the journal of Organic Chemistry

EDITOR-IN-CHIEF: FREDERICK D. GREENE

SENIOR EDITORS

Werner Herz

Tallahassere, Floridn

James A. Moore
L'muersily ul belawar.
Neleart, Inclawar.

Martin A. Schwartz
Flurida soate L'merail?

ASSISTANT EDITOR: Theodora W. Greene

ADVISORY BOARD

Robert A. Benkeser
John I. Brauman
Samuel Danishefsky
Stanton Ehrenson
David A. Evans

Neville Finch
Paul G. Gassman Ralph Hirschmann Donald M. Jerina Carl R. Johnson

William M. Jones
Jay K. Kochi
Albert I. Meyers
John G. Moffatt
Roy A. Olofson

Marvin L. Poutsma
Henry Rapoport William H. Saunders, Jr Martin F. Semmelhack William Sheppard

Robert V. Stevens
Barry M. Trost.
Nicholas J. Turro Earle Van Heyningen George W^{\prime}. Whitesides

EX-OFFICIO MEMBERS: George H. Coleman, ranibel Island F\%,uida

Published by the

AMERICAN CHEMICAL SOCIETY
 BOOKS AND JOURNALS DIVISION

D. H. Michael Bowen, Director; Marjorie Laflin, Assistant to the Director

Editorial Department: Charles R. Bertsch, Head; Marianne C. Brogan, Associate Head; Robert J. Palangio and Kenneth E. Phillips, Editorial Assistants

Magazine and Production Department: Bacil Guiley, Head
Research and Development Department: Seldon W. Terrant, Head

Advertising Office: Centcom, Ltd., 25 Silvan Road South, Westport, Conn. 06880.
(c) Copyright, 1977, by the American Chemical Society. No part of this publication may be reproduced in any form without permission in writing from the American Chemical Society.

Published biweekly by the American Chemical Society at 20th and Northampton Sts., Faston, Pa. 18042. Second class postage paid at Washington, D.C., and at additional mailing offices.

Editorial Information

Instructions for authors are printed in the first issue of each volume. Please conform to these instructions when submitting manuscripts.

Manuscripts for publication should be submitted to the Editor, Frederick D. Greene, at his Cambridge, Mass., address.

Correspondence regarding accepted papers and proofs should be directed to the Editorial Department at the address below.

Page charges of $\$ 70.00$ per page may be paid for papers published in this journal. Payment does not affect acceptance or scheduling of papers.

Bulk reprints or photocopies of individual articles are available. For information write to Business Operations, Books and Journals Division, at the ACS Washington address. Requests for permission to reprint should be directed to Permissions, Books and Journals Division, at the ACS Washington address.
The American Chemical Society and its Editors assume no responsibility for the statements and opinions advanced by contributors.

Subscription and Business Information

1977 subscription rates-including surface postage:

	Do- mestic	PUAS	Canada,
Foreign			

Air mail and Air freight rates are available from Membership \& Subscription Services, at the address below.

New and renewal subscriptions should be sent with payment to the Office of the Controller at the ACS Washington address. Changes of address must include both old and new addresses with ZIP code and a recent mailing label. Send all address changes to the Membership \& Subscription Services. Please allow 6 weeks for change to become effective. Claims for missing numbers will not be allowed if loss was due to failure of notice of change of address to be received in the time specicied if claim is dated, (a) North Anserica, mole than 80 days beyond issue
date, (b) all other foreign, more than one year beyond issue date; or if the reason given is "missing from files". Hard copy claims are handled by Membership \& Subscription Services.

Microfiche subscriptions are available at the same rates but are mailed first class to U.S. subscribers, air mail to the rest of the world. Direct all inquiries to Special Issue Sales at the ACS Washington address or call (202) 872-4554.

Single issues in hard crpy and/or microfiche are available from Special Issues Sales at the ACS Washington address. Current year $\$ 5.00$. Back issue rates available from Special lssues Sales. Back volumes are available in hard copy and/or microform. Write to Special Issues Sales at the ACS Washington address for fu:ther information. Microfilm editions of ACS periodical publications are available from volume 1 to the present. For further inf(rmation, contact Special Issues Sales at the ACS Washington address.

Supplementary material mentioned in the journal appears in the microfilm edition. Single copies may be ordered directly from Business Operations, Bouks and Journals Division, at the ACS Washington address.

		PUAS, Canada	Other Foreign
Microfiche	$\$ 2.50$	$\$ 3.00$	$\$ 3.50$
Photocopy			
1-7 pages	4.00	5.50	7.00
$8-20$ pages	5.00	6.50	8.00

Orders over 20 pages are available only on microfiche, 4×6 in., $24 \times$ negative, silver halide. Orders must state photocopy or microfiche if both are available. Full bibliographic citation including names of all authors and prepayment are required. Prices are subject to change.

Editoial Department
Am’rican Chemical Society
P.U. Bux 3330

Solumbus, Ot.io 4.250
(614) 421-6940, Ext. 3171

Membership \& Subscriytion Services
American Chemical Society
P.O. Box 33:37

Columbus, Ohio 43210
(614) 421-72.30

American Chemical Society
1155 16th St., N.W.
Washington, D.C. 20036
(202) 872-4600

mes samem or organic Chemistrý

Bruce Irwin Rosen and William P. Weber*	3463	Synthesis of 7,12-Benz $[a]$ anthraquinones via Diels-Alder Reaction of 1,4-Phenanthraquinones
Wayne B. Manning,* Joseph E. Tomaszewski, Gary M. Muschik, and Ronald I. Sato	3465	A General Synthesis of 1-, 2-, 3-, and 4-Substituted Benz[a]anthracene-7,12-diones
Masao Nakazaki,* Koji Yamamoto, Masayuki Ito, and Shigeo Tanaka	3468	Preparations of Optically Active [8][8]- and [8][10]-Paracyclophanes with Known Absolute Configurations
Sigeru Torii, ${ }^{*}$ Hideo Tanaka, and Yuichi Kobayasi	3473	Synthesis of Methyl dl-Jasmonate and Its Related Compounds from Methyl (E)- and (Z)-4,4-Dimethoxy-2-butenoates
Arnold R. Taylor, Gary W. Keen, and Edmund J. Eisenbraun*	3477	Cyclodimerization of Styrene
E. C. Ashby* and A. B. Goel	3480	Preparation and Properties of RMgH and $\mathrm{RMg}_{2} \mathrm{H}_{3}$ Compounds
Neil J. Coville and Eberhard W. Neuse*	3485	Oxidative Cyclodehydrogenation of Aromatic Bis(o-aminoanils)
Nicholas A. Cortese and Richard F. Heck*	3491	Palladium-Catalyzed Reductions of Halo- and Nitroaromatic Compounds with Triethylammonium Formate
Michael P. Doyle, ${ }^{*}$ Joseph F. Dellaria, Jr., Bernard Siegfried, and Stephen W. Bishop	3494	Reductive Deamination of Arylamines by Alkyl Nitrites in N, N-Dimethylformamide. A Direct Conversion of Arylamines to Aromatic Hydrocarbons
Brian T. Keen, Robert J. Radel, and William W. Paudler*	3498	1,2,4-Triazine 1-and 2-Oxides. Reactivities toward Some Electrophiles and Nucleophiles
Frank S. Abbott,* James E. Coates, and Katsuji Haya	3502	2,4-Diaryl-3-dimethylaminothietane 1,1-Dioxides. Synthesis, Configuration, and Stability
James E. Coates and Frank S. Abbott*	3506	2,4-Diarylthiete 1,1-Dioxides. Synthesis, Thermolysis Studies, and Addition Reactions
Nicholas R. Beller, Douglas C. Neckers,* and Eleftherios P. Papadopoulos	3514	Photochemical Synthesis of Eenzo[f]quinolines
John R. DeMember,* Richard B. Greenwald, and David H. Evans	3518	Carbon-13 Nuclear Magnetic Resonance Studies of Sulfur Heterocycles. Evidence for Intramolecular 1,3 Electronic Interaction in 3,3-Disubstituted $2 H$-Tetrahydrothiapyran-1-N-p-tosylsulfimides
Howard Alper* and Hang-Nam Paik	3522	New Effective Desulfurization Reagents
George R. Newkome, ${ }^{*}$ Joe D. Sauer, and S. K. Staires	3524	Chemistry of Heterocyclic Compounds. 25. Selective Metalation of the Pyridine Nucleus at the 3-Position
Borzoo Modarai* and Ezatollah Khoshdel	3527	α-Halogenation of Certain Ketones
Marvin Charton	3531	Steric Effects. 9. Substituents at Oxygen in Carbonyl Compounds
Marvin Charton	3535	Steric Effects. 10. Substituents at Nitrogen in Carbonyl Compounds
Robert B. Brundrett* and Michael Colvin	$\begin{array}{r} 3538 \\ 318 \end{array}$	Chemistry of Nitrosoureas. Decomposition of 1,3-Bis(threo-3-chloro-2-butyl)-1-nitrosourea and 1,3-Bis(erythro-3-chloro-2-butyl)-1-nitrosourea . 2521

STILL THE BEST AND THE MOST FOR THE LEAST

You are probably aware of the many applications crown ethers and related macrocycles have as catalysts in organic reactions and in the separation and quantitative determination of alkali metals, alkaline earths and rare earths. You may even be aware of more exotic applications, such as isotope enrichment. We hope you are also aware that Parish Chemical is the best source for these reagents, but are you aware that more than one hundred (100) of thes exciting reagents are now available from Parish Chemical? Are you aware that many can be supplied in multi-kilo quantities from stock? Are you aware that we carry on a vigorous research program in the area of macrocyclic synthesis and application?

Our chemists are at your disposal to provide you technical services and guidance - so if you want to talk to someone about macrocyclic ligands, give us a call or write us a letter. We're more than happy to make time for your inquiries. If you've got a special macrocycle you want synthesized, we can help. Inquire about our custom synthes is service.

Oh yes, if you're not aware of the many applications of these unique ligands than you should be aware of our booklet "Crown Ether Applications." It's yours for the asking.

$3341 \begin{array}{llll}\text { HMD-tetraaza-14-crown-4 dihydrobromide hydrate } \\ 10 \mathrm{~g} & 12.50 & 50 \mathrm{~g} & 48.25\end{array}$

3365 Cyclo(tetraethyleneglycol 2.6 -pyridinedicarbaxylale) $5 g \quad 29.75$

3394 4.4'(5')-Didecanoylbenzo-24-crown-8 1g 53.85

2195 Hexaaza-18-crown-6 trisulfate $\begin{array}{llll}1 g & 10.75 & 5 g & 38.50\end{array}$

1816 12-Crown-4 $5 \mathrm{~g} \quad 12.50$ $25 \mathrm{~g} \quad 49.50$

1406 Dicyclohexo-18-crown-6, tech.
2032 Dicyclohexo-18-crown-6, purified
(white crystals: mp 50-60)

3423 18-crown-6, tech., 75-80\% $100 \mathrm{~g} \quad 60.45 \quad 500 \mathrm{~g} \quad 242.75$
2260 18-crown-6, purified $\begin{array}{llllll} & 50 & 7.00 & 25 g & 28.95 & 100 g\end{array} \quad 236.00$

3426 16-Crab-5 ig 10.95

$\begin{array}{ll}2903 & \text { 4,4' (5')-Di-f-butylcyctohexo-24-crown-8 } \\ \text { 1g } 21.75\end{array}$

3299 Octamethylpertiydrocyclotetrafurfurylene 5g 23.75
(forms complexes with lithium)

MOLECULAR SEPULCHRES

Bicyclic-diaza-crown ethers or Crypts are much more selective and have much higher binding constants

Kryptofix 222"
Kryptofix 22 " (1,10-Diaza-18-crown-6)
1g 13.95
Kryptofix 211" 1 ml 95.95
Kryptofx 221" 1 ml 53.95
Kryptofix 222* \quad 1g 28.95
Kryptofix 2228" (5,6-Benzocrypt 222) ig 48.95
Kryptofix is a trademark of E Merck Darmstadt. Germany and EM, Labs. Elmstord, New York

Rense M. Tel and Jan B. F. N. Engberts*
T. Okuyama, * K. Takimoto, and T. Fueno

Paolo Mencarelli and Franco Stegel*

Victor J. Hruby,* Donald A. Upson, and Nirankar S. Agarwal

David H. Live, William C. Agosta, and David Cowburn*

Charles E. Cantrell, Donald E. Kiely,* Gerald J. Abruscato, and James M. Riordan Gerald J. Abruscato, Donald E. Kiely, ${ }^{*}$ William J. Cook, and Charles E. Bugg

Evelyn J. Taylor and Carl Djerassi*

Alicia Cruz, Irene Garcia, José Iriarte, Joseph M. Muchowski,* and Ignacio Regla
Jerry Ray Dias* and R. Ramachandra

Einar Brochmann-Hanssen* and Hsüch-Ching Chiang

Robert C. Kelly,* Ilse Schletter, James M. Koert, Forrest A. MacKellar, and Paul F. Wiley*
Mordechai Sheves, Noga Friedman, and Yehuda Mazur*
Paul N. Chen, David G. I. Kingston,* and John R. Vercellotti
Tetsuji Kametani,* Hideharu Seto, Hideo Nemoto, and Keiichiro Fukumoto

Jay F. Stearns and Henry Rapoport*

Raymond W. Doskotch,* Farouk S. El-Feraly, Edward H. Fairchild, and Chin-Teh Huang

3542 An Electron Spin Resonance Spectroscopic Study of Aminocarbonyl Nitroxides. Long-Range Hyperfine Splitting of Amino Substituents and Conformational Preferences around the $\mathrm{C}_{\alpha}-\mathrm{N}(\mathrm{O})$ Bond in Aminocarbonyl Tosylmethyl Nitroxides
3545 Kinetics and Mechanism of the Hydrolysis of 2-Phenyl-1,3,2-benzodiazaborole
3550 Response of Nitro-Activated Benzene and Five-Membered Heteroaromatic Systems to the Nucleophilic Reagent. Kinetics of p-Tolylthio Denitration in Methanol

3552 Comparative Use of Benzhydrylamine and Chloromethylate Resins in Solid-Phase Synthesis of Carboxamide Terminal Peptides. Synthesis of Oxytocin Derivatives
3556 A Rapid, Efficient Synthesis of Oxytocin and 8-Arginine-vasopressin. Comparison of Benzyl, p-Methoxybenzyl, p-Methylbenzyl as Protecting Groups for Cysteine
3562δ-Dicarbonyl Sugars. 5. A Novel Synthesis of a Branched-Chain Cyclitol
3567δ-Dicarbonyl Sugars. 6. Preparation of an Unusual

- Trihaloheptulose from Xylaric Acid

3571 Synthesis of Cholest-5-ene-3 $3,11 \alpha, 15 \beta$-triol- 7 -one. A Model for the Steroid Nucleus of Oogoniol, a Sex Hormone of the Water Mold Achlya
3580 Seeds of Thevetia Species as an Alternative Source of Digitoxigenin

3584 Studies Directed toward Synthesis of Quassinoids. 5. Conversion of D-Ring Seco Derivatives of Cholic Acid to δ-Lactones

3588 Protoberberine Alkaloids. Structures of Aequaline, Coramine, Discretinine, and Schefferine

3591 Structures of Steffimycin and Steffimycin B

3597 Conformational Equilibria in Vitamin D. Synthesis of 1β-Hydroxyvitamin D_{3}

3599 Reduction of Sterigmatocystin and Versicolorin A Hemiacetals with Sodium Borohydride
3605 Studies of the Syntheses of Heterocyclic Compounds. 726. Thermal Rearrangement of Aminomethyl Cyclopropyl Ketones and a Novel Synthesis of Pentazocine

3608 Reduction of Acylguanidines to Alkylguanidines with Lithium Aluminum Hydride

3614 Isolation and Characterization of Peroxyferolide, a Hydroperoxy Sesquiterpene Lactone from Liriodendron tulipifera

NOTES

3619 (20R)- and (20S)-Cholest-5-ene-3 $3 \beta, 21$-diol

3622 A Synthesis of (-)- α-Multist:iatin

3624 Long-Chain Stereomeric
2-Alkyl-4-methoxycarbonyl-1,3-dioxolanes in Glycerol Acetal Synthesis
3626

Donald L. Nagel,* Robert Kupper,
Kenneth Antonson, and Lawrence Wallcave

COMMUNICATIONS

Marian Mikolajczyk,*	3629	Direct Observation, Isolation, and Structure of 1:1 Piotr Kielbasiński,		
and Zofia Goszczyńska			\quad	Adducts from Carbodiimides and Dialkylphosphorothio(seleno) ic Acids
:---	---:	:---	Carl Djerassi*	

- Supplementary material for this paper is available separately (consult the masthead page for ordering information); it will also appear following the paper in the microfilm edition of this journal.
* In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

AUTHOR INDEX

Abbott, F. S., 3502, 3506
Abruscato, G. J., 3562, 3567
Agarwal, N. S., 3552
Agosta, W. C., 3556
Alper, H., 3522
Antonson, K., 3626
Ashby, E. C., 3480
Baumann, W. J., 3624
Beller, N. R., 3514
Bershas, J. P., 3630
Bishop, S. W., 3494
Boeckman, R. K., Jr., 3630
Brochmann-Hanssen, E., 3588
Brundrett, R. B., 3538
Bugg, C. E., 3567
Büyüktür, G., 3619
Byon, C.-Y., 3619
Cantrell, C. E., 3562
Cernigliaro, G. J., 3622
Charton, M., 3531, 3535
Chen, P. N., 3599
Chiang, H.-C., 3588
Choay, P., 3619
Clardy, H., 3630
Coates, J. E., 3502, 3506
Colvin, M., 3538
Cook, W. J., 3567
Cortese, N. A., 3491
Coville, N. J., 3485
Cowburn, D., 3556
Cruz, A., 3580
Dellaria, J. F., Jr., 3494

DeMember, J. R., 3518
Dias, J. R., 3584
Djerassi, C., 3571, 3633
Doskotch, R. W., 3614
Doyle, M. P., 3494
Eisenbraun, E. J., 3477
El-Feraly, F., 3614
Engberts, J. B. F. N., 3542
Evans, D. H., 3518
Fairchild, E. H., 3614
Fueno, T., 3545
Fukumoto, K., 3605
Friedman, N., 3597
Garcia, I., 3580
Goel, A. B., 3480
Goszczyńska, Z., 3629
Greenwald, R. B., 3518
Gut, M., 3619
Haya, K., 3502
Heck, R. F., 3491
Hruby, V. J., 3552
Huang, C.-T., 3614
Iriarte, J., 3580
Ito, M., 3468
Kametani, T., 3605
Keen, B. T., 3498
Keen, G. W., 3477
Kelly, R. C., 3591
Khoshdel, E., 3527

Kiełbasiński, P., 3629
Kiely, D. E., 3562, 3567
Kingston, D. G. I., 3599
Kobayasi, Y., 3473
Kocienski, P. J., 3622
Koert, J. M., 3591
Kupper, R., 3626
Live, D. H., 3556
MacKellar, F. A., 3591
Manning, W. B., 3465
Mazur, Y., 3597
Mencarelli, P., 3550
Mikolajczyk, M., 3629
Modarai, B., 3527
Muchowski, J. M., 3580
Muschik, G. M., 3465
Nagel, D. L., 3626
Nakazaki, M., 3468
Neckers, D. C., 3514
Nemoto, H., 3605
Neuse, E. W., 3485
Newkome, G. R., 3524
Okuyama, T., 3545
Paik, H.-N., 3522
Papadopoulos, E. P., 3514
Paudler, W. W., 3498
Radel, R. J., 3498
Ramachandra, R., 3584
Rapoport, H., 3608

Regla, I., 3580
Riordan, J. M., 3562
Rosen, B. I., 3463
Sato, R. I., 3465
Sauer, J. D., 3524
Schletter, I., 3591
Seto, H., 3605
Sheves, M., 3597
Siegfried, B., 3494
Solheim, B., 3630
Staires, S. K., 3524
Stearns, J. F., 3608
Stegel, F., 3550
Sundararaman, P., 3633
Takimoto, K., 3545
Tanaka, H., 3473
Tanaka, S., 3468
Taylor, A. R., 3477
Taylor, E. J., 3571
Tel, R. M., 3542
Tomaszewski, J. E., 3465
Torii, S., 3473
Upson, D. A., 3552
Vercellotti, J. R., 3599
Wallcave, L., 3626
Weber, W. P., 3453
Wedmid, Y., 3624
Wiley, P. F., 359:
Yamamoto, K., 3468

Synthesis of 7,12-Benz[a]anthraquinones via Diels-Alder Reaction of 1,4 -Phenanthraquinones

Bruce Irwin Rosen and William P. Weber*
Department of Chemistry, University of Southern California, Los Angeles, California 90007

Received April 12, 1977

Abstract

7,12-Benz[a]anthraquinones have been prepared by Diels-Alder reaction of 1,4-phenanthraquinones and 1,3butadiene. The precursors, 1,4 -phenanthraquinones, have been prepared in two ways. Photocyclization of $2,5 \mathrm{di}$ methoxystilbene under oxidizing conditions yields 1,4 -dimethoxyphenanthrene, which is demethylated by trimethylsilyl iodide and directly oxidized to 1,4 -phenanthraquinone. Diels-Alder reaction of styrenes and 1,4 -benzoquinone yields 1,4 -phenanthraquinones directly.

We have been interested in the preparation of substituted 7,12-dimethylbenz[a]anthracenes. It should be noted that 7,12-dimethylbenz[a]anthracene is one of the most potent carcinogens known. ${ }^{1,2}$ 7,12-Dimethylbenz[a]anthracene has been prepared efficiently from 7,12-benz[a] anthraquinone. ${ }^{3}$ Thus a versatile synthesis of substituted 7,12-benz[a]anthraquinones would provide a solution to this problem. 7,12-Benz[a]anthraquinone has been prepared by direct oxidation of benz[a]anthracene. ${ }^{4}$ A more general method is the cyclization of o-(1-naphthoyl)benzoic acids by treatment with benzoyl chloride and a catalytic amount of sulfuric acid at $140-200{ }^{\circ} \mathrm{C} .{ }^{-5-7}$ The required o-(1-naphthoyl)benzoic acids have been prepared by an aluminum chloride catalyzed Friedel-Crafts reaction between phthalic anhydrides and naphthalenes, ${ }^{7}$ or by reaction of 1-naphthyl Grignard reagents with phthalic anhydrides. ${ }^{6}$ Both methods possess limitations.

By analogy to the successful synthesis of 1,4-naphthoquinone from the Diels-Alder adduct of 1,3 -butadiene (I) and 1,4-benzoquinone (II), ${ }^{8}$ it appeared to us that the Diels-Alder reaction between 1,3 -butadienes and 1,4 -phenanthraquinones would provide adducts which could be converted into various 7,12-benz[a]anthraquinones. However, examination of the chemical literature revealed not a single example of a DielsAlder reaction involving 1,4-phenanthraquinone (III). This is probably due to the fact that while III has been known for almost 50 years, its preparation by classical methods is difficult. ${ }^{9,10}$ We should like to report two new methods to prepare III and the first example of its Diels-Alder reactivity.

Our first approach was based on the photochemical cyclization of stilbenes to phenanthrene derivatives under oxidizing conditions. ${ }^{11-13}$ Thus, we have found that photolysis of a dilute solution of 2,5-dimethoxystilbene (IV) ${ }^{14}$ in the presence of iodine with a 450-W medium-pressure Hanovia Hg lamp leads to production of 1,4-dimethoxyphenanthrene
in 71% yield. The direct oxidation of this hydroquinone dimethyl ether with argentic oxide to III failed. ${ }^{15}$ An alternative plan called for demethylation of 1,4-dimethoxyphenanthrene to the corresponding 1,4-dihydroxyphenanthrene, which could be oxidized to yield III. Demethylation, however, proved to be no trivial task. Among the demethylation procedures which failed were the use of LiI in collidine ${ }^{16}$ and sodium ethyl thiolate in DMF. ${ }^{17,18}$ Fortunately, trimethylsilyl iodide ${ }^{19}$ proved a successful demethylating reagent. ${ }^{20}$ Further, 1,4dihydroxyphenanthrene must be easily oxidized, since under the reaction conditions (air was not rigorously excluded) the product isolated was III. Problems associated with this

III
method are that quite dilute solutions of IV must be used ($\simeq 1$ g / L) and relative long photolysis times. Further, neither IV (prepared from 2,5-dimethoxybenzaldehyde by a Wittig reaction) nor trimethylsilyl iodide are commercially available. Nevertheless, by comparison to previous methods this procedure provides a practical approach to 1,4 -phenanthraquinones.

Our second systhesis of III is even more direct and over-
comes most of the limitations discussed above. Styrene is not usually thought of as a potential 1,3-diene system for DielsAlder reactions; however, a limited number of such reactions have been reported. ${ }^{21,22}$

Thus, the direct Diels-Alder reaction of II with styrene should yield a tetrahydro adduct capable of facile oxidation to III. Examination of the literature reveals at least two reports of success with this type of Diels-Alder reaction. ${ }^{23,24}$ Thus reaction of methoxy-II with styrene is reported to yield 3-methoxy-III. ${ }^{24}$ On the other hand, reaction of styrene with II is reported to yield a $2: 1$ styrene/II adduct. ${ }^{25}$ We find that heating dilute solutions of styrene and II in xylene at reflux leads to a 30% yield of III. Apparently the initial tetrahydro adduct is dehydrogenated under the reaction conditions, possibly by excess II, to yield III directly. Analogous reactions with o-, ${ }^{26} \mathrm{~m}$-, ${ }^{27} \mathrm{p}$-, ${ }^{27}$ and 3,4 -dimethoxystyrene ${ }^{27}$ led respectively to 8-methoxy-III, 7-methoxy-III, 6-methoxy-III, and 6,7-dimethoxy-III in $20-30 \%$ yields. It should be noted that m-methoxystyrene might be expected to react with II to yield two products: 7 -methoxy-III and 5-methoxy-III. No 5 -me-thoxy-III was detected. This is probably due to the well-known steric hindrance between the $\mathrm{C}-4$ and $\mathrm{C}-5$ positions in phenanthrenes. This is a limitation to the generaliiy of this method.

$$
\text { III, } R_{1}=R_{2}=R_{3}=H
$$

8-methoxy-III, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{OCH}_{3}$ 7-methoxy-III, $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OCH}_{3}$ 6-methoxy-III, $R_{2}=R_{3}=H ; R_{1}=\mathrm{OCH}_{3}$ 6,7-dimethoxy-III, $\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}$
III smoothly underwent a Diels-Alder reaction with I under pressure at $90^{\circ} \mathrm{C}$ to yield directly 7,12-benz[a]anthraquinone (V) in 90% yield. Apparently the initial tetrahydro adduct is easily oxidized on workup in air to yield V . Analogous reaction with 8-methoxy-III, 7 -methoxy-III, 6-methoxy-III, and 6,7-

$$
\mathrm{V}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}
$$

4-methoxy-V, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{OCH}_{3}$ 3-methoxy-V, $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OCH}_{3}$ 2-methoxy-V, $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{1}=\mathrm{OCH}_{3}$ 2,3-dimethoxy-V, $\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}$
dimethoxy-III led respectively to 4-methoxy-V, 3-methoxy-V, 2 -methoxy-V, and 2,3-dimethoxy-V in $75-90 \%$ yields.

Experimental Section

The National Cancer Institutes Safety Standards for Research Involving Chemical Carcinogens were followed.

IR spectra were determined with KBr pellets on aBeckman Acculab 2 spectrometer and were calibrated against known bands in a polystyrene film. NMR spectra were recorded on a Variar XL-100 spectrometer, using 10% solutions in CDCl_{3} with an internal standard of $\mathrm{Me}_{4} \mathrm{Si}$. Ultraviolet spectra were obtained in 95% ethanol on a Beckman Acta M spectrometer. Melting points were taken on a HooverThomas apparatus and are uncorrected. High resoluticn mass spectra were run at the California Institute of Technology Microanalytical Laboratory, Pasadena, Calif., on a DuPont 21-492 mass spectrometer.
Preparation of 1,4-Dimethoxyphenanthrene. A mixture of 1.0 $\mathrm{g}(4.15 \mathrm{mmol})$ of IV ${ }^{14}$ and two crystals of iodine was dissolved in 700 mL of olefin-free hexane. This solution was photolyzed using a $450-\mathrm{W}$ medium-pressure Hanovia lamp. The reaction mixture was then evaporated to dryness under reduced pressure. The crude product was dissolved in 20 mL of hexane, poured into a $2.5 \times 10 \mathrm{~cm}$ column of alumina, and eluted with hexane $/ 1 \%$ EtOAc followed by TLC. The eluent was evaporated to yield $0.70 \mathrm{~g}(71 \%)$ of 1,4 -dimethoxyphenanthrene as white crystals, $\mathrm{mp} 118.5^{\circ} \mathrm{C}$: NMR $\delta 9.1(\mathrm{~m}, 1 \mathrm{H}), 8.2(\mathrm{~d}$, $1 \mathrm{H}, J=9 \mathrm{~Hz}$), $7.8(\mathrm{~m}, 2 \mathrm{H}), 7.6(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{dd}, 2 \mathrm{H} . J=12$ and 9 Hz), $4.0(\mathrm{~s}, 3 \mathrm{H}), 3.9(\mathrm{~s}, 3 \mathrm{H}) ;$ IR $\mathrm{C}=\mathrm{C} 1610 \mathrm{~cm}^{-1} ; \mathrm{UV} 2471 \AA(\epsilon 1.41$ $\left.\times 10^{4}\right), 2660\left(1.07 \times 10^{4}\right), 2790\left(1.29 \times 10^{4}\right), 3025\left(6.7 \times 10^{3)}, 3140(5.65\right.$ $\times 10^{3)}, 3315\left(2.34 \times 10^{3}\right), 3480\left(3.57 \times 10^{3}\right), 3650\left(3.84 \times 10^{3}\right)$. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$, parent ion m / e 238.101; found 238.102.
Preparation of III. Method A: Oxidative Demethylation of 1,4 -Dimethoxyphenanthrene. In a three-neck, $100-\mathrm{mL}$, roundbottom flask equipped with a Teflon stirring bar and a condenser was placed 35 mL of $\mathrm{CCl}_{4}, 0.22 \mathrm{~g}(0.925 \mathrm{mmol})$ of 1,4 -dimethoxyphenanthrene, and excess $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiI} .{ }^{19,20}$ The reaction was refluxed for 48 h under an atmosphere of N_{2} and then quenched with $\mathrm{H}_{2} \mathrm{O}$. The organic fraction was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude product was dissolved in 20 mL of hexane and poured into a $2.5 \times 10 \mathrm{~cm}$ column of alumina and eluted with $5 \% \mathrm{EtOAc} /$ hexane; the major fraction (yellow band) was collected and evajorated to yield $0.15 \mathrm{~g}(78 \%)$ of III as yellow crystals, $\mathrm{mp} 145{ }^{\circ} \mathrm{C}$ (lit. $\mathrm{mp} 148{ }^{\circ} \mathrm{C}$): 8.9 NMR $\delta 9.5(\mathrm{dd}, 1 \mathrm{H}, J=9$ and 2 Hz$), 8.1(\mathrm{~s}, 2 \mathrm{H}), 7.9-7.5(\mathrm{~m}, 3 \mathrm{H}), 6.85$ (s, 2 H); IR C=0 $1670 \mathrm{~cm}^{-1}, 1660, \mathrm{C}=\mathrm{C} 1620$; LV data was in agreement with literature. ${ }^{9}$
Preparation of III. Method B: Diels-Alder Reaction of Styrene and II. In a three-neck, $500-\mathrm{mL}$, round-bottom flask equipped with a pressure-equalizing addition funnel, a condenser, and a Teflon stirring bar was placed $5 \mathrm{~g}(50 \mathrm{mmol})$ of II in 250 mL of xylene. The solution was heated to reflux and to it was added dropwise over 5 h $4.9 \mathrm{~g}(47 \mathrm{mmol})$ of styrene. The solution was refluxed overnight. After cooling, the solvent was evaporated under reduced pressure. The crude product was dissolved in 10 mL of $5 \% \mathrm{EtOAc} /$ hexane, poured into a $2.5 \times 10 \mathrm{~cm}$ column of alumina, and eluted with $5 \% \mathrm{EtOAc} /$ hexane; the major fraction (yellow band) was collected and evaporated to yield $1.4 \mathrm{~g}(14.3 \%)$ of III. Its properties were identical with those of samples prepared by method A.
6-Methoxy-III was prepared as above by the reaction of 2.0 g (15 mmol of p-methoxystyrene ${ }^{27}$ and $2.8 \mathrm{~g}(26 \mathrm{mmol})$ of II to yield 1.1 g (31\%) of 6-methoxy-III (orange crystals), mp $195^{\circ} \mathrm{C}$: NMR $\delta 9.0$ (d, $1 \mathrm{H}, J=2 \mathrm{~Hz}), 8.01$ (dd, $2 \mathrm{H}, J=12$ and 8 hz), $7.75(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}$), 7.3 (d, $1 \mathrm{H}, J=2 \mathrm{~Hz}$), $6.9(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$; IR C= $=01655 \mathrm{~cm}^{-1}$, $\mathrm{C}=\mathrm{C} 1620 ;$ UV $2315 \AA\left(\epsilon 5.26 \times 10^{4}\right), 2700\left(1.60 \times 10^{4}\right), 2900(1.3 \times$ 10^{4}), $3880\left(4.96 \times 10^{3}\right.$). Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}$, parent ion $\mathrm{m} / \mathrm{e} 238.063$; found 238.065 .
7-Methoxy-III was prepared as above by the reaction of 2.5 g (19 $\mathrm{mmol})$ of m-methoxystyrene ${ }^{27}$ and $4.5 \mathrm{~g}(42 \mathrm{mmol})$ of II to yield 0.85 $\mathrm{g}(19 \%)$ of 7 -methoxy-III (orange crystals), mp $140^{\circ} \mathrm{C}$: NMR $\delta 9.35$ (d, $1 \mathrm{H}, J=10 \mathrm{~Hz}$), 8.95 (dd, $2 \mathrm{H}, J=13$ and 8 Hz), 7.25 (dd, $1 \mathrm{H}, J$ $=10$ and 4 Hz$), 7.0(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$; IR $\mathrm{C}=01660 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C} 1620$; UV $2334 \AA\left(\epsilon 3.53 \times 10^{4}\right), 2600(1.09 \times$ $\left.10^{4}\right)$, $2940\left(1.04 \times 10^{4}\right), 3023\left(1.07 \times 10^{4}\right)$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}$, parent ion m / e 238.063; found 238.062.
8-Methoxy-III was prepared as above by the reaction of 2.1 g (16 mmol) of O-methoxystyrene ${ }^{28}$ and $4.3 \mathrm{~g}(40 \mathrm{mmol})$ of II to yield 1.15 $\mathrm{g}(30 \%)$ of 8 -methoxy-III (dark red-brown crystals), mp $204{ }^{\circ} \mathrm{C}$: NMR $\delta 9.05(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 8.65(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.1(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $7.58(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.9(\mathrm{brs}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{IR} \mathrm{C}=01660 \mathrm{~cm}^{-1}$, $\mathrm{C}=\mathrm{C} 1615$; UV $2210 \AA\left(\epsilon 2.46 \times 10^{4}\right), 2584\left(7.75 \times 10^{3}\right), 3001(1.03 \times$ $\left.10^{4}\right), 3679\left(1.65 \times 10^{3}\right)$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}$, parent ion $\mathrm{m} / \mathrm{e} 238.063$; found 238.065 .
6,7-Dimethoxy-III was prepared as above by the reaction of 2.0 $\mathrm{g}(12.2 \mathrm{mmol})$ of 3,4 -dimethoxystyrene ${ }^{27}$ with $3.2 \mathrm{~g}(29 \mathrm{mmol})$ of II to yield $0.7 \mathrm{~g}(21 \%)$ of 6,7 -dimethoxy-III (orange crystals), $\mathrm{mp} 236{ }^{\circ} \mathrm{C}$ dec: NMR $\delta 9.0$ (s, 1 H), 7.0 (s, 2 H), 7.02 (s, 1 H), 6.82 (s, 2 H), 4.0 (s, 3 H), 3.96 ($\mathrm{s}, 3 \mathrm{H}$); IR C=0 $1670 \mathrm{~cm}^{-1}, 1650, \mathrm{C}=\mathrm{C} 1620$; UV $2450 \AA$ $\left(\epsilon 8.25 \times 10^{4}\right), 2900\left(1.48 \times 10^{4}\right), 3020\left(1.01 \times 10^{4}\right), 4273\left(9.07 \times 10^{3}\right)$.

Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$, parent ion $m / \mathrm{e} 268.073$; found 268.071.
Preparation of V. Into a pressure bottle was placed $0.09 \mathrm{~g}(0.43$ mmol of III, 25 mL of benzene, and a Teflon stirring bar. The solution was cooled to $-78^{\circ} \mathrm{C}$ and excess I was condensed in. The bottle was capped and the reaction flask was heated to $90^{\circ} \mathrm{C}$ and stirred overnight. The flask was then cooled and vented and the solvent was removed under reduced pressure. The crude product was dissolved in 5 mL of hexane and poured into a column of alumina. Elution with hexane removed butadiene polymer. This was followed by elution with $15 \% \mathrm{EtOAc} /$ hexane to move the desired product from the column. The eluent was evaporated to yield $0.10 \mathrm{~g}(90 \%)$ of V (greenish crystals), whose spectral (UV, NMR) properties were identical with those of an authentic sample (Aldrich), mp $165-166^{\circ} \mathrm{C}$ (lit. mp 166-167 ${ }^{\circ} \mathrm{C}$). ${ }^{4}$
2-Methoxy-V was prepared as above by the reaction of $0.10 \mathrm{~g}(0.42$ $\mathrm{mmol})$ of 6-methoxy-III and excess $9.7 \mathrm{~g}(200 \mathrm{mmol})$ of I to yield 0.11 $\mathrm{g}(91 \%)$ of V (yellow crystals), mp $195^{\circ} \mathrm{C}$ (lit. mp $200^{\circ} \mathrm{C}$): 2^{28} NMR δ 9.2 (d, $1 \mathrm{H}, J=4 \mathrm{~Hz}$), 8.3-8.0 (m, 4 H), 7.8-7.65 (m, 3H), 7.3 (d, 1 H , $J=4 \mathrm{~Hz}), 4.0(\mathrm{~s}, 3 \mathrm{H})$; IR C $=01670 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C} 1625$; UV $2236 \AA(\epsilon$ $\left.1.93 \times 10^{4}\right), 2555\left(1.71 \times 10^{4}\right), 2903\left(9.5 \times 10^{3}\right), 3010\left(8.25 \times 10^{3}\right), 4408$ $\left(1.69 \times 10^{3}\right)$.
3-Methoxy-V was prepared as above by the reaction of $0.05 \mathrm{~g}(0.21$ $\mathrm{mmol})$ of 7 -methoxy-III and excess $9.7 \mathrm{~g}(200 \mathrm{mmol})$ of I to yield 0.045 $\mathrm{g}(75 \%)$ of 3 -methoxy-V (yellow crystals), mp $145^{\circ} \mathrm{C}$: NMR $\delta 9.5$ (d, $1 \mathrm{H}, J=10 \mathrm{~Hz}), 8.3-7.9(\mathrm{~m}, 4 \mathrm{~h}), 7.75-7.6(\mathrm{~m}, 2 \mathrm{H}), 7.3(\mathrm{dd}, 1 \mathrm{H}, J=$ 10 and 3 Hz), $7.1(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 3.9(\mathrm{~s} .3 \mathrm{H})$; IR C=$=1670 \mathrm{~cm}^{-1}$, $\mathrm{C}=\mathrm{C} 1620 ; \mathrm{UV} 2241 \AA\left(\epsilon 3.22 \times 10^{4}\right), 2456\left(2.13 \times 10^{4}\right), 2530(1.99 \times$ $\left.10^{4}\right), 3037\left(2.95 \times 10^{4}\right), 3841\left(4.02 \times 10^{3}\right)$. Calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{3}$, parent ion $m / e 288.079$; found 288.076.

4-Methoxy-V was prepared as above by the reaction of 0.025 g (0.11 mmol) of 8 -methoxy-III and excess $9.7 \mathrm{~g}(200 \mathrm{mmol})$ of I to yield 0.026 g (88\%) of 4-methoxy-IV (red-orange crystals), mp $212{ }^{\circ} \mathrm{C}$ (lit. $\mathrm{mp} 220^{\circ} \mathrm{C}$): ${ }^{29}$ NMR $\delta 9.22(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}$, $8.7(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}$), $8.3-8.18(\mathrm{~m}, 3 \mathrm{H}), 7.8-7.5(\mathrm{~m}, 3 \mathrm{H}), 6.9(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 3.98(\mathrm{~s}, 3 \mathrm{H})$; IR C $=01670 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C} 1590 ;$ UV $2184 \AA\left(\epsilon 2.71 \times 10^{4}\right), 2461(1.32$ $\left.\times 10^{4}\right) 2800\left(8.69 \times 10^{3}\right), 3007\left(1.51 \times 10^{4}\right) \cdot 4322\left(1.22 \times 10^{3}\right)$.
2,3-Dimethoxy-V was prepared as above by the reaction of 0.116 $\mathrm{g}(0.43 \mathrm{mmol})$ of 6,7 -dimethoxy-III and excess $9.7 \mathrm{~g}(200 \mathrm{mmol})$ of I to yield $0.11 \mathrm{~g}(80 \%)$ of 2,3 -dimethoxy-V (yellow crystals), $\mathrm{mp} 237^{\circ} \mathrm{C}$ dec: NMR $\delta 9.2$ (s, 1 H), 8.3-8.1 (m, 3 H), $7.94(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}$), $7.8-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 4.1(\mathrm{~s}, 3 \mathrm{H}), 4.0(\mathrm{~s}, 3 \mathrm{H})$; $\mathrm{IR} \mathrm{C}=01660$ $\mathrm{cm}^{-1}, 1650, \mathrm{C}=\mathrm{C} 1620$; UV $2250 \AA\left(\epsilon 1.71 \times 10^{4}\right), 2450\left(1.11 \times 10^{4}\right)$, $2571\left(9.3 \times 10^{3}\right), 2902\left(5.9 \times 10^{3}\right), 3025\left(5.9 \times 10^{3}\right), 3290\left(2.27 \times 10^{3}\right)$, $4225\left(2.41 \times 10^{3}\right)$. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4}$, parent ion $m / e 318.089$; found 318.087.

Acknowledgment. This investigation was supported by Grant No. 1R01-CA-19444-01 awarded by the National

Cancer Institute, DHEW.
Registry No.-I, 106-99-0; II, 106-51-4; III, 569-15-3; 6-methoxy-III, 63216-06-8; 7-methoxy-III, 63216-07-9; 8-methoxy-III, 63216-08-0; 6,7-dimethoxy-IIL, 63216-09-1; IV, 21889-09-8; 2-methoxy-V, 63216-10-4; 3-methoxy-V, 63216-11-5; 4-methoxy-V, 16277-48-8; 23-dimethoxy-V, 63216-12-6, 1,4-dimethoxyphenanthrene, 63216-13-7; p-methoxystyrene, 637-69-4; m-methoxystyrene, 626-20-0; omethoxystyrene, 612-15-7; 3,4-dimethoxystyrene, 17055-36-6; styrene, 100-42-5.

References and Notes

(1) J. C. Arcos and M. F. Argus, "Chemical Induction of Cancer', Vol. IIA, Academic Press, New York and London, 1794, pp 32, 54, 55, 67, 71-73, 165, 174-175, 186, and 336.
(2) P. O. P. Ts'o and J. A. DiPaolo, "Chemical Carcinogenesis'", Part B, Marcel Dekker, New York, N.Y., 1974, Quantitative Aspects of in vitro Chemical Carcinogenesis by J. A. DiPaolo.
(3) R. B. Sandin and L. F. Fieser, J. Am. Chem. Soc., 62, 3098 (1940).
(4) R. T. Arnold and R. Larson, J. Org. Chem., 5, 250 (1940).
(5) G. M. Badger and J. W. Cook, J. Chem. Soc., 802 (1939).
(6) J. L. Wood and L. F. Fieser, J. Am. Chem. Soc., 73, 4494 (1951).
(7) E. D. Bergmann, J. Blum, and S. Butanaro, J. Org. Chem., 26, 3211 (1961).
(8) L. F. Fieser, J. Am. Chem. Soc., 70, 3165 (1948)
(9) L. F. Fieser, J. Am. Chem. Soc., 51, 2460 (1929)
(10) M. S. Newman and R. L. Childers, J. Org. Chem., 32, 62 (1967).
(11) F. B. Mallory and C. W. Mallory, J. Am. Chem. Soc., 94,6041 (1972).
(12) C. S. Wood and F. B. Mallory, J. Org. Chem., 29, 3373 (1964).
(13) E. V. Blackburn and C. J. Timmons, Q. Rev., Chem. Soc., 23, 482 (1969).
(14) C. T. Bahner, D. H. Brotherton, H. Kinder, W. Rich, S. L. Watson, Jr., and J. Zirkle, J. Med. Chem., 12, 722 (1969).
(15) C. D. Snyder and H. Rapoport, J. Am. Chem. Soc., 94, 227 (1972).
(16) I. T. Harrington, Chem. Commun., 616 (1969).
(17) G. I. Feutrill and R. N. Mirrington, Tetrahedron Lett., 1327 (1970).
(18) M. S. Newman, V. Sankaran, and D. R. Olsen, J. Am. Chem. Soc., 98, 3237 (1976).
(19) M. G. Voronkov and Yu. I. Khudobin, Izv. Akad. Nauk SSSR, Otd. Khim., 713 (1956).
(20) M. E. Jung and M. A. Lyster, J. Am. Chem. Soc., in press (private communication).
(21) V. Bruckner, Ber., 75, 2034 (1942).
(22) B. J. F. Hudson and R. Robinson, J. Chem. Soc., 715 (1941).
(23) M. Lora-Tamayc, Tetrahedron, 4, 17 (1958), and references cited therein.
(24) Y. Inouye and H. Kakisaka, Bull. Chem. Soc. Jpn., 44, 563 (1971).
(25) W. Kern and J. Feuerstein, J. Prakt. Chem., 158, 186 (1941).
(26) C. S. Marvel and D. W. Hein, J. Am. Chem. Soc., 70, 1895 (1948).
(27) R. L. Frank, J. R. Biegen, R. J. Dearborn, R. L. Myers, and F. E. Woodward, J. Am. Chem. Soc., 68, 1368 (1946).
(28) G. M. Badger, J. Chem. Soc., 940 (1947).
(29) J. W. Flesher, S. Soedigdo, and D. Kelley, J. Med. Chem., 10, 932 (1967).

A General Synthesis of 1-, 2-, 3-, and 4-Substituted Benz[a]anthracene-7,12-diones

Wayne B. Manning, * Joseph E. Tomaszewski, Gary M. Muschik, and Ronald I. Sato

Chemical Carcinogenesis Program, NCI-Frederick Cancer Research Center, Frederick, Maryland 21701

Received May 23, 1977

Various 1-, 2-, 3-, and 4-substituted derivatives of benz[a]anthracene-7,12-dione (4) have been prepared by reaction of ring-substituted styrenes and 1,4 -naphthoquinone (5) in the presence of chloranil. Comparative reactions done with and without chloranil demonstrated that chloranil had a positive effect upon the yield of the substituted benz[a]anthracene-7,12-diones. The preparation of 1,4-dimethylbenz[a]anthracene-7,12-dione in yields comparable with those obtained for the monosubstituted diones demonstrated that certain steric problems of the DielsAlder reaction could be overcome. Spectral data are discussed.

The current interest in the metabolites of benz[a]anthracene and 7,12-dimethylbenz[a]anthracene as potential carcinogens has prompted study into synthetic methods to prepare these compounds. Recent preparations of substituted
benz[a]anthracenes and 7,12-dimethylbenz[a]anthracenes (DMBAs) have been based upon multistep syntheses using substituted naphthalenes and phthalic anhydrides in a Friedel-Crafts acylation, followed by cyclization of the re-

Scheme I

1

sulting keto acid 3 to the dione product ${ }^{1,2}$ (Scheme I). This classical route for preparing $1-, 2-, 3-$, and 4 -substituted benz $[a]$ anthracene-7,12-diones required substituted naphthalenes that often led to problems in orientation. Diels-Alder reactions between 1,4-naphthoquinone (5) and the appropriate styrenes were recently used ${ }^{3}$ to prepare benz $[a]$ an-thracene-7,12-dione (BAD) and its 5-methyl derivative (5 MeBAD). This Diels-Alder reaction does not suffer from the problems inherent in the Friedel-Crafts method and, if general, provides a simple alternative. We now wish to report the generalization of this reaction to the formation of $1-, 2-, 3-$, and 4 -substituted BADs from which the corresponding benz $[a]$ anthracenes could be prepared in one step ${ }^{4}$ and the substituted DMBAs in two steps. ${ }^{5}$
The formation of these diones from 1,4-naphthoquinone and ring-substituted styrenes, represented by 6 , requires two dehydrogenations after the Diels-Alder adduct formation (Scheme II). The presence of 1,4-naphthalenediol in the reaction mixture, identified by TLC, suggested that 1,4 -naphthoquinone served as the oxidizing agent. Addition of chloranil, with its higher oxidation potential ${ }^{6}$ than 5 , aided the formation of the dione 9.

Results and Discussion

For comparison, two solutions of equimolar amounts of styrene plus 1,4-naphthoquinone in toluene were set in an oil bath at $85-90^{\circ} \mathrm{C}$. One of these was treated with an equimolar amount of chloranil. The chloranil-treated reaction showed the presence of benz[a]anthracene-7,12-dione (BAD) by thin-layer chromatography (TLC) within 4 h . Comparable amounts of BAD appeared in the TLC analyses of the chlo-ranil-free solution only after $2-4$ days at $85^{\circ} \mathrm{C}$. When neither reaction exhibited any quantity of naphthoquinone by TLC, workup of the mixtures yielded 12\% BAD in the unmodified reaction and $33 \% \mathrm{BAD}$ in the chloranil-treated one.

Reaction of equimolar amounts of 2-chlorostyrene, 5, and
chloranil in a small volume of benzene for 6 days at $85^{\circ} \mathrm{C}$ led to a 44% yield (method B) of 4 -chlorobenz $[a]$ anthracene-7,12-dione (4-ClBAD). In contrast, when an extra equivalent of 5 was used instead of the chloranil, the yield of 4-CIBAD was only 14%. This reaction mixture contained many components, three of which possessed parent ions in their mass spectra at $m / e 292,294$, and 296 . This suggested the presence of 4 -chlorobenz $[a]$ anthracene-7,12-dione ($m / e 292$), a "dihydro" intermediate ($8, \mathrm{X}=\mathrm{Cl}$) ($\mathrm{m} / \mathrm{e} 294$), and a "tetrahydro" intermediate ($7 \mathrm{a}, \mathrm{X}=\mathrm{Cl}$) ($\mathrm{m} / \mathrm{e} 296$). The diol tautomer 7 a was suggested for the "tetrahydro" component because of the lack of fragmentation attributable to CO loss, as would be expected for 7.

The favorable yields produced by the addition of chloranil to the 2 -chlorostyrene/1,4-naphthoquinone reaction prompted the use of chloranil in the preparation of the substituted BADs listed in Table I. With the exception of the 4-methoxy compound, the similarity in the yields suggested that the ring substituents did not have a profound effect upon the reactivity when chloranil was present. The low yield of 1-CIBAD was not unexpected because of the steric interaction between the chlorine atom and the quinone carbonyl in this approach of 3 -chlorostyrene. The alternate attack should be energetically preferred and lead to a high proportion of 3-CIBAD.

Even these steric problems can be overcome in some cases. 1,4-Dimethylbenz[a]anthracene was prepared in 29% yield from 2,5-dimethylstyrene, 5 , and chloranil (method A). The one styrene approach leading to product exhibits steric interactions similar to those present for the formation of the 1-CIBAD, yet the yield of the reaction was comparable with that for the other substituted BADs.

Yields were further improved by oxygenation of the crude reaction mixtures, ${ }^{7}$ as was done in method B. This treatment resulted in a much higher yield for the 4-CIBAD when compared with the other substituted BADs that were not oxygenated, and preliminary results indicated a 20% increase ($13-16 \%$) in the yield of $4-0 \mathrm{MeBAD}$ upon oxygenation.
The spectral characteristics of the diones synthesized were consistent with their assigned structures. Large parent ions were found in the mass spectra of all compounds except the 1 -chloro isomer, which possessed a large ($\mathrm{M}-\mathrm{Cl}$) fragment.

Proton magnetic resonance spectra were particularly useful in establishing the positions of substitution in the angular benzene ring. Brown and Thomson ${ }^{8}$ showed that the resonance signal of the proton in the one position of BAD occurred at $\delta 9.72\left(\mathrm{CDCl}_{3}\right)$, further downfield than that of any other proton. The position of this resonance and the effect of substitution upon its splitting pattern gave information useful in assigning the position of substitution.

In the cases of the 4 -chloro-, 4 -bromo-, and 4 -fluo-robenz[a]anthracene-7,12-diones, this proton signal appeared

Table I. Substituted Benz[a]anthracene-7,12-diones Prepared from 1,4-Naphthoquinone and Substituted Styrenes

Reactant styrene	$\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$	Product dione	Registry no.	Method	Scale, mol	Yield, mg (\% theoretical)	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Lit. } \\ \mathrm{mp}^{\circ} \mathrm{C} \\ \hline \end{gathered}$
2-F ${ }^{\text {a }}$	394-46-7	4-F	2712-26-7	A	0.005	300 (20\%)	198-199	$199-200^{6}$
4-Me ${ }^{\text {a }}$	622-97-9	$2-\mathrm{Me}$	58024-07-0	A	0.010	600 (29\%)	188.5-190.0	189-190 ${ }^{\text {c }}$
$2-\mathrm{Br}^{\text {a }}$	2039-88-5	$4-\mathrm{Br}$	63715-52-6	A	0.010	780 (30\%)	234.5-235.5	230-232 ${ }^{\text {c }}$
$3-\mathrm{Cl}{ }^{\text {e }}$	2039-85-2	$3-\mathrm{Cl}$	63715-53-7	A	0.010	680 (30\%)	216-217	215-216 ${ }^{\text {f }}$
$3-\mathrm{Cl}{ }^{\text {e }}$		$1-\mathrm{Cl}$	63715-54-8	A	0.010	50 (4\%)	199-200	g
$4-\mathrm{Cl}{ }^{e}$	1073-67-2	2 -Cl	49600-94-4	A	0.010	720 (33\%)	232-233	232-233 ${ }^{h}$
$2-\mathrm{Cl}{ }^{\text {e }}$	2039-87-4	$4-\mathrm{Cl}$	63715-55-9	B	0.010	966 (44\%)	232-233	$226-227^{i}$
$2-\mathrm{OMe}^{a}$	612-15-7	$4-\mathrm{OMe}$	16277-48-8	A	0.010	374 (13\%)	219-220	220-221 ${ }^{\text {j }}$
2,5-DiMe ${ }^{k}$	2039-89-6	1,4-DiMe	63715-56-0	A	0.010	630 (29\%)	213-214	g

${ }^{a}$ Polysciences, Inc. ${ }^{b}$ E. D. Bergmann, J. Blum, and S. Butanaro, J. Org. Chem., 26, 3211 (1961). ${ }^{\text {c J. W. Cook, J. Chem. Soc., } 456}$ (1932). ${ }^{d}$ C. M. Badger and A. R. M. Gibb, J. Chem. Soc., 799 (1949). ${ }^{e}$ Aldrich Chemical Co. ${ }^{f}$ C. Marschalk and J. Dassigny, Bull. Soc. Chim. Fr., 812 (1948). ${ }^{g}$ Satisfactory elemental analyses were obtained (oxygen not analyzed). ${ }^{h}$ T. Tsunoda, Chiba Daigaku Kogakubu Kenkyu Hôkoku, 7, 19 (1956). ${ }^{i}$ T. Tsunoda, J. Soc. Org. Synth. Chem., 9, 127 (1951). ${ }^{j}$ Reference 5. ${ }^{k}$ Leon Laboratories.

Table II. Characteristic Infrared Bands from the Fingerprint Region of Spectra of Substituted Benz[a]-anthracene-7,12-diones (KBr)

Compd	IR bands $\left(1000-700 \mathrm{~cm}^{-1}\right)$
4-BrBAD	$900,848,784,741,712$
4-ClBAD	$990,848,785,742,711$
4-FBAD	$991,848,788,743,713$
4-OMeBAD	$850,787,781,743,718$
2-ClBAD	857,712
3-ClBAD	$991,881,800,712$
1-ClBAD	$850,845,752,713,701$
2-MeBAD	$870,778,712$
1,4-DiMeBAD	840,708

as a doublet ($J=9 \mathrm{~Hz}$). In the cases of the 1 -chloro- and the 1,4-dimethylbenz[a]anthracene-7,12-diones, the absence of the $\delta 9.72$ signal confirmed the one-proton assignment. The 2 -chloro isomer showed a singlet in this region, while the 2 methylbenz $[a]$ anthracene-7,12-dione yielded a quartet ($J=$ 1 Hz).

Although all of the BADs prepared contained infrared bands at 1655 and $1590 \mathrm{~cm}^{-1}$, the infrared spectra of the 4substituted isomers exhibited unique absorptions in the ranges of 782-788, 741-744, and 710-718 cm^{-1} (see Table II). In no other spectrum were all of these peaks present. The strength and sharpness of these peaks suggested their use for the differentiation of the 4 -substituted BADs from the other isomers.

The ultraviolet spectra were distinct, but of no practical use for determining the position of substitution (see Table III). All of the monosubstituted BADs except the 4-methoxy isomer possessed a major absorption in the $283-287$-nm range.

The overall success of this diene synthesis suggests that this method could be a general one for reaction of ring-substituted styrenes with 1,4 -naphthoquinone. The results of ongoing investigations will be reported in the near future.

Experimental Section

All melting points were determined using a Fisher-Johns hot-stage apparatus and were uncorrected. Mass spectra were taken on a Finnegan 3300 mass spectrometer equipped with a Finnegan 6000 MS data system. A Cary 17 UV-vis spectrophotometer was used for the UV spectra. Proton magnetic resonance spectra were taken on a Varian XL-100 spectrometer using $\mathrm{CDCl}_{3}\left(0.5 \% \mathrm{Me}_{4} \mathrm{Si}\right)$ as solvent, while the IR spectra were obtained on a Perkin-Elmer 467 spectrophotometer.

Method A. To $5-8 \mathrm{~mL}$ of toluene were added 0.01 mol (or 0.005 mol) of 1,4 -naphthoquinone (recrystallized from alcohol) and equimolar amounts of the substituted styrene and chloranil. The mixture was placed in an $85-90^{\circ} \mathrm{C}$ oil bath for ~ 1 week. When monitoring by thin-layer chromatography on silica gel GF plates, using benzene as development solvent, showed little or no naphthoquinone remaining, the reaction was stopped and the colored reaction mixture was chromatographed on Silicar CC-7 (Mallinckrodt) by elution with hexane, followed by $1: 1$ benzene-hexane. The progress of the components through the column was followed by long wavelength UV (λ 366 nm), with the diones exhibiting an orange or red-orange color. The BADs isolated in this manner were recrystallized from either benzene or benzene-ethanol.
Method B. The same as method A except that benzene was used as solvent and the reaction was heated in a $75-80^{\circ} \mathrm{C}$ oil bath for 1 week. The mixture was then reduced to dryness on a rotary evaporator and 50 mL of a 5% solution of alcoholic potassium hydroxide (95% ethanol) was added to the resultant dark material. The flask was fitted with a reflux condenser and oxygen bubbled through for 24 h . The mixture was then neutralized with concentrated HCl and the crude product extracted with ether. After drying and removal of the ether by evaporation, the residue was chromatographed as in method A.

Acknowledgment. This research was supported by the National Cancer Institute under Contract No. N01-CO-25423 with Litton Bionetics.

Registry No.-5, 130-15-4.
Supplementary Material Available: Complete proton magnetic resonance spectra (9 pages). Ordering information is given on any current masthead page.

Table III. Ultraviolet Absorption Data of Substituted Benz[a]anthracene-7,12-diones (95\% Ethanol)

Compd		$\lambda_{\max }, \mathrm{nm}(\log \epsilon)$		
4-BrBAD	$286(4.48)$	$254(4.23)$	$248(4.28)$	$233(4.35)$
4-CIBAD	$284(4.51)$	$254(4.27)$	$247(4.30)$	$232(4.38)$
4-FBAD	$284(4.58)$	$253(4.27)$	$247(4.29)$	$217(4.55)$
4-OMeBAD	$300(4.39)$	$247(4.34)$		$217(4.61)$
2-CIBAD	$283(4.50)$	$253(4.34)$	$248(4.37)$	$237(4.36)$
3-CIBAD	$287(4.48)$	$254(4.30)$	$250(4.30)$	$238(4.29)$
1-CIBAD	$284(4.51)$	$255(4.25)$	$245(4.31)$	$217(4.65)$
2-MeBAD	$287(4.52)$	$253(4.42)$	$248(4.45)$	$218(4.49)$
1,4-DiMeBAD	$300(4.52)$	$248(4.39)$		$215(4.56)$

References and Notes

1) M. S. Newman, V. Sankaran, and D. R. Olson, J. Am. Chem. Soc., 98, 3237 (1976).
(2) W. Girke and E. D. Bergmann, Chem. Ber., 109, 1038 (1976).
(3) J. E. Tomaszewski, W. B. Manning, and G. M. Muschik, Tetrahedron Lett., 971 (1977).
(4) F. U. Ahmed, T. Rangarajan, and E. J. Eisenbraun, Org. Prep. Proced. Int., 7, 267 (1975).
(5) J. W. Flesher, S. Solidigdo, and D. R. Kelley, J. Med Chem., 10, 932 (1967).
(6) W. M. Clark, "Oxidation Reduction Potentials of Organic Systems", Williams and Wilkins Co., Baltimore, Md., 1960
(7) C. F. H. Allen and A. Bell, 'Organic Syntheses'', Collect. Vol. I, Wiley, New York, N.Y., 1955, p 310.
(8) P. M. Brown and R. H. Thomson, J. Chem. Soc., Perkin Trans. 1, 997 (1976).

Preparations of Optically Active [8][8]- and [8][10]Paracyclophanes with Known Absolute Configurations ${ }^{1}$

Masao Nakazaki,* Koj: Yamamoto, Masayuki Ito, and Shigeo Tanaka
Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan

Received April 5, 1977
$(+)-(S)-[8][8]$ Paracyclophane (4) was prepared from (+)-[8]paracyclophane-10-carboxylic acid (6d) whose absolute configuration was correlated to $(+)-(S)$-[2.2]paracyclophane-4-carboxylic acid (20). Preparations and absolute configurations of $(-)-(R)-[8][10]$ paracyclophane (5) and related optically active paracyclophane derivatives are also reported.

As part of our continuing efforts to study the chiroptical properties and the biological transformations ${ }^{2}$ of nigh-symmetry chiral (gyrochiral) ${ }^{3}$ molecules, ${ }^{4}$ the first successful syntheses of (+)-twistane (D_{2} symmetry) (1), ${ }^{5}(+)$-twist brendane (C_{2} symmetry) (2), ${ }^{3}$ and (-)-[3]chochin (D_{2} symmetry) ${ }^{6}$ (3), all with known absolute configurations, have been reported from our laboratory (Chart I).
[3]Chochin (3) and $[m][n]$ paracyclophane (4 and 5) $)^{7}\left(D_{2}\right.$ symmetry with $m=n$, and C_{2} symmetry with $m \neq n$) bear the twisted central benzene nucleus as a common structural unit, and our preceding papers ${ }^{8}$ reported the preparation of unusually strained [8][8]paracyclophane (4) and [8][10]paracyclophane (5). This contribution reports the preparations of $(+)-[8][8]$ paracyclophane (4) and (-)-[8][10]paracyclophane (5) together with the determination of their absolute configurations.

Results and Discussion

Preparation of (+)-[8][8]Paracyclophane (4) (Scheme I). ${ }^{9}$ Bromomethylation ${ }^{10}$ of [8]paracyclophane ($\left.\mathbf{6 a}\right)^{11}$ afforded the 10 -bromomethyl derivative $\mathbf{6 b}$ which was treated with the sodium salt of 2 -nitropropane ${ }^{10}$ in ethanol to yield the aldehyde $\mathbf{6 c}$. Permanganate oxidation of the aldehyde $\mathbf{6 c}$ in acetone gave (\pm)-[8]paracyclophane-10-carboxylic acid ($6 d$), the optical resolution of which was accomplished by working with $(+)-1-(\beta$-naphthyl)ethylamine as the resolving agent. The $(+)$-carboxylic acid $6 \mathrm{~d},[\alpha]^{18} \mathrm{D}+18^{\circ}$, was conver -ed to the methyl ester $\mathbf{6 e}$ whose hydride reduction afforded the alcohol $\mathbf{6 f}$. Conversion to the bromide $\mathbf{6 b}$ with phosphorus tribromide followed by reduction with lithium aluminum hydride furnished (+)-10-methyl $[8]$ paracyclophane (6 g), $[\alpha]^{19} \mathrm{D}+4.6^{\circ}$,

Chart I.

(1) $m=n=2$
(2) $m=1, n=2$

(3)

(4) $m=n=8$
(5) $m=8, n=10$

Scheme I

(6) a $R=H$ e $R=\mathrm{CO}_{2} \mathrm{Me}$ b $R=\mathrm{CH}_{2} \mathrm{Br}$ \& $R=\mathrm{CH}_{2} \mathrm{OH}$ c $\mathrm{R}=\mathrm{CHO} \quad \mathrm{g} \mathrm{R}=\mathrm{CH}_{3}$ d $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$
(7) a $R=\mathrm{CH}_{2} \mathrm{Br}$ b $\mathrm{R}=\mathrm{CH}_{2} \stackrel{\star}{\mathrm{~N}}(\mathrm{Me})_{3} \mathrm{~B} \mathrm{r}$ c $\mathrm{R}=\mathrm{CH}_{2} \stackrel{\star}{\mathrm{~N}}(\mathrm{Me})_{3} \mathrm{OH}$

(10)

which was further bromomethylated to the bromide 7a.
Construction of the second [8] bridge was carried out via the benzene-furan "hybrid" $[2.2$]paracyclophane 9 . The quaternary ammonium bromide $7 \mathbf{b}\left([\alpha]^{20} \mathrm{D}-5.4^{\circ}\right)$ prepared from the bromide 7a was mixed with 5 -methylfurfuryltrimethylammonium iodide (8a), ${ }^{12}$ and the mixture was treated with silver hydroxide to give a mixture of Hofmann bases which was pyrolyzed in refluxing toluene. Since a preliminary experiment had revealed the rather labile character of the hybrid [2.2]paracyclophane 9, the pyrolysate was chromatographed on neutral alumina in a cold room $\left(5^{\circ} \mathrm{C}\right)$. Elution with hexane gave the doubly [8]-bridged [2.2]paracyclophane 10 ($[\alpha]^{20}{ }_{\mathrm{D}}$ $-25^{\circ}, 2.5 \%$ yield) which was followed by the hybrid [2.2]par-
Scheme II

acyclophane 9 (9\% yield) and [2.2]furanophane (11) (16\% yield).

The synthetic procedure and the observed optical activity necessitate that the doubly bridged [2.2]paracyclophane possess the staggered structure 10 , and the identity of the IR and mass spectra with those of the previously reported doubly bridged compound ${ }^{8}$ from the racemic precursor confirms our previous assumption that formation of the staggered isomer should be preferred on steric grounds.

Because of the instability of the hybrid [2.2]paracyclophane 9, the oily product, without further purification, was directly hydrolyzed with 10% sulfuric acid in acetic acid to afford the 1,4-diketone 12: mp $149-150^{\circ} \mathrm{C},[\alpha]^{20} \mathrm{D}+15^{\circ}$. In order to complete the synthesis, there remained the conversion of the 1,4 -diketone bridge to the octamethylene bridge, and this was accomplished by desulfurization with Raney nickel of the bis(dithioketal) 13. Treatment of the 1,4 -diketone 12 with ethanedithiol and boron trifluoride in acetic acid solution yielded the bis(dithioketal) 13 which was heated with Raney nickel in ethyl acetate to afford (+)-[8][8]paracyclophane (4): bp $148-150^{\circ} \mathrm{C}(1.0 \mathrm{~mm}),[\alpha]^{20} \mathrm{D}+5.4^{\circ}$.

Preparation of (-)-[8][10]Paracyclophane (5) (Scheme II). ${ }^{9}$ Optical instability ${ }^{13}$ observed in [10]paracyclophane-12-carboxylic acid had warned us that optical resolution in this [10]paracyclophane series of compounds should be carried out on a 12,15 -disubstituted [10] paracyclophane intermediate.
(\pm)-15-Methyl[10]paracyclophane-12-carboxylic acid (14c) was prepared from 12-bromomethyl-15-methyl[10]paracyclophane (14a) via the aldehyde 14b, and its optical resolution was accomplished via the brucine salt. Esterification followed by hydride reduction of the levorotatory carboxylic acid 14c, $\mathrm{mp} 134-135^{\circ} \mathrm{C},[\alpha]^{21}{ }_{\mathrm{D}}-28^{\circ}$, gave the alcohol 14 e which was treated with phosphorus tribromide to furnish (-)-12-bro-momethyl-15-methyl[10]paracyclophane (14a), $[\alpha]^{22}$ D -24°.

An equimolar mixture of the quaternary ammonium salt 14 f prepared from the $(-)$-bromide 14 a and the 5 -methylfurfuryltrimethylammonium iodide (8a) ${ }^{12}$ was treated with silver hydroxide to give a mixture of Hofmann bases which was pyrolyzed in boiling toluene. The mixture was extracted with hexane, and the extract was chromatographed on neutral alumina to afford the following fractions: the doubly bridged [2.2]paracyclophane $16, \mathrm{mp} 219-221^{\circ} \mathrm{C},[\alpha]^{21} \mathrm{D}+61^{\circ}(5 \%)$; the benzene-furan hybrid [2.2]paracyclophane $15, \mathrm{bp} 154-156^{\circ} \mathrm{C}$ $(0.01 \mathrm{~mm}),[\alpha]^{22}{ }_{\mathrm{D}}-21.3^{\circ}(10 \%)$; and the [2.2]furanophane (11) (8\%).

The furan moiety of the hybrid [2.2]paracyclophane 15 was modified to the octamethylene bridge as previously described for [8][8]paracyclophane (vide supra). The hybrid 15 was treated with 10% sulfuric acid in acetic acid to give the 1,4 diketone 17 , $\mathrm{mp} 159-160^{\circ} \mathrm{C},[\alpha]^{21} \mathrm{D}-14.8^{\circ}$, which was then converted into the bis(dithioketal) $18, \mathrm{mp} 194-195^{\circ} \mathrm{C},[\alpha]^{24} \mathrm{D}$ -6°, with ethanedithiol and boron trifluoride. Desulfurization with Raney nickel in boiling ethyl acetate converted the bis(dithioketal) 18 into (-)-[8][10]paracyclophane (5), bp $184-186{ }^{\circ} \mathrm{C}(2 \mathrm{~mm}),[\alpha]^{25} \mathrm{D}-6.3^{\circ}$, the IR and mass spectra of which were found identical with those of the racemic form. ${ }^{8}$

Absolute Configurations (Scheme III). The [8]-bridged [2.2]paracyclophane 19 was selected as our key intermediate which correlates (+)-[8][8]paracyclophane 4 to $(+)-(S)$ -[2.2]paracyclophane-4-carboxylic acid (20) with known absolute configuration. ${ }^{14}$
The levorotatory quaternary ammonium bromide $\mathbf{7 b}$, the precursor of (+)-[8][8]paracyclophane (4), was mixed with p-xylyltrimethylammonium bromide, and pyrolysis of a mixture of their Hofmann bases in boiling toluene afforded, beside [2.2]paracyclophane (8%), the $(+)$-[8]-bridged [2.2]paracyclophane 19, $[\alpha]^{20} \mathrm{D}+14.2^{\circ}(5 \%)$.
This same dextrorotatory [8]-bridged [2.2]paracyclophane could also be obtained from (+)-[2.2]paracyclophane-4carboxylic acid (20) to which the S absolute configuration had been assigned jy Schlögl. ${ }^{14}$ When the [2.2]paracyclophane ammonium base 21a, ${ }^{6}$ accessible from the (+)- (S)-[2.2]par-acyclophane-4-carboxylic acid (20), was coupled with 5 methylfurfuryltrimethylammonium hydroxide (8b), the furan-benzene hybrid [3]chochin (22) (6\%), mp $111-112^{\circ} \mathrm{C}$, $[\alpha]^{20}{ }_{\mathrm{D}}+137^{\circ}$, and $(+)-(S, S)-[4]$ chochin $(23)^{6}(3 \%)$, mp $229-231^{\circ},[\alpha]^{20} \mathrm{D}+245^{\circ}$, were isolated from the reaction mixture. Following the sequence of reactions described for the conversion of the furan-benzene hybrid [2.2]paracyclophane 9 into [8][8]paracyclophane (4), the furan moiety of the furan-benzene hybrid [3]chochin (22) was modified to an [8] bridge to give rise to $(+)$-[8]-bridged [2.2]paracyclophane 19, $\mathrm{mp} 135-136{ }^{\circ} \mathrm{C},\left[\alpha{ }^{20} \mathrm{D}+33.2^{\circ}\right.$. The infrared spectra of the two samples of 19, prepared from the two different precursors 7 and 21 , were found to be indistinguishable. This configurational correlation enables us to assign the S configuration to $(+)$-[8]paracyclophane-10-carboxylic acid ($6 \mathbf{d}$), which eventually leads to the S configuration of $(+)$ - $[8][8]$ paracyclophane (4).

Chiroptical Properties. Figure 1 reproduces the CD spectra of $(+)-(S)-[8][8]$ paracyclophane (4) and (-)-[8][10]paracyclophane (5), and their antipodal patterns clearly indicate the R configuration to (-)-[8][10]paracyclophane. This conclusion is further supported by the more complicated but

Figure 1. CD spectra of $(+)-4,(-)-5$, and $(-)-14 \mathrm{~h}$ in isooctane.

Figure 2. CD spectra of $(+)-6 d$ and $(-)-14 \mathrm{c}$ in methanol.

Figure 3. Conformational chirality of D_{2}-twist benzene and planar chirality of the benzene rings in $[m][n]$ paracyclophane.
again enantiomeric $C D$ curves shown by their respective precursors (Figure 2): (+)-(S)-[8]paracyclophane-10-carboxylic acid (6 d) and (-)-[10]paracyclophane carboxylic acid (14c).

In our preceding paper ${ }^{6}$ on optically active multilayered [2.2]paracyclophanes, we extended the Cahn-Ingold-Prelog's nomenclature ${ }^{15}$ for conformational chirality to specify the chiralities of the enantiomeric D_{2}-twist benzene as shown in Figure 3. Inspection of molecular models reveals that the benzene ring in (+)-[8][8]paracyclophene (4) with S-planar
chirality suffers a distortion corresponding to the $(M P M)_{2}$ D_{2}-twist benzene ring, whereas (-)-[8][10]paracyclophane (5) with R-planer chirality is deformed to have the enantiomeric $(P M P)_{2} \mathrm{D}_{2}$-twist benzene ring.
From analyses of the CD curves of various $D_{2}-[n]$ chochins, we have drawn the conclusion that the $(P M P)_{2} \mathrm{D}_{2}$-twist benzene ring exhibits a $(+$) Cotton effect at $240-360 \mathrm{~nm}$, and the enantiomeric $(M P M)_{2} \mathrm{D}_{2}$-twist benzene ring exhibits a $(-)$ Cotton effect at the same region.

The observed (+) Cotton effect in (+)-((S)-[8][8]paracyclophane (4) with (PMP) $)_{2} \mathrm{D}_{2}$-twist benzene confirms this generalization. In Figure 1 is also reproduced the CD curve of $(-)-(R)$-12,15-dimethyl[10]paracyclophane (14h) which was prepared by hydride reduction of the $(-)$-bromide $14 a$, and examination of the Cotton curves shown by three paracyclophanes in Figure 1 suggests that the observed bathochromic effect undoubtedly reflects the degree of distortion of the benzene rings in these molecules. Lastly, it would appear to be appropriate to mention here that Schlögl ${ }^{16}$ recently suggested the opposite configuration to $[m][n]$ paracyclophanes based mainly on the theoretical analyses of their CD spectra.

Experimental Section

Melting and boiling points are uncorrected. Infrared spectral data and nuclear magnetic resonance spectra were obtained from a Hitachi EPI-S2 spectrophotometer and a JNM-MH-100 spectrometer, respectively. Ultraviolet spectra were recorded on a Hitachi EPS-3T spectrometer. Circular dichroism data were measured on a JASCO $\mathrm{J}-20$ spectropolarimeter with a CD attachment. Mass spectral data were measured on a Hitachi HMS-4 spectrometer. Elemental analyses were performed by Yanagimoto CHN-Corder Type II.
[8]Paracyclophane-10-carboxaldehyde (6c). 2-Nitropropane $(15 \mathrm{~g}, 0.17 \mathrm{~mol})$ was added to a solution of sodium ethoxide, prepared from sodium (3.4 g -atoms) and absolute ethanol (100 mL). The nitronate salt was brought into solution by the addition of absolute ethanol (190 mL). To this ethanolic solution, the bromide $6 \mathbf{b}^{6}(41 \mathrm{~g}$, 0.146 mol) was added and the mixture was stirred for 30 h . The reaction mixture was poured into cold water (1 L) and then extracted with ether. The etheral extract was washed with 10% sodium hydroxide solution, water, and then dried. After evaporation of the solvent, the product was distilled to give $\mathbf{6 c}(28 \mathrm{~g}, 89 \%)$, bp 126-129 ${ }^{\circ} \mathrm{C}(0.3 \mathrm{~mm}), n^{20} \mathrm{D} 1.5642$; IR (film) $1685 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 83.28 ; \mathrm{H}, 9.32$. Found: C, 83.11; H, 9.40 .

The 2,4-dinitrophenylhydrazone of the aldehyde $\mathbf{6 c}$ showed mp $224-225^{\circ} \mathrm{C}$ after recrystallization from ethanol-benzene.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{4}: \mathrm{C}, 63.62 ; \mathrm{H}, 6.10 ; \mathrm{N}, 14.13$. Found: C, 63.48; H, 5.93; N, 14.13.
[8]Paracyclophane-10-carboxylic Acid (6d). Powdered potassium permanganate $(3 \mathrm{~g})$ was added to a solution of the aldehyde $\mathbf{6 c}$ $(28 \mathrm{~g})$ in acetone (400 mL), and the mixture was stirred at $35^{\circ} \mathrm{C}$ until the purple color disappeared. To the solution freed from the precipitated manganese dioxide, potassium permanganate (3 g) was added and stirring was continued to give a colorless supernatant. After removal of the manganese dioxide, oxidation was continued with a further 3 g of potassium permanganate until the purple color persisted for several hours. The combined manganese dioxide cakes were extracted with three $100-\mathrm{mL}$ portions of 1% potassium hydroxide solution. The combined extracts were made strongly acidic with concentrated hydrochloric acid to precipitate crystallines which were dried in a vaccum oven $\left(50^{\circ} \mathrm{C}\right)$ and recrystallized from methanol to afford $\mathbf{6 d}(18 \mathrm{~g}, 60 \%)$, mp $152-153^{\circ} \mathrm{C}$; IR (KBr) 2980, 2920, 2840, 1670 , 1598, 1554, 1483, 1457, 1435, 1394, 1288, 1263, 1207, 922, 910, 777, 705 cm^{-1}; NMR $\left(\mathrm{CDCl}_{3}\right) \tau-1.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.03$ and 2.95 (AB quartet, $\left.J_{\mathrm{ab}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.62(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{t}, 2 \mathrm{H}), 7.42(\mathrm{t}, 2 \mathrm{H}), 8.18-8.52(\mathrm{~m}$, $4 \mathrm{H}), 8.60-9.53$ (m, 8 H).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 77.55; H, 8.68. Found: C, 77.37; H, 8.66 .

Resolution of the Acid 6d. A mixture of $\mathbf{6 d}(18 \mathrm{~g}, 0.077 \mathrm{~mol})$ and $(+)-1-(\beta$-naphthyl)ethylamine ($13.3 \mathrm{~g}, 0.077 \mathrm{~mol})\left([\alpha]^{18}{ }_{\mathrm{D}}+17.5^{\circ}\right)$ in 95% ethanol (100 mL) was warmed to give a clear solution. After standing at room temperature for 24 h , the mixture yielded 3.8 g of a crystalline solid, mp 115-121 ${ }^{\circ}$. The filtrate was reduced in volume to 50 mL and was kept at room temperature for another 24 h to give 3.6 g of a crystalline solid, $\mathrm{mp} 112-118^{\circ} \mathrm{C}$. Recrystallization of the
combined crops from 95% ethanol afforded the salt, 6.4 g (20\%): mp $141-143{ }^{\circ} \mathrm{C} ;[\alpha]{ }^{23} \mathrm{D}-14.7^{\circ}$ (c $0.68, \mathrm{CHCl}_{3}$). The purified salt was dissolved in chloroform (10 mL), and 5% hydrochloric acid (30 mL) was added with vigorous shaking. The chloroform extract was washed with water and then dried. Evaporation of the solvent afforded a white solid which was recrystallized from methanol-water to give (+)-6d (3.5 g): mp 139-140 ${ }^{\circ} \mathrm{C} ;[\alpha]^{18} \mathrm{D}+18.1^{\circ}\left(\mathrm{c} 0.52, \mathrm{CHCl}_{3}\right)$; $\mathrm{CD}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $[\theta] \times 10^{-4}(\mathrm{~nm}),-6.38(212), 0(228),+4.97(248),+0.24(290),+0.41$ (305), 0 (327).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$: $\mathrm{C}, 77.55 ; \mathrm{H}, 8.68$. Found: $\mathrm{C}, 77.48 ; \mathrm{H}$, 8.65.
(+)-10-Carbomethoxy[8]paracyclophane (6e). To a solution of $\mathbf{6 d}(3.4 \mathrm{~g}, 14.6 \mathrm{mmol})$ in ether (20 mL) was added diazomethane solution prepared from 6 g of p-tosyl- N-methyl- N-nitrosoamide After evaporation of the solvent, the residual oil was distilled to give $6 \mathbf{e}(3.4 \mathrm{~g}, 94.5 \%)$: bp $135-137{ }^{\circ} \mathrm{C}(1.0 \mathrm{~mm}) ; n^{18}{ }_{\mathrm{D}} 1.5458 ;[\alpha]^{18} \mathrm{D}+16.8^{\circ}$ (c $0.72, \mathrm{CHCl}_{3}$); IR (film) $1715 \mathrm{~cm}^{-1}(\mathrm{C}=0$).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 78.01; H, 9.00. Found: C, 78.10; H, 8.96 .
(-)-10-Hydroxymethyl[8]paracyclophane (6f). A solution of $(+)-6 e(3.4 \mathrm{~g}, 13.8 \mathrm{mmol})$ in dry tetrahydrofuran $(15 \mathrm{~mL})$ was added dropwise to a suspension of lithium aluminum hydride ($1.2 \mathrm{~g}, 32$ mmol) in dry tetrahydrofuran (60 mL). The mixture was stirred for 5 h , and the excess reducing reagent was decomposed by addition of ethyl acetate. Dilute hydrochloric acid was added to dissolve the precipitated complex, and the mixture was extracted with ether. The ether solution was washed with 3% sodium bicarbonate solution and water, and then dried. Evaporation of the solvent gave an oil which was distilled to yield $6 \mathbf{f}(2.8 \mathrm{~g}, 93 \%)$: bp $141-143^{\circ} \mathrm{C}(0.8 \mathrm{~mm}) ; n^{19} \mathrm{D}$ $1.5586 ;[\alpha]^{21}{ }_{\mathrm{D}}-5.8^{\circ}$ (c $0.98, \mathrm{CHCl}_{3}$); IR (film) $3620 \mathrm{~cm}^{-1}(\mathrm{OH})$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 82.51 ; \mathrm{H}, 10.16$. Found: C, $82.41, \mathrm{H}$ 10.20 .
(+)-10-Bromomethyl[8]paracyclophane (6b). To a stirred so lution of the alcohol $6 f(2.1 \mathrm{~g}, 10 \mathrm{mmol})$ in dry ether $(30 \mathrm{~mL})$ was added dropwide a solution of phosphorus tribromide ($3.0 \mathrm{~g}, 11 \mathrm{mmol}$) in dry ether (20 mL) at room temperature. After the mixture was stirred for 6 h at room temperature, water (150 mL) was slowly added. The separated ether layer was washed with dilute sodium bicarbonate solution and water, and then dried. Removal of the ether afforded an oil which was distilled to give $\mathbf{6 b}(2.6 \mathrm{~g}, 96 \%)$: $n^{21}{ }_{\mathrm{D}} 1.5793 ;[\alpha]^{19} \mathrm{D}+5.3^{\circ}$ (c $0.86, \mathrm{CHCl}_{3}$)
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{Br}: \mathrm{C}, 64.06 ; \mathrm{H}, 7.53 ; \mathrm{Br}, 28.41$. Found: C , 63.92; H, 7.58; Br, 28.49.
(+)-10-Methyl[8]paracyclophane (6g). A solution of (+)-6b (2.6 $\mathrm{g}, 10 \mathrm{mmol})$ in dry tetrahydrofuran $(5 \mathrm{~mL})$ was added dropwise to a suspension of lithium aluminum hydride $(0.11 \mathrm{~g}, 30 \mathrm{mmol})$ in dry tetrahydrofuran (10 mL). The mixture was refluxed with stirring for 7 h , and the excess reducing reagent was decomposed with ethyl acetate (1 mL). After hydrochloric acid was added to dissolve the precipitated complex, the organic phase was extracted with ether. The ether solution was washed with water, 3% sodium bicarbonate solution, and again with water, and was dried. After evaporation of the solvent, the residual oil was distilled to give $\mathbf{6 g}(1.7 \mathrm{~g}, 91.5 \%)$: bp $142-143{ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm}) ; n^{17} \mathrm{D} 1.5418 ;\left[\alpha{ }^{19} \mathrm{D}+4.6^{\circ}\left(\mathrm{c} 0.96, \mathrm{CHCl}_{3}\right)\right.$

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22}$: C, 89.04; H, 10.96. Found: C, 88.86; H. 10.79
(-)-10-Trimethylammoniomethyl-13-methyl[8]paracyclophane Bromide (7 b). A mixture of $\mathbf{6 g}(1.7 \mathrm{~g}, 8.4 \mathrm{mmol})$, parafor maldehyde ($0.75 \mathrm{~g}, 16.8 \mathrm{mmol}$ of formaldehyde), acetic acid (7 mL), 85% phosphoric acid (2 mL), and 47% hydrobromic acid (6 mL) was refluxed with stirring for 15 min . The cooled mixture was poured into cold water and extracted with ether. The etheral solution was washed with water, 3% sodium bicarbonate solution, and again water, and was dried. After removal of the solvent, the resulting crude bromide 7 a $(2.2 \mathrm{~g})$ was dissolved in ether (20 mL) and then treated with excess anhydrous trimethylamine (5 mL). The resulting salt was collected by filtration, washed with ether, and dried to afford 7b ($2.0 \mathrm{~g}, 69 \%$ from 6 g). An analytical sample was recrystallized from methanol ether: mp $163-164^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-5.4^{\circ}\left(c 0.96, \mathrm{CHCl}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{42} \mathrm{NBr}$: C, 64.39; H, $9.71 ; \mathrm{N}, 3.95 ; \mathrm{Br}, 22.55$ Found: C, 64.47; H, 9.76; N, 3.99; Br, 22.61.

Benzene-Furan Hybrid [2.2]Paracyclophane 9 and (-) Doubly Bridged [2.2]Paracyclophane 10 . A mixture of $7 \mathrm{~b}(2 \mathrm{~g}, 5.6 \mathrm{mmol})$ and 5-methylfurfuryltrimethylammonium iodide (8a) ($2.8 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in water (100 mL), and freshly prepared silver oxide (from 10 g of silver nitrate) was added. After removal of the precipi tate, the resulting hydroxides solution was mixed with toluene (100 mL) containing phenothiazine (20 mg), and the mixture was heated with stirring. Water was removed by azeotropic distillation, and the reaction mixture was refluxed for 3 h . Freed from insoluble polymer
by filtration, the solution was concentrated under vacuum. The concentrate was chromatographed on neutral alumina in a cold room $\left(5^{\circ} \mathrm{C}\right)$. Elution with hexane gave $(-)-10(30 \mathrm{mg}, 2.5 \%)$, which when recrystallized from ethanol gave $\mathrm{mp} 204-206{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-25^{\circ}$ (c 0.31 $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{CD}$ (isooctane), $[\theta] \times 10^{-4}(\mathrm{~nm}), 0(229),+16.3(245), 0(258)$, - 5.88 (284), 0 (356), -1.68 (308).

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{44}$: C, 89.65; H, 10.35. Found: C, 89.56; H 1036

Elution with hexane-benzene (9:1) produced $9(0.16 \mathrm{~g}, 9 \%$ based on 7b) as an oil MS $m / e 308\left(\mathrm{M}^{+}\right)$] which was found unstable and was converted directly into (+)-3,6-diketo[8][8]paracyclophane (12) wi shout further purification. Further elution with hexane-benzene (5:1) gave [2.2]furanophane (11) $(0.38 \mathrm{~g}, 16 \%), \mathrm{mp} 180-181^{\circ} \mathrm{C}$.
i+)-3,6-Diketo[8][8]paracyclophane (12). A mixture of 9 (0.16 $\mathrm{g}, 0.5 \mathrm{mmol})$, acetic acid (5 mL), water (0.1 mL), and 10% sulfuric acid $(0.1 \mathrm{~mL})$ was heated at $65^{\circ} \mathrm{C}$ with stirring for 1 h . The reaction mix ture was pourec into water (20 mL), and the separated organic phase was extracted with chloroform. The extract was washed with water 3% sodium bicarbonate solution, and again with water, and was dried Af eer removal of the solvent, the residue was chromatographed on ne atral alumina. Elution with dichloromethane afforded 12 (50 mg 30%), which when recrystallized from hexane gave mp $149-150^{\circ} \mathrm{C}$ $[\alpha]^{20} \mathrm{D}+15.4^{\circ}\left(c 0.71, \mathrm{CHCl}_{3}\right)$.
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$: C, 80.93; H, 9.26. Found: C, 80.82; H, 8.99 .
+)-[8][8]Paracyclophane (4). A solution of 12 ($40 \mathrm{mg}, 0.12$ mmol) in acetic acid (4 mL) was combined with a solution of eth an dithiol ($0.1 \mathrm{~g}, 10 \mathrm{mmol}$) in acetic acid (2 mL). After 47% boron tri-luoride etherate (1 mL) was added, the mixture in a tightly sealed bo-tle was allowed to stand for 2 days at room temperature. The mixture was poured into water (30 mL) , and the product was extracted with chloroform. The extract was washed with 3% sodium bicarbonate solution and water, and then dried. Evaporation of the solvent af forded the crude bis(ethanedithioketal) 13 which was desulfurized directly without further purification. To a solution of the crude bis(dithioketal) $13(45 \mathrm{mg}$) in ethyl acetate (6 mL) was added W-5 Raney nickel (0.5 g). The mixture was refluxed for 1 h , cooled, and filtered After concentration of the filtrate, the oily product was subjected to alumina column chromatography. Elution with hexane gave $4(15 \mathrm{mg}$, 42%): bp $148-150{ }^{\circ} \mathrm{C}(1.0 \mathrm{~mm}) ;[\alpha]^{20} \mathrm{D}+5.4^{\circ}\left(\mathrm{c} 0.66, \mathrm{CHCl}_{3}\right) ; \mathrm{CD}$ (isooctane), $[\theta] \times 10^{-4}(\mathrm{~nm}),-2.34$ (218), 0 (227.5), +2.84 (247.5), +0.19 (292), 0 (307)
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34}$: C, 88.52; H, 11.48. Found: C, 88.47 ; H 11.46

15-Methyl[10]paracyclophane-12-carboxaldehyde (14b) Preparation of the aldehyde 14 b was carried out by the same method described for the preparation of $6 \mathbf{c}$, utilizing 12 -bromomethyl- 15 methyl[10]paracyclophane (14a) ($34 \mathrm{~g}, 0.105 \mathrm{~mol}$), 2-nitropropane $(15 \mathrm{~g}, 0.17 \mathrm{~mol})$, sodium ($2.5 \mathrm{~g}, 0.11 \mathrm{~g}$-atom), and absolute ethanol (160 mL). Distillation of the product gave $14 \mathrm{~b}(26 \mathrm{~g}, 95 \%)$: $n^{18} \mathrm{D} 1.5536$; MS $m / \geq 258\left(\mathrm{M}^{+}\right)$; IR (film) $1686 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}$: C, 83.66; H, 10.14. Found: C, $83.56 ; \mathrm{H}$ 10.18.

The 2,4-dinitrophenylhydrazone of the aldehyde $\mathbf{1 4 b}$ showed mp $20 \varepsilon-209^{\circ} \mathrm{C}$ after recrystallization from ethanol-benzene.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}_{4}$: C, $65.73 ; \mathrm{H}, 6.90 ; \mathrm{N}, 2.78$. Found: C, 65.31 ; H, 6.86; N, 12.73 .

15-Methyl[11] paracyclophane-12-carboxylic acid (14c). Oxidation of $14 \mathrm{~b}(25.9 \mathrm{~g}, 0.095 \mathrm{~mol})$ was carried out by the same proce dure described for the preparation of $\mathbf{6 d}$. The product was recrystal lized from ethanol-water to give $14 \mathrm{c}(16.2 \mathrm{~g}, 59 \%)$: mp $168-169^{\circ} \mathrm{C}$ R (KBr) 2980, 2880, 2830, 1672, 1600, 1550, 1492, 1451, 1402, 1262 93F, 757, $698 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\tau-1.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H})$, 3.0) ($\mathrm{s}, 1 \mathrm{H}$), 6.c15-6.37 (m, 1 H), 6.94-7.23 (m, 1 H), 7.44-7.90 (m, 2 H), $765(\mathrm{~s}, 3 \mathrm{H}), 8.22-8.61(\mathrm{~m}, 4 \mathrm{H}), 8.72-9.10(\mathrm{~m}, 4 \mathrm{H}), 9.15-9.72$ (m, 8 F-).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$: C, 78.78; $\mathrm{H}, 9.55$. Found: C, 78.91 ; H $9.5 う$.

Resolution of the Acid 14c. A mixture of $14 \mathrm{c}(7.9 \mathrm{~g}, 0.029 \mathrm{~mol})$ and brcine ($12.5 \mathrm{~g}, 0.029 \mathrm{~mol}$) in methanol (200 mL) was warmed until solution was complete. After standing at room temperature for 48 h , the mixture yielded 11.7 g of a solid, $\mathrm{mp} 93-99^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-38.6^{\circ}$ (c $0.5 .3, \mathrm{CH}_{3} \mathrm{OH}$), which was recrystallized from methanol three times to vield 6.4 g of white needles: $\mathrm{mp} 118-124^{\circ} \mathrm{C} ;[\alpha]^{26} \mathrm{D}-41.4^{\circ}$ (c 0.79 $\mathrm{CH}_{3} \mathrm{OH}$). This salt was dissolved in chloroform (80 mL), and 5% hy drcchloric acid (70 mL) was added with vigorous shaking. The sepa rated chloroform layer was washed with water and then dried. After evaporation of the solvent, the crude (-)-acid obtained was recrys talkized from ethanol-water to give (-)-14c (2.9 g): mp 134-135 ${ }^{\circ} \mathrm{C}$ $[\alpha]^{21} \mathrm{D}-28^{\circ}\left(\mathrm{c} 0.94, \mathrm{CH}_{3} \mathrm{OH}\right) ; \mathrm{CD}\left(\mathrm{CH}_{3} \mathrm{OH}\right),[\alpha] \times 10^{-4}(\mathrm{~nm}),+6.82$
(213), 0 (224), -3.84 (245), -0.33 (380), -0.43 (294), 0 (315).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$: C, 78.79; H, 9.55. Found: C, 78.88 ; H , 9.51.
(-)-12-Carbomethoxy-15-methyl[10]paracyclophane (14d). The (-)-acid $14 \mathrm{c}(1.7 \mathrm{~g}, 6.2 \mathrm{mmol})$ was dissolved in ether $(20 \mathrm{~mL})$ and esterified with diazomethane. After evaporation of the solvent, the methyl ester was distilled to give $14 \mathrm{~d}(1.6 \mathrm{~g}, 90 \%)$ as an oil: bp 141-143 ${ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm}) ; n^{21} \mathrm{D} 1.5386 ;[\alpha]^{21} \mathrm{D}-20.6^{\circ}\left(\mathrm{c} 0.81, \mathrm{CHCl}_{3}\right)$; IR (film) 1712 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$: C, 72.12; H, 9.79. Found: C, $72.26 ; \mathrm{H}$, 9.72 .
(+)-12-Hydroxymethyl-15-methyl[10]paracyclophane (14e). A solution of (-)-14d $(1.6 \mathrm{~g}, 5.6 \mathrm{mmol})$ in dry tetrahydrofuran (7 mL) was added dropwise to a suspension of lithium aluminum hydride (0.4 $\mathrm{g}, 10 \mathrm{mmol}$) in dry tetrahydrofuran (30 mL). The mixture was heated under reflux for 6 h , and the excess reducing reagent was decomposed with ethyl acetate. The mixture was acidified with dilute hydrochloric acid, and the organic phase was extracted with ether. The ether solution was washed with water, 3% sodium bicarbonate solution, and again with water, and was dried. The solvent was removed to give an oil, which was distilled to give $14 \mathrm{e}(1.35 \mathrm{~g}, 94 \%)$: bp $145-1 \leq 7^{\circ} \mathrm{C}(0.1$ mm); $n^{22}{ }_{\mathrm{D}} 1.5432 ;[\alpha]^{26}{ }_{\mathrm{D}}+8.1^{\circ}$ (c 0.85, CHCl_{3}); IR (film) $3330 \mathrm{~cm}^{-1}$ (OH).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}: \mathrm{C}, 83.02 ; \mathrm{H}, 10.84$. Found: C, 82.91; H, 10.90 .
(-)-12-Bromomethyl-15-methyl[10]paracyclophane (14a). To a stirred solution of the alcohol $14 \mathrm{e}(1.3 \mathrm{~g}, 5.0 \mathrm{mmol})$ in dry ether (15 mL) was added dropwise a solution of phosphorus tribromide (1.4 $\mathrm{g}, 5.1 \mathrm{mmol})$ in dry ether $(10 \mathrm{~mL})$ at room temperature. After stirring for 3 h at room temperature, the mixture was poured into cold water $(50 \mathrm{~mL}$). The separated organic phase was washed with 3% sodium bicarbonate solution and water, and was dried. After removal of the solvent, the residue was distilled to give $14 \mathrm{a}(1.4 \mathrm{~g}, 88 \%)$: bp 138-140 ${ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm}) ; n^{21}{ }_{\mathrm{D}} 1.5669 ;[\alpha]^{22} \mathrm{D}-24^{\circ}\left(0.76, \mathrm{CHCl}_{3}\right)$; MS m/e 323 $\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{Br}$: $\mathrm{C}, 66.86 ; \mathrm{H}, 8.42 ; \mathrm{Br}, 24.72$. Found: C , 66.97; H, 8.51; Br, 24.60 .
(+)-12-Trimethylammoniomethyl-15-methyl[10]paracyclophane Bromide (14f). A solution of (-)-14a($1.2 \mathrm{~g}, 3.7 \mathrm{mmol}$) in ether $(30 \mathrm{~mL})$ was treated with excess anhydrous trimethylamine $(5 \mathrm{~mL})$. The resulting salt was collected by filtration, washed with ether, and dried to afford $14 \mathrm{f}(1.3 \mathrm{~g}, 91.6 \%)$. An analytical sample was recrystallized from methanol-ether: $m p 252-254^{\circ} \mathrm{C} ;[\alpha]^{21} \mathrm{D}+1 \varsigma^{\circ}$ (c 0.84 , CHCl_{3}).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NBr}$: C, 65.95; H, 9.49; N, 3.66; Br, 20.88 . Found: C, 66.00; H, 9.53; N, 3.62; Br, 20.83.
(-)-12,15-Dimethyl[10]paracyclophane (14h). A mixture of $(-)-14 \mathbf{a}(0.18 \mathrm{~g}, 0.56 \mathrm{mmol})$ in dry tetrahydrofuran $(5 \mathrm{~mL})$ was added dropwise to a suspension of lithium aluminum hydride $0.2 \mathrm{~g}, 5.3$ mmol) in dry tetrahydrofuran (15 mL). The mixture was heated under reflux for 10 h , and the usual work up furnished the product which was distilled to give $14 \mathrm{~h}(0.12 \mathrm{~g}, 88 \%)$: bp $174-176^{\circ} \mathrm{C}(3 \mathrm{~mm}) ; n^{25} \mathrm{D}$ 1.5408; $[\alpha]^{25} \mathrm{D}-7.2^{\circ}\left(c 0.96, \mathrm{CHCl}_{3}\right)$; CD (isooctane), $[\theta] \times 10^{-4}(\mathrm{~nm})$, 0 (217), 2.22 (229), 0.27 (274), -0.29 (282), 0 (294).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28}: \mathrm{C}, 88.45 ; \mathrm{H}, 11.55$. Found: C, $88.49 ; \mathrm{H}$, 11.51.
(-)-Benzene-Furan Hybrid [2.2]Paracyclophane 15 and (+) Doubly Bridged [2.2]Paracyclophane 16. A solution (70 mL) of the mixed quaternary ammonium hydroxides, 14 g and 8 b , prepared from a mixture of $14 \mathrm{f}(1.3 \mathrm{~g}, 3.4 \mathrm{mmol})$ and $8 \mathrm{a}(1.6 \mathrm{~g}, 5.7 \mathrm{mmol})$ in the usual manner, was mixed with toluene (50 mL) containing phenothiazine (10 mg). After pyrolysis, the same procedure described for the [8]paracyclophane series of compound 9 afforded the crude product which was chromatographed on neutral alumina. Elution with hexane afforded 16 ($41 \mathrm{mg}, 5 \%$), which when recrystallized from hexane gave $\mathrm{mp} 219-220^{\circ} \mathrm{C} ;[\alpha]^{21} \mathrm{D}+61.3^{\circ}$ (c $0.77, \mathrm{CHCl}_{3!}$; CD (isooctane), $[\theta] \times 10^{-4}(\mathrm{~nm}),+13.8(210), 0(22.5),-19.4$ (234.5), 0 (252), +3.68 (273), +1.27 (297), 0 (320).
Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{52}$: C, 89.19; H, 10.81. Found: C, 89.15; H, 10.79.

Elution with hexane-benzene (9:1) produced a colorless oil, which was distilled to give $15(120 \mathrm{mg}, 10 \%$ based on 14 f$)$: bp $154-156^{\circ} \mathrm{C}$ $(0.01 \mathrm{~mm}) ;\left[\alpha{ }^{22} \mathrm{D}-21^{\circ}\left(\mathrm{c} 0.83, \mathrm{CHCl}_{3}\right) ;[\alpha] \times 10^{-4}(\mathrm{~nm})+1.22(220)\right.$, +4.66(229), 0 (241), -1.57(257), 0 (290).

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}: \mathrm{C}, 85.66 ; \mathrm{H}, 9.59$. Found: C, $85.25 ; \mathrm{H}$, 9.68.

Further elution with hexane-benzene (5:1) gave [2.2]furanophane (11) ($45 \mathrm{mg}, 8 \%$).
(-)-3,6-Diketo[8][10]paracyclophane (17). Ring opening of the furan ring in 15 was carried out by the method described for the
preparation of the [8]paracyclophane series of compour:d 12, utilizing $15(120 \mathrm{mg}, 0.36 \mathrm{mmol})$, water $(0.1 \mathrm{ml})$, acetic acid (5 mL), and 10% sulfuric acid $(0.1 \mathrm{~mL})$. The resulting product was chrcmatographed on neutral alumina. Elution with dichloromethane produced 17 (75 $\mathrm{mg}, 59 \%$), which was recrystallized from hexane to give mp 159-160 ${ }^{\circ} \mathrm{C} ;[\alpha]^{21} \mathrm{D}-14^{\circ}\left(\mathrm{c} 0.79, \mathrm{CHCl}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 81.31; H, 9.65. Found: C, 81.12; H, 9.74.
(-)-Bis(ethanedithioketal) (18). A solution of $17(70 \mathrm{mg}, 0.2$ mmol) in acetic acid (6 mL) was mixed with a solution of ethanedithiol (3 mL) in acetic acid (4 mL) which contained 47% bo:ontrifluoride etherate $(2 \mathrm{~mL})$. After standing for 2 days at room temperature, the reaction mixture was poured into water (20 mL) and extracted with chloroform. The chloroform solution was washed with water and then dried. Removal of the solvent yielded a crystalline solid which on crystallization from ethanol gave 18 ($79 \mathrm{mg}, 79 \%$): mp $149-150^{\circ} \mathrm{C}$; $[\alpha]^{24}{ }_{\mathrm{D}}-6^{\circ}$ (c $0.75, \mathrm{CHCl}_{3}$).
Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~S}_{4}$: C, $66.34 ; \mathrm{H}, 8.36$. Found: C, $66.41 ; \mathrm{H}$, 8.35 .
(-)-[8][10]Paracyclophane (5). To a solution of $18(70 \mathrm{mg}, 0.173$ mmol) in ethyl acetate (5 mL) was added W-5 Raney nickel (1.0 g), and the mixture was refluxed for 1 h . The mixture was freed of Raney nickel and concentrated under vacuum to give an oil which was chromatographed on neutral alumina. Elution with hexane afforded a colorless oil, which was distilled to give 5 ($35 \mathrm{mg}, 62 \%$): bp 184-186 ${ }^{\circ} \mathrm{C}(2 \mathrm{~mm}):[\alpha]{ }^{25} \mathrm{D}-6.3^{\circ}\left(c \quad 0.92, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} m / e 326\left(\mathrm{M}^{+}\right)$; CD (isooctane), $[\theta] \times 10^{-4}(\mathrm{~nm}),+6.37(215), 0(225),-2.72(243),-0.17$ (285).

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{38}$: C, 88.27; H, 11.73. Found: C, 88.30; H , 11.69.
(+)-[8]-Bridged [2.2]Paracyclophane 19 (from 7c). A solution $(40 \mathrm{~mL})$ of the quaternary ammonium hydroxides prepared from a mixture of $7 \mathrm{c}(0.5 \mathrm{~g}, 1.4 \mathrm{mmol})$ and p-xylyltrimethylammonium bromide ($1.0 \mathrm{~g}, 4.1 \mathrm{mmol}$) was mixed with toluene (30 mL) containing phenothiazine (5 mg). After pyrolysis, the crude procuct was chromatographed on neutral alumina. Elution with hexane yielded $(+)$ - 19 ($22 \mathrm{mg}, 5 \%$), which when recrystallized from hexane-benzene gave $\operatorname{mp~138-139}{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}+14.2^{\circ}\left(c \quad 0.67, \mathrm{CHCl}_{3}\right) ; \mathrm{MS} \mathrm{m} / e 318\left(\mathrm{M}^{+}\right)$; IR (KBr) 2980, 2880, 2840, 2820, 1585, 1494, 1431, 1407, $2078,928,888$, $902,715 \mathrm{~cm}^{-1}$; UV (isooctane) $\lambda_{\max } 220,280,325 \mathrm{sh} \mathrm{nm}(\log \epsilon 3.83,3.22$, 2.04); CD (isooctane), $[\theta] \times 10^{-4}(\mathrm{~nm}),+1.6$ (205),+10.7 (217), 0 (227), -13.7 (242), $0(256),+4.19(265),+0.76(285),+2.21(302),+0.45(325$ sh), 0 (355); NMR $\left(\mathrm{CDCl}_{3}\right) \tau 3.51(\mathrm{~s}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}) .6 .55-8.15(\mathrm{~m}$, $12 \mathrm{H}), 8.20-10.06(\mathrm{~m}, 10 \mathrm{H}), 10.20-10.92(\mathrm{~m}, 2 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30}$: C, $90.50 ; \mathrm{H}, 9.50$. Found: C, $90.41 ; \mathrm{H}$, 9.52.

Further elution with hexane-benzene (5:1) gave [2.2]paracyclophane ($34 \mathrm{mg}, 8 \%$).
(+)-Triple-Layered [2.2]Paracyclophane 22. A solution (60 mL) of the quaternary ammonium hydroxides from a mixture of $(+)$ -(S)-4-trimethylammoniomethyl-7-methyl[2.2]paracyclophane bromide $(21 \mathrm{a})^{6}(3 \mathrm{~g}, 8.2 \mathrm{mmol})$ and $8 \mathrm{a}(3 \mathrm{~g}, 10.7 \mathrm{mmol})$ was mixed with toluene $(100 \mathrm{~mL})$ containing phenothiazine (10 mg). After pyrolysis, the product was chromatographed on neutral alumina. Elution with hexane-benzene ($10: 1$) gave [2.2]furanophane (11) ($80 \mathrm{mg}, 8 \%$). Further elution with hexane-benzene (7:1) produced the $(+)$-triplelayered compound $22(188 \mathrm{mg}, 6 \%)$, which when recrystallized from hexane gave mp 111-112 ${ }^{\circ} \mathrm{C} ;\left[\alpha{ }^{20} \mathrm{D}+137^{\circ}\right.$ (c $0.58, \mathrm{CHCl}_{3}$); MS m/e $328\left(\mathrm{M}^{+}\right)$; IR (KBr) 2970, 2880, 2820, 1584, 1532, 1493, 1486, 1452, $1419,1171,1128,1010,943,934,792,713,623 \mathrm{~cm}^{-1}$; UV (isooctane) $\lambda_{\max } 222,278,314,333 \mathrm{~nm}(\log \epsilon 4.09,3.79,2.85,2.80)$; NMR $\left(\mathrm{CDCl}_{3}\right)$ $\tau 3.76(\mathrm{~s}, 4 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 6.65-7.85$ (m, 16 H$)$; CD (isooctane), $[\theta] \times 10^{-4}(\mathrm{~nm}) 0(205),+21.0(217), 0(234),-25.9(245.5)$, 0 (262.5), +3.88 (269), 0 (285.5), -0.56 (288), $0(291 \mathrm{I},+3.88$ (306), +1.46 (337), 0 (360).
Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 87.76 ; \mathrm{H}, 7.36$. Found: C, 87.81; H, 7.34.

Elution with hexane-benzene (5:1) gave $(+)-(S, S)-[4]$ chochin $^{6}(57$ $\mathrm{mg}, 3 \%$), which gave $\mathrm{mp} 229-231{ }^{\circ} \mathrm{C}$ after recrystallization from hexane-benzene: $[\alpha]^{20} \mathrm{D}+245^{\circ}$ (c $0.53, \mathrm{CHCl}_{3}$); MS m/e $468\left(\mathrm{M}^{+}\right)$; UV (isooctane), $[\theta] \times 10^{-4}(\mathrm{~nm}) 0(211),-31.0(217.5),-25.9(232.5)$, $0(249),+4.56(260),+6.23(272),+3.29(311),+3.95(339),+2.60(355)$, 0 (385).

Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{36}$: C, 92.26; H, 7.74. Founc: C, 92.28; H, 7.73.
(+)-3,6-Diketone 24a. Hydrolysis of 22 was carried out by the method described for the preparation of 12 , utilizing 22 ($180 \mathrm{mg}, 0.55$ $\mathrm{mmol})$, water $(5 \mathrm{~mL})$, acetic acid $(30 \mathrm{~mL})$, and 10% sulfuric acid $(0.5$ mL). The resulting product was chromatographed on neutral alumina. Elution with dichloromethane produced $\mathbf{2 4 a}(110 \mathrm{mg}, 58 \%$), which
after recrystallization from hexane gave mp $195-197^{\circ} \mathrm{C} ;[\alpha]^{32} \mathrm{D}+17.5^{\circ}$ （c $0.78, \mathrm{CHCl}_{3}$ ）；IR（KBr）2998，2920，2830，1693，1588，1423，1407， $1316,1141,1092,1068,899,863,789,713 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \tau 3.58$ （ $\mathrm{s}, 4 \mathrm{H}$ ）， 4.03 （ $\mathrm{s}, 2 \mathrm{H}$ ）， $6.50-7.97$（m， 16 H ），8．10－8．85（m， 4 H ）．

Anal．Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2}$ ：C，83．20；H，7．56．Found：C，83．57；H， 7．46．
（＋）－［8］－Bridged［2．2］Paracyclophane（19）（from 24）．The bis（ethanedithiol） $\mathbf{2 4 b}$ was prepared by the method described for the preparation of 13 ，utilizing 24a（ $100 \mathrm{mg}, 0.29 \mathrm{mmol}$ ），acetic acid（ 15 mL ），ethanedithiol（ 3 mL ），and 47% borontrifluoride（ 1 mL ）．To a solution of crude $24 \mathrm{~b}(0.14 \mathrm{~g})$ in ethyl acetate（ 15 mL ）was added W－5 Raney nickel（ 0.5 g ）．Refluxing followed by removal of the Raney nickel and concentration gave a solid which was subjected to alumina column chromatography．Elution with hexane－benzene gave 19：mp $135-136{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}+33.2^{\circ}$（c $0.84, \mathrm{CHCl}_{3}$ ）．

Anal．Calcd for $\mathrm{C}_{24} \mathrm{H}_{30}: \mathrm{C}, 90.50 ; \mathrm{H}, 9.50$ ．Found：C， $90.44 ; \mathrm{H}$ ， 8．54．

Registry No．－（S）－（＋）－4，54059－74－4；（R）－（－）－5，36757－10－5； （土）－6b，63534－00－9；（＋）－6b，63534－01－0；（土）－6c，63534－02－1；（土）－6c DNP，63534－03－2；（ \pm ）－6d，63534－04－3；（S）－（＋）－6d，63597－46－6；（S）－ （＋）－6d（＋）－α－（ β－naphthylethylamine），63597－47－7；（＋）－6e，63534－ 05－4；（－）－6f，63534－06－5；（＋）－6g，63534－07－6；（土）－7a，63534－08－7； （－）－7b，63534－09－8；8a，1197－60－0；8b，32543－06－9；（土）－9，63534－10－1； （－）－10，63597－48－8；（ \pm ）－11，5088－46－0；（＋）－12，63534－11－2；（土）－13， 63534－12－3；（ \pm ）－14a，36659－11－7；（－）－14a，63534－13－4；（ \pm ）－14b， 36659－12－8；（ \pm ）－14b DNP，63534－14－5；（ \pm ）－14c，63534－15－6；（－）－14c， 36659－13－9；（ - ）－14c brucine，63534－16－7；（ - ）－14d，36757－09－2；（＋）－ 14e，36659－14－0；（＋）－14f，36659－16－2；（ \pm ）－14g，63534－17－8；R－（－）－14h， 63534－18－9；（ - ）－15，36659－18－4；（＋）－16，63597－49－9；（ - ）－17，36659－ 19－5；（－）－18，36659－20－8；（＋）－19，63534－19－0；（S）－（＋）－21a，63534－20－3； （＋）－22，63534－21－4；（S，S）－（＋）－23，36659－04－8；（＋）－24a，63534－22－5； （＋）－24b，63534－23－6；（＋）－α－（ β－naphthyl）ethylamine，3906－16－9； brucine，357－57－3；p－xylyltrimethylammonium bromide，16814－21－ 4.

References and Notes

（1）Presented at the 25th Annual Meeting of the Chemical Society of Japan， Tokyo，Aprii，1972，and a portion of this research has been reported in preliminary ${ }^{\text {ºrm：M．Nakazaki，K．Yamamoto，and M．Itoh，J．Chem．Soc．，}}$ Chem．Commun．， 434 （1972）；M．Nakazaki and K．Yamamoto，Chem．Lett．， 1051 （1974），
（2）M．Nakazaki and K．Chikamatsu，Abstracts II，p 670．The 34th Annual Meeting of the Chemical Society of Japan，Tokyo，April， 1976.
（3）M．Nakazaki，K．Naemura，and S．Harita，Bull．Chem．Soc．Jpn．，48， 1907 （1975）．
（4）For a general survey on this subject，see M．Farina anc C．Morandi，Tetra－ hedron，30， 1819 （1974）．
（5）K．Adachi，K．Naemura，and M．Nakazaki，Tetrahedron Lett．， 5467 （1968）．
（6）M．Nakazaki，K．Yamamoto，and S．Tanaka，J．Chem．Soc．，Chem．Com－ mun．， 433 （1972）；M．Nakazaki，K．Yamamoto，S．Tanaka，and H．Kametani， J．Org．Chem．，42， 287 （1977）．
（7）According to Smith＇s nomenclature：B．H．Smith，＂Bridged Aromatic Compounds＇，Academic Press，New York，N．Y．，1964，p 13.
（8）M．Nakazaki．K．Yamamoto，anc S．Tanaka，Tetrahedron Lett．， 341 （1971）； M．Nakazaki，K．Yamamoto，and S．Tanaka，J．Org．Chem．，41， 4081 （1976）．
（9）All structural formulas in schemes are presented in their absolute config－ urations．
（10）A．T．Blomquist and B．H．Smitt，J．Am．Chem．Soc．，82， 2073 （1960）；A． T．Blomquist，R．E．StahI，V．C．Meinwald，and B．H．Smith，J．Org．Chem．， 26， 1687 （1961）．
（11）D．J．Cram，C．S．Montgomery，and G．R．Knox，J．Am．Chem．Soc．，88， 515 （1966）．
（12）H．E．Winberg，F．S．Fawcett，W．E．Mochel，and C．W．Theobald．J．Am． Chem．Soc．，82， 1428 （1960）．
（13）M．Nakazak，K．Yamamoto，and S．Okamoto，Tetrahedron Lett．， 4597 （1969）：M．Nakazaki，K．Yamamoto，and S．Okamoto．Bull．Chem．Soc．Jpn．， 45， 1562 （1972）．
（14）H．Falk and K．Schlögl，Angew．Chem．，Int．Ed．Engl．，1， 383 （1968）；H．Falk， P．Heid－Pohring，and K．Schlogl，Tetrahedron，26， 511 （1970）．
（15）R．S．Cahn，Sir C．Ingold，and V．Prelog，Angew．Chem．，Int．Ed．Engl．，5， 385 （1966）．
（16）E．Langer，H．Lehner，and K．Schlogl，Tetrahedron，29， 2473 （1973）．

Synthesis of Methyl dI－Jasmonate and Its Related Compounds from Methyl（E）－and（Z）－4，4－Dimethoxy－2－butenoates

Sigeru Torii，＊Hideo Tanaka，and Yuichi Kobayasi
Department of Industrial Chemistry，School of Engineering，Okayama University，Okayama，Japan 700

Received April 15， 1977

A synthesis of methyl $d l$－jasmonate（ $\mathbf{1} \mathbf{b}$ ）and its dehydro derivatives $\mathbf{2 b}$ and $\mathbf{3 b}$ from methyl (E)－and（ Z ）－4，4－ dimethoxy－2－butenoates（4）is described．Dimethyl 2－acetyl－3－dimethoxymethylglutarate（5）could be obtained by Michael addition of 4 with methyl acetoacetate in excellent yields．Deacetalization of dimethyl 2 －acetyl－3－di－ methoxymethyl－2－（2－pentynyl）glutarate（7a）followed by cyclization with base after alkylation of $5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with 2－pentynyl bromide afforded 5－methoxycarbonyl－4－methoxycarbonylmethyl－5－（2－pentynyl）－2－cyclopentenone （10a）．Reduction of $10\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with NaBH_{4} in MeOH giving 2－methoxycarbonyl－3－methoxycarbonylmethyl－2－ （2－pentynyl）cyclopentanol（13a）and subsequent oxidation of 13 with chromic acid gave 2－methoxycarbonyl－3－ methoxycarbonylmethyl－2－（2－pentynyl）cyclopentanone（14a），a precursor of $1 \mathbf{b}$ ．Cis hydrcgenation of $7 \mathbf{a} \rightarrow 7 \mathbf{b}$ ， $10 a \rightarrow 10 b, 13 a \rightarrow 13 b$ ，and $14 a \rightarrow 14 b$ using Lindlar catalyst proceeded in quantitative yields．Direct demethoxy－ carbonylation of $10 b$（ $R=2$－cis－pentenyl）with $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NaCl}$ in a sealed tube afforded a mixture of $2 b$ and 3b．However，acid－catalyzed de－tert－butoxycarbonylation of 10 b （ $\mathrm{R}^{\prime}=t-\mathrm{Bu}$ ），prepared from 5 （ $\mathrm{R}^{\prime}=t$－ Bu ）by alkyl－ ation followed with cyclization，under reflux in benzene gave $\mathbf{2 b}$ as a sole product．Hydrogenation of $10 a$ with palla－ dium on charcoal afforded $14 c(R=$ pentyl $)$ ．The products $2 b$ and $3 b$ could je converted into $1 b$ smoothly．

Our continuing interest in the jasmonoid syntheses ${ }^{1}$ has led to discovering an economically significant method in ob－ taining methyl $d l$－jasmonate（ $1 \mathbf{b})^{2}$ and methyl dehydrojas－ monates（ $\mathbf{2 b}$ and $\mathbf{3 b}$ ）without using troublesome reagents．In the course of our efforts to investigate the electrolysis of 2 － substituted furans，we have found an effective，one－step preparative way of methyl (E)－and（ Z ）－4，4－dimethoxy－2－ butenoates（4）．${ }^{3}$ It should be noted that the butenoates 4 are expected to be a powerful Michael acceptor and they are in－
deed smoothly obtained in good yield by the simple electrol－ yses of furfuryl alcohol，furfural，and 2－furoic acid．We now report a straightforword synthesis of the jasmonates $\mathbf{1 b}, \mathbf{2 b}$ ， and 3 b from 4 via the intermediates $5,7,10,13$ ，and 14 ．

When the butenoates 4 were allowed to react with methyl acetoacetate using alkali metal carbonates in methanol（Table I，runs 1,2 ，and 3$)$ ，the yield of $5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ was in the ranges of $0-35 \%$ yields along with the formation of 6 （ $6-11 \%$ yields）． A successful Michael addition of methyl acetoacetate to 4 was

Table I. Constituents of the Michael Adducts of 4 with Methyl Acetoacetate

Run	Substrate	Base	Time (h)	Yield of products, \%		
				$5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$	6	4^{a}
1	4(Z)	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	20	35	6	29
2	$4(Z)$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	5	22	9	18
3	$4(Z)$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	16		11	
4	4(Z)	KF	72	97		
5	$4(E)$	KF	72	98		

1

2

$a: R=-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CEt}$
b: $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH} \stackrel{\text { cis }}{=} \mathrm{CHEt}$
c: $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}$
3

6

8
accomplished in $97-98 \%$ yields by using potassium fluoride in methanol as shown in Table I (runs 4 and 5). In contrast to our results, an earlier report demonstrates that fluoride ion is considered to be a strong base in aprotic solvents because of lack of hydrogen bonding. ${ }^{4}$

Alkylation of $5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with pentynyl bromide using potassium carbonate in acetone afforded the desired C -alkylated $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 72 \%\right.$ yield) together with the O -alkylated $8 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 27 \%\right.$ yield), whereas the yield of $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ increased to 81% by addition of a catalytic amount of potassium iodide. The products 7a and 8a could be separated by column chromatography.

An aqueous THF solution of $7\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ was hydrolyzed with 1% perchloric acid at $26-28^{\circ} \mathrm{C}$, giving $9\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, and subsequent base-catalyzed cyclization with piperidine-acetic acid in benzene afforded $10\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ in $52-56 \%$ yield (based on 7) after removal of water azeotropically. However, the prolonged heating of the aqueous THF solution of 7a ($\mathrm{R}^{\prime}=$ Me) with $3-4 \%$ perchloric acid over $33^{\circ} \mathrm{C}$ provided the lactone derivative 11a preferentially. Cis hydrogenation of $7 \mathbf{a} \rightarrow 7 \mathrm{~b}$, $10 a \rightarrow 10 b, 13 a \rightarrow 13 b$, and $14 a \rightarrow 14 b$ in a mixed solvent of hexane and acetone using Lindlar catalyst ${ }^{5}$ proceeded in quantitative yields.

The hydride reduction of 2 -cyclopenten-1-ones ${ }^{6}$ has been well investigated; however, selective 1,4 reduction of the enones has not yet been reported, in contrast to the cases of 2 -cyclohexen-1-ones. ${ }^{7}$ The reduction of the mixed products $2 \mathbf{b}$ and $3 \mathbf{b}(5: 1)$ to the diol 12 with 14 equiv of metal lithium in liquid ammonia and subsequent oxidation and esterification, giving 1b, has been discussed by Ducos and Rouessac. ${ }^{8}$ In an effort to ascertain how the double bond in the ring of 10 could

1. $\mathrm{H}^{+} \downarrow \underset{\Delta}{\text { 2. АсОН, }} \underset{\Delta N}{ }$

14

$$
R^{\prime}=M e, \text { tert }-\mathrm{Bu}
$$

12

11

15
be selectively reduced, the following several examinations were attempted. Thus, reduction of $10 b\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with 4 equiv of lithium tri-tert-butoxyaluminumhydride ${ }^{6 \mathrm{a}}$ in THF at $5^{\circ} \mathrm{C}$ for 18 h afforded a mixture of $13 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 51 \%\right)$ and $14 \mathrm{~b}\left(\mathrm{R}^{\prime}\right.$ $=\mathrm{Me}, 26 \%$) (Table II, run 1). Similarly, reduction of $10 b\left(R^{\prime}\right.$ $=\mathrm{Me}$) with 2 equiv of sodium borohydride in methanol and/or in dioxane under reflux for 1 h afforded the alcohol 13 b (R^{\prime} $=\mathrm{Me}, 80$ and 41% yields) (Table II, runs 2 and 3). On the other hand, catalytic hydrogenation of $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with palladium on charcoal or palladium on barium sulfate in methanol at $24^{\circ} \mathrm{C}$ for 30 min gave $14 \mathrm{c}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$) in 88-97\% yields (runs 4 and 5).
The Jones oxidation of both $13 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, derived from $10 a\left(R^{\prime}=\mathrm{Me}\right)$, and $\mathbf{1 3 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with chromic acid-sulfuric acid in methylene chloride gave the corresponding cyclopentanones 14a and 14b in 71-84\% yields, and subsequent demethoxycarbonylation in aqueous dimethylsulfoxide ($\mathrm{Me}_{2} \mathrm{SO}$) containing a small amount of sodium chloride $(\mathrm{NaCl})^{2 \mathrm{~d}}$ in a sealed tube led to the jasmonates la-b, smoothly.

Methyl dehydrojasmonate (2b), isolated from jasmine absolutes of Italian ${ }^{9}$ and Spanish ${ }^{10}$ jasmines (Jasminum grandiflorum L.), has received considerable attention as new odorous stuff. ${ }^{\text {1a }}$ However, in a synthetical sense, it is lacking

Table II. Reduction of $10 \mathrm{~b}\left(\mathbf{R}^{\prime}=\mathbf{M e}\right)$ with Various Reducing Reagents

Run	Reagent	Solvent	Temp, ${ }^{\circ} \mathrm{C}$	Time, h	Yield of products, \%		
					13b	14b	14c
1	$\begin{gathered} \mathrm{Li}(t-\mathrm{BuO})_{3}- \\ \text { AlH } \end{gathered}$	THF	5	18	51	26	
2	NaBH_{4}	Dioxane	102	1	41		
3	NaBH_{4}	MeOH	65	1		80	
4	Pd/C	MeOH	20	0.8			97
5	$\mathrm{Pd} / \mathrm{BaSO}_{4}$	MeOH	24	0.5			88

in the literature in obtaining $\mathbf{2 b}$ except for the paper regarding the simultaneous formation of $\mathbf{2 a}$ and $\mathbf{3 a}$ in the retro-DielsAlder reaction of 3-oxo-4-(2-pentynyl)-5-methoxycarbonyl-methyl-endo-tricyclo[5.2.1.0 $\left.{ }^{2,6}\right]$-8-decene. ${ }^{8}$ In our experiment, demethoxycarbonylation of $\mathbf{1 0 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ in aqueous $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{NaCl}$ in a sealed tube at $170-175^{\circ} \mathrm{C}$ for 4 h afforded a mixture of $\mathbf{2 b}$ and $\mathbf{3 b}(2: 1)^{11}$ in 46% yield, whereas the cyclopentenone $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right)$, prepared by alkylation of the Michael adduct $5\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right)$ followed by cyclization, underwent acid-catalyzed decomposition under reflux in benzene for 20 min , to give pure $\mathbf{2 b}$ in 83% yield. This reaction condition ${ }^{12}$ may provide thermodynamically stable trans-isomer $\mathbf{2 b}$. Supporting evidence for the configuration of $\mathbf{2 b}$ comes from the results of the ${ }^{13} \mathrm{C}$ NMR spectra of 2 b and $1 \mathbf{b}$, showing homogeneous peaks in very fine detail, and from the following conversion of $\mathbf{2 b}$ to $\mathbf{l b} .{ }^{13}$ Conversion of $\mathbf{2 b}$ and/or the mixture 2 b and 3 b into 1 b via 15 was carried out by reduction with sodium borohydride in methanol followed with Jones oxidation. An alternative route to 1 b from $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right)$ via 13 b ($\mathrm{R}^{\prime}=t-\mathrm{Bu}$) and $14 \mathrm{~b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right.$) was also examined in a similar manner to that described for $\mathbf{1 0 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$.

Experimental Section

Boiling points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were determined at 60 MHz with a Hitachi R-24 spectrometer and the chemical-shift values are expressed in δ value (ppm) relative to a $\mathrm{Me}_{4} \mathrm{Si}$ internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were taken at 25.05 MHz in the Fourier mode using a JEOL FX-100 spectrometer. Samples were dissolved in CDCl_{3} containing $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. IR spectra were determined with a Japan Spectroscopic Co. Ltd., IRA-I, infrared recording spectrophotometer fitted with a grating. The mass spectra were obtained with a JEOL Model JMS-OIBM-2, ionizing voltage 75 eV .
Dimethyl 2-Acetyl-3-dimethoxymethylglutarate ($5, \mathrm{R}^{\prime}=\mathbf{M e}$). A mixture of $4(Z)(2.22 \mathrm{~g}, 13.8 \mathrm{mmol})$, KF $(2.5 \mathrm{~g}, 43.0 \mathrm{mmol})$, and $\mathrm{AcCH}_{2} \mathrm{CO}_{2} \mathrm{Me}(2.7 \mathrm{~g}, 23.2 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was vigorously stirred for 3 days under reflux. The mixture was allowed to cool to room temperature and the solvent was evaporated in vacuo. The residue was poured into brine and extracted with AcOEt. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. After removal of the solvents, the residue was chromatographed (SiO_{2}, benzene- $\mathrm{AcOEt}, 10 / 1$) to give $5\left(\mathrm{R}^{\prime}=\mathrm{Me}, 3.69 \mathrm{~g}, 97 \%\right.$): bp $88-91^{\circ} \mathrm{C}(1.9 \mathrm{~mm})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 2.24\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}\right), 2.41-2.64\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{CO}\right), 2.77-3.22(\mathrm{~m}, 1, \mathrm{CH})$, $3.31,3.35\left(2, \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 3.66\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right.$), 3.72 (s, 3, $\mathrm{CH}_{3} \mathrm{O}$), 3.79 (d, $1, . J=6 \mathrm{~Hz}, \mathrm{CHCO}$), $4.38(\mathrm{t}, 1, J=6 \mathrm{~Hz}, 0 \mathrm{OHO}$); IR (neat) 1735 ($\mathrm{C}=0$), $1715 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{7}$: C, 52.17; H, 7.30. Found: C, $52.32 ; \mathrm{H}$, 7.40.

Similarly, upon heating to reflux a mixture of $4(E)$ and Ac$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ in the presence of KF in MeOH afforded $5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ in 98% yield.
Dimethyl 2-Acetyl-3-dimethoxymethyl-2-(2-pentynyl)glutarate ($7 \mathrm{a}, \mathbf{R}^{\prime}=\mathbf{M e}$). A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(2.08 \mathrm{~g}, 15.1 \mathrm{mmol}), 5$ ($\mathrm{R}^{\prime}=\mathrm{Me}, 553 \mathrm{mg}, 2.0 \mathrm{mmol}$), pentynyl bromide ($320 \mathrm{mg}, 2.18 \mathrm{mmol}$), and $\mathrm{KI}(444 \mathrm{mg}, 2.67 \mathrm{mmol})$ in acetone (30 mL) was stirred at room temperature for 1 h and then refluxed for an additional 12 h . The mixture was allowed to stand to room temperature. The insoluble material was separated by centrifugation and the organic layer was concentrated. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$, benzene-

AcOEt, $8 / 1$) to give $7 \mathbf{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 558 \mathrm{mg}, 81 \%\right)$ and $8 \mathbf{a}\left(\mathrm{R}^{\prime}-\mathrm{Me}, 88 \mathrm{mg}\right.$, 13%).
The C -alkylation product 7 a boiled at $97-101^{\circ} \mathrm{C}(0.08 \mathrm{~mm})$: ${ }^{1} \mathrm{H}$ NMR (CCl_{4}) $\delta 1.11\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.81-2.26\left(\mathrm{~m}, 5, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$, $\mathrm{CH}_{3} \mathrm{CO}$), $2.26-2.55\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{CO}\right), 2.55-2.85\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$), 2.98-3.48 (m, 7, $\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}$), 3.61 ($\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{O}$), $3.65\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right.$), 4.15-4.34 (m, 1, OCHO); IR (neat) $2837\left(\mathrm{CH}_{3} \mathrm{O}\right), 1729$ ($\left.\mathrm{C}=0\right), 1710$ $\mathrm{cm}^{-1}(\mathrm{C}=0)$; MS m/e (rel intensity) $342\left(\mathrm{M}^{+}, 0.8\right), 311(19), 279(5)$, 267 (37), 221 (16), 219 (17), 207 (13), 191 (8), 181 (5), 161 (10), 160 (24), 130 (19), 101 (20), 91 (7), 75 (100).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{7}$: C, $59.64 ; \mathrm{H}, 7.65$. Found: C, 59.67 ; H, 7.76.

The 0 -alkylation product $8 \mathbf{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ boiled at $85-89^{\circ} \mathrm{C}(0.005$ $\mathrm{mm}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.13\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.87-2.60\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), 2.29 ($\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{CO}$), $3.12,3.25\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right.$), $3.11-3.78$ (m , $1, \mathrm{CHC}=\mathrm{C}), 3.55,3.66\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{OCO}\right), 4.41-4.66\left(\mathrm{~m}, 3, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$, OCHO); IR (neat) $2832\left(\mathrm{CH}_{3} \mathrm{O}\right), 1737(\mathrm{C}=0), 1708(\mathrm{C}=0), 1619 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}$).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{7}$: C, 59.64; H, 7.65. Found: C, $59.42 ; \mathrm{H}$, 7.44.

Dimethyl 2-Acetyl-3-dimethoxymethyl-2-(cis-2-pentenyl)glutarate ($\mathbf{7 b}, \mathbf{R}^{\prime}=\mathbf{M e}$). A mixture of Lindlar catalyst (208 mg) and $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 194 \mathrm{mg}, 0.57 \mathrm{mmol}\right)$ in hexane (1 mL) and acetone (1 mL) was stirred under 1 atm of hydrogen at room temperature. After 40 min , hydrogen uptake stopped and the mixture was filtered free from the catalyst and concentrated in vacuo. Column chromatography of the residue $\left(\mathrm{SiO}_{2}\right.$, benzene- $\mathrm{AcOEt}, 5 / 1$) gave $\mathbf{7 b}$ ($\mathrm{R}^{\prime}=\mathrm{Me}, 195 \mathrm{mg}$, 100%), bp $82-8 ?^{\circ} \mathrm{C}(0.14 \mathrm{~mm})$: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CCl}_{4}\right) \delta 0.95\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right)$, $1.76-2.32\left(\mathrm{~m}, 5, \mathrm{CH}_{3} \mathrm{CO}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.37-2.86\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), 2.95-3.50 (m, 7, $\left.\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}\right), 3.66,3.71\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 4.27$ (m, 1, OCHO), 4.82-5.77 (m, 2, HC=CH); IR (neat) $2835\left(\mathrm{CH}_{3} \mathrm{O}\right)$, $1733(\mathrm{C}=0), 1708 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; MS m/e (rel intensity) $344\left(\mathrm{M}^{+}\right.$, 0.33), 313 (27), 312 (12), 270 (14), 269 (48), 253 (24), 242 (28), 238 (11), 237 (30), 221 (15), 209 (14), 207 (11), 183 (35), 181 (14), 160 (13), 153 (29), 130 (50), 101 (18), 75 (100).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{7}: \mathrm{C}, 59.29 ; \mathrm{H}, 8.19$. Found: C, 59.14; H , 8.44 .

5-Methoxycarbonyl-4-methoxycarbonylmethyl-5-(2-pent-ynyl)-2-cyclopentenone ($10 \mathrm{a}, \mathrm{R}^{\prime}=\mathrm{Me}$). A solution of $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$, $53 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF (2 mL) and aqueous $1 \% \mathrm{HClO}_{4}(2 \mathrm{~mL})$ was stirred for 12 h at $26-28^{\circ} \mathrm{C}$. The solution was neutralized with aqueous NaHCO_{3} and concentrated to ca. 2 mL of total volume under reduced pressure. The residue was poured into brine and extracted with AcOEt. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo to give the crude aldehyde $9 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 50 \mathrm{mg}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 9.65$ (CHO); IR (neat) 2841 (CHO), $1733,1716 \mathrm{~cm}^{-1}(\mathrm{C}=0)$. Without further purification, the oily product was subjected to the following cyclization reaction. A stirred mixture of $9 \mathrm{a}(50 \mathrm{mg})$ in a mixed solution of $\mathrm{AcOH}(0.1 \mathrm{~mL})$, piperidine (0.1 mL), and benzene $(25 \mathrm{~mL})$ was refluxed for 6 h . After cooling to room temperature most of the solvent was removed by a rotary evaporator. The residue was diluted with AcOEt (20 mL), washed with $10 \% \mathrm{HCl}$, aqueous NaHCO_{3}, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Column chromatography of the residue $\left(\mathrm{SiO}_{2}\right.$, benzene-AcOEt, 12/1) gave $10 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 24 \mathrm{mg}, 56 \%\right)$. From the next running fraction, $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 4 \mathrm{mg}\right.$) was recovered. The cyclopentenone $10 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ boiled at $110-115^{\circ} \mathrm{C}(0.15 \mathrm{~mm})$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.05\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.80-2.30\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right)$, $2.34-2.86\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.86-3.50(\mathrm{~m}, 1, \mathrm{CH}), 3.61,3.67$ $\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), \epsilon .14$ (dd, $1, J=6 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCO}$), 7.59 (dd, $1, J=6 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CCO})$; IR (neat) $1732,1710(\mathrm{C}=\mathrm{O}), 1595$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C})$; MS m/e (rel intensity) $279\left(\mathrm{M}^{+}+1,29\right), 278\left(\mathrm{M}^{+}, 100\right)$, 247 (60), 246 (44), 219 (97), 215 (23), 205 (77), 189 (19), 187 (39), 179 (33), 159 (66), 147 (24), 145 (26), 131 (36), 117 (23), 115 (23), 91 (26).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}: \mathrm{C}, 64.74 ; \mathrm{H}, 6.52$. Found: $\mathrm{C}, 64.64 ; \mathrm{H}$, 6.30.

5-Methoxycarbonyl-4-methoxycarbonylmethyl-5-(cis-2-
pentenyl)-2-cyclopentenone ($10 \mathrm{~b}, \mathrm{R}^{\prime}=\mathrm{Me}$). Method A . A solution of 7 b ($\mathrm{R}^{\prime}=\mathrm{Me}, 250 \mathrm{mg}, 0.73 \mathrm{mmol}$) in THF (3 mL) and aqueous 1.5% $\mathrm{HClO}_{4}(2 \mathrm{~mL})$ was stirred for 12 h at $26-28^{\circ} \mathrm{C}$. The mixture was neutralized with aqueous NaHCO_{3} and concentrated to ca. 2 mL of total volume under reduced pressure. The workup of the residue was similar to that employed for the preparation of $10 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ described above, giving 9 b ($\mathrm{R}^{\prime}=\mathrm{Me}, 248 \mathrm{mg}$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 9.56$, 9.65 (CHO); IR (neat) $1735,1717 \mathrm{~cm}^{-1}(\mathrm{C}=0$). Without further purification, the oily product was subjected to the following cyclization reaction. A mixture of 9 b ($\mathrm{R}^{\prime}=\mathrm{Me}, 248 \mathrm{mg}$) in a mixed solution of $\mathrm{AcOH}(0.1 \mathrm{~mL})$ and piperidine $(0.1 \mathrm{~mL})$ in benzene $(30 \mathrm{~mL})$ was refluxed for 6 h under stirring. After workup in the usual manner as described above there was obtained $\mathbf{1 0 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 105 \mathrm{mg}, 52 \%\right)$ after
chromatography $\left(\mathrm{SiO}_{2}\right.$, benzene-AcOEt, 12/1). From the next running fraction, $\mathbf{7 b}$ ($\mathrm{R}^{\prime}=\mathrm{Me}, 5.4 \mathrm{mg}$) was recovered. The cyclopentenone 10b $\left(\mathbf{R}^{\prime}=\mathrm{Me}\right)$ boiled at $81-85^{\circ} \mathrm{C}(0.005 \mathrm{~mm}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.97(\mathrm{t}$, $3, \mathrm{CH}_{3}$), $2.05\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.27-3.51\left(\mathrm{~m}, 5, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$, $\mathrm{CH}_{2} \mathrm{CO}, \mathrm{CH}$), $3.62,3.66\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 4.76-5.75(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{CH}), 6.09$ (dd, $1, J=5 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCO}$), 7.47 (dd, $1, J=5 \mathrm{~Hz}, J=2 \mathrm{~Hz}$, $\mathrm{HC}=\mathrm{CCO}$); IR (neat) $1736,1710(\mathrm{C}=0), 1597 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$: C, 64.27; H, 7.19. Found: C, 64.07; H, 7.35.

Method B. The cyclopentenone $\mathbf{1 0 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ was prepared by hydrogenation of $10 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 45 \mathrm{mg}, 0.16 \mathrm{mmol}\right)$ in hexane (1 mL) and acetone (0.1 mL) using Lindlar catalyst (68 mg). Column chromatography (SiO_{2}, benzene-AcOEt, $5 / 1$) of the product gave $\mathbf{1 0 b}\left(\mathrm{R}^{\prime}\right.$ $=\mathrm{Me}, 43 \mathrm{mg}, 95 \%$), whose spectral data were identical with those of the specimen obtained in the preceding experiment.
2-Methoxycarbonyl-3-methoxycarbonylmethyl-2-(cis-2pentenyl)cyclopentanol ($13 \mathrm{~b}, \mathrm{R}^{\prime}=\mathbf{M e}$) from $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$). A solution of $\mathbf{1 0 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 11 \mathrm{mg}, 0.039 \mathrm{mmol}\right)$ and $\mathrm{NaBH}_{4}(3.0 \mathrm{mg}$, 0.079 mmol) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was refluxed at ca. $80^{\circ} \mathrm{C}$ for 1 h . The solution was allowed to cool to room temperature and then 4 drops of AcOH was added. After stirring for an additional 30 min , the solution was concentrated in vacuo and the residue was passed through a short silica gel column ($2 \times 0.9 \mathrm{~cm}$, benzene-AcOEt, $2 / 1,15 \mathrm{~mL}$). Evaporation of the solvents followed by column chromatography $\left(\mathrm{SiO}_{2}\right.$, benzene-AcOEt, $\left.5 / 1\right)$ gave $\mathbf{1 3 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 8.9 \mathrm{mg}, 80 \%\right)$: bp $74-78$ ${ }^{\circ} \mathrm{C}(0.01 \mathrm{~mm}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.93\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.40-2.90(\mathrm{~m}, 12)$, $3.59,3.66\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 3.85-4.12$ (m, 1, CHO), 4.95-5.75 (m, 2, $\mathrm{HC}=\mathrm{CH})$; IR (neat) $3506(\mathrm{OH}), 1727 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}: \mathrm{C}, 63.36 ; \mathrm{H}, 8.51$. Found: C, 63.47 ; H , 8.78.

2-Methoxycarbonyl-3-methoxycarbonylmethyl-2-(2-pentynyl)cyclopentanol ($\mathbf{1 3 a}, \mathbf{R}^{\prime}=\mathbf{M e}$). A solution of $\mathbf{1 0 a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 20.0\right.$ $\mathrm{mg}, 0.072 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(5.4 \mathrm{mg}, 0.143 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was refluxed at $80^{\circ} \mathrm{C}$ for 1 h under N_{2}. After the usual workup, there was obtained 13 a ($\mathrm{R}^{\prime}=\mathrm{Me}, 17.5 \mathrm{mg}, 86.3 \%$): bp $70-75^{\circ} \mathrm{C}(0.005 \mathrm{~mm})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.11\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.38-2.95(\mathrm{~m}, 12), 3.60,3.68(2 \mathrm{~s}, 6$, $\mathrm{CH}_{3} \mathrm{O}$), 3.90-4.45 (m, 1, HCO); IR (neat) 3433 (OH), $1725 \mathrm{~cm}^{-1}$ $(\mathrm{C}=0)$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5}: \mathrm{C}, 63.81 ; \mathrm{H}, 7.85$. Found: C, $63.90 ; \mathrm{H}$, 8.02 .

The Cyclopentanol 13b $\left(R^{\prime}=\mathbf{M e}\right)$ from 13a ($\mathbf{R}^{\prime}=\mathbf{M e}$). A mixture of 13 a ($\mathrm{R}^{\prime}=\mathrm{Me}, 28 \mathrm{mg}, 0.01 \mathrm{mmol}$) and Lindlar catalyst (44 mg) in hexane (1 mL) and acetone (0.1 mL) was stirred under 1 atm of hydrogen at room temperature. After 1 h , the hydrogen uptake stopped and the mixture was filtered free from the catalyst and concentrated in vacuo. Column chromatography of the residue $\left(\mathrm{SiO}_{2}\right.$, benzene-AcOEt, $5 / 1$) gave $13 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 21.5 \mathrm{mg}, 77 \%\right.$), by $74-78{ }^{\circ} \mathrm{C}$ $(0.01 \mathrm{~mm})$, which was identical in all respects with those of the product obtained in the preceding experiment.
2-Methoxycarbonyl-3-methoxycarbonylmethyl-2-(cis-2pentenyl) cyclopentanone ($14 \mathrm{~b}, \mathrm{R}^{\prime}=\mathbf{M e}$). To a solution of $13 \mathrm{~b}\left(\mathrm{R}^{\prime}\right.$ $=\mathrm{Me}, 6.8 \mathrm{mg}, 0.024 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}), 100 \mathrm{mg}$ of aqueous 2 M chromic acid was added dropwise. The mixture was stirred at room temperature for 12 h under a heterogeneous system. The yelloworange solution was taken up in AcOEt and washed with brine, aqueous NaHCO_{3}, and brine. The AcOEt layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Column chromatography (SiO_{2}, benzene-AcOEt, $10 / 1$) of the residue gave $14 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 5.7 \mathrm{mg}, 84 \%\right)$, bp $73-77^{\circ} \mathrm{C}$ $(0.007 \mathrm{~mm})$ [$\left[\right.$ lit. ${ }^{2 \mathrm{~d}} \mathrm{bp} 84.0-85.0^{\circ} \mathrm{C}(0.015 \mathrm{~mm})$], whose spectral data were identical with those of an authentic sample.
Methyl dl-Jasmonate (lb) from 14b ($\mathbf{R}^{\prime}=\mathbf{M e}$). Demethoxycarbonylation of $14 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 130 \mathrm{mg}, 2.2 \mathrm{mmol}\right)$ in aqueous $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{NaCl}$ at $176{ }^{\circ} \mathrm{C}$ for 4 h gave $\mathbf{l b}$ ($69 \mathrm{mg}, 86 \%$), whose spectral data (IR, ${ }^{1} \mathrm{H}$ NMR, and MS) were identical with those of an authentic sample.
2-Methoxycarbonyl-3-methoxycarbonylmethyl-2-(2-pentynyl)cyclopentanone (14a, $\mathrm{R}^{\prime}=\mathrm{Me}$). To a solution of $13 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$, $17 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, aqueous 2 M chromic acid (ca. 0.2 mL) was added dropwise and the mixture was stirred at room temperature for 12 h . After the usual workup, there was obtained 14a ($\mathrm{R}^{\prime}=\mathrm{Me}, 12 \mathrm{mg}, 71 \%$), bp $78-82^{\circ} \mathrm{C}(0.008 \mathrm{~mm})\left[\right.$ [it. ${ }^{2 \mathrm{~d}} \mathrm{bp} 78-80^{\circ} \mathrm{C}$ (0.02 mm)], whose IR and ${ }^{1} \mathrm{H}$ NMR spectra were identical with those of an authentic sample.
2-Methoxycarbonyl-3-methoxycarbonylmethyl-2-pentyl-cyclopentan-1-one ($14 \mathrm{c}, \mathrm{R}^{\prime}=\mathbf{M e}$). A mixture of $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 32\right.$ $\mathrm{mg}, 0.11 \mathrm{mmol}$) and palladium on charcoal (60 mg) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred under 1 atm of hydrogen at room temperature. After 50 min , hydrogen uptake stopped and the mixture was filtered free from catalyst and concentrated. Column chromatography of the residue $\left(\mathrm{SiO}_{2}\right.$, benzene-AcOEt, $5 / \mathrm{I}$) gave $14 \mathrm{c}(31 \mathrm{mg}, 97 \%)$, whose IR and ${ }^{1} \mathrm{H}$

NMR spectra were identical with those of an authentic sample. ${ }^{2 d}$
Methyl 4-tert-Butoxycarbonyl-3-dimethoxymethyl-5-oxohexanoate ($5, \mathbf{R}^{\prime}=\boldsymbol{t}-\mathrm{Bu}$). A mixture of $4(Z)(1.66 \mathrm{~g}, 10.4 \mathrm{mmol})$, KF $(2.0 \mathrm{~g}, 34.4 \mathrm{mmol})$, and $\mathrm{AcCH}_{2} \mathrm{CO}_{2}-t-\mathrm{Bu}(1.81 \mathrm{~g}, 11.5 \mathrm{mmol})$ in t $\mathrm{BuOH}(2 \mathrm{~mL})$ was vigorously stirred for 2 days under reflux. After the same workup as described for $5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, there was obtained $5\left(\mathrm{R}^{\prime}\right.$ $=t-\mathrm{Bu}, 2.86 \mathrm{~g}, 86 \%): \mathrm{bp} 72-76{ }^{\circ} \mathrm{C}(0.014 \mathrm{~mm}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.43$ (br s, $9, \mathrm{CH}_{3}$), 2.17 ($\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{CO}$), $2.30-2.60\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{CO}\right.$), $2.60-3.19$ ($\mathrm{m}, \mathrm{1}, \mathrm{AcCHCO}$), 3.19-3.38 ($\mathrm{m}, 6, \mathrm{CH}_{3} \mathrm{O}$), 3.58-3.72 ($\mathrm{m}, 3, \mathrm{CH}_{3} \mathrm{OCO}$), 3.19-3.72 (m, 1, CH), 4.31 (t, $1, J=5 \mathrm{~Hz}, \mathrm{OCHO}$); IR (neat) 1736 ($\mathrm{C}=0$), $1715 \mathrm{~cm}^{-1}$ (shoulder, $\mathrm{C}=0$).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{7}: \mathrm{C}, 56.59 ; \mathrm{H}, 8.23$. Found: C, $56.65 ; \mathrm{H}$, 8.13 .

5-tert-Butoxycarbonyl-4-methoxycarbonylmethyl-5-(2-
pentynyl)-2-cyclopentenone ($10 \mathrm{a}, \mathrm{R}^{\prime}=\boldsymbol{t}-\mathrm{Bu}$) from 5 ($\mathbf{R}^{\prime}=\boldsymbol{t}-\mathrm{Bu}$) via 7a. A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 9.99 \mathrm{mmol}), 5\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 450 \mathrm{mg}\right.$, 1.42 mmol), pentynyl bromide ($270 \mathrm{mg}, 1.84 \mathrm{mmol}$), and KI (308 mg , 1.86 mmol) in acetone (30 mL) was refluxed for 12 h . After the usual workup as described above, there was obtained 478 mg of an oily product, whose ${ }^{1} \mathrm{H}$ NMR spectrum indicated that the product consisted of $7 \mathbf{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 75 \%\right)$ and $8 \mathbf{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 13 \%\right)$. Without further purification, the mixture was subjected to the following cyclization reaction. A solution of the mixture $7 \mathbf{a}$ and $8 \mathbf{a}(60 \mathrm{mg}, 0.16 \mathrm{mmol})$ in THF (3 mL) and aqueous $1.5 \% \mathrm{HClO}_{4}(2.5 \mathrm{~mL})$ was stirred for 12 h at $28-29^{\circ} \mathrm{C}$. The workup of the reaction mixture was similar to that employed for the preparation of $\mathbf{1 0 a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, giving an oily material (79 mg), which was subjected to reflux in a mixed solution of AcOH $(0.1 \mathrm{~mL})$, piperidine (0.1 mL), and benzene (5 mL) for 4 h . Upon evaporation of the solvent, the residue was worked up in the usual manner as described above. After chromatography (SiO_{2}, benzene-hexane- $\mathrm{AcOEt}, 6 / 3 / 1$), there was obtained 22 mg (48% based on 7 a , $\mathrm{R}^{\prime}=t-\mathrm{Bu}$) of $10 \mathrm{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right)$: bp $82-86^{\circ} \mathrm{C}(0.006 \mathrm{~mm}){ }^{1}{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CCL}_{4}\right) \delta 1.02\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.37\left(\mathrm{br} \mathrm{s}, 9, \mathrm{CH}_{3}\right), 1.76-2.73\left(\mathrm{~m}, 6, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), 3.33-3.58 (m, 1, CH), 3.66 (s, $3, \mathrm{CH}_{3} \mathrm{O}$), 6.10 (dd, $1, J=5$, $2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCO}$). 7.50 (dd, $1, J=5,2 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CCO}$); IR (neat) 1734 , 1711 ($\mathrm{C}=0$), $1595 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 67.48; H, 7.55. Found: C, 67.36; H, 7.70 .

5-tert-Butoxycarbonyl-4-methoxycarbonylmethyl-5-(cis-2-pentenyl)-2-cyclopentenone (10b, $\mathbf{R}^{\prime}=\boldsymbol{t}$ - Bu). Hydrogenation of $10 \mathrm{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 69 \mathrm{mg}, 0.22 \mathrm{mmol}\right)$ in hexane $(0.5 \mathrm{~mL})$ and acetone (0.5 mL) in the presence of Lindlar catalyst (320 mg) afforded $\mathbf{1 0 b}\left(\mathrm{R}^{\prime}\right.$ $=t-\mathrm{Bu}, 70 \mathrm{mg}, 100 \%)$: bp $81-84^{\circ} \mathrm{C}(0.005 \mathrm{~mm}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.97$ ($\mathrm{t}, 3, \mathrm{CH}_{3}$), $1.42\left(\mathrm{~s}, 9, \mathrm{CH}_{3}\right), 2.05\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$), 2.34-2.71 ($\mathrm{m}, 4, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, \mathrm{CH}_{2} \mathrm{CO}_{2}$), $3.26\left(\mathrm{~m}, 1, \mathrm{CH}\right.$), 3.66 ($\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{O}$), $4.79-$ $5.69(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{CH}), 6.09$ (dd, $1, J=5 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCO}), 7.50$ (dd, $1, J=5 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CCO}$); IR (neat) 1734, $1712(\mathrm{C}=0$), $1596 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 67.06; $\mathrm{H}, 8.13$. Found: C, 66.91; H , 8.36 .

Methyl Dehydrojasmonate (2b). A mixture of $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right.$, $54 \mathrm{mg}, 0.17 \mathrm{mmol}$) and a catalytic amount of anhydrous p-toluenesulfonic acid in benzene (2 mL) was refluxed for 20 min . The mixture was quenched with NaHCO_{3} (powder, 10 mg). After removal of the solvent under reduced pressure, the residue was chromatographed (SiO_{2}, benzene-AcOEt, $10 / 1$) to give $\mathbf{2 b}(31 \mathrm{mg}, 83 \%)$: bp $88-92^{\circ} \mathrm{C}(2.5$ $\mathrm{mm}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.88-3.18(\mathrm{~m}, 8), 3.70(\mathrm{~s}, 3$, $\left.\mathrm{CH}_{3} \mathrm{O}\right)$, $4.95-5.75(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{CH}), 6.15(\mathrm{dd}, 1, J=6,1.6 \mathrm{~Hz}, \mathrm{C}=$ CHCO), 7.60 (dd, $J=6,2 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CCO}$); ${ }^{33} \mathrm{C}$ NMR (multiplicity, carbon no.) $\delta 14.1$ ($\mathrm{q}, 12$), 20.5 ($\mathrm{t}, 11$), 27.7 ($\mathrm{t}, 8$), 38.1 ($\mathrm{t}, 2$), 43.2 ($\mathrm{d}, 3$), 51.0 (d, 7), 51.8 (q, 13), 124.4 (d, 9), 133.7 (d, 5 or 10), 134.4 (d, 10 or 5), 165.3 (d, 4), 171.7 (s, 1), 210.0 (s, 6); IR (neat) 1736, 1706 (C=0), $1599 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 70.24 ; \mathrm{H}, 8.16$. Found: $\mathrm{C}, 70.06 ; \mathrm{H}$, 8.19 .

3-Methoxycarbonylmethyl-2-(cis-2-pentenyl)cyclopentanol (15) from $2 \mathbf{2}$. A solution of $2 \mathbf{b}(18 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(9 \mathrm{mg}$, 0.2 mmol) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was refluxed at $80^{\circ} \mathrm{C}$ for 1 h . After the usual workup, there was obtained $15(16 \mathrm{mg}, 87 \%)$ after chromatography (SiO_{2} benzene-AcOEt, $5 / 1$): bp $63-67^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$; ${ }^{1} \mathrm{H}$ NMR (CCL_{4}) $\delta 0.99\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.22-2.88(\mathrm{~m}, 13), 3.61\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 3.67-4.22$ ($\mathrm{m}, \mathrm{l}, \mathrm{CHO}$), $5.20-5.52(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{CH})$; IR (neat) $3400(\mathrm{OH}), 1735$ ($\mathrm{C}=0$), $1722 \mathrm{~cm}^{-1}$ (shoulder).
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 68.99; H, 9.80. Found: C, 69.00; H, 9.75 .

Methyl dl-Jasmonate (lb) from 15. To a solution of $15(15 \mathrm{mg}$, 0.066 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ aqueous 2 M chromic acid (0.2 mL) was added dropwise. The mixture was stirred at $18-20^{\circ} \mathrm{C}$ for 12 h and then worked up in the usual manner as described for the Jones oxidation of $\mathbf{1 3}$ to give $\mathbf{1 b}(10 \mathrm{mg}, 68 \%)$ after chromatography (SiO_{2}, benzene-
hexane-THF, $11 / 5 / 1): \mathrm{kp} 92-96{ }^{\circ} \mathrm{C}(2.7 \mathrm{~mm})\left[\right.$ lit. ${ }^{2 \mathrm{~d}}$ bp $110-112{ }^{\circ} \mathrm{C}(5$ mm)].
2-tert-Butoxycarbonyl-3-methoxycarbonylmethyl-2-(cis-2-pentenyl)cyclopentanol ($13 \mathrm{~b}, \mathrm{R}^{\prime}=\boldsymbol{t}-\mathrm{Bu}$). A solution of $10 \mathrm{~b}\left(\mathrm{R}^{\prime}\right.$ $=t-\mathrm{Bu}, 37 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(6 \mathrm{mg}, 0.16 \mathrm{mmol})$ in MeOH $(1.5 \mathrm{~mL})$ was refluxed fcr 1 h . The mixture was quenched with AcOH $(0.1 \mathrm{~mL})$ and concentrated in vacuo. Column chromatography $\left(\mathrm{SiO}_{2}\right.$, benzene- $\mathrm{AcOEt}, 5 / 1$) of the residue gave $\mathbf{1 3 b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 36 \mathrm{mg}, 96 \%\right)$: bp $75-79{ }^{\circ} \mathrm{C}(0.005 \mathrm{~mm}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.98\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.20-2.69$ ($\mathrm{m}, 21$), $3.60\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 3.96(\mathrm{~m}, \mathrm{1}, \mathrm{CHO}), 5.21-5.54(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{CH})$; IR (neat) $3509(\mathrm{OH}), 1721 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{5}$: C, 66.23; H, 9.26. Found: C, $66.28 ; \mathrm{H}$, 9.50.

2-tert-Butoxycarbonyl-3-methoxycarbonylmethyl-2-(cis-2-pentenyl)cyclopentanone ($14 \mathrm{~b}, \mathrm{R}^{\prime}=t-\mathrm{Bu}$). To a solution of 13 b ($\mathrm{R}^{\prime}=t-\mathrm{Bu}, 15 \mathrm{mg}, 0.046 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise 2 M chromic acid (0.1 mL). The mixture was stirred at $16-20^{\circ} \mathrm{C}$ for 12 h and then diluted with AcOEt. Upon the usual workup as described for the oxidation of 15 , there was obtained $14 \mathrm{~b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 10\right.$ $\mathrm{mg}, 67 \%)$ after column chromatography (SiO_{2}, benzene-hexane$\mathrm{AcOEt}, 10 / 5 / 1): \mathrm{bp} 79-83^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CCl}_{4}\right) \delta 0.97$ ($\mathrm{t}, 3$, CH_{3}), 1.29-2.79 (m, 11), $1.45\left(\mathrm{~s}, 9, \mathrm{CH}_{3}\right), 3.64\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 4.94-5.59$ ($\mathrm{m}, 2, \mathrm{HC}=\mathrm{CH}$); IR (neat) $1738 \mathrm{~cm}^{-1}(\mathrm{C}=0$).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{5}$: C, 66.64; H, 8.70. Found: C, 66.87; H, 8.94 .

Methyl dI-Jasmonate (lb) from 14b ($\mathrm{R}^{\prime}=\boldsymbol{t}$ - Bu). A solution of $14 \mathrm{~b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 7.2 \mathrm{mg}, 0.022 \mathrm{mmol}\right)$ in benzene $(1 \mathrm{~mL})$ containing a catalytic amount of p-toluenesulfonic acid was refluxed for 20 min . After the usual workuf, the residue was chromatographed (SiO_{2}, benzene-AcOEt, 10/1) to give $1 \mathrm{~b}\left(4.5 \mathrm{mg}, 90 \%\right.$): ${ }^{13} \mathrm{C}$ NMR (multiplicity, carbon no.) $\delta 14.1(\mathrm{q}, 12), 20.6(\mathrm{t}, 11), 25.5(\mathrm{t}, 4), 27.2(\mathrm{t}, 8), 37.8$ ($\mathrm{t}, 2$ or 5), 38.0 ($\mathrm{d}, 3$), 38.8 ($\mathrm{t}, 5$ or 2), 51.6 ($\mathrm{q}, 13$), 54.0 (d, 7), 124.9 (d , 9), 134.0 (d, 10), 172.5 ($\mathrm{s}, 1$), 218.8 ($\mathrm{s}, 6$); IR and ${ }^{1} \mathrm{H}$ NMR data were identical with those of an authentic sample.

Registry No.-1b, 2C073-13-6; 2b, 63569-04-0; (E)-4, 32815-00-2; (Z)-4, 75314-31-5; $5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528-42-7$; $5\left(\mathrm{R}^{\prime}=t\right.$ - Bu), 63528-43-8; $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528-44-9 ; 7 \mathrm{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right), 63528-45-0$; $7 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, $63528-46-1 ; 8 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528-47-2 ; 8 \mathrm{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right), 63528-48-3 ; 9 \mathrm{a}$ $\left(R^{\prime}=\mathrm{Me}\right), 63528-49-4 ; 9 \mathrm{~b}\left(\mathrm{CR}^{\prime}=\mathrm{Me}\right), 63528-50-7$; 10a $\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$,
$63528-51-8 ; 10 \mathrm{a}\left(\mathrm{CR}^{\prime}=t-\mathrm{Bu}\right), 63528-52-9 ; \mathbf{1 0 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528-53-0 ;$ $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right), 63528-54-1 ; 13 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528-55-2 ; 13 \mathrm{~b}\left(\mathrm{R}^{\prime}=\right.$ $\mathrm{Me})$, $63534-37-2$; 13b $\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right), 63528-56-3$; 14a $\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, $55254-74-5 ; 14 b\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 55254-73-4 ; 14 \mathrm{~b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right), 63528-57-4 ;$ 15, 51388-61-5; $\mathrm{AcCH}_{2} \mathrm{CO}_{2} \mathrm{Me}, 105-45-3$; pentynyl bromide, 16400-32-1; $\mathrm{AcCH}_{2} \mathrm{CO}_{2}-t-\mathrm{Bu}$, 1694-31-1.

References and Notes

(1) Recent reviews of jasmonoids syntheses: (a) D. Joulain, Parfums, Cosmet., Arômes, 53 (1976); (b) S. Torii and H. Tanaka, Koryo, 114, 41 (1976); (c) T-L. Ho, Synth. Commun., 4, 265 (1974); (d) R. A. Ellison, Synthesis, 397 (1973).
(2) (a) A. E. Greene and P. Crabbé. Tetrahedron Lett., 4867 (1976); (b) F. Johnson, K. G Paul, and D. Favara, Ger. Offen 2508295 (Cl, C07C), Sept. 04. 1975; Chem. Abstr., 84, 59783 v (1976); (c) D. Tunerioto. T. Umemoto, Y. Takahatake, and K. Kondo. "The Symposium papers of 20th Symposium on the Chemistry of Natural Products", Sendai, Japan, 1976, p 357; (d) S. Torii, H. Tanaka, and T. Mandai, J. Org. Chem., 40, 2221 (1975), and references cited therein.
(3) H. Tanaka, Y. Kobayasi, and S. Torii, J. Org. Chem., 41, 3482 (1976).
(4) (a) A. J. Parke-, Acr. Org. Chem., 5, 20 (1965); (b) J. Pless, J. Org. Chem., 39, 2644 (1974); (c) I. Kuwajima, T. Murotushi, and E. Nakamura, Synthesis, 602 (1976).
(5) H. Lindlar and R. Dubuis, Org. Synth., 46, 89 (1966).
(6) The hydride reduction of 2-cyclopenten-1-ones with variols reducing agents has been discussed in the following literatures: $\mathrm{LiAlH}_{4} / \mathrm{THF}, \mathrm{Li}(\mathrm{RO})_{3} \mathrm{AlH} /$ THF, $\mathrm{NaBH}_{4} / \mathrm{EtOH},(\mathrm{a}) \mathrm{H} . \mathrm{C}$. Brown and H. M. Hess, J. Org. Chem., 34, 2206 (1969); $\mathrm{AlH}_{3} /$ benzene, ($\left.i-\mathrm{Pr}\right)_{2} \mathrm{AlH} /$ benzene, (b) K. E. Wilson, R. T. Seidner and S. Masamune, Chem. Commun., 213 (1970); K(sec-Bu) ${ }_{3}$ BH/THF, (c) J. M. Fortunatכ and B. Ganem, J. Org. Chem., 41, 2194 (1976); 9-borabicyclo[3.3.1]nonane/THF, (d) S. Krishnamurthy and H. C. Brown, J. Org. Chem., 42, 1197 (1977)
(7) B. Ganem, J. Org. Chem., 40, 146 (1975)
(8) P. Ducos and F. Rouessac, Tetrahedron, 29, 3233 (1973).
(9) R. Kaiser and D. Lamparsky, Tetrahedron Lett., 3413 (1974)
(10) B. D. Mookherjee, R. R. Patel, R. W. Trenkle, and W. O. Ledig, Int. Congr. Essent. Oils, Pap., 6th, 150 (1974); Chem. Abstr., 85, 5236w (1976).
(11) The ratio of 2 b to 3 b varied from $2: 1$ to $1: 5$, depending on the experimental conditions, e.g., prolonged heating, reaction temperature, and additives, etc.
(12) A. Wisser, J. Org. Chem., 42, 356 (1977).
(13) In the previous paper, we described that the oxidation of 1,2-cis-2,3-cis-3-methoxycarbonylmethyl-2-(cis-2-pentenyl)cyclopenter-1-ol with Jones reagent gave methyl dl-2-epijasmonate without epimerization: H, Tanaka and S. Torii, J. Org. Chem., 40, 462 (1975).

Cyclodimerization of Styrene

Arnold R. Taylor, ${ }^{\text {1a,b,c }}$ Gary W. Keen, ${ }^{1 c}$ and Edmund J. Eisenbraun ${ }^{* 1 b, d}$
Department of Chemistry, Oklahoma State University, Stillwaier, Oklahoma 74074 and Research and Development Department, Continental Oil Company, Ponca City, Oklahoma 74601

Received November 9, 1976

The cyclodimerization of styrene in the presence of sulfuric acid or Amberlyst-15 resin yields a 1:1 mixture of cisand trans---methyl-3-phenylindan (1a and 1 b) via (E)-1,3-diphenyl-1-butene (4). 1-Methyl-3-phenylindene (8) and 3-methyl-1-phenylindene (9) were synthesized and converted to $1 \mathbf{l a}$ and ib . Base-catalyzed equilibration of $1 \mathbf{a}$ and 1 b as well as 8 and 9 gave $\mathbf{l a : 1 b}(80: 20)$ and $8: 9$ (30:70), respectively.
cis- and trans-1-methyl-3-phenylindan (1a and 1b) can be obtained by cyclodimerization of styrene (2) with sulfuric acid, ${ }^{2 a-8}$ phosphoric acid, ${ }^{3 a-d}$ polyphosphoric acid (PPA), ${ }^{3 b}$ alumina-silica, ${ }^{3 \mathrm{a}}$ perchloric acid, ${ }^{3 \mathrm{~d}}$ chlorosulfonic acid, ${ }^{3 \mathrm{~d}}$ or by passing styrene over hot promoted $\mathrm{B}_{2} \mathrm{O}_{3} .{ }^{4}$ This reaction may proceed through the cation 3 , which can eliminate a proton to form the aikene 4, cyclize to 1 a and 1 b , or yield polymer, as shown in Scheme I.

The low-temperature dimerization kinetics of 2 to 1 a and lb have been reported to be second order, whereas hightemperature kinetics are complex. ${ }^{3 \mathrm{~d}}$ Two isomeric forms of 1 have been reported ${ }^{5}$ and identified ${ }^{6}$ as $1 \mathrm{a}, \mathrm{mp} 9.5^{\circ} \mathrm{C}$, and $\mathbf{1 b}, \mathrm{mp} 25.5^{\circ} \mathrm{C}$. It has been reported that $\mathbf{1 a}: 1 \mathrm{~b}$ as a $50: 45$ mixture was converted to a $62: 38$ ratio by stirring with 10%
$\mathrm{AlBr}_{3}{ }^{7}$ and that la is isomerized to an 82:18 ratio of la:1b with $\mathrm{AlCl}_{3} .{ }^{5}$ The tertiary, twice-benzylic hydrogen of 1 is reported to be more reactive in forming a radical intermediate than the tertiary benzylic hydrogen. ${ }^{8}$

We sought $1 \mathbf{a}$ and $1 \mathbf{l b}$ in order to study their stereochemistry and clarify their relative thermodynamic stability. The structure and stability of 1 a and 1 b were studied through equilibration experiments and by preparations from indenes. Sulfuric acid, ethylaluminum dichloride (EtAlCl_{2}), ${ }^{9}$ and Amberlyst-15 (A-15), ${ }^{10}$ an insoluble sulfonic acid resin, were tested as catalysts for the cyclodimerization reaction. Using A-15 allowed convenient monitoring of this reaction. Samples were periodically withdrawn from the A-15-catalyzed reactions and analyzed by GC. ${ }^{11}$ The linear dimer 4 appears to be

Scheme I

3

lb
an initial product and it slowly disappears as 1a:1b (1:1) form. The reaction conditions were varied, but the combined yield of $\mathbf{1 a}$ and $1 \mathbf{l}$ from the A-15-catalyzed cyclodimerization remained at about 20%.
A sulfuric acid catalyzed reaction ${ }^{2 f}$ was used for production of the la:lb mixture required for the equilibration studies. The yield was $69-80 \%$; some 4 always remained. A diluted sulfuric acid solution and a lower temperature allowed isolation of 4 in good yields. ${ }^{28}$ Amberlyst-15 and PPA were used to show that 4 is converted to la and $\mathbf{1 b}$. A similar conversion of 4 to la and $\mathbf{1 b}$ has been accomplished via a supported $\mathrm{H}_{3} \mathrm{PO}_{4}$ catalyst at $200{ }^{\circ} \mathrm{C} .{ }^{12}$ The cyclization of 4 to 1 with A- 15 in 80% yield is a more facile reaction than direct conversion of 2 to 1 with A-15 (20% yield). This suggests that the A-15 catalyst becomes coated with polystyrene when 2 is present.
A series of reactions was run to determine whether Et$\mathrm{AlCl}_{2}{ }^{13}$ would be useful in the dimerization of styrene, since the dimerization of α-methylstyrene had been successfully carried out with this catalyst, ${ }^{14}$ but EtAlCl_{2} was less convenient to handle and gave a product of lower purity. Its use was not studied further.
The ${ }^{1} \mathrm{H}$ NMR signals of $1 \mathbf{a}$ and $\mathbf{1 b}$ could not be confidently assigned from mixtures, so individual samples of 1a and $1 \mathbf{b}$ were prepared as shown in Scheme II. Isomer 1b was obtained in approximately 95% purity by recrystallizing a la:1b mixture from petroleum ether, bp $60-68^{\circ} \mathrm{C}$, slowly cooled in dry ice. Dehydration and distillation of 7 yielded 1-methyl-3-phenylindene (8) and 3-methyl-1-phenylindene (9) in a $30: 70$ ratio, respectively. Hydrogenation of 8 or a mixture of 8 and 9 over Pd / C catalyst produced only 1a. ${ }^{5,6}$ When 8 was treated with a $5 \% \mathrm{KOH}$ solution in methanol, an equilibrated mixture of 8:9 ($30: 70$) was obtained.

3-Methyl-1-phenylindene (9) was synthesized as shown in Scheme III to further the equilibration studies and ${ }^{1} \mathrm{H}$ NMR assignments of $1 \mathrm{a}, 1 \mathrm{lb}, 8$, and 9 . None of 8 was observed in the preparation of 9 . Isomerization of 9 by a 5% solution of KOH in methanol gave the same equilibrated mixture of $8: 9$ (30:70) as obtained from 8 . The reduction of 8 and 9 by sodium in liquid ammonia gives mixtures of $\mathbf{1 a}$ and $\mathbf{1 b}$, as shown in Table I.

No isomerization was observed on treatment of 19 with methanolic hydrochloric acid or sodium ethoxide at room temperature, but treatment with sodium amide produced 1a:1b (80:20). Isomer 1b showed similar behavior. Models of la and lb show that the methyl and phenyl groups of la may

Scheme II

${ }^{a}$ PPA, $90^{\circ} \mathrm{C} .{ }^{b} \mathrm{CH}_{3} \mathrm{MgBr}$, ether. ${ }^{c}$ Toluene, $\Delta .{ }^{d} \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$. ${ }^{e} 5 \% \mathrm{KOH}$ in $\mathrm{CH}_{3} \mathrm{OH}$.

${ }^{a} \mathrm{PPA}, \Delta .{ }^{b} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr} .{ }^{c} \Delta .{ }^{d} \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} .{ }^{e} \mathrm{Na}, \mathrm{NH}_{3} . f 5 \%$ KOH in $\mathrm{CH}_{3} \mathrm{OH}$.
lie on the equatorial plane of the five-membered ring, whereas in lb only the methyl or the phenyl can occupy an equatorial position at one time. This suggests that la has the greater thermodynamic stability.
In summary, the major intermediate (4) in the acid-catalyzed cyclodimerization of styrene is accessible by adjusting the temperature and/or the reaction time. Though A-15 is a superior catalyst for the cyclodimerization of α-methylstyrene, ${ }^{15}$ only a low yield of cyclodimerization products is realized with styrene. However, sulfuric acid ${ }^{2 f}$ is effective in the dimerization of styrene to $\mathbf{1 a}$ and $1 \mathbf{b}$ (1:1). The base-catalyzed equilibrium ratio of indenes 8 and 9 (30:70) and indans la and lb (80:20) were determined.

Experimental Section

Cyclodimerization of Styrene (2) by A-15. Several runs were made varying the reactant, catalyst, solvent ratios, and the length of the run. These ratios and times are given in Table II. The reaction mixtures were refluxed under a nitrogen atmosphere, filtered through Dicalite, and distilled to give a maximum yield of a mixture of 20% of 1 a and $1 \mathrm{~b}, \mathrm{bp} 115-117^{\circ} \mathrm{C}(1 \mathrm{~mm})$, in a $1: 1$ ratio.

Table I. Reduction of Isomeric Methylphenylindenes with Sodium in Liquid Ammonia

	Sample, \mathbf{g}	Sodium, \mathbf{g}	\% la	\% 1b
$\mathbf{8}$	1.5	0.7	77	23
$\mathbf{8}$	1.0	0.4	79	21
$\mathbf{9}$	1.0	0.4	82	18
$\mathbf{9}$	1.0	1.0	84	16

Table II

Table I			
2, mol	A-15, g	Cyclohexane, mL	Time, h
1.0	25	2.5	8
1.0	25	2.0	12
0.2	5	0.5	24
6.6	25	1.5	18
0.9	80	1.0	12

Table III

Time, h	\% la, $\mathbf{1} \mathbf{b}$	$\% \mathbf{4}$
4.0	13.5	86.5
8.5	59.4	40.6
16.0	86.2	13.8
24.0	99.0	1.0

The various runs were sampled and analyzed by gas chromatography ${ }^{11}$ as shown in Table III. The product showed: IR (neat) 3025, $1600,1495,1455,750 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m / e (rel intensity) 208 ($\mathrm{M}^{+}, 100$), 193 (70), 179 (31), 178 (30), 130 (41), 115 (49).

Cyclodimerization of 2 to 1 by $\mathbf{H}_{2} \mathbf{S O}_{4}$. Freshly distilled $2(400 \mathrm{~g}$, 3.8 mol) was stirred into 1 L of a 62% solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and treated as described. ${ }^{2 f}$ Distillation yielded $285 \mathrm{~g}(82 \%)$ of la:1b (1:1), bp $114-116^{\circ} \mathrm{C}(1 \mathrm{~mm})$.
Dimerization of 2 to (E)-1,3-Diphenyl-1-butene (4). This dimerization was carried out as described ${ }^{3 a}$ to give a 77% yield of $4: \mathrm{bp}$ $123-125^{\circ} \mathrm{C}(1 \mathrm{~mm})$; IR (neat) $2780,1440,1005,957,737 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) $208\left(\mathrm{M}^{+}, 90\right), 193(93), 178(28)$, $130(22), 115(100), 91(57) ;{ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 7.3$ (m, 10, ArH), 6.4 ($\mathrm{s}, 2, \mathrm{HC}=\mathrm{CH}$), $3.62(\mathrm{~m}, 1, \mathrm{ArCH}), 1.44\left(\mathrm{~d}, 3, \mathrm{CH}_{3}\right)$. A computercontrolled peak and intensity search of the Cyphernetics Mass Spectral file (27000 spectra) identified the spectrum as that of 4 . This spectrum was then directly compared with that of our reaction product, and they were found to be identical.

Cyclization of 4 to 1. By PPA. ${ }^{3 \mathrm{a}}$ A $16-\mathrm{g}$ sample of 4 was stirred into 20 g of PPA preheated to $150^{\circ} \mathrm{C}$, and the mixture was allowed to stir at this temperature under a nitrogen atmosphere for 3 h . An 80% yield of $1 \mathbf{a}: 1 \mathrm{lb}(1: 1)^{11}$ was obtained.
By A-15. A $40-\mathrm{g}$ sample of 4 was dissolved in 200 mL of cyclohexane, and 20 g of A-15 was added. The mixture was heated at reflux temperature under a nitrogen atmosphere for 4 h to give la:lb (1:1) ${ }^{11}$ in 80% yield.
Cyclodimerization of 2 by Ethylaluminum Dichloride. EtAlCl_{2} ($0.02 \mathrm{~mol}, 2.77 \mathrm{~g}$) was dissolved in benzene and slowly added to a stirred benzene solution (600 mL) containing 20 g of $2(0.2 \mathrm{~mol})$ under a nitrogen atmosphere. ${ }^{13,14} \mathrm{~A}$ red color developed immediately. Samples were removed periodically and analyzed by GC to determine the concentration of $1 \mathbf{a}$ and $1 \mathbf{l}$. ${ }^{11}$ The solution was stirred for 1 h at room temperature and 4 h at reflux temperature. The excess EtAlCl_{2} was destroyed by adding 4 mL of methanol. The solution was washed with water and HCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. The yield was low (24%), and other compounds were formed. The reaction was repeated as above using 0.2 mol of EtAlCl_{2} (60% yield of product mixture).

Recrystallization of $1 \mathbf{b}$. A $119-\mathrm{g}$ sample of $\mathbf{1 a}: 1 \mathrm{lb}$ was recrystallized as described ${ }^{5}$ to give $\mathbf{1 b}$ in 95% purity: $\mathrm{mp} 25^{\circ} \mathrm{C}$ (lit..$^{5} 25.5^{\circ} \mathrm{C}$); IR (film) $747 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) 208 (M^{+}, 100), 193 (71), 130 (61), 115 (54), 91 (30); ${ }^{1} \mathrm{H}$ NMR $\delta 7.1$ (m, 9, ArH), 4.3 (t, 1, $\mathrm{Ar}_{2} \mathrm{CH}$), 3.3 (m, 1, ArCH), 2.1 ($\mathrm{q}, 2, \mathrm{CH}_{2}$), 1.3 (d, $3, \mathrm{CH}_{3}$).

Synthesis of 1-Methyl-3-phenylindene (8). The benzene for this experiment was purified by refluxing it in the presence of AlCl_{3} for 20 h , cooling, filtering through $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and distilling. Cinnamic acid ($8.1 \mathrm{~mol}, 1203 \mathrm{~g}$), 15.6 kg of benzene, and aluminum chloride $(1824 \mathrm{~g})$ were combined and treated as described. ${ }^{5}$ Instead of cyclizing
the 3,3-diphenylpropionic acid (5) via the acid chloride, 3 mol (675 g) of 5 was added to 6700 g of PPA that had been preheated to $90^{\circ} \mathrm{C}$. The mixture became yellow, and after 1.5 h of stirring, it was cooled to $70^{\circ} \mathrm{C}$, poured into ice water, and extracted with ether. The combined ether layers were washed with NaOH solution to remove acid, and then with water. The NaOH solution was later acidified to yield $223 \mathrm{~g}(33 \%)$ of 5 . The ether layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and distilled to yield a residual orange solid. After two recrystallizations from methanol 298 g of yellow crystals of 3 -phenylindanone (6) was obtained (48% conversion, 72% yield), mp $74.5-75.5^{\circ} \mathrm{C}$ (lit. ${ }^{5} 76.5-77.5$ ${ }^{\circ} \mathrm{C}$).

A $270-\mathrm{g}$ ($1.3-\mathrm{mol}$) sample of 6 dissolved in 900 mL of ether was added to 238 g of $\mathrm{CH}_{3} \mathrm{MgBr}$ in 1500 mL of ether over a $20-\mathrm{min}$ period. A green color developed which slowly faded to light yellow. The reaction mixture was heated at reflux for 2.5 h and then cooled. A 33% solution of $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$ was added slowly to decompose the Grignard complex, and a 20% solution of $\mathrm{HCl}(200 \mathrm{~mL})$ was used to dissolve salts. The product mixture was poured into ice water containing HCl and then extracted with ether $(2 \times 1.5 \mathrm{~L})$. The combined ether layers were washed with water, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and water, then dried over MgSO_{4} and filtered. Upon stripping the ether, some dehydration of 7 to 8 occurred. This dehydration was completed through use of refluxing toluene and a Dean-Stark trap.

Upon distillation, dehydration of the product mixture occurred to give 216 g of $8: 9$ (3:1). Several recrystallizations gave pure $8: \mathrm{mp} 59-61$ ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{5} \mathrm{mp} 63-64{ }^{\circ} \mathrm{C}$); IR (KBr) $1600,1070,875,845,787,765,753$, $695 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) $206\left(\mathrm{M}^{+}, 100\right.$), 205 (17), 191 (56), 189 (15), 165 (11); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DCCl}_{3}\right) ~ \delta 7.2(\mathrm{~m}, 9$, $\mathrm{ArH}), 6.24(\mathrm{~d}, \mathrm{1},=\mathrm{CH}), 4.52(\mathrm{~m}, 1, \mathrm{ArCH}), 1.2\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right)$.

Hydrogenation of 8 to $\mathbf{1 a}$. A $51.3-\mathrm{g}$ sample of 8 was dissolved in 95% ethanol containing 10% (by weight) of $5 \% \mathrm{Pd} / \mathrm{C}$ catalyst. This mixture was hydrogenated at 25 psi with shaking until the pressure drop ceased ($15-20 \mathrm{~min}$). The suspension was filtered (Dicalite), concentrated, and distilled using a Kugelrohr apparatus to give la (39.5 g): IR (film) $731 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e (rel intensity) $208\left(\mathrm{M}^{+}, 100\right), 193(70), 178(30), 130(41), 115(49) ;{ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 7.1(\mathrm{~m}, 9, \operatorname{ArH}), 4.1\left(\mathrm{q}, 1, \mathrm{Ar}_{2} \mathrm{CH}\right), 3.1(\mathrm{~m}, 1, \mathrm{ArCH}), 2.6(\mathrm{~m}, 1$, trans -HCH to Ph), 1.6 (m, 1, cis- HCH to Ph), 1.2 (d, 3, CH_{3}). A 70:30 mixture of 8 and 9 also gave only 1 a when hydrogenated as above.

Synthesis of 3-Methyl-1-phenylindene (9). A $30-\mathrm{g}$ sample of 3 -phenylbutanoic acid (10) was added to 700 g of PPA preheated to $90^{\circ} \mathrm{C}$ under a nitrogen atmosphere. A workup as described above and distillation gave 25 g (83%) of 3-methyl-1-indanone (11). A $30-\mathrm{g}$ sample of 11 (25 g from the previous reaction plus 5 g prepared earlier) was dissolved in 50 mL of ether and then added slowly to 56 g of phenylmagnesium bromide in 500 mL of ether. After a workup similar to that described above, including dehydration by distilling, 32.5 g (92%) of 9 was cbtained: mp $35-36^{\circ} \mathrm{C}$ (lit. ${ }^{16} 36-37^{\circ} \mathrm{C}$); IR (KBr) 2850 , 1340, $910,820,690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 7.40(\mathrm{~m}, 9, \mathrm{ArH}), 6.48$ $(\mathrm{d}, \mathrm{1},=\mathrm{CH}), 3.56(\mathrm{~m}, 1, \mathrm{ArCH}), 1.38\left(\mathrm{~d}, 3, \mathrm{CH}_{3}\right)$.
General Procedure for Equilibration. Erlenmeyer flasks $(125-\mathrm{mL})$ with a side arm were used in all the equilibration experiments. The top opening contained a one-hole neoprene stopper fitted with glass tubing, and nitrogen was passed through the side arm and out the stopper to a bubbler. A Teflon-enclosed magnetic stirring bar was used for agitation. The flasks were filled one-eighth with solvent and the other components were than added. Four flasks were used simultaneously and all were sampled periodically, using a pipet. Each sample was worked up in a 1 -dram vial by adding water, then benzene, and shaking. The aqueous layer was removed by pipetting and the organic layer was washed three times with water. After the last aqueous layer was removed, a small amount of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added to dry the benzene solution. GC studies were then carried out. ${ }^{11}$

Equilibration of 8 by $5 \% \mathrm{KOH}$. A 0.2 -g sample of 8 was added to a stirred solution of 4.2 g of KOH dissolved in 25 g of methanol. After 30 min , a ratio of $30: 70$ (8:9) was observed. This ratio remained constant during 2 days of observation.
Equilibration of 9 by $5 \% \mathrm{KOH}$. A $0.2 \mathrm{-g}$ sample of 9 was added to 4.2 g of KOH dissolved in 25 g of methanol, and the resulting solution was stirred for 3.5 h . A ratio of $30: 70$ (8:9) was observed.
General Procedure for Reduction of 8 or 9 with Sodium in Liquid Ammonia. ${ }^{17 \mathrm{a} . \mathrm{b}}$ A $5 \times 15 \mathrm{~cm}$ cylindrical Pyrex reaction vessel containing a polyethylene-enclosed magnetic stirring bar, \mp openings for ammonia, a pressure-equalizing dropping funnel, a cold-finger reflux condenser, and a soda-lime guard tube was used to carry out the reduction. ${ }^{17 \mathrm{~b}}$ The apparatus was dried by heating and passing nitrogen through it, and then ammonia was allowed to flow through the vessel for 10 min . Dry ice and acetone were added to the condenser, and ammonia was condensed. Sodium was added to the vessel via Gooch tubing. Once the sodium had disappeared, a dropping funnel
containing the compound (8 or 9) dissolved in ether was attached, and the solution was slowly added with stirring. After the mizture had been stirred from 1 to $1.5 \mathrm{~h}, \mathrm{NH}_{4} \mathrm{Cl}$ crystals were cautiously added until the blue color disappeared. Ammonia was allowed to evaporate, and the residue was poured into water and extracted by ether. The ether layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give an oil, which was analyzed by GC. The data from duplicate runs on 8 and 9 are given in Table I.

Reduction of 8. Sodium (0.7 g) was dissolved in 50 mL of ammonia and a blue color developed immediately. A $1.5-\mathrm{g}$ sample of 8 dissolved in 15 mL of dry ethyl ether was then added via a dropping fannel. No color change occurred in the solution. After stirring 1.5 h , the reaction mixture was worked up to give 1.3 g of oil. Gas chromatography analysis showed 1a:1b (77:23). ${ }^{11}$

The reduction of 1 g of 8 was repeated using 0.4 g of sodium to give la:1b (79:21). ${ }^{11}$

Reduction of 9 . A $1-\mathrm{g}$ sample of 9 and 0.4 g of sodium treated as above gave la:1b (82:18). This was repeated using 1 g of sodium, which resulted in la:1b (84:16). ${ }^{11}$

Equilibration of la by $\mathbf{N a N H}_{2}$. The apparatus described in the reduction procedure was used. A 1-g sample of la dissolved in 15 mL of dry ether was slowly added to a solution containing 0.3 g of sodium dissolved in 50 mL of liquid ammonia, which contained a crystal of FeSO_{4}. When GC studies showed no composition change, the solution was worked up as described in the reduction procedure to yield 1 g of an oil. GC analysis showed that this oil contained 1a:1b (82:18). ${ }^{11}$

Acknowledgment. We thank the Continental Oil Company's Analytical Research Section for analytical determinations and the American Petroleum Institute for some financial support.

Registry No.-la, 14568-75-3; 1b, 14568-76-4; 2, 100-42-5; 4, 7302-01-4; 5, 606-83-7; 6, 16618-72-7; 8, 22360-63-0; 9, 22360-6-9; 10, 4593-90-2; 11, 6072-57-7; cinnamic acid, 621-82-9.

References and Notes

(1) (a) A. R. Taylor, M.S. Thesis, Oklahoma State University, December, 1974; American Petroleum Institute Graduate Research Assistant, 1974; (b) Oklahoma State University; (c) Continental Oil Company; (d) some financial support from Continental Oil Company is gratefully acknowledged.
(2) (a) R. Fittig and H. Erdmann, Justus Liebigs Ann. Chem., 216, 817 (1883); (b) H. Stobbe and G. Posnjak, ibid., 371, 287 (1909); (c) R. Stoermer and H. Kootz, Ber. B, 61, 2330 (1928); (d) J. Risi and D. Guavin, Can. J. Res., Sect. B, 14, 255 (1936); (e) P. E. Spoerri and M. J. Rosen, J. Am. Chem. Soc., 72, 4918 (1950); (f) M. J. Rosen, "Organic Syntheses'". Collect. Vol. 4, Wiley, New York, N.Y., 1963, p 665; (g) M. J. Rosen, J. Org. Chem., 18, 1701 (1953).
(3) (a) B. B. Corson, W. J. Heintzelman, H. Moe, and C. R. Rousseau, J. Org. Chem., 27, 1636 (1962); (b) H. Ambrust, G. Kilpper, W. Koehler, H. J. Quadbeck-Seeger, H. G. Schecker, and H. J. Sturn, German Offen. 2101 089, Aug 10, 1972; Chem. Abstr., 77, 164307w (1972); (c) T. Yamaguchi, T. Takaya, and Y. Okuda, Japan Kokai 7391 045; Chem. Abstr., 80, 145893e (1974); (d) J. M. Barton and D. C. Pepper, J. Chem. Soc., 1573 (1964).
(4) G. Wunch, D. Lutenback, and V. Kiener, German Offen. 2064 099, July 20. 1972; Chem. Abstr., 77, 126313n (1972).
(5) B. B. Corson, J. Dorsky, J. E. Nickels, W. M. Kurz, and H. I. Thayer, J. Org. Chem., 19, 17 (1954).
(6) Yu. S. Tsybin, A. V. Kessenikh, and R. N. Volkov, Zh. Org. Khim., 5, 806 (1969); Chem. Abstr., 71, 38146 f (1969).
(7) R. N. Volkov, Yu. S. Tsybln, and V. A. Yanchuk, Zh. Org. Khim., 7, 1040 (1971); Chem. Abstr., 75, 63459a (1971).
(8) R. N. Volkov and Yu. S. Tsybin, Zh. Org. Khim., 6, 480 (1970); Chem. Abstr., 72, 132440q (1970).
(9) R. Kunin, E. Meitzner, and N. Bortnick. J. Am. Chem.. Soc., 84, 305 (1962).
(10) A gift from the Rohm and Haas Co.
(11) Wilkens Instrument Research, Inc., Aerograph. Column: $1 / 4 \mathrm{in} . \times 10 \mathrm{ft}$ packed with 10% UC W-98 coated on 80-100 mesh, acid-washed Chromosorb W. Thermal conductivity detection. A typical column temperature for 1 was $200^{\circ} \mathrm{C}$.
(12) K. Tatsuoka and T. Shimizu, Japan Kokai 7385 563; Chem. Abstr., 80, 824912 (1974).
(13) A gift from the Ethyl Corp., ethylaluminum dichloride lot no. 2071
(14) R. Wolovsky and N. Maoz, J. Org. Chem., 38, 4040 (1973).
(15) W. P. Duncan, E. J. Eisenbraun, A. R. Taylor, and G. W. Keen, Org. Prep. Proced. Int., 7, 225 (1975).
(16) V. Bertoli and P. H. Plesch, J. Chem. Soc., 1500 (1968)
(17) (a) H. Gilman and J. Bailie, J. Am. Chem. Soc., 65, 267 (1943); (b) R. L. Augustine, "Reduction'". Marcel Dekker, New York, N.Y., 1968.

