THE JOURNAL OF

 Organic Chemistry

Tridom Chemical Inc., 255 Oser Avenue, Hauppauge, New York 11787, Telephone (516) 273-0110, Telex 96-7 Exclusive North American Representative of Fluka AG, Buchs. (FLUKA-products are available from stock

Concerning prices outside of North America and switzerland, please contact our local agent; for Germa Fluka Feinchemikalien GmbH, Lilienthalstrasse 8, D-7910 Neu-Ulmá Telephone (0731)74088-89, Telex 7123

Chemical Carcinogens

edited by Charles E．Searle，University of Birmingham ACS Monograph Series No． 173
Contains comprehensive accounts of the latest theories of cancer chemistry and biology and of the major hazards iden－ tified so far．A valuable resource for scientists engaged in cancer research and occupational health studies，this mono－ graph covers material on carcinogen testing methods，co－ carcinogenesis and endocrine aspects of cancer，and various classes of carcinogens in polluted air and tobacco smoke，in plants and foods，in many chemicals used in industry and laboratories，and in soots，tars，and ols．（Over 3500 literature citations．）
an admirable and much needed attempt to present the available tacts and some of the theories ．．．．invaluable to research workers and administrators concerned with cancer problems．．．．The preface ．．．is an excellent review of the present position of the subject．．．．There are 16 chapters written by 23 experts in their fields．．．The book is well produced，easy to handle ．．．and provides an excellent overview and reference work．
Nature（1977）Feb．（265）
a tremendously useful review of the state of knowledge for those in the field，or for those who must make judgements concerning exposure to chemical compounds ．．．．（an）enor－ mous amount of information ．．．compressed into a single volume．
Atmospheric Environment（1977）May
788 pages．Cloth．（1976）\＄67．50／£45．00
LC 76－26515
ISBN 0－8412－0226－5

Chemical Mechanisms in Bioenergetics

edited by D．Rao Sanadi，Boston Biomedical Research Institute ACS Monograph Series No． 172
The six chapters in this volume discuss the fundamental aspects of bioenergetics with emphasis on the underlying chemical mechanism．Major topics covered in depth include biother－ modynamics，biomembranes－structure and function，mem－ brane transport，chemical reactions in oxidative phosphoryla－ tion，mechanisms in photosynthesis，and the mechanism of muscle contraction
a valuakle source for specialists anc graduate students and is suggested as a reference for libraries．＂
Electrochem cal Progress（1976）Nov．，＇ 3
272 pages．Cloth（1976）\＄28．50／\＆ 19.00
LC 76－26707
ISBN 0－8412－0274－5

Molecular Sieves－II

edited by James R．Katzer，University of Delaware ACS Symposium Series No． 40
Fifty－eight program papers from the Fourth International Confer－ ence on Moecular Sieves．Review papers as well as those describing original research results cover five main areas： structure，synthesis and modification，adsorption and diffusion， catalysis，and technological applications．These chapters illus－ trate the shift in research emphasis from classical framework structural pajers to those concerned with the location and properties of transition metal complexes in zeolites
732 pages．Cloth．（1977）\＄30．00／£ 23.00
LC 77－720
ISBN 0－8412－0362－8

Radiation Effects on Solid Surfaces

edited by Manfred Kaminsky，Argonne National Laboratory Advances in Chemistry Series No． 158
The twenty papers in this symposium feature current research results in three sign ficant areas：basic surface processes occur－ ring under surface rradiations with atoms，ions，neutrons，elec－ trons，positrons and photons（including x－rays）；recently de－ veloped techniques based on patticle and／or ohoton irradiations of surfaces；and surface irradiation effects in solar and uclear energy applications
397 pages．Cloth．（1976）\＄32．50／〔＇25．00
LC 76－51209
ISBN 0－8412－0331－8

Organotin Compounds：New Chemistry and Applications

edited by Jerold J．Zuckerman，University of Oklahoma Advances in Chemistry Series No． 157

Nineteen chapters discuss recent chemistry and commercial applications including homolytic reactions；organostan－ nylanionoin chemist＇y；organotins as catalysts；organotin alkox－ ides and amines：use of estertin stabilizers in PVC；organotins as agricultural fungicides and miticides，as industrial biocides，and as surface disinfectants；mitochondrial functions；bioorganotin chemistry；spectroscopy；optical stability；and triorganotin com－ pounds．
299 pages．Cloth．（1976）\＄32．50／〔 25.00
LC 76－54338
ISBN 0－8412－0343－1

High－Level Radioactive Waste Management

 edited by Milton H．Campbell，Exxon Nuclear Co．，Inc． Advances in Chemistry Series No． 153Twelve papers ident fy technical centers and technical experts working toward improved immobilization and storage tech－ niques．Specific topics concentrate on the U．S federal government＇s philosophy and policy；waste management at government sites where the waste is generated；commercial reprocessing plants；efforts at long－term solutions；and waste management practices in Europe．
＇Having an adequate index and bibliography，excellent illustra－ tions and good stylistic properties，the work is highly recom－ mended as a reference volume for libraries．
Choice（1977）April
166 pages．Cloth．（1976）\＄18．50／L＇ 1425 LC 76－25020

ISBN 0－8412－0270－2

Electrochemical Studies of Biological Systems

 edited by Donald T．Sawyer，University of CaliforniaACS Symposium Series No． 38
The major emphasis of these twelve chapters is on the study of the redox properties of model compounds for biological sys－ tems Specific topics include vitamin B12，cytochrome c．I gand structural modifications，metalloporphyrins，N－bridged dimers reduction of nitrogenase substrates，redox model for mitochon－ drial superoxide dismutase，interfacial behavior of pu‘ines， mediator－titrants，rotating ring disk enzyme electrode，mocel for a mammalian heart，and analysis of NTA and EDTA in water samples．
216 pages Cloth．（1G77）\＄15．50／L15．00
LC 76－30831
ISBN 0．8412．0361－X

the journal of Organic Chemistry

EDITOR-IN-CHIEF: FREDERICK D. GREENE
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

SENIOR EDITORS

Werner Herz
Florida State University
Tallahassee, Florida

James A. Moore
University of Delaware
Newark, Delaware

Martin A. Schwartz
Florida State University
Tallahassee, Florida

ASSISTANT EDITOR: Theodora W. Greene

Eugene C. Ashby
Robert A. Benkeser
John I. Brauman
Robert M. Coates
Samuel Danishefsky

David A. Evans
Janos H. Fendler
Neville Finch
Paul G. Gassman
Donald M. Jerina

Carl R. Johnson William M. Jones
Jay K. Kochi
Albert I. Meyers
John G. Moffatt
Marvin L. Poutsma William A. Pryor Henry Rapoport William H. Saunders, Jr.
Martin F. Semmelhack

William J. Sheppard
Nicholas J. Turro
Milan R. Uskokovic
Earle Van Heyningen
George W. Whitesides

EX-OFFICIO MEMBERS: George H. Coleman, Sanibel Island, Florida
Peter A. Beak, University of Illinois (Secretary of the Division of Organic Chemistry of the American Chemical Society)

Published by the

AMERICAN CHEMICAL SOCIETY

BOOKS AND JOURNALS DIVISION

D. H. Michael Bowen, Director; Marjorie Laflin, Assistant to the Director

Editorial Department: Charles R. Bertsch, Head; Marianne C. Brogan, Associate Head; Robert J. Palangio and Kenneth E. Phillips, Editorial Assistants; Mark Hackworth, Staff Editor
Magazine and Production Department: Bacil Guiley, Head
Research and Development Department: Seldon W. Terrant, Head

Advertising Office: Centcom, Ltd., 25 Silvan Road South, Westport, Conn. 06880.
© Copyright, 1978, by the American Chemical Society. Permission of the American Chemical Society is granted for libraries and other users to make reprographic copies for use beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that, for all articles bearing an article code, the copying organization pay the stated per-copy fee through the Copyright Clearance Center, Inc. For further information write to Office of the Director, Books and Journals Division at the ACS Washington address.

Pubished biweekly by the American Chemical Society at 20th and Northampton Sts., Easton, Pa. 18042. Second class postage paid at Washington, D.C., and at additional mailing offices.

Editorial Information

Instructions for authors are printed in the first issue of each volume. Please conform
to these instructions when submitting manuscripts.

Manuscripts for publication should be submitted to the Editor, Frederick D. Greene, at his Cambridge, Mass., address.

Correspondence regarding accepted papers and proofs should be directed to the Editorial Department at the address below.

Page charges of $\$ 70.00$ per page may be paid for papers published in this journal. Payment does not affect acceptance or scheduling of papers.

Bulk reprints or photocopies of individual articles are available. For information write to Business Operations, Books and Journals Division, at the ACS Washington address.

The American Chemical Society and its Editors assume no responsibility for the statements and opinions advanced by contributors.

Subscription and Business Information

1978 subscription prices-including surface postage:

	U.S.	Foreign
Member	$\$ 26.00$	$\$ 36.00$
Nonmember	104.00	114.00
Supplementary	20.00	38.00
material		

Air mail and air freight rates are available from Membership \& Subscription Services, at the address below.

New and renewal subscriptions should be sent with payment to the Office of the Controller at the ACS Washington address.

Changes of address must include both old and new addresses with ZIP code and a recent mailing label. Send all address changes to the Membership \& Subscription Services. Please allow 6 weeks for change to become effective. Claims for missing numbers will not be allowed if loss was due to failure of notice of
change of address to be received in the time specified; if claim is dated, (a) North America: more than 90 days beyond issue date, (b) all other foreign: more than one year beyond issue date; or if the reason given is "missing from files". Hard copy claims are handled by Membership \& Subscription Services.

Microfiche and microfilm editions of all the ACS primary publications are available by subscription and by single issue and volume. For prices and further information, contact Microforms Program at the ACS Washington address, or call (202) 872-4554.

Single issues and back volumes in printed or microfiche are available at the same price for either format from Special Issues Sales. Current year single issue $\$ 5.00$. Prior year single issue $\$ 5.00$. Back volume $\$ 115.00$. Foreign postage additional. Rates available from Special Issues Sales at the ACS Washington address or call (202) 8724365.

Supplementary material mentioned in the journal appears in the microfilm edition. Papers containing supplementary material are noted in the Table of Contents with a \quad. See Supplementary Material notice at end of article for number of pages. Orders over 20 pages are available only on $24 \times$ microfiche. Orders must state photocopy or microfiche. Full bibliographic citation including names of all authors and prepayment are required. Prices are subject to change.

	U.S.	Foreign
Microfiche	$\$ 3.00$	$\$ 4.00$
Photocopy		
$1-8$	$\$ 5.50$	$\$ 7.00$
$9-20$	6.50	8.00

Single microfiche or paper copies of Supplementary Material may be ordered from Business Operations, Books and Journals Division at the ACS Washington address, or call (202) 872-4559.

American Chemical Society
1155 16th St., N.W.
Washington, D.C. 20036
(202) 872-4600

Editorial Department
American Chemical Society
P.O. Box 3330

Columbus, Ohio 43210
(614) 421-6940, Ext. 3171

Membership \& Subscription Services
American Chemical Society
P.O. Box 3337

Columbus, Ohio 43210
(614) 421-7230

ww momano. Organic Chemistry

Albert Padwa,* Hao Ku, and Arthur Mazzu
Kieran J. Dignam, Anthony F. Hegarty,* and Paul L. Quain
M. Debeljak-Šuštar, B. Stanovnik, M. Tišler, ${ }^{*}$ and Z. Zrimšek
Ytzhak Ittah, Israel Shahak, and Jochanan Blum*
Ken Takaki,* Aiichiro Okamura, Yoshiki Ohshiro, and Toshio Agawa
Ching Sui Yi, Louis C. Martinelli, and C. DeWitt Blanton, Jr.*
George R. Newkome* and Ashutosh Nayak
Masao Mizuno and Michael P. Cava*
Hiromu Aoyama,* Tadashi Hasegawa, Mariko Watabe, Hiroaki Shiraishi, and Yoshimori Omote
Giuseppe Bellucci,* Giancarlo Berti, Maria Ferretti, Giovanni Ingrosso, and Ettore Mastrorilli
Dale L. Whalen,* Steven Brown, Angela M. Ross, and Helen Miller Russell
Dale L. Whalen* and J. Diane Cooper
Robert P. Hanzlik* and Myron Leinwetter
K. Okada and S. Sekiguchi*
Stephen A. DiBiase and and George W. Gokel*
James M. Hilbert and Leo Fedor*
George H. Schmid* and
Thomas T. Tidwell
George A. Olah,* Toru Sakakibara, and Gregorio Asensio
Misuzu Ichiba, Sadao Nishigaki, and Keitaro Senga*

381	Intramolecular Dipolar Cycloaddition Reactions with Vinylbiphenyl-Substituted 1,8-Dipoles
388	Reactivity of 1,3-Dipoles in Aqueous Solution. 2. Stereospecific Reactions of Benzonitrile Oxides with Oxygen, Carbon, and Nitrogen Nucleophiles
393	Neighboring Group Interaction in Ortho-Substituted Aminopyridines. Pyridopyrimidines and Related Systems
397	Stable Arene Imines
402	Synthesis and Chemical Properties of α-Alkyl(aryl)thiovinyl Isocyanates

419 Photochemical Reactions of N, N-Disubstituted α-Oxoamides

422 Regio- and Stereoselectivity of the Formation of Halohydrins from 3 -Methyl- and 3 -tert-Butylcyclohexene and from the Ccrresponding Epoxides
428 Epoxycarbinyl Solvolyses. Lack of Significant Participation by Epoxide Oxygen in the Hydrolysis of Acyclic Secondary Epoxyca:binyl Substrates

432 Epoxycarbinyl Solvolyses. The Solvolytic Reactions of syn- and anti-9-Oxabicyclo[6.1.0]non-2-vl p-Bromobenzenesulfonates
438 Reactions of Epoxides and Carbonyl Compounds Catalyzed by Anhydrous Copper Sulfate

441 Aromatic Nucleophilic Substitution. 9. Kinetics of the Formation and Decomposition of Anionic σ Complexes in the Smiles Rearrangements of N-Acetyl- β-aminoethyl 2-X-4-Nitro-1-phenyl or N-Acetyl- β-aminoethyl 5-Nitro-2-pyridyl Ethers in Aqceous Dimethyl Sulfoxide

447 Crown-Cation Complex Effects 8. Reactions of Crown Ether Activated tert-Butoxide Ion

452 Base-Catalyzed β-Elimination Reactions. 7. Elimination from 4-(Para-substituted-phenoxy)-2-oxobutanoic Acids

460 Linear Free-Energy Relationships in Electrophilic Addition Reactions of Alkenes. Use of Addition of Arenesulfenyl Chloride and Hydration as Mechanistic Models of Bromination

463 Onium Ions. 17. Improved Preparation, Carbon-13 Nuclear Magnetic Resonance Structural Study, and Nucleophilic Nitrolysis (Nitrative Cleavage) of Diarylhalonium Ions
469 Synthesis of Fervenulin 4-Oxide and Its Conversion to the Antibiotics Fervenulin and 2-Methylfervenulone

An Introduction to Organic Chemistry

William Reusch

1. SPECTROSCOPY INTRODUCED EARLY AND USED THROUGHOUT
2. EXCELLENT COVERAGE OF STEREOCHEMISTRY AND SYNTHESIS
3. BIOLOGICAL EXAMPLES USED THROUGHOUT
4. EXPERIMENTAL DATA SUPPORTS CONCLUSIONS
5. THOROUGHLY CLASS TESTED
6. BASIC CONCEPTS FULLY EXPLAINED
7. END OF CHAPTER SUMMARIES
8. SECTION OF USEFUL TABLES
9. ABUNDANT END OF CHAPTER PROBLEMS

PLUS-A UNIQUE AND GENUINE STUDY gUide with detailed solutions

For your examination copy write on your department stationary to Holden-Day, Inc., Dept. ADI, 500 Sansome Street San Francisco, CA 94111

Holden-Day, Inc.
500 Sansome Street
San Francisco, CA 94III

MICROANALYSES

Analysis For All Elements, Trace Analyses And Molecular Weights

GALBRAITH LABORATORIES, INC.
P.O. Box 4187-2323 Sycamore Drive Knoxville, TN. 37921-615/546-1335

Upjohn Fine Chemicals

The Upjohn Fine Chemical Division with over 30 years of sophisticated chemical synthesis and fermentation experience serves the pharmaceutical, food and cosmetic industries. Among its varied capabilites: high pressure hydrogenation, Grignard'reactions, photochemicat oxidation, low temperature ozonization, phosgenation, bioconversion, and resolution chemistry. These systems can be imple-

Upjohn

 mented to fit ydur specifieations. Call or write today.The Upiohn Company Fine Chemical Marketing Kalamazoo. Michigan 49001 (616) 323-5844
$\left.\begin{array}{r}\text { Marian Mikolajczyk,* Wanda Midura, } \\ \text { Slawomir Grzejszczak, Andrzej Zatorski, } \\ \text { and Anna Chefczyńsak }\end{array}\right\} \begin{array}{r}\text { Gerald F. Koser* and Van-Shau Liu } \\ \text { Brian A. Otter,* Elvira A. Falco, } \\ \text { and Jack J. Fox }\end{array}$

Arthur I. Fetell and Henry Feuer*

James A. Deyrup* and George S. Kuta
James S. Docken, Everin C. Houkom, Roger A. Jorgenson, Daryl L. Ostercamp,* Gloria A. Tweed, and Richard G. Werth
Michael C. Vander Zwan,* Frederick W. Hartner, Robert A. Reamer, and Roger Tull

Jerry D. Bryant and Nelson J. Leonard*
α-Phosphoryl Sulfoxides. 3. Dimethylphosphorylmethyl p-Tolyl Sulfoxide. Resolution, Stereospecific Synthesis, and the Horner-Wittig Reaction. A New Synthesis of Optically Active α, β-Unsaturated Sulfoxides

478 Heavy-Atom Effect on the Photodimerization of Acenaphthylene: Substituent Analysis on the Efficiency of External Aromatic Perturbers
481 Nucleosides. 108. Ribo-Xylo Interconversions of 6,5'-Cyclopyrimidine Nucleosides via Autoxidation and Retro-Aldol Reactions

486 A Serendipitous Synthesis of
1,2,5,6-Tetramethyl-3,4,7,8-tetramethylenetricyclo[3.3.0.0 ${ }^{2,6}$]octane
491 Cycloaddition Reactions of
1,2,5,6-Tetramethyl-3,4,7,8-tetramethylenetricyclo[3.3.0.0 ${ }^{2,6}$]octane. Evidence for Chemical Consequences of Orbital Interactions in Molecules Containing Unsaturatively 1,3-Bridged Cyclobutane Rings
497 Alkyl Nitrate Nitration of Astive Methylene Compounds. Nitration of Aldimines

501 Deprotonation of a Hindered Keteniminium Salt
505 Vinylogous Systems. 4. Mass Spectra of Vinylogous Ureas and Ureides

509 A New Reaction of Amino Acids: Conversion to Benzoxazoles

511 Photoproducts of Thymine and Uracil. Synthesis of the Four Bipyrimidine Combinations

NOTES

516 Rearrangement of Cinnamyl Groups from O^{6} to $\mathrm{C}-8$ in the Guanine Series
518 Stereochemistry of the Furan-Maleic Anhydride Cycloaddition
519 Lewis Acid Rearrangement of 2,3-Epoxycarane. Formation of a Novel m-Menthenone

521 Exothermic Cyclic Peroxide Reactions. Decomposition of a 1,2,4-Trioxane

COMMUNICATIONS

Thermal Reaction between 5-Methylene-1,3-cyclohexadiene and Styrene

Karl R. Kopecky* and Ming-Pui Lau
William A. Pryor,* W. David Graham, and John Glass Green

Radical Production from the Interaction of Closed-Shell Molecules. 5. The Chemistry of Methylenecyclohexadiene

Supplementary material for this paper is available separately (consult the masthead page for ordering information); it will also appear following the paper in the microfilm edition of this journal.

[^0]
EPOXYSILANES IN SYNTHETIC ORGANIC CHEMISTRY

Significant advances have recently been made in the application of organosilicon compounds to organic syntheses using a, β-epoxytrimethylsilanes. These are derived from carbanions generated from chloroalkyltrimethylsilanes.
a-Chloroethyltrimethylsilane (1) g.ves the carbanion (2) when treat ed with s-BuLi in THF at -78°.

Reaction of the carbanion with a carbonyl compound gives the a, β-epoxysilane which can be hydrol'yzed to the corresponding methylketone in good yields. e.g.

$2+$

Chloromethyltrimethylsilane (3) gives the anion (4) with s-BuLi. ${ }^{2}$

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCH}_{2} \mathrm{Cl} \xrightarrow{\text { s.BuLi}}\left(\mathrm{CH}_{1}\right)_{3} \mathrm{Si} \overline{\mathrm{C}} \mathrm{HCl}
$$

(3)
(4)

Homologous aldehydes are obtained when (4) is treated with carbonyl compounds and the intermediate α, β-epoxysilanes hydrolyzed. e.g.

The references report a wide variety of carbonyl compounds which undergo these reactions including aliphatic, aromatic and steroidal substrates.

The a, β-epoxysilanes, besides being precursors to homologous carbonyl compounds are convenient intermediates in the syntheses of stereospecific olefins via β-hydroxysilanes, ${ }^{3}$ vinyl ethers, bromides and enamides. ${ }^{4}$ The simplest a, β-epoxysilane, epoxyethyltrimethylsilane, can be prepared from vinyltrimethylsilane by reaction with perphthalic acid. ${ }^{5}$
a-Chloroethyltrimethylsilane (1) and chloromethyltrimethylsilane (3), precursors to the epoxysilane intermediates are both available from PCR.

References

1. F. Cooke \& P. Magnus, J. C. S. Chem. Comm., 513 (1977).
2. C. Burford, F. Cooke, E. Ehlinger, \& P. Magnus, J. Am. Chem. Soc., 994536 (1977).
3. P. F. Hudrlik, D. Peterson \& R. J. Rone, J. Org. Chem., 402264 (1975).
4. P. F. Hudrlik, A. M. Hudrlik, R. J. Rona, R. N. Misra \& G. P. Withers, J. Am. Chem. Soc., 991993 (1977).
5. V. Bazart \& V. Matousak, Coli. Czech. Chem. Comm., 243758 (1959).

Available from PCR

11965-1 a-Chloroethyltrimethylsilane
29070-0 Chloromethyltrimethylsilane
$25 \mathrm{~g}-\$ 32.50 ; 100 \mathrm{~g}-\$ 115.00$
25g-\$28.00; 100g-\$97.00
29270-6 Vinyltrimethylsilane
$25 \mathrm{~g}-\$ 35.00 ; 100 \mathrm{~g}-\$ 110.00$

Milestones in Physical Chemistry

8 Speakers - 315 Figures
Length: 5 Cassettes - 8 Hours
PRICE: $\$ 45$ (postpaid)
The Speakers:
G. T. Seaborg
D. Hodgkin
G. Porter
P. J. Flory
W. O. Baker
L. C. Pauling
H. Eyring
J. H. Van Vleck

Evolution of Kinetics

8 Speakers - 140 Figures
Length: 4 Cassettes - 6 Hours
PRICE: $\$ 35$ (postpaid)
The Speakers:
B. S. Rabinovitch
W. A. Noyes, Jr.
R. A. Marcus
K. F. Freed
G. B. Kistiakowski
J. C. Polanyi
S. Claesson
J. Jortner

Structure \& Quantum Chemistry

Evolution of Magnetic

 Resonance8 Speakers - 210 Figures Length: 4 Cassettes - 6 Hours
PRICE: $\$ 35$ (postpaid)
The Speakers:
J. A. Pople
H. G. Drickamer
F. H. Stillinger
R. Zwanzig
H. S. Gutowsky
J. S. Waugh
H. M. McConnell
F. A. Bovey

SPECIAL PRICE

ALL THREE SETS -
$\$ 85$ (postpaid) save $\$ 30$!

Order From:

American Chemical Society
1155 Sixteenth St., N.W
Washington, D.C. 20036
ATTN: Dept. AP

Name

Address

AUTHOR INDEX

Agawa, T., 402
Aoyama, H., 419
Asensio, G., 463
Bellucci, G., 422
Berti, G., 422
Blanton, C. D., Jr., 405
Blum, J., 397
Bonner, W. A., 522
Borden, W. T., 486, 491
Brown, S., 428
Bryant, J. D., 511
Bryant, L. A., 521
Cava, M. P., 416
Chafin, T. C., 519
Chefczyńsak, A., 473
Clark, Jr., B. C., 519
Cooper, J. D., 432
Debeljak-Suštar, M., 393
Deyrup, J. A., 501
Dhawan, B., 524
DiBiase, S. A., 447
Dignam, K. J., 388
Docken, J. S., 505
Falco, E. A., 481
Fedor, L., 452
Ferretti, M., 422
Fetell, A. I., 497

Feuer, H., 497
Fox, J. J., 481
Gokel, G. W., 447
Gold, A., 486, 491
Graham, W. D. 526
Green, J. G., 526
Grzejszczak, S., 473
Hanzlik, R. P., 438
Hartner, F. W., 509
Hasegawa, T., 419
Hegarty, A. F., 388
Herndon, W. C., 518
Hilbert, J. M., 452
Holmes, B. N., 516
Houkom, E. C., 505
Hunter, G. L. K., 519
Ichiba, M., 469
Ingrosso, G., 422
Ittah, Y., 397
Jorgensen, W. L., 491
Jorgenson, R. A., 505
Kopecky, K. R., 525
Koser, G. F., 478
Ku, H., 381
Kumar, S., 524
Kuta, G. S., 501

Lau, M.-P., 525
Lee, M. W., 518
Lee, P. L., 519
Leinwetter, M., 438
Lemmon, R. M., 522
Leonard, N. J., 511, 516
Liu, V.-S., 478
Martinelli, L. C., 405
Mastrorilli, E., 422
Mazzu, A., 381
Midura, W., 473
Mikołajczyk, M., 473
Mizuno, M., 416
Nayak, A., 409
Newkome, G. R., 409
Newman, M. S., 524
Nishigaki, S., 469
Noyes, H. P., 522
Ohshiro, Y., 402
Okada, K., 441
Okamura, A., 402
Olah, G. A., 463
Omote, Y., 419
Ostercamp, D. L., 505
Otter, B. A., 481
Padwa, A., 381
Pryor, W. A., 526

Quain, P. L., 388
Reamer, R. A., 509
Ross, A. M., 428
Russell, H. M., 428
Sakakibara, T., 463
Schmid, G. H., 460
Schuster, G. B., 521
Sekiguchi, S., 441
Senga, K., 469
Shahak, I., 397
Shiraishi, H., 419
Stanovnik, B., 393
Takaki, K., 402
Tidwell, T. T., 460
Tišler, M., 393
Tull, R., 509
Tweed, G. A., 505
Vander Zwan, M. C., 509
Watabe, M., 419
Werth, R. G., 505
Whalen, D. L., 428, 432
Yi, C. S., 405
Young, S. D., 486
Zatorski, A., 473
Zrimšek, Z., 393

Help stapt fomorrow's chemist off rieght...

Wiley is proud to announce that its highly successful organic chemistry text of the past two years is now available in a Revised Printing

ORGANIC CHEMISTRY, Revised Printing

T. W. Graham Solomons, University of South Florida

In its first two years since publication, this text has been adopted by over 230 schools with the number increasing each semester. What has made it such a remarkable success is the clarity of explanations, its biological emphasis, and its consistent level of presentation. With this revised printing, Solomons has made this book even more useful for your students.

Some of the changes in this Revised Printing-

- The addition of more problems in almost every chapter (more than 160, not counting parts of problems)... and new challenging problems are identified by an asterisk
- An Appendix added covering mass spectroscopy opens with a brief description of how it operates followed by a development of the subject using relatively simple examples before moving on to progressively more and more complex ones
- As in previous reprints, errors have been removed

Continuing attractive features you'll find in Solomons include-

- Early presentation of important functional groups, as well as the important types of organic reactions
- Wide usage of bio-organic applications throughout the text, making it particularly attractive to those majoring in biochemical and biological sciences
- Special topics integrated where appropriate and where students can handle them
- Up-to-date and easily understood presentation of current topics of research such as molecular orbital theory, resonance theory, stereochemistry, and nucleophilic substitution and elimination reactions
- An extremely attractive text that incorporates chapter summaries, functional use of color, actual examples taken from literature, and clear design

Accompanying this text is a Solutions Manual available for sale to your students. Also, free to adopters are a complete set of Transparency Masters and a Card File of Multiple-Choice Text Items.
$047103561-01978$
approx. 1184 pp. $\$ 21.95$ (tent.)

4 from WILEY that will help you do your job!

And here's another Wiley book your students will find tremendously helpful...
THE NAMES AND STRUCTURES OF ORGANIC COMPOUNDS A Programmed Text
Otto Theodore Benfey, Guilford College, N. C

In helping students learn the common names and structural formulas of organic compounds, this self-instructional book is a valuable tool. It also clearly treats the calculation of formal charges, electronic formulas, resonance formulas, and a method for determining the number and structure of isomers of substarces of general formula R-Y.

$$
047106575-7 \quad 1966 \quad 212 \text { pp. } \quad \$ 6.75
$$

> ...and for your introductory students who need that little extra help... HOW TO SUCCEED IN ORGANIC CHEMISTRY

John E. Gordon, Kert State University

This problem-solving, self-teaching guide will provide your students with an effective, step-bystep method for studying anc mastering organic chemical material. Both unique and functional, it's organized by the skills required rather than the traditional subject matter organization. It concentrates on how to acquire the eecessary mass of factual chemical information and use it in problem solving and the development of notational skills. In addition, this self-teaching guide is keyed to 28 organic chemistry texts.
$047103010-4$ May 1978
approx. 280 pp. $\quad \$ 6.95$

For your brief organic course... ORGANIC CHEMISTRY A Brief Survey
Reuben L. Baumgarten, Lehman College of The City University of New York
This book is written on the premise that understanding basic concepts (not memorization of seemingly unrelated reactions) leads to a rapid and complete assimilation of chemical ideas that can be applied to a variety of organic and biochemical problems. It features clear explanations of general concepts which can be consistently applied by students to specific compounds or reactions. Thus, Baumgarten stresses selected concepts cf bonding structure, nomenclature and reactivity early in order to lay a foundation of ideas that can be later applied to the properties and reactions of the various families of organic compounds.

Contents:

Electrons and Bonding • Characteristics of Structure • Nomenclature • Acidity, Basicity, and Struc-
ture \bullet Electronic and Steric Effects \bullet Chemical Reactivity • Saturated Hydrocarbons: Alkanes and Cycloalkanes • Unsaturated Hydrocarbons-l: Alkenes • Unsaturated Hydrocarbons-II: Alkynes • Aromatic Hydrocarbons • Alcohols and Phenols • Ethers • Organic Halogen Compounds • Aldehydes and Ketones \bullet Carboxylic Acids and Their Derivatives • Amines, Diazonium Salts, and Dyes • Stereoisomerism—Optical Isomerism • Carbohydrates • Lipids_Fats and Oils • Amino Acids and Proteins • Nucleic Acids • Natural Products • Synthetic Products • Synthetic Polymers • Spectroscopy and Structure - Solutions to Selected Problems • Index.
0471 06716-4 $1977 \quad 475 \mathrm{pp} . \quad \$ 14.50$ To be considered for complimentary examination copies, write to Robert McConnin, Dept. 8409. Please include course name, enrollment, and title of present text.

New from Allyn and Bacon, Inc...

for your Short Course in Organic Chemistry

Fessenden and Fessenden's
The Basis of Organic Chemistry, Second Edition

Abstract

Organic chemistry is a vigorous field, with modern technology relying heavily upon it for the production of plastics, dyes, and fuels as well as research and its applications in the fields of medicine, pharmacology, nutrition and agriculture. The Basis of Organic Chemistry is designed for a short course in organic, taken by students with majors in fields other than chemistry. The material emphasizes the reactions of types of bonds and how they occur, while the text assumes that the student has a background in general chemistry. (Even though the first three chapters serve as a review to accomodate varying student backgrounds.) An instructor's manual/answer book is also available to accompany the text.

Ralph J. Fessenden, University of Montana; and Joan S. Fessenden

Bailey and Bailey's Organic Chemistry: A Brief Survey of Concepts and Applications

Abstract

The new text is written for students in biology, health science. agriculture, home economics and other non-major disciplines which require some expertise in organic chemistry. The needs and interests of these students have been the prime consideration in determining the level of the text, and the selection and organization of topics. Maintaining a functional group approach, the text provides the beginning student with unifying concepts throughout the course of study. For each family of organic compounds, the authors have concentrated on: structure, basic nomenclature, the most characteristic chemical reactions of the functional group, and major applications. Each chapter is subdivided by topic for easy reference and study organization, and the entire text can be organized into a one quarter, one semester or two quarter courses in organic chemistry. (for non-majors) A study guide to the text is also available, and a laboratory manual and instructor's manual will be available soon.

Phillip S. Bailey and Christina A. Bailey, both of California Polytechnic State University

Allyn and Bacon, Inc.

College Division. Dept. 893, 470 Atlantic Avenue, Boston, MA O221O

Have you considered your students?

Morrison and Boyd, III has.

Students who take organic chemistry are serious.
Often it's the only organic chemistry course they will ever take, and their performance in class strongly affects their careers. Yet, that's why Morrison and Boyd's Organic Chemistry has earned a reputation among students. It's a text with outstanding readability and clarity of presentation. Excellently graded problems serve to show the student how to apply what he or she has learned, and to extend that knowledge beyond the scope of the text. The accompanying Study Guide to Organic Chemistry reinforces student application of the texts principles, while Organic Chemistry: Problems and
Solutions by A. D. Baker and R. Engel, provides a review of course material through problems in experimental form with a detailed analysis of most answers.
Over one million students have learned organic chemistry from Morrison and Boyd. Will yours?

Morrison and Boyd

 Organic Chemistry, Third EditionRobert T. Morrison and Robert N. Boyd

Allyn and Bacon, Inc.

> Now Available from Academic PressIndispensable Reference Works for Chemists . . .

Benchmark ${ }^{\star}$ Papers in Organic Chemistry

Series Editor: CALVIN A. VANDERWERF
This BENCHMARK SERIES presents the most critical papers in organic chemistry (many difficult to obtain, others in English for the first time), selected from the world-wide literature of past and present.
Edited by outstanding authorities, Benchmark Papers offer, in addition to the highest standards of expert selection, a master author citation index and a comprehensive subject index.

VOLUME 6

STEREOSELECTIVE REDUCTIONS

Edited by M. P. DOYLE and C. T. WEST
1976, 448 pp., $\$ 34.00 /$ /24.15 ISBN: 0-12-786368-0

VOLUME 5

SINGLET MOLECULAR OXYGEN
Edited by A. P. SCHAAP
1976, 432 pp., $\$ 33.00 / £ 23.45$ ISBN: 0-12-787415-1
VOLUME 4

ORGANOPHOSPHORUS STEREOCHEMISTRY

Part II: P (V) Compounds
Edited by W. E. McEWEN and K. D. BERLIN
1975, 320 pp., $\$ 32.00 / £ 22.70^{*}$ ISBN: 0-12-787032-6
VOLUME 3
ORGANOPHOSPHORUS STEREOCHEMISTRY
Part I: Origins of P (III \& IV) Compounds
Edited by W. E. McEWEN and K. D. BERLIN 1975, 400 pp., $\$ 34.00 / £ 24.15^{*}$ ISBN: 0-12-787031-8
*Set Price for Parts I and II (Volumes 3 and 4): \$58.00. Set prices are not valid in the United Kingdom, Australia or New Zealand.

VOLUME 2

SOLID PHASE SYNTHESIS
Edited by E. C. BLOSSEY and D. C. NECKERS
1975, 384 pp., \$29.50/£20.95 ISBN: 0-12-786165-3

VOLUME 1
 THE SYNTHESIS OF LIFE

Edited by C. C. PRICE
1974, 408 pp., $\$ 27.00 / £ 19.20$ ISBN: 0-12-787260-4
Published by Dowden, Hutchinson and Ross, Inc. Distributed Worldwide by Academic Press, Inc.
N.B.: These series are now available on a Continuation Order basis. Your continuation order authorizes us to ship and bill each volume automatically, immediately upon publication. This order will remain in effect until cancelled. Please specify volume number with which your order is to begin.
Send payment with order and save postage plus $50 \notin$ handling charge. Prices are subject to change without notice.

ACADEMIC PRESS, INC.

A Subsidiary of Harcourt Brace Jovanovich, Publishers
111 FIFTH AVENUE, NEW YORK, N.Y. 10003
24-28 OVAL ROAD, LONDON NW1 7DX

Copolymers, Polyblends. and Composites

Advances in Chemistry Series No. 142

Norbert A. J. Platzer, Editor

A symposium sponsored by the Division of Industrial and Engineering Chemistry, and cosponsored by the Division of Polymer Chemistry, the Division of Organic Coatings and Plastics Chemistry, and the Division of Cellulose, Wood, and Fiber Chemistry of the American Chemical Society.

This timely collection of thirty-eight papers is comprehensive and unique in its coverage of the latest research results on copolymers, polyblends, and composites which are used to toughen brittle polymers with elastomers, to reinforce rubbers with active fillers, and to strengthen or stiffen plastics with fibers or minerals.

Specific topics include:

- determination of MWD in homopolymers; liquidliquid phase transition phenomena
- grafting kinetics of ABS; rubber-modified polymers; block copolymers; laminating resins; vinylene carbonate
- polymerization and copolymerization behavior; covulcanization of elastomer blends

482 pages (June 1975) \$34.50 clothbound (ISBN 0-8412-0214-1).

SIS/American Chemical Society
1155 16th St., N.W./Wash., D.C. 20036
Please send \qquad copies of No. 142 Copolymers,
Polyblends, and Composites at $\$ 34.50$ per book.
\square Check enclosed for \$ \square Bill me
Postpaid in U.S. and Canada, plus 40 cents elsewhere.

Name

Address

City

тнн оomena or Organic Chemistry

February 3, 1978

Intramolecular Dipolar Cycloaddition Reactions
 with Vinylbiphenyl-Substituted 1,3-Dipoles ${ }^{1}$

Albert Padwa,* Hao Ku, and Arthur Mazzu
Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214

Received July 14, 1977

Abstract

The intramolecular 1,3 -cipolar cycloaddition reactions of several vinylbiphenyl-substituted 1,3 -dipoles wer? studied. Condensation of 2^{\prime}-vinyl-2-biphenylcarboxaldehyde with N-phenylhydroxylamine produced a transient nitrone intermediate which quantitatively cyclized to give phenanthro $[9,1 \mathrm{C}-\mathrm{c}]$ isoxazole 5 . The regioselectivity of the above cycloaddition is controlled by steric factors and not by HOMO-LUMO interactions. A series of vinylbi-phenyl-substituted 2 H -azirines containing dipolarophile groups in close prozimity to the azirine ring were subjected to UV irradiation. The exclusive formation of internal 1,3 -dipolar cycloadducts can be attributed to cycloaddition of the initially generated nitrile ylide onto the neighboring double bond of the dipolarophile. A similar mode of cycloaddition occurred when N-(p-nitrobenzyl)-2'-vinyl-2-biphenylcarboximidoyl chloride (26) was treated with base. With these systems there is no particular constraint to attaining the parallel plane approach of addends, and consequently smooth 1,3 -dipolar cycloaddition readily occurs. Irradiation of $3,3^{\prime}$ - ($2,2^{\prime}$-biphenylene)bis [2 H -azirine] (18) with electron-deficient olefins gives cycloadducts derived from a transient diazabicyclo[3.1.0]hexene intermediate. The isolation of imidazole derivative 29 from the irradiation of 18 in the presence of dimethyl fumarate requires the formation of a discrete intermediate, in which transfer of a hydrogen from the ring to the side chain can occur. This process represents a rare example of an ene-type reaction from a 1,3 -dipole.

Interest in the chemistry of 2 H -azirines has increased considerably over the past several years. ${ }^{2}$ As a synthetic reagent the 2 H -azirine ring occupies a position of particular utility. An unusual feature of this three-membered heterocyclic ring is that it is susceptible tc attack by both electrophilic and nucleophilic reagents. ${ }^{2}$ In addition, the 2π electrons present in the ring can participate in thermally allowed [$\pi 4 \mathrm{~s}$ $+\pi 2 \mathrm{~s}$] cycloadditions as dienophiles ${ }^{3,4}$ or as dipolarophiles. ${ }^{5}$ Few reactions rival cycloadditions in the number of bonds that undergo transformation during the reaction, producing products considerably more complex than the reactants. Cycloaddition reactions utilizing 2 H -arizines include thermal reactions with ketenes, ${ }^{6,7}$ ketenimines, ${ }^{7}$ nitrile oxides, ${ }^{5}$ cyclopentadienones, 8,9 cyclopentadiene, ${ }^{10}$ diphenylisobenzofuran ${ }^{11,12}$ and diazomethane ${ }^{5}$ to yield a variety of unusual heterocyclic ring systems. 2 H -Azirines also react photochemically with various carbon-carbon and hetero double bonds to give five-membered heterocyclic rings. ${ }^{13,14}$ The photoreaction proceeds by way of irreversible opening of the azirine ring to form a nitrile ylide intermediate which is subsequently trapped by a suitable dipolarophile. ${ }^{13} \mathrm{As}$ part of a research program designed to uncover new cycloaddition reactions of 2 H -azirines, we initiated a study dealing with the intramolecular cycloaddition reactions of nitrile ylides generated by the photolysis of 2 H -azirines. ${ }^{15}$ In a continuation of these studies, we have recently examined the intramolecular 1,3-dipolar cycloaddition reactions of a series of vinylbi-phenyl-substituted 2 H -azirines. The results which we have encountered with this system are described in this paper.

Results and Discussion

Our initial goal was to determine whether a vinylbi-phenyl-substituted 1,3 -dipole is capable of undergoing intramolecular 1,3-dipolar cycloaddition. For various reasons, nitrone 4 was chosen as a suitable substrate fcr our model studies. The preparation of N -[o-(o-vinylphenyl)benzylidene]aniline N-oxide (4) required the initial synthesis of 2^{\prime} -vinyl-2-biphenylcarboxaldehyde (3). This was accomplished by treating diphenylaldehydic acid methyl ester (1$)^{16}$ with methyltriphenylphosphorane. Subsequent reduction of the initially formed Wittig product 2 with lithiun aluminum hydride followed by oxidation of the resulting alcohol with Corey's pyridinium chlorochromate reagent ${ }^{17}$ gave 3 in ex-

5
cellent yield. Condensation of 3 with N-phenylhydroxylamine in absolute ethanol resulted in the transient formation of 4 which immediately cyclized to give cis-1,3,3a,11b-tetrahy-dro-1-phenylphenanthro $[9,10-c$]isoxazole (5) as the only detectable product.

The regioselectivity of the internal cycloaddition was established by hydrogenolysis of 5 to 6 which, in turn, was further hydrogenated to 7 . Oxidation of 7 with pyridinium chlorochromate gave 9 -phenanthrene carboxyaldehyde 8. Thus, the formation of 8 from this series of reactions provides

strong support for the structure of 5 . If the internal cycloaddition of nitrone 4 had proceeded in the opposite direction (i.e., formation of 9), then the hydrogenation oxidation sequence would have given ketone 10 as the ultimate product.

The formation of 5 from 4 is representative of the wellknown intramolecular cycloaddition of a nitrone to an olefin. ${ }^{18,19}$ Numerous examples of this type of cycloaddition exist in the literature. ${ }^{19,20} \mathrm{LeBel}$ and co-workers have elegantly demonstrated the utility and synthetic scope of this intramolecular dipolar cycloaddition for the preparation of a variety of polycyclic isoxazolidines. ${ }^{21}$ The exclusive formation of 5 is especially interesting in light of Huisgen's work dealing with the bimolecular reaction of N-phenylbenzalnitrone (11) with styrene. ${ }^{22}$ Huisgen's group was able to show that the cycloaddition of nitrone 11 with sytrene gave a single re-

11
gioisomer whose structure was established as isoxazolidine 12. Thus, the regioselectivity observed in the reaction of 3 with N-phenylhydroxylamine is directly opposite to that encountered by Huisgen. Preferential formation of 5 rather than 9 by a concerted pathway may be due to steric destabilization of the transition state for formation of the latter. It would seem as though the regioselectivity of the intramolecular cycloaddition of nitrone 4 is controlled by steric factors and not by the HOMO-LUMO interaction, which generally control the regioselectivity in bimolecular cycloaddition reactions. ${ }^{23-25}$

Having established the occurrence of an intramolecular 1,3-dipolar cycloaddition reaction with vinylbiphenyl nitrone 4, we decided to study the intramolecular photocycloaddition reactions of some related vinylbiphenyl substituted 2 H -azirines. Irradiation of 2 H -azirines generates nitrile ylides as reactive intermediates which can undergo both 1,1 - and 1,3-intramolecular dipolar cycloaddition. ${ }^{15}$ As was pointed out elsewhere, ${ }^{15}$ the geometry of the transition state involved in the intramolecular 1,1-cycloaddition reaction is significantly different from that required for concerted 1,3-dipolar cycloaddition. In view of the stringent spatial requirements associated with the intramolecular cycloaddition of nitrile ylides, we thought it worthwhile to examine the photochemical behavior of a series of vinylbiphenyl-substituted 2 H -azirines in order to determine whether a 1,1- or 1,3-dipolar cycloaddition would occur.

As our first model, we chose to investigate the photochemistry of 3 -(2^{\prime}-vinyl-2-biphenyl)- 2 H -azirine (13). Our initial attempt to synthesize 13 involved the classical iodine azide route of Hassner and co-workers. ${ }^{26}$ Reaction of 1.1 equiv of iodine azide with $2,2^{\prime}$-divinylbiphenyl followed by treatment of the initially formed iodine azide adducts with potassium tert-butoxide resulted in the formation of a mixture of both the monoazide 14 and divinylazide 15 . It would appear as though the initially formed iodine azide adduct undergoes further reaction with IN_{3} at a rate competitive with starting material. Monoazide 14 was found to rapidly cyclize to tria-zolo[1,5-a]azepine 16 on standing at room temperature. ${ }^{27}$ Further heating of 16 resulted in the loss of nitrogen and formation of vinylaziridine 17. Since it was not possible to obtain a sample of 13 from the thermolysis of vinyl azide 14, we subjected the mixture of vinyl azides (i.e., 14 and 15) to UV

13

15

16
irradiation. Chromatography of the crude photolysate resulted in the isolation of the desired 2 H -azirine 13 in 13% yield as well as bis(2 H -azirine) 18 in 60% overall yield. Since the yield of 13 was so low, we decided to use an alternate procedure to prepare azirine 13. This was accomplished by treating aldehyde 3 with iodine azide followed by reaction with potassium tert-butoxide to give 19 in high yield. Thermolysis of this material in refluxing benzene gave 2^{\prime}-(2 H -azirin- 3 -yl)- 2 biphenylcarboxaldehyde (20) in 85% yield. Treatment of the azirinyl aldehyde with methyltriphenylphosphorane afforded the desired 3 -(2^{\prime}-vinyl-2-biphenyl)- $2 H$-azirine (13) in good yield.

3

Irradiation of azirine 13 in benzene gave $1 H$. phenanthro $9,10-b$]pyrrole (21) as the only identifiable photoproduct. The formation of this material arises by 1,3 -dipolar cycloaddition of the initially formed nitrile ylide onto the double bond followed by air oxidation to pyrrole 21 . No detectable quantities of a 1,1-cycloadduct could be found in the crude photolysate. The structure of 21 was unequivocally established by comparison with an incependently synthesized sample obtained by the iodine-catalyzed photooxidation of 2,3-diphenylpyrrole (22). Rigidly held stilbene moieties are

known to yield phenanthrene derivatives on irradiation and provide excellent precedent for this latter transformation. ${ }^{28-31}$

Additional examples of the intramolecular 1,3-dipolar cycloaddition reaction of these vinylbiphenyl-substituted systems were provided by the photolysis of azirines 20 and 23. Methyl 2'-(2 H -azirin-3-yl)-2-biphenylacrylate (23) was conveniently prepared by treating azirinyl aldehyde 20 with carbomethoxymethyltriphenylphosphorane. Irradiation of 23 in benzene gave methyl 1 H -dibenz $[\mathrm{e}, \mathrm{g}]$ indole-3-carboxylate 25 in 43% yield. Again, no detectable quantities of a 1,1 -cycloadduct could be found in the crude photolysate. Similarly, irradiation of azirinyl aldehyde 20 gave phenanthro $9,10-d$]oxazole (24) as the sole photoproduct. The structure of this material was verified by comparison with an independently synthesized sample prepared by the iodinecatalyzed photooxidation of 4,5-diphenyloxazole. ${ }^{32}$ The formation of both of these adducts can be attributed to 1,3 -dipolar addition of the initially generated nitrile ylide onto the adjacent π bond followed by air oxidation. The regioselectivity encountered here is similar to that normally observed in the

0

24

25
photolysis of 2 H -azirines with benzaldehyde and methyl acrylate. ${ }^{13,14}$

We also studied the intramolecular dipolar cycloaddition reaction of the nitrile ylide generated from the base treatment of imidoyl chlcride 26. o-Vinylbiphenyl-substituted imidoyl chloride 26 was conveniently prepared by the series of reactions outlined below. Reaction of triethylamine with a benzene solution of 26 at room temperature produced triethylammonium chloride and an orange-red solution, which presumably contains the unstable nitrile ylide. ${ }^{33}$ After stirring for 20 h at room temperature, an orange solid was obtained whose structure was identified as 2,3-dihydro-2-(p-nitrophenyl)1 H -phenanthro $[9,10-b]$ pyrrole (27). The formation of $\mathbf{2 7}$ can be attributed to 1,3 -dipolar addition of the initially generated nitrile ylide across the neighboring double bond followed by a rapid $1,3-\mathrm{H}$ shift. The complete absence of a 1,1 -cycloadduct with this system indicates that the transition state involved in the cycloaddition must be flexible enough to allow for maximum orb:tal overlap in the normal "two-plane" orientation approach required for 1,3-dipolar cycloaddition. ${ }^{34}$

26
27
Having verizied that vinylbiphenyl-substituted 2 H -azirines undergo smooth intramolecular 1,3-dipolar cycloaddition, we turned our attention to the photochemical behavior of $\mathrm{bis}(2 \mathrm{H}$-azirine) 18. Previous work has shown that 2 H -azirines can be converted to 1,3 -diazabicyclo[3.1.0] hex-3-enes when the irradiation is carried out in the absence of an added dipolarophile. ${ }^{35} 36$ The formation of these dimers can be rationalized by 1,3 -dipolar addition of the initially generated nitrile ylide onto a ground-state azirine molecule. Care is required in the choice of solvent, photolysis time, and substituents since the 1,3 -diazabicyclohexenes are themselves photochemically labile. ${ }^{37}$ On the basis of these earlier observations, we felt that the irradiation of a representative bis(2 H azirine) such as 18 could lead to some interesting photochemistry.

Irradiation of $3,3^{\prime}$-($2,2^{\prime}$-biphenylene) bis[2 H -azirine] (18) in benzene through Pyrex resulted in the formation of a complex mixture of products. However, when the irradiation of 18 was carried out in the presence of dimethyl acetylenedicarboxylate a good yield of a cycloadduct 28 was obtained. The structure of this material was assigned as dimethyl $2 \mathrm{H}, 4 \mathrm{H}$-phenanthro $[9,10-d$] pyrrolo $[1,2$-c]imidazole- 5,6 -dicarboxylate (28) on the basis of its characteristic analytical and spectral data. Photolysis of 18 with dimethyl fumarate in benzene took an entirely different course and produced cycloadduct 29 as the only detectable photoproduct. The structure of this material was verified by comparison with an independently synthesized sample prepared from the reaction of 4,5-ciphenylimidazole with dimethyl itaconate followed by an iodine-induced photooxidation of the imidazole ring of structure 35. In an analogous manner, photoaddition of 18 with methyl acrylate gave phenanthroimidazole 30 in high yield.

The formation of cycloadduct 28 can be rationalized by the assumption that the initially generated nitrile ylide (i.e., 31)

undergoes rapid cycloaddition across the $\mathrm{C}-\mathrm{N}$ double bond of the adjacent azirine ring to give a transient diazabicyclohexene 32. The high degree of order already present in the transition state undoubtedly enhances the rate of the intramolecular reaction relative to bimolecular cycloaddition with the added dimethyl acetylenedicarboxylate. The initially generated diazabicyclohexene 32 undergoes a subsequent ring opening to give azomethine ylide 33 which is ultimately trapped with the added dipolarophile. Reactions involving the photochemical cleavage of bicycloaziridines to azomethine ylides ${ }^{37}$ and their subsequent additions to reactive multiple bonds are well known and provide good chemical analogy for the above suggestion.

The isolation of cycloadduct 29 (or 30) from the addition of dimethyl fumarate to azomethine ylide 33 seemingly requires the formation of a discrete intermediate (i.e., 34) in which transfer of a hydrogen from the ring to the side chain can occur. The results do not seem to be consistent with a process involving 1,3 -cycloaddition of 33 with dimethyl fumarate followed by ring opening of the initially formed cycloadduct to give 29, since there is no reason why the cycloadduct derived from methyl acrylate would be expected to give 30 under the reaction conditions used. The formation of cycloadducts 29 and/or 30 in the reaction of 18 with elec-tron-deficient olefins has some interesting implications in relation to the classical 1,3-dipolar cycloaddition reaction. ${ }^{25}$ Current opinion favors a concerted mechanism for dipolar cycloaddition, ${ }^{25}$ although an alternate proposal involving a spin-paired diradical intermediate has been advanced by Firestone. ${ }^{38}$ The above data appear to provide a rare example of an ene-type reaction from a 1,3 -dipole. The possibility that

other ene-reactions can occur from 1,3-dipoles now merits serious consideration. We are further investigating these mechanistic ramifications.

Experimental Section

All melting and boiling points are uncorrected. Elemental analyses were performed by Atlantic Microlabs, Atlanta, Georgia. The infrared absorption spectra were determined on a Perkin-Elmer Model 137 Infracord spectrophotometer. The ultraviolet absorption spectra were measured with a Cary Model 14 recording spectrophotometer using $1-\mathrm{cm}$ matched cells. The proton magnetic resonance spectra were determined at 100 MHz using a Jeolco-MH-100 and a XL-100 spectrometer. Mass spectra were determined with a Perkin-Elmer RMU6 mass spectrometer at an ionizing voltage of 70 eV . All irradiations were carried out using a $450-\mathrm{W}$ Hanovia medium-pressure mercury arc.

Preparation of $\mathbf{2}^{\prime}$-Vinyl-2-biphenylcarboxaldehyde (3). To a solution containing 25.0 g of methyltriphenylphosphonium bromide in 150 mL of dry ether was added 28.0 mL of a $2.5 \mathrm{M} n$-butyllithium solution at room temperature under a nitrogen atmosphere. The resulting orange solution was allowed to stir at room temperature for 20 min prior to the addition of 10.2 g of diphenaldehydic acid methyl ester (1) ${ }^{16}$ in 200 mL of ether. The mixture was stirred at room temperature for 24 h and then 4 drops of water was added, and the solution was filtered to remove the precipitated triphenylphosphine oxide. Removal of the solvent under reduced pressure left a crude brown residue which was chromatographed on a $3 \times 50 \mathrm{~cm}$ Florosil column using a 40% ether-pentane mixture as the eluent. The major component isolated was a pale oil, $5.0 \mathrm{~g}(49 \%)$, which was identified as 2^{\prime} -vinyl-2-biphenylcarboxylic acid methyl ester (2) on the basis of the following spectral data: IR (neat) $3.39,5.75,6.22,6.78,6.95,7.72,8.82$, $9.10,10.90,13.23$, and $14.00 \mu \mathrm{~m}$; NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\tau 6.50(\mathrm{~s}, 3$ $\mathrm{H}), 5.00(\mathrm{dd}, 1 \mathrm{H}, J=10.0$ and 1.5 Hz$), 4.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.0$ and 1.5 $\mathrm{Hz}), 3.62(\mathrm{dd}, 1 \mathrm{H}, J=18.0$ and 10.0$), 2.41-2.99(\mathrm{~m}, 7 \mathrm{H})$, and $2.03-2.26$ ($\mathrm{m}, 1 \mathrm{H}$).

To a solution containing 360 mg of lithium aluminum hydride in 25 mL of dry ether was added to 4.0 g of the above ester in 25 mL of
ether. The mixture was heated at reflux for 1 h and cooled, and then 1 mL of a 10% sodium hydroxide soluticn was added dropwise followed by 2 mL of water. The ethereal solution was decanted from the gummy precipitate and washed with water, and then dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure to leave behind $3.0 \mathrm{~g}(89 \%)$ of a clear oil which was assigned as 2^{\prime}-vinyl-2-biphenylmethanol on the basis of the following spectral data: IR (neat) $2.95,3.21,6.10,6.76,6.90,7.04,8.32,9.9,10.90$ and 13.22 $\mu \mathrm{m} ; \mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 〒 $8.00(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}), 4.98$ (dd, 1 $\mathrm{H}, J=10.0$ and 1.5 Hz), 4.48 (dd, $1 \mathrm{H}, J=18.0$ and 1.5 Hz), 3.66 (dd, $1 \mathrm{H}, J=18.0$ and 10.0 Hz), and $2.32-3.07(\mathrm{~m}, 8 \mathrm{H})$. The crude alcohol was not purified but was used directly ir the next step.
To a solution containing 2.16 g of pyridinium chlorochromate ${ }^{17}$ in 25 mL of methylene chloride at room temperature was added 1.05 g of the above alcohol in 25 mL of methylere chloride. After stirring for 1.5 h , the mixture was filtered through silica gel to remove the chromium salts. The solvent was removed under reduced pressure to leave behinc $900 \mathrm{mg}(86 \%)$ of a pale-yellow oil whose structure was assigned as 2^{\prime}-vinyl-2-biphenylcarboxaldehyde (3) on the basis of its spectral data: IR (neat) $3.28,3.53,3.64,5.90,6.2\llcorner, 6.83,6.95,7.21,7.99,8.35$, $10.05,10.88,12.05$ and $13.21 \mu \mathrm{~m}$; NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\tau 4.96(\mathrm{~d}$, $1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 3.67(\mathrm{dd}, 1 \mathrm{H}, J=16.0$ and 11.0 Hz$), 2.33-2.98(\mathrm{~m}, 7 \mathrm{H}), 1.98-2.12(\mathrm{~m}, 1 \mathrm{H})$, and $0.38(\mathrm{~s}, 1$ $\mathrm{H})$.

Reaction of $\mathbf{2}^{\prime}$-Vinyl-2-biphenylcarboxaldehyde with \boldsymbol{N} Phenylhydroxylamine. A solution containing 550 mg of N-phenylhydroxylamine and 1.04 g of 3 in $5 \mathrm{~m}^{-}$of ethanol was allowed to stand at room temperature for 4 h . At the end of this time, a paleyellow oil had separated which eventually solidified. Recrystallization of the solid from chloroform-hexane gave 998 mg (66%) of 1,3,3a,11b-tetrahydro-1-phenylphenanthro[9,10-c]isoxazole (5): mp $147-149^{\circ} \mathrm{C}$; IR (KBr) 6.28, 6.77, 6.91, 8.26, 8.84, 9.26, $9.81,10.25,10.64$, $11.13,13.15,13.61$, and $14.34 \mu \mathrm{~m}$; UV (methanol) $266(\epsilon 17000)$ and $301 \mathrm{~nm}(\epsilon 1710)$; NMR) $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\tau 6.12-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.50$ (dd, $1 \mathrm{H}, J=16.0$ and 12.0 Hz), $4.86(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.52-3.11(\mathrm{~m}$, 11 H) and 2.13-2.36 (m, 2 H); mass spectrum $m / e 299\left(\mathrm{M}^{+}\right), 269,206$, 205, 191, 179, 178 (base), 177, 176, and 93.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}$: C, 84.24; H, 5.72; N, 4.68. Found: C, 84.24; H, 5.76; N, 4.68.

Addition of $\mathrm{Eu}(\mathrm{Fod})_{3}$ shift reagent to the NMR sample resulted in the conversion of the multiplet at 6.12-6.61 into a doublet of doublets of doublets ($\tau 6.63,1 \mathrm{H}, J=7.0,6.0$, and 5.5 Hz) and a doublet of doublets ($\tau 6.32,1 \mathrm{H}, J=9.0$ and 7.0 Hz). The doublet of doublets at $\tau 5.50$ was slightly compressed [$\tau 5.72$ idd, $1 \mathrm{H}, J=9.0$ and 6.0 Hz)] and the doublet at $\tau 4.86$ remained unchanged except for a slight downfield shift ($\tau 4.80$).
The structure of this product was further verified by reduction with palladium on carbon. A $150-\mathrm{mg}$ sample of 5 was taken up in methanol. To this solution was added 5 mg of a 5% palladium on carbon catalyst. The mixture was subjected to hydrogenolysis in a Parr hydrogenation apparatus at 15 psi for 5 h at room temperature. At the end of this time, the catalyst was filtered and the soivent removed under reduced pressure to give $65 \mathrm{mg}(62 \%)$ of a pale oil which was identified as 10 -anilino-9,10-dihydro-9-phenanthrenemethanol (6) on the basis of its spectral properties: IR (neat) 2.94, 3.43, 6.21, 6.63, 6.88, 7.59, 8.43, $9.66,10.93,13.30$, and $14.43 \mu \mathrm{~m}$; NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \tau 6.63-6.83$ (m, 1 H), 6.20-6.36 (m, 2 H), $5.05(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}$), and 2.13-3.43 $(\mathrm{m}, 14 \mathrm{H})$. The amino alcohol 6 was further hydrogenated. A $60-\mathrm{mg}$ sample of this material was taken up in methanol and 5 mg of 5% palladium on carbon was added. The mixture was subjected to hydrogenolysis in a Parr apparatus at 25 psi for 92 h at room temperature. At the end of this time the catalys: was filtered and the solvent removed under reduced pressure. The major component obtained was identified as 9,10-dihydro-9-phenanthrenemethanol (7) on the basis of its spectral data: IR (neat) $2.98,3.41,6.22,6.71,6.88,9.31,9.70$ and $13.20 \mu \mathrm{~m}$; NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \tau 8.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.84-7.18(\mathrm{~m}, 3$ $\mathrm{H}), 6.43-6.62(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.92(\mathrm{~m}, 5 \mathrm{H})$, and $2.11-2.50(\mathrm{~m}, 3 \mathrm{H})$. The crude alcohol was oxidized using 100 mg of pyridinium chlorochromate ${ }^{17}$ in 25 mL of methylene chloride to give 9-phenanthrenecarboxyaldehyde (8), $\mathrm{mp} 100-102{ }^{\circ} \mathrm{C}$ (lit. ${ }^{39} \mathrm{mp} 100-101^{\circ} \mathrm{C}$). The structure of this material was verified by comparison with an authentic sample.

Irradiation of 2-(1-Azidovinyl)-2'-vinylbiphenyl (14) in Benzene. A $90-\mathrm{mg}$ sample of 2-(1-azidovinyl)- 2^{\prime}-vinylbiphenyl ${ }^{27}$ (14) in 150 mL of distilled benzene was irradiated under a nitrogen atmosphere using a 450-W Hanovia lamp equipped with a uranium glass filter sleeve for 70 min . The solvent was removed under reduced pressure and the crude photolysate was subjected to preparative thick-layer chromatography using a 1:1 mixture of pentane-ether as the eluent. The major band isolated from the thick-layer plate con-
tained 65 mg ($8(1 \%)$ of a pale oil which was identified as 3 -(2^{\prime}-vinyl-2-biphenyl) 2 H -azirine (13) on the basis of the following spectral data: IR (neat) $3.27,5.75,6.14,6.24,6.80,6.93,7.60,10.02,1(1.91$, and 13.07 $\mu \mathrm{m}$; UV (cyclohexane) $300 \mathrm{~nm}(\epsilon 2060)$; NMR $\left(100 \mathrm{MHz} \mathrm{CDCl}_{3}\right) \tau 8.73$ (s, 2 H), 4.95 (d, : H, $J=12.0 \mathrm{~Hz}$), $4.46(\mathrm{~d}, 1 \mathrm{H}, J=18 . \mathrm{CHz}$), 3.68 (dd, $1 \mathrm{H}, J=18.0$ and 12.0 Hz$), 2.33-2.95(\mathrm{~m}, 7 \mathrm{H})$ and $1.93-2.07(\mathrm{~m}, 1 \mathrm{H})$; mass spectrum $m / e 219\left(\mathrm{M}^{+}\right), 218$ (base), 217, 204, 191, 189, 179, and 178.

Anal. Calcd fo: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}: \mathrm{C}, 87.64 ; \mathrm{H}, 5.98 ; \mathrm{N}, 6.39$. Found: C, 87.52; H, 5.76; N, 6.48.

Preparation of $\mathbf{2}^{\prime}$-($\mathbf{2 H}$-Azirin-3-yl)-2-biphenylcarboxaldehyde (20). To a solution containing 3.26 g of sodium azide in 40 mL of acetonitrile at $-5{ }^{\circ} \mathrm{C}$ was added a solution containing 6.57 g of iodine monochloride in 5 mL of acetonitrile. The mixture was allowed to stir for 30 min and then 3.34 g of 2^{\prime}-vinyl-2-biphenylcarboxaldehyde (3) dissolved in 10 mL of acetonitrile was added. The mixture was stirred for an additional 30 min at $-5^{\circ} \mathrm{C}$ and was then stirred for 9 h at room temperature. The resulting orange slurry was added to 200 mL of water and then extracted with ether. The ether extracts were washed with a 5% aquecus sodium thiosulfate solution and then with water. The ethereal layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give $5.51 \mathrm{~g}(93 \%)$ of an orange oil which was used immediately in the next step.

To a solution containing the above iodine azide adduct in 50 mL of dry ether at $-5^{\circ} \mathrm{C}$ was added 2.24 g of potassium tert-butoxide. The mixture was allowed to stir at $5^{\circ} \mathrm{C}$ for 14 h , washed with water, and dried over anhydrous magnesium sulfate. Removal of the solvent under reduced pressure left 3.10 g (83%) of an orange oil which was identified as $2^{\prime}-1$ - 1 -azidovinyl)-2-biphenylcarboxaldehyde (19) on the basis of the following spectra characteristics: IR (neat) $3.50,4.75,5.88$, $6.22,7.73,8.33,11.10,12.03$, and $13.20 \mu \mathrm{~m}$; NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\tau 5.31(\mathrm{~d}, 1 \mathrm{H}, j=1.5 \mathrm{~Hz}), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 2.42-2.90(\mathrm{~m}, 7$ $\mathrm{H}), 1.98-2.18(\mathrm{~m}, 1 \mathrm{H})$, and $0.23(\mathrm{~s}, 1 \mathrm{H})$. The crude oil was used directly in the next step without purification.

A solution containing 3.1 g of the above vinyl azide and 3 mg of 1,4-diazabicyclo[2.2.2]octane in 250 mL of benzene was heated at reflux for 20 h . The solvent was removed under reduced pressure, and the residue was purified by passing it through a $3 \times 60 \mathrm{~cm}$ Florosil column using a 20% acetone-hexane solution as the eluent. Removal of the solvent under reduced pressure left $2.25 \mathrm{~g}(85 \%)$ of a yellow oil which was subsequently sublimed at $40^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$ to give 2^{\prime} (2 H -azirin-3-yl)-2-biphenylcarboxaldehyde (20) as a pale-yellow solid: $\mathrm{mp} 67-68^{\circ} \mathrm{C}$; IR (KBr) 3.26, 3.51, 5.75, 5.91, 6.28, 6.94, 7.14, 7.85, 8.33, $10.09,12.0$ and $12.95 \mu \mathrm{~m}$; UV (cyclohexane) $295(\epsilon 3380)$ and 245 nm ($\epsilon 19$ 900); $\mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \tau 8.67(\mathrm{~s}, 2 \mathrm{H}), 1.77-2.68(\mathrm{~m}, 8 \mathrm{H})$, and $0.37(\mathrm{~s}, 1 \mathrm{H})$; mass spectrum $m / e 221\left(\mathrm{M}^{+}\right), 205,204,192$ (base), 191, and 165.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 81.43 ; \mathrm{H}, 5.01 ; \mathrm{N}, 6.33$. Found: C, 81.37; H, 5.05; N, 6.10.

Preparation of 3-(2'-Vinyl-2-biphenyl)-2H-azirine (13). To a solution containing 1.43 g of methyltriphenylphosphonium bromide in 50 mL of dry ether was added 1.6 mL of a 2.5 M n -butyllithium solution at room temperature under a nitrogen atmosphere. The resulting orange solution was allowed to stir at room semperature for 20 min prior to the addition of 796 mg of 2^{\prime}-(2 H -azirin-3-yl)-2-biphenylcarboxaldehyde (19) in 30 mL of anhydrous ether. The mixture was allowed to stir at room temperature for 4 days and was then filtered to remove the precipitated triphenylphosphinє oxide. Removal of the solvent under reduced pressure left a dark yellow oil which was chromatographed on a $2 \times 30 \mathrm{~cm}$ Florosil column using a 1:1 pen-tane-ether mixture as the eluent. The major fraction isolated contained $356 \mathrm{mg}(45 \%)$ of a pale oil which was identified as 3-(2^{\prime}-vinyl-2-biphenyl)- 2 H -azirine (13). The spectral properties of this compound were identical to those obtained for the major product isolated from the irradiation of 2-(1-azidovinyl)- 2^{\prime}-vinylbiphenyl (14).

Irradiation of 3 -(2'-Vinyl-2-biphenyl)-2 H -azirine (13) in Benzene. A $280-\mathrm{mg}$ sample of 3 -(2^{\prime}-vinyl-2-biphenyll- 2 H -azirine (13) in 410 mL of distilled benzene was irradiated under a nitrogen atmosphere using a 450-W Hanovia lamp equipped with a Corex filter sleeve for $45 \mathrm{~m} . \mathrm{in}$. The solvent was removed under reduced pressure, and the crude residue was subjected to preparctive thick-layer chromatography using a 1:1 pentane-ether mixture as the eluent. The major band isolated contained $123 \mathrm{mg} \mathrm{(44} \mathrm{\%)}$ of 1 H phenanthro $9,10-b]$ pyrrole (21) as a white solid: mp $155-156{ }^{\circ} \mathrm{C}$; IR (KBr) $2.95,6.16,6.496 .69,6.88,7.10,8.03,9.15,11.10,13.14$, and 13.76 $\mu \mathrm{m}$; UV (cyclohexane) 250 ($\epsilon 51200$), 255 ($\epsilon 7600$), 287 ($\epsilon 14000$), and $298 \mathrm{~nm}(\epsilon 7440)$; NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\tau 2 . \varepsilon 0-3.04(\mathrm{~m}, 2 \mathrm{H})$, $2.38-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.06-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.50$ $(\mathrm{m}, 2 \mathrm{H})$, and $0.90-1.20(\mathrm{~m}, 1 \mathrm{H})$; mass spectrum $m / e 218,217\left(\mathrm{M}^{+}\right.$and base), 187, $108.5\left(\mathrm{M}^{2+}\right)$, and 94 .

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}: \mathrm{C}, 88.45 ; \mathrm{H}, 5.10 ; \mathrm{N}, 6.45$. Found: C, 88.63; H, 4.98; N, 6.36.

The structure of this material was further established by comparison with an independently synthesized sample. A solution containing 75 mg of 2,3-diphenylpyrrole ${ }^{40}(\mathbf{2 2})$ and 3 mg of iodine in 135 mL of cyclohexane was irradiated under a nitrogen atmosphere using a 450-W Hanovia lamp equipped with a Pyrex filter sleeve for 45 min . The solvent was removed under reduced pressure, and the crude photolysate was subjected to preparative thick-layer chromatography using a 20% ether-pentane mixture as the eluent. The major band isolated contained $31 \mathrm{mg}(40 \%)$ of $1 H$-phenanthro $9,10-b]$ pyrrole (21): $\mathrm{mp} 155-156{ }^{\circ} \mathrm{C}$. The spectral properties of this compound were identical to those obtained for the major product isolated from the irradiation of 3-(2'-vinyl-2-biphenyl)- 2 H -azirine (13).

Preparation of Methyl 2'-(2 H -Azirin-3-yl)-2-biphenylacrylate (23). A solution containing 350 mg of 2^{\prime}-(2.4 -azirin- 3 -yl)-2-biphenylcarboxaldehyde (20) and 560 mg of carbomethoxymethyltriphenylphosphorane ${ }^{41}$ in 25 mL of methylene chloride was heated at reflux for 6 h . The solvent was removed under reduced pressure and the resulting residue was chromatographed on a $1 \times 30 \mathrm{~cm}$ Florosil column using a 40% ether-pentane mixture as the eluent. The major fraction isolated contained $300 \mathrm{mg}(68 \%)$ of an orange oil which was identified as trans-methyl 2^{\prime}-(2H-azirin-3-yl)-2-biphenylacrylate (23) on the basis of the following spectral data: IR (neat) $5.74,6.08,6.21,6.93,7.54$, $7.81,8.29,8.47,10.13$, and $13.00 \mu \mathrm{~m}$; UV (zyclohexane) 272 nm (ϵ 16500); NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.68(\mathrm{~s}, 2 \mathrm{H}), 6.33(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}$, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 2.14-2.76(\mathrm{~m}, 8 \mathrm{H})$, and $1.81-1.96(\mathrm{~m}, 1 \mathrm{H})$; mass spectrum $m / e 277\left(\mathrm{M}^{+}\right), 246,245,244,219,218,217,204,203,191,190$, 179, 178 (base), 177, 176, 165, and 142.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 77.96; $\mathrm{H}, 5.45 ; \mathrm{N}, 5.05$. Found: C, 78.16; H, 5.48; N, 5.20.

Irradiation of trans-Methyl $\mathbf{2}^{\mathbf{\prime}}$-($\mathbf{2 H}$-Azarin-3-yl)-2-biphenylacrylate (23) in Benzene. A $390-\mathrm{mg}$ sample of trans-methyl 2^{\prime} (2 H -azirin-3-yl)-2-biphenylacrylate (23) in 400 mL of distilled benzene was irradiated under a nitrogen atmosphere using a $450-\mathrm{W}$ Hanovia lamp equipped with a Corex filter sleeve for 30 min . The solvent was removed under reduced pressure, and the crude residue was chromatographed on a $2 \times 30 \mathrm{~cm}$ Florosil column using a 1:1 pen-tane-ether mixture as the eluent. The major component isolated was a white solid, $165 \mathrm{mg}(43 \%)$, which was recrystallized from acetonepentane to give methyl $1 H$-dibenz $[e, g]$ indo e-3-carboxylate (25) as a white crystalline solid: $\mathrm{mp} 219-220^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 2.99,5.92,6.18$, $6.50,6.91,7.28,7.72,8.35,8.50,8.81,8.98,9.22,9.89,10.49,10.70,13.34$ and $13.88 \mu \mathrm{~m}$; UV (cyclohexane) 254 ($\epsilon 27400$), 261 ($\epsilon 8000$), 286 (ϵ 5640), 292 ($\epsilon 5660$), and $306 \mathrm{~nm}(\epsilon 3430)$; NMR (60 MHz , acetone- d_{6}) $\tau 6.12(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.60(\mathrm{~m}, 5 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H}), 1.68-1.88(\mathrm{~m}, 1 \mathrm{H})$, 1.23-1.48 (m, 2 H), and 0.18-0.40 (m, 1 H); mass spectrum m/e 276, $275\left(\mathrm{M}^{+}\right.$and base), 245, 244, 214, 189, 137.5 ($\left.\mathrm{M}^{2+}\right), 122,107.5$, and 94.5.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, 78.53; $\mathrm{H}, 4.76 ; \mathrm{N}, 5.09$. Found: C, 78.37; H, 4.97; N, 5.08.

Irradiation of $\mathbf{2}^{\prime}$-(2H-Azirin-3-yl)- $\mathbf{2}^{\prime}$-biphenylcarboxaldehyde (20) in Benzene. A $130-\mathrm{mg}$ sample of azirinyl aldehyde 20 in 150 mL of distillec benzene was irradiated under a nitrogen atmosphere using a 450-W Hanovia lamp equipped with a Corex filter sleeve for 30 min . The solvent was removed under reduced pressure, and the crude residue was subjected to preparative thick-layer chromatography using a 1:1 pentane-ether mixture as the eluent. The major band isolated contained $54 \mathrm{mg}(41 \%)$ of an orange solid which was recrystallized from cyclohexane to give phenanthro $[9,10-d]$ oxazole (24), mp $145-147^{\circ} \mathrm{C}$. The structure of the photoproduct was assigned on the basis of its elemental analysis and spectral properties: IR (KBr) 6.14, $6.65,8.08,8.53,9.28,9.61,10.38,11.60,13.40$ and $13.87 \mu \mathrm{~m}$; UV (cyclohexane) $252(\epsilon 55300), 277(\epsilon 11500), 287(\epsilon 8030)$, and 300 nm (10 300); NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\tau 1.88-2.56(\mathrm{~m}, 5 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H})$, and $1.20-1.61(\mathrm{~m}, 2 \mathrm{H})$; mass spectrum $m / e ~ 220,219$ (M^{+}and base), 191, 190, 164, 163, $109.5\left(\mathrm{M}^{2+}\right)$ and 82.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{NO}: \mathrm{C}, 82.17 ; \mathrm{H}, 4.14 ; \mathrm{N}, 6.39$. Found: C, 82.15; H, 4.24; N. 6.17.

The structure of the photoproduct (24) was unambiguously established by comparison with an authentic sample which was prepared by the iodine-catalyzed photooxidation of 4,5 -diphenyloxazole. ${ }^{32}$

Preparation of \boldsymbol{N}-(\boldsymbol{p}-Nitrobenzyl)-2'-vinyl-2-biphenylcarboximidoyl Chloride (26). A solution containing 2.24 g of 2^{\prime}-vinyl-2-bipheny carboxylic acid, ${ }^{42} 2.4 \mathrm{~g}$ of thionyl chloride, and 3 drops of pyridine in 100 mL of benzene was heated at $70^{\circ} \mathrm{C}$ for 1 h . The solvent and excess thionyl chloride were removed under reduced pressure to leave behind 2.30 g (95%) of 2^{\prime}-vinyl-2-biphenylcarboxylic acid chloride as a pale-yellow oil: IR (neat) $5.59,6.26,6.39,6.82,8.37,8.91$,
$10.05,11.54$, and $12.94 \mu \mathrm{~m}$. The crude product was used immediately in the next step. To a solution containing the above acid chloride in 50 mL of ether at $0^{\circ} \mathrm{C}$ was added 1.67 g of p-nitrobenzylamine ${ }^{43}$ in 30 mL of ether. After the addition was complete, the mixture was allowed to warm to room temperature and then 20 mL of a 1 M sodium hydroxide solution was added. After stirring at $25^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, 20$ mL of water was added and the ethereal layer was separated from the basic aqueous layer. The ether extracts were washed with a 5% aqueous hydrochloric acid solution, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give 2.90 g (81%) of N-(p-nitrobenzyl)-2'-vinyl-2-biphenylcarboxamide as a white solid: $\mathrm{mp} 111-112{ }^{\circ} \mathrm{C}$; IR (KBr) 3.09, 6.15, 6.65, 7.45, 7.69, 7.79, 8.67, 9.09, $9.85,10.19,10.98,11.73,12.72,13.19$, and $14.40 \mu \mathrm{~m}$; NMR (60 MHz , $\left.\mathrm{CDCl}_{3}\right) \tau 5.78(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.97(\mathrm{dd}, 1 \mathrm{H}, J=10.0$ and 1.5 Hz$)$, 4.53 (dd, $1 \mathrm{H}, J=18.0$ and 1.5 Hz), $3.31-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~d}, 2 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 2.20-3.05(\mathrm{~m}, 8 \mathrm{H})$, and $2.11(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$; mass spectrum $m / e 358\left(\mathrm{M}^{+}\right), 328,219,208,207,180,179$ (base), 178, 165, $152,151,149,121,120$, and 106.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 73.73; H,5.06; N, 7.82. Found: C, 73.56; H, 4.93; N, 7.65 .

To a solution containing 250 mg of N-(p-nitrobenzyl)- 2^{\prime}-vinyl-2-biphenylcarboxamide in 5 mL of dry benzene under a nitrogen atmosphere was added 166 mg of phosphorus pentachloride in 5 mL of dry benzene. The mixture was heated at $60^{\circ} \mathrm{C}$ until the evolution of hydrogen chloride gas had ceased. The solvent and phosphoryl chloride were removed under reduced pressure leaving behind a pale-yellow oil which was identified as N-(p-nitrobenzyl)- 2^{\prime}-biphenylcarboximidoyl chloride (26) from the following spectral properties: IR (neat) $3.26,5.94,6.20,6.56,7.41,8.97,9.78,11.56$, and $12.99 \mu \mathrm{~m} ; \mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ т $5.40(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{dd}, 1 \mathrm{H}, J=$ 10.0 and 1.5 Hz), $4.50(\mathrm{dd}, 1 \mathrm{H}, J=18.0$ and 1.5 Hz$), 3.51(\mathrm{dd}, 1 \mathrm{H}, J$ $=18.0$ and 10.0 Hz$), 3.09(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 2.16-2.93(\mathrm{~m}, 8 \mathrm{H})$, and 2.08 (d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}$). The unstable imidoyl chloride was used immediately for the next step.

Reaction of \boldsymbol{N}-(p-Nitrobenzyl)-2'-biphenylcarboximidoyl Chloride (26) with Triethylamine. To a solution containing 260 mg of the previously prepared imidoyl chloride in 5 mL of dry benzene at $5^{\circ} \mathrm{C}$ under a nitrogen atmosphere was added 140 mg of freshly distilled triethylamine. The color of the solution turned yellow-green immediately and then began to turn orange as it slowly warmed to room temperature. After stirring at $25^{\circ} \mathrm{C}$ for 20 h , the solution was passed through a $2 \times 30 \mathrm{~cm}$ Florosil column using benzene as the eluent. The major component isolated contained $70 \mathrm{mg}(30 \%)$ of an orange-red solid: mp $167-168^{\circ} \mathrm{C}$, whose structure was assigned as 2,3-dihydro-2-(p-nitrophenyl)-1 H-phenanthro $[9,10-b]$ pyrrole (27) on the basis of the following spectral data: IR (KBr) $2.98,6.25,6.64$, $6.95,7.38,9.10,9.81,10.55,11.70,13.33,1384 \mu \mathrm{~m}$; UV (cyclohexane) $255(\epsilon 42000)$ and $324 \mathrm{~nm}(\epsilon 6300)$; NMR $\left(60 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \tau 6.83$ (dd, $1 \mathrm{H}, J=14.0$ and 8.0 Hz), $6.00(\mathrm{dd}, 1 \mathrm{H}, J=14.0$ and 10.0 Hz), $4.58(\mathrm{dd}, 1 \mathrm{H}, J=10.0$ and 8.0 Hz$), 3.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.78-2.76(\mathrm{~m}, 10$ H), and 1.22-1.77 (m,2 H); mass spectrum $m / \mathrm{e} 340\left(\mathrm{M}^{+}\right), 310,205$, 204, 180, 179 (base), 178, 154, 149, 105, and 77.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 77.63; $\mathrm{H}, 4.74 ; \mathrm{N}, 8.23$. Found: C, 77.50; H, 4.68; N, 7.84.

Photoaddition of $3,3^{\prime}$-(2,2'-Biphenylylene)bis[2 H -azirine] (18) with Dimethyl Acetylenedicarboxylate. A $100-\mathrm{mg}$ sample of 18^{27} in 150 mL of benzene which contained 61 mg of dimethyl acetylenedicarboxylate was irradiated with a 450 -W Hanovia lamp equipped with a Pyrex filter sleeve for 30 min . Removal of the solvent left a dark residue which was subjected to thick-layer chromatography using a 1:1 ether-hexane mixture as the eluent. The major component isolated (43 mg) was a crystalline solid, $\mathrm{mp} 169-170^{\circ} \mathrm{C}$, whose structure was assigned as dimethyl $2 H, 4 H$-phenanthro $[9,10-d]$ pyrrolo [1,2-c]im-idazole-5,6-dicarboxylate (28) on the basis of the following data: IR (KBr) $5.84,6.04,6.94,7.03,7.57,7.94,8.74,9.30,10.42,13.04,13.18$, and 13.66; UV (methanol) $242 \mathrm{~nm}(\epsilon 39250) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right)$ $\tau 6.88(\mathrm{~s}, 3 \mathrm{H}), 6.32(\mathrm{~s}, 3 \mathrm{H}), 6.10(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.56(\mathrm{~d}, 1 \mathrm{H} ; J$ $=17.0 \mathrm{~Hz}), 5.30(\mathrm{~d} .1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 4.36(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz})$, 2.0-2.8 (m, 8 H).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 70.58; $\mathrm{H}, 4.85 ; \mathrm{N}, 7.48$. Found: C, 70.42; H, 4.78; N, 7.27.

Photoaddition of $3,3^{\prime}$-(2,2'-Biphenylylene)bis[2 \boldsymbol{H}-azirine] (18) with Dimethyl Fumarate. A $100-\mathrm{mg}$ sample of 18 in 150 mL of benzene which contained 62 mg of dimethyl fumarate was irradiated with a 450-W Hanovia lamp equipped with a Pyrex filter sleeve for 30 min . Removal of the solvent left a dark oil which was subjected to thick-layer chromatography using a 15% methanol-benzene mixture as the eluent. The major fraction isolated from the thick-layer plate $(81 \mathrm{mg})$ was a white crystalline solid, $\mathrm{mp} 132-133^{\circ} \mathrm{C}$, whose structure was assigned as dimethyl ($1 H$-phenanthro $9,10-d$]imidazol-1-yl-
methyl)succinate (29) on the basis of the following data: IR (KBr) $5.80,6.55,6.90,7.25,7.40,7.75,8.20,8.53,9.23,13.14$, and $13.76 \mu \mathrm{~m}$; UV (methanol) $255 \mathrm{~nm}(\epsilon 97000)$; NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \tau 7.45$ (d $2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 6.30-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 3 \mathrm{H}), 6.35(\mathrm{~s}, 3 \mathrm{H}), 5.30$ (dd, $1 \mathrm{H}, J=15.0$ and 8.0 Hz), $5.10(\mathrm{dd}, 1 \mathrm{H}, J=15.0$ and 8.0 Hz), $2.2-2.4(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{~s}, 1 \mathrm{H}), 1.7-1.8(\mathrm{~m}, 1 \mathrm{HO}), 1.2-1.4(\mathrm{~m}, 3 \mathrm{H})$; mass spectrum $m / e 376\left(\mathrm{M}^{+}\right), 232,219,187,186$, and 169.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 70.20 ; \mathrm{H}, 5.36 ; \mathrm{N}, 7.44$. Found: C, 70.20; H, 5.70; N, 7.13.

The structure of this photoproduct was further verified by comparison with an independently synthesized sample. To a solution containing 220 mg of 4,5 -diphenylimidazole in 20 mL of benzene was added 35 mg of sodium hydride. The mixture was allowed to stir at room temperature for 1 h and then 158 mg of dimethyl itaconate in 5 mL of benzene was added. After stirring at $25^{\circ} \mathrm{C}$ for 9 h , the excess sodium hydride was destroyed by the acdition of water. The organic layer was extracted with chloroform, dried over magnesium sulfate, and concentrated under reduced pressure. The resulting yellow res idue was subjected to silica gel chromatography using a $1: 1$ etherhexane mixture as the eluent. The majo- fraction contained 55 mg of dimethyl (4,5 -diphenylimidazol-1-ylmethyl)succinate (35) as a clear oil: NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) $7.60(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 6.90-7.20(\mathrm{~m}$, $1 \mathrm{H}), 6.44(\mathrm{~s}, 3 \mathrm{H}), 6.40(\mathrm{~s}, 3 \mathrm{H}), 6.04(\mathrm{dd},-\mathrm{H}, J=13.0$ and 7.0 Hz), 5.72 (dd, $1 \mathrm{H}, J=13.0$ and 7.0 Hz), $2.40-2.95$ ($\mathrm{m}, 11 \mathrm{H}$). A $75-\mathrm{mg}$ sample of 35 in 200 mL of benzene containing 254 mg of iodine was irradiated through Pyrex for 48 h . The excess iodine was destroyed by washing with a 10% sodium thiosulfate solution. After drying the organic layer, the solvent was removed under reducec pressure to give a sample of 29 which was identical in every detail with that obtained from the irradiation of bis(azirine) 18 with dimethyl fumarate.
Photoaddition of $3,3^{\prime}$-($2,2^{\prime}$-Biphenylylene) bis[2 H -azirine] (18) with Methyl Acrylate. A $100-\mathrm{mg}$ sample of 18 in 150 mL of benzene which contained 5 mL of methyl acrylate was irradiated with a $450-\mathrm{W}$ hanovia lamp equipped with a Pyrex filter sleeve. Removal of the solvent left an orange oil which was subjected to thick-layer chromatography using a 15% methanol-benzene mixture as the eluent. The major band isolated from the th.ck-layer plate (85%) was a crystalline solid, $\mathrm{mp} 76-77^{\circ} \mathrm{C}$, whose structure was assigned as methyl (1 H -phenanthro $9,10-d]$ imidazole-1-yl))utyrate (30) on the basis of the following data: $\operatorname{IR}(\mathrm{KBr}) 5.74,6.54 .7 .00,7.33,7.85,8.50,10.09$, $11.70,12.08,13.50$, and $13.90 \mu \mathrm{~m}$; UV (methanol) $255 \mathrm{~nm}(\epsilon 75000)$; NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) ~ \tau 7.80(\mathrm{~m}, 4 \mathrm{H}), 6.35(\mathrm{~s}, 3 \mathrm{H}), 5.60(\mathrm{~m}, 2 \mathrm{H})$, $2.4-2.7(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 1.3-2.2(\mathrm{~m}, 4 \mathrm{H})$; mass spectrum m / e $318\left(\mathrm{M}^{+}\right), 232,219,218$, and 178.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 75.45; H, 5.70; N, 8.80; Found: C, 75.30; H, 6.01; N, 8.49.

Acknowledgment. We gratefuliy acknowledge the National Science Foundation for finencial support. Aid in the purchase of the NMR spectrometer (XL-100) used in this work was provided by the NSF via an equipment grant.

Registry No.-1, 16231-67-7; 2, 64024-87-9; 3, 63626-12-0; 5, 64024-90-4; 6, 64024-91-5; 7, 64024-93-7; 13, 64024-95-9; 14, 63375-55-3; 18, 63626-10-8; 19, 64024-97-1; 20, 64024-96-0; 21, 235-96-1; 22, 26093-30-1; 23, 64024-98-2; 24, 640£4-99-3; 25, 64025-00-9; 26, 64025-01-0; 27, 64025-02-1; 28, 640¿4-84-6; 29, 64024-85-7; 30, 64024-86-8; 35, 64024-88-0; 2^{\prime}-vinyl-2-biphenylmethanol, 64024-89-1; N-phenylhydroxylamine, 100-65-2; sodium azide, 26628-22-8; carbomethoxytriphenylphosphosphorane, 2605-67-6; 2^{\prime}-vinyl-2-biphenylcarboxylic acid, 64024-92-6; thionyl chloride, 7719-09-7; N (p-nitrobenzyl-2'-vinyl-2-biphenylcarboxamide, 64024-94-8; dimethyl acetylenedicarboxylate, 762-42-5; dimethyl fumarate, 624-49-7; 4,5-diphenylimidazole, 668-94-0; dimethyl itaconate, 617-52-7; methyl acrylate, 96-33-3; methyltriphenyl phosphonium bromide, 1779-49-3.

References and Notes

(1) Photochemical Transformations of Small Ring Compounds. 92. For part 91, see: A. Padwa, A. Au and W. Owens, J. Org. Chem., 43, 303 (1978).
(2) F. W. Fowler Adv. Heterocycl. Chem., 12, 45 (1971).
(3) A. Hassner and D. J. Anderson. J. Am. Chem. Soc., 93, 4339 (1971); J. Org. Chem., 38, 2565 (1973).
(4) V. Nair, J. Org. Chem., 37, 802 (1972).
(5) V. Nair, J. Org. Chem., 33, 2121 (1968); Tetrahedron Lett., 4831 (1971).
(6) A. Hassner, A. S. Miller and M. J. Haddadin, Tetrahedron Lett., 1353 (1972).
(7) F. P. Woerner, H. Reimlinger, and R. Merenyi, Chem. Ber., 104, 2786 (1971).
(8) A. Hassner and D. J. Anderson, J. Am. Chem. Soc., 94, 8255 (1972); J. Org. Chem., 39, 3070 (1974).
(9) D. J. Anderson, A. Hassner, and D. Y. Tang, J. Org. Chem., 39, 3076 (1974).
10) H. Hemetsberger and D. Knittel, Monatsch. Chem., 103, 205 (1972)
(11) V. Nair, J. Org. Chem., 37, 2508 (1972).
12) A. Hassner and D. J. Anderson, J. Org. Chem., 39, 2031 (1974)
(13) A. Padwa, Acc. Chem. Res., 9, 371 (1976).
(14) P. Gilgen, H. Heimgartner, H. Schmid, and H. J. Hansen, Heterocycles, 6 143 (1977)
15) A. Padwa and P. H. J. Carlsen, J. Am. Chem. Soc., 99, 1514 (1977); A Padwa and N. Kamigata, J. Am. Chem. Soc., 99, 1871 (1977).
(16) P. Bailey and R. Erickson, Org. Synth., 41, 46 (1961).
(17) E. J. Corey and J. Suggs, Tetrahedron Lett., 2647 (1975).
(18) For some leading references, see: A. Padwa, Angew. Chem., Int. Ed. Engl., 15, 123 (1976).
(19) D. St. C. Black, R. F. Crozier, and V. C. Davis, Synthesis, 205 (1975).
(20) W. Oppolzer, Angew. Chem., Int. Ed. Engl., 16, 10 (1977).
(21) (a) N. A. LeEel and J. J. Whang. J. Am. Chem. Soc., 81, 6334 (1959); (b) N. A. LeBel, M. E. Post, and J. J. Whang, ibid., 86, 3759 (1964); (c) N. A. LeBel and T. A. Lajiness, Tetrahedron Lett., 2173 (1966); (d) N. A. LeBel, G. M. J. Slusarezuk, and L. A. Spurlock, J. Am. Chem. Soc., 84, 4360 (1962); (e) N. A. LeBel, N. D. Ojha, J. R. Menke, and R. J. Newland, J. Org. Chem., 37, 2896 (1972); (f) N. A. LeBel and E. G. Banucci, J. Org. Chem., 36, 2440 (1971)
(22) R. Huisgen, R. Grashey, and H. Leitermann, Tetrahedron Lett., 9 (1960).
(23) (a) K. N. Houk, J. Am. Chem. Soc., 94, 8953 (1972); (b) K. Houk, R. Duke, J. George, J Sims, and R. Strozier, ibid., 95, 7287 (1973); (c) K. Houk, J. Luskus, J. Sims, and C. Watts, ibid., 95, 7301 (1973); K. Houk and J. Sims, ibid., 95, 5798 (1973).
(24) R. Sustmann, Tetrahedron Lett., 2727 (1971)
(25) R. Huisgen, J. Org. Chem., 41, 403 (1976); ibid., 33, 2291 (1968)
(26) A. Hassner and L. A. Levy, J. Am. Chem. Soc., 87, 4203 (1965); F. W. Fowler, A. Hassner, and L. A. Levy, ibid., 89, 2077 (1967).
(27) A. Padwa, A. Ku, H. Ku, and A. Mazzu, Tetrahedron Lett., 551 (1977); J Org. Chem. 43, 66 (1978)
(28) G. R. Lappiri and J. S. Zanucci, J. Org. Chem., 36, 1808 (1971).
(29) A. Schoenberg and M. M. Sidky, Chem. Ber., 107, 1207 (1974).
(30) C. A. Mudry and A. R. Frasca, Tetrahedron, 30, 2983 (1974).
(31) A. Couture, A. Lablache-Combier, and H. Ofenberg. Tetrahedron Lett., 2497 (1974).
(32) Y. Ito and T Matsuura, Tetrahedron, 31, 1373 (1975).
(33) R. Huisgen, H. Stangl, H. J. Sturm and H. Wagenhofer, Angew. Chem., 74, 31 (1962)
(34) R. Huisgen, Angew. Chem., Int. Ed. Engl., 2, 633 (1963).
(35) A. Padwa and S. I. Wetmore, Jr., J. Org. Chem., 38, 1333 (1973); 39, 1396 (1974); J. Am. Chem. Soc., 96, 2414 (1974); J. Chem. Soc., Chem. Commun., 409 (1972). For a preliminary report of this work, see: A. Padwa and H. Ku, J. Chem. Soc., Chem. Commun., 551 (1977)
(36) (a) B. Jacks 5 , N. Gakis, M. Maerky, H. J. Hansen, W. V. Philipborn and H. Schmid, Herv. Chim. Acta, 55, 916 (1972). (b) A. Orahovats, H. Heimgartner, H. Schmid, and W. Heinzelmann, Helv. Chim. Acta, 58, 2662 (1975).
(37) A. Padwa and E. Glazer, J. Am. Chem. Soc., 94, 7788 (1972); ibid., 92, 1778 (1970): J. Chem. Soc. D. 838 (1971); J. Org Chem., 38, 284 (1973).
(38) R. A. Firestone, J Org. Chem., 33, 2285 (1968); 37, 2181 (1972); J. Chem. Soc. A, 1570 (1970).
(39) I. Heilbron, Ed., "Dictionary of Organic Compounds'", Vol. 4, Oxford University Press, New York, 1953, p. 84.
(40) A. Padwa, J. Smolanoff, and A. Tremper, J. Am. Chem. Soc., 97, 4682 (1975).
(41) H. Gutman, O. Isier, M. Montavon, R. Ruegg, G. Ryser, and P. Zeller. Helv Chim. Acta., 40, 1242 (1957).
(42) Z. Chugunova and L. Kulev, Izv. Sib. Otd. Akad. Nauk. SSSR, 11, 144 (1962).
(43) N. Dudykina and N. Kochetkov, Zhur. Obschei. Khim, 26, 2612 (1956)

Reactivity of 1,3-Dipoles in Aqueous Solution. 2. Stereospecific
 Reactions of Benzonitrile Oxides with Oxygen, Carbon, and Nitrogen Nucleophiles

Kieran J. Dignam, Anthony F. Hegarty, ${ }^{*}$ and Paul L. Quain

Chemistry Department, University College, Cork, Ireland.
Received May 31, 1977

Abstract

The reactivities of substituted benzonitrile oxides 3 (generated in situ from the corresponding chlorides 1) have been examined in aqueous solution; simple second-order reactions were observed with nucleophiles and with acrylonitrile. Substituent variation in Ar gave the following Hammett ρ values: $+0.57\left(\mathrm{H}_{2} \mathrm{O}\right),+0.80\left(\mathrm{HO}^{-}\right)$, and +0.75 $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right)$. With alkoxide ions as nucleophiles, only the (Z)- -0 -alkylhydroxamic acid 10 is formed. Evidence is also presented that only Z isomers (in which the entering nucleophile at carbon and forming lone pair on nitrogen are trans) are also formed with the nucleophiles $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}, \mathrm{N}_{3}{ }^{-}, \mathrm{Cl}^{-}$, and carbanions. Cycloaddition of acrylonitrile to 3 is characterized by a similar low sensitivity to substituents in the benzonitrile oxide $(\rho=+0.36)$. Both cycloaddition of benzonitrile oxides to alkenes and reaction of nucleophiles at carbon are therefore characterized by similar transition states, and the key role of carbon-nucleophile bond formation in determining stereospecificity is discussed.

In the previous paper in this series, ${ }^{1}$ we reported on the reactivity of benzonitrile oxides with primary and secondary amines and the stereospecific formation of (Z)-amidoximes. We have now extended this to a kinetic study involving oxygen nucleophiles ($\mathrm{HO}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$) and report on the unique stereochemistry both of these reactions and the reaction of nitrile oxides with other nucleophiles. Since nucleophilic attack at the carbon of the nitrile oxide is a possible model for the first step in the alternative two-step mechanism of 1,3dipolar cycloaddition to alkenes, the relevance of the observed stereospecificity of the first step is also considered.

Results and Discussion

Neutral Hydrolysis. The required benzonitrile oxides 3 were prepared in aqueous solution by rapid dehydrohalogenation of the corresponding hydroxamoyl chlorides. ${ }^{1}$ The conversion of 1 to 3 is base catalyzed and rapid ($t_{1 / 2}<1 \mathrm{~s}$) at $\mathrm{pH}>4$ in water at $25^{\circ} \mathrm{C}$. The subsequent reaction of 3 with water is surprisingly slow and could be conveniently measured. At $\mathrm{pH}<8$, the reaction with $3\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ is inde-

pendent of pH , consistent with $\mathrm{H}_{2} \mathrm{O}$ as the nucleophile in this region.

Buffer catalysis (by acetate ion) was noted in the presence of acetate buffers (see below); the rates of reaction of substituted benzonitrile oxides with water were therefore measured (at $61^{\circ} \mathrm{C}$) by extrapolation of $k_{\text {obsd }}$ vs. buffer concentration plots to zero buffer concentration. The results (at pH 4.65) are summarized in Table I. The low sensitivity of the reaction to substituents in the nitrile oxide is obvious from the Hammett ρ value of $+0.57(r=0.998)$ calculated from these data.
The products of hydrolysis under neutral conditions are the corresponding benzohydroxamic acids 6 (which were also
prepared by independent synthesis from the ethyl benzoate and hydroxylamine ${ }^{2}$). Under the conditions used to study the kinetics, no detectable further hydrolysis of the benzohydroxamic acids occurs (although it is well established that in concentrated acid or base 6 hydrolyse to benzoic acids and hydroxylamine). ${ }^{3}$ The formation of $\mathbf{6}$ contrasts with previous reports of complex products, ${ }^{4,5}$ although Edwards and Tremaine ${ }^{6}$ also observed the quantitative formation of benzohydroxamic acids 6 on hydrolysis of chlorides 1 under mild conditions (aqueous sodium bicarbonate).
Base-Catalyzed Hydrolysis. The reaction of 3 with hydroxide ion was also examined; the products formed were the corresponding benzohydroxamic acids 6 . The rate of reaction was proportional to $\left[\mathrm{HO}^{-}\right]$over a wide range (Table II). Again electron-withdrawing substituents enhanced reactivity to a small extent; the rate constants for reaction with HO^{-}at 25 ${ }^{\circ} \mathrm{C}$ at pH 11.15 are summarized in Table III. The Hammett ρ value calculated from these data is $+0.80(r=0.998)$.

Acid-Catalyzed Hydrolysis. Since the dehydrohalogenation of 1 occurs at a rate comparable to that of acid-catalyzed hydrolysis of 3 at low pH , the latter reaction was examined using the following sequence. The chloride ($1, \mathrm{Ar}=$ $p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) was added to water ($\mu=1.0, \mathrm{NaClO}_{4}, 25^{\circ} \mathrm{C}$) at pH ca. 4. The solution was then acidified to the desired pH with concentrated perchloric acid.

Over the pH range 1.0 to 0 , the logarithm of the rate of hydrolysis of 3 was inversely proportional to $\mathrm{pH}\left(k_{\text {obsd }}=2.4 \times\right.$ $10^{-2} \mathrm{~s}^{-1}$ at pH 0). The observation of acid catalysis is interesting, since it implies a mechanism involving rate-determining attack by water on the nitrilium ion 4; this is the first demonstration of the existence of this species on a reaction pathway. ${ }^{7}$ The dehydrohalogenation of 1 might by analogy with the hydrazonoyl halides system 7 occur via an uncata-

$$
\mathrm{ArCCl}=\mathrm{NNHAr}
$$

7
lyzed pathway (involving 4); however, in spite of a careful examination no evidence for this was found even in 1.0 M acid (where the dehydrohalogenation of 1 remained base catalyzed). The difficulty of formation of 4 by unimolecular solvolysis of 1 was confirmed when O-phenylbenzohydroxamoyl chloride 8 was examined in $7: 3$ water-dioxane at $60^{\circ} \mathrm{C}$ in neutral solution and in the presence of 0.1 M sodium hydroxide. No spectral change was observed over a 24 h period. The difficulty of formation of 9 by this route is explicable in terms of the destabilization of the nitrilium ion by the electronegative phenoxy group.

Table I. Observed Rate Constants for the Hydrolysis of Benzonitrile Oxides (3, Ar $=\mathrm{XC}_{6} \mathrm{H}_{4}$) at $61{ }^{\circ} \mathrm{C}$ in Water at pH 4.65

SubstituentX	Registry no.	$10^{4} k_{\text {obsd }}, \mathrm{s}^{-1}$			$10^{4} k_{\mathrm{H}_{2} \mathrm{O}}, \mathrm{s}^{-1 a}$
		Total acetate buffer concn, $\mathrm{M}^{\text {b }}$			
		$\overline{1 \times 10^{-2}}$	5×10^{-3}	1×10^{-3}	
$p-\mathrm{MeO}$	15500-73-9	4.68	3.50	2.73	2.25
H	873-67-6	7.90	5.33	3.65	3.10
$p-\mathrm{Cl}$	15500-74-0	12.0	8.45	5.18	4.52
$m-\mathrm{Cl}$	13820-15-0	14.8	10.2	5.83	4.98
$m-\mathrm{NO}_{2}$	7007-35-4	22.3	15.7	9.17	7.83
$p-\mathrm{NO}_{2}$	2574-03-0	25.2	16.7	10.8	8.98
$o-\mathrm{Cl}$	49660-38-0	3.65	2.62	1.65	1.45

${ }^{a}$ Obtained by extrapolation to zero buffer concentration. ${ }^{b} \mu=1.0\left(\mathrm{NaClO}_{4}\right)$.

Table II. Observed Rate Constants for the Hydrolysis of Benzonitrile Oxides (3, $\mathrm{Ar}=\mathrm{XC}_{6} \mathrm{H}_{4}$) at $25{ }^{\circ} \mathrm{C}$ in 1:4 Dioxane-Water as a Function of Hydroxide Ion Concentration

	Concentration			
$\left[\mathrm{HO}^{-}\right], \mathrm{M} k_{\text {obsd }}, \mathrm{s}^{-1}$				
0.25	$\mathrm{X}=p-\mathrm{Cl}$	$\mathrm{X}=p-\mathrm{MeO}$	$\mathrm{X}=p-\mathrm{NO}_{2}$	
0.125		120		
0.062		66		
0.031	46.8	33		
0.016	21.4	17	132	
0.0078	11.1	8.0	64	
0.0039	5.40	3.5	27.2	
0.0020	2.60		12.0	

Table III. Observed Rate Constants for HydroxideCatalyzed Hydrolysis of $3\left(\mathrm{Ar}=\mathrm{XC}_{6} \mathrm{H}_{4}\right)$ in Water at pH 11.15 at $25^{\circ} \mathrm{C}$

Substituent X	λ, nm^{a}	$10^{3} k_{\text {obsd }, ~} \mathrm{~s}^{-1}$
$p-\mathrm{MeO}$	270	4.89
H	250	7.37
$p-\mathrm{Cl}$	265	11.8
$m-\mathrm{Cl}$	255	14.4
$p-\mathrm{NO}_{2}$	310	33.2
$m-\mathrm{NO}_{2}$	294	40.7

${ }^{a}$ Wavelength used to follow course of reaction.

Stereochemistry of Addition: (a) Ethoxide Ion. Addition of hydroxide ion to nitrile oxides 3 initially gives 5 which tautomerizes to the more stable benzohydroxamic acid 6 . The intermediates 5 are potentially isolable in two forms which differ in the configuration about the $\mathrm{C}=\mathrm{N}$ bond; the rapid tautomerism via 6 would ensure equilibration of these isomers. The stereochemistry of the original addition was therefore probed using alkoxide in place of hydroxide.

Preliminary experiments showed (Figure 1) that the rate of reaction of p-nitrobenzonitrile oxide ($3, \mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) with sodium ethoxide in ethanol was overall second order, first order in ethoxide ion and the nitrile oxide over a wide concentration range. The product isolated on neutralization of the solution was a single isomer to which we assign the Z configuration 10. The assignment was based on literature data, ${ }^{9,10}$ and on comparison with authentic samples of 10 and $11(\mathrm{Ar}=\mathrm{Ph})$. The assignment was confirmed by isomerization of $10\left(\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ on irradiation at $70^{\circ} \mathrm{C}$ for 2 h in benzene to a mixture of 10 and 11 . The NMR spectrum of the E isomer 11 showed an upfield shift of 0.25 ppm for the

Figure 1. Plot of observed rate $\left(\mathrm{s}^{-1}\right)$ of reaction of 3 ($\mathrm{Ar}=p$ $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) with sodium ethoxide in ethanol at $25^{\circ} \mathrm{C}$.
methylene prcton quartet (similar to that observed for 10 and $11, \mathrm{Ar}=\mathrm{Ph})$. In $\mathrm{Me}_{2} \mathrm{SO}$ the $=\mathrm{NOH}$ protons gave a sharp NMR signal, that in the E form 11 being 0.9 -ppm upfield from that in the Z isomer 10 . A similar upfield shift was also noted with Z / E isomer mixtures of amidoximes also measured in $\mathrm{Me}_{2} \mathrm{SO} .{ }^{11}$

A single Z isomer was also formed on reaction of 3 ($\mathrm{Ar}=$ $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) with methoxide ion (see Experimental Section).
(b) Acetate. The rates of reaction of p-nitrobenzonitrile oxide ($3, \mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) in the presence of different concentrations of acetate buffers were measured in water at pH 4.65 at $50^{\circ} \mathrm{C}$ (Figure 2, see also Table I). Clearly, acetate ion is the reactive species since no significant catalysis is observed at pH 3 where acetate is converted almost entirely to its conjugate acid. From these data, a second-order rate constant for the reaction of acetate ion with the nitrile oxide of $0.30 \mathrm{M}^{-1}$ s^{-1} was calculated. Examination of other substituted benzonitrile oxides gave (Figure 3) a ρ value of $+0.75(r=0.996)$, very similar to that reported above for the reaction of the other negatively charged nucleophile, HO^{-}.
Repetitive scans of the ultraviolet spectrum during the reaction of 3 with acetate ion showed tight isosbestic points, indicating the absence of relatively long-lived intermediates during reaction. The product of reaction was not the O^{\prime}-acetyl benzohydroxamic acid 12 as expected by analogy with the reaction product from other nucleophiles, but the isomeric O-acetylbenzohydroxamic acid 13 . The latter was prepared independently by acetylation of p-nitrobenzohydroxamic

Figure 2. Plot of observed rate constants (s^{-1}) for the reaction of 3 ($\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) with acetate ion in water at pH 4.6 in $\mathrm{H}_{2} \mathrm{O}$ at 50 ${ }^{\circ} \mathrm{C}$.
acid, and its structure, although controversial, follows from the work of Just and Dahl. ${ }^{12-15}$

The quantitative formation of 13 can be related as follows to the configuration of the original product 12 formed on reaction of 3 with acetate ion. Thus, the E-isomer 14 , if formed, would either be isolated as such (without rearrangement) or as the isomeric N-acyl material 15 . This follows from recent work ${ }^{16}$ on the corresponding O-alkyl derivatives of 14 , which are relatively stable at ambient temperatures but undergo isomerization to 0 -alkylated 15 at ca. $70^{\circ} \mathrm{C}$. However, if the initial products are of the Z-configuration 16 then rapid $\mathrm{O}^{\prime} \rightarrow$

0 acyl group migration via a five-membered ring gives the observed O-acyl products 13 . Since oximes undergo extremely slow $E Z$ isomerization, 14 and 16 are not interconvertible; therefore, the quantitative isolation of 13 provides good evidence that 16 was initially formed.
(c) Azide Ion. Open-chain hydroxamoyl azides 17 are formed on reaction of nitrile oxides 3 with azide ion, although in general imidoyl azides are unstable relative to cyclization to isomeric tetrazoles. ${ }^{19}$ Recent theoretical studies have emphasized the importance of the cis arrangement of the azido group and the long pair on the imine nitrogen. ${ }^{20}$ We therefore conclude that the imidoyl azides have the Z-configuration 17 .

Figure 3. Plot of $\log k_{2}\left[k_{2}\right.$ is the second-order rate constant $\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ for the reaction of acetate ion with nitrile oxides $\left(3, \mathrm{Ar}=\mathrm{XC}_{6} \mathrm{H}_{4}\right)$] vs. Hammett σ values (at $50^{\circ} \mathrm{C}, \mu=1.0, \mathrm{NaClO}_{4}$); $\rho=+0.75$.

Interestingly, it has recently been shown ${ }^{21}$ that treatment of the azides 17 with acetyl chloride at reflux catalyzes the cyclization of 18 to the isomeric N-hydroxytetrazole 19. These are conditions known to promote $E Z$ equilibration of oximes; ${ }^{22}$ presumably, the E isomer 18 formed by this route spontaneously cyclizes to the more stable 19.

(d) Carbanions. Reaction of nitrile oxides with arylacetylenes gives in addition to the normal cycloadduct 20 the open-chain acetylenic oxime $21 .{ }^{23-25}$ Higher yields of the oxime are obtained when the acetylide ion is used. ${ }^{26}$ The configuration of the oxime 21 formed has not been unequiv-

ocally established but it is most likely Z (as shown), since (a) cyclization of the oxime to 20 is facile and quantitative in base 25 (conditions unlikely to promote $E Z$ isomerization of oximes ${ }^{27}$) and (b) reduction of the acetylene followed by Beckmann rearrangement also indicates the Z configuration for $21 .{ }^{24}$
(e) Polymerization. It has been shown recently ${ }^{28}$ that polymerization of nitrile oxides 3 is catalyzed by tertiary amines. The proposed mechanism involves the equilibrium formation of a small concentration of the zwitterion 23 which

23

24
then acts as a nucleophile toward further nitrile oxide, ultimately giving polymers and macrocycles of general formula 24. Crystallographic studies ${ }^{29}$ have shown that in the macrocycle $24(n=8)$ all of the $\mathrm{C}=\mathrm{N}$ linkages have the Z configuration, implying stereospecific reaction of 23 with 3.

Figure 4. Observed rate constants (in s ${ }^{-1}$) for the reaction of 3 (Ar $=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) at $25^{\circ} \mathrm{C}$ as a function of added acrylonitrile.
(f) Chloride Ion. When the nitrile oxide 3 is treated with concentrated hydrochloric acid, the equilibrium is reversed and the hydroxamoyl chloride 1 is re-formed. ${ }^{30}$ The configuration of 1 formed by this route has been established (by x-ray crystallography) as $Z .{ }^{31}$ However, in this case the corresponding E isomer has not been reported, so the assignment of $(Z)-1$ as the kinetic product is not unequivocal [e.g., $(E)-1$ may be formed which rapidly isomerizes to a thermodynamically more stable (Z) -1].

In summary, in each case in which an unequivocal assignment of structure can be made, it is shown that on reaction of the 1,3-dipole 3 with nucleophiles only the product with the Z configuration is formed. In several other cases there is good evidence that the same stereospecificity exists. In the products formed, the entering nucleophile and the forming lone pair on the adjacent nitrogen are mutually trans-25, and this appears to be the critical factor which determines the stereo-

chemistry of the product. The nitrile oxides are therefore directly analogous to nitrilium ions ${ }^{32} 26$ and aryl diazonium ions ${ }^{33} 27$ which show just the same type of stereospecificity.

Cycloaddition. In order to compare the charge distributions in the transition states for nucleophilic attack on the 1,3-dipole with 1,3-dipolar cycloaddition, the reaction with acrylonitrile in aqueous solution was also examined. The rate of cycloaddition is proportional to acrylonitrile concentration (see Figure 4) and the formation of 28 under these conditions

28

Figure 5. Plot of $\log k_{\text {obsd }}\left[k_{\text {obsd }}\right.$ is the observed rate of reaction of 3 ($\mathrm{Ar}=\mathrm{XC}_{6} \mathrm{H}_{4}$) with acrylonitrile (0.25 M) in water at $25^{\circ} \mathrm{C}$] vs. Hammett σ values; $\rho=+0.36$.

Table IV. Second-Order Rate Constants for the Reaction of $3\left(\mathrm{Ar}=\boldsymbol{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)(\mathrm{a})$ in Water and (b) in 1:1 Dioxane-Water at $25^{\circ} \mathrm{C}$

Dipolarophile	(a) $10^{3} k$, $\mathrm{M}^{-1} \mathrm{~s}^{-1}$	(b) $10^{3} k$, $\mathrm{M}^{-1} \mathrm{~s}^{-1}$
Ethyl acrylate	145	75.6
Dimethyl famarate		58.4
Methyl methacrylate		56.4
Ethyl propiolate		26.8
Acrylonitrile	29.3	
Dimethyl maleate	5.0	3.48
Methyl crotonate		2.50

${ }^{a} \mu=1.0, \mathrm{NaClO}_{4} ; \mathrm{pH}$ maintained at 4.65 by $5 \times 10^{-3} \mathrm{M}$ acetate buffer; the solubility of the other dipolarophiles was too low to permit measurements in $\mathrm{H}_{2} \mathrm{O} .{ }^{b} \mu=0.25, \mathrm{NaClO}_{4} ; \mathrm{pH}=4.0(2 \times$ $10^{-3} \mathrm{M}$ acetate .
was confirmed by TLC and actual isolation using an authentic sample.
The effect of substituents in the 1,3 -dipole was investigated in water at $25^{\circ} \mathrm{C}$ using 0.25 M acrylonitrile. A plot of $\log k_{\text {obsd }}$ vs. Hammett σ values gave a ρ value of $+0.36(r=0.995)$ (see Figure 5). The small positive ρ value obtained in aqueous solution is consistent with previous values of +0.79 (styrene as dipolarophile in carbon tetrachloride) ${ }^{34}$ and +0.60 (phenylacetylene) ${ }^{35}$ reported for substituents in nitrile oxides.

