{b}}$

4

5

6

The sequence of steps leading from 1 to 5 is unknown, although the ability of an o-nitro group to exchange its oxygens with an adjacent sulfur is well known. ${ }^{9}$ Hogg and Stewart have recently suggested that thiolate and sulfenate ions may be reducing agents in the rearrangement of 1 to 5. ${ }^{2 \mathrm{~B}}$ Under our conditions, however, this seems unlikely since disulfide was a minor product and sulfinic-sulfonic acids were not detected.

Ethyl 2-nitrobenzenesulfinate (6), previously undetected in the reactions of 1 in alcohols, is probably formed by nucleophilic attack of the solvent on the sulfinyl sulfur of the
intermediate thiolsulfinate. ${ }^{3}$ The isolation of 6 is further evidence in support of thiolsulfinate intermediates in the reactions of sulfenic acids.

When 2 was refluxed in absolute ethanol a 50% yield of 2 -amino-5-ethoxybenzenesulfonic acid (7) was obtained. ${ }^{6,10}$ This unusual product was identified by conversion with $48 \% \mathrm{HBr}$ to the phenol 8 ; an authentic sample of 8 was prepared from 9 as shown. The presence of both the nitro and

7

sulfenic acid functional groups are apparently required for the formation of 7 and may involve some intermediate on the reaction path between 1 and 5 . In addition to 7, 6 (15%) was also obtained.

Compound 2, is also a convenient source of sulfenate anion (ArSO^{-}). Treatment of 2 with ethanol-water-sodium hydroxide gave a blue solution ($\lambda_{\max } 588 \mathrm{~nm}$). The blue color, which has been attributed to the 2 -nitrobenzenesulfenate ion, ${ }^{2 f}$ rapidly faded and, after neutralization of the reaction mixture, gave disulfide ($10-16 \%$) and sulfinic acid $(33-40 \%)$ as principal products. Disulfide is the major product obtained when the sulfenate anion is generated from ethyl 2-nitrobenzenesulfenate ($2, \mathrm{X}=\mathrm{Et}$). ${ }^{2 f}$ Treatment of 2 in THF-water-sodium methoxide with methyl iodide gave the sulfoxide [$\mathrm{ArS}(\mathrm{O}) \mathrm{Me}, 19 \%$], sulfone [Ar $\mathrm{S}\left(\mathrm{O}_{2}\right) \mathrm{Me}, 20 \%$], and disulfide (30%). The disulfide and sulfone may be formed in a variety of ways from the thiolsulfonate and intermediate thiolsulfinate. ${ }^{2,3}$ The sulfoxide urdoubtedly results from the direct reaction of iodide with the sulfenate ion.

The lack of stability of the sulfenate ion in protic solvents most likely results from formation of the sulfenic acid which reacts further. ${ }^{2 f, g}$ In support of this argument is the stability of the sulfenate ion in aprotic media in which the blue color persisted for more than 6 h . The sulfenate ion was prepared by treatment of 2 with potassium tert-butoxide in benzene containing 18 -crown-6. Sulfoxide ($45-50 \%$), sulfone (5%), and disulfide ($30-35 \%$) were obtained when the reaction mixture was treated with methyl iodide. It is interesting to note that the 2 -nitrobenzenesulfenate anion
is considerably more stable than 1 . This is in sharp contrast with the azetidinesulfenic acid which has been isolated ${ }^{1 \mathrm{~d}}$ and its conjugate base which is reported to be very unstable. ${ }^{11}$

We are currently exploring other reactions of 1 and the sulfenate ion prepared by this method. The synthesis of other sulfenic acids by this procedure is also under investigation.

Acknowledgment. We thank Ms. Rita Vasta for obtaining the uv spectra of 2 . This investigation was supported in part by Public Health Service Research Grant No. CA-14341 from the National Cancer Institute.