Preparation and Properties of $\mathbf{R M g H}$ and $\mathbf{R M g}_{2} \mathbf{H}_{3}$ Compounds

E. C. Ashby* and A. B. Goel
School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332

Received May 9, 1977

A series of alkyl- and arylmagnesium hydrides, RMgH (where $\mathrm{R}=\mathrm{Me}, \mathrm{Et}, i-\mathrm{Pr}, \mathrm{Cp}$, and Ph), has been prepared by the reaction of $\mathrm{R}_{2} \mathrm{Mg}$ compounds with an active form of magnesium hydride slurry in THF. These products could also be prepared by the reaction of RLi compounds with hydridomagnesium halide (HMgX , where $\mathrm{X}=\mathrm{Cl}$ and Br), as demonstrated by the preparation of methylmagnesium hydride by the reaction of $\mathrm{CH}_{3} \mathrm{Li}$ with HMgCl in THF. Preparation of compounds of the type $\mathrm{RMg}_{2} \mathrm{H}_{3}$ (where $\mathrm{R}=\mathrm{Me}$ and Ph) has also been carried out. Contrary to earlier reports, the RMgH compounds have been found to be soluble and quite stable in THF at room temperature. A band in the region $1250-1300 \mathrm{~cm}^{-1}$ in the infrared spectrum of these compounds has been assigned to $\mathrm{Mg}-\mathrm{H}$ stretching. This band is shifted to $940 \mathrm{~cm}^{-1}$ in the deuterio analogues, RMgD . Molecular weight studies of methyland ethylmagnesium hydride show these compounds to be dimeric in dilute solution.

The existence of compounds of the type RMgH has been the subject of interest and speculation for many years, as these compounds are analogues of Grignard reagents. Rice and coworkers ${ }^{1}$ in 1956 reported the formation of PhMgH by the reaction of PhMgBr with LiAlH_{4} in 4:1 ratio in ether. Later we showed ${ }^{2}$ that the products of this reaction were not the same as reported by Rice. In a communication in 1962, Bauer ${ }^{3}$ reported the preparation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgH}$ by the reaction of silane with $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Mg}$ in ether (eq 1).

$$
\begin{equation*}
\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}+\mathrm{SiH}_{4} \rightarrow \mathrm{HMgC}_{2} \mathrm{H}_{5}+\mathrm{H}_{3} \mathrm{SiC}_{2} \mathrm{H}_{5} \tag{1}
\end{equation*}
$$

However, he provided no characterization of the product. Sometime later, Coates and Heslop ${ }^{4}$ reported evidence for the
formation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgH}$ as an intermediate in the reaction of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Mg}$ and $\mathrm{NaB}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right){ }_{3} \mathrm{H}$ (eq 2); however, they reported that the compound was stable only at $-78^{\circ} \mathrm{C}$ and dissociated at $-20^{\circ} \mathrm{C}$ to give MgH_{2} and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Mg}$ (eq 3).

$$
\begin{gather*}
\mathrm{NaEt}_{3} \mathrm{BH}+\mathrm{Et}_{2} \mathrm{Mg} \rightarrow \mathrm{EtMgH}+\mathrm{NaE}_{\mathrm{t}_{4}} \mathrm{~B} \tag{2}\\
2 \mathrm{EtMgH}^{\rightarrow} \mathrm{Et}_{2} \mathrm{Mg}+\mathrm{MgH}_{2} \tag{3}
\end{gather*}
$$

Our earlier attempts ${ }^{5}$ to prepare $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgH}$ by the reaction of LiAlH_{4} with $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Mg}$ in ether in 1:4 ratio and by the reaction of MgH_{2} with $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Mg}$ in ether were not successful in that MgH_{2} was recovered in both cases. In this communi-
cation, we wish to report for the first time the successful preparation of pure RMgH compounds.

$$
P P M \quad(\tau)
$$

Figure 1. $60-\mathrm{MHz}$ NMR of:
(a) $4\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}+\mathrm{LiAlH}_{4} \xrightarrow{\mathrm{THF}} 4 \mathrm{CH}_{3} \mathrm{MgH}$

$$
+\mathrm{LiAl}\left(\mathrm{CH}_{3}\right)_{4}\left(1.05 \mathrm{M}^{2} \mathrm{CH}_{3} \mathrm{MgH}\right)
$$

(b) $\mathrm{LiAl}\left(\mathrm{CH}_{3}\right)_{4}$ in THF $(0.95 \mathrm{M})$,
(c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}$ in THF $(0.65 \mathrm{M})$,
(d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}+\mathrm{MgH}_{2} \xrightarrow{\mathrm{THF}} 2 \mathrm{CH}_{3} \mathrm{MgH}\left(0.70 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{MgH}\right)$.
solution of diethyl- or diphenylmagnesium in diethyl ether at room temperature, an exothermic reaction took place and an insoluble white solid appeared mmediately. The reaction mixture was stirred for 30 min , and the insoluble solid was separated from the supernatant solution by centrifugation and by removing the supernatant solution using a syringe. This solid was washed with diethyl ether several times and finally made into a slurry in THF. Anal. Calcd for $\mathrm{MgH}_{2}(\mathrm{Mg}: \mathrm{H})$: 1.00:2.00. Found: 1.00:1.98.

Preparation of $\mathbf{C H}_{\mathbf{3}} \mathbf{M g H}$. To a well-stirred slurry of $\mathbf{M g H}_{2}(4.40$ $\mathrm{mmol})$ in THF was added dropwise a THF solution of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}(4.40$ mmol) at room temperature. The reaction mixture was stirred for 30 min during which time all the magnesium hydride dissolved. The resulting clear solution was analyzed, and infrared and NMR spectra were recorded. Anal. Calcd for $\mathrm{CH}_{3} \mathrm{MgH}\left(\mathrm{Mg}: \mathrm{H}: \mathrm{CH}_{4}\right):$ 1.00:1.00:1.00. Found: 1.00:0.97:1.04.

A THF solution of $\mathrm{CH}_{3} \mathrm{MgH}$ was kept overnight at room temperature and analyzed the next day. It contained Mg and H in the ratio 1.00:1.93. When the solvent was removed under vacuum, an amorphous solid formed which did not give an x-ray powder pattern.

Preparation of $\mathrm{CH}_{3} \mathbf{M g} \mathbf{H}_{2}$. A THF solution of $\left(\mathrm{CH}_{3}\right)_{2} \mathbf{M g}$ (3.15 mmol) was added dropwise to a well-stirred slurry of magnesium hydride (9.40 mmol) in THF at room temperature. The reaction mixture was stirred at room temperature for 1 h and gave a small amount of a white precipitate. The insoluble solid was filtered and both solid and filtrate were analyzed.
Insoluble solid Anal. Calcd for $\mathrm{MgH}_{2}(\mathrm{Mg}: \mathrm{H})$: 1.00:2.00. Found: 1.00:1.94. The solid contained about 10% of the starting magnesium as magnesium hydride.
Filtrate Anal. Calcd for $\mathrm{CH}_{3} \mathrm{Mg}_{2} \mathrm{H}_{3}\left(\mathrm{Mg}: \mathrm{H}: \mathrm{CH}_{4}\right):$ 2.00:3.00:1.00. Found: 2.00:2.96:1.11. When the THF was removed under reduced pressure, it resu ted in a white solid. The x-ray powder pattern showed diffuse lines at $3.20(\mathrm{~m}), 2.51(\mathrm{~m}), 2.26(\mathrm{~m})$, and $1.68(\mathrm{~m})$ which corresponds to MgH_{2}.

Table I. Infrared Data (in THF) of $\mathbf{R M g H}$ and $\mathrm{RMg}_{2} \mathrm{H}_{3}$ Compounds ${ }^{a}$

MeMgH	MeMgD	EtMgH	$i-\mathrm{PrMgH}$	CpMgH	PhMgH
2800 (s)	2795 (m)	2760 (m)	2780 (m)	1500 (sh)	1480 (w)
1430 (w)	1425 (w)	1408 (m)	1380 (m)	1450 (s)	1412 (m)
1375 (m)	1350 (w)	1300 (m)	1345 (m)	1005 (s)	1300 (m)
1280-1300 (m br)	1162 (w)	1260 (m br)	1290 (m br)	955-960 (s br)	1250-70 (s br)
1170 (m)	940 (s)	1120 (m br)	1250 (m br)	750 (vs)	1225 (s)
1025 (s)	825 (sh)	970 (m)	1110 (m)	720 (sh)	1120 (m br)
855 (s)	750 (s)	760 (s br)	980 (s)	652 (s)	1000 (s)
650-720 (s br)	500-550 (s br)	700 (s br)	800 (sh)	550 (m br)	820 (sh)
525 (s)	420 (s)	620 (s)	770 (s)		805 (vs)
		505 (vs)	680-700 (s br)		680 (s)
		405 (s)	605 (s)		630 (sh)
			565 (m)		470 (s)
			490 (m)		375 (s)
			420 (m)		
PhMgD	$\mathrm{MeMg}_{2} \mathrm{H}_{3}$	$\mathrm{MeMg} \mathrm{V}_{2} \mathrm{D}_{3}$	$\mathrm{PhMg} \mathrm{C}_{2} \mathrm{H}_{3}$	$\mathrm{PhMg}_{2} \mathrm{D}_{3}$	$\mathrm{Ph}_{3} \mathrm{Mg}_{2} \mathrm{H}$
1482 (w)	1480 (m)	1480 (w)	1480 (w)	1480 (w)	1410 (s)
1410 (m)	1410 (s)	1412 (s)	1410 (w)	1408 (w)	1270-1290 (m br)
1300 (w)	1380 (vs)	1380 (s)	1375 (w)	1375 (w)	1220 (m)
1225 (m)	1300 (vs)	1107 (w)	1260-1300 (s br)	1120 (m)	1010 (m)
1120 (m)	1105 (w)	970 (m)	1120 (m)	990 (m)	850 (m)
997 (m)	965 (s)	940 (s)	990 (m)	940 (vs)	700 (vs)
935 (s)	800 (sh)	800 (sh)	800 (sh)	800 (sh)	675 (sh)
820 (sh)	600-720 (vs br)	600-700 (vs br)	730 (s)	730 (s)	635 (sh)
705 (vs)	520 (s)	520 (s)	700 (vs)	700 (vs)	620 (sh)
600-680 (s br)		420 (m br)	670 (s)	670 (s)	465 (m)
470 (s)			620 (vs br)	620 (m)	428 (s)
380 (m br)			460 (vs)	$\begin{aligned} & 460 \text { (vs) } \\ & 420 \text { (m br) } \end{aligned}$	370 (s)

${ }^{a}$ Registry no.: $\mathrm{MeMgH}, 63533-51-7$; $\mathrm{MeMgD}, 63533-525$ 52-8; $\mathrm{EtMgH}, 63533-53-9 ;$; $-\mathrm{PrMgH}, 63533-54-0$; $\mathrm{CpMgH}, 63533-55-1$; $\mathrm{PhMgH}, 62086-01-5 ; \mathrm{PhMgD}, 63533-56-2 ; \mathrm{MeMg}_{2} \mathrm{H}_{3}, 63588-48-7 ; \mathrm{MeMg}_{2} \mathrm{D}_{3}, 63588-47-6 ; \mathrm{PhMg}_{2} \mathrm{H}_{3}, 62139-40-6 ; \mathrm{PhMg}_{2} \mathrm{D}_{3}, 63588-49-8 ;$ $\mathrm{Ph}_{3} \mathrm{MgH}, 63588-52-3$.

Table II. IR and NMR Data for RMgH Compounds

RMgH , where $\mathrm{R}=$	Me	Et	$i-\mathrm{Pr}$	Cp	Ph
$\begin{gathered} \operatorname{IR}(\nu \mathrm{Mg}-\mathrm{C}) \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	520 (s)	502 (s)	492 (m)	662 (s)	430 (m)
(in THF)			422 (m)		370 (m)
NMR (ppm)	3.50	0.58 (t)	0.54 (m)	4.07	5.19 (m)
(with respect to THF)		2.53 (8)			5.89 (m)

Preparation of $\mathbf{C}_{2} \mathbf{H}_{5} \mathbf{M g H}$. When $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathbf{M g}(5.35 \mathrm{mmol})$ in 10 mL of THF was added dropwise to a THF slurry of $\mathrm{MgH}_{2}(5.30 \mathrm{mmol})$ and the reaction mixture stirred magnetically at room temperature, a clear solution resulted within 1 h . An elemental analysis of this solution revealed that it contained Mg, H, and $\mathrm{C}_{2} \mathrm{H}_{6}$ on hydrolysis in molar ratios 1.00:0.98:1.04. Anal. Calcd for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgH}$: 1.00:1.00:1.00. The THF solution of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgH}$ was stable at room temperature for at least 1 day as shown by the quantitative evolution of hydrogen produced on hydrolysis. When the solvent was removed under vacuum, a highly viscous liquid resulted.

Preparation of i- $\mathrm{C}_{3} \mathbf{H}_{7} \mathbf{M g H}$ in THF. To a magnetically stirred slurry of $\mathrm{MgH}_{2}(5.0 \mathrm{mmol})$ in THF was added dropwise a THF solution of $\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{Mg}$. The reaction mixture was stirred at room temperature for 1 h , forming a clear solution. Elemental analysis of this solution showed that it contained Mg and H in the molar ratio 1.00: 0.96 . This solution was stable at room temperature for at least 1 day as determined by gas-evolution analysis. A highly viscous liquid resulted when the THF was removed under vacuum.
Attempted Preparation of $\boldsymbol{i}-\mathrm{C}_{3} \mathbf{H}_{7} \mathbf{M g}_{2} \mathbf{H}_{3}$. Diisopropylmagnesium (4.0 mmol) in THF was added to a 12.0 mmol of a MgH_{2} slurry in THF. The mixture was stirred at room temperature overnight and filtered. The filtrate showed a $\mathrm{Mg}: \mathrm{H}$ ratio of $1.00: 1.07$. The solid exhibited a $\mathrm{Mg}: \mathrm{H}$ ratio of $1.00: 1.92$. The solid contained about 7.8 mmol of unreacted MgH_{2}.

Preparation of $\mathbf{C p M g H}$ in THF. Dicyclopentadienylmagnesium

Figure 2. Molecular association of RMgH compounds in THF at reflux temperature (at 260 mmHg).
(6.0 mmol) in THF was added to 6.0 mmol of a slurry of MgH_{2} in THF, and the mixture was stirred at room temperature for 1 h , resulting in a clear solution. Anal. Calcd for $\mathrm{CpMgH}(\mathrm{Mg}: \mathrm{Cp})$: 1.00:1.00. Found: 1.00:0.99. The solution was very air sensitive and turned yellowish brown when kept for some time at room temperature. A crystalline solid $\mathrm{CpMgH} \cdot 1.0 \mathrm{THF}$ resulted when the solvent was removed under reduced pressure. The x-ray powder diffraction pattern of the solid showed lines at $9.80(\mathrm{w}), 8.65(\mathrm{w}), 6.50(\mathrm{w}), 4.85$ (vs), $4.25(\mathrm{w})$, and 3.60 (m). X-ray lines due to $\mathrm{Cp}_{2} \mathrm{Mg}$.2THF $7.50(\mathrm{~m}), 7.05$ ($\mathrm{s}^{\prime}, 6.21(\mathrm{~m}), 5.83$ (m), $5.00(\mathrm{~m}), 4.65(\mathrm{~s}), 4.40(\mathrm{~m}), 4.20(\mathrm{w}), 3.82(\mathrm{w}), 3.70(\mathrm{~m}), 3.25(\mathrm{~m})$, $3.15,2.85$ (vw), 2.47 (vw).

Preparation of $\mathbf{P h M g H}$ in THF. ${ }^{9}$ To 8.45 mmol of a MgH_{2} slurry in THF was added dropwise 8.5 mmol of $\mathrm{Ph}_{2} \mathrm{Mg}$ in THF. A clear so-

Figure 3. Infrared bards due to $\mathrm{Mg}-\mathrm{H}$: (a) $\mathrm{PhMg}_{2} \mathrm{H}_{3}$, and (b) $\mathrm{PhMg}_{2} \mathrm{D}_{3}$.

Figure 4. Vacuum DTA-TGA of $\mathrm{MeMgH} \cdot \mathrm{THF}$.
lution resulted within a few minutes after stirring at room temperature. Anal. Calcd for $\mathrm{Pr} \mathrm{MgH}(\mathrm{Mg}: \mathrm{H}: \mathrm{Ph}): 1.00: 1.00: 1.00$. Found: 1.00:0.97:1.05. This solution was stable for over a 1-month period at $0^{\circ} \mathrm{C}$ as determined by gas-evolution analysis. When the solvent was removed under reduced pressure, an amorphous white solid resulted which did not give any x-ray powder pattern. However, when benzene was added to a THF solution an insoluble solid formed which was filtered and analyzed. Anal. Calcd for $\mathrm{PhMgH} \cdot 1 \mathrm{THF}$ ($\mathrm{Mg}: \mathrm{H}: \mathrm{Ph}$: THF): 1.00:1.00:1.00:1.00. Found: 1.00:0.98:1.03:1.05. X-ray powder diffraction pattern $8.05(\mathrm{~s}), 6.60(\mathrm{~m}), 5.40(\mathrm{w}), 4.80(\mathrm{~m}), 4.60(\mathrm{w}), 4.21$ (vs), 3.85 (w), 3.60 (w), 3.40 (w), 3.30 (w), 3.05 (vw), 2.80 (vw), 2.43 (vw), $2.40(\mathrm{w})$; x-ray pattern of $\mathrm{Ph}_{2} \mathrm{Mg} \cdot 2$ THF $8.06(\mathrm{~s}), 6.61(\mathrm{~m}), 5.40(\mathrm{w})$, 4.80 (m), 4.60 (w), 4.21 (vs), 3.88 (w), 3.61 (w), 3.40 (w), 3.31 (w), 3.05 (vw), 2.80 (vw), 2.43 (vw), 2.40.
Preparation of $\mathbf{P h M g}_{2} \mathrm{H}_{3}$ in THF. ${ }^{9}$ When $\mathrm{Ph}_{2} \mathrm{Mg}(3.50 \mathrm{mmol})$ in THF was added dropwise to a stirred slurry of $\mathrm{MgH}_{2}(10.5 \mathrm{mmol})$ in THF, a clear solution resulted within 30 min . Anal. Calcd for $\mathrm{PhMg}_{2} \mathrm{H}_{3}$ ($\mathrm{Mg}: \mathrm{H}: \mathrm{Ph}$): 1.00:3.00:1.00. Found: 1.00:2.94:1.07. This solution was dried under vacuum to give a white solid. The solid was placed in diethyl ether, stirred for 1 h , and filtered. The filtrate did not contain magnesium, and analysis of the insoluble solid showed that it contained Mg, H, and benzene on hydrolysis in the ratio 1.00:2.97:1.02. The solid redissolved in THF; however, the THF was

Figure 5. Vacuum DTA-TGA of $\mathrm{MeMg}_{2} \mathrm{H}_{3}$.THF.

Figure 6. Vacuum DTA-TGA of $\mathrm{PhMg}_{2} \mathrm{H}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$.
cleaved slowly at room temperature and when refluxed in THF an insoluble white solid resulted which on hydrolysis contained Mg , benzene, and n - BuOH in ratios 1.00:1.03:3.02.

Dissociation of PhMgH•1THF in Diethyl Ether. To 4.0 mmol of $\mathrm{PhMgH} \cdot \mathrm{THF}$ was added 5 mL of diethyl ether, and the resulting mixture was stirred for 1 h at room temperature and filtered. The filtrate on hydrolysis showed that it contained Mg and benzene in the ratio 1.00:1.97. The insoluble solid on hydrolysis exhibited Mg, H, and benzene in the ratio of $1.00: 1.47: 0.52$. Anal. Calcd for $\mathrm{PhMg}_{2} \mathrm{H}_{3}$: 1.00:1.50:0.50. The solid contained about 65% of the total magnesium.
Attempted Preparation of $\mathbf{P h}_{3} \mathbf{M g}_{2} \mathbf{H}$ in THF. When 10.5 mmol of $\mathrm{Ph}_{2} \mathrm{Mg}$ in THF was added dropwise to a stirred slurry of MgH_{2} (3.5 mmol) in THF, a clear solution resulted within minutes. When this solution was concentrated by removing THF under vacuum, and kept overnight at room temperature, a white solid crystallized. These crystals were separated, washed with THF, and dried under vacuum. Anal. Calcd for $\mathrm{Ph}_{\bar{c}} \mathrm{Mg}(\mathrm{Mg}: \mathrm{Ph}):$ 1.00:2.00. Found: 1.00:2.03. The x-ray powder diffraction pattern showed that this solid contained lines due to $\mathrm{Ph}_{2} \mathrm{Mg} \cdot 2 \mathrm{THF}$.

Figure 7. Vacuum DTA-TGA of $\mathrm{PhMg}_{2} \mathrm{H}_{3}$.THF.

Results and Discussion

The first evidence obtained concerning the existence of an RMgH compound came from the reaction of LiAlH_{4} with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}$ in 1:4 ratio in THF. When LiAlH_{4} in THF was allowed to react slowly with a THF solution of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}$ in a 1:4 ratio, no precipitate resulted at any stage and the reaction mixture remained clear. However, if LiAlH_{4} was added rapidly to the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}$ solution in THF, a precipitate did appear which redissolved when stirred for a few minutes. Since MgH_{2} is very insoluble in THF, the reaction course observed in ether (eq 4) is undoubtedly not involved here.

$$
\begin{align*}
4\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}+\mathrm{LiAlH}_{4} \xrightarrow{\mathrm{Et}_{2} \mathrm{O}} & 2 \mathrm{MgH}_{2} \\
& +2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}+\mathrm{LiAl}\left(\mathrm{CH}_{3}\right)_{4} \tag{4}
\end{align*}
$$

An infrared spectrum of the reaction mixture in THF showed bands at 530 and $695 \mathrm{~cm}^{-1}$ characteristic of $\mathrm{MgCH}_{3}{ }^{10}$ and $\mathrm{LiAl}\left(\mathrm{CH}_{3}\right)_{4}$, respectively, and also established the absence of any Al-H stretching bands in the region $1600-1800 \mathrm{~cm}^{-1}$. The infrared data favor the reaction pathway (eq 5) in THF.

$$
\begin{equation*}
4\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}+\mathrm{LiAlH}_{4} \xrightarrow{\mathrm{THF}} 4 \mathrm{CH}_{3} \mathrm{MgH}+\mathrm{LiAl}\left(\mathrm{CH}_{3}\right)_{4} \tag{5}
\end{equation*}
$$

A proton NMR spectrum of the reaction solution showed a sharp singlet at $\tau 11.74$ (3.53 ppm upfield from the THF multiplet) and a sextet centered at $\tau 11.32$ (Figure 1). The upfield singlet at $\tau 11.74$ was almost at the position of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}$, and the sextet corresponded to that observed for $\mathrm{LiAl}\left(\mathrm{CH}_{3}\right)_{4}$ in THF. ${ }^{11}$ The 1:1 ratio of the upfield singlet to the sextet suggested that the number of methyl groups attached to magnesium are the same as those attached to aluminum, which again supports the proposed reaction course (eq 5). Unfortunately, $\mathrm{CH}_{3} \mathrm{MgH}$ could not be isolated from the above reaction mixture in a pure state.
Similarly, when lithium aluminum hydride in THF was added to a THF solution of $\mathrm{Ph}_{2} \mathrm{Mg}$ in 1:4 molar ratio, a clear solution resulted. The infrared spectrum of the solution showed the absence of any Al-H stretching band in the region $1600-1800 \mathrm{~cm}^{-1}$; instead, a band due to $\mathrm{Mg}-\mathrm{Ph}$ stretching at $420 \mathrm{~cm}^{-1}$ was observed, suggesting the presence of $\mathrm{Mg}-\mathrm{Ph}$ bands. When the solvent from this reaction mixture was re-

Table III. Thermal Decomposition of $\mathbf{R M g H}$ and $\mathbf{R M g}_{2} \mathbf{H}_{3}$ Compounds

Compd ($w t$ of sample)	Thermicity	Decomposition range (peak)	$\begin{aligned} & \% \mathrm{wt} \\ & \text { loss } \end{aligned}$
$\begin{aligned} & \mathrm{MeMgH} \cdot 0.85 \mathrm{THF} \\ & (57.16) \end{aligned}$	endo	$\begin{gathered} 70-110 \\ (85) \end{gathered}$	56.11
	endo	$\begin{gathered} 296-340 \\ (320) \end{gathered}$	16.35
$\underset{(78.54)}{\mathrm{PhMgH} \cdot 1.06 \mathrm{THF}}$	endo	$\begin{gathered} 75-120 \\ (90) \end{gathered}$	40.07
	endo	$\begin{gathered} 290-369 \\ (348) \end{gathered}$	44.27
$\begin{aligned} & \mathrm{MeMg}_{2} \mathrm{H}_{3} \cdot 0.38 \mathrm{THF} \\ & (65.85) \end{aligned}$	endo	$\begin{gathered} 70-118 \\ (90) \end{gathered}$	23.79
	endo	$\begin{gathered} 295-340 \\ (318) \end{gathered}$	12.17
$\begin{aligned} & \mathrm{PhMg}_{2} \mathrm{H}_{3} \cdot 0.89 \mathrm{THF} \\ & (71.72) \end{aligned}$	endo	$\begin{gathered} 75-116 \\ (96) \end{gathered}$	30.11
	endo	150-280	12.21
	endo	$\begin{gathered} 290-365 \\ (336) \end{gathered}$	32.32
$\underset{(64.35)}{\mathrm{PhMg}_{2} \mathrm{H}_{3} \cdot 0.37 \mathrm{Et}_{2} \mathrm{O}}$	endo	$\begin{aligned} & 90-130 \\ & (110) \end{aligned}$	22.43
	endo	$\begin{gathered} 290-339 \\ (315) \end{gathered}$	50.17

moved under vacuum, the resulting solid showed x -ray powder diffraction lines due to $\mathrm{LiAlPh}_{4} .{ }^{12}$ These results support the following reaction route:

$$
\begin{equation*}
4 \mathrm{Ph}_{2} \mathrm{Mg}+\mathrm{LiAlH}_{4} \xrightarrow{\mathrm{THF}} 4 \mathrm{PhMgH}+\mathrm{LiAlPh}_{4} \tag{6}
\end{equation*}
$$

When benzene was added to the THF solution of this reaction mixture, an insoluble white solid precipitated which corresponded to PhMgH on analysis. However, the x -ray powder diffraction pattern of this solid corresponded to $\mathrm{Ph}_{2} \mathrm{Mg} \cdot 2 \mathrm{THF}$, indicating disproportionation of the PhMgH to MgH_{2} and $\mathrm{Ph}_{2} \mathrm{Mg}$ when the solvent is removed.

Interestingly, alkyl- or arylmagnesium hydrides, RMgH (where $\mathrm{R}=\mathrm{Me}, \mathrm{Et}, i-\mathrm{Pr}, \mathrm{Cp}$, and Ph), have been prepared in a pure state simply by the reaction of a dialkyl- or diarylmagnesium compound with an active form of MgH_{2} in THF at room temperature (eq 7).

$$
\begin{equation*}
\mathrm{MgH}_{2}+\mathrm{R}_{2} \mathrm{Mg} \xrightarrow{\text { THF }} 2 \mathrm{RMgH} \tag{7}
\end{equation*}
$$

The MgH_{2} reacts exothermically with the $\mathrm{R}_{2} \mathrm{Mg}$ compound producing a clear solution within minutes. The $\mathrm{R}: \mathrm{Mg}: \mathrm{H}$ ratio of the reaction product is $1: 1: 1$ within experimental error. Solutons of the alkyl- or arylmagnesium hydrides are quite stable at room temperature with no apparent THF cleavage. The active form of magnesium hydride was prepared by the reaction of LiAlH_{4} with $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Mg}$ in 1:1 ratic in ether (eq 8).

$$
\begin{equation*}
\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Mg}+\mathrm{LiAlH}_{4} \xrightarrow{\mathrm{Et}_{2} \mathrm{O}} \mathrm{MgH}_{2}+\mathrm{LiAlH}_{2} \mathrm{Et}_{2} \tag{8}
\end{equation*}
$$

The infrared spectra of RMgH compounds in THF solution showed bands due to $\mathrm{Mg}-\mathrm{R}$ groups (Table I) and broad bands in the region $1250-1300 \mathrm{~cm}^{-1}$ due to $\mathrm{Mg}-\mathrm{H}$ stretching. The band in the region $1250-1300 \mathrm{~cm}^{-1}$ is assigned to the bridging $\mathrm{Mg}-\mathrm{H}$ stretching ${ }^{13}$ on the basis of the fact that it shifts to 940 cm^{-1} in the deuterio analogues, RMgD . Coates ${ }^{14}$ has shown by infrared studies of RBeH compounds that the strong band at $1330 \mathrm{~cm}^{-1}$ is the bridging beryllium-hydrogen stretching ($\mathrm{BeH}_{2} \mathrm{Be}$) vibration, since the band shifted to $970 \mathrm{~cm}^{-1}$ in the RBeD compound. We have prepared RMgD compounds in THF by the reaction of $\mathrm{R}_{2} \mathrm{Mg}$ with MgD_{2}. By analogy to the RBeH compound, it is suggested that the broad band present
in the region $1250-1300 \mathrm{~cm}^{-1}$ in RMgH is due to bridging magnesium-hydrogen $\left(\mathrm{MgH}_{2} \mathrm{Mg}\right)$ stretching.

The NMR spectra of RMgH compounds in THF showed signals due to alkyl groups attached to magnesium (Table II). Unfortunately, the Mg-H signal was not observed, probably due to its masking by the THF solvent. Molecular-association studies in THF showed $\mathrm{CH}_{3} \mathrm{MgH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgH}$ to be dimeric at low concentration and increasing in association with an increase in concentration. However, molecular weight data of PhMgH showed it to be monomeric in infinitely dilute solution (Figure 2).

When $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}$ in THF was added to an active MgH_{2} slurry in THF in a 1:3 ratio, about 90% of the initial MgH_{2} dissolved. The infrared spectrum of the solution showed a band at $1290 \mathrm{~cm}^{-1}$ which shifted to $940 \mathrm{~cm}^{-1}$ in the deuterio analogue $\mathrm{CH}_{3} \mathrm{Mg}_{2} \mathrm{D}_{3}$, suggesting that the absorption band is due to the bridging magnesium-hydrogen $\left(\mathrm{MgH}_{2} \mathrm{Mg}\right)$ band.

$$
\begin{equation*}
\mathrm{Me}_{2} \mathrm{Mg}+3 \mathrm{MgH}_{2} \xrightarrow{\mathrm{THF}} 2 \mathrm{MeMg}_{2} \mathrm{H}_{3} \tag{9}
\end{equation*}
$$

When the solvent was removed under vacuum, the resulting solid exhibited x-ray lines due to MgH_{2}, indicating the disproportion of $\mathrm{CH}_{3} \mathrm{Mg}_{2} \mathrm{H}_{3}$ into $\mathrm{CH}_{3} \mathrm{MgH}$ and MgH_{2} (eq 10).

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{Mg}_{2} \mathrm{H}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{MgH}+\mathrm{MgH}_{2} \tag{10}
\end{equation*}
$$

When diphenylmagnesium in THF was added to 3 mol equiv of magnesium hydride a clear solution resulted. The elemental analysis of this solution corresponded well to $\mathrm{PhMg}_{2} \mathrm{H}_{3}$. The infrared spectrum (Figure 3) gave a strong band at $1290 \mathrm{~cm}^{-1}$ which shifted to $935 \mathrm{~cm}^{-1}$ in the deuterio analogue $\mathrm{PhMg}_{2} \mathrm{D}_{3}$, suggesting that the absorption band is due to the bridging magnesium-hydrogen $\left(\mathrm{MgH}_{2} \mathrm{Mg}\right)$ bond. The molecular weight of $\mathrm{PhMg}_{2} \mathrm{H}_{3}$ could not be determined because it cleaved THF under refluxing conditions producing a THF-insoluble product of emperical formula $\mathrm{PhMg}_{2}\left(\mathrm{OBu}^{n}\right)_{3}$.

The results of vacuum DTA-TGA studies on $\mathrm{CH}_{3} \mathrm{MgH}$, $\mathrm{CH}_{3} \mathrm{Mg}_{2} \mathrm{H}_{3}, \mathrm{P}{ }_{2} \mathrm{MgH}$, and $\mathrm{PhMg}_{2} \mathrm{H}_{3}$ are given in Table III and Figures 4-7. The product RMgH decomposes at $300^{\circ} \mathrm{C}$ with gas evolution. The steps involved in the decomposition of RMgH are shown below.

$$
\begin{align*}
\text { 1. } \mathrm{RMgH} \cdot \mathrm{THF} & \rightarrow \mathrm{RMgH}+\mathrm{THF} \tag{11}\\
\text { 2. } \mathrm{RMgH} & \rightarrow \mathrm{Mg}+\mathrm{RH} \tag{12}
\end{align*}
$$

The $\mathrm{RMg}_{2} \mathrm{H}_{3}$ compounds decompose over a wide temperature range centered at $300^{\circ} \mathrm{C}$.

$$
\begin{equation*}
\mathrm{RMg}_{2} \mathrm{H}_{3} \rightarrow \mathrm{Mg}+\mathrm{RH}+\mathrm{H}_{2} \tag{13}
\end{equation*}
$$

Acknowledgment. We are indebted to the Office of Naval Research Contract no. N00014-67-A-0419-005AD, and contract authority no. 093-050/7-11-69(473) for support of this work.

Registry No.- $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}$, 2999-74-8; $\mathrm{Ph}_{2} \mathrm{Mg}, 555-54-4 ; \mathrm{MgH}_{2}$, 7693-27-8; $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Mg}, 557-18-6 ;\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{Mg}, 3536-97-8$; Dicyclopentadienylmagnesium, 1284-72-6.

References and Notes

(1) H. J. Rice and P. J. Andrellos, Technical Report to the Office of Naval Research. Contract ONR-494(04), 1956.
(2) E. C. Ashby and R. D. Schwartz, Inorg. Chem., 11, 919 (1972).
(3) R. Bauer, Z. Naturforschg, B, 17, 2.1 (1962).
(4) G. E. Coates and J. A. Heslop, J. Chem. Soc. A, 514 (1968).
(5) E. C. Ashby and R. G. Beach, Inorg Chem., 9, 2300 (1970).
(6) D. F. Shrlver, "The Manipulation of Air Sensitive Compounds", McGraw-Hill, New York, N.Y., 1969.
(7) E. C. Ashby and R. D. Schwartz, J. Chem. Ed., 51, 65 (1974).
(8) F. W. Walker and E. C. Ashby, J. Chem. Ed., 45, 654 (1968).
(9) E. C. Ashby and A. B. Goel, Inorg. Chem. (in press).
(10) R. M. Sallinger and H. S. Mosher, J. Am. Chem. Soc., 86, 1782 (1964).
(11) J. F. Ross and J. P. Ollver, J. Organomet. Chem., 22, 503 (1970).
(12) E. C. Ashby and A. B. Goel, unpublished results.
(13) E. C. Ashby and A. B. Goel, J. Am. Chem. Soc., 99, 310 (1977).
(14) N. A. Bell and G. E. Coates, J. Chem. Soc., 692 (1965).

Oxidative Cyclodehydrogenation of Aromatic Bis(o-aminoanils)

Neil J. Coville and Eberhard W. Neuse*
Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa

Received December 21, 1976

Abstract

The two bis-Schiff bases, N, N^{\prime}-terephthalidenebis(o-aminoaniline) (1) and N, N^{\prime}-dibenzylidene-3, 3^{\prime}-diaminobenzidine (8), prepared from the respective aldehyde and amine reactants by low-temperature solution condensation, are converted by molecular oxygen in solution to the benzimidazoles 2 and 9 . The oxidative heteroaromatization, especially when catalyzed with ferric chloride, proceeds readily at temperatures as low as $20-60^{\circ} \mathrm{C}$. The unusually mild conditions required for the oxidative ring closure suggest this experimental approach to be well applicable to the polyconversion of analogous polymeric Schiff bases to the corresponding polybenzimidazoles.

A recent note from this laboratory ${ }^{1}$ dealt with the copolymerization of aromatic bis(o-diamines) with aromatic dialdehydes and the subsequent cyclodehydrogenation of the resultant polyazomethines, to give polybenzimidazoles. Initial observations in that work led us to conclude that the final aromatization step proceeded in the presence of air, as well as in its absence, in the latter case presumably with elimination of molecular hydrogen. Because of the technological implications of this convenient two-step polycondensation process, it was of prime interest to elaborate more favorable experimental conditions by conducting a study of model re-
actions leading to well-defined nonpolymeric intermediates and products, in which the progress of the aromatization reaction could be monitored by conventional analytical techniques. It was a particular objective to search for experimental conditions that would favor the primary cyclodehydrogenation step and so would lead to highest possible conversion to benzimidazole structures without concurrently promoting degradation of the amine reactants through oxidative and/or thermal change, or outright elimination, of the sensitive amino groups.

In this communication we present the results of a study

Table I. ${ }^{1}$ H NMR Resonances of Bisazomethines 1, 8, 3, and 4^{a}

Compd	H (azomethine)	H (amino)	H [ortho, aldehyde ring(s)]	H (all other aromatics)
1	$8.59 \mathrm{~s}(2 \mathrm{H})$	$5.0 \mathrm{~s}^{\text {b }}(4 \mathrm{H})$	$7.99 \mathrm{~s}(4 \mathrm{H})$	$6.3-8.2 \mathrm{~m}$ (8 H)
	$8.54 \mathrm{~s}^{\text {c }}$	$4.2 \mathrm{~s}^{\text {c }}$	$7.95 \mathrm{~s}^{\text {c }}$	$6.5-7.7 \mathrm{~m}^{\text {c }}$
	$9.1-9.3$ m	d	8.4 s	7.7 s ${ }^{\text {e }}$
8	$8.59 \mathrm{~s}(2 \mathrm{H})$	$5.2 \mathrm{~s}(4 \mathrm{H})$	$7.8-8.0 \mathrm{~m}(4 \mathrm{H})$	$6.7-7.5 \mathrm{~m}(12 \mathrm{H})$
	$8.57 \mathrm{~s}(2 \mathrm{H})$	4.2 sf (4 H)	$7.8-7.95 \mathrm{~m}(4 \mathrm{H})$	$6.85-7.6 \mathrm{~m}$ (12 H)
	$9.1-9.3 \mathrm{~m}$	d		$7.0-8.4 \mathrm{~m}$
3	$8.57 \mathrm{~s}(2 \mathrm{H})$		$7.95 \mathrm{~s}(4 \mathrm{H})$	$\left.7.1-7.4 \mathrm{~m}^{8} 10 \mathrm{H}\right)$
	8.4 s (2 H)		7.9 s (4 H)	$7.0-7.4 \mathrm{~m}^{8}(10 \mathrm{H})$
	$9.4-9.5 \mathrm{~s}$		8.55 s	$7.4-7.9 \mathrm{~m}$
4	$8.58 \mathrm{~s}(2 \mathrm{H})$		$7.7-8.0$ m (4 H)	$7.3-7.6 \mathrm{~m}(10 \mathrm{H})$
	$8.4 \mathrm{~s}(2 \mathrm{H})$		$7.7-7.9 \mathrm{~m}(4 \mathrm{H})$	$7.1-7.5 \mathrm{~m}(10 \mathrm{H})$
	$9.3-9.4 \mathrm{~s}$			$7.5-8.3 \mathrm{~m}$

${ }^{a}$ Chemical shifts δ, in parts per million relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. Solvents: $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$ (first line), CDCl_{3} (second line), $\mathrm{CF}_{3} \mathrm{COOH}$ (third line, not integrated). ${ }^{b}$ Strongly broadened. ${ }^{c}$ Insufficiently soluble for meaningful integration. ${ }^{d}$ Exchange with solvent. ${ }^{e}$ Emerging from $7.3-7.9-\mathrm{ppm}$ range. ${ }^{f}$ At 3.8 ppm in acetonitrile. ${ }^{g}$ Singlet emerging at 7.3 ppm .
which involved as model compounds the two related bisazomethines 1 and 8 and their respective heteroaromatization products.

Results and Discussion

1. Cyclodehydrogenation of N, N^{\prime}-Terephthalidene-

 bis(o-aminoaniline) (1). The bis-Schiff base 1 was crepared by solution condensation of o-phenylenediamine with terephthalaldehyde in the absence of moisture and air (eq 1). In
an effort to minimize involvement in the condensation process of more than one amino group per diamine molecule, the condensation was performed by adding the highly diluted solution of the aldehyde very slowly to the dissolved amine at low temperatures. ${ }^{2}$ Suitable solvents included N, N-dimethylacetamide (DMAC), dimethyl sulfoxide ($\mathrm{Me}_{2} \mathrm{SO}$), N methylpyrrolidone, and ethanol.

Aromatic Schiff bases possessing an amino group in the ortho position of the aniline ring are capable of tautomerizing to the corresponding closed-ring imidazoline structures, although the basicity of the ortho substituent disfavors ring closure ${ }^{3}$ and thus generally renders the "open-chain", transconfigurated azomethine form the more stable one. ${ }^{4}$ For 1, when dissolved in neutral solvents, the azomethine structure a is confirmed by spectroscopic data. The IR spectrum $\left(\mathrm{CHCl}_{3}\right)$ features the moderately strong band of the amino groups' $\mathrm{N}-\mathrm{H}$ bending mode at $1607 \mathrm{~cm}^{-1}$ and the $\mathrm{C}=\mathrm{N}$ stretching band at $1626 \mathrm{~cm}^{-1}$, the latter in an intensity exceeding that of the benzene bands at $1580-1600 \mathrm{~cm}^{-1}$ as similarly observed in the spectrum of the parent compound,
terephthalidenedianiline (3). The NMR spectrum (Table I), taken on $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ solutions, shows the azomethine 2-proton signal at the position ($\delta 8.59 \mathrm{ppm}$) expected for aromatic Schiff bases; both 3 and its isomer $4, N, N^{\prime}$-dibenzylidene- p-phenylenediamine, give resonances at $8.57-8.58 \mathrm{ppm}$ in this solvent, and signals near this position have been reported for related azomethines. ${ }^{5}$ The 4 -proton signal of the amino groups emerges at 5.0 ppm (4.6 ppm in the $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ spectrum of aniline). The 8 -proton resonances of the two outer benzene rings appear as a broad and complex absorption range instead of forming the simple $A_{2} B_{2}$ pattern expected for structure b. Solutions in CDCl_{3} produce very similar shifts, indicating that the reduced solvent polarity has no significant effect, if any, on the ring-chain tautomerism in this system; ${ }^{6}$ because of poor solubility in this solvent, however, the spectrum could not be properly integrated. The electronic spectra in various neutral solvents show a band in the vicinity of 300 nm and a slightly more intense one in the range of 415-445 nm (Table II). On the basis of El-Bayoumi's analysis of the benzylideneaniline spectrum ${ }^{7}$ and a consequent evaluation of the spectrum of 3 , we interpret the $300-\mathrm{nm}$ absorption as resulting from a ($\pi \rightarrow$ π^{*}) transition in the planar conjugated $N=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{N}$ part of the molecule (at about 260 nm in benzylideneaniline), ${ }^{8}$ whereas the high-wavelength band may be assigned to an essentially localized ($\pi \rightarrow \pi^{*}$) excitation in the molecule's noncoplanar ${ }^{9}$ anil chromophore (inflection near 31 Jnm in benzylideneaniline) corresponding to the transition ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~B}_{2 \mathrm{u}}$ in benzene. In the tautomeric imidazoline structure b lacking the conjugated $\mathrm{N}=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{N}$ segment, the $300-\mathrm{nm}$ absorption should be replaced by the only slightly perturbed ${ }^{1} B_{2 u}$ band of the benzene system as shown, for example, by p-xylene [$\lambda_{\text {max }}\left(\mathrm{Me}_{2} \mathrm{SO}\right) 270,276 \mathrm{~nm}$].

In the solid state, when isolated by slow and controlled crystallization, the compound likewise exists as the azomethine form a . Thus, the electronic spectrum (KBr matrix) exhibits two bands in approximately the same regions (yet as multicomponent systems) as in the solution spectra, and the IR spectrum (KBr), in addition to the nonbonded and bonded $\mathrm{N}-\mathrm{H}$ stretching bands at 3475 and $3370 \mathrm{~cm}^{-1}$, shows the $\mathrm{C}=\mathrm{N}$ stretching peak at $1616 \mathrm{~cm}^{-1}$, although now, just as in the

Table II. Electronic Absorption Maxima ($\pi \rightarrow \pi^{*}$ Transitions) of Bisazomethines 1, 8, 3, and 4 in the 270-500-nm Region ${ }^{a}$

Compd	$\lambda_{\text {max }}, \mathrm{nm}$	$\epsilon \times 10^{-4 b}$	$\lambda_{\text {mex }}, \mathrm{nm}$	$\epsilon \times 10^{-4 c}$
$\mathbf{1}$	300	2.4	445	2.3
	298	2.2	444	2.1
8	292	1.8	416^{d}	1.7
	277^{e}	3.5^{e}	424	2.2
	276^{e}	3.5^{e}	420	2.4
3	265	2.4	402^{\prime}	1.1
	301	2.4	351	2.45
	300	2.2	349	2.3
4	298	2.2	348	2.2
	279	1.959	2.25	
	277^{e}	275	359	2.3
	270	357	2.0	

${ }^{a}$ Solvents: $\mathrm{Me}_{2} \mathrm{SO}$ (first line), DMAC (second line), dichloromethane (third line); at ambient temperature. ${ }^{b} \pi \rightarrow \pi^{*}$ transition in $\mathrm{N}=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{N}(1,3)$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}=\mathrm{N}(8,4)$ segments. ${ }^{c} \pi \rightarrow \pi^{*}$ transition in amine ring system. ${ }^{d}$ At 450 nm in KBr matrix; shoulders at 425 and $490 \mathrm{~nm} .{ }^{e}$ Value approximate; maximum partly merging with edge absorption of solvent. f At 415 nm in KBr matrix; shoulder at 480 nm .
solid-state spectrum of $3\left(1617 \mathrm{~cm}^{-1}\right)$, slightly weaker than the adjacent benzene bands. ${ }^{10}$

As a purity check, the $70-\mathrm{eV}$ mass spectra of several crude samples of 1 were examined in the mass number range above the molecular ion peak ($m / e 314$) for the emergence of any peaks due to condensation products involving both amino groups of the phenylenediamine reactant. Indeed, at temperatures of $300^{\circ} \mathrm{C}$ and higher, peaks were found invariably at $m / e 412$ and 516 in intensities of $1-5 \%$ relative to $m / e 310$ [P^{+}(2); see subsequent discussion]. These almost certainly represent the cyclophane 6 (no steric preference implied in the structure shown) and the benzyl derivative 7, both generated from the tris-Schiff base $\mathbf{5 a}$ and its ring tautomer $\mathbf{5 b}$ (eq 2, OPD $=o$-phenylenediamine). ${ }^{11}$ From our failure to observe the mass peak of 5 (at inlet temperatures ranging from 150 to $380^{\circ} \mathrm{C}$) or detect aldehydic carbonyl absorption in the IR spectra of the samples investigated, we conclude that tautomers 5, formed as by-products in the preparation of 1 , under our experimental conditions immediately underwent
further reaction involving the formyl function. Self-condensation resulted in the bisimidazole 6 via a macrocyclic pair of Schiff base tautomers (not shown in the scheme), whereas intermolecular condensation (with additional OPD) afforded tautomeric bis- and tetrakis-Schiff bases (not shown; peak at $m / e 520$ not significant because of insufficient volatility below $300^{\circ} \mathrm{C}$), which in turn, at the high inlet temperatures, cyclodehydrogenated spontaneously in the spectrometer to give the trisimidazole 7. The appearance of the two peaks due to $\mathrm{P}^{+}(6)$ and $\mathrm{P}^{+}(7)$ in the spectra of crude 1 (yet not of rigorously purified compound) shows that the steric accessibility of the primary amino groups in 1 is not sufficiently reduced by the ortho substituent to prevent a minor extent of further condensation even under the strict controls employed in our experiments.
The cyclodehydrogenation of 1 to give the heteroaromatic 2, 1,4-di(benzimidazol-2-yl)benzene (eq 1), was found to proceed under anaerobic conditions in the melt and, more readily, in the gas phase of the mass spectrometer. Thus,

Table III. Oxidative Cyclodehydration Reactions ($1 \rightarrow 2 ; 8 \rightarrow 9$)

| Expt ${ }^{a}$
 no. | Substrate | Substrate concn,
 mol L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{a}$ Crude yields of 2 (expt 1-4) or 9 (expt 5, 6), 89-95\%. All experiments conducted in diffuse daylight; no significant changes in yield when conducted either in the dark or under illumination with medium- or high-pressure mercury lamps (quartz vessels). ${ }^{b}$ DMAC $=N, N$-dimethylacetamide; $\mathrm{Me}_{2} \mathrm{SO}=$ dimethyl sulfoxide. ${ }^{\text {c }}$ Method A, agitation in air by means of excentrally tumbling stirring bar; method B , air introduced at rate of $120 \mathrm{~L} / \mathrm{h}$. ${ }^{d}$ Same results after 0.3 h in presence of $\mathrm{FeCl}_{3}\left(6.4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}{ }^{-1}\right)$. ${ }^{e}$ Reaction partially heterogeneous at this temperature. ${ }^{f}$ Similar results in absolute ethanolic solution. ${ }^{g}$ Similar results in N-methylpyrrolidone or tetramethylurea solutions.

Figure 1. Electronic absorption spectra taken in time intervals on $2.4 \times 10^{-5} \mathrm{M}$ solution of 1 in DMAC during cyclodehydrogenation experiment conducted at $60^{\circ} \mathrm{C}$ with excentral stirring (400 rpm) in air. Curve 1 , start of experiment; curves $2-5$, after respectively 15,60 , 105 , and 150 min .
heating the compound above the melting range for 3 h under argon afforded 2 in $40-50 \%$ yield (in addition to several degradation products), and a sample volatilized from the probe of the mass spectrometer at inlet temperatures of $250^{\circ} \mathrm{C}$ and higher featured the molecular ion peak of 2 , whereas that of 1 predominated at temperatures up to about $200^{\circ} \mathrm{C}\left(I_{310} / I_{314}\right.$ $=4.0$ at $260^{\circ} \mathrm{C}, 0.03$ at $170^{\circ} \mathrm{C}$). Surprisingly, however, all attempts to achieve a reasonable extent of cyclodehydrogenation by heating the compound in the dissolved state ($60-135$ ${ }^{\circ} \mathrm{C}$) under perfectly anaerobic conditions over periods of time as long as 3 days remained unsuccessful, nor was it possible to accomplish this reaction through photocatalysis by means of medium- or high-pressure mercury lamps as used for the conversion of benzylidene-0-aminoaniline to 2 -phenylbenzimidazole. ${ }^{3}$ In the presence of molecular oxygen, on the other hand, the reaction proceeded smoothly in a number of solvents. For example, the vigorous agitation in air of (or, alternatively, the copious bubbling of air into) a $6.4 \times 10^{-2} \mathrm{M}$ solution in DMAC for 3 h at $60^{\circ} \mathrm{C}$ led to more than 90% conversion, and in ethanolic or $\mathrm{Me}_{2} \mathrm{SO}$ solutions the same conversion resulted at even lower temperatures. Solute concentration, mode of agitation, and/or rate of air introduction all proved critical variables in these cyclization reactions and had to be controlled carefully for meaningful comparisons of conversion rates. The oxidative ring closure could also be accomplished with ferric chloride or similar oxidants. ${ }^{12}$ Catalytic quantities of FeCl_{3} in the presence of oxygen, preferably in
ethanol or $\mathrm{Me}_{2} \mathrm{SO}$ media, proved especially efficacious. For example, a low-concentration ($6.3 \times 10^{-4} \mathrm{M}$) run conducted in $\mathrm{Me}_{2} \mathrm{SO}$ at $20 \pm 2^{\circ} \mathrm{C}$ in the presence of $\mathrm{FeCl}_{3}\left(4 \times 10^{-6} \mathrm{M}\right)$, with air introduced at a rate of $10 \mathrm{~L} \mathrm{~h}^{-1}$, proceeded to 50% conversion (UV) within 1.5 h , whereas some 48 h was required for the same result in the absence of the iron salt.

The progress of cyclodehydrogenation under the various conditions was conveniently monitored by UV spectroscopy as previously demonstrated by Grellmann and Tauer ${ }^{3}$ for similar systems. The multiple-scan electronic absorption spectrum for a typical experiment conducted in DMAC solution is reproduced in Figure 1. Curve 5 practically superimposes upon the spectrum of pure bisimidazole 2^{13} recorded at the same molar concentration. Characteristically, as the heteroaromatization proceeds, the 300 - and the $445-\mathrm{nm}$ maxima collapse, to be replaced by the typical multicomponent benzazole band with $\lambda_{\text {max }}$ (DMAC) at $348 \mathrm{~nm}(\epsilon 4.1 \times$ 10^{4}). The latter, because of the substantially extended chromophore in 2 as compared to the simple 2 -phenylbenzimidazole, experiences both hyper- and bathochromic shifts relative to the monoazole, which shows $\lambda_{\max }$ (DMAC) at 306 $\mathrm{nm}\left(\epsilon 2.7 \times 10^{4}\right)$.

Exemplifying cyclodehydrogenation experiments conducted in DMAC or $\mathrm{Me}_{2} \mathrm{SO}$ solutions are summarized in Table III.
2. Cyclodehydrogenation of N, N^{\prime}-Dibenzylidene ($3,3^{\prime}-$ diaminobenzidine) (8). The solution condensation of $3,3^{\prime}$ diaminobenzidine with benzaldehyde under conditions similar to those leading to 1 afforded the bis-Schiff base 8 (eq 3). For

the compound in the dissolved state, the open-chain tautomeric (transoid) structure a ${ }^{14}$ follows from spectroscopic data, and similar arguments hold as in the case of 1 . The IR solution
spectrum $\left(\mathrm{CHCl}_{3}\right)$ shows $\delta_{\mathrm{N}-\mathrm{H}}$ of the amino groups at 1606 cm^{-1}, and $\nu_{\mathrm{C}=\mathrm{N}}$ appears at $1625 \mathrm{~cm}^{-1}\left(1626 \mathrm{~cm}^{-1}\right.$ in 4$)$. In the NMR spectrum ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$), the 2 -proton peak of the azomethine links is found near 8.6 ppm , the 4 -proton resonance of the amino groups appears at 5.2 ppm , and the ortho protons of the two terminal rings, residing in the $\mathrm{C}=\mathrm{N}$ systems' deshielding zones, give a 4 -proton signal at the same position (7.9 ppm) as shown by 3 and 4, rather than at an upfield position near 7-7.5 ppm expected for a phenyl group in the 2 position of an imidazoline ring. Again, as in 1, analogous shifts are observed in the CDCl_{3} and $\mathrm{CF}_{3} \mathrm{COOH}$ spectra (Table I).
In the electronic spectrum ($\mathrm{Me}_{2} \mathrm{SO}$) we find the ($\pi \rightarrow \pi^{*}$) band of the two benzylideneimino segments (each one of these twisted out of the plane of the biphenyl segment) at about 275 nm , and the strong ($\pi \rightarrow \pi^{*}$) absorption of the two diamine rings emerges with a maximum at about 420 nm . More allowed because of increased perturbation, the last-named band, just as in 1, possesses a molar extinction coefficient more than five times as large as twice the value of the coefficient of the corresponding perturbed ${ }^{1} \mathrm{~B}_{2 \mathrm{u}}$ band in aniline. ${ }^{15}$
For 8 in the solid state, the IR spectrum (KBr) fails to present conclusive evidence in support of the open-chain structure \mathbf{a} as the sole constituent. While all samples investigated were found to show the $\mathrm{C}=\mathrm{N}$ stretching absorption near $1619 \mathrm{~cm}^{-1}$, the intensity of this band varied appreciably depending on the mode of crystallization, and so did the intensities of the NH stretching absorptions at $3300-3460 \mathrm{~cm}^{-1}$. The electronic spectra (KBr), however, invariably resembled those obtained on solutions. We conclude that crystalline 8 predominantly exists as the azomethine isomer mixture a, with b possibly admixed to a minor and variable extent. ${ }^{16}$

A mass spectrometric check conducted on crude samples of 8 in the high mass number region revealed the molecular ion peak of the tris-Schiff base 10 a and its tautomer 10b, as well as that of the N-benzyl-substituted bibenzimidazolyl 11 generated from 10 through thermal dehydrogenation in the mass spectrometer (eq 4). While, at inlet temperatures of

10a

10b

11
$200-250^{\circ} \mathrm{C}$, the peak due to $10\left[\mathrm{~m} / \mathrm{e} 478,3-5 \%\right.$ of $\left.\mathrm{P}^{+}(8)\right]$ predominates over that of $11\left[m / e 476, \mathrm{ca} .1 \%\right.$ of $\left.\mathrm{P}^{+}(8)\right]$, the latter peak gains intensity and becomes prevalent as the temperature exceeds $300^{\circ} \mathrm{C}$. The appearance of the two peaks in the mass spectra of crude (but not of pure) 8 indicates that the compound, just like 1 , offers sufficient accessibility of the two primary amino groups to allow some trisubstitution despite the rigorous experimental control exercised in our work. The implications of this finding for analogous polymerization studies are obvious.

Figure 2. Electronic absorption spectra taken in time intervals on $2.0 \times 10^{-5} \mathrm{M}$ solution of 8 in $\mathrm{Me}_{2} \mathrm{SO}$ during cyclodehydrogenation experiment conducted at ambient temperature with excentral stirring (400 rpm) in air. Curve 1 , start of experiment; curves $2-6$, after respectively $30,45,60,90$, and 120 min .

The formation of bisimidazole 9 by cyclodehydrogenation of 8 (eq 3) under anaerobic conditions was brought about both in the melt and in the gas phase of the mass spectrometer at temperatures above $300^{\circ} \mathrm{C}$. On the other hand, just as in the case of 1 , only minimal anaerobic dehydrogenation was observable in the dissolved state within reasonable periods of time, whereas reaction with O_{2} proceeded smoothly in ethanolic solution as well as in aprotic solvents. Representative cyclodehydrogenation experiments are summarized in Table III. Progress of the reaction, as before, was monitored by UV spectroscopy (Figure 2); the absorption pattern progressively approached that of authentic ${ }^{13,17} 2,2^{\prime}$-diphenyl-5, 5^{\prime}-bibenzimidazolyl (9), ${ }^{18}$ which shows a maximum (DMAC) at 338 nm $\left(\epsilon 4.2 \times 10^{4}\right)$. In none of the experiments, conducted either with 1 or with 8 , were we able to isolate and/or identify any by-products that could have resulted from oxidative removal (or involvement in other oxidative side reactions) of the reactants' primary amino groups.
The results of this investigation demonstrate that polynuclear aromatic azomethines derived from 0 -aminoanilines undergo smooth and practically quantitative oxidative cyclodehydrogenation in solution at low temperatures, the experimental conditions being mild enough to preclude thermooxidative degradation or elimination of the reactants' primary amino groups in the course of heteroaromatization. In addition, the aprotic media used in this work belong to the class of neutral solvents most frequently employed in heterocyclic polymer chemistry. The study thus provides conditions suitable for polycyclodehydrogenation of polymeric azomethines comprising a combination of segmental structures of both 1 and 8 , although the observed side reactions involving the tris-Schiff bases and other products require attention. Further work on such macromolecular aspects of the cyclodehydrogenation reaction will be reported elsewhere.

Experimental Section ${ }^{19}$

Solvents and Reagents. All solvents, predried with molecular sieves, type 4A (5A for ethanol), were distilled from suitable dehydrating agents (reduced pressure for DMAC and N-methylpyrrolidone). $\mathrm{Me}_{2} \mathrm{SO}$, dried with molecular sieves, was used without redistillation. For use in the preparation of Schiff bases or anaerobic cyclodehydrogenation experiments, solvents were thoroughly degassed and saturated with deoxygenated argon. Benzaldehyde was freshly distilled prior to use. o-Phenylenediamine, mp $101{ }^{\circ} \mathrm{C}$, and tere-
phthaldehyde, $\mathrm{mp} 115-116^{\circ} \mathrm{C}$, were recrystallized from 96% ethanol. $3,3^{\prime}$-Diaminobenzidine (Burdick \& Jackson) was purified by repeated recrystallization under Ar from degassed water (pinch of sodium dithionite added) and, ultimately, methanol, mp 176-178 ${ }^{\circ} \mathrm{C} . N, N^{\prime}-$ Terephthalidenedianiline (3) and N, N^{\prime}-dibenzylidene-p-phenylenediamine (4), both obtained in ca. 90% yield by condensation of the respective aldehydic and amine reactants in boiling absolute ethanol (1 h) under N_{2} and solvent removal under reduced pressure, were recrystallized twice from degassed absolute ethanol, mp 157-159 ${ }^{\circ} \mathrm{C}$ (lit..$^{20} 166^{\circ} \mathrm{C}$) and $137-138{ }^{\circ} \mathrm{C}$ (lit. ${ }^{21} 138^{\circ} \mathrm{C}$), respectively. 2-Phenylbenzimidazole was prepared by low-temperature condensation of benzaldehyde $(0.1 \mathrm{M})$ with o-phenylenediamine $(0.1 \mathrm{M})(5 \mathrm{~h}$ at -10 ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$ at $20^{\circ} \mathrm{C}$) in degassed absolute ethanol and cyclodehydrogenation of the intermediary N-benzylidene- o-aminoaniline by stirring the solution for 8 h at $60^{\circ} \mathrm{C}$ in the presence of air. Solvent removal and recrystallization from ethanol/benzene furnished the imidazole in 80% yield, $\mathrm{mp} 291-293^{\circ} \mathrm{C}$ (lit. ${ }^{22} 291,298-300^{\circ} \mathrm{C}$)
$\boldsymbol{N}, \boldsymbol{N}^{\prime}$-Terephthalidenebis(o-aminoaniline) (1). To a rapidly stirred and argon-purged solution of o-phenylenediamine $(1.08 \mathrm{~g}, 10$ mmol) in 10 mL of DMAC was added dropwise, over a per od of 3 H , the solution of terephthalaldehyde ($0.67 \mathrm{~g}, 5 \mathrm{mmol}$) in 25 mL of DMAC at -15 to $-17^{\circ} \mathrm{C}$ under Ar. The solution was stirred under Ar in the dark for 12 h at $-15^{\circ} \mathrm{C}$, followed by 4 h at $0^{\circ} \mathrm{C}$ and 1 h at 22 ${ }^{\circ} \mathrm{C}$. The Schiff base partially crystallized from the solution during this period. The crystals collected after cooling were washed with benzene $(3 \times 10 \mathrm{~mL})$. A second fraction of 1 crystallized after partial solvent removal in the absence of air (rotating evaporator, $25^{\circ} \mathrm{C}$), and a small third portion was precipitated on further volume reduction by the addition of excess (80 mL) ice water (rapid washing with ethanol and drying under reduced pressure at $20^{\circ} \mathrm{C}$ required to prevent hydrolysis), total crude yield $1.46 \mathrm{~g}(93 \%)$. Recrystallization from DMAC at 40 to $-8^{\circ} \mathrm{C}$ in the absence of air yielded orange-yellow, TLC-pure ($R_{f} 0.7$) crystals, $\mathrm{mp} 210-212^{\circ} \mathrm{C}$ (phase change, no clear melting) (lit. ${ }^{2}$ $212-214^{\circ} \mathrm{C}$), ${ }^{21} \mathrm{~mol}$ wt 314 (MS).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4}$: C, 76.41; H, 5.77 ; N, 17.82. Found: C, 76.11 ; H, 6.10; N, 17.42.

Experiments conducted as described, yet in other aprotic solvents or ethanol, gave similar yields of 1 . Under less rigorous conditions of oxygen preclusion (e.g., employing standard-grade N_{2} for blanketing), use of ethanol solvent resulted in slightly enhanced intensity of the peak at $m / e 310$ in the mass spectra of all crude fractions.
In several experiments conducted in DMAC, the mosher liquor remaining after removal of the second fraction of 1 was evaporated to dryness (rotating evaporator, $25^{\circ} \mathrm{C}$, absence of air). The residual crystalline solids gave mass spectra substantially identical with those of the spontaneously crystallizing fractions except for a slightly increased ratio of I_{310} / I_{314}.
$\boldsymbol{N}, \boldsymbol{N}^{\prime}$-Dibenzylidene(3,3'-diaminobenzidine) (8). Under the conditions described for the preparation of 1 , a solution of benzaldehyde ($1.06 \mathrm{~g}, 10 \mathrm{mmol}$) in 25 mL of DMAC was added to $3,3^{\prime}$-diaminobenzidine ($1.07 \mathrm{~g}, 5 \mathrm{mmol}$) dissolved in 10 mL of MDAC, and the mixture was treated as before. Cooling the red solution to $-15^{\circ} \mathrm{C}$ produced a minor crystalline fraction of $8(0.40 \mathrm{~g})$. The main portion of the base, 1.43 g , precipitated upon volume reduction to 15 mL (rotating evaporator, $25^{\circ} \mathrm{C}$) and addition of ice water (100 mL), bringing the total crude yield to 94%. Rapid filtration, washing (ethanol, hexane), and drying (reduced pressure, $20^{\circ} \mathrm{C}$) of the precipitated portion was required to avoid hydrolysis. Recrystallization from DMAC as described for 1 afforded yellow, TLC-pure ($R, 0.7$) crystals, mp 164-166 ${ }^{\circ} \mathrm{C}$ (phase change, no clear melting), mol wt 390 (MS).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4}: \mathrm{C}, 79.97$; $\mathrm{H}, 5.68$; $\mathrm{N}, 14.35$. Found: C, 79.79; H, 5.70; N, 14.31.

Similar yields of 8 resulted from use of other aprotic reaction media or ethanol in place of DMAC. A slight increase in abundance of the peaks at $m / e 386,476$, and 478 was observed in experiments conducted in ethanol, and the final fractions of product isolated in such experiments tended to be contained with minute quantities of several unknown compounds (TLC).

1,4-Di(benzimidazol-2-yl)benzene (2) from 1. In a typical oxidative cyclodehydrogenation experiment (Table III, expt 1), the solution of $1(0.200 \mathrm{~g}, 0.64 \mathrm{mmol})$ in 10 mL of DMAC was vigorously agitated in air for 3 h at $60^{\circ} \mathrm{C}$ by means of an excentrally tumbling (400 rpm) magnetic stirring bar (method A). Predried glassware was used, and the exit neck was fitted with a drying tube. The solution was allowed to stand for 15 h at $-15^{\circ} \mathrm{C}$, whereupon 0.07 g of 2 crystallized. Another 0.06 g of crystalline product separated after volume reduction to 5 mL and cooling to $-5^{\circ} \mathrm{C}$. A third portion of 2 was precipitated from the filtrate by the addition of water $(50 \mathrm{~mL})$, bringing the total crude yield to 0.185 g (93\%). The cream-colored compound was recrystallized from DMAC, to give almost colorless fine crystals, TLC
pure ($R, 0.2$), infusible up to $300{ }^{\circ} \mathrm{C}$ (lit. ${ }^{13} 472{ }^{\circ} \mathrm{C}$), mol wt 310 (MS).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4}$: C, 77.40; H, 4.55; N, 18.95. Found: C, 77.35; H, 4.76; N, 17.98.

In a similar manner, reactions were conducted in other aprotic solvents, as well as in absolute ethanol (Table III). In ferric chloride catalyzed experiments, $\mathrm{FeCl}_{3}(1.0 \mathrm{~mol} \%$ of 1$)$ was added from a 0.05 M stock solution in the same solvent in which the reactions were performed. In a number of experiments, oxidation was accomplished by introducing a rapid stream of predried air ($120 \mathrm{~L} / \mathrm{h}$) into the so lutions of 1 (method B) under otherwise unchanged conditions. In several runs conducted in DMAC or ethanol, the final mother liquors were evaporated to dryness under reduced pressure. The residues, $5-10 \mathrm{mg}$, constituted 2 contaminated with 4 -(benzimidazol-2-yl)benzaldehyde ($R_{f} 0.4, m / e 222$); ${ }^{23}$ no TLC spots or mass peaks were found that would indicate the presence of compounds resulting either from elimination of NH_{2} or from oxidative coupling (formation of $-\mathrm{N}=\mathrm{N}-$).

2,2'-Diphenyl-5,5'-bibenzimidazolyl (9) from 8. The following procedure, describing expt 5 , Table III, exemplifies the oxidative cyclodehydrogenation of 8 . The solution of $8(0.200 \mathrm{~g}, 0.51 \mathrm{mmol})$ in 10 mL of DMAC was agitated in air for 3 h at $60^{\circ} \mathrm{C}$ as described for expt 1 . The clear solution was reduced in volume to 5 mL , and water $(80 \mathrm{~mL})$ was added. The precipitated, grayish-white product, washed with water and dried $(0.175 \mathrm{~g}, 89 \%)$, was recrystallized from ethanol/water. The TLC-pure $\left(R_{f} 0.3\right) 9$ was infusible up to $300^{\circ} \mathrm{C}$ (lit. typically ${ }^{13} 337{ }^{\circ} \mathrm{C}$), mol wt 386 (MS).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4}$: C, 80.81; H, 4.69; N, 14.50. Found: C, 80.40; H, 4.91; N., 14.25.

Other experiments were conducted as summarized in Table III. As before, the use of method B involved passing dry air through the solution at a rate of $120 \mathrm{~L} / \mathrm{h}$, and in the ferric chloride catalyzed reactions the catalyst was added from a 0.05 M stock solution.

Acknowledgment. This work was generously supported by the C. S. I. R., the South African Chemical Foundation, and the Shell Chemical South Africa (Pty) Ltd. Thanks are due also to Dr. R. G. Copperthwaite, National Chemical Research Laboratory, for his kind cooperation in recording the photoelectron spectra, and to Mr. D. Bylinsky for scanning the IR spectra.

Registry No.-1a, 61990-56-5; 2, 1047-63-8; 3, 61990-57-6; 4, 61990-58-7; 8a, 62045-63-0; 9, 15179-41-6; o-phenylenediamine, 95-54-5; terephthaldehyde, 623-27-8; benzaldehyde. 100-52-7; 3, 3^{\prime} diaminobenzidine, 91-95-2.

References and Notes

(1) E. W. Neuse, Chem. Ind. (London), 315 (1975).
(2) (a) The compound was first prepared ${ }^{2 b}$ from the two components in boiling ethanol (95% yield). In our hands, this procedure afforded the base appreciably contaminated with cyclodehydrogenated material in addition to trisubstituted products 5 and successor species. See text. (b) F. F. Stephens and J. D. Bower, J. Chem. Soc., 1722 (1950).
(3) K. H. Grellmann and E. Tauer, J. Am. Chem. Soc., 95, 3104 (1973); Tetrahedron Lett., 1909 (1967).
(4) (a) Contrasting with the o-aminoanils, the corresponding anils possessing the more acidic mercapto group as an ortho substituent generally exist as the ring-tautomeric thiazoline isomers. ${ }^{3,4 \mathrm{4b-e}}$ (b) R. G. Charles and H. Freiser J. Org. Chem., 18, 422 (1953). (c) P. E. Miller, G. L. Oliver, J. R. Dann, and J. W. Gates, Jr., ibid., 22, 664 (1957). (d) L. F. Lindoy and S. E. Livingstone Inorg. Chim. Acta, 1, 365 (1967). (e) F. J. Goetz. J. Heterocycl. Chem., 5 509 (1968).
(5) (a) A. F. McDonagh and H. E. Smith, Chem. Commun., 374 (1966); (b) A van Putten and J. W. Pavlik, Tetrahedron, 27, 3007 (1971).
(6) (a) In $\mathrm{CF}_{3} \mathrm{COOH}$ solution, the azomethine proton signals of both 1 and 8 , as expected, ${ }^{60}$ emerge at a position shifted downfield by some 0.7 ppm (Table I), yet in intensities $20-30 \%$ lower than calculated for structures a. Although much of this signal attenuation probably results from hydrolysis (peak intensity slowly decreasing with time), the possibility of partial tautomerization to structures \mathbf{b}, prompted by the amino nitrogen atom's decreased basicity upon protonation, cannot be ignored. Yet the spectra of both compounds lack conclusive evidence for the presence of b, as the signals of the rapidly exchanging protons of the NH_{2} (forms a) and NH (forms b) groups both are expected to vanish in this acidic medium, and the tertiary CH protons in b, which should resonate at $7-7.5 \mathrm{ppm}$, may well give signals submerged in the aromatic resonances in this region. (b) M. Kurihara, H . Saito, K. Nukada, and N. Yoda, J. Polym. Sci. Part A-1 7, 2897 (1969).
(7) M. A. El-Bayoumi, M. El-Aasser, and F. Abdel-Halim, i'. Am. Chem. Soc. 93, 586 (1971); M. El-Aasser, F. Abdel-Halim, and M. A. El-Bayoumi, ibid., 93, 590 (1971)
(8) El-Bayoumi et al. ${ }^{7}$ assigned the $260-\mathrm{nm}$ band in benzylideneaniline to a transition to a charge-transfer state in which the $\mathrm{C}=\mathrm{N}$ system acts as the electron acceptor and the benzal ring as the donor. LCAO-MO calculations $^{9 \mathrm{~d}}$ indicate, however, that negative charge is accumulated on the benzal ring in the excited state; moreover, the banc undergoes a pro-
nounced red shift on para substitution of that ring by the withdrawing NO_{2} group. ${ }^{9 \mathrm{~b}}$ Both findings, coupled with the band's comparative intensitivity to solvent effects observed both in benzylideneaniline ${ }^{7}$ and in 1 (Table II), render a charge transfer of the type proposed ${ }^{7}$ rather unlikely as the cause of this absorption. We prefer to assign the band to a $\pi \rightarrow \pi^{*}$ transition originating from the highest occupied π level of the $\mathrm{N}=\mathrm{CCC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{N}$ unit. Such assignment accords with the band's bathochromic (and hyperchromic) shift on achieving coplanarity of the molecule by protonation or ring closure to the imidazole system. ${ }^{9 c}$
(9) (a) With respect to noncoplanarity of the outer ('aniline") rings with the $N=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{N}$ segment, the same arguments (conjugation of the aniline rings' π systems with the lone-pair electrons on $N)^{7.9 b}$ hold as in the case of N-benzylideneaniline, in which rotation of the N-phenyl ring out of the plane of the benzalimino chromophore has been established. ${ }^{5 b, 7,9 c-\theta}$ It is only on heteroaromatization (process $1 \rightarrow 2$) that an approximate coplanarity of the molecule's benzene rings can result. (b) V. A. Ismailski and E. A. Smirnov, Zh. Obshch. Khim., 26, 3389 (1956). (c) P. Brocklehurst, Tetrahedron, 18, 299 (1962). (d) W. F. Smith, ibid., 19, 445 (1963). (e) H. B. Bürgi and J. D. Dunitz, Chem. Commun., 472 (1969); Helv. Chim. Acta, 54, 1255 (1971).
(10) In the KBr spectra of several crude or too rapidly recrystallized products we found the $\mathrm{C}=\mathrm{N}$ band in reduced intensity; at the same time, two new nonbonded and bonded N-H stretching peaks appeared at 3440 and 3350 cm^{-1} in addition to the aforementioned two bands of these origins. This suggests that product separating from solution under nonequilibrium conditions may indeed contain some imidazoline tautomers.
(11) The facile formation of N-benzyl substituted benzimidazoles (aldehydines) from bis-Schiff bases of aromatic o-diamines is on record: J. B. Wright, Chem. Rev., 48, 397 (19651).
(12) (a) The oxidative hetervaromatization of o-aminoanils to benzimidazoles has been achieved in the presence of cupric salts, ${ }^{120}$ lead tetraacetate, ${ }^{12 \mathrm{c}}$ and active $\mathrm{MnO}_{2},{ }^{12 \mathrm{~d}}$ and some mechanistic implications have been discussed. ${ }^{128}$ These methods, however, requiring large quantities of oxidants and inefficient separation techniques for the imidazole products, give inferior yields and are not adaptable to polymerization chemistry. (b) R. Weidenhagen, Chem. Ber., 69, 2263 (1936): R. Weidenhagen and U. Weedon, ibid., 71, 2347 (1938); R. Weidenhagen and G. Train, ibid., 75, 1936 (1942). (c) F. F. Stephens and J. D. Bower, J. Chem. Soc., 2971 (1949). (d) I. Bhatnagar and M. V. George, Tetrahedron, 24, 1293 (1968). (e) W. G. Nigh in "Oxidation in Organic Chemistry", W. S. Trahanovsky, Ed., Academic Press, New York, N.Y., 1973, p 59.
(13) R. A. Gaudiana and R. T. Conley, Polym. Lett., 7, 793 (1969)
(14) (a) The product most likely is a mixture of two positional isomers. Electron density determinations by MO calculations ${ }^{146}$ show the two m-amino groups in the tetramine starting compound to be somewhat more basic than the two p-amino groups. The calculated difference in electronic charge (1.862
vs. 1.856) is, however, not significant enough to justity a prediction of predominance of the 3, 3^{\prime}-di(benzylideneimino) compound over the 4,4' isomer. (b) D. A. Bochvar, I. V. Stankevich, V. V. Korstak, and A. L. Rusanov, Dokl. Akad. Nauk SSSR, 184, 95 (1969).
(15) A. L. Sklar, J. Chem. Phys., 7, 984 (1939).
(16) An attempt to differentiate between solid a and b by $N(1 s) x$-ray photoelectron spectroscopy failed, only a single, albeit broad (width at half-height $3.0-3.5 \mathrm{eV}$) band ($E_{\mathrm{b}}=399.5 \pm 0.5 \mathrm{eV}$) being shown by both 1 and 8 . The binding energies of NH_{2} and NH , on the one hand, and of $\mathrm{CH}=\mathrm{N}$, on the other, in these compounds obviously are within the experimental error limits of the method. Accordingly, E_{b} values of $398.9,399.5$, and 399.2 eV were found respectively for 3, 4, and o-phenylenediamine. 2-Phenylbenzimidazole gave a peak corresponding to $E_{\mathrm{b}}=400.0 \mathrm{eV}$.
(17) (a) H. Vogel and C. S. Marvel, J. Polym. Sci., 50,511 (1961); (b) Y. I wakura, K. Uno, and Y. Imai, J. Polym. Sci., Part A-2, 2605 (1964); (c) D. N. Gray, G. P. Shulman, and R. T. Conley, J. Macromol. Sci., Chem., 1, 395 (1967).
(18) (a) Although conventionally ${ }^{13.17}$ represented by structure 9 comprising a 5.5^{\prime} linkage between the two benzimidazole units, the compound in the solid state almost certainly is a mxture of tautomers in which the benzazole groups are cornected via 5,5', 6, ${ }^{\prime}$, and 5, 6^{\prime} bonds. In (neutral) solutions, however, the NH protons of benzimidazoles are known ${ }^{185}$ to undergo rapid 1,3 -exchange, rendering such distinctions meaningless. (b) H. A. Staab and A. Mannschreck, Tetrahedron Lett., 913 (1962).
(19) Melting points, uncorrected, were taken in sealed capillaries. IR spectra were taken on a Perkin-Elmer 521 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained with a Hitachi Perkin-Elmer R20 NMR spectrometer operating at 60 MHz ; chemical shifts, δ, are in parts per million relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. Electronic absorption spectra were recorded on a Unicam SP 1800 spectrophotometer. Mass spectra (MS) were scanned with a Varian-MAT CH5 mass spectrometer at 70 eV ionizing voltage. $\mathrm{N}(1 \mathrm{~s}) \mathrm{x}$-ray photoelectron spectra (Mg K α radiation) were obtained at $-100^{\circ} \mathrm{C}$ with the aid of an AEI Scier tific ES200 electron spectrometer; peaks were calibrated by reference against internal $\mathrm{NH}_{4} \mathrm{NO}_{3}\left[E_{\mathrm{b}\left(\mathrm{NH}_{4}\right)}=402.3 \mathrm{eV}\right]$: precision, ± 0.2 eV . Thin layer chromatography (TLC) was performed on precoated SiO_{2} plates, Merck silica gel $60 \mathrm{~F}_{254}$, in 4:5 acetone/hexane. Microanalyses were by Robertson Laboratory, Florham Park, N.J.
(20) G. F. D'Alelio, J. V. Crivelio, R. K. Schoenig, and T. F. Huemmer, J. Macromol. Sci., Chem, 1, 1251 (1967).
(21) G. Smets and A. Delvaux, Bull. Soc. Chim. Belg., 56, 106 (1947).
(22) (a) H. Franzen, Chem. Ber., 40, 903 (1907); (b) W. Wrasidlo and H. H. Levine, J. Polym. Sci., Part A-2, 4795 (19う4).
(23) A sample isolated from large-scale runs by column chromatography (0.5%) had $\mathrm{mp} 255-260^{\circ} \mathrm{C} \mathrm{dec} ; \nu_{\mathrm{CO}}(\mathrm{KBr}) 1703 \mathrm{~cm}^{-1}$; $\lambda_{\max }$ (DMAC) $341 \mathrm{~nm} ; \mathrm{m} / \mathrm{e}$ $222\left(\mathrm{P}^{+}\right)$, $193\left(\mathrm{P}^{+}-\mathrm{H}-\mathrm{CO}\right)$. The aldehyde probably resulted from partial hydrolysis of 1 and subsequent cy lodehydrogenation.

Palladium-Catalyzed Reductions of Halo- and Nitroaromatic Compounds with Triethylammonium Formate

Nicholas A. Cortese and Richard F. Heck*
Department of Chemistry, University of Delaware, Newark., Delaware 19711

Received April 8, 1977

Aromatic halides and nitro compounds are readily reduced at $50-100^{\circ} \mathrm{C}$ to hydrocarbons and amines, respectively, with triethylammonium formate in the presence of either palladium on charcoal or a soluble triarylphosphinepalladium acetate catalyst. Aryl halides are reduced to deuterio derivatives with dideuterioformic acid.

The reducing ability of alkylammonium formates in the palladium-catalyzed reductive dimerization of conjugated dienes has been noted by Roffia et al. ${ }^{1}$ In subsequent studies we also became interested in this reducing system ${ }^{2}$ and now report applications of it to the reduction of aromatic halides and nitro compounds.

Results and Discussion

Aryl Halides. We initially employed a soluble catalyst, a combination of palladium acetate with a triarylphosphine, for the reductions with triethylammonium formate. We later found that palladium on charcoal was often as useful and, of course, had the advantage of being easily removable from the reaction mixture. The results of these experiments with organic halides are shown in Table I.

It appears that aromatic halide groups may be removed with extreme ease by the palladium-catalyzed reduction with
triethylammonium formate at $50-100^{\circ} \mathrm{C}$. The other products of the reaction are the triethylamine hydrohalide and carbon dioxide. Other reducible groups such as nitrile and nitro are not reduced as readily as the halo substituent. Double bonds are apparently reduced at rates comparable to those with the chloro group, and mixtures resulted from the reduction of

Table I. Reduction of Aromatic Halides of Triethylammonium Formate ${ }^{a}$

${ }^{a}$ Reactions were carried out with 20 mmol of organic halide, 22 mmol of $\mathrm{HCO}_{2} \mathrm{H}$, and $28.5 \mathrm{mmol}^{\text {of }} \mathrm{Et}_{3} \mathrm{~N}$, except as indicated. ${ }^{b}$ GLC yield except where indicated. ${ }^{c}$ Reaction was carried out with 50 mmol of organic halide, 220 mmol of $\mathrm{HCO}_{2} \mathrm{H}$, and $285 \mathrm{mmol}^{2} \mathrm{Et}_{3} \mathrm{~N}$. ${ }^{d}$ Reactions were carried out with 10 mmol of organic halide, 22 mmol of $\mathrm{HCO}_{2} \mathrm{H}$, and $28.5 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{3} \mathrm{~N}$. ${ }^{e}$ Isolated yield. f $\mathrm{P}(\mathrm{o}-\mathrm{tol})_{3}$ $=$ tri-o-tolylphosphine.
methyl 4-chlorocinnamate. Methyl 4-bromocinnamate could be reduced selectively in 93% yield, however. When compared under identical conditions, 4 -chlorobenzonitrile reduced considerably more rapidly than 4 -bromobenzonitrile. Reduction with the soluble catalysts was somewhat dependent upon the phosphine groups present in the catalyst. At $50^{\circ} \mathrm{C}$, m-bromonitrobenzene in 1.5 h gave an 81% yield of nitrobenzene with only 2% aniline formed, employing $1 \mathrm{~mol} \%$ of 2:1 tris(o-tolylphosphine)-palladium acetate as catalyst. Less
selectivity was seen with either triphenylphosphine or tris-(2,5-diisopropylphenylphosphine) catalysts or with 5% palladium on charcoal alone. o-Bromonitrobenzene reduced in 78% yield to nitrobenzene even with the 5% palladium on charcoal catalyst. The use of 5% platinum on charcoal led to the exclusive formation of o-bromoaniline in 94% yield.

Methyl 4-chlorobenzoate was reduced with dideuterioformic acid to give a 90% yield of pure methyl 4-deuteriobenzoate. A related deuteration has been reported by $\mathrm{B} c \sin ,{ }^{3}$ but stoi-

Table II. Reductions of Aromatic Nitro Compounds with Triethylammonium Formate ${ }^{a}$

Registry no.	Substituted Benzene (50 mmol)	Catalyst, $0.2 \mathrm{~mol} \%$	Mol of $\mathrm{Et}_{3} \mathrm{~N}$	Mol of $\mathrm{HCO}_{2} \mathrm{H}$	Time, h	Product (substituted benzene), \% yield
98-95-3	NO_{2}	$5 \% \mathrm{Pd} / \mathrm{C}^{\text {b }}$	0.214	0.165	2.3	$\mathrm{NH}_{2}, 100$
619-50-1	$1-\mathrm{CO}_{2} \mathrm{CH}_{3}, 4-\mathrm{NO}_{2}$	$5 \% \mathrm{Pd} / \mathrm{C}^{\text {b }}$	0.214	0.165	2	$1-\mathrm{CO}_{2} \mathrm{CH}_{3}, 4 \mathrm{NH}_{2}, 97 \mathrm{c}$
91-23-6	$1-\mathrm{OCH}_{3}, 2-\mathrm{NO}_{2}$	5\% Pd/C	0.214	0.165	4	$1-\mathrm{OCH}_{3}, 2-\mathrm{NH}_{2}, 94^{\text {c }}$
100-17-4	$1 . \mathrm{OCH}_{3}, 4-\mathrm{NO}_{2}$	5\% Pd/C	0.214	0.165	4	$1-\mathrm{OCH}_{3}, 4-\mathrm{NH}_{2}, 89$
104-04-1	$1-\mathrm{NHCOCH}_{3}, 4-\mathrm{NO}_{2}$	$5 \% \mathrm{Pd} / \mathrm{C}$	0.214	0.165	4.5	$1-\mathrm{NHCOCH}_{3}, 4-\mathrm{NH}_{2}, 85^{\text {c }}$
	$1-\mathrm{NO}_{2}, 2-\mathrm{Br}^{d}$	$5 \% \mathrm{Pt} / \mathrm{C}$	0.039	0.033	1.3	$1-\mathrm{NH}_{2}, 2-\mathrm{Br}, 94 \mathrm{c}$
612-41-9	$1-\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}, 2-\mathrm{NO}_{2}$	5\% Pd/C	0.285	0.220	5.3	
555-68-0	$1-\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}, 3-\mathrm{NO}_{2}$	5\% Pd/C	0.194	0.150	3.5	$\left.\begin{array}{l} 1-\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}, 3-\mathrm{NH}_{2} \\ 1-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{CH}_{3} \end{array}\right\} \sim 75$
3740-52-1	$1-\mathrm{CO}_{2} \mathrm{H}, 2-\mathrm{NO}_{2}$	5\% Pd/C	0.214	0.165	23	
577-59-3	$1-\mathrm{COCH}_{3}, 2-\mathrm{NO}_{2}$	5\% Pd/C	0.357	0.275	25	$1-\mathrm{CH}_{2} \mathrm{CH}_{3}, 2-\mathrm{NH}_{2}, 50$

${ }^{a}$ Carried out at reflux temperature. ${ }^{b} 0.1 \mathrm{~mol} \%$ catalyst used. ${ }^{c}$ Yield of pure isolated product. ${ }^{d} 10 \mathrm{mmol}$ used. ${ }^{e}$ After sublimation.
chiometric quantities of palladium chloride and sodium borodeuteride in methanol- d_{1} were required.

4 -Bromo- and 2,4 -dibromoaniline reduced readily also. Attempts to selectively reduce the dibromoaniline were not promising. There was a slight preference for reduction of the 4 -bromo group rather than the 2 -, but the difference was not large enough to be preparatively useful.

2-Bromobenzaldehyde does not reduce selectively. A mixture of benzaldehyde (43%), benzyl alcohol (10%), and toluene (10%) was obtained with 1 equiv of reducing agent. Both β bromostyrene and cinnamyl chloride gave mixtures of products under the usual conditions. The bromostyrene gave styrene and ethylbenzene, while the cinnamyl chloride produced three isomeric phenylpropenes and cinnamyl formate. The reaction has been applied to allyl derivatives previously in the absence of amine. ${ }^{4}$ Cyclohexyl chloride did not reduce in 26 h at $100^{\circ} \mathrm{C}$ with the palladium on charcoal catalyst. Aryl iodides also were reduced by the reagent. 4-Nitroiodobenzene reacted very slowly, but 4 -bromoiodobenzene gave bromobenzene in 58% yield and methyl 4-iodobenzoate gave methyl benzoate.
No reduction of nitrobenzene or bromobenzene takes place with formic acid and the catalyst without the addition of excess tertiary amine.
The reduced products were easily isolated from these reaction mixtures by diluting with ether to precipitate the triethylamine hydrohalide, filtering, and distilling the filtrate.
The results suggest a mechanism of reaction involving oxidative addition of the aryl halide to a palladium(0)-phosphine catalyst followed by displacement of halide on the metal by formate ion. Decomposition of the formate group by a deinsertion of carbon dioxide and reductive elimination of the hydrocarbon would explain the reaction.
$\left(\mathrm{Pd}\left(\mathrm{PR}_{3}\right)_{2}(\mathrm{OAc})_{2}+\mathrm{HCO}_{2} \mathrm{H} \longrightarrow \mathrm{Pd}\left(\mathrm{PR}_{3}\right)_{2}+\mathrm{CO}_{2}+2 \mathrm{HOAc}\right)$

The fact that chlorobenzene does not react with tetrakis(triphenylphosphinepalladium(0)) below about $\sim 120^{\circ} \mathrm{C}^{5}$ is
evidence against this mechanism. However, the triphenylphosphine present no doubt strongly inhibits the oxidative addition of chlorobenzene in that reaction compared with the reduction reactions in the absence of the phosphine or with only 2 equiv per palladium.

Aromatic Nitro Compounds. The nitro group is readily reduced in very good yields with 3 mol of triethylammonium formate with palladium on charcoal as catalyst at the boiling temperature of the reaction mixture ($\sim 90-100^{\circ} \mathrm{C}$). Results are summarized in Table II. We have generally used about a 10% excess of formic acid and a 30% excess of triethylamine. The reduction is very slow or does not proceed at all without a large excess of the amine. The best procedure is to add the formic acid slowly to a boiling solution of the nitro compound in the amine. The excess amine formate remains as a separate lower phase at the end of the reaction. The products are easily isolated by adding methylene chloride to dissolve the amine salt and then filtering from the catalyst and concentrating the filtrate. The triethylamine sal: is readily removed by distillation under reduced pressure and the crude product remaining can be purified by distillation or recrystallization. We have used $0.2 \mathrm{~mol} \%$ of 5% palladium on charcoal as catalyst generally, but, of course, the reaction rates can be increased if more catalyst is used. The triethylammonium formatepalladium reducing system does not reduce methyl cinnamate significantly under the usual reaction conditions. However, o-nitrocinnamic acid is reduced by the reagent to the saturated lactam in 72% yield. Reduction of o-nitrophenylacetic acid by the reagent yields a 1:1 mixture of the lactam and o -

aminophenylacetic acid. Sublimation of the product mixture produces the lactam in 75% yield. With sufficient reducing agent o-nitroacetophenone produces o-ethylaniline in 50% yield. Presumably, condensation reactions are also occurring to reduce the yield in the last reaction. Azobenzene was not reduced under our usual conditions.
The palladium-amine formate reagent is a very convenient combination for selective laboratory reductions of aryl halides and nitro compounds. ${ }^{6}$ Attempts to reduce other functional groups with various catalysts using the amine formate reagent
were generally not successful, however. Cyclohexanone did reduce slowly with 5% ruthenium on carbon to cyclohexanol but the reaction did not appear to be fast enough to be useful.

Experimental Section

Reagents. Triethylamine (Aldrich) was distilled prior to use. The formic acid (97%) was obtained from Aldrich. The platinum and palladium on charcoal catalysts were products of Matheson Coleman and Bell. The halides and nitro compounds were commercial products and purified if they had low melting points or were darkly colored.

General Procedure for Reduction of Organic Halides. In a heavy-walled $170-\mathrm{mL}$ "Pyrex" bottle was placed 10 mmol of the halide, the appropriate quantity of either the palladium acetate-phosphine catalyst or 5% palladium on charcoal. The triethylamine was then added. The bottle was flushed with a stream of argon and capped with a rubber-lined cap. The formic acid was then added by syringe through the rubber liner of the cap. The mixture was heated at the appropriate reaction temperature. The progress of the reaction could be followed by noting the increase of pressure $\left(\mathrm{CO}_{2}\right)$ in the bottle. For this purpose a small pressure gauge was connected to the bottle through a syringe needle through the rubber-lined cap. The reactions were also monitored by GLC. Products could be isolated by adding sufficient methylene chloride to the product solution to dissolve the unreacted lower layer of amine formate and then filterirg and distilling.

Methyl 4-Deuteriobenzoate. A mixture of $3.41 \mathrm{~g}(20 \mathrm{mmol})$ of methyl p-chlorobenzoate, $4 \mathrm{~mL}(28.5 \mathrm{mmol})$ of triethylamine, and $0.085 \mathrm{~g}(0.04 \mathrm{mmol})$ of $5 \% \mathrm{Pd} / \mathrm{C}$ was prepared in a $170-\mathrm{mL}$ heavywalled "Pyrex" bottle. The air was blown from the bottle with a stream of argon and the bottle was capped with a rubber-lined cap. The formic acid $-d_{2}$ was then injected ($1.056 \mathrm{~g}, 22 \mathrm{mmol}$) by syringe through the liner and the mixture was heated in a steam bath for 29 . Analyses by GLC now showed the chloride had all reacted. The cooled reaction mixture was diluted with ether and filtered through Celite. After rinsing the amine salt with ether, the combined filtrates were concentrated and distilled. There was obtained $2.45 \mathrm{~g}(90 \%)$ of methyl 4 -deuteriobenzoate, bp $92-94^{\circ} \mathrm{C}(20 \mathrm{~mm})$. The mass spectrum of the
sample showed it to be 91% monodeuterated. The NMR spectrum was as follows in $\mathrm{CDCl}_{3}: 3.95 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}), 7.62(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}$), and 8.27 (d, $2 \mathrm{H}, J=8 \mathrm{~Hz}$).

General Procedure for the Reduction of Nitro Compounds. In a $100-\mathrm{mL}$ three-necked round-bottomed flask equipped with a condenser and dropping funnel was placed the nitro compound, the 5% palladium on charcoal, and the triethylamine. The mixture was stirred magnetically and heated on the steam bath while the 97% formic acid was added dropwise. Two layers were formed. The mixture was then heated until GLC analyses showed the absence of the nitro compound in the upper phase. Products were isolated by addition of methylene chloride, filtration, and concentration. The product was either distilled under reduced pressure, recrystallized, or, in one case, sublimed.

Acknowledgment. The authors gratefully acknowledge financial support for this work from the donors of the Petroleum Research Fund, administered by the American Chemical Society. Palladium salts used for the preparation of the soluble catalysts were kindly loaned by Matthey Bishop, Inc.

Registry No.-Triethylammonium formate, 585-29-5; methyl 4-deuteriobenzoate, 13122-30-0.

References and Notes

(1) P. Roffia, G. Gregorio, F. Conti, and G. F. Pregaglia, J. Organomet. Chem., 55, 405 (1973).
(2) J. P. Neilan, R. M. Laine, N. Cortese, and R. F. Heck, J. Org. Chem., 41, 3455 (1976).
(3) T. R. Bosin, M. G. Raymond, and A. R. Buckpitt, Tetrahedron Lett., 4699 (1973).
(4) H. Hey and H.-J. Arpl, Angew. Chem., Int. Ed. Engl., 12, 928 (1973)
(5) D. R. Coulson, Chem. Commun., 1530 (1968).
(6) Note Added In Proof. J. D. Entwistte, A. E. Jackson, R. A. W. Johnstone, and R. P. Telford, J. Chem. Soc., Perkin Trans. 1, 443 (1977), have reported the reduction of nitro compounds with palladium catalysts and formic acid in the absence of a tertiary amine. Halides, under these conditions, were not reduced. The palladium catalyzed reduction of aryl halides with secondary amines has also just been reported (H. Imai, T. Nishiguch, M. Tanaka, and K. Fukuzumi, J. Org. Chem., 42, 2309 (1977)).

Reductive Deamination of Arylamines by Alkyl Nitrites in \mathbf{N}, \mathbf{N}-Dimethylformamide. A Direct Conversion of Arylamines to Aromatic Hydrocarbons

Michael P. Doyle, * ${ }^{1}$ Joseph F. Dellaria, Jr., Bernard Siegfried, and Stephen W. Bishop

Department of Chemistry, Hope College, Holland, Michigan 49423
Received March 29, 1977

Abstract

Rapid deamination of arylamines by alkyl nitrites occurs in N, N-dimethylformamide and results in the replacement of the primary amino group by hydrogen. Consistently moderate to high yields of aromatic hydrocarbons are reported for nitrosation reactions of tert-butyl, benzyl, and isopentyl nitrites with 17 representative aromatic amines. o-Alkyl substituted aromatic amines are reductively deaminated by this method with only minor interference from indazole formation. Competing reactions that result in the production of phenols, biphenyls, or azobenzenes are minor processes in reactions that are performed in dimethylformamide. Deuterium labeling studies indicate that dimethylformamide is the sole hydrogen donor in these reductive deamination reactions. Comparative reductive deamination reactions of p-nitrcaniline in commonly employed aprotic solvents demonstrate that dimethylformamide is superior to tetramethylurea, dioxane, tetrahydrofuran, chloroform, acetonitrile, and hexamethylphosphoramide as a hydrogen donor. The results obtained in this study are interpreted as involving aryl radicals in the formation of aromatic hydrocarbons.

Common procedures for the replacement of ar. aromatic primary amino group by hydrogen involve preliminary diazotization of the aromatic amine followed by reductive substitution by a hydrogen donor. ${ }^{2}$ Although first in the extensive list of reducing agents to be thoroughly investigated, ${ }^{3}$ primary alcohols are recognized as unsatisfactory for reductive deamination of a great variety of arylamines primarily because
of competing ether formation. ${ }^{3}$ Alkaline solutions of formaldehyde have also been used for reductive deamination of arylamines and are advantageous for reductions of diazonium ions that could not be effected by primary alcohols; ${ }^{4}$ however, this reductive method has been restricted to a narrow range of aromatic amines, since diazo oxides are formed from orthoand para-substituted diazonium salts by hydrolytic cleavage

Table I. Product Yields from Reactions of Arylamines with Alkyl Nitrites in Dimethylformamide at $65{ }^{\circ} \mathbf{C}^{a}$

ArNH_{2}	$\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$	ArH	Product yield ${ }^{b}$ from reaction of ArNH_{2} with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CONO}$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{ONO}$		
			$\% \mathrm{ArH}^{\text {c }}$	\% ArH	\% $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}^{\text {d }}$
2,4-Dinitro-5-fluoroaniline	367-81-7	2,4-($\left.\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}$	63	52	27
2,4-Dinitroaniline	97-02-9	$m-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}$	(68)		
4,5-Dichloro-2-nitroaniline	6641-64-1	$4-\mathrm{NO}_{2}-1,2-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$	(68)		
4-Methyl-2-nitroaniline	89-62-3	$m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	(58)		
p-Nitroaniline	100-01-6	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	82 (69)	83	33
m-Nitroaniline	99-09-2	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	60		
o-Nitroaniline	88-74-4	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	72		
2,4,6-Trichloroaniline	634-93-5	1,3,5- $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$	85	87	16
2,5-Dichloroaniline	95-82-9	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	80 (72)		
p-Aminoacetophenone	99-92-3	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$	65		
p-Aminobenzophenone	1137-41-3	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CO}$	76		
o-Aminobenzophenone	2835-77-0	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CO}$	69	61	24
p-Anisidine	104-94-9	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	75	70	16
4-Nitro-1-aminonaphthalene	776-34-1	$1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2}$	$72^{\text {e }}$		
4-Chloro-1-aminonaphthalene	4684-12-2	$1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$	44		
2,4,6-Trimethylaniline	88-05-1	1,3,5-C6 $\mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{3}$		$44{ }^{\prime}$	9
2-Methyl-6-Chloroaniline	87-63-8	$m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	41 (35)		

${ }^{a}$ Unless indicated otherwise, reactions were performed by adding 10.0 mmol of the amine in DMF to 15.0 mmol of the alkyl nitrite in DMF at $65^{\circ} \mathrm{C}$. The total volume of DMF was $50 \mathrm{~mL} .{ }^{b}$ Absolute yield of the aromatic hydrocarbon after extraction; yields were generally determined by GLC analysis through comparison to an internal standard. From duplicate runs experimentally determined percentage yields were accurate to within $\pm 3 \%$ of the reported values. ${ }^{c}$ Isolated yields of the purified (distillation or recrystallization) aromatic hydrocarbon from reactions that employed between 0.01 and 0.10 mol of the reactant amine are given in parentheses. ${ }^{d}$ Yield of benzaldehyde was determined by GLC and ${ }^{1} \mathrm{H}$ NMR analyses. Benzyl alcohol was the only other product derived from benzyl nitrite; $\% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\% \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}=95 \pm 3 \%$ of reacted benzyl nitrite. ${ }^{e}$ Reaction with isopentyl nitrite. $f 39 \%$ yield from reaction with isopentyl nitrite in DMF.
in alkaline media. ${ }^{2}$ Hypophosphorus acid, as a result of extensive investigations by Kornblum,,${ }^{2,5}$ has proven to be a conveniently employed and generally effective reducing agent for diazonium salts. Although other reduction methods and reducing agents for replacement of an aromatic primary amino group by hydrogen have been promoted in recent years, ${ }^{6-9}$ hypophosphorus acid remains the standard reagent for reductions of diazonium salts.

In contrast to procedures that utilize or require a sequential two-step amino-group replacement by hydrogen (diazotiza-tion-hydrogen transfer), Cadogan and Molina have recently reported the successful use of pentyl nitrite in boiling tetrahydrofuran for direct reductive deamination of primary aromatic amines. ${ }^{10}$ In their in situ reductive deamination procedure Cadogan and Molina rely on the efficiency of hydrogen abstraction from a carbon position that is adjacent to an ether oxygen. ${ }^{11}$ Although their results do not generally compare favorably with those from reductive deaminations that employ hypophosphorus acid, particularly in reactions with o-alkyl substituted arylamines, the convenience of their in situ method and their use of anhydrous media are attractive.

Our investigations of copper(II) halide promoted reactions of alkyl nitrites with arylamines prompted this investigation of a reaction process that is potentially competitive with substitutive deamination and related reactions. ${ }^{12,13}$ In this paper, we report that treatment of arylamines with alkyl nitrites in N, N-dimethylformamide results in reductive deamination and that this procedure compares favorably with Kornblum's hypophosphorus acid procedure as a generally effective method for the replacement of an aromatic primary amino group by hydrogen. ${ }^{14}$ The use of N, N-dimethylformamide as the hydrogen donor effectively minimizes those side reactions that accompany similar reactions that occur in tetrahydrofuran or dioxane.

Results and Discussion

We have reported that tert-butyl nitrite reacts slowly with p-nitroaniline in acetonitrile at $65^{\circ} \mathrm{C}$ to produce nitrobenzene. ${ }^{12 \mathrm{a}}$ However, the gield of nitrobenzene is less than 50%,
which indicates that this procedure is unsuitable as a general method for reductive deamination. Surprisingly, when this same reaction is performed in N, N-dimethylformamide (DMF) at $65{ }^{\circ} \mathrm{C}$, gas evolution is rapid and nitrobenzene is formed in 82% yield. Compared to reactions in acetonitrile at $65^{\circ} \mathrm{C}$, which are generally complete only after 1 h , those in DMF are immediate and are complete within 10 min following complete addition of the amine. Table I presents the yields of aromatic compounds that are obtained from reactions of representative arylamines with tert-butyl nitrite in DMF (eq 1).

$$
\begin{equation*}
\mathrm{ArNH}_{2}+\mathrm{RONO} \xrightarrow{\mathrm{DMF}} \mathrm{ArH}+\mathrm{ROH}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

Consistently moderate to high yields of the reductive deamination product are observed in nitrosation reactions that occur in DMF with the varied selection of aromatic amines. Indeed, even o-alkyl substituted arylamines are effectively deaminated by this procedure. In tetrahydrofuran, 2-methyl-6-chloroaniline does not form m-chlorotoluene, but, instead, yields 7 -chloroindazole; ${ }^{10}$ in DMF, 7 -chloroindazole is formed as a minor side product (10% yield). Comparison of the product yields from nitrosative deamination of structurally similar arylamines in THF ${ }^{10}$ and in DMF (Table I) indicates that dimethylformamide is a more effective hydrogen donor than is tetrahydrofuran. Side reactions that lead to the production of phenols, biphenyls, and azobenzenes are minor competing processes in DMF. ${ }^{15}$ However, a dark resinous material is formed in these reactions in amounts that reflect the difference between 100% and the percentage yields of arenes that are reported in Table I; similar red or red-brown residues have been reported to result from nitrosative deamination by other reductive procedures. ${ }^{5,8}$ Although no attempt was made in this study to optimize the yields of individual products, the yields of purified arenes that were obtained by reductive deamination in DMF were similar to those obtained by the hypophosphorus acid reduction of diazonium salts. ${ }^{2,5}$

Isopentyl nitrite and benzyl nitrite were reacted with a se-

Table II. Deuterium Content of Aromatic Hydrocarbons Formed by Nitrosative Deamination of Arylamines ${ }^{a}$

Amine	Nitrite	Solvent	Arene ${ }^{\text {b }}$	
			$\overline{d_{0}, \%}$	$d_{1}, \%$
2,4,6- $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CD}_{2} \mathrm{ONO}$	DMF	100	
2,4,6- $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{ND}_{2}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CONO}$	$\mathrm{DMF}^{\text {c }}$	100	
2,4,6- $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CONO}$	DMF +1.0 equiv of $\mathrm{D}_{2} \mathrm{O}^{d}$	100	
2,4,6- $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CD}_{2} \mathrm{ONO}$	$\mathrm{CH}_{3} \mathrm{CN}$	70	30
2,4,6- $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{ONO}$	$\mathrm{CD}_{3} \mathrm{CN}^{\text {e,f }}$	83	17
2,4,6- $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CONO}$	$\mathrm{CD}_{3} \mathrm{CN}$ f g	43	57
4,5-Cl 2 -2-($\left.\mathrm{NO}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CONO}$	$\mathrm{CD}_{3} \mathrm{CN}{ }^{8}$	59	41

${ }^{a}$ Reactions were performed at $65^{\circ} \mathrm{C} .{ }^{b}$ Determined by mass spectral analysis of the arene isolated by GLC collection. Percentage deuterium content was averaged from at least two separate determinations. ${ }^{c} 84 \%$ yield of $1,3,5$-trichlorobenzene. ${ }^{d} 85 \%$ yield of $1,3,5$-trichlorobenzene. ${ }^{e} 64 \%$ yield of $1,3,5$-trichlorobenzene $+63 \%$ benzaldehyde. ${ }^{i}$ Reactions were run with 2 mmo of the amine in 3.0 mL of the deuterated acetonitrile. ${ }^{8} 55 \%$ yield of $1,3,5$-trichlorobenzene.

Table III. Reductive Deamination of p-Nitroaniline in Aprotic Solvents ${ }^{a}$

Solvent	RONO	Registry no.	$\underset{\%^{b}}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2},}$
Dimethylformamide	t-BuONO		82
Tetramethylurea ${ }^{\text {c }}$	t-BuONO		75
Dioxane	t-BuONO		65
Tetrahydrofuran	PentONO	463-04-7	$65^{\text {d }}$
Chloroform ${ }^{e}$	t-BuONO		52^{\prime}
Chloroform +2 eq DMF ${ }^{e}$	t-BuONO		$51^{\text {g }}$
Acetonitrile	t-BuONO	540-80-7	50
Hexamethylphosphoramide	i-PentONO	110-46-3	30

${ }^{a}$ Reactions were performed by adding 10.0 mmol of the amine in the indicated solvent to 15.0 mmol of the alkyl nitrite in the same solvent at $65^{\circ} \mathrm{C}$ or at reflux (THF and CHCl_{3}). Unless indicated otherwise, the total volume of the solvent was 50 mL . $b_{\text {Absolute yield of nitrobenzene determined by GLC analysis }}$ after extraction. ${ }^{c}$ Total volume was 30 mL . ${ }^{d}$ Ref $10{ }^{e}{ }^{e}$ Amine was added in portions as a solid. $f+34 \% p$-Nitro- α, α, α-trichlorotoluene. ${ }^{8}+36 \% p$-Nitro- α, α, α-trichlorotoluene.
ries of arylamines in DMF at $65^{\circ} \mathrm{C}$ to determine whether the structure of the alkyl nitrite had a pronounced effect on the extent of reductive deamination. Isopentyl nitrite gave results that were nearly identical to those obtained with tert-butyl nitrite under the same reaction conditions. Product yields from reactions with benzyl nitrite are given in Table I and similarly indicate no dependence of the reductive deamination process on the structure of the alkyl nitrite. Benzaldehyde was formed together with benzyl alcohol as the only identifiable products emanating from benzyl nitrite. The combined yields of benzaldehyde (Table I) and benzyl alcohol were nearly quantitative.

The formation of benzaldehyde in aromatic amire reactions with benzyl nitrite suggested that this nitrite may be a hydrogen donor in reductive deamination reactions. In order to determine the nature of benzaldehyde production and to identify the probable source of the hydrogen that is transferred in these reactions, α, α-dideuteriobenzyl nitrite was prepared and reacted with $2,4,6$-trichloroaniline in dimethylformamide. The reduced product 1,3,5-trichlorobenzene was isolated by GLC separation and its deuterium content was determined by mass spectral analysis. Similarly, N, N-di-deuterio-2,4,6-trichloroaniline was prepared and subjected to reductive deamination by tert-butyl nitrite in DMF. In a third experiment, 1.0 molar equiv of $\mathrm{D}_{2} \mathrm{O}$ (based on the amine) was employed with undeuterated reactants. Within the limits of our detection, only $1,3,5$-trichlorobenzene that did not contain deuterium was formed (Table II). These results
strongly suggest that N, N-dimethylformamide is the sole hydrogen donor in deamination reactions that are performed in that aprotic solvent. Benzaldehyde formation is independent of the reductive deamination process. Indeed, in control experiments in which benzyl nitrite was heated at $65^{\circ} \mathrm{C}$ in DMF for 1 h and then isolated by the usual workup procedure, benzaldehyde (21%) and benzyl alcohol (47%) were formed, and benzyl nitrite (32%) was recovered. ${ }^{16}$
Similar deuteration studies were performed for nitrosative deamination reactions that employed acetonitrile as the solvent and potential hydrogen donor, and their results are reported in Table II. Benzyl nitrite is a surprisingly effective hydrogen donor in acetonitrile; acetonitrile is surprisingly ineffective as a hydrogen donor. Use of α, α-dideuteriobenzyl nitrite in the reaction with 2,4,6-trichloroaniline leads to 30% deuteration in 1,3,5-trichlorobenzene. However, in a separate experiment with acetonitrile- d_{3} only 17% of monodeuterated $1,3,5$-trichlorobenzene is formed. In view of the relatively low yield of deuterated arene in acetonitrile- d_{3} for reactions of arylamines with tert-butyl nitrite, the results with benzyl nitrite may be explained as a consequence of the isotope effect for hydrogen (and deuterium) transfer from the benzylic position. ${ }^{17}$ Due to the complex nature of hydrogen transfer and the relatively low yield of products from reductive deamination in acetonitrile, however, no definitive conclusion other than that related to the effectiveness of DMF and acetonitrile as hydrogen donors can be drawn from these investigations.

An increasing number of solvents, including tetramethylurea, ${ }^{8}$ dioxane, ${ }^{6}$ and tetrahydrofuran, ${ }^{10}$ have been promoted in recent years as effective hydrogen donors for the reduction of diazonium compounds. However, only tetrahydrofuran has been employed in a direct reductive deamination process. ${ }^{10}$ To compare hydrogen-donor capabilities, p-nitroaniline was subjected to nitrosative deamination in a representative series of solvents under reaction conditions identical to those that are reported for reactions in DMF. The results of this investigation are described in Table III. Although results from reductive deamination of only one amine are reported, DMF is clearly the superior hydrogen donor among the aprotic solvents employed in this study.
Tetramethylurea approaches DMF in its effectiveness as a hydrogen donor, and this similarity suggests that reduction occurs primarily by hydrogen transfer from the N-methyl group rather than solely from the formyl position. This explanation also accounts for the relative absence of carbon dioxide in the gaseous products. Deamination of p-nitroaniline by tert-butyl nitrite in DMF at $65^{\circ} \mathrm{C}$ yields a mixture of gaseous products that is composed of nitrogen (93%), nitrous oxide (2%), ${ }^{18}$ and carbon dioxide (5%). We have been unable, however, to isolate product(s) that are formed from DMF following hydrogen transfer.

The results obtained in this study of reductive deamination

Scheme I

$$
\begin{gather*}
\mathrm{ArNH}_{2}+\mathrm{RONO} \rightarrow \mathrm{ArN}=\mathrm{N}-\mathrm{OR}+\mathrm{H}_{2} \mathrm{O} \tag{2}\\
\mathrm{ArN}=\mathrm{N}-\mathrm{OR} \rightarrow \mathrm{ArN}_{2} \cdot \mathrm{RO} . \tag{3}\\
\mathrm{ArN} \mathrm{~N}_{2} \rightarrow \mathrm{Ar} \cdot+\mathrm{N}_{2} \tag{4}\\
\mathrm{Ar} \cdot+\mathrm{SolH} \rightarrow \mathrm{ArH}+\text { Sol. } \tag{5}
\end{gather*}
$$

of aromatic amines are consistent with the involvement of aryl radicals (Scheme I). ${ }^{20}$ Additional evidence for the operation of the radical pathway was obtained through trapping experiments in which equal volumes of acrylonitrile and acetonitrile were employed as the solvent for the reaction between p-nitroaniline and tert-butyl nitrite; only a trace amount of nitrobenzene was formed and polymerization of acrylonitrile was observed. The amount of gaseous products was only two-thirds of that obtained from reactions without added acrylonitrile, suggesting that the aryldiazo radical is an intermediate in this reaction process. Furthermore, the observation of p-nitro- α, α, α-trichlorotoluene from reactions in chloroform (Table III) suggests a radical coupling mechanism for the formation of this unusual product. ${ }^{21}$

Our results do not distinguish the mechanism proposed in Scheme I from one that involves the intermediacy of aryldiazenes (Scheme II). Hydrocarbons are the predominant products from bimolecular decomposition of aryldiazenes. ${ }^{22}$ However, if aryldiazenes are reaction intermediates in reductive nitrosation reactions of arylamines, they cannot be solely responsible for hydrocarbon formation. Nitro substituents inhibit aryldiazene decomposition to the corresponding aromatic hydrocarbon, ${ }^{22}$ whereas nitro substituents do not measurably affect the yield of the reduced product in nitrosation reactions (Table I).

Several attempts were made to convert primary alkylamines to their corresponding hydrocarbons through reactions with tert-butyl nitrite in DMF at $65^{\circ} \mathrm{C}$. However, as expected from prior investigations of aprotic diazotization of aliphatic amines, ${ }^{19}$ low product yields were obtained. For example, adamantane was formed from 1-adamantamine in only 5% yield, and 1-amino-4-phenylbutane produced 1-phenylbutane and tetrahydronaphthalene in 6 and 2% yield, respectively. ${ }^{23}$

Reductive deamination by alkyl nitrites in DMF is not limited to primary aromatic amines. Preliminary results in our laboratory have demonstrated that arylhydrazines are reduced to the corresponding aromatic hydrocarbons without competing formation of aryl azides. These and related transformations are presently under investigation.

Experimental Section

General. Instrumentation has been previously described. ${ }^{12 \mathrm{a}}$ Mass spectra were obtained using a Fannigan Model 1015 gas chromato-graph-mass spectrometer operated at 70 eV . tert-Butyl nitrite was prepared from tert-butyl alcohol according to the procedure of Noyes; ${ }^{24}$ isopentyl nitrite was obtained commercially. Benzyl nitrite was formed from benzyl alcohol, sodium nitrite, and aluminum sulfate according to the published procedure, ${ }^{25}$ and its purity was monitored regularly by ${ }^{1} \mathrm{H}$ NMR spectral analysis. ${ }^{26} \alpha, \alpha$-Dideuteriobenzyl nitrite was similarly prepared from α, α-dideuteriobenzyl alcohol. The amines that were employed in this study were commercially available and, with the exception of p-anisidine, were used without prior purification. Reagent grade N, N-dimethylformamide, acetonitrile, and hexamethylphosphoramide were distilled from calcium hydride prior to their use as reaction solvents. Dioxane was distilled from lithium aluminum hydride, and chloroform was washed with concentrated sulfuric acid prior to distillation. Tetramethylurea was used without further purification. N, N-Dideuterio- $2,4,6$-trichloroaniline was prepared by hydrogen-deuterium exchange in $\mathrm{D}_{2} \mathrm{O}$ catalyzed by sulfuric acid $-d_{2} ;{ }^{1} \mathrm{H}$ NMR analysis verified total exchange. Acetoni-trile- d_{3} was obtained commercially (99 atom $\%{ }^{2} \mathrm{H}$) and was used without further purification.

$$
\begin{gather*}
\mathrm{Ar}_{2} \cdot+\mathrm{SolH} \rightarrow \mathrm{ArN}=\mathrm{NH}+\mathrm{Sol} . \tag{6}\\
\mathrm{ArN}=\mathrm{NH} \rightarrow \mathrm{ArH}+\mathrm{N}_{2} \tag{7}
\end{gather*}
$$

Reductive Deamination of Aromatic Amines. General Procedure. To a rapidly stirred solution of the alkyl nitrite (15.0 mmol) and anhydrous DMF heated at $65^{\circ} \mathrm{C}$ in a three-necked round-bottom flask equipped with a reflux condenser, addition funnel, and gas outlet tube was added the aromatic amine (10.0 mmol) dissolved in a minimal amount of DMF. The amine was added slowly to the reaction solution over a 5 -min period. Gas evolution was immediate, continued steadily throughout the addition, and was generally complete within 10 min following complete addition of the amine. Total gas evolution was measured on the closed system by water displacement from a calibrated gas buret; with the exception of reactions with o-alkylsubstituted aromatic amines and the naphthylamines, the yield of gaseous products was $220 \pm 20 \mathrm{~mL}$ (based on 10 mmol of the amine). After complete gas evolution, the reaction solution that had turned deep red from the initial yellow was cooled and then poured into 200 mL of 20% aqueous hydrochloric acid and extracted with 200 mL of ether, and the organic layer was washed once with 200 mL of aqueous hydrochloric acid. The resulting ether solution was dried over anhydrous magnesium sulfate and the ether was removed under reduced pressure. Ether solutions containing volatile products were distilled at atmospheric pressure through a $12.5-\mathrm{cm}$ Vigreux column.

A similar procedure was employed for reactions of p-nitroaniline in those solvents that are described in Table III.

Product Analyses. Structural assignments for the aromatic hydrocarbons produced in reactions of arylamines with alkyl nitrites were made following extraction by ${ }^{1} \mathrm{H}$ NMR spectral comparisons and/or by GLC retention time and peak enhancement with authentic samples. p-Nitro- α, α, α-trichlorotoluene was identified by ${ }^{1} \mathrm{H}$ NMR, IR, and mass spectral analysis following isolation of this compound from the reaction mixture (see Table III) by GLC separation. The gaseous products from the reaction of p-nitroaniline with tert-butyl nitrite in dimethylformamide were analyzed by GLC retention times on a 5 - ft silica gel column and by infrared spectral analysis.

Product yields were determined by GLC analyses for the vast majority of reactions reported in this study. Prior to workup a weighed amount of dibenzyl ether was added to the reaction solution as an internal standard. The average integrated area ratio from at least two GLC traces was employed in each yield determination. Absolute yields were calculated with the use of experimentally determined thermal conductivities for each of the aromatic hydrocarbons examined by this method. Thermal conductivity ratios were determined immediately prior to product analyses to ensure accuracy in these calculations. Yields also cetermined by ${ }^{1} \mathrm{H}$ NMR spectral analysis were in substantial agreement ($\pm 2 \%$) with those obtained by the GLC method.

The absolute yields of benzaldehyde and benzyl alcohol were obtained by ${ }^{1} \mathrm{H}$ NMR spectral analysis of the reaction solutions following extraction. The average values of at least five integrations were utilized in the calculation of absolute yields. Yields obtained by the GLC method confirmed those determined by ${ }^{1} \mathrm{H}$ NMR spectral analysis.

Determination of the deuterium content in aromatic hydrocarbons was made by mass spectral comparisons of the molecular ion peaks of an authentic sample with those peaks observed from the reaction product. No difference in relative peak intensity was observed from analyses at 70 and 20 eV . For each analysis the aromatic hydrocarbon was isolated from the reaction mixture by GLC separation and this sample was inserted into the ionization chamber through the use of a solid probe. A minimum of two mass spectral traces was employed in the calculation of deuterium content for each reaction.

1,2-Dichloro-4-nitrobenzene. The procedure employed for reductive deamination of 4,5 -dichloro-2-nitroaniline exemplifies those used for the preparative scale reactions that are reported in Table I (yield of distilled or recrystallized product given in parentheses). To a rapidly stirred solution of tert -butyl nitrite ($5.47 \mathrm{~g}, 0.0530 \mathrm{~mol}$) and anhydrous DMF ($\varsigma 0 \mathrm{~mL}$) heated at $50^{\circ} \mathrm{C}$ in a $250-\mathrm{mL}$ three-necked round-bottom flask equipped with a reflux condenser and addition funnel was added 4,5 -dichloro-2-nitroaniline ($7.28 \mathrm{~g}, 0.0352 \mathrm{~mol}$) dissolved in 70 mL of DMF. The reaction temperature was maintained at $50^{\circ} \mathrm{C}$ to minimize the loss of tert-butyl nitrite. The amine solution was added dropwise to the nitrite solution over a $25-\mathrm{min}$ period. Gas evolution was immediate and continued steadily throughout the addition. After addition was complete, no further gas evolution was observed and the reaction solution was allowed to cool to room temperature. The resulting burnt orange reaction solution was diluted
with 300 mL of ether and then poured into 300 mL of 20% aqueous hydrochloric acid. After separation, the ether solution was washed with an additional 300 mL of 20% aqueous hydrochloric acid and was dried over anhydrous magnesium sulfate. The ether was removed under reduced pressure and the residue was distilled at 0.6 Torr to give 4.56 g of a light yellow liquid ($\mathrm{bp} 107-110^{\circ} \mathrm{C}$ at 0.6 Tcrr; lit. ${ }^{27} \mathrm{bp}$ $254-257^{\circ} \mathrm{C}$) that crystallized on standing ($\mathrm{mp} 40.5-41.0^{\circ} \mathrm{C}$; lit..$^{27} \mathrm{mp}$ $43^{\circ} \mathrm{C}$): $0.0238 \mathrm{~mol}, 68 \%$ yield.

Acknowledgment. We gratefully acknowledge the financial support of the National Science Foundation for this work. We thank Richard J. Bosch for his assistance in this project.

Registry No.-Dimethylformamide, 68-12-2; $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{ONO}$, 935-05-7.

References and Notes

(1) Camille and Henry Dreyfus Foundation Teacher-Scholar Grant Awardee, 1973-1978.
(2) N. Kornblum, Org. React., 2, 262 (1944).
(3) P. Griess, Philos. Trans. R. Soc. London, Ser. A, 154, 683 (1864).
(4) R. Q. Brewster and J. A. Poje, J. Am. Chem. Soc., 61, 2418 (1939).
(5) (a) N. Kornblum and D. C. Iffland, J. Am. Chem. Soc., 71, 2137 (1949); (b) N. Kornblum, G. D. Cooper, and J. E. Taylor, ibid., 72, 3013 (1950); (c) N. Kornblum, A. E. Kelley, and G. D. Cooper, ibid., 74, 3074 (1952).
(6) H. Meerwein, H. Allendorfer, P. Beekmann, Fr. Kumert, H. Morschel, F. Pawellek, and KI. Wunderlich, Angew. Chem., 70, 211 (1958).
(7) J. B. Hendrickson, J. Am. Chem. Soc., 83, 1251 (1961).
(8) K. G. Rutherford and W. A. Redmond, J. Org. Chem., 28, 568 (1963).
(9) J. Nakayama, M. Yoshida, and O. Simamura, Tetrahedron, 26, 4609 (1970).
(10) J. I. G. Cadogan and G. A. Molina, J. Chem. Soc., Perkin Trans. 1, 541 (1973).
(11) Meerwein had previously reported that tetrahydrofuran, dioxane, dioxolane, and diglyme were effective hydrogen-transfer agents for reductions of aryidiazonium chlorides. ${ }^{6}$
(12) (a) M. P. Doyle, B. Siegfried, and J. F. Dellaria, Jr., J. Org. Che.n., 42, 2426; (1977); (b) M. P. Doyle, B. Siegfried, R. C. Elliott, and J. F. Dellaria, Jr., ibid., 42, 2431 (1977).
(13) Although reductive deamination does not compete with substitutive deamination when nitrosation reactions with a wide variety of arylamines are performed in the presence of at least 1 molar equiv of copper(II) halide, ${ }^{12 a}$ effective competition does occur when the $\left[\mathrm{CuX}_{2}\right] /\left[\mathrm{ArNH}_{2}\right]$ ratio is ≤ 0.5.
(14) Dimethylformamide has been employed for reductions of arenediazonium compounds: (a) H. Zollinger, "Azo and Diazo Chemistry", Interscience New York, N.Y., 1961, p 168; (b) M. Schubert and R. Fleischhauer, German Patent 901 175; Chem. Abstr., 49, 10365h (1955); (c) German Patent 905 014: Chem. Abstr., 50, 12111b (1956).
(15) Nitrosative deamination of aniline by isopentyl nitrite in JMF at $65^{\circ} \mathrm{C}$ resulted in the formation of biphenyl ($<2 \%$) and azobenzene (4%). Phenols were usually absent in reaction mixtures but in several experiments were observed in yields that were less than 5%.
(16) Benzyl nitrite is hydrolyzed to benzyl alcohol during the workup process.
(17) The deuterium isotope effect for hydrogen (deuterium) abstraction from toluene by a phenyl radical is $4.0\left(60^{\circ} \mathrm{C}\right)$: R. F. Bridger and G. A. Russell, J. Am. Chem. Soc., 85, 3754 (1963).
(18) The production of nitrous oxide in reactions that employ tert-butyl nitrite cannot be explained by a base-catalyzed oxidation simila to that proposed in reactions of aliphatic amines with isopentyl nitrite. ${ }^{19}$
(19) L. Friedman and A. T. Jurewicz, J. Am. Chem. Soc., 91,1808 (1969).
(20) This mechanism is supported by other recent investigations of reductive deamination reactions in aprotic media: (a) Y. Hirose, G. H. Wahl, Jr., and H. Zollinger, He/v. Chim. Acta, 59, 1427 (1976); (b) J. I. G. Cadogan, D. A Roy, and D. M. Smith, J. Chem. Soc. C, 1249 (1966).
(21) Cadogan has reported that deamination of p-nitroaniline by pentyl nitrite in refluxing chloroform yields nitrobenzene (42%) and p-chloronitrobenzene $(28 \%) .{ }^{206}$ We obtained no evidence for the formation of p-chloronitrobenzene from reactions that employed tert-butyl nitrite.
(22) E. M. Kosower, P. C. Huang, and T. Tsuji, J. Am. Chem. Soc., 91, 2325 (1969).
(23) 4-Phenyl-1-butanol was the major product identified in this reaction (37% yield).
(24) W. A. Noyes, "Organic Syntheses", Collect. Vol. 2, Wiley, New York, N. Y., 1943, p 108.
(25) A. Chritien and Y. Longi, Compt. Rend., 220, 746 (1945); low yields of benzyl nitrite were obtained if the aluminum salt was not rigorously excluded from the benzyl nitrite solution prior to distillation. Multiple extractions with ether and subsequent washings of the ether solution witr saturated sodium bicarbonate satisfactorily removed these contaminants.
(26) When storred at $0^{\circ} \mathrm{C}$ benzyl nitrite was stable over long periods of time decomposition to benzaldehyde amounted to only 3% after 1 month.
(27) L. McMaster and A. C. Magill, J. Am. Chem. Soc., 50, 3038 (1928).

1,2,4-Triazine 1- and 2-Oxides. Reactivities toward Some Electrophiles and Nucleophiles

Brian T. Keen, Fobert J. Radel, and William W. Paudler*
Department of Chemistry, The University of Alabama, University, Alabama 35486

Received April 20, 1977

The 3-amino- (1), 3-methylamino- (6), 3-dimethylamino- (7), and methylthio- (10) 1,2,4-triazine 2 -oxides undergo an addition-elimination reaction with methanol, ethanol, or 2-propanol to give the corresponding 6 -alkoxy-$1,2,4$-triazines. The 1,2,4-triazine 1 -oxides do not react with methanol under similar reaction conditions. Reaction of 3 -amino-1,2,4-triazine 1 -oxide (14) with nitrous acid in the presence of hydrobromic acid forms 3-bromo- (19) and 3,6 -dibromo- $1,2,4$-triazine 1 -oxide (20). The 3 -methoxy- (13), 3 -amino- (14), 3 -methylamino- (15), and 3 -di-methylamino- (16) 1,2,4-triazine 1 -oxides react with bromine to give the respective 6 -bromo-1,2,4-triazine 1-oxides (21-24). Possible reaction paths to account for these transformations are proposed.

1,2,4-Triazines have proven to be rather unusual π-deficient heteroaromatic compounds, as exemplified by their facile covalent hydration across the $\mathrm{N}_{4}-\mathrm{C}_{5}$ bonds, ${ }^{1}$ their propensity for acting as dienes in Diels-Alder reactions, ${ }^{2}$ and the tendency for ring contraction of their N -alkylated derivatives. ${ }^{3}$

We have described the selective $\mathrm{N}-1$ and $\mathrm{N}-2$ oxidation of several 1,2,4-triazine derivatives ${ }^{4,5}$ and now wish to report some interesting chemical transformations of these compounds.

During studies involving the condensation of 3 -amino-1,2,4-triazine 2 -oxide (1) with methanolic methyl chloroformate, the expected urethane (2) was the minor product; the

3, $\mathrm{R}=\mathrm{CH}_{3}$
1
5, $\mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}_{2}$

2, $\mathrm{R}=\mathrm{CH}_{3}$
4, $\mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}_{2}$
major one is a compound $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}$ whose ${ }^{1} \mathrm{H}$ NMR spectrum shows three singlets ($\delta 7.94,5.30$ and $4.05(\mathrm{ppm})$), with relative area ratios of 1:2:3. The broad two-proton singlet at $\delta 5.30$ is subject to facile $\mathrm{H} \rightarrow \mathrm{D}$ exchange. Thus, we are dealing with either 5 - or 6 -methoxy- 3 -amino-1,2,4-triazine (3).

Since 5 -ethoxy- 3 -amino-1,2,4-triazine ${ }^{6}$ is known, the reaction was repeated with ethyl chloroformate in ethanol. The resulting ethoxy-3-amino-1,2,4-triazine formed as the major product, along with compound 4 , was compared with an authentic sample of the 3 -amino-5-ethoxy-1,2,4-triazine. The latter compound ($\mathrm{mp} 166-168^{\circ} \mathrm{C}$) is different from the material obtained in this reaction ($\mathrm{mp} 110-112{ }^{\circ} \mathrm{C}$). Thus, the 3 -amino- 6 -alkoxy- $1,2,4$-triazines (3 and 5) are the major products in these reactions. Since this transformation, does not occur upon treatment of 3 -amino-1,2,4-triazine or its 1 oxide with methanol and methyl chloroformate, the presence of the 2 -oxide function is clearly required. When 3 -amino-1,2,4-triazine 2 -oxide (1) is treated with methanol containing only anhydrous hydrochloric acid, rather than methyl chloroformate, 6 -methoxy- 3 -amino- $1,2,4$-triazine (3) is the only product.

$$
\begin{aligned}
& \xrightarrow[\mathrm{HCl}]{\left(\mathrm{CH}_{3}\right)_{\mathrm{COH}}} \text { no reaction } \\
& \text { (} \\
& \begin{array}{cl}
1, \mathrm{R}=\mathrm{NH}_{2} & 3, \mathrm{R}=\mathrm{NH}_{2} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \\
6, \mathrm{R}=\mathrm{NHCH}_{3} & 5, \mathrm{R}=\mathrm{NH}_{2} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \mathrm{CH}_{2} \\
7, \mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} & 8, \mathrm{R}=\mathrm{NHCH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \\
10, \mathrm{R}=\mathrm{SCH}_{3} & 9, \mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \\
& 11, \mathrm{R}=\mathrm{SCH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \\
& 12, \mathrm{R}=\mathrm{NH}_{2} ; \mathrm{R}^{\prime}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}
\end{array} \\
& \text { 6, } \mathrm{R}=\mathrm{NHC} \\
& 3, \mathrm{R}=\mathrm{NH}_{2}, \mathrm{R}=\mathrm{CH}_{3} \\
& \text { 6, } \mathrm{R}=\mathrm{NHCH}_{3} \\
& 8, \mathrm{R}=\mathrm{NHCH} \cdot \mathrm{R}^{\prime}=\mathrm{CH}^{2} \\
& \text { 9, } \mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \\
& \text { 11, } \mathrm{R}=\mathrm{SCH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3} \\
& \text { 12, } \mathrm{R}=\mathrm{NH}_{2} ; \mathrm{R}^{\prime}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}
\end{aligned}
$$

The deoxygenated 6 -methxy derivatives $(8,9)$ of 3 -meth-ylamino- (6) and 3-dimethylamino- (7) 1,2,4-triazine 2 -oxides are obtained when these compounds are treated with methanolic hydrochloric acid.

It clearly remains to establish whether a 3 -amino substituent is required for this reaction to proceed. When 3-meth-ylthio-1,2,4-triazine 2 -oxide (10) was reacted with methanolic HCl , the 6-methoxy-3-methylthio-1,2,4-triazine (11) was readily obtained (cf. Table I for structure proof).

When either ethyl or isopropyl alcohol is used in place of methanol, the corresponding 6 -ethoxy and 6 -isopropoxy derivatives $(5,12)$ are formed. tert-Butyl alcohol, on the other hand, does not react with these 3 -amino-1,2,4-triazine 2 -oxides under the same reaction conditions.

It now became of interest to investigate the reactivity of the corresponding 3 -substituted $1,2,4$-triazine 1 -oxides under similar reaction conditions. The necessary compounds 14-16 were prepared by nucleophilic displacement of the 3-methoxy group in 3 -methoxy-1,2,4-triazine 1 -oxide (13) (cf. Experimental Section). 3-Dimethylamino-1,2,4-triazine 1-oxide (16) can also be prepared by direct N -oxidation of 3-dimethyl-amino-1,2,4-triazine (17). ${ }^{7}$

None of these 1-oxides react with methanolic HCl under the conditions which yield the 6 -alkoxy compounds in the 2 -oxides.

As previously reported, ${ }^{5}$ diazotization of 3-amino-1,2,4triazine 2 -oxide affords the 3 -halo derivatives. When this reaction was applied to 3 -amino- $1,2,4$-triazine 1 -oxide, the corresponding 3 -halo (chloro or bromo) derivatives $(18,19)$ were obtained. In addition to the formation of the 3 -bromo derivative, a dibromo compound ($\mathrm{C}_{3} \mathrm{HN}_{3} \mathrm{OBr}_{2}$) was also formed. The structure of this material is readily established by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 19 with that of the dibromo derivative. The chemical-shift assign-

ments for H_{5} ($\hat{o} 8.50$) and $\mathrm{H}_{6}(\tau 8.11)$ of the protons in compound 19 are consistent with our results described earlier. ${ }^{4}$ Since it is wel known that replacement of a hydrogen by bromine on an aromatic ring has only a small effect on the chemical shift of a proton on the ortho carbon, the singlet (δ 8.63) observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the dibromo compound 20 must be due to H_{5}. Thus, we are dealing with 3,6 -dibromo-1,2,4-triazine 1-oxide (20).

An obvious extension of this dibromination reaction led us to examine the bromination of several 3 -substituted $1,2,4-$ triazine 1-oxides.
When the 1 -oxides of 3 -amino- (14), 3 -methyamino- (15), 3-dimethylamino- (16), or 3-methoxy- (13) 1,2,4-triazines are

treated with bromine in carbon tetrachloride or methylene chloride, in the presence of triethylamine, the corresponding monobromo derivatives 21-24 are obtained in excellent yields. The question as to whether we are again dealing with 6 -bromo derivatives or not is readily answered by a comparison of the ${ }^{1} \mathrm{H}$ NMR chemical shifts of these bromo derivatives with those of their precursors (cf. Table I). Since the chemical shifts of the aromatic protons in these bromo compounds are in the region $\delta 8.10-8.30$, these compounds are the 6 -bromo derivatives (21-24). Further confirmation of these assignments is found in a comparison of the ${ }^{13} \mathrm{C}$ chemical shifts of 3 -me-thoxy-1,2,4-triazine 1-oxide (13) (δ_{c} (ppm): $\mathrm{C}_{3}, 166.5 ; \mathrm{C}_{5}, 154$; $\mathrm{C}_{6}, 124.5$) with those of the 6 -bromo derivative 21 ($\delta_{\mathrm{c}}(\mathrm{ppm})$: $\left.\mathrm{C}_{3}, 164 ; \mathrm{C}_{5}, 156 ; \mathrm{C}_{6}, 119\right) .{ }^{8}$

These facile bromination reactions prompted us to examine two non- N -oxidized $1,2,4$-triazines, the 3 -methoxy (25) and 3-dimethylamino (17) derivatives. In the former instance, no

17, $\mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ $25, \mathrm{R}=\mathrm{OCH}_{3}$

26, $\mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$
No reaction
ring bromination occurred, while, in the latter one, a monobromo derivative 26 was obtained. The structure of this compound was readily established by a comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with that of the starting material (cf. Table I).

Mechanistic Considerations. The unique deoxygenative 6 -alkoxylation of the 3 -substituted 1,2,4-triazine 2 -oxides

Table I. ${ }^{1} \mathbf{H}$ NMR and Analytical Data for Some 1,2,4-Triazines ${ }^{\boldsymbol{a}}$

Compd no.	Mol Formula	Substituents ${ }^{\text {d }}$		$\begin{gathered} \text { Registry } \\ \text { no. } \\ \hline \end{gathered}$	 Chemical Shifts ${ }^{a}$			
		R_{3}	R_{6}		R_{3}	R_{5}	R_{6}	$\mathrm{mp},{ }^{\circ} \mathrm{C}$
$2^{\text {b }}$	$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{3}$	$\mathrm{NHCO}_{2} \mathrm{CH}_{3}$	H	63196-97-4	$\begin{aligned} & 3.85 \\ & 9.30 \end{aligned}$	8.00	8.15	136-138
3	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}$	NH_{2}	OCH_{3}	63196-98-5	5.30	7.94	4.05	119-120
5	$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$	NH_{2}	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	63196-99-6	5.24	7.99	4.46	110-112
$6^{\text {b }}$	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}$	NHCH_{3}	H	63197-00-2	3.20 3.25	7.80	7.80	130-131
8	$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$	NHCH_{3}	OCH_{3}	63197-01-3	3.02 3.08	7.96	4.02	99-101
9	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	OCH_{3}	63197-02-4	3.20	7.96	4.02	10-12
$10^{\text {b }}$	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{OS}$	SCH_{3}	H	63197-03-5	2.70	8.03	8.26	94-96
11	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}$	SCH_{3}	OCH_{3}	63197-04-6	2.78	8.18	4.16	5-6
$12^{\text {c }}$	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$	NH_{2}	$\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}$	63197-05-7	5.11	7.96	5.36 1.38	102-104
$15^{\text {c }}$	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}$	NHCH_{3}	H	63197-06-8	$\begin{aligned} & 3.03 \\ & 5.90 \end{aligned}$	8.14	7.55	164-165.5
$18^{\text {c }}$	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{OCl}$	Cl	H	63197-07-9		8.55	8.09	40-41
$19^{\text {c }}$	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{OBr}$	Br	H	63197-08-0		8.50	8.11	64-66
$20^{\text {c }}$	$\mathrm{C}_{3} \mathrm{HN}_{3} \mathrm{OBr}_{2}$	Br	Br	63197-09-1		8.63		113-115
$21{ }^{\text {c }}$	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Br}$	OCH_{3}	Br	63197-10-4	4.08	8.61		133-135
$22^{\text {c }}$	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{OBr}$	NH_{2}	Br	63197-11-5	7.90	9.00		130 dec
$23{ }^{\text {c }}$	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{OBr}$	NHCH_{3}	Br	63197-12-6	3.03 5.68	8.34		185-187
$24{ }^{\text {c }}$	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{OBr}$	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	Br	63197-13-7	4.21	8.33		176-177
$26^{\text {c }}$	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{Br}$	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	Br	63197-14-8	3.28	8.14		66-67.5

${ }^{a} \delta(\mathrm{ppm}), \mathrm{CDCl}_{3},{ }^{b} N_{2}$-oxide. ${ }^{\mathrm{c}} N_{1}$-oxide. ${ }^{d} \mathrm{R}_{5}=\mathrm{H} .{ }^{e}$ Satisfactory analytical values ($\pm 0.3 \%$ for $\mathrm{C}, \mathrm{H} . \mathrm{N}$) were reported for all compounds in table.

Table II. Experimental Variables for the Syntheses of Various 6-Alkoxy 3-Substituted 1,2,4-Triazines

Compd	Reaction time (h)	Temp, ${ }^{\circ} \mathrm{C}$,	\% yield	$\mathrm{mp},{ }^{\circ} \mathrm{C}$
$\mathbf{3}$	0.5	64.5	71	$119-120$
$\mathbf{5}$	0.5	78.4	64	$110-112$
$\mathbf{8}$	0.2	64.5	50	$99-101$
$\mathbf{9}$	0.2	64.5	51	$10-12$
$\mathbf{1 1}$	4	64.5	90	$5-6$
$\mathbf{1 2}$	36	82.4	65	$102-104$

warrants some mechanistic speculation. Since the reaction does not depend upon possible amine-imine tautomerization, and since the 3 -dimethylamino as well as 3 -methylthio 2 oxides react, any mechanistic considerations involving this phenomenon can be eliminated. Furthermore, since all of the functional groups situated at C_{3} are electron donating, and because an acidic medium as well as the presence of a 2 -rather than 1-oxide group is required for this transformaticn to occur, the following reaction path can be reasonably proposed:

The formation of the 3 -substituted 6-halo-1,2,4-triazine 1 -oxides from the corresponding 3 -substituted 1 -oxides, in conjunction with the observation that the same transforma-
tion does not take place on the 3-methoxy-1,2,4-iriazine, while it occurs in the 3 -dimethylamino 1,2,4-triazine, might well be accounted for by either one or both of the following two paths:
Path a

Path b

In view of the observation that 3 -methoxy-1,2,4-triazine does not react with bromine under these conditions, while the 3dimethylamino derivative does, this may simply reflect the greater contribution of path b in the latter instance. The N-1 oxide would simply facilitate electrophilic substitution of $\mathrm{C}-6$, beyond the activation possible by a 3 -methoxy substituent.

These new substitution and addition-deoxygenation reactions on the $1,2,4$-triazine ring system offer facile routes to functionally substituted 3,6 - and 6 -substituted $1,2,4$-triazines, compounds needed for the syntheses of various potential antibiotics. Further studies of these N -oxides and their synthetic utility are in progress.

Experimental Section

Mass spectra were recorded with a Hitachi Perkin-Elmer RMU-6M instrument on all new compounds. Their molecular ions and frag-
mentation patterns are consistent with the indicated structures. A Varian HA-100 instrument was used to record the ${ }^{1} \mathrm{H}$ NMR and a Perkin-Elmer R-26 instrument to record ${ }^{13} \mathrm{C}$ NMR spectra. Melting points are corrected. Elemental analyses were performed by Atlantic Microlab, Inc., Atlanta, Georgia, and the Analytical Services Laboratory, Department of Chemistry, The University of Alabama.

Reaction of 3-Amino-1,2,4-triazine 2-Oxide (1) with Methyl Chloroformate in Methanol. To a solution of $500 \mathrm{mg}(4.46 \mathrm{mmol})$ of 3 -amino-1,2,4-triazine 2 -oxide (1) in 150 mL of dry $\mathrm{CH}_{3} \mathrm{OH}$ was added $843 \mathrm{mg}(8.9 \mathrm{mmol})$ of methyl chloroformate. The solution was refluxed for 4 h , after which time an excess of NaHCO_{3} was added and refluxing was continued overnight. The solution was evaporated to dryness and the residue was sublimed to give a pale-yellow solid. This solid was chromatographed on grade III silica gel with CHCl_{3} as eluant to give 337 mg (60%) of 6-methoxy-3-amino-1,2,4-triazine (3) and 157 mg (2) of 3-methoxycarbonylamino-1,2,4-triazine 2 -oxide (2).

A similar procedure using ethyl chloroformate and dry $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ gave 406 mg (65%) of 6 -ethoxy-3-amino-1,2,4-triazine (5), along with 123 mg (15%) of 3 -ethoxycarbonylamino-1,2,4-triazine 2 -oxide (4).

3-Methylamino-1,2,4-triazine 2-Oxide (6). Into a solution of 350 mg (3.0 mmol) of 3-bromo-1,2,4-triazine 2 -oxide in 50 mL of dry tetrahydrofuran (THF) was bubbled gaseous methylamine. The solution, which immediately became yellow, was stirred for an additional 10 min. Evaporation to dryness gave a yellow solid which was crystallized from 50% petroleum ether/THF to give 190 mg (75%) of 3-methyl-amino-1,2,4-triazine 2 -oxide (6).

3-Methylthio-1,2,4-triazine 2-Oxide (10). Into a solution of 500 mg (2.8 mmol) of 3-bromo-1,2,4-triazine 2 -oxide in 250 mL of anhydrous ether was bubbled gaseous methyl mercaptan. The solution was stirred overnight. Excess $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added and stirring was continued for an additional hour. The solution was filtered and the solvent evaporated. The residue was triturated with 50 mL of hexane, filtered, and sublimed at $100^{\circ} \mathrm{C} / 0.05$ Torr to give $350 \mathrm{mg}(87 \%)$ of 3 -methythio-1,2,4-triazine 2 -oxide (10).

6-Alkoxy 3-Substituted 1,2,4-Triazines from 3-Substituted 1,2,4-Triazine 2-Oxides. (General procedure, cf. Table II for experimental variables.) In a typical experiment, a solution of 500 mg (4.5 mmol) of 3-amino-1,2,4-triazine 2-oxide in 50 mL of dry MeOH saturated with HCl was refluxed for 30 min . Excess sodium carbonate was added and refluxing was continued for 30 min . The mixture was filtered and the filtrate was evaporated to dryness. The residue was sublimed at $90^{\circ} \mathrm{C} / 0.05$ Torr to give 400 mg (71\%) of 6-methoxy-3-amino-1,2,4-triazine (3).

3-Amino-1,2,4-triazine $1-O x i d e(14)$. To $2.54 \mathrm{~g}(0.02 \mathrm{~mol})$ of 3 -methoxy-1,2,4-triazine 1 -oxide (13) was added to 40 mL of methanolic NH_{3}. The mixture was heated in a sealed tube at $100^{\circ} \mathrm{C}$ for $4-5 \mathrm{~h}$. After allowing the mixture to come to room temperature, 1.75 g of product (14) was collected by filtration. An additional 0.48 g of 12 could be obtained by evaporating the mother liquor and extracting the residue with 20 mL of CHCl_{3}; total yield 98%.
3 -Methylamino-1,2,4-triazine 1 -Oxide (15). A mixture of 3 -methoxy-1,2,4-triazine 1 -oxide (13) ($650 \mathrm{mg}, 5.0 \mathrm{mmol}$) and 10 mL of $5 \% \mathrm{MeNH}_{2}$ in MeOH was heated in a sealed tube at $90^{\circ} \mathrm{C}$ for 1 h . After cooling, 500 mg of 15 was collected by filtration. Additional product (150 mg) could be obtained by evaporating the mother liquor and extracting the residue with 10 mL of CHCl_{3}. An analytical sample was prepared by sublimation at $105-110^{\circ} \mathrm{C} / 0.01$ Torr.
3-Chloro-1,2,4-triazine 1-Oxide (18). To $6 \mathrm{~mL}(30 \mathrm{mmol})$ of warm 5 N HCl was added 330 mg (2.9 mmol) of 3 -amino-1,2,4-triazine 1 oxide (14). The stirred reaction mixture was cooled to $5^{\circ} \mathrm{C}$ and 414 $\mathrm{mg}(6.0 \mathrm{mmol})$ of NaNO_{2} dissolved in 2 mL of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise (5 min). After 5 min of additional stirring, 10 mL of CHCl_{3} was added and the mixture was allowed to come to room temperature. The layers were separated and the aqueous portion was extracted with additional $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The combined CHCl_{3} extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was chromatographed on alumina (grade III) with CHCl_{3} to give 90 mg of $18(24 \%)$. An analytical sample was prepared by sublimation at $30-40^{\circ} \mathrm{C} / 0.01$ Torr.
Reaction of 3-Amino-1,2,4-triazine 1-Oxide (14) with $\mathrm{HNO}_{2} /$

HBr. To $448 \mathrm{mg}(4.0 \mathrm{mmol})$ of 14 was added $6 \mathrm{~mL}(27 \mathrm{mmol})$ of 4.5 N HBr . The clear solution was cooled to $5^{\circ} \mathrm{C}$ and $552 \mathrm{mg}(8.0 \mathrm{mmol})$ of NaNO_{2} in 2 mL of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise (5 min). After 5 min of stirring, 10 mL of CHCl_{3} was added. The reaction was worked up as above to give 120 mg of $19(17 \%)$ and 50 mg of $20(5 \%)$. Both 19 and 20 were further purified by vacuum sublimation.

3-Methoxy-6-bromo-1,2,4-triazine 1-Oxide (21). To 127 mg (1.0 mmol) of 3-methoxy-1,2,4-triazine 1-oxide (13) dissolved in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2 mL of $2.2 \mathrm{M} \mathrm{Br}_{2}$ in CCl_{4} and $140 \mathrm{mg}(1.0 \mathrm{mmol})$ of annydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was stirred at room temperature overnight and then heated at $40-50^{\circ} \mathrm{C}$ for 1.0 h . The mixture was filtered and the filtrate evaporated in vacuo. The residue was chromatographed on neutral alumina (grade III) with $50 \% \mathrm{CHCl}_{3} / \mathrm{C}_{6} \mathrm{H}_{6}$ to give $100-120 \mathrm{mg}$ of $21(50-60 \%)$. An analytical sample was prepared by sublimation at $60^{\circ} \mathrm{C} / 0.01$ Torr.

6-Bromo-3-amino-1,2,4-triazine 1-Oxide (22). To $222 \mathrm{mg}(2.0$ mmol) of 3-amino-1,2,4-triazine 1-oxide (14) dissolved in 150 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 25 mL of reagent grade $\mathrm{CH}_{3} \mathrm{CN}$ was added 3 mL of 2.2 $\mathrm{M} \mathrm{Br}_{2}$ (6.6 mmol in CCl_{4}. The mixture was stirred at room temperature for 0.5 h and $420 \mathrm{mg}(30 \mathrm{mmol})$ of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added. After it was stirred for an additional 0.5 h , the mixture was filtered and evaporated in vacuo. The residue was triturated with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered to give 380 mg of 22 (100%). Compound 22 was further purified by sublimation at $130^{\circ} \mathrm{C} / 0.01$ Torr.

6-Bromo-3-methylamino-1,2,4-triazine 1-Oxide (23). To 126 $\mathrm{mg}(1.0 \mathrm{mmol})$ of 3-methylamino-1,2,4-triazine 1 -oxide (15) dissolved in 40 mL of $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CCl}_{4}$ was added 1 mL of $2.2 \mathrm{M} \mathrm{Br}_{2}(2.2 \mathrm{mmol})$ in CCl_{4}, followed by $0.2 \mathrm{~mL}(1.4 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred at room temperature overnight and then evaporated in vacuo, and the residue was chromatographed on alumina (grade III) with CHCl_{3}. Sublimation of the major component at $110^{\circ} \mathrm{C} / 0.01$ Torr gave 142 mg of $23(70 \%)$.

6-Bromo-3-dimethylamino-1,2,4-triazine 1-Oxide (24). To 140 $\mathrm{mg}(1.0 \mathrm{mmol})$ of 3-dimethylamino-1,2,4-triazine 1 -oxide (16) in 30 mL of CCl_{4} was added 1.5 mL of $2.2 \mathrm{M} \mathrm{Br}_{2}(3.3 \mathrm{mmol})$ in CCl_{4} followed by $0.2 \mathrm{~mL}(1.4 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred at room temperature for 0.5 h and then evaporated in vacuo. The residue was chromatographed on neutral alumina (grade III) with $50 \% \mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CHCl}_{3}$. The major component was sublimed at $110^{\circ} \mathrm{C} / 0.01$ Torr to give 165 mg of 24 (77%).

6-Bromo-3-dimethylamino-1,2,4-triazine (26). To $310 \mathrm{mg}(2.5$ mmol) of 3-dimethylamino-1,2,4-triazine (14) dissolved in 30 mL of CCl_{4} was added 2.5 mL of $2 \mathrm{M} \mathrm{Br}_{2}(5.0 \mathrm{mmol})$ in CCl_{4} followed by 0.4 $\mathrm{mL}(3 \mathrm{mmol})$ of $E t_{3} \mathrm{~N}$. After stirring overnight, the mixture was evaporated in vacuo. The residue was chromatographed on alumina (grade III) with $50 \% \mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{CHCl}_{3}$. The major component was sublimed at $40^{\circ} \mathrm{C} / 0.01$ Torr to give 252 mg of 26 (50\%).

Acknowledgment. We thank Diamond Shamrock Corp. for partial support of this work.

Registry No.-1, 61177-95-5; 7, 61178-04-9; 13, 27531-67-5; 14, 61178-11-8; 16, 61178-07-2; methyl chloroformate, 79-22-1; ethyl chloroformate, 541-41-3; 3-bromo-1,2,4-triazine 2-oxide, 61178-02-7; methylamine, 74-89-5; methyl mercaptan, 74-93-1; methanol, 67-56-1; ethanol, 64-17-5; 2-propanol, 67-63-0.

References and Notes

(1) W. W. Paudler and T. K. Chen, J. Heterocycl. Chem., 7, 767 (1970).
(2) H. Reim, A. Steigel, and J. Sauer, Tetrahedron Lett., 2901 (1975); B. Burg, W. Dittman, H. Reim, A. Steigel, and J. Sauer, ibid., 2897 (1975).
(3) J. Lee and W. W. Paudler, Chem. Commun., 1635 (1971).
(4) W. W. Paudler and T. K. Chen, J. Org. Chem. 36, 787 (1971).
(5) R. J. Radel, B. T. Keen, C. Wong, and W. W. Paudler, J. Org. Chem., 42, 546 (1977).
(6) D. K. Krass, Ph.D. Dissertation, The University of Alabama, 1975 (Diss. Abstr., 94 (1975)).
(7) T. K. Chen, Ph.D. Dissertation, Ohio University, 1971 (Diss. Abstr., 156 (1971)).
(8) 1 should be mentioned that the relaxation time of C_{6} in the bromo derivatives is extremely long. All ${ }^{13} \mathrm{C}$ NMR spectra were taken as 1.5 M solutions in CDCl_{3}. A Perkin-Elmer R-26 instrument was used.

2,4-Diaryl-3-dimethylaminothietane 1,1-Dioxides. Synthesis, Configuration, and Stability ${ }^{1}$

Frank S. Abbott,* James E. Coates, and Katsuji Haya
Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1W5, Canada

Received June 7, 1977

Abstract

Reaction of trans- β-dimethylaminostyrene (2) with phenylsulfene gave the thietane 1,1 -dioxide isomers 3 a and 4 a , and the acyclic isomer 5 a . Configurations were assigned to $\mathbf{3 a}$ and $\mathbf{4 a}$ on the basis of their NMR spectra and relative stabilities. Isomer $4 a$ was unstable and isomerized to a mixture of $3 a$ and $5 a$ on treatment with triethylamine. When heated in ethanol, 4a gave a number of decomposition products the nature of which confirmed the reversibility of the cycloaddition reaction. The isomer ratios for cyclic products were sensitive to solvent change and supported a dipolar intermediate for the cyclization. Reaction of 2 with p-chlorophenylsulfene gave only two cycloadducts ($\mathbf{3} \mathbf{b}$ and $\mathbf{4 b}$) which indicated that the configaration of 2 was maintained during cyclization. A substituent effect is evident in the cyclization with p-nitrophenylsulfene and in the stability of the cyclic product.

As part of an investigation of thietane 1,1-dioxide derivatives for analgetic activity, certain intermediary 2,4-diaryl3 -dimethylaminothietane 1,1 -dioxides (3 and 4) were prepared. We now wish to report on the chemistry of these intermediates.

It is well established that sulfenes, ${ }^{2}$ generated by baseinduced dehydrohalogenation of sulfonyl halides, react with enamines to afford 3 -aminothietane 1,1 -dioxides and, in some instances, acyclic substitution products. ${ }^{3}$ In the present work, the reaction of phenylmethanesulfonyl chloride (1a) with trans- β-dimethylaminostyrene (2) in the presence of triethylamine gave a mixture of the thietane 1,1-dioxide isomers 3 a and $\mathbf{4 a}$, and the acyclic species 5 a in high yield (Scheme I). The ratio of the three isomers in the crude product was conveniently determined from the integrals for the N-methyl protons in the NMR spectrum. Isomer separation was achieved by fractional crystallization.

Isomer 3a was assigned a cis configuration (phenyls cis to each other and trans to the dimethylamino group) on the basis of its NMR spectrum which showed H_{a} and H_{b} as a doublet, and H_{c} as a triplet $(J=9 \mathrm{~Hz})$. The magnitude of the coupling constant was explicable in terms of a folded thietane 1,1 dioxide ring ${ }^{5}$ on which all three ring substituents occupy pseudoequatorial positions and thus axial-axial coupling of vicinal H . That isomer 4a possessed a trans configuration was evident from the magnetic nonequivalence of H_{a} and H_{b} which were seen as a pair of doublets in the $100-\mathrm{MHz}$ spectrum. The doublets were further split as a consequence of ${ }^{4} J$ coupling $\left(J_{\mathrm{ab}}=1 \mathrm{~Hz}\right) .{ }^{5 \mathrm{e}}$ The shift to lower field $\left(\mathrm{H}_{\mathrm{b}}\right)$ is consistent with the observation that equatorial protons of 2 -halogeno-3morpholinothietane 1,1-dioxides always appear at lower field than axial protons. ${ }^{6 \mathrm{a}}$ A nonambigous assignment of conformation to 4 a using NMR spectroscopy was not possible because of the equivalency of the vicinal coupling corstants J_{ac} $\left.=J_{\mathrm{bc}}=9.4 \mathrm{~Hz}\right) .{ }^{5 \mathrm{~d}}$ However, it is likely that the conformation shown in Scheme I is preferred since inversion gives a species in which both a phenyl ring and the dimethylaminc group are pseudoaxial. Models indicate that severe nonbonded interactions between the dimethylamino group and sulfonyl oxygen would ensue in the inverted conformation. The trans phenyl configuration assigned to 4 a was further supported by the upfield shift of the N-methyl protons ($\delta 1.93$ vs. $\delta 2.10$ in 3a) which is attributed to the shielding of these protons by the phenyl ring cis to the dimethylamino group.

The NMR data for the cyclic isomers ($\mathbf{3 b}, \mathbf{4 b}$) obtained from the reaction of p-chlorophenylmethanesulfonyl chloride and 2 correlates well with that of 3 a and 4 a and readily allows determination of configuration. That only two cyclic isomers were formed in the reaction of 2 and p-chlorophenylsulfene was in agreement with the few reports in the literature to the

effect that the configuration of trans acyclic enamines is maintained in the sulfene cycloadducts. ${ }^{6 a, 11,12}$ It followed therefore that the p-chlorophenyl group in $\mathbf{4 b}$ was cis to the dimethylamino moiety. Chemical evidence supporting this configurational assignment was obtained by examination of the thiete products obtained from the amine oxide elimination reaction on cyclic isomers $\mathbf{3 b}$ and $\mathbf{4 b} .{ }^{13}$
In the case of p-nitrophenylsulfene cyclization with enamine (2) where only one cyclic product was obtained, a cis pseudoequatorial arrangement of aromatic groups was assigned. Considering the instability of the trans isomers 4 a and 4b together with solvent effects on isomer ratios (see below) the most stable isomer $3 \mathbf{c}$ is expected. In the NMR spectrum the N-methyl protons of 3 c appear at $\delta 2.14$ in accord with values observed for cis isomers $\mathbf{3 a}$ and $\mathbf{3 b}$. H_{ε} and H_{b} in $\mathbf{3 c}$ although formally nonequivalent surprisingly appear as a doublet.

Table I. Effect of Solvent on the Composition of Isomers from the Reaction of trans- β-Dimethylaminostyrene with Sulfenes Derived from Sulfonyl Chlorides (la,b,c)

Solvent	Ratio, \%							
	$(\mathrm{R}=\mathrm{H})^{a, b}$			($\mathrm{R}=\mathrm{Cl}$)			$\left(\mathrm{R}=\mathrm{NO}_{2}\right)^{\text {a }}$	
	c	t	Acyclic	c	t	Acyclic	c	acyclic
$\mathrm{Et}_{2} \mathrm{O}-\mathrm{THF}$	15	82	3				98	2
CHCl_{3}	19	74	7	20	70	10	89	11
$\mathrm{CH}_{3} \mathrm{CN}$	35	60	5	40	55	5	72	28
$\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}^{\text {c }}$	36	47	17				67	33

${ }^{a}$ Reactions run under identical conditions using the same quantities of reactants. ${ }^{t}$ Essentially identical results were obtained when the reaction was repeated. ${ }^{c} \mathrm{H}_{2} \mathrm{O}$ at twice the molar equivalent of enamine was added to flask just prior to initiating the addition of sulfonyl chloride.

Acyclic isomer 5 a was readily identified from IR and NMR spectra. Spectroscopic evidence was obtained for an acyclic isomer analogous to 5 a from the reaction of enamine and p chlorophenylsulfene but the compound was not isolated. The corresponding acyclic isomer 5 c is bright yellow. Comparison of the UV spectrum of $\mathbf{5 c}\left(\lambda_{\max } 250(\epsilon 18700)\right.$ and $271 \mathrm{~nm}(\epsilon$ $19700)$ with that of $5 a\left(\lambda_{\max } 253 \mathrm{~nm}(\epsilon 15800)\right.$) indicated that the nitro group was attached to the styryl chromophore in $5 \mathbf{c}$. This required that $5 \mathbf{c}$ arise from a cycloadduct rather than by direct sulfonylation of 2.

The observation that considerable decomposition occurred when the crude product was crystallized from hot hexaneethanol prompted an investigation of the relative stability of 3a and 4a. After refluxing a sample of pure cis isomer 3a in ethanol for $1 \mathrm{~h}, 81 \%$ remained unchanged. When trans isomer 4a was treated in the same manner, complete decomposition occurred. NMR analysis revealed that approximately 57% of the decomposition products from 4 a consisted of $2(28 \%)$, 3a (11%), and ethyl phenylmethanesulfonate ($\mathbf{6}, 61 \%$). Part of the remaining 43% was apparently composed of sulfonic acid salts. NMR analysis of the water soluble products obtained by refluxing a sample of 4 a in ethanol for 12 h showed that 67% of the trans isomer had been converted to dimethylammonium phenylmethanesulfonate (7). When an ethanol solution of 4 a was analyzed by VPC with the injection port at $280^{\circ} \mathrm{C}$, peaks attributable to $\mathbf{2}$ and $\mathbf{6}$ and a peak having the same retention time as phenylacetaldehyde (8) were observed. Under the same conditions, 3a gave only minor, unidentified peaks. These results confirm the reversibility of the cycloaddition reaction. The cycloaddends, 2 and 9 , are regenerated depending on the relative stability of the cycloadduct (Scheme II). Reaction of 9 with ethanol accounted for the sulfonate ester 6, and reaction with water present in the ethanol to give a sulfonic acid and subsequent protonation of dimethylamine liberated by hydrolysis of 2 explained the formation of 7. Hamid and Trippett ${ }^{7}$ have also presented evidence that the cycloaddition of sulfenes to enamines is, in some cases at least, reversible.

To further study the relative stability of $3 \mathbf{a}$ and $\mathbf{4 a}$, a solution of crude material in acetonitrile (consisting of 19% 3a, 74% $\mathbf{4 a}$, and $7 \% \mathbf{5 a}$) and an equimolar amount of triethylamine hydrochloride was treated with triethylamine at room temperature for 4 days. NMR analysis of the product indicated that 92% of the starting material was accounted for and of this 64% was $\mathbf{3 a}, 8 \% \mathbf{4 a}$, and $28 \% \mathbf{5 a}$. The decisive conversion of $\mathbf{4 a}$ to 3 a is somewhat analogous to the base-induced epimerization of trans-2,4-diphenylthietane 1,1-dioxide to the cis isomer reported by Dodson and co-workers ${ }^{5 \mathrm{~b}}$ and confirms the configurational assignments made for 3 a and 4 a . Truce reported a slow isomerization of the least stable isomer of $2,2-$ dimethyl-3-dimethylamino-4-phenylthietane 1,1-dioxide in acetonitrile containing triethylamine to the more stable trans isomer (phenyl trans to amino moiety). ${ }^{6 \mathrm{~b}}$ It was also apparent from the present results that some cyclic material underwent

ring opening to give 5a. Alkali hydroxide-catalyzed cleavage of thietane 1,1-dioxides to the corresponding acyclic isomers is known ${ }^{4,8,9}$ and certain 2-halogeno-3-morpholinothietane 1,1-dioxides ring cleave to acyclics with refluxing dioxane and triethylamine. ${ }^{6 c}$

The relative stabilities of the cyclic isomers of 2-(4-chlo-rophenyl)-3-dimethylamino-4-phenylthietane 1,1-dioxide are quite evident. The trans (4b) decomposed on attempted recrystallizations from hot solvent while cis isomer (3b) could be readily crystallized. This apparent substituent effect on stability is even more evident with the single cis p-nitro analogue. Pure 3c dissolved in acetonitrile isomerized spontaneously at room temperature to give $\mathbf{5 c}$. Adding triethylamine to a solution of $\mathbf{3 c}$ results in the immediate formation of a dark reddish color. In addition to the formation of 5 c some crude water-soluble product could be recovered which from the IR was apparently salts of p-nitrophenylsulfonic acid.

The ratio of isomers in the products from these cyclizations was found to vary with the solvent used and a brief study of these effects was undertaken. In most instances the yields were high ($>90 \%$). Isomer compositions of the crude products were determined by NMR. Solvents employed and the results are recorded in Table I.

The predominant formation of the least stable trans isomers in the cyclizations of phenyl- and p-chlorophenyl sulfenes is not unusual. Similar findings for sulfene-enamine reactions have been reported. ${ }^{6 a, b}$ As solvent polarity is increased the more stable cis isomers were formed in increasing amounts suggesting a dipolar intermediate may be involved in these cyclizations. ${ }^{6 d}$

Before considering this possibility it was important to determine whether solvent effects were reaction mode related or simply a result of isomerization and ring opening of lesser stable trans products which could increase with rising solvent polarity. ${ }^{10}$ In the instance of phenylsulfene cyclization with β-dimethylaminostyrene this is not the case and several experiments illustrated this. Using acetonitrile as solvent the relative composition of isomers $\mathbf{3 a}, \mathbf{4 a}$, and $5 \mathbf{5}$ was the same whether reactants were dumped together with workup in 15
\min or if sulfonyl chloride was added during 1 h and the reaction stirred a further 15 h (ice- $\mathrm{H}_{2} \mathrm{O}$ conditions). If postisomerization were operative the longer addition and reaction time should result in greater proportions of cis and perhaps acyclic isomer since trans encounters excess triethylamine. Pure trans isomer was subjected to $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ under the usual reaction conditions in the solvents THF-Et $\mathrm{O}_{2} \mathrm{O}$ and acetonitrile. Upon workup (98% recoveries) no cis or acyclic isomer could be detected in the NMR of either of the crude products. Finally pure trans isomer (half the molar equivalent of reactants in a typical reaction) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}-$ $\mathrm{H}_{2} \mathrm{O}$ (see Table I) and the usual cyclization carried out using half the normal quantities of reactants. NMR analysis of the product (18% 3a, $75 \% 4$ a, $7 \% \mathbf{5 a}$) showed that added trans isomer acted as a simple diluent with no degradation.

Mechanistic possibilities for the cyclization of a variety of sulfenes to enamines have recently been discussed in the literature. ${ }^{6 \mathrm{~b}}$ Both concerted and stepwise processes were considered but experimental data do not as yet provide the answer concerning a definitive mechanism. Our own data tend to support the zwitterionic intermediate concept at least for the sulfene-enamine cyclizations reported here. Electrostatic attractions of the delocalized charges in the intermediate favor the formation of the trans product as observed when $\mathrm{R}=\mathrm{H}$

or Cl . As solvent polarity increases a tighter solvation effect on the dipolar species would allow greater product discrimination. Hence the formation of the more thermodynamically stable cis isomer is increased in the polar acetonitrile solvent.

The formation of a single cis isomer when $\mathrm{R}=\mathrm{NO}_{2}$ (p nitrophenyl trans to amino moiety) has similarily been observed by Truce and Rach. ${ }^{\text {b }}$ They suggested a possible substituent effect which through greater carbanion stajilization or more efficient charge dispersal, decreasing electrostatic attractions would lead to the more stable cyclic product. Rapid isomerization of least stable isomer under reaction conditions could not be discounted and in our example may well be true considering the low stability of even the cis isomer (3c). It is surprising, however, that no trans was detected in the $\mathrm{Et}_{2} \mathrm{O}-$ THF reaction (Table I). The yiełd was high with little formation of acyclic isomer partly because of the low solubility of $3 \mathbf{c}$ which precipitates readily once formed. Considering the physical properties of the trans isomers $4 a$ and $4 b$ (decreased solubilities compared to cis isomers) at least some trans isomer corresponding to 3 c was expected particularly if it was the preferred isomer. We therefore tend to interpret the results of the p-nitrosulfene reaction as a substituent effect with respect to a zwitterionic mechanism.

The existence of a zwitterionic intermediate in these cycloadditions suggests the possibility of increased formation of acyclic product as solvent polarity increases. ${ }^{3 \mathrm{a}}$ This was not observed (Table I, $\mathrm{R}=\mathrm{H}, \mathrm{Cl}$) in our study and is consistent with previous reports for sulfene-enamine cycloadditions. ${ }^{3 \mathrm{a}}$ The addition of a small amount of $\mathrm{H}_{2} \mathrm{O}$ to acetonitrile was an attempt to trap intermediate by providing a ready proton source. The overall yield of products ($3 \mathbf{a}, 4 \mathrm{a}, 5 \mathrm{a}$) was slightly reduced since the $\mathrm{H}_{2} \mathrm{O}$ present can compete for reaction with the sulfene. The proportion of acyclic isomer 5 a was found to be significantly increased (Table I). While apparently successful, this unfortunately represents only one example.

B:
It was thought that p-nitrophenylsulfene cyclization should have given further evidence of this nature. A suostituent effect, if operative, by stabilizing or prolonging the lifetime of the intermediate would enhance acyclic isomer formation. When the reaction was run in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ no evidence for any acyclic isomer other than 5c (formed from -ing opening of cyclic isomer) could be detected. Adding pure 3c to $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ under the reaction conditions gave the same proportion of acyclic ($5 \mathbf{c}$) as obtained in the normal cycloaddition reaction.

Experimental Section

Melting points were determined with a Thomas-Hoover capillary melting point apparatus and are uncorrected. Infrared spectra were recorded with a Beckman IR-10 spectrophotometer using potassium bromide wafers unless otherwise stated. Ultraviolet spectra were determined in acetonitrile with a Bausch and Lomb Model 505 spectrophotometer. Nuclear magnetic resonance spectra were obtained on a Varian A-60, T-60 or XL-100 spectrometer, using tetramethylsilane as the internal standard; unless otherwise stated, the solvent was deuteriochloroform and the concentration of solutions was ca. 10%. Vapor phase chromatography was carried out on a Micro-Tek gas chromatograph Model MT-200 with flame ionization detector using a $6 \mathrm{ft} \times 5 / 32$ in. (i.d.) stainless steel column packed with 5% SE- 30 on Chromport ($70-80$ mesh); conditions are specified. Microanalyses were performed by Alfred Bernhardt Mikronanalytisches Laboratorium, 5251 Elbach uber Engelskirchen, Fritz-Pregl-Strasse 14-16, West Germany.

Materials. Commercial anhydrous diethyl ether was dried using sodium wire. Dry acetonitrile was obtained by distilling reagent grade solvent from phosphorus pentoxide. Anhydrous tetrahydrofuran was prepared by distilling solvent of low peroxide content from lithium aluminum hydride. Dry, ethanol-free chloroform was prepared according to the sulfuric acid procedure of Vogel. ${ }^{14}$

The preparation of β-dimethylaminostyrene (2) has previously been described. ${ }^{4}$ The NMR spectra of solution and neat samples showed the presence of only one geometric isomer which was assigned a trans configuration on the basis of the magnitude of the coupling constant for the vinyl protons ($J=14 \mathrm{~Hz}$). This was in agreement with the assignment made by Caserio and co-workers. ${ }^{15}$ VPC analysis of an acetone solution of 2 with the nitrogen flow at $54 \mathrm{~mL} / \mathrm{min}$ and the injection port, oven, and detector at 255,150 , and $243^{\circ} \mathrm{C}$, respectively, gave one peak, retention time 2.5 min .

Phenylmethanesulfonyl chlorides were prepared according to literature methods. ${ }^{16,17}$ Triethylamine was distilled from KOH pellets and stored over the same.

General Procedure for the Reaction of trans- β-Dimethylaminostyrene (2) with Arylmethanesulfonyl Chlorides. A stirred solution of 1.0 equiv of 2 and 1.0 equiv of triethylamine in solvent was cooled in ice water. A dry nitrogen atmosphere was provided and the system was protected from moisture. Arylmethanestlfonyl chloride (1.0 equiv) dissolved in solvent was added dropwise over a period of 15 min . After stirring for an additional 45 min the reaction mixture was evaporated under vacuum with the aid of a lukewarm water bath. The resulting residue was dissolved in CHCl_{3} and extracted with several equal portions of water to remove the triethylamine hydrochloride. Evaporation of the dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ organic layer under reduced pressure gave the crude product.
cis-2,4-Diphenyl-3-dimethylaminothietane 1,1-Dioxide (3a). Under the general conditions of the reaction, using 100 mL of acetonitrile as solvent, 1a ($12.95 \mathrm{~g}, 0.069 \mathrm{~mol}$) and $2(10.00 \mathrm{~g}, 0.068 \mathrm{~mol})$ afforded $20.19 \mathrm{~g}(98.6 \%)$ of crude solid. ${ }^{18}$ Crystallization from hex-ane-ethanol followed by three recrystallizations from hexane-methyl ethyl ketone gave 3 a as transparent plates, $\mathrm{mp} 137-138^{\circ} \mathrm{C}$ dec; IR $1320,1133 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.70-7.23$ ($\mathrm{m}, 10$, phenyls), 5.28 (d, $2, J=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}$ and $\left.\mathrm{H}_{\mathrm{b}}\right), 3.68\left(\mathrm{t}, \mathrm{l}, J=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right)$, ard $2.10(\mathrm{~s}, 6, \mathrm{~N}-$ methyls).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}$ (301.41): C, 67.74; H, 6.35, N, 4.65. Found: C, 67.91; H, 6.46; N, 4.64.
trans-2,4-Diphenyl-3-dimethylaminothietane 1,1-Dioxide (4a). ${ }^{4}$ Under the general conditions, $12.95 \mathrm{~g}(0.069 \mathrm{~mol})$ of la dissolved in 126 mL of $1: 1 \mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}$ was reacted with $10.00 \mathrm{~g}(0.068 \mathrm{~mol})$ of 2 in 100 mL of $\mathrm{Et}_{2} \mathrm{O}$ to give $19.80 \mathrm{~g}(96.7 \%)$ of crude yellow solid. ${ }^{18}$ Crystallization from hexane-methyl ethyl ketone gave 4 a as white, fluffy needles, mp $112-113^{\circ} \mathrm{C}$ dec. After two recrystallizations, the mp was $114.5-115.5^{\circ} \mathrm{C} \mathrm{dec}\left(\mathrm{lit.}^{4} 109^{\circ} \mathrm{C}\right.$); IR $1320,1160 \mathrm{~cm}^{-1}$ (sulfone); NMR (agreed with lit. ${ }^{4}$) $\delta 7.68-7.22$ (m, 10, phenyls), 5.43 (broad t, $2, \mathrm{H}_{\mathrm{a}}$ and H_{b}), 3.68 (t, $1, J=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}$), and 1.93 ($\mathrm{s}, 5, \mathrm{~N}$-methyls); NMR (100 MHz) $\delta 5.494\left(\mathrm{~m}, 1, J_{\mathrm{bc}}=9.4 \mathrm{~Hz}, J_{\mathrm{ba}}=1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 5.304$ $\left(\mathrm{m}, 1, J_{\mathrm{ac}}=9.4 \mathrm{~Hz}, J_{\mathrm{ab}}=1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right)$.

Benzyl 1-Phenyl-2-dimethylaminoethenyl Sulfone (5a). The first mother liquor from the isolation of 3a was cooled in a dry ice box overnight which caused an off-white solid to precipitate. Evaporation of the supernatant gave a brown oil which was heated with hexane and dissolved with a minimum amount of ethanol. Cooling the solution in a refrigerator gave 5 a as colorless crystals which were recrystallized from methyl ethyl ketone to give transparent plates, $\mathrm{mp} 130-131{ }^{\circ} \mathrm{C}$; IR 1630 (enamine), 1276, $1125 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.41$ (d, 10 , phenyls), 7.00 (s, l, vinyl), 4.05 ($\mathrm{s}, 2$, benzyl), and 2.60 ($\mathrm{s}, 6, \mathrm{~N}$-methyls); $U V_{\text {max }} 253 \mathrm{~nm}(\epsilon 15800)$.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}$ (301.41): C, 67.74; H, 6.35; $\mathrm{N}, 4.65$. Found: C, 67.78; H, 6.34; N, 4.76.

Decomposition of trans-2,4-Diphenyl-3-dimethylaminothietane 1,1-Dioxide (4a) in Ethanol. A solution of 233 mg of pure 4a in 50 mL of ethanol was heated at reflux for 1 h . Evaporation under reduced pressure gave a yellow, mobile oil which possessed an odor similar to that of 2 . A strong band at $1640 \mathrm{~cm}^{-1}$ in the IR spectrum (neat) supported the presence of 2 and strong bands at 1350,1170, and $920 \mathrm{~cm}^{-1}$ suggested the presence of a sulfonic acid ester. In the NMR spectrum signals attributable to 2, 3a, and ethyl phenylmethanesulfonate (6) were apparent by comparison with spectra of authentic samples. No absorption due to the starting material 4a was observed. The three compounds accounted for approximately 57% of the oil of which 28% was $2,11 \%$ 3a and 61%. A major peak at $\delta 2.28$ was unassigned.

A solution of $467 \mathrm{mg}(1.55 \mathrm{mmol})$ of pure 4 a in 100 mL of ethanol was heated at reflux for 12 h . Evaporation under reduced pressure gave a viscous oil with an aldehydic odor. The oil was dissolved in 30 mL of CHCl_{3} and extracted with three $20-\mathrm{mL}$ portions of water. Evaporation of the pooled aqueous extracts in vacuo afforded 300 mg of white, gummy solid. NMR analysis indicated that 75% of this material ($225 \mathrm{mg}, 1.04 \mathrm{mmol}$) was dimethylammonium phenylmethanesulfonate (7). Three crystallizations from hexane-acetone gave transparent needles, mp $116-118^{\circ} \mathrm{C}$. A mixture melting point with an authentic sample of 7 was not depressed and the IR spectra were superimposable.

VPC analysis of an ethanol solution of pure 4a with the nitrogen flow at $55 \mathrm{~mL} / \mathrm{min}$, and the injection port, oven, and detector at 280 , 140 , and $250^{\circ} \mathrm{C}$, respectively, gave four peaks excluding that of the solvent. Three of the peaks were identified by coinjection with authentic samples as phenylacetaldehyde $8(1.4 \mathrm{~min}), 2(4.4 \mathrm{~min})$ and $6(7.8 \mathrm{~min})$.
Ethyl Phenylmethanesulfonate (6). ${ }^{19} \mathrm{To}$ a refluxed solution of $5.06 \mathrm{~g}(0.050 \mathrm{~mol})$ of triethylamine in 100 mL of absolute ethanol was added $9.53 \mathrm{~g}(0.050 \mathrm{~mol})$ of la dissolved in 30 mL of $\mathrm{CH}_{3} \mathrm{CN}$ dropwise over a period of 1 h . The system was protected from moisture with a drying tube. After refluxing for another 2 h the reaction was evaporated under reduced pressure. The resulting residue was dissolved in 50 mL of CHCl_{3} and extracted with three $50-\mathrm{mL}$ portions of water. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic layer gave $4.29 \mathrm{~g}(50 \%)$ of crude product (6) as a pale yellow oil. Double distillation afforded an analytical sample of 6 as a colorless liquid, bp $87^{\circ} \mathrm{C}(0.02 \mathrm{~mm})$ (lit. ${ }^{19}$ $129-130^{\circ} \mathrm{C}(0.04 \mathrm{~mm})$); IR (neat) $1350,1170,920 \mathrm{~cm}^{-1}$ (sulfonic acid ester); NMR $\delta 7.32$ (s, 5, phenyl), 4.32 (s, 2, benzyl), 4.11 (q, 2, $J=7$ Hz , methylene), and $1.25(\mathrm{t}, 3, J=7 \mathrm{~Hz}$, methyl).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$ (200.26): C, 53.98; H, 6.04; S, 16.01. Found: C, 53.88; H, 6.15; S, 16.16.
Dimethylammonium Phenylmethanesulfonate (7). Phenylmethanesulfonyl chloride ($1 \mathbf{a}$) ($2.0 \mathrm{~g}, 0.011 \mathrm{~mol}$) was heated in 150 mL of boiling water for 30 min to give a homogeneous solution (acid to indicator paper). The solution was reduced to a volume of about 30 mL by evaporation under vacuum and then treated with excess dimethylamine. The remaining water was evaporated to give a pale yellow oil which solidified when washed with acetone. Three crystallizations from hexane-acetone gave $1.1 \mathrm{~g}(46 \%)$ of 7 as transparent needles, $\mathrm{mp} 116-118^{\circ} \mathrm{C}$; IR 3180-2820, 2475 (ammonium band), 1210 , $1052 \mathrm{~cm}^{-1}$ (sulfonic acid); NMR $\delta 8.37-7.72$ (band, $2, \mathrm{NH}_{2}$), 7.52-7.20
(m, 5, phenyl), 4.05 ($\mathrm{s}, 2$, benzyl), and $2.26(\mathrm{t}, 6, J=5.5 \mathrm{~Hz}$, N-methyls).
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$ (217.28): C, 49.75; H, 6.96; $\mathrm{N}, 6.45$. Found: C, 49.68; H, 7.38; N, 6.39.
Isomerization of trans-2,4-Diphenyl-3-dimethylaminothietane 1,1-Dioxide (4a). Crude product which was essentially pure in the three isomers and consisted of 19% 3a, $74 \% 4 \mathrm{a}$, and $7 \% 5$ (NMR analysis) was used. To a stirred sclution of $3.01 \mathrm{~g}(0.010 \mathrm{~mol})$ of crude product and $1.38 \mathrm{~g}(0.010 \mathrm{~mol})$ of triethylamine hydrochloride in 20 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$ and 10 mL of dry CHCl_{3} which was protected from moisture were added two drops of triethylamine. The isomerization was followed by removing samples at intervals and observing the increase in intensity of the enamine band ($1630 \mathrm{~cm}^{-1}$) of 5 a . The greatest increase occurred during the first day and no change was detectable at the end of the third day. The solution was allowed to sit for another 24 h and then evaporated in vacuo to give a residue which was dissolved in 20 mL of CHCl_{3} and extracted with three $20-\mathrm{mL}$ portions of water. Evaporation of the dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ organic layer under reduced pressure gave a yellow solid. NMR analysis of this material indicated that 92% was accounted for by the three isomers of which 64% was $3 \mathrm{a}, 8 \% 4$ a, and $28 \% 5$ a.
trans-2-(4-Chlorophenyl)-3-dimethylamino-4-phenylthietane 1,1-Dioxide (4b). Under the conditions of the general reaction, 4.50 $\mathrm{g}(0.020 \mathrm{~mol})$ of 1 b in 38 mL of CHCl_{3} was added dropwise over a period of 0.5 h to $2.94 \mathrm{~g}(0.02 \mathrm{~mole})$ of 2 and $2.02 \mathrm{~g}(0.020 \mathrm{~mole})$ of triethylamine in 30 mL of CHCl_{3}. After 8 h , the white precipitate (4 b , $3.79 \mathrm{~g}, 56 \%$) was collected by suction filtration and washed with CHCl_{3}. Extensive decomposition occurred when crystallization of crude 4b was attempted. Washing several times with CHCl_{3} gave an analytical sample, mp $154{ }^{\circ} \mathrm{C}$ dec; ${ }^{20}$ IR $1323,1164 \mathrm{~cm}^{-1}$ (sulfone); NMR ($\approx 2 \%$) $\delta 7.69-7.40\left(\mathrm{~m}, 9\right.$, aromatics), $5.49\left(\mathrm{~d}, 1, J=9.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right)$, $5.31\left(\mathrm{~d}, 1, J=9.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 3.69\left(\mathrm{t}, 1, J=9.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right)$, and $1.96(\mathrm{~s}, 5$, N -methyls).

Anal. Calcd fo: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{~S}$ (335.85): $\mathrm{C}, 60.80 ; \mathrm{H}, 5.40 ; \mathrm{N}, 4.17$. Found: C, 60.63; H, 5.20; N, 4.18.
cis-2-(4-Chlorophenyl)-3-dimethylamino-4-phenylthietane 1,1-Dioxide (3b). Evaporation under reduced pressure of the filtrate from the reaction described for $4 b$ gave a residue which was redissolved in 25 mL of CHCl_{3} and extracted with four $10-\mathrm{mL}$ portions of water. Evaporation of the dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ organic layer followed by washing of the resulting residue with $\mathrm{Et}_{2} \mathrm{O}$ yielded a yellow solid (0.82 g, 12%) which censisted of 35% 3b and 65% 4b (NMR analysis ${ }^{21}$). Evaporation of the $\mathrm{Et}_{2} \mathrm{O}$ washings followed by washing of the residue with $\mathrm{Et}_{2} \mathrm{O}$ afforded $0.30 \mathrm{~g}(4 \%)$ of yellow solid. Crystallization of this latter material from hexane-ethanol gave the cis isomer as white needles, mp 145-146 ${ }^{\circ} \mathrm{C}$ dec; IR $333,1164 \mathrm{~cm}^{-1}$ (sulfone); NMR δ 7.63-7.26 (m, 9, aromatics), $5.25\left(\mathrm{~d}, 1, J=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}{ }^{22}\right.$), 5.22 ($\mathrm{d}, 1, J=$ $9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}$), 3.57 ($\mathrm{t}, \mathrm{I}, J=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}$), and 2.08 ($\mathrm{s}, 6, \mathrm{~N}$-methyls).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{~S}$ (335.85): C, $60.80 ; \mathrm{H}, 5.40 ; \mathrm{N}, 4.17$. Found: C, 60.88; H, 5.34; N, 4.20 .
cis-2-(4-Nitrophenyl)-3-dimethylamino-4-phenylthietane 1,1-Dioxide (3 ci. Under the general reaction conditions p-nitrophenylmethanesulfonyl chloride $2.36 \mathrm{~g}(0.01 \mathrm{M})$ in 25 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added to $1.47 \mathrm{~g}(0.01 \mathrm{M})$ of 2 and $1.01 \mathrm{~g}(0.01 \mathrm{M})$ of $\mathrm{Et}_{3} \mathrm{~N}$ in 25 mL of $\mathrm{CH}_{3} \mathrm{CN}$. Cold ether (200 mL) is added to precipitate $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$. After filtration the filtrate was evaporated to give an orangish residue. Addition of ether causes product to precipitate. Upon filtering and evaporation further product is obtained on treating oily residue with ether and hexane. ${ }^{18}$ Crystallization from hexane-methyl ethyl ketone gave 3 c as pale yellow prisms, $\mathrm{mp} 130-131^{\circ} \mathrm{C}$ dec; IR 1524,1354 (nitro group), 1336, 1324, 1160, $1138 \mathrm{~cm}^{-1}$ (sulfone); NMR $88.47-8.20$ (m, 2, protons ortho to nitro group), 7.87-7.60 ($\mathrm{m}, 2$, protons meta to nitro group), $7.60-7.33$ (m , $\mathbf{~}$, phenyl), $5.36\left(\mathrm{~d}, 2, J=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right.$ and H_{b}), 3.70 ($\mathrm{t}, 1, J=9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}$), and 2.14 ($\mathrm{s}, 6, \mathrm{~N}$-methyls).
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (346.40): C, 58.95; H, 5.24; N, 8.09. Found: C, 60.14; H, 5.12; N, 7.99.
Although the analysis was not satisfactory for carbon, the results of the analyses performed on the thiete 1,1 -dioxide derived from $3 \mathbf{c}$ were satisfactory ${ }^{13}$
With $\mathrm{Et}_{2} \mathrm{O}-\mathrm{THF}$ as solvent further addition of $\mathrm{Et}_{2} \mathrm{O}$ when reaction is complete results in precipitation of most of the product. ${ }^{18} \mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ is removed by triturating solid with $\mathrm{H}_{2} \mathrm{O}$. With CHCl_{3} as solvent $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ is removed by extracting CHCl_{3} with $\mathrm{H}_{2} \mathrm{O}$. Evaporation of the dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right) \mathrm{CHCl}_{3}$ leaves a dark orange-red oil which on ether treatment provides solid crude product. ${ }^{18}$

After sitting at room temperature for 2 h , a solution of 100 mg of $\mathbf{3 c}$ in 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ had turned bright orange. NMR analysis of the oil obtained by evaporating the solution under reduced pressure after 43 h indicated that 87% was accounted for by the isomers 3 c and 5 c of which 34% was $\mathbf{3 c}$ and $76 \% \mathbf{5 c}$.

Benzyl 1-(4-Nitrophenyl)-2-dimethylaminoethenyl Sulfone (5c). A reddish-black oil was obtained when the $\mathrm{Et}_{2} \mathrm{O}$ filtrate from the synthesis of $3 \mathbf{c}$ was evaporated under reduced pressure. Washing the oil with $\mathrm{Et}_{2} \mathrm{O}$ caused $1.7 \mathrm{~g}(6.5 \%)$ of yellow solid to separate which was found to consist of $36 \% 3 \mathbf{c}$ and $61 \% \mathbf{5 c}$ (NMR analysis). Two crystallizations from 1-butanol gave $\mathbf{5 c}$ as bright yellow, flat needles, $\mathrm{mp} 165.5-166.5^{\circ}$; IR 1625 (enamine), 1530, 1355 (nitro group), 1297, $1135,1115 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 8.30-8.03$ (m, 2, protons ortho to nitro group), 7.60-7.30 (m, 7, protons meta to nitro group and phenyl protons), 7.11 (s, 1, vinyl), 4.13 (s, 2, benzyl), and 2.67 (s, 6, N-methyls); $\mathrm{UV}_{\text {max }} 250(\epsilon 18700)$ and $271 \mathrm{~nm}(\epsilon 19700)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (346.40): C, 58.95; H, 5.24; N, 8.09. Found: C, 58.99; H, 5.09; N, 8.22.

Acknowledgments. This work was supported in part by Medical Research Council of Canada Grant MA-3044.

Registry No.-1a, 1939-99-7; 1b, 6966-45-6; 1c, 4025-75-6; 2, 14846-39-0; 3a, 63268-45-1; 3b, 63231-37-8; 3c, 63231-38-9; 4a, 63268-46-2; 4b, 63268-47-3; 5a, 63231-34-5; 5c, 6323--35-6; 6, 42454-54-6; 7, 63231-36-7.

References and Notes

(1) Taken in part from the Ph.D. thesis of J. E. Coates, University of British Columbia, 1972.
(2) For review of sulfenes see J. F. King, Acc. Chem. Res., 8, 10 (1975).
(3) For reviews see: (a) G. Opitz, Angew. Chem. Int. Ed. Engl., 6, 107 (1967): (b) W. E. Truce and L. K. Liu, Mech. React. Sulfur Compd., 4, 145 (1969).
(4) Isomer 4a has previously been reported, however, without configurational assignment: J. N. Wells and F. S. Abbott, J. Med. Chem., 9, 489 (1966).
(5) (a) L. A. Paquette and M. Rosen, J. Am. Chem. Soc., 89, 4102 (1967); (b) R. M. Dodson, E. H. Jancis, and G. Klose, J. Org. Chem., 35, 2520 (1970); (c) L. A. Paquette, J. P. Freeman, and R. W. Houser, ibid., 34, 2901 (1969);
(d) the cis and trans vicinal couplings in 2,2,4-trimethylthietane 1,1-dioxide are reported to be identical $(J=9.4 \mathrm{~Hz})$: B. M. Trost, W. L. Schinski, F. Chen, and I. B. Mantz, J. Am. Chem. Soc., 92, 676 (1971); (e) similar transannular coupling has been reported for trans-2,4-diphenylthietane 1-oxide: see ref 5 b.
(6) (a) P. DelButtero and S. Maiorana, J. Chem. Soc., Perkin Trans. 1, 2540 (1973); (b) w. Truce and J. Rach, J. Org. Chem., 39, 1109 (1974); (c) P. DelButtero, S. Maiorana, and M. Trautluft, J. Chem. Soc., Derkin Trans. 1, 1411 (1974). (d) T. Tanabe, T. Shingaki, and T. Nagai, Chem. Lett., 679 (1975), similarly report solvent polarity favoring the more stable isomer of phenylsulfene cyclization with enamines.
(7) A. M. Hamid and S. Trippett, J. Chem. Soc., C. 1612 (1968).
(8) W. O. Siegl and C. R. Johnson, J. Org. Chem., 35, 3657 (1970).
(9) K. Nagarajan and S. R. Mehta, J. Org. Chem., 35, 4248 (1970).
(10) J. J. Looker, J. Org. Chem., 31, 2973 (1966).
(11) L. A. Paquette, J. P. Freeman, and S. Maiorana, Tetrahedron, 27, 2599 (1971).
(12) (a) G. Opitz, Angew. Chem. Int. Ed. Engl., 7, 646 (1968); (b) L. A. Paquette and J. P. Freeman, J. Am. Chem. Soc., 91, 7548 (1969).
(13) J. E. Coates and F. S. Abbott, J. Org. Chem., following paper in this issue.
(14) A. I. Vogel, "A Text-book of Practical Organic Chemistry", 3rd ed, Longmans, London, 1956, p 176.
(15) M. C. Caserio, R. E. Pratt, and R. J. Holland, J. Am. Chem. Soc., 88, 5747 (1966).
(16) G. Dougherty and R. H. Barth, U.S. Patent 2293971 (Aug 255, 1942); Chem Abstr., 37, P889 (1943).
(17) J. M. Sprague and T. B. Johnson, J. Am. Chem. Soc., 59, 1837 (1937).
(18) For isomer composition of crude product see Table I.
(19) Although a boiling point for 6 has been reported (W. E. Truce and D. J. Vrencur, Can. J. Chem., 47, 860 (1969)), no other details appear to have been published.
(20) Melting point bath was preheated to $150^{\circ} \mathrm{C}$ and heating rate was ca. 1 ${ }^{\circ} \mathrm{C} / \mathrm{min}$.
(21) Because of the relatively low solubility of $\mathbf{4 b}$ in CDCl_{3}, the mixture was converted to the HCl salts and analyzed as a solution in $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$.
(22) Assignment made on basis of report that p-chlorobenz; lic proton of 2(4 -chlorophenyl)thietane appears at higher field (287.5 Hz) than the corresponding proton in 2-phenylthietane (291 Hz): C. Schaal, Bull. Soc. Chim. Fr., 3064 (1971).