The order of reactivity of various 1,3-dipolarophiles in aqueous solution and in 1:1 dioxane-water (Table IV) is the same as that observed by Huisgen from competitive experiments in diethyl ether, ${ }^{36}$ although the spread of reactivity is slightly less (e.g., $k_{\text {ethyl acrylate }} / k_{\text {dimethyl maleate }}$ is 38 in diethyl ether). ${ }^{36}$ These results extend and confirm the remarkable insensitivity to solvent shown by the rates of cycloaddition even in solvents as disparate as diethyl ether and water.
The similarity in the magnitude and sign of the ρ values obtained for reaction of 3 with water, hydroxide ion, acetate ion, and with amines ${ }^{1}$ to that for cycloaddition to an alkene measured under the same conditions indicates like charge distributions in the transition states for both reactions. There is convincing evidence ${ }^{37}$ that cycloaddition to 3 occurs via an early transition state, which is reached while there is still little $\mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{O}$ bond formation (the low solvent effect observed on the rate of cycloaddition confirms this). Nucleophilic attack at the carbon of 3 is also characterized by an early transition state with little C-nucleophile bond formation. ${ }^{1}$ However, in spite of the early transition state in the latter reaction, the stereochemistry of the kinetic product implies that the interaction of the initially linear nitrile oxide 3 with the nucleophile in the transition state is sufficient to bend the dipole
so that the oxygen is adjacent to the incoming nucleophile 29.

29

30

It is interesting that recent ab initio molecular-orbital studies of the reaction pathway for the addition of simple nitrile oxides to alkenes and alkynes show ${ }^{38}$ that the only significant geometry change in passing from reactants to transition state is a marked bending of the $-\mathrm{C} \equiv \mathrm{N}^{+}-\mathrm{O}^{-}$ skeleton (30), the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds remaining long. This bending of the $\mathrm{C}-\mathrm{N}-\mathrm{O}$ group from 180° to 144° in the transition state (all the atoms are coplanar) requires the major portion ($55 \mathrm{~kJ} \mathrm{~mol}^{-1}$ relative to $89 \mathrm{~kJ} \mathrm{~mol}^{-1}$) of the energy required to bring the reactants to the transition state. Once this bending of the 1,3 -dipole has occurred, the alkene carbon and nitrile oxide oxygen are correctly placed (30) to allow ring closure to occur in a rapid subsequent step. Clearly then the factors which determine the stereospecificity of reactions of nucleophiles with nitrile oxides (and also with nitrilium ions and diazonium ions) can also be invoked in cycloadditions to alkenes without implying any $\mathrm{C}-\mathrm{O}$ bond formation in the transition state 30.

These observations may have wide generality for 1,3-dipolar cycloadditions, since in each of the propargyl-allenyl type 1,3-dipoles 31 (which like 3 are linear) a pair of electrons originally involved in the π system of the 1,3 -dipole bєcomes localized on the central atom of the original 1,3-dipole (b) in the product 32. The most important factor in the transition state for the formation of 32 may be the nucleophilic character of the alkene ($\mathrm{d}=\mathrm{e}$), the small amount of a-d bond formation being sufficient to induce the required bending of the $1,3-$ dipole.

31a
31b
32

Experimental Section

General. Melting points were determined on an electrothermal apparatus and are uncorrected. uv spectra for product analysis were run on a Unicam SP-800 B spectrophotometer. A Perkin Elmer Model R20A was used for NMR spectra. All inorganic salts were Analar grade. Aqueous sodium hydroxide solutions were made up from Volucon (M \& B) standard ampules and the perchloric acid from 60-62\% Analar perchloric acid. Dioxane was Analar grade and was used without further purification.

Substrates. All hydroxamoyl chlorides were prepared as previously described. ${ }^{1}$ The following were made by standard literature methods: O-phenylbenzohydroxamoyl chloride ($8, \mathrm{Ar}=\mathrm{Ph}$), mp $35-36^{\circ} \mathrm{C}$ (lit..39 $35-36^{\circ} \mathrm{C}$); benzohydroxamic acid ($6, \mathrm{Ar}=\mathrm{Ph}$), mp 125-128 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{2}$ $125-128{ }^{\circ} \mathrm{C}$); p-nitrobenzohydroxamic acid $\left(6, \mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right.$), mp 182-184 ${ }^{\circ} \mathrm{C}$ (lit. $.^{40} 177^{\circ} \mathrm{C}, 186^{\circ} \mathrm{C} \mathrm{dec}$); O-acetylbenzohydroxamic acid ($13, \mathrm{Ar}=\mathrm{Ph}$), mp $123^{\circ} \mathrm{C}\left(\right.$ lit..$^{12} 125^{\circ} \mathrm{C}$).

Product Analysis. (Z)-Ethyl \boldsymbol{p}-Nitrobenzohydroximate ($\mathbf{1 0}$, $\mathbf{A r}=\boldsymbol{p}-\mathrm{NO}_{2} \mathbf{C}_{6} \mathbf{H}_{4}$). Sodium ethoxide (5 equiv) was added to p-nitrobenzchydroxamoyl chloride (1 equiv) in ethanol and stirred for 10 min . The solution was diluted fivefold with water and neusralized by bubbing carbon dioxide through the solution. The mixture was extractec with chloroform, and the combined extracts were dried over sodium sulfate and evaporated to leave a light yellow solid which, on recrystallization from cyclohexane, had $\mathrm{mp} 94-95^{\circ} \mathrm{C}$ (lit. ${ }^{9} 95^{\circ} \mathrm{C}$): NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.36\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.46(\mathrm{q}, 2, J=$ $7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 7.9-8.5 ($\mathrm{m}, 4$, aromatic H), 11.21 (s, $1, \mathrm{OH}$). Irradiation of a sample of $10\left(\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ in dry benzene fcr 2 h at $70^{\circ} \mathrm{C}$ wi-h a Hanovia $100-\mathrm{W}$ medium-pressure lamp in a quartz apparatus gave a $50: 50$ mixture of $Z E$ isomers. For $11(\mathrm{Ar}=p$ $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) $\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.36\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.22$
(q, $J=7 \mathrm{~Hz}), 4.46(\mathrm{q}, J=7 \mathrm{~Hz})\left(Z, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.9-8.5(\mathrm{~m}, 4$, aromatic $\mathrm{H}), 10.44,11.21$ (s, $1, \mathrm{OH}$).
(\boldsymbol{Z})-Methyl \boldsymbol{p}-Nitrobenzohydroximate. Sodium methoxide (5 equiv) was added to p-nitrobenzohydroxamoyl chloride (1 equiv) in methanol and stirred for 10 min . The solution was diluted fivefold with water and neutralized by bubbling carbon dioxide through the solution. The mixture was extracted with chloroform and the combined extracts were dried over sodium sulfate and evaporated to leave a light yellow solid which, on recrystallization from cyclohexane, had $\mathrm{mp} 128-129^{\circ} \mathrm{C}$: NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta 4.09\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 7.9-8.6(\mathrm{~m}, 4$, aromatic H), 11.18 (s, $1, \mathrm{OH}$). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 4.98 ; \mathrm{H}$, 4.11; N, 14.28. Found: $\mathrm{C}, 48.98 ; \mathrm{H}, 4.03 ; \mathrm{N}, 14.37$. Irradiation as above gave a $40: 60$ mixture of $Z E$ isomers: NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 3.84$ (s), 4.08 (s) $\left(3,0 \mathrm{CH}_{3}\right), 7.9-8.6(\mathrm{~m}, 4$, aromatic H$), 10.51,11.18(\mathrm{~s}, 1,0 \mathrm{H})$.

Reaction of \boldsymbol{p}-Nitrobenzohydroxamoyl Chloride with Acrylontrile in 50% Dioxane-Water. Sodium acetate (2 equiv) and perchloric acid (1 equiv) were added to 50% dioxane-water containing acrylonitrile (10 equiv). To this solution was added p-nitrobenzohydroxamoyl chloride (0.1 equiv), and the solution was stirred at room temperature for 24 h . It was then extracted with ether (three times) and the combined ether extracts were extracted in turn with water (two times). The ether extract was then dried with sodium sulfate and evaporated to dryness under reduced pressure at room temperature. TLC indicated that the yellow solid which remained was principally the oxadiazole 28 together with a small amount of unreacted starting material. Preparative TLC (silica gel with ether) gave pure 3-p-ni-trophenyl-5-cyano-1,2,4-oxadiazole (28, $\left.\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)(79 \%$), mp ${ }^{157-158}{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 55.29 ; \mathrm{H}, 3.23 ; \mathrm{N}, 19.35$. Found: C, 55.01; H, 3.25; N, 19.20.
Kinetic Method. All rate data were measured on a Unicam SP-800 B spectrophotometer fitted with a scale expansion accessory at previously described wavelengths. ${ }^{1}$ Substrates were made up $10^{-2} \mathrm{M}$ in dioxane (Analar). pHs were measured using a Radiometer Model PHM 26 pH meter fitted with a Metrohm EA-125U glass electrode. The techniques used for following the kinetics have already been fully described. ${ }^{41}$
The products formed during a kinetic experiment were determined spectrophotometrically using authentic samples and confirmed using TLC analysis. When the product had a $\mathrm{p} K_{\mathrm{a}}$ in the accessible region (e.g., the benzohydroxamic acids, 6) as an addition, check the $\mathrm{p} K_{\mathrm{a}}$ was determined in situ using the combined pH -stat spectrophotometer. The difference in absorbance between the acidic and basic forms of the product was also used to show that the formation of the hydroxamic acid was quantitative.
Attempted Reaction of \boldsymbol{O}-Phenylbenzohydroxamoyl Chloride (8). The chloride was dissolved ($10^{-4} \mathrm{M}$) in 3:7 dioxane-water at neutral pH and maintained (a) at neutral pH for 1 week at $25^{\circ} \mathrm{C}$ and (b) for 24 h at $60^{\circ} \mathrm{C}$ in the presence of 0.1 M sodium hydroxide. In neither case did a detectable reaction occur. Since the starting chloride 8 and the expected product O-phenylbenzohydroxamic acid have similar UV spectra in basic solution [$\lambda_{\text {max }} 282 \mathrm{~nm}(\epsilon 7800), 268 \mathrm{~nm}$ (ϵ 8500), and $272 \mathrm{~nm}(\epsilon 7600)$, respectively], the solution was acidified at the end of the reaction period. The spectrum of O-phenylbenzohydroximate changed under these conditions [$\lambda_{\text {max }} 272 \mathrm{~nm}(\epsilon 1900)$, $268 \mathrm{~nm}(\epsilon 2200)$], whereas that of the chloride 8 was unaltered; any conversion to the hydroxamic acid would therefore have been detectable. The chloride $8, \mathrm{mp} 35-36^{\circ} \mathrm{C}$, (lit. $\mathrm{t}^{42} 35-36^{\circ} \mathrm{C}$), was also recovered unchanged when attempted reaction was carried out on a preparative scale.

Acknowledgment. We are grateful to the Department of Education for a State Maintenance Allowance for Research (to K.J.D. and P.L.Q.) and to Dr. J. E. Johnson for samples of 10 and $11(\mathrm{Ar}=\mathrm{Ph})$.

Registry No.-1 $\left(\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 1011-84-3 ; 10(\mathrm{Ar}=p$ $\left.\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 7340-18-3 ; 11\left(\mathrm{Ar}=p-\mathrm{no}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 64011-07-0 ; 28,64011-$ 09-2; (Z)-methyl-p-nitrobenzohydroximate, 64011-08-1; (E)-methyl p-nitrobenzohydroximate, 64025-03-2; sodium ethoxide, 141-52-6; sodium methoxide, 124-41-4; acrylonitrile, 107-13-1.

References and Notes

(1) K. J. Dignam, A. F. Hegarty, and P. L. Quain, J. Chem. Soc., Perkin Trans. 2, 1457 (1977).
(2) C. R. Hauser and W. B. Renfrow, Jr., "Organic Syntheses" , Collect. Vol. 2, Wiley, New York, N.Y., 1943, p 67
(3) D. C. Berndt and R. L. Fuller, J. Org. Chem., 31, 3312 (1966).
(4) C. Grundmann and H. D. Frommeld, J. Org. Chem., 31, 157 (1966).
(5) C. Grundmann and P. Grünanger, "The Nitrile Oxides"', Springer-Verlag. Berlin, 1971, p 144.
(6) J. T. Edwards and P. H. Tremaine, Can. J. Chem., 49, 3489 (1971).
(7) N-Alkoxynitrilium ions have however been postulated as intermediates in the diazotization of amidoximes [D. G. McCarthy and A. F. Hegarty, J. Chem. Soc., Perkin Trans 2, 1080 (1977)].
(8) A. F. Hegarty, M. P. Cashman, and F. L. Scot, J. Chem. Soc., Perkin Trans. 2, 44 (1972).
(9) O. Exner, V. Jehlicka, and A. Reiser, Collect. Czech. Chem. Commun., 24, 3207 (1959).
(10) J. E. Johnson, J. R. Springfield, J. S. Hweeng, L. J. Hayes, W. C. Cunningham, and D. L. McClaugherty, J. Org. Chem., 36, 284 (1971).
(11) An upfield shift of 0.74 ppm has been observed for Z/E isomer mixtures of the amidoxime system $\operatorname{ArC}\left(\mathrm{NR}_{2}\right)=\mathrm{NOH}$ in $\mathrm{Me}_{2} \mathrm{SO}(\mathrm{K} . \mathrm{J}$. Dignam and A . F. Hegarty, unpublished results).
(12) A. Hanzsch, Chem. Ber., 27, 1256 (1894).
(13) H. Lossen, Ann., 281, 225 (1894).
(14) N. E. Alexandrou and D. N. Nicolaides, Tetrahedron Lett., 2497 (1966).
(15) G. Just and K. Dahl, Tetrahedron, 5251 (1968).
(16) D. G. McCarthy and A. F. Hegarty, J. Chem. Soc., Perkin Trans. 2, 1085 (1977).
(17) D. Y. Curtin, E. J. Grubbs, and C. G. McCarty, J. Am. Chem. Soc., 88, 2775 (1966).
(18) F. Eloy, J. Org. Chem., 26, 953 (1961).
(19) W. Lwowski, in "The Chemistry of the Azido Group", S. Patai, Ed., Interscience, New York, N.Y., 1971 p 503.
(20) L. A. Burke, G. Leroy, J. Elguero, and M. Sana, J. Am. Chem. Soc., 98, 1685 (1976).
(21) J. Plenkiewicz, Tetrahedron Lett., 341 (1975).
(22) M. Kruszynski and G. Kupryszewski, Rocz. Chem., 50, 1099 (1976).
(23) P. Beltrame, P. Sartirana, and C. Vintani, u. Chem. Soc. B, 814 (1971).
(24) S. Morrochi, A. Recca, A. Zanarotti, G. Bianchi, R. Gondalfi, and P. Gru-
nanger, Tetraredron Lett., 3329 (1969).
(25) A. Dondoni and G. Barbaro, J. Chem. Soc., Perkin Trans. 2, 1591 (1974).
(26) Z. Hamlet, M. Rampersad, and D. J. Shearing, Tetrahedron Lett., 2101 (1970).
(27) K. J. Dignam and A. F. Hegarty, J. Chem. Soc., Chem. Commun., 862 (1976).
(28) A. Brandi, F. De Sarlo, and A. Guama, J. Chem. Soc., Perkin Trans. 1, 1827 (1976), and preceding papers in this series.
(29) S. Menchetti and C. Sabelli, J. Chem. Soc., Perkin Trans. 2, 334 (1977).
(30) J. Armand, Buil. Soc. Chim. Fr., 882 (1966).
(31) J. P. Declercq, G. Germain, and M. Van Meerssche, Acta Crystallogr., Ser. B, 31, 2894 (1975).
(32) M. T. McCormack and A. F. Hegarty, J. Chem. Soc., Perkin Trans. 2, 1701 (1976).
(33) H. Zollinger, Acc. Chem. Res., 6, 335 (1973).
(34) A. Battaglia and A. Dondoni, Ric. Sci., 38, 201 (1968)
(35) A. Dondoni, Tetrahedron Lett., 2397 (1967).
(36) K. Bast, M. Christe, R. Huisgen, and W. Mack, Chem. Ber., 106, 3312 (1973).
(37) (a) R. Huisgen, Angew. Chem., Int. Ed. Engl., 565 (1963); (b) R. Huisgen, J. Org. Chem., 41, 403 (1976).
(38) D. Poppinger, J. Am. Chem. Soc., 97, 7486 (1975); Aust. J. Chem., 29, 465 (1976).
(39) E. C. Taylor and F. Kieyle, J. Org. Chem., 36, 233 (1971)
(40) R. L. Dutta and S. Ghoush, J. Indian Chem. Soc., 44, S20 (1967).
(41) A. F. Hegarty and L. N. Frost, J. Chem. Soc., Perkin Trans. 2, 1719 (1973).
(42) E. C. Taylor and F. Kienzle, J. Org. Chem., 36, 233 (1971).

Neighboring Group Interaction in Ortho-Substituted Aminopyridines. Pyridopyrimidines and Related Systems ${ }^{1}$

M. Debeljak-Šuštar, B. Stanovnik, M. Tišler,* and Z. Zrimšek
Department of Chemistry, University of Ljubljana, 61000 Ljubljana, Yugoslavia

Received June 28, 1977

Abstract

Hydrazides of isomeric o-aminopyridinecarboxylic acids have been used for syntheses of various bicyclic heterocycles. Derivatives of pyridc $[2,3-d]$-, pyrido $[3,2-d]$ - or pyrido $[3,4-d]$ pyrimidine, pyrido $[3,2-d]$ - or pyrido $[3,4-d]-v$ triazine, and pyrazolo[1,5-a]pyrido[2,3-d]pyrimidine have been prepared. Some other transformations are also described.

Our recent interest in pyridopyrimidines ${ }^{2,3}$ and related systems prompted us to investigate these systems and, in particular, some aspects of their preparation. Many synthetic approaches have been reported, ${ }^{4}$ but in view of our recent findings it seemed worthwile to explore the possibilities of application of either N, N-dimethylaminomethylene derivatives ${ }^{5-9}$ or participation of diazo or azido groups ${ }^{10-19}$ in the construction of these bicyclic heterocycles. N, N-Dimethylformamide dimethyl acetal has been frequently used as a methine group source for various ring closures.

As starting material we have used hydrazides of 2 -aminonicotinic acid, 3 -aminopicolinic acid, and 3 -aminoisonicotinic acid. 2-Aminopyridine-3-carboxylic acid hydrazide (1, $R_{1}=R_{2}=H$) was transformed with either isoamyl nitrite or benzenediazonium tetrafluoroborate under the conditions for azo-transfer reaction ${ }^{13}$ into the acyl azide 2, which was thermally converted into imidazo[4,5-b]pyridin-2-one (3). This transformation is an example of a Curtius rearrangement with subsequent intramolecular cyclization involving the isocyanato and 0 -amino groups. By monitoring this rearrangement in a NMR probe, the reaction is shown to be completed in 40 \min at $80^{\circ} \mathrm{C}$. The hydrazide, when heated with either N, N dimethylformamide dimethyl acetal or triethyl orthoformate, was transformed into an oxadiazolylpyridine ($4, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$). In the IR spectrum there was no evidence for a carbonyl group, and the NMR spectrum also revealed, in addition to three vicinal pyridine protons, a signal at $\delta 9.35$, arising apparently from a CH group. In the literature, chemical shifts of few

1,3,4-oxadiazoles ${ }^{20,21}$ and pyridopyrimidones ${ }^{4}$ are recorded, and a differentiation between a H_{2} of the oxadiazole system or a H_{2} of the pyridopyrimidinone system is not reliable. On the basis of theoretical considerations and the determined molecular weight (162 g), besides the oxadiazole derivative (4), two other structures, i.e., the pyrido $[2,3-d]$ pyrimidine (5,
$\mathrm{R}=\mathrm{H}$) and pyridotriazepine (6), are also possible. Structure 5 is excluded since we have prepared this compound earlier, ${ }^{3}$ and structure 6 can also be eliminated because of IR spectroscopic evidence and transformations which are described further. Also, it should be mentioned that benzo-1,3,4-tri-azepin-5-ones are readily rearranged into derivatives of 3 -aminocuinazolin-4-one. ${ }^{22}$

The oxadiazolypyridine ($4, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$) afforded with excess N, N-dimethylformamide dimethyl acetal the corresponding N, N-dimethylaminomethylene derivative (4, $\mathrm{R}_{1} \mathrm{R}_{2}$ $=\mathrm{CHN} \mathrm{Me}_{2}$), whereas with hot formic acid it was transformed into the pyridopyrimidinone ($5, \mathrm{R}=\mathrm{H}$). This compound could be prepared also from $1\left(R_{1}=R_{2}=H\right)$ and formamidine acetate directly. The transformation of 4 into 5 takes place most probably via the ring-opened product, i.e., 1 , since it is known that oxadiazoles are cleaved by acids, ${ }^{21}$ and cyclization of o-aminobenzoic acid hydrazide with formic acid to 3 -amino-quinazolin-4-one is well-known. ${ }^{23}$ Although pyrido[2,3-d]pyrimidine and some of its derivatives are readily hydrolyzed in acid solution to substituted pyridines, ${ }^{21}$ compound $5(\mathrm{R}=$ H) could be formylated at the 3 -amino group in a normal way to give the 3 -formylamino compound ($5, \mathrm{R}=\mathrm{HCO}$). In this connection, it is noteworthy to mention that o-aminobenzoic acid hydrazide when heated with either N, N-dimethylformamide dimethyl acetal or triethyl orthoformate is converted to 3 -aminoquinazolin-4-one. It has been reported previously ${ }^{23}$ that this hydrazide is transformed with triethyl orthoformate into 3-ethoxymethyleneaminoquinazolin-4-one.

In view of our previous interest in barriers to rotation in some N^{\prime}-heteroaryl N, N-dimethylformamidines, ${ }^{8}$ we have examined compound $4\left(\mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{CHNMe}_{2}\right)$. The chemical shift of H_{2} at the oxadiazole ring in 4 is dependent on the size of the ortho group in the pyridine part of the molecule. When this group is small, as in the case of an amino group (4, $R_{1}=R_{2}=$ H), the oxadiazole ring appears to be coplanar with the pyridine ring (the signal for H_{2} of the oxadiazole appears at $\delta 9.35$). If the ortho group is bigger, such as formylamino ($4, \mathrm{R}_{1}=H$, $\mathrm{R}_{2}=\mathrm{HCO}$) or N, N-dimethylaminomethyleneamino ($4, \mathrm{R}_{1} \mathrm{R}_{2}$ $=\mathrm{CHNMe}_{2}$), the oxadiazole ring is no longer coplanar with the pyridine ring, and the signal for H_{2} of the oxadiazole ring appears at $\delta 8.15$ and 8.62 , respectively. This steric hindrance is also reflected in the magnitude of barriers to rotation which is $12.5 \mathrm{kcal} / \mathrm{mol}$ for $4\left(\mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{CHNMe}_{2}\right)$ when compared to $16 \mathrm{kcal} / \mathrm{mol}$ for 2 -(N, N-dimethylaminomethyleneamino)pyridine and its 3 -methyl derivative. ${ }^{8}$

We have reported previously on the synthesis of py-rido[3,2-d]-v-triazin-4-one, ${ }^{24}$ and therefore syntheses of the isomeric systems were tempting. from 2 -aminonicotinamide, if diazotized in the usual manner, an easily hydrolyzable diazonium group is generated, and therefore the desired and unknown pyrido $[2,3-d]-v$-triazin- 4 -one is not produced. Therefore, we have attempted to prepare this system from 7 using the aza-transfer reaction with benzenediazonium tetrafluoroborate. However, only the corresponding stable triazene (8) could be isolated.

The isomeric 3-aminopyridine-2-carboxylic acid hydrazide (9) reacted with N, N-dimethylformamide dimethyl acetal to yield the N, N-dimethylaminomethylene derivative of 9 , whereas with triethyl orthoformate, 3 -aminopyrido $[3,2-d]$ -pyrimidin-4-one (11) was formed. In nitrosation of 9 with isoamyl nitrite, the desired azide (14) was not obtained but the corresponding bishydrazide (13) was obtained, apparently by the nitrite ion functioning as an oxidant. Similar conversions with other mild oxidants are known. ${ }^{25-28}$ Azide 14 could be obtained with sodium nitrite in acetic acid or by aza transfer from a benzenediazonium ion, and it could be rearranged to 3. If the benzylidene derivative (10) was first prepared from 9 and then diazotized, the v-triazine (12) could be obtained in good yield.

Synthetic approaches for the preparation of another system, pyrido[3,4-d]pyrimidine, were also investigated since there are not many reports regarding this bicyclic system. The hydrazide (15) gave with N, N-dimethylformamide dimethyl acetal either the oxadiazolylpyridine (16) or compound 17.

The reaction with triethyl orthoformate proceeded differently, and 3 -aminopyrido $[3,4-d]$ pyrimidin-4-one ($18, \mathrm{R}=\mathrm{H}$) could be prepared in moderate yield. This compound was prepared also from ethyl 3 -aminopyridine-4-carboxylate and N, N dimethylformamide dimethyl acetal. The intermediate N, N-dimethylaminomethylene derivative was not isolated in pure form and was immediately transformed with hydrazine into the bicyclic compound ($18, \mathrm{R}=\mathrm{H}$). This is an example of dimethylamine as a leaving group, and this contrasts
the known methods of cyclization where an acyl group is eliminated. Compound 17 is transformed with formic acid into the formylamino derivative ($18, \mathrm{R}=\mathrm{HCO}$), obtainable also by direct formylation of the amine ($18, \mathrm{R}=\mathrm{H}$).

3 -Aminopyridine-4-carboxylic acid azide (19) was prepared from 15 and nitrous acid, and on heating it was transformed by Curtius rearrangement into imidazo[$4,5-c$] pyridin-2-one (20). The azide was easily transformed with hydrogen sulfide into the amide (21), obtainable also under severe reaction conditions from the corresponding ester and ammonia. The easy conversion of the azide into amide is another example of this useful transformation tested already on other compounds. ${ }^{29}$ On diazotization the amide (21) afforded pyrido $3,4-d]-v$-triazin-4-one (22).
In this connection it should be mentioned that the formation of azides 2 and 19 from the corresponding hydrazides contrasts the reactivity of o-aminobenzoic acid hydrazide. This, depending upon the acidity of the reaction mixture, is transformed with nitrous acid into either the azide or a mixture of the azide and 3 -aminobenzotriazin-4-one. ${ }^{30,31}$
In view of the ready availability of pyrazolo[5,1-b]quinazolines from o-aminobenzoic acid hydrazides and esters of 1,3-keto carboxylic acids or related compounds with a reactive methylene group, ${ }^{32}$ it seemed worthwile to investigate this reaction with the corresponding pyridine analogues. Although the reaction proceeds smoothly in the benzene series, we could only obtain condensation products in the pyridine series in a few cases. The hydrazide ($1, \mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$) afforded with ethyl acetoacetate in boiling ethyl acetate only the condensation product (23). A similar reaction with ethyl benzoylacetate in

boiling diethylene glycol dimethyl ether gave a mixture of a tricyclic compound (24) and a derivative of the so far unknown pyrazolo[1,5-a]pyrido[2,3-d] pyrimidine system, together with an acyclic compound (25) as the major product. The latter compound resulted evidently from condensation, followed by hydrolysis of the ester function and subsequent decarboxylation. The structures of these compounds were ascertained by elemental analyses and spectroscopic evidence.

Experimental Section

Melting points were determined on a Kofler hot-plate melting point apparatus. The NMR spectral measurements were performed on a Jeol JNM C-60 HL spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Mass spectra were recorded on a Hitachi Perkin-Elmer RMU-6L spectrometer.

2-Aminopyridine-3-carboxylic Acid Azide (2). Method A. 2-Aminopyridine-3-carboxylic acid hydrazide ${ }^{33}\left(1, R_{1}=R_{2}=H, 0.152\right.$ g) was dissolved in glacial acetic acid (5 mL), and isoamyl nitrite (0.12 g) was added slowly while stirring. The reaction mixture was left at room temperature for 12 h and evaporated in vacuo to dryness, and
the residue extracted several times with hot n-heptane. The product which separated from n-heptane on cooling was filtered off: mp $128-130^{\circ} \mathrm{C}$ (lit. ${ }^{34} \mathrm{mp} 124^{\circ} \mathrm{C}$), and from the melt new crystals separated, $\mathrm{mp} 270-273^{\circ} \mathrm{C}$ (formation of imidazo[4,5-b]pyridin-2-one, 3); IR $2150 \mathrm{~cm}^{-1}\left(\mathrm{~N}_{\varepsilon}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.05\left(\mathrm{dd}, \mathrm{H}_{4}, J_{4,5} 8.2, J_{4,6}=\right.$ $2.0 \mathrm{~Hz}), 6.55\left(\mathrm{dd}, \mathrm{H}_{5}, J_{5,6}=5.0 \mathrm{~Hz}\right), 8.25\left(\mathrm{dd}, \mathrm{H}_{6}\right), 6.9\left(\right.$ broad, $\left.\mathrm{NH}_{2}\right)$; MS m/e 163 (M).
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}$: C, 44.17; H, 3.09; N, 42.93. Found: C, 44.46; H, 3.34; N, 42.75.

The above-mentioned transformation of the azido compound into imidazo $4,5-b]$ pyridin-2-one (3) could be followed in a NMR probe. For synthetic purposes, a solution of the azido compound (0.2 g) in diethylene glycol dimethyl ether (5 mL) was heated at $130^{\circ} \mathrm{C}$ for 1.5 h. The solvent was evaporated in vacuo and the residue had mp $270-273{ }^{\circ} \mathrm{C}$ (lit. ${ }^{33} \mathrm{mp} 270-272^{\circ} \mathrm{C}$); MS m/e 135 (M).
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 53.33 ; \mathrm{H}, 3.73 ; \mathrm{N}, 31.10$. Found: C, 53.06; H, 3.92; N, 31.42.

Method B. A solution of the hydrazide ($1, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, 0.875 \mathrm{~g}$) in dimethyl sulfoxide (10 mL) was treated while stirring with benzendiazonium tetrafluoroborate (1.105 g). After some time, the resulting reddish solution was poured into ice, and the separated solid was filtered off. The crude product was crystallized from water, mp $126^{\circ} \mathrm{C}$ (with the formation of bicyclic compound 3). Tr.e compound was found to be identical with that obtained from method A.
2-Amino-3-(1', $3^{\prime}, 4^{\prime}$-oxadiazolyl-5')pyridine ($4, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$). Method A. A mixture of 2-aminopyridine-3-carboxylic acid hydrazide ($1, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, 0.75 \mathrm{~g}$), N, N-dimethylformamide dimethyl acetal (0.7 g), and diethylene glycol dimethyl ether (20 mL) was heated under reflux for 2 h . On evaporation to dryness in vacuo, the residue was sublimed at $120^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ or crystallized from water yield 0.35 g mp 162-163 ${ }^{\circ} \mathrm{C}$; IR (no CO absorption band); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 8.10\left(\mathrm{dd}, \mathrm{H}_{4}, J_{4,5}=8.1, \mathrm{~J}_{4,6}=1.8 \mathrm{~Hz}\right), 6.75\left(\mathrm{dd}, \mathrm{H}_{5}, J_{5,6}=4.8 \mathrm{~Hz}\right)$, 8.25 (dd, H_{6}), 9.35 (s, H_{2}), 7.35 (broad, NH_{2}); MS m/e 62 (M).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 51.85 ; \mathrm{H}, 3.73 ; \mathrm{N}, 34.56$. Found: C, 51.80; H, 4.21; N, 34.31.

Method B. A mixture of the hydrazide ($1, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, 0.75 \mathrm{~g}$), triethyl orthoformate $(0.75 \mathrm{~g})$, and diethylene glycol dimethyl ether $(10 \mathrm{~mL})$ was heated under reflux for 1.5 h . On standing overnight at room temperature and after filtration, the solution was evaporated to dryness in vacuo. The oily residue was treated with water and filtered. On crystallization from water, the product had mp $163^{\circ} \mathrm{C}$ (yield 0.33 g) and was foand to be identical in all respects with the product obtained as described in method A

If the crude product from the reaction in method A was crystallized from ethyl acetate, a small amount of a product with $\mathrm{mp} 246-248^{\circ} \mathrm{C}$ separated from the solvent and was identified by the use of analytical data and comparison with an authentic specimen as 3 -aminopyrido $2,3-d$]pyrimidin $4(3 H)$-one ($5, \mathrm{R}=\mathrm{H}$) (lit. $\left..^{3} \mathrm{mp} 249-250^{\circ} \mathrm{C}\right)$. The same compound was also obtained if the 2 -amino- 3 -($1^{\prime}, 3^{\prime}, 4^{\prime}$-oxadia-zolyl-5')pyridine ($4, R_{1}=R_{2}=H$) from method B was heated with excess formic acid under reflux for 1.5 h . On evaporation in vacuo, the residual oil crystallized after some time and was sublimed at $180^{\circ} \mathrm{C}$ $(0.1 \mathrm{~mm})$ to give pyridopyrimidone $5(\mathrm{R}=\mathrm{H}), \mathrm{mp} 248^{\circ} \mathrm{C}$.

Finally, 3-aminopyrido $2,3-d]$ pyrimidin- $4(3 H)$-one ($5, \mathrm{R}=\mathrm{H}$) was also obtained if 2 -aminopyridine-3-carboxylic acid hydrazide and formamidine acetate were heated in 2-ethoxyethanol for 2 h and the crude product sublimed at $200^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$.
2-(N, N-Dimethylaminomethyleneamino)-3-($1^{\prime}, 3^{\prime}, 4^{\prime}$-oxadi-azolyl-5') pyridine ($4, \mathbf{R}_{1} \mathbf{R}_{2}=\mathbf{C H N M e} \mathbf{N}_{2}$). A mixture of the oxadiazolypyridine ($4, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, 0.5 \mathrm{~g}$) and N, N-dimethylformamide dimethyl acetal (8 mL) was heated under reflux for 2.5 h . On evaporation in vacuo, the semisolid residue was crystallized from carbon tetrachloride and hexane: yield $0.35 \mathrm{~g} ; \mathrm{mp} 90-91{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.20\left(\mathrm{dd}, \mathrm{H}_{4}, J_{4,5}=7.8, J_{4,6}=2.0 \mathrm{~Hz}\right), 7.01\left(\mathrm{dd}, \mathrm{H}_{5}, J_{5,6}=4.8 \mathrm{~Hz}\right)$, 8.48 (dd, H_{6}), 8.62 ($\mathrm{s}, \mathrm{H}_{2}$ and $\mathrm{CH}=$), $3.10\left(\mathrm{~s}, \mathrm{NMe}_{2}\right) ; \mathrm{MS} \mathrm{m} / e 217$ (M).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 55.29 ; \mathrm{H}, 5.10 ; \mathrm{N}, 32.24$. Found: C, 55.06; H, 5.10; N, 32.42.

3-Formylaminopyrido[2,3-d]pyrimidin-4(3H)-one (5, $\mathbf{R}=$ HCO). A mixture of the 3 -amino compound ($5, \mathrm{R}=\mathrm{H}, 0.4 \mathrm{~g}$), pyridine (1 mL), and formic acid (3 mL of 100%) was heated under reflux for 1 h . The solution was evaporated to dryness in vacuo, and the residue was treated with boiling ethanol. The filtered product had $\mathrm{mp} 255-263$ ${ }^{\circ} \mathrm{C} \mathrm{dec} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 8.58\left(\mathrm{~s}, \mathrm{H}_{2}\right) .8 .63\left(\mathrm{dd}, \mathrm{H}_{5}, J_{5,6}=8.0\right.$, $\left.J_{5,7}=2.0 \mathrm{~Hz}\right), 7.63\left(\mathrm{dd}, \mathrm{H}_{6}, J_{6,7}=4.5 \mathrm{~Hz}\right), 9.08\left(\mathrm{dd}, \mathrm{H}_{7}\right) ; \mathrm{MS}$ m/e 190 (M).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $50.53 ; \mathrm{H}, 3.18$. Found: C, $50.34 ; \mathrm{H}$, 3.40 .

Reaction between Anthranilamide and N, N-Dimethylformamide Dimethyl Acetal or Triethyl Orthoformate. A mixture of
equivalent amounts of anthranilamide and N, N-dimethylformamide dimethyl acetal (or triethyl orthoformate) in diethylene gycol dimethyl ether was heated under reflux for 2 h . The reaction mixture was evaporated to dryness, some 1-propanol was added, and the separated product was filtered off, $\mathrm{mp} 208-211^{\circ} \mathrm{C}$ (lit. ${ }^{23} \mathrm{mp} 202-207$ ${ }^{\circ} \mathrm{C}$ from triethyl orthoformate). The compound was found to be identical in all respects with an authentic specimen of 3 -amino-quinazolin-4-one.

2-Phenyltriazenylpyridine-3-carboxamide (8). A solution of 2 -aminonicotinamide ${ }^{35}(7,1.37 \mathrm{~g})$ in dimethyl sulfoxide (10 mL) was treated with benzenediazonium tetrafluoroborate (1.92 g). The resulting solution was left at room temperature for 10 min and extracted with diethyl ether (six times with 30 mL). On drying the extracts, the solvent was evaporated, and to the residual oil some water was added. The yellow crystals that formed were filtered off: mp $159-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 8.22\left(\mathrm{dd}, \mathrm{H}_{4}, J_{4,5}=8.9, J_{4,6}=1.8 \mathrm{~Hz}\right.$), 7.25 (dd, $\left.\mathrm{H}_{5}, J_{5,6}=5.0 \mathrm{~Hz}\right), 8.53\left(\mathrm{dd}, \mathrm{H}_{6}\right), 7.9$ and $7.5(\mathrm{~m}, \mathrm{Ph}) ; \mathrm{MS} \mathrm{m} / \mathrm{e} 241$ (M).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$: C, 59.74; H, 4.60. Found: c, 60.01; H, 4.82.

The Dimethylaminomethylene Derivative of 3-Aminopyri-dine-2-carboxylic Acid Hydrazide. A mixture of 3 -aminopyri-dine-2-carboxylic acid hydrazide ${ }^{33}$ ($9,0.75 \mathrm{~g}$), N, N-dimethylformamide dimethyl acetal (0.7 g), and diethylene glycol dimethyl ether (10 mL , was heated under reflux for 2 h . After standing at room temperature overnight, the mixture was evaporated to dryness in vacuo, the residue was dissolved in hot water, and on cocling the product crystallized; yield $0.57 \mathrm{~g} ; \mathrm{mp} 82-86{ }^{\circ} \mathrm{C}$ (from water); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 7.10\left(\mathrm{~m}, \mathrm{H}_{4}\right.$ and $\left.\mathrm{H}_{5}, J_{4,5}=3.5, J_{4,6}=2.1, J_{5,6}=8.4 \mathrm{~Hz}\right)$, 7.74 (dd, H_{6}), 7.98 ($\mathrm{s}, \mathrm{N}=\mathrm{CH}$), 2.75 (s, Me); MS m/e 207 (M).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 52.16 ; \mathrm{H}, 6.32 ; \mathrm{N}, 33.80$. Found: C, 51.98; H, 6.62; N, 33.48.

If, however, instead of the above acetal, triethyl orthoformate was used in the reaction under the same reaction conditions, 3 -aminopyrido $[3,2-d]$ pyrimidin- $4(3 H)$-one (11) was obtained. The samisolid crude reaction product was treated with a small quantity of hot ethanol and filtered and the residue crystallized from ethanol, mp $\sim 280-285{ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} \mathrm{mp} 285-287^{\circ} \mathrm{C}$).

Treatment of 3-Aminopyridine-2-carbohydrazide with Isoamyl Nitrite in Glacial Acetic Acid. Formation of the Bishydrazide (13). A solution of 3 -aminopyridine-2-carbohydrazide ($9,0.6$ g) in glacial acetic acid (10 mL) was treated with isoamyl nitrite (0.47 g), and the yellow solution was left to stand overnight at room temperature. The reaction mixture was diluted with water (70 mL), and the yellow product was filtered and crystallized from etharol: yield 0.19 ; mp 227-230 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 7.90\left(\mathrm{dd}, \mathrm{H}_{6}\right), 7.30(\mathrm{~m}$, H_{4} and $\mathrm{H}_{5}, J_{4.5}=8.0, J_{4,6}=1.8, J_{5,6}=4.0 \mathrm{~Hz}$), $2.80\left(\right.$ broad, $\left.\mathrm{NH}_{2}\right)$, 10.25 (broad, NH); MS m/e 272 (M).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, $52.93 ; \mathrm{H}, 4.44 ; \mathrm{N}, 30.87$. Found: C, 52.91; H, 4.36; N, 31.13.

If the hydrazide was treated with sodium nitrite in dilute aqueous acetic acid the corresponding azido compound (14) could be cbtained: $\mathrm{mp} 135-140^{\circ} \mathrm{C}$ (lit. ${ }^{34} \mathrm{mp} 116^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 8.75$ (dd, $\mathrm{H}_{4}, J_{4,5}=9.5, J_{4,6}=1.8 \mathrm{~Hz}$), $8.25\left(\mathrm{dd}, \mathrm{H}_{5}, J_{5,6}=4.5 \mathrm{~Hz}\right), 9.28$ ' $\mathrm{dd}, \mathrm{H}_{6}$); IR $4.68\left(\mathrm{~N}_{3}\right), 5.96 \mu \mathrm{~m}(\mathrm{CO})$; MS $m / e 163(\mathrm{M}), 135\left(\mathrm{M}-\mathrm{N}_{2}\right.$). At the melting point temperature, the compound is transformed into imid-azo[4,5-b]pyrimidin-2-one (3), obtainable also by heating the azido compound in diethylene glycol dimethyl ether for $30 \mathrm{~min}, \mathrm{mp} 275-273$ ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{34} \mathrm{mp} 270-272{ }^{\circ} \mathrm{C}$).

The azide is also obtained if a solution of the hydrazide in dimethyl sulfoxide is treated with benzenediazonium tetrafluoroborate and after 3 C min the reaction mixture is diluted with water.

The Benzylidene Derivative of 3-Aminopyridine-2-carbohydrazide (10). The hydrazide (0.76 g), benzaldehyde (0.53 g), and 1,2-dimethoxyethane (10 mL) were heated 4 h under reflux The reaction mixture was evaporated to dryness, and the residue was crystallized from ethanol: yield $0.86 \mathrm{~g} ; \mathrm{mp} 170-172{ }^{\circ} \mathrm{C}$; MS m/e 240 (M).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 64.98 ; \mathrm{H}, 5.03 ; \mathrm{N}, 23.32$. Found: C, 64.66; H, 5.42; N, 23.10.

The benzylidene derivative of 2-aminopyridine-3-carboxylic acid hydrazide ($1, \mathbf{R}_{1} \mathbf{R}_{2}=\mathbf{C H P h}$) was prepared in an analogous way from 2-aminopyridine-3-carboxylic acid hydrazide: yield 0.77 g ; mp $181^{\circ} \mathrm{C}$ (from ethyl acetate and n-hexane): MS m/e 240 (M).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 64.98 ; \mathrm{H}, 5.03 ; \mathrm{N}, 23.32$. Found: C, 64.68; H, 5.51; N, 23.57.

The Benzylidene Derivative of 3-Aminopyrido[3.2-d]-v-triazin-4-one (12). A solution of compound $11(0.24 \mathrm{~g})$ in glacial acetic acid (5 mL) was treated with isoamyl nitrite $(0.117 \mathrm{~g})$, and the product which separated was filtered off; yield $0.23 \mathrm{~g} ; \mathrm{mp} 207-209^{\circ} \mathrm{C}$ (from
diethylene glycol dimethyl ether); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta 9.13$ (dd, $\mathrm{H}_{6}, J_{6,7}=4.5, J_{6,8}=1.6 \mathrm{~Hz}$), $8.05\left(\mathrm{dd}, \mathrm{H}_{7}, J_{7,8}=8.2 \mathrm{~Hz}\right), 8.63\left(\mathrm{dd}, \mathrm{H}_{8}\right)$, $9.22(\mathrm{~s}, \mathrm{CH}), 8.05$ and $7.6(\mathrm{~m}, \mathrm{Ph})$; MS m/e $251(\mathrm{M})$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 62.14 ; \mathrm{H}, 3.61 ; \mathrm{N}, 27.88$. Found: C, 62.42; H, 3.64; N, 27.36.

Reaction between 3-Aminopyridine-4-carboxylic Acid Hydrazide and N, N-Dimethylformamide Dimethyl Acetal. Method A. A mixture of the acid hydrazide ${ }^{33}(15,0.75 \mathrm{~g}), N, N$-dimethylformamide dimethyl acetal (0.75 g), and diethylene glycol dimethyl ether (10 mL) was heated under reflux for 2 h . After standing overnight at room temperature, the separated product was filtered off, and the filtrate was evaporated to dryness to give $3-(N, N$-dimeth-ylaminomethyleneimino)pyrido[3,4-d]pyrimidin-4-one (17). The combined products were crystallized from water: yield $0.32 \mathrm{~g} ; \mathrm{mp} 225$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 8.44\left(\mathrm{~s}, \mathrm{H}_{2}\right), 8.0\left(\mathrm{dd}, \mathrm{H}_{5}, J_{5.6}=5.0, J_{5,8}=\right.$ $1.0 \mathrm{~Hz}), 8.75\left(\mathrm{~d}, \mathrm{H}_{6}\right), 9.16\left(\mathrm{~d}, \mathrm{H}_{8}\right), 8.16(\mathrm{~s}, \mathrm{~N}=\mathrm{CH}), 3.0(\mathrm{~s}, \mathrm{Me}) ; \mathrm{MS} m / e$ 217 (M).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 55.29 ; \mathrm{H}, 5.10 ; \mathrm{N}, 32.24$. Found: C, 55.73; H, 5.22; N, 32.45.

Method B. If in the above reaction N, N-dimethylformamide dimethyl acetal was used in a quantity less than equivalent $(0.5 \mathrm{~g})$ to the amount of hydrazide, the obtained product had $\mathrm{mp} 160^{\circ} \mathrm{C}$ (from water) and was identified as 3 -amino-4-($1^{\prime}, 3^{\prime}, 4^{\prime}$-oxadiazolyl- 5^{\prime}) pyridine (16); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 8.40\left(\mathrm{~s}, \mathrm{H}_{2}\right), 7.52\left(\mathrm{~d}, \mathrm{H}_{5}, J_{5,6}=4.0\right.$ Hz), $7.90\left(\mathrm{~d}, \mathrm{H}_{6}\right), 9.40\left(\mathrm{~s}, \mathrm{H}_{2}\right)$; MS m/e $162(\mathrm{M})$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 51.85 ; \mathrm{H}, 3.73 ; \mathrm{N}, 34.56$. Found; c, 51.56; H, 4.20; N, 34.62 .

3-Aminopyrido[3,4-d]pyrimidin-4(3H)-one (18). Method A. A mixture of 3 -aminopyridine-4-carboxylic acid hydrazide ($15,0.75$ g), triethyl orthoformate (0.75 g), and diethylene glycol dimethyl ether $(10 \mathrm{~mL})$ was heated under reflux for 1.5 h . On evaporation to dryness in vacuo, the semisolid residue was crystallized form ethanol: yield $0.25 \mathrm{~g} ; \mathrm{mp} 201{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 8.60\left(\mathrm{~s}, \mathrm{H}_{2}\right), 8.10\left(\mathrm{dd}, \mathrm{H}_{5}\right.$, $\left.J_{5,6}=5.4, J_{5,8}=0.9 \mathrm{~Hz}\right), 8.85\left(\mathrm{~d}, \mathrm{H}_{6}\right), 9.25\left(\mathrm{~d}, \mathrm{H}_{8}\right) ;$ MS m/e 162 (M).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 51.85 ; \mathrm{H}, 3.75$; $\mathrm{N}, 34.56$. Found: C, 51.95; H, 3.90; N, 34.73.

Method B. A mixture of ethyl 3-aminopyridine-4-carboxylate (1.66 g) and N, N-dimethylformamide dimethyl acetal (4 mL) was heated under reflux for 2 h . On evaporation to dryness, the dark oily residue was treated with hydrazine hydrate (2 mL of 100%), and the mixture was heated to boiling for a few minutes. The separated product was filtered off and washed with water, $\mathrm{mp} 202-205^{\circ} \mathrm{C}$ (from ethanol). The compound was found to be identical in all respects with the product obtained as described in method A.

3-Formylaminopyrido[3,4-d]pyrimidin-4(3H)-one (18, R = HCO). Method A. A mixture of compound $17(0.25 \mathrm{~g})$ and formic acid (5 mL of 85%) was heated under reflux for 1 h and evaporated to dryness. The residue was treated with ethyl acetate $(7 \mathrm{~mL})$ and heated to boiling for a few minutes. On filtration the residue had mp 226-231 ${ }^{\circ} \mathrm{C}(0.11 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 8.57\left(\mathrm{~s}, \mathrm{H}_{2}\right), 8.10\left(\mathrm{dd}, \mathrm{H}_{5}, J_{5,6}=\right.$ $\left.5.2, J_{5,8}=0.9 \mathrm{~Hz}\right), 8.83\left(\mathrm{~d}, \mathrm{H}_{6}\right), 9.20\left(\mathrm{~d}, \mathrm{H}_{8}\right), 8.48(\mathrm{~s}, \mathrm{CH}) ; \mathrm{MS}$ m/e 190 (M).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 50.53; H, 3.18; N, 29.47. Found: C, 50.65; H, 3.25; N, 29.30.

Method B. A mixture of 3-aminopyrido[3,4-d]pyrimidin-4(3H)-one ($18, \mathrm{R}=\mathrm{H}, 0.4 \mathrm{~g}$), pyridine (1 mL), and formic acid (3 mL of 100%) was heated under reflux for 2 h . On evaporation to dryness in vacuo, the residue was crystallized from methanol, $\mathrm{mp} 228-230^{\circ} \mathrm{C}$. The compound was found to be identical in all respects with the product obtained as described in method A.

3-Aminopyridine-4-carboxylic Acid Azide (19). A cold solution of 3-aminopyridine-4-carboxylic acid hydrazide ($15,1.0 \mathrm{~g}$) in aqueous acetic acid (12 mL of 25%) was treated with sodium nitrite (0.46 g). The product which separated was filtered off and dried: mp 120-130 ${ }^{\circ} \mathrm{C}$, with formation of a new compound (20) with mp $315{ }^{\circ} \mathrm{C} \mathrm{dec} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 8.30\left(\mathrm{~s}, \mathrm{H}_{2}\right), 7.33\left(\mathrm{~d}, \mathrm{H}_{5}, J_{5,6}=5.0 \mathrm{~Hz}\right), 7.70(\mathrm{~d}$, H_{6}); MS m/e 163 (M), $135\left(\mathrm{M}-\mathrm{N}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 44.17$; H, 3.09. Found: C, 44.32; H, 3.01 .

Imidazo[4,5-c]pyridin-2-one (20) was prepared from the above compound (19) by heating it in diethylene glycol dimethyl ether: mp $315{ }^{\circ} \mathrm{C}$ dec (lit. ${ }^{36} \mathrm{mp} 304-305{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{M}_{2} \mathrm{SO}-d_{6}$) $\delta 8.18\left(\mathrm{~d}, \mathrm{H}_{4}\right.$, $\left.J_{4,7}=0.7 \mathrm{~Hz}\right), 8.07\left(\mathrm{~d}, \mathrm{H}_{6}, J_{6.7}=5.3 \mathrm{~Hz}\right), 6.95\left(\mathrm{dd}, \mathrm{H}_{7}\right) ; \mathrm{MS} m / e 135$ (M).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 53.33$; $\mathrm{H}, 3.73$. Found: C, 53.11 ; H , 4.12.

3-Aminopyridine-4-carboxylic Acid Amide (21). Method A. Ethyl 3-aminopyridine-4-carboxylate (2 g) and liquid ammonia (20 mL) were heated in an autoclave at $130^{\circ} \mathrm{C}$ for 7 h . The crude product
was sublimed in vacuo to give the pure amide: $\mathrm{mp} 149{ }^{\circ} \mathrm{C}$ (lit. $^{37} \mathrm{mp}$ $151-152^{\circ} \mathrm{C}$); MS m/e 137 (M).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 52.54 ; \mathrm{H}, 5.15$. Found: C, $52.66 ; \mathrm{H}$, 5.12 .

Method B. Into a solution of 3-aminopyridine-4-carboxylic acid azide ($19,0.15 \mathrm{~g}$) in ethanol (5 mL) hydrogen sulfide was introduced for 30 min . The precipitated sulfur was filtered off, and the solution was evaporated to dryness to give the amide, $\mathrm{mp} 148^{\circ} \mathrm{C}$. The compound was found to be identical in all respects with the product obtained as described in method A.

Pyrido[3,4- d]- u-triazin-4(3H)-one (22). A solution of the above amide ($21,0.137 \mathrm{~g}$) in glacial acetic acid (5 mL) was treated with sodium nitrite (69 mg) in a little water while stirring. The product which separated was filtered off and had mp $251{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 8.14\left(\mathrm{dd}, \mathrm{H}_{5}, J_{5,6}=5.1, J_{5,8}=0.9 \mathrm{~Hz}\right), 9.11\left(\mathrm{~d}, \mathrm{H}_{6}\right), 9.64$ (d, H_{8}) $\mathrm{MS} m / e 148$ (M).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 48.65$; H, 2.72. Found: C, 49.03; H, 2.99.

Reaction between 2-Aminopyridine-3-carboxylic Acid Hydrazide and Ethyl Acetoacetate to Give 23. 2-Aminonicotinic acid hydrazide ($1,0.5 \mathrm{~g}$), ethyl acetoacetate $(0.43 \mathrm{~g})$, ethyl acetate $(60 \mathrm{~mL})$, and a drop of triethylamine were heated under reflux for 3 h . The reaction mixture was evaporated to dryness in vacuo, the residue was treated with benzene, and the separated product was filtered off and crystallized from benzene: yield $0.45 \mathrm{~g} ; \mathrm{mp} 99-101{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 7.75\left(\mathrm{dd}, \mathrm{H}_{4}, J_{4,5}=8.0, J_{4,6}=1.8 \mathrm{~Hz}\right.$.), $6.60\left(\mathrm{dd}, \mathrm{H}_{5}, J_{5,6}\right.$ $=5.0 \mathrm{~Hz}), 8.17\left(\mathrm{dd}, \mathrm{H}_{6}\right), 2.0(\mathrm{~s}, \mathrm{Me}), 3.40\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 54.55 ; \mathrm{H}, 6.10 ; \mathrm{N}, 21.10$. Found: C, 55.01; H, 6.47; N, 21.01.

Reaction between 2-Aminopyridine-3-carboxylic Acid Hydrazide and Ethyl Benzoylacetate. A mixture of the hydrazide (1, 0.5 g), ethyl benzoylacetate (0.65 g), and diethylene glycol dimethyl ether (10 mL) was heated at $160^{\circ} \mathrm{C}$ for 2 h . After about 1 h of heating, crystals started to separate. The product was filtered off and had mp over $290^{\circ} \mathrm{C}$ (yield 0.11 g). The tricyclic product (24) showed the following spectrum: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 147^{\circ} \mathrm{C}$) $\delta 6.45$ (s, H_{3}), 8.85 (dd, $\left.\mathrm{H}_{6}, J_{6,7}=4.0, J_{6,8}=1.8 \mathrm{~Hz}\right), 8.40\left(\mathrm{dd}, \mathrm{H}_{7}, J_{7,8}=8.0 \mathrm{~Hz}\right), 8.70\left(\mathrm{dd}, \mathrm{H}_{8}\right)$, 8.10 and $7.5(\mathrm{~m}, \mathrm{Ph})$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 68.69$; $\mathrm{H}, 3.84 ; \mathrm{N}, 21.37$. Found: C, 68.51; H, 4.30; N, 21.19.

The filtrate was evaporated in vacuo to dryness, and the residue was suspended in n-hexane, filtered, and washed with ethanol. The product (25) was crystallized from ethanol: yield 0.45 ; mp 209-212 ${ }^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 7.85\left(\mathrm{dd}, \mathrm{H}_{4}, J_{4.5}=7.5, J_{4,6}=1.8 \mathrm{~Hz}\right), 6.75$ $\left(\mathrm{dd}, \mathrm{H}_{5}, J_{5,6}=4.5 \mathrm{~Hz}\right), 8.10\left(\mathrm{dd}, \mathrm{H}_{6}\right), 2.30(\mathrm{~s}, \mathrm{Me}), 7.85$ and $7.4(\mathrm{~m}$, Ph).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 66.12 ; \mathrm{H}, 5.55 ; \mathrm{N}, 22.04$. Found: C, 65.99; H, 5.08; N, 21.65.

Registry No. $1\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}\right)$, 5327-31-1; $1\left(\mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{CHPh}\right)$, 64189-07-7; 2, 64189-06-6; 3, 16328-62-4; 4, $\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}\right), 64189-05-5$; $4\left(\mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{CHNMe} 2\right), 64189-04-4 ; 5(\mathrm{R}=\mathrm{H}), 37554-48-6$; $5(\mathrm{R}=$ $\mathrm{HCO})$, 64189-03-3; 7, 13438-65-8; 8, 64189-01-1; 9, 3303-28-4; 10 , 64201-58-7; 11, 37554-49-7; 12, 64189-02-2; 13, 64189-10-2; 14, 64189-09-9; 15, 64189-08-8; 16, 64188-99-4; 17, 64189-00-0; 18 ($\mathrm{R}=$
H), 64201-55-4; 18 ($\mathrm{R}=\mathrm{HCO}$), 64201-57-6; 19, 64188-98-3; 20 , 7397-68-4; 21, 64188-97-2; 22, 64188-96-1; 23, 64188-95-0; 24, 64188-94-9; 25, 64188-93-8; N, N-dimethylformamide dimethyl acetal, 4637-24-5; formic acid, 64-18-6; anthranilamide, 88-68-6; triethyl orthoformate, 122-51-0; 9-dimethylaminomethylene derivative, 64188-92-7; benzenediazonium tetrafluoroborate, 369-57-3; benzaldehyde, 100-52-7; ethyl 3-aminopyridine-4-carboxylate, 14208-83-4; ethyl acetoacetate, 141-97-9; ethyl benzoylacetate, 94-02-0.

References and Notes

(1) Heterocycles. Part 168.
(2) B. Stanovnik and M. Tišler, Synthesis, 120 (1974).
(3) B. Stanovnik and M. Tišler, Croat. Chem. Acta, 44, 243 (1972).
(4) W. J. Irwin and D. G. Wibberley, Adv. Heterocycl. Chem., 10, 149 (1969).
(5) K. Babič, S. Molan, S. Polanc, B. Stanovnik, J. Stres-Bratcṡ, M. Tišler, and B. Verček, J. Heterocycl. Chem., 13, 487 (1976).
(6) B. Jenko, B. Stanovnik, and M. Tišler, Synthesis, 833 (1976)
(7) J. Faganeli, S. Polanc, B. Stanovnik, and M. Tišler, Croat. Chem. Acta, 48, 161 (1976).
(8) M. Zupan, V. Pirc, A. Pollak, B. Stanovnik, and M. Tišler, J. Heterocycl. Chem., 11, 525 (1974).
(9) S. Polanc. B. Jerc̄ek, B. Šek, B. Stanovnik, and M. Tišler, J. Org. Chem., 39, 2143 (1974).
(10) S. Gorjan, B. Klemenc, M. Starič, B. Stanovnik, and M. Tis̆ler, Monatsh. Chem., 107, 1199 (1976).
(11) S. Polanc. B. Stanovnik, and M. Tišler, J. Org. Chem., 41, 3152 (1976).
(12) For a review on the utility of heterocyclic diazo compounds in organic synthesis see M. Tišler and B. Stanovnik, Heterocycles, 4, 1115 (1976).
(13) B. Stanovnik, M. Tišler, S. Polanc, V. Kovačič-Bratina, and B. SpicerSmolnikar, Tetrahedron Lett., 3193 (1976).
(14) M. Kočevar, C. Kolman, H. Krajnc, S. Polanc, B. Porovne, B. Stanovnik, and M. Tišler, Tetrahedron, 32, 725 (1976)
(15) M. Jurgec, M. Kovačič, B. Stanovnik, M. Tiŝ̀ler, and M. Volk, J. Heterocycl. Chem., 12, 253 (1975).
(16) M. Kovačić, S. Polanc, B. Stanovnik, and M. Tis̆ler, J. Heterocycl. Chem., 11, 949 (1974).
(17) A. Gorup. M. Kovačič, B. Kranjc-S̃kraba, B. Mihelč̌ič, S. Simonič, B. Stanovnik, and M Tišler, Tetrahedron, 30, 2251 (1974).
(18) D. Fortuna, B. Stanovnik, and M. Tis̃ler, J. Org. Chem., 391933 (1974).
(19) For a review on some aspects of azido-tetrazolo isomerizations and previous references see M. Tiŝler, Synthesis, 123 (1973).
(20) T. J. Batterharr. "NMR Spectra of Simple Heterocycles", Wiley, New York, N.Y., 1973, p 483.
(21) A. Hetzheim and K. Mockel, Adv. Heterocycl. Chem. 7, 183 (1966).
(22) R. W. Leiby and N. D. Heindel, J. Org. Chem., 42, 161 (1977).
(23) M. Vincent, J. Maillard, and M. Benard, Bull. Soc. Chim., Fr., 1580 (1962).
(24) B. Stanovnik and M. Tišler, Org. Prep. Proced. Int., 4, 55 (1972).
(25) T. Curtius, J. Prakt. Chem., 50, 281 (1894).
(26) R. Stolle, Ber. Dtsch. Chem. Ges., 46, 260 (1913)
(27) P. W. Wiley, J. Am. Chem. Soc., 76, 5176 (1954).
(28) L. Horner and H. Fernekess, Chem. Ber., 94, 712 (1961).
(29) B. Stanovnik, M. Tišler, S. Polanc, and J. Zitnik, Synthesis, 491 (1977)
(30) G. Heller, J. Prakt. Chem., 111, 36 (1925)
(31) G. Heller, J. Prakt. Chem., 116, 9 (1927).
(32) K. H. Menzel, R. Pütter, and G. Wolfrum, Angew. Cnem., 74, 839 (1962).
(33) V. Oakes, R. Pascoe, and H. N. Rydon, J. Chem. Soc., 1C45 (1956).
(34) D. Harrison and A. C. B. Smith, J. Chem. Soc., 3157 (19E9).
(35) E. C. Taylor and A. J. Crovetti, J. Org. Chem., 19, 1633 (1954)
(36) G. B. Barlin, J. Chem. Soc. B, 285 (1966)
(37) H. H. Fox, J. Org. Chem., 17, 542 (1952).

Stable Arene Imines

Ytzhak Ittah, Israel Shahak, and Jochanan Blum*
Department of Organic Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
Received June 13, 1977

Abstract

The syntheses of stable N-alkyl arene imines are described. The general route to 1-butyl-, 1-cyclohexyl-, and 1-benzyl-1a, $9 b$-dihydrophenthr $[9,10-b]$ azirine includes the reaction of phenanthrene 9,10 -oxide with the appropriate amine followed by cyclodehydration of the amino alcohol with $\mathrm{PPh}_{3}-\mathrm{CCl}_{4}$ reagent. The preparation of 1-acetyl-la,11b-dihydrochrysen[5,6-b]azirine from trans-6-acethoxy-5-acetylamino-5,6-dihydrochrysene and NaH is described as an example of an unstable arene imine that rearranges at room tercperature to the corresponding N-acetyl aryl amine.

It is widely accepted that polycyclic aromatic hydrocarbons exert their carcinogenic properties through metabolically induced binding to tissue constituents. ${ }^{1}$ Arene oxides are
generally described as the primary intermediates that alkylate amino acid and nucleic acid residues to form hydrocarbonbound cell substances with new $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{S}$, or $\mathrm{C}-\mathrm{N}$ linkages. ${ }^{2}$

Table I. ${ }^{1}$ H NMR Spectra of some 10 -Alkylamino-9,10-dihydrophenanthr-9-ols (2) ${ }^{\text {a,b }}$

Compd 2, R =	$\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$	Chemical shifts, δ (ppm)		
		$\mathrm{H}_{(9)}$	$\mathrm{H}_{(10)}$	Alkyl protons
n-Butyl ${ }^{\text {c }}$	64188-67-6	4.62 (d)	3.74 (d, $J_{9,10}=7 \mathrm{~Hz}$)	$\begin{aligned} & 2.50\left(\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}\right), 1.10-1.68\left[\mathrm{~m},\left(\mathrm{CH}_{2}\right)_{2}\right], \\ & 0.88\left(\mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \end{aligned}$
tert-Butyl	64188-57-4	4.10 (d)	3.52 (d, $J_{9,10}=10 \mathrm{~Hz}$)	1.50 (s, CH_{3})
Cyclohexyl	64188-68-7	4.36 (d)	3.72 (d, $\left.J_{9,10}=10 \mathrm{~Hz}\right)$	2.42 (m, N-CH), 0.85-1.92 (m, cyclohexyl)
Benzyl	64188-69-8	4.52 (d)	3.68 (d, $J_{9,10}=8 \mathrm{~Hz}$)	3.81 (s, N-CH2)

${ }^{a} \mathrm{In}^{\mathrm{CDCl}}{ }_{3}+\mathrm{Me}_{4} \mathrm{Si}^{\text {. }}{ }^{b}$ The NH and OH protons appear as broad signals between 2.40 and $2.80 \mathrm{ppm} .{ }^{c}$ This compound has been reported by Dey and Neumeyer (ref 18).

Chart I

$R=$ peptide or nucleic acid residue
Thus, upon reversing these alkylations there may be formed not only the original arene oxides, but also the analogous arene imines (Chart I). This hypothesis concerning the existence of azidines as transient intermediates in chemical carcinogenesis finds some support in the observation that β-amino alcohols can be metabolized to aziridines. ${ }^{3}$

Recently, ${ }^{4}$ we announced briefly the synthesis of the first N-acetylphenanthrene imine and Shudo and Okamoto ${ }^{5}$ reported the corresponding N-tosyl derivative. Imines of higher polycyclic hydrocarbons were prepared as well (vide infra). However, these compounds which have electron-attracting groups attached to the nitrogen atom proved to rearrange readily at ambient temperature to aromatic amines and are therefore unsuitable for biological tests. In this study, we find that arene imines which have electron-donating substituents on the aziridine nitrogen are perfectly stable. The synthesis is accomplished simply by reacting an arene oxide with an appropriate amine followed by $\mathrm{PPh}_{3}-\mathrm{CCl}_{4}-\mathrm{Et}_{3} \mathrm{~N}$ cyclodehydration ${ }^{6}$ of the trans-amino alcohol ${ }^{7}$ intermediate.

The application of this method to 1-butyl-, 1-cyclohexyl-, and 1 -benzyl-1a, 9 b -dihydrophenanthr $[9,10-b]$ azirine is illustrated by the sequence of transformations $1 \rightarrow 2 \rightarrow 3$.

a, $\mathrm{R}=n$-butyl
b, $\mathrm{R}=$ cyclohexyl
c, $\mathrm{R}=$ benzyl
While the first step seems to be hardly affected by the geometry of the amine, conversion of 2 into 3 is very sensitive to steric effects so that 10 -tert-butylamino-9,10-dihydro-phenanthr-9-ol $\left[2, \mathrm{R}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ fails to cyclize to the respective aziridine.

Attempts to obtain 3 by a stepwise transformation of 2 to haloamine 5, followed by cyclodehydrohalogenation, resulted

in rapid aromatization to the substituted 9 -aminophenanthrene (6). This provides support for the mechanism proposed by Appel and Kleinstück ${ }^{6}$ which does not include a 10 -halo-geno-9-amine-9,10-dihydrophenanthrene intermediate (Chart II). Small amounts of N-alkyl- 9 -aminophenanthrenes (6) that were obtained as side products are assumed to be formed by HCl addition to 3 or, more likely, by loss of triphenylphosphine oxide from intermediate 4.

The structures of the amino alcohols 2 and the imines 3 were deduced from the elementary and spectral analyses. The most indicative feature of the mass spectra of both compounds 2 and 3 is the intense fluorenyl peak (usually base peak) m / e 165. This ion is characteristic for 9,10 -dihydrophenanthrene derivatives but is absent in the fully aromatic system. ${ }^{8}$ While the aziridines 3 form distinctive molecular ions, the amino alcohols readily loose water and give $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$. ions which are more abundant than M^{+}.
Some ${ }^{1} \mathrm{H}$ NMR data for compounds 2 and 3 are listed in Tables I and II. As expected, the chemical shift of $\mathrm{H}_{(9)}$ in 2 is sensitive to the geometry of the polycyclic system. The magnetic anisotropy effect is less pronounced in the distorted N-tert-butyl- and N-cyclohexylamino alcohols than in 3a and 3c.

The ring protons in the rigid arene imines 3 resonate at lower field than those of flexible aziridines. While, e.g., cis-1-ethyl-2,3-diphenylaziridine shows up at $\sim 2.79 \mathrm{ppm},{ }^{9}$ the peaks of $\mathrm{H}_{(1 \mathrm{a})}$ and $\mathrm{H}_{(9 \mathrm{~b})}$ of $3 \mathrm{a}-\mathrm{c}$ are below 2.97 ppm . This deshielding is somewhat smaller than reported ${ }^{10}$ for the corresponding oxiranes (the oxirane protons of phenanthrene 9,10 -oxide and cis-stilbene oxide resonate at 4.67 and 4.19 ppm , respectively ${ }^{10}$) owing to the greater interaction of the nitrogen lone pair with the aromatic π electrons.

The aromatic protons in phenanthrene-9,10-imines (3) show two well-separated multiplets of which the low-field complex is assigned to $\mathrm{H}_{(5)}$ and $\mathrm{H}_{(6)}$.

The high-field absorption (2.05 ppm) of the $\alpha-N$-cyclohexyl

Table II. ${ }^{1}$ H NMR, UV, and Mass Spectra of some 1-Alkyl-1a,9b-dihydrophenanthr[9,10-b]azirines (3)

Compd	$\begin{gathered} \text { Registry } \\ \text { no. } \\ \hline \end{gathered}$	${ }^{1} \mathrm{H}$ NMR, $\delta(\mathrm{ppm})^{2}$	$\underline{L V} \lambda_{\text {max }}, \mathrm{nm}(\log \epsilon)^{\text {b }}$	$\begin{gathered} \begin{array}{c} \text { Major fragment } \\ \text { ions } \end{array} \\ m / e \text { (rel intensity) } \end{gathered}$
3a	64188-66-5	$0.88\left(\mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20-1.72\left[\mathrm{~m},\left(\mathrm{CH}_{2}\right)_{2}\right],$	$\begin{aligned} & 239 \text { (3.82), } 271 \text { (3.99), } 277 \text { (4.01), } \\ & 281 \text { (4.00), } 288 \text { (3.68), } 295 \text { (3.67), } \end{aligned}$	249 (60), 206 (100)
		$\begin{aligned} & 2.54\left(\mathrm{t}, \mathrm{~J}=8 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}\right), 2.97\left(\mathrm{~s}, \mathrm{H}_{(1 \mathrm{a}, 9 \mathrm{~b})}\right) 7.94 \\ & \left(\mathrm{~m}, \mathrm{H}_{(5.6)}\right) \end{aligned}$	$306 \text { (3.58) }$	178 (31), 165 (30)
3b	64188-65-4	$1.00-2.00$ (m, cyclohexyl), 2.05 (m, N- CH_{2}),	$\begin{gathered} 242 \text { (3.58), } 269 \text { (3.99), } 274 \text { (4.00), } \\ 280(3.99), 287(3.86), 292 \text { (3.69), } \end{gathered}$	275 (76), 232 (38),
		3.03 (s, $\left.\mathrm{H}_{(1 \mathrm{a}, 9 \mathrm{~b})}\right), 7.96\left(\mathrm{~m}, \mathrm{H}_{(5,6)}\right)$	305 (3.50)	$\begin{aligned} & 178(62), 165 \\ & (100) \end{aligned}$
3c	64188-64-3	$\begin{aligned} & 3.19\left(\mathrm{~s}, \mathrm{H}_{(\mathrm{la}, 9 \mathrm{~b})}\right), 3.75\left(\mathrm{~s}, \mathrm{~N}-\mathrm{CH}_{2}\right) \text {, } \\ & 8.04\left(\mathrm{~m}, \mathrm{H}_{(5,6)}\right) \end{aligned}$	$\begin{aligned} & 225(4.10), 239(3.86), 272(3.96), \\ & \quad 275(3.97), 281(3.95), 288(3.80), \\ & 295(3.64), 305(3.49) \end{aligned}$	$\begin{aligned} & 283(100), 192 \\ & (86), \\ & 178(77), 165(94) \end{aligned}$

${ }^{a}$ In $\mathrm{CDCl}_{3}+\mathrm{Me}_{4} \mathrm{Si}$. ${ }^{b}$ Compound 3a and $3 \mathbf{c}$ were recorded in cyclohexane and $\mathbf{3 b}$ in CHCl_{3}.

Figure 1. $100-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of 1 -benzyl-1a, 9 b -dihydrophenanthr $[9,10-b]$ azirine ($3 \mathbf{c}$) at $31^{\circ} \mathrm{C}$ ir. $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and (after rearrangement) at $140^{\circ} \mathrm{C}$ in CDBr_{3}.
proton of $\mathbf{3 b}$ exceeds the upper-field limit for an equatorial cyclohexylamine hydrogen. ${ }^{11}$ Since the flexibility of the heavily substituted cyclohexane ring is rather restricted, it may be suggested that the nitrogen :and the aziridine ring) is virtually equatorial.

The assignment of the two singlets (3.19 and 3.75 ppm) in the ${ }^{1} \mathrm{H}$ NMR spectrum of 1 -benzyl-1a, 9 b -dihydrophenanthr $[9,10-b]$ azirine (3c) (Figure 1) was accomplished by the aid of ${ }^{13} \mathrm{C}$ NMR spectroscopy. The aziridine ring and methylene carbon atoms resonate at $\delta 48.97$ and 67.75 ppm , respectively. On off-resonance decoupling $\mathrm{C}_{(1 \mathrm{a})}$ and $\mathrm{C}_{(9 \mathrm{~b})}$ appear as a doublet, while the benzylic CH_{2} carbon forms a triplet. Thus, by off-resonance decoupling techniques at various decoupler offsets the ${ }^{1} \mathrm{H}$ NMR peak at 3.75 ppm is found, unequivocally, to arise from the methylene, and the singlet at 3.19 ppm arises from the vicinal aziridine-ring protons. Further confirmation to this assignment is obtained from the ${ }^{1} \mathrm{H}$ NMR spectra of 3a and 3b which have only one singlet in the vicinity of 3 ppm .

Figure 2. ${ }^{1} \mathrm{H}$ NMR signals of $\mathrm{H}_{1 \mathrm{a}} \mathrm{H}_{9 \mathrm{~b}}$ (narrow line) and benzylic protons (broad peak) of 3 c at $-98^{\circ} \mathrm{C}$.

The CH_{2} signals of $\mathbf{3 c}$ in both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra broaden upon lowering the temperature. The effect on the ${ }^{1} \mathrm{H}$ NMR singlet is larger than on the ${ }^{13} \mathrm{C}$ peak (see Figure 2). This phenomenon is attributed to inversion of the aziridine nitrogen by which a mixture of the two invertomers 7 and 8 result.

Owing to symmetry factors associated with the cis-aziridine structure, the $\mathrm{CH}_{(1 \mathrm{a})}$ and $\mathrm{CH}_{(9 \mathrm{~b})}$ peaks remain almost unchanged. It may thus be concluded that the reasor for the line broadening is not just a viscosity effect. The chemical shift (3.75 ppm) reflects, therefore, the relative contribution of the exo and endo structures 7 and 8 to the equilibrium mixture.

Solvent effect on the ${ }^{1} \mathrm{H}$ NMR spectrum of 3 c has been studied and deserves some attention. Deuterated benzene, toluene, as well as CS_{2} that have high π-electron densities are assumed to be repelled by the aziridine nitrogen lone pair. ${ }^{12}$ Thus, an approach of the solvent from the opposite direction shields the aziridine protons (see Table III). The effect is largest in $\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5}$ (hyperconjugation) and smallest in the relative π-electron poor CS_{2}. The opposite effect of $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ can

Table III. ${ }^{1} \mathrm{H}$ NMR Spectra of 1-Benzyl-1a,9b-dihydrophenanthr[9,10-b]azirine (3c) in Various Solvents at 100 MHz

Solvent	$\mathrm{H}_{(1 \mathrm{a}, 9 \mathrm{~b})}{ }^{a}$	$\Delta \mathrm{H}_{(1 \mathrm{a}, 9 \mathrm{~b})}{ }^{b}$	$\mathrm{CH}_{2}{ }^{a}$	$\Delta \mathrm{CH}_{2}{ }^{b}$	$\mathrm{H}_{(5,6)^{a}}$	$\Delta \mathrm{H}_{(5,6)^{b}}$
CCl_{4}	300.9	0	370.2	0	79.0	0
CDCl_{3}	318.8	+17.9	382.1	+11.0	795.9	-1.1
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	318.0	+17.1	375.1	+4.9	801.1	+4.1
CS_{2}	296.4	-5.6	364.5	-5.7	786.6	-10.4
$\mathrm{C}_{6} \mathrm{D}_{6}$	277.6	-22.3	345.1	-24.7	783.3	-13.7
$\mathrm{C}_{7} \mathrm{D}_{8}$	274.6	-25.3	343.6	-26.6	773.1	-23.9
$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	328.8	+27.3	377.1	+6.9	812.2	+15.2

${ }^{a}$ Chemical shifts in Hz from $\mathrm{Me}_{4} \mathrm{Si}$ internal reference. ${ }^{b}$ As compared with CCl_{4}.
be rationalized by the considerable accumulation of positive charge on $\mathrm{C}_{(2)}$ and $\mathrm{C}_{(6)}$ of the pyridine molecule. This causes attraction of the solvent by the aziridine lone pair and deshielding of the ring protons. The effect of CDCl_{3} on aziridine ${ }^{1} \mathrm{H}$ NMR has been well documented. ${ }^{13}$ The CCl_{3} group is linked via a D bond to the nonbonding orbital and causes moderate deshielding. A similar effect is observed in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

As noted, the N-alkyl arene imines 3a-c are stable and do not rearrange below $100^{\circ} \mathrm{C}$. However, at $114^{\circ} \mathrm{C}$ (in CDBr_{3}) the ${ }^{1} \mathrm{H}$ NMR indicates slow conversion into 9 -aminophenanthrenes. At $140^{\circ} \mathrm{C}$ the aromatization is instantaneous (see Figure 1).

It is remarkable that the N-alkyl arene imines are also stable toward strong acids. ${ }^{1} \mathrm{H}$ NMR measurements conducted in $\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}$ at room temperature indicate protonation of the nitrogen atom without ring opening. The corresponding chemical shifts for (a) N-butyl- and (b) N-cyclo-hexyl-1a,9b-dihydrophenanthr $9,10-b]$ azirine are (a) $\delta 0.95$ $(\mathrm{t}, 3, J=4 \mathrm{~Hz}), 1.17-1.96(\mathrm{~m}, 4), 3.36(\mathrm{~m}, 2), 4.59(\mathrm{~d}, J=3 \mathrm{~Hz})$, 6.33 ($1, \mathrm{~m}$), $7.32-8.12(\mathrm{~m}, 8)$; and (b) 1.14-2.36 (m, 10), 2.74 (m, 1), $4.59(\mathrm{~s}, 2), 6.55(\mathrm{~m}, 1), 7.42-8.07(\mathrm{~m}, 8) \mathrm{ppm}$. The main changes that occur in the UV spectra of imines 3 upon protonation is the disappearance of the $305-\mathrm{nm}$ band and the appearance of a strong absorption at $255-265 \mathrm{~nm}$.

In contrast to N-alkyl arene imines, the N-acetyl analogues readily rearrange to aromatic N-acetylamines. We assume that the difference in stability is associated with the existence of the mesomeric form B shown in Chart III, in which the high order of the imine carbonyl $\mathrm{N}-\mathrm{C}$ bond has a weakening effect on the ring $\mathrm{N}-\mathrm{C}$ linkages. In aliphatic aziridines, intermediates of type C usually undergo cyclization to oxazoline derivatives. ${ }^{14}$ In the aromatic series, rearrangement to D (tautomers of the N-acetyl aryl amine E) predominates due to obvious thermodynamic reasons.

In addition to 1 -acetyl-1a,9b-dihydrophenanthr $[9,10-b]$ azirine, which has been announced in our preliminary com-

Chart III

munication, ${ }^{4}$ we attempted the preparation of some higher polycyclic N-acetyl arene imines; for example, chrysene5,6 -quinone 5 -monoxime (9) was reduced with lithium aluminum hydride to 5 -amino-5,6-dihydrochrysen-6-ol (10). The N-acetylamino acetate 11 was then treated at $25^{\circ} \mathrm{C}$ with sodium hydride, but the resulting 1 -acetyl-1a,11b-dihydrochrysen $[5,6-b]$ azirine (12) proved to rearrange under these

conditions to 6-acetylaminochrysene (13) of $\mathrm{mp} 301{ }^{\circ} \mathrm{C}^{15}$ (free of any 5 -acetylamino isomer of $\mathrm{mp} 250^{\circ} \mathrm{C}^{16}$). The best evidence for the formation of imine 12 was obtained from an experiment in which the cyclodeacetylation of $11 \rightarrow 12$ was carried out in pyridine- d_{5} in an NMR tube, and the spectrum of the reaction mixture was recorded on a CFT- 20 instrument every $30-70 \mathrm{~min}$. The characteristic bands of 11 at $1.39,2.42$, 2.86 , and 6.21 ppm gradually disappeared and the imine spectrum, $\delta 2.50,4.33$, and 4.55 ppm , was built up. The highest intensities of the peaks of 12 were obtained after 70 min . After this period the spectrum of 6 -acetylaminochrysene (13) prevailed.

The structure of the starting oxime 9 was established by virtue of the significant peak $m / e 152\left[\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}\right]^{+}$in the mass spectrum. The second possible isomer, viz., chrysene-5,6quinone 6 -oxime would, by similar fragmentation, give rise to ion $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right]^{+}$of $m / e 102$ which, however, is not present in the spectrum. It is thus interesting to note that the nitrogen atom migrates from $\mathrm{C}_{(5)}$ in the oxime to $\mathrm{C}_{(6)}$ in the final acetyl amine derivative. This migration doubtlessly occurs via the cyclic arene imine intermediate.

Experimental Section

General. Melting points were taken either on a Buchi capillary melting point apparatus or on a Fisher hot plate instrument and are
not corrected. Infrared and ultraviolet spectra were obtained on a Perkin-Elmer Model 157 and a Unicam SP-800 spectrophotometer, respectively. Proton magnetic resonance spectra were run using Varian EM-360, HA-100D, and CFT-20 spectrometers. The latter instrument, equipped with a Fourier transformer, was also used for the recording of ${ }^{13} \mathrm{C}$ magnetic resonance spectra. Mass spectra were obtained with the aid of a Varian MAT-311 instrument at 70 eV . Preparative thin-layer chromatography was performed with plates precoated with Merck alumina type T.

10-Benzylamino-9,10-dihydrophenanthr-9-ol (2c). A mixture of $1.94 \mathrm{~g}(10 \mathrm{mmol})$ of phenanthrene 9,10 -oxide (1$)^{17}$ and $2.14 \mathrm{~g}(20$ mmol) of benzylamine was stirred at $80-90^{\circ} \mathrm{C}$ under N_{2} for 6 h . The reaction mixture was left at room temperature for 16 h and excess benzylamine removed in vacuo. The oily residue proved by NMR analysis (see Table I) to be essentially pure. The major fragment ions in the mass spectrum are: m / e (rel intensity) $301\left(\mathrm{M}^{+}, 19\right), 283$ (69), 194 (59), 165 (100).

When a solution of the amino alcohol in a tenfold volume of EtOH was treated with gaseous HCl , the colorless hydrochloride separated in quantitative yield, $\mathrm{mp} 226^{\circ} \mathrm{C}$ (from acetonitrile). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}$: $\mathrm{C}, 74.7$; $\mathrm{H}, 5.9 ; \mathrm{Cl}, 10.5 ; \mathrm{N}, 4.1$. Found: C, $74.9 ; \mathrm{H}, 5.9$; Cl, 10.5; N, 4.4.

10-n-Butylamino-, ${ }^{18} 10$-cyclohexylamino-, and 10 -tert-bu-tylamino-9,10-dihydrophenanthr-9-ol were obtained in the same manner by heating 1 in the appropriate amine for 5 h at $75^{\circ} \mathrm{C}, 5 \mathrm{~h}$ at $90^{\circ} \mathrm{C}$, and 48 h at $43^{\circ} \mathrm{C}$, respectively.

1-Benzyl-1a,9b-dihydrophenanthr[9,10-b]azirine (3c). To a solution of 301 mg (1 mmol) of 2 c in 1 mL of acetonitrile were added succesively $270 \mathrm{mg}(1.2 \mathrm{mmol})$ of freshly crystallized $\mathrm{PPh}_{3}, 0.2 \mathrm{~mL}$ of $\mathrm{Et}_{3} \mathrm{~N}$, and 0.5 mL of CCl_{4} (all solvents were dried and freshly distilled). The mixture was stirred under N_{2} at $70^{\circ} \mathrm{C}$ for 3 h , and then cooled and left to stand at room temperature for 16 h . Cold water was added to dissolve excess triethylamine and its hydrochloride. The organic layer was diluted with 15 mL of CHCl_{3}, washed twice with cold water, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and concentrated. Upon addition of ether to the residue, 113 mg of colorless imine separated immediately. A second crop of pale yellow compound was further purified by preperative TLC on Merck alumina type T (hexane-ether mixture, $5: 1$, served as eluent). The total yield of pure $3 \mathbf{c}$ was $42 \%, \mathrm{mp} 128^{\circ} \mathrm{C}$ (from methylcyclohexane). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}: \mathrm{C}, 89.0 ; \mathrm{H}, 6.0 ; \mathrm{N}, 4.9$. Found: C, 89.0; H, 6.3; N, 4.7.

1-Butyl-1a,9b-dihydrophenanthr[9,10-b]azirine (3a) was obtained in 40% yield by the same method, $\mathrm{mp} 87^{\circ} \mathrm{C}$ (from methylcyclohexane). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}$: C, 85.7; H, 7.6. Found: C, 86.4; $\mathrm{H}, 7.5$. Conversion of 2c into 1-cyclohexyl-1a,9b-dihydrophen-anthr[9,10-b]azirine (3b) was affected similarly but 100% excess PPh_{3} and 6 h heating were required, $\mathrm{mp} 123^{\circ} \mathrm{C}$ (from methylcyclohexane). Anal. Calcd for $\mathrm{c}_{20} \mathrm{H}_{21} \mathrm{~N}: \mathrm{C}, 87.3 ; \mathrm{H}, 7.6 ; \mathrm{N}, 5.1$. Found: C, 87.3; H, 7.4; N, 4.8.

Additional physical data of $\mathbf{3 a - c}$ are listed in Table II.
trans-5-Amino-5,6-dihydrochrysen-6-ol (10). Powdered chry-sene-5,6-quinone 5 -oxime (9) ${ }^{19}(2.73 \mathrm{~g}, 10 \mathrm{mmol})$ was added in small portions under N_{2} to a stirred suspension of $1.14 \mathrm{~g}(30 \mathrm{mmol})$ of lithium aluminum hydride in 200 mL of dry ether. After the initial exothermic reaction ceased the mixture was refluxed for 6 h , during which the color changed from bright green to dark tan. Excess reagent was decomposed with 5 mL of acetone followed by 100 mL of aqueous sodium tartarate (2 M). The aqueous layer was extracted twice with 100 mL of benzene. The combined organic layers were washed with water, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated to a volume of 20 mL . Addition of 25 mL of hexane afforded $1.93 \mathrm{~g}(74 \%)$ of colorless amino alcohol 10. The analytical sample was recrystallized from a mixture of benzene-hexane: $\operatorname{mp} 123^{\circ} \mathrm{C}$; IR (Nujol) $3300,3280,3200 \mathrm{~cm}^{-1}(\mathrm{NH}$, $\left.\mathrm{OH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.58(\mathrm{brs}, 3), 4.50 \mathrm{im}, 1\right), 5.60(\mathrm{~d}, 1 \mathrm{~J}=5 \mathrm{~Hz})$, $7.60-8.62 \mathrm{ppm}(\mathrm{m}, 10)$; MS m/e (rel intensity) 261 ($\mathrm{M}^{+}, 13$), 246 (100), 228 (28), 215 (57). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 82.8 ; \mathrm{H}, 5.8 ; \mathrm{N}, 5.4$. Found: C, 82.5; H, 6.0; N, 5.1.
trans-6-Acetoxy-5-acetylamino-5,6-dihydrochrysene (11). A mixture of 10 mL of acetic anhydride and 15 mL of dry pyridine was refluxed for 15 min and added to a cold solution of $1.30 \mathrm{~g}(50 \mathrm{mmol})$ of 10 in 15 mL of pyridine. The mixture was stirred at room temperature for 24 h . The cream-colored precipitate was recrystallized from toluene to yield $1.72 \mathrm{~g}(100 \%)$ of $11: \mathrm{mp} 301^{\circ} \mathrm{C}$; IR (Nujol) $3250(\mathrm{NH})$, 1760 (ester carbonyl), $1640 \mathrm{~cm}^{-1}$ (amide); UV $\lambda_{\max }(\log \epsilon)\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ 256 (4.68), 266 (4.84), 294 (4.06), 305 (4.13), 317 (4.03), 340 nm (2.83); ${ }^{1} \mathrm{H}$ NMR (pyridine- d_{5}) $\delta 1.39(\mathrm{~s}, 3), 2.42$ (s. 3), $2.86(\mathrm{~m}, 1) 4.73$ (br s, 2), $6.21(\mathrm{~d}, \mathrm{l} J=5 \mathrm{~Hz}), 7.19-8.69 \mathrm{ppm}(\mathrm{m}, 13) ; \mathrm{MS} \mathrm{m} / e$ (rel intensity) $345\left(\mathrm{M}^{+},<1\right), 285$ (77), 243 (100), 215 (82). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 76.5 ; \mathrm{H}, 5.5 ; \mathrm{N}, 4.1$. Found: $\mathrm{C}, 76.0 ; \mathrm{H}, 5.5 ; \mathrm{N}, 4.2$.

Reaction of 11 with Sodium Hydride. (a) A mixture of 345 mg
(1 mmol) of $11,2 \mathrm{mmol}$ of NaH (freshly washed with pentane to remove mineral oil!, and 50 mL of pyridine was stirred under N_{2} at room temperature for 8 h . Ethanol was added to the green solution to decompose excess NaH . A small amount of solids was removed by filtration, and the filtrate was evaporated under reduced pressure to dryness. The residue was recrystallized from acetic acid to yield 240 mg (84%) of 6 -acetylaminochrysene (13), $\mathrm{mp} 300-301{ }^{\circ} \mathrm{C}$ (lit. ${ }^{15}$ $299.5-301{ }^{\circ} \mathrm{C}$); IR (Nujol) $3240(\mathrm{NH}), 1640 \mathrm{~cm}^{-1}$ (amide); ${ }^{1} \mathrm{H}$ NMR (pyridine- d_{5}) $\hat{\delta} 2.56(\mathrm{~s}, 3), 7.56-8.77 \mathrm{ppm}(\mathrm{m}, 11)$; MS m/e (rel intensity) $285\left(\mathrm{M}^{+} 37\right), 243(100), 219(90)$. The same resu t was also obtained when the above reaction mixture was refluxed for 5 min .
(b) A high-pre of pyridine- d_{5}, and 1 mg of sodium hydride (80% in mineral oil) and sealed under N_{2}. The ${ }^{1} \mathrm{H}$ NMR spectrum was recorded on a CFT-20 instrument (with Fourier transformer) ($31^{\circ} \mathrm{C}$) every $30-70 \mathrm{~min}$. The initial spectrum consisted of the bands of 11 (vide supra) and those of mineral oil. The second recording indicated new pəaks at $\delta 2.50$, 4.33 , and 4.55 ppm which are attributed to the acetyl and aziridinering protons of 1-acetyl-1a,11b-dihydrochrysen[5,6-b]azirine (12), as well as small peaks of 13 . After 70 min the spectrum of 12 diminished and that of 13 prevailed. Finally (3 h), only the spectrum of 6 acetylaminochrysene could be observed.
trans-9-Acetoxy-10-acetylamino-9,10-dihydrophenanthrene. trans-10-Amino-9,10-dihydrophenanthr-9-ol ${ }^{4,5}$ was converted in quantitative yield into the corresponding acetoxyacetylamine by the method described above for $11: \mathrm{mp} 176^{\circ} \mathrm{C}$ (from aqueous MeOH); IR (Nujol) 3270 (NH), 1732 (ester carbonyl) $1645 \mathrm{~cm}^{-1}$ (amide); UV $\lambda_{\max }(\log \epsilon)(E t O=1) 220(4.72), 273$ (4.30), $285 \mathrm{~nm}(4.13) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.10(\mathrm{~s}, 6), 5.62(\mathrm{~d}, 1 J=4 \mathrm{~Hz}), 5.82(\mathrm{~m}, 1), 6.10(\mathrm{~d}, 1 J=4$ $\mathrm{Hz}), 7.33-7.93 \mathrm{ppm}(\mathrm{m}, 8) ;\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.28(\mathrm{~s}, 3), 1.39(\mathrm{~s}, 3), 4.98(\mathrm{~d}, 1$ $\left.J_{\mathrm{CHCH}}=5 \mathrm{~Hz}\right), 5.62\left(\mathrm{dd}, 1 J_{\mathrm{CHCH}}=5, J_{\mathrm{CHNH}}=9 \mathrm{~Hz}\right), 6.22(\mathrm{~d}, 1$ $\left.J_{\mathrm{CHCH}}=5 \mathrm{~Hz}\right), 7.00-7.60 \mathrm{ppm}(\mathrm{m}, 8) ;\left(\right.$ pyridine- $\left.d_{5}\right) \delta 0.86(\mathrm{~s}, 3), 1.62$ $(\mathrm{s}, 3), 4.23(\mathrm{br} \mathrm{s}, 1), 5.37\left(\mathrm{dd}, 1 J_{\mathrm{CHCH}}=4, J_{\mathrm{CHNH}}=9 \mathrm{~Hz}\right), 5.65(\mathrm{~d}, 1$ $\left.J_{\mathrm{CHCH}}=4 \mathrm{~Hz}\right), 6.36-7.32 \mathrm{ppm}(\mathrm{m}, 8)$; MS m/e (rel intensity) $235(\mathrm{M}$ $-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 60$), 193 (100), 165 (57). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, 73.2 ; H, 5.8; N, 4.7. Found: C, 73.1; H, 5.7; N, 4.8.

1-Acetyl-la, 9 b -dihydrophenanthr $\mathbf{r} 9,10-\mathrm{b}$]azirine. (a) Cyclodeacetylation with NaH . Small-scale synthesis was carried out in an NMR tube in which 2 mg of the above acetoxyacetylamine was treated with 1 mg of $\mathrm{NaH}(80 \%)$ and 1 mL of pyridine- d_{5} as described for the chrysene derivative. The solvent was removed in vacuc immediately after the bands of the starting material have disappeared. The N acetyl protons of the imine show up as a singlet at 1.63 ppm , and the aziridine protons as doublets at 4.10 and $4.93 \mathrm{ppm}(J=4 \mathrm{~Hz}) .{ }^{20}$

On $1-\mathrm{mmol}$ scale preparation a mixture of 295 mg of the diacetylated amino alcohol, 2 mmol of NaH , and 5 mL of pyridine was stirred for 48 h at room temperature under N_{2}. However, worsup as above afforded the arene imine together with some 9 -acetylaminophenanthrene. ${ }^{21}$ Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 81.7 ; \mathrm{H}, 5.5 ; \mathrm{N}, ~ \in .0$. Found: C, 81.6; H, 5.4; N, 5.5.
(b) Cyclodeacetylation with $\mathrm{CH}_{3} \mathrm{Li}$. At $-60^{\circ} \mathrm{C}$ uncer N_{2} atmosphere there was injected 1.2 mL of a 1 M solution of $\mathrm{CH}_{3} \mathrm{Li}$ in ether into a stirred mixture of 295 mg (1 mmol) of the acetoxyacetylamine in 5 mL of dry THF. The green solution was gradually warmed to room temperature, and the solvents were removed in vacuo. The residue was extracted with CHCl_{3}, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and concentrated. As in method a, the resulting imine was accompanied with varying amounts of 9-acetylaminophenanthrene.

Acknowledgments. We thank the Ber-Lehmsdorf Foundation for Cancer Research and the Central Func of the Hebrew University for financial support.

Registry No.-1,585-08-0; 2c HCl, 64188-63-2; 9, 14140-05-7; 10, 64188-62-1; 11, 64188-61-0; 12, 64188-60-9; 13, 63018-с7-3; 9-benzylaminophenanthrene, 64188-59-6; benzylamine, 100-46-9; n-butylamine, 109-73-9; cyclohexylamine, 108-91-8; tert-butylamine, 75-64-9; acetic anhydride, 108-24-7; trans-9-acetoxy-10-acetylamino-9,10dihydrophenanthrene, 64188-58-5; trans-10-amino-9.10-dihydro-phenanthr-9-ol, 60883-94-5; 1-acetyl-1a,9b-dihydrophenanthr [9,10b]azinine, 59310-28-0.

References and Notes

(1) See, e.g., D. Avnir and J. Blum, J. Heterocycl. Chem., 13, 619 (1976), and references 1 and 2 therein.
(2) P. Sims and P. L. Grover, Adv. Cancer Res., 20, 165 (1974)
(3) U. Bicker and W. Fischer, Nature (London), 249, 344 (1974); U. Bicker, Arch. Geschwuisforsch., 44 (4), 312 (1974).
(4) J. Blum, Y. Ittah, and I. Shahak, Tetrahedron Lett., 4607 (1375).
(5) K. Shudo and T. Okamoto, Chem. Pharm. Bull., 24, 1013 (1976).
(6) R. Apjel and R. Kleinstück, Chem. Ber., 107, 7 (1974)
(7) Cf., P. Y. Bruice, T. C. Bruice, P. M. Dansette, H. G. Selander, H. Yagi, and D. M. Jerina, J. Am. Chem. Soc., 98, 2965 (1976).
(8) J. H. D. Eland and C. J. Danby, J. Chem. Soc., 5935 (1965)
(9) E. Breuer, L. Somekh, and I. Ringel, Org. Magn. Reson., 9, 328 (1977).
(10) Cf., H. Yagi and D. M. Jerina, J. Am. Chem. Soc., 97, 3185 (1975); M. H. Gianni, E. L. Stagryn, and C. M. Orlands, J. Phys. Chem., 67, 1385 (1963).
(11) Cf., e.g., B. P. Daily, A. Gawer, and W. C. Neikam, Discuss. Faraday Soc., 34, 18 (1962).
(12) T. Yonezawa, I. Morishima, and K. Fukuta, Bull. Chem. Soc. Jpn., 41, 2297 (1968); J.-L. P. Baret and P. Arnaud, Bull. Soc. Chim. Fr., 3619 (1971).
(13) H. Sa to, K. Nukada, T. Kobayashi, and K. Morita, J. Am. Chem. Soc., 89, 6605 (1967).
(14) P. E. Fanta and E. N. Walsh, J. Org. Chem., 31, 59 (1966); H. W. Heine and M. S. Kaplan, J. Org. Chem., 32, 3069 (1967)
(15) M. S. Newman and J. A. Cathcart, J. Org. Chem., 5, 618 (1940).
(16) J. W. Cook and R. Schoental, J. Chem. Soc., 288 (1945).
(17) The oxide was obtained by the method of M. S. Newman and S. Blum, J. Am. Chem. Soc., 86, 5598 (1964). Direct conversion of phenanthrene into 1 according to K. Ishikawa, H. C. Charles, and G. W. Griffin, Tetrahedron Lett., 427 (1977), proved to give an impure compound on large-scale preparation.
(18) A. S. Dey and J. L. Neumeyer, J. Med. Chem., 17, 1095 (1974).
(19) H. M. Haender and G. McP. Smith, J. Am. Chem. Soc., 61, 2624 (1939).
(20) The chemical shift (in CDCl_{3}) of the aziridine-ring protons given in ref 4 should be read 4.30 instead of 2.30 ppm .
(21) G. H. Keyes and L. G. S. Brooker, J. Am. Chem. Soc., 59, 74 (1937).

Synthesis and Chemical Properties of α-Alkyl(aryl)thiovinyl Isocyanates

Ken Takaki,* Aiichiro Okamura, Yoshiki Ohshiro, and Toshio Agawa
Department of Petroleum Chemistry, Faculty of Engineering, Osaka University, Yamadakami, Suita, Osaka 565, Japan

Received June 28, 1977

Abstract

Thermolysis or photolysis of α-alkyl(aryl)thioacrylyl azides 6 gave α-alkyl(aryl)thiovinyl isocyanates 7 in good yields. The isocyanates 7 reacted with aromatic hydrazines to give the triazoles 11 and the triazolinone 12 . In the reaction of 7 a with enamines, the pyridone $15 a$ or the azadecalin $15 b$ were isolated. Thermolysis of 7 a gave 4-meth-ylthio-5-isopropyluracil (16) quantitatively, while 7b led to 3-methylthioisocarbostyril (17). 3-Methylthio-4-chloroisocarbostyril (19a) and 3-methylthio-4-bromoisocarbostyril (19b) were obtained by the treatment of 17 with $\mathrm{CuCl}_{2}-\mathrm{CuO}$ and $\mathrm{Br}_{2}-\mathrm{CuO}$, respectively.

In recent years, the chemical properties of acyl isocyanates have been widely investigated and many heterocyclic compounds were derived from them. ${ }^{1}$ In spite of their great synthetic utility, difficulty in the preparation of aliphatic acyl isocyanates ${ }^{2}$ and instability of aromatic acyl isocyanates have restricted the utilization of acyl isocyanates. The synthesis of reagents equivalent to acyl isocyanates has been undertaken to overcome these limitations.

Since the vinyl sulfide group is easily converted to the carbonyl group, ${ }^{3} \alpha$-alkyl(aryl)thiovinyl isocyanates are expected to be potentially useful in place of acyl isocyanates in organic synthesis. We also expect them to provide new routes for the synthesis of various heterocylic compounds containing the sulfide group, since α, β-unsaturated isocyanates have been used in the synthesis of heterocyclic compounds. ${ }^{4}$ From these points of view, we wish to report here the synthesis and some chemical properties of α-alkyl(aryl)thiovinyl isocyanates.

Thermolysis or photolysis of a mixture of (E)- and (Z)- α alkyl(ary)thioacrylyl azides 6, prepared from aldehydes 1 and methyl methyl(phenyl)thioacetates 2, gave α-alkyl(aryl)-

$6 \xrightarrow{\Delta \text { or } h \nu}$

E isomer
thiovinyl isocyanates 7 in good yields. The structures of 7 were established by spectral data and chemical evidence. The IR spectrum of 7a displays characteristic absorption bands at 2240 and $1620 \mathrm{~cm}^{-1}$ assignable to NCO and olefinic linkage, respectively. The NMR spectrum shows two doublets at 5.17 and 5.40 ppm in the ratio of $87: 13$. The peak at higher field would be assignable to the vinyl proton of the E isomer and the other to that of the Z isomer. Treatment of $7 \mathbf{a}$ and 7 b with

ethanol gave the amides 9 which were formed from the imino sulfides 8 by hydrolysis. Only 8 a as intermediate was isolated. With aniline, 7 b led to the amidine 10.

The isocyanate 7 a reacted with p-nitrophenylhydrazine at room temperature to give 1-p-nitrophenyl-3-hydroxy-5-
isobutyl-1,2,4-triazole (11a) quantitatively. With phenylhydrazine, 11b and its isomer 12 were obtained in 57 and 43% yields, respectively. The IR spectrum of 11 b displays no absorption at the carbonyl region. The mass spectrum exhibits the parent peak at $m / \mathrm{e} 217$ and other peaks at $m / e 175\left(\mathrm{M}^{+}\right.$ $-\mathrm{NCO}), 106\left(\mathrm{PhNNH}^{+}\right)$, and $91\left(\mathrm{PhN}^{+}\right)$. On the other hand, the IR spectrum of 12 displays a strong carbonyl absorption at $1700 \mathrm{~cm}^{-1}$. The mass spectrum exhibits the peak at $m / e 119$ $\left(\mathrm{PhNCO}^{+}\right)$in addition to those of 11 b . On the basis of the spectral data, 11 b and 12 were assigned to 1-phenyl-3-hy-droxy-5-isobutyl-1,2,4-triazole and 2 -phenyl-5-isobutyl1 H -1,2,4-triazolin-3-one, respectively. These results suggest addition and condensation reactions of the aromatic hydrazines with the acyl isocyanate analogous to the synthesis of the triazine from the acyl isocyanate and the benzamidine. ${ }^{5}$

The isocyanates having a double bond adjacent to a cumulative bond are known to react with nucleophilic olefins to give 1,2 - and/or 1,4 -cycloadducts. ${ }^{6}$ The reaction of 7 a with 1-piperidino-1-butene (13a) gave the pyridone 15a in 69% yield. The product 15 a might be formed from 14 with elimination of the piperidine under the reaction conditions. Similar treatment of 7a with 1-piperidino-1-cyclohexene (13b) led to the azadecalin derivative 15b in 89% yield. In this case, the imino sulfide group was hydrolyzed tc yield the amide group during workup in a similar way to that of 8 . Other reactions

7a

$13 \mathrm{a}, \mathrm{R}^{1}=\mathrm{Et} ; \mathrm{R}^{2}=\mathrm{H}$
b, $\mathrm{R}^{1}, \mathrm{R}^{2}=-\left(\mathrm{CH}_{2}\right)_{4}-$

15a

15b
of 7a with dihydropyran and butyl vinyl sulfide were unsuccessful, showirg lower reactivity than those of other conjugative isocyanates containing carbonyl, imidoyl and thiocarbonyl groups.

The α-alkyl(aryl)thiovinyl isocyanates 7 are stable at room temperature and remained unchanged in refluxing benzene for 15 h , while acyl isocyanates are easily decomoosed under these conditions. Thermolysis of 7 a at $150^{\circ} \mathrm{C}$ in neat solution gave the uracil 16 quantitatively. However, an attempt to trap other decomposition species failed; the uracil 16 was presumably formed by the dimerization reaction similar to the formation of oxadiazine derivatives from benzoyl isocyanates. ${ }^{7}$ On the other hand, thermolysis of 7b led to the isocarbostyril 17 quantitatively, which was easily changed to the isocarbostyril (18) by treatment with Raney Ni. In order to change the vinyl sulfide group to the carbonyl group, 17 was reated with $\mathrm{CuCl}_{2}-\mathrm{CuO}$ in aqueous acetonitrile, ${ }^{8}$ but the chloroisocarbostyril 19a was obtained unexpectedly. In the absence of $\mathrm{CuO}, 19 \mathrm{a}$ was not obtained and 17 was recovered. Similarly, bromination at the 4 -position of 17 was achieved by the treatment with bromine in the presence of CuO . From these results, the isocyanates 7 are as useful as α-chloro- and β -

cyano- α, β-unsaturated isocyanates whose thermal treatment in the presence of hydrochloric acid also gave isocarbostyril and uracil derivatives. ${ }^{4}$

In conclusion, α-alkyl(aryl)thiovinyl isocyanates are prepared in good yields and are relatively stable. In the reaction with bifunctional nucleophiles such as hydrazines, the isocyanates have an equivalent value to acyl isocyanates owing to the facile elimination of the sulfide group. Furthermore, the isocyanates are applicable to the simple synthesis of uracil and isocarbostyril derivatives containing the sulfide group.

Experimental Section

General. All melting points of products were determined with a Yanagimoto micro melting point apparatus and were uncorrected. The NMR spectra were obtained on a JEOL JNM-PMX-60 and JNM-PS-100 spectrometer with tetramethylsilane as an internal standarc. The IR spectra were recorded with a JASCO IRA-1 spectrometer. The mass spectra were taken with a Hitachi RMU-6E spectrometer.

Synthesis of α-Alkyl(aryl)thiovinyl Isocyanates 7. The acid chlorides 5 were prepared from the aldehydes 1 and the methyl methyl(phenyl)thioacetates 2 according to the established method. ${ }^{9}$ The acid chloride $5 \mathrm{a}(44.6 \mathrm{~g}, 0.25 \mathrm{~mol})$ in dry ether (50 mL) was added to a stirred aqueous solution of sodium azide ($23.1 \mathrm{~g}, 0.36 \mathrm{~mol}$) below $5^{\circ} \mathrm{C}$, and stirring was continued at $15-20^{\circ} \mathrm{C}$ until IR absorption of the acid chloride disappeared. The organic layer was extracted with ether and dried over sodium sulfate. The ethereal solution of the acyl azide $6 \mathbf{a}$ was added dropwise to 150 mL of dry benzene at $70^{\circ} \mathrm{C}$, and the mixture was stirred until evolution of nitrogen gas ceased (for ~ 1 h). After removal of the solvent, the residue was distilled in vacuo to give $17.7 \mathrm{~g}(45 \%)$ of 1 -methylthio-3-methylbut-1-enyl isocyanate (7a). Photolysis of the acyl azide $\mathbf{6 b}$ was carried out in dry benzene at room temperature with a high-pressure mercury lamp for 10 h . 7a: bp 34-41 ${ }^{\circ} \mathrm{C}(3 \mathrm{~mm})$; IR (neat) $2240,1620 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e 157 $\left(\mathrm{M}^{+}\right) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.00\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.28(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{SCH}_{3}\right), 2.43-3.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.17$ and $5.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, total 1 H , ratio $87: 13, \mathrm{CH}=\mathrm{C}$). α-Methylthiostyryl isocyanate (7b): 82% yield (thermolysis), 59% yield (photolysis); bp $78-80^{\circ} \mathrm{C}(0.015 \mathrm{~mm})$; IR (neat) $2240,1610 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e $191\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 5.92$, and $6.28(\mathrm{~s}$, total 1 H , ratio 94:6, $\mathrm{CH}=\mathrm{C}$), $7.04-7.28$ (m, 3 H , aromatic), $7.32-7.50(\mathrm{~m}, 2 \mathrm{H}$, aromatic). 1-Phenylthio-3-methylbut-1-enyl isocyanate (7 c): 63% yield; bp $115-120^{\circ} \mathrm{C}(0.5 \mathrm{~mm})$; IR (neat) $2240,1620 \mathrm{~cm}^{-1}$; mass spectrum (70 $\mathrm{eV}) m / e 219\left(\mathrm{M}^{+}\right) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.02\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $2.54-3.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.62$, and $6.53(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, total 1 H , ratio $75: 25, \mathrm{CH}=\mathrm{C}$), $7.12-7.66$ (m, 5 H , aromatic).

Treatment of 7a with Ethanol. To the soltuion of $7 \mathrm{a}(1.6 \mathrm{~g}, 10$ mmol) in dry benzene (20 mL) was added 5 mL of absolute ethanol, and the mixture was stirred for 4 h at room temperature. After removal of the solvent, the residue was chromatographed on silica gel with hexane-benzene to give crude N-carboethoxy-1-methylthioisoamylideneimine (8a). Distillation in vacuo gave the pure sample ($1.8 \mathrm{~g}, 89 \%$). 8a: bp $57-58^{\circ} \mathrm{C}(1.5 \mathrm{~mm})$; IR (neat) $1720,1620 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e $203\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}$), $1.37\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.73-2.80(\mathrm{~m}, 3 \mathrm{H})$, 2.37 (s, $3 \mathrm{H}, \mathrm{SCH}_{3}$), $4.30\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right.$).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 53.19$; H, 8. 43; N, 6.89. Found: C, 53.01; H, 8.49; N, 6.94.

Hydrolysis of $8 \mathbf{a}$. The imino sulfide $8 \mathbf{a}(0.7 \mathrm{~g}, 3 \mathrm{mmol})$ was chromatographed on alumina with benzene-ethanol to give 3-methylbutyramide (9a) quantitatively: mp 134-135 ${ }^{\circ} \mathrm{C}$ (benzene-ethanol); IR (Nujol) $1620 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e $101\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.98\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.87-2.33(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{br}$, $2 \mathrm{H}, \mathrm{NH}_{2}$).

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 59.37 ; \mathrm{H}, 10.96 ; \mathrm{N}, 13.85$. Found: C, 59.25; H, 11.16; N, 13.81.

Hydrolysis of 7 a . The isocyanate $7 \mathrm{a}(0.7 \mathrm{~g}, 4 \mathrm{mmol})$ was chromatograpked on alumina with benzene-ethanol to give 9 a (0.35 g , 95\%).

Hydrolysis of $\mathbf{7 b}$. Similar treatment of $\mathbf{7 b}(2.7 \mathrm{~g}, 14 \mathrm{mmol})$ on alumina gave $1.4 \mathrm{~g}(74 \%)$ of phenylacetoamide (9b): mp 165-167 ${ }^{\circ} \mathrm{C}$ (ethanol); IR (Nujol) 3320, 3160, $1625 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) $m / \mathrm{e} 135\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 2.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.84$ (br, 1 H , NH), 7.16-7.32 (m, 5 H, aromatic), 7.44 (br, $1 \mathrm{H}, \mathrm{NH}$).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}: \mathrm{C}, 71.09$; $\mathrm{H}, 6.71$; N, 10.36. Found: C, 71.14; H, 6.70; N, 10.22.

Reaction of 7b with Aniline. A mixture of $\mathbf{7 b}(0.4 \mathrm{~g}, 2 \mathrm{mmol})$ and aniline ($0.4 \mathrm{~g}, 4 \mathrm{mmol}$) in dry benzene (20 mL) was stirred for 1 h at room temperature. After removal of the solvent, the residue was chromatographed on alumina with benzene-hexane to give 0.5 g (76%) of N-phenyl- N^{\prime}-phenylcarbamoylphenylacetoamidine (10): mp $179-180^{\circ} \mathrm{C}$ (ethanol); IR (Nujol) 3220, 1700, 1650, $1575 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e $329\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.70-7.62 (m, 16 H , aromatic and NH), 11.96 (br, $1 \mathrm{H}, \mathrm{NH}$).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 76.57 ; \mathrm{H}, 5.81 ; \mathrm{N}, 12.76$. Found: C, 76.42; H, 5.68; N, 12.76.

Reaction of 7a with Aromatic Hydrazines. To the solution of $7 \mathbf{a}(1.6 \mathrm{~g}, 10 \mathrm{mmol})$ in dry benzene $(30 \mathrm{~mL})$ was added p-nitrophenylhydrazine ($1.7 \mathrm{~g}, 11 \mathrm{mmol}$) under a nitrogen atmosphere and stirring was cortinued for 1 h at room temperature. Crystals precipitated and
were filtered to give $2.7 \mathrm{~g}(100 \%)$ of $1 \mathrm{la}: \mathrm{mp} 277-278^{\circ} \mathrm{C}$ (methanol); IR (Nujol) $3080,1590,1540 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e 262 $\left(\mathrm{M}^{+}\right) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.90\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.87-2.60(\mathrm{~m}$, 1.5 H), $2.92\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.66-8.00(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 8.27-8.57 (m, 2 H , aromatic).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, $54.95 ; \mathrm{H}, 5.38 ; \mathrm{N}, 21.37$. Found: C, 54.85; H, 5.25; N, 21.46.

A mixture of $7 \mathrm{a}(1.6 \mathrm{~g}, 10 \mathrm{mmol})$ and phenylhyrazine $(1.1 \mathrm{~g}, 10$ mmol) in dry benzene (30 mL) was stirred for 1 h at room temperature under a nitrogen atmosphere. After removal of the solvent, the residue was chromatographed on silica gel with benzene-ethanol to give $11 b$ and 12 in $57(1.23 \mathrm{~g})$ and $43 \%(0.93 \mathrm{~g})$ yields, respectively.
$11 \mathrm{~b}: \mathrm{mp} 194-195^{\circ} \mathrm{C}$ (benzene-hexane); IR (Nujol) $1590 \mathrm{~cm}^{-1}$; mass spectrum $(70 \mathrm{eV}) m / e 217\left(\mathrm{M}^{+}, 23 \%\right), 175\left(\mathrm{M}^{+}\right.$- NCO, base peak), $106\left(\mathrm{PhNNH}^{+}, 11 \%\right), 91\left(\mathrm{PhN}^{+}, 23 \%\right)$, $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{~d}, J=$ $\left.7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.65\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.36-7.56 (m, 5 H , aromatic), 12.53 (br, $1 \mathrm{H}, \mathrm{OH}$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 66.34 ; \mathrm{H}, 6.96 ; \mathrm{N}, 19.34$. Found: C, 66.60; H, 7.04; N, 18.97 .

12: mp 159-159.5 ${ }^{\circ} \mathrm{C}$ (ethanol); IR (Nujol) $1700,1590 \mathrm{~cm}^{-1}$; mass spectrum $(70 \mathrm{eV}) m / e 217\left(\mathrm{M}^{+}, 72 \%\right), 175\left(\mathrm{M}^{+}-\mathrm{NCO}\right.$, base peak), $119\left(\mathrm{PhNCO}^{+}, 6 \%\right), 91\left(\mathrm{PhN}^{+}, 54 \%\right)$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{~d}, J=7.0$ $\left.\mathrm{Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.53\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.20-7.67 (m, 3 H, aromatic), 7.83-8.13 (m, 2 H , aromatic), 12.10 (br, $1 \mathrm{H}, \mathrm{NH})$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 66.34 ; \mathrm{H}, 6.96 ; \mathrm{N}, 19.34$. Found: C, 66.30; H, 6.92; N, 19.25 .