References and Notes

(1) See, for example, (a) J. R. Shelton and K. E. Davis, Int. J. Sulfur Chem., 8, 205 (1973) (tert-butylsulfenic acid); (b) E. Block and J. O'Connor, J. Am. Chem. Soc., 96, 3929 (1974) (alkylsulfenic acids); (c) J. E. Baldwin, G. Hofle, and S. C. Choi, ibid., 93, 2810 (1971) (allylsulfenic acid): (d) T. S. Chou, J. R. Burgtorf, A. L. Ellis, S. R. Lammert, and S. P. Kukolja, ibid., 96, 1609 (1974) (penicillinsulfenic acid); (e) I. Ager, D. H. R. Barton, D. G. T. Greig, G. Lucente, P. G. Sammes, M. V. Taylor, G. H. Hewitt, B. E. Looker, A. Mowatt, C. A. Robson, and W. G. E. Underwood, J. Chem. Soc., Perkin Trans. 1, 1187 (1973) (penicillinsulfenic acid); (f) W. G. Filby, K. Gunther, and R. D. Penzhorn, J. Org. Chem., 38, 4070 (1973) (oxidation of thiols); (g) J. A. Bassham, A. A. Benson, L. D. Kay, A. Z. Harris, A. T. Wilson, and M. Calvin. J. Am. Chem. Soc., 76, 1760 (1954) (photosynthesis).
(2) (a) T. Zincke and F. Farr. Justus Liebigs Ann. Chem., 391, 57 (1914); (b) N. Kharasch in "Organic Sulfur Compounds", Vol. 1, N. Kharasch, Ed., Pergamon Press, New York, N.Y., 1961, Chapter 32; (c) N. Kharasch, W. King, and T. C. Bruice, J. Am. Chem. Soc., 77, 931 (1955): (d) R. M. Topping and N. Kharasch, J. Org. Chem., 27, 4353 (1962); (e) C. Brown and D. R. Hogg, Chem. Commun., 38 (1967); (f) D. R. Hogg and P. W Vipond, J. Chem. Soc. B, 1242 (1970); (g) D. R. Hogg and J. Stewart, J. Chem. Soc., Perkin Trans. 2, 43 (1974); (h) D. R. Hogg and A. Robert son. Tetrahedron Lett., 3783 (1974).
(3) F. A. Davis, A. J. Friedman, and E. W. Kluger, J. Am. Chem. Soc., 96, 5000 (1974).
(4) J. L. Kice and T. E. Rogers, J. Am. Chem. Soc., 96, 8009, 8015 (1974).
(5) F. A. Davis, W. A. R. Sleigeir, S. Evans, A. Schwartz, D. L. Goff, and R. Palmer, J. Org. Chem., 38, 2809 (1973).
(6) Satisfactory elemental analysis, ir, and NMR spectra were obtained.
(7) D. R. Hogg, J. H. Smith, and P. W. Vipond, J. Chem. Soc. C, 2713 (1968).
(8) Compound 2 has the following properties: bp 106-108 ${ }^{\circ}(0.05 \mathrm{~mm})$; ir (thin film) 1300 (S-O), $850(\mathrm{Si}-\mathrm{C})$; NMR (CDCl_{3}) $\delta 0.3$ (s, 9, CH_{3}), 7.7
 nm 242 ($\epsilon 4400$). Caution: an explosion of unknown origin occurred when a large quantity (i.e., $>30 \mathrm{~g}$) of 2 was distilled. No problem has been encountered in distilling $<7-\mathrm{g}$ quantities of 2.
(9) For a review of the pertinent literature, see F. A. Davis and R. P. Johnston II, J. Org. Chem., 37, 854 (1972).
(10) Compound 7 has the following properties: mp 275-276 ${ }^{\circ}$ (d); NMR (DMSO- d_{6}); $\delta 1.25(\mathrm{t}, 3, \mathrm{Me}), 4.03\left(\mathrm{q}, 2, \mathrm{CH}_{2}\right), 7.11(\mathrm{~m}, 3)$ and 7.80 (broad, 3, $\mathrm{NH}_{2}, \mathrm{SO}_{3} \mathrm{H}$)
(11) G. A. Koppel and S. Kukolja, J. Chem. Soc., Chem. Commun., 57 (1975).

Franklin A. Davis,* Arthur J. Friedman
Department of Chemistry, Drexel University
Philadelphia, Pennsylvania 19104
Received January 23, 1976

The EM-600 Mass Spectrometer could be the lowest-cost analytical instrument in your lab

Times are past when mass spectrometry was an esoteric and expensive analytical method. For under \$9,000, the Varian EM-600 puts mass spectrometry into your lab-right at your fingertips, where it does the most good.
The sample (liquid, gaseous or so id) is inserted in the heated batch inlet or direct probe, and the 'fingerprint' of the molecule unfolds with perfect repeatability at the touch of a pushbutton!
But just because the EM-600 is easy to operate, fits on only a few square eet of bench space, and coesn't need fancy maintenance procedures, it is not to be taken lightly. In fact, it's new performance specifications give it formidable analytical power for monitoring reactions, determining mo ecular weig tt , and elucidating the structure of a wide variety of organic chemicals.
The EM-600 grew up under tough conditions indeed: for years, it's been

Here's a sample spectrum from the EM-600: N-ethylmorpholine. For more performance details, please mail the coupon.
an open-access analytical workhorse in scores of colleges, where no instrument survives unless it is ruggedly built and sneers at abuse. With that kind of background, the EM-600 was bound to become the versatile, reliable analytical tool it is today.

Varian Associates

Instrument Division
611 トansen Way, Box D-070
Palo Alto, California 94303

Name

Institute/Company \qquad

Street

Cily \qquad

State, Zip \qquad
\qquad
MAG-117

... and your most useful one!