2,4-Diarylthiete 1,1-Dioxides. Synthesis, Thermolysis Studies, and Addition Reactions

James E. Coates and Frank S. Abbott*
Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, B.C. V6T 1 W5 Canada

Received June 7, 1977

Several 2,4-diarylthiete 1,1-dioxides were prepared by amine oxide elimination of the corresponding 2,4-diaryl-3-dimethylaminothietane 1,1-dioxides. The thiete 1,1 -dioxides were readily thermolyzed to chalcones and evidence was obtained which supports the involvement of a vinylsulfene intermediate in the thermolytic transformation. A ketonic sulfone was isolated and identified from thermolytic degradation of 4 . Addition of hydrogen cyanide or nitroethane to the thiete 1,1-dioxides followed by reduction to the primary amines and subsequent dimethylation gave 2,4-diaryl-3-dimethylaminomethylthietane 1,1-dioxides. 3-Cyanothietane 1,1-dioxide (7 c) on treatment with base eliminates SO_{2} to form olefins. The utility of thiete 1,1 -dioxides to add HCN provides a synthetic route to a number of 3 -substituted thietane 1,1-dioxides.

2-Aryl-3-dimethylaminomethylthietane 1,1-dioxides are of interest as conformationally restricted analogues of di-phenylpropylamine-type analgetics. In order to synthesize the title compounds it was felt that appropriate thiete 1,1 -dioxides would prove to be ideal intermediates. The reactivity of thiete 1,1-dioxides to nucleophilic addition is known, ${ }^{1 c, d}$ and it appeared feasible to utilize this property in the preparation of 3 -cyano- and 3-nitroalkylthietane 1,1-dioxides which could be reduced to the 3 -aminomethyl functional group. During the course of this work the amine oxide elimination reaction proved useful in confirming the conformation of the starting thietane 1,1 -dioxides. Thermolysis studies of the thiete 1,1 dioxides were initiated to obtain chemical evidence as to the position of the double bond relative to differing aryl substituents.

2,4-Diarylthiete 1,1-dioxides $(\mathbf{4}, \mathbf{5}, \mathbf{6})$ were oktained by the amine oxide elimination reaction of 3-dimethylaminothietane 1,1-dioxides (1, 2, 3) ${ }^{1 \mathrm{~b}}$ (Scheme I). Treatment of either a mixture of the cis and trans isomers ($\mathbf{l a}, \mathbf{l} \mathbf{b})^{2}$ or the cis isomer alone with peracetic acid gave 2,4-diphenylthiete 1,1-dioxide $(4)^{3}$ in good yield. Because of the intramolecular nature of the amine oxide elimination reaction, ${ }^{5}$ its application to the isomers $2 \mathbf{a}$ and \mathbf{b} provided a means of verifying their assigned configurations. In 2 a both $\mathrm{H}-2$ and $\mathrm{H}-4$ are cis to the dimethylamino group and, therefore, according to the intramolecular mechanism of the elimination this isomer should have given a mixture of thiete 1,1 -dioxide isomers $5 \mathbf{a}$ and \mathbf{b}. On the other hand, as only $\mathrm{H}-4$ in 2 b is cis to the basic group, this isomer should have afforded $\mathbf{5 b}$. When a dilute tetrahydrofuran solution of 2 a was treated with peracetic acid the

Scheme I

1a, $R=H$
2a, $R=C l$
3. $R=\mathrm{NO}_{2}$

2b, $R=H$
2b, $R=C l$

5b, $R=C 1$

8a, $R=H$
b, $R=C 1$
c, $\mathrm{R}=\mathrm{NO}_{2}$
$\mathrm{HCO}_{2} \mathrm{H} / \mathrm{HCOH}$

a. $R=H$ $\mathrm{R}=\mathrm{Cl}$ $\mathrm{R}=\mathrm{NO}_{2}$
product obtained was found by NMR analysis to consist of $65 \% \mathbf{5 a}$ and $35 \% \mathbf{5 b}$. The preferential formation of $\mathbf{5 a}$ is attributable, at least in part, to the acidifying effect of the p chloro substituent on $\mathrm{H}-2$. Repeating the reaction in tetrahydrofuran with isomer 2b gave $18 \% \mathbf{5 a}$ and $82 \% \mathbf{5 b}$. Thus, the results were consistent with the configurations previously assigned to $2 \mathbf{a}$ and $\mathbf{b} .{ }^{1 \mathrm{~b}}$ In contrast, the elimination reaction of $\mathbf{2 b}$ in glacial acetic acid gave a product composed of $95 \% \mathbf{5 a}$ and $5 \% 5 \mathrm{~b}$. A plausible explanation for this result is that under acidic conditions, an intermolecular (E2) mechanism is operative. Attack of acetate ion at the pseudoequatorial proton ($\mathrm{H}-2$) which is sterically less hindered (as well as more acidic) than the pseudoaxial proton ($\mathrm{H}-4$) in the protonated N -oxide form 10 of $2 b$ would favor formation of $5 a$.

The UV spectrum of 5 a showed a maximum at 262 nm (ϵ 26300) and that of $\mathbf{5 b}$ possessed a shoulder at 230 nm (ϵ

10
$20300)$ and a maximum at $256 \mathrm{~nm}(\epsilon 22600)$. The bathochromic shift cbserved in the spectrum of 5 a was attributed to the conjugation of the p-chlorophenyl ring with the heterocyclic double bond. The wavelength maximum in the spectrum of 5 b was similar to that observed in the spectrum of $4\left(\lambda_{\max } 255 \mathrm{~nm}, \epsilon 19600\right)$ and it was reasonable, therefore, that the p-chlorophenyl ring in $\mathbf{5 b}$ was unconjugated. These configurational assignments were further supported by the NMR spectra which showed H-4 in 5a at lower field (λ 5.91) than $\mathrm{H}-4$ in $\mathbf{5 b}$ ($\delta 5.85$). It has been reported that the benzylic proton of 2-phenylthietane occurs at lower field than that of 2-(4-chlorophenyl)thietane. ${ }^{6}$

NMR analysis of the crude product from the reaction of 3 with peracetic acid in glacial acetic revealed the presence of only one thiete 1,1 -dioxide, 6 . The bathochromic shift evident in the UV spectrum of 6 ($\lambda_{\text {max }} 288 \mathrm{~nm}, \epsilon 19000$) when compared to the spectrum of 4 indicated that the p-nitrophenyl ring in 6 was conjugated with the heterocyclic double bond. The greater acidity of H-2 relative to that of H-4 in 3 probably accounts for the exclusive formation of 6 . Downfield shifts of protons H-3 and H-4 in the NMR of 6 as compared to 4 and 5 were observed and attributed to substituent and solvent effects.

Thermolytic Reactions. It had been observed that 2,4diphenylthiete 1,1-dioxide (4) at its melting point decomposed with vigorous evolution of gas. An IR spectrum of the melt was almost identical with trans-benzylideneacetophenone (trans-chalcone, 11a). Heating a sample of 4 at $166^{\circ} \mathrm{C}$ for 3

1la, $R=R^{\prime}=H$
b, $\mathrm{R}=\mathrm{Cl}$; $\mathrm{R}^{\prime}=\mathrm{H}$
c, $R=H ; R^{\prime}=C l$

13
\min gave 11a to the extent of 92% as well as a small, undetermined amount of the cis isomer as measured by GC. King and co-workers have proposed that thermolytic conversion of
thiete 1,1-dioxides to α, β-unsaturated carbonyl compounds involves electrocyclic opening of the heterocycle to give a vinyl sulfene intermediate which then undergoes desulfinylation. ${ }^{7}$ According to this mechanism, the formation of 11a would occur via the intermediate $12 .{ }^{8} \mathrm{~A}$ previous attempt to trap the vinyl sulfene intermediate derived from thiete 1,1-dioxide met limited success. ${ }^{9}$ It was considered of interest, therefore, to investigate the possible trapping of $\mathbf{1 2}$. Water was used as the trapping agent since it is known that sulfenes react readily with water to give sulfonic acids. Refluxing a solution of 4 in aqueous tetrahydrofuran gave the predicted sulfonic acid 13 in 71% crude yield as well as a small amount of 11a and a ketonic sulfone, 14. The UV spectrum of $13\left(\lambda_{\max } 253(\epsilon 21600)\right.$, 282.5 ($\epsilon 2740$) and $292 \mathrm{~nm}(\epsilon 1450)$) was quite similar to that reported ${ }^{12}$ for the carboxylic analogue of 13, 2,4-diphenyl3 -butenoic acid ($\lambda_{\max } 252(\epsilon 22490), 283.5(\epsilon 2080)$, and 292.5 $\mathrm{nm}(\epsilon 1320)$). Although the configuration of the carbexylic acid was not assigned, from a consideration of the procedure whereby the acid was synthesized, ${ }^{11}$ it was most certainly trans. The same configuration was, therefore, assigned to $13 .{ }^{12}$ As the free sulfonic acid was unstable, it was further characterized as the stable dimethylamine salt. In the NMR spectrum of the salt, the protons $\left(\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}\right.$, and $\left.\mathrm{H}_{\mathrm{c}}\right)$ appeared as an ABX system with coupling constants $J_{\mathrm{bc}}=15.0 \mathrm{~Hz}, J_{\mathrm{ab}}=9.0$ Hz and $J_{\mathrm{ac}}=-1 \mathrm{~Hz}$. The magnitude of the couplings was in accord with structure $13 .{ }^{13}$

Thermolysis of $5 \mathbf{a}$ and \mathbf{b} provided further evidence for the double bond positions in the two isomers. According to the proposed mechanism, ${ }^{7}$ isomer 5 a should have given benzyli-dene- p-chloroacetophenone (11b) whereas 5 b should have yielded p-chlorobenzylideneacetophenone (11c). Indeed, heating $5 \mathbf{a}$ at $164^{\circ} \mathrm{C}$ for 3 min afforded 11 b in 80% yield and no 11c (GC analysis). When 5b was treated in the same manner, an 85% yield of $11 \mathbf{c}$ was obtained and no 11 b . Heating the p-nitro derivative 6 at $166^{\circ} \mathrm{C}$ for 3 min gave one major product (GC) which possessed characteristic chalcone bands in the infrared, but the predicted product was not isolated.

Some decomposition of 4 occurred upon recrystallization from hot solvents and particularly so when the solvent was ethanol. Mother liquors contained 11a plus a sma-l amount of white solid which was identified as a ketonic sulione from IR spectra. Refluxing 4 in ethanol allowed isolation of 17% of the ketonic sulfone 14 (Scheme II). Fractional crystallization of the crude sulfone gave white needles ($\mathrm{mp} 184-185^{\circ} \mathrm{C}$) and transparent plates ($\mathrm{mp} 196-197^{\circ} \mathrm{C}$) which are considered to be diastereoisomers of bis(1,3-diphenyl-3-oxopropyl) sulfone (14) based on the spectroscopic and synthetic evidence. Besides absorption characteristics of a sulfone, bands at 1683 and $1241 \mathrm{~cm}^{-1}$ in the IR spectrum of the low melting isomer indicated the presence of a benzoyl functionality. Comparison of its UV spectrum ($\lambda_{\max } 244 \mathrm{~nm}, \epsilon 25000$) with that of acetophenone ${ }^{13 \mathrm{~b}}$ ($\lambda_{\text {max }} 240 \mathrm{~nm}, \epsilon 13000$) suggested two benzoyl groups per molecule. The NMR spectrum was in agreement with structure 14 and showed the nonaromatic protons as an ABX pattern. From the $100-\mathrm{MHz}$ spectrum, the chemical shift of protons A was calculated ${ }^{14}$ to be $\delta 3.72\left(J_{\mathrm{AX}}=2.8 \mathrm{~Hz}\right)$ and that of protons B to be $\delta 3.93\left(J_{\mathrm{BX}}=10.2 \mathrm{~Hz}\right)$ with $J_{\mathrm{AB}}=17.5$ Hz . The IR spectrum of the high melting isomer was quite similar but not identical with that of the low melting material, whereas the NMR spectra were superimposable.
To confirm the assigned structure, an unequivocal synthesis of 14 was carried out (Scheme II). Heating β-mercapto- β phenylpropiophenone (15) with trans-11a in the presence of benzoyl peroxide gave the sulfide $16 .{ }^{15}$ The sulfide 16 was not purified but was oxidized directly to give 14. Fractional crystallization gave white needles, the IR, UV, and NMR spectra of which were identical with those of the low melting ketonic sulfone derived from 4. A mixture melting point of the two was not depressed. Because of the synthetic procedure

used, both diastereoisomeric forms of 14 ($d l$ and meso) should have been formed. A second substance was obtained as transparent plates, the melting point and IR spectrum of which were identical with those of the high melting isomer from the decomposition of 4.

When either diastereoisomeric form of 14 was heated at its melting point it decomposed with vigorous evolution of a gas to give 11a (IR analysis). The thermolysate from the low melting isomer was found by GC to consist of a mixture of trans- and cis-11a, respectively. A possible mechanism is desulfonylation ${ }^{17}$ of 14 followed by loss of a hydrogen atom from each of the intermediate radical fragments to give 11a.

Compound 14 is formally derived from two molecules of 4 by the loss of sulfur monoxide and the addition of water. Since sulfinic acids are known to readily add to α, β-unsaturated carbonyl compounds to give sulfones ${ }^{18}$ and since $11 a$ is formed along with 14 in the decomposition of 4 in hot ethanol, it is tempting to implicate the sulfinic acid 17 in the formation of

14. Although several machanisms can be evoked whereby 17 is formed from 4 in the presence of water, no direct experimental evidence has been obtained so far for its formation. Attempts to generate 17 by treating the sulfone (14) with alcoholic KOH or dimethylamine in chloroform were unsuccessful. Chalcone forms immediately under these conditions as expected. ${ }^{18}$ Perhaps the sulfinic acid if formed also readily decomposes to chalcone.

Addition Reactions. The addition of HCN to thiete (4) gave cis-2,4-diphenyl-3-cyanothietane 1,1-dioxide (7a). The reaction proceeds best using a solution of HCN in ethanol, catalyzed by a small amount of KCN. An excess of KCN or other base can lead to intractable black tars. The cis configuration of the phenyl rings was apparent from the equivalence of the benzylic protons and the magnitude of the vicinal coupling constant (10.5 Hz) in the NMR spectrum. The absence of trans isomer was not unexpected considering the instability of trans-2,4-diphenyl-3-dimethylaminothietane 1,1-dioxide (1b) relative to the cis isomer 1a. ${ }^{\text {b }}$ The course of the addition may be rationalized in terms of approach of cyanide ion from the least hindered side of the thiete (4), i.e., side opposite the phenyl group at C-4, to generate an intermediate carbanion. Protonation of the carbanion then occurs to give the more stable cis isomer. Even if some trans isomer were
initially formed, epimerization to 7a could occur under the basic conditions (KCN) of the reaction.

By analogy, the hydrogen cyanide adduct 7b from a mixture of 5 a and 5 b was assigned a cis configuration as was the adduct 7 c obtained from 6 . The sensitivity of these cyano compounds to basic conditions was readily apparent in the case of 7 c . Column chromatographic work-up of the reaction residue after isolation of 7c gave two additional compounds which from the IR appeared to be conjugated nitriles. Sulfone bands were absent. Elemental analyses were in agreement with the geometric isomers 18 and 19.

To confirm that the conjugated nitriles isolated from the HCN addition reaction were derived from cyclic product, 7c was treated with base and gave a 2.5:1 mixture of 18 and 19 as estimated by NMR and GC. Similar treatment of 7a gave a small quantity of conjugated nitrile, 20, and considerable polymerized solids.

Irradiation of a methanol solution of the isomers (2.5:1/ 18:19) reversed the ratio to give a mixture of $1: 2.5$ of 18 and 19 at equilibrium. The possibility that 18 and 19 were positional rather than geometric isomers is thus ruled unlikely. Isomer 18, $\lambda_{\text {max }} 278 \mathrm{~nm}(\epsilon 26700)$, was assigned the (Z) configuration and $19, \lambda_{\max } 270 \mathrm{~nm}(\epsilon 39000)$, assigned (E). These values are comparable to the reported values of (Z) and (E) isomers of cinnamic acid nitrile, $273(16596)$ and $272(39500)$, respectively. ${ }^{13 \mathrm{c}}$ In the NMR spectrum of 19 the benzylic and vinylic protons are shifted downfield compared to 18 and may be the result of a greater degree of deshielding of these protons by the cyano group and aromatic ring, respectively, in isomer 19. The conjugated nitrile, 20 , was assigned the (E) configuration based on the UV spectral data, $\lambda_{\max } 278 \mathrm{~nm}(\epsilon 42000)$. The $\lambda_{\text {max }}$ observed for 20 also supports the assigned structures of 18 and 19. Had the p-nitrophenyl group been conjugated with the nitrile a bathochromic shift of $\lambda_{\max }$ for 18 and 19 would have been expected (consider the trans isomers of cinnamic and 4-nitrocinnamic acid ($\lambda_{\max } 273 \mathrm{~nm}$ and 300 nm , respectively). ${ }^{13 \mathrm{c}}$

A possible mechanism for a base catalyzed elimination to form conjugated nitriles is outlined in Scheme III. Ring opening to give the allylic carbanion shown is perhaps preferred because of the inductive nature of the p-nitro substituent.

Reduction of the 3-cyano compounds with diborane followed by dimethylation of the resulting primary amines $8 \mathbf{a}$, \mathbf{b}, and \mathbf{c} afforded the final compounds $9 \mathbf{a}, \mathbf{b}$ and \mathbf{c}. Although a derivative of 9 c suitable for elemental analysis could not be prepared, its IR and NMR spectra were in agreement with the assigned structure. 19

 $+{ }^{+}$ 18, 19
(I)

cis-2,4-Diphenyl-3-(1-dimethylaminomethyl)thietane 1,1 -dioxide (24) was prepared by two routes (Scheme IV). The more efficient method involved Michael addition of nitroethane to 4 to give 21. Crystals of this adduct obtained from hexane-benzene contained one molecule of benzene for every two molecules of 21 (NMR and GC). In the NMR spectrum H_{d} and H_{e} were nonequivalent and appeared as overlapping doublets. It was reasonable to assume that nitroethane, in the same manner as HCN, added to 4 to give a thietane 1,1-dioxide derivative with the phenyl rings cis. Therefore, the nonequivalence of the benzylic protons was attributable to the asymmetry of the 1-nitroethyl substituent at C-3. Catalytic reduction of 21 gave a mixture of the primary amine 22 and the oxime 23. Elemental analyses were not obtained for 22 and 23 but spectroscopic data and two different reaction schemes involving these compounds were considered sufficient criteria for identification. The equivalence of the benzylic protons and the magnitude of the vicinal coupling constant $(10 \mathrm{~Hz})$ in the NMR spectrum of 23 indicated that this compound possessed
a cis configuration. Assuming that no epimerization occurred during the hydrogenation procedure, this observation supported the assignment of a cis configuration to 21 . Dimethylation of 22 gave the desired product 24 . Compounds 22 and 24 were considered to possess the same configuration as 21.

A second approach to 24 utilized the 3 -cyano compound 7 a. Acid hydrolysis of the nitrile gave cis-2,4-diphenyl-3-carboxythietane 1,1-dioxide (25) in 89% yield. Treatment of the acid chloride of 25 with dimethylcadmium afforded the ketone 26. No product could be isolated when attempts were made to prepare 26 directly by reacting 7 a with methyllithium or methylmagnesium bromide. Attempts to synthesize 22 or 24 from 26 by application of the Leuckart reaction ${ }^{19}$ were unsuccessful. The ketone decomposed under the reaction conditions of prolonged heating. It has been reported that oxime acetates are reduced to primary amines by diborane. ${ }^{20}$ Preparation of $\mathbf{2 4}$ via this procedure was investigated in a preliminary fashion. Ketone 26 was converted to the oxime 23 which was acetylated and then treated with diborane. Dimethylation of the crude product gave 24 in low yield.

The analgetic activities of the thietane 1,1-dioxide derivatives described in this paper will be reported elsewhere.

Experimental Section

The instrumentation was as previously described. ${ }^{1 b}$ Columns used for gas-liquid chıomatography (GC) were $6 \mathrm{ft} \times 5 / 32$ in. (i.d.) silanized glass. Packings were 5% SE- 30 on Chromport ($70-80$ mesh), 3% QF-1 on Gas-Chrom Q (100-120 mesh), and 3\% OV-225 on Gas Chrom Q ($100 / 120$). GC/MS data of the unsaturated nitrile isomers were obtained using a Varian Mat 111 spectrometer at 70 eV . An AEI MS9 with computer interface (courtesy of UBC Chemistry) was used for accurate mass determinations.
The GC calibration curves referred to below were prepared using authentic samples of chalcones which were synthesized according to literature procedures and crystallized from hexane-ethanol: transbenzylideneacetophenone (11a), ${ }^{22} \mathrm{mp} 55-56{ }^{\circ} \mathrm{C}$ (lit. $.^{22} 55-57{ }^{\circ} \mathrm{C}$); trans-benzylidene-p-chloroacetophenone (11b), ${ }^{23 \mathrm{~b}} \mathrm{mp} 96.5-98^{\circ} \mathrm{C}$ (lit. ${ }^{24} 94-96{ }^{\circ} \mathrm{C}$); and trans- p-chlorobenzylideneacetophenone (11c), ${ }^{23 \mathrm{a}} \mathrm{mp} 112-113.5^{\circ} \mathrm{C}$ (lit. $\mathrm{T}^{23 \mathrm{a}} 114.5^{\circ} \mathrm{C}$). The hydrogen cyanide solution used in the synthesis of the 3 -cyano adducts $7 \mathrm{a}, \mathrm{b}$ and \mathbf{c} was prepared by mixing 80 mL of liquefied $\mathrm{HCN}^{25 \mathrm{a}}$ with 2 L of ice-cold 100% ethanol.
2,4-Diphenylthiete 1,1-Dioxide (4). To a slurry of $14.5 \mathrm{~g}(0.048$ mol) of la in 14.5 mL of glacial acetic acid cooled in an ice-water bath was added 43.5 mL of 40% peracetic acid dropwise over a period of 45 min . After stirring for 17 h the reaction mixture was neutralized with a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and then extracted with 300 mL of CHCl_{3}. The CHCl_{3} layer was washed with $10 \% \mathrm{HCl}$ and then dried over MgSO_{4}. Evaporation under reduced pressure with the aid of a lukewarm water bath gave $10.5 \mathrm{~g}(85 \%)$ of beige solid. Crystallization from hexane-benzene afforded $9.3 \mathrm{~g}(76 \%)$ of 4 as white, fluffy needles, mp 137-138 ${ }^{\circ} \mathrm{C}$ dec (lit. ${ }^{3} 133-134{ }^{\circ} \mathrm{C}$); IR $1303,1150 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.77-7.27$ ($\mathrm{m}, 10$, phenyls), 7.03 (d, $1, J=2 \mathrm{~Hz}, \mathrm{H}-3$), and 5.92 (d, $1, J=2 \mathrm{~Hz}, \mathrm{H}-4) ; \mathrm{UV}_{\text {max }} 255\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{nm}^{(\epsilon 19600)}$ (lit. ${ }^{3}(\mathrm{EtOH})$ $257 \mathrm{~nm}(\epsilon 17400)$). Essentially the same yield of product was obtained when the starting material was a mixture of la and \mathbf{b}.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$ (256.32): C, 70.29; $\mathrm{H}, 4.72$. Found: C, 69.93; H, 4.92.

2-(4-Chlorophenyl)-4-phenylthiete 1,1 -Dioxide (5a). In the same manner as described above, $27.0 \mathrm{~g}(0.080 \mathrm{~mol})$ of 2 b in 27 mL of glacial acetic acid was reacted with 80 mL of 40% peracetic acid. Work-up afforded a yellow solid which upon crystallization from EtOH gave $13.7 \mathrm{~g}(59 \%)$ of 5 a as white needles, $\mathrm{mp} 128-129^{\circ} \mathrm{C}$ dec; IR 1302, $1160 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.67-7.25$ (m, 9 , aromatics), 7.02 (d, $1, J=2 \mathrm{~Hz}, \mathrm{H}-3$), and 5.91 (d, $1, J=2 \mathrm{~Hz}, \mathrm{H}-4$); $\mathrm{UV}_{\text {max }} 262$ (ϵ 26300) and 294 nm (shoulder) ($\epsilon 1400$).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{2} \mathrm{~S}$ (290.77): $\mathrm{C}, 61.96 ; \mathrm{H}, 3.81 ; \mathrm{Cl}, 12.19$. Found: C, 61.93; H, 4.25; Cl, 12.31.

2-Phenyl-4-(4-chlorophenyl)thiete 1,1-Dioxide (5b). In the same manner as described above, $35.4 \mathrm{~g}(0.0105 \mathrm{~mol})$ of 2 a in 35 mL of glacial acetic acid was reacted with 106 mL of peracetic acid. Crystallization of the product from EtOH gave $13.2 \mathrm{~g}(43.2 \%)$ of white solid which was found to be a mixture of 5 a and \mathbf{b} by IR analysis. Evaporation of the mother liquor and crystallization of the residue from EtOH gave a further $4.1 \mathrm{~g}(13.4 \%)$ of isomer mixture enriched in $\mathbf{5 b}$. Repeated recrystallization of the latter solid from EtOH gave
pure $\mathbf{5 b}$ as white, shiny leaflets, $\mathrm{mp} 130-131^{\circ} \mathrm{C}$ dec; IR 1310,1160 cm^{-1} (sulfone); NMR $\delta 7.70-7.08$ (m, 9, aromatics), 6.98 (d, $1, J=2$ $\mathrm{Hz}, \mathrm{H}-3$); and 5.85 (d, $1, J=2 \mathrm{~Hz}, \mathrm{H}-4$); $\mathrm{UV}_{\text {max }} 230$ (shoulder) (ϵ 20300), 256 ($\epsilon 22600$), and 290 nm (shoulder) ($\epsilon 800$)

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{2} \mathrm{~S}$ (290.77): C, 61.96; H, 3.81; $\mathrm{Cl}, 12.19$. Found: $\mathrm{C}, 61.72 ; \mathrm{H}, 4.12$: $\mathrm{Cl}, 12.10$.

Effect of Starting Material Configuration on the 5a:5b Product Ratio. To a stirred solution of $0.50 \mathrm{~g}(1.5 \mathrm{mmol})$ of 2 a in 45 mL of THF was added 3.0 mL of 40% peracetic acid dropwise over a period of 2 min . The reaction temperature was main ained at $27 \pm$ $1^{\circ} \mathrm{C}$ by cooling the reaction flask in an ice-water bath when necessary. After stirring for 5 h , the solution was evaporated under reduced pressure to a volume of about 10 mL . Upon adding 40 mL of distilled water a white solid precipitated. The mixture was carefully neutralized with a saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and the solid was collected and dried, yield $0.40 \mathrm{~g}(92 \%)$. The IR spectrum indicated a mixture of 5 a and \mathbf{b} free of starting material. In the 100 MHz spectrum $\mathrm{H}-3$ and $\mathrm{H}-4$ of 5 a appeared as doublets at $\delta 7.017$ and 5.904 and the corresponding protons of $\mathbf{5 b}$ appeared as doublets at $\delta 6.980$ and 5.858 . From the doublet integrals the product compostion was determined to be 65\% 5a and $35 \% \mathbf{5 b}$.

When an identical reaction in THF was run using 0.5 g of $\mathbf{2 b}$, the product ($0.37 \mathrm{~g}, 85 \%$) was found by 100 MHz NMR to consist of 18% 5a and $82 \% \mathbf{5 b}$.

In the same manner as described for the preparation of $4,1.90 \mathrm{~g}(5.7$ mmol) of 2 b in 2.0 mL of glacial acetic acid was reacted with 6.0 mL of 40% peracetic acid for 20 h . The reaction mixture was then diluted with water until precipitation of solid was no longer evident. After collecting and drying, the solid weighed $1.46 \mathrm{~g}(89 \%)$. NMR analysis gave the composition as $95 \% \mathbf{5 a}$ and $5 \% \mathbf{5 b}$.

2-(4-Nitrophenyl)-4-phenylthiete 1,1-Dioxide (6). Because of the instability of 3 to crystallization, crude material containing approximately 12% acyclic isomer ${ }^{1 \mathrm{~b}}$ as impurity was used. In the same manner as described for the preparation of $4,20.3 \mathrm{~g}$ of starting material in 20 mL of glacial acetic acid was reacted with 61 mL of 40% peracetic acid. After stirring for 2 h , the reaction was worked up to give $15.0 \mathrm{~g}(96 \%)$ of crude product, $\mathrm{mp} 139-142^{\circ} \mathrm{C}$. Crystallization from EtOH gave 6 as pale yellow leaflets, $\mathrm{mp} 147-148^{\circ} \mathrm{C}$ dec; IR 1520 , 1320 (nitro group), $1300,1155 \mathrm{~cm}^{-1}$ (sulfone); NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) δ 8.57-8.30, 8.07-7.83 ($\mathrm{m}, 4, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern due to p-nitrophenyl), 8.18 (d, $1, J=2 \mathrm{~Hz}, \mathrm{H}-3$), 7.50 ($\mathrm{s}, 5$, phenyl), and 6.49 (d, $1, J=2 \mathrm{~Hz}, \mathrm{H}-4$); $\mathrm{UV}_{\text {max }} 288 \mathrm{~nm}(\epsilon 19000)$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}$ (301.32): C, 59.79; H, 3.68; N, 4.65. Found: C, 59.83; H, 3.75; N, 4.79.

Thermolysis of 4 . A stoppered $8 \times 70 \mathrm{~mm}$ test tube containing 30.0 $\mathrm{mg}(0.117 \mathrm{mmol})$ of 4 was placed in a $166^{\circ} \mathrm{C}$ oil bath for 3.0 min . During the first minute the solid melted and a gas was rapidly evolved from the melt. Upon cooling, the brownish-yellow residue was dissolved in sufficient CHCl_{3} to give 10 mL of solution which was immediately analyzed for trans-benzylideneacetophenone (1la) by GC using the 3% QF-1 column with the injection port, oven and detector at 240,170 , and $270^{\circ} \mathrm{C}$, respectively, and the nitrogen flow at 67 $\mathrm{mL} / \mathrm{min}$. By reference to a straight-line calibration curve (peak area vs. concentration) the total amount of 11 a (retention time 6.3 min) in the solution was determined to be $22 \mathrm{mg}(92 \%)$. A second minor peak in the chromatogram possessed the same retention time (3.2 min) as cis-benzylideneacetophenone. ${ }^{21}$ The IR spectrum (neat) of another thermolysate obtained in the same manner was essentially identical with that of an authentic sample of 11a.

Thermolysis of 5a. In the same manner as described for the thermolysis of $4,30.0 \mathrm{mg}(0.103 \mathrm{mmol})$ of 5 a was heated in a $164{ }^{\circ} \mathrm{C}$ bath for 3 min . Upon cooling, the orange solid was dissolved in CHCl_{3} with 0.1% benzil as internal standard and immediately analyzed for trans-benzylidine-p-chloroacetophenone (11b) using the 3\% QF-1 column with the injection port, oven and detector at 240,200 , and 270 ${ }^{\circ} \mathrm{C}$, respectively, and the nitrogen flow at $67 \mathrm{~mL} / \mathrm{min}$. By reference to a straight-line calibration curve (peak height $11 \mathrm{~b} /$ peak height internal standard vs. conc. 11b) the total amount of $11 \mathbf{b}$ (retention time 3.6 min) was determined to be $20 \mathrm{mg}(80 \%)$. A minor peak at 1.9 min was attributed to cis-benzylidene-p-chloroacetophenone. ${ }^{21}$ The IR spectrum of a second thermolysate showed only slight discrepancies from that of an authentic sample of 11 b .

Thermolysis of $5 \mathbf{b}$. In a manner identical with that described for the thermolysis of $\mathbf{5 a}, \mathbf{5 b}$ was thermolyzed to give $21 \mathrm{mg}(85 \%)$ of trans- p-chlorobenzylideneacetophenone (11c) (retention time 3.9 min). A minor peak at 2.2 min in the chromatogram was attributed to cis-p-chlorobenzylideneacetophenone. ${ }^{21}$ The IR spectrum of the solid product obtained in a second thermolysis was almost identical with that of authentic 11c.

Decomposition of 4 in Aqueous Tetrahydrofuran. trans-

1,3-Diphenylpropene-3-sulfonic Acid (13). A solution of 2.56 g (0.01 mol) of 4 in a mixture of 40 mL of THF and 10 mL of water was refluxed for 41 h . Evaporation in vacuo gave a viscous, yellow oil which was dissolved in 20 mL of CHCl_{3} and extracted with 40 mL of water. The aqueous layer (acidic to indicator paper) was evaporated under vacuum to give a pale yellow, crystalline solid ($1.95 \mathrm{~g}, 71 \%$). Crystallization from hexane- CHCl_{3} afforded 13 as fine, off-white needles, $\mathrm{mp} 97-102^{\circ} \mathrm{C} \mathrm{dec}$; IR $3700-2400,1225,1050 \mathrm{~cm}^{-1}$ (sulfonic acid); $\mathrm{UV}_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 253(\epsilon 21600), 282.5$ (shoulder) ($\epsilon 2740$) and $292(\epsilon 1450)$. The free acid was unstable and slowly decomposed during a period of a week. Evaporation of a CHCl_{3} solution of 13 which had been treated with excess dimethylamine afforded the salt as a white solid. Crystallization from hexane-benzene gave white needles, mp 169-170 ${ }^{\circ} \mathrm{C}$; IR 3040-2480 (ammonium band), 1250, 1225, 1160, $1027 \mathrm{~cm}^{-1}$ (sulfonic acid salt); NMR $\delta 7.91-7.10\left(\mathrm{~m}, 12\right.$, phenyls and NH_{2}), $7.01-6.30$ (m, AB portion of ABX, 2, vinylic protons), 4.72-4.85 (m, X portion of ABX, 1, benzylic). Compound 13 was submitted for an lysis as its dimethylamine salt.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ (319.42): $\mathrm{C}, 63.92 ; \mathrm{H}, 6.63$. Found: C , 63.93; H, 6.53.

Evaporation of the dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right) \mathrm{CHCl}_{3}$ layer from the extraction of 13 gave a brown oil, the IR spectrum (neat) of which indicated the presence of 11a. The chalcone was extracted with two $20-\mathrm{mL}$ portions of hot hexane and then quantitated by GC (3% QF-1 column), yield 0.15 g (7%).

Decomposition of 4 in Ethanol. Bis(1,3-diphenyl-3-oxopropyl) Sulfone (14). A solution of $2.56 \mathrm{~g}(0.010 \mathrm{~mol})$ of 4 in 250 mL of 95% ethanol was heated at reflux for 2 h and then evaporated under reduced pressure to give a yellow oil. When a solution of the oil in 20 mL of hot ethanol was allowed to cool a white solid precipitated. The solid was collected and the filtrate was evaporated and treated again with ethanol to give additional solid. Repeating the process twice gave a total of $0.41 \mathrm{~g}(17 \%)$ of 14 . The product was fractionated by heating it in ethanol or hexane-methyl ethyl ketone and then filtering to remove material that was reluctant to dissolve. Upon cooling, the filtrate gave white needles, $\mathrm{mp} 184-185^{\circ} \mathrm{C} \mathrm{dec}$; IR 1683, 1241 (benzoyl group), $1307,1138 \mathrm{~cm}^{-1}$ (sulfone); $\mathrm{UV}_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 244 \mathrm{~nm}(\epsilon 25000)$; NMR $\delta 7.93-7.67$ ($\mathrm{m}, 4$, ortho protons of benzoyl groups), 7.53-7.23 (m, 16, phenyls and remaining protons of benzoyl groups), 4.70 (m, X portion of $A B X$ pattern, 2, benzylic H) and $4.20-3.39(\mathrm{~m}, \mathrm{AB}$ portion of ABX pattern, 4, methylenes)

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$ (482.60): C, 74.66; H, 5.43; O, 13.26; S, 6.64. Found: C, 74.21; H, 5.66; O, 13.62; S, 7.00.

Crystallization of the less soluble portions of the product from ethanol or hexane-methyl ethyl ketone gave transparent plates, mp $196-197^{\circ} \mathrm{C}$ dec; IR 1683, 1241 (benzoyl group), 1310, 1292, $1138 \mathrm{~cm}^{-1}$ (sulfone).

Evaporation of the final filtrate from the isolation of the ketonic sulfone gave a brownish-yellow oil. The IR spectrum (neat) of this material showed strong bands at 1665 and $1600 \mathrm{~cm}^{-1}$ attributable to 11a. Vacuum distillation afforded $0.2 \mathrm{~g}(10 \%)$ of crude 11 a as a yellow, viscous liquid which solidified upon collection, bp $120-130^{\circ} \mathrm{C}(0.1$ mm) [lit..$^{26} 208^{\circ} \mathrm{C}(25 \mathrm{~mm})$]. Crystallization from petroleum ether (bp $60-80^{\circ} \mathrm{C}$) gave trans-11a as pale yellow prisms, mp $54-55^{\circ} \mathrm{C}$ (lit. ${ }^{26}$ $57-58^{\circ} \mathrm{C}$). The infrared spectrum was superimposable with that of an authentic sample. Coinjection with authentic trans-11a on a 5% SE-30 column with the injection port, oven and detector at 282, 193, and $253^{\circ} \mathrm{C}$, respectively, and the nitrogen flow at $80 \mathrm{~mL} / \mathrm{min}$ gave one peak, retention time 5.1 min .

Synthesis of Bis(1,3-diphenyl-3-oxopropyl) Sulfone (14). A mixture of $2.08 \mathrm{~g}(0.010 \mathrm{~mol})$ of trans $-11 \mathrm{a},{ }^{27} 2.42 \mathrm{~g}(0.010 \mathrm{~mol})$ of 15^{28} and 20 mg of benzoyl peroxide was heated on a steam bath for 6 h . Mixing the product with $E t_{2} \mathrm{O}$ caused a white solid $(1.86 \mathrm{~g})$ to separate which was collected and tentatively identified as an α-hydroxy sulfide. ${ }^{16}$ Evaporation of the supernatant gave 2.64 g of yellow oil (16). In the IR spectrum (neat) S-H stretching absorption was absent and a strong aromatic ketone band appeared at $1680 \mathrm{~cm}^{-1}$. To a cooled solution of the oil in 10 mL of CHCl_{3} and 10 mL of glacial acetic acid was added 4.6 mL of 40% peracetic acid dropwise over a period of 5 min . After 20 h , evaporation of the CHCl_{3} under reduced pressure caused a white solid (14) to precipitate. Dilution of the supernatant with water and extraction with CHCl_{3} followed by evaporation of the dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ organic layer gave a yellow oil from which additional solid product was isolated by warming with ethanol. The total yield of 14 was $1.70 \mathrm{~g}(60 \%$, based on weight of 16$)$. Fractional crystallization from hexane-methyl ethyl ketone gave white needles and transparent plates which were identical with the low and high melting isomers of 14, respectively.

Thermolysis of 14. A sample of 14 (low melting diastereoisomer) in a stoppered $8 \times 70 \mathrm{~mm}$ test tube was placed in a $160^{\circ} \mathrm{C}$ oil bath
which was then rapidly heated to $200^{\circ} \mathrm{C}$. When the evolution of gas from the melt had subsided (2 min), the tube was removed. The IR spectrum (neat) of the resulting yellow syrup was very similar to that of trans-11a. Analysis by GC using a 3\% QF-1 column with the injection port, oven and detector at 240,170 , and $270^{\circ} \mathrm{C}$, respectively, and the nitrogen flow at $67 \mathrm{~mL} / \mathrm{min}$ gave two peaks which corresponded to cis-11a (3.2 min) and trans $-11 \mathbf{a}(6.3 \mathrm{~min})$. The ratio of cis to trans based on peak area was 1:4.
cis-2,4-Diphenyl-3-cyanothietane 1,1-Dioxide (7a). A solution of $10.00 \mathrm{~g}(0.039 \mathrm{~mol})$ of 4 in 250 mL of CHCl_{3} was diluted with 500 mL of $\mathrm{EtOH}(100 \%)$ and 250 mL of HCN solution. Addition of 575 mg of powdered KCN caused the reaction to turn bright yellow. After stirring for 18 h a precipitate was present which was collected and washed with 400 mL of water. Air drying gave $8.57 \mathrm{~g}(77.6 \%)$ of pale yellow powder, mp $235-237{ }^{\circ} \mathrm{C}$. Crystallization from n-butyl alcohol afforded 7a as white, feather-shaped crystals, mp $236-237^{\circ} \mathrm{C}$; IR 2245 (nitrile), 1338, 1178, $1138 \mathrm{~cm}^{-1}$ (sulfone); NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) δ $7.81-7.33$ (m, 10, phenyls), $6.34(\mathrm{~d}, 2, J=10.5 \mathrm{~Hz}, \mathrm{H}-2$ and H-4), and 4.77 (t, $1, J=10.5 \mathrm{~Hz}, \mathrm{H}-3$).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$ (283.35): C, $67.82 ; \mathrm{H}, 4.63 ; \mathrm{N}, 4.94$. Found: C, 67.80; H, 4.73; N, 4.84.
cis-2-(4-Chlorophenyl)-3-cyano-4-phenylthietane 1,1-Dioxide (7b). In a manner identical with that described for the preparation of $7 \mathrm{a}, 15.00 \mathrm{~g}(0.0516 \mathrm{~mol})$ of a mixture of $5 \mathbf{a}$ and \mathbf{b} was reacted to give $6.80 \mathrm{~g}(42.0 \%)$ of 7 b as a white crystalline solid, $\mathrm{mp} 198-199^{\circ} \mathrm{C}$. Evaporation of the filtrate and fractional crystallization of the resulting yellow solid from EtOH afforded 2.26 g (14.0\%) of additional product and $2.0^{7} \mathrm{~g}$ (13.8\%) of starting material. Crystallization from EtOH gave 7 b as fine, white needles, $\mathrm{mp} 199-200^{\circ} \mathrm{C}$; IR 2280 (nitrile), $1333,1180,1148 \mathrm{~cm}^{-1}$ (sulfone); NMR (Me $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta 7.89-7.43$ (m, 9, aromatics), 6.39 (d, $2, J=11 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-4$), and 4.76 ($\mathrm{t}, J=11$ $\mathrm{Hz}, \mathrm{H}-3)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClNO}_{2} \mathrm{~S}(317.79)$: $\mathrm{C}, 60.47 ; \mathrm{H}, 3.81 ; \mathrm{Cl}, 11.16$. Found: C, $60.26 ; \mathrm{H}, 3.82 ; \mathrm{Cl}, 11.18$.
cis-2-(4-Nitrophenyl)-3-cyano-4-phenylthietane 1,1-Dioxide (7c). The procedure was similar to that described for the preparation of 7 a . A solution of $10.26 \mathrm{~g}(0.0341 \mathrm{~mol})$ of 6 in 308 mL of THF was diluted with 256 mL of HCN solution and 590 mg of powdered KCN was added. After stirring for 5 h , the reaction solution was evaporated under reduced pressure to give an orange-brown oil. Washing the oil with EtOH caused a solid to separate. The supernatant was evaporated and the resulting oil was again treated with EtOH . Repeating the process several times gave a total of $7.52 \mathrm{~g}(67 \%)$ of pale yellow solid. Crystallization from hexane- CHCl_{3} afforded 7 c in two polymorphic forms: white needles, $\mathrm{mp} 164-165^{\circ} \mathrm{C}$, and pale yellow rosettes, mp $152-153{ }^{\circ} \mathrm{C}$; IR 2275 (nitrile), 1530, 1353 (nitro group), 1334, 1177, $1145 \mathrm{~cm}^{-1}$ (sulfone); NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{\hat{5}}$) $\delta 8.57-8.28$, 8.15-7.91 (m, 4, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern due to p-nitrophenyl), 7.88-7.40 (m, 5, phenyl), $6.56(\mathrm{~d}, 1, J=10.5 \mathrm{~Hz}, \mathrm{H}-2), 6.48(\mathrm{~d}, 1, J=10.5 \mathrm{~Hz}, \mathrm{H}-4)$, and 4.92 ($\mathrm{t}, 1, J=10.5 \mathrm{~Hz}, \mathrm{H}-3$). Compound 7 c was submitted for analysis as the low melting polymorph.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (328.34): C, $58.53 ; \mathrm{H}, 3.68, \mathrm{~N}, 8.53$. Found: C, $58.65 ; \mathrm{H}, 3.75 ; \mathrm{N}, 8.58$.

Isolation of Unsaturated Nitriles $(18,19,20)$. The final filtrate from the work-up of 7 (4.5 g of orange-brown oil) was heated in 20 mL of benzene and filtered. The filtrate was applied to a $2.5 \times 60 \mathrm{~cm}$ column of 95 g of silica gel and developed with benzene. Fractions 1 and 2 were a mixture of 18 and 19 and 7 c , respectively. Two other fractions contained small amounts of unidentified substances. Fraction 1 was recrystallized with hexane-benzene and the resulting needles and plates separated by hand. Further recrystalllization of the plates gave $18, \mathrm{mp} 100-101^{\circ} \mathrm{C}$; IR (KBr) 2220 (α, β-unsaturated nitrile), 1626 (conjugated double bond), $1520,1348 \mathrm{~cm}^{-1}$ (nitro); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.37-8.07$ (m, 2, H ortho to nitro), 7.97-7.27 (m, 7, H meta to nitro and remaining phenyl), 7.08 ($\mathrm{s}, 1$, vinylic), and 3.83 ($\mathrm{s}, 2$, benzylic); $\mathrm{UV}_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right), 278 \mathrm{~nm}(\epsilon 26700) ; \mathrm{GC} / \mathrm{MS}$ m/e $264\left(\mathrm{M}^{+}\right.$, 71) 247 (42), 218 (29), 217 (100), 140 (34), 109 (41), 106 (30), 91 (39).

Further recrystallization of the needles gave 19, mp 132-133 ${ }^{\circ} \mathrm{C}$; IR (KBr) 2225, 1625,1516 and $1348 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 8.36-8.09$ ($\mathrm{m}, 2, \mathrm{H}$ ortho to nitro), $7.61-7.28$ ($\mathrm{m}, 8$, remaining phenyl plus vinylic), and 3.93 (s, 2, benzylic); $\mathrm{UV}_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{CN}\right) 270 \mathrm{~nm}(\epsilon 39000)$; GC/MS, m/e 264 (M ${ }^{+}, 70$), 247 (41), 218 (29), 217 (100), 140 (34), 109 (42), 106 (26), 91 (35).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ (264.28): C, 72.72; $\mathrm{H}, 4.58$. Found 18: C, 72.58; H, 4.66. Found 19: C, 72.53; H, 4.48.

Treatment of 0.33 g of 7 c in 10 mL of THF and 50 mL of EtOH with dropwise addition of 2 mL of 1 N NaOH caused a deep magenta color to form which gradually disappeared. After 30 min 2 mL of glacial acetic was added and the solution evaporated to an orange solid. The
solid was dissolved in CHCl_{3} and extracted several times with $\mathrm{H}_{2} \mathrm{O}$. The CHCl_{3} layer dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the CHCl_{3} removed gave 0.26 g of orange solid. The NMR indicated a mixture of 18 and 19 which approximately accounts for 90% of the crude solid. Impurities were also present; $\delta 4.31,2.4$, and 1.25 . GC analysis (3% QF-1, oven $210^{\circ} \mathrm{C}$, $\mathrm{N}_{2} 65 \mathrm{~mL} / \mathrm{min}$) gave peaks with identical retention times to 18 and 19 previously isolated ($R_{\mathrm{t}}=14.3$ and 13.1 min , respectively). Irradiation of a 1% solution of the isomers in methanol (450-W Hanovia arc lamp at room temperature through Рyrex) for 2 h gave an equilibrium mixture of 1:2.5 of 18 and 19, respectively. Further irradiation or prolonged refluxing in benzene did not change this equilibrium.

Treatment of 2.0 g of 7 a dissolved in 160 mL of THF-EtOH (50:50) with 18 mL of 1 N NaOH while heating at $60-70^{\circ} \mathrm{C}$ resulted in the precipitation of a white solid (polymer). Glacial acetic acid (20 mL) was added and the solution evaporated to dryness. The residue was extracted with benzene and chromatographed on a column as described for the isolation of 18 and 19 . A white solid (0.6 g) 20 was isolated which after recrystallization from EtOH gave fine colorless needles, mp 212-213 ${ }^{\circ} \mathrm{C}$, IR (KBr) 2225, $1395,695 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.18-7.48$ (m, 11, aromatic plus vinylic proton), 4.53 (s, 2, benzylic); $\mathrm{UV}_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 278 \mathrm{~nm}(\epsilon 42000) ; \mathrm{GC} / \mathrm{MS} m / \epsilon 219\left(\mathrm{M}^{+}\right.$, 12), 218 (50), 140 (100); accurate mass measurement, calculated/ observed, 219.1047/219.1022 ($\left.\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}\right), \quad 218.0969 / 218.0968$ $\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}\right)$.
cis-2,4-Diphenyl-3-aminomethylthietane 1,1-Dioxide (8a). To a slurry of $14.15 \mathrm{~g}(0.050 \mathrm{~mol})$ of finely powdered 7 a in 125 mL of dry THF was added 250 mL of a 0.3 M solution of diborane ${ }^{29}$ in THF dropwise over a period of 1.5 h . The system was protected from moisture. After stirring for 13 h , the excess diborane was decomposed by the dropwise addition of EtOH followed by refluxing for 1 h . Upon cooling, the solution was treated with HCl gas until it turned a slight yellow. Evaporation in vacuo gave a pale yellow syrup which was dissolved in 100 mL of water and suction filtered. The filtrate was basified with 18 N NaOH and extracted with 250 mL of CHCl_{3}. The CHCl_{3} layer was washed with $10 \% \mathrm{NaCl}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation under reduced pressure gave $7.20 \mathrm{~g}(50 \%)$ of pale yellow solid. Crystallization from water-EtOH afforded 8a as large transparent prisms, mp $110-113^{\circ} \mathrm{C}$; IR $3425,3365\left(\mathrm{NH}_{2}\right.$ group $), \mathrm{i} 310,1165$, $1150 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.61-7.23$ (m. 10, phenyls), 5.21 (d, $2, J$ $=10 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-4), 3.38-2.80) \mathrm{m}, 3, \mathrm{H}-3$ and CH_{2}), and $1.60-1.15$ (band, 2, NH_{2}).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$ (287.38): C, 66.87; $\mathrm{H}, 5.96 ; \mathrm{S}, 11.16$. Found: C, 67.03; H, 6.32; S, 11.33 .
cis-2-(4-Chlorophenyl)-3-aminomethyl-4-phenylthietane 1,1-Dioxide (8b). In a manner identical with that described for the preparation of $8 \mathbf{a}, 12.9 \mathrm{~g}(9.041 \mathrm{~mol})$ of $7 \mathbf{b}$ in 101 mL of dry THF was reacted with 203 mL of 0.3 M diborane in THF to give $9.8 \mathrm{~g}(75 \%)$ of $\mathbf{8 b}$ as a white solid, $\mathrm{mp} 39-45^{\circ} \mathrm{C}$; IR $3500-3300\left(\mathrm{NH}_{2}\right.$ grcup $), 1320$, $1150 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.60-7.30$ (m, 9, aromatics), 5.23 (d, 1, $J=10 \mathrm{~Hz}, \mathrm{H}-4), 5.20(\mathrm{~d}, 1, J=10 \mathrm{~Hz}, \mathrm{H}-2), 3.33-2.80(\mathrm{~m} \mathrm{3}, \mathrm{H}-3$ and CH_{2}), and 1.18 (s, 2, NH_{2}). Compound $8 \mathbf{b}$ was analyzed as the picric acid salt, $\mathrm{mp} 249-250^{\circ} \mathrm{C}$ dec (from 10% acetic acid).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{9} \mathrm{~S}$ (550.93): C, 47.96; H, 3.48; N, 10.17. Found: C, 48.31; H, 3.36; N, 10.03.
cis-2-(4-Nitrophenyl)-3-aminomethyl-4-phenylthietane 1,1-Dioxide ($8 \mathbf{c}$). In the same manner as described for the preparation of $8 \mathrm{a}, 9.0 \mathrm{~g}(0.027 \mathrm{~mol})$ of 7 c dissolved in 73 mL of dry THF was reacted with 146 mL of 0.3 M diborane in THF. Work-up gave a yellow syrup which was dissolved in 20 mL of $\mathrm{CHCl}_{3}-\mathrm{EtOH}$ (9:1) and chromatographed in two equal portions on $60 \times 2.5 \mathrm{~cm}$ silica gel columns ($60-200$ mesh, 94 g per column), using $\mathrm{CHCl}_{3}-\mathrm{EtOH}$ (9:1) as the developing solvent. Two main fractions were obtained from each column. The second fractions were pooled and evaporated under vacuum to give $5.9 \mathrm{~g}(66 \%)$ of pale yellow, viscous oil which did not solidify when triturated with various solvents. The oil appeared to be the desired product $8 \mathbf{c}$ according to its spectroscopic properties: IR (neat) 3400 , $3340\left(\mathrm{NH}_{2}\right.$ group), 1515,1350 (nitro group), $1310,1150 \mathrm{~cm}^{-1}$ (sulfone); NMR \& 8.41-8.13, 7.85-7.55 (m, 4, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern due to p-nitrophenyl), $7.55-7.32$ ($\mathrm{m}, 5$, phenyl), 5.37 ($\mathrm{d}, 1, J=10 \mathrm{~Hz}, \mathrm{H}-2$), 5.31 (d, $1, J=10 \mathrm{~Hz}, \mathrm{H}-4), 3.41-2.88\left(\mathrm{~m}, 3, \mathrm{H}-3\right.$ and $\left.\mathrm{CH}_{2}\right)$, and $1.20 . \mathrm{s}, 2, \mathrm{NH}_{2}$). Minor impurity signals in the NMR spectrum occurred at $\delta 1.07$ and 0.98 . The intention was to submit 8 c for elemental analysis as its dimethylated derivative $9 \mathbf{c}$.
cis-2,4-Diphenyl-3-dimethylaminomethylthietane 1.1-Dioxide (9a). The procedure was adopted from the literature. ${ }^{30}$ A mixture of $1.77 \mathrm{~g}(6.2 \mathrm{mmol})$ of $8 \mathrm{a}, 3.2 \mathrm{~g}$ of 90.7% formic acid and 2.9 mL of 37% formaldehyde solution was heated at $93 \pm 1^{\circ} \mathrm{C}$ in an oil bath for 18 h. A pale yellow solution was rapidly obtained and during the first 0.5 h a vigorous evolution of gas occurred. The solution was mixed with 6.5 mL of 4 N HCl and evaporated under vacuum to give a viscous oil.

A solution of the oil in 60 mL of water was basified with 10 N NaOH and extracted with 60 mL of CHCl_{3}. The CHCl_{3} layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation under reduced pressure gave $1.67 \mathrm{~g}(86 \%)$ of pale yellow solid. Crystallization from hexaneethanol with charcoal treatment afforded 9 a as fine, white needles, $\operatorname{mp} 123-124^{\circ} \mathrm{C}$; IR 1315, $1154 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.63-7.27$ (m, 10 , phenyls), 5.13 (d, $2, J=10 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-4), 3.45-2.83(\mathrm{~m}, 1, \mathrm{H}-3)$, 2.62 (d, $2, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}$), and 2.06 (s, $6, N$-methyls).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$ (315.44): C, 68.54; H, 6.71; N, 4.44. Found: C, $68.74 ; \mathrm{H}, 6.65 ; \mathrm{N}, 4.58$.
cis-2-(4-Chlorophenyl)-3-dimethylaminomethyl-4-phenylthietane 1,1-Dioxide (9b). In a manner similar to tha: described for the preparation of $9 \mathrm{a}, 9.0 \mathrm{~g}(0.028 \mathrm{~mol})$ of $8 \mathbf{b}$ was reacted with 40 mL of 90.7% formic acid and 37 mL of 37% formaldehyde solution for 19 h. Work-up gave 9.6 (98%) of pale yellow solid. Crystallization from hexane-ethanol with charcoal treatment afforded $9 b$ as short, white needles, mp 124-125 ${ }^{\circ} \mathrm{C}$; IR 1325, $1155 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.48$ (s, 9 , aromatics), 5.13 (d, $1, J=10 \mathrm{~Hz}, \mathrm{H}-4), 5.09(\mathrm{~d}, 1, J=10 \mathrm{~Hz}, \mathrm{H}-2)$, $3.39-2.75(\mathrm{~m}, 1, \mathrm{H}-3), 2.60\left(\mathrm{~d}, 2, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, and $2.06(\mathrm{~s}, 6, \mathrm{~N}-$ methyl).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClNO}_{2} \mathrm{~S}$ (349.88): C, $61.79 ; \mathrm{H}, 5.76 ; \mathrm{N}, 4.00$. Found: C, 61.64; H, 5.81; N, 3.91 .
cis-2-(4-Nitrophenyl)-3-dimethylaminomethyl)-4-phenyl-
thietane 1,1-Dioxide (9c). In a similar manner as described for the preparation of $9 \mathrm{a}, 4.8 \mathrm{~g}(0.015 \mathrm{~mol})$ of 8 c was reacted with 23 mL of 90.7% formic acid and 20 mL of 37% formaldehyde solution for 11 h . Work-up gave 3.5 g of straw-colored syrup. The syrup was dissolved in 150 mL of anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and treated with anhydrous HCl gas. The resulting white precipitate was collected and dissolved in 50 mL of water. Neutralization with a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ gave a copious white precipitate which upon collection reverted to a strawcolored oil. While sitting for 2 weeks the oil changed to a glass, mp 39-43 ${ }^{\circ} \mathrm{C}$; IR 1520, 1350 (nitro group), $1320,1155 \mathrm{~cm}^{-1}$ (sulfone); NMR δ 8.44-8.19, 7.87-7.58 (m, 4, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern ciue to p-nitrophenyl), 7.50 (s, 5, phenyl), 5.23 (d, $1, J=10 \mathrm{~Hz}, \mathrm{H}-2$) 5.17 (d, $1, J=$ $10 \mathrm{~Hz}, \mathrm{H}-4), 3.35-2.83(\mathrm{~m}, 1, \mathrm{H}-3), 2.64\left(\mathrm{~d}, 2, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, and 2.10 (s, $6, N$-methyls). Attempts to crystallize the HCl and picric acid derivatives of 9 c were unsuccessful.
cis-2,4-Diphenyl-3-carboxythietane 1,1-Dioxide (25). A mixture of $10.00 \mathrm{~g}(0.0353 \mathrm{~mol})$ of 7 a and 70 mL of $\mathrm{Me}_{2} \mathrm{SCl}$ was heated to give a solution to which was added 50 mL of $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The resulting mixture was heated at reflux for 3 h . Upon cooling, the solution was poured onto 200 g of crushed ice with stirring and the mixture was diluted with 500 mL of water. An off-white precipitate was collected and dried. Crystallization from 1,2-dichloroethane gave 9.45 g (89%) of 25 as white, fluffy needles, $\mathrm{mp} 223-224^{\circ} \mathrm{C}$; IR 3270, 1730 (carboxylic acid), $1305,1172,1130 \mathrm{~cm}^{-1}$ (sulfone); NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) δ 7.83-7.33 (m, 10, phenyl), $5.90(\mathrm{~d}, 2, J=10 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-4)$, and 4.15 ($\mathrm{t}, 1, J=10 \mathrm{~Hz}, \mathrm{H}-3$).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{SO}_{4}$ (302.35): C, $63.56 ; \mathrm{H}, 4.67 ; \mathrm{S}, 10.60$ Found: C, 63.40; H, 4.79; S, 10.54 .
cis-2,4-Diphenyl-3-acetylthietane 1,1-Dioxide (26). A mixture of $40.00 \mathrm{~g}(0.132 \mathrm{~mol})$ of 25 and 400 mL of freshly distilled thionyl chloride was heated at reflux for 5 h . The system was protected from moisture. Evaporation of the excess thionyl chloride under reduced pressure gave the acid chloride as a cream-colored solid, mp 140-141 ${ }^{\circ} \mathrm{C}$; IR 1780 (acid chloride), 1333, $1180,1137 \mathrm{~cm}^{-1}$ (sulfone); carboxylic acid bands at 3270 and $1730 \mathrm{~cm}^{-1}$ were absent. A solution of the unpurified acid chloride in 140 mL of dry THF was drained into a vigorously stirred organocadium reagent which was cooled in an icewater bath. The reagent was prepared just prior to the reaction by reacting $4.01 \mathrm{~g}(0.165 \mathrm{~mol})$ of Mg turnings in 40 mL of dry THF and then adding $15.13 \mathrm{~g}(0.0825 \mathrm{~mol})$ of anhydrous CdCl_{Σ} according to a method adopted from the literature. ${ }^{25}$ When the addition of the acid chloride was complete, the ice-water bath was removed and the reaction was stirred at room temperature for 8 h . Approximately 180 mL of THF was evaporated under reduced pressure. The gray sus pension was poured onto a mixture of 200 g of crushed ice and 100 mL of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. The mixture was then extracted with a total of 350 mL of CHCl_{3}. The combined CHCl_{3} extracts were evaporated under reduced pressure to a volume of approximately 150 mL and extracted with 200 mL of $10 \% \mathrm{NaOH}$. Acidification of the basic extracts gave a 22.5% recovery of 25 . The CHCl_{3} layer was washed with water, dried over MgSO_{4} and evaporated in vacuo to give $27.03 \mathrm{~g}(68.4 \%)$ of white solid. Crystallization from hexane- EtOH with charzoal treatment afforded 26 as white, shiny leaflets, $\operatorname{mp~} 125-126^{\circ} \mathrm{C}$; IR 1715 (ketone), $1330,1172,1140 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.64-7.32$ (m, 10, phenyls), $5.50(\mathrm{~d}, 2, J=10 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-4), 3.90(\mathrm{t}, 1, J=10 \mathrm{~Hz}, \mathrm{H}-3)$, and 2.03 (s, $3, \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ (300.37): $\mathrm{C}, 67.98$; $\mathrm{H}, 5.37 ; \mathrm{S}, 10.67$.

Found: C, 68.15; H, 5.33; S, 10.64
The oxime derivative 23 of 26 was prepared using a method from the literature. ${ }^{31}$. Crystallization from water-EtOH gave 23 as small, white needles, $\mathrm{mp} 181-186^{\circ} \mathrm{C} \mathrm{dec}$; IR 3440 (hydroxyl), 1315,1170 , $1135 \mathrm{~cm}^{-1}$ (sulfone); NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 7.80-7.36$ (m, 10, phenyl), $5.81(\mathrm{~d}, 2, J=10 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-4), 4.08(\mathrm{t}, 1, J=10 \mathrm{~Hz}, \mathrm{H}-3)$, and 1.68 (s, $3, \mathrm{CH}_{3}$).
2,4-Diphenyl-3-(1-nitroethyl)thietane 1,1-Dioxide (21). A solution of $4.50 \mathrm{~g}(0.0176 \mathrm{~mol})$ of 4 in 90 mL of nitroethane was diluted with 90 mL of ethanol and then 9.0 mL of a solution prepared by dissolving 1.0 g of KOH in a mixture of 10 mL of ethanol and 5 mL of nitroethane was added. The bright yellow solution was stirred for 7 h and acidified with 9.0 mL of glacial acetic acid. Evaporation in vacuo gave a white solid which was triturated with water, collected, and dried. Crystallization from hexane-benzene afforded 4.79 g (73.5\%) of 21 as fine, white needles, $\mathrm{mp} 181-182^{\circ} \mathrm{C}$; IR 1554 (nitro group), 1324 (nitro group and sulfone), $1147 \mathrm{~cm}^{-1}$ (sulfone). The NMR spectrum showed a doublet at $\delta 7.48$ (10 , phenyl), two overlapping doublets, one at $\delta 5.33\left(1, \mathrm{H}_{\mathrm{e}}, J_{\text {eb }}=10 \mathrm{~Hz}\right)$ and the other at $\delta 5.14(1$, $\left.\mathrm{H}_{\mathrm{d}}, J_{\mathrm{db}}=11 \mathrm{~Hz}\right)$, a multiplet centered at $\delta 4.83\left(1, \mathrm{H}_{\mathrm{c}}, J_{\mathrm{cb}}=8 \mathrm{~Hz}, J_{\mathrm{ca}}\right.$ $=7 \mathrm{~Hz})$, a multiplet centered at $\delta 3.50\left(1, \mathrm{H}_{\mathrm{b}}, J_{\mathrm{be}}=10 \mathrm{~Hz}, J_{\mathrm{bd}}=11\right.$ $\left.\mathrm{Hz}, J_{\mathrm{bc}}=8 \mathrm{~Hz}\right)$, and a doublet at $\delta 1.33\left(3, \mathrm{C}\left(\mathrm{H}_{\mathrm{a}}\right)_{3}, J_{\mathrm{ac}}=7 \mathrm{~Hz}\right)$. The high-field signal of the doublet at $\delta 5.14$ overlapped the low-field signal of the multiplet at $\delta 4.83$. A singlet at $\delta 7.38(3 \mathrm{H})$ was assigned to benzene. A solution prepared by dissolving 20.0 mg of crystalline 21 in 1.20 mL of anhydrous DMSO was calculated to contain $1.76 \mathrm{mg} / \mathrm{mL}$ of benzene. The solution was analyzed for benzene by GC using the 3% OV- 225 column with the injection port, oven and detector at 250 , 35 , and $272^{\circ} \mathrm{C}$, respectively, and the nitrogen flow at $32 \mathrm{~mL} / \mathrm{min}$. One peak was observed which possessed a retention time and area identical with that recorded by injecting an equal volume of a reference solution containing $1.75 \mathrm{mg} / \mathrm{mL}$ of benzene in anhydrous DMSO. As insufficient 21 was on hand to crystallize from a solvent other than benzene, it was submitted for analysis as the benzene-containing crystals.

Anal. Calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}\right)_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ (740.89): C, $64.85 ; \mathrm{H}, 5.44 ; \mathrm{N}$, 3.78 ; O, 17.28; S, 8.65. Found: C, 65.04; H, 5.31 ; N, 3.96; O, 17.33; S, 8.62.

2,4-Diphenyl-3-(1-dimethylaminoethyl)thietane 1,1-Dioxide (24). A solution of $4.00 \mathrm{~g}(0.0121 \mathrm{~mol})$ of 21 in 30 mL of THF was diluted with 50 mL of EtOH and hydrogenated over 8 g of sponge nickel catalyst (W. R. Grace \& Co., No. 986) at an initial hydrogen pressure of 52 psi using a Parr hydrogenator. After 7 h the catalyst was removed by filtration and the filtrate was evaporated under reduced pressure to give a viscous, pale yellow syrup. The syrup was dissolved in 20 mL of CHCl_{3} and extracted with 40 mL of 4 N HCl followed by 20 mL of water. The pooled aqueous extracts were basified with 18 N NaOH and extracted with 50 mL of CHCl_{3}. The CHCl_{3} extract was washed with $10 \% \mathrm{NaCl}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to give $2.19 \mathrm{~g}(60 \%)$ of 22 as a pale yellow solid, mp $145-147^{\circ} \mathrm{C}$; IR $3440-3360$ $\left(\mathrm{NH}_{2}\right), 1310,1145 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.67-7.30$ (m, 10, phenyls), 5.26 ($\mathrm{d}, 1, J=10 \mathrm{~Hz}$, benzylic), $5.16(\mathrm{~d}, 1, J=10 \mathrm{~Hz}$, remaining benzylic), $3.50-2.65$ ($\mathrm{m}, 2, \mathrm{H}-3$ and $\mathrm{CH}_{3} \mathrm{CH} \mathrm{NH}_{2}$), 1.22 (s, $2, \mathrm{NH}_{2}$), and $0.87\left(\mathrm{~d}, 3, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. The CHCl_{3} layer from the acid extraction was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure to give $1.36 \mathrm{~g}(36 \%)$ of beige solid. The IR and NMR spectra of the crystallized material (water-ethanol) was superimposable with those of cis-2,4-diphenyl-3-acetylthietane 1,1 dioxide oxime (23).

The amine 22 was dimethylated without further purification using a procedure similar to that described for the preparation of 9a. After heating 2.2 g (0.007 mole) of 22 in 6.6 mL of 90.7% formic acid and 6.0 mL of 37% formaldehyde solution for 3 h , the reaction was worked up to give $1.9 \mathrm{~g}(79 \%)$ of pale beige solid. Crystallization from hexaneEtOH with charcoal treatment gave 24 as white needles, mp 145-146 ${ }^{\circ} \mathrm{C}$; IR $1310,1150 \mathrm{~cm}^{-1}$ (sulfone); NMR $\delta 7.60-7.31$ (m, 10, phenyls), 5.26 (d, $1, J=9 \mathrm{~Hz}$, benzylic), 5.07 (d, $1, J=9 \mathrm{~Hz}$, remaining benzylic) $3.25-2.67$ (m, 2, H-3 and $\left.\mathrm{CH}_{3} \mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.97$ (s, $6, N$-methyls), and $0.75\left(\mathrm{~d}, 3, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ (329.46): C, $69.27 ; \mathrm{H}, 7.04 ; \mathrm{N}, 4.25$. Found: C, 69.17; H, 7.03; N, 4.43 .

Preparation of 24 Using 23. The procedure was investigated in a preliminary fashion. A stirred solution of $2.24 \mathrm{~g}(0.0071 \mathrm{~mol})$ of 23 in 25 mL of dry THF was cooled in an ice-water bath and reacted with 2.0 mL of acetyl chloride ${ }^{32}$ for 1.5 h . Evaporation of the solvent under reduced pressure gave an oil which was dissolved in 100 mL of $\mathrm{Et}_{2} \mathrm{O}$, washed with 200 mL of $3 \% \mathrm{NaHCO}_{3}$ solution, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave an oil, the IR spectrum (neat) of which showed the absence of the oxime hydroxyl band and the presence of an ester functionality. A solution of $1.2 \mathrm{~g}(0.003 \mathrm{~mol})$ of the crude ester in 20 mL of dry THF was reacted with 25 mL of 0.3 M diborane in

THF for $16 \mathrm{~h} .{ }^{20}$ A dry nitrogen atmosphere was provided throughout the reaction period and the system was protected from moisture. The excess diborane was decomposed by drop-wise addition of water and then the colorless solution was gently refluxed for 1 h . Removal of the solvent in vacuo gave a white solid which was treated directly with 5 mL of 90.7% formic acid and 4.5 mL of 37% formaldehyde solution in a manner similar to that described for the preparation of 9a. Work-up gave 0.16 g (14%) of pale yellow solid. Crystallization from hexaneEtOH afforded white needles, mp $144-145^{\circ} \mathrm{C}$. The IR spectrum of this material was superimposable with that of 24.

Acknowledgments. The authors wish to thank the Medical Research Council (Grant MA-3044) for financial support.

Registry No.-la, 63268-45-1; 1b, 63268-46-2; 2a, 63231-37-8; 2b, 63268-47-3; 3, 63231-38-9; 4, 18744-26-8; 5a, 63250-64-6; 5b, 63250-65-7; 6, 63250-66-8; 7a, 63284-66-2; 7b, 63250-67-9; 7c, 63250-68-0; 8a, 63250-69-1; 8b, 63250-62-4; 8b, picrate, 63250-63-5; 8c, 63284-69-5; 9a, 63250-70-4; 9b, 63250-71-5; 9c, 63250-72-6; cis-11a, 614-46-0; trans-11a, 614-47-1; 13, 63284-67-3; 13 dimethylamine salt, 63284-$68-4 ; 14$ isomer $1,63250-73-7$; 14 isomer $2,63250-74-8 ; 15,5076-35-7$; 16, 63250-75-9; 18, 63284-70-8; 19, 63250-76-0; 20, 52958-88-0; 21, 63250-77-1; 22, 63250-78-2; 23, 63250-79-3; 24, 63250-80-6; 25, 63250-81-7; 25 acid chloride, 63250-82-8; 26, 63250-83-9.

References and Notes

(1) (a) Taken in part from the Ph.D. thesis of J. E. Coates, University of British Columbia, 19?2; (b) For previous paper, see: F. S. Abbott, J. E. Coates, and K. Haya, v. Org. Chem., 42, 3502 (1977); (c) L. Paquette and M. Rosen, J. Org. Chem., 33, 3027 (1968); (d) D. Dittmer and M. Christy, J. Am. Chem. Soc., 84, 399 (1962).
(2) When used in this paper with respect to thietane 1,1 -dioxide derivatives, the terms cis and trans refer to the relationship of the aryl groups on the heterocyclic ring.
(3) Compound 4 has previously been prepared from 2,4-diphenyl-3-diethylaminothietane 1,1-dioxide: D. R. Eckroth and G. M. Love, J. Org. Chem., 34, 1136 (1969). Using 2 -phenylthiete 1,1 -dioxide ${ }^{4}$ as a reference compound, it is apparent that their assignment of the heterocyclic protons in the NMR spectrum of 4 is reversed
(4) J. N. Wells and F. S. Abbott, J. Med. Chem., 9, 489 (1966).
(5) A. C. Cope and E. R. Trumbull, Org. React. 11, 362 (1960)
(6) C. Schaal, Buil. Soc. Chim. Fr., 3064 (1971).
(7) (a) J. F. King, K. Piers, D. J. H. Smith, C. L. McIntosh, and P. de Mayo, Chem. Commun., 31 (1969); (b) C. L. McIntosh and P. de Mayo, ibid., 32 (1969).
(8) The mechanistic significance of the presence of some cis-chalcone in the thermolysates of $\mathbf{4 , 5 a}$, and 5 b is not clear at the present time because of the ease with which calcones undergo thermal and photochemical isomerization. ${ }^{21}$
(9) J. F. King, P. de Mayo, C. L. McIntosh, K. Piers, and D. J. H. Smith, Can. J. Chem., 48, 3704 (1970).
(10) G. Opitz, Angew. Chem., Int. Ed. Engl., 6, 107 (1967), and references cited therein.
(11) T. L. Jacobs and M. H. Goodrow, J. Org. Chem., 23, 1653 (1958).
(12) The crude sulfonic acid was not thoroughly investigated for the presence of cis isomer.
(13) (a) R. M. Silverstein and G. C. Bassler, "Spectrometric Identification of Organic Compounds'". 2nd ed, Wiley, New York, N.Y., 1967, p 145; (b) ibid, p 165; (c) "CRC Atlas of Spectral Data and Physical Constants for Organic Compounds", J. Grasselli, Ed., CRC Press, Cleveland, Ohio, 1973.
(14) F. A. Bovey, "Nuclear Magnetic Resonance Spectroscopy", Academic Press, New Ycrk, N.Y., 1969, pp 105-110.
(15) Attack of thiol radicals is known to occur at the β-carbon atom of α, β unsaturated carbonyl compounds; cf. R. Brown, W. E. Jones, and A. R. Pinder. J. Chem. Soc., 2123 (1951).
(16) Thiols are known to react with carbonyl compounds to give α-hydroxy sulfides; cf. E. Campaigne in "Organic Sulfur Compounds", N. Kharasch. Ed., Vol. 1, Pergamon Press, London, 1961, p 134
(17) J. L. Kice, in "The Chemistry of Organic Sulfur Compounds"', N. Kharasch and C. Y. Meyers, Ed., Vol. 2, Pergamon Press, London, 1966, p 115.
(18) E. P. Kohler and M. Reimer, Am. Chem. J., 31, 163 (1904).
(19) M. L. Moore, Org. React., 5, 301 (1949).
(20) (a) A. Hassner and P. Catsoulacos, Chem. Commun., 590 (1967); (b) H. Feurer and D. M. Braunstein, J. Org. Chem., 34, 1817 (1969).
(21) cis-Benzylideneacetophenone was prepared by exposing a $0.2 \% \mathrm{CHCl}_{3}$ solution of the trans isomer in a Pyrex container to direct sunlight for 1 h . See: (a) R. E. Lutz and R. H. Jordan, J. Am. Chem. Soc., 72, 4090 (1950); (b) W. B. Black and R. E. Lutz, J. Am. Chem. Soc., 77, 5134 (1955). Analogous isomerizations were carried out using trans-benzylidene-p-chloroacetophenone and trans- p-chlorobenzylideneacetophenone.
(22) E. P. Kohler and H. M. Chadwell, Org. Synth., 2, 1 (1922).
(23) (a) J. F. J. Dippy and R. H. Lewis, Recl. Trav. Chim. Pays-Bas, 56, 1000 (1937); (b) same procedure used as for preparation of 11c.
(24) G. E. McCasland, E. Blanz, and A. Furst, J. Org. Chem., 24, 999 (1959).
(25) (a) A. I. Vogel, "A Text-book of Practical Organic Chemistry", 3rd ed, Longsmans, London, 1956, p 182; (b) ibid., pp 936-937.
(26) "The Merck Index"', P. G. Stetcher, Ed., 7th ed, Merck and Co., Rahway. N.J., 1960, p 228.
(27) See ref 22.

Wiley, New York, N.Y., 1955, p 723.
(31) E. W. Bousquet, '"Organic Syntheses', Collect. Vol. II, Wiley, New York, N.Y., 1943, p 313.
(32) L. Gass and F. W. Bope, J. Pharm. Sci., 48, 186 (1959).

Photochemical Synthesis of Benzo[f]quinolines ${ }^{1}$

Nicholas R. Beller, ${ }^{2}$ Douglas C. Neckers, ${ }^{* 3}$ and Eleftherios P. Papadopoulos ${ }^{4}$
Departments of Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131, and Bowling Green State University, Bowling Green, Ohio 43403

Received April 12, 1977

Benzo[f]quinolines with a sulfur-containing substituent at position 7 have been synthesized photochemically from the corresponding 2 -stilbazoles. An improved synthesis of o-(methylthio) benzaldehyde is described.

In the course of a general study of the photochemistry of benzo[$b]$ thiophene, ${ }^{5}$ we became interested in the possibility of photochemical synthesis of a heterocyclic ring system, 1 , capable of subsequent elaboration to 1-deaza-1-thialysergic acid (2).

1

2

Since benzo[b]thiophene is an isostere of indole, sulfur analogs of biologically active indole derivatives are obvious targets of research and their synthesis as well as pharmacology have been investigated extensively. ${ }^{6}$ Among other derivatives, sulfur isosteres of various tryptamines, including serotonin, have been synthesized and found to have pharmacological properties similar to those of the nitrogen compounds. ${ }^{7}$ In view of the extraordinary pharmacological activity of lysergic acid and many of its derivatives, it is not surprising that an attempt has been made to synthesize its sulfur isostere, 1-deaza-1-thialysergic acid (2). Campaigne and Knapp modeled their approach to 2^{8} after Kornfeld and Woodward's synthesis of lysergic acid, ${ }^{9}$ but their effort could not be carried through to the desired compound.

In attacking the problem of the synthesis of a ring skeleton of 2 , we chose to construct first the benzo[f]quinoline system 8 , functionalized appropriately with a sulfur containing group at position 7 , intending to close the sulfur ring after the simpler heterocycle was intact.

We present herein photochemical preparations of some benzo[f]quinolines as possible intermediates in the synthesis of a parent ring system of thiolysergic acid.

Results and Discussion

Our choice as a method of preparation of the three-ring system of 8 was the photocyclization of appropriate 2 -stilbazoles. Because of its simplicity, this oxidative ring closure has been used on numerous occasions as a direct route to azaphenanthrenes, ${ }^{10}$ in spite of generally modest yields. Thus, Kumler and Dybas prepared a variety of benzo[f]quinolines by photochemical ring closure of corresponding 2 -stilbazoles. ${ }^{11}$

A suitable synthesis had to be developed for o-(methyl-
thio) benzaldehyde (5a), the starting material for most of the stilbazoles we needed. The reported synthesis of 5 a by LiAlH_{4} reduction of N-methyl-o-(methylthio)benzanilide in THF ${ }^{12}$ failed in our hands, giving only trace quantities of the desired product. Lithium tri-tert-butoxyaluminohydride reduction of o-(methylthio)benzoyl chloride using Brown and Subba Rao's procedure ${ }^{13}$ gave aldehyde 5 a in 37% yield, still not a particularly satisfactory yield for further synthetic use. An attempt to carry out a Reimer-Tiemann formylation of thiophenol combined with methylation of the mercapto group also was unsuccessful.

Good yields of the desired aldehyde were obtained, however, from a 2 -step synthesis in which 0 -(methylthio) benzoic acid (3) was reduced to o-(methylthio)benzyl alcohol (4) which was

then oxidized to aldehyde 5 a using active manganese dioxide. The oxidation procedure ${ }^{14}$ was adapted from Papadopoulos, Jarrar, and Issidorides ${ }^{15}$ using the Morton ${ }^{16}$ method to prepare active manganese dioxide.

Although certain sulfides are oxidized with active manganese dioxide, ${ }^{17}$ we were able to arrive at conditions of solvent and temperature (Table I) in which very little oxidation to the corresponding sulfoxide $\mathbf{5 b}$ occurred. Thus, treatment of 0.1 mol of 4 with a 5 -fold (w / w) amount of active MnO_{2} in CCl_{4}, at room temperature, led to reproducible, excellent yields of 5a containing virtually no alcohol 4 and only traces of sulfoxide 5b.

Because use of this procedure routinely resulted in overall conversion of about 80% starting from o-(methylthio)benzoic acid, we feel that it deserves consideration as a method of preparation of o-(methylthio)benzaldehyde. For purposes of identification, but also for use as starting material for the synthesis of appropriate benzo[f]quinolines, 0 -(methylsulfinyl)benzaldehyde ($\mathbf{5 b}$) was prepared in essentially quantitative yield by sodium metaperiodate oxidation of 5a. ${ }^{18}$

The precursor 2 -stilbazoles needed in our work were pre-

Table I. Product Distribution for the Active Manganese Dioxide Oxidation of o-(Methylthio)benzyl Alcohol in Various Solvents ${ }^{a}$

	Mol \%		
Solvent	Unreacted 4	$\mathbf{5 a}$	$\mathbf{5 b}$
Benzene	22	64	14
Cyclohexane	8	89	3
Anhydrous ether	12	70	18
Carbon tetrachloride	5	91	4
Chloroform	15	73	12
Methylene chloride	27	64	9
Ethyl acetate	30	65	5
Acetone	34	59	7
Water	46	45	9

${ }^{a}$ A mixture of 0.5 g of 4 in 25 ml of solvent and 2.5 g of active manganese dioxide was magnetically stirred at room temperature for $8 \mathrm{~h} .{ }^{b}$ Determined from the peak areas of the benzylic protons of 4 ($\delta 4.57$), methylthio protons of $5 \mathrm{a}(\delta 2.39)$ and methylsulfinyl protons of $5 \mathbf{b}$ ($\delta 2.70$) in the NMR spectra of the crude products.
pared mostly by aldol-type condensations of suitably substituted benzaldehydes 5 with 2-picolines 6 . ${ }^{11,19}$ Thus, refluxing of benzaldehyde or o-(methylthio)benzaldehyde and ethyl 6-metthylnicotinate in acetic anhydride yielded stilbazoles 7d and $7 \mathbf{e}$, respectively.

Stilbazole 7a was obtained by heating o-(methylthio)benzaldehyde and 2-picoline with a catalytic amount of zinc chloride in a sealed tube. The sulfur in the side chain of 7a and $7 \mathbf{e}$ was readily oxidized using the elegant Leonard-Johnson procedure ${ }^{18}$ and, in this manner, methylsulfinylstilbazoles 7 b , $7 f$ and methylsulfonylstilbazoles $7 \mathrm{c}, 7 \mathrm{~g}$ were prepared.

Stilbazoles $7 \mathbf{a}-\mathrm{g}$ were assigned the trans configuration about the double bond on the basis of spectral data. Thus, in their NMR spectra, the vinyl proton peaks (readily identifiable even though overlapping to a varying extent with other signals) exhibited a coupling constant of 16 Hz . Further, the infrared spectra contained absorption bands at $990-965 \mathrm{~cm}^{-1}$ typical of trans olefinic C-H bonds (out-of-plane bending). Finally, the ultraviolet spectra showed two absorption bonds beyond 250 nm , of which the one at longer wavelength was more intense, again indicating trans configuration about the double bond. ${ }^{11,20}$

The photocyclization of trans-2-stilbazoles is belieyed to occur stepwise, through the cis-2-stilbazoles and the dihydrobenzo[f]quinolines. ${ }^{11}$ From the work of Kumler and Dybas it was known that tert-butyl alcohol or nonpolarsolvents and irradiation through Corex filters gave the best ytelds of benzo[$f]$ quinolines. Filter selection is critical in order that light absorption by the product be prevented and light absorption by the stilbazole be maximized. The ultraviolet spectra of stilbazoles $7 \mathbf{a}-\mathbf{g}$ are similar to that of unsubstituted 2 -stilbazole, having K bands in the $310-330-\mathrm{nm}$ region and aromatic absorption bands at shorter wavelengths. As shown in Figure 1, use of a Corex 9700 filter appears to allow excitation

Figure 1.
of the stilbazoles at their wavelength of maximum absorption and at the same time protect the photoproducts from wavelengths of light that could cause further reaction.

Photolyses of stilbazoles $7 \mathrm{a}-\mathrm{g}$ were carried out in tert-butyl alcohol-benzene mixtures, in the presence of oxygen, using a Corex 9700 filter and were monitored by thin-layer chromatography. Any material which did not correspond to the precursor stilbazole was removed from the TLC plate and had its ultraviolet spectrum compared with that of unsubstituted benzo[f]quinoline. ${ }^{21}$ Photolysates which gave UV spectra similar to that of the parent benzo[f]quinoline were then subjected to isolation procedures.

Photolysis of stilbazoles $\mathbf{7 c}, \mathbf{d}$, and \mathbf{g} yielded the corresponding benzo[f]quinolines $8 \mathbf{c}$, \mathbf{d}, and \mathbf{g}, in 21,19 , and 26%

[0]

8c, $\mathrm{X}=\mathrm{SO}_{2} \mathrm{CH}_{3} ; \mathrm{Y}=\mathrm{H}$
d, $\mathrm{X}=\mathrm{H} ; \mathrm{Y}=\mathrm{COOEt}$
$\mathrm{g}, \mathrm{X}=\mathrm{SO}_{2} \mathrm{CH}_{3} ; \mathrm{Y}=\mathrm{COOEt}$
yield, respectively. No useful product could be isolated from the photolysates of stilbazoles $7 \mathbf{a}, \mathbf{b}, \mathbf{e}$, and \mathbf{f}. There was extensive decomposition (perhaps not unexpectecily, in view of the known lability of the carbon-sulfur bond uncer photolytic conditions ${ }^{22}$) and no evidence could be found for the presence of a cyclized product in any fraction of the photolysates, except in the case of stilbazole 7 f . Repeated column and thinlayer chromatographic treatments of that photolysate yielded traces of a colorless solid, which had a UV spectrum consistent with a cyclized product, but which could not be fully characterized because of insufficient available material.

The structure of photoproduct 8 d was confirmed by an independent, norphotochemical preparation based on a series of reactions used by Uhle and Jacobs ${ }^{23}$ for the synthesis of dihydrolysergic acid. Thus, the sodium salt of the diethyl acetal of cyanomalondialdehyde (9) was condensed with 2naththylamine to imine 10 , which was cyclized by heating with

zinc chloride to 2-cyanobenzo[f]quinoline (11). Hydrolysis of 11 followed by esterification yielded $8 d$, identical n all respects with the photochemically obtained material.

Work will be continued at a later date on the subsequent step of the synthetic sequence, base catalyzed ring closure involving the 7 -methylsulfonyl group and position 5 of benzo[f]quinolines 8 c and 8 g , to complete construction of the benzo[b]thiophene portion of the thioergoline ring system 1.

Experimental Section ${ }^{24}$

\boldsymbol{o}-(Methylthio)benzoic acid was prepared from o-mercaptobenzoic acid (Aldrich) by the method of Arndt. ${ }^{25}$
\boldsymbol{o}-(Methylthio)benzyl alcohol (4). Into a three-neck, 1-L round-bottom flask equipped with a reflux condenser, calcium chloride drying tube, and mechanical stirrer was placed 25.0 g (149 mmol) of o-(methylthio) benzoic acid (3). After the addition of 200 mL of anhydrous THF, the acid was made to dissolve by stirring and heating the contents of the flask. The resulting solution was cooled to room temperature, diluted with 400 mL of anhydrous ether, and further cooled in an ice bath for 15 min . Then $5.08 \mathrm{~g}(134 \mathrm{mmol})$ of lithium aluminum hydride was added, in small portions with stirring and cooling, during 10 min , and the reaction mixture was allowed to stir at room temperature for an additional 2.5 h . Excess lithium aluminum hydride was then decomposed, first by cautious addition of wet ether and then addition of 500 mL of 10% hydrochloric acid. Following separation of the ether layer, the aqueous layer was extracted with three $250-\mathrm{mL}$ portions of ether and the combined ether solutions were washed with two $250-\mathrm{mL}$ portions of 10% aqueous sodium hydroxide and finally with water. After drying over anhydrous sodium sulfate, the solvent was removed on a rotary evaporator and the residual oil distilled under reduced pressure to yield 18.6 (81%) of 4 as a clear liquid: bp $115-118^{\circ} \mathrm{C}$ (1.1 Torr); lit. ${ }^{26} \mathrm{bp} 88^{\circ} \mathrm{C}\left(10^{-3} \mathrm{Torr}\right)$; IR (neat) $3650-3100 \mathrm{~cm}^{-1}(\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.28$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}-$), 3.43 (s broad, $1 \mathrm{H},-\mathrm{OH}$), 4.52 ($\mathrm{s}, 2 \mathrm{H}$, benzyl H's), 6.96 (s, $4 \mathrm{H}, \mathrm{Ar}$ H's).
o-(Methylthio) benzaldehyde (5a). Into a 2-L, three-neck flask equipped with a mechanical stirrer and calcium chloride drying tube were placed 100 g of freshly powdered active manganese dioxide, 1 L of carbon tetrachloride, and 20.0 g (130 mmol) of c-(methylthio) benzyl alcohol. The reaction mixture was allowed to stir for 24 h at room temperature and filtered, and the filter cake of manganese dioxide was washed with three $250-\mathrm{mL}$ portions of acetone. The combined carbon tetrachloride and acetone filtrates were filtered again through a pad of Celite and the clear, light-yellow solution distilled of solvent on a rotary evaporator to give a residual oil. Distillation of this oil under reduced pressure yielded 19.0 g (96%) of 5 a as a light-yellow liquid: bp $96-101^{\circ} \mathrm{C}(1.4$ Torr $)$; lit. ${ }^{12} \mathrm{bp}$ - $49^{\circ} \mathrm{C}(19$ Torr); IR (neat) $1700-1675 \mathrm{~cm}^{-1}(\mathrm{C}=0) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.35(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 6.8-7.7 (m, $4 \mathrm{H}, \mathrm{Ar} \mathrm{H}$'s), 9.97 (s, $1 \mathrm{H}, \mathrm{CHO}$).
o-Methylsulfinylbenzaldehyde (5b). To 138 mL of 0.5 M aqueous sodium metaperiodate (69 mmol of NaIO_{4}), stirred magnetically and maintained at $3^{\circ} \mathrm{C}$, was added $10.0 \mathrm{~g}(66 \mathrm{mmol})$ of c (methylthio) benzaldehyde (5a) and the resulting mixture was stirred at $3^{\circ} \mathrm{C}$ for 15 h . After filtration, the filter cake of sodium iodate was washed with two $50-\mathrm{mL}$ portions of chloroform and the two-phase filtrate shaken in a separatory funnel. The chloroform layer was separated and the aqueous layer extracted with two $50-\mathrm{mL}$ portions of chloroform. The combined chloroform solutions were dried over anhydrous
sodium sulfate and the solvent was distilled under reduced pressure to yield a yellow oil which solidified when triturated with cold ether. The resulting crystalline material was collected, washed with a small amount of cold ether, and air dried to yield $10.7 \mathrm{~g}(96 \%)$ of an off-white crystalline product: $\mathrm{mp} 73-74^{\circ} \mathrm{C}$, lit. ${ }^{12} \mathrm{mp} 73-75{ }^{\mathrm{c}} \mathrm{C}$; IR (KBr) $1695-1670 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1025(\mathrm{~S}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.73$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}-$), 7.4-8.3 (m, 4 H, Ar H's), 9.85 (s, 1 H, CHO).
trans-2'-Methylthio-2-stilbazole (7a). A mixture of $15.2 \mathrm{~g}(0.100$ mol) of o-(methylthio)benzaldehyde, $9.31 \mathrm{~g}(0.100 \mathrm{~mol}$ of 2-picoline and 0.200 g of zinc chloride was heated in a sealed tube, at $200^{\circ} \mathrm{C}$, for 16 h . The product was distilled under reduced pressure to yield 13.1 g (58%) of 7 a as a yellow, viscous oil: bp $158-164{ }^{\circ} \mathrm{C}$ (0.25 Torr); IR $970 \mathrm{~cm}^{-1}$ (trans $-\mathrm{CH}=\mathrm{CH}$); NMR $\delta 2.34$ (s, 3, $\mathrm{CH}_{3} \mathrm{~S}-$), 6.7-8.1 (m, 9, Ar H and $=\mathrm{CH}), 8.31(\mathrm{~d}, 1, J=4 \mathrm{~Hz}, 6-\mathrm{H}) ; \mathrm{UV} \lambda_{\max }\left(\epsilon \times 10^{-3}\right)$ sh 352 nm (6.8), 310 (18.2), 266 (17.2), 208 (14.2).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NS}: \mathrm{C}, 73.97$; $\mathrm{H}, 5.76 ; \mathrm{N}, 6.16$. Found: C, 73.89; H, 5.61; N, 6.04.
trans-2'-Methylsulfinyl-2-stilbazole (7b). The mixture of a solution of 1.14 g (5 mmol) of 7 a in 80 mL of MeOH and 11.0 mL of 0.500 M aqueous sodium metaperiodate (5.5 mmol of NaIO_{4}) was stirred at room temperature for 24 h . After filtration, -he filter cake of sodium iodate was washed with 40 mL of MeOH and the combined filtrate and washings evaporated to about 20 mL . This concentrate was diluted with 250 mL of water and the resulting solution extracted with three $75-\mathrm{mL}$ portions of CHCl_{3}. The extract was d=ied $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and distilled to a viscous, oily residue. This material could not be induced to crystallize, nor could it be distilled under reduced pressure without decomposition. Partial purification by chromatography on an alumina column yielded $0.79 \mathrm{~g}(65 \%)$ of $7 \mathbf{b}$ in the form of a viscous, yellow oil, the NMR spectrum of which showed that it was uncontaminated by the corresponding sulfide or sulfone: IR 1070, 1035 (S-0), $970 \mathrm{~cm}^{-1}$ (trans $-\mathrm{CH}=\mathrm{CH}$); NMR $\delta 2.61$ ($\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{SO}-$), 6.7-8.0 $(\mathrm{m}, 9, \mathrm{ArH}$ and $=\mathrm{CH}), 8.35(\mathrm{~d}, 1, J=4 \mathrm{~Hz}, 6-\mathrm{H}) ; \mathrm{UV} \lambda_{-\max }\left(\epsilon \times 10^{-3}\right)$ 314 nm (21.0), 226 (11.6), 233 (11.2), 207 (13.8).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13}$ NOS: C, 69.11; H, 5.39; N, 5.76. Found: C, 67.32; H, 5.14; N, 5.51.
trans-2'-Methylsulfonyl-2-stilbazole (7c). The mixture of a solution of $4.55 \mathrm{~g}(17.5 \mathrm{mmol})$ of 7 a in 400 mL of MeOH and 100 mL of 0.5 M aqueous sodium metaperiodate (50 mmol of NaIO_{4}) was refluxed for 18 h . A second 100 mL of 0.5 M aqueous sodium metaperiodate was then added and followed by a further 18 h of reflux. The reaction mixture was cooled and filtered, and the filter cake washed with 40 mL of MeOH . The combined filtrate and washings were diluted with water to three times its original volume to yield $3.09 \mathrm{~g}(60 \%)$ of 7 c as a colorless solid: $\mathrm{mp} 100-102^{\circ} \mathrm{C}$; IR $1295,1150,1123\left(\mathrm{SO}_{2}\right)$, $980 \mathrm{~cm}^{-1}($ trans $-\mathrm{CH}=\mathrm{CH}) ; \mathrm{NMR} \delta 3.03\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{SO}_{2}-\right), 6.8-8.5(\mathrm{~m}$, $10, \mathrm{Ar} \mathrm{H}$ and $=\mathrm{CH}) ; \mathrm{UV} \lambda_{\max }\left(\epsilon \times 10^{-3}\right) 312 \mathrm{~nm}(22.2) ; 271$ (13.0), 231 (12.0), 208 (15.8).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 64.84 ; \mathrm{H}, 5.05 ; \mathrm{N}, 5.40$. Found: C, 64.99; H, 5.15; N, 5.37.
trans-5-Ethoxycarbonyl-2-stilbazole (7d). A mixture of 10.6 $\mathrm{g}(0.100 \mathrm{~mol})$ of benzaldehyde, $16.5 \mathrm{~g}(0.100 \mathrm{~mol})$ of ethyl $6-$ methylnicotinate ${ }^{27}$ and $20.4 \mathrm{~g}(0.200 \mathrm{~mol})$ of acetic anhydride was refluxed for 12 h , then cooled and poured into ice. The resulting mixture was made basic to litmus with 10% aqueous NaOH and stirred until the organic material solidified. The solid was collected by filtration and recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ to yield $10.9 \mathrm{~g}(45 \%)$ of 7 d as \tan crystals: $\mathrm{mp} 97-9{ }^{\circ} \mathrm{C}$; IR 985 (trans $-\mathrm{CH}=\mathrm{CH}$), $1710 \mathrm{~cm}^{-1}(\mathrm{C}=0$); NMR $\delta 1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2^{-}}\right.$), $4.23(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2-}$), 6.7-8.1 (m, 9 H , Ar H and vinylic H 's), 8.90 (d, $1 \mathrm{H}, \mathrm{J}=$ $2 \mathrm{~Hz}, 6-\mathrm{H}) ; \mathrm{UV} \lambda_{\max }\left(\epsilon \times 10^{-3}\right) 333 \mathrm{~nm}(33.0), 232$ (10.2), 207 (15.0).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 75.87 ; H, 5.97 ; N, 5.53. Found: C, 75.74; H, 5.92; N, 5.58.
trans-5-Ethoxycarbonyl-2'-methylthio-2-stilbazole (7e). From $15.2 \mathrm{~g}(0.100 \mathrm{~mol})$ of o-(methylthio) benzaldehyde, $16.5 \mathrm{~g}(0.100 \mathrm{~mol})$ of ethyl 6 -methylnicotinate and $15.3 \mathrm{~g}(0.150 \mathrm{~mol})$ of acetic anhydride, as described for $7 \mathbf{d}$, there was obtained (after recrystallization from $\mathrm{MeOH}) 18.8 \mathrm{~g}(63 \%)$ of 7 e in the form of a yellow solid: $\mathrm{mp} 89.5-91^{\circ} \mathrm{C}$; IR $1720(\mathrm{C}=0), 960 \mathrm{~cm}^{-1}$ (trans $-\mathrm{CH}=\mathrm{CH}$); NMR $\delta 1.37(\mathrm{t}, 3, J=7$ $\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2-}$), 2.42 ($\left.\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{~S}-\right), 4.29\left(9,2, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}-\right.$), 6.7-8.2 (m, 8, Ar H and $=\mathrm{CH}), 8.97(\mathrm{~d}, 1, J=2 \mathrm{~Hz}, 6-\mathrm{H}) ; \mathrm{UV} \lambda_{\max }(\epsilon$ $\times 10^{-3}$) sh $352 \mathrm{~nm}(12.6), 324$ (19.5), 272 (13.2), 226 (16.2), 209 (15.9).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 68.20 ; \mathrm{H}, 5.72 ; \mathrm{N}, \leq .68$. Found: C, 68.18; H, 5.83; N, 4.62.
trans-5-Ethoxycarbonyl-2'-methylsulfinyl-2-stilbazole (7f). The mixture of a solution of $1.50 \mathrm{~g}(5 \mathrm{mmol})$ of 7 e in 125 mL of MeOH and 11.0 mL of 0.5 M aqueous sodium metaperiodate (5.5 mmol of NaIO_{4}) was stirred at room temperature for 24 h . Following filtration,
the filter cake of sodium iodate was washed with 40 mL of MeOH and the combined filtrate and washings diluted with 600 mL of ice-cold water to yield $1.21 \mathrm{~g}(77 \%)$ of 7 f as a cream-colored solid: mp 128-130 ${ }^{\circ} \mathrm{C}$; IR $1710(\mathrm{C}=0), 1075,1035(\mathrm{~S}-\mathrm{O}), 970 \mathrm{~cm}^{-1}$ (trans- $\mathrm{CH}=\mathrm{CH}$); NMR $\delta 1.38\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$), $2.65\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{SO}\right.$-), 4.30 (q, $\left.2, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}-\right), 6.8-8.2(\mathrm{~m}, 8, \mathrm{Ar} \mathrm{H}$ and $=\mathrm{CH}), 8.97(\mathrm{~d}, 1, J$ $=2 \mathrm{~Hz}, 6-\mathrm{H}$; UV $\lambda_{\text {max }}\left(\epsilon \times 10^{-3}\right)$ sh $351 \mathrm{~nm}(16.5), 330(28.8), 273$ (10.5), 230 (12.9), 208 (6.2).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 64.74 ; \mathrm{H}, 5.43 ; \mathrm{N}, 4.44$. Found: C, 64.54; H, 5.51; N, 4.44.
trans-5-Ethoxycarbonyl-2'-methylsulfonyl-2-stilbazole (7g). The mixture of a solution of $1.50 \mathrm{~g}(5 \mathrm{mmol})$ of 7 e in 200 mL of MeOH and 30 mL of 0.5 M aqueous sodium metaperiodate $(15 \mathrm{mmol}$ of NaIO_{4}) was refluxed for 24 h . After addition of a second 30 mL of 0.5 M aqueous sodium metaperiodate and refluxing for a further 24 h , the reaction mixture was cooled and filtered. The filter cake was washed with 40 mL of MeOH and the combined filtrate and washings diluted with 500 mL of ice-cold water to yield $1.54 \mathrm{~g}(93 \%)$ of 7 g as a cream-colored solid: mp $157-159^{\circ} \mathrm{C}$; IR $1720(\mathrm{C}=0), 1315,1155,1120$ $\left(\mathrm{SO}_{2}\right), 960 \mathrm{~cm}^{-1}$ (trans $-\mathrm{CH}=\mathrm{CH}$); NMR $\delta 1.38(\mathrm{t}, 3, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2-}$), 3.04 (s, $3, \mathrm{CH}_{3} \mathrm{SO}_{2}-$), $4.32\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$), 6.8-8.6 (m, 8, Ar H and $=\mathrm{CH}), 8.97(\mathrm{~d}, 1, J=2 \mathrm{~Hz}, 6-\mathrm{H}) ; \mathrm{UV} \lambda_{\max }(\epsilon$ $\times 10^{-3}$) sh $351 \mathrm{~nm}(12.6), 325$ (29.4), 280 (11.1), 236 (11.1), 209 (16.2).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 61.62 ; \mathrm{H}, 5.17 ; \mathrm{N}, 4.23$. Found: C, 61.55; H, 5.25; N, 4.01.

7-Methylsulfonylbenzo[f]quinoline (8c). A solution of 1.30 g (5 mmol) of 7 c in 1 L of tert-butyl alcohol-benzene (1:1) was placed in a $1-\mathrm{L}$ photochemical reaction vessel and irradiated with a $450-\mathrm{W}$ Hanovia, medium-pressure, mercury-arc (type 679 A36) lamp contained in a quartz, water-cooled jacket and surrounded by a tubular Corex 9700 filter. Oxygen was bubbled through the solution for 0.5 h prior to and during the 8 -h photolysis period, at the end of which the reaction mixture was distilled of solvent to give 3.36 g of a gummy residue. This was dissolved in 50 mL of CHCl_{3} and the resulting solution mixed with 7.0 g of neutral alumina (Baker No. 0540) to a slurry which was evaporated to dryness under reduced pressure. The solid material was then ground to a powder and placed at the top of a chromatography column ${ }^{28}$ of 25.0 g of neutral alumina in a 1 in . glass tube. Elution with benzene-chloroform (1:1) allowed isolation of 0.47 g of a viscous, yellow oil corresponding to a yellow band on the column. This was made to crystallize by trituration with anhydrous ether and yielded $0.27 \mathrm{~g}(21 \%)$ of $8 \mathbf{c}$ as a light-yellow solid: $\mathrm{mp} 153-156^{\circ} \mathrm{C}$; IR $1307,1148 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right)$; NMR $\delta 3.17$ (s, 3, $\left.\mathrm{CH}_{3} \mathrm{SO}-\right), 7.1-8.4(\mathrm{~m}, 4, \mathrm{Ar}$ $\mathrm{H}), 8.64\left(\mathrm{~d}, 4, J=9 \mathrm{~Hz}\right.$, Ar H); UV $\lambda_{\max }\left(\epsilon \times 10^{-3}\right) 343 \mathrm{~nm}(0.09), 327$ (0.09), 300 (12.0), sh 286 (14.4), 275 (22.2), 242 (34.2), 211 (20.1).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 65.35 ; \mathrm{H}, 4.31 ; \mathrm{N}, 5.44$. Found: C, 65.17; H, 4.43; N, 5.43 .

2-Ethoxycarbonylbenzo[f]quinoline (8d). A. Photochemical Synthesis. A solution of $1.27 \mathrm{~g}(5 \mathrm{mmol})$ of 7 d in 1 L of tert -butyl al-cohol-benzene ($9: 1$) was photolyzed as described for 8 c , for 8 h . The resulting solution was evaporated under reduced pressure to 1.55 g of a viscous, brown residue which was dissolved in the minimum amount of chloroform and chromatographed on a column of 40.0 g of neutral alumina in a 1 in . glass tube. The column was eluted with chloroform and the progress of the band corresponding to the photoproduct was monitored by its fluorescence under UV light. The eluate containing the fluorescent band was evaporated to 1.03 g of a viscous, tan residue which was dissolved in the minimum amount of acetone. A portion of this solution, containing 275 mg of the residue, was applied on an $8 \times 8 \mathrm{in}$., 2 mm silica gel preparative thin layer chromatographic plate. Development of the plate with chloroform yielded a fluorescent band near the origin. The absorbent material containing this band was scraped off the plate and extracted with acetone to yield, after removal of the solvent, 70 mg of a viscous oil which was made to crystallize by trituration with cyclohexane. There was obtained $64 \mathrm{mg}(19 \%)$ of 8 d as a tan solid, $\mathrm{mp} 103-105^{\circ} \mathrm{C}$ (a 1:1 mixture of this material with that obtained by the following nonphotochemical synthesis ($\mathrm{mp} 101-104^{\circ} \mathrm{C}$) had a melting point range of $\left.102.5-104^{\circ} \mathrm{C}\right)$; IR $1725 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 1.45(\mathrm{t}, 3, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}-\right), 4.42\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2-}\right), 7.3-7.75(\mathrm{~m}, 3,7-\mathrm{H}, 8-\mathrm{H}$, and $9-\mathrm{H}), 7.81(\mathrm{~s}, 2,5-\mathrm{H}$ and $6-\mathrm{H}), 8.37-8.50(\mathrm{~m}, 1,10-\mathrm{H}), 9.26(\mathrm{~s}, 2$, $1-\mathrm{H}$ and $3-\mathrm{H}$); UV $\lambda_{\max }\left(\epsilon \times 10^{-3}\right) 350 \mathrm{~nm}(3.6), 337$ (4.8), 318 (8.4), 271 (16.4), 263 (16.8), 237 (35.2), sh 220 (24.8).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}$: $\mathrm{C}, 76.48 ; \mathrm{H}, 5.21 ; \mathrm{N}, 5.57$. Found: C , 76.54; H, 5.27; N, 5.60.
B. Nonphotochemical Synthesis. A $125-\mathrm{mL}$ Erlenmeyer flask containing 10.0 g of zinc chloride was immersed in an oil bath the temperature of which was being raised at a rate of about $5^{\circ} \mathrm{C} / \mathrm{min}$. When the bath temperature reached $180^{\circ} \mathrm{C}, 10.0 \mathrm{~g}(45 \mathrm{mmol})$ of 10
was added into the flask over a period of 2 min with continual stirring of the solid mixture. At a bath temperature of $210^{\circ} \mathrm{C}$ the mixture melted and shortly thereafter the flask was removed from the heating bath and allowed to cool. The solidified product was mixed with water, broken into pieces, collected by filtration, and ground into a powder. After it had been washed repeatedly with water, the powdered material was refluxed overnight with 250 mL of 18% hydrochloric acid. The resulting solution was evaporated under reduced pressure to a solid residue which was then refluxed overnight with 1 L of absolute ethanol containing 20 mL of concentrated sulfuric acid. Following distillation of most of the ethanol, the concentrate was mixed with a solution of 100 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 400 mL of $\mathrm{H}_{2} \mathrm{O}$ and the resulting mixture was extracted with several portions of chloroform. After the combined extracts had been dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the chloroform solution was evaporated to a solid residue, which was mixed with a small amount of anhydrous ether and filtered to yield $2.24 \mathrm{~g}(20 \%)$ of 8 d as a light tan solid: mp $101-104{ }^{\circ} \mathrm{C}$. The IR and NMR spectra of this product were identical with those of the product of the immediately preceding photoshemical synthesis.
\boldsymbol{N}-(2-Cyano-2-formylethylidene)-2-naphthylamine (10). Sodium ($2.30 \mathrm{~g}, 0.100 \mathrm{~mol}$) was added to a solution of $14.3 \mathrm{~g}(0.100 \mathrm{~mol})$ of 1-cyano-2,2-diethoxyethane ${ }^{23}$ and $8.00 \mathrm{~g}(0.108 \mathrm{~mol})$ of ethyl formate in 250 mL of anhydrous ether and the resulting mixture was stirred until all of the sodium had reacted. Following addition of 100 mL of water and separation of the layers, the aqueous solution was run into a warm solution of $14.3 \mathrm{~g}(0.100 \mathrm{~mol})$ of 2-naphthylamine in a mixture of 100 mL of ethanol and 360 mL of 3% hydrochloric acid. The precipitatec yellow solid was collected by filtration and recrystallized from ethanol to yield $10.6 \mathrm{~g}(48 \%)$ of 10 as a salmon-colored solid: mp 214-216 ${ }^{\circ} \mathrm{C}$; IR $2225(\mathrm{C} \equiv \mathrm{N}), 1645 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 7.0-8.0(\mathrm{~m}, 7, \mathrm{Ar} \mathrm{H} \mathrm{s}), 8.60(\mathrm{~d}, 1, J=15 \mathrm{~Hz},-\mathrm{N}=\mathrm{CH}-$), 9.16 (s, 1, -CHO, 11.06 (d, $1, J=15 \mathrm{~Hz},>\mathrm{CH}-\mathrm{CN}) .{ }^{29}$

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 75.66 ; \mathrm{H}, 4.54 ; \mathrm{N}, 12.60$. Found: C, 75.52; H, 4.67; N, 12.60.

2-Ethoxycarbonyl-7-methylsulfonylbenzo[f]quinoline (8 g). A solution of $1.66 \mathrm{~g}(5 \mathrm{mmol})$ of 7 g in 1 L of $t e r t$-butyl alcohol-benzene (1:1) was photolyzed, as before, for 7 h . The resulting solution was evaporated under reduced pressure to 3.28 g of a gummy residue which was chromatographed, as described for $8 \mathbf{c}$, on a column of 25.0 g of neutral alumina in a 1 -in. glass tube. Elution with benzene-chloroform (1:1) yielded $0.8^{7} \mathrm{~g}$ of a light yellow solid corresponding to a yellow band in the column. This crude product, triturated and washed with anhydrous ether, gave 0.53 g of an off-white solid, $\mathrm{mp} 219-222^{\circ} \mathrm{C}$. NMR analysis of this material indicated that, in addition to $8 \mathbf{g}$, it contained 18% of the starting stilbazole 7 g . Attempts to purify the photoproduct by recrystallization resulted in an increase of the stilbazole starting material, as evidenced by NMR analysis. A somewhat purer sample was obtained by purification of the photoproduct using preparative TLC on silica gel: IR $1720 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 1.47(\mathrm{t}$, $\left.3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}-\right), 3.22\left(\mathrm{~s}, 3,-\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 4.47(\mathrm{q}, 2, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}-\right), 7.5-8.5(\mathrm{~m}, 3,5-\mathrm{H}, 6-\mathrm{H}$, and $9-\mathrm{H}), 8.82(\mathrm{~s}, 1,8-\mathrm{H}$ or $10-\mathrm{H})$, $8.95(\mathrm{~d}, 1, J=3 \mathrm{~Hz}, 8-\mathrm{H}$ or $10-\mathrm{H}), 9.40(\mathrm{~s}, 2,1-\mathrm{H}$ and $3-\mathrm{H})$; UV $\lambda_{\text {max }}$ $\left(\epsilon \times 10^{-3}\right) 347 \mathrm{~nm}(1.2), 333$ (2.1), 310 (12.3), 300 (12.3), 281 (15.3), 243 (32.4), 216 (21.0).

Anal. Calcd Fcr $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 61.99 ; \mathrm{H}, 4.59 ; \mathrm{N}, 4.25$. Found: C, 60.71; H, 4.74; N, 4.07.

Acknowledgement. Partial support of this work by the donors of the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged.

Registry No.-3, 3724-10-5; 4, 33384-77-9; 5a, 7022-45-9; 5b, 62351-49-9; $5(\mathrm{X}=\mathrm{H}), 100-52-7$; $6(\mathrm{Y}=\mathrm{H}), 109-06-8 ; 6(\mathrm{Y}=\mathrm{COOEt})$, 21684-59-3; 7a, 63133-63-1; 7b, 63104-22-3; 7c, 63104-23-4; 7d, 63104-24-5; 7e, 63104-25-6; 7f, 63104-26-7; 7g, 63104-27-8; 7 (X = Y $=\mathrm{H}), 538-49-8 ; 8 \mathrm{c}, 63104-28-9 ; 8 \mathrm{~d}, 63104-29-0 ; 8 \mathrm{~g}, 63104-30-3 ; 8(\mathrm{X}$ $=\mathrm{Y}=\mathrm{H}$), 85-02-9; 10, 63104-31-4; 1-cyano-2,2-diethoxyethane, 2032-34-0; 2-naphthylamine, 91-59-8; ethyl formate, 109-940-4.

References and Notes

(1) Abstracted from the Ph.D. Dissertation of N.R.B., Unlversity of New Mexico, 1976.
(2) Department of Chemistry, Oklahoma State Unlversity, Stillwater, Okla., 74074.
(3) Fellow of the Alfred P. Sloan Foundation, 1971-1976; Department of Chemistry, Bowling Green State Unlversity.
(4) Department of Chemistry, The University of New Mexico
(5) J. H. Dopper and D. C. Neckers, J. Org. Chem., 36, 3755 (1971); D. C. Neckers, J. H. Dopper, and H. Wynberg, ibld., 35, 1582 (1970); D. C. Neckers, J. H. Dopper, and H. Wynberg, Tetrahedron Lett., 2913 (1969).
(6) E. Campaigne, D. R. Knapp, E. S. Neiss, and T. R. Bosin, Adv. Drug Res. 5, 1 (1970).
(7) J. C. Winter, P. K. Gessner, and D. D. Godse, J. Med. Chem., 10, 356 (1967); E. Campaigne, E. S. Neiss, C. C. Pfeiffer, and R. A. Beck, ibid. 11, 1049 (1968); E. Campaigne and A. Dinner, ibid., 13, 1205 (1970); R. M. Pinder, D. M. Green, and P. B. J. Thompson, ibid., 14, 626 (1971)
(8) E. Campaigne and D. R. Knapp, J. Heterocycl. Chem., 7, 107 (1970).
(9) E. C. Kornfeld, E. J. Fornefeld, G. B. Kline, M. J. Mann, R. G. Joves, and R. B. Woodward, J. Am. Chem. Soc., 76, 5256 (1954).
(10) C. E. Loader, M. V. Sargent, and C. J. Timmons, Chem. Comm., 127 (1965); C. E. Loader and C. J. Timmons, J. Chem. Soc. C, 1078 (1966); 1457 (1967); 330 (1968).
(11) P. L. Kumler and R. A. Dybas, J. Org. Chem., 35, 125, 3825 (1970).
(12) B. Eistert, W. Schade, and H. Selzer, Chem. Ber., 97, 1470 (1964).
(13) H. C. Brown and B. C. Subba Rao, J. Am. Chem. Soc., 80, $5 \S 77$ (1958).
(14) For a special overview see L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis'", Vol. I, Wiley, New York, N.Y., 1967, 637-642.
(15) E. P. Papadopoulos, A. Jarrar, and C. H. Issidorides, J. Org. Che.n., 31, 615 (1966).
(16) S. Ball, T. W. Goodwin, and R. A. Morton, Biochem. J., 42, 516 (1948).
(17) D. Edwards and J. B. Stenlake, J. Chem. Soc., 3272 (1954).
(18) N. J. Leonard and C. R. Johnson, J. Org. Chem., 27, 282 (1962).
(19) J. L. R. Williams, R. E. Adel, J. M. Carlson, G. A. Reynolds, D. G. Borden,
and A. J. Ford, Jr., J. Org. Chem., 28, 387 (1963).
(20) F. H. Clarke, G. E. Felock, G. B. Silverman, and C. M. Watnick, J. Org. Chem., 27, 533 (1962).
(21) E. Vander Donckt, R. H. Martin, and F. Geerts-Evard, Tetrahedron, 20, 1495 (1964).
(22) S. T. Reid in "Photochemistry"', Vol. 5, D. Bryce-Smith, Senior Reporter, "'Specialist Periodical Reports'", The Chemical Society, London, 1974, p 671; Vol. 6, 1975, p 643.
(23) F. C. Uhle and W. A. Jacobs, J. Org. Chem., 10, 76 (1945).
(24) Melting points were determined in a Thomas-Hoover Uni-melt apparatus and are uncorrected. Infrared spectra were obtained on a Perkin-Elmer 237B infrared spectrophotometer using the neat compounds, in the case of liquids, and KBr pellets, in the case of solids. NMR spectra were recorded on a Varian EM-360 spectrometer using solutions in deuteriochloroform (unless otherwise specified) and tetramethylsilane as internal standard. Ultraviolet spectra were taken on a Perkin-Elmer 402 ultraviolet- visible spectrophotometer using solutions in 95% ethanol.
(25) F. Arndt, F. Kirsch and P. Nachtwey, Ber., 59, 1074 (1926).
(26) R. Grice and L. N. Owen, J. Chem. Soc., 1947 (1963).
(27) R. N. Castle and C. W. Whittle, J. Org. Chem., 24, 1189 (1959).
(28) N. R. Beller and C. J. Hilleary, J. Chem. Educ., 53, 498 (1976).
(29) Upon treatment of 10 with $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOH}$, the doublet at $\delta 11.06$ disappeared, whereas the doublet at $\delta 8.60$ became a singlet.

Carbon-13 Nuclear Magnetic Resonance Studies of Sulfur Heterocycles. Evidence for Intramolecular 1,3 Electronic Interaction in 3,3-Disubstituted 2H-Tetrahydrothiapyran-1-N-p-tosylsulfimides ${ }^{1}$

John R. DeMember, * Richard B. Greenwald, and David H. Evans
Research Laboratories, Polaroid Corporation, Cambridge, Massachusetts 02139

Received March 21, 1977

Abstract

Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra of several mono- and disubstituted 2 H -tetrahydrothiapyrans and dithianes have been recorded and assigned. The compounds studied provide a series which is amenable to correlation by the additivity of substituent effects in ${ }^{13} \mathrm{C}$ NMR spectroscopy. The $\Delta \delta$'s between calculated and observed ${ }^{13} \mathrm{C}$ NMR shifts provided a sensitive probe for substituent-substituent interactions in compounds 6-8, 13, and 14. The ${ }^{13} \mathrm{C}$ NMR data obtained suggest an intramolecular 1,3 electronic interaction in 3,3 -dimethyl- and 3,3 -dialkoxy-1- N-p-tosylthianes and dithianes (6-8) and 13 and 14 . Specifically, the data suggest a weak coulombic attractive interaction between the molecular orbitals of the sulfur with the formal positive charge S^{1} and the electrons of the $\mathrm{C}^{2}-\mathrm{C}^{3}$ bond.

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) studies of 2 H -tetrahydrothiapyran (thiane) and dithiane derivatives have centered primarily on conformational analyses. ${ }^{2}$ Recent reports of ${ }^{13} \mathrm{C}$ NMR studies of substituted six-membered-ring hydrocarbons and heterocycles have shown the power of ${ }^{13} \mathrm{C}$ NMR in conformational analysis. ${ }^{2 \mathrm{i}, 3}, 3$ In many cases, ${ }^{13} \mathrm{C}$ NMR data related to intramolecular 1,3 steric and/or electronic interactions which lead to conformational preferences for six-membered rings have been obtained. ${ }^{2 m}$ However, definitive elucidation and differentiation of steric and/or electronic interactions based on ${ }^{13} \mathrm{C}$ NMR data have not been possible generally. ${ }^{4}$
Since the chemistry of sulfur compounds is important in many biological and photographic processes, the elucidation of intramolecular interactions and their relation to the physical and chemical properties of thiane derivatives are of interest. Presently, we report a ${ }^{13} \mathrm{C}$ NMR study which provides direct ${ }^{13} \mathrm{C}$ NMR spectroscopic evidence for a transannular 1,3 electronic interaction in 3,3-disubstituted thiane derivatives.

Results and Discussion

The compounds studied are thiane ($\mathbf{X}=\mathbf{C H}_{2}$) derivatives $1-8$ and dithiane derivatives $(X=S) 9-14 . \mathbf{R}^{2,13}$
Data for the thiane ring carbon atoms of compounds 1-14 are shown in Table I. Assignments for 1-14 are based on line

$$
\begin{array}{rlr}
\mathrm{X}=\mathrm{CH}_{2} & \mathrm{X}= \\
\mathbf{1} \equiv \mathrm{R}^{1}=\text { electron pair } ; \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{H} & \equiv & 9 \\
2 \equiv \mathrm{R}^{1}=N \text {-p-tosyl; } \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{H} & \equiv & 10 \\
3 \equiv \mathrm{R}^{1}=\text { electron pair } ; \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{C}^{7} \mathrm{H}_{3}, \mathrm{C}^{8} \mathrm{H}_{3} & \equiv & 11 \\
4 \equiv \mathrm{R}^{1}=\text { electron pair } ; \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{OC}^{7} \mathrm{H}_{3}, \mathrm{OC}^{8} \mathrm{H}_{3} & \\
5 \equiv \mathrm{R}^{1}=\text { electron pair; } & \\
& \mathrm{R}^{2}, \mathrm{R}^{3}=-\mathrm{O}-\mathrm{C}^{7} \mathrm{H}_{2} \mathrm{C}^{8} \mathrm{H}_{2}-\mathrm{O}-(\text { cyclic ketal }) & \equiv \\
\mathbf{6} \equiv \mathrm{R}^{1}=N \text {-p-tosyl } ; \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{C}^{7} \mathrm{H}_{3}, \mathrm{C}^{8} \mathrm{H}_{3} & \equiv & 12 \\
7 \equiv \mathrm{R}^{1}=N \text {-p-tosyl } ; \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{OC}^{7} \mathrm{H}_{3}, \mathrm{OC}^{8} \mathrm{H}_{3} & \\
8 \equiv \mathrm{R}^{1}=N \text {-p-tosyl } ; \mathrm{R}^{2}, & \\
& \mathrm{R}^{3}=-\mathrm{O}-\mathrm{C}^{7} \mathrm{H}_{2} \mathrm{C}^{8} \mathrm{H}_{2}-\mathrm{O}-(\text { cyclic ketal }) & \equiv
\end{array}
$$

intensity, ${ }^{13} \mathrm{C}-\mathrm{H}$ coupling constants and the chemical shifts of model compounds. The ${ }^{13} \mathrm{C}$ NMR spectrum of 2 was recorded at $-90^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{2 \mathrm{c}}$ The high-field signals in the spectrum $\left(-90^{\circ} \mathrm{C}\right)$ of compound 2 have been assigned to those of the axial $1-N-p$-tosyl isomer. ${ }^{2 \mathrm{c}}$ From the relative area of the ${ }^{13} \mathrm{C}$ NMR signals of C^{2} in 2 at 41.7 ppm (axial) and 47.9 (equatorial), the axial/equatorial isomer ratio has been determined to be 1.44. This correlates well with the ratio of 1.50 determined from ${ }^{1} \mathrm{H}$ NMR by Lambert et al. ${ }^{2 c}$

Calculated shifts for the ring carbon atoms of compounds

Table I. ${ }^{13}$ C NMR Chemical Shifts for the Ring Carbon Atoms of Thiane and Dithiane Derivatives ${ }^{a}$

Registryno.	Compd	Chemical shifts ${ }^{\text {b }}$						
		C^{2}	C^{3}	C^{4}	C^{5}	C^{6}	$\mathrm{C}^{7}(\mathrm{a})$	$\mathrm{C}^{8}(\mathrm{e})$
16131-51-0	$1{ }^{\text {h }}$	29.1	27.8	26.5	27.8	29.1		
13553-73-6	2 (a) ${ }^{\text {c }}$	41.7	16.2	23.2	16.2	41.7		
	2 (e) ${ }^{\text {c }}$	47.9	23.7	23.5	23.7	47.9		
57259-83-3	3^{h}	41.1	29.7	39.3	23.8	28.7	$28.3{ }^{\text {e }}$	$28.3{ }^{\text {e }}$
63449-32-1	4	33.2	96.7	32.6	25.6	28.0	$47.5{ }^{\text {e }}$	$47.5^{\text {e }}$
177-13-9	5	35.5	105.3	35.1	27.1	27.5	$64.6{ }^{\text {e }}$	$64.6{ }^{\text {e }}$
31815-14-2	$6^{\text {d }}$	58.2	33.5	36.4	19.3	47.1	$25.1{ }^{\text {f }}$	$31.4{ }^{\text {g }}$
63449-33-2	$7^{\text {d }}$	52.2	98.4	30.4	18.5	46.8	47.9 f	$48.2^{\text {g }}$
63449-34-3	$8{ }^{\text {d }}$	53.7	105.6	33.4	21.4	46.2	$65.1{ }^{\text {f }}$	65.2^{g}
505-23-7	$9{ }^{\text {h }}$	28.9	26.3	28.9		30.9		
58484-97-2	10	46.4	26.2	26.5		46.5		
60311-39-9	$11^{\text {h }}$	41.9	26.8	41.9		31.5	$27.5{ }^{\text {e }}$	$27.5{ }^{\text {e }}$
177-14-0	12	36.4	100.4	36.3		30.4	$65.1{ }^{\text {e }}$	$65.1{ }^{\text {e }}$
63449-35-4	$13^{\text {d }}$	60.0	37.7	40.1		48.6	$24.7{ }^{\prime}$	$30.8{ }^{\text {g }}$
63449-36-5	14^{d}	53.2	105.5	33.6		45.1	$65.1{ }^{\text {e }}$	$65.1{ }^{\text {e }}$

${ }^{a}{ }^{13} \mathrm{C}$ NMR data were recorded at $35 \pm 0.1^{\circ} \mathrm{C}$ in a $10-\mathrm{mm}$ tube with a Varian CFT- 20 spectrometer at $15 \%(\mathrm{w} / \mathrm{v})$ in Me_{2} SO- d_{6}. ${ }^{b}$ Chemical shifts are reported as δ in parts per million downfield $(+)$ of tetramethylsilane. ${ }^{c}$ These isomers were frozen out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $5 \%(\mathrm{w} / \mathrm{v})$ at $-90^{\circ} \mathrm{C}$ in an $8-\mathrm{mm}$ tube (see ref 2c). ${ }^{d}$ These compounds have the $1-N-p$-tosyl group in the equatorial position. ${ }^{e}$ Averaged signal at $28^{\circ} \mathrm{C}$ in CDCl_{3}. ${ }^{f}$ Axial group based on shielding effect. ${ }^{g}$ This δ is assigned to the equatorial group based on deshielding effect. ${ }^{h}$ These data have been reported previously by various authors (see ref 2).

6-8, 13, and 14 were obtained by the additivity of substituents as shown in eq $1-3,{ }^{3}$ where δ is the chemical shift in parts per million (Table I) of the C^{n} carbon atom of the numbered compound (1-14) and $\mathrm{a}=$ axial; $\mathrm{e}=$ equatorial. This method has been shown to have general success in predicting the ${ }^{13} \mathrm{C}$ NMR shifts of unknown compounds. ${ }^{5}$ The $\Delta \delta$ values obtained from these calculated and observed shifts are shown in Table II. The additivity of substituent effects has been used in several instances to predict effectively the chemical shifts of saturated heterocycles. ${ }^{3}$ Even with appropriate models, as the number of polar substituents in a molecule is increased, the accuracy of additivity relationships can drop dramatically depending upon substituent-substituent interactions in the unknown compound studied. With appropriate structural models, therefore, large $\Delta \delta$ values between predicted and observed shifts can be interpreted in terms of structural changes which originate directly from substitutent interactions that cannot occur in the models.

Thiane axial:

$$
\delta^{C^{n}} \mathbf{6}(\mathbf{a})(7(\mathbf{a}) \text { or } \mathbf{8}(\mathbf{a}))=\delta^{\mathrm{C}^{n}} \mathbf{2}(\mathbf{a})-\delta^{\mathrm{C}^{n}} 1+\delta^{\mathrm{C}^{n}} \mathbf{3}(4 \text { or } \mathbf{5})
$$

Thiane equatorial:

$$
\begin{equation*}
\delta^{\mathrm{C}^{n}} \mathbf{6}(\mathrm{e})(7(\mathrm{e}) \text { or } 8(\mathrm{e}))=\delta^{\mathrm{C}^{n}} \mathbf{2}(\mathrm{e})-\delta^{\mathrm{C}^{n}} \mathbf{1}+\delta^{\mathrm{C}^{n}} \mathbf{3}(\mathbf{4} \text { or } 5) \tag{2}
\end{equation*}
$$

Dithiane equatorial:

$$
\begin{equation*}
\left.\delta^{\mathrm{C}^{n}} 13 \text { (or } 14\right)=\delta^{\mathrm{C}^{n}} 10-\delta^{\mathrm{C}^{n}} 9+\delta^{\mathrm{C}^{n}} 11 \text { (or 12) } \tag{3}
\end{equation*}
$$

The small average deviations between the predicted and observed ${ }^{13} \mathrm{C}$ NMR shifts for equatorial and the large positive average deviations for the axial $1-N-p$-tosyl conformation clearly show that this substituent is equatorial in thiane compounds $6-8 .{ }^{2}$ The $1-N-p$-tosyl group is known to prefer the equatorial conformation in thiane derivatives 3 and 6 and dithiane derivatives 10,13 , and $14 .{ }^{2 \mathrm{~b}, 21,3 \mathrm{~d}}$

The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR signals of the methyl carbons C^{7} and C^{8} and of the methyl protons in compounds 3 and 11, respectively, occur as averaged signals at $28^{\circ} \mathrm{C}$ in CDCl_{3} (see Table I and Experimental Section). Under identical conditions, these methyl carbons and protons in 3,3-dimethyl compounds 6 and 13 are observed as two separate signals. The numerical averages of these two signals for $1-N-p$-tosyl derivatives 6 and 13 are identical to the averaged NMR signals of the methyl groups observed for 3 and 11, respectively. This

shows that there is no observable steric or electronic perturbation of the methyl groups in 6 and 13 resulting from the presence of the $1-N-p$-tosyl moiety. The resolution of separate signals for the two methyl groups in compounds 6 and 13 is related only, therefore, to the predominance of one conformer. Furthermore, that the NMR spectra of compounds 7-8, 13 and 14 are temperature independent is evidence for the exclusive existence of compounds 6 and 13 as the equatorial $1-N-p$-tosyl conformers.

The ${ }^{13} \mathrm{C}$ NMR signals of the exocyclic C^{7} and C^{8} methoxy and methylene carbons in the thiane compounds 4 and 5 are very weakly shielded ($\Delta \delta^{\max }<1.0 \mathrm{ppm}$) relative to those same carbons in $1-N$ - p-tosyl derivatives 7 and 8 (Table I). For dithiane 12 the ${ }^{1 s} \mathrm{C}$ NMR signals of the exocyclic methylene groups are identical to those observed for 1-N-p-tosyl compound 14 (Table I). The ${ }^{1} \mathrm{H}$ NMR signals for the pendant groups of dithiane compounds 11-14 are also insensitive to any 1,3 interact:ons in these compounds.
With the knowledge that the conformation of the $1-N-p-$ tosyl group in $6^{21}, 7,8,13,{ }^{21}$ and 14 is equatorial, further information related to intramolecular interactions in these molecules can be gleaned from the relative magnitudes of the deviations shown in the equatorial columns of Table II. It is evident that large $\Delta \delta$ values are observed for the C^{3} and C^{5} carbon atoms of 7 , and for the C^{3} carbon atoms of $13,14,8$, and 6.

Considerable evidence has been reported previously indicating that dithiane compounds analogous to 9-14 exist predominately in the chair conformation. ${ }^{2 b} \Delta \delta$ values could possibly reflect a difference in conformation of the compounds $6-8,13$, and 14 from some or all of their model compounds.

Table II. Deviations ($\Delta \delta$ and $\Delta(\Delta \delta)$ values) between Predicted and Observed C^{13} NMR Shifts for Thiane and Dithiane Derivatives ${ }^{a}$

Carbon atom	Compound									
	6		13		7		14		8	
	$\Delta \delta \mathrm{a}^{\text {b }}$	$\Delta \delta \mathrm{e}^{\text {c }}$	$\Delta \delta$ e	$\Delta(\Delta \delta) \mathrm{e}^{d}$	$\Delta \delta \mathrm{a}^{\text {b }}$	$\Delta \delta \mathrm{e}^{\text {c }}$	$\Delta \delta \mathrm{e}$	$\Delta(\Delta \delta) \mathrm{e}$	$\Delta \delta \mathrm{a}^{\text {b }}$	$\Delta \delta \mathrm{e}$
C^{2}	+ 4.6	$-1.7{ }^{\text {e }}$	+0.6	-2.3	+6.4	+0.2	-0.7	-0.9	+5.6	-0.6
C^{3}	+14.8	+7.9	+12.0	+4.1	+13.3	+5.8	+5.2	-0.6	+11.9	+4.4
C^{4}	+0.4	+0.1	+0.6	+0.5	+0.9	+0.8	-0.3	-1.1	+1.6	+1.2
C^{5}	+7.1	+0.6			+4.5	-3.0			+5.7	-1.6
C^{6}	+5.8	-0.4	+1.5	+1.9	+5.9	0.0	-0.9	-0.9	+6.5	+0.7

${ }^{a} \Delta \delta=\delta c^{n}$ observed $-\delta c^{n}$ calculated; $\delta \mathrm{c}^{n}$ values calculated were determined from eq 1,2 , or $3 . \Delta \delta=$ ppm and positive (+) number indicates that the observed shift is to lower field of that calculated. For the numbers shown in this table, only those larger than ± 2.0 ppm are considered significant. Although no actual estimate of the error for these numbers is available, it is evident that any attempt to interpret $\Delta \delta$ values $< \pm 2.0$ in terms of molecular structure would be tenuous and could lead to specious conclusions. ${ }^{b}$ See eq 1. ${ }^{c}$ See eq 2. ${ }^{d} \Delta(\Delta \delta)=\Delta \hat{\mathrm{e}^{\mathrm{c}}}{ }^{n}$ dithiane $-\Delta \delta \mathrm{e}^{\mathrm{c}^{n}}$ thiane. ${ }^{e}$ Numbers shown in boldface type are those assigned to the compound. Those in italics are based on the hypothetical axial 1-N-p-tosyl isomer and are not real (see text).

However, the substantial $\Delta \delta$ values for compounds $6,8,13$, and 14 are localized at C^{3}, and those for compound 7 at C^{3} and C^{5}. This indicates that the $\Delta \delta$ values in Table II are very probably related to a specific interaction of the substituents in the chair conformation and not to a change in overall conformation (i.e., chair \rightarrow boat). The lack of any substantial differences in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR shifts of the substituent carbons C^{7} and C^{8} (see Table I) of compounds $6-8,13$, and 14 relative to the models is a further indication of a localized interaction, since any overall conformational changes would be expected to result in changes in the NMR shifts of these atoms.

Since the $1-N$ - p-tosyl group is equatorial in compounds 6 and 13 , any interactions leading to large $\Delta \delta$ values for these compounds would be expected to be predominately electronic and not steric. A steric effect at C^{3} would be expected to affect the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR shifts of thianes 6 and 13 to give more shielded signals and hence larger negative $\Delta \delta$ values (in the order $\Delta \delta^{\mathrm{C}^{7}}>\Delta \delta^{\mathrm{C}^{3}}>\Delta \delta^{\mathrm{C}}>\Delta \delta^{\mathrm{C}^{2}}$) than those found in Table II for the $\mathrm{C}^{7}, \mathrm{C}^{5}$, and C^{2} carbon atoms. Alternatively, the severe 1,3 steric repulsion of the substituents in all of the compounds 6-8, 13, and 14 with the axial $1-N-p$-tosyl group is implied by the exclusive predominance of the equatorial 1 N - p-tosyl isomer.

It is evident that the quaternary nature of C^{3} in 6 and 13 is important to the interpretation of the substantially deshielded $\Delta \delta$ values of C^{3}, since the ${ }^{13} \mathrm{C}$ NMR shifts of C^{3} and C^{5} in the model thiane derivative 2 equatorial are shielded by the introduction of the equatorial $1-N-p$-tosyl group. This shielding effect produced by the introduction of the $1-N-p$-tosyl group occurs also in compound 6 at C^{5}. This is shown by the δ calculated for C^{5} using 2 equatorial as a model. The absence of any $\Delta \delta$ for C^{5} demonstrates that no interaction or absence of interaction originates at C^{5} in 6 that does or does not occur in the models.

It is known that tertiary carbenium ions are thermodynamically much more stable than primary ions. ${ }^{6}$ The positively charged carbon in tertiary carbenium ions is deshielded by about 180 ppm relative to the corresponding neutral species, while the α-carbons are deshielded by $20-30 \mathrm{ppm} .{ }^{6}$ The enhanced deshielding of C^{3} in compounds 6 and 13 of +7.9 and +12.0 ppm , respectively, therefore suggests a weak coulombic attractive interaction between the molecular orbitals of the formal positively charged sulfur S^{1} and the electrons of the $\mathrm{C}^{2}-\mathrm{C}^{3}$ bond. Based on analogy with the chemi-cal-shift data for carbon atoms α to a carbenium carbon, ${ }^{5}$ if such an interaction gives rise to a deshielding effect at C^{3} of $8-12 \mathrm{ppm}$ the deshielding effect on $\mathrm{C}^{2}, \mathrm{C}^{4}, \mathrm{C}^{7}$, and C^{8} should be negligible. This is in accordance with our findings.

If we consider the three structures of 6 and 13, viz., Ib-d, we can predict the relative weight that each has in the molecular orbitals of I in light of the NMR data. The magnitude

Ib
Id
of the deshielding effect at C^{3} is consistent with only a small but measurable contribution from structure Ic. As the weight of the uncharged sulfimide canonical form Id in the molecular orbitals of 6 and 13 increases, the potential for the proposed interaction of S^{1} and the $\mathrm{C}^{2}-\mathrm{C}^{3}$ bond decreases. Alternatively, when the much lower energy of Ic as compared to 2 b is con-

sidered, weak hyperconjugative interaction of the $\mathrm{C}^{2} \mathrm{C}^{3}$ bond appears to be a plausible explanation for the measurable large positive $\Delta \delta$ values of C^{3} in compounds 6 and 13.
In compounds 7,8 , and 14 , an additional heteroatom, oxygen, is attached to the C^{3} carbon atom. It is evident from Table II that in addition to the deshielding ($\Delta \delta^{\mathrm{C}^{3}}=+5.8 \mathrm{ppm}$) of C^{3} in 7 there is a smaller shielding ($\Delta \delta^{\mathrm{C}^{5}}=-3.0 \mathrm{ppm}$) of C^{5}. The shielding ($\Delta \delta^{\mathrm{C}^{5}}=-1.6 \mathrm{ppm}$) of C^{5} in 8 , where the oxygen atoms are held rigidly away from the thiane ring, is substantially diminished.

Based on similar arguments to those presented above for the 3,3 -dimethyl compounds 6 and 13 , significant deshielding of C^{3} in compounds 7,8 , and 14 therefore suggests very weak hyperconjugation of the $\mathrm{C}^{2}-\mathrm{C}^{3}$ bond. That this overall deshielding of C^{3} is smaller for compounds 7,8 , and 14 than that observed for 6 or 13 is consistent with the much lower deshielding of alkoxycarbenium ion carbons reative to their alkyl carbenium ion analogues.
The $\Delta(\Delta \delta)$ values reported in Table II are the $\Delta \delta$ values between the thiane and dithiane derivatives. They reflect the effect of sulfur S^{5} upon the chemical shifts of the carbon atoms of the corresponding dithiane.

Table II shows a substantial $\Delta(\Delta \delta)$ of +4.1 ppm for C^{3} in thiane 6 relative to dithiane 13 . No significant $\Delta(\Delta \delta)$ values are observed for compounds 8 and 14 . Thus, a significant localized perturbation is produced at C^{3} in compound 13 by the sulfur in the 5 position (S^{5}). This additional deshielding of C^{3} in 13 relative to 6 may indicate that S^{5} enhances the small changes in bonding at C^{3} as discussed above. For compounds 8 and 13 , where oxygen is directly bonded to C^{3} and can directly participate in the interactions of $\mathrm{C}^{2}-\mathrm{C}^{3}$ with S^{1}, the introduction of S^{5} has no marked effect, as would be expected.

Experimental Section

Samples of thiane (1) and 1,3-dithiane (9) were obtained from Aldrich Chemical Co.; the corresponding $N-p$-tosyl sulfimide derivatives 2 and 10 were prepared by published procedures. ${ }^{2 c, 3 c}$ Carbon-13 magnetic resonance spectra were obtained on a Varian Associates CFT-20 spectrometer; proton NMR spectra were obtained on a Varian T-60. Reported melting and boiling points are uncorrected. Elemental analyses were performed by Galbraith Laboratories, Knoxville, Tenn.
3,3-Dimethylthiapyran- \boldsymbol{N}-p-tosylsulfimide ${ }^{8}$ (6). (A) 2,2 Dimethylpentane-1,5-diol. ${ }^{9 \mathrm{a}, \mathrm{b}}$ To a solution (70% in benzene) of Vitride ($260 \mathrm{~mL}, 935 \mathrm{mmol}$) in 150 mL of sieve-dried tetrahydrofuran (THF) contained in a dried 3-L three-necked, round-bottomed flask equipped with an air-driven stirrer, reflux condenser, nitrogen inlet, and dropping funnel, a solution of 2,2-dimethylglutaric acid ${ }^{11}(25 \mathrm{~g}$ 156 mmol) in 120 mL of THF was added dropwise over 0.5 h . An exothermic reaction commenced immediately, and a thick precipitate began to separate which then dissolved as the reaction mixture spontaneously attained a slow reflux. Following completion of addition, the reaction mixture was heated for 2 h at reflux and then allowed to cool and to stand at room temperature overnight. The nearly col orless solution was chilled to $0^{\circ} \mathrm{C}$ in an ice-salt water bath, and a chilled $\left(5^{\circ} \mathrm{C}\right)$ solution of 125 mL of concentrated sulfuric acid in 400 mL of water was added very slowly to control the strongly exothermic reaction. When the addition was complete, 500 mL of ether was added and vigorous stirring was maintained for 2 h . The organic phase was separated and dried over magnesium sulfate, and the solvents were removed in vacuo to give a pale amber syrup (33 g) which was distilled under reduced pressure to give the title compound ($13.3 \mathrm{~g}, 65 \%$), bp $(\sim 16 \mathrm{~mm}) 144-145^{\circ} \mathrm{C}\left[\right.$ lit. $\left.{ }^{10} \mathrm{bp}(\sim 16 \mathrm{~mm}) 140-142^{\circ} \mathrm{C}\right]$.
(B) 2,2-Dimethyl-1,5-pentyl di-p-toluenesulfonate. A stirred solution of 2,2-dimethylpentane-1,5-diol ($3.6 \mathrm{~g}, 27.2 \mathrm{mmol}$) in 35 mL of dry pyridine was chilled to $0^{\circ} \mathrm{C}$ in an ice-salt water bath, and p toluenesulfonyl chloride ($11.4 \mathrm{~g}, 60 \mathrm{mmol}$) was added in portions over 20 min so that the internal temperature did not exceed $5^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 4 h and then stored in a refrigerator overnight. The white crystalline mass was poured onto excess ice, collected, washed thoroughly with cold 5% hydrochloric acid, and air-dried to give a homogeneous creamy white solid, mp $71-73^{\circ} \mathrm{C}(10.8 \mathrm{~g}, 90 \%)$, which on crystallization from ethanol-2B (1 $\mathrm{g} / 30 \mathrm{~mL}$) afforded white needles, $\mathrm{mp} 78-79^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, $57.30 ; \mathrm{H}, 6.37$. Found: C, 57.63 ; $\mathrm{H}, 6.52$.
(C) A mixture of 2,2 -dimethyl-1,5-pentyl di-p-toluenesulfonate $(16.8 \mathrm{~g}, 38.2 \mathrm{mmol})$ and freshly ground sodium sulfide nonahydrate $(9.2 \mathrm{~g}, 38.2 \mathrm{mmol})$ was taken up in 80 mL of N, N-dimethylformamide at room temperature. A transiently green-beige suspension resulted, and the temperature rose spontaneously $\sim 6^{\circ} \mathrm{C}$. The reaction mixture was heated slowly to reflux. A rich emerald-green solution was at tained at $85^{\circ} \mathrm{C}$ which slowly changed to amber as reflux was approached. After an additional 4.5 h at reflux, the reaction mixture was cooled and poured into 500 mL of cold water to give a milky suspension from which some amorphorous solid separated on standing overnight. The mixture was filtered by suction, and the filtrate was extracted with $3 \times 150 \mathrm{~mL}$ of ether. The combined organic extracts were washed with $3 \times 100 \mathrm{~mL}$ of water, dried over magnesium sulfate, and evaporated in vacuo to give a pale yellow syrup $(3.6 \mathrm{~g}, 72 \%) .{ }^{12}$ the crude 3,3 -dimethylthiapyran (3) (ca. 25 mmol) was taken up in 100 mL of methanol and filtered to remove a small amount of insoluble material. The methanol solution was treated with Chloramine T trihydrate ($8.45,30 \mathrm{mmol}$) in small portions over 0.5 h . The reaction mixture was allowed to stir for 1 h ; the solvent was removed in vacuo, and the residue was taken up in chloroform. Insoluble material was removed by filtration; the filtrate was dried over magnesium sulfate and evaporated to give an amber syrup. Clusters of white needles formed on standing overnight which were triturated with acetone and collected to give the title compound 6 ($3.3 \mathrm{~g}, \mathrm{ca} .44 \%$), mp $175-177^{\circ} \mathrm{C}$
(lit. $.^{8} 173-174^{\circ} \mathrm{C}$)
5,5-Dimethyl-1,3-dithiane-1- \boldsymbol{N} - \boldsymbol{p}-tosylsulfimide (13). (A) 5,5-Dimethyl-1,3-dithiane (11). To a solution of boron trifluoride etherate (5 mL), acetic acid (10 mL), and chloroform (150 mL) in a dry $500-\mathrm{mL}$ three-necked, round-bottomed flask fitted with mechanical stirrer, coil condenser, and nonpressure equalizing dropping funnel, 2,2-dimethyl-1,3-propanedithiol ${ }^{13}$ ($5.7 \mathrm{~g}, 42 \mathrm{mmol}$) and dimethoxymethane ($3.5 \mathrm{~g}, 46 \mathrm{mmol}$) were added according to the method of Corey and Seebach. ${ }^{14}$ Workup following the described procedure afforded crude 5,5 -dimethyl-1,3-dithiane as a pale yellow liquid ($6.1 \mathrm{~g}, 98 \%$) which was homogeneous by TLC (silica gel/benzene): NMR (CDCl_{3}) $\delta 1.15(\mathrm{~s}, 6 \mathrm{H}), 2.86(\mathrm{~s}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H})$.
(B) To a stirred methanolic solution (25 mL) of 5,5 -dimethyl 1,3-dithiane ($1 \mathrm{~g}, 6.75 \mathrm{mmol}$), Chloramine T trihydrate ($2.3 \mathrm{~g}, 8.1$ mmol) was added in portions over 5 min . A white solid began to separate after 5 min . The reaction mixture was stirred for 1.5 h at ambient temperatures and then poured into 75 mL of water and stirred for 5 min . The homogeneous solid sulfimide 13 was collected and dried (1.9 $\mathrm{g}, 89 \%$), mp $187-190^{\circ} \mathrm{C}$. An analytical sample was obtained by crystallization from ethanol-2B ($1 \mathrm{~g} / 15 \mathrm{~mL}$) $\mathrm{mp} 188-190^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}_{3}$: C, 49.16; $\mathrm{H}, 5.99 ; \mathrm{N}, 4.42$. Found: C, $49.24 ; \mathrm{H}, 5.94$ N, 4.38 .

1,4-Dioxaspiro[4.5]-7-thiadecane-7-N-p-tosylsulfimide (8), A suspension of sodium hydride (57% in mineral oil, $14.5 \mathrm{~g}, 346 \mathrm{mmol}$) in 200 mL of dry THF was heated to $65^{\circ} \mathrm{C}$, and 3 -thicheptanedioic acid diethyl ester ${ }^{15}$ was added dropwise over 1 h according to the method of Lüttringhaus and Prinzbach. ${ }^{16}$ Workup following the described procedure afforded a mixture of the crude thiapyran keto esters ($22.3 \mathrm{~g}, 72 \%$) which on treatment with 10% sulfuric acid for 6 h at reflux, extraction with ether, washing with 5% sodium bicarbonate solution, and drying over magnesium sulfate gave an crange oil (9.8 $\mathrm{g}, 71 \%$). Purified 3 -oxcthiapyran ($5.2 \mathrm{~g}, 38 \%$) was obtained by distillation under reduced pressure, bp ($\sim 25 \mathrm{~mm}$) $113-115{ }^{\circ} \mathrm{C}\left[\right.$ lit..$^{17} \mathrm{bp}$ $\left.(\sim 18 \mathrm{~mm}) 101-102^{\circ} \mathrm{C}\right]$. Ketalization was effected by heating 3 -oxothiapyran ($5.2 \mathrm{~g}, 44.7 \mathrm{mmol}$) in 10 mL of ethylene glycol saturated with hydrogen chloride on the steam bath for 1 h . The cooled reaction mixture was poured into cold 5% sodium hydroxide and extracted with ether. Following removal of solvent in vacuo, the residual amber syrup was heated for 1 h with 30% sodium bisulfite solution. Upon extraction with ether, washing with water, drying over magnesium sulfate, and evaporation of solvent. an amber $\operatorname{syrup}(5.4 \mathrm{~g}, 75 \%$) remained which showed no carbonyl absorption in the IR. Distillation under reduced pressure gave 1,4 -dioxaspiro 4.5]-7-thiadecane (5) (4.5 g, 63\%), bp $(\sim 17 \mathrm{~mm}) 126-128^{\circ} \mathrm{C}$, shown to be homogeneous by GLC. A solution of the ketal $5(2 \mathrm{~g}, 12.5 \mathrm{mmol})$ in 30 mL of methanol was treated with Chloramine T trihydrate ($3.9 \mathrm{~g}, 13.8 \mathrm{mmol}$) in portions over 10 min The reaction mixture was allowed to stir for 2 h at ambient temper atures and then poured into 150 mL of cold water. The precipitated white solid was collected, washed, and dried to give the title compound $8\left(3.4 \mathrm{~g}, 83 \%, \mathrm{mp} 1 € 8-169^{\circ} \mathrm{C}\right)$. Crystallization from ethanol-2B ($1 \mathrm{~g} / 25$ mL) left the melting pcint unchanged. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}_{2}$: C, 51.12; H, 5.77; N, 4.26. Found: C, 51.21; H, 5.79; N, 4.20. NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.6(\mathrm{~m}, 4 \mathrm{H}), 2.3(\mathrm{~s}, 3 \mathrm{H}), 3.1(\mathrm{~m}, 4 \mathrm{H}), 4.0(\mathrm{~s}, 4 \mathrm{H}), 7.4$ (AB m, 4 H)
1,4-Dioxaspiro[4.5]-7,9-dithiadecane-7- \boldsymbol{N} - \boldsymbol{p}-tosylsulfimide (14). A solution of 5 -oxo-1,3-dithiane dimethylene ketal $12(1 \mathrm{~g}, 6.2$ mmol) prepared according to the method of Howard and Lindsey ${ }^{18}$ was treated with Chloramine T trihydrate ($2.1 \mathrm{~g}, 7.4 \mathrm{mmol}$) in the manner described for 9 to give the title sulfimide $14(1.3 \mathrm{~g}, 62 \%)$. Crystallization from ethanol-2B ($1 \mathrm{~g} / 40 \mathrm{~mL}$) afforded an analytical sample, mp $185-187^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}_{3}: \mathrm{C}, 45.00 ; \mathrm{H}$, 4.89; N, 4.04. Found: C, 45.06; H, 4.99; N, 4.07. NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) δ 2.3 ($\mathrm{s}, 3 \mathrm{H}$), $2.9(\mathrm{~m}, 2 \mathrm{H}) .3 .35(\mathrm{~s}, 2 \mathrm{H}), 4.0(\mathrm{~s}, 4 \mathrm{H}), 4.3(\mathrm{~s}, 2 \mathrm{H}), 7.45$ (AB m, 4 H)
3,3-Dimethoxythiapyran-1- N-p-tosylsulfimide (7). A solution of 3 -oxothiapyran ($3.2 \mathrm{~g}, 27.5 \mathrm{mmol}$) in 20 mL of methanol was chilled and saturated with hydrogen chloride over 15 min . After standing at room temperature for 1.5 days, workup as described for 5 gave a brown liquid ($2.8 \mathrm{~g}, 63 \%$) which was distilled under reduced pressure to give 3,3 -dimethoxythiapyran $4(0.95 \mathrm{~g}, 22 \%$) as a colorless liquid, bp (~ 8 $\mathrm{mm}) 93-95^{\circ} \mathrm{C}$. Treatment of the purified sample ($0.95 \mathrm{~g}, 6.5 \mathrm{mmol}$) in 15 mL of methar.ol with Chloramine T trihydrate ($2.8 \mathrm{~g}, 10 \mathrm{mmol}$) gave the title compound $7(1.5 \mathrm{~g}, 60 \%)$, white solid, mp $126-128^{\circ} \mathrm{C}$. Crystallization from benzene ($1 \mathrm{~g} / 20 \mathrm{~mL}$) gave an analytical sample, mp 130-132 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}_{2}: \mathrm{C}, 50.70 ; \mathrm{H}, 6.34 ; \mathrm{N}$, 4.23. Found: C, $50.39 ; \mathrm{H}, 6.09 ; \mathrm{N}, 4.62$.

Acknowledgment. The authors express their gratitude to Professor Robert D. Stolow of Tufts University for his helpful suggestions and discussions of the manuscript. In addition,
the authors thank Drs. J. R. Bartels-Keith, J. W. Foley, and A. L. Borror for helpful discussions.

Registry No.-2,2-Dimethylglutaric acid, 681-57-2; 2,2-di-methyl-1,5-pentyl di-p-toluenesulfonate, 62718-14-3; 2,2-dimeth-ylpentane-1,5-diol, 3121-82-2; 3-thiaheptanedioic acid diethyl ester, 63449-37-6; 3-oxothiapyran, 19090-03-0.

References and Notes

(1) Presented in part at the Sixth International Symposium on Magnetic Resonance, Banff, Alberta, Canada, May 23, 1977.
(2) (a) R. U. Lemieux, R. K. Kullnig, H. J. Bernstein, and W. G. Schneider, J. Am. Chem. Soc., 80, 6098 (1958); (b) See N. S. Zefirov and I. N. Kazimirchik, Russ. Chem. Rev. (Engl. Transl.), 43, 107 (1974) and references therein; (c) J. B. Lambert, C. E. Mixan, and D. S. Bailey, J. Am. Chem. Soc., 94, 208 (1972); (d) G. W. Buchanan and T. Durst, Tetrahedron Lett., 1683 (1975); (e) C. R. Johnson and D. McCants, Jr., J. Am. Chem. Soc., 86, 2935 (1964); (f) J. C. Martin and J. J. Uebel, Ibid., 2936; (g) N. L. Allinger, J. A. Hirsch, M. A. Miller, and I. J. Tyminski, J. Am. Chem. Soc., 91, 337 (1969); (h) L. van Acker and M. Anteunis, Tetrahedron Lett., 225 (1974); (i) M. J. Cook and A. P. Tonge, J. Chem. Soc., Perkin Trans. 2, 767 (1974); (j) S. A. Khan, J. B. Lambert, O. Hernandez, and F. A. Carey, J. Am. Chem. Soc., 97, 1468 (1975); (k) E. L. Eliel, V. S. Rao, F. W. Vierhapper, G. Zuiga Juaristi, and W. R. Kenan, Tetrahedron Lett., 4339 (1975); (I) See J. B. Lambert and S. I. Featherman, Chem. Rev., 75, 61 (1975); (m) P. K. Claus, F. W. Vierhapper, and R. L. Wilier, J. Chem. Soc., Chem. Comm., 1002 (1976).
(3) (a) D. M. Grant and B. V. Cheney, J. Am. Chem. Soc., 89, 5315 (1967); (b) D. K. Dalling and D. M. Grant, ibid., 89, 6612 (1967); ibid., 94, 5318 (1972); (c) R. B. Greenwald, D. H. Evans, and J. R. DeMember, Tetrahedron Lett.,

3385 (1975); (d) P. K. Claus, W. Rieder, and F. W. Vierhafper, Tetrahedron Lett., 119 (1976); (e) E. L. Eliel, V. S. Rao, and F. G. Ridcle, J. Am. Chem. Soc., 98, 3583 (1976); (f) G. Barbarella, P. Dembech, A. Garbesi, and A. Fava, Org. Magn. Reson., 8, 469 (1976); (g) G. Barbarella, P. Dembech. A. Garbesi, and A. Fava, Tetrahedron Lett., 1045 (1976); (h) R. L. Willer and E. L. Eliel, J. Am. Chem. Soc., 99, 1925 (1977).
(4) See ref $1 j$ and references therein
(5) (a) J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, N.Y., 1972, pp 128-310; (b) G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists', 'Niley, New York, N.Y., 1972, pp 40, 51, 60, and 86.
(6) (a) G. A. Olah. J. Am. Chem. Soc., 94, 808 (1972); (b) See G. A. Olah, Y. Halpern, J. Shea, and Y. K. Mo, J. Am. Chem. Soc., 95, 4960 (1973) and the earlier papers in this series.
(7) N. S. Zefirov, V. S. Blagoveshchenskir, I. V. Kazimirchik, and N. S. Surova, Tetrahedron Lett., 3111 (1971).
(8) J. B. Lambert, D. S. Bailey, and C. E. Mixan, J. Org. Chem., 37, 382 (1972): In our hands no appreciable amounts of 3 were obtained using this procedure.
(9) Methods: (a) M. Cerny, J. Malek, M. Capka, and V. Chvalovsky, Collect. Czech. Chem. Commun., 34, 1025 (1960); (b) R. B. Greenwald and D. H. Evans, J. Org. Chem., 41, 1470 (1976).
(10) R. F. Brown and G. H. Schmid, J. Org. Chem., 27, 1283 (1962).
(11) Pfaltz and Bauer, Inc., Flushing, N.Y.
(12) The purity of the crude 3,3-dimethylthiapyran was estimated to be ca. 80% by preparative GLC.
(13) E. L. Eliel, V. S. Rao, S. Smith, and R. O. Hutchins, J. Org. Chem., 40, 525 (1975).
(14) E. J. Corey and D. Seebach, Org. Synth., 50, 72 (197C).
(15) N. J. Leonard and J. Figueras, J. Am. Chem. Soc., 74, 917 (1952).
(16) A. Lüttringhaus and H. Prinzbach, Ann., 624, 79 (1959).
(17) E. A. Fehnel, J. Am. Chem. Soc., 74, 1569 (1952).
(18) E. G. Howard and R. V. Lindsey, Jr., J. Am. Chem. Soc., 82, 158 (1960).

New Effective Desulfurization Reagents

Howard Alper* and Hang-Nam Paik
Department of Chemistry, Liniversity of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Received January 28, 1977

Abstract

Hydrocarbons and amines are formed in good yields by treatment of thioketones and thioamides, respectively, with iron pentacarbonyl and potassium hydroxide [i.e., $\mathrm{HFe}(\mathrm{CO})_{4}{ }^{-}$]. A different, and useful, desulfurization reaction occurred by the use of dicobalt octacarbonyl, the cobalt tetracarbonyl anion, or cyclopentadienyliron dicarbonyl dimer as reagents. Mechanisms are proposed for several of these reactions.

There is considerable current interest in the desulfurization of fuel oil and flue gases. A variety of materials (e.g., butagas) ${ }^{1}$ have been employed, with mixed success, as desulfurization reagents. We have initiated a study directed toward the development of new desulfurization reagents, the results of such an investigation being potentially applicable to the fuel oil desulfurization problem. This paper describes the use of several iron and cobalt carbonyls in the desulfurization of thiocarbonyl compounds. ${ }^{2}$

Iron pentacarbonyl reacts with 3 equiv of hydroxide ion to generate the hydridotetracarbonylferrate anion $\left[\mathrm{HFe}(\mathrm{CO})_{4}{ }^{-}\right.$]. The latter can effect a variety of interesting transformations including the room temperature reduction of nitroarenes to anilines in high yields. ${ }^{3}$ We have now found the hydride to be a convenient desulfurization reagent.

Aliphatic and aromatic thioketones (1) react with 4 equiv

$$
\begin{aligned}
& \mathrm{R}_{2} \mathrm{CS}+\mathrm{Fe}(\mathrm{CO})_{5}+\mathrm{KOH} \longrightarrow \begin{array}{c}
\mathrm{R}_{2} \mathrm{CH}_{2} \\
2
\end{array} \\
& \mathrm{C}_{6} \mathrm{H}_{5} \left\lvert\, \begin{array}{l}
\mathrm{C}_{2}(\mathrm{CO})_{8} \\
\text { or } \\
\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{~N}^{+} \mathrm{Co}(\mathrm{CO})_{4}^{-}\right. \\
\text {or }\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}
\end{array}\right. \\
& \mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2}
\end{aligned}
$$

of $\mathrm{HFe}(\mathrm{CO})_{4}{ }^{-}$in hot 1,2-dimethoxyethane ($8-12 \mathrm{~h}$) to give the corresponding hydrocarbon, 2 , in $60-81 \%$ yield. Thioamides also react with $\mathrm{HFe}(\mathrm{CO})_{4}{ }^{-}$affording amines in lower, but reasonable, yields as compared to thioketones. Product yields and melting points or boiling points are listed in Table I.

Treatment of $4,4^{\prime}$-dimethoxythiobenzophenone ($1, \mathrm{R}=$ $p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$) with $\mathrm{DFe}(\mathrm{CO})_{4}{ }^{-}$[from KOD and $\mathrm{Fe}(\mathrm{CO})_{5}$] affords the dideuterio compound, $\left(p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CD}_{2}$, in 74% yield. Similarly $2,2^{\prime}$-dideuterioadamantane was obtained in 78% yield from adamantanethione.

A different desulfurization reaction takes place when the cobalt tetracarbonyl anion is employed as the reagent. Reaction of bis(triphenylphosphine)iminium tetracarbonylcobaltate $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}^{+} \mathrm{Co}(\mathrm{CO})_{4}{ }^{-}\right]^{4}$ with thiobenzophenones in benzene at $90-100^{\circ} \mathrm{C}$ (Carius tube) affords tetraarylethylenes (3) in $45-70 \%$ yields (Table II). Significantly higher yields of 3 ($71-83 \%$) could be realized by simply refluxing a mixture of the thione and dicobalt octacarbonyl $\left.\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right)\right]$ in benzene for 5 h . Desulfurization was also observed using the cyclopentadienyliron dicarbonyl dimer $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$, but this reagent is less effective than dicobalt octacarbonyl.

Possible pathways for the $\mathrm{HFe}(\mathrm{CO})_{4}{ }^{-}$ion reaction are illustrated in Scheme I. Thiophilic addition of the iron hydride to the thione would give 4 which can then undergo a hydride shift to form 5 . The latter is convertible to the hydrocarbon 2, either by attack of another molecule of $\mathrm{HFe}(\mathrm{CO})_{4}{ }^{-}$or by

Table I. Products Obtained from Reactions of Organosulfur Compounds with $\mathrm{Fe}(\mathrm{CO})_{5}$ and KOH

Registry no.	Reactant	Product ${ }^{\text {a }}$	Yield, \%	$\begin{gathered} \mathrm{Mp} \text { or } \mathrm{bp}, \\ { }^{\circ} \mathrm{C} \end{gathered}$	Lit. mp or bp, ${ }^{\circ} \mathrm{C}$
1450-31-3	$\mathrm{Ph}_{2} \mathrm{CS}$	$\mathrm{Ph}_{2} \mathrm{CH}_{2}$	60	265-267	$264.3{ }^{\text {b }}$
1141-08-8	$\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CS}$	$\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CH}_{2}$	61	138-140 (4 mm)	$150(10 \mathrm{~mm})^{\text {c }}$
958-80-5	$\left(p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CS}$	$\left(p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CH}_{2}$	77	52-53	52-53 ${ }^{\text {d }}$
1226-46-6	$\left(p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CS}$	$\left(p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CH}_{2}$	81	90-91	$91-92{ }^{\text {b }}$
23695-65-0	Adamantanethione	Adamantane	74	266-268	$268{ }^{\text {b }}$
636-04-4	PhCSNHPh	$\mathrm{PhCH}_{2} \mathrm{NHPh}$	38	36-38	37-38 ${ }^{\text {b }}$
637-53-6	$\mathrm{CH}_{3} \mathrm{CSNHPh}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHPh}$	51	100-103 (20 mm)	97.5-98 (18 mm) ${ }^{\text {b }}$

${ }^{a}$ Infrared, nuclear magnetic resonance, and mass spectral data were in excellent accord with those for authentic samples. ${ }^{b}$ "Handbook of Chemistry and Physics", 50th ed, Chemical Rubber Publishing Co., Cleveland, Ohio, 1969. c A. B. Galun, A. Kaluszyner, and E. D. Bergmann, J. Org. Chem., 27, 1426 (1962). ${ }^{\text {d L. H. Conover and D. S. Tarbell, J. Am. Chem. Soc., 72, } 3586 \text { (1950). }}$

$1, \mathrm{R}=$	Metal carbonyl	$\begin{gathered} \text { Yield of } 3,{ }^{a} \\ \% \\ \hline \end{gathered}$	$\underset{\circ}{\mathrm{Mp},}$	$\begin{aligned} & \text { Lit. }{ }^{6} \mathrm{mp}, \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Ph	A	45	222-224	224-226
	B	71		
	C	55		
$\begin{gathered} p-\mathrm{CH}_{3-} \\ \mathrm{OC}_{6} \mathrm{H}_{4} \end{gathered}$	A	70	184-185	184.5-186
	B	75		
	C	68		
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	A	58	149-150	150.0-150.5
	B	83		
	C	68		

${ }^{a}$ Spectral properties [IR, NMR $\left.\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right), \mathrm{MS}\right]$ were in excellent accord with that for authentic samples. Yields are based on $1 .{ }^{b} \mathrm{C}$. E. Coffey, J. Am. Chem. Soc., 83, 1623 (1961).
decomplexation to the carbanion 6, followed by protonation.

Thiophilic addition (to give 7) is also the probable initial step in the reaction of 1 with $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}^{+} \mathrm{Co}(\mathrm{CO})_{4}{ }^{-}$(Scheme II). Since no hydride is present in 7, a second thiophilic addition can take place to give 8. Intramolecular displacement of $-\mathrm{SCo}(\mathrm{CO})_{4}$ from 8 would generate the thiirane (episulfide), 9. Desulfurization of the latter by $\mathrm{Co}(\mathrm{CO})_{4}-$ [or perhaps by the generated ${ }^{-} \mathrm{SCo}(\mathrm{CO})_{4}$] results in olefin formation. Some support for the conversion of 9 to 3 comes from the observed desulfurization of trans-2,3-diphenylthiirane to trans-stilbene in 71% yield by the cobalt tetracarbonyl anion. A similar mechanism has been suggested by Beak and Worley ${ }^{5}$ for the reaction of thiobenzophenones with Grignard and organolithium reagents.

For the neutral metal carbonyl, $\mathrm{Co}_{2}(\mathrm{CO})_{8}$, the initial step may involve formation of the sulfur-donor ligand complex 10 (Scheme III). The transformation of 10 to the alkene 3 may occur via the sulfur bridging zwitterionic complex 11, or via reaction with additional thione to give 12.

Experimental Section

General. Melting points were determined using a Fisher-Johns apparatus and are uncorrected. Infrared spectra were recorded on a Beckman 1R20A spectrometer. Nuclear magnetic resonance spectra were determined using a Varian T60 spectrometer, and a Varian MS902 spectrometer was employed for recording mass spectra.
The thioketones were prepared by reaction of the corresponding ketones with phosphorus pentasulfide. ${ }^{6,7}$ Cyclopentadienyliron dicarbonyl dimer was purchased from Pressure Chemical Co., and was used as received. Bis(triphenylphosphine)iminium tetracarbonylcobaltate was synthesized from dicobalt octacarbonyl according to the procedure of Ruff and Schlientz. ${ }^{4}$
Solvents were dried by standard techniques. All reactions were run under a dry nitrogen atmosphere.

Scheme I

Scheme II

3
Scheme III

12
General Procedure for Reaction of Organosulfur Compounds with the Hydridotetracarbonylferrate Anion. A mixture of iron pentacarbonyl ($3.0 \mathrm{~mL}, 22.1 \mathrm{mmol}$), $\mathrm{KOH}(3.69 \mathrm{~g}, 66 \mathrm{mmol})$, and water (6.0 mL) was refluxed in 1,2 -dimethoxyethane (90 mL) for 1.5 h to generate $\mathrm{HFe}(\mathrm{CO})_{4}{ }^{-}$. The organosulfur compound ($5.0-5.6 \mathrm{mmol}$)
in 1,2-dimethoxyethane ($15-35 \mathrm{~mL}$) was added to this solution and the mixture was refluxed for 8-12 h. The solution was cooled and filtered, and the filtrate was concentrated in vacuo. The crude product was treated with ether ($150-200 \mathrm{~mL}$) and filtered, and the filtrate was washed with equal volumes of water until the aqueous layer was colorless (three or four washings). The ether extract was dried $\left(\mathrm{MgSO}_{4}\right)$, percolated through a short column of Florisil (if necessary), and concentrated to give the pure desulfurized product.

General Procedure for Reaction of Thiones with Bis(triphenylphosphine)iminium Tetracarbonylcobaltate and Cy clopentadienyliron Dicarbonyl Dimer. The thioketone (2.5 mmol) and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}^{+} \mathrm{Co}(\mathrm{CO})_{4}{ }^{-}$or $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}(1.4 \mathrm{mmol})$ in benzene $(5-7 \mathrm{~mL})$ was heated in a Carius tube at $90-100^{\circ} \mathrm{C}$ for 4 days. During this period, a large amount of black precipitate was formed. The tube was opened, the black material was filtered, and the filtrate was concentrated to $2-3 \mathrm{~mL}$. The latter was chromatographed on silica gel using petroleum ether (bp $80-100^{\circ} \mathrm{C}$). Elution with benzenepetroleum ether ($1: 5$ to $1: 1$) gave the olefin 3 .
General Procedure for the Reaction of Thiones with Dicobalt Octacarbonyl. A mixture of the thione (2.7 mmol) and dicobalt octacarbonyl $(0.51 \mathrm{~g}, 1.5 \mathrm{mmol})$ in benzene $(50 \mathrm{~mL})$ was refluxed for 5
h. The solution was cooled and filtered, and evaporation of the filtrate gave 3. Crystallization of the latter from benzene-petroleum ether gave the pure crystalline olefin 3.

Acknowledgment. We are grateful to Imperial Oil Ltd. for support of this research.

Registry No.- $\mathrm{Fe}(\mathrm{CO})_{5}$, 13463-40-6; $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}{ }_{2} \mathrm{~V}^{+} \mathrm{Co}(\mathrm{CO})_{4}{ }^{-}\right]$, $53433-12-8 ; \mathrm{Co}_{2}(\mathrm{CO})_{8}, 10210-68-1 ; \quad\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}, 12154-95-9$; $\mathrm{HFe}(\mathrm{CO})_{4}{ }^{-}, 18716-80-8$.

References and Notes

(1) A. I. El-Ansary and S. Y. Ezz, Fuel, 52, 66 (1973).
(2) See H. Alper, J. Org. Chem., 40, 2694 (1975), for a communication on this subject.
(3) H. des Abbayes and H. Alper, J. Am. Chem. Soc., 99, 98 (1977), and references cited therein.
(4) J. K. Ruff and W. J. Schlientz, Inorg. Synth., 15, 84 (1974).
(5) P. Beak and J. W. Worley, J. Am. Chem. Soc., 94, 597 (1972).
(6) J. W. Scheeren, P. H. J. Ooms, and R. J. F. Nivard, Synthesis, 149 (1973).
(7) J. W. Griedanus, Can. J. Chem., 48, 3530 (1970).

Chemistry of Heterocyclic Compounds. 25. Selective Metalation of the Pyridine Nucleus at the 3-Position ${ }^{1}$

George R. Newkome, ${ }^{*}$ Joe D. Sauer, ${ }^{2 a}$ and S. K. Staires ${ }^{2 b}$
Department of Chemistry, Lowisiana State University, Baton Rouge, Louisiana 70803

Received March 29, 1977

Abstract

Treatment of bis(6-bromo-2-pyridyl) ketone ketal (3) with n-butyllithium in diethyl ether at $-40^{\circ} \mathrm{C}$ resulted in the isolation of pyridone 6 after normal hydrolytic workup. Selective metalation of the 3 position of 3 has been demonstrated by labeling studies. The formation of pyridone 6 is proposed to occur by first 1,4-elimination-fragmentation of one pyridine nucleus, followed by cyclization upon workup.

In one of our synthetic routes to trione 1a, ${ }^{3}$ as well as the related pyridine-based xanthoporphinogen model compounds (1b), the intermediary bis(6-lithio-2-pyridyl) ketone ketal (2) was of pivotal importance. Attempted conversion of 3^{4} to either diacid 4, according to the standard metalation-carboxylation procedure of Gilman et al., ${ }^{5}$ or to 2,2-bis(2-pyridyl)-1,3-dioxolane (5) via metalation-hydrolysis, gave in both cases the undesired pyridone 6 as a major side product. We herein describe the directive metalation of the 3 -position of the pyridine nucleus under normal metalation conditions ${ }^{5}$ and propose procedures to circumvent, as well as a rationale for, pyridone formation.

$\mathcal{L} a(n=1)$ $b(n=2)$

$\begin{array}{ll}\underset{\sim}{2}(R=L i) & \underset{\sim}{4}\left(R=-\mathrm{CO}_{2} H\right) \\ \underset{\sim}{3}(R=B r) & \underset{\sim}{5}(R=H)\end{array}$

$$
\underset{\sim}{3}(R=B r)
$$

$$
\underset{\sim}{5}(R=H)
$$

$\underset{\sim}{6}$

Treatment of bis(6-bromo-2-pyridyl) ketone ketal (3) with n-butyllithium (10% mol excess) in diethyl ether at $-20^{\circ} \mathrm{C}$
for 1 h , followed by carboxylation and mild hydrolysis, gave (30%) pyridone 6 along with the starting ketal as the major nonacidic components. Structure proof of 6 was achieved by reaction of methyl 2 -pyridinecarboxylate and 2 -bromo- 6 lithiopyridine, ${ }^{5,6}$ affording (70%) 2-pyridyl 6-bromo-2-pyridyl ketone (7), which upon base-catalyzed ketalization ${ }^{4}$ gave (75%) ketal 8 . Treatment of 8 with potassium iert-butoxide

in anhydrous tert-butyl alcohol ${ }^{7}$ afforded a 39% overall yield of pyridone 6. In general, hydrolyses of these pyridyl ketals occur only under rigorous conditions (6 h in refluxing concentrated hydrochloric acid or $12-18 \mathrm{~h}$ in warm 80% acetic acid); thus, the ketals herein described would be unaffected by the hydrolytic workup procedure.

Pyridone 6 was isolated from 3 in comparable yield when the carboxylation step was eliminated. In order to assure the complete exclusion of oxygen, rigorous degassing procedures ${ }^{8}$ were conducted and the reaction was conducted under an argon atmosphere; the yield of 6 remained virtually constant. However, either utilization of better anion stabilizing solvents, such as dimethoxyethane or tetrahydrofuran, or reduced reaction temperatures (-60 to $-90^{\circ} \mathrm{C}$) suppressed pyridone formation, in favor of products arising from lithiated ketal. Table I summarizes the diversified reaction conditions vs. the product distribution.
In order to ascertain the position(s) of lithiation, ketal 3 was

Table I

Reaction temp, ${ }^{\circ} \mathrm{C}$	Solvent	Trapping agent	Isolated yields, \% ${ }^{a}$		
-40 to -20	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CO}_{2} / \mathrm{H}_{3} \mathrm{O}^{+}$	$34(\mathrm{R}=\mathrm{H})$	$32\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}\right)$	b
	THF	$\mathrm{H}_{3} \mathrm{O}^{+}$	$51(\mathrm{R}=\mathrm{H})$	$<1\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}\right)$	$42\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}\right)$
	DME	$\mathrm{H}_{3} \mathrm{O}^{+}$	$50(\mathrm{R}=\mathrm{H})$	$<2\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}\right)$	43 (R = $\left.\mathrm{R}^{\prime}=\mathrm{H}\right)$
	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{D}_{3} \mathrm{O}^{+}$	$35(\mathrm{R}=\mathrm{H}, \mathrm{D})$	$21\left(\mathrm{R}=\mathrm{R}^{\prime}=>90 \% \mathrm{D}\right)$	Traces
-55 to -40	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{D}_{3} \mathrm{O}^{+}$	$30(\mathrm{R}=26 \% \mathrm{D})$	$\begin{gathered} <2\left(\mathrm{R}^{\prime}=>90 \% \mathrm{D} ;\right. \\ \mathrm{R}=\mathrm{H}, \mathrm{D})^{c} \end{gathered}$	$\begin{gathered} 52\left(\mathrm{R}^{\prime}=>95 \% \mathrm{D} ;\right. \\ \mathrm{R}=25 \% \mathrm{D}) \end{gathered}$
-78 to -60	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{D}_{3} \mathrm{O}^{+}$	$48(\mathrm{R}=23 \% \mathrm{D})$	$<1^{d}$	$\begin{gathered} 47\left(\mathrm{R}^{\prime}=>95 \% \mathrm{D}\right. \\ \mathrm{R}=19 \% \mathrm{D}) \end{gathered}$

a Isolated, recrystallized product yields. ${ }^{b}$ Traces of 5 were found; the diacid 4, from the carboxylation step, was not isolated. c Isotopic distribution was not determined. d Insufficient sample to determine isotopic distribution.
subjected to a $10 \% \mathrm{~mol}$ excess of n-butyllithium in diethyl ether at $-78{ }^{\circ} \mathrm{C}$, then quenched with $10 \% \mathrm{D}_{2} \mathrm{SO}_{4}$. Two partially deuterated ketals were isolated and characterized by NMR and confirmed with mass spectral data: the recovered starting material (3) had incorporated (23%) a deuterium atom at position 3 of one pyridine ring as determined by the decreased integration of the doublet of doublets at $\delta 7.82$. The second major product, deuterated 5 , showed nearly complete absence of the characteristic broad doublet at $\delta 8.65$ for the 6 -pyridyl hydrogen and a 19% decrease in the aromatic region as compared to the ketal singlet. Under these conditions pyridone 6 was not detected. Isolation of partially deuterated starting ketal 3 from the reaction suggests directive lithiation at the 3 position being a result of the proximity of the ketal or

pyridyl moiety. There are numerous examples of ethereal directivity in metalation in aromatic nuclei; ${ }^{9 a}$ however, this is the first example of selective metalation of the normally unreactive (toward metalation) 3 position of a pyridine ring. Reaction temperatures above $-55^{\circ} \mathrm{C}$ resulted in marginal increases in both label incorporation as well as isolable pyridone. At $-40^{\circ} \mathrm{C}$, pyridone 6 has deuterons incorporated in positions 1,3 , and 6^{\prime} to the extent of $>90 \%$ based upon its NMR spectral data, which show complete absence of both the broad, 6-pyridyl doublet ($\delta 8.65$) and doublet of doublet at δ 6.51. The pyridone nucleus shows only two doublets at $\delta 7.35$ $\left(\mathrm{H}_{4}\right)$ and $6.42\left(\mathrm{H}_{5}\right)$; this pattern does not change upon hydrolysis; however, a new broad peak at $\delta 10.45$ appears for the NH group. To confirm the exchangeability of the 3 position, pyridone 6 was dissolved in 10% deuteriosulfuric acid and the exchange rate monitored via NMR. After 40 h at $38{ }^{\circ} \mathrm{C}$, negligible, if any, deuterium incorporation was observed; at increased temperatures, hydrolysis of the ketal moiety resulted.
Further confirmation of this selective metalation was demonstrated by treatment of 5 with n-butyllithium ($10 \% \mathrm{~mol}$ excess) in diethyl ether at $-78^{\circ} \mathrm{C}$, followed by quenching with $10 \% \mathrm{D}_{2} \mathrm{SO}_{4}$. The recovered "starting" ketal has deuterium incorporation (ca. 18\%) predominantly at the 3 position as determined by NMR spectral integration and mass spectral data [m/e 228-229 (18\%); $\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} \rightarrow \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO}_{2}(m / e$ 150) $\mathrm{m} / \mathrm{e} 150 \rightarrow 151(\sim 10 \%)$]; as expected upon more rigorous conditions, alkylation at the 6 and/or 6^{\prime} position(s) afforded the n-butyl incorporation products (e.g. 9). Giam et al. have adequately demonstrated the enamine character of the 1,2 dihydro intermediates, which afford these 2-alkylpyridines; ${ }^{10}$

thus, deuterium incorporation in the 3 and/or 5 positions would be expected in any alkylated products. Longer reaction times, different temperatures, and numerous other factors will alter the percentage of label incorporation; these variables were not investigated.
The proposed explanation of the formation of pyridone 6 from ketal 3 is shown in Scheme I. Ketal 3 undergoes (ca. $20-30 \%$) selective metalation at the 3 position of a single pyridine ring under these reaction conditions. This directivity of metalation results from both initial complexation of the organolithium reagent with either the 1,3 -dioxolane group ${ }^{9 a, b}$ or other nitrogen atom ${ }^{9 c}$ as well as a conformational preference about the $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ bond. ${ }^{11}$ This is further substantiated by the above labeling studies and the observation that good complexing solvents retard the directive metalation, since the intramolecular solvation cannot compete with the solventmetal interactions.

At reduced temperatures ($<-60^{\circ} \mathrm{C}$), the diiithiated ketal 5- d_{2} can be generated by normal metal-halcgen exchange along with approximately 20% of the trilithiated ketal $5-d_{3}$, which arose by both metal-halogen exchange and directive metalation. At -40 to $-20^{\circ} \mathrm{C}$, the partially metalated intermediate 10 can fragment at the elevated temperatures via 1,4-elimination of lithium bromide to generate ynenenitrile 11. Similar fragmentations of the pyrimidine nucleus have been reported ${ }^{12}$ and recently Utimoto et al. ${ }^{13}$ have described a related cleavage of the pyridine ring to give dienenitriles. No attempts have been made to isolate the ynenenitrile intermediate. ${ }^{14}$ Cyclization of 11 under the workup conditions affords pyridone 6 in approximately the same isolated percentages as that of the selective deuterium incorporation studies. Although there is no exact precedence for the cyclization step, Perveev and co-workers ${ }^{15}$ have demonstrated the facile cyclization of alkyl-substituted ynenenitriles in the

Scheme I

presence of alkyl- and dialkylamines at room temperature to generate ($70-80 \%$) the pyridine nucleus. Related dienenitriles have been shown ${ }^{16}$ to give dihydropyridines when subjected to mild acidic conditions, such as the typical workup (dilute mineral acid at room temperature for several minutes). Directive protonation may also facilitate this cyclization.
In order to dispel the obvious reactions which could conceivably convert 3 into 6 , ketal 3 was subjected to conditions in excess of normal workup procedures: (a) refluxed 3 in 5% HCl for 12 h ; (b) refluxed 3 in 12 N HCl in methanol for 24 h ; or (c) heated 3 in alcoholic potassium hydroxide at $60^{\circ} \mathrm{C}$ for 4 h resulting in isolation of either recovered starting ketal 3 (100%), bis(6 -bromo-2-pyridyl) ketone ($>90 \%$), or 3 (100%), respectively.
This directive metalation and novel fragmentation of the pyridine nucleus are currently being evaluated as a convenient synthon for polyfunctional C_{5} and C_{6} units.

Experimental Section

All melting points were taken in capillary tubes with a ThomasHoover Uni-Melt and are uncorrected. Infrared and ultraviolet spectra were recorded on a Beckmann IR-7 and Cary 14 spectrophotometers, respectively. Nuclear magnetic resonance (NMR) spectra were obtained using a Varian HA-100 spectrometer and are recorded in parts per million downfield of the internal standard of tetramethylsilane. Mass spectra were obtained on a Hitachi-Per-kin-Elmer RMS-4 spectrometer by Ms. Paula Moses. Elemental analyses were performed by Mr. R. Seab in these laboratories.
The recorded R_{f} values were determined by a standardized thinlayer chromatograph (TLC) procedure: $0.025-\mathrm{mm}$ Brinkmann silica gel HF eluting with the stipulated solvent system. For peeparative thick-layer chromatography (ThLC), $2-\mathrm{mm}$ silica gel (Brinkmann PF-254-366) plates were used, eluting with the stated solvents.
Bis(6-bromo-2-pyridyl) ketone was prepared, according to the procedure of Holm et al., ${ }^{6}$ from 2,6-dibromopyridine and ethyl chloroformate: mp $155-156{ }^{\circ} \mathrm{C}$ (lit. $.^{6} \mathrm{mp} 155-156.5^{\circ} \mathrm{C}$).

2-Pyridyl 6-bromo-2-pyridyl ketone (7) was synthesized from 2-bromo-6-lithiopyridine and methyl 2-pyridinecarboxylate by standard procedures: $\mathrm{mp} 85-86^{\circ} \mathrm{C}$ (lit. $.^{6} \mathrm{mp} 84.5-86.5^{\circ} \mathrm{C}$)

2,2-Bis($\mathbf{6}^{\prime}$-bromo-2'-pyridyl)-1,3-dioxolane (3) was prepared ${ }^{4}$ ($75-85 \%$) from the corresponding ketone by treatment with 2-bro moethanol and sodium carbonate: $\mathrm{mp} 146-148{ }^{\circ} \mathrm{C} ; R_{f} 0.41$ [cyclo-hexane-ethyl acetate (1:1)]; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.14$ (s, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 4$ H), 7.35 (dd, 5 -pyr-H, $J=7,2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (dd, 4-pyr-H, $J=7,7.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.82 (dd, 3-pyr-H, $J=7.7,2 \mathrm{~Hz}, 2 \mathrm{H}$).
Treatment of 2,2-Bis(6^{\prime}-bromo-2'-pyridyl)-1,3-dioxolane (3) with n-Butyllithium. Method A. Ether Solvent at -40 to - $20^{\circ} \mathrm{C}$. A solution of 3 ($100 \mathrm{mg}, 0.26 \mathrm{mmol}$) in anhydrous diethyl ether (100 mL ; distilled from lithium aluminum hydride under argon) was cooled to $-40^{\circ} \mathrm{C}$ and n-butyllithium ($0.3 \mathrm{~mL}, 2 \mathrm{M}$ in hexane, 0.6 mmol) was added slowly. The reaction was conducted under an argon atmosphere with complete exclusion of oxygen. After the addition was complete, the solution was allowed to warm slowly to $-20^{\circ} \mathrm{C}$ and then main tained at $-20^{\circ} \mathrm{C}$ for 1 h . Dry ice was added to the solution and the mixture was hydrolyzed by addition of cold 5 N hydrochloric acid (30 mL). The organic solvents were removed at reduced pressure, then the aqueous slurry was extracted with chloroform $(10 \times 50 \mathrm{~mL})$. The combined extract was washed with water, dried over anhydrous sodium sulfate, and concentrated in vacuo to afford a beige solid, which was chromatographed (ThLC), eluting three times with cyclohex-ane-ethyl acetate ($1: 1$) to give 20 mg (32%) of pyridone 6: mp 185-187 ${ }^{\circ} \mathrm{C} ; R_{f} 0.04$ [cyclohexane-ethyl acetate (1:1)]; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.16$ (s, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}$), 6.42 (dd, $\mathrm{H}_{5}, J=7,1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.51 (dd, H_{3}, J $=9,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37\left(\mathrm{dd}, \mathrm{H}_{4}, J=9,7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30\left(\mathrm{ddd}, \mathrm{H}_{5^{\prime}}, J=6\right.$, $5,2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.76 (ddd, $\mathrm{H}_{3^{\prime}}, J=5,2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (ddd, $\mathrm{H}_{4^{\prime}}, J=$ $5,6,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.63 (ddd, $\mathrm{H}_{6^{\prime}}, J=5,1.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), and 10.45 [brs, NH (exchanged with $\left.\left.\mathrm{D}_{2} \mathrm{O}\right), 1 \mathrm{H}\right] ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3350$ (amide). 3000,1670 (amide), 1630, 1440, 1200, 1150, 1090, 1040, $950 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 63.93; H, 4.96; $\mathrm{N}, 11.47$. Found: C, 64.11; H, 5.03; N, 11.38 .

Unreacted starting material [$34 \mathrm{mg}(34 \%)$] was also isolated from the ThLC plate, mp $146-148^{\circ} \mathrm{C}$.
Any carboxylated products, specifically 5, neither moved nor could be easily extracted from the baseline of the chromatography plate.

Method B. Tetrahydrofuran Solvent. Repetition of method A, except for the substitution of tetrahydrofuran as solvent and omission
of the carboxylation step, resulted in the isolation of 3 [$51 \mathrm{mg}(51 \%)$] and 5: mp $164-165^{\circ} \mathrm{C}$; 24 mg (42\%).

Method C. Dimethoxyethane Solvent. Repetition of method A without the carboxylation stage and utilizing dimethoxyethane as solvent afforded 50 mg (50%) of 3 and 25 mg (43%) of 5 .

Method D. Quenching with Deuterated Sulfuric Acid. Method A was repeated without the carboxylation step, and quenched with 10% deuterated sulfuric acid ($10 \mathrm{~mL}, 98 \% d_{2}$). Purification (ThLC) afforded, along with starting material [$35 \mathrm{mg},(35 \%)$], 13.5 mg (21\%) of the deuterated pyridone (6-1,3,6' ${ }^{\prime} d_{3}$): mp $185-187{ }^{\circ} \mathrm{C} ; R_{f} 0.04$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.16\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}\right), 6.42\left(\mathrm{~d}, \mathrm{H}_{5}, J=8.0 \mathrm{~Hz}, 1\right.$ H), $7.35\left(\mathrm{~d}, \mathrm{H}_{4}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30\left(\mathrm{dd}, \mathrm{H}_{5^{\prime}}, J=5,2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.76$ (dd, $\mathrm{H}_{3^{\prime}}, J=6,2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (dd, $\mathrm{H}_{4^{\prime}}, J=6,5 \mathrm{~Hz}, 1 \mathrm{H}$), and 10.65 (brs, NH (exchanged with $\left.\mathrm{H}_{2} \mathrm{O}\right), 1 \mathrm{H}$]; MS $(60 \mathrm{eV}) \mathrm{m} / \mathrm{e} 247\left(\mathrm{M}^{+}\right.$, d_{3}).

Method E. Temperature Range (-55 to $-40^{\circ} \mathrm{C}$). Repetition of method D , except that the initial addition of n-butyliithium was at $-55^{\circ} \mathrm{C}$ and then maintained for 3 h at $-40^{\circ} \mathrm{C}$, afforded only a trace ($<2 \%$) of pyridone 6, recovered 3 -deuterio ketal 3 [33 mg (33\%); mp $145-147{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.16$ (s, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}$), 7.35 (dd, $5-$ pyr-H, $J=7,2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (brdd, 4 -pyr-H, $J=7, \sim 7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.82 (brdd, 3-pyr-H, $J=7.7,2 \mathrm{~Hz}$; MS (60 eV) m/e $389\left(\mathrm{M}^{+}, 36 \% d_{1}\right)$), and the "trideuterated" ketal [31 mg (52\%); mp $163-165{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.10\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}\right), 7.0-8.0(\mathrm{~m}, 3,4,5-\mathrm{pyr}-\mathrm{H}, 5.8 \mathrm{H})$, 8.65 (m, 6-pyr-H, 0.05 H); MS m/e $228\left(1 \% d_{0}\right), 229\left(2 \% d_{1}\right), 230(72 \%$ $\left.\left.d_{2}\right), 231\left(25 \% d_{3}\right)\right]$.