Reaction of 7a with Enamines. To the solution of 7a ($1.6 \mathrm{~g}, 10$ mmol) in dry benzene (20 mL) was added 1-piperidino-1-butene (13a) ($1.4 \mathrm{~g}, 10 \mathrm{mmol}$) with stirring under a nitrogen atmosphere and the mixture was refluxed for 6 h . After removal of the solvent, the residue was chromatographed on silica gel with hexane-benzene to give 1.45 g (69\%) of 3-ethyl-5-isopropyl-6-methylthio-2-pyridone (15a): mp $125-125.5^{\circ} \mathrm{C}$ (benzene-exane); IR (Nujol) $1630,1595,1540 \mathrm{~cm}^{-1}$; mass spectrum $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e} 211\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{t}, J=6.0$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.21-2.62(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.51 (s, $3 \mathrm{H}, \mathrm{SCH}_{3}$), 3.09-3.57 (m, 2 H , allylic), 7.20 (d, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}$, vinylic).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NOS}: \mathrm{C}, 62.54 ; \mathrm{H}, 8.11 ; \mathrm{N}, 6.63 ; \mathrm{S}, 15.15$. Found: C, 62.55 ; H, 8.17 ; N, 6.59; S, 15.54.

After similar treatment of $7 \mathrm{a}(1.6 \mathrm{~g}, 10 \mathrm{mmol})$ with 1-piperidino1 -cyclohexene (13 b) ($1.7 \mathrm{~g}, 10 \mathrm{mmol}$), the residue was chromatographed on alumina with hexane-benzene to give 1,3-dioxo-4-iso-propyl-9,10-dehydro-2-azadecalin ($\mathbf{1 5 b}$) in $89 \%(1.85 \mathrm{~g}$) yield. 15 b : mp 107.5-109 ${ }^{\circ} \mathrm{C}$ (ether); IR (Nujol) $3200,3075,1730,1660 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e $207\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.66-2.63(\mathrm{~m}, 7 \mathrm{H}), 3.06-3.36(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}, i$-PrCH), 8.03 (br, $1 \mathrm{H}, \mathrm{NH}$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, $69.54 ; \mathrm{H}, 8.27 ; \mathrm{N}, 6.76$. Found: C, 69.48; H, 8.42; N, 6.69.

Thermolysis of 7 a . The isocyanate $7 \mathrm{a}(0.9 \mathrm{~g}, 6 \mathrm{mmol})$ was heated in neat solution at $150^{\circ} \mathrm{C}$ for 8 h and the reaction mixture was solidified after cooling. The solid was washed with ether and recrystallized from benzene-ethanol to give $0.4 \mathrm{~g}(100 \%)$ of $16: \mathrm{mp} 235-237^{\circ} \mathrm{C}$; IR (Nujol) $3220,3120,1710,1650,1560 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m / e $200\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.20\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.57$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SCH}_{3}$), $3.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 10.40-11.23$ (br, $2 \mathrm{H}, 2 \mathrm{NH}$).
Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 47.99 ; \mathrm{H}, 6.04 ; \mathrm{N}, 13.99 ; \mathrm{S}, 15.99$. Found: C, 47.95; H, 5.92; N, 13.82;, S, 16.03.

Thermolysis of $7 \mathbf{b}$. The thermolysis of $7 \mathbf{b}(1.9 \mathrm{~g}, 10 \mathrm{mmol})$ was carried out in neat solution at $150^{\circ} \mathrm{C}$ for 2 h . After similar workup described above, 17 was obtained quantitatively (1.9 g). 17: mp $170-171^{\circ} \mathrm{C}$ (benzene-ethanol); IR (Nujol) 3150, 1640, 1610, 1600, 1550 cm^{-1}; mass spectrum (70 eV) m/e $191\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.60(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{SCH}_{3}$), 6.24 ($\mathrm{s}, 1 \mathrm{H}$, vinylic), $7.20-7.66(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 8.28-8.44 (m, 1 H , aromatic), 12.04 (br, $1 \mathrm{H}, \mathrm{NH}$).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9}$ NOS: C, $62.82 ; \mathrm{H}, 4.75 ; \mathrm{N}, 7.33$. Found: C, 62.66; H, 4.58; N, 7.44 .

Treatment of 17 with Raney Ni. A suspension of 17 ($1.0 \mathrm{~g}, 5$ mmol) in 30 mL of ethanol containing excess Raney Ni was refluxed for 15 h . The organic layer was separated and concentrated. Recrystallization of the residue from benzene gave $0.6 \mathrm{~g}(79 \%)$ of $18: \mathrm{mp}$ $203-205{ }^{\circ} \mathrm{C}$ (lit. ${ }^{10} \mathrm{mp} 210.5-211{ }^{\circ} \mathrm{C}$); IR (Nujol) $3160,1650,1625,1540$ cm^{-1}; mass spectrum $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e} 145\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.73(\mathrm{~m}, 4 \mathrm{H}), 8.33-8.60(\mathrm{~m}, 1 \mathrm{H}), 11.87(\mathrm{br}, 1$ H).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}: \mathrm{C}, 74.47 ; \mathrm{H}, 4.86 ; \mathrm{N}, 9.65$. Found: C, 74.41; H, 5.04; N, 9.52.
Chlorination of 17 . A suspension of $17(1.0 \mathrm{~g}, 5 \mathrm{mmol}), \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(1.8 \mathrm{~g})$ and $\mathrm{CuO}(1.8 \mathrm{~g})$ in acetonitrile-water $(25: 1 \mathrm{~mL})$ was refluxed
for 6 h with stirring. The mixture was filtered, extracted with ether, and dried over sodium sulfate. After concentration, 0.45 g (40\%) of 19a was obtained. 19a: mp 217-218 ${ }^{\circ} \mathrm{C}$ (ethanol); IR (Nujol) 3140, $1660,1600,1580,1550 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e $225\left(\mathrm{M}^{+}\right)$; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.53$ (s, $3 \mathrm{H}, \mathrm{SCH}_{3}$), $7.37-7.87$ (m, 3 H , aromatic), $8.10-8.33$ (m, 1 H , aromatic), 11.63 (br, $1 \mathrm{H}, \mathrm{NH}$).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NOSCl}$: C, $53.22 ; \mathrm{H}, 3.55$; $\mathrm{N}, 6.21 ;$ S, 14.19; $\mathrm{Cl}, 15.74$. Found: C, 53.07 ; H, 3.40 ; N, 6.21 ; S, 14.02; Cl, 15.52 .

Bromination of 17 . To a suspension of $17(0.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ and $\mathrm{CuO}(0.5 \mathrm{~g})$ in ethanol (30 mL) was added bromine (1 g) at room temperature and the mixture was heated at $60^{\circ} \mathrm{C}$ for 7 h with stirring. After cooling, the precipitate was filtered and washed with hot ethanol. The filtrate was concentrated to give $0.7 \mathrm{~g}(100 \%)$ of $19 \mathrm{~b}: \mathrm{mp}$ $220-222^{\circ} \mathrm{C}$ (ethanol); IR (Nujol) 3120, 1650, 1600, 1570, $1540 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) m/e $269\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.66(\mathrm{~s}, 3 \mathrm{H}$, SCH_{3}), 7.33-7.94 (m, 3 H , aromatic), 8.12-8.36 (m, 1 H , aromatic), 11.61 (br, $1 \mathrm{H}, \mathrm{NH}$).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NOSBr}: \mathrm{C}, 44.44 ; \mathrm{H}, 2.96 ; \mathrm{N}, 5.19$. Found: C, 44.42; H, 2.81; N, 5.11.

Registry No.-5a, 64188-42-7; 5b, 64188-40-5; 5c, 64188-38-1; (E)-6a, 64188-36-9; (Z)-6a, 64188-34-7; (E)-6b, 64188-33-6; (Z)-6b, 64188-35-8; (E)-6c, 64188-32-5; (Z)-6c, 64188-56-3; (E)-7a, 64188-55-2; (Z)-7a, 64188-54-1; (E)-7b, 64188-53-0; (Z)-7b, 64188-52-9;
(E)-7c, 64188-50-7; (Z)-7c, 64188-51-8; 8a, 64188-49-4; 8b, 64188-48-3; 9a, 541-46-8; 9b, 103-81-1; 10, 64188-47-2; 11a, 64188-46-1; 11b, 64188-45-0; 12, 28669-33-2; 13a, 7182-10-7; 13b, 2981-10-4; 15a, 64188-44-9; 15b, 64188-43-8; 16, 64188-41-6; 17, 64188-39-2; 18, 491-30-5; 19a, 64188-37-0; 19b, 64201-56-5; aniline, 62-53-3; p-nitrophenylhydrazide, 100-16-3; phenylhydrazide, 100-63-0.

References and Notes

(1) For a recent review, see: B. A. Arbuzov and N. N. Zobova, Synthesis, 461 (1974).
(2) (a) E. Andre, B Bernard, and D. Bernard, Bull. Soc. Chim. Fr., 251 (1972). (b) A. J. Speziale and L. R. Smith, J. Org. Chem., 28, 1805 (1963).
(3) E. J. Corey and J. I. Shulman, J. Org. Chem., 35, 777 (1970).
(4) (a) L. I. Samaraj, O. W. Wishnewskij, and G. I. Derkatsch, Angew. Chem., 80, 620 (1968). (b) M. Ohoka, S. Yanagida, and S. Komori J. Org. Chem., 36, 3542 (197i). (c) M. Ohoka, S. Yanagida, and S. Komori ibid., 37, 3030 (1972).
(5) K. A. Nuridzhanyan, N. E. Mironova, and L. M. Nesterova Chem. Abstr., 74, 53739 (1971).
(6) H. Ulrich, "Cycloaddition Reactions of Heterocumulenes", Academic Press, New York and London, 1967, and references contained therein.
(7) O. Tsuge and R. Mizuguchi, Chem. Abstr., 63, 4299 (1965).
(8) P. Bakuzis, M. L. F. Bakuzis, C. C. Fortes, and R. Santos, J. Org. Chem., 41, 2769 (1976).
(9) J. Gosselck and G. Schmidt, Tetrahedron Lett., 2615 (1969).
(10) C. W. Ewing and E. A. Steck, J. Am. Chem. Soc., 68, 2181 (1946).

Synthesis of \boldsymbol{N}-Methyl-1-oxa-5-aza[10]paracyclophane: A Conformationally Restricted Analogue of Phenoxypropylamines ${ }^{1 a}$

Ching Sui Yi, ${ }^{1 \mathrm{~b}}$ Louis C. Martinelli, ${ }^{1 \mathrm{c}}$ and C. DeWitt Blanton, Jr.*
Department of Medicinal Chemistry, School of Pharmacy, University of Georgia, Athens, Georgia 30602

Received June 30, 1977

The synthesis of N-methyl-1-oxa-5-aza[10]paracyclophane (4) is reported; this represents the first example of this ring system being formed via an intramolecular halo-phenoxide reaction (ether synthesis). Attempts to synthesize phenoxyethylamine and phenoxypropylamine analogues by the acyloin reaction or by the intramolecular amine-ester reaction failed to yield the desired paracyclophanes.

Many compounds have been prepared as conformationally restricted analogues of phenethylamine in order to assess stereochemical requirements of the drug receptor. ${ }^{2}$ These served as a stimulant for the recent publication ${ }^{3}$ of the synthesis of 3 -aza[10]paracyclophane (1) and N-methyl-3aza[10]paracyclophane (2). In this paper, we are reporting the results of synthesis of conformationally restricted analogues 3 and 4 of adrenergic antagonists which contain the basic ar-

1

4
yloxyethylamine or aryloxypropylamine structure (e.g., phenoxybenzamine and propranolol).

Since the acyloin reaction is perhaps the most important method for preparing paracyclophanes, ${ }^{4}$ the first approach studied attempted to synthesize an oxazaparacyclophane (3) by utilizing the appropriate diester (12a) in an acyloin reaction
(Scheme I). The diester was obtained in a straightforward manner through. Friedel-Crafts acylation ${ }^{5}$ of anisole by succinic anhydride. The keto acid 5 was reduced by the Clemmensen method, ${ }^{6}$ and the resulting acid 6 was treated with 48% hydrobromic acid. The phenolic acid 7 was esterified ${ }^{7}$ and the phenolic ester 8 reacted with ethylene oxide followed by tosylation and ammation to give the amino ester 11. Alkylation with ethyl bromoacetate resulted in the diester 12a. However, under normal acyloin reaction conditions, ${ }^{9}$ this diester failed to undergo the cyclization reaction. Only starting material and a polymeric substance were isolated from the reaction mixture.

Recently, Wu and co-workers ${ }^{3 b, 8}$ found that a diester (12b) with an ester group one carbon length away from the nitrogen atom would not cyclize in the acyloin reaction. However, with

Scheme I^{a}

Scheme II ${ }^{a}$

${ }^{a} \mathrm{R}=-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{CH}_{5}$.
diester 13a the acyloin reaction gave the cyclized product which was utilized to prepare the paracyclophane 2. Replacing ethyl bromoacetate by ethyl bromopropionate (Scheme I) gave diester 13b with the ester group two carbon lengths away from the nitrogen atom. This diester (13b) still failed to undergo the normal acyloin reaction. Addition of trimethylchlorosilane $\left(\mathrm{Me}_{2} \mathrm{ClSi}\right)^{10}$ to the reaction process also failed to produce any cyclized product.

Since the important acyloin reaction failed, other intramolecular reactions were considered. The second attempt involved the intramolecular amine-ester reaction (Scheme II). The synthetic route for the synthesis of 17 was similar to that described in Scheme I, except glutaric anhydride was used instead of succinic anhydride. Michael reaction of the phenolic ester 17 with acrylonitrile, followed by catalytic hydrogenation, gave the amino ester 19. Refluxing the amino ester 19 in xylene or Dowtherm-A for 5 days gave a small amount of polymeric intermolecular amide as indicated by TLC and IR. Most of the amino ester was recovered without change. These results suggested a modification of the ester group in an attempt to obtain a more reactive moiety.

First, the ester was converted to the acid 21. In order to facilitate reaction of the amino group with the carboxyl group, an attempt to form a mixed anhydride at the carboxylic acid moiety was studied. This was done by using dicyclohexylcarbociimide (DCC) ${ }^{11}$ or 1-cyclohexyl-3-(2-morpholi noethyl)carbodiimide metho- p-toluenesulfonate ${ }^{12}$ as in peptide-synthesis techniques. But, due to the limited solubility of the amino acid 21 in acetonitrile or methylene chloride, the reaction was unsuccessful. Similar results were obtained when the acyl halide moiety 22 replaced the carboxylic acid group.

Finally, the intramolecular halo-ether reaction was considered for the synthesis of an oxazaparacyclophane. The phenolic halide 24 was prepared by amination of the phenolic ester 17 with 3 -amino-1-propanol, followed by treatment with thionyl chloride (Scheme III). When the phenolic halide was subjected to the intramolecular halo-phenoxide reaction, ${ }^{13}$ ether 25 was isolated in 80% yield. A possible explanation is that is oamyl alcohol reacts with sodium to form the alkoxide anion instead of the phenoxide anion, and the alkoxide anion displaced the halogen. Therefore, potassium carbonate was used to modify the reaction condition in an attempt to achieve a selective reaction with only the phenolic moiety (Scheme III). However, two products were isolated from the reaction mixture. Compound 27 was the major product (60% yield), whereas 26 was isolated in a maximum yield of only 5%. Possible explanations for the reaction products involve the presence of the amide proton on phenolic halide 24.

Scheme III

23

26
$+$

27
Structural assignment for compounds 25 and 27 was based on the IR and NMR spectrum and elemental analysis. Structural assignment for 26 was based on the IR and NMR spectrum only. Compound 27 gave a positive chromic anhydride test ${ }^{14}$ and a negative bromine in water test, ${ }^{14}$ indicating the presence of an alcoholic group and not a phenolic group.

To solve the amide proton problem, the phenolic halide 29 (Scheme IV) was prepared by amination of the phenolic ester 17 with N-methyl-3-amino-1-propanol, followed by treatment with thionyl chloride. When compound 29 was subjected to the high dilution intramolecular halo-phenoxide reaction, a yellowish thick oil was obtained. Chromatographic separation provided the lactam 30 . Lithium aluminum hydride reduction gave the desired product, N-methyl-1-oxa-5-aza[10]paracyclophane (4).

Structural assignments for 30 and 4 were confirmed by IR, NMR, and MS. Compound 4 gave the correct elemental analysis. The NMR spectra also provided further evidence for the paracyclophane. The open-chain phenolic alcohol 28 and

Scheme IV

28

phenolic halide 29 showed two methyl peaks at $\delta 2.89,3.0$ and $\delta 2.85,3.0$, respectively, representing the anti and syn conformers with the anti conformer dominating approximately $2: 1$. After cyclization, the lactam 30 also showed two methyl peaks at $\delta 2.88$ and 3.0 , but with equal intensity as expected. The NMR temperature-dependent studies showed these two methyl peaks coalesced at $70^{\circ} \mathrm{C}$. On cooling, the single peak separated again. This suggests that at room temperature the rotation about the central $\mathrm{C}-\mathrm{N}$ bond of the disubstituted amide 30 is hindered, and two resonance peaks were observed. When the temperature was increased to $70^{\circ} \mathrm{C}$, the energy barrier about the $\mathrm{C}-\mathrm{N}$ bond was overcome and coalescence occurred. The methylene protons at positions 3,8 , and 9 of compound 4 are shifted to $\delta 1.3$ compared to 1.6 of the openchain compounds 28 and 29 . This also suggests that protons are shielded by the aromatic ring as is the character of paracyclophanes. ${ }^{15}$

Experimental Section

Melting points were determined on a Thomas-Hoover apparatus (capillary method) and are uncorrected. Infrared spectra were determined on a Perkin-Elmer 467 grating spectrophotomer. The NMR spectra were determined on a Hitachi Perkin-Elmer R20 A highresolution NMR spectrometer using tetramethylsilane $\left(\mathrm{Me}_{4} \mathrm{Si}\right)$ as internal reference. Mass spectra were determined on a Dupont 21-490 mass spectrometer, Department of Biochemistry, University of Georgia. Elemental analyses were determined by Atlantic Microlab, Inc., Atlanta, Georgia. TLC were performed on Eastman Chromatogram sheets, Type 6060 (silica gel).
β-Anisoylpropionic acid (5) was prepared from anisole and succinic anhydride, $\mathrm{mp} 145-146{ }^{\circ} \mathrm{C}$ (lit. mp $144.5-146.5^{\circ} \mathrm{C}$). ${ }^{5}$ Reduction of 5 by the Clemmensen method ${ }^{6}$ gave γ-(p-methoxyphenyl)butyric acid (6), $\mathrm{mp} 56-58^{\circ} \mathrm{C}$ (lit. $\mathrm{mp} 56{ }^{\circ} \mathrm{C}$). ${ }^{5}$ The keto acid 6 was treated with 48\% hydrobromic acid to yield γ-(p-hydroxyphenyl)butyric acid (7), $\mathrm{mp} 104-106^{\circ} \mathrm{C}$ (lit. mp $110-111^{\circ} \mathrm{C}$)..$^{16} \gamma$-Anisoylbutyric acid (14) was prepared from anisole and glutaric anhydride, mp 137-138 ${ }^{\circ} \mathrm{C}$ (lit. $\operatorname{mp} 139^{\circ} \mathrm{C}$)..16 Reduction of 14^{6} gave δ-(p-methoxyphenyl)valeric acid (15), mp $111^{\circ} \mathrm{C}$ (lit. $\mathrm{mp} 116^{\circ} \mathrm{C}$). ${ }^{16}$ Treatment of 15 with hydrobromic acid gave δ-(p-hydroxyphenyl)valeric acid (16), mp $114-116^{\circ} \mathrm{C}$ (lit. $\mathrm{mp} 117-119^{\circ} \mathrm{C}$)..17 These starting materials were obtained in $75-95 \%$ yield.

Ethyl $\boldsymbol{\gamma}$-(p-Hydroxyphenyl)butyrate (8). To the solution of 7 ($180 \mathrm{~g}, 1 \mathrm{~mol}$) in 700 mL of absolute ethanol was added 1 mL of concentrated hydrochloric acid. The mixture was refluxed in a Soxhlet extractor filled with a $3-\AA$ molecular sieve ${ }^{7}$ for 12 h . Ethanol was removed in vacuo and the residue was poured into 300 mL of water and extracted with two $200-\mathrm{mL}$ portions of chloroform. The chloroform layer was dried over sodium sulfate and concentrated on the rotary evaporator. The residual liquid was distilled under reduced pressure to yield $190 \mathrm{~g}(91.3 \%)$ of colorless liquid: bp $125^{\circ} \mathrm{C}(0.005 \mathrm{~mm})$; IR (neat) $3450,1725 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22\left(\mathrm{t}, 3 \mathrm{H}\right.$, ethyl $\left.\mathrm{CH}_{3}\right), 1.95$ ($\mathrm{m}, 2 \mathrm{H}, \beta-\mathrm{CH}_{2}$), 2.21 and $2.55\left(2 \mathrm{t}, 4 \mathrm{H}, \alpha\right.$ - and $\gamma-\mathrm{CH}_{2}$'s), $4.14(\mathrm{q}, 2 \mathrm{H}$, ethyl CH_{2}), 6.8 and $7.04(2, \mathrm{~d}, 4 \mathrm{H}$, aromatic H 's), 7.41 ($\mathrm{s}, 1 \mathrm{H}$, phenol).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 69.21; H, 7.75. Found: C, 68.97; H , 7.81.

Ethyl $\boldsymbol{\gamma}$-[p-(2-Hydroxyethoxy)phenyl]butyrate (9). A mixture of $8(4.16 \mathrm{~g}, 0.2 \mathrm{~mol})$, potassium carbonate $(27.6 \mathrm{~g}, 0.2 \mathrm{~mol})$, and 300 mL of absolute ethanol was refluxed for 2 h . After cooling, the reaction mixture was placed in an ice-salt bath and 25 g (0.55 mol) of ethylene oxide was added. The whole mixture was warmed slowly to room temperature and stirred for 36 h under a closed system. After filtration, the alcohol was removed in vacuo to yield a highly viscous liquid (quantitative); IR (neat) $3490,1748 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{t}, 3$ H , ethyl CH_{3}), $1.88\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{CH}_{2}\right), 2.19$ and $2.56(2 \mathrm{t}, 4 \mathrm{H}, \alpha$ - and $\gamma-\mathrm{CH}_{2}$'s), 3.91 (s, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.1 (q, 2 H , ethyl CH_{2}), 6.8 and 7.09 ($2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H's).

A phenylurethane derivative ${ }^{18}$ of 9 was prepared: $m p 82-84^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5}$: $\mathrm{C}, 67.90 ; \mathrm{H}, 6.78 ; \mathrm{N}, 3.77$. Found: C, 67.78; H, 6.80; N, 3.77.

Ethyl γ-[p-(2-p-Toluenesulfonoxyethoxy)phenyl]butyrate (10). To a solution of $9(50 \mathrm{~g}, 0.2 \mathrm{~mol})$ in 200 mL of dry pyridine was added p-toluenesulfonyl chloride ($38 \mathrm{~g}, 0.21 \mathrm{~mol}$), at or below $0^{\circ} \mathrm{C}$, over a period of 20 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h and then poured into 300 mL of cold 6 N hydrochloric acid and extracted two times with $300-\mathrm{mL}$ portions of ether. After removing the ether, the crude thick liquid ($70.5 \mathrm{~g}, 87 \%$) was used without further purifi-
cation: IR (neat) $1750 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.21\left(\mathrm{t}, 3 \mathrm{H}\right.$, ethyl $\left.\mathrm{CH}_{3}\right)$, $1.92\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{CH}_{2}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.2-2.62(\mathrm{~m}, 4 \mathrm{H}, \alpha$ - and $\gamma-\mathrm{CH}_{2}$'s), $4.1\left(\mathrm{q}, 2 \mathrm{H}\right.$, ethyl $\left.\mathrm{CH}_{2}\right), 4.09$ and $4.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 6.68 and 7.06 ($2 \mathrm{~d}, 4 \mathrm{H}$. aromatic H's), 7.3 and $7.82(2 \mathrm{~d}, 4 \mathrm{H}$, tosyl aromatic H's).

Ethyl $\boldsymbol{\gamma}$-[p-(2-N-Methylaminoethoxy)phenyl]butyrate (11). In a $1-\mathrm{L}$ round-bottomed flask was placed $40.6 \mathrm{~g}(0.1 \mathrm{~mol})$ of 10,400 mL of aqueous 40% methylamine solution, and 400 mL of chloroform. The mixture was stirred vigorously for 2 days at room temperature and poured into a separatory funnel. The chloroform layer was separated and the water layer extracted two times with $100-\mathrm{mL}$ portions of chloroform. The combined chloroform layer was dried over magnesium sulfate and removed in vacuo. The residual liquid was distilled under reduced pressure to yield $13.1 \mathrm{~g}(50 \%)$ of slightly yellow liquid: bp $140{ }^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$; IR (neat) $3370,1750 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25$ $\left(\mathrm{t}, 3 \mathrm{H}\right.$, ethyl $\left.\mathrm{CH}_{3}\right), 1.9\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{CH}_{2}\right), 2.4$ and $2.79(\mathrm{~m}, 4 \mathrm{H}, \alpha-$ and $\gamma-\mathrm{CH}_{2}$'s), 2.48 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.05$ ($\mathrm{q}, 2 \mathrm{H}$, ethyl CH_{2}), 6.8 and 7.1 ($2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H 's).

The hydrochloride salt was prepared by dissolving 11 in ether followed by treatment with hydrogen chloride gas. The salt was collected by filtration: $\mathrm{mp} 136-138^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \cdot \mathrm{HCl}$: C, $59.69 ; \mathrm{H}, 8.02 ; \mathrm{N}, 4.64 ; \mathrm{Cl}, 11.75$. Found: C, $59.83 ; \mathrm{H}, 8.03 ; \mathrm{N}, 4.78 ; \mathrm{Cl}, 11.62$.

Ethyl $\quad \boldsymbol{\gamma}$ - $\boldsymbol{p} \boldsymbol{p}$ (2-N-Methyl- \boldsymbol{N}-carboethoxymethylaminoethoxy)phenyl]butyrate (12a). To a solution of $11(22 \mathrm{~g}, 0.093 \mathrm{~mol})$ and dicyclohexylmethylamine (DCMA) $(6.2 \mathrm{~g}, 0.083 \mathrm{~mol})$ in 100 mL of benzene was added $14.4 \mathrm{~g}(0.085 \mathrm{~mol})$ of ethyl bromoacetate (a precipitate was deposited within 5 min from the stirred mixture). The mixture was refluxed at $80^{\circ} \mathrm{C}$ for 6 h , and the precipitate was then removed by filtration. The benzene layer was washed two times with 20 mL of water and removed in vacuo. The yellowish residual liquid was distilled unde: reduced pressure to yield $23.5 \mathrm{~g}(80.6 \%)$ of diester: bp $180-182^{\circ} \mathrm{C}\left(0 .(75 \mathrm{~mm})\right.$; IR (neat) $2900,2905,1750,1255,830 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.22$ and $1.24\left(2 \mathrm{t}, 6 \mathrm{H}\right.$, ethyl CH_{3} 's), $1.88(\mathrm{~m}, 2 \mathrm{H}$, $\left.\beta-\mathrm{CH}_{2}\right), 2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.25$ and $2.58\left(\mathrm{~m}, 4 \mathrm{H}, \alpha-\right.$ and $\gamma-\mathrm{CH}_{2}$'s), $3.4\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{COO}\right), 4.06(\mathrm{t}, 2 \mathrm{H}, \operatorname{ArOCH} 2), 4.09$ and $4.11(2 \mathrm{q}, 4$ H , ethyl CH_{2} 's), 6.82 and 7.1 ($2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H's).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, $64.94 ; \mathrm{H}, 8.31 ; \mathrm{N}, 3.98$. Found: C, 64.80; H, 8.35; N, 3.92.

Ethyl γ - \boldsymbol{p}-(2-N-Methyl- \boldsymbol{N} - $\boldsymbol{\beta}$-carboethoxyethylaminoethoxy)phenyl]butyrate (13b). This compound was prepared by the same procedure as compound 12a. The only difference was the use of ethyl bromc.propionate instead of ethyl bromoacetate. A light yellow liquid was cbtained in $75-80 \%$ yield: bp $208-210^{\circ} \mathrm{C}(0.02 \mathrm{~mm})$; IR (neat) 2940, 2860, 2800, 1730, 1612, $825 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25$ ($\mathrm{t}, 6 \mathrm{H}$, ethyl CH_{3} 's), $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.95-2.8\left(\mathrm{~m}, 12 \mathrm{H}\right.$, all CH_{2} 's except ArOCH_{2}), 4.05 (t, $2 \mathrm{H}, \mathrm{ArOCH}_{2}$), 4.1 (q, 4 H , ethyl CH_{2} 's), 6.8 and 7.11 ($2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H 's).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{5}$: $\mathrm{C}, 65.73 ; \mathrm{H}, 8.55 ; \mathrm{N}, 3.83$. Found: C, 65.49; H, 8.61; N, 3.88.

Methyl δ-(\boldsymbol{p}-Hydroxyphenyl)valerate (17). This compound was prepared (91%) in the same manner as compound 8, except methanol was used instead of ethanol: $\mathrm{mp} 38^{\circ} \mathrm{C}$; bp $155{ }^{\circ} \mathrm{C}(0.025 \mathrm{~mm})$; IR (neat) $3400,1725 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.58\left(\mathrm{~m}, 4 \mathrm{H}, \beta\right.$ - and $\gamma-\mathrm{CH}_{2}$'s), 2.4 ($\mathrm{m}, 4 \mathrm{H}, \alpha$ - and $\hat{o}-\mathrm{CH}_{2}$'s), $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.85$ and $7.0(2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H's).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 69.21; $\mathrm{H}, 7.75$. Found: $\mathrm{C}, 69.16 ; \mathrm{H}$, 7.77.

Methyl δ-[p-(2-Cyanoethoxy)phenyl]valerate (18). In a $50-\mathrm{mL}$ round-bottomed flask were placed $17(5.2 \mathrm{~g}, 0.025 \mathrm{~mol})$ and a small piece of sodium metal in 30 mL of benzene. The mixture was refluxed for 3 h . After cooling to room temperature, $2.5 \mathrm{~g},(0.05 \mathrm{~mol})$ of acrylonitrile was added dropwise and the mixture refluxed for 10 h . The reaction mixture was poured carefully into 50 mL of cold 3 N hydrochloric acid and extracted with two $50-\mathrm{mL}$ portions of ether. The ether layer was dried over magnesium sulfate and removed in vacuo to yield a slightly yellow oii ($4.2 \mathrm{~g}, 64 \%$). The crude product was used directly for catalytic hydrogenation without further purification: TLC $\left(\mathrm{CHCl}_{3}\right), R_{f} 0.45$; IR (neat) $2255,1740 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.58(\mathrm{~m}$, $4 \mathrm{H}, \beta$ - and $\gamma-\mathrm{CH}_{2}$'s $), 2.0-2.5\left(\mathrm{~m}, 6 \mathrm{H}, \alpha-\right.$ and $\delta-\mathrm{CH}_{2}$'s and $\mathrm{CH}_{2} \mathrm{CN}$), $3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.9\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{ArOCH}_{2}\right), 6.75$ and $7.03(2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H's).

Methyl δ-[p-(3-Aminopropyloxy)phenyl]valerate Hydrochloride (19). A mixture of 18 ($5.25 \mathrm{~g}, 0.025 \mathrm{~mol}$), 10 mL of concentrated hydrochloric acid, 1 g of 10% palladium-on-carbon, and 250 mL of methanol was subjected to hydrogenation on a Parr apparatus; initial pressure was 53 psi. After shaking for 2 h , the pressure had dropped to 51 psi and remained constant thereafter. The solution was filtered and the methanol removed in vacuo. The crude product (3.8 $\mathrm{g}, 66 \%$) was washed several times with ether to yield a white powder
(50\%): mp 161-163 ${ }^{\circ} \mathrm{C}$, TLC $\left(\mathrm{CHCl}_{3}\right), R_{/} 0.15$; IR (KBr) $1740 \mathrm{~cm}^{-1}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.5-2.5\left(\mathrm{~m}, 10 \mathrm{H}, \alpha-, \beta-, \gamma\right.$-, and $\delta-\mathrm{CH}_{2}$'s and $\mathrm{NCCH}_{2} \mathrm{C}$), 2.95 (t, $2 \mathrm{H}, \mathrm{NCH}_{2}$), 3.58 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 4.02 ($\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{ArOCH}_{2}\right), 6.86$ and $7.12(2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H 's).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$. HCl : C, $59.69 ; \mathrm{H}, 8.02 ; \mathrm{N}, 4.64 ; \mathrm{Cl}, 11.75$. Found: C, 59.52; H, 8.05; N, 4.70; Cl, 11.86.
δ-[\boldsymbol{p}-(3-Aminopropyloxy)phenyl]valeric Acid Hydrochloride (21). A mixture of $19(18 \mathrm{~g}, 0.06 \mathrm{~mol})$ in 150 mL of 6 N hydrochloric acid was refluxed for 12 h . After cooling, the product was collected by filtration and recrystallized from water ($14 \mathrm{~g}, 81.4 \%$): mp 184-187 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1700 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3} \cdot \mathrm{HCl}: \mathrm{C}, 58.43 ; \mathrm{H}, 7.71 ; \mathrm{N}, 4.87 ; \mathrm{Cl}, 12.32$. Found: C, 58.54; H, 7.77; N, 4.82; Cl, 12.22.
δ-[p-(3-Aminopropyloxy)phenyl]valeryl Chloride Hydrochloride (22). To a mixture of $21(10 \mathrm{~g}, 0.037 \mathrm{~mol})$ in 50 mL of benzene was added $4.2 \mathrm{~g}(0.04 \mathrm{~mol})$ of thionyl chloride. The reaction mixture was refluxed for 1 h . After cooling, the crude product was filtered. However, the acyl chloride was unstable and hydrolyzed to the corresponding acid within $2 \mathrm{~h}: \mathrm{mp} 144-146^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 1815 \mathrm{~cm}^{-1}$.
\boldsymbol{N}-(3-Hydroxypropyl)- δ-(\mathbf{p}-hydroxyphenyl)valeramide (23). A mixture of phenolic ester $17(20.8 \mathrm{~g}, 0.1 \mathrm{~mol})$ and 3 -amino-1-propanol ($15 \mathrm{~g}, 0.2 \mathrm{~mol}$) was placed in a $200-\mathrm{mL}$ round-bottomed flask and heated at $130^{\circ} \mathrm{C}$ for 10 h . Approximately 3 mL of methanol was collected in a Dean-Stark apparatus. The excess 3-amino-1-propanol was removed by distillation under reduced pressure to yield quantitatively a dark-brown thick oil, which decomposed on micromolecular distillation. Without further purification, compound 23 was converted to the corresponding alkyl halide 24 in the following reaction: TLC (chloroform/acetone) $R_{f} 0.2$; IR (neat) $3300,1640 \mathrm{~cm}^{-1}$; NMR (pyr-idine- d_{5}) $\delta 1.5-1.9\left(\mathrm{~m}, 6 \mathrm{H}, \beta\right.$ - and γ - CH_{2} 's and $\left.\mathrm{NCCH}_{2} \mathrm{C}\right), 2.1-2.48$ ($\mathrm{m}, 4 \mathrm{H}, \alpha$ - and $\delta-\mathrm{CH}_{2}$'s), $3.45\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right.$), $3.72\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$), 7.0 ($\mathrm{s}, 4 \mathrm{H}$, aromatic H 's).
\boldsymbol{N}-(3-Chloropropyl)- $\boldsymbol{\delta}$-(\mathbf{p}-hydroxyphenyl)valeramide (24). In the same flask of the above reaction, compound 23 was placed in an ice-salt bath. Thionyl chloride (25 mL) was added dropwise over a period of 1 h . After warming to room temperature, stirring was started and continued overnight. The reaction mixture was poured into 300 mL of ice water and extracted with two $200-\mathrm{mL}$ portions of methylene chloride. The methylene chloride extract was then passed through a silica gel column, using the same solvent as eluent, to yield a yellow thick liquid ($13 \mathrm{~g}, 48.3 \%$): TLC (chloroform/acetone) $R_{f} 0.6$; IR (neat) 3300, $1630 \mathrm{~cm}^{-1}$; NMR (acetone- d_{6}) $\delta 1.59-2.49(\mathrm{~m}, 10 \mathrm{H}$, $\alpha-, \beta-, \gamma-$, and $\delta-\mathrm{CH}_{2}$'s and $\mathrm{NCCH}_{2} \mathrm{C}$), $3.37\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right.$), $3.57(\mathrm{t}, 2$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.7$ and 6.97 ($2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H 's), 7.5 ($\mathrm{s}, 1 \mathrm{H}$, phenol); mass spectrum $m / e 269$ (M^{+}, calcd 269).
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{Cl}: \mathrm{C}, 62.33 ; \mathrm{H}, 7.47 ; \mathrm{N}, 5.19 ; \mathrm{Cl}, 13.14$. Found: C, 62.58; H, 7.55; N, 5.12; Cl, 13.02 .
\boldsymbol{N}-(3-Isoamyloxypropyl)- δ-(\boldsymbol{p}-hydroxyphenyl) valeramide (25). All glassware was dried overnight in an oven (ca. $150^{\circ} \mathrm{C}$) before use. A 3-L Morton flask was fitted with high-dilution apparatus ${ }^{19}$ and a high-speed stirrer ${ }^{20}$ with a constant flow of dry nitrogen. ${ }^{21}$ Isoamyl alcohol ${ }^{23}(1.6 \mathrm{~L})$ was charged into the Morton flask and distilled into the high-dilution flask (ca. 0.8 L). Freshly cut sodium metal (6.4 g , 0.28 mol) was transferred and stirred (ca. 10000 rpm) to make a fine suspension. The phenolic halide $24(18.7 \mathrm{~g}, 0.07 \mathrm{~mol})$ in 300 mL of isoamyl alcohol was added dropwise over a period of 10 h to the stirring (ca. 9000 rpm) and refluxing sodium suspension. After the addition was completed, refluxing was contizued for 1 h and then the mixture was cooled in an ice-water bath. Acetic acid (10 mL) was added dropwise with moderate stirring, followed by 500 mL of water (under nitrogen flow). Isoamyl alcohol was separated, dried over sodium sulfate, and then removed in vacuo. The residue was purified by silica gel column chromatography, using ether as eluent, to yield a slight!y yellow thick oil ($17.8 \mathrm{~g}, 80 \%$): IR (neat) $3320,2950,2870$, $1650,1100,820 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~d}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}$, isopropyl CH_{3} 's), $1.36-2.6$ (m, $13 \mathrm{H}, \alpha-, \beta-, \gamma-$, and $\delta-\mathrm{CH}_{2}$'s, CH , and $\left.\mathrm{NCCH}_{2} \mathrm{COCCH}_{2} \mathrm{C}\right), 3.25-3.55\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CCH}_{2} \mathrm{OCH}_{2}\right), 6.78$ and 7.02 ($2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H's), 8.71 (s, 1 H , phenol).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3}: \mathrm{C}, 70.99 ; \mathrm{H}, 9.72 ; \mathrm{N}, 4.36$. Found: C, 70.36; H, 9.02; N, 3.94 .

A phenylurethane derivative ${ }^{18}$ of 25 was prepared: mp 99-102 ${ }^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 70.88; H, 8.24; $\mathrm{N}, 6.36$. Found: C, 70.75; H, 8.25; N, 6.37.

Isoamyl δ-(\boldsymbol{p}-Isoamyloxyphenyl)valerate (26) and \boldsymbol{N}-(3-Hydroxypropyl)- δ-(p-isoamyloxyphenyl)valeramide (27). The procedure employed for the preparation of compound 25 was used, except potassium carbonate (4 equiv) was employed as the base. The crude product was purified by chromatography on a silica gel column: Fraction 1, petroleum ether eluate, contained silicon or grease; fraction

2, chloroform eluate, gave compound 26 (5\%); fraction 3, acetone el uate, gave compound 27 (60%).
Compound 26: IR (neat) 2960, 2870, 1742, 1240, $815 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92$ and $0.96\left(2 \mathrm{~d}, 12 \mathrm{H}, J=6.0 \mathrm{~Hz}\right.$, isopropyl $\left.\mathrm{CH}_{3} \mathrm{~s}\right)$, $1.56-2.57\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}\right.$ and all CH_{2} 's except ArOCH_{2} and COOCH_{2}), 3.97 and $4.1\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{ArOCH}_{2}\right.$ and $\left.\mathrm{COOCH}_{2}\right), 6.8$ and $7.1(2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H 's).
Compound 27: mp 55-56 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3300, 2920, 1635, 1240, 800 cm^{-1}; NMR (acetone- d_{6}) $\delta 0.95\left(\mathrm{~d}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}\right.$, isopropyl CH_{3} 's), $1.55-2.53\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}\right.$ and all CH_{2} 's except ArOCH_{2} and $\mathrm{NCH}_{2} \mathrm{CCH}_{2} \mathrm{O}$), $3.25\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right.$), $3.95\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{ArOCH}_{2}\right), 6.8$ and 7.1 ($2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H 's).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3}: \mathrm{C}, 70.99, \mathrm{H}, 9.72 ; \mathrm{N}, 4.36$. Found: C , 70.72; H, 9.72; N, 4.32.
\boldsymbol{N}-Methyl- \boldsymbol{N}-(3-hydroxypropyl)- δ-(p-hydroxyphenyl)valeramide (28). The procedure described for preparing compound 23 was employed, except that N-methyl-3-amino-1-propanol was used instead of 3 -amino-1-propanol. The crude thick oil product (quantitative yield) decomposed on micromolecular distillation. Compound 28 was converted to the halide 29 without further purification: IR (neat) $3280,2935,1618,1050,818 \mathrm{~cm}^{-1}$; NMR (acetone- d_{6}) $\delta 1.7$ (m, $6 \mathrm{H}, \beta$ - and $\gamma-\mathrm{CH}_{2}$'s and $\mathrm{NCCH}_{2} \mathrm{C}$), $2.45\left(\mathrm{~m}, 4 \mathrm{H}, \alpha\right.$ - and δ - CH_{2} 's), 2.89 and $3.0\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.45\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.5\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.76$ and 7.04 ($2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H 's).
\boldsymbol{N}-Methyl- \boldsymbol{N}-(3-chloropropyl)- δ-(\mathbf{p}-hydroxyphenyl) valeramide (29). The procedure described for preparing compound 24 was used. The crude product (40%) was purified by silica gel column chromatography using methylene chloride as eluent to yield a thick brown oil (30\%): IR (neat) $3220,2920,1605,1225,818,635 \mathrm{~cm}^{-1}$; NMR (acetone $-d_{6}$) $\delta 1.6\left(\mathrm{~m}, 6 \mathrm{H}, \beta\right.$ - and $\gamma-\mathrm{CH}_{2}$'s and $\mathrm{NCCH}_{2} \mathrm{C}$), $2.4(\mathrm{~m}, 4$ H, α - and $\delta-\mathrm{CH}_{2}$'s), 2.85 and $3.0\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.45\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, $3.55\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\right)$), 6.76 and $7.0(2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H 's).
A phenylurethane derivative ${ }^{18}$ of 29 was prepared: $\mathrm{mp} 126^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}: \mathrm{C}, 65.58 ; \mathrm{H}, 6.76 ; \mathrm{N}, 6.95 ; \mathrm{Cl}, 8.80$. Found: C, 65.40; H, 6.78; N, 7.00; Cl, 8.84.
\boldsymbol{N}-Methyl-6-keto-1-oxa-5-aza[10]paracyclophane (30). This compound was prepared in the same general setup as compound 25 above. Xylene ${ }^{24}(1.6 \mathrm{~L})$ was charged into the Morton flask and distilled into the high-dilution flask (ca. 0.8 L). Freshly cut sodium metal ($4 \mathrm{~g}, 0.17 \mathrm{~mol}$) was transferred and stirred (ca. 10000 rpm) to make a fine suspension. The phenolic halide $29(13.1 \mathrm{~g}, 0.046 \mathrm{~mol})$ in 500 mL of xylene was added dropwise over a period of 12 h to the stirring and refluxing sodium suspension. After the addition was completed, refluxing was continued for another hour and then the mixture was cooled in an ice bath. Acetic acid (10 mL) was added dropwise with moderate stirring, followed by 500 mL of water. The xylene layer was separated from a separatory funnel. The aqueous layer was basified by sodium hydroxide (ca. pH 8.5) and extracted with two $300-\mathrm{mL}$ portions of chloroform. The combined xylene and chloroform layers were dried over sodium sulfate and concentrated on the rotary evaporator to yield a gummy material. This residual product was transferred to a silica gel column. Fractions 1 and 2, methylene chloride eluate, contained grease and some unknown open-chain material. Fraction 3, acetone eluate, gave the lactam $30(1.5 \mathrm{~g}, 20 \%)$. Fraction 4, methanol eluate, gave an unidentified polymeric material (ca. 50%). The product from fraction 3 (paracyclophane, 30) decomposed on micromolecular distillation. ${ }^{25}$ Therefore, compound 30 was used in the following reaction directly: IR (neat) 2923, 2850, 1630, 1240, 1050, $820 \mathrm{~cm}^{-1}$; NMR (acetone- d_{6}) $\delta 1.61$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{C}_{3,8.9} \mathrm{CH}_{2}$'s), $2.4\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{7,10} \mathrm{CH}_{2} \mathrm{~s}\right), 2.88$ and $3.0\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.51(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{C}_{4} \mathrm{CH}_{2}$), 3.94 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{2} \mathrm{CH}_{2}$), 6.8-7.1 ($\mathrm{m}, 4 \mathrm{H}$, aromatic H 's); mass spectrum $\mathrm{m} / \mathrm{e} 247$ (M^{+}, calcd 247).
N-Methyl-1-oxa-5-aza[10]paracyclophane (4). In a $100-\mathrm{mL}$ three-necked round-bottomed flask was placed lithium aluminum hydride ($150 \mathrm{mg}, 3.94 \mathrm{mmol}$) and 50 mL of THF^{26} under a constant flow of nitrogen. Lactam $30(350 \mathrm{mg}, 1.41 \mathrm{mmol})$ in 30 mL of THF was added to the mixture. The reaction mixture was refluxed for 8 h and then cooled in an ice bath. Excess reagent was decomposed by slow addition of 2 mL of water in 20 mL of THF followed by 0.5 mL of 10% sodium hydroxide solution. The mixture was filtered to remove the inorganic material and the filtrate was evaporated in vacuo. The residue was passed through a silica gel column, using ether as eluent. The ether gave a crude product ($100 \mathrm{mg}, 30 \%$) which was recrystallized from acetone to yield a white powder (65 mg): $\mathrm{mp} 125-126{ }^{\circ} \mathrm{C}$; IR (KBr) 2920, 2795, 1510, 1240, $805 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.3(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{C}_{3,8,9} \mathrm{CH}_{2}$'s $), 2.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.3\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{7,10} \mathrm{CH}_{2}\right.$'s), $2.45(\mathrm{~m}, 4$ $\mathrm{H}, \mathrm{C}_{4,6} \mathrm{CH}_{2}$'s), $3.99\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{2} \mathrm{CH}_{2}\right), 6.72$ and $6.96(2 \mathrm{~d}, 4 \mathrm{H}$, aromatic H's); mass spectrum m/e 233 (\mathbf{M}^{+}, calcd 233).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 77.20 ; \mathrm{H}, 9.93$; $\mathrm{N}, 5.99$. Found: C , 76.99; H, 9.94; N, 5.98.

Registry No. 4, 64201-22-5; 6, 4521-28-2; 7, 7021-11-6; 8, 62889-58-1; 9, 64201-23-6; 9 phenylurethane, 64201-24-7; 10, 64201-25-8; 11, 64201-26-9; 11 HCl, 64201-27-0; 12a, 64201-28-1; 13b, 64201-29-2; 17, 64201-30-5; 18, 64201-31-6; 19, 64201-32-7; 21, 64201-33-8; 22, 64201-34-9; 23, 64201-35-0; 24, 64201-36-1; 25, 64201-37-2; 25 phenylurethane, 64201-38-3; 26, 64201-39-4; 27, 64201-40-7; 28, 64201-41-8; 29, 64201-42-9; 29 phenylurethane, 64201-43-0; 30, 64201-44-1; ethylene oxide, 75-21-8; p-toluenesulfonyl chloride, 98-59-9; ethyl bromoacetate, 105-36-2; ethyl bromopropionate, 539-74-2; acrylonitrile, 107-13-1; 3-amino-1-propanol, 156-87-6; isoamyl alcohol, 123-51-3; N-methyl-3-amino-1-propanol, 42055-15-2; xylene, 1330-20-7.

References and Notes

(1) (a) Presented at the 173rd National Meeting of the American Chemical Society, New Orleans, La., March 1977, Abstract ORGN 14; (b) Taken in part from the thesis submitted by C. S. Yi to the Graduate School of the University of Georgia in partial fulfillment of the requirements for the Ph.D. degree, May, 1977; (c) Present address: School of Pharmacy, Creighton University, Omaha, Nebraska 68178.
(2) (a) E. E. Smissman and T. L. Pazdernik, J. Med. Chem.. 16, 14 (1973); (b) E. E. Smissman and T. L. Pazdernik, ibid., 16, 18 (1973); (c) C. F. Barknecht, D. E. Nichols, D. B. Rusterholz, J. B. Long, J. A. Englebrecht, J. M. Beaton, R. J. Bradley, and D. C. Dyer, Ibid., 16. 804 (1973); (d) E. Solomons and J. Sam, ibid., 16, 1330 (1973).
(3) (a) K. E. Opheim, A. P. Roszkowski, M. B. Wallach, and I. T. Harrison, J. Med. Chem., 19, 480 (1976); (b) G. S. Wu, L. C. Martinelli, C. D. Blanton, and R. H. Cox, J. Heterocycl. Chem. 14, 11 (1977).
(4) B. H. Smith, "Bridged Aromatic Compounds"', Academic Press, New York, N.Y., 1964, p 27.
(5) W. S. Johnson, A. R. Johns, and W. P. Schneider, J. Am. Chem. Soc., 72, 2395 (1950).
(6) E. L. Martin, "Organic Syntheses'", Collect. Vol. II, Wiley, New York. N.Y., 1943, p 499.
(7) R. L. Stern and E. N. Bolan, Chem. Ind. (London), 825 (1967).
(8) G. S. Wu, Ph.J. Thesis, Department of Medicinal Chemistry, School of Pharmacy, University of Georgia, 1976, p 37.
(9) J. J. Bloomfield, D. C. Owsley, and J. M. Netke, Org. React., 23, 259 (1976).
(10) (a) G. E. Gream and S. Worthley, Tetrahedron Lett., 3319 (1968); (b) J. J. Bloomfield, ibid., 587 (1968).
(11) J. C. Sheehan and G. P. Hess, J. Am. Chem. Soc., 77, 1067 (1955).
(12) J. C. Sheehan and J. J. Hlavka, J. Org. Chem., 21, 439 (1956).
(13) A. Luttringhaus, Ann., 528, 181 (1937).
(14) R. L. Shriner, R. C. Fuson, and D. Y. Curtin, "The Systematic Identification of Organic Compounds'', 5th ed, Wiley, New York, N.Y.. 1964, pp 123125.
(15) (a) Reference 4, pp 415-416; (b) N. L. Allinger, T. J. Walter, and M. C. Newton, J. Art. Chem. Soc., 95, 1680 (1973).
(16) D. Papa, E. Schwenk, and H. Hankin, ibid., 69, 3018 (1947).
(17) M. G. Pratt, J. O. Hoppe, and S. Archer, J. Org. Chem., 13, 576 (1948)
(18) Reference 14 p 299.
(19) (a) Von Fritz Vogtle, Chem.-Ztg., 96, 396 (1972); (b) G. W. H. Potter, Chem. Ind. (London), 1159 (1971).
(20) High-speed st rring was performed using a Labline Stir-O-Vac assembly (catalog No. 1280) coupled to a variable-speed motor (catalog No. 1285).
(21) Dry, oxygen-free nitrogen was obtained by passing through a column of drierite and then bubbling through a solution of benzophenone ketyl in $x y$ lene which was prepared from benzophenone and a sodium potassium alloy. ${ }^{22}$
(22) L. F. Fieser, "Experiments in Organic Chemistry", 3rd ed, Revised, D. C. Heath and Co., Boston, Mass., 1957, p 299.
(23) Isoamyl alcohcl was distilled from anhydrous calcium chloride, bp 128-129 ${ }^{\circ} \mathrm{C}$.
(24) Xylene was refluxed with sodium overnight and then distilled, bp 138-140 ${ }^{\circ} \mathrm{C}$.
(25) Compound 30 taken directly from the column did not give acceptable elemental analysis: Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{2}, \mathrm{NO}_{2}: \mathrm{C}, 72.84 ; \mathrm{H}, 8.56 ; \mathrm{N}, 5.66$. Found: C, 72.00; H. 8.76; N, 5.03.
(26) Tetrahydrofuran was distilled from LAH, bp $68^{\circ} \mathrm{C}$.

Chemistry of Heterocyclic Compounds. 26. Synthesis and Reactions of Multiheteromacrocycles Possessing 2,6-Pyrazino Subunits Connected by Carbon-Oxygen and/or -Sulfur Linkages ${ }^{1}$

George R. Newkome* and Ashutosh Nayak
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803

Received June 24, 1977

Abstract

2,6-Dichloropyrazine (4) was treated with numerous glycol dianions, as well as the dianions of bis(2-mercaptoethyl) sulfide and bis(2-mercaptoethyl) ether, affording in most cases heteromacrocyclic ethers. Various expected uncyclized products were isolated and characterized. Quaternization of the $\mathrm{N}-4$ position of the pyrazine ring was exclusively realized with these macrocycles. Diquaterization was accomplished with the $2: 2$-macrocycle 11 , and a new series of 1,3,5-cyclophanes (e.g., 40) was generated from 5.

Recently we described the preparation and characterization of carbon-oxygen bridged 2,6-pyridino macrocycles in which the bridging oxygens are directly attached to the pyridine nucleus (e.g., 1). ${ }^{2}{ }^{2}$ This class of macrocycle ${ }^{3}$ resulted from direct nucleophilic substitution of a ring halide by an alkoxide fragment and differs structurally and chemically from the macrocyclic class which possess a methylene group between the bridged heteroatoms and subring (e.g., 2). ${ }^{4}$ We herein describe the application of this procedure to the incorporation of the 2,6-pyrazino subunit into a "crown ether" (3) and the chemistry of these difunctional subheterocyclic rings.

In light of potential pharmaceutical and pesticidal interest in substituted pyrazines, numerous nonmacrocyclic 2,6-disubstituted pyrazines have been synthesized from the readily available 2,6 -dihalopyrazine by nucleophilic substitution. Conditions for substitution of the 2- (or 6-) halides from 2,6-dihalopyrazines by alkoxide, ${ }^{5}$ hydroxide, ${ }^{5 b-d}$ cyanide, ${ }^{5 b}$ amines, ${ }^{5 \mathrm{~b}, \mathrm{~h}, \mathrm{l}, 6}$ alkylsulfides, ${ }^{5 \mathrm{c}, 7}$ phenoxide, ${ }^{8}$ sulfanilamide, ${ }^{5 \mathrm{~g}, 9}$ alkyl, ${ }^{10}$ and ary ${ }^{10}$ have been described. Based on the above chemical substitution studies and the π-electron density calculations in the pyrazine ring, ${ }^{11} 2,6$-dinucleophilic substitution on the pyrazine ring should be equally, or slightly more, facile to that of our previously studied pyridine cases. ${ }^{2}$ Although the literature contains several examples of 1,2 - and 1,3-diazine subunits incorporated into macrocyclic rings, prepared also by different procedures, ${ }^{3}$ there are, to the best of our knowledge, no examples of the 2,6-pyrazino moiety incorporated in a "crown ether" ring. ${ }^{12}$
A. Pyrazine Macrocycles with Carbon-Oxygen Bridges. 1. Diethylene Glycol. Reaction of 2,6-dichloropyrazine (4) with diethylene glycol dianion, generated in situ from diethylene glycol and 2 equiv of oil-free sodium hydride,
affords the 2:2- and 3:3-macrocycles (5 and 6 , respectively) as well as the larger 40 -membered 4:4-macrocycle 7 , which was isolated with difficulty. Although the smallest member (8) of this series was not isolated, it was not expected in view of the bridge size (ten-membered ring) and the general method of preparation. Only when the bridge possesses sulfur atoms which possess larger radii and diminished bond angle can such a ten-membered 1:1 macrocycle be generated, thus far, by this procedure; similar results have also been obtained in the related pyridine series. ${ }^{2}$

The spectral data for $5-7$ were virtually superimposable; however, the ring sizes were ascertained by both mass spectrometry and molecular weight determination, and the symmetrical macrocyclic structures were confirmed by their NMR patterns. In 5 , the 3,5 -pyrazine hydrogens show up as a spike at $\delta 7.8$, a downfield shift when compared with the 3,5-prridine hydrogens, as in 1, which appear as a doublet at $\delta 6.2-6.3$. This comparative downfield shift of the pyrazine proton signal is caused by the second ring nitrogen at the 4 position. Since substituents on the pyrazine ring cause pronounced and in most cases predictable shifts in the chemical shifts, care must be taken in peak assignments. For example, in the uncyclized products, such as 9 , the 3 - and 5 -pyrazine hydrogens appear

5

6, $n=1$
$7, n=2$

8

9
as a singlet at δ 8.15. This further downfield shift was always experienced in the uncyclized pyrazine products. The macrocyclic bridging methylene groups are readily characterized by NMR in that the $-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ - units appear as triplets [α : $\delta 4.4-4.6 ; \beta: \delta 3.8-3.9 ; \gamma: \delta 3.5-3.7$ (a singlet with an odd number of units); $\delta-\omega: \delta 3.4-3.6$ (not defined)].
2. Triethylene Glycol. When 2,6-dichloropyrazine (4) was reacted with triethylene glycol dianion in refluxing xylene, besides the expected $1: 1$ and $2: 2$ macrocycles (10 and 11 , respectively), a noncyclized product 12 was obtained in good
yield. 12 could be converted into 11 upon treatment with additional dianion. The structures of these products were easily confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. In the macrocycles the 3,5 -pyrazine hydrogens appeared as a singlet at $\delta 7.7-7.8$; whereas, in 12 the pyrazine hydrogens appeared as two sepa-

$10, n=1$
$13, n=2$
17, $n=3$
$19, n=4$
$12, n=1$
$15, n=2$

11, $m=n=1$
$14, m=n=2$
$16, m=1 ; n=2$
$18, m=n=3$
$20, m=n=4$
rate singlets: $\delta 8.05$ to $\mathrm{H}-3$ and $\delta 8.10$ to $\mathrm{H}-5$ are the tentative assignments based on later examples. Numerous other products were obtained and upon cursory NMR analysis were shown to be minor noncyclized components; further characterizations of these compounds were not conducted.
3. Tetra-, Penta-, and Hexaethylene Glycols. Reaction of the dianion of the commercially available tetraethylene glycol with 4 furnished the desired 1:1- and 2:2-macrocycles (13 and 14, respectively). The noncyclized products (e.g., 15) were detected but not isolated; however, unlike our previous observation in the pyridine series, ${ }^{2 \mathrm{~b}}$ macrocycle 16 was not even detected in the reaction mixture. Prolonged reaction times caused a minor increase in the formation of the macrocyclic products.

Penta- and hexaethylene glycols were synthesized according to the procedure of Perry and Hibbert ${ }^{13}$ by reacting ethylene glycol with 1,8 -dichloro-3,6-dioxaoctane and 1,11-dichloro-$3,6,9$-trioxaundecane, respectively. The disodium salt of pentaethylene glycol was reacted with 4 to afford the expected 1:1 and 2:2 macrocycles as crystalline solids. Since polyglycols undergo both fragmentation as well as to a lesser extent oligomerization at reaction temperatures, ${ }^{14}$ a 1% yield of the smaller 1:1 macrocycle 13 was realized. Similarly, hexaethylene glycolate fragmented under the reaction conditions to generate dianions which were the sources of both 10 and 13. Macrocycles 19 and 20 were isolated from the later experiments in 15 and 2% isolated yields, respectively. In both the pyrazine as well as pyridine ${ }^{2}$ studies, the 1:1 macrocycles derived from hexaethylene was obtained in unusually high yields
as compared with other reactions in these series, thus indicative of a possible template effect. ${ }^{15}$
4. Ethylene Glycol. Recently, Allison et al. ${ }^{5 j}$ treated the very reactive tetrafluoropyrazine with sodioglycolate at -15 ${ }^{\circ} \mathrm{C}$ for 30 min ; only the 1:1 and 1:2 noncyclized products were obtained. Subsequent treatment of this $1: 1$ adduct, $1,3,5$-tri-fluoro-6-(2'-hydroxyethoxy)pyrazine, with either potassium tert-butoxide at $20^{\circ} \mathrm{C}$ or potassium carbonate in dimethylformamide at $120^{\circ} \mathrm{C}$ afforded a polymeric material, which was assigned ${ }^{5 j}$ as poly[2,3-bis(ethylenedioxy)-5,6-difluoropyrazine].

Treatment of 2,6-dichloropyrazine with sodioglycolate in xylene at $140^{\circ} \mathrm{C}$ gave six different noncyclized products (9 , 21-25). Cyclic products were neither isolated nor detected from our procedures. Several attempts to prepare cyclic compounds from either 21, 22, or 23 by reaction with sodium glycolate failed. When lithium hydride was used as the base, there were only minor changes in product distribution. If macrocyclic products were formed, they were generated in less than 1% of the product mixture. This lack of cyclic components, so evident in the ethylene glycol series, indicates that the heteroatoms must not be capable of attaining the proper disposition of metal ion coordination (template effect). Although the NMR spectra of 21 and 9 are quite simple, the spike at $\delta 8.15$ for the 3,5 -protons is indicative of a 2 -oxy- $6-$ chloropyrazine substitution pattern. Compounds 22-25,

however, possess both a singlet at $\delta 8.15$ for the terminal pyrazine hydrogens and a second singlet at ca. 7.8 for the internal pyrazine ring(s).
B. Pyrazine Macrocycles with Carbon-Oxygen-Sulfur Bridges. Bis(2-mercaptoethyl) Ether. Oxygen-sulfur mixed bridged macrocycles $26 a$ and 27 were isolated in good yield by reacting the disodium salt of bis(2 -mercaptoethyl) ether with 4 in refluxing xylene. In both the pyrazine as well as pyridine series, ${ }^{16} 26 \mathrm{a}$ and 26 b , respectively, were the smallest isolable macrocycles possessing the corresponding subunit. The ${ }^{1} \mathrm{H}$ NMR of 26 a showed a characteristic singlet at $\delta 8.2$ for the pyrazine ring with 2,6 -disulfur substitution and triplets at $\delta 3.25$ and 3.91 corresponding to the β - and α methylene groups, respectively. The sulfur functionality along with the "folded-under" conformation of the bridge in 26a
resulted in a slight upfield shift of the methylene absorptions. Macrocycle 27 showed the standard spike at $f 8.1$ for the

pyrazine hydrogens; however, the methylene groups appear as a complex multiplet centered at $\delta 3.5$. This leck of differentiation of bridged methylenes was also experienced in the larger pyridine macrocycles which have sulfur atoms in the bridge(s). ${ }^{16}$
C. Attempted Preparation of Pyrazine Macrocycles with Carbon-Sulfur Bridges. 1. Bis(2-mercaptoethyl) Sulfide. When the disodium salt of bis(2-mercaptoethyl) sulfide was reacted with 4 , only three major components were isolated. The expected macrocycles in this carbon-sulfur series, such as 31, were not detected; however, the noncyclic 1:1 product 28 was the key component and the remaining noncyclic products 29 and 30 were derived either from 28 or oli-

29

31
gomers of the bis(2-mercaptoethyl) sulfide. The noncyclic nature of $28-30$ was easily ascertained by NMR data, which showed two singlets at $\delta 8.2$ and 8.3 for the $\mathrm{H}-3$ and $\mathrm{H}-5$ pyrazine hydrogens. The methylene region of these sulfur-containing side chains was too complex for interpretation.
2. Ethanedithiol. Reaction of 4 with the disodio salt of ethanedithiol afforded only two major crystalline components which were shown to be 1:1 and 2:1 noncyclic compounds 32 and 33 via their NMR spectra. Attempted further cyclization of 32 was unsuccessful.

32

33

In general, the dithiols appear to undergo facile oligomerization prior to nucleophilic ring attack. Similar results were experienced in the preparation of pyridine-sulfur bridged macrocycles. ${ }^{16}$ Further work in the carbon-sulfur bridged pyrazine-containing macrocycles was abandoned due to lack of isolable cyclic products and the general properties of the reactants.

D. Quaternization of Selected Pyrazine Macrocycles.

 A Route to Cyclophanes. From a limited number of literature examples of substituted pyrazine quaternization, ${ }^{17}$ it appears that 2- (or 2,6-) substitution patterns give rise to $\mathrm{N}-4$ alkylation as the major product. When the $1: 1$ carbon-oxygen bridged pyrazines were heated with excess methyl iodide, the $\mathrm{N}-4$ methiodides (34-36) were obtained in near quantitative yields. Attempted further N -alkylation at the remaining $\mathrm{N}-1$ position, to generate 37, was unsuccessful. Similarly, the 1:1

37

34, $n=1$
35, $n=2$
$36, n=3$
pyridine macrocycles 38 ($n=1-4$) also did not undergo quaternization under similar reaction conditions. ${ }^{16}$

Similarly, when 2:2 macrocycle 11 was heated with excess methyl iodide, the dimethiodide 39 was isolated, in which only

39
the two N-4 positions were alkylated. The NMR spectrum of 39 when compared to 11 indicated the expected downfield shift of the H-3,5 proton absorption ($\delta 8.37$).

Since both N-4 positions undergo facile quaternization, the 2:2 macrocycle 5 was treated with 1,4-iodobutane for 5 h at 100 ${ }^{\circ} \mathrm{C}$, resulting in the formation of a novel new series of cyclo-
phanes, e.g., 40. The 1:1 cyclophane 40 was isolated from a complex mixture of predominately the $1: 1$ monoquaternized compound 41 along with numerous polyquaternary products. The structure of 40 is substantiated by its symmetrical NMR spectrum which shows a downfield singlet at $\delta 8.14$ for the pyrazine ring protons, whereas 41 possesses two (1:1) singlets

41
at $\delta 8.12$ and 7.65 for the quaternized and free pyrazine ring protons, respectively. The chemistry of this class of $1,3,5-$ bridged cyclophanes will be the topic of a forthcoming publication.

Experimental Section

General Comments. All melting points were taken in capillary tubes with a Thomas-Hoover Uni-Melt and are uncorrected. Infrared (IR) and ultraviolet (UV) spectra were recorded on Beckman IR-7 and Cary 14 spectrophotometers, respectively. Unless otherwise noted, ${ }^{1} \mathrm{H}$ NMR spectra were in deuteriochloroform solutions with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard ($\delta=0 \mathrm{ppm}$) whereas quaternary salts were in $\mathrm{D}_{2} \mathrm{O}$ with an external standard and recorded on either Varian A-60A or HA-100 spectrometers. Molecular weights were determined with a Hewlett-Packard 302 vapor pressure osmometer and/or a Hi-tachi-Perkin-Elmer RMS-4 mass spectrometer. The recorded R_{f} values were determined by a standardized thin-layer chromatograph (TLC) procedure: $0.25-\mathrm{mm}$ Brinkman silica gel HF eluting with cy-clohexane-ethyl acetate (1:1). For preparative TLC, 2 -mm Brinkman silica gel PF-254-366 plates were used, eluting with the stipulated solvent system. Elemental analyses were performed by Mr. R. Seab in these laboratories.

All reaction solvents were distilled from lithium aluminum hydride or sodium under nitrogen. Sodium hydride (57% oil dispersion) was initially washed with petroleum ether (bp 30-60 ${ }^{\circ} \mathrm{C}$) and then dried in vacuo prior to the reaction.

Ethylene glycol and di-, tri-, and tetraethylene glycols were purchased from Aldrich Chemical and were distilled in vacuo prior to use. 3,6,9,12-Tetraoxa-1,14-tetradecanediol [pentaethylene glycol, bp $185-190{ }^{\circ} \mathrm{C}(0.15 \mathrm{~mm})$ (lit. ${ }^{13} \mathrm{bp} 174-176{ }^{\circ} \mathrm{C}(0.14 \mathrm{~mm})$] and 3,6,9,12,15-pentaoxa-1,17-octadecanediol (hexaethylene glycol, bp $201-205^{\circ} \mathrm{C}(0.7 \mathrm{~mm})\left(\right.$ lit. $\left.{ }^{13} \mathrm{bp} 203.0-205.0^{\circ} \mathrm{C}(0.3 \mathrm{~mm})\right]$ were prepared according to the procedure of Perry and Hibbert. ${ }^{13 \mathrm{a}}$

Ethanedithiol, bis(2-mercaptoethyl) ether, and bis(2-mercaptoethyl) sulfide were purchased from Fairfield Chemical Co. and were used directly without further purification.

Although the noncyclized products could in most cases be isolated, in general complete characterization was undertaken only when they were a major product of the reaction. The cited yield data are based on analytically pure components and are not maximized.

Reaction of 2,6-Dichloropyrazine with Diethylene Glycol. General Procedure. To a suspension of oil-free sodium hydride (480 $\mathrm{mg}, 20 \mathrm{mmol}$) in anhydrous xylene (200 mL), diethylene glycol (1.10 $\mathrm{g}, 10 \mathrm{mmol}$) was added slowly with stirring under nitrogen. After 15
min, a solution of 2,6-dichloropyrazine ($1.5 \mathrm{~g}, 10 \mathrm{mmol}$) in xylene (50 mL) was added, then the mixture was refluxed for 24 h . The reaction was cooled and the unreacted sodium hydride, if any, was carefully decomposed with water. The organic layer was separated, washed with water, dried over anhydrous magnesium sulfate, and concentrated in vacuo to afford a viscous residue which was chromatographed (TLC), eluting two times with cyclohexane-ethyl acetate (1:1), to give the following components.

Fraction A gave unreacted 2,6-dichloropyrazine, $\mathrm{mp} 51-52^{\circ} \mathrm{C}$.
Fraction B afforded 2:2 macrocycle 5, which was recrystallized from 95% ethanoi as coloriess plates: $\mathrm{mp} 137-138^{\circ} \mathrm{C} ; 75 \mathrm{mg}(4 \%) ; R_{f}$ 0.2 ; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.85\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 8 \mathrm{H}\right), 4.5\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}\right.$, $J=5 \mathrm{~Hz}, 8 \mathrm{H}), 7.75(\mathrm{~s}, 3,5-$ pyrazine-H, 4 H$) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 2950,1560$, $1440,1350,1300,1220,1060,850 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6}$: C, 52.74; H, 5.49; $\mathrm{N}, 15.38$; mol wt 364. Found: C, 52.47 ; H, 5.56 ; N, 15.26; mol wt (MS) m/e 364 (M^{+}).
Fraction C yielded 3:3 macrocycle 6, which was recrystallized from 95% ethanol as colorless needles: $\mathrm{mp} 111-112^{\circ} \mathrm{C} ; 90 \mathrm{mg}(5 \%) ; R_{f} 0.07$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.80\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 12 \mathrm{H}\right), 4.42\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}\right.$, $J=5 \mathrm{~Hz}, 12 \mathrm{H}$), 7.8 (s, 3,5-pyrazine-H, 6 H); IR $\left(\mathrm{CHCl}_{3}\right) 2900,1590$, 1540, 1300, 1280, 1180, 1050, $850 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{9}$: C, 52.74; H, 5.49; N, 15.38; mol wt 546. Found: C, $52.42 ; \mathrm{H}, 5.49$, N, 15.42 ; mol wt (MS) m/e $546\left(\mathrm{M}^{+}\right)$.

The combined baselines from the preparative plates were extracted with ethanol-chloroform (1:1). The resid ue was rechromatographed (TLC), eluting three times with cyclohexane-ethyl acetate (1:2) to afford the $4: 4$ macrocycle 7 , as a beige solid, which was recrystallized from 95% ethanol to give colorless needles: $\mathrm{mp} 115-116^{\circ} \mathrm{C} ; 55 \mathrm{mg}$ $(3 \%) ; R_{f} 0.03$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.87\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 16 \mathrm{H}\right), 4.4$ (t, $\alpha-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 16 \mathrm{H}$), 7.75 (s, 3,5-pyrazine-H); IR $\left(\mathrm{CHCl}_{3}\right) 2910$, $1520,1410,1340,1250,1180,1050,850 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{12}$: C, 52.74; H,5.49; N, 15.38; mol wt 728. Found: C, 52.70; H, 5.59; N, 15.07; mol. wt. (MS) m/e $728\left(\mathrm{M}^{+}\right)$.

Diquaternization of 5 with 1,4-Diiodobutane. A mixture of macrocycle 5 ($370 \mathrm{mg}, 1 \mathrm{mmol}$) and 1,4-diicdobutane ($310 \mathrm{mg}, 1 \mathrm{mmol}$) in ethanol (25 mL) was refluxed for 24 h . After cooling, a yellow solid, which separated, was filtered and washed several times with anhydrous ether and finally recrystallized from ethanol to afford cyclophane 40, as yellow needles: $\mathrm{mp} 214^{\circ} \mathrm{C}$ (dec), 500 mg (80%); NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.95\left(\mathrm{~m}, \beta-\mathrm{CH}_{2} \mathrm{O} ; \beta-\mathrm{CH}_{2}, 12 \mathrm{H}\right), 4.60\left(\mathrm{~m}, \alpha-\mathrm{CH}_{2} \mathrm{O}, 8 \mathrm{H}\right), 5.25$ ($\mathrm{m}, \alpha-\mathrm{CH}_{2}, 4 \mathrm{H}$), 8.14 (s, 3,5-pyrazine-H, 4 H).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{I}_{2}: \mathrm{C}, 35.60 ; \mathrm{H}, 4.15 ; \mathrm{N}, 8.30$. Found: C, 35.50 ; H, 4.20; N, 8.25.

The mother liquor after concentration gave a pale yellow crystalline mass corresponding to $41: \mathrm{mp} 198^{\circ} \mathrm{C}$ (dec); $60 \mathrm{mg}(5 \%)$; NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 2.4\left(\mathrm{~m}, \beta, \gamma-\mathrm{CH}_{2}, 4 \mathrm{H}\right), 3.9\left(\mathrm{brt}, \beta-\mathrm{CH}_{2} \mathrm{O}, \delta-\mathrm{CH}_{2}, 10 \mathrm{H}\right.$), $4.62(\mathrm{brt}$, $\alpha-\mathrm{CH}_{2} \mathrm{O}, 8 \mathrm{H}$), $5.2\left(\mathrm{br} \mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{~N}^{+}, 2 \mathrm{H}\right), 7.65$ (s, free pyrazine-ring H, 2 H), 8.12 (s, charged pyrazine-ring H, 2 H). Attempted recrystallization failed to afford an analytical sample.

Reaction of 2,6-Dichloropyrazine with Triethylene Glycol. The above general procedure was followed except for the substitution of triethylene glycol (10 mmol). The crude reaction mixture was chromatographed (TLC) eluting three times with cyclohexane-ethyl acetate ($1: 1$) to afford the following fract:ons.

Fraction A afforded a small quantity (10 mg) of unreacted dichloropyrazine, $\mathrm{mp} 51-52^{\circ} \mathrm{C}$.

Fraction B afforded 6, 6^{\prime}-dichloro-2, 2^{\prime}-[oxytris(ethylenoxy)]dipyrazine (12) as colorless flakes (recrystallized from absolute ethanol): $\mathrm{mp} 58-60^{\circ} \mathrm{C} ; 100 \mathrm{mg}(2 \%) ; R_{f} 0.4$; NMR i 3.7 (s, $\gamma-\mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}$), 3.85 ($\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 4 \mathrm{H}$), $4.55\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.05(\mathrm{~s}$, 3-pyrazine-H, 2 H), 8.10 (s, 5-pyrazine-H, ц H); IR (CHCl_{3}) 2900, 1570, $1540,1430,1410,1360,1300,1175,1125,1100,1050,1000,990,880$, $750 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$: C, 44.80; H, 4.26; N, 14.93; mol wt 375. Found: C, $44.71 ; \mathrm{H}, 4.26 ; \mathrm{N}, 14.74$; mol wt (MS) m/e $375\left(\mathrm{M}^{+}\right)$.

Fraction C gave 1:1 macrocycle 10 as 2 white solid, which was recrystallized from 95% ethanol as colorless needles: mp $128-130^{\circ} \mathrm{C}$; $80 \mathrm{mg}(2.5 \%) ; R_{f} 0.18$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.65\left(\mathrm{~s}, \gamma-\mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}\right), 3.8$ (t , $\left.\beta-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 4 \mathrm{H}\right), 4.6\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 4 \mathrm{H}\right.$), 7.7 (s, 3,5-pysazine- $\mathrm{H}, 2 \mathrm{H}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2930,1580,1540,1480,1340,1210,1180$, $1050,920,830 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 53.09; H, 6.19; N, 12.38; mol wt 226. Found: C, 53.01 ; H, 6.23 ; N, 12.24; mol wt (osmometry) 229.5 (average).
The methiodide of 10 was prepared: a mixture of $10(113 \mathrm{mg})$ was heated with methyl iodide (0.5 mL) in a sealed tube for 8 h at $90^{\circ} \mathrm{C}$. Excess of methyl iodide was evaported and the residue was crystallized from ethanol as pale yellow needles: $\mathrm{mp} 203^{\circ} \mathrm{C}(\mathrm{dec}) ; 150 \mathrm{mg}$ (90%); NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 3.85$ (s, $\gamma-\mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}$), 3.95 (m, $\beta-\mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H}$),
4.3 (s, N-Me, 3 H), $4.95\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.15$ (s, 3,5-pyra-zine-H, 2 H).
Anal. Calcd fcr $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}$: C, $35.86 ; \mathrm{H}, 4.61 ; \mathrm{N}, 7.60$. Found: C, 35.70; H, 4.72; N, 7.47.

Fraction D yielded 2:2 macrocycle 11, which was recrystallized from 95% ethanol as colorless needles: $\mathrm{mp} 138-140^{\circ} \mathrm{C} ; 200 \mathrm{mg}(8 \%)$; $R_{f} 0.12$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.70\left(\mathrm{~s}, \gamma-\mathrm{CH}_{2} \mathrm{O}, 8 \mathrm{H}\right), 3.85\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}, J=\right.$ $5 \mathrm{~Hz}, 8 \mathrm{H}), 4.5\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 8 \mathrm{H}\right), 7.8(\mathrm{~s}, 3,5-$ pyrazine $-\mathrm{H}, 4 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) 290 \mathrm{C}, 1580,1500,1450,1400,1300,1280,1160,1110,950$, $850 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{8}$: $\mathrm{C}, 53.09 ; \mathrm{H}, 6.19 ; \mathrm{N}, 12.38$; mol wt 452. Found: C, 53.02; H, 6.53; N, 12.20; mol wt (osmometry) 436 (av).
The dimethiodide 39 was prepared: a mixture of $11(113 \mathrm{mg})$ and methyl iodide $(0.5 \mathrm{~mL})$ was heated in a sealed tube for 8 h . The crystalline residue was recrystallized from ethanol as yellow needles: mp $211^{\circ} \mathrm{C}$ (dec); $132 \mathrm{mg}(75 \%)$; NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 3.75$ (s, $\gamma-\mathrm{CH}_{2} \mathrm{O}, 8 \mathrm{H}$), 3.9 $\left(\mathrm{m}, \beta-\mathrm{CH}_{2} \mathrm{O}, 8 \mathrm{H}\right), 4.45\left(\mathrm{~s}, \mathrm{~N}-\mathrm{CH}_{3}, 6 \mathrm{H}\right), 4.75\left(\mathrm{t}, \alpha-\mathrm{CH}_{\llcorner } \mathrm{O}, J=5 \mathrm{~Hz}, 8\right.$ H), 8.37 (s, 3,5-pyrazine-H, 4H); IR (CHCl_{3}) 2950, 1540, 1490, 1450, $1370,1320,1240,1210,1150,1050,940,830 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{I}_{2}: \mathrm{C}, 35.86 ; \mathrm{H}, 4.61$; $\mathrm{N}, 7.60$. Found: C, 35.72; H, 4.48; N, 7.52.

Reaction of 2,6-Dichloropyrazine with Tetraethylene Glycol. The general procedure was followed except for the substitution of tetraethylene glycol ($1.94 \mathrm{~g}, 10 \mathrm{mmol}$). The crude reaction mixture was chromatographed (TLC), eluting four times with cyclohexaneethyl acetate ($1: 1$), to give the following fractions.

Fraction A afforded unreacted 2,6-dichloropyrazine, mp 51-52 ${ }^{\circ} \mathrm{C}$.
Fraction B gave 1:1 macrocycle 13, which was recrystallized from ethanol as colorless plates: $\mathrm{mp} 86-87^{\circ} \mathrm{C} ; 100 \mathrm{mg}(3 \%) ; R_{f} 0.12$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.54\left(\mathrm{~m}, \gamma-\mathrm{CH}_{2} \mathrm{O}, 8 \mathrm{H}\right), 3.85\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}, J=\Sigma \mathrm{Hz}, 4 \mathrm{H}\right), 4.61$ (t, $\alpha-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.75 (so 3,5-pyrazine-H, 2 H); IR (CHCl_{3}) $2910,1545,1350.1280,1145,1050,940,850 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, $53.33 ; \mathrm{H}, 6.66 ; \mathrm{N}, 10.37$; mol wt 270. Found: C, 53.30; H, 6.81; N, 10.10; mol wt (osmometry) 272.8 (av).
The monomethiodide of 13 was prepared: macrocycle $13(270 \mathrm{mg}$, 10 mmol) was heated with excess methyl iodide in a sealed tube at 80 ${ }^{\circ} \mathrm{C}$ for 8 h . Excess methyl iodide was evaporated, and the yellow residue was washed several times with anhydrous ether $\tau 0$ remove unreacted starting materials and then recrystallized from ethanol to afford 35 as yellow needles: mp $186-189^{\circ} \mathrm{C}$ (dec); $400 \mathrm{mg}(95 \%)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.58\left(\mathrm{~s}, \gamma-\mathrm{CH}_{2} \mathrm{O}, 8 \mathrm{H}\right), 3.85\left(\mathrm{~m}, \beta-\mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}\right), 4.6(\mathrm{~s}, \mathrm{~N}-\mathrm{Me}$, 3 H), 4.75 (m, $\alpha-\mathrm{CH}_{2} \mathrm{O}, 4 \mathrm{H}$), 8.35 (s, 3,5-pyrazine- $\mathrm{H}, 2 \mathrm{H}$); IR (CHCl_{3}) $2950,1525,1500,1450,1325,1230,1110,1052,950,853 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{I}$: C, 37.86; $\mathrm{H}, 5.09 ; \mathrm{N}, 679$. Found: C, 37.70; H, 5.13; N, 6.69.

Fraction C was initially isolated as an oil; however, upon dissolution in alcohol and prolonged standing (ca. 1 week) 2:2 macrocycle 14 crystallized: mp $75-76{ }^{\circ} \mathrm{C} ; 75 \mathrm{mg}(3 \%) ; R_{f} 0.05$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.62$ ($\mathrm{m}, \gamma-\mathrm{CH}_{2} \mathrm{O}, 16 \mathrm{H}$), $3.8\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 8 \mathrm{H}\right.$), $4.4\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}, J\right.$ $=5 \mathrm{~Hz}, 8 \mathrm{H}), 7.75(\mathrm{~s}, 3,5$-pyrazine- $\mathrm{H}, 4 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$: C, $53.33 ; \mathrm{H}, 6.66 ; \mathrm{N}, 10.37$; mol wt 540. Found: C, 53.23 ; H, 6.63 ; N, 10.16; mol wt (osmometry) 540 (av).

Reaction of 2,6-Dichloropyrazine with Pentaethylene Glycol. The general procedure was followed except for the substitution of pentaethylene glycol ($2.38 \mathrm{~g}, 10 \mathrm{mmol}$). After standard workup procedures, the reaction residue was chromatographed (TLC), eluting four times with cyclohexane-ethyl acetate (1:1), to afford the following fractions.
Fraction A gave unreacted 2,6-dichloropyrazine, mp $51-52^{\circ} \mathrm{C}$.
Fraction B was recrystallized from ethanol to afford 1:1 macrocycle 13 as colorless plates: $\mathrm{mp} 86-87^{\circ} \mathrm{C}$; $50 \mathrm{mg}(1 \%)$.
Fraction C afforded after recrystallization from 95% ethanol the desired 1:1 macrocycle 17: mp 72-74 ${ }^{\circ} \mathrm{C}$; $100 \mathrm{mg}(4 \%)$; R 0.11 ; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.55\left(\mathrm{brd}, \gamma, \epsilon-\mathrm{CH}_{2} \mathrm{O}, 12 \mathrm{H}\right), 3.85\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}, c^{\prime}=5 \mathrm{~Hz}, 4 \mathrm{H}\right)$, $4.5\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}-, J=5 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.72(\mathrm{~s}, 3,5$-pyrazine-H, 2 H$)$; IR $\left(\mathrm{CHCl}_{3}\right) 2950,1630,1540,1450,1430,1300,1250,1175,1050,940,840$ cm^{-1}.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 53.50; H, 7.00; N, 8.91; mol wt 314. Found: C, 53.21; H, 6.98; N, 8.63; mol wt (MS) m/e 314 (M+).

The monomethiodide 36 was prepared from the macrocycle 17 (160 mg) with methyl :odide $(0.5 \mathrm{~mL})$ by heating in a sealed tube on a water bath for 5 h . After removing unquaternized macrocycle by repeated washing with anhydrous ether, a residue was recrystallized from ethanol, affording 36 as yellow needles: $\mathrm{mp} 204^{\circ} \mathrm{C}$ (dec); 180 mg (70%); NMR ($\left.\left.\mathrm{D}_{2} \mathrm{O}\right) 3.6 \mathrm{ibrd}, \gamma, \epsilon-\mathrm{CH}_{2} \mathrm{O}, 12 \mathrm{H}\right), 3.95\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{~J}, J=5 \mathrm{~Hz}, 4\right.$ $\mathrm{H}), 4.65\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}-J=5 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.35(\mathrm{~s}, 3,5-\mathrm{Pyr}-\mathrm{H}, 2 \mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{I}$: C, 39.47 ; $\mathrm{H}, 5.48 ; \mathrm{N}, 614$. Found: C, 39.21; H, 5.56; N. 6.10.

The baseline was extracted with a solvent mixture of chloroform
and ethanol (1:1) and the residue rechromatographed (TLC), eluting four times with cyclohexane-ethyl acetate (1:2), to afford $2: 2$ macrocycle 18 as colorless crystalline plates: $\mathrm{mp} 80-81^{\circ} \mathrm{C} ; 60 \mathrm{mg}(2 \%)$; $R_{f} 0.04$; NMR (CDCl_{3}) $\delta 3.60\left(\mathrm{br} \mathrm{d}, \gamma, \epsilon-\mathrm{CH}_{2} \mathrm{O}, 24 \mathrm{H}\right)$, $3.85\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}\right.$, $J=5 \mathrm{~Hz}, 8 \mathrm{H}$), 4.5 (t, $\alpha-\mathrm{CH}_{2} \mathrm{O}-, J=5 \mathrm{~Hz}, 8 \mathrm{H}$), 7.80 (s, 3,5-pyraz-ine- $\mathrm{H}, 4 \mathrm{H}$); IR (CHCl_{3}) $2900,1600,1570,1440,1300,1230,1100,1070$, $1050,95 \mathrm{C}, 840 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{6}: \mathrm{C}, 53.50 ; \mathrm{H}, 7.00 ; \mathrm{N}, 8.91$; mol wt 628. Found: C, 53.36; H, 8.72; mol wt (osmometry) 600 (av).

Reaction of 2,6-Dichloropyrazine with Hexaethylene Glycol. The general procedure was followed except for the substitution of hexaethylene glycol ($2.82 \mathrm{~g}, 10 \mathrm{mmol}$). The reaction residue, after standard workup, was chromatographed (TLC), eluting two times with cyclohexane-ethyl acetate ($1: 1$). The following fractions were isolated and characterized.

Fraction A gave unreacted 2,6-dichloropyrazine, mp $52^{\circ} \mathrm{C}$.
Fraction B afforded 30 mg of a crystalline compound, which corresponded physically and spectrally to $1: 1$ macrocycle $10, \mathrm{mp} \mathrm{130-131}$ ${ }^{\circ} \mathrm{C}$.

Fraction C afforded 1:1 macrocycle 13, which was recrystallized from 95% ethanol as colorless plates: $\mathrm{mp} 86-87^{\circ} \mathrm{C} ; 30 \mathrm{mg}(<1 \%)$.

The residual baseline was extracted with chloroform-ethanol ($1: 1$), and then after concentration the residue was rechromatogaphed (TLC), eluting three times with cyclohexane-ethyl acetate (1:3) to give the following fractions.

Fraction \mathbf{D} was recrystallized from petroleum ether ($\mathrm{bp} 60-90^{\circ} \mathrm{C}$), affording colorless needles of $1: 1$ macrocycle $19: \mathrm{mp} 59-60^{\circ} \mathrm{C} ; 500 \mathrm{mg}$ (15%); $R_{j} 0.08$; NMR (CDCl_{3}) $\delta 3.65\left(\mathrm{~m}, \gamma, \omega-\mathrm{CH}_{2} \mathrm{O}, 16 \mathrm{H}\right.$), $3.82(\mathrm{t}$, $\beta-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 4 \mathrm{H}$), $4.52\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}, J=5 \mathrm{~Hz}, 4 \mathrm{H}\right.$), $8.71(\mathrm{~s}$, 3,5-pyrazine-H, 2 H); IR (CHCl_{3}) 2900, 1590, 1530, 1440, 1380, 1270, $1180,1025,950,850 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, 53.63; H, 7.26; mol wt 358. Found: C, $53.45 ; \mathrm{H}, 7.42$; mol wt (MS) m/e 358 (M ${ }^{+}$).

Fraction E was obtained as colorless plates (recrystallized from ethanol) corresponding to $2: 2$ macrocycle $20: \mathrm{mp} 68-69^{\circ} \mathrm{C} ; 80 \mathrm{mg}(2 \%)$; $R_{f} 0.03 ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.6\left(\mathrm{~m}, \gamma, \omega-\mathrm{CH}_{2} \mathrm{O}, 32 \mathrm{H}\right), 3.8\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}-, J\right.$ $=5 \mathrm{~Hz}, 8 \mathrm{H}), 4.5\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}-, J=5 \mathrm{~Hz}, 8 \mathrm{H}\right), 8.75(\mathrm{~s}, 3,5-$ pyrazine -H , 4 H); $\mathrm{IR}^{\left(\mathrm{CHCl}_{3}\right)}$ 2900, 1590, $1540,1425,1320,1250,1200,1145,1100$, $1050,1000,930,850,750 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{14}: \mathrm{C}, 53.63 ; \mathrm{H}, 7.26 ; \mathrm{N}, 7.92$; mol wt 716 . Found: C, 53.39 ; H, 7.35 ; N, 7.63; mol wt (osmometry) 678 (av).

Reaction of 2,6-Dichloropyrazine with Ethylene Glycol. Method A. With Sodium Hydride. To a stirred suspension of oil-free sodium hydride ($2 \mathrm{~g}, 80 \mathrm{mmol}$) in anhydrous xylene (300 mL), ethylene glycol ($2.5 \mathrm{~g}, 40 \mathrm{mmol}$) was added dropwise under argon. The mixture was stirred for 30 min , and then a xylene solution of 2,6 dichloropyrazine ($6 \mathrm{~g}, 40 \mathrm{mmol}$) was added over 10 min . The mixture was refluxed for 24 h and worked up as previously described. The gummy residue was chromatographed (TLC), eluting two times with cyclohexane-ethyl acetate (1:1), affording the following fractions.
Fraction A gave unreacted 2,6-dichloropyrazine, mp $52^{\circ} \mathrm{C}$.
Fraction B was recrystallized from 95% ethanol as colorless needles of 6,6'-dichloro-2, 2^{\prime}-(ethylenedioxy)dipyrazine (21): $\mathrm{mp} 125-126^{\circ} \mathrm{C}$; $150 \mathrm{mg}(3 \%) ; R_{f} 0.5$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.75$ (s, $\left.-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H}\right), 8.15$ (s, 3,5-py:azine-H, 4 H); IR (CHCl_{3}) 2900, 1550, 1425, 1400, 1300, 1175, $1075,925 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 41.11 ; \mathrm{H}, 2.78 ; \mathrm{N}, 19.51$; mol wt 287. Found: C, 41.15; H, 2.72; N, 19.49; mol wt (MS) 287 (M^{+}).

Fraction C afforded 2,6-bis(6'-chloro-2'-pyrazyloxyethylenoxy)pyrazine (22) as colorless needles (95% ethanol): mp $115-116{ }^{\circ} \mathrm{C}$; 100 $\mathrm{mg}(2 \%) ; R_{f} 0.35$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.7$ ($\mathrm{s},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 8 \mathrm{H}$), 7.82 (s , 3,5-pyrazine-H, 2 H), 8.2 (s, $3^{\prime}, 5^{\prime}$-pyrazine- $\mathrm{H}, 4 \mathrm{H}$); IR ($\mathrm{CHCl}_{\mathrm{c}}$) 2900, $1550,150^{\circ} 0,1400,1300,1250,1175,1000,950,850 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Cl}_{2}$: C, $45.17 ; \mathrm{H}, 3.29 ; \mathrm{N}, 19.76 ; \mathrm{mol} w t$ 425. Found: C, $45.39 ; \mathrm{H}, 3.18$; N, 19.72; mol wt (MS) m/e 425 (M^{+}).

Fraction D was shown to be 2 -(6^{\prime}-chloro- 2^{\prime}-pyrazyloxy) ethanol (9), as a brown viscous oil: bp $103-104{ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm}$, short path); 250 $\mathrm{mg}(4 \%) ; R_{f} 0.2 ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.5$ [s, - OH (exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $1 \mathrm{H}], 3.95\left(\mathrm{~m}, \beta-\mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{H}\right), 4.45\left(\mathrm{~m}, \alpha-\mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{H}\right), 8.15\left(\mathrm{~s}, 3^{\prime}, 5^{\prime}-\right.$ pyrazine-H, 2 H); IR (neat) $3150,2975,1525,1475,1300,1275,1145$, $1050,945,840 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}: \mathrm{C}, 41.26 ; \mathrm{H}, 4.01 ; \mathrm{N}, 16.04$; mol wt 174.5. Fcund: C, 41.03; H, 4.16; N, 15.87; mol wt (osmomet:y) 172 (av).

Fraction E afforded the tetrapyrazyl dichloride 23 as lemon-yellow plates, which were recrystallized from 95% ethanol: mp $143-145^{\circ} \mathrm{C}$; $60 \mathrm{mg}(1 \%) ; R_{f} 0.17 ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.6$ (s, $\left.-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 12 \mathrm{H}\right), 7.85$ (s, $3^{\prime}, 5^{\prime}$-pyrazine-H, 4 H), 8.2 ($\mathrm{s}, 3,5$-pyrazine- $\mathrm{H}, 4 \mathrm{H}$); IR (CHCl_{3}) $2900,1550,1500,1450,1300,1250,1155,1045,1000,850 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{Cl}_{2}$: $\mathrm{C}, 46.89 ; \mathrm{H}, 3.55 ; \mathrm{N}, 19.89$; mol wt
563. Found: C, 46.75; H, 3.58; N, 19.61; mol wt (MS) m/e $563\left(\mathrm{M}^{+}\right)$.

Fraction F was isolated as a viscous oil shown to be 24: bp 125-126 ${ }^{\circ} \mathrm{C}\left(0.8 \mathrm{~mm}\right.$, short path); $125 \mathrm{mg}(2 \%) ; R_{f} 0.10$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 3.7[\mathrm{~s}$, -OH (exchanged with $\mathrm{D}_{2} \mathrm{O}$), 1 H], $3.90\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}, J=4 \mathrm{~Hz}, 2 \mathrm{H}\right.$), 4.45 (t, $\alpha-\mathrm{CH}_{2} \mathrm{O}, J=4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.75 (s, $-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 4 \mathrm{H}$), 7.85 (s, 3,5 -pyrazine-H, 2 H), 8.2 ($\mathrm{s}, 3^{\prime}, 5^{\prime}$-pyrazine, 2 H); IR (neat) 3400,2900 , $1575,1525,1400,1300,1000,850 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}$: C, 46.09 ; H, 4.19; mol wt 312.5. Found: C, 45.96 ; H, 4.17; mol wt (osmometry) 320 (av).
Fraction G was recrystallized from 95% ethanol as a microcrystalline solid and shown to be $25: \mathrm{mp} 125-127^{\circ} \mathrm{C} ; 200 \mathrm{mg}$ (3\%); $R_{f} 0.07$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.75\left[\mathrm{~s},-\mathrm{OH}\right.$ (exchanged with $\mathrm{D}_{2} \mathrm{O}$), 1 H], 3.95 (m, $\beta-\mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{H}$), 4.4 ($\mathrm{m}, \alpha-\mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{H}$), $4.55\left(\mathrm{~s},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-, 8 \mathrm{H}\right.$), 7.8 (s, $3,3^{\prime}, 5,5^{\prime}$-pyrazine-H, 4 H), 8.15 (s, $3^{\prime \prime}, 5^{\prime \prime}$-pyrazine-H, 2 H); IR $\left(\mathrm{CHCl}_{3}\right) 3300,2900,1525,1475,1375,1250,1150,1000,740 \mathrm{~cm}^{-1}$.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Cl}: \mathrm{C}, 47.90 ; \mathrm{H}, 4.25 ; \mathrm{N}, 18.64$; mol wt 450.5. Found: C, 47.84; H, 4.17; N, 18.49; mol wt (osmometry) 444 (av).
Method B. With Lithium Hydride. To a suspension of lithium hydride ($0.64 \mathrm{~g}, 80 \mathrm{mmol}$) in anhydrous xylene (400 mL), ethylene glycol ($2.5 \mathrm{~g}, 40 \mathrm{mmol}$) was added dropwise. To this warm suspension, 2,6-dichloropyrazine ($6 \mathrm{~g}, 40 \mathrm{mmol}$) was added and the mixture was refluxed for 24 h . The workup procedure mimicked the general procedure, and the crude reaction products were chromatographed (TLC) affording the same noncyclic products, except product distribution: $21\left(\mathrm{mp} 125-126^{\circ} \mathrm{C} ; 5 \%\right), 22\left(\mathrm{mp} \mathrm{115-116}{ }^{\circ} \mathrm{C}\right.$; 1%), $23\left(\mathrm{mp} 143-145^{\circ} \mathrm{C}\right.$; 2%), 9 [bp 103-104 ${ }^{\circ} \mathrm{C}$ (0.1 mm , short path); 5%], and 25 (mp 125-127 ${ }^{\circ} \mathrm{C} ; 1 \%$). Compound 24 was not isolated in this reaction.

Reaction of 2,6-Dichloropyrazine with Bis(2-mercaptoethyl) Ether. The above general procedure was followed except for the substitution of bis(2 -mercaptoethyl) ether (10 mmol) with 2,6 -dichloropyrazine (10 mmol). After the workup, the residue was chromatographed (TLC), eluting two times with cyclohexane-ethyl acetate (4:1), to afford two macrocycles along with starting material.

Fraction A gave a small amount ($<20 \mathrm{mg}$) of unreacted 2,6 -dichloropyrazine: $\mathrm{mp} 52^{\circ} \mathrm{C}$.
Fraction B afforded 1:1 macrocycle 26a as colorless plates (recrystallized from ethanol): $\mathrm{mp} 118-119^{\circ} \mathrm{C}$; 100 mg (4%); $R_{f} 0.6$; NMR $\left(\mathrm{CHCl}_{3}\right) \delta 3.25\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O} . J=4 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.91\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}, J=4 \mathrm{~Hz}\right.$, 4 H), 8.17 (s, 3,5-pyrazine-H, 2 H); IR (CHCl_{3}) 2850, 1480, 1390, 1180, $1140,1100,990,840 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}: \mathrm{C}, 44.85 ; \mathrm{H}, 4.67 ; \mathrm{N}, 13.08$; mol wt 214. Found: C, 44.56; H, 4.72; N, 12.86; mol wt (MS) m/e 214 (M+).

Fraction C was recrystallized from 95% ethanol to afford $2: 2$ macrocycle 27 as colorless needles: $\mathrm{mp} 155-156^{\circ} \mathrm{C} ; 140 \mathrm{mg}(6 \%) ; R_{f} 0.5$; NMR (CDCl_{3}) $\delta \sim 3.5$ (m, α - and $\beta-\mathrm{CH}_{2} \mathrm{O}, 16 \mathrm{H}$); 8.1 ($\mathrm{s}, 3,5$-pyra-zine-H, 4 H); IR (CHCl_{3}) 2900, 1500, 1450, 1250, 1140, 1080, 990, 830 cm^{-1}.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{~S}_{4} \mathrm{O}_{2}$: C, 44.85; $\mathrm{H}, 4.67 ; \mathrm{N}, 13.08$; mol wt 428. Found: C, 44.80; H, 4.92; N, 12.83; mol wt (osmometry) 430 (av).

Reaction of 2,6-Dichloropyrazine with Bis(2-mercaptoethyl) Sulfide. The general procedure was followed except for the substitution of bis(2-mercaptoethyl)sulfide ($1.54 \mathrm{~g}, 10 \mathrm{mmol}$). The crude reaction mixture was chromatographed (TLC), eluting two times with cyclohexane-ethyl acetate (20:1) to afford the major fast-moving 2[2-[2-(6-chloropyrazylthio) |thioethoxy]ethanethiol (28) as a colorless viscous oil: bp $145^{\circ} \mathrm{C}$ (0.5 mm ; short path); $210 \mathrm{mg}(8 \%) ; R_{f} 0.85$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.77$ [m,-SH (exchanged slowly with $\left.\left.\mathrm{D}_{2} \mathrm{O}\right), 1 \mathrm{H}\right], 2.8(\mathrm{~m}$, $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{2}, 6 \mathrm{H}$), 3.35 ($\mathrm{m}, \mathrm{S}-\alpha-\mathrm{CH}_{2}, 2 \mathrm{H}$), 8.18 ($\mathrm{s}, 3$-pyrazine- H , 1 H), 8.30 (s, 5 -pyrazine-H, 1 H), IR (neat) 2900, 2550, 1540, 1490, $1400,1350,1260,1190,1150,1100,990,860,830,740 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{~S}_{3} \mathrm{Cl}$: $\mathrm{C}, 36.02 ; \mathrm{H}, 4.12 ; \mathrm{N}, 10.60$; mol wt 266.5. Found: C, $35.93 ; \mathrm{H}, 4.06$; N, 10.38; mol wt (osmometry) 272 (av).

The baseline was extracted with a mixture of chloroform-ethanol (1:1) and after concentration the residue was rechromatographed (TLC), eluting three times with cyclohexane-ethyl acetate (10:1) to afford the following fractions.

Fraction B afforded 29 as a viscous oil: bp $162{ }^{\circ} \mathrm{C}(0.5-\mathrm{mm}$ short path); $80 \mathrm{mg}(2 \%) ; R_{f} 0.70 ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.71[\mathrm{~m},-\mathrm{SH}$ (exchanged slowly with $\mathrm{D}_{2} \mathrm{O}$), 1 H$], 2.9\left[\mathrm{~m},-\mathrm{CH}_{2} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{2}-, 10 \mathrm{H}\right], 3.35$ ($\mathrm{m}, \alpha-\mathrm{SCH}_{2}, 2 \mathrm{H}$), 8.25 ($\mathrm{s}, 3$-pyrazine- $\mathrm{H}, 1 \mathrm{H}$), 8.35 (s, 5 -pyrazine-H, 1 H), IR (neat) $2900,2550,1490,140,1400,1375,1350,1260,1190$, 1120, 1040, 990, 850, $830,750 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}_{4} \mathrm{Cl}: \mathrm{C}, 36.75 ; \mathrm{H}, 4.58 ; \mathrm{N}, 8.57$; mol wt 326.5. Found: C, 37.00 ; H, 4.49; N, 8.68; mol wt (osmometry) 338 (av).

Fraction C afforded 30 as a viscous oil: bp $187^{\circ} \mathrm{C}$ ($1-\mathrm{mm}$ short path); $55 \mathrm{mg}(2 \%) ; R_{f} 0.65 ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 2.9\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{SCH}_{2}, 8 \mathrm{H}\right), 3.4$
(m, $\alpha-\mathrm{SCH}_{2}, 4 \mathrm{H}$), 8.19 (s, 3-pyrazine-H, 2 H), 8.36 (s , 5 -pyrazine-H, 2 H); IR (neat) 2910, 1700, 1500, 1475, 1390, 1350, 1250, 1175, 1125, $990,860,830,750 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{4} \mathrm{Cl}_{2}$: C, 38.10; $\mathrm{H}, 3.64 ; \mathrm{N}, 12.75$; mol wt 439. Found: C, 38.35; H, 3.71; N, 12.45; mol wt (osmometry) 446 (av).

Reaction of 2,6-Dichloropyrazine with Ethanedithiol. The general procedure was followed except fo: the substitution of ethanedithiol ($940 \mathrm{mg}, 10 \mathrm{mmol}$). The gummy residue, after usual workup, was chromatographed (TLC), eluting witi cyclohexane-ethyl acetate (4:1) to afford the following fractions.

Fraction A gave 2-(6'-chloro-2'-pyrazylthio)ethanethiol (32) as pale yellow microcrystals (recrystallized from 95% ethanol): mp 91 ${ }^{\circ} \mathrm{C} ; 70 \mathrm{mg}(4 \%) ; R_{f} 0.52 ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.7[\mathrm{t},-\mathrm{SH}$ (exchanged slowly with $\left.\left.\mathrm{D}_{2} \mathrm{O}\right), 1 \mathrm{H}\right], 2.9\left(\mathrm{t}, \beta-\mathrm{CH}_{2} \mathrm{O}-, J=5 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.4\left(\mathrm{t}, \alpha-\mathrm{CH}_{2} \mathrm{O}-, J\right.$ $=5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.15 (s, 3-pyrazine-H, 1 H), 8.35 (s, 5 -pyrazine-H, 1 H); IR (CHCl_{3}) $2900,1480,1390,1350,1340,1250,1175,1150,1125,1080$, $990,860,830,720 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{Cl}$: C, 34.86; $\mathrm{H}, 3.38 ; \mathrm{N}, 14.04$; mol wt 206.5. Found: C, 34.75; H, 3.21; N, 13.80; mol wt (osmometry) 208 (av).

Fraction B was recrystallized from ethanol as pale yellow needles of $6,6^{\prime}$-dichloro-2,2'-(ethylenedithio)dipyrazine (33): $\mathrm{mp} 106^{\circ} \mathrm{C} ; 100$ $\mathrm{mg}(6 \%) ; R_{f} 0.43$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.55$ (s, $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}, 4 \mathrm{H}$), 8.4 (s , $3,3^{\prime}$-pyrazine-H, 2 H), 8.5 (s , 5,5'-pyrazine-H, 2 H); IR (CHCl_{3}) 2980, $1540,1500,1375,1175,1150,1125,990,960,830,740 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{H}_{\mathrm{N} 4} \mathrm{~S}_{2} \mathrm{Cl}_{2}$: $\mathrm{C}, 37.61 ; \mathrm{H}, 2.50 ; \mathrm{N}, 17.55 ; \mathrm{mol} w t$ 319. Found: C, 37.42; H, 2.46; N, 17.46; mol wt (osmometry) 322 (av).

Acknowledgments. The authors gratefully acknowledge partial support of the preliminary aspects of this work by the Public Health Service grant from the National Institutes of Health and Merck Sharp and Dohme Co.

Registry No.-5, 64332-24-7; 6, 64332-22-5; 7, 64332-23-6; 9, 64332-21-4; 10, 64332-20-3; 11, 64332-19-0; 12, 64332-18-9; 13, 64332-32-7; 14, 64332-31-6; 17, 64332-30-5; 18, 64332-29-2; 19, 64332-28-1; 20, 64332-27-0; 21, 64332-26-9; 22, 64332-25-8; 23, 64332-17-8; 24, 64332-16-7; 25, 64332-15-6; 26a, 64332-14-5; 27, 64332-13-4; 28, 64332-12-3; 29, 64332-11-2; 30, 64332-10-1; 32, $64332-09-8$; 33, 64332-08-7; 34, 64332-07-6; 35, 64332-06-5; 39, 64332-05-4; 40, 64332-04-3; 41, 64332-03-2; diethylene glycol, 111-46-6; 2,6-dichloxapyrazine, 4774-14-5; triethylene glycol, 112-27-6; methyl iodide, 74-88-4; tetraethylene glycol, 112-60-7; hexaethylene glycol, 2615-15-8; bis(2-mercaptoethyl) ether, 2150-02-9; bis(2-mercaptoethyl) sulfide, 3570-55-6; ethanedithiol, 540-63-6.

References and Notes

(1) Presented in part at the 173 rd National Meeting of the American Chemical Society, New Orleans, La., March, 1977.
(2) (a) G. R. Newkome, G. L. McClure, J. Broussard-Simpson, and F. DaneshKhoshboo, J. Am. Chem. Soc., 97, 3232 (1975); (b) G. R. Newkome, A.

Nayak, G. L. McClure, F. Danesh-Khoshboo, and J. Broussard-Simpson, J. Org. Chem., 42, 1500 (1977)
(3) G. R. Newkome, J. D. Sauer, J. M. Roper, and D. C. Hager, Chem. Rev., 77, 513 (1977).
(4) (a) G. R. Newkome and J. M. Robinson, J. Chem. Soc., Chem. Commun., 831 (1973); (b) M. Newcomb, G. W. Gokel, and D. J. Cram, J. Am. Chem. Soc., 96, 6810 (1974); (c) J. M. Timko, R. C. Helgeson, M. Newcomb, G. W. Gokel, and D. J. Cram, J. Am. Chem. Soc., 96, 7097 (1974); (d) G. W. Gokel, J. M. Timko, and D. J. Cram, J. Chem. Soc., Chem. Commun., 444 (1975); (e) J.-M. Girodeau, J.-M. Lehn, and J.-P. Sauvage Angew. Chem., int. Ed. Engl., 14, 764 (1975); (f) D. A. Laidier and J. F. Stoddart, J. Chem. Soc., Chem. Commun., 979 (1976).
(5) (a) G. Karmas and P. E. Spoerri, J. Am. Chem. Soc., 78, 680 (1956); (b) K. H. Schaaf and P. E. Spoerri, J. Am. Chem. Soc., 71, 2043 (1949); (c) G. W. H. Cheeseman and R. A. Godwin, J. Chem. Soc. C, 2973 (1971); (d) G. W. H. Cheeseman and E. S. G. Törzs, J. Chem. Soc., 6681 (1965); (e) B. Camerino and G. Palamidessi, Gazz. Chim. Ital., 90, 1807 (1960); (f) G. Palamidessi and L. Bernardi, Gazz. Chim. Ital., 91, 1438 (1961); (g) W. B. Lutz and R. I. Meltzer, U.S. Patent 3155663 (1964), Chem Abstr., 62, 1674 (1965)]; (h) G. Palamidessi, L. Bernardi, and A. Leone, Farmaco Ed. Sci., 21, 805 (1966), [Chem. Abstr., 66, 37885 (1967)]; (i) E. J. J. Grabowski, E. W. Tristram, R. J. Tull, and P. i. Poliak, Tetrahedron Lett., 5931 (1968); (j) C. G. Allison, R. D. Chambers, J. A. H. MacBride, and J. K. R. Musgrave, J. Chem. Soc C, 1023 (1970); (k) R. D. Chambers, W. K. R. Musgrave, and P. G. Urben, J. Chem. Soc., Perkin Trans. 1, 2584 (1974); (I) L. Bernardi, G. Larini, and A. Leone, German Pat, 1178436 (1964); [Chem. Abstr., 62, 4039 (1965)]
(6) (a) L. Bernardi, G. Palamidessi, A. Leone, and G. Larini, Gazz. Chim. Ital., 91, 1431 (1961); (b) J. G. Pomonis, D. T. North, and R. G. Zaylski, J. Med. Chem., 13, 939 (1970).
(7) (a) E. J. Cragoe, Belgium Patent 639386 (1964); [Chem. Abstr., 62, 14698 (1965)]; (b) N. Okuda, Y. Fukuda, I. Kuniyoshi, and H. Shinoda, Japan Patent 12712 (1965); [Chem. Abstr., 63, 11589 (1965)]; (c) E. J. Cragoe and J. H. Jones, British Patent 1083901 (1967); [Chem. Abstr., 69, 19214 (1968)]; (d) D. H. Horna, U.S. Patent 3452016 (1969); [Chem. Abstr., 71, 81415 (1969)]; (e) L. Levine, U.S. Patent 3641033 (1972); [Chem. Abstr., 76, 140888a (1972)]
(8) J. D. Behun, P. T. Kan, P. A. Gibson, G. T. Lenk, and E. J. Fujiwara, J. Org. Chem., 26, 4381 (1961).
(9) (a) S. ar. 1. Dynachim, Fr. Demande 2256916 (1975); [Chem. Abstr., 84, 59565a (1976)]; (b) Societa Farmaceutici Italia, British Patent 1360363 (1974); [Chem. Abstr., B1, 169561 s (1974)].
(10) D. J. Berry, J. D. Cook, and B. J. Wakefield, J. Chem. Soc., Perkin Trans. 1, 2190 (1972).
(11) S. Kwiatkowski and B. Zurawski, Bull. Acad. Pol. Sci., Ser. Sci. Math., Astron. Phys, 13, 487 (1965); [Chem. Abstr., 64, 15719 (1966)]; P. J. Black and C. A. McDowell, Mol. Phys., 12, 233 (1967): P. J. Black, R. D. Brown, and M. L. Hefferman, Aust. J. Chem., 20, 1305 (1967).
(12) Tetrafluoropyrazine has been reacted with sodioethylene glycol in an attempt to undergo ring cyclization; only a 2,3-polymer was isolated. ${ }^{5}$ (a) G. W. H. Cheeseman, J. Chem. Soc., 242 (1960); (b) G. F. Duffin, Adv. Heterocycl. Chem., 3, 1 (1964); (c) T. Goto, M. Isobe, M. Ohtsuru, and K. Tori, Tetrahedron Lett., 1511 (1968); also see: (d) G. W. H. Cheeseman and E. S. G. Werstiuk, Adv. Heterocycl. Chem., 14, 99 (1972).
(13) (a) S. Z. Perrv and H. Hibbert, Can. J. Res., Sect. B, 14, 77 (1936); (b) A. F. Gallaugher and H. Hibbert, J. Am. Chem. Soc., 58, 813 (1936)
(14) E. Staude and F. Patat in "The Chemistry of the Ether Linkage", S. Patai, Ed., Interscience, New York, N.Y., 1967, pp 46-49; R. E. Lubowicz and P. Reich. Chem. Eng. Prog., 67, 59 (1971).
(15) D. H. Busch, Rec. Chem. Prog., 25, 107 (1964); L. F. Lindoy and D. H. Busch, Prep. Inorg. React., 6, 1 (1971).
(16) G. R. Newkome, F. Danesh-Khoshboo, A. Nayak, and W. H. Benton, J. Org. Chem., subrritted; A. Nayak, unpublished results.
(17) G. F. Duffin, Adv. Heterocycl. Chem., 3, 1 (1969)

Organic Metals. A Study of the Hurtley-Smiles
 Tetrathiafulvalene Synthesis

Masao Mizuno and Michael P. Cava*
Department of Chemistry and Laboratory for Research on the Structure of Matter,
University of Pennsylvania, Philadelphia, Pennsylvania 19104

Received July 25, 1977

Abstract

The reaction of excess tetrachloroethylene with 0 -benzenedithiol (1) and with disodium cis-ethenedithiolate (6) affords 2-dichloromethylene-4,5-benzo-1,3-dithiole (4) and 2-dichloromethylene-1,3-dithiole (10), respectively. Reaction of 1 with either 4 or 10 under basic conditions yields only dibenzotetrathiafulvalene (2). A similar reaction of 1 with tetrakis(carbomethoxy)tetrathiafulvalene (12) results in transdithiolation with the formation of 2 and 4,5-bis(carbomethoxy)-4',5'-benzotetrathiafulvalene (13). Mechanisms of these reactions are discussed.