Oxidizing agents: Something old, something new

Pyridinium Chlorochromate

Corey and Suggs' have recently shown that pyridinium chlorochromate ($\mathbf{P C C}$), a stable crystalline reagent, readily oxidizes a variety of alcohols to the corresponding aldehydes and ketones in high yield under mild conditions. Yields of aldehydes and keto ees obtained with 1.5 molar equivalents of PCC are equal or superior to those obtained with Collins reagent (using a five- or six-fold excess). ${ }^{2}$

The oxidation is performed by suspending $\mathbf{P C C}(1.5 \mathrm{mmol})$ in methylene chloride (ca. 2 ml) and adding the alcohol (1 mmol in 0.5 to 1.5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After $1-2$ hours the oxidation is complete as evidenced by a precipitate of the black reduced reage:. Dilution with five volumes of a nhydrous ether, filtration of solid and evaporation of solvent give the product. Substrates containing acid labile groups may be oxidized by buffering the reaction mixture with powdered sodium acetate.
References:
11F.I Corey and JW Suggs. Terrahedron 1ent. 2647 (1975) 2) IC Collins. W W. Hess and F.J. Franck. ihid., 3363 (1968)

19,014-4 Pyridinium chlorochromate.
$.100 \mathrm{~g} \$ 7.00$
$500 \mathrm{~g} \$ 24.00$

Lead Tetraacetate

l.ead tetraacetate (LTA) is one of the most versatile oxidizing reagents known in organic chemistry because it reacts with a wide range of functional groups. The uses of ITA have been exteasively reviewed. ${ }^{4}$ A few highlights are presented below

Cleavage Reactions

The classical cleavage of vicinal glycols by I.TA to aldehydes and ketones has been used both for structure elucidation and for preparative purposes.' For example, n-butyl glyoxylate is ottained from the reaction of LTA and di-n-butyl D-tartrate. ${ }^{5}$

I.TA also cleaves vicinal diamines, vicinal amino alcohols, α-hydroxyacids, α-hydroxyaldehydes, α-hydroxyketones, and oxalic acid. ${ }^{1}$
Oxidation of Carboxylic Acids
Vicinal dicarboxylic acids are oxidized to alkenes witt LTA and pyridine in benzene as solvent at $50-60^{\circ}$ or in dimethyl sulfoxide or dioxane at room temperature. ' Dewar benzene has been prepared by
oxidation of the anhydride 1 ."

Geminal diacids are oxidized to ketones via the intermediate gem diacetates.'

Oxidative decarboxylation of monocarboxylic acids affords mixtures of alkenes and acetates. ' However, in the presence of cupric acetate, alkenes alone are obtained in good to excellent yield from primary and secondary acids. ${ }^{2}$ The addition of lithium chloride or oodine results in halodecarboxylation.' Thus, cis- and trans-4-tbutylcyclohexanecarboxylic acid give mixtures of the 4 -chloro isomers consistent with a free radical mechanism.
α-Acetoxylation of Carbonyl Compounds
Active methylene groups react with I.TA in benzene to give acetoxy derivatives; the reaction of LTA with ketones is catalyzed by boron trifluoride etherate.' Half esters of malonic acid are easily oxidized to the α-acetoxy derivatives. ${ }^{\text {a }}$

Oxidation of Amides

The oxidation of primary amides with I.TA parallels the Hofmann reaction and offers an alternate route to isocyanates. ${ }^{3}$

Oxidation of Amines

Primary amines are oxidized to nitriles in yields up to 60% via an aldimine intermediate. ${ }^{3}$ In contrast, tertiary amines containing one aromatic group are dealkylated to the secondary amine. ${ }^{3}$

Substitution of Methyl Groups

Oxidation of a steroid alcohol having a hydroxyl group strategically located for attack of an angular methyl group occurs with I.TA in benzene or better with an ITA-iodine combination. ${ }^{\prime}$

Aliphatic alcohols react to give substituted furan or pyran derivatives. ${ }^{4}$
I.TA has also been used to effect many other oxidations such as hydroquinones to quinones, thiols to disulfides or methyl sulfinates. and I-aminobenzotriazole to benzyne.'

Keferences:

1) Heser and Ficser. Reagens tor Organic Simthesii, I. 537: 2. 234: 3. 168: 4, 278 2) K.A Sheldon and I.K. Kochi. Organic Reactions. 19. 279 (1972).
2) IB B Sluark. Quarl Rel.. 25, 4(0) (1971)
3) MI Mihailovic and 2. Cekovic, Simehesis. 209 (1970)
4) I. I. Wolf and J. Weiplard. Org. Sin., Coll. I'ol II: 124 (1963)
5) I. F , an Tamelen and SP Pappas, J Amer. (hem Suc. 85. 3297 (196.3)

18,519-1 Lead tetraacetate ... $100 \mathrm{~g} \$ 8.00 ; 500 \mathrm{~g} \$ 24.00$

Aldrich Chemical Company, Inc.

Craftsmen in Chemistry

Corporate Offices:
Aldrich Chemical Co., Inc. 940 W. Saint Paul Ave.
Milwaukee, Wisconsin 53233
U. S. A.

Great Britain
Aldrich Chemical Co., Ltd.
The Old Brick yard, New Road Gillingham, Dorset SP8 4JL England

Belgium/
Continental Europe
Aldrich-Europe
B-2340 Beerse
Belgium

West Germany/ Continental Europe EGA-Chemie KG 7924 Steinheim am Albuch West Germany

[^0]: a In $5 \% \mathrm{CCl}_{4}$ at 25° downfield from internal $\mathrm{C}_{0} \mathrm{H}_{5} \mathrm{~F} .{ }^{b}$ Calculated from σ^{*}; see text. c Registry no. are, respectively, 28547 -