Method F. Temperature Range ($\mathbf{- 7 8}$ to $-60^{\circ} \mathrm{C}$). Repetition of method D, except that the initial addition of n-butyllithium was at $-78^{\circ} \mathrm{C}$ and the reaction was maintained for 3 h at $-60^{\circ} \mathrm{C}$, afforded deuterated starting material 3 [50 mg (50\%); mp $146-147^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right)$ identical with sample isolated from method E, except for δ $7.81(3-$ pyr-H, $1.55 \mathrm{H}(77 \% \mathrm{H}))$] and the trideuterated ketal [mp $164-166{ }^{\circ} \mathrm{C} ; 30 \mathrm{mg}(50 \%)$; NMR $\left(\mathrm{CDCl}_{3}\right)$ identical with sample derived from method E; MS m/e $228\left(1 \% d_{0}\right)$, $229\left(1 \% d_{1}\right)$, 23 ($78 \% d_{2}$), 231 $\left.\left(19 \% d_{3}\right)\right]$.
Treatment of $2,2-\mathrm{Bis}\left(2^{\prime}\right.$-pyridyl)-1,3-dioxolane (5) with n Butyllithium. A solution of $5(180 \mathrm{mg}, 0.8 \mathrm{mmol})$ in diethyl ether (50 mL) was cooled to $-78^{\circ} \mathrm{C}$ and n-butyllithium ($1 \mathrm{~mL}, 2 \mathrm{M}$ in hexane 2 mmol) was added dropwise. After 3 h at $-70^{\circ} \mathrm{C}, 10 \%$ deuterated sulfuric acid ($10 \mathrm{~mL}, 98 \% d_{2}$) was added. After neutralization with sodium carbonate, the suspension was extracted with chloroform (5 $\times 50 \mathrm{~mL}$), then the combined extract was dried over anhydrous sodium sulfate and concentrated to afford a gummy residue, which was chromatographed (ThLC), eluting two times with diethyl ether to give starting $5\left[110 \mathrm{mg}\right.$ (60%), mp $164-165^{\circ} \mathrm{C}$ (needles, petroleum ether) NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.12\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}\right), 7.0-8.0(\mathrm{~m}, 3,4,5-\mathrm{pyr}-\mathrm{H}$ 5.8 H), 8.66 (ddd, 6-pyr-H, 2 H); MS m/e 228 ($81 \% d_{0}$), 229 ($19 \% d_{1}$) and 2-(2'-pyridyl)-2-(6'-n-butyl-2'-pyridyl)-1,3-dioxolane $[20 \mathrm{mg}(8 \%)$ bp $100^{\circ} \mathrm{C}\left(0.1 \mathrm{~mm}\right.$, microdistillation); $R_{f} 0.3$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.0-1.7$ (m, $n-\mathrm{Pr}, 7 \mathrm{H}$), 2.8 (t, pyr- $\mathrm{CH}_{2}, J=8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.18\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$ 4 H), $7.0-7.8$ (m, pyr-H, 6 H), 8.65 (ddd, $6-\mathrm{pyr}-\mathrm{H}, J=4.5,2,1 \mathrm{~Hz}, 1$ H).

Attempted Deuterium Exchange of Pyridone 6. A sample of 6 ($50 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in 10% deuteriosulfuric acid (0.3 mL $98 \% d_{2}$) and the incorporation was monitored via NMR analysis at $38^{\circ} \mathrm{C}$. After 40 h at $38^{\circ} \mathrm{C}$, negligible, if any, incorporation was observed. The ketal singlet at $\delta 4.16$ was used as the internal stan dard.

Independent Synthesis of Pyridone 6. A. 2-(2'-Pyridyl)-2-(6' bromo-2'-pyridyl)-1,3-dioxolane (8). A suspension of 7 ($1.03 \mathrm{~g}, 3.5$ mmol), lithium carbonate ($15 \mathrm{~g}, 200 \mathrm{mmol}$), and 2-bromoethanol (25 mL) was refluxed gently with stirring for 6 h . After cooling, the mixture was poured into 10% aqueous sodium bicarbonate $(150 \mathrm{~mL})$. The undissolved solids were filtered and the filtrate was extracted with chloroform ($10 \times 50 \mathrm{~mL}$). The combined organic extract was dried over anhydrous potassium carbonate and concentrated to afford a pale amber yellow liquid. The attendent 2-bromoethanol was removed via vacuum distillation and the residue was chromatographed (ThLC), eluting with cyclohexane-ethyl acetate (1:1) to afford 8 as colorless rhombohedron crystals: $\mathrm{mp} 117-117.5^{\circ} \mathrm{C}$ (recrystallized from ethyl acetate-cyclohexane); 800 mg (75\%); NMR (CDCl_{3}) $\delta 4.12$ (s, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}$), $7.0-7.85$ (m, pyr-H, 6 H), 8.47-8.52 (ddd, 6-руг-H, $J=5,5,2,1 \mathrm{~Hz}, 1 \mathrm{H}) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3000,1650,1620,1575,1390,1280$, $1160,995 \mathrm{~cm}^{-1}$
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}$: C, $50.86 ; \mathrm{H}, 3.61 ; \mathrm{N}, 9.13$. Found: C, 50.62; H, 3.83; N, 9.23.
B. Pyridone Synthesis. A mixture of $8(130 \mathrm{mg}, 0.425 \mathrm{mmol})$, anhydrous tert-butyl alcohol (8 mL), and potassium tert-butoxide (4 g) was refluxed for 12 h . After cooling, the solvent was removed in vacuo, ice water was slowly added, and the solution was extracted with
methylene chloride. The combined extract was dried over anhydrous sodium sulfate, concentrated, and chromatographed (ThLC), eluting three times with cyclohexane-ethyl acetate (3:1) to afford 72.7 mg (75\%) of pure pyridone $6, \mathrm{mp} 185-187^{\circ} \mathrm{C}$. This sample was identical in all respects with the sample isolated from method A.

Acknowledgments. The authors gratefully acknowledge partial support of this work by Public Health Service grant from the National Institutes of Health and the Dr. Charles E. Coates Memorial Fund of the L.S.U. Foundation for financial aid (J.D.S.). We also wish to thank Professor Van der Plas for his helpful comments.

Registry No.-3, 42772-88-3; 3-3- $d_{1}, 63449-27-4$; 3-3,6,6'- d_{3}, 63449-28-5; 5, 42772-86-1; 6, 63449-29-6; 6-1,3,6' ${ }^{-} d_{3}, 63449-30-9 ; 7$, 49669-19-4; 8, 63449-31-0; bis(6-bromo-2-pyridyl) ketone, 42772-87-2; 2-bromo-6-lithiopyridine, 37709-60-7; methyl 2-pyridinecarboxylate, 2459-07-6; 2-bromoethanol, 540-41-2.

References and Notes

(1) Presented in part at the 27th Southeast-31st Southwest Combined Regional Meeting of the American Chemical Society, Memphis, Tenn., Oct. 1975.
(2) (a) Based in part on the Ph.D. dissertation of J.D.S., Louisiana State University (Baton Rouge), 1976. (b) Undergraduate researcher
(3) G. R. Newkome, J. D. Sauer, P. K. Mattschei, and A. Nayak, to be submitted for publication.
(4) G. R. Newkome, J. D. Sauer, and G. L. McClure, Tetrahedron Lett., 1599 (1973).
(5) H. Gilman and S. M. Spatz, J. Org. Chem., 16, 1485 (1951).
(6) J. F. Parks, B. E. Wagner, and R. H. Holm, J. Organomet. Chem., 56, 53 (1973).
(7) G. R. Newkome, J. Broussard, S. K. Staires, and J. D. Sauer, Synthesis, 707 (1974).
(8) (a) R. West and W. H. Glaze, J. Org. Chem., 26, 2096 (1961); (b) T. D. Perrine and A. Rapoport, Anal. Chem., 20, 635 (1948).
(9) (a) Reviews: ı. M. Malian and R. L. Beff, Chem. Rev., 69, 693 (1969); U. Schollkopf, Methoden Org. Chem. (Houben-Weyn), 4th Ed., 12 (1), 87-253 (1970); (b) M. I. Bruce, Angew. Chem., Int. Ed. Engl., 16, 73 (1977). (c) Also see: P. Pirson, A. Schonne, and L. Christiaens, Bull. Soc. Chim. Belg., 79, 575 (1970); R. A. Ellison and R. N. Kotsonis, J. Org. Chem., 38, 4192 (1973); K. Madeja, E. Hussing, and N. Ahrens, Z. Chem., 7, 22 (1967).
(10) C. S. Giam, E. E. Knaus, R. H. Lockhart, and I. G. Keener, Can. J. Chem., 53, 2305 (1975), and references cited therein.
(11) (a) G. J. Karabatsos and D. J. Fenoglio, Top. Stereochem., 5, 167-203 (1971); (b) unpublished data (LSU).
(12) H. C. Van der Plas, "Ring Transformations of Heterocycles'", Vol. 2, Academic Press, New York, N.Y., 1973, Chapter 4. Also see: C. A. Grob and P. W. Schiess, Angew. Chem., Int. Ed. Engl., 6, 1 (1967); C. A. Grob, ibid., 8, 535 (1969).
(13) K. Utimoto, N. Sakai, and H. Nozaki, J. Am. Chem. Soc., 96, 5601 (1974); Tetrahedron, 32, 769 (1976).
(14) P. H. Kasai and D. McLeod Jr. [J. Am. Chem. Soc., 94, 720 (1972)] described a simi ar fragmentation of the 3-pyridyl radical (i) within an argon matrix upon ultraviolet irradiation to generate the yneneimine radical (ii).

(15) (a) F. Ya. Perveev and K. V. Koshmina, J. Org. Chem. USSR, 4, 167 (1967); (b) F. Ya. Perveev, M. S. Ivakhnyuk, and N. V. Koshmina, J. Org. Chem. USSR, 6, 1118 (1970); (c) F. Ya. Perveev and I. I. Afonina, J. Org. Chem. USSR, 8, 2072 (1971).
(16) See: F. Brody and P. R. Ruby, "Pyridine and its Derivatives', Part 1, E. Klingsberg, Ed , Interscience, New York, N.Y., 1960, Chapter 2.

α-Halogenation of Certain Ketones

Borzoo Modarai* and Ezatollah Khoshdel
Department of Chemistry, Arya Mehr University of Technology, Tehran, Iran

Received February 25, 1977

A variety of α-halo and α-gem-dihalo ketones, including the fluoro and iodo compounds, have been prepared. The scope and limitations of their syntheses have been studied. Every attemp at the preparation of 3,3-difluoro-2butanone gave biacetyl as the only product, although the analogous gem-difluoropropiophenone was conveniently obtained. The synthesis of the difluorobutanone could, however, be effected with the introduction of an electronegative atom such as chlorine on the 1 position.

In the course of our stereochemical studies, the need for a number of ketones possessing a halogenated chiral carbon atom led us to investigate the halogenation, in particular fluorination, of one or both methylene hydrogens of 2 -butanone, propiophenone, and 1-phenyl-2-propanone. None of the required gem-dihalo ketones possessing two different halogens has been previously reported.
α-Chloro or α-fluoro ketones were conveniently converted to their corresponding gem-bromohalo analogues by irradiation in the presence of NBS. ${ }^{1}$ Table I lists the products with yields. Several alternate reported routes ${ }^{2,3}$ were found to be ineffective, leading to bromoform (for methyl ketones) or polybrominated products. Bromination of monofluoroacetone with NBS gave a complex mixture.

Results and Discussion

Preparation of the Fluoro Ketones Although indirect routes have frequently been used for the preparation of fluoro methyl ketones, ${ }^{4-7}$ direct exchange of bromine or chlorine for fluorine using metallic fluorides was used in the present work. This method, although preferred, often meets with difficulty due to the marked tendency of bromo and chloro ketones to decompose during the course of fluorination, particularly at
high temperatures. The task was in finding a metal fluoride which would exchange its fluorine for halogen at a temperature low enough so as to minimize side reactions and decomposition of both the reactant and product. Mercuric fluoride was found to be a suitable metallic fluoride for the fluorination of most of the bromo ketones. These reactions are presented in Table II.
In the fluorination of 1 a with mercuric fluoride, under $a b-$ solutely anhydrous conditions, a smooth exchange of bromine took place, leaving the chlorine intact and giving 3 -chloro3 -fluoro-2-butanone (1c) together with some biacetyl. With antimony trifluoride, thallous fluoride, potassium fluoride, and potassium hydrogen difluoride, either no reaction occurred or extensive polymerization and charring resulted. Efforts to inhibit the formation of biacetyl, in the exchange reaction with mercuric fluoride, met with no success. The fluoro ketone formed an azeotropic mixture with the biacetyl and had to be purified by GLC. Pure lc was not hydrolyzed when boiled with water.
1c was also obtained in poor yield by the chlorination of 3 -fluoro-2-butanone using N-chlorosuccinimide.

2-Bromo-2-chloro-1-phenyl-1-propanone (3a) reacted with mercuric fluoride at $85^{\circ} \mathrm{C}$ to give, under optimum conditions,

Table I. Reaction of Halo Ketones with NBS

Reactant	Registry no.	Product (yield, \%)	Registry no.
$1 \mathrm{CH}_{3} \mathrm{COCHClCH}_{3}$	4091-39-8	1a $\mathrm{CH}_{3} \mathrm{COCBrClCH}_{3}$ (95)	630-7-03-8
$2 \mathrm{CH}_{2} \mathrm{ClCOCHFCH}_{3}$	63017-02-7	$2 \mathrm{a}^{\prime} \mathrm{CH}_{2} \mathrm{ClCOCBrFCH}_{3}$ (98)	63017-04-9
$3 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCHClCH}_{3}$	6084-17-9	$3 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCBrClCH}_{3}$ (95)	63017-05-0
$4 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCHFCH}_{3}$	21120-36-5	$4 \mathrm{a}^{\prime} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCBrFCH}_{3}$ (95)	63017-06-1
$5 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{CH}_{3}$	93-55-0	5b $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCBr}_{2} \mathrm{CH}_{3}$ (95)	2114-03-6
$6 \mathrm{CH}_{3} \mathrm{COCHFCH}_{3}$	814-79-9	$6 \mathbf{a}^{\prime} \mathrm{CH}_{3} \mathrm{COCBrFCH}_{3}$ (95)	63017-07-2
$7 \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$	78-93-3	7b $\mathrm{CH}_{3} \mathrm{COCBr}_{2} \mathrm{CH}_{3}$ (95)	2648-69-3
$8 \mathrm{CH}_{3} \mathrm{COCHFC}_{6} \mathrm{H}_{5}$	21120-43-4	$8 \mathrm{a}^{\prime} \mathrm{CH}_{3} \mathrm{COCBrFC}_{6} \mathrm{H}_{5}$ (97)	57856-09-4
$9 \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	103-79-7	9b $\mathrm{CH}_{3} \mathrm{COCBr}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (97)	63017-08-3
$10 \mathrm{CH}_{3} \mathrm{COCHClC}_{6} \mathrm{H}_{5}$	4773-35-7	10a $\mathrm{CH}_{3} \mathrm{COCBrClC}_{6} \mathrm{H}_{5}$ (97)	63017-09-4
$11 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$	96-22-0	$11 \mathrm{bCH} \mathrm{CH}_{2} \mathrm{COCBr}_{2} \mathrm{CH}_{3}$ (15)	63017-10-7

Table II. Reaction of Bromo Ketones with Mercuric Fluoride

Reactant	Product (yield, \%)
$\mathbf{1 a}$	$\mathbf{1 c} \mathrm{CH}_{3} \mathrm{COCFClCH}_{3}(32)+\mathrm{CH}_{3} \mathrm{COCOCH}_{3}$
$\mathbf{2 a} \mathbf{a}^{\prime}$	$\mathbf{2 \mathbf { b } ^ { \prime } \mathrm { CH } _ { 2 } \mathrm { ClCOCF } _ { 2 } \mathrm { CH } _ { 3 } (7 5)}$
$\mathbf{3 a}$	$\mathbf{3 c} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCFClCH}_{3}(65)+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCCl}=\mathrm{CH}_{2}$
	(18)
$\mathbf{4 \mathbf { a } ^ { \prime }}$ or 5b	$\mathbf{4 \mathbf { b } ^ { \prime } \mathrm { C } _ { 6 } \mathrm { H } _ { 5 } \mathrm { COCF } _ { 2 } \mathrm { CH } _ { 3 } (8 9)}$
$\mathbf{6 \mathbf { a } ^ { \prime } \text { or } \mathbf { 7 b }} \mathrm{CH}_{3} \mathrm{COCOCCH}_{3}$	
$\mathbf{1 1 \mathbf { b }}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCOCH}_{2} \mathrm{CH}_{3}$

a 65% yield (by NMR) of the fluoro chloro ketone (3c) together with ca. 18\% of 2-chloro-1-phenyl-2-propen-1-one as a result of dehydrohalogenation. A small quantity of a very volatile fraction, which was presumed to be other elimination products, was also obtained. Contrary to what was expected, no biacetyl resulted from this reaction. Similarly, the bromo fluoro ketone $\mathbf{4 a}$ and the dibromo ketone $\mathbf{5 b}$ gave a good yield of the gem-difluoro ketone $\mathbf{4 b}$. When mercuric fluoride was replaced by a mixture of mercurous fluoride and iodine (often used as a substitute for HgF_{2}) the reactions failed. The use of other usual metallic fluorides was also unsuccessful, as was the reaction with silver fluoride, even though this compound has been used to exchange fluorine for bromine in $1,1,1$-tri-bromo-3,3,3-trifluoroacetone ${ }^{8}$ and in ethyl dibromochloroacetate. ${ }^{9}$

Contrary to 3a, 1-bromo-1-chloro-1-phenyl-2-propanone (10a) resisted all attempts toward fluorination with various metallic fluorides. Although the other ketones reacted smoothly with mercuric fluoride, this was highly reactive such that at room temperature a vigorous exothermic reaction ensued and a dark solid mass resulted. Mercuric fluoride added to la at $0-5{ }^{\circ} \mathrm{C}$ appeared to give an exchange reaction, since HgBr_{2} seemed to be formed. On warming to room temperature, however, the reaction mixture darkened and no identifiable product could be isolated. When carried out at $-5^{\circ} \mathrm{C}$ and using chloroform or dichloromethane as diluent, the reactions took place in the same manner. 9b behaved similarly toward fluorination.

Partial formation of biacetyl during the synthesis of $1 \mathbf{c}$ made us curious to investigate the possibility of the preparation of 3,3 -difluoro- 2 -butanone by the same method. Thus fluorination of 3,3 -dibromo-2-butanone (7 b) and also $6 \mathbf{a}^{1}$ was attempted with mercuric fluoride under all the feasible conditions, which resulted in their total conversion to biactyl, giving no fluoro ketone. One could suggest that the formation of biacetyl in these reactions may be explained in terms of the immediate hydrolysis ${ }^{10-11}$ of the possibly formed gem-difluoro ketone, or perhaps a free radical mechanism is taking place as shown in Scheme IB. However, the following experiments rule out the possibility of hydrolysis and suggest that the free radical mechanism is speculative: (a) The same results were obtained when reactions were performed under argon or airfree nitrogen. (b) In reactions ii and iii (Scheme I), 1-phenyl-

Scheme I
A. Hydrolysis

B. Radical
decomposition

$+\mathrm{R}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{R}_{2}$
i, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Me}$
iii, $\mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Me}$
ii, $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{Ph}$
iv, $R_{1}=E t, R_{2}=M e$
propane-1,2-dione was not obtained (Scheme IA). Neither could any fluorohydrocarbon be trapped (Scheme IB). (c) In reaction IV (Scheme I), 3,4-hexanedione was obtained, and not the hydrolytic product 2,3-pentanedione.

Since the gem-difluoropropiophenone could be conveniently prepared while the other two ketones could not, it was inferred that the presence of an electron-withdrawing phenyl group attached to the carbonyl may be a factor in stabilizing the formation of the gem-difluoro derivative. This statement is, to some extent, justified, since fluorination of 1 -chloro-3-bromo-3-fluoro-2-butanone ($2 \mathrm{a}^{\prime}$) with mercuric fluoride under exactly the same conditions as used for $6 a^{\prime}$ resulted in a 90% yield (by NMR) of 1-chloro-3,3-difluoro-2-butanone $\mathbf{2 b}$ '. We conclude that, although bromo ketones generally give a smooth reaction with HgF_{2} with little or no decomposition, limitations are imposed on its use in some cases, due to the formation of diketones.
Fluorination with KF or $\mathbf{K H F}_{2}$. 1-Fluoro-1-phenyl-2propanone (8) was synthesized from the chloro ketone by the use of anhydrous acid potassium fluoride (KHF_{2}) at 230-240 ${ }^{\circ} \mathrm{C}$. It could not be prepared by the use of potassium fluoride, although this has been used for the preparation of 3 -fluoro-2-butanone. ${ }^{12}$
Because of the difficulties encountered in the preparation of some of the gem-difluoro ketones using mervuric fluoride, attempts were made at their synthesis from the gem-dichloro precursors using KF or KHF_{2}. Although the α-monofluoro derivatives of such ketones could be prepared by these metallic fluorides, the dichloro ones resisted fluorination and were recovered unchanged. Similar results were obtained when using KF and crown ether ${ }^{13}$ with acetonitrile or diethylene glycol as solvent, even though this method has been used, conveniently, to exchange bromine for fluorine in bromocyclohexanone. ${ }^{13}$
Preparation of the Chloro Ketones. The gem-dichloropropiophenone used in this investigation was $p=e p a r e d ~ b y ~ t h e ~$ chlorination of propiophenone with sulfuryl chloride, at room temperature. A good yield of the gem-dichlorophenylacetone ${ }_{4}^{14}$ and 3,3-dichlorobutanone was also obtained by a modification of Wyman's method. ${ }^{15}$ Chlorination of 2-butanone by sulfuryl
chloride as reported by Wyman and Kaufman ${ }^{15}$ yielded mixtures of α-chloro, α, α^{\prime}-dichloro and α, α-dichloro ketone.

The ketone $2 a^{\prime}$ could not in any way be obtained by chlorination of the gem-bromofluorobutanone. It was prepared by taking advantage of the unexpected behavior of 3 -fluoro-2-butanone towards sulfuryl chloride to give 1 -chloro- 3 -flu-oro-2-butanone (2) almost quantitatively, leaving the active methylene hydrogen intact, and then brominating 2 with NBS.

Preparation of the Iodo Ketones. The iodo ketones have been studied infrequently due to their relative instability and because only few satisfactory syntheses for them are available.

For the preparation of the iodo ketones the potassium iodide interchange reaction ${ }^{16}$ was used. This method, although generally satisfactory, is subject to pronounced steric effects. Alternative iodination with N-iodosuccinimide ${ }^{17}$ gave unsatisfactory results. Iodination of the bromo ketones were generally carried out with potassium iodide in ethanol or, if hazardous, acetone as solvent. All the gem-haloiodo derivatives of the ketones under study were prepared. Most of the iodo ketones obtained were generally quite unstable and become viscous upon evaporation of the solvent or on standing. The order of their stability was observed to be generally iodo $>$ bromoiodo $>$ chloroiodo $>$ fluoroiodo and amongst the three ketones, butanone $>$ propiophenone $>$ phenylacetone. When kept in carbon tetrachloride the iodobutanones were stable.

Experimental Section

NMR Spectra were recorded on a Varian T-60 instrument in CCl_{4} solution with $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ as internal standard. Mass spectra were obtained using a Varian Mat CH5 instrument. Infrared spectra were recorded on a Pye-Unicam SP 1200 spectrometer. A Varian Aerograph gas-liquid chromatograph Model 920 equipped with thermal conductivity detectors was used for the analysis of liquids. An OV-101 on Chromosorb W60/80 mesh column was generally used. All melting and boiling points are uncorrected.
Yields are based on the mercuric fluoride whenever this metallic fluoride is used for fluorination.
Preparation of 3-Bromo-3-chloro-2-butanone (1a). 1 (10.65 $\mathrm{g}, 0.1 \mathrm{~mol})$ and NBS $(17.79 \mathrm{~g}, 0.1 \mathrm{~mol})$ were refluxed in $\mathrm{CCl}_{4}(150 \mathrm{~mL})$ under illumination from a $300-\mathrm{W}$ tungsten lamp. After 1 h an orange coloration appeared in the mixture and, after an additional 5 h , the color disappeared and the reaction was complete. Filtration followed by evaporation of the solvent yielded $1 \mathrm{a}(17.63 \mathrm{~g}, 0.095 \mathrm{~mol}, 95 \%)$: bp $136^{\circ} \mathrm{C}(667 \mathrm{~mm}) ; n_{\mathrm{D}}{ }^{26} 1.4850$; IR $1740 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.20$, 2.40. Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{BrClO}: \mathrm{C}, 25.91 ; \mathrm{H}, 3.23 ; \mathrm{Br}, 43.10$. Found: C, 25.82, H, 3.01; Br, 42.93 .
The semicarbazone, obtained from an aqueous solution, had mp $292-294^{\circ} \mathrm{C}$. (Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{BrClN}_{3} \mathrm{O}: \mathrm{C}, 26.29 ; \mathrm{H}, 3.94$. Found: $\mathrm{C}, 26.21 ; \mathrm{H}, 3.85$.) Mixtures of the diastereoisomeric (-)-menthydrazone derivative was prepared by reaction with (-)-menthyl N. aminocarbamate, "(-)-menthydrazide ${ }^{18 \text { " in dry benzene solution. }}$ It crystallized from the same solvent, mp $142.5{ }^{\circ} \mathrm{C}$. (Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{BrClN}_{2} \mathrm{O}_{2}$: C, 47.22; H, 6.81. Found: C, $47.20 ; \mathrm{H}, 6.79$.)
By the same general method, 2 -bromo-2-chloro-1-phenyl-1-propanone (3 a) was obtained from $3^{19,20}(16.85 \mathrm{~g}, 0.1 \mathrm{~mol})$ and NBS (17.79 $\mathrm{g}, 0.1 \mathrm{~mol}$) in 5 h . Product ($23.55 \mathrm{~g}, 0.095 \mathrm{~mol}, 95 \%$): $n_{\mathrm{D}}{ }^{26} 1.5622$; IR $1700 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.25(\mathrm{~s}), 7.55(\mathrm{~m})$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}: \mathrm{C}, 43.68 ; \mathrm{H}, 3.23 ; \mathrm{Br}, 32.20$. Found: C, $43.50 \mathrm{H}, 3.05 ; \mathrm{Br}$, 32.11 .

The diastereoisomeric (-)-menthydrazone derivative, prepared and crystallized as for $1 \mathrm{a}, \mathrm{had} \mathrm{mp} 121-122{ }^{\circ} \mathrm{C}$. (Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrClN}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 54.15 ; \mathrm{H}, 6.31$. Found: C, $54.10 ; \mathrm{H}, 6.45$.)
1-Bromo-1-chloro-1-phenyl-2-propanone (10a) was obtained from $10(16.85 \mathrm{~g}, 0.1 \mathrm{~mol})$ and NBS ($17.79 \mathrm{~g}, 0.1 \mathrm{~mol}$) in 8 h . Product (24.04 $\mathrm{g}, 0.097 \mathrm{~mol}, 97 \%): n_{\mathrm{D}}{ }^{26} 1.5585$; IR $1735 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.18(\mathrm{~s})$, 7.35 (m). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrClO}: \mathrm{C}, 43.68 ; \mathrm{H}, 3.22 ; \mathrm{Br}, 32.29$. Found: C, $43.50 ; \mathrm{H}, 3.39 ; \mathrm{Br}, 32.35$. The diastereoisomeric (-)-menthydrazone, prepared and crystallized as in 1 a , had $\mathrm{mp} 120-122^{\circ} \mathrm{C}$. (Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrClN}_{2} \mathrm{O}_{2}: \mathrm{C}, 54.15 ; \mathrm{H}, 6.31$. Found $\mathrm{C}, 54.23$; H, 6.50.)
3-Bromo-3-fluoro-2-butanone ($6 \mathrm{a}^{\prime}$) was obtained from $6(9.00 \mathrm{~g}$, $0.1 \mathrm{~mol})$ and NBS ($17.79 \mathrm{~g}, 0.1 \mathrm{~mol}$) in $3-5 \mathrm{~h}$. Product ($16.2 \mathrm{~g}, 0.09 \mathrm{~mol}$,
$95 \%)$: bp $129-130^{\circ} \mathrm{C}(667 \mathrm{~mm})$; $n^{26} 1.4658$; IR $1740 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.28\left(\mathrm{~d}, J_{\mathrm{FCH} 3}=4\right), 2.00\left(\mathrm{~d}, J_{\mathrm{FCH}_{3}}=20\right)$. Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{BrFO} ; \mathrm{C}, 28.43 ; \mathrm{H}, 3.55$. Found: C, $28.40 ; \mathrm{H}, 3.60$. The semicarbazone, obtainec from an aqueous solution and crystallized from water-ethanol, had mp $220-222^{\circ} \mathrm{C}$. Anal. Caled for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{BrFN}_{3} \mathrm{O}$: C, 28.33 ; H, 4.24. Found: C, $28.21 ; \mathrm{H}, 4.00$. The diastereoisomeric $(-)$-menthydrazone derivative, prepared and crystallized in dry benzene, had mp $140-142{ }^{\circ} \mathrm{C} \mathrm{dec}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{BrFN}_{2} \mathrm{O}_{2}$: C, 49.35; H, 7.12. Found: C, 49.41; H, 7.10.
1-Bromo-1-fluoro-1-phenyl-2-propanone ($8 \mathbf{a}^{\prime}$) was obtained from $8(15.20 \mathrm{~g}, 0.1 \mathrm{~mol})$ and NBS ($17.79 \mathrm{~g}, 0.1 \mathrm{~mol}$) in 1 h . Product (22.5 $\mathrm{g}, 0.097 \mathrm{~mol}, 97 \%$): IR (in CCl 4) $1742 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.44$ (d, $\left.J_{\mathrm{FCH}_{3}}=4\right), 7.48$ (m). Analytical sample was prepared by GLC at 85 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrFO}: \mathrm{C}, 46.79 ; \mathrm{H}, 3.46$. Found: $\mathrm{C}, 46.70, \mathrm{H}$, 3.21 .

2-Bromo-2-fluoro-1-phenyl-1-propanone ($4 \mathbf{a}^{\prime}$) was obtained from $4(15.20 \mathrm{~g}, 0.1 \mathrm{~mol})$ [prepared as in $8, \mathrm{bp} 35-39^{\circ} \mathrm{C}(0.5 \mathrm{~mm})\left[\mathrm{lit} .{ }^{21} 33\right.$ $\left.\left.{ }^{\circ} \mathrm{C}(0.4 \mathrm{~mm})\right]\right]$ and NBS ($17.79 \mathrm{~g}, 0.1 \mathrm{~mol}$) in 4 h . Product ($22 \mathrm{~g}, 0.09$ $\mathrm{mol}, 95 \%$): IR $1698 \mathrm{~cm}^{-1}\left(\mathrm{C}=0\right.$); NMR $\delta 2.30$ (d, $J_{\mathrm{FCH}_{3}}=20$), 7.65 (m). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrFO}: \mathrm{C}, 46.79 ; \mathrm{H}, 3.46$. Found: $\mathrm{C}, 46.69 ; \mathrm{H}$, 3.51 .

1,1-Dibromo-1-phenyl-2-propanone (9b) was obtained from phenylacetone ($13.40 \mathrm{~g}, 0.1 \mathrm{~mol}$) and NBS ($35.58 \mathrm{~g}, 0.2 \mathrm{~mol}$) in 6-10 h. Product ($28.52 \mathrm{~g}, 97 \%$): IR $1730 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.36$ (s), 7.46 (m). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}: \mathrm{C}, 37.03 ; \mathrm{H}, 2.74$. Found: $\mathrm{C}, 37.19 ; \mathrm{H}$, 2.70 .

2,2-Dibromo-3-pentanone (11b) was obtained from $11(8.60 \mathrm{~g}, 0.1$ $\mathrm{mol})$ and NBS ($35.58 \mathrm{~g}, 0.2 \mathrm{~mol}$) in 3 h . Product ($3.65 \mathrm{~g}, 0.015 \mathrm{~mol}$, 15\%): NMR $\delta 0.95$ (t), 1.65 (s), 2.24 (q). Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}: \mathrm{C}$, 24.62 ; H, 3.28; Br, 65.53. Found: C, $24.51 ; \mathrm{H}, 3.02$, Br, 65.41. Other products: 2,4-dibromo-3-pentanone (48%) and 2,2,4-tribromo-3pentanone (20%).
Preparation of 1-Fluoro-1-phenyl-2-propanone (8). 10 (33.70 $\mathrm{g}, 0.19 \mathrm{~mol}$) was added dropwise to a vigorously stirred mixture of finely ground and thoroughly dried potassium hydrogen fluoride $(78.08 \mathrm{~g}, 1 \mathrm{~mol})$ and diethylene glycol (120 g) at $230-240^{\circ} \mathrm{C}$. The fluorinated materia was allowed to distill through a downward condenser by applying a slight vacuum. The temperature at the still head was maintained at $80-110^{\circ} \mathrm{C}$ by controlling the rate of addition of the chloro ketone. The contents of the reaction flask were then extracted thoroughly with CCl_{4} and the extract was added to the distillate. Fractionation through an efficient column gave $8(12.50 \mathrm{~g}, 0.082 \mathrm{~mol}$, 43%): IR $1725 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.18$ (d, $J_{\mathrm{FCH}_{3}}=4$), $5.55\left(\mathrm{~d}, J_{\mathrm{HF}}\right.$ $=50), 7.25(\mathrm{~m})$. The spectral data agreed well with those reported by Newman and Angier, ${ }^{22}$ who obtained the compound as a side product in the preparation of α-nitro epoxides.
Preparation of 3-Chloro-3-fluoro-2-butanone (1c). (i) A carefully dried apparatus initially protected with CaCl_{2} tube was used. Finely ground mercuric fluoride ($15 \mathrm{~g}, 0.06 \mathrm{~mol}$) was added all at once to carefully purified $1 \mathrm{a}(25 \mathrm{~g}, 0.13 \mathrm{~mol})$ in a $50-\mathrm{mL}$ round-bottom flask equipped with a condenser and receiver immersed in dry ice-methanol. The vigorously stirred mixture was quickly raised to, and maintained at, $140^{\circ} \mathrm{C}$; the visible reaction ensued after a few minutes. The temperature was kept between 140 and $160^{\circ} \mathrm{C}$ until the reaction was complete as shown by a color change of mercuric fluoride from red-orange to dark brown. The contents of the flask were then distilled by applying a slight vacuum and the products distilling over between 70 and $100^{\circ} \mathrm{C}$ were collected. Fractionation of the liquid so obtained gave 5.55 g of a mixture, bp $92-96^{\circ} \mathrm{C}$, containing lc and biacetyl in the ratio of 54:45 (by NMR). Isolation of pure 1c from this mixture was effected by GLC Autoprep. at $50^{\circ} \mathrm{C}$. It had: bp $102-103^{\circ} \mathrm{C}$; IR $1745 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$; NMR $\delta 1.62\left(\mathrm{~d}, J_{\mathrm{FCH}_{3}}=20\right), 2.02\left(\mathrm{~d}, J_{\mathrm{FCH}_{3}}=4\right)$; mass spectrum $m / e 126,124\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{ClFO}$: C, 38.59; H, 4.82. Fcund: C, 38.40 ; H, 4.93. The diasteoisomeric (-)menthydrazone derivative, prepared and crystallized in CCl_{4} solution, had mp $200{ }^{\circ} \mathrm{C}$. (Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{ClFN}_{2} \mathrm{O}_{2}: \mathrm{C}, 56.19 ; \mathrm{H}, 8.11$. Found: C, 56.18; H, 8.01.)
(ii) $6(9.00 \mathrm{~g}, 0.1 \mathrm{~mol}), \mathrm{NCS}(13.35 \mathrm{~g}, 0.1 \mathrm{~mol})$, and 3 mg of benzoyl peroxide were reacted in benzene (under UV irradiation) and worked up as in the preparation of la to give $1 \mathbf{c}(0.32 \mathrm{~g}, 0.025 \mathrm{~mol}, 2.5 \%)$.
Preparation of 2-Chloro-2-fluoro-1-phenyl-1-propanone (3c). $3 \mathrm{a}(24.75 \mathrm{~g}, 0.1 \mathrm{mcl})$ and $\mathrm{HgF}_{2}(7.5 \mathrm{~g}, 0.03 \mathrm{~mol})$ were reacted as in the preparation of 1 c . Reaction ensued at $85^{\circ} \mathrm{C}$ and was raised up to 125 ${ }^{\circ} \mathrm{C}$ until the reaction was complete. Repeated fractionation of the product gave nearly pure $3 \mathbf{c}(3.64 \mathrm{~g}, 0.019 \mathrm{~mol}, 65 \%)$. Final purification was effected with GLC at $70^{\circ} \mathrm{C}$: IR $1705(\mathrm{C}=0)$; NMR $\delta 2.00(\mathrm{~d}$, $\left.J_{\mathrm{FCH}_{3}}=20\right), 7.60(\mathrm{~m})$; mass spectrum $m / e ~ 188,186\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClFO}: \mathrm{C}, 67.95, \mathrm{H}, 4.28$. Found: C, 57.79, H, 4.12.
Also obtained was 2-chloro-1-phenyl-2-propen-1-one ($0.90 \mathrm{~g}, 18 \%$): IR $1580(\mathrm{C}=\mathrm{C}), 1690 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR showing the characteristic

AB system with $\delta 5.98,5.83\left(\mathrm{~d}, J_{\mathrm{AB}}=2 \mathrm{~Hz}\right), 7.60(\mathrm{~m}, \mathrm{Ph})$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClO}$: C, 64.90; H, 4.20. Found: C, $65.20, \mathrm{H}, 4.38$.

A volatile fraction (1 g) boiling at $55-60^{\circ} \mathrm{C}$, which remained unidentified, was also obtained.
Reaction of 1-Bromo-1-chloro-1-phenyl-2-propanone (10a) with Mercuric Fluoride. A. Mercuric fluoride ($7.5 \mathrm{~g}, 0.03 \mathrm{~mol}$) was added all at once at $0-5^{\circ} \mathrm{C}$ to $10 \mathrm{a}(24.75 \mathrm{~g}, 0.1 \mathrm{~mol})$. A vigcrous reaction started immediately and the contents of the reaction flask became solid. No identifiable product could be isolated; the NMR of the product on warming to room temperature consisted of numerous peaks.
B. Mercuric fluoride was gradually added to 10 a dissolved in pure dry CHCl_{3} through a section of $1.25-\mathrm{in}$. rubber tubing which was closed just above the neck by a screw clamp. The contents of the reaction flask were maintained between 5 and $10^{\circ} \mathrm{C}$ under vigorous stirring until the addition of HgF_{2} was complete. The reaction mixture was then filtered and the residue washed with chloroform, worked up, and dried over calcium chloride. Upon removal of chloroform the residue was found to contain ca. 50% of the unchanged starting material together with other unidentified mixtures. Repetition of this experiment in the presence of dry pyridine in order to prevent possible polymerization and side reactions gave similar results to above.

Reaction of 3,3-Dibromo-2-butanone (7b) ${ }^{\mathbf{2 3}}$ with Mercuric Fluoride. Mercuric fluoride $(15.00 \mathrm{~g}, 0.06 \mathrm{~mol})$ was added to $7 \mathbf{b}(22.98$ $\mathrm{g}, 0.1 \mathrm{~mol}$) and the temperature was quickly raised to $8 \mathrm{C}^{\circ} \mathrm{C}$ where reaction ensued. The temperature was kept at $115-120^{\circ} \mathrm{C}$ until the visible reaction subsided. The contents of the flask were allowed to distill over. The first fraction, bp $70-75^{\circ} \mathrm{C}(4.90 \mathrm{~g}, 95 \%)$, was found to be biacetyl (by NMR, GLC, and preparation of its semicarbazone derivative); the second fraction, bp $90-130{ }^{\circ} \mathrm{C}$, was unchanged 7b (ca. 2.5 g). Various modifications of this reaction under argon or air-free nitrogen gave only biacetyl. Similarly, the reaction 2,2-cibromo-3pentanone with HgF_{2} gave 3,4-hexanedione as the only product (90\%).

Preparation of 2,2-Difluoro-1-phenyl-1-propanone (4b'). A. Mercuric fluoride $(30.0 \mathrm{~g}, 0.12 \mathrm{~mol})$ was added to $5 \mathbf{b}^{24}(58.37 \mathrm{~g}, 0.2 \mathrm{~mol})$ at $50^{\circ} \mathrm{C}$. The reaction mixture was then stirred vigorously and the temperature raised to $120-125^{\circ} \mathrm{C}$, where the reaction sta-ted. Upon subsidence of the visible reaction ($2-3 \mathrm{~min}$), stirring was discontinued and 10 mL of pure CCl_{4} was quickly added to the reaction mixture. This mixture was then filtered and the filtrate was fractionated to give $4 \mathbf{a}(1.4 \mathrm{~g}, 5 \%)$ and $4 \mathbf{b}^{\prime}(18.4 \mathrm{~g} .0 .107 \mathrm{~mol}, 90 \%)$: IR $1705 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$ (lit. 5.85^{25} prepared from the corresponding alkyne and OF_{2}); NMR $\delta 1.76\left(\mathrm{t}, J_{\mathrm{FCH}_{3}}=19\right), 7.68(\mathrm{~m})$.
B. Mercuric fluoride $(15.0 \mathrm{~g})$ and $4 \mathrm{a}(23.0 \mathrm{~g})$ reacted and worked up as above gave $4 \mathrm{~b}(9.5 \mathrm{~g}, 95 \%$) and unchanged $4 \mathrm{a}(5.2 \mathrm{~g})$.

Reaction of 9b with Mercuric Fluoride. 9b (15 g) was dissolved in 20 mL of CHCl_{3} and mercuric fluoride (6 g) was added to it gradually at $5^{\circ} \mathrm{C}$. The reaction flask, which becomes warm, was kept between 2 and $7{ }^{\circ} \mathrm{C}$ until the addition of HgF_{2} was complete. Analysis of the reaction mixture by NMR did not show the presence of 1,1-difluoro-1-phenyl-2-propanone, ${ }^{26}$ although some characteristic triplet peaks indicative of fluorine coupling were present in the NMR spectrum of the mixture.

Preparation of 1-Chloro-3-fluoro-2-butanone (2). 6 ($9.0 \mathrm{~g}, 0.1$ mol) was placed in a $50-\mathrm{mL}$ round-bottom flask and sulfu:yl chloride $(13.49 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added to it dropwise at room temperature during $2-3 \mathrm{~h}$ while stirring vigorously. The reaction mixture was kept stirring overnight at room temperature. Fractionation of the dark mixture gave unchanged $6(0.5 \mathrm{~g})$ and almost pure $2(11.19 \mathrm{~g}, 90 \%)$ Analytical sample was obtained by GLC at $65^{\circ} \mathrm{C}: n_{\mathrm{D}}{ }^{26} 1.4280$; IR $1753 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ; \mathrm{NMR} \delta 1.52\left(\mathrm{dd}, J_{\mathrm{FCH}_{3}}=22, J_{\mathrm{HCH}_{3}}=6\right), 5.08\left(\mathrm{~d}, J_{\mathrm{HF}}=50\right)$. 4.40 (d, $J_{\mathrm{FCH}_{2}}=4$). Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{ClFO}$: C, $38.59 ; \mathrm{H}, 4.82$. Found: C, 38.82; H, 4.91 .

Preparation of 3-Chloro-1-fluoro-1-phenyl-2-propanone. 8 $(15.20 \mathrm{~g}, 0.1 \mathrm{~mol})$ reacted with sulfuryl chloride $(13.49 \mathrm{~g}, 0.1 \mathrm{~mol})$ as above at $25{ }^{\circ} \mathrm{C}$ during 5 h to give the title compound ($15.2 \mathrm{~g}, 85 \%$) based on NMR. Analytical sample was obtained by GLC at $65^{\circ} \mathrm{C}$: IR $1746 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 4.10\left(\mathrm{~d}, J_{\mathrm{FCH}_{2}}=4\right), 5.60\left(\mathrm{~d}, J_{\mathrm{HF}}=49\right), 7.10$ (m). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{FClO}$: C. 57.95 ; H, 4.28. Found: C, 57.75 ; H, 4.52.

Preparation of 1-Chloro-3-bromo-3-fluoro-2-butanone ($2 \mathrm{a}^{\prime}$). $2(12.44 \mathrm{~g}, 0.1 \mathrm{~mol})$ and NBS ($17.79 \mathrm{~g}, 0.1 \mathrm{~mol}$) were refluxed in CCl_{4} $(150 \mathrm{~mL})$ as in la for 6 h and worked up to give $2 \mathrm{a}(20 \mathrm{~g}, 98 \%)$: IR 1760 $\mathrm{cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.20\left(\mathrm{~d}, J_{\mathrm{FCH}_{3}}=22\right), 7.70\left(\mathrm{~d}, J_{\mathrm{FCH}_{2}}=3\right)$. Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{BRCIFO}$: $\mathrm{C}, 23.62 ; \mathrm{H}, 2.45$. Found: $\mathrm{C}, 23.42 ; \mathrm{H}, 2.51$.

3-Chloro-1-bromo-1-fluoro-1-phenyl-2-propanone. 3-Chloro-1-fluoro-1-phenyl-2-propanone (18.65 g) and NBS taken in molar ratios reacted as above for $5-8 \mathrm{~h}$ to give the title compound in 96% yield: IR $1755 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\delta 4.30\left(\mathrm{~d}, J_{\mathrm{FCH}_{2}}=4\right), 7.22(\mathrm{~m})$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrClFO}$: C, 40.72; H, 2.63. Found: C, 40.41 ; H, 2.80.

Preparation of 1,3-Difluoro-2-butanone. $2(12.44 \mathrm{~g}, 0.1 \mathrm{~mol})$ was reacted with potassium fluoride $(8.7 \mathrm{~g})$ in diethylene glycol $(10 \mathrm{~mL})$ at $180-200^{\circ} \mathrm{C}$ in the usual manner. When product was distilled under reduced pressure while 2 was being added, the liquid mixture so obtained was found to contain ca. 3 g of the title compound by NMR. Analytical sample was obtained by GLC at $45^{\circ} \mathrm{C}$: IR $1755 \mathrm{~cm}^{-1}$ $(\mathrm{C}=0)$; NMR $1.50\left(\mathrm{dd}, J_{\mathrm{HCH}_{3}}=6, J_{\mathrm{FCH}_{3}}=22\right), 3.95\left(\mathrm{dd}, J_{\mathrm{FCH}_{2}}=\right.$ 4,44), 5.00 (ddq, $J_{\mathrm{HF}}=50$). Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}: \mathrm{C}, 44.47 ; \mathrm{H}, 5.55$. Found: C, $44.31 ; \mathrm{H}, 5.20$. The major portion of the mixture consisted of a compound which could possibly be an olefin (its NMR having a doublet of doublets at $\delta 4.6$ and $5.4(J=46$ and 4 Hz$)$. When, however, the product is left in the ethylene glycol/KF mixture and is distilled at the end of the reaction, the sole product is the presumed olefin, as is the case where KHF_{2} is used for this fluorination.

Preparation of 1-Chloro-3,3-difluoro-2-butanone ($2 b^{\prime}$). 2a (18 $\mathrm{g}, 0.08 \mathrm{~mol}$) and mercuric fluoride $(5.7 \mathrm{~g}, 0.024 \mathrm{~mol})$ were reacted as in 1c. Threshhold temperature for this fluorination was at 145-150 ${ }^{\circ} \mathrm{C}$. The product distilling over from the downward condenser was collected in the range $70-80^{\circ} \mathrm{C}$ and was subjected to repeated fractionation to give $\mathbf{2 b}^{\prime}(2.68 \mathrm{~g}, 75 \%)$: IR $1765 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\delta 1.68$ ($\mathrm{t}, J_{\mathrm{FCH}_{3}}=19$), $4.40\left(\mathrm{t}, J_{\mathrm{FCH}_{2}}=1\right.$). Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{ClF}_{2} \mathrm{O}: \mathrm{C}$, 33.72 ; H, 3.50 Found: C, 33.62 ; H, 3.71 .

Preparation of 2,2-Dichloro-1-phenyl-1-propanone. To propiophenone (13.41 g), sulfuryl chloride (27 g) was added during 20 h at room temperature while stirring vigorously. Analysis of the mixture by NMR indicated the presence of 50% title compound together with ca. 40% of the monochloro ketone. This is a much more convenient method of preparation than that reported in the literature. ${ }^{27}$ The gem-dichloro analogues of phenylacetone and 2-butanone were prepared similar in 80% yield, respectively (reaction times $25-30 \mathrm{~h}$).

Preparation of 3-Iodo-2-butanone. A mixture of 3-bromo-2butanone ($13.28 \mathrm{~g}, 0.08 \mathrm{~mol}$) and KI ($16.60 \mathrm{~g}, 0.1 \mathrm{~mol}$) in 20 mL of absolute alcohol was refluxed for 2 h . The reaction mixture was then cooled, dried with magnesium sulfate, and extracted with ether. Fractionation of the evaporated extract gave the title compound ($15.12 \mathrm{~g}, 95 \%$): bp $148-150^{\circ} \mathrm{C} \operatorname{dec}(667 \mathrm{~mm}) ; n_{\mathrm{D}}{ }^{26} 1.4288$; IR $1730 \mathrm{~cm}^{-1}$ (C=0); NMR $\delta 2.40(\mathrm{~s}), 1.80\left(\mathrm{~d}, J_{\mathrm{HCH}_{3}}=6\right) .4 .80\left(\mathrm{q}, J_{\mathrm{HCH}_{3}}=6\right)$. Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{IO}: \mathrm{C}, 24.27$; $\mathrm{H}, 3.52$. Found: $\mathrm{C}, 24.58 ; \mathrm{H}, 3.15$. The pure sample should be kept in a dark bottle in vacuo. Under ordinary conditions it partially decomposes within a few hours and a waxy polymeric product results within a week. The diastereoisomeric $(-)$-menthydrazone derivative was prepared in dry benzene solution, $\mathrm{mp} 188-190^{\circ} \mathrm{C}$ dec. This derivative partially decomposes and turns brown when kept for a few days. The semicarbazone (from an aqueous solution) had $\mathrm{mp} 212-214^{\circ} \mathrm{C}$ dec.

Preparation of 3-Bromo-3-iodo-2-butanone. 3-Iodo-2-butanone $(19.79 \mathrm{~g}, 0.1 \mathrm{~mol})$ and $\mathrm{NBS}(17.79 \mathrm{~g}, 0.1 \mathrm{~mol})$ were refluxed in CCl_{4} $(170 \mathrm{~mL})$ as in la. The reaction was stopped after 5 h to give 10% (by NMR) of the title compound. It is worthy of mention that 3-bromobutanone under the same conditions gave 95% of the dibromobutanone after 5 h . When the reaction was continued for $30-35 \mathrm{~h}$ nearly 95% of the title compound was obtained in pure form. This ketone, although more resistant toward decomposition than the chloroiodobutane while evaporating the solvent, could not be isolated from the solvent. It had: IR $\left(\mathrm{CCl}_{4}\right) 1730 \mathrm{~cm}^{-1}$; NMR $\delta 2.42$ (s), 2.61 (s). Its (-)-menthydrazone prepared in CCl_{4} solution had mp $228-230^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{BrIN}_{2} \mathrm{O}_{2}$: C, 42.09; H, 6.07. Found: C, 41.63; H, 5.70.

Preparation of 3-Chloro-3-iodo-2-butanone. A mixture of la $(13.28 \mathrm{~g}, 0.08 \mathrm{~mol})$ and KI $(16.6 \mathrm{~g}, 0.1 \mathrm{~mol})$ were refluxed in 20 mL of absolute alcohol for 2 h to give a liquid mixture containing $9.3 \mathrm{~g}(50 \%)$ of the title compound. Separation of the mixture by column chromatography using silica gel and CCL_{4} gave the iodo ketone in pure form (fifth fraction): IR $1738 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.32$ (s), 2.60 (s). The iodo ketone was pure by NMR, but evaporation of its solvent (CCl_{4}) even under reduced pressure, in order to obtain an analytical sample, resulted in its partial decomposition. Its menthydrazone derivative prepared in CCl_{4} solution had $\mathrm{mp} 208-210^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{CIIN}_{2} \mathrm{O}_{2}$: C, 42.24; H, 6.09. Found: C, $42.41 ; \mathrm{H}, 6.30$. The semicarbazone derivative prepared in a split-phase $\mathrm{CCl}_{4}-\mathrm{H}_{2} \mathrm{O}$ medium had mp $288^{\circ} \mathrm{C}$ dec. Other fractions obtained had only a singlet in their NMR and were not investigated further.

Preparation of 3-Fluoro-3-iodo-2-butanone. A mixture of $\mathbf{6 a}$ $(13.52 \mathrm{~g}, 0.08 \mathrm{~mol})$ and $\mathrm{KI}(16.6 \mathrm{~g}, 0.1 \mathrm{~mol})$ in dry acetone $(25 \mathrm{~mL})$ was stirred at room temperature for 3 h . Half of the acetone was then evaporated under reduced pressure. The dark red mixture obtained was found to contain the title compound (60% by NMR): IR was obtained by evaporating nearly all the acetone under reduced pressure
and immediately adding CCl_{4} to the residue, IR $1735 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.38\left(\mathrm{~d}, J_{\mathrm{FCH}_{3}}=4\right), 2.18\left(\mathrm{~d}, J_{\mathrm{FCH}_{3}}=20\right)$. The compound decomposes after 2 days even when kept in CCl_{4}. The diastereoisomeric $(-)$-menthydrazone prepared in CCl_{4} solution had $\mathrm{mp} 162-164{ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{FIN}_{2} \mathrm{O}_{2}$: C, 49.08; $\mathrm{H}, 7.07$. Found: C, 50.69 ; $\mathrm{H}, 6.50$. Attempted preparation of the title compound in ethanol as solvent gave decomposed mixtures. No reaction occured without the use of any solvent.

Other iodo compounds which were prepared by the same general method but could not be isolated in pure form due to their instability were: 1-Iodo-1-phenyl-2-propanone (98%): IR $1715 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.35$ (s), 7.32 (m). 2-Iodo-1-phenyl-1-propanone (26.5%): IR $1693 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.10\left(\mathrm{~d}, J_{\mathrm{HCH}_{3}}=6\right), 6.10\left(\mathrm{q}, J_{\mathrm{HCH}_{3}}=6\right)$, $7.65(\mathrm{~m})$. 1-Chloro-1-iodo-1-phenyl-2-propanone (96%): IR $1733 \mathrm{~cm}^{-1}$ ($\mathrm{C}=0$); NMR $\delta 2.35$ (si, $7.38(\mathrm{~m}) .2$-Chloro-2-iodo-1-phenyl-1-propanone (13\%): IR $1695 \mathrm{~cm}^{-1}(\mathrm{C}=0$); NMR $\delta 2.40(\mathrm{~s}), 7.75(\mathrm{~m}) .1$ -Fluoro-1-iodo-1-phenyl-2-propanone (95%): IR $1723 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$); NMR $\delta 2.30\left(\mathrm{~d}, J_{\mathrm{FCH}_{3}}=4\right)$, $7.40(\mathrm{~m})$. 2-Fluoro-2-iodo-1-phenyl-1propanone (35\%): IR $1696 \mathrm{~cm}^{-1}\left(\mathrm{C}=0\right.$); NMR $\delta 2.54$ (d, $\mathrm{JFCH}_{3}=20$), 7.78 (m). 1-Bromo-1-iodo-1-phenyl-2-propanone (98%) [IR $1720 \mathrm{~cm}^{-1}$ ($\mathrm{C}=0$); NMR $\delta 2.30$ (s ,, $7.60(\mathrm{~m})]$ and 2-bromo-2-iodo-1-phenyl-1propanone (68%) [IR $1690 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 2.35$ (s$\left.), 7.60(\mathrm{~m})\right]$ were also prepared by bromination of the corresponding iodo-compounds with NBS in the general manner.

Registry No.-la semicarbazone, 63017-11-8; la (-)-menthydrazone epimer I, 63017-12-9; 1a (-)-menthydrazone epimer II, 63017-13-0; 1c, 63017-14-1; 1c (-)-menthydrazone epimer I, 63017-15-2; 2c (-)-menthydrazone epimer II, 63017-16-3; $2 \mathbf{b}^{\prime}$, 63017-17-4; 3a (-)-menthydrazone epimer I, 63017-18-5; 3a (-)menthydrazone epimer II, 63017-19-6; 3c, 63017-20-9; 1,3-difluoro-2-butanone, 63058-87-7; 4b', 703-17-3; 6a' semicarbazone, 63017-21-0; $6 \mathbf{a}^{\prime}(-)$ menthydrazone epimer I, 63017-22-1; 6a (-)-menthydrazone epimer II, 63017-23-2; 10a (-)-menthydrazone epimer I, 63017-24-3; 10a (-)-menthydrazone epimer II, 63017-25-4; 2 chloro-1-phenyl-2-propen-1-one, 19233-44-4; 3-chloro-1-fluoro-1-phenyl-2-propanone, 63017-26-5; 3-chlorc-1-bromo-1-fluoro-1-phenyl-2-propanone, 63017-27-6; 2,2-dichloro-1-phenyl-1-propanone, 57169-51-4; 3-iodo-2-butanone, 30719-18-7; 3 -bromo-2-butanone, 814-75-5; 3-iodo-2-butanone (-)-menthydrazone epimer I, 63017-28-7; 3-iodo2 -butanone (-)-menthydrazone epimer II, 63017-29-8; 3 -iodo-2butanone semicarbazone, 63017-30-1; 3-brono-3-iodo-2-butanone, 63017-31-2; 3-bromo-3-iodo-2-butanone (-)-menthydrazone epimer I, 63017-32-3; 3-bromo-3-iodo-2-butanone (-)-menthydrazone epimer II, 63067-33-4; 3-chloro-3-iodo-2-butanone, 63017-34-5; 3-chloro-

3-iodo-2-butanone (-)-menthydrazone epimer I, 63058-88-8; 3-chloro-3-iodo-2-butanone (-)-menthydrazone epimer II, 63017-35-6; 3 -chloro-3-iodo-2-butanone semicarbazone, 63107-36-7; 3-fluoro-3-iodo-2-butanone, 63017-37-8; 3-fluoro-3-iodo-2-butanone (-)menthydrazone epimer I, 63017-38-9; 3-fluoro-3-iodo-2-butanone (-)-menthydrazone epimer II, 63017-39-0; 1-iodo-1-phenyl-2-propanone, 63017-40-3; 2-iodo-1-phenyl-1-propanone, 6084-15-7; 1-chloro-1-iodo-1-phenyl-2-propanone, 63017-41-4; 2-chloro-2-iodo-1-phenyl-1-propanone, 63017-42-5; 1-fluoro-1-iodo-1-phenyl-2propanone, 63017-43-6; 2-fluoro-2-iodo-1-phenyl-1-propanone, 63017-44-7; 1-bromo-1-iodo-1-phenyl-2-propanone, 63017-45-8; 2 -bromo-2-iodo-1-phenyl-1-propanone, 63017-46-9.

References and Notes

(1) R. A. Cox and J. Warkentin, Can. J. Chem., 50, 3242 (1972)
(2) N. Sokolowsky, Ber., 9, 1687 (1376).
(3) J. F. Norris. J. Ind. Eng. Chem., 11, 828 (1919).
(4) F. Swarts, Bu'l. Cl. Sci., Acad. R. Belg., 13, 175 (1927).
(5) R. A. Darrall, F. Smith, M. Stacey, and J. C. Tatlow, J. Chem. Soc., 2329 (1951); A. Sykes, J. C. Tatlow, a d C. R. Thomas, ibid., 835 (1956).
(6) E. T. McBee, O. R. Pierce, H. W. Kolbourne, and E. R. Wilson, J. Am. Chem. Soc., 75, 3152 (1953); E. T McBee, O. R. Pierce, and D. D. Meyer, ibid., 77, 917 (1955).
(7) K. T. Dishart and R. Levine, J. Am. Chem. Soc., 78, 2268 (1956).
(8) R. A. Shepard and A. A. Loiselle. J. Org. Chem., 23, 2012 (1958).
(9) F. Swarts, Bull. Acad. R. Belg., 54, (1895); Bull. Soc. Chim. Fr., 15, 1134 (1896); Bull. CI. Sci., Acad. R. Belg., 35, 849 (1898).
(10) A. L. Henne a 1 T. Midgley Jr., J. Am. Chem. Soc. 58, 882 (1936).
(11) F. Swarts, Bull. Acad. R. Belg., 731 (1902); Chem. Zentralbl. I, 437 (1903).
(12) E. D. Bergman, J. Chem. Soc., 3457 (1961).
(13) C. L. Liotta and H. P. Harris, J. A.n. Chem. Soc., 96, 2250 (1974).
(14) R. Nouri-Bimorghj, Bull. Soc. Chim. Fr., 11, 3178 (1965).
(15) D. P. Wyman and P. R. Kaufman, J. Org. Chem., 29, 1956 (1964).
(16) R. Poggi, Gazz, Chem. Ital., 70, 328 (1940).
(17) C. Djerassi and C. T. Lenk, J. Am. Chem. Soc., 75, 3493 (1953).
(18) R. B. Woodward, T. P. Kohman, and G. C. Harris, J. Am. Chem. Soc.. 63, 120 (1941).
(19) E. D. Kosower. W. J. Cole, E. D. Cardy, and G. Meisters. J. Org. Chem., 28, 630 (1963).
(20) J. P. Schaefer and F. Sonnenberg, J. Org. Chem., 28, 1128 (1963).
(21) D. P. Shirkov, T. V. Smirnova, and A. N. Litvinova, Zh. Vses, Khim. Ova., 14, 234 (196S).
(22) H. Newman and R. B. Angier, Tetrahedron, 26, 825 (1970).
(23) C. Rapp and R. Kumar. Ark. Kemi, 23, 475 (1965).
(24) S. Wolfe, W. R. Pilgrim, T. F. Carrard, and P. Chamberlain, Can. J. Chem., 49, 1099 (1971).
(25) R. F. Merritt and T. K. Ruff, J. Org. Chem., 30, 328 (1965).
(26) J. Cantacuzere and J. Leroy, Terrahedron Lett., 37, 3277 (1970).
(27) M. Ballester and J. Riera, An. R. Soc Esp. Fis. Quim., 56, 897 (1960).

Steric Effects. 9. Substituents at Oxygen in Carbonyl Compounds

Marvin Charton
Department of Chemistry, Pratt Institute, Brooklyn, New York 11205

Received January 20, 1976

Twenty-nine sets of basic hydrolyses rate constants for alkyl acetates, formates, propionates, and benzoates; four sets of acid-catalyzed hydrolysis rate constants of alkyl acetates; one set of rate constants for the vapor-phase esterification of acetic acid with alcohols; and one set of rate constants for the reaction of 4-nitrojenzoyl chloride with alcohols were correlated by the modified Taft equation using $v_{\mathrm{X}}, v_{\mathrm{CH}_{2} \mathrm{X}}$, and v_{OX} constants. Best results were obtained with the vox constants which were defined in this work. Forty values ovox are given. The successful correlation with $\nu_{\mathrm{CH}_{2} \mathrm{X}}$ verified the validity of the equation $\nu_{\mathrm{Z}_{1} \mathrm{X}}=v_{\mathrm{Z}_{2} \mathrm{X}}+c$. The magnitude of ψ as a function of the structure of the substrate is described.

In many data sets of reaction rates of carbonyl compounds, the effect of substitution at an oxygen atom has been studied. In particular, rates of ester hydrolysis of I, where Z is a constant substituent and X is permitted to vary, have been examined. The first attempt at handling steric effects of the X group is due to Taft, ${ }^{1}$ who proposed E_{S} values for these

groups and pointed out ${ }^{2}$ that E_{SX} and E_{SZ} may differ significantly from each other when $\mathrm{X}=\mathrm{Z}$. In this work, effects of R in the set $\mathrm{RCH}_{2} \mathrm{OAc}$ were correlated with the Taft equation

$$
\begin{equation*}
\log \left(k / k^{0}\right)=\delta E_{\mathrm{S}} \tag{1}
\end{equation*}
$$

using E_{SZ} values. Results were good for a set of eight substituents, although two of the substituents had to be excluded from the set. It seemed to us of interest to extend our previous investigation ${ }^{3-10}$ to this topic. For this purpose, we examined

Table I. Data Used in the Correlations

1. $k r, \mathrm{ROBz}+\mathrm{OH}^{-}$in $56 \% \mathrm{w} / \mathrm{w} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}^{a}$ $\mathrm{Me}, 9.022$; Et, 2.891; $\mathrm{Pr}, 1.932 ; \mathrm{Bu}, 1.667 ; \mathrm{BuCH}_{2} \mathrm{CH}_{2}$, 1.274; $\mathrm{Bu}\left(\mathrm{CH}_{2}\right)_{4}, 1.263$; i - $\mathrm{Pr}, 0.4644 ; i-\mathrm{Bu}, 1.429 ; s$ - Bu , $0.2259 ; t-\mathrm{Bu}, 0.01327$; $i-\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 1.200 ; \mathrm{MePrCH}$, $0.1487 ; \mathrm{Me}_{2} \mathrm{EtC}, 0.005024 ;{ }^{\text {b }}$ c- $\mathrm{C}_{5} \mathrm{H}_{9}, 0.3972 ;$ c- $\mathrm{C}_{6} \mathrm{H}_{11}$, 0.2679
2. $k r, \mathrm{ROBz},+\mathrm{OH}^{-}$in $60 \% \mathrm{v} / \mathrm{v}$ dioxane $-\mathrm{H}_{2} \mathrm{O}$ at $35^{\circ} \mathrm{C}^{c}$ $\mathrm{Me}, 1.74 ; \mathrm{Et}, 0.553 ; \mathrm{Pr}, 0.379 ; i-\mathrm{Pr}, 0.0919 ; \mathrm{Bu}, 0.289 ; i-\mathrm{Bu}$, $0.240 ; s-\mathrm{Bu}, 0.0468 ; i-\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 0.234 ; \mathrm{Et}_{2} \mathrm{CH}, 0.0162$
3. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $40 \% \mathrm{v} / \mathrm{v}$ dioxane $-\mathrm{H}_{2} \mathrm{O}$ at $35^{\circ} \mathrm{C}^{d}$ Me, 19.3; Et, 8.90; Pr, 6.75; $i-\mathrm{Pr}, 1.84$; Bu, $5.38 ; i-\mathrm{Bu}, 3.95$; s - $\mathrm{Bu}, 0.954 ; t-\mathrm{Bu}, 0.103$;
4. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $62 \% \mathrm{w} / \mathrm{w} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}^{e}$ $\mathrm{Me}, 0.910$; Et, $0.405 ; i-\mathrm{Pr}, 0.0628 ; i$-Bu, 0.147
5. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $62 \% \mathrm{w} / \mathrm{w} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $10^{\circ} \mathrm{C}^{e}$ $\mathrm{Me}, 2.08$; $\mathrm{Et}, 0.908 ; i$ - $\mathrm{Pr}, 0.1395 ; i-\mathrm{Bu}, 0.314$
6. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $62 \% \mathrm{w} / \mathrm{w} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}^{e}$ $\mathrm{Me}, 3.96$; Et, $1.75 ; i-\mathrm{Pr}, 0.289 ; i-\mathrm{Bu}, 0.676$
7. $10^{4} \mathrm{kr}, \mathrm{ROAc}+\mathrm{H}_{3} \mathrm{O}^{+}$in $62 \% \mathrm{w} / \mathrm{w} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $30.1^{\circ} \mathrm{C}^{e}$ $\mathrm{Me}, 52.0$; $\mathrm{Et}, 42.6 ; i-\mathrm{Pr}, 20.0 ; i-\mathrm{Bu}, 30.9 ; t-\mathrm{Bu}, 8.00$
8. $10^{4} \mathrm{kr}, \mathrm{ROAc}+\mathrm{H}_{3} \mathrm{O}^{+}$in $62 \% \mathrm{w} / \mathrm{w} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}^{e}$ $\mathrm{Me}, 120.0$; $\mathrm{Et}, 98.5$; $i-\mathrm{Pr}, 47.1$; $i-\mathrm{Bu}, 71.6$; t-Bu, 27.0
9. $10^{2} \mathrm{kr}, \mathrm{ROAc}+\mathrm{OH}^{-}$in $70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C} f$ $\mathrm{Me}, 8.47$; Et, 3.56; $\mathrm{Pr}, 2.02$; $i-\mathrm{Pr}, 0.530 ; i-\mathrm{Bu}, 1.41$: $\mathrm{Bu}, 1.74$; s-Bu, 0.231
10. $10^{2} \mathrm{kr}, \mathrm{ROAc}+\mathrm{OH}^{-}$in $70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $24.7^{\circ} \mathrm{C} f$ $\mathrm{Me}, 10.8$; Et, 4.66; Pr, 2.70; $i-\mathrm{Pr}, 0.706 ; i-\mathrm{Bu}, 1.82 ; \mathrm{Bu}, 2.30$; $s-\mathrm{Bu}, 0.327 ; t-\mathrm{Bu}, 0.0265 ; \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}, 0.456$
11. $10^{2} \mathrm{kr}, \mathrm{ROAc}+\mathrm{OH}^{-}$in $70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $35^{\circ} \mathrm{C} /$ Et, 8.22; $\mathrm{Pr}, 5.07 ; i-\mathrm{Pr}, 1.40 ; i-\mathrm{Bu}, 3.55 ; \mathrm{Bu}, 4.39 ; s-\mathrm{Bu}$, $0.682 ; t$-Bu, $0.0593 ; \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}, 0.884$
12. $10^{2} \mathrm{kr}, \mathrm{ROAc}+\mathrm{OH}^{-}$in $70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $44.7^{\circ} \mathrm{C}^{f}$ Et, 13.5; Pr, 8.80; $i-\mathrm{Pr}, 2.53 ; i-\mathrm{Bu}, 6.28 ; \mathrm{Bu}, 7.66 ; s-\mathrm{Bu}, 1.27$; t-Bu, 0.112; c- $\mathrm{C}_{6} \mathrm{H}_{11}, 1.78$
13. $10^{2} \mathrm{kr}, \mathrm{RO}_{2} \mathrm{CEt}+\mathrm{OH}^{-}$in $70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}^{f}$ $\mathrm{Me}, 4.93$; $\mathrm{Et}, 1.65 ; i$ - $\mathrm{Pr}, 0.201$; $\mathrm{Bu}, 0.760$
14. $10^{2} \mathrm{kr}, \mathrm{RO}_{2} \mathrm{CEt}+\mathrm{OH}^{-}$in $70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $24.7^{\circ} \mathrm{C}^{f}$ $\mathrm{Me}, 6.41$; Et, 2.21; i-Pr, 0.298 ; Bu, 0.989
15. $10^{2} \mathrm{kr}, \mathrm{RO}_{2} \mathrm{CEt}+\mathrm{OH}^{-}$in $70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $35^{\circ} \mathrm{C}^{f}$ $\mathrm{Me}, 10.9 ; \mathrm{Et}, 4.08 ; i-\mathrm{Pr}, 0.604 ; \mathrm{Bu}, 1.88$
16. $10^{2} \mathrm{kr}, \mathrm{RO}_{2} \mathrm{CEt}+\mathrm{OH}^{-}$in $70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $44.7^{\circ} \mathrm{C}^{f}$ Me 17.5; Et, 6.84; i - Pr, 1.14; Bu. 3.51
17. $k r, \mathrm{RO}_{2} \mathrm{CH}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $5^{\circ} \mathrm{C}^{g}$ $\mathrm{Me}, 696$; Et, 509; Pr, 483; Bu, 456; i-Pr, 239
18. $k r, \mathrm{RO}_{2} \mathrm{CH}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $15^{\circ} \mathrm{C}^{g}$ $\mathrm{Me}, 1240$; $\mathrm{Et}, 902$; $\mathrm{Pr}, 844$; $\mathrm{Bu}, 789$; $i-\mathrm{Pr}, 413$
19. $k r, \mathrm{RO}_{2} \mathrm{CH}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}^{\text {g }}$ Me, 2200; Et, 1540; Pr, 1370; Bu, 1310; i-Pr, 655
20. $k r, \mathrm{RO}_{2} \mathrm{CH}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $35^{\circ} \mathrm{C}^{g}$ $\mathrm{Me}, 3730 ; \mathrm{Et}, 2440 ; \mathrm{Pr}, 2170 ; \mathrm{Bu}, 1840 ; i-\mathrm{Pr}, 1040$
21. $k r, \mathrm{ROH}+\mathrm{AcOH}$ over silica-alumina catalyst at $250^{\circ} \mathrm{C}^{h}$
8.3; t-Bu, 14.0
22. $10^{3} \mathrm{kr}, \mathrm{ROH}+4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}$ in $\mathrm{Et}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}^{i}$ $\mathrm{Me}, 184$; Et, 84.5 ; $\mathrm{Pr}, 65.9 ; i-\mathrm{Pr}, 10.1 ; \mathrm{Bu}, 70.3 ; s-\mathrm{Bu}, 7.35$; t-Bu, 2.70; i-Bu, 30.8; $\mathrm{BuCH}_{2}, 79 ; \mathrm{BuCH}_{2} \mathrm{CH}_{2}, 85$; $\mathrm{Bu}\left(\mathrm{CH}_{2}\right)_{3}, 69 ; s-\mathrm{BuCH}_{2}, 36 ; i-\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 73 ; i$ $\mathrm{PrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, 68$; $\mathrm{MePrCH}, 5.9$; $\mathrm{MeBuCH}, 6.5 ; \mathrm{Et}_{2} \mathrm{CH}$, 3.6; $\mathrm{Pr}_{2} \mathrm{CH}, 2.7$
23. $10^{5} k r, \mathrm{ROAc}+\mathrm{H}_{3} \mathrm{O}^{+}$in $75 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $35^{\circ} \mathrm{C}$ catalyzed by HCl^{j}
$\mathrm{Me}, 13.0$; $\mathrm{Et}, 12.0$; $\mathrm{Bu}, 9.65 ; \mathrm{c}^{-\mathrm{C}_{5} \mathrm{H}_{9}, 4.35 ; \mathrm{PrMeCH}, 3.59 ;}$ $\mathrm{BuCH}_{2}, 8.78 ; \mathrm{c}^{2} \mathrm{C}_{6} \mathrm{H}_{11}, 3.79 ; \mathrm{BuCH}_{2} \mathrm{CH}_{2}, 7.60 ; \mathrm{Bu}\left(\mathrm{CH}_{2}\right)_{4}$, 6.65
24. $10^{5} k r, \mathrm{ROAc}+\mathrm{H}_{3} \mathrm{O}^{+}$in $75 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $35^{\circ} \mathrm{C}$ catalyzed by resin acid ${ }^{j}$
$\mathrm{Me}, 6.45$; $\mathrm{Et}, 3.34 ; \mathrm{Bu}, 1.12 ; \mathrm{c}^{2} \mathrm{C}_{5} \mathrm{H}_{9}, 0.612$; $\mathrm{PrMeCH}, 0.308$; $\mathrm{BuCH}_{2}, 0.663 ; \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}, 0.478 ; \mathrm{BuCH}_{2} \mathrm{CH}_{2} 0.420$; $\mathrm{Bu}\left(\mathrm{CH}_{2}\right)_{4}, 0.083$
25. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $20.0^{\circ} \mathrm{C}$, average values ${ }^{k}$ Me, 8.09; Et, 4.85; i-Pr, 1.29; Bu, 4.05; $\mathrm{BuCH}_{2}, 3.63$; i $\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 3.17$
26. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $30.0^{\circ} \mathrm{C}$, average values ${ }^{k}$ Me, 16.0; Et, 9.04; $i-\mathrm{Pr}, 3.40 ; \mathrm{Bu}, 7.41 ; \mathrm{BuCH}_{2}, 6.82$; $i-$ $\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 6.49$
27. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$ and $2000 \mathrm{~atm}^{k}$ $\mathrm{Bu}, 6.1 ; i$ - $\mathrm{Bu}, 5.7 ; i$ - $\mathrm{Pr}, 2.08 ; \mathrm{BuCH}_{2}, 6.0$
28. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$ and $5000 \mathrm{~atm}^{k}$ Et, 15.9; Bu, 14.1; $i-\mathrm{Bu}, 12.3 ; i-\mathrm{Pr}, 5.2$
29. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$ and $8000 \mathrm{~atm}^{k}$ Et, 31.0; Bu, 25.7; i-Bu, 28.3; i-Pr, 11.4; $\mathrm{BuCH}_{2}, 25.2$
30. $10^{3} \mathrm{kr}, \mathrm{ROAc}+\mathrm{OH}^{-}$in $70 \% \mathrm{v} / \mathrm{v}$ dioxane $-\mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}^{l}$ Me, 54; Et, 35; $s-\mathrm{BuCH}_{2}, 12.5$; i - $\mathrm{PrMeCHCH} 2,10 ; t$ $\mathrm{BuCH}_{2}, 8.6 ; \mathrm{EtMe}_{2} \mathrm{CCH}_{2}, 6.0 ; i$ - $\mathrm{PrEtCHCH}_{2}, 5.3 ;$ $\mathrm{Et}_{2} \mathrm{CHCH}_{2}, 5.1 ; \mathrm{BuEtCHCH}_{2}, 5.1 ; t-\mathrm{BuEtCHCH}_{2}, 1.7$; $\mathrm{Et}_{3} \mathrm{CCH}_{2}, 1.5 ; \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{CH}_{2}, 31 ;$ c- $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{CH}_{2}, 23$; c$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{CH}_{2}, 16 ; \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{2}, 10$.
31. $10^{3} \mathrm{kr}, \mathrm{ROAc}+\mathrm{OH}^{-}$in $70 \% \mathrm{v} / \mathrm{v}$ dioxane $-\mathrm{H}_{2} \mathrm{O}$ at $30^{\circ} \mathrm{C}^{l}$ $\mathrm{Et}, 66 ; s-\mathrm{BuCH}_{2}, 27 ; t-\mathrm{BuCH}_{2}, 17 ; \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{2}, 23 ; i-\mathrm{Pr}$, 12.4; t-Bu, 0.8
32. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $0.0^{\circ} \mathrm{C}^{m}$ Pr, 1.01; $i-\mathrm{Pr}, 0.313 ; \mathrm{Bu}, 0.925 ; i-\mathrm{Bu}, 0.870 ; ~ s-\mathrm{Bu}, 0.206$; t - $\mathrm{Bu}, 0.0158 ; i-\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 0.899$
33. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $10.0^{\circ} \mathrm{C}^{m}$ $\operatorname{Pr}, 2.15 ; i-\mathrm{Pr}, 0.640 ; \mathrm{Bu}, 1.94 ; i-\mathrm{Bu}, 1.76 ; s-\mathrm{Ba}, 0.419 ; t-\mathrm{Bu}$, $0.0368 ; i-\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 1.80$
34. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $20.0^{\circ} \mathrm{C}^{m}$ $\mathrm{Me}, 7.84$; Et, 4.57; Pr, 4.23; $i-\mathrm{Pr}, 1.26$; Bu, 3.33; i-Bu, 3.54; s-Bu, 0.816; t - $\mathrm{Bu}, 0.0809$; i - $\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 3.61 ; \mathrm{Et}_{2} \mathrm{CH}$, 0.340 ; $\mathrm{Me}_{2} \mathrm{EtC}, 0.0374$
35. $k r, \mathrm{ROAc}+\mathrm{OH}^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at $30.0^{\circ} \mathrm{C}^{m}$ Pr, 8.09; $i-\mathrm{Pr}, 2.50$; $\mathrm{Bu}, 7.58 ; i-\mathrm{Bu}, 6.75 ; s-\mathrm{Bu}, 1.55 ; t-\mathrm{Bu}$, $0.166 ; i-\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 6.72$
${ }^{a}$ E. Tommila, Ann. Acad. Sci. Fenn., Ser. A3, 59, 3-34 (1942); Chem. Abstr., 38, $6172 b$ (1944). ${ }^{b}$ Excluded from correlation. ${ }^{c}$ C. K. Hancock and C. P. Falls, J. Am. Chem. Soc., 83, 4214 (1961). ${ }^{d}$ C. K. Hancock, E. A. Meyers, and B. J. Yager, J. Am. Chem. Soc., 83, 4211 (1961). ${ }^{e}$ R. N. Rylander and D. S. Tarbell, J. Am. Chem. Soc., 72, 3021 (1950). ${ }^{f}$ R. W. A. Jones and J. D. R. Thomas, J. Chem. Soc. B, 661 (1966). ${ }^{g}$ R. Leimu, R. Korte, E. Laaksonen, and V. Lehmuskoski, Suom. Kemistil. B, 19, 93 (1946). ${ }^{h}$ I. Mochida, Y. Anju, A. Kato, and T. Seiyama, Bull. Chem. Soc. Jpn., 44, 2326 (1971). ${ }^{i}$ J. F. Norris and A. A. Ashdown, J. Am. Chem. Soc., 47, 837 (1925); J. F. Norris and F. Cortese, ibid., 49, 2340 (1927). ${ }^{j}$ S. Affrossman and J. P. Murray, J. Chem. Soc. B, 579 (1968). ${ }^{k}$ B. Anderson, F. Gronlund, and J. Olsen, Acta Chem. Scand., 23, 2458 (1969). ${ }^{\text {T S. Sarel, L. Tsai, and M. S. Newman, J. Am. Chem. Soc., 78, } 5420 \text { (1956). } . . . ~}$ ${ }^{m}$ L. Smith and H. Olsson, Z. Phys. Chem., 118, 99 (1925); H. Olsson, ibid., 118, 107 (1925); 125, 243 (1927).
the correlation of rate constants for 29 sets of base-catalyzed hydrolysis and four sets of acid-catalyzed hydrolysis of esters of the type I with the modified Taft equation,

$$
\begin{equation*}
\log k_{\mathrm{OX}}=v_{\mathrm{X}}+h \tag{2}
\end{equation*}
$$

Also studied were a set of rate constants for the reaction of XOH with AcOH , and a set of rate constants for the reaction of XOH with $4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}$. The data used in the correlations are presented in Table I. The v constants required for the correlations are from our previous work. ${ }^{3,9}$ For results of
the correlations with eq 2, see the paragraph at the end of the paper. In this work only substituents OX with $\mathrm{X}=$ alkyl have been examined. Alkyl substituents even in basic hydrolysis seem to be free of variable electrical effects, as we have shown for esters in which X is constant and Z is alkyl. ${ }^{4}$ As further evidence, consider the σ_{I} and σ_{R} constants of alkoxy substituents. For values of these, see the paragraph at the end of this paper.
Results of the correlations with eq 2 are as follows: nine sets gave excellent ($>99.5 \% \mathrm{CL}$), one gave very good ($99.0 \% \mathrm{CL}$),

Table II. Calculated Values of $v_{0 M e}$

ν_{OMe}	Set	Ref
0.43	2	a
0.30	6	b
0.30	2 A	c

${ }^{a}$ M. Charton, J. Org. Chem., 40, 407 (1975). ${ }^{b}$ Reference 7. ${ }^{c}$ Reference 10.
nine gave good ($97.5 \% \mathrm{CL}$), eight gave fair ($95.0 \% \mathrm{CL}$), and one gave poor correlation ($90.0 \% \mathrm{CL}$). Seven sets did not give significant results ($<90.0 \% \mathrm{CL}$). As the large majority (28 out of 35) of the sets studied gave significant results, it seems reasonable to conclude that the data studied involve predominantly steric effects. The v_{X} values do not seem to be the best steric parameter for representing the data, however. If we examine the tetrahedral intermediate for the basic ester hydrolysis reactions which constitute most of the sets studied (1-6, 9-20, 25-35) and compare it with the tetrahedral intermediate from which ${ }^{\prime} \mathrm{x}$ values are defined, II and III, respectively, we observe that as R remains constant X varies in II and

OX in III. What is required then is a set of $v_{0 x}$ values. Such values are unavailable. The correlations obtained with v_{X} did not seem to us to be good enough to use as the basis for the definition of vox values. We have therefore examined the following approach to the problem. Consider a substituent to be composed of two parts, Z and X , where Z joins X and the skeletal group G to which the substituent is attached. Now let us assume that for some substituent $\mathrm{Z}_{1} \mathrm{X}$ we can write the steric parameter v as,

$$
\begin{equation*}
v_{Z_{1} \mathrm{X}}=f_{\mathrm{Z}_{1}}+f_{\mathrm{x}} \tag{3}
\end{equation*}
$$

while for some other substituent, $\mathrm{Z}_{2} \mathrm{X}$ we can write

$$
\begin{equation*}
\mathrm{v}_{2} \mathrm{X}=f \mathrm{Z}_{2}+f_{\mathrm{x}} \tag{4}
\end{equation*}
$$

Then,

$$
\begin{equation*}
v_{Z_{1} \mathrm{X}}=v_{\mathrm{Z}_{2} \mathrm{X}}+f_{\mathrm{Z}_{1}}-f_{\mathrm{Z}_{2}} \tag{5}
\end{equation*}
$$

If we consider two sets of substituents, one with constant Z_{1} and the other with constant Z_{2},

$$
\begin{equation*}
v_{Z_{1} \mathrm{X}}=v_{Z_{2} \mathrm{X}}+c \tag{6}
\end{equation*}
$$

Then from eq 7, with $\mathrm{Z}_{1}=\mathrm{CH}_{2}$ and $\mathrm{Z}_{2}=0$

$$
\begin{equation*}
v_{\mathrm{OX}}=v_{\mathrm{CH}_{2} \mathrm{X}}+c \tag{7}
\end{equation*}
$$

We have therefore correlated the data in Table I with the equation

$$
\begin{equation*}
\log k_{\mathrm{OX}}=\psi v_{\mathrm{CH}_{2} \mathrm{X}}+h \tag{8}
\end{equation*}
$$

For the results of the correlations with eq 8 , see the paragraph at the end of this paper. Nineteen sets gave excellent ($>99.5 \%$ CL), four gave very good ($99.0 \% \mathrm{CL}$), four gave good (97.5% CL), and six gave poor correlation ($90 \% \mathrm{CL}$). One set did not give significant results ($<90.0 \% \mathrm{CL}$). Obviously, the results obtained from correlation with eq 8 are very much better than those obtained with eq 2. Ideally, however, we would like to have a set of $v_{0 x}$ values. It is essential to be able to employ these $v_{0 x}$ values together with the other u values we have determined, so that data sets containing many different substituent types can be correlated with the modified Taft equation. It is particularly important, therefore, that the vox values be on the same scale as the v values we have previously reported. If this is not done, then the utility of the $v_{0 x}$ steric parameters would be limited to sets including only OX groups, and the parameters would be much less useful. We may now proceed to define such a set of values. For this purpose, we must choose a reference set of data, a value for some OX substituent, and a value of ψ for the reference set. For a reference set, we have chosen set 10 , rate constants for the basic hydrolysis of alkyl acetates in $70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$ at $24.7^{\circ} \mathrm{C}$. This set was chosen because it gave an excellent correlation with eq 8 and included many of the most common OX groups. We then assigned a value of 0.36 to vome. This value was chosen on the basis that $v_{\mathrm{OH}}=0.32, v_{\mathrm{CH}_{2} \mathrm{Me}}=0.56$, and $v_{\mathrm{CH}_{3}}$ $=0.52$. Then the effect of replacing H with Me in $\mathrm{CH}_{2} \mathrm{Me}=$ $v_{\mathrm{CH}_{2} \mathrm{Me}}-v_{\mathrm{CH}_{3}}=0.04$. Therefore, the effect of replacing H by Me for OMe should also be 0.04 , and $v_{\mathrm{OMe}}-v_{\mathrm{OH}}=0.04$. Then, it follows that ι_{OMe} should be about 0.36 . Values of v_{OMe} obtained from other correlations in previous investigations are shown in Table II. The average value of $v_{\text {OMe }}$ obtained is 0.34 , in good agreement with the value of 0.36 we have chosen. The value of ψ chosen is the value obtained for the correlation set 10 with eq 8 in order to place the $v_{0 x}$ values on the same scale

Table III. vox Values

OX	v	Source	OX	v	Source
OMe	0.36	definition	$\mathrm{OCH}_{2} \mathrm{CMe}_{2} \mathrm{Et}$	0.78	31
OEt	0.48	10	$\mathrm{OCH}_{2} \mathrm{CHEt}-i-\mathrm{Pr}$	0.76	31
OPr	0.56	10	$\mathrm{OCH}_{2} \mathrm{CHEt}_{2}$	0.71	31
$\mathrm{O}-i-\mathrm{Pr}$	0.75	10	$\mathrm{OCH}_{2} \mathrm{CHEtBu}$	0.76	31
$\mathrm{O}-i-\mathrm{Bu}$	0.62	10	$0 \mathrm{OH}_{2} \mathrm{CHEt}-t-\mathrm{Bu}$	0.96	31
OBu	0.58	10	$\mathrm{OCH}_{2} \mathrm{CEt}_{3}$	0.97	31
$\mathrm{O}-s-\mathrm{Bu}$	0.86	10	$\mathrm{OCH}_{2}-\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}$	0.48	31
$\mathrm{O}-t-\mathrm{Bu}$	1.22	10	$\mathrm{OCH}_{2}-\mathrm{c}-\mathrm{C}_{4} \mathrm{H}_{7}$	0.52	31
$\mathrm{O}-\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$	0.81	10	$\mathrm{OCH}_{2}-\mathrm{c}-\mathrm{C}_{5} \mathrm{H}_{9}$	0.58	31
OCH2 $\mathrm{CH}_{2} \mathrm{Bu}$	0.61	1	$\mathrm{OCH}_{2}-\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$	0.65	31
$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Bu}$	0.61	1	OCHMe-i-P=	0.91	31
$\mathrm{OCH}_{2} \mathrm{CH}_{2}-i-\mathrm{Pr}$	0.62	1	OCHEt- i - Pr	1.18	31
$\mathrm{OCH}_{2} \mathrm{MePr}$	0.90	1	OCHMe- t - Bu	1.19	31
$\mathrm{OCMe}_{2} \mathrm{Et}$	1.35	1	OCHiBu_{2}	1.28	31
$\mathrm{O}-\mathrm{c}-\mathrm{C}_{5} \mathrm{H}_{9}$	0.77	1	$\mathrm{OCH}_{2} \mathrm{CH}_{2}-t-\mathrm{Bu}$	0.53	30
OCHEt_{2}	1.00	2	$\mathrm{OCH}_{2} \mathrm{CHMe}-t$ - Bu	0.66	30
$\mathrm{OCH}_{2} \mathrm{Bu}$	0.58	26	$\mathrm{OCH}_{2} \mathrm{CMeE}^{\Sigma_{2}}$	0.82	30
$\mathrm{OCH}_{2}-\mathrm{s}-\mathrm{Bu}$	0.62	31	$\mathrm{OCH}_{2} \mathrm{CH}-i-\mathrm{Pr}_{2}$	0.89	30
$\mathrm{OCH}_{2} \mathrm{CHMe}-i-\mathrm{Pr}$	0.64	31	$\mathrm{OCEt}_{2} \mathrm{Me}$	1.52	34
$\mathrm{OCH}_{2}-t-\mathrm{Bu}$	0.70	31	$\mathrm{OCPrMe}{ }_{2}$	1.39	34

Table IV. Values of ψ, h, and $100 r^{2}$ Obtained from Correlation with Equation 10

Set	- ψ	h	$100 r^{2}$	Set	$-\psi$	h	$100 r^{2}$
1	3.25	2.10	99.8	19	1.31	3.83	96.4
2	3.08	1.29	99.2	20	1.40	4.08	98.6
3	2.65	2.26	99.8	21	-0.369	0.667	87.6
4	3.00	1.04	100.	22	2.17	2.98	88.5
5	3.04	1.41	99.9	23	1.22	1.61	94.1
6	2.92	1.65	100.	24.	2.31	1.50	87.2
7	0.967	2.07	99.2	25	1.93	1.65	93.9
8	0.767	2.33	96.4	26	1.64	1.79	97.6
9	3.11	2.05	99.9	27	2.78	2.42	96.6
11	2.92	2.33	99.9	28	1.84	2.16	87.6
12	2.84	2.53	99.9	29	1.61	2.33	80.8
13	3.54	1.94	99.8	30	2.61	2.71	98.2
14	3.40	2.00	99.6	31	2.58	3.05	100.
15	3.22	2.17	99.8	32	2.78	1.62	99.2
16	3.02	2.31	99.8	33	2.71	1.89	99.4
17	1.15	3.28	94.1	34	2.46	1.96	98.4
18	1.19	3.44	94.9	35	2.61	2.41	99.6

Table V. Comparison of Steric Effects upon Acidic and Basic Catalyzed Hydrolysis

as the v_{X} and $v_{\mathrm{CH}_{2} \mathrm{X}}$ values. We may now obtain the defining equation for $v_{0 x}$ values from set 10 .

$$
\begin{equation*}
v_{\mathrm{OX}}=-0.329 \log k_{\mathrm{OX}}+0.701 \tag{9}
\end{equation*}
$$

Values of $v_{0 x}$ obtained from set 10 , and from other sets, are set forth in Table III. Data for the remaining 34 sets were then correlated with the equation

$$
\begin{equation*}
\log k_{\mathrm{ax}}=\psi v_{\mathrm{OX}}+h \tag{10}
\end{equation*}
$$

Values of ψ, h, and $100 r^{2}$ (which represents the percent of the data accounted for by the correlation) are reported in Table IV. For other statistics, see the paragraph at the end of this paper. All the 34 sets gave significant correlations.

The correlations obtained for sets $7,8,23$, and 24 suggest that in these sets involving acid-catalyzed hydrolysis of alkyl acetates the compounds in the set are reacting by the same mechanism. If this were not the case, excellent correlations would not be obtained.

To verify eq 7 , we have correlated v_{OX} with $v_{\mathrm{CH}_{2} \mathrm{X}}$ by means of the equation

$$
\begin{equation*}
v_{\mathrm{OX}}=m v_{\mathrm{CH}_{2} \mathrm{X}}+c \tag{11}
\end{equation*}
$$

The results are: $m, 0.959 ; c,-0.100 ; r, 0.967 ; F, 159.1$ (99.9\% CL) ; $s_{\text {est }}, 0.0562 ; s_{\mathrm{m}}, 0.0760(99.9 \% \mathrm{CL}) ; s_{c}, 0.0627$ ($\left.80.0 \% \mathrm{CL}\right)$; $n, 13$. As is predicted by eq $7, m$ is not significantly different from 1 . We conclude that eq 7 is verified.

It is of interest to compare the magnitude of the steric effect upon the basic hydrolysis of alkyl acetates with that upon the acidic hydrolysis. This may be done by comparing ψ values under reaction conditions which are as similar as possible. Such comparisons are made in Tables V and VI. The results show clearly that acid-catalyzed hydrolysis exhibits a much smaller steric effect than basc-catalyzed hydrolysis. The ψ values of sets 4,5 , and 6 show that the dependence of ψ on temperature is slight. Thus, comparison between sets 6 and 7 is justified. It is unlikely that the difference in solvent between sets 23 and 11 would interfere with comparison between values for these sets. The large difference between ψ_{A} and ψ_{B} found for hydrolysis of $\mathrm{RCO}_{2} \mathrm{X}$ contrasts with the much smaller difference found for hydrolysis of $\mathrm{XCO}_{2} \mathrm{R}$ (X is variable, R is constant). If we compare values of ψ for the hydrolysis of $\mathrm{RCO}_{2} \mathrm{X}$ with ψ values for other carbonyl reactions as is done in Table VI, we observe that the ψ values for basic ester hydrolysis of alkyl acetates and ethyl carboxylates are about 0.35 unit apart in $70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$, whereas the ψ values for acid hydrolysis in this medium differ by 0.76 . The greater difference in ψ for alkyl acetate hydrolyses as compared with ethyl carboxylate hydrolyses is then largely due to the comparatively small value of ψ for the acid hydrolyses of alkyl acetates.

Comparing ψ values for basic hydrolysis of alkyl formates and acetates in water, the alkyl formates have a much smaller value in accord with the fact that the tetrahedral intermediate for their hydrolysis has a constant H atom, whereas that for the hydrolysis of alkyl acetates has a constant Me group. The ψ value for the basic hydrolysis of the amides is between that for the acetates and that for the formates. This is in accord

Table VI. Comparison of ψ Values under Similar Reaction Conditions

Substrate	Reagent	Solvent	$T,{ }^{\circ} \mathrm{C}$	ψ	Source
$\mathrm{MeC}(=0) \mathrm{OX}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	$75 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$	35	-1.22	a
$\mathrm{XC}(=0) \mathrm{OEt}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	$70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$	35	-1.98	b
$\mathrm{MeC}(=0) \mathrm{OX}$	OH^{-}	$70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$	35	-2.92	c
$\mathrm{XC}(=0) 0 \mathrm{Et}$	OH^{-}	$70 \% \mathrm{v} / \mathrm{v} \mathrm{MeAc}-\mathrm{H}_{2} \mathrm{O}$	35	-2.57	d
$\mathrm{MeC}(=0) \mathrm{OX}$	OH^{-}	$\mathrm{H}_{2} \mathrm{O}$	30.0	-2.61	e
$\mathrm{HC}(=0) 0 \mathrm{X}$	OH^{-}	$\mathrm{H}_{2} \mathrm{O}$	35	-1.40	f
$\mathrm{XC}(=0) \mathrm{NH}_{2}$	OH^{-}	$\mathrm{H}_{2} \mathrm{O}$	75	-1.87	g

${ }^{a}$ This work, set $23 .{ }^{b}$ Reference 3, set $8 .{ }^{c}$ This work, set $11 .{ }^{d}$ Reference 4, set $2 .{ }^{e}$ This work, set $35 . f$ This work, set $20 .{ }^{g}$ Reference 8 , set 7 .
with its tetrahedral intermediate, which has a constant NH_{2} group.

A comparison of ψ values for sets $3,11,31$, and 35 shows that the effect of solvent on the ψ value for the basic hydrolysis of alkyl acetates is small.
At the suggestion of a referee, we have examined the correlation of data for the alkaline hydrolysis of $\mathrm{ZCO}_{2} \mathrm{X}$ in 40% aqueous dioxane at $35^{\circ} \mathrm{C}$ with the equation

$$
\begin{equation*}
\log k=\psi_{1} v_{\mathrm{Z}}+\psi_{2} v_{\mathrm{OX}}+h \tag{12}
\end{equation*}
$$

The data used were a combination of set 3 from Table I and set 5 from ref 4 . The results of the correlation with eq 12 are: multiple correlation coefficient, $0.995 ; F$ test for significance of regression, 64.30 ($99.9 \% \mathrm{CL}$); $s_{\text {est }}, 0.0609 ; s_{\psi_{1}}, 0.0805$ (99.9% CL); $s_{\psi_{2}}, 0.0741$ ($00.0 \% \mathrm{CL}$); $s_{\mathrm{h}}, 0.0822$ ($\left.99.9 \% \mathrm{CL}\right)$; partial correlation coefficient of v_{Z} on $v_{\mathrm{OX}}, 0.479$ ($90.0 \% \mathrm{CL}$); ψ_{1}, $-2.06 ; \psi_{2},-2.54 ; h, 3.23$; number of points in set. 15 ; range in $\log k, 2.27$. Thus, the rates of hydrolysis of esters substituted in both the acyl and alkoxy moieties can be successfully treated by means of eq 12.

The success of this work in evaluating vox constants which are on the same scale as, and can therefore be used in the same
correlation as, v constants for alkyl, halogen, haloalkyl, oxyalkyl, and other groups is not yet completely established. We hope to demonstrate in future work that the $v_{0 x}$ values reported here are indeed applicable to data sets containing a mixture of substituent types.

Supplementary Material Available: the results of the correlations with eq 7 and 8 and values of σ_{I} and σ_{R} for OR groups and complete statistics for the correlations of the data in Table I with eq 10 (5 pages). Ordering information is given on any current masthead page.

Registry No.-Acetic acid, 64-19-7; 4-nitrobenzoyl chloride, 122-04-3.

References and Notes

(1) R. W. Taft, J. Am. Chem. Soc., 74, 3120 (1952).
(2) R. W. Taft in "Steric Effects in Organic Chemistry", M. S. Newman, Ed., Wiley, New York, N.Y., 1956, p 644-645.
(3) M. Charton, J Am. Chem. Soc., 97, 1552 (1975).
(4) M. Charton, J. Am. Chem. Soc., 97, 3691 (1975).
(5) M. Charton, J Am. Chem. Soc., 97, 3694 (1975).
(6) M. Charton, J. Am. Chem. Soc., 97, 6159 (1975).
(7) M. Charton ard B. I. Charton, J. Am. Chem. Soc., 97, 6472 (1975).
(8) M. Charton, J. Org. Chem., 41, 2217 (1976).
(9) M. Charton, J. Org. Chem., 41, 2906 (1976).
(10) M. Charton, J. Org. Chem., 42, 2528 (1977).

Steric Effects. 10. Substituents at Nitrogen in Carbonyl Compounds

Marvin Charton
Department of Chemistry, Pratt Institute, Brooklyn, New York 11205

Received January 20, 1976

Abstract

Twelve sets of carbonyl addition reactions including rate constants for acidic and basic hydrolysis of N -substituted amides, rate constants for the reaction of methyl acetate with alkylamines, and rate constants for the reaction of piperonal with alkylamines were correlated with the modified Taft equation using $\nu_{\mathrm{CHX}^{1} \mathrm{X}^{2}}$ constants; 16 sets of data were correlated with $v_{N X^{1}}{ }^{2}$ constants. Very good results were obtained. The $v_{N X^{1}}{ }^{1}{ }^{2}$ constants were defined in this work. Eighteen values of $v_{N X^{12}}$ are given. The results verify the validity and generality of the equation $v_{Z_{1} X^{1} X^{2}}$ $=v Z_{2} \mathrm{X}^{1} \mathrm{X}^{2}+c$. The variation of ψ with structure is discussed for a variety of acid-catalyzed and base-catalyzed hydrolyses of carbonyl derivatives.

In the preceding paper of this series, ${ }^{1}$ steric substituent constants were developed for alkoxy groups. These constants were applicable to addition reactions of carbonyl compounds. In this work we consider the application of the techniques we have developed to the definition of steric substituent constants for alkylamino and dialkylamino substituents. Let us consider substituent effects upon rates of acid and alkaline hydrolysis of N -substituted amides. The tetrahedral intermediates involved in the acid and alkaline hydrolysis are I and II, respectively. The X group represents a constant substitu-

I

II
ent; the $N R^{1} R^{2}$ group varies. We have shown that the electrical effects of alkyl groups in base-catalyzed ester hydrolysis reactions are constant, ${ }^{2}$ as are electrical effects of alkoxy groups. ${ }^{1}$ It seems likely that the electrical effects of alkylamino and dialkylamino groups are also constant in addition reactions of the carbonyl group. In support of this contention, the σ_{m} and σ_{p} substituent constants of NHX groups are given by the equations ${ }^{3}$

$$
\begin{align*}
\sigma_{m-\mathrm{NHX}} & =1.11 \sigma_{m \cdot \mathrm{X}}-0.187 \tag{1}\\
\sigma_{p-\mathrm{NHX}} & =1.33 \sigma_{m \cdot \mathrm{X}}-0.476 \tag{2}
\end{align*}
$$

According to Taft

$$
\begin{equation*}
\sigma_{\mathrm{INHX}}=\left(3 \sigma_{m-\mathrm{NHX}}-\sigma_{p-\mathrm{NHX}}\right) / 2 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{\mathrm{RNHX}}=\sigma_{p-\mathrm{NHX}}-\sigma_{\mathrm{INHX}} \tag{4}
\end{equation*}
$$

From eq 1,2 , and 3

$$
\begin{align*}
\sigma_{\mathrm{INHX}} & =\left(3.33 \sigma_{m \cdot \mathrm{X}}-0.561-1.33 \sigma_{m \cdot \mathrm{X}}+0.476\right) / 2 \tag{5}\\
& =\left(2 \sigma_{m=\mathrm{X}}-0.085\right) / 2=\sigma_{m \cdot \mathrm{X}}-0.043 \tag{6}
\end{align*}
$$

Now, according to Taft, ${ }^{4}$

$$
\begin{equation*}
\sigma_{m \cdot \mathrm{X}}=\sigma_{\mathrm{IX}}+\sigma_{\mathrm{RX}} / 3 \tag{7}
\end{equation*}
$$

We are interested in the case in which X is alkyl. For values of σ_{I} and σ_{R} for alkyl groups, see the paragraph at the end of this paper. The average value of σ_{I} is -0.01 ± 0.02. Since the error in the σ_{I} values is probably 0.05 , we conclude that σ_{I} values for alkyl groups are constant. Examination of the σ_{R} values for alkyl groups shows that they average 0.16 ± 0.03; the error in σ_{R} is not less than 0.05 ; therefore these values are again constant. Then from eq $7, \sigma_{m}$ for alkyl groups is con-

Table I. Data Used in the Correlations

1. $k r, \mathrm{AcNHX}+\mathrm{H}_{3} \mathrm{O}^{+}$in $\mathrm{H}_{2} \mathrm{O}$ at $65^{\circ} \mathrm{C}^{a}$
$\mathrm{Me}, 2.23$; $\mathrm{Et}, 1.40$; $\mathrm{Pr}, 1.14$; i-Pr, 0.437 ; $\mathrm{Bu}, 1.12$; $i-\mathrm{Bu}, 0.808$; s - $\mathrm{Bu}, 0.261 ; i-\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 1.44 ; \mathrm{BuCH}_{2} \mathrm{CH}_{2}, 1.12 ; \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$, $0.472 ; \mathrm{PhCH}_{2}, 1.28$
2. $k r, \mathrm{AcNHX}+\mathrm{H}_{3} \mathrm{O}^{+}$in $\mathrm{H}_{2} \mathrm{O}$ at $75^{\circ} \mathrm{C}^{a}$
$\mathrm{Me}, 5.74 ; \mathrm{Et}, 3.83$; $\mathrm{Pr}, 2.82 ; i-\mathrm{Pr}, 1.11 ; \mathrm{Bu}, 2.98 ; i-\mathrm{Bu}, 2.09$; $s-\mathrm{Bu}, 0.684 ; i-\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 2.84 ; \mathrm{BuCH}_{2} \mathrm{CH}_{2}, 2.78 ; \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$, $1.24 ; \mathrm{PhCH}_{2}, 3.17$
3. $k r$, $\mathrm{AcNHX}+\mathrm{H}_{3} \mathrm{O}^{+}$in $\mathrm{H}_{2} \mathrm{O}$ at $85^{\circ} \mathrm{C}^{a}$
$\mathrm{Me}, 13.0$; Et, 9.53; Pr, 6.77; $i-\mathrm{Pr}, 2.84 ; \mathrm{Bu}, 6.93$; i $\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 6.72 ; \mathrm{BuCH}_{2} \mathrm{CH}_{2}, 6.53 ; \mathrm{c}^{2} \mathrm{C}_{6} \mathrm{H}_{11}, 2.98 ; \mathrm{PhCH}_{2}$, 7.61
4. $k r, \mathrm{AcNHX}+\mathrm{H}_{3} \mathrm{O}^{+}$in $\mathrm{H}_{2} \mathrm{O}$ at $95^{\circ} \mathrm{C}^{a}$
$\mathrm{Me}, 26.3$; $\mathrm{Et}, 21.2$; Pr, $15.3 ; i-\mathrm{Pr}, 6.71$; $\mathrm{Bu}, 14.8 ; i-\mathrm{Bu}, 10.8$; $s-\mathrm{Bu}, 3.96 ; i-\mathrm{PrCH}_{2} \mathrm{CH}_{2}, 15.0 ; \mathrm{BuCH}_{2} \mathrm{CH}_{2}, 14.9 ; \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$, 7.59; $\mathrm{PhCH}_{2}, 19.3$
5. $k r, \mathrm{AcNX}^{1} \mathrm{X}^{2}+\mathrm{H}_{3} \mathrm{O}^{+}$in 1.0 N aq HCl at $75^{\circ} \mathrm{C}^{b}$

H, H, 511; Me, H, 25.5; Et, H, 14.0; Ph, H, 11.9; i-Pr, H, $5.40 ; \mathrm{Bu}, \mathrm{H}, 10.1 ; i-\mathrm{Bu}, \mathrm{H}, 8.09 ; \mathrm{Me}_{2}, 22.6$; Me, Et, 6.10; Et_{2}, 1.36; $\mathrm{Pr}_{2}, 0.68$
6. $k r, \mathrm{AcNHX}+\mathrm{H}_{3} \mathrm{O}^{+}$in $1.0 \mathrm{~N} \mathrm{aq} \mathrm{HCl} \mathrm{at} 80^{\circ} \mathrm{C}^{b}$

Et, 22.2; Pr, 17.2; Bu, 15.6; i-Bu, 11.3
7. $k r, \mathrm{AcNHX}+\mathrm{H}_{3} \mathrm{O}^{+}$in 1.0 N aq HCl at $85^{\circ} \mathrm{C}^{b}$ Me, 59.0; Et, 32.7; Pr, 23.2; Bu, 24.1; i-Bu, 17.5
9. $k r$, AcNHX $+\mathrm{OH}^{-}$in 1.0 N aq NaOH at $60^{\circ} \mathrm{C}^{b}$ Me, 6.78; Et, 3.83; Pr, 2.24
10. $k r, \mathrm{AcNHX}+\mathrm{OH}^{-}$in $1.0 \mathrm{~N} \mathrm{aq} \mathrm{NaOH} \mathrm{at} 65^{\circ} \mathrm{C}^{b}$ Me, 10.1; Et, 5.42; Pr, 3.37; i-Pr, 1.05; Bu, 2.83
11. $k r, \mathrm{AcNX}^{1} \mathrm{X}^{2}+\mathrm{OH}^{-}$in 1.0 N aq NaOH at $70^{\circ} \mathrm{C}^{b}$ Et, H, 7.72; Pr, H, 4.50; Bu, H, 3.58; Me, Et, 4.25; Et ${ }_{2}$, 0.51
12. $k r, \mathrm{AcNX}^{1} \mathrm{X}^{2}+\mathrm{OH}^{-}$in 1.0 N aq NaOH at $75^{\circ} \mathrm{C}^{b}$

H, H, 112; Me, H, 21.5; Et, H, 10.8; Pr, H, 6.62; i-Pr, H, 2.20; $\mathrm{Bu}, \mathrm{H}, 6.17$; i-Bu, H, 3.85; Me 2 , 31.1; Me, Et, 5.90 ; Et $2,0.70$; $\mathrm{Pr}_{2}, 0.40$
14. $k r, \mathrm{AcNX}^{1} \mathrm{X}^{2}+\mathrm{OH}^{-}$in 1.0 N aq NaOH at $85^{\circ} \mathrm{C}^{b}$ $\mathrm{Me}, \mathrm{Et}, 1.12 ; \mathrm{Et}_{2}, 1.49 ; \mathrm{Pr}_{2}, 0.75$
15. $k r, \mathrm{AcNX}^{1} \mathrm{X}^{2}+\mathrm{OH}^{-}$in 1.0 N aq NaOH at $90^{\circ} \mathrm{C}^{b}$ $\mathrm{Me}, \mathrm{Et}, 15.0 ; \mathrm{Et}_{2}, 2.12 ; \mathrm{Pr}_{2}, 0.87$
16. $10^{4} k r, \mathrm{MeOAc}+\mathrm{XNH}_{2}$ in dioxane 5 M in $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}{ }^{\mathrm{c}}$ $\mathrm{Me}, 853 ; \mathrm{Et}, 111 ; \mathrm{Bu}, 106 ; \mathrm{BuCH}_{2}, 98.7$; $\mathrm{Pr}, 87.9 ; i$-Bu, 43.5 ; $i-\mathrm{Pr}, 4.22 ; s-\mathrm{Bu}, 2.27$
17. $10^{2} \mathrm{kr}$, piperonal $+\mathrm{XNH}_{2}$ in MeOH at $0.00^{\circ} \mathrm{C}^{d}$

Me, 1.92; Et, 0.952 ; Pr, 1.04; i-Pr, 0.267 ; $\mathrm{Bu}, 1.15 ; i-\mathrm{Bu}, 1.13$; s-Bu, 0.292; t-Bu, 0.0267
18. $10^{2} \mathrm{kr}$, piperonal $+\mathrm{XNH}_{2}$ in MeOH at $24.97^{\circ} \mathrm{C}^{d}$
$\mathrm{Me}, 5.55$; Et, 2.88; Pr, 3.15; $i-\mathrm{Pr}, 0.895$; Bu, 3.37; i-Bu, 3.16; s-Bu, 0.940; t-Bu, 0.115
19. $10^{2} \mathrm{kr}$, piperonal $+\mathrm{XNH}_{2}$ in MeOH at $45.00^{\circ} \mathrm{C}^{d}$

Me, 11.4; Et, 6.00; Pr, 6.40; i-Pr, 1.98; Bu, 6.83; i-Bu, 6.23; s-Bu, 2.00; t-Bu, 0.299
${ }^{a}$ P. D. Bolton, J. Ellis, R. D. Frier, and P. C. Nancarrow, Aust. J. Chem., 25, 303 (1972). ${ }^{b}$ T. Yamana, Y. Mizukami, A. Tsuji, Y. Tasuda, and K. Masuda, Chem. Pharm. Bull., 20, 881 (1972). ${ }^{\text {c }}$ E M. Arnett, J. G. Miller, and A. R. Day, J. Am. Chem. Soc., 72, 5635 (1950). ${ }^{d}$ R. I. Hill and T. I. Crowell, J. Am. Chem. Soc., 78, 2284 (1956).
stant. It follows then, for eq 6, that $\sigma_{\text {INHX }}$ is constant. From eq 2 we conclude that $\sigma_{p-\mathrm{NHX}}$ is constant, and therefore from eq 4 that σ_{RNHX} is constant. Thus, the electrical effects of alkylamino groups are independent of the nature of the alkyl group. As to the electrical effect of dialkylamino groups as compared with alkylamino groups, we would expect them to behave in a similar manner. The evidence for this is more tenuous, however. A number of successful correlations have been reported in which the value $\sigma_{\mathrm{I}}=0.10$ has been used for both MHMe and $\mathrm{NMe}_{2}{ }^{5}$ Using the σ_{p} values given by McDaniel and Brown ${ }^{6} \sigma_{\mathrm{R}}$ values of -0.94 and -0.93 are obtained for NHMe and NHMe_{2}. Thus, at least in the case of the

Table II. Values of $v_{N X}{ }^{\prime} x^{2}$

$\mathrm{NX}^{1} \mathrm{X}^{2}$	$v_{N X}{ }^{1 \mathrm{X}^{2}}$	Set ${ }^{a}$	NX ${ }^{1} \mathrm{X}^{2}$	$\mathrm{unX}^{1 \mathrm{X}^{2}}$	Set ${ }^{a}$
NHMe	0.39	b	NEt_{2}	1.37	5
NHEt	0.59	5	NPr_{2}	1.60	5
NHPr	0.64	5	$\mathrm{NH}-s-\mathrm{Bu}$	1.12	2
$\mathrm{NH}-i-\mathrm{Pr}$	0.91	5	$\begin{aligned} & \mathrm{NHCH}_{2} \mathrm{CH}_{2}-i- \\ & \mathrm{Pr} \end{aligned}$	0.65	2
NHBu	0.70	5	$\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Bu}$	0.66	2
$\mathrm{NH}-i-\mathrm{Bu}$	0.77	5	NH-c-C6 C_{611}	0.92	2
NMe_{2}	0.43	5	$\mathrm{NHCH}_{2} \mathrm{Ph}$	0.62	2
NMeEt	0.87	5	$\mathrm{N}-i-\mathrm{Pr}_{2}$	2.01	14
$\mathrm{NHCH}_{2} \mathrm{Bu}$	0.64	16	$\mathrm{NH}-t-\mathrm{Bu}$	1.83	19

${ }^{a}$ Set from which $\nu_{N X}{ }^{1} \mathrm{X}^{2}$ was calculated. ${ }^{b}$ By definition.

Table III. Values of ψ, h, and $100 r^{2}$ Obtained from Correlation with Equation 11

Set	$-\psi$	h	$100 r^{2}$	Set	$-\psi$	h	$100 r^{2}$
1	1.37	0.952	97.0	11	1.37	1.63	92.0
2	1.34	1.33	94.5	12 A	1.50	1.90	94.5
3	1.30	1.68	95.8	14	1.63	2.45	99.6
4	1.21	1.97	96.6	15	1.69	2.65	100.
6	1.54	2.24	96.8	16	3.69	4.35	94.7
7	1.37	2.30	96.6	17	1.31	0.854	94.7
9	1.73	1.52	90.4	18	1.19	1.25	95.3
10	1.92	1.79	98.4	19	1.12	1.52	84.0

dimethylamino group the electrical effects are comparable to those of alkylamino groups.

The arguments we have presented for the constancy of the electrical effects of alkylamino and dialkylamino groups lead to the inexorable conclusion that the only effect of these substituents on carbonyl addition reactions will be steric.

In order to correlate data for carbonyl addition reactions involving variable $N R^{1} \mathrm{R}^{2}$ groups, steric substituent constants for these groups are required. Such constants are not available. We have shown, however, ${ }^{1}$ that a substituent may be written in the form ZX , where Z joins X and the skeletal group to which X is attached. Then, for two sets of substituents, one with constant Z_{1} and the other with constant Z_{2}, the equation

$$
\begin{equation*}
v_{Z_{1} \mathrm{X}}=v_{\mathrm{Z}_{2} \mathrm{X}}+c \tag{8}
\end{equation*}
$$

is obeyed, where the u values are steric substituent constants. We propose to extend this equation to

$$
\begin{equation*}
v_{Z_{1}} X^{1} X^{2}=v_{Z_{2}} \mathrm{X}^{1} \mathrm{X}^{2}+c \tag{9}
\end{equation*}
$$

where $\mathrm{Z}_{1}=\mathrm{N}, \mathrm{Z}_{2}=\mathrm{CH}$.
Thus, rate data for sets of carbonyl addition reactions involving variable $\mathrm{NR}^{1} \mathrm{R}^{2}$ groups have been correlated with the modified Taft equation in the form ${ }^{1}$

$$
\begin{equation*}
\log k_{\mathrm{NX}^{1} \mathrm{X}^{2}}=v_{\mathrm{CHXX}^{1} \mathrm{X}^{2}}+h^{\prime} \tag{10}
\end{equation*}
$$

The data used in the correlations are set forth in Table I. The values required are from our previous work. ${ }^{7}$ For results of the correlations with eq 10 , see the paragraph at the end of this paper. Sets $6,7,9,14$, and 15 were excluded from the correlations because the substituents in these sets have at most only two significantly different $v_{\mathrm{CH}_{2} \mathrm{R}}$ values.

The results for set 5 were considerably improved by the exclusion of the value for $\mathrm{X}^{1} \mathrm{X}^{2}=\mathrm{H}, \mathrm{H}$ (set 5 A ; The further exclusion of the value for $\mathrm{X}^{1} \mathrm{X}^{2}=\mathrm{Me}_{2}$ improved the results somewhat. The results for set 12 were not significantly improved by exclusion of the value for $\mathrm{X}^{1} \mathrm{X}^{2}=\mathrm{H}, \mathrm{H}$ (set 12A). Further exclusion of the value for $\mathrm{X}^{1} \mathrm{X}^{2}=\mathrm{Me}_{2}$ gives better results (set 12B).

Of the 12 sets correlated with eq 10 , ten sets gave excellent

Table IV. Correlations of $v_{N X} X^{2}{ }^{2}$ with $v_{C H X} X^{2}{ }^{a}$

Set	m	c	r	F	$s_{\text {est }}$	s_{m}	s_{c}	n
A	1.21	-0.218	0.918	80.82	0.164	0.134	0.127	17
B	1.05	-0.107	0.943	112.3	0.112	0.0991	0.0905	16
C	1.03	-0.0691	0.964	169.3	0.0887	0.0789	0.0728	15
a	All correlations were significant at the 99.9%							

${ }^{a}$ All correlations were significant at the 99.9% confidence level (CL).

Table V. Comparison of ψ Values

Substrate	Reagent	T, ${ }^{\circ} \mathrm{C}$	ψ	v^{k}	Source
$\mathrm{MeC}(=\mathrm{O}) \mathrm{NHX}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	75	-1.34	0.52	a
$\mathrm{MeC}(=0) \mathrm{NX}^{1} \mathrm{X}^{2}$	${ }^{2} \mathrm{H}_{3} \mathrm{O}^{+}$	75	-1.30	0.52	b
$\mathrm{MeC}(=0) \mathrm{NX}^{\prime} \mathrm{X}^{2}$	${ }^{2} \mathrm{OH}^{-}$	75	-1.50	0.52	c
$\mathrm{MeC}(=0) \mathrm{OX}$	OH^{-}	30	-2.61	0.52	d
$\mathrm{HC}(=0) \mathrm{OX}$	OH^{-}	35	-1.40	0	e
$\mathrm{XC}(=\mathrm{O}) \mathrm{NH}_{2}$	OH^{-}	75	-1.87	0.32	f
$\mathrm{XC}(=\mathrm{O}) \mathrm{NH}_{2}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	75	-2.07	0.32	g
	$\mathrm{H}_{3} \mathrm{O}^{+}$	30	-1.53	0.71^{l}	h
	OH^{-}	30	-1.50	0.71^{l}	i
$\mathrm{XC}(=0) \mathrm{NHOH}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	50.5	-2.16	$0.48{ }^{m}$	j

All reactions were studied in water. ${ }^{a}$ This work, set 2. b This work, by definition. c This work, set 12 A . ${ }^{d}$ Reference 1 , set 35 . ${ }^{e}$ Reference 1 , set 20. f Reference 8 , set 7 . g Reference 8 , set $4 \mathrm{~A} .{ }^{h}$ Reference 8 , set $12 \mathrm{~A} .{ }^{i}$ Reference 8 , set 27 A . i Reference 8 , set $28 \mathrm{~A} . k v$ of constant substituent in substrate. ${ }^{l} v$ for $\mathrm{c}-\mathrm{C}_{5} \mathrm{H}_{9} .{ }^{m}$ Calculated from
$v_{N X^{1}} \mathrm{X}^{2}=1.03, v_{\mathrm{CHX}}{ }^{1} \mathrm{X}^{2}=0.0691$.
($>99.5 \% \mathrm{CL}$), one gave good ($97.5 \% \mathrm{CL}$), and one gave fair correlation ($95.0 \% \mathrm{CL}$). Thus the validity of eq 9 is again substantiated. Our results now make it possible to define u constants for alkylamino groups. As was the case in our previous definition of $v_{0 x}$ groups, we are interested in defining $v_{\mathrm{NX}^{\prime}{ }^{2} \mathrm{X}^{2}}$ groups which can be used together with the other v values we have previously calculated in order to make possible the application of the modified Taft equation to sets containing a wide range of substituent type. It is therefore vital that the $v_{N X X^{2}}{ }^{2}$ values be on the same scale as our other v constants. Otherwise, the $v_{\mathrm{NX}^{1} \mathrm{X}^{2}}$ constants would only be applicable to sets in which the sole substituent type is $\mathrm{NX}^{1} \mathrm{X}^{2}$. In order to do this we must choose a reference set. As a reference set we have chosen the rate constants for acidic hydrolysis of N -substituted amides in 1.0 N aqueous HCl at $75^{\circ} \mathrm{C}$ (set 5). This set was chosen because it gave an excellent correlation with eq 10 and included a large number of substituents. A value of 0.39 was then assigned to the NHMe group. This value was obtained by means of the same type of argument we used in the previous work in this series ${ }^{1}$ in assigning a value to the OMe group. Ideally, we would have liked to simply use the value $v_{\mathrm{NH}_{2}}=0.35$, but the rate constant for the NH_{2} group does not fit the correlation obtained with eq 10. The value of ψ chosen for set 5 is the value obtained from correlation of set 5 B with eq 10 . In choosing this value for ψ we are putting the $v_{\mathrm{NX}}{ }^{1} \mathrm{X}^{2}$ values on the same scale as the other v values. This is shown by writing the modified Taft equation for the use of true $v_{\mathrm{NX}^{1} \mathrm{X}^{2}}$ values

$$
\begin{equation*}
\log k_{\mathrm{NX}^{1} \mathbf{X}^{2}}=\psi v_{\mathrm{NX}^{1} \mathbf{X}^{2}}+h \tag{11}
\end{equation*}
$$

and then writing eq 9 for $v_{N X^{1}} \mathrm{X}^{2}$ and $v_{\mathrm{CHX}}{ }^{1} \mathrm{X}^{2}$

$$
\begin{equation*}
v_{\mathbf{N X}^{1}} \mathbf{X}^{2}=v_{\mathrm{CHX}}{ }^{1} \mathbf{X}^{2}+c \tag{12}
\end{equation*}
$$

Now substituting in eq 11, we obtain

$$
\begin{gather*}
\log k_{\mathrm{NX}^{1} \mathrm{X}^{2}}=\psi\left(\mathrm{UCHX}^{1} \mathrm{X}^{2}+c\right)+h \tag{13}\\
=\psi_{\mathrm{CHX}^{1} \mathrm{X}^{2}}+\psi c+h \tag{14}
\end{gather*}
$$

which is equivalent to eq 10 with $h^{\prime}=\psi c+h$
We may now obtain the equation for defining $v_{N X} X^{2}$ constants from set 5 B .

$$
\begin{equation*}
v_{\mathrm{NX}^{1} \mathrm{X}^{2}}=-0.769 \log k_{\mathrm{NX}{ }^{1} \mathrm{X}^{2}}+1.47 \tag{15}
\end{equation*}
$$

Values of $v_{N X}{ }^{1}{ }^{2}{ }^{2}$ obtained from set 5 B and other sets are reported in Table II. Data for all sets other than set 5 were then correlated with eq 11 . Values of ψ, h, and $100 r^{2}$ (which represents the percent of the data accounted for by the correlation) are reported in Table III. For other statistics see the paragraph at the end of this paper. One set did not correlate. As the two sets which gave the poorest results had only three points, it is not surprising that good correlations were not obtained. Overall, the results are very good, and support the utility of the $U_{N X^{1}} \mathrm{X}^{2}$ constants.

To verify eq 12 , we have correlated the $v_{N X}{ }^{1} X^{2}$ values with $v_{\mathrm{CHX}^{1} \mathrm{X}^{2}}$ values. The results of these correlations are set forth in Table IV. The equation used is

$$
\begin{equation*}
v_{\mathrm{NX}^{1} \mathrm{X}^{2}}=m v_{\mathrm{CHX}}{ }^{1} \mathrm{X}^{2}+\mathrm{c} \tag{16}
\end{equation*}
$$

Set A includes all available $v_{N X^{1}} X^{2}$ values. The value for $\mathrm{X}^{1} \mathrm{X}^{2}$ $=\mathrm{H}, t-\mathrm{Bu}$ is excluded from Set B. Further exclusion of the value $\mathrm{X}^{1} \mathrm{X}^{2}=\mathrm{Me}_{2}$ results in set C . All three sets give excellent correlation. Best results are obtained with set C, however. Furthermore, with set C the value of m obtained is not significantly different from the value of 1 predicted by eq 12 . The results obtained support the validity of eq 12 and together with our previous results for OX groups support the generality of eq 9 . It is now possible to estimate values of $v_{N_{X}{ }^{1} X^{2}}$ from values of $v_{\mathrm{CHX}} \mathrm{X}^{2}$.
It is of interest to compare the magnitude of the steric effect upon the basic hydrolysis of N -substituted amides with that upon the acidic hydrolysis of amides under similar reaction conditions. This can be done by comparing the ψ values for sets 5 B and 12A. The values are -1.30 and -1.50 , respectively. The application of the "Student's t " test shows that the two values are not significantly different. This is in accord with our findings for the hydrolysis of amides substituted in the acyl moiety. ${ }^{8}$ By contrast, the hydrolysis of alkyl acetates and benzoates showed a distinct difference in steric effects between acid-catalyzed and base-catalyzed reactions, ${ }^{1}$ as did the hydrolysis of esters substituted in the acyl moiety. ${ }^{2,7}$
We have also compared the magnitude of the steric effect for N -substituted amide hydrolysis with that for other carbonyl addition reactions under similar reaction conditions. Values of ψ are given in Table V. Although the values of ψ are at different temperatures, the results obtained in this work and previous work ${ }^{1,8}$ suggest that this will not cause large differences in ψ. We had previously suggested that the ψ values might depend on the size of the constant substituent in the substrate. Plots of ψ values for acid-catalyzed hydrolyses and for base hydrolyses against the v values of the constant substituent in the substrate show no discernable relationship between ψ and v. The ψ values lie in the range -1.30 to -2.16 for acidic hydrolysis and -1.40 to -2.61 for basic hydrolysis. Possibly, the value of ψ will depend on the extent to which the transition state resembles the tetrahedral intermediate. Further data are required before any conclusion can be reached.

At the suggestion of a referee we have examined the corre-
lation of data for the acid hydrolysis of ZCONHX in water at $75^{\circ} \mathrm{C}$ with

$$
\begin{equation*}
\log k=\psi_{1} v_{\mathrm{Z}}+\psi_{2} v_{\mathrm{NHX}}+h \tag{17}
\end{equation*}
$$

The data used were a combination of set 2 in Table I and set 4 of ref 8 . Results of the correlation are: multiple correlation coefficient, 0.969; F test for significance of regression, 176.8 $(99.9 \% \mathrm{CL}) ; s_{\text {est }}, 0.126 ; s_{\psi_{1}}, 0.109$ ($\left.99.9 \% \mathrm{CL}\right) ; s_{\psi_{2}}, 0.128$ (99.9% CL); $s_{h}, 0.125(99.9 \% \mathrm{CL})$; partial correlation coefficient of v_{Z} on $v_{\mathrm{NHX}}, 0.497(98.0 \% \mathrm{CL}) ; \psi_{1}=-1.93 ; \psi_{2}=-1.82 ; h=2.73$; number of points in the set, 26 ; range in $\log k, 1.84$. The high confidence level for the correlation of v_{Z} on ν_{NHX} indicates that the separation of steric effects is less than is desirable. It seems probable, however, that rates of hydrolysis of amides substituted in both the acyl and amino moieties can be successfully correlated by eq 17 .

Supplementary Material Available. The results of the correlations with eq 10 , values of σ_{I} and σ_{R} for alkyl groups, and complete statistics for the correlation of the data in Table I with eq 11 (3 pages). Ordering information is given on any current masthead page.

Registry No.-Methyl acetate, 79-20-9; piperonal, 120-57-0.

References and Notes

(1) M. Charton, J. Org. Chem., preceding article in this issue.
(2) M. Charton, J. Am. Chem. Soc., 97, 3691 (1975).
(3) M. Charton, J. Org. Chem., 28, 3121 (1963).
(4) R. W. Taft, J. Phys. Chem., 64, 1805 (1960).
(5) M. Charton, J. Org. Chem., 31, 2991 (1966); M. Charton and B. I. Charton, J. Chem. Soc. B, 43 (1967); M. Charton, J. Org. Chem., 34, 1887 (1969); 36, 266 (1971).
(6) Footnote b, Table I.
(7) M. Charton, J. Am. Chem. Soc., 97, 1552 (1975); M. Charton, J. Org. Chem., 41, 2217 (1976).
(8) M. Charton, J. Org. Chem., 41, 2906 (1976).

Chemistry of Nitrosoureas. Decomposition of
 1,3-Bis(threo-3-chloro-2-butyl)-1-nitrosourea
 and 1,3-Bis(erythro-3-chloro-2-butyl)-1-nitrosourea

Robert B. Brundrett* and Michael Colvin
The Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Received March 16, 1977

Abstract

1,3-Bis(threo-3-chloro-2-butyl)-1-nitrosourea and 1,3-bis(erythro-3-chloro-2-butyl)-1-nitrosourea were synthesized and decomposed in buffered water. The products were analyzed by GC and GC/MS. The stereochemistry of the product 3 -chloro-2-butanols and 2-chloro-2-butenes indicates that a significant fraction of these products are formed via reactions of 3-chloro-2-butyldiazo hydroxide with $\mathrm{S}_{\mathrm{N}} 2$ and E 2 stereochemistry, as well as by $\mathrm{S}_{\mathrm{N}} 1$ and El reactions involving the secondary 3 -chloro-2-butyl carbonium ion. Since primary carbonium ions are higher energy species than secondary ones, we predict that the decomposition of the antitumor agent 1,3-bis(2 -chloroethyl:1 -nitrosourea (BCNU) to 2-chloroethanol and vinyl chloride occurs predominantly by way of $\mathrm{S}_{\mathrm{N}} 2$ and E2 reactiors of 2-chloroethyldiazo hydroxide and not by way of $\mathrm{S}_{\mathrm{N}} 1$ and E1 reactions involving the primary 2-chloroethyl carbonium ion.

BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea] is a useful agent for the treatment of certain malignant diseases. The major products of the decomposition of BCNU in buffered aqueous solution (pH 7.4) are vinyl chloride, acetaldehyde, 1,2-dichloroethane, and 2-chloroethanol. ${ }^{1}$ Recently, we reported the synthesis and decomposition of specifically deuterated BCNUs. ${ }^{2}$ The results excluded the intermediacy of diazochloroethane and the vinyl carbonium ion and were consistent with the intermediacy of the 2 -chloroethyl carbonium ion. However, the results did not definitively distinguish between the $\mathrm{S}_{\mathrm{N}} 1$-E1 path through the 2-chloroethyl carbonium ion and the $\mathrm{S}_{\mathrm{N}} 2$-E2 path in which the various reactions and rearrangements occur concerted with the loss of nitrogen from the 2 -chloroethyldiazo hydroxide. Because the decomposition of BCNU to 2 -chloroethanol involves a primary carbon atom, there is no stereochemistry by which an $\mathrm{S}_{\mathrm{N}} 1$ process could be distinguished from an $\mathrm{S}_{\mathrm{N}} 2$ process. We report here the synthesis and decomposition of the substituted BCNU derivatives 1,3 -bis(threo-3-chloro-2-butyl)-1-nitrosourea and 1,3-bis(erythro-3-chloro-2-butyl)-1-nitrosourea in which there is stereochemistry to follow.

Chemistry. 1,3-Bis(erythro-3-chloro-2-butyl)-1-nitrosourea (erythro-BCBNU, 5) was synthesized as shown in Scheme I. 1,3-Bis(threo-3-chloro-2-butyl)-1-nitrosourea (threo-BCBNU) was synthesized by the same route, only starting from cis-2-butene. The unnitrosated ureas can exist as a mixture of a meso compound and a $d l$ pair and the nitrosated ureas as a mixture of two $d l$ pairs, but these facts do

not affect any of the stereochemistry in this paper. The first three steps of the syntheses are known stereospecific reactions ${ }^{3}$ and the last step does not involve making or breaking any bonds to carbon atoms. The remaining step the reaction of dimethylaziridine with phosgene, is expected to go with one inversion by analogy with other aziridine ring openings. ${ }^{4}$ This

Table I. Products from BCBNU Decomposition

Product	$\begin{aligned} & \text { Yield } \\ & \text { BCBN } \\ & \text { erythro } \end{aligned}$	from \% ${ }^{a}$ threo	GC retention time, min
Isobutyraldehyde	16	7	2.4
Butanone	43	29	3.8
1-Buten-3-ol	8	10	5.6
trans-2-Chloro-2-butene	3	17	7.0
cis-2-Chloro-2-butene	6	2	8.6
2-Buten-1-ol	6	7	12.0
threo-3-Chloro-2-butanol ${ }^{\text {b }}$	12	10	18.8
erythro-3-Chloro-2-butan-	6	18	20.0

$\quad{ }^{a}$ Mole percent of identified products. Total product recovery
was 80% of theoretical. ${ }^{b} \mathrm{MS} \mathrm{m} / e$ (\% base): $45(100), 27(18), 29$
$(12), 43(11), 55(7), 57(5) .{ }^{c} \mathrm{MS} m / e(\%$ base): $45(100), 27(12)$,
$43(10), 29(8), 55(5), 57(4)$.

Scheme II

expectation was checked by converting the u=eas to the oxazolines (Scheme II). If this reaction goes with one inversion, the erythro-urea should give the trans-oxazoline and the threo-urea should give the cis-oxazoline. Tha- the ureas gave the expected oxazolines was determined by comparing the NMRs to those of cis- and trans-4,5-dimethyloxazolidone. The cis-oxazolidone and the oxazoline from thieo- 4 both have the absorption of the C-5 hydrogen farthest downfield.

Results

threo- and erythro-BCBNU were allowed to decompose at $37^{\circ} \mathrm{C}$ in phosphate-buffered water (pH 7.4) in a gas-tight vial, and the products were analyzed by both GC and GC/MS. The products were identified by comparison of the GC retention times and the mass spectra to authentic standards. The results are shown in Table I. Of the eight products identified, four contain stereochemical information-cis- and trans-2-chloro-2-butene, and threo- and erythro-3-chloro-2-butanol. erythro-BCBNU gives predominantly threo-3-chloro-2butanol and cis-2-chloro-2-butene, while threo-BCBNU gives predominantly the erythro-butanol and the trans-butene.

Discussion

The products from the decomposition of the two BCBNUs can be explained by the mechanism shown in Scheme III for threo-BCBNU (the analogous mechanism explains the decomposition of the erythro isomer). In this mechanism, BCBNU decomposes to a isocyanate and a diazo hydroxide. The isocyanate half, by analogy to BCNU,5 כrobably forms a mixture of 3 -chloro-2-butylamine and bis(3-chloro-2butyl)urea. These compounds are not volatile enough to pass through the GC column used. The products seen arise from the diazo hydroxide half of the BCBNU molecule.
In the mechanism shown in Scheme III, the 3-chloro-2butanol arises in part (ca. $2 / 3$) by an $\mathrm{S}_{\mathrm{N}} 1$ reaction which gives

Scheme III

Scheme IV

equal amounts of the threo and erythro alcohols and in part (ca. $1 / 3$) by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism which gives the inverted erythro alcohol (the predominant stereoisomer formed). The stereochemistry of the chlorobutarols can also be explained by a rapid stepwise mechanism. In this mechanism the diazo hydroxide decomposes to a nitrogen separated ion pair which can either collapse to predominantly retained alcohol or react with a solvent molecule (on the back side, since the front side is blocked by the nitrogen) to give mostly inverted alcohol. To prevent total racemization, this second step must occur faster than the ion can rotate and expose its front side to solvent.

Some of the alcohol may arise via a cyclic chloronium ion (13, Scheme IV) not considered in Scheme III. If this ion is formed by collapse of chlorine trans to the nitrogen either concerted with the loss of nitrogen or so rapidly after the loss of nitrogen that the newly formed carbonium ion cannot rotate, the chloronium ion will be formed with one inversion. The opening of this ion by water will occur with one inversion to give, overall, the retained threo alcohol. Some participation by the chloron um ion 13 is likely, since in the decomposition of BCNU 10% of the chloroethanol comes from a chloronium ion. ${ }^{2}$ At the extreme of minimum chloronium ion participation, the threo alcohol will be derived primarily via an $\mathrm{S}_{\mathrm{N}} 1$
mechanism as outlined in Scheme III. At the excreme of maximum chloronium ion participation, all of the threo alcohol would arise via 13 and no $\mathrm{S}_{\mathrm{N}} 1$ mechanism would be operative. Here an $\mathrm{S}_{\mathrm{N}} 2$ mechanism would account for all of the erythro alcohol produced which is about $2 / 3$ of the total chlorobutanol. Thus, the amount of actual inversion is probably greater than the $1 / 3$ indicated.

The 3-chloro-2-butanols are unstable at $37^{\circ} \mathrm{C}$ in the buffer used for the nitrosourea decomposition. The two isomers decompose at about the same rate with about 25% of each reacted after 4 days. The major product is 2,3-epoxybutane with smaller amounts of 2,3-butanediol, 2-butanone, and isobutyraldehyde also formed. 2,3-Epoxybutane and 2,3butanediol are minor products in the nitrosourea decomposition mixture. Because the threo and erythro isomers decompose at about the same rate, the final threo/erythro ratio observed should reflect the relative amounts of the two isomers actually formed.

The 2-chloro-2-butene arises in part by an E1 mechanism which gives a mixture of cis- and trans-butenes and in part by a reaction with E2 stereochemistry which gives the transbutene (the predominant stereoisomer formed). This reaction could involve the loss of the β hydrogen trans to the nitrogen either concerted with the loss of the nitrogen (E2 mechanism) or so rapidly after the loss of nitrogen that the newly formed ion cannot undergo an internal ratation. The predominant formation of the trans-butene is not due simple to relative stability of the products, because erythro-BCBNU gives predominantly the cis-butene. The standard used to identify the 2 -chloro-2-butenes was a mixture of nearly equal amounts of the cis and trans isomers. To make sure the first isomer off of the GC column was the lower boiling trans isomer, the mixture was fractionally distilled. The distillate was found to be enriched in the first isomer, the pot residue was enriched in the second isomer off the GC column. For the purpose of quantitating products, the two isomers were assumed to have equal detectability by flame ionization. The two isomers are unstable at $37^{\circ} \mathrm{C}$ in the buffer used. Equal amounts of the isomers $(\sim 50 \%)$ are reacted after 4 days. No product could be identified. Because the cis and trans isomers decompose at about the same rate, the final cis/trans ratio observed should reflect the relative amounts of the two isomers actually formed.

The allylic alcohols, 1-buten-3-ol and 2-buten-1-ol, are formed by hydrolysis of the 3-chloro-1-butene which is the other possible elimination product. This elimination is probably a mixture of an E1 reaction and a reaction with E2 stereochemistry as is the elimination to form the 2 -chloro2 -butenes. The hydrolysis of 3 -chloro- 1 -butene under the conditions of the decomposition gives the two alcohols in the same ratio as the nitrosourea decomposition. The two butenols are stable at $37^{\circ} \mathrm{C}$ in the buffer used.

The butanone is formed by a hydride shift followed by a reaction of hydroxide with the resulting 2 -chloro-2-butyl carbonium ion and loss of hydrochloric acid. The isobutyraldehyde is formed by a methyl shift followed by reaction of hydroxide with the resulting 1 -chloro-2-methyl-1-propyl carbonium ion and loss of HCl . Both of these rearrangements probably involve primarily the migration of a group trans to the nitrogen and occur either concerted with the loss of nitrogen or so rapidly after the loss of nitrogen that the newly formed carbonium ion cannot rotate. Both isobutyraldehyde and butanone are stable at $37^{\circ} \mathrm{C}$ in the buffer used.

Some of the chlorobutyl carbonium ions which may be involved in the decomposition of BCBNU are shown in Scheme IV. Theroretical calculations predict that the order of stability is 12 (lowest energy), $13,10,9$, and 11 (highest energy). ${ }^{6}$ Ionization of 2,3-dichlorobutane in "magic acid," which should initially give ion 9, gives a $40: 60$ mixture of 12 and $10 .{ }^{7}$ Ion 11
is most probably an intermediate in the transformation of 9 to 12 , In the decomposition of BCBNU, products were seen from 10 (2-butanone) and 11 (isobutyraldehyde), but none were seen from 12 (2 -chloromethyl-2-propanol). The failure to observe products from ion 12 indicates that tiee capture of ion 11 by water is much faster than the rearrangement of 11 to 12 . If the capture of ion 11 by water is much faster than its rearrangement to 12 (the energetically most favorable rearrangement in Scheme IV), then the other carbonium-ion rearrangements may also be unable to compete with capture by water. Since products are seen from the rearranged ions 10 and 11, these rearrangements may be occurring concerted with the loss of nitrogen from 8 rather than from the free ion 9 . The concertedness of these rearrangements may also be indicated by the fact that products are seen from ion 11. Since the theoretical calculations predict that the rearrangement of 9 to 11 is endothermic, ${ }^{6}$ this reaction should not be able to compete with the exothermic rearrangement of 9 to 10.6 Thus, the products formed are probably controlled primarily by the conformation of the molecule and its solvent shell at the time the nitrogen leaves rather than by relative nucleophilicities, migratory aptitudes, and product stabilities. For a more detailed discussion of the possible role of nitrogen separated ion triplets and concerted vs. rapid stepwise reaction mechanisms one should see the excellent reviews of deamination by White ${ }^{8}$ and by Moss. ${ }^{9}$

The mechanism proposed to explain the products seen from the decomposition of the two BCBNU isomers is similar to that for the decomposition of BCNU. Both mezhanisms involve substitutions, eliminations, and rearrangements, reactions which are typical of carbonium ions. However, the stereochemistry of the products shows that a significant fraction of the substitution reaction to give 3-chloro-2-butanol is $\mathrm{S}_{\mathrm{N}} 2$ in nature and that there is significant E 2 character in the elimination reaction to give 2 -chloro-2-butene. The carbonium ion produced by BCBNU is secondary and hence a more energetically favorable species than the primary carbonium ion that BCNU would produce. Therefore, the decomposition of BCNU would be expected to involve $\mathrm{S}_{\mathrm{N}} 2-\mathrm{E} 2$ reactions to a much greater extent. The deamination of optically active 1-deuteriobutylamine, a reaction involving a primary carbon, gives predominant inversion of configuration. ${ }^{10}$ For these reasons, we postulate that the decomposition of BCNU is predominantly $S_{N} 2-E 2$ in character.

A knowledge of the exact nature of this decomposition is important because the cytotoxic activity of the clinically useful antitumor agent, BCNU, is apparently due to its ability to alkylate with a 2 -chloroethyl group. In several recent publications, evidence has been presented that indicates the antitumor effects of the nitrosoureas are due to the alkylating properties of the molecule. ${ }^{11}$ In particular, it has been shown that cytosine is alkylated by BCNU and the products are consistent with alkylation with 2 -chloroethyl groups. ${ }^{12} \mathrm{We}$ have recently presented evidence that alkylating species generated from BCNU are either the 2-chloroethyl carbonium ion, the cyclic chloronium ion, and/or 2-chloroethyldiazo hydroxide. ${ }^{2}$ The predominant inversion of configuration found in these studies of the decomposition of BCBNU leads us to postulate that the alkylating reaction of BCNU is predominantly $\mathrm{S}_{\mathrm{N}} 2$ in character. Thus, the ultimate cytotoxic alkylating species generated by BCNU is probably 2 -chloroethyldiazo hydroxide with a short but finite lifetime inside the target cell.

Experimental Section

NMR spectra were obtained on a Varian A-60 instrument. Gas chromatography was performed on a Varian 2700 instrument. Gas chromatography/mass spectrometry was performed on a DuPont 491 instrument.

2,3-Epoxybutane (1). The cis isomer was prepared from cis-2-
butene and the trans isomer from trans-2-butene by epoxidation with m-chloroperbenzoic acid following the procedure of Pasto and Cumbo. ${ }^{\text {aa }}$ cis-1: bp $60^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{3 \mathrm{a}} 56-59^{\circ} \mathrm{C}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.0(2 \mathrm{H}$, m), $1.2(6 \mathrm{H}, \mathrm{d})$. trans-1: bp $54^{\circ} \mathrm{C}$ (lit. ${ }^{\text {3a }} 52-53^{\circ} \mathrm{C}$); NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 2.7 ($2 \mathrm{H}, \mathrm{m}$), 1.3 ($6 \mathrm{H}, \mathrm{d}$).

3-Amino-2-butanol (2). The threo isomer was prepared from cis-1 and the erythro isomer was prepared from trans- 1 by reaction with excess aqueous ammonia following the procedure of Dickey, Fickett, and Lucas. ${ }^{3 \mathrm{~b}}$ threo- 2: bp $77{ }^{\circ} \mathrm{C}$ at 30 mm (lit. ${ }^{3 \mathrm{~b}} 69-70^{\circ} \mathrm{C}$ at 20 mm); NMR ($\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 3.3(1 \mathrm{H}$, pentet), 2.7 ($3 \mathrm{H}, \mathrm{brs}$), $2.5(1 \mathrm{H}$, pentet), $1.0(6 \mathrm{H}, \mathrm{t})$. erythro-1: bp $82^{\circ} \mathrm{C}$ at 30 mm (lit. $.^{3 \mathrm{~b}} 75-75.5^{\circ} \mathrm{C}$ at 20 mm); NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta 3.4(1 \mathrm{H}, \mathrm{m}), 2.7(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.5(1 \mathrm{H}, \mathrm{m}), 0.9(6 \mathrm{H}$, two d's).

2,3-Dimethylaziridine (3). The cis isomer was prepared from threo- 2 and the trans isomer was prepared from erythro- 2 by reacting the hydrogen sulfate ester with base following the procedure of Dickey, Fickett, and Lucas. ${ }^{3 \mathrm{~b}}$ cis-3: bp $83^{\circ} \mathrm{C}$ (lit. ${ }^{13} 81.1-81.5$ at 739 $\mathrm{mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.0(2 \mathrm{H}, \mathrm{m}), 1.1(6 \mathrm{H}, \mathrm{d}), 0.5(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. trans- 3 : bp $75^{\circ} \mathrm{C}$ (lit. ${ }^{13} 73.8-73.9$ at 739 mm$)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.6(2 \mathrm{H}, \mathrm{m})$, $1.2(6 \mathrm{H}, \mathrm{d}), 0.3(1 \mathrm{H}, \mathrm{br} \mathrm{s})$.

1,3-Bis(3-chloro-2-butyl)urea (4). The threo isomer was prepared from cis-3 and the erythro isomer was prepared from trans-3. A solution of the 2,3-dimethylaziridine ($3.6 \mathrm{~g}, 0.05 \mathrm{~mol}$) in acetone (25 mL) was added slowly to a solution of phosgene ($2.5 \mathrm{~g}, 0.025 \mathrm{~mol}$) in acetone $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to stir at $25^{\circ} \mathrm{C}$ overnight, and then the solvent was removed under vacuum. Chromatography (ethyl acetate on alumina) and crystallization gave a 50% yield of product. threo-4: mp 135-137 ${ }^{\circ} \mathrm{C}$ (from benzene); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.5\left(2 \mathrm{H}, \mathrm{br}\right.$ d), $4.2(4 \mathrm{H}, \mathrm{m}), 1.5(6 \mathrm{H}, \mathrm{d}), 1.2(6 \mathrm{H}, \mathrm{d}) ; \mathrm{MS} \mathrm{M}^{+}$ 240,242 , and $244, \mathrm{M}^{+}-\mathrm{HCl} 204$ and $206, \mathrm{M}^{+}-\mathrm{ClCHCH}_{3} 177$ and 179. erythro-4: mp $110-112^{\circ} \mathrm{C}$ (from hexanes); NMR $\left(\mathrm{CDCl}_{3}\right) 5.6(2$ H , br d), $4.2(4 \mathrm{H}, \mathrm{m}), 1.5(6 \mathrm{H}, \mathrm{d}), 1.1(6 \mathrm{H}, \mathrm{d})$; MS M ${ }^{+} 240,242$, and $244, \mathrm{M}^{+}-\mathrm{HCl} 204$ and 206, $\mathrm{M}^{+}-\mathrm{ClCHCH}_{3} 177$ and 179.

1,3-Bis(3-chloro-2-butyl)-1-nitrosourea (5). The threo isomer was prepared from threo-4 and the erythro isomer was prepared from erythro-4. To a solution of 1,3-bis(3-chloro-2-butyl)urea ($240 \mathrm{mg}, 1$ $\mathrm{mmol})$ in formic acid $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise with stirring a solution of sodium nitrite ($140 \mathrm{mg}, 2 \mathrm{mmol}$) in water (1 mL). After stirring for 1 h , the mixture was dissolved in ether, and the ether solution was washed three times with iced water and dried. Removal of the ether gave a 90% yield of product as a yellow oil. erythro-5: NMR (CDCl_{3}) $\delta 7.2(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.2-4.0(4 \mathrm{H}, \mathrm{m}), 1.4(12 \mathrm{H}, \mathrm{m})$. threo- 5: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.0(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.3-3.9(4 \mathrm{H}, \mathrm{m}), 1.4(12 \mathrm{H}, \mathrm{m})$.

4,5-Dimethyloxazolidone (6). The cis isomer was prepared from erythro- 2 and the trans isomer was prepared from threo-2. Phosgene was bubbled slowly through a vigorously stirred mixture of 3-amino-2-butanol ($1.5 \mathrm{~g}, 0.017 \mathrm{~mol}$), powdered $\mathrm{NaOH}(2.0 \mathrm{~g}, 0.05 \mathrm{~mol})$, powdered anhydrous sodium sulfate (4.0 g), and methylene chloride $(100 \mathrm{~mL})$ until the liquid phase remained acidic to wet litmus for 5 min after the phosgene adition was stopped $(\sim 1 \mathrm{~h})$. The mixture was filtered and the solvent removed under vacuum. Chromatography (ethyl acetate on silica gel) separated a more mobile impurity to give a 60% yield of the product as a colorless oil. cis- 6 : $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.9$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $4.7(1 \mathrm{H}$, pentet), $4.0(1 \mathrm{H}$, pentet), $1.3(3 \mathrm{H}, \mathrm{d}), 1.1(3 \mathrm{H}$, d); MS M ${ }^{+}$115, $\mathrm{M}^{+}-\mathrm{CO}$ 87. trans- 6: NMR ($\mathrm{CDCl}_{3} \mid \delta 6.9(1 \mathrm{H}, \mathrm{br}$ s), $4.2\left(1 \mathrm{H}\right.$, pentet), $3.5\left(1 \mathrm{H}\right.$, pentet), $1.4(3 \mathrm{H}, \mathrm{d}), 1.3(3 \mathrm{H}, \mathrm{d})$; MS M ${ }^{+}$ $115, \mathrm{M}^{+}-\mathrm{CO} 87$.

2-(3-Chloro-2-butylimino)-4,5-dimethyl-2-oxazoline Hydrochloride (7). This synthesis is based on the synthesis of 2-(2-chlo-roethylamino)-2-oxazoline from 1,3 -bis(2 -chloroethyl)urea. ${ }^{14} 1,3$ -Bis(3-chloro-2-butyl)urea ($240 \mathrm{mg}, 1 \mathrm{mmol}$) was ref_uxed with water $(10 \mathrm{~mL})$ until all solid has dissolved. The solvent was removed, the
residue dissolved in $\mathrm{D}_{2} \mathrm{O}(1 \mathrm{~mL})$, and the solvent again removed under vacuum to give a white solid. 7 from threo-4: NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 5.1(1 \mathrm{H}$, m), 4.6 (exchangeable H, s), 4.4-3.2 ($3 \mathrm{H}, \mathrm{m}$), $1.2(12 \mathrm{H}, \mathrm{m}) .7$ from erythro-4: NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 4.6(1 \mathrm{H}, \mathrm{m}), 4.5$ (exchangeable $\left.\mathrm{H}, \mathrm{s}\right), 4.4-3.5$ ($3 \mathrm{H}, \mathrm{m}$), $1.2(12 \mathrm{H}, \mathrm{m})$.

3-Chloro-2-butanol (8). The erythro alcohol was prepared from trans-1 and the threo alcohol was prepared from cis-1 by reaction with aqueous HCl following the method of Lucas and Gould. ${ }^{15}$ erythro- 8: bp $135^{\circ} \mathrm{C}$ (lit. ${ }^{12} 135.4^{\circ} \mathrm{C}$ at 748 mm). threo-8: bp $132^{\circ} \mathrm{C}$ (lit..$^{12} 130.8^{\circ} \mathrm{C}$ at 748 mm).

Decompositions. A mixture of nitrosourea ($13.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) and 0.1 m phosphate buffer at $\mathrm{pH} 7.4(1 \mathrm{~mL})$ was shaken at $37^{\circ} \mathrm{C}$ for 4 days in a gas-tight vial fitted with a Teflon-lined septum. Then methylene chloride (1 mL) was injected into the vial, and both the aqueous and organic layers were analyzed by GC using a $6-\mathrm{ft}$ glass column packed with 0.4% Carbowax 1500 on Carbopack A. The column temperature was kept at $50^{\circ} \mathrm{C}$ for 7 min and then raised at a rate of $4^{\circ} \mathrm{C} / \mathrm{min}$.

Acknowledgments. This research was supported by Grant CA-16783 (National Cancer Institute) and Research Career Development Award CA-0013 (National Cancer Institute, Dr. Colvin). We would like to express our appreciation to Dr. Emil H. White for valuable discussion of this work. The mass spectrometry was carried out in the Mass Spectrometry Laboratory of the Department of Pharmacology of the Johns Hopkins University School of Medicine. The Mass Spectrometry Laboratory is supported by Public Health Service Grant GM 2124 (National Institute of General Medical Services).

Registry No.-cis-1, 1758-33-4; trans-1, 21490-63-1; erythro-2, 40285-24-3; threo-2, 40285-23-2; cis-3, 930-19-8; trans-3, 930-20-1; 4, 63548-65-2; 5, 63548-66-3; cis-6, 19190-97-7; trans-6, 19190-96-6; 7, 63609-37-0; cis-2-butene, 590-18-1; trans-2-butene, 624-64-6.

References and Notes

(1) M. Colvin, J. W. Cowens, R. B. Brundrett, B: S. Kramer, and D. B. Ludlum, Biochem. Biophys. Res. Commun. 60, 515 (1974).
(2) R. B. Brundrett, J. W. Cowens, M. Colvin, and I. Jardine, J. Med. Chem. 19, 958 (1976).
(3) (a) D. P. Pasto and C. C. Cumbo, J. Org. Chem. 30, 1271 (1965). (b) F. H. Dickey, W. Fickett, and H. J. Lucas, J. Am. Chem. Soc. 74, 944 (1952).
(4) O. C. Dermer and G. E. Ham, "Ethylenimine and Other Aziridines'", Academic Press, New York, N.Y., 1969, p 208.
(5) J. A. Montgomery, R. James, G. S. McCaleb, and T. P. Johnson, J. Med. Chem. 10, 66 (1967).
(6) W. V. Hehre and P. C. Hiberty, J. Am. Chem. Soc. 96, 2665 (1974)
(7) G. A. Olah, J. M. Bollingen, and J. Brinich, J. Am. Chem. Soc. 90, 2587 (1968).
(8) E. H. White ard D. Woodcock, "The Chemistry of the Amino Group", S. Patai, Ed., Interscience, New York, N.Y., 1968, p 407.
(9) R. A. Moss, Aこc. Chem. Res. 7, 421 (1974).
(10) A. Streitwieser and W. D. Schaeffer, J. Am. Chem. Soc. 79, 2888 (1957).
(11) (a) M. Colvin, R. B. Brundrett, J. W. Cowens, I. Jardine, and D. B. Ludlum, Biochem. Pharmacol. 25, 695 (1976). (b) G. P. Wheeler, R. J. Bowdon, J. Grimsley, and H. H. Lloyd, Cancer Res. 34, 194 (1974). (c) H. E. Kann, Jr., K. W. Kohn, L. Widerlite, and D. Gullion, Cancer Res. 34, 1982 (1972).
(12) B. S. Kramer, C. C. Fenselau, and D. B. Ludlum, Biochem. Biophys. Res. Common. 55, 783 (1974).
(13) G. J. Buist anc H. J. Lucas, J. Am. Chem. Soc. 79, 6157 (1957)
(14) M.-E. Kreling and A. F. McKay, Can. J. Chem. 37, 504 (1959).
(15) H. J. Lucas and C. W. Gould, Jr., J. Am. Chem. Soc. 63, 2541 (1941).

An Electron Spin Resonance Spectroscopic Study of Aminocarbonyl Nitroxides. Long-Range Hyperfine Splitting of Amino Substituents and Conformational Preferences around the $\mathrm{C}_{\alpha}-\mathrm{N}(\mathrm{O})$ Bond in Aminocarbonyl Tosylmethyl Nitroxides

Rense M. Tel and Jan B. F. N. Engberts*
Department of Organic Chemistry, The University, Zernikelaan, Groningen, The Netherlands

Received April 11, 1977

Abstract

A series of aminocarbonyl tosylmethyl nitroxides $2 \mathbf{a}-\mathbf{f}$ was generated from the corresponding N-hydroxyurea derivatives. Their ESR spectral features are discussed and compared with those of some simple aminocarbonyl nitroxides (4a-e). Usually coupling with only one nitrogen atom is observed despite noticeable hyperfine interaction with the amino substituents ($\mathrm{H}, \mathrm{alkyl}$) across the carbonyl group. The ESR spectra of $\mathbf{2 a - f}$ show pronounced linewidth alternation effects which are rationalized in terms of slow rotation around the $\mathrm{C}_{\alpha}-\mathrm{N}(\mathrm{O})$ bond. For $\mathbf{2 c}$, the two energetically equivalent conformations could be frozen out at $-45{ }^{\circ} \mathrm{C}\left(\Delta G^{\ddagger}=6.2 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. In these conformations, the $\mathrm{S}-\mathrm{C}_{\alpha}$ bond is nearly eclipsed with the half-filled $2 \mathrm{p}_{\mathrm{z}}$ orbital on the nitroxide nitrogen atom.

Recent NMR studies have shown that in the preferred solution conformation of N, N^{\prime} - [bis (α-tosylbenzyl)]urea (1) the tosyl methyl protons are positioned above (or below) the most remote benzyl aromatic ring. ${ }^{1}$ A subsequent x -ray investigation of 1 revealed that a similar folded conformation is present in the crystal. ${ }^{2}$ Unfortunately, the instability and low solubility of 1 precluded NMR investigation of the conformational flexibility over a range of temperatures. We therefore resorted to a faster spectroscopic technique, i.e., electron spin resonance spectroscopy (ESR), to assess the conformational mobility around the $\mathrm{C}_{\alpha}-\mathrm{N}$ bond in some structurally related ureas. Here we report the preparation (in situ) of a series of aminocarbonyl tosylmethyl nitroxides 2 and

an analysis of their ESR spectral features as a function of temperature. We find that the ESR spectra exhibit pronounced line width alternation (LWA) effects even at ambient temperatures which we have rationalized in terms of slow rotation around the $\mathrm{C}_{\alpha}-\mathrm{N}(\mathrm{O})$ bond on the ESR time scale. In one case, definite conclusions could be drawn about the favored conformation as well as about the barrier to rotation.

Results and Discussion

ESR Spectra of Aminocarbonyl Nitroxides. The aminocarbonyl tosylmethyl nitroxides ${ }^{3}$ 2a-f were prepared via the route shown in Scheme I. The one-step synthesis of the N-hydroxy- N^{\prime}-(tosylmethyl)ureas 3a-f from the corresponding N-hydroxyureas constitutes a further extension of the versatile Mannich-type condensation reaction of sulfinic acids with aldehydes and amino compounds to afford N substituted α-aminosulfones. ${ }^{4,5}$ Unfortunately, no $\mathrm{N}, \mathrm{N}^{\prime}$ disubstituted N-hydroxyureas could be prepared by this method. ${ }^{6}$

ESR parameters for the nitroxides 2a-f are collected in Table I. The magnitudes of the nitrogen hyperfine splitting constants (hfsc's) and of the g values are consistent with those reported previously for some aminocarbonyl nitroxides. ${ }^{7-10}$ Further support for the structural assignment is found in the internal consistency of the A_{N} and A_{H} values within the series and in comparison of the hfsc's of 2a-f with those of the simple aminocarbonyl nitroxides $\mathbf{4 a - e}$ (Table I) which were obtained from the reaction of authentic N-hydroxyurea derivatives with

PbO_{2}. Since the structural features of aminocarbonyl nitroxides have received little attention thus far, the hfsc's of 2a-f and of $\mathbf{4 a - e}$ will be discussed in some detail. First, we note that the A_{N} values are somewhat higher than those of acyl alkyl nitroxides, reflecting cross-conjugation of the lone pairs of both nitrogen atoms with the carbonyl moiety. Second, and more interestingly, the ESR spectra clearly reveal hyperfine interaction with the amino substituents $\left(R_{1}, R_{2}\right)$ across the carbonyl function. ${ }^{11}$ Furthermore, in all cases only the ESR spectrum of one of the several possible rotamers, originating from hindered rotation around the $\mathrm{N}-\mathrm{C}(\mathrm{O})$ bond is observed. We have assigned the $A_{\mathrm{R}_{1}}^{\mathrm{H}}$ and $A_{\mathrm{R}_{2}}^{\mathrm{H}}$ splittings (Table I) on the basis of the following assumptions. (1) The favored conformation of N-hydroxyurea in which the oxygen atoms adopt a trans position (in view of steric reasons and confirmed by the crystal structure of N-hydroxyurea ${ }^{12,13}$) is retained in the aminocarbonyl nitroxides. (2) If one of the amino substituents is hydrogen, we propose that the second more bulky substituent will preferentially reside in trans position to the nitroxide oxygen. (3) In view of the small A_{H} values observed for $\mathbf{2 b}, 2 \mathrm{~d}, \mathbf{2 f}, \mathbf{4 b}, 4 \mathrm{~d}$, and $\mathbf{4 e}$, we suggest that the amino substituents of $2 \mathrm{a}, 2 \mathrm{e}$, and $\mathbf{4 a}$ which exhibit the highest splittings will occupy a trans position with respect to the nitroxide oxygen atom.

The ESR spectra of $\mathbf{2 b}, \mathbf{2 c}, \mathbf{4 b}$, and $\mathbf{4 c}$ do not show hfs by the phenyl protons. Since the line width is smaller than 0.2 G , hyperfine interaction with the second nitrogen atom can also be excluded. The same situation holds for 2a, 2d, 2f, 4a, 4d, and $4 \mathbf{e}$ and can be quite adequately explained in terms of the small magnetic moment of nitrogen relative to that of hydrogen. Only for 2 e a small hfsc of the second nitrogen atom ($A_{\mathrm{N}} 2=0.30 \mathrm{G}$) could be resolved (Figure 1). This may well be a consequence of the electron-releasing ability of the dimethylamino substituent which will tend to increase the spin density at the amino nitrogen atom. ${ }^{14}$ The significance of this factor is illustrated by the relatively large magnitude of the $\mathrm{N}^{1} \mathrm{hfsc}$ of $\mathbf{2 e}$ as compared with that of $\mathbf{2 c}$.

Line Width Alternation (LWA). At room temperature,

Table I. Hyperfine Splitting Constants ${ }^{\boldsymbol{a}}$ and g Values for the Aminocarbonyl Nitroxides $\mathbf{R}_{1} \mathbf{R}_{2} \mathrm{NCON}(\mathrm{O}) \mathrm{R}_{3}$ (2 and 4)

Nitroxide	Registry no.	R_{1}	R_{2}	R_{3}	$A_{\text {N }}$	$A_{\text {CH2 }}$	$A_{\text {NH }}$	$A_{\mathrm{R}_{1}}^{\mathrm{H}}$	$A_{\mathrm{R}_{2}}$	$g^{\text {b }}$
2a	63216-22-8	H	H	$\begin{gathered} p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \\ \mathrm{SO}_{2} \mathrm{CH}_{2} \end{gathered}$	8.8 (8.6)	5.4 (5.4)		0.75 (0.70)	0.32 (0.17)	2.0066
2b	63216-23-9	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{gathered} p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \\ \mathrm{SO}_{2} \mathrm{CH}_{2} \end{gathered}$	8.9 (9.0)	5.4 (5.4)		0.4 (0.4)		
2c	63216-24-0	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{gathered} p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \\ \mathrm{SO}_{2} \mathrm{CH}_{2} \end{gathered}$	8.1 (8.1)	5.0 (5.0)				
2d	63216-25-1	H	CH_{3}	$\begin{gathered} p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \\ \mathrm{SO}_{2} \mathrm{CH}_{2} \end{gathered}$	9.0 (9.0)	5.5 (5.5)		0.80 (0.80) ${ }^{\text {c }}$	0.40 (0.40)	2.0064
2 e	63216-26-2	CH_{3}	CH_{3}	$\begin{gathered} p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \\ \mathrm{SO}_{2} \mathrm{CH}_{2} \end{gathered}$	9.2 (9.1) ${ }^{\text {d }}$	5.4 (5.3)		0.9 (0.96)	0.3 (0.32)	
2 f	63216-27-3	H	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	$\begin{gathered} p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \\ \mathrm{SO}_{2} \mathrm{CH}_{2} \end{gathered}$	8.9 (9.0)	5.5 (5.5)		$0.4(0.37)^{e}$	0.5 (0.57)	
4a	19224-51-2 63216-28-4	H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{C}_{6} \mathrm{H}_{5} \end{aligned}$	$\xrightarrow{\mathrm{H}} \mathrm{H}$	8.0 8.0 8.0		11.7 11.5 (11.6)	0.73 0.45	0.32	2.0066
4 c	63216-29-5	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	7.1		10.8			
4d	63216-30-8	H	CH_{3}	E	8.2		11.7	$0.8{ }^{\text {c }}$	f	2.0068
4 e	63216-31-9	H	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	H	8.2		11.7	0.5	0.5	

${ }^{a}$ Hfsc's (in G) in 1,4-dioxane as the solvent; the hfsc's between parentheses are for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the solvent. ${ }^{b}$ Estimated accuracy: $\pm 0.0002 .{ }^{c} A_{\mathrm{CH}_{3}} .{ }^{d}$ The hfsc for the second nitrogen is $0.30 \mathrm{G} .{ }^{e} A_{\mathrm{CH}_{2}} .{ }^{f}$ Not resolved.
the ESR spectra of $\mathbf{2 a}-\mathbf{f}$ show alternating line width effects. For example, the ESR spectrum of 2 c at $35^{\circ} \mathrm{C}$ exhibits broadening of the $m_{I}= \pm 0.5$ lines, while the outside lines of the triplets are sharp (Figure 2). Upon lowering of the temperature, the central lines further broaden, and at $-10^{\circ} \mathrm{C}$ these lines are so broad that they cannot be detected. At still lower temperatures, new lines appear, and at $-45^{\circ} \mathrm{C}$ the spectrum is consistent with two nonequivalent hydrogen hyperfine splittings of 3.0 and 6.9 G , respectively. Such LWA is indicative for a slow interconversion process between two conformations in which the methylene protons are nonequivalent. Since the two forms are equally populated, the equation $A_{\mathrm{H}_{3}}=0.5\left(A_{\mathrm{H}_{\beta 1}}+A_{\mathrm{H}_{\beta 2}}\right)$ should hod, a condition which is very well fulfilled (Table I).

We propose that the exchange process finds its origin in slow rotation around the $\mathrm{C}_{\alpha}-\mathrm{N}(\mathrm{O})$ bond in 2a-f. Similar LWA effects have been observed for some structurally related radicals, including arylsulfonylmethyl benzoyl nitroxides ${ }^{6}$ and phenyloxycarbonyl tosylmethyl nitroxide. ${ }^{15}$ Assuming planar geometry around the nitroxide nitrogen and employing the Heller-McConnell relation (eq 1 in which ρ_{N} is the spin density in the $2 \mathrm{p}_{2}$ orbital on nitrogen, θ the dihedral angle between the axis of the nitrogen $2 p_{z}$ orbital and the $\mathrm{C}-\mathrm{H}_{\beta}$ bond, and B_{0} and B_{1} parameters related to spin polarization and hyperconjugation, respectively) with $B_{0}=0$ and $\rho_{N} B_{1}=16 \mathrm{G},{ }^{16}$ we can calculate the dihedral angles θ for the preferred conformations around the $\mathrm{C}_{\alpha}-\mathrm{N}(\mathrm{O})$ bond.

$$
\begin{equation*}
A_{\mathrm{H}_{\beta}}=\rho_{\mathrm{N}}\left(B_{0}+\mathrm{B}_{1}\left\langle\cos ^{2} \theta\right\rangle\right) \tag{1}
\end{equation*}
$$

The results are depicted in Figure 3. Apparently, the nitroxide radical favors conformations in which the $\mathrm{S}-\mathrm{C}_{c}$ bond is nearly eclipsed with the half-filled $2 p_{z}$ orbital on the nitroxide nitrogen atom. A similar eclipsing phenomenor has been proposed for a series of arylsulfonylmethyl alkoxy nitroxides ${ }^{17}$ mainly on basis of substituent effects on A_{N}. At present we cannot decide between the several factors which may contribute to the conformational preferences for 2a-f, but only note that the phenomenon is quite frequently observed for radicals of the type $\mathrm{X}-\mathrm{C}-\mathrm{Y} \cdot(\mathrm{X}=$ heteroatom, $\mathrm{Y}=$ radical site). ${ }^{18}$ Interestingly, a comparable conformational preference has been found for 1 in the solid state. ${ }^{2}$ For this molecule empirical potential-energy calculations strongly suggest that both nonbonded repulsive and attractive interactions significantly contribute to the conformational preferences, ${ }^{2}$ but more detailed interpretations must await further investigation.

Figure 1. Low-field nitrogen line of $2 \mathbf{e}$: observed (left), computer simulated (right).

Figure 2. ESR spectra of 2 c : (a) at $+35^{\circ} \mathrm{C}$, (b) at $+20^{\circ} \mathrm{C}$, (c) at -10 ${ }^{\circ} \mathrm{C}$, (d) at $-45{ }^{\circ} \mathrm{C}$.

From the line widths of the lines in the ESR spectrum of 2c at $-45^{\circ} \mathrm{C}$, the lifetime τ of the preferred conformations could be evaluated by using eq $2 .{ }^{19}$ Herein $\Gamma=$ line width at $-45^{\circ} \mathrm{C}$, $\Gamma_{0}=$ line width in the absence of exchange, $\gamma_{e}=$ magnetogyric ratio of the electron, and $\tau=$ lifetime of the conformation.

$$
\begin{equation*}
\Gamma=\Gamma_{0}+1 / 2 \tau \gamma_{e} \tag{2}
\end{equation*}
$$

We find $\tau=9.47 \times 10^{-8} \mathrm{~s}$ and, since $k=(2 \tau)^{-1}(k=$ rate constant for exchange), the barrier to rotation ${ }^{20}$ is $\Delta G^{\ddagger}=6.2$ kcal mol^{-1}.

Experimental Section

Elemental analyses were carried out in the Analytical Department of this laboratory under the supervision of Mr. A. F. Hamminga. Melting points were determined using a Mettler FP2 melting-point

Figure 3. Newman projections of the two sets of equilibrium conformations of 2 c at $-45^{\circ} \mathrm{C}$. $\mathrm{T}=$ tosyl.
apparatus with a Mettler FP21 microscope attachment. NMR spectra were recorded on a Varian Model A-60 spectrometer using $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ as the solvent and $\mathrm{Me}_{4} \mathrm{Si}(\delta=0)$ as an internal standard. IR spectra were measured on a Perkin-Elmer grating spectrophotometer, Model 125. The ESR spectra were recorded on a Varian E-4 apparatus fitted with a Varian A-1268 variable temperature controller. Al solutions used for ESR experiments were purged with nitrogen for 30 min in order to remove dissolved oxygen. The g values (± 0.0002) were measured using α, α^{\prime}-diphenyl- β-picrylhydrazyl as a reference compound ($g=2.0037$). The ESR spectrum of nitroxide $2 \mathbf{e}$ was satisfactorily simulated by using the hfsc's listed in Table I.
Hydroxylamine, ${ }^{21} N$-hydroxyurea, ${ }^{22} N$-hydroxy- N^{\prime}-phenylurea, ${ }^{23}$ benzyl carbamate, ${ }^{24}$ benzyl isocyanate, ${ }^{25} \mathrm{~N}$-benzyl- N^{\prime}-hydroxyurea, ${ }^{26}$ and N, N,-dimethyl- N^{\prime}-hydroxyurea ${ }^{27}$ were prepared by known procedures. N-Hydroxy- N^{\prime}-methylurea was obtained by a procedure analogous to that for N-benzyl- N^{\prime}-hydroxyurea. ${ }^{26} N, N$-Diphenyl-N^{\prime}-hydroxyurea was synthesized by a method analogous to that described for N, N-diethyl- N^{\prime}-hydroxyurea. ${ }^{27}$ Commercially available sodium p-toluenesulfinate and formaldehyde (36% aqueous solution) were employed. The new compounds 3 were purified by crystallization from 70% ethanol at temperatures below $50^{\circ} \mathrm{C}$.
\boldsymbol{N}-Hydroxy- \boldsymbol{N}-(tosylmethyl)urea (3a). Formaldehyde (0.022 mol) and 2 mL of formic acid were added to a solution of sodium p toluenesulfinate ($3.56 \mathrm{~g}, 0.02 \mathrm{~mol}$) and N-hydroxyurea $(1.52 \mathrm{~g}, 0.02$ mol) in 3 mL of water ($\mathrm{pH} \sim 3$). After 5 min the first crystals separated and after 1 h the yield of 3 a was 94% : mp $134-135^{\circ} \mathrm{C}$; NMR $\delta 2.39$ (s, $3 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 4 \mathrm{H}), 9.81(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ; \mathrm{IR}$ (KBr) $3495,3380,3180,1675,1560,1315,1145 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 44.26 ; \mathrm{H}, 4.95 ; \mathrm{N}, 11.46 ; \mathrm{S}, 13.12$. Found: C, $44.20 ; \mathrm{H}$, 4.84; N, 11.49; S, 13.01.
\boldsymbol{N}-Hydroxy- \boldsymbol{N}-(tosylmethyl)- \boldsymbol{N}^{\prime}-phenylurea (3b). Formaldehyde (0.022 mol) and formic acid (2 mL) were added to a suspension of sodium p-toluenesulfinate ($3.56 \mathrm{~g}, 0.02 \mathrm{~mol}$) and N-hydroxy- N^{\prime} phenylurea ($3.04 \mathrm{~g}, 0.02 \mathrm{~mol}$) in 35 mL of water and 15 mL of ethanol $(\mathrm{pH} \sim 3)$. The suspension was stirred for 10 min . After 1 h the yield of crystalline 3 b was 75%. A sample had mp $134-135^{\circ} \mathrm{C}$ (dec); NMR $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 7.3(\mathrm{~m}, 6 \mathrm{H}), 7.62(\mathrm{~m}, 4 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H})$ ppm; IR (KBr) $3365,3200,1670,1550,1320,1145 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 56.23 ; \mathrm{H}, 5.03 ; \mathrm{N}, 8.75 ; \mathrm{S}, 10.01$. Found: C, 56.16; H, 5.04; N, 9.28; S, 9.42.
\mathbf{N}, \mathbf{N}-Diphenyl- \mathbf{N}^{\prime}-hydroxy- \boldsymbol{N}^{\prime}-(tosylmethyl)urea (3c). Prepared by a procedure analogous to that for $3 \mathbf{b}$. After stirring for 30 min , the yield was 57% : $\mathrm{mp} 143-144.5^{\circ} \mathrm{C}(\mathrm{dec})$; NMR $\delta 2.39(\mathrm{~s}, 3 \mathrm{H})$, $5.00(\mathrm{~s}, 2 \mathrm{H}), 7.2(\mathrm{~m}, 10 \mathrm{H}), 7.62(\mathrm{~m}, 4 \mathrm{H}), 9.45(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ; \mathrm{IR}(\mathrm{KBr})$ $3200,1635,1585,1320,1145 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}$, 63.61; H, 5.09; N, 7.07; S, 8.09. Found: C, 63.48; H, 5.10; N, 7.02; S, 8.04 .
\boldsymbol{N}-Hydroxy- \boldsymbol{N}-(tosylmethyl)- \mathbf{N}^{\prime}-methylurea (3d) was obtained using a procedure analogous to that for 3 a , but using 50 mL of $1: 1(\mathrm{v} / \mathrm{v})$ $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ as the solvent. The yield was 85% and a sample had mp $129-130{ }^{\circ} \mathrm{C}$ (dec); NMR $\delta 2.39$ (s, 3 H), 2.57 (d, $J=5 \mathrm{~Hz}, 3 \mathrm{H}$), 4.91 (s, 2 H), $7.00(\mathrm{q}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 4 \mathrm{H}), 9.77$ ($\mathrm{s}, 1 \mathrm{H}) \mathrm{ppm}$; IR (KBr) 3465 , $3165,1660,1525,1320,1145 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}$,
46.50; H, 5.46 ; N, 10.85; S, 12.41. Found: C, 46.32; H, 5.32; N, 11.15; S, 12.05 .
$\boldsymbol{N}, \boldsymbol{N}$-Dimethyl- \boldsymbol{N}^{\prime}-hydroxy- \boldsymbol{N}^{\prime}-(tosylmethyl)urea (3e). A solution of sodium p-toluenesulfinate ($3.56 \mathrm{~g}, 0.02 \mathrm{~mol}$) in 25 mL of water was mixed with a solution of N, N-dimethyl- N^{\prime}-hydroxyurea $(2.1 \mathrm{~g}, 0.02 \mathrm{~mol})$ in 20 mL of dioxane. Then formaldehyde $(0.022 \mathrm{~mol})$ and formic acid (3 mL) were added. After 2 h the first crystals of $3 \mathbf{e}$ separated and after one night the yield was 53%. A sample of $3 \mathbf{e}$ showed mp 132-133 ${ }^{\circ} \mathrm{C}$ (dec); NMR $\delta 2.40$ ($\mathrm{s}, 3 \mathrm{H}$), 2.80 ($\mathrm{s}, 6 \mathrm{H}$), 4.86 ($\mathrm{s}, 2 \mathrm{H}$) , $7.60(\mathrm{~m}, 4 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}) 3360,1650,1500$, $1320,1140 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 48.52 ; \mathrm{H}, 5.92 ; \mathrm{N}$, 10.29 ; S, 11.78. Found: C, 48.50 ; H, $5.96 ;$ N, 10.29; S, 11.78.
\boldsymbol{N}-Benzyl- \boldsymbol{N}^{\prime}-hydroxy- \boldsymbol{N}^{\prime}-(tosylmethyl) urea (3f) was prepared using a procedure analogous to that for 3 a using 70 mL of $1: 1(\mathrm{v} / \mathrm{v})$ $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ as the solvent. The yield was 91% : mp $127-128^{\circ} \mathrm{C}$ (dec); NMR $\delta 2.39$ (s, 3 H), $4.20(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.93$ (s, 2 H), $7.24(\mathrm{~s}, 5 \mathrm{H})$, $7.59(\mathrm{~m}, 4 \mathrm{H}), 9.86(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}) 3400,3195,1645,1525,1320$, $1145 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 57.47 ; \mathrm{H}, 5.43 ; \mathrm{N}, 8.38$; S, 9.59 . Found: C, $57.57 ; \mathrm{H}, 5.46 ; \mathrm{N}, 8.97 ; \mathrm{S}, 9.02$.

Registry No.-3a, 63216-32-0; 3b, 63216-33-1; 3c, 63216-34-2; 3d, 63216-35-3; 3e, 63216-36-4; 3f, 63216-37-5; formaldenyde, 50-00-0; sodium p-toluenesulfinate, 824-79-3; N-hydroxyurea, 127-07-1; N -hydroxy- N^{\prime}-phenylurea, 7335-35-5; N, N-diphenyl- N^{\prime}-hydroxyurea, 53731-89-8; N-hydroxy- N^{\prime}-methylurea, 7433-46-7; N, N-dimethyl-N^{\prime}-hydroxyurea, 52253-32-4; N-benzyl- N^{\prime}-hydroxyurea, 24966 -37-8.

References and Notes

(1) R. M. Tel and J. B. F. N. Engberts, Recl. Trav. Chim. Pays-Bas, 93, 37 (1974).
(2) R. M. Tel and J. B. F. N. Engberts, J. Chem. Soc., Perkin Trans. 2, 483 (1976).
(3) The nitroxides 2a-f are relatively unstable due to the presence of two β hydrogen atoms which can participate in a bimolecular decay process to give the corresponding N-hydroxyurea and nitrone. See: K. Adamic, D. F. Bower, and K. U. Ingold, J. Am. Chem. Soc., 92, 1093 (1970).
(4) J. B. F. N. Engberts and J. Strating, Recl. Trav. Chim. Pays-Bas, 83, 733 (1964).
(5) H. Meijer, R. M. Tel, J. Strating, and J. B. F. N. Engberts, Recl. Trav. Chim. Pays-Bas, 92, 72 (1973) and references cited therein.
(6) The condensation products derived from ureas are often rather unstable. See: G. Rawson and J. B. F. N. Engberts, Tetrahedron, 26, 5653 (1970).
(7) J. V. Ramsbottom and W. A. Waters, J. Chem. Soc. B, 132 (1966).
(8) H. G. Aurich, H. G. Scharpenberg, and K. Kabs, Tetrahedron Lett., 3559 (1970).
(9) V. S. Griffiths and G. R. Parlett, J. Chem. Soc. B, 997 (1969).
(10) An A_{N} value as high as 11.75 G has been reported for tert-butyl N, N-dimethylaminocarbonyl nitroxide: (a) R. J. Holman and M. J. Perkins, J. Chem. Soc., Chem. Commun., 244 (1971); (b) C. M. Camaggi, R. J. Holman, and M. J. Perkins, J. Chem. Soc., Perkin Trans. 2, 501 (1972). This high A_{N} as well as the observation of his due to only one methyl group are not easily reconciled with our ESR spectral data.
(11) Such his across the carbonyl group has only rarely been observed. See ref 10 and B. L. Booth, D. J. Edge, R. N. Haszeldine, and R. G. G. Holmes, J. Chem. Soc., Perkin Trans. 2, 7 (1977).
(12) I. K. Larsen and B. Jerslew, Acta Chem. Scand., 20, 983 (1966).
(13) N. Amargan, J. P. S. Richards, and A. A. Uraz, Acta Crystallogr., Sect. B, 32, 1042 (1976).
(14) R. A. Kaba and K. U. Ingold, J. Am. Chem. Soc., 98, 7375 (1976).
(15) R. van Est-Stammer and J. B. F. N. Engberts, Recl. Trav. Chim. Pays-Bas, 91, 1298 (1972).
(16) Methyl phenylaminocarbonyl nitroxide (ref 8 ; $A_{N}=A_{\mathrm{H}}=10.0 \mathrm{G},\langle\theta\rangle=$ 120°) was taken as a reference compound. Accordingly, $\rho_{N} B_{1}=20 \mathrm{G}$, and for $2 c$ this value is lowered to 16 G in view of the lower A_{N}. We note that the conformational preferences are not critically sensitive to the exact choice of $\rho_{N} \mathrm{~B}_{1}$.
(17) J. J. Zeilstra and J. B. F. N. Engberts, J. Am. Chem. Soc., 97, 7091 (1975).
(18) See, for example, K. S. Chen and J. K. Kochi, J. Am. Chem. Soc., 96, 1383 (1974).
(19) J. E. Wertz and J. R. Bolton, "Electron Spin Resonance, Elementary Theory and Practical Applications"', McGraw-Hill, New York, N.Y., 1972, Chapter and
9.
(20) This barrier to rotation is definitely higher than that found for the bis(methylthiomethyl)nitroxide radical: G. Brunton and K. U. Ingold, J. Chem. Soc., Perkin Trans. 2, 1659 (1976).
(21) G. Brauer, "Handbuch der Präparativen Anorganischen Chemie", F. Enke Verlag, Stuttgart, 1960, p 450.
(22) R. Deghenghi, Org. Synth., 40, 60 (1960).
(23) E. E. Gilbert and E. J. Rumanowski, French Patent $1,320,068$ (Mar. 8, 1963); Chem. Abstr., 59, 9886 h (1963).
(24) Prepared according to the procedure given for isobutyl carbamate: J. W. Cook, R. A. Raphael, and A. I. Scott, J. Chem. Soc. 695 (1951).
(25) H. Ulrich, U.S. Patent 3,404,170 (Oct. 1, 1968); Chem. Abstr., 70, 11114 m (1969).
(26) G. Zinner and R. Stoffel, Arch. Pharm. (Weinheim, Ger.), 302, 838 (1969).
(27) G. Zinner and G. Isensee, Arch. Pharm. (Weinheim, Ger.), 307, 7 (1974). The compound was prepared in situ in dioxane as the solvent.

Kinetics and Mechanism of the Hydrolysis of
 2-Phenyl-1,3,2-benzodiazaborole

T. Okuyama,* K. Takimoto, and T. Fueno
Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Received May 24, 1977

Abstract

Rates of hydrolysis of 2-phenyl-1,3,2-benzodiazaborole and its substituted derivatives have been measured in 25% aqueous acetonitrile in the pH range of $4-11$. The reaction was catalyzed by both general acids and bases. The kinetic solvent isotope effects $k_{\mathrm{H}} / k_{\mathrm{D}}>1$ were obtained except for hydronium-ion catalysis ($k_{\mathrm{H}_{3} \mathrm{O}^{+}} / k_{\mathrm{D}_{3} \mathrm{O}^{+}}=0.55$). The Hammett ρ values for various catalytic constants were found to be positive in sign ($0.81-1.76$) again with the single exception of the $\mathrm{H}_{3} \mathrm{O}^{+}$catalysis $(\rho=-0.68)$. A possible reaction mechanism has been presented.

Boronic acids as well as boric acid easily form complexes or adducts with bifunctional oxygen or nitrogen compounds. ${ }^{1}$ Among many other examples, benzeneboronic acid and ophenylenediamine react to give a stable heterocyclic adduct, 2-phenyl-1,3,2-benzodiazaborole, under appropriate conditions. ${ }^{2}$ Dewar et al. ${ }^{3}$ showed that the stability of this adduct arises from its heteroaromaticity and noted its reluctance in hydrolysis. On the other hand, this type of boron compounds attract the interest of medicinal chemists for their possible use in cancer therapy. ${ }^{2,4}$ Hydrolytic properties at the physiological pH are essential for this use. ${ }^{4}$

However, detailed investigations on the hydrolysis of this type of compounds are scanty. The only report on such studies is concerned with in situ formation and hydrolysis of cyclic esters of boric acid and salicylamide and related compounds. ${ }^{5}$ Semiquantitative hydrolysis rates were measured with boric acid esters ${ }^{6,7}$ and aminoboranes. ${ }^{8}$

In the present investigation, hydrolysis of 2-phenyl-1,3,2-benzodiazaborole (1a) and its substituted derivatives ($\mathbf{l b}-\mathbf{l g}$) to the corresponding benzeneboronic acid and ophenylenediamine has kinetically been studied in the pH range of 4-11.

Experimental Section

Materials. 2-Phenyl-1,3,2-benzodiazaborole 1a and its derivatives $\mathbf{1 b}-\mathbf{l g}$ were prepared according to the literature ${ }^{2}$ by the condensation of an appropriate areneboronic acid ${ }^{9}$ with an ortho-aromatic diamine in xylene or toluene. The crude products were recrystallized twice from toluene: $\mathrm{mp} \mathrm{1a}, 207-208^{\circ} \mathrm{C}\left(\right.$ lit. $^{9} 212-214^{\circ} \mathrm{C}$); $1 \mathrm{~b}, 245-246{ }^{\circ} \mathrm{C}$ (lit. ${ }^{9} 242-243^{\circ} \mathrm{C}$); 1c, $235-237^{\circ} \mathrm{C}$; 1d, $222-223.5^{\circ} \mathrm{C}$ (lit. ${ }^{9} 219-221^{\circ} \mathrm{C}$); le, $157-159^{\circ} \mathrm{C}$; 1f, $221-223^{\circ} \mathrm{C}$ (lit. ${ }^{9} 224-225^{\circ} \mathrm{C}$); $1 \mathrm{~g}, 182-184^{\circ} \mathrm{C}$ (lit..9 $183-184^{\circ} \mathrm{C}$). Elemental analyses of all the substrates showed satisfactory results.

Acetonitrile was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Inorganic salts of reagent grade were used without further purification. Organic buffers were distilled or recrystallized before use. Freshly boiled, glass-distilled water was used for all rate determinations.

Kinetics. All measurements were carried out at $30 \pm 0.1^{\circ} \mathrm{C}$ in 25% aqueous acetonitrile (v / v), ionic strength being maintained at 0.10 by the addition of KCl. To prepare buffer solutions, necessary amounts of a buffer and KCl (to bring the ionic strength to 0.10) were placed in a volumetric fask, to which 0.24 part of acetonitrile was added. Then, water was added to fill the flask at room temperature.

Three milliliters of the buffer solution was equilibrated at constant temperature in a stoppered quartz cuvette inserted in a water-jacketted cell holder. Into the buffer solution was injected $30 \mu \mathrm{~L}$ of a stock solution of 1 in anhydrous acetonitrile with the use of a microsyringe. After thorough mixing, the reaction was monitored by the decrease of the absorption of the substrate ($\sim 295 \mathrm{~nm}$), using a Shimadzu spectrophotometer UV-200 with an automatic cell-positioner assembly. Pseudo-first-order plots were linear up to more than 90% reaction over the entire pH range studied.

Rates of the fast reactions in hydrochloric acid were determined with a stopped-flow spectrophotometer, Union RA-1100. The stock solution of 1a in this case was an unbuffered 25% aqueous THF solution, in which the half-time of la was no shorter than 30 min .

The pH values of buffer solutions and reaction mixtures were determined with a Hitachi-Horiba pH meter CTE F-5 calibrated with aqueous standard buffers ${ }^{10}$ supplied by the Nakarai Chemicals, Inc.

Solvent Isotope Effects. Deuterium oxide (99.75\%) as well as DCl and NaOD solutions in $\mathrm{D}_{2} \mathrm{O}(99 \%)$ was supplied by E. Merck, Darmstadt. Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ were used for buffer preparations. The pD values are given as approximate values with use of the glass electrode correction formula of Fife and Bruice. ${ }^{12}$

Results

For slow reactions of the unsubstitued substrate $1 \mathbf{a}$, scannings of the ultraviolet spectra of the reaction mixture were carried out at appropriate time intervals. Absorbance decreased in the whole wavelength region scanned, $230-320 \mathrm{~nm}$, to result in a final spectrum which completely agreed with that of the equimolar mixture of benzeneboronic acid and o-phenylenediamine. Undoubtedly, the overall reaction proceeds according to eq 2 .

$$
\begin{array}{ll}
1 \mathbf{a}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{H} & \mathbf{e}, \mathrm{X}=m \cdot \mathrm{Cl}, \mathrm{Y}=\mathrm{H} \\
\mathbf{b}, \mathrm{X}=p \cdot \mathrm{OCH}_{3}, \mathrm{Y}=\mathrm{H} & \mathbf{f}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{CH}_{3} \\
\mathbf{c}, \mathrm{X}=p \cdot \mathrm{CH}_{3}, \mathrm{Y}=\mathrm{H} & \mathbf{g}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Cl} \\
\mathbf{d}, \mathrm{X}=p-\mathrm{Cl}, \mathrm{Y}=\mathrm{H}
\end{array}
$$

The reaction was then followed spectrophotometrically at the wavelength of maximum absorbance change ($\sim 295 \mathrm{~nm}$). First-order plots were linear over 90% conversions for all the runs studied. Rate constants were determined at $30^{\circ} \mathrm{C}$ with varying buffer concentrations in aqueous solution containing $25 \%(\mathrm{v} / \mathrm{v})$ acetonitrile at a constant ionic strength of 0.10 . Observed rate constants $k_{\text {obsd }}$ were linearly dependent on the total buffer concentrations [B];

$$
\begin{equation*}
k_{\mathrm{obsd}}=k_{0}+k_{\mathrm{B}}[\mathrm{~B}] \tag{3}
\end{equation*}
$$

Figure 1. pH-rate profiles for the hydrolysis of diazaboroles: (a) la, (b) If (O) and $\lg (\bullet)$.
where k_{0} is the first-order rate constant extrapolated to zero buffer concentration.

The intrinsic rate constants k_{0} showed a pH dependence of the inverse bell shape; both the acid catalysis from acidic to neutral pH and the base catalysis at alkaline pH were observed. Examples of the pH-rate profiles are shown in Figure 1.

$$
\begin{align*}
k_{0} & =k_{\mathrm{H}_{3} \mathrm{O}^{+}}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+K_{\mathrm{w}} k_{\mathrm{OH}^{-}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+k_{\mathrm{H}_{2} \mathrm{O}} \\
& =\mathrm{k}_{\mathrm{H}_{3} \mathrm{O}^{+}}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+k_{\mathrm{OH}^{-}}\left[\mathrm{OH}^{-}\right]+k_{\mathrm{H}_{2} \mathrm{O}} \tag{4}
\end{align*}
$$

Rate constants obtained are given in Table I. The rate constant $k_{\mathrm{OH}^{-}}$was calculated from the $K_{\mathrm{w}} k_{\mathrm{OH}^{-}}$value obtained from the pH -rate profile. The ionic product K_{w} of the medium was estimated by the comparison of $k_{\mathrm{OH}^{-}}$determined separately for la in NaOH solution with the $K_{\mathrm{w}} k_{\mathrm{OH}^{-}}$value: $K_{\mathrm{w}}=$ 0.47×10^{-14}. The K_{w} value estimated here is reasonable for 25% aqueous acetonitrile at $30^{\circ} \mathrm{C}$. A mixed organic aqueous solvent would have a K_{w} value considerably smaller than that for pure water. ${ }^{13}$ The water-catalysis term was necessary to reproduce the pH -rate profile of a shallow bottom. The $k_{\mathrm{H}_{2} \mathrm{O}}$ value was essentially the same for all the substrates studied here: $k_{\mathrm{H}, \mathrm{O}}=2 \times 10^{-4} \mathrm{~s}^{-1}$.