Since the first report on the high electrical conductivity of the charge-transfer salt of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) in 1973, ${ }^{1}$ much interest has been generated in the synthesis of tetrathiafulvalene derivatives and analogues. ${ }^{2}$ Almost all known tetrathiafulvalenes are symmetrical compounds, which are generally prepared by reactions involving the coupling of intermediary carbene or carbenoid monomers. ${ }^{2}$

In 1926, Hurtley and Smiles found that o-benzenedithiol (1) reacts with tetrachloroethylene under basic conditions to give dibenzotetrathiafulvalene (2). ${ }^{3}$ This reaction, which represents the first synthesis of any tetrathiafulvalene, received no further attention until a half century later. At that time, improved reaction conditions were reported, and the reaction of tetrachloroethylene with a mixture of o-benzenedithiol and toluene-3,4-dithiol was found to give a mixture of products from which the pure mixed TTF derivative 3 could be crystallized. ${ }^{4}$

As part of a broad investigation of synthetic routes to unsymmetrical tetrathiafulvalenes, ${ }^{5}$ we now report the results of a further study of the Hurtley-Smiles synthesis, aimed at its modification for the synthesis of monobenzotetrathiafulvalenes. ${ }^{6}$

Results

Dithiol 1^{7} was allowed to react with excess tetrachloroethylene and triethylamine in DMF at room temperature with the objective of isolating the intermediate dihalide in the Hurtley-Smiles reaction. Workup after 3 days afforded only a small amount of the symmetrical TTF 2 (5\%), the major product (59%) being a colorless, crystalline compound, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Cl}_{2}, \mathrm{mp} 157-158^{\circ} \mathrm{C}$. This compound was assigned the structure 2 -dichloromethylene-4,5-benzo-1,3-dithiole (4) rather than the isomeric benzodithiin structure 5 , since it was slowly converted in high yield to 2 on treatment with dithiol 1 and triethylamine in refluxing acetonitrile. On the other hand, attempts to convert 4 to monobenzotetrathiafulvalene (7) or its dinitrile 9 by reaction with disodium cis -ethenedi-
thiolate (6) ${ }^{8}$ or disodium cis-dicyanoethenedithiolate (8$)^{9}$ were unsuccessful, the starting dihalide being recovered unchanged.

The dithiolate salt 6 was found to react with excess tetrachloroethylene in the presence of triethylamine to give a single isolable product (42%), mp $55-58^{\circ} \mathrm{C}$, assigned the structure 2 -dichloromethylene-1,3-dithiole (10) by analogy with 4 . In contrast to 4 , which is quite stable to storage, dichloride 10 decomposes to a black tar on keeping overnight in the refrigerator; it rapidly turns blue on contact with silica, but it can be purified chromatographically on basic alumina. Attempts to convert 10 to tetrathiafulvalene (11) by further reaction with the salt 6 were unsuccessful, and led only to the destruction of 10 .

By contrast, dichloride 10 reacted with o-benzenedithiol (1) in the presence of triethylamine. The only isolable product (30%) was not, however, the expected monobenzotetrathiafulvalene (7), ${ }^{6}$ but rather dibenzotetrathiafulvalene (2).

On the basis of mechanistic considerations of the above reaction (see Discussion), it seemed possible that each dichloromethylene unit of tetrachloroethylene might be re-
placeable by an electron-deficient 1,3-dithiole unit in the Hurtley-Smiles reaction. Indeed, reaction of excess o-benzenedithiol (1) with tetrakis(carbomethoxy)tetrathiafulvalene (12) ${ }^{10}$ in the presence of triethylamine resulted in the quantitative conversion of tetraester 12 into dibenzotetrathiafulvalene (2). A similar reaction of equimolar quantities of 1 and 12 afforded a small amount (7\%) of 2, along with a modest

yield (19\%) of 4,5-bis(carbomethoxy) $-4^{\prime}, 5^{\prime}$-benzotetrathiafulvalene (13). ${ }^{6}$ Since diester 13 is readily converted in one step to monobenzotetrathiafulvalene (7), ${ }^{6}$ the latter is therefore accessible from readily prepared starting materials ${ }^{7,10}$ by the use of this new "transdithiolation" synthesis.

Discussion

The formation of the five-membered ring heterocycles 4 and 10 from tetrachloroethylene, rather than six-membered isomers (e.g., 5), appears to fit formally within the framework of Baldwin's rules, although these rules are of doubtful predictive value when applied to anions of second-row elements. ${ }^{11}$ The observed products are also explicable, however, on the basis of the greater electronegativity of chlorine as compared to sulfur. Thus, in the case of the reaction of o-benzenedithiol (1) with tetrachloroethylene, the structure of the final dichloride is determined by the point of attack (a or b) of the intermediary thiolate anion 14. Path a should be of lower energy than path b due to the greater stability of carbanion 16 over the isomeric carbanion 15.

The electronegativity argument proposed above also explains why the anion of dithiol 1 reacts more slowly with dihalide 4 than it does with tetrachloroethylene. Thiolate attack on 4 should occur preferentially, but reversibly, by path a to give the more stable anion 17; attack at the chlorine-bearing carbon (path b) should occur less often, but it will eventually lead to the formation of dibenzotetrathiafulvalene (2).

In accord with this mechanism, dichloride 10 will react preferentially with the anion of 1 at the sulfur-bearing carbon, resulting in transthiolation with the formation of dichloride 4; further reaction of 4 with 1 then gives 2 as outlined above.

The reaction of the tetraester 12 with the anion of 1 may be viewed as an entirely analogous two-step transthiolation process. In this case, the leaving-group molecule is the anion 18 and the intermediate diester 13 was in fact detected when an insufficient quantity of dithiol 1 was employed.

Melting points are uncorrected. NMR $\left(\mathrm{CDCl}_{3}\right.$ containing $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard), infrared (KBr), ultraviolet, and mass spectra were determined using Varian A-60, and Perkin-Elmer 137, 202 and 270 B spectrometers, respectively.

2-Dichloromethylene-4,5-benzo-1,3-dithiole (4). o-Benzenedithiol ${ }^{7}(3.6 \mathrm{~g}, 0.025 \mathrm{~mol})$ and triethylamine $(10.0 \mathrm{~g}, 0.10 \mathrm{~mol})$ were dissolved in 100 mL of dimethylformamide, and tetrachloroethylene $(16.8 \mathrm{~g}, 0.10 \mathrm{~mol})$ was added dropwise with stirring at room temperature under an argon atmosphere. The reaction was allowed to proceed for 3 days at room temperature. The reaction mixture was poured into 300 mL of water and extracted with benzene. The benzene layer was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a yellow oil. The oil was chromatographed on silica (hexane-benzene) to give 3.5 g of colorless needles of 2-dichloromethylene-4,5-benzo-1,3-dithiole $(4,59 \%)$ and 0.2 g of yellow crystals of dibenzotetrathiafulvalene ($2,5 \%$). The water layer was acidified tc pH 5 with hy-
drochloric acid and reextracted with benzene. The benzene layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give 0.6 g of o-benzenedithiol (1 , 17\%).

2-Dichloromethylene-4,5-benzo-1,3-dithiole (4): mp 157-158 ${ }^{\circ} \mathrm{C}$; UV (cyclohexane) $\lambda_{\text {max }} 207 \mathrm{~nm}(\epsilon 7700), 242$ (15000), 266 ($99 \cdot 0$), 277 (10000), 314 (4200); NMR $\delta 7.16(\mathrm{~s})$; mass spectrum m / e (rel intensity) 238 (17), 236 (72), 234 (100), 199 (18), 164 (15).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 40.85 ; \mathrm{H}, 1.70 ; \mathrm{S}, 27.23 ; \mathrm{Cl}, 30.21$. Found: C, $40.84 ; \mathrm{H}, 1.63 ; \mathrm{S}, 27.00 ; \mathrm{Cl}, 30.00$.
The dibenzotetrathiafulvalene, $\mathrm{mp} 232-234^{\circ} \mathrm{C}$ (lit. ${ }^{3} 234^{\circ} \mathrm{C}$), was identical (IR) with an authentic sample.

Attempted Reaction of 2-Dichloromethylene-4,5-benzo-1,3-dithiole (4) with Disodium cis-Ethenedithiolate (6). 2-Di-chloromethylene-4,5-benzo-1,3-dithiole ($4,60 \mathrm{mg}, 0.25 \mathrm{mmol}$) and disodium cis-ethenedithiolate ${ }^{8}(140 \mathrm{mg}, 1 \mathrm{mmol})$ were dissolved in 10 mL of dimethylformamide, and the solution was stirred for 3 days at room temperature under an argon atmosphere. The reacticn mixture was poured into 25 mL of water and extracted with benzene. The benzene layer was washed successively with dilute aqueous sodium hydroxide, water, dilute hydrochloric acid, and finally with water, dried (MgSO_{4}), and evaporated to give a brown solid. Chromatography on silica (hexane-benzene) afforded 55 mg of the starting material 4 as colorless needles, $\mathrm{mp} 157-158^{\circ} \mathrm{C}$

2-Dichloromethylene-4,5-benzo-1,3-dithicle (60 mg) and disodium salt $6(140 \mathrm{mg})$ were dissolved in 10 mL of acetonitrile, and the mixture was refluxed for 15 h under an argon atmosphere. The reaction mixture was worked up as above to give 57 mg of recovered starting material as colorless needles, mp 157-158 ${ }^{\circ} \mathrm{C}$. Attempted reaction of 4 with salt 8^{9} led to similar results.
Reaction of 2-Dichloromethylene-4,5-benzo-1,3-dithiole (4) with o-Benzenedithiol (1). o-Benzenedithiol ($40 \mathrm{mg}, 0.28 \mathrm{mmol}$) and triethylamine ($100 \mathrm{mg}, 1 \mathrm{mmol}$) were dissolved in 10 mL of acetonitrile, and dichloride $4(60 \mathrm{mg}, 0.25 \mathrm{mmol}$; was added with stirring at room temperature under an argon atmosyhere. The reaction was allowed to proceed for 15 h at reflux. The reaction mixture was poured into 50 mL of water and extracted with benzene. The benzene layer was washed several times with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a yellow solid. The solid was chromatographed on silica using hexane-benzene to give dichloride 4 as colorless needles ($25 \mathrm{mg}, 42 \%$), $\mathrm{mp} 157-158^{\circ} \mathrm{C}$, and dibenzotetrathiafulvalene (2) as yellow crystals ($35 \mathrm{mg}, 47 \%$), $\mathrm{mp} 232-234{ }^{\circ} \mathrm{C}$.

2-Dichloromethylene-1,3-dithiole (10). Disodium cis-ethenedithiolate ($140 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 10 mL of dimethylformamide. The solution was stirred at room temperature under an argon atmosphere, and tetrachloroethylene ($510 \mathrm{mg}, 3.0 \mathrm{mmol}$) was added dropwise. The reaction was allowed to proceed for 4 h at room temperature, and then the solution was poured into 30 mL of water and the mixture was extracted with benzene. The benzene layer was washed several times with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give a dark brown oil. Chromatography on basic (I) alumina (hexane) gave 2 -dichloromethylene-1,3-dithiole (10) as slightly yellow needles ($80 \mathrm{mg}, 42 \%$), mp $55-58^{\circ} \mathrm{C}$; NMR $\delta 6.35$ (s); mass spectrum m / e (rel intensity) $186(74), 184(100), 149(62), 126$ (32). This compound was not sufficiently stable to obtain an elementary analysis. It also decomposed readily on plates of silica gel or acid alumina, giving an initially colorless spot which turned blue and finally yellow.

Reaction of 2-Dichloromethylene-1,3-dithiole (10) with o-

Benzenedithiol (1). o-Benzenedithiol ($50 \mathrm{mg}, 0.35 \mathrm{mmol}$), dichloride $10(40 \mathrm{mg}, 0.22 \mathrm{mmol})$, and triethylamine ($100 \mathrm{mg}, 1.0 \mathrm{mmol}$) were dissolved in 10 mL of acetonitrile. The solution was stirred for 15 h at reflux under an argon atmosphere. The reaction mixture was poured into 30 mL of water and extracted with benzene. The benzene layer was washed several times with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a brown oil, which was chromatographed on a dry silica column (hexane-benzene) to give yellow crystals of dibenzotetrathiafulvalene ($2,20 \mathrm{mg}, 30 \%$), $\mathrm{mp} 232-234^{\circ} \mathrm{C}$.

Reaction of Tetrakis(carbomethoxy)tetrathiafulvalene (12) with an Excess of o-Benzenedithiol (1). Tetraester $12^{10}(220 \mathrm{mg}$, 0.5 mmol), o-benzenedithiol ($355 \mathrm{mg}, 2.5 \mathrm{mmol}$), and triethylamine ($505 \mathrm{mg}, 5.0 \mathrm{mmol}$) were dissolved in 10 mL of acetonitrile. The solution was stirred for 15 h at reflux under an argon atmosphere. The reaction mixture was poured into 100 mL of water and extracted with benzene. The benzene layer was washed several times with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a yellow solid. Recrystallization from benzene gave yellow plates of dibenzotetrathiafulvalene ($2,140 \mathrm{mg}, 92 \%$) , mp $231-233^{\circ} \mathrm{C}$.
Reaction of Tetraester 12 with an Equimolar Amount of oBenzenedithiol (1). Tetraester 12 ($220 \mathrm{mg}, 0.5 \mathrm{mmol}$), o-benzenedithiol ($75 \mathrm{mg}, 0.5 \mathrm{mmol}$), and triethylamine ($100 \mathrm{mg}, 1.0 \mathrm{mmol}$) were dissolved in 10 mL of acetonitrile. The solution was stirred for 15 h at reflux under an argon atmosphere. The reaction mixture was poured into 50 mL of water and extracted with benzene. Workup as above, followed by chromatography on a dry silica column (hexanebenzene), gave yellow crystals of dibenzotetrathiafulvalene ($2,10 \mathrm{mg}$, $7 \%, \mathrm{mp} 232-234^{\circ} \mathrm{C}$) and the reddish-brown diester 13 ($35 \mathrm{mg}, 19 \%$). The latter solid was recrystallized from methanol to give reddishbrown needles (25 mg), mp 171-173 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{6} 171-173{ }^{\circ} \mathrm{C}$), identical (IR, mass spectrum) with authentic material. ${ }^{6}$
Acknowledgment. This work was supported by the National Science Foundation MRL program under Grant DMR 76-00678.

Registry No.-1, 17534-15-5; 2, 24648-13-3; 4, 64188-91-6; 6, 17934-70-2; 10, 64188-90-5; 12, 26314-39-6; 13, 62921-53-3; tetrachloroethylene, 127-18-4.

References and Notes

(1) J. P. Ferraris, D. O. Cowan, V. Walatka, Jr., and J. H. Perlstein, J. Am. Chem. Soc., 95, 948 (1973). See also; A. F. Garito and A. J. Heeger, Acc. Chem. Res., 7, 218 (1974).
(2) For a recent review, see: M. Narita and C. U. Pittman, Jr., Synthesis, 6, 274 (1976).
(3) W. R. H. Hurtley and S. Smiles, J. Chem. Soc., 2263 (1926).
(4) G. S. Bajwa, K. D. Berlin, and H. A. Pohl, J. Org. Chem., 41, 145 (1976).
(5) For a review of the problem of unsymmetrical TTF synthesis, see: M. P. Cava and M. V. Lakshmikantham, Ann. N.Y. Acad. Sci., in press (1977).
(6) H. K. Spencer, M. P. Cava, and A. F. Garito, J. Chem. Soc., Chem. Commun., 966 (1976).
(7) S. Hunig and E. Fleckenstein, Justus Liebigs Ann. Chem., 738, 192 (1970).
(8) (a) W. Schroth and J. Peschel, Chimia, 18, 171 (1964); (b) J. P. Ferraris, Ph.D. Dissertation, The Johns Hopkins University, 1974.
(9) G. Bähr and G. Schleitzer, Ber., 88, 1771 (1955); G. Bahr, Angew Chem., 68, 525 (1956).
(10) (a) H. D. Hartzler, J. Am. Chem. Soc., 95, 4379 (1973). (b) C. U. Pittman, Jr., M. Narita, and Y. F. Liang. J. Org. Chem., 41, 2855 (1976).
(11) J. E. Baldwin, J. Chem. Soc., Chem. Commun., 734 (1976).

Photochemical Reactions of \mathbf{N}, \mathbf{N}-Disubstituted α-Oxoamides

Hiromu Aoyama,* Tadashi Hasegawa, Mariko Watabe, Hiroaki Shiraishi, and Yoshimori Omote

Department of Chemistry, Tsukuba University, Sakuramura, Ibaraki, 300-31 Japan
Received July 18, 1977

Abstract

Photochemical reactions of α-oxoamides having various substituents have been studied. Irradiation of N, N-dial-kyl- α-oxoamides ($\mathbf{l b}-\mathbf{d}, \mathbf{h}$) in methanol yielded the corresponding oxazolidin-4-ones ($\mathbf{2 b} \mathbf{- d}, \mathbf{h}$), as main products, while that of N, N-dibenzyl- α-oxoamides (le and 1i) in an aprotic solvent gave the corresponding β-lactams (3 e and $\mathbf{3 j}$) predominantly. N-Substituted benzoylformanilides ($\mathbf{1 k}$ and 11) afforded type II elimination products on irradiation. Mechanisms of these reactions have also been studied.

Photochemical reactions of α-dicarbonyl compounds such as α-diketones and α-oxoesters have been studied extensively. ${ }^{1,2}$ However, those of α-oxoamides have received little attention. Akermark and Johanson investigated the photochemical reaction of an α-oxoamide la and some related cyclic α-oxoamides in relation to their studies on penicillin chemistry, and reported that irradiation of la yielded an oxazoli-din-4-one 2a as a major product accompanied by a small amount of a β-lactam $\mathbf{3 a}$ (Scheme I). ${ }^{3}$ Their studies were limited to these cyclic amides, and the mechanism for the formation of the unexpected product 2 a has not been clear.

Recently, we reported the photocyclization of α, β-unsaturated amides to β-lactams. ${ }^{4}$ These unsaturated amides are isoelectronic with α-oxoamides. This fact and the absence of a systematic investigation on the photochemistry of α-oxoamides prompted us to study the photochemical reactions of these amides. In this paper, we wish to report on the photochemical reactions of α-oxoamides having various substituents, the solvent effects on the reactions, and the mechanism for the formation of the photoproducts.

Pyruvamides. When N, N-diethylpyruvamide (1b) in methanol was irradiated in a Pyrex vessel under argon with a high-pressure mercury lamp, 2,5-dimethyl-3-ethyloxazoli-din-4-one ($\mathbf{2 b}$) was obtained in a quantitative yield. When an aprotic solvent such as benzene or acetonitrile was used, the yield of $\mathbf{2 b}$ was poorer (56% in benzene and 45% in acetonitrile) and many unidentified by-products were produced. In all cases, analyses of the reaction mixtures by the IR spectra confirmed the absence of β-lactams. Irradiation of N, N-di-n-propylpyruvamide (1c) and N, N-diisopropylpyruvamide (1d) in methanol also afforded the corresponding oxazoli-din-4-ones 2 c and 2 d almost quantitatively.
On the other hand, when N, N-dibenzylpyruvamide le was irradiated in an aprotic solvent, 1-benzyl-3-hydroxy-3-methyl-4-phenylazetidin-2-one (3e) was obtained almost quantitatively. Irradiation of $1 \mathbf{e}$ in methanol gave an oxazo-lidin-4-one $\mathbf{2 e}(78 \%)$ as a main product accompanied by small amounts of $3 \mathbf{e}(17 \%)$. Photochemical reaction of N -substituted pyruvanilides If and Ig showed similar solvent dependence (see Table I; Scheme II).

Benzoylformamides. Photolysis of N, N-diethylbenzoylformamide ($\mathbf{1 h}$) in methanol gave an oxazolidin-4-one 2 h as a main product, while that in benzene afforded 2 h in a lower yield. N, N-Diisopropylbenzoylformamide (1i) also gave an oxazolidin-4-one (2i) predominantly. However, a small

Scheme I

Scheme II

b, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Et}$
c, $\mathrm{R}_{1}=\mathrm{R}_{2}=n-\operatorname{Pr}$ $\mathrm{d}, \mathrm{R}_{1}=\mathrm{R}_{2}=i-\mathrm{Pr}$
e, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{Ph}$
f, $R_{1}=E t ; R_{2}=P h$
g, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Ph}$
b, $R_{1}=E t ; R_{2}=M e ; R_{3}=H$
c, $\mathrm{R}_{1}=n-\mathrm{Pr} ; \mathrm{R}_{2}=\mathrm{Et} ; \mathrm{R}_{3}=\mathrm{H}$
$\mathrm{d}, \mathrm{R}_{1}=i-\mathrm{Pr} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Me}$
e, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Ph} ; \mathrm{R}_{3}=\mathrm{H}$
f, $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Me} ; \mathrm{R}_{3}=\mathrm{H}$
g, $R_{1}=R_{2}=P h ; R_{3}=H$

amount of methyl mandelate (in methanol) and mandelanilide (in benzene) was produced in this case.

On the other hand, N, N-dibenzylbenzoylformamide ($1 \mathbf{j}$) yielded a β-lactam 3 j exclusively, both on irradiation in benzene and methanol.

Finally, N -substituted benzoylformanilides 1 k and 11 showed somewhat different photochemical behavior from other α-oxoamides. Irradiation of these anilides gave methyl

h, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Et}$
$\mathrm{i}, \mathrm{R}_{1}=\mathrm{R}_{2}=i \cdot \mathrm{Pr}$
j, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{Ph}$
$\mathrm{k}, \mathrm{R}_{1}=\mathrm{Et} ; \mathrm{R}_{2}=\mathrm{Ph}$
1, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Ph}$
$h, R_{1}=\mathrm{Et} ; \mathrm{R}_{2}=\mathrm{Me} ; \mathrm{R}_{3}=\mathrm{H}$
$\mathrm{i}, \mathrm{R}_{1}=i-\mathrm{Pr} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Me}$
j, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Ph} ; \mathrm{R}_{3}=\mathrm{H}$
$\mathrm{k}, \mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}=\mathrm{Me} ; \mathrm{R}_{3}=\mathrm{H}$
l, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ph} ; \mathrm{R}_{3}=\mathrm{H}$

Table I. Photochemical Reaction of Pyruvamides

	Registry Reactant	no.	Solvent	

${ }^{a}$ Not detected. ${ }^{b}$ Trace.
mandelate and mandelanilide as major products (see Scheme III).

Mechanism. The formation of the β-lactam, methyl mandelate, and mandelanilide can be explained in terms of a type II photoprocess. A biradical 5 is formed initially by γ-hydrogen abstraction by the ketone carbonyl oxygen. Cyclization of the biradical yields the lactam 3 , while $\mathrm{C}-\mathrm{N}$ bond cleavage of it affords a hydroxy ketene 6 and an imine 7 . Addition of methanol to 6 gives methyl mandelate, and that of aniline which is formed by hydrolysis of 7 yields mandelanilide. ${ }^{5}$ A similar reaction of ethyl benzoylformate to methyl mandelate has been reported by Huyser and Neckers. ${ }^{2 c}$ Intermediacy of the hydroxyketene $\mathbf{6}$ in the formation of mandelanilide was confirmed as follows. When 1 k in benzene was irradiated in the presence of an excess of p-toluidine, mandel- p-toluidide was produced instead of mandelanilide.

The formation of the oxazolidin-4-one (2) can be explained as shown in Scheme V. The biradical 5 undergoes 1,4-hydrogen migration to yield another biradical 8. The biradical cyclizes to an enol 9 which ketonizes to give 2. Analogous 1,4hydrogen migration in photocyclization of α-diketones has been reported. ${ }^{6}$ Some evidence in support of the intermediacy of the enol 9 was obtained from experiments using methanol $-d_{1}$. When a solution of 1 b in methanol- d_{1} was irradiated, a deuterated product ($2 \mathbf{b}-d_{1}$) was obtained in a quantitative yield. On the other hand, the formation of $\mathbf{2 b}-d_{1}$ was not observed when a solution of $\mathbf{2 b}$ in methanol- d_{1} was irradiated or heated to $150{ }^{\circ} \mathrm{C}$. An alternative path b, which involves hydrogen abstraction by the amide carbonyl oxygen through a five-membered transition state followed by rotation of the $\mathrm{C}-\mathrm{N}$ bond, seems to be improbable because (a) reports on intramocecular hydrogen abstraction by an amide carbonyl group are few ${ }^{7}$ and (b) intramolecular hydrogen abstraction through a five-membered transition state is the rarely observed process (Schemes IV and V). ${ }^{8}$

Solvent Effects. The formation of the oxazolidin-4-one 2 is apparently enhanced by alcoholic solvents. The photocyclization of $\mathbf{1 b}$ to $\mathbf{2 b}$ proceeded quantitatively in isopropyl or tert-butyl alcohol as in the case of methanol. Irradiation of $\mathbf{l b}$ in benzene containing 5% of methanol or in acetonitrile containing 5% of water gave the same result. It is well known that alcchols, water, and pyridine enhance a type II reaction of ketones by suppressing reverse hydrogen transfer in the biradical intermediate. ${ }^{9}$ However, addition of pyridine to a benzene solution of $1 \mathbf{b}$ showed no influence upon the photoreaction, and the yield of $\mathbf{2 b}$ was still poor as in the case of a benzene solution. These results suggest that the alcohols or water play some roles in the 1,4 -hydrogen migration step. The migration might proceed intermolecularly in hydroxylic solvents as shown below.

Table II. Photochemical Reaction of Benzoylformamides

Reactant	$\begin{gathered} \text { Registry } \\ \text { no. } \end{gathered}$	Solvent	Yields, \%		
			2	3	4
1 h	34906-86-0	MeOH	$73^{\text {b }}$	a	a
1 h		$\mathrm{C}_{6} \mathrm{H}_{6}$	$24^{\text {b }}$	$7^{\text {b }}$	a
1 i	51804-83-2	MeOH	58	22	$16^{\text {c }}$
1 i		$\mathrm{C}_{6} \mathrm{H}_{6}$	62	e	$29^{\text {d }}$
1 j	40991-79-5	MeOH	a	86	a
1 j		$\mathrm{C}_{6} \mathrm{H}_{6}$	a	~ 100	a
1 k	64201-19-0	MeOH	11	5	36^{c}
1k		$\mathrm{C}_{6} \mathrm{H}_{6}$	14	12	$34{ }^{\text {d }}$
11	64201-18-9	MeOH	a	27	$35^{\text {c }}$
11		$\mathrm{C}_{6} \mathrm{H}_{6}$	a	40	24^{d}

${ }^{a}$ Not detected. ${ }^{b}$ Not completely purified. ${ }^{c}$ Methyl mandelate. ${ }^{d}$ Mandelanilide. ${ }^{e}$ Trace.

Substituents Effects. Substituents which stabilize the 1,4 -biradical 5 seem to enhance the formation of the β-lactam 3. Thus, N, N-Dibenzyl- α-oxoamides 1 e and 1 j gave the lactams $3 \mathbf{e}$ and $3 \mathbf{j}$ almost quantitatively on irradiation in an aprotic solvent. Furthermore, irradiation of N, N-dialkylbenzoylformamide 1 h and li gave some amounts of the lactam 3 h and $3 \mathbf{i}$, while N, N-dialkylpyruvamide $\mathbf{1 b}$ and 1 d did not give the corresponding β-lactams. Stabilization of the biradical 5 is presumed to make the 1,4 -hydrogen migration inefficient.
Quantum Yields. The quantum yield for the cyclization of $1 \mathbf{b}$ (oxazolidinone formation) was 0.66 in methanol. The reaction was sensitized by 4-methoxyacetophenone ($\Phi=0.70$, $E_{\mathrm{T}}=72 \mathrm{kcal}$) and less efficiently by 4-aminoacetophenone ($\Phi=0.23, E_{\mathrm{T}}=65 \mathrm{kcal}$), but not by Michler ketone ($E_{\mathrm{T}}=62$ kcal) or 4-phenylacetophenone ($E_{\mathrm{T}}=61 \mathrm{kcal}$). On the other hand, the quantum yield for the reaction of $\mathbf{1 j}$ (β-lactam formation) was 0.21 in benzene. The photoreaction was also sensitized by 4 -methoxyacetophenone ($\Phi=0.35$) but very inefficiently by 2 -acetonaphthone ($\Phi=0.04, E_{\mathrm{T}}=59 \mathrm{kcal}$).
The above results indicate that the triplet states of 1 b and 1 j are reactive. However, both reactions were not quenched by high concentrations (1 M) of 1,3-pentadiene. This fact suggests that the photoreactions of $\mathbf{l b}$ and lj involve either the triplet reaction faster than bimolecular quenching or the singlet reaction faster than intersystem crossing.

Experimental Section

All melting and boiling points were uncorrected. IR and NMR spectra were obtained on Hitachi EPI and R-20 spectrometers, respectively. A Ushio $450-\mathrm{W}$ high-pressure mercury lamp was used as an irradiation source.
Materials. The oxoamides $\mathbf{1 b}$ - 11 were prepared according to the method in the literature. ${ }^{10}$

General Procedure for Photoreactions of α-Oxoamides. A
Scheme IV

1b
$2 \mathbf{b}-d_{1}$

2b

3
solution of the α-oxoamide 1 (1\%) was i:radiated in a Pyrex vessel under argon with a high-pressure mercury lamp for $10-20 \mathrm{~h}$. After removal of the solvent, the residue was chromatographed on silica gel. Elution with benzene-ethyl acetate afforded the photoproducts.

2,5-Dimethyl-3-ethyloxazolidin-4-one (2b): bp $60-65^{\circ} \mathrm{C}$ (bath temp)/5 Torr; IR (neat) $1700 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.16$ (t, $J=7.5$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.42\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 1.45(\mathrm{~d}, J=5.5$ $\left.\mathrm{Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 3.75\left(\mathrm{q}\right.$ of $\mathrm{AB} \mathrm{q}, J_{\mathrm{q}}=7.5 \mathrm{~Hz}, J_{\mathrm{ABq}}=13 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $4.25\left(\mathrm{~d}\right.$ of $\left.\mathrm{q}, J_{\mathrm{d}}=1.5 \mathrm{~Hz}^{11}, J_{\mathrm{q}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 5.18\left(\mathrm{~d}\right.$ of $\mathrm{q}, J_{\mathrm{d}}=$ $\left.1.5 \mathrm{~Hz},{ }^{11} J_{\mathrm{q}}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 58.71 ; \mathrm{H}, 9.15 ; \mathrm{N}, 9.78$. Found: ${ }^{12} \mathrm{C}$, 58.27; H, 9.21; N, 9.62.

5-Deuterio-2,5-dimethyl-3-ethyloxazolidin-4-one (2b- d_{1}): IR (neat) $1700 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.16\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.42\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 1.45\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 3.37\left(\mathrm{q}\right.$ of AB_{q}, $\left.J_{\mathrm{q}}=7.5 \mathrm{~Hz}, J_{\mathrm{ABq}}=13 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.18(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$, 2-H).

2-Ethyl-5-methyl-3-n-propyloxazolidin-4-one (2c): bp 90-95 ${ }^{\circ} \mathrm{C}$ (bath temp) $/ 5$ Torr; IR (neat) $1710 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.94$ (t, $J=7 \mathrm{~Hz}, 6 \mathrm{H}$, two $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.43\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 1.5-2.0$ $\left(\mathrm{m}, 4 \mathrm{H}\right.$, two CH_{2}), 3.24 (t of $\mathrm{AB} \mathrm{q}, J_{\mathrm{t}}=\varepsilon \mathrm{Hz}, J_{\mathrm{ABq}}=14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}-$ $\left.\mathrm{CH}_{2}\right), 4.31\left(\mathrm{~d}\right.$ of $\left.\mathrm{q}, J_{\mathrm{d}}=1.8 \mathrm{~Hz}, J_{\mathrm{q}}=7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 5.09(\mathrm{~m}, 1 \mathrm{H}$, 2-H).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 63.13 ; \mathrm{H}, 10.01$; N, 8.18. Found: C, 62.86; H, 10.15; N, 8.18.

2,2,5-Trimethyl-3-isopropyloxazolidin-4-one (2d): mp 34-36 ${ }^{\circ} \mathrm{C}$; IR (neat) $1700 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) 51.27-1.37$ (five $\left.\mathrm{CH}_{3}\right), 3.30$ (sep, $J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 4.11(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 63.13 ; \mathrm{H}, 10.01 ; \mathrm{N}, 8.18$. Found: C, 62.78; H, 9.84; N, 8.26.

3-Benzyl-5-methyl-2-phenyloxazolidin-4-one (2e): bp 140-150 ${ }^{\circ} \mathrm{C}$ (bath temp) $/ 5$ Torr; IR (neat) $1710 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.52$ (d, $\left.J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.40$ and $4.87\left(\mathrm{AB} \mathrm{q}, J=15 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.30$ (br q, $J=7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 5.55 (br s, $1 \mathrm{H}, 2-\mathrm{H}$), $6.87-7.60(\mathrm{~m}, 10 \mathrm{H}$, aromatic protons).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 76.38 ; \mathrm{H}, 6.41$; N, 5.24. Found: C, 76.42; H, 6.47; N, 5.26.

1-Benzyl-3-hydroxy-3-methyl-4-phenylazetidin-2-one (3e): $\mathrm{mp} 135.5-137^{\circ} \mathrm{C}$; IR (KBr) $3350,1735 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.51(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.80$ and $4.86(\mathrm{AB} \mathrm{q}, J=15 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.28(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.91-7.51$ ($\mathrm{m} .1 \mathrm{C}^{\prime} \mathrm{H}$, aromatic protons).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}$: C, 76.38; H, 6.41 ; N, 5.24 . Found: C, 76.36; H, 6.41; N, 5.17.

2,5-Dimethyl-3-phenyloxazolidin-4-one (2f): mp $106-109^{\circ} \mathrm{C}$; IR (KBr) $1700 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.43\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right)$, $1.53\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 4.42\left(\mathrm{~d}\right.$ of $\mathrm{q}, J_{\mathrm{d}}=1.5 \mathrm{~Hz}, J_{\mathrm{q}}=6.5 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}), 5.70\left(\mathrm{~d}\right.$ of $\left.\mathrm{q}, J_{\mathrm{d}}=1.5 \mathrm{~Hz}, J_{\mathrm{q}}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 7.10-7.50$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic protons).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}$: C, 69.09; H, 6.85; N, 7.33. Found: C, 69.27; H, 6.89; N, 7.47.

3,4-Dimethyl-3-hydroxy-1-phenylazetidin-2-one (3f): mp
$141-142{ }^{\circ} \mathrm{C}$; IR (KBr) $3340,1730 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{~d}, J=$ $\left.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 4.12(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, 7.20-7.40 (m, 5 H , aromatic protons).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 69.09, \mathrm{H}, 6.85 ; \mathrm{N}, 7.33$. Found: C , 68.70; H, 6.78; N, 7.04.

2,3-Diphenyl-5-methyloxazolidin-4-one (2g): mp $97-98^{\circ} \mathrm{C}$; IR (KBr) $1690 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.60\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.58$ ($\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $6.41(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.19$ and 7.33 (each s, each 5 H , aromatic protons).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}$: C, 75.87; H, 5.97; N, 5.53. Found: C, 76.09; H, 5.95; N, 5.55.

1,4-Diphenyl-3-hydroxy-3-methylazetidin-2-one (3g): mp $153-154^{\circ} \mathrm{C}$; IR (KBr) $3320,1712 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.67(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.90(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.85-7.43(\mathrm{~m}, 10 \mathrm{H}$, aromatic protons).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}$: C, 75.87; $\mathrm{H}, 5.97 ; \mathrm{N}, 5.53$. Found: C, 75.94; H, 5.84; N, 5.54.

3-Ethyl-2-methyl-5-phenyloxazolidin-4-one (2h) was not completely purified because it decomposed on standing or distillation: IR (neat) $1705 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.17\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.57\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 3.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 5-\mathrm{H})$, 5.35 (m, 1 H, 2-H), 7.15-7.45 (m, 5 H , aromatic protons).

1-Ethyl-3-hydroxy-4-methyl-3-phenylazetidin-2-one (3h) did not crystallize and was not completely purified: IR (neat) 3350, 1725 cm^{-1}; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.78\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 1.13(\mathrm{t}, J=7$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.82(\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, 7.26 ($\mathrm{s}, 5 \mathrm{H}$, aromatic protons).

2,2-Dimethyl-3-isopropyl-5-phenyloxazolidin-4-one (2i) was not completely purified because it was readily oxidized on standing to give a peroxide whose structure is not clear at present: IR (neat) $1700 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.39$ and 1.49 (each d, each $3 \mathrm{H}, J=4 \mathrm{~Hz}$, isopropylmethyis), 1.52 and 1.55 (each s, each $3 \mathrm{H}, 3-\mathrm{Me}_{2}$), 3.37 (m, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 5.16(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.20-7.63(\mathrm{~m}, 5 \mathrm{H}$, aromatic protons). The peroxide showed a positive KI-starch test: mp $145-146{ }^{\circ} \mathrm{C}$; IR (KBr) 3175, $1695 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N} \cdot \mathrm{O}_{2}$: C, $63.38 ; \mathrm{H}$, 7.21; N, 5.28. Found: C, 63.54; H, 7.16; N, 5.27

4,4-Dimethyl-3-hydroxy-1-isopropyl-3-phenylazetidin-2-one (3i): mp 140-141 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3250, $1735 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.82$ (s, $3 \mathrm{H}, 4-\mathrm{CH}_{3}$ cis to Ph), 1.25 (s, $3 \mathrm{H}, 4-\mathrm{CH}_{3}$ trans to Ph), 1.41 (d, J $=7 \mathrm{~Hz}, 6 \mathrm{H}$, isopropylmethyls), 3.58 ($\operatorname{sep}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}$), 4.50 (s, $1 \mathrm{H}, \mathrm{OH}$), 7.28 (s, 5 H , aromatic protons)

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 72.07$; $\mathrm{H}, 8.21 ; \mathrm{N}, 6.00$. Found: C, 72.31; H, 8.28; N, 5.91.

3,4-Diphenyl-1-benzyl-3-hydroxyazetidin-2-one (3j): mp $100-102^{\circ} \mathrm{C}$; IR (KBr) $3325,1730 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.86$ and 4.94 ($\mathrm{AB} \mathrm{q}, J=15 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.54(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H})$, 6.90-7.50 (m, 10 H , aromatic protons).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 80.22 ; \mathrm{H}, 5.81 ; \mathrm{N}, 4.25$. Found: C, 80.34; H, 5.82; N, 4.19.

3,5-Diphenyl-2-methyloxazolidin-4-one (2k): mp 105.5-107 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1715 \mathrm{~cm}^{-1} ; \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.57\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$,
5.35 (br s, $1 \mathrm{H}, 5-\mathrm{H}$), 5.91 (br q, $J=5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), $7.00-7.70$ (m, 10 H , aromatic protons).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}$: C, 75.87; H, 5.97 ; N, 5.53. Found: C, 76.03 ; H, 6.00; N, 5.55.

1,3-Diphenyl-3-hydroxy-4-methylazetidin-2-one (3k): mp $175-176.5^{\circ} \mathrm{C}$; IR (KBr) $3300,1725 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.03(\mathrm{~d}, J$ $\left.=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.36(\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, $6.95-7.55$ ($\mathrm{m}, 10 \mathrm{H}$, aromatic protons).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}$: C, 75.87; H, 5.97; N, 5.53. Found: C, 75.98; H, 6.01; N, 5.51.

1,3,4-Triphenyl-3-hydroxyazetidin-2-one (31): mp 172-174 ${ }^{\circ} \mathrm{C}$; IR (KBr) $3550,3300,1735,1715 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.19(\mathrm{~s}, 1 \mathrm{H}$, 4-H), 6.9)-7.72 (m, 15 H , aromatic protons).
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 79.98 ; \mathrm{H}, 5.43 ; \mathrm{N}, 4.44$. Found: C , 79.83; H, 5.24; N, 4.42.

Quantum Yield Determinations. Benzophenone-benzhydrol actinometry was used for quantum yield determination. The 313-nm line was isolated with a filter solution containing 0.002 M potassium chromate in 5% aqueous potassium carbonate. Samples (0.10 M solution) in Pyrex tubes were degassed to ca. $10^{-3} \mathrm{~mm}$ in three freezethaw cycles and sealed. The samples were irradiated individually in succession. Photolyses were carried out to $30-50 \%$ conversion. The degree of reaction was determined by NMR spectroscopy. Concentrations of the sensitizer were adjusted so that 5% or less of the incident light was absorbed by the oxoamides ($1 \mathbf{b}$ and $1 \mathbf{j}$).

Acknowledgment. We thank Dr. Choji Kashima for his useful suggestions. Partial financial support by a Matsunaga Research Grant is gratefully acknowledged.

Registry No.-2b, 64201-17-8; 2b- d_{1}, 64201-16-7; 2c, 64201-15-6;

2d, 64201-14-5; 2e, 64201-13-4; 2f, 64201-12-3; 2g, 64201-11-2; 2h, 64201-10-1; 2i, 64201-09-8; 2k, 64201-08-7; 3e, 64201-07-6; 3f, 64201-06-5; 3g, 64201-05-4; 3h, 64201-04-3; 3c, 64201-03-2; 3j, 64201-01-0; 3k, 64200-99-3; 31, 64201-21-4.

References and Notes

(1) (a) W. H. Urry and D. J. Trecker, J. Am. Chem. Soc., 84, 118 (1962). (b) P. J. Wagner, R. G. Zepp, K.-C. Liu, M. Thomas, T.-J. Lee, and N. J. Turro, ibid., 98,8125 (1976), and references cited therein.
(2) (a) G. S. Hammond, P. A. Leermaker, and N. J. Turro, J. Am. Chem. Soc., 83, 2395 (1961). (b) P. A. Leermaker, M. E. Ross, G. F. Vesley, and P. C. Warren, J. Org. Chem., 30, 914 (1965), and references cited therein. (c) E. S. Huyser and D. C. Neckers, ibid., 29, 276 (1964).
(3) B. Akermark and N. G. Johanson, Tetrahedron Lett., 371 (1969). See also K. R. Henery-Logan and C. G. Chen, Tetrahedron Lett., 1103 (1973).
(4) T. Hasegawa, M. Watabe, H. Aoyama, and Y. Omote, Tetrahedron, 33, 485 (1977).
(5) A similar reaction has been reported; J. Chem. Soc., Chem. Commun., 53 (1977).
(6) (a) T. L. Burkoth and E. F. Ullman, Tetrahedron Lett., 145 (1970). (b) Y. Ogata and K. Takagi, J. Org. Chem., 39, 1385 (1974).
(7) J. D. Coyle and D. H. Kingston, Tetrahedron Lett., 4525 (1976). (b) P. H. Mazzochi and M. Bowen, J. Org. Chem., 41, 1279 (1976).
(8) J. R. Scheffer, K. S. Bhandari, R. E. Gayler, and R. A. Wostradowski, J. Am. Chem. Soc., 97, 2178 (1975), and references cited therein.
(9) P. J. Wagner, I. E. Kochevar, and A. E. Kemppainen, J. Am. Chem. Soc., 94, 7489 (1972).
(10) (a) A. Wohl and C. Oesterlin, Ber., 34, 1139 (1901). (b) A. Wohl and L. H. Lips, ibid., 40, 2312 (1907). (c) R. Adams, H. B. Bramlet, and F. H. Tendick, J. Am. Chem. Soc., 42, 2369 (1920). (d) R. Adams, ibid., 44, 873 (1922). (e) V. Wolt and W. Block, Ann., 637, 119 (1960). (f) E. Campaigne, G. Skowronski, and R. B. Rogers, Syneth. Commun., 3, 325 (1973).
(11) This splitting is due to long-range coupling between $2-\mathrm{H}$ and $5-\mathrm{H}$ (cf. the spectrum of $\mathbf{2 b}-d_{1}$).
(12) The analysis is poor because the oxazolidin-4-one is so hygroscopic and volatile.

Regio- and Stereoselectivity of the Formation of Halohydrins from 3-Methyl- and 3-tert-Butylcyclohexene and from the Corresponding Epoxides

Giuseppe Bellucci,* Giancarlo Berti, Maria Ferretti, Giovanni Ingrosso, and Ettore Mastrorilli
Istituto di Chimica Organica della Facoltà di Farmacia dell'Università di Pisa, 56100 Pisa, Italy

Received June 14, 1977

Abstract

In order to explain large variations in product regio- and stereochemistry observed in several types of ionic additions to cycloalkenes involving different reagents, the product compositions obtained in some reactions leading from 3-methyl- and 3-tert-butylcyclohexene to chlorohydrins, bromohydrins, and bromoacetoxy derivatives have been investigated in detail. Whereas with N-chlorosuccinimide, preformed HOBr , or $\mathrm{CH}_{3} \mathrm{COOBr}$ electrophilic attack was nonstereoselective for the methyl and anti stereoselective for the tert-butyl derivative, with NBS a high syn stereoselectivity was observed for the attack by electrophilic bromine, which indicated that repulsive steric effects operating during the nucleophilic step should be the main product-determining factor in the latter case, and that this step should be the rate-limiting one. Support of this hypothesis was brought by the reactions of the corresponding epoxides with HBr and HCl , since the observed regioselectivities of these reactions, which can be taken as models for the nucleophilic opening of the halonium intermediates of the electrophilic additions to olefins, are in agreement with those deduced from the product compositions of the latter reactions.

As a part of a research program concerning the influence of steric, polar, and conformational effects on electrophilic additions involving different types of reagents and different mechanisms, ${ }^{1-4}$ we undertook a comparative product and kinetic study of additions to 3 -alkylcyclohexenes involving epihalonium ion intermediates and of the ring-opening reactions of diastereoisomeric couples of 3 -alkyl-1,2-epoxycyclohexanes, which can be taken as models for the nucleophilic steps of the additions. A methyl and a tert-butyl group were chosen as alkyl substituents having, respectively, a relatively small and very large size. In this paper, we report the results of the product study. ${ }^{5}$

Results

3-tert-Butylcyclohexene Derivatives. As reported by

Richer, ${ }^{6}$ the epoxidation of 3-tert-butylcyclohexene (1a) with peroxyacids yielded a 90:10 mixture of the trans and cis epoxides 2a and 3a. Opening of this mixture with hydrogen bromide afforded three isomeric bromohydrins, which were separated by column chromatography. The most abundant compound was identified as the diequatorial bromohydrin $5 \mathbf{c}$ on the basis of its NMR spectrum ${ }^{7}$ and of its conversion back to $2 a$ by treatment with base. The other two isomers were trans diaxial bromohydrins, as shown by the narrow signals, due to equatorial protons α to bromine and hydroxyl, appearing in the medium-field part of their NMR spectra; they were identified as $4 c$ and $6 c$ by conversion, respectively, into the epoxides 2a and 3a.
This method was convenient for the preparation of the pure trans epoxide 2a, since the separation of bromohydrin 5 c from

Table I. Product Distributions for Additions to 3-tert-Butylcyclohexene ${ }^{a}$

Reagent	Solvent	Products				
		Type	Distribution, \%			
			4	5	6	7
NBS	$\mathrm{Me}_{2} \mathrm{SO}-\mathrm{H}_{2} \mathrm{O}(95: 5)$	c	78	4	3	15
NBS	$\mathrm{H}_{2} \mathrm{O}$	c	54	4	19	$23^{\text {b }}$
NBA	Dioxane $-\mathrm{H}_{2} \mathrm{O}$ (7:3)	c	81	3	4	12
NBA	Dioxane-0.2 N aq HClO 4 (7:3)	c	76	4	5	15
HOBr (aq)	Dioxane	c				c
AcOBr	CCl_{4}	d	13	2	9	76
NCS	$\mathrm{H}_{2} \mathrm{O}$	f	14	3	25	58^{d}

Abstract

${ }^{a}$ For experimental conditions, see Experimental Section. ${ }^{b}$ About 30% of trans dibromides were also formed. Complete thermal isomerization of the diequatorial intc the diaxial dibromo adduct under the GLC conditions prevented the determination of their ratio (see ref 25). ${ }^{c}$ An accurate determination was prevented by overlap of the peak of 5 with an unidentified by-product in the chromatogram. However, 7 was evaluated $\%$ amount to more than 50% of the total products. ${ }^{d}$ Diaxial and diequatorial dichlorides (about 35%) in a 4:6 ratio were also formed.

its isomers was easy, but not for that of the diastereoisomer 3a, because of the small amount of $\mathbf{5 c}$ that could be isolated. In the search for a stereoselective route to 3a, the addition of the elements of hypobromous acid to la followed by cyclization of the resulting bromohydrins were investigated. This method has been frequently used to obtain the diastereoisomeric epoxide formed in lower yield by direct epoxidation. ${ }^{8}$ In contrast with the expectation, bromohydrin $4 \mathbf{c}$, having the hydroxyl trans to the tert-butyl group, was however isolated as the main product of the reactions of 1 a by the usual methods, ${ }^{9-11}$ both with N-bromosuccinimide (NBS) in $\mathrm{Me}_{2} \mathrm{SO}-$ water and with N-bromoacetamide (NBA) in dioxane-water, and this preference for attack by electrophilic bromine syn to the tert-butyl group was confirmed by the fact that basepromoted cyclization of the crude bromohydrin mixtures gave an excess of epoxide 2 a .

However, when the addition to la was carried out with an aqueous solution of preformed hypobromous acid, the main product was $7 \mathbf{c}$ (identified by NMR^{7}). Its isolation by column chromatography gave a low yield owing to decomposition and isomerization to $\mathbf{6 c}$, but cyclization of the crude addition mixture with potassium hydroxide gave the two epoxides 2a and 3 a in a $20: 80$ ratio.

A 15:85 mixture of $\mathbf{2 a}$ and $\mathbf{3 a}$ was finally obtained by addition of preformed acetyl hypobromite to la in carbon tetrachloride followed by refluxing of the resulting crude acetoxy bromo adducts $\mathbf{4 d} \mathbf{- 7 d}$ with potassium carbonate in aqueous methanol. Opening of the latter mixture of epoxides with hydrogen bromide and column chromatography afforded a fairly good yield of bromohydrin $\mathbf{6 c}$, the cyclization of which gave pure 3a. Alternatively, 3a was conveniently obtained by potassium carbonate treatment of the major product 7d, formed in the acetoxybromination of 1 a and separated from

Table II. Regioselectivity of Opening Reactions of 2a and 3a with Hydrogen Halides in CCl_{4}

	Hydrogen Epoxide	Products		
halide	Type	4:5 ratio	$\mathbf{6 : 7}$ ratio	
$\mathbf{2 a}$	HBr	\mathbf{c}	$29: 71$	
$\mathbf{2 a}$	HCl	\mathbf{f}	$38: 62$	
$\mathbf{3 a}$	HBr	\mathbf{c}		$93: 7$
$\mathbf{3 a}$	HCl	\mathbf{f}		$93: 7$

the accompanying isomers $\mathbf{4 d}, \mathbf{5 d}$, and $\mathbf{6 d}$ by column chromatography.

Because of the very marked dependence of the steric course of the additions to la on the reagent used as the source of positive bromine, complete stereo- and regioselectivity data were sought by direct GLC analysis of the addition products. The reaction of la with N-chlorosuccinimide (NCS) in water was also investigated. This reaction proceeded conveniently at $90-100^{\circ} \mathrm{C} .{ }^{12}$ The reference trans chlorohydrins $4 \mathbf{f}-7 \mathbf{f}$ had already been described. ${ }^{13}$ The product distributions found for the various addition reactions, as reported in Table I, confirm the largely different steric courses between the N-bro-moamide-promoted reactions on one hand and the additions of HOBr or AcOBr on the other (Table I).

In contrast, no such difference was apparent in the steric course of the shlorohydrin formation by the $\mathrm{N}^{-} \mathrm{CS}$ reaction, which was very similar to that reported for the addition of chlorine in the presence of aqueous sodium carbonate. ${ }^{13}$

For comparison purposes, the reaction of epoxides 2a and 3a with hydrogen bromide and chloride was also examined. The percentages of the two isomeric trans halohydrins formed from each epoxide are reported in Table II.

3-Methylcyclohexene Derivatives. The peroxyacid oxidation of 3-methylcyclohexene (1b) afforded about equal amounts of the diastereoisomeric epoxides $2 \mathbf{b}$ and $3 \mathbf{b},{ }^{14}$ which could not be separated by the usual techniques. Opening of the mixture with hydrogen chloride and esterification of the formed trans chlorohydrins with p-nitrobenzoyl chloride gave, after several crystallizations, a p-nitrobenozyl derivative previously isolated by Rickborn. ${ }^{14}$ Structure and relative configuration shown in $\mathbf{6 j}$ resulted from the NMR spectrum of this compound (Table III), the multiplicity and coupling constants of the $\delta 5.16$ signal, due to the proton α to the ester group, clearly establishing a vicinal cis relationship between p-nitrobenzoyloxy and methyl substituents. This confirmed the cis configuration $\mathbf{3 b}$ assigned on the basis of hydride reduction ${ }^{14}$ to the epoxide obtained by potassium carbonate treatment of $\mathbf{6 j}$.

The trans-epoxide $\mathbf{2 b}$, which had never been cbtained pure, was prepared by a similar cyclization of the bromohydrin

Table III. NMR Data of \boldsymbol{p}-Nitrobenzoates of Halohydrins ${ }^{a}$

Compd	Registry no.	$-\mathrm{CH}_{3}$		$>\mathrm{CHX}$			> $\mathrm{CH}-\mathrm{O}-$			$\underset{\delta}{-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p,}$
		δ	$J, \mathrm{~Hz}$	δ	W	$J, \mathrm{~Hz}$	δ	W	J, Hz	
4h	64162-82-9	1.06 (d)	6.4	4.40 (t)		3.7	5.45 (m)	12		8.27 (s)
5h	64162-83-0	0.99 (d)	6.0	4.15 (m)	25		5.09 (t)		9.3	8.35 (s)
6h	64199-95-7	0.98 (d)	7.0	4.46 (m)	15		5.29 (d of d)		3.4, 5.2	8.30 (s)
7 h	64199-96-8	1.23 (d)	6.0	3.80 (t)		10.3	5.22 (m)	25		8.27 (s)
4j	64162-84-1	1.09 (d)	6.7	4.25 (t)		3.9	5.37 (m)	12		8.30 (s)
5 j	64162-85-2	1.00 (d)	6.0	4.02 (m)	25		5.05 (t)		9.8	8.35 (s)
6 j	64199-97-9	0.99 (d)	6.7	4.31 (m)	14		5.16 (d of d)		3.4, 5.2	8.25 (s)
7 j	64199-98-0	1.20 (d)	6.0	3.71 (t)		10.0	~ 5.1 (m)	b		8.25 (s)

${ }^{a}$ In $\mathrm{CDCl}_{3}{ }^{6}$ Not measured owing to overlap with the signal at $\delta 5.16$ of the contaminating isomer $\mathbf{6 j}$.

Table IV. Regioselectivity of Opening Reactions of $\mathbf{2 b}$ and 3b with Hydrogen Halides in $\mathbf{C H C l}_{3}$

	Hydrogen halide	Type		
Epoxide	4:5 ratio	6:7 ratio		
$\mathbf{2 b}$	$\mathbf{H B r}$	\mathbf{g}	$64: 36$	
2b	HCl	\mathbf{i}	$62: 38$	
$\mathbf{3 b}$	HBr	\mathbf{g}		$90: 10$
3b	HCl	\mathbf{i}		$93: 7$

p-nitrobenzoate 4 h , easily obtained from the reaction of $\mathbf{1 b}$ with NBS in $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{H}_{2} \mathrm{O}$ followed by esterification with p-nitrobenzoyl chloride and fractional crystallization. This established a trans relationship between hydroxyl and methyl groups in the parent bromohydrin formed as the main product of the NBS reaction. This product, isolated by column chromatography, was shown to have bromine vicinal to the methyl group ($\mathbf{4 g}$) by oxidation to bromo ketone 8 and subsequent dehydrobromination with 2,4-dinitroyhenylhydrazine ${ }^{15}$ to the known derivative 9. ${ }^{16}$

The reaction of the trans-epoxide $\mathbf{2 b}$ with hydrogen bromide yielded, besides 4 g , the alternative product of trans ring opening, $\mathbf{5 g}$, which was separated by column chromatography. Isomer 6 g was obtained from the similar opening of the cisepoxide 3 b . The fourth bromohydrin (7 g), formed in too small amount both in the NBS reaction of 1 b and in the hydrogen bromide opening of $\mathbf{3 b}$, was instead isolated as its p-nitrobenzoate from the reaction of preformed hypobromous acid with 1 l by a combination of column and thin-layer chromatography.

In a similar way, chlorohydrins $4 \mathbf{i}$ and $5 \mathbf{i}$ were isolated from the opening reactions of $\mathbf{2 b}$ with hydrogen chloride, while $\mathbf{6 i}$ was obtained from the cis-epoxide 3 b . The fourth isomer 7 i was not isolated in a pure state, but a mixture of $6 \mathbf{i}$ and $7 \mathbf{i}$ enriched in the latter isomer was separated by chromatography from the products of the reaction of 1 b with NCS in water.

Structures, relative configurations, and conformations of all bromohydrins $\mathbf{4 g}-7 \mathrm{~g}$ and chlorohydrins $4 \mathbf{i}-6 \mathbf{i}$ were demonstrated or confirmed by the NMR spectra of their p-nitrobenzoates (Table III), on the basis of the multiplicity and coupling constants of the signals for the protons α to acyloxy and halogen.

Compounds 5 and 7 exhibited the expected triequatorial conformations, as shown by the high value ${ }^{17}$ of the coupling constants of the protons α to the halogen and ester group between themselves and with the proton α to methyl. The low J values in the spectra of compounds 4 were consistent ${ }^{17}$ with

Table V. Product Distributions for Additions to 3-Methylcyclohexene ${ }^{a}$

		Products				
		Distribution, $\%$				
Reagent	Solvent	Type	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
NBS	$\mathrm{Me}_{2} \mathrm{SO}-\mathrm{H}_{2} \mathrm{O}(95: 5)$	\mathbf{g}	77	5	11	7
NBS	$\mathrm{H}_{2} \mathrm{O}$	\mathbf{g}	76	4	15	5
$\mathrm{HOBr}(\mathrm{aq})$	Dioxane	\mathbf{g}	47	3	33	17
NCS	$\mathrm{H}_{2} \mathrm{O}$		\mathbf{i}	47	9	26

${ }^{a}$ For experimental conditions, see Experimental Section. Only traces of trans dihalides were formed in all these reactions.
a high preference for conformations with equatorial methyl and axial halogen and ester group. In products 6, instead, one of the coupling constants of the proton α to the p-nitrobenzoyloxy group was slightly higher than expected for an equatorial proton, probably because of some contribution to the conformational equilibrium by the alternative chair form with equatorial halogen and ester group and axial methyl.

The percentages of the two isomeric halohydrins obtained by GLC analysis of the products of ring opening of $2 b$ and $3 b$ with hydrogen bromide and chloride are quoted in Table IV.

Finally, Table V shows the product distributions found in several addition reactions to $1 \mathbf{b}$. As in the additions to 3 -tert-butylcyclohexene (1a), the formation of products of type 4 decreased, although less markedly, in favor of those of type 6 and 7 on passing from NBS to preformed HOBr and to NCS as the electrophilic reagents. These results excluded the possibility that HOBr , which could have been formed by hydrolysis of NBS or NBA, was the actual reactant in all N bromoamide reactions of $1 \mathbf{a}$ and $1 \mathbf{b}$, and rather pointed to a direct transfer of bromine from nitrogen to the double bond. In contrast, the similarity in the steric courses observed in the NCS-water and in the hypohalous acid reactions of both 1a and 1 b suggested hydrolysis of NCS to HOCl before the electrophilic attack.

Discussion

Representative stereo- and regioselectivity data for additions to alkenes la and $1 \mathbf{b}$, extracted from Tables I and V, are compared in Table VI. ${ }^{18}$ The regioselectivity of the attack by the different nucleophiles (water, $\mathrm{Me}_{2} \mathrm{SO},{ }^{19}$ acetate) anti to the alkyl substituent, which is given by the $4: 5$ ratio, is always high and very similar for both alkenes under all examined conditions. Also, the regioselectivity of the syn attack, given by the $6: 7$ ratio, exhibits a fairly constant trend for each olefin, but is markedly affected by the size of the allylic substituent. Moreover, the observed trends are comparable to those found in the ring-opening reactions of epoxides 2 and 3 with hydrogen halides (Tables II and IV). ${ }^{20}$ This analogy, which had been observed also with other cyclohexene derivatives bearing electron-withdrawing substituents, ${ }^{1,4,21,22}$ strongly suggests

for all examined reactions two-step addition mechanisms in which bridged intermediates are formed in the electrophilic stage, the main factors affecting the regioselectivity of the subsequent nucleophilic attacks being similar to those operating in the ring opening of the corresponding epoxides.

Nucleophilic attack on the cis-intermediates 10 (Scheme I), as well as on cis-epoxides 3 , occurs preferentially at $\mathrm{C}(1)$ to give mainly the expected diaxial products (4 from 10 or 6 from 3). On the other hand, the formation of diaxial products 6 from the trans-intermediates 11 , or of 4 from the transepoxides 2, involves a nucleophilic attack at $\mathrm{C}(2)$ which is subjected to a steric hindrance by the 3 -alkyl substituent. When R is methyl, this attack is still slightly predominant (59-66\%), but the alternative attack at $\mathrm{C}(1)$ to give diequatorial adducts (7 from 11 or 5 from 2) becomes favored, in spite of its unfavorable conformational requirements, ${ }^{23}$ when R is a bulky tert-butyl group.
If one excludes the NBS reactions, the stereoselectivity data of Table VI, giving the relative contributions of intermediates 10 and 11 to the reaction pathways, show that in all additions to la the trans-intermediate 11 is highly predominant, in accordance with a strong steric effect of the tert-butyl group during the electrophilic step, as observed also in the epoxidation of 1 a (90% anti attack), whereas no stereoselectivity in the formation of the two intermediates 10 and 11 is observed in the analogous reactions of $\mathbf{1 b}$, consistent with the lack of any steric effect by the allylic methyl group in the epoxidation of 1 b . All these data can be rationalized on the basis of the mechanism represented in Scheme I, if the formation of intermediates 10 and 11 is practically irreversible and their subsequent reactions to give products are a fast step ($k_{\mathrm{CA}}, k_{\mathrm{CE}}$, $k_{\mathrm{TA}}, k_{\mathrm{TE}} \gg k_{1}, k_{2}, k_{-1}, k_{-2} ; k_{2}>k_{1}$ for 1 a and $k_{2} \simeq k_{1}$ for (b).

On the other hand, the stereoselectivities observed in the N-bromoamide reactions cannot be accounted for on the basis of the same mechanism, since it would imply that $k_{1}>k_{2}$ for both $1 \mathbf{a}$ and $\mathbf{1 b}$, in contrast with the anticipated retarding effect of the tert-butyl and with the expected absence of an accelerating effect by the methyl group on the rates of syn electrophilic attack. The product distributions observed in the latter reactions would be instead consistent with $k_{\mathrm{CA}}, k_{\mathrm{CE}}$, $k_{\mathrm{TA}}, k_{\mathrm{TE}}<k_{1}, k_{2}, k_{-1}, k_{-2} ; k_{\mathrm{CA}}+k_{\mathrm{CE}}>k_{\mathrm{TA}}+k_{\mathrm{TE}} ; k_{\mathrm{CA}} \gg$ $k_{\mathrm{CE}} ; k_{\mathrm{TA}}>k_{\mathrm{TE}}$ for 1 b and $k_{\mathrm{TE}}>k_{\mathrm{TA}}$ for la. This implies that the electrophilic step be reversible and the cis intermediate 10 be more reactive than the trans intermediate 11. The latter assumption is supported by the reactivity order found ${ }^{24}$ for the hydrogen chloride opening reactions of epoxides 2 and 3 , the protonated forms of which, as previously mentioned, can be considered as fairly reliable models for the bridged intermediates 11 and 10 , respectively.

As far as the nature of the intermediates is concerned, there seems to be no reason for assuming structures different from epihalonium ions 12 (possibly as ion pairs with the appropriate anions) for all examined reactions which appear to proceed through a slow, irreversible electrophilic attack. However, the

Table VI. Stereo- and Regioselectivities of Additions to la and lb

Reagent	Olefin	Stereoselectivity 10:11	Regioselectivity	
			4:5	6:7
NBS ($\mathrm{Me}_{2} \mathrm{SO}-$	1a	82:18	95:5	17:83
$\mathrm{H}_{2} \mathrm{O}$)	1b	82:18	94:6	61:39
$\mathrm{HOBr}(\mathrm{aq})$	1a	20:80	$4>5$	6 < 7
(dioxane)	$1 b$	50:50	94:6	66:34
$\mathrm{AcOBr}\left(\mathrm{CCl}_{4}\right)$	la	15:85	87:13	11:89
$\mathrm{NCS}\left(\mathrm{H}_{2} \mathrm{O}\right)$	1a	17:83	82:18	30:70
	1b	56:44	84:16	59:41

change in mechanism observed in the N-bromoamides reactions can be better explained assuming different bridged species as the intermediates formed in a reversible electrophilic step.

Some time ago we proposed ${ }^{25}$ that the bromination of compounds 1 with amine-bromine or ether-bromine complexes could occur through a pre-rate-determining equilibrium leading to species of type 13 , in which bromine is bonded both to the base and to the olefinic carbon atoms. A similar intermediate has been later invoked ${ }^{26}$ for the bromochlorination of cyclopentadiene with amine-bromine-chloride

12($\mathrm{X}=\mathrm{Br}$ or Cl)

13(B-amine or ethar)

14
complexes. By analogy, we believe that the intermediates of the N-bromoamide reactions on olefins may be represented by species 14, which, being formed rapidly and being conceivably less reactive than bromonium ions, may be subjected to slow rate- and product-determining nucleophilic attack. Similar conclusions have been independently inferred ${ }^{27}$ from a study of the relative nucleophilicities of $\mathrm{Me}_{2} \mathrm{SO}$ and methanol toward the intermediates formed in the reaction of olefins with bromine and N-bromoamides.

In conclusion, all available data indicate the possibility of two different stepwise mechanisms of anti addition to cyclohexene derivatives. In the first, more widely occurring one, the stereoselectivity is controlled during a slow electrophilic step and the regioselectivity during the subsequent nucleophilic steps. In the absence of specific interactions between substituents on the substrate and the electrophile, ${ }^{4}$ this mechanism leads to product distributions which can be roughly foreseen on the basis of the stereoselectivity of the peroxyacid oxidation of the substrate and of the regioselectivity of the ring-opening reactions of the resulting diastereoisomeric epoxides. In the second mechanism, both the stereo- and the regioselectivity are instead controlled by steric, electronic, and conformational factors operating during a rate- and prod-uct-determining nucleophilic step, and the product distribution can be roughly anticipated on the basis of the relative reactivities of the diastereoisomeric epoxides arising from the substrate. ${ }^{24}$ The latter mechanism, which has been proposed also for reactions of dihydropyran derivatives, ${ }^{28}$ appears to be peculiar to the reactions of N-bromoamides (but not for N-chloroamides), iodine compounds, ${ }^{29-32}$ amine-halogen and ether-halogen complexes, and to some oxymercuriation reactions. ${ }^{33}$

Experimental Section

Melting points were determined on a Kofler block and are uncorrected. NMR spectra were taken from CCl_{4} solutions (except when differently stated) with a Jeol C-60 HL spectrometer using $\mathrm{Me}_{4} \mathrm{Si}$ as
internal standard. GLC analyses were performed with a C. Erba Fractovap Model GV and a Perkin-Elmer Model F11 instrument. Neutral silica gel (Schuchardt, 150-300 μ) was always used for column chromatographies. Usual workup of reaction products involved extraction with a solvent (if necessary), washing with $\mathrm{H}_{2} \mathrm{O}\left(10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}\right.$ if acidic), drying with MgSO_{4}, and evaporation in vacuo (rotating evaporator). Petroleum ether refers to the faction of boiling range $40-60^{\circ} \mathrm{C}$.
t-2-Bromo-t-3-tert-butyl-r-1-cyclohexanol (4c), t-2-Bromo-t-6-tert-butyl-r-1-cyclohexanol (5c), and t-2-Bromo-c-6-tert-butyl-r-1-cyclohexanol (6c). A. A solution of 1 a (12 g , $0.086 \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(120 \mathrm{~mL})$ was treated dropwise under stirring at $0^{\circ} \mathrm{C}$ with a $0.35 \mathrm{M} \mathrm{CHCl}_{3}$ solution of peroxybenzoic acid ($370 \mathrm{~mL}, 0.13$ mol). After standing overnight at $4^{\circ} \mathrm{C}$, the solution was worked up as usual to give a liquid residue $(8.8 \mathrm{~g})$ consisting of epoxides 2 a and 3a in a 90:10 ratio (GLC: 2 -m glass column, $2.5-\mathrm{mm}$ i.d., packed with 1% neopentyl glycol succinate on silanized Chromosorb W, 80-100 mesh; column $90^{\circ} \mathrm{C}$, evaporator and detector $200^{\circ} \mathrm{C}$, nitrogen flow $40 \mathrm{~mL} / \mathrm{min}$; relative rentention times $1.20: 1$;

A solution of this mixture in $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$ was saturated with dry HBr and worked up after 30 min to give a residue (12.0 g) consisting of bromohydrins $4 \mathbf{c}, 5 \mathbf{c}$, and $\mathbf{6 c}$. A part of this mixture (9.5 g) was chromatographed over a $2.2 \times 50 \mathrm{~cm}$ column of silica gel (76 g). Petroleum e:her eluted pure $5 \mathrm{c}(5.0 \mathrm{~g})$ as an oi... ${ }^{7}$

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{BrO}: \mathrm{C}, 51.06 ; \mathrm{H}, 8.14 ; \mathrm{Br}, 33.98$. Found: C, 50.98; H, 8.30; Br, 33.45 .

Treatment of $5 \mathbf{c}(0.30 \mathrm{~g}, 1.28 \mathrm{mmol})$ with phenyl isocyanate (0.165 $\mathrm{g}, 1.38 \mathrm{mmol}$) on a water bath for 30 min gave the phenylurethane, mp $127-128^{\circ} \mathrm{C}$ (from petroleum ether). ${ }^{7}$

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BrNO}_{2}$: C, $57.62 ; \mathrm{H}, 6.78 ; \mathrm{Br}, 22.59$. Found: C, 57.78; H, 6.80; Br, 22.26.

Elution with $98: 2$ petroleum ether-ethyl ether gave pure $6 \mathbf{c}(0.5 \mathrm{~g})$: $\mathrm{mp} 74-76{ }^{\circ} \mathrm{C}$ (from petroleum ether); NMR $\delta 0.98$ [s, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right]$, 2.16 ($\mathrm{s},-\mathrm{OH}, 1 \mathrm{H}$), 4.22 (two overlapping $\mathrm{m},>\mathrm{CHOH}$ and $>\mathrm{CHBr}$, $\left.W_{1 / 2}=5.5 \mathrm{~Hz}, 2 \mathrm{H}\right)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{BrO}: \mathrm{C}, 51.06 ; \mathrm{H}, 8.14 ; \mathrm{Br}, 33.98$. Found: C, 51.30; H, 7.98; Br, 34.26.

Further elution yielded pure $4 \mathrm{c}(1.5 \mathrm{~g})$: $\mathrm{mp} 70^{\circ} \mathrm{C}$ (from petroleum ether); NMR $\delta 1.00\left[\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right], 3.57(\mathrm{~s},-\mathrm{OH}, 1 \mathrm{H}), 4.11$ (m, $W_{1 / 2}=75 \mathrm{~Hz},>\mathrm{CHOH}$ or $\left.>\mathrm{CHBr}, 1 \mathrm{H}\right), 4.29\left(\mathrm{~m}, W_{1 / 2}=7 \mathrm{~Hz}\right.$, $>\mathrm{CHBr}$ or $>\mathrm{CHOH}, 1 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{BrO}: \mathrm{C}, 51.06 ; \mathrm{H}, 8.14 ; \mathrm{Br}, 33.98$. Found: C, 51.05 ; H, 7.95; Br, 34.50 .
B. N-bromoacetamide ($3.3 \mathrm{~g}, 0.024 \mathrm{~mol}$) was added to a solution of $1 \mathbf{a}(3.0 \mathrm{~g}, 0.022 \mathrm{~mol})$ in 7:3 dioxane-water (200 mL). After stirring for 1 h at room temperature, the reaction mixture was diluted with water anc extracted with ether to yield 4.1 g of mixed bromohydrins $4 \mathrm{c}-7 \mathrm{c}$.

A sample of this mixture (0.2 g) was treated with 1 M ethanolic $\mathrm{KOH}(5 \mathrm{~mL})$. After 30 min , dilution with water and extraction with ether gave epoxides 2a and 3 a in a 84:16 ratio (GLC).

The remaining mixture was chromatographed on a $1.8 \times 57 \mathrm{~cm}$ column of silica gel (110 g). Petroleum ether-ethyl ether ($98: 2$ and $95: 5$) eluted in succession: $5 \mathrm{c}(0.13 \mathrm{~g}), \mathbf{6 c}(0.15 \mathrm{~g})$, mixtures of $\mathbf{4 c}, \mathbf{6 c}$, and $7 \mathrm{c}(0.18 \mathrm{~g})$, and $4 \mathrm{c}(2.2 \mathrm{~g})$.
C. A solution of $1 \mathrm{a}(3.0 \mathrm{~g}, 0.022 \mathrm{~mol})$ in $95: 5 \mathrm{Me}_{2} \mathrm{SO}$-water (50 mL) was stirred with NBS ($4.3 \mathrm{~g}, 0.024 \mathrm{~mol}$) at rcom temperature for 1 h . Treatment as described under \mathbf{B} gave a mixture of $4 \mathrm{c}-7 \mathrm{c}(4.2 \mathrm{~g})$.

The cyclization of a sample of this mixture with ethanolic KOH yielded epoxides 2 a and 3 a in a ratio of 82:18 (GLC).
D. A $0.1 \mathrm{M} \mathrm{CCl}_{4}$ solution of acetyl hypobromite ${ }^{34}(540 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $1 \mathrm{a}(6.9 \mathrm{~g}, 0.05 \mathrm{~mol})$ in the same solvent $(20 \mathrm{~mL})$. After the addition was complete, the solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then washed with saturated aqueous NaHSO_{3} and worked up. The residue (12.0 g) was dissolved in MeOH (400 mL), a solution of 13.5 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 40 mL of water was added, and the mixture was refluxed for 2 h with occasional shaking, then diluted with water, and extracted with ether. Distillation of the residue yielded a mixture of epoxides 2 a and $3 \mathrm{a}(6.0 \mathrm{~g})$, bp $85-90^{\circ} \mathrm{C}(20$ mm), in a 15:85 ratio (GLC).

Treatment of these epoxides $(3.0 \mathrm{~g})$ with dry HBr as reported under A gave a mixture of bromohydrins $4 \mathrm{c}-7 \mathrm{c}(4.5 \mathrm{~g})$, which was chromatographed on a $2.2 \times 50 \mathrm{~cm}$ column of silica gel. Petroleum ether eluted $5 \mathbf{c}(0.5 \mathrm{~g})$, 99:1 petroleum ether-ethyl ether eluted $6 \mathbf{c}(3.0 \mathrm{~g})$, and 1:1 patroleum ether-ethyl ether yielded $4 \mathrm{c}(0.2 \mathrm{~g})$.
\boldsymbol{t}-2-Bromo-c-3-tert-butyl-r-1-cyclohexanol (7c). A 0.7 M aqueous solution of $\mathrm{HOBr}^{35}(57 \mathrm{~mL})$ was added dropwise to a stirred solution of $1 \mathrm{a}(5.0 \mathrm{~g}, 0.036 \mathrm{~mol})$ in dioxane (100 mL) at room temperature. After 30 min the reaction mixture was diluted with water and extracted with ether to afford 6.2 g of a residue, GLC of which
revealed the prevailing presence of bromohydrin $7 \mathbf{c}$, besides isomers $4 \mathbf{c}, 5 \mathbf{c}, 6 \mathrm{c}$, trans dibromides, and other components.
Cyclization of a sample of this mixture (0.2 g) with 1 N ethanolic KOH gave 2a and 3a in a 20:80 ratio.
The remaining mixture was chromatographed on a $2.2 \times 81 \mathrm{~cm}$ column of silica gel (120 g). Elution with petroleum ether gave small amounts of unreacted 1a, r-1,t-2-dibromo-t-3-tert-butylcyclohexane, ${ }^{36}$ and $5 \mathrm{c}(0.4 \mathrm{~g}$). Elution with $99: 1$ petroleum ether-ethyl ether yielded fractions containing $7 \mathbf{c}$ and other components (0.7 g), and then pure $7 \mathrm{c}(0.5 \mathrm{~g})$ as an oil. ${ }^{7}$
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{BrO}: \mathrm{C}, 51.06 ; \mathrm{H}, 8.14 ; \mathrm{Br}, 33.98$. Found: C , 51.19; H, 8.19; Br, 33.49 .
p-Nitrobenzoate (7 e): $\mathrm{mp} 116-118^{\circ} \mathrm{C}$ (from EtOH). ${ }^{7}$
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNO}_{4}$: $\mathrm{C}, 53.13 ; \mathrm{H}, 5.77 ; \mathrm{Br}, 20.79$. Found: C, 53.10; H, 5.66; Br, 20.60.
Further elution yielded various mixtures of $7 \mathbf{c}$ and $\mathbf{6 c}$, pure $\mathbf{6 c}$, and other components. Bromohydrin $7 \mathbf{c}$ was converted into $6 \mathbf{c}^{37}$ on prolonged contact with silica gel.
\boldsymbol{t}-2-Bromo-t-3-tert-butyl-r-1-cyclohexanol Acetate (4d). Prepared from 4 c with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine for 14 h at room temperature as a liquid: NMR $\delta 0.96\left[\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right], 2.01\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}-, 3 \mathrm{H}\right), 4.35$ $\left(\mathrm{m}, W_{1 / 2}=6.5 \mathrm{~Hz},>\mathrm{CHBr}, 1 \mathrm{H}\right), 4.97\left(\mathrm{~m}, W_{1 / 2}=6.5 \mathrm{~Hz},>\mathrm{CHO}-\right.$ $\left.\mathrm{COCH}_{3}, 1 \mathrm{H}\right)$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{BrO}_{2}: \mathrm{C}, 51.99 ; \mathrm{H}, 7.63 ; \mathrm{Br}, 28.83$. Found: C , $52.40 ; \mathrm{H}, 7.62 ; \mathrm{Br}, 28.35$.
\boldsymbol{t}-2-Bromo-t-6-tert-butyl-r-1-cyclohexanol acetate (5d), obtained from $5 \mathbf{c}$ and $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine after 21 days, had $\mathrm{mp} 32-34$ ${ }^{\circ} \mathrm{C}$ (from petroleum ether): NMR $\delta 0.90\left[\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right], 2.04$ (s, $\left.\mathrm{CH}_{3} \mathrm{CO}-, 3 \mathrm{H}\right), 3.85(\mathrm{~m}, W=25 \mathrm{~Hz},>\mathrm{CHBr}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $>\mathrm{CHOCOCH}_{3}, 1 \mathrm{H}$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{BrO}_{2}: \mathrm{C}, 51.99 ; \mathrm{H}, 7.63 ; \mathrm{Br}, 28.83$. Found: C , $52.20 ; \mathrm{H}, 7.35 ; \mathrm{Br}, 28.40$.
\boldsymbol{t}-2-Bromo-c-6-tert-butyl-r-1-cyclohexanol acetate (6d) was obtained as a liquid from $6 \mathbf{c}$ and $\mathrm{Ac}_{2} \mathrm{O}$ after a reaction time of 160 h : NMR $\delta 0.88\left[\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right], 2.04\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}-, 3 \mathrm{H}\right), 4.31\left(\mathrm{~m}, W_{1 / 2}\right.$ $=6.5 \mathrm{~Hz},>\mathrm{CHBr}, 1 \mathrm{H}), 5.17\left(\mathrm{~m}, W_{1 / 2}=6.5 \mathrm{~Hz},>\mathrm{CHOCOCH}_{3}, 1\right.$ H).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{BrO}_{2}: \mathrm{C}, 51.99 ; \mathrm{H}, 7.63 ; \mathrm{Br}, 28.83$. Found: C , 52.41; H, 7.60; Br, 28.55.
t-2-Bromo-c-3-tert-butyl-r-1-cyclohexanol Acetate (7d). A mixture of acetoxy bromides $4 \mathrm{~d}-7 \mathrm{~d}(4.5 \mathrm{~g})$, obtained by the addition of acetyl hypobromite to la as described above, was chromatographed on a $2.8 \times 70 \mathrm{~cm}$ column of silica gel (140 g). Petroleum ether eluted in succession mixtures of 4 d and $6 \mathrm{~d}(0.6 \mathrm{~g})$, mixtures of $4 \mathrm{~d}, \mathbf{6 d}$, and 7 d $(0.6 \mathrm{~g})$, and pure $7 \mathrm{~d}(2.5 \mathrm{~g}): \mathrm{mp} 55^{\circ} \mathrm{C}$ (from petroleum ether); NMR $\delta 1.08\left[\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right], 2.02\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}-, 3 \mathrm{H}\right), 3.88(\mathrm{t}, J=8.8 \mathrm{~Hz}$, $>\mathrm{CHBr}, 1 \mathrm{H}), 4.90(\mathrm{~m}, W=23 \mathrm{~Hz},>\mathrm{CHOCOCH} 3,1 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{BrO}_{2}: \mathrm{C}, 51.99 ; \mathrm{H}, 7.63 ; \mathrm{Br}, 28.83$. Found: C , 52.05; H, 7.58; Br, 29.10 .
trans-3-tert-Butyl-1,2-epoxycyclohexane (2a). Bromohydrin $5 \mathbf{c}(1.0 \mathrm{~g}, 4.2 \mathrm{mmol})$ was dissolved in 2-propanol $(20 \mathrm{~mL})$ and titrated with 1 N aqueous NaOH at room temperature, with phenol phthalein as the indicator. The consumption of base amounted to 4.2 mL . Dilution with water, extraction with ether, and usual workup gave pure (GLC) $2 \mathbf{a}^{6}(0.6 \mathrm{~g})$, bp $92-94^{\circ} \mathrm{C}(20 \mathrm{~mm})$.

The same epoxide was also obtained by similar treatment of 4 c . cis-3-tert-Butyl-1,2-epoxycyclohexane (3a). A. Cyclization of bromohydrin $6 \mathbf{c}(1.0 \mathrm{~g})$ under the same conditions as employed for $4 \mathbf{c}$ and $\mathbf{5 c}$ afforded pure (GLC) $3 \mathbf{a}^{6}(0.55 \mathrm{~g})$, bp $82-83^{\circ} \mathrm{C}(18 \mathrm{~mm})$.
B. A solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{~g})$ in water $(5 \mathrm{~mL})$ was added to $7 \mathrm{~d}(2.0$ g) dissolved in $\mathrm{CH}_{3} \mathrm{OH}(50 \mathrm{~mL})$. After refluxing for 2 h , dilution with water, extraction with ether, and usual workup gave 0.8 g of pure 3a.
cis-3-Methyl-1,2-epoxycyclohexane (3b). The procedure of Rickborn ${ }^{14}$ was modified as follows: a $0.36 \mathrm{M} \mathrm{CHCl}_{3}$ solution of peroxybenzoic acid (300 mL) was added dropwise to $\mathbf{l b}(8.5 \mathrm{~g}, 0.088 \mathrm{~mol})$ dissolved in $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 12 h the solution was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and water, dried, and evaporated to give a mixture of $\mathbf{2 b}$ and $\mathbf{3 b}(8.0 \mathrm{~g}$) in a ratio of $52: 48$ (GLC: $50-\mathrm{m}$ capillary column coated with polypropylene glycol; column $90^{\circ} \mathrm{C}$, evaporator and detector $140^{\circ} \mathrm{C}$, nitrogen flow $1 \mathrm{~mL} / \mathrm{min}$; relative retention times 1.10:1). A solution of this mixture in $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ was saturated with dry HCl at $0^{\circ} \mathrm{C}$. After 5 min , usual workup yielded a residue $(9.0 \mathrm{~g})$ consisting of chlorohydrins $4 \mathrm{i}-7 \mathrm{i}$, which was dissolved in anhydrous pyridine (100 mL) and treated with p-nitrobenzoyl chloride (11.5 g). After 10 h at room temperature the reaction mixture was poured onto 10% aqueous HCl and ice and extracted with petroleum ether. Usual workup gave a solid which was crystallized from $\mathrm{CH}_{3} \mathrm{OH}$. Six crystallizations yielded 3.0 g of the pure p-nitrobenzoate $6 j, \mathrm{mp} 112-113^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp} 109-110^{\circ} \mathrm{C}$).

A solution of $6 \mathbf{j}(3.0 \mathrm{~g})$ in $\mathrm{CH}_{3} \mathrm{OH}(45 \mathrm{~mL})$ and water (5 mL) was refluxed for 1 h in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(3.5 \mathrm{~g})$. Dilution with water, extraction with ether, and distillation of the dried extract afforded pure (GLC) $3 \mathbf{b}^{14}(0.8 \mathrm{~g})$, bp $48^{\circ} \mathrm{C}(18 \mathrm{~mm})$.
trans-3-Methyl-1,2-epoxycyclohexane (2b). NBS ($9.5 \mathrm{~g}, 0.053$ $\mathrm{mol})$ was added portionwise to a stirred solution of $1 \mathbf{b}(5.0 \mathrm{~g}, 0.052$ mol) in $\mathrm{Me}_{2} \mathrm{SO}$-water ($95: 5,100 \mathrm{~mL}$) at room temperature. The reaction mixture was stirred for 30 min , diluted with water, and extracted with ether. Usual workup gave 9.3 g of mixed bromohydrins $4 \mathrm{~g}-7 \mathrm{~g}$, which were dissolved in anhydrous pyridine and esterified with p-nitrobenzoyl chloride (9.5 g) in the usual way. Crystallization of the resulting p-nitrobenzoates from ethanol yielded pure $4 \mathrm{~h}(9.5 \mathrm{~g})$, mp $118-119{ }^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{4}$: C, 49.14; $\mathrm{H}, 4.71$. Found: $\mathrm{C}, 49.14$; H, 4.86 .

Hydrolysis of $4 \mathrm{~h}(9.5 \mathrm{~g})$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in aqueous $\mathrm{CH}_{3} \mathrm{OH}$ as described for 6 j afforded 2.5 g of pure (GLC) $2 \mathrm{a}, \mathrm{bp} 48-49^{\circ} \mathrm{C}$ (18 mm).
\boldsymbol{t}-2-Bromo-t-3-methyl-r-1-cyclohexanol (4g). A mixture of $4 \mathbf{g}-7 \mathbf{g}(3.0 \mathrm{~g})$ obtained by reaction of $1 \mathbf{b}$ with NBS in $\mathrm{Me}_{2} \mathrm{SO}$-water as described above was chromatographed on a $1.8 \times 50 \mathrm{~cm}$ column of silica gel (70 g). Elution with petroleum ether-ethyl ether ($96: 4$) yielded small amounts of mixtures and tinally pure $\mathbf{4 g}$, as a liquid: NMR $\delta 1.03\left(\mathrm{~d}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.52(\mathrm{~s},-\mathrm{OH}, 1 \mathrm{H}), \sim 4.05$ (two overlapping $\mathrm{m},>\mathrm{CHOH}$ and $>\mathrm{CHBr}, 2 \mathrm{H}$).
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{BrO}$: C, 43.53; H, 6.76. Found: C, $43.80 ; \mathrm{H}$, 6.90. p-Nitrobenzoate (4h), mp 118-119 ${ }^{\circ} \mathrm{C}$.
\boldsymbol{t}-2-Bromo-t-6-methyl-r-1-cyclohexanol (5g). A solution of 2b $(3.0 \mathrm{~g})$ in $\mathrm{CHCl}_{3}(75 \mathrm{~mL})$ was saturated with dry HBr . After 15 min , washing with water, 10% aqueous NaHCO_{3}, and water, drying and evaporation gave 4.0 g of a mixture of 4 g and 5 g , which was chromatographed on a $1.8 \times 60 \mathrm{~cm}$ column of silica gel $(75 \mathrm{~g})$. Elution with 96:4 petroleum ether-ethyl ether gave pure $5 \mathrm{~g}(1.0 \mathrm{~g}), \mathrm{mp} 36-37.5^{\circ} \mathrm{C}$ (from petroleum ether); NMR $\delta 1.08$ (highly distorted d, $-\mathrm{CH}_{3}, 3 \mathrm{H}$), $2.68(\mathrm{~s},-\mathrm{OH}, 1 \mathrm{H}), 3.23(\mathrm{t}, J=8.4 \mathrm{~Hz},>\mathrm{CHOH}, 1 \mathrm{H}), 3.96(\mathrm{~m}, W=$ $25 \mathrm{~Hz},>\mathrm{CHBr}, 1 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{BrO}: \mathrm{C}, 43.54 ; \mathrm{H}, 6.76 ; \mathrm{Br}, 41.38$. Found: C , 43.73; H, 6.84; Br, 41.10.
p-Nitrobenzoate (5h): mp 136-138 ${ }^{\circ} \mathrm{C}$
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{4}$: C, 49.14; H, 4.71. Found: C, 49.00; H, 4.85 .
Further elution with 95:5 petroleum ether-ethyl ether yielded pure $4 \mathrm{~g}(2.3 \mathrm{~g})$.
\boldsymbol{t}-2-Bromo-c-6-methyl-r-1-cyclohexanol p-Nitrobenzoate (6 h). Opening of $\mathbf{3 b}(0.4 \mathrm{~g})$ with dry HBr in CHCl_{3} followed by esterification of the crude oily product with p-nitrobenzoyl chloride in pyridine and crystallization from $\mathrm{CH}_{3} \mathrm{C} \cdot \mathrm{H}$ yielded $6 \mathrm{~h}(0.5 \mathrm{~g}), \mathrm{mp}$ $128-130^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{4}$: C, 49.14; $\mathrm{H}, 4.71$. Found: C, 49.10; H, 4.90 .
\boldsymbol{t}-2-Bromo-c-3-methyl-r-1-cyclohexanol p-Nitrobenzoate (7h). A 1 M aqueous solution of $\mathrm{HOBr}^{34}(35 \mathrm{~mL})$ was added dropwise with stirring to $1 \mathrm{~b}(3.0 \mathrm{~g}, 0.032 \mathrm{~mol})$ dissolved in dioxane $(100 \mathrm{~mL})$. After 30 min at room temperature, dilution with water, extraction with ether, and the usual workup yielded 4.2 g of mixed bromohydrins $\mathbf{4 g}-7 \mathrm{~g}$, which were chromatographed on a $1.8 \times 60 \mathrm{~cm}$ column of silica gel. Elution with 97:3, 95:5, and 90:10 petroleum ether-ethyl ether gave various mixtures of $\mathbf{6 g}$ and $7 \mathbf{g}$, and finally $\mathbf{4 g}$.

A sample (0.2 g) of an approximate $1: 1$ mixture of $\mathbf{6 g}$ and $7 \mathbf{g}$ was esterified with p-nitrobenzoyl chloride (0.24 g) in anhydrous pyridine $(2 \mathrm{~mL})$. The resulting mixed p-nitrobenzoates 6 h and $7 \mathrm{~h}(0.26 \mathrm{~g})$ were subjected to preparative TLC (PSC-Fertigplatten Kieselgel $60 \mathrm{~F}_{254}$ Merck). Elution was repeated three times with 97:3 and once with 96:4 petroleum ether-ethyl ether. Extraction of the slower moving band with ethyl ether and purification of the product by further TLC and crystallization from $\mathrm{CH}_{3} \mathrm{OH}$ yielded pure 7 h (50 mg), mp 103-104 ${ }^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{4}$: C, 49.14; $\mathrm{H}, 4.71$. Found: C, 48.91; H, 4.95 .

Extraction of the faster moving band and crystallization from $\mathrm{CH}_{3} \mathrm{OH}$ gave pure $6 \mathrm{~h}(50 \mathrm{mg}$).

3-Methyl-2-cyclohexenone 2,4-Dinitrophenylhydrazone (9). A solution of $4 \mathrm{~g}(0.72 \mathrm{~g}, 3.7 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$ was treated at $0^{\circ} \mathrm{C}$ with Jones reagent ${ }^{36}(1 \mathrm{~mL})$. After 3 h , dilution with water, extraction with ether and usual workup gave bromo ketone $8(0.65 \mathrm{~g})$ as a liquid: NMR $\delta 1.08\left(\mathrm{~d}, J=6 \mathrm{~Hz},-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 4.20\left(\mathrm{~m}, W_{1 / 2}=5 \mathrm{~Hz}\right.$, $>\mathrm{CHBr}, 1 \mathrm{H})$. This product was dissolved in warm glacial acetic acid (10 mL), 2,4-dinitrophenylhydrazine $(0.70 \mathrm{~g}$) was added under a nitrogen atmosphere, and the solution was heated on a hot plate for 5 min . The hydrazone 9, precipitated immediately and crystallized
several times from chloroform-ethanol, had mp $175-178^{\circ} \mathrm{C}$ (lit..$^{16} \mathrm{mp}$ $177-178^{\circ} \mathrm{C}$).
t-2-Chloro-t-3-methyl-r-1-cyclohexanol (4i) and t-2-chloro-t-6-methyl-r-1-cyclohexanol (5i). A solution of $\mathbf{2 b}(1.0 \mathrm{~g})$ in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ was saturated with dry HCl . After 15 min , usual workup gave a mixture of 4 c and $5 \mathrm{c}(1.2 \mathrm{~g})$ which was chromatographed on a $1 . \varepsilon \times 50 \mathrm{~cm}$ column of silica gel. Elution with $96: 4$ petroleum ether-ethyl ether gave pure $5 \mathbf{i}(0.1 \mathrm{~g})$ as a low-melting solid; p-nitrobenzoate (5j): mp 124-126.5 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{OH}$).
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{4}$: $\mathrm{C}, 56.50 ; \mathrm{H}, 5.40$. Found: C, 56.80 ; H, 5.40.
Further elution with 95:5 petroleum ether-ethyl ether yielded pure $4 i(0.4 \mathrm{~g})$, liquid: p-nitrobenzoate ($4 \mathbf{j}$) $\mathrm{mp} 98-39{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{OH}$).

Anal. Calcd fcr $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{4}$: C, $56.50 ; \mathrm{H}, 5.40$. Found: C, 56.75 ; H, 5.25.
\boldsymbol{t}-2-Chloro-c-6-methyl-r-1-cyclohexanol (6i) and t-2-Chloro-c-3-methyl-r-1-cyclohexanol (7i). NCS ($7.5 \mathrm{~g}, 0.056 \mathrm{~mol}$) was added to a stirred suspension of $1 \mathrm{~b}(5.0 \mathrm{~g}, 0.052 \mathrm{mcl})$ in water (35 mL) heated at $90^{\circ} \mathrm{C}$ in a flask equipped with a condenser. Heating was continued until a heavy oil was formed. Extraction with ether, usual workup, and distillation gave a mixture of chlorohydrins $4 \mathbf{i}-7 \mathbf{i}$ $(5.5 \mathrm{~g})$, bp $62-65^{\circ} \mathrm{C}(2.5 \mathrm{~mm})$, which was chromatographed on a 1.8 $\times 70 \mathrm{~cm}$ column of silica gel. Elution with $98: 2$ petroleum ether-ethyl ether gave in succession: $\mathbf{5 i}$, as a low-melting solid; $\mathbf{6 i}$, as a liquid; mixtures of $6 \mathbf{i}$ ard $7 \mathbf{i}$; mixtures of $7 \mathbf{i}$ and $4 \mathbf{i}$. Further elution with 95:5 petroleum ether-ethyl ether yielded pure 4 i .

Esterification of $6 \mathbf{i}$ with p-nitrobenzoyl chloride gave $6 \mathbf{j}, \mathrm{mp}$ $112-113^{\circ} \mathrm{C}$, identical to the p-nitrobenzoate used for the preparation of epoxide 3 b . The same compound was also obtained by esterification of the product of ring opening of $\mathbf{3} \mathbf{b}$ with HCl in CHCl_{3} and crystallization from $\mathrm{CH}_{3} \mathrm{OH}$.

Treatment of a mixture of $6 \mathbf{i}$ and 7 i witr p-nitrobenzoyl chloride followed by several crystallizations from $\mathrm{CH}_{3} \mathrm{OH}$ afforded ester 7 j contaminated by $\sim 20 \%$ (NMR) of isomer $\mathbf{6 j}$.
Anal. Calcd fcr $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{4}$: C, 56.50 ; H, 5.40. Found: C, 57.00; H, 5.70.
Products Distribution Studies. Additions to Alkenes. The additions reported in Tables I and IV were performed under the same conditions employed for the preparative reactions described above. The reaction of la with NCS in water was carried out as described for 1 l . The additions of NBS-water to both la and 1 l were performed in the following way: the olefin (10 mmol) was added dropwise to a stirred suspension of NBS ($2.5 \mathrm{~g}, 14 \mathrm{mmo}$) in water (25 mL). The mixture was stirred for 2 h at room temperature and extracted with ether. The extract was washed with water, dried, and evaporated.
All reactions were carried out on a $10-\mathrm{m} \cdot \mathrm{mol}$ scale and the crude products were scbjected to GLC under the following conditions.
Bromohydrins $4 \mathrm{c}-7 \mathrm{c}: 1.5-\mathrm{m}$ glass column, $2.5-\mathrm{mm}$ i.c., packed with 10% ethylene glycol succinate on silanized Chromosorb W 80-100 mesh (column $115^{\circ} \mathrm{C}$, evaporator and detector $200^{\circ} \mathrm{C}$. nitrogen flow $35 \mathrm{~mL} / \mathrm{min}$). Reiative retention times: 5c, 1; 7c, 1.4¢; 6c, 2.43; 4c, 3.22 .

Acetoxy bromides $\mathbf{4 d} \mathbf{- 7 d}$: $1.5-\mathrm{m}$ glass column, $2.5-\mathrm{mm}$ i.d., packed with 1% silicone oil SE_{52} on silanized Chromosorb W 80-100 mesh (column $60^{\circ} \mathrm{C}$, evaporator and detector $150^{\circ} \mathrm{C}$, nitrogen flow 40 $\mathrm{mL} / \mathrm{min}$). Relative retention times: 6d, $1 ; 4 \mathbf{d}, 1.11 ; \mathbf{5 d}$ and $7 \mathrm{~d}, 1.55$. Since under these conditions the diequatorial adducts $5 \mathbf{d}$ and $7 \mathbf{d}$ were not separated, only the single percentages of $4 d$ and $6 d$ and the total percentage of 5 d and 7 d were obtained. The single percentages of the latter adducts were deduced by combining the data obtsined by direct analysis of the mixture of acetoxy bromo adducts with the percentages of epoxides $2 a$ and $3 a$ arising from $\mathrm{K}_{2} \mathrm{CO}_{3}$ hydrolysis of the same mixture.
Chlorohydrins $\mathbf{4 f}-\mathbf{7 f}$ and $\mathbf{4 i}-\mathbf{7 i}$ and bromohydrins $\mathbf{4 g}-7 \mathrm{~g}$: 2 -m glass column, $2.5-\mathrm{mm}$ i.d., packed with 10% Carbowax 20 M on silanized Chromosorb W 80-100 mesh. Relative retention times of 4f-7f (column $170^{\circ} \mathrm{C}$, evaporator and detector $220^{\circ} \mathrm{C}$, nitrogen flow $30 \mathrm{~mL} /$ $\mathbf{m i n}$): $\mathbf{5 f}, 1 ; \mathbf{7 f}, 1.42 ; \mathbf{6 f}, 2.33 ; \mathbf{4 f}, 2.96$. Relative retention times of $\mathbf{4 g}-\mathbf{7 g}$ (column $160^{\circ} \mathrm{C}$, evaporator and detector $200^{\circ} \mathrm{C}$, nitrogen flow 30 $\mathrm{mL} / \mathrm{min}$): $\mathbf{5 g}, 1 ; 7 \mathbf{g}, 1.16 ; 6 \mathrm{~g}, 2.28 ; \mathbf{4 g}, 3.21$. Relative retention times of $4 \mathbf{i}-7 \mathbf{i}$ (column $150^{\circ} \mathrm{C}$, evaporator and detector $200^{\circ} \mathrm{C}$, nitrogen flow $30 \mathrm{~mL} / \mathrm{min}$): 5i, 1; 7i, 1.17; 6i, 2.16; 4i, 2.92 .

All products were stable under the reaction conditions and under the GLC conditions. The percentages quoted in Tables I and V for each reaction are averages of at least four experiments, which were reproducible within $\pm 1 \%$.
Opening of Epoxides with Hydrogen Halides. A solution of epoxide $2 \mathbf{a}, \mathbf{2 b}, \mathbf{3 a}$, and $\mathbf{3 b}(0.1 \mathrm{~g})$ in 5 mL of solvent was saturated with the appropriate dry hydrogen halide. After 15 min at room temper-
ature, the reaction mixture was washed with water and 10% aqueous NaHCO_{3}, dried, and subjected to GLC under the conditions defined above. The results reported in Tables II and IV are averages of three or more experiments, which were reproducible within $\pm 1 \%$.

Acknowledgments. This work has been supported in part by a grant from the Consiglio Nazionale della Ricerche.

Registry No.-1a, 14072-87-8; 1b, 591-48-0; 2a, 20887-61-0; 2b, 7443-54-1; 3a, 20887-60-9; 3b, 7443-69-8; 4c, 64199-99-1; 4d, 64200-00-6; 4g, 64200-01-7; 4i, 64162-78-3; 5c, 38512-63-9; 5c phenylurethane, 38749-39-2; 5d, 38512-66-2; 5g, 64162-79-4; 5i, 64162-81-7; 6c, 38512-64-0; 6d, 64199-91-3; 6g, 64199-92-4; 6i, 64199-93-5; 7c, 38749-36-9; 7d, 38512-65-1; 7e, 38749-37-0; 7g, 64162-81-8; 7i, 64199-94-6; 8, 41780-49-8; 9, 3234-76-2; p-nitrobenzoyl chloride, 122-04-3.

References and Notes

(1) P. L. Barili, G. Bellucci, F. Marioni, and V. Scartoni, J. Org. Chem., 40, 3331 (1975).
(2) G. Beilucci, G. Ingrosso, F. Marioni, E. Mastrorilli, and I. Morelli, J. Org. Chem., 39, 2562 (1974)
(3) P. L. Barili, G. Bellucci, G. Berti, M. Golfarini, F. Marioni, and V. Scartoni, Gazz. Chim. Ital., 104, 107 (1974).
(4) G. Bellucci, G. Berti, R. Bianchini, G. Ingrosso, and E. Mastrorilli, Gazz. Chim. Ital., 106, 955 (1976).
(5) For a preliminary report on this work, see: G. Bellucci, G. Berti, G. Ingrosso, and E. Mastrorilli, Tetrahedron Lett., 3911 (1973).
(6) J.-C. Richer and C. Freppel, Can. J. Chem., 46, 3709 (1968).
(7) P. L. Barili, G. Bellucci, G. Ingrosso, F. Marioni, and I. Morelli, Tetrahedron, 28, 4583 (1972).
(8) G. Berti, Top. Stereochem., 7, 194 (1973).
(9) C. O. Guss and R. Rosenthal, J. Am. Chem. Soc., 77, 2549 (1955).
(10) J. Fried and E. F. Sabo, J. Am. Chem. Soc., 75, 2273 (1953).
(11) D. R. Dalton, V. P. Dutta, and D. G. Jones, J. Am. Chem. Soc., 90, 5498 (1968); D. R. Dalton and V. P. Dutta, J. Chem. Soc. B, 85 (1971).
(12) E. J. Langstaff, E. Hamanaka, G. A. Neville, and R. Y. Moir, Can. J. Chem., 45, 1907 (1967)
(13) J.-C. Richer and C. Freppel, Tetrahedron Lett., 4411 (1969).
(14) B. Rickborn and W. E. Lamke, J. Org. Chem., 32, 537 (1967)
(15) C. Djerassi, J. Am. Chem. Soc., 71, 1003 (1949).
(16) G. F. Woods, P. H. Griswold, B. H. Armbrecht, D. I. Blumenthal, and R. Plapinger, J. Am. Chem. Soc., 71, 2028 (1949).
(17) H. Booth, Prog. Nucl. Magn. Reson. Spectrosc., 5, 149 (1969).
(18) The reactions with NBS in water have not been included in Table VI, since the formation of a substantial amount of trans dibromides in an indeterminate ratio, conceivably arising from nucleophilic attack by bromide on bromonium ion intermediates (or equivalent species), prevents an accurate interpretation of the overall steric course of the addition to 1a in terms of stereo- and regioselectivity.
(19) Evidence has been presented that $\mathrm{Me}_{2} \mathrm{SO}$ can be the actual nucleophile in the reaction of olefins with NBS in a mixture of $\mathrm{Me}_{2} \mathrm{SO}$ and water (see ref 11).
(20) In the latter reactions, nucleophilic attack is carried out by halides on the protonated forms of the epoxides and the 4:5 and 6:7 ratios quoted in Tables II and IV must be respectively compared with the 6:7 and 4:5 ratios of Table VI.
(21) R. A. B. Bannard, A. A. Casselman, E. J. Langstaff, and R. Y. Moir, Can. J. Chem., 46, 35 (1968); R. A. B. Bannard, A. A. Casselman, and L. R. Hawkins, ibid., 43, 2398 (1965).
(22) For a review, see: J. G. Buchanan and H. Z. Sable, in "Selective Organic Transformations', Vol. 2, B. S. Thyagarajan Ed., Wiley-Interscience, New York, N.Y., 1972, p 1.
(23) Diaxial products are formed by antiparallel attacks through chairlike transition states, while diequatorial adducts arise from parallel attacks involving boatlike transition states: J. Valls and E. Toromanoff, Bull. Soc. Chim. Fr., 758 (1961).
(24) G. Bellucci, G. Berti, G. Ingrosso, A. Vatteroni, G. Conti, and R. Ambrosetti, J. Chem. Soc., Perkin Trans. 2, in press.
(25) P. L. Barili, G. Bellucci, F. Marioni, I. Morelli, and V. Scartoni, J. Org. Chem., 37, 4353 (1972).
(26) V. L. Heasley, C. N. Griffith, and G. E. Heasley, J. Org. Chem., 40, 1358 (1975).
(27) V. L. Heasley, R. A. Skidgel, G. E. Heasley, and D. Strickland, J. Org. Chem., 39, 3953 (1974). See also ref 26, tootnote 9.
(28) G. Berti, G. Catelani, M. Ferretti, and L. Monti, Tetrahedron, 30, 4013 (1974).
(29) C. Freppel and J.-C. Richer, Tetrahedron Lett., 2321 (1972).
(30) P. L. Barili, G. Bellucci, B. Macchia, F. Macchia, and G. Parmigiani, Gazz. Chim., Ital. 101, 300 (1971).
(31) M. Parrilli, M. Adinolfi, V. Dovinola, and L. Mangoni, Gazz. Chim. Ital., 104, 819 (1974).
(32) M. Parrilli, G. Barone, M. Adlnolfi, and L. Mangoni. Gazz. Chim. Ital., 104, 835 (1974).
(33) D. J. Pasto and J. A. Gontarz, J. Am. Chem. Soc., 93, 6902, 6909 (1971).
(34) S. G. Levine and M. E. Wall, J. Am. Chem. Soc., 81, 2826 (1959).
(35) G. King, J. Chem. Soc., 1817 (1949).
(36) P. L. Barili, G. Bellucci, G. Berti, F. Marioni, and I. Morelli, J. Chem. Soc., Perkin Trans. 2, 58 (1972).
(37) G. Bellucci, M. Ferretti, G. Ingrosso, F. Marioni, A. Marsili, and I. Morelli, Tetrahedron Lett., 3527 (1972).

Epoxycarbinyl Solvolyses. Lack of Significant Participation by Epoxide Oxygen in the Hydrolysis of Acyclic Secondary Epoxycarbinyl Substrates

Dale L. Whalen,* Steven Brown, Angela M. Ross, and Helen Miller Russell
Laboratory for Chemical Dynamics, Department of Chemistry, University of Maryland Baltimore County, Baltimore, Maryland 21228

Received May 26, 1977

Abstract

The rate constants and activation parameters for solvolysis of the diastereomeric epoxycarbinyl p-bromobenzenesulfonate esters $\mathbf{2 3 b}$ and $\mathbf{2 4 b}$ (derived from the oxides of trans-3-penten-2-ol) in ethanol-water mixtures have been determined. The predominant products ($\sim 88-96 \%$) from solvolysis of $23 b$ and $\mathbf{2 4 b}$ in 80% acetone-water resulted from inversion at the ionizing carbon. The product distributions suggest that neither significant amounts of oxabicyclobutonium ion intermediates nor highly stabilized epoxycarbinyl cations are formed. The rates of solvolysis of 23 b and $\mathbf{2 4 b}$ were $\sim 10^{6}$ times slower than the rates of solvolysis of the corresponding cyclopropylcarbinyl analogues.

Numerous publications about the solvolytic reactions of cyclopropylcarbinyl substrates have appeared during the past 20 years. ${ }^{1}$ The stabilizing interaction of the cyclopropane ring with a developing positive charge on the carbinyl carbon is generally reflected by enhanced reactivities of cyclopropylcarbinyl derivatives, relative to model compounds without neighboring cyclopropyl groups. The geometry of the cyclopropyl group relative to the developing p orbital on the carbinyl carbon is critical, however. A "bisecting" geometry of the cyclopropyl group is most favorable, whereas a "perpen-
dicular" geometry actually brings about a destabilizing interaction. ${ }^{1,2}$

More recent results have been reported on the reactions of geometrically related "epoxycarbinyl" substrates of general structure 1 under conditions that lead to the development of a positive charge on the carbinyl carbon. ${ }^{3-5}$ Most of the reactions of epoxycarbinyl substrates are analogous to those reactions observed in cyclopropylcarbinyl solvolysis. If the intermediate from the solvolysis of 1 possesses a significant positive charge density on the carbinyl carbon (i.e., 2), then

product 3 retaining the epoxycarbinyl structure would be anticipated. However, the epoxycarbinyl derivative 1 can also potentially rearrange in either concerted pathways or via 2 to other intermediates $4,7,10$, or 13 . Migration of the carboncarbon bond or the carbon-oxygen bond of the epoxide group in 2 to the electron-deficient center would yield oxonium ion 4 or 3-oxetanyl cation 13, respectively, and would be analogous to the cyclopropylcarbinyl-cyclobutyl cation rearrangement. Intermediate 4, in water, would eventually yield β-ketols. In a reaction related to the cyclopropy carbinyl-homoallyl interconversion, rupture of the carbon-carbon bond of the epoxide group in 2 yields oxonium ion 7 , the precursor to carbonyl products 9 . There is also the possibility that the nonbonding electrons on the oxygen in 2 would interact with the adjacent positive charge on the carbinyl carbon, thereby leading to an intermediate oxabicyclobutonium ion 10. Intermediate 10 can potentially yield products 11 and 12.
The solvolytic reactions of epichlorohydrin (14) and 3,5dinitrobenzoate esters 15-17 have been reported to yield 3-

14

17

15

18

19
oxetanyl products, and oxabicyclobutonium ions were suggested as possible intermediates. ${ }^{3}$ The study of the solvolysis of epichlorohydrin (14) was hindered, however, because any solvolysis products that retained the epoxycarbinyl structure could not have survived the reaction conditions. ${ }^{3 a}$ The erythro-and threo-p-toluenesulfonate esters 18 and 19 hydrolyzed to yield predominantly β-ketols ($>80 \%$), presumably via a 2-oxetanyl cation 4. ${ }^{5 a}$ Anchimeric assistance by the neighboring epoxide was invoked to explain the hydrolysis product distributions.

Oxabicyclobutionium ion 22 was ruled out as an intermediate in the hydrolysis of the epimeric medium-ring epoxycarbinyl brosylates 20 and 21,4 although geometric constraints of the medium ring may have made such intermediate unlikely. Rearrangement products from intermediate oxonium

20

21

22
ions of the structural types 4 and 7 were observed, however, in addition to products that retained the epoxycarbinyl structure. It was estimated that epimeric esters 20 and 21 were both about 6-7 powers of ten less reactive than their cyclopropylcarbinyl analogues. Likewise, it can be estimated from published rate data ${ }^{5 a}$ that 18 and 19 are considerably less reactive toward hydrolysis than related cyclopropylcarbinyl systems. ${ }^{6}$ Therefore, the epoxide group appears much less effective than cyclopropyl for stabilizing a developing positive charge on the carbinyl carbon. These reactivities seem to be inconsistent with one set of calculations that suggest that the carbon-carbon bond of an epoxide group should stabilize the positive charge on the adjacent carbinyl carbon as effectively as carbon-carbon bonds of cyclopropanes do for certain geometries. ${ }^{7}$

In view of the fact that medium-ring constraints in the solvolysis of $\mathbf{2 0}$ and 21 may have made the formation of 22 unlikely and since oxabicyclobutonium ions had already been postulated as intermediates in the solvolysis of several simple epoxycarbinyl systems, ${ }^{3}$ we have undertaken a study of the hydrolysis of the epimeric epoxycarbinyl brosylates 23b and $\mathbf{2 4 b}$, in which the carbinyl carbon is secondary. Esters $23 b$ and 24b are free of any medium-ring constraints for formation of

$23 \mathrm{o}, \mathrm{R}=\mathrm{H}$
b. $R=B s$

24a, $R=H$
b. $R=B s$
oxabicyclobutonium ion intermediates, and maximum stabilization of the developing positive charge by the epoxide ring can be attained by rotation about the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond for the preferred geometry. Compounds 23 b and 24 b also do not possess a β-methyl group such as p-toluenesulfonate esters 18 and 19. The β-methyl groups of 18 and 19 give rise to neo-pentyl-type st=uctures which result in appreciable steric hindrance to solvation at the carbinyl carbon and are prone to rearrangement. ${ }^{8}$

Results

Epoxidation of trans-3-penten-2-ol with m-chloroperbenzoic acid yielded a mixture of diastereomeric epoxycarbinols 23a and 24a in a 65:35 ratio. The relative stereochemistry of the hydroxyl group relative to the oxirane ring for either of the products was not established. For purposes of discussion, the structure 23a was assigned to the major component of the product mixture, and, consequently, the structure 24 a was assigned to the minor component. The products were separated by preparative gas chromatography and converted to their p-bromobenzenesulfonate esters. The rates for solvolysis of $\mathbf{2 3 b}$ and $\mathbf{2 4 b}$ were determined ethanolwater mixtures at several temperatures and are listed in Table I. The activation parameters (ΔH^{\ddagger} and ΔS^{\ddagger}) for solvolysis of 23b and 24b in 80% ethanol-water are also provided.

Isomer 23b hydrolyzed in 90% acetone-water to yield a mixture of epoxycarbinols containing $\sim 96 \%$ of inverted product 24a, and $\sim 4 \%$ of retained alcohol 23a. No products with gas chromatography retention times different from 23a and 24a could be detected. Brosylate 24b hydrolyzed under the same conditions to yield 88% of inverted product 23 a and $\sim 12 \%$ of retained product 24 a . As in the hydrolysis of 23 b , no other products from $\mathbf{2 4 b}$ could be detected by gas chromatographic analysis of the product mixture.

Table I. First-Order Rate Constants ${ }^{a}$ and Activation Parameters ${ }^{a}$ for Solvolysis of 23 b and 24b in Ethanol-Water Mixtures ${ }^{b}$

Compd	Registry no.	Temp, ${ }^{\circ} \mathrm{C}$	$10^{5} \mathrm{k}, \mathrm{s}^{-1}$	$\begin{gathered} \Delta H^{\ddagger}, \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{gathered} \Delta S^{\ddagger}, \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$
			80\% Ethanol-Water		
23b	64312-47-6	75.00	64.8 ± 0.4		
		70.10	41.3 ± 0.6		
		64.83	26.0 ± 0.8		
		59.75	15.4 ± 0.2		
		35.2	1.34 ± 0.01		
		25.0	$0.36{ }^{\text {c }}$	20.8 ± 0.2	-13.6 ± 0.6
24b	64252-18-2	69.95	26.6 ± 0.7		
		64.95	16.4 ± 0.8		
		59.85	11.0 ± 0.4		
		35.2	$0.99 \pm 0.07^{\text {d }}$		
		25.0	$0.29{ }^{\text {c }}$	19.7 ± 0.6	-17.6 ± 1.9
			60\% Ethanol-Water		
23b		35.2	2.48 ± 0.02		
24b		35.2	2.24 ± 0.01		
			50\% Ethanol-Water		
23b		35.2	3.50 ± 0.01		
24b		35.2	$3.76 \pm 0.02^{\text {d }}$		

${ }^{a}$ Calculated by nonlinear regression analysis. Errors are given in units of standard deviation. ${ }^{b} \mathrm{v} / \mathrm{v}$. The percent listed corresponds to the percent of ethanol. Triethylamine was added as a buffering reagent. ${ }^{c}$ Extrapolated from rates at higher temperatures. ${ }^{d}$ Average of two kinetic runs.

Table II. Relative Rates of Solvolysis of Several Brosylate Esters in 80% Ethanol-Water at $25^{\circ} \mathrm{C}$

Compound	$k_{\text {rel }, \mathrm{s}^{-1}}$
${\text { Isopropyl brosylate }{ }^{a}}_{\text {sec-Butyl brosylate }{ }^{b}}$	0.8
23b	1.0
24b	0.19
4-CH(CH)OBs $(25)^{c}$	0.15
	$\sim 10^{6}$

a Reference 14. b V. J. Shiner, Jr., "Isotope Effects in Chemical Reactions", C. J. Collins and N. S. Bowman, Ed., Van Nostrand-Reinhold, New York, N. Y., 1970, p 129. c Reference 6. Rates were extrapolated to common solvent, temperature, and leaving group.