Figure 2. Buffer-dependent rate constants in imidazole buffers for the hydrolysis of $1 \mathbf{a}(0), 1 d(\bullet)$, and $1 \mathrm{e}(0)$.

Table I. Rate Constants for the Hydrolysis of Diazaboroles at $30{ }^{\circ} \mathrm{C}$

Diazaborole	$10^{-3} k_{\mathrm{H}_{3} \mathrm{O}^{+}}$, $\mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{\mathrm{OH}^{-}},^{a}$ $\mathrm{M}^{-1} \mathrm{~s}^{-1}$
la	8.85^{b}	42.7^{c}
lb	10.7	23.8
lc	10.1	26.5
ld	5.31	66.7
le	4.04	102
lf	17.5	29.3
$\mathbf{l g}$	0.99	97.5
ρ^{c}	-0.68 ± 0.08	0.99 ± 0.05

${ }^{a}$ Calculated with $K_{\mathrm{w}}=0.471 \times 10^{-14} \mathrm{M}^{2}$ except for $\mathbf{1 a} .^{b} k_{\mathrm{H}_{3} \mathrm{O}^{+}}$ $=(8.65 \pm 0.32) \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $[\mathrm{HCl}]=0.005 \mathrm{M} .{ }^{c}$ Obtained from the hydrolysis in NaOH solutions $([\mathrm{NaOH}]=0.001-0.004$ M). Standard deviation $= \pm 0.2 \mathrm{M}^{-1} \mathrm{~s}^{-1} .{ }^{d}$ The Hammett ρ constant obtained from the rate constants for la-le.

Buffer-dependent rate constants k_{B} were partitioned into the acid and base catalytic constants, k_{HA} and $k_{\mathrm{A}^{-}}$, by their plots against the fraction of conjugate base of the buffer, as shown in Figure 2.

$$
\begin{equation*}
k_{\mathrm{B}}=\left(k_{\mathrm{HA}}[\mathrm{HA}]+k_{\mathrm{A}^{-}}\left[\mathrm{A}^{-}\right]\right) /\left([\mathrm{HA}]+\left[\mathrm{A}^{-}\right]\right) \tag{5}
\end{equation*}
$$

For most buffers the k_{HA} and $k_{\mathrm{A}^{-}}$terms were negligible respectively in the higher and lower pH regions. Only near the neutral pH (phosphate and imidazole buffers) both k_{HA} and $k_{\text {A- }}$ terms were observed. Catalytic constants obtained are summarized in Table II.

The correlation of base catalytic constants with the $\mathrm{p} K_{\mathrm{a}}$ of the conjugate acid is shown in Figure 3 for la. These Bronsted plots show a considerable scatter from the line the slope $\beta=$ 0.3). But we find no systematic deviations which imply the operation of possible nucleophilic catalysis. The scatter may have arisen simply because of the variety of catalyst structures.

The substituent effects on the catalytic constants were analyzed by the Hammett $\rho \sigma$ relationship for substrates la-1e. Linearities of the relationship are shown in Figure 4, as examples, for (a) the hydronium and hydroxide ion catalyses and (b) the imidazole buffer catalyses. The reaction

Table II. Catalytic Constants, k_{HA} and $k_{\mathrm{A}^{-}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$, for the Hydrolysis of Diazaboroles at $30{ }^{\circ} \mathrm{C}$

$\begin{gathered} \text { Registry } \\ \text { no. } \\ \hline \end{gathered}$	Acid or base	$1 \mathrm{a}^{\text {b }}$	$1 b^{\text {b }}$	$1 c^{\text {b }}$	$1 d^{b}$	$1 \mathrm{e}^{\text {b }}$	$1 \mathrm{f}^{b}$	$1 \mathrm{~g}^{b}$	ρ^{a}
75-04-7	EtNH_{2}	2.58							
109-89-7	$\mathrm{Et}_{2} \mathrm{NH}$	3.31							
121-44-8	$\mathrm{Et}_{3} \mathrm{~N}$	1.57							
3812-32-6	$\mathrm{CO}_{3}{ }^{2-}$	1.09	0.497	0.593	1.82	3.02	0.562	2.89	1.22 ± 0.06
920-66-1	$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH}$	1.92	1.02	1.20	4.79	8.08	1.45	8.18	1.45 ± 0.09
15390-83-7	$\mathrm{B}(\mathrm{OH})_{4}{ }^{-}$	0.0916	0.0418	0.0552	0.177	0.259			1.24 ± 0.01
280-57-9	N	3.78							
110-91-8	${ }^{\square} \mathrm{NH}$	1.09	0.509	0.622	2.34	3.54			1.35 ± 0.04
77-86-1	Tris	0.172	0.0735	0.0912	0.361	0.634			1.48 ± 0.04
14066-19-4	$\mathrm{HPO}_{4}{ }^{-}$	0.0844	0.0412	0.0467	0.185	0.301	0.0752	0.222	1.40 ± 0.07
288-32-4	Imidazole	0.148	0.0590	0.0750	0.375	0.770			1.76 ± 0.07
7803-49-8	$\mathrm{NH}_{2} \mathrm{OH}$	0.0998							
14066-20-7	$\mathrm{H}_{2} \mathrm{PO}_{4}$	0.0447	0.0254	0.0278	0.0732	0.108	0.0233	0.0592	1.01 ± 0.06
$17009-90-4$ $64-19-7$	Imidazolium	0.0240	0.0182	0.0198	0.0427	0.0580			0.81 ± 0.08
64-19-7	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	0.19							

${ }^{a}$ The Hammett ρ constant obtained from the catalytic constants for 1a-1e. ${ }^{b}$ Registry no.: 1a, 2479-64-3; 1b, 24341-80-8; $1 \mathrm{c}, 63181-66-8 ; 1 \mathrm{~d}, 5747-25-1$; $1 \mathrm{e}, 5785-83-1$; 1f, 28249-53-8; 1g, 63181-67-9.

Figure 3. The Bronsted plots for general base catalysis in the hydrolysis of 1a.
constants ρ are summarized in Tables I and II. The ρ values are positive ($0.81-1.76$) in sign except for the hydronium-ion catalysis ($\rho=-0.68$).

The effects of a 5 substituent can be seen in the results with 1a, lf, and lg. They are positive in the sense of the Hammet ρ value (reactivity increasing with the increasing electron attraction of a 5 substituent) except for $\mathrm{H}_{3} \mathrm{O}^{+}$catalysis. Because of the structural complexity and a small number of substituents examined, the effects cannot be treated quantitatively.
Solvent kinetic isotope effects in the hydrolysis of la were examined at both acid and alkaline pH . The kinetic results in deuterium media are given in Table III. The results in hydrochloric acid and sodium hydroxide solutions give the isotope effects,

$$
k_{\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{k}_{\mathrm{D}_{3} \mathrm{O}^{+}}=0.55 \pm 0.05}
$$

and

$$
k_{\mathrm{OH}^{-}} / \mathrm{k}_{\mathrm{OD}^{-}}=1.40 \pm 0.02
$$

Figure 4. Hammett's $\rho \sigma$ relations: (a) $k_{\mathrm{H}_{3} \mathrm{O}^{+}}(\mathrm{O})$ and $k_{\mathrm{OH}^{-}}(\bullet)$, (b) $k_{\mathrm{A}^{-}}(\mathrm{O})$ and $k_{\mathrm{HA}}(\bullet)$ in imidazole buffers.

Table III. Kinetic Data for the Hydrolysis of la in $\mathrm{D}_{2} \mathrm{O}$

Buffer	$\mathrm{DA} / \mathrm{A}^{-}$	pD	[Buffer], M	$k_{0}, \mathrm{~s}^{-1}$	$k_{\mathrm{B}}, \mathrm{M}^{-1} \mathrm{~s}^{-1}$
Acetate	1.104	5.58 ± 0.02	$0.02-0.10$	$(3.99 \pm 0.02) \times 10^{-2}$	$(4.57 \pm 0.38) \times 10^{-2}$
Carbonate	1.669	11.07 ± 0.03	$0.008-0.042$	$(3.06 \pm 0.21) \times 10^{-3}$	$(2.21 \pm 0.08) \times 10^{-1}$
DCl			0.005		$(1.56 \pm 0.09) \times 10^{4}$
NaOD			$0.002-0.004$	$(3.04 \pm 0.02) \times 10^{1}$	

Since in the acetate and carbonate buffers the base and acid catalyses are respectively negligible,

$$
k_{\mathrm{AcOD}}=8.7 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

and

$$
\left(k_{\mathrm{CO}_{3}{ }^{2-}}\right)^{\mathrm{D}}=0.59 \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

That is, the isotope effects on buffer catalyses are

$$
k_{\mathrm{AcOH}} / k_{\mathrm{AcOD}}=2.2
$$

and

$$
\left(k_{\mathrm{CO}_{3}{ }^{2-}}\right)^{\mathrm{H}} /\left(k_{\mathrm{CO}_{3}{ }^{2-}}\right)^{\mathrm{D}}=1.85
$$

Although the pD values given for the deuterium buffer solutions are only approximate, ${ }^{12}$ the k_{0} values obtained are reasonable in view of the close agreement with those estimated from the $k_{\mathrm{H}_{3} \mathrm{O}^{+}}$and $k_{\mathrm{OD}^{-}}$values.

Discussion

Hydrolysis of 1 must proceed in a stepwise manner through an intermediate formation of the acyclic aminoborinic acid 2. The intermediate 2 must be hydrolyzed much more easily

than the starting diazaborole 1 of cyclic structure. ${ }^{3,8}$ We observed no sign of accumulation of such an intermediate. Thus, in discussing the reaction mechanism in kinetic terms, we have only to consider the first step of eq 6.

Kinetics of the hydrolysis is relatively simple with acid catalysis at lower pH and base catalysis at higher pH . Acidic and basic centers of the diazaborole are a priori boron and nitrogen atoms, respectively. The acid and base catalyses should correspondingly operate at the nitrogen and boron atoms of the diazaborole. A mechanism involving nucleophilic catalysis may be excluded as mentioned above.

Hydronium-Ion Catalysis. Hydronium-ion catalyzed hydrolysis with $k_{\mathrm{H}_{3} \mathrm{O}^{+}} / k_{\mathrm{D}_{3} \mathrm{O}^{+}}<1$ must take place through preequilibrium protonation. ${ }^{14} \mathrm{~A}$ mechanism involving the rate-determining proton transfer would have resulted in $k_{\mathrm{H}_{3} \mathrm{O}^{+} / k_{\mathrm{D}_{3} \mathrm{O}^{+}}>1 \text {. The observed substituent effects must }}$ be composites of those on the first protonation equilibrium and those on the rate-determining attack of $\mathrm{H}_{2} \mathrm{O}$ toward the protonated diazaborole, 3 . The negative ρ value observed indicates that the effect on the preequilibrium step is the

greater. The transition state (4) of the second step must be structurally nearer to its initial state (3).

Base Catalysis. Base-catalyzed hydrolysis takes place with normal isotope effects of $\left(k_{\mathrm{A}^{-}}\right)^{\mathrm{H}} /\left(k_{\mathrm{A}^{-}}\right)^{\mathrm{D}}>1$. A mechanism

involving simultaneous $\mathrm{B}-\mathrm{O}$ bond formation and $\mathrm{B}-\mathrm{N}$ bond cleavage is unlikely because of the instability of the nitrogen anion intermediate 5.

The intermediacy of a tetrahedral anion like 6 is more likely. The tetrahedral intermediate of type 6 is similar to the con-

6
jugate base form of boric ${ }^{15}$ and boronic acids. ${ }^{16}$ The rate of the hydroxide addition (eq 8) was measured for benzeneboronic acid by the temperature-jump technique; $k=4.75 \times 10^{7} \mathrm{M}^{-1}$ s^{-1} in 0.10 M aqueous KCl at $35^{\circ} \mathrm{C} .{ }^{17}$ The rate constant for

the reaction of 1 with OH^{-}to form 6 would also be of the order of $10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. At least, it would never be as small as the $k_{\mathrm{OH}^{-}}$ value ($42.7 \mathrm{M}^{-1} \mathrm{~s}^{-1}$) observed here. Furthermore, the solvent isotope effects on rate-determining "hydroxide-destroying" reactions are usually ranged from 0.6 to $0.8 .{ }^{18}$ Our present
results ($k_{\mathrm{OH}^{-}} / k_{\mathrm{OD}^{-}}=1.4$) evidently fall outside this isotopeeffect range. Thus, the rate-determining step is likely to be the decay of the tetrahedral intermediate 6 (eq 9). The rate-

determining step involves proton transfer to give rise to the isotope effects $\left(k_{\mathrm{A}^{-}}\right)^{\mathrm{H}} /\left(k_{\mathrm{A}^{-}}\right)^{\mathrm{D}}>1$. A buffer conjugate acid (HA) operates as a general acid. In the hydroxide-ion catalysis, HA should be $\mathrm{H}_{2} \mathrm{O}$.

The ρ values observed (0.99-1.76) are reasonable as the sums of those for the first equilibrium (ρ_{1}) and those for the rate-determining step $\left(\rho_{2}\right)$. The ρ_{1} values would not be much different from the value observed for the equilibrium of benzeneboronic acid ($\rho_{1}=2.00^{17}$), while the ρ_{2} values would no doubt be negative in sign.

General Acid Catalysis. The mechanism of general acid-catalyzed hydrolysis, where $k_{\mathrm{H}} / k_{\mathrm{D}}>1$ and $\rho>0$, seems not to be straightforward. The mechanism must be an extraporation of that of either hydronium ion or base catalysis. In eq 7 the rate-determining water attack may be facilitated by a general base A^{-}or in eq 9 the intermediate 6 may be in an O-protonated form. That is, the transition state structurally

8

9
resembles 8 or 9 . The isotope effects observed ($k_{\mathrm{AcOH}} / k_{\mathrm{AcOD}}$ $=2.2$) seem to be compatible with both these mechanisms. The substituent effects would be close to those for eq 7 and $9 ; \rho<0$ and $\rho>0$, respectively. Thus, the mechanism similar to eq 9 , where 6 is protonated at the 0 atom and the transition state resembles 9 , seems to be more probable for the general acid-catalyzed hydrolysis.

In conclusion, the mechanism of the hydrolysis is summarized below. The acid and base catalyses occur cooperatively,

but not concertedly, and the hydrolysis undergo easily in the whole pH range in aqueous solutions.

References and Notes

(1) For reviews of pertinent literature, see (a) M. F. Lappert, Chem. Rev., 56, 959 (1956): (b) K. Torssell, Prog. Boron Chem., 1, 369-415 (1964).
(2) E. Nyilas and A. H. Soloway, J. Am. Chem. Soc., 81, 2681 (1959).
(3) M. J. S. Dewar, V. P. Kubba, and R. Pettit, J. Chem. Soc., 3076 (1958).
(4) A. H. Soloway, Prog. Boron Chem., 1, 203-234 (1964).
(5) D. W. Tanner and T. C. Bruice, J. Am. Chem. Soc., 89, 6954 (1967).
(6) A Scattergood, W. H. Miller, and J. Gammon, J. Am. Chem. Soc., 62, 1159 (1940).
(7) H. Steinberg and D. L. Hunter, Ind. Eng. Chem., 49, 174 (1957).
(8) R. J. Brotherton and A. L. McCloskey, Adv. Chem. Ser., No. 42, 131-138 (1964).
(9) F. R. Bean and J. R. Johnson, J. Am. Chem. Soc., 54, 4415 (1932).
(10) A glass-electrode pH meter should be standardized with buffers of the same solvent. However, the pH values of the aqueous mixed solvent determined in the present manner do have a practical significance, even though the values may be too high probably by about 0.1 pH unit. ${ }^{11}$
(11) R. G. Bates, "Determination of pH, Theory and Practice," 2nd ed, 1973, Wiley, New York, N. Y., Chapter 8.
(12) T. H. Fife and -. C. Bruice, J. Phys. Chem., 65, 1079 (1961). The correction formula was established for pure aqueous solution and that for mixed aqueous solution may need some modification.
(13) H. S. Harned and T. R. Dedell, J. Am. Chem. Soc., 63, 3308 (1941), gave $\mathrm{p} K_{\mathrm{w}}=14.62$ for $20 \mathrm{wt} \%$ aqueous dioxane at $25^{\circ} \mathrm{C}$.
(14) R. L. Schowen, Prog. Phys. Org. Chem., 9, 275 (1972)
(15) J. O. Edwards. G. C. Morrison, V. Ross, and J. W. Schultz, J. Am. Chem Soc., 77, 266 (1955).
(16) J. O. Edwards G. C. Morrison, V. Ross, and J. W. Schultz, J. Am. Chem. Soc., 77, 266 (1955).
(16) J. P. Lorand and J. O. Edwards, J. Org. Chem., 24, 769 (1959).
(17) T. Fueno, unpublished results.
(18) V. Gold and S Grist, J. Chem. Soc., Perkin Trans. 2, 89 (1972).

Response of Nitro-Activated Benzene and Five-Membered

 Heteroaromatic Systems to the Nucleophilic Reagent.

 Heteroaromatic Systems to the Nucleophilic Reagent.
 Kinetics of \boldsymbol{p}-Tolylthio Denitration in Methanol

Paolo Mencarelli and Franco Stegel*
Centro C.N.R. di Studio sui Meccanismi di Reazione, c/o Istituto di Chimica Organica dell'Università di Roma, 00185 Roma, Italy

Received March 31, 1977

Abstract

The rates of p-tolylthio denitration of 1 -methyl-2,5-dinitropyrrole, 2,5-dinitrofuran, 2,5-dinitrothiophene, and 1,4 -dinitrobenzene have been measured in methanol at $25^{\circ} \mathrm{C}$. The reactivity order observed differs from that observed in the piperidino denitration of the same substrates for the inversion of the reactivity between the pyrrcle and benzene derivatives. A possible cause is suggested for this inversion.

The relative reactivities of 1 -methyl-2,5-dinitmopyrrole (1), 2,5-dinitrofuran (2), and 2,5-dinitrothiophene (3) in the reaction of piperidino denitration have recently been determined 1 and compared with the reactivity of 1,4 -dinitrobenzene (4). The results were characterized by the reactivity sequence $2>3>4>1$, where the reactivity of the pyrrole derivative was only slightly lower than that of the benzenoid substrate.

Besides the presence of activating substituents and the nature of the leaving group, the nature of the nucleophilic reagent is known to affect the relative rates of nucleophilic aromatic substitutions of different substrates. ${ }^{2}$

We wish to report here on the relative reactivities of substrates $1-4$ in the substitution with the p-toluenethiolate ion, a charged nucleophilic reagent much more reactive than piperidine. As a consequence of the change of nucleophile, we find an interesting alteration of the reactivity sequence previously observed.

Experimental Section

Melting points are uncorrected. Microanalytical, UV-visible, NMR, and MS characterizations of the products were made as described in ref 1.

Materials. Substrates 1-4 were available from previous work. ${ }^{1}$ Methanol was purified from magnesium; sodium methoxide was prepared and titrated as previously described. ${ }^{3} p$-Toluenethiol (Fluka purum) was sublimated under reduced pressure; its purity was checked by TLC.
The kinetics of 2,5-dinitrothiophene were followed spectrophotometrically at the wavelength corresponding to the absorption maximum of the reaction product. Since the absorption maxima of the reaction products of the other substrates fall in the region where the p-toluenethiolate ion shows a somewhat intense abscrption, the kinetics of these compounds were followed at a longer wavelength (390 nm), where this inconvenience is less important. The substitutions of the pyrrole and benzene compounds were followed in the thermostated compartment of a Beckman DB-GT spectrophotometer; owing to the higher reactivity of the furan and thiophene de-ivatives, a Durrum D-110 stopped-flow spectrophotometer was used for the reactions of these substrates. The range of concentrations of the substrates was $0.5-1 \times 10^{-4} \mathrm{M}$. The thiolate solutions weee obtained by mixing a slight excess of thiol with a methanol solution containing a known amount of methoxide ion and by taking up to volume. The concentrations of the thiolate ion were in the range $1-10 \times 10^{-3} \mathrm{M}$ and were corrected, when required, for the thermal expansion of the solvent.
1-Methyl-2-nitro-5-(p-tolylthio)pyrrole. Sodium methoxide in methanol was slowly added, at room temperature, to a methanol solution (10 mL) containing equivalent amounts of 1 -methyl $-2,5$ dinitropyrrole and p-toluenethiol ($3.2 \times 10^{-4} \mathrm{M}$). After 2 h the solvent was removed, and the residue was washed with water and purified by chromatography on silica gel with petroleum ether and benzene 1:1: mp (ligroin) $84.5-85.5^{\circ} \mathrm{C}$; $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 354 \mathrm{~nm} ; \mathrm{M}^{+}$at $m / e 248 ; \delta$ (in CCl_{4}) 2.30 ($\mathrm{s}, 3 \mathrm{H}$), $3.90(\mathrm{~s}, 3 \mathrm{H}$), $6.38(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}$), 6.95 (br $\mathrm{s}, 4 \mathrm{H}$), 7.06 (d, $1 \mathrm{H}, J=4.0 \mathrm{~Hz}$); yield, 75%.
Anal. Calcd: C, 58.05 ; H, 4.87; N, 11.28; S, 12.91. Found: C, 58.18; H, 4.95; N, 11.12; S, 13.01 .

2-Nitro-5-(p-tolylthio)furan. $2\left(0.20 \mathrm{~g}, 0.13 \times 10^{-3} \mathrm{~mol}\right.$), dissolved in 10 mL of MeOH , was slowly added to a methanol solution containing $1.4 \times 10^{-3} \mathrm{~mol}$ of both toluenethiol and sodium methoxide. A TLC analysis at the end of the addition showed the formation of one product only and the absence of 2 . After removal of the solvent under reduced pressure, the organic material was immediately dissolved in benzene and purified from traces of unreacted thiol by chromatography on silica gel with benzene. The product was recrystallized from hexane: mp 39.5-40.5 ${ }^{\circ} \mathrm{C}$; $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 358 \mathrm{~nm} ; \mathrm{M}^{+}$ at $m / e 235 ; \delta\left(\right.$ in $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 2.35(\mathrm{~s}, 3 \mathrm{H}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz})$, $7.1-7.5(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}$); yield, 67%.

Anal. Calcd: C, 56.16 ; H, 3.86; N, 5.96. Found: C, 55.7 ; H, 3.6; N, 5.8.

This product decomposes within a few days on standing, and more rapidly in the presence of bases, to give black tars. It should be stored in the cold, away from light.

2-Nitro-5-(p-tolylthio)thiophene. A procedure substantially similar to the one just described was used. The product had a melting point $39-40^{\circ} \mathrm{C}$, significantly different from that previously reported $\left(57^{\circ} \mathrm{C}\right) .{ }^{4}$ However, the presence in the NMR spectrum of two doublets with the coupling constant typical of 2,5-disubstituted thiophenes ${ }^{5}$ leaves no doubt about the structure of the product: M^{+}at $m / e 251$; $\lambda_{\max }(\mathrm{MeOH}) 385 \mathrm{~nm} ; \delta\left(\right.$ in $\left.\mathrm{CCl}_{4}\right) 2.39(\mathrm{~s}, 3 \mathrm{H}), 6.87 \mathrm{Id}, 1 \mathrm{H}, J=4.2$ Hz), $7.0-7.5(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}$); yield, 41%.

1-Nitro-4-(p-tolylthio)benzene. The substitution on 4 was performed under conditions similar to the substitution of 1 ; because of the lower reactivity of 4 , the reaction was run with a small excess of thiolate nearly 20 h : mp 78-78.5 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{6} 80-81^{\circ} \mathrm{C}$; ; $\lambda_{\text {max }}(\mathrm{MeOH})$ 341 nm ; yield, 62%.

Results and Discussion

Compounds 1-4 undergo the p-tolylthio denitration reaction in methanol by the action of the conjugate base of p toluenethiol. As expected, in going from the neutral piperidine to an anionic nucleophilic reagent, a strong rate enhancement is observed. However, it must be remarked that the rate increase in the thiolate reaction may be partially offset by the use of methanol, a solvent that is generally slower ${ }^{7}$ than acetonitrile in nucleophilic aromatic substitution and is also expected to decrease the reactivity of anionic nucleophiles through the formation of strong hydrogen bonds. A direct comparison of the reactivity of all substrates in both piperidino and arylthio denitration was not feasible in the same solvent, owing to the large reactivity range in the series $1-4$; thus, the pyrrole and benzene derivatives (1 and 4) are very poorly reactive toward piperidine in methanol, whereas 2,5 dinitrofuran reacts very fast with anionic nucleophiles in acetonitrile.

The formation of the expected thioethers occurs in a straightforward way under both preparative and k inetic conditions, and no side-products were detected by TLC analysis.

The kinetics were run in the presence of an excess of the nucleophilic reagent and were characterized by good pseudo-first-order plots up to 90% in all cases. This is contrasted by the fact that the kinetics of piperidino denitration

Table I. Kinetic Data for the \boldsymbol{p}-Tolylthio Denitration of Compounds 1-4 in Methanol at $25{ }^{\circ} \mathrm{C}$

Compd	$\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$ no.	$k,{ }^{a} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$k_{\text {rel }}$
1	56350-95-9	2.60	1
2	826-03-9	4.4×10^{3}	1.7×10^{3}
3	59434-05-8	4.2×10^{2}	1.6×10^{2}
4	100-25-4	2.24×10^{-2}	8.8×10^{-3}

${ }^{a}$ Corrected for statistical factors.

Figure 1. Free-energy correlation between piperidino denitration in $\mathrm{CH}_{3} \mathrm{CN}\left(\log k_{\text {pip }}\right)$ and p-tolylthio denitration in $\mathrm{CH}_{3} \mathrm{OH}\left(\log k_{\mathrm{ArS}}\right)$, at $25^{\circ} \mathrm{C}$, of substrates $1-4$.
of the less reactive substrates 1 and 4 did nct show such a well-behaved pattern, probably because of the occurrence of side reactions. ${ }^{1}$

Rate data for the p-tolylthio denitration reaction at $25^{\circ} \mathrm{C}$ are reported in Table I. They show that in this reaction the reactivity order for the heterocyclic substrates $(2>3>1)$ is the same as that observed in the piperidino denitration reaction.

In contrast, an interesting inversion of reactivity is obtained for the reactions of the pyrrole and benzene derivatives; thus, while the benzenoid substrate 4 is decidedly more reactive than the pyrrole derivative 1 , the less reactive of the heteroaromatic substrates, in the reaction with piperidine $\left(k_{1} / k_{4}=\right.$ 0.1), the reverse is true for the reaction with th.e thiolate ion. For this reaction, the reactivity ratio k_{1} / k_{4} is 1.1×10^{2}, so that the benzenoid substrate is far less reactive in the series 1-4.

It becomes thus evident that, since the reactivity ratio k_{1} / k_{4} is strongly dependent on the nature of the nucleophile, it is not possible to indicate in a general way whether pyrrole derivatives are more or less reactive than similarly substituted benzene derivatives.

It is also worth noting that the reaction of the three heteroaromatic substrates with the more reactive reagent, i.e., the thiolate ion, is less selective than that with piperidine, as shown in the free-energy plot of Figure 1. The straight line

Table II. Comparison of Activation Parameters for the p-Tolylthio ${ }^{a}$ and Piperidino Denitration ${ }^{b_{c}}$ of Compounds 1 and 4 at $25^{\circ} \mathrm{C}$

Compd	p-Toluenethiolate		Piperidine	
	$\begin{gathered} \Delta H^{\ddagger} \\ \mathrm{kcal} \mathrm{~mol} \\ \hline \end{gathered}$	$\begin{gathered} -\Delta S^{\ddagger}, \\ \text { cal } \mathrm{mol}^{-1} \mathbf{K}^{-1} \end{gathered}$	$\begin{gathered} \Delta H^{\ddagger} \\ \mathrm{kcal} \mathrm{~mol}^{-1} \end{gathered}$	$\begin{gathered} -\Delta S^{\ddagger} \\ \text { cal } \mathrm{mol}^{-1} \mathrm{~K}^{-1} \end{gathered}$
1	$13.7(\pm 0.5)$	$10.7(\pm 1.0)$	$14.5(\pm 1)$	$40(\pm 2)$
4	$16.8(\pm 0.9)$	$9.7(\pm 2.9)$	$11.5(\pm 0.6)$	$46(\pm 2)$

${ }^{a}$ Present work. Pertinent kinetic data at different temperatures are reported as follows (k corrected, $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$): $1,1.43$ $\left(18.0^{\circ} \mathrm{C}\right), 2.60\left(25.0^{\circ} \mathrm{C}\right), 4.86\left(32.7^{\circ} \mathrm{C}\right), 7.86\left(39.6^{\circ} \mathrm{C}\right) ; 4,1.14 \times$ $10^{-2}\left(18.0^{\circ} \mathrm{C}\right), 2.24 \times 10^{-2}\left(25.0^{\circ} \mathrm{C}\right), 4.77 \times 10^{-2}\left(32.5^{\circ} \mathrm{C}\right), 9.56$ $\times 10^{-2}\left(40.4^{\circ} \mathrm{C}\right) .{ }^{b}$ Reference 1.
described by the three heteroaromatic substrates $1-3$ has a slope of nearly 2 . This correlation indicates that the factors involved in determining the relative reactivities of these substrates are probably the same in both reactions, even if the higher reactivity of the thiolate and, consequen:ly, the lower perturbation expected for the ring in the formation of the transition state may be held responsible for the lower selectivity in the reaction with this reagent.
As expected from the noted inversion of the k_{1} / k_{4} ratio, the benzenoid substrate 4 is located definitely out o气 the straight line (Figure 1).
It may be not surprising to find a lack of correlation between the data of 1-3 and those of 4, as the absence of the heteroatom and the larger dimensions of the benzene ring are expected to affect the deiocalization of the negative charge developing in the benzene compound.

The quantitative significance of these differences in reactivity can be further worked out by comparing the activation parameters for both reactions of the pyrrole and benzene terms (Table II;. Unfortunately, the relatively high reactivity of the furan and thiophene derivatives in the thiolate reaction made it impossible to obtain activation data as reliable as those for 1 and 4.

In going from the piperidino to the arylthio denitration the most important changes which seem responsible for the general increase of rate concern the activation entropy, which becomes much ess negative. The direction of these changes is consistent with a greater requirement of reorganization of the solvent for the formation of a dipolar transition state from uncharged reagents.

The data in Table II show, on the other hand, that the activation enthalpy is a very important factor in determining the inversion of reactivity between the pyrrole and the benzene derivative. Thus, the reaction of the benzenoid substrate with piperidine is characterized by a ΔH^{\ddagger} lower than that of the pyrrole substrate, and the reverse is observed for the reaction with the thiolate ion.

In dealing with the reactions of substrates 1-4 with piperidine, it was suggested ${ }^{1}$ that some rate-depressing effect could arise in the heteroaromatic substrates from the conjugation of the leaving group with the heteroatom in the ground state. However, in the thiolate reaction this effect must be more than counterbalanced by some other factors, since 1,4 -dinitrobenzene is the less reactive in the series, even if the conjugation of the nitro group in this substrate should be particularly weak, owing to the absence of heteroatoms.

In seeking an explanation of this fact, we can observe that a similar situation may be found in the nucleophilic substitution of 4 -nitrohalogenobenzenes ${ }^{8}$ (and of other similarly activated halogenobenzenes), ${ }^{9}$ where the fluorine atom, which is expected to be strongly conjugated with the nitro group, is displaced more rapidly than iodine. It must be noted that this effect is much more intense with $\mathrm{CH}_{3} \mathrm{O}^{-}$than with $\mathrm{CH}_{3} \mathrm{~S}^{-} .{ }^{10}$

This difference in behavior has been accounted for by the higher affinity of the polarizable nucleophilic reagent $\mathrm{CH}_{3} \mathrm{~S}^{-}$ for the reaction center bound to the more polarizable iodine atom. ${ }^{11}$ The less reactive iodo derivative shows in both reactions a higher activation enthalpy than the fluoro derivative; however, the difference $\Delta \Delta H^{\ddagger}=\left(\Delta H^{\ddagger}{ }_{\mathrm{I}}-\Delta H^{ \pm}\right.$F $)$becomes smaller ${ }^{10}$ in going from the reaction with $\mathrm{CH}_{3} \mathrm{O}^{-}\left(\Delta \Delta H^{\ddagger}=3.9\right.$ $\mathrm{kcal} / \mathrm{mol}$) to the reaction with the more polarizable $\mathrm{CH}_{3} \mathrm{~S}^{-}$ $\left(\Delta \Delta H^{\ddagger}=1.8 \mathrm{kcal} / \mathrm{mol}\right)$.
Another striking example of the role of the polarizability of the ring-leaving group bond is given by the comparison of reactivity of methoxide and benzenethiolate ions with 2 halobenzothiazoles. ${ }^{12}$ In the reaction of otherwise unsubstituted 2-halobenzothiazoles, where the polarizability factor is relatively unimportant, methoxide ion is more reactive than PhS^{-}; the reverse is true in the reaction of 2-halo-6-nitrobenzothiazoles, where the polarizability of the Hal-C bond becomes stronger, owing to the conjugation with the nitro group.

Therefore, we suggest that the observed inversion of reactivity between the pyrrole and the benzene derivatives may be associated with the polarizability of the leaving groups on the different substrates. In the pyrrole derivative, as well as in the other five-membered heteroaromatic substrates, the bond between the reaction center and the nitro groups should be more polarizable than in 1,4-dinitrobenzene because of the possibility of an extended conjugation between the heteroatom and both nitro groups. The reaction of the benzene compound with the polarizable thiolate ion could not benefit from this possibility, thus becoming slower than the reaction
of pyrrole compound 1 . However, at the moment, a detailed evaluation among the heteroaromatic substrates of the role of this factor, as compared to other important factors ${ }^{1}$ (electronegativity of the heteroatom, aromaticity o^{-2} the ring), is not yet feasible.

Acknowledgments. We wish to thank Professor G. Illuminati for helpful discussions and Dr. G. Doddi for the stopped-flow measurements.

Registry No.-Methanol, 67-56-1; p-toluenethiol, 106-45-6; 1-methyl-2-nitro-5-(p-tolylthio) pyrrole, 63059-30-3; 2-nitro-5-(p-tolylthio)furan, 63059-31-4; 2-nitro-5-(p-tolylthio)thiophene, 19991-81-2; 1-nitro-4-(p-tolylthio) benzene, 22865-48-1.

References and Notes

(1) G. Doddi, G. Illuminati, P. Mencarelli, and F. Stegel, J. Org. Chem., 41, 2824 (1976).
(2) J. Miller, "Aromatic Nucleophilic Substitution", Elsevier, Amsterdam, 1968.
(3) P. Bemporad, G. Illuminati, and F. Stegel, J. Am. Chem. Soc., 91, 6742 (1969).
(4) C. Dell'Erba and D. Spinelli, Boll. Sci. Fac. Chim. Ind. Bologna, 26, 97 (1968).
(5) R. F. M. White in "Physical Methods in Heterocyclic Chemistry", Vol. 2, A. R. Katritzky, Ed., Academic Press, New York, N.Y., 1963, p 117.
(6) H. Gilman and H. S. Broadbent, J. Am. Chem. Soc., 69, 2053 (1947).
(7) G. Illuminati in "Solutions and Solubilities", Part 2, M. R. J. Dack, Ed., Wiley, New York, N.Y., 1976, p 178.
(8) G. P. Briner, J. Miller, M. Liveris, and P. G. Lutz, J. Chem. Soc., 1265 (1954).
(9) A. L. Beckwith, J. Miller, and G. D. Leahy, J. Chem. Scc., 3552 (1952). (10) J. Miller and K. W. Wong, J. Chem. Soc., 5454 (1965).
(11) J. F. Bunnett and W. D. Merritt, J. Am. Chem. Soc., 79, 5967 (1957).
(12) P. E. Todesco, P. Vivarelli, and A. Ricci, Tetrahedron Lett., 3703 (1964).

Comparative Use of Benzhydrylamine and Chloromethylated Resins in Solid-Phase Synthesis of Carboxamide Terminal Peptides. Synthesis of Oxytocin Derivatives ${ }^{1,2}$

Victor J. Hruby,* Donald A. Upson, and Nirankar S. Agarwal

Department of Chemistry, University of Arizona, Tucson, Arizona 85721
Received February 14, 1977

Abstract

Specifically deuterated derivatives of the peptide hormone oxytocin were synthesized by the solid-phase metiod of peptide synthesis using either the standard chloromethylated resin or the benzhydrylamine resin as the support for the syntheses, and a comparison of the overall efficiency of the syntheses on the two resins was made. [1-Hemi-DL- $\left[\beta, \beta-{ }^{2} \mathrm{H}_{2}\right]$ cystine]oxytocin was synthesized using the standard chloromethylated resin, and the two diastereomers were separated and purified by partition chromatography and gel filtration in an overall yield of about 30%. [1-Hemi-DL- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine]oxytocin was prepared using the benzhydrylamine resin to prepare the nonapeptide resin precursor, but otherwise using essentially identical conditions as used for the synthesis on the chloromethylated resin. Again the two diastereomers were separated and purified by partition chromatography and gel filtration. The overall yield of purified diastereomers under the best conditions was about 49%. For the synthesis of the latter compounds, S-3,4-dimethylbenzyl protecting groups were used to introduce the cysteine residues. The overall yields of the peptide hormone derivatives prepared on the benzhydrylamine resin were substantially improved if HF reactions were run at lower temperatures $\left(0^{\circ} \mathrm{C}\right.$ rather than $\left.25^{\circ} \mathrm{C}\right)$, and if the S-3,4-dimethylbenzyl rather than the S-benzyl group was used for cysteine protection. Reproducible procedures for preparing benzhydrylamine resins with amino substitution levels of $0.15-0.45 \mathrm{mmol}$ of amino group $/ \mathrm{g}$ of resin were developed.

Since the introduction of the solid-phase synthesis of peptides by Merrifield, ${ }^{3}$ the primary resin support has been chloromethylated polystyrene cross-linked with $1-2 \%$ divinylbenzene. ${ }^{4,5}$ With this resin, the C-terminal amino acid is attached to the resin to afford a C-terminal resin benzyl ester. Subsequent synthesis of the remaining peptide chain is then accomplished with the resin benzyl ester serving as the Cterminal protecting group. This group is reasonably stable to
the usual conditions of solid-phase peptide synthesis, but losses of $1-2 \%$ have been observed during each. coupling procedure. ${ }^{6,7}$ If a carboxamide C-terminal residue is desired, as is the case for many small biologically active peptides, it is generally necessary to first cleave the peptide from the resin as the protected carboxamide terminal derivative and then remove the other protecting groups. The former is usually done by treatment of the peptide resin with ammonia in an-
hydrous methanol ${ }^{8}$ using the above resin or the corresponding nitrated resin, ${ }^{9}$ or by transesterification followed by ammonolysis. ${ }^{10}$ Displacement of the peptide from the resin is not always achieved ${ }^{11}$ and even in favorable cases, the peptide is not quantitatively cleaved from the resin by ammonolysis. In addition, the methodology is generally not compatible with aspartic acid and glutamic acid containing peptides. To help circumvent some of these problems, Pietta and Marshall ${ }^{2}$ and others ${ }^{13,14}$ have used the benzhydrylamine resin for the preparation of carboxamide terminal peptides, and it has found considerable use in peptide synthesis. ${ }^{43}$ Several alternative resins for solid-phase synthesis of carboxamide terminal peptides have appeared. ${ }^{15-18}$ However, little has been done to evaluate the comparative merits of the benzhydrylamine resin or its optimum use in solid-phase peptide synthesis except for the work of Orlowski et al., ${ }^{15}$ using a p-methoxybenzhydrylamine resin to prepare di- and tripeptides. We report here the synthesis of derivatives of the nonapeptide hormone oxytocin,
which posseses a C-terminal glycinamide residue, using the benhydrylamine resin and the conventional chloromethylated resin, and compare the syntheses under a variety of conditions. We have found the benzhydrylamine resin more advantageous. In the course of these studies we have also prepared benzhydrylamine resins with reproducible levels of amino substitution, and synthesized a derivative of S-3,4-dimeth-ylbenzyl-DL- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cysteine for use in the synthesis of the oxytocin derivatives on the benzhydrylamine resin.

The solid-phase syrthesis on the chloromethylated resin was accomplished by standard procedures used in our laboratory to prepare oxytocin derivatives. ${ }^{19,20}$ [1-Hemi-DL[$\beta, \beta-{ }^{2} \mathrm{H}_{2}$]cystine]oxytocin was prepared, and the diastereomeric hormone derivatives were separated and purified ${ }^{19,20}$ by partition chromatography, ${ }^{21,22}$ followed by gel filtration chromatography on Sephadex G-25. The overall yield of purified oxytocin derivatives is 30% (see Experimental Section), ${ }^{23}$ which is a typical yield obtained by this procedure in the synthesis of oxytocin and derivatives. $8,19,20$

For the solid-phase synthesis on the benzhydrylamine resin, polystyrene resin, 1% cross-linked with divinylbenzene, was converted to the benzhydrylamine resin by a slight modification of procedures previously reported. ${ }^{14 \mathrm{a}}$ The polystyrene cross-linked resin was converted to a phenyl ketone resin, followed by reductive amination using ammonium formate at $150-160^{\circ} \mathrm{C}$ for various lengths of time. A highly reproducible level of amino substitution on the resin could be obtained, with the substitution being $0.15 \pm 0.02,0.35 \pm 0.04$, and $0.45 \pm 0.05 \mathrm{mmol}$ of amine $/ \mathrm{g}$ of resin after 20,36 , and 48 h, respectively. All of these resins retained excellent mechanical and swelling properties for peptide synthesis. In the syntheses of oxytocin derivatives reported here we have used a resin substituted at a level of 0.37 mmol of glycinamide $/ \mathrm{g}$ of resin. In this way a direct comparison with the chloromethylated resin (in which the substitution level was 0.36 mmol of glycinate/g of resin-see Experimental Section) was made. Amino and peptide resins from the chloromethylated and benzhydrylamine resins showed similar structural and mechanical behavior throughout the syntheses.

For the synthesis on the benzhydrylamine resin, we chose the synthesis of [1-hemi-DL- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine] oxytocin, in which the diastereomeric derivatives were separated from one another and purified by partition chromatography on Sephadex G-25. This permitted a direct comparison of the use of the two different starting resins under essentially identical conditions of purification as well as peptide synthesis. The rationale for
preparing partially deuterated peptide hormone derivatives and their uses in biochemical and biophysical studies have been discussed elsewhere. ${ }^{19,24,25}$

The first synthesis on the benzhydrylamine resin followed the same procedures as the synthesis on the chloromethylated resin, except that no benzyl protecting group was used on the hydroxyl group of tyrosine. Previous studies have shown that when peptides with O-benzyl protected tyrosine residues are treated with HF, an undesirable side reaction involving alkylation of the tyrosine aromatic nucleus obtains, ${ }^{26}$ and we wished to avoid this in our syntheses. The protected specifically deuterated amino acid Boc-S-benzyl-DL- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cysteine ${ }^{19}$ was used to introduce the N-terminal amino acid residue (see Experimental Section). The peptide resin Boc-DL- $[\alpha-$ ${ }^{2} \mathrm{H}_{1}$]Cys(Bzl)-Tyr-Ile-Gln-Asn-Cys(DMB)-Pro-Leu-Gly-NH-resin was treated with anhydrous HF containing 10% anisole at $20^{\circ} \mathrm{C}$ for 1 h , and the residual S-benzyl protecting groups ${ }^{27}$ were removed by treatment of the peptide material obtained from the HF treatment with sodium in anhydrous liquid ammonia. ${ }^{28}$ The peptide was oxidized with 0.01 N $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{29}$ under nitrogen. ${ }^{30}$ The isomers were separated from each other and from by-products by partition chromatography on Sephadex G-25, followed by gel filtration of the separated diastereomers on Sephadex G-25. ${ }^{31}$ The overall yield of purifiec peptides was 29%, which was essentially the same as was obtained using the chloromethylated resin.

The need to utilize two separate reaction steps to completely remove the S-benzyl protecting group led us to investigate the use of the 3,4-dimethylbenzyl group for sulfhydryl protection, since previous studies had shown that the group was completely removed by treatment with HF. ${ }^{32,33}$ Again we synthesized [1-hemi-DL- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine $]$ oxytocin and separated and purified the diastereomers. The synthesis of the desired peptide precursor on the benzhydrylamine resin followed the same procedures as before, except that a S 3,4 -dimethylbenzyl derivative of the specifically deuterated amino acid DL- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cysteine was prepared and used to incorporate the cysteine residue at position 1 (see Experimental Section).

The protected peptide resin Boc-DL- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right] \mathrm{Cys}(\mathrm{DMB})$ -Tyr-Ile-Gln-Asn-Cys(DMB)-Pro-Leu-Gly-NH-resin was treated with HF containing 10% anisole at $0^{\circ} \mathrm{C}$ for 60 min . After the usual workup, oxidation, and purification the purified diastereomeric hormone derivatives [1-hemi-L- $[\alpha-$ $\left.{ }^{2} \mathrm{H}_{1}\right]$ cystine]oxytocin and [1-hemi-D- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine] oxytocin were obtained in an overall yield of 49%. On the other hand, a similar cleavage run at $25^{\circ} \mathrm{C}$ in HF for 1 h gave only a 26% overall yield of the two purified diastereomeric peptides and large amounts of by-products.
The hormone derivatives from the various syntheses were assessed for purity and found to be pure by several criteria, including single spots and identical behavior with authentic oxytocin or [1-hemi-D-cystine] oxytocin on TLC using at least three different solvent systems, amino acid analysis, optical rotation, carbon-13 and proton NMR, and by their milkejecting activities. ${ }^{34}$

These comparative studies of solid-phase synthesis of oxytocin derivatives using chloromethylated and benzhydrylamine resin suggest that somewhat greater overall yields of oxytocin derivatives (from starting Gly resins to purified peptide hormone derivatives) can be obtained on benzhydrylamine resins than on chloromethylated resins. Under the best synthetic and cleavage conditions for using the benzhydrylamine resin (HF at $0^{\circ} \mathrm{C}$ for $60 \mathrm{~min}, S-3,4$-dimethylbenzyl protecting groups) our overall yield of purified hormone derivatives was 49%. Very similar yields in the synthesis of oxytocin (55%) have also been obtained on benzhydrylamine resins by Live, Agosta, and Cowburn ${ }^{35}$ using similar procedures to those reported here. The overall yields (glycine-
substituted resin to final purified oxytocin derivatives) on chloromethylated resins as reported here (see Experimental Section) and elsewhere ${ }^{8,19,20}$ are generally about 30%.

However, it must be pointed out that if the HF cleavage of the protected peptide-benzhydrylamine resin is run at $25^{\circ} \mathrm{C}$ rather than $0^{\circ} \mathrm{C}$, or S-benzyl groups are used rather than S-3,4-dimethylbenzyl groups, the overall yields of pure oxytocin derivatives (26 and 29%, respectively) are about the same as obtained on the chloromethylated resin. Hence, proper choice of HF cleavage conditions and protecting groups are crucial to obtaining any advantages for the benzhydrylamine resin. The exact nature of the side reactions responsible for the decrease in yields in running the HF reaction at $25^{\circ} \mathrm{C}$ rather than $0^{\circ} \mathrm{C}$ (both reactions were run with the same precursor peptide resin) was not determined, though it undoubtedly involved reactions at the sulfur atomis) of the cysteine residue(s). This was indicated by the large increase in dimeric and other high molecular weight products observed under the latter condition, and the large decrease in halfcystine content in these side products on amino acid analysis (see Experimental Section).

We have used the Leuckart reductive amination procedure in the preparation of the benzhydrylamine resin, which Orlowski et al. ${ }^{15}$ have shown to be the preferred method of synthesis, since it leads to little or no undesirable secondary amine formation. We obtained an overall yield of about $\leq 9 \%$ of the purified oxytocin derivates (an octa- or nonapeptide), which compares well with the overall yields of 65 and 75% for two purified tripeptides which Orlowski et al. ${ }^{15}$ obtainec using the p-methoxybenzhydrylamine resin. Since the length and the properties of the peptides are quite different, it is difficult to compare the relative merits of the two resins. However, the results obtained do suggest that the benzhydrylamine resin (and/or its substituted derivatives) is particularly attractive for the syntheses of carboxamide terminal peptides containing specifically labeled derivatives, such as the ${ }^{2} \mathrm{H}$ compounds reported here, and those containing ${ }^{14} \mathrm{C},{ }^{3} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N},{ }^{125} \mathrm{I}$, and other labels which are of increasing importance in studies of peptide hormone structure and function, and which often must be incorporated using very precious and expensive amino acid derivatives.

Experimental Section

Thin layer chromatography (TLC) was done on silica gel G glass plates using the following solvent systems: (A) 1-butanol-acetic acid-water (4:1:5, upper phase only); (B) 1-butanol-\&cetic acid-pyridine-water (15:3:10:12); (C) 1-pentanol-pyridine-water (7:7:6). The peptides were detected on the TLC plates using ultraviolet light, iodine vapors, ninhydrin, and fluorescamine. Capillary melting points were determined on a Thomas-Hoover melting point apparatus and are uncorrected. Nuclear magnetic resonance (NMR) spectra were obtained using a Varian T-60 spectrometer or a Bruker WH-90 FT spectrometer. Optical rotation values were measured at the mercury green line (547 nm) using a Zeiss Old 4 polarimeter. Elemental analyses were performed by Spang Microanalytical Laboratory. Amino acid analyses were obtained by the method of Spackman, Stein, and Moore ${ }^{36}$ on a Beckman 120C amino acid analyzer after hydrolysis in 6 N HCl for 22-24 h at $110^{\circ} \mathrm{C}$. Partition chromatography purification and separation of oxytocin diastereomers was accomplished on Se phadex G-25 (block polymerizate). ${ }^{20-22}$ Following partition chromatography, detection of peptides in eluents was made using UV spectroscopy (280 or 260 nm) or by the Folin-Lowry method. ${ }^{37}$ The desired peptides were isolated by addition of deionized water to the organic solvents, followed by rotary evaporation in vacuo at $25-30^{\circ} \mathrm{C}$ and lyophilization of the aqueous solution.

Solid-Phase Peptide Synthesis Procedures. Solid-phase peptide syntheses were done using either the Merrifield resin of chloromethylated polystyrene beads cross-linked with 1% divinylbenzene substituted with Boc-glycine ${ }^{4}$ or using the benzhydrylamine resin substituted with Boc-glycine (vide infra). The tert-butyloxycarbonyl (Boc) group was used for protection of a α-amino groups of amino acids. Protection of side-chain functional groups was O-benzyl or no hydroxyl protection for Tyr , and S-benzyl (Bzl) or S-3,4-dimethyl-
benzyl (DMB) for cysteine. All protected amino acids were monitored for purity by TLC in at least three solvent systems and by mixed melting points. Asparagine and glutamine were coupled with a fourfold excess of the protected amino acid p-nitrophenyl ester and 1 hydroxybenzotriazole as catalyst. ${ }^{19}$ In general, two coupling steps were used for dicyclohexylcarbodiimide (DCC) mediated coupling of the protected amino acid in methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ using a $1.5-3$ molar excess of the protected amino acid and a $1.2-2.4$ molar excess of DCC in each coupling step. Coupling times generally were for 30 min . A typical synthesis program for coupling an amino acid residue to the growing peptide chain was as previously detailed. ${ }^{19}$ All coupling steps were monitored by the ninhydrin method ${ }^{38}$ to ensure complete coupling, and coupling reactions were repeated if a positive test (<99\% coupling) was indicated.
3,4-Dimethylbenzyl Mercaptan (2). The general procedure of Urquhart et al. ${ }^{39}$ for preparing alkyl mercaptans was used. From 30.93 $\mathrm{g}(0.2 \mathrm{~mol})$ of 3,4 -dimethylbenzyl chloride (1) and $15.2 \mathrm{~g}(0.2 \mathrm{~mol})$ of thiourea, $24.9 \mathrm{~g}(82 \%)$ of the title compound was obtained: bp $94^{\circ} \mathrm{C}$ $(7 \mathrm{~mm})$ [lit..$\left.^{40} \mathrm{bp} 112{ }^{\circ} \mathrm{C}(14 \mathrm{~mm})\right] ;$ NMR (neat) $\left.\delta 1.35 \mathrm{t}, 1 \mathrm{H}\right), 1.80(\mathrm{~s}$, 6 H), 3.20 and 3.22 (d of d, 2 H), 6.62 ($\mathrm{s}, 3 \mathrm{H}$).
\boldsymbol{S}-3,4-Dimethylbenzyl-dL- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cysteine (5). The title compound was prepared by a slight modification of published methods. ${ }^{19,41,42}$ From $3.04 \mathrm{~g}(20 \mathrm{mmol})$ of 3,4-dimethylbenzyl mercaptan (2) and $8.37 \mathrm{~g}(21 \mathrm{mmol})$ of diethyl α-acetamido- α-dimethylami nomethylmalonate methiodide in 75 mL of ethanol- $-d, 2.64 \mathrm{~g}(73 \%)$ of the title compound was obtained: $\mathrm{mp} 202-203^{\circ} \mathrm{C}$ (lit. mp for protio compound, $184-186^{\circ} \mathrm{C} ; 3^{33} 195-197^{\circ} \mathrm{C}^{32}$); TLC in solvent systems A and B gave single spots identical to authentic S-3,4-dimethylben-zyl-L-cysteine; NMR ($\mathrm{CD}_{3} \mathrm{CO}_{2} \mathrm{D}$) $\delta 2.25$ (s, 6 H), 3.10 (s, br, 2 H), 3.75 ($\mathrm{s}, \mathrm{br}, 2 \mathrm{H}$), 4.3-4.7 (α - CH , undetectable), 7.05 ($\mathrm{s}, 1.2 \mathrm{H}-$ an exchange of about two deuterium atoms into aromatic ring has occurred)
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{D}_{3} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 59.48 ; \mathrm{H}, 8.17 ; \mathrm{N}, 5.78$. Found: C, 59.15; H, 7.89; N, 6.16.
\boldsymbol{N}-Boc-S-3,4-Dimethylbenzyl-DL-[$\alpha-{ }^{2} \mathbf{H}_{1}$]cysteine. The title compound was prepared by the procedure of Schnabel. ${ }^{43}$ Treatment of 2.0 g of 5 gave $2.02 \mathrm{~g}(72 \%)$ of the title compound, $\mathrm{mp} 120.5-121.5$ ${ }^{\circ} \mathrm{C}$. Single uniform spots were obtained on TLC using systems A and B with R_{f} values identical with those of the L-protio analogue: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45$ (s, 9 H), $2.20(\mathrm{~s}, 6 \mathrm{H}), 2.8-2.9$ (br s, 2 H), $3.65-3.75$ (br $\mathrm{s}, 2 \mathrm{H}$), 4.40-4.60 (α-CH undetectable), 7.0 ($\mathrm{s}, 1.2 \mathrm{H}$), 11.1 ($\mathrm{s}, 1 \mathrm{H}$).
Synthesis of Benzhydrylamine Resin. A highly reproducible synthesis of benzhydrylamine resin ${ }^{12-14}$ has been obtaned as outlined below. The copolystyrene-1\% divinylbenzene phenyl ketone resin was prepared as previously outlined, ${ }^{14 a}$ except that more extensive washings were performed using EtOH and 50% aqueous EtOH . From 30 g of polystyrene resin cross-linked with 1% divinylbenzene (Biobeads S-X1, 200-400 mesh) there was obtained 33.7 g of pale cream colored phenyl ketone resin, IR (KBr pellet) $1660 \mathrm{~cm}^{-1}$.

The Leuckart reaction was run under similar conditions to those previously reported. ${ }^{14 a}$ The reactions were run with $5-\mathrm{g}$ portions of the ketone resin for 20,36 , or 48 hat $150-160^{\circ} \mathrm{C}$ (oil bath temperature, $170-180^{\circ} \mathrm{C}$). The mixture was cooled and the resin filtered off and washed with four $50-\mathrm{mL}$ portions of $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resin was dried in vacuo and then hydrolyzed with 80 mL of 12 N HCl in propanoic acid ($1: 1$) at reflux for 5 h . The resin salt was filtered off, washed with four $50-\mathrm{mL}$ portions of $\mathrm{H}_{2} \mathrm{O}, 50 \%$ aqueous $\mathrm{EtOH}, \mathrm{EtOH}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then neutralized with two $50-\mathrm{mL}$ эortions of 10% diisopropylethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After washing thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the resin was dried in vacuo, yield $\sim 4.7 \mathrm{~g}$.
In several separate preparations, the degree of amino substitution was found to be reasonably constant by the preceding procedures, being $0.15 \pm 0.02 \mathrm{mmol} / \mathrm{g}$ of resin after 20 h of reductive amination, $0.35 \pm 0.04 \mathrm{mmol} / \mathrm{g}$ of resin after 36 h , and $0.45 \pm 0.05 \mathrm{mmol} / \mathrm{g}$ of resin after 48 h . The degree of substitution was determined by a direct aldimine test ${ }^{39,40}$ and by substitution with a Boc amino acid (Gly or Val) to completion (negative ninhydrin test ${ }^{37}$), and then removing the Boc protecting group and measuring the amino acid substitution by the modified ${ }^{44}$ aldimine test, ${ }^{45}$ or by amino acid analysis.
Solid-Phase Synthesis of [1-Hemi-dL-[$\beta, \beta-{ }^{2} \mathrm{H}_{2}$]cystine]oxytocin Using Chloromethylated Resin and Separation of the Diastereomers. The synthesis of the protected nonapeptide precursor to the title compound was accomplished as previously reported. ${ }^{19}$ Starting with 3.4 g of Boc-glycine-O-resin with a substitution of 0.36 $\mathrm{mmol} / \mathrm{g}$ of resin ($1.23-\mathrm{mmol}$ scale) there was obtained $1.4 \mathrm{~g}(89 \%)$ of crude H-DL-[$\left.\beta, \beta-{ }^{2} \mathrm{H}_{2}\right] \mathrm{Cys}(\mathrm{Bzl})-\mathrm{Tyr}(\mathrm{Bzl})$ - Il - $-\mathrm{Gln}-\mathrm{Asn}-\mathrm{Cys}(\mathrm{DMB})$ Pro-Leu-Gly- NH_{2}, $\mathrm{mp} 220-225^{\circ} \mathrm{C}$. A $325-\mathrm{mg}$ port on of the nonapeptide (0.25 mmol) was deprotected and purified as described previously. ${ }^{19}$ The all-L diastereomer ($R_{f} 0.23$) [1-hemi- $\left[\beta, \beta-{ }^{2} \mathrm{H}_{2}\right]$ cystine oxytocin was obtained as a white powder ($40 \mathrm{mg}, 32 \%$) after gel filtration on Sephadex G-25, $[\alpha]^{22}{ }_{547}-22^{\circ}$ (c $0.5,1 \mathrm{~N} \mathrm{HOAc}$). Amino
acid analysis: Asp, 1.0; Gly, 1.0; Pro, 0.92; Gly, 1.0; Half-Cys, 2.0; Ile, 1.0; Leu, 1.0; Tyr, 1.0. On TLC a single uniform spot identical with authentic oxytocin was seen in solvent systems A, B, and C. The compound had identical carbon-13 and proton NMR spectral and milk-ejecting ${ }^{34}$ activities as previously reported. The diastereomer [1-hemi-D- $\left[\beta, \beta-{ }^{2} \mathrm{H}_{2}\right]$ cystine] oxytocin $(R, 0.32)$ was obtained as a white powder ($36 \mathrm{mg}, 29 \%$) after gel filtration on Sephadex G-25, $\left[\alpha^{22}{ }_{547}\right.$ -69° (c 0.5, 1 N HOAc). Amino acid analysis: Asp, 1.0; Glu, 1.0; Pro, 1.0; Gly, 1.0; Half-Cys, 2.0; Ile, 1.0; Leu, 1.0; Tyr, 0.90. On TLC a single uniform spot identical with authentic [1-hemi-D-cystine]oxytocin was seen using solvent systems A, B, and C. The compcund had identical milk-ejecting activity ${ }^{34}$ and ${ }^{13} \mathrm{C}$ NMR spectra as previously reported. The combined yield of the diastereomers based on starting glycine substituted resin is 29%.

Boc-Glycine-Benzhydrylamine Resin. Benzhydrylamine resin ($36 \mathrm{~h}, 0.38 \mathrm{mmol}$ of amino group $/ \mathrm{g}$ of resin), prepared as discussed above (8.0 g), was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to swell the resin and filtered. The resin was stirred with $1.39 \mathrm{~g}(7.9 \mathrm{mmol})$ of Boc-glycine and 1.63 $\mathrm{g}(7.9 \mathrm{mmol})$ of DCC in 70 mL of methylene chloride for 30 min , and then filtered. The resin was washed with three $33-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{EtOH}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and gave a negative ninhydrin test. ${ }^{38}$ After removal of the Boc protecting group and neutralization, the modified aldimine test established the glycine substitution level to be $0.37 \mathrm{mmol} / \mathrm{g}$ of resin.

Synthesis of Boc-DL-[$\left.\alpha-{ }^{2} \mathrm{H}_{1}\right]$ Cys(DMB)-Tyr-Ile-Gln-Asn-Cys(DMB)-Pro-Leu-Gly-NH-resin. The title compound was synthesized using 2.7 g (1.0 mmol) of the above benzhydrylamine resin and the standard solid-phase methodology. The title compound was obtained as 3.9 g of a pale cream resin.
Synthesis of [1-Hemi-DL- $\left[\alpha-{ }^{2} H_{1}\right]$ cystine]oxytocin Using the S-3,4-Dimethylbenzyl Protecting Group and Separation of the Diastereomers. HF Treatment at $0{ }^{\circ} \mathrm{C}$. A 0.98 -g portion (0.25 mmol) of the protected peptide resin from above was treated with 20 mL of anhydrous HF (freshly distilled from CoF_{3}) ard 2 mL of anisole at $0^{\circ} \mathrm{C}$ for 1 h . The solvents were removed in vacco at $0^{\circ} \mathrm{C}$. Under nitrogen, the residue was washed with four $30-\mathrm{mL}$ portions of ethyl acetate, and the peptide was extracted from the resin with 10 mL of HOAc, two $20-\mathrm{mL}$ portions of $30 \% \mathrm{HOAc}$, and three $30-\mathrm{mL}$ portions of 0.2 N HOAc . The combined extracts were concentrated to about 80 mL in vacuo by rotary evaporation and lyophilized. The white powder (280 mg) was dissolved in 600 mL of 0.1% aqueous acetic acid under nitrogen, ${ }^{30}$ oxidized in the usual manner, ${ }^{29}$ and the products were separated and purified by partition chromatography on Sephadex G-25 using the solvent system 1-butanol-3.5\% aqueous HOAc in 1.5% pyridine (1:1). Analysis of the fractions at 280 nm on a Gilford spectrophotometer showed a small by-product peak at $R_{f} 0.6$ (yield 25 mg) and well-resolved peaks for [1-hemi-D- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine] oxytocin ($R_{f} 0.33$) and [1-hemi-I.- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine]oxytocin ($R_{f} 0.23$). The fractions corresponding to each diastereomer were separately pooled and lyophilized, and then each was separately purified by gel filtration chromatography on Sephadex G-25. There was obta ned $68 \mathrm{mg}(54 \%)$ of [1-hemi- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine] oxytocin, $[\alpha]^{24}{ }_{547}-21^{\circ}$ (c C.498, $1 \mathrm{~N} \mathrm{HOAc)}$. TLC in solvent systems A, B, and C gave single uniform spots identical with authentic oxytocin. Amino acid analysis: Asp, -. 0 ; Glu, 1.0; Pro, 1.0; Gly, 1.0; Half-Cys, 2.0; Ile, 1.0; Leu, 1.0; Tyr, 0.90. The carbon-13 NMR spectrum was identical with that of authentic oxytocin except for the peak corresponding to the C-2 carbon of the half-cystine-1 residue, which was greatly reduced in intensity. The milk-ejecting activity was determined and found to be 480 ± 55 urits $/ \mathrm{mg}$, identical with authentic oxytocin. Also obtained was $54 \mathrm{mg} 143 \%$; the overall combined yield of purified oxytocin derivatives was 49%) of [1-hemi-D- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine oxytocin, $[\alpha]^{24}{ }_{547}-62^{\circ}$ (c 0.j04, 1 N HOAc). TLC in solvent systems A, B, and C gave single uniform spots, identical with authentic [1-hemi-D-cystine]oxytocin. Amino acid analysis: Asp, 1.0; Glu, 1.0; Pro, 1.0; Gly, 1.0; Half-Cys, 2.0; Ile, 0.93; Leu, 1.0; Tyr, 0.90. The milk-ejecting activity ${ }^{34}$ was 35 ± 10 unitsimg, identical with other 1 -hemi-D-cystine derivatives. ${ }^{19}$ Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{65} \mathrm{DN}_{12} \mathrm{O}_{12} \mathrm{~S}_{2} \cdot \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}: \mathrm{C}, 50.7 ; \mathrm{H}, 6.39$; N, 15.3 Found: C, 50.8 ; $\mathrm{H}, 6.37 ; \mathrm{N}, 16.2$. The entire procedure was repeated with essentially identical results (48% overall yield).

HF Treatment at $25^{\circ} \mathrm{C}$. A $0.98-\mathrm{g}$ portion $(0.25 \mathrm{mmol})$ of the protected peptide resin 1 was treated with 20 mL of anhydrous HF (freshly distilled from CoF_{3}) and 2 mL of anisole at room temperature $\left(25^{\circ} \mathrm{C}\right)$ for 1 h . The peptide material was extracted, oxidized, and purified by partition chromatography as before. Folin-Lowry analysis of the fractions indicated that a very large comporent was the byproduct peak at $R_{f} 0.60$ (yield 72.3 mg) and the poorly resolved diastereomers [1-hemi-D- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine]oxytocin and [1-hemi- $[\alpha$ ${ }^{2} \mathrm{H}_{1}$]cystine joxytocin. The polymer peak gave the following amino acid analysis: Asp, 1.0; Glu, 0.9; Pro, 1.1; Gly, 1.0; Half-Cys, 1.0; Ile, 0.9; Leu,
1.1; Tyr, $0.8 ; \mathrm{NH}_{3}, 3.1$. TLC analysis indicated several components were present. The combined diastereomer peak (145 mg) was resubjected to partition chromatography, and an excellent separation of the diastereomers was obtained with [1-hemi-D- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine]oxytocin (44 mg) at $R_{f} 0.33$ and [1-hemi-L- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine]oxytocin $(61 \mathrm{mg})$ at $R_{f} 0.22$. Gel filtration of the 1-hemi-D-cystine diastereomer on Sephadex G-25 gave $26.1 \mathrm{mg}(21 \%)$ of the pure derivative with a small broad peak of higher molecular weight material preceding it. Gel filtration of the all-L diastereomer on Sephadex G-25 gave 37.6 $\mathrm{mg}(30 \%$; the overall yield of the two diastereomers was $25.5 \%)$ of the pure diastereomer and a significant amount of a broad peak of higher molecular weight material (yield 15.3 mg). Amino acid analysis of the latter peak gave: Asp, 1.0; Glu, 1.0; Pro, 1.1; Gly, 1.0; Half-Cys, 1.6; Ile, 1.0; Leu, 1.2; Tyr, $0.9 ; \mathrm{NH}_{3}$, 3.2. Both of the purified oxytocin diastereomers had identical properties with those prepared above as determined by TLC in solvent systems A, B, and C, amino acid analysis, optical rotation, carbon-13 NMR spectroscopy, and milkejecting activity. The procedure was repeated with about the same results (overall yield of 24%).
Synthesis of [1-Hemi-DL-[$\alpha-{ }^{2} \mathbf{H}_{1}$]cystine]oxytocin on Benzhydrylamine Resin Using the \boldsymbol{S}-Benzyl Protecting Group. The synthesis of the protected nonapeptide resin to the title compound was as before using 4.03 g (1.49 mmol) of Boc-Gly-NH resin, except that Boc-S-3,4-dimethylbenzylcysteine ${ }^{19,32,33}$ was used to introduce the cysteine-6 residue and Boc-S-benzyl-I)L- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cysteine ${ }^{19}$ was used to introduce the cysteine-1 residue (1.1 and 0.5 equiv at the two coupling steps) to give 6.07 g of $\mathrm{Boc}-\mathrm{DL}-\left[\alpha-{ }^{2} \mathrm{H}_{1}\right] \mathrm{Cys}(\mathrm{Bzl})-\mathrm{Tyr}$-Ile-Gln-Asn-Cys(DMB)-Pro-Leu-Gly-NH-resin. A $1.06-\mathrm{g}$ (0.25 mmol) portion of the resin was treated with 20 mL of anhydrous HF and 2 mL of anisole at $20^{\circ} \mathrm{C}$ for 1 h , and the crude lyophilized peptide product was obtained as before (334 mg). To remove the remaining S-benzyl protecting groups, the crude product was dissolved in 150 mL of anhydrous ammonia (freshly distilled from sodium) and treated with sodium until a blue color persisted for 45 s . The solvents were removed by evaforating under nitrogen and lyophilization. The residue was oxidized and the diastereomers were separated and purified as before to give $34 \mathrm{mg}(27 \%)$ of [1-hemi- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine]oxytocin, $[\alpha]^{22}{ }_{547}-22^{\circ}(c \quad 0.5,1 \mathrm{~N} \mathrm{HOAc})$. TLC on silica gel plates gave single uniform spots in solvent systems A, B, and C, identical with the compounds as previously prepared. Amino acid analysis: Asp, 1.0; Glu, 1.1; Pro, 0.94; Gly, 1.0; Half-Cys, 1.9; Ile, 1.0; Leu, 1.0; Tyr, 1.0. Also obtained was 39 mg (31%; overall yield of both purified oxytocin derivatives 29%) of [1-hemi-D- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine] oxytocin, $[\alpha]^{22}{ }_{547}-63^{\circ}$ (c $0.5,1 \mathrm{~N}$ HOAc). TLC on silica gel plates gave single uniform spots in solvent systems A, B, and C identical with the compound as previously prepared. Amino acid analysis: Asp, 1.0; Glu, 1.0; Pro, 1.0; Gly, 1.0; Half-Cys, 2.0; Пe, 0.93; Leu, 1.0; and Tyr, 0.90 .

Acknowledgments. We thank Dr. Mac E. Hadley, Department of Cell and Developmental Biology, University of Arizona, for performing the milk-ejecting assays and Dr. David E. Wright for performing the amino acid analyses.

Registry No.-1, 102-46-5; 2, 4496-95-1; 5, 63527-92-4; thiourea, 62-56-6; diethyl 2 -acetamido- α-dimethylaminomethylmalonate methiodide, 7689-61-4; N-Boc-S-3,4-dimethylbenzyl-DL-[α - $\left.{ }^{2} \mathrm{H}_{1}\right]$ cysteine, 63527-93-5; [1-hemi-DL- $\left[\beta, \beta-{ }^{2} \mathrm{H}_{2}\right.$]cystine]oxytocin, 57866-62-3; H-DL-[$\beta, \beta-{ }^{2} \mathrm{H}_{2}$]Cys(Bzl)-Tyr(Bzl)-Ile-Gln-Asn-Cys-(DMB)-Pro-Leu-Gly- $\mathrm{NH}_{2}, 63527-94-6 ; 1$-hemi $\left[\beta, \beta-{ }^{2} \mathrm{H}_{2}\right]$ cystine $]$ oxytocin, 57866-63-4; [1-hemi-D-[$\beta, \beta-{ }^{2} \mathrm{H}_{2}$]cystine] oxytocin, 57866-64-5; [1-hemi-DL- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine]oxytocin, 63527-95-7; [1-hemi-L-$\left[\alpha-{ }^{2} \mathbf{H}_{1}\right]$ cystine] oxytocin, 63527-96-8; [1-hemi-D-[$\left.\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cystine]oxytocin, 63527-६7-9; Boc-S-3,4-dimethylbenzylcysteine, 41117-66-2; Boc-S-benzyl-DL- $\left[\alpha-{ }^{2} \mathrm{H}_{1}\right]$ cysteine, 57866-75-8.

References and Notes

(1) Financial support from the U.S. Public Health Service and the National Science Foundation is gratefully ackonwledged. Taken in part from the Ph.D. Thesis cf Donald A. Upson, University of Arizona, 1975.
(2) All amino acids except glycine are of the L configuration unless otherwise noted. Standard abbreviations for amino acids, protecting groups, and peptides as recommended by the IUPAC-IUB Commission on Biochemical Nomenclature [J. Biol. Chem., 247, 977 (1972)] are used. Other abbreviations include DCC, dicyclohexylcarbodiimide; DIEA, diisopropylethylamine: TFA, trifluoroacetic acid; DMB, 3,4-dimethylbenzyl.
(3) R. B. Merrifield, J. Am. Chem. Soc., 85, 2149 (1963).
(4) (a) R. B. Merrifield, Adv. Enzymol., 32, 221 (1969); (b) B. W. Erickson and R. B. Merrifield, Proteins, 3rd Ed., 2, 255-527 (1976).
(5) J. Meienhofer in "Hormonal Protenis and Peptides", Vol. 2, C. H. Li, Ed., Academic Press, New York, N.Y., 1973, pp 45-267.
(6) B. Gutte and R B. Merrifield, J. Am. Chem., Soc., 91, 501 (1969); J. Biol. Chem., 246, 1922 (1971).
(7) L. E. Barstow, D. A. Cornelius, V. J. Hruby, T. Shimoda, J. A. Rupley, J. J. Sharp, A. B. Robinson, and M. D. Kamen in "Chemistry and Biology of Peptides' ', J. Meienhofer, Ed., Ann Arbor Science Publishers, Ann Arbor, Mich., 1972, pp 231-234; J. J. Sharp, A. B. Robinson, and M. D. Kamen, J. Am. Chem. Soc., 95, 6097 (1973); P. Frankhauser, B. Shilling. P. Fries, and M. Brenner in "Peptides, 1971", H. Nesvadba, Ed., North-Hoiland Publishing Co., Amsterdam, 1973, pp 153-161; S. Karlsson, G. Lindeberg, J. Porath, and U. Ragnarsson, Acta Chem. Scand., 24, 1010 (1970); A. F. Spatola and V. J. Hruby, unpublished results.
(8) M. Manning, J. Am. Chem. Soc., 90, 1348 (1968).
(9) H. Takashima, V. duVigneaud, and R. B. Merrifield, J. Am. Chem. Soc., 90 1322 (1968); H. Takashima, V. J. Hruby, and V. duVigneaud, ikid., 92, 677 (1970).
(10) J. J. Blake, R. W. Crooks, and C. H. Li, Biochemistry, 9, 2071 (1970).
(11) M. Bodanszky, Handb. Exp. Pharmacol., 34, 180 (1973).
(12) P. G. Pietta and G. R. Marshall, Chem. Commun., 650 (1970)
(13) P. Revaille, R. Robinson, M. Kamen, and G. Milhaud, Helv. Chim. Acta, 54, 2772 (1971).
(14) (a) V. J. Hruby, R. Muscio, C. M. Groginsky, P. M. Gitu, D. Saba, and W. Y. Chan, J. Med. Chem., 16, 624 (1973); (b) J. Rivier, W. Vale, R. Burgess, N. Ling, M. Amoss, R. Blackwell, and R. Guillemin, ibid., 16, 545 (1973); (c) P. G. Pietta, P. F. Cavallo, K. Takahashi, and G. R. Marshall, J. Org Chem., 39, 44 (1974).
(15) R. C. Orlowski, R. Walter, and D. Winkler, J. Org. Chem, 41, 3701 (1976).
(16) P. G. Pietta and O. Brenna, J. Org. Chem., 40, 2995 (1975).
(17) D. H. Rich and S. K. Guwara, Tetrahedron Lett., 301 (1975)
(18) E. Gross and S. Matsuura in "Peptides: Chemistry, Structure, and Biology", R. Walter and J. Meienhofer, Eds., Ann Arbor Science Publishers, Ann Arbor, Mich., 1975, pp 351-358.
(19) D. A. Upson and V. J. Hruby, J. Org. Chem., 41, 1353 (1976), and references cited therein.
(20) A. F. Spatola, D. A. Cornelius, V. J. Hruby, and A. T. Blomquist, J. Org. Chem., 39, 2207 (1974).
(21) D. Yamashiro, Nature (London), 201, 76 (1964).
(22) D. Yamashiro, D. Gillessen, and V. duVigneaud, J. Am. Chem. Soc., 88, 1310 (1966).
(23) Yields for all the syntheses reported in this paper are based on the initial amino acid substitution (limiting reagent) on the solid-phase resin, and no on the protected amino acid used in each step, which is usually in twofold or greater excess (see Experimental Section).
(24) J. A. Glasel, V. J. Hruby, J. F. McKelvy, and A. F. Spatola, J. Mol. Biol., 79 555 (1973)
(25) V. J. Hruby in "Chemistry and Biochemistry of Amino Acids, Peptides and Proteins", Vol. 3, B. Weinstein, Ed., Marcel Dekker, New `ork, N.Y., 1974, pp 1-188.
(26) B. W. Erickson and R. B. Merrifield in "Chemistry and Biology of Peptides", J. Meienhofer, Ed., Ann Arbor Science Publishers, Ann Arbor, Mich., 1972, pp 191-195; B. W. Erickson and R. B. Merrifield, J. Am. Chem. Soc., 95, 3750 (1973), and references cited therein.
(27) S. Sakakibara, Y. Shimonishi, Y. Kishida, M. Okada, and H. Sugihara, Bull Chem. Soc. Jpn., 40, 2164 (1967); V. J. Hruby, unpublished results.
(28) R. H. Sifferd and V. duVigneaud, J. Biol. Chem., 108, 753 (1935).
(29) D. B. Hope, V. V. S. Murti, and V. duVigneaud, J. Biol. Cnem., 237, 1563 (1962).
(30) M. Walti and D. B. Hope, Experientia, 29, 389 (1973).
(31) J. Porath and P. Flodin, Nature (London), 183, 1657 (1959).
(32) D. Yamashiro, R. L. Noble, and C. H. Li in "Chemistry and Biology of Peptides'', J. Meienhofer, Ed., Ann Arbor Science Publishers, Ann Arbor, Mich., 1972, pp 197-202; D. Yamashiro, R. L. Noble, and C. H. Li, J. Org. Chem., 38, 3561 (1973).
(33) C. W. Smith, Ph.D. Thesis, University of Arizona, 1973, pp 57-60
(34) V. J. Hruby and M. E. Hadley in "Peptides: Chemistry, Structure and Biology"', R. Walter and J. Meienhofer, Eds., Ann Arbor Science Publishers, Ann Arbor, Mich., 1975, pp 729-736.
(35) D. H. Live, W. C. Agosta, and D. Cowburn, J. Org. Chem., following article in this issue. We thank Drs. Live, Agosta, and Cowburn for informing us of their results prior to publication.
(36) D. H. Spackman, W. H. Stein, and S. Moore, Anal. Chem., 30, 1190 (1958).
(37) O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, J. Biol. Chem., 193, 265 (1951).
(38) E. Kaiser, R. L. Colescott, C. D. Bossinger, and P. I. Cook, Anal. Biochem., 34, 595 (1970).
(39) G. G. Urquhart, J. W. Gates, Jr., and R. Conner, '"Organic Syntheses", Collect Vol. 3, E. C. Horning, Ed., Wiley, New York, N.Y., 1965, pp 363365.
(40) P. Cagniant, G. Jecko, and D. Cagniant, Bull. Soc. Chim. Fr., 2225 (1961).
(41) D. A. Cornelius, Ph.D. Thesis, Cornell University, 1972.
(42) J. G. Atkinson, D. W. Cillis, and R. S. Stuart, Can. J. Chem., 47, 477 (1969).
(43) E. Schnabel, Justus Liebigs Ann. Chem., 702, 188 (19€7)
(44) K. W. Ehler, Ph.D. Thesis, University of Arizona, 1972.
(45) K. Esko, S. Karlsson, and J. Porath. Acta Chem. Scand., 22, 3342 (1968).

A Rapid, Efficient Synthesis of Oxytocin and 8-Arginine-vasopressin. Comparison of Benzyl, p-Methoxybenzyl, and p-Methylbenzyl as Protecting Groups for Cysteine

David H. Live, William C. Agosta, and David Cowburn*
The Rockefeller University, New York, New York 10021

Received February 22, 1977

Abstract

Oxytocin and 8 -arginine-vasopressin have been synthesized in high yields in a short time using 1.5 -fold molar excesses of protected amino acids by means of solid-phase synthesis on a benzhydrylamine resin. Coupling of each residue to the peptide resin was measured jy automated picrate monitoring. High-pressure liquid partition chromatography was found to be extremely usefal in characterizing products and by-products. Benzyl, p-methoxybenzyl , and p-methylbenzyl were compared as cysteine protecting groups in the syntheses, with the last two being preferred.

Introduction and Strategy

The neurohypophyseal hormones and their synthetic analogues have been the subject of many studies aimed at elucidating their physiological properties and the correlation between their structures and functions, ${ }^{1}$ with oxytocin (I, Figure 1) receiving particular attention in these investigations. We are presently concerned with developing an approach to the unequivocal determination of the conformations and dynamic properties of peptides in solution, principally concentrating our investigations on oxytocin. The technique which we are employing in these investigations is nuclear magnetic resonance (NMR), measuring three-bond homo- and heteronuclear coupling constants from which dihedral angles
and their rotational isomerism can be deduced. To extract such data from the spectra, a variety of isotopic isomers is needed. Selective deuteration is required to simplify overlap and coupling in the proton NMR spectra, and selective enrichments in ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ facilitate the observation of couplings to these less abundant nuclei. ${ }^{2}$ Because of the number of isomers needed for a complete study and the expense of enriched precursors, we have undertaken development of methods for the rapid and efficient synthesis of oxytocin. Our strategy for these studies is to synthesize a number of isomers of oxytocin with simultaneous isotopic enrichments in several of the residues. Our synthetic goal is a generally optimized procedure using all the amino acid reagents with maximum

Figure 1. Structures of compounds described.
efficiency, while providing the greatest yield of final product.

Comparisons of previous synthetic routes to oxytocin and some of its analogues can be made on the basis of reported results. Solution peptide synthesis methods and solid-phase methods using chloromethylated resin have given comparable efficiencies on the basis of the quantities of individual amino acid reagents consumed. ${ }^{3}$ A comparison of solid-phase syntheses of an oxytocin analogue with benzhydrylamine and with chloromethyl resins irdicates that the former resin gave superior results. Treatment of the protected peptide-benzhydrylamine resin with anhydrous hydrogen fluoride yields the desired peptide amide directly, ${ }^{4}$ saving time and avoiding losses that might be incurred in the conversion of the terminal carboxyl group to the desired carboxamide, as would be necessary subsequent to cleavage from chloromethyl resin. We have chosen the solid-phase method with benzhydrylamine resin, since it is less time consuming than the other alternatives and should provide a greater yield. A significant additional advantage of the solid-phase approach is the availability of a quantitative nondestructive procedure using picric acid, by which the extent of coupling can be easily monitored spectrophotometrically. ${ }^{5}$ This has allowed us to optimize coupling conditions with reasonable effort.

Since several of the amino acids in oxytocin are trifunctional ($\mathrm{Cys}^{1}, \mathrm{Tyr}^{2}, \mathrm{Gln}^{4}, \mathrm{Asn}^{5}, \mathrm{Cys}^{6}$), it is necessary to consider the effect of protecting groups on the yield of the synthesis. The advantages of side-chain protection in the overall synthesis of the peptide must be balanced against any losses that arise in the derivatization of an isotopically enriched amino acid. Asparagine and glutamine protected at the α-amino group
with tert-butoxycarbonyl (Boc) and without side-chain protection can be coupled effectively during solid-phase synthesis of an analogous peptide in dimethylformamide (DMF) using dicyclohexylcarbodiimide (DCC) in the presence of 1-hydroxybenzotriazole monohydrate (HOBzt). ${ }^{3}$ Deprotection of protected tyrosine at the conclusion of a synthesis can lead to side reactions, ${ }^{5}$ but tyrosine can be used without protecting the phenolic hydroxyl group, particularly in the synthesis of oxytocin, where it is the penultimate residue incorporated. ${ }^{7}$ Since isotopic isomers of these three amino acids can be readily synthesized in an unprotected form, ${ }^{8}$ we decided to employ them with only α-amino protection in the peptide synthesis.

Cysteine is the only amino acid for which side-chain protection is absolutely necessary in this synthesis. Benzyl (Bzl) and p-methoxybenzyl (p - MeOBzl) are the sulfhydryl protecting groups most commonly used for this purpose. The more stable ber:zyl group, though often used in amino acid and peptide synthesis, requires rather vigorous conditions for removal. ${ }^{9}$ In our hands these conditions reduced the yield of oxytocin by a factor of 2 compared to that achieved using $p-\mathrm{MeOBzl}$ protection. However, the $p-\mathrm{MeOBzl}$ protecting group could not be used successfully in the routes we employed for synthesis of isotopic isomers of cysteine, ${ }^{8}$ and conversion from one protecting group to the other after completion of the amino acid synthesis is only about 70% efficient. The p-methylbenzyl ($p-\mathrm{MeBzl}$) group has been suggested for use in peptide synthesis because it may be removed in hydrogen fluoride under milder conditions. ${ }^{6}$ In addition, it has been found to be a good protecting group to use in amino acid synthesis as well. ${ }^{8}$ We chose to use the p-MeBzl group and found the results of the peptide synthesis to be comparable to those obtained with $p-\mathrm{MeOBzl}$ protection.

After some investigation we devised a peptide synthetic scheme in which 1.5 -fold excesses of amino acid reagents are employed in single couplings for $\mathrm{Gly}^{9}, \mathrm{Leu}^{8}, \mathrm{Pro}^{7}, \mathrm{Cys}^{6}, \mathrm{Tyr}^{2}$, and Cys^{1}, and two such couplings are employed for $\mathrm{Asn}^{5}, \mathrm{Gln}^{4}$, and Ile^{3}. The only side-chain protection used is the $p-\mathrm{MeBzl}$ group on both half-cystyl residues. Though the nature and origin of the synthetic by-products are unclear, an important feature of this synthesis is that they are easily separated from the desired product in a single gel filtration, which also serves the purpose of desalting the final products. The overall procedure from the start of the solid-phase synthesis to recovery of chemically pure, fully active product in 55% yield (relative to glycine substitution on the resin) can be carried out in four working days. The final product was characterized by bioassay, amino acid analysis, counter-current distribution, highpressure liquic chromatography, high-resolution proton NMR, thin-layer chromatography, and optical rotation.

This synthesis of oxytocin has given reproducible results a number of times using labeled and unlabeled precursors. We wished to determine whether the considerations we had applied to increas:ng efficiency here were readily applicable to the synthesis of another peptide. Therefore, 8 -arginine-vasopressin (AVP, II) was prepared in the same manner as oxytocin with minimal changes in procedure. We used tosyl protection for the guanidino group of arginine in addition to $p-\mathrm{MeBzl}$ on the half-cystyls. From the picrate monitoring data, it appears that satisfactory results are obtained with single 1.5 -fold excess couplings for all but Asn ${ }^{5}, \mathrm{Gln}^{4}$, and Tyr^{2}. The final purification of AVP from this synthesis is as easy as that of oxytocin.

Experimental Section

Materials. N^{α}-tert-butoxycarbonyl-L-amino acids were obtained from Beckman, Bachem, and Chemical Dynamics Corp., except for Boc-S-p-methylbenzylcysteine, which was made at The Rockefeller University by Dr. Wesley Cosand. All were checked for purity by
thin-layer chromatography (TLC) (see Analytical Methods). All amino acids (except glycine) were of the L configuration. Methylene chloride (technical, Eastman) was distilled from $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (anhydrous reagent, Baker). Dimethylformamide (DMF) (spectroquality, MCB) was stored over molecular sieves (4A, Chemical Dynamics) and tested for amines before use in synthesis. ${ }^{10}$ Diisopropylethylamine (DIEA) (Aldrich) was distilled after reflux overnight with CaH_{2}. 1-Butanol (reagent, Baker), acetone (reagent, Baker), and tritluoracetic acid (TFA) (Halocarbon) were distilled before use. Picric acid (0.1 M) solutions were made up by dissolving picric acid (reagent, MCB) in distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, stirring with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtering before use.

The following reagents were of reagent grade, if more than one grade was available, and were used as received: acetic acid (Baker); isopropyl alcohol (Baker); ethyl acetate (Baker); dicylohexylcarbodiimide (DCC) (Pierce); 1-hydroxybenzotriazole monohydrate (Aldrich); Sephadex G-15 dextran gel (Pharmacia); ethanol IMC Chemical Group); fluorescamine (Hoffmann-La Roche); and anhydrous HF (Matheson).

Analytical Methods. Final characterization of oxytocin and AVP was carried out using bioassay, amino acid analysis, counter-current distribution, high-resolution proton NMR, high-pressure liquid chromatography in a system known to resolve oxytocin from 14 replacement and deletion analogues, TLC in three systems, and optical rotation. TLC of peptides was carried out on analytical silica gel G plates (Analtech) with the following solvent systems: (A) 1-butanolacetic acid-water (4:1:5, upper phase); (B) 1-butanol-acetic acid-pyridine-water (15:3:10:12); (C) ethyl acetate-pyridine-acetic acidwater ($5: 5: 1: 3$). Material on the plates was visualized by ninhydrin or chlorine- 0 -toluidine reaction. TLC of amino acids was performed on similar plates with chloroform-methanol-acetic acid (85:10:5). Counter-current distribution (CCD), both analytical and preparative was carried out on a 100 -tube CCD apparatus (Post Scientific) with 10 mL of each phase per tube. The solvent system used was 1-buta nol-ethanol-0.5\% acetic acid in water (4:1:5). ${ }^{11}$

High-pressure liquid chromatography (HPLC) was based on the system of Gruber et al. ${ }^{12}$ The equipment we used consisted of a glass linear-gradient maker, a high-pressure pump (Milton Roy), a highpressure injection valve (Waters), a Partisil-10 ODS prepacked col umn $0.4 \times 25 \mathrm{~cm}$ (Whatman), a Spectro/Glo fluorometer (Gilson), and a strip chart recorder (Easterline Angus). A 15-95\% acetone-water gradient was run for 75 min at a rate of $0.8 \mathrm{~mL} / \mathrm{min}$. Samples were prepared by dissolving them in 0.4 mL of 0.046 M sodium phosphate, pH 7 , in a disposable borosilicate test tube, and then adding 0.2 mL of fluorescamine solution ($20 \mathrm{mg} / 100 \mathrm{~mL}$ of acetone) with Vortex mixing. A pH 7 standard buffer (Beckman) was found to be a convenient source of the 0.046 M sodium phosphate. After 10 min the sample was diluted up to volume with a solution of 0.03% ammonium formate and 0.01% thiodiglycol. Amino acid analyses were carried out after the procedure of Spackman, Stein, and Moore ${ }^{13}$ on a Beckman model MS amino acid analyzer using a $0.9 \times 30 \mathrm{~cm}$ column of Durrum DC-6A resin. The analyzer had been modified to perform automati cally the two buffer changes that are required for a single-column analysis. The Durrum pico-buffer system II was employed. Hydrolysis was carried out in culture tubes, with teflon-lined caps, that were inserted into a heating block. Peptide samples were hydrolyzed in 12 $\mathbf{M ~ H C l}-$ acetic acid-liquified phenol ${ }^{14}(2: 1: 1)$ or in 6 M HCl . The latter conditions were used after performic acid treatment of the peptide for conversion of cysteine to cysteic acid. ${ }^{15}$ Hydrolyses were carried out for 24 h at $110^{\circ} \mathrm{C}$. When the first conditions were used, the hydrolysate was extracted three times with CHCl_{3} before drying and then diluted in 0.2 M pH 2.2 citrate buffer for application to the col umn. In the second case the hydrolysate was dried directly and diluted similarly.
Peptide resin hydrolysis was carried out by two procedures. Either the 12 M HCl -acetic acid-liquified phenol (2:1:1) method described above was used, with the addition that the hydrolysate was filtered before extraction, and the resin was washed with several small portions of 1 M HCl , or 12 M HCl -propionic acid (1:1) at $135^{\circ} \mathrm{C}$ for 12 h was used. ${ }^{16}$ These latter samples were filtered, and the resin was washed with 1 M HCl as above before drying and subsequent dilution.

Proton NMR spectra were obtained on a Varian HR/NTC TT-220 spectrometer. Optical rotations were measured on a Cary 60 spectropolarimeter, using sucrose as a standard.
tert-Boc-S-p-MeBzl-Cys-Tyr-Ile-Gln-Asn-S-p-MeBzl-
Cys-Pro-Leu-Gly-NH2 Resin (III). A 1.0-g sample of benzhy drylamine hydrochloride resin from polystyrene-1\% divinylbenzene (Beckman lot no. B1135) was placed in a $75-\mathrm{mL}$ reaction vessel of a Schwartz/Mann peptide synthesizer. Analysis of the resin by Beck-

Table I. Coupling Scheme for Residues Gly ${ }^{9}$, $\mathrm{Leu}^{8}, \mathrm{Pro}^{7}$, $\mathbf{C y s}^{6}, \mathrm{Ile}^{3}, \mathrm{Tyr}^{2}$, and Cys^{19}

Step	Reagent	Volume, mL	Duration. min	No. of times
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	5
2	50\% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	2.0	1
3	50% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	$30.0^{\text {a }}$	1
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	5
5	2-Propanol	17	0.5	2
6	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	5
$7^{\text {b }}$	5\% DIEA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	17	2.0	3
8	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	5
$9^{\text {c }}$	Amino acid- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	5	2.0	1
10	DCC- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	5	30.0	1
11	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	5
12	2-Propanol	17	0.5	2
13	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	2
14	2-Propanol	17	0.5	2
15^{d}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	5

${ }^{a}$ Deprotection time for Gln^{4}, before Ile^{3} coupling, was 15 min . ${ }^{b}$ For the coupling of Gly ${ }^{9}$ to the resin the sequence is started at this step. ${ }^{c}$ The vessel is not drained after this step. ${ }^{d}$ Steps $9-15$ were repeated when a second coupling was performed for Ile 3. ${ }^{e}$ Amino acids were tert-butoxycarbonyl derivat:ves in 1.5 M excess in solution except tyrosine, which was dissolved in 5% DMF- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. DCC was equimolar with protected amino acids.

Table II. Coupling Scheme for Residues Asn ${ }^{5}$ and Gln^{4} in Dimethylformamide ${ }^{c}$

Step	Reagent	Volume, mL	Duration, min	No. of times

${ }^{a}$ When second couplings were used, steps $11-19$ were repeated. ${ }^{b}$ The vessel is not drained after this step. ${ }^{c}$ Amno acids were tert -butoxycarbonyl derivatives in 1.5 -fold molar excess in DMF solution. HOBzt was used at a twofold molar excess over amino acid concentrations; DCC was equimolar.
man indicated 0.53 mequiv of N / g of resin by elemental analysis and 0.48 mequiv/g available amine via Boc-L-proline coupling, HF cleavage, hydrolysis, and amino acid analysis. We also monitored coupling capacity using HCl -propionic acid hydrolysis of fully coupled glycinamide resin with the result of 0.48 mequiv of available coupling sites $/ \mathrm{g}$ of resin and using picrate monitoring of the deprotected gly cinamide resin, giving 0.50 mequiv/g of resin. Amino acids were dissolved in their appropriate solvents (the Boc derivatives of p MeBzl -cysteine, glycine, proline, leucine, and isoleusine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, asparagine and glutamine in DMF with a twofold molar excess of HOBzt , and tyrosine in 5% DMF in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and placed in the appropriate reservoirs in the synthesizer. The synthesis was initiated at step 7 in Table I and carried through as indicated in Tables I and II until the final coupling of Boc-p-MeBzICys (1.5 -foid molar excess, single couplings for Gly, Leu, Pro, Cys, and Tyr, and double couplings for Asn, Gln, and Ile). The monitoring procedure (Table III) was incorporated as desired after step 15 of Table I or step 19 of Table II. The final seven washes of the monitoring sequence were collected automatically, and the absorbance at 362 nm was determined on a Zeiss PMQ II spectrophotometer. The ϵ_{362} for the DIEA-picrate is

Table III. Monitoring Scheme ${ }^{a}$

Step	Reagent	Volume, mL	Duration, \min	No. of times
1	DIEA 5\% in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	17	2.0	3
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	5
3	2-Propanol	17	0.5	2
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	5
5	0.1 M picric acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	17	2.0	3
16	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	2
7	2-Propanol	17	0.5	2
8	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	5
9	5% DIEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	17	2.0	3
10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	0.5	4

${ }^{a}$ Washes in steps 9 and 10 were collected and their absorbance was measured at 362 nm .

15000 (Table III). ${ }^{5}$ At the conclusion of these steps 1.530 g of air-dried III was recovered (96% yield). Amino acid analysis of III after hydrolysis in the HCl -acetic acid-phenol mixture was Asp 1.00, Glu 1.03, Pro 1.05 , Gly 1.10 , Ile 0.93 , Leu 1.03 , and Tyr 0.92 . The amino acid analysis showed no loss of chains from the resin during synthesis. Syntheses using between 1 and 2 g of resin have been carried out using the same protocols and with similar proportional yields.
tert-Boc-S-p-MeOBzlCys-Tyr-Ile-Gln-Asn-S-p-Me-
OBzlCys-Pro-Leu-Gly-NH2 Resin (V) and tert-Boc-S-Bzl-Cys-Tyr-Ile-Gln-Asn-S-BzlCys-Pro-Leu-Gly-NH2 Resin (VI) were prepared similarly to III, except that the appropriately S-derivatized Boc-cysteine was used. Variations in number of couplings or molar excesses of amino acids used made no detectable difference in yield of peptide resins (by weight) or in their amino acid analyses.
Oxytocin (I). A. $0.43 \mathrm{E}_{-\mathrm{g}} \mathrm{g}$ sample of III was placed in a $50-\mathrm{mL}$ Tef-lon-Kel-F vessel used on an HF apparatus (Toho; described elsewhere. ${ }^{10} \mathrm{~A}$ small Teflon-coated magnetic stirring bar and 1 mL of anisole were added. A frit was secured near the top of the vessel and the vessel was attached to the apparatus. The apparatus was evacuated with an aspirator pump, and the sample vessel was immersed in a dry ice/acetone bath. After 20 min the sample vessel was disconnected from the vacuum and connected to the HF reservoir, and HF was distilled into the vessel until the total liquid volume was approximately 10 mL . (This process takes about 15 min .) The dry-ice bath was then replaced by a water-ice bath $\left(0^{\circ} \mathrm{C}\right)$ with a magnetic stirrer underneath, and the sample vessel was sealed off from the rest of the system. After 75 min the vessel was carefully opened to the aspirator and the HF was allowed to evaporate. Virtually all the HF was gone after 10 or 15 min . After 30 min of aspiration, the line was switched to a mechanical pump and pumping continued for 1 h . The sample remained immersed in a $0{ }^{\circ} \mathrm{C}$ bath throughout this time. ${ }^{17}$ The system was then filled with Ar or N_{2} to atmospheric pressure, and the cleavage vessel was quickly removed and sealed with parafilm.
The material was washed out of the vessel into a coarse fritted funnel with several portions of degassed ethyl acetate totaling about 100 mL . The funnel and the vessel were then placed in a large lyophilizer vessel and evacuated for 30 min to remove remaining ethyl acetate. The cleavage vessel and the resin in the funnel were then washed with several portions of degassed 1 M acetic acid (80 mL total), followed by 160 mL of degassed distilled water in several portions. The solution was then ad usted to pH 8 with $3 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$, and 25 mL of 0.01 M potassium ferricyanide solution was added in order to form the disulfide bond of oxytocin. The yellow solution was stirred for about 30 min . The solution was then adjusted to pH 5 with 50% acetic acid, and AG-3 anion-exchange resin (TFA- form) was added and the mixture stirred for an adcitional 20 min . The slurry was then filtered, yielding a clear colorless solution, and the resin was washed with a small portion of water. The solution was then lyophilized.

After lyophilization the powder was taken up in about 10 mL of 50% acetic acid and filtered through a millipore filter, yielding a clear, pale yellow solution that was applied to a Sephadex G-15 ($2.5 \times 70 \mathrm{~cm}$) column previously equilibrated with 50% acetic acid. ${ }^{18}$ The column was run at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ and $7-\mathrm{mL}$ fractions were collected. Two peaks were eluted as determined by monitoring at 280 nm . Peak 1 retained the yellow color and appeared in fractions 15-18, and peak 2 , which was subsequently determined to be pure I, was in fractions 19-26. There was some overlap of the two peaks. Fractions that showed significant amounts of both materials present as judged by

TLC were subjected to further purification with CCD. (This was not necessary in the case being described.) Peak 2 yielded 76 mg of material (55% yield) from peptide resin, and peak 1 yielded 30 mg (22% yield). TLC of the peak 1 material in the manner described above in solvent system A gave a poorly resolved series of bands with R_{f} 's between 0.17 and 0.35 . The ninhydrin color was purple. Peak 2 gave a yellow spot (by ninhydrin reaction) when TLC was performed using solvent systems A, B, and C. The TLC results agree with those obtained for a sample of oxytocin supplied to us. R_{f} in system A was 0.34 ; chlorine-o-toluidine visualization did not reveal any additional spots. Amino acid analyses for these materials are: Asp 1.00, Glu 0.90, Pro 1.07 , Gly 1.07 , Cys 1.30 , Ile 0.77 , Leu 1.05 , and Tyr 0.78 for peak 1 ; and Asp 1.00, Glu 1.02, Pro 1.08, Gly 0.97, Cys 1.89, Ile 0.93, Leu 0.99, and Tyr 1.05 for peak 2. The peak 2 material gave only one peak in the appropriate fractions when subjected to CCD. ${ }^{11}$ On HPLC the fluo-rescamine-derivatized peak 2 material appeared as a single peak at a position in agreement with that of a sample of oxytocin supplied to us. The material in peak 1 was retained more strongly on the Partisil ODS column and showed several components, apparently including some oxytocin. This was indicated by the TLC as well. Proton NMR spectra were determined in $\mathrm{D}_{2} \mathrm{O}$ and were in complete agreement with previously reported results. ${ }^{19}$ Bioassay of peak 2 material for avian vasopressor activity gave a result of $416 \pm 19 \mathrm{U} / \mathrm{mg}$, in good agreement with the literature value of $450 \pm 30 \mathrm{U} / \mathrm{mg},{ }^{20}[\alpha]^{27}{ }_{589}-22^{\circ}$ (c 0.48 , in acetic acid) [lit. ${ }^{3 \mathrm{c}}[\alpha]^{22.5} \mathrm{D}-24^{\circ}$ (c 0.5 , in acetic acid) $]$.

Cleavage of up to 2 g of resin has been carried out using separate cleavage vessels on the HF apparatus and then combining the material for subsequent workup with no significant effect on overall yield.

I was derived from V in the same way as from III and the results were virtually identical.
I was derived from VI by the same procedure, except that the cleavage vessel was immersed in a bath at $20^{\circ} \mathrm{C}$ rather than $0^{\circ} \mathrm{C}$. We detemined by NMR studies of cleaved VI that these conditions were required for complete deprotection of the Bzl groups in this system. Yield of oxytocin (I) was 25% for this workup from VI.
tert-Boc-S-p-MeBzlCys-Tyr-Phe-Gln-Asn-S-p-MeBzl-Cys-Pro-Ne-TosArg-Gly-NH2 Resin (IV) was prepared in the same manner as III with the following differences. Boc- N g-tosylarginine, dissolved in 5% DMF in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was the second amino acid coupled, and Boc-phenylalanine dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was the seventh amino acid coupled. A single coupling with 1.5 -fold excess of glycine was followed by three $30-\mathrm{min}$ couplings each with 1.5 -fold excesses for arginine and proline, two couplings at 1.5 -fold excess for p MeBzl -cysteine (the first for 30 min and the second for 60 min), and two $120-\mathrm{min}$ couplings at 1.2 -fold excess (due to an instrument adjustment) for asparagine and glutamine. The last three residues were coupled in the manner of the first cysteine. IV (1.06 g) was obtained (92% yield). Picrate monitoring results are in Table V. Amino acid analysis of IV was Asp 1.00, Glu 0.97, Pro 0.89, Gly 1.09, Tyr 0.85, Phe 0.83 , and $\operatorname{Arg} 0.88$.

8-Arginine-vasopressin (II) (AVP) was made from IV following the same procedure used for I; 0.72 g of IV yielded 130 mg (52% yield) of II in peak 2 following gel filtration. Peak 1 contained 65 mg (26% yield). TLC analysis of the material in peak 1 showed a broad band between R_{f} 's 0.0 and 0.2 (purple ninhydrin reaction) and a single yellow spot $R_{f} 0.2$ for peak 2 material in solvent system A. Peak 2 material gave single yellow spots in systems B and C, and the results in all three systems were consistent with those obtained from a sample of AVP supplied to us. NMR spectra were in agreement with those previously reported. ${ }^{21} \mathrm{HPLC}$ is illustrated in Figure 2 with the single peak for derivatized G-15 peak 2 material. The result on our material was consistent with that for AVP supplied to us. Rat pressor activity was $496 \pm 44 \mathrm{U} / \mathrm{mg}$, in good agreement with the literature value of 487 $\pm 15 \mathrm{U} / \mathrm{mg} .{ }^{7}$ Amino acid analysis result for peak 1 material was Asp 1.00 , Glu 0.91, Pro 0.98, Gly 1.00, Cys 1.44, Tyr 0.85, Phe 0.84, and Arg 1.07, and for peak 2 Asp 1.00, Glu 0.93, Pro 0.97, Gly 0.99, Cys 1.96 , Tyr 0.9, Phe 0.94, and Arg 0.95, [a] ${ }^{27}{ }_{589}-23^{\circ}$ (c 0.23, in acetic acid) $\left[\right.$ lit. ${ }^{7}[\alpha]^{22} \mathrm{D}-22^{\circ}(c 0.22$, in acetic acid)].

Results and Discussion

From the results in the Experimental Section it is clear that benzhydrylamine-derivatized polystyrene resin provides an excellent support for solid-phase synthesis of these neurohypophyseal peptide hormones. It offers a more stable peptide-resin linkage which permits the use of fairly vigorous conditions for deprotection of α-amino groups ($<0.4 \%$ loss of glycine/h on treatment with $50 \% \mathrm{TFA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), while affording efficient peptide-resin cleavage ($>95 \%$) in anhydrous

Figure 2. High-pressure liquid chromatography of fluorescaminederivatized products of oxytocin and 8 -arginine-vasop-essin syntheses. The by-products of the oxytocin synthesis gave similar chromatograms regardless of protecting group used. The ordinate is intensity of fluorescence, and the traces are displaced, but are on the same scale. The bottom three traces are of G-15 peak 2 material.
hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 60 min . Couplings appear to proceed to completion using standard synthetic methods with considerably less than the usual molar excesses of amino acids. This is illustrated by the results of amino acid analyses given in the previous section and by the data in Tables IV and V, where the results of picrate monitoring of the oxytocin and vasopressin syntheses are presented. The data in these tables may be usefully assessed in terms of effective coupling efficiency, that is, the ratio of the percentage completion for a given set of conditions to that after efforts to force completion. Confirmation of the reliability of the effective coupling efficiency can be observed in the similarity of the peptide resin amino acid analyses and synthetic results for syntheses where both 1.5 -fold and threefold excesses of amino acid reagents have been used. The appearance in these tables of values significantly less than 100% after both initial 1.5 -fold excess couplings as well as after attempts to force the reaction to completion may indicate picrate binding to unreacted free amino termini or to unidentified sites. This background level of picrate eluted after efforts to complete coupling was found to increase with chain length. One possible source of the background would be the appearance of chains with unreactive, but picrate positive, amino group. The increasing level of background during the synthesis is consistent with these chains remaining unreactive throughout the synthesis. Alternatively, some other binding of picrate to the growing peptide chain may be taking place. The trends in the monitoring results for both the oxytocin and vasopressin syntheses were similar, although the background levels for AVP were somewhat higher. We ultimately recovered comparable amounts of material from each synthesis, and this speaks against the possibility that the increased backgrour. was due to a larger number of chain terminations. If deletions were

Table IV. Coupling Efficiencies (\%) in the Synthesis of Oxytocin

With 1.5-fold Res- excess single idue coupling			
With three- fold excess double coupling	Effective coupling efficiency for single 1.5- fold excess coupling ${ }^{a}$		
Gly^{9}	99.5	99.6	$99 . c$
Leu^{8}	99.3	99.5	99.8
Pro^{7}	99.6	99.4	100.2
Cys^{6}	9.4	9.3	100.1
Asn^{5}	9.5	99.3	94.2
Gln^{4}	97.5	98.2	99.3
Ile^{3}	90.0	98.3	91.6
Tyr^{2}	97.6	98.0	99.6
Cys^{1}	97.0	96.8	100.2

${ }^{a}$ Ratios of value in column 2 to those in column 3 (see text), expressed as percentage.

Table V. Coupling Efficiencies (\%) in the Synthesis of AVP

Resi- With $1.5-f o l d$ excess single couplingWith 1.5-fold excess double coupling	Effective coupling efficiency for single 1.5- fold excess coupling ${ }^{\text {a }}$		
Gly^{9}	99.6	99.6	100.0
Arg^{8}	95.6	$96.2(96.6)^{b}$	99.4
Pro^{7}	92.5	$94.7(95.0)^{b}$	97.4
Cys b	91.3	9.7	98.5
Asn^{5}	68.0	93.6	72.6
Gln^{4}	58.7	90.3	65.0
Phe^{3}	88.7	89.3	99.3
Tyr^{2}	80.2	89.5	89.6
Cys 1	93.0	93.7	99.3

${ }^{a}$ Ratios of values in column 2 to those in column 3 (see text), expressed as percentage. ${ }^{b}$ A result after third coupling (see text).
present in our purified material, they should probably have appeared as additional peaks in the high-pressure liquid chromatograms. ${ }^{22}$ However, no significant additional peaks were present for either oxytocin or AVP. The by-products in peak 1 from the Sephadex G-15 column from both syntheses are presumably higher molecular weight materials; if they contain deletion peptides, the ultimate fate of these species must have been the formation of dimers or oligomers through intermolecular disulfide bonds. The reproducibility of the monitoring data indicates that the factors giving rise to the background are intrinsic to the synthesis.

We have also employed the minitoring method to determine reasonable coupling times for Boc-glutamine and Boc-asparagine in DMF with HOBzt and DCC. Under she conditions we are using, the reactions are about 50% complete in 30 min , and virtually totally complete in 120 min . The same batch of resin was used for all the syntheses of oxytocin, and the reproducibility of the minitoring data demonstrates the applicability of this technique for quality control in such repeated syntheses.

In considering the different yields obtained from syntheses using the three different protecting groups for cysteine, we note that there is no evidence for any variation of the products in synthesis of the protected oxytocin peptide resin as a function of the cysteine protecting group used. The Bzl group with its substantial stability has been used effectively in amino acid and peptide synthesis, and it can be removed completely by exposure to hydrogen fluoride at $20^{\circ} \mathrm{C}$ for 50 min in this system. The $p-\mathrm{MeOBzl}$ group is the most labile ${ }^{6,9}$ and provides a point of comparison with the other two, even though
for reasons given earlier it is not ideal for our reeds. The yield of oxytocin with Bzl protection under these corditions is about half as great as that obtainable with $p-\mathrm{MeOBzl}$ protection. The ratios of material in peak 1 (by-product) to that in peak 2 (oxytocin) from the gel filtration are quite similar for both means of protection, as are the TLC, HPLC, and amino acid analysis results for the respective peaks. The $p-\mathrm{MeBzl}$ group, though not widely used in peptide synthesis, has lived up to the expectations for it mentioned earlier, and the synthetic results with this group are indistinguishable from those with $p-\mathrm{MeOBzl}$ protection. Further efforts were made to determine whether any more of the desired product could be regenerated from peak 1 of the gel filtration or whether a change in our procedures could increase the yield of oxytocin further. An obvious property of the peak 1 material is a substantial reduction in cysteine content relative to that in oxytocin. The level of cysteine, however, showed no significant variation with protecting group and cleavage conditions, or with sequence. Several other possible causes of this effect were investigated. To check for sulfoxide formation as a source cf the problem, acetone treatment in hydrogen bromide-acetic acid was used to reduce any p-MeBzl-cysteine sulfoxide to p-MeBzl-cysteine. ${ }^{22}$ Some of the peak 1 material was treated with acetone after being dissolved in 35% hydrogen bromide-acetic acid. This was followed by treatment with hydrogen fluoride at 0 ${ }^{\circ} \mathrm{C}$ for 60 min , oxidation with performic acid, hydrolysis, and amino acid anaylsis. The results were the same as before. Alternatively, it is possible that deprotection before the coupling of Cys^{6} or Cys^{1} was incomplete. Employing double deprotections before these couplings, however, did not affect the final results. To test a third alternative we removed the terminal Boc group before hydrogen fluoride cleavage, but also to no avail.

A possible source of some of the peak 1 material is suggested by the amino acid analysis results for the peptide resin and for peak 1 , namely that some termination at glutamine occurs during the synthesis. Comparison of tyrosine, isoleucine, and, in the case of AVP, phenylalanine values with that of cysteine indicate that this can only be part of the problem.

In total we are able to account finally for between 85 and 90% of the peptide from the protected peptide resin, with 55being the desired product, 25% peak 1 by-products, 5% remaining associated with the resin, and possibly 5% lost by termination at glutamine. We have attempted to optimize the synthesis of oxytocin and have succeeded in developing a procedure that is efficient in both time and material. The readily purified product is obtained in a yield which is substantially greater than previously reported $\left(\sim 30 \%{ }^{3}\right)$, and the approach appears to be applicable to analogous peptides. Effectively complete couplings can be achieved without resorting to a large excess of reagents or long coupling times. These conditions are particularly important to us because of our interest in preparing labeled peptides. The possibility that these conditions may work well in general is of practical interest to anyone contemplating large scale syntheses. The picrate monitoring method has proved indispensable in assessing the effectiveness of couplings in this work.

The syntheses reported here demonstrate convincingly the value of using p-methylbenzyl protection of the cysteine thiol function. The previously suggested ${ }^{6}$ value of this protecting group based on amino acid model studies is thus supported by its actual use in peptide synthesis. Since the protected amino acid is easily prepared from readily available materials and has clear advantages over S-benzyl- and S - p-methoxybenzylcysteine, we consider that it is the protecting group of choice in this case.

Acknowledgments. We are grateful to Professors Herman R. Wyssbrod and F. H. Field and Mr. Alan J. Fischman for
support and encouragement. This research was supported by NIH Grant AM-02493. Hormone bioassays were performed at the Department of Physiology and Biophysics, Mount Sinai Medical and Graduate Schools of the City University of New York, supported in part by NIH Grant AM-10080. We acknowledge the helpful cooperation of Professor V. J. Hruby in supplying us with samples of oxytocin and deletion and replacement analogues of oxytocin, Professor R. Walter for a sample of oxytocin, and Professor J. Cort for a sample of AVP. We are indebted to Professor R. B. Merrifield and his laboratory for encouragement, advice, and access to facilities, all of which were indispensible to this work. NMR $(220-\mathrm{MHz})$ facilities located at The Rockefeller University and operated by a consortium are supported in part by NSF Grant PCM74-12247.

Registry No. $-p$-MeBzl-cysteine, 42294-52-0; glycine, 56-40-6; proline, 147-85- ; leucine, $61-90-5$; isoleucine, $73-32-5$; asparagine, 70-47-3; glutamine, 56-85-9; tyrosine, 60-18-4; oxytocin, 50-56-6; Boc-Cys $\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{H}\right) \mathrm{OH}, 18942-46-6$; $\mathrm{Boc}-\mathrm{Cys}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)-\mathrm{OH}$, 5068-28-0; tert-Boc-S-p-MeBzlCys-Tyr-Ile-Gln-Asn-S-p-Me-BzlCys-Pro-Leu-Gly- NH_{2}, $\quad 63534-39-4 ; \quad$ Boc- N-tosylarginine, 13836-37-8; Boc-эhenylalanine, 13734-34-4; 8-Arginine-vasopressin, 113-79-1.

References and Notes

(1) B. Berde and R. A. Boissonnas, Handb. Exp. Pharmacol., B. Berde, Ed., Springer-Verlag. New York, N.Y., 1968; see articles in R. Walter and J. Meienhofer, Ecs., "Peptides: Chemistry, Structure and Biology"', Ann Arbor Science Publishers, Ann Arbor, Mich., 1975, pp 689-837.
(2) V. J. Hruby in "Chemistry and Biochemistry of Amino Acids, Peptides and Proteins"', Vol. 3, B. Weinstein, Ed., Marcel Dekker, New York, N.Y., 1974, Chapter 1.
(3) (a) A. F. Spatola, D. C. Cornelius, V. J. Hruby, and A. T. Blomquist, J. Org. Chem., 39, 2207 (1974); (b) V. J. Hruby, F. Muscio, C. M. Groginsky, P. M. Gita, D. Saba, and W. Y. Chan, J. Med. Chem., 16, 624 (1973); (c) M. Manning, J. Am. Chem. Soc., 90, 1348 (1968); (d) B. W. Erickson and R. B. Merrifield, Proteins, 3rd. Ed., 2, Chapter 3 (1976).
(4) P. G. Pietta, P. F. Cavallo, K. Takahashi, and G. R. Marshall, J. Org. Chem., 39, 44 (1974).
(5) B. F. Gisin, Anal. Chim. Acta, 58, 248 (1972); R. S. Hodges and R. B. Merrifield, Anal. Biochem., 65, 241 (1975)
(6) B. W. Erickscn and R. B. Merrifield, J. Am. Chem. Soc., 95, 3750 (1973).
(7) J. Meienhofer, A. Trzeciak, R. T. Havran, and R. Walter, J. Am. Chem. Soc. 92, 7199 (1970).
(8) A. J. Fischman, unpublished results in this laboratory.
(9) S. Sakalibara, Y. Shimonishi, Y. Kishida, M. Okada, and H. Sugihara, Bull. Chem. Soc. Jpn., 40, 2164 (1967).
(10) J. M. Stewart and J. D. Young, "Solid Phase Peptide Synthesis", W. H. Freeman, San Francisco, Calif., 1969.
(11) M. Bodanszky and V. du Vigneaud, J. Am. Chem. Soc., 81, 2504 (1959).
(12) K. Gruber, S. Stein, L. Brink, A. Radhakristnan, and S. Udenfriend, Proc. Natt. Acad. Sci. U.S.A., 73, 1314 (1976).
(13) D. H. Spackman, W. H. Stein, and S. Moore, Anal. Chem., 30, 1190 (1958).
(14) B. Gutte and R. B. Merrifield, J. Biol. Chem., 246, 1922 (1971).
(15) S. Moore, J. Biol. Chem., 238, 235 (1963).
(16) F. C. Westall, J. Scotchiler, and A. B. Robinson, J. Org. Chem., 37, 3363 (1972).
(17) In order to calibrate the temperature of the sample in the vessel as a function of time, a cleavage vessel with 10 mL of acetone was placed in a dry ice-acetone bath until it reached $-75^{\circ} \mathrm{C}$ (about 20 min), and then into a 0 or $20^{\circ} \mathrm{C}$ bath. After this change the temperature rises quite linearly for 15 min until i is within about $5^{\circ} \mathrm{C}$ of the bath temperature; about another 15 min is required for equilibration with the bath. We therefore consider the $75-\mathrm{min}$ period between immersion in a water bath and aspiration to be equivalent to a 1 h exposure to HF at $0^{\circ} \mathrm{C}$.
(18) This procedure follows closely that of Hruby et al. in ref 3b.
(19) A. I. R. Brewster and V. J. Hruby, Proc. Natl. Acad. Sci. U.S.A., 70, 3806 (1973).
(20) R. A. Boissonnas, S. T. Guttman, B. Berde, and H. Konzett, Experientia, 17, 377 (1961).
(21) R. Walter, A. Ballardin, I. L. Schwartz, W. A. Gibbons, and H. R. Wyssbrod, Proc. Natl. Acad. Sci. U.S.A., 71, 4528 (1974).
(22) We have exarrined in this system 14 analogues of oxytocin with either substitutions or deletions of residues, and each gave peaks easily distinguishable from native oxytocin. D. H. Live, Proceedings of the Fifth American Pept de Symposium, M. Goodman, Ed., Wiley, New York, N.Y., 1977, in press.
(23) B. Iselin, Helv. Shim. Acta, 44, 61(1961); S. Kent, personal communication.

δ-Dicarbonyl Sugars. 5. A Novel Synthesis of a Branched-Chain Cyclitol ${ }^{1}$

Charles E. Cantrell, ${ }^{2}$ Donald E. Kiely,* Gerald J. Abruscato, and James M. Riordan
Department of Chemistry, University College, University of Alabama in Birmingham, University Station, Birmingham, Alabama 35294

Received August 6, 1976

Abstract

The cyclization of tri- O-acetyl-1,7-dideozy-1,7-bis(diazo)-xylo-2,6-heptodiulose (5), in acetic acid solution, to DL-3-C-acetoxymethyl-2,4,5,6-tetra- O-acetyl-2,3,4,6/5-pentahydroxycyclohexanone (8) is described. This conve:sion, considered to take place by way of a carbene, represents a new synthesis of the cyclitol ring system. The reactive diketone (5) was prepared by a diazomethane chain extension sequence originating with D -xylose (1). Reduction of the keto carbonyl of 8 followed by the acetylation of the resulting products gave DL- $2-\mathrm{C}$-acetoxymethyl-1,3,4,5,6-penta- O-acetyl-epi-inositol (12). A minor product from the decomposition of 5 was identified as penta- O -acetyl-xylo-2,6-heptodiulose (9).

The biosynthetic pathways that lead to the carbocyclic ring system as it is found in the cyclitols ${ }^{3}$ are thought to involve enzyme-catalyzed aldol condensations of appropriate δ-dicarbonyl monosaccharides. We have recently discovered that some synthetically prepared derivatives of this class of carbohydrates can be chemically induced to undergo these same ring closures. ${ }^{1,4}$ This paper describes a new route to the acetylated hydroxymethylcyclitol DL-2-C-acetoxymethyl-1,3,4,5,6-penta- O-acetyl-epi-inositol (12) by way of an unusual cyclization of a bisdiazo ketone (5) derived from xylo-2,6heptodiulose.

Results and Discussion

The bisdiazo ketone 5 was prepared by a stand ε ard diazomethane chain extension sequence beginning with D -xylose (1) (Scheme I). In order to obtain satisfactory yields of xylaric acid (2) and tri- O-acetylxylaric anhydride (3), it was necessary to modify the Wolfrom and Usdin procedure for the synthesis of these compounds. ${ }^{5}$ When the oxidation of D-xylose with nitric acid was completed, excess oxidizing agent was destroyed with 2-propanol and crystalline xylaric acid was obtained in 44% yield. Deletion of the 2-propanol addition step in the workup procedure resulted in the isolation of a syrup that did not crystallize and eventually decomposed. When the anhydride 3 was prepared by refluxing zinc xylarate in acetyl chloride, ${ }^{5}$ the average yield of the product from the reaction was only 30%. Furthermore, the anhydride obtained in this way gradually underwent an irreversible phase change to an oil. However, stable 3 was synthesized in reasonable yield ($70-80 \%$) by treating 2 with acetic anhydride that contained a catalytic amount of sulfuric acid.

Syrupy tri- O-acetylxylaryl dichloride (4), ${ }^{6}$ prepared by refluxing the half sodium salt of 2 triacetate with thionyl chloride, was treated with an ether solution of diazomethane and tri- O-acetyl-1,7-dideoxy-1,7-bis(diazo)-xylo-2,6-heptodiulose (5) crystallized as yellow needles directly from the reaction mixture (68%). Thin-layer chromatography of the mother liquors showed a three-component mixture. Silica gel column chromatography of this residue gave first dimethyl tri- O-acetylxylarate (6). Next off the column was a mixture (ca. 40% of the material from the column) of 7 and an unidentified compound. The characterization of 7 is described in the following paper (ref 18). The third component, 5 , was also isolated (5\%).

The bisdiazo ketone 5, when dissolved in acetic acid that contained cupric acetate, rapidly decomposed (5 min) at 70 ${ }^{\circ} \mathrm{C}$ to give 8 (32%), which crystallized directly from the reaction mixture (Scheme II). The conversion was also accomplished without the presence of copper ion, but required a higher temperature ($80-90^{\circ} \mathrm{C}$), and a significantly longer reaction time (10 h).

A first-order analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of 8 (Figure 1) clearly showed large coupling ($J=10.0 \mathrm{~Hz}$) between $\mathrm{H}-5$, $\mathrm{H}-6$, and $\mathrm{H}-4, \mathrm{H}-5$, thus establishing the consecutive anti relationship of these three ring protons. Propanic long-range coupling in the molecule was evidenced by small splitting of the $\mathrm{H}-4$ doublet and broadening of the $\mathrm{H}-2$ singlet. The value

Figure $1.90-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 8 in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ (ring proton region).

of the coupling ($J=0.8 \mathrm{~Hz}$) falls within the normal range of propanic coupling ($-0.3-0.9 \mathrm{~Hz}$) for 1,3 -diaxially oriented protons. ${ }^{7}$ Excellent agreement between the observed spectrum and the theoretical spectrum served to confirm these assignments. ${ }^{8}$

Two isomeric crystalline cyclitol pentaacetates (10 and 11) were obtained after the keto carbonyl of 8 was reduced by catalytic hydrogenation in acetic acid. The minor product (10) in the mixture was presumably formed from the major product (11) by an acid-catalyzed acetyl migration to the hydroxy group generated in the reduction step. The stereochemistry at four of the ring carbons of $10, \mathrm{C}-1, \mathrm{C}-4, \mathrm{C}-5$, and $\mathrm{C}-6$, was deduced after analysis of the $220-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the compound (Figure 2). However, the stereochemistry at C-3 is not discernible from the H-3, H-4 coupling, since the two protons are gauche when $\mathrm{H}-3$ is axial or equatorial. The coupling constants assigned to the ring protons of 10 were un-

Figure 2. $220-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 10 in CDCl_{3} (ring proton region).
changed in the ${ }^{1} \mathrm{H}$ NMR spectrum of 11 , the major product from the reduction of 8 (Table I).

Acetylation of 10 and 11 gave the cyclitol hexaacetate, DL-2-C-acetoxymethyl-1,3,4,5,6-penta- O-acetyl-epi-inositol (12). The splitting of the ring proton signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of 12 was in accord with the assigned stereochemistry for 10 and 11. The problem of ascertaining the stereochemistry at the remaining two ring carbons common to 8,10 , 11, and 12 was resolved by an x-ray crystallographic structure determination of $10 .{ }^{9}$ The x-ray study revealed that the tertiary hydroxyl group of 10 is axial and both vicinal acetoxy groups equatorial. The ${ }^{1} \mathrm{H}$ NMR derived stereochemical assignments for the four previously discussed ring protons were found to be correct. The free cyclitol derived from 12, 2-hy-droxymethyl-epi-inositol, has been prepared in crystalline form, ${ }^{10}$ and most recently by deacetylation of $12 .{ }^{11}$

The mother liquors from the cyclization of 5 , about 60% of the material in the reaction mixture, were chromatographed on a column of silica gel to give ca. 5% of a single crystalline compound, the acyclic pentaacetate 9 . The poor recovery of material from the column was due largely to extensive decomposition of unidentified compounds in the mixture on the silica gel. However, TLC showed that even at best 9 was a minor component in the original reaction mixture.

Prompted by the successful cyclization of 5, we sought to gain additional insight into the requirements for this type of ring closure. Two modifications in the structure of the bisdiazo ketone were considered to be the most important for the study: (1) removal of the bulky acetoxy groups from the molecule to see if these groups were responsible for a conformation favorable for cyclic product formation, and (2) changing the type of carbonyl grcup which was affected in the cyclization. The first modification was realized with 1,7-bis(diazo)heptane-2,6-dione ${ }^{12}$ (15), while methyl tri- O-acetyl-6-deoxy-6-diazo-DL-xylo-5-hexulosonate (14) satisfied the ssructural requirement prescribed by the second modification. The preparation of 14 was accomplished in several steps beginning with the anhydride 3 . The first step in the sequence, the methanolysis of 3, gave the methyl ester 13 and the dimethyl ester 6 in almost equal amounts (Scheme III).

The cupric acetate catalyzed decomposition of 15 in acetic acid at $70^{\circ} \mathrm{C}$ gave, as the only identifiable product, the crystalline acyclic diacetate 16 (74\%) (Scheme III). The attempted cyclization of 14 in acetic acid yielded a mixture which TLC showed to be composed of a major product and at least two slower moving minor products. The principal product was isolated by silica gel column chromatography (39\%) and spectral data and elemental analysis confirmed that the compound was methyl tetra- O-acetyl-DL-xylo- 5 -hexulosonate $(17)^{13}$ (Scheme III). The minor products from the column chromatographic separation were not obtained pure enough or in large enough quantities for identification. The apparent reluctance of either $\mathbf{1 4}$ or $\mathbf{1 5}$ to cyclize under the conditions
Table I. Proton Magnetic Resonance Chemical Shifts and Coupling Constants for Compounds 2-6 and 8-17

Compd ${ }^{\text {a-c }}$	Registry no.	Solvent	$\underset{\delta}{\mathrm{H}_{1}}$	$\mathrm{H}_{\mathrm{\delta}},$	$\begin{gathered} \mathrm{H}_{3} \\ \delta \end{gathered}$	$\begin{gathered} \mathrm{H}_{4} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H}_{5}, \end{gathered}$	$\underset{\delta}{\mathrm{H}_{6}},$	Other δ	$\begin{aligned} & J_{2},{ }^{3}, \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & J_{3,4}, \\ & H z \end{aligned}$	$\begin{aligned} & J_{4,5}, \\ & \mathrm{~Hz} \end{aligned}$	J_{56}, Hz	$J_{1}, 6$ Hz
2	10158-64-2	$\mathrm{Me}_{2} \mathrm{SO}-d_{6}$		4.05, d	3.89, t	4.05, d				4.38	4.38			
	10158-64-2	$\mathrm{D}_{2} \mathrm{O}^{21}{ }^{\text {2 }}$		3.96, d	$3.72, \mathrm{t}$	3.96, d				4.14	4.14			
3	63181-58-8	$\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{\text {o }}$			6.20	6.05	6.20			11.0	11.0			
4	63181-59-9	$\mathrm{CDCl}_{3}{ }^{\circ}$		5.60, d	5.85 , d	5.60 , d				5.0	5.0			
5	38910-01-9	CDCl_{3}	5.51		5.37 , d	$5.73, \mathrm{t}$	5.37, d				5.03	5.03		
6	63181-60-2	CDCl_{3}		$5.36, \mathrm{~d}$	5.71 , t	5.36, d				4.61	4.61	10.0	10.0	
8 9	63229-94-7	$\mathrm{Me}_{2} \mathrm{SO}-d_{6}$		5.82		5.97, dd	$5.46, \mathrm{t}$ $5.46, \mathrm{~d}$	5.80, d	3.90 (s, 2, CH_{2})			10.0 4.33	10.0	
9 10	38877-05-3	CDCl_{3}	5.16, d		$5.46, \mathrm{~d}$ $5.09, \mathrm{~d}$	$5.74, \mathrm{t}$ $5.68, \mathrm{t}$	$5.46, \mathrm{~d}$ $3.86, \mathrm{~m}$	$5.53, \mathrm{t}$			4.33 3.5	4.33 3.5	10.0	10.0
11	63229-95-8	CDCl_{3}	5.18, d		$4.95, \mathrm{~d}$	3.88, m	5.04, dd	5.68 , t			3.5	3.5	10.0	10.0
12	52795-30-9	CDCl_{3}	5.23		5.16	5.69	5.15	5.71			3.63	3.12	10.17	
13	63181-61-3	CDCl_{3}		5.44, d	$5.73, \mathrm{t}$	5.44, d				4.57	4.57			
14	63181-63-5	CDCl_{3}		5.34, d	$5.80, \mathrm{t}$	$5.44, \mathrm{~d}$		5.58		5.01	6.84 70			
15	27475-07-6	CDCl_{3}	5.30		2.40 , t	2.00, m	2.40, t				7.0 7.0	7.0 7.0		
16	63181-64-6	CDCl_{3}			$2.20, \mathrm{t}$	2.04, m	2.20, t				7.0 4.55	7.0		
17	63229-96-9	CDCl_{3}		5.13	5.47	5.70				4.47	4.55			
${ }^{a}$ The sp Hz. b The coupling derivative	ectra of com spectra of co constnats of (see ref 15	unds 2, 3, ounds 14 pounds 2, $16)$.	$\begin{gathered} , 6,8,9 \\ \begin{array}{c} \text { were re } \\ 5,6,9, \end{array} \end{gathered}$	$2,13,14$ ded at 6 14 and	d 17 we Hz , the ie betw	omputer ctra of co 4.33 and	lyzed by ounds 9 1 Hz and	COON at 220 icate th	ogram (see ref 8 , and the remain he sickle conform	ll par spectr is the	ers sets 90 MH r confo	Th The m er of th	ror less ured val acycli	an 0.2 of the lo

Scheme III

13

14

15

16
whereby 5 was converted to the cyclose 8 (Scheme IV) suggests that a proper combination of backbone substitution and carbonyl reactivity is necessary for ring closure to occur.

Mechanistic Considerations. The thermal decomposition of a diazo ketone in an aprotic solvent generally gives a carbene, whereas diazonium and carbonium ions are the favored products when the decomposition is carried out in a protic solvent, particularly in the presence of added mineral acid. ${ }^{14}$ However, Yamamoto and Moritani reported that decomposition of diethyl diazosuccinate in the protic solvent acetic acid to the corresponding carbene accounted for 66% of the olefinic products, diethyl fumarate and diethyl maleate. ${ }^{15}$ In the less acidic solvents ethanol and cyclohexanol, even higher percentages of olefin were produced by the carbene pathway. The mechanism we propose for the formation of the cyclose 8 in acetic acid from the bisdiazo ketone 5 also involes a carbene (5a). The reaction between this electrophilic intermediate and the solvent, acetic acid, may then give the ylide $\mathbf{5 b}$, which can convert to the acyclic pentaacetate 9 , or by a simple intramolecular aldol condensation to 5 c , a precursor of 8 . A similar but less probable scheme would be initiated by tae generation of a dicarbene directly from 5 .

In the ${ }^{1} \mathrm{H}$ NMR spectrum of 5 , the value of the observed coupling constant between $\mathrm{H}-4$ and equivalent $\mathrm{H}-3$ and $\mathrm{H}-5$ $\left(J_{3,4}=J_{4,5}=5.0 \mathrm{~Hz}\right)$ is intermediate between the predicted value for a consecutive gauche arrangement ($J \simeq 3-4 \mathrm{~Hz}$) and a consecutive anti arrangement ($J \simeq 7-10 \mathrm{~Hz}$) of the three protons. In considering some idealized conformational possibilities for 5 (Scheme V), the smaller value of the coupling

constant would account for a planar zigzag arrangement of protons and bulky acetoxy groups (5e) while a U conformation $(5 h)^{16}$ would fit the larger value of J. The destablizing 1,3 interactions between the eclipsed acetoxy groups in the zigzag conformation can be relieved by rotating either C-3 or C-5 120°. The resulting enantiomeric sickle conformations, $\mathbf{5 f}$ and $\mathbf{5 g}$, can then be converted directly to the U conformation by rotating previously undisturbed C-5 or C-3 120°.

The low yield conversion of 5 to the acyclic pentaacetate 9 rules against a high percentage of zigzag conformation 5e being in the reaction mixture at the temperature $\left(70^{\circ} \mathrm{C}\right)$ that 5 de composed. This conclusion is also based on the assumption that the distribution of the active carbene conformational isomers is essentially the same as that of the precursor bisdiazo ketone conformations. The fact that the substitued bisdiazo ketone 5 produces the cyclic product 8 under the same conditions whereby the unsubstituted bisdiazo ketone 15 gives the acyclic diacetate (16) serves to underline the importance of the U conformation (5 h) for 5 in acetic acid solution. It should be pointed out that in inert solvents the copper-catalyzed decomposition of 15 does give a cyclic product (15-32\%), cyclohept-2-ene-1,4-dione, ${ }^{17}$ presumably by a dicarbene coupling. However, we found no evidence that either 5 or 15 underwent this kind of ring closure in acetic acid. If such a product was formed from 5 it must have decomposed in the silica gel column chromatographic purification of 9 .

The methyl ester-diazo ketone 14, since it is structurally akin to 5 , should be conformationally disposed to cyclize. The absence of cyclic products in the decomposition mixture from 14 may simply mean that the methyl ester carbonyl carbon is not electrophilic enough to react with the anionic portion of the ylide, a step that gives the carbocyclic ring. Instead, the ylide is preferentially converted to the final acyclic product 17.

Experimental Section

General Methods. Melting points were obtained with a FischerJohns melting point apparatus and are uncorrected. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 60,90 , or 220 MHz with tetramethylsilane as the internal standard. The IR spectra were obtained with a Per-kin-Elmer Model 337 grating infrared spectrophotometer. Thin-layer chromatography was performed on plates coated with silica gel GF-254 (E. Merck, Darmstadt) and the components were detected by spraying with 20% sulfuric acid. Column chromatography was carried out with columns of silica gel ($0.05-0.20 \mathrm{~mm}$; E. Merck). All chromatographic solvent systems employed are given as volume to volume ratios and column dimensions are given as length and outside diameter. Mass spectra were recorded with an LKB-9000 combined gas chromatograph-mass spectrometer or a Hitachi-Perkin Elmer Model RMU-7 double focusing mass spectrophotometer. Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn. 37921.
Xylaric Acid (2). A solution of D-xylose ($1,101 \mathrm{~g}$) in water (78 mL) was charged to a $1-\mathrm{L}$ round-bottom flask equipped with a reflux condenser and magnetic stirrer. Concentrated nitric acid ($70 \%, 203$ mL) was added to the flask and the solution was carefully heated until evolution of nitric oxide began (ca. $60^{\circ} \mathrm{C}$). The reaction mixture was immediately transferred to an ice bath until the gas evolution subsided. The flask was then allowed to stand at room temperature for 15 min . The temperature of the solution was maintained at $60^{\circ} \mathrm{C}$ for 2 h , and then gradually raised to $90^{\circ} \mathrm{C}$ over 30 min . After keeping the reaction mixture at $90^{\circ} \mathrm{C}$ for 10 min , the solution was cooled to $60^{\circ} \mathrm{C}$, and 2-propanol (200 mL) was added with stirring in $20-\mathrm{mL}$ portions to destroy excess nitric acid. The solution was diluted with water (100 mL), then with concentrated $\mathrm{HCl}(10 \mathrm{~mL})$, and warmed at $60-70^{\circ} \mathrm{C}$ for 30 min . The yellowish-green solution was concentrated in vacuo at $50^{\circ} \mathrm{C}$ until it became a syrup or semicrystalline mass. This material was then taken up in 2-propanol (100 mL), the solution refluxed for 30 min , and then concentrated in vacuo at $50^{\circ} \mathrm{C}$ to yield a tacky semicrystalline product. The tacky product was freed of some residual water by freeze drying for 30 min and the resulting crystalline mass was then broken up and washed with cold acetone (50 mL). The suspension was filtered and washed several times with cold acetone to give $53 \mathrm{~g}\left(44 \%\right.$) of 2 ; $\mathrm{mp} 145-147^{\circ} \mathrm{C}$ (lit. ${ }^{5} 150-151^{\circ} \mathrm{C}$).
Tri-O-acetylxylaric Anhydride (3). A solution of xylaric acid $(2,18 \mathrm{~g})$ in acetic anhydride (60 mL) and concentrated sulfuric acid $(0.10 \mathrm{~mL})$ was kept at $60^{\circ} \mathrm{C}$ for 3 h . The solution was concentrated in vacuo at $70^{\circ} \mathrm{C}$ to give a white solid product, which was washed with chloroform (50 mL) and recrystallized from ethyl acetate to give 21 $\mathrm{g}(73 \%)$ of 3 ; $\mathrm{mp} 162-164^{\circ} \mathrm{C}$ (lit. $5^{146-147}{ }^{\circ} \mathrm{C}$); IR (KBr) $1760 \mathrm{~cm}^{-1}$ (broad $\mathrm{C}=0$).
Tri- O-acetylxylaryl Dichloride (4). Sodium bicarbonate (3 g , 0.035 mol) was slowly added to a solution of tri- O-acetyl xylaric an-
hydride $(3,10 \mathrm{~g}, 0.035 \mathrm{~mol})$ in water $(30 \mathrm{~mL})$. The aqueous solution was decolorized with carbon, the suspension filtered, and the filtrate concentrated in vacuo at $50^{\circ} \mathrm{C}$ to give a colorless oil that crystallized overnight. The crystalline mass was washed with acetone and the mixture filtered to yield sodium hydrogen tri- O-acetylxylarate (11.0 $\mathrm{g}, 97 \%)$. After the salt was dried at ca. 0.10 mmHg for 2 h at $80^{\circ} \mathrm{C}$, it was added to thionyl chloride (40 mL) and the suspension refluxed for 2 h . Excess thionyl chloride was removed in vacuo to give a syrup which was stirred in benzene (50 mL) or ether (15 mL) and then filtered. The filtrate was decolorized with charcoal and concentrated in vacuo to yield crude tri- O-acetylxylaryl dichloride ($4,11.0 \mathrm{~g}$): IR (neat) no $\mathrm{O}-\mathrm{H}$ stretching vibrations, $1760 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. The acid dichloride was used in the preparation of 5 without further purification.

Tri- O-acetyl-1,7-dideoxy-1,7-bisdiazo-xylo-2,6-heptodiulose (5). A solution of the acid chloride $4(10.0 \mathrm{~g}, 0.03 \mathrm{~mol})$ in anhydrous ether (30 mL) was slowly added to a cold (dry ice-acetone bath) stirred solution of diazomethane (0.30 mol) in ether (275 mL). The ether solution was allowed to warm to $0^{\circ} \mathrm{C}$ and after 30 min was cooled again (dry ice-acetone bath) with stirring for 1 h . The product was isolated by carefully filtering the mixture under the hood. A solution of the yellow compound in acetone (2 mL) was slowly added to boiling ether (200 mL), the ether solution was concentrated to half volume and upon standing yielded $7.0 \mathrm{~g}(68 \%)$ of the bisdiazo ketone $5: \mathrm{mp}$ $118-120^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 2100(\mathrm{C}=\mathrm{N}=\mathrm{N}), 1740$ (ester $\mathrm{C}=\mathrm{O}$), and 1640 $\mathrm{cm}^{-1}(\mathrm{~N}=\mathrm{N})$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{8}$ (354.28): C, 44.08; H, 3.98: N, 15.81. Found: C, 44.02; H, 4.05; N, 15.89.

The mother liquors were cooled to between -50 and $-20^{\circ} \mathrm{C}$ in a dry ice-acetone bath and glacial acetic acid was added until no more nitrogen evolved. The solution was freed of acetic acid by azeotropic distillation with benzene in vacuo. The residual syrup was dried in vacuo (ca. 1 mmHg) for 5 h . A TLC analysis (dichloromethane-ether, 4:1) showed that the oil was composed of three products having R_{f} values of $0.90,0.75$, and 0.60 , respectively. The syrup (3.8 g) was dissolved in a minimum amount of dichloromethane-ether (8.5:1.5) and chromatographed on silica gel (250 g in a $30 \times 460 \mathrm{~mm}$ col 1 mn) with the same solvent. The fastest moving component of the mixture was identified as dimethyl tri- O -acetylxylarate ($6,0.15 \mathrm{~g}$): $\mathrm{mp} 60-62^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 1750 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{10}$ (334.29): C, 46.71 ; $\mathrm{H}, 5.43$. Found: C, 46.93; H, 5.33.

The second component $(1.30 \mathrm{~g}), R_{f} 0.75$, was isolated as an oil. From the oil, 0.55 g of $3,4,5$,-tri- O-acetyl-6,7-anhydro-6-chlorcmethyl-1-deoxy-1-diazo-DL-ido-2-heptulose (7) was obtained. ${ }^{18}$ The slowest moving component was the bisdiazo ketone 5 . The 0.62 g of this material was combined with the first crop of crystalline 5 , making its overall yield 73\%.

Decomposition of 5 with Acetic Acid. A solution of $5(3 \mathrm{~g})$ in acetic acid (15 mL) containing cupric acetate (10 mg) was slowly heated until the evolution of nitrogen began (bath temperature $70^{\circ} \mathrm{C}$). The temperature was maintained at $70^{\circ} \mathrm{C}$ for 5 min and the reaction mixture afforded 1.15 g (32\%) of DL-3-C-acetoxymethyl-2,4,5,6-tetra- O-acetyl-2,3,4,6/5-pentahydroxycyclohexanone (8). The white solid, which gave a positive Scherer's test for a cyclitol, ${ }^{19}$ was recrystallized from acetic acid as colorless plates: mp $240-242{ }^{\circ} \mathrm{C}$; IR (KBr) $3320(\mathrm{O}-\mathrm{H})$ and $1725 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$); mass spectrum (70 eV) m/e (rel intensity) 376 (16), 358 (27), 345 (49), 316 (16), 196 (34), 154 (36).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{12}$ (418.36): C, 48.81; H, 5.30 . Found: C, 48.76; H, 5.47.

Isolation of Penta- O-acetyl-xylo-2,6-heptodiulose (9) by Column Chromatography. The mother liquor from the reaction of 5 with acetic acid was freeze-dried to give a reddish-browr oil (1.8 g). Thin-layer chromatography (ether) of the oil showed considerable streaking with an intensified spot at $R_{f} 0.60$. The mixture was chromatographed on silica gel (90 g in a $25 \times 370 \mathrm{~mm}$ column) by eluting with ether. The fractions composed mostly of the material of $R_{/} 0.60$ were combined and concentrated to give a light yellow oil (0.83 g). A solution of the oil in ether (10 mL), after standing overnight, yielded $0.20 \mathrm{~g}(5 \%)$ of penta- O-acetyl-xylo-2,6-heptodiulose (9): mp 90-92 ${ }^{\circ} \mathrm{C}$; IR (KBr) no $\mathrm{O}-\mathrm{H}$ stretching vibrations, $1750 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{12}$ (418.36): C, 48.81; H, 5.30. Found: C, 48.83; H, 5.44.

Catalytic Hydrogenation of 8 . A solution of $8(0.40 \mathrm{~g})$ in acetic acid (15 mL) was stirred at $50^{\circ} \mathrm{C}$ for 25 h with hydrogen at atmospheric pressure and freshly prepared platinum generated from platinum oxide $(0.40 \mathrm{~g})$. The suspension was filtered and the filtrate concentrated in vacuo to give a colorless syrup which, by TLC (ace-tone-hexane, 1:1), was shown to consist of a major product, $R_{/} 0.66$, and a minor product, $R_{f} 0.52$. The syrup was dissolved in hot ethanol
(5 mL) and ether (15 mL) was then added. The first crop of crystals $(0.030 \mathrm{~g}, 7 \%)$ obtained from the mixture was the minor product, DL-2-C-acetoxymethyl-1,3,4,6-tetra- O-acetyl-epi-inositol (10): mp $209-211^{\circ} \mathrm{C}$; IR (KBr) $3460(\mathrm{O}-\mathrm{H})$ and $1725 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; mass spectrum (70 eV) m/e (rel intensity) 402 (53), 347 (100), 300 (56), 288 (100), 269 (93), 245 (100), 241 (100).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{12}$ (420.38): C, 48.57; H, 5.75. Found: C, 48.38; H, 5.77.

A second crop of crystals $(0.24 \mathrm{~g}, 60 \%)$ proved to be the major product DL-2-C-acetoxymethyl-1,3,5,6-tetra- O-acetyl-epi-inositol (11): mp 160-162 ${ }^{\circ} \mathrm{C}$; IR (KBr) $3400(\mathrm{O}-\mathrm{H})$ and $1740 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; mass spectrum (70 eV) m/e (rel intensity) 361 (21), 329 (32), 287 (87), 227 (98), 185 (100), 167 (62), 143 (66), 125 (100).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{12}$ (420.38): C, 48.57; H, 5.75. Found: C, 48.20; H, 6.03 .

Acetylation of the Reduction Mixture Obtained from 8. A solution of the solid mixture $(0.10 \mathrm{~g})$ obtained from the hydrogenation of 8 in acetic anhydride (4 mL) and pyridine (1 mL) was kept at room temperature for 8 h and then concentrated in vacuo to give a single crystalline compound. The product, DL-2-C-acetoxymethyl-1,3,4,5,6-penta- O-acetyl-epi-inositol (12), was recrystallized from ethanol and $0.08 \mathrm{~g}(73 \%)$ was obtained: $\mathrm{mp} 189-191^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 3480$ ($\mathrm{O}-\mathrm{H}$) and $1740 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{13}$ (462.42): C, 49.36; H, 5.67. Found: C, 49.11; H, 5.90 .

By the same procedure, 10 and 11 were each separately converted to the same hexaacetate 12 .

Methyl Hydrogen Tri-O-acetylxylarate (13). A solution of 3 $(14 \mathrm{~g})$ in dry methanol $(100 \mathrm{~mL})$ was refluxed 40 h and the reaction mixture concentrated to give a colorless oil. The oil was dissolved in water (50 mL) and a white solid formed when the aqueous solution was neutralized with sodium bicarbonate. The solid was removed by filtration and recrystallized from ether to give dimethyl tri- O-acetylxylarate ($6,3 \mathrm{~g}, 24 \%$). The aqueous filtrate from the original reaction mixture was extracted with three $50-\mathrm{mL}$ portions of chloroform. The water layer was made acidic by treating it with an acid form cation-exchange resin (8 mL , amberlite IR- $120 \mathrm{H}^{+}, 20-50 \mathrm{mesh}$), the resin was removed by filtration, and the filtrate was extracted with three $50-\mathrm{mL}$ portions of chloroform. The combined chloroform extracts were concentrated to give a white solid, which, when recrystallized from ether, gave $13(4.0 \mathrm{~g}, 26 \%)$: mp $125-127^{\circ} \mathrm{C}$; IR (KBr) 3000 (broad $\mathrm{O}-\mathrm{H})$, and $1725 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{10}$ (320.26): C, 45.01 ; H, 5.04. Found: C, 44.78; H, 5.10.

Methyl Tri-O-acetyl-6-deoxy-6-diazo-DL-xylo-5-hexulosonate (14). Sodium bicarbonate $(0.40 \mathrm{~g}, 0.0054 \mathrm{~mol})$ was slowly added to an aqueous solution (10 mL) of methyl hydrogen tri- O-acetylxylarate ($13,1.75 \mathrm{~g}, 0.0054 \mathrm{~mol}$). The solution was concentrated in vacuo to a syrup, which was dried at room temperature and 0.10 mmHg for 2 h . The glassy solid was added to thionyl chloride $(10 \mathrm{~mL})$ and the mixture refluxed for 3 h . Additional thionyl chloride (15 mL in three $5-\mathrm{mL}$ portions) was added during the refluxing period. The excess thionyl chloride was removed in vacuo, and the bulk of the gelatinous mass was dissolved in dry ether (50 mL). Residual inorganic salts were removed by filtration and the filtrate was concentrated in vacuo to give the crude syrupy acid chloride ($1.5 \mathrm{~g}, 0.0044 \mathrm{~mol}, 82 \%$). A solution of the acid chloride in dry ether $(10 \mathrm{~mL})$ was slowly added to a cold (dry ice-acetone bath) solution of diazomethane ($1 \mathrm{~g}, 0.022 \mathrm{~mol}$) in dry ether (50 mL). The reaction mixture was kept cold for 1 h and then concentrated under the hood to give a greenish-yellow oil. Thin layer chromatography (dichoromethane-ether, $4: 1$) of the mixture showed two products with R_{f} values 0.90 and 0.75 , respectively. The oil (1.5 g) was chromatographed on silica gel (75 g in a $25 \times 370 \mathrm{~mm}$ column) with dichoromethane-ether, $4: 1$, as the eluent. The major component, $R_{f} 0.75$, was isolated in chromatographically pure form as a light yellow oil ($0.80 \mathrm{~g}, 53 \%$) and identified as methyl tri- O-acetyl- 6 -deoxy-6-diazo-DL-xylo-5-hexulosonate (14): IR (neat) 2110 $(\mathrm{C}=\mathrm{N}=\mathrm{N}), 1740(\mathrm{C}=\mathrm{O})$, and $1640 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{N})$.
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{9}$ (344.28): C, $45.35 ; \mathrm{H}, 4.68 ; \mathrm{N}, 8.14$. Found: C, 45.21; H, 4.68; N, 7.99.

1,7-Bisdiazoheptane-2,6-dione (15). Glutaryl dichloride was prepared by the method of Marvel and Casey. ${ }^{20}$ A solution of dichloride ($5.1 \mathrm{~g}, 0.03 \mathrm{~mol}$) in anhydrous ether (30 mL) was slowly added to a cold solution (dry ice-acetone bath) of diazomethane (0.30 mol). After standing 1 h in the cold, the yellow precipitate was removed by filtration and recrystallized from ether to give 1,7 -bis(diazo) hep-tane-2,6-dione (15) as yellow needles ($4 \mathrm{~g}, 74 \%$): mp $62-64{ }^{\circ} \mathrm{C}$ (lit. ${ }^{17}$ $63-65^{\circ} \mathrm{C}$).

Decomposition of 14 in Acetic Acid. A solution of methyl tri-O-acetyl-6-deoxy-6-diazo-DL-xylo-5-hexulosonate (14, 0.75 g) and
cupric acetate (10 mg) in acetic acid (5 mL) was slowly heated until the evolution of nitrogen began (ca. $65^{\circ} \mathrm{C}$). The temperature was maintained at $65^{\circ} \mathrm{C}$ for an additional 5 min and then the solvent was removed by freeze-drying. Thin layer chromatography (dichloro-methane-ether, 4:1) of the oily product revealed a distinct spot at R_{f} 0.75 , but with considerable streaking below it. The mixture (0.80 g) was chromatographed on silica gel (40 g in a $20 \times 370 \mathrm{~mm}$ column) using dichloromethane-ether, $4: 1$, as the eluent. The major product, isolated in chromatographically pure form, was the one of $R_{f} 0.75$ (17, $0.32 \mathrm{~g}, 39 \%$), which on standing for a month crystallized: $\mathrm{mp} 87-89$ ${ }^{\circ} \mathrm{C}$ (lit. $.^{13} 59-61^{\circ} \mathrm{C}$); IR (KBr) $1780 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{11}$ (376.32): C, 47.87; H, 5.35. Found: C, 48.05; H, 5.50 .

Decomposition of 15 in Acetic Acid. A solution of $15(1.0 \mathrm{~g})$ and cupric acetate (10 mg) in acetic acid (5 mL) was slowly heated until the evolution of nitrogen began (bath temperature $70^{\circ} \mathrm{C}$). The temperature was maintained at $70^{\circ} \mathrm{C}$ for 5 min and the solution was concentrated in vacuo to give a white solid. The solid was recrystallized from ether to give the acyclic diketone 16 ($1.0 \mathrm{~g}, 74 \%$): mp 85-87 ${ }^{\circ} \mathrm{C}$.

Acknowledgment is made to the donors of The Petroleum Research Fund, administered by the American Chemical Society, and to the National Institutes of Health, Grant No. AM-13551 and GM-19252, for support of this research. We thank Dr. Charles L. Watkins of this Department for providing us with some of the ${ }^{1} \mathrm{H}$ NMR spectra, and Drs. T. Phil Pitner and Jerry D. Glickson of the University of Alabama in Birmingham Comprehensive Cancer Center for their assistance in obtaining the theoretical ${ }^{1} \mathrm{H}$ NMR spectra.

Registry No.-1, 58-86-6; 13 acid chloride, 63181-62-4; sodium hydrogen tri- O-acetylxylarate, 63181-65-7; diazomethane, 334-88-3; glutaryl dichloride, 2873-74-7.

References and Notes

(1) For a preliminary account of some of the work described here, see D. E. Kiely and C. E. Cantrell, Carbohydr. Res., 23, 155 (1972).
(2) Abstracted in part from the Ph.D. dissertation of C. E. Cantrell, University of Alabama in Birmingham, 1975.
(3) For a survey of the biochemistry of cyclitols, see F. Eisenberg, Jr., Ann. N.Y. Acad. S:i., 165, 508-819 (1969), and L. Anderson in "The Carbohydrates', Vol. IA, D. Horton and W. Pigman Ed., Academic Press, New York, N.Y., 1972, pp 519-579.
(4) C. E. Cantrell. D. E. Kiely, R. A. Hearn, and C. E. Bugg, Tetrahedron Lett., 4379 (1973).
(5) M. L. Wolfrom and E. Usdin, J. Am. Chem. Soc., 75, 4318 (1953).
(6) Yu. S. Bokov, B. Ya. Makarov-Zemlyanskii, Ya. Ya. Makarov-Zemlyanskii, and S. A. Parlov, Nauchn. Tr. Mosk. Tekhnol. Inst. Legk. Prom., No. 24, 30 (1962); Chem. Abstr., 60, 8144b (1964).
(7) M. Barfield and B. Chakrabarti, Chem. Rev., 69, 757 (1969).
(8) Theoretical ${ }^{1} \mathrm{H}$ NMR spectra were generated using the ITRCAL program, Nicolet Instrument Corporation, Madison, Wis. The ITRCAL- program applies the LAOCOON III algorithm: S. Castellano and A. A. Bothner-By, J. Chem. Phys.. 41, 3863 (1964).
(9) H. Sternglanz and C. E. Bugg, Acta Crystallogr., Sect. B, 29, 1536 (1973).
(10) T. Posternak and J. G. Falbriard, Helv. Chim. Acta, 43, 2142 (1960)
(11) S. J. Angyal, J. E. Klavins, and J. A. Mills, Aust. J. Chem., 27, 1075 (1974).
(12) I. Ernest and J. Hofman, Chem. Listy, 45, 261 (1961); Chem. Abstr., 46, 7048h (1952).
(13) S. J. Angyal and K. James, Aust. J. Chem., 23, 1207 (1970). These investigators prepared the D configurational isomer of 17.
(14) For a review on syntheses using diazo ketones, see F. Weygand and H. J. Bestman in "New Methods of Preparative Organic Chemistry", Vol. 3. Academic Press, New York, N.Y., 1964, pp 451-508.
(15) Y. Yamamoto and I. Moritani, Tetrahedron Lett., 3087 (1969).
(16) D. Horton and J. D. Wander, Carbohydr. Res., 15, 271 (1970). The application of ${ }^{1} \mathrm{H}$ NMR spectroscopy for the conformational analysis of acyclic sugar derivatives has been surveyed: P. L. Durette, D. Horton, and J. D. Wander, Adv. Chem. Ser., No. 117, 147 (1973).
(17) J. Font, J. Val s, and F. Serratosa, Tetrahedron, 30, 455 (1974).
(18) G. J. Abruscato, D. E. Kiely, W. J. Cook, and C. E. Bugg. J. Org. Chem., following papers in this issue.
(19) F. Fiegl, "Spot Tests in Organic Analysis'", Elsevier, New York, N.Y., 1966.
(20) C. S. Marvel and D. J. Casey, J. Org. Chem., 24, 957 (1959).
(21) R. E. Gall and L. Tarasoff, Aust. J. Chem., 28, 687 (1975), reported $J_{2,3}=$ 3.46 Hz for xylaric acid in deuterium oxide.

δ-Dicarbonyl Sugars. 6. Preparation of an Unusual Trihaloheptulose from Xylaric Acid

Gerald J. Abruscato, ${ }^{\text {la }}$ Donald E. Kiely, ${ }^{* 1 a}$ William J. Cook, ${ }^{1 b}$ and Charles E. Bugg ${ }^{1 b}$
Department of Chemistry and Institute of Dental Research and Department of Biochemistry, University of Alabama in Birmingham, University Station, Birmingham, Alabama 35294

Received August 6, 1976

Abstract

The formation of 3,4,5-tri- O-acety-6,7-anhydro-6-chloromethyl-1-deoxy-1-diazo-DL-ido-2-heptulose (3) as a by-product of the reaction of tri- O-ace ylxylaryl dichloride (1) with diazomethane is described. Treatment of 3 with hydrogen bromide yielded 3,4,5-tri- O-acetyl-1,7-dibromo-6-chloromethyl-1,7-dideoxy- α-DL-ido-heptopyranos-2ulose (5), which reacted with sodium azide to give a mixture of 3,4,5-tri- 0 -acetyl-2,7-anhydro-1-bromo-6-chlorc-methyl-1-deoxy- α-DL-ido-heptopyranos-2-ulose (6) and the 1 -azido derivative 7 . The structure of 5 was determined by an x-ray crystallographic analysis.

In an earlier publication from this laboratory, ${ }^{3}$ the ace-tate-induced cyclization of tri- O-acetyl-1,7-dibromo-1,7-dideoxy-xylo-2,6,-heptodiulose (4) was descr:bed. ${ }^{4}$ This dibromide was prepared by treating crystalline tri $-O$-acetyl-1,7-bisdiazo-1,7-dideoxy-xylo-2,6-heptodiulose (2) with hydrogen bromide (Scheme I). On the basis of TLC it was deemed that the mother liquors of the reaction mixture that gave 2 were rich in this compound and when treated with hydrogen bromide would give additional 4 . When the crude product from this reaction failed to crystallize, the reaction mixture was treated with sodium azide to see if any bromide
displacement might occur. This reaction yielded a crystalline compound whose IR spectrum had a moderately sized absorption due to an azido group, a strong carbonyl absorption, but no hydroxyl peak. Deacetylation gave a crystalline solid whose IR spectrum had the azide peak, a strong hydroxyl peak, but no carbonyl absorption. Reacetylation gave back the precursor acetate.

In order to discover the origin of the acetylated azido compound, a reexamination of the diazomethylation mother liquors was necessary. Column chromatographic purification of a sample of the mother liquors after crystallization of 2 af-

Figure 1. $90-\mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 5 (excluding acetoxy proton signals) with decoupled signals at $\delta 5.16$.

1

Scheme I

2

4
forded additional 2, dimethyl tri- O-acetylxylarate, and a new compound, 3,4,5-tri- O-acetyl-6,7-anhydro-6-chloromethyl1 -deoxy-1-diazo-DL-ido-2-heptulose (3). ${ }^{2}$ Treatment of 3 with hydrogen bromide gave crystalline 5 , which was then converted to the product with the azide group (Scheme II).

The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 (Figure 1) was in good agreement with the structure eventually obtained by x-ray crystallographic analysis (Figure 2). The x-ray structure shows that the molecule in the crystalline state is in a regular chair conformation with the C-1 bromomethyl, chloromethyl, and three acetoxy groups all in equatorial positions. Although crystalline 5 is in a regular chair conformation with the H-3, H-4 and H-4, H-5 dihedral angles calculated to be approxi-

Scheme II

6

7
mately 175 and 170°, respectively, the conformation of the molecule in CDCl_{3} solution appears to be somewhat skewed with these same dihedral angles considerably less than what they are in the crystalline state. The couplings between H-4 and its vicinal neighbors are 4.43 and 5.98 Hz , values which are lower than the normal $7-10 \mathrm{~Hz}$ associated with two vicinal anti-periplanar protons. H-4 also shows unusual long-range
coupling through five σ bonds with the $\mathrm{C}-2$ hydroxyl proton $\left(J_{\mathrm{OH}, \mathrm{H}-4}=1.8 \mathrm{~Hz}\right) .{ }^{5}$ The fine splitting of the $\mathrm{H}-4$ signal disappears with irradiation of the hydroxyl resonance (Figure 1) or deuterium exchange of the hydroxyl proton.

Although elemental analysis, TLC, and melting point range all indicate that 5 is a homogeneous substance, the ${ }^{1} \mathrm{H}$ NMR spectrum shows some impurities as reflected in the extraneous peaks accompanying the signals from the ring protons, particularly H-4. These impurities might include the β anomer of 5 and/or small amounts of the anomers resulting from bromide attack at the tertiary epoxide carbon of 3 . Excellent correlation between the observed coupled and decoupled spectra of 5 with their theoretical counterparts was obtained when these minor peaks were considered to be from impurities in the sample.

The product obtained from treating 5 with sodium azide was determined to be the bicyclo compound 3,4,5-tri- O-ace-tyl-2,7-anhydro-1-bromo-6-chloromethyl-1-deoxy- α-DL-ido-heptopyranos-2-ulose (6) contaminated with about 30% of the 1 -azido derivative 7 (Scheme II). The mixture of 6 and 7 was separated by preparative TLC, but only with difficulty. However, pure 6 was easily obtained by preparative TLC after the mixture was catalytically hydrogenolyzed, presumably converting 7 to a more polar amine derivative.

The conversion of 5 to 6 was likely the result of a simple intramolecular nucleophilic displacement of the C-7 bromine with the azide-generated C-2 alkoxide ion $\mathbf{5 b}$. The structural assignment for 7 , and in particular the point of attachment of the azido group, is partially based on a comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of 6 and 7 . The spectrum of 7 shows an upfield shift (0.1 ppm) of the $\mathrm{C}-1$ methylene singlet, a result in keeping with displacement of the C -1 bromide with azide. In all other respects the two spectra are nearly identical.

In considering the formation of 7 direct backside displacement of the C-1 bromide of either 5 or 6 is unlikely due to the steric shielding of this carbon by the C-2 oxygen. In fact, a mixture of 6 and 7 ($6 / 7 \mathrm{ca} .7: 3$) remains unchanged when treated with azide under those conditions that produced 7 from 5 . We have concluded that the anionic oxygen of 5 b in addition to forming the dioxolane system of 6 can also displace the $\mathrm{C}-1$ bromide giving a transient epoxide 5 c , which is then opened with azide to give 7 .

The evidence for the stereochemistry of the epoxide in 5 is found in the proposed mechanism for the conversion of 3 to 5 with hydrogen bromide. Protonation of the epoxide oxygen to give 3 a is followed by ring opening with bromide at the sterically favored primary carbon, this step leading to 5 by way of its acyclic isomer 5a.

Experimental Section

General Methods. All melting points were determined on a Fisher-Johns melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer Model 337 grating spectrophotometer and proton magnetic resonance spectra were obtained on either a Varian Model EM-390 or HA-60IL spectrometer with tetramethylsilane as an internal standard. Mass spectra were recorded using a Hitachi-Perkin-Elmer Model RMU-7 double focusing mass spectrometer. All solvent evaporations were done using a flash evaporator at $20-40 \mathrm{mmHg}$ and at a bath temperature of $35-40^{\circ} \mathrm{C}$. Analytical TLC was carried out on microscope slides coated with silica gel GF-254 (E. Merck, Darmstadt, W. Germany) and visualized by spraying with sulfuric acid and then charring. Preparative TLC was carried out on $20 \times 20 \mathrm{~cm}$ plates precoated with a $1000-\mu \mathrm{m}$ thickness of silica gel GF (Analtech, Inc., Newark, Del). Column chromatography was carried out using silica gel 60 (70-230 mesh, E. Merck, Darmstadt, W. Germany). Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn.

3,4,5-Tri- O-acetyl-6,7-anhydro-6-chloromethyl-1-deoxy-1-diazo-DL-ido-2-heptulose (3). The diazomethylation of 2,3,4-tri- O-acetylxylaryl dichloride (1) was carried out as described in ref 2 to yield crystalline 3,4,5-tri- O-acetyl-1,7-bisdiazo-1,7-dideoxy-xylo-2,6-heptodiulose (2). The mother liquors from 2 were chroma-

Figure 2. Stereoview of compound 5.
tographed affording syrupy 3 (2.1 g), which was homogeneous by TLC but possessed an ambiguous ${ }^{1} \mathrm{H}$ NMR spectrum. Upon dissolving this syrup in methylene chloride, diluting the solution with an equal volume of ether, seeding with crystals of 2, presumably contaminated with 3 , and storing at $-10^{\circ} \mathrm{C}$, crystalline 3 was obtained ($300 \mathrm{mg}, 1.7 \%$ based on 1). An additional crop of 3 ($255 \mathrm{mg}, 1.5 \%$) was obtained by concentrating the mother liquor to a syrup, dissolving it in ethanol, diluting with water to a very slight tubidity, and storing at $-10^{\circ} \mathrm{C}$. Compound 3 had a mp of $90-92^{\circ} \mathrm{C}$ (IR (KBr) $2115(\mathrm{C}=\mathrm{N}=\mathrm{N}), 1750$ $(\mathrm{C}=\mathrm{O})$, and $1630 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{N}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.11(\mathrm{~s}, 6$, two $\mathrm{CH}_{3} \mathrm{CO}_{2}$), 2.23 (s, 3, $\mathrm{CH}_{3} \mathrm{CO}_{2}$), 2.85 and 2.96 (both d, each 1, $J_{\text {gem }}=$ 5 Hz , epoxide CH_{2}), 3.63 and 3.85 (both d, each $1, J_{\text {gem }}=12 \mathrm{~Hz}$ $\mathrm{CH}_{2} \mathrm{Cl}$), 5.38 (complex m, 3, three CHOAc), and $5.50\left(\mathrm{~s}, 1, \mathrm{CHN}_{2}\right)$; mass spectrum (70 eV) m/e $377(\mathrm{M}+1)$ and $379(\mathrm{M}+3)$ relative intensity ca. $3: 1$, monochlorine isotopic cluster].
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{8} \mathrm{~N}_{2} \mathrm{Cl}$ (376.76): C, $44.36 ; \mathrm{H}, 4.55 ; \mathrm{Cl}, 9.41$; N, 7.44. Found: C, 44.56; H, 4.56; C 1, 9.61; N, 7.33.
3,4,5-Tri- O-acetyl-1,7-dibromo-6-chloromethyl-1,7-dideoxy-α-DL-ido-heptopyranos-2-ulose (5). Gaseous HBr was bubbled into a suspension of $3(100 \mathrm{mg})$ in 5 mL of anhydrous ether while stirring. After about 2 min the solid went into solution and the effervescence stopped. More HBr was bubbled in for another 2 min and the reaction was allowed to stand for 10 min . The solution was then treated with a molecular sieve until it was no longer acid to litmus. The sieve was removed by filtration and the filtrate concentrated to a syrup and dried in vacuo (ca. 1 mmHg) for 3 h . The resulting froth was crystallized from ether and the solid formed was recrystallized from hot ethanol to yield $5(100 \mathrm{mg}, 74 \%)$ [$\mathrm{mp} 142-145{ }^{\circ} \mathrm{C}$ with softening at 140 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3500 (sharp, free OH), 3450 (broad, hydrogen-bonded $\mathrm{OH})$, and $1750 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, Figure 1) $\delta 2.01,2.05$, 2.12 (each s, each 3, $\mathrm{CH}_{3} \mathrm{CO}$), 3.53 and 3.77 (both d, each 1, $J_{\text {gem }}=12.0$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Cl}$), 3.42 and 3.54 (both d, each 1, $J_{\text {gem }}=10.5 \mathrm{~Hz}$, equatorial $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 3.75\left(\mathrm{~d}, 1, J_{\mathrm{H}-7, \mathrm{H}-7^{\prime}}=11.7 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right), 4.35\left(\mathrm{~d}, 1, J_{\mathrm{H}-7, \mathrm{H}-7^{\prime}}=11.7\right.$ $\mathrm{Hz}, \mathrm{H}-7$), 3.94 (d, 1, $J_{\mathrm{OH}, \mathrm{H}-4}=1.8 \mathrm{~Hz}, \mathrm{OH}$ confirmed by deuterium exchange), 5.16 ($\mathrm{m}, 1, \mathrm{H}-4$ coupled to $\mathrm{H}-3, \mathrm{H}-5$, and OH), and 5.65 and 5.66 (overlapping doublets, couplings with $\mathrm{H}-4$ of 4.43 and 5.98 Hz , resonances attributed to, but not specifically assigned to, $\mathrm{H}-3$ and $\mathrm{H}-5$); mass spectrum (70 eV) $\mathrm{m} / \mathrm{e} 509(\mathrm{M}+1)$]. The mass spectrum of 5 also exhibited the following isotopic clusters: weak, dibromine $\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{Cl}\right)$ at $m / \mathrm{e} 459,461$, and 463 , relative intensity ca. 1:2:1; strong, monochlorine-monobromine ($\mathrm{M}-\mathrm{CH}_{2} \mathrm{Br}$) at m/e 415, 417, and 419, relative intensity ca. 3:4:1; strong, dibromine ($\mathrm{M}-\mathrm{CH}_{2} \mathrm{Cl}$, $\mathrm{HOAc})$ at $m / e 399,401$, and 403 ; and strong, monobromine $(\mathrm{M}-\mathrm{HCl}$, $\mathrm{Br})$ at $m / e 393$ and 395 , relative intensity ca. 1:1.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{8} \mathrm{Br}_{2} \mathrm{Cl}$ (510.58): C, 32.93; $\mathrm{H}, 3.75 ; \mathrm{Br}, 31.30$; $\mathrm{Cl}, 6.95$. Found: C, 33.19 ; $\mathrm{H}, 3.88$; $\mathrm{Br}, 30.94$; CI, 6.77.
For x-ray crystallographic analysis clear, rectangular, platelike crystals of 5 were obtained by room temperature crystallization from ethanol. Weissenberg and oscillation photographs showed that the crystals are monoclinic; the space group is $P 2_{1} / c$, as indicated by the systematic absence of reflections $h 0 l$ with l odd and $0 k 0$ with k odd. A crystal with approximate dimensions of $0.4 \times 0.3 \times 0.2 \mathrm{~mm}$ was mounted along its a axis on a Picker FACS-1 diffractometer. Cell
dimensions, which were determined by a least-squares analysis of the 2θ values for 14 medium-angle reflections ($\mathrm{Cu} \mathrm{K} \alpha, \lambda 1.5418 \AA$), are a $=6.060(2), b=13.193(5), c=24.688$ (4) \AA, and $\beta=102.21$ (2) ${ }^{\circ}$.

Intensity data were collected with the diffractometer, by use of nickel-filtered copper radiation, a scintillation counter, and a $\theta-2 \theta$ scanning technique. Measurements were made for the 3199 reflections with $2 \theta \leqslant 128^{\circ}$. The scanning speed was $1^{\circ} / \mathrm{min}$ for the $h \geqslant 0, \geqslant 0, l$ $\geqslant 0$ sector of reciprocal space. However, the crystal began to show signs of decomposition, and the scanning speed was increased to $2^{\circ} / \mathrm{min}$ for the remainder of the data collection. The intensities of three reference reflections (200,020 , and 001) that were monitored periodically during the data collection decreased continuously to about 75% of their original values. The intensity values were scaled by a leastsquares procedure in which the intensities of the stancard reflections were used to calculate scale factors as a function of crystal exposure time. Intensities were assigned variances, $\sigma^{2}(I)$, according to the statistics of the scan and background counts plus a correctional term $(0.03 S)^{2}, S$ being the scan count. The intensities and their variances were corrected for Lorentz and polarization factors, absorption corrections were applied by using the computer program ORABS, ${ }^{8}$ and the data were scaled by means of a Wilson ${ }^{7}$ plot.

A trial structure was obtained by the heavy-atom method as follows: coordinates for one bromine atom were determined from a sharpened Patterson map; coordinates for the second bromine atom were determined from a sum-function superposition of sharpened Patterson maps translated to the first bromine atom position; and the remaining nonhydrogen atoms were located in a Fourier map that was calculated by using phase angles derived from the two atoms. The trial structure was refined by using a modified version of the ful-matrix leastsquares program ORFLS. ${ }^{9,10}$ The quantity minimized was $\Sigma w\left[\left(F_{0}{ }^{2}-\right.\right.$ $\left.\left.F_{c}{ }^{2}\right) / k^{2}\right]^{2}$, where k is a scale factor and weight w is equal to $1 / \sigma^{2}\left(F_{0}{ }^{2}\right)$. Scattering factors for the nonhydrogen atoms were from the "International Tables for X-Rav Crystallography", ${ }^{11}$ anomalous dispersion correction factors for these atoms were from Cromer and Liberman, ${ }^{12}$ and hydrogen atom scattering factors were from Stewart, Davidson, and Simpson. ${ }^{13}$ Coordinates for those hydrogen atoms bonded to carbon atoms (excluding methyl groups) were calculated by assuming tetrahedral coordination around the carbon atoms and $\mathrm{C}-\mathrm{H}$ bond distances of $0.95 \AA$. The hydrogen atoms were assigned the isotropic temperature factors of the carbon atoms to which they are bonded, and were included in the calculation of structure factors, but not in the least-squares refinement. The nonhydrogen atom positional parameters, the anisotropic temperature parameters, and Zachariasen's ${ }^{14}$ isotropic extinction parameter g (as formulated by Coppens and Hamilton ${ }^{15}$) were included in the refinement.

The final R index $\left(\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| /\left|F_{\mathrm{o}}\right|\right)\right.\right.\right.$ is 0.130 , and the goodness-of-fit $\left\{\left[\Sigma w\left[\left(F_{o}^{2}-F_{c}{ }^{2}\right) / k^{2}\right] /(m-s)\right]^{1 / 2}\right.$, where m is the number of reflections used and s is the number of parameters refined) is 1.38 . During the last cycle of refinement, no parameter shifted more than one-fourth of its estimated standard deviation. A final difference Fourier map showed several peaks and troughs of magnitudes ranging from 0.6 to $1.1 \mathrm{e} / \AA$ in the vicinities of the bromine atoms; there were no other peaks or troughs in excess of $0.6 \mathrm{e} / \AA^{3}$.

3,4,5-Tri- O-acetyl-2,7-anhydro-1-bromo-6-chloromethyl-1-deoxy- α-DL-ido-heptopyranos-2-ulose (6) and 3,4,5-Tri-O-acetyl-2,7-anhydro-1-azido-6-chloromethyl-1-deoxy- β-DL-ido-heptopyranos-2-ulose (7). A solution of $5(200 \mathrm{mg}, 0.39 \mathrm{mmol})$ in 5 mL of anhydrous acetone was stirred at room temperature with $\mathrm{NaN}_{3}(500 \mathrm{mg}, 1.3 \mathrm{mmol})$ overnight. Analysis of this reaction mixture by TLC ($6: 1$, benzene-ether) showed the absence of starting material and only one spot of greater R_{f} value than the starting material. The mixture was diluted with 100 mL of chloroform and concentrated to a paste. This paste was triturated with chloroform and the resulting solid and liquid mixture was washed twice with water. The chloroform layer was dried and decolorized over a mixture of CaCl_{2} and decolorizing carbon and after filtration of the mixtures and concentration of the filtrate the product was crystallized from ether. The solid was filtered and washed with ether to yield 100 mg of a slightly yellowtinted material (mp $122-125^{\circ} \mathrm{C}$) subsequently determined to be a mixture of 6 contaminated with ca. 30% of 7 . No change in the ratio of these compounds, as evidenced by ${ }^{1} H$ NMR spectroscopy, was observed when the mixture was treated overnight with azide as described. A mass spectrum of this mixture exhibited a parent ion (m / e 428) for 6 and a parent ion ($m / e 391$) for 7 along with several isotopic clusters: strong, monobromine (from $6, \mathrm{M}-\mathrm{Cl}$) at $m / e 393$ and 395, relative intensity ca. 1:1; strong, monochlorine-monobromine (from 6, M - OAc) at $m / e 369,371$, and 373, relative intensity ca. 3:4:1, and strong, monochlorine (from $7, \mathrm{M}-\mathrm{OAc}$) at $m / e 332$ and 334 , relative intensity ca. 3:1.

The mixture (100 mg) of 6 and 7 dissolved in 10 mL of ethanol
containing 0.2 mL of 6 N HCl was hydrogenated over Pt (from 100 mg of PtO_{2}) for 2 h at atmospheric pressure. A TLC ($1: 1$, benzene-ether) of this reaction mixture showed one spot of identical R_{f} value with that of the starting mixture and another spot at the origin. After customary workup, the major component, the one not at the origin, was recovered by preparative TLC (9:1, benzene-ether). The crystalline product was recrystallized from hot ethanol to yield pure 6 (55 $\mathrm{mg}, 33 \%$ from 5) [mp 136-138 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1755 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.98,2.03,2.15$ (each s, each $3, \mathrm{CH}_{3} \mathrm{CO}_{2}$), 3.47 (s, 2, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 3.68\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.83\left(\mathrm{~d}, 1, J_{\text {gem }}=8.0 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right), 4.34(\mathrm{~d}, 1$, $J_{\text {gem }}=8.0 \mathrm{~Hz}, \mathrm{H}-7$), and 5.28 (unresolved $\mathrm{m}, 3, \mathrm{H}-2, \mathrm{H}-3$, and $\mathrm{H}-$ 4)].

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrClO}_{8}$ (429.66): $\mathrm{C}, 39.13 ; \mathrm{H}, 4.22 ; \mathrm{Br}, 18.60$; $\mathrm{Cl}, 8.25$. Found: C, $39.29 ; \mathrm{H}, 4.24 ; \mathrm{Br}, 18.70 ; \mathrm{Cl}, 8.49$.

Another sample of the mixture of 6 and $7(100 \mathrm{mg})$ was separated by preparative TLC (developing with 9:1 benzene-ether and visualizing with iodine vapor) into three fractions: the head, middle, and tail of a broad band. The head fraction was found to still contain a small amount of azide 7 (IR band at $2100 \mathrm{~cm}^{-1}$), so it was chromatographed again on a preparative TLC plate. Again, the head fraction of this band was scraped off and extracted with acetone to give 15 mg of pure 6 . The tail fraction of the fist chromatogram was also chromatographed again and the tail of this band yielded 5 mg of $7[\mathrm{mp}$ $125-128{ }^{\circ} \mathrm{C}$; IR (KBr) $2110\left(\mathrm{~N}_{3}\right)$ and $1750 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.98\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 2.04$ (s, 6, two $\mathrm{CH}_{3} \mathrm{CO}_{2}$), 3.37 (s, 2, $\left.\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.68\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.84\left(\mathrm{~d}, 1, J_{\mathrm{gem}}=8.0 \mathrm{~Hz}, \mathrm{H}^{\prime} 7^{\prime}\right), 4.33(\mathrm{~d}$, $1, J_{\text {gem }}=8.0 \mathrm{~Hz}, \mathrm{H}-7$), and 5.27 (unresolved $\mathrm{m}, 3, \mathrm{H}-2, \mathrm{H}-3$, and $\mathrm{H}-$ 4)].

Deacetylation of the Mixture of 6 and 7. A $200-\mathrm{mg}$ sample of the mixture of 6 and 7 was suspended in 5 mL of absolute methanol and sodium methoxide was added in small amounts while stirring until the solid dissolved. The reaction was stirred for an additional 5 min and a TLC ($6: 1$, benzene-ether) at this point showed the absence of starting material and only one spot at the origin. The reaction mixture was treated with acid ion-exchange resin until neutral and then allowed to stand over decolorizing carbon for 10 min . The resin and charcoal were removed by filtration and the filtrate was concentrated to a syrup. This syrup crystallized upon standing overnight. The solid was recrystallized by dissolving it in several drops of absolute methanol, diluting with 25 mL of $\mathrm{CHCl}_{3:}$ and then concentrating just until crystallization began to occur. This yielded 50 mg of a solid of mp $135-139^{\circ} \mathrm{C}$. An IR of this solid showed a strong, broad hydroxyl absorption at $3340 \mathrm{~cm}^{-1}$, a small sharp azide peak at $2100 \mathrm{~cm}^{-1}$, but no carbonyl absorpticn. Its ${ }^{1} \mathrm{H}$ NMR spectrum, taken in both acetone- d_{6} and $\mathrm{D}_{2} \mathrm{O}$, showed the absence of any acetate groups, a complex multiplet centered at about $\delta 3.8$, and a broad peak for the hydroxyl protons at about $\begin{gathered}\text { a } \\ 4.5\end{gathered}$

This solid and its mother liquor were combined and concentrated to a syrup. The syrup was dissolved in 2 mL of pyridine and 1.5 mL of acetic anhydride and allowed to stand for 3 h . TLC ($6: 1$, benzeneether) showed the complete disappearance of starting material and only one spot of identical $R_{/}$value as that of the original mixture of 6 and 7. Standard workup of the reaction mixture yielded 35 mg of a solid ($\mathrm{mp} 123-125^{\circ} \mathrm{C}$), identified as the mixture of 6 and 7 by its IR and NMR spectra.

Acknowledgment is made to the National Institutes of Health, Grants No. GM-19252, CA-12159, DE-02670, and CA-13148, for support of this research. We thank Drs. C. L. Watkins and J. M. Riordan of the Chemistry Department for running some of the ${ }^{1} \mathrm{H}$ NMR spectra and Drs. T. P. Pitner and J. D. Glickson of the University of Alabama in Birmingham Comprehensive Cancer Center as well as J. M. Riordan for their help in obtaining the theoretical ${ }^{1} \mathrm{H}$ NMR spectra.

Registry no.-2, 38910-01-9; 3, 63181-43-1; 5, 63181-44-2; 6, 63181-45-3; 7, 63215-73-6.

Supplementary Material Available: Tables of hydrogen and nonhydrogen atomic parameters with estimated standard deviations and a table of selected bond angles (4 pages). Ordering information is given on any carrent masthead page.

References and Notes

(1) (a) Department of Chemistry; (b) Institute of Dental Research and Department of Biochemistry.
(2) C. E. Cantrell, D. E. Kiely, G. J. Abruscato, and J. M. Riordan, J. Org. Chem., preceding paper in this issue.
(3) C. E. Cantrell, D. E. Kiely, R. A. Hearn, and C. E. Bugg. Tetrahedron Lett.,
(4) The details of this work and some related chemistry will be the subject of a future publication.
(5) For a review on long-range spin-spin coupling, see M. Barfield and B. Chakrabarti, Chem. Rev., 69, 757 (1969).
(6) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry"', 2nd ed, Pergamon Press, Oxford, 1969, pp 71-72, and references cited therein.
(7) A. J. C. Wilson, Nature (London), 150, 151 (1942).
(8) D. J. Wehe, W. R. Busing, and H. A. Levy, "ORABS, A Fortran Program For Calculating Single Crystal Absorption Corrections'', Report No. ORNL-TM-229, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1962.
(9) W. R. Busing, Acta Crystallogr., Sect. A, 27, 683 (1971).
(10) W. R. Busing, K. O. Martin, and H. A. Levy, 'ORFLS, A Fortran Crystallographic Least-Squares Program'", Report ORNL-TM-305, Oak Ridge National Laboratory. Oak Ridge, Tenn., 1962.
(11) "International Tables for X-Ray Crystallography", Vol. III, Kynoch Press, Birmingham, England, 1962, pp 202-209.
(12) D. T. Cromer and D. Liberman, J. Chem. Phys., 53, 1891 (1970)
(13) R. W. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).
(14) W. H. Zachariasen, Acta Crystallogr., 16, 1139 (1963).
(15) P. Coppens and W. C. Hamilton, Acta Crystallogr., Sect. A, 26, 71 (1970).

Synthesis of Cholest-5-ene-3 $3,11 \alpha, 15 \beta$-triol-7-one. A Model for the Steroid Nucleus of Oogoniol, a Sex Hormone
 of the Water Mold Achlya

Evelyn J. Taylor ${ }^{1}$ and Carl Djerassi*
Department of Chemistry, Stanford University, Stanford, California 94305

Received May 9, 1977

Abstract

The synthesis of cholest-5-ene-3 $\beta, 11 \alpha, 15 \beta$-triol-7-one (4), a compound containing the nuclear functionalities of oogoniol, is described. Starting from a relatively unfunctionalized steroid, 7-dehydrocholesterol benzoate, oxygen functions were introduced into rings B, C, and D . The first stage of the synthesis was the oxygenation of $\mathrm{C}-15$ through the hydroboration of cholesta-7,14-dien- 3β-ol ($7 \mathbf{b}$) to give cholest-7-ene- $3 \beta, 15 \alpha$-diol (8). Then the 11α-alcohol and C-7 ketone functions were introduced via the Δ^{7} double bond by a series of reactions first developed in the early 1950s to oxygenate $\mathrm{C}-11$ of ring C unsubstituted steroids for corticosteroid syntheses. The resulting cho-lestane- $3 \beta, 11 \alpha, 15 \alpha$-triol-7-one (12a) was selectively acetylated at C-3 and C-11 and the Δ^{5} double bond was introduced through a bromination-dehydrobromination sequence. The final stage of the synthesis was the inversion of the C-15 alcohol to generate the desired β configuration. The 15α-alcohol was oxidized to the ketone and subsequent hydride reduction yielded predominantly the 15β-alcohol. This reduction also reduced the unsaturated C-7 ketone which was then oxidized with manganese dioxide. Saponification of the 3β - and 11α-acetates produced the desired cholest-5-ene- $3 \beta, 11 \alpha, 15 \beta$-triol-7-one (4), which proved to be biologically inactive.

Sexual reproduction in the water mold Achlya has been thoroughly studied and the involvement of sex hormones regulating this process has been conclusively demonstrated. ${ }^{2}$ Sexual reproduction in Achlya bisexualis is initiated by the secretion of antheridiol (1) by the female strain which induces the formation of antheridial branches in the male strain. Antheridiol, isolated as a crystalline compound ${ }^{3}$ and shown to have structure 1,4 was the first steroidal sex hormone to be

identified in the plant kingdom and several syntheses have been reported. ${ }^{5}$ After stimulation by anteridiol, the sexually activated male strain releases a second hormone, hormone B, which causes the female strain to develop oogonial branches. From a hermaphroditic strain of Achlya hetercsexualis which produces hormone B without prior stimulation by anteridiol, McMorris and co-workers have recently isolated and characterized two crystalline compounds having hormone B activity. ${ }^{6}$ They have named these compounds oogoniol- 1 and -2 and have proposed structures $2 \mathbf{a}, 2 \mathbf{b}$, and $2 \mathbf{c}$, respectively, for these two compounds plus a third closely related compound, oogoniol-3, which was obtained as part of a noncrystalline mixture.

The oogoniols are therefore the second example of steroidal plant sex hormones to be identified, and confirmation of the structure assignment by synthesis is desirable. Even more importantly, structural modification would permit an evaluation of the structural specificity of the biological activity associated with the different functionalities of structure 2. Oogoniol-1, -2 , and $-3(2 \mathbf{a}, 2 \mathbf{b}$, and $\mathbf{2 c}$) differ only in the kind of ester group present at C-3. The parent tetraol 2 d , which will be referred to here simply as oogoniol, has been shown to be even slightly more biologically active than 2a and 2b. ${ }^{6}$ It was therefore decided to devise a synthesis of oogoniol (2d) rather than any of the C-3 esterified compounds $\mathbf{2 a}, \mathbf{2 b}$, and $\mathbf{2 c}$.

Any synthesis of oogoniol utilizing a steroidal starting material can be logically divided into two parts. One part is the construction of the side chain, which ideally should be stereospecific so that the stereochemistry and absolute configuration at C-24 and C-25 can be determined. The other part

iii
identical with the lactone prepared from 8 by hydrolysis and acetylation. This confirms the trans relationship between the methyl and side chain in 12.
(22) G. Stork and S. D. Darling, J. Am. Chem. Soc., 82, 1512 (1960).
(23) Recipient of a Career Development Award (CA-00273) from the National Cancer Institute of the National Institutes of Health (1976-1981).
(24) Fellow of the Alfred P. Sloan Foundation (1976-1978).
(25) Camille and Henry Dreyfus Award (1972-1977).

Robert K. Boeckman, Jr.,*23,24 James P. Bershas Department of Chemistry, Wayne State University Detroit, Michigan 48202

Jon Clardy, ${ }^{* 25}$ Barbara Solheim
Ames Laboratory USERDA and Department of Chemistry
Iowa State University
Ames, Iowa 50011

Received July 18, 1977

A Convenient Synthesis of Progesterone from Stigmasterol

Summary: A convenient synthesis of progesterone from stigmasterol is described involving as the key step the high yield photooxygenation of the 20 -aldehyde 5 to the 20 -ketone 10.

Sir: One of the most important manufacturing processes ${ }^{1}$ of the female sex hormone progesterone (1), which is also a key intermediate in the synthesis of corticosteroids, starts with stigmasterol (2). The final steps involve selective conversion of the aldehyde 3 to the 22 -enamine 4 , followed by oxidation

under a variety of conditions (ozonization, photooxidation) to progesterone.
During a recent synthesis ${ }^{2}$ of novel marine sterols, we encountered an unexpected oxidation reaction: epimerization of aldehyde 5 with methanolic potassium hydroxide for 60 h , followed by reduction with lithium aluminum hydride yielded, in addition to the expected mixture of alcohols 6 , the epimeric 20 -hydroxy pregnane derivatives 7 in 35% yield (Scheme I). This side reaction, which probably proceeds via the intermediate hydroperoxide ${ }^{3} 9$, prompted a more detailed study which has now resulted in a simple one-step conversion of the aldehyde 5 into the corresponding 20 -ketone 10 and thence to progesterone (1).

Scheme I

5
$\downarrow \mathrm{MeOH} / \mathrm{KOH}$

6
7
$\dagger_{\text {Liaif, }}$

9
$\uparrow_{\text {biAlH }}$

13, $\mathrm{R}=<_{\mathrm{H}}^{\mathrm{CHO}}$
14, $R=0$

10
$\downarrow^{\text {aq dioxane }} \begin{aligned} & \text { d.TSOH }\end{aligned}$

11

Stigmasterol (1) can be converted in excellent overall yield ${ }^{4}$ to the 22 -aldehyde $5,1.0 \mathrm{~g}$ of which was dissolved in 50 mL of 10% methanolic potassium hydroxide solution and cooled to $0^{\circ} \mathrm{C}$. After the addition of 15 mg of rose bengal sensitizer, oxygen was bubbled through the solution for 10 min with continuous irradiation from a 1000 W tungsten lamp. The reaction mixture was poured into water, extracted with ether, and washed successively with dilute hydrochloric acid, saturated sodium bicarbonate solution, and water. Evaporation of the dried ether extract gave the 20 -ketone 10 , which was directly hydrolyzed by heating for 15 min under reflux in 20% aqueous dioxane containing 100 mg of p-toluenesulfonic acid, to afford the standard progesterone precursor pregn-5-en3β-ol- 20 -one (11) in 94% overall yield (based on 5). The Oppenauer oxidation of 11 to progesterone (1) is a standard commercially utilized operation. ${ }^{5}$

When the reaction was carried out in the absence of light or of the sensitizer no detectable amount of the ketone 10 was formed. Under identical conditions, but in the presence of Dabco, ${ }^{6}$ a singlet oxygen quencher, only a 35% conversion (GC analysis) to 10 was realized. These reactions confirm that the 20 -ketopregnane 10 is formed by a photooxidation process probably via the dioxetane intermediate 12 formed from the enol 8 by a $(2+2)$ cycloaddition process ${ }^{7}$ with singlet oxygen.

The reaction sequence outlined in this communication, coupled with the facile high-yield conversion ${ }^{4}$ of stigmasterol (2) to the 22 -aldehyde 5 , provides a very efficient and relatively inexpensive method for the synthesis of pregnenolone (11) and hence of progesterone.

An attempt was also made to eliminate the need for the i methyl ether protecting group of 5 by carrying out the sensitized photooxygenation directly on the unprotected keto aldehyde 3. While progesterone (1) was formed in 60% yield, it was invariably contaminated by $\sim 10 \%$ each of the 6 -keto aldehyde 13^{8} and the trione 14,9 thus making this alternative and much shorter synthesis of progesterone (1) a less efficient one.

Acknowledgment. We are grateful to the National Institutes of Health for financial assistance (Grant No. GM-06840)

Figure 2.
difficult. Examination of a model (Figure 2) suggests that the required mode of addition, while favored stereoelectronically, is rather more hindered than addition from the outside of the concave ring system. Precedent exists that steric hindrance to approach of the reagent can markedly influence the stereochemical outcome. ${ }^{20}$
Treatment of $\mathbf{4 b}$ under comparable conditions with the mixed cuprate described above (1.7 equiv, $-40 \rightarrow 0^{\circ} \mathrm{C}, 18 \mathrm{~h}$) provided adduct 12 as the major product (50%). ${ }^{21}$ In this case, stereoelectronic control still dominates in spite of the steric hindrance. Lactone 12 was then elaborated to ketone 15 by a comparable series of steps as those described for 8 to 11 (Scheme I).
We have examined two methods for introduction of the final asymmetric center in the ceroplastol series. Treatment of lactone 8 with KOH in ethanol (1.8 equiv, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$) afforded 16. Reduction of 16 with $\mathrm{Li} / \mathrm{NH}_{3}$ (excess) and reoxidation $\left(\mathrm{CrO}_{3} /\right.$ acetone, $0^{\circ} \mathrm{C}$) gave 17 in $\sim 60 \%$ overall yield. ${ }^{22}$ As can

16

17

18
be seen, transformation of acid 17 via the lactone rearrange-ment-fragmentation sequence would be expected to lead to ester 18 possessing the correct relative asymmetry for the ceroplastols. ${ }^{10,13}$ Alternatively, diketo ester 9 undergoes stereoselective epoxidation (MCPBA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$), affording ester 19 in $\sim 70 \%$ yield. Rearrangement of 19 with boron trifluoride etherate (1.05 equiv, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$) gave the desired triketone 20 [IR (cm^{-1}) 1740, 1735, 1715] in which the

19

20
final asymmetric center is introduced stereospecifically by migration of the adjacent β hydrogen. Again, triketone 20 possesses all the asymmetry required for the ceroplastol system. ${ }^{10,13}$
We are currently exploiting this methodology in our approaches to the natural substances 1 and 2.

Acknowledgment. This research was generously supported by a grant (AI-11662) from the Allergy and Infectious Diseases Institute of the National Institutes of Health, to whom we are grateful.

Supplementary Material Available: Fractional coordinates and temperature factors (Table I), bond distances (Table II), and bond angles (Table III) for compound 10 (4 pages). Ordering information is given on any current masthead page.

References and Notes

(1) S. Nozoe and M. Morisaki, Chem. Commun., 1319 (1969).
(2) I. T. Harrison, S. Harrison, Y. litaka, a d I. Watanabe, J. Am. Chem. Soc., 90, 1092 (1968).
(3) P. C. Dutta and T. K. Das, Synth. Commun., 6253 (1976)
(4) W. G. Dauben and D. S. Hart, J. Org. Chem., 42, 922 (1977).
(5) R. Silverstein, W. Gore, and G. T. Pearce, J. Org. Chem., 40, 1705 (1975).
(6) (a) G. Stork, H. Landesman, A. Brizzo ara, J. Szmuskovicz, and R. Terrell, J. Am. Chem. Soc., 85, 207 (1963). (b) After hydrolysis (cf. ref 6a) the crude product was treated with methanolic potassium hydroxide ($65^{\circ} \mathrm{C}, 12 \mathrm{~h}$) to complete the cyclization.
(7) W. Ruesch, R. A. Lee, C. McAndrews, and K. M. Patel, Tetrahedron Lett., 965 (1973).
(8) The use of hot base resulted in production of substantial amounts of equilibrated acid. The fact that no epimerization had occurred was demonstrated by reesterification to 7 with ethereal diazomethane.
(9) H. O. House and E. M. Trost, J. Org. Chem., 30, 2502 (1965).
(10) in the interests of clarity of presentation, all structures of synthetic intermediates (racemic) are represented in the ophiobolin absolute stereochemical series
(11) R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, and W. M. McLamore, J. Am. Chem. Soc., 74, 4223 (1952)
(12) P. Eaton, G. Cooper, R. Johnson, and R. Mueller, J. Org. Chem., 37, 1947 (1972).
(13) Note that the apparent epimerizatior which occurs upon transformation of $\mathbf{8 \rightarrow 1 0}$ is the result of the change in the stereochemical plane of reference from the six-membered ring ir 8 to the eight-membered ring in 10. No actual change of configuration occurs.
(14) R. A. Raphael, J. Martin, and W. Parker, J. Chem. Soc., 289 (1964).
(15) Compound 10 crystallized in the triclinic crystal class with unit cell dimensions $a=8.334$ (2), $b=9.753$ (3), $c=11.466$ (3) $\AA, \alpha=78.10$ (2) $\beta=92.47$ (2), and $\gamma=78.04$ (2) ${ }^{\circ}$. An approximate density of $1.20 \mathrm{~g} / \mathrm{cm}^{3}$ indicated two molecules of $\mathrm{C}_{19} \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ per unit cell of either PI or P1. All unique reflection data with $2 \theta \leq 114^{\circ}$ were collected using graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ ($1.54178 \AA$, x rays. A total of 2690 diffraction maxima were surveyed and after correction for Lorentz, polarization, and background effects 2371 (91%) were judged observed ($F_{0}{ }^{2} \leq 3 \sigma$ $\left(F_{0}{ }^{2}\right)$).
Intensity statistiss ${ }^{16}$ suggested the centric space group $P \overline{1}$, and solution of the crystal structure was undertaken in this space group. Signs were determined for the 200 largest normalized structure factors using a multisolution, weighted sign determining गrocedure. ${ }^{17}$ All nonhydrogen atoms were located in three-dimensional E synthesis from the most consistent set. Full-matrix least-squares refinement followed by a difference synthesis revealed all of the hydrogen atoms. ${ }^{18}$ Further refinement with anisotropic thermal parameters for the nonhydrogen atoms and isotropic thermal parameters for the hydrogens have currently reached a minimum of 0.047 for the observed reflections. Bond distances and angles generally agree well with accepted values. Additional $\begin{gathered}\text { rystallographic details may be found }\end{gathered}$ In the supplementary material.
Figure 1 is a computer-generated drawing of the final x-ray model without hydrogens. Both enantiomers are present in the unit cell. The important point is the relative configurations at the three asymmetric centers $\mathrm{C}(2)$, $C(1)$, and $C(10)$. With reference to the eight-membered ring the hydrogens at $C(2)$ and $C(10)$ and the carbomethoxy group at $C(11)$ are all on the same side.
(16) A. J. C. Wilson, Acta Crystallogr., 2, 318 (1949); H. Hamptmann and J. Karle, ACA Monograph No. 3, Polycrystal Book Service, Pittsburgh, Pa., 1953.
(17) G. Germain, P. Main, and M. M. Woo fson, Acta Crystallogr., Sect. A, 27, 368 (1971).
(18) The following library of crystallograph c programs was used: C. R. Hubbard, C. O. Quicksall, and R. A. Jacobson, "The Fast Fourier Algorithm and the Programs ALFF, ALFFDP. ALFFT, and FRIEDEL", USAEC Report IS-2625, Iowa State University, Institute for Atomic Research, Ames, lowa 1971; W. R Busing, K. O, Matin, and H. A. Levy, "A Fortran Crystallographic Least Squares Program'", USAEC Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965; C. Johnson, "ORTEP", A Commission Report ORNL-3794. Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965.
(19) G. H. Posner, Org. React., 19, 1 (1972).
(20) Marshall observed primarily equatorial introduction of methyl (4:1) to cyclohexadienone i to give ii; presumably axial approach is prohibited, cf. J. A. Marshall and S. F. Brady, J. Org. Chem., 35, 4068 (1970).

(21) Adduct 12 was compared to 8 by saponification and relactonization under equilibrating conditions. This procedure provided a lactone iii which was

4a

8

9

10

Scheme I

11

Figure 1. A computer-generated perspective drawing of 10 . Hydrogens are omitted for clarity.
gated enolate, and it proceeds with clean retention (for the trans isomer also). It appears that use of the cis- and transchloroacrylates will be a valuable method for stereospecific introduction of an acrylate side chain in some cases. After saponification of 7 (1.1 equiv of $\mathrm{KOH}, 25{ }^{\circ} \mathrm{C} 48 \mathrm{~h}$) which provided $3,{ }^{8}$ the crystalline ($\mathrm{mp} 72.5-75^{\circ} \mathrm{C}$) enol lactone 4a [NMR $\delta 6.7(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H})$] was obtained as the major product (3:1) under acidic lactonization conditions $\left[\mathrm{HClO}_{4}-\right.$ (cat), 10 equiv of $\left.\mathrm{Ac}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 2 \mathrm{~m}\right]$ in $\sim 80 \%$ yield. ${ }^{9}$ Epimerization occurs during lactone formation, leading to 4 a in the ceroplastol series. ${ }^{10}$ Isolation of the intermediate mixed anhydride and completion of lactonization under basic conditions, shown not to equilibrate the epimers, led to the same major product, suggesting equilibration prior to cyclization. Alternatively, 4 b [NMR $\delta 6.6(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H})$] is produced as the major isomer ($7: 1$) upon lactonization under basic conditions $\left(\mathrm{NaOAc} / \mathrm{Ac}_{2} \mathrm{O}, 150^{\circ} \mathrm{C}\right) .{ }^{11}$

Control of stereochemistry during introduction of the three-carbon side chain must be assured as this operation sets the geometry of the key trans BC ring junction required for both series. Treatment of 4 a with the mixed cuprate derived from tert-butylacetyene and the ethyl vinyl ether protected 1-bromo-3-propanol (1.7 equiv, $-40 \rightarrow 0^{\circ} \mathrm{C}, 18 \mathrm{~h}$) provided the diene lactone $8(56 \%) .{ }^{12}$ Lactone 8 was reductively rearranged (1.5 equiv of DIBAL, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$) to a mixture of ketols, which upon Jones oxidation and esterification $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ afforded the crystalline (mp 114.5-115 ${ }^{\circ} \mathrm{C}$) diketo ester $9(\sim 35 \%$ from 7). ${ }^{12,13}$ Reduction of 9 with $\mathrm{Li}(0-t-\mathrm{Bu})_{3} \mathrm{H}$ (1.5 equiv), tosylation ($0{ }^{\circ} \mathrm{C}$, py), and fragmentation (4.0 equiv of $\mathrm{NaOCH}_{3}, 65^{\circ} \mathrm{C}$) provided the crystalline diester $10(\mathrm{mp}$ $111-112.5^{\circ} \mathrm{C}$) in approximately 33% overall yield. ${ }^{14}$ The structure of 10 was confirmed by single-crystal x-ray analysis to have the stereochemistry shown ${ }^{15}$ (Figure 1). The ring system was completed by Dieckmann cyclization (3.0 equiv of LiHMDS, $115{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$) of 10 to 11 ($\sim 40 \%$) [NMR $\delta 5.3-5.9$ ($\mathrm{m}, 2 \mathrm{H}$) $; \mathrm{M}^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O} 230.1670$, found 230.1660].

The stereochemical outcome of the conjugate addition is in accord with the expected stereoelectronic control usually observed in organocuprate chemistry. ${ }^{19}$ We have found in this case, as well as a number of related systems, that enol lactones serve as excellent acceptors, although the corresponding open-chain esters are sluggish and few examples of additions to lactones have been recorded. The addition to lactone 4b required for the ophiobolin series is, however, somewhat more
to nitrogen. ${ }^{5}$ Therefore, in order to prove this hypotesis we monitored the course of the reaction of O, O-diisopropylphosphoroselenoic acid (If) with DCC (Figure 1) ${ }^{11}$ by the low-temperature ${ }^{31} \mathrm{P}$ NMR. Thus, a solution of DCC in ether was treated with an equimolar amount of 1 f at $-80^{\circ} \mathrm{C}$ and the resulting mixture was examined at 24.3 MHz using ${ }^{31} \mathrm{P}$ Fourier transform NMR with proton noise decoupling. ${ }^{6}$ Two signals of high intensity were observed at $\delta 3_{1 \mathrm{p}}-48.5$ and -10.3 ppm . The first of them was attributed to the salt of seleno acid if with DCC. It is interesting to point out that the coupling between phosphorus and selenium, ${ }^{1} J_{111}{ }^{1}-77 \mathrm{Se}=789 \mathrm{~Hz}$, was observed, providing additional support of this assignment. ${ }^{7}$ The $\delta-10.3$ signal with the characteristic coupling constant ${ }^{1} J_{3} u_{\mathrm{p}}-\pi$ ise $=410 \mathrm{~Hz}$ corresponds undoubtedly to the expected $S e$-diisopropylphosphoryl- N, N^{\prime}-dicyclohexylisoselenourea (2f). ${ }^{8}$ The spectrum showed also the low intensity signal at +2.2 ppm corresponding to the already characterized N-di-isopropylphosphoryl-N. N^{\prime}-dicyclohexylselenoura (3f) and two doublets centered at -52 and +16.5 ppm due to tetraisopropyl monoselenopyrophosphate. Then we raised the temperature to $-50^{\circ} \mathrm{C}$ and observed the spectrum every 10 \min. It showed gradual decrease of the signals at $\delta-48.5$ and -10.3 ppm and at the same time fast increase of the signal due to $3 f$. The signals due to 3 f and selenopyrophosphate in a ratio $4: 1$ were the only signals in the spectrum at room temperature.

The unstable adducts 2 and 4 were observed similarly using other acids 1 as the reaction components. ${ }^{9}$ Their spectral characteristics are given in Table II. ${ }^{10,11}$

The mechanism of the phosphorylation by means of N phosphorylthio(seleno)ureas 3 is under current investigation.

Supplementary Material Available. Tables I and II, including physical and spectral properties of the adducts 2, 3, 4, and 5, and Figure 1, showing the low-temperature FT ${ }^{31} \mathrm{P}$ NMP. study of the reaction between DCC and lf (3 pages). Ordering information is given on any current masthead page.

References and Notes

(1) H. G. Khorana and A. R. Todd, J. Chem. Soc., 2257 (1953).
(2) M. Mikolajczyk, Chem. Ber., 99, 2083 (1966).
(3) The only remark concerning the reaction between DCC and dialkyl phosphorothioic acid was found in the paper by Mclvor, McCarthy, and Grant, who stated that no reaction took place at room temperature and a mixture of products was obtainec on heating: R. A. Mclvor, G. D. McCarthy, and G. A. Grant, Can. J. Chem., 34, 1819 (1956).
(4) The natural abundance of ${ }^{77} \mathrm{Se}$ is 7.58%. For the application of ${ }^{31} \mathrm{P}-{ }^{77} \mathrm{Se}$ coupling in structural and stereochemical studies see: I. A. Nuretdinov and E. I. Loginova, J. Gen. Chem. USSR, 2380 (1971); Perkin-Elmer NMR Quarterly, 1 (November), 6. W. McFarlane and J. A. Nash, Chem. Commun. 913 (1969); W. J. Stec, A. Okruszek, B. Uznaniski, and J. Michalski, Phosphorus, 2, 97 (1972): W. J. Stec, Z. Naturforsch. B, 31, 393 (1976).
(5) Similar rearrangement has been observed by Chupp and Leschinsky in the reaction between isocyanides and phosphorus thio acids: J. P. Chupp and K. L. Leschinsky. J. Org. Chem., 40, 66 (1975).
(6) ${ }^{31}$ P NMR spectra were obtained with a Jeol-JNM-FX60 Fourier transform NMR spectrometer. Chemical shifts are given in parts per million downfield from external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.
(7) Triethylammonium salt of seleno acid if has $\delta_{31 p}-50.4 \mathrm{ppm}$ and ${ }^{1} J_{31 p}-7$ se $=808 \mathrm{~Hz}$, whereas the free acid 11 absorbs at $\delta_{31_{p}}-60.8 \mathrm{ppm}$ with ${ }^{1} \mathrm{~J}_{3 \mathrm{p}}-7{ }^{1} \mathrm{se}=910 \mathrm{~Hz}$
(8) The proton-undecoupled ${ }^{31}$ P NMR spectrum revealed that the signals at -48.5 and -10.3 ppm are triplets (${ }^{3} \mathrm{~J}_{\mathrm{POCH}}=7.3 \mathrm{~Hz}$), w 位eas the resonance signal at +2.2 ppm is a double triplet due to an additional coupling $3_{J_{P N C H}}=23 \mathrm{~Hz}$, discussed earlier.
(9) We were not able to detect under similar conditions the 1:1 adducts of type 2 or 3 from O-isopropylmethylphosphonothioic acid and diethylphosphinothioic acid with DCC. The low-temperature FT ${ }^{31}$ P NMR spectra of the mixtures of O, O-diethylphosphoric acid, O,O-dineopentylphoric acid, and O.O-diphenylphosphoric acid with DCC revealed the formation of corresponding O-phosphorylisoureas having $\delta_{31 p}+10.1$ (10.9), +10.2 , and +20.7 (21.6) ppm, respectively. However, in contrast to S-phosphorylisothioureas they did not undergo rearrangement to N -phosphorylureas, but reacted further to form pyrophosphates. These results and mechanistic differences will be discussed in a full paper.
(10) It is interesting to note that in some instances small, minor peaks (given in Table II in parantheses) are seen in the region characteristic of the ad-
ducts 2 and $\mathbf{4}$ which may be interpreted as evidence of syn-anti isomerism.
(11) See paragraph at the end of paper about supplementary material.

Marian Mikołajczyk,* Piotr Kiełbasiński Zofia Goszczyńska
 Centre of Molecular and Macromolecular Studies
 Polish Academy of Sciences
 Department of Organic Sulfur Compounds
 90-362 Zódź,Boczna 5, Poland

Received July 22, 1977

Sesterterpenes. 1. Stereospecific Construction of the Ceroplastol and Ophiobolin Ring Systems via a Common Bicyclic Intermediate

Summary: The ring systems present in the two major classes of ophiobolane sesterterpenes have been obtained via a common bicyclic intermediate. In each case, the eight-membered ring was constructed by fragmentation of an appropriately functionalized bicyclo[3.3.1]nonane ring system.

Sir: We have been investigating, for some time, the development of protocols for the synthesis of various classes of sesterterpenes. Among those under study are the two major stereochemical subclasses of the ophiobolane system exemplified by ophiobolin F (1) ${ }^{1}$ and ceroplastol I (2). ${ }^{2}$ Recent re-

1

2
ports from other laboratories have prompted us to report our studies in this area. ${ }^{3,4}$

The structures of 1 and 2 present considerable synthetic challenges, since they possess four asymmetric centers about the central eight-membered ring. We were intrigued, however, by the fact that the systems differ in relative stereochemistry at only one center ($\mathrm{C}-2$) about the eight-membered ring, although they possess different absolute stereochemistry. To exploit this observation, we undertook the construction of a bicyclic intermediate, ketone 3 , which we felt might be readily elaborated to intermediates of either stereochemical series. It was hoped that the trienol lactones 4 , which were plausibly derived from 3, would serve as efficient precursors of bicyclo[3.3.1]nonanones of general structure 5, and ultimately of

3

4a, $\mathrm{R}=\alpha-\mathrm{H}$
b, $\mathrm{R}=\beta$ - H

HO
5

Direct Observation, Isolation, and Structure of 1:1 Adducts from Carbodiimides and Dialkylphosphorothio(seleno)ic Acids

Summary: The reaction between $0, O$-dialkylphosphorothio(seleno)ic acids 1 and carbodiimides (dicyclohexylcarbodiimide, dibenzylcarbodiimide) has been shown to give N-phosphorylthio(seleno)ureas 3 and 5 ; the low-temperature FT ${ }^{31}$ P NMR study revealed that they result from the initially formed, unstable $S(S e)$-phosphorylisothio(seleno)ureas 2 and 4 via migration of the phosphoryl group from sulfur or selenium to nitrogen.

Sir: The reaction of $0, O$-dialkylphosphoric acids with dicyclohexylcarbodiimide (DCC) has been shown by Khorana and Todd ${ }^{1}$ to give pyrophosphates and dicyclohexylurea. Khorana and Todd explained the formation of products by assuming the two-step mechanism involving O-phosphorylisourea as an intermediate (see Scheme I). Similar reaction between DCC and monothiophosphonic and monothiophosphinic acids results in the formation of the corresponding monothiopyrophosphate systems and dicyclohexylthiourea. ${ }^{2}$ In this case the addition of thio acid to DCC has been assumed to take place by means of the sulfur atom leading to S-phosphorylisothiourea, which reacts further with the second molecule of thio acid to give directly the unsymmetrical form of monothio anhydride.

Although this sequence of events is commonly accepted, the postulated $1: 1$ adducts formed in the first reaction stage have neither been isolated nor observed by means of spectroscopic methods. We now wish to report the first, direct detection by ${ }^{31} \mathrm{P}$ NMR spectroscopy of $S(S e)$-phosphorylisothio(seleno)ureas 2 and 4 formed from monothio(seleno)phosphoric acids 1 and carbodiimides (Scheme II), as well as their facile rearrangement to N-phosphorylthio(seleno)ureas 3 and 5 , which are new, stable, and isolable intermediates of the reaction under consideration. ${ }^{3}$

We found that treatment of DCC in ether with an equimolar amount of O, O-dialkylphosphorothio(seleno)ic acids (1) affords the $1: 1$ adducts, as evidenced by elemental analysis and mass spectra. Spectroscopic study of the adducts isolated in nearly quantitative yields revealed, however, that they are not

Scheme I

$\mathrm{X}=0, \mathrm{~S}$

Scheme II

a, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{S}$
b, $\mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}_{2} ; \mathrm{X}=\mathrm{S}$
c, $\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} ; \mathrm{X}=\mathrm{S}$
d, $\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} ; \mathrm{X}=\mathrm{S}$
e, $R=\mathrm{C}_{4} \mathrm{H}_{5} ; \mathrm{X}=\mathrm{S}$
f, $\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} ; \mathrm{X}=\mathrm{Se}$
g, $\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} ; \mathrm{X}=\mathrm{Se}$
h, $\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} ; \mathrm{X}=\mathrm{S}$

the expected S-phosphoryldicyclohexylisothioureas (2). For instance, the lack of the absorption band at $\sim 1650 \mathrm{~cm}^{-1}$ in the infrared spectrum excludes the presence of the $>\mathrm{C}=\mathrm{N}$ grouping. Moreover, in the case of the adduct of O, O-dineopentyl phosphoroselenoic acid ($\mathbf{l g}$) to DCC the ${ }^{31} \mathrm{P}-{ }^{77} \mathrm{Se}$ coupling ${ }^{4}(\sim 400 \mathrm{~Hz})$ characteristic of the direct P-Se bond was not observed in the proton-decoupled ${ }^{31} \mathrm{P}$ NMR spectrum, which rules out the structure 2 . On the other hand, all the spectral data of the adducts are consistent with the isomeric structure of N-phosphoryldicyclohexylthio(seleno)urea (3).

${ }^{3} J_{\mathrm{PH}} \simeq 23 \mathrm{~Hz}$

$$
{ }^{3} J_{\mathrm{PH}} \simeq 9.5 \mathrm{~Hz}
$$

The most important evidence supporting this view is the observation in the ${ }^{31} \mathrm{P}$ NMR spectra of a coupling constant about 23 Hz which can be attributed only to the interaction between phosphorus and the proton at $\mathrm{C}(1)$ of the cyclohexyl moiety in 3.
Since it was not possible to observe the same coupling constant in the 'H NMR spectra of the adducts from DCC due to the complex splitting pattern of the cyclohexyl ring protons, we prepared in a similar manner the adducts from dibenzylcarbodiimide (DBC) and acids $1 .{ }^{31} \mathrm{P}$ NMR spectra of these adducts showed that the resonance signal of phosphorus is split into a triplet by the methylene protons, whereas the signal of the methylene group in the ${ }^{1} \mathrm{H}$ NMR spectra is split by phosphorus into a doublet with the same coupling constant equal to $\sim 9.5 \mathrm{~Hz}$.

Physical and spectral properties of the adducts $\mathbf{3}$ and 5 are collected in Table I. ${ }^{11}$

The most reasonable assumption is that thio(seleno) ureas 3 and 5 result from the initially formed, unstable 2 and 4 by the migration of the phosphoryl group from sulfur or selenium

In conclusion, the photocyclization preparation of alkylsubstituted benzo [c]phenanthrenes and chrysenes offers a convenient, general synthetic route, with distinct advantages over previously published procedures.

Experimental Section

Melting points were obtained on a Thomas Hoover Uni Melt and are corrected. Microanalyses were performed by Micro-Tek Associates, Skokie, Ill. The IR, 'H NMR, UV, and MS data were consistent with the assigned structures. The IR data were recorded on a Beckman IR-9, ${ }^{1} \mathrm{H}$ NMR data on Varian Associates Model HA-100 or CFT-20, UV data on a Cary 14 or Beckman Acta CIII, MS data on an AEI MS-9 equipped with a DS-30 data system. MS samples were introduced either via a variable temperature direct probe (Variset Co., Madison, Wis.) or a GC inlet.

1-Methyl-7-naphthaldehyde. To a stirred solution of 5.0 g (22 mmol) of 7 -bromo- 1 -methylnaphthalene in 125 mL of dry ether was added 50 mmol of N-butyllithium in hexane (Alpha Chemical Co., Danvers, Mass.). After stirring for 30 min at room temperature, 7.8 $\mathrm{mL}(100 \mathrm{mmol})$ of dry DMF was added in one portion. Following 2 h of additional stirring, the solution was treated with 50 mL of 6 N HCl . The organic phase was washed with 50 mL of $\mathrm{H}_{2} \mathrm{O}$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated in vacuo. Recrystallization of the yellow solid from hexane gave $2.76 \mathrm{~g}(86 \%)$ of the aldehyde as white needles (mp 55.5-56.5 ${ }^{\circ} \mathrm{C}$): IR ($\nu_{\mathrm{c}=0}$) $1680 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) s, $\delta 10.12$ (1 $\mathrm{H}, \mathrm{CHO})$, m, 8.40-7.20 (6 H , aromatic), s, $2.72\left(3 \mathrm{H}, \mathrm{CH}_{3}\right.$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 84.68, \mathrm{H}, 5.92$. Found: C, 84.71, H, 5.89.

2-Bromomethyl-6-methylnaphthalene. A solution of 20.25 g (0.13 mol) of 2,6-dimethylnaphthalene and $20.76 \mathrm{~g}(0.12 \mathrm{~mol})$ of N bromosuccinimide in 250 mL of carbon tetrachlorice was refluxed under UV irradiation for 2 h in the presence of a catalytic amount of benzoyl peroxide. The reaction mixture was cooled and the succinimide removed by filtration. The solution was washed with sodium bisulfite, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed on alumina, eluting with benzene/hexane to give $13.29 \mathrm{~g}(44 \%)$. Recrystallization from ethanol gave crystals: mp $160-161^{\circ} \mathrm{C}$ (dec) (lit 92-93 ${ }^{\circ} \mathrm{C}$); ${ }^{12} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \mathrm{m}, \delta 7.78-7.12(6 \mathrm{H}$, aromatic), s, $4.66(2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right)$, s, $2.45\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Exact mass (M^{+}) calcci for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}$: 234.0044. Found: 234.0056. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}: \mathrm{C}, 61.30 ; \mathrm{H}, 4.72$. Found: C, 61.23; H, 4.82.

General Synthetic Procedure for Preparation of the Naphthylstyrene via the Wittig Reaction. A solution of 125 mL of anhydrous DMF, 0.10 mol of the benzyl halide, and 0.10 mol of triphenylphosphine was stirred magnetically at reflux for 1.5 h in a $250-\mathrm{mL}$ round-bottom flask fitted with a reflux condenser. The mixture was cooled to room temperature and the white precipitate was filtered, washed with ether, and dried overnight at $50^{\circ} \mathrm{C}$ in vacuo (yields 82-97\%).
A solution of 380 mL of freshly prepared 0.2 M sodium ethoxide $(0.077 \mathrm{~mol})$ in ethanol was added over 20 min to a stirred solution of 0.07 mol of a benzyltriphenylphosphonium bromide in 75 mL of dry ethanol at room temperature. The resultant ylide was stirred for 10 min and a solution was added consisting of 0.07 mol of the acetylnaphthalene in 25 mL of dry ethanol. After refluxing for 8 h , the milky white solution had turned bright yellow. The solvent was removed in vacuo, taken up in ether, washed with $\mathrm{H}_{2} \mathrm{O}$, concentrated, and chromatographed on alumina eluting with hexane. A mixture of the cis and trans isomers was usually obtained.

General Synthetic Procedure for the Preparation of Alkylbenzo[c]phenanthrenes and Chrysenes via Photocyclization. A solution of 0.01 mol of the appropriate naphthylstyrene and 127 mg of iodine in 500 mL of freshly distilled cyclohexane was placed in a $500-\mathrm{mL}$ quartz tube equipped with a gas-dispersion tube at the bottom. Irradiation for 12 h (Rayonet P=eparative Photochemical Reactor RPR-208, New South England Uliraviolet Co., Middleton, Conn.) with $3000-\AA$ lamps and a brisk air flow through the dispersion tube resulted, in most instances, in precipitation of solid material. The solid was dissolved in chloroform, combined with the cyclohexane supernatant, and concentrated in vacuo. The residue was absorbed into 1.5 g of neutral alumina, placed on a $2 \times 150-\mathrm{mm}$ column of the same, and eluted with cyclohexane to yield the desired alkylpolycyclic aromatic hydrocarbon.

Acknowledgment. This work was supported by Public Health Service contract NOL CP33278 from the National Cancer Institute.

Registry No. -Triphenylphosphine, 603-35-0; 7-bromo-1methylnaphthalene, 33295-35-1; 2,16-dimethylnaphthalene, 581 -42-0.

References and Notes

(1) (a) Benzo[c]phenanthrene and the 2-, 3-, 4-, 5- and 6-methylbenzo[c]phenanthrenes all induced skin tumors on painting, J. L. Hartwell, Ed., "Survey of Compounds Which Have Been Tested for Carcinogenic Activity," 2nd ed., U.S. Department of Health, Education, and Welfare, Public Health Service Fublication No. 149 ;1963). (b) 5-Methylchrysene has been shown to have strong carcinogenic activity in skin-painting studies in comparison to benzo (a) pyrene. The other methylchrysenes and chrysene itself exhibited marginal activity, S. S. Hecht, W. E. Bondinell, and D. Hoffman, J. Nat'. Cancer Inst., 53, 1121 (1974).
(2) (a) C. L. Hewett, J. Chem. Soc., 1286 (1938). (b) J. Szmuszkovicz and E. J. Modest, J. Am. Chem. Soc., 72, 566 (1950). (c) M. S. Newman and M. Wolf, Ibid., 74, 3225 (1952). (d) M. S. Newman, H. V. Anderson, and K. H. Takemura, ibid., 75, 347 (1953).
(3) For leading references to syntheses of monomethylchrysenes see ref 1b.
(4) F. B. Mallory, C. S. Wood, and J. T. Gordon, J. Am. Chem. Soc., 86, 3094 (1964).
(5) P. Hugelshofer, J. Kalvoda, and K. Schaffner, Helv. Chim. Acta, 43, 1322 (1960).
(6) (a) W. J. Bernstein, M. Calvin, and O. Burchhardt, J. Am. Chem. Soc., 94, 494 (1972). (b) W. Carruthers, J. Chem. Soc. C, 1525 (1967).
(7) H. Ungnade, Ed. "Organic Electronic Spectral Data", Vol. II, Interscience, New York, N.Y., 1960, p 1953.
(8) L. K. Keefer, L. Wallcave, J. Loo, anc R. S. Peterson, Anal. Chem., 43, 1411 (1971).
(9) R. A. Friedel and M. O. Orchin, "Ultraviolet Spectra of Aromatic Compounds' ', Wiley, New York, N.Y., 1951
(10) (a) C. W. Heign and R. B. Mallian, Mo'. Phys., 18, 737 (1970). (b) D. Cagniant, Bull. Soc. Chim. Fr., 2325 (1966). (c) E. Clar, B. A. McAndrew, and M Zander, Tetrahedron, 23, 985 (1967).
(11) H. J. Bestman, R. Haertl, and H. Haeberlein, Justus Liebigs Ann. Chem., 718, 33 (1968).
(12) A. D. Campbell and M. R. Grimmett, Aust. J. Chem., 16, 854 (1963)
(13) L. F. Fieser and L. M. Joshell, J. Am. Chem. Soc., 62, 1121 (1940).
(14) M. S. Newman, J. Am. Chem. Soc , 62, 870 (1940).
(15) L. F. Fieser and J. Carson, J. Am. Chem. Soc., 62, 1293 (1940).
(16) F. B. Mallory and C. W. Mallory, J. Am. Chem. Soc., 94, 494 (1972)
(17) R. F. Heck, J. Am. Chem. Soc., 90, 5518 (1968).
(18) K. Friedrich and H. G. Henning, Chem. Ber., 92, 2944 (1959)

Table I. Benzo[c]phenanthrenes and Chrysenes Prepared by Photocyclization ${ }^{a}$

Compd	Registry no.	\% yield ${ }^{b}$	Mp, ${ }^{\circ} \mathrm{C}$	Lit. $\mathrm{mp},{ }^{\circ} \mathrm{C}$
2a	$4076-39-5$	89	$140-141.5$	$136.8-141^{2 \mathrm{c}}$
2b	$2606-85-1$	52	$80-81$	$80.6-81.4^{2 \mathrm{c}}$
2c	$2381-19-3$	66	$53-54.5$	$54.4-5.4^{2 \mathrm{c}}$
2d	$4076-40-8$	68	$65-66$	$64.6-65.6^{2 \mathrm{c}}$
2e	$652-04-0$	72	$69-70$	$70.6-71.6^{2 \mathrm{c}}$
2	$2381-34-2$	72	$76-77$	$90-77.6^{2 \mathrm{c}}$
2g	$4176-45-8$	94	$91.5-92$	$90-91^{2 \mathrm{~b}}$
4a	$3697-24-3$	65	$116-117$	$91.4-117.6^{13}$
4b	$54986-62-8$	80	$91-92$	$172.4-174^{14.9^{14}}$
$\mathbf{6}$	$202-98-2$	8	$171-173$	

${ }^{a}$ See Experimental Section for general photocyclization procedure. ${ }^{b}$ Isolated yields following column chromatography.

Table II. Preparation of Naphthylstyrenes Via the Wittig Reaction ${ }^{a}$

Napthylstyrene ${ }^{b}$	Registry no.	Alkyl bromide ${ }^{c}$	Registry no.	Carbonyl Compd ${ }^{c}$	Registry no.	$\begin{gathered} \% \\ \text { yield }^{d} \\ \hline \end{gathered}$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Lit. } \\ & \mathrm{mp},{ }^{\circ} \mathrm{C} \end{aligned}$
1 a	63216-64-8	Benzyl bromide	100-39-0	1-Methyl-7naphthaldehyde ${ }^{a}$	63216-67-1	94	80-81	
b	35160-96-4	4-Methylbenzyl bromide	104-81-4	2-Naphthaldehyde	66-99-9	88	$\begin{aligned} & 189- \\ & 190.5 \end{aligned}$	$(188-189)^{16}$
c	63216-65-9	2-Bromomethyl-6-methylnaphthalene ${ }^{12}$	52988-15-5	Benzaldehyde	100-52-7	73	173-174	
d	63216-66-0	2-Methylbenzyl bromide	89-92-9	2-Naphthaldehyde		87	86-87	
e	20883-24-3	2-Bromomethylnaphthalene	939-26-4	Acetophenone	98-86-2	59	146-147	$(147.5-148)^{17}$
f	17181-02-1	Benzyl bromide		2'-Acetonaphthone	98-08-3	81	137-138	$(139)^{6 b}$
g	23833-60-5	2-Bromomethylnaphthalene		4-Methoxybenzaldehyde	123-11-5	96	135-136	$(134-135)^{18}$
3a	63269-87-4	Benzyl bromide		1^{\prime}-Acetonaphthone	941-98-0	81	oil	
b	63269-88-5	Benzyl bromide		1^{\prime}-Propionaphthone	2876-63-3	84	oil	
5	21844-25-7	Benzyl bromide		Acenaphthone	2235-15-6	14	98-99	$(99-100)^{11}$

${ }^{a}$ See Experimental Section for preparation. ${ }^{b}$ Accurate mass measurements were obtained on all molecular ions. Experimental values were in agreement ($\pm 0.001 \mathrm{amu}$) with calculated values. ${ }^{\text {c }}$ All compounds were obtained from Aldrich Chemical Co., Milwaukee, Wis., unless otherwise noted. ${ }^{d}$ Isolated yields following column chromatography.

Scheme I

Note: $\mathrm{R}_{n}=\mathrm{H}$ unless otherwise indicated.
rations of these isomers. The preparations of the naphthylstyrene precursors are documented in Table II.

The photocyclization of α-naphth-2-ylstyrenes, on the other hand, can yield only chrysenes (Scheme II). The yields are comparable to cyclizations involving the benzo[c]phenanthrenes (Table I). Again spectral properties ('H NMR, UV) correlate well with previously published data. ${ }^{1 \mathrm{~b}, 9.10}$

Since the photocyclization procedure has been utilized in the preparation of phenanthrenes with fluoro, chloro, bromo, methoxyl, trifluoromethyl, carboxyl, phenyl, hydroxy and

Scheme II
cyano substituents, ${ }^{6 \mathrm{~b}}$ the synthesis by this route of similarly substituted benzo[c]phenanthrenes and chrysenes seemed feasible. Hence, 2 -methoxybenzo $[c]$ phenanthrene was prepared in good yield. However, 4,5 -methylene chrysene (6), a reported carcinogen, was prepared in low yield, possibly due to the increased distance between the potential reactive centers in (5). Attempted synthesis of 5 from 1,8-dibromomethylnaphthalene by the method of Bestman et al. ${ }^{11}$ produced only acenaphthene.

Scheme III

6

5
$\left.\mathrm{C}_{2} \mathrm{Cl}_{4}\right)^{19} 1756$ (s), 1729 (s), $1407,1281(\mathrm{~m}), 1199(\mathrm{~s}), 1177,1136(\mathrm{~s}), 1123$ (sh), 1092 (s), 995 (sh), 956.865 ; MS m/e 342 (<1, M ${ }^{+}$), 341 (1), 131 ($100, \mathrm{M}-\mathrm{C}_{15} \mathrm{H}_{31}$), 103 ($10, \mathrm{M}-\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{CO}$), 43 (49). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{4}: \mathrm{C}, 70.13 ; \mathrm{H}, 11.18 ; \mathrm{O}, 18.69$. Found: C, 69.97; $\mathrm{H}, 11.37 ; \mathrm{O}$, 18.51.
trans-3a: yield $1.39 \mathrm{~g}(46 \%$, based on 2 a$)$; mp $30-30.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CS}_{2}\right.$, $\left.\mathrm{C}_{2} \mathrm{Cl}_{4}\right)^{19} 1748$ (s), 1726 (s), $1410,1335,1279$ (m), 1199 (s). 1135 (s), 1120 (sh), 1094 (s), 1045 (m), 990, 947, 860; MS m/e 342 (< 1), 341 (1), 131 (100), 103 (6), 43 (12). Anal. Found: C, 70.16; H, 11.17; O, 18.67.
cis-3b: yield, $1.04 \mathrm{~g}\left(31 \%\right.$, based on 2 b); liquid at $0^{\circ} \mathrm{C}$; IR (liquid film $)^{19} 2940(\mathrm{~m}), 1748(\mathrm{~s}), 1723$ (s), 1640, 1403 (m), $1340(\mathrm{~m}), 1284(\mathrm{~m})$, 1202 (s), 1180 (sh), 1135 (s), 1092 (s), 1058 (m), 1028 (m’, 960,933 (m), 865; MS m/e 368 ($1, \mathrm{M}^{+}$), $367(1), 131\left(100, \mathrm{M}-\mathrm{C}_{17} \mathrm{H}_{33}\right), 103(20, \mathrm{M}$ $-\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{CO}$), 43 (56). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{4}: \mathrm{C}, 71.70 ; \mathrm{H}, 10.94$; $\mathrm{O}, 17.36$. Found: C, 71.74; $\mathrm{H}, 10.93 ; \mathrm{O}, 17.21$.
trans- 3 b : yield $1.38 \mathrm{~g}\left(42 \%\right.$, based on 2 b); liquid at $0^{\circ} \mathrm{C}$; IR (liquid film $)^{19} 2958$ (m), 1752 (s), $1730(\mathrm{~s}), 1645,1412$ (m), 1342 (m), 1285 (m), 1205 (s), 1136 (s), 1095 (s), 1045 (m), 1023 (sh), 957 (sh), 938 (m), 867 ; MS m/e 368 (1), 367 (1), 131 (100), 103 (19), 43 (49). Anal. Found: C, 71.66; H, 10.95; 0, 17.14.

2-Alkyl-4-hydroxymethyl-1,3-dioxolanes (4) were prepared from the four respective 4 -methoxycarbonyl acetals (cis- and trans3a, and cis- and trans- $\mathbf{3 b}$) by reduction in a saturated solution of $\mathrm{LiAlH}_{4}{ }^{5,10}$ in dry $\mathrm{Et}_{2} \mathrm{O}$ (dropwise addition of 3 , reflux for 2 h , decomposition of excess LiAlH_{4} with moist $\mathrm{Et}_{2} \mathrm{O}$) and extraction from the basic medium followed by TLC ${ }^{7}$ purification ($R_{f} 0.56$; developing solvent, hexane- $\mathrm{Et}_{2} \mathrm{O}, 40: 60$, v/v) produced the stereomeric five-ring glycerol acetals (4a, 4b) in essentially quantitative yields.
2-Pentadecyl-4-hydroxymethyl-1,3-dioxolanes (4a). cis-4a: $\mathrm{mp} 41.5-42.5^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{3}$: $\mathrm{C}, 72.56 ; \mathrm{H}, 12.18 ; \mathrm{O}$, 15.26. Found: C, 72.71 ; H, 12.25; O, 15.47.
trans-4a: mp 44.5-45.5 ${ }^{\circ} \mathrm{C}$. Anal. Found: C, 72.44 ; H, 12.31; O, 15.32.

2-(cis-8'-Heptadecenyl)-4-hydroxymethyl-1,3-dioxolanes (4b). cis-4b: liquid at $0{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{3}: \mathrm{C}, 74.07 ; \mathrm{H}, 11.84$; $0,14.09$. Found: C, 73.87 ; $\mathrm{H}, 11.73 ; 0,14.28$.
trans-4b: liquid at $0{ }^{\circ} \mathrm{C}$. Anal. Found: $\mathrm{C}, 73.87 ; \mathrm{H}, 11.69$; , 14.44.

2-Alkyl-4-acetoxymethyl-1,3-dioxolanes (5) were prepared from the individual hydroxymethyl acetals 4 by acetylation with 100 parts $(\mathrm{v} / \mathrm{w})$ of acetic anhydride in the presence of 10 parts (v / w) of dry pyridine for 2 h at $80^{\circ} \mathrm{C} .5^{5}$ After extraction from the basic medium, the acetates were purified by TLC ${ }^{7}\left(R_{f} 0.46\right.$; developing solvent, hexane- $\mathrm{Et}_{2} \mathrm{O}, 70: 30, \mathrm{v} / \mathrm{v}$). All physical characteristics of the pentadecyl derivatives cis- and trans-5a were identical to those reported previously for the respective five-ring glycerol acetal acetates prepared by an alternate route. ${ }^{5}$
2-(cis-8'-Heptadecenyl)-4-acetoxymethyl-1,3-dioxolanes (5b). cis-5b: liquid at $0^{\circ} \mathrm{C}$; MS m/e 382 ($1 \mathrm{M}^{+}$), 381 (1), 145 ($100, \mathrm{M}$ $\mathrm{C}_{17} \mathrm{H}_{33}$), 117 ($95, \mathrm{M}-\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{CO}$), 43 (74). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{4}$: C, 72.21 ; H, 11.06; O, 16.73. Found: C, 71.99; H, 10.86; 0, 17.15.
trans-5b: liquid at $0^{\circ} \mathrm{C}$; MS, $m / e 382\left(1, \mathrm{M}^{+}\right)$, 381 (2), 145 (100 , $\mathrm{M}-\mathrm{C}_{17} \mathrm{H}_{33}$), 117 ($82, \mathrm{M}-\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{CO}$), 43 (84). Anal. Found: C, 71.99 ; H, 11.00; 0, 17.00.

Acknowledgments. We thank JoAllyn Bernatz and Craig Evans for experimental assistance, G. R. Mizuno, W. H. Heimermann, and T. Krick for recording infrared and mass spectra, F. C. Phillips for densitometry, and J. E. Budde for literature searches.

Registry No.-1, 615-34-9; 2a, 629-80-1; 2b, 2423-10-1; glyceric acid calcium salt hydrate, 6057-35-8; ethanediol, 107-21-1.

References and Notes

(1) This investigation was supported in part by Public Health Service Research Grant HL 08214 from the Program Projects Branch, Extramural Programs, National Heart, Lung, and Blood Institute, and by The Hormel Foundation
(2) (a) W. Vogt, Arch. Exp. Pathol. Pharmakol., 206, 1 (1949); (b) W. Vogt, J. Physiol. (London), 137, 154 (1957); (c) W. Vogt, Nature (London), 179, 300 (1957); (d) W. Vogt. Pharmacol. Rev., 9, 407 (1958); (e) W. Vogt, Arzneim.-Forsch., 8, 253 (1958); (f) W. Vogt, Biocherr. Pharmacol., 12, 415 (1963).
(3) (a) G. G. Gray. J. Pharmacol. Exp. Ther., 146, 215 (1964); (b) J. B. Lee, K. Crowshaw, B. H. Takman, K. A. Attrep, and J. Z. Gougoutas, Biochem. J., 105, 1251 (1967); (c) D. C. Dyer and E. J. Walaszek. J. Pharmacol. Exp. Ther., 160, 360 (1968); (d) D. D. Sumner, Ph.D. Thesis, The University of Kansas, 1969; (e) R. A. Wiley, D. D. Sumner, and E. J. Walaszek, Lipids, 5, 803 (1970).
(4) A. J. Showler and P. A. Darley. Chem. Rev., 67, 427 (967).
(5) W. J. Baumann, J. Org. Chem., 36, 2743 (1971).
(6) Hexadecanal (2a) and cis-9-octadecenal (2b) were synthesized from the respective alkyl methanesulfonates by oxidation with dimethyl sulfoxide; (a) W. J. Baumann and H. K. Mangold, J. Org. Chem., 29, 3055 (1964); (b) V. Mahadevan, F. Phillips, and W. O. Lundberg, Lipids, 1, 183 (1966).
(7) Analytical and preparative thin-layer chromatography (TLC) was done on layers of silica ge H (Merck), 0.3 or 0.6 mm thick. In preparative work, up to 50 mg of lipid material (in CHCl_{3}) was applied per 20 cm chromatoplate, 0.6 mm thick. Plates were developed in tanks lined with filter paper. Lipid fractions were visible in translucent light; bands of absorbent were scraped off, and the fractions were eluted with water-saturated $\mathrm{Et}_{2} \mathrm{O}$.
(8) W. J. Baumann, A. J. Aasen, J. K. G. Kramer, and R. T. Holman, J. Org. Chem., 38, 3767 (1973).
(9) C. N. R. Rao, "Chemical Applications of Infrared Spectroscopy", Academic Press, New York, N.Y., 1963, p 205
(10) W. G. Brown, Org. React., 6, 469 (1951).
(11) The $\mathrm{H}-2$ triplets of the isomeric 2-pentadecyl-4-acetoxymethyl-1,3-dioxolanes (5a) have previously been correlated unequivocally by specific deuteration. ${ }^{5}$
(12) N. Baggett, J. M. Duxbury, A. B. Foster, and J. M. Webber, J. Chem. Soc. C, 208 (1966).
(13) W. E. Willy, G. Binsch, and E. L. Eliel, J. Am. Chem. Soc., 92, 5394 (1970), and references therein.
(14) (a) J. G. Batchelor, R. J. Cushley, and J. H. Prestegard, J. Org. Chem., 39, 1698 (1974); (b) A. P. Tulloch and M. Mazurek, Lipids, 11, 228 (1976).
(15) D. E. Dorman, D. Bauer, and J. D. Roberts, J. Org. Chem., 40, 3729 (1975).
(16) J. B. Stothers, "Carbon-13 NMR Spectroscopy"', Academic Press, New York, N.Y., 1972, p 428.
(17) C. M. Groocock, C. K. Ingold, and A. Jackson, J. Chem. Soc., 1039 (1930).
(18) O. S. Privett, K. A. Dougherty, and W. L. Erdahl, in "Quantitative Thin-Layer Chromatography', J. Touchstone. Ed., Wiley, New York, N.Y., 1973, p 57.
(19) Relative intensities of IR absorption bands are given! s, strong; m, medium; sh, shoulder; weak bands (\mathbf{w}) are without designation. The following bands associated with vibrations of the aliphatic chains occur in all the spectra quoted and are nct listed individually: 2925-2915 (s) and 2850-2845 cm ${ }^{-1}$ (s), $\nu \mathrm{CH}$ of CH_{2}; near $1470(\mathrm{~m}), \delta \mathrm{C}-1$ of $\mathrm{CH}_{2} ; 1448-1445(\mathrm{sh})$ or (w) and 1380-1375 (m), asymmetrical and symmetrical $\delta \mathrm{CH}$ of CCH_{3}, respectively; 719-717 (m), CH rocking vibration of $\left(\mathrm{CH}_{2}\right)_{n}$.

Synthesis of Alkyl-Substituted Benzo[c]phenanthrenes and Chrysenes by Photocyclization

Donald L. Nagel,* Robert Kupper, Kenneth Antonson and Lawrence Wallcave

Eppley Institute ior Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68105

Received February 28, 1977
The synthesis of alkyl-substituted polycyclic aromatic hydrocarbons is often necessary to provide samples to aid trace analyses of these compounds in environmental samples. The reported syntheses of monomethylchrysenes and monomethylbenzo[c]phenanthrenes, many of which are reported to be carcinogenic, ${ }^{1}$ are generally multistep. ${ }^{2,3}$

We report herein on the syntheses of alkyl-substituted benzo[c]phenanthrenes and chrysenes by photocyclization ${ }^{4}$ of the requisite naphthylstyrenes. ${ }^{5,6}$ Since naphthylstyrenes can be readily prepared via the Wittig or Grignard reactions, this procedure appeared to offer a convenient general synthetic route to alkylchrysenes and alkylbenzo[c]phenanthrenes.

The six isomeric monomethylbenzo[c]phenanthrenes 2a-f were prepared as outlined in Scheme I, in yields ranging from 66 to 89% (Table I). The spectral properties of these compounds (${ }^{1} \mathrm{H}$ NMR, UV) correlate well with published data. ${ }^{7,8}$

In addition, ${ }^{1} \mathrm{H}$ NMR and GLC data indicated the photocyclization products were free of benzo[c]phenanthrene and other isomeric methylbenzo[c]phenanthrenes. In all preparations, however, we found small amounts (1%) of isomeric methylbenz[a]anthracenes produced through cyclization involving the β position of the naphthalene moiety. However, the chromatographic properties of the benzo[c]phenanthrenes and the benz[a]antbracenes on alumina permit facile sepa-

Table I. H-2 NMR Signals in the Spectra of Isomeric 4-Substituted 2-Alkyl-1,3-dioxolanes ${ }^{a}$

Isomer	$\delta, \operatorname{ppm}(J, \mathrm{~Hz})$					
	3a	Registry no.	4a	Registry no.	5a	Registry no.
cis	4.98 (4.7)	63340-16-9	4.90 (4.5)	30889-28-2	4.90 (4.5) ${ }^{\text {b }}$	63340-18-1
trans	5.08 (4.5)	63340-17-0	5.00 (4.5)	30889-31-7	$4.98(4.5)^{\text {b }}$	63340-19-2

${ }^{a}$ Chemical shifts (δ) of the H -2 triplets (1 H) in 2-pentadecyl-1,3-dioxolanes 3a-5a. The shifts for H -2 in the 2-cis- 8^{\prime}-heptadecenyl derivatives $\mathbf{3 b} \mathbf{- 5 b}$ are identical to those of $\mathbf{3 a} \mathbf{a} \mathbf{5 a}$, respectively. ${ }^{b}$ See also ref 5 .

Table II. ${ }^{13} \mathrm{C}$ Chemical Shifts in the Spectra of Isomeric 2-Alkyl-1,3-dioxolanes ${ }^{a}$

Carbon No.	$\delta(\mathrm{ppm})$						
	4-Methoxycarbonyl		4-Hydroxymethyl		4-Acetoxymethyl		2-Pentadecyl- 1,3-dioxolane ${ }^{b,}$
	cis-3b ${ }^{\text {g }}$	trans-3b ${ }^{\text {b }}$	$\overline{\text { cis- }} \mathbf{4} \mathrm{b}^{\text {h }}$	trans-4b ${ }^{\text {h }}$	cis-5b ${ }^{\text {b }}$	trans-5b ${ }^{2}$	
2	106.8	106.3	105.3	105.1	105.6	105.0	104.9
4	73.7	73.7	76.4	76.3	73.7	73.5	64.8
5	68.5	68.0	66.5	66.8	67.1	67.2	64.8
$\mathrm{C}=\mathrm{O}^{\text {c }}$	171.3	171.8			170.6	170.6	
$\mathrm{CH}_{3}{ }^{\text {d }}$	52.2	52.2			20.7	20.7	
$\mathrm{CH}_{2}{ }^{\text {e }}$			63.5	62.9	64.8	64.3	
$1^{\prime \prime}$	33.8	33.5	34.0	34.4	34.0	34.0	34.1
$2^{\prime \prime}$	24.0	23.8	24.0	24.0	23.9	23.9	24.1

${ }^{a}$ Proton-decoupled spectra of 2 -cis- 8^{\prime}-heptadecenyl 4 -substituted 1,3-dioxolanes $\mathbf{3 b}$ - $\mathbf{5 b}$ and of 2 -pentadecyl-1,3-dioxolane at 20 MHz ; the respective data for the pentadecyl acetals $3 \mathrm{a}-5 \mathrm{a}$ were identical; chemical shifts (δ) in parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si}$; solvent CDCl_{3}. ${ }^{b}$ Prepared from ethanediol and hexadecanal essentially as described for $3 \mathbf{a} .{ }^{c}$ Methyl ester $\mathrm{C}=0$ in $\mathbf{3 b}$, acetyl $\mathrm{C}=0$ in $\mathbf{5 b}$. ${ }^{d}$ Methyl ester CH_{3} in $\mathbf{3 b}$, acetyl CH_{3} in $\mathbf{5}$ b. ${ }^{e}$ Hydroxymethyl CH_{2} in $\mathbf{4}$ b, acetoxymethyl CH_{2} in $\mathbf{5 b}$. ${ }^{\prime} 1^{\prime}$ and 2^{\prime} refer to the first and second methylene groups of the long side chain. Additional aliphatic signals occur at δ 29.4-29.7 (methylene envelope), 14.1 (ω CH_{3}), $22.7\left(\omega-1 \mathrm{CH}_{2}\right.$), and $32.0\left(\omega-2 \mathrm{CH}_{2}\right)$, with olefinic signals at $129.9\left(\mathrm{C}-8^{\prime}, \mathrm{C}-9^{\prime}\right), 27.3\left(\mathrm{C}-7^{\prime}, \mathrm{C}-10^{\prime}\right)$ and at $29.8\left(\mathrm{C}-6^{\prime}, \mathrm{C}-11^{\prime}\right){ }^{14} \mathrm{~g}$ Registry no.: cis-3b, 63340-20-5; trans- 3b, 63392-99-4. ${ }^{h}$ Registry no.: cis-4b, 63340-21-6; trans-4b, 63393-00-0. ${ }^{i}$ Registry no.: cis-5b, 63340-22-7; trans- 5b, 63393-01-1. ${ }^{j}$ Registry no.: 4360-57-0.
ents on the adjacent $\mathrm{C}-5$ methylene ${ }^{13} \mathrm{C}$ shifts. While all 4 substituents in both isomers caused deshielding, the methoxycarbonyl function showed the strongest effect (3.2-3.7 ppm). Deshielding of the CH_{2} carbon in the 4-hydroxymethyl group (4b) upon acetylation (5b) resulted in a downfield shift by $1.3-1.4 \mathrm{ppm}$ as expected for primary acetates. ${ }^{15}$

We had hoped that the significant polarity differences observed in chromatography between cis- and trans-4-meth-oxycarbonyl-1,3-dioxolanes 3 would be reflected in the carbonyl chemical shifts due to a different degree of $\mathrm{C}=\mathrm{O}$ polarization in cis and trans isomers. However, such polarization would mostly affect the electron density at the carbonyl oxygen, while the simultaneous net electron-density change at the carbonyl carbon could well be compensated by resonance participation of methoxy electrons. In fact, such phenomena have previously been measured in other carbonylsubstituted ring systems where a change in ${ }^{17} \mathrm{O}$ chemical shifts by 20 ppm was accompanied by a ${ }^{13} \mathrm{C}$ shift of a mere 0.4 ppm in the same carbonyl group. ${ }^{16}$

Experimental Section

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian CFT-20 pulse Fourier transform instrument equipped for ${ }^{13} \mathrm{C}$ (20 MHz) and proton (79.54 MHz) observation. Spectra were measured with 4 K data points at a spectral width of $1000\left({ }^{1} \mathrm{H}\right)$ or 4000 Hz $\left({ }^{13} \mathrm{C}\right)$ at ambient probe temperatures of 35 ± 1 and $39 \pm 1^{\circ} \mathrm{C}$, respectively. CDCl_{3} served as solvent and for locking purposes, unless noted otherwise. Chemical shifts (δ) are given in parts per million (ppm) downfield from $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.0)$; coupling constants (J) are expressed in Hz . Mass spectra (MS) were recorded on a Hitachi Per-kin-Elmer single-focusing instrument, RMU-6D, at a $70-\mathrm{eV}$ ionization potential (source temperature, $230^{\circ} \mathrm{C}$; inlet temperature, $190^{\circ} \mathrm{C}$; direct inlet), or on an LKB-9000 spectrometer under comparable conditions. Relative ion intensities are given in parentheses. Infrared spectra were taken with a Perkin-Elmer Model 21 spectrophotometer on CS_{2} and $\mathrm{C}_{2} \mathrm{Cl}_{4}$ solutions, or on liquid films. Melting points were determined on a Kofler hot stage and are corrected. Elemental analyses were carried out by M-H-W Laboratories, Garden City, Mich.

Methyl Glycerate (1). Calcium salt of glyceric acid (hydrate, Aldrich), 14.3 g (0.1 mol), 100 mL of dry MeOH , and 50 mL of $14 \%(\mathrm{w} / \mathrm{v})$ methanolic BF_{3} were stirred under N_{2} at reflux temperature for 45 \min. After cooling to room temperature, 450 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ and 6.0 g of NaF were added, and the mixture was stirred for 30 min . The precipitate was filtered on a sintered glass funnel and washed with 200 mL of $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}, 3: 1(\mathrm{v} / \mathrm{v})$, and the solvent was removed under reduced pressure. Distillation (bp 67-69 ${ }^{\circ} \mathrm{C}, 0.1 \mathrm{~mm}$; lit. ${ }^{17}$ 123-125 ${ }^{\circ} \mathrm{C}, 10 \mathrm{~mm}$) yielded 7.6 g of methyl glycerate (1) (63\%): R_{f} in TLC (developing solvent, $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 60: 40$, v/v) $0.76 ;{ }^{1} \mathrm{H}$ NMR (MeOH-d ${ }_{4}$) $\delta 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.76\left(\mathrm{~d}, J=4.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.23(\mathrm{t}, J$ $=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{MeOH}-d_{4}\right) \delta 52.4\left(\mathrm{CH}_{3}\right), 65.0\left(\mathrm{CH}_{2}\right)$, $73.3(\mathrm{CH}), 174.5(\mathrm{C}=\mathrm{O})$; assignments were verified by off-resonance proton decoupling.

2-Alkyl-4-methoxycarbonyl-1,3-dioxolanes (3) were synthesized by condensation of 1 with long-chain aldehyde $2 .{ }^{6} \mathrm{~A}$ representative procedure is given for the preparation of 3 a .

2-Pentadecyl-4-methoxycarbonyl-1,3-dioxolanes (3a). Hexadecanal (2 a$)^{6}(2.40 \mathrm{~g}, 10 \mathrm{mmol}), 1.44 \mathrm{~g}(12 \mathrm{mmol})$ of methyl glycerate (1), 0.5 g of p-toluenesulfonic acid, and 200 mL of benzene were placed in a three-necked flask equipped with water separation head, reflux condenser, inlet and outlet for dry nitrogen, and magnetic stirrer. The reaction mixture was kept at reflux temperature for 2 h , while the water formed was continuously removed by azeotropic distillation; then most of the benzene was distilled off. After cooling, ice-cold 2% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added, and the products were extracted with three $150-\mathrm{mL}$ portions of $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with two $50-\mathrm{mL}$ portions of water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo, yielding $3.05 \mathrm{~g}(89 \%)$ of 3 a , consisting of 41.3% of cis- 3 a and 58.7% of trans-3a, as determined by densitometry ${ }^{18}$ of a thin-layer chromatogram. ${ }^{7}$ Although stabile, the isomers were not separable by gas chromatography on EGSS-X, OV-1, DEGS or SILAR 10-C.

2-(cis-8'-Heptadecenyl)-4-methoxycarbonyl-1,3-dioxolanes (3b). Condensation of $2.66 \mathrm{~g}(10 \mathrm{mmol})$ of cis-9-octadecenal ($\mathbf{2 b})^{6}$ and 1.44 g (12 mmol) of 1 , as described for 3 a , produced $3.34 \mathrm{~g}(91 \%)$ of 3b.

The geometrical isomers of $\mathbf{3 a}$ and of $\mathbf{3 b}$ were separated by preparative TLC^{7} (developing solvent, hexane- $\mathrm{Et}_{2} \mathrm{O}, 75: 25, \mathrm{v} / \mathrm{v}$) to yield pure cis- and trans-3a, and cis- and trans-3b (R_{f} of cis $-3 \mathbf{a}$ and cis $\mathbf{- 3 b}$ $0.54 ; R_{f}$ of trans-3a and trans-3b 0.64).
cis-3a: yield $0.61 \mathrm{~g}(20 \%$, based on 2 a$)$; $\mathrm{mp} 34-34.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CS}_{2}\right.$,
(11) D. Valentine, K. K. Chan, C. G. Scott, K. K. Johnson, K. Toth, and G. Saucy, J. Org. Chem., 41, 62 (1976)
(12) Conversion of citronellol to citronellic acid would provide a method for further resolution and enantiomeric assay as described in ref 11.
(13) A claim for the preparation of 4 was not substantiated by spectral data: E. Eschinazi, Isr. J. Chem., 6, 713 (1968).
(14) The Schiff base 7 deteriorates on standing and should be used immediately after preparation for maximum yields in the alkylation step.
(15) Rearrangement of 10 in $0.1 \mathrm{M} \mathrm{HClO}_{4}$ (heterogeneous) for 2.5 h at $25^{\circ} \mathrm{C}$ gave a 90% yield of isomers $11 \alpha-\delta$ In the ratio $37(\delta): 11(\alpha): 26(\gamma): 26(\beta)$. Subsequent equilibration (see ref 5) with SnCl_{4} gave the same ratios reported in the Experimental Section.

Long-Chain Stereomeric
 2-Alkyl-4-methoxycarbonyl-1,3-dioxolanes in Glycerol Acetal Synthesis ${ }^{1}$

Yuri Wedmid and Wolfgang J. Baumann*
Division of Organic Chemistry, The Hormel Institute, University of Minnesota, Austin, Minnesota 55912

Received April 4, 1977

The prostaglandin-like, smooth muscle contracting effect of lipophilic glycerol acetal phosphates, the physiologically active principle of "Darmstoff" described by Vogt ${ }^{2}$ and others, ${ }^{3}$ has stimulated interest in an efficient synthesis of isomeric long-chain cyclic glycerol acetals. Current procedures of glycerol acetal synthesis are based on the condensation of glycerol and aldehyde ${ }^{4,5}$ and favor formation of the isomeric 1,3-dioxanes; ${ }^{5}$ the lesser amounts of cis- and trans-1,3-dioxolanes formed are separable, as acetates only, by tedious multiple gas chromatographic (GC) fractionation. ${ }^{5}$

In the present note we describe a convenient preparative method for the specific synthesis of pure cis- and pure trans-2-alkyl-4-hydroxymethyl-1,3-dioxolanes. 1,3-Dioxane formation is avoided through use of methyl glycerate as the three-carbon backbone. More important, the stereomeric glycerate acetals are separable by adsorption chromatography due to their significantly different polarities dependent upon the orientation of the methoxycarbonyl function relative to the long-chain substituted ring system. Subsequent conversion of the individual glycerate acetals to glycerol acetals by LiAlH_{4} hydrogenolysis is quantitative.

Results and Discussion

Acid-catalyzed condensation of methyl glycerate (1) with hexadecanal (2a), ${ }^{6}$ or cis-9-octadecenal (2b), ${ }^{6}$ afforded a mixture of geometrical isomers of methyl glycerate cyclic acetals 3 (Scheme I) which were readily separated by thin-layer

Scheme I

$$
\begin{aligned}
& \text { a, } \mathrm{R}=\text { pentadecyl }\left(\mathrm{C}_{15} \mathrm{H}_{31}\right) \\
& \mathrm{b}, \mathrm{R}=\text { cis-8-heptadecenyl }\left(\mathrm{C}_{1}, \mathrm{H}_{33}\right)
\end{aligned}
$$

chromatography (TLC) ${ }^{7}$ (developing solvent, hexane-diethyl ether, $75: 25, \mathrm{v} / \mathrm{v}$). Both the smaller ($\sim 40 \%$), more polar (R_{f} 0.54) fraction, and the larger ($\sim 60 \%$), less polar ($R_{f} 0.64$) fraction of $\mathbf{3 a}$ (or $\mathbf{3 b}$) showed mass spectral fragmentation profiles consistent with the long-chain acetal structure 3 with characteristic ions $\mathrm{M}^{+},[\mathrm{M}-\mathrm{H}]^{+},[\mathrm{M}-\mathrm{alkyl}]^{+}$, and $[\mathrm{M}-$ alkyl CO$]^{+}$(ref 8). Their infrared spectra showed characteristic carbonyl splittings ($\Delta \nu \sim 22 \mathrm{~cm}^{-1}$) probably due to coupling between the carbonyl stretching mode and ring vibrations. ${ }^{9}$

When the glycerate acetal fractions of 3 a were reduced with $\mathrm{LiAlH}_{4},{ }^{10}$ the more polar isomer ($R_{f} 0.54$) gave cis-2-penta-decyl-4-hydroxymethyl-1,3-dioxolane (cis-4a), the less polar isomer ($R_{f} 0.64$) yielded trans-2-pentadecyl-4-hydroxy-methyl-1,3-dioxolane (trans-4a). cis- and trans-4a were identified, after acetylation with $\mathrm{Ac}_{2} \mathrm{O}$ /pyridine, ${ }^{5}$ by comparison with authentic 2-pentadecyl-4-acetoxymethyl-1,3dioxolanes cis- and trans- 5 a of known configuration prepared via an alternate route (Scheme II) ${ }^{5}$

Scheme II

Configurational assignments for the isomers of glycerate acetal 3 were substantiated by ${ }^{1} \mathrm{H}$ NMR on the basis of the chemical shifts observed for the $\mathrm{H}-2$ signals in the spectra of 3a-5a (Table I). ${ }^{11}$ The H-2 triplet at $\delta 4.98 \mathrm{ppm}$ for the cis-methoxycarbonyl-1,3-dioxolane 3a was shifted to 5.08 ppm for the trans-isomer 3a. Such deshielding by 0.1 ppm was also ${ }^{\circ}$ observed for the trans-hydroxymethyl and trans-acetoxymethyl isomers $\mathbf{4 a}$ and $5 \mathrm{5a} .{ }^{5,12}$ These NMR data also demonstrated that configurations were maintained in the process of converting 3a to 5a.

The ${ }^{1} \mathrm{H}$ NMR spectra of the 4 -hydroxymethyl and 4 -ace-toxymethyl-1,3-dioxolanes (4 and 5) showed poorly resolved signals near $3.5-4.3 \mathrm{ppm}$ due to $\mathrm{H}-4,5$ and the 4 -substituent protons. In contrast, the methoxycarbonyl isomers $3 \mathbf{a}$ (or $\mathbf{3 b}$) gave characteristic and better resolved $\mathrm{H}-4,5$ signals. The pairs of doublets centered at $4.55 \mathrm{ppm}\left(J_{4,5}=7.5 \mathrm{~Hz}\right.$, cis-3a) and $4.58 \mathrm{ppm}\left(J_{4,5}=7.1 \mathrm{~Hz}\right.$, trans-3a) were readily assigned to the proton (1 H) at carbon-4 with J values as expected for such 1,3-dioxolane systems. ${ }^{13}$ The spectrum of the trans isomer also exhibited well-resolved signals at 4.28 ppm (pair of doublets, 1 H) and 3.86 ppm (pair of doublets, 1 H) for the $\mathrm{H}-5$ protons in positions syn and anti, respectively, relative to the vicinal methoxycarbonyl function. Interference between 2-alkyl and 4-methoxycarbonyl substituents in the cis isomer of 3 a resulted in a less methoxycarbonyl-deshielded syn $\mathrm{H}-5$ and in overlapping multiplets in the 4.29-3.92 ppm region for syn and anti H-5 in cis-3a.
Proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra of the glycerate and glycerol cyclic acetals 3-5 revealed distinct spectral differences between cis/trans isomeric pairs, and as a result of different substituents in position 4 (Table II). Assignments of ring and 4 -substituent carbons were based on off-resonance proton decoupling and on specific deuteration in position 2 and in the methylene group in position $4(\mathbf{4 b}, \mathbf{5 b})$.

Comparison of the carbon chemical shifts in 2-pentade-cyl-1,3-dioxolane with those of the unsubstituted 1,3 -dioxolane (C-2, 94.3; C-4, 63.8) ${ }^{15}$ made it possible to estimate the deshielding increments due to the 2 -alkyl group. 2-Alkyl substitution produced a downfield shift of 10.6 ppm for $\mathrm{C}-2$, while the effect of the 4 -substituents on $\mathrm{C}-2$ in $\mathbf{3 b}-\mathbf{5} \mathbf{b}$ was in the order of $0.1-1.9 \mathrm{ppm}$ downfield, with cis substitution leading to larger deshielding than trans. In contrast, introduction of a 2 -alkyl substituent into 1,3 -dioxolane affected C-4,5 by a small (1.0 ppm) downfield shift only, but methoxycarbonyl (3) or acetoxymethyl (5) substitution at the 4 position produced a deshielding effect of $\sim 8.9 \mathrm{ppm}$ on $\mathrm{C}-4$, and hydroxymethyl substitution (4) an even larger effect of ~ 11.6 ppm. The C-4 chemical shifts were minimally affected by the dioxolane configuration.

More surprising was the overall effect of the C-4 substitu-

200 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, dried over MgSO_{4}, and concentrated in vacuo to a dark red oil.

Without further purification, the crude xanthate 2 was transferred to a $250-\mathrm{mL} 3$-neck flask fitted with a magnetic stirrer, thermometer, and short path distillation apparatus leading to an ice-cooled receiver. By means of a heating mantle, the internal temperature was gradually raised to $220-240^{\circ} \mathrm{C}$ (Hood!) at which time the crude diene 3 was collected as a yellow oil (bp $120-160^{\circ} \mathrm{C}$). The product was extracted with $4 \times 20 \mathrm{~mL}$ of $20 \% \mathrm{KOH}$, dried over MgSO_{4}, and short path distilled to give $20 \mathrm{~g}(46 \%)$ of the diene 3 as a pale yellow oil: bp 63-63.5 ${ }^{\circ} \mathrm{C}(20 \mathrm{~mm})$; IR $\left(\mathrm{CCl}_{4}\right) 3080,1670,1640,990,910 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right)$ $\delta 5.8-4.8(\mathrm{~m}, 3 \mathrm{H}), 4.7(\mathrm{~m}, 1 \mathrm{H}), 2.1(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$, 1.1-1.5 (m, 4H), 0.93 (d, 3H).

Minor sulfur-containing contaminants could be removed by distillation of 3 from Na . These contaminants were more effectively removed, however, in the subsequent peracid oxidation (vide infra). A neat sample of 3 gave an $[\alpha]^{25} \mathrm{D}-4.50^{\circ}$ indicating an optical purity of 46%.
($3 \boldsymbol{R}, 6 \boldsymbol{R}, \boldsymbol{S}$)-3,7-Dimethyloct-1-ene-6,7-diol (5). To a magnetically stirred solution of $22.0 \mathrm{~g}(0.159 \mathrm{~mol})$ of diene 3 in 250 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $35.4 \mathrm{~g}(0.175 \mathrm{~mol})$ of $85 \% \mathrm{~m}$-chloroperbenzoic acid at a rate sufficient to maintain the temperature below $10^{\circ} \mathrm{C}$. After addition was complete, the mixture was allowed to stir at ice bath temperature for an additional 30 min whereupon the m-chlorobenzoic acid was removed by filtration. The filtrate was washed with 50 mL of 10% NaHSO_{3} and $2 \times 25 \mathrm{~mL}$ of saturated NaHCO_{3}. TLC analysis using hexane-ether ($1: 1$) as eluent showed a single major product. A sample was purified by Kugelrohr distillation: bp $100^{\circ} \mathrm{C}$ (bath) (20 mm); IR $\left(\mathrm{CCl}_{4}\right) 3080,1640,920,900$ and $880 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 5.6(\mathrm{~m}, 1 \mathrm{H})$, $4.9(\mathrm{~m}, 2 \mathrm{H}), 2.5(\mathrm{~m}, 1 \mathrm{H}), 2.1(\mathrm{~m}, 1 \mathrm{H}), 1.7-1.1(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.18$ $(\mathrm{s}, 3 \mathrm{H}), 0.9$ (overlapping d, 3H). ${ }^{13}$

The crude epoxide 4 was added dropwise at $0^{\circ} \mathrm{C}$ to a magnetically stirred solution of 100 mL of $0.1 \mathrm{M} \mathrm{HClO}_{4}$ in 380 mL of THF. After 10 h at ambient temperature, TLC analysis (1:1 hexane-ether; $R_{\mathrm{f}}=$ 0.1) revealed a single major component. The mixture was concentrated in vacuo to $1 / 3$ volume and the product extracted into 100 mL of ether. After washing with 40 mL of 2 N NaOH , followed by 10 mL of brine, the mixture was dried over MgSO_{4}, concentrated in vacuo and short path distilled to give $17.1 \mathrm{~g}(63 \%$ from 3$)$ of the diol 5 as a viscous, colorless oil: bp $79-80^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$; IR $\left(\mathrm{CCl}_{4}\right) 3400,3080,1640,920$ cm^{-1}; NMR $\left(\mathrm{CCl}_{4}\right) \delta 5.6(\mathrm{~m}, 1 \mathrm{H}), 4.9(\mathrm{~m}, 2 \mathrm{H}), 4.7\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchange), $3.2(\mathrm{~m}, 1 \mathrm{H}), 2.1(\mathrm{~m}, 1 \mathrm{H}), 1.1-1.8(\mathrm{br} \mathrm{m}, 4 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.07$ ($\mathrm{s}, 3 \mathrm{H}$), $1.0(\mathrm{~d}, 3 \mathrm{H})$.
(4R)-Methylhex-5-enal (6). To a magnetically stirred solution of 15.0 g (87 mmol) of diol 5 in 125 mL of ether was added portionwise $48.1 \mathrm{~g}(96 \mathrm{mmol})$ of $\mathrm{Pb}(\mathrm{OAc})_{4}$ (containing $10 \% \mathrm{HOAc}$) at a rate sufficient to maintain the temperature $<20^{\circ} \mathrm{C}$ (ice bath). After addition was complete the mixture was stirred at ambient temperature for 45 min whereupon the lead salts were removed by suction filtration. After adding 200 mL of saturated NaHCO_{3}, the mixture was continuously extracted for 20 h with ether. The product was isolated from the ether solution by drying over MgSO_{4}, concentration at ambient pressure, and short path distillation of the residue into an ice-cooled receiver. The aldehyde 6 ($7.49 \mathrm{~g}, 77 \%$) was isolated as a colorless, pungent oil: bp 39-40 ${ }^{\circ} \mathrm{C}(20 \mathrm{~mm})$; IR $\left(\mathrm{CCl}_{4}\right) 3080,2820.2720,1720,1630,990,910$ cm^{-1}; NMR $\left(\mathrm{CCl}_{4}\right) \delta 9.6(\mathrm{t}, 1 \mathrm{H}), 5.8-5.2(\mathrm{~m}, 1 \mathrm{H}), 5.0-4.5(\mathrm{~m}, 2 \mathrm{H})$, $2.4-1.8(\mathrm{~m}, 3 \mathrm{H}), 1.6-1.2(\mathrm{~m}, 2 \mathrm{H}), 0.9(\mathrm{~d}, 3 \mathrm{H}) ; \mathrm{MS}$ m/e $112\left(\mathrm{M}^{+} ., 10\right)$, 68 (100); VPC (column A, $100^{\circ} \mathrm{C}$) retention time $3.5 \mathrm{~min}(>95 \%$ pure).
\boldsymbol{N}-((4R)-Methylhex-5-en-1-ylidene)-tert-butylamine (7). A mixture of 5.03 g (69 mmol) of $t-\mathrm{BuNH}_{2}, 7.00 \mathrm{~g}(63 \mathrm{mmol})$ of aldehyde 6 and 11.7 g of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 30 mL of ether was magnetically stirred under N_{2} at ambient temperature for 12 h . The mixture was filtered, concentrated in vacuo, and short path distilled to give 9.02 $\mathrm{g}(86 \%)$ of Schiff base 7 as a colorless oil: bp $69-70^{\circ} \mathrm{C}(20 \mathrm{~mm})$; IR $\left(\mathrm{CCl}_{4}\right) 1670,1640,990,930 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.5(\mathrm{t}, 1 \mathrm{H}, J=4 \mathrm{~Hz})$, $5.8-5.4(\mathrm{~m}, 1 \mathrm{H}), 5.0-4.8(\mathrm{~m}, 2 \mathrm{H}), 2.2(\mathrm{~m}, 3 \mathrm{H}), 1.5(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H})$, $1.02(\mathrm{~d}, 3 \mathrm{H})$.
(2R,S,4R)-2,4-Dimethylhex-5-enal (8). A flame-dried $250-\mathrm{mL}$ 3-neck flask fitted with a condenser, magnetic stirrer, addition funnel, and nitrogen inlet was charged with $37 \mathrm{~mL}(56 \mathrm{mmol})$ of $1.5 \mathrm{Mn}-\mathrm{BuLi}$ in hexane and 40 mL of ether. After cooling to $0^{\circ} \mathrm{C}$ under nitrogen, $5.67 \mathrm{~g}(56 \mathrm{mmol})$ of $(i-\mathrm{Pr})_{2} \mathrm{NH}$ (freshly distilled from $\left.\mathrm{CaH}_{2}\right)$ in 10 mL of ether was added, followed after 15 min by dropwise addition of 8.5 $\mathrm{g}(51 \mathrm{mmol})$ of Schiff base $7^{14} \mathrm{in} 15 \mathrm{~mL}$ of ether. Stirring was continued at $0^{\circ} \mathrm{C}$ for 1 h whereupon $14.4 \mathrm{~g}(102 \mathrm{mmol})$ of MeI was added dropwise. The mixture was then refluxed for 30 min , stirred at ambient temperature for 63 h , and finally treated, with rapid magnetic stirring, with 112 mL of 1.0 M oxalic acid. The ether layer was washed with 5 mL of saturated NaHCO_{3}. The aqueous layer was neutralized
with solid NaHCO_{3} (until CO_{2} evolution ceased) and continuously extracted with ether for 20 h . The combined ether extracts were dried over MgSO_{4} and concentrated at ambient pressure. The residue was short path distilled to give $4.04 \mathrm{~g}(62 \%)$ of the aldehyde 8 as a colorless oil: bp $47-48{ }^{\circ} \mathrm{C}(20 \mathrm{~mm})$; IR $\left(\mathrm{CCl}_{4}\right) 3080,2817,2710,1720,1630,988$, $810 \mathrm{~cm}^{-1} ; \mathrm{NMR}^{\left(\mathrm{CCl}_{4}\right)} \delta 9.5(\mathrm{t}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 5.8-5.3(\mathrm{~m}, 1 \mathrm{H}), 5.1-4.8$ $(\mathrm{m}, 2 \mathrm{H}), 2.3(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.7(\mathrm{~m}, 1 \mathrm{H}), 1.3(\mathrm{~m}, 2 \mathrm{H}), 1.2-1.0$ (set of 3 overlapping doublets, 6 H); VPC (column $\mathrm{A}, 110^{\circ} \mathrm{C}$) one major component ($>95 \%$) retention time 3.8 min .
($4 R, S, 6 R$)-4,6-Dimethyloct-7-en-3-one (9). To the Grignard reagent prepared from 2.00 g (82 mg -atom) of Mg and $5.97 \mathrm{~g}(55 \mathrm{mmol})$ of EtBr in 45 mL of ether was added dropwise at ambient temperature $3.48 \mathrm{~g}(27.4 \mathrm{mmol})$ of aldehyde 8 in 10 mL of ether. After stirring for 1 h the mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with 50 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The ether layer was washed with 25 mL of water, dried over MgSO_{4}, and concentrated in vacuo to a colorless oil which was used in the next step without further purification.
To a magnetically stirred solution of the crude carbinol (vide supra) in 40 mL of acetone cooled to $0^{\circ} \mathrm{C}$ was added dropwise 10.1 mL of 2.67 $\mathrm{M} \mathrm{H}_{2} \mathrm{CrO}_{4}$. After addition was complete the mixture was stirred an additional minute, concentrated in vacuo to $\sim 5 \mathrm{~mL}$, diluted with 30 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with $4 \times 10 \mathrm{~mL}$ of ether. The combined ether layers were washed with $2 \times 15 \mathrm{~mL}$ of 0.15 M NaOH followed by one wash with 10 mL of $\mathrm{H}_{2} \mathrm{O}$. After drying over MgSO_{4}, the solvent was removed in vacuo and the residue short path distilled to give 3.31 g (79% from 8) of enone 9 identical by NMR, IR, and MS with an authentic sample kindly provided by Professor Silverstein. VPC analysis (column A, $120^{\circ} \mathrm{C}$) showed a single major component ($>95 \%$), retention time 5.4 ($>95 \%$), retention time 5.4 min .
(4R,S,6R,7R,S)-4,6-Dimethyl-7,8-epoxyoctan-3-one (10). The epoxyketone 10 was prepared in 77% yield as described by Silverstein and co-workers. ${ }^{5}$
$(-)-\alpha$-Multistriatin (11α). The epoxyketone 10 rearranged in benzene solution in the presence of $\mathrm{SnCl}_{4}{ }^{15}$ to give an 80% isolated yield of the four isomers $11 \alpha-\delta$ as previously described. ${ }^{5}$ Using column $\mathrm{B}\left(170^{\circ} \mathrm{C}\right)$ the four isomers eluted from the gas chromatograph in the following order (\% composition, retention time in min): $11 \delta(53,23.4)$, $11 \alpha(35,23.9), 11 \gamma(8,25.6)$, and $11 \beta(4,27.9)$. The retention times and ratios of isomers were virtually identical with a sample provided by Professor Silverstein.

A pure sample of 11α was collected by preparative VPC (column $\mathrm{B}, 170^{\circ} \mathrm{C}$) and was ident:cal by IR and NMR with the data reported ${ }^{5}$ for 11α. An $[\alpha]_{D}-18.7^{\circ}$ was observed for an 0.074 M solution 11α in hexane.

Acknowledgments. We wish to express our gratitude to SUNY Binghamton (Biomedical Research Support Grant) and the Research Corporation for generous financial support. We are indebted to Mr. Jon Stickles, Ms. Mina Houtan, and Professor Lawrence Verbit for technical assistance. Special thanks are due to Professor Robert M. Silverstein for valuable discussions and gifts of authentic samples.

Registry No.-1, 1117-61-9; 2, 63215-84-9; 3, 10281-56-8; 4, 15103-27-2; 5, 57714-93-9; 6, 63215-85-0; 7, 63215-86-1; 8, 63215-87-2; 8 (carbinol deriv.), 63466-90-0; 9, 63323-26-2; 10, 63324-22-1; 59014-03-8;,11 $\alpha, 59014-03-8 ; 11 \beta, 59014-05-0 ; 11 \gamma, 59014-07-2 ; 11 \delta$, 59014-09-4; EtBr, 74-96-4.

References and Notes

(1) Part 6 of a series on pheromone synthesis. For part 5, see P. J. Kocienski and J. M. Ansell, J. Org. Chem., in press.
(2) Department of Organic Chemistry. The University, Leeds LS2 9JT, England.
(3) G. T. Pearce, W. E. Gore, R. M. Silverstein, J. W. Peacock, R. A. Cuthbert. G. N. Lanier, and J. B. Simeone, J. Chem. Ecol., 1, 115 (1975).
(4) W. E. Gore, G. T. Pearce, and R. M. Silverstein, J. Org Chem., 40, 1705 (1975).
(5) G. T. Pearce, W. E. Gore, and R. M. Silverstein, J. Org Chem., 41, 2797 (1976).
(6) After this work was completed, two further reports on the synthesis of optically active α-multistriatin appeared: W. J. Elliott and J. Fried, J. Org. Chem., 41, 2475 (1976), and K. Mori, Tetrahedron, 32, 1979 (1976).
(7) (-)- α-Multistriatin is the trivial name for $(1 S, 2 R, 4 S, 5 R)$-2.4-dimethyl-5-ethyl-6,8-dioxabicyclo[3.2.1]octane.
(8) Based on an estimated maximum rotation of $+5.60^{\circ}$, the $[\alpha]_{D}+1.98^{\circ}$ for the $(+\gamma-3 R$-citronellol used in this investigation indicates an optical purity of 35% (ct. ref 11).
(9) H. Pines, N. E. Hoffman, and V. I. Ipatieff, J. Am. Chem. Soc., 76, 4412 (1954): R. Rienacker and G. Ohioff, Angew. Chem., 73, 240 (1961).
(10) G. Wittig. H.-D. Frommeld, and P. Suchanek, Angew. Chem., Int. Ed. Engl., 2, 683 (1963); G. Wittig and H.-D. Drommeld, Chem. Ber., 97, 3548 (1964).

A Synthesis of (-) $\boldsymbol{\alpha}$-Multistriatin ${ }^{1}$
G. J. Cernigliaro and P. J. Kocienski*2

Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13901

Received August 10, 1976
α-Multistriatin is the principal attractant of the smaller European elm bark beetle Scolytus multistriatus (Marsham), a vector of the Dutch elm disease pathogen Cerocystis ulmi. The severe devastation of elm populations in the northeastern United States has motivated the structure elucidation of the aggregation pheromone by Silverstein and co-workers ${ }^{3}$ in the hope that mortality traps baited with the pheromone might be used for the bioassay and control of S. multistriatus.

The gross structure of α-multistriatin (11α) was deduced spectrometrically and by efficient confirmative total synthesis. ${ }^{3,4}$ Subsequently, the relative configuration was established by a stereorational synthesis ${ }^{4}$ and recently, the absolute configuration of (-)-11 α was deduced by comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of natural $(-)-11 \alpha$ with synthetic material, prepared from chiral precursors, in the presence of a chiral shift reagent. ${ }^{5,6}$ We report below an approach to the synthesis of natural (-)- α-multistriatin ${ }^{7}$ from (+)-3R-citronellol (1).

As shown in Scheme I, (+)-(3R)-citronellol $[\alpha]_{\mathrm{D}}+1.98^{8}$ was
Scheme I

(a) $\mathrm{NaH}, \mathrm{CS}_{2}$; (b) MeI ; (c) $240^{\circ} \mathrm{C}$; (d) $\mathrm{m}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$; (e) $\mathrm{H}_{3} \mathrm{O}^{+}$; (f) $\mathrm{Pb}(\mathrm{OAc})_{4}$; (g) $t-\mathrm{BuNH}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}$; (h) $(i-\mathrm{Pr})_{2} \mathrm{NLi}$; (i) MeI ; (j) $\mathrm{H}_{3} \mathrm{O}^{+}$.
converted to the known diene ${ }^{9} 3$ (46% yield from 1) by pyrolysis of the corresponding xanthate 2 . Chemospecific epoxidation of the trisubstituted olefin of 3 afforded the epoxide 4 which was solvolyzed to the diol 5 . Subsequent $\mathrm{Pb}(\mathrm{OAc})_{4}$ oxidation of 5 gave the aldehyde 6 in 49% overall yield from 3. The aldehyde 6 was methylated in a three-step sequence via the Schiff base 7^{10} to give the aldehyde 8 in 53% overall yield from 6.

To complete the synthesis, the aldehyde 8 was converted by a two-step sequence to the known ${ }^{5}(4 R, S, 6 R)$-dimethyl7 -octen-3-one (9). At this point our synthesis strategically intersects the procedure originally developed by Silverstein and co-workers ${ }^{5}$ (Scheme II). The epoxide 10 reacted with SnCl_{4} in benzene at room temperature to afford a mixture of the isomers $11 \alpha-\delta$ from which the desired α-isomer was iso-

Scheme II

(a) EtMgBr ; (b) $\mathrm{H}_{3} \mathrm{O}^{+}$; (c) $\mathrm{H}_{2} \mathrm{CrO}_{4}$; (d) $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$; (e) SnCl_{4}
lated by preparative VPC and identified by comparison with an authentic sample kindly provided by Professor Silverstein. The observed $[\alpha]_{D}-18.7^{\circ}$ for synthetic (-)-11 α indicates an optical purity of $40 \%{ }^{5}$

Our synthetic plan was founded upon the possibility of preparing both antipodes of 11α from readily available, chiral precursors in order to avoid a potentially tedious resolution of racemic starting materials. Unfortunately, the advantage accrued from this approach was to some extent nullified by the insufficient enantiomeric purity of commercial (-)-(3S)and (+)-($3 R$)-ci-ronellol. ${ }^{11}$ Although natural citronellol would have sufficed for the determiration of the absolute configuration of 11α as reported by Silverstein and co-workers, ${ }^{5}$ further purification ${ }^{12}$ will be essential for the bioassay of the pure 11α antipodes prepared by the synthesis reported herein.

Experimental Section

General. Nuclear magnetic resonance spectra were recorded on ${ }_{a}$ a Varian HA-100 spectrometer using $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Infrared spectra were obtained on a Perkin-Elmer Model 457 spectrophotometer using ca. 5% solutions in CCl_{4}. Mass spectra were obtained at 70 eV ionization potential using a DuPont 29-491B mass spectrometer utilizing the batch inlet. Vapor phase chromatographic (VPC) analysis was achieved witi a Perkin-Elmer Model 3920 gas chromatograph equipped with a thermal conductivity detector. Unless otherwise stated, all VPC analyses were performed with a $4 \mathrm{ft} \times 1 / 4 \mathrm{in}$. 10% SE-30/Chromosorb P ($60-80 \mathrm{mesh}$) column (column A) or a 25 $\mathrm{ft} \times 1 / 4 \mathrm{in} 5 \$.$% Carbowax 20M/Chromosorb G (60-80 \mathrm{mesh}$) column (column B). Helium served as the carrier gas. Optical rotatory dispersion curves were recorded with a JASCO ORD/CD-5 instrument. All thin layer chromatographic (TLC) analyses were performed with $2.5 \times 7.5 \mathrm{~cm}$ Baxerflex pre-coated silica gel plates using phosphomolybdic acid for development.

The $(+)$-citronellol was obtained from ICN-K and K Laboratories. The $\mathrm{Pb}(\mathrm{OAc})_{4}$ (containing $10 \% \mathrm{HOAc}$), obtained from Alfa Inorganics, Inc., and the m-chloroperbenzoic acid (unassayed, ca. 85\%), obtained from Aldrich Chemical Co., were used without further purification. The n-BuLi was purchased from Aldrich Chemical Co.
(3R)-3,7-dimethylocta-1,6-diene (3). A flame-dried, $500-\mathrm{mL}$ 3-neck flask fitted with a conderser, addition funnel, and magnetic stirrer was charged with $16.9 \mathrm{~g}(0.35 \mathrm{~mol})$ of $50 \% \mathrm{NaH}$ (dispersed in mineral oil) and 150 mL of dry THF. Over the course of $1 \mathrm{~h}, 50 \mathrm{~g}$ (0.32 mol) of (+)-($3 R$)-citronellol in 25 mL of CS_{2} was added with occasional water bath moderation. After addition was complete, the mixture was refluxed for $1 / 2 \mathrm{Z}$ and then cooled to room temperature. After the dropwise addition of $43 \mathrm{~g}(0.40 \mathrm{~mol})$ of MeI was complete, the reaction mixture was refluxed for $1 / 2 \mathrm{~h}$, poured onto 300 g of ice, and the product extracted into 200 mL of ether. The organic layer was washed with
(20R)- and (20S)-Cholest-5-ene-3 $\beta, 21$-diol 3-Tetrahydropyranyl Ether, (9a) and (10a). To 470 mg of olefin 8 a in 5 mL of an hydrous THF was added 1.1 mL of 1 M diborane in THF under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$ and the solution was stirred for 30 min at $0^{\circ} \mathrm{C}$. Then 2 mL of 10% sodium hydroxide solution and 2 mL of 30% hydrogen peroxide solution were added dropwise, and stirring was continued for an additional 1 h . After extraction with ethyl acetate, the extract was washed with water and saturated sodium chloride solution and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The HPLC separation of this epimeric mixture was carried out in hexane-acetone (4:1) on $2 \times 8 \mathrm{ft}$ Porasil A column to give 230 mg of diols. The $20 S$ and $20 R$ epimers 10 a and 9a were completely resolved in three recycles in a ratio of $1: 2$. The former had the longer retention time.
9a: mp 155-156ㅇ․ ; NMR $\delta 0.71$ (s, $\left.3,18-\mathrm{CH}_{3}\right), 0.87\left[\mathrm{~d}, 6, J=6 \mathrm{~Hz}^{-}\right.$. $26,27-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $1.02\left(\mathrm{~s}, 3,19-\mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, 2,-\mathrm{CH}_{2} \mathrm{OH}\right), 4.72(\mathrm{~m}$, $1,-\mathrm{OCHO}-), 5.34 \mathrm{ppm}(\mathrm{m}, 1,6-\mathrm{H})$.

10a: mp 105-107 ${ }^{\circ} \mathrm{C}$; NMR $\delta 0.69\left(\mathrm{~s}, 3,18-\mathrm{CH}_{3}\right), 0.87[\mathrm{~d}, 6, J=6 \mathrm{~Hz}$, $26,27-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $1.01\left(\mathrm{~s}, 3,19-\mathrm{CH}_{3}\right), 3.62\left(\mathrm{~m}, 1,-\mathrm{CH}_{2} \mathrm{OH}\right), 4.72(\mathrm{~m}$, $1,-\mathrm{OCHO}-), 5.34 \mathrm{ppm}(\mathrm{m}, 1,6-\mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{3}$: C, 78.96; $\mathrm{H}, 11.18$. Found: $\mathrm{C}, 78.92 ; \mathrm{H}$, 11.49.
(20R)- and (20S)-Cholest-5-ene-3ק,21-diol (9b) and (10b). (a) To a solution of 24 mg of THP ether 9 a in 3 mL of THF was added one drop of concentrated HCl and the mixture was allowed to stand at 50 ${ }^{\circ} \mathrm{C}$ for 20 min . Then it was poured into a saturated solution of sodium bicarbonate and the product was extracted with ethyl acetate. The extract was washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Purification of this crude diol $\mathbf{9 b}$ was carried out on TLC (30% acetone in hexane) to give 14 mg of $9 \mathrm{~b}: \mathrm{mp} \mathrm{149-151}{ }^{\circ} \mathrm{C}$; NMR $\delta 0.70$ (s, 3, 18- CH_{3}), 0.86 $\left[\mathrm{d}, 6, J=6 \mathrm{~Hz}, 26,27-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$], $1.00\left(\mathrm{~s}, 3,18-\mathrm{CH}_{3}\right), 3.70(\mathrm{~s}, 2,-$ $\mathrm{CH}_{2} \mathrm{OH}$), $5.34 \mathrm{ppm}(\mathrm{m}, \mathrm{l}, 6-\mathrm{H})$.

Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{2}: \mathrm{C}, 80.54 ; \mathrm{H}, 11.52$. Found: $\mathrm{C}, 80.31 ; \mathrm{H}$, 11.29.
(b) A pure sample (11 mg) of diol 10 b was obtained from 20 mg of THP ether 10 a by the same methods described for the diol 9 b . This compound had: mp 147-149 ${ }^{\circ} \mathrm{C}$; NMR $\delta 0.68$ (s, 3, 18- CH_{3}), 0.85 [d, $\left.6, J=6 \mathrm{~Hz}, 26,27-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.00\left(\mathrm{~s}, 3,19-\mathrm{CH}_{3}\right), 3.62\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{OH}\right)$, $5.34 \mathrm{ppm}(\mathrm{m}, 1,6-\mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{2}$: C, 80.54; H, 11.52. Found: 80.38 ; H , 11.58 .

Cholesterol 3-Tetrahydropyranyl Ether (9c). This sequence (tosylation followed by hydride reduction) was carried out exactly as described by Bottin and Fetizon. ${ }^{4}$ The reduction product was purified on a TLC plate which gave, after recrystallization from methanol, clean 9c: mp $155-161^{\circ} \mathrm{C}$; NMR $\delta 0.68$ (s, 3, 18- CH_{3}), $0.88[\mathrm{~d}, 6, J=$ $6 \mathrm{~Hz}, 26,27-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $0.91\left(\mathrm{~d}, 3, J=6 \mathrm{~Hz}, 21-\mathrm{CH}_{3}\right), 1.00(\mathrm{~s}, 3,19-$ CH_{3}), 4.72 (m, 1, -OCHO-), $5.34 \mathrm{ppm}(\mathrm{m}, 1,6-\mathrm{H})$.
(20S)-Cholest-5-en-3 β-ol 3-Tetrahydropyranyl Ether (10c) from 10a. This was carried out exactly as described above for the $20 R$ epimer. The material was recrystallized from methanol to give pure 10c: mp $96-98^{\circ} \mathrm{C}$; NMR $\delta 0.68\left(\mathrm{~s}, 3,18-\mathrm{CH}_{3}\right), 0.84(\mathrm{~d}, 3, J=6 \mathrm{~Hz}$, $\left.21-\mathrm{CH}_{3}\right), 0.87\left[\mathrm{~d}, 6, J=6 \mathrm{~Hz}, 26,27-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.01\left(\mathrm{~s}, 3,18-\mathrm{CH}_{3}\right)$, 4.72 (m, 1, -OCHO-), $5.34 \mathrm{ppm}(\mathrm{m}, 1,6-\mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{2}$: C, 81.64; H, 11.56. Found: C, 81.87; H, 11.88.

38,21-Dihydroxypregn-5-en-20-one 3,21-Ditetrahydropyranyl Ether (5b). To the stirred solution of 9.0 g of $3 \beta, 21$-dihydroxy-pregn-5-en-20-one (5a) in 20 mL of dry tetrahydrofuran was added 30 mg of p-toluenesulfonic acid and 10 mL of dihydropyran. After 3 h, the solution was extracted with benzene. The benzene layer was washed with a sodium bicarbonate solution and with water and dried over sodium sulfate, and the solvent was evaporated off in vacuo. The syrupy residue was crystallized from hexane to give 6.9 g of pure ether 5b: mp 126-128 ${ }^{\circ} \mathrm{C}$; IR $\nu 1725$ (CO), 1030 and $965 \mathrm{~cm}^{-1}$ (ether); NMR $\delta 0.63\left(\mathrm{~s}, 3,18-\mathrm{CH}_{3}\right), 0.99\left(\mathrm{~s}, 3,19-\mathrm{CH}_{3}\right), 4.18\left(\mathrm{~s}, 2,21-\mathrm{CH}_{2}-\mathrm{O}-\right), 5.32$ ppm (m, 1, 6-H).

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{5}$: C, 74.36; H, 9.66. Found: C, 74.28; H, 9.66.

3 $\beta, 20,21$-Trihydroxycholest-5-ene 3,21-Ditetrahydropyranyl Ether (20-Isomeric Mixture) (6b). To a stirred Grignard solution, prepared from 6 g of isohexyl bromide and 1.0 g of magnesium turnings in 100 mL of ether, was added dropwise a solution of 8 g of the ketone 5b in 200 mL of tetrahydrofuran. The solution was heated under reflux for 3 h and left at $50^{\circ} \mathrm{C}$ overnight. The mixture was hydrolyzed with a saturated solution of ammonium chloride. The organic material was extracted with ethyl acetate, the organic layer washed with water and dried over sodium sulfate, and the solvent evaporated in vacuo to give a yellow oil. A recrystallization from hexane gave 7.4 g of ether $6 \mathrm{~b}: \mathrm{mp} \mathrm{121-124}{ }^{\circ} \mathrm{C}$; IR $\nu 3350(\mathrm{OH}), 1025$ and $960 \mathrm{~cm}^{-1}$ (ether); NMR $\delta 0.85\left[\mathrm{~d}, 6, J=6 \mathrm{~Hz}, 26,27-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right] ; 0.86(\mathrm{~s}, 3,18$ $\left.\mathrm{CH}_{3}\right), 0.99\left(\mathrm{~s}, 3,19-\mathrm{CH}_{3}\right), 5.35 \mathrm{ppm}(\mathrm{m}, \mathrm{l}, 6-\mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{62} \mathrm{O}_{5}$: C, 75.72; $\mathrm{H}, 10.65$. Found: $\mathrm{C}, 75.99$; H , 10.73.

38,20,21-Trihydroxycholest-5-ene 21-Tetrahydropyranyloxy Ether (20-Isomeric Mixture) (6c). To 20 mL of dimethyl sulfoxide was added 10.0 mL of water and 4.0 mL of 7% perchloric acid. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ and 500 mg of the ether 6 b was added with stirring to the dimethyl sulfoxide solution. If, after 1 h , the steroid had not completely dissolved, $3-4 \mathrm{~mL}$ of tetrahydrofuran was added to the solution. The mixture was allowed to stand at room temperature for 3 days, after which time it was poured onto ice and extracted three times with ethyl acetate. These extracts were washed thoroughly with water and once with saturated sodium bicarbonate solution. After drying the organic extracts over sodium sulfate and evaporation, there was obtained a crystalline residue which was purified on TLC. The more mobile fraction gave 198 mg of starting material $6 \mathbf{b}$, while 225 mg of ether $6 \mathbf{c}$ could be isolated from the more polar fraction. A recrystallization from methanol gave 215 mg of $\mathbf{6 c}$: $\operatorname{mp} 168-169^{\circ} \mathrm{C}$; IR $\nu 3400(\mathrm{OH}), 1020$, and $960 \mathrm{~cm}^{-1}$ (ether); NMR $\delta 0.85\left[\mathrm{~d}, 6, J=6 \mathrm{~Hz}, 26,27-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.86\left(\mathrm{~s}, 3,18-\mathrm{CH}_{3}\right), 1.00(\mathrm{~s}, 3$, $19-\mathrm{CH}_{3}$), $5.35 \mathrm{ppm}(\mathrm{m}, 1,6-\mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{4}$: C, 76.44; H, 10.83. Found: C, 76.17; H, 10.75 .

38,20,21-Trihydroxycholest-5-ene (20-Isomeric Mixture) (6a). (a) Hydrolysis of Ether $\mathbf{6 b}$. To the solution of 500 mg of the ether $\mathbf{6 b}$ in 50 mL of tetrahydrofuran was added 1 drop of concentrated HCl and the solution was kept at $50^{\circ} \mathrm{C}$ for 30 min . Then it was poured into a saturated solution of sodium bicarbonate and the product was extracted with ether. This extract furnished 403 mg of triol $\mathbf{6 a}, \mathrm{mp}$ $182-186^{\circ} \mathrm{C}$, after recrystallization from aqueous methanol. This mixture resembled very closely (IR, NMR, mobility on TLC, mixture melting point) the authentic ${ }^{10}(20 R)$ isomer.
(b) Isohexylmagnesium Grignard on 3 $\beta, 21$-Diacetoxypregn5 -en-20-one (5c). This was carried out with 5 c in a very similar fashion to the reaction of identical Grignard reagent with the ether 5b. This reaction was carried out on a 5-g scale. Purification of the crude triol 6 a was achieved by dissolving the oil in a minimum of benzene, followed by careful addition of hexane to bring about crystallization of 2.9 g of pure product, identical with that obtained from the Grignard reaction on the tetrahydropyranyl ether, and followed by acid hydrolysis.
3β-Hydroxy-21-norcholest-5-en-20-one (7b). To the stirred solution of 3 g of the triol 6 a in 50 mL of dioxan was added dropwise the solution of 3.5 g of lead tetraacetate in 50 mL of benzene. After 18 h , the inorganic material was removed by filtration and washed with benzene. The filtrate was washed with saturated sodium bicarbonate solution and water and dried, and the solvent was evaporated. The syrupy residue was crystallized from methanol to give 2.4 g of pure ketone $\mathbf{7 b}$, indistinguishable from authentic ${ }^{8}$ material.

Registry No.-1, 35961-41-2; 2a, 63216-14-8; 2b, 63216-15-9; 3a, 63216-16-0; 3b, 63216-17-1; 5a, 1164-98-3; 5b, 63216-18-2; 5c, 1693-63-6; (20R)-6a, 61505-31-5; (20S)-6a, 26273-31-4; (20R) 6b, 63216-19-3; (20S)-6b, 63268-04-2; (20R)-6c, 63268-05-3; 7a, 34026-85-2; 7b, 38673-20-0; 8a, 34153-88-3; 8b, 41083-90-3; 9a, 63268-02-0; 9b, 63216-21-7; 9c, 6252-45-5; 10a, 34026-87-4; 10b, 63268-03-1; 10c, 34026-88-5; 3-methylbutanal, 590-86-3; isohexylbromide, 626-88-0.

References and Notes

(1) This work is supported by United States Public Health Service Grant AM03419 from the Institute of Arthritis, Metabolism, and Digestive Diseases, and National Science Foundation Research Grants GB-38612 and PCM76-20223. P. C. thanks Dr. Jean Choay, Institut Choay, for continued support and encouragement.
(2) S. Burstein, Y. Letourneux, H. L. Kimball and M. Gut, Steroids, 27, 361 (1976).
(3) J. Bottin and M. Fetizon, Chem. Commun., 1087 (1971).
(4) J. Bottin and M. Fetizon, Bull. Soc. Chim. Fr., 2344 (1972).
(5) G. Stork, G. A. Kraus, and G. A. Garcia, J. Org. Chem., 39, 3459 (1974).
(6) A. C. Ott, M. F. Murray, and R. L. Peterson, J. Am. Chem. Soc., 74, 1239 (1952).
(7) A. Horeau and H. B. Kagan, Tetrahedron, 20, 2431 (1964).
(8) A. Wettstein, Helv. Chim. Acta, 23, 1371 (1940).
(9) See also P. Kurath and M. Capezzuto, J. Am. Chem. Soc., 78, 3527 (1956); J. Bottin and M. Fetizon, ref 3 and 4.
(10) J. E. Van Lier and L. L. Smith, Biochim. Biophys. Acta, 210, 153 (1970).
(11) S. Danishefsky, K. Nagasawa. and N. Wang. J. Org. Chem., 40, 1989 (1975).
(12) This is the most economic way to produce 7, both in regard to the number of steps and in the cost of the starting material as well as the ease of purification of the product and last, but not least, the yield.
(13) W. G. Dauben and H. L. Bradlow, J. Am. Chem. Soc., 74, 559 (1952).
(14) F. Sondheimer and R. Mechoulam, J. Am. Chem. Soc., 80, 3087 (1958).
(15) T. A. Narwid, K. E. Cooney, and M. R. Uskoković, Helv. Chim. Acta, 57, 771 (1974)

While this study was in progress Danishefsky et al. ${ }^{11}$ published a method ${ }^{12}$ for the synthesis of the norketone 7 b by the reaction of 3β-hydroxyetiochol-5-enic acid (4) with isohexyllithium.

The ketone 7a was subjected to a Wittig reaction as described ${ }^{3,4}$ to give cholesta-5,20-dien-3 β-ol 3 -tetrahydropyranyl ether (8a), identical with authentic material in all respects. A small aliquot of the ether 8 a was hydrolyzed to give cho-lesta-5,20-dien-3 β-ol (8b), mp 109-111 ${ }^{\circ} \mathrm{C}$. Similarly, the ketone $\mathbf{7 b}$ was reacted with methylene triphenylphosphorane to give the olefin $8 \mathbf{b}$ which was then transformed with dihydropyran and p-toluenesulfonic acid to its ether 8 a . The hydroboration of the olefin $8 \mathbf{a}$ with diborane at $0^{\circ} \mathrm{C}$ gave a mixture of the two $20 R$ and $20 S$ alcohols 9 a and 10 a in a ratio of $2: 1$. The two isomers were separated by adsorption chromatography to give $9 \mathrm{a}\left(\mathrm{mp} 155^{\circ} \mathrm{C}, \delta 3.70, \mathrm{~s},-\mathrm{CH}_{2}-\mathrm{OH}\right)$ and $10 \mathrm{a}\left(\mathrm{mp} 105^{\circ} \mathrm{C}, \delta 3.62, \mathrm{~m}\right)$. The IR spectra of the two epimers are very similar.

Proof of Structure for 9a and 10a. Both alcohols 9a and 10 a were converted to their tosylates and the crude sulfonates were reduced with lithium aluminum hydride. Thus, the reduction product from the major isomer $9 \mathrm{a}, \mathrm{mp} 155^{\circ} \mathrm{C}$, gave ($20 R$)-cholest- 5 -en- 3β-ol 3 -tetrahydropyranyl ether ($9 \mathbf{c}$) (cholesterol tetrahydropyranyl ether), mp $155-161^{\circ} \mathrm{C}$, identical in all respects with authentic ${ }^{13}$ material. The reduction of the minor isomer $10 \mathrm{a}, \mathrm{mp} 105^{\circ} \mathrm{C}$, gave (20S)-cholest-5-en- 3β-ol 3 -tetrahydropyranyl ether (10 c) (20 -isocholesterol 3β-tetrahydropyranyl ether), $\mathrm{mp} 96-98^{\circ} \mathrm{C}$, identical in all respects with a sample made from ($20 S$)-cholest-5-en- 3β-ol. ${ }^{14}$ 21 -Hydroxycholesterol (9 b), mp $149-151^{\circ} \mathrm{C}$, was obtained by acid hydrolysis of its tetrahydropyranyl ether 9a, while (20S)-cholest-5-ene-3 $3,21-\mathrm{diol}$ (10b) was obtained in the same fashion from the ether 10a.

These results contradict those of Bottin and Fetizon, ${ }^{3,4}$ since (1) we did not observe (hydroboration with disiamylboran gave similar results) any stereoselectivity (on the Δ^{20} bond) in the hydroboration of olefin 8 a and (2) our hydroxylated material, mp $155-156{ }^{\circ} \mathrm{C}$ (Bottin and Fetizon give mp $143-145{ }^{\circ} \mathrm{C}$), belongs to the $20 R$ (natural) configuration. This has been ascertained by comparison of the NMR spectra ${ }^{15}$ of the $20 R$ and the $20 S$ configurations, as well as by mixture melting point depression(s). Characteristically, the 21-hydroxy sterols of the $20 R$ (natural configuration) series exhibit a resonance at $\delta 3.70$ as a singlet $\left(-\mathrm{CH}_{2} \mathrm{OH}\right)$, while those of the $20 S$ configuration show a multiplet centered at $\delta 3.62$. The difference in the NMR spectra of the reduced materials ($21-\mathrm{CH}_{3}$) is also very well documented: cholesterol tetrahydropyranyl ether (9 c) shows resonances at $\delta 0.86$ (doublet for the 26,27 -methyls) and at 0.92 (doublet for the 21 -methyl), while (20S)-cholest-5-en-3 3 -ol tetrapyranyl ether (10 c) gives $\delta 0.79$ (doublet for 21 -methyl) and 0.85 (doublet for the 26,27-methyls).

Experimental Section

Melting points were determined on a Kofler melting-point apparatus and are uncorrected. The UV spectra were determined for methanolic solutions on a Cary Model 14 recording spectrophotometer. The NMR spectra were obtained in deuteriochloroform solution on a $60-\mathrm{MHz}$ Varian EM360 and a $100-\mathrm{MHz}$ Varian HA100D-15, with C1024 computer, using tetramethylsilane as an internal reference, and the positions of the proton signals are expressed in parts per million downfield from tetramethylsilane signals.
(23R)-38,23-Dihydroxy-21-norcholest-5-en-20-one 3-Tetrahydropyranyl Ether (2a) and (23S)-3ק,23-Dihydroxy-21-norcholest-5-en-20-one 3-Tetrahydropyranyl Ether (2b). To the stirred solution of $9.0 \mathrm{~g}(84 \mathrm{mmol})$ of lithium diisopropylamide in dry tetrahydrofuran at $-78^{\circ} \mathrm{C}$ was added at once a solution of 30 g (75 mmol) of 3β-tetrahydropyranyloxypregn- 5 -en- 20 -one (1) ${ }^{6}$ in 100 mL of dry tetrahydrofuran. To this was added, dropwise, the solution 8.6 mL of 3 -methylbutanal dissolved in 20 mL of dry tetrahydrofuran. After 15 min of stirring the cooling was removed and the solution neutralized at once with a solution of acetic acid in ether. The solution
was then concentrated in vacuo and diluted with benzene. The organic phase was washed with water several times and dried over anhydrous sodium sulfate, and the solvents were evaporated. The residue, upon crystallization from methanol, gave 30 g of condensation product 2 (23-isomeric mixture): mp $129-150^{\circ} \mathrm{C}$; IR $\nu 3500$ (-OH), 1680 (-CO-), 1030 and $970 \mathrm{~cm}^{-1}$ (ether); NMR $\delta 0.63\left(\mathrm{~s}, 3,18-\mathrm{CH}_{3}\right), 0.93[\mathrm{~d}, 6, J=$ $\left.6 \mathrm{~Hz}, 26,27-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.01\left(\mathrm{~s}, 3,1 \mathrm{C}-\mathrm{CH}_{3}\right), 5.34 \mathrm{ppm}(\mathrm{m}, 1,6-\mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4}$: C, 76.50; $\mathrm{H}, 10.36$. Found: $\mathrm{C}, 76.73 ; \mathrm{H}$, 10.41.

A TLC, using as solvents $5-10 \%$ acetone in hexane, on 120 mg of the above mixture gave 55 mg of a more polar compound and 46 mg of less polar material. A determination of the configuration at C-23 according to Horeau and Kagan ${ }^{7}$ revealed the more polar compound to have the $23 R$ configuration, mp $134-136^{\circ} \mathrm{C}$, after two recrystallizations from methanol; IR and NMR are very similar to those of the isomeric mixture.

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4}$: $\mathrm{C}, 76.50 ; \mathrm{H}, 10.36$. Found: $\mathrm{C}, 76.76 ; \mathrm{H}$, 10.46.

The less polar compound has the $23 S$ configuration and a mp $151-153^{\circ} \mathrm{C}$ after recrystallization from methanol; IR and NMR are virtually indistinguishable from those of the mixture or of the $23 R$ isomer.

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4}$: C, 76.50; $\mathrm{H}, 10.36$. Found: $\mathrm{C}, 76.55 ; \mathrm{H}$, 10.38.
(E)-3 β-Hydroxy-21-norcholesta-5,22-dien-20-one (3b) and (E)-3 β-Tetrahydropyranyloxy-21-norcholesta-5,22-dien-20-one (3a). A solution of 24 g of the ketol 2 n 200 mL of benzene containing 250 mg of p-toluenesulfonic acid was heated under reflux for 10 min . After cooling, the solution was washed several times with saturated sodium bicarbonate solution, dried over sodium sulfate, and evaporated to dryness in vacuo. Chromatography of a small aliquot (1.25 g) of the residue (either on alumina or on TLC) yielded first the less polar tetrahydropyranyl ether which was recrystallized from hexane to give $793 \mathrm{mg}(70 \%)$ of $3 \mathrm{a}: \mathrm{mp} 153-154^{\circ} \mathrm{C}$; $\mathrm{UV}_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 228 \mathrm{~nm}$ ($\epsilon 12000$); IR $\nu 1680$ and 1610 (conj CO), 1030 and $960 \mathrm{~cm}^{-1}$ (ether); NMR $\delta 0.60\left(\mathrm{~s}, 3,18-\mathrm{CH}_{3}\right), 0.90\left[\mathrm{~d}, 6, J=6 \mathrm{~Hz}, 26,27-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.00$ $\left.\left.\left(\mathrm{s}, 3,19-\mathrm{CH}_{3}\right), 3.51 \mathrm{~m}, 1,3-\mathrm{H}\right), 5.32 \mathrm{im}, 1,6-\mathrm{H}\right), 6.12(\mathrm{~d}, 1, J=16 \mathrm{~Hz}$, $22-\mathrm{H}$), 6.78 ppm (t of $\mathrm{d}, 1, J=8$ and $16 \mathrm{~Hz}, 23-\mathrm{H}$).

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{G}_{3}$: C, 79.43; H, 10.32. Found: C, 79.21; H, 10.45.

The more polar alcohol was recrystallized from hexane to give 205 $\mathrm{mg}(10 \%)$ of $3 \mathrm{~b}: \mathrm{mp} 110-112^{\circ} \mathrm{C}$, IR $\left\llcorner 3300(\mathrm{OH}), 1670\right.$, and $1610 \mathrm{~cm}^{-1}$ (conj CO); NMR $\delta 0.60\left(\mathrm{~s}, 3,18-\mathrm{CH}_{3}\right), 0.90[\mathrm{~d}, 6, J=6 \mathrm{~Hz}, 26,27-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.00\left(\mathrm{~s}, 3,19-\mathrm{CH}_{3}\right), 3.52(\mathrm{~m}, 1,3-\mathrm{H}), 5.34(\mathrm{~m}, 1,6-\mathrm{H}), 6.10$ (d, $1, J=16 \mathrm{~Hz}, 22-\mathrm{H}$), $6.78 \mathrm{ppm}(\mathrm{t}$ of $\mathrm{d}, 1, J=9 \mathrm{~Hz}$ and $16 \mathrm{~Hz}, 23-$ H).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{2}$: C, 81.20; H, 10.48. Found: C, $81.55 ; \mathrm{H}$, 10.84 .
3β-Tetrahydropyranyloxy-21-norcholest-5-en-20-one (7a). (a) Catalytic Reduction. A solution of 500 mg of the conjugated ketone 3a in 100 mL of ethyl acetate was reduced, at 1 atm , with hydrogen and 40 mg of prereduced platinum oxide. The reaction was stopped after absorption of 1.1 equiv of hydrogen and the mixture was then evapoarted to dryness. The product was dissolved in methylene chloride and the catalyst was remcved by filtration through Celite. The filtrate was evaporated to dryness and the residue purified on TLC. In this fashion there was obtained, after recrystallization from ethanol, 443 mg of saturated ketone $7 \mathrm{a}, \mathrm{mp} 112-119^{\circ} \mathrm{C}$, identical in all respects with an authentic standard. ${ }^{3,4}$ This material also had IR and NMR spectra indistinguishable from those obtained from authentic material.
(b) Reduction with Lithium and Ammonia. A solution of 500 mg of the enone 3 a in 20 mL of dry tetrahydrofuran was added rapidly to a well-stirred solution of 300 mg of lithium in liquid ammonia. After 15 min (the color was still deep blue), solid ammonium chloride was added and the ammonia allowed to evaporate. Isolation with methylene chloride gave a crude product which was purified on TLC. Recrystallization from ethanol gave 396 mg of saturated ketone 7 a , identical in all respects with an authentic ${ }^{3,4}$ sample.

20-Keto-21-norcholesterol (7b). This product was obtained from the ether 7 a by hydrolysis with hydrochloric acid $(5.0 \mathrm{~g}$ of $7 \mathrm{a} / 100 \mathrm{~mL}$ of THF/three drops of concentrated $\mathrm{HCl} / 50^{\circ} \mathrm{C} / 3 \mathrm{~h}$). The mixture was poured into water, the tetrahydrofuran partially evaporated off in vacuo, and the product extracted with ether. The organic layer was washed with a saturated solution of sodium bicarbonate, dried, and concentrated to give 4.1 g of procuct 7 b indistinguishable from an authentic ${ }^{8}$ sample.
3β-Hydroxycholesta-5,20-diene (8b). A Wittig reaction on the ketone $\mathbf{7 b}$, exactly as described ${ }^{3,4}$ =or the 3-tetrahydropyranyl ether, gave the desired diene $8 \mathbf{b}, \mathrm{mp} 10 \mathrm{G}_{-111^{\circ} \mathrm{C} \text {. }}$

(20R)- and (20S)-Cholest-5-ene-38,21-diol ${ }^{1}$
 Chang-yon Byon, Güniz Büyüktür, Patrick Choay, and Marcel Gut*
 Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545

Received May 2, 1977

Our interest ${ }^{2}$ in inhibitors of the cholesterol side-chain cleavage enzyme system in adrenocortical preparation made it desirable to test ($20 R$)- and ($20 S$)-cholest-5-ene-3B,21-diol. An approach to these compounds has already been described by Bottin and Fetizon. ${ }^{3,4}$

The starting material, 20-keto-21-norcholesterol can be made in many different ways, as already indicated by Bottin and Fetizon. ${ }^{3,4}$ We have explored the regiospecific aldol condensation, as described by Stork et al., ${ }^{5}$ of 3β-hydroxy-pregn-5-en-20-one tetrahydropyranyl ether (1), ${ }^{6}$ via its kinetic lithium enolate, with 3 -methylbutanal to give $3 \beta, 23$-dihy-droxy-21-norcholest-5-en-20-one 3-tetrahydropyranyl ether (23 -isomeric mixture) (2). The NMR spectrum indicated the completion of the side chain with a doublet at $\delta 0.93$ for the 26,27 -dimethyl group. The two 23 epimers could be separated by preparative TLC and were then analyzed according to the method of Horeau and Kagan. ${ }^{7}$ The more polar compound 2a, $\mathrm{mp} 134-136^{\circ} \mathrm{C}$, had the $23 R$ configuration, while the less polar
material was the $23 S$ epimer $2 \mathrm{~b}, \mathrm{mp} 151-153^{\circ} \mathrm{C}$. Dehydration of the ketol 2 (23 -isomeric mixture) was carried out with p toluenesulfonic acid in boiling benzene. In spite of the short reaction time (10 min), there was a substantial hydrolysis of the 3 -tetrahydropyranyl (3-THP) ether ($70 \% \mathbf{3 a}$ and $10 \% \mathbf{3 b}$, both $\mathrm{UV}_{\max } 228 \mathrm{~nm}(\epsilon 12000)$). This high ex-inction (in the UV) together with the coupling constant of 16 Hz for $22-\mathrm{H}$ and $23-\mathrm{H}$ (in the NMR) ascertain the E geometry for the 22(23) double bond. In preparative runs the isolated crude product was routinely subjected to a treatment with dihydropyran and a catalytic amount of p-toluenesulfonic acid in benzene in order to obtain $\mathbf{3 a}$ as a uniform product. The enone 3 a was then reduced $\left(\mathrm{H}_{2} / \mathrm{PtO}_{2}\right.$ or $\left.\mathrm{Li} / \mathrm{NH}_{3}\right)$ to give in good yield the known saturated ketone 7a. ${ }^{3,4}$ Acid hydrolysis of the tetrahydropyranyl ether gave 3β-hydroxy-21-norcholest-5-en- 20 -one (7 b), ${ }^{8}$ identical in all respects with authentic material.

Another ${ }^{9}$ synthesis of the ketone 7 proceeds by reacting 3 3,21 -dihydroxypregn-5-en-20-one 3,21-ditetrahydropyranyl ether ($5 \mathbf{b}$) with isohexylmagnesium bromide, followed by acid hydrolysis to give cholest-5-ene-3 $3,20,21$-triol (20 -isomeric mixture) ($6 a$), which is very similar (NMR and IR) to the known $20 S$ isomer. ${ }^{10}$ The same product was also obtained from the Grignard reaction on 3 β,21-diacetcxypregn-5-en20 -one (5 c). A lead tetraacetate oxidation of the triol 6 a gave the desired norketone $\mathbf{7 b}$.

Scheme I

b, 23 S
$3 \mathrm{a}, \mathrm{R}=\mathrm{THP}$
b, $R=H$

4

$8 \mathrm{a}, \mathrm{R}=\mathrm{THP}$
b, $R=H$

5a, $\mathrm{R}=\mathrm{H}$
b, $\mathrm{R}=\mathrm{TH} \mathrm{P}$
c, $\mathrm{R}=\mathrm{Ac}$

6a, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{H}$
b, $\mathrm{R}_{1}=\mathrm{THP} ; \mathrm{R}_{2}=\mathrm{THP}$
c, $\mathrm{R}_{1}=\mathrm{THP} ; \mathrm{R}_{2}=\mathrm{H}$
d. $\mathrm{R}_{1}=\mathrm{Ac} ; \mathrm{R}_{2}=\mathrm{Ac}$

9a, $\mathrm{R}_{1}=\mathrm{THP} ; \mathrm{R}_{2}=\mathrm{OH}$
b, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OH}$
c, $\mathrm{R}_{1}=\mathrm{THP} ; \mathrm{R}_{2}=\mathrm{H}$
$10 \mathrm{a}, \mathrm{R}_{1}=$ THP; $\mathrm{R}_{2}=\mathrm{OH}$
b, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OH}$
c, $\mathrm{R}_{1}=\mathrm{THP}, \mathrm{R}_{2}=\mathrm{OH}$

Acetylation of 7 with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Pyr}$ under the usual conditions produced diacetate 8 .
NaBD_{4} Reduction of Peroxyferolide (1). Compound $1(90 \mathrm{mg})$ in 12 mL of EtOD was treated with 25 mg of NaBD_{4} for 30 min . After the usual workup including chromatography, the product was recrystallized several times from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CHCl}_{3}, \mathrm{mp} 165-166^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ showed loss of one proton between 2.3 and 2.8 ppm and the 3 -proton doublet at 1.28 of 6 changed to a 2 -proton broadened singlet at $\delta 1.26 ; \mathrm{MS}$ (CI, isobutane) $m / e 327\left(21 \%, \mathrm{MH}^{+}, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{D}_{2} \mathrm{O}_{6}\right.$ requires 326), 325 (0), 309 ($5, \mathrm{MH}-\mathrm{H}_{2} \mathrm{O}$), 267 ($100, \mathrm{MH}-\mathrm{AcOH}$), and 249 (25, MH - $\mathrm{H}_{2} \mathrm{O}-\mathrm{AcOH}$).
Acetylation of Dihydrodeoxyperoxyferolide (6). A $50-\mathrm{mg}$ sample of 6 was dissolved in 3 mL each of $\mathrm{Ac}_{2} \mathrm{O}$ and Pyr at room temperature. The next day ice was added and the mixture extracted with CHCl_{3}. The extract was washed with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaHCO}_{3}$, $\mathrm{H}_{2} \mathrm{O}$. The oily CHCl_{3} residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{EtOH}$ to give 35 mg of $8: \mathrm{mp} 121-22^{\circ} \mathrm{C} ;[\alpha]^{22} \mathrm{D}+35.7^{\circ}$ (c 0.42 , MeOH); IR $\left(\mathrm{CHCl}_{3}\right) 1775$ (lactone), 1730 and 1735 (acetate), and 1640 (olefin); MS (EI) no M ${ }^{+}$peak at $366, m / e 306(3 \%, \mathrm{M}-\mathrm{AcOH}$) and $246(2, \mathrm{M}$ -2 AcOH).
Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{7}$: C, 62.28; H, 7.15. Found: C, $62.04 ; \mathrm{H}$, 7.22.

Ozonolysis of 6 to 9. A stream of $3 \% \mathrm{O}_{3}$ in O_{2} was bubbled through 5 mL of AcOH containing 40 mg of $6 \mathrm{at} \sim 10^{\circ} \mathrm{C}$ for 5 min . The reaction mixture was diluted with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ and distilled. The distillate (15 mL) was passed into 15 mL of cold saturated aqueous dimedone. After storing overnight in the cold, the crystalline precipitate, as needles ($24 \mathrm{mg}, \mathrm{mp} 189-170^{\circ} \mathrm{C}$), was collected and found to give an undepressed mixture melting point with the dimedone derivative of formaldehyde.
The nonvolatile residue from the still was combined with material of a repeat ozonolysis and chromatographed on 5 g of silica gel with $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{CHCl}_{3}$ (1:4). The effluent material, TLC $R_{f} 0.43$ with $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{CHCl}_{3}$ (2:3), weighing 34 mg was crystallized from $\mathrm{Et}_{2} \mathrm{O}-$ EtOH to give 22 mg of 9 : mp $168-169^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-45.8$ (c $0.48, \mathrm{MeOH}$); $\mathrm{UV} \lambda_{\text {max }} 297 \mathrm{~nm}(\epsilon 42)$ and end absorption $\epsilon_{210} 230$; $\mathbb{R}\left(\mathrm{CHCl}_{3}\right) 3470$ $(\mathrm{OH}), 1775$ (lactone), 174) (acetate), and 1710 (ketone); and positive tests with periodic acid reagent and 2,4-dinitrophenylhydrazine.
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{7}$: C, $58.88 ; \mathrm{H}, 6.80$. Found: C, $58.87 ; \mathrm{H}$, 6.90 .

Reduction of Peroxyferolide (1) to 10. A $200-\mathrm{mg}$ sample of 1 in 25 mL of MeOH was stirred 1 h with 2 mL of 10% aqueous KI and then at $0^{\circ} \mathrm{C}$ treated with 0.1 mL of AcOH for 1 h . The residue after evaporation of solvent was taken up in 25 mL of CHCl_{3} and extracted successively with $5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$. The CHCl_{3} residue was purified by эreparative TLC on silica gel PF-254 with $\mathrm{EtOH}_{-} \mathrm{CHCl}_{3}(1: 19), R_{f} 0.74$ after triple development. The band was eluted with $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (1:1) and the extract residue crystallized from $i-\mathrm{Pr}_{2} \mathrm{O}-\mathrm{EtOH}$ to give 148 mg of deoxyperoxyferolide (10): mp $169-171{ }^{\circ} \mathrm{C} ;\left[\alpha{ }^{22} \mathrm{D}+17^{\circ}\right.$ (c $0.30, \mathrm{MeOH}$); IR $\left(\mathrm{CHCl}_{3}\right) 3600$ and 3500 $(\mathrm{OH}), 1770$ (lactone), 1750 (acetate), 1670 (conjugated olefin), 1645 cm^{-1} (olefin); MS (EI) m/e $322\left(33 \%, \mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}\right.$ requires 322), 304 ($14, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}$), $280\left(11, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}\right.$), 262 ($28, \mathrm{M}-\mathrm{AcOH}$), 244 ($22, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{AcOH}$), 127 (100) and 43 ($74, \mathrm{Ac}$), and Cl (isobutane) $m / \mathrm{e} 323\left(15, \mathrm{MH}^{+}\right), 305\left(100, \mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right)$ and $245\left(5, \mathrm{MH}-\mathrm{H}_{2} \mathrm{O}-\right.$ AcOH).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$: $\mathrm{C}, 63.34 ; \mathrm{H}, 6.88$. Found: $\mathrm{C}, 63.14 ; \mathrm{H}$, 6.81.

Acetylation of Deoxyperoxyferolide (10) to 11. A $100-\mathrm{mg}$ sample of 10 was dissolved in 0.1 mL of $\mathrm{Ac}_{2} \mathrm{O}$ and 0.1 mL of Pyr. After 6 h at room temperature, the reaction residue on reduced pressure evaporation was dissolved in 5 mL of CHCl_{3} and extracted successively with $0.1 \mathrm{M} \mathrm{HCl}, 5 \% \mathrm{NaHCO}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$. Recrystallization of the CHCl_{3} residue from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{EtOH}$ gave 88 mg of 11 : $\mathrm{mp} 112-115{ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}$ $+52^{\circ}$ (c 0.17, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 1780$ (lactone) and $1740 \mathrm{~cm}^{-1}$ (double intensity, acetate); MS (EI) m/e $364\left(2, \mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7}\right.$ re-
quires 364), 322 (3, M - $\mathrm{CH}_{2} \mathrm{CO}$), 304 ($30, \mathrm{M}-\mathrm{AcOH}$), 262 ($24, \mathrm{M}-$ $\left.\mathrm{AcOH}-\mathrm{CH}_{2} \mathrm{CO}\right), 244(36, \mathrm{M}-2 \mathrm{AcOH})$ and 43.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7}$: C, 62.62; H, 6.64. Found: C, $62.24 ; \mathrm{H}$, 6.81.

Photooxygenation of Lipiferolide (2) to 1.2 ($102 \mathrm{mg}, 0.33 \mathrm{mmol}$) and Methylene Blue (1.3 mg) were dissolved in 7 mL of absolute EtOH, placed in a U-shaped reaction tube fitted with a sintered glass frit at the bottom, and connected $\sigma 0$ an oxygen source in a closed system. Oxygen was circulated via the frit by a peristatic pump and measured manometrically. The reaction tube was placed into a $4-\mathrm{L}$ silver-lined Dewar flask and 10 cm from a Sylvania DWY 650 W quartz-halogen lamp. Cooling water passed into the Dewar was maintained at $16 \pm 1^{\circ} \mathrm{C}$. After $5 \mathrm{~h}, \mathrm{O}_{2}$ uptake ceased at 0.34 mmol and the crystalline precipitate (40 mg) of peroxyferolide (1) was collected. The filtrate was passed through a short silica gel (5 g) column to remove the dye, and the residue was combined with the crystals and recrystallized from $\mathrm{EtOH}-\mathrm{CHCl}_{3}$ to give 86 mg of 1 . The product showed the same IR, UV, NMR, mass spectra, melting point characteristic, $[\alpha]_{\mathrm{D}}$, and TLC mobility as peroxyferolide (1) from nature.

Acknowledgments. The authors thank the following for foliage collection in the stated areas; Drs. C. D. Hufford and N. J. Doorenbos (Miss.), Mr. R. L. Lazor (Fla.), Mr. T. M. ODell (Conn.), and Dr. J. W. Peacock (Ohio and Pa.). We thank Dr. R. L. Foltz for some of the mass spectra. This study was supported in part by a United States Department of Ag riculture sponsored program entitled "The Expanded Gypsy Moth Research and Development Program," under no. 12 -14-100-9955 (33) from the ARS and 23-584 from the Forest Service.

Registry No.-1 pyrazoline derivative, 63528-73-4.

References and Notes

(1) (a) College of Pharmacy, University of Mississippi. (b) American Cyanimid Co., Bound Brook, N.J.
(2) R. W. Doskotch, T. M. ODell, and P. A. Godwin, Environ. Entomol., submitted for publication.
(3) The antifeeding activity will be reported in a separate publication along with the other active constituents from this scurce.
(4) For a preliminary account of this work, see R. W. Doskotch, F. S. El-Feraly, E. H. Fairchild, and C.-T. Huang, J. Chem. Soc., Chem. Commun., 402 (1976).
(5) R. W. Doskotch, S. L. Keely, Jr., C. D. Hufford, and F. S. El-Feraly, Phytochemistry 14, 769 (1975).
(6) R. W. Doskotch and F. S. El-Feraly, J. Org. Chem., 35, 1928 (1970).
(7) T. A. Geissman, Phytochemistry, 9, 2377 (1970).
(8) M. H. Abraham A. G. Davies, D. R. Llewellyn, and E. M. Thain, Anal. Chim. Acta, 17, 499 '1957).
(9) (a) J. E. van Lier and L. L. Smith, J. Org. Chem., 36, 1007 (1971); (b) A. M. Feinberg, K. Nakanishi, J. Barciczewski. A. J. Rafalski, H. Augustyniak, and M. Wiewiorowski, J. Am. Chem. Soc., 96, 7797 (1974).
(10) C. O. Willits, C. Riciuti, H. B. Knight, and D. Swern, Anal. Chem., 24, 785 (1952).
(11) R. Scholner, J. Weiland, and M. Mühlstädt, Z. Chem., 3, 390 (1963).
(12) A. G. Davies, "Organic Peroxides'", Butterworths, London, 1961, p 184, and references therein.
(13) K. Tori, I. Horibe, Y. Tamura, and H. Tada, J. Chem. Soc., Chem. Commun., 620 (1973).
(14) R. W. Denny and A. Nickon, Org. React., 20, 133-336 (1973), contains an extensive review of photooxygenation of olefins.
(15) F. G. Fischer and H. Mägerlein, Justus Liebigs Ann. Chem., 636, 88 (1960). We thank Professor Leland L. Smith (University of Texas, Galveston) for bringing this reference to our attention.
(16) F. S. El-Feraly, Y.-M. Chan, E. H. Fairchild, and R. W. Doskotch, Tetrahedron Lett., 1973 (1977).
(17) G. O. Schenk, K. G. Kinkel, and H. J. Mertens., Justus Liebigs Ann. Chem., 584, 125 (1953).
(18) R. W. Doskotch and C. D. Hufford, J. Org. Chem., 35, 486 (1970).

With the allylic hydroperoxide function of peroxyferolide (1) characterized, formation of the anhydro-derivative 3 under acylating conditions is understood to arise by elimination of acetate from the transient acetyl peroxyferolide, since pyridine alone is inert. Similar facile eliminations have been reported for hydroperoxides α to a ketonic ${ }^{11}$ or aromatic group. ${ }^{12}$ The stability of methylperoxyferolide (5), in comparison, rests with the poor leaving property of methoxide vs. acetate.

Preparation of peroxyferolide (1) was accomplished in high yield by photooxygenation of lipiferolide (2) ${ }^{5}$ by visible light and Methylene Blue as sensitizer. This confirmed the stereochemical assignments for carbons 4 through 8, and requires that the hydroperoxy group be placed β at $\mathrm{C}-1$, since the solution conformation of lipiferolide as in 12 has been related chemically to epitulipinolide (13), ${ }^{5}$ which in turn has been related to costunolide (14) by circular dichroism. Costunolide from nuclear Overhauser effect analysis was shown to have the olefins crossed and the methyl groups up. ${ }^{13}$ The stereochemistry of singlet-oxygen addition has been established to proceed via a cis cyclic mechanism, with the oxygen approaching perpendicular to the olefinic plane. Thus, for peroxyferolide the oxygen introduction would be to the β position.

Prior to the isolation of peroxyferolide, two hydroperoxides were characterized from nature, $3 \alpha, 22 \alpha$-dihydroxy- 7α-hy-droperoxystigmast-5-ene from horse-chestnut (Aesculus hippocastanum), ${ }^{15}$ and peroxy-Y base, an elaborated tRNA purine from several plant and animal sources. ${ }^{9 b}$ A third, verlotorin, from Artemisia verlotorum, was reported as 4, but recent work requires it be revised to an allylic hydroperoxide. ${ }^{16}$ Peroxyferolide (1) is therefore the first recognized sesquiterpene hydroperoxide from nature. The genesis of these products is unknown, but an artifactual origin seems unlikely as plant material from different parts of the country varied in their content of peroxyferolide (some were totally devoid), yet processing was the same. Lipiferolide (2) was found in all samples. Chlorophyll-mediated oxygenation appears probable, since peroxyferolide (1) was obtained from leaves in which lipiferolide (2) is the most abundant germacranolide, and chlorophyll is known to be an effective sensitizer. ${ }^{14} \mathrm{~A}$ spin-ach-leaf preparation has already been reported to convert α-terpinene to ascaridole, an endoperoxide. ${ }^{17}$

Experimental Section

Melting points were taken on a Thomas-Hoover apparatus and are uncorrected. The UV spectra were determined in MeOH on a Cary Model 15 instrument, and IR spectra were obtained on a Beckman 4230 or Perkin Elmer 257 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian A-60A or Bruker HX-90E instrument; the latter equipped for Fourier transform analysis was also used for ${ }^{13} \mathrm{C}$ NMR determinations. Mass spectra were measured on AEI MS-902 and MS-9, Finnigan 1015, or DuPont 21-491 spectrometers. CD spectra were taken in MeOH on a Durrum-Jasco ORD/UV-5 spectropolarimeter with Sproul Scientific SS-20 modification, and specific rotations on a Perkin-Elmer 241 photoelectric polarimeter. Elemental analyses were by the Scandinavian Microanalytical Laboratory, Herley, Denmark. Silica gel G (E. Merck) was used for TLC with $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{Et}_{2} \mathrm{O}$ ($1: 4$) as a spray reagent followed by heating, or by 0.3% aqueous KMnO_{4}.
Isolation of Peroxyferolide (1). The dried powdered leaves of Liriodendron tulipifera L. were percolated with EtOH. The residue remaining after removal of the solvent at reduced pressure was partitioned and the 10% aqueous MeOH fraction was chromatographed on silicic acid as already described. ${ }^{5}$ The column fraction (285 mg) preceding lipiferolide (2) was rechromatographed on a column of 17 g of silica gel G (E . Merck) prepared from TLC grade adsorbent by powdering the dried cake as prepared for plate pouring and sieved through a 50 mesh screen. Elution with $8 \% \mathrm{EtOH}$ in CHCl_{3} and collection of $5-\mathrm{mL}$ fractions gave in fractions $16-23$ one-spot material, $R_{f} 0.17$ on TLC with the same system as used in the column. The residue (101 mg) was crystallized from $\mathrm{EtOH}-\mathrm{CHCl}_{3}$ to give colorless needles ($45 \mathrm{mg}, 0.02 \%$ from dried leaves) of peroxyferolide (1): mp 190 ${ }^{\circ} \mathrm{C}$ softens and then decomposes gradually on further heating up to
$300^{\circ} \mathrm{C}$ without melting; $[\alpha]^{22} \mathrm{D}+30^{\circ}(\mathrm{c} 0.30, \mathrm{MeOH}) ; \mathrm{CD}$ curve $[\theta]_{257}$ -2000 and $[\theta]_{214}-31300$; UV end absorption ($\epsilon_{215} 9000$); IR (CHCl_{3}) bands at 3515 and $3370(\mathrm{OH}), 1770$ (lactone $\mathrm{C}=0$), 1740 (acetate $\mathrm{C}=0), 1665$ and $1640(\mathrm{C}=\mathrm{C})$, and $1210-1250(\mathrm{C}-0) \mathrm{cm}^{-1}$; chemical ionization mass spectrum (isobutane) m/e $339\left(32 \% . \mathrm{MH}^{+}, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{7}\right.$ requires 338), 323 ($9, \mathrm{MH}-\mathrm{O}$), 321 ($24, \mathrm{MH}-\mathrm{H}_{2} \mathrm{O}$), 305 ($6, \mathrm{MH}-$ $\mathrm{H}_{2} \mathrm{O}_{2}$), 279 ($43, \mathrm{MH}-\mathrm{AcOH}$), 263 ($72, \mathrm{MH}-\mathrm{O}-\mathrm{AcOH}$), 261 (100, $\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{AcOH}$), and 245 ($72, \mathrm{MH}-\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{AcOH}$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{7}: \mathrm{C}, 60.34 ; \mathrm{H}, 6.55$. Found: $\mathrm{C}, 60.26 ; \mathrm{H}$, 6.60.

Pyrazoline of Peroxyferolide (1). A $40-\mathrm{mg}$ sample of 1 in 5 mL of CHCl_{3} was treated overnight with 24 mL of $\mathrm{Et}_{2} \mathrm{O}$ containing ~ 0.1 g of diazomethane at $5^{\circ} \mathrm{C}$. Removal of the solvent and crystallization of the residue several times from $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{Et}_{2} \mathrm{O}$ gave colorless cubes, mp $177-178{ }^{\circ} \mathrm{C}$ (d, with effervescence), which decomposed rapidly on handling and storage. The NMR spectrum (Pyr- $d_{5}, 60 \mathrm{MHz}$) contained changes expected for a pyrazoline derivative, e.g., loss of the H-13 doublets, simplification of the H-7 pattern to a pair of doublets ($3.85 \mathrm{ppm}, J=2,10 \mathrm{~Hz}$), and a large downfield shift of the H-6 triplet from 4.51 to $5.45 \mathrm{ppm}(J=10 \mathrm{~Hz})$, which. requires the diazene group to be placed $\alpha{ }^{18}$

Attempted Acetylation of Peroxyferolide (1). (A) $\mathrm{By} \mathrm{Ac}_{2} \mathrm{O} /$ Pyr. A $50-\mathrm{mg}$ sample of 1 was dissolved in 20 mL of $\mathrm{Ac}_{2} \mathrm{O}$ and 1 mL of Pyr at room temperature. The following day ice and 10 mL of 1% NaHCO_{3} were added. The mixture was extracted with CHCl_{3} and the extract washed with dilute $\mathrm{HCl}, \mathrm{NaHCO}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$. $\mathrm{The}^{2} \mathrm{CHCl}_{3}$ residue was crystallized from $\mathrm{CHCl}_{3}-i-\mathrm{Pr}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}-\mathrm{EtOH}$ to yield fine needles of anhydroperoxyferolide (3): $\mathrm{mp} 157-158^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.58$ on TLC with $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{CHCl}_{3}(1: 3)$; $[\alpha]^{22} \mathrm{D}-24^{\circ}$ (c $0.50, \mathrm{MeOH}$); $\mathrm{UV} \lambda_{\text {max }}$ $323 \mathrm{~nm}(\epsilon 30)$ and 212 (17000); IR (CHCl_{3}) no OH bands but peaks at 1770 (lactone), 1740 (acetate), 1685 and $1670 \mathrm{~cm}^{-1}$ (unsaturated $\mathrm{C}=\mathrm{O}$); MS (EI) m/e $320\left(0.2 \%, \mathrm{M}^{+}, \mathrm{C}_{1} 7 \mathrm{H}_{20} \mathrm{O}_{6}\right.$ requires 320), 278 (0.4 , $\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}$), 277 ($0.9, \mathrm{M}-\mathrm{Ac}$), 260 ($0.9, \mathrm{M}-\mathrm{AcOH}$), and 43 (100 , Ac).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6}$: C, 63.74; $\mathrm{H}, 6.29$. Found: C, 63.74; H , 6.42.
(B) By Acetylimidazole. Peroxyferolide ($1,10 \mathrm{mg}$) and 5 mg of acetylimidazole in 2 mL of CHCl_{3} were refluxed for 2 h and then diluted with 18 mL of CHCl_{3} and washed with $\mathrm{H}_{2} \mathrm{O}$. Cnromatography of the reaction residue on 5 g of silica gel with $5 \% \mathrm{EtOH}$ in CHCl_{3} removed the imidazole, and the 6 mg of effluent residue was crystallized from $i-\mathrm{Pr}_{2} \mathrm{O}-\mathrm{EtOH}$ to give 3 identical with the product obtained with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Pyr}$.

Methylation of Peroxyferolide (1) to 5. A $50-\mathrm{mg}$ sample of 1 in CHCl_{3} was stirred with 270 mg of MeI and 250 mg of $\mathrm{Ag}_{2} \mathrm{O}$ for 16 h at room temperature. The mixture was filtered and the colorless filtrate on evaporation left a residue that was crystallized from EtOH$\mathrm{Et}_{2} \mathrm{O}$ to give 5 as colorless needles: $\mathrm{mp} 175-176{ }^{\circ} \mathrm{C} ; R_{f} 0.61$ on TLC with $8 \% \mathrm{EtOH}^{2} \mathrm{CHCl}_{3} ;[\alpha]^{22} \mathrm{D}+30.2^{\circ}$ (c $0.43, \mathrm{MeOH}$); IR no OH bands, 1778 (lactone), 1742 (acetate), 1667 and $1643 \mathrm{~cm}^{-1}$ (olefins); chemical ionization MS $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{e} 370\left(100 \%, \mathrm{MNH}_{4}{ }^{+}, \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{7}\right.$ requires 352), $353(2, \mathrm{MH}), 340\left(10, \mathrm{MNH}_{4}-\mathrm{CH}_{2} \mathrm{O}\right), 338\left(7, \mathrm{MNH}_{4}\right.$ - MeOH), and $310\left(3, \mathrm{MNH}_{4}-\mathrm{AcOH}\right)$, and with isobutane $m / e 353$ ($15, \mathrm{MH}^{+}$), 305 ($4, \mathrm{MH}-\mathrm{MeOOH}$), 293 ($67, \mathrm{MH}-\mathrm{AcOH}$), 262 (64, $\mathrm{MH}-\mathrm{AcOH}-\mathrm{MeO}$), and 245 ($100, \mathrm{MH}-\mathrm{AcOH}-\mathrm{MeOOH}$), but electron impact MS gave no useful spectrum.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{7}: \mathrm{C}, 61.35 ; \mathrm{H}, 6.86$. Found: $\mathrm{C}, 60.95 ; \mathrm{H}$, 6.89.
NaBH_{4} Reduction of Peroxyferolide (1). A $350-\mathrm{mg}$ sample of 1 in 45 mL of absolute EtOH was treated with 80 mg of NaBH_{4} for 20 min . The mixture was neutralized with dilute HOAc and evaporated to dryness, and the residue was mixed with water and extracted with CHCl_{3}. The chloroform solubles were chromatographed on 14 g of silica gel with $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{CHCl}_{3}(1: 3)$ and the effluent residue (200 mg) was crystallized to give 6 from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CHCl}_{3}, \mathrm{mp} 165-156{ }^{\circ} \mathrm{C}$, or from $i-\mathrm{Pr}_{2} \mathrm{O}-\mathrm{MeOH}, \mathrm{mp} 132-133{ }^{\circ} \mathrm{C}: R_{f} 0.34$ with $10 \% \mathrm{EtOH}$ in CHCl_{3}; $[\alpha]^{22} \mathrm{D}-21.6^{\circ}$ (c $0.51, \mathrm{MeOH}$); IR (KBr) $3450(\mathrm{OH}), 1765$ (lactone), 1735 (acetate), and $1635 \mathrm{~cm}^{-1}$ (olefin); MS (CI, isobusane) m/e 325 ($8 \%, \mathrm{MH}, \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{6}$ requires 324), 307 ($3, \mathrm{MH}-\mathrm{H}_{2} \mathrm{O}$), $265(100, \mathrm{MH}$ - AcOH), and $247\left(24, \mathrm{MH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{AcOH}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{6}$: C, $62.95 ; \mathrm{H}, 7.46$. Found: C, $62.81 ; \mathrm{H}$, 7.49 .

Elution of the column with $\mathrm{Me}_{2} \mathrm{CO}_{-} \mathrm{CHCl}_{3}(2: 3)$ gave 28 mg of a minor polar compound 7 that was crystallized from $i-\mathrm{Pr}_{2} \mathrm{O}-\mathrm{EtOH}$: $\mathrm{mp} 101-102{ }^{\circ} \mathrm{C} ; R_{f} 0.24$ on TLC with $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{CHCl}_{3}(2: 3) ;[\alpha]^{25} \mathrm{D}$ -30.9° (c 0.55 , MeOH); IR (KBr) $3200-3350(\mathrm{OH}), 1745$ (lactone), and 1625 (olefin); MS (CI, isobutane) $283\left(33 \%, \mathrm{MH}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5}\right.$ requires 282), 265 ($100, \mathrm{MH}-\mathrm{H}_{2} \mathrm{O}$), and 247 ($17, \mathrm{MH}-2 \mathrm{H}_{2} \mathrm{O}$).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \cdot 2 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.20 ; \mathrm{H}, 7.99$. Found: $\mathrm{C}, 60.97$; H, 8.05.
and original acetate, as the peak patterns associated with protons of these groups remained unaffected. There was, however, loss of the one-proton double doublet at 4.37 ppm in the transformation, and now the $\mathrm{H}-14$ peaks became sharpened singlets. The UV and IR spectra, with intense ab-

sorption in the latter at $1670 \mathrm{~cm}^{-1}$, suggested an α, β-unsaturated ketone, possibly arising from a 1 -vinyl-1,2-glycol unit by elimination of acetate under basic conditions to form a pinacol rearranged product. The same reasoning was invoked for the conversion of verlotorin (4) to anhydroverlotorin. ${ }^{7}$ Anhydroperoxyferolide was thus formulated as 3 with a tenmembered germacrane ring.

All efforts at gaining chemical support for the presence of a 1,2-glycol system were unsuccessful. These included acetonide (via acetone or 2,2-dimethoxypropane) and phenylborate ester preparation. However, treatment of peroxyferolide (1) with methyl iodide and silver oxide produced a monomethoxy derivative still containing seven oxygens, but no longer showing hydroxyl absorption in the IR spectrum. It was recovered unchanged after an acetylation attempt. Clearly the seventh oxygen was not hydroxyl. The methoxy derivative was formulated from evidence to follow as the methyl peroxide 5.

On reduction of peroxyferolide (1) with sodium borohydride the major product contained one less oxygen and two additional hydrogens. The ${ }^{1} \mathrm{H}$ NMR spectrum showed no peaks for the $\mathrm{H}-13$ protons, but instead a three-proton doublet at 1.32 ppm and an upfield shift for $\mathrm{H}-7$, indicating the expected

1; $R=O H$
5; R $=$ OMe
10; $R=H$
11: $R=A C$

6; $\begin{aligned} \mathrm{R}_{2}^{1} & =\mathrm{Ac} . \\ \mathrm{R}^{2} & =\mathrm{H}\end{aligned}$
$R^{2}=H$
7; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
8; $R^{1}=R^{2}=A C$

12; $R=O A C$, epoxide at 4.5
13; $R=O A C$
14: $\mathrm{R}=\mathrm{H}$

Table II. ${ }^{13}$ C NMR Spectra of Peroxyferolide and Related Compounds ${ }^{a}$

Carbon atom	$1^{\text {b }}$	$2^{\text {b }}$	10^{e}	$11{ }^{e}$
1	90.9 d	129.1 d	78.2 d	78.0 d
2	$34.1 \mathrm{t}^{\text {c }}$	$44.0 t^{\text {c }}$	$33.3 \mathrm{t}^{\text {c }}$	$33.5 \mathrm{t}^{\text {c }}$
3	$32.1 \mathrm{t}^{\text {c }}$	$36.4 \mathrm{t}^{\text {c }}$	$30.3 \mathrm{t}^{\mathrm{c}}$	$31.2 \mathrm{t}^{\text {c }}$
4	60.7 s	61.8 s	60.4 s	60.0 s
5	64.4 d	66.8 d	63.8 d	63.9 d
6	76.4 d	76.4 d	75.6 d	75.4 d
7	46.7 d	49.4 d	45.8 d	45.8 d
8	67.0 d	74.5 d	66.2 d	66.4 d
9	$26.6 \mathrm{t}^{\text {c }}$	$24.5 \mathrm{t}^{\text {c }}$	$29.8 \mathrm{t}^{\text {c }}$	$27.8 \mathrm{t}^{\text {c }}$
10	142.9 s	132.0 s	146.2 s	141.3 s
11	136.1 s	137.9 s	134.5 s	134.3 s
12	169.3 s	169.1 s	168.7 s	168.3 s
13	120.4 t	121.9 t	$120.8 \mathrm{t}^{\text {d }}$	$119.4 \mathrm{t}^{\text {d }}$
14	120.1 t	19.7 q	$117.0 \mathrm{t}^{\text {d }}$	$120.9 \mathrm{t}^{\text {d }}$
15	18.5 q	17.2 q	18.3 q	18.3 q
$\mathrm{CH}_{3} \mathrm{CO}$	20.5 q	20.6 q	20.6 q	21.0 q, 20.6 q
$\mathrm{CH}_{3} \mathrm{CO}$	170.2 s	169.9 s	169.9 s	169.8 s, 169.2 s

${ }^{a}$ Assignments of multiplets were made by single frequency off-resonance spin decoupling. Peak assignments were based on comparison with related compounds in our possession and by single-frequency irradiation of known proton resonances. ${ }^{b}$ In Pyr- $d_{5}{ }^{c, d}$ Not designated, may be interchanged. ${ }^{e}$ In CDCl_{3}.
reduction of the lactonic α-methylene. The remainder of the spectrum, except for the H-7 absorption as stated, stayed essentially unchanged; thus, the loss of oxygen was from a position little affecting the proton spectrum. When sodium borodeuteride was used, only two deuteriums were incorporated, at positions 11 and 13 , confirming that additional carbons were not reduced and that the hydroxyl group was not formed from an unsaturated function. The evidence available refuted the presence of a glycol in peroxyferolide (1) and required consideration of a hydroperoxide. The borohydride product was formulated as 6 (stereochemical assignment at $\mathrm{C}-1$ open) with the $\mathrm{C}-13$ methyl placed α on the basis of similar reductions on related compounds. ${ }^{6}$ A minor by-product of the borohydride reduction was assigned structure 7 on spectral evidence and by conversion to an acetate derivative 8 identical to the acetate prepared from 6. With dihydrodeoxyperoxyferolide (6) it was possible to provide chemical proof for the exocyclic double bond to C-14. as ozonolysis of 6 gave formaldehyde (identified as the dimedone derivative) and the α hydroxy ketone 9.

Support for a hydroperoxide group in peroxyferolide (1) was obtained from the ${ }^{13} \mathrm{C}$ NMR spectrum (Table II), since three peaks were found in the methylene region at 34.1, 32.1, and 26.6 ppm , each appearing as triplets in off-resonance and undecoupled spectra. Only seven oxygenated carbons could be assigned, six of which corresponded to the partial structure from C-4 to C-8 previously established by the ${ }^{1} \mathrm{H}$ NMR experiments. The seventh oxygen-bearing carbon, uniquely located at 90.9 ppm , had to contain the two remaining oxygens. Chemical tests on peroxyferolide (1) for a hydroperoxide were positive; e.g., a deep blood-red color rapidly formed with ferrous thiocyanate, ${ }^{8}$ and iodine was readily liberated from ethanolic potassium iodide. Furthermore, the characteristic loss of 16 mass units for hydroperoxides was observed in the mass spectrum, ${ }^{9}$ and polarog:aphic analysis in nonaqueous medium for peroxides and hydroperoxides ${ }^{10}$ gave a half-wave potential of -0.66 V , a value within the range of -0.61 to -0.96 V reported for hydroperoxides. On mild reduction of peroxyferolide (1) with acidic potassium iodide, deoxyperoxyferolide (10) was formed, which was easily acetylated to 11 .

Table I. ${ }^{1}$ H NMR Spectra of Peroxyferolide and Derivatives ${ }^{a}$

$\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$	Compd	H-1	H-5	H-6	H-7	H-8	H-13	H-14	H-15	Miscellaneous
61228-73-7	$1^{\text {b }}$	$\begin{aligned} & 4.37 \mathrm{dd} \\ & (9.9,4.4) \end{aligned}$	$\begin{aligned} & 2.98 \mathrm{~d} \\ & (9.4) \end{aligned}$	$\begin{aligned} & 4.23 \mathrm{t} \\ & (9.6,9.4) \end{aligned}$	$\begin{aligned} & 3.93 \mathrm{~m} \\ & (9.6,3.5) \\ & 3.1,3.1) \end{aligned}$	$\begin{aligned} & 5.95 \mathrm{dq} \\ & (11.4,6.4, \\ & 3.1) \end{aligned}$	$\begin{aligned} & 6.13 \mathrm{~d} \\ & (3.5) \\ & 5.53 \mathrm{~d} \\ & (3.1) \end{aligned}$	5.45 d (2.4) 5.33 br d (1.7)	1.53 s	$\begin{aligned} & 10.64 \mathrm{br} \mathrm{~s}^{c}, \\ & 2.84 \mathrm{~m}(\mathrm{H}-9 a), \\ & 2.65 \mathrm{~m}(\mathrm{H}-9 e), \\ & 2.03 \mathrm{~s} \mathrm{(Ac)} \end{aligned}$
41059-80-7	$2^{\text {b }}$	5.28 br d (11)	$\begin{aligned} & 2.86 \mathrm{~d} \\ & (8.5) \end{aligned}$	$\begin{aligned} & 4.24 \mathrm{dd} \\ & (8.5,7.8) \end{aligned}$	$\begin{aligned} & 3.35 \mathrm{~m} \\ & (7.8,3.4, \\ & 3.1,0.9) \end{aligned}$	5.49 m	$\begin{aligned} & 5.96 \mathrm{~d} \\ & (3.4) \\ & 5.54 \mathrm{~d} \\ & (3.1) \end{aligned}$	$\begin{aligned} & 1.74 \mathrm{brs} \\ & (\sim 1) \end{aligned}$	1.29 s	1.99 s (Ac)
61228-74-8	$3{ }^{\text {d }}$		$\begin{aligned} & 2.63 \mathrm{~d} \\ & (9.2) \end{aligned}$	$\begin{aligned} & 4.18 \mathrm{t} \\ & (9.0) \end{aligned}$	$\sim 3.2 \mathrm{~m}$	$\begin{aligned} & 5.53 \mathrm{dq} \\ & (7.8,3.7 \\ & 1.5) \end{aligned}$	$\begin{aligned} & 6.33 \mathrm{~d} \\ & (3.5) \\ & 5.65 \mathrm{~d} \\ & (3.1) \end{aligned}$	$\begin{aligned} & 6.2 \mathrm{~s} \\ & \left(w_{1 / 2}=1.2\right) \\ & 5.77 \mathrm{br} \mathrm{~s} \\ & \left(w_{1 / 2}=2.2\right) \end{aligned}$	1.52 s	2.07 s (Ac)
63511-98-8	5^{d}	$\begin{aligned} & 4.47 \mathrm{dd} \\ & (9.2,4.0) \end{aligned}$	$\begin{aligned} & 2.90 \mathrm{~d} \\ & (8.9) \end{aligned}$	$\begin{aligned} & 4.21 \mathrm{t} \\ & (8.9) \end{aligned}$	~ 3.7 m	$\begin{aligned} & 5.97 \mathrm{dq} \\ & (10.6,5.4, \\ & 2.5) \end{aligned}$	$\begin{aligned} & 6.30 \mathrm{~d} \\ & (3.3) \\ & 5.57 \mathrm{~d} \\ & (2.9) \end{aligned}$	$\begin{aligned} & 5.48 \mathrm{br} \mathrm{~d} \\ & (2.2) \\ & 5.17 \mathrm{br} \mathrm{~d} \\ & (\sim 1.5) \end{aligned}$	1.54 s	$\begin{aligned} & 3.80 \mathrm{~s}(\mathrm{MeO}), \\ & 2.06 \mathrm{~s}(\mathrm{Ac}) \end{aligned}$
61228-75-9	$6^{\text {d }}$	$\begin{aligned} & 4.20 \mathrm{dd} \\ & (9.4,4.6) \end{aligned}$	$\begin{aligned} & 2.79 \mathrm{~d} \\ & (9.2) \end{aligned}$	$\begin{aligned} & 4.10 \mathrm{t} \\ & (9.3) \end{aligned}$	~ 3.0 m	$\begin{aligned} & 5.63 \mathrm{dq} \\ & (10.8,5.3, \\ & 2.2) \end{aligned}$	$\begin{aligned} & 1.28 \mathrm{~d} \\ & (6.2) \end{aligned}$	5.41 d (2.6) 4.93 br d (1.8)	1.54 s	$\begin{aligned} & 2.13 \mathrm{~s}(\mathrm{Ac}) \\ & 1.87 \mathrm{br} \mathrm{~s}(\mathrm{OH})^{\mathrm{c}} \end{aligned}$
63511-99-9	$7{ }^{\text {e }}$	$4.0-4.6 \mathrm{~m}$	$\begin{aligned} & 2.82 \mathrm{~d} \\ & (9.0) \end{aligned}$	$\begin{aligned} & 4.15 \mathrm{t} \\ & 9.2) \end{aligned}$	~ 2.8	$4.0-4.6 \mathrm{~m}$	$\begin{aligned} & 1.24 \mathrm{~d} \\ & (6.2) \end{aligned}$	$\begin{aligned} & 5.30 \mathrm{~d} \\ & (2.5) \\ & 4.92 \mathrm{br} \mathrm{q} \\ & (\sim 1) \end{aligned}$	1.52 s	
61228-76-0	$8{ }^{\text {d }}$	$\begin{aligned} & 5.39 \mathrm{dd} \\ & (9.0,4.8) \end{aligned}$	$\begin{aligned} & 2.83 \mathrm{~d} \\ & (9.2) \end{aligned}$	$\begin{aligned} & 4.10 \mathrm{t} \\ & (9.2) \end{aligned}$		$\begin{aligned} & 5.58 \mathrm{dq} \\ & (10.8,5.0, \\ & 2.0) \end{aligned}$	$\begin{aligned} & 1.28 \mathrm{~d} \\ & (6.2) \end{aligned}$	5.49 d (2.4) 5.02 br s	1.55 s	$\begin{aligned} & 2.14(\mathrm{Ac}) \\ & 2.01(\mathrm{Ac}) \end{aligned}$
63512-00-5	9^{d}	$\begin{aligned} & 4.17 \mathrm{dd} \\ & (6.2,4.8) \end{aligned}$	$\begin{aligned} & 2.65 \mathrm{~d} \\ & (9.0) \end{aligned}$	$\begin{aligned} & 4.10 \mathrm{t} \\ & (9.3) \end{aligned}$		$\begin{aligned} & 5.50 \mathrm{~m} \\ & (8.8,7.0, \\ & 2.8) \end{aligned}$	$\begin{aligned} & 1.29 \mathrm{~d} \\ & (6.3) \end{aligned}$	absent	1.63 s	2.13 (Ac)
63512-01-6	$10^{\text {b }}$	$\sim 4.2 \mathrm{~m}$	$\begin{aligned} & 2.97 \mathrm{~d} \\ & (9.1) \end{aligned}$	$\begin{aligned} & 4.23 \mathrm{t} \\ & (9.4) \end{aligned}$	$\begin{aligned} & 3.90 \mathrm{~m} \\ & (9.4,3.5, \\ & 3.2,3.0) \end{aligned}$	$\begin{aligned} & 5.92 \mathrm{dq} \\ & (11.4,6.4 \\ & 3.0) \end{aligned}$	$\begin{aligned} & 6.13 \mathrm{~d} \\ & (3.5) \\ & 5.52 \mathrm{~d} \\ & (3.2) \end{aligned}$	$5.35 \mathrm{br} \mathrm{~d}$ (2.4) 5.10 br d (2)	1.54 s	$\begin{aligned} & 2.8 \mathrm{~m}(\mathrm{H}-9 a) \\ & 2.03 \mathrm{~s}(\mathrm{Ac}) \end{aligned}$
63512-02-7	11^{\prime}	$\begin{aligned} & 5.42 \mathrm{dd}^{8} \\ & (9.5,5.1) \end{aligned}$	$\begin{aligned} & 2.93 \mathrm{~d} \\ & (9.5) \end{aligned}$	$\begin{aligned} & 4.21 \mathrm{t} \\ & (9.5) \end{aligned}$	3.67 m (9.5, 3.5, $3.2, \sim 3$)	$\begin{aligned} & 5.86 \mathrm{dq} \\ & (11.4,5.1, \\ & 2.5) \end{aligned}$	$\begin{aligned} & 6.29 \mathrm{~d} \\ & (3.5) \\ & 5.54 \mathrm{~d} \\ & (3.2) \end{aligned}$	$\begin{aligned} & 5.51 \mathrm{br} \mathrm{~d} \\ & (2.5) \\ & 5.09 \mathrm{brd} \\ & (\sim 1) \end{aligned}$	1.56 s	$\begin{aligned} & 2.06 \text { and } 2.03(2 \\ & \mathrm{Ac}) \end{aligned}$

${ }^{a}$ Spectra were determined in stated solvent at 60 or 90 MHz with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Chemical shifts (δ) are in parts per million, coupling constants (J) in Hz are given in parentheses, and multiplicities are designated by the following symbols: s, singlet; d, doublet; m, multiplet with center given; q, quartet; t, triplet; and br, broadened signal. ${ }^{b}$ In acetone- d_{6} at $90 \mathrm{MHz} .{ }^{c} \mathrm{D}_{2} \mathrm{O}$ exchangeable.
${ }^{d}$ In CDCl_{3} at $60 \mathrm{MHz} .{ }^{e}$ In acetone- d_{6} at $60 \mathrm{MHz} .{ }^{f}$ In CDCl_{3} at $90 \mathrm{MHz} .{ }^{g}$ Partially obscured by other peaks.
the H_{e} pattern affected, but the 2.0-2.4-ppm region containing H_{h} was changed, as was the conversion of the one-proton split singlets at 5.45 and 5.33 ppm to sharp singlets. The alterations are consistent with the presence of an olefinic methylene adjacent to the aliphatic protons, H_{g} and H_{h}.

The partial structure of peroxyferolide (1) derived from NMR studies was in agreement with the arrangement of substituents observed for lipiferolide (2) from C-5 through $\mathrm{C}-8$. The presence of a three-proton singlet at 1.53 , although $0.24-\mathrm{ppm}$ downfield from a similar peak of lipiferolide, was taken as an epoxide methyl with the difference resulting from the nature of the olefinic group. Thus, placement of an oxirane ring between $\mathrm{C}-4$ and $\mathrm{C}-5$, and assuming a normal isoprenoid skeleton, requires a methyl at C-4. This extends the similarity in structure to lipiferolide (2) to C-4 with the one-proton doublet at 2.98 ppm assigned $\mathrm{H}-5$. The molecular formula of peroxyferolide (1) requires seven double-bond equivalents of which six are met by substituents of partial structure from C-4 through C-10. The remaining unsaturation equivalent must
be from a ring, either carbocyclic or ether forming, since two oxygens still need to be accommodated, neither of which are associated with IR absorption in the carbonyl region.

The 'H NMR analysis also provided stereochemical information. The large coupling constant of 9.6 Hz between $\mathrm{H}-6$ and $\mathrm{H}-7$ supports a trans-fused lactone, and, since all wellcharacterized sesquiterpene lactones have β side chains at C-7, the absolute stereochemistry at C-6 and C-7 is as drawn in 1. Similarly, with $J_{7,8}=3.1 \mathrm{~Hz}$, a pseudo-equatorial H_{8} is required that is further supported by the more downfield location of its pattern. ${ }^{6}$

Since hydroxyl absorption was observed for peroxyferolide (1) in the IR and ${ }^{1} \mathrm{H}$ NMR spectra, formation of an acetate with acetic anhydride and pyridine, and with acetylimidazole, was attempted. No acetylated product was formed, but, instead, an unstable derivative, anhydroperoxyferolide (3), was produced whose composition, $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6}$, corresponded to the loss of the elements of water. The ${ }^{1} \mathrm{H}$ NMR spectrum showed that the product retained the epoxide, unsaturated lactone,
(18) A. I. Vogel, J. Chem. Soc.. 624 (1948).
(19) J. Mold, J. Ladino, and E. Schantz, J. Am. Chem. Soc., 75, 6321 (1953).
(20) (a) E. Schutte, Z. Physiol. Chem., 279, 52 (1943); (b) M. Mourgue. Bull. Soc. Chim. Fr., 181 (1948).
(21) F. H. Holm. Arch. Pharm.. 242, 612 (1904).
(22) H. C. Brown, "Organic Syntheses via Boranes", Wiley, New York, N.Y., 1975, pp 191-261.
(23) L. F. Fieser and M. Fieser, 'Reagents for Organic Synthesis'', Vol. 1, Wiley, New York, N.Y., 1968, p 584.
(24) Methods A and B were developed using the model compounds $N, N^{\prime}-d i-$ methylguanidine hydrobromide ${ }^{19}$ and 2-aminoimidazoline hydrobromide. ${ }^{33}$
(25) Equipment and materials for derivatization and extraction were prechilled in the cold room $\left(0-4^{\circ} \mathrm{C}\right)$. An ice bath was used for the reaction flask during
acylation. Work was continued in the cold room until $\mathrm{K}_{2} \mathrm{CO}_{3}$ had been added to the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract.
(26) Attempts to remove carbobenzoxy groups from 2-aminoimidazoline with HBr or HCl in acetic acid led to destruction of the guanidine moiety
(27) J. A. Sprung, U.S. Patent 2704710 ; Chem. Abstr., 49, 8019e (1955).
(28) N. J. Leonard and R. C. Sentz, J. Am. Chem. Soc., 74, 1704 (1952).
(29) All aliphatic fragments were observed with 26 and 27; compound 25 showed very little alkyl fragmentation.
(30) J. Mitchell and E. Reid, J. Am. Chem. Soc., 53, 1879 (1931).
(31) (a) J. Rodricks and H. Rapoport, J. Org. Chem., 36, 46 (1971); (b) L. S. Hafner and R. Evans, 24, 1157 (195؟).
(32) W. A. Garland, R. J. Weinkam, and W. F. Trager, Chem. Instrum., 5, 271 (1973).
(33) P. Pierron, Ann. Chim., 11, 361 (1919).

Isolation and Characterization of Peroxyferolide, a Hydroperoxy Sesquiterpene Lactone from Liriodendron tulipifera

Raymond W. Doskotch, ${ }^{*}$ Faroux S. El-Feraly, ${ }^{1 a}$ Edward H. Fairchild, and Chin-Teh Huang ${ }^{1 b}$
Division of Natural Products Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio 43210

Received May 10, 1977.

Abstract

A naturally occurring germacranolide hydroperoxide, peroxyferolide, was assigned structure 1 from physical data, especially double-resonance ${ }^{1} \mathrm{H}$ NMR, and from chemical evidence. The allylic hydroperoxide function was supported by polarographic analysis, the preparation of anhydroderivative 3 under acetylation conditions, methylperoxyferolide (5) with methyl iodide and silver oxide, deoxyperoxyferolide (10) by mild reduction, and the presence of a characteristic absorption in the ${ }^{13} \mathrm{C}$ NMR. Formation of 1 from lipiferolide (2) by light-generated singlet oxygen confirmed the stereochemical assignments and established the configuration at the hydroperoxy-bearing carbon.

In screening ethanolic extracts of plants in a feeding test ${ }^{2}$ for the larvae of the gypsy moth, Lymantria dispar L., it was found that the residue from the leaves of the tulip poplar, Liriodendron tulipifera L., showed antifeedirg properties. On fractionating the crude extract a moderately active constituent, ${ }^{3}$ peroxyferolide (1), was obtained and characterized to be the first naturally occurring germacranolide hydroperoxide ${ }^{4}$ on the evidence reported herein. Previous work on this source had given lipiferolide (2) and epitulipinolide diepoxide (the 1,10 -epoxide of 2) as the major sesquiterpene components. ${ }^{5}$

Peroxyferolide (1) was isolated by repeated column chromatography and crystallization from ethanol-chloroform. Elemental and chemical ionization mass spectral analyses established the molecular formula as $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{7}$, and the infrared spectrum suggested hydroxyl, α, β^{\prime}-unsaturated γ lactone, ester, and olefinic functions. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table I) showed a pair of one-proton doublets at 6.13 and 5.53 ppm split by 3.5 and 3.1 Hz , respectively, which are characteristic of α-methylene γ-lactones, and confirmed by preparation of a crystalline pyrazoline derivative that was too unstable for proper characterization. A three-proton singlet at 2.03 ppm supported an acetate as the ester function. The remainder of the molecule was assumed to be sesquiterpenoid.

Double-irradiation experiments clarified the arrangement of the substituents about the α, β^{\prime}-unsaturated γ-lactone as shown in A , in which \square designates a quaternary carbon. Irradiation of the doublet for H_{a} at 6.13 ppm caused the multiplet at 3.93 ppm to be simplified to a pair of sriplets with J $=9.6,3.1$, and 3.1 Hz , and irradiation at $5.53 \mathrm{ppm}\left(\mathrm{H}_{\mathrm{b}}\right)$ showed a similar collapse with coupling now $9.6,3.5$, and 3.1 Hz , thus locating H_{c} at 3.93 ppm . Saturation of this signal not only converted the H_{a} and H_{b} doublets to singlets but also changed

A
the one-proton triplet at 4.23 ppm to a doublet $(J=9.6 \mathrm{~Hz})$ and the saw-too:h multiplet of eight-peaks at 5.95 ppm to a pair of doublets ($J=11.4$ and 6.4 Hz). The lactonic proton H_{d} was assigned at 4.23 ppm , and H_{e} on the acetate-bearing carbon at 5.95 ppm in keeping with the chemical shifts observed for similar protons in other sesquiterpene lactones. Irradiation at 4.23 ppm collapsed the multiplet at 3.93 ppm $\left(\mathrm{H}_{\mathrm{c}}\right)$ to a broadened quartet $(J \approx 3 \mathrm{~Hz})$ and the doublet at 2.98 ppm for H_{f} to a singlet. The pattern and chemical shift of H_{f} suggested it was adjacent to a quaternary carbon and most probably on a carbon with an epoxide oxygen (vide infra). Similar decoupling of H_{e} (5.95 ppm) caused the expected collapse of the H_{c} pattern at 3.93 ppm to a pair of triplets and of a one-proton $\left(\mathrm{H}_{\mathrm{g}}\right)$ multiplet centered at 2.74 ppm ; the A doublet ($J=17.2 \mathrm{~Hz}$) of an AB quartet, further split into five peaks ($J \approx 2 \mathrm{~Hz}$) to a doublet split into four peaks. In addition, a change between 2.0 and 2.4 ppm was observed, but the region consists of overlapping peaks and was not clearly analyzable. Irradiation at $\sim 2.2 \mathrm{ppm}$ affected the large coupling for the pattern at 2.74 ppm and thus the hidden pattern corresponds to the second methylene proton H_{h}. Furthermore, the H_{e} multiplet at 5.95 ppm was changed to a pair of doublets and the one-proton broadened dcublet at 5.33 ppm to a sharp doublet, as would be expected on elimination of allylic coupling. Finally, on irradiation of $\mathrm{H}_{\mathrm{g}}(2.74 \mathrm{ppm})$, not only was
${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{28} \mathrm{mp} 98-98.5^{\circ} \mathrm{C}\right) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 2.4-2.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.33$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$), 0.7-1.7 (15 H , m, aliphatic CH); CIMS m/e (rel intensity) 144 (100), 130 (5).

Reduction of 4 using 2 equiv of Hydride per Mole of Acylguanidine. $4(1.48 \mathrm{~g}, 6.12 \mathrm{mmol})$ was reduced with $\mathrm{LiAlH}_{4}(3.12 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 4 h and then at $23^{\circ} \mathrm{C}$ for 1 h . After workup, the resulting oil was distilled to yield 983 mg of a hygroscopic mixture: bp 110-115 ${ }^{\circ} \mathrm{C}\left(0.4 \mathrm{~mm}\right.$, Kugelrohr); NMR $\left(\mathrm{CCl}_{4}\right)$ ó $8.00\left(1 \mathrm{H}, \mathrm{t}, \mathrm{CONHCH}_{2} \mathrm{~N}, J\right.$ $=6 \mathrm{~Hz}), 3.92\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CONHCH}_{2} \mathrm{~N}, J=6 \mathrm{~Hz}\right), 2.92$ and 3.04 (equivalent singlets, dimethyloctanamide), $2.20\left[\mathrm{~m}, \mathrm{NCN}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{CO}$], 0.70-1.90 (m, aliphatic CH); CIMS m/e (rel intensity) 201 (100), 172 (15), 156 (25), 144 (30), 127 (1), rel intensities of 172 and 144 varied with time and temperature. The NMR sample was shaken with $\mathrm{D}_{2} \mathrm{O}$ and the signal at $\delta 8.00$ disappeared, while the previous doublet at $\delta 3.92$ became a singlet at $\delta 3.92(2 \mathrm{H})$.

The distilled product was found to contain three components by GC, identified as octanamide (26), N, N-dimethyloctanamide (27), and N-(dimethylaminomethyl)octanamide (25) by low-resolution GC/MS (ei). The empirical formulas were obtained from the mixture with a scanning high-resolution MS: first GC peak, m / e (rel intensity, molecular formula, $\Delta \mathrm{mmu}) 171\left(3, \mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}, 0.3\right), 87\left(100, \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}\right.$, 0.3), $72\left(40, \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}, 2.8\right)$; second peak, $143\left(1, \mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}, 0.0\right), 59(100$, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}, 2.7$), 44 (21, $\mathrm{CH}_{2} \mathrm{NO}, 0.4$); third peak, $200\left(1, \mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\right.$, $0.4), 127\left(40, \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}, 0.6\right), 57\left(100, \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}, 3.6\right) .{ }^{29}$ The mole fractions (from corrected GC and NMR integration) of each component were as follows: 26, 0.12;27, 0.21;25, 0.67 . Based on the 983 mg of distilled mixture, the yields were 10,18 , and 58%, respectively.

Reduction of 4 Using 1.3 equiv of Hydride per Mole of Acylguanidine. $4(3.05 \mathrm{~g}, 12.6 \mathrm{mmol})$ was treated with $\mathrm{LiAlH}_{4}(4.3 \mathrm{mmol})$ in 100 mL of ether as in the previous reduction, except that the time at $23^{\circ} \mathrm{C}$ was 2 h . Workup and distillation gave 1.90 g of oil: bp 108-114 ${ }^{\circ} \mathrm{C}$ (0.45 mm , Kugelrohr); CIMS m/e (rel intensity) 201 (15), 172 (100), 156 (2), 144 (21), rel intensity varied with time and temperature; NMR and GC/MS showed the same products as before in the following proportions: 26, $0.12 ; 27,0.78 ; 25,0.10$. These mole fractions correspond to yields of 11,69 , and 9%, respectively.
\boldsymbol{N}-(Dimethylaminomethyl)octanamide (25). Octanamide ${ }^{30}$ (300 $\mathrm{mg}, 2.10 \mathrm{mmol}$), formaldehyde (2.5 mL , aqueous, 33.3 mmol), dimethylamine ($1.45 \mathrm{~g}, 32.2 \mathrm{mmol}$), and 20 mL of tert-butyl alcohol were heated for 2 h in a pressure vessel on a steam bath. The reaction mixture was cooled and evaporated to a dark yellow oil; $\mathrm{CCl}_{4}(3 \times 40$ mL) was evaporated from the oil to remove $\mathrm{H}_{2} \mathrm{O}$ and other volatile materials. The residue was dissolved in petroleum ether $(5.0 \mathrm{~mL}$, reagent), the solution was cooled and then filtered, the filtrate was evaporated, and the residue was distilled to give $222 \mathrm{mg}(53 \%)$ of colorless oil: bp $115-120^{\circ} \mathrm{C}\left(0.40 \mathrm{~mm}\right.$, Kugelrohr); NMR ($\left.\mathrm{CCl}_{4}\right) \delta 8.00$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{NH}, J=6 \mathrm{~Hz}), 3.92\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}_{2} \mathrm{~N}, J=6 \mathrm{~Hz}\right), 2.20[8 \mathrm{H}$, $\mathrm{m}, \mathrm{RCH}_{2} \mathrm{CO}$ and $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.70-1.90(13 \mathrm{H}, \mathrm{m}$, aliphatic CH$)$; CIMS m / e (rel intensity) $201\left(\mathrm{MH}^{+}, 100\right), 156(30), 144$ (5), 127 (2); highresolution MS, calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}, \mathrm{m} / \mathrm{e} 200.1889$; found, 200.1892.

2-Iminohexahydropyrimidine (29) Hydrochloride. β-Alacreatinine (5) hydrochloride ($614 \mathrm{mg}, 4.11 \mathrm{mmol}$) was reduced with $\mathrm{LiAlH}_{4}(35.0 \mathrm{mmol})$ in 130 mL of THF. After 36 h , the reaction was worked up, and the filtrate was acidified (concentrated HCl) and evaporated to dryness. Crystallization from isopropyl alcohol/ether gave 156 mg (28%) of 29 hydrochloride, $\mathrm{mp} 153^{\circ} \mathrm{C}$ (lit. ${ }^{31 \mathrm{a}} \mathrm{mp} 127-129$ ${ }^{\circ} \mathrm{C}$ of a hydrated sample). Treatment of the metal salts by method B gave an additional 139 mg (25%), producing a total yield of 53% : NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 3.37(4 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 1.95(2 \mathrm{H}$, quintet, $J=6 \mathrm{~Hz})$; CIMS m/e 100 (MH^{+}only); picrate, $\mathrm{mp} 183-184^{\circ} \mathrm{C}$ (lit..$^{31 \mathrm{~b}} \mathrm{mp}$ $185-186{ }^{\circ} \mathrm{C}$).

Reduction of Creatinine (6). A. With 5 equiv of Hydride per Mole of Acylguanidine. Creatinine (6) ($496 \mathrm{mg}, 4.38 \mathrm{mmol}$) was treated with $\mathrm{LiAlH}_{4}(5.5 \mathrm{mmol}, 25 \%$ molar excess) in 100 mL of THF for 30 h at $23^{\circ} \mathrm{C}$. Addition of p-toluenesulfonic acid hydrate $(1.0 \mathrm{~g}$, 6 mmol) and evaporation gave an oil, which was dried and shaken with 30 mL of ether to give $125 \mathrm{mg}(29 \%)$ of mixed guanidine (30) and imidazole (32) salts: NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.53\left(4 \mathrm{H}\right.$, s, guanidine $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.83$ ($3 \mathrm{H}, \mathrm{s}$, guanidine CH_{3}), $3.39\left(3 \mathrm{H}\right.$, s, imidazole $\left.\mathrm{CH}_{3}\right), 6.74(2 \mathrm{H}, \mathrm{q}$, imidazole ring), $37 \mathrm{~mol} \% 30$ and $63 \mathrm{~mol} \% 32$ (by integration); CIMS $\left(\mathrm{NaOCH}_{3}\right.$ added) m / e (rel intensity) 100 (50), 98 (100).
$\mathrm{PdO}(100 \mathrm{mg})$ and $\mathrm{PtO}_{2}(10 \mathrm{mg})$ were powdered together and then mixed with 50 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and the mixture of 30 and 32 tosylate salts. Shaking with hydrogen ($40 \mathrm{psi}, 20^{\circ} \mathrm{C}$) for 17 h followed by filtration, evaporation, and crystallization (ethanol/ether) gave 117 mg of (30) p-toluenesulfonate: mp 170-171 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.56(4 \mathrm{H}$, q, ar-H), $3.53\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.34(3 \mathrm{H}, \mathrm{s}$, ar$\mathrm{CH}_{3}$); CIMS (NaOCH_{3} added) $\mathrm{m} / \mathrm{e} 100\left(\mathrm{MH}^{+}\right.$only).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 48.7 ; \mathrm{H}, 6.3 ; \mathrm{N}, 15.5$. Found: C,
48.9; H, 6.1; N, 15.2.
B. With Excess Hydride. Creatinine (6) (1.00 g .8 .85 mmol) was reduced with $\mathrm{LiAlH}_{4}(52.6 \mathrm{mmol})$ in 100 mL of TH^{F} for 28 h . After workup, the filtrate was acidified with 1 mL of acetic acid and stored at $0^{\circ} \mathrm{C}$. The precipitate from the workup was extracted by method A , and the resulting $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was combined with the THF filtrate for evaporation. Hydrogenation as above using 600 mg of PdO and 60 mg of PtO_{2} gave $1.3 \mathrm{~g}(54 \%)$ of 2-imino-1-methylimidazolidine (30) p-toluenesulfonate, $\mathrm{mp} 170-171^{\circ} \mathrm{C}$, identical with the product from the previous reduction.

Reduction of Methylcreatinine (7). Methylcreatinine ${ }^{10,11}$ (257 $\mathrm{mg}, 2.02 \mathrm{mmol}$) was reduced with $\mathrm{LiAlH}_{4}(3.6 \mathrm{mmol})$ in 50 mL of THF for 10 h . After workup, the filtrate was acidified with concentrated HCl and evaporated to give a crude product with the following spectra: $\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.46\left(4 \mathrm{H}, \mathrm{s}\right.$, uganidine $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.87(6 \mathrm{H}, \mathrm{s}$, quanidine NCH_{3}), 6.75 (2 H , m, imidazole ring), $3.20\left(6 \mathrm{H}, \mathrm{s}\right.$, imidazole NCH_{3}), $20 \mathrm{~mol} \% 1,3$-dimethyl- \because-iminoimidazolidine (31) and $80 \mathrm{~mol} \% 1,3-$ dimethyl-2-iminodihydi oimidazole (33) (by integration); CIMS $\left(\mathrm{NaOCH}_{3}\right.$ added) m / e (rel intensity) 114 (15), 112 (100).

1,3-Dimethyl-2-iminoimidazolidine (31) p-Toluenesulfonate. Methylcreatinine (7) hydrogen sulfate ${ }^{10}(704 \mathrm{mg}, 3.13 \mathrm{mmol})$ was reduced with $\mathrm{LiAlH}_{4}(22 \mathrm{mmol})$ in 90 mL of THF for 5 h . The product (31) was isolated in exactly the same manner as the monomethyl compound (30). Crystallization from isopropyl alcohol/ether gave 456 $\mathrm{mg}(51 \%)$ of p-toluenesulfonate: $\mathrm{mp} 180-181^{\circ} \mathrm{C}$; $\operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.56$ $(4 \mathrm{H}, \mathrm{q}, \mathrm{ArH}), 3.46\left(4 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.87\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.34(3$ $\mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}$); CIMS (NaOCH_{3} added) m/e $114\left(\mathrm{MH}^{+}\right.$only).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 50.5; H, 6.7; N, 14.7. Found: C, 50.6; H, 6.7; N, 14.7.

Registry No.-1, 5634-27-5; 2, 63493-47-0; 3, 63493-48-1; 4, 63493-49-2; $5 \cdot \mathrm{HCl}, 15231-28-4 ; 7,34293-22-6 ; 7$ sulfate, 63493-50-5; 9 HI, 63493-51-6; 9 acetate, 63493-52-7; 10, 63493-53-8; 14, 353-09-3; 15 acetate, 2439-10-3; 15 carbonate, 63493-54-9; 15 sulfate, 41197-06-2; 17 carbonate, 63493-55-0; 17 tosylate, 63493-56-1; 19, 63493-57-2; 19 p-bromobenzenesulfonate, 63493-5 -3; 19 carbonate, 63493-59-4; 19 acetyl derivative, 63493-60-7; 22, 63493-60-7; 25, 63493-61-8; 26, 629-01-6; 27, 1118-92-9; 29-HCl, 26893-39-0; 30 tosylate, 63493-62-9; 31 tosylate, 63493-64-1; 33, 59581-72-5; methyl laurate, 111-82-0; guanidine, 113-00-8; $N, N^{I^{\prime}}$-dimethylguanidine hydrobromide, 13314-44-8; N, N^{\prime}-dimethylguanidine, 3324-71-8; octanoyl chloride, 111-64-8; N-methyloctylamine piorate, 63493-65-2; formaldehyde, 50-00-0; dimethylamine, 124-40-3; $N, N, N^{\prime}, N^{\prime}$-tetramethylguanidine, 80-70-6.

References and Notes

(1) A. Hajos, "Komplex Hydride", Veb Deutcher Verlag der Wissenschaften, Berlin, 1966, p 314
(2) B. Rouot, G. Leclerc, C.-G. Wermuth, F. Miesch, and J. Schwartz, J. Med. Chem., 19, 1049 (1976).
(3) I. H. Page and H. P. Dustan. J. Am. Med. Assoc., 170, 1265 (1959).
(4) J. K. Simons and W. I. Weaver, U.S. Patent 2408 694: Chem. Abstr., 41, 1239i (1947).
(5) R. Greenhalgh and R. A. B. Bannard, Can. J. Chem., 39, 1017 (1961).
(6) K. Matsumoto and H. Rapoport, J. Org. Chem., 33, 552 (1968).
(7) A. Lespagnol, E. Cuingnet, and M. Debaert, Bull. Soc. Chim. Fr., 383 (1960).
(8) S. J. Angyal and W. K. Warburton, J. Chem. Soc., 2492 (1951).
(9) R. Greenhalgh and R. Bannard, Can. J. Chem., 37, 1810 (1959)
(10) W. R. Cornthwaite, J. Am. Chem. Soc., 59, 1616 (1937).
(11) K. Zeile and H. Meyer, Z. Physiol. Chem., 252, 101 (1938).
(12) Wellcome Foundation Lid., Belgian Patent 626 015; Chem. Abstr., 60, 7919e (1966).
(13) B. Munson, Anal. Chem., 43, 28A (1971).
(14) A. Einhorn, Justus Liebigs Ann. Chem., 343, 207 (1905).
(15) W. J. Gottstein, W. F. Minor, and L. C. Cheney, J. Am. Chem. Soc., 81, 1198 (1959).
(16) H. Budziklewicz, C. Djerassi, and D. H. Williams, "Mass Spectrometry of Organic Compounds'", Holden-Day, San Francisco, Calif., 1967, pp 336-340.
(17) Melting points are uncorrected and were determined on a Thomas-Hoover apparatus; boiling points are uncorrected. IR spectra were obtained with a Perkin-Elmer 337 grating infrared spectrophotometer. UV spectra were recorded either with a Cary Model 14 or 15 spectrophotometer. NMR spectra were determined elther with a Varian A-60A or T60 instrument using $\mathrm{Me}_{4} \mathrm{Si}(\delta 0)$ as an internal standard in nonaqueous media and sodium 2,2-dimethyl-2-silapentane-5-sulfonate ($\delta 0$) as an internal standard in $\mathrm{D}_{2} \mathrm{O}$. GC was performed on a Varian 2100 (FID) instrument with a $6 \mathrm{ft} \times 1 / 8$ in. glass column packed with OV-225 (3\% on Chromosorb W). Chemical ionization mass spectra (CIMS) were obtained with an AEI MS-902 instrument which had been modified for chemical ionization. ${ }^{32}$ GC/MS (electron impact) were determined with an AEI MS-12 Instrument. Highresolution mass spectra (ei) and microanalyses were performed by the Analytical Laboratory, Department of Chemistry, University of California, Berkeley, Calif. GC and CIMS work with nonvolatile guanidine salts was i:ccomplished by adding a trace of NaOCH_{3} just prior to analysis. Isobutane reactant was used for CIMS unless otherwise noted.
phase was decanted, the crystals were rinsed with hesane (30 mL), and the solid was dried to give $3.50 \mathrm{~g}(75 \%)$ of crude deliquescent solid, which was th $2 n$ azetropically dried with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, redissolved in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and stored at $0^{\circ} \mathrm{C}$. Filtration, evaporation, and drying under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$ gave $1.66 \mathrm{~g}(69 \%)$ of deliquescent partial hydrate: $\operatorname{mp} 99-107{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }\left(0.01 \mathrm{~N} \mathrm{NaOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 209$ $\mathrm{nm}(\epsilon 14000), \lambda_{\max }$ (dioxane) 247 nm ; NMR $\left(\mathrm{CCl}_{4}\right)$ ò $2.95(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$; CIMS m/e (rel intensity), 144 ($\mathrm{MH}^{+}, 100$). 102 (1).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 48.8 ; \mathrm{H}, 9.2 ; \mathrm{N}, 28.5$. Found: C, 48.5; H, 9.1; N, 28.5.
\boldsymbol{N}-Octanoyl- $\boldsymbol{N}^{\prime}, \boldsymbol{N}^{\prime}, \boldsymbol{N}^{\prime \prime}, \boldsymbol{N}^{\prime \prime}$-tetramethylguanidine (4). Octanoyl chloride ($3.25 \mathrm{~g}, 20 \mathrm{mmol}$, freshly distilled, bp $194-196{ }^{\circ} \mathrm{C}$) and $N, N, N^{\prime}, N^{\prime}$-tetramethylguanidine ($5.00 \mathrm{~g}, 43.5 \mathrm{mmol}$) were each dissolved in ethyl ether (50 mL each, anhydrous). To the guanidine solution, chilled in an ice bath, was slowly added the octanoyl chloride solution with stirring. A vigorous reaction ensued, precipitating the HCl salt of tetramethylguanidine $(3.4 \mathrm{~g}, 22 \mathrm{mmol})$, which was removed by filtration, and the filtrate was evaporated. The oi y residue was dissolved in 50 mL of CCl_{4}, washed twice with aqueous $\mathrm{NaOH}(20 \mathrm{~mL}$ each, pH 13), dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered, and distilled to produce 4.30 $\mathrm{g}(89 \%)$ of colorless oil: bp $126-134^{\circ} \mathrm{C}\left(0.05 \mathrm{~mm}\right.$, Kugel:ohr): UV $\lambda_{\text {max }}$ ($0.01 \mathrm{~N} \mathrm{NaOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) $239 \mathrm{~nm}(\epsilon 14700)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.77$ (12 $\left.\mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.9-2.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 0.7-1.9(13 \mathrm{H}, \mathrm{m}$, aliphatic CH).
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 64.7 ; \mathrm{H}, 11.3 ; \mathrm{N}$, 17.4. Found: C, 64.6; H, 11.0; N, 17.6.
β-Alacreatinine [2-Amino-4-oxo-1,4,5,6-tetrahydropyrimidine (5)] Hydrochloride. β-Guanidinopropionic acid (14) ${ }^{20}$ was cyclized with concentrated HCl as described, ${ }^{21}$ producing 43\% of 5: mp 272-275 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{21} \mathrm{mp} 268-271{ }^{\circ} \mathrm{C}$); UV $\lambda_{\max }\left(0.01 \mathrm{~N} \mathrm{NaOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 237 \mathrm{~nm}$ ($\epsilon 13000$) [lit. ${ }^{6}$ UV $237 \mathrm{~mm}(13 \mathrm{100})$]; $\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.80(2 \mathrm{H}, \mathrm{t}, J=$ $7 \mathrm{~Hz}), 2.83(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$.
Methylcreatinine [1,3-Dimethyl-2-imino-4-imidazolidinone (7)] Hydrogen Sulfate. Creatinine [2-amino-1-methyl-4-oxo-4,5dihydroimidazole (6)] was methylated with dimethyl sulfate as described ${ }^{10}$ to produce 89% of the hydrogen sulfate (7): ${ }^{11} \mathrm{mp} 118^{\circ} \mathrm{C}$ (lit. ${ }^{10} \mathrm{mp} 118{ }^{\circ} \mathrm{C}$); CIMS m/e $128\left(\mathrm{MH}^{+}\right.$), parent ion only.