Discussion

The relative rates of solvolysis of 23b, 24b, and several other model compounds are listed in Table II. If an epoxide group were able to stabilize the development of a positive charge on an adjacent carbon as efficiently as a cyclopropane ring, then the relative rates of solvolysis of $\mathbf{2 3 b}, \mathbf{2 4 b}$, and α-methylcyclopropylcarbinyl brosylate (25) would be expected to be similar. As Table II indicates, however, 23b and 24b are about 10^{6} times less reactive to solvolysis than the geometrically related cyclopropylcarbinyl analogue. Therefore, in these simple secondary acyclic epoxycarbinyl derivatives and in several medium-ring epoxycarbinyl derivatives, ${ }^{4}$ the epoxide groups are not nearly as effective as cyclopropyl groups in stabilizing an adjacent positive charge on carbon. In fact, 23b and $\mathbf{2 4 b}$ are ca. five times less reactive than sec-butyl brosylate, an ester of similar structure to 23b and 24b except that the epoxide moieties of 23 b and $\mathbf{2 4 b}$ have been replaced by ethyl groups. Because of the different structures of 23 b and 24b compared to sec-butyl brosylate, the small differences of solvolytic reactivities might be attributed to either a destabilizing electronic effect of an epoxide group or to different steric requirements of an epoxide moiety relative to an ethyl group.

Because of the lack of a suitable model for estimating the rates of solvolysis of $\mathbf{2 3 b}$ and $\mathbf{2 4 b}$ in the absence of participa-

28
tion by the epoxide group, knowledge of the product compositions is essential to understanding the mechanisms of their solvolytic reactions. If $\mathbf{2 3} \mathbf{b}$ were to solvolyze with participation of the n electrons of the adjacent epoxide group, an intermediate oxabicyclobutonium ion 26 would form (Scheme II). Because of its symmetrical structure, 26 should collapse with solvent at either C_{2} or C_{4} with inversion to yield a single product 23a, an overall process that would give rise to retention of stereochemistry. ${ }^{9}$ Ionization of the diastereomeric alcohol 24b with participation of the n electrons of oxygen, however, would result in the formation of oxabicyclobutonium ion 27 (Scheme II). Intermediate 27, however, does not possess a plane of symmetry. Whereas collapse of solvent at C_{2} of 27 would yield 24 a , a process involving overall retention of stereochemistry, collapse of solvent at C_{4} of 27 would yield 28 , an epoxycarbinol derived from cis-3-penten-2-ol. ${ }^{9}$

If participation by the n electrons of oxygen in the solvolysis of 23 b and 24 b did not occur, but rather an intermediate 29 were formed in which charge is located primarily at C_{2}, then solvolysis of 23b and 24b should yield mixtures of only 23a and 24a. The stabilized cyclopropylcarbinyl cation 30 yields 72% of product from collapse of water at the top side (a) and 28%

of product from collapse of water at she bottom side (b). ${ }^{10} \mathrm{~A}$ stabilized cation 29 might therefore be expected to give similar results, i.e., significant collapse of so vent from both sides of the cationic center.

The actual product distributions observed in the solvolysis of 23b and 24b, resulting from predominant inversion at C_{2}, suggest that neither significant amounts of oxabicyclobutonium ions 26 and 27 , nor a highly stabilized cation 29 are formed. The results of solvolysis of 23 b and 24 b are very similar to those observed in the solvolysis of simple secondary systems such as 2-butyl or 2-octyl p-bromobenzenesulfonates, namely, predominant inversion at the ionizing center. ${ }^{11}$ Such inversion is observed in acyclic systems when the intermediate is an unstabilized primary ${ }^{12}$ or secondary cation, and results from either an $\mathrm{S}_{\mathrm{N}} 2$-type displacement by a solvent molecule or collapse of an intermediate tight ion pair with a solvent molecule preferentially at the backside of the ionizing carbon.

The Grunwald-Winstein m values ${ }^{13}$ for solvolyses of 23b and 24b in ethanol-water solutions (Table I) were calculated to be 0.20 and 0.34 , respectively. In the absence of anchimeric assistance, low m values generally reflect a high degree of solvent participation at the transition state. For instance, m values for isopropyl brosylate and sec-butyl tosylate are 0.44^{14} and $0.47,{ }^{15}$ respectively. Both low m values and predominant inversion at ionizing carbon are consistent with high degrees of solvent involvement of a nucleophilic nature at the transition states for solvolysis of $\mathbf{2 3} \mathbf{b}$ and $\mathbf{2 4 b}$ in ethanol-water mixtures. These results do not preclude the possibility that in more highly-ionizing, less nucleophilic solvents 23b and 24b may solvolyze by different mechanisms.

Experimental Section

Melting points were determined in capillary tubes and are uncorrected. Infrared spectra were obtained with a Perkin-Elmer Model 257 spectrophotometer, and ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Hitachi Perkin-Elmer R-20A spectrometer. Analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn.
Preparation of 23a and 24a. To a solution of $4.9 \mathrm{~g}(0.057 \mathrm{~mol})$ of trans-3-penten- 2 -ol ${ }^{16}$ in 100 mL of methylene chloride stirred in an ice-water bath was added 13.0 g of m-chloroperbenzoic acid ${ }^{16}$ over a period of 5 min . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional hour, and the solid precipitate of m-chlorobenzoic acid was separated by suction filtration and washed with cold methylene chloride. The filtrate was washed with saturated sodium bicarbonate solution ($2 \times 75 \mathrm{~mL}$), and the solvent was removed at aspirator pressure. The residue was distilled in a short-path distillation apparatus under reduced pressure (15 mm) at a bath temperature of 85 ${ }^{\circ} \mathrm{C}$ to yield $4.1 \mathrm{~g}(70 \%)$ of a clear oil that consisted of $65 \% 23 \mathrm{a}$ and 35% 24a: ${ }^{17}$ IR (CCl_{4}) $3600-3100 \mathrm{~cm}^{-1}$.

The products were separated by preparative gas chromatography on a $12 \mathrm{ft} \times 1 / 4 \mathrm{in}$. 20% diethylene glycol succinate (DEGS) column at $80^{\circ} \mathrm{C}$: retention time of 23 a 26.5 min ; retention time of 24 a 24.0 min.
The NMR spectrum $\left(\mathrm{CCl}_{4}\right)$ of 23a consisted of absorptions at δ 1.1-1.3 ($6 \mathrm{H}, \mathrm{CH}_{3}$), $2.44\left(\mathrm{~d}\right.$ of d, $1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}$), $2.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}\right), 3.38$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOH}$), and the NMR spectrum $\left(\mathrm{CCl}_{4}\right)$ of 24 a possessed absorptions at $\delta 1.1-1.3\left(6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45\left(\right.$ ca. $\left.\mathrm{t}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}\right), 2.82(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{C}_{4} \mathrm{H}$), and 3.65 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOH}$).
Anal. (24a) Calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$: $\mathrm{C}, 58.8 \mathrm{c}^{\prime} ; \mathrm{H}, 9.87$. Found: $\mathrm{C}, 58.65$; $\mathrm{H}, 10.05$.
p-Bromobenzenesulfonate Ester 23b. Powdered potassium hydroxide (4.0 g of $85 \% \mathrm{KOH}, 71 \mathrm{mmol}$) was added to a solution of 142 mg (1.39 mmol) of 23a (contaminated with 5% of 24 a) and 402 mg (1.57 mmol) of p-bromobenzenesulfonyl chloride in 6 mL of diethyl ether. The resulting suspension was stirred in an ice-water bath for

1 h . An additiona: 20 mL of diethyl ether was added, and the reaction mixture was dried with anhydrous calcium sulfate and filtered. Removal of the solvent yielded 348 mg (ca. 78%) of 23b, which was recrystallized from a diethyl ether-pentane solution to yield 271 mg of 23b: mp 37.5-38.5 ${ }^{\circ} \mathrm{C}$: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.1-1.4(6 \mathrm{H}$, methyl absorptions), $2.45-2.85(\mathrm{~m}, 2 \mathrm{H}$, protons on epoxide ring), 4.23 (pentet, 1 H , $J=6 \mathrm{~Hz}, \mathrm{CHOB}_{3}$), 7.43 ($\mathrm{s}, 4 \mathrm{H}$, aromatic protons).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{SBr}$: C, 41.14; $\mathrm{H}, 4.08$. Found: C, 41.04; H, 4.17.
\boldsymbol{p}-Bromobenzenesulfonate ester 24b was prepared from 30 mg of 24 a (containing $\sim 4 \%$ of $\mathbf{2 3 a}$) by the same procedure outlined above for the preparation of $\mathbf{2 3 b}$. The product was further dried under vacuum (2 mm): yield $74 \mathrm{mg}(\sim 78 \%)$ of clear oil; NMR $\left(\mathrm{CCL}_{4}\right) \delta 1.1-1.4$ (6 H , methyl absorptions), $2.40-2.75$ ($\mathrm{m}, 2 \mathrm{H}$, protons on epoxide ring), 4.14 (pentet, $1 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CHOBs}$), 7.43 (s, 4 H , aromatic protons).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{SBr}$: C, 41.14; $\mathrm{H}, 4.08$. Found: $\mathrm{C}, 41.07$; H, 4.21.
Kinetic Procedures. A. Approximately 15 mg of $\mathbf{2 3 b}$ or $\mathbf{2 4 b}$ and $15 \mu \mathrm{~L}$ of triethylamine were dissolved in 25 mL of an ethanol-water solution. Approximately 2.5 mL of this solution was sealed in each of ten ampules. The ampules were then placed in a constant-temperature oil bath, thermostated to within $\pm 0.03{ }^{\circ} \mathrm{C}$ of the stated temperatures (Table I). At a given time, an ampule was removed, and the absorbance of the solution was measured at 265 nm in a Gilford 2400 spectrophotometer. ${ }^{18}$
B. The rates of solvolyses of $\mathbf{2 3} \mathbf{b}$ and $\mathbf{2 4 b}$ at $35.2^{\circ} \mathrm{C}$ were determined by monitoring the absorbance of the reaction solution at 265 nm in the thermostated cell compartment of a Gilford 2400 spectrophotometer.
Rate constants were obtained by nonlinear regression analysis of the data, for each kinetic run, by a Wang 700 calculator computer.

Product Analyses. A solution of ca. 30 mg of $\mathbf{2 3 b}$ or $\mathbf{2 4 b}, 1.2 \mathrm{~mL}$ of 90% acetone-water (v / v), and $30 \mu \mathrm{~L}$ of triethylamine was sealed in an ampule and placed in an oil bath for 20 h (ca. 10 half-lines). The reaction solution was diluted with ca. 10 mL of water and continuously extracted with diethyl ether for 6 h . Most of the organic solvent was distilled through a $10-\mathrm{cm}$ column packed with glass helices, and the residual solution was analyzed by gas chromatography on a 10% diethylene glycol succinate column ($15 \mathrm{ft} \times 1 / 8 \mathrm{in}$.) at $90^{\circ} \mathrm{C}$. Cyclopentanol $(7.0 \mathrm{mg})$ was added to the product mixture to serve as an internal standard for chromatographic analysis. The yields from the hydrolysis of 23 b and 24 b were generally $85-95 \%$.
The products from the hydrolysis of 23b were 24a ($\sim 96 \%$) and 23a $(\sim 4 \%)$. The major product was separated by preparative GLC and identified as 24 a by its infrared spectrum. The minor product possessed the same GLC retention time as 24 a.
The products from the hydrolysis of 24 b (estimated to contain $\sim 4 \%$ of 23 b) were $\sim 84 \%$ of 23 a and $\sim 16 \%$ of 24 a. Both products were separated by preparative GLC and identified by infrared spectroscopy. Since it was estimated that $\mathbf{2 4 b}$ was contaminated with $\sim 4 \%$ of $\mathbf{2 3 b}$, the product composition was corrected for the fact that 23b undergoes predominant inversion when hydrolyzed. Therefore, we estimate that pure 24 b yields $\sim 88 \%$ of 23 a and $\sim 12 \%$ of 24 a.

Acknowledgment. This research was supported by a Frederick Gardner Cottrell Grant administered by the Research Corporation.

Registry No.-23a, 26091-69-0; 24a, 22520-29-2; trans-3-pen-ten-2-ol, 3899-34-1; p-bromobenzenesulfonyl chloride, $98,58,8$.

References and Notes

(1) For several reviews, see: (a) H. G. Richey, Jr., "Carbonium lons", Vol. 3, G. A. Olah and P. v. R. Schleyer. Ed., Wiley, New York. N.Y., 1972, Chapter 25; (b) K. B. Wiberg, B. A. Hess, and A. J. Ashe, III, ibid., Chapter 26.
(2) P. v. R. Schleyer and V. Buss, J. Am. Chem. Soc., 92, 5880 (1969).
(3) (a) H. Morita and S. Oae, Tetrahedron Lett., 17, 1347 (1969); (b) H. G. Richey and D. U. Kinsman, ibid., 30, 2505 (1969).
(4) D. L. Whalen, J. Am. Chem. Soc., 92, 7619 (1970).
(5) (a) M. Santelli, u. Chem. Soc., Chem. Commun., 214 (1974); (b) The tosylate ester of $4 \beta, 5 \beta$-epoxycholestan- 3β-ol was solvolyzed in collidine at 170 ${ }^{\circ} \mathrm{C}$ to yield elimination products. The minor rearrangement-elimination product, a divinyl ether, was explained by a fragmentation reaction that also involved a solvent molecule acting as a base, J. M. Coxon, R. P. Garland, M. P. Hartshorn, and G. A. Lane, ibid., 1506 (1968).
(6) Estimated from the rate data for the solvolysis of cyclopropylcarbinyl methanesulfonate and related compounds; M. Nikoletic, S. Borcic, and D. E. Sunko, Tetrahedron, 23, 649 (1967).
(7) W. C. Danen, v. Am. Chem. Soc., 94, 4835 (1972).
(8) See J. E. Nordlander, S. P. Jindal, P. v. R. Schleyer, R. C. Fort, Jr., J. J. Harper, and R. D. Nicholas, ibid., 88, 4475 (1966), and references therein.
(9) Collapse of solvent at C_{3} of 26 and 27 might also be expected to yield 3oxetanol products.
(10) C. D. Poulter and C. J. Spillner, J. Am. Chem. Soc., 96, 7591 (1974).
(11) (a) H. Weiner and R. A. Sneen, J. Am. Chem. Soc., 87, 287, 292 (1965); (b) A. Streitwieser, Jr., T. D. Walsh, and J. R. Wolfe, Jr., ibid., 87, 3682 (1965); (c) A. Streitwieser. Jr., and A. C. Waiss, J. Org. Chem., 27, 290 (1962).
(12) A. Streitwieser, Jr., and S. Andreades, J. Am. Chem. Soc., 80, 6553 (1958).
(13) (a) S. Winstein, E. Grunwald, and H. W. Jones, J. Am. Chem. Soc., 73, 2700 $\mathbf{(1 9 5}^{\circ}$); (b) S. Sinstein, A. H. Fainberg, and E. Grunwald, ibid., 79, 4146
(1957); (c) A. Streitwieser, "Solvolytic Displacement Reactions", McGraw-Hill, New York, N.Y., 1962.
(14) Calculated from the rate data for the solvolysis of isopropyl brosylate in ethanol-water solutions at $25^{\circ} \mathrm{C} ; \mathrm{V}$. J. Shiner, Jr., R. D. Fisher, and W. Dowd, J. Am. Chem. Soc., 91,7748 (1969).
(15) T. W. Bentley, F. L. Schadt, and P. v. R. Schleyer, J. Am. Chem. Soc., 94, 992 (1972).
(16) Supplied by Aldrich Chemical Co., Milwaukee, Wis
(17) The relative stereochemistries of 23a and 24a were arbitrarily assigned. The major product was assigned structure 23a.
(18) C. G. Swain and C. R. Morgan, J. Org. Chem., 29, 2097 (1964).

Epoxycarbinyl Solvolyses. The Solvolytic Reactions of syn- and/anti-9-Oxabicyclo[6.1.0]non-2-yl p-Bromobenzenesulfonates

Dale L. Whalen* and J. Diane Cooper
Laboratory for Chemical Dynamics, Department of Chemistry, University of Maryland Baltimore County, Baltimore, Maryland 21228

Received May 26, 1977

Abstract

The rates of solvolysis of syn- and anti-9-oxabicyclo[6.1.0]non-2-yl p-bromobenzenesulfonates ($\mathbf{2 b}$ and $\mathbf{3 b}$) have been determined and were found to be $\sim 10^{7}$ times slower than those of the corresponding cyclopropylcarbinyl analogues $\mathbf{4 b}$ and $\mathbf{5 b}$. The product distributions from hydrolysis of $\mathbf{2 b}$ and $\mathbf{3 b}$ have been found to be quite complex and consisted of $50-60 \%$ of rearranged products, in addition to elimination and unrearranged products. anti-Brosylate $\mathbf{2 b}$ yielded 29% of product that resulted from a transannular 6,2 hydride shift, followed by stereospecific collapse of solvent with the rearranged ion. syn-Brosylate $\mathbf{2 b}$ yielded 2.5% of product that also resulted from a transannular 6,2 hydride shift followed by stereospecific collapse of solvent to yield the epimer of the product from $\mathbf{3 b}$. The results and product distributions were interpreted in terms of the ionization of $\mathbf{2 b}$ and $\mathbf{3 b}$ to conformationally different epoxycarbinyl cations with rates of interconversion that are slow relative to other product-forming reactions.

The solvolytic reactions of 2-bicyclo[n.1.0|alkyl systems 1 have received considerable attention, ${ }^{1}$ along with other studies dealing with the nature of cyclopropylcarbinyl cations. ${ }^{2}$ The structures of geometrically related epoxycarbinyl cations are also of interest. Whereas the greater electronegativity of oxygen relative to carbon would lead to the prediction that an epoxide group should not stabilize a positive charge on the adjacent carbinyl position as effectively as cyclopropyl for certain geometries, the nonbonding electrons on oxygen can potentially stabilize a positive charge on the carbinyl position by either formation of an oxabicyclobutonium ion or by a favorable lone-pair-electron interaction of the oxygen atom with the carbinyl carbon in the "bisected" geometry. ${ }^{3}$

The nature of the epoxycarbinyl cation clearly is a function of the system from which it is derived. It has been suggested that several acyclic epoxycarbinyl derivatives solvolyze via the intermediacy of oxabicyclobutonium ions. ${ }^{4}$ Other acyclic epoxycarbinyl substrates in which the carbinyl carbon is secondary have been reported to solvolyze with participation of the epoxide ring in a manner similar to the participation of cyclopropyl rings in cyclopropylcarbinyl solvolyses. ${ }^{5}$ However, several simple acyclic epoxycarbinyl p-bromobenzenesulfonate essers have been shown to hydrolyze without appreciable anchimeric assistance or participation by the epoxide ring, ${ }^{6}$ and preliminary results indicated that the epoxide group is much less effective than a cyclopropane ring in stabilizing a positive charge on the carbinyl position in the solvolytic reactions of syn- and anti-9-oxabicyclo[6.1.0]non-2-yl p-bromobenzenesulfanates ($\mathbf{2 b}$ and 3 b). ${ }^{7}$ In this paper, we describe in more detail the hydrolysis reactions of $2 \mathbf{b}$ and $\mathbf{3 b}$.

Results and Discussion

First-order rate constants for the solvolysis of $\mathbf{2 b}$ and $\mathbf{3 b}$ are provided in Table I, and the relative reactivities of $2 \mathrm{~b}, 3 \mathrm{~b}$, and the related syn- and anti-2-bicyclo[6.1.0]non-2-yl systems ${ }^{\text {1a }}$ are provided in Table II. Of significance is the fact that the

rates of solvolysis of $\mathbf{2 b}$ and $\mathbf{3 b}$ are estimated to be ca. $10^{6}-10^{7}$ times slower than the corresponding rates for their cyclopropylcarbinyl analogues $\mathbf{4 b}$ and 5 b . The slow rates of solvolyses of $2 b$ and $\mathbf{3 b}$, relative to $\mathbf{4 b}$ and 5 b , certainly indicate that epoxide rings are not nearly as effective as cyclopropyl rings in stabilizing a positive charge on an adjacent carbon. The syn systems $2 b$ and $4 b$ are each significantly more reactive than their corresponding anti epimers $\mathbf{3 b}$ and $\mathbf{5 b}$, respectively.

A comparison of product distributions from bicyclo[6.1.0]-non-2-yl systems is given in Table III. Whereas the product distributions from $4 b$ and $5 b$ are relatively simple, ${ }^{1 a}$ the product mixtures from $2 b$ and $\mathbf{3 b}$ are more complex. Yet there are some striking resemblances. (1) Both $\mathbf{2 b}$ and $\mathbf{3 b}$ yield products with net retention of stereochemistry at C-2. Their corresponding cyclopropylcarbinyl analogues $\mathbf{4 b}$ and $5 \mathbf{b}$ each give greater than 99% retention of stereochemistry at C-2. (2) The syn isomers 2 b and $\mathbf{4 b}$ yield significant amounts of suberaldehyde (6) and cis-3-cyclononenol (12), respectively. The similarities of the mechanisms leading to these products are presented in Scheme I. (3) anti-Epoxycarbinyl brosylate 3b yielded a significantly greater amount (17%) of cycloheptenecarboxaldehyde (7) than syn isomer 2 b . A possible intermediate in the formation of $\mathbf{7}$ is the trans-fused bicyclic hemiketal 20 (Scheme II), which corresponds in structure to the trans-fused cyclobutanol 13 from anti-cyclopropylcarbinyl p-nitrobenzoate $\mathbf{5 b}$.

There are also some major differences in the solvolysis of syn- 2 b and anti- 3 b , compared with cyclopropylcarbinyl analogues $\mathbf{4 b}$ and $\mathbf{5 b}$. (1) Whereas there is no detectable crossover in the product distributions from solvolyses of $\mathbf{4 b}$ and $5 \mathbf{b}$, at least five products in the solvolyses of $\mathbf{2 b}$ and $\mathbf{3 b}$ are com-
Scheme I

2b

mon. (2) The rates of solvolyses of $\mathbf{2 b}$ and $\mathbf{3 b}$ are ca. $10^{6}-10^{7}$ times slower than their cyclopropylcarbinyl analogues. (3) Significant amounts of hydride-shift alcohols 8 and 9 and elimination epoxides 10 and 11 are formed from $2 b$ and $3 b$.

Simple primary and secondary acyclic unhindered substrates generally solvolyze to yield almost exclusive inverted product. ${ }^{8}$ Those substrates that solvolyze to give products with net retention of stereochemistry at the ionizing carbon often solvolyze either with anchimeric assistance of a neighboring group or by "solvent-unassisted" ionization ${ }^{9}$ if the backside of the ionizing carbon is hindered to solvation. Backside participation by nonbonding electrons in $2 \mathbf{b}$ is severely restricted because of geometrical considerations. However, the trans geometry of $\mathbf{3 b}$ is favorable for anchimeric assistance by the nonbonding electrons of the neighboring epoxide group to form an intermediate oxabicyclobutonium ion. Collapse of solvent with the oxabicyclobutonium ion might then give $\mathbf{3 a}$

and account for the net retention of stereochemistry at C-2. ${ }^{10}$ Therefore, $\mathbf{3 b}-2-d$ was hydrolyzed. The intermediate oxabicyclobutonium ion 21, if formed, should lead to scrambling of deuterium between $\mathrm{C}-2$ and $\mathrm{C}-8$ of the major product 3 a . However, the infrared and NMR spectra of the major product were identical with the spectra of $3 a-2-d$. Participation by the nonbonding electrons of oxygen in the solvolysis of $\mathbf{3 b}$ was therefore ruled out as a major solvolytic pathway. ${ }^{7}$

An interesting aspect of the hydrolysis of $3 \mathbf{b}$ is the formation of 29% of anti-9-oxabicyclo[6.1.0]nonan-3-ol (9) and no detectable syn isomer 8 . In contrast, hydrolysis of 2 b yielded 2.5% of the syn-alcohol 8 and no detectable anti epimer 9 . This rather stereospecific formation of 8 and 9 from 2 b and $\mathbf{3 b}$, respectively, is particularly intriguing because reduction of 9 -oxabicyclo[6.1.0]nonan-3-one with sodium bis(2-methox-

Table I. First-Order Rate Constants ${ }^{a}$ and Activation Parameters ${ }^{a}$ for the Solvolysis of 2 b and $\mathbf{3 b}$

${ }^{\text {a }}$ Errors are ezpressed in units of standard deviation. ${ }^{b}$ Extrapolated from data at higher temperatures.

Table II. Relative Reactivities of Epoxycarbinyl Substrates 2b and 3b and Cyclopropylcarbinyl Substrates 4 b and 5b toward Hydrolysis ${ }^{a}$

Compd	$\mathbf{2 b}$	$\mathbf{3 b}$	$\mathbf{4 b}$	\mathbf{b}^{b}
$k_{\text {rel }}$	259	1	1.4×10^{9}	1.6×10^{7}

${ }^{a}$ The solvolytic reactivity of 2-bicyclo[n.1.0]alkyl brosylates was estimated to be ca. 10^{9} times greater than that of 2-bicyclo[$n .1 .0$]alkyl p-nitrobenzoates. This estimate is based on rates of $0.07 \mathrm{~s}^{-1}$ for acetolysis of trans-2-bicyclo[3.1.0] hexyl tosylate at $25{ }^{\circ} \mathrm{C}$ and $8.2 \times 10^{-7} \mathrm{~s}^{-1}$ for hydrolysis of trans-2bicycol[3.1.0] hexyl p-nitrobenzoate at $100^{\circ} \mathrm{C}$ in 80% acetonewater, E. C. Friedrich and S. Winstein, unpublished results. The rates of solvolysis of $\mathbf{2 b}, \mathbf{3 b}, \mathbf{4 b}$, and $\mathbf{5 b}$ were extrapolated to 25 ${ }^{\circ} \mathrm{C}$ in a common solvent. ${ }^{b}$ Reference 1 a .
yethoxy)aluminum hydride yielded approximately equal amounts of 8 and 9 .

Two possible mechanisms can explain the formation of anti alcohol 9 from anti brosylate 3 b . One mechanism involves a 3,2 hydride shift, and the second mechanism involves a 6,2 hydride shift (Scheme III). Evidence for a 6,2 hydride shift was provided by the $100-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum ${ }^{11}$ of the product 25 from solvolysis of anti- $3 \mathbf{b}-2-d$. A low-field methylene absorbance at $\delta 2.35(1 \mathrm{H})$ was split into a doublet of triplets ($J=14.5,4.0,4.0 \mathrm{~Hz}$). Irradiation of the α hydrogen $\mathrm{H}_{3}(\delta 3.9)$ or epoxide proton $\mathrm{H}_{1}(\delta 3.06, \mathrm{~d}$ of $\mathrm{t}, J=10.5,4.0,4.0$ $\mathrm{Hz})$ reduced the signal for the low-field proton into a doublet of doublets ($J=14.5,4.0 \mathrm{~Hz}$). This low-field absorption must, therefore, belong to a proton located at C-2 and was assigned to the anti proton $\mathrm{H}_{2 \mathrm{~b}}$ because models indicated that this proton is not located in the shielding cone of the epoxide ring. The syn proton $\mathrm{H}_{2 \mathrm{a}}$ is located in the shielding cone of the ep-

Scheme III

Table III. Product Distributions for Solvolyses of $2 b, 3 b, 4 b$, and $5 b$ in 80% Aqueous Acetone
Product ${ }^{a}$
Product ${ }^{2}$

\% from $4 \mathrm{~b}^{e}$
\% from 5 b

<0.3
a Triethylamine was used as a buffer. Yields correspond to relative areas of product peaks on a GLC tracing. b Analyzed by gas chromatography on a $6 \mathrm{ft} \times 1 / 4 \mathrm{in} ., 5 \%$ diethylene glycol succinate column. The temperature of the chromatograph oven was prosrammed from 60 to $160^{\circ} \mathrm{C}$ at $3^{\circ} \mathrm{C}$ min. c Epimers 8 and 9 could not be separated on GLC. However, analysis of the infrared spectra of the solvolysis compounds indicated the lack of contamination ($\leqslant 5 \%$) of the other epimer.
d Reference la. ${ }^{e}$ Internal-returned p-nitrobenzoate of $12(16 \%)$ was also formed.

Figure 1. (A) ${ }^{1} \mathrm{H}$ NMR spectrum (100 MHz) of 25. (B) ${ }^{1} \mathrm{H}$ NMR spectrum of 25 with $\mathrm{H}_{3}(\delta 3.9)$ decoupled.
oxide group and therefore should absorb at higher field than $\mathrm{H}_{2 \mathrm{~b}}$. The geminal coupling constant of 14.5 Hz is consistent only with structure 25, containing two protons at C_{2}. A 3,2 hydride migration is ruled out, since this mechanism would produce product 27 with a deuterium atom located at C_{2}. The stereospecific anti structure of 25 indicates that collapse of solvent at C_{3} is concurrent with a $\mathrm{C}_{6}-\mathrm{C}_{2}$ hydride shift or is rapid relative to a conformational change of the isomeric ion 24 from the geometry required for hydride shift. ${ }^{12}$
Stereospecific $\mathrm{C}_{6}-\mathrm{C}_{2}$ hydride migration in the solvolysis of $3 \mathbf{b}-2-d$, in which the hydride migrates from the backside of the ionizing center as indicated in 23 , would predict the location of the deuterium atom in 25 to be anti to the epoxide group. This stereochemical assignment was substantiated by analyzing the NMR spectra of 9 and $\mathbf{2 5}$. Models indicate that the syr. proton $\mathrm{H}_{7 \mathrm{a}}$ in 25 is in the shielding cone of the epoxide ring and should absorb at high field relative to the anti proton $\mathrm{H}_{7 \mathrm{~b}}$, which is in the deshielding cone of the epoxide ring. A difference in chemical shift between $\mathrm{H}_{7 \mathrm{a}}$ and $\mathrm{H}_{7 \mathrm{~b}}$ should amount to $\sim 0.8 \mathrm{ppm} .{ }^{13}$ The methylene protons of 9 gave rise to complex absorptions between $\delta 0.5$ and 2.55. Comparison

Table IV. NMR Spectral Data for Hydride Transfer Alcohols 9 and 25

Alcohols 9and		
Relative area of absorption	$\mathbf{9}$	$\mathbf{2 5}$
$\delta 1.85-2.55$	2.5	1.6
$\delta 0.5-1.85$	7.5	7.4

of the relative absorption area between $\delta 0.5$ and 1.85 and δ 1.85 and 2.55 (Table IV) revealed that the position for absorption of the proton that is replaced by deuterium is between $\delta 1.85$ and 2.55 . This relatively low-field absorption for this methylene hydrogen suggests that it is located anti to the epoxide group, and therefore the deuterium atom in 25 must also be located anti to the epoxide ring.

We have also obtained evidence that $\mathbf{2 b}$ undergoes a 6,2 hydride shift to yield syn product 8 . This evidence was provided by isolating the hydride-shift product 31 (Scheme IV) of the solvolysis of syn brosylate $2 \mathrm{~b}-2-\mathrm{d}$. Unfortunately, the NMR spectrum of 31 was too complicated to allow a structure proof in a manner analogous to the assignment of structure 25. Indirect evidence for the structure of 31 was provided in the following manner. Oxidation of 31 with Jones reagent provided ketone 32, which possessed an infrared spectrum clearly different from ketone 33 obtained by oxidation of the hydride-shift product 25 of the solvolysis of anti brosylate $3 \mathbf{b}-2-d$ (Scheme III). To test if the deuterium atom in $\mathbf{3 2}$ was located at $\mathrm{C}_{2}, 9$-oxabicyclo[6.1.0]nonan-3-one-2-d isomers 37 and 38 were synthesized by the route outlined in Scheme V.

Scheme IV

Scheme V

The infrared spectra of both 32 and 33 differed substantially from the infrared spectrum of pure 37 and the spectrum of a mixture of approximately equal amounts of 37 and 38 . Thus, it appears that the deuterium atom in the hydride-shift product from the solvolysis of $\mathbf{2 b - 2 - d}$ is not located to any significant extent at C_{2}, and consequently a simple 3,2 hydride shift cannot be the major pathway for the hydride-shift product 8 . The fact that the infrared spectrum of 32 was different from that of 33 also indicated that the deuterium atom in 31 was not located in the anti- C_{-}position. A mechanism that explains the observations and results in the deuterium located specifically at the syn- C_{7} position is outlined in Scheme IV. ${ }^{14}$ The stereospecific syn structure of 31 indicates that the collapse of solvent is concurrent with $\mathrm{C}_{6}-\mathrm{C}_{2}$ hydride migration or is rapid relative to a conformational change of the isomeric ion 30.

Stereospecific hydride migrations across the top of the ring in the solvolysis of $\mathbf{3 b}$ and across the bottom of the ring in $\mathbf{2 b}$ suggest that the two epimeric esters undergo ionization to conformationally different ions with rates of interconversion that are slow relative to the rates of other product-forming pathways (Scheme VI). The fact that epoxycarbinyl cation 22 underwent substantial rearrangement via hydride migration suggests that the stability of the rearranged cation [9-oxabicyclo[6.1.0]non-3-yl cation (24)], in which the cationic center is not adjacent to the epoxide group, is comparable to or greater than that of 22 (Scheme III).

The geometries of the isomeric cations 39 and 40 also help to explain the observed product distributions from the hydrolysis of $\mathbf{2 b}$ and $\mathbf{3 b}$. The geometry of epoxycarbinyl cation 39 is favorable for migration of the carbon-carbon bond of the epoxide ring to form a trans-fused 2 -oxetanyl cation 19 (Scheme II). However, rupture of the carbon-carbon bond of the epoxide ring to give a ring-expanded oxonium ion 41 would require the introduction of a relatively unfavorable trans double bond. ${ }^{15}$

On the other hand, epoxycarbinyl cation 40 possesses a geometry that is favorable for either rupture of the carboncarbon bond of the epoxide ring to provide a ring-expanded oxonium ion 42 that contains a cis double bond or for migration of the carbon-carbon bond to yield a cis-fused 2 -oxetanyl cation 44 (Scheme VIII). The relative stabilities of ions 42 and

Scheme VI

Scheme VIII

44 should parallel the stabilities of cis,cis-1,3-cyclononadiene and cis-bicyclo[5.2.0]non-8-ene, respectively. In the latter series, cis,cis-1,3-cyclononadiene is the more stable. ${ }^{15}$ Therefore, the rearrangement pathway leading to 42 should be favored over that leading to 44 and accounts for the relatively high yield (52%) of suberaldehyde (6) from the hydrolysis of 2 b . The cis nature of the earbon-carbon double bond in 42 was verified by solvolyzing 2 b in methanol, where intermediate 42 is trapped by solvent to yield the stable ketal 43. ${ }^{16}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 43 revealed a value of 6 Hz for the olefinic vicincal coupling constant, which is consistent only with a cis double bond in 43.

The observations that $\mathbf{2 b}$ and $\mathbf{3 b}$ und $\underset{\text { rgo hydrolysis to yield }}{ }$ epoxycarbinol products with net retention of stereochemistry at C-2 suggests that the backside of the ionizing center is not readily accessible to solvent. The entropies of activation for solvolysis of $\mathbf{2 b}$ and $\mathbf{3 b}$ in 80% ethanol-water were found to be 0.7 and $-3.7 \mathrm{kcal} / \mathrm{mol}$, respectively (Table I). These entropies of activation are ca. 10-18 eu higher than the entropies of activation for solvolysis of the threo and erythro isomers of 3,4 -epoxy-2-pentyl brosylate in the sane solvent. ${ }^{6}$ The latter acyclic brosylates undergo predomirant inversion at the ionizing center when hydrolyzed in an ecetone-water solution and therefore their more negative entrcpies of activation may reflect the $\mathrm{S}_{\mathrm{N}} 2$ character of the transition states. Consequently, the more positive entropies of activation for solvolysis of $\mathbf{2 b}$ and $\mathbf{3 b}$ may reflect the absence of strong solvation at the backsides of the ionizing centers. This lack of solvation would allow other rearrangement pathways and retention to compete successfully with inversion at the ionizing center. The puckered natures of the medium-sized rings of $2 b$ and $3 \mathbf{b}$ clearly induce severe geometric constraints or geometries of the intermediates of solvolysis and may also be responsible for the hindrance to solvation of those intermediates.

Experimental Section

Melting points were determined in capillary tubes and are uncorrected. Infrared spectra were recorded with a Perkin-Elmer Model 257 spectrophotometer, and ${ }^{1} \mathrm{H}$ NMR spectra were obtained with either an Hitachi Perkin-Elmer R-20A or Varian HA-100 spectrometer. Chemical shifts are reported relative oo internal tetramethylsilane. Analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn.
anti-9-Oxabicyclo[6.1.0]nonan-2-ol (3a). ${ }^{17}$ To a solution of 6.3 $\mathrm{g}(0.050 \mathrm{~mol})$ of 2-cyclooctenol ${ }^{18}$ in 125 mL of methy-ene chloride, stirred and cooled in an ice-water bath, was added $10.4 \mathrm{~g} \mathrm{of} m$-chloroperbenzoic acid ${ }^{19}(85 \%, 0.051 \mathrm{~mol})$ over a period of $\sim 10 \mathrm{~min}$. The solution was stirred for an additional hour, and the solid precipitate
of m-chlorobenzoic acid was removed by suction filtration. The filtrate was washed twice with saturated sodium bicarbonate solution, and the solvent was removed with a rotary evaporator to yield 7.1 g of 3 a as a clear oil: IR $\left(\mathrm{CCl}_{4}\right) 3600 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 3.5(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})$, 2.6-3.1 (2 H , protons on epoxide ring).
anti-9-Oxabicyclo[6.1.0]nonan-2-yl p-Bromobenzenesulfonate (3b). A solution of $5.6 \mathrm{~g}(0.022 \mathrm{~mol})$ of p-bromobenzenesulfonyl chloride in 16 mL of dry pyridine was cooled in an ice-water bath and $2.0 \mathrm{~g}(0.016 \mathrm{~mol})$ of 3 a was added. ${ }^{20}$ The reaction solution was allowed to stand for 12 h in the refrigerator and was then diluted with icewater and extracted with ether. The ethereal solution was washed with cold 1 M HCl solution and with saturated sodium bicarbonate solution and was then dried with anhydrous sodium sulfate. The solvent was removed with a rotary evaporator and the residue was filtered through Alumina III with 80:20 pentane-ether. Removal of the solvent yielded $4.86 \mathrm{~g}(89 \%)$ of crude crystalline 3 b , which was recrystallized from benzene-pentane solution to yield 3.3 g of pure $\mathbf{3 b}$: $\mathrm{mp} 85.5-86.5^{\circ} \mathrm{C}$; NMR (CCl_{4}) $\delta 2.6-3.0(2 \mathrm{H}$, epoxide protons), 4.4 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOBs}$), 7.73 (m, 4 H , aromatic protons).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{SBr}$: C, $46.54 ; \mathrm{H}, 4.74$. Found: C, 46.80 ; H, 4.69.
9-Oxabicyclo[6.1.0]nonan-2-one. ${ }^{17}$ To a stirred solution of 3.5 $\mathrm{g}(0.025 \mathrm{~mol})$ of 3 a in 60 mL of acetone at $0^{\circ} \mathrm{C}$ was added 6.75 mL of Jones reagent ${ }^{21 \mathrm{a}}$ over a period of 30 min . The reaction solution was diluted with 700 mL of water and extracted with diethyl ether ($3 \times$ 150 mL). The ethereal solution was washec with saturated sodium chloride solution and dried with anhydrous sodium sulfate. Removal of solvent left 3.1 g of oil which was distilled in vacuo to yield 2.1 g (61%) of product: bp $92^{\circ} \mathrm{C}(0.2 \mathrm{~mm})$ [lit $\left.{ }^{17} \mathrm{bp} 115-116^{\circ} \mathrm{C}(5 \mathrm{~mm})\right]$; mp $94-96{ }^{\circ} \mathrm{C}\left[\mathrm{lit}^{17} \mathrm{mp} 92-93^{\circ} \mathrm{C}\right] \mathrm{IR}\left(\mathrm{CCl}_{4}\right) 1725 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.
syn-9-Oxabicyclo[6.1.0]nonan-2-ol (2a). A mixture of $0.61 \mathrm{~g}(4.9$ mmol) of 9 -oxabicyclo[6.1.0]nonan-2-one, $0 .{ }^{7} 0 \mathrm{~g}(18 \mathrm{mmol})$ of sodium borohydride, and 25 mL of dry isopropyl alcohol was stirred and heated at $80^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was diluted with water and extracted with diethyl ether. The ethereal solution was washed with saturated sodium chloride solution ard dried with anhydrous sodium sulfate. The solvent was removed and the residue sublimed at an oil bath temperature of $100^{\circ} \mathrm{C}(3 \mathrm{~mm})$: yield $0.47 \mathrm{~g}(78 \%)$. GLC analysis (5% diethylene glycol succinate (DEGS) column) revealed that the reduction was $\gtrsim 98 \%$ stereospecific to yield syn-2a. The material was further recrystallized from pentane-ether solution: mp 89.5-91.0; IR $\left(\mathrm{CCl}_{4}\right) 3550 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.6-3.0(3 \mathrm{H}, \mathrm{CHOH}$ and epoxide protons), $4.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 67.57; H, 9.92. Found: C, 67.31; H, 9.77.
syn-9-Oxabicyclo[6.1.0]nonan-2-yl p-Bromobenzenesulfonate (2b) was prepared in 81% yield by the same procedure given above for the preparation of $\mathbf{3 b}, \mathrm{mp}$ of $\mathbf{2 b}$: $117.5-118.5^{\circ} \mathrm{C}$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta$ 2.5-3.0 (2 H , epoxide protons), 5.15 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOBs}$), 7.75 (m, 4 H , aromatic protons).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{SBr}$: C, 46.54; $\mathrm{H}, 4.74$. Found: C, 46.60; H, 4.80 .
Kinetics. A. Solvents. Ethanol (80\%)-water and 80\% acetonewater solvents were prepared by mixing 4 vclumes of organic solvent and 1 volume of water at $25^{\circ} \mathrm{C}$. All solvents were distilled prior to use.
B. Procedures. Approximately 30 mg of p-bromobenzenesulfonate ester and $25 \mu \mathrm{~L}$ of triethylamine were dissolved in 25 mL of 80% eth-anol-water. An aliquot (2.5 mL) of this solation was sealed in each of 10 ampules. The ampules were placed in a constant-temperature oil bath, thermostated to within $\pm 0.03^{\circ} \mathrm{C}$ of the stated temperatures (Table I). At a given time, an ampule was removed, and the absorbance of the solution was measured at 265 nm in a Gilford 2400 spectrophotometer. ${ }^{21 \mathrm{~b}}$

The rates in 80% acetone-water were also determined by the sealed-ampule technique. Approximately 170 mg of p-bromobenzenesulfonate was dissolved in 50 mL of 80% acetone-water, and aliquots of the solution (5.5 mL) were sealed in ampules. The ampules were placed in the constant-temperature ba:h, and at a given time an ampule was removed and 5.0 mL of reaction solution was titrated with standard 0.01 M sodium methoxide-methanol solution to a phenolphthalein end point.

Rate constants for 80% ethanol-water solutions were obtained by nonlinear regression analysis of the data, for each kinetic run, by a Wang 700 calculator computer. The rate constants for 80% acetonewater were obtained by least-squares plots of $\ln \left(V_{\infty}-V_{t}\right)$ vs. time, where V refers to titrant volume.
Products from the Hydrolysis of 2b. A solution of 47 mg of $\mathbf{2 b}$, $100 \mu \mathrm{~L}$ of triethylamine, and 5.0 mL of 80% acetone-water was sealed in an ampule and heated at $60.0^{\circ} \mathrm{C}$ for 22.5 h . The reaction solution
was diluted with water and extracted several times with diethyl ether. The ethereal solution was washed with saturated sodium chloride solution and dried over anhydrous sodium sulfate. Removal of solvent yielded 16 mg (ca. $85-90 \%$) of oil that was analyzed by gas chromatography on a 5% diethylene glycol succinate column ($6 \mathrm{ft} \times 1 / 4 \mathrm{in}$). The product distribution and relative GLC retention times are given in Table III.

The products were separated by preparative GLC and identified by comparison of their GLC retention times and infrared and NMR spectra with those of authentic samples where appropriate. Products 10 and 11 were compared with authentic samples prepared by monoepoxidation of $1,3-{ }^{-22}$ and 1,4-cyclooctadiene, ${ }^{23}$ respectively. Suberaldehyde (6) was reduced with lithium aluminum hydride, and the reduction product was compared with authentic 1,8 -octanediol. ${ }^{24}$ The infrared spectrum of the unsaturated aldehyde 7 was identical with that published for cycloheptenecarboxaldehyde. ${ }^{25}$ Products 8 and 9 could not be separated on GLC, but their structures were assigned based on the comparison of their infrared and NMR spectra with the spectra of a mixture of syn- and anti-9-oxabicyclo[6.1.0]nonan-3-ol prepared by epoxidation of 3-cyclooctenol and by their lithium aluminum hydride reduction to known cis- and trans-1,3- and 1,4-cyclooctanediols. ${ }^{12,26}$

Products from Hydrolysis of $\mathbf{3 b}$. A solution of 87 mg of $\mathbf{3 b}, 100$ $\mu \mathrm{L}$ of triethylamine, and 5.0 mL of 80% acetone-water was sealed in an ampule and heated at $100^{\circ} \mathrm{C}$ for 43.5 h . The products were isolated and characterized by the same procedure outlined above for the hydrolysis of $\mathbf{2 b}$. Relative yields are given in Table III.

Preparation of 2a-2-d. 9-Oxabicyclo[6.1.0]nonan-2-one (0.8 g) in 10 mL of absolute ethanol was reduced with sodium tetradeuterioborate $\left(\mathrm{NaBD}_{4}, 0.25 \mathrm{~g}\right)^{27}$ to yield $0.46 \mathrm{~g}(57 \%)$ of product, which was purified by sublimation at $100^{\circ} \mathrm{C}(3 \mathrm{~mm})$. The NMR spectrum of the product was similar to that for 2a except that the absorption due to $\mathrm{H}-2$ at $\delta 4.35$ was absent. $2 \mathrm{~b}-2-d$ was prepared from $2 \mathrm{a}-2-d$ by the same procedure for preparation of $\mathbf{2 b}$ above.

2-Cyclooctenone, bp $62{ }^{\circ} \mathrm{C}(1.5 \mathrm{~mm})\left[1 \mathrm{t}^{28} \mathrm{bp} 89^{\circ} \mathrm{C}(14 \mathrm{~mm})\right]$, was prepared in 75% yield by Jones oxidation of 2 -cyclooctenol.

2-Cyclooctenol-1-d. A mixture of 1.04 g of 2 -cyclooctenone (8.4 mmol), 353 mg of sodium tetradeuterioborate, ${ }^{27}$ and 15 mL of absolute ethanol was stirred at room temperature for 1 h . The reaction was diluted with water and the product extracted into diethyl ether. The ethereal solution was washed with saturated sodium chloride solution and dried over anhydrous sodium sulfate. The solvent was removed to yield 1.4 g of clear oil. GLC analysis of the product on a 7% car-bonwax-5\% KOH column ($6 \mathrm{ft} \times 1 / 4 \mathrm{in}$.) showed the presence of $\sim 80 \%$ of 2-cyclooctenol-1-d and 20% of cyclooctanol. ${ }^{29}$
anti-9-Oxabicyclo[6.1.0]nonan-2-ol-2-d (3a-2-d). The crude 2 -cyclooctenol-2-d from above, 1.3 g (containing 20% of cyclooctanol) in 20 mL of methylene chloride, was epoxidized with 2.33 g of 85% m-chloroperbenzoic acid by the procedure utilized for the preparation of 3 a , yield 1.8 g of a clear oil. The product was purified by chromatography on 15 g of Alumina III. The cyclooctanol component was eluted from the chromatography column with 20% ether-pentane, and $3 \mathbf{a}-2-d$ was eluted from the column with ether. A center fraction contained 0.6 g of $3 \mathrm{a}-2-d$ which produced only one peak on gas chromatography (5% diethylene glycol column). The NMR spectrum of the product was similar to that of 3 a , except that the absorption due to $\mathrm{H}-2$ at $\delta 3.5$ was absent. $3 \mathbf{b}-2-d$ was prepared from $3 \mathbf{a}-2-d$ by the same procedure for the preparation of $\mathbf{3 b}$ above.
3-Cyclooctenol-anti-2-d (34). 1,3-Cyclooctadiene monoepoxide 10 was reduced with lithium tetradeuterioaluminate $\left(\mathrm{LiAlD}_{4}\right)^{27}$ to 34. ${ }^{22}$ It was assumed that the deuterium was introduced trans to the resulting hydroxyl group.

9-Oxabicyclo[6.1.0]nonan-3-ol (8 and 9). 3-Cyclooctenol (3.90 $\mathrm{g}, 31 \mathrm{mmol}$) was epoxidized with 6.2 g of m-chloroperbenzoic acid $(85 \%, 31 \mathrm{mmol})$ by the procedure outlined for the preparation of 3 a . The product was distilled in vacuo: yield $2.56 \mathrm{~g}(58 \%)$; bp (0.4 mm) $100^{\circ} \mathrm{C}$; IR $\left(\mathrm{CCl}_{4}\right) 3610 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 3.8-4.3(2 \mathrm{H}, \mathrm{CHOH})$, $2.75-3.55$ (2 H , epoxide protons). The product became semicrystalline upon standing and contained approximately equal amounts of 8 and 9.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 67.57; H, 9.92. Found: C, 67.48. H, 9.80 .

Relatively pure (ca. $>90 \%$) 8 was prepared by heating 55 mg of a mixture of 8 and $9,50 \mathrm{mg}$ of lithium aluminum hydride, and 1 mL of tetrahydrofuran at $65^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h} . \mathrm{GLC}$ analysis of the isolated products (5% diethylene glycol succinate column) indicated that approximately two-thirds of the reactant mixture had been reduced to diols. The remaining epoxy alcohol was isolated by preparative GLC. The infrared spectrum of the material indicated that it consisted of ca. $>90 \%$ of 8 and ca. $<10 \%$ of 9 .

9-Oxabicyclo[6.1.0]nonan-3-one. A sample of $59 \mathrm{mg}(0.41 \mathrm{mmol})$ of a mixture of 8 and 9 in 3 mL of acetone was oxidized with 0.10 mL of Jones Reagent. ${ }^{21 a}$ The reaction solution was diluted with water and extracted with diethyl ether. The ethereal solution was washed with saturated sodium chloride solution and dried with anhydrous sodium sulfate. Removal of solvent left 24.4 mg of crude product (42\%). Pure product was isolated by preparative GLC on a 5% diethylene glycol succinate column ($6 \mathrm{ft} \times 1 / 4$ in., $100^{\circ} \mathrm{C}$): mp $68-70^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right) 1705$ $\mathrm{cm}^{-1}(\mathrm{C}=0)$. The product was unstable to gas chromatography temperatures above $120^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 68.54; $\mathrm{H}, 8.63$. Found: $\mathrm{C}, 68.27 ; \mathrm{H}$, 8.81 .

9-Oxabicyclo[6.1.0]nonan-3-ol-2-d (35 and 36) was prepared by the epoxidation of 34 with m-chloroperbenzoic acid by the procedure outlined above. Relatively pure 35 was prepared by the procedure above for the preparation of 8 .

37 was prepared by Jones oxidation ${ }^{21}$ of 35 , and a mixture of 37 and 38 was prepared by the oxidation of a mixture (ca. $50: 50$) of 35 and 36.

Methanolysis of $\mathbf{2 b}$. A solution of 2.0 g of $\mathbf{2 b}, 2.8 \mathrm{~mL}$ of triethylamine, and 40 mL of methanol was sealed in a large ampule and heated at $80^{\circ} \mathrm{C}$ for 3 h . The reaction solution was diluted with 500 mL of saturated sodium chloride solution and extracted twice with diethyl ether (total 500 mL). The ethereal solution was dried with anhydrous calcium sulfate and concentrated to a volume of ca. 5 mL by distillation of solvent through a $10-\mathrm{cm}$ fractionating column. The residual solution was analyzed by gas chromatography on a $6 \mathrm{ft} \times 1 / 8 \mathrm{in}$., 10% silicone DC- 550 column. The product misture consisted of 38% of elimination products 10 and $11,{ }^{30} 47 \%$ of ketal 43 , and 15% of three unidentified products, presumably the methyl ethers of $2 \mathrm{a}, 3 \mathrm{a}$, and 8. The major product 43 was separated from the rest by preparative chromatography on a $6 \mathrm{ft} \times 3 / 8$ in., 10% SE- 30 column: isolated yield 0.20 g (ca. 25%); UV (cyclohexane) $215 \mathrm{~nm}(\epsilon 294)$; IR ($\left.\mathrm{CCl}_{4}\right) 1650$ $(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; IR $\left(\mathrm{CS}_{2}\right) 760,767\left(\mathrm{CH}=\mathrm{CH} ; \mathrm{cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.6\right.$ $(\mathrm{m}, 8 \mathrm{H}), 2.1\left(\mathrm{~m}, 2 \mathrm{H}\right.$, allylic), $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \supset \mathrm{OH}_{3}\right), 4.48(\mathrm{t}, J=5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.85\left(\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 6.04(\mathrm{~d}, J=6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}=\mathrm{CH}$); molecular weight (mass spectrum) 156 .
Hydrolysis of 43. A solution of 9 mg of $43,0.10 \mathrm{~mL}$ of $5 \% \mathrm{HCl}$, and 1 mL of 75% acetone-water was allowed to stand at $0^{\circ} \mathrm{C}$ for 30 min . The reaction solution was diluted with water and the product was extracted into diethyl ether. The ethereal solution was dried with anhydrous sodium sulfate, and the solution was concentrated to ca. 0.3 mL by removal of solvent. Only one product was detected by gas chromatographic analysis of the residual solution on a $6 \mathrm{ft} \times 1 / 4 \mathrm{in}$., 10% apiezon L column. The product was isolated by preparative GLC: yield 3.0 mg (ca. 37% isolated yield) of a clear oil with an infrared spectrum identical with that of suberaldehyde.

Registry No.-2a, 31821-36-0; 2a-2-d, 6<312-50-1; 2b, 31186-86-4; 3a, 31821-35-9; 3a-2-d, 64252-80-8; 3b, 31136-87-5; 8, 64312-49-8; 9, 29077-87-0; 10, 6690-12-6; 25, 64252-79-5; 34, 64252-78-4; 43, 64252-77-3; 2-cyclooctenal, 3212-75-7; p-bromobenzenesulfonyl chloride, 98-58-8; 9-oxabicyclo[6.1.0]nonan-2-one, 57260-84-1; 2cyclooctenone, 1728-25-2; 2-cyclooctenol-c, 64252-76-2; 3-cyclooctenol, 4114-99-2; 9-oxabicyclo[6.1.0]nonan-3-one, 64252-75-1; sodium tetradeuterioborate, 15681-89-7.

References and Notes

(1) (a) C. D. Poulter, E. C. Friedrich, and S. Winstein, J. Am. Chem. Soc., 92, 4274. (1970); (b) C. D. Poulter and S. Winstein, ibid., 92, 4282 (1970); (c)
A. C. Cope and P. E. Peterson, ibid., 81, 1643 (1959); (d) A. C. Cope, S. Moon, and P. E. Peterson, ibid., 84, 1935 (1962); (e) H. L. Goering and K. E. Rubenstein, Abstracts, 151st National Meeting of the American Chemical Society, Pittsburgh, Pa., March 28-31, 1966, p 5K; (f) M. Gasic, D. Whalen, B. Johnson, anc S. Winstein, J. Am. Chem. Soc., 89, 6832 (1967); (g) D. Whalen, M. Gasic, B. Johnson, H. Jones, and S. Winstein, ibid., 89, 6384 (1967); (h) K. Wiberg, V. Williams, Jr., and L. Friedrich, ibid., 90, 5338 (1968); (i) L. E. Friedrich and F. R. Wright, ibid., 92, 1807 (1970); (j) E. C. Friedrich and J. D. Cooper, Tetrahedron Lett., 49, 4397 (1976).
(2) For several reviews, see: (a) H. G. Richey, Jr., "Carbonium lons'", Vol. 3, G. A. Olah and P. v. R. Schleyer, Ed., Wiley, New York, N.Y., 1972, Chapter 25; (b) K. B. Wiberg, B. A. Hess, and A. J. Ashe, III, ibid., Chapter 26.
(3) W. C. Danen, J. Am. Chem. Soc., 94, 4835 (1972).
(4) (a) H. G. Richey and D. V. Kinsman, Tetrahedron Lett., 30, 2505 (1969); (b) H. Morita and S. Oae, ibid., 17, 1347 (1969).
(5) M. Santelli, J. Chem. Soc., Chem. Commun., 214, (1974).
(6) D. L. Whalen, S Brown, A. M. Ross, and H. Miller Russell, J. Org. Chem., 42, preceding paper in this issue (1977).
(7) D. L. Whalen, J. Am. Chem. Soc., 92, 7619 (1970)
(8) (a) A. Streitwieser, Jr., and A. C. Waiss, J. Org. Chem., 27, 290 (1962); (b) H. Weiner and R. A. Sneen, J. Am. Chem. Soc., 87, 287, 292 (1965); (c) A. Streitwieser, Jr., T. D. Walsh, and J. R. Wolfe Jr., ibid., 87, 3682 (1965).
(9) (a) J. L. Fry, C. J. Lancelot, L. K. M. Lam, J. M. Harris, R. C. Bingham, D. J. Raber, R. E. Hall, and P. v. R. Schleyer, J. Am. Chem. Soc., 92, 2538 (1970); (b) J. L. Fry, J. M. Harris, R. C. Bingham, and P. v. R. Schleyer, ibid., 92, 2540 (1970); (c) P. v. R. Schleyer, J. L. Fry, L. K. M. Lam, and こ. J. Lancelot, ibid., 92, 2542 (1970).
(10) Oxabicyciobutonium ion 21, if formed, might also be expected to collapse with solvent to yield an oxetanol product. However, none could be detected.
(11) The $100-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra were kindly recorded by Dr. Y. I. Lin.
(12) Acid-catalyzed hydrolysis of cis- and trans-cyclooctene oxides also occurs with transannular hydride migrations: (a) A. C. Cope, A. H. Keough, P. E. Peterson, H. E. Simmons, Jr., and G. W. Wood, J. Am. Chem. Soc., 79, 3900 (1957); (b) A. C. Cope and C. Anderson, ibid., 79, 3905 (1957); (c) A. C. Cope, G. A. Berchtold, P. E. Peterson, and S. H. Sharman, ibid., 82, 6366 (1960).
(13) The chemical stifts for the α hydrogens of syn-2a and anti-3a are $\delta 4.35$ and 3.50 , respectively.
(14) Other, more complicated mechanisms involving multiple bond migrations might be invoked to account for the net 6,2 hydride shift observed in the solvolysis of $2 \mathrm{~b}-2-\mathrm{d}$, but are considered highly unlikely.
(15) The strain energy of 41 should be similar to that of cis,trans-1,3-cyclononadiene, which thermally rearranges to cis-bicyclo[5.2.0]non-8-ene: K. M. Shumate, P. N. Newman, and G. J. Fonken, J. Am. Chem. Soc., 87, 3996 (1965).
(16) J. D. Cooper, V. د. Vitullo, and D. L. Whalen, J. Am. Chem. Soc., 93, 6294 (1971).
(17) A. C. Cope, A. Keough, P. Peterson, H. E. Simmons, Jr., and G. Wood, J. Am. Chem. Soc., 79, 3900 (1957).
(18) N. Heap and G. H. Whitham, J. Chem. Soc. B, 164 (1966).
(19) Supplied by Aidrich Chemical Co., Milwaukee, Wis.
(20) R. S. Tipson, J. Org. Chem., 9, 235 (1944).
(21) (a) K. Bowden, I. M. Heilbron, E. R. H. Jones, and B. C. L. WeeJon, J. Chem. Soc., 39 (1946); (b) C. G. Swain and C. R. Morgan, J. Org. Chem., 29, 2097 (1964).
(22) (a) J. K. Crandall, D. B. Banks, R. A. Colyer, R. J. Watkins, and J. P. Arrington, J. Org. Chem., 33, 423 (1968); (b) A. Cope and P. Peterson, J. Am. Chem. Soc., 81, 1643 (1959).
(23) S. Moon and C. R. Ganz, J. Org. Chem., 34, 465 (1969).
(24) Prepared by lithium aluminum hydride reduction of suberic acid.
(25) Z. Eckstein, A. Scha, T. Urbanski, and H. Waznowska-Makaruk, J. Chem. Soc., 2941 (1959).
(26) A. C. Cope and B. C. Anderson, J. Am. Chem. Soc., 79, 3892 (1957).
(27) Supplied by Alfa Products, Ventron Corp., Danvers, Mass.
(28) A. C. Cope, M. R. Kinter, and R. T. Keller, J. Am. Chem. Soc., 76, 2757 (1954).
(29) This product arises from the initial 1,4-reduction of 2-cyclooctenone and was not analyzed for deuterium content.
(30) Products 10 and 11 possessed the same retention time on the column used to analyze the product mixture.

Reactions of Epoxides and Carbonyl Compounds Catalyzed by Anhydrous Copper Sulfate

Robert P. Hanzlik* and Myron Leinwetter
Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045

Received May 17, 1977

Abstract

Anhydrous CuSO_{4} and acetone have been used for many years to convert diols to acetonides. We have found that $\mathrm{CuSO}_{4} /$ acetone also converts many epoxides directly to acetonides at a convenient rate and in excellent yields. The following observations are pertinent to the mechanism and scope of this reaction: (E)- and (Z)-2,3-octene oxide each react completely stereoselectively to give the corresponding erythro or threo acetonide, respectively, the (Z)oxide reacting ca. three times faster. In contrast, both (E)- and (Z) $-\beta$-methylstyrene oxide give identical mixtures of erythro (66%) and threo (34%) acetonides; no interconversion of the oxides or the acetonides was detectable. Competition kinetic studies show that para-stbstituted styrene oxides follow a Hammett relationship of the form $\log \left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)=-2.63 \sigma^{+}$, with $r=0.9994$. Other observations pertaining to the scope, mechanism, and possible extension of these reactions are discussed.

Acetonide derivatives of diols are useful as protected synthetic intermediates, particularly in carbohydrate and steroid chemistry. They are also very well suited for GLC and/or mass spectral analysis of diols, because various geometrical isomers can easily be separated and because the dioxolane ring usually remains intact in the mass spectrometer whereas the diols cleave readily between the hydroxyl groups. Acetonides of diols are also easily prepared by a number of techniques, one of the most convenient being a direct condensation of the diol with acetone in the presence of anhydrous $\mathrm{CuSO}_{4} \cdot{ }^{1-3}$ During our ${ }^{18} \mathrm{O}$-tracer studies of the enzyme epoxide hydrase ${ }^{4}$ a need arose for converting epoxides directly to acetonides for mass spectral determinations of their ${ }^{18} \mathrm{O}$ content. We found that anhydrous CuSO_{4} in acetone cleanly and conveniently converts many epoxides directly to their corresponding diol acetonides. This is in contrast to anhydrous zinc ${ }^{5}$ or magnesium ${ }^{5,6}$ halides which give rearrangement products from epoxides, or anhydrous $\mathrm{FeCl}_{3}{ }^{7}$ or $\mathrm{Me}_{3} \mathrm{SiCl}^{8}$ which give chlorohydrin derivatives. In this paper, we describe our studies on the mechanism of the epoxide-acetonide conversion as well as its scope, limitations, and prospects for extension to related reactions.

Results and Discussion

The conversion of an epoxide to a diol and then to an acetonide involves the addition of a molecule of water and its subsequent elimination in the presence of acetone, both reactions being subject to acid catalysis. It occurred to us that it should be possible to effect the overall process as a single step in the presence of a suitable acid catalyst. Our first attempts involved stirring p-phenylstyrene oxide 1 and tetradecene 1,2 -epoxide 2 in acetone over anhydrous CuSO_{4}; the styrene oxide was quantitatively converted to acetonide within a few hours at room temperature but the alkene oxide remained unchanged after 22 h . This result roughly paralleled the expected behavior of these substrates toward acids, and so kinetic studies were undertaken to explore this possibility. It was found that small amounts of water greatly inhibited the reaction despite their effect in solubilizing the copper reagent. For example, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ dissolves slightly in acetone to produce pale-blue solutions. Epoxides dissolved in these solutions are converted to acetonides extremely slowly, even when stirred over a large excess of finely powdered CuSO_{4}. $5 \mathrm{H}_{2} \mathrm{O}$. In contrast, anhydrous CuSO_{4} is not detectably soluble in acetone, and, although acetone decanted after stirring over anhydrous CuSO_{4} does not convert epoxides to acetonides, epoxides in acetone stirred over anhydrous CuSO_{4} are readily converted to acetonides. Furthermore, stirred reactions proceed much more rapidly than unstirred reactions, suggesting
that the reaction is truly heterogeneous in nature.
In attempting to carry out kinetic studies, we found that, although individual reactions were linear with time, the reproducibility of reaction rates was poor, probably because of the heterogeneous nature of the reaction. However, by incorporating an inert internal standard (naphthalene) we were able to obtain reproducible relative initial rates for pairs of epoxides competing for catalyst. Using this approach we found the reactivities of para-substituted styrene oxides to increase in the order $\mathrm{Br}<\mathrm{Cl}<\mathrm{H}<\mathrm{CH}_{3}$. A Hammett plot of log $\left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)$ vs. σ^{+}for these substituents yielded a straight line ($r=0.9994$) with a slope (ρ^{+}) of -2.63 . This amply confirmed our initial suspicions about Lewis acid catalysis and carbonium ionlike intermediates in this reaction.
With aliphatic epoxides the rate of product formation is dependent on the nature of the substitution pattern on the oxirane ring, as shown by the data in Table I. Oxiranes from which a tertiary carbonium ion could be formed react significantly faster than those containing only secondary carbons, and monoalkyl-substituted oxiranes are essentially inert at room temperature, although they react cleanly, if siowly, at elevated temperatures. Although not indicated in Table I, small amounts of the cis and trans isomers of 2,3-epoxytetradecane which occurred as an impurity in 2 were observed to react in a fashion parallel to epoxides 4 a and $\mathbf{4 b}$. Thus, as already established in homogeneous reactions of epoxides with anhydrous metal ion Lewis acids, ${ }^{5-7}$ carbonium ion forming ability plays an important role in governing the reactivity of epoxides in the heterogeneous CuSO_{4} /acetone system as well.

In order to determine the direction of epoxide ring opening, the acetonide derived from ${ }^{18} \mathrm{O}$-enriched 1^{4} was subjected to mass spectral analysis and compared to unlabeled material. The major fragmentation occurred as shown in 7 with the base peak occurring at $m / e 72$. The origination of this peak as indicated by A in 7 is confirmed by its shift to $m / e 74$ in the mass spectra of the acetonides from both $1-\beta, \beta-d_{2}$ and $1-{ }^{18} O$. The M^{+}and $\mathrm{M}-\mathrm{CH}_{3}{ }^{+}$ions from 7 were, respectively, 25 and 20% of the base peak. In the spectrum of the acetonide from $1_{-18}^{18} \mathrm{O}$, all three ions $\left(\mathrm{A}^{+}, \mathrm{M}-\mathrm{CH}_{3}{ }^{+}\right.$, and M^{+}) contained the same atom- $\%$ excess ${ }^{18} \mathrm{O}$. Therefore, acetonide formation must involve exclusive cleavage of the benzylic $\mathrm{C}-\mathrm{O}$ bond, which also agrees with previous conclusions about the importance of carbonium ion intermediates.

Table I. Relative Reactivities of Aliphatic and Aromatic
Epoxides toward $\mathrm{CuSO}_{4} /$ Acetone
Epoxide
${ }^{a}$ Room temperature unless otherwise noted. ${ }^{b}$ Sole product is the corresponding acetonide. ${ }^{c}$ About 5% of nonacetonide products witi short retention times was formed.

Both (Z)- and (E)- β-methylstyrene oxide ($8 \mathbf{a}$ and $8 \mathbf{b}$) react with CuSO_{4} and acetone to give the same mixture of threo and erythro acetonides (66:34). Acetonides formed under identical conditions from the corresponding erythro or threo diols show no interconversion, even after standing for days at room temperature. The loss of stereochemistry from the epoxides must therefore be due to the formation of a common symmetrical intermediate, such as 10 for example, from which both products could be formed. Interconversion of epoxides was not observed; thus, if it occurred it was much slower than the conversion of 9 to 11 as outlined in Scheme I. In contrast to this situation, acetonide formation from epoxides 4 a and $\mathbf{4 b}$ is completely stereospecific, 4a giving only threo acetonide and $\mathbf{4 b}$ giving only erythro acetonide. This change of mechanism may be rationalized in terms of the strength of the $\mathrm{Me}_{2} \mathrm{C}=0 \ldots \mathrm{C}^{+}$interaction in intermediate 9 . Thus, because of the greater stability of benzylic carbonium ions, formation of 9 from 8 requires relatively little mucleophilic assistance or solvation from acetone, and interconversion of $\mathbf{9 a}$ and $\mathbf{9 b}$ through 10 is not impeded by a strong $\mathrm{Me}_{2} \mathrm{C}=0 \cdots \mathrm{C}^{+}$interaction. With the aliphatic epoxides, however, oxirane ring opening probably requires much more assistance from the carbonyl oxygen as a nucleophile, such that the strength of the $\mathrm{Me}_{2} \mathrm{C}=0 \cdots \mathrm{C}^{+}$interaction which develops precludes facile interconversion of $9 \mathbf{a}$ and $\mathbf{9 b}$ when $\mathrm{R}=$ alkyl. Since the direction of ring opening from 4 is not known, similar arguments would apply to intermediates formed by attack of acetone at the methyl-substituted oxirane carbon; the overall result would of course be the same. The importance of the nucleophilic role of the solvent is also indicated by the fact that even styrene oxide is inert in acetonitrile over CuSO_{4}. Despite the highly polar nature of this solvent, which should help stabilize polar intermediates such as 9 , its low nucleophilicity prevents it from assisting the opening of the oxirane ring. In contrast, styrene oxide in methanol over CuSO_{4} reacts rapidly to produce only 2 -phenyl-2-methoxyethanol. Since CuSO_{4} dissolves slightly in methanol to give pale blue solutions but does not dissolve noticeably in acetonitrile, it seems unlikely that the difference in reactivity of styrene oxide in these two solvents can be ascribed to attenuation of the catalyst by solvation.

The experiments described above clearly point to the importance of the Lewis acid property of anhydrous CuSO_{4}. However, CuSO_{4} is also an effective dehydrating agent, much like CaSO_{4} or MgSO_{4}, and both of these properties are important in its use to form acetonides from diols plus acetone. Many other organic reactions require acid catalysis with dehydrating conditions to shift an equilibrium in a useful di-

Scheme I

$4 \mathrm{a}, \mathrm{R}=\eta$-pentyl $8 \mathrm{a}, \mathrm{R}=$ phenyl
\downarrow

9a

$4 b, R=n$-pentyl $8 \mathrm{~b}, \mathrm{R}=$ phenyl

9b

11a
116
rection, but the conversion of diols to acetonides is apparently the only one in which anhydrous CuSO_{4} is used to advantage. As a start toward exploring the general utility of CuSO_{4} as a reagent in organic chemistry, we examined its use in convering carbonyl substrates to 1,3-dioxolane and 1,3-dioxane derivatives in diol solvents. The carbonyl compounds were simply dissolved in the diol and stirred over an excess of CuSO_{4} at room temperature. CuSO_{4} dissolves in ethylene glycol to give a clear blue solution which converts benzaldehyde and acetophenone to their dioxolane derivatives in 45 and 5% yield, respectively, after stirring for 28 h . Although CuSO_{4} does not dissolve detectably in propane-1,3-diol, benzaldehyde and acetophenone were converted to their 1,3-dioxane derivatives in yields of 98 and 10%, respectively, after stirring over CuSO_{4} for 28 h . No attempts have yet been made to increase these yields by the use of larger amounts of CuSO_{4}, longer times, or higher temperat ares. Nor is it known if these yields reflect the relative reactivities of the reactants (aldehyde $>$ ketone; dioxane less strained than dioxolane) or an equilibrium under the conditions used. It is also possible that in solubilizing CuSO_{4} ethylene glycol reduces its Lewis acidity and/or its affinity for water, thus contributing adversely at both the kinetic and thermodynamic levels. A parallel to this exists in the epoxide to acetonide conversion, where small amounts of water greatly decrease the effectivity of CuSO_{4} as a catalyst despite increasing its solubility in acetone.

Anhydrous CuSO_{4} can thus serve as a useful catalyst/reagent for several frequently encountered reactions of carbonyl compounds with diols or their epoxide equivalents. The reactions proceed under mild conditions, at rates comparable to those attainable with conventional acid catalysts (e.g., 0.05 $\mathrm{Mp}-\mathrm{TsOH}$), and may be more convenient than other procedures involving azeotropic removal of water to shift an equilibrium.

Experimental Section

Epoxides. Styrene oxide was purchasec from Aldrich; all other epoxides were prepared from the corresponding olefins by peracetic acid epoxidation in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ buffered with sodium acetate. Their purity was checked by TLC, GLC, and NMR and was $>97 \%$ in all cases. Tetradec-1-ene and (E) - and (Z)-2-octene were obtained from Aldrich; 2-methyl-2-heptene (precursor for 5) was obtained by WolfKishner reduction of 6-methyl-5-hepten-2-one (Aldrich) followed by distillation (bp 120-121 ${ }^{\circ} \mathrm{C}$); 1-phenyl-4-methylpent-1-ene (precursor for 6) was obtained by Grignard coupling of 2-phenylethylmagnesium bromide and methallyl chloride in refluxing ether, followed by distillation (bp 90-95 ${ }^{\circ} \mathrm{C}, 34$ Torr). Para-substituted styrenes were prepared from the corresponding acetophenones by borohydride reduction and dehydration as described previously. ${ }^{9}$ cis- β-Methylstyrene was prepared by irradiation ${ }^{10}$ of a 1% solution of the trans isomer (Aldrich) in benzene containing 2 -acetonaphthone (2%) for 8 h under nitrogen in a Rayonet reactor with 350 -nm lamps. GLC analysis on a DC- 550 column showed that a photosteady state was reached at a cis/trans ratio of $82: 18$. The sensitizer was removed by filtering the solution through active silica gel. The mixture of isomers obtained after removing the benzene on a rotary evaporator was used without further purification.
CuSO_{4}-Catalyzed Reactions. Anhydrous CuSO_{4} was prepared by gently heating the finely powdered pentahydrate in a bunsen flame until it turned very pale blue, cooling in a desiccator, and grinding in a mortar before use. Reactions were stirred at room temperature in screw-cap tubes to keep moisture out. In general, 100 mg of substrate epoxide (or carbonyl compound) was dissolved in 1 mL of acetone (or glycol sclvent) and stirred with ca. 50 mg of CuSO_{4}; in more dilute solutions, the reactions proceeded very slowly. In all cases acetonides produced directly from epoxides were identical (GLC) to those produced from the corresponding diol.

Acetonides. The structures of many of the acetonides derived from epoxides 1-6, 8a, and $8 \mathbf{b}$ have been confirmed by mass spectroscopy. ${ }^{4}$ All of the acetonides mentioned in this study have also been characterized by NMR spectroscopy, and these ciata are reported here together with their R_{f} on $0.25-\mathrm{mm}$ silica layers eluted with 10% ethyl acetate in hexane. Each epoxide precursor had essentially the same $R_{/}$as its derived acetonide.

2,2-Dimethyl-4-(4'-phenylphenyl)dioxo ane: from epoxide $1, \mathrm{mp}$ $62-65^{\circ} \mathrm{C}, R_{f} 0.36 ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.50 \mathrm{im}$, arom), 1.49 and 1.55 $\left(\mathrm{CMe}_{2}\right), 5.10(\mathrm{t}, \alpha-\mathrm{H}), 4.30(\mathrm{t}, \beta-\mathrm{H}), 3.72(\mathrm{t}, \beta-\mathrm{H})$.

2,2-Dimethyl-4-(n-dodecyl)dioxolane: From epoxide 2, an oil, R_{f} 0.57 ; NMR $\left(\mathrm{CDCl}_{3}\right), \delta 4.08$ (ring $\left.\mathrm{CH}_{2}\right), 3.50(\mathrm{~m}$, ring CH$), 1.38$ and 1.44 (CMe_{2}).
2,2-Dimethyl-4-phenyldioxolane: from styrene oxide, an oil, $R_{/} 0.48$; NMR (CDCl_{3}) $\delta 7.30$ (arom), $5.05(\mathrm{dd}, \alpha-\mathrm{H}), 4.25(\mathrm{dd}, \beta-\mathrm{H}), 3.66(\mathrm{t}$, β-H).
erythro-2,2-Dimethyl-4-pentyl-5-methyldioxolane: from epoxide 4 b , an oil, $R_{f} 0.55$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.15$ (m, ring CH), 1.34 and 1.44 $\left(\mathrm{CMe}_{2}\right), 1.16\left(\mathrm{~d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
threo-2,2-Dimethyl-4-pentyl-4-methyldioxolane: from epoxide 4a, an oil, $R_{f} 0.55 ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.60(\mathrm{~m}$, ring CH$), 1.40\left(\mathrm{CMe}_{2}\right), 1.27$ (d, $J=7 \mathrm{~Hz}, \mathrm{CH}_{3}$).
2,2,4,4-Tetramethyl-5-butyldioxolane: from epoxide 5, an oil, R_{f} 0.62 ; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.70(t, J=6 \mathrm{~Hz}$, ring CH$), 1.10,1.24,1.33$, and 1.41 (methyls).

2,2,4-Trimethyl-4-(3-phenylpropyl)dioxolane: from epoxide 6, an oil, $R_{f} 0.41$; NMR $\left(\mathrm{CDCl}_{3}\right) 7.14$ (s, arom), 3.65 (s , ring CH_{2}), 2.60 (m, benzylic CH_{2}), 1.34 and $1.38\left(\mathrm{CMe}_{2}\right), 1.27\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.
erythro-2,2,4-Trimethyl-5-phenyldioxolane: from epoxides $8 \mathbf{a}$ and 8 b, an oil, $R_{f} 0.53$; NMR $\left(\mathrm{CDCl}_{3}\right) 7.29$ (arom), $5.19(\mathrm{~d}, J=7 \mathrm{~Hz}$,
benzylic H), $4.6(\mathrm{~m}$, ring H$), 1.45$ and $1.62\left(\mathrm{CMe}_{2}\right), 0.79(\mathrm{~d}, J=6 \mathrm{~Hz}$, CH_{3}).
threo-2,2,4-Trimethyl-5-phenyldioxolane: from epoxides $8 \mathbf{a}$ and 8b, an oil, $R_{f} 0.53$; NMR (CDCl_{3}) 7.34 (arom), $4.46(\mathrm{~d}, J=9 \mathrm{~Hz}$, benzylic H), $3.92\left(\mathrm{~m}\right.$, ring H), 1.50 and $1.55\left(\mathrm{CMe}_{2}\right), 1.25(\mathrm{~d}, J=6 \mathrm{~Hz}$, CH_{3}).

Kinetic Studies. Solutions of the styrene oxides were prepared (ca. 0.08 M) in acetone containing $10 \mathrm{mg} / \mathrm{mL}$ naphthalene as an internal standard. Reaction solutions were prepared by combining a $1.0-\mathrm{mL}$ aliquot of each of two such solutions. Reactions were monitored by GLC on either 3% SE-30 ($6 \mathrm{ft} \times 1 / 8 \mathrm{in}$. at $85^{\circ} \mathrm{C}$) or $5 \% \mathrm{DC}-550(10 \mathrm{ft}$ $\times 1 / 8$ in. at $140^{\circ} \mathrm{C}$). After calibrating the digital integrator on the GLC with two injections of the epoxide/naphthalene solution, $20-50 \mathrm{mg}$ of powdered anhydrous CuSO_{4} was added and the mixtures were stirred rapidly at room temperature in sealed vials. At $5-10-\mathrm{min}$ intervals, aliquots were analyzed by GLC, and the slope of a plot of epoxide remaining vs. time was taken as the rate of reaction. Due to the heterogeneous nature of the reaction, rates for individual epoxides were poorly reproducible from run to run. However, when two epoxides were competing for the same catalyst, their relative rates were quite reproducible. Relative to styrene oxide (1.00) the rates of reaction of p-methyl-, p-chloro-, and p-bromostyrene oxide were 7.65 , 0.50 , and 0.43 , respectively. The Hammett plot of these data is described in the text.

Acknowledgments. This work was supported by National Institutes of Health Grant GM-21784 (to R.P.H.) and an National Science Foundation Undergraduate Research Participation award (M.L.).

Registry No. 1 1, 36099-26-0; 8a, 4541-87-1; 8b, 23355-97-7; 2,2-dimethyl-4-(4'-phenylphenyl)dioxolane, 64216-04-2; 2,2-dimethyl4 -(n-dodecyl)dioxolane, 64216-03-1; 2,2-dimethyl-4-phenyldioxolane, 52129-03-0; erythro-2,2-dimethyl-4-pentyl-5-methyldioxolane, 64216-08-6; threo-2,2-dimethyl-4-pentyl-5-methyldioxolane, 64216-07-5; 2,2,4,4-tetramethyl-5-butyldioxolane, 64216-09-7; 2,2,4-trimethyl-4-(3-phenylpropyl)dioxolane, 64235-91-2; erythro-2,2,4-trimethyl-5-phenyldioxolane, 64216-06-4; threo-2,2,4-tri-methyl-5-phenyldioxolane, 64216-05-3; 2-methyl-2-heptene, 627-97-4; 6-methyl-5-hepten-2-one, 110-93-0; 1-phenyl-4-methylpent-1-ene, 15314-20-2; 2-phenylethyl bromide, 103-63-9; methallyl chloride, 563-47-3; p-methylstyrene oxide, 13107-39-6; p-chlorostyrene oxide, 2788-86-5; p-bromostyrene oxide, 32017-76-8; acetone, 67-64-1.

References and Notes

(1) W. Szer and D. Shugar, Synth. Proced. Nucleic Acid Chem., 1, 433 (1968).
(2) J. A. McCloskey and M. J. McClelland, J. Am. Chem. Soc., 87, 5090 (1965)
(3) R. E. Wolff, G. Wolff, and J. A. McCloskey, Tetrahedron, 22, 3093 (1966).
(4) R. P. Hanzlik, M. Edelman, W. J. Michaely, and G. Scott, J. Am. Chem. Soc., 98, 1952 (1976).
(5) B. Rickborn and R. M. Gerkin, J. Am. Chem. Soc., 93, 1693 (1971), and references given therein.
(6) P. F. Hudrlik, R. N. Misra, G. P. Withers, H. M. Hudrlik, R. J. Rona, and J. P. Arcoleo, Tetrahedron Lett., 1453 (1976).
(7) J. Kagan, B. E. Firth, N. Y. Shih, and C. Boyajian, J. Org. Chem., 42, 343 (1977).
(8) D. J. Harvey et al., Res. Commun. Chem. Pathol. Pharmacol., 4, 247 (1972).
(9) R. P. Hanzlik and G. O. Shearer, J. Am. Chem. Soc., 97, 5231 (1975).
(10) R. A. Caldwell, G. W. Sovocool, and J. R. Peresie, J. Am. Chem. Soc., 93, 779 (1971).

Aromatic Nucleophilic Substitution. 9. ${ }^{1}$ Kinetics of the Formation and Decomposition of Anionic σ Complexes in the Smiles Rearrangements of N-Acetyl- β-aminoethyl 2-X-4-Nitro-1-phenyl or N-Acetyl- β-aminoethyl 5-Nitro-2-pyridyl Ethers in Aqueous Dimethyl Sulfoxide

K. Okada and S. Sekiguchi*
Department of Synthetic Chemistry, Gunma University, Tenjincho, Kiryu, Gunma 376, Japan

Received February 23, 1977

Abstract

The kinetics of the base-catalyzed Smiles rearrangements of N-acetyl- β-aminoethyl 2-X-4-nitro-1-phenyl [X; $\left.\mathrm{NO}_{2}(5), \mathrm{Br}(8), \mathrm{CN}(9)\right]$ or N-acetyl- β-aminoethyl 4-nitro-2-pyridyl ether (10) in $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{H}_{2} \mathrm{O}$ have been studied. For all the substrates studied the anionic σ complexes were spectrophotomerically confirmed to intervene during the rearrangement process, and the rates of rearrangement were found to depend only on the decomposition process of the anionic σ complexes (independent of their formation process). The rate of rearrangement decreases in the order of $10>8>9>5$, and the rate of formation of the anionic σ complex decreases in the order of $5,9>10>$ 8.

Since the Smiles rearrangement was found by Henriques, ${ }^{2}$ it has been developed by many workers, especially by Smiles. ${ }^{3}$ The rearrangement is indicated as follows:

Although the field has been recently reviewed, ${ }^{4}$ there have been few studies on the detailed kinetics of rearrangements because of their mechanistic complexity. ${ }^{5,6} \mathrm{McClement}$ and Smiles ${ }^{7}$ found that the base-catalyzed rearrangement of 2-hydroxy-2'-nitrodiphenyl sulfones zo 2 -sulfino- 2 '-nitrodiphenyl ethers is strongly accelerated by a 6 -methyl group, which was interpreted to be attributable to its electronic effect, but Bunnett and Okamoto ${ }^{6}$ reported that the rate of rearrangement of a 2 -hydroxy- 2 '-nitrodiphenyl sulfone to a 2 -(o-nitrophenoxy)benzenesulfinic acid is increased about 500000 -fold by the introduction of a methyl, chloro, or bromo substituent in the 6 position and that the origin of acceleration is not electronic but steric. Roberts and deWorms ${ }^{8}$ carried out the Smiles rearrangement of 2 -acylamidodiphenyl ethers 3 to 2 -acyloxydiphenylamines 4 and concluded that the rate of rearrangement decreases with an increasing electron-attracting effect of the substituent in the phenyl or benzoyl group owing to the reduction in availability of the unshared electrons of an amido nitrogen (eq 2). Bernasconi et al. ${ }^{9}$ have recently reported the kinetics of the base-catalyzed formation

3

Ac; acetyl or substituted benzoyl
of the anionic σ complex from N-(β-hydroxy)ethyl- N -methyl-2,4-dini roaniline and discussed the unusual (reverse) Smiles rearrangement.
We have more recently carried out the base-catalyzed Smiles rearrangement of N-acetyl- β-aminoethyl 2,4 -dinitrophenyl ether (5) to N-(β-acetyloxy)ethyl-2,4-dinitroaniline (7) in $\mathrm{Me}_{2} \mathrm{SO}$, where the Janovsky complex 6 was spectrophotometrically confirmed to intervene. The results suggested that the rearrangement takes place in two distinct stages and the kinetics in each stage could be spectrophotometrically followed. ${ }^{10}$ Skarzewski and Skrowaczewska have recently reported the products in the reaction of various β-(N-acylamino)ethoxides or β-(amino)ethoxides with 2,4-dinitrofluorobenzene, which had resulted from an intramolecular Smiles rearrangement with the simultaneous migration of an acyl group from nitrogen to oxygen ${ }^{11}$ as we already found in a similar phenomenon. ${ }^{10}$ They could not, however, evidence the intervention of anionic σ complexes.
This paper reports the kinetics of the formation and decomposition of the anionic σ complexes in the base-catalyzed Smiles rearrangement of N-acetyl- β-aminoethyl nitrophenyl or nitropyridyl ethers and the effect of substituents in the 2 position of the phenyl group on the rate of rearrangement. On the basis of the kinetics, the decomposition of anionic σ complexes to products has been found to be rate determining in the rearrangement, which is interestingly independent of the formation of complexes and greatly contrasted with the results of the previous work. ${ }^{6-8}$

Results

Anionic σ Complexes in Base-Catalyzed Smiles Rearrangements of N-Acetyl- β-aminoethyl 2,4-Dinitro-1phenyl (5), 2-Bromo-4-nitro-1-phenyl (8), 2-Cyano-4-nitro-1-phenyl (9), and 5-Nitro-2-pyridyl (10) Ethers in $\mathbf{M e}_{2}$ SO. The anionic σ complex $\left[\lambda_{\max } 347(\epsilon 14300)\right.$, 359 (ϵ 13800), and $506 \mathrm{~nm}(\epsilon 28000)$] formed in the tertiary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$-catalyzed rearrangement of 5 to 7 in $\mathrm{Me}_{2} \mathrm{SO}$ was already described in the previous paper. ${ }^{10}$ Figure 1 shows the spectral change when 50 equiv of tertiary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ is added to a $\mathrm{Me}_{2} \mathrm{SO}$ solution of 8 (1.93 $\left.\times 10^{-5} \mathrm{M}\right)$. Curve d coincided in position and shape with the spectrum of $12\left[\lambda_{\text {max }} 481 \mathrm{~nm}(\epsilon 34700)\right]$ obtained when excess tertiary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ was added to a $\mathrm{Me}_{2} \mathrm{SO}$ solution of N-(β-acetyloxy)ethyl-2-bromo-4-nitroaniline (13) under the same condition. Curve b can be attributed to the anionic σ complex 11, because the stopped-flow method gave the same absorption spectrum as curve b when KOH was added to a $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{H}_{2} \mathrm{O}(96: 4, \mathrm{v} / \mathrm{v})$ solution of $8\left(\mathrm{KOH} 0.40 \times 10^{-2} \mathrm{M} ; 8\right.$

Figure 1. Absorption spectra relevant to the reaction of 8 with ter-tiary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ in $\mathrm{Me}_{2} \mathrm{SO}$ at $25^{\circ} \mathrm{C}$. (a) $8\left(1.93 \times 10^{-5} \mathrm{M}\right)$; b, c, and d monitered to the shorter wavelength region at 430,500 , and 600 nm , respectively, immediately after addition of 50 equiv of tertiary butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ (chart speed $100 \mathrm{~nm} / 1.67 \mathrm{~min}$).
$\left.2.40 \times 10^{-5} \mathrm{M}\right)$ at the ionic strength (μ) of $0.1\left(\mathrm{KClO}_{4}\right)$ at 25 ${ }^{\circ} \mathrm{C}$ (Figure 2^{12} and about the saponification of 12 refer to ref 16). Furthermore, the absorption spectrum of the anionic σ

complex 15, which is formed on addition of 50 equiv of terti-ary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ to a $\mathrm{Me}_{2} \mathrm{SO}$ solution of 14 and very

stable, ${ }^{9,10}$ is similar in position and shape ($\lambda_{\text {mas }} 397 \mathrm{~nm}$) to curve b. Hosoya et al. ${ }^{13}$ already reported that the shape of absorption spectra of such complexes as 11 or 15 is little affected by the group attached to an amino nitrogen. These results, therefore, clearly indicate that curve b in Figure 1 is characteristic of the complex 11.

The absorption spectra of the reaction of $9\left(2.47 \times 10^{-5} \mathrm{M}\right)$ with 5 C equiv of tertiary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ in $\mathrm{Me}_{2} \mathrm{SO}$ are shown in Figure 3, where curve b is attributed to the anionic σ complex 16 [$\lambda_{\text {max }} 412$ and $\left.420(\mathrm{sh}) \mathrm{nm}\right]^{9,10,13}$ and curve d to 17 [$\lambda_{\max } 475 \mathrm{~nm}(\epsilon 30600)$]. These assignments were confirmed in a similar manner as with 8 (eq 4 and 6).

The reaction of $10\left(2.68 \times 10^{-5} \mathrm{M}\right)$ with 50 equiv of terti-ary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ in $\mathrm{Me}_{2} \mathrm{SO}$ gave only the spectrum of 22 [$\lambda_{\text {max }} 461 \mathrm{~nm}(\epsilon 28400)$] even at the faster chart speed, which is the same as that [$\left.\lambda_{\max } 462 \mathrm{~nm}(\epsilon 27100)\right]$ obtained in the reaction of $2-[N-(\beta$-acetyloxy $)$ ethyl $]$ amino- 5 -nitropyridine (23) with 50 equiv of tertiary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ in $\mathrm{Me}_{2} \mathrm{SO}$. However, the stopped-flow method gave a similar spectrum

Figure 3. Absorption spectra relevant to the reaction of 9 with $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ in $\mathrm{Me}_{2} \mathrm{SO}$ at $25^{\circ} \mathrm{C}$: (a) $9\left(2.47 \times 10^{-5} \mathrm{M}\right)$; b and c monitered to the shorter wavelength region at 500 and 600 nm , respectively, immediately after addition of 50 equiv of tertiary butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ (chart speed $100 \mathrm{~nm} / 1.67 \mathrm{~min}$); (d) 5 min after addition of 50 equiv of tertiary butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$.

($\lambda_{\max } 400 \mathrm{~nm}$) to that $\left[\lambda_{\max } 406 \mathrm{~nm}(\epsilon 20900)\right.$] of the complex 25 formed in the reaction of $2-\mid N-(\beta$-hydroxy)ethyl- N -

methyl]amino-5-nitropyridine (24) with 100 equiv of terti-ary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ in $\mathrm{Me}_{2} \mathrm{SO}$ under the same condition as with 10 (eq 8). These results indicate that 21 intervenes during the course of the reaction. From these results, we have found that the reaction of the substrate ($5,8-10$) with

$\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ in $\mathrm{Me}_{2} \mathrm{SO}$ occurs in two observable stages: formation and decomposition of the anionic σ complex, the latter corresponding to the rearrangement.

Our observations will be shown later to be consistent with the mechanism of Scheme I, where hydroxide ion is used as a base.
Rate Equations of Rearrangements. We rewrite Scheme I in a fashion more useful for quantitative discussions in Scheme II.
In Scheme II two rates are measurable (those of the formation and decomposition of 28). Equations 10 and 13a pertain to proton abstraction equilibria which are rapidly established. Although 26, an amide, functions as a weak acid, ${ }^{14}$ the process (eq 10) occurs to some extent in strongly basic media as shown in the work of Hine and Hine ${ }^{15}$ (in the case of 8 and $10,[27] /[26]$ becomes 0.78 and 0.56 , respectively, under the condition of $[-\mathrm{OH}]=6 \times 10^{-3} \mathrm{M}$, based on the data as will be shown later). $K_{1} K_{2}$, therefore, is anticipated to be very large. K_{5} can be resonably assumed to be very small Under the present condition, therefore, the equilibria (eq 10 and 11 , and 13a) lie almost entirely on 28 and 30 , respectively.

As will be shown later, the earlier stages (eq 10 and 11) are much faster than the later ones (eq 12 and 13), and, therefore, the earlier ones can be dealt with as equilibria in treatment of the kinetics of the later ones.
If the possibility that the substrate may be split among

Scheme I

Scheme II

$$
26+{ }^{-} \mathrm{OH} \stackrel{K_{1}}{\rightleftarrows} 27(10) \quad 27 \underset{k_{-2}}{\stackrel{K_{2}}{\rightleftarrows}} 28
$$

Figure 4. Relaticnship between $k_{\text {obsd }}$ and $[\mathrm{KOH}]$ in the reactions of $5(\mathrm{a},---)$ and $10(\mathrm{~b},-)$ with KOH in $96 \% \mathrm{Me}_{2} \mathrm{SO}$ at $25^{\circ} \mathrm{C}:[5]_{0} 3.0 \times$ $10^{-5} \mathrm{M} ;[10]_{0} 4.4 \times 10^{-5} \mathrm{M} ; \mu 0.1\left(\mathrm{KClO}_{4}\right)$.
$27-30$ is taken account of, for the rate of rearrangement the most general expression is as follows:

$$
\begin{align*}
& \text { rate }=k_{\text {obsd }}[26]_{\text {st }} \\
& \qquad=\frac{k_{4} K_{1} K_{2} K_{3}[-\mathrm{OH}][26]_{\text {st }}}{1+K_{1} K_{2} K_{3} K_{5}+\left(K_{1}+K_{1} K_{2}+K_{1} K_{2} K_{3}\right)[-\mathrm{OH}]} \tag{14}
\end{align*}
$$

Rearranging eq 14 , one can derive

$$
\begin{equation*}
\frac{1}{k_{\text {obsd }}}=\frac{1+K_{1} K_{2} K_{3} K_{5}}{k_{4} K_{1} K_{2} K_{3}[-\mathrm{OH}]}+\frac{1+K_{2}+K_{2} K_{3}}{k_{4} K_{2} K_{3}} \tag{15}
\end{equation*}
$$

On the basis of plots of $1 / k_{\text {obsd }}$ against $1 /\left[{ }^{-} \mathrm{OH}\right]$, one can obtain $k_{4} K_{1} K_{2} K_{3} /\left(1+K_{1} K_{2} K_{3} K_{5}\right)$ and $k_{4} K_{2} K_{3} /\left(1+K_{2}+K_{2} K_{3}\right)$ from slopes and intercepts. In the special case in which (K_{1} $\left.+K_{1} K_{2}+K_{1} K_{2} K_{3}\right)\left[{ }^{-} \mathrm{OH}\right] \gg 1+K_{1} K_{2} K_{3} K_{5}$, eq 14 simplifies to eq 16 .

$$
\begin{equation*}
k_{\text {ohsd }}=\frac{k_{4} K_{2} K_{3}}{1+K_{2}+K_{2} K_{3}} \tag{16}
\end{equation*}
$$

Equation 16, therefore, indicates that the rate of rearrangement is zero-order in [-OH] under the above-described condition (Figure 4a). In the cases in which this condition is not fulfilled (Fizure 4b), the curvilinear dependence of $k_{\text {obsd }}$ on [-OH] will be found and consequently, $k_{\text {obsd }}$ can be evaluated by the extrapolation of $1 /[-\mathrm{OH}]$ to the intercept in the linear plot of $1 / k_{\text {obsd }}$ against $1 /\left[{ }^{-} \mathrm{OH}\right]$ (eq 15) (Figure 5^{12}).
In all runs, the base (KOH) was in a large excess over the substrate concentration, which assures pseudo-first-order kinetics throughout. ${ }^{16}$ Our data are summarized in Table I with activation parameters. In the case of 8 and 10 was found the curvilinear dependence of $k_{\text {obsd }}$ on [${ }^{-} \mathrm{OH}$], and, consequently, the rate constants were obtained by use of inversion plots and found to be 3.58×10^{-2} and $1.10 \mathrm{~s}^{-1}$ for 8 and 10 , respectively (Fizure 5^{12}). Table I shows that the relative rate of rearrangement at $25^{\circ} \mathrm{C}$ is $1,62,83$, and 1900 for $5,8,9$, and 10 , respectively, and that it increases with decreasing elec-tron-attracting effect of an ortho substituent, except for 10 The order is reversed in the base-catalyzed rearrangement of 2-hydroxy-5-methyl-(2'-R-4'-nitro)diphenyl sulfone [$\mathrm{R} ; \mathrm{NO}_{2}$ (very rapid) $>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}>\mathrm{CO}_{2} \mathrm{Na}>\mathrm{H}$ (very slow)] carried out by Galbraith and Smiles. ${ }^{17}$ They concluded that their results were due to the easy formation of an anionic σ complex or a transition state by the electron-attracting effect of a $2^{\prime}-\mathrm{R}$ group, even though it was not clear by way of which state the rearrangement proceeded. The result for 10 can be considered to be due to the absence of steric hindrance.
Thus, in our case it has been made clear that the rate of rearrangement increases, as an ortho substituent is less elec-tron-attracting and less bulkier, which is different from the results of Bunnett and Okamoto, ${ }^{6}$ too.

Rate Equations of Anionic σ Complex Formation (eq 10 and 11). In order to clarify whether the origin of the change

Table I. Kinetic Data Relevant to the Rearrangement

${ }^{a}$ Base $\mathrm{KOH} ; \mu 0.1\left(\mathrm{KClO}_{4}\right)$; solvent $96 \% \mathrm{Me}_{2} \mathrm{SO}$ (v/v). ${ }^{b}[5]_{0}$ $3.0 \times 10^{-5} \mathrm{M} .{ }^{c}[8]_{0} 2.3 \times 10^{-5} \mathrm{M} .{ }^{d}[9]_{0} 2.6 \times 10^{-5} \mathrm{M} .{ }^{e}[10]_{0} 4.4$ $\times 10^{-5} \mathrm{M}$; measured by means of a stopped-flow method. The accuracy of $k_{\text {obsd }}$ is within $\pm 0.25-{ }^{f}$ All $k_{\text {obsd }}$ are an average of at least triplicate measurements.
in the rate constant is electronic or steric, the kinetics of formation of anionic σ complexes were carried out under similar conditions to those in the measurements of the rates of rearrangement.

In the case of 5 and 9 the rates of formation of the anionic σ complexes were too fast to be followed by the stopped-flow spectrcphotometric method, while in the case of 8 and 10 the
stability of formed complexes was moderate enough for rates to be measured. From eq 10 and 11, the pseudo-first-order rate constant for the attainment of equilibrium is the sum of the first-order rate constants for the forward and reverse reactions. As a general rate expression, one can derive eq 17,

$$
\begin{equation*}
k_{\psi}=k_{-2}+\frac{k_{2} K_{1}[-\mathrm{OH}]}{1+K_{1}[-\mathrm{OH}]} \tag{17}
\end{equation*}
$$

where k_{2} and k_{-2} are the rate constants for the forward and reverse reactions of eq 11 , respectively. Therefore, the plot of k_{Ψ} against [-OH] would give a curvilinear dependence unless $K_{1}\left[{ }^{-} \mathrm{OH}\right] \gg 1$. This is the case with 8 and 10 , where k_{-2} could be obtained from the extrapolation of $[-\mathrm{OH}]$ to the intercept in the above-described plot (Figure 6^{12}). Once k_{-2} is obtained, eq 18 could be easily derived. Therefore, from the slope and intercept in the plot of $1 /\left(k_{\Psi}-k_{-2}\right)$ against $1 /[-\mathrm{OH}]$ (eq 18), k_{2} and K_{1} could be evaluated (Figure 7^{12}). Relevant data are summarized in Table II. $K_{1} s$ in Table II is considered to be resonable from a consideration of the work of Hine and Hine. ${ }^{14,15}$

$$
\begin{equation*}
\frac{1}{k_{\psi}-k_{-2}}=\frac{1}{k_{2}}+\frac{1}{k_{2} K_{1}[-\mathrm{OH}]} \tag{18}
\end{equation*}
$$

Discussion

Formation of Anionic σ Complexes. The difference between $k_{2} s$ in Table II may result from the electron-attracting and stereoelectronic characters of pyridyl nitrogen. The values of K_{1} are considered to be reasonable on the basis of the fact that a $2-\mathrm{Br}$ group is a little more electron attracting than a pyridyl nitrogen from a consideration of the $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ of 2 -bromophenol ${ }^{18}$ and 2-hydroxypyridine. ${ }^{19}$ Although in the case of 5 and $9 k_{2}$ and K_{1} could not be obtained, K_{1} and K_{2} can be expected to be at least larger than 131 and 11, respectively, because the rates of formation of anionic σ complexes are too fast to be followed by a stopped-flow spectrophotometric method.

Rates of Rearrangement. As in both cases (5 and 9), K_{2} is considered to be much larger than 1 ; therefore, one can approximate eq 16 as follows:

$$
\begin{equation*}
k_{\text {obsd }}=\frac{k_{4} K_{3}}{1+K_{3}} \tag{19}
\end{equation*}
$$

Even in the case of 8 and $10, K_{2}$ are evaluated to be much larger than 1 as described in the preceding section, and, therefore, eq 19 still holds. Equation 19 indicates that the rate of rearrangement depends only on the decomposition of an anionic σ complex, independent of its formation. This result is very interesting, because all previous work put emphasis on the formation of the transition states 32 and $33 .{ }^{3,6,17}$ Several pathways are possible for the conversion of 1 to 2 ; the nucleophilic function, YH, may be ionized with substitution proceeding via the transition state 32 (eq 20). On the other

hand, prior ionization is not always required, and the rearrangement may proceed in a concerted fashion through the transition state 33 (eq 21). In certain systems the rearrangement proceeds through such a stabilized intermediate as $28 .{ }^{4 \mathrm{a}}$ If the rate of rearrangement, however, depends only on the decomposition process of a stabilized intermediate (anionic

Table II. Kinetic Data Relevant to the Formation of Anionic σ Complexes ${ }^{a}$

${ }^{a}[8]_{0} 2.4 \times 10^{-5} \mathrm{M} ;[10]_{0} 4.4 \times 1 \mathrm{C}^{-5} \mathrm{M}$; solvent $96 \% \mathrm{Me}_{2} \mathrm{SO}$ (v/v); base $\mathrm{KOH} ; \mu 0.1\left(\mathrm{KClO}_{4}\right)$; measurements at 416 (8) and 400 $\mathrm{nm}(10) . k_{\psi} s$ represents average values of four or five determinations.
σ complex), the configuration of A or B would play an important role in the decomposition, because Table I indicates that the difference in rate constants would depend on the

entropy of activation rather than on the enthalpy of activation. The conspicuous feature that the entropy of activation for 10 is much larger than those for other substrates indicates that the steric factor is very important in the rearrangement.

These results are clearly explaired below. In 28 the fivemembered heterocycle is perpendicular to the aromatic ring in the preferred configuration. In the case of 10, the equilibrium (K_{3}) lies on configuration A , viz., K_{3} is larger, in which the conjugation of the lone-pair electrons of the amino nitrogen with the pyridine ring is larger because of the coplanarity of the $\mathrm{C}^{\alpha}-\mathrm{N}-\mathrm{C}^{\beta}$ group with the pyridine ring owing to the absence of the steric interference by an X group, and the free rotation of the $\mathrm{N}-\mathrm{C}^{\alpha}$ and $\mathrm{C}^{\alpha}-\mathrm{C}^{\gamma}$ bonds is possible (Scheme III). Therefore, in the transition state (k_{4} stage) the rotation of the five-membered heterocycle about the $\mathrm{C}_{1}-\mathrm{N}$ bond, which is formed by the attack of the oxyanion upon the carbonyl carbon, is considerably free. Furthermore, in configuration A the attack of the oxyanion is concerted with the

Scheme III. Interpretative Scheme Indicating the Influence of an Ortho Substituent

polarization of carbonyl group because of the predominant resonance ($\mathrm{A} \leftrightarrow \mathrm{A}^{\prime}$).

On the contrary, in the case of 5,9 , and 8 , the $\mathrm{C}^{\alpha}-\mathrm{N}-\mathrm{C}^{\beta}$ group forms a certain angle with the benzene ring by the steric interference of an X group such that the hydrogen atom in the 6 position is put between the $\mathrm{C}^{\beta}=0$ and $\mathrm{C}^{\beta}-\mathrm{CH}_{3}$ bonds (configuration B); the lone-pair electrons of the amino nitrogen is conjugated with the aromatic ring to a lesser extent than in configuration A. With 5 the rotation of the $\mathrm{N}-\mathrm{C}^{\alpha}$ bond is completely inhibited and the free rotation of the $\mathrm{C}^{\alpha}-\mathrm{C}^{\gamma}$ bond is not possible, while with 9 and 8 the former rotation is not completely inhibited and the latter rotation is possible. These circumstances are reflected in the difference among the entropies (Table I). Furthermore, the attack of oxyanion on the carbonyl carbon is not completely concested with the polarization of the carbonyl group owing to the partial resonance ($\mathrm{B} \leftrightarrow \mathrm{B}^{\prime}$), viz., $k_{4}{ }^{\prime}<k_{4}$.

In conclusion, it is considered that the difference in the rate constant in the rearrangement would result mainly from the steric interference of 2-X group.

Experimental Section

Capillary melting points are uncorrected. NMR spectra were recorded with a Varian A-60D spectrometer according to the previous procedure. ${ }^{20}$ Elemental analyses were performed at the Microanalytical Center of Gunma University. UV and visible spectra were measured with a Hitachi-124 UV-vis spectrophotometer. Molecular extinction coefzicients and absorption maxima were determined in
$\mathrm{Me}_{2} \mathrm{SO}$. The reaction rates were followed conventionally and with a Union RA-1200 rapid-reaction analyzer (Union Giken Co., Ltd.). Chromatographic columns and TLC plates were prepared with Wako Gel C-200 (silica gel) and B-10 (silica gel), respectively.
\boldsymbol{N}-Acetyl- $\boldsymbol{\beta}$-aminoethyl 2,4-Dinitro-1-phenyl Ether (5). The ether 5 was prepared according to the previous procedure. ${ }^{10}$ The NMR and visible spectra of 5 and its spiro complex 6, corresponding in structure to 11 , were described in the previous paper. ${ }^{10}$ The preparation of N-(β-acetyloxy)ethyl-2,4-dinitroaniline (7) and its anion corresponding in structure to 11 and their NMR and visible spectra were already described. ${ }^{10}$ The preparation of N-(β-hydroxy)ethyl-N-methyl-2,4-dinitroaniline and its spiro anionic σ complex corresponding in structure to 15 and 20, respectively, were reported by Bernasconi et al. ${ }^{9}$
\boldsymbol{N}-Acetyl- β-aminoethyl 2-Bromo-4-nitro-1-phenyl Ether (8). 4-Nitrofluorobenzene (NFB), which is a yellowish oil (bp 95-97 ${ }^{\circ} \mathrm{C} / 22$ mm (lit. ${ }^{21} 98-100^{\circ} \mathrm{C} / 18 \mathrm{~mm}$)], was prepared according to the procedure of Olah et al. ${ }^{21}$ in $68 \%(25 \mathrm{~g})$ yield by the reaction of $25 \mathrm{~g}(0.260$ mol) of commercial fluorobenzene with the mixed acid of 16 g of HNO_{3} (d 1.41) and 56 g of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $-10^{\circ} \mathrm{C}$. 2-Bromo-4-nitrofluorobenzene (BNFB) was obtained in a 64% yield (10 g) by brominating NFB according to the general procedure of Derbyshire and Waters: ${ }^{22}$ white crystals, mp $57.5-58.5^{\circ} \mathrm{C}$ (lit. $.^{23} 58-59^{\circ} \mathrm{C}$). To a solution of $3.86 \mathrm{~g}(0.0375 \mathrm{~mol})$ of N-acetylethanolamine (NAEA) in 100 mL of dioxane was added $0.975 \mathrm{~g}(0.025 \mathrm{~g}$-atom) of potassium, and the mixture was refluxed until the potassium was completely dissolved. Upon cooling the mixture to room temperature, $5.0 \mathrm{~g}\{0.023$ mol) of BNFB was added and stirred for 30 min . Then, the mixture was poured onto ice water and extracted with chloroform. After the chloroform was distilled off, the residue was seperated on a chromatographic column (silica gel, benzene-acetone $10: 3, \mathrm{v} / \mathrm{v}$) and recrystallized from benzene-ligroin: yield $29 \%(2.0 \mathrm{~g})$; $\mathrm{mp} 124.5-125.5^{\circ} \mathrm{C}$; $U V \lambda_{\text {max }} 317 \mathrm{~nm}\left(\epsilon 9.18 \times 10^{3}\right)$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{4}$: C, 39.62; H, 3.66; N, 9.24. Found: C, 40.04; H, 3.73; N, 9.32.
\boldsymbol{N}-Acetyl- β-aminoethyl 2-Cyano-4-nitro-1-phenyl Ether (9). 2 -Chloro-5-nitrobenzonitrile was obtained in a 75% yield $[25 \mathrm{~g}$, yellow oil, bp $119-122^{\circ} \mathrm{C} / 0.6 \mathrm{~mm}\left(\right.$ lit. $\left.\left.{ }^{24} 119-122^{\circ} \mathrm{C} / 0.6 \mathrm{~mm}\right)\right]$ by the reaction of $25 \mathrm{~g}(0.181 \mathrm{~mol})$ of o-chlorobenzonitrile with 86 mL of fuming HNO_{3} (d 1.5) according to the procedure of Wilshire. ${ }^{24 \mathrm{a}}$ 2-Chloro5 -nitrobenzonitrile was also changed to 2 -fluoro- 5 -nitrobenzonitrile (FNBN) in a 78% yield according to the procedure of Wilshire. ${ }^{24 \mathrm{a}} 9$ (pale-yellow crystals) was prepared from FNBN and NAEA in a 23% yield in a similar manner as with 6: mp 132-133.5 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }} 303 \mathrm{~nm}$ $\left(\epsilon 1.14 \times 10^{4}\right)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 53.01 ; \mathrm{H}, 4.45 ; \mathrm{N}, 16.86$. Found: C , 52.88; H, 4.53; N, 16.88.
\mathbf{N}-Acetyl- $\boldsymbol{\beta}$-aminoethyl 5-Nitro-2-pyridyl Ether (10). 2-Aminopyridine was changed to 5 -nitro-2-aminopyridine by use of a mixed acid of HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in about 70% yield, which was further diazotized and hydrolyzed to 5 -nitro-2-hydroxypyridine. 5 -Nitro-2hydroxypyridine was chlorinated to 5 -nitro-2-chloropyridine with PCl_{5} and POCl_{3} according to the method of Phillips. ${ }^{25}$ The yield including diazotization, hydrolysis, and chlorination was 27%. 5 -Nitro-2-chloropyridine was fluorinated to 5 -nitro-2-fluoropyridine [bp $86-87^{\circ} \mathrm{C} / 7 \mathrm{~mm}$ (lit. ${ }^{26} 86-87^{\circ} \mathrm{C} / 7 \mathrm{~mm}$)] in a 81% yield according to the procedure of Finger and Starr, ${ }^{26}$ except for the reaction temperature of $120^{\circ} \mathrm{C}$ and the reaction time of 8 h .10 (white crystals) was prepared in a 36% yield in a similar manner as with $6: \mathrm{mp} 115-116^{\circ} \mathrm{C}$; $\mathrm{UV} \lambda_{\max } 303 \mathrm{~nm}\left(\epsilon 1.02 \times 10^{4}\right)$.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 48.00; H, 4.92; N, 18.66. Found: C, 48.14; H, 4.91; N, 18.61.
\boldsymbol{N}-(β-Acetyloxy)ethyl-2-bromo-4-nitroaniline (13). After 3.27 mL of 0.450 N tertiary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}(0.00147 \mathrm{~mol})$ had been added to a solution of $0.495 \mathrm{~g}(0.00147 \mathrm{~mol})$ of 8 in 50 mL of $\mathrm{Me}_{2} \mathrm{SO}$, the mixture was stirred for 1 h at room temperature, poured into 100 mL of water, neutralized with hydrochloric acid (1 N), extracted with chloroform, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the chloroform, recrystallization from ethanol gave 13 quantitatively $(0.490 \mathrm{mg}): \mathrm{mp} 99.5-100.5^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }} 386 \mathrm{~nm}\left(\epsilon 1.81 \times 10^{4}\right)$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{4}$: C, 39.62; H, 3.66; N, 9.24. Found: C, 39.95 ; H, 3.71 ; N, 9.28 .
\boldsymbol{N}-(β-Hydroxy)ethyl- \boldsymbol{N}-methyl-2-bromo-4-nitroaniline (14). After $1.5 \mathrm{~g}(0.0204 \mathrm{~mol})$ of N-methylethanolamine (NMEA) had been added to a solution of $1.5 \mathrm{~g}(0.0076 \mathrm{~mol})$ of BNFB in 20 mL of dioxane, the mixture was stirred at room temperature for 20 h , poured into 50 mL of water, neutralized with aqueous $\mathrm{HCl}(1 \mathrm{~N})$, extracted with chloroform, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chromatographic seperation (silica gel-benzene) followed by evaporation of the benzene gave 1.17 g of reddish light brown oil 14 (61%): $U V \lambda_{\max } 390 \mathrm{~nm}(\epsilon 4.64$
$\times 10^{3}$). Several attempts to induce recrystallization failed.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{3}: \mathrm{C}, 39.29 ; \mathrm{H}, 4.03 ; \mathrm{N}, 10.18$. Found: C, 38.80; H, 4.31; N, 9.69.
N - β-Hydroxy) ethyl- \boldsymbol{N}-methyl-2-cyano-4-nitroaniline (19). After $3.08 \mathrm{~g}(0.041 \mathrm{~mol})$ of NMEA had been added to a solution of 3.0 $\mathrm{g}(0.0164 \mathrm{~mol})$ of 6 -chloro- 3 -nitrobenzonitrile (CNBN) in 50 mL of $\mathrm{Me}_{2} \mathrm{SO}$, the mixture was stirred for 10 h at room temperature, poured onto ice water, and extracted with chloroform, and recrystallization from ethanol gave $2.0 \mathrm{~g}(55 \%)$ of 19 (yellow crystals): mp $107-109^{\circ} \mathrm{C}$; $\mathrm{UV} \lambda_{\text {max }} 388 \mathrm{~nm}\left(\epsilon 1.76 \times 10^{4}\right)$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, $54.29 ; \mathrm{H}, 5.01 ; \mathrm{N}, 19.00$. Found: C , 54.12; H, 5.12; N, 19.28.
N-(β-Acetyloxy)ethyl-2-cyano-4-nitroaniline (18). After 2.5 $\mathrm{g}(0.0409 \mathrm{~mol})$ of ethanolamine had been added to a solution of 3 g (0.0164 mol) of CNBN in 50 mL of $\mathrm{Me}_{2} \mathrm{SO}$, the mixture was stirred for 3 h at room temperature, poured into water, and neutralized with aqueous $\mathrm{HCl}(1 \mathrm{~N})$. The raw product [N-(β-hydroxy)ethyl-2-cyano4 -nitroaniline, 2.0 g] was submitted to the following procedure without further purification. After $1.8 \mathrm{~g}(0.0229 \mathrm{~mol})$ of acetyl chloride was added dropwise to a solution of 1.6 g of N-(β-hydroxy)ethyl-2-cyano-4-nitroaniline at room temperature, the mixture was stirred for 30 min at $60^{\circ} \mathrm{C}$, cooled, and poured onto ice water. The formed crude crystals were extracted with benzene, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and separated through a column (silica gel-benzene). Evaporation of the benzene and recrystallization from ethanol gave $1 \mathrm{~g}(51 \%)$ of 18 (brownish light-yellow crystals): $\mathrm{mp} 125-126^{\circ} \mathrm{C}$;UV $\lambda_{\max } 372 \mathrm{~nm}\left(\epsilon 1.69 \times 10^{4}\right)$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, $53.01 ; \mathrm{H}, 4.45 ; \mathrm{N}, 16.86$. Found: C, 52.90; H, 4.56; N, 16.90 .

2 -[N-(β-acetyloxy)ethyl]amino-5-nitropyridine (23). 5-Nitro-2-fluoropyridine was prepared according to the method described in the literature. ${ }^{26}$ After $12.7 \mathrm{~mL}(0.00546 \mathrm{~mol})$ of 0.430 N tertiary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ was added dropwise to a solution of $1.23 \mathrm{~g}(0.00547 \mathrm{~mol})$ of 10 in 50 mL of $\mathrm{Me}_{2} \mathrm{SO}$, the mixture was stirred 1 h , poured onto ice water, neutralized with aqueous $\mathrm{HCl}(1 \mathrm{~N})$, extracted with chloroform, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the chloroform and recrystallization from ethanol gave yellow crystals of 23 quantitatively: mp $124-125.5^{\circ} \mathrm{C} ; \mathrm{UV} \lambda_{\text {max }} 369 \mathrm{~nm}(\epsilon 1.77$ $\times 10^{4}$).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 48.00 ; \mathrm{H}, 4.92 ; \mathrm{N}, 18.66$. Found: C, 48.10; H, 4.90; N, 18.57.
$2-[\boldsymbol{N}$-(β-hydroxy)ethyl- \boldsymbol{N}-methyl]]amino- 5 -nitropyridine (24). After $1.18 \mathrm{~g}(0.0157 \mathrm{~mol})$ oî NMEA had been added to a solution of $1.0 \mathrm{~g}(0.00629 \mathrm{~mol})$ of 5 -nitro-2-chloropyridine, the mixture was stirred for 15 h at room temperature, poured onto ice water, extracted with chloroform, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the chloroform and recrystallization from ethanol gave $0.80 \mathrm{~g}(65 \%)$ of 24 (yellow crystals): mp $88.5-90^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }} 387 \mathrm{~nm}\left(\epsilon 2.03 \times 10^{4}\right)$.
Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3}: \mathrm{C}, 48.72 ; \mathrm{H}, 5.62 ; \mathrm{N}, 21.31$. Found: C, 48.51; N, 5.38; N, 21.12.

Kinetic Data. Kinetic measurements for the rearrangement were made using a Hitachi-124 UV-vis spectrophotometer, except with 10. Rate constants were calculated by monitoring the decrease in absorbance at 506 nm ($\lambda_{\text {max }}$ of the spiro complex) with 5 or the increase in absorbance at 481,475 , and 462 nm with 8,9 , and 10 , respectively, at which wavelengths the reactants were transparent. In any given solvent, in which the $\mathrm{Me}_{2} \mathrm{SO}$ content is always 96%, the ionic strength was kept at $0.1\left(\mathrm{KClO}_{4}\right)$. Runs were set up so that KOH as a base was in large excess over the substrate.

Kinetic measurements for the rearrangement of 10 and the formation of the anionic σ complexes from 8 and 10 were made by means of a Union RA-1200 rapid-reaction analyzer.

Preparation of Anionic σ Complexes for NMR Measurements. A certain amount of a sample (ca. $10^{-4}-10^{-5} \mathrm{~mol}$) was dissolved in a small amount of $\mathrm{Me}_{2} \mathrm{SO}$ (ca. 0.25 mL) in a NMR tube. After 1.0 or 1.5 equiv of tertiary-butanolic $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ (ca. 0.4 N) had been added in the solution through a microsyringe and shaken vigorously, the mixture was submitted to measurement. The NMR data are summarized in Table III. ${ }^{12}$

Acknowledgment. We sincerely thank Mr. Katsuo Shinozaki for his partial contribution to the preparation of some compounds and Mr. Toshiaki Aizawa for the measurement of absorption spectra. The present work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education (1975 fiscal year).

Registry No.-8, 63989-43-5; 9, 63989-50-4; 10, 63989-49-1; 13, 63989-48-0; 18, 63989-47-9; 23, 63989-46-8; 14, 63989-45-7; 19,

63989-44-6; 24, 25948-15-6; 20, 63988-97-6; 22, 63988-99-8; 5, 55759-61-0; 11, 64011-18-3; 1, 63989-41-3; 16, 63988-98-7; 17, 63989-42-4; NFB, 350-46-9; BNFB, 701-45-1; NAEA, 142-26-7; FNBN, 17417-09-3; 5-nitro-2-fluoropyridine, 456-24-6; NMEA, 109-83-1; CNBN, 16588-02-6; [N-(β-hydroxyethyl-2-cyano-4-nitroaniline, 63989-40-2; acetyl chloride, 75-3j-5; 5-nitro-2-chloropyridine, 4548-45-2.

Supplementary Material Available. Table III and Figures 2, 5, 6 , and 7 (6 pages). Ordering information is given on any current masthead page.

References and Notes

(1) Part 8: S. Sekiguchi, T. Takei, T. Aizawa, and K. Okada, Tetrahedron Lett., 13, 1209 (1977).
(2) R. Henriques, Ber., 27, 2993 (1894)
(3) L. A. Warren and S. Smiles, J. Chem. Soc., 956 (1930)
(4) (a) W. E. Truce. E. M. Kreider, and W. W. Brand, Org. React., 18, 99 (1970); b) H. J. Shine, "Aromatic Rearrangements", Elsevier, New York, N.Y., 1967, p 307.
(5) K C. Roberts and C. G. M. deWorms, J. Chem. Soc., 727 (1934).
(6) (a) T. Okamoto and J. F. Bunnett, J. Org. Chem., 21, 487 (1956); (b) J. F. Bunnett and T. Okamoto, J. Am. Chem. Soc., 78, 5363 (1956); (c) T. Okamoto and J. F. Bunnett, ibid., 78, 5357 (1956).
(7) C. S. McClement and S. Miles, J. Chem. Soc., 1016 (1937)
(8) K. C. Roberts and C. G. M. deWorms, J. Chem. Soc., 1309 (1935).
(9) C. F. Bernasconi, R. H. deRossi, and C. L. Gehringer, J. Org. Chem., 38, 2838 (1973)
(10) S. Sekiguchi and K. Okada, J. Org. Chem. 40, 2782 (1975)
(11) J. Skarzewski and Z. Skrowaczewska, Tetrahedron, 32, 1221 (1976).
(12) See paragraph concerning supplementary material at the end of this paper.
(13) H. Hosoya, S. Hosoya, and S. Nagakura, Theor. Chim. Acta, 12, 117 (1968).
(14) R. B. Homer and C. D. Johnson, "The Chemistry of Amides'", J. Zabicky Ed., Interscience, New York, N.Y., 1970, 187.
(15) J. Hine and M. Hine, J. Am. Chem. Soc., 74, 5266 (1952).
(16) By use of KOH as a base, the rearranged product 12 is saponified to 12 a . However, $\lambda_{\text {max }}$ of 12 are identical with those of 12a, and the rates measured

by following the increase in absorbance at $\lambda_{\text {max }}$ of 12 shows good linear plots over $50-80 \%$ reaction, which indicates that the saponifination does not interfere with the rearrangement process.
(17) F. Galbraith and S Smiles, J. Chem. Soc., 1234 (1935).
(18) P. D. Bolton, F. M. Hall, and I. H. Reece, J. Chem. Soc. B, 71 (1966).
(19) S. F. Mason, J. Chem. Soc. B, 674 (1958).
(20) S. Sekiguchi, T. Itagaki, T. Hirose, K. Matsui, and K. Sekine. Tetrahedron, 29, 3527 (1973).
(21) G. Olah. A. Pavlath, I. Kuhn, and G. Varsanyi, Acta Chim. Acad. Sci. Hung., 7, 431 (1955) [Houben-Weyl, Methoden der organischen Chemie, 10/Teil 1, 500 (1971)]
(22) D. H. Derbyshire and W. A. Waters, J. Chem. Soc., 573 (1950)
(23) J. F. Bunnett and M. M. Rauhut, J. Org. Chem., 21, 934 (1956).
(24) (a) J. F. K. Wiishire, Aust. J. Chem., 20, 1663 (1967); (b) W. Borsche, Chem. Ber., 54, 660 (1921)
(25) M. A. Phillips, J. Chem. Soc., 9 (1941).
(26) G. C. Finger and L. D. Starr, J. Am. Chem. Soc., 81, 2674 (1959).

Crown-Cation Complex Effects. 8. Reactions of Crown Ether Activated tert-Butoxide Ion

Stephen A. DiBiase and George W. Gokel*
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Received May 31, 1977

Abstract

The effect of catalytic amounts of 18 -crown- 6 on tetrahydrofuran, tert-butyl alcohol, and benzene solutions of potassium tert-butoxide has been investigated. In each solvent, the enhanced nucleophilicity of tert-butoxide ion was manifested in its reaction with benzyl chloride; i.e., good yields of benzyl tert-butyl ether were obtained. In the latter solvent, 18-crown-6 served as phase-transfer agent as well as activator. tert-Butoxide ion was found to be most effective as a nucleophile in tetrahydrofuran solution, and, in general, the results of exemplary reactions indicated that nucleophilicity was enhanced more than basicity. Crown-activat $\in \mathrm{d}$ tert-butoxide, for example, converts isatoic anhydride to tert-butyl anthranilate, benzaldehyde and diphenylmethane to benzhydryl phenyl ketone, and, in the presence of oxygen, fluorene directly to 2 -carboxybiphenyl.

There has been interest for many years in solvent properties, particularly regarding their effect on the basicity and nucleophilicity of anionic reagents. The difference of 10^{11} in the rates of proton removal from carbon by alkoxide in methanol compared to dimethyl sulfoxide $\left(\mathrm{Me}_{2} \mathrm{SO}\right)$ is an especially dramatic demonstration of such solvent effects. ${ }^{1}$ Other studies conducted in the early 1960's demonstrated the value of tert-butoxide as a base, particularly in $\mathrm{Me}_{2} \mathrm{SO},{ }^{2,3}$ and it was at about this time that cation effects became clearly recognized. ${ }^{4}$ A great deal is now known about the tert-butoxide ion ${ }^{5}$ and, in general, about the chemistry of ion pairs. ${ }^{6}$
The ability of crown ethers to solvate cations has led to new studies of ion pairs both in the presence and absence of such ligands. ${ }^{7}$ In general, in the presence o^{n} crown ether, aggregates of ion pairs are broken up and the anionic portion of the ligand separated or dissociated ion pair exhibits enhanced reactivity. This enhanced reactivity has manifested itself in decarboxylation reactions, ${ }^{8}$ oxy-Cope rearrangements, ${ }^{9}$ and elimination reactions. ${ }^{10}$ We were particularly interested in the reactivity
of potassium tert-butoxide (1) in the presence of crown ethers. ${ }^{11} \mathrm{We}$ felt that in such solvents as $\mathrm{Me}_{2} \mathrm{SO}$ the enhanced basicity can be attributed, at least in part, to solvent assistance in carbanion formation. ${ }^{12}$ In the presence of crown in a solvent such as tetrahydrofuran where solvent assistance is limited, the reactivity enhancement should be more apparent in the nucleophilic sense than in the basic sense. We have examined several reactions of tert-butoxide ion and have indeed found an enhancement of the nucleophilic behavior of this hindered base.

Results and Discussion

The chemistry of potassium tert-butoxide has been thoroughly reviewed. ${ }^{5}$ This base has been utilized in a variety of media including tert-butyl alcohol, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, and benzene, although 1 is only sparingly soluble in the latter. ${ }^{13}$ Benzyl chloride (2) has been used in the past as a substrate for studying nucleophile/base balance in systems where the anion behaved more as a base than as a nucleophile. ${ }^{14}$ Utilization of this substrate

Figure 1. Yield of 4 as a function of added 18 -crown-6.
for our purposes seemed particularly advantageous because the products of deprotonation are well known and the condensation product (benzyl tert-butyl ether) has always been accessible only with difficulty. Previous syntheses of benzyl tert-butyl ether required either long periods of time (e.g., 10 days at ambient temperature in tert-butyl alcohol to achieve a 55% yield) ${ }^{15}$ or use of a dipolar aprotic solvent ($30-40 \%$ yield after 18 h at ambient temperature in DMF). ${ }^{16}$

We have found that 1 readily condenses with 2 at $30^{\circ} \mathrm{C}$ in tetrahydrofuran solution (see eq 1). In less than 2 h in the presence of $5 \mathrm{~mol} \% 18$-crown-6 (3), ${ }^{17}$ benzyl tert-butyl ether (4) is isolated in 74% yield. The only by-product detected in this reaction is a small amount of stilbene (5). The stilbene apparently arises by deprotonation of 2 , followed by nucleophilic substitution and then elimination of HCl . Although this sequence was not confirmed directly, the alternative of carbene dimerization was ruled out by conducting the reaction in a $1: 1$ mixture of cyclohexene and tetrahydrofuran (see Experimental Section). Any phenylcarbene generated should have been intercepted by the olefin to give 7-phenylnorcarane, ${ }^{14 a, b}$ none of which was detected (see eq 2).

$$
\begin{array}{cccc}
t \cdot \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK} \\
\mathbf{1} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl} \longrightarrow & \mathbf{2} \cdot \mathrm{BuOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{5} \tag{1}\\
\hline
\end{array}
$$

In order to determine whether the benzyl tert-butyl ether synthesis was solvent and/or crown concentration dependent, a series of experiments was conducted in which crown concentration was varied systematically in tert-butyl alcohol, benzene, and tetrahydrofuran (see Table I and Figure 1). In the latter solvent, the yields of 4 ranged from 34 to 83% when the reaction was conducted at $30 \pm{ }^{\circ} \mathrm{C}$ for 1.0 h in the presence of $0.5-10 \mathrm{~mol} \% 18$-crown- 6 . As the amount of crown ether present was increased, the yield of ether increased as well, but the difference in yield between reactions containing 5 and $10 \mathrm{~mol} \%$ added crown was negligible. The leveling of the yield curve is obvious in Figure 1. In the absence of any 18-crown-6. a 70% yield of 4 was realized, but only after 24 h . The amount of stilbene produced in each reaction was never more than 6% under any of the conditions utilized.

In contrast, the attempted synthesis of 4 in $\mathrm{Me}_{2} \mathrm{SO}$ solution was unsuccessful, even less ether was produced than in the previously reported DMF case. ${ }^{16}$ Apparently, 1 is much more basic in $\mathrm{Me}_{2} \mathrm{SO}$ than in THF. Under conditions conducive to

Table I

	$\begin{aligned} & +\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-} \mathrm{K}^{+e} \\ & \xrightarrow[18 \mathrm{C} 6]{\mathrm{THF}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3} f+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{5} g \\ & 5 \end{aligned}$			
Solvent	mol $\%$ added b crown ether ${ }^{h}$		Yield, \% ${ }^{\text {c }}$	
			4	5
THF			34	0
THF		0.5	44	Trace
THF		1.0	62	5.0
THF		2.5	72	5.7
THF		5.0	78	4.4
THF		7.5	74	3.0
THF		10.0	83	1
$\mathrm{C}_{6} \mathrm{H}_{6}$			5	0
$\mathrm{C}_{6} \mathrm{H}_{6}$		0.5	14	0
$\mathrm{C}_{6} \mathrm{H}_{6}$		1.0	15	Trace
$\mathrm{C}_{6} \mathrm{H}_{6}$		2.5	32	~ 1
$\mathrm{C}_{6} \mathrm{H}_{6}$		5.0	45	2
$\mathrm{C}_{6} \mathrm{H}_{6}$		7.5	77	6.4
$\mathrm{C}_{6} \mathrm{H}_{6}$		10.0	75	8.6
$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$			<1	0
$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$		5.0	17	0
$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$		10.0	26	0
$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$		25.0	58	Trace

${ }^{a}$ All reactions were conducted at $30 \pm 1^{\circ} \mathrm{C}$ for 1 h under an atmosphere of $\mathrm{N}_{2} .{ }^{b} 18$-crown-6; see ref 17. ${ }^{c}$ Determined by GLC using a $5 \mathrm{ft} \times 0.25 \mathrm{in}$. 10% SE 30 column on NAW Chromosorb P, $60-80$ mesh. ${ }^{d}$ Registry no.: 100-44-7. ${ }^{e}$ Registry no.: 865-47-4. f Registry no.: 3459-80-1. ${ }^{g}$ Registry no.: 103-30-0. ${ }^{h}$ Registry no.: 17455-13-9.
the formation of $4\left(74 \%\right.$ in 1 h at $\left.30^{\circ} \mathrm{C}\right)$ in THF, only 15% of this ether (4) could be detected. Although a small amount of 2 remained in the reaction mixture, stilbene was the major (47\%) product. It seems very likely that crown or $\mathrm{Me}_{2} \mathrm{SO}$ activated 1 is a potent anion, but, where the dipolar aprotic medium can offer solvent assistance in deprotonation, the basic behavior of the anion becomes dominant.
In tert-butyl alcohol, a solvent in which potassium tertbutoxide is also freely soluble, ${ }^{13}$ the crown effect was also evident, although the yields of ether were lower even in the presence of considerably more crown and the yield increase as a function of added crown was nearly linear. Up to 25 mol $\% 18$-crown- 6 was added (see Table I and Figure 1) to the reaction mixture (under the conditions described above), and only 58% yield of ether was obtained. We feel that this reflects anion deactivation due to hydrogen bonding between the tert-butoxide ion and solvent. It is known that tert-butoxide is more basic (in elimination reactions) in the presence of crown than in its absence, ${ }^{10}$ so it appears that both the nucleophilicity and basicity of this substance are enhanced by ion pair separation. The lesson seems to be that tert-butyl alcohol is not the best solvent for utilizing the potential of this synthetically important ${ }^{5}$ reagent.
Potassium tert-butoxide is not profoundly soluble in benzene. ${ }^{13 \mathrm{~b}}$ This fact makes difficult a direct comparison of the reactivity of 1 in the presence and absence of 3 . Nevertheless, in the synthesis of 4 according to eq 1 , the yield per unit time of 4 was considerably increased in the presence of 3 (see Figure 1). It appears, in this particular case, that the crown serves as phase-transfer catalyst ${ }^{18}$ as well as cation solvator and anion activator. ${ }^{19}$
The reaction of tert-butoxide with benzyl chloride to afford a high yield of 4 is, we believe, a convincing demonstration of the nucleophilicity of this ion in the presence of crown. Another such demonstration of this property can be found in the
reaction of tert-butoxide with isatoic anhydride. Although numerous anthranilate esters have been formed by nucleophilic addition of the appropriate alkoxide to isatoic anhydride (6), ${ }^{20}$ it is reported that the tert-butyl ester cannot be formed by this approach. ${ }^{21}$ In DMF solution, crown-activated tert-butoxide reacts with isatoic anhydride to afford tertbutyl anthranilate (7) in 33% yield (see eq 3). In the absence of crown this reaction is not preparatively useful (yield of 7 8%).

The reactivity of tert-butoxide in THF is not enhanced sufficiently for this to afford a useful synthesis of phenyl tert-butyl ether from bromobenzene (see eq 4). ${ }^{1,22}$ Since it appears that the nucleophilicity of tert-butoxide is enhanced more than is the basicity, the failure of eq 4 , a reaction which apparently proceeds via a benzyne intermediate, ${ }^{22}$ is not so surprising. On the other hand, the direct displacement of chloride by methoxide ion in 1,2 -dichlorobenzene under crown catalysis ${ }^{23}$ makes the necessity of the benzyne mechanism somewhat less certain.

$$
\begin{equation*}
t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br} \rightarrow t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OC}_{6} \mathrm{H}_{5} \tag{4}
\end{equation*}
$$

An approximate assessment of tert-butoxide ion's basicity under these conditions was obtained by equilibrating several carbon acids with crown-activated iert-butoxide ion in THF and then quenching with $\mathrm{D}_{2} \mathrm{O}$. Russell and co-workers showed some years ago that tert-butoxide in $\mathrm{Me}_{2} \mathrm{SO}$ is basic enough to induce condensation between activated toluenes and benzaldehyde. ${ }^{2}$ We have found that metallation of diphenylmethane (8) followed by a deuterium oxide quench gave a product which was 8% deuterated after 3 min and 18% deuterated after 4 h (recovery was ca. 90%). Chlorodipienylmethane was 75% deuterated (by NMR) after only 30 s at 30 ${ }^{\circ} \mathrm{C}$, although only 41% of the substrate could be recovered, the loss presumably due to ether formation in analogy to eq 1. No H-D exchange was observed for tol:uene even after 24 h at 30 ${ }^{\circ} \mathrm{C}$.

Although metallation of 8 was not complete in 4 h , after 22 h in the presence of tert-butoxide it condensed with benzaldehyde to give α, α-diphenylacetophenone (9) according to eq 5. A more likely product in this reaction seemed to be triphenylethylene, but none was detected. An authentic sample of triphenylethylene survived the reaction conditions, implying that the product could no: be accounted for by any process involving this substance as an intermediate.

$$
\begin{equation*}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \rightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHCOC}_{6} \mathrm{H}_{5} \tag{5}
\end{equation*}
$$

A possible mechanism is shown in eq 6 . The sequence envisaged is addition of tert-butoxide ion to benzaldehyde to give an intermediate which then takes part in a Cannizzaro-

like process to give tert-butyl benzoate. Diphenylmethyl anion is acylated by tert-butyl benzoate to give diphenylacetophenone in the final step of this reaction sequence. In favor of this mechanism is the fact that if 8 is excluded from the reaction mixture the products isolated are tert-butyl benzoate (29%) and benzyl alcohol (65%). We note that this reaction cannot occur by a single process strictly analogous to the Cannizzaro reaction because of the unequal product distribution. Moreover, 9 is produced in 15% yield from lithium diphenylmethide and tert-butyl benzoate in THF solution. Contrary to this mechanism, however, is the observation that, under the reaction conditions, diphenylmethane and tert-butyl benzoate do not produce detectable amounts of diphenylacetophenone.

A possible mechanism which does not appear to be contradicted by any of our observations is shown in eq 7. Potas-

sium tert-butoxide deprotonates diphenylmethane to give diphenylmethide ion which, in turn, adds to benzaldehyde. The resulting 1,2,2-triphenylethoxide ion then undergoes a Cannizzaro-type reaction as illustrated, resulting in formation of the observed ketone and benzyl alcohol. This second step must occur more rapidly than KOH can be lost because no triphenylethylene is detected in the reaction mixture (see above). When we conduct this reaction, we obtain 29% ketone and 35% alcol.ol, an approximately $1: 1$ distribution. When the reaction is carried out with benzaldehyde- $\alpha-d$, ketone and alcohol are each isolated in 33% yield (slightly different workup) and the benzyl alcohol is, within the limits of detection, dideuterated at the methylene group. A kinetic investigation of this reaction would be interesting, but it is beyond the scope of this work.

The crown-activated tert-butoxide reagent affords an interesting opportunity to carry out sequential reactions of the type mentioned above. For example, the basic oxidation of fluorene to flaorenone ${ }^{25}$ in the presence of crown-activated tert-butoxide is rapid at room temperature (see eq 8). This

reaction occurs readily under phase-transfer conditions using cryptate-complexed hydroxide, ${ }^{25 a}$ 18-crown-6-complexed hydroxide, ${ }^{25 \mathrm{~b}}$ or quaternary ammonium hydroxides. ${ }^{25 \mathrm{c}} \mathrm{A}$ mole of water is produced in this reaction for each mole of hydrocarbon oxidized to ketone. Water is, in turn, deprotonated by excess tert-butoxide and Haller-Bauer cleavage ${ }^{26}$ of the ketone ensues. In this way, fluorene can be transformed directly into 2 -carboxybiphenyl in high yield according to eq 8 . We note that in THF solution the crown effect is marginal. Our attempts to conduct this reaction with crown-activated hydroxide have thus far been unsuccessful.

The hoped-for condensation of acetonitrile with benzaldehyde to give cinnamonitrile ${ }^{27}$ unadulterated by the β hydroxynitrile (see eq 9) was less successful. In our particular attempts, the loss of yield was not due to the failure of the dehydration step, but rather due to a process analogous to that described in eq 7. Some cinnamonitrile is obtained in this reaction, but much of the benzaldehyde is lost to a Canniz-zaro-type reaction. Specifically, when a THF solution of tert-butoxide, acetonitrile, and benzaldehyde- $\alpha-d$ was allowed to react, cinnamonitrile- $\beta-d$ was isolated in 22% yield. Ben-zyl- d_{2} alcohol was also isolated by preparative GLC from this same reaction mixture. The conclusion we draw from these observations is that cyanomethyl anion adds to benzaldehyde to give the β-alkoxynitrile. This alkoxynitrile can either lose KOH (or protonate and lose water) or it can undergo a Can-nizzaro-type reaction as shown in eq 10 . The cyanoacetophenone produced in this reaction is quite acidic and undoubtedly undergoes multiple condensations with benzaldehyde and tert-butoxide.

We note that the condensation of acetonitrile with benzaldehyde to afford cinnamonitrile has been achieved under other conditions which we have reported previously. ${ }^{28}$
Summary. In summary, it appears that potassium tertbutoxide in THF in the presence of crown ether is both a powerful nucleophile and base, but the enhancement of nucleophilicity appears to exceed the enhancement of the basicity. The reagent is a potent nucleophile giving hitherto unattainable yields in several exemplary reactions. The system is of value because it appears to compliment the $\mathrm{Me}_{2} \mathrm{SO}$ enhanced basicity of tert-butoxide. Moreover, the fact that only a catalytic amount of crown appears necessary to observe the enhanced reactivity is of practical value in synthetic applications.

Experimental Section

Melting points were determined on a Thomas-Hoover capillary device and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer Model 257 and are calibrated against the $1601 \mathrm{~cm}^{-1}$ band of polystyrene. NMR spectra were recorded on a Varian Associates A-60A as ca. $15 \mathrm{wt} \%$ solutions in CCl_{4} or CDCl_{3}. Chemical shifts are reported in ppm (δ) downfield from internal $\mathrm{Me}_{4} \mathrm{Si}$. Mass spectra were determined on an AEI-MS 902 instrument at an ionizing voltage of 70 eV . Gas chromatographic analyses were conducted using either a Varian Associates Model 2720 or 920 analytical gas chromatograph equipped with a thermal-conductivity detector and a $5 \mathrm{ft} \times 0.25 \mathrm{in}$. 10% SE- 30 column on NAW Chromosorb P. Helium was used as a carrier gas and the flow rate was ca. $60 \mathrm{~mL} / \mathrm{min}$.
Tetrahydrofuran was distilled from LiAlH_{4} through a $30-\mathrm{cm} \mathrm{Vi}$ greux column just prior to use. The potassium tert-butoxide was sublimed and stored thereafter under dry nitrogen in a desiccator.

All other solvents were purified according to literature procedures and stored under dry nitrogen and in contact with $4-\AA \begin{aligned} & \text { molecular }\end{aligned}$ sieves.

Preparation of Benzyl tert-Butyl Ether (in Tetrahydrofuran). A $100-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an addition funnel and magnetic stirring bar was charged with resublimed potassium tert-butoxide ($5.61 \mathrm{~g}, 0.05 \mathrm{~mol}$), 18 -crown -6 (0.66 $\mathrm{g}, 0.0025 \mathrm{~mol}$), and dry THF (40 mL). The solution was placed in a $30^{\circ} \mathrm{C}$ bath and the solution was maintained under an inert atmosphere (N_{2}). Benzyl chloride ($6.32 \mathrm{~g}, 0.05 \mathrm{~mol}$) in THF (10 mL) was added dropwise over 5 min . After the addition was complete, stirring was continued for 1 h , the mixture was quenched with water (5 mL), diluted with an equal volume of ether and filtered, and the filtrate was dried over sodium sulfate and evaporated in vacuo. Benzyl tert-butyl ether ($6.1 \mathrm{~g}, 74 \%$) was obtained after distillation (bp 90-92 ${ }^{\circ} \mathrm{C} / 15 \mathrm{~mm}$) as a colorless oil: $\mathrm{NMR}\left(\mathrm{CCl}_{4}, \mathrm{ppm}\right) 1.2(\psi \mathrm{~s}, 9 \mathrm{H})-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 4.3(\psi \mathrm{~s}$, $2 \mathrm{H}) \mathrm{ArCH}_{2}, 7.2(\psi \mathrm{~s}, 5 \mathrm{H})$ aromatic protons. Recrystallization of the pot residue from ethanol/benzene gave (E)-stilbene as an off-white solid: 220 mg ; 5%; mp $120-12{ }^{\circ} \mathrm{C}$; NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) 7.0(\psi \mathrm{~s}, 2 \mathrm{H}$) $\mathrm{ArCH}=\mathrm{CHAr}, 7.1-7.5(\mathrm{~m}, 10 \mathrm{H})$ aromatic protons.

Reaction of Benzyl Chloride with Crown-Activated Potassium tert-Butoxide in 1:1 THF/Cyclohexene. A $50-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a magnetic stirring bar, addition funnel, and nitrogen inlet was charged with THF (5 mL), cyclohexene $(10 \mathrm{~mL})$, potassium tert-butoxide ($1.12 \mathrm{~g}, 0.01 \mathrm{~mol}$), and 18 -crown- 6 $(0.132 \mathrm{~g}, 0.0005 \mathrm{~mol})$. The solution was brought to $30^{\circ} \mathrm{C}$ and a solution of benzyl chloride ($1.26 \mathrm{~g}, 0.01 \mathrm{~mol}$) in THF (5 mL) was added dropwise over a period of 5 min . After the addition was complete, stirring was continued for 1 h , the mixture was quenched with water (5 mL) and separated, and the organic phase was washed with water (20 mL). The aqueous phase was extracted with ether (20 mL), and the combined organic phase was dried over sodium sulfate and analyzed (GLC) to show benzyl tert-butyl ether (93\%), stilbene ($\sim 1 \%$), and a small amount of unreacted benzyl chloride. No 7-phenylnorcarane could be detected.

Reaction of Benzyl Chloride with Potassium tert-Butoxide in $\mathrm{Me}_{2} \mathrm{SO}$. A $100-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an addition funnel and magnetic stirring bar was charged with potassium tert-butoxide ($1.12 \mathrm{~g}, 0.01 \mathrm{~mol}$) and dry $\mathrm{Me}_{2} \mathrm{SO}(15 \mathrm{~mL})$. The solution was brought to $30^{\circ} \mathrm{C}$ under a nitrogen atmosphere and a solution of benzyl chlorice ($1.26 \mathrm{~g}, 0.01 \mathrm{~mol}$) in $\mathrm{Me}_{2} \mathrm{SO}(5 \mathrm{~mL})$ was added dropwise over a period of 5 min . After the addition was complete, stirring was continued for 1 h , and the mixture was quenched with water (5 mL) and diluted with an equal volume of ether. The resulting mixture was washed with water $(3 \times 20 \mathrm{~mL})$ and the aqueous phase backwashed with ether (20 mL). The combined organic phase was dried over sodium sulfate and analyzed by GLC (see above). Stilbene (47\%), benzyl tert-butyl ether (15%), and a small amount of unreacted benzyl chloride were detected.
Reaction of Benzyl Chloride with Potassium tert-Butoxide in tert-Butyl Alcohol. A $100-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an addition funnel and magnetic stirring bar was charged with potassium tert-butoxide ($1.12 \mathrm{~g}, 0.01 \mathrm{~mol}$), 18-crown-6 $(0.66 \mathrm{~g}, 0.0025 \mathrm{~mol})$, and dry tert-butyl alcohol $(15 \mathrm{~mL})$. The solution was brought to $30^{\circ} \mathrm{C}$ under a nitrogen atmosphere and a solution of benzyl chloride ($1.26 \mathrm{~g}, 0.01 \mathrm{~mol}$) in tert-butyl alcohol (5 mL) was added dropwise over a period of 5 min . After the addition was complete, stirring was continued for 1 h , and the mixture was quenched with water (5 mL), diluted with an equal volume of ether, and filtered. The filtrate was dried over sodium sulfate and analyzed by GLC (see above). Benzyl tert-butyl ether (58\%), unreacted benzyl chloride (28%), and stilbene $(<1 \%)$ were detected.
Preparation of tert-Butyl Anthranilate. A $250-\mathrm{mL}$, threenecked, round-bottomed flask equipped with addition funnel, nitrogen inlet, and magnetic stirring bar was charged with isatoic anhydride ($8.2 \mathrm{~g}, 0.05 \mathrm{~mol}$) and dry DMF (50 mL). After the anhydride had dissolved, a solution of potassium tert-butoxide ($6.1 \mathrm{~g}, 0.051 \mathrm{~mol}$) and 18 -crown-6 ($0.66 \mathrm{~g}, 0.0025 \mathrm{~mol}$) in DMF (25 mL) was added dropwise. The dark solution was stirred for 24 h , quenched with distilled water $(100 \mathrm{~mL})$, and extracted with ether $(4 \times 100 \mathrm{~mL})$. The combined organic material was washed with distilled water (100 mL) and brine (100 mL), dried over sodium sulfate, and evaporated in vacuo. After distillation (bp $82-90^{\circ} \mathrm{C} / 0.35-0.45 \mathrm{~mm}$), tert-butyl anthranilate was obtained ($3.12 \mathrm{~g}, 33 \%$) as a pale-yellow oil: NMR $\left(\mathrm{CCl}_{4}, \mathrm{ppm}\right) 1.56(\mathrm{~s}, 9 \mathrm{H})-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 6.6(\mathrm{~m}, 2 \mathrm{H})-\mathrm{NH}_{2}, 6.45(\mathrm{~m}, 2 \mathrm{H})$, $7.0(\mathrm{~m}, 1 \mathrm{H}), 7.6(\mathrm{~m}, 1 \mathrm{H})$ aromatic protons; IR (neat) $\nu \mathrm{C}=1690 \mathrm{~cm}^{-1}$. High-resolution mass spectrum, calcd: 193.1099; found: 193.1102. (NB: An identical reaction in the absence of 18-crown-6 produced tert-butyl anthranilate in only 8% yield.)

Attempted Synthesis of Phenyl tert-Butyl Ether. A $200-\mathrm{mL}$
pressure reaction bottle equipped with a magnetic stirring bar was charged with potassium tert-butoxide $(2.80 \mathrm{~g}, 0.025 \mathrm{~mol}), 18$-crown-6 ($0.33 \mathrm{~g}, 0.00125 \mathrm{~mol}$), bromobenzene ($3.9 \mathrm{~g}, 0.025 \mathrm{~mol}$), and THF (50 $\mathrm{mL})$. The contents were then sealed under a nitrogen atmosphere, immersed in a $100^{\circ} \mathrm{C}$ oil bath, and stirred for 2 h . The reaction mixture was then allowed to cool to room temperature, quenched with water (2 mL), diluted with ether (10 mL), and filtered. The filtrate was reduced in vacuo to give a brown oil from which all volatile material was distilled (bp $45-50^{\circ} \mathrm{C}, \sim 15 \mathrm{~mm}$). The distillate was anclyzed by NMR and found to consist largely of unreacted bromobenzene with a small amount of phenyl tert-butyl ether (NMR).

Metallation of Diphenylmethane with tert-Butoxide. A $100-\mathrm{mL}$, round-bottomed flask equipped with a magnetic stirring bar and nitrogen inlet was charged with THF (40 mL), potassium tertbutoxide ($2.80 \mathrm{~g}, 0.025 \mathrm{~mol}$), and 18 -crown $-6(0.33 \mathrm{~g}, 0.00125 \mathrm{~mol})$, and then immersed in a bath maintained at $30^{\circ} \mathrm{C}$. Diphenylmethane (4.1 $\mathrm{g}, 0.025 \mathrm{~mol})$ in THF (10 mL) was added dropwise, and the solution was stirred for 4 h , quenched with $\mathrm{D}_{2} \mathrm{O}(2 \mathrm{~mL})$, and diluted with ether $(20 \mathrm{~mL})$. The precipitated salts were removed by filtration ard the filtrate was reduced in vacuo to a pale-yellow oil. After distillation (bp $132{ }^{\circ} \mathrm{C}, \sim 10 \mathrm{~mm}$), diphenylmethane, 18% deuterated (NMR integration), was obtained as a colorless oil ($3.6 \mathrm{~g}, 87 \%$ recovery): NMR $\left(\mathrm{CCl}_{4}, \mathrm{ppm}\right) 3.88(\mathrm{~s}, 1.64 \mathrm{H})(\mathrm{Ar})_{2} \mathrm{CHd}, 7.08(\mathrm{~s}, 5 \mathrm{H})$ aromatic protons.

Metallation of Chlorodiphenylmethane with tert-Butoxide. Chlorodiphenylmethane was added in a stream and metallated as above for 30 s , and $\mathrm{D}_{2} \mathrm{O}(2 \mathrm{~mL})$ was then added. After distillation (bp $164-165{ }^{\circ} \mathrm{C}, \sim 20 \mathrm{~mm}$) chlorodiphenylmethane [75% deuterated at C-1 (NMR integration)] was obtained as a colorless oil (41% recovery): NMR (CCl $\left.{ }_{4}, \mathrm{ppm}\right) 5.95(\psi \mathrm{~s}, 0.25 \mathrm{H})(\mathrm{Ar})_{2} \mathrm{ClCH}(\mathrm{D}), 7.18(\mathrm{~m}, 10 \mathrm{H})$ aromatic protons.

Attempted Metallation of Toluene with Crown-Activated tert-Butoxide. A $100-\mathrm{mL}$, round-bottomed flask equipped with a magnetic stirring bar and nitrogen inlet was charged with THF (40 $\mathrm{mL})$, potassium tert-butoxide ($2.80 \mathrm{~g}, 0.025 \mathrm{~mol}$), and 18 -crown -6 $(0.33 \mathrm{~g}, 0.00125 \mathrm{~mol})$, and then immersed in a bath maintained at 30 ${ }^{\circ} \mathrm{C}$. Toluene $(2.30 \mathrm{~g}, 0.025 \mathrm{~mol})$ in THF $(10 \mathrm{~mL})$ was added dropwise, and the solution was stirred for 24 h , quenched with $\mathrm{D}_{2} \mathrm{O}(2 \mathrm{~mL})$, and diluted with ether $(20 \mathrm{~mL})$. The precipitated salts were removed by filtration and the filtrate was reduced in vacuo (bath temp ca. $35^{\circ} \mathrm{C}$) to a pale-yellow oil. Analysis of the crude recovered toluene (NMR integration) indicated no deuteration.
tert-Butoxide-Catalyzed Reaction of Diphenylmethane with Benzaldehyde. A $100-\mathrm{mL}$, round-bottomed flask equipped with a magnetic stirring bar and nitrogen inlet and maintained at $30^{\circ} \mathrm{C}$ was charged with THF (40 mL), potassium tert-butoxide ($2.80 \mathrm{~g}, 0.025$ $\mathrm{mol})$, and 18 -crown- $6(0.33 \mathrm{~g}, 0.00125 \mathrm{~mol})$. Diphenylmethane (4.10 $\mathrm{g}, 0.025 \mathrm{~mol})$ in THF $(5 \mathrm{~mL})$ was then added in a stream. After allowing 30 min for metallation, benzaldehyde $(2.65 \mathrm{~g}, 0.025 \mathrm{~mol})$ in THF (5 mL) was added dropwise, and the resulting mixture was stirred overnight (22 h). The α, α-diphenylacetophenone whici precipitated upon addition of water $(100 \mathrm{~mL})$ was collected by filt-ation and the residue crystallized from hexane. The ketone was obtained ($2.0 \mathrm{~g}, 29 \%$ based on diphenylmethane) as a white solid: mp 134-135 ${ }^{\circ} \mathrm{C}$; lit. ${ }^{29} \mathrm{mp} 136{ }^{\circ} \mathrm{C}, \mathrm{mmp} 132{ }^{\circ} \mathrm{C}$; NMR (CDCl_{3}, ppm $\left.\delta\right) 6.03(\psi \mathrm{~s}, 1$ H) $\operatorname{ArCOCHAr} 2,7.28(\psi \mathrm{~s}, 11 \mathrm{H}), 7.45(\psi \mathrm{~d}, 2 \mathrm{H}), 8.0(\mathrm{~m}, 2 \mathrm{H})$ aromatic protons; IR (mull) $\nu_{\mathrm{C}=0} 1685 \mathrm{~cm}^{-1}$

The aqueous phase was extracted with ether which was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and reduced in vacuo to a pale-yellow oil. Column chromatography ($80-325$ mesh alumina) using 2% ether-hexane as solvent gave diphenylmethane ($1.73 \mathrm{~g}, 42 \%$). Elution with $1: 1(\mathrm{v} / \mathrm{v})$ ether/ hexane gave benzyl alcohol $(0.97 \mathrm{~g}, 35 \%)$. (NB: No tert-butyl benzoate was detected in this experiment.)

Reaction of Benzaldehyde with Crown-Activated Potassium tert-Butoxide. A $100-\mathrm{mL}$, round-bottomed flask equipped with a magnetic stirring bar and nitrogen inlet and maintained at $30^{\circ} \mathrm{C}$ was charged with THF (40 mL), potassium tert-butoxide $(2.80 \mathrm{~g}, 0.025$ $\mathrm{mol})$, and 18 -crown- $6(0.330 \mathrm{~g}, 0.00125 \mathrm{~mol})$. A solution of benzaldehyde $(2.65 \mathrm{~g}, 0.025 \mathrm{~mol})$ in THF (10 mL) was added dropwise, and the resulting highly colored mixture was stirred for 2 h , quenched with water $(2 \mathrm{~mL})$, diluted with ether (20 mL), and filtered. The filtrate was dried over sodium sulfate and reduced in vacuo to a pale-yellow oil. Purification by column chromatography as above gave benzyl alcohol ($1.87 \mathrm{~g}, 65 \%$) and tert-butyl benzoate ($1.28 \mathrm{~g}, 29 \%$): NMR $\left(\mathrm{CCl}_{4}, \mathrm{ppm}\right) 1.58(\mathrm{~s}, 9 \mathrm{H})-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 7.4(\mathrm{~m}, 3 \mathrm{H}), 7.95(\mathrm{~m}, 2 \mathrm{H})$ aromatic protons; IR (neat): $\nu \mathrm{C}=01710 \mathrm{~cm}^{-1}$.

Acylation of Lithium Diphenylmethide by tert-Butyl Benzoate. A $100-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a magnetic stirring bar, serum cap, addition funnel and nitrogen inlet was charged with THF (40 mL) and diphenylmethane ($1.68 \mathrm{~g}, 0.01$
mol). The solution was cooled to $0^{\circ} \mathrm{C}$ and $2.4 \mathrm{M} n$-butylithium (4.16 $\mathrm{mL}, 0.01 \mathrm{~mol}$) was syringed in, and the solution was stirred for 30 min . tert-Butyl benzoate $(1.78 \mathrm{~g}, 0.01 \mathrm{~mol})$ in THF $(10 \mathrm{~mL})$ was then added dropwise, and the solution was stirred for 1 h , quenched, and diluted with water (5 and 100 mL , respectively). The α, α-diphenylacetophenone which precipitated was collected by filtration and the residue crystallized from hexane. The ketone was obtained ($0.41 \mathrm{~g}, 15 \%$) as a white solid, mp 134-135 ${ }^{\circ} \mathrm{C}$.

Reaction of Diphenylmethane with Benzaldehyde-d. A 100mL , three-necked, round-bottomed flask equipped with a magnetic stirring bar, nitrogen inlet, and addition funnel was charged with THF $(15 \mathrm{~mL})$, potassium tert-butoxide $(1.12 \mathrm{~g}, 0.01 \mathrm{~mol})$ and 18 -crown-6 $(0.132 \mathrm{~g}, 0.0005 \mathrm{~mol})$. Diphenylmethane $(1.68 \mathrm{~g}, 0.01 \mathrm{~mol}$ was syringed in. After allowing 30 min for metallation, benzaldehyde- $d(1.07 \mathrm{~g}, 0.01$ mol) in THF (5 mL) was added dropwise, and the resulting mixture stirred overnight (22 h) and then quenched with water (5 mL). The mixture was dilused with water (50 mL) and extracted with ether (3 $\times 25 \mathrm{~mL}$), and the combined organic phases were dried over sodium sulfate. Column chromatography ($80-325$ mesh alumina, hexane solvent) gave diphenylmethane ($1.01 \mathrm{~g}, 60 \%$). Elution with 5\% ether-hexane gave α, α-diphenylacetophenone $(0.86 \mathrm{~g}, 33 \%$ based on diphenylmethane), mp $130-132{ }^{\circ} \mathrm{C}, \mathrm{mmp} 133-134^{\circ} \mathrm{C}$, containing no deuterium (NMR). Further elution with $1: 1(\mathrm{v} / \mathrm{v})$ ether-hexane gave benzyl- $\alpha, \alpha-d_{2}$ alcohol ($0.36 \mathrm{~g}, 33 \%$ based on diphenylmethane) identified by NMR.

Attempted tert-Butoxide-Catalyzed Acylation of Diphenylmethane with tert-Butyl Benzoate. A $100-\mathrm{mL}$, three-necked, round-bottomed ilask equipped with a magnetic stirring bar, addition funnel, and nitrogen inlet was charged with potassium tert-butoxide $(1.12 \mathrm{~g}, 0.01 \mathrm{~mol}) .18$-crown $-6(0.132 \mathrm{~g}, 0.0005 \mathrm{~mol})$, and dry THF (40 mL). The solution was brought to $30^{\circ} \mathrm{C}$ under a nitrogen atmosphere and a solution of diphenylmethane ($1.64 \mathrm{~g}, 0.01 \mathrm{~mol}$) in THF (5 mL) was added dropwise and allowed to react for 10 min . A solution of tert-butyl benzoate ($1.78 \mathrm{~g}, 0.01 \mathrm{~mol}$) in THF (5 mL) was then added dropwise over a period of 5 min . After the addition was complete, stirring was continued for 24 h , and the mixture was quenched and diluted with water (5 and 10 mL , respectively). Any α, α-diphenylacetophenone present failed to precipitate after 24 h . The resulting oil was extracted with dichloromethane $(2 \times 25 \mathrm{~mL})$, dried over sodium sulfate, filtered, and reduced in vacuo to a brown oil. No $\alpha, \alpha-\mathrm{di}$ phenylacetopherone could be detected by NMR (benzhydryl proton at $\delta 6.03$), although unreacted diphenylmethane and tert-butyl benzoate were readily detected. The same result was obtained when the reaction was conducted for 48 h .

Preparation of 2-Carboxybiphenyl. A $100-\mathrm{mL}$, round-bottomed flask equipped with an addition funnel, magnetic sti-ring bar, and gas inlet was charged with potassium tert-butoxide ($2.24 \mathrm{~g}, 0.02 \mathrm{~mol}$), 18 -crown-6 ($0.066 \mathrm{~g}, 0.00025 \mathrm{~mol}$), and THF (40 mL). The solution was placed under an atmosphere of oxygen and a solution of fluorene ($0.83 \mathrm{~g}, 0.005 \mathrm{mo}$) in THF (10 mL) was added over a period of 5 min . After the addition was complete, stirring was continued under oxygen for 1 h . Then. the reaction was quenched with water (10 mL) and the aqueous phase separated. The organic phase was washed with water ($2 \times 25 \mathrm{~mL}$) and the combined aqueous phase acidified with concentrated HCl . The acid was then extracted with ether $(3 \times 20 \mathrm{~mL})$, dried over sodium sulfate, and evaporated in vacuo. There was obtained 2-carboxyoiphenyl ($0.99 \mathrm{~g}, 100 \%$) as a yellow solid: mp 109-110 ${ }^{\circ} \mathrm{C}$; lit. ${ }^{30} \mathrm{mp} \mathrm{112-112.5}{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right) 7.23$. $\left.4 \mathrm{~s}, 8 \mathrm{H}\right), 7.72$ ($\mathrm{m}, 1 \mathrm{H}$) aromatic protons, $11.5(\mathrm{~m}, 1 \mathrm{H})-\mathrm{COOH}$; IR (mull): $\nu \mathrm{C}=01685$ cm^{-1}. (NB: An identical reaction in the absence of 18 -crown-6 produced 2-carboxybiphenyl in 92% yield.)
Potassium tert-Butoxide/Crown Catalyzed Condensation of Benzaldehyde-d with Acetonitrile. A $100-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a magnetic stirring bar, addition funnel, and nitrcgen inlet was charged with potassium tert-butoxide $(1.12 \mathrm{~g}, 0.01 \mathrm{~mol}), 18$-crown-6 $(0.132 \mathrm{~g}, 0.0005 \mathrm{~mol})$, and THF (15 mL). The solution was stirred at ambient temperature (ca. $27{ }^{\circ} \mathrm{C}$) and acetonitrile ($0.41 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added in one portion. After allowing 10 min for metallation, a solution of benzaldehyde-d $(1.07 \mathrm{~g}, 0.01 \mathrm{~mol})$ in THF (5 mL) was added dropwise over a period of 5 min . After the addition was complete, stirring was continued for 3 h , and the mixture was quenched with water (5 mL), diluted with ether (25 mL), and washed with water $(3 \times 25 \mathrm{~mL})$. The combined aque ous phase was backwashed with ether (25 mL) and the organic phase dried over sodium sulfate. Column chromatography ($80-325$ mesh alumina) using 1:9 (v/v) ether-hexane as solvent gave cinnamonitrile- $\beta-d(0.25 \mathrm{~g}, 22 \%$ $E / Z \sim 7.1$) as a pale-yellow oil: NMR $\left(\mathrm{CCl}_{4}, \mathrm{ppm}\right) E$ isomer, 5.71 ($\psi \mathrm{t}$, $1 \mathrm{H}) \mathrm{ArCD}=\mathrm{CHCN}, 7.3(\psi \mathrm{~s}, 5 \mathrm{H})$ aromat:c protons; Z isomer, 5.31 $(\mathrm{m}, 1 \mathrm{H}) \mathrm{ArCD}=\mathrm{CHCN}, 7.3(\psi \mathrm{~s}, 5 \mathrm{H})$ aromatic protons; IR (neat): $\nu \mathrm{C}=\mathrm{N} 2220 \mathrm{~cm}^{-}$, elution with 3:7 (v/v) ether-hexane followed by
preparative GLC (gas chromatography gave benzyl $-\alpha, \alpha-d_{\geq}$alcohol identified by NMR).

Acknowledgment. We warmly thank Organic Reactions, Inc., and the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for grants which supported this work.

Registry No.-Isatoic anhydride, 118-48-9; tert-butyl anthranilate, 64113-91-3; diphenylmethane, 101-81-5; deuterated diphenylmethane, 20389-18-8; α, α-diphenylacetophenone, 1733-63-7; benzaldehyde, 100-52-7; tert-butyl benzoate, 774-65-2; benzaldehyde- d, 3592-47-0; benzyl- $\alpha, \alpha-d_{2}$ alcohol, 21175-64-4; 2-carboxybiphenyl, 947-84-2; fluorene, 86-73-7; acetonitrile, 75-05-8; (E)-cinnamoni-trile- $\beta-d, 64113-90-2$; (Z)-cinnamonitrile- $\beta-d, 64113-89-9$; deuterated chlorodiphenylmethane, 778-23-40.

References and Notes

(1) D. J. Cram, B. Rickborn, and G. R. Knox, J. Am. Chem. Soc., 82, 6412 (1960).
(2) G. A. Russell, E. Janzen, H. Becker, and F. Smertowski, J. Am. Chem. Soc., 84, 2652 (1962).
(3) A. Schriesheim and C. A. Rowe, J. Am. Chem. Soc., 84, 3160 (1962).
(4) T. J. Wallace, J. E. Hofmann, and A. Schriescheim, J. Am. Chem. Soc., 85, 2739 (1963).
(5) C. A. Buehler and D. E. Pearson, Chem. Rev., 74, 45 (1974).
(6) M. Szwarc, Ed., "Ions and Ion Pairs in Organic Reactions", Wiley-Interscience, New York, N.Y., 1972.
(7) See: J. Smid, "Spectrophotometric Studies of Ion Pair Equilibria", p 85 in ref 6.
(8) D. H. Hunter, W. Lee, and S. K. Sim, J. Chem. Soc., Chem. Commun., 1018 (1974). D. H. Hunter and C. A. Perry, Synthesis, 37 (1977).
(9) D. A. Evans and A. M. Golob. J. Am. Chem. Soc., 97, 4765 (1975).
(10) R. A. Bartsch, Acc. Chem. Res., 8, 239 (1975).
(11) M. J. Maskornick, Tetrahedron Lett., 7797 (1972).
(12) D. J. Cram, J. C. Mateos, F. Hanck, A. Langemann, K. R. Kopecky, W. D. Nielsen, and J. Allinger, J. Am. Chem. Soc.. 81, 5774 (1959).
(13) (a) Typical solubilities for potassium tert-butoxide (in $\mathrm{g} / 100 \mathrm{~g}$ of solvent at $25^{\circ} \mathrm{C}$) are given by L . F . Fieser and M . Fieser, "Reagents for Organic Synthesis". Vol. 1, 911 (1967): hexane (0.27), toluene (2.27), ether (4.34), tert-butyl alcohol (17.80), and tetrahydrofuran (25.00). (b) We have found that the solubility of potassium tert-butoxide in benzene at $25 \pm 2^{\circ} \mathrm{C}$ is $1.4 \pm 0.2 \mathrm{~g} / 100 \mathrm{~g}$.
(14) (a) R. A. Olofson and C. M. Dougherty, J. Am. Chem. Soc., 95, 581 (1973). (b) R. A. Olofson and C. M. Dougherty, ibid., 95, 582 (1973). (c) R. A. Ol-
ofson, K. D. Lotts, and G. N. Barber, Tetrahedron Lett., 3779 (1976). (d) G. N. Barber and R. A. Olofson, ibid., 3783 (1976). (e) R. A. Olofson, K. D. Lotts, and G. N. Barber, ibid., 3381 (1976).
(15) (a) A. L. Huang and S. S. Si Hoe, "Vistas in Free Radical Chemistry", W A. Waters, Ed., Pergamon Press, New York, N.Y., 1959, p 245. (b) N. A Milas, J. Am. Chem. Soc., 53, 221 (1931).
(16) P. T. Lansbury and V. A. Pattison, J. Org. Chem., 27, 1933 (1962).
(17) G. W. Gokel, D. J. Cram, C. L. Liotta, H. P. Harris, and F. L. Cook, J. Org. Chem., 39, 2445 (1974).
(18) W. P. Weber and G. W. Gokel, 'Phase Transfer Catalysis in Organic Synthesis", Springer-Verlag, Berlin, 1977.
(19) G. W. Gokel and H. D. Durst, Synthesis, 168 (1976).
(20) U.S. Patent 3126 631; Chem. Abstr., 60, 13195 (1964).
(21) R. P. Staiger and E. B. Miller, J. Org. Chem., 24, 1214 (1959).
(22) (a) M. R. V. Sahyun and D. J. Cram, "Organic Syntheses'", Collect. Vol. 5. Wiley, New York, N.Y., 926 (1973). (b) S. O. Lawesson and N. C. Yang, J. Am. Chem. Soc., 81, 4230 (1959). (c) J. E. Shaw, D. C. Kunerth, and S. B. Swanson, J. Org. Chem., 41, 732 (1976).
(23) D. J. Sam and H. E. Simmons, J. Am. Chem. Soc., 96, 2252 (1974).
(24) G. W. Gokel, H. M. Gerdes, and N. W. Rebert, Tetrahedron Lett., 653 (1976).
(25) (a) B. Dietrich and J.-M. Lehn, Tetrahedron Lett., 2552 (1973). (b) See ref 189 in G. W. Gokel and H. D. Durst, Synthesis, 168 (1976). (c) E. Alneri, G. Bottaccio, and V. Carletti, Tetrahedron Lett., 2117 (1977).
(26) (a) P. G. Gassman, P. K. G. Hodgson, and R. J. Balchunis, J. Am. Chem. Soc., 98, 1275 (1976), and references therein. (b) G. W. Kenner, M. J. T. Robinson, C. M. B. Taylor, and B. R. Webster, J. Chem. Soc., 1756 (1962).
(27) (a) C. Kruger, J. Organomet. Chem., 9, 125 (1967). (b) E. M. Kaiser and C R. Hauser, J. Org. Chem., 33, 3402 (1968). (c) D. N. Crouse and D. Seebach, Chem. Ber., 101, 3113 (1968). (d) I. Pattison, K. Wade, and B. K. Wyatt, J. Chem. Soc., 837 (1968). (e) T. Kametani, Y. Yamaki, and K. Ogasawara, Yakugaku Zasshi, 89, 154 (1969) [Chem. Abstr., 70, 106342y (1969)]. (f) A. Uchida, S. Saito, and S. Matsuda, Bull. Chem. Soc. Jpn., 42 2989 (1969). (g) T. P. Vishnavakova and A. A. Koridze, Zh. Obshch. Khim. 39, 210 (1969). (h) A. Uchida, A. Doyama, and S. Matsuda, Bull. Chem. Soc Jpn., 43, 963 (1970). (i) R. Das and C. A. Whikie, J. Am. Chem. Soc., 94, 4555 (1972). (i) K. Takahashi, K. Sasaki, H. Tanabe, Y. Yamada, and H. Ida J. Chem. Soc. Jpn., Chem. Ind. Chem., 2347 (1973). (k) W. Stilz and H. Pommer, Ger. Off. 1108208 [Chem. Abstr., 56, 11422e (1962)]. (I) G. P. Schiemenz and H. Engelhard, Chem. Ber., 95, 195 (1962). (m) J. Ghosez, Bull. Soc. Chim. Belg., 41, 477 (1932); see also: J. G. Krause and S. Shaikh, Synthesis, 502 (1975), and J. J. Louvar and A. K. Sparks, Ger. Off., 2041563 [Chem. Abstr., 75, 199897 (1971)].
(28) S. A. DiBiase, G. W. Gokel, and B. A. Lipisko, Tetrahedron Lett., 3495 (1976).
(29) E. Elkik, H. Assadi-Far, and H. Normant, C. R. Hebd. Seances Acad. Sci., 267 (1968).
(30) P. G. Gassman, J. T. Lumb, and F. V. Zalar, J. Am. Chem. Soc., 89, 946 (1967).

Base-Catalyzed β-Elimination Reactions. 7.

Elimination from 4-(Para-substituted-phenoxy)-2-oxobutanoic Acids

James M. Hilbert and Leo Fedor*
Department of Medicinal Chemistry, School of Pharmacy, State University of New York at Buffalo, Buffalo, New York 14260

Received August 22, 1977

Abstract

Elimination of para-substituted phenoxides from 4-(para-substituted-phenoxy)-2-oxobutanoic acids in aqueous solution is catalyzed by imidazole, morpholine. diethanolamine, and N, N-dimethylethanolamine. The dependence of the pseudo-first-order rate constant on amine concentration is nonlinear, with an initial line of large slope at low amine concentration which changes to a line of smaller slope at high amine concentration. The existence of a carbanion intermediate in the reaction is supported by the result that α-hydrogen exchange at high amine concentration is faster than elimination. These findings, coupled with the results of analysis of Hammett ρ^{\prime} values for various steps of the elimination reaction catalyzed by morpholine, lead us to conclude that elimination proceeds via spontaneous decomposition of enolates and general-base-catalyzed decomposition of enols.

A considerable body of evidence indicates that many base-catalyzed β-elimination reactions proceed via carbanion intermediates. ${ }^{1-6}$ For example, under the experimental conditions employed, β-elimination of para-substituted phenoxides from 4-(para-substituted-phenoxy)-2-butanones is adequately described by the minimal mechanism of Scheme I. ${ }^{5}$

Many biochemical reactions such as aldolization, ${ }^{7-9}$ decarboxylation, ${ }^{10}$ carboxylation, ${ }^{8}$ and elimination ${ }^{11-13}$ are thought to occur via proton transfer to form a carbanion intermediate from α-keto acid substrates, and our own interest
in carbanion chemistry is related in part to our desire to understand enzyme catalysis. In order to better understand the chemistry of elimination reactions, specifically in compounds capable of stabilizing enols, and to develop potential suicide substrates ${ }^{14-16}$ for those enzymes which utilize α-keto acid

Scheme I

$\mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3} \xrightarrow[k_{2}, \mathrm{BH}]{\stackrel{k_{1}, \mathrm{~B}}{\hookrightarrow}} \mathrm{ArOCH}_{2} \mathrm{CHCOCH}_{3}{ }^{-}$
$\xrightarrow{k_{3}} \mathrm{CH}_{2}=\mathrm{CHCOCH}_{3}+\mathrm{ArO}^{-}$
substrates, we synthesized four 4-(para-substituted-phe-noxy)-2-oxobutanoic acids ($\mathrm{X}=\mathrm{H}(1), \mathrm{CH}_{3}(2), \mathrm{CH}_{3} \mathrm{O}(3)$, and $\mathrm{Cl}(4))$ and studied their base-catalyzed elimination reactions (eq 1). This study showed that β-elimination reactions are facile, that elimination occurs via general-base-catalyzed proton transfer to form carbanions, and that the reaction is necessarily more complex than the simple E1cB reaction mechanism of Scheme I.

$$
\begin{align*}
& p-\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{COCO}_{2}^{-} \\
& \rightarrow p-\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}+\mathrm{CH}_{2}= \tag{1}\\
& \mathrm{CHCOCO}_{2}-
\end{align*}
$$

Experimental Section

Apparatus. The apparatus used for collection of rate data was previously described. ${ }^{5}$ Calculations were performed on either a Hewlett Packard 2700 calculator using the first-order kinetics data and linear regression programs from the program library provided or on a Hewlett Packard HP 25 calculator. The plots of the jseudo-first-order rate constants vs. concentration of base were fitted to curves by the CDC 6400 computer of the State University of New York at Buffalo, using the NLIN 2 curve-fitting program from the program library of the State University of New York at Buffalo. NMR spectra were taken on either Varian A-60 or T-60 instruments with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard, and the proton signals are reported in δ values downfield from $\mathrm{Me}_{4} \mathrm{Si}$. Melting points were taken in open capillary tubes in a Mel-Temp apparatus and are uncorrected.

Reagents. All inorganic reagents were Fisher Certified ACS Grade, except $\mathrm{D}_{2} \mathrm{O}$ ($99.8 \% \mathrm{D}$), Stohler Isotope Chemicals, $\mathrm{DCl}(+99 \% \mathrm{D})$, and KOD (98% D), Aldrich Chemical Co. All organic reagents were purchased from Aldrich Chemical Co. Tap-distilled water was redistilled through a Corning aGla still before use.

Kinetics. All reactions were carried out at $30 \pm 0.1^{\circ} \mathrm{C}$ in aqueous solution and at an ionic strength of 1.0 M maintained with KCl . The pH of solutions was measured and found to be constant, $\pm 0.02 \mathrm{pH}$ unit, for all serial dilutions of constant catalytic buffer ratio. In addition, the pH of reaction solutions was taken after each run, and the pH change never exceeded 0.08 pH unit; pH drift occurred in the very dilute buffers. Reactions were run under pseudo-first-order conditions with substrate concentration $\sim 2 \times 10^{-4} \mathrm{M}$. The reactions were initiated by addition of the substrate in ethanol to amine or hydroxide solutions, except in cases where the reaction proved to be to fast to monitor by these conditions. For reactions which had pseudo-firstorder rate constants greater than $\sim 8.5 \mathrm{~min}^{-1}, 3 \mathrm{~mL}$ of the amine or hydroxide solution, which had been equilibrated at a temperature of $30^{\circ} \mathrm{C}$ in a constant-temperature bath, was rapidly added to a cuvette containing the substrate using an Oxford macro-transfer pipet. Reactions were monitored by following the appearance of phenol or phenoxide, depending on the pH , at the following wavelengths (compound, phenol, phenoxide): 4-phenoxy-2-oxobutanoic acid (1), $278,286 \mathrm{~nm} ; 4$-(p-cresoxy)-2-oxobutanoic acid (2), $286,296 \mathrm{~nm} ; 4$ (p-anisoxy)-2-oxobutanoic acid (3), 304, $309 \mathrm{~nm} ; 4$-(p-chlorophe-noxy)-2-oxobutanoic acid (4), 294, 310 nm .
Products. The course of the reaction of each of the compotnds 1-4 with 0.04 M KOH was scanned from 210 to 410 nm . In each case, the appearance of para-substituted phenoxides was confirmed by spectral comparisons using authentic para-substituted phenols. Relatively strong absorption of phenoxides coupled with the presumed instability of 2-oxobutenoic acid ${ }^{2}$ prevented detection of this acid by UV spectroscopy. Reaction of 4-(p-chlorophenyl)-2-oxobutanoic acid with 0.04 M KOD in $\mathrm{D}_{2} \mathrm{O}$ was monitored by NMR spectrometry. The reaction product showed an absorption at $\delta .38$ which we attribute to vinyl protons in an α, β-unsaturated carbonyl system. A signal at $\delta 6.38$ was found for the unstable pyrolysis products of $4-N, N$-diethyl-amino-2-oxobutanoic acid. ${ }^{17}$ The amount of p-cresoxide ion formed on reaction of $2.5 \times 10^{-4} \mathrm{M} 2$ in 0.04 M KOH was quantitated. After reaction, the concentration of p-cresoxide ion was $2.58 \times 10^{-4} \mathrm{M}$, calculated from the absorbance (0.703) at 296 nm and the molar extinction coefficient $2.73 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, which was obtained from the data of Lang. ${ }^{18}$
Syntheses. Diethoxyacetic acid, bp $81^{\circ} \mathrm{C}(0.3 \mathrm{~mm})$, was prepared in 83% yield by the method of Moffett. ${ }^{19}$
Benzyl Diethoxyacetate. A solution of saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added dropwise to $22.5 \mathrm{~g}(0.15 \mathrm{~mol})$ of diethoxyacetic acid until no more CO_{2} was evolved, and the pH was between 7.5 and 8 . The water was then evaporated in a rotary evaporator, and the carboxylate salt was added to $28.9 \mathrm{~g}(0.228 \mathrm{~mol})$ of benzyl chloride in 300 mL of dimethylformamide. The mixture was heated to $90^{\circ} \mathrm{C}$ with stirring for 1 h . Benzene was added to the cooled mixture which was then
washed with three portions of water. The organic solution was collected and dried $\left(\mathrm{MgSO}_{4}\right)$, and benzene and DMF were removed on a rotary evapcrator. Distillation gave a forerun of benzyl chloride followed by benzyl diethoxyacetate: yield $37.5 \mathrm{~g}(76 \%)$; bp $99-10{ }^{\circ} \mathrm{C}$ (0.05 mm); NN.R (CDCl_{3}) $1.22(\mathrm{t}, 6 \mathrm{H}), 3.64(\mathrm{q}, 4 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 5.19$ ($\mathrm{s}, 2 \mathrm{H}$), 7.31 ($\mathrm{s}, 5 \mathrm{H}$).
2-Carbobenzoxy-1,3-dithiane. The method of Eliel ${ }^{20}$ was used. A solution of $4.6 \mathrm{~g}(42.4 \mathrm{mmol})$ of 1,3 -propanedithiol and 13.6 g (57.1 mmol) of benzyl diethoxyacetate in 50 mL of CHCl_{3} was added dropwise to a refluxing solution of $12 \mathrm{~g}(85.2 \mathrm{mmol})$ of boron trifluoride etherate in 100 mL of CHCl_{3}. The solution was refluxed for 0.5 h , cooled, and washed with 80 mL of $\mathrm{H}_{2} \mathrm{O}, 80 \mathrm{~mL}$ of 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$, and then with two $80-\mathrm{mL}$ portions of $\mathrm{H}_{2} \mathrm{O}$. The CHCl_{3} solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and CHCl_{3} removed in a rotary evaporator, leaving crystals which were recrystallized twice from hexane: yield $9 \mathrm{~g}(62 \%) ; \mathrm{mp} 72-75^{\circ} \mathrm{C}$; NMR (CDCl_{3}) 1.79-2.32 (m, 2 H), $2.47(\mathrm{t}, 1$ H), $2.55(\mathrm{t}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 5$ H).

2-(β-Para-substituted-phenoxy)ethyl-2-carbobenzoxy-1,3dithianes. Para-substituted bromophenetoles, with the exception of β-bromophenetole (Aldrich Chemical Co.), were prepared by the method of Ad $_$ms and Thol ${ }^{21}$ (compound, mp, yield): $p-\mathrm{CH}_{3}, 48-50$ ${ }^{\circ} \mathrm{C}, 38 \% ; p-\mathrm{CH}_{3} \mathrm{O}, 49-50^{\circ} \mathrm{C}, 51 \% ; p-\mathrm{Cl}, 40-41^{\circ} \mathrm{C}, 32 \%$. The following general method was employed using $10-60 \mathrm{mmol}$ quantities of the β-bromophenetole. a solution of 2 -carbobenzoxy-1,3-dithiane in DMF/benzene ($3: 1$) was added dropwise to a stirred suspension of an equimolar quantity of NaH in 150 mL of $\mathrm{DMF} /$ benzene (3:1) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , and then a 1.2 mol excess of the desired para-substituted β-bromophenetole in a solution of DMF/benzene (3:1) was added dropwise with stirring . The temperature of the mixture was allowed to rise to $25^{\circ} \mathrm{C}$, and the mixture was stirred for 15 h at $25^{\circ} \mathrm{C}$. Benzene was then added to the mixture, and the organic layer was washed three times with water. The solvent was removed by rotary evaporation, and the product was crystallized and recrystallized from hexane. Melting points and yields are as follows: $p-\mathrm{H}, 55-58{ }^{\circ} \mathrm{C}, 43 \% ; p-\mathrm{CH}_{3}, 50-53^{\circ} \mathrm{C}, 55 \% ; p-\mathrm{CH}_{3} \mathrm{O}, 63-64^{\circ} \mathrm{C}, 59 \%$; $p-\mathrm{Cl}, 55-56^{\circ} \mathrm{C}, 59 \%$. NMR $\left(\mathrm{CDCl}_{3}\right)$: p - $\mathrm{H} 1.87(\mathrm{t}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 4 \mathrm{H})$, 2.86-3.53 (dtd, 2 H). 4.16 (t, 2 H), $5.16(\mathrm{~s}, ~ ट \mathrm{H}), 6.46-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.26$ ($\mathrm{s}, 5 \mathrm{H}$); $p-\mathrm{CH}_{3} 2.02(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~m} .2 \mathrm{H}), 3.14-3.66$ (dtd, 2 H), 4.3 (t, 2 H), 5.41 (s, 2 H), 6.85-7.4 (dd, 4 H), 7.6 ($\mathrm{s}, 5 \mathrm{H}$); $p-\mathrm{CH}_{3} \mathrm{O} 1.89(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 4 \mathrm{H}), 2.96-3.54$ (dtd, 2 H), $3.72(\mathrm{~s}, 3$ H), $4.15(\mathrm{t}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 4 \mathrm{H}), 7.34(\mathrm{~s}, 5 \mathrm{H}) ; p-\mathrm{Cl} 1.87(\mathrm{~m}$, 2 H), $2.6(\mathrm{~m}, 4 \mathrm{H}), 2.9-3.7$ (dtd, 2 H), 4.12 (t, 2 H), 5.2 ($\mathrm{s}, 2 \mathrm{H}$), 6.73 (d, 2 H), 7.15 (d, ¿ H), 7.31 (s, 5 H).
Benzyl 4-(Para-substituted-phenoxy)-2-oxobutanoates. Very specific conditions, similar to those of Corey and Erickson, ${ }^{22}$ were employed. 2-(- -Para-substituted-phenoxy) ethyl-2-carbobenzoxy-1,3-dithiane (20 mmol) in 5 mL of an acetone solution was added dropwise to a stirred suspension of N-chlorosuccinimide and silver nitrate ($1: 4: 4.5 \mathrm{~mol}$ ratio). The addition was made as rapidly as possible while ma-ntaining the reaction temperature at $25^{\circ} \mathrm{C}$ by the use of an ice bath. After the addition, the mixture was stirred for 5 min at $25^{\circ} \mathrm{C}$; longer times tended to give lower yields. The reaction was stopped by cooling the reaction mixture to $0^{\circ} \mathrm{C}$ and then adding, at 1 -min intervals, 5 mL each of saturated $\mathrm{NaHSO}_{3}, 10 \% \mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and saturated NaCl . Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) was added and the mixture was filtered through Celite. The organic phase was separated and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was flash-evaporated to give benzyl 4-(para-substituted-phenoxy)-2-oxobutanoates, which were crystallized and recrystallized from hexane/ CS_{2} (9:1). Melting points and yields are as follows: $p-\mathrm{H}, 49.5-51^{\circ} \mathrm{C}, 22 \%$; $p-\mathrm{CH}_{3} .66-67^{\circ} \mathrm{C}, 26 \%$; $p-\mathrm{CH}_{3} \mathrm{O}, 45-45^{\circ} \mathrm{C}, 11 \% ; p-\mathrm{Cl}, 82.5-84.5^{\circ} \mathrm{C} .34 \%$. NMR: $p-\mathrm{H} 3.33(\mathrm{t}$, $2 \mathrm{H}), 4.37(\mathrm{t}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 6.88-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.6(\mathrm{~s}, 5 \mathrm{H}) ; p-\mathrm{CH}_{3}$ $2.33(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{t} .2 \mathrm{H}), 4.33(\mathrm{t}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 6.75-7.3(\mathrm{q}, 4 \mathrm{H})$, $7.47(\mathrm{~s}, 5 \mathrm{H}) ; p-\mathrm{CH}_{3} \mathrm{O} 3.18(\mathrm{t}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{t}, 2 \mathrm{H}), 5.19(\mathrm{~s}$, 2 H), 6.71 ($\mathrm{s}, 4 \mathrm{H}$), 7.26 ($\mathrm{s}, 5 \mathrm{H}$); $p-\mathrm{Cl} 3.31$ (t, 2 H), $4.29(\mathrm{t}, 2 \mathrm{H}), 5.34$ (s, 2 H), 6.72-7.36 (q, 4 H), 7.45 ($\mathrm{s}, 5 \mathrm{H}$).

4-(Para-substituted-phenoxy)-2-oxobutanoic Acids 1-4. Benzyl 4-(para-substituted-phenoxy)-2-oxobutanoates (10 mmol) were dissolvec in 50 mL of ethyl acetate and hydrogenolyzed over Pd / C at 2.75 atm for 4 h . Solvent was removed by flash evaporation following filtration of the reaction solution through Celite. The residues 1-4 were crystallized from CCl_{4} and recrystallized from hexane/benzene ($7: 3$) to give the corresponcing acids.
$1(p-\mathrm{H}): 59 \%$ yield; $\mathrm{mp} 83-85^{\circ} \mathrm{C}$; NMR $3.5(\mathrm{t}, 2 \mathrm{H}), 4.49(\mathrm{t}, 2 \mathrm{H})$, $6.92-7.75(\mathrm{~m}, 5 \mathrm{H}), \sim 8.4(\mathrm{~s}, 1 \mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}: \mathrm{C}, 61.85 ; \mathrm{H}, 5.19 ; \mathrm{O}, 32.96$. Found: C, 61.84; H, 5.17; O, 33.05.
$2\left(p-\mathrm{CH}_{3}\right)$: 45% yield; mp $96-98^{\circ} \mathrm{C}$; NMR $2.30(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}, 2 \mathrm{H})$, $4.34(\mathrm{t}, 2 \mathrm{H}), 6.98(\mathrm{q}, 4 \mathrm{H}), 8.4(\mathrm{~s}, 1 \mathrm{H})$.

Figure 1. Plot of the pseudo-first-order rate constant, $k_{\text {obsd }}$, vs. the total concentration of morpholine (M) for reactions of 4-p-cresoxy-2-oxobutanoic acid (2) with that amine: $0, \mathrm{pH} 8.0 ; \bullet, \mathrm{pH} 8.26 ; \square, \mathrm{pH}$ 8.63; ■, pH 8.93; Δ, pH 9.26 .

Figure 2. Eadie-Hofstee type plot of the pseudo-first-order rate constant, $k_{\text {obsd }}$, vs. $k_{\text {obsd }} /[\text { Morpholine }]_{\text {total }}$ for reactions of 4-phe-noxy-2-oxobutanoic acid (1) with that amine at pH 8.92 .

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$: C, 63.44; $\mathrm{H}, 5.82 ; \mathrm{O}, 30.74$. Found: C, 63.52; H, 5.73; O, 30.59 .
$3\left(p-\mathrm{CH}_{3} \mathrm{O}\right)$: 40% yield; mp $99-10{ }^{\circ} \mathrm{C}$; NMR $3.23(\mathrm{t}, 2 \mathrm{H}), 3.71$ (s, $3 \mathrm{H}), 4.27$ (t, 2 H), 6.76 ($\mathrm{q}, 4 \mathrm{H}$), $\sim 8.4(\mathrm{~s}, 1 \mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$: C, $58.92 ; \mathrm{H}, 5.41 ; \mathrm{O}, 35.68$. Found: C, 58.77; H, 5.47; O, 35.67.

4 (p-Cl): 68% yield; mp $102-104^{\circ} \mathrm{C}$; NMR 3.36 (t, 2 H), 4.28 (t, 2 H), $6.66-7.38(\mathrm{q}, 4 \mathrm{H}), \sim 8.4(\mathrm{~s}, 1 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{4}$: C, $52.53 ; \mathrm{H}, 3.98 ; \mathrm{O}, 27.99$. Found: C, 52.49; H, 4.35; O, 28.63.

Results

4-(Para-substituted-phenoxy)-2-oxobutanoic acids 1-4 undergo general-base-catalyzed β-elimination to give parasubstituted phenols and 2 -oxobutenoic acid (eq 1) in aqueous solutions of amine buffers. Spontaneous elimination at pH 7 was found to be negligible. Plots of the pseudo-first-order rate constants, $k_{\text {obsd }}$, vs. concentration of amine bases were curved, showing a complex dependence of $k_{\text {obsd }}$ on the total concentration of amine base, $[\mathrm{B}]_{\mathrm{t}}$. The plots appeared to be biphasic, with an initial line of large slope at low $[\mathrm{B}]_{t}$ which changed to a line of smaller slope at high $[\mathrm{B}]_{\mathrm{t}}$. A family of these plots obtained using 4 -(p-cresoxy)- 2 -oxobutanoic acid (2) as the substrate and morpholine as the amine catalyst is shown in Figure $1 .{ }^{23} \mathrm{~A}$ similar change in slope with change in base or

Figure 3. Plot of the pseudo-first-order rate constant, $k_{\text {obsd }}$, divided by the molar concentration of total morpholine vs. the fraction of the base form of morpholine for reactions of 4-p-cresoxy-2-oxobutanoic acid (2) with 0.01 M morpholine.
acid concentration has been seen for several different reactions; ${ }^{24-29}$ including the elimination of water from 9 -hy-droxy-10-methyl-2-cis-decalone. The biphasic curve is indicative of the presence of an intermediate in the reaction, and the change in slope signifies a change in the rate-determining step of the reaction. ${ }^{25}$

The pseudo-first-order rate constants of the reactions were measured up to a total base concentration of 1.0 M , at which concentration the final limiting slope has not been reached and can not be easily determined and verified. It was important to determine whether the final slope had a value of 0 or more. If the final slope were 0 , the shape of the $k_{\text {obsd }} v s$. $[\mathrm{B}]_{\mathrm{t}}$ plot would be similar to that observed by Fedor and Glave ${ }^{5}$ in their study of the elimination of phenols from 4 -(para-substituted-phenoxy)-2-butanones and could be described by eq 2 , the pseudo-first-order rate equation for a simple E1cB process (Scheme I). A nonzero final slope implies more than one intermediate and/or more than one pathway for decomposition of the intermediate to product, as shown for elimination from 9-hydroxy-10-methyl-2-cis-decalone. ${ }^{6}$ Two criteria were used to show that the final slopes were greater than 0 . First, an Eadie-Hofstee type plot of $k_{\text {obsd }}$ vs. $k_{\text {obsd }} /[\mathrm{B}]_{\mathrm{t}}$ will give a straight line according to eq 3 , where $f r_{A}$ is the fraction of free acid, for a biphasic curve with a final slope of 0 . It was found that for elimination from 1 to 4 the Eadie-Hofstee plots were curved as shown typically in Figure 2. Second, a computer fit of the data obtained for reactions of 1-4 run at any constant pH to a curve described by eq 4 could be made. This equation describes the biphasic curves of Figure 1. The parameters p, q, and r are combinations of constants. The initial limiting slope, when values of $[\mathrm{B}]_{\mathrm{t}}$ are very small such that $\left.p[\mathrm{~B}]_{\mathrm{t}} \gg q \mid \mathrm{B}\right]_{\mathrm{t}}{ }^{2}$, is equal to p and the final limiting slope, when values of $[\mathrm{B}]_{\mathrm{t}}$ are large such that $r[\mathrm{~B}]_{\mathrm{t}} \gg 1$, is equal to q / r. Also, plots (not shown) of $k_{\text {obsd }} /[\mathrm{B}]_{\mathrm{t}}$ vs. $[\mathrm{B}]_{\mathrm{t}}$ (eq 5) are hyperbolic with finite, nonzero limits. ${ }^{44}$

$$
\begin{gather*}
k_{\text {obsd }}=k_{1}[\mathrm{~B}] /\left(\left(k_{2} / k_{3}\right)[\mathrm{BH}]+1\right) \tag{2}\\
k_{\text {obsd }}=k_{1} k_{3} K_{\mathrm{a}} / k_{2} a_{\mathrm{H}}-\left(k_{3} / k_{2} f r_{\mathrm{A}}\right)\left(k_{\text {obsd }} /[\mathrm{B}]_{\mathrm{t}}\right) \tag{3}\\
k_{\text {obsd }}=\left(p[\mathrm{~B}]_{\mathrm{t}}+q[\mathrm{~B}]_{\mathrm{t}}^{2}\right) /\left(r[\mathrm{~B}]_{\mathrm{t}}+1\right) \tag{4}\\
k_{\text {obsd }} /[\mathrm{B}]_{\mathrm{t}}=\left(p+q[\mathrm{~B}]_{\mathrm{t}}\right) /\left(r[\mathrm{~B}]_{\mathrm{t}}+1\right) \tag{5}
\end{gather*}
$$

We take the above results to show that the curves exemplified by those of Figure 1 are indeed biphasic and that the final slopes have values greater than 0 . Table I lists values of p, q, and r for the second-order plots of eq 4 for reactions of 1-4 with amines of this study. These parameters were obtained by computer fits of the data to eq 5 .

Table I. Kinetics Data According to Equation 4 for Reactions of $1-4$ in Aqueous Solutions of Amine Buffers ${ }^{a}$

Amine	Substrate	Registry no.	pH	Fraction of free base $\left(f r_{B}\right)$	p	q	r	Final slope ${ }^{b}$	$\mathrm{SE}^{\text {c }}$
Morpholine	$1(\mathrm{H})$	64114-05-2	7.99	0.190	2.72	3.33	9.88	$\bigcirc .737$	7.17×10^{-3}
			8.26	0.304	3.98	1.75	5.90	0.296	2.75×10^{-2}
			8.62	(1.500	7.20	3.77	5.5	0.687	4.20×10^{-2}
			8.93	0.671	15.0	7.02	8.05	0.872	5.33×10^{-2}
			9.26	0.814	12.4	4.03	3.59	1.12	7.79×10^{-2}
	$2\left(\mathrm{CH}_{3}\right)$	64114-04-1	8.00	0.193	2.84	4.92	13.5	0.366	1.02×10^{-2}
			8.26	(1.304	4.53	5.52	12.7	0.433	2.28×10^{-2}
			8.62	0.500	7.30	5.48	9.40	0.582	2.24×10^{-2}
			8.93	$\bigcirc .671$	15.3	6.35	12.0	0.529	7.89×10^{-2}
			9.25	1.810	11.3	5.50	4.61	1.19	1.3×10^{-1}
	$3\left(\mathrm{CH}_{3} \mathrm{O}\right)$	64114-03-0	8.05	$(1.212$	2.08	0.912	4.56	0.200	1.63×10^{-2}
			8.29	(1.319	3.25	0.583	3.38	0.172	2.06×10^{-2}
			8.62	C. 500	6.60	1.51	4.06	0.373	4.35×10^{-2}
			8.93	$\bigcirc .671$	9.26	2.61	4.03	0.648	3.18×10^{-2}
			9.26	C. 814	12.6	0.709	2.62	0.271	4.37×10^{-2}
	$4(\mathrm{Cl})$	64114-02-9	8.01	C. 197	3.59	5.67	6.78	0.836	5.07×10^{-2}
			8.26	C. 304	4.47	5.74	3.86	1.49	3.06×10^{-2}
			8.62	C. 500	7.90	2.68	2.18	1.23	7.30×10^{-2}
			8.93	C. 671	11.2	9.55	3.41	2.80	1.04×10^{-1}
			9.26	C. 814	13.9	11.5	2.65	4.36	6.29×10^{-2}
Imidazole	1 (H)		6.50	C. 220	0.137	0.130	16.13	0.00804	7.29×10^{-4}
			6.86	C. 392	0.169	0.0209	3.71	0.00563	2.93×10^{-2}
			7.05	C. 500	0.218	0.219	6.10	0.0359	2.71×10^{-3}
			7.26	C. 619	0.308	0.0628	4.69	0.0134	2.12×10^{-3}
			7.70	0.817	0.346	0.0443	2.26	0.0196	3.39×10^{-3}
Imidazole	$3\left(\mathrm{CH}_{3} \mathrm{O}\right)$		7.05	0.500	0.151	0.0503	4.44	0.0113	1.66×10^{-2}
Diethanolamine	1 (H)		8.17	0.183	1.48	6.33	9.9	0.639	1.91×10^{-2}
			8.67	0.415	4.15	12.0	10.25	1.17	4.25×10^{-2}
			8.82	0.500	4.27	8.15	5.65	1.44	4.33×10^{-2}
			9.33	0.764	9.09	3.15	3.86	0.818	1.55×10^{-1}
			9.49	0.824	8.65	0.801	1.26	0.636	1.31×10^{-1}
Dimethylaminoethanol	$3\left(\mathrm{CH}_{3} \mathrm{O}\right)$		8.81	0.186	10.21	5.02	5.68	0.884	2.49×10^{0}
			9.12	0.319	19.4	8.70	5.46	1.60	1.63×10^{0}
			9.38	0.460	30.6	6.31	4.41	1.43	2.32×10^{0}
			9.76	0.670	44.7	6.15×10^{-9}	2.45	2.52×10^{-9}	1.69×10^{0}
			10.02	0.788	51.8	3.36×10^{-8}	1.93	1.74×10^{-8}	$2.04 \times 10^{\text {c }}$

${ }^{a}$ The concentration range of base is $0.01-1.0 \mathrm{M} ; 15 k_{\text {obsd }}$ values $/ \mathrm{pH} ; 30^{\circ} \mathrm{C}$ and $\mu 1.0 \mathrm{M}(\mathrm{KCl}) .{ }^{b}$ The final slope values are erratic because of the somewhat erratic values of $k_{\text {obsd }}$ obtained from the spectrophotometric assay when the absorbance change between 1-4 and the products is small. A single point on the $k_{\text {obsd }}$ vs. [B] plot can make a great deal of difference in the parameter values given by the curve-fitting program. Thus, the final slope values are variable, but there are sufficient points to assure that the reported effects, e.g., positive final slopes (Figure 1), $\rho^{\prime}\left(k_{1}\right) \sim 0$ and $\rho\left(k_{4}\right)>\rho\left(k_{3}\right)$, are real. ${ }^{c}$ The values of the parameters p, q, and r were those for which the sum of the squares of the differences between o oserved and predicted $k_{\text {obsd }}$ values were minimizec as defined by ϕ, where $\phi=\Sigma n_{i=1}\left[Y_{i}-\hat{Y}_{i}\right]^{2}$ and Y_{i} is $k_{\text {obsd }}$ (experimental) and \hat{Y}_{i} is $k_{\text {obsd }}$ (predicted). The standard error of estimate, SE, is $\left(\phi \phi^{\prime}(N-K)\right)^{1 / 2}$, where N is the number of $k_{\text {obsd }}$ values and K is the number of constants (4) to be determined; as run, the equation used was $k_{\text {obsd }}=$ $\left(a x+b x^{2}\right) /(c x+d)$, and $p=a / d, q=b / d$, and $r=c / d$.

The data of Table I show that the initial and final slopes increase with the increasing fraction of free amine ($f r_{\mathrm{B}}$) (cf. Figure 1), which suggests that general base and not general acid catalysis is present in the limiting cases. For each base, a plot of $k_{\text {obsd }} /[\mathrm{B}]_{\mathrm{t}}$ vs. $f r_{\mathrm{B}}$ obtained for different pH values was drawn using the $k_{\text {obsd }}$ values at $0.01 \mathrm{M}[\mathrm{B}]_{\mathrm{t}}$. That value was chosen because it was assumed that at low base concentrations the value of $k_{\text {obsd }}$ lies on or near to the initial slope. Cne of these plots is shown in Figure 3. All plots were linear and had either 0 or small negative intercepts, indicating that the initial slope indeed reflects general-base- and not general-acid-catalyzed processes; the presence of general-acid-catalyzed processes would require positive intercepts in the graphs. Since only general-base catalysis was observed, the equation of the initial line (Figure 1, eq 4) would have the form of eq 6 , and any proposed mechanism for the reactions of 1-4 must have a steady-state equation which reduces to eq 6 at very low base concentrations. Similar plots were not made for final slopes because the values of $k_{\text {obsd }}$ ob*ained at the highest $[\mathrm{B}]_{\mathrm{t}}$ used (1.0 M) were not on the final slope.

$$
\begin{equation*}
k_{\text {obsd }}(\text { initial })=k_{1} f r_{\mathrm{B}}[\mathrm{~B}]_{\mathrm{t}} \tag{6}
\end{equation*}
$$

For hydroxide ion catalysis of elimination, a plot of $k_{\text {obsd }}$ vs. a_{OH} for reactions of 4-phenoxy-2-oxobutanoic acid (1) was linear over the limited range of hydroxide activities over which the reaction rates could be monitored (Figure 4). The small intercept in the plot is statistically insignificant. The sec-ond-order rate constant for hydroxide ion catalysis was obtained from the slope of the line and is provided in Table II together with those constants for the reactions of 2-4 with one hydroxide ion concentration. Hydroxide ion catalysis was not an important contribution to the elimination reactions of 1-4 in catalytic amine buffer solutions. Values of $k_{\text {obsd }}-k_{\mathrm{OH}}{ }^{a} \mathrm{OH}$ $\simeq k_{\text {obsd }}$ for reactions in amine buffer solutiors, except for values of $k_{\text {obsd }}$ obtained for the lowest base concentration, 0.01 M , at the highest pH of a set; in these cases, the value of $k_{\mathrm{OH}} a_{\mathrm{OH}}$ was approximately 15% of $k_{\text {obsd }}$. Also, a computer fit of the data to eq 4 , with the $k_{\mathrm{OH}} a_{\mathrm{OH}}$ term appended, invariably gave values of this latter term which were negligible in comparison with the values of the other parameters. Hy-

Figure 4. Plot of the pseudo-first-order rate constant, $k_{\text {obsd }}$, vs. the hydroxide activity, $K_{\mathrm{w}} / a_{\mathrm{H}}$, for reactions of 4 -phenoxy-2-oxobutanoic acid (1) with hydroxide ion.

Table II. Rate Data for Hydroxide Ion Catalyzed Elimination Reactions of 1-4

Compd	$a_{\text {OH }} \times 10^{3}$	$\begin{aligned} & k_{\text {obsd }}, \\ & \min ^{-1} \end{aligned}$	$\underset{\mathrm{min}^{-1}}{k_{\mathrm{OH}}, \mathrm{M}^{-1}}$	No. of runs
1 (H)	4.68-51.3	4.6-41.2	934	7
$2\left(\mathrm{CH}_{3}\right)$	4.37	3.72 ± 0.41	851	4
$3\left(\mathrm{CH}_{3} \mathrm{O}\right)$	4.37	4.12 ± 0.21	945	6
4 (Cl)	4.37	4.28 ± 0.35	980	5

droxide ion catalysis was therefore ignored in the data when amine catalysts were used, and any error in this approximation is slight and does not affect mechanistic conclusions.

Rate constants for elimination reactions of 4-(p-anisoxy)2 -oxobutanoic acid (3) in dimethylaminoethanol buffers were obtained at five pH values. At pH values below the $\mathrm{p} K_{\mathrm{a}}(9.45)$, plots of $k_{\text {ohsd }}$ vs. $[\mathrm{B}]_{\mathfrak{t}}$ were typically biphasic with a positive final slope. However, when pH exceeded $\mathrm{p} K_{\mathrm{a}}$, the final slopes of the plots were $\simeq 0$, as determined by computer fit of the data to the NLIN program, and the data therefore fit eq 2 . At the two higher pH values, the Eadie-Hofstee type plots were found to be linear (Figure 5), as required by the fit of the data to eq 2.

Rate constants were obtained for reactions of 4-(p-chloro-phenoxy)-2-oxobutanoic acid (4) with morpholine in $\mathrm{D}_{2} \mathrm{O}$ at pD 9.01 . The reactions generally gave good linear pseudo-first-order plots at very low concentrations of amine ($0.01-0.02$ M), but at higher amine concentrations the initial slope changed to a smaller final slope (plots not shown). Similar biphasic plots have been observed with other elimination reactions when $\mathrm{D}_{2} \mathrm{O}$ is the solvent. ${ }^{4,6}$ The curved plots can be explained by assuming rapid, reversible formation of a carbanion intermediate, followed by slower decomposition of the intermediate to products. For such a reaction, α-hydrogen exchange would be faster than elimination, so that at the beginning of the reaction only α, α-diprotio substrate is present, but as the reaction proceeds the concentration of the α-deuterio substrate builds until, toward the end of the reaction, only α, α-dideuterio substrate is the reactant. The curvature in the first-order plot is the result of faster elimination from the more acidic α, α-diprotio substrate than from the α, α dideuterio substrate in $\mathrm{D}_{2} \mathrm{O}$; the rate of product formation thus decreases as the reaction progresses. At low concentrations of general base, as stated above, $k_{\text {obsd }}=k_{1} f r_{\mathrm{B}}[\mathrm{B}]_{\mathrm{t}}$ and carbanion formation is rate determining (Scheme I), so that

Figure 5. Eadie-Hofstee type plot of the pseudo-first-order rate constant, $k_{\text {obsd }}$, vs. $k_{\text {obsd }} /[\text { dimethylaminoethanol }]_{\text {total }}$ for reactions of 4-p-anisoxy-2-oxobutanoic acid (3) with that amine at pH 9.76 .

Table III. Deuterium Solvent Kinetic Isotope Effects for Reactions of 4 with Morpholine ${ }^{\boldsymbol{a}}$

Reactions of e with Morpholne			
	$k_{\text {obsd, }}$, $\min ^{-1}$ $\left(\mathrm{D}_{2} \mathrm{O}\right)$	$k_{\text {obsd, }}$ $\min ^{-1}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)^{b}$	$k_{\text {obsd }}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) / k_{\text {obsd }}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$
0.08	0.655	0.429	1.53
0.1	0.743	0.514	1.45
0.2	1.12	0.866	1.30
0.3	1.32	1.15	1.15
0.4	1.90	1.41	1.35
0.5	2.92	1.64	1.78
0.6	3.30	1.87	1.77
0.7	5.40	2.08	2.60
0.8	6.23	2.29	2.72
0.9	6.32	2.50	2.53
1.0	6.36	2.70	2.35

${ }^{a} \mathrm{pD} 9.01$ was obtained by adding 0.4 to the pH meter reading at $30^{\circ} \mathrm{C} .{ }^{b}$ Calculated for morpholine-catalyzed reactions at pH 8.46 .
in this case α-hydrogen exchange would not be observed and first-order plots would be linear, as was observed. The shapes of the pseudo-first-order plots offered strong qualitative evidence for the formation of a carbanion intermediate and for an E 1 cB mechanism. Quantitative data that was obtained was also in agreement with an E 1 cB mechanism. The $k_{\text {obsd }}$ value obtained at $[\mathrm{B}]_{\mathrm{t}}=0.01 \mathrm{M}$ was $0.0677 \mathrm{~min}^{-1}\left(f r_{\mathrm{B}}[\mathrm{B}]_{\mathrm{t}}=0.00409\right.$ M). ${ }^{31}$ The $k_{\text {obsd }}$ value calculated from the data of Table I for the reaction of 4 with morpholine in water was $0.0652 \mathrm{~min}^{-1}$ $\left(f r_{\mathrm{B}}[\mathrm{B}]_{\mathrm{t}}=0.00409 \mathrm{M}\right)$. At this low $[\mathrm{B}]_{\mathrm{t}}$ value, the deuterium solvent isotope effect reflects α-proton abstraction and $k\left(\mathrm{D}_{2} \mathrm{O}\right) / k\left(\mathrm{H}_{2} \mathrm{O}\right)=1.04$, close to the value of 1.07 found by More O'Farrell and Slae ${ }^{4}$ for α-proton abstraction in the elimination of methanol from 9 -fluorenylmethanol.
When the pseudo-first-order plots were curved, at high $[B]_{t}$, the final limiting slopes of the plots were taken to represent the elimination from α, α-dideuterio substrate in $\mathrm{D}_{2} \mathrm{O}$. The rate constants were estimated by graphical determination of the limiting straight lines at long periods of time from plots of $\ln \left(\mathrm{OD}_{\infty}-\mathrm{OD}_{t}\right)$ vs. time. The deuterium solvent isotope effect was calculated using the calculated $k_{\text {obsd }}$ values for elimination from α, α-diprotio- 4 in $\mathrm{H}_{2} \mathrm{O}$ at pH 8.46 using morpholine as the base (same concentration of the base form of morpholine for each rate constant comparison), so that the estimated isotope effect represents the ratio of elimination of α, α-dideuterio- 4 in $\mathrm{D}_{2} \mathrm{O}$ to α, α-diprotio- 4 in $\mathrm{H}_{2} \mathrm{O}$. The

Table IV. Rate Constants and Rate Constant Ratios for Reactions of 1-4 with Amines According to Equation 7^{a}

Compd	Amine	$k_{1}, \mathrm{M}^{-1} \min ^{-1}$	$k_{2} / k_{3}, \mathrm{M}^{-1}$	$k_{3} \mathrm{H} / k_{3}, \mathrm{M}^{-1}$
$\mathbf{1}(\mathrm{H})$	Morpholine	15.9	13.8	1.30
$\mathbf{2}\left(\mathrm{CH}_{3}\right)$	Morpholine	16.2	21.1	1.78
$\mathbf{3}\left(\mathrm{CH}_{3} \mathbf{O}\right)$	Morpholine	12.5	8.47	0.489
$\mathbf{4}(\mathrm{Cl})$	Morpholine	16.5	6.25	2.34
$\mathbf{1}(\mathrm{H})$	Imidazole	0.482	12.6	0.945
$\mathbf{3}\left(\mathrm{CH}_{3} \mathbf{O}\right)$	Imidazole	0.301	8.72	0.608
$\mathbf{1}\left(\mathrm{H}^{2}\right)$	Diethanolamine	9.79	10.3	3.43
$\mathbf{3}\left(\mathrm{CH}_{3} \mathbf{O}\right)$	Dimethylaminoethanol	62.9	7.17	0.548

${ }^{a}$ Average of five values, except for the reactions of 3 with imidazole (1 value) and with dimethylaminoethanol (5 values of k_{1} and 3 values of k_{2} / k_{3} and $k_{3}{ }^{\mathrm{A}} / k_{3}$) ($\mathrm{pH} 8.8,9.12$, and 9.38).

Scheme II

$$
1-4 \frac{k_{1}, \mathrm{~B}}{k_{2}, \mathrm{BH}}(1-4)^{-}-\frac{k_{3}, k_{3} \mathrm{~A}, \mathrm{BH}}{} \text { products }
$$

isotope effects obtained in this manner are approximate since there is no way of telling if the limiting condition of complete exchange was ever reached. These data are listed in Table III. The data show that at most concentrations of morpholine the solvent isotope effect was approximately 1.4-1.7, although the values were higher at higher $[B]_{\mathrm{t}}$. Taken as a group, these isotope effects are closer to those reported for E1cB mechanisms than for concerted E2 processes; E1cB-type elimination of methanol from β-methoxy ketones from β-phenoxyethyldimethylsulfonium iodide gave solvent isotope effect values of 1.15-1.32 and $1.52,{ }^{33}$ respectively, and E2-type elimination should give a solvent isotope effect of less than $0.5 .{ }^{1,4,32}$

Discussion

The kinetics results obtained for the general-base-catalyzed elimination of para-substituted phenols from 1-4 indicate the operation of a E1cB mechanism. The curvilinear $k_{\text {obsd }}$ vs. $[\mathrm{B}]_{\mathrm{t}}$ plots (Figure 1) are strong evidence for an intermediate in this reaction, and the carbanionic nature of that intermediate is supported by the deuterium solvent isotope data. The curvilinear plots for the reactions of 4 with morpholine in $\mathrm{D}_{2} \mathrm{O}$ strongly indicate that α-hydrogen exchange is faster than elimination at high base concentrations, and the magnitude of the isotope effects is consistent with an E1cB mechanism. A possible mechanism for this reaction is outlined in Scheme II, which is a variant of the simple E1cB mechanism of Scheme I.

In order to accommodate the final nonzero slope (Figure 1, Table I), a general-acid-catalyzed pathway for carbanion decomposition is postulated to occur simultaneously with the uncatalyzed pathway to products. The steady-state equation for Scheme II is eq 7. At the limits of low and high amine concentration, the equation reduces to two linear equations, eq 6 at low amine concentrations and eq 8 at high amine concentrations. The constant k_{1} and the rate constant ratios k_{2} / k_{3} and $k_{3} \mathrm{~A} / k_{3}$ were calculated from eq 6,7 and 8 and the data of Table I and are provided in Table IV. Hammett ρ^{\prime} values, obtained for the reactions of $1-4$ with morpholine, may be computed from these data, and we have used ρ^{\prime} as a guide to the reaction mechanism. ${ }^{34}$

$$
\begin{align*}
& k_{\text {obsd }}=\left(k_{1}[\mathrm{~B}]+\left(k_{1} k_{3} \mathrm{~A} / k_{3}\right)[\mathrm{B}][\mathrm{BH}]\right) / \\
& \left.\quad\left(k_{2} / k_{3}+k_{3} \mathrm{~A} / k_{3}\right)[\mathrm{BH}]+1\right) \tag{7}\\
& k_{\text {obsd }}(\text { final })=\left(k_{1} k_{3} \mathrm{~A} /\left(k_{2}+k_{3} \mathrm{~A}\right)[\mathrm{B}]\right. \\
& \left.\quad+\left(k_{1} k_{3} K_{\mathrm{a}} /\left(k_{2}+k_{3} \mathrm{~A}\right) K_{\mathrm{w}}\right) a_{\mathrm{OH}}\right) \tag{8}
\end{align*}
$$

The dependence of k_{1} and k_{2} / k_{3} on electronic effects $o^{=}$para substituents in 1-4 is also consistent with the E1cB mechanism of Scheme II. The rate constant k_{1} is quite insensitive to electronic effects of para substituents ($\rho^{\prime} 0.085$), as anticipated for carbanion formation at a site remote from the sub-
stituents. As for k_{2} / k_{3}; it would be anticipated that the ratio would decrease with increasing σ^{\prime} value; the rate of protonation of carbanions ($1-4)^{-}$to re-form $1-4$ should decrease slightly while k_{3} should increase appreciably with an increase in σ^{\prime}. Indeed, the predicted decrease in k_{2} / k_{3} was observed (ρ^{\prime} -0.8). The mechanism of Scheme II also features general acid catalysis for the breakdown of carbanion to products, as was proposed for the dehydration of 9 -hydroxy-10-methyl-2-cisdecalone. ${ }^{6}$ However, such catalysis should be much less important for $1-4$ than for the 2 -decalone because phenolsphenoxide ions are much better leaving groups than waterhydroxide ions. For elimination from 4-(para-substituted-phenoxy)-2-butanones, ${ }^{5}$ there is no evidence to support the existence of a general acid pathway from carbanions to products, and based on the concept ${ }^{35}$ that general acid-base catalysis will eccur where most needed and in a manner such that unstable species are not produced, general acid catalysis for the breakdown of 1-4 carbanions would not be expected. Also, experimental evidence disfavors this feature of mechanism. The ratio $k_{3} \mathrm{~A} / k_{3}$ (Table IV) should decrease with an increase in the electron-withdrawing power of para substituents. However, the ratio increases ($\rho^{\prime} 0.5$). These considerations suggest that an alternative mechanism for the reactions of 1-4 would be more appropriate.

Scheme III (not shown) is Scheme I with an additional pathway from 1-4 to products, which is a concerted general-base-catalyzed pathway ($k_{4}[\mathrm{~B}]$). Scheme III gives a steadystate equation which has the same form as eq 4 , namely eq 9 . The scheme involves the simultaneous occurrence of E1cBand E2-type reactions as proposed by More O'Farrell ${ }^{36}$ for the elimination of methanol from 9 -fluorenylmethanol. On theoretical grounds and on the basis of the deuterium solvent isotope effect results, we disfavor the mechanism of Scheme III. As Jencks ${ }^{37}$ has pointed out, the primary reason for a concerted mechanism such as an E2 mechanism lies in the avoidance of highly unstable intermediates that would be required for a stepwise mechanism. If such an unstable intermediate were present in the elimination of $1-4$ it would be much more likely to decompose than to exchange an α-hydrogen for deuterium. The results of this study indicate that exchange can be faster than elimination. Also, we call attention to the result that at pH 9.76 and 10.02 elimination from 2 catalyzed by dimethylaminoethanol can be adequately described by the mechanism of Scheme I. This is equivalent to saying that there is a loss of the E2 pathway as the pH is raised within the same buffer series, and there is no reason why this should happen. However, to the extent that the experimental result may be artifactual (vide infra), this argument against Scheme III is less compelling.

$$
\begin{align*}
k_{\text {obsd }}=\left(\left(k_{1}+\right.\right. & \left.k_{4}\right)[\mathrm{B}] \\
& \left.+\left(k_{2} k_{4} / k_{3}\right)[\mathrm{B}][\mathrm{BH}]\right) /\left(\left(k_{2} / k_{3}\right)[\mathrm{BH}]+1\right) \tag{9}
\end{align*}
$$

An alternative mechanism which we favor is that of Scheme IV which features a rapid equilibrium between carbanions and

Table V. Calculated Rate Constants for the Mechanism of Scheme IV

Compd	$\mathrm{p} K_{\mathrm{SH}}$	$k_{2}, \mathrm{M}^{-1} \mathrm{~min}^{-1}$	$k_{3}, \mathrm{~min}^{-1}$	$k_{4} / K_{\mathrm{en}}, \mathrm{min}^{-1}$	σ^{\prime}
$\mathbf{1}(\mathrm{H})$	13.20	6.11×10^{5}	4.42×10^{4}	2.39×10^{13}	0
$\mathbf{2}\left(\mathrm{CH}_{3}\right)$	13.21	6.30×10^{5}	2.98×10^{4}	2.21×10^{13}	-0.16
$\mathbf{3}\left(\mathrm{CH}_{3} \mathrm{O}\right)$	13.25	5.37×10^{5}	6.34×10^{4}	1.29×10^{13}	-0.23
$\mathbf{4}(\mathrm{Cl})$	13.09	4.93×10^{5}	7.88×10^{4}	7.68×10^{13}	0.6

Scheme IV

enols, as postulated by Hupe et al. ${ }^{6}$ for the dehydration of 9-hydroxy-10-methyl-2-cis-decalone; spontaneous decomposition of carbanions and general-base-catalyzed decomposition of enols gives products. The steady-state equation for Scheme IV is given by eq 10. In eq 10, the initial slope is still k_{1} (Table IV), the ratio k_{2} / k_{3} is the same as that calculated from eq 9 of Scheme III (Table IV), and the ratio $k_{4} K_{\mathrm{a}} / K_{\text {en }}$ is mathematically equivalent to the rate constant $k_{3}{ }^{\mathrm{A}}$ of Scheme III. However, in contrast to the predicted dependence of the ratio $k_{3} \mathrm{~A} / k_{3}$ in Scheme III on the Hammett σ^{\prime} values, the ratio $k_{4} K_{\mathrm{a}} / k_{3} K_{\text {en }}$ of Scheme IV should increase with an increase in the electron-withdrawing properties of para substituents, as is the case. We computed ρ^{\prime} values for k_{2}, k_{3}, and $k_{4} / K_{\text {en }}$ based on the calculated values of these constants. Although the computed values are likely incorrect because they are based on the ionization constants (K_{SH}) of 1-4, which must be estimated, their relative values are likely correct since they are based on experimental values, and the ρ^{\prime} values should be correct as well. From the relationship k_{1} / k_{2} $=K_{\mathrm{SH}} / K_{\mathrm{a}},{ }^{6}$ the assumption that $K_{\mathrm{SH}}(1-4) / K_{\mathrm{SH}}$ (4-aryloxy2 -butanones) $=K_{\mathrm{SH}}($ pyruvic acid $) / K_{\mathrm{SH}}($ acetone $)=$ $k_{\text {enolization }}$ (pyruvic acid) $/ k_{\text {enolization }}$ (acetone), and the data of Table IV, the necessary constants may be calculated. Schellenberger and Hubner ${ }^{38}$ have measured the ratio of rate constants for the general-base-catalyzed enolization of pyruvate and acetone; its value is 17.5 . The values of K_{SH} for $1-4$ were therefore assumed to be 17.5 times greater than those estimated for 4 -aryloxy-2-butanones. ${ }^{6}$ Table V gives the values of the constants from which $\rho^{\prime}\left(k_{2}\right)=-0.09, \rho^{\prime}\left(k_{3}\right)=0.3$, and $\rho^{\prime}\left(k_{4} / K_{\text {en }}\right)=0.8$ may be computed.

Although the correlation coefficients of the regressions are not very good ($r=0.62-0.98$), the resultant ρ^{\prime} appear to be reasonable for the mechanism of Scheme IV. We assume that $\rho^{\prime}\left(k_{4} / K_{\text {en }}\right)$ essentially reflects electronic effects on the k_{4} step. An interesting aspect of this exercise is the result that elimination from enols via k_{4} is more sensitive to electronic effects than is elimination from enolates via k_{3}. This would be true if the extent of $\mathrm{C}-\mathrm{O}$ bond breaking in the transition state for elimination from enols was greater than that for elimination from enolates. Noting that 1-4 exist as carboxylate anions in morpholine buffer solutions, we believe that the enolate dianion would be a high-energy intermediate, and elimination from it would involve an early transition state. On the other hand, the enol could be well stabilized via ion-reinforced hydrogen bonding, and elimination from it could well involve a later transition state. Here it is well to point out that elimination from enols of 4-aryloxy-2-butanones appears not to be kinetically important, which may reflect the lessened stability of these enols relative to those of $1-4$. Also, $\rho^{\prime}\left(k_{3}\right)$ for 4 -aryl-oxy-2-butanones should be greater than $\rho^{\prime}\left(k_{3}\right)$ for $1-4$, and this is the case.

$$
\left.\left.\begin{array}{r}
k_{\text {obsd }}=\left(k_{1}[\mathrm{~B}]+\left(k_{1} k_{4} K_{\mathrm{a}} / k_{3} K_{\text {en }}\right)[\mathrm{B}][\mathrm{BH}]\right) /\left(\left(k_{2} / k_{3}\right.\right. \\
+ \tag{10}
\end{array} k_{4} K_{\mathrm{a}} / k_{3} K_{\text {en }}\right)[\mathrm{BH}]+1\right)+1
$$

Further support for the mechanism of Scheme IV may be found in a literature analogy for general base catalysis of proton transfer from enol OH . Hegarty and Jencks ${ }^{39}$ recently examined the product term, k_{AB} [acid][base], for the enolization of acetone, and they concluded that the most likely involvement of the acid-base pair is in concerted proton transfer. The reverse ketonization reaction then involves concerted proton transfer from enol OH to a general base and from general acid to an enolic carbon. If this conclusion is correct, then postulated enols of this study could well employ general base catalysis of proton transfer from enol OH and achieve a stable configuration (products) by transferring electrons to the leaving aryloxide ion rather than to a general acid. On theoretical grounds, the incursion of general base catalysis in the k_{4} step could be predictable on the basis that conversion of the enol to products involves a $\mathrm{p} K$ change of greater than 15 , with formation of the unstable keto-protonated 2 -oxobutenoic acid; proton transfer during elimination would avoid formation of this unstable product. ${ }^{37,40}$
For reactions of 3 in dimethylaminoethanol, the change in the limiting slope at high amine concentrations to approximately 0 (Table I) at pH 9.76 and 10.02 remains questionable; in terms of the mechanism of Scheme IV, it is as if the k_{4} step has diminished to the point of undetectibility. We attempted to address the question by examining the consistency of the data by computing various rate constants or rate constant ratios of equation 10 using that equation, eq 4 , and the data of Table I . For the five pH values, $k_{1}=62.9 \pm 5.1 \mathrm{M}^{-1} \mathrm{~min}^{-1}$. For $\mathrm{pH} 8.81,9.12$, and $9.38, k_{2} / k_{3}=6.64,7.39$, and $7.78 \mathrm{M}^{-1}$, and the value of $k_{4} K_{\mathrm{a}} / k_{3} K_{\text {en }}$ is $\sim 7 \%$ of the term ($k_{2} / k_{3}+$ $\left.k_{4} K_{\mathrm{a}} / k_{3} K_{\text {en }}\right)$. If the k_{4}-containing term is ignored and k_{2} / k_{3} is calculated for pH 9.76 and 10.02 , the values are 7.66 and 9.13 \mathbf{M}^{-1}, not significantly different from those values obtained for lower pH 's. All five values of the set give $k_{2} / k_{3}=7.68 \pm$ $0.97 \mathrm{M}^{-1}$. The k_{1} and k_{2} / k_{3} values may be compared with those of 4 -anisyloxy-2-butanone, which are $5.49 \mathrm{M}^{-1} \mathrm{~min}^{-1}$ and $7.8 \mathrm{M}^{-1} \mathrm{~min}^{-1}$, respectively. ${ }^{6}$ The data thus seem to be consistent, and we may conclude that the apparent loss of the k_{4} term is the result of general-base-catalyzed conversion of enol to products becoming noncompetitive with spontaneous conversion of enolate to product as pH is raised. At high concentrations of dimethylaminoethanol buffer ($\sim 1 \mathrm{M}$), the $q[\mathrm{~B}]_{\mathrm{t}}{ }^{2}$ term constitutes $\sim 30(\mathrm{pH} 8.81)$ to 10% (pH 10.02) of the numerator term of eq 4 ; the $k_{4} K_{\mathrm{a}} / k_{3} K_{\text {en }}$ part of the $r[\mathrm{~B}]_{\mathrm{t}}$ term remains at $\sim 7 \%$ of this denominator term over the pH range of the experiments. Arithmetically, the k_{4}-containing terms become increasingly difficult to detect as pH increases.

It appears to us that, of the three possible schemes presented, Scheme IV is the most reasonable on experimental and theoretical grounds. For the mechanism of Scheme IV, the general-acid-catalyzed formation of enol directly from 1 to 4 might be expected, since this is a known reaction. ${ }^{35}$ However, the plots of $k_{\text {obsd }} /[\mathrm{B}]_{\mathrm{t}}$ vs. $f r_{\mathrm{B}}$ (Figure 3) imply that the formation of an intermediate (s) is not general acid catalyzed to any great extent. In this regard, previous studies of the enolization of α-keto acids have shown that enolization is predominantly general base catalyzed; both Schellenberger and Hübner ${ }^{38}$ and Hegazi and Meany ${ }^{41}$ found that enolization of pyruvic acid is not acid catalyzed to any great extent. Analogously, general acid catalysis for enolization of 1-4 would not necessarily be expected, and the mechanism of Scheme IV

remains reasonable. ${ }^{45}$

Finally it is interesting to speculate on the reason why 1-4 undergo elimination by a mechanism that is more complex than the mechanism of elimination of 4-aryloxy-2-butanones (Scheme I). ${ }^{6,43}$ It might be reasonable for 1-4 to undergo elimination via an enol intermediate, while the corresponding ketones would not undergo such an elimination if the enol form of 1-4 would be more stable relative to the keto form than would the enol form of 4 -aryloxy-2-butanones. A more stable tautomer would mean that it would be more energetically favorable for enolate anions to react to form enol rather than collapse back to keto tautomers in the initial steps before product is formed. A quantitative measure of the relative stabilities of the various tautomers is the keto-enol tautomerism equilibrium constant. The constants have not been measured for $1-4$ or for the corresponding 4 -aryloxy-2-butanones, but equilibrium constants for analogous compounds can give some insight into the stability of the enols. The equilibrium constant for enolization of acetone, calculated from the data of Schwarzenbach and Wittwer, ${ }^{42}$ is 2.5×10^{-6}. From the data of Schellenberger and Hübner, ${ }^{38}$ the equilibrium constant for enolization of 2 -oxobutanoic acid is $6.6 \times$ 10^{-3}. The 10^{3} difference in equilibrium constants is a significant indicator that formation of enol from enolate would be more likely for 1-4 than for 4-aryloxy-2-butanones.

Acknowledgment. We wish to thank Mr. William Hendricks for his assistance in obtaining the primary kinetic data. This work was supported in part by a grant from the U.S. Public Health Service.

Registry No.-Benzyl diethoxyacetate, 64114-01-8; diethoxyacetic acid, 20461-86-3; benzyl chloride, 100-44-7; 2-carbobenzoxy-1,3-dithiane, 64114-00-7; 1,3-propanedithiol, 109-80-8; p-bromophenetole, 589-10-6; p-methyl- β-bromophenetole, 18800-34-5; p-methoxy- β bromophenetole, 22921-76-2; p-chloro- β-bromophenetole, 2033-76-3; 2-(β-phenoxy)ethyl-2-carbobenzoxy-1,3-dithiane, 64113-99-1; 2(β-p-cresoxy)ethyl-2-carbobenzoxy-1,3-dithiane, 64113-98-3 2-(β -p-anisoxy)ethyl-2-carbobenzoxy-1,3-dithiane, 64113-97-9; 2-($\beta-p$ -chlorophenoxy)ethyl-2-carbobenzoxy-1,3-dithiane, 64113-95-7, benzyl 4-phenoxy-2-oxo-butanoate, 64113-96-8; benzyl 4-(p-cresoxy)-2oxobutanoate, 64113-94-6; benzyl 4-(p-anisoxy)-2-oxobutanoate, 64113-93-5; benzyl 4-(p-chlorophenoxy)-2-oxobutanoate, 64113-92-4.

References and Notes

(1) W. H. Saunders and A. F. Cockerill, "Elimination Reactions', Wiley-Interscience New York, N.Y., 1973.
(2) L. R. Fedor, J. Am. Chem. Soc., 91, 913 (1969).
(3) R. C. Cavestri and L. R. Fedor, J. Am. Chem. Soc., 92, 4610 (1¢70).
(4) R. A. More O'Farrell and S. Slae, J. Chem. Soc. B, 260 (1970).
(5) L. R. Fedor and W. R. Glave, J. Am. Chem. Soc., 93, 985 (1971:
(6) D. J. Hupe, M. C. R. Kendall, G. T. Sinner, and T. A. Spencer, J. Am. Chem Soc., 95, 2260 (1973).
(7) H. P. Meloche and J. P. Glusker, Science, 181, 350 (1973).
(8) B. F. Tack, P. J. Chapman, and S. Dagley, J. Biol. Chem., 246, 6444 (1972).
(9) H. Nishihara and E. E. Dekker, J. Biol. Chem., 247, 5079 (1972)
(10) G. W. Kosicki and F. W. Westheimer, Biochemistry, 7, 4303 (1968).
(11) D. Portsmouth. A. C. Stoolmiller, and R. H. Abeles, J. Biol. Chem., 247, 2751 (1972).
(12) R. Jeffcoat, H. Hassall, and S. Dagley, Biochem. J., 977 (1968).
(13) K. Bloch, Enzymes, 3rd Ed., 5, 441 (1971).
(14) R. R. Rando, Science, 185, 320 (1974).
(15) R. R. Rando, Biochem. Pharmacol., 24, 1153 (1975).
(16) R. H. Abeles and A. L. Maycock, Acc. Chem. Res., 9, 313 (197E).
(17) K. Samochoka and J. Kowalczyk, Radiochem. Radioanal. Lett., 4, 131 (1970).
(18) L. Lang, Ed., "Absorption Spectra in the Ultraviolet and Visible Fegion"' Vol. 2, Academic Press, New York, N.Y., 1961, p 144.
(19) R. B. Moffett, "Organic Synthesis'", Collect. Vol. IV, Wiley, New York, N.Y., 1963, p 427.
(20) E J. Eliel and A. A. Hartman, J. Org. Chem., 37, 505 (1972).
(21) R. Adams and A. F. Thal, "Organic Synthesis"', Collect. Vol. I. Wilyy, New

York, N.Y., 1956, p 436.
(22) E. J. Corey and B. W. Erickson, J. Org. Chem., 36, 3553 (1971).
(23) For a listing of pseudo-first-order rate constants see J. M. Hilbert, Ph.D. Thesis, State University of New York at Buffalo, 1976.
(24) E. S. Hand and W. P. Jencks, J. Am. Chem. Soc., 84, 3505 (1962).
(25) W. P. Jencks and M. Gilchrist, J. Am. Chem. Soc., 86, 5616 (1964).
(26) T. C. Bruice and L. R. Fedor, J. Am. Chem. Soc., 86, 4886 (1964)
(27) W. P. Jencks and K. Salversen, J. Am. Chem. Soc., 93, 1419 (1971).
(28) R. Hirschfield and G. L. Schmir, J. Am. Chem. Soc., 95, 8032 (1973).
(29) R. M. Pollack and T. C. Dumsha, J. Am. Chem. Soc., 97, 377 (1975).
(30) The Eadie-Hofstee equation was used in preference to the more commonly used Lineweaver-Burke equation because the Eadie-Hofstee plot was found to give a better statisticai weighting of the points; J. E. Dowd and D S. Riggs, J. Biol. Chem., 240, 863 (1965).
(31) The $\mathrm{pK}\left(\mathrm{D}_{2} \mathrm{O}\right)$ of morpholine, determined by the method of fractional neutralization, is $9.17\left(30^{\circ} \mathrm{C}\right)$ and the $\mathrm{pK}\left(\mathrm{H}_{2} \mathrm{O}\right)$ of morpholine is 8.62 .
(32) L. R. Fedor, J. Am. Chem. Soc., 89, 908 (1967).
(33) J. Crosby and C. J. M. Stirling, J. Chem. Soc. B, 679 (1970).
(34) σ^{\prime} values were computed from the ionization constants of para-substituted phenols and were used to obtain ρ^{\prime} values; A. Albert and E. P. Seargent. "Ionization Constants of Acids and Bases"', Wiley, New York, N.Y., 1962, p 130.
(35) W. P. Jencks, "Catalysis in Chemistry and Enzymology", McGraw-Hill, New York, N.Y., 1969, Chapter 3.
(36) R. A. More D'Farrell, J. Chem. Soc. B, 274 (1970).
(37) W. P. Jencks, Chem. Rev., 72, 705 (1972).
(38) A. Schellenberger and G. Hübner, Chem. Ber., 98, 1938 (1965).
(39) A. F. Hegary and W. P. Jencks, J. Am. Chem. Soc., 97, 7188 (1975).
(40) W. P. Jencks, Acc. Chem. Res., 9, 425 (1976).
(41) M. Hegazi and J. E. Meany. J. Phys. Chem., 76, 3121 (1972).
(42) H. G. Schwarzenbach and C. Wittwer, Helv. Chim. Acta, 30, 669 (1947).
(43) In a previous study, where rate saturation kinetics were reported for the elimination reactions of 4-aryloxy-2-butanones in aqueous dimethylaminoethanol (DMAE), amine concentrations generally did not exceed 0.2 M , so that the question of saturation may not have been adequately addressed. In subsequent work (L.F.), saturation kinetics were reexamined in aqueous dimethylaminoethanol ($0.15-3.0 \mathrm{M}, \mathrm{fr}_{\mathrm{B}}=0.67$, ionic strength $1.0 \mathrm{M}(\mathrm{KCI})$), and the follcwing results were obtained ($k_{\text {obsd }}-k_{\text {OH }} \mathrm{a}_{\mathrm{OH}}\left(\mathrm{min}^{-1}\right.$), [DMAE] (M)): $0.346,0.15 ; 0.554,0.3 ; 0.804,0.6 ; 0.965,0.9 ; 1.044,1.2 ; 1.076,1.5$ $1.078,1.8 ; 1.115,2.1 ; 1.078,2.4 ; 1.105,2.7 ; 1.030,3.0$. From these data, $k_{1}\left(\right.$ Scheme I) $=4.7 \mathrm{M}^{-1} \mathrm{~min}^{-1}$ and $k_{2} / k_{3}($ Scheme $I)=5.96 \mathrm{M}^{-1}$, which both compare well with the reported values of $4.44 \pm 0.44 \mathrm{M}^{-1} \mathrm{~min}^{-1}$ and $6.45 \pm 1.97 \mathrm{M}^{-1}$ for reactions of 4-phencxy-2-butanone with dimethylaminoethano
(44) We examined some solvent and salt effects to test if the nonzero final slopes (Figure 1) are due to such effects. For reactions of 4-p-cresoxy-2-oxobutanoic acid (2) in 0.05 M morpholine buffer, pH 8.13 , the $k_{\text {obsd }}$ $\left(\min ^{-1}\right)$ and total salt, morpholine hydrochloride and potassium chloride, concentrations (M) are as follows: $0.130,0.1 ; 0.121,0.2 ; 0.121,0.3 ; 0.127$ $0.5 ; 0.139,0.7 ; 0.127,0.9$. Thus, $k_{\text {obsd }}$ is little affected by changes in KCl concentration in the range $0.1-0.9 \mathrm{M}$. Replacement of KCl with tetramethylammonium chloride (TMAC) slightly decreased $k_{\text {ossd }}$ for elimination in 0.05 M morpholine, $\mathrm{pH} 8.22, \mu 1.0 \mathrm{M}\left(\mathrm{KCI}+\right.$ TMAC). $k_{\text {obsd }}$ [TMAC] are: $0.123,0 ; 0.121,0.1 ; 0.115,0.2 ; 0.109,0.4 ; 0.101,0.6 ; 0.101,0.8$. The use of 1,4-dioxane as a cosolvent had either no effect on $k_{\text {obsd }}$ or else caused a decrease in its value. For reactions of 2 with 0.05 M morpholine in aqueous dioxane, pH 8.16 and $\mu 1 \mathrm{M}(\mathrm{KCl}), k_{\text {obsd }}\left(\min ^{-1}\right)$ and dioxane concentrations (M) are as follows: $0.121,0 ; 0.119,0.1 ; 0.111,0.2 ; 0.103$, $0.4 ; 0.109,0.6 ; 0.130,0.8$. For 0.25 M morpholine, pH 8.16 , the values are as shown: $0.313,0 ; 0.330,0.1 ; 0.280,0.2 ; 0.285,0.3 ; 0.272,0.4$ $0.253,0.5$. For 1 M morpholine, pH 8.90 , the values are the following: 2.22 , $0 ; 1.92,0.2 ; 1.73,0.4 ; 1.64,0.6 ; 1.49,0.8 ; 1.39,1.0$. For 0.2 M morpholine. pH 8.90. the values are as follows: $1.08,0 ; 1.01,0.2 ; 0.979,0.4 ; 0.829$, $0.8 ; 0.748,1.2 ; 0.576,1.6$.
(45) We believe that elimination from 1-4 via imminium ions may play at most a very minor role in the chemistry of this study: (1) No intermediates were detected spectroscopically using 1 in morpholine buffers. (2) Rate constants have values in accord with predictions based on the results of elimination from 4 -(para-substituted-phenoxy)-2-butanones. ${ }^{5}$ (3) The kinetics of elimination of phenol from 1 catalyzed by N-ethylmorpholine are similar to those of this study. Data were not reported for the runs done at two pH values because amine solutions became yellow on standing. (4) The kinetics of elimination from 1 catalyzed by trifluoroethylamine (J.M.H., Ph.D. Thesis) are different from those reported here, and they resemble those reported by Hupe et al. ${ }^{46.47}$ for covalent catalysis of elimination from 9-acetoxy-10-methyl-cis-decal-2-one. (5) The kinetics of elimination from 1 catalyzed by ethanolamine (J.M.H., Ph.D. Thesis) resemble those of 1-4 of this study but the pH dependence of the rate constants is not that predicted by eq 10; e.g., k_{1} has an apparent acidity dependence. In regard to this last point, isomerization of 17-hydroxy-19-nor-17 α-pregn-4-en-20yn - 3 -one to the conjugated steroid is markedly catalyzed by aminoethanol while it is sluggishly transformed by tertiary amine, and the kinetics of the aminoethand reaction resemble those of 1 in aminoethanol buffer solutions (S . Perera and L. Fedor, unpublished results).
(46) D. J. Hupe, M. C. R. Kendall, and T. A. Spencer, J. Am. Chem. Soc., 94, 1254 (1972).
(47) D. J. Hupe, M. C. R. Kendall, and T. A. Spencer, J. Am. Chem. Soc., 95, 2271 (1973).

Linear Free-Energy Relationships in Electrophilic Addition Reactions of Alkenes. Use of Addition of Arenesulfenyl Chloride and Hydration as Mechanistic Models of Bromination ${ }^{1}$

George H. Schmid* and Thomas T. Tidwell
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada

Received April 21, 1977

Abstract

The use of the structure-reactivity profiles of the addition of arenesulfenyl chloride and hydration of alkenes are proposed as models of reactions involving bridged and open-ion-like rate-determining transition states, respectively. Using these reactions as standards, it is possible to obtain information on the structure of the rate-determining transition states of other electrophilic addition reactions. This method is illustrated by applying it to the electrophilic bromination of alkenes.

Linear free-energy relationships have been used frequently in studies of the mechanisms of organic reactions. ${ }^{2}$ For electrophilic addition reactions, Hammett correlations have been the most successful of such relationships. ${ }^{3}$ Use of the Taft correlation for electrophilic additions to alkyl-substituted e-hylenes has been less successful. In general, as the number o° alkenes to be correlated and their structural complexity increases, such correlations become increasingly unsatisfactory. ${ }^{4}$ Attempts to improve the Taft correlation by defining a new substituent steric parameter, $E_{\mathrm{s}}{ }^{*}, 5$ or by introducing multiple parameters ${ }^{6}$ have not been particularly successful. Thus far, linear free-energy relationships have been of limited use in establishing the structure of the rate-determining transition states of electrophilic addition reactions.

The fundamental problem is that there are more variables affecting the structure of the rate-determining transition state of electrophilic additions than in the reactions defining the Taft substituent constants. For example, the transition states of electrophilic additions may vary from those resembling an open ion 1 to those resembling a bridged ion 2. Clearly one set

1

2
of substituent steric and polar parameters is inadequate, since the effects of substitutents in these two transition states are different. Also, the ground and transition states of these reactions may be affected by such variables as intra- and intermolecular steric effects, solvent effects, and electronic effects in ways that differ from those for which the substituent constants are defined.

One soution to this problem is to choose reactions to serve as models of the structure reactivity relationship for the two extreme mechanisms proceeding through transition states 1 and 2. These reactions then become the standards against which the structure-reactivity relationship of other electrophilic addition reactions can be compared. In this way, it should be possible to establish if the rate-determining transition state for a particular reaction more closely resembles structure 1 or 2.

The following reactions have been chosen as models. Pro-

tonation of alkenes in acid-catalyzed hydrations has been established to proceed by an open ion through the entire range of reactivity and is the best example of the first class of reaction. ${ }^{3 a, 7}$ The addition of sulfenyl halides to alkenes is a reaction which proceeds through a bridged transition state for the entire range of reactivity and is the best example of the second category. The mechanism of the hydration reaction is supported by the correlation of rates with structure, solvent isotope effects, acidity dependence, and other kinetic criteria. ${ }^{3 a, 7}$ The mechanism of sulfenyl halide addition is securely based on rate-structure correlations, product stereochemistry, and direct observation of thiiranium ions. ${ }^{7}$

A reaction suitable for study by this method is bromination. This is a reaction which has received an enormous amount of attention. While its mechanism is reasonably well established, there is still some ambiguity regarding its rate-determining transition-state structure.

Results and Discussion

The rate constants of acid-catalyzed hydration ($k_{2}{ }^{\mathrm{H}^{+}}$), bromination in methanol containing $0.2 \mathrm{M} \mathrm{NaBr}\left(K_{\mathrm{g}} \mathrm{Br}_{2}\right)$, and addition of 4 -chlorobenzenesulfenyl chloride in $1,1,2,2$-tetrachloroethane ($k_{2}{ }^{\mathrm{ArSCl}}$) for a group of alkenes of representative structural types are given in Table I. The second-order rates of hydration were obtained by dividing the observed rates extrapolated to $H_{0}=0$ by the acidity function h_{0} for that acidity. ${ }^{3 a-c}$ The second-order rates of bromination are actually a mixture of two terms: the usual second-order term, first order in both alkene and bromine, and a third-order term, first order in alkene, bromine, and bromide ion. Under the experimental conditions, the term involving bromide ion is kinetically unimportant despite its large concentration in solution. ${ }^{8}$ Thus, $k_{\mathrm{g}}{ }^{\mathrm{Br}}$ reflects the effect of alkene structure on the sec-ond-order term.

In Figure $1, \log k_{2} \mathrm{H}^{+}$is plotted against $\log k_{\mathrm{g}}{ }^{\mathrm{Br}}$. While the points can be fitted to a line, the correlation is poor. Rather than defining one line, the points are grouped into two regions. One group of alkenes, which forms tertiary carbonium ions, is found between the values of -3 and -4 for $\log k_{2} \mathrm{H}^{+}$, while the other group, which forms secondary carbonium ions, is found between the values of -6 and -7.6. Even within these groups, there does not appear to be a direct correspondence between reactivity in bromination and reactivity in hydration. Ethylene (3), which has been proposed to form the primary ethyl carbonium ion, ${ }^{3 b}$ falls outside both of these groups. It is thus clear from Figure 1 that there is no similarity in the structure-reactivity profiles of hydration and bromination of alkenes. Therefore, the rate-determining transition states for the bromination of the compounds in Figure 1 do not resemble an open-ion structure throughout the range of reactivity.

Table I. Rates of Hydration, Bromination, and Addition of 4-Chlorobenzenesulfenyl Chloride ${ }^{j}$ to Alkenes at $25^{\circ} \mathbf{C}$

Alkene	Registry no.	Compd no.	$\begin{aligned} & k_{2}{ }^{\mathrm{ArSCl}, a} \\ & \mathrm{M}^{-1} \mathrm{~s}^{-1} \end{aligned}$	$\begin{gathered} k_{\mathrm{g}}^{\mathrm{Br} r_{2}, b} \\ \mathrm{M}^{-1} \mathrm{~s}^{-1} \end{gathered}$	$\begin{gathered} k_{2} \mathrm{H}^{+}, \mathrm{c} \\ \mathrm{M}^{-1} \mathrm{~s}^{-1} \end{gathered}$
$\mathrm{CH}_{2}=\mathrm{CH}_{2}$	74-85-1	3	65	0.505	$0.15 \times 10^{-1 d}$
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$	115-07-1	4	205	30.7	0.238×10^{-8}
$\mathrm{EtCH}=\mathrm{CH}_{2}$	106-98-9	5	248	48.3	
$i-\mathrm{PrCH}=\mathrm{CH}_{2}$	563-45-1	6	140	28.3	
$t-\mathrm{BuCH}=\mathrm{CH}_{2}$	558-37-2	7	95	13.4	
$n-\mathrm{BuCH}=\mathrm{CH}_{2}$	592-41-6	8	133	31.7	0.432×10^{-8}
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$	115-11-7	9	550	2730	0.37×10^{-3}
$(\mathrm{Et})_{2} \mathrm{C}=\mathrm{CH}_{2}$	760-21-4	10	372	4500	
$(t-\mathrm{Bu})_{2} \mathrm{C}=\mathrm{CH}_{2}$	5857-68-1	11	3.17×10^{-2}	12.8	
$\mathrm{Et}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}_{2}$	563-46-2	12	611	4470	0.522×10^{-3}
$i-\operatorname{Pr}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}_{2}$	563-78-0	13	420	1620	
$t-\mathrm{Bu}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}_{2}$	594-56-9	14	147	490	0.20×10^{-3}
(c) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$	590-18-1	15	1340	1310	8.32×10^{-8}
$(t) \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$	624-64-6	16	434	847	3.51×10^{-8}
(c) $\mathrm{EtCH}=\mathrm{CHEt}$	7642-09-3	17	3563	3250	1.78×10^{-7}
(t) $\mathrm{EtCH}=\mathrm{CHEt}$	13269-52-8	18	388	1850	2.11×10^{-7}
(c) $\mathrm{EtCH}=\mathrm{CHCH}_{3}$	627-20-3	19	2690	2100	
$(t) \mathrm{EtCH}=\mathrm{CHCH}_{3}$	646-04-8	20	568	1330	
(c) i - $\mathrm{PrCH}=\mathrm{CHCH}_{3}$	691-38-3	21	2624	773	
$(t) i-\mathrm{PrCH}=\mathrm{CHCH}_{3}$	674-76-0	22	325	600	
(c) t - $\mathrm{BuCH}=\mathrm{CHCH}_{3}$	762-63-0	23	1029	650	
(t) t - $\mathrm{BuCH}=\mathrm{CHCH}_{3}$	690-08-4	24	162	79.5	
(c) $i-\mathrm{PrCH}=\mathrm{CHEt}$	15840-60-5	25	2769	742	
(t) $i-\mathrm{PrCH}=\mathrm{CHEt}$	692-24-0	26	245	555	
(c) $t-\mathrm{BuCH}=\mathrm{CHEt}$	690-92-6	27	1704	998	
$(t) t-\mathrm{BuCH}=\mathrm{CHEt}$	690-93-7	28	121	108	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$	513-35-9	29	3030	66700	2.15×10^{-4}
(Z) $-\mathrm{Et}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CHCH}_{3}$	922-62-3	30	$4835{ }^{\text {e }}$	79200	
(E) $-\mathrm{Et}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CHCH}_{3}$	616-12-6	31	$2284{ }^{\text {e }}$	75700	
$t-\mathrm{BuCH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	107-40-4	32	$1462{ }^{\text {e }}$	13720	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	563-79-1	33	7760	91700	3.42×10^{-4}
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$	100-42-5	34	62	84.8	0.240×10^{-6}
$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}_{2}$	98-83-9	35	265	113	0.133×10^{-3}
$(t) \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{3}$	873-66-5	36	118	170	1.12×10^{-7}
(t) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{5}$	103-30-0	37	8.05	0.545	0.71×10^{-10}
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$	530-48-3	38	20.1	1670	
(c) $\mathrm{PrCH}=\mathrm{CH}_{2}$	693-86-7	39	410^{h}	$>10^{6, g}$	0.254×10^{-3}
Cyclohexene	110-83-8	40	$786{ }^{h}$	$11400{ }^{i}$	0.443×10^{-7}

${ }^{a}$ Values were obtained from ref 4 a and 4 b unless otherwise noted. ${ }^{b}$ Values were obtained from ref 4 c unless otherwise noted. Units changed to s^{-1}. The rate constant k_{g} is a global rate constan: and is equal to $k_{\mathrm{Br}_{2}}+K k_{3 \mathrm{r}_{3}}-[\mathrm{Br}] /\left(1+K\left[\mathrm{Br}^{-}\right]\right)$. ${ }^{c}$ Values were obtained from ref 3a-d unless otherwise noted. ${ }^{d}$ As discussed in ref 3 b , this rate is artificially low due to the method of extrapolation. However, ethylene is at least 10^{4} times less reactive than propene. ${ }^{e}$ C. L. Dean, D. G. Garratt, and G. H. Schmid, unpublished data. f Calculated from $k_{g}\left(1+K\left[\mathrm{Br}^{-}\right]\right)=k_{\mathrm{Br}_{2}}+K k_{\mathrm{Br}_{3}}-\left[\mathrm{Br}^{-}\right]$, E. Bienvenue-Goetz and J. E. Dubois, J. Org. Chem., 40, 221 (1975). g D. G. Garratt, A. Modro, K. Oyama, G. H. Schmid, T. T. Tidwell, and K. Yates, J. Am. Chem. Soc., 96, 5295 (1974). ${ }^{h}$ Reference 11. ${ }^{i}$ J. E. Dubois and P. Fresnet, Tetrahedron Lett., 2195 (1974). ${ }^{j}$ Registry no.: 933-01-7.

In Figure 2, $\log k_{2} \mathrm{ArSCl}$ is plotted against $\log k_{\mathrm{g}}{ }^{\mathrm{Br}}$. Here a reasonable straight line is obtained. Three compounds, cyclopropylethylene (39), 1,1-diphenylethylene (38), and 1,1-di-tert-butylethylene (11), lie far off the line and the latter is off the figure. The latter two compounds are subject to severe steric problems which appear to be especially acute in the addition of 4 -chlorobenzenesulfenyl chloride to 11 . The remaining data can be correlated by eq 1 where $r=0.849$. The dashed line represents this equation in Figure 2. A better correlation, eq 2 , can be obtained by omitting compounds 15 , $17,19,21,23,35$, and 27, all cis alkenes. The solid line in Figure 2 represents this equation where $r=0.935$.

$$
\begin{align*}
& \log \mathrm{k}_{2} \mathrm{ArSCl}=0.412 \log k_{\mathrm{g}}{ }^{\mathrm{Br}}+1.52 \tag{1}\\
& \log k_{2}{ }^{\mathrm{ArSCl}}=0.392 \log k_{\mathrm{g}}{ }^{\mathrm{Br} 2}+1.44 \tag{2}
\end{align*}
$$

However, the object of such plots is not to obtain the best correlation by eliminating part of the data but rather to discern trends in the structure-reactivity profile of all the available data. Indeed, it is the compounds that do not fit such correlations that are often the most interesting and mechanistically informative. Using this approach, the data

Figure 1. Plot of $\log k_{2} \mathrm{H}^{+}$vs. $\log k_{\mathrm{g}}{ }^{\mathrm{Br}}$. The least-square line for all points except no. 39 is $\log k_{2} \mathrm{H}^{+}=1.50 \log k_{g}{ }^{\mathrm{Br} 2}-10.50 ; r=0.789$.
are quite informative as to the significant influences on the reactivity.
The general trend of the data in Figure 2 establishes the similarity in the structure-reactivity profiles of the additions

Figure 2. Plot of $\log k_{2}{ }^{\mathrm{ArSCl}} \mathrm{vs}. k_{\mathrm{g}}{ }^{\mathrm{Br}}$. The dashed line represents eq 1 while the solid line represents eq 2 .
of bromine and arenesulfenyl chloride. This is in accord with a general mechanism involving a bridged rate-determining transition state for both reactions. The effect of substituents is greater on the rate of bromination than on the rate of sulfenyl chloride addition. This has been previously noted for a more limited set of compounds. ${ }^{4 a}$
Deviations from the correlation by compounds, such as cyclopropylethylene, 1,1-diphenylethylene, and 1,1-di-tertbutylethylene, suggest that either they react by a different mechanism or unusual steric or polar factors are present in their rate-determining transition states.

The high rate of bromination of cyclopropylethylene may be explained by a mechanism involving an open-ion-like rate-determining transition state. Consistent with this view is the formation of ring-opened products. ${ }^{9}$ This change in mechanism is due to the great ability of a cyclopropyl group to stabilize an adjacent carbonium ion by resonance electron donation. ${ }^{10}$ Enhancing this effect is the inability of the cyclopropyl ring to stabilize a bridged ion, since its inductive effect is electron withdrawing. Bromination of 1 -cyclopropylpropene and 1,1-dicyclopropylethylene is also too fast to measure. ${ }^{11}$

For 1,1-diphenylethylene, the deviation results from either an enhanced bromination rate or a decreased rate of sulfenyl chloride addition. The mechanism has been proposed to involve an open-ion-like rate-determining transition state ${ }^{12}$ in bromination which would account for its deviation. However, steric retardation cannot be ruled out. Severe steric hindrance between the tert-butyl groups and the electrophile (either bromine or arenesulfenyl chloride), resulting in an abnormally slow rate of addition, appear likely to be responsible for the deviation of 1,1-di-tert-butylethylene from the correlation. ${ }^{1314}$

Correlations such as those in Figure 2 define "normal" structure-reactivity behavior and enable us to recognize "abnormal" behavior. For example, it has been known for many years that the ratio $k_{\text {cis }} / k_{\text {trans }}>1$ for the addition of bromine and arenesulfenyl chlorides to aliphatic isomeric alkenes. However, it is never been possible to establish whether addition to the cis or trans series is abnormal. From Figure 2, it appears that the cis series deviates from the main body of data. This deviation is not due to a change in the mechanism, since all evidence is in accord with a mechanism involving a bridged rate-determining transition state for addition to all these alkenes. The deviations arises from either an abnormal rate of sulfenyl chloride addition or a diminished rate of bromination of the cis alkenes. It does not appear that the bromination rates would be retarded and instead it appears that addition of sulfenyl chloride is favored.
Another example of the mechanistic value of Figure 2 is the case of additions to styrene (34), 2-phenylpropene (35), trans-1-phenylpropene (36), and stilbene (37). It has been claimed that the rate-determining transition state for bromination of these compounds resembles an open 2 -bromocarbonium ion. ${ }^{12}$ If this were the case, serious deviations would be expected as in the case of 1,1-diphenylethylene. The fact that the phenyl-substituted alkenes correlate well with the aliphatic alkenes is strong evidence for a bridged rate-determining transition state. The products which are formed by nonstereospecific addition must result from an open ion formed after the rate-determining step.
The preceding examples illustrate the utility of this method. Correlations such as those in Figures 1 and 2 are based upon the assumption that the mechanisms of the model reactions do not change with changes in alkene structure. This as sumption is justified by the results of extensive studies on hydration and arenesulfenyl chloride additions of alkenes. So far no exceptions to their general mechanisms have been found.

Thus, the use of the structure-reactivity profiles of these two model reactions provides a valuable method of obtaining information of the structure of the rate-determining transition state. It can be used to test other reactions such as oxymercuration ${ }^{16}$ and thallation in which there is some controversy regarding their rate-determining transition-state structure.

Acknowledgment. Continued financial support by the National Research Council of Canada is gratefully acknowledged.

References and Notes

(1) Part 17, Reactions of Sulfenyl Halides and their Derivatives. For Part 16, see G. H. Schmid, A. Modro, D. G. Garratt, and K. Yates, Can. J. Chem., 54, 3045 (1976).
(2) P. R. Wells, 'Linear Free Energy Relationships'", Academic Press, New York, N.Y., 1968
(3) (a) K. Oyama and T. T. Tidwell. J. Am. Chem. Soc., 98, 947 (1976). (b) W. K. Chwang, V. J. Nowian, and T. T. Tidwell, J. Am. Chem. Soc., 99, 7233 (1977). (c) V. J. Nowlan and T. T. Tidwell, Acc. Chem. Res., 10, 252 (1977). (d) G. H. Schmid and V. J. Nowian, Can. J. Chem., 54, 695 (1976). (e) A. F. Hegarty, J. S. Lomas, V. W. Wright, E. D. Bergmann, and J. E. Dubois, J. Org. Chem., 37, 2222 (1972). (f) J. H. Rolston and K. Yates, J. Am. Chem. Soc., 91, 1483 (1969)
(4) (a) G. H. Schmid and D. G. Garratt, Can. J. Chem., 51, 2463 (1973). (b) G. H. Schmid, C. L. Dean, and D. G. Garratt, Can. J. Chem., 54, 1253 (1976) (c) G. Mouvier and J. E. Dubois, Bull. Soc. Chim. Fr., 72, 1441 (1969). (d) M. Charton and B. I. Charton, J. Org. Chem., 38, 1631 (1973).
(5) R. Fellows and R. Luft, J. Am. Chem. Soc., 95, 5593 (1973).
(6) H. J. Bergmann, G. Collin, G. Just, G. Müller-Hagen, and W. Pritzkow, J. Prakt. Chem., 314, 285 (1972).
(7) For reviews of electrophilic addition reactions, see: (a) G. H. Schmid and D. G. Garratt, in "Chemistry of Double Bonded Functional Groups,'" Supplement A, Part 2, S. Patai, Ed., Wiley London, 1977. Chapter 9. (b) F Freeman, Chem. Rev., 75, 439 (1975). (c) R. Bolton, Compr. Chem. Kinet. 9, 1 (1973). (d) P. B. D. de la Mare, "Electrophilic Halogenation", Cambridge University Press, New York, N. Y., 1976.
(8) (a) J. R. Dubois, A. F. Hegarty, and E. D. Bergmann, J. Org. Chem., 37, 2218 (1972). (b) J. E. Dubois and X. Q. Huynh, Bull. Soc. Chim. Fr., 1436 (1968).
(9) D. F. Shellhamer, D. B. McKee, and C. T. Leach, J. Org. Chem., 41, 1972
(1976).
(10) H. C. Brown and J. D. Cleveland, J. Org. Chem., 41, 1792 (1976).
(11) T. T. Tidwell, G. H. Schmid, V. M. Csizmadia, and T. R. Cerksus, Can. J. Chem., in press.
(12) J. E. Dubois, A. F. Hegarty, and E. D. Bergmann, J. Org. Chem., 37, 2218 (1972).
(13) C. L. Dean, D. G. Garratt, T. T. Tidwell, and G. H. Schmid, J. Am. Chem. Soc.,

96, 4958 (1974)
(14) (a) D. Grosjean, G. Mouvier, and J. E. Dubois, J. Org. Chem., 41, 3869 (1976). (b) D. Grosjean, G. Mouvier, and J. E. Dubois, J. Org. Chem., 41, 3872 (1976)
(15) M. F. Rausse and J. E. Dubois, J. Org. Chem., 39, 2441 (1974).
(16) I. C. Ambridge, S. K. Dwight, C. M. Rynard, and T. T. Tidwell, Can. J. Chem., in press.

Onium Ions. 17. ${ }^{\text {ia }}$ Improved Preparation, Carbon-13 Nuclear Magnetic
 Resonance Structural Study, and Nucleophilic Nitrolysis (Nitrative Cleavage) of Diarylhalonium Ions

George A. Olah,* Toru Sakakibara, ${ }^{1 \mathrm{~b}}$ and Gregorio Asensio ${ }^{16}$
Institute of Hydrocarbon Chemistry, Department of Chemistry, University of Southern California, Los Angeles, California 90007, and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106

Received July 5, 1977

Abstract

An improved method of preparation of diarylchloronium and diarylbromium ions is described from their corresponding arenediazonium icns by decomposition in haloarenes in the presence of trifluoro- (trichloro-) acetic acid or 2,2,2-trifluoroethyl alcohol. ${ }^{13} \mathrm{C}$ NMR spectroscopic study of the prepared halonium ions shows that nearly equal amounts of charge are transmitted into the two aryl rings regardless of the methyl substitution in one or both rings, suggesting that canonical structures such as I-III are only limited resonance contributors. The potential utility of symmetrical and unsymmetrical diarylchloronium, -bromonium, and -iodonium ions in their nucleophilic nitrolysis with sodium nitrite, giving nitroarenes, was studied. The relative reactivity of the 4 -tolyl, phenyl, 3 -tolyl, and 2 tolyl salts has been established as $1.0,3.0,3.6$, and 14.1 , respectively. Substitution of tetraphenylborate for hexafluorophosphate as counterion did not affect the product distribution in the nitration reaction. The data reported are best accommodated by an $\mathrm{S}_{\mathrm{N}} 2$-like mechanism controlling the collapse of ionic diarylchloronium nitrites, initially formed by displacement of the corresponding counterion, to give nitro- and chlorobenzene derivatives.

Whereas diaryliodonium ions have been extensively studied, ${ }^{2}$ only limited data are available on diarylchloronium: and -bromonium ions ${ }^{2}$ in spite of the high potential utility of these ions as electrophilic arylating agents. ${ }^{3}$ This can be attributed to the extremely low yields ($0.6-6.6 \%$) obtained in their preparation by Nesmeyanov and cc-workers using the decomposition of aryldiazonium tetrafluoroborates in chloroor bromoarenes. ${ }^{4-7}$ Recently Nesmeyanov and co-workers reported an improved preparation of diarylbromium ions by reacting aryllithiums with BrF_{3} in 9-28\% yields. ${ }^{8}$ This method is limited to the preparation of symmetrical diarylbromonium ions. Further difficulties involved in handling BrF_{3} and its explosive nature with phenyllithium make the method of little use.

The preparative utility of diarylbrominium tetraflcioroborates was demonstrated by McEwen and Lubinknowski ${ }^{9 a}$ in their nucleophilic displacement reaction with sodium alkoxides, giving exclusively phenyl alkyl ethers. The corresponding diaryliodonium salts gave under the same conditions, however, aromatic hydrocarbons as the major products ${ }^{9 b}$ (via a radical path). Reutov and co-workers ${ }^{9 c}$ carried out the reaction between diarylhalonium salts and triphenylphosphine in light to give (via a radical path) tetraphenylphosphonium ions in 82-92\% yields. Nesmeyanov and his co-workers ${ }^{9 \mathrm{~d}}$ briefly reported that diarylbromonium and chloronium ions are quite reactive toward many common nucleophiles, including amines, sodium nitrate, sodium azide, and sodium cyanide. Diphenyliodinium tetrafluorobcrate treated with sodium nitrite in aqueous dioxane gave nitrobenzene in 70% yield. ${ }^{9 a}$ A similar reaction with phenyl- p tolyliodonium tetrafluoroborate yielded a mixture of n:trobenzene and p-nitrotoluene in a ratio of 2.5:1. 9 d

A systematic study of the reactivity of diarylchloronium and

[^1]-brominium ions with nucleophiles, however, has not yet been reported since these halonium salts have been obtained previously only in extremely low yields and were believed to be quite unstable compounds. ${ }^{10}$

Interested in the chemistry of organic halonium ions, we now wish to report an improved method of preparation of diarylchloronium and diarylbrominium ions from their corresponding arenediazonium ions by decomposition in haloarenes in the presence of trifluoro- (trichloro-) acetic acid or 2,2,2-trifluoroe-hyl alcohol. The developed, improved general method for the preparation of these halonium ions also allowed a systematic study of the nucleophilic ntration of a series of methyl-substituted diarylhalonium salts with sodium nitrite.

Results and Discussion

Preparation of Diarylchloronium and Diarylbromonium Ions. When phenyldiazonium hexafluorophosphate was heated at $60-65^{\circ} \mathrm{C}$ in chlorobenzene in the presence of trifluoroacetic acid for 2 h , the reaction mixture subsequently extracted with water, and the aqueous solution neutralized with sodium hydrogen carbonate, the addition of sodium tetraphenylborate caused precipitation of the diphenylchloronium tetraphenylborate salt. The yield of the purified salt recrystallized foom acetone-ether was 13%. GC and IR analysis of the organic layer indicated the presence of fluorobenzene (36%), formed in the competitive Schiemenn reaction, and phenyl trifluoroacetate. In addition to trifluoroacetic acid, 2,2,2-trifluoroethyl alcohol, acetic acid, and trichloroacetic acid were also found to be effective; they give the diphenylchloronium salt in $9.0,4.0$, and 8.0% yields, along with fluorobenzene in 40,51 , and 33% yields, respectively. Phenyl 2,2,2-trifluoroethyl ether, phenyl acetate, and phenyl trichloroacetate were formed (based on IR and/or NMR spectroscopy) as the byproducts. Similar arylation failed to take
Table 1. Preparation of Diarylhalonium Tetraphenylborates

Table II. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts a, b for Diarylhalonium Hexafluorophosphates

$\mathrm{Ar}-\mathrm{X}-\mathrm{Ar}^{\prime}$	Registry no.	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	$\mathrm{C}_{1}{ }^{\prime}$	$\mathrm{C}_{2}{ }^{\prime}$	$\mathrm{C}_{3}{ }^{\prime}$	$\mathrm{C}_{4}{ }^{\prime}$	$\mathrm{C}_{5}{ }^{\text { }}$	$\mathrm{C}_{6}{ }^{\prime}$	CH_{3}
1	64146-89-0	139.7	133.6	129.1	134.7	129.1	$\begin{gathered} 133.6 \\ (124.6) \end{gathered}$							
		(134.3)	(124.6)	(129.8)	(126.5)	(129.8)								
$2^{\text {c }}$	64146-90-3	133.4		130.9	133.9	130.9								
3	58109-40-3	136.0	114.2	132.7	133.3	132.7	114.2							
4	64146-74-3	$138.4^{\text {d }}$	$137.9^{\text {d }}$	131.3	135.0	129.3	134.6							
		(134.4)	(135.9)	(130.9)	(127.0)	(126.4)	(129.0)							18.8
5	64146-91-4	139.4	133.1	144.8	135.3	126.0	129.1							
		(134.0)	(129.1)	(139.7)	(127.1)	(129.3)	(125.5)							20.9
6	64146-92-5	136.8	134.0	128.8	146.2	128.8	134.0							
		(131.2)	(128.3)	(130.4)	(136.2)	(130.4)	(128.3)							20.7
7	64146-93-6	139.2	133.6	128.5	135.0	128.5	133.6	138.9	138.4	131.3	135.0	130.3	134.0	18.0
8	64146-94-7	139.6	133.6	129.0	134.7	129.0	133.6	139.4	133.1	144.9	135.4	126.0	129.0	20.8
9	64146-95-8	140.0	133.6	128.9	134.6	128.9	133.6	136.3	134.0	128.9	146.3	128.9	134.0	20.8
10	64146-96-9	139.8	133.1	144.8	135.2	128.9	125.8	136.2	134.0	128.9	146.3	128.9	134.0	20.8, 20.8
11	64146-97-0	139.9	133.7	129.0	134.8	129.0	133.7	137.1	133.4	130.9	140.7	130.9	133.4	

 changeable.

Table III. Differences between Total ${ }^{13}$ C Chemical Shifts in Chloroarenes ${ }^{\text {a }}$ and Diarylchloronium Ions

place in the presence of such acids as sulfuric acid, oleum, phosphoric acid, or trifluoromethanesulfonic acid. To change the heterogeneous nature of the reactions to a homogeneous one, acetone or acetronitrile was added as a cosolvent, but the yield of the diphenylchloronium salt decreased. This is attributed to the higher nucleophilic reactivity of these solvents than that of chlorobenzene. In fact, in the presence of acetonitrile, acetanilide ${ }^{11}$ was isolated in 55% yield. The yield of diphenylchloronium tetraphenylborate decreased to 6.6% when phenyldiazonium tetrafluoroborate was used instead of the hexafluorophosphate salt. As shown in Table I, aryldiazonium hexafluorophosphates gave consistently better yields than the tetrafluoroborates. In order to prevent the competing formation of fluoroarenes (by the Schiemenn reaction), the counterion was also changed to trifluoroacetate. ${ }^{12}$ The yield of phenyl-, p-tolyl-, and phenyl-2,4-xylylchloronium tetraphenylborates prepared by this modification increased to 17%.
The reaction of phenyldiazonium hexafluorophosphate with bromobenzene and iodobenzene gave diphenylbromonium and iodonium tetraphenylborate in 7.9 and 8.6% yields, respectively.

When aniline itself was reacted with sodium nitrite in trifluoroacetic acid and chlorobenzene in the presence of various dehydrating agents to remove the water generated during diazotization, diphenylchloronium tetraphenylborate was isolated in $6.9,6.5,6.0$, and 7.0% yields in the case of molecular sieves, anhydrous sodium sulfate, phosphorus pentoxide and trifluoroacetic anhydride, respectively.

Carbon-13 NMR Spectroscopic Study of Diarylhalonium Ions. The structure of the diarylhalonium salts prepared was subsequently studied by ${ }^{13} \mathrm{C}$ NMR spectroscopy. Diarylchloronium tetraphenylborates displayed complicated ${ }^{13} \mathrm{C}$ NMR spectra since the absorptions of the ring carbons of the anions overlapped with those of the cations. Therefore, the counterion was exchanged for hexafluorophosphate, as described in the Experimental Section. The ${ }^{13} \mathrm{C}$ NMR parameters of the corresponding diarylchloronium hexafluorophosphate salts are summarized in Table II. The assignments were made on the basis of off-resonance spectra, relative intensity of the absorptions, and consideration of molecular symmetry, ${ }^{13}$ as well as comparison with the chemical-shift values of the parent haloarenes. ${ }^{14}$
The value of the sum of the ${ }^{13} \mathrm{C}$ NMR chemical shifts of the aryl carbons in each aryl ring is increased by 22 to 24 ppm (Table III) upon transformation of the chloroarenes into di-
arylchloronium ions, reflecting partial delocalization of the positive charge into the aryl groups. ${ }^{15}$ Phenyl and tolyl groups in these ions were shown to possess the similar ability to delocalize the positive charge from the chlorine atom since the aryl carbons undergo an overall deshielding in the ${ }^{13} \mathrm{C}$ NMR spectra of similar magnitude regardless of methyl substitution in one or both aryl rings, the position occupied by the methyl substituent in the tolyl group, or the symmetrical or unsymmetrical nature of the diarylchloronium salt. Thus, a nearly equal amount of charge is transmitted into the two aryl rings.

On the basis of carbon-13 chemical shift data of the diarylchloronium ions studied, it can be concluded that canonical structures such as I-III are only limited resonance contribu-

tors ${ }^{16}$ as the para carbon resonances when corrected for substituent effects show only extremely small or no differences.

Nucleophilic Nitrolysis (Nitrative Cleavage) of Diarylhalonium Salts. In order to study the nucleophilic nitrolysis of diarylhalonium ions as well as symmetrically substituted ions, we also prepared a series of methyl- and halo-gen-substituted unsymmetrical diarylhalonium tetraphenylborates.

All diarylhalonium tetraphenylborates were prepared by decomposition of the corresponding arenediazonium hexafluorophosphates in haloarenes in the presence of trifluoroacetic acid at $65-70^{\circ} \mathrm{C}$ for 2 h , followed by the addition of sodium tetraphenylborate. The data are summarized in Table IV. Phenyl-2-fluorophenylchloronium tetraphenylborate was not obtained by the decomposition of 2 -fluorophenyldiazonium hexafluorophosphate in chlorobenzene, but only by the related reaction of phenyldiazonium hexafluorophosphate and 2 -chlorofluorobenzene. The structure of the new diarylhalonium salts was ascertained by elemental analysis and NMR spectroscopy.

The reaction of unsymmetrically substituted diarylhalo-
Table IV. Preparation of Methyl- and Halogen-Substituted Unsymmetrical Diarylhalonium Tetraphenylborates from Aryldiazonium Hexafluorophosphates

Diazonium salt	Registry no.	Haloarene		Halonium ion	Registry no.	$\mathrm{Mp}(\mathrm{dec}),{ }^{\circ}{ }^{\circ} \mathrm{C}$
m-Tolyl		o-Chlorotoluene	12	o-Tolyl-m-tolylchloronium	64146-99-2	178 (125)
o-Tolyl		p-Chlorotoluene	13	o-Tolyl-p-tolylchloronium	64147-01-9	140-141
2,4-Xylyl	64147-33-7	Chlorobenzene	14	Phenyl-2,4-xylylchloronium	64147-03-1	129-130
		p-Chlorotoluene	15	p-Tolyl-2,4-xylylchloronium	64147-14-4	134-135
		o-Chlorotoluene	16	o-Tolyl-2,4-xylylchiloronium	64147-16-6	150-152 (142)
2,3-Xylyl	64147-34-8	Chlorobenzene	17	Phenyl-2,3-xylylchloronium	64147-18-8	115-117 (106)
		o-Chlorotoluene	18	o-Tolyl-2,3-xylylchloronium	64147-20-2	126-127 (114)
Phenyl		o-Chlorofluorobenzene	19	Phenyl-p-fluorophenylchloronium	64147-22-4	144-146 (136)
		m-Chlorofluorobenzene	20	Phenyl-m-fluorophenylchloronium	64147-24-6	151-152 (132)
		o-Dichlorobenzene	21	Phenyl-o-chlorophenylchloronium	64147-26-8	152-153 (145)
o-Tolyl		Bromobenzene	22	Phenyl-o-tolylbromonium	64147-28-0	164-165 (144)
p-Tolyl		Bromobenzene	23	Phenyl-p-tolylbromonium	64147-29-1	$141.2 \quad(139)^{c}$
o-Tolyl		Iodobenzene	24	Phenyl-o-tolyliodonium	64147-31-5	153-154 (132)
p-Tolyl		Iodobenzene	25	Phenyl-p-tolyliodonium	64147-32-6	112-113 (105)

a Temperatures 'at which crystals started to change are given in parentheses. b Yield was obtained for 2,4 -xylyldiazonium trifluoroacetate. ${ }^{c}$ Lit. ${ }^{8}$ mp $135{ }^{\circ} \mathrm{C}$ dec.
nium tetraphenylborates with nitrite ion gives, in a nucleophilic nitrolysis reaction, a mixture of the corresponding nitroarenes (eq 1). The nitroarene product composition reflects the effect of the substituents on the course of the nucleophilic nitrolysis.
$\mathrm{Ar}-\mathrm{X}^{+}-\mathrm{Ar} \mathrm{BPh} 44 \xrightarrow{\mathrm{NaNO}_{2}} \mathrm{ArNO}_{2}+\mathrm{Ar}^{\prime} \mathrm{NO}_{2}$

$$
\begin{equation*}
+\mathrm{ArX}+\mathrm{Ar}^{\prime} \tag{1}
\end{equation*}
$$

To carry out the nucleophilic nitration, equimolecular amounts of the diarylhalonium salts and sodium nitrite were refluxed in a mixture of acetone-water (5:1 v / v) in the presence of benzonitrile as an internal standard for subsequent GC analysis of the reaction products. In the case of the phe-nyl-4-tolyliodonium salt, 2-nitrotoluene was substituted for benzonitrile since the latter and 4 -iodotoluene gave overlapping GC peaks under the experimental conditions.

On the basis of a ${ }^{13} \mathrm{C}$ NMR spectroscopic study of diarylhalonium ions, the effect of the halonium center is mostly reflected in its inductive effect on the aryl rings. As expected from the greater electronegativity of chlorine and bromine relative to iodine, diarylchloronium and -bromonium ions were found to be more reactive than the corresponding diaryliodonium ions. In fact, when diphenylchloronium or diphenylbromonium salts were reacted with sodium nitrite under similar conditions, the reactions were completed within 2 h to give nitrobenzene in 75% yield, whereas 65% of the starting diphenyliodonium salt was recovered unreacted under the same conditions.

Nitration of $2,2^{\prime}-, 3,3^{\prime}$-, and $4,4^{\prime}$-ditolylchloronium tetraphenylborate gave 2 -, 3 -, and 4 -nitrotoluene, respectively. Not even trace amounts of other isomers were detected, showing that only ipso attack occurred. This rules out the possible formation of a benzene intermediate or attack at other ring positions, which would be the case if the diarylhalonium ions would show ambident character.

In the nucleophilic substitution reactions of 4 -substituted diaryliodonium salts, nucleophiles generally attack the phenyl ring carrying electron-withdrawing groups. ${ }^{17}$ This trend is also observed in the nucleophilic nitration of phenyl-4-tolychloronium hexafluorophosphate, where the obtained nitrobenzene to 4 -nitrotoluene ratio is $3.0: 1.0$. Nitration of phenyl3 -tolylchloronium hexafluorophosphate gave a mixture of nitrobenzene and nitrotoluene in a ratio of 1.0:1.2, indicating the weak effect of 3 -methyl relative to 4 -methyl substitution in the course of the reaction. On the other hand, 2 -methyl substitution of one of the aryl rings was shown to exert the opposite effect on the relative reactivity of the rings. $2-\mathrm{Ni}-$ trotoluene was formed 4.7 times faster than nitrobenzene in the nitration of phenyl-2-tolylchloronium hexafluorophosphate. Similar effects were reported in the related pyrolysis ${ }^{18 a, b}$ and hydrolysis.

The charge density in the phenyl ring in the series of diphenylchloronium and phenyltolylchloronium hexafluorophosphates has been shown, based on the discussed ${ }^{13} \mathrm{C}$ NMR studies, to be similar, i.e., independent of the nature of the second aryl group (phenyl, $o-, m$-, or p-tolyl). A relative scale of reactivities can be established for these groups toward nucleophilic nitration assuming that the reactivity of the unsubstituted phenyl ring is predominantly controlled by its charge density (affected mainly by the inductive effect of the halonium center) and hence remains relatively constant along the series of related halonium ions. In this manner, the relative reactivity of the 4 -tolyl, phenyl, 3 -tolyl, and 2 -tolyl rings toward nitrite ion can be established as $1.0,3.0,3.6$, and 14.1 , respectively, on the basis of the nitrobenzene to nitrotoluene product ratio formed in the nitration of phenyltolylchloronium salts. Excellent agreement was obtained in the nucleophilic nitration of unsymmetrical ditolylchloronium salts

Halonium ion ($\mathrm{Ar}-\mathrm{X}-\mathrm{Ar}^{\prime}$)	Products		$\mathrm{ArNO}_{2} / \mathrm{Ar}^{\prime} \mathrm{NO}_{2}$ Ratio	
	ArNO_{2}	Ar NO 2	Obsd	Calcd
$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Cl}-\mathrm{Ph}$	2-Nitrotoluene	Nitrobenzene	4.7:1.0	
$3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Cl}-\mathrm{Ph}$	3-Nitrotoluene	Nitrobenzene	1.2:1.0	
$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Cl}-\mathrm{Ph}$	4-Nitrotoluene	Nitrobenzene	1.0:3.0	
2 - $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Cl}-3{ }^{\prime}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	2-Nitrotoluene	3-Nitrotoluene	3.9:1.0	3.9:1.0
$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Cl}-4{ }^{\prime}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	2-Nitrotoluene	4-Nitrotoluene	13.5:1.0	14.1:1.0
$3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Cl}-4{ }^{\prime}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	3-Nitrotoluene	4-Nitrotoluene	3.4:1.0	3.6:1.0
$2,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{Cl}-\mathrm{Ph}$	4-Nitro-m-xylene	Nitrobenzene	1.8:1.0	1.6:1.0
2,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{Cl}-4^{\prime} \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	4-Nitro-m-xylene	4-Nitrotoluene	3.7:1.0	4.7:1.0
$2,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{Cl}-2^{\prime} \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	4-Nitro-m-xylene	2-Nitrotoluene	1.0:1.7	1.0:3.0
$2,3-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{Cl}-\mathrm{Ph}$	3-Nitro-o-xylene	Nitrobenzene	11.0:1.0	5.6:1.0
$2,3-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{Cl}-2^{\prime} \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	3 -Nitro-o-xylene	2-Nitrotoluene	1.9:1.0	1.2:1.0
$2-\mathrm{FC}_{6} \mathrm{H}_{4}-\mathrm{Cl}-\mathrm{Ph}$	2-Nitrofluorobenzene	Nitrobenzene	1.0:4.5	
$3-\mathrm{FC}_{6} \mathrm{H}_{4}-\mathrm{Cl}-\mathrm{Ph}$	3-Nitrofluorobenzene	Nitrobenzene	1.3:1.0	
$2-\mathrm{ClC}_{6} \mathrm{H}_{4}-\mathrm{Cl}-\mathrm{Ph}$	2 -Nitrochlorobenzene	Nitrobenzene	1.8:1.0	
$4-\mathrm{ClC}_{6} \mathrm{H}_{4}-\mathrm{Cl}-\mathrm{Ph}$	4-Nitrochlorobenzene	Nitrobenzene	1.0:2.0	
$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Br}-\mathrm{Ph}$	2-Nitrotoluene	Nitrobenzene	7.6:1.0	
$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Br}-\mathrm{Ph}$	4-Nitrotoluene	Nitrobenzene	1.0:3.1	
$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\frac{\mathrm{I}}{} \mathrm{Ph}$	2-Nitrotoluene	Nitrobenzene	9.6:1.0	
$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}-\mathrm{Ph}$	4-Nitrotoluene	Nitrobenzene	1.0:2.7	

between the observed product distributions and those calculated from the relative reactivity values for the phenyl and tolyl rings, respectively (Table V). Less satisfactory correlation was, however, observed in the case of phenyl- and tolylxylylchloronium salts.
Nearly identical product distributions were obtained in the nitration of phenyl-4-tolylchloronium, -bromonium, and -iodonium salts. However, the o-methyl substituent effect increased in the sequence phenyl-2-tolylchloronium <-bromonium <-iodonium ions. The amount of 2 -nitrotoluene obtained from the iodonium ion was approximately twice as much as that obtained from the chloronium ion. Nitration of phenyl-2,6-xylylchloronium; -bromonium, and -iodonium ions gave 2 -nitro- m-xylene and the corresponding haloarene almost exclusively, indicating the reinforced ortho effect. The effect of the chloronium center upon the relative reactivity of the phenyl and the chlorophenyl rings in the nitration of phenyl-4-chlorophenyl- and phenyl-2-chlorophenylchloronium ions was shown to be smaller than that observed in the case of methyl substitution, although attack by the nitrite ion took place in the same direction. However, in the case of the phenyl-2-fluorophenylchloronium ion, a reversed ortho effect was observed; the 2 -nitrofluorobenzene to nitrobenzene ratio was 1.0:4.5.

Substitution of tetraphenylborate for hexafluorophosphate as counterion did not affect the product distribution in the nitration of phenyl-2-tolyl- and phenyl-4-tolylchloronium salts. These results suggest that the counterion has no particular effect on the reactions.

In the studied reactions, nitroarenes were obtained in $70-75 \%$ yield, and only relatively small amounts of phenols $(<8 \%)$ and biphenyls ($<10 \%$) were detected. The presence of water in the reaction media as well as the ambident nature of the nitrite ion can account for the formation of phenols. Since biphenyl was detected even from ditolychloronium tetraphenylborate, but in substantially decreased yield ($\sim 2 \%$) in the case of diphenylchloronium hexafluorophosphate, it must be mostly formed from the tetraphenylborate anion and not as a reaction byproduct from the diarylhalonium ion. In the nitration of phenyl-4-tolylchloronium and $3,3^{\prime}$-ditolylchloronium tetraphenylborate, a small amount of toluene and trace amounts of 4 -tolylbenzene and $3,3^{\prime}$-dimethylbiphenyl, respectively, were detected by GC. These results indicate that radical side reactions take place only to a minor degree.

Yamada and Okawara ${ }^{18 \mathrm{a}}$ reported in the pyrolysis of diaryliodonium bromides that the predominant attack of the bromide ion was on the o-methyl-substituted aryl ring, proposing a methyl-substituted phenyl cation intermediate. Wiegand and co-workers ${ }^{18 \mathrm{~b}}$ observed a similar ortho effect in the pyrolysis of a series of phenylaryliodonium chlorides, bromides, and iodides-131, suggesting the formation of a tricovalent iodine intermediate with subsequent S_{N}-like displacement leading to products. Since only the equatorial aryl ring is capable of reacting with the halide ion (X^{-}) and the bulkier ortho-substituted aryl ring (Ar) should be expected

to preferentially occupy the equatorial position, the observed ortho effect ${ }^{18 \mathrm{~b}}$ was satisfactorily explained for diaryliodonium halides.

Although this mechanisms involving a tricovalent iodide intermediate could be applied in the case of nitration of the phenyl-2-tolyliodonium salt, it should not be applicable to the nitration of diarylchloronium salts since the formation of the corresponding tricovalent chlorine intermediate represents a much more urlikely path because of the inherently lesser ability of chlorine relative to the iodine to form such tricovalent compounds. ${ }^{6}$ The bond between chloronium ions and their counterion in diarylchloronium salts must be considered to be mostly ionic. Furthermore, a mechanism involving a phenyl cation irtermediate is less probable, at least for the nitration reaction under our experimental conditions, since in this case phenols would be expected to be also inevitably formed in aqueous acetone media, which was not the case.
The data reported herein for the nucleophilic nitration of diarylchloronium salts are best accommodated by a $\mathrm{S}_{\mathrm{N}} 2$-like mechanism controlling the collapse of ionic diarylchloronium nitrites initially formed by displacement of the corresponding counterion (tetraphenylborate or hexafluorophosphate) to give nitro- and chlorobenzene derivatives. The nitrite ion attacks the most activated (by the negative inductive effect) ipso carbon position. p-Methyl substitution relative to the ipso carbon $\left(\mathrm{C}_{1}\right)$ decreases the latter's charge density, and hence it deactivates C_{1} to undergo nucleophilic attack, in comparison to the ipso carbon ($\mathrm{C}_{1}{ }^{\prime}$) in the unsubstituted phenyl ring.
m-Methyl substitution hardly affects the reactivity of the ipso carbon ($\mathrm{C}_{1}{ }^{\prime}$), which is in good agreement with expectations on the basis of the proposed $\mathrm{S}_{\mathrm{N}} 2$ mechanism. ${ }^{20}$ In the case of the o-methyl-substituted diarylchloronium ions, steric strain due to the ortho substituent (s) will be operative and weakens the carbon-chlorine bond, thus activating the ipso carbon (C_{1}) in the ortho-substituted aryl ring. Results show that the steric ortho effect is much more important than the deactivating effect due to the electron-donor character of the methyl group. Similarly to the case of unsymmetrical ditolylchloronium salts, good agreement between the observed and the calculated product distributions was obtained in the nitration of phenyl-, 4 -xylyl-, 4^{\prime}-tolyl- 2,4 -xylyl-, and especially phenyl- 2,3 -xylylchloronium salts, where additional steric factors are introduced in the latter case. Larger than expected amounts of 3 -nitro-o-xylene were found; i.e., the 2,3 -xylyl group was found to be more reactive than the 2 -tolyl group in nucleophilic nitration of the corresponding chloronium salts.
The remarkable decrease of the ortho effect in phenyl-2-chlorophenyl- and phenyl-2-fluorophenylchloronium salts can be accounted for by the mesomeric effect of the halogen atom and the electrostatic repulsion between the nitrite ion and the halogen substituent.

Experimental Section

General. All melting points reported in Table I are unccrrected and were measured on a Fischer-Johns melting point apparatus.

Carbon-13 NMR spectra were obtained using a Varian Model XL 100 spectrometer equipped with a broad-band decoupler and a Fourier transform accessory. It was operated in the pulse Fourier transform mode, employing typically $3000-5000$ (5) μ s pulses in order to obtain a satisfactory signal to noise ratio.

Materials. Aryldiazonium hexafluorophosphates were syn=hesized according to a procedure of Rutherford et al. ${ }^{21}$
Diphenylchloronium Tetraphenylborate. Preparation from Phenyldiazonium Hexafluorophosphate. A well-stirred heterogenous mixture of phenyldiazonium hexafluorophosphate ($2.5 \mathrm{~g}, 10$ mmol), trifluoroacetic acid (3 mL), and chlorobenzene (10 mL) was heated at $65-70^{\circ} \mathrm{C}$ for 2 h , during which time the evolution of nitrogen gas was completed. After addition of ethyl ether and petroleum ether $(1: 1,20 \mathrm{~mL})$, the reaction mixture was extracted with water (15 mL $\times 3$). The aqueous phase was neutralized by sodium hydrogen carbonate. Addition of sodium tetraphenylborate ($\sim 2 \mathrm{mmol}$) produced a white precipitate, which was collected and washed with water. The precipitate was dissolved in hot acetone, and the small amount of insoluble material was filtered off. The acetone was evaporated under reduced pressure, and the residual solid was redissolved in hot acetone. Addition of ethyl ether precipitated crystals of the salt $(0.66 \mathrm{~g}$, 13%); mp $160-160.5^{\circ} \mathrm{C}$ (lit. ${ }^{7} 160-161^{\circ} \mathrm{C}$).
The other diarylhalonium tetraphenylborates listed in Table I were prepared from the corresponding aryldiazonium hexafluorophosphates (or tetrafluoroborates) and haloarenes in the same manner as described above.

Preparation from Aniline. To a mixture of aniline ($930 \mathrm{mg}, 10$ $\mathrm{mmol})$, sodium sulfate $(1.42 \mathrm{~g}, 10 \mathrm{mmol})$, and chlorobenzene $(10 \mathrm{~mL})$ trifluoroacetic acid (4 mL) was added. The mixture was cooled in an ice bath, and sodium nitrite ($690 \mathrm{mg}, 11 \mathrm{mmol}$) was slowly added with stirring. The mixture was stirred for 1 h at $10^{\circ} \mathrm{C}$ and then heated at $60^{\circ} \mathrm{C}$ for 2 h . The same workup described above gave $0.339 \mathrm{~g}(6.5 \%)$ of the product.

Diarylhalonium Hexafluorophosphates. To a suspension of the corresponding diarylhalonium tetraphenylborate (0.4 mmol) in ethyl ether (4 mL) 40% hexafluorophosphoric acid $(0.5 \mathrm{~mL}$) was added with stirring at room temperature. The reaction was exothermic, and before complete dissolution of the starting material the corresponding diarylhalonium hexafluorophosphate precipitated. After 1.5 h , ethyl ether $/ n$-pentane ($1: 7 \mathrm{v} / \mathrm{v}$) was added, and the salt was filtered and washed with the ethyl ether/pentane mixture; yield $70-80 \% .{ }^{13} \mathrm{C}$ NMR spectra of these salts were recorded without further purification.

All diarylhalonium salts gave correct elemental analyses (Galbraith Laboratories Inc.).

Nitration of Diarylchloronium Salts. Diarylchloronium tetraphenylborate or hexafluorophosphate (0.1 mmol), sodium nitrite (10 mg), and benzonitrile (10 mg , as an internal standard for GO) in acetone $(2.5 \mathrm{~mL})$-water $(0.5 \mathrm{~mL})$ were refluxed for 2 h . After the addition of ethyl ether- n-pentane ($1: 1 \mathrm{v} / \mathrm{v}$), an aqueous layer was separated. The organic layer was washed with diluted aqueous sodium
chloride. The combined aqueous layer was extracted with ethyl ether- n-pentane, and the combined organic layer was dried over sodium sulfate. The solvents were distilled out at atmospheric pressure below $60^{\circ} \mathrm{C}$, and after the addition of a small amount of acetone the residue was analyzed by GC. When the phenol generated interfered with the integration of the peak of the nitro compound, the organic layer was washed with 5% aqueous sodium hydroxide.

Nitration of Diarylbromonium Salts. Diarylbromonium tetraphenylborate (0.1 mmol), sodium nitrite (10 mg), and benzonitrile (10 mg) in dioxane (2.5 mL)-water $(0.5 \mathrm{~mL}$) were refluxed for 1 day. The reaction mixture was treated similarly as described above and analyzed by GC.

Nitration of Diaryliodonium Salts. Diaryliodonium tetraphenylborate (0.1 mmol), sodium nitrite (10 mg), and benzonitrile (10 mg) in dioxane (4 mL)-water (1 mL) were refluxed for 2 days. The reaction mixture was worked up as described above and analyzed by GC.

Gas chromatographic analyses of the reaction products were performed on a Perkin-Elmer Model 226 gas chromatograph equipped with a hydrogen flame ionization detector and open tubular capillary columns. Peak areas were obtained with a Columbia Scientific Industries Model CS1-208E printing integrator. A $150 \mathrm{ft} \times 0.01$ in capillary column coated with butanediol succinate was used for the analyses of nitrobiphenyl and -phenol derivatives at a standard temperature of $160^{\circ} \mathrm{C}$ and a helium flow rate of 20 psi . Biphenyl and phenol derivatives were analyzed similarly except for using a $100-\mathrm{ft}$ long column at $140^{\circ} \mathrm{C}$ and a helium flow rate of 20 psi . Toluene was detected by using a $150 \mathrm{ft} \times 0.01$ in capillary column coated with m-bis (m-phenoxyphenoxy) benzene and Apiezon L.

Acknowledgment. The support of our work by the U.S. Army Research Office is gratefully acknowledged.

Registry No.-Sodium tetraphenylborate, 143-66-8; aniline, 62-53-3; hexafluorophosphoric acid, 16940-81-1; sodium nitrite, 7632-00-0.

References and Notes

(1) (a) Onium lons. 16: G. A. Olah, D. J. Donovan, J. Shen, and G. Klopman, J. Am. Chem. Soc., 97, 3559 (1975). (b) Postdoctoral Research Associate.
(2) G. A. Olah, "Halonium lons", Wiley-Interscience, New York, N.Y., 1975.
(3) J. K. Lubinkowski and W. K. McEwen, Tetrahedron Lett., 4817 (1972).
(4) A. N. Nesmeyanov, T. P. Tolstaya, and L. S. Isaeva, Dokl. Akad. Nauk SSSR, 104, 872 (1955).
(5) A. N. Nesmeyanov and T. P. Tolstaya, Dokl. Akad. Nauk SSSR, 105, 95 (1955).
(6) A. N. Nesmeyanov, N. V. Kruglova, R. B. Materikova, and T. P. Tolstaya, Zh. Org. Khim., 2, 2211 (1966).
(7) A. N. Nesmeyanov, T. P. Tolstaya, and L. S. Isaeva, Dokl. Akad. Nauk SSSR, 117, 996 (1957).
(8) A. N. Nesmeyanov, I. N. Lisichkina, A. N. Vanchicov, and T. P. Tolstaya, Izv. Akad. Nauk SSSR, Ser. Khim., 228 (1976).
(9) (a) J. K. Lubinknowski and W. E. McEwen, Tetrahedron Lett., 4817 (1972); (b) W. E. McEwen, J. K. Lubinkowskl, and J. W. Knapczyk, Tetrahedron Lett., 3301 (1972): (c) O. A. Ptitsyna, M. E. Gurskii, and O. A. Reutov, Zh. Org. Khim., 10, 2246 (1974); cf. Chem. Abstr., 82, 57811 n (1975); (d) A. N. Nesmeyanov, T. P. Tolstaya, and L. S. Isaeva, Dokl. Akad. Nauk SSSR, 117, 996 (1957); (e) J. J. Lubinkowski, M. Gomez, J. L. Calderon, and W. E. McEwen, presented at the 172 nd National Meeting of the American Chemical Society, San Francisco, Calif., 1976.
(10) A. N. Nesmeyanov, L. G. Mkarova, and T. P. Tolstaya, Tetrahedron, 1, 145 (1957).
(11) M. Kobayasho, H. Minato, E. Yamada, and N. Kobori, Bull Chem. Soc. Jpn., 43, 215 (1970).
(12) M. Stacey and J. C. Tatlow, British Patent 761054 (1956); Chem. Abstr., 51, 9688 (1957).
(13) L. F. Johnson and W. C. Jankowski, "Carbon-13 NMR Spectra", WlleyIntersclence, New York, N.Y., 1972.
(14) G. A. Olah, P. W. Westerman, E. G. Melby, and Y. K. Mo, J. Am. Chem. Soc., 96, 3565 (1974).
(15) Peak assignments for $C_{1} C_{2}$ in the ${ }^{13} \mathrm{C}$ NMR spectra of the $2,2^{\prime}$-ditolylchloronium salt are tentatively based on the observation that peak intensities of carbon atoms attached to a chlorine atom are weaker than those of carbon atoms attached to a methyl group.
(16) Charge density at the para position has been shown to be linearly related to ${ }^{13} \mathrm{C}$ chemical shift. For a general discussion of ${ }^{13} \mathrm{C}$ chemical shift-charge density correlation see G. A. Olah, P. W. Westerman, and D. A. Forsyth, J. Am. Chem. Soc., 97, 3419 (1975).
(17) F. M. Beringer, M. Drexler, E. M. Gindler, and C. C. Lumpkin, J. Am. Chem. Soc., 75, 2708 (1953).
(18) (a) Y. Yamada and M. Okawara, Bull. Chem. Soc. Jpn., 45, 1860 (1972); (b) K. M. Lancer and G. A. Wiegand, J. Org. Chem., 41, 3360 (1976); (c) D. J. LeCount and J. A. W. Reid. J. Chem. Soc. C, 1298 (1967).
(19) J. D. Roberts and M. C. Caserio, "Basic Principles of Organic Chemistry", W. A. Benjamin, New York, N.Y., 1964, p 853.
(20) J. Miller, "Aromatic Nucleophilic Substitution", C. Eaborn and N. B. Chapman, Ed., Elsevier, New York, N.Y., 1968.
(21) K. G. Rutherford, W. Redmon, and J. Rigamonti, J. Org. Chem., 26, 5149 (1961).

Synthesis of Fervenulin 4-Oxide and Its Conversion to the Antibiotics Fervenulin and 2-Methylfervenulone ${ }^{1}$

Misuzu Ichiba, Sadao Nishigaki, and Keitaro Senga*
Pharmaceutical Institute, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo 16C, Japan

Received July 15, 1977

Abstract

Normally inaccessible fervenulin 4 -oxide (5) was synthesized in a single step by the reaction of 1,3 -dimethyl-6-hydrazino-5-nitrosouracil (4) with one-carbon reagents (dimethylformamide-phosphorus oxychloride, dimethyl-formamide-dimethyl sulfate, formic acid, and triethyl orthoformate). Compound 5 was found to be a versatile intermediate for the synthesis of antibiotics fervenulin (1) and 2-methylfervenulone (MSD-92) (2). Namely, the antibiotic 1 could be synthesized in the highest yield when 5 was treated with sodium hydrosulfite in water. The antibiotic 2 was synthesized most conveniently by the following three steps: treatment of 5 with dimethylformamidephosphorus oxychloride afforded 3 -chloro-6,8-dimethylpyrimido $[5,4$-e]-as-triazine- $5,7(6 \mathrm{H}, 8 \mathrm{H}$)-dione (14), followed by acid hydrolysis to fervenulone (15), and subsequent alkylation with methyl iodide in dimethylformamide containing potassium carbonate. Some derivatives related to 1 or 5 were also prepared from 4 or 5 .

In recent years considerable chemical and medicinal interest has been focused on the pyrimido[5,4-e]-as-triazine (7 -azapteridine) ring system primarily because of the attractive biological activities displayed by the antibiotics fervenulin (1), 2-methylfervenulone (MSD-92) (2), and toxoflavin (3). ${ }^{2}$ In connection with our recent studies on the synthesis of purines ${ }^{3}$ and pteridines ${ }^{4}$ from 6 -amino-1,3-di-methyl-5-nitrosouracil, we have now examined the reaction of readily available 1,3-dimethyl-6-hydrazino-5-nitrosouracil $(4)^{5}$ with various one-carbon reagents (dimethylformamide-

1

3

4

5
phosphorus oxychloride, dimethylformamide-dimethyl sulfate, ${ }^{6}$ formic acid, and triethyl orthoformate) and have found that the respective product is surprisingly fervenulin 4 -oxide (5), which is a versatile intermediate for the synthesis of py-rimido[5,4-e]-as-triazine derivatives including the antibiotics 1 and 2.

The 4 -oxide 5 seems to be less accessible by the conventional peroxy acid oxidation since the π-electron distribution of 1 calculated by the Hückel LCAO-MO method indicates that the most reactive site for the oxidation is position $1 .{ }^{7}$ In fact, the oxidation of 1 with trifluoroperacetic acid has been shown to give fervenulin 1 -oxide. ${ }^{8}$ Recently, Yoneda et al. ${ }^{7}$ reported the synthesis of 3 -substituted fervenulin 4 -oxides
by the nitrosative cyclization of 6 -alkylidene(or benzyli-dene)hydrazino-1,3-dimethyluracils in the presence of diethyl azodicarboxylate. However, the preparation of 5 itself has not been described. We now wish to report four new one-step syntheses of 5 and its successful conversion to the antibiotics 1 and 2 as well as to some derivatives related to $!$.

Fervenulin 4-Oxide. Treatment of 4 with a mixture of dimethylformamide and phosphorus oxychloride (Vilsmeier reagent) at $0^{\circ} \mathrm{C}$ followed by stirring at room temperature for 30 min gave 5 :n 72% yield (method A). The structure of 5 was assigned by the satisfactory elemental analysis and spectral data. The mass spectrum showed a strong parent ion at m / e 209 and a remarkable $\mathrm{M}^{+}-16$ ion due to the presence of N-oxide. The NMR spectrum revealed the presence of two N-methyl groups ($\delta 3.45$ and 3.80) and a single aromatic proton ($\hat{\delta} 10.30$). The structure of 5 was finally corroborated by its successful reduction to the antibiotic 1 (vide infra). The formation of 5 presumably proceeds through the N, N-dimethylaminomethylenehydrazino intermediate 6 , followed by cyclization, and subsequent aromatization by loss of dimethylamine. ${ }^{9}$ There seem to be no previous instances in which the Vilsmeier reagent has been used for the synthesis of heterocyclic N-oxides. Method A was found to be greatly dependent on the reaction temperature. When this reaction was attempted without cooling, the product obtained was not 5 but v-triazolo $[4,5-d]$ pyrimidine derivatives (9), ${ }^{10}$ which arise from the intramolecular dehydrative cyclization of 4. In analogy with method A, treatment of 4 with dimethylform-amide-dimethyl sulfate complex ${ }^{6}$ (a modified Vilsmeier reagent) at room temperature for 2 h afforded a 43% yield of 5 , probably via the same intermediate with that of method A (method B). Refluxing 4 with formic acid for 30 min also provided a 54% yield of 5 , presumably formed via the dehydrative cyclization of a formylhydrazino intermediate 7 (method C). Furthermore, heating 4 with triethyl orthoformate at $90^{\circ} \mathrm{C}$ for 30 min caused the separation of 5 in 71% yield (method D). This method appears to have greater scope than those of methods A, B, and C , and constitutes a general synthetic route to fervenulin 4 -oxide derivatives. For example, the reaction of 4 with triethyl orthoacetate or triethyl orthopropionate under the conditions described above furnished the corresponding 3 -alkylfervenulin 4 -oxides, 10^{7} and 11 , in high yields. The condensation of 4 with ortho esters may be involved with the intermediacy of α-ethoxyalkylidenehydrazino derivative 8, which undergoes cyclization by the elimination of ethanol. In general, the proposed intermediates, 6,7 , and 8 , described in the above reactions can exist in either nitroso or oxime forms; however, these cyclizations may be facilitated by the nucleophilicity of the latter. The partici-
Scheme I

pation of oxime groups as nucleophiles has been well documented ${ }^{11}$ (Scheme I).
Fervenulin and 2-Methylfervenulone. The total syntheses of antibiotics fervenulin (1) ${ }^{5,8,12-16}$ and 2 -methylfervenulone (MSD-92) (2) ${ }^{15}$ have been accomplished. We have now examined a new synthetic approach to these antibiotics starting with fervenulin 4 -oxide (5) obtained above.
Antibiotic 1 could be obtained in an excellent yield by the reduction of 5 with aqueous sodium hydrosulfite at room temperature. Compound 1 thus obtained was identical in all respects with the authentic sample prepared by the reported procedure. ${ }^{5}$ Analogously, compounds 10 and 11 were converted to the corresponding 3 -alkylfervenulins, 12 and 13 . The deoxygenation of N-oxide function of 5 to 1 was also achieved by the prolonged heating with dimethylformamide in less satisfactory yield (Scheme II).

Antibiotic 2 was prepared most conveniently by three steps starting with 5 as described below. Treatment of 5 with a mixture of dimethylformamide and phosphorus oxychloride at $50{ }^{\circ} \mathrm{C}$ afforded the chloro derivative 14^{15} in 84% yield. Heating 14 with either formic acid ${ }^{17}$ at reflux or 2 N hydrochloric acid at $90^{\circ} \mathrm{C}$ gave fervenulone (15), ${ }^{15}$ the precursor of 2, in 89 and 51% yield, respectively. Compound 15 could also be obtained from 14 by the indirect route. Thus the nucleophilic displacement of chloride from 14 with sodium ben-

Scheme II

5, 10, and $11 \frac{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}}{\mathrm{H}_{2} \mathrm{O}}$

zyloxide gave the benzyloxy derivative 16, and the subsequent removal of the benzyl group by catalytic reduction with palladium charcoal provided 15 in 50% yield. The final alkylation was accomplished in almost quantitative yield by the reaction of 15 with methyl iodide in dimethylformamide containing potassium carbonate. The spectral data (IR, NMR, MS, and UV) of the synthetic compound and those of the authentic sample described in the literature ${ }^{18}$ proved to be identical (Scheme III).

In connection with 15 , we also attempted the direct synthesis of 15 from 5 since various heterocyclic N-oxides have been known to react with nucleophiles to give α-hydroxy compounds. ${ }^{19}$ However, these attempts were found to be unsuccessful. Thus, treatment of 5 with tosyl chloride in

Scheme III

Scheme IV

chloroform caused the ring cleavage of the as-triazine nucleus to give the starting material (4), which was alternatively obtained by the action of methanolic hydrochloric acid on 5. Refluxing 5 with acetic anhydride gave only 1 . Treatment of 5 with a mixture of acetic anhydride and acetic acid furnished 5 -acetylamino-1,3-dimethylbarbituric acid (17), which was identical with the sample prepared by the acetylation of 5 -amino-1,3-dimethylbarbituric acid (18) ${ }^{20}$ with a mixture of acetic anhydride and acetic acid. ${ }^{21}$ In contrast to the acids, treatment of 5 with 0.5% sodium hydroxide resulted in the deoxygenation of the N-oxide group and ring contraction of the pyrimidine moiety to give a new class of azapurine, imid-azo[4,5-e]-as-triazine derivative (19), in 40% yield..22 The structure of 19 was supported by the elemental analysis and spectral data. In particular the IR spectrum revealed a characteristic carbonyl band at $1750 \mathrm{~cm}^{-1},{ }^{23}$ and the NMR spectrum showed the presence of two N-methyl groups ($\delta 3.31$ and 3.40) and a single aromatic proton ($\delta 10.23$). The mechanism of this ring contraction probably involves a benzylic acid type rearrangement which has been discussed in the conversion of a certain pyrimido $[5,4-g]$ pteridine 5 -oxide to an imid-azo[4,5-b]pyrazine by the action of sodium hydroxide. ${ }^{24}$ The photoirradiation of 5 in ethanol provided only 1 in 54% yield and no rearrangement of the N -oxide group was observed (Scheme IV).

Experimental Section

Melting points were taken on a Yanagimoto melting point apparatus and are uncorrected. IR spectra were recorded on a Japan Spectroscopic Co., Ltd. Model IR-E spectrophotometer from samples mulled in Nujol. NMR spectra were determined at 60 MHz with a Varian T-60 spectrometer using tetramethylsilane as the internal standard. UV spectra were recorded on a Hitachi 124 spectrophotometer. Mass spectra were performed on a JMS D100 EI spectrometer by a direct inlet system at 75 eV .

6,8-Dimethylpyrimido[5,4-e]-as-triazine-5,7(6 $\mathrm{H}, 8 \mathrm{H})$-dione 4-Oxide (Fervenulin 4-Oxide (5)). Method A. The suspension of 1,3-dimethyl-6-hydrazino-5-nitrosouracil (4) ${ }^{5}(0.199 \mathrm{~g}, 0.001 \mathrm{~mol})$ in dry DMF (3 mL) was stirred at $0^{\circ} \mathrm{C}$ while the Vilsmeier reagent prepared from dry DMF $(0.29 \mathrm{~g}, 0.004 \mathrm{~mol})$ and $\mathrm{POCl}_{3}(0.153 \mathrm{~g}, 0.001$ mol) was added dropwise. When the addition was complete the reaction mixture was allowed to warm to room temperature and stirred for 30 min . The resulting solution was diluted with $\mathrm{EtOH}(2 \mathrm{~mL})$ and evaporated in vacuo. The residue was poured onto ice-water and the precipitated solid was filtered. Recrystallization from EtOH gave 5 ($0.15 \mathrm{~g}, 72 \%$): mp $179-180^{\circ} \mathrm{C}$; IR $1715,1660 \mathrm{~cm}^{-1}$ (CO); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 10.30\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}^{3} \mathrm{H}\right)$; $\mathrm{UV} \lambda_{\text {max }}(\mathrm{EtOH}) 240 \mathrm{~nm}(\log \epsilon 4.10), 304$ (3.21), $323 \mathrm{sh}(2.78) ; \mathrm{MS} m / e$ $209\left(\mathrm{M}^{+}\right), 193\left(\mathrm{M}^{+}-16\right)$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 40.19; H, 3.37; N, 33.48. Found: C, 39.92; H, 3.41; N, 33.76.

When this reaction was carried out without cooling, 4,6-di-methyl-v-triazolo $[4,5-d]$ pyrimidine-5,7(4H,6H)-dione (9) ($0.1 \mathrm{~g}, 55 \%$), $\mathrm{mp} 259-260^{\circ} \mathrm{C}$ (lit. ${ }^{10} \mathrm{mp} 260^{\circ} \mathrm{C}$), identical (IR) with an authentic sample, ${ }^{10}$ was obtained after evaporation of the reaction mixture, followed by recrystallization of the residue from $\mathrm{H}_{2} \mathrm{O}$.

Method B. A mixture of $4(0.199 \mathrm{~g}, 0.001 \mathrm{~mol})$ and dimethylform-amide-dimethyl sulfate complex ${ }^{6}(0.6 \mathrm{~g}, 0.003 \mathrm{~mol})$ was stirred at
room temperature for 2 h . The resulting solution was diluted with EtOH (1 mL) and the precipitates were filtered. Recrystallization from EtOH afforded $5(0.09 \mathrm{~g}, 43 \%), \mathrm{mp} 179-180^{\circ} \mathrm{C}$, identical with a sample of 5 prepared by method A.

Method C. A mixture of $4(0.199 \mathrm{~g}, 0.001 \mathrm{~mol})$ and $\mathrm{HCOOH}(3 \mathrm{~mL})$ was refluxed for 30 min and the reaction mixture was evaporated in vacuo. The residue was recrystallized from EtOH to give 5 (0.11 g , 54%), mp $179-180^{\circ} \mathrm{C}$, identical in all respects with the material prepared as described above.

Method D. A suspension of $4(0.199 \mathrm{~g}, 0.001 \mathrm{~mol})$ in triethyl orthoformate $(3 \mathrm{~mL})$ was heated at $90^{\circ} \mathrm{C}$ for 30 min . After cooling the reaction mixture, the precipitated solid was filtered and recrystallized from EtOH to give $5(0.148 \mathrm{~g}, 71 \%), \mathrm{mp} 179-180^{\circ} \mathrm{C}$, identical with the material prepare by methods A, B, and C.

3-Alkyl-6,8-dimethylpyrimido[5,4-e]-as-triazine-5,7(6H,8H)dione 4-Oxides (3-Alkylfervenulin 4-Oxides (10 and 11)). General Procedure. A mixture of $4(0.199 \mathrm{~g}, 0.001 \mathrm{~mol})$ and the respective ortho esters (2 mL) was heated for 30 min at $90^{\circ} \mathrm{C}$. The resulting solution was evaporated in vacuo and the residue was recrystallized from an appropriate sclvent to give the corresponding fervenulin 4-oxides (10 and 11).

Compound 10: recrystallized from $\mathrm{EtOH}(0.17 \mathrm{~g}, 76 \%)$; mp 137-138 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{7} \mathrm{mp} 138^{\circ} \mathrm{C}$); IR $1715,1660 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \mathrm{MS} \mathrm{m} / \mathrm{e} 223\left(\mathrm{M}^{+}\right), 207$ ($\mathrm{M}^{+}-16$). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 43.05; H, 4.06; N, 31.38 . Found: C, 43.06; H, 4.06; N, 31.65.

Compound 11: recrystallized from EtOAc ($0.2 \mathrm{~g}, 85 \%$); mp 145.5-147 ${ }^{\circ} \mathrm{C}$; IR 1725, $1670 \mathrm{~cm}^{-1}(\mathrm{CO})$; MS m/e $237\left(\mathrm{M}^{+}\right), 221\left(\mathrm{M}^{+}-16\right)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, $45.57 ; \mathrm{H}, 4.67$; $\mathrm{N}, 29.53$. Found: $\mathrm{C}, 45.22 ; \mathrm{H}$, 4.62; N, 29.27.

6,8-Dimethylpyrimido[5,4-e]-as-triazine-5,7(6 $\mathrm{H}, 8 \mathrm{H})$-dione (Fervenulin (1)). Method A. A mixture of $5(0.209 \mathrm{~g}, 0.001 \mathrm{~mol})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.522 \mathrm{~g}, 0.003 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was stirred at room temperature for 1 h . The resulting clear solution was extracted with CHCl_{3} (three $5-\mathrm{mL}$ portions). The CHCl_{3} extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was recrystallized from $\mathrm{C}_{6} \mathrm{H}_{6}$ to give $1(0.17 \mathrm{~g}, 90 \%)$: mp 177-178 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{5} \mathrm{mp} 178-179{ }^{\circ} \mathrm{C}$); IR $1725,1670 \mathrm{~cm}^{-1}(\mathrm{CO})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.93(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 9.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}^{3} \mathrm{H}\right)$; UV $\lambda_{\max }(\mathrm{EtOH}) 237 \mathrm{~nm}(\log \epsilon 3.97)$, 275 sh (2.99), 343 (3.16); MS m/e 193 (M^{+}).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 43.52; $\mathrm{H}, 3.65 ; \mathrm{N}, 36.26$. Found: C , 43.33; H, 3.61; N, 36.19.

Method B. A mixture of $5(0.104 \mathrm{~g}, 0.0005 \mathrm{~mol})$ in dry DMF (3 mL) was refluxed for 8 h and the reaction mixture was concentrated in vacuo. The residue was recrystallized from $\mathrm{C}_{6} \mathrm{H}_{6}$ to give $1(0.06 \mathrm{~g}, 60 \%)$, $\operatorname{mp} 177-178^{\circ} \mathrm{C}$, identical with a sample of 1 prepared by method A. Treatment of $5(0104 \mathrm{~g}, 0.0005 \mathrm{~mol})$ with $\mathrm{Ac}_{2} \mathrm{O}(3 \mathrm{~mL})$ under the same conditions afforded $1(0.02 \mathrm{~g}, 21 \%)$.

Method C. A solution of $5(0.209 \mathrm{~g}, 0.001 \mathrm{~mol})$ in $\mathrm{EtOH}(400 \mathrm{~mL})$ was irradiated with a $100-\mathrm{W}$ high-pressure mercury lamp surrounded by a water-coolec. Pyrex filter at room temperature for 20 min . The reaction mixture was evaporated in vacuo and the residue was recrystallized from $\mathrm{C}_{6} \mathrm{H}_{6}$ to afford $1(0.104 \mathrm{~g}, 54 \%)$, mp $177-178{ }^{\circ} \mathrm{C}$, identical with the material prepared by methods A and B.

3-Alkyl-6,8-dimethylpyrimido[5,4-e]-as-triazine-5,7-
($6 \mathrm{H}, 8 \mathrm{H}$)-diones (3-Alkylfervenulins (12 and 13)). General Procedure. A mixture of 10 or $11(0.001 \mathrm{~mol})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.522 \mathrm{~g}, 0.003$ $\mathrm{mol})$ in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was treated as described in method A of 1 .

Compound 12: recrystallized from n-hexane ($0.176 \mathrm{~g}, 85 \%$), mp $112-113^{\circ} \mathrm{C}$ (lit. ${ }^{8} \mathrm{mp} 127^{\circ} \mathrm{C}$); IR $1725,1670 \mathrm{~cm}^{-1}(\mathrm{CO})$; MS m/e 207 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 46.37; H, 4.38; N, 33.80. Found: C, 46.69 ; H, 4.46; N, 34.15 .

Compound 13: recrystallized from n-hexane $(0.12 \mathrm{~g}, 55 \%), \mathrm{mp} 88-89$ ${ }^{\circ} \mathrm{C}$; IR 1730, $1685 \mathrm{~cm}^{-1}(\mathrm{CO})$; MS m/e $221\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, $4 \varepsilon .86 ; \mathrm{H}, 5.01$; $\mathrm{N}, 31.66$. Found: C, $48.55 ; \mathrm{H}, 4.93 ; \mathrm{N}$, 31.64.

3-Chloro-6,8-dimethylpyrimido[5,4-e]-as-triazine-

$\mathbf{5 , 7}(\mathbf{6 H}, \mathbf{8 H})$-dione (14). A mixture of $5(0.209 \mathrm{~g}, 0.001 \mathrm{~mol})$ and POCl_{3} $(0.6 \mathrm{~mL})$ in dry DMF (3 mL) was stirred at $50^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was evaporated in vacuo and the residue was covered with ice-water. The precipitates were filtered and recrystallized from EtOH to yield $14(0.19 \mathrm{~g}, 84 \%)$, mp $147{ }^{\circ} \mathrm{C}$ (lit. $.^{5} \mathrm{mp} 146-147^{\circ} \mathrm{C}$); IR $1740,1675 \mathrm{~cm}^{-1}(\mathrm{CO})$; MS m/e $227\left(\mathrm{M}^{+}\right), 229\left(\mathrm{M}^{+}+2\right)$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClN}_{5} \mathrm{O}_{2}: \mathrm{C}, 36.93 ; \mathrm{H}, 2.66 ; \mathrm{N}, 30.77$. Found: C , 37.06; H, 2.72; N, 30.98.

6,8-Dimethyl-3-hydroxyprimido[5,4-e]-as-triazine-
5,7($\mathbf{6 H}, 8 \mathrm{H}$)-dione (Fervenulone (15)). Method A. A mixture of 14 $(0.227 \mathrm{~g}, 0.001 \mathrm{~mol})$ and $\mathrm{HCOOH}(5 \mathrm{~mL})$ was refluxed for 1 h . The reaction mixture was evaporated in vacuo, and the residue was filtered by the addition of EtOH . The mass was recrystallized from EtOH and the crystals were dried $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ in vacuo for 2 h at $120^{\circ} \mathrm{C}$ to give the
anhydrous 15 ($0.186 \mathrm{~g}, 89 \%$), mp $256-258^{\circ} \mathrm{C}$ (lit. ${ }^{15} \mathrm{mp} 260-261^{\circ} \mathrm{C}$); IR 1710, $1660 \mathrm{~cm}^{-1}$ (CO); MS m/e $209\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{3}: \mathrm{C}, 40.19 ; \mathrm{H}, 3.37 ; \mathrm{N}, 33.48$. Found: C, 39.89; H, 3.78; N, 33.40.

Method B. A mixture of $14(0.227 \mathrm{~g}, 0.001 \mathrm{~mol})$ and $2 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$ at $90^{\circ} \mathrm{C}$ for 30 min . The resulting solution was neutralized with 4% NaOH and allowed to stand overnight at room temperature. The precipitates were filtered and recrystallized from EtOH. The crystals were dried under the conditions described above to yield $15(0.107 \mathrm{~g}$, $51 \%), \mathrm{mp} 256-258^{\circ} \mathrm{C}$, identical with a sample prepared by method A.

Method C. A solution of 3-benzyloxy-6,8-dimethylpyrimido [5,4-$e]$-as-triazine-5,7($6 \mathrm{H}, 8 \mathrm{H}$) -dione 16 ($1.196 \mathrm{~g}, 0.004 \mathrm{~mol}$) in EtOH (100 mL) containing $10 \% \mathrm{Pd}-\mathrm{C}(1 \mathrm{~g})$ was hydrogenated at room temperature and at atmospheric pressure. Hydrogenation was stopped when the theoretical volume (90 mL) of H_{2} gas was consumed. The solution was filtered and the filtrate was evaporated to dryness in vacuo. The residue was treated as described in method A to give $15(0.418 \mathrm{~g}, 50 \%)$, $\mathrm{mp} 256-258^{\circ} \mathrm{C}$, identical with the material prepared by methods A and B .
3-Benzyloxy-6,8-dimethylpyrimido[5,4-e]-as-triazine-
$5,7(6 \mathrm{H}, \mathbf{8 H})$-dione (16). A suspension of $14(2.27 \mathrm{~g}, 0.01 \mathrm{~mol})$ in absolute benzyl alcohol (10 mL) dissolving metallic $\mathrm{Na}(0.24 \mathrm{~g}, 0.01 \mathrm{~g}$ atom) was stirred at room temperature for 3 h . The precipitates were filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and recrystallized from EtOH to give 16 ($2.24 \mathrm{~g}, 75 \%$), mp 185-187 ${ }^{\circ} \mathrm{C}$; IR 1735, $1675 \mathrm{~cm}^{-1}$ (CO); MS m/e 299 $\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, $56.18 ; \mathrm{H}, 4.38 ; \mathrm{N}, 23.40$. Found: C , 55.82; H, 4.51; N, 23.07.

2,6,8-Trimethylpyrimido[5,4-e]-as-triazine-3,5,7($2 \mathrm{H}, 6 \mathrm{H}, 8 \mathrm{H})$ trione (2-Methylfervenulone, MSD-92 (2)). A mixture of 15 (0.209 $\mathrm{g}, 0.001 \mathrm{~mol})$, methyl iodide $(0.28 \mathrm{~g}, 0.002 \mathrm{~mol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.07 \mathrm{~g}$, 0.0005 mol) in dry DMF (10 mL) was stirred at $50^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated in vacuo and the residue was covered with EtOAc (3 mL). The insoluble solid was filtered off and the filtrate was again evaporated in vacuo. The residue was recrystallized from EtOH and the separated solid was dried at $120^{\circ} \mathrm{C}$ in vacuo $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ for 2 h to give the anhydrous $2(0.212 \mathrm{~g}, 95 \%)$ as yellow crystals: $\mathrm{mp} 180-181^{\circ} \mathrm{C}$ (lit. $.^{15} \mathrm{mp} 181-182^{\circ} \mathrm{C}$, lit. $.^{18} \mathrm{mp} 183-183.5^{\circ} \mathrm{C}$); IR $1730,1665 \mathrm{~cm}^{-1}$ (CO); NMR (CDCl_{3}) $\delta 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.93$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$); UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 240 \mathrm{~nm}(\log \epsilon 4.27), 280(3.30), 415$ (3.45); $\lambda_{\text {max }}(\mathrm{MeOH}) 218 \mathrm{~nm}(\log \epsilon 4.10), 285(3.86), 415$ (2.95); MS m/e 223 (M^{+}).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 43.05; H, 4.06; N, 31.38. Found: C, 43.12; H. 4.29; N, 31.72.

5-Acetylamino-1,3-dimethylbarbituric Acid (17). Method A. A solution of $5(0.209 \mathrm{~g}, 0.001 \mathrm{~mol})$ in a mixture of $\mathrm{Ac}_{2} \mathrm{O}(2 \mathrm{~mL})$ and $\mathrm{AcOH}(2 \mathrm{~mL})$ was refluxed for 1 h . The reaction mixture was evaporated in vacuo and the residue was recrystallized from EtOH to give 17 ($0.107 \mathrm{~g}, 50 \%$), mp $230-231^{\circ} \mathrm{C}$; MS m/e $213\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 45.07 ; \mathrm{H}, 5.20 ; \mathrm{N}, 19.71$. Found: C, 44.89; H, 5.08; N, 19.76.

Method B. A solution of 5-amino-1,3-dimethylbarbituric acid 18^{20} ($0.171 \mathrm{~g}, 0.001 \mathrm{~mol})$ and a mixture of $\mathrm{Ac}_{2} \mathrm{O}(2 \mathrm{~mL})$ and $\mathrm{AcOH}(2 \mathrm{~mL})$ was refluxed for 1 h and the reaction mixture was treated as described above to give $17(0.1 \mathrm{~g}, 47 \%), \mathrm{mp} 230-231^{\circ} \mathrm{C}$, identical with a material prepared by method A.

5,7-Dimethylimidazo[4,5-e]-as-triazine-6(7H)-one (19). A mixture of $5(0.209 \mathrm{~g}, 0.001 \mathrm{~mol})$ and $0.5 \% \mathrm{NaOH}(10 \mathrm{~mL})$ was heated at $90^{\circ} \mathrm{C}$ for 1 h . The resulting solution was acidified (pH 4) by the addition of AcOH and the precipitated solid was filtered. Recrystallization from EtOH gave $19(0.066 \mathrm{~g}, 40 \%), \mathrm{mp} 146-147^{\circ} \mathrm{C}$; IR 1750 cm^{-1} (CO); NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta 3.31$ (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 3.40 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 10.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}^{3} \mathrm{H}\right)$; MS m/e $165\left(\mathrm{M}^{+}\right)$

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}$: C, 43.63; H, 4.27; N, 42.41. Found: C, 43.55; H, 4.31; N, 42.05 .

Acknowledgment. The authors are grateful to Professor Fumio Yoneda of Kumamoto University for helpful discussions. The authors also thank Mr. Katsuhiko Nagahara of Kitasato University for his cooperation in spectral measurements.

Registry No.-1, 483-57-8; 2, 22712-32-9; 4, 40012-15-5; 5, 62758-20-7; 10, 60026-36-0; 11, 63069-55-6; 12, 25696-97-3; 13, $64235-46-7$; 14, 18969-84-1; 15, 18969-83-0; 16, 64235-47-8; 17 , 64235-48-9; 18, 54632-31-4; 19, 64216-10-0; benzyl alcohol, 100-516.

References and Notes

(1) Preliminary reports: (a) M. Ichiba, K. Senga, S. Nishigaki, and F. Yoneda, J. Heterocycl. Chem., 14, 175 (1977); (b) K. Senga, M. Ichiba, and S. Nishigaki, Heterocycles, 6, 273 (1977).
(2) Recent advances in the chemistry and biology of pyrimido[5,4-e]-astriazines have been reviewed by D. J. Brown and R. K. Lynn, "Chemistry and Biology of Pteridines", W. Pfleiderer, Ed., Walter de Gruyter, New York, N.Y., 1975, pp 575-601.
(3) K. Senga, H. Kanazawa, and S. Nishigaki, J. Chem. Soc., Chem. Commun., 155 (1976).
(4) K. Senga, H. Kanazawa, and S. Nishigaki, J. Chem. Soc., Chem. Commun., 588 (1976).
(5) W. Pfleiderer and K.-H. Schündehütte, Justus Liebigs Ann. Chem., 615, 42 (1958).
(6) H. Bredereck, F. Effenberger, and G. Simchen, Chem. Ber., 96, 1350 (1963).
(7) F. Yoneda, T. Nagamatsu, and K. Shinomura, J. Chem. Soc., Perkin Trans 1, 713, (1976)
(8) G. Blankenhorn and W. Pfleiderer, Chem. Ber., 105, 3334 (1972).
(9) In a preliminary communication, ${ }^{14}$ it was speculated that the reaction proceeds via the nucleophilic attack of the oxime group of 4 on the Vilsmeier reagent; however, the initial formation of intermediate $\mathbf{6}$ seems to be favorable since the nucleophilicity of the hydrazino group is greater than that of the oxime group
(10) G. Nübel and W. Pfleiderer, Chem. Ber., 98, 1060 (1965).
(11) For example, see E. C. Taylor, "Topics in Heterocyclic Chemistry", R. N. Castle, Ed., Wiley, New York, N.Y., 1969, pp 1-34.
(12) G. D. Daves, R. K. Robins, and C. C. Cheng, J. Am. Chem. Soc., 84, 1724 (1962).
(13) K. Tanabe, Y. Asahi, M. Nishikawa, T. Shima, Y. Kuwada, T. Kanazawa, and K. Ogata, Takeda Kenkyusho Nempo, 22, 133 (1963); Chem. Abstr., 60, 13232d(1964)
(14) C. Temple, C. L. Kussner, and J. A. Montgomery, J. Org. Chem., 34, 2102 (1969).
(15) E. C. Taylor and F. Sowinski, J. Org. Chem., 40, 2321 (1975)
(16) F. Yoneda and T. Nagamatsu, Bull. Chem. Soc. Jpn., 48, 2884 (1975).
(17) Hydrolysis of an active chloro compound with formic acid has been re ported: C. Temple, B. H. Smith, and J. A. Montgomery, J. Org. Chem., 23, 3601 (1972)
(18) T. W. Miller, L. Chaiet, B. Arison, R. W. Walker, N. R. Trenner, and F. J. Wolf "'Antimicrobial Agents and Chemotherapy", J. C. Sylvester, Ed., Medical Textbook Publishers, New York, N.Y., 1963, p 58.
(19) (a) E. Ochiai, "Aromatic Amine Oxides", Elsvier, New York, N.Y., 1967 pp. 247-339; (b) A. R. Katritzky and J. M. Lagowski, "Chemistry of Heterocyclic N-Oxides'", Academic Press, New York, N.Y., 1971, pp 258 319.
(20) H. Biltz and P. Damm, Chem. Ber., 46, 3662 (1913)
(21) It is interesting to note that no reaction occurred when 5 was refluxed in acetic acid alone for 1 h , and 5 being recovered
(22) During the course of this study, Yoneda et al. reported the ring contraction of pyrimido[5,4-e]-as-triazines and their 4 -oxides to imidazo[4,5-e]-as-triazines: F. Yoneda. T. Nagamatsu, and M. Kawamura, J. Chem. Soc., Chem. Commun., 658 (1976); F. Yoneda, M. Kawamura, T. Nagamatsu, K. Kuretani, A. Hoshi, and M. ligo, Heterocycles, 4, 1503 (1976).
(23) The carbonyl bands of imidazo [$4,5-\mathrm{e}]$-as-triazines prepared by Yoneda et al. have been observed at $1760 \mathrm{~cm}^{-1}$ (see ref 22).
(24) E. C. Taylor, Y. Maki, and A. McKillop. J. Org. Chem., 37, 1601 (1972).

α-Phosphoryl Sulfoxides. 3. Dimethylphosphorylmethyl p-Tolyl
 Sulfoxide. Resolution, Stereospecific Synthesis, and the Horner-Wittig Reaction. A New Synthesis of Optically
 Active α, β-Unsaturated Sulfoxides ${ }^{1}$

Marian Mikolajczyk,* Wanda Midura, Sławomir Grzejszczak, Andrzej Zatorski, and Anna Chefczyńska
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Organic Sulfur Compounds, 90-362 ねódź, Boczna 5, Poland

Received March 2, 1977

Abstract

As part of a continuing study of α-phosphoryl sulfoxides, racemic dimetrylphosphorylmethyl p-tolyl sulfoxide (1) was prepared and resolved into optical isomers via fractional crystallization of diastereomeric quininium salts of methyl-p-tolylsulfinylmethylphosphonic acid (5) and subsequent methylation of the tetramethylammonium salts of the resulting enantiomers of 5 . Sulfoxide $(+)-1$ with the R chirality at sulfur was synthesized stereospecifically by treatment of $(-)-(S)$-menthyl p-tolylsulfinate (2) with dimethylphosphorylmethyllithium (4). The enantiomeric and optical purity of chiral sulfoxides 1 was determined by means of NMR spectroscopy using a chiral europium shift reagent. It was demonstrated that the lithio derivative of $(+)-1$ reacted with a variety of carbonyl compounds to afford optically active α, β-unsaturated sulfoxides. In some cases the formation of β, γ-unsaturated sulfoxides was observed.

α-Phosphoryl sulfoxides ${ }^{2-4}$ are of considerable interest from both synthetic and stereochemical points of view. Like simple sulfoxides, they undergo the Pummerer and Pum-merer-type reactions, halogenation, oxidation, and reduction. ${ }^{5}$ Owing to the presence of the phosphonate moiety, α-phosphoryl sulfoxides are key substrates in the synthesis of α, β unsaturated sulfoxides based on the Horner-Wittig reaction. ${ }^{3}$ It should be mentioned that this reaction can be also carried out in a catalytic two-phase system in which the α-phosphoryl sulfoxides act as phase-transfer catalysts. ${ }^{6-8}$

Although a number of methods for preparing α, β-unsaturated sulfoxides are known, ${ }^{9}$ synthetic approaches to their optically active analogues are few in number and for the most part of limited applicability. The majority of optically active, α, β-unsaturated sulfoxides described in the chemical literature have been prepared according to Andersen's procedure from a reaction of (- -menthyl p-tolylsulfinate with vinyl Grignard reagents. ${ }^{10}$ Tschuchihashi et al. ${ }^{11}$ obtained the isomer E of optically active styryl p-tolyl sulfoxide by condensation of $(+)-(R)$-methyl p-tolyl sulfoxide with benzaldehyde followed by elimination of water. A method described by Naso et al. ${ }^{12}$ consisting of an asymmetric elimination of β-halogenoethyl p-tolyl sulfoxides by optically active amines is interesting but not very useful in practice since it affords vinyl p-tolyl sulfoxide with an optical purity of less than 20%.

Therefore, with the intent of developing a general method for the synthesis of optically active α, β-unsaturated sulfoxides, we have prepared optically active α-phosphoryl sulfoxides with the optically active center at the sulfur atom. In this paper we describe the synthesis of optically active dimethylphosphorylmethyl p-tolyl sulfoxide (1) and its Horner-Wittig reaction with carbonyl compounds. This sulfoxide was chosen because of the possibility of correlating its configuration with

(-)-(S)-menthyl p-tolylsulfinate (2) which is a common precursor to many optically active sulfinyl compounds. ${ }^{13,16}$

Results and Discussion

Synthesis of Racemic Dimethylphosphorylmethyl p-Tolyl Sulfoxide (1) and Its Enantiomers via Optical Resolution. Racemic sulfoxide 1 was prepared in good yields by a selective oxidation of dimethylphosphorylmethyl p-tolyl sulfide (3) with sodium metaperiodate and by the reaction of the lithio derivative of dimethyl methylphosphonate (4) with methyl p-tolylsulfinate.

The presence of the phosphonate moiety in the molecule of sulfoxide 1 offers the possibility of its utilization not only in the Horner-Wittig reaction but also for the transformation of the phosphonate ester function into the corresponding phosphonic acid 5 , which in turn makes possible the resolution of the chiral sulfoxide grouping by the classical method via diastereomeric salts with optically active amines. For this reason we prepared methyl p-tolylsulfinylmethylphosphonic acid (6) by two methods. In one of them sulfide 3 was used as the starting material. We found that it was readily demethylated by reaction with sodium iodide at $130-150^{\circ} \mathrm{C}$ or hydrolyzed under alkaline conditions (12% aqueous $\mathrm{NaOH}-$ dioxane) to give the sodium salt of O-methyl p-tolylthiomethylphosphonic acid (6). The dicyclohexylammonium salt of this acid ($\mathrm{mp} 132-132.5^{\circ} \mathrm{C}$) was oxidized to the dicyclohexylammonium salt of $5\left(\mathrm{mp} 152.5-153.5^{\circ} \mathrm{C}\right)$ from which the free acid 5 having mp $94-95^{\circ} \mathrm{C}$ was liberated by passing it through an ion-exchange column.

An alternative route to 5 involved the direct alkaline hydrolysis of sulfoxide 1 which resulted in the formation of the desired product in 75% yield.

Racemic acid 5 readily formed a crystalline quinine salt, $[\alpha]_{D}-78^{\circ}$, which after six crystallizations from acetone afforded in 19% yield the diastereomeric salt having $[\alpha]_{\mathrm{D}}-186^{\circ}$. Its specific rotation remained unchanged after further crystallizations. Decomposition of this salt gave the free acid (-)-5, $[\alpha]_{D}-142^{\circ}$. The more soluble diastereomeric salt having $[\alpha]_{\mathrm{D}}$ -3.9° was isolated from the acetone mother liquors in 47% yield. After acidification of this salt (-)-5, $[\alpha]_{D}+103^{\circ}$, was obtained. Both antipodes of acid 5 were converted into their tetramethylarmonium salts and treated with methyl iodide in acetonitrile to give the enantiomeric sulfoxides 1 with $[\alpha]_{D}$ -149° and $+196^{\circ}$, respectively. The experiments described above are shown in Scheme I.

Scheme I. Synthesis of Racemic and Optically Active Dimethylphosphorylmethyl p-Tolyl Sulfoxide (1)

 (土) -5. [(x) $]_{589}-78.4^{\circ}$

$[\alpha]_{589}-186^{\circ} \quad[\alpha]_{589}-3.9^{\circ}$

$(-)-5,[\alpha]_{889}-142^{\circ}$
(a) $\mathrm{Me}_{4} \mathrm{NOH}$
(b) MeI
(b) MeI

$(-)-1 .[\alpha]_{\text {589 }}-149^{\circ}$
(a) $\mathrm{Me}_{4} \mathrm{~N}$
(b) MeI

$(+)-5 ;[\alpha]_{569}+103^{\circ}$
(a) $\mathrm{Me}_{4} \mathrm{NOH}$
(b) MeI

DCHA - dicyclohexylamine; Q-quinine.

It is worthwhile to mention that our approach to optically active sulfoxides 1 is general and can be applied to eny α phosphoryl sulfoxide.
Determination of the Enantiomeric and Optical Purity of α-Phosphoryl Sulfoxide 1 by NMR. Resolution is often deemed complete once the enantiomers are obtained with equal and opposite specific rotations. This criterion, however, has limited precision and since in our case it was not fulfilled, an independent establishment of the optical purity of enantiomeric sulfoxides I was desirable. We employed, therefore, a chiral lanthanide shift reagent, tris-[3-(trifluoromethylhy-droxymethylene)- d-camphoratoleuropium(III), (TFMC), ${ }^{14}$ as a chiral medium for separation of the enantiomeric resonances of sulfoxide 1 .

However, before these experiments are considered, it is

Figure 1. ${ }^{1} \mathrm{H}$ NMR (A), ${ }^{31} \mathrm{P}$ NMR (B), and ${ }^{13} \mathrm{C}$ NMR (C) spectra of sulfoxide 1 in the presence of chiral shift reagent TFMC. The ratio of 1 to TFMC was $1: 2$, chloroform as solvent was used. (A) Normal (a and b) and phosphorus decoupled (c and d) resonance signals of the methoxy protons: (a) (\pm)-1 and TFMC; (b) $(+)-1,[\alpha]_{\mathrm{D}}+50.4^{\circ}$, and TFMC. (B) Proton decoupled ${ }^{31} \mathrm{P}$ NMR spectra. (a) (\pm)-1 and TFMC ($\Delta \delta=21 \mathrm{~Hz}$); (b) (-) $-1,[\alpha]_{\mathrm{D}}-74.5^{\circ}$, and TFMC; (c) $(-)-1,[\alpha]_{\mathrm{D}}$ -149°, and TFMC. (C) Proton decoupled ${ }^{13} \mathrm{C}$ NMR resonance signals of the methylene and methoxy carbons. (a) (\pm)-1 without TFMC; (b) $(\pm)-1$ in the presence of TFMC $(\Delta \delta=9.8 \mathrm{~Hz})$.
appropriate to describe the ${ }^{1} \mathrm{H}$ NMR spectrum of sulfoxide 1. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of 1 at 90 MHz showed, in addition to the resonance signals of the p-tolyl protons (singlet at $\delta 2.42 \mathrm{ppm}$ and multiplet at $\delta 7.48 \mathrm{ppm}$), two doublets centered at $\delta 3.74$ and $3.80 \mathrm{ppm}\left(J_{\mathrm{CH}_{3}-\mathrm{P}}=11 \mathrm{~Hz}\right)$ which correspond to the diastereotopic methoxy groups as well as two AB systems at $\delta 3.29$ and 3.40 ppm which are a part of the ABX systefn ($\mathrm{X}=$ phosphorus) and correspond to the nonequivalent methylene protons. It is obvious that the chiral sulfur atom in 1 induces the magnetic nonequivalence of the methoxy and methylene protons.

The ${ }^{1} \mathrm{H}$ NMR spectrum of racemic 1 in the presence of TFMC revealed further doubling of the methoxy resonance signals whereas no separation of the enantiomeric resonances was observed for the other groups of protons. Therefore, only the methoxy signals are of analytical value. As expected, the ${ }^{1} \mathrm{H}$ NMR spectrum of $(+)-1,[\alpha]_{\mathrm{D}}+50.4^{\circ}$, in the presence of TFMC contained two pairs of the methoxy doublets of different intensity. The integration of these signals provided the basis for the determination of the enantiomeric $(+)-1 /(-)-1$ ratio as 67.6:32.4 and an estimation of the specific rotation for optically pure sulfoxide 1 . The calculated value was equal to $[\alpha]_{\mathrm{D}}+143^{\circ}$ which is in good agreement with the experimental value obtained for (-)-1 (the difference lies within the limits of error of the NMR determination). With regard to the ac-

Scheme II. The Horner-Wittig Reaction of (+)-(R)-Dimethylphosphorylmethyl p-Tolyl Sulfoxide (1) with Aldehydes and Ketones

curacy of the NMR method, the phosphorus decoupled ${ }^{1} \mathrm{H}$ NMR spectra proved to be very useful.

The ${ }^{31} \mathrm{P}$ NMR spectra were also utilized to demonstrate that sulfoxide (-)-1, $[\alpha]_{\mathrm{D}}-149^{\circ}$, was optically pure. In the proton decoupled ${ }^{31} \mathrm{P}$ NMR spectrum of a mixture of racemic 1 with TFMC, there were observed two well separated singlets of equal intensity due to enantiomeric sulfoxides 1 . Since in the ${ }^{31} \mathrm{P}\{\mathrm{H}\}$ NMR spectrum of $(-)-1,[\alpha]_{\mathrm{D}}-149^{\circ}$ in the presence of TFMC there was only one singlet, it can be assumed that the examined sample is optically pure.

It is also of special interest to note that in the ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR spectrum of sulfoxide 1 with TFMC, the separation of the enantiomeric resonances of the methylene carbon was observed. The ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$, and ${ }^{13} \mathrm{C}$ NMR spectra discussed above are shown in Figure 1.
Stereospecific Synthesis of $(+)-(R)$-Dimethylphosphorylmethyl p-Tolyl Sulfoxide (1). Although the synthesis of both enantiomers of 1 has been accomplished, the method involving optical resolution of diastereomeric quininium salts of acid 5 followed by methylation is not very satisfactory for two reasons; i.e., the total yield of enantiomeric sulfoxides 1 obtained by this procedure was not satisfactory, and the dextrorotatory isomer of 1 was obtained in only 70% optical purity. Therefore, to overcome these limitations we extended our study to the reaction of phosphonate carbanions with sulfinic esters (reported by us earlier). ${ }^{4}$ We have now found that treatment of (-)-(S)-menthyl p-tolylsulfinate (2), $[\alpha]_{\mathrm{D}}$ -202°, with two moles of dimethylphosphorylmethyllithium (4) at $-20^{\circ} \mathrm{C}$ in tetrahydrofuran gave the sulfoxide $(+)-1$, $[\alpha]_{\mathrm{D}}+144^{\circ}$ in about 70% yield. ${ }^{15}$
Surprisingly, this reaction resulted in the formation of the dextrorotatory sulfoxide 1 which was almost optically pure. In view of this finding, the two methods may be considered to be complementary.

The reaction described above also allowed us to assign the absolute configuration to enantiomeric sulfoxides 1 . Since this reaction is a typical nucleophilic substitution at sulfinyl sulfur and undoubtedly takes place with inversion of configuration at sulfur, ${ }^{16}$ it is reasonabe to assume that the chirality at sulfur in sulfoxide (+)- 1 is R.

Synthesis of Optically Active α, β-Unsaturated Sulfoxides. Since a method for synthesizing enantiomeric sulfoxides 1 was now available, the remaining problem was to apply it for the synthesis of optically active α, β-unsaturated sulfoxides. The reaction of the lithio derivative of sulfoxide $(+)-(R)-1,[\alpha]_{\mathrm{D}}+143^{\circ}$, with carbonyl compounds was carried out under conditions similar to those described previously ${ }^{3}$ for racemic diethylphosphorylmethyl methyl sulfoxide. The results obtained from reaction of the organolithium reagent with formaldehyde, cyclohexanone, benzaldehyde, acetone, and cyclopentanone are summarized in Scheme II.

The reaction of $(+)-(R)-1$ with formaldehyde gave (+)-vinyl p-tolyl sulfoxide (7), $[\alpha]_{\mathrm{D}}+386^{\circ}$ which is known to have the R chirality at sulfur. ${ }^{10}$

Taking into account the fact that the Horner-Wittig reaction of (+)-1 does not disturb the configuration at the chiral sulfur, this result provides independent proof of correctness of our configurational assignments to the enantiomers of sulfoxide 1 . The reaction with cyclohexanone yielded sulfoxide $(-)-(R)-8,[\alpha]_{\mathrm{D}}-274^{\circ}$.

As expected, in the case of the reaction of benzaldehyde, a mixture of isomers $E+Z$ of styryl p-tolyl sulfoxide (R)-(9) in the ratio 75:25 was obtained. The specific rotation of the product was found to be $[\alpha]_{\mathrm{D}}-68^{\circ}$. Since the isomer E of sulfoxide (R)-9 is dextrorotatory and its specific rotation value reported in the literature ${ }^{11}$ is $[\alpha]_{\mathrm{D}}+164.5^{\circ}$, the negative sign of the specific rotation of our product must have been due to a very high rotation value of the isomer $Z-(R)-9$ of opposite sign. It is noteworthy that the pure Z isomer of optically active sulfoxide 9 has not yet been prepared and characterized. Therefore, by means of column chromatography the initially obtained mixture of sulfoxides $(R)-9$ was separated into the pure E and Z isomers having $[\alpha]_{D}+166^{\circ}$ and -736°, respectively. We would like to point out that, although the chirality at sulfur in both geometrical isomers is the same, the signs of their specific rotation are opposite.

Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product upon reaction of $(+)-(R)-1$ with acetone revealed the presence of two olefinic compounds separable by column chromatography. The major product was the expected $(-)-(R) 1-(p-$ tolylsulfinyl)-2-methylpropene (10), $[\alpha]_{\mathrm{D}}-242^{\circ}$ whereas the minor product has been identified as 2 -methylallyl p-tolyl sulfoxide (11), i.e., the isomeric β, γ-unsaturated system. The ratio of α, β - to β, γ-unsaturated isomers 10 and 11 was found by NMR spectral analysis to be $66: 34$. In the case of cyclopentanone the only product obtained was β, γ-unsaturated sulfoxide $12 .{ }^{17}$

Although the base-catalyzed isomerization of $\alpha, \beta-$ to $\beta, \gamma-$ unsaturated isomers of alkenyl methyl sulfides, sulfoxides, and sulfones is well known, ${ }^{18}$ this seems to be the first reported case of it occurring under the Horner-Wittig reaction conditions. ${ }^{19}$ It is quite likely that the initially formed α, β-unsaturated sulfoxides undergo isomerization to the corresponding β, γ isomers under the basic reaction conditions especially in view of the fact that a small molar exesss in n-butyllithium was used for the generation of $4 .{ }^{20}$

The isomerization rate depends on the structure of the particular sulfoxide. The exclusive formation of the β, γ-unsaturated sulfoxide 12 prepared from cyclopentanone and the stability of α, β-unsaturated sulfoxide 8 prepared from cyclohexanone are not surprising. Thus the activation parameters for the base-catalyzed isomerization of methylenecycloalkanes to methylcycloalkenes are $H^{\ddagger}=13.3 \mathrm{kcal} / \mathrm{mol}$ and $S^{\ddagger}=-17$ eu for five-membered systems, and $H^{\ddagger}=27.1$ $\mathrm{kcal} / \mathrm{mol}$ and $S^{\ddagger}=0.7$ eu for six-membered systems. ${ }^{21}$

Finally, a comment regarding the optical activity of sulfoxides 11 and 12 ; i.e., on isolation, both sulfoxides exhibited very small positive rotations. Like other optically active allyl sulfoxides, they most probably undergo fast racemization by a $[2,3]$ sigmatropic process to give the achiral sulfenate ester as an intermediate. ${ }^{22}$

Experimental Section

All melting and boiling points are uncorrected. Solvents and commerical reagents were distilled and dried by conventional me:hods before use. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 60 MHz with a R12B Perkin-Elmer spectrometer and at 90 MHz with a Bruker HX90 spectrometer. ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Jeol JNM-C- 60 H 1 spectrometer with external $\mathrm{H}_{3} \mathrm{PO}_{4}$ and internal $\mathrm{Me}_{4} \mathrm{Si}$ as the standards, respectively. Column chromatography was done on Merck silica gel, $100-200$ mesh. Optical activity measurements were made with a Perkin-Elmer 241 MC photopolarimeter in chloroform solution, unless specified otherwise.

Dimethylphosphorylmethyl p-Tolyl Sulfide (3). A mixture of chloromethyl p-tolyl sulfide ($51.3 \mathrm{~g}, 0.3 \mathrm{~mol}$) and trimethyl phosphite was heated at $150-160^{\circ} \mathrm{C}$ for 10 h . The crude product was distilled to give 3 as a colorless oil: bp $120-122^{\circ} \mathrm{C}(0.05 \mathrm{mmHg}), n^{20} \mathrm{D} 1.5472$, $51.7 \mathrm{~g}(70 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.3\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.15(\mathrm{~d}, 2$, $\left.\mathrm{CH}_{2}-\mathrm{P}(\mathrm{O}),{ }^{1} J_{\mathrm{P}-\mathrm{CH}_{2}}=14 \mathrm{~Hz}\right), 3.74\left(\mathrm{~d}, 6, \mathrm{CH}_{3} \mathrm{OP},{ }^{2} J_{\mathrm{P}-\mathrm{CH}_{3}}=10.7 \mathrm{~Hz}\right)$, 7.13 and $7.37\left(\mathrm{~A}_{2} \mathrm{~B}_{2}\right.$ system, 4, aromatic, $\left.J_{\mathrm{AB}}=8.3 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta-26.3$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}, 48.77 ; \mathrm{H}, 6.14 ; \mathrm{P}$, 12.57. Found: C, 49.12; H, 6.38; P, 12.42.

Oxidation of Sulfide 3 to Dimethylphosphorylmethyl p-Tolyl Sulfoxide (1). To a solution of sulfide $3(2.46 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 13 mL of acetone and 7 mL of water a solution of sodium metaperiodate $(2.25$ $\mathrm{g}, 0.0105 \mathrm{~mol}$) in water was added within 1 h at -5 to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h and allowed to stand at $5^{\circ} \mathrm{C}$ for 24 h . The precipitated sodium iodate was filtered off. After removal of acetone the water solution was extracted with chloroform (5×10 mL). The chloroform extract was dried over anhydrous MgSO_{4} and evaporated to give pure sulfoxide 1 as a colorless oil: $n^{23}{ }_{\mathrm{D}} 1.5295,2.49$ $\mathrm{g}(95 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.42\left(\mathrm{~s}, 3, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 3.29$ and $3.40(\mathrm{AB}$ part of ABX system, $2, \mathrm{CH}_{2} \mathrm{P}(\mathrm{O}), J_{\mathrm{AB}}=14.55 \mathrm{~Hz}, J_{\mathrm{AX}}=14.65 \mathrm{~Hz}$, $J_{\mathrm{BX}}=15.43 \mathrm{~Hz}, \mathrm{X}=$ phosphorus); 3.74 and 3.80 (dd, $6, \mathrm{CH}_{3} \mathrm{OP}$, ${ }^{2} J_{\mathrm{P} \cdot \mathrm{CH}_{3}}=11.52$ and 10.94 Hz$) ; 7.48\left(\mathrm{~A}_{2} \mathrm{~B}_{2}\right.$ system, 4 , aromatic $) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta 21.28\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 53.89\left(\mathrm{~d}, \mathrm{CH}_{2}-\mathrm{P}, J_{\mathrm{P}-\mathrm{CH}_{2}}=137.9\right.$ $\mathrm{Hz}), 52.99\left(\mathrm{~d}, \mathrm{CH}_{3} \mathrm{OP},{ }^{2} J_{\mathrm{CH}_{3}-\mathrm{P}}=6.10 \mathrm{~Hz}\right) ; 124.10,129.95$ and 142.2 (aromatic carbons); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta-20.8$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{PS}: \mathrm{C}, 45.79 ; \mathrm{H}, 5.77 ; \mathrm{P}, 11.91$. Found: C, $46.14 ; \mathrm{H}, 5.93 ; \mathrm{P}$, 11.74 .

Reaction of Methyl p-Tolylsulfinate with Lithium Dimethyl Methylphosphonate (4). To a solution of dimethyl methylphosphonate $(2.48 \mathrm{~g}, 0.02 \mathrm{~mol})$ in THF $(30 \mathrm{~mL})$ a solution of n-butyllithium ($16 \mathrm{~mL}, 0.022 \mathrm{~mol}$) in hexane was added at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The reaction mixture was stirred at this temperature for 0.5 h and then a solution of methyl p-tolyl sulfinate (1.70 $\mathrm{g}, 0.01 \mathrm{~mol})$ in THF $(20 \mathrm{~mL})$ was added. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 15 min . The mixture was warmed slowly to $-20^{\circ} \mathrm{C}$ and quenched with aqueous ammonium chloride. After evaporation of THF and hexane, the aqueous layer was extracted with chloroform $(3 \times 25 \mathrm{~mL})$. The chloroform solution was dried and evaporated to give a crude oil from which excess dimethyl methylphosphonate was distilled (0.01 mmHg). Dimethylphosphorylmethyl p-tolyl sulfoxide (1) obtained in this manner ($2.1 \mathrm{~g}, 80 \%$) was chromatographed [ben-zene-acetone (5:1)] to afford the analytically pure sulfoxide 1. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{PS}: \mathrm{C}, 45.79 ; \mathrm{H}, 5.77 ; \mathrm{P}, 11.81$. Found: $\mathrm{C}, 45.62 ; \mathrm{H}$, $5.64 ; \mathrm{P}, 11.70$. The NMR spectra were identical with those recorded for 1 described above.
Synthesis of Methyl p-Tolylthiomethylphosphonic Acid (6). A. Demethylation of Sulfide 3. A mixture of $3(24.6 \mathrm{~g}, 0.1 \mathrm{~mol})$ and sodium iodide ($15 \mathrm{~g}, 0.1 \mathrm{~mol}$) was heated for 3 h at $140-150^{\circ} \mathrm{C}$. The resulting sodium salt of acid 6 was dissolved in water $(150 \mathrm{~mL})$. The water solution was extracted with chloroform $(2 \times 25 \mathrm{~mL})$ in order to remove neutral impurities. The aqueous layer was acidified and extracted with chloroform ($5 \times 25 \mathrm{~mL}$). After drying over anhydrous MgSO_{4} and evaporation of the chloroform solution, 14.1 g (61\%) of acid 6 as a pale yellow oil, $n^{21} \mathrm{D}$ 1.5615, was obtained. It was characterized as dicyclohexylammonium salt (see below).
B. Alkaline Hydrolysis of Sulfide 3. To a solution of $\mathbf{3}(7.38 \mathrm{~g}, 0.03$ $\mathrm{mol})$ in dioxane $(30 \mathrm{~mL})$ sodium hydroxide $(3.6 \mathrm{~g})$ in 10 mL of water was added. The reaction mixture was stirred at room temperature for 2 h . After neutralization and removal of dioxane, an aqueous layer was washed with chloroform (25 mL), acidified, and then extracted with chloroform ($5 \times 25 \mathrm{~mL}$). The chloroform solution obtained after extraction of the acidic aqueous layer was dried and concentrated to give $4.18 \mathrm{~g}(60 \%)$ of acid 6: n^{22} D $1.5617 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.25(\mathrm{~s}, 3$, $\left.\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 3.1\left(\mathrm{~d}, 2, \mathrm{CH}_{2}-\mathrm{P},{ }^{1} J_{\mathrm{P}-\mathrm{CH}_{2}}=14.7 \mathrm{~Hz}\right), 3.67\left(\mathrm{~d}, 3, \mathrm{CH}_{3} \mathrm{OP}\right.$, $\left.{ }^{2} J_{\mathrm{P}-\mathrm{CH}_{3}}=12 \mathrm{~Hz}\right), 7.17\left(\mathrm{~A}_{2} \mathrm{~B}_{2}\right.$ system, 4 , aromatic $) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right)$ $\delta-26.9$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}, 46.54 ; \mathrm{H}, 5.64 ; \mathrm{P}, 13.34$. Found: C, 46.31; H, 5.73; P, 13.39 .
Dicyclohexylammonium Salt of Acid 6. Compound $6[2.78 \mathrm{~g}$ $(0.012 \mathrm{~mol})$] was mixed with dicyclohexylamine $(2.17 \mathrm{~g}, 0.012 \mathrm{~mol})$. The resulting crystalline salt was washed with ether and recrystallized from acetone to yield 4.14 g (83.7\%) of the desired salt: mp 132-132.5 ${ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta-14.7$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{NPS}$: C, 60.99; H, 8.77; N, 3.39; P, 7.49. Found: C, 60.80; H, 8.81; N, 3.40; P, 7.57 .

Quininium Salt of Acid 6. To a solution of free acid $6(5.2 \mathrm{~g}, 0.0224$ $\mathrm{mol})$ in acetone an equimolar amount of quinine $(8.48 \mathrm{~g})$ was added. The product was recrystallized from acetone to give $12.24 \mathrm{~g}(89 \%)$ of the title salt, $\operatorname{mp} 56-57^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}-99^{\circ}$ (c, 1.7; chloroform); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta-17.2$ Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{PS}: \mathrm{C}, 60.84 ; \mathrm{H}, 6.84 ; \mathrm{P}$, 5.39. Found: C, 60.91, H, 6.72; P, 5.37.

Synthesis of Methyl p-Tolylsulfinylmethylphosphonic Acid (5). A. Oxidation of Dicyclohexylammonium Salt of 6. To a solution of the salt ($4.13 \mathrm{~g}, 0.01 \mathrm{~mol}$) in water and acetone sodium metaperiodate ($2.25 \mathrm{~g}, 0.0105 \mathrm{~mol}$) in water was added dropwise at -5 to $0^{\circ} \mathrm{C}$. Stirring at $0^{\circ} \mathrm{C}$ was continued for 3 h and the reaction mixture was allowed to stand at $0^{\circ} \mathrm{C}$ overnight. After evaporation of acetone, the dicyclohexylammonium salt of acid 5 was extracted with chloroform ($4 \times 25 \mathrm{~mL}$). The chloroform extract was dried over MgSO_{4} and the solvent was evaporated to give the required salt which was purified by crystallization from acetone: $\mathrm{mp} 152-153.5{ }^{\circ} \mathrm{C} ; 3.48 \mathrm{~g}(81 \%),{ }^{31} \mathrm{P}$ NMR (CHCl_{3}) δ-7.9. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{NPS}: \mathrm{C}, 58.72 ; \mathrm{H}, 8.45$; N, 3.26; P, 7.21. Found: C, 59.27; H, 8.59; N, 3.28; P, 7.31

Dicyclohexylammonium salt ($2.145 \mathrm{~g}, 0.005 \mathrm{~mol}$) prepared as above was passed through an ion-exchange column (Dowex 50W-X1). After evaporation of water and drying $1.23 \mathrm{~g}(100 \%)$ of a free acid 5 was obtained: mp 94-95 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.4\left(\mathrm{~s}, 3, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 3.41$ (d, 2, $\mathrm{CH}_{2}-\mathrm{P}(\mathrm{O}),{ }^{1} J_{\mathrm{P}-\mathrm{CH}_{2}}=14.7 \mathrm{~Hz}$), 3.7 (d, $3, \mathrm{CH}_{3} \mathrm{OP},{ }^{2} J_{\mathrm{P}-\mathrm{CH}_{3}}=11.3$ $\mathrm{Hz}), 7.42$ ($\mathrm{A}_{2} \mathrm{~B}_{2}$ system, 4 , aromatic); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta-17$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{PS}: \mathrm{C}, 43.54 ; \mathrm{H}, 5.28 ; \mathrm{P}, 12.48$. Found: C, 43.43; H, 5.27; P, 12.38.
B. Alkaline Hydrolysis of Sulfoxide 1. To a solution of sulfoxide $1(3.93 \mathrm{~g}, 0.015 \mathrm{~mol})$ in 30 mL of dioxane a solution of sodium hydroxide ($1.8 \mathrm{~g}, 0.045 \mathrm{~mol}$) in 15 mL of water was added dropwise. The reaction mixture was stirred for 2 h at room temperature and treated then with 50 mL of water. After evaporation of dioxane, the aqueous layer was washed with chloroform, acidified with hydrochloric acid, and washed once with chloroform. On evaporation of water the residue was extracted with chloroform ($5 \times 25 \mathrm{~mL}$). The solvent was evaporated to give $2.82 \mathrm{~g}(75.7 \%)$ of acid 5 , physical and spectral properties of which were identical with those described above.
Oxidation of Quininium Salt of Acid 6. To a solution of quininium salt of 6 ($12.21 \mathrm{~g}, 0.02 \mathrm{~mol})$ in acetone and water a solution of sodium metaperiodate ($4.49 \mathrm{~g}, 0.021 \mathrm{~mol}$) in water (75 mL) was dropped below $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$ and the resulting quininium salt of acid 5 was isolated by extraction with chloroform ($5 \times 25 \mathrm{~mL}$) and the usual work-up: $11.6 \mathrm{~g}(93 \%)$, mp $50-57{ }^{\circ} \mathrm{C} ;|\alpha|_{\mathrm{D}}-75^{\circ}\left(c 1.7 \mathrm{CHCl}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta-10.4$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{O}_{8} \mathrm{~N}_{2} \mathrm{PS}: \mathrm{C}, 55.58 ; \mathrm{H}, 6.92 ; \mathrm{P}, 4.94$. Found: C, 55.94; H, 6.29; P, 5.01.
Quininium Salt of Acid 5. Alternatively, the title salt was prepared by mixing acid $5(0.248 \mathrm{~g}, 0.001 \mathrm{~mol})$ and quinine ($0.3785 \mathrm{~g}, 0.001 \mathrm{~mol}$) in acetone (15 mL). Evaporation of the solvent yielded 0.6265 g of the desired salt: mp $52-59^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}-78.4^{\circ}$ (c 1.55, CHCl_{3}).
The Resolution of Methyl p-Tolylsulfinylmethylphosphonic Acid (5) via Quininium Salt. The title salt (6.26 g) was crystallized from acetone (750 mL). On cooling, 1.75 g of salt, $[\alpha]_{\mathrm{D}}-147^{\circ}$ ($c 1.8$, CHCl_{3}) was collected, then recrystallized five times from acetone to give $1.18 \mathrm{~g}(19 \%)$ of a diastereomeric head crop, $\mathrm{mp} 181-182^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}$ -186° (c 1.9, CHCl_{3}), ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta-10.4$. This salt on passing through the ion-exchange column gave 0.465 g of acid (-)-5, $[\alpha]_{\mathrm{D}}$ -142° (c 1.2, CHCl_{3}).
The mother liquor was concentrated and the residue was recrystallized from acetone to afford a salt $[\alpha]_{\mathrm{D}}-43^{\circ}\left(c 1.7, \mathrm{CHCl}_{3}\right)$. Subsequent recrystallizations of this salt from acetone-ether (2:1) yielded $2.96 \mathrm{~g}(47 \%)$ of the salt $[\alpha]_{\mathrm{D}}-3.9^{\circ}$ ($c 1.65, \mathrm{CHCl}_{3}$), the rotation of which remained unchanged after further crystallizations. The acid $(+)-5(0.947 \mathrm{~g})$ recovered from this salt has $[\alpha]_{\mathrm{D}}+103^{\circ}$ (c 1.31, CHCl_{3})
Optically Active Sulfoxide (-)-1. Acid (-) $-5,[\alpha]_{D}-142^{\circ}(0.232$ $\mathrm{g}, 0.000935 \mathrm{~mol}$) was dissolved in water $(50 \mathrm{~mL})$ and neutralized with a 25% aqueous solution of tetramethylammonium hydroxide. On evaporation, the tetramethylammonium salt of acid (-)-5 was obtained, ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta-8.5$.
The above prepared salt $(0.323 \mathrm{~g})$ was refluxed for 2 h with an excess of methyl iodide in acetonitrile (50 mL). After removal of the solvent, the residue was dissolved in water (40 mL) and extracted with chloroform ($5 \times 10 \mathrm{~mL}$). The chloroform solution was evaporated to give the crude sulfoxide (-)-1 which was purified by column chromatography using benzene-acetone ($5: 1$) as the eluent. (-) $-1,[\alpha]_{\mathrm{D}}-149^{\circ}$ (c 1.16, acetone), $0.156 \mathrm{~g}(62.5 \%)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{PS}: \mathrm{C}$, 45.79; H, 5.77; P, 11.91. Found: C, 46.07; H, 5.84; P, 11.59.

Optically Active Sulfoxide (+)-1. Similarly, $(+)-1,\left[\left.\alpha\right|_{\mathrm{D}}+106^{\circ}\right.$ (c 1.7, acetone) was prepared from (+)-5, $[\alpha]_{\mathrm{D}}+103^{\circ}$ (c $1.31, \mathrm{CHCl}_{3}$) in 61.5% yield.

Preparation of Sulfoxide (+)-(R)-1 from (-)-(S)-Menthyl p-tolylsulfinate (2). To a solution of the lithium derivative of dimethyl methylphosphonate (0.02 mol) prepared as described above a solution of $(-)-(\mathrm{S})$-menthyl p-tolylsulfinate $(2.94 \mathrm{~g}, 0.01 \mathrm{~mol}),[\alpha]_{\mathrm{D}}$ -202° (c 1.2 , acetone) in 20 mL of THF was added at $-78^{\circ} \mathrm{C}$. After 15 min the reaction mixture was warmed to $-20^{\circ} \mathrm{C}$ and quenched
with aqueous ammonium chloride. After evaporation of the organic solvents (THF, hexane) the aqueous layer was extracted with petroleum ether (to remove menthol) and then with chloroform (3×25 mL). The chloroform solution was dried and evaporated. Careful removal of dimethyl methylphosphonate under reduced pressure gave $1.87 \mathrm{~g}(72 \%)$ of $(+)-(R)-1$. The analytically pure sample of this sulfoxide, $[\alpha]_{\mathrm{D}}+144^{\circ}$ (c 1.0, acetone), was obtained after column chromatography using benzene-acetone ($5: 1$) as the eluent. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{PS}: \mathrm{C}, 45.79 ; \mathrm{H}, 5.77 ; \mathrm{P}, 11.81$. Found: $\mathrm{C}, 45.53 ; \mathrm{H}, 5.71$; $\mathrm{P}, 11.72$.

Synthesis of Optically Active α, β-Unsaturated Sulfoxides and β, γ-Unsaturated Sulfoxides from (+)-(R)-1 and Carbonyl Compounds. All the sulfoxides listed in Scheme III were obtained according to the general procedure for the Horner-Wittig reaction of diethylphosphorylmethyl methyl sulfoxide with carbonyl compound describec previously. ${ }^{3}$ The isolation procedure as well as the physical and spectral data of sulfoxides 7-12 follow.
$(+)-(\boldsymbol{R})$-p-Tolylsulfinylethylene (7). Column chromatography [benzene-aceton $2_{0}(200: 3)$] of the crude product from paraformaldehyde ($0.15 \mathrm{~g}, 0.305 \mathrm{~mol}$) and sulfoxide (+)- $(R)-1(1.31 \mathrm{~g}, 0.005 \mathrm{~mol})$, $[\alpha]_{\mathrm{D}}+143^{\circ}$, gave $0.62 \mathrm{~g}(75 \%)$ of sulfoxide $(+)-(R)-7,[\alpha]_{\mathrm{D}}+386^{\circ}(c$ 0.98 , ethanol), $n^{25}{ }^{\mathrm{D}} 1.5747 ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 2.28\left(\mathrm{~s}, 3, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 5.70-6.78 (m, 3, $-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{ABC}$ system), 7.35 ($\mathrm{m}, 4$, aromatic). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{OS}$: C, 65.10 ; H, 6.00. Found: C, 65.01 ; H, 6.11.
 reaction of cyclohexanone ($0.49 \mathrm{~g}, 0.005 \mathrm{~mol}$) and (+)-1 was carried out according to the standard procedure and the crude product was chromatographed [benzene-acetone (200:3)] to give $0.935 \mathrm{~g}(80 \%)$ of $(-)-(R)-8,[\alpha]_{\mathrm{D}}-272^{\circ}$ (c 0.85 , acetone); ${ }^{1} \mathrm{H}$ NMR $\delta 1.62[\mathrm{~m}, 6$, $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}-\right], 2.22\left[\mathrm{~m}, 4,\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}=\right], 2.38\left(\mathrm{~s}, 3, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 5.94(\mathrm{~s}$, $1, \mathrm{CH}=\mathrm{C}-$), 7.37 (m, 4, aromatic). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OS}: \mathrm{C}, 71.75$; H, 7.74. Found: C, 71.98; H, 7.85; n^{22} D 1.5610.

Styryl p-Tolyl Sulfoxide (9). The crude product ($1.15 \mathrm{~g}, 95 \%$), $[\alpha]_{\mathrm{D}}-68^{\circ}$ (c 1.08, chloroform), obtained from benzaldehyde (0.56 g , 0.005 mol) was a mixture of E and Z isomers in a ratio of $69: 31$. Column chromatography [benzene-acetone (200:3)] afforded both pure geometrical isomers of the title sulfoxide.
(E)-(+)-(R)-9: $[\alpha]_{\mathrm{D}}+166^{\circ}$ (c 1.14 , chloroform); mp $82^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.37\left(\mathrm{~s}, 3, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 6.72$ (part of AB system, $1, J_{\mathrm{AB}}=15.3$ Hz), 7.16-7.56 (m, 10, aromatic and a part of AB system). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{OS}: \mathrm{C}, 74.35 ; \mathrm{H}, 5.82$. Found: C, 74.37; H, 6.02.
$(Z)-(-)-(R)-9:[\alpha]_{\mathrm{D}}-736^{\circ}$ (c 1.04 , chloroform), mp $52-52.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.37\left(\mathrm{~s}, 3, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 6.38$ and 7.04 (AB system, 2, vinyl protons, $J_{\mathrm{AB}}=10.7 \mathrm{~Hz}$), 7.16-7.58 (m, 9, aromatic). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14}$ OS: C, 74.35; H, 5.82; Found: C, 74.30; H, 5.88.
(-)-(R)-1(p-Tolylsulfinyl)-2-methylpropylene (10) and 2Methylallyl p-Tolyl Sulfoxide (11). From acetone ($0.29 \mathrm{~g}, 0.005$ mol) and an equimolar amount of (+)-1 the crude product was obtained as a pale yellow oil: $0.895 \mathrm{~g}(92 \%),[\alpha]_{\mathrm{D}}-80^{\circ}$ (c 1.06, chloroform). It consisted of 76 and 24% of 10 and 11 , respectively. Column chromatography [benzene-acetone (200:3)] afforded pure α, β-unsaturated sulfoxide 10 and β, γ-sulfoxide 11 containing ca. 10% of impurities.
$(-)-(R)-10:[\alpha]_{\mathrm{D}}-242^{\circ}$ (c 1.29, chloroform), $\mathrm{mp} 65^{\circ} \mathrm{C}, 0.49 \mathrm{~g}$ (50.5%); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.88$ and 2.16 (two s, $6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=$), 2.38 (s, $3, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$), 6.10 (s,,$-\mathrm{CH}-\mathrm{C}=$), 7.46 (m, 4, aromatic). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14}$ OS: C, $68.00 ; \mathrm{H}, 7.26$. Found: C, 68.11; H, 7.22.
$11: 0.17 \mathrm{~g}(17.5 \%),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.80\left(\mathrm{~s}, 3, \mathrm{CH}_{3}-\mathrm{C}=\right), 2.38(\mathrm{~s}$, $\left.3, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 3.20$ and $3.53\left(\mathrm{AB}\right.$ system, $\left.2,-\mathrm{CH}_{2}-\mathrm{S}(0), \mathrm{J}_{\mathrm{AB}}=10 \mathrm{~Hz}\right)$, 4.80 and 5.00 (two s, $2, \mathrm{CH}_{2}=\mathrm{C}$), 7.50 ($\mathrm{m}, 4$, aromatic).

1-p-Tolylsulfinylmethyl Cyclopentene (12). Cyclopentanone $(0.42 \mathrm{~g}, 0.005 \mathrm{~mol})$ and (+)-1 gave, after the usual work-up, crude 12 $(1.10 \mathrm{~g}, 100 \%)$ as a pale yellow oil. Column chromatography afforded $0.76 \mathrm{~g}(69 \%)$ of pure $12: \mathrm{mp} 48.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.80-2.30(\mathrm{~m}$, 6 , ring methylene protons), 2.35 ($\mathrm{s}, 3, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$), 3.53 (broad s, 2 , ${ }^{\mathrm{C}} \mathrm{H}_{2} \mathrm{~S}(\mathrm{O})$], 5.68 (broad s, 1 , ring methine proton), 7.48 ($\mathrm{m}, 4$, aromatic). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16}$ OS: C, 70.86 ; H, 7.32. Found: C, 70.63; H, 7.32.

Registry No. $-(\pm)-1,63231-19-6 ;(-)-1,63268-43-9 ;(+)-(R)-1$, 61187-71-1; (-)-1S)-2, 1517-82-4; 3, 63231-20-9; 4, 756-79-6; (\pm)-5, 63231-21-0; (\pm)-5 DCHA, 63231-22-1; (-)-5, 63231-23-2; (-).5 Q, 63231-24-3; (-)-5 Me4N, 63231-26-5; (+)-5, 63231-27-6; (+)-5 Q, 63301-42-8; 6, 63231-28-7; $6 \mathrm{Na}, 63231-29-8$; 6 DCHA, 63231-30-1; 6 Q, 63231-31-2; (+)-(R)-7, 54828-68-1; (-)-R-8, 63231-32-3; (E)-$(+)-(R)-9,41103-85-9 ; \quad(Z)-(-)-(R)-9,63268-44-0 ; \quad(-)-(R)-10$, 63269-85-2; 11, 37616-05-0; 12, 63231-33-4; chloromethyl p-tolylsulfide, 34125-84-3; trimethyl phosphite, 121-45-9; methyl p-tolylsulfinate, 672-78-6; quinine, 130-95-0.

References and Notes

(1) Part XII of the series: Organosulfur Compounds; Part XI, J. Drabowicz and M. Mikolajczyk, Synthesis, 527 (1976).
(2) M. Mikolajczyk and A. Zatorski, Synthesis, 669 (1973).
(3) M. Mikolajczyk, S. Grzejszczak, and A. Zatorski, J. Org. Chem., 40, 1979 (1975).
(4) M. Mikołajczyk, S. Grzejszczak, and A. Zatorski, in "Organic Sulphur Chemistry", C. J. M. Stirling, Ed., Butterworths, London, 1975, p 413.
(5) M. Mikolajczyk, B. Costisella, S. Grzejszczak, and A. Zatorski, Tetrahedron Lett., 477 (1976), and unpublished results from this laboratory.
(6) M. Mikojajczyk, S. Grzejszczak, W. Midura, and A. Zatorski, Synthesis, 278 (1975).
(7) M. Mikojajczyk, S. Grzejszczak, W. Midura, and A. Zatorski, Synthesis, 396 (1976).
(8) M. Mikojajczyk, S. Grzejszczak, A. Zatorski, F. Montanari, and M. Cinquini, Tetrahedron Lett., 3757 (1975).
(9) See references cited in ref 3.
(10) M. Axelrod. P Bickart, J. Jacobus, M. M. Green, and K. Mislow, J. Am. Chem. Soc. 96, 4835 (1968); E. J. Mulvaney and R. A. Ottaviani, J. Polym. Sci., Part A-1, 2293 (1970); D. J. Abbott, S. Colonna, and C. J. M. Stirling, Chem. Commun., 471 (1971); J. Chem. Soc., Perkin Trans. 1, 492 (197().
(11) G. Tsuchihashi, S. Mitamura, S. Inoue, and K. Ogura, Tetrahedron Lett., 323 (1973).
(12) G. Marchese, F. Naso, and L. Ronzini, Chem. Commun., 830 (1974).
(13) H. Phillips, J. Chem. Soc., 127, 2552 (1925).
(14) A. F. Cockerill, G. L. O. Davies, R. C. Harden, and D. M. Rackham, Chem. Rev., 73, 553 (1973).
(15) After the completion of this work, Hoffman and Maak based on our preliminary note (ref 4) prepared (+ -1, $[\alpha]_{D}+176^{\circ}$ (neat) from sulfinate (-)-2 and 4; R. W. Hoffmann and N. Maak, Tetrahedron Lett., 2237 (1976).
(16) K. K. Andersen, Tetrahedron Lett., 93 (1962); M. Axelrod, P. Bickart, J. Jacobus, M. Green, and K. Mislow. J. Am. Chem. Soc., 90, 4835 (1968); K. K. Andersen, Int. J. Sulfur Chem., 6, 69 (1971).
(17) Careful examination of the ${ }^{1}$ H NMR spectra of the crude reaction product obtained from the lithium derivative of diethylphosphorylmethyl methyl sulfoxide and cyclopentanone revealed that it consisted of 60% of 1 [(methylsulfinyl)methylene]cyclopentane and 40% of β, γ isomer. The latter has not been analyzed in our previous work (ref 3).
(18) D. E. O'Connor and W. J. Lyness, J. Am. Chem. Soc., 86, 3840 (1964): C. D. Broaddus, Acc. Chem. Res., 1, 231 (1968).
(19) It is interesting to note that this observation may be utilized for preparative synthesis of allylic sulfoxides which are very important starting materials in organic synthesis. See, for example, D. A. Evans and G. C. Andrews, Acc. Chem. Res., 7, 147 (1974).
(20) We found, however, that the Horner-Wittig reaction of racemic 1 with cyclopentanone afforded α, β-unsaturated sulfoxide and not its β, γ isomer 12 when insufficient molar amount of n-butyllithium was used.
(21) A. Schriesheim, R. J. Muller, and C. A. Rowe, Jr., J. Am. Chem. Soc., 85, 3164 (1963).
(22) R. Tang and K. Mislow, J. Am. Chem. Soc., 92, 2100 (1970), and references cited therein.

Heavy-Atom Effect on the Photodimerization of Acenaphthylene: Substituent Analysis on the Efficiency of External Aromatic Perturbers

Gerald F. Koser* and Van-Shau Liu
Department of Chemistry, University of Akron, Akron, Ohio 44325

Received May 20, 1977

Abstract

The photodimerization of acenaphthylene in the presence of various para-substituted bromobenzenes in methanol was studied in order to determine if the photochemical heavy-atom effect responds to a substituent change. A substituent effect was indeed observed, but the photodimer ratios do not vary linearly with Hammett's σ constants.

The photodimerization of acenaphthylene (1) in the presence of organic halides provides an excellent illustration of the photochemical heavy-atom effect. This reaction has been studied thoroughly by Cowan, Drisko, and Koziar, who employed standardized irradiation conditions so that syn/anti dimer ratios associated with various solvent systems could be compared. ${ }^{1-7}$ For example, when 1 was irradiated in cyclohexane, the syn/anti photodimer ratio was determined to be 4.17, but, when n-propyl bromide was the solvent, the ratio dropped to $0.41 .{ }^{1}$ These results can be explained if it is assumed that the syn dimer is derived primarily from an excited singlet state (or excimer) of 1 and that the anti dimer is de-

1
rived from an excited triplet state. The heavy-atom solvent, n-propyl bromide, promotes singlet \rightarrow triplet intersystem crossing, a perturbation that eventuates in a higher relative yield of anti dimer and a lower syn/anti ratio. The dimer ratio is also sensitive to the nature of the heavy atom, RI being a more effective "perturber" than RBr , while RCl is relatively ineffective. ${ }^{3}$ In binary solvents of the type cyclohexane/RX, the syn/anti ratio varies inversely with the mol \% of RX. ${ }^{2,4}$

An analysis of the influence of substituents on the efficiency of external aromatic heavy-atom perturbers has not yet been reported for a photochemical process. However, an interesting structure-efficiency relationship has been noted for a pho-
tophysical process. McGlynn and his co-workers observed that the $T \leftarrow S$ absorption band in the electronic spectrum of 1chloronaphthalene was enhanced when that compound was codissolved with various alkyl iodides, the degree of enhancement conforming to the following trend: $\mathrm{CH}_{3} \mathrm{I}>$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{I} .{ }^{7}$ Thus, the heavy-atom perturbation decreased as the electron-donating capacity of the alkyl group increased. Consistent with this trend is the observation that p-fluorobromobenzene caused more $\mathrm{T} \leftarrow \mathrm{S}$ enhancement in 1 -chloronaphthalene than did bromobenzene. ${ }^{7}$

Results and Discussion

In this paper, we report an investigation of the photodimerization of acenaphthylene in the presence of various para-substituted bromobenzenes dissolved in methanol. Dimer ratios were determined at aryl bromide concentration levels of $0.1,0.4,0.7,1,2,4,6,8$, and $10 \mathrm{~mol} \%$, and the substituents that were studied include $\mathrm{H}, \mathrm{CH}_{3}, \mathrm{OCH}_{3}, \mathrm{CHO}$, and CF_{3}. The substituents $\mathrm{NH}_{2}, \mathrm{COOH}$, and CN were not studied because the corresponding aryl bromides are not sufficiently soluble in methanol over the concentration range of interest to us. Methanol was chosen as the cosolvent instead of cyclohexane because a broader range of syn/anti ratios is accessible with methanol. ${ }^{1}$ We report two complete sets of data; i.e., for each aryl bromide at each concentration level, two reactions were conducted, but they were not run at the same time. One set of data was first collected for all aryl bromides, and then another data set was collected. The results are presented in Table I.

Table I. ${ }^{a}$ UV Irradiation of 1 in $p-\mathbf{X C}_{6} \mathbf{H}_{4} \mathbf{B r} /$ Methanol

$\begin{gathered} p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{Br} \\ \mathrm{~mol} \% \\ \hline \end{gathered}$	Syn/anti ratio									
	H		CH_{3}		OCH_{3}		CHO		CF_{3}	
	Set 1	Set 2								
0.1	4.85	4.97	4.60	4.48	3.68	3.66	3.00	2.97	3.52	3.36
Av	4.91		4.54		3.67		2.99		3.44	
0.4	3.53	3.63	3.17	3.17	2.76	2.72	1.72	1.68	1.75	1.88
Av	3.58		3.17		2.74		1.70		1.82	
0.7	2.39	2.35	2.21	2.16	2.07	1.94	1.23	1.14	1.08	1.16
Av	2.37		2.19		2.01		1.19		1.12	
1.0	2.30	2.28	2.04	2.06	1.60	1.67	1.04	0.83	1.00	0.96
Av	2.29		2.05		1.64		0.94		0.98	
2.0	1.91	1.83	1.55	1.62	1.32	1.34	0.83	0.78	1.03	0.99
Av	1.87		1.59		1.33		0.81		1.02	
4.0	1.23	1.30	1.19	1.16	1.24	1.03	0.51	0.51	0.82	0.84
Av	1.27		1.18		1.14		0.510 .51		0.83	
6.0	1.08	1.14	1.20	1.17	0.70	0.65	0.45	0.44	0.74	0.65
Av	1.11		1.19		0.68		0.44		0.70	
8.0	0.95	1.06	0.92	1.02	0.58	0.58	0.35	0.32	0.33	0.24
$\mathrm{Av}^{\text {d }}$	1.01		0.97		0.58		0.34		0.29	
10.0	0.79	1.01	0.57	0.68	0.55	0.53	0.16	0.11	0.21	0.23
Av	0.90		0.63		0.54		0.14		0.22	

${ }^{a}$ Eight blank samples were also photolyzed, four of which contained 1.0 g of 1 in methanol (total volume 10 mL) and four of which contained 1.5 g of 1 in methanol (total volume 15 mL). See the Experimental Section for more details. The observed syn/anti ratios were $6.29,6.59,6.32,6.70,6.27,6.43,6.56$, and 6.23 (av 6.42). These values may be compared to a literature value of $5.74 .{ }^{1}$

Table II ${ }^{a}$

			UV analysis of		
Authentic dimer mixtures			mixtures		
Wt of syn dimer, mg	Wt of anti dimer, mg	Syn/anti ratio	Syn/anti ratio	Error, $\%$	
11.42	1.71	6.68		6.50	2.7
11.13	1.63	6.83		6.68	2.2
10.90	2.14	5.09		5.15	1.1
10.84	2.11	5.14	5.03	2.1	
9.71	3.29	2.95	2.86	3.1	
9.66	3.27	2.95	2.87	2.7	
8.76	4.41	1.99	2.06	3.5	
8.62	4.18	2.06	1.99	3.4	
6.61	6.73	0.98	1.02	4.1	
6.48	6.23	1.04	1.01	2.9	
5.38	7.91	0.68	0.11	4.2	
4.34	8.34	0.52	0.55	5.8	
3.25	9.85	0.33	0.36	9.1	
3.19	10.29	0.31	0.34	9.7	

${ }^{a}$ It can be seen that the average error in the determination of syn/anti ratios by the UV method is about 4% and is somewhat lower for high ratios than it is for low ratios. The error is sufficiently low, however, so that relative ratios are pretty much maintained as one proceeds from one perturber to the next at the various concentration levels.

Irradiations of 1 were conducted with a $450-\mathrm{W}$, Ace-Hanovia 6515-34 quartz mercury-vapor lamp fitted with a uranium glass sleeve and a merry-go-round apparatus such that the sample tubes were placed 7.5 cm from the light source. Each reaction solution, containing acenaphthylene and solvent ($10 \%, \mathrm{w} / \mathrm{v}$), was degassed, and each Pyrex reaction vessel was sealed prior to irradiation. The irradiations were continued for 15 h at room temperature, during which time the photodimers precipitated from solution. The crude dimer mixtures were subsequently isolated, washed with methanol to remove any unreacted 1 , and subjected to UV analysis. A determination of absorbances for each mixture at two wavelengths coupled with a knowledge of extinction coefficients for the pure dimers at those wavelengths allowed the computation of syn/anti ratios. An assessment of the accuracy of this analytical method, first utilized by Cowan and Drisko, ${ }^{4}$ is presented in Table II. Authentic dimer mixtures were pre-
pared from the pure dimers, and the known ratios were compared to those determined by UV analysis.

The syn and anti photodimers of 1 exhibit measurable solubilities in $p-\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Br} / \mathrm{CH}_{3} \mathrm{OH}$. Thus, the ratios presented in Table I require correction because they were determined by analysis of dimers which had precipitated and do not account for the quantity of dimers which remained in solution. If the dimers exhibited identical solubilities corrections would be unnecessary, but they do not. Fortunately, in those instances where solubilities were determined, the corrections did not lead to serious changes, and most of the discussion herein pertains to uncorrected ratios. Dimer solubilities in $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{Br} / \mathrm{CH}_{3} \mathrm{OH}$ at the 0.1 and $10 \mathrm{~mol} \%$ extremes of aryl bromide concentration were measured. Corrected and uncorrected syn/anti ratios are compared in Table III.

Inspection of Table I indicates clearly that most of the heavy-atom perturbation is achieved by the time concentration levels of ArBr in methanol have reached $1-2 \mathrm{~mol} \%$. Although the various aryl bromides do not appear to differ greatly in their ability to reduce syn/anti ratios (i.e., to promote $S m \rightarrow T$, they do differ, and the difference seems to be real. There also seems to be a clear indication that electrophilic substituents enhance the heavy-atom effect. For example, at the $1 \mathrm{~mol} \% \mathrm{ArBr}$ level, syn/anti ratios of $2.05\left(\mathrm{CH}_{3}\right), 1.64$ $\left(\mathrm{OCH}_{3}\right), 0.94(\mathrm{CHO})$, and $0.98\left(\mathrm{CF}_{3}\right)$ were observed. However, those ratios do not correlate with Hammett's σ constants. For example, $p-\mathrm{CH}_{3}(\sigma-0.170)$ is more electrophilic than $p-\mathrm{OCH}_{3}$ ($\sigma-0.268$). Yet, the latter substituent induces a lower syn/anti ratio. Similarly, $p-\mathrm{CF}_{3}(\sigma+0.54)$ is more electrophilic than $p-\mathrm{CHO}(\sigma+0.51)$ but less effective in lowering the syn/anti ratio. Finally all the substituted bromobenzenes studied by us were better perturbers than bromobenzene itself when methanol was the solvent, a curious fact for which we have no explanation.

It has been demonstrated by Hartmann, Hartmann, and Schenck that acenaphthylene photodimer ratios depend on the dielectric constant of the reaction medium. ${ }^{10} \mathrm{~A}$ plot of \log ([anti]/[syn]) vs. $(D-1 / 2 D+1)(\rho / M)\left(10^{2}\right)$ for eleven solvents gave a straight line with a negative slope. ${ }^{10}$ It seems possible, then, that the trends reported herein may manifest differences in dielectric for the binary "solvents" $p-\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Br} / \mathrm{CH}_{3} \mathrm{OH}$ and have little or nothing to do with substituent perturbations

Table III. Solubility Corrections for Syn/Anti Dimer Ratios

$\underset{\mathrm{X}}{p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{Br}}$	Registry no.	$0.1 \mathrm{~mol} \% \mathrm{ArBr}$		$10 \mathrm{~mol} \% \mathrm{ArBr}$	
		Uncorrected	Corrected	Uncorrected	Corrected
H	108-86-1	4.96	4.96	1.10	1.06
CH_{3}	106-38-7	4.46	4.53	0.86	0.91
OCH_{3}	104-92-7	3.69	3.71	0.53	0.58
CHO	1122-91-4	2.98	3.00	0.11	0.14
CF_{3}	402-43-7	3.33	3.40		

Table IV ${ }^{a}$

p- $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{Br}$	$p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{Br}$ in $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{mol} \%$								
	0.1	0.4	0.7	1	2		6	8	10
$\mathrm{X}=\mathrm{CH}_{3}$									
Yield, g	0.30	0.33	0.35	0.38	0.80	0.96	1.17	1.24	1.25
	0.34	0.34	0.33	0.28	0.95	0.91		1.20	1.21
Av yield, \%	32	34	37	33	58	62	78	81	82
$\mathrm{X}=\mathrm{OCH}_{3}$									
Yield, g	0.21	0.31	0.33	0.38	0.88	1.00	1.13	1.09	1.08
	0.30	0.37	0.33	0.40	0.85	0.94	0.98	1.08	1.07
Av yield, \%	25	34	33	39	58	65	70	72	72
$\mathrm{X}=\mathrm{H}$									
Yield.g	0.28	0.31	0.37	0.43	0.67	0.91	1.12	1.09	1.26
	0.36	0.36	0.33	0.41	0.77	0.94	1.06	1.15	1.25
Av yield, \%	32	34	33	42	48	62	73	75	84
$\mathrm{X}=\mathrm{CF}_{3}$									
Yield, g	0.34	0.41	0.41	0.42	0.80	1.17	1.21	1.29	1.27
	0.28	0.38	0.4)	0.46	0.77		1.11	1.26	1.26
Av yield, \%	31	40	41	44	52	78	77	85	84
$\mathrm{X}=\mathrm{CHO}$									
Yield, g	0.33	0.35	0.35	0.39	0.79	0.89	1.25	1.16	1.30
	0.35	0.38	0.41	0.44	0.63	1.19		1.34	1.22
Av yield, \%	34	37	33	42	47	69	83	83	84

${ }^{a}$ Eight blank samples were also photolyzed, four of which contained 1.0 g of 1 in methanol (total volume 10 mL) and four of which contained 1.5 g of 1 in methanol (total volume 15 mL). See Table I and the Experimental Section. The observed yields were $0.20(20 \%)$, $0.18(18 \%), 0.19(19 \%), 0.21(20 \%), 0.23(15 \%), 0.35(23 \%), 1.32(21 \%)$, and $0.18 \mathrm{~g}(12 \%)$. These may be compared to a literature value of 42.5% reported by Cowan and Drisko for their standardized conditions. ${ }^{1}$
on the heavy atom. However, while it seems likely that solvent dielectric constants will differ significantly at ArBr concentration levels near $10 \mathrm{~mol} \%$, they will differ very little at ArBr concentration levels near $1 \mathrm{~mol} \%$. For example, the dielectric constants of methanol and bromobenzene are 32.63 and 5.40, respectively, at $25^{\circ} \mathrm{C} .{ }^{11}$ On the assumption that the dielectric constant for a binary liquid can be approximated by (mol fraction of A) (dielectric constant of A$)+($ mol fraction of B) (dielectric constant of B), dielectric constants of 29.91 , 32.35 , and 32.60 can be computed for bromobenzene in methanol at the 10,1 , and $0.1 \mathrm{~mol} \%$ concentration levels. For p-bromoanisole ($D=7.06$ at $30^{\circ} \mathrm{C}$), ${ }^{12}$ the corresponding computed D values are $30.07,32.37$, and 32.60 . The fact that the relative syn/anti ratios in this study follow the same substituent trend at $10 \mathrm{~mol} \% \mathrm{ArBr}$ in methanol as at $0.1 \mathrm{~mol} \%$ ArBr in methanol (where dielectric constants are nearly identical) indicates that solvent dielectric is not a serious controlling factor here.

We have, at this time, no information concerning possible light absorption by the heavy-atom solvents and subsecuent energy transfer from them to acenaphthylene, nor have we assessed the possibility of direct reactions between acenaphthylene and the aryl bromides.

Experimental Section

General. Acenaphthylene and all of the substituted bromobenzenes used in this investigation were purchased from the A.drich Chemical Co. and were designated as 99% pure. Acenaphthyler.e was recrystallized twice from 95% ethanol ($\mathrm{mp} 90-91^{\circ} \mathrm{C}$), and p-bromobenzaldehyde was recrystallized twice from 95% ethanol (mp 57-58 ${ }^{\circ} \mathrm{C}$). Bromobenzene (bp 154-156 ${ }^{\circ} \mathrm{C}$), p-bromotoluene (bp 18.3-185 ${ }^{\circ} \mathrm{C}$), p-bromoanisole (bp $215-216{ }^{\circ} \mathrm{C}$), and p-bromobenzotrifluoride (bp 154-155 ${ }^{\circ} \mathrm{C}$) were distilled prior to use.

Ultraviolet spectra were recorded on a Cary-17 UV-vis-near-IR spectrophotometer. All melting points and boiling points recorded herein are uncorrected.

Reaction Mixtures. Acenaphthylene (2.50 g) was dissolved in each binary solvent and diluted volumetrically with that solvent to 25 mL . A $10-\mathrm{mL}$ aliquot (for solvents $0.1-1 \mathrm{~mol} \%$ in ArBr) or a $15-\mathrm{mL}$ aliquot (for solvents $2-10 \mathrm{~mol} \%$ in ArBr) was subsequently removed and transferred to a Pyrex tube (25 cm long $\times 12 \mathrm{~mm}$ wide $\times 1 \mathrm{~mm}$ thick). Each reaction mixture was then degassed by two freeze (liquid N_{2})-pump-thaw cycles, and each reaction vessel was sealed under vacuum.
Irradiation Procedure. Irradiations were conducted with a 450-W, Ace-Hanovia 6515-34 quartz mercury-vapor lamp fitted with a uranium glass sleeve and immersed in a Vycor cooling well. The reaction vessels were placed in a merry-go-round apparatus and situated 7.5 cm from the light source. For each set of data, 45 reaction mixtures were irradiated, but they could not be irradiated all at once. They were divided into batches of $20(0.1-1.0 \mathrm{~mol} \%$ in ArBr ; all substituents), 15 ($2-10 \mathrm{~mol} \%$ in $\mathrm{ArBr} ; \mathrm{H}, \mathrm{CH}_{3}$, and OCH_{3} substituents), and 10 ($2-10 \mathrm{~mol} \%$ in $\mathrm{ArBr} ; \mathrm{CHO}$ and CF_{3} substituents). The first batch was accompanied with two "blanks" (1 in pure methanol), and the remaining batches were accompanied with one blank sample each. Thus, for both sets of data, eight blank samples were irradiated. The irradiations were continued for 15 h at room temperature, during which time the acenaphthylene photodimers precipitated from solution. The temperature of the reaction mixtures was $\sim 30^{\circ} \mathrm{C}$ during photolysis.

Product Analysis. The photodimers were isolated by filtration and washed with methanol (10 mL) to remove any 1 that may have coprecipitated during the reaction. The weights of dimer and percent conversions to dimer are summarized in Table IV for two sets of reactions. The dimer mixtures were then thoroughly powdered and subjected to UV analysis.

Solubility Measurements. The syn or anti photodimer (0.50 g) was added to 25 mL of a given solvent, and the mixture was allowed to stand with shaking for 20 h at $\sim 22-24^{\circ} \mathrm{C}$. The insoluble material was subsequently removed by filtration, and the filtrate was con-

Table V

	Syn/anti ratio	Yield, g
Not degassed	2.65	0.513
Degassed (2 cycles)	2.62	0.481
	2.43	0.533
Degassed (5 cycles)	2.46	0.524
	2.44	0.534
	2.38	0.535

centrated to the residual solid which had dissolved. The residue was then weighed.

Isolation of the Anti Dimer. Acenaphthylene (10 g) was dissolved in 50 mL of $p-\mathrm{OHC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Br}(20 \mathrm{~mol} \%) /$ benzene and irradiated (without prior degassing) for 25 h . The crude product which had precipitated was isolated, washed with three portions (500 mL total) of hot cyclohexane, and recrystallized from benzene as white needles: $\mathrm{mp} 301-302^{\circ} \mathrm{C}$ (lit. mp 306-307 ${ }^{\circ} \mathrm{C}$); ${ }^{\circ} \mathrm{UV}$ (cyclohexane) 219 ($£ 6.56$ $\left.\times 10^{4}\right), 225 \mathrm{~nm}\left(\epsilon 1.11 \times 10^{5}\right)$.
Isolation of the Syn Dimer. A solution of acenaphthylene $(10 \mathrm{~g})$ in methanol (50 mL) was degassed and irradiated for 25 h . The crude product which precipitated was isolated, and a portion of it was recrystallized from cyclohexane as white prisms: mp $232-234^{\circ} \mathrm{C}$ (lit. $\mathrm{mp} 232-234^{\circ} \mathrm{C}$); ${ }^{9} \mathrm{UV}$ (cyclohexane) $219\left(\epsilon 1.10 \times 10^{5}\right), 225 \mathrm{~nm}(\epsilon 4.99$ $\times 10^{4}$).

Control. Photostability of Acenaphthylene Photodimers. The pure anti dimer (1.0 g , see above) was added to a sufficient quantity of methanol so that the final volume was 10 mL , and the resulting solid//iquid mixture was degassed and irradiated for 15 h in the usual fashion. Ultraviolet analysis of the insoluble "product" gave a syn/anti dimer ratio of 0.18 .

The pure syn dimer was treated analogously and gave a syn/anti ratio of 4.37 .

Control. Syn/Anti Ratios as a Function of Sample Degassing. In all of the reactions previously described, the reaction mixtures were degassed by two freeze-pump cycles. That two cycles are sufficient is indicated by the following study. Six reaction mixtures were prepared, each containing 1.0 g of acenaphthylene in $1.0 \mathrm{~mol} \%$ of bromobenzene in methanol (total volume 10 mL). Two reaction mixtures were not degassed, two were degassed with two freeze (liquid N_{2})-pump-thaw cycles, and two were degassed with five freeze-pumpthaw cycles. After irradiation and product analysis in standard fashion, the syn/anti ratios and dimer yields were obtained (Table V).

Registry No.-1, 208-96-8; syn-1 photodimer, 15065-28-8; anti-1 photodimer, 14620-98-5.

References and Notes

(1) D. O. Cowan and R. L. Drisko, Tetrahedron Lett., 1255 (1967).
(2) D. O. Cowan and R. L. Drisko, J. Am. Chem. Soc., 89, 3068 (1967).
(3) D. O. Cowan and R. L. E. Drisko, J. Am. Chem. Soc., 92, 6281 (1970).
(4) D. O. Cowan and R. L. E. Driskc. J. Am. Chem. Soc., 92, 6286 (1970).
(5) D. O. Cowan and J. C. Koziar, J. Am. Chem. Soc., 96, 1229 (1974).
(6) D. O. Cowan and J. C. Koziar, J. Am. Chem. Soc., 97, 249 (1975).
(7) J. C. Koziar and D. O. Cowan, J. Am. Chem. Soc., 98, 1001 (1976).
(8) S. P. McGlynn, R. Sunseri, and N. Christodouleas, J. Chem. Phys., 37, 1818 (1962).
(9) K. Dziewonski and C. Pasehalski, Ber.. Dtsch. Chem. Ges., 46, 86 (1913).
(10) I. M. Hartmann, W. Hartmann, and G. O. Schenck, Chem. Ber., 100, 3146 (1967).
(11) "CRC Handbook of Chemistry and Physics", 50th ed, 1969-1970, p E-63.
(12) Natl. Bur. Stand. (U.S.) Circ., No. 514 (1951).

Nucleosides. 108. Ribo-Xylo Interconversions of 6,5'-Cyclopyrimidine Nucleosides via Autoxidation and Retro-Aldol Reactions ${ }^{1,2}$

Brian A. Otter,* Elvira A. Falco, and Jack J. Fox
Laboratory of Organic Chemistry, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, Sloan-Kettering Division of Graduate School of Medical Sciences, Cornell University, New York, New York 10021

Received July 14, 1977
The $5^{\prime} S$ and $5^{\prime} R$ epimers of $6,5^{\prime}$-cyclouridine undergo autoxidation to 5^{\prime}-oxo- $6,5^{\prime}$ cyclouridine when treated with oxygen and $1 \mathrm{~N} \mathrm{NaOH} .5^{\prime}-\mathrm{Oxo}-6,5^{\prime}$-cyclouridine is stable in 1 N NaOH , but under less strongly alkaline conditions, e.g., ethanolic ammonia, it undergoes 3^{\prime} epimerization to give $6,5^{\prime}$-cyclo- 5^{\prime}-oxo-1-(β-D-xylofuranosyl)uracil, probably via formation and recyclization of a pyrimido $[1,6-c][1,3]$ oxazine intermediate generated by retro-aldol cleavage. The 5^{\prime}-carbonyl group of 5^{\prime}-oxo- $6,5^{\prime}$-cyclouridine is predominately hydrated in aqueous systems, whereas the 5^{\prime} -oxo-xylo isomer exists as the keto form under the same conditions. These ribo-xylo epimers consequently show large differences in ultraviolet spectral properties in water that are useful in monitoring the retro-aldol equilibrium reaction. Similar differences in the UV spectra of hydrated orotaldehyde (261 nm) and anhydrous orotaldehyde (300 nm) were noted. Reduction of 5^{\prime}-oxo-6, 5^{\prime}-cyclouridine with sodium cyanoborohydride in acetic acid affords only $6,5^{\prime}(S)$-cyclouridine. Similar reduction of the 5^{\prime}-oxo-xylo nucleoside affords both $5^{\prime} S$ and $5^{\prime} R$ epimers of $6,5^{\prime}$ -cyclo-1-(β-D-xylofuranosyl)uracil in a ratio of $5: 1$, possibly indicating that the $5^{\prime} R$-xylo isomer is formed via participation of the 3^{\prime}-hydroxyl group. The identity of each xylo 5^{\prime} epimer was established from NMR spectra and by the ready formation of a $3^{\prime}, 5^{\prime}-O$-isopropylidene derivative of the $5^{\prime} S$ epimer.

Nucleosides and nucleotides restricted to one type of conformation, but retaining a full complement of hydrogenbonding sites, are useful for probing the conformational factors that affect the specificities of the enzymes of nucleic acid metabolism. ${ }^{3}$ In this regard, we have previously reported ${ }^{4}$ the synthesis of the $5^{\prime} R$ and $5^{\prime} S$ epimers of $6,5^{\prime}$-cyclouridine (1 and 2, Scheme I). These nucleosides are fixed in the anti conformational range, and the orientations of the 5^{\prime}-hydroxyl groups correspond approximately to the gauche-trans and transgauche $\mathrm{C}_{4^{\prime}, 5^{\prime}}$ rotamers, respectively, of unrestricted nucleosides.

In addition to their potential as biochemical tools, 6,5'-
cyclonucleosides are interesting from a chemical viewpoint because the allylic character of C-5' enhances the reactivity of that position relative to ordinary nucleosides. For example, derivatives of 1 and 2 in which the 5^{\prime}-hydroxyl groups are protected uncergo base-catalyzed epimerization at C-5' via a mechanism involving 5^{\prime}-carbanion intermediates. ${ }^{4}$ We now wish to report that $6,5^{\prime}$-cyclopyrimidine nucleosides with unsubstituted 5^{\prime}-hydroxyl groups readily undergo base-catalyzed autoxidation and that the resulting 5^{\prime}-oxo nucleosides can rearrange to give their D -xylo epimers.

The first example of autoxidation of a $6,5^{\prime}$-cyclopyrimidine nucleoside was encountered during the synthesis of inter-

mediates required for the preparation of the $6,5^{\prime}$-cyclocytidine ${ }^{5}$ analogues of 1 and 2 . Thus, although methylation of thione 5 with diazomethane affords the expected 4 -methylthio nucleoside 6, methylation of 5 or its tri- O-acetate 4 with methyl iodide in aqueous methanol at pH 9 affords, unexpectedly, the 5^{\prime}-oxo-xylosyl nucleoside 7. The same product (7) is obtained when 6 is treated with aqueous sodium hydroxide in methanol (pH 9), and chromatography indicates that 6 is probably an intermediate in the conversion of $\mathbf{5}$ into 7. The structure of 7 and the manner of its formation were deduced from subsequent experiments with the $6,5^{\prime}$-cyclouridines 1 and 2 described below.
$6,5^{\prime}(S)$-Cyclouridine (2) is stable in 1 N NaOH under nitrogen, but it is converted readily into the 5^{\prime}-oxo-ribo nucleoside 9 in the presence of air or oxygen (Scheme II). Autoxidation of $6,5^{\prime}(R)$-cyclouridine (1) also affords 9 , indicating that oxidation occurs at the 5^{\prime} position. Interestingly, the rate of oxidation of 1 is much slower than that of 2 . That 9 retains the ribo configuration is evident from the NMR spectrum and from the fact that 9 can be converted into an isopropylidene derivative 13, identical with that obtained by sulfur triox-ide-pyridine oxidation ${ }^{6}$ of 12 .

The keto nucleoside 9 is stable in 1 N NaOH , in which it is formed from 1 or 2 , but under less strongly alkaline conditions it equilibrates with its 5^{\prime}-oxo-xylo isomer 11 . This isomerization is very rapid at $\mathrm{pH} 8-9$, where the equilibrium favors the xylo nucleoside 11, and occurs at an appreciable rate simply on dissolving 9 in water. Preparatively, treatment of 9 with dilute ethanolic ammonia, followed by removal of

Scheme II

ammonia by evaporation, affords a mixture from which the major isomer (11) crystallizes readily. Compound 11 correspondingly reequilibrates with its ribo isomer 9 on dissolution in water or dilute alkali. NMR studies show that the equilibrium $11 \rightleftharpoons 9$ in 1 N NaOD lies entirely in favor of the ribo isomer 9, a finding that explains the apparent stability of 9 in 1 N NaOH .

The sequence of events occurring in the conversion of 4 into 7 (Scheme I) is therefore S-methylation to give 6, followed by autoxidation to give the 5^{\prime}-oxo analogue of 6 , which equilibrates with the observed xylo product 7 under the mild conditions used (pH 9).

The assignment of the xylo configuration to 7 and 11 rests on their NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$), which show $J_{3^{\prime}, 4^{\prime}}$ values of 7.4 Hz and very small values ($<0.5 \mathrm{~Hz}$) for $J_{2^{\prime}, 3^{\prime}}$ (Table I). In contrast, the ribo epimer 9 shows $J_{3^{\prime}, 4^{\prime}}=0$ and $J_{2^{\prime}, 3^{\prime}}=6.3 \mathrm{~Hz}$. Similar differences were observed in the NMR spectra of the phenylhydrazones of 9 and 11 . Additionally, both 7 and 11 show long-range coupling (1.2 Hz) between $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-3^{\prime}$, which is consistent with the geometry of the xylo configuration. Four-bond couplings of similar magnitude have been observed previously for a variety of bicyclic carbohydrates. ${ }^{7}$

The most likely mechanism for the interconversion of 9 and 11 is a retro-aldol cleavage to generate the pyrimido $[1,6-c]$ -

Table I. First-Order Coupling Constants, ${ }^{\mathbf{a}} \mathbf{~ H z}$

Compd	$J_{2^{\prime}, 3^{\prime}}$	$J_{3^{\prime}, 4^{\prime}}$	$J_{4^{\prime}, 5^{\prime}}$	$J_{1^{\prime}, 3^{\prime}}$	$J_{5,5^{\prime}}$	$J_{5 . \mathrm{NH}}$	$J_{5^{\prime} .5^{\prime} \mathrm{OH}}$	$J_{3^{\prime}, 3^{\prime} \mathrm{OH}}$	$J_{2^{\prime}, 2^{\prime} \mathrm{OH}}$
3	6.1	0	6.4	0	1.3	1.3			
4	6.2	0	6.2	0	1.3	1.3			
5	6.1	0	6.1	0	1.2	1.2	6.1	7.0	5.5
6	6.1	0	6.1	0	1.2		6.1	7.0	5.5
$9^{\text {b,c }}$	6.3	0		0		2.1		d	d
9 (8)	6.1	0		0		ex	ex	ex	ex
$9 \mathrm{X}^{\prime}$	6.4	0		0		1.8		6.4	5.5
$7{ }^{\text {e }}$	$\sim 0.5{ }^{\prime}$	7.4		1.2				4.5	4.3
$11^{\text {b }}$	$\sim 0.5{ }^{\prime}$	7.4		1.2		g		4.4	4.3
$11 X^{l}$	1.2	6.7		1.2		1.1		k	5.2
$16(\mathrm{NaOD})^{e, i}$	$\sim 0.5{ }^{\prime}$	6.6	5.9	1.2	1.2	ex	ex	ex	ex
14	$\sim 1.0{ }^{\prime}$	7.3	~ 0.5	$1.2{ }^{j}$	~ 0.5	k	6.7	4.0	4.9
$15^{\text {b }}$	0	6.4	6.1	1.1	1.2	2.0			4.3

${ }^{a}$ In all cases $J_{1^{\prime}, 2^{\prime}}=0 \mathrm{~Hz}$. Values for $J_{2^{\prime}, 3^{\prime}}, J_{3^{\prime}, 4^{\prime}}$, and $J_{\iota^{\prime}, 5^{\prime}}$ for compounds with unsubstituted hydroxyl groups were obtained after addition of $\mathrm{D}_{2} \mathrm{O}$. Computer resolution $=0.3 \mathrm{~Hz}$ unless stated otherwise. ${ }^{b}$ Computer resolution $=0.15 \mathrm{~Hz}$. ${ }^{c}{ }^{4} J_{1^{\prime}, 4^{\prime}}=0.76 \pm 0.15 \mathrm{~Hz}$. ${ }^{d}$ First-order values not obtainable. ${ }^{e}$ Computer resolution $=0.19 \mathrm{~Hz}$. ${ }^{f} J_{2^{\prime}, 3^{\prime}}$ not resolved but detectable by decoupling. ${ }^{b}$ Obscured by $2^{\prime}-\mathrm{OH}$ signal but detectable by decoupling. ${ }^{h}$ Obscured by $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-4^{\prime}$ signals. ${ }^{i}{ }^{4} J_{3^{\prime}, 5^{\prime}}=1.2 \pm 0.19 \mathrm{~Hz}$. The only first-order values obtainable for 16 in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ are $J_{2^{\prime}, 2^{\prime} \mathrm{OH}}=4.5 \mathrm{~Hz}$ and $J_{3^{\prime}, 3^{\prime} \mathrm{OH}}=4.0 \mathrm{~Hz}$. ${ }^{j}$ Obtained after $\mathrm{D}_{2} \mathrm{O}$ addition and decoupling $J_{2^{\prime}, 3^{\prime}}{ }^{k}$ Obscured by H-1' signal. ${ }^{l}$ Phenylhydrazone derivative.
$[1,3]$ oxazine intermediate 10 , which can then recyclize to give either 9 or 11 depending on the orientation of the aldehyde group in the transition state. The rate of ring closure apparently exceeds the rate at which enolate 10 ketonizes because NMR studies of the $9 \rightleftharpoons 11$ interconversion under a variety of alkaline conditions in $\mathrm{D}_{2} \mathrm{O}$ show that deuterium is not incorporated at $\mathrm{C}-4^{\prime}$ of either 9 or 11 . Lack of deuterium incorporation, however, rules out the possibility that the 3^{\prime} epimerization involves abstraction of $\mathrm{H}-4^{\prime}$ and elimination of the 3^{\prime}-hydroxyl group, followed by rehydration. This dehydra-tion-rehydration sequence is in any case unlikely because formation of the olefinic intermediate would violate Bredt's rule. Further support for the retro-aldol mechanism comes from the fact that the isopropylidene nucleoside 13, in which the 3^{\prime}-hydroxy group is blocked, is stable to conditions that promote rapid equilibration of 9 and 11.

A C-3' epimerization reaction similar to that described above was observed recently by Youssefyeh et al. ${ }^{8}$ during the base-catalyzed aldol coupling of formaldehyde with unprotected uridine 5^{\prime}-aldehyde. Their reaction involves hydroxymethylation at C-4' of uridine 5^{\prime}-aldehyde, followed by Cannizzaro reduction of the original 5^{\prime}-aldehyde group to give 4^{\prime}-hydroxymethyluridine, together with its 3^{\prime} epimer. ${ }^{9}$ These authors ${ }^{8}$ also suggested a retro-aldol-aldol cyclization mechanism, and our results with the nonenolizable, constrained ketones 9 and 11 tend to support this proposal.

A curious feature of the retro-aldol equilibration of 9 and 11 is that the reaction itself, and the purity of individual preparations of 9 and 11 , can be monitored by UV spectroscopy. This follows from the finding that ribonucleoside 9 is largely hydrated in water and has a UV spectrum different from that of xylo nucleoside 11, which exists in water in the keto form. In water, compound 9 absorbs strongly at 270 nm but shows a much smaller peak at 315 nm . In contrast, nucleoside 11 absorbs strongly at 312 nm and has no discrete peak at 270 nm . Removal of the 5^{\prime}-carbonyl conjugation by hydration would be expected to result in a hypsochromic shift, and the $270-\mathrm{nm}$ absorption of 9 can therefore be attributed to the hydrate 8 . In support of this conclusion, it should be noted that solutions of 9 in anhydrous dioxane absorb only at 321.5 nm but that addition of water to the dioxane solution results in the reappearance of absorption at $270 \mathrm{~nm} .{ }^{10}$ Further evidence for the existence of 8 comes from NMR studies of 9 in aqueous systems. Thus, the NMR spectrum of 9 in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ consists of a single set of peaks (Table II), but addition of $\mathrm{D}_{2} \mathrm{O}$ results in the gradual appearance of an addi-

Scheme III

tional set of peaks, attributable to 8 , which reach a constant $8 / 9$ ratio of $\sim 1: 1$. Similarly, the NMR spectrum of 9 in $D_{2} \mathrm{O}$ alone shows \mathfrak{t} wo sets of peaks, with a $8 / 9$ ratio of $3.5: 1$. On the other hand, xylo nucleoside 11 gives a single set of peaks in $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{Me}_{2} \mathrm{SO}-d_{6}-\mathrm{D}_{2} \mathrm{O}$ that is closely similar to the spectrum in anhydrous $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$, indicating in this case that the equilibrium lies heavily in favor of the keto form of 11.

A further instance where the ribo (9) and xylo (11) 5^{\prime}-keto nucleosides show disparate properties concerns their reduction with sodium cyanoborohydride in acetic acid. This reagent combination ${ }^{11}$ ($\mathrm{pH} \sim 4$) was used because alkaline solutions of sodium borohydride induce $\mathrm{C}-3^{\prime}$ epimerization, with consequent formation of mixtures of ribo- and xylo-6, 5^{\prime}-cyclopyrimidine nucleosides. Cyanoborohydride reduction of 9 gives $6,5^{\prime}(S)$-cyclouridine (2), with no detectable formation of the $5^{\prime} R$ isomer 1 . Similar reduction of 11 , however, affords both the $5^{\prime} R$ and $5^{\prime} S$ isomers of $6,5^{\prime}$-cyclo-1-(β-D-xylofuranosyl) uracil (14 and 16, respectively, Scheme III) in a ratio of 1:5. Clearly, attack by the cyanoborohydride ion on 9 and 11 occurs in both cases primarily from the less hindered, rear side
Table II. Proton Chemical Shifts (δ) at $100 \mathrm{MHz}^{a}$

Compd	Registry no.	$\mathrm{N}_{3} \mathrm{H}$	$\mathrm{C}_{5} \mathrm{H}$	$\mathrm{C}_{1}{ }^{\text {H }}$	$\mathrm{C}_{2}{ }^{\prime} \mathrm{H}^{\text {b }}$	$\mathrm{C}_{3}{ }^{\prime} \mathrm{H}^{b}$	$\mathrm{C}_{4}{ }^{\text {H }}$	$\mathrm{C}_{5}{ }^{\prime} \mathrm{H}$	$\mathrm{O}_{5} \cdot \mathrm{H}$	$\mathrm{O}_{2}{ }^{\prime} \mathrm{H}^{b}$	$\mathrm{O}_{3}{ }^{\prime} \mathrm{H}^{\text {b }}$	Other
3	64 200-89-1	11.41	6.06 n m	5.74	5.41 d	5.60 d	4.72 d	5.82 dd				OAc 2.02, 2.12, 2.15
4	64200-88-0	12.76	6.39 t	5.76	5.44 d	5.61 d	4.74 d	5.76 dd				OAc 2.02, 2.12, 2.15
5	64200-87-9	12.63	6.39 nm	5.73	4.11 t	4.35 t	4.26 d	4.64 dt	6.51 d	5.40 d	5.26 d	
6	64 200-86-8		6.51 d	5.78	3.99 t	4.35 t	4.28 d	4.75 dt	6.51 d	5.48 d	5.22 d	SMe 2.44
$9^{\text {c }}$	64 234-75-9	11.74	6.12 d	5.93	.	m	4.67					
$9(8)^{d}$	64 200-83-5	ex	5.88	5.74	3.99 d	$\sim 4.3 \mathrm{~d}$	4.06			ex	ex	
$9 \mathrm{X}^{e}$	64 234-74-8	11.25	6.05 d	5.93	4.15 dd	4.30 t	5.62			5.33	5.68	$\begin{aligned} & \mathrm{P}^{\prime} \mathrm{NH} 10.66, \mathrm{Ph}(4 \mathrm{H}, \mathrm{~m}) \\ & \quad 7.30,(1 \mathrm{H}, \mathrm{~m}) 6.95 \end{aligned}$
13	64 200-82-4	11.84	6.15 d	6.07		4.97						Ip $1.44,1.29$
7	64 200-81-3		6.87	5.85 d	4.07 d	4.48 m	5.15 d			6.19 d	6.24 d	SMe 2.50
11	64 200-80-2	11.79	6.08 d	5.81 d	4.08 d	4.46 m	5.09 d			6.09 d	6.22 d	
$11 \mathrm{X} f$	64200-79-9	11.29	6.15 d	~ 5.77 d	3.94 dd	4.35 m	$\sim 5.74 \mathrm{~d}$			6.00 d	$\sim 5.77 \mathrm{~d}$	$\begin{aligned} & \text { PhNH 10.37, Ph }(4 \mathrm{H}, \mathrm{~m}) \\ & 7.29,(1 \mathrm{H}, \mathrm{~m}) 6.95 \end{aligned}$
16	64234-73-7	11.33	$-5.63 \mathrm{~m}$	-	3.89 d	4.41 m			4.95 m	5.86 d	6.03 d	
16 g		ex	5.85 d	5.77 d	4.08 d	4.51 m	4.67 dd	4.93 dt	ex	ex	ex	
14	64234-72-6	11.34	$-5.61 \mathrm{~m}$		$3.72 \mathrm{~d}$	$4.18 \mathrm{~m}$	$4.56 \mathrm{~d}$	$4.44 \mathrm{~d}$	6.07 d	$5.81 \mathrm{~d}$	5.69 d	Ip 1.24, 1.38
15	$64200-78-8$	11.39	5.57 dd	5.76 d	4.04 d	4.46 dd	5.05 t	4.86 dd		$6.08 \mathrm{~d}$		

[^2]of C-5' to give the 5 'S products. That reduction of 11 affords appreciable amounts of the $5^{\prime} R$ isomer 14 , whereas 9 , which is less sterically congested than 11 , affords none of the $5^{\prime} R$ isomer 1 , may indicate that 14 is formed via participation of the 3^{\prime}-hydroxyl group rather than by direct cyanoborohydride attack on the more hindered, front face of the 5 '-carbonyl group. Thus, the initial reaction of the cyanoborohydride ion with the 3^{\prime}-hydroxyl group of 11 would form a complex favorably located for delivery of a hydride ion to the front face of the 5 '-carbonyl group. A similar explanation has been used previously to account for the stereochemistry of the products obtained from lithium aluminum hydride reduction of cyclic hydroxy ketones. ${ }^{12}$

Assignments of the 5^{\prime} configurations to 14 and 16 follow from their respective $J_{4^{\prime}, 5^{\prime}}$ values of <0.5 and 5.9 Hz . These values are diagnostic because Dreiding models show a $4^{\prime}, 5^{\prime}$ dihedral angle of $\sim 90^{\circ}$ for 14 and 30° for 16 . Both 14 and 16 show ${ }^{4} J_{1^{\prime}, 3^{\prime}}$ values of 1.2 Hz , consistent with the xylosyl configuration, and 16 shows an additional four-bond coupling (1.2 Hz) between $\mathrm{H}_{3^{\prime}}$ and $\mathrm{H}_{5^{\prime}}$ that is consistent only with the $5^{\prime} S$ configuration. Chemical proof of the 5 ' S configuration follows from the finding that 16 readily forms a $3^{\prime}, 5^{\prime}-O$-isopropylidene derivative 15, whereas 14 is inert to acetone and p-toluenesulfonic acid because isopropylidene ring formation is sterically impossible. Compound 15, in which the 2^{\prime}-hydroxyl group is conveniently unblocked, is expected to be a versatile intermediate in further studies involving transformations of the sugar rings of these $6,5^{\prime}$-cyclopyrimidine nucleosides. We also anticipate that the retro-aldol C-3' epimerization reaction will be applicable to other cyclonucleosides, e.g., $8,5^{\prime}$-cyclopurine nucleosides, of interest as probes of conformational aspects of enzyme-substrate interactions.

Experimental Section

General Procedures. Melting points were determined on a Thomas-Hoover apparatus (capillary method) and are uncorrected. Ultraviolet spectra were measured on Cary Model 15 and Varian Superscan 3 spectrometers and infrared spectra (KBr disk) were obtained with a Perkin-Elmer Infracord. Thin-layer chromatography was performed on $1 \times 3 \mathrm{in}$. microscope slides coated with silica gel GF_{254} (Merck) and preparative separations were effected on 20×20 $\mathrm{cm}, 1-\mathrm{mm}$ silica gel GF plates (Analabs Inc.). Separated materials were detected with ultraviolet light and/or by spraying with sulfuric acid in ethanol ($10 \% \mathrm{v} / \mathrm{v}$) followed by charring. Evaporations were carried out in vacuo with bath temperatures kept below $45^{\circ} \mathrm{C}$. Microanalyses were performed by Spang Microanalytical Laboratory, Ann Arbor, Mich.
$2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri- O-acetyl-6,5'(S)-cyclouridine (3). ${ }^{13} \quad 2^{\prime}, 3^{\prime}-O$-Iso-propylidene- $6,5^{\prime}(S)$-cyclouridine ${ }^{4}(12,1.18 \mathrm{~g}, 4.2 \mathrm{mmol})$ was dissolved with stirring in 80% acetic acid (40 mL), and the solution was refluxed for 8 h , at which time TLC (EtOAc) showed complete absence of starting material. The solution was concentrated to dryness, and pyridine ($2 \times 25 \mathrm{~mL}$) was added to and evaporated from the residue. The final crystalline residue, comprising mostly $6,5^{\prime}(S)$-cyclouridine (2) together with small amounts of partially acetylated material, was dissolved in a mixture of pyridine (25 mL) and acetic anhydride (5 $\mathrm{mL}, 53 \mathrm{mmol}$). After 2 h at room temperature (TLC, EtOAc), ethanol was added to hydrolize excess acetic anhydride, and the mixture was evaporated to dryness. A solution of the residue in chloroform was washed with cadmium chloride solution to remove traces of pyridine. The organic layer was filtered, washed with water, and dried over sodium sulfate. Removal of the solvent afforded a dry foam which crystallized readily from warm ethanol to give 1.2 g (78%, TLC pure) of $3, \mathrm{mp} 209-210^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{9}$ (mol wt 368.30): $\mathrm{C}, 48.92 ; \mathrm{H}, 4.38$; N , 7.61. Found: C, $48.78 ; \mathrm{H}, 4.40 ; \mathrm{N}, 7.68$.
$2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri- O-acetyl- $6,5^{\prime}(S)$-cyclo-4-thiouridine (4). Phosphorus pentasulfide $(1.0 \mathrm{~g}, 4.5 \mathrm{mmol})$ was added to a solution of $3(1.0$ $\mathrm{g}, 2.7 \mathrm{mmol}$) in 40 mL of dioxane, and the mixture was refluxed for 2 h (TLC, EtOAc/petroleum ether $\left.\left(30-60^{\circ} \mathrm{C}\right), 1: 1\right)$. The cooled mixture was filtered, and the filtrate and washings were concentrated to dryness. The solid residue was partitioned between dichloromethane and water; the organic layer was washed with water, dried over sodium sulfate, and evaporated to dryness. A solution of the residue in ~ 30

Table III. UV Data for 5'-Oxo-6,5'-cyclouridine (9)

Solvent	$\lambda_{\max }(\epsilon)$	$\lambda_{\max }(\epsilon)$	$\lambda_{\min }(\epsilon)$
Dioxane	$321.5(5460)$		$\sim 250-280(1540)$
80% dioxane	$321.5(3750)$	$270(4210)$	$295.5(2420)$
20% dioxane	$318.5(1670)$	$270(7125)$	$299.5(1300)$
0.1 N HCl	$315(1420)$	$270(8950)$	$300(1240), 233(1360)$

mL of hot ethanol deposited 960 mg (92\%) of 4 (yellow needles, TLC pure): mp $194-196^{\circ} \mathrm{C}$; $\mathrm{UV} \lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 334,279,252 \mathrm{~nm}, \lambda_{\min } 289,262$ nm.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$ (mol wt 384.36): C, 46.87; H, 4.20; N , 7.29. Found: C, $46.85 ; \mathrm{H}, 4.22$; N, 7.26 .

6,5'(S)-Cyclo-4-thiouridine (5). Four $1-\mathrm{mL}$ portions of 1 N NaOH (4 mmol) were added over a $10-\mathrm{min}$ period to a suspension of $4(1.26$ $\mathrm{g}, 3.28 \mathrm{mmol}$) in 40 mL of methanol. The solution was kept at room temperature for 1.5 h , when TLC (EtOAc) indicated complete hydrolysis. The solution was deionized by passage through excess Dowex $50\left(\mathrm{H}^{+}\right.$, previously equilibrated with methanol). Crystallization of 5 commenced on concentration of the effluent and was completed by cooling: yield 600 mg (73%); mp 249- $250^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) 250,335$ $\mathrm{nm}, \lambda_{\min } 260 \mathrm{~nm} ; \lambda_{\max }(\mathrm{pH} 11) 320$, inflection $274-286 \mathrm{~nm}, \lambda_{\min } 258$ nm .

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (mol wt 258.25): C, 41.85 ; $\mathrm{H}, 3.90$; N , 10.85. Found: C, 41.91; H, 3.94; N, 10.90.
$6,5^{\prime}(S)$-Cyclo-4-methylthiouridine (6). A solution of 5 (400 mg , 1.55 mmol) in hot methanol (75 mL) was cooled rapidly to prevent crystallization. An excess of diazomethane in ether (dried over KOH) was added, and the solution was stored at room temperature until TLC (EtOAc) indicated that the reaction was complete. Removal of the ether and cooling afforded $200 \mathrm{mg}(48 \%)$ of 6 with good TLC purity. Further crops contained traces of a faster moving component which was not fully characterized but which has an NMR spectrum consistent with the isomeric N-methyl compound ($\mathrm{N}-\mathrm{Me} \dot{\delta} 3.56$, $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$). Recrystallization of 6 from methanol afforded pale yellow needles: mp 198-203 ${ }^{\circ} \mathrm{C}$ dec; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 307,225-238$ (sh), 256-284 (sh), 313-320 nm (sh), $\lambda_{\text {min }} 242 \mathrm{~nm}$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (mol wt 272.28): C, 44.11; H, 4.44; N , 10.29. Found: C, 43.93; H, 4.50; N, 10.31 .

6,5'-Cyclo-5'-oxo-1-(β-D-xylofuranosyl)-4-methylthiouracil (7). Method A. Methyl iodide ($0.2 \mathrm{~mL}, 3.2 \mathrm{mmol}$) was added to a solution of $5(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ in 15 mL of methanol, and the pH was adjusted to and maintained at ~ 9 by the dropwise addition of 1 N NaOH . TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ at 30 min indicated the disappearance of starting material and the formation of 6 , which in turn was converted into a faster moving component. After 3 h , the reaction mixture was neutralized with acetic acid, the volume was reduced, and the solution was applied to a preparative TLC plate. The plate was developed in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (9:1), and the major zone was removed and extracted with 50 mL of $\mathrm{EtOAc} / \mathrm{MeOH}(1: 1)$. Concentration of the filtrate afforded pale yellow crystals of 7: $60 \mathrm{mg}(57 \%)$; mp 250-253 ${ }^{\circ} \mathrm{C}$ dec, darkens from $244{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 341,229,318-333 \mathrm{~nm}$ (sh), $\lambda_{\min } 265 \mathrm{~nm}$; IR $1740 \mathrm{~cm}^{-1}$ (5^{\prime}-oxo).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (mol wt 270.26): C, 44.44; H, 3.72; N, 10.37. Found: C, $44.21 ; H, 3.76 ; \mathrm{N}, 10.40$.

Method B. A solution of $6(20 \mathrm{mg})$ in methanol $(1.5 \mathrm{~mL})$ containing ~ 2 drops of 1 N NaOH was kept at room temperature for 3 h . Isolation of the product by preparative TLC as described above afforded 16 mg (81%) of material, identical (melting point, IR, UV, and NMR) with 7 prepared according to method A.
5^{\prime}-Oxo-6,5'-cyclouridine (9). Method A. A slow stream of oxygen was passed through a solution of $6,5^{\prime}(S)$-cyclouridine $(2,500 \mathrm{mg})$ in $1 \mathrm{~N} \mathrm{NaOH}(25 \mathrm{~mL})$ for 60 h . The solution was neutralized by passage through excess Dowex $50\left(\mathrm{H}^{+}\right)$, and the effluent and washings (pH ~ 5) were concentrated to a clear syrup. Crystallization from ethanol afforded two crops of 9 (228 and 79 mg , total yield 62%). The mother liquors contained more 9 , together with xylo isomer 11. An analytical sample of 9 was obtained by recrystallization from ethanol: mp $220-222^{\circ} \mathrm{C}$, resolidified, $\sim 260^{\circ} \mathrm{C}^{14} \mathrm{dec}$; IR $1750 \mathrm{~cm}^{-1}$ (5^{\prime}-oxo) (UV, see Table III).
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6}$ (mol wt 240.17): C, 45.01; H, 3.38; N, 11.66. Found: C, $45.10 ; \mathrm{H}, 3.40 ; \mathrm{N}, 11.78$.

Compound 9 readily forms a phenylhydrazone in methanol, mp $>300^{\circ} \mathrm{C}$ (recrystallized from 10% aqueous EtOH).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{5}$ (mol wet 330.30): C, 54.55 ; $\mathrm{H}, 4.27$; N , 16.96. Found: C, $54.38 ; \mathrm{H}, 4.42 ; \mathrm{N}, 16.74$.

Method B. A solution of $6,5^{\prime}(S)$-cyclouridine ${ }^{4}(2,5 \mathrm{mg})$ in 6.5 mL of 1 N NaOD containing a trace of DSS was oxygenated in an NMR
tube at room temperature. The NMR spectrum after 24 h showed complete conversion into 9 (hydrate), which shows signals at $\delta 5.97$ $(1, \mathrm{~s}, \mathrm{H}-5), 5.83\left(1, \mathrm{~s}, \mathrm{H}-\mathrm{l}^{\prime}\right), 4.19\left(1, \mathrm{~d}, \mathrm{H}-3^{\prime}, J_{2^{\prime}, 3^{\prime}}=6.1 \mathrm{~Hz}\right.$), and 3.98 ($2, \mathrm{H}-2^{\prime} \mathrm{d}$ overlapping $\mathrm{H}-4^{\prime} \mathrm{s}$). This spectrum is identical with that of crystalline 9 in 1 N NaOD .

The above experiment was repeated on the same scale and under identical conditions with $6,5^{\prime}(R)$-cyclouridine ${ }^{4}(1)$. The oxidation was considerably slower; after 92 h , integration indicated a $1 / 9$ (hydrate) ratio of $3.2: 1$, with the signals for 9 (hydrate) (H-3' obscured by H-4' and $\mathrm{H}-5^{\prime}$ of 1) identical with those above.

6,5'-Cyclo-5'-oxo-1-(β-D-xylofuranosyl)uracil (11). Method A. An aqueous ammonia solution ($1 \mathrm{~mL}, 1 \mathrm{~N}$) was added to a solution of $9(80 \mathrm{mg})$ in warm ethanol (10 mL). The volume was reduced to 2 mL , and the solution was refrigerated, affording $47 \mathrm{mg}(59 \%)$ of 11 (prisms): $\mathrm{mp} 260^{\circ} \mathrm{C}$ dec, darkens above $240^{\circ} \mathrm{C}$; IR $1750 \mathrm{~cm}^{-1}$ (5^{\prime}-oxo); $\mathrm{UV} \lambda_{\max }(0.2 \mathrm{NHCl}) 312 \mathrm{~nm}(\epsilon 6200)$, $\lambda_{\min } 250 \mathrm{~nm}(\epsilon 1485)$; $\lambda_{\max }$ (dioxane) $315 \mathrm{~nm}, \lambda_{\min } 262 \mathrm{~nm}$.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6}$ (mol wt 240.17): C, 45.01 ; H, 3.38; N , 11.66. Found: C, 44.88; H, 3.38; N, 11.64.

The mother liquors contained both 9 and 11. Further crops of 11 can be obtained jy treating the residue with ethanolic ammonia as above, followed by concentration and cooling of the solution.

Method B. 6, $5^{\prime}(S)$-Cyclouridine ${ }^{4}(2,500 \mathrm{mg})$ was oxidized in 1 N NaOH as descriked above (method A) for the preparation of 9 . The clear syrup, obtained after evaporation of the deionized reaction mixture, was dissolved in 50 mL of ethanol. A $5-\mathrm{mL}$ amount of a 1 N ammonia solution was added, and the solution was concentrated to $\sim 10 \mathrm{~mL}$ and cooled. Crystalline $11(279 \mathrm{mg})$ was collected; additional crops of 51 and 45 mg (total yield 75%) were obtained by retreating the residues with ethanolic ammonia. Compound 11 reisomerizes in 1 N NaOD to give ribonucleoside 9 , as shown by the change of the NMR spectrum $\left[11\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 6.49(\mathrm{~s}, \mathrm{H}-5), 6.09\left(\mathrm{~d}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 3^{\prime}}=1.2 \mathrm{~Hz}\right)\right.$, 5.23 (d, H-4 ${ }^{\prime}, J_{3^{\prime} 4^{\prime}}=7.6 \mathrm{~Hz}$), $\left.4.65\left(\mathrm{dd}, \mathrm{H}-3^{\prime}\right), 4.38\left(\mathrm{~s}, \mathrm{H}-2^{\prime}\right)\right]$ to that described above for 9 (hydrate), preparation B.
Compound 11 forms a crystalline phenylhydrazone in 50% acetic acid, mp 275-280 ${ }^{\circ} \mathrm{C} \mathrm{dec}$, darkens above $265^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{H}_{2} \mathrm{O}$).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.72 ; \mathrm{H}, 4.63 ; \mathrm{N}, 16.09$. Found: C, 52.13 ; H, 4.28; N, 16.15 .
$\mathbf{2}^{\prime}, 3^{\prime}$ - O-Isopropylidene-5'-oxo-6,5'-cyclouridine (13). Method A. A suspension of $9(55 \mathrm{mg})$ in acetone $(3 \mathrm{~mL})$ containing p-toluenesulfonic acid hydrate (15 mg) and 2,2-dimethoxypropane (0.1 mL) was stirred rapidly at room temperature. Further additions of dimethoxypropane (0.1 mL) were made after 1 and 3 h ; TLC (EtOAc) indicated an essentially complete reaction after 4 h . The reaction mixture was neutralized by the addition of a saturated sodium bicarbonate solution, and the volume was reduced to $\sim 0.5 \mathrm{~mL}$. Crystalline 13 ($34 \mathrm{mg}, 53 \%$) formed on the addition of water. The analytical sample was recrystallized from EtOAc/petroleum ether (bp 30-60 ${ }^{\circ} \mathrm{C}$): $\operatorname{mp} 225-226{ }^{\circ} \mathrm{C}$; JV $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) 268,316 \mathrm{~nm}, 268 / 316=7.0, \lambda_{\min } 236$, $298 \mathrm{~nm}, \lambda_{\max }$ (dijxane) $320 \mathrm{~nm}, \lambda_{\text {min }} 268 \mathrm{~nm}, 268 / 316=0.34$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}$ (mol wt 280.24): C, 51.43 ; H, 4.31; N , 10.00. Found: C, $51.16 ; \mathrm{H}, 4.35$; N, 9.80 .

Method B. A solution of the sulfur trioxide-pyridine complex (477 $\mathrm{mg}, 3 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{SO}(1 \mathrm{~mL})$ was added to a solution of $12(282 \mathrm{mg}$, 1 mmol) in $\mathrm{Me}_{2} \mathrm{SO}(1 \mathrm{~mL})$ containing triethylamine ($1 \mathrm{~mL}, 7 \mathrm{mmol}$), and the mixture was stored at room temperature for 17 h . The solution was acidified with glacial acetic acid and evaporated to dryness (lyophilization). Water was added to the residue, and crystalline starting material ($12,40 \mathrm{mg}$; TLC; NMR) was removed. The filtrate, which contains 13 and 12 as the main components, was applied to a preparative TLC plate. Development in benzene/ethyl acetate (1:2), followed by extraction of the appropriate zone with EtOAc and concentration to dryness, afforded pure $13(95 \mathrm{mg})$ with melting point and IR, UV, and NMR spectra identical with 13 prepared as above. No attempt was made to optimize the yield of 13 .

Reduction of $13(20 \mathrm{mg}, 0.08 \mathrm{mmol})$ in methanol (5 mL) containing sodium borohydride (0.7 mL of a 1 N aqueous solution) for 30 min afforded a solution containing 12, together with some faster moving (TLC, EtOAc) fuorescent materials. The identity of 12, purified by preparative TLC, was established by comparison of the NMR spectrum with that of authentic material. ${ }^{4}$
$6,5^{\prime}(\mathbf{S})$-Cyclouridine (2). Sodium cyanoborohydride ($10 \mathrm{mg}, 0.16$ mmol) was added to a solution of $9(36 \mathrm{mg}, 0.15 \mathrm{mmol})$ in a mixture of methanol $(2 \mathrm{~mL})$ and acetic acid $(0.5 \mathrm{~mL})$. The solution was stored at room temperature for 1 h (TLC, EtOAc, dinitrophenylhydrazine spray) and then concentrated to dryness. An aqueous solution of the residue was passed through excess Dowex $50\left(\mathrm{H}^{+}\right)$, the eluate was evaporated to dryness, and methanol was repeatedly evaporated from the crystalline residue. The NMR spectrum $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)$ of the re-
sulting crystalline mass ($35 \mathrm{mg}, 96 \%$) was identical with that of authentic $2 ;^{4}$ none of the $5^{\prime} R$ isomer 1 was detected, even with the very high signal-to-noise ratio resulting from prolonged spectral accumulation.

6,5'(S)-Cyclo-1-(β-D-xylofuranosyl)uracil (16) and 6,5'(R)-Cyclo-1-(β-D-xylofuranosyl)uracil (14). Sodium cyanoborohydride $(40 \mathrm{mg}, 0.64 \mathrm{mmol})$ was added to a suspension of $11(150 \mathrm{mg}, 0.53$ mmol) in a mixture of water, acetic acid, and methanol ($1: 1: 1,6 \mathrm{~mL}$). The mixture was stirred and warmed briefly to $\sim 40^{\circ} \mathrm{C}$ to effect dissolution and then cooled to room temperature. The reduct on was monitored by the disappearance of the $310-\mathrm{nm}$ peak of 11 and the appearance of absorption at 268 nm , a process that was complete after $\sim 3.5 \mathrm{~h}$. The solution was deionized by passage through an excess of Dowex $50\left(\mathrm{H}^{+}\right)$, the eluate and washings were concentrated to dryness, and methanol was repeatedly evaporated from the residue. The NMR spectrum $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)$ of the residue showed compounds $14 ; 16$ in a ratio of $1: 5$. Pure $14(80 \mathrm{mg})$ was obtained by crystallization of the residue from hot 80% ethanol: $\mathrm{mp} 246-248^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) 268 \mathrm{~nm}$, $\lambda_{\text {min }} 233 \mathrm{~nm}$; $\lambda_{\text {max }}(\mathrm{pH} 9) 266 \mathrm{~nm}, \lambda_{\min } 241 \mathrm{~nm}$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{6}$ (mol wt 242.19): C, 44.63; H, $\leq .16 ; \mathrm{N}$, 11.57. Found: C, 44.56; H, 4.14; N, 11.47.

A further sample of $14(30 \mathrm{mg})$ and pure $16(10 \mathrm{mg})$ was obtained by fractionation of the residue by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 8:1; triple development). Compound 16 crystallized from aqueous ethanol: mp 250-253 ${ }^{\circ} \mathrm{C} \mathrm{dec}$, darkens and shrinks above $230^{\circ} \mathrm{C}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 271 \mathrm{~nm}, \lambda_{\min } 237 \mathrm{~nm} ; \lambda_{\max }(\mathrm{pH} 10) 270 \mathrm{~nm}, \lambda_{\min } 245$ nm .

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{6}$ (mol wt 242.19): C, 44.63; H, 4.16; N, 11.57. Found: C, 44.86; H, 4.14; N, 11.36.
$6,5^{\prime}(S)$-Cyclo- $3^{\prime}, 5^{\prime}-O$-isopropylidine-1- β-D-xylofuranosyl)uracil (15). A suspension of $16(54 \mathrm{mg}, 0.22 \mathrm{mmol})$ in acetone (3 mL) containing 15 mg of p-toluenesulfonic acid monohydrate and 0.1 mL of 2,2-dimethoxypropane was stirred rapidly at room temperature. The slow dissolution of $16(\sim 1 \mathrm{~h})$ was followed by the appearance of crystalline 15 . After 3 h , the crystals (27 mg) were removed and washed with cold acetone. The filtrate was diluted with 0.1 mL of water, solid sodium bicarbonate was added, and the mixture was filtered. The filtrate was evaporated to dryness, and a solution of the res due in methanol was applied to a preparative TLC plate. After develcpment (EtOAc), the appropriate zone was removed, the silica was extracted with ethyl acetate, and the filtrate was concentrated to d-yness. Crystallization from 90% acetone afforded 20 mg (total yield ${ }^{7} 5 \%$) of 15: mp 265-266 ${ }^{\circ} \mathrm{C}$, UV $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) 269.5 \mathrm{~nm}$, $\lambda_{\min } 233 \mathrm{~nm}$; $\lambda_{\max }(\mathrm{pH}$ 10) $270 \mathrm{~nm}, \lambda_{\min } 243 \mathrm{~nm}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}$ (mol wt 282.25): C, $51.07 ; \mathrm{H}, 5.00$; N , 9.93. Found: C, $51.24 ; \mathrm{H}, 5.05 ; \mathrm{N}, 9.89$.

Registry No.-1,59728-02-8; 2, 59686-60-1; 12, 59686-58-7: acetic acid, 64-19-7; diazomethane, 334-88-3; methyl iodide, 74-88-4; phenylhydrazide, 100-63-0; 2,2-dimethoxypropane, 77-76-9.

References and Notes

(1) This investigation was supported by funds from the American Cancer Society (Grant $\mathrm{CH}-38$) and from the National Institute of Health, U.S. Public Health Service (Grant No. 17085, for NMR studies).
(2) This paper is the second in a series entitled Conformationally Restricted Analogues of Pyrimidine Nucleosides. For Part 1, see ref 4.
(3) Reviews that stress the relationship between nucleoside-nucleotide conformation and biological activity include the following: (a) D. C. Ward and E. Reich, Annu. Rep. Med. Chem., 272 (1969); (b) W. Saenger, Angew. Chem., Int. Ed. Engl., 12, 591 (1973). For examples of the use of conformationally restricted nucleotides to investigate enzyme specificity see the following: (a) A. Hampton, P. J. Harper, and T. Sakai, Biochemistry, 11, 4965 (1972); (b) A. Matsuda, M. Tezuka, and T. Ueda, Nucleic Acids Res., Spec. Publ., No. 2, S 13 (1976); (c) J. Zemlicka, J. Am. Chem. Soc., 97, 5896 (1975).
(4) B. A. Otter, E. A. Falco, and J. J. Fox, J. Org. Chem., 41, 3133 (1976).
(5) The synthesis of $6,5^{\prime}(S)$ - and $6,5^{\prime}(R)$-cyclocytidine will be reported in a subsequent paper.
(6) J. R. Parikh and W. von E. Doering, J. Am. Chem. Soc., 89, 5505 (1967).
(7) (a) G. Kotowycz and R. U. Lemieux, Chem. Rev., 73, 669 (1973); (b) M. Barfield and B. Chakrabarti, ibid., 69, 757 (1969).
(8) R. Youssefyeh, D. Tegg, J. P. H. Verheyden, G. H. Jones, and J. G. Moffatt, Tetrahedron Lett., 435 (1977). See also D. L. Leland and M. P. Kotick, Carbohydr. Res., 38, C9 (1974).
(9) It is not clear whether the $\mathrm{C}-3^{\prime}$ epimerization precedes or follows hydroxymethylation at $\mathrm{C}-4^{\prime}$ because the stability of uridine 5^{\prime}-aldehyde alone in base was not reported. In either case, four initial products are possible since C-4' can also epimerize, but this number is reduced to two (C- 3^{\prime} epimers) because the subsequent Cannizzaro reaction removes the C-4' asymmetry.
(10) Carbonyl hydration, and its effect on the UV spectrum, may be a common feature of 6 -acylpyrimidines. Thus orotaldehyde (uracil 6 -carboxaldehyde) absorbs in water (pH 1) at 261 nm ($\epsilon 8200$), but it also shows a small shoulder at $300 \mathrm{~nm}(\epsilon 700)$. On the basis of the above results, the $261-\mathrm{nm}$ peak represents hydrated orotaldehyde, and the 300-nm peak can be attributed to the anhydrous form. In dioxane, orotaldehyde absorbs only at 300 nm . The literature value [K.-Y. Zee-Cheng and C. C. Cheng, J. Heterocycl. Chem., 4, 163 (1967)] for orotaldehyde is $\lambda_{\text {max }}(\mathrm{pH} 1-7) 261 \mathrm{~nm}$ ($\epsilon 13300$), with no mention of $200-\mathrm{nm}$ absorption. We could not reproduce the $\epsilon 13300$ value, but we feel that our figure of $\epsilon 8200$ is more in line with the value reported by the same authors for thymine 6 -carboxaldehyde (ϵ 7800). In MeSO-d d $_{6}$ anhydrous orotaldehyde shows NMR signals at $\delta 9.56$ (s, CHO) and 6.28 (dd, $\mathrm{H}-5, \mathrm{~N}_{\mathrm{N}_{3} \mathrm{H}, 5}=\int_{\mathrm{N}_{\mathrm{N}, \mathrm{H}, 5}}=1.8 \mathrm{~Hz}$). In $\mathrm{D}_{2} \mathrm{O}$, the anhydrous form [$\delta 9.60(\mathrm{~s}, \mathrm{CHO}), \delta 6.49(\mathrm{~s}, \mathrm{H}-5)$] and the hydrated form [$\delta 5.92$ (d, $\left.\left.\mathrm{H}-5, J_{\text {allylic }}=1 \mathrm{~Hz}\right), \delta 5.75\left(\mathrm{~d} \mathrm{CH}(\mathrm{OD})_{2}\right)\right]$ are present in a ratio of $\sim 1: 15$.
(11) B. F. Borch, M. D. Bernstein, and H. D. Durst, J. Am. Chem. Soc., 93, 2897 (1971).
(12) H. O. House, "Modern Synthetic Reactions", 2nd ed, W. A. Benjamin, New York, N.Y., 1972, pp 58-59.
(13) All of the compounds described can be named as substituted 6,9-epoxypyrimido [1,6 -a] azepines, but for ease of comparison with ordinary nucleosides we prefer the trivial $6,5^{\prime}$-cyclonucleoside designations used herein.
(14) The melting point depends on the rate of heating. Examination of the UV spectrum of the resolidified melt shows that partial rearrangement to xylo isomer 11 occurs. Similarly, aged solutions of 9 in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}-\mathrm{D}_{2} \mathrm{O}$ rearrange to 11 on heating. In both cases, the reaction is probably catalyzed by alkali leached from the glass.

A Serendipitous Synthesis of
 1,2,5,6-Tetramethyl-3,4,7,8-tetramethylenetricyclo[3.3.0.0 ${ }^{2,6}$]octane

Weston Thatcher Borden, ${ }^{* 1}$ Avram Gold, and Stanley D. Young
Departments of Chemistry, Harvard University, Cambridge, Massachusetts 02138, and University of Washington, Seattle, Washington 98195

Received May 20, 1977

The title compound (5) can be prepared by photosensitized dimerization of 1,2-dimethyl-3,4-dimethylenecyclobutene (1) to anti-1,2,5,6-tetramethyl-3,4,7,8-tetramethylenetricyclo $\left[4.2 .0 .0^{2,6}\right]$ octane (2), followed by flow system pyrolysis of 2 at $380^{\circ} \mathrm{C}$. At lower temperaturəs an intermediate, 1,2,5,6-tetramethyl-3,4,7,8-tetramethylenecy-cloocta-1,5-diene (3), can be isolated. On direct or sensitized photolysis of 3,5 is also obtained. The photochemistry of 2 has been explored, and its fragmentation to 1 on direct irradiation is discussed. The photosensitized dimerization of 1 to 2 is also discussed and interpreted in favor of a frontier orbital model for predicting the products of such reactions.

As an intermediate in a proposed synthesis, we required 1,2:5,6-bis(ethano)cyclooctatetraene (4, R $=\mathrm{H}$) or a simple derivative thereof. Attempts to convert 1,2:5,6-bis(ethano)-
cycloocta-1,5-diene ${ }^{2}$ to the tetraene proved fruitless, and so we investigated the route to $4, \mathrm{R}=\mathrm{CH}_{3}$, shown in Scheme I. Our synthesis began with the photochemical dimerization of
Scheme I

1,2-dimethyl-3,4-dimethylenecyclobutene (1). ${ }^{3}$ Although this step and the next-the thermal cleavage of the photodimer (2) to 1,2,5,6-tetramethyl-3,4,7,8-tetramethylenecycloocta-1,5-diene (3)-both proceeded successfully, ${ }^{4}$ photolysis of 3 gave, instead of 4, 1,2,5,6-tetramethyl-3,4,7,8-tetramethylenetricyclo [3.3.0.0 ${ }^{2,6}$]octane (5). While the failure of the last step precluded the utilization of Scheme I for the preparation of 4 , this route did afford a serendipitous synthesis of 5 , a compound whose chemistry ${ }^{5}$ was to provide the key to understanding the chemical consequences of orbital interactions in compounds containing unsaturatively 1,3 -bridged cyclobutane rings. ${ }^{6}$ We report herein details of this synthesis of 5 and discuss the thermal and photochemical behavior of the intermediates.

Results and Discussion

It was with some trepidation that we carried out the photosensitized dimerization of 1 , since there are a total of nine products that might be reasonably expected to result from this reaction. Indeed, in the sensitized irradiation of 1,2 -dimethylenecyclobutane three of the four possible dimers are obtained as primary photoproducts and the fourth is formed as the result of a Cope rearrangement of one of these, when purification of the dimer mixture by GLC is attempted. ${ }^{2}$ However, the HOMO and, since 1 is an AH, ${ }^{7}$ the LUMO of 1 both have coefficients of the largest magnitude at C-1 and C-2. Thus, it seemed reasonable to expect that upon sensitized photolysis of 1 the excitation would be localized principally at these atoms of the ring, rather than in the exocyclic double bonds. Moreover, frontier molecular orbital theory predicts ground state 1 to be most readily attacked at these ring carbons, again because both the HOMO and LUMO have coefficients of the largest magnitude at these atoms. ${ }^{8}$ Therefore, there was some reason to hope that the photodimerization of 1 might be regioselective and lead principally to 2 or to its syn stereoisomer.

In the event, when 1 was irradiated through Pyrex in a benzene solution, containing sufficient benzophenone to absorb 99% of the light, a single dimeric product was obtained after chromatography of the crude photolysate over alumina. The ${ }^{1} \mathrm{H}$ NMR spectrum of the crystalline product showed four equivalent methyl groups and four equivalent vinyl groups, thus indicating the gross structure 2 for the dimer. The stereochemistry was established as anti by reduction of the dimer to anti-octamethyltricyclo[4.2.0.0 $0^{2,5}$]octadiene (6), a
reaction which could be carried out either by hydrogenation over a $5 \% \mathrm{Pd} /{ }^{\prime} \mathrm{C}$ catalyst ${ }^{9}$ or with lithium in ammonia-tetra-hydrofuran-tert-butyl alcohol. The melting point ($125^{\circ} \mathrm{C}$) of the reduction product was in good agreement with that (127 ${ }^{\circ} \mathrm{C}$) reported for the anti-octamethyltricyclooctadiene (6) ${ }^{10 \mathrm{a}}$ but not with that $\left(196{ }^{\circ} \mathrm{C}\right)$ of the syn isomer. ${ }^{\circ 0 \mathrm{bb}}$ The ${ }^{\text {' }} \mathrm{H}$ NMR spectrum of the reduction product in CDCl_{3} showed two singlets of equal area at $\delta 0.91$ and 1.56 , in excellent agreement with the spectrum of an authentic sample of $6,{ }^{10 \mathrm{c}}$ but different from that of the syn compound ($\delta 0.99$ and 1.49), which we prepared by the literature procedure ${ }^{10 \mathrm{~b}}$ for comparison.

6
The structure of the photodimer (2) formed on sensitized irradiation of 1 is of some theoretical interest, for despite the steric hindrance afforded by the methyl groups attached to the endocyclic double bond of 1 , the gross structure of 2 is in accord with the prediction based on analys.s of the frontier MO's of 1 . Usually, however, the products of sensitized photodimerization reactions are rationalized by the principle of formation of the most stable diradical intermediate. ${ }^{11}$ For instance, in the sensitized photodimerization of dienes the most stable diradical is that which results from bonding between the terminal atoms of the excited triplet and the ground state diene. However, the formation of the same diradical is predicted by frontier orbital analysis, since the HOMO and LUMO of a diene have their largest coefficients at the terminal atoms. Although frontier orbital analysis and the principle of formation of the most stable diradical make the same prediction regarding the intermediate initially created by the sensitized photolysis of dienes (and, more generally, of linearly conjugated polyenes), these two models differ in their prediction of the diradical involved in the photosensitized dimerization of 1 . As noted above, frontier orbital analysis predicts 7 to be the diradical intermediate in this reaction, while the more stable diradical is $8 .{ }^{12}$ Thus, this reaction offers a test of the two different models, and from the product (2) actually obtained, it is apparent that the frentier MO model is the one that provides the correct prediction.

7

8

While the frontier orbital model does correctly predict the regiochemistry of the dimer (2) formed from 1, it fails to anticipate the observed stereochemistry. Secondary orbital interactions should give rise to formation of the syn rather than the anti dimer, for maximum overlap of the lower and upper of the two singly occupied MO's in the excited molecule of 1 with, respectively, the HOMO and LUMO of the ground-state molecule, should favor a geometry leading to dimer with syn stereochemistry. ${ }^{8}$ Presumably steric effects are responsible for formation of the anti dimer (2), and assuming that frontier orbital analysis provides the correct explanation of the dimer's regiochemistry, one concludes that secondary orbital interactions must be of lesser importance than such steric effects in the transition state for the photosensitized dimerization of 1 .

Although the formation of 2 in this reaction was of theoretical interest for the reasons outlined above, the practical
import of this result was that a convenient symthesis of 3 from 1 now seemed assured. Thermolysis of tricyclo[4.2.0.0 ${ }^{2,5}$]octane leads to 1,5 -cyclooctadiene, ${ }^{14}$ and by analogy there was little doubt that 2 would open to 3 . Indeed, on pyrolysis in a flow system at $240^{\circ} \mathrm{C}$ the two required bonds were broken and 2 underwent smooth conversion to 3 . However, in contrast to the thermal reaction, direct photolysis of 2 led to cleavage of the two other allylic $\mathrm{C}-\mathrm{C}$ bonds and the regeneration of $1 .{ }^{15}$

The different courses taken by the thermal and photochemical reactions of 2 are readily understood. In the thermal reaction it is the most strained and, consequently, the weakest allylic $\mathrm{C}-\mathrm{C}$ bonds in 2 that are cleaved. However, in the photochemical reaction the allylic bonds that are broken are those whose orientation causes them to mix strongly with π orbitals of the diene moieties. The analogous σ bonds in both isomers of tricyclo[4.2.0.0 ${ }^{2,5}$] octa-3,7-diene interact strongly with the π bonds, as revealed by the photoelectron spectra of these compounds. ${ }^{16}$ The $\sigma-\pi$ interaction is sufficiently large that the "through-bond" mediated mixing between the double bonds is stronger than that "through space," even in the syn isomer. ${ }^{16}$ It is to be expected, therefore, that considerable $\sigma-\pi$ mixing also exists in 2 . Specifically, the out-of-phase combination of localized bonding σ orbitals ${ }^{17}$ mixes strongly with the symmetric (with respect to the C_{2} axis present in 2) combination of diene HOMO's, and the in-phase combination of antibonding σ orbitals mixes with the antisymmetric combination of the diene LUMO's. The MO's that result from the mixing are, respectively, the HOMO and the LUMO of 2, each of which contains a substantial contribution from the appropriate combination of localized σ MO's. Although the excitation of an electron from the HOMO to the LUMO of 2 represents a forbidden electronic transition, ${ }^{18}$ the resulting excited singlet state is the one of lowest energy. ${ }^{19}$ Therefore, it is not unlikely that, following an allowed transition, 2 would undergo electronic relaxation to this singlet state. Population of this state is tantamount to excitation of an electron from an MO with appreciable bonding σ character to one with appreciable antibonding σ character. Not only are the two ring bonds in 2 thus weakened, but also, the excitation, if viewed in the extreme as involving predominantly these localized σ bonds, leaves populated just those orbitals required for a concerted and photochemically allowed ${ }_{\sigma} 2_{9}+{ }_{\sigma} 2_{8}$ retrograde cycloaddition. ${ }^{20}$

The photochemical cleavage of 2 to 1 , while of interest, especially as it contrasts with the thermal transformation of 2 to 3 , was certainly not synthetically useful and we did not investigate it further. Instead, we turned to the examination of the photochemistry of 3 in the hope that we could obtain 4 from 3 by direct irradiation. The desired closure is, of course, of the familiar butadiene \rightarrow cyclobutene type, and precedent for the occurrence of this reaction in a molecule with some resemblance to 3 can be found in the photochemical transformation of 7,8 -dimethylenecyclooctatriene to 1,2 -ethanocyclooctatetraene. ${ }^{22}$ On direct irradiation 1,2,5,6-tetramethylenecyclooctane also undergoes cyclobutene ring closure; however, transannular bond formation to give 2,6-dimethylene[3.3.2]propellane is competitive. ${ }^{2}$ Transannular bond formation in 3, particularly upon sensitization, which suppresses cyclobutene ring closure in tetramethylenecyclooctane, ${ }^{2}$ therefore also seemed a likely photochemical event. Finally, photoinduced reaction of 3 at its internal double bonds too had precedent, not only in the photochemistry of 1,5 -cyclooctadiene itself, ${ }^{23}$ but also in that of 1,2:5,6-dibenzocyclooctatetraenes ${ }^{24}$ and halogenated derivatives of dimethylenecyclooctatriene. ${ }^{22}$

When the irradiation of 3 , either direct or sensitized, was actually carried out, the last of these pathways was the one followed. The only isolable product showed three ${ }^{1} \mathrm{H}$ NMR signals at $\left(\mathrm{CDCl}_{3}\right) \delta 0.70,4.83$, and 5.48 in the ratio 3:1:1, thus

indicating that the molecule possessed four equivalent methyl and four equivalent methylene groups. The chemical shift of the methyl groups indicated that they were attached to saturated carbons, leading to the conclusion that the photoproduct was tricyclic. Thus, 5 and the syn isomer of 2 both provided reasonable structural assignments for the photoproduct. However, photochemical analogy ${ }^{23,24}$ favored the former assignment, as did the occurrence of the methyl resonances in the photoproduct 0.35 