General Procedure for Reduction of Acylguanidines. A 2.35 M homogeneous solution of LiAlH_{4} in THF was prepared and assayed by the method described. ${ }^{22}$ THF was distilled from LiAlH_{4} under N_{2} directly into a graduated cylinder with an outer ground glass top. This cylinder also had a side arm near the top fitted with a rubber septum for N_{2} purging. After distillation, the ground joint was sealed with a second septum, and subsequent solvent transfers were made via a stainless steel cannula and positive N_{2} pressure. THF thus prepared could be stored several weeks by sealing the punctured septa with unpunctured inverted septa. For reduction, starting material and a magnetic stir bar were added to a three-neck flask under N_{2}, the flask was fitted with a thermometer and a rubber septum, and dry THF was added by cannula. The system was cooled to $-65^{\circ} \mathrm{C}$, the LiAlH_{4} solution was added by syringe with stirring, and the temperature was maintained at $-60^{\circ} \mathrm{C}$ for 20 min , then at $0^{\circ} \mathrm{C}$ for 30 min . and finally at $23{ }^{\circ} \mathrm{C}$ for the appropriate reaction time. Isolation of products proceeded by chilling, followed by addition of $\mathrm{H}_{2} \mathrm{O}$ and aqueous NaOH as described. ${ }^{23}$ After filtering off the metal salts small amounts of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CO}_{2}(\mathrm{~s})$ were added to the THF filtrate to protect the products as carbonate salts.

Isolation of Guanidines. Method A. ${ }^{24}$ In a typical reduction of $6(1.00 \mathrm{~g}, 8.85 \mathrm{mmol})$, all of the metal salts from the hydrolyzed reduction mixture were dissolved immediately in cold $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}, \mathrm{pH}$ to 14$)^{25}$ contained in a glass-stoppered $100-\mathrm{mL}$ flas x , and aqueous $\mathrm{NaOH}\left(15 \mathrm{~mL}, 2 \mathrm{~N}, 0^{\circ} \mathrm{C}\right)$ and benzyloxycarbonyl chloride ($4 \mathrm{~mL}, 24$ $\mathrm{mmol}, 0^{\circ} \mathrm{C}$) were added alternately in five portions over a period of 25 min with shaking and chilling after each addition of acid chloride. The mixture was then treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~mL}, 0^{\circ} \mathrm{C}\right)$ and aqueous glycine (3.0 g in $20 \mathrm{~mL}, \mathrm{pH}$ to $14,0^{\circ} \mathrm{C}$), and the resu ting two-phase system was stirred for 30 min at $0^{\circ} \mathrm{C}$, whereupon a second portion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added. The organic phase was separated, the aqueous layer was extracted a second time (40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and the combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ to pH 7 . After drying with $\mathrm{K}_{2} \mathrm{CO}_{3}$, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined with the THF filtrate from the reduction for subsequent evaporation and lydrogenolysis ${ }^{26}$ (see reduction of 6 with excess hydride).
Method B. ${ }^{24}$ In a typical reduction of 5 to 29, a portion of the metal salts from the hydrolyzed reduction mixture (contairing a maximum of 1.17 mmol of 29) was dissolved in $\mathrm{HCl}(24 \mathrm{~mL}, 4 \mathrm{M})$. After chilling and neutralizing with 12 M NaOH to pH 7 , the $\mathrm{Al}(\mathrm{OH})_{3}$ was removed by centrifugation at $7700 \mathrm{~g}\left(0^{\circ} \mathrm{C}, 15 \mathrm{~min}\right)$. The supernatant was de canted, the $\mathrm{Al}(\mathrm{OH})_{3}$ pellet was washed with 30 mL of $\mathrm{H}_{2} \mathrm{O}$, the
$\mathrm{Al}(\mathrm{OH})_{3}$ was spun down a second time, and the combined $\mathrm{H}_{2} \mathrm{O}$ solutions were concentrated to $25-30 \mathrm{~mL}$. Addition of 100 mL of isopropyl alcohol produced precipitation (mostly NaCl), and this mixture was heated to boiling followed by filtration and evaporation of the filtrate to dryness. The resulting solid residue was again suspended in 100 mL of hot isopropyl alcohol; filtration and evaporation to dryness gave 370 mg of a mixture of LiCl and $29 \cdot \mathrm{HCl}$. A cation-exchange column was then prepared ($12-\mathrm{mL}$ bed, BioRad AG $50 \mathrm{~W}-8 \mathrm{X}$, hyd oogen form, $200-400$ mesh $)$ and washed with $\mathrm{HCl}(500 \mathrm{~mL}, 1 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}$. The mixture of LiCl and $29 \cdot \mathrm{HCl}$ was washed onto the columr with $\mathrm{H}_{2} \mathrm{O}$, washing until the eluent returns to thee pH of distilled $\mathrm{H}_{2} \mathrm{O}$. Lithium was eluted first with $\mathrm{HCl}(\sim 100 \mathrm{~mL}, 0.3 \mathrm{M})$; the guanidine was also eluted with $\mathrm{HCl}(\sim 200 \mathrm{~mL}$, increasing strength from 1 to 10 M). Evaporation to dryness, crystallization (isopropyl alcohol'ether), and drying over $\mathrm{P}_{2} \mathrm{O}_{5}$ produced 55 mg of $29 \cdot \mathrm{HCl}, \mathrm{mp} 153^{\circ} \mathrm{C}$.

Dodecylguanidine (15) Acetate. Dodecanoylguanidine (1) (1.0 g, 4.15 mmol) was reduced with $\mathrm{LiAlH}_{4}(53 \mathrm{mmol})$ in 120 mL of THF for 33 h . After decomposition $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{NaOH}\right)$ and filtration, the THF solution was acidified with 1 mL of acetic acid and chilled. Filtration produced $330 \mathrm{mg}(60 \%)$ of acetate salt: $\mathrm{mp} 133-134^{\circ} \mathrm{C}$; CIMS m/e (rel intensity) $228\left(\mathrm{MH}^{-}, 100\right), 211$ (5), 186 (1).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 62.7; H, 11.6; $\mathrm{N}, 14.6$. Found: C, 62.9; H, 11.3; N, 14.8.
The filtrate (THF solution) was evaporated to an oil and the residue was suspended in hexane and filtered to yield $70 \mathrm{mg}(15 \%)$ of crude salt. This material was primarily dodecylamine acetate: GC retention time ($96{ }^{\circ} \mathrm{C}$), 11 min 50 s (identical with authentic sample); CIMS m/e (rel intensity), 242 (8), 228 (4), 200 (2), 186 (100).

Dodecylguanidine (15) Sulfate. In a separate reduction of 1 , the guanidine product 15 was isolated as a carbonate salt: $\mathrm{mp} 91-95^{\circ} \mathrm{C}$ dec; CIMS m/e (rel intensity) 228 ($\mathrm{MH}^{+}, 100$), 211 (4), 186 (1). The carbonate salt was treated with 1 equiv of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give the sulfate: mp $250-260{ }^{\circ} \mathrm{C}$ dec, mmp with authentic 15 sulfate 27 was undepressed; IR (KBr) $3 \triangleq 80,3160,2920,2880,1630,1470,1380,1120,1060$, $980,720,620 \mathrm{~cm}^{-1}$, identical with IR obtained from authentic sample.
Reduction of Dodecylguanidine (15) Sulfate. 15 sulfate (500 mg , 1.81 mmol) was treated with $\mathrm{LiAlH}_{4}(26 \mathrm{mmol})$ in THF (50 mL) for 21 h . Isolation gave dodecylamine ir 15% yield.
$\boldsymbol{N}, \boldsymbol{N}^{\prime}$-Dimethyl- $\boldsymbol{N}^{\prime \prime}$-dodecylguanidine (17) Tosylate. N-Do-decanoyl- $N^{\prime}, N^{\prime \prime}$-dimethylguanidine (2) ($1.00 \mathrm{~g}, 3.71 \mathrm{mmol}$) was reduced with $\mathrm{LiAlH}_{4}(24 \mathrm{mmol})$ in 100 mL of THF for 8 h . After workup, the THF filtrate was treated with $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL}, 28 \mathrm{mmol})$ and CO_{2} ($\mathrm{s}, \sim 1 \mathrm{~g}$). Chilling ($0^{\circ} \mathrm{C}, 12 \mathrm{~h}$) produced a crude carbonate, mp 96-110 ${ }^{\circ} \mathrm{C}$ dec. This material was converted to $985 \mathrm{mg}(62 \%)$ of sosylate: mp $85-87{ }^{\circ} \mathrm{C}$; NMR (HBr salt in CDCl_{3}) $\delta 3.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.0(6 \mathrm{H}$, $\mathrm{s}, 2 \mathrm{NCH}_{3}$), $0.7-1.8(23 \mathrm{H}, \mathrm{m})$; CIMS m / e (rel intensity`; $256\left(\mathrm{MH}^{+}\right.$, 100), 225 (8), 186 (2), 71 (3), 32 (10)

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 61.8; H, 9.7; N, 9.8. Fcund: C, 62.1; H, 9.5; N, 9.9 .
\boldsymbol{N}-Ethyl- $\boldsymbol{N}^{\prime}, N^{\prime}, N^{\prime \prime}$-trimethylguanidine (19) p-Bromobenzenesulfonate. N-Acetyl- $N^{\prime} . N^{\prime}, N^{\prime \prime}$-trimethylguanidine (3) $(593 \mathrm{mg}$, $4.02 \mathrm{mmol}, 1 / 4$ hydrate) was reducec with $\mathrm{LiAlH}_{4}(13.2 \mathrm{mmol})$ in 30 mL of THF for 4 h . After workup, a carbonate, prepared by the method used for compound 17 , was isolated and melted at $73-75^{\circ} \mathrm{C}$ dec. The carbonate was treated witi p-bromobenzene sulfonic acid to give 870 mg (59%) of salt: $\mathrm{mp} 97-98^{\circ} \mathrm{C}$ from ethanol,'ether; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.73(4 \mathrm{H}, \mathrm{q}, \mathrm{ArH}), 3.28\left(2 \mathrm{H}, \mathrm{q}, \mathrm{NCH}_{2} \mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right), 2.96[6$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right)$; CIMS (NaOH added) m / e (rel intensity) $130\left(\mathrm{MH}^{+}, 100\right), 99$ (3), 85 (12).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 39.4 ; \mathrm{H}, 5.5 ; \mathrm{N}, 11.5 ; \mathrm{Br}, 21.8$. Found: C, 39.4; H, 5.5; N, 11.5; Br, 21.9.
A sample of pure $19 p$-bromobenzenesulfonate was converted to the free base (ion exchange) ${ }^{5}$ and then to the carbonate: CIMS (CH_{4} reactant) m / e (rel intensity) $130\left(\mathrm{MH}^{+}, 100\right), 99$ (9), 85 (16), 46 (6), 32 (1).
Acetylation of N-Ethyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}$-trimethylguanidine (19). Purified 19 carbonate ($200 \mathrm{mg}, \sim 1.2 \mathrm{mmol}$) was mixed with 30 mL of acetic anhydride and heated for $6 \mathrm{~h}\left(100^{\circ} \mathrm{C}, \mathrm{N}_{2}\right)$. Evaporation and distillation of the resulting oil ($45^{\circ}, 0.05 \mathrm{~mm}$, Kugelrohr) gave product with the following spectra: UV $\lambda_{\max }\left(0.01 \mathrm{~N} \mathrm{NaOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 225 \mathrm{~nm}$ ($\epsilon 8000$); NMR ($\left.\mathrm{CCL}_{4}\right) \delta 3.05\left(2 \mathrm{H}, \mathrm{q}, \mathrm{NCH}_{2} \mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right), 2.86(3 \mathrm{H}$, s, NCH_{3}), $2.82\left[6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.09(3 \mathrm{H}, \mathrm{t}$, $\mathrm{NCH}_{2} \mathrm{CH}_{3}, J=7 \mathrm{~Hz}$).

Reduction of Octanoyl- N, N^{\prime}-tetramethylguanidine (4) with excess $\mathrm{LiAlH}_{4} .4(2.4 \mathrm{~g}, 10 \mathrm{mmol})$ was reduced with $\mathrm{LiAlH}_{4}(26.3$ mmol) for 1 h using 50 mL of $\mathrm{Et}_{2} \mathrm{O}$ instead of THF. After workup, the $\mathrm{Et}_{2} \mathrm{O}$ filtrate was evaporated to give N-methyloctylamine, which was converted to $2.25 \mathrm{~g}(60 \%)$ of N-methyloctylamine picrate: $\mathrm{mp} 96-98$
methylamide ion attacks either 4 or 28 to produce 27 . The primary amide 26 probably arises from 25 , undergoing a reverse Mannich during the isolation.
Reduction of the three cyclic substrates, 5, 6, and 7, to the corresponding guanidines, 29,30, and 31 , was complicated by

28

29

30

31
occlusion of nearly half of the product in the metal salts formed during isolation. To overcome this problem, two general methods were developed which allow separation of the highly water soluble guanidines from metal salts. The physical purification method $(\operatorname{method} \mathrm{B})$ relies on precipitation of Al^{3+} and Na^{+}ions, followed by removal of Li^{+}via ion-exchange chromatography. Method B, when applied to the isolation of 29, increased the yield to 53% from 28% obtained using conventional methods.

The derivatization method (method A) employs a digestion of the mixed salts in aqueous alkali, followed by acylation with excess benzyloxycarbonyl chloride. Excess acid chloride is then destroyed by adding glycine before extraction of the guanidine derivative with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract is then combined with the filtrate from the reduction and the combined material is subjected to hydrogenolysis. This isolation scheme greatly increased yields of both 30 and 31 . The reason for including the filtrate in the hydrogenation is that reduction of 6 with LiAlH_{4} produces a mixture of the guanidine 30 and the imidazole 32. Similarly, 7 produces both 31 and 33. After

32

33
finding that 32 could be converted to 30 by catalytic hydrogenation, it became obvious that the hydrogenation step served a dual purpose, i.e., removal of the benzyloxycarbonyl group and the reduction of the 2 -aminoimidazoles to 2 -iminoimidazolidines.

Summary

A critical point to consider in the LiAlH_{4} reduction of acylguanidines is the electron density on the metalated acylguanidine in the reduction medium. This electron density depends primarily on the number of NH protons which are replaced by Al (with hydrogen evolution) and will have an effect on both the rate and the stoichiometry. Quantitation of the hydrogen evolved in the reaction of LiAlH_{4} with both 1 and 6 clearly indicated that all available NH protons are removed under reduction conditions. The hydrogen evolution is somewhat slower with 5 , but this is probably due to formation of a precipitate, presumably a polyaluminate.

Two factors emerge, then, which suggest an approximate reaction time. Compounds $\mathbf{1 , 5}$, and $\mathbf{6}$ are reduced at relatively slow rates; 1 is slow because it has a formal -4 charge, and 6 and 7 are slow because they both give precipitates. Reduction of 4 is very fast (homogeneous and no NH protons) and the reductions of 2,3 , and 7 are moderately rapid (homogeneous with one or two NH protons). In addition to the proper reaction time, the use of THF, room temperature, excess LiAlH_{4}, and extraction of the metal salts during isolation all favor increased yields.

Classically, conversion of a carboxyl group to an alkylguanidine requires preparation of an amide, reduction to an amine, and reaction with a reagent such as S-methyliso-
thiourea. ${ }^{7}$ The same conversion may now be accomplished more directly by preparing and reducing the appropriate acylguanidine. From another point of view, the sequence of acylation and reduction allows the selective alkylation of an already existing guanidine, a manipulation with no previous parallel.

Experimental Section ${ }^{17}$

Dodecanoylguanidine (1). Methyl laurate ($26.0 \mathrm{~g}, 122 \mathrm{mmol})^{18}$ and ethanol (50 mL , absolute) were mixed with guanidine free base ($7.3 \mathrm{~g}, 124 \mathrm{mmol}$, freshly prepared by ion exchange) $)^{5}$ and allowed to stand $\left(23^{\circ} \mathrm{C}\right.$, under dry $\left.\mathrm{N}_{2}\right)$ for 12.5 h . Evaporation of the ethanol, addition of ether (30 mL , anhydrous) and chillirg gave a cake of crystals to which was added hexane (150 mL , reagent), and the flask was stoppered and shaken vigorously. The mixture was then chilled, filtered, and dried to give 20.0 g (68%) of crude product, mp 101-104 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp} 80-82{ }^{\circ} \mathrm{C}$). This crude material was crystallized from acetone to produce $14.1 \mathrm{~g}(48 \%)$ of colorless crystals: mp $110-111^{\circ} \mathrm{C}$; $\mathrm{UV} \lambda_{\max }\left(0.01 \mathrm{~N} \mathrm{NaOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 232 \mathrm{~nm}(\epsilon 16000)$, $\lambda_{\text {max }}$ (dioxane) 237 nm ; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.10(4 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.0-2.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right)$, 0.7-1.9 ($21 \mathrm{H}, \mathrm{m}$, aliphatic CH); CIMS m/e (relative intensity) 242 $\left(\mathrm{MH}^{+}, 100\right), 200(56), 83$ (2), $60(4)$

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 64.7 ; \mathrm{H}, 11.3 ; \mathrm{N}, 17.4$. Found: C, 64.7; H, 10.9; N, 17.3.
\boldsymbol{N}-Dodecanoyl- $\boldsymbol{N}^{\prime}, \boldsymbol{N}^{\prime \prime}$-dimethylguanidine (2). $\quad N, N^{\prime}$-Dimethylguanidine hydrobromide ${ }^{19}(6.45 \mathrm{~g}, 38.4 \mathrm{mmol})$ was converted to the free base by ion exchange ${ }^{5}$ under N_{2} before adding methyl laurate ($10.5 \mathrm{~mL}, 42.7 \mathrm{mmol}$). The reaction mixture was left at room temperature for 26 h , at which time UV and TLC showed that it was predominantly acylguanidine. A column of neutral alumina (300 g , activity IV, 100-200 mesh, BioRad) was prepared in hexane, and the reaction mixture was washed onto it with five $10-\mathrm{mL}$ portions of hexane. Separation of three components was monitored by TLC (silica gel, acetone). The first component (ester) eluted from the column with 500 mL of $3: 1$ hexane/benzene, an intermediate fraction of 300 mL of acetone followed, and the third fraction (375 mL of acetone) removed all of the product. Evaporation of this third fraction gave 6.5 g of oil which was dried under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$, yielding $5.2 \mathrm{~g}(50 \%)$ of slowly deliquescing crystals: $\mathrm{mp} 38^{\circ} \mathrm{C}$; UV $\lambda_{\max }(0.01 \mathrm{~N} \mathrm{NaOH}$, $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 237 \mathrm{~nm}(\epsilon 15300)$, $\lambda_{\text {max }}$ (dioxane) $242 \mathrm{~nm} ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta$ $2.84\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.0-2.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 0.7-1.8(21 \mathrm{H}, \mathrm{m}$, aliphatic CH).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 66.9 ; \mathrm{H}, 11.6 ; \mathrm{N}, 15.6$. Found: C, 66.8; H, 11.5; N, 15.3.
$N . N, N^{\prime}$-Trimethylguanidine (9) Acetate. A quaternary ammonium cation-exchange resin ($36 \mathrm{~mL}, 44$ mequiv OH^{-}form, 20-50 mesh, BioRad) was converted to the acetate form by soaking with two portions of aqueous acetic acid ($60 \mathrm{~mL}, 1 \mathrm{~N}$). A column was then prepared and washed with 100 mL of $\mathrm{H}_{2} \mathrm{O} . N, N, N$ - Trimethylguanidine (9) hydriodide ${ }^{7.8}(5.00 \mathrm{~g}, 21.8 \mathrm{mmol})$ was dissolved in 10 mL of $\mathrm{H}_{2} \mathrm{O}$ and applied to the column. Elution with 150 mL of $\mathrm{H}_{2} \mathrm{O}$ followed by evaporation gave 4.64 g of hygroscopic oil, which on drying at $23^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$ for 12 h gave $3.48 \mathrm{~g}(99 \%)$ of deliquescent crystals, used without purification for the next step.
$\boldsymbol{N}, \boldsymbol{N}^{\prime}$-Diacetyl- $\mathbf{N}, \boldsymbol{N}^{\prime \prime}, N^{\prime \prime}$-Trimethylguanidine (10). $N, N, N^{\prime}-$ Trimethylguanidine (9) acetate ($1.98 \mathrm{~g}, 12.3 \mathrm{mmol}$) was stirred with acetic anhydride $(50 \mathrm{~mL})$ under N_{2} at $100^{\circ} \mathrm{C}$ for 40 min . Excess acetic anhydride was then evaporated, finally at $60^{\circ} \mathrm{C}(1 \mathrm{~mm})$ for 30 min to remove the last traces of anhydride, producing 2.26 g of crude oil. This material was distilled through a short Vigreux column to give $2.13 \mathrm{~g}(95 \%)$ of colorless oil: bp $120-125^{\circ} \mathrm{C}(0.025 \mathrm{~mm})$; UV $\lambda_{\text {max }}$ $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 205 \mathrm{~nm}(\epsilon 5750), 257(14400)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 3.01(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.99(3 \mathrm{H}, \mathrm{s}$, COCH_{3}).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 51.9; H, 8.2; N, 22.7. Found: C, 51.7; H, 8.0; N, 22.5.
\boldsymbol{N}-Acetyl- $\boldsymbol{N}^{\prime}, \boldsymbol{N}^{\prime}, \boldsymbol{N}^{\prime \prime}$-trimethylguanidine (3). N, N^{\prime}-I iacetyl$N, N^{\prime \prime}, N^{\prime \prime}$-trimethylguanidine (10) ($6.00 \mathrm{~g}, 32.4 \mathrm{mmol}$) was mixed with 50 mL of methanol and quaternary ammonium ion-exchange resin ($60 \mathrm{~mL}, 84$ mequiv, BioRad AG1-X8 hydroxide form, 20-50 mesh, washed with $4 \times 100 \mathrm{~mL}$ of methanol) and allowed to stand at room temperature. After 20 h , the reaction was diluted with 500 mL of methanol and stirred for 10 min , the methanol was decanted, the resin was washed again with 150 mL of methanol, and the combined methanol extracts were evaporated. The resulting oil was azeotropically dried (evaporate 100 mL of $\mathrm{CCl}_{4} ; 100 \mathrm{~mL}$ of $1: 1$ benzene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and mixed with benzene $(7.0 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. After chilling $\left(0^{\circ} \mathrm{C}, 3\right.$ days $)$, layering with petroleum ether (20 mL), and chilling again ($0^{\circ} \mathrm{C}, 4$ days), the monoacetic product crystallized. The liquid

Table I. Spectral (UV and NMR) Characterization of Acetyltetraalkylguanidines

| $\begin{array}{c}\text { UV } \\ \text { absorption, } \\ \lambda_{\text {max }}(\epsilon) \text { in } \\ \text { ethanol } \\ \left(\mathrm{OH}^{-}\right)\end{array}$ | | |
| :---: | :---: | :---: | \(\left.$$
\begin{array}{c}\text { Compd }\end{array}
$$ \begin{array}{c}NMR absorption

\delta, i. \mathrm{CCl}_{4}\end{array}\right]\)
${ }^{a}$ Data from ref 6.

Scheme I. CIMS Fragmentation of N-Ethyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}$-trimethylguanidine (19)
A. 19

B. $\quad 19$

$$
\begin{gathered}
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}=\mathrm{C}=\stackrel{+}{\mathrm{N}} \mathrm{HCH}_{3}+\mathrm{HN}\left(\mathrm{CH}_{3}\right)_{2} \xrightarrow{\mathrm{CH}_{5}^{+}} m / e 46 \\
m / e 85
\end{gathered}
$$

C. Similarly, $20 \rightarrow m / e 85$ and 46; 71 and 60
the presence of 19 and the absence of 20 . By establishing the structure of 19 , we have also established the st-ucture of 3.

In anticipation of a rapid reduction, octanoyl $-N, N^{\prime}$ tetramethylguanidine (4) was treated with excess LiAlH_{4} for 1 h in ether to produce N-methyloctylamine (24; in 60% yield. A stoichiometric reduction ($2 \mathrm{H}^{-}, 0.5 \mathrm{~mol}$ of $\mathrm{LiAlH}_{4} / \mathrm{mol}$ of acylguanidine) was then carried out with the hope of arresting the reduction of 4 at the guanidine stage. Instead of a guanidine, the reaction product consisted of a mixture of compounds 25,26 , and 27 . A third reduction was performed using less $\mathrm{LiAlH}_{4}\left(1.3 \mathrm{H}^{-}, 0.33 \mathrm{~mol}\right.$ of $\mathrm{LiAlH}_{4} / \mathrm{mol}$ of acylguanidine) in the hope of isolating an acylamidine. Instead, the same three products were obtained as in the previous reduction; only the relative yields had changed (see Table II).

24

Although the production of 25,26 , and 27 in the second and third reductions was unexpected, the data substantiating these results is clear. Initially, the CIMS indicated only the presence of 25, 26, and 27 plus two other ions, mie 156 and 127, which turned out to be fragments of 25.

NMR data supplied the first clues to the structure of 25 , notably, the coupling of the NH proton to the $\mathrm{NCH}_{2} \mathrm{~N}$ methylene, which was erased by exchanging tie NH proton for deuterium. Two examples of acylaminals such as 25 have

Table II. Distribution of Products from the Reduction of N-Octanoyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-tetramethylguanidine (4) with Varying Amounts of Lithium Aluminum Hydride

	Amount of lithium aluminum hydride		
Product	Excess	2 equiv a	1.3 equiv b
$\mathbf{2 4}^{\boldsymbol{c}}$	60%		
$\mathbf{2 5}^{d}$		58%	9%
$\mathbf{2 6}^{d}$		10%	11%
$\mathbf{2 7}^{d}$		18%	69%

${ }^{a} 2 \mathrm{H}^{-}$or 0.5 mol of $\mathrm{LiAlH}_{4} / \mathrm{mol}$ of $4 .{ }^{b} 1.3 \mathrm{H}^{-}$or 0.33 mol of $\mathrm{LiAlH}_{4} / \mathrm{mol}$ of 4. ${ }^{c}$ Isolated yield. ${ }^{d}$ Yields from GC and NMR integration; tertiary mixture was distilled, but components were not separated.
been reported, ${ }^{14,5}$ both of which were prepared by condensation of formaldehyde, a primary amide, and a secondary amine. Using this approach, an authentic sample of 25 was prepared for comparison with the reduction product, thus establishing its structure.

Since the reduction products from the limited LiAlH_{4} reductions of 4 could be distilled without any change in the NMR or CIMS, the mixtures were analyzed by GC/MS and high-resolution mass spectrometzy (both with electron impact sources). The first and second GC peaks eluted had parent ions of $m / e 171$ and 143, respectively, as well as all the fragments predicted by structures 26 and 27, including McLafferty rearrangements (giving the jase peaks) and α cleavage. ${ }^{16}$ The third GC peak gave a weak parent ($m / e 200$) and the two other ions, $m / e 127$ and 57 (base), which can be explained by the following fragmentations (Scheme II). Authentic 25 and

Scheme II

26 gave GC/MS retention times and fragmentation patterns which correspond to the second and third GC/MS peaks from the reduction mixtures. Finally, all the molecular formulas for the three parent ions and their electron impact MS fragments were obtained from a computerized high-resolution scan over the entire mass range of a reduction mixture (see Experimental Section).

Although the reduction of 4 ₹ 24 and 25 can be easily explained, the formation of 26 and 27 is more difficult to rationalize. The formation of 24 and 25 probably arises from conjugate addition, followed by elimination of metalated dimethylamide ion, to give the intermediate acylamidine 28. This species is probably extremely labile to reduction, since as little as 1.3 equiv of hydride $/ \mathrm{mol}$ of 4 failed to show any evidence of 28. In the presence of excess $\mathrm{LiAlH}_{4}, 28$ can undergo conjugate addition of hydride, elimination of dimethylamide ion, further conjugate addition to the N-methylamide, and finally, reduction to amine 24 . With 2 equiv of H^{-}, this process stops at the acylaminal (25) stage, and with 1.3 equiv of H^{-}the reduction rate is slow enough that di-

Peracetylation of the trimethylguanidine by heating with acetic anhydride gave the diacetylguanidine 10 in excellent yield. Initial attempts to convert 10 to the monoacetylguanidine 3 were based on a procedure for converting diacetylguanidine to monoacetylguanidine via ethanolysis. ${ }^{9}$ With 10 , however, solvolysis required reflux for 3 days and a complex mixture of products was obtained.
In a second approach to the monodeacetylation of 10 to 3 , we employed a quaternary ammonium hydroxide resin for both practical and theoretical reasons. The practical advantage of the resin over metal hydroxides arises from the relative ease of product isolation. Alkaline cleavage was chosen over acid, since hydroxide attack on 10 should give 3 rather than 11, as the unconjugated tetrahedral intermediate 12 is of higher energy than 13. Furthermore, 13 proceeds to a resonance stabilized anion which 12 does not.

Having thus rationalized that hydrolysis of diacetylguanidine 10 should result in the acyliminoguanidine 3 rather than the acylaminoguanidine 11, we were surprised to find that the product from hydroxide cleavage of 10 showed $\lambda_{\max } 209 \mathrm{~nm}$, consistent with an acylaminoguanidine, ${ }^{6}$ i.e., structure 11. This discrepancy between the predicted and observed UV absorption was resolved, however, when it was found that 3 gave a bathochromic shift of 35 nm (to $\lambda_{\max } 247 \mathrm{~nm}$) by changing the solvent from ethanol to dioxane. Similar solvent changes with 1 and 2 gave bathochromic shifts of only 5 nm , implying that 3 exhibits unusual properties and may even exist as the more polar deconjugated tautomer $\mathbf{3} \mathbf{b}$ in protic solvents.

Changing to an aprotic solvent would then favor the intramolecularly hydrogen-bonded tautomer 3a. Experiments on the reduction product of 3 (discussed later) further substantiate our structure assignment.
β-Alacreatinine (5) hydrochloride was obtained from β guanidinopropionic acid (14) which, in turn, was prepared from β-alanine and, finally, methylcreatinine [1,3-dimethyl-2-imino-4-imidazolidinone, (7)] was obtained by methylation of creatinine (6) with dimethyl sulfate. ${ }^{10}$ This methylation of 6 gives a good yield, and the incorrect structure $\left(\mathrm{CH}_{3}\right.$ on exo nitrogen) assigned to methylcreatinine in ref 10 was subsequently corrected to structure $7 .{ }^{11}$

Reductions. Since the reduction of each substrate had some unique features, we will consider them separately before discussing the more general aspects of the reaction. One common problem, however, was the tendency of the alkylguanidine products to be overreduced and form amines. Good yields required controlled reaction times, and these varied individually from 4 to 36 h .
The first substrate, dodecanoylguanidine (1), chosen for its solubility in THF, was reduced smoothly to dodecylguanidine (15), accompanied by dodecylamine (16). Reaction monitoring

15
by GC on OV-225 was sufficient to set an approximate reaction time which was then verified by three reductions; $33 \pm$ 5 h represents the optimum time under the conditions reported. An attempt at shortening this reaction time by heating to reflux in THF produced a drastic increase in amine formation; therefore, all subsequent reductions were conducted
at $23^{\circ} \mathrm{C}$. Attempts to minimize the formation of amine by using only a slight excess of LiAlH_{4} and longer reaction times led to lower yields. Although the acetate salt is the most convenient form for isolation, the sulfate was superior for characterization.

To determine whether amine 16 was formed by reduction of guanidine 15 or by conjugate addition of H^{-}to 1,15 was treated with LiAlH_{4}. The amount of amine 16 formation (15% by GC) in this reduction suggested that all or most of the amine 16 formed in the reduction of 1 comes from subsequent reduction of 15 ; the best yield of $15,60 \%$, was accompanied by 15% of 16.
Reduction of N-dodecanoyl- $N^{\prime}, N^{\prime \prime}$-dimethylguanidine (2) to the trialkylguanidine 17 also proceeded in good yield and could be monitored by TLC with good resolution of 2 , dodecylamine (16), and N-dodecyl- $N^{\prime}, N^{\prime \prime}$-dimethylguanidime (17). The ratio of 16 to 18 (about 2:1) would be expected from a

purely random breakup of the intermediate aluminum complex followed by reduction of the resulting metalated amidine. Although $17 \cdot \mathrm{HI}$ has been reported, ${ }^{12}$ we found 17 was more conveniently characterized as its tosylate.
N-Acetyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}$-trimethylguanidine (3) was reduced rapidly to N-ethyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}$ - trimethylguanidine (19). Since we sought further evidence for the structure of 3 , two experiments were undertaken to confirm the structure of 19. The first was derivatization of 19 ; the second was a CIMS fragmentation study.
The competing structure for the monodeacetylation product of 10 would be 11 , in which the remaining acetyl group is on a methylated nitrogen, rather than 3 , in which the acetylated nitrogen bears no methyl. If 10 cleaves to 3 and is reduced to 19, then acetylation should give 21 and/or 22, both

of which are tetraalkylacylaminoguanidines (nonconjugated). If 10 cleaves to 11 , which is then reduced to 20 , acetylation of 20 would give a tetraalkylacyliminoguanidine 23 (conjugated). It was found that acetylation of 19 gave a compound whose NMR and UV are consistent only with structure 22 (Table I), a nonconjugated derivative. Molecular models of 21 and 22 show extreme crowding in the coplanar conformation. Structure 22 appears slightly less crowded and is probably formed preferentially for steric reasons.

As further evidence, the assigned structure of 19 was supported by its fragmentation in the CIMS. To maximize the fragmentation, CH_{4} reagent gas was used, since this gives the high-energy protonating species, $\mathrm{CH}_{5}{ }^{+} .{ }^{13}$ The possible fragmentation patterns for 19 and 20 are shown in Scheme I. The fragments $m / e 85$ and 46 are predicted for both 19 and 20, and both were observed. In addition, both $m / e \subseteq 9$ and 32 were observed and $m / e 71$ and 60 were not, clearly demonstrating
(8) W. A. Bone and W. H. Perkin, J. Chem. Soc., 67, 108 (1395).
(9) R. H. Best and J. F. Thorpe, J. Chem. Soc., 685 (1909).
(10) R. K. Singh and S. Danishefsky, J. Org. Chem., 40, 2969 (1975)
(11) S. Danishefsky and G. Rovnyak, J. Org. Chem., 40, 114 (1975).
(12) S. Danishefsky and R. K. Singh, J. Am. Chem. Soc., 97, 3239 (1975).
(13) R. K. Singh and S. Danishefsky. J. Org. Chem., 41, 1668 (1976)
(14) J. B. Cloke, J. Am. Chem. Soc., 51, 1174 (1929).
(15) J. B. Cloke, L. H. Baer, J. M. Robbins, and G. E. Smith, J. Am. Chem. Soc. 67, 2155 (1945)
(16) R. V. Stevens, M, C. Ellis, and M. P. Wentland, J. Am. Chem. Soc., 90, 5576 (1968).
(17) R. V. Stevens and M. P. Wentland, J. Am. Chem. Soc, 90, 5580 (1968).
(18) S. L. Keely, Jr., and F. C. Tahk, J. Am. Chem. Soc., 90, 5584 (1968).
(19) N. A. Somenova, G. T. Katvalyan, and E. A. Mistryukov, Tetrahedron Lett.,

445 (1976).

(20) S. Archer, N. F. Albertson, L. S. Hauis, A. K. Pierson, and J. G. Bird, J. Med. Chem., 7, 123 (1964)
(21) T. Kametani, K. Kigasawa, M. Hiiragi, and N. Wagatsuma, Heterocycles, 2, 79 (1974) and eferences cited therein
(22) T. Kametani, S.-P Huang, M. Ihara, and K. Fukumoto, Chem. Pharm. Bull., 23, 2010 (1975).
(23) T. Kametani, T. Honda. S.-P. Huang, and K. Fukumoto, Can. J. Chem., 53, 3820 (1975)
(24) D. C. Palmer and M. J. Strauss, Chem. Rev., 77, 1 (1977)
(25) M. Julia, S. Julia, and R. Guegan, Bull. Soc. Chim. Fr., 1072 (1960).
(26) S. F. Brady, M. A. Itton, and W. S. Johnson, J. Am. Chem. Soc., 90, 2882 (1968).
(27) T. Kametani, K. Kigasawa, M. Hiiragi. T. Hayasaka, N. Wagatsuma, and K. Wakisaka, J. Heterocycl. Chem., 6, 43 (1969).

Reduction of Acylguanidines to Alklyguanidines with Lithium Aluminum Hydride

Jay F. Stearns and Henry Rapoport*
Department of Pharmaceutica! Chemistry, University of California, San Francisco, California and Department of Cheruistry, University of California, Berkeley, California 94720

Received April 19, 1977

Abstract

Six acylguanidines bearing different alkylation patterns, namely dodecanoylguanidine (1), N-dodecanoyl$N^{\prime}, N^{\prime \prime}$-dimethylguanidine (2), N-acetyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}$-trimethylguanidine (3), β-alacreatinine (5), creatinine (6), and methylcreatinine (7), have been reducec to the corresponding alkylguanidines with lithium aluminum hydride in yields ranging from 51 to 62%. A seventh reduction substrate, N-octanoyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-tetramethylguanidine (4), gave only nonguanidine reduction products resulting from cleavage of the guanidine moiety, including N-(dimethylaminomethyl)octanamide (25). Syntheses of the various substrates are described and reaction mechanisms and general synthetic utility are discussed.

Although a literature search revealed no examples of reduction of an acylguanidine with lithium aluminum hydride $\left(\mathrm{LiAlH}_{4}\right)$, a statement ${ }^{1}$ that the guanidine group is inert to LiAlH_{4} suggested to us that the reduction of an acylguanidine to an alkylguanidine might be possible. The utility of such a conversion is illustrated by the occurrence of the alkylguanidine moiety in a wide variety of biological systems and the presence of the guanidine group in antihypertensive drugs such as clonidine ${ }^{2}$ and guanethidine. ${ }^{3}$

Results and Discussion

Preparation of Reduction Substrates. The acylguanidines 1-7, selected because they represent a broad range of

2

3

4

5

6

7
substitution patterns, were in most cases easily prepared. Compounds 1^{4} and 2 were prepared by acylating the appropriate guanidine free base with methyl dodecanoate following the general procedure for acylating guanidines with esters. ${ }^{5}$ To acylate the sym-tetramethylguanidine and prepare substrate 4, the acid chloride was required. Compounds 1, 2, and 4 displayed the spectral properties expected for such acylguanidines. ${ }^{6}$

Considerable difficulty was encountered in the preparation of N-acetyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}$-trimethylguanidine (3), the major problem being the selective conversion of 10 to 3 . The preparation of 9 proceeded according to conventional methods, ${ }^{7,8}$ and then 9 hydriodide was converted by ion exchange to the acetate to obtain increased solubility in acetic anhydride.

11

12

13
p-methoxybenzaldehyde, 11 g of sodium hydroxide, 100 mL of water, and 80 mL of ethanol was stirred for 20 h at room temperature. After the addition of 200 mL of water, the reaction mixture was extracted with ether. The ethereal extract was washed with saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. Removal of the solvent and unreacted p-methoxybenzaldehyde gave 19 g of compound 3 as a yellow oil, which was used in the following reaction without purification. A part of the product was purified by preparative thin-layer chromatography on silica gel (ether-benzene, 1:2) for the spectral data and microanalysis: UV (MeOH) 323 nm ; IR $\left(\mathrm{CHCl}_{3}\right) 1633 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.63-1.53(4 \mathrm{H}, \mathrm{m}, \mathrm{cy}-$ clopropyl protons), $1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 6.70(1 \mathrm{H}$, $\mathrm{d}, J=14 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 7.64(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 6.90$ $(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic β protons $), 7.45(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic α protons); MS m/e $216\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 76.25 ; \mathrm{H}, 7.54$. Found: C , 76.10; H, 7.39.

3-(4-Methoxyphenyl)-1-methylcyclopropylpropanone (4). A suspension of 18 g of compound 3 and 10 g of Raney nickel $\left(\mathrm{W}_{2}\right)$ in 400 mL of ethanol was shaken under a current of hydrogen for 24 h . After removal of the catalyst, the ethanol was evaporated off to give a pale yellow oil, which was distilled to afford $18 \mathrm{~g}(81.35 \%$ yield based on compound 2) of compound 4 as a colorless oil: bp $115^{\circ} \mathrm{C}(0.4 \mathrm{mmHg})$; IR $\left(\mathrm{CHCl}_{3}\right) 1680 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.48-1.23(4 \mathrm{H}, \mathrm{m}$, cyclopropyl protons), $1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.41-3.08(4 \mathrm{H}, \mathrm{m},-\mathrm{CO}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 6.76(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, aromatic β protons), $7.60(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, aromatic α protons $)$; MS $m / e 218$ $\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 77.03; $\mathrm{H}, 8.31$. Found: C, 76.70; H , 8.36.

2-Bromo-3-(4-methoxyphenyl)-1-methylcyclopropylpropanone (5). To a solution of 5 g of compound 4 in 200 mL of ether was added in small portions 7.5 g of pyridinium hydrobromide perbromide under ice cooling and the resulting mixture was stirred for 4 h at the same temperature. After filtration, the filtrate was washed with saturated aqueous sodium thiosulfate solution and saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. Evaporation of the solvent gave 7.5 g of bromide 5 as a yellow oil, which was used in the following reaction without further purification because of its instability. A part of this product was purified by preparative thin-layer chromatography on silica gel $\left(\mathrm{CHCl}_{3}\right)$ for spectral data and microanalysis: IR $\left(\mathrm{CHCl}_{3}\right) 1685 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.6-1.3\left(4 \mathrm{H}, \mathrm{m}\right.$, cyclopropyl protons), $1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.8-3.7(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}-\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.47(1 \mathrm{H}, \mathrm{q}, J=6$ and 9 Hz , $-\mathrm{CHBr}-), 6.8(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic β protons), $7.1(2 \mathrm{H}, \mathrm{d}, J=$ 8 Hz , aromatic α protons); MS m/e $296\left(\mathrm{M}^{+}\right), 298\left(\mathrm{M}^{+}+2\right)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Br}$: C, $56.58 ; \mathrm{H}, 5.77$. Found: C, $56.45 ; \mathrm{H}$, 5.87.

2-Benzylamino-3-(4-methoxyphenyl)-1-methylcyclopropylpropanone)6). A solution of 7.5 g of bromide 5 and 11.3 g of benzylamine in 200 mL of methanol was refluxed for 5.5 h . After removal of methanol, the residue was dissolved in 100 mL of 10% hydrochloric acid, whose solution was washed with n-hexane. The aqueous layer was basified with 10% ammonium hydroxide solution and extracted with ether. The ethereal layer was washed with saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. Removal of the solvent and unreacted benzylamine afforded a yellow oil, which was purified by column chromatography on 100 g of silica gel. Elution with hexane-benzene (2:3) gave 5.6 g (75.6% based on compound 4) of benzylamino derivative 6 as a colorless oil: IR (CHCl_{3}) $1680 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.5-1.2(4 \mathrm{H}, \mathrm{m}$, cyclopropyl protons), $1.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.68-3.0\left(2 \mathrm{H}, \mathrm{m},>\mathrm{CHCH}_{2} \mathrm{Ar}\right), 3.3-3.75$ $\left(3 \mathrm{H}, \mathrm{m},-\mathrm{CHCH}_{2}-\right.$ and $\left.>\mathrm{NCH}_{2} \mathrm{Ar}\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right) .6 .8(2 \mathrm{H}, \mathrm{d}, J$ $=8 \mathrm{~Hz}$, aromatic β protons), 7.1 ($2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic α protons), 7.2 ($5 \mathrm{H}, \mathrm{s}$, aromatic protons); MS m/e $323\left(\mathrm{M}^{+}\right)$. Hydrochloride formed colorless crystals: mp $163-164{ }^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.31 ; \mathrm{H}, 7.38 ; \mathrm{N}, 3.80$. Found: C, 68.10; H, 7.23; N, 3.83.

1-Benzyl-2-(4-methoxybenzyl)-4-methylpiperidin-3-one (7). A solution of 325 mg of benzylamino derivative 6 hydrobromide and 130 mg of potassium iodide in acetonitrile was heated at $140-145^{\circ} \mathrm{C}$ in a sealed tube for 3 days. After filtration of inorganic compound, the solvent was distilled off and the residue was dissolved in 20 mL of 10% hydrochloric acid, whose solution was washed with n-hexane. The aqueous layer was basified with 10% ammonium hydroxide solution and extracted with ether. The ethereal layer was washed with saturated aqueous sodium thiosulfate solution and saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. Removal of the solvent afforded a yellow oil, which was subjected to column chromatography on 10 g of silica gel. Elution with benzene
gave a solid, which was recrystallized from benzene-hexane to afford $185 \mathrm{mg}(71.2 \%)$ of 7 as colorless needles, $\mathrm{mp} 104-105^{\circ} \mathrm{C}$: IR $\left(\mathrm{CHCl}_{3}\right)$ $1710 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.03\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 1.5-3.6 ($8 \mathrm{H}, \mathrm{m}$, methylene and methine protons), $3.73(2 \mathrm{H}, \mathrm{s}$, $\left.>\mathrm{NCH}_{2} \mathrm{Ar}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 6.78(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, aromatic β protons), $7.03(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, aromatic α protons), 7.21 ($5 \mathrm{H}, \mathrm{s}$, aromatic protons); MS m/e 323 (M^{+}).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 77.98; H, 7.79; $\mathrm{N}, 4.33$. Found: C, 78.20; H, 7.73; N, 4.13.

1-Benzyl-3-hydroxy-2-(4-methoxybenzyl)-3,4-dimethylpiperidine (8). (A) From 7. To a solution of methylmagnesium iodide (prepared from 85 mg of Mg turnings and 500 mg of methyl iodide) in 5 mL of dry ether was added dropwise a solution of 100 mg of 7 in 5 mL of dry ether and stirred for 5 h at room temperature. The reaction mixture was poured into 10 mL of ice-water and extracted with ether. The ethereal layer was washed with saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. Removal of the solvent afforded a yellow oil, which was subjected to column chromatography on 2 g of silica gel. Elution with benzene-ethyl acetate (95:5) gave 62 mg (59%) of 8 as a colorless oil, which was identical with 8 obtained from 9 as below in its IR, NMR spectrum, and mixture melting point.
(B) From 1-Benzyl-5-hydroxy-6-(4-methoxybenzyl)-4,5-dimethylpiperidin-2-one (9). A solution of 1.3 g of amide 9 in 25 mL of dry xylene was added to a solution of 12 g of 70% sodium bis(2methoxyethoxy)aluminum hydride in 15 mL of dry xylene, and the resulting mixture was heated under reflux for 4 h under a current of nitrogen. After the reaction mixture was acidified with 10% hydrochloric acid, the organic layer separated was extracted with water. Both aqueous layers were combined and basified with 10% ammonium hydroxide solution and extracted with chloroform. The chloroform layer was washed with saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. Evaporation of the solvent gave a yellow oil, which was subjected to column chromatography on 20 g of silica gel. Elution with benzene-ethyl acetate (95:5) afforded $662 \mathrm{mg}(50.3 \%)$ of 8 as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) 3500 \mathrm{~cm}^{-1}(\mathrm{OH})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.98\left(3 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}<\right), 1.25(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})<\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 6.8(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic β protons), $7.6(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic α protons), $7.65(5 \mathrm{H}, \mathrm{s}$, aromatic protons). Hydrochloride: mp 180-182 ${ }^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.64 ; \mathrm{H}, 8.06 ; \mathrm{N}, 3.64$. Found: C, 68.68; H, 7.94; N, 3.71.

1-Benzyl-1,2,5,6-tetrahydro-2-(4-methoxybenzyl)-3,4-dimethylpyridine (10). A solution of 30 mg of carbinol 8 in 5 mL of 50% sulfuric acid was heated at $80^{\circ} \mathrm{C}$ for 2 days under stirring. The reaction mixture was basified with 10% ammonium hydroxide solution and extracted with ether. The ethereal layer was washed with saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. Removal of the solvent gave a yellow oil, which was purified by preparative thin-layer chromatography on silica gel (petroleum ether-ether, $3: 1$) to afford $23 \mathrm{mg}(81 \%)$ of 10 as a colorless oil: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.63\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 3.58\left(2 \mathrm{H}, \mathrm{s},>\mathrm{NCH}_{2} \mathrm{Ar}\right), 3.77$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 6.66(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}$, aromatic β protons), 7.08 (2 $\mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}$, aromatic α protons), $7.1(5 \mathrm{H}, \mathrm{s}$, aromatic protons). Hydrochloride, mp $152-153{ }^{\circ} \mathrm{C}$ (lit., ${ }^{27} \mathrm{mp} 152-154^{\circ} \mathrm{C}$) identical with an authentic sample ${ }^{27}$ in its IR, NMR spectrum, and mixture melting point.

Acknowledgments. We thank C. Koyanagi, K. Mushiake, R. Kobayashi, R. Suenaga, E. Nagaoka, M. Tanno, and K. Kawamura, Pharmaceutical Institute, Tohoku University, for microanalyses and spectral measurements.

Registry No.-1, 359-83-1; 2, 1567-75-5; 3, 63215-74-7; 4, 63181-$46-4 ; 5,63181-47-5 ; 6,63181-48-6 ; 6 \mathrm{HCl}, 63181-49-7$; $6 \mathrm{HBr}, 63197-$ 36-4; 7, 63181-50-0; 8, 63181-51-1; $8 \mathrm{HCl}, 63181-52-2 ; 9,63181-53-3 ;$ 10, 22185-48-4; $10 \mathrm{HCl}, 23909-52-6$; p-methoxybenzaldehyde, 123-11-5; benzylamine, 100-46-9.

References and Notes

(1) Part 725, T. Kametani, K. Takahashi, M. Ihara, and, K. Fukumoto, Heterocycles, 6, 1371 (1977).
(2) (a) R. W. Kierstead, R. W. Linstead, and B. C. L. Weedon, J. Chem. Soc., 3610 (1952); (b) P. L. Fuchs, J. Am. Chem. Soc., 96, 1607 (1974).
(3) W. G. Dauben and D. J. Hart, J. Am. Chem. Soc., 97, 1622 (1975).
(4) J. M. Stewart and H. H. Westberg. J. Org. Chem., 30, 1951 (1965).
(5) J. E. Dolfini, K. Menich, P. Corlias, S. Danishefsky, R. Cavanaugh, and S. Chakrabartty, Tetrahedron Lett., 4421 (1966).
(6) E. J. Corey and P. L. Fuchs, J. Am. Chem. Soc., 94, 4014 (1972).
(7) W. F. Berkowitz and S. C. Grenetz, J. Org. Chem., 41, 10 (1976).

Scheme I

(1)

(2)

(4)

(5)

aminomethyl cyclopropyl ketones and this prompted us to examine its possible use for the synthesis of more complex objectives.

Since pentazocine (1), 1,2,3,4,5,6-hexahydro-8-hy-droxy-6,11-dimethyl-3-(3-methyl-2-butenyl)-2,6-methano3 -benzazocine, was first synthesized by Archer et al., ${ }^{20}$ many kinds of synthetic methods ${ }^{21-24}$ for this compound 1 have been reported because of its nonnarcotic analgesic activity. Herein we wish to report a simple and novel synthesis of pentazocine (1) by using the thermal rearrangement of aminomethyl cyclopropyl ketone 6 as a key reaction.

The key compound 6 in our synthesis was prepared as follows. Condensation of 1-acetyl-1-methylcyclopropane (2) ${ }^{25,26}$ with p-methoxybenzaldehyde in the presence of sodium hydroxide, followed by the catalytic hydrogena-ion of the resulting styril ketone 3 , afforded the cyclopropylpropanone 4 in 81.35% overall yield. Bromination of the compound 4 with pyridinium hydrobromide perbromide in e:her gave the bromide $5\left[\mathrm{~m} / e 296\left(\mathrm{M}^{+}\right)\right.$, $298\left(\mathrm{M}^{+}+2\right), \nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1685$ $\mathrm{cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 4.47(1 \mathrm{H}, \mathrm{q}, J=6$ and $\left.9 \mathrm{~Hz},-\mathrm{CO}-\mathrm{CHBr}-)\right]$, which was subsequently treated with benzylamine in methanol to afford the key intermediate 6 in 75.6% vield (based on the propanone 4).

Next, thermolysis of compound $\mathbf{6}$ was carried out to proceed

Scheme II

(7)
$\downarrow \mathrm{CH}_{3} \mathrm{MgI}$

smoothly in high yield. A solution of hydrobromide of the compound 6 in acetonitrile was heated at $140-145^{\circ} \mathrm{C}$ in a sealed tube in the presence of potassium iodide to give the piperidone 7 in 71.2% yield as a single product. The relative configuration between methyl and p-methoxybenzyl groups was assigned to be cis tentatively at this stage and this was confirmed by a subsequent trazsformation to the piperidin-3-ol 8, which was in turn derived from the known compound 9. ${ }^{22}$ At first the piperidone 9^{22} was reduced with sodium bis(2methoxyethoxy'aluminum hydride to afford 8.

Finally, the piperidone 7 was treated with methylmagnesium iodide in ether to furnish the piperidin-3-ol 8 in 59% yield, which was shown to be identical with the authentic sample obtained above in its IR $\left(\mathrm{CHCl}_{3}\right)$ and $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectral comparisons and mixture melting points. The dehydration was effected by treating the piperidin-3-ol 8 with 50% sulfuric acid to give the olefinic compound 10 as a single product in 81% yield. Our product 10 was found to be identical with the authen-ic sample ${ }^{27}$ in its IR $\left(\mathrm{CHCl}_{3}\right), \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum, and mixture melting point. Since this olefin 10 had been transformed to pentazocine (1), ${ }^{27}$ this work constitutes a novel synthesis of pentazocine (1). Thus, we could demonstrate the thermal rearrangement of aminomethyl cyclopropyl ketone as a useful reaction for the synthesis of the compounds which contain a piperidine ring.

Experimental Section

Melting points are uncorrected NMR spectra were taken with a JNM-PMX-60 spectrometer (tetramethylsilane as an internal reference), IR spectra with a Hitachi 215 spectrophotometer, and mass spectra with a Hi-achi RMU-7 spectrometer.

3-(4-Methoxyphenyl)-1-methylcyclopropyl-2-propenone (3). A solution of 10.5 g of 1-acetyl-1-methylcyclopropane (2), 14.6 g of

Orleans, La., a sample of versicolorin C derived from versiconal acetate from Dr. R. J. Cole, National Peanut Research Laboratory, Dawson, Ga., and a sample of versiconol from Dr. Y. Hatsuda, University of Tottori, Japan. We also wish to thank Dr. R. J. Cole for a prepublication copy of his paper on the carbon NMR of versiconal acetate. We thank Mr. T. Glass for obtaining the NMR spectra, and Miss Sue Ellen Jolly for assistance in the preparation of versicolorin A. This work was supported, in part, by contract 223-74-2146 from the Food and Drug Administration, Washington, D.C.

Registry No.-3, 6807-96-1; 4, 10048-13-2; 6a, 63324-95-8; 7b, 63324-96-9; 9, 22268-13-9; 10, 63358-82-7; 12a, 63324-97-0; 13, 63324-98-1; 14b, 63324-99-2; 16, 63325-00-8; 17, 63325-01-9; 18, 6795-16-0; 19, 63325-02-0; sodium borohydride, 16940-66-2.

References and Notes

(1) These data were presented at the 173 rd National Meeting of the American Chemical Society, New Orleans, La., March 24, 1977.
(2) Department of Chemistry.
(3) Department of Biochemistry
(4) W B. Turner, "Fungal Metabolites"', Academic Press, New York, N.Y., 1971.
(5) L. A. Goldblatt, Ed., "Aflatoxin'", Academic Press, New York, N.Y., 1969.
(6) R. Thomas in "Biogenesis of Antibiotic Substances", Z. Venek and Z. Hostalek, Eds., Academic Press, New York, N.Y., 1965, pp 155-167.
(7) R. I. Mateles and G. N. Wogan, Adv. Microb. Physiol., 1, 25 (1967).
(8) M. Biollaz, G. Buchi, and G. Milne, J. Am. Chem. Soc., 92. 1035 (1970).
(9) M. O. Moss in "Phytochemical Ecology"', J. B. Harborne, Ed., Academic Press, London, 1972, pp 125-144.
(10) M. T. Lin, D. P. H. Hsieh, R. C. Yao, and J. A. Donkersioot, Biochemistry, 12, 5167 (1973)
(11) D. P. H. Hsieh, M. T. Lin, and R. C. Yao, Biochem. Biophys. Res. Commun., 52, 992 (1973).
(12) L. S. Lee, J. W. Bennett, A. F. Cucullu, and R. L. Ory, J. Agric. Food Chem., 24, 1167 (1976).
(13) D. P. H. Hsieh, M. T. Lin, R. C. Yao, and R. Singh, J. Agric. Food Chem., 24, 1170 (1976).
(14) K. G. R. Pachler, P. S. Steyn, R. Vleggaar, and P. L. Wessels, J. Chem. Soc., Chem. Commun., 355 (1975).
(15) D. L. Fitzell, D. P. H. Hsieh, R. C. Yao, and G. N. LaMar, J. Agric. Food Chem., 23, 442 (1975).
(16) D. G. I. Kingston, P. N. Chen, and J. R. Vercellotti, Phytochemistry, 15, 1037 (1976).
(17) J. G. Heathcote, M. F. Dutton, and J. R. Hibbert, Chem. Ind. (London), 1027 (1973).
(18) R. C. Yao and D. P. H. Hsieh, Appl. Microbiol., 28, 52 (1974).
(19) H. W. Schroeder, R. J. Cole, R. D. Grigsby, and H. Hein, Jr., Appl. Microbiol., 27, 394 (1974).
(20) L. S. Lee, J. W. Bennett, A. F. Cucullu, and J. B. Stanley, J. Agric. Food Chem., 23, 1132 (1975).
(21) The numbering system used for all the compounds discussed is that used for carbon NMR spectroscopy.
(22) S. F. Ashoor and F. S. Chu, J. Agric. Food Chem., 23, 445 (1975).
(23) Y. Hatsuda, T. Hamasaki, M. Ishida, and S. Yoshikawa Agric. Biol. Chem., 33, 131 (1969).
(24) C. G. Crieg and D. H. Leaback, J. Chem. Soc., 2644 (1963).
(25) A. E. Pohland, M. E. Cushmac, and P. J. Andrellos, J. Assoc. Off. Anal. Chem., 51, 907 (1968).
(26) J. M. Essery, F. A. O'Herron, D. N. McGregor, and W. T. Bradner, J. Med. Chem., 19, 1339 (1976).
(27) G. Büchi, D. M. Foulkes, M. Kurono, G. F. Mitchell, and R. S. Schneider, J. Am. Chem. Soc., 89, 6745 (1967).
(28) K. G. R. Pachler. P. S. Steyn, R. Vleggaar, P. L. Wessels, and De Buys Scott, J. Chem. Soc., Perkin Trans. 1, 1182 (1976).
(29) R. H. Cox and R. J. Cole, J. Org. Chem., 42, 112 (1977).
(30) L. Que, Jr., and G. R. Gray, Biochemistry, 13, 146 (1974).
(31) T. E. Walker, R. E. London, T. W. Whaley, R. Barker, and N. A. Matwiyoff, J. Am. Chem. Soc., 98, 5807 (1976).
(32) G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists' ', Wiley-Interscience, New York, N.Y., 1972, pp 8081.
(33) D. G. I. Kingston, P. N. Chen, and J. R. Vercellotti, J. Chromatogr., 118, 414 (1976).
(34) R. H. Cox and R. J. Cole, J. Am. Chem. Soc., 99, 3159 (1977).
(35) All melting points were determined on a Kofler hot stage and are uncorrected; microanalyses were performed by the Analytical Services division of the Department of Chemistry and by Galbraith Laboratories, Knoxville, Tenn. Proton and carbon NMR spectra were determined on a JEOL PS-100 spectrometer equipped with a Digilab FTS-100 data system. Fourier transform spectra were obtained using spectral widths of 6250 Hz , with 8 K data points; chemical shifts are reported in parts per million downfield from internal tetramethylsilane. UV spectra were obtained in ethanol on a Cary Model 14 spectrophotometer, and IR spectra as KBr pellets on a Beckman Model IR-20 spectrophotometer. Mass spectra were obtained on a Varian-MAT 112 mass spectrometer. Thin layer chromatography was carried out on EM silica gel GF-254 (analytical) or PF (preparative) plates with the following solvent systems: A, benzene/ethyl acetate, 70:30; B, benzene/ethyl acetate, 50:50.
(36) Y. Hatsuda, T. Hamasaki, M. Ishida, K. Matsui, and S. Hara, Agric. Biol. Chem., 36, 521 (1972).

Studies on the Syntheses of Heterocyclic Compounds. 726. ${ }^{1}$ Thermal Rearrangement of Aminomethyl Cyclopropyl Ketones and a Novel Synthesis of Pentazocine

Tetsuji Kametani,* Hideharu Seto, Hideo Nemoto, and Keiichiro Fukumoto
Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan
Received April 8, 1977

Abstract

Thermal rearrangement of the hydrobromide of 2-benzylamino-3-(4-methoxyphenyl)-1-methylcyclopropylpropanone (6), obtained from 1-acetyl-1-methylcyclopropane (2) through 3-(4-methoxyphenyl)-1-methylcyclopropyl2 -propenone (3), 3-(4-methoxyphenyl)-1-methylcyclopropylpropanone (4), and 2-bromo-3-(4-methoxyphenyl)-1-methylcyclopropylpropanone (5), gave 1-benzyl-2-(4-methoxybenzyl)-4-methylpiperidin-3-one (7) in 71.2% yield, which was transformed to 1-benzyl-1,2,5,6-tetrahydro-2-(4-methoxybenzyl)-3,4-dimethylpyridine (10) by Grignard reaction, followed by dehydration of the resulting 1-benzyl-3-hydroxy-2-(4-methoxybenzyl)-3,4-dimethylpiperidine (8). Since 10 had been converted to pentazocine (1), this work constitutes a novel synthesis of pentazocine (1).

The susceptibility of cyclopropane rings with suitable activating groups to several kinds of nucleophiles has been well documented ${ }^{2-7}$ since the studies of Bone and Perkin. 8,9 Recently, Danishefsky reported ${ }^{10-13}$ the nucleophilic homoconjugate reactions of cyclopropanes with two geminal activating groups and an enhanced activation of cyclopropanes with cyclic acylal. On the other hand, the acid-catalyzed
thermal rearrangement of cyclopropylimines, which was originally reported by Cloke, ${ }^{14,15}$ has been shown to be a useful reaction for the synthesis of Δ^{1} - or Δ^{2}-pyrrolines, ${ }^{16-18}$ and aminomethyl cyclopropyl ketones have been transformed to 3 -ketopiperidine rings. ${ }^{19}$ In contrast to the well-studied thermal rearrangement of cyclopropylimines, there have been very limited studies regarding the thermal rearrangement of
with that of the hemiacetal 12a. Its IR spectrum showed no hydroxyl stretching band: $[\alpha\}^{27} \mathrm{D}-184^{\circ}$ (c $6.9, \mathrm{CHCl}_{3}$); mass spectrum $\mathrm{m} / \mathrm{e} 370$ ($\mathrm{M}^{+}, 45$), 342 (22), 341 (103), 325 (11), 313 (16), 297 (35), 295 (13), 285 (28); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.28,13.20(1 \mathrm{H}, 2 \mathrm{~s}, 3-\mathrm{OH}), 7.46(1 \mathrm{H}, \mathrm{t}, J$ $=8 \mathrm{~Hz}, \mathrm{H}-5), 6.84-6.64(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-6), 6.50(1 \mathrm{H}, 2 \mathrm{~d}, \mathrm{H}-14)$, $6.36(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-11), 5.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 4.18$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), 4.00 (3 $\mathrm{H}, \mathrm{s}, \mathrm{H}-18), 3.84-3.16\left(2 \mathrm{H}\right.$, two overlapping $\left.\mathrm{q},-\mathrm{OCH}_{2}-\right), 2.40(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-16), 1.14,0.89\left(3 \mathrm{H}, 2-,-\mathrm{CH}_{3}\right)$. Decoupling experiments indicated that the signals at 4.18 and 6.50 ppm arose from protons on adjacent carbons, as did the signals at 5.34 and 2.40 ppm .

Reduction of Sterigmatocystin Hemiacetal with Sodium Borohydride. Sterigmatocystin hemiacetal (300 mg) was dissolved in tetrahydrofuran (300 mL) and 0.05 M phosphate buffer, pH 7.2 (80 mL), at $0^{\circ} \mathrm{C}$. The cold solution was treated dropwise over 3 h with 50 mL of buffer solution containing 90 mg of NaBH_{4}. The reaction mixture was then diluted with 50 mL of water, adjusted to pH 6 with dilute HCl , and extracted with ethyl acetate. The organic extract was washed, dried, and evaporated to yield a crude product which consisted almost completely of two new products. These products were separated by PTLC using solvent system B.

Sterigmatodiol (16). The more polar of the two products (120 mg) had $\mathrm{mp} 208-210^{\circ} \mathrm{C}$ after crystallization from acetone, and $[\alpha]^{25} \mathrm{D}-8^{\circ}$ (c 2.4, $\mathrm{CH}_{3} \mathrm{SOCH}_{3}$). It showed: $\lambda_{\text {max }} 232 \mathrm{~nm}(\epsilon 27000), 249(29000)$, 331 (16000); $\nu_{\max } 3400(0 \mathrm{H}), 1645,1605 \mathrm{~cm}^{-1}$; mass spectrum m / e 346 ($\mathrm{M}^{+}, 54$) 316 (20), 315 (70), 297 (20), 285 (77), 283 (20), 271 (100); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 7.56(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}-5), 6.90(1 \mathrm{H}, \mathrm{d}, J$ $=8 \mathrm{~Hz}, \mathrm{H}-4), 6.66\left(1 \mathrm{H}, \mathrm{t}, \mathrm{c}^{J}=8 \mathrm{~Hz}, \mathrm{H}-6\right), 6.46(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 4.16-3.96$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$ and -15), $3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19), 3.58(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, $\mathrm{H}-17$); the signal for $\mathrm{H}-16$ was concealed under the solvent peak; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) \delta 180.7,163.6,161.2,159.7,157.2,154.3,135.9$, $110.0,108.5,107.9,106.1,103.7,95.7,63.5,59.9,55.8,42.0-37.0$ (solvent), 34.9, 33.2.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{7}: \mathrm{C}, 62.4 ; \mathrm{H}, 5.2$. Found: C, 62.6; $\mathrm{H}, 5.3$.
Partially Reduced Hemiacetal (14b). The less polar of the two reduction products descrỉed above (80 mg) had mp $223-226^{\circ} \mathrm{C}$ after crystallization from acetcne. It showed: $\lambda_{\max } 232(\epsilon 22000), 249$ (ϵ 29000), 325 (15000); $\nu_{\text {max }} 3410,3260,1640,1610 \mathrm{~cm}^{-1}$: mass spectrum m/e 344 ($\mathrm{M}^{+}, 38$), 326 (70), 314 (22), 313 (100), 297 (20), 285 (60), 283 (42), 255 (20), 253 (27), 169 (21), 149 (27), 131 (22), 119 (33); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) \delta 13.15(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{OH}), 7.54(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}-5), 6.84$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-4), 6.63(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-6), 6.30(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-11)$, $5.64-5.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 5.2-4.8(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18)$, 4.0-3.7 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$), 2.28-2.44 ($\mathrm{m}, \mathrm{H}-16$, partially concealed under the solvent peak); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) \delta$ 180.6, 161.1 (2 overlapping signals), $160.0,156.2,154.5,136.0,110.3,108.1,106.2,102.0,95.9,93.2$, 62.7, 56.2, 42.0-37.0 (solvent), 32.5, 30.2.

Dihydrosterigmatocystin (18). Sterigmatocystin (400 mg) was hydrogenated in ethyl acetate (50 mL) over $10 \% \mathrm{Pd} / \mathrm{C}$ at room temperature for 4 h . The product was recovered in the usual manner and recrystallized from acetone to give dihydrosterigmatocystin, mp $226-227^{\circ} \mathrm{C}$ (lit. $230^{\circ} \mathrm{C}$). ${ }^{36}$
Its UV and IR spectra were as expected; its mass spectrum showed $m / e 326\left(\mathrm{M}^{+}, 100\right), 308(20), 297(26) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 13.04(1 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{OH}$), $7.36(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{~h}-5), 6.70(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-4), 6.62$ ($1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-6$), $6.42(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, \mathrm{H}-14), 6.24(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-11$), 4.16 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-17$) 3.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18$), 3.63 ($1 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}$, $\mathrm{H}-15), 2.30(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-16) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) \delta 180.0,165.5$, 162.8, 161.1, 154.3, 153.6, 135.6, 113.3, 110.2, 108.0, 105.8, 105.4, 90.0, 67.0, 56.3, 43.2, 42.0-37.0 (solvent), 30.5.

Isodihydrosterigmatocystin (17) The hemiacetal 14b (20 mg) was treated with concentrated $\mathrm{HCl}(1 \mathrm{~mL})$ in tetrahydrofuran $(50 \mathrm{~mL})$ for 4 h under reflux. Work $u p$ in the usual way yielded a homogeneous product, which was crystallized from ethyl acetate to give the product $17, \mathrm{mp} 226-227^{\circ} \mathrm{C},[\alpha]^{27} \mathrm{D}-1.7^{\circ}$ (c $2.4, \mathrm{CHCl}_{3}$). Its UV absorption was essentially identical with that of dihydrosterigmatocystin, but its IR spectrum showed differences in the fingerprint region: mass spectrum $m / e 326\left(\mathrm{M}^{+}, 100\right), 308$ (33), 297 (32), 283 (70), 265 (30); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.96(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{OH}), 7.36(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}-5), 6.69(1 \mathrm{H}$, $\mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-4), 6.62(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-6), 6.20(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 5.79$ $(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{H}-17), 4.19\left(2 \mathrm{H}, \mathrm{ABX}, J_{\mathrm{AB}}=8 \mathrm{~Hz}, J_{\mathrm{AX}}=3 \mathrm{~Hz}, J_{\mathrm{BX}}\right.$ $=0 \mathrm{~Hz}, \mathrm{H}-14), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 3.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 2.20(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-16)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) \delta$ 180.1, 160.8, 160.2, 158.1, 154.1, 135.3, $109.8,108.2,107.8,105.7,99.3,95.7,78.7,55.8,42.0-37.0$ (solvent), 31.5, 28.7.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{6}: \mathrm{C}, 66.3, \mathrm{H}, 4.3$. Found C, 66.3; $\mathrm{H}, 4.4$.
Methylation of 14b. The partially reduced sterigmatocystin hemiacetal $14 \mathrm{~b}(15 \mathrm{mg})$ in ethyl acetate (50 mL) was treated with excess diazomethane in alcohol-free ether for $2 \mathrm{hat} 0^{\circ} \mathrm{C}$. The resulting solution was evaporated to dryness, and the product crystallized from ethyl acetate to yield the ether 18 as pale yellow crystals, mp 202-204
${ }^{\circ} \mathrm{C},[\alpha]^{27}{ }_{\mathrm{D}}+8.5^{\circ}\left(c\right.$ 2.2, $\left.\mathrm{CH}_{3} \mathrm{SOCH}_{3}\right)$. The material had: $\lambda_{\max } 231 \mathrm{~nm}$ ($\epsilon 21000$), $250(27000), 329$ (13000); IR $\nu_{\text {max }} 3480,1660,1610 \mathrm{~cm}^{-1}$; mass spectrum m/e $358\left(\mathrm{M}^{+}, 100\right), 340(14), 328$ (18), 327 (43), 300 (15), 299 (65), 285 (44), 273 (14), 272 (61), 255 (15), 254 (20), 242 (14), $226(15) ;{ }^{1} \mathrm{H}$ NMR $\left.{ }^{(} \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) \delta 13.02(1 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{OH}), 7.51$ $(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}-5), 6.82(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-6), 6.64(1 \mathrm{H}, \mathrm{d}, J=$ $8 \mathrm{~Hz}, \mathrm{H}-4), 6.50(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 5.64(1 \mathrm{H}, \mathrm{brd}, J=4 \mathrm{~Hz}, \mathrm{H}-17), \sim 4.8$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-15$), $\sim 4.0(2 \mathrm{H}$, complex. $\mathrm{H}-14), 3.80\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{OCH}_{3}\right)$, and 2.2 (2 H, complex, H-16).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{C}: \mathrm{C}, 62.1 ; \mathrm{H}, 5.2$. Found: $\mathrm{C}, 62.3$; H, 5.1.
Versicolorin A Hemiacetal (6a). Versicolorin A ${ }^{20}(150 \mathrm{mg})$ was heated under reflux for 24 h in acetone (150 mL) containing 1.5 mL of $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction mixture was cooled, evaporated in vacuo to remove most of the acetone, diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and extracted with $5 \times 50 \mathrm{~mL}$ of ethyl acetate. The combined extracts were washed, dried, and evaporated to yield a crude essentially homogeneous product which was crystallized from acetone to give orange-red crystals of the hemiacetal $6 \mathrm{a}(90 \mathrm{mg}), \mathrm{mp} 269-270^{\circ} \mathrm{C}$. The material had: $\lambda_{\text {max }} 223 \mathrm{~nm}(\epsilon 25000), 255(15000), 266(18000), 291(25000)$, 317 (11000), 456 (6100); $\nu_{\text {max }} 3440,3240,1610 \mathrm{~cm}^{-1}$; mass spectrum m/e $356\left(\mathrm{M}^{+}, 18\right), 355(27), 328$ (60), 310 (67), 309 (73), $300(74), 299$ (100), 285 (40); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta 7.18$ ($1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{H}-8$), $7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.61(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{H}-10), 6.49(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\mathrm{H}-15), 5.7-5.5(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-18), 4.3-4.0(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16)$; signals for $\mathrm{H}-17$ were concealed under the solvent peak.
Reduction of Versicolorin A Hemiacetal with Sodium Borohydride. Versicolorin A hemiacetal (80 mg) was dissolved in a mixture of tetrahydrofurn (80 mL) and 0.05 M phosphate buffer, pH $7.2,40 \mathrm{~mL}$. The solution was cooled to $0^{\circ} \mathrm{C}$ and treated dropwise over 2 h with a cold solution of sodium borohydride (20 mg) in 4 mL of buffer. The reaction mixture was then diluted with water, adjusted to pH 6 with dilute HCl , and extracted with $5 \times 50 \mathrm{~mL}$ of ethyl ace tate. The extract was washed, dried, and evaporated to give a crude product which consisted largely of two new materials, which were separated by PTLC with solvent system A.
Versiconol (9). The more polar of the two reduction products was identified as versiconol (9). The material (10 mg) had $\mathrm{mp} 263-265{ }^{\circ} \mathrm{C}$ after crystallization from acetone, undepressed in admixture with authentic material, $\mathrm{mp} 262-266^{\circ} \mathrm{C},[\alpha]^{27} \mathrm{D} 0 \pm 5$ (c 0.4 , dioxane). The TLC behavior of the isolate and of authentic versiconol in solvent system A were identical. The mate-ial had: $\lambda_{\max } 224 \mathrm{~nm}(\epsilon 22000)$, 262 (7900), 296 (9400), 318 (11000), $460(2300)$) $\nu_{\max } 3420,1620 \mathrm{~cm}^{-1}$; mass spectrum $m / \epsilon 342(\mathrm{M}-18,10 \mathrm{I}, 340(42), 312$ (40), 311 (58), 298 (25), 297 (100); using chemical ionization the sample showed $m / e 361$ $\left(\mathrm{MH}^{+}, 11\right), 344$ (13), 343 (55), 342 (20), 341 (100); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 7.24(2 \mathrm{H}, \mathrm{br}, \mathrm{H}-4$ and H-5), $6.64(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, $\mathrm{H}-10), 4.2-3.8(3 \mathrm{H}$, complex, $\mathrm{H}-15$ and $\mathrm{H}-16), 3.4(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}$, H-18).
Partially Reduced Versicolorin A Hemiacetal (7b). The less polar of the two products from the reaction described was crystallized from acetone to give orange-red crystals (15 mg), $\mathrm{mp}>305^{\circ} \mathrm{C} \mathrm{dec}$. The material had: $\lambda_{\max } 223 \mathrm{~nm}(\epsilon 24000), 255(12000), 267(14000), 318$ (9000), 453 (7200); $\nu_{\text {max }} 3580,3150,1620 \mathrm{~cm}^{-1}$; mass spectrum m / e 340 ($\mathrm{M}-18,84$), $322(63), 311(92), 297(100)$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right)$ $\delta 12.62(1 \mathrm{H}, \mathrm{brs},-\mathrm{OH}), 11.94(1 \mathrm{H}, \mathrm{brs},-\mathrm{OH}), 6.98(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, $\mathrm{H}-8), 6.88(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.48(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{H}-10), \sim 5.5(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-15), 3.8-3.0(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$ and $\mathrm{H}-18)$.
Isoversicolorin C (10). Treatment of the partially reduced hemacetal 7b with concentrated $\mathrm{HCl}(0.5 \mathrm{~mL})$ in tetrahydrofuran $(20 \mathrm{~mL})$ under reflux for 2 h , followed by the usual workup, yielded isoversicolorin C (10) as the only organic reaction product. The material had $\mathrm{mp}>350^{\circ} \mathrm{C}$ after recrystallization from acetone, and $\lambda_{\max } 222 \mathrm{~nm}(\epsilon$ 25000), 255 (14000), 265 (16000), 294 (18000), 318 (15000), and 463 (6500).

It showed IR absorption at $\nu_{\text {max }} 3380,1605 \mathrm{~cm}^{-1}$, and its mass spectrum had $m / e 340\left(\mathrm{M}^{+}, 62\right), 312(20), 312(43), 311(100), 298(20)$, 297 (84): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) \delta 12.40$ and $11.94(2 \mathrm{H} \mathrm{br} \mathrm{s} 2-\mathrm{OH}$,$) ,$ $7.02(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{H}-8), 6.91(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.50(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, $\mathrm{H}-10$), 5.98 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-18$), $4.14(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 3.72(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-16)$, $2.20(2 \mathrm{H}, \mathrm{brs}, \mathrm{H}-17)$. Decoupling experiments indicated that the $\mathrm{H}-17$ protons at 2.20 ppm were coupled to the $\mathrm{H}-18$ proton at 5.98 and the $\mathrm{H}-16$ proton at 3.73 ppm ; the latte: was also shown to be coupled to the $\mathrm{H}-15$ protons at 4.14 ppm .

Acknowledgments. The authors wish to acknowledge gifts of a generous sample of crude sterigmatocystin from Bristol Laboratories, Syracuse, N.Y., a culture of A. parasiticus (Yellow Mutant) from Dr. J. Bennett, Tulane University, New

The calculated shifts of compounds $14 a$ and $14 b$ were obtained by correcting the shifts of the model compounds in an appropriate fashion. Thus, the hydroxyl-bearing C-10 of structure 14b was assumed to have the same shift as $\mathrm{C}-10$ of structure 16, while the "alkoxyl" substituted C-10 of structure 14a was approximated by C-10 of structure 18. The difference in chemical shift between these two carbons is in line with previous studies of substituent effects on aromatic systems, ${ }^{32}$ and tends to support the assumptions made. In particular, the ring strain inherent in structure 17 makes this compound unsuitable for model purposes, since corrections for ring strain are difficult to estimate in compounds of this type. The other key assignment is of $\mathrm{C}-14$ in structures 14 a and 14 b . In the case of 14 a , the shift of carbon-14 in compound 16 was taken as the best available model, since the differences in structure between 16 and 14 a occur at $\mathrm{C}-17$, which should have a minimal effect on the shift of $\mathrm{C}-14$. In the case of structure 14b, the shift of C-17 of compound 18 was taken as a reference, and was then corrected by the difference in chemical shift between $\mathrm{C}-14$ and $\mathrm{C}-17$ of compound 16 to correct for the fact that the α carbon in 14 b is benzylic.

A comparison of the observed shifts for C-10 and C-14 of compound 14 with those calculated for structures $14 a$ and $14 b$ clearly indicates that structure 14b offers the best agreement between theory and experiment. However, in view of the approximate nature of the calculations used to obtain the shifts for compounds 14 a and 14 b , it was deemed desirable to carry out a structural proof by chemical means also. A sample of compound 14 was thus treated with diazomethane to yield one major product. The product had a molecular weight (MS) of 358 , and its ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of an additional methoxyl group. The presence of a signal in the ${ }^{1} \mathrm{H}$ NMR spectrum for a chelated proton at 13.0 ppm indicated that the hydroxyl group at carbon 3 was still intact, and the product was thus formulated as the ether 19. Since only structure 14 b , and not 14 a , would be expected to undergo methylation with diazomethane, this work supports the assignment of structure 14 b to the partially reduced sterigmatocystin hemiacetal.

The reason for the preferential formation of $14 b$ over the other possible structures $14 a, 15 a$, and $15 b$ is not clear, but it must lie either in the stability of the various ring systems involved in the tautomeric equilibria or in some special kinetic effect. If the former is the correct explanation, it would require (contrary to our earlier expectations) that the equilibrium between the reducible forms $\mathbf{1 2 b} \mathbf{- d}$ of the hemiacetal of sterigmatocystin must lie in favor of 12 d under the conditions of the experiment. Reduction of 12 d to 14 would then allow a new equilibrium to be established, which must lie in favor of 14 b rather than 14a. An explanation based on a special kinetic effect seems less probable, although it cannot be completely excluded.

Having established the pathway taken by the reduction of the hemiacetal of sterigmatocystin, we turned our attention to the conversion of versicolorin A hemiacetal into its reduction products. Treatment of versicolorin A (3) with acid yielded the hemiacetal 6 a as the major isolable product, and reduction of this compound with sodium borohydride under the conditions previously established for the sterigmatocystin case yielded a mixture of two products, which were separated by PTLC.

The more polar of the two was assigned the versiconol structure 9 on the basis of its spectroscopic properties and by analogy with the corresponding compound from sterigmatocystin. A direct comparison of our sample with authentic versiconol showed that the two compounds had the same R_{f} on TLC and the same melting point, but that they differed in the fingerprint region of their infrared spectra, which were obtained as KBr pellets. The reason for this difference is
presumably because our sample had undergone essentially complete racemization during the reduction process.

The second, less polar, product was shown from its mass spectrum to be a partially reduced derivative of the hemiacetal 6a, and its ${ }^{1} \mathrm{H}$ NMR spectrum indicated that it possessed structure $\mathbf{7 a}, \mathbf{7 b}, \mathbf{8}$, or $\mathbf{8 b}$. The absence of any absorptions assignable to aldehyde protons indicated that the compound existed in the hemiacetal form, while the presence of signals for two chelated hydroxyl groups indicated that cyclization to the C-1 hydroxyl group, as for example in structure 7 c , had not occurred.

Conversion of the partially reduced hemiacetal to a stable acetal was effected by treatment with dilute acid. The spectroscopic properties of the resulting product. and especially its ${ }^{1} \mathrm{H}$ NMR spectrum, showed that it had the isoversicolorin C structure (10) rather than the versicolorin C structure (11), and the partially reduced material must thus possess the structure 7a or 7 b . It was not possible to do a ${ }^{13} \mathrm{C}$ NMR study of the structure of this latter material, but by analogy with the sterigmatocystin case we can assign the structure $\mathbf{7 b}$ to it.

The discovery that reduction of the hemiacetal 6a yields none of the desired product 8 (or at least, none isolable by us) prevented us from achieving our initial objective of the synthesis of the acetate $\mathbf{2 c}$. However, since a crucial part of the initial structural assignment of "versiconal acetate" was its conversion to versicolorin C (11) in acid, it became important to confirm that this conversion did in fact yield versicolorin C and not an isomer such as isoversicolorin C (10). We thus compared a sample of the product from acid treatment of "versiconal acetate" with authentic versicolorin C (11) and isoversicolorin $\mathrm{C}(10)$, and were able to show that the retention time on HPLC ${ }^{33}$ matched that of versicolorin C and differed from that of isoversicolorin C. This work thus offers further support, in an indirect way, for the formulation of versiconal acetate as $\mathbf{2 b}$. This conclusion has been confirmed and extended by a recent study of the ${ }^{13} \mathrm{C}$ NMR spectrum of versiconal acetate. ${ }^{34}$

The sterigmatocystin and versicolorin derivatives described here should be handled with extreme caution because of their structural relationship to the known carcinogens aflatoxin B_{1} and sterigmatocystin.

Experimental Section ${ }^{35}$

Sterigmatocystin Hemiacetal (12a). Sterigmatocystin (1.0g) was heated for 12 h under reflux in acetone (200 mL) containing 10% $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$. The reaction mixture was cooled, the yellow-green precipitate collected, and the filtrate concentrated, diluted with water, and extracted with ethyl acetate. The combined extracts were washed, dried, evaporated, and combined with the precipitate to yield crude product, which was recrystallized from acetone to yield 400 mg of hemiacetal, mp 210-212 ${ }^{\circ} \mathrm{C},[\alpha]^{27} \mathrm{D}-7^{\circ}$ (c 1.4, $\mathrm{CH}_{3} \mathrm{SOCH}_{3}$). The isolated material had: $\lambda_{\max } 232 \mathrm{~nm}(\epsilon 28000), 249$ (34000), 327 (17000); $\nu_{\text {max }} 3400(\mathrm{OH}), 1650,1625 \mathrm{~cm}^{-1}$; mass sjectrum m/e 342 $\left(\mathrm{M}^{+}, 16\right), 325(17), 324(80), 313(19), 306(31), 296(20), 295(49), 278$ (22), 277 (20), 267 (23), 266 (21), 265 (27), 181 (34), 169 (35), 152 (24), $151(23), 149(40)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CH}_{3} \mathrm{SOCH}_{3}\right) \delta 13.48,13.40,13.30(1 \mathrm{H}$ total area, $3 \mathrm{~s}, 3-\mathrm{OH}), 9.36,9.50(0.05 \mathrm{H}$ total area, 2 s$), 7.51(1 \mathrm{H}, \mathrm{t}, J$ $=8 \mathrm{~Hz}, \mathrm{H}-5), 6.82(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-6), 6.62(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-4)$, 6.45 (1 H, s, H-11), $6.50-6.32$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$), $5.56-5.38$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17$), 4.18-4.00 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), 3.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18$), 2.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$) ppm; in CDCl_{3} solution the signal for $\mathrm{H}-14$ appeared as a doublet $(J=2 \mathrm{~Hz})$ at 6.53 ppm .
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.7 ; \mathrm{H}, 4.3$. Found: C, 61.9; H, 4.4.
Sterigmatocystin Ethoxyacetal (13). Extraction of the hemiacetal as described above was inadvertently carried out on one occasion with a batch of ethyl acetate containing a small amount of ethanol. The crude product was shown by TLC in system A to contain two products, which were separated by PTLC in the same solvent system. The more polar of the two compounds was sterigmatocystin hemiacetal (12a), and the less polar was a new procuct identified as the ethoxyacetal 13 . The material had $\mathrm{mp} 189-192^{\circ} \mathrm{C}$ after recrystallization from acetone, and had a UV spectrum essentially identical

Scheme III

Table I. Carbon-13 Chemical Shifts for Some Sterigmatocystin Derivatives ${ }^{a, b}$

Carbon	16	17	18	$14 a,$ calcd	14b, calcd	$\begin{gathered} 14, \\ \text { expt } \\ \hline \end{gathered}$
10	159.7	158.1	165.6	165.7	159.7	160.0
14	59.9	78.7	113.3	59.9	33.4	62.7
15	34.9	28.7	43.2	33.4	33.6	30.2
						32.5
16	33.2	31.5	30.5	35.8	38.7	c
17	63.5	99.3	67.0	99.3	99.3	95.9
				95.7	95.7	92.8
18	55.8	55.9	56.3	56.6	56.6	56.1

${ }^{a}$ In parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si}$. ${ }^{b}$ In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solution. ${ }^{c}$ Peak hidden under the solvent peaks.
the literature assignments in CDCl_{3}. The carbons at positions 15 and 17 in compound 14 each appeared to give rise to two signals of diminished intensity, presumably because of the existence of two epimers of this structure. The assignment of these signals should be regarded as tentative, since there was insufficient material available to permit any decoupling techniques to be used in this case, but differences of $2-4 \mathrm{ppm}$ for the corresponding carbons in epimeric carbohydrates have been observed and thus tend to support the assignments. ${ }^{30,31}$ The assignment for C -14 in compound 14 is secure, since it is the only possible signal in that range, while the assignment for $\mathrm{C}-10$ must lie in the range $161.1-160.0 \mathrm{ppm}$, and better agreement with the spectra of previously assigned compounds is obtained when the value of 160.0 ppm is used for this carbon.
Scheme II

3
6a $\sqrt{6 a}$

6d

$7 a$

6 c

8a

10

b, $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{COCH}_{3}$
c, $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{COCH}_{3}$

11
dihydrosterigmatocystin (17) followed from its ${ }^{1} \mathrm{H}$ NMR spectrum and from spin decoupling experiments. The latter showed that the one-proton multiplet at $5.79 \mathrm{ppm}(\mathrm{H}-17)$ was coupled with the two-proton multiplet at $2.20 \mathrm{ppm}(\mathrm{H}-16)$, which in turn was coupled with the one-proton multiplet at $3.88 \mathrm{ppm}(\mathrm{H}-15)$. Coupling between $\mathrm{H}-15$ and $\mathrm{H}-14$ could not be demonstrated by these experiments because of the similarity of their chemical shifts, but the pattern observed for $\mathrm{H}-14$ at 4.19 ppm is consistent with these protons being coupled to one proton only at $\mathrm{H}-15$; a dihedral angle between $\mathrm{H}-15$ and one of the $\mathrm{H}-14$ protons of nearly 90° explains the negligible coupling between them. This evidence can only be satisfied by the assignment of structure 17 to the compound, to which we have given the trivial name isodinydrosterigmatocystin. It follows from this that PRSTHA must have the structure 14a or 14b, since a rearrangement of the Cannizzaro type, which would be required to give isodihydrosterigmatocystin from structures $\mathbf{1 5 a}$ or $\mathbf{1 5 b}$, is highly unlikely under the acidic conditions used.

A distinction between structures 14a and 14b for PRSTHA could not be made on the basis of its ${ }^{1} \mathrm{H}$ NMR spectrum, since as has been noted this was poorly resolved and complicated by the existence of two epimers. A distinction was made, however, on the basis of the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 14 in comparison with the model compounds $16-18$. The ${ }^{13} \mathrm{C}$ NMR spectra of sterigmatocystin (4) and dihydrosterigmatocystin (18) have been published previously, ${ }^{28,29}$ with some differences in assignments. Fortunately, the disputed assignments do not affect our conclusions, and we have chosen to use the values of Steyn 28 as the basis of our assignments. Assignments for carbons 10 and 14-18 of compounds 16, 17, and 18, together with predicted assignments for structures 14a and 14 b and the experimental values for compound 14, are given in Table I. The chemical shift assignments of compounds 16 and 17 were made on the basis of gated decoupling experiments, which revealed both directly bonded and longrange carbon-proton couplings of the indicated carbons, while the assignments of compound 18 are taken by comparison with
Scheme I

2a

5
bisfuran ring system as sterigmatocystin and the aflatoxins B_{1} and G_{1}, and it has been shown that two carbon atoms derived from the methyl groups of acetate have become linked in these molecules. ${ }^{8,14}$ Since averufin is produced by a normal head-to-tail condensation of acetate units, ${ }^{15}$ it follows that the conversion of averufin to versicolorin A involves a rearrangement of some type, and we ${ }^{16}$ and others ${ }^{6,3,17}$ have proposed possible pathways for this rearrangement. One possible intermediate in this conversion of averufin to versicolorin A has been identified as a yellow pigment, ${ }^{18}$ which appears to be identical with a compound assigned the tentative structure of "versiconal acetate" (2a). ${ }^{19}$ Because of the importance of "versiconal acetate" as a possible intermediate in the biosynthesis of the aflatoxins, and because of certain ambiguities in the original structural study, we undertook to attempt a synthesis of a derivative of versiconal acetate that could be used for purposes of structural confirmation. This paper describes the results of our studies.

An analysis of the spectral data in the original publication on "versiconal acetate" indicated to us that structure 2b represented a probable structure of the compound. Our proposed pathway for the preparation of the acetylated derivative of this compound (2c) is shown in Scheme II. Acid treatment of versicolorin A , available from a mutant strain of Aspergillus parasiticus, ${ }^{20}$ would yield the hemiacetal 6 a, which might be expected to exist in aqueous solution in equilibrium with the tautomers $\mathbf{6 b} \mathbf{d}$, in addition to other possible tautomers involving the peri hydroxyl group at position $1 .{ }^{21}$ Reduction of this tautomeric mixture with a limited quantity of sodium borohydride ${ }^{22}$ would be expected to yield a mixture of the two possible dihydro derivatives 7 and 8 , together with the fully reduced tetrahydro derivative versiconol (9), which has previously been isolated from A. versicolor. ${ }^{23}$ Altinough the relative probabilities of reduction of tautomers $\mathbf{6 b}$ and $6 \mathbf{d}$ could not be predicted with confidence, it seemed reasonable to assume that these would be proportional to their relative concentrations in the reaction mixture, and ar. analogy from carbohydrate chemistry suggested that the dihydrofuran form $\mathbf{6 b}$ should be preferred over the dihydropyran form 6d. ${ }^{24}$

Reduction should thus occur to yield the desired products 8a and $8 \mathbf{b}$ in reasonable yield. Acetylation of the anticipated mixture of these products would then yield at least some of the desired acetate 2 c , unless the equilibrium between the two forms favored 8 b to the exclusion of $8 \mathbf{a}$.

In view of the complexity of the possible products resulting from the reduction of versicolorin A hemiacetal 6a, and because our supply of this compound was limited, the corresponding reduction of the hemicaetal derivative 12a of sterigmatocystin (4) was studied first. Sterigmatocystin and its derivatives also have the advantage of being less polar than versicolorin A and its derivatives, and thus more readily handled by conventional techniques than the latter. The possible reduction products of the hemiacetal of sterigmatocystin (12a) are analogous to the versicolorin A derivatives, and are outlined in Scheme III.
Treatment of sterigmatocystir (4) with dilute sulfuric acid in acetone resulted in its smooth conversion to a hydrated product which consisted of a mixure of at least three isomers. The product had ultraviolet and infrared absorption spectra and a mass spectrum consistent with its formulation as a hydrate of sterigmatocystin, but its ${ }^{1} \mathrm{H}$ NMR spectrum showed a more complex pattern than would have been predicted for a single compound of structure 12a. Thus, three signals were observed for the proton of the chelated hydroxyl group, and while the presence of two of these signals could be rationalized by the existence of both epimers of structure 12a the presence of the third signal and weak absorptions due to aldehyde protons demand that the compcund exists to some extent in one or more of the open-chain forms 12b-d, with additional possible contributions from the hydrates of these structures.
Treatment of the hemiacetal 12 with ethanol under acidic conditions resulted in its conversion to a mixture of two epimeric ethoxy acetals (13). The spectroscopic data for the mixture support the assignment of structure 13 as opposed to possible alternate structures; in particular, spin-decoupling experiments exclude structure 20, based on assignments of $\mathrm{H}-17$ at 6.50 ppm and $\mathrm{H}-14$ at 5.34 ppm for this hypothetical compound. By implication, therefore, the hemiacetal also exists largely as the tautomer 12a; a recent paper describes the preparation of the hemiacetal of 5 -methoxysterigmatocystin, and proposes a siructure corresponding to 12a for it. ${ }^{26}$
Reduction of the hemiacetal 12a with a limited amount of sodium borohydride in tetrahydrofuran- pH 7.2 phosphate buffer yielded only two isolable products. The more polar of the two was identified on the basis on its spectral data as the sterigmatocystin analogue of versiconol (9), and was given the trivial name of sterigmatodiol (16). The low optical rotation observed for this and several of the other compounds studied is attributed to the occurrence of partial racemization during the reduction process; an analogous racemization of aflatoxin $\mathrm{B}_{2 \mathrm{a}}$ under basic conditions has been previously reported. ${ }^{27}$ The second reduction product was identified as a partially reduced sterigmatocystin hemiacetal (PRSTHA) by its mass spectral parent ion peak at $m / \epsilon 344$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the isolated material, like that of compound 12a, was rather ill-defined, but it did indicate the absence of any open-chain tautomers by the lack of any aldehyde absorption. The spectra were not capable, however, of differentiating between the possible structures $14 \mathrm{a}, 14 \mathrm{~b}, 15 \mathrm{a}$, and 15 b .
Treatment of PRSTHA with dilute acid effected its smooth conversion into a new product, which lacked any hemiacetal group and which thus gave a clean, well-resolved ${ }^{1} \mathrm{H}$ NMR spectrum. This compound had the molecular weight and a similar mass spectrum to dihydrosterigmatocystin (18), prepared by hydrogenation of sterigmatocystin (4), but a direct comparison of samples showed that they were not identical. Assignment of the structure of the new compound as iso-
$\left.\mathrm{m}, w_{1 / 2}=9.5 \mathrm{~Hz}, 3-\mathrm{H}\right)$, and $4.22(1 \mathrm{H}, \mathrm{t}, J=3.5 \mathrm{~Hz}, 3-\mathrm{H}) . \mathrm{m} / e\left(\mathrm{M}^{+}\right)$ 400.3335 (calcd 400.3331), $382\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 364\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 152\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{C}_{18} \mathrm{H}_{32}\right)$, and $134\left(\mathrm{M}^{+}-\mathrm{C}_{18} \mathrm{H}_{32}-\mathrm{H}_{2} \mathrm{O}\right) .{ }^{9}$

1-Ketoprevitamin D_{3} 3-Acetate (6b). A solution of 50 mg of 1 ketoprevitamin $\mathrm{D}_{3}(6 \mathrm{a})$ in 4 mL of methylene chloride was treated with 10 mg of 4 -(dimethylamino)pyridine and 15 mg of acetic anhydride at room temperature for 2 h . The reaction mixture was evaporated and the residue was chromatographed on silica gel. Elution with ether gave 45 mg of 1-ketoprevitamin $D_{3} 3$-acetate ($6 \mathbf{b}$). UV $\lambda_{\max } 287$, $236 \mathrm{~nm}(\epsilon 10000,9500)$ and on addition of iodine and exposure to sunlight $\lambda_{\max } 320 \mathrm{~nm}(\epsilon 22000)$. NMR $\delta 0.69(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 1.74(3 \mathrm{H}$, $\mathrm{s}, 19-\mathrm{H}), 1.99(3 \mathrm{H}, \mathrm{s}$, acetate methyl), $5.45(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 5.90$ and 6.08 $(2 \mathrm{H}, \mathrm{ABq}, J=12 \mathrm{~Hz}, 6-\mathrm{H}$ and $7-\mathrm{H}), 5.04(1 \mathrm{H}$, heptet, $J=8.5 \mathrm{~Hz}$ and $4.0 \mathrm{~Hz}, 3-\mathrm{H}) . m / e\left(\mathrm{M}^{+}\right) 440.3277$ (calcd 440.3279), $396\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right.$), $380\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) 220,202 .{ }^{9}$

Reduction and Hydrolysis of 1-Ketoprevitamin D_{3} 3-Acetate $\mathbf{(6 b})$. A solution of 40 mg of 1-ketoprevitamin $D_{3} 3$-acetate ($\mathbf{6 b}$) in 3 mL of methanol was treated with 20 mg sodium borohydride at $0^{\circ} \mathrm{C}$ for 30 min , extracted with ether, and washed with brine.

The ether extract was dried over magnesium sulfate and evaporated at $0^{\circ} \mathrm{C}$ to dryness. The residue was chromatographed on silica gel. Elution with a mixture of ether-hexane (4:6) gave 25 mg of 1β-hydroxyprevitamin $\mathrm{D}_{3} 3$-acetate (10b). UV $\lambda_{\max } 259 \mathrm{~nm}(\epsilon 10000)$ and on addition of iodine and exposure to sunlight: $\lambda_{\max } 272,282$, and 292 $\mathrm{nm}(\epsilon 22000,25000,21000)$. A solution of 20 mg (10 b) in methanol was treated at $0^{\circ} \mathrm{C}$ with a solution of 40 mg of potassium hydroxide in 1 mL of methanol for 4 h . The reaction mixture was extracted with ether and water and washed with brine. The ether extract was dried over magnesium sulfate and evaporated at $0^{\circ} \mathrm{C}$ to dryness. The residue was chromatographed on silica gel. Elution with ether gave 15 mg of material which was identical with 1β-hydroxyprevitamin D_{3} (10a).
1β-Hydroxyvitamin $\mathrm{D}_{3} 3$-Acetate (5b). A solution of 10 mg of 1β-hydroxyprevitamin $\mathrm{D}_{3} 3$-acetate ($\mathbf{1 0 b}$) in 2 mL of isooctane was heated under nitrogen atmosphere at $70^{\circ} \mathrm{C}$ for 3.5 h . The solvent was evaporated to dryness and the residue was chromatographed on silica gel. Elution with a mixture of ether-hexane (4:6) gave 7 mg of 1β hydroxyvitamin $D_{3} 3$-acetate (5b). UV $\lambda_{\max } 264 \mathrm{~nm}(\epsilon 18000)$ and on addition of iodine and exposure to sunlight $\lambda_{\max } 272 \mathrm{~nm}(\epsilon 22000)$. NMR $\delta 0.54(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 1.98(3 \mathrm{H}, \mathrm{s}$, methyl acetate $), 4.90(1 \mathrm{H}, \mathrm{m}$, $19 \mathrm{Z}-\mathrm{H}), 5.29(1 \mathrm{H}, \mathrm{m}, 19 \mathrm{E}-\mathrm{H}), 5.87$ and $6.15(2 \mathrm{H}, \mathrm{ABq}, J=11.5 \mathrm{~Hz}$, $6-\mathrm{H}$ and $7-\mathrm{H}), 3.97(1 \mathrm{H}$, quartet $J=9 \mathrm{~Hz}$ and $J=4 \mathrm{~Hz}, 1-\mathrm{H}), 4.82(1 \mathrm{H}$, heptet $J=9 \mathrm{~Hz}$ and $J=4 \mathrm{~Hz} 3-\mathrm{H}$).

1-Ketotachysterol ${ }_{3}$ (9). A solution of 50 mg of 1-ketoprevitamin
$D_{3}(6 a)$ in 10 mL of ether was treated with 0.1 mL of 5% iodine solution in ether and exposed to visible light for 30 min . The ether solution was washed with water and evaporated under vacuum to give 35 mg of 1 -ketotachysterol ${ }_{3}$ (9). UV $\lambda_{\max } 320 \mathrm{~nm}(\epsilon 22000)$. NMR $\dot{\delta} 0.70(3 \mathrm{H}$, s, $18-\mathrm{H}), 1.82(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 4.1(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.77(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 7-\mathrm{H}$ and $9-\mathrm{H})$.

Acknowledgment. We are indebted to Dr. Z. V. I. Zaretskii for the mass spectra determinations and to Mr. E. Berman for the NMR spectra. We thank United States-Israel Binational Science Foundation, Jerusalem, for financial support.

Registry No.-2, 41294-56-8; 5a, 63181-13-5; 5b, 63181-14-6; 6a, 63181-15-7; 6b, 63181-16-8; 8, 41461-13-6; 9, 63181-17-9; 10a, 63181-18-0; 10b, 63181-19-1; 1 $\alpha, 3 \beta$-dihydroxycholesta-5,7-diene, 43217-89-6.

References and Notes

(1) For preliminary report and biological data see: D. E. M. Lawson, N. Friedman, M. Shelves, and Y. Mazur, FEBS Lett., 80, 137 (1977).
(2) J. L. Omdahl and H. F. DeLuca, Physiol. Rev., 53, 327 (1973); A. W. Norman and H. Henry, Recent Prog. Horm. Res., 30, 431 (1974).
(3) (a) D. H. R. Barton, R. H. Hesse. M. M. Pecht, and E. Rizzardo, J. Am. Chem. Soc., 95, 2748 (1973). (b) W. H. Okamura, A. W. Norman, and R. M. Wing, Proc. Natl. Acad. Sci. USA, 71, 4194 (1974); R. M. Wing, W. H. Okamura, M. R. Pirio, S. M. Sine, and A. W. Norman, Science, 186, 939 (1974); W. H. Okamura, M. N. Mitra, D. A. Procsal, and A. W. Norman, Biochem. Biophys. Res. Commun., 65, 24 (1975).
(4) The accepted notation of ring A atoms in 9,10 -secosteroids is derived from the steroid-like conformations.
(5) In the alternative structure 7 the carbonyl chromophore is not expected to shift the UV band of vitamin system ($\lambda_{\max } 264 \mathrm{~nm}$) considerably.
(6) The comparatively short wavelength absorption in 6 a , as well as in the other previtamin D_{3} derivatives, indicates that the triene system in these compounds is not planar as in their respective tachysterol derivatives. The ring A of previtamin is probably tilted considerably in one or both directions; G . M. Sanders, J. Pot, and E. Havinga, Fortschr. Chem. Org. Naturst., 27, 131 (1969).
(7) This compound was obtained by irradiation of $1 \alpha, 3 \beta$-dihydroxycholesta5,7 -diene, followed by a separation on Sephadex LH-20 column (see Experimental Section).
(8) E. Havinga, Experientia, 29, 1181 (1973); G. N. LaMar and D. L. Budd, J. Am. Chem. Soc., 96, 7317 (1974); R. M. Wing, W. H. Okamura, A. Rego, M. R. Pirio, and A. W. Norman, J. Am. Chem. Soc., 97, 4980 (1975); M. Sheves, E. Berman, D. Freeman, and Y. Mazur, J Chem. Soc., Chem. Commun., 643 (1975).
(9) Full mass spectral data will be published elsewhere by Dr. Z. V. I. Zaretskii.

Reduction of Sterigmatocystin and Versicolorin A Hemiacetals with Sodium Borohydride ${ }^{1}$

Paul N. Chen, ${ }^{2}$ David G. I. Kingston, ${ }^{* 2}$ and John R. Vercellotti ${ }^{3}$
Departments of Chemistry and Biochemistry, Virginia Polytechnic Institute and
State University, Blacksburg, Virginia 24061

Received April 11, 1977

Reduction of sterigmatocysin or versicolorin A hemiacetals with a limited amount of sodium borohydride yielded two major products in each case. The hemiacetal derived from sterigmatocystin gave a new diol as the complete reduction product and a new hemiacetal as a partial reduction product, and the structure of this new hemiacetal was established by ${ }^{13} \mathrm{C}$ NMR spectroscopy and by chemical conversions. The hemiacetal derived from versicolorin A behaved similarly. The bearing of this work on the structure of versiconal acetate, isolated from Aspergillus flavus, is discussed.

The aflatoxins and the related sterigmatocystins are a group of toxic and carcinogenic metabolites of certain strains of the fungi Aspergillus flavus, Aspergillus parasiticus, and Aspergillus versicolor, and have aroused considerable interest because of their widespread occurrence in human and animal foodstuffs. ${ }^{4,5}$ Previous theoretical proposals and experimental
studies on the biosynthesis of these compounds have indicated that the most probable biosynthetic pathway lies from acetate through the anthraquinones averufin (1) and versicolorin A (3) to sterigmatocystin (4) and thence to aflatoxin B_{1} (5) (Scheme I). ${ }^{6-13}$ The conversion of averufin to versicolorin A is of considerable interest, since the latter contains the same
epimer 8 only by the chemical shift of the protons at C_{1} and C_{3}.

Reduction of the ketone $\mathbf{6 a}$, with lithium aluminum hydride proceeded differently from that with sodium borohydride, resulting in a mixture of both C_{1} epimers 10 a and 8 in a ca. $2.8: 1$ ratio. The formation of the 1α-hydroxyprevitamin D_{3} (8) in the lithium aluminum hydride reducticn may be explained by the coordination of the aluminum atom to the hydroxy function whici allows an attack of the hydride from the sterically hindered α side of the molecule.

Heating of 1β-hydroxyprevitamin $\mathrm{D}_{3}(\mathbf{1 0 a})$ at $70^{\circ} \mathrm{C}$ for 3.5 h gave a mixture containing the starting material and 1β hydroxyvitamin $\left.\mathrm{D}_{3} \mathbf{(5 a}\right)\left(\lambda_{\max } 264 \mathrm{~nm} ; \epsilon 18000\right)$ in a $1: 4$ ratio (as established by the NMR spectrum of the total product mixture). The NMR spectrum of 5 a was similar to that of its C_{1} epimer, the 1α-hydroxyvitamin $D_{3}(1)$, but for the signals of the protons at C_{1} and C_{3}, while the mass spectra of both compounds were practically identical. 1β-Hydroxyvitamin $D_{3}(5 a)$ isomerized with visible light in the presence of iodine to 1β-hydroxy-5,6-trans-vitamin $\mathrm{D}_{3}\left(\lambda_{\max } 272 \mathrm{~nm} ; \epsilon\right.$ 22000).
1β-Hydroxyvitamin $\mathrm{D}_{3}(\mathbf{5 a})$ exists as other vitamin D derivatives as a mixture of two chair conformers, which in solution are in dynamic equilibrium. ${ }^{8}$ This equilibration can be deduced from its NMR spectrum in a nonpolar solvent (carbon tetrachloride), where the protons at C_{1} and C_{3} appear at 4.22 and 3.96 ppm as two triplets with $J=3.6 \mathrm{~Hz}$ and with half-height width, $w_{1 / 2}=9.5 \mathrm{~Hz}$. These triplets are due to two vicinal interactions, one axial:equatorial ($J_{\mathrm{ax}: \mathrm{eq}}=J_{\mathrm{eq}: \mathrm{ax}}=\mathrm{ca}$. 3.6 Hz) and the other representing an average between axial:axial and equatorial:equatorial coupling ($J=3.6 \mathrm{~Hz}$). Using $J_{\mathrm{ax}: \mathrm{ax}}=11 \mathrm{~Hz}, J_{\text {eq:eq }}=3 \mathrm{~Hz},{ }^{3}$ and the experimental value $J=3.6 \mathrm{~Hz}$ we have calculated the ratio of the two conformers 5a-ax and 5a-eq to be 9:1. The strong preference for

a conformation having the hydroxyl group in diaxial orientation is due to an intramolecular hydrogen bonding between these groups. This internal H bonding breaks down in H bonding solvents, as the following NMR data show. Upon addition of acetone $-d_{\epsilon}$ to the carbon tetrachloride solution of 5a both signals shifted to a higher field appearing at 3.79 and 4.02 ppm , the former as a heptet ($J=8.4 \mathrm{~Hz}$ and ca. 4.0 Hz) and the latter as a broad multiplet ($w_{1 / 2}=17 \mathrm{~Hz}$). These NMR data indicated that the intermolecular hydrogen bonding becomes predominant and the compound assumes mainly the conformation in which both hydroxyl groups are equatorial, the ratio of 5a-ax:5a-eq being 3:7.

Additional information about the hydrogen bonding of the two hydroxyl groups at C_{1} and C_{3} can be gained from the NMR spectrum of 1β-hydroxyvitamin $D_{3} 3$-acetate $(5 b)$.

This compound was synthesized from $6 \mathbf{a}$ by acylation with 4-(dimethylamino) pyridine and acetic anhydride resulting in the ketoacetate $6 \mathbf{b}\left(\lambda_{\max } 287,236 \mathrm{~nm} ; \epsilon 10000,9500\right)$. Reduction with sodium borohydride in methanol yielded 1β hydroxyprevitamin $\mathrm{D}_{3} 3$-acetate (10b) ($\lambda_{\max } 259 ; \epsilon, 10000$) which on hydrolysis gave 1β-hydroxyprevitamin D_{3} (10a). The acetate ($\mathbf{1 0 b}$) isomerized to tachysterol derivative 11 b with iodine and sunlight ($\lambda_{\max } 272,282,292 \mathrm{~nm} ; \epsilon 22000,25000$, 21000).

Heating 10b at $70^{\mathrm{c}} \mathrm{C}$ for 3.5 h gave 1β-hydroxyvitamin D_{3} 3 -acetate (5b) ($\left.\lambda_{\max } 264 ; \epsilon 18000\right)$. The NMR spectrum in
carbon tetrachloride was similar to that of $10 a$ except for the signals of the protons at C_{1} and C_{3} which appeared at 4.2 ppm (quartet, $J=9 \mathrm{~Hz}$ and ca. 4.0 Hz) and 4.88 ppm (heptet, $J=$ 9 Hz and ca. 4.0 Hz), respectively, indicating that $5 \mathbf{b}$ exists mainly in the diequatorial conformation, the ratio of $5 \mathbf{b}-\mathbf{e q}$: $\mathbf{5 b}$-ax being 8:2.

Preliminary biological assays in chicks indicated that 1β hydroxyvitamin $\mathrm{D}_{3}(\mathbf{5 a})$ as well as its 3-acetate $\mathbf{5 b}$ are devoid of any activity in inducing calcium transport and mobilization in the body. ${ }^{1}$ 'Thus it appears that the high physiological activity of C_{1}-hydroxylated vitamin D_{3} derivatives is limited to compounds possessing this function in the α-configuration.

Experimental Section

Nuclear magnetic resonance spectra were recorded on a Bruker 270 MHz using carbon tetrachloride as a solvent and cyclohexane- d_{12} as an internal lock. All chemical shifts are reported in δ values relative to tetramethylsilane standard. The ultraviolet spectra were taken on a Cary 118 spectrophotometer, using ether as a solvent. Mass spectra were recorded on Varian MAT 731 high resolution mass spectrometer.
1α-Hydroxyprevitamin D_{3} (8). A solution of 400 mg of $1 \alpha, 3 \beta$ -dihydroxycholesta-5,7-diene in 251 mL of dry ether was irradiated at $0^{\circ} \mathrm{C}$ under a nitrogen atmosplere with $3000-\AA$ light (Rayonet) using 0.4% solution of sodium nitrate as a filter. The solvent was evaporated and the residue was chromatographed on Sephadex LH-20. Elution with a mixture of chloroform-hexane (6.5:3.5) gave 100 mg of 1α-hydroxyprevitamin $\mathrm{D}_{3}(8)$. UV $\lambda_{\max } 259 \mathrm{~nm}(\epsilon 10000)$. NMR $\delta 0.71(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 1.70\left(3 \mathrm{~F}^{-}, \mathrm{s}, 19-\mathrm{H}\right), 5.50(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 5.68$ and $5.86(2 \mathrm{H}, \mathrm{ABq}, J=12 \mathrm{~Hz}, 6-\mathrm{H}$ and $7-\mathrm{H}), 4.02\left(1 \mathrm{H}, \mathrm{m}, w_{1 / 2}=9.4\right.$ $\mathrm{Hz}, 1-\mathrm{H}), 3.89\left(1 \mathrm{H}, \mathrm{m}, w_{1 / 2}=17.2 \mathrm{~Hz}, 3-\mathrm{H}\right) . \mathrm{m} / e\left(\mathrm{M}^{+}\right) 400.3297$ (calcd 400.3330, $382\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 364\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right), 152\left(\mathrm{M}^{+}-\mathrm{C}_{18} \mathrm{H}_{32}\right)$ and $134\left(\mathrm{M}^{+}-\mathrm{C}_{18} \mathrm{H}_{32}-\mathrm{H}_{2} \mathrm{O}\right) .{ }^{9}$

1-Ketoprevitamin D_{3} (6a). ${ }^{1}$ A solution of 100 mg of 1α-hydroxyvitamin $D_{3}(1)$ in 10 mL of dry ether was treated at room temperature with 350 mg of freshly prepared manganese dioxide for 6 h . The reaction mixture was filtered through a celite column and the filtrate was evaporated to dryness at room temperature. Chromatography on silica gel using an ethyl acetate-chloroform mixture (3:7) resulted in 35 mg of 1 -ketoprevitamin D_{3} (6a). UV $\lambda_{\max } 287,236 \mathrm{~nm}(\epsilon 10000$, 9500). NMR $\delta 0.7 \leqslant(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}) 1.69(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 5.99$ and $6.13(2 \mathrm{H}$, $\mathrm{ABq}, J=11 \mathrm{~Hz}, 6-\mathrm{H}$ and $7-\mathrm{H}), 5.51(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H})$ and $4.02(1 \mathrm{H}$, heptet, $J=8.6$ and $4.3 \mathrm{~Hz}, 3-\mathrm{H}) . \mathrm{m} / \mathrm{e}\left(\mathrm{M}^{+}\right) 398.6349($ calcd 398.3174$), 380\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{H}_{2} \mathrm{O}\right), 157\left(\mathrm{M}^{+}-\mathrm{C}_{16} \mathrm{H}_{31}-\mathrm{H}_{2} \mathrm{O}\right) .{ }^{9}$

A solution of 100 mg of 1α-hydroxyprevitamin $\mathrm{D}_{3}(8)$ in 10 mL of ether was treated with 650 mg of freshly prepared manganese dioxide for 6 h . Isolation as above resulted in 85 mg of 1-ketoprevitamin D_{3} (6a).
1β-Hydroxyprevitamin $\mathrm{D}_{3}(10 \mathrm{a}) .^{1}$ A solution of 50 mg of 1-ketoprevitamin $\mathrm{D}_{3}(\mathbf{6} \mathbf{a})$ in 20 mL of methanol was treated with 85 mg of sodium borohydride at $0^{\circ} \mathrm{C}$ for 30 min , extracted with ether, and washed with brine. The ether extract was dried over magnesium sulfate and evaporated at $0^{\circ} \mathrm{C}$ to dryness. The residue was chromatographed on silica gel. Elution with a mixture of ethyl acetatechloroform (3:7) gave 35 mg of 1β-hydroxyprevitamin D_{3} (10a). UV $\lambda_{\max } 259 \mathrm{~nm}(\epsilon 10000)$, and on addition of iodine and exposure to sunlight $\lambda_{\max } 272,282,292 \mathrm{~nm}(\epsilon 22000,25000,21000)$. NMR $\delta 0.70$ $(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 1.70(3 \mathrm{H} . \mathrm{s}, 19-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.78$ and $5.94(2 \mathrm{H}$, $\mathrm{AB} \mathrm{q}, J=11.5 \mathrm{~Hz}, 6-\mathrm{H}$ and $7-\mathrm{H}), 5.93\left(1 \mathrm{H}\right.$ broad $\left.\mathrm{s}, w_{1 / 2}=11 \mathrm{~Hz}, 3-\mathrm{H}\right)$, and $4.22\left(1 \mathrm{H}, \mathrm{m}, w_{1 / 2}=10.5 \mathrm{~Hz} 1-\mathrm{H}\right) . \mathrm{m} / e\left(\mathrm{M}^{+}\right) 400.3333$ (calcd 400 , 3333), $382\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 364\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right), 152\left(\mathrm{M}^{+}-\mathrm{C}_{18} \mathrm{H}_{32}\right)$, and $134\left(\mathbf{M}^{+}-\mathrm{C}_{18} \mathrm{H}_{32}-\mathrm{H}_{2} \mathrm{O}\right)$.

A solution of 100 mg of 1-ketoprevitamin $\mathrm{D}_{3}(\mathbf{6 a})$ in 10 mL of anhydrous ether was treated with 20 mg of lithium aluminum hydride at $0^{\circ} \mathrm{C}$ for 3 h with stirring. The reaction mixture was then triturated with saturated scdium sulfate solution followed by filtration and the residue was evaporated to dryness. Chromatography on silica gel and elution with a mixture of ethyl acetate chloroform (3:7) gave 1β hydroxyprevitamin D_{3} (10a) and 1α-hydroxyprevitamin $D_{3}(8)$ in a 2.8:1 ratio (60% yield).
1β-Hydroxyvitamin D_{3} (5a). ${ }^{1}$ A solution of 30 mg of 1β-hydroxyprevitamin $D_{3}(10 a)$ in 10 mL isooctane was heated under nitrogen atmosphere at $70^{\circ} \mathrm{C}$ for 3.5 h . The solvent was evaporated to dryness and the residue was chromatographed on silica gel. Elution with ether gave 25 mg of 1β-hydroxyvitamin D_{3} (5a). UV $\lambda_{\max } 264 \mathrm{~nm}(\epsilon 18000)$ and on addition of iodine and exposure to sunlight $\lambda_{\max } 272 \mathrm{~nm}(\epsilon$ $22000)$. NMR $\delta 0.54(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 5.19(1 \mathrm{H}, \mathrm{m}, 19 \mathrm{E}-\mathrm{H}), 4.88(1 \mathrm{H}, \mathrm{m}$, $19 \mathrm{Z}-\mathrm{H}), 5.92$ and $6.29\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{u}^{\top}=11.5 \mathrm{~Hz}, 6-\mathrm{H}\right.$ and $\left.7-\mathrm{H}\right), 3.96(1 \mathrm{H}$,

Conformational Equilibria in Vitamin D. Synthesis of 1β-Hydroxyvitamin $D_{3}{ }^{1}$

Mordechai Sheves, Noga Friedman, and Yehuda Mazur*
Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel

Received September 28, 1976
1β-Hydroxyvitamin D_{3} was prepared from 1α-hydroxyvitamin D_{3} by oxidation to 1-ketoprevitamin D_{3}, followed by sodium borohydride reduction and subsequent thermal isomerization. The conformational equilibria in 1β-hydroxyvitamin D_{3} were established using ${ }^{1} \mathrm{H}$ NMR technique. These data indicate that in nonpolar solvent this compound assumes mainly the conformation in which hydroxy groups are both axial, while in H-bonding solvent mainly the conformation where these groups are both diequatorial.
$1 \alpha, 25$-Dihydroxyvitamin $\mathrm{D}_{3}, 1\left(\mathrm{C}_{25}-\mathrm{OH}\right)$, is a natural hormone, ${ }^{2}$ inducing the formation of calcium binding proteins, responsible for the calcium transport and its mobilization in the body. A number of other vitamin D_{3} analogs, like 1α hydroxyvitamin D_{3} (1), ${ }^{3}$ dihydrotachysterol ${ }_{3}$ (2), 5,6transvitamin $\mathrm{D}_{3}(3), 1 \alpha$-hydroxy- 3 -deoxyvitamin D_{3} (4a), its 3α-methyl analog (4b) ${ }^{3}$ and their respective 25 -hydroxy derivatives ${ }^{2}$ exert in various degrees similar biological activity in vivo. One of the common features in all these compounds is the presence of a hydroxy function at C_{1} having an α configuration. ${ }^{4}$

In order to establish whether this 1α-hydroxy substituent is essential for the hormonal activity of the vitamin D_{3} analogs, we have synthesized 1β-hydroxyvitamin $D_{3}(5 a)$ the C_{1} epimer of 1α-hydroxyvitamin D_{3} (1) and evaluated its biological activity. ${ }^{1}$

The starting material, 1α-hydroxyvitamin $\mathrm{D}_{3}(1)$, was oxidized with freshly prepared active manganese dioxide in ether resulting in the ketone 6 a . The spectral data indicated that this ketone possessed the previtamin D and not the vitamin D skeleton. Thus its NMR spectrum showed three vinylic protons due to the endocyclic $5(10), 6,8$-triene system (AB quartet of the two protons at C_{6} and C_{7} and a broad singlet of the proton at C_{9}) instead of the four protons of 1-ketovitamin D_{3} (7) exocyclic 5,7,10(19)-triene system. The UV spectrum of $6 \mathbf{a}$ exhibited two bands at $\lambda_{\text {max }} 236$ and $287 \mathrm{~nm}(\epsilon 9500$, 10000) the latter indicating an extension of conjugation of the previtamin chromophore by 28 nm (1α-hydroxyprevitamin $\mathrm{D}_{3}(8)$ absorbs at $\lambda_{\text {max }} 259 \mathrm{~nm} ; \epsilon 10000$) in accord with the assigned structure. ${ }^{5}$ Furthermore, on exposing $6 a$ to sunlight in the presence of iodine the UV spectrum changed; the two bands were replaced by one appearing at higher wavelength with enhanced intensity ($\lambda_{\max } 320 \mathrm{~nm} ; \epsilon 22000$). This UV change was indicative of a $\mathrm{C}_{6}-\mathrm{C}_{7}$ double bond $Z \nRightarrow E$ isomerization, with a formation of tachysterol ${ }_{3}$ derivative, 9 , possessing an extended planar conjugated 1 -keto-triene chromophore. ${ }^{6}$

Oxidation of 1α-hydroxyprevitamin $D_{3}(8)^{7}$ with an active manganese dioxide resulted also in 1-ketoprevitamin $\mathrm{D}_{3}(6 \mathbf{a})$. This oxidation, however, proceeded at a faster rate than the corresponding oxidation of 1α-hydroxyvitamin D_{3} (1) and gave the ketone in higher yield.

The formation of 1-ketoprevitamin (6a) instead of 1-ketovitamin 7 from 1 implied that the thermal equilibrium $\mathbf{6 a} \rightleftarrows$ 7 is totally on the side of the 1 -ketoprevitamin D_{3} (6a) differing thus from the equilibrium vitamin $D_{3} \rightleftarrows=$ previtamin D_{3} which is predominant on the side of the vitamin. This shift in the position of the equilibrium is consistent with the increased stability due to the linearly conjugated carbonyl system present in the ketone 6 a.
Reduction of ketone 6 a with sodium borohydride in methanol resulted in a single product 1β-hydroxyprevitamin D_{3} (10a) which had a UV spectrum identical with 1α-hydroxyprevitamin $\mathrm{D}_{3}(8)$ and isomerized with iodine and light

2

3

$4 \mathrm{a}, \mathrm{R}^{\prime}=\mathrm{H}$
4b, $\mathrm{R}^{\prime}=\mathrm{CH}_{3}$

5a, $\mathrm{R}^{\prime}=\mathrm{H}$
1la, $R^{\prime}=H$
5b, $\mathrm{R}^{\prime}=\mathrm{Ac}$
$11 \mathrm{~b}, \mathrm{R}^{\prime}=\mathrm{Ac}$
to a tachysterol derivative $11 \mathrm{a}\left(\lambda_{\max } 272,282,292 \mathrm{~nm} ; \epsilon 22000\right.$, 25000,21000). The NMR of 10 a differed from that of its C_{1}
trate was lyophilized. The residue was dissolved in 2100 mL of CHCl_{3}, and the insoluble material was removed by filtration. Evaporation of the filtrate under reduced pressure gave $2.66 \mathrm{~g}(80 \%)$ of syrupy residue, homogeneous by TLC on $\mathrm{SiO}_{2}\left(R_{f} 0.50\right.$; cyclohexane-ethyl acetate- $\mathrm{EtOH}, 5: 3: 2):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{C}\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.2-4.0(\mathrm{~m}, 4 \mathrm{H}$, CHO), $4.83(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}, \mathrm{H}-1)$.

Methyl 2-O-Methyl-3,4-di-O-acetyl- α-L-rhamnoside (4b). 4a (1 g) was converted to its diacetate by the standard acetic anhy-dride-pyridine procedure. The product was a syrup, weight 0.88 g . This material was chromatographed on 88 g of silica gel, eluting with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ (95:5) and collecting $12810-\mathrm{mL}$ fractions. As a result of weight analysis fractions $40-60$ were combined and evaporated to dryness under reduced pressure, weight 0.73 g. Crystallization from ether-Skellysolve B gave $0.27 \mathrm{~g}, \mathrm{mp} 68-71^{\circ} \mathrm{C}$. The crystalline material was sublimed under a pressure of 0.5 mm and a bath temperature of $60-62^{\circ} \mathrm{C}$: yield $0.24 \mathrm{~g} ; \mathrm{mp} 70-72^{\circ} \mathrm{C}$ (lit. ${ }^{20} 70-71^{\circ} \mathrm{C}$); $R / 0.45\left(\mathrm{SiO}_{2} ; \mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}, 9: 1\right) ;[\alpha]_{\mathrm{D}}-7{ }^{\circ}\left(\right.$ c $\left.2, \mathrm{CH}_{3} \mathrm{OH}\right)$ (lit. ${ }^{20}-69^{\circ}$); IR (Nujol) 1740, 1235, 1220, 1150, 1170, 1140, 1125, 1105, $1070,1050,975,965,930,915,910,885,820 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.22\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 2.06$ and $2.10\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.42(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}$), 3.50 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.63 (d of d, $1 \mathrm{H}, J=2.0$ and $3.2 \mathrm{~Hz}, \mathrm{H}-2$), $3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{H}-1), 5.10-5.30(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3$ and $\mathrm{H}-4)$; mass spectrum $m / e 245\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{7}$: C, 52.16 ; $\mathrm{H}, 7.30$. Found: $\mathrm{C}, 52.42$; H , 7.23.

Methyl 2-O-Methyl-3-O-(p-nitrobenzoyl)- α-L-rhamnoside (4c) and Methyl 2-O-Methyl-3,4-di- O-(p-nitrobenzoyl)- α-Lrhamnoside (4d). A solution of 209 mg of $4 \mathbf{a}$ and 500 mg of p-nitrobenzoyl chloride in 10 mL of pyridine was allowed to stand at room temperature for 72 h . Water (1 ml) was added and the solution was allowed to stand for 0.5 h , after which it was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The pyridine was removed by thorough washing with 1 N HCl . This was followed by washing with 1 N NaHCO 3 solution and water. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to dryness, leaving an oily residue (375 mg). The product was chromatographed on 40 g of silica gel using gradient elution with benzeneether ($98: 2$ to 8:2). The eluate was analyzed by TLC on SiO_{2} (ben-zene-ether, $8: 2$), combining the fractions containing a faster moving material ($R_{f} 0.64$) and the fractions containing a slower moving material ($R_{f} 0.28$). Evaporation of the $R_{/} 0.64$ fractions gave $4 \mathbf{d}(72 \mathrm{mg})$ as indicated by its ${ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CDCl}_{3}\right) \delta 1.33\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}\right)$, 3.50 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.52 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.87 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$), 3.9-4.3 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5), 4.87(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{H}-1), 5.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and H-4), 8.21 (s, 8 H , aromatic).

Evaporation of the $R_{f} 0.28$ fractions gave 4 c (233 mg), which was crystallized from benzene-ether and from ether-methylene chloride: mp 139-139.5 ${ }^{\circ}$ C; IR (Nujol) 3470, 1725, 1605, 1525, 1490, 1345, 1275, $1185,1120,1115,1100,1050,1040,885,835,725,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.34\left(\mathrm{~d}, 3 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.42$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.68(\mathrm{q}, 1 \mathrm{H}, J=2.0$ and $3.2 \mathrm{~Hz}, \mathrm{H}-2), \sim 3.75(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-2$ or $\mathrm{H}-4), 3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2$ or $\mathrm{H}-4), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{H}-1)$, $5.27(\mathrm{q}, 1 \mathrm{H}, J=9.5$ and $3.2 \mathrm{~Hz}, \mathrm{H}-3), 8.22(\mathrm{~m}, 4 \mathrm{H}$, aromatic).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{8}$: C, 52.78; H, 5.61. Found: C, 52.77 ; H, 5.21 .

Methyl 2,4-Di- O-methyl- α-L-rhamnoside (4e). The filtrate from crystallization of 2 a after methanolysis of 5.0 g of Ib was evaporated under reduced pressure until the $\mathrm{CH}_{3} \mathrm{OH}$ was removed. The residue was mixed with a solution of 75 mL of pyridine in 500 mL of water, and the resulting solution was stirred overnight with 125 mL of Dowex $2\left(\mathrm{OH}^{-}\right)$. The resin was removed by filtration, and the filtrate was concentrated to a syrup by distillation under $25-30 \mathrm{~mm}$ at $45^{\circ} \mathrm{C}$. Water (50 ml) was added to the residue, and the solution was adjusted
to pH 9.0 with 1.0 N NaOH solution. The basic solution was extracted with three $50-\mathrm{mL}$ portions of CHCl_{3}. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure, leaving a mobile lizuid, weight 1.01 g , homogeneous by TLC ($R_{f} 0.60$; SiO_{2}; cyclohexane-ethyl acetate-ethanol, 5:3:2). The liquid was chromatographed on 50 g of silica gel, eluting with Skellysolve Bacetone (4:1) until $925-\mathrm{mL}$ fractions were collected. Fractions 40-62 (weight maximum) were combined and evaporated under reduced pressure to give a residue weighing 0.93 g . Distillation gave 0.30 g of colorless liquid: bp $82^{\circ} \mathrm{C}(0.3 \mathrm{~mm})$; $[\alpha]_{\mathrm{D}}-67.7^{\circ}$ (c 2, $\mathrm{CH}_{3} \mathrm{OH}$) (lit. ${ }^{21 \mathrm{a}}$ $\left.-66.6^{\circ}\right) ;\{\alpha\}_{\mathrm{D}}-56.0^{\circ}\left(c 2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.29(\mathrm{~s}, 3 \mathrm{H}$, $J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}$), 3.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.49 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.57 (s , $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $2.74(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{OH}), 2.97(\mathrm{t}, 1 \mathrm{H}, J=9.0$ and 8.3 $\mathrm{Hz}, \mathrm{H}-4), 3.45$ (d of d, $1 \mathrm{H}, J=3.7$ and $1.5 \mathrm{~Hz}, \mathrm{H}-2), 3.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, $3.80(\mathrm{~m}, 1 \mathrm{H}, J 9.0 .8 .8$, and $3.7 \mathrm{~Hz}, \mathrm{H}-3), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1)$; mass spectrum m/e $175.0978\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right.$) (calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{4}$, 175.0970).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 52.40; H, 8.80. Found: C, $51.90 ; \mathrm{H}$, 9.87.

Registry No.-La, 11033-34-4; \mathbf{I} b, 54526-94-2; 1c, 63493-71-0; 2a, 57847-74-2; 2b, 57847-75-3; 2c, 63493-72-1; 3a, 63493-73-2; 3b, 63493-74-3; 4a, 59013-63-7; 4b, 63527-42-4; 4c, 63493-75-4; 4d, 63493-76-5; 4e, 35939-75-4; p-nitrobenzoyl chloride, 122-04-3.

References and Notes

(1) We wish to thank Mr. Stephen Mizsak and Mr. Terrence A. Scahill for assistance with ${ }^{1} \mathrm{H}$ NMR spectra and Dr. Lubomir Baczynskyj and Dr. Marvin Grostic for mass spectra. This work was supported in part by Contract N01-CM-43753 from the Division of Cancer Treatment, National Cancer Institute, National Institutes of Heal:h, Department of Health, Education and Welfare.
(2) To whom inqui-ies should be addressed
(3) M. E. Bergy and F. Reusser, Experientia, 23, 254 (1967)
(4) T. F. Brodasky and F. Reusser, J. Antiblot., 27, 809 (1974)
(5) R. A. Morton and W. T. Earlam, J. Chem. Soc., 159 (1941)
(6) L. H. Briggs, G. A. Nicholls, and F. M. L. Paterson, J. Chem. Soc., 1718 (1952).
(7) J. H. Birkinshaw, Biochem. J., 59. 485 (1955)
(8) C. J. P. Spruitt, Recl.Trav. Chim. Pays-Bas, 68, 325 (1949)
(9) H. Brockmann and W. Lenk, Chem. Ber., 92, 1904 (1959).
(10) W. D. Ollis, I. O. Sutherland, and J. J. Gordon, Tetrahedron Lett., No. 16, 17 (1959).
(11) H. Brockmann, P. Boldt, and J. Niemeyer, Chem. Ber., 96, 1356 (1963)
(12) H. Bloom, L. H Briggs, and B. Cleverley, J. Chem. Soc., 178 (1959).
(13) (a) D. L. Fitzell D. P. H. Hsieh, R. C. Yao, and G. N. LaMar, J. Agric. Food Chem., 23, 442 (1975); (b) R. C. Paulick, M. L. Casey, and H. W. Whitlock, J. Am. Chem. Soc., 98, 3370 (197ら); (c) A. Arnone, G. Franza, R. Mondelli, and A. Vigevani, Tetrahedron Lett., 3349 (1976); (d) P. F. Wiley, R. B. Kelly, E. L. Caron, V. H. Wiley, J. H. Johrison, F. A. MacKellar, and S. A. Mizsak, J. Am. Chem. Soc., 99, 542 (1977).
(14) W. Keller-Schierlein, J. Sauerbier, U. Vogler, and H. Zähner, Helv. Chim. Acta, 53, 779 (1970).
(15) (a) H. Brockman, Fortschr. Chem. Org. Naturst., 21, 121 (1963); (b) H. Brockmann, J. Niemeyer, and W. Rode, Chem. Ber., 98, 3145 (1965); (c) J. Tax, P. Sedmara, J. Vakoum, K. Eckardt, I. Konersovà. and Z. Vanèk, Collect. Czect. Chem. Commun., 38, 2661 (1973); (d) H. Brockmann and J. Niemeyer, Chem. Ber., 101, 1341 (1968).
(16) D. F. Pusey and J. C. Roberts, J. Chem. Soc.. 3542 (1963); (b) J. S. E Holker, S. A. Kagal, L. J. Mulhern, and P. M. White, Chem. Commun., 911 (1966); (c) P. Raffey and M. V. Sargent, ibid., 913 (1966).
(17) J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York and London, 1972.
(18) M. P. Kunstmann and L. A. Mitscher, J. Org. Chem., 31, 2920 (1966).
(19) K. H. Bell, Aust. J. Chem., 22, 601 (1969).
(20) W. Keller-Schierlein and A. M. Müller, Experientia, 26, 929 (1970).
(21) (a) H. Okabe, M. Koshito, K. Tanaka, and T. Kawasaki, Chem. Pharm. Bull., 19, 2394 (1971); (b) J. R. Edwards and J. A. Hayashi, Arch. Biochem. Biophys., 111, 415 (1965).
$1035,960,755 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 3.48$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.62 (d, $1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}-8$), 3.90 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 5.24 (d, $1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}-7), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{H}-3), 7.10(\mathrm{~d}, 1 \mathrm{H}$, $J=2.5 \mathrm{~Hz}, \mathrm{H}-1), 8.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-11)$; mass spectrum m^{\prime} e 414.09538 (15.7; calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{9}, 414.09508$), 340.05633 ($-\mathrm{CH}_{3} \mathrm{OCHCHOH}$, 29.4; calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{7}, 340.05830$), 326.04236 ($-\mathrm{CH}_{3} \mathrm{OCHC}(\mathrm{OH})$ $\mathrm{CH}_{3}, 97.2$; calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}_{7}, 326.04265\right), 298.04748$ ($-\mathrm{CH}_{3} \mathrm{O}$ $\mathrm{CHC}(\mathrm{OH}) \mathrm{CH}_{3} \mathrm{CO}, 36.4$; calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{6}, 298.04773$).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{9}$: C, 60.87 ; $\mathrm{H}, 4.38$. Found: $\mathrm{C}, 60.14$; H , 4.77.
(b) From Steffimycin B (1b). Ib (5 g) was treated with acidic methanol as above, except that heating was continued for 48 h only. The first fraction weighed 2.2 g . A second fraction of 1.6 g was obtained by concentration and refrigeration of the filtrate from the first fraction. These fractions were combined and chromatographed on 360 g of silica gel using cyclohexane-ethyl acetate-ethanol (6:3:1) as the eluting system and collecting $48610-\mathrm{mL}$ fractions. Fractions 290-486 were combined and concentrated under reduced pressure. The residue was recrystallized from acetone, yield $1.07 \mathrm{~g}, \mathrm{mp} 253-256{ }^{\circ} \mathrm{C}$. The product had the same $R_{f}(0.38)$ on TLC $\left(\mathrm{SiO}_{2}\right.$, cyclohexane-ethyl acetate-ethanol, 5:3:2) as did 2a. Its IR spectrum was the same as that of 2 a , and a mixture melting point was not lowered.

7-Deoxysteffimycinone (2b). la (1 g) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$, and 300 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ was added. The mixture was shaken under hydrogen at an initial pressure of 45 psi for 93 h . The catalyst was removed by filtration, and the filtrate was evaporated to dryness under reduced pressure. The residue was pratitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, and the two-phase system was filtered. The water layer was removed, and the organic layer was washed with water, a solution containing an excess of FeCl_{3} in 1 N HCl , and again with water. The organic phase was removed and concentrated to dryness under reduced pressure. The residue was chromatographed on 100 g of silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$ (97:3) for elution, which was cor.tinued until the material having $R_{f} 0.40\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}, 97: 3\right)$ had been eluted. The fractions containing this material were combined and evaporated to dryness under reduced pressure, weight 160 mg . Recrystallization from $\mathrm{CH}_{3} \mathrm{OH}$ gave 85 mg , $\mathrm{mp} 191-194{ }^{\circ} \mathrm{C}$. Two recrystallizations from EtOH gave: $\mathrm{mp} 191.5-194^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\max }$ $213 \mathrm{~nm}(\epsilon 25700), 236$ ($\epsilon 27400$), 258 sh ($\epsilon 19520$), $274 \mathrm{sh}(\epsilon 21400$), 283 ($\epsilon 23450$), 458 ($\epsilon 14800$); UV (0.01 N methanolic KOH) $\lambda_{\max } 230$ sh nm ($\epsilon 25650$), 268 ($\epsilon 23700$), 514 (-11670); IR (Nujol) 3500 , 1705, 1675, 1620, $1605 \mathrm{sh}, 1560,1305,1240,1160,1100,965,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $2.5 \mathrm{~Hz}, \mathrm{H}-3), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{H}-1), 8.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7)$; mass spectrum $m / e 398.09730$ (calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{8}, 398.1002$). 324 (98.5), 323 (100), 310 (9.8), 295 (39.8), 282 (20.1).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{8}$: C, 63.31; H. 4.55. Found: C, 63.52; H, 4.57.

4,6-Di- O-methylsteffimycin (1c). la ($\mathrm{lg}, 1.67 \mathrm{mmol}$) was dissolved in 100 mL of acetone, and the air above the solution was displaced with $\mathrm{N}_{2} . \mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ was added, followed by 650 mg (4.7 mmol) of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$, and the mixture was heated under reflux for 20 h . Water was added, and the reaction mixture was stirred for 45 min . The acetone was removed by evaporation under reduced pressure. The residue was mixed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the mixture was extracted with $5 \% \mathrm{NaOH}$ solution. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with a saturated ammonium chloride solution and dried $\left(\mathrm{MgSO}_{4}\right)$. After filtration, the solution was evaporated to dryness under reduced pressure, leaving a residue which was crystallized from $\mathrm{CH}_{3} \mathrm{OH}$. The product obtained was chromatographed on 100 g of silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$ (95:5). The fractions containing the first color maximum off the column were combined and evaporated to dryness under reduced pressure. The residue (500 mg) was recrystallized three times from $\mathrm{CH}_{3} \mathrm{OH}$: yield 307 mg ; mp $220-224{ }^{\circ} \mathrm{C}$; $R_{/} 0.39\left(\mathrm{SiO}_{2} ; \mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}\right.$. 9:1); UV (EtOH) $\lambda_{\max } 248 \mathrm{~nm}(\epsilon 25890$), $283 \mathrm{sh}(\epsilon 16860$), 396 ($\epsilon 5240$); IR (Nujol) 3635, 3570, 3510, 3400, 1705, 1670, 1650, 1590, 1555, 1370, $1340,1320,1285,1275,1235,1090,1050,1025,980,950,910,840,815$, $740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.30\left(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$, 1.43 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}$), 3.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right.$), 3.68 (d, $1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{H}-8), 3.93\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.68$ (d, $1 \mathrm{H}, \mathrm{OH}), 4.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{H}-7), 5.42$ (d, $1 \mathrm{H}, J=2.2 \mathrm{~Hz}$, anomeric), $5.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}$, $\mathrm{H}-3), 7.14(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{H}-1), 8.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-11)$; mass spectrum m/e 602 ($\mathrm{M}^{+}, 4.5$), 472 (9.0), 442 (21.6), 426 (89.1), 383 (100), 352 (82.9).

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{13}$: C, 59.79; H, 5.69. Found: C $59.84 ; \mathrm{H}$ 5.93.

4,6-Di-O-methylsteffimycinone (2c). 2a (100 g, which also contained considerable la) was dissolved in 3.5 mL of acetone, and
77.0 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 57 mL of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$ were added. The mixture was stirred and heated under reflux under N_{2} for 21.5 h . After the reaction mixture had cooled to room temperature it was filtered, and the filtrate was evaporated to dryness under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing a small amount of $\mathrm{CH}_{3} \mathrm{OH}$ and washed with three portions of $5 \% \mathrm{NaOH}$ solution. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Filtration and evaporation under reduced pressure gave 105 g . This material was chromatographed in two portions, 34 and 71 g . The smaller portion was chromatographed on 2.4 kg of silica gel, elut:ng with 10 L of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}(98: 2), 10 \mathrm{~L}(97: 3)$, and $4 \mathrm{~L}(96: 4)$. The second fraction removed from the column (as indicated by TLC) was isolated by evaporation under reduced pressure, yield 17.5 g . The larger fraction was purified similarly to give 36.0 g . These fractions were combined and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$, yield $42.5 \mathrm{~g}, \mathrm{mp} 232.5-234.5$ ${ }^{\circ} \mathrm{C}$. A small sample was recrystallized from acetone for analysis: R_{f} $0.32\left(\mathrm{SiO}_{2} ; \mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}, 95: 5\right), 0.46 \quad\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}-\right.$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}, 92: 5: 3$); UV (EtOH) $\lambda_{\max } 248 \mathrm{~nm}(\epsilon 25640), 283 \mathrm{sh}(\epsilon$ 18560), 395 (10060); IR (Nujol) 3470, 3420, 1705, 1675, 1660, 1590, $1555,1370,1340,1320,1285,1250,1195,1170,1150,1095,1040,1025$, 975, 955, 905, 860, 835, $740 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (DMF- d_{7}) $\delta 1.43$ (s, 3 H , $\mathrm{CH}_{3} \mathrm{C}$), $3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.77(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{H}-8), 4.09(\mathrm{~s}, 6$ $\left.\mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{O}\right), 4.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 5.44(\mathrm{~d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-7), 7.01(\mathrm{~d}, 1$ $\mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{H}-3), 7.26(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{H}-1), 8.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-11)$; mass spectrum $m / e 442.1267$ (calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{9}, 442.1264$).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{9}$: C, 62.44; H, 5.02. Fot:nd: C, 62.28; H , 5.14.

Steffimycinol (3a). 2a (16 g) was reduced in four equal batches as follows: a solution of $4.0 \mathrm{~g}(9.7 \mathrm{mmol})$ of 2 a in 200 mL of 0.2 N NaOH solution was stirred while adding dropwise over 0.5 h a solution of 280 mg (7.6 mmol) of NaBH_{4} in 40 mL of 0.2 N NaOH solution. Stirring was continued for another 0.5 h , followed by addition of 50 mL of 2 N HCl . The resulting mixture was extracted with one $200-\mathrm{mL}$ portion and two $100-\mathrm{mL}$ portions of EtOAc. The ex-racts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to dryness under reduced pressure. Sixteen grams of 2a gave 13.2 g of residue. This material (10.8 g) was deposited from solution on 37 g of silica gel, which was added to the top of a column containing 1080 g of silica gel packed in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (97:3). Elution was done with the same solvent system until those fractions containing 3 a , as determined by TLC (R_{f} $0.18 ; \mathrm{SiO}_{2} ; \mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}, 95: 5$), were eluted. Those fractions containing pure 3 a , also determined by TLC, were combined and evaporated to dryness under reduced pressure: yield 3.7 g (23%); mp 230 ${ }^{\circ} \mathrm{C}$ dec; UV (EtOH) $\lambda_{\text {max }} 227 \mathrm{~nm}(\epsilon 35400), 269.5$ (: 21250), 285 sh ($\epsilon 17150$), 435 ($\epsilon 13200$): IR (Nujol) $3600,3560,3300,1675,1605,1570$, $1565,1395,1300,1275,1255,1215,1160,1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}-\mathrm{D}_{2} \mathrm{O}\right) \delta 1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right) 3.32(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{H}-8)$, 3.63 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.42 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-10$), 4.95 (d, $1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{H}-7), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}-3), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=$ $3.0 \mathrm{~Hz}, \mathrm{H}-1), 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-11)$; mass spectrum $m / e 416\left(\mathrm{M}^{+}, 1.3\right)$, 398 (14.9), 328 (100), 310 (90.2), 299 (22.6), 282 (21.8).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{9}$: C, 60.57; $\mathrm{H}, 4.85$. Found: $\mathrm{C}, 60.55 ; \mathrm{H}$, 4.97.

7-Deoxysteffimycinol (3b). A solution of $2.0 \mathrm{~g}(4.8 \mathrm{mmol})$ of $\mathbf{2 a}$ in 100 mL of 0.2 N NaOH solution was stirred while adding dropwise $920 \mathrm{mg}(24.2 \mathrm{mmol})$ of NaBH_{4} dissolved in 46 mL of 0.2 N NaOH solution. Stirring was continued 1 h after addition was completed. $\mathrm{EtOAc}(150 \mathrm{~mL})$ and 35 mL of 2 N HCl were added. The organic layer was removed, and the aqueous layer was extracted with two $100-\mathrm{mL}$ portions of ethyl acetate. The organic layers were combined, dried (MgSO_{4}), and evaporated to dryness under reduced pressure, weight 1.53 g . Material prepared in this way (2.2 g) was recrystallized twice from $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (97:3) by dissolving in $\sim 900 \mathrm{~mL}$ and concentrating: yield. $1.12 \mathrm{~g} ; \mathrm{mp} 274-276{ }^{\circ} \mathrm{C} ; R_{f} 0.44\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}\right.$; 95:5); UV (EtOH) $\lambda_{\text {max }} 226 \mathrm{~nm}(\epsilon 34000), 249 \mathrm{sh}$ ($\epsilon 17550$), 273 (ϵ 24500), 435 ($\epsilon 13500$); IR (Nujol) 3490, 1660, 1625, 1610, 1560, 1390, $1315,1300,1275,1240,1210,1190,1095,970,805,785,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 3.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-8, \mathrm{OH})$, 3.44 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 392 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.33 ($\mathrm{s}, 1 \mathrm{H} \mathrm{H}-10$), 6.85 (d, $1 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{H}-3), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{H}-1), 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-11)$; mass spectrum $m / e 400.1172$ (calcd for $\mathrm{C}_{21} \mathrm{H}_{10} \mathrm{O}_{8}, 400.1158$), 350 (32.9) 339 (49.7), 325 (45.7), 312 (100), 284 (70.9).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{8}$: C, 63.00 ; $\mathrm{H}, 5.04$. Found: C, 62.51 ; H , 4.99 .

Methyl 2-O-Methyl- α-L-rhamnoside (4a). The filtrate after crystallization of 2 a derived from 10 g of 1 a was mixed with 150 mL of pyridine, and 1 L of $\mathrm{H}_{2} \mathrm{O}$ was added. The solution was extracted repeatedly with $200-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the red color was removed. The aqueous solution was stirred overnight with 300 mL of Dowex $2\left(\mathrm{OH}^{-}\right)$. The resin was removed by filtrat:on, and the fil-
proton which gives rise in the ${ }^{1} \mathrm{H}$ NMR spectrum to a singlet at $\delta 7.92$ in DMF- d_{7}. Since the carbonyl group in ring A is no longer present, the downfield position of this proton arises from its position α to the anthraquinone carbonyl, and the linear tetracyclic system must be the correct one. Furthermore, a structure such as 8 would be expected to have both anthraquinone carbonyl groups hydrogen bonded, as is the case in tetrangulol. ${ }^{18}$ The ${ }^{13} \mathrm{C}$ NMR spectrum of 2a provides some evidence bearing on this point. Using values taken from the literature for the chemical shifts in the ${ }^{13} \mathrm{C}$ NMR spectrum of naphthoquinone, and using correction values obtained from Stothers, ${ }^{17}$ it can be estimated that the unsubstitued α carbon in 9 would have a chemical shift of $\delta 117.8$ in its ${ }^{13} \mathrm{C}$ NMR spectrum. The corresponding values for the ur.substituted β carbons in 10 and 11 would be $\delta 119.4$ or 124.2 for 10 and δ

122.6 or 127.4 in 11. The values for the unsubstitued aromatic carbon atom in ring B of $1 \mathbf{a}$ and $2 \mathbf{a}$ are $\delta 115.2$ and 115.3 , respectivley. This would be more consistent with the linear tetracyclic system, as in 2a.

It then remains to establish the orientation of ring A. The frequency of $1710 \mathrm{~cm}^{-1}$ found for the ketonic carbonyl in the infrared spectrum of la is higher than would be expected for a carbonyl group attached to an aromatic ring. If the carbonyl group is peri to the hydroxyl group in ring B, as in 12, hydro-

12
gen bonding would be expected, making such a high infrared carbonyl frequency even more surprising. Consequently, this piece of evidence would better fit the 2 a orienta-ion. A number of aglycones contain the C-6, C-7 dihydroxyl arrangement indicated in 2a. In such cases, the proton at C-7 shows chemical shifts of $\delta 5.10-5.45$ in ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{13 \mathrm{~d}, 15 \mathrm{c}}$ In steffimycinone, the corresponding resonance is at $\delta 5.25$, which argues strongly for a similar relationship in $2 \mathbf{a}$ and requires that the ketonic carbonyl be at $\mathrm{C}-10$. Bell ${ }^{19}$ has shown that metal hydride reduction of phenolic carbonyl compounds leads to reduction to methylene if the carbonyl is ortho or para to the phenolic hydroxyl, but only to a hydroxyl group if the relationship is meta. Reduction of 2 a using an excess of sodium borohydride gave a new compound (3b), in which two transformations were evident. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$ the resonance at $\delta 5.25$ had disappeared, stowing that the secondary hydroxyl group in ring A was now absent. In addition, the infrared spectrum of $\mathbf{3 b}$ did not have a bond for the ketonic carbonyl. A new singlet at $\delta 4.33$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$ could only arise by reduction of the ketonic carbonyl to a hydroxyl group. In view of Bell's findings, the only relationship of the substituents in rings A and B which could give such a reduction would be that indicated in $2 \mathbf{a}$, which must represent the structure of steffimycinone aside from stereochemistry at the asymmetric carbon atoms. At present, very little can be deduced about these configurations. A coupling constant of 3.0 Hz between protons at C-7 and C-8
would suggest that they cannot be diaxial, and therefore the hydroxyl at C-7 and the methoxyl at C-8 cannot both be equatorial.

As previously mentioned, acidic methanolysis of $\mathbf{1 a}$ and $\mathbf{1 b}$ gave, in addition to $\mathbf{2 a}, 4 a$ and $4 e$, respectively. The molecular formulas of the two antibiotics, when compared to that of 2 a , indicated that the products, taking into account the addition of $\mathrm{CH}_{3} \mathrm{OH}$, would have molecular formulas of $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{5}$ (4a) and $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{5}$ (4b). Such formulas suggested that these compounds were sugars, as did their ready removal by acidic methanolysis. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 a showed quite clearly that it was an eight-carbon compound having a $\mathrm{CH}_{3} \mathrm{C}$ and two $\mathrm{CH}_{3} \mathrm{O}$ groups, an anomeric carbon and proton, four carbon atoms substituted by oxygen and carrying protons, and suggested a rhamnose configuration. Acetylation formed a diacetate, which was found to be identical with the diacetate of methyl $2-O$-methyl- α-L-rhamnoside by comparison of its melting point, rotation, and ${ }^{1} \mathrm{H}$ NMR spectrum with the same properties reported in the literature. ${ }^{20}$ The infrared and mass spectra were also consistent with such a structure. Thus, steffimycin must have the structure, aside from stereochemistry, represented by la. Keller-Schierlein et al. ${ }^{14,20}$ have proposed that the configuration at $\mathrm{C}-1$ of the sugar in aranciamycin is β on the basis of a ${ }^{1} \mathrm{H}$ NMR chemical shift at $\delta 5.49$ appearing as a singlet. An almost identical resonance ($\delta 5.43$) cccurs in the spectrum of 1a, but it is not well resolved and appears to be a coublet with a small coupling constant. This may be evidence for an α configuration at $\mathrm{C}-1$ in the sugar in la, as is the case in most anthracyclines.
In view of the structure of 4 a and the differences and similarities observed between $4 a$ and $4 e$, it seemed probable that $4 \mathbf{e}$ was an O-methyl analogue of $4 \mathbf{a}$ with methylation having occurred at the oxygen on $\mathrm{C}-3$ or $\mathrm{C}-4$. It was also possible that $4 \mathbf{e}$ was either α - or β-methyl 3,4-di- O-methylrhamnoside. A comparison of the rotation of $4 \mathbf{e}$ in CHCl_{3} and $\mathrm{CH}_{3} \mathrm{OH}$ with values reported in the literature ${ }^{21}$ gave methyl 2,4 -di- O-methyl- α-L-rhamnoside as the closest match. The ${ }^{1} \mathrm{H}$ NMR spectzum of 4 e substantiates the identity. Three singlets ($\delta 3.35,3.49$, and 3.57) show the presence of three methoxyl groups. A doublet at $\delta 4.71(J=1.5 \mathrm{~Hz})$ represents the anomeric hydrogen, which is coupled to a proton at C-2 ($\delta 3.45, J=1.5$ and 3.7 Hz) which resonates as a doublet of doublets. In such case, the H-1, H-2 relationship is ee or ea, as is the relationship of $\mathrm{H}-2$ to $\mathrm{H}-3$ ($\delta 3.80$). The latter gives rise to six lines with J values of 3.7 (H-2, H-3), 9 (H-3, H-4), and $8.8 \mathrm{~Hz}(\mathrm{H}-3$ and OH$)$. The hydroxyl proton has a chemical shift of $\delta 2.74(\mathrm{~d}, J=8.8 \mathrm{~Hz})$. The proton on $\mathrm{C}-4$ resonates as a triplet at $\delta 2.97(J=8.3$ and 9 Hz$)$, with the smaller coupling constant arising from coupling with a proton on $\mathrm{C}-5$ appearing as a multiplet at $\delta 3.55$. These coupling constants establish that the H-3, H-4 protons are aa, as are $\mathrm{H}-4$ and $\mathrm{H}-5$. The proton on $\mathrm{C}-5$ is coupled with the $\mathrm{CH}_{3} \mathrm{C}$ proton, which shows as a doublet ($\delta 1.29, J=6.4 \mathrm{~Hz}$). This spectrum establishes that $4 \mathbf{e}$ is methyl 2,4 -di- O-methylrhamnoside and the rotation establishes that it is $\alpha-\mathrm{L}$. The structure of steffimycin B can then be depicted as $\mathbf{1 b}$, although again stereochemistry is not completely established, but must be the same as in 1a.

Experimental Section

Steffimycinone (2a). (a) From Steffimycin (1a). A solution of $5 \mathrm{~g}(8.7 \mathrm{mmol})$ of 1 a in 500 mL of 1 N methanolic hydrochloric acid was boiled under reflux for 128 t . The reaction mixture was refrigerated and filtered, yield 2.84 g . A second crop of 0.5 g was obtained from the filtrate. These fractions were combined and recrystallized from $\mathrm{CH}_{3} \mathrm{OH}$ to give $2.45 \mathrm{~g}, \mathrm{mp} 248-250^{\circ} \mathrm{C}$, and a second crop of 0.74 g , mp 245-249 ${ }^{\circ} \mathrm{C}$, yield 87%. Two further recrystallizations from $\mathrm{CH}_{3} \mathrm{OH}$ gave orange prisms: mp $250-251.5{ }^{\circ} \mathrm{C} ; R_{f} 0.31\left(\mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}, 95: 5$); UV (EtOH) $\lambda_{\max } 213 \mathrm{~nm}(\epsilon 26300)$, 236 (ϵ 28 180), 257 sh ($\epsilon 20420$), 279 ($\epsilon 20430$), 439 ($\epsilon 14130$); IR (Nujol) $3500,3070,1710,1675,1625,1600,1560,1315,1250,1200,1160,1105$,

Table I. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts ${ }^{a}$

Position	$\begin{gathered} \mathbf{1 a} \\ \mathrm{Me}_{2} \mathrm{SO}-d_{6} \\ \hline \end{gathered}$	$\stackrel{\mathbf{l b}}{\mathrm{Me}_{2} \mathrm{SO}-d_{6}}$	$\begin{gathered} \mathbf{1 c} \\ \mathrm{Me}_{2} \mathrm{SO}-d_{6} \\ \hline \end{gathered}$	$\begin{gathered} \text { 2a } \\ \mathrm{Me}_{2} \mathrm{SO}-d_{6} \\ \hline \end{gathered}$	$\begin{gathered} \text { 2b } \\ {\text { DMF- } d_{7}}^{2} \end{gathered}$	$\begin{gathered} 2 \mathbf{c} \\ \mathrm{Me}_{2} \mathrm{SO}-d_{6} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{3 a} \\ \mathrm{Me}_{2} \mathrm{SO}-d_{6} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{4 a} \\ \mathrm{CDCl}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{e} \\ \mathrm{CDCl}_{3} \\ \hline \end{gathered}$
C-10	198.5	198.4	200.0	199.3	199.6	199.4	72.9 (69.2)		
C-5	189.1	189.5	181.4	189.6	191.3	181.5	190.2		
C-12	179.3	180.0	179.7	180.0	181.2	179.4	180.9		
C-2	166.5	166.6	163.8	166.5	168.1	163.6	166.2		
C-4	164.6	164.7	161.4	164.6	166.4	161.4	164.5		
C-6	161.3	161.2	160.2	161.3	161.5	160.2	159.9		
C-10a	135.4	135.3	138.4	136.1	137.6	142.0	149.1		
C-11a	134.1	134.6	135.4	135.4	136.7	135.3	134.9		
C-12a	133.3	133.1	135.2	134.6	136.0	133.9	133.3		
C-6a	132.4	132.9	133.7	132.2	132.2	133.6	131.2		
C-5a	117.9	118.4	129.9	117.9	118.1	130.1	113.6		
C-11	115.2	115.3	118.6	115.3	117.0	119.1	118.0		
C-4a	109.5	110.0	117.0	109.9	111.0	116.9	109.9		
C-1	108.0	108.1	104.7	107.9	109.2	104.6	107.7		
C-3	106.1	106.6	104.0	106.4	107.2	102.5	106.4		
C-7	70.6	70.2	72.0	62.8	26.9	63.5	69.2 (72.9)		
C-8	85.5	85.9	86.1	87.5	84.5	87.6	87.6		
C-9	76.2	76.1	76.1	76.3	78.0	76.3	75.2		
$\mathrm{CH}_{3} \mathrm{O}(\mathrm{C}-2)$	56.3	56.4	56.3	56.3	57.2	56.2	56.4		
$\mathrm{CH}_{3} \mathrm{O}(\mathrm{C}-8)$	59.7	59.7	59.8	59.5	58.8	59.6	60.4		
$\mathrm{CH}_{3} \mathrm{O}(\mathrm{C}-4)$			55.8			55.7			
$\mathrm{CH}_{3} \mathrm{O}$ (C-6)			62.6			63.1			
$\mathrm{CH}_{3}(\mathrm{C}-9)$	23.3	23.3	23.4	23.6	22.2	23.8	21.7		
$\mathrm{C}-1^{\prime}$	100.9	100.7	101.0					97.7	97.5
C-2'	80.5	80.9	80.9					80.5	80.5
C-3'	71.1	71.6	72.2					71.6	71.3
C-4'	72.2	82.3	72.3					73.5	83.8
C-5'	70.3	68.7	70.3					68.0	67.2
$\mathrm{CH}_{3}\left(\mathrm{C}-5^{\prime}\right)$	17.8	17.8	17.8					17.6	17.9
$\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{C}-2^{\prime}\right)$	58.6	59.9	58.7					58.9	58.9
$\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{C}-4^{\prime}\right)$		58.5							60.7
$\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{C}-1{ }^{\prime}\right)$								54.0	54.7

[^0]it must have the aliphatic methoxyl group as a substituent. ${ }^{17}$ In the high-resolution mass spectrum of $2 \mathbf{a}$, a strong ion (29.4%) is found at 340.05633 , indicating a loss of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$. Such a loss can occur only if the aliphatic methoxyl is adjacent to the benzylic carbon, thus making possible loss of the fragment HOCHCHOCH 3 . These results establish that the second hydroxyl group is attached to a quaternary carbon atom substituted by CH_{3}, and the resonance in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a}$ at $\delta 76.3$ must arise from such a carbon atom. The mass spectrum of 2 a has a base peak at $326(\mathrm{M}-88)$ and a very strong peak at 298 ($\mathrm{M}-116$). These transitions have metastable ions occurring at 257.0 and 214.5 ; and this information, combined with high-resolution mass measurements on the 326 and 298 ions, establishes that these fragments arise, respectively, by loss of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ and $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}$ fragments from the molecular ion. The four-carbon fragment can only be $\mathrm{CH}_{3} \mathrm{OCHC}(\mathrm{OH}) \mathrm{CH}_{3}$, and the five-carbon fragment then is this plus the ketonic carbonyl as indicated in 7 , which shows the structure of ring A necessitated by these data.

7
Such a part structure as 7 can be attached to the anthraquinone portion of 2 a in four ways. Both linear attachment as in 2 a and angular attachment as in 8 are possible. Fur-

thermore, each type of attachment can have the orientation of the ketonic carbonyl either as in 2a or as in 8. It has already been suggested that the aromatic proton which is on ring B is α to a quinone carbonyl because of its chemical shift (about $\delta 8$) in the ${ }^{1} \mathrm{H}$ NMR spectra of various compounds discussed. Naphthoquinone was cited as an example supporting this view. Several anthracycline antibiotics have protons α and β to ketonic carbonyls which exhibit similar patterns of chemical shifts in their ${ }^{1} \mathrm{H}$ NMR spectra. Examples of these are ϵ_{1}-pyrromycinone, in which an α proton resonates at $\delta 7.68$ while β protons have chemical shifts of $\delta 7.29,{ }^{15 \mathrm{c}}$ and α_{2}-rhodomycinone, which has chemical shifts of $\delta 8.28$ and 7.29 arising from α and β protons, respectively. ${ }^{15 d}$ However, it might be possible that a proton ortho to a carbonyl as in 8 might resonate at about $\delta 8$, since this is the case with acetophenone. Such considerations would leave as the three possible structures the two orientations of the linear structure and 8. Reduction of $\mathbf{2 a}$ with a limited amount of sodium borohydride forms steffimycinol (3a) by reduction of the ketonic carbonyl group, as would be expected. Spectral evidence (particularly ${ }^{13} \mathrm{C}$ NMR) shows quite clearly that no other change has occurred. In the resultant product (3a) there is a

$3 \mathrm{a}, \mathrm{R}=\mathrm{OH}$
b, $R=H$

similar to $2 a$ in both its ultraviolet and infrared spectra, and thus must contain the chromophore. Analytical data and high-resolution mass spectrometry establish that the molecular formula is $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{8}$. The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were very similar to those of 2 a in that three aromatic carbon atoms attached to protons, two $\mathrm{CH}_{3} \mathrm{O}$ and a $\mathrm{CH}_{3} \mathrm{C}$ group, are indicated. However, the doublet in the proton spectrum with a chemical shift of $\delta 5.24$ has disappeared and a new resonance at $\delta 3.22$, arising from 2 H , has appeared. The corresponding change in the ${ }^{13} \mathrm{C}$ NMR spectrum was from $\delta 62.8$ to 26.9 . The above data indicate that $\mathbf{2 b}$ (7-deoxysteffimycinone) results from a reductive carbon-oxygen cleavage to remove a sugar moiety attached at a benzylic position. ${ }^{13 \mathrm{~d}}$ Methylation of 1 a using dimethyl sulfate and base formed 1 c . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1 c quite clearly indicated that two new methyl groups attached to oxygen had been introduced. The analysis and mass spectrum were also consistent with formation of a dimethyl ether of 1a. Similar treatment of 2 a also gave a dimethyl ether (2c), as shown by the same sort of evidence. The ${ }^{13} \mathrm{C}$ NMR spectral data derived from 2c establish that methylation occurred at two phenolic hydroxyl groups.

The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a}, \mathbf{2 a}$, and $\mathbf{2 b}$ all indicate the presence of three arcmatic protons. Two of these are coupled (J $=2.5 \mathrm{~Hz})$, suggesting that they are 1,3 to each other. The other is a singlet with chemical shifts of $\delta 7.97-8.02$. In addition to the 1,8 -dihydroxyanthraquinone system, a methoxyl group attached to an aromatic ring and a $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$ moiety are present in 2a. There are then three positions in the anthraquinone which are not substituted and taree which are substituted by a combination of $\mathrm{CH}_{3} \mathrm{O}$ and OH . This leaves two positions unaccounted for, so the $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$ moiety must be attached at these positions. The two protors meta to each other can only be in a ring bearing a hydroxyl group meta to a methoxyl group. The other aromatic proton must be α to a carbonyl, as its chemical shift in its ${ }^{1} \mathrm{H}$ NMR spectrum is too far downfield for that of a β proton. ${ }^{13 \mathrm{~d}, 15}$ For example, naphthoquinone has chemical shifts of $\delta 8.07$ and 7.77 for α and β protons, respectively. The pattern of aromatic proton resonance is very similar to the similarly substituted averufin ${ }^{16}$ (5), although

5

6
differing in absolute values. The partial structure 6 would be a reasonable one for steffimycinone on the basis of these data, although an alternative angular attachment of the six-carbon moiety was possible.

In view of both the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra of 1 a and its degradation products, there must be present in the six-carbon moiety a methexyl group and a $\mathrm{CH}_{3} \mathrm{C}$ on a fully substituted carbon atom. The $1710-\mathrm{cm}^{-1}$ band in the infrared spectrum of la suggests a ketone. This suggestion is confirmed by a chemical shift of $\delta 198.5$ in the ${ }^{13} \mathrm{C}$ NMR spectra of 1 a and one at $\delta 199.3$ in the spectrum of $\mathbf{2 a}$. The ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 a}$ and 2 c have three resonances in the range of $\delta 62.8-87.6$. These must arise from aliphatic carbon atoms singly bonded to oxygen, of which one must be that of a $\mathrm{CH}_{3} \mathrm{O}$. The infrared spectrum of 2 c has bands at 3580 and $3420 \mathrm{~cm}^{-1}$, establishing the presence of two hydroxyl groups. The ready conversion of $\mathbf{1 a}$ to $\mathbf{2 b}$ by catalytic hydrogenation indicates an oxygen in a benzylic position, which must be the site of attachment of the sugar. In the formation of 2 a , the sugar is lost, so the substituent at the benzylic position in 2 a must be one of the hydroxyl groups. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 a has a resonance appearing as a doublet at $\delta 5.24$, which would be a suitable signal for a proton on a benzylic carbon substituted by oxygen. This proton has a coupling constant of 3 Hz , as does a proton, also appearing as a doublet, at $\delta 3.62$. Consequently, these protons must be on adjacent carbon atoms. In the ${ }^{13} \mathrm{C}$ NMR spectrum of 2a a carbon bearing a proton resonates at $\delta 62.8$. This must be the benzylic carbon, since it shifts to $\delta 70.6$ in the ${ }^{13} \mathrm{C}$ NMR spectrum of 1 a , in which it is attached in an ether linkage to the sugar moiety. In addition, there is a carbon atom giving a signal in the ${ }^{13} \mathrm{C}$ NMR spectrum of 2 a at $\delta 87.5$. This carbon, as shown by off-resonance decoupling, also has a proton attached. Therefore, it must be the carbon adjacent to the benzylic carbon. Also, because of its resonance at $\delta 87.5$,
(11) J. Schmutz, Helv. Chim. Acta, 42, 335 (1959).
(12) W. J. Richter and E. Brochmann-Hanssen, Helv. Chim. Acta, 58, 209 (1975).
(13) M. P. Cava, K. Nomura, S. K. Talapatra, M. J. Mitchell, R. H. Schlessinger, K. T. Buck, J. L. Beal, B. Douglas, R. F. Raffauf, and J. A. Weisbach, J. Org Chem., 33, 2785 (1968).
(14) E. Brochmann-Hanssen and W. J. Richter, J. Pharm. Sci., 64, 1040 (1975).
(15) H.-C. Chiang and E. Brochmann-Hanssen, J. Org. Chem., in press.
(16) T. Kametani, M. Ihara, and T. Honda, J. Chem. Soc. C, 1060 (1970).
(17) J. Imaseki and H. Taguchi, J. Pharm. Soc. Jpn., 82, 1214 (1962).
(18) H. Kaneko and S. Nanuto, J. Org. Chem., 34, 2803 (1969).
(19) S. A. Telang and C. K. Bradsher, J. Org. Chem., 30, 752 (1965).
(20) T. Kametani, T. Honda, and M. Ihara, J. Chem. Soc. C, 3318 (1971).
(21) M. S. Yunosov, S. T. Akramov, and S. Yu, Dokl. Akad. Nauk SSSR, 162, 603 (1965); Chem. Abstr., 63, 5695 (1966).
(22) M. S. Yunosov, S. T. Akramov, and S. Yu, Khim. Prir. Soedin., 2, 340 (1966); Chem. Abstr., 66, 85906k (1967).
(23) A. R. Battersby, D. J. LeCount, S. Garratt, and R. I. Thrift, Tetrahedron, 14, 46 (1961).
(24) A. R. Battersby, R. Binks, R. J. Francis, D. J. McCaldin. and H. Ramuz, J. Chem. Soc., 3600 (1964).
(25) M. Tomita, and J. Kunimoto, J. Pharm. Soc. Jpn., 80, 1245 (1960)
(26) T. Kametani, R. Charubala, M. Ihara, M. Koizumi, K. Takahashi, and K. Fukumoto, J. Chem. Soc. C, 3315 (1971).
(27) D. H. R. Barton, R. James, G. W. Kirby, D. W. Turner, and D. A. Widdowson, J. Chem. Soc. C, 1529 (1968).
(28) E. Brochmann-Hanssen, C.-H. Chen, C. R. Chen, H.-C. Chiang, A. Y. Leung and K. McMurtrey, J. Chem. Soc., Perkin Trans. 1, 1531 (1975).
(29) Aluminum oxide, Woelm, activity III.
(30) Spray solution: 1\% 2,6-dichloroquinonechlorimide in ethanol, followed by exposure to ammonia vapors.
(31) T. Kametani and M. Ihara, J. Chem. Soc. C, 530 (1967)
(32) Pierce Chemical Co.
(33) Prepared by methylation of (-)-coreximine with diazomethane.
(34) Isolated from opium (Brochmann-Hanssen).

Structures of Steffimycin and Steffimycin B^{1}

Robert C. Kelly,* Ilse Schletter, James M. Koert, Forrest A. MacKellar, and Paul F. Wiley*2

Research Laboratories, The Upjohn Company, Kalamazoo, Michigan 49001
Received April 26, 1977

Abstract

A combination of chemical degradation and spectral studies has established that the structures of steffimycin and steffimycin B are those indicated ty structures $1 \mathbf{a}$ and $\mathbf{1 b}$, respectively.

The discovery of the antibiotic steffimycin (1a), produced by Streptomyces steffisburgensis and having activity against gram-positive organisms, was reported by Bergy and Reusser ${ }^{3}$ some years ago. Subsequently, a description of the isolation of an antibiotic, steffimycin B (1b), having very similar physical, chemical, and biological properties, was published. ${ }^{4}$ Brodasky and Reusser, ${ }^{4}$ on the basis of private communications from Dr. R. C. Kelly, proposed a gross structure for steffimycin. Physical data of various kinds indicated that steffimycin and steffimycin B differed only by the presence of a methyl group in the latter which was absent in the former, and a structure was proposed for steffimycin B. However, the identity of the sugars present in these antibiotics was not published and very limited data were presented. The present paper proposes complete structures ($\mathbf{1 a}$ and $\mathbf{1 b}$) for these antibiotics, except for stereochemistry in ring A of the linear tetracyclic system, and discusses the data on which these structures are based.

The original publication ${ }^{3}$ on steffimycin established that it has a moleclar formula of $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{13}$. The ultraviolet spectrum has maxima at $214,236,378$, and 439 nm with the latter moving to 528 nm in base, which suggests that la has a hydroxyanthraquinone chromophore ${ }^{5-8}$ and is related to the anthracycline antibiotics. ${ }^{9-11}$ It has been shown ${ }^{5,6}$ that such a spectral pattern is present only in hydroxyanthraquinones having two hydroxyl groups α to the quinone carbonyl groups, and that these must be either 1,5 or 1,8 . The infrared spectrum has bands at 1672 and $1620 \mathrm{~cm}^{-1}$, which would be those expected for the hydrogen-bonded ($1620 \mathrm{~cm}^{-1}$) and nonbonded carbonyls of a 1,8 -dihydroxyanthraquinone system. ${ }^{12}$ Furthermore, the ${ }^{13} \mathrm{C}$ NMR spectrum of 1 a (Table I) has resonances at $\delta 179.3$ and 189.1 which would arise from such an anthraquinone. ${ }^{13}$ Conversion of the phenolic hydroxyls to methoxyls as in 1c (see below) causes the downfield carbonyl resonance to shift to δ 181.4. In addition, an infrared band at $1710 \mathrm{~cm}^{-1}$ indicates a third carbonyl. The ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)$ spectrum of 1 a has chemical shifts of $\delta 6.75,7.08$,
and 7.97 arising from aromatic protons present. Signals at δ $1.27(\mathrm{~d}, 3 \mathrm{H})$ and $1.41(\mathrm{~s}, 3 \mathrm{H})$ indicate two $\mathrm{CH}_{3} \mathrm{C}$ groups with one being attached to a carbon bearing a proton. Singlets at $\delta 3.42,3.44$, and 3.90 can be assigned to $\mathrm{CH}_{3} \mathrm{O}$ groups. Steffimycin B (1b) was found to have a molecular formula of $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{13}$ and very similar spectra, except that one more $\mathrm{CH}_{3} \mathrm{O}$ was present. ${ }^{4}$ The data derived from 1a and $1 \mathbf{b}$ are so similar to those reported for aranciamycin ${ }^{14}$ that it is clear that the three antibiotics are very closely related.

Acidic methanolysis of steffimycin gave rise to two products. One of these was a high-melting orange-red solid designated steffimycinone (2a), and the other was a colorless syrup (4a) characterized as a diacetate (4b), a mono- p-nitrobenzoate (4c), and a di-p-nitrobenzoate (4d). Methanolysis of steffimycin B also gave two products. One of these was shown to be 2 a by comparison of physical properties. The second was a second colorless syrup (4e), which differed from $\mathbf{4 a}$. Compound 2a was shown by analysis and mass spectrometry to have a molecular formula of $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{9}$. Its ultraviolet and infrared spectra were very similar to those of la and were consistent with the assignment of a 1,8 -dihydroxyanthraquinone structure to which was attached an aliphatic moiety containing a carbonyl group. The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra indicated that three aromatic protons as well as one of the $\mathrm{CH}_{3} \mathrm{C}$ groups and two of the methoxyl groups were present, one of which was attached to an aromatic ring ($\mathrm{s}, 3 \mathrm{H}, \delta 3.90$) and one to an aliphatic system ($\mathrm{s}, 3 \mathrm{H}, \delta 3.48$). The resonance arising from the $\mathrm{CH}_{3} \mathrm{C}$ was a singlet, indicating the absence of a proton adjacent to the methyl protons. Doublets at $\delta 3.62$ and 5.24 with coupling constants at 3.0 Hz represented 2 H which must be on adjacent carbon atoms. The molecular formula of 2a accounts for all but a $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}$ moiety of la, which would suggest that 2 a is formed by methanolysis of 1a to form an aglycone (2a) and a sugar (4a), which would have a molecular formula of $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{5}$.

Catalytic reduction of la under low pressure resulted in isolation of a new compound, $\mathbf{2 b}$. This material was very
$1653 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$. The I-benzyl-3,4-dihydroisoquinoline hydrochloride (17) (7.6 g) was dissolved in a mixture of 200 mL of methanol and 25 mL of water, and the solution cooled in ice water. Sodium borohydride (8 g) was added in small portions while stirring. After the addition was complete, the reaction mixture was stirred at room temperature for 10 min , then refluxed for 1 h . Removal of the solvent left a residue which was treated with water and extracted with chloroform. The combined chloroform extracts were washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ to give a pale yellow oil (4.2 g), which was converted to the hydrochloride (18a) and crystallized from methanol: mp $210-213^{\circ} \mathrm{C}$ (lit. 207-210, ${ }^{25} 206-208^{\circ} \mathrm{C}^{26}$).
(\pm)-O,O-Dibenzyl- N-norprotosinomenine hydrochloride (18a) (1.9 g) was dissolved in 50 mL of ethanol and 70 mL of 25% hydrochloric acid and the solution heated under reflux for 1.5 h in a stream of nitrogen. Evaporation of the solvent left a residue which was dissolved in absolute ethanol and evaporated to dryness. This treatment with ethanol was repeated twice, and the residue was crystallized from methanol to give (\pm)-norprotosinomenine hydrochloride (18b): mp $236-242^{\circ} \mathrm{C}$ (lit. $.^{27} 241-242^{\circ} \mathrm{C}$). The IR (KBr) spectrum was identical with that of authentic (\pm)-norprotosinomenine. ${ }^{28}$
Mannich Reaction of (\pm)-Norprotosinomenine. (\pm)-Norprotosinomenine hydrochloride ($\mathbf{1 8 b}$) $(0.5 \mathrm{~g})$ was dissolved in 20 mL of methanol and 60 mL of water and the solution adjusted to pH 6.4 with 5% sodium bicarbonate solution. Formaldehyde solution ($16 \mathrm{~mL}, 37 \%$) was added and pH again adjusted to 6.4. After the reaction mixture had been kept at room temperature for 48 h , methanol was evaporated, water was added, and the solution was basified with sodium bicarbonate and extracted with chloroform. Evaporation of the solvent left a residue which was chromatographed on a coiumn of neutral alumina ${ }^{29}$ with chloroform to give 196 mg of (\pm)-3,9-dihydroxy-2,10-dimethoxytetrahydroprotoberberine (3). Crystallization from methanol afforded colorless prisms; $\mathrm{mp} 208-212^{\circ} \mathrm{C}$ dec, after vacuum drying mp 218-221 ${ }^{\circ} \mathrm{C}$ dec; ir $\nu_{\text {max }}(\mathrm{KBr}) 3350$ (br), 2800-2700 (trans-quinolizidine); NMR $\delta\left(\mathrm{CDCl}_{3}\right) 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(3 \mathrm{H}$, s , OMe) $6.69(2 \mathrm{H}, \mathrm{s}, \mathrm{ArHi}, 6.72(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$; MS (EI) m/e (rel intensities) 327 (72) (M^{+}), 326 (48), 178 (100), 176 (42), 150 (58), 135 (32). The abundance of the $\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$fragment was 2% of the molecular ion peak, indicative of the absence of a methoxyl group in position $9 .{ }^{8}$ Gibb's reaction ${ }^{30}$ was positive, showing an unsubstituted position para to the phenolic hydroxyl group. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$: $\mathrm{C}, 69.70 ; \mathrm{H}, 6.47 ; \mathrm{N}, 4.30$. Found: $\mathrm{C}, 69.68 ; \mathrm{H}, 6.42 ; \mathrm{N}, 4.30$. Methylation with diazomethane gave (\pm)-tetrahydropalmatine (1), which crystallized from ether; mp $149-151^{\circ} \mathrm{C}$ (lit. ${ }^{31} 151-151.5^{\circ} \mathrm{C}$). IR spectrum was superimposable on that obtained with an authentic sample of (-)-tetrahydropalmatine. ${ }^{32}$
Elution of the column was continued with a mixture of chloroform and methanol (95:5) to yield (\pm)-3,11-dihydroxy-2,10-dimethoxytetrahydropseudoberberine (5) (119 mg). Crystallization from methanol afforded colorless prisms: mp $237-244^{\circ} \mathrm{C}$ dec, after vacuum drying $251-255{ }^{\circ} \mathrm{C}$ dec (lit. ${ }^{25} 232-235{ }^{\circ} \mathrm{C}$); IR $\nu_{\text {max }}(\mathrm{KBr}) 3500-3400(\mathrm{br})$, $2800-2700 \mathrm{~cm}^{-1}$ (trans -quinolizidine); NMR $\delta\left(\mathrm{CDCl}_{3}\right) 3.86(3 \mathrm{H}, \mathrm{s}$, OMe), 3.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), $6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.72$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$); MS (EI) m ${ }^{\prime} e\left(\right.$ (rel intensities) 327 (69) (M^{+}), 326 (24), 178 (100), 176 (41), $150(96), 135(24)$. The ($\left.\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$fragment was 2% of the molecular ion peak and Gibb's reacticn was negative. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 69.70; $\mathrm{H}, 6.47 ; \mathrm{N}, 4.30$. Found: C, 69.43; $\mathrm{H}, 6.68 ; \mathrm{N}, 4.18$. Methylation of $5(30 \mathrm{mg})$ with diazomethane gave (\pm)-xylopinine (10), which crystallized from ether as colorless needles: mp $145-147{ }^{\circ} \mathrm{C}$ (lit. $.^{25} 146-148^{\circ} \mathrm{C}$); IR (KBr) spectrum was superimposable on that obtained with an authentic sample of $(-)$-xylopinine. ${ }^{33}$
$(+)$-Kikemanine $[=(\pm)$-corydalmine $] .(\pm)$-Stepholidine (7) (50 mg) was dissolved in 10 mL of methanol and treateci with a solution of diazomethane in ether (prepared from 2 g of N-methyl N-ni-troso- p-toluenesulfonamide). After 45 min at room temperature the solution was evaporated zo dryness. TLC of the residue on silica gel with chloroform-methanol (96:4) gave four spots, three of which were identified as unreacted stepholidine, isocorypalmize (15), and tetrahydropalmatine (1) by comparison with authentic substances. The fourth component of the mixture was isolated by preparative TLC on silica gel with chloroform-methanol (96:4) (double development) and crystallized from methanol; $11 \mathrm{mg} ; \mathrm{mp} 166-168^{\circ} \mathrm{C} \mathrm{dec} \mathrm{(lit}.{ }^{19}$ $187.5-188.5^{\circ} \mathrm{C}$ corr); NMR $\delta\left(\mathrm{CDCl}_{3}\right) 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.87(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.73(=\mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.82$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$); MS (EI) m/e (rel intensities) 341 ($66 \mathrm{I}\left(\mathrm{M}^{+}\right), 340$ (43), 310 (10), 192 (100), 190 (33), 150 (27), 135 (29). The ($\left.\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$was 15% of the molecular ion, indicative of a 9 -methoxy substituent. The base peak $m / e 192(22)$ showed two methoxy groups in ring A. The isolated compound must, therefore, have structure 8.
Aequaline. An authentic sample of aequaline exhibited proton
resonances in CDCl_{3} at $\delta 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.68$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.70(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.82(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, identical with the NMR spectrum of (\pm)-discretamire, ${ }^{15}$ but different from that of compound 3. The MS (EI) of aequaline showed major peaks at m / e (rel intensities) 327 (52) (M^{+}), $326(30)$, $296(8.2), 178(100), 176(27)$, $150(30), 135(28)$. The $\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$fragment was 16% of the molecular ion peak, indicative of a 9 -methoxy group ${ }^{8}$ and in good agreement with that observed for natural ${ }^{12}$ and synthetic ${ }^{15}$ discretamine. R_{f} values (TLC) of aequaline were identical with those of (\pm)-discretamine, but different from those of compound 3 and stepholidine (7) or silica gel with (a) benzene-ethanol (92:8); (b) chloroform-methanol (96:4); and (c) ethyl acetate-methanol (96:4). The IR spectrum of aequaline was superimposable on that obtained with (\pm)-discretamine.

Schefferine. An authentic sample exhibited NMR peaks (CDCl_{3}) at $\delta 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.62(1$ $\mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.73(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, and $6.82(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, identical with those observed with (\pm)-kikemanire; MS (EI) m / e (rel intensities) 341 (66), $340(43), 310(10), 192(100), 190(29), 150(26), 135(25)$. The abundance of the $\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$fragment was 15% of the molecular ion peak, in good agreement with that observed for (\pm)-kikemanine. The R_{f} values of schefferine were identical with those of (\pm)-kikemanine on silica gel with (a) benzene-ethanol (92:8); (b) chloro-form-methanol (96:4); and (c) ethyl acetate-methanol (96:4). The IR spectrum (KBr) of schefferine was superimposable on that of (\pm)kikemanine.

Coramine. An authentic sample of coramine exhibited proton resonances $\left(\mathrm{CDCl}_{3}\right)$ at $\delta 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.54$ ($1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}$), 6.58 ($1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}$), $6.69(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.81$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$); MS (EI) m / e (rel intensities) $327(59)\left(\mathrm{M}^{+}\right), 178(100), 176(28), 150$ (81), 135 (17). The IR spectrum of coramine was different from that of compound 5 , but superimposable on the spectrum of $(-)$-coreximine.

Discretinine. MS (EI) of discretinine gave a molecular ion m / e (rel intensities) at 341 (64) and major fragments at 310 (12), 178 (8.2), 176 (22), $164(100), 149(59)$. The $\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$fragment was 18% of the molecular ion peak. NMR resonances of discretinine (CDCl_{3}) appeared at $\delta 3.85(6 \mathrm{H}, \mathrm{s} . \mathrm{OMe}), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $6.70(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 6.81(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 6.84(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH})$, identical with those of authentic (\pm)-corypalmine. (-)-Isocorypalmine ${ }^{34}$ showed the following proton resonances: $\delta 3.84(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.87(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 6.59(1 \mathrm{H}, \mathrm{s} . \mathrm{ArH}), 6.81(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$. The IR spectrum of discretinine was superimposable on that obtained with (\pm)-corypalmine.

Acknowledgments. We are grateful to the following colleagues for generous gifts of alkaloids used in this study: Professor E. Gellert, aequaline and schefferine; Professor R. H. F. Manske, coreximine; Professor M. Tomita, (\pm)-corypalmine; Dr. J. Schmutz, discretinine; Dr. M. S. Yunosov, coramine. This work was supported in part by the University of California Academic Senate Committee on Research and the NIH Division of Research Resources (RR 00892-1A1).

Registry No.-(\pm)-1, 2934-97-6; (\pm)-3, 62057-90-3; (\pm)-5, 214162-23-9; (\pm)-6, 55934-50-4; 6, 1356-73-6; (\pm)-7, 16562-14-4; (\pm)-8, 32886-80-9; 8, 30413-84-4; 10, 13407-95-9; (土)-13, 6719-48-8; 13, 483-45-4; (\pm)-14, 27313-86-6; 14, 6018-40-2; 15, 483-34-1; 16, 21411-26-7; 17, 37911-04-9; 17 free base, 21411-27-8; 18a, 63511-81-9; 18b, 19625-07-1; 3-benzyloxy-4-methoxyphenethylamide, 36455-21-7; 3-benzyloxy-4-methozyphenylace-ic acid, 5487-33-2.

References and Notes

(1) M. Shamma, "The Isoquinoline Alkaloids. Chemistry and Pharmacology", Academic Press, New York, N.Y.. 1972, p 268.
(2) T. Kametani, "The Chemistry of the Isoquinoline Alkaloids". Elsevier, Amsterdam, 1969, p 109.
(3) R. H. F. Mansxe and W. R. Ashford in "The Alkaloids, Chemistry and Physiology'", vol. IV, R. H. F. Manske and Holmes Ed., Academic Press, New York, N.Y., 1954, p 77.
(4) P. W. Jeffs in ref 3, Vol. IX, 1967, p 41.
(5) D. H. R. Barton, R. H. Hesse, and G. W. Kirby, Proc. Chem. Soc., 267 (1963); J. Chem. Soc., 6379 (1965).
(6) A. R. Battersby, R. J. Francis, M. Hirst, and J. Staunton, Proc. Chem. Soc., 268 (1963).
(7) E. Brochmann-Hanssen, C.-C. Fu, and G. Zanati, J. Pharm. Sci., 60, 873
(8) W. J. Richter, and E. Brochman7-Hanssen, Helv. Chim. Acta, 58, 203 (1975), and references cited therein.
(9) E. Gellert and R. Rudzats, Aust. v. Chem., 25, 2477 (1972).
(10) W. J. Richter and E. Brochmann-łanssen, unpublished work.

1, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{OMe} ; \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}$
2, $R^{1}=R^{4}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{OH} ; \mathrm{R}^{2}=\mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}$
3, $R^{1}=R^{5}=R^{6}=H ; R^{3}=O H ; R^{2}=R^{4}=M e$
4, $R^{1}=R^{2}=R^{4}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{OH} ; \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}$
5, $R^{1}=R^{3}=R^{6}=H ; R^{2}=R^{4}=\mathrm{Me} ; \mathrm{R}^{5}=\mathrm{OH}$
6, $\mathrm{R}^{\prime}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{OMe}$
7, $R^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{OMe}$
8, $R^{1}=R^{2}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{OMe} ; \mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}$
9, $R^{1}=R^{5}=H ; R^{2}=R^{4}=R^{6}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{OMe}$
$10, R^{1}=R^{2}=R^{4}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{R}^{6}=\mathrm{H} ; \mathrm{R}^{5}=\mathrm{OMe}$
$11, R^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{6}=\mathrm{H} ; \mathrm{R}^{5}=\mathrm{OMe}$
12, $R^{1}=R^{3}=R^{4}=R^{6}=H ; R^{2}=M e ; R^{5}=O M e$
13, $R^{1}=R^{4}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{6}=\mathrm{H} ; \mathrm{R}^{5}=\mathrm{OH}$
$14, R^{1}=R^{5}=R^{6}=H ; R^{2}=R^{4}=\mathrm{Me} ; \mathrm{R}^{5}=\mathrm{OMe}$
$15, R^{1}=R^{4}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H} ; \mathrm{R}^{3}=\mathrm{OMe}$

16

17

$18 \mathrm{a}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Bz}$

$$
\mathrm{b}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}
$$

as indicated by preliminary mass spectroscopy, ${ }^{10}$ giving it structure 8. This compound was isolated by Cava et al. ${ }^{13}$ from Stephania glabra as (-)-corydalmine and from Corydalis pallida by Kametani et al., ${ }^{16}$ who named it kikemanine. In 1962, Imaseki and Taguchi ${ }^{17}$ isolated what they believed to be (+)-corydalmine from Corydalis species, but this compound was later shown to be identical with (\pm)-corybulbine ${ }^{18}$ (9). (\pm)-Corydalmine $[=(\pm)$-kikemanine] has been synthesized. ${ }^{19,20}$ Comparison (IR, NMR, MS, TLC) of schefferine with (\pm)-kikemanine showed that they have the same structure (8).

A protoberberine alkaloid believed to represent a new structure was isolated from Corydalis pseudoadunca by Yunosov et al. ${ }^{21}$ and named coramine. Elemental analysis showed a $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$ composition and methylation with diazomethane gave (-)-xylopinine (10), thus establishing a 2,3,10,11-tetraoxygenated substitution pattern. Based on degradative evidence structure 5 was proposed. ${ }^{22}$ However, comparison of a sample of coramine with compound 5 obtained by synthesis (ir, NMR, mass spectrometry) showed that the two compounds were different. Coramine was also not
identical with 11 and 12 produced by synthesis. ${ }^{15}$ This left only (- -coreximine (13) to be considered. Identity of coramine with coreximine was borne out by comparison of their respective IR, NMR, and mass spectra.

A tetrahydroprotoberberine alkaloid was isolated by Schmutz ${ }^{11}$ in 1959 from Xylopia discreta. Elemental analysis showed a $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}$ composition and methylation with diazomethane gave (-)-tetrahydropalmatine. The alkaloid, which was named discretinine, was described as an isomer of corypalmine (14) and isocorypalmine (15), but no attempt was made to establish the position of the phenolic hydroxyl group. Mass spectrometry gave a molecular ion $m / e 341$, and the abundance of the $\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$fragment was 18% of the molecular ion peak, indicating the presence of a 9 -methoxy substituent. ${ }^{8}$ Fragment 19, formed by retro-Diels-Alder cleavage of ring C, was the base peak at $m / e 164$. The second most abundant fragment had a mass m/e $149\left(19-\mathrm{CH}_{3}\right)$, while fragments 20 ($m / e 178$) and $21(m / e 176)$ were consid-

19

20

21

22
erably less prominent. This contrasts with tetrahydroprotoberberines containing a hydroxyl group in ring D (e.g., 2-8), where the base peak is derived from the A/B moiety (fragments 20 and 22). Having established a 9,10 -dimethoxy substitution of ring D, there are only two alternative structures available for discretinine. It must be either corypalmine (14) or isocorypalmine (15). Spectroscopic comparison (IR, NMR) showed discretinine to be identical with corypalmine.

Experimental Section

General. Melting points (mp) were determined with a ThomasHoover apparatus and are uncorrected. Infrared (IR) spectra were obtained in potassium bromide, unless otherwise indicated, on a Perkin-Elmer 337 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained in deuteriochloroform with tetramethylsilane as an internal reference on a Varian XL-100 spectrometer equipped with a Nicolet Technology Corp. Fourier transform accessory. Electron impact (EI) mass spectra were taken on a AEI MS-12 mass spectrometer interfaced to a PDP $8 / \mathrm{I}$ computer using the DS-30 software.
(\pm)-Norprotosinomenine (18b). 3-Benzyloxy-4-methoxyphenethylamine ${ }^{23}(3 \mathrm{~g})$ and 3.2 g of 3 -benzyloxy-4-methoxyphenylacetic ${ }^{24}$ acid were mixed and fused at $160-170^{\circ} \mathrm{C}$ for 4.5 h under reduced pressure. After cooling, the mixture was dissolved in 60 mL of chloroform and washed with 10% sodium bicarbonate solution, then with water, 10% hydrochloric acid, and, finally, with water again, and dried over anhydrous sodium sulfate. Evaporation of the solvent gave a yellowish brown, oily substance (16), which crystallized from absolute ethanol (5.1 g): mp 114-115 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{25} 113.5-115{ }^{\circ} \mathrm{C}$); IR $\nu_{\text {max }}$ (Nujol) $3290(\mathrm{NH}), 1630 \mathrm{~cm}^{-1}(\mathrm{C}=0)$. A mixture of 1 g of the amide (16), 1.1 mL of freshly distilled phosphorus oxychloride, and 15 mL of dry toluene was heated in an oil bath at $105-110^{\circ} \mathrm{C}$ for 1.5 h in a nitrogen atmosphere. The reaction mixture was evaporated to dryness under reduced pressure. The residue was washed repeatedly with anhydrous benzene and dried to afford a brown, oily substance which crystallized from aqueous ethanol as light yellow needles (17): $\mathrm{mp} 145-148{ }^{\circ} \mathrm{C}$ (lit. $.^{25} 145-148{ }^{\circ} \mathrm{C}$); IR $\nu_{\max }$ (Nujol) 2450 (br), 1850-1925 (immonium band), $1640 \mathrm{~cm}^{-1}(\mathrm{C}=+\mathrm{NH})$. The free base of 17 showed a band at

Acknowledgment. This investigation was supported by Grant 5-RO1-CA15824, awarded by the National Cancer Institute, Department of Health, Education, and Welfare.

Registry No.-2a, 601-95-6; 2b, 63533-72-2; 2c, 63533-73-3; 2d, 61543-88-2; 2e, 63533-74-4; 2f, 63533-75-5; 3c isomer 1, 63533-76-6; 3c isomer 2, 63533-77-7; 4a, 61543-93-9; 4b, 63533-78-8; 4c, 63533-79-9; 4d, 63533-80-2; 4e, 63533-81-3; 4f, 63533-82-4; 4g, 63533-83-5; 5a, 63533-84-6; 5b, 63533-85-7; 5c, 63533-86-8; 6, 63533-87-9; 7a, 63533-88-0; 7b, 63533-89-1; 7c, 62251-60-9; 7d, 63547-45-5; 7e, 63533-90-4; 7f, 63533-91-5; 8a, 63533-92-6; 8c, 63533-93-7; 8d,

63533-94-8; 9a, 63533-95-9; 9b, 63533-96-0; 9c, 63533-97-1; 10b, 63533-98-2; 10c, 63533-99-3.

References and Notes

(1) For Parts III and IV, refer to J. R. Dias and R. Ramachandra, Synth. Commun. 7, 293 (1977). and Org. Prep. Proc. Int., 9, in press.
(2) Postdoctoral Research Associate, 1974-1977.
(3) J. R. Dias and R. Ramachandra, J. Org. Chem., 42, 1613 (1977).
(4) J. Baker and R. T. Blickenstaff, J. Org. Chem., 40, 1579 (1975).
(5) Also, we discovered that nitrate esters, like 3β-nitroxy- 5α-cholestane, undergo quantitative HNO_{3} elimination in hot HMPT which is currently under investigation in our laboratory.
(6) L. Fieser and S. Rajagopalan, J. Am. Chem. Soc., 72, 5530 (1950).
(7) I. Tanasescu, F. Hodosan, and I. Jude, Chem. Ber., 91, 799 (1958).

Protoberberine Alkaloids. Structures of Aequaline, Coramine, Discretinine, and Schefferine

Einar Brochmann-Hanssen* and Hsüch-Ching Chiang
Department of Pharmaceuīical Chemistry, School of Pharmacy, University of Ca'ifornia, San Francisco, California, 94143, and School of Pharmacy, National Taiwan University, Taipei, Taiwan, Republic of China.

Received April 11, 1977

Abstract

The structures assigned to the protojerberine alkaloids aequaline and coramine were found to be incorrect. In stead, aequaline was shown to be identical with discretamine (6), and coramine was identical with coreximine (13). Schefferine was found to have the same structure as kikemanine [(- -corydalmine] (8), and dis retinine was shown to be corypalmine (14) by comparison with authentic samples.

The protoberberine alkaloids are widely distributed in many plant families, mainly as the tetrahydroprotoberberines and the quaternary protoberberine salts. ${ }^{1-4}$ They are biosynthesized from benzyltetrahydroisoquinolines ${ }^{5-7}$ and, in turn, serve as biosynthetic intermediates for many other alkaloid groups.

The assignment of the substitution pattern of protoberberines isolated from natural sources has of en presented considerable problems, especially when insufficient material has been available for chemical degradations. Spectroscopic data can give valuable information, ${ }^{8}$ but the final proof of structure comes from chemical synthesis. Several protoberberine alkaloids have been isolated whose structures are still not known in all detail, and there are others which have been assigned incorrect structures.

In 1972 two tetrahydroprotoberberine alkaioids were isolated from the bark of Schefferomitra subaequalis and named aequaline and schefferine. ${ }^{9}$ Both alkaloids were levorotatory and gave (-)-tetrahydropalmatine (1) on methylation with diazomethane, thereby establishing a 2,3,9,10-ttetraoxygenated substitution pattern. Elemental analysis of aequaline gave the molecular formula $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$. The NMR spectrum established the presence of two methoxyl and two hydroxyl groups, and mass spectroscopy showed that both rings A and D each had one hydroxyl and one methoxyl group. A 9 -hydroxy10 -methoxy substitution was suggested based on the relative abundances of the fragments. Since aequaline was shown by direct comparison to be different from scoulerine (2), the structure of aequaline was proposed to be (-)-3,9-dihy-droxy-2,10-dimethoxytetrahydroprotoberberine (3).

Microanalysis of the second alkaloid, schefferine, gave a molecular formula $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}$ and a molecular ion peak m / e 341 in its mass spectrum indicating the presence of one hy-

[^1]droxyl and three methoxyl groups. Based on the fragmentation pattern, two methoxyl groups could be assigned to ring A. Since monomethylation of aequaline with diazomethane gave schefferine as one of the products, structure 4 was assigned to schefferine.

Recently, mass spectrometric criteria were developed for detecting a methoxyl group in position 9 of protoberberine alkaloids based on the abundance of the $\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$fragment compared to that of the molecular ion. ${ }^{8}$ Compounds with a 9 -methoxy substituent give a $\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$fragment ranging from 12 to 19% of the molecular ion. If the compounds are either unsubstituted in position 9 or have a 9 -hydroxy substituent, the relative abundance of the $\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+}$ fragment is $<3 \%$ of the molecular ion peak. Preliminary mass spectroscopic studies ${ }^{10}$ have indicated that both aequaline and schefferine contain a 9 -methoxy substituent. In order to clarify this discrepancy and to establish unequivocally the correct structure of aequaline, compound 3 was synthesized by intramolecular Mannich condensation of (\pm)-norprotosinomenine (18 b) with formaldehyde at pH 6.4 and room temperature. Cyclization occurred ortho and para to the phenolic hydroxyl group to give a mixture of (\pm)-3,9-dihydroxy-2,10-dimethoxytetrahydroprotoberberine (3) and (\pm)-3,11-dihydroxy-2,10-dimethoxytetrahydropseudoberberine (5). Spectroscopic comparison (IR, NMR, MS) of aequaline with compound 3 showed that aequaline did not have the structure assigned to it. Two diphenolic $2,3,9,10$-substituted isomers of compounds 2 and 3 have been isolated from natural sources and are named discretamine (6) ${ }^{11,12}$ and stepholidine (7). ${ }^{13,14}$ Both compounds have recently been synthesized. ${ }^{15}$ A comparison of aequaline with discretamine and stepholidine (IR, NMR, mass spectrometry, TLC) showed clearly that aequaline is identical with discretamine. It, therefore, also follows that schefferine must be 9 -methoxy-10-hydroxy-substituted,

405 (47, M - $\mathrm{CH}_{3} \mathrm{CO}-\mathrm{CH}_{3} \mathrm{OH}$), 387 ($15,405-\mathrm{H}_{2} \mathrm{O}$), $360(33, \mathrm{M}-$ $2 \mathrm{HOAc}), 345\left(28,360-\mathrm{CH}_{3}\right), 328\left(38, \mathrm{M}-2 \mathrm{HOAc}-\mathrm{CH}_{3} \mathrm{OH}\right), 301$ $\left(52, \mathrm{M}-2 \mathrm{HOAc}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 300(48,328-\mathrm{CO}), 285\left(40,300-\mathrm{CH}_{3}\right)$, and 241 (100).
Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{9}$: C, 62.49; H, 7.55. Found: C, 62.35; H, 7.57.
3α-Nitroxy-12 α-acetoxy-13 α-carbomethoxy-16-oxo-17-oxa- 13,17 -seco- $7 \alpha, 17$-cyclo- 5β-androstane (7 f). A mixture of nitrate $4 \mathrm{c}(1.0 \mathrm{~g}), \mathrm{CH}_{3} \mathrm{OH}(50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and $\mathrm{KOH}(2 \mathrm{~g})$ was heated at reflux for 12 h . The mixture was concentrated on a rotating evaporator to remove most of the $\mathrm{CH}_{3} \mathrm{OH}$. The aqueous residue was acidified with concentrated HCl , warmed for 0.5 h , and then cooled and extracted with EtOAc. EtOAc was evaporated off, and the residue 7 d was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with diazomethane to yield δ-lactone 7 e . Lactone 7 e was acetylated and recrystallized from benzene-chloroform to afford δ-lactone $7 \mathrm{f}(0.3 \mathrm{~g}): \mathrm{mp} 224-226{ }^{\circ} \mathrm{C}$; $\bar{\nu}_{\text {max }}$ 1740 (br) and 1620,1280 , and $880 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.13$ (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 4.9 (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 4.4 (hump, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 2.4 (m, 2 $\mathrm{H}, \mathrm{C}-15$), 2.03 ($\mathrm{s}, 3 \mathrm{H}, 12 \alpha-\mathrm{OAc}$), 1.28 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-18$), and 0.89 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{C}-19) ; m / e(\%) 453\left(3, \mathrm{M}^{+}\right), 422\left(4, \mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right), 411$ ($100, \mathrm{M}-$ $\mathrm{CH}_{2} \mathrm{CO}$), 393 ($4, \mathrm{M}-\mathrm{HOAc}$), 383 (25), 352 (10), 348 (11), 347 (12), 330 (13), 329 (14), 315 (19), 287 (40), and 271 ($95, \mathrm{M}-\mathrm{HOAc}-\mathrm{HNO}_{3}$ $-\mathrm{CO}_{2} \mathrm{CH}_{3}$).
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{9} \mathrm{~N}: \mathrm{C}, 58.27 ; \mathrm{H}, 6.89 ; \mathrm{N}, 3.09$. Found: C, 58.20; H, 6.91; N, 3.01.
3α-Nitroxy-12,16-dioxo-13 β-carbomethoxy-17-oxa-13,17-seco- $7 \alpha, 17$-cyclo- 5β-androstane ($8 \mathbf{a}$). δ-Lactone 7 e obtained from 1.0 g of nitrate 4 c was oxidized with Jones reagent to a mixture of the following four compounds isolated by preparative TLC.

The higher R_{f} component was recrystallized from hexane-EtOAc giving diketone $5 \mathrm{a}(0.2 \mathrm{~g}): \mathrm{mp} 177-179^{\circ} \mathrm{C} ; \bar{\nu}_{\text {max }} 1740,1710$ and 1620 , 1280 and $880 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.8$ (hump, $\left.1 \mathrm{H}, 3 \beta-\mathrm{H}\right), 3.73$ (s, $3 \mathrm{H}, 13 \alpha-\mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-16, \mathrm{OCH}_{3}$), 1.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-18$), and 1.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-19$); $m / e(\%) 439\left(19, \mathrm{M}^{+}\right), 421$ ($9, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}$), 408 (55 , $\left.\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right), 380\left(55, \mathrm{M}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 362\left(65, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 345 (40), 343 (40), 330 (100), 301 (40), and 283 (85).
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO} 9: \mathrm{C}, 57.40 ; \mathrm{H}, 6.65$. Found: C, $57.40 ; \mathrm{H}$, 6.82.

The second most mobile component was recrystallized from hex-ane-benzene to afford the desired δ-lactone 8 ($0.2(0.2 \mathrm{~g}): \mathrm{mp} 199-201$ ${ }^{\circ} \mathrm{C} ; \bar{\nu}_{\text {max }} 1740,1710$ and 1625,1280 , and $860 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ 4.9 (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 4.5 (hump, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 1.36 (s, $3 \mathrm{H}, \mathrm{C}-18$), and 0.93 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-19$); m / l (\%) 409 (3, M ${ }^{+}$), 378 (3, M $-\mathrm{CH}_{3} \mathrm{O}$), 363 ($13, \mathrm{M}-\mathrm{NO}_{2}$), $350\left(9, \mathrm{M}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), $346(20, \mathrm{M}-$ HNO_{3}), $287\left(25, \mathrm{M}-\mathrm{HNO}_{3}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), and 285 (18).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{8} \mathrm{~N}: \mathrm{C}, 58.67 ; \mathrm{H}, 6.65 ; \mathrm{N}, 3.42$. Found: C, 59.07; H, 6.92; N, 3.18.

The third most mobile component (30 mg) was triketone 5 c : $\bar{\nu}_{\text {max }}$ 1740 and $1715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.70\left(\mathrm{~s}, 3 \mathrm{H}, 13 \alpha-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.59(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{C}-16, \mathrm{OCH}_{3}$), 1.33 (s, $3 \mathrm{H}, \mathrm{C}-18$), and 1.28 (s, $3 \mathrm{H}, \mathrm{C}-19$); $m / e(\%)$ $392\left(5, \mathrm{M}^{+}\right), 374\left(7, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 360\left(10, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right), 333$ ($9, \mathrm{M}-$ $\mathrm{CO}_{2} \mathrm{CH}_{3}$), 315 ($8, \mathrm{M}-\mathrm{CO}_{2} \mathrm{CH}_{3}-\mathrm{H}_{2} \mathrm{O}$), 301 (23), 287 (26), and 283 (45).

The most polar component (35 mg) was δ-lactone 8 d.

Methyl 3α-Acetoxy-12,16-dioxo-13 β-carbomethoxy-17-oxa-16,17-seco-7 $\alpha, 17$-cyclo- 5β-androstane (8c). Nitroxy δ-lactone 8 a $(0.10 \mathrm{~g})$ was reduced with Zn and acetylated to afford acetoxy δ-lactone $8 \mathrm{c}(80 \mathrm{mg})$ after recrystallization from hexane-benzene: mp $210-212{ }^{\circ} \mathrm{C} ; \bar{\nu}_{\text {max }} 1740$ and $1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.7$ (hump, 1 H , $3 \beta-\mathrm{H}$), 4.5 (hump, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 1.36 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-18$), and $0.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-19)$; $m / e(\%) 406\left(25, \mathrm{M}^{+}\right), 346(92, \mathrm{M}-\mathrm{HOAc})$, 331 (15), 328 (19), 318 (30), 314 (28), 287 ($98 . \mathrm{M}-\mathrm{HOAc}-\mathrm{CO}_{2} \mathrm{CH}_{3}$), and 259 (100).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{7}$: C, $65.01 ; \mathrm{H}, 7.44$. Found: $\mathrm{C}, 65.06 ; \mathrm{H}$, 7.30 .

Methyl $3 \alpha, 12 \alpha$-Diacetoxy- 7α-hydroxy- 16,17 -seco- 5β-an-drostane-16,17-dioate (4e). A solution of δ-lactone $7 \mathrm{c}(0.10 \mathrm{~g})$ was reacted for 1 h with $\mathrm{CH}_{3} \mathrm{OH}$ containing AcCl at room temperature. Dilution of the reaction mixture with $\mathrm{H}_{2} \mathrm{O}$ and subsequent workup yielded diol 4 d which could be acetylated with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine (1:2) at room temperature for 12 h to give diester $4 \mathrm{e}(80 \mathrm{mg}): \mathrm{mp} 158-160$ ${ }^{\circ} \mathrm{C}$; $\bar{\nu}_{\text {max }} 2450(\mathrm{OH}), 1740,1715$, and $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.14$ (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 4.5 (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 4.23 (peak, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 3.74 ($\mathrm{s}, 3$ $\mathrm{H}, 13 \alpha-\mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.63 (s, $3 \mathrm{H}, \mathrm{C}-16, \mathrm{OCH}_{3}$), 2.08 and 2.04 (s, 3 H each, $3 \alpha, 12 \alpha-\mathrm{OAc}$'s), 1.19 (s, 3 H, C-18), and 0.98 (s, $3 \mathrm{H}, \mathrm{C}-19$); m / e (\%) 482 $\left(5, \mathrm{M}^{+}\right), 464\left(4, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 430\left(6, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right), 422(22, \mathrm{M}-\mathrm{HOAc})$, 404 ($10, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}$), 390 ($23, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{HOAc}$), 372 (11 , $390-\mathrm{H}_{2} \mathrm{O}$), 362 ($32, \mathrm{M}-2 \mathrm{HOAc}$), $344\left(14,362-\mathrm{H}_{2} \mathrm{O}\right.$), 330 (45,362 $-\mathrm{CH}_{3} \mathrm{OH}$), 312 (20), 302 (27), 285 ($70,344-\mathrm{CO}_{2} \mathrm{CH}_{3}$) and 271 (65).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{9}$: C, 62.22; H, 7.94. Found: C, 61.99; H, 8.08 .
$3 \alpha, 12 \alpha$-Diacetoxy-7-oxo-16,17-seco-5 β-androstane-13,17-dioate $(\mathbf{4 g})$. Hydroxy diacetate 4 e was oxidized with Jones reagent to give ketone 4 g in nearly quantitative yields: $\mathrm{mp} 154-155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ 5.12 (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 4.5 (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 3.68 and 365 (s, 3 H each, OCH_{3}), 2.05 and 2.02 ($\mathrm{s}, 3 \mathrm{H}$ each, $3 \alpha, 12 \alpha-\mathrm{OAc}$'s), 1.22 ($\mathrm{s}, 3 \mathrm{H}$, C-18), and 1.20 (s, $3 \mathrm{H}, \mathrm{C}-19$); m/e (\%) 480 ($11, \mathrm{M}^{+}$), 449 ($9, \mathrm{M}-$ $\mathrm{CH}_{3} \mathrm{O}$), $448\left(10, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right), 420$ (18, M - HOAc), 389 ($13, \mathrm{M}-$ $\left.\mathrm{CH}_{3} \mathrm{O}-\mathrm{HOAc}\right), 388$ ($13, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{HOAc}$), 360 (48, M 2 HOAc), 329 ($20,360-\mathrm{CH}_{3} \mathrm{O}$), 328 ($54,360-\mathrm{CH}_{3} \mathrm{OH}$), 313 (14), 301 (20), 300 (36), 287 (25), 285 (18), and 269 (100).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{9}$: C, 62.49; $\mathrm{H}, 7.55$. Found: $\mathrm{C}, 62.31 ; \mathrm{H}$, 7.68 .

3,16-Dioxo-12 α-acetoxy-13 α-carbomethoxy-17-oxa-13,17-seco-7 $\alpha, 17$-cyclo- 5β-androstane (9b). Ketone $4 \mathrm{f}(0.40 \mathrm{~g}$) was saponified and subsequently treated with warm HCl solution to yield δ-lactone 9a. Treatment of crude δ-lactone 9 a with diazomethane and then $\mathrm{Ac}_{2} \mathrm{O}$-pyridine yielded a product which was purified by TLC. The polar material thus isolated was recrystallized from hexanebenzene to afford δ-lactone $9 \mathrm{~b}(0.10 \mathrm{~g}): \mathrm{mp} 211-212{ }^{\circ} \mathrm{C} ; \bar{\nu}_{\text {max }} 1750$, 1730 , and $1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.17$ (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 4.5 (hump, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.3(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}-2, \mathrm{C}-4$, and $\mathrm{C}-15), 2.03$ ($\mathrm{s}, 3 \mathrm{H}, 12 \alpha-\mathrm{OAc}$), 1.25 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-18$), and 0.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-19$); m / e (\%) 406 ($8, \mathrm{M}^{+}$), 375 ($6, \mathrm{M}-\mathrm{CH}_{3} \mathrm{O}$), 364 ($55, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}$), 346 ($10, \mathrm{M}$ -HOAc), 336 ($7, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}-\mathrm{CO}$), 328 ($8, \mathrm{M}-\mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$), 318 (15), 314 ($13, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}-\mathrm{HOAc}$), 305 (10), 304 (11), 300 (11), 287 (31, $\mathrm{M}-\mathrm{HOAc}-\mathrm{CO}_{2} \mathrm{CH}_{3}$), and 241 (75).
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{7}: \mathrm{C}, 65.01 ; \mathrm{H}, 7.44$. Found: C, 65.17; H, 7.51 .

3,16-Dioxo-12 α-nitroxy-13 α-carbomethoxy-17-oxa-13,17-seco- $7 \alpha, 17$-cyclo- 5β-androstane (9c). δ-Lactone 9 a made from ketone $4 \mathbf{f}(0.50 \mathrm{~g})$ was nitrated and purified by TLC to yield δ-lactone $9 \mathrm{c}(0.10 \mathrm{~g})$ as a glassy solid: $\bar{\nu}_{\text {max }} 1740(\mathrm{br})$ and $1640,1280,860$, and 760 $\mathrm{cm}^{-1}\left(\mathrm{NO}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.22$ (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 4.6 (hump, 1 H , $7 \beta-\mathrm{H}$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.4(\mathrm{~m}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-18)$, and 0.97 (s, 3 H, C-19); m/e (\%) $409\left(8, \mathrm{M}^{+}\right), 394\left(6, \mathrm{M}-\mathrm{CH}_{3}\right), 376\left(9, \mathrm{M}-\mathrm{CH}_{3}\right.$ $-\mathrm{H}_{2} \mathrm{O}$), $334\left(8,376-\mathrm{CH}_{2} \mathrm{CO}\right.$), $302(60)$, and $287\left(45,302-\mathrm{CH}_{3}\right)$.
Methyl 3α-Acetoxy-7,12-dioxo-16,17-seco- 5β-androstane16,17 -dioate (5 b). Zn dust reduction of nitrate $5 \mathrm{a}(0.20 \mathrm{~g}$) followed by acetylation yielded acetate $5 \mathrm{~b}(0.19 \mathrm{~g}): \mathrm{mp} 143-144^{\circ} \mathrm{C}$; $\bar{\nu}_{\text {max }} 1740$, 1720 , and $1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.7$ (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 3.74 and 3.61 (s, 3 H each, OCH_{3}), 1.99 ($\mathrm{s}, 3 \mathrm{H}, 3 \alpha-\mathrm{OAc}$), 1.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-18$), and 1.24 (s, $3 \mathrm{H}, \mathrm{C}-19$); m/e (\%) $436\left(8, \mathrm{M}^{+}\right), 418\left(8, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 404(11, \mathrm{M}-$ $\mathrm{CH}_{3} \mathrm{OH}$), 386 ($9, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{OH}$), $377\left(25, \mathrm{M}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), 376 ($28, \mathrm{M}-\mathrm{HOAc}$), 359 ($34,377-\mathrm{H}_{2} \mathrm{O}$), 345 ($63, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}-$ $\mathrm{CO}_{2} \mathrm{CH}_{3}$), 327 (30), 316 (26), 299 (39), and 285 ($100, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}-$ $\mathrm{HOAc}-\mathrm{CO}_{2} \mathrm{CH}_{3}$).
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{8}: \mathrm{C}, 63.29 ; \mathrm{H}, 7.39$. Found: C, 63.54; H , 7.46 .

Methyl 3α-Acetoxy-7,12-dioxo-13,17-seco-17-nor-5 $\beta, 13 \alpha$ -androstan-16-oate (6). Acetate $\mathbf{5 b}(0.15 \mathrm{~g})$ was heated at reflux in HOAc $(2 \mathrm{~mL})$ containing concentrated $\mathrm{HCl}(0.5 \mathrm{~mL})$ for 4 h . Workup and TLC yielded acetate $6(0.10 \mathrm{~g})$ as a glassy solid: $\bar{\nu}_{\max } 1730$ and 1710 cm^{-1}; 'H NMR $\delta 4.7$ (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 3.62 ($\mathrm{s}, 3 \mathrm{H}, 0 \mathrm{CH}_{3}$), 1.97 (s , $3 \mathrm{H}, 3 \alpha-\mathrm{OAc}), 1.27$ (s, $3 \mathrm{H}, \mathrm{C}-19$), and 1.07 (d, $J=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}-18$); m / e (\%) 378 ($12, \mathrm{M}^{+}$), 318 ($25, \mathrm{M}-\mathrm{HOAc}$), $305\left(22, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), 300 ($21, \mathrm{M}-\mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$), $287\left(39,305-\mathrm{H}_{2} \mathrm{O}\right.$), 258 (28), and 245 ($84, \mathrm{M}-\mathrm{HOAc}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$).
3,12,16-Trioxo-17-oxa-13,17-seco-7 $\alpha, 17$-cyclo- $5 \beta, 13 \alpha$-androstane (10b). A solution of δ-lactone $8 \mathrm{~d}(50 \mathrm{mg})$ in glacial $\mathrm{HOAc}(2 \mathrm{~mL})$ containing concentrated $\mathrm{HCl}(0.5 \mathrm{~mL})$ was heated at reflux for 4 h . Workup and recrystallization from hexane-benzene afforded δ-lactone $10 \mathrm{~b}(30 \mathrm{mg})$: $\mathrm{mp} 171-173^{\circ} \mathrm{C} ; \bar{\nu}_{\text {max }} 1740,1720$, and $1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.8$ (hump, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 1.12 ($\mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}-18$), and 1.03 (s, 3 H, C-19); m/e (\%) 304 ($65, \mathrm{M}^{+}$), 289 ($6, \mathrm{M}-\mathrm{CH}_{3}$), 286 ($12, \mathrm{M}-$ $\mathrm{H}_{2} \mathrm{O}$), 277 (20), 278 ($17, \mathrm{M}-\mathrm{CO}$), and 260 ($17, \mathrm{M}-\mathrm{CO}_{2}$).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$: C, $71.03 ; \mathrm{H}, 7.95$. Found: C, $71.03 ; \mathrm{H}$, 7.83 .
3α-Acetoxy-12,16-diox0-17-oxa-13,17-seco-7 $\alpha, 17$-cyclo-
$5 \beta, 13 \alpha$-androstane (10c). δ-Lactone 7 d obtained from $4 \mathrm{c}(0.8 \mathrm{~g})$ was oxidized with Jones reagent, then treated with Zn dust/HOAc, and finally acetylated to yield acetoxy δ-lactone $10 \mathrm{c}(0.2 \mathrm{~g})$: $\mathrm{mp} 185-187$ ${ }^{\circ} \mathrm{C} ; \bar{\nu}_{\text {max }} 1755,1720$, and $1695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.7$ (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 4.5 (hump, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 2.00 ($\mathrm{s}, 3 \mathrm{H}, 3 \alpha-\mathrm{OAc}$), 1.06 (d, $J=6 \mathrm{~Hz}, 3 \mathrm{H}$, C-18), and 0.90 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-19$); m/e (\%) 348 ($11, \mathrm{M}^{+}$), 288 ($100, \mathrm{M}-$ $\mathrm{HOAc}), 273\left(27, \mathrm{M}-\mathrm{HOAc}-\mathrm{CH}_{3}\right), 270\left(10, \mathrm{M}-\mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}\right), 260$ (11), 245 (18), 229 (48), 228 (45), and 216 (72).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}: \mathrm{C}, 68.94 ; \mathrm{H}, 8.10$. Found: C, $68.95 ; \mathrm{H}$, 8.23 .
in refluxing glacial HOAc containing concentrated HCl without difficulty, methyl esters $8 \mathbf{a}$ and 8 c under these conditions led to product mixtures consisting, presumably, of elimination and chloride-substituted products which was avoided by decarboxylating acid 8 b requiring no prior transesterification and therefore a shorter reaction period. As expected, the NMR spectra of $10 b$ and $10 c$ exhibited a doublet ($J=6 \mathrm{~Hz}$) for the C-18 methyl group which was assigned the more stable α orientation.

Experimental Section

General. All melting points were determined with a Fisher-Johns apparatus and are corrected. Infrared data ($\bar{\nu}_{\text {max }}$) were obtained in CHCl_{3} solution against a blank; ' H NMR data, reported in ppm (δ) form $\mathrm{Me}_{4} \mathrm{Si}$, were determined in CDCl_{3} with a Varian A- 60 or T-60 NMR; mass spectra were obtained at an ionization voltage of 70 eV with a Nuclide 12-90-G single-focusing instrument having a resolution capability of 10000 . C, H, N microanalyses were performed by Galbraith Laboratories, Knoxville, Tenn.

Column chromatography was performed using silica gel (MCB Grade 62), and TLC was performed on silica gel HF_{254} (E. Merck) using hexane-EtOAc as the mobile phase. Visualization of the TLC was effected by spraying with 2% ceric sulfate in $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ followed by jrief heating.
$3 \alpha, 7 \alpha$-Diacetoxy-12 α-hydroxy- 5β-pregnan- 20 -one (2b). A solution of triol $2 \mathbf{a}(1.0 \mathrm{~g})$ in benzene (50 mL) was reacted with $\mathrm{Ac}_{2} \mathrm{O}$ (2 mL) and pyridine (2 mL) at $20^{\circ} \mathrm{C}$ for $24 \mathbf{h}^{6}$ Diacetase $2 \mathrm{~b}(0.8 \mathrm{~g})$ was obtained after workup and crystallization from hexane-acetone: mp $217-219{ }^{\circ} \mathrm{C}$; $\bar{\nu}_{\text {max }} 3500(\mathrm{OH}), 1740$, and $1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.90$ (peak, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 4.6 (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 4.02 (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 3.2 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{C}-17$), 2.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-20$), 2.06 and 2.02 ($\mathrm{s}, 3 \mathrm{H}$ each, $3 \alpha, 7 \alpha-$ OAc's), 0.93 (s, $3 \mathrm{H}, \mathrm{c}-19$), and 0.65 (s, $3 \mathrm{H}, \mathrm{C}-18$); m/e (\%) 434 ($3, \mathrm{M}^{+}$), 374 ($100, \mathrm{M}-\mathrm{HOAc}$), 314 ($42, \mathrm{M}-2 \mathrm{HOAc}$), 253 (48), and 229 (90).
$3 \alpha, 7 \alpha$-Diacetoxy-12 α-nitroxy- 5β-pregnan-20-one (2c). Fuming $\mathrm{HNO}_{3}(1 \mathrm{~mL})$ was added to $\mathrm{Ac}_{2} \mathrm{O}(3 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C} .{ }^{7}$ To this mixture, a solution of $2 \mathrm{~b}(0.3 \mathrm{~g})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added dropwise and stirred for 0.5 h . Workup and column chromatography afforded 2c $(0.22 \mathrm{~g}): \bar{\nu}_{\text {max }} 1740$ and 1250 (OAc), 1715 , and $1630,1280,860$, and 760 $\mathrm{cm}^{-1}\left(\mathrm{NO}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.37$ (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 4.85 (peak, 1 H , $7 \beta-\mathrm{H}$), 4.5 (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 2.9 (t, $1 \mathrm{H}, \mathrm{C}-17$), 2.08 (s, $3 \mathrm{H}, \mathrm{C}-20$), 2.06 and 2.02 (s, 3 H each, $3 \alpha, 7 \alpha$-OAc's), 0.97 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-19$), and 0.83 (s, 3 $\mathrm{H}, \mathrm{C}-18$); m/e (\%) $479\left(2, \mathrm{M}^{+}\right), 436\left(7, \mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}\right), 419$ (7, M $\mathrm{HOAc}), 373$ ($3, \mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}-\mathrm{HNO}_{3}$), 359 ($63, \mathrm{M}-2 \mathrm{HOAc}$), 313 (33 , $359-\mathrm{NO}_{2}$), $295\left(57,359-\mathrm{HNO}_{3}\right), 281(39), 271\left(46,313-\mathrm{CH}_{2} \mathrm{CO}\right)$, and 253 (87).
3α-Hydroxy- 7α, 12α-diacetoxy- 5β-pregnan- 20 -one (2e). A solution of triacetate $\mathbf{2 d}(2.0 \mathrm{~g})$ in absolute $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ was reacted with $\mathrm{AcCl}(1 \mathrm{~mL})$ and allowed to stand at room temperature for 1 h . The organic solid obtained by $\mathrm{H}_{2} \mathrm{O}$ precipitation was recrystallized from hexane-ether to yield diacetate $2 \mathrm{e}(1.7 \mathrm{~g})$: $\mathrm{mp} 186-187^{\circ} \mathrm{C}$; $\bar{\nu}_{\text {max }}$ $3550(\mathrm{OH}), 1720(\mathrm{br})$, and $1250 \mathrm{~cm}^{-1}(\mathrm{OAc}) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.17$ (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 4.95 (peak, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 3.5 (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), $2.9(\mathrm{t}, 1$ $\mathrm{H}, \mathrm{C}-17$), 2.20 (s, $3 \mathrm{H}, \mathrm{C}-20$), 2.10 and 2.03 ($\mathrm{s}, 3 \mathrm{H}$ each, $7 \alpha, 12 \alpha$-OAc's), 0.93 (s, $3 \mathrm{H}, \mathrm{C}-19$), and 0.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-18$); m/e (\%) $434\left(2, \mathrm{M}^{+}\right), 419$ ($3, \mathrm{M}-\mathrm{CH}_{3}$), 392 ($38, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}$), 374 ($7, \mathrm{M}-\mathrm{HOAc}$), 332 ($11, \mathrm{M}$ $-\mathrm{CH}_{2} \mathrm{CO}-\mathrm{HOAc}$), 314 ($100, \mathrm{M}-2 \mathrm{HOAc}$), 299 (40). 296 ($84, \mathrm{M}-$ $2 \mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$), $281(80)$, and $253\left(80,296-\mathrm{CH}_{3} \mathrm{CO}\right)$.
Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{6}$: C, 69.10; H, 8.81. Found: C, 69.07; H, 8.77.
3α-Nitroxy- $7 \alpha, 12 \alpha$-diacetoxy- 5β-pregnan- 20 -one (2f). Diester $2 \mathrm{e}(1.0 \mathrm{~g})$ was nitrated to yield $2 \mathrm{f}(0.8 \mathrm{~g}): \bar{\nu}_{\text {max }} 1740$ and $1250(\mathrm{OAc})$, and 1630, 1280, 870, and $760 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.17$ (peak, 1 H , $12 \beta-\mathrm{H}$), 4.97 (peak, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 4.8 (hump, $1 \mathrm{H}, \S \beta-\mathrm{H}$), $3.0(\mathrm{t}, 1 \mathrm{H}$, C-17), 2.20 (s, $3 \mathrm{H}, \mathrm{C}-20$), 2.09 and 2.03 (s, 3 H each $7 \alpha, 12 \alpha$-OAc's), 0.98 (s, $3 \mathrm{H}, \mathrm{C}-19$), and $0.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-18\right.$); m / e (\%) $479\left(2, \mathrm{M}^{+}\right), 436$ ($14, \mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}$), 419 ($5, \mathrm{M}-\mathrm{HOAc}$), 376 ($7, \mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}-\mathrm{HOAc}$), 359 ($31, \mathrm{M}-2 \mathrm{HOAc}$), $313\left(35359-\mathrm{NO}_{2}\right.$), $295\left(55,313-\mathrm{H}_{2} \mathrm{O}\right.$), 253 (56), and 213 (100).

Bromination and Dehydrobromination of 2f. To a solution of nitrate $\mathbf{2 f}(1.0 \mathrm{~g})$ in $\mathrm{HOAc}(30 \mathrm{~mL})$ containing $40 \% \mathrm{HBr}(2 \mathrm{dp})$ was added $\mathrm{Br}_{2} / \mathrm{HOAc}(2.1 \mathrm{~mL}$ of 1.0 M$)$. After stirring for 15 min , the acetic acid mixture was poured into ice-water. This was then extracted with ether, and the ether layer was washed with $\mathrm{H}_{2} \mathrm{O}$, aqueous NaHCO_{3}, and then $\mathrm{H}_{2} \mathrm{O}$ again. The residue obtained from evaporation of the ether was dissolved in HMPT (30 mL) and heated at $100^{\circ} \mathrm{C}$ for 1.5 h under a N_{2} atmosphere. The cooled reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ which was extracted with EtOAc. Chromatography yielded
two bromoenone products (3c). The minor and lower R_{f} component gave the following spectra: $\bar{\nu}_{\text {max }} 1730$ and 1250 (OAc), 1665 and 1600 ($\mathrm{C}=\mathrm{C}-\mathrm{C}=0$), and $755 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{Br}) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.63$ (peak, $1 \mathrm{H}, \mathrm{C}-$ 16), 5.50 (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 5.02 (peak, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 4.72 (peak, 1 H , $3 \alpha-\mathrm{H}$), 2.24 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-20$), 2.07 and 1.97 ($\mathrm{s}, 3 \mathrm{H}$ each, $7 \alpha, 12 \alpha-\mathrm{OAc}$'s), 1.03 (s, $3 \mathrm{H}, \mathrm{C}-19$), and 0.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-18$); m/e (\%) 496 and 494 (1 and $1, \mathrm{M}^{+}$), 481 and 479 (1 and 1), 453 and 451 (96 and $96, \mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}$), 436 and 434 (11 and 11, $\mathrm{M}-\mathrm{HOAc}$), 421 and 419 (2 and $2, \mathrm{M}-\mathrm{HOAc}$ $-\mathrm{CH}_{3}$), 376 and 374 (89 and $89, \mathrm{M}-2 \mathrm{HOAc}$), 361 and 359 (100 and $100, \mathrm{M}-2 \mathrm{HOAc}-\mathrm{CH}_{3}$), and 333 and 331 (21 and $21, \mathrm{M}-2 \mathrm{HOAc}$ $-\mathrm{CH}_{3} \mathrm{CO}$). The rajajor component of higher R_{f} gave the following spectra: $\bar{\nu}_{\text {max }} 1730$ and $1250(\mathrm{OAc}), 1660$ and $1600(\mathrm{C}=\mathrm{C}-\mathrm{C}=0)$, and $750 \mathrm{~cm}^{-1}$ (C-Br); ${ }^{1} \mathrm{H}$ NMR $\delta 6.62$ (peak, $1 \mathrm{H}, \mathrm{C}-16$), 5.45 (peak, 1 H , $12 \beta-\mathrm{H}$), 5.00 (peak, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 3.8 (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 2.24 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{C}-20$), 2.10 and 2.00 ($\mathrm{s}, 3 \mathrm{H}$ each, $7 \alpha, 12 \alpha$-OAc's), and 0.96 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{C}-18$ and $\mathrm{C}-19$); m/e 496 and 494 (1 and $1, \mathrm{M}^{+}$).
$3 \alpha, 12 \alpha$-Diacetoxy-13 α-carbomethoxy-16-ox0-17-oxa-13,17-seco- $7 \alpha, 17$-cyclo- 3β-androstane (7 c). Diester $4 \mathrm{a}(0.5 \mathrm{~g})$ was heated at reflux with $5 \% \mathrm{KOH} / \mathrm{CH}_{3} \mathrm{OH}(30 \mathrm{~mL})$ for 12 h , cooled, diluted with $\mathrm{H}_{2} \mathrm{O}$, and concentrated in vacuo to remove most of the $\mathrm{CH}_{3} \mathrm{OH}$. The aqueous mixture was acidified with concentrated HCl and extracted with EtOAc. The residue 7a left after removal of the EtOAc was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sequentially reacted with diazomethane (7b) and $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine. The solid obtained after dilution with $\mathrm{H}_{2} \mathrm{O}$ was recrystallized from benzene-hexane: mp 233-235 ${ }^{\circ} \mathrm{C}$; $\bar{\nu}_{\text {max }} 1740$ and $1250 \mathrm{~cm}^{-1}(\mathrm{OAc}) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.13$ (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 4.6 (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 4.3 (hump, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 3.63 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.02 ($\mathrm{s}, 6 \mathrm{H}$, $3 \alpha, 12 \alpha$-OAc's), 1.27 (s, $3 \mathrm{H}, \mathrm{C}-18$), and 0.83 (s, $3 \mathrm{H}, \mathrm{C}-19$); $m / e(\%) 450$ $\left(3, \mathrm{M}^{+}\right), 419\left(5, \mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right), 408\left(42, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}\right), 390(7, \mathrm{M}-$ HOAc), 348 ($42, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}-\mathrm{HOAc}$), 330 ($48, \mathrm{M}-2 \mathrm{HOAc}$), 298 ($29, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}-2 \mathrm{HOAc}$), 271 ($100, \mathrm{M}-2 \mathrm{HOAc}-\mathrm{CO}_{2} \mathrm{CH}_{3}$), and 270 (57).
Anal. CALCD FOR $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{8}$: C, 63.98; H, 7.61. Found: C, 64.36; H, 7.60.
3,12,16-Trioxo-13 α-carbomethoxy-17-oxa-13,17-seco$7 \alpha, 17$-cyclo- 5β-androstane (8 d). δ-Lactone $\mathbf{7 b}(0.30 \mathrm{~g})$ obtained as above was dissolved in acetone (20 mL), and Jones reagent was added dropwise while stirring on an ice bath until a brown color was obtained. The reaction was terminated by adding 2 -propanol and the Grignard precipitate removed by filtration. The acetone was evaporated off and the residue taken up in EtOAc. This organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ several times and evaporated to dryness. Recrystallization of the residue thus ob-ained with hexane-benzene gave diketone 8d (0.07 g): mp $213-215^{\circ} \mathrm{C}$; $\bar{\nu}_{\text {max }} 1740$ and $1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 4.7$ (hump, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 1.39 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-18$), and 1.01 (s, $3 \mathrm{H}, \mathrm{C}-19$); m / e (\%) 362 ($100, \mathrm{M}^{+}$), 347 ($11, \mathrm{M}-\mathrm{CH}_{3}$), 344 $\left(25, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 331\left(18, \mathrm{M}-\mathrm{OCH}_{3}\right), 318\left(21, \mathrm{M}-\mathrm{CO}_{2}\right), 305(63), 290$ (28), 277(60), and 259 (48).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}$: C, $66.28 ; \mathrm{H}, 7.23$. Found: $\mathrm{C}, 66.32 ; \mathrm{H}$, 7.37.

Methyl $\quad 3 \alpha$-Hydroxy- $7 \alpha, 12 \alpha$-diacetoxy-16,17-seco-5 β -androstane-16,17-dioate (4b). Triacetate $4 \mathrm{a}(1.0 \mathrm{~g}$) was reacted for 0.5 h in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ containing $\mathrm{AcCl}(0.5 \mathrm{~mL})$. Diacetate $4 \mathrm{~b}(0.9$ g) was obtained: $\mathrm{mp} 196-197^{\circ} \mathrm{C}$; $\bar{\nu}_{\text {max }} 3650(\mathrm{OH}), 1740$ and 1250 (OAc), and $1720 \mathrm{~cm}^{-1}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.20$ (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 4.90 (peak, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), 3.66 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OCH}_{3}$), 3.6 (hump, $1 \mathrm{p}, 3 \beta-\mathrm{H}$), 2.62 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C}-15$), 2.13 and 2.10 (s, $3-1$ each, $7 \alpha, 12 \alpha-$ OAc's), 1.18 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{C}-18$), and 0.93 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-19$); m / e (\%) $482\left(6, \mathrm{M}^{+}\right), 451\left(5, \mathrm{M}-\mathrm{OCH}_{3}\right)$, 439 ($14, \mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}$), 422 ($13, \mathrm{M}-\mathrm{HOAc}$), 407 ($82, \mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}-$ $\mathrm{CH}_{3} \mathrm{OH}$), $389\left(30,407-\mathrm{H}_{2} \mathrm{O}\right.$), 362 ($22, \mathrm{M}-2 \mathrm{HOAc}$), $347(21,362-$ CH_{3}), 344 ($16, \mathrm{M}-2 \mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}$), $330\left(53,362-\mathrm{CH}_{3} \mathrm{OH}\right.$), 312 (31 , $344-\mathrm{CH}_{3} \mathrm{OH}$), and $285\left(100,344-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{9}$: C, $32.22 ; \mathrm{H}, 7.94$. Found: C, 62.39; H, 8.05 .

Methyl 3α-Nitroxy- $7 \alpha, 12 \alpha$-diacetoxy-16,17-seco-5 β-andros$\boldsymbol{t a n}$-16,17-dioate (4c). Diacetate $\mathbf{4 b}(1.0 \mathrm{~g})$ was nitrated to give $4 \mathbf{c}(0.9$ g) as a glassy sol:d: $\bar{\nu}_{\text {max }} 1740$ and $1250(\mathrm{OAc}), 1630,1280,860$, and 760 $\mathrm{cm}^{-1}\left(\mathrm{NO}_{3}\right) ;{ }^{1} \mathrm{~F}$ NMR $\delta 5.13$ (peak, $1 \mathrm{H}, 12 \beta-\mathrm{H}$), 4.87 (peak, 1 H , $7 \beta-\mathrm{H}$), 4.8 (hump, $1 \mathrm{H}, 3 \beta-\mathrm{H}$), 3.61 and 3.58 ($\mathrm{s}, 3 \mathrm{H}$ each, OCH_{3} 's), 2.08 and 2.07 (s, 3 H each, $7 \alpha, 12 \alpha$-OAc's), 1.17 (s, $3 \mathrm{H}, \mathrm{C}-18$), and 0.97 (s, $3 \mathrm{H}, \mathrm{C}-19)$; m/e (\%) $527\left(2, \mathrm{M}^{+}\right), 484\left(6, \mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}\right), 467(12, \mathrm{M}-$ HOAc), 452 ($50, \mathrm{M}-\mathrm{HOAc}-\mathrm{CH}_{3}$), 407 ($42, \mathrm{M}-2 \mathrm{HOAc}$), and 375 (27).

Methyl 3 -Oxo- $7 \alpha, 12 \alpha$-diacetoxy-16,17-seco- 5β-andro-stane-16,17-dioate (4f). Diacetate $4 \mathrm{~b}(0.50 \mathrm{~g})$ was oxidized by Jones reagent to give ketone $4 \mathrm{f}(0.42 \mathrm{~g}): \mathrm{mp} 218-220^{\circ} \mathrm{C}$; $\bar{\nu}_{\text {max }} 1740,1715$, and $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.15$ (peak, $\left.1 \mathrm{H}, 12 \beta-\mathrm{H}\right), 4.92$ (peak, $1 \mathrm{H}, 7 \beta-\mathrm{H}$), $3.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3} \mathrm{~s}\right), 2.3(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-15), 2.08$ and $2.05(\mathrm{~s}, 3 \mathrm{H}$ each, $7 \alpha, 12 \alpha$-OAc's), 1.20 (s, $3 \mathrm{H}, \mathrm{C}-18$), and 1.03 (s, $3 \mathrm{p}, \mathrm{C}-19$); $m / e 480$ (8 , M^{+}), $449\left(4, \mathrm{M}-\mathrm{OCH}_{3}\right), 437\left(3 . \mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}\right), 420(28, \mathrm{M}-\mathrm{HOAc})$,

1, Quassin
ification in 5\% methanolic KOH , and selective acetylation ${ }^{4}$ gave the diacetate $\mathbf{2 b}$ which was transformed to 2 c with fuming nitric acid in $\mathrm{Ac}_{2} \mathrm{O}$. Selective hydrolysis of 2 d with methanolic HCl^{1} gave diacetate 2 e which was also nitrated with fuming HNO_{3} to give 2f. Nitrate $2 f$ was treated with $\mathrm{Br}_{2} / \mathrm{HOAc}$ and the isolated bromide was heated in HMPT, but did not yield the anticipated $\mathbf{3 b}$; the product of this conversion turned out to be a mixture of bromides 3 c . A similar bromination and HMPT reaction sequence for 2c gave a complex mixture that we presume to be C-ring bromide products and was not further investigated.

The lactones were made from the various seco esters by a reaction sequence starting with saponification and subsequent lactone closure with acid treatment. Diester 4a, formed from enone 3a by ozonolysis and subsequent esterification, was saponified with methanolic KOH and treated with acid to yield lactone 7 a which yielded lactone $\mathbf{7 b}$ upon esterification with diazomethane and lactone 7c upon acetylation with acetic anhydride and pyridine; some recovered diester $4 \mathbf{a}$ was also obtained from this sequence of reactions. Jones oxidation

of lactone $\mathbf{7 b}$ gave lactone $8 \mathbf{d}$ and a trace of 5 c . Alternatively, diester 4a was selectively deacetylated with methanolic HCl to give hydroxy diester 4b which was nitrated to yield nitroxy diester $4 \mathbf{c}$ or oxidized to yield keto diester $4 \mathbf{f}$. Controlled saponification of $\mathbf{4 c}$ followed by acid treatment ($\mathbf{7 d}$) and esterification with diazomethane afforded lactone 7e. Acetylation or Jones oxidation of $7 \mathbf{e}$ gave either $7 \mathbf{f}$ or nitroxy δ-lactone 8a, respectively; variable amounts of 5 a and 5 c were coproducts
with the latter. Reduction of $8 \mathbf{a}$ with Zn dust in $\mathrm{HOAc}(8 \mathbf{b})$ followed by acetylation provided acetoxy δ-lactone 8c. Attempts to selectively remove the 3α-acetate group in lactone 7 c with methanolic HCl resulted in concurrent lactone ring opening to yield dihydroxy diester 4 d which could be selectively acetylated with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine to give hydroxy diester $4 \mathbf{e}$; oxidation of $4 \mathbf{e}$ gave keto diester 4 g . Saponification of 4 f followed by acid treatment gave 9a. Lactone 9 a was esterified with diazomethane and appropriately transformed to either $9 b$ or $9 \mathbf{c}$.

Introduction of the 12 -oxo group led to decarboxylation at position 13 under acidic conditions. Diketo diester 5b and diketo lactone $8 \mathbf{d}$ were decarboxylated in refluxing glacial HOAc containing concentrated HCl to afford diketo ester 6 and δ-lactone 10b, respectively. Jones oxidation of 7d followed by Zn dust reduction of the nitroxy group in glacial HOAc gave a product ($\mathbf{8 b}$) that underwent decarboxylation upon removal of the acetic acid solvent to afford 10a; acetylation of 10a gave 10c containing some precursor acid to ester 6 . Similar decarboxylation of 8a in glacial HOAc containing concentrated HCl was attended by decomposition of the nitroxy group giving a complex mixture presumed to contain A-ring elimination and chloride products.

Discussion

Since nitrate esters are more resistant to hydrolysis than acetate esters under both acidic and basic conditions but are easily removed through reduction with Zn dust and glacial HOAc, we sought to selectively introduce the nitroxy group at positions 3 or 12 either before or after D-ring cleavage of 16 -en-20-one cholic acid derivatives. Introduction before provided nitrate 2 f and 2 c which were subjected to bromination with $\mathrm{Br}_{2} / \mathrm{HOAc}$, but treatment of the corresponding 17α-bromo derivatives with hot HMPT led to $3 \mathbf{c} .{ }^{5}$ Selective introduction of the nitroxy group at positions 3 or 12 after D-ring cleavage was easily accomplished on the seco esters 4.

Conversion of the seco esters 4 to δ-lactones 7 was achieved by saponification of the esters and acid treatment to close the lactone ring. This conversion was never totally complete, for, invariably, starting material or products thereof were also recovered. Treatment of δ-lactone 7 c with methanolic HCl opened the lactone ring faster than hydrolysis of the 3α-acetoxy group, since a brief reaction period (0.5 h) gave both 4d and 4 e and pure 4 d only after a longer reaction period ($>1 \mathrm{~h}$). A distinctive feature in the NMR spectra of the δ-lactones 7 is the wide separation of the angular methyl resonance signals ($\sim 18 \mathrm{~Hz}$) as compared with the corresponding diesters (~ 10 Hz); a major contribution for this wider separation has come from increased shielding of the C-19 methyl group in the δ lactone. Additionally, the $7 \beta-\mathrm{H}$ NMR signal appears as a hump ($\delta \sim 4.6$) in the spectra of the δ-lactones but is a downfield peak ($\delta \sim 4.9$) in the spectra of the precursor diesters, indicating that this proton is in an axial-like orientation in the δ-lactones. These facts may be explained by assuming chair conformations for rings A and C and strained boat conformations for ring B and the lactone ring. The mass spectral loss of ketene from the molecular ion of the 12α-acetoxy- and, to a lesser extent, 12α-nitroxy δ-lactones ($7 \mathbf{c}, 7 \mathbf{f}, 9 \mathbf{b}$, and $9 \mathbf{c}$) is characteristic of these lactones.

Although it is possible to selectively acetylate the 3α - and 7α-hydroxy groups in 2a, a similar attempt to selectively acetylate only the 3α-hydroxy group in δ-lactone $\mathbf{7 b}$ was without success, as only 7c was obtained. However, it was possible to selectively deacetylate the 3α-acetate group in diester 4 a to give $\mathbf{4 b}$, which was transformed to an intermediate having the 12 -oxo group (acid $8 \mathbf{b}$) permitting easy decarboxylation (to 10a). Unlike methyl esters $8 \mathbf{d}$ and 5 b which underwent transesterification followed by decarboxylation
-11° (c $\left.0.227, \mathrm{CHCl}_{3}\right)$; UV (MeOH) 220, $263 \mathrm{~nm}(\epsilon 15900,6600)$; IR (KBr) $3530,1795,1750,1720,1640 \mathrm{~cm}^{-1}$

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{7}$: C, 70.01; H, 8.23. Found: C, 69.71; H, 8.25 .

The acetate $\mathbf{4 b}$ could, hcwever, be obtained as the major component of a mixture in the following manner.
A solution of chromium srioxide (0.260 g) in acetic acid (20 mL) was added slowly (144 h) to a solution of neriifolin 4^{\prime}-acetate ($2 \mathrm{c}, 0.500$ g). The reaction mixture was worked up in the manner described above for neriifolin to give a crude product (0.380 g), which was mainly the acetate $4 \mathbf{b}$ (see Table I for NMR spectrum) contaminated with a small amount of digitoxigenin formate 2 g . The mixture was subjected to column chrorratography on neutral alumina $\vdots 80$ g, Fluka, activity I). The enone $6(0.350 \mathrm{~g}, 78 \%)$ was eluted with hexane-ethyl acetate ($9: 1$ and 17:3).
Digitoxigenin (2e). (A) Hydrolysis of Digitoxigenin Formate $(2 \mathrm{~g})$. A solution of the formate $(2.28 \mathrm{~g}, 0.00564 \mathrm{~mol})$ in methanol (250 mL) and 0.1 N sulfuric acid (125 mL) was boiled under reflux for 1 h . The solution was neutralized by the addition of dilute sodium bicarbonate solution, the solvent was then removed in vacuo, and the residue was extracted with ethyl acetate. The extract was washed with water, dried over sodium sulfate, and evaporated in vacuo, giving a residue which after crystallization from aqueous methanol and then ethyl acetate-ether gave digitoxigenin (1.56 g): mp $237-238^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$ $+18^{\circ}$ (с $0.348, \mathrm{CHCl}_{3}$); UV (MeOH) $218 \mathrm{~nm}(\epsilon 14500)$ [lit. ${ }^{25} \mathrm{mp}$ $\left.249-255{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+14.6 \pm 2^{\circ}(\mathrm{MeOH})\right]$. Chromatography of the mother liquor on silica $g \in l(50 \mathrm{~g})$ gave digitoxigenin formate $[0.326 \mathrm{~g}$, 14% recovery, eluted with hexane-ethyl acetate ($2: 1$)] and a small amount (0.194 g) of digitoxigenin (total yield $1.75 \mathrm{~g}, 83 \%$).
(B) Hydrolysis of the Enone 5. A solution of tie enone (1.2 g , $0.00233 \mathrm{~mol})$ in methanol $(60 \mathrm{~mL})$ and 0.1 N sulfuric acid $(30 \mathrm{~mL})$ was left at room temperature for 18 h . The reaction was worked up as described above to provide a solid, which was crystallized from ethyl acetate-ether to give digitoxigenin (0.61 g), mp $242-245^{\circ} \mathrm{C}$. The residue obtained on evaporation of the mother liquor was separated by TLC on silica gel using hexane-ethyl acetate as the developing solvent. In this way a further quantity (0.17 g , total yield 89%) of digitoxigenin was isolated as well as the nonpolar methyl glycoside 7 and the γ-pyrone 8 . Afte: crystallization from dichloromethane-ether compound 7 , obtained in 8% yield, had: $\mathrm{mp} 97-98^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-64^{\circ}(\mathrm{c}$ $0.45, \mathrm{CHCl}_{3}$); UV (MeOH) $255.5 \mathrm{~nm}(\epsilon 5410)$; IR (KBr) 1710, 1645 cm^{-1}; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.39(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}$, $3 \mathrm{H}), 4.61(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.24(\mathrm{~d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 5.74(\mathrm{~d}, 1 \mathrm{H}$, $J=4.2 \mathrm{~Hz}$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$: C, 55.80; $\mathrm{H}, 7.03$. Found: C, $56.06 ; \mathrm{H}$, 7.06.

The γ-pyrone 8, obtained in 23% yield, had $\mathrm{mp} 155-157^{\circ} \mathrm{C}$ [lit. ${ }^{26}$ $\mathrm{mp} 160-162^{\circ} \mathrm{C}$] after crystallization from dichloromethane-ether: $[\alpha]_{\mathrm{D}} 0^{\circ}$ (c $0.252, \mathrm{CHCl}_{3}$; UV (MeOH) $277 \mathrm{~nm}(\epsilon 11000)$; IR (KBr) $3265,1655,1620,1563 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{3}$: C, 57.14; H, 4.80. Found: C, 57.16; H, 4.69.

Acknowledgment. We thank Dr. M. Maddox for recording the NMR spectra.

Registry No.-7, 63493-69-6; 8, 118-71-8.

References and Notes

(1) Contribution No. 481 from the Syntex Institute of Organic Chemistry.
(2) Presented in part at the First Chem cal Congress of the North American Continent, Mexico City, Mexico, Nov 30-Dec 5, 1975.
(3) M. Martinez, "Las Plantas Medicinales de Mexico", Quinta Edición, La Impresora Azteca, Mexico, D.F., 1€69, pp 73-76.
(4) K. K. Chen and A. L. Chen, J. Biol. Chem., 105, 231 (1934).
(5) M. Frerejacque, C. R. Acad. Sci., 242, 2395 (1956); 246, 459 (1958).
(6) R. Bloch. S. Rangaswami, and O. Schindler, Helv. Chim. Acta, 43, 652 (1960).
(7) (a) H. Helfenberger and T. Reichstein, Helv. Chim. Acta, 31, 1470 (1948); (b) ibid., 31, 2097 (1948).
(8) Fieser and Fieser ${ }^{9}$ have erroneously depicted neriifolin with the equatorial (β) configuration at the anomeric carbon. That the aglycone portion of neriifolin is in the axial (α) configuration is obvious from the magnitude ${ }^{10}$ of the coupling constant of the anomeric proton with the 2^{\prime}-hydrogen ($J_{1}, 2^{\prime}$ $=3.3 \mathrm{~Hz}$, see Table I).
(9) L. F. Fieser and M. Fieser, "Steroids", Reinhold, New York, N.Y., 1959, pp 731-732.
(10) G. Kotowycz and R. U. Lemieux, Chem. Rev., 73, 669 (1973); see especially p 676.
(11) F. Lauterbach, K. Repke, and D. Nitz, Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol., 239, 196 (1960).
(12) J. M. Ferland, Can. J. Chem., 52, - 652 (1974).
(13) Attempts to utilize digitoxigenone as a source of digitoxigenin were abandoned when it was discovered that reduction of this ketone by the method of Henbest ${ }^{14}$ gave 14 -dehydrodigitoxigenin as the principal product.
(14) Y. M. Y. Haddad, H. B. Henbest, J. Husbands, and T. R. B. Mitchell, Proc. Chem. Soc., 361 (1964); H. B. Henbest and T. R. B. Mitchell, J. Chem. Soc C. 785 (1970); P. A. Browne and D. N. Kirk, ibid., 1653 (1969); E. L. Eliel, T. W. Doyle, R. O. Hutchins, and E. C. Gilbert, Org. Synth., 50, 13 (1970).
(15) J. C. Collins, W. W. Hess, and F. J. Frank, Tetrahedron Lett., 3363 (1968).
(16) The oxidative processes studied and the $3 \mathrm{a} / 4 \mathrm{a}$ ratios (in parentheses) observed were: chromium trioxide-acetic acid (2.6), chromium trioxideDMF ${ }^{17}(0.8)$, Brown ${ }^{18}$ oxidation using dichloromethane instead of ether (3.6), pyridinium chlorochromate ${ }^{19}(2.0)$, and Moffatt ${ }^{20}$ oxidation (0.9). Two other oxidative processes, e.g., ceric ammonium nitrate [P. Soucy, T-L. Ho, and P. Deslongchamps, Car. J. Chem., 50, 2047 (1972)] or the thioanisole-chiorine complex [E. J. Corey and C. U. Kim, J. Org. Chem., 38, 1233 (1973)]. left the starting material unaltered.
(17) G. Snatzke, Chem. Ber., 94, 729 (1961).
(18) H. C. Brown and C. P. Carg, J. Am. Chem. Soc., 83, 2952 (1961).
(19) E. J. Corey and J. W. Suggs, Tetrahedron Lett., 2647 (1975).
(20) K. E. Pfitzner and J. G. Moffatt, J. Am. Chem. Soc., 87, 5670 (1965).
(21) See footnote 16 in ref 6 .
(22) The structures of these substances are under investigation and a report thereon will be made in due course.
(23) H. P. Sigg, C. Tamm, and T. Reichstein, Helv. Chim. Acta, 36, 985 (1953).
(24) W. Fritsch, W. Haede, K. Radscheit, U. Stache, and H. Ruschig, Justus Liebigs Ann. Chem., 621 (1974).
(25) E. Wyss, H. Jäger, and O. Schindler, Helv. Chim. Acta, 43, 664 (1960).
(26) M. A. Spielman and M. Freifelder, J. Am. Chem. Soc., 69, 2908 (1947).

Studies Directed toward Synthesis of Quassinoids. 5. ${ }^{1}$ Conversion of D-Ring Seco Derivatives of Cholic Acid to δ-Lactones

Jerry Ray Dias* and R. Ramachand:a ${ }^{2}$
Department of Chemistry, University of Missouri, Kansas City, Missouri 64110

Received May 3, 1977

Various δ-lactones, 5,14 -epi-28,30-dinorquassinoids, were synthesized from D-ring seco derivatives of cholic acid. Chemical and spectral evidence suggests that the δ-lactone ring in these compounds exists in a strained boat conformation.

In pursuit of our goal to convert cholic acid into analogues of quassin (1), we had the opportunity to synthesize a number of unique δ-lactones that may be regarded as 5,14 -epi28,30 -dinorquassincids. Herein, we describe our results in the lactonization of D-ring seco derivatives of c.oolic acid. ${ }^{3}$

Results

Conversion of the various ketones 2 a to 2 f to 16 -en- 20 -ones for subsequent ozonolysis to give D-ring seco derivatives was explored. The ester ketone 2 d was converted to 2 a by sapon-
dium sulfate and evaporated in vacuo, giving a residue which on crystallization from ethyl acetate gave neriifolin (20 g) with mp $216-218^{\circ} \mathrm{C}$. The mother liquor from the crystallization was subjected to column chromatography on neutral alumina (800 g , Fluka, Activity III). Elution with hexane-ethyl acetate ($60: 40$) gave a mixture of monoacetates which could be transesterified in the manner described above to give more neriifolin. Elution with hexane-ethyl acetate (1:1) gave a further quantity (6 g) of neriifolin (total of 26 g or 94% based on diacetate taken).
The transesterification could also be effected with 1,5-diazabicy-clo[4.3.0]non-5-ene (DBN) in methanol at room temperature (23 h). The reaction was worked up as described above to give a mixture which was separated by column chromatography on alumina. Neriifolin was isolated in 64% yield together with neriifolin 4^{\prime}-monoacetate ($2 \mathrm{c}, 30 \%$). If the transesterification was allowed to proceed for 6 h the principal product was 2c (see below).

Neriifolin 4'-Monoacetate (2c). A solution of neriifolin diacetate $(6.0 \mathrm{~g}, 0.0097 \mathrm{~mol})$ in dry methanol (250 mL) containing DBN (15 drops) was left at room temperature for 6 h . The solution was diluted with water, the product was extracted into ethyl acetate, and the extract was washed with water and dried over sodium sulfate. Evaporation of the solvent gave a residue which was chromatographed on neutral alumina (1.1 kg , Fluka, activity III). Elution with hexane-ethyl acetate ($65: 35$) gave the starting diacetate $(0.61 \mathrm{~g}, 10 \%)$. Neriifolin 4^{\prime}-monoacetate ($3.6 \mathrm{~g}, 64 \%$) was eluted with hexane-ethyl acetate (3:2) and after crystallization from ether-pentane it had: $\mathrm{mp} 221-222^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-55^{\circ}$ (c 0.34, CHCl_{3}); UV (MeOH) 220.5 nm ($\epsilon 13$ 200); IR $\left(\mathrm{CHCl}_{3}\right) 3590,3560,1785,1745,1625 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{9}$: C, 66.64; H, 8.39. Found: C, 66.44; H, 8.41.

Finally, elution with hexane-ethyl acetate (9:11) gave neriifolin (1.2 $\mathrm{g}, 23 \%, \operatorname{mp} 212-215^{\circ} \mathrm{C}$).

Oxidation of Neriifolin. (A) Chromium Trioxide in Acetic Acid. A solution of chromium trioxide in acetic acid ($10 \mathrm{mg} \mathrm{CrO}_{3} / \mathrm{mL}$) was added, in a dropwise manner at room temperature, to a stirred solution of neriifolin $(1.30 \mathrm{~g}, 0.00243 \mathrm{~mol})$ in acetic acid $(10 \mathrm{~mL})$. The consumption of the starting material was followed by TLC, and the addition of the oxidant was continued until the starting material had almost disappeared. A total of 89 mL of the chromium trioxide solution was added during 28 h . The mixture was poured into ice-water and the resultant was exhaustively extracted with chloroform. The extract was washed with saturated sodium bicarbonate solution, then with water, and finally, it was dried over sodium sulfate. The solvent was removed in vacuo and the residue was chromatographed on silica gel (100 g) to give the following products in succession.

1. Digitoxigen 3 -formate ($2 \mathrm{~g}, 0.061 \mathrm{~g} ; 6 \%$) eluted with hexane-ethyl acetate (7:3). After crystallization from chloroform-ether it had: mp $191-193{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+18^{\circ}$ (c $0.276, \mathrm{CHCl}_{3}$); UV (MeOH) $218.5 \mathrm{~nm}(\epsilon$ 17000) [lit. $\left.{ }^{23} \mathrm{mp} \mathrm{198-201}{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+18 \pm 3^{\circ}\left(\mathrm{CHCl}_{3}\right)\right]$.
2. Digitoxigenone ($\mathbf{2 f}, 0.137 \mathrm{~g}, 15 \%$ eluted with hexane-ethyl acetate (3:2). After crystallization from acetone-ether it had: mp 194-197 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}+25^{\circ}\left(c 0.313, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) 217 \mathrm{~nm}(\epsilon 16200)$ [lit. ${ }^{7 \mathrm{~b}} \mathrm{mp}$ $\left.204-205^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+32.3 \pm 2^{\circ}\left(\mathrm{CHCl}_{3}\right)\right]$. This was identical with an authentic specimen prepared by the oxidation of digitoxigenin.
3. Neriifolin- 2^{\prime}-one ($4 \mathrm{a}, 0.087 \mathrm{~g}, 7 \%$) eluted with hexane-ethyl acetate (3:2). The physical constants of this substance are recorded below.
4. Neriifolin- 4^{\prime}-one ($3 \mathrm{a}, 0.234 \mathrm{~g}, 18 \%$) eluted with hexane-ethyl acetate ($3: 2$ and 1:1). The physical constants for this substance are recorded below.
5. Neriifolin ($0.038 \mathrm{~g}, 3 \%$) eluted with ethyl acetate.
6. A polar acidic material (0.415 g) eluted with methanol. After dissolution in aqueous sodium bicarbonate solution and reprecipitation with dilute hydrochloric acid, it had: $\mathrm{mp} 250-260^{\circ} \mathrm{C}$ dec; $[\alpha]_{\mathrm{D}}$ $0^{\circ}(\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) 219 \mathrm{~nm}(\epsilon 6600)$; IR (KBr) 3450, 1745, 1625 cm^{-1}.

Repetition of the above oxidation on a larger scale, using neriifolin $(4.2 \mathrm{~g})$ and chromium trioxide (6.0 g) in acetic acid (total volume of 185 mL) over a 48-h period, gave a crude product which was subjected to acidic hydrolysis. This was effected by heating a solution of the above mixture in methanol (160 mL) and 0.1 N sulfuric acid (120 mL) for 0.5 h at reflux temperature. The solvent was removed in vacuo and the residue was extracted with ethyl acetate. The extract was washed with water, dried over sodium sulfate, and then evaporated in vacuo. The residue was subjected to thin-layer chromatography on silica gel using hexane-ethyl acetate (7:3) as the developing solvent. From this mixture was isolated digitoxigenone $\left(0.50 \mathrm{~g}, 17 \%, \mathrm{mp} 194-197^{\circ} \mathrm{C}\right.$ after crystallization from acetone-ether) and digitoxigenin ($0.50 \mathrm{~g}, 17 \%$). This latter substance had $\mathrm{mp} 233-236^{\circ} \mathrm{C}$ after crystallization from acetone-ether: $[\alpha]_{\mathrm{D}}+22^{\circ}$ (c $0.382, \mathrm{CHCl}_{3}$); UV (MeOH) $217 \mathrm{~nm}(\epsilon$

15 500) [lit. ${ }^{24} \mathrm{mp} 243-246{ }^{\circ} \mathrm{C} ;\left[\left.\alpha\right|_{\mathrm{D}}+23^{\circ}\left(\mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) 217\right.$ $\mathrm{nm}(\epsilon 16200)]$.
(B) Collins Oxidation. To a vigorously stirred suspension of dry Celite (60 g) and pyridinium chromate (60 g) in dry dichloromethane $(800 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of neriifolin ($10 \mathrm{~g}, 0.0187 \mathrm{~mol}$) in anhydrous dichloromethane (100 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.5 h and then at room temperature for 2 h . Sodium bisulfate monohydrate (100 g) was then added and agitation was continued for an additional 0.5 h . The mixture was filtered, the filter cake was exhaustively extracted with dichloromethane (total of 12 L), and the combined dichloromethane filtrate and extracts were washed with water and then dried over sodium sulfate. Evaporation of the solvent in vacuo gave a residue which was chromatographed on neutral alumina (1 kg , Fluka, activity III). Elution with hexane-ethyl acetate (65:35) removed a small amount of nonpolar material, which was followed by neriifolin- 2^{\prime}-one ($1.0 \mathrm{~g}, 10 \%$). This substance had mp $145-148{ }^{\circ} \mathrm{C}$ after crystallization from aqueous methanol: $[\alpha]_{\mathrm{D}} 0^{\circ}(\mathrm{c}$ $0.108, \mathrm{CHCl}_{3}$); UV (MeOH) $217 \mathrm{~nm}(\epsilon 11750)$; IR (KBr) 3400, 1780, $1740 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{8} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.36 ; \mathrm{H}, 8.51$. Found: C, 63.66; H, 8.21.
Elution with hexane-ethyl acetate $(60: 40)$ gave neriifolin- 4^{\prime}-one $(5.80 \mathrm{~g}, 58 \%)$, which after crystallization from aqueous methanol had: $\mathrm{mp} 163-166^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-84^{\circ}$ (c $\left.0.274, \mathrm{MeOH}\right) ; \mathrm{UV}(\mathrm{MeOH}) 216 \mathrm{~nm}(\epsilon$ 13500); IR (KBr) $3400,1780,1740,1620 \mathrm{~cm}^{-1}$
Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{8}$: C, 67.64; H, 8.33. Found: C, 66.86; H, 8.42 .
(C) Brown Oxidation. ${ }^{18}$ A solution of neriifolin $(5.14 \mathrm{~g}, 0.096 \mathrm{~mol})$ in dichloromethane (500 mL) was vigorously stirred at room temperature with a chromic acid solution prepared from sodium dichromate dihydrate (7.63 g), water (48 mL), and concentrated sulfuric acid $(4 \mathrm{~mL})$. The reaction was followed by TLC on silica gel using a hex-ane-ethyl acetate ($3: 1$) solvent system. After 48 h the chromic acid solution was replaced by an equivalent amount of fresh reagent and agitation was continued for 128 h . The organic phase was separated and combined with a dichloromethane extract of the aqueous phase The dichloromethane solution was washed with water, dried over sodium sulfate, and evaporated in vacuo. The complex mixture thus obtained was resolved by column chromatography on silica gel (500 g). Elution with hexane-ethyl acetate (3:2) gave, in succession, digitoxigenin 3 -formate $(0.43 \mathrm{~g}, 11 \%)$, the enone $6(0.072 \mathrm{~g}, 1.5 \%$; the physical constants of this substance are recorded below), and the enone $5(0.025 \mathrm{~g}, 0.5 \%$; the physical constants of this substance are given below). Elution with hexane-ethyl acetate (9:1) gave digitoxigenone ($0.13 \mathrm{~g}, 4 \%$), followed by neriifolin- 2^{\prime}-one ($4 \mathrm{a}, 0.74 \mathrm{~g}, 14 \%$). Elution with ethyl acetate-hexane ($1: 1,3: 2$, and $3: 1$) gave neriifolin-4^{\prime}-one ($3 \mathrm{a}, 2.62 \mathrm{~g}, 51 \%$). Finally, neriifolin ($0.94 \mathrm{~g}, 18 \%$) was removed from the column by elution with ethyl acetate and then with methanol.
Acetylation of Neriifolin-4'-one (3a). A solution of $3 \mathrm{a}(0.887 \mathrm{~g}$, 0.00167 mol) in pyridine (25 mL), containing acetic anhydride (5 mL), was left at room temperature for 1 h . The solution was evaporated to dryness in vacuo and the residue (0.884 g) was crystallized from di-chloromethane-ether to give 3b: mp 193-194 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-114^{\circ}$ (c 0.302, CHCl_{3}); UV (MeOH) $218 \mathrm{~nm}(\epsilon 11500)$; IR (KBr) 3560, 1790, 1745, $1635 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9}$: C, 66.87; H, 8.07. Found: C, $66.88 ; \mathrm{H}$, 8.17.

The acetate $\mathbf{3 b}$, synthesized in this way, was identical with a sample prepared by the Collins oxidation of neriifolin monoacetate (2b).
Synthesis of the Enone 5. A solution of the acetate $\mathbf{3 b}(5.00 \mathrm{~g}$, $0.0087 \mathrm{~mol})$ in pyridine (100 mL) was heated at $80^{\circ} \mathrm{C}$ for 48 h . The solvent was removed in vacuo and the residue was chromatographed on silica gel $(500 \mathrm{~g})$. The solvents used for the development of the column contained a small amount of pyridine to minimize the acid hydrolysis of the enone to digitoxigenin. Elution with ethyl acetatehexane (35:65) removed a small amount of a less polar impurity. The enone $5[3.16 \mathrm{~g}, 71 \%$; UV (MeOH) 221, $257 \mathrm{~nm}(\epsilon 14000,5720)]$ was obtained as an amorphous solid, which after crystallization from methanol-water had mp 119-123 ${ }^{\circ} \mathrm{C}$. Several recrystallizations from the same solvent system gave material: mp $175-178^{\circ} \mathrm{C}$; UV (identical with above); IR (KBr) $3500,1790,1755,1715,1650 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.88$; $\mathrm{H}, 8.28$. Found: $\mathrm{C}, 69.01$; H, 8.10.
Elution with ethyl acetate-hexane (3:2) gave digitoxigenin (0.89 $\mathrm{g}, 27 \%$), which was spectroscopically indistinguishable from that prepared in the manner described below.
Synthesis of Acetate 4b and Enone 6. Acetylation of 4a in the manner described above for 3a gave the enone 6 directly in high yield. After crystallization from acetone-ether it had: mp $217-221^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$
Table I. NMR Data ${ }^{a}$ for Neriifolin and Related Compounds

Compd	Registry no.	1^{\prime} - H	$2^{\prime}-\mathrm{H}$	3^{\prime} - H	$3^{\prime}-\mathrm{OCH}_{3}$	$4^{\prime}-\mathrm{H}$	5'-H	$5^{\prime}-\mathrm{CH}_{3}$	3α - H	$17 \alpha-\mathrm{H}$	$18-\mathrm{CH}_{3}$	$19-\mathrm{CH}_{3}$	H-21	H-21	H-22
$2 a^{\text {b }}$	466-07-9	$\begin{aligned} & 4.63 \mathrm{~d} \\ & J=3 \mathrm{l} \end{aligned}$			3.49	$\begin{aligned} & 2.81 \mathrm{t} \\ & J=8.6 \end{aligned}$		$\begin{aligned} & 1.06 \mathrm{~d} \\ & J=6.2 \end{aligned}$	3.79 m	2.73 m	0.76	0.88	4.93	4.93	5.90
2b	25633-34-5	$\begin{aligned} & 5.04 \mathrm{~d} \\ & J=3.7 \end{aligned}$	$\begin{aligned} & 4.61 \mathrm{q} \\ & J=3.7 \\ & J=10 \end{aligned}$		3.55	$\begin{gathered} 3.16 \mathrm{t} \\ J=9 \end{gathered}$		$\begin{aligned} & 1.24 \mathrm{~d}^{c} \\ & J=6 \end{aligned}$	3.84 m	2.74 m	0.86	0.94	$4.77 \mathrm{q}^{\text {d,e }}$	5.02 q	5.85 t
2c	25633-33-4	$\begin{aligned} & 4.91 \mathrm{~d} \\ & J=3.1 \end{aligned}$		$\begin{gathered} 3.36 \mathrm{t} \\ \underset{J}{-9.9} \end{gathered}$	3.50	$\begin{aligned} & 4.65 \mathrm{t} \\ & J-9.1 \end{aligned}$	$\begin{aligned} & 3.79 \mathrm{~m} \\ & J=6 \\ & J=9.1 \end{aligned}$	$\begin{aligned} & 1.09 \mathrm{~d}^{f} \\ & I=6 \end{aligned}$		2.73 m	0.87	0.96	4.74 q	4.97 q	5.82 t
2d	1065-34-5	$\begin{aligned} & 5.06 \mathrm{~d} \\ & J=3.4 \end{aligned}$	$\begin{aligned} & 4.65 q \\ & J=3.4 \\ & J=9.5 \end{aligned}$	$\begin{aligned} & 3.65 \mathrm{t} \\ & J=9.7 \end{aligned}$	3.42	$\begin{aligned} & 4.70 \mathrm{t} \\ & J=9.1 \end{aligned}$	$\begin{aligned} & 3.87 \mathrm{~m} \\ & J=6 \\ & J=9.1 \end{aligned}$	$\begin{aligned} & 1.10 \mathrm{~d}^{g} \\ & J=6 \end{aligned}$	3.86 m	2.73 m	0.87	0.95	4.76 q	5.01 q	5.84 t
2 e	143-62-4								4.11 m	2.76 m	0.87	0.97	4.75 q	5.01 q	5.86 t
2 f	1102-88-1									2.75 m	0.90	1.01	4.75 q	5.00 q	5.85 t
2 g	1250-96-0								$5.22 \mathrm{~m}^{h}$	2.78 m	0.87	0.96	4.76 q	5.02 q	5.84 t
3a	58924-92-8	$\begin{aligned} & 5.06 \mathrm{~d} \\ & J=4.0 \end{aligned}$		$\begin{aligned} & 4.00 \mathrm{~d} \\ & J=10 \end{aligned}$	3.60		$\begin{aligned} & 4.29 \mathrm{q} \\ & J=6.5 \end{aligned}$	$\begin{aligned} & 1.24 \mathrm{~d} \\ & J=6.5 \end{aligned}$	4.05 m	2.74 m	0.87	0.97	4.75 q	5.00 q	5.85 t
3b	63493-66-3	$\begin{aligned} & 5.29 \mathrm{~d} \\ & J=4.0 \end{aligned}$	$\begin{aligned} & 4.93 \mathrm{q} \\ & J=4.0 \\ & J=10.7 \end{aligned}$	$\begin{aligned} & 4.20 \mathrm{~d} \\ & J=10.7 \end{aligned}$	3.58		$\begin{aligned} & 4.36 \mathrm{q} \\ & J=6.5 \end{aligned}$	$\begin{aligned} & 1.28 \mathrm{~d}^{i} \\ & J=6.5 \end{aligned}$	4.00 m	2.76 m	0.87	0.97	4.78 q	5.03 q	5.90 t
4a	63511-68-2	4.77		$\begin{aligned} & 4.11 \mathrm{~d} \\ & J=9 \end{aligned}$	3.67			$\begin{aligned} & 1.32 \mathrm{~d} \\ & J=6.2 \end{aligned}$	4.03 m	2.78 m	0.88	0.94	4.73 q	5.01 q	5.86 t
4b	63493-67-4	4.80		$\begin{aligned} & 4.21 \mathrm{~d} \\ & J=10.4 \end{aligned}$	3.49	$\begin{aligned} & 4.93 \mathrm{t} \\ & J=9.7 \end{aligned}$		$\begin{aligned} & 1.20 \mathrm{~d}^{j} \\ & J=6.2 \end{aligned}$	4.03 m	2.74 m	0.87	0.94	4.76 q	4.94 q	5.87 t
5	63527-41-3	$\begin{aligned} & 5.41 \mathrm{~d} \\ & J=4.4 \end{aligned}$	$\begin{aligned} & 5.68 \mathrm{~d} \\ & J=4.4 \end{aligned}$		3.63		$\begin{aligned} & 4.63 \mathrm{q} \\ & J=7 \end{aligned}$	$\begin{aligned} & 1.37 \mathrm{~d} \\ & J=7 \end{aligned}$	4.03 m	2.76 m	0.88	0.94	4.74 q	5.00 q	5.88 t
6	63493-68-5	4.95			3.62	$\begin{aligned} & 5.71 \mathrm{~d} \\ & J=1.5 \end{aligned}$	$\begin{aligned} & 4.84 \mathrm{~m} \\ & J=1.5 \\ & J=7 \end{aligned}$	$\begin{aligned} & 1.37 \mathrm{~d} \\ & J=7 \end{aligned}$	4.04 m	2.77 m	0.86	0.90	4.80 q	5.02 q	5.84 t

Scheme I

of acetic acid. The enone 5 , thus obtained, was readily differentiated from 6 by means of its NMR spectrum. In particular, for 5 , the anomeric hydrogen and the adjacent olefinic proton appeared as a pair of doublets $(J=4.4 \mathrm{~Hz})$ at $\delta 5.41$ and 5.68 , while for $6, \mathrm{H}-1^{\prime}$ and $\mathrm{H}-4^{\prime}$ showed singlet and doublet resonances at $\delta 4.95$ and $5.71(J=1.5 \mathrm{~Hz})$, respectively. In addition to the NMR spectral differences, the enones possessed markedly dissimilar stabilities toward 0.05 N sulfuric acid in 50% aqueous methanol. Whereas 5 was rapidly hydrolyzed to an easily separable mixture of digitoxigenin (45% yield from neriifolin), the methyl glycoside 7, and 2-methyl3 -hydroxy-4-pyrone (8), even at room temperature, 6 was largely recovered from the hydrolytic medium after 1 h at reflux temperature. The ease of hydrolysis of 5 is presumably a reflection of the enhanced stability of the carbonium ion 9 , while the resistance to cleavage of 6 must derive from the destabilized nature of the α-oxocarbonium ion 10 , which would be generated if the hydrolysis of 6 was to occur.
The formation of the ketol 4a was obviously deleterious to the yield of digitoxigenin, and therefore, various oxidative methods were investigated in order to reduce the amount of this substance in the mixture, or to eliminate it entirely. None of the methods studied was, however, as effective as the Collins oxidation, since a lower ratio of $3 \mathrm{a} / 4 \mathrm{a}$ was produced in every case. ${ }^{16}$
As mentioned previously, neriifolin monoacetate represents a considerable portion of the glycosidic material obtainable from Thevetia species, and consequently the conversion of this substance into digitoxigenin is also of importance. Oxidation of this acetate by the Collins method gave the ketoacetate $\mathbf{3 b}$ in high yield, the degradation of which to digitoxigenin has already been described.

The formation of $\mathbf{3 b}$ from neriifolin monoacetate conclusively establishes the structure of this substance as $\mathbf{2 b}$. Fur-
thermore, it unambiguously demonstrates that, in both thevetin (la) and thevetin monoacetate (1b), the gentobiose residue is attached to the $\mathrm{C}-4$ oxygen of the thevetose moiety. This co rects a previous, ${ }^{6}$ admittedly ${ }^{21}$ uncertain, assignment of this structural point.

Neriifolin isolated from Mexican sources, as mentioned previously, contains neriifolin monoacetate and a glycoside (as well as the monoacetate thereof), the structure of the aglycone portion of which is not yet known. ${ }^{22}$ The separation of these substances could be achieved by a combination of crystallization and column chromatography on silica gel. A more convenient procedure was to acetylate the glycosidic mixture and then separate the diacetates by column chromatography on silica gel. Neriifolin diacetate (2d) was then converted back into neriifolin by the zinc acetate or 1,5 -dia-zabicyclo[4.3.0]non-5-ene promoted transesterification in methanol.

The experiments described above show that neriifolin is an attractive alternative source of digitoxigenin, especially in those parts of the world where Thevetia species are abundant.

Experimental Section

The melting points were determined in a Mel-Temp melting point apparatus and are not corrected. The infrared spectra were measured with a Perkin-Elmer Model 237 grating infrared spectrophotometer. The ultraviolet spectra were recorded on a Perkin-Elmer Model 402 ultraviolet visible spectrophotometer. The NMR spectra were measured with a Varian HA-100 spectrometer and are ex.pressed as parts per million (δ) from internal tetramethylsilane.

Isolation of Neriifolin and Monoacetylneriifolin from Thevetia thevetoides Schum. The defatted (hexane), powdered meal $(1.06 \mathrm{~kg})$ from the seeds was incubated in water in the manner described by Helfenberger and Reichstein (see ref 7a, p 1479). The crude methanol extract (52 g) obtained therefrom crys neously. Crystallization of this material from methanol-water gave crude neriifolin (25 g): mp $198-206{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-46^{\circ}(\mathrm{MeOH})$; UV $(\mathrm{MeOH}) 218 \mathrm{~nm}(\epsilon 15800)$. After recrystallization from the same solvent system, material with $\mathrm{mp} 209-214^{\circ} \mathrm{C}$ was obtained: $[\alpha]_{\mathrm{D}}-49^{\circ}$ (c $0.39, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) 218 \mathrm{~nm}(\epsilon 17300)$ [lit. ${ }^{7 \mathrm{a}} \mathrm{mp} 218-225^{\circ} \mathrm{C}$; $\left.[\alpha]_{\mathrm{D}}-50.2 \pm 2^{\circ}(\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{EtOH}) 217 \mathrm{~nm}(\epsilon 12500)\right]$. Chromatography of the mother liquors on a column of silica gel gave monoacetylneriifolin (9 g , eluted with ethyl acetate-hexane, 2:3), which after crystallization from methanol had: mp 203-205 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-88^{\circ}$ (MeOH); UV (MeOH) 218 nm ($\epsilon 14700$). Recrystallization from aqueous methanol gave material with: $\mathrm{mp} 218-22 \mathrm{C}{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-91^{\circ}$ $\left(\mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) 218 \mathrm{~nm}(\epsilon 23000)\left[\mathrm{lit} .{ }^{7 \mathrm{7a}} \mathrm{mp} 240^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-72.5^{\circ}\right.$ $\left(\mathrm{CHCl}_{3}\right)$].

There was also obtained from the above chromatographic separation a mixture of glycosides (3.5 g) of unknown ${ }^{22}$ stractures.

Isolation of Neriifolin via Neriifolin Diacetate. The crude mixture of glycosides (100 g), from which some of the neriifolin had been removed (see above), pyridine (300 mL), and acetic anhydride $(100 \mathrm{~mL})$ were left to react at room temperature for 18 h . The solution was diluted with water and the products were extracted into ethyl acetate. The extract was washed successively with dilute hydrochloric acid, dilute sodium bicarbonate solution, and water, and then dried over sodium sulfate. Removal of the solvent in vacuc gave a residue (113 g) which was subjected to chromatography on neutral alumina (7 kg , Fluka, activity III). The column was eluted w:th hexane and then hexane-ethyl acetate mixtures, the hexane content of which was decreased gradually from 80 to 65%. Neriifolin diacetate ($57.1 \mathrm{~g}, 95 \%$ pure by TLC), of a purity sufficient to be used in the transesterification reaction, was removed from the column with the $65: 35$ hexaneethyl acetate mixture. One crystallization of this material from hex ane-dichloromethane gave material: mp $126-128^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-83^{\circ}$ (c $0.41, \mathrm{CHCl}_{3}$); UV (MeOH) $219 \mathrm{~nm}(\epsilon 13800)$ \{lit. ${ }^{7 \mathrm{a}} \mathrm{mp} \mathrm{136-138}{ }^{\circ} \mathrm{C}$; $\left.[\alpha]_{\mathrm{D}}-79 \pm 2^{\circ}\left(\mathrm{CHCl}_{3}\right)\right]$.
Elution of the column with pure ethyl acetate gave a mixture (28 g) of more polar acetates.

A solution of neriifolin diacetate ($32 \mathrm{~g}, 0.052 \mathrm{~mol}$) and zinc acetate $(64 \mathrm{~g}, 0.42 \mathrm{~mol})$ in anhydrous methanol (400 mL) was boiled under reflux for 48 h . Most of the methanol was removed in vacuo and water was added to the residue. The mixture was extracted with a large volume of ethyl acetate, and the extract was washed with dilute hydrochloric acid and then with water. The extract was dried over so-

Seeds of Thevetia Species as an Alternative Source of Digitoxigenin ${ }^{1,2}$

Alicia Cruz, Irene García, José Iriarte, Joseph M. Muchowski,* and Ignacio Regla
Research Laboratories Syntex, S. A., Apartado Postal 10-820, Mexico 10, D. F.

Received April 29, 1977

> The Collins oxidation of neriifolin (2 a$)$ resulted in the selective formation of the β-ketol 3 a . This substance, after acetylation and pyridine-induced elimination of the elements of acetic acid, gave the enone 5 , which underwent hydrolysis to digitoxigenin ($2 \mathbf{e}$) under very mild acidic conditions.

Several species of Thevetia (Apocinacae), for example, Th. thevetoides Schum., and Th. neriifolia, Juss., grow wild in Mexico, ${ }^{3}$ and the latter species in particular is also found in many other areas of the world. ${ }^{4}$ The seeds of these plants have a high content of cardenolide triglycosides, mainly thevetin (1a) and acetylated or oxidized derivatives thereof. ${ }^{5,6}$ Hydrolytic cleavage of the triglycosides by the endogenous enzyme(s) of the plant is known to give ${ }^{5-7}$ a mixture of monoglycosides which consists mainly of neriifolin (2a), as well as

$\underline{2}$

e) $x=O H, \quad y=H$
f) $x, y=0$
g) $X=O C H O, Y=H$
lesser amounts of neriifolin monoacetate (2b) and other minor components. In principle, neriifolin and neriifolin monoacetate might serve as practical sources of digitoxigenin (2e), but the cleavage of the glycosidic linkages of these α-L-thevetosides ${ }^{8}$ has to date not been accomplished in satisfactory yield either by chemical ${ }^{7}$ or enzymatic ${ }^{11}$ methods. Digitoxigenin is of importance in that it can serve as a useful joint of embarcation for the synthesis of modified cardenolides. ${ }^{12}$

This paper describes a method whereby neriifolin and neriifolin monoacetate can be chemically degraded, under mild conditions and in practical yield, to digitoxigenin.

In connection with the determination of the structure of neriifolin, Helfenberger and Reichstein ${ }^{7 a}$ showed that acidic hydrolysis (0.35 N hydrochloric acid in acetone at room temperature) of this substance could not be effected without prior (or concomitant) elimination o: the hydroxyl group at C-14 of the steroidal residue. These authors ${ }^{7 \mathrm{~b}}$ did, however, demonstrate that the glycosidic linkage could be cleaved, without loss of the 14-hydroxyl group, by the combined oxidativehydrolytic process shown in eq 1 and 2. Digitoxigenin must have been liberated during the second phase of the process, at least, because oxidation (step 3) of the crude hydrolysate gave digitoxigenone ($\mathbf{2 f}$) in about 20% overall yield.

$$
\begin{gather*}
\text { Neriifolin } \xrightarrow[\text { 2. } 0.05 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}]{4} \text { CrO} / \mathrm{CH}_{3} \mathrm{COOH} / \text { R.T. } \tag{1}\\
\text { Digitoxigenin? } \tag{2}\\
\text { Digitoxigen:n } \xrightarrow[\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O} / \text { reflux }]{\text { 3. } \mathrm{CrO}_{3} / \mathrm{CH}_{3} \mathrm{COOH} / \mathrm{R} . \mathrm{T} .} \text { Digitoxigenone }
\end{gather*}
$$

Repetition of the first two steps of the above process gave a mixture in which the presence of digitoxigenin was confirmed (17% isolated yield), but this substance was accompanied by an equal amount of digitoxigenone. Indeed, careful examination of the oxidation mixture before acidic hydrolysis showed that digitoxigenone ${ }^{13}$ was already present at this stage. Two glycosidic α-ketols (3a and 4a, see below), digitoxigenin formate ($2 \mathbf{g}$), and an acid-soluble degradation product still containing the butenolide moiety were also isolated from this mixture. Digitoxigenin formate was rapidly converted into digitoxigenin under the conditions of step 2.

The early formation of digitoxigenone in the above process suggested that perhaps a part of the degradation of neriifolin was occurring via a glycosidic intermediate which fragmented to digitoxigenin under the acidic oxidation conditions. The synthesis of such an acid-labile intermediate, the hypothetical structure of which was based on speculation concerning the mechanistic nature of the oxidative degradation, was therefore investigated.

Collins oxidasion ${ }^{15}$ of neriifolin gave a $5.2-6.0: 1$ mixture of two β-ketols, 3a and $\mathbf{4 a}$ (Scheme I), which were easily distinguished by means of the multiplicity of the NMR absorptions (see Table I) of the anomeric hydrogens. The anomeric proton of the major product 3a appeared as a doublet at $\delta 5.06$ ($J_{1^{\prime}, 2^{\prime}}$ $=4 \mathrm{~Hz}$), whereas this proton resonated as a singlet at $\delta 4.77$ for the less abundant ketone. Both ketols were stable to the hydrolysis conditions shown in eq 1 , but, as expected, chromic acid oxidation of either ketol gave digitoxigenin formate and digitoxigenone in a $1: 2$ ratio. The 4^{\prime}-ketone 4 a was, however, oxidized at least five times as rapidly as 3a. Acetylation of 3a and $4 a$ with acetic anhydride in pyridine solution gave the acetate $3 b$ and the enone 6 , respectively. The acetate $4 b$, obviously, had lost the elements of acetic acid under the acetylation conditions. This substance was preparable, albeit in an impure state, by the chromic acid oxidation of neriifolin 4^{\prime} acetate (2 c , see below), but attempted purification of this substance by chromatography on alumina or silica gel resulted in the formation of the enone 6 . The acetate 3 b required heating in pyridine solution at $80^{\circ} \mathrm{C}$ to effect the elimination
(8) C. Djerassi, O. Mancera, J. Romo, and G. Rosenkranz, J. Am. Chem. Soc. 75, 3505 (1953).
(9) M. Nussim, Y. Mazur, and F. Sondheimer, J. Org. Chem., 29, 1120 (1964).
(10) R. R. Muccino and C. Djerassi, J. Am. Chem. Soc., 96, 556 (1974), and earlier references therein.
(11) The 7-dehydrocholesterol benzoate was purchased from Dawe's Laboratories, Inc. It can be synthesized from cholesterol benzoate through a bromination-dehydrobromination sequence. See (a) R. Ikan, A. Markus, and E. D. Bergman, Isr. J. Chem., 8, 819 (1970); (b) F. Hunziker and F. X. Mullner, Helv. Chim. Acta, 41, 70 (1958).
(12) M. Nussim, Y. Mazur, and F. Sondheimer, J. Org. Chem., 29, 1131 (1964).
(13) An alternative route to a C - 15 oxygenated Δ^{7} steroid which involves epoxidation of the $\Delta^{7,14}$-diene to give the $14 \alpha, 15 \alpha$-oxido- 7 -ene, followed by BF_{3} treatment to yield the 7 -en- 15 -one, has recently been reported. See E. J. Parish, M. G. Newcomer, G. L. Gilliland, F. A. Quiocho, and G. J. Schroepfer, Tetrahedron Lett., 4401 (1976). However, this product has the 14β orientation and attempted epimerization at $\mathrm{C}-14$ would undoubtedly lead to the undesired 8(14)-en-15-one.
(14) (a) G. F. Gibbons and K. Ramananda, J. Chem. Soc., Chem. Commun., 213 (1975); (b) J. Fried, P. Grabowich, E. F. Sabo, and A. I. Cohen, Tetrahedron, 20, 2297 (1964); (c) Y. Kawazoe, Y. Sato, M. Natsume, H Hasagawa, T Okamoto, and K. Tsuda, Chem. Pharm. Bull., 10, 338 (1962).
(15) N. S. Bhacca and D. H. Williams, "Applications of NMR Spectroscopy in Organic Chemistry' ', Holden-Day, San Francisco, Calif., 1964, Chapter 2.
(16) Also, hydroboration of 7 b using $\mathrm{B}_{2} \mathrm{D}_{6}$ followed by oxidation with alkaline peroxide gave 8-14 $\alpha-d$. Subsequent reactions produced cholest-7-ene$14 \alpha-d$ which has the physical and spectral properties characteristic of the unlabeled compound. This confirms the 14α configuration obtained from the hydroboration reaction. See, L. Partridge, Ph.D. Thesis, Stanford University, 1977; L. Partridge, I. Midgley, and C. Djerassi, J. Am. Chem. Soc., submitted for publication.
(17) J. Romo. G. Rosenkranz, and C. Djerassi, J. Am. Chem. Soc., 73, 5489 (1951).
(18) P. Crabbé, "Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry' ', Holden-Day, San Francisco, Calif., 1965.
(19) Compound 14 was prepared by hydrogenation of a sample of pregn-8(9)-ene-3 $\beta, 11 \alpha, 200 j-t r i o l-7-0 n e(22 a)$. ${ }^{33}$ See ref 8.
(20) D. N. Kirk and W. Klyne, J. Chem. Soc., Perkin Trans. 1, 1076 (1974), and references therein.
(21) (a) H. Eggert and C. Djerassi, J. Org. Chem., 38, 3788 (1973); (b) H. Eggert C. L. VanAntwerp, N. S. Bhacca, and C. Djerassi, ibid., 41, 71 (1976).
(22) The base peak in the mass spectrum of 13 at $\mathrm{m} / \mathrm{e} 403$ results from loss of the side chain from the molecular ion. This cleavage is readily rationalized for a $\mathrm{C}-15$ ketone, but it would not be expected for a ketone at $\mathrm{C}-11$

This cleavage is analogous to the intense loss of methyl from 16-keto steroids. See, H. Budzikiewicz, C. Djerassi, and D. H. Williams, "Structure Elucidation of Natural Products by Mass Spectrometry", Vol. II, Holden-Day, San Francisco, Calif., 1964, p 84. The loss of the side chain (plus acetic acid) is also a major mass spectral fragmentation for the 15 -keto compound below obtained from oogoniol (see ref 6).
(23) (a) D. R. James and C. W. Shoppee, J. Chem. Soc., 1064 (1956); (b) T. Barr, I. M. Heilbron, E. R. H. Jones, and F. S. Spring, ibid., 334 (1938).
(24) C. Djerassi and C. R. Scholz, J. Am. Chem. Soc., 70, 417 (1948).
(25) See ref 15, pp 63-66.
(26) A. Dinner and K. Z. Farid, Lloydia, 39, 144 (1976).
(27) (a) H. C. Brown and R. F. McFarlin, J. Am. Chem. Soc., 78, 252 (1956). For the use of this reagent with a wide variety of steroids, see (b) J. Fajkos, Collect. Czech. Chem. Commun., 24, 2284 (1959).
(28) B. N. Lutsky, J. A. Martin, and G. J. Schroepfer, Jr., J. Biol. Chem., 246, 6737 (1971).
(29) J. S. Dixon, I. Midgley, and C. Djerassi, J. Am. Chem. Soc., 99, 3432 (1977).
(30) The CD curve of a similar epoxy ketone. $9 \alpha, 11 \alpha$-epoxypregnane$3 \beta, 20 \beta$-diol-7-one diacetate (21), ${ }^{31}$ also displays a negative Cotton effect,

21
$[\theta]_{295}-2780$. The magnitude of this Cotton effect is considerably more negative than that of epoxy ketone 10, which may be due to a positive front octant contribution ${ }^{20}$ of the 15α-acetate of 10 .
(31) A sample of this compound (see ref 8) was provided by Dr. L. Throop of Syntex Research, Palo Alto, Calif.
(32) The chemical shift value for the effect of the conjugated 8(9)-en-7-one chromophore was obtained from the observed chemical shifts of the angular methyl groups of cholest-8(9)-en-7-one. See I. Midgley and C. Djerassi, J. Chem. Soc. Perkin Trans. 1, 2771 (1972).
(33) The shape of the CD curve of 11a $[\theta]_{245}-22200,[\theta]_{372}+1090$ is similar to that of the related compound $22 \mathrm{a}^{3}{ }^{2}$ (obtained by base treatment of epoxy

22a, $\mathrm{R}=\mathrm{H}$
22b, $R=A c$
ketone 21), but several differences are apparent. The major change is that the magnitude of the Cotton effect for 11a in the $\pi \rightarrow \pi^{*}$ transition region $[\theta]_{288}-4440$ is considerably less negative than that of 22a, $[\theta]_{245}$ -22000 , and occurs at shorter wavelength. The differences may be due to the strong hydrogen-bonding interaction between the C-7 ketone and the 15α-alcohol of 11 a .
(34) There is a dramatic change in the shape of the CD curve upon acetylation of 11 a to yield the triacetate 11 b . The Cotton effect for 11 b in the $\pi \rightarrow \pi^{\circ}$ transition region has a large positive value $[\theta]_{248}+47600$, whereas 11a shows a small negative value $[\theta]_{238}-4440$. There must be a large conformational change around the unsaturated ketone upon acetylation of the alcohols which essentially results in a reversal of the chirality of this chromophore. See ref 18 and A. W. Burgstahler and R. C. Barkhurst, J. Am. Chem. Soc., 92, 7601 (1970). This conformational change is probably due mostly to the interaction of the 15α-acetate with the $\mathrm{C}-7$ ketone; however, acetylation at $\mathrm{C}-11$ may also have some effect, as seer from the CD curve of the triacetate 22b ${ }^{\mathbf{3 5}},[\theta]_{255}-6950,[\theta]_{375}+2360$, compared with that of the triolone 22a.
(35) Compound 22b was prepared by acetylation of a sample of 22a. ${ }^{31}$ See ref 8.
(36) K. Bowden, I. M. Heilbron, E. R. H. Jones, and B. C. L. Weedon, J. Chem. Soc., 39 (1946).
(37) The CD curve of this compound is similar to that of 7 -ketocholesterol acetate, $[\theta]_{214}-45900,[\theta]_{335}+3600$.
with saturated sodium thiosulfate, saturated NaHCO_{3}, and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the ether solution yielded 294 mg of yellow oil which was chromatographed on 25 g of silica eluting with 10% acetone-hexane to give a small anount (30 mg) of a yellow oil which was probably triacetylated material, then 235 mg of a crude mixture of the epimeric 6-bromo-7-ketones 15 as a yellow oil: NMR $\delta 4.21$ [small signal, d, $J=2 \mathrm{~Hz}, 6 \alpha-\mathrm{H}(6 \beta-\mathrm{Br})$], 4.68 $[<1 \mathrm{H}, \mathrm{d}$ (superimposed on $3 \alpha-\mathrm{H}$ signal at 4.61), $J=12 \mathrm{~Hz}, 6 \beta-$ $\mathrm{H}(6 \alpha-\mathrm{Br})]$.

The α-bromo ketone 15 was directly dehydrobrominated with 120 mg of calcium carbonate in 4 mL of dry dimethylacetamide. The mixture was heated at the boiling point for 1 min and then poured into water. After neutralizing with dilute HCl , the mixture was extracted with ether. The ether extracts were washed with saturated NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to yield 240 mg of pale yellow oil which contained the enone 16 plus some of the 3,5 -dien7 -one ($\lambda_{\text {max }} 283 \mathrm{~nm}$). Chromatography on 20 g of silica eluting with 10% acetone-hexane afforded $176 \mathrm{mg}(71 \%)$ of white crystals of the enone 16a: mp 149-151 ${ }^{\circ} \mathrm{C}$ (acetone-hexane), $[\alpha]^{20}{ }_{\mathrm{D}}-84.5^{\circ}$ (c 1.14); IR $3440(\mathrm{O}-\mathrm{H}), 1724,1660 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 0.79$ (з, 3 H, 18- CH_{3}; calcd ${ }^{15} 0.78$), $1.35\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right.$; calcd $\left.{ }^{15} 1.28\right), 2.02,2.04(2 \times \mathrm{s}, 6 \mathrm{H}$. $-\mathrm{OAc}), 3.94\left(\mathrm{~m}, 1 \mathrm{H}, 15 \beta-\mathrm{H}, w_{1 / 2} \mathrm{ca} .14 \mathrm{~Hz}\right), 4.70\left(\mathrm{~m}, 1 \mathrm{H}, 3 \alpha-\mathrm{H}, w_{1 / 2}\right.$ ca. 18 Hz), 5.32 (s, $1 \mathrm{H}, 11 \beta-\mathrm{H}, w_{1 / 2} \mathrm{ca} .14 \mathrm{~Hz}$), $5.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}), 5.87$ (s, $1 \mathrm{H}, 6-\mathrm{H})$; UV $\lambda_{\text {max }} 239(\log \epsilon=4.05) ; \mathrm{CD}^{37}[\theta]_{218}-46700,[\theta]_{321}$ +5230; mass spectrum m/e $516\left(7 \%, \mathrm{M}^{+}\right), 456(100, \mathrm{M}-\mathrm{AcOH}), 396$ ($41, \mathrm{M}-\mathrm{AcOH}$), $381\left(16, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{CH}_{3}\right), 378(24, \mathrm{M}-2 \mathrm{AcOH}$ $+\mathrm{H}_{2} \mathrm{O}$), $363\left(11, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right), 325(11, \mathrm{M}-\mathrm{AcOH}+$ $\mathrm{H}_{2} \mathrm{O}+$ side chain), 283 (33, M - 2AcOH + side chain), 265 ($24, \mathrm{M}-$ $2 \mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}+$ side chain), 261 (14), 249 (11), 227 ($26, \mathrm{M}-2 \mathrm{AcOH}$ + side chain + ring $\mathrm{D}-1 \mathrm{H}), 213\left(48, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{CH}_{3}+\right.$ side chain + ring D), $209\left(20, \mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}\right)$.
Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{6}$: C, 72.06; H, 9.36. Found: C, 72.06; H, 9.50 .

Cholest-5-ene-3 $\beta, 11 \alpha, 15 \alpha$-triol-7-one (16b). A solution of the diacetate $16 \mathrm{a}\left(20 \mathrm{mg}\right.$) in 5 mL of methanol and 0.5 mL of $\mathrm{H}_{2} \mathrm{O}$ was treated with 50 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at room temperature vvernight. The solution was diluted with $\mathrm{H}_{2} \mathrm{O}$, neutralized with diluse HCl , and extracted well with ether. The combined ether extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 18 mg of white semicrystalline material which contained the triolenone 16 b plus some 3,5-dien-7-one (UV 283 nm). Purification by preparative TLC on silica and developing with 1:1 acetone-hexane afforded $13 \mathrm{mg}(78 \%)$ of white crystals of the triolenone 16 b : mp 102-104 ${ }^{\circ} \mathrm{C}$ (EtOAc-hexane); $[\alpha]^{20} \mathrm{D}$ -65° (с 0.136); IR 3610, $3400(\mathrm{O}-\mathrm{H}), 1653 \mathrm{~cm}^{-1}(\mathrm{C}=0)$) NMR $\delta 0.75$ (s, $3 \mathrm{H}, 18-\mathrm{CH}_{3}$; calcd ${ }^{15} 0.74$), 1.36 (s, $3 \mathrm{H}, 19-\mathrm{CH}_{3}$; calcd ${ }^{15} 1.30$); 3.5-4.3 [$3 \times \mathrm{m}$ (overlapping), $3 \mathrm{H}, 3 \alpha-\mathrm{H}, 11 \beta-\mathrm{H}, 15 \beta-\mathrm{H}], 5.81$ (s, 1 H , $\mathrm{O}-\mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H})$; UV $\lambda_{\max } 240 \mathrm{~nm}(\log \epsilon=4.00) ; \mathrm{CD}^{37}[\theta]_{224}$ $-41500,[\theta]_{320}+6220$; mass spectrum $\mathrm{m} / \mathrm{e} 432.3255\left(18 \%, \mathrm{M}^{+}\right.$; calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{4}$: 432.3239), 414.3128 ($95, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}$; calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{3}$: 414.3134), 399 (11, $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}$), 396 (18, $\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}$), 381 (12, $\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}$), 301 (22, $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+$ side chain), 283 ($40, \mathrm{M}-$ $2 \mathrm{H}_{2} \mathrm{O}+$ side chain), 265 ($12, \mathrm{M}-3 \mathrm{H}_{2} \mathrm{O}+$ side chair $), 245$ ($11, \mathrm{M}-$ $\mathrm{H}_{2} \mathrm{O}+$ ring $\mathrm{D}+$ side chain $\left.-1 \mathrm{H}\right), 227\left(16, \mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}+\right.$ ring $\mathrm{D}+$ side chain -1 H), $161\left(100, \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}\right.$ (rings $\mathrm{A}+\mathrm{B}-\mathrm{H}_{2} \mathrm{O}$ from $\mathrm{C}-3+1$ $\mathrm{H})$).

Cholest-5-ene-3 $\beta, 11 \alpha$-diol-7,15-dione Diacetate (18). A solution of cholest-5-ene-3 $\beta, 11 \alpha$-15 α-triol-7-one $3 \beta, 11 \alpha$-diacetate (16a) (90 mg) in 10 mL of acetone was treated with excess Jones reagent ${ }^{36}$ (ca. 0.1 mL) and stirred at room temperature for 20 min . The mixture was diluted with water and extracted with ether. The ether extracts were washed with saturated NaHCO_{3} and brine, dried over anhydrous MgSO_{4}, and evaporated to yield 89 mg of pale yellow semicrystalline material. Recrystallization from acetone-hexane afforded $80 \mathrm{mg}(90 \%)$ of the diketone 18: mp $173-176{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-101^{\circ}$ (c 0.133); IR 1740, $1725,1684(\mathrm{C}=\mathrm{O})$; NMR $\delta 0.80\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3} ;\right.$ calcd $\left.^{15} 0.82\right), 1.34$ (s, $3 \mathrm{H}, 19-\mathrm{CH}_{3}$; calcd $\left.{ }^{15} 1.28\right), 2.04,2.06(2 \times \mathrm{s}, 6 \mathrm{H},-\mathrm{OAc}), 4.68(\mathrm{~m}, 1 \mathrm{H}$, $3 \alpha-\mathrm{H}, w_{1 / 2}$ ca. 18 Hz), $5.32\left(\mathrm{~m}, 1 \mathrm{H}, 11 \beta-\mathrm{H}, w_{1 / 2} \mathrm{ca} .18 \mathrm{~Hz}\right), 5.90(\mathrm{~s}, 1$ $\mathrm{H}, 6-\mathrm{H})$; UV $\lambda_{\max } 235(\log \epsilon=4.10) ; \mathrm{CD}[\theta]_{233}-35000,[\theta]_{300}+12600$, $[\theta]_{330}+10000 ;$ mass spectrum $\left.m / e 514\left(1 \%, \mathrm{M}^{+}\right), 454123, \mathrm{M}-\mathrm{AcOH}\right)$, 439 (95, M - AcOH $+\mathrm{CH}_{3}$), 394 (42, $\mathrm{M}-2 \mathrm{AcOH}$), 379 (98, M $2 \mathrm{AcOH}+\mathrm{CH}_{3}$), 341 ($72, \mathrm{M}-\mathrm{AcOH}+$ side chain), 313 (14, $\mathrm{M}-$ $\left.\mathrm{AcOH}+\mathrm{C}_{10} \mathrm{H}_{21}\right), 287(12, \mathrm{M}-\mathrm{AcOH}+$ side chain + ring D$), 281(15$, $\mathrm{M}-2 \mathrm{AcOH}+$ side chain $), 263\left(\mathrm{M}-2 \mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}+\right.$ side chain $), 134$ $\left(100, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}\right)$.

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{6}$: C, 72.34; H, 9.01. Found: C, $72.06 ; \mathrm{H}$, 9.14 .

Cholest-5-ene-3 $\beta, 11 \alpha, 15 \beta$-triol-7-one $3 \beta, 11 \alpha$-Diacetate (20). A solution of the diketone $18(70 \mathrm{mg})$ in 2 mL of dry THF was added to a stirred solution of $\mathrm{LiAlH}(\mathrm{O}-t-\mathrm{Bu})_{3}{ }^{27}(140 \mathrm{mg})$ in 2 mL of dry THF and stirred overnight at room temperature. The excess hydride
was decomposed by the addition of 15 mL of $5 \% \mathrm{AcOH}$ and the solution was extracted with ether. The ether extracts were washed with saturated NaHCO_{3} and water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to yield 57 mg of the alcohol mixture 19 as a colorless oil: IR $\left.3370(\mathrm{O}-\mathrm{H}), 173^{1}\right) \mathrm{cm}^{-1}(\mathrm{C}=0)$; mass spectrum $518\left(\mathrm{M}^{+}\right)$.

The crude alcohol mixture 19 was cxidized directly with MnO_{2} (670 mg) in 10 mL of CHCl_{3} by stirring overnight at room temperature. The MnO_{2} was filtered and the precipitate was washed well with chloroform. The filt:ate and washings were evaporated to yield 65 mg of pale yellow oil which contained predominantly the desired cho-lest-5-ene- $3 \beta, 11 \alpha, 15 \beta$-triol-7-one $3 \beta, 11 \alpha$-diacetate (20). Preparative TLC on silica eluting with 30% ace one-hexane afforded 52 mg of colorless oil which was recrystallized from acetone-hexane to give 40 $\mathrm{mg}(57 \%)$ of white crystals of 20 , which contained some of the 15α alcohol 16a by NMR. A second recrustallization yielded 23 mg of $\mathbf{2 0}$ which still contained ca. 20-25\% of the 15α epimer 16a: mp 115-119 ${ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-101^{\circ}(c 1.35)$; IR $3480(\mathrm{C}-\mathrm{H}), 1720,1655(\mathrm{C}=\mathrm{O})$; NMR $\delta 1.02\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3} ; \mathrm{calcd}^{15} 1.01\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3} ; \mathrm{calcd}^{15} 1.31\right)$, 2.02, $2.06(2 \times \mathrm{s}, 6 \mathrm{H},-\mathrm{OAc}), 4.69(2 \times \mathrm{m}, 2 \mathrm{H}, 3 \alpha-\mathrm{H}$ and $15 \alpha-\mathrm{H}), 5.32$ ($\mathrm{m}, 1 \mathrm{H}, 11 \beta-\mathrm{H}, w_{1 / 2} \mathrm{ca} .18 \mathrm{~Hz}$), $5.84(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H})$, plus small signals at $0.79\left(18-\mathrm{CH}_{3}\right), 3.96(15 \beta-\mathrm{H})$, and $5.64(\mathrm{O}-\mathrm{H})$ for the 15α-alcohol 16a; UV $\lambda_{\max } 235 \mathrm{~nm}(\log \epsilon=4.05) ; \mathrm{CD}^{37}[\theta]_{215}-43400,[\theta]_{330}+6950$; mass spectrum $m / e 516\left(11 \%, \mathrm{M}^{+}\right), 456$ ($100, \mathrm{M}$ - AcOH), 396 (36, M $-2 \mathrm{AcOH}), 381\left(12, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{CH}_{3}\right), 378(24, \mathrm{M}-2 \mathrm{AcOH}+$ $\mathrm{H}_{2} \mathrm{O}$), $363\left(11, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right), 283(30, \mathrm{M}-2 \mathrm{AcOH}+$ side chain), 265 ($24, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}+$ side chain), 261 (15), 227 ($11, \mathrm{M}-2 \mathrm{AcOH}+$ side chain + ring $\mathrm{D}-1 \mathrm{H}$), 213 ($32, \mathrm{M}-2 \mathrm{AcOH}$ $+\mathrm{CH}_{3}+$ side chain + ring D), 211 (13) 209 (17).

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{6}$: C, 72.06; H, 9.36. Found: C, 71.96, H, 9.42.

Cholest-5-ene- $3 \beta, 11 \alpha, 15 \beta$-triol-7-one (4). The diacetate 20 (which contained ca. $20-25 \%$ 16a) (20 mg) was dissolved in 5 mL of methanol and 0.5 mL of $\mathrm{H}_{2} \mathrm{O}$ and treated with 50 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ overnight at room temperature. Standard workup yielded i 9 mg of colorless oil which contained some 3,5-dien-7-one (UV 283 nm). Preparative TLC yielded 12 mg (70%) of white semicrystalline material which was predorsinantly the desired triolenone 4 plus some (ca. $20-25 \%$) of the $15 a$-alcohol epimer 16 b (by NMR) and could not be recrystallized: $[\alpha]^{20}$, -73° (c 0.15); IR 3610, $3440(\mathrm{O}-\mathrm{H}), 1655(\mathrm{C}=\mathrm{O})$; NMR $\delta 0.99$ (s, $3 \mathrm{H}, 18-\mathrm{CH}_{3}$; calcd ${ }^{15}$ J.98), 1.36 ($\mathrm{s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}$; calcd ${ }^{15}$ $1.33), 3.72\left(\mathrm{~m}, 1 \mathrm{H}, 3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .18 \mathrm{~Hz}\right), 4.15\left(\mathrm{~m}, 1 \mathrm{H}, 11 \beta-\mathrm{H}, w_{1 / 2}\right.$ ca. $18 \mathrm{~Hz}), 4.70\left(\mathrm{~m}, 1-\mathrm{H}, 15 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .16 \mathrm{~Hz}\right), 5.83(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H})$, plus small signals at $0.75\left(18-\mathrm{CH}_{3}\right), 3.90(15 \beta-\mathrm{H})$, and $5.96(\mathrm{O}-\mathrm{H})$ for the 15α-alcohol 16b; L'V $\lambda_{\max } 238 \mathrm{~nm}(\log \epsilon=4.0) ; \mathrm{CD}^{37}[\theta]_{214}-53000$, $[\theta]_{327}+5250$; mass spectrum $m / e 432.3242\left(24 \%, \mathrm{M}^{+}\right.$; calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{4}: 432.3239\right), 414\left(86, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 399\left(15, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right)$, $396\left(17, \mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}\right), 381\left(11, \mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right), 301\left(31, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right.$ + side chain), 283 (32, M $-2 \mathrm{H}_{2} \mathrm{O}+$ side chain), 245 ($14, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}+$ ring $\mathrm{D}+$ side chain $-1 \mathrm{H}), 227\left(14, \mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}+\right.$ ring $\mathrm{D}+$ side chain $-1 \mathrm{H}), 161\left(100, \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}\right.$, rings $\mathrm{A}+\mathrm{B}-\mathrm{H}_{2} \mathrm{O}$ from $\left.\mathrm{C}-3+1 \mathrm{H}\right)$.

Acknowledgments. We are grateful to the National Institutes of Health for financial support (Grants GM 06840 and AM 04257) and to Professor T. C. McMorris for the biological assay.

Registry No.-7a, 20748-22-5; 7b, 27751-96-8; 8, 63358-19-0; 9a, 63358-81-6; 9b, 63324-87-8; 10, 63324-88-9; 11a, 63324-89-0; 11b, 63324-90-3; 13, 63524-91-4; 6 $\alpha-15,63324-92-5 ; 6 \beta-15,63358-83-8 ; 19$, 63324-93-6.

References and Notes

(1) This work was taken from the Ph.D. Thesis of E. J. Taylor, Stanford University, 1977
(2) For reviews see: (a) L. Machlis in "The Fungi", Vol. II, G. C. Ainsworth and A. S. Sussman, Ed., Academic Press, New York, N.Y., 1966, p 415; (b) A. W. Barksdale. Science, 166, 831 (1969): (c) L. Machlis, Mycologia, 64, 235 (1972); (d) G. W. Gooday, Annu. Rev. Biochem., 43, 35 (1974).
(3) T. C. McMorris and A. W. Barksdale, Nature (London), 215, 320 (1967).
(4) G. P. Arsenault, K. Biemann, A. W. Barksdale, and T. C. McMorris, J. Am. Chem. Soc., 90,5635 (1968); for proof of the C-22, C-23 configurations in the side chain, see ref 5d.
(5) (a) J. A. Edwards, J. S. Mills, J. Sundeen, and J. H. Fried, J. Am. Chem. Soc., 91, 1248 (1969); (b) T. C. McMorris, J. Org. Chem., 35, 458 (1970); (c) T. C. McMorris, R. Seshadri, and T. Arunachalam, ibid., 39, 669 (1974); (d) J. A. Edwards, J. Sundeen, W. Salmond, T. Iwadare, and J. H. Fried, Tetrahedron Lett., 791 (1972).
(6) T. C. McMorris, Z. Seshadri, G. R. Weihe, G. P. Arsenault, and A. W. Bar ksdale, J. Am. Chem. Soc., 97, 2544 (1975).
(7) R. F. N. Hutchins, M. J. Thompson, and J. A. Svoboda, Steroids, 15, 113 (1970); see alsc G. D. Anderson, T. J. Powers, C. Djerassi, J. Fayos, and J. Clardy, J. Am. Chem. Soc., 97, 388 (1975).
peroxide and stirred at room temperature for $2 \mathrm{~h} .{ }^{8}$ (All the steroid had dissolved after 15 min .) The solution was poured into 1 L of ice-water, and the precipitate was filtered and dissolved in ether. The ether solution was washed with saturated NaHCO_{3} and brine, dried over anhydrous MgSO_{4}, and evaporated to give 8.10 g of pale yellow oil. This oil consisted of a complex mixture of products by TLC. The major product was the crystalline epoxyketone 10 which was isolated by column chromatography on silica (350 g) eluting with $2: 1$ hex-ane-ether. Recrystallization from methanol afforded $2.34 \mathrm{~g}(30 \%)$ of pure epoxy ketone 10 as white needles: $\mathrm{mp} 195-197^{\circ} \mathrm{C} ;\left[\left.\alpha\right|^{20} \mathrm{D}-46.0^{\circ}\right.$ (c 1.02); IR $1720 \mathrm{~cm}^{-1}(\mathrm{C}==0)$; NMR $\delta 0.79\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right.$; calcd ${ }^{15}$ 0.73) $1.38\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right.$; calcd $\left.{ }^{15} 1.30\right), 2.02,2.04(2 \times \mathrm{s}, 6 \mathrm{H},-\mathrm{OAc})$, 3.17 (d, $1 \mathrm{H}, 11 \beta-\mathrm{H}, J=5 \mathrm{~Hz}), 3.23(\mathrm{~d}, 1 \mathrm{H}, 8 \beta-\mathrm{H}, J=11 \mathrm{~Hz}), 4.62(\mathrm{~m}$, $1 \mathrm{H}, 3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .18 \mathrm{~Hz}$), 5.04 (m, $1 \mathrm{H}, 15 \beta-\mathrm{H}, w_{1 / 2} \mathrm{ca} .14 \mathrm{~Hz}$); $\mathrm{CD}^{30}[\theta]_{295}-1140$; mass spectrum $m / e 516\left(8 \%, \mathrm{M}^{+}\right), 474(42, \mathrm{M}-$ $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$), 473 ($13, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$), 456 ($97, \mathrm{M}-\mathrm{AcOH}$), 455 (13), 428.3280 (16, M - AcOH + CO; calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{3}: 428.3290$), 413.3047 (48, $\mathrm{M}-\mathrm{AcOH}+\mathrm{CO}+\mathrm{CH}_{3}$; calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{3}: 413.3056$), 412.2978 (53, $\mathrm{M}-\mathrm{AcOH}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$; calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{3}$: 412.2977), 368 (12, M $2 \mathrm{AcOH}+\mathrm{CO}$), 343 (57, M - AcOH + side chain), 316.1673 (100, M $-\mathrm{AcOH}+\mathrm{C}_{10} \mathrm{H}_{20}$; calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}: 316.1675$), 299.1651 (33, $\mathrm{M}-$ $\mathrm{AcOH}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}+$ side chain; calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}$: 299.1647), 288 (12), 283 (13, M - 2AcOH + side chain), 261.2218 (34, M - AcOH + $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3}$; calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}: 261.2218$). 260.2218 (13, $\mathrm{M}-\mathrm{AcOH}+$ $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$; calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}$: 260.2135), 260.1412 (10, calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$: 260.1412), 247.1333 (18, calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}: 247.1334$).

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{6}$: C, 72.06; H, 9.36. Found: C, 72.15; H, 9.56.

Cholest-8(9)-ene-3 $\beta, 11 \alpha, 15 \alpha$-triol-7-one (11a). A solution of the epoxy ketone $10(2.34 \mathrm{~g})$ in 100 mL of 1% methanolic potassium hydroxide was allowed to stand overnight at room temperature. The solution was diluted with water, neutralized with dilute HCl , and extracted with ether, and the ether extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to yield 2.13 g of pale yellow semicrystalline material. Chromatography on silica (60 g) eluting with 1:2 acetone-hexane gave $1.95 \mathrm{~g}(99 \%)$ of the triolenone 11 a as white crystals: mp $116-119^{\circ} \mathrm{C}$ (EtOAc-hexane); $[\alpha]^{20}{ }_{\mathrm{D}}+112^{\circ}$ (c 1.39); IR 3610, 3460 O-H), 1655 $(\mathrm{C}=\mathrm{O}), 1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ;$ NMR $\delta 0.59\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right.$; calcd ${ }^{15,32}$ 0.65), 1.18 ($\mathrm{s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}$; calcd ${ }^{15,32} 1.30$), $3.69\left(\mathrm{~m}, 1 \mathrm{H}, 3 \alpha-\mathrm{H}, w_{1 / 2}\right.$ ca. 16 Hz$), 4.21\left(\mathrm{~m}, 1 \mathrm{H}, 15 \beta-\mathrm{H}, w_{1 / 2} \mathrm{ca} .15 \mathrm{~Hz}\right), 4.48(\mathrm{~m}, 1 \mathrm{H}, 11 \beta-\mathrm{H}$, $w_{1 / 2}$ ca. Hz); UV $\lambda_{\text {max }} 254(\log \epsilon=3.90) ; \mathrm{CD}^{33}[\theta]_{215}+2850,[\theta]_{238}$ $-4,440,[\theta]_{267}+524,[\theta]_{287}-207,[\theta]_{347}+1490 ;$ mass spectrum m / e $432.3242\left(2 \%, \mathrm{M}^{+}\right.$, calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{4}: 432.3239\right), 414.3128$ (100, M $-\mathrm{H}_{2} \mathrm{O}$; calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{3}$: 414.3134), $399\left(19, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right), 301$ (36, M $-\mathrm{H}_{2} \mathrm{O}+$ side chain), $288\left(10, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{9} \mathrm{H}_{18}\right.$), 283 (26, M $-2 \mathrm{H}_{2} \mathrm{O}+$ side chain), $245.1548\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\right.$ side chain + ring $\mathrm{D}-$ 1 H ; calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}$: 245.1542), 157.0656 (43, calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}$: 157.0633).

Cholest-8(9)-ene-3 $111 \alpha, 15 \alpha$-triol-7-one Triacetate (11b). Acetylation of the triolenone (11a) (50 mg) with excess acetic anhydride (0.5 mL) in pyridine (1 mL) at room temperature overnight yielded 62 mg of pale yellow crystals of the triacetate derivative 11 b : $\operatorname{mp} 160-162{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha]^{20} \mathrm{D}+140^{\circ}$ ($c 1.08$); IR 1725, $1672 \mathrm{~cm}^{-1}$ (C=O); NMR $\delta 0.62$ (s $3 \mathrm{H}, 18-\mathrm{CH}_{3}$; calcd ${ }^{15,32} 0.72$), 1.14 (s, 3 H , $19-\mathrm{CH}_{3}$; calcd ${ }^{15,32} 1.29$), 2.05, 2.08, $2.10(3 \times \mathrm{s}, 9 \mathrm{H},-\mathrm{OAc}), 2.80$ (d, 1 $\mathrm{H}, 14 \alpha-\mathrm{H}, J=10 \mathrm{~Hz}), 4.70\left(\mathrm{~m}, 1 \mathrm{H}, 3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .18 \mathrm{~Hz}\right), 5.72(2 \times$ $\mathrm{m}, 2 \mathrm{H}, 11 \beta-\mathrm{H}$ and $15 \beta-\mathrm{H})$; UV $\lambda_{\max } 249(\log \epsilon=4.00) ; \mathrm{CD}^{34}[\theta]_{218}$ $-21200,[\theta]_{248}+47600,[\theta]_{285}-452,[\theta]_{362}+2770$; mass spectrum m / e 498 ($7 \%, \mathrm{M}-\mathrm{AcOH}$), $457.3311\left(16, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{3}\right.$; calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{4}$: 457.3318), 456.3236 (26, M - $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$; calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{4}: 456.3239$), 455.3165 (28, $\mathrm{M}-\mathrm{AcOH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$; calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{4}: 455.3161$), 440.3287 (46, M - $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$; calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{3}: 440.3290$), 438 (21, M $-2 \mathrm{AcOH}), 423\left(12, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{CH}_{3}\right), 353$ (11), 351.1967 (25; calcd for $\left.\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{3}: 351.1960\right), 338(12), 327\left(41, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}+\right.$ side chain), 325 (32, $\mathrm{M}-2 \mathrm{AcOH}+$ side chain), 311.1651 ($63, \mathrm{M}-2 \mathrm{AcOH}+$ $\mathrm{C}_{9} \mathrm{H}_{19}$; calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{3}$: 311.1647), 298.1574 ($100, \mathrm{M}-2 \mathrm{AcOH}+$ $\mathrm{C}_{10} \mathrm{H}_{20}$; calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$: 298.1569), 287 (12), 284 (13).
Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{7}$: C, 70.94; H, 9.02. Found: C, $71.05 ; \mathrm{H}$, 9.09.

Cholestane- $3 \beta, 11 \alpha, 15 \alpha$-triol-7-one (12a). The catalytic hydrogenation of the triolenone $11 \mathrm{a}(1.00 \mathrm{~g})$ with 500 mg of $10 \% \mathrm{Pd}$ on C in 50 mL of ethanol plus a couple of drops of pyridine at $20^{\circ} \mathrm{C}$ and 1 atm was complete after 2 h . The catalyst was removed by filtration and the solution was concentrated to give 1.02 g of pale yellow oil which showed two spots on TLC. The oil was dissolved in 50 mL of 5% methanolic potassium hydroxide and heated under reflux for 3 h . TLC analysis of the reaction showed that the mixture had equilibrated to one product having the same R_{f} as the higher R_{f} compound (minor product) prior to base treatment. Chromatography of the resulting pale yellow crystalline material $(1.03 \mathrm{~g})$ on silica $(30 \mathrm{~g})$ eluting with

1:2 acetone-hexane afforded $905 \mathrm{mg}(90 \%)$ of whise crystals of the triolone 12a: mp $117-120^{\circ} \mathrm{C}$ (ether); $[\alpha]^{20} \mathrm{D}+4.7^{\circ}$:c 1.11); IR 3610, $3450(\mathrm{O}-\mathrm{H}), 1695 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.72\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right.$; calcd ${ }^{15} 0.72$), 1.21 ($\mathrm{s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}$; calcd ${ }^{15} 1.21$), 3.60, 3.80, 4.00 ($3 \times$ m (overlapping), $3 \mathrm{H}, 3 \alpha-\mathrm{H}, 15 \beta-\mathrm{H}$, and $11 \beta-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR, see Table I; CD $[\theta]_{290}+1770$ (dioxane), $[\theta]_{288}+922$ (methanol), $[\theta]_{288}+931$ (room temp EPA), $[\theta]_{289}+922$ (low temp EPA); mass spectrum m/e 434.3394 ($14 \%, \mathrm{M}^{+}$; calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{4}: 434.3396$), $416\left(9, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 398(15$, $\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}$), 303 ($21, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}+$ side chain), 285 ($8, \mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}+$ side chain), 209.1911 (60 , calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}: 209.1905$), 208.1456 (36, calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$: 208.1463), 207.1380 (100 , calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}: 207.1385$); metastable defocusing, parent ions of $209 ; 434.49\left(\mathrm{M}^{-}\right.$, ca. 30%), 253.39 ($\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}$ (rings A and $\mathrm{B}+1 \mathrm{H}$), ca. 60%), also 417.01, 398.57, 380.77 , $322.28,266.98$, 223.70 (all $<2 \%$): 208; $434 . \subsetneq 4$ (M^{+}, ca. 75%), 417.23 (M - OH, ca. 23\%), also 304.61, 251.55, 222.68 (all <1\%): 207; 434.42 (M^{+}, са. 56%), 416.48 ($\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$, ca. 37%), 303.14 (M - side chain $+\mathrm{H}_{2} \mathrm{O}$, ca. 5%), also $399.48,265.68,249.72,236.29$ (all $<1 \%$).

Cholestane- $3 \beta, 11 \alpha, 15 \alpha$-triol-7-one $3 \beta, 11 \alpha$-Diacetate (12b). The triolone 12a (900 mg) was acetylated in pyridine $(20 \mathrm{~mL})$ by treatment with acetic anhydride $(10 \mathrm{~mL})$ at room temperature for 2.5 h . The pale yellow oil (1.09 g) obtained after standard workup was chromatographed on silica (70 g) eluting with 10% acetone-hexane to give first a colorless oil (36 mg) which was identified as the triacetylated derivative 12 c and then $989 \mathrm{mg}(92 \%)$ of white crystals of the $3 \beta, 11 \alpha$ diacetate 12b: mp $126-127.5^{\circ} \mathrm{C}$ (acetone-hexane); $[\alpha]^{20} \mathrm{D}-7.0^{\circ}$ (c 1.51); IR $3455(\mathrm{O}-\mathrm{H}), 1720$ and $1700 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.76$ (s, $3 \mathrm{H}, 18-\mathrm{CH}_{3}$; calcd ${ }^{15} 0.75$), 1.22 (s, $3 \mathrm{H}, 19-\mathrm{CH}_{3}$; calcd ${ }^{15} 1.20$), 2.00, 2.04 $(2 \times \mathrm{s}, 6 \mathrm{H},-\mathrm{OAc}), 3.80\left(\mathrm{~m}, 1 \mathrm{H}, 15 \beta-\mathrm{H}, w_{1 / 2} \mathrm{ca} .14 \mathrm{~Hz}\right), 4.64(\mathrm{~m}, 1 \mathrm{H}$, $3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .18 \mathrm{~Hz}$), $5.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.25\left(\mathrm{~m}, 1 \mathrm{H}, 11 \beta-\mathrm{H}, w_{1 / 2} \mathrm{ca}\right.$. $16 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR, see Table I; CD $[\theta]_{290}+2510$; mass spectrum m / e $518\left(8 \%, \mathrm{M}^{+}\right), 503\left(7, \mathrm{M}-\mathrm{CH}_{3}\right), 458$ (25, M - AcOH), 443 (12, M $\left.\mathrm{AcOH}+\mathrm{CH}_{3}\right), 440\left(52, \mathrm{M}-\mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}\right), 425\left(8, \mathrm{M}-\mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}\right.$ $+\mathrm{CH}_{3}$), 405 (30, $\mathrm{M}-$ side chain), $380\left(12, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}\right), 365$ ($15, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}$), 345 ($33, \mathrm{M}-\mathrm{AcCH}+$ side chain), 327 ($33, \mathrm{M}-\mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}+$ side chain), $267\left(14, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}\right.$ + side chain), $250\left(61, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}\right), 249\left(100, \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}\right), 211(21), 209$ (70, $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}$).
Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{6}$: C, 71.78; H, 9.72. Found: C, 71.92; H, 9.84.

Cholestane- $3 \beta, 11 \alpha, 15 \alpha$-triol-7-one Triacetate (12c). When the acetylation of the triolone 12 a was allowed to run for a longer period of time, i.e., overnight, larger amounts of the triacetate 12 c were obtained. Column chromatography separated this triacetate from the diacetate $\mathbf{1 2 b}$, but as a colorless oil which could no: be crystallized: $[\alpha]^{20} \mathrm{D}-32.3^{\circ}(\mathrm{c} \mathrm{1.16})$; IR $1720 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.81(\mathrm{~s}, 3 \mathrm{H}$, $18-\mathrm{CH}_{3}$; calcd ${ }^{15} 0.78$), $1.23\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right.$; calcd ${ }^{15} 1.19$), 1.97, 2.00 ($3 \times$ $\mathrm{s}, 9 \mathrm{H},-\mathrm{OAc}$), $4.36-5.46$ (3 m (overlapping), $3 \mathrm{H}, 3 \alpha-\mathrm{H}, 11 \beta-\mathrm{H}$, and $15 \beta-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR, see Table I; CD $[\theta]_{295}+2070$; mass spectrum m / e $517\left[100 \%, \mathrm{M}-43\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)\right], 457(19, \mathrm{M}-\mathrm{AcOH}+43), 440(83, \mathrm{M}$ $-2 \mathrm{AcOH}), 425\left(10, \mathrm{M}-2 \mathrm{AcOH}+\mathrm{CH}_{3}\right), 397(9, \mathrm{M}-2 \mathrm{AcOH}+43)$, 327 (42, M - $2 \mathrm{AcOH}+$ side chain).

Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{7}$: C, 70.68; H, 9.35. Found: C, 70.53; H, 9.29.

Cholestane-3 $\beta, 11 \alpha$-diol-7,15-dione Diacetate (13). A solution of cholestane- $3 \beta, 11 \alpha, 15 \alpha$-triol-7-one $3 \beta, 11 \alpha$-diacetase ($12 \mathbf{b}$) (50 mg) in 5 mL of acetone was treated with excess Jones reagent ${ }^{36}$ (ca. 0.05 mL) and stirred 30 min at room temperature. The reaction mixture was diluted with water and extracted with ether. The ether extracts were washed with saturated NaHCO_{3} and brine, dried over anhydrous MgSO_{4}, and evaporated to yield a colorless oil ($49 \mathrm{mg}, 98 \%$) which crystallized on standing. Recrystallization from acetone-hexane gave fine white needles of the diketone (13): $\mathrm{mp} 179-181^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-2.1^{\circ}$ (c 0.52); IR 1740, $1720 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR $\delta 0.76$ (s, $3 \mathrm{H}, 18-\mathrm{CH}_{3}$; calcd ${ }^{15} 0.79$), $1.22\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right.$; calcd $\left.{ }^{15} 1.20\right), 2.01 .2 .03(2 \times \mathrm{s}, 6 \mathrm{H}$, -OAc), $4.62\left(\mathrm{~m}, 1 \mathrm{H}, 3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .18 \mathrm{~Hz}\right), 5.21\left(\mathrm{~m},-\mathrm{H}, 11 \beta-\mathrm{H}, w_{1 / 2}\right.$ ca. 17 Hz) ; CD $[\theta]_{295}+9680$; mass spectrum $m / e 516\left(5 \%, \mathrm{M}^{+}\right), 501(25$, $\left.\mathrm{M}-\mathrm{CH}_{3}\right), 457(51), 456$ (78, $\left.\mathrm{M}-\mathrm{AcOH}\right), 441$ (71, $\mathrm{M}-\mathrm{AcOH}+\mathrm{CH}_{3}$), 403 ($100, \mathrm{M}$ - side chain), 343 (34, M - AcOH + side chain), 288 (17, $\mathrm{M}-\mathrm{AcOH}+$ side chain + ring D), 283 ($23, \mathrm{M}-2 \mathrm{AcOH}+$ side chain), 273 (11, M - AcOH + side chain + ring D $+\mathrm{CH}_{3}$), 228 ($46, \mathrm{M}-$ $2 \mathrm{AcOH}+$ side chain + ring D), 211 (28), 209 (13).

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{6}$: C, 72.06; $\mathrm{H}, 9.36$. Found: $\mathrm{C}, 72.07 ; \mathrm{H}$, 9.48.

Cholest-5-ene-3 $\beta, 11 \alpha, 15 \alpha$-triol-7-one $3 \beta, 11 \alpha$-Diacetate (16a). A solution of cholestane- $3 \beta, 11 \alpha, 15 \alpha$-triol-7-one $3 \beta, 11 \alpha$-diacetate ($12 \mathbf{b}$) ($250 \mathrm{mg}, 0.483 \mathrm{mmol}$) in 5 mL of acetic acid was warmed to $70^{\circ} \mathrm{C}$. Pyridinium hydrobromide perbromide ${ }^{24}(162 \mathrm{mg}, 0.507 \mathrm{mmol})$ was added portionwise over 10 min and the solution was stirred an additional 20 min at $70-75^{\circ} \mathrm{C}$. The solution was poured into saturated NaHCO_{3} and extracted with ether. The ether extracts were washed
lest-5-ene- $3 \beta, 11 \alpha, 15 \beta$-triol-7-one $3 \beta, 11 \alpha$-diacetate (20). Unfortunately, this reduction was not as stereospecific as had been anticipated and the product contained ca. $20-25 \%$ [as judged by the intensity of the C-18 methyl, C-15 proton, and 15α-OH signals in the NMR spectrum (see Table II)] of the 15α-alcohol 16 which could not be separated from the 15β epimer 20 by TLC. Two recrystallizations of this mixture left the product ratio essentially unchanged.

The spectral properties of cholest-5-ene- $3 \beta, 11 \alpha, 15 \beta$-triol7 -one $3 \beta, 11 \alpha$-diacetate (20) (which contained some 16a), with the exception of the NMR spectrum, are very similar to those of the 15α epimer 16 a . Both the mass spectrum and the CD curve of 20 are almost identical to those of 16a. The infrared and UV spectra of 20 show unsaturated carbonyl absorptions at $1655 \mathrm{~cm}^{-1}$ and $235 \mathrm{~nm}(\log \epsilon=4.05)$ compared to $1660 \mathrm{~cm}^{-1}$ and $239 \mathrm{~nm}(\log \epsilon=4.05)$ for 16a. The NMR spectrum of the 15β-alcohol 20 , however, shows two major differences from that of the 15α-epimer 16 a (see Table II). The signal for the C-18 methyl group of 20 appears at $\delta 1.02 \mathrm{ppm}$, which is 0.23 ppm further downfield than the $\mathrm{C}-18$ methyl resonance of 16 a at 0.79 ppm . This large downfield shift is expected for the change from a 15α-alcohol to a 15β-alcohol. ${ }^{14,-5}$ The $15 \alpha-\mathrm{H}$ of the 15β-alcohol 20 is also strongly deshielded by the C-7 ketone ${ }^{25}$ and appears at 4.69 ppm . This chemical shift is comparable to the 4.73 ppm resonance of the $15 \alpha-\mathrm{H}$ of the analogous 15β-alcohol 17 in the oogoniol series ${ }^{6}$ isee Table II), whereas the 15β-H of the 15α-alcohol 16a appears at 3.94 ppm . The other NMR signals for the protons at C-3, C-11, and C-6 have similar chemical shifts to the corresponding protons in both 16 a and 17.
To complete the synthetic scheme, the diacetate 22 was treated with potassium carbonate in aqueous methanol to yield cholest- 5 -ene- $3 \beta, 11 \alpha, 15 \beta$-triol- 7 -one (4), the target molecule of this synthesis. Again, with the exception of the NMR spectrum (see Table II), the spectral prcperties of the 15β-alcohol 4 (which contains some of the 15α-epimer $16 b$) resemble those of the 15α-alcohol $16 \mathbf{b}$. As is the case for the diacetate precursor 20, the NMR spectrum of 4 shows a 0.24 ppm downfield shift of the C-18 methyl group at $\delta 0.99 \mathrm{ppm}$ compared to the C-18 methyl resonance of the 1.5α epimer 16b at 0.75 ppm . Furthermore, the $15 \alpha-\mathrm{H}$ of the 156 -alcohol 4, which is deshielded by the C-7 ketone, ${ }^{25}$ resonates at 4.70 ppm compared with a chemical shift of 4.68 ppm for the $15 \alpha-\mathrm{H}$ of oogoniol (2d). ${ }^{6}$

Cholest-5-ene-3 $3,11 \alpha, 15 \beta$-triol-7-one (4) and cholest-5-ene- $3 \beta, 11 \alpha, 15 \alpha$-triol-7-one (16b) were submitted to Professor T. C. McMorris (University of California at San Diego) for hormone B bioassay in Achlya. Even at the highest doses tested ($3.5 \mu \mathrm{~g} / \mathrm{mL}$ for the 15α-isomer $\mathbf{1 6 b}$ and $22.6 \mu \mathrm{~g} / \mathrm{mL}$ for the 15β-isomer 4) no biological activity was observed, whereas the natural oogoniol-1 was fully active at $1.8 \mu \mathrm{~g} / \mathrm{mL}$. Unless the small contaminant of the 15α epimer 16 b peesent in 4 had a hormone antagonist action, one can conclude that the intact nuclear skeleton is not sufficient for significant sex-hormone activity and that the hydroxylated side chain plays an essential role.

Experimental Section

General Notes. Melting points were determined on a Kofler hotstage apparatus and are uncorrected. Infrared (IR) spectra were recorded for solutions in chloroform on a Perkin-Elmer Model 421 spectrometer. Optical rotations were measured for solutions in chloroform using a Perkin-Elmer Model 141 spectropolarimeter. Ultraviolet (UV) spectra were recorded on a Cary-14 spectrometer for solutions in ethanol. Nuclear magnetic resonance (NMR) spectra were recorded on Varian Model T-60 (${ }^{1} \mathrm{H}$ NMR) and Varian XLFT-100 (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) spectrometers using deuteriochloroform as solvent and tetramethylsilane as internal reference. The 100 MHz ${ }^{1}$ H NMR spectra were determined by Ronald L. Elsenbaumer and Dr. L. J. Durham and the ${ }^{13} \mathrm{C}$ NMR spectra by Craig L. VanAn-
twerp. Circular dichroism (CD) curves were determined by Mrs.R. Records with a JASCO Model ORD/UV-5 spectrometer modified for CD for solutions in dioxane, unless ctherwise specified. Low-resolution mass spectra were determined by Mr. R. G. Ross with an AEI MS-9 spectrometer operating at 70 eV using a direct inlet system. The mass spectra and CD curves are reproduced in the Ph.D. thesis of E. J. Taylor, Stanford University, 197^{7}. High-resolution mass spectra and metastable defocussing were also obtained with the MS-9 instrument. Element analyses were determined by the Microanalytical Laboratory, Stanfo:d University.

Column chromatography was done using E. Merck silica gel 60 ($60-230$ mesh ASTM). The progress of all reactions and column chromatographies was monitored by thin-layer chromatography on E. Merck silica gel $\mathrm{HF}_{254+366}$ plates visualized by spraying with ceric sulfate solution (2% in 1 M sulfuric acid) followed by heating. Preparative thin-layer chromatography was done on $0.75-\mathrm{mm}$ thick $\mathrm{HF}_{254+366}$ silica gel plates and the bands were detected either visually or by viewing under ultraviolet light.

Cholesta-7,14-dien-3 β-ol (7b). Cholesta-7,14-dien-3 β-ol benzoate $(7 \mathrm{a})^{10}(11.0 \mathrm{~g})$ was saponified by heating under reflux in 5% methanolic potassium hydroxide (150 mL) for 3 h . The white crystalline material obtained after workup was recrystallized from methanol to yield 8.10 $\mathrm{g}(92 \%)$ of the alcohol 7 b as white needles: $\mathrm{mp} 103-105^{\circ} \mathrm{C}$ (lit. ${ }^{28} \mathrm{mp}$ $104-105^{\circ} \mathrm{C}$); $[\alpha]^{20}{ }_{\mathrm{D}}-185^{\circ}$ (c 1.41); IR 3610, $3450(\mathrm{O}-\mathrm{H}), 1635 \mathrm{~cm}^{-1}$ (C=C); NMR $\delta 0.77$ (s, $3 \mathrm{H}, 18-\mathrm{CH}_{2}$), $0.80\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 3.60(\mathrm{~m}$, $\left.3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .16 \mathrm{~Hz}\right), 5.48,5.75(2 \times \mathrm{m}, 2 \mathrm{H}, 7-\mathrm{H}$, and $15-\mathrm{H})$; mass spectrum $m / e 384\left(100 \%, \mathrm{M}^{+}\right), 369\left(25, \mathrm{M}-\mathrm{CH}_{3}\right), 351\left(12, \mathrm{M}-\mathrm{CH}_{3}\right.$ $+\mathrm{H}_{2} \mathrm{O}$), 271 ($94, \mathrm{M}$ - side chain), 257 ($29, \mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{19}$), 253 ($15, \mathrm{M}-$ side chain $+\mathrm{H}_{2} \mathrm{O}$).
Cholest-7-ene-3 $3,15 \alpha$-diol (8). Cholesta-7,14-dien-3 β-ol (7 b) was hydroborated using a modification of Sondheimer's procedure. ${ }^{9}$ A stirred solution of dienol $7 \mathbf{b}(7.50 \mathrm{~g}, 19.5 \mathrm{mmol})$ in 300 mL of anhydrous ether was cooled to $0^{\circ} \mathrm{C}$ under nitrogen. To this solution was added 80 mL of a 1 M solution of BH_{3} in THF dropwise over 1 h at 0 ${ }^{\circ} \mathrm{C}$ under nitrogen. Stirring was continued an additional hour at room temperature, and then the excess borane was decomposed by careful addition of water. This mixture was oxidized directly with alkaline peroxide by cooling to $0^{\circ} \mathrm{C}$ and adding 80 mL of 10% aqueous sodium hydroxide. Then, 60 mL of 30% aqueous hydrogen peroxide was added dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The organic layer was separated and washed with 10% sodium sulfite solution and brine. After drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solution was evaporated to give 7.57 g of white crystalline material. Column chromatography on 300 g of silica eluting with ether yielded $6.15 \mathrm{~g}(78 \%)$ of the enediol 8 as white crystals: mp $184.5-186^{\circ} \mathrm{C}$ (acetone); $[\alpha]^{20} \mathrm{D}+45.6^{\circ}$ (c 1.32); IR $3615,3470 \mathrm{~cm}^{-1}(0-\mathrm{H})$; NMR $\delta 0.57$ ($\mathrm{s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3} ;$ calcd $^{15} 0.57$), $0.80\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3} ;\right.$ calcd $^{15} 0.81$), 3.57 ($\mathrm{m}, 1 \mathrm{H}, 3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .14 \mathrm{~Hz}$), $4.20\left(\mathrm{~m}, 1 \mathrm{H}, 15 \beta-\mathrm{H}, \omega_{1 / 2} \mathrm{ca} .14 \mathrm{~Hz}\right.$), 5.44 ($\mathrm{m}, 1 \mathrm{H}, 7-\mathrm{H}$); mass spectrum $m / e 402\left(47 \%, \mathrm{M}^{+}\right.$,, $387\left(39, \mathrm{M}-\mathrm{CH}_{3}\right), 384\left(100, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 369(36$, $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}$), $351\left(15, \mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right.$), 317 (11), 290 ($20, \mathrm{M}$ - $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}$ (RDA f:om Δ^{7} double bond ${ }^{29}$), 289 ($10, \mathrm{M}$ - side chain), 271 ($84, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}+$ side chain), $257\left(22, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{9} \mathrm{H}_{19}\right), 253$ (13 , $\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}+$ side chain), 247 (16), 235 (12), 112 (48, $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}$ (RDA)).

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{2}: \mathrm{C}, 80.54 ; \mathrm{H}, 11.52$. Found: $\mathrm{C}, 80.64 ; \mathrm{H}$, 11.56.

Cholesta-7,9(11)-dien-3 $\beta, 15 \alpha$-diol Diacetate (9b). Mercuric acetate (10.0 g) was added to a solution of 5.00 g of cholest-7-ene$3 \beta, 15 \alpha$-diol in 125 mL of chloroform and 200 mL of acetic acid, and the mixture was stirred vigorously for 18 h at room temperature. ${ }^{17}$ The mixture was filtered, and the filtrate was concentrated to a small volume in vacuo, dissolved in ether, washed with saturated NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The resulting orange crystalline materid (5.78 g) containing the dienediol 9 a was acetylated directly with acetic anhydride in pyridine. The orange oil (6.36 g) obtained after workup was chromatographed on 250 g of silica eluting with 15% ether-hexane. Recryssallization of the product from methanol gave $3.74 \mathrm{~g}(62 \%)$ of the diene diacetate 9 b : $\mathrm{mp} 126-128^{\circ} \mathrm{C}$; $[\alpha]^{20} \mathrm{D}+107^{\circ}(c 1.06)$; IR $1725(\mathrm{C}=0), 1604 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; NMR $\delta 0.57$ (s, $3 \mathrm{H}, 18-\mathrm{CH}_{3} ;$ calcd $^{15} 0.57$), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3} ;\right.$ calcd $^{15} 0.92$), 2.00 , $2.03(2 \times \mathrm{s}, 6 \mathrm{H},-\mathrm{OAc}), 4.70\left(\mathrm{~m}, 1 \mathrm{H}, 3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .14 \mathrm{~Hz}\right), 5.00(\mathrm{~m}$, $\left.1 \mathrm{H}, 15 \beta-\mathrm{H}, w_{1 / 2} \mathrm{ca} .16 \mathrm{~Hz}\right), 5.45(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}$ and $11-\mathrm{H})$; $\mathrm{UV} \lambda_{\text {max }} 234$, $242,249(\log \epsilon=4.23,4.29,4.12)$; mass spectrum $m / e 242$ (32%, M AcOH), 311 ($100, \mathrm{M}-\mathrm{AcOH}+$ side chain), 251 ($14, \mathrm{M}-2 \mathrm{AcOH}+$ side chain).
Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{4}$: C, 76.82; H, 9.98. Found: C, 76.64; H , 9.98.
$9 \alpha, 11 \alpha$-Epoxycholesta- $3 \beta, 15 \alpha$-diol-7-one Diacetate (10). A suspension of cholesta-7,9(11)-diene-3 $3 \beta, 15 \alpha$-diol diacetate (9 b) (7.30 g) in 200 mL of formic acid was teeated with 5 mL of 30% hydrogen

Table II. Chemical Shifts of Proton Signals in a Series of Steroids Related to Oogoniol (2d)

Compd	Registry no.	$\mathbf{1 8 - \mathrm { CH } _ { 3 }}$	$19-\mathrm{CH}_{3}$	$3 \alpha-\mathrm{H}$	$11 \beta-\mathrm{H}$	$15 \beta-\mathrm{H}$	$15 \alpha-\mathrm{H}$	$6-\mathrm{H}$	$15 \alpha-\mathrm{OH}$
$\mathbf{1 2 b}$		0.76	1.22	4.64	5.25	3.80			5.07
16a	$63324-83-4$	0.79	1.35	4.70	5.32	3.94		5.87	5.64
$\mathbf{1 8}$	$63324-84-5$	0.80	1.34	4.68	5.32		4.73	5.90	
$\mathbf{1 7}$	$63358-17-8$	1.01	1.32	4.73	5.32		4.69	5.84	
20	$63324-85-6$	1.02	1.32	4.69	5.32		5.84	5.81	
16b	$63340-13-6$	0.75	1.36	~ 3.65	~ 4.15	~ 3.95		4.70	5.83
4	$63324-86-7$	0.99	1.36	3.72	4.15		4.68	5.80	
2d	$63358-18-9$	0.96	1.34	Not given	4.14				

forded a 71% yield (from 12b) of cholest-5-ene- $3 \beta, 11 \alpha, 15 \alpha-$ triol-7-one $3 \beta, 11 \alpha$-diacetate (16a). The mass spectrum of $16 a$ shows slight traces of the saturated ketone 12 b , but the spectral properties are in accord with the assigned structure.

The presence of the unsaturated ketone is confirmed by the appropriate carbonyl absorptions in the IR and UV spectra, and the CD curve of 16 a is almost identical to that of cho-lest-5-en-3 β-ol-7-one acetate. The NMR spectrum shows a vinyl proton signal as well as a sharp singlet at $\delta 5.64 \mathrm{ppm}$ which is assigned to the alcohol proton on the basis of its ability to exchange with $\mathrm{D}_{2} \mathrm{O}$. Compound $\mathbf{1 2 b}$ shows a similar alcohol proton resonance at 5.07 ppm and the presence of these signals probably is due to the previously demonstrated hydrogen-bonding interaction of the 15α-alcohol and the C-7 ketone. The signals in the NMR spectrum of the enone 16a for the $3 \alpha, 11 \beta$, and 15β protons appear at approximately the same chemical shifts as for the saturated ketone 12b (see Table II). However, the 15α proton of the related 15β alcohol 17^{6} in the oogoniol series resonates at 4.73 ppm , compared to

3.94 ppm for the $15 \beta-\mathrm{H}$ of 16 a , which proves that these two compounds have different C-15 alcohol configurations. The $15 \alpha-\mathrm{H}$ of 17 is strongly deshielded by the C-7 ketone. ${ }^{25}$

The triolenone 16 b , the $\mathrm{C}-15$ epimer of cholest-5-ene$3 \beta, 11 \alpha, 15 \beta$-triol-7-one (4), obtained by treatment of the diacetate 16 a with potassium carbonate in aqueous methanol had spectral properties which were completely consistent with the proposed structure. The CD curve is similar to that of the diacetate precursor 16a and the NMR chemical shifts are listed in Table II for comparison with those of oogoniol (2d). ${ }^{6}$ Again, these NMR data show the obvious C-15 stereochemical difference between the $15 \beta-\mathrm{H}$ of $\mathbf{1 6 b}$ at ca. $\delta 3.95 \mathrm{ppm}$ and the $15 \alpha-\mathrm{H}$ of 2 d at 4.68 ppm .

The high-resolution mass spectrum of 16 b establishes a molecular weight of 432.3225 compared with calculated value of 432.3239 for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{4}$. The $m / e 414$ ion, which corresponds to loss of water, is quite pronounced, but the base peak appears at $m / e 161$. The $m / e 161$ ion is also responsible for the base peak in the mass spectrum of oogoniol (2 d$)^{6}$ and is an intense ion in the mass spectrum of 7 -keto- β-sitosterol, ${ }^{26}$ another compound containing the 3β-ol- 5 -en- 7 -one moiety. Thus, this $m / e 161$ ion probably results from cleavage through ring C and loss of water from $\mathrm{C}-3$ as indicated by the wavy line in structure 16.

The final stage of the synthesis is the inversion of the C-15 alcohol to generate the required 15β configuration. This conversion was accomplished as depicted in Scheme V. Jones Scheme V

oxidation of compound 16 a produced a 90% yield of cholest5 -ene- $3 \beta, 11 \alpha$-diol-7,15-dione diacetate (18) with the expected spectral properties (see Experimental Section and Table II).

A hydride reduction of the $\mathrm{C}-15$ ketone of 18 was expected to produce predominantly the 15β-alcohol. Lithium tri-tertbutoxyaluminum hydride ${ }^{27}$ was chosen as the reducing agent for two reasons. First, this reagent is generally more stereospecific than sodium borohydride or lithium aluminum hydride and it should therefore yield more of the desired 15β alcohol. ${ }^{27 \mathrm{~b}}$ Second, it has been reported that a saturated ketone can be selectively reduced in the presence of an α, β unsaturated ketone using lithium tri-tert-butoxyaluminum hydride. ${ }^{27 \mathrm{~b}}$ Thus, it should be possible to reduce the diketone 18 directly to the 15β-alcohol 20 in which the 5 -en- 7 -one chromophore is still present.

However, an attempt to selectively reduce the C-15 ketone of 18 using this reducing agent was unsuccessful. The 5 -en7 -one moiety appeared to be reduced at least as rapidly if not faster than the saturated ketone. This unexpected result is probably due to the sterically hindered nature of the C-15 ketone and the proximity of the two carbonyl groups.

Therefore, the diketone 18 was reduced completely to the diol mixture 19 using an excess of lithium tri-tert-butoxyaluminum hydride. The allylic alcohol of 19 was then directly oxidized with manganese dioxide in chloroform to give a 57% yield of a product which was predominantly the desired cho-

Table I. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts (ppm Relative to $\mathrm{Me}_{4} \mathrm{Si}$) for Cholesta- $3 \beta, 11 \alpha, 15 \alpha$-triol-7-one (12a), the $3 \beta, 11 \alpha$-Diacetate (12b), and the Triacetate (12c)

Carbon	$\mathbf{1 2 a}^{a}$	$\mathbf{1 2 \mathbf { b } ^ { a }}$	$\mathbf{1 2 \mathbf { c } ^ { a }}$
1	37.6	36.0	35.8
2	31.5	27.5	27.5
3	70.0	71.9	72.0
4	38.5	34.3	34.3
5	46.1	45.4	45.0
6	46.2	45.7	47.1
7	214.6	212.9	208.1
8	49.6	49.4	48.5
9	61.0	56.4	56.4
10	37.6	37.5	38.2
11	68.0	70.2	69.8
12	50.8	45.4	46.2
13	45.0	44.6	43.4
14	57.8	57.2	52.8
15	72.1	71.9	74.3
16	39.1	39.1	36.5
17	53.7	53.4	50.6
18	14.2	13.9	14.0
19	12.4	12.3	12.5
20	35.1	34.9	35.2
21	18.7	18.7	18.7
22	36.1	36.0	36.0
23	24.0	23.8	23.8
24	39.5	39.5	39.5
25	28.0	28.0	28.0
26	22.5	22.5	22.5
27	22.7	22.7	22.7
CH_{3} (acetate)		$21.6,21.1$	$21.6,21.4,21.1$
$\mathrm{C}=0$ (acetate)		$169.9,169.6$	$171.5,169.8,169.6$

${ }^{a}$ Registry no.: 12a, 63324-80-1; 12b, 63324-81-£; 12c, 63324-82-3.

Acetylation of the triolone 12a, in contrast to the results for the unsaturated precursor 11a, proved to be selective for the 3β - and 11α-alcohols even using an excess of acetic anhydride in pyridine. Trace amounts of the triacetate 12c were separated from the diacetate $\mathbf{1 2 b}$ by careful column chromatography on silica affording a 92% yield of cholestane$3 \beta, 11 \alpha, 15 \alpha$-triol-7-one $3 \beta, 11 \alpha$-diacetate (12 b). The location of the free alcohol in 12b was ascertained by a specific mass spectral fragmentation process (see Experimental Section) as well as by infrared spectral evidence. The latter showed carbonyl absorptions at 1720 and $1700 \mathrm{~cm}^{-1}$ for the acetates and the saturated ketone of 12 b , compared with the carbonyl absorption at $1695 \mathrm{~cm}^{-1}$ for the triolone 12a. The triacetate 12c shows only one carbonyl peak at $1720 \mathrm{~cm}^{-1}$. Thus, it appears that the diacetate $\mathbf{1 2 b}$ still retains the hydrogen bonding interaction between the 15α-alcohol and the C-7 ketone which lowers the frequency of the carbonyl absorption.
The ${ }^{13} \mathrm{C}$ NMR spectra of compounds $12 \mathrm{a}, 12 \mathrm{~b}$, and 12 c provide further supporting evidence for locating the free hydroxyl group of $\mathbf{1 2 b}$ at C-15 (Table I). The assignments of the chemical-shift values to specific carbon atoms is based on previous work done in this laboratory on the ${ }^{13} \mathrm{C}$ NMR spectra of keto and hydroxy steroids. ${ }^{21}$ The data for the diacetate $\mathbf{1 2 b}$ show that the resonances for $\mathrm{C}-3$ and $\mathrm{C}-11$ have shifted the appropriate 2 ppm downfield upon acetylation, whereas the $\mathrm{C}-15$ signal has not changed. The resonances for the carbon atoms adjacent to the acetoxy carbons, C-2, C-4, C-9, and $\mathrm{C}-12$, also show the characteristic $4-5 \mathrm{ppm}$ upfield shift compared with the triol 12a. ${ }^{21 \mathrm{a}}$ The chemical shifts for C-14 and C-16 are unchanged in the spectrum of $12 b$, but they do shift upfield in the spectrum of the triacetate 12c. It can be concluded from these data that the 15α-alcohol is not acetylated in the diacetate 12b.

The CD curves for $12 b$ and 12 c are very similar to that of 12a both in shape and in showing a positive Cotton effect. The presence of an acetate at C-15 as opposed to an alcohol does not appear to have much effect on the magnitude of the Cotton effect, $[\theta]_{290}+2510$ for $12 b$ and $[\theta]_{295}+2070$ for 12c; however, there is a slight shift in wavelength.
Additional proof for locating the free hydroxyl group of 12b at C-15 was obtained by chemical transformation. Jones oxidation of 12 b produced a quantitative yield of cholestane$3 \beta, 11 \alpha$-diol-7,15-dione diacetate (13) with the expected carbonyl absorption at $1740 \mathrm{~cm}^{-1}$ characteristic of a five-membered ring ketone, as well as the absorption at $1720 \mathrm{~cm}^{-1}$ for the acetates and the C-7 ketone. The CD curve of the diketone 13 displays a very large positive Cotton effect, $[\theta]_{295}+9680$ (compared to $[\theta]_{290}+2510$ for 12b), which would be expected for the contribution of a C-15 ketone. ${ }^{18}$ The mass spectral fragmentation of 13 also locates the new ketone at C-15. ${ }^{22}$

The introduction of the Δ^{5} double bond is the next step in the synthetic sequence (Scheme IV). Enone 16b is the C-15

Scheme IV

$16 \mathrm{a}, \mathrm{R}=\mathrm{Ac}$
$16 b, R=H$
epimer of 4, the model compound for the steroid nucleus of oogoniol, and the diacetylated enone 16 a is suitably functionalized to accomplish the inversion of the $\mathrm{C}-15$ alcohol. The most general method for synthesizing α, β-unsaturated ketones is through the dehydrobromination of the α-bromo ketone. It has been reported that cholestan- 3β-ol- 7 -one acetate is not brominated at an appreciable rate in acetic acid at room temperature; however, bromination in chloroform proceeds rapidly to give a mixture of the 6α - and 6β-bromo isomers with no detectable 8 -bromo ketone. ${ }^{23}$ Dehydrobromination of this mixture should then produce only the desired 5-en-7-one.
However, the attempted bromination in chloroform of either 12 a or 12 b resulted only in recovery of starting material. The bromination of $12 b$ to give the 6α - and 6β-bromo ketone mixture 15 was eventually achieved by treatment with pyridinium hydrobromide perbromide ${ }^{24}$ in acetic acid at 70-75 ${ }^{\circ} \mathrm{C}$. These reaction conditions also caused a slight amount of acetylation at C-15 of 12b. Because of the acetylation side reaction of these bromination conditions, the triolenone $\mathbf{1 6 b}$ could not be synthesized directly from the corresponding triolone 12a. Compound 16b was obtained instead by saponification of the diacetate 16 a .

After partial purification by column chromatography, the crude α-bromo ketone mixture 15 was dehydrobrominated by treatment with calcium carbonate in boiling dimethylacetamide to give the enone 16 a plus some 3,5 -dien-7-one side product (UV $28 £ \mathrm{~nm}$). Column chromatography on silica af-
is in accord with the positive $\Delta[\mathrm{M}]_{\mathrm{D}}$ contribution expected for a 15α-hydroxyl group, rather than the negative value associated with a 15β-alcohol. ${ }^{9,14}$ Further proof of structure 8 is offered by subsequent chemical transformations. ${ }^{16}$

Attempts to oxidize 8 to the corresponding diketone using either Jones or Collins reagent led to mixtures of products presumably due to allylic oxidation of the double bond and also isomerization to the conjugated 8(14)-en-15-one. The desired cholest-7-ene-3,15-dione could not be isolated from this mixture. It had been hoped that the 15β-alcohol configuration could be obtained by hydride reduction of this diketone to cholest-7-ene- $3 \alpha, 15 \beta$-diol. In light of these unpromising results, however, it was decided to delay this $\mathrm{C}-15$ configurational inversion until later in the synthesis. This decision to carry through the 15α-alcohol proved to have some interesting consequences as will be discussed later.

The next few steps in the synthesis (Scheme III) are con-

cerned with the formation of the desired 11α-hydroxy-7-one 12a from the Δ^{7} precursor 8, based on the earlier work of Djerassi and co-workers (see Scheme I). ${ }^{8}$ The mercuric acetate dehydrogenation ${ }^{17}$ of 8 proceeded smoothly to give the 7,9(11)-diene 9a which was directly acetylated with acetic anhydride in pyridine. After purification by column chromatography on silica and recrystallization from methanol, a 62% yield of cholesta-7,9(11)-diene-3 $\beta, 15 \alpha$-diol diacetate (9b) was obtained. This product exhibited spectral properties consistent with the structure 9 b .

The treatment of the 7,9(11)-diene $\mathbf{9 b}$ with performic acid as described in the literature ${ }^{8}$ led to a complex mixture of products from which a 30% yield of pure $9 \alpha, 11 \alpha$-epoxychol-estane- $3 \beta, 15 \alpha$-diol-7-one diacetate (10) could be isolated. The physical and spectral properties of this compound outlined in the Experimental Section are completely consistent with the assigned structure. Subsequent rearrangement of 10 in dilute methanolic potassium hydroxide produced a nearly
quantitative yield of cholest-8(9)-ene-3 $\beta, 11 \alpha, 15 \alpha$-triol-7-one (11a), thus providing independent chemical confirmation of the epoxyketone structure 10. The spectral properties of 11a, notably those associated with the presence of an α, β-unsaturated ketone, establish the identity of this compound.

Attempted selective diacetylation of the 3β - and 11α-alcohols of 11a using 2 equiv of acetic anhydride led to a mixture of products in which the di- and triacetates could not be separated by chromatography. Therefore, the configuration of the C-15 alcohol could not be inverted at this stage of the synthesis. The triacetate 11 b was prepared by acetylation of 11 a with an excess of acetic anhydride in pyridine.

The next step in the synthetic scheme is the reduction of the $\Delta^{8(9)}$ double bond. The catalytic hydrogenation of the triolenone 11a with palladium on carbon did not produce directly the saturated ketone 12 a with the normal $8 \beta-\mathrm{H}, 9 \alpha-\mathrm{H}$ trans configuration that was expected from the literature report. ${ }^{8}$ Instead, two products were observed by TLC. The major product appeared to equilibrate slowly to the minor product on standing in solution or upon chromatography. Complete conversion of the hydrogenation product to the more stable isomer was achieved by heating under reflux in 5% methanolic potassium hydroxide. This afforded a 90% yield of choles-tane- $3 \beta, 11 \alpha, 15 \alpha$-triol-7-one (12a) as white crystals. If the catalytic hydrogenation of 11a occurs from the α side of the molecule, the initial product must possess the unstable 8α $\mathrm{H}, 9 \alpha-\mathrm{H}$ cis configuration. Base treatment causes equilibration at $\mathrm{C}-8$ (α to the ketone) to give the normal all trans steroid configuration for the triolone 12a. The spectral properties of this compound are in agreement with the assigned structure.

However, the CD curve of 12 a is extremely interesting because of the positive Cotton effect, $[\theta]_{290}+1770$ (dioxane), that it displays. This is in contrast to the negative value expected for a C-7 ketone ${ }^{18}$ and shown by the related ketone, preg-nane- $3 \beta, 11 \alpha-20 \beta$-triol-7-one (14), ${ }^{19}[\theta]_{298}-2250$ (dioxane).

Also, the magnitude of the Cotton effect for 12 a is solvent dependent, showing a considerable decrease in methanol, $[\theta]_{288}+922$, compared to dioxane, $[\theta]_{290}+1770$. The results can be explained in terms of a large positive front octant contribution of the 15α-alcohol.

Kirk and Klyne ${ }^{20}$ have found that there is a definite front octant effect of ring D in the CD spectra of 5α-androstan-7one and D-homo- 5α-androstan- 7 -one, which is caused mostly by the interaction of $\mathrm{C}-15$ with the carbonyl group. These authors suggested that this interaction falls off rapidly with distance, which explains the observed large positive contribution to the Cotton effect for the six-membered ring D of the D homocompound compared to the much smaller positive contribution for the normal five-membered ring D in which C-15 is farther from the C-7 ketone. This being the case, the 15α-alcohol of 12a, which has a strong interaction with the C-7 ketone, would be expected to make a large front octant contribution. Apparently, this front octant effect is large enough to reverse the normal sign of the Cotton effect and give a positive CD curve. The decrease in magnitude of the Cotton effect in methanol solvent as compared to dioxane can be attributed to the ability of methanol to disrupt the internal hydrogen bonding between the alcohol and the ketone and thus increase the distance between these two functionalities.
of the synthesis is the introduction of the correct functionalities into the steroid nucleus. This was the synthetic approach that was decided upon in this laboratory.
Specifically, the aldehyde 3, which is derived from stigmasterol ${ }^{7}$ was chosen as a convenient starting material for the elaboration of the side chain. The main skeleton functionalities of oogoniol can then be introduced by means of the regenerated 5 -en- 3β-ol moiety. Since both parts of this synthesis were expected to be multistep and to involve selective manipulations of several functionalities, it was decided to devise the route for the introduction of the functional groups into the steroid nucleus using a model system, i.e., starting with a compound containing the cholesterol side chain. The synthesis of this model compound cholest-5-ene- $3 \beta, 11 \alpha, 15 \beta$-triol- 7 -one (4) is described here. Compound 4 is also of intrinsic interest,

since it provides an oppcrtunity to determine the importance of the substituents at C-24 and C-26 of 2 for biological activity.

Discussion

The synthetic scheme proposed above for oogoniol requires that the oxygen functions in rings B, C, and D of 4 be introduced starting from the 5 -en- 3β-ol group of cholesterol. As part of the work done in the early 1950s to develop methods for synthesizing 11 -oxygenated steroids from ring C unsubstituted precursors, it was shown that the $11 \alpha-0$ - 7 -one compound 6 can be produced in several steps from the Δ^{7}-steroid 5. ${ }^{8}$ Bromination at C- 6 followed by dehydrobromination to the 5 -en- 7 -one would then give the correct functionality for 4 in rings A, B, and C (Scheme I).
This leaves the problem of introducing the 15β-alcohol into the molecule. One standard method of oxygenating $\mathrm{C}-15$ is the hydroboration of a Δ^{14} double bond to give a 15α-alcohol. ${ }^{9}$ Subsequent oxidation of this alcohol and stereospecific reduction should then produce the desired 15β-alcohol configuration (Scheme II).
With these two schemes in mind, the starting material chosen for the synthesis of 4 was cholesta-7,14-dien- 3β-ol benzoate (7a), ${ }^{10}$ obtained from the acid-catalyzed doublebond isomerization of 7 -dehydrocholesterol benzoate. ${ }^{11}$ Sondheimer and co-workers have reported that the hydroboration of steroidal 7,9(11)-dienes produces $\Delta^{7}-11 \alpha$-alcohols in good yield. ${ }^{12}$ The selectivity and stereospecificity of this reaction was accounted for by their observation that Δ^{7} double bonds are unreactive and $\Delta^{9(11)}$ steroids yield the 11α-hydroxy compounds in the hydroboration reaction. These results suggested that the hydroboration of a 7,14-diene should produce the $\Delta^{7}-15 \alpha$-alcohol. This reaction would then serve to link Schemes I and II by oxygenating C-15 while leaving the Δ^{7} double bond for functionalizing ring C. ${ }^{13}$
Hydroboration of cholesta-7,14-dien- 3β-ol ($7 \mathbf{b}$), obtained from the saponificatior: of the benzoate 7 a , followed by oxidation with alkaline peroxide did, in fact, afford in 78% yield a product shown to be the desired 14α-cholest- 7 -ene$3 \beta, 15 \alpha$-diol (8). The assignment of structure 8 to this enediol is based on the analogy to the 7,9(11)-diene system and the expected overall cis addition of water to the α side of the Δ^{14} double bond. ${ }^{9}$ Strong supporting evidence for this structure is provided by the NMR spectrum which exhibits a signal at

Scheme I

6

Scheme II

$\delta 5.44 \mathrm{ppm}$ for the vinyl proton at C-7 and signals at $\delta 3.57$ and 4.20 ppm assigned to the 3α - and 15β-protons, respectively. The signal at 4.20 ppm is consistent with a 15β-proton which has an expected chemical shift at ca. 4.13 ppm , rather than a 15α proton which resonates further upfield at ca. $3.95 \mathrm{ppm} .{ }^{14 \mathrm{a}}$ The chemical shifts observed for the C-18 and C-19 angular methyl groups also show good agreement with the values calculated for $8 .{ }^{14,15}$

Additional confirmation of the α configuration of the C-15 alcohol in compound 8 is furnished by a consideration of the molecular rotation contribution of this alcohol. The $\Delta[M]_{D}$ value going from cholest- 7 -en -3β-ol to 8 is $+172^{\circ}$. This value
and to the Upjohn Company (Kalamazoo, Mich.) for steroid starting materials.

References and Notes

(1) F. W. Heyl and M. E. Herr, J. Am. Chem. Soc., 72, 2617 (1950); G. Slomp. Jr., and J. L. Johnson, ibid., 80, 915 (1958); J. E. Huber, Tetrahedron Lett., 3271 (1968)
(2) D. J. Vanderah and C. Djerassi, Tetrahedron Lett., 683 (1977); D. J. Vanderah and C. Djerassi, J. Org. Chem., in press.
(3) F. G. Bordwell, R. G. Scamehorn, and A. C. Knipe, J. Am. Chem. Soc., 92, 2172 (1970).
(4) J. A. Steele and E. Mosettig. J. Org. Chem., 28, 571 (1962); W. G. Salmond and M. C. Sobala, Tetrahedron Lett., 1695 (1977)
(5) For leading references see L. F. Fieser and M. Fieser, "Steroids'", Reinhold, New York, N.Y., 1959, p 539.
(6) J. C. Ouannes and T. Wilson, J. Am. Chem. Soc., 90, 6527 (1968)
(7) A. P. Schaap, "Singlet Molecular Oxygen'", Dowden, Hutchinson and Ross, Stroudsburg, Pa., 1976, p 290.
(8) 3,6-Dioxobisnor-4-cholenaldehyde (13): $\mathrm{mp} 142-145^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{O}}-15^{\circ}$ [C
4.12, CHCl_{3}] (mixture of epimers at $\mathrm{C}-20$); NMR signals (100 MHz) at 6.13 ($1 \mathrm{H}, \mathrm{H}-5$), 1.175 (3 protons, $\mathrm{C}-19$ methyl), 1.124 and $1.057(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}$ together 3 protons, $\mathrm{C}-21$ methyl), 0.772 and 0.733 ppm (s, together 3 protons, C-18 methyl); UV ETOH $\lambda_{\text {max }}(\mathrm{nm}) 312\left(\epsilon 0.3 \times 10^{4}\right), 250\left(\epsilon 1.0 \times 10^{4}\right)$; $C_{\text {EIOH }}[\theta] 297$ [14360], and 238.5 nm [41180]; MS m/e 342 ($37, \mathrm{M}^{+}$). 327 (16), 324 (11), 314 (33), 300 (15), 285 (14), 243 (27), 191 (28), 175 (10), 173 (11), 165 (12), 163 (17), 161 (12), 152 (20), 151 (10), 149 (12), 148 (11), 147 (19), 137 (100), 136 (67), 135 (14). 134 (16), 133 (30), 131 (11), 123 (11), $122(12), 121(15), 119(14), 110(14), 109$ (29), 108 (20), 107 (26). 105 (23), $95(22), 94(11), 93(27), 91(34), 81(38), 80(50), 79(45), 78(10), 77(26)$, 69 (15), 68 (11), 67 (28), 66 (16), 65 (11), 56 (15), 55 (50), 53 (21); structural assignment based on comparison of the spectral data with compound 14.
(9) R. J. Langenbach and H. W. Knoche, Steroids, 11, 123 (1968).

Padmanabhan Sundararaman, Carl Djerassi*
Department of Chemistry, Stanford University
Stanford, California 94305
Received July 25, 1977

NEW...FOR THE ORGANIC CHEMIST FROM WILEY-INTERSCIENCE

ORGANIC REACTIONS, Vol. 25
William G. Dauben Editor-in-Chief
A collection of critical discussions of organic reactions having wide applicability
CONTENTS: The Ramberg-Backlund Rearrangement. Leo A Paquette Synthetic Applicatıons of Phosphoryl-Stabilized Anıons, Willam S Wadsworth. Jr Hydrocyanation of Conjugated Carbonyl Compounds. Wataru Nagata \& Mitsuru Yoshioka Author index, Volumes 1-25. Chapter and Topic Index. Volumes 1-25 Subject Index, Volume 25

approx 512 pp
(1-01741-8)
1977
$\$ 2750$

NUCLEIC ACID CHEMISTRY
 Improved and New Synthetic Procedures, Methods, and Techniques

Edited by Leroy B Townsend \& R. Stuart Tipson
This vofume offers a detailed collation of new or improved synthetic procedures methods and techniques it provides a sourcebook of practical, relable approaches written by those who ethe- or ginated or laboratory-tested the technique Covers: heterocyclic compounds: carbohydrates; nucleosides; nucleotides and polynucleotides; isotopicallylabeled compounds; chemical and enzymic syntheses; reagents. intermediates and miscelianeous compounds; and instrumental or analytical techniques and applications
approx 768 pp . (1-88090-6) 1977 \$3750 (tent)

SURVEY OF ORGANIC SYNTHESES, Vol. 2

Calvin A Buehler \& Donald E. Pearson
A continuation of the first votume published in 1970 Each of the book's twenty chapters deals with a functıonal group Numerous cases ofter critical treatments that detail preterred synthesis methods
CONTENTS: Alkanes, Cycloalkanes and Arenes. Alkenes, Cycloalkenes and Dienes Alkynes. Alcohols Phenols Ethers (including Vinyl Ethers) Halides Amines Acetals and Ketals. Aldehydes Ketones Quinones and Related Substances Carboxylic Acids Carboxylic Esters, Orthoesters, and Orthocarbonates Acyl Halides Carboxylic Acid Anhydrides Ketenes and Ketenes Dimers Carboxylic Acid Amıdes and Imides Niriles (Cyanides) Nitro Compounds. Indices
$1.105 \mathrm{pp} \quad 1977 \quad \$ 2500$

THE TOTAL SYNTHESIS OF NATURAL PRODUCTS, Vol. 3
 Edited by John ApSimon

Offers the first definitive reference for total synthetic approaches to a wide variety of natural products The authors of the individual chapters are experts in their respective fields and each of them has produced an up-to-date description of the state-ot-the-art of total synthesis in his area PARTIAL CONTENTS: The Total Synthesis of isoquinoline Alkaloids Tetsuji Kametani; The Synthesis of Indole Alkaloıds, J P. Kutney: Alkaloid Synthesis, RV. Stevens
approx 672pp (1-02392-2) 1977 \$3500

ORGANIC SYNTHESES VIA METAL CARBONYLS, Vol. 2

Edited by Irving Wender \& Piero Pino
Devoted to the complete range of organic syntheses using transition metal compounds as catalysts Shows how concepts have wide apolication in interpreting homogeneous catalysis while pointing the way to areas needing further research in carbon monoxide chemistry. An important book, since carbon monoxide will be the future source of organic raw materials
743 pp.
(1-93367-8)
1977
$\$ 4500$

THE ORGANIC CHEMISTRY OF DRUG SYNTHESIS

Daniel Lednicer \& Lester A. Mitscher
This volume brings together the published synthesis (from כatents as well as journals) for the great majority of organic compounds used as drugs The volume is organized on the basis of chemistry rather than pharmacology and illustrates the diverse types of biological activities which can be achieved by appropriate modifications of specific structure.

ORGANIC SYNTHESES, Vol. 57

Edited by Carl R. , ohnson

Continues the series, providing speatic examples of important synthetic methods or precise cirections for the preparation of intriguing compounds stating materials, or reagents. This volume contains 30 shecked procedures received fron May 1976 to Ju ר 1977
approx 176 pp (1-03235-2) Nov. $1977 \quad 512.00$ (tent.)

ORGANIC SYNTHESES, Vol. 56

Edited by George -1 . Buch
Contains twenty-seven checked procedures, the majority of which represent specific exampes of important. often recently discovered synthetic methods with general applicability.
157 pp
(1-02218-7)
1977
$\$ 1250$

CHROMENES, CHROMANONES, AND CHROMONES, Vol. 31-THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

Edited by G.P. Ellis
A full and up-to-date treatment of these classes of compounds Surveys biological and phytochemical work associated with them. Includes numerous tables and references through 1975 Heavy emphasis on modern physical technıques
$1.196 \mathrm{pp} \quad 1977 \quad \$ 10000$

MEDICAL BOTANY

Plants Affecting Man's Health

Walter H. Lewis \& Memory P. F. Elvin-Lewis
This new volume offers a source of immediate reference en plants that injure, heal and nour sh, or alter the conscious mind. Plants are organized by their clinical or medical properties to enable the reader to quickly retrieve information relevant to his work or speciat interest The authors one a botanist and the other a microbiologist, address the growing recognition of the medical propenties by science and medicine, and the incorporation of folk remedies into pharmaceuticals They describe and discuss the many beneficial plant extracts used to fight illness and disease. Hundreds of plant illustrations
515 pp.
(1-53320-3)
1977
$\$ 27.50$

REAGENTS FOR ORGANIC SYNTHESIS, Vol. 6

Mary Fieser \& Louis F. Fieser
New sixth volume in this popular series covers literature from August 1974 through December 1975. includes references to about 800 reagents, half of them included in this series for the first time. Focus is on those that open new vistas in organic synthesis.

765 pp.	$(1-25873-3)$	$\mathbf{1 9 7 7}$	$\$ 29.50$
6 Vol Set	$(1-03316-2)$		$\$ 150.00$

THE MINICOMPUTER IN THE LABORATORY
 With Examples Using the PDP-11
 James W. Cooper

Covers in detail the use of the minicomputer for the acquistion and analysis of laboratory data and describes the programming of the DEC PDP-11 minicomputer in language understandable to the beginner. Examples and protlems take the reader through each phase of the programming language. The book also covers the use of the computer as a 1001 for data acquisition and processing, and includes a thorough discussion of signal averaging. spectrum display, plotting, and peak picking. Featured is the first full description of the Fourier transform as implemented in a minicomputer
365 pp.
(1-01883-X)
1977
$\$ 19.50$

Avalable at your bookstore or write to Nat Bodian, Dept 092
 WILEY-INTERSCIENCE
a division of John Wiley \& Sons. Inc
605 Third Avenue, New York, N.Y 10016
In Canada: 22 Worcester Foad. Rexdale. Ontarıo Prices subject to change without notice

092 A 8336-51

Phosgene Iminium Chloride

Phosgene iminium ("P1") salts are highly reactive electrophiles which enable the synthesis of a variety of interesting compounds. Extensive reviews by Viehe and Janousek attest to the current interest in this unusual class of compounds. ${ }^{1-3}$

Probably the most versatile PI salt is phosgene iminium chloride

1. Phosgene iminium chloride

(I). a white, hygroscopic powder which is stable in a dry atmosphere. but which is hydrolyzed readily by adventitious moisture. Phosgene iminium chloride undergoes reaction with a variety of substrates, some of which are shown below.
Secondary Amines ${ }^{4}$

Ketones (Aclivated Methylene Compounds)

Carbodiimides ${ }^{10}$

Nitriles ${ }^{17}$

Cyunamides ${ }^{18}$

These few examples provide assurance that phosgene iminium chloride will continue to enjoy widespread application in synthetic organic chemistry.

peference

1) 2. Janousek and HG Viehe in "Iminium Salts in Organic Chemistry. Patt 1," H Bohme and H G. Viehe. Eds., Wiley-Interscence. New York. N.Y.. 1976. Chapter S
1) H Ci Viehe and 7. Janousex. Angew. Chem.. Int. Ed. Engl. 12. 806 (1973).
2) H.G. Viehe. Chrm Ind., 386 (1977).
3) Z. Ianousek. Distertaloon. Universite de L.ouvain. 1972: see also ref. I. p 3×0
4) I. Van Vyve and HG Viehc. Angew. Chem,. Int Ed. Engt. I3. 79 (1974)
b) V. Gomes Parra, H. Madtonern. and S. Vega. Sypthesis. 345 (1977).
5) A A. Svishchuk et oi. t/kr. Khim Zh., 41.510(1975): Chem. Absfr. 13. 58329j) (1975) b) HG Viche and Z. Janousck, Angex. Chem.. int. Ed. Engl, 10, 571 \{1971)
6) I. M. Yagupalaskij and M.I. Dronkina. Zh. Ohshch. Khim 36. 1309,1343 (1966): Chem. Ahstr. 65. 16885 (1966)
7) I. Goricren. Dissertation. Universite de L.ouvain, 1977: sez 2 so ref I, p 158

III V.P. K ukhar. V.1. Passernak. and A.V. Kirsanov. Zh. Ohshech. Khim . 42. 1169 (1972): Chem. Abstr, 77. i01790c (1972).
12) N. Schundier. W. Plueger, and G. Hacuskr. Ger Offen 2.237.879 (1974): Chem. Ahser. ho. 121096w (1974): Angew: Chem., Int. Ed. Engl. 13, 747 (1974).
(3) HG Viche $A \quad 1 \varepsilon$ Clef. and A Elpavi. ibid., 16. 1×2 (1977)
(14) IS Baum and H.G. Viehe, J. Org Chem. 41. 183(1976)

15 H (i. Viehe. Z. Janousek, and M.A Deffrene. Angew. Chem Int Eid Ergh. I6. 575 1 1971).
16) A. F.gavinand H.G Vithe, ihid. 16, 18: 11977
17) B. Stelander and H G. Viehe, ihid. I6, IK9 (1977)
(k) 7 . lannusek and H.G. Viche. ibid., 12 . 34 \{ 1973).
19) W T. Borden. P.W. Concannon, and D. 1 Phiflips. Tetrahedron Lett. 3101 \{1973)

16, 287-6 Phosgene iminium chloride, tech. (dicoloromethylenedimethylammonium chloride)
$.25 \mathrm{~g} \$ 23.00$
$100 \mathrm{~g} \$ 63.00$

Craftsmen in Chemistry

[^2]Great Britain:
Aldricti Chemical Co., Ltd. The Old Brickyard, New Road Gillingham. Dorsel SP8 4JL. England

Belgium/
Continental Europe:
Aldrich-Europe B-2340 Beerse Belgium

West Germany/
Continental Europe: EGA-Chemie KG 7924 Steinheim am Albuch Weat Germany

[^0]: ${ }^{\text {a }}$ Assignments were made on the basis of comparisons with other anthracycline antibiotics and compounds derived from them, internal comparisons, values derived from similar compounds in the literature, off-resonance decoupling, and theoretical considerations. Values given are in parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si}$.

[^1]: * Address correspondence to this author at University of California

[^2]: Corporate Olfices
 Aldrich Chemical Co., Inc. 940 W. Saint Paul Ave.
 Milwaukee, Wisconsin 53233
 U. S. A.

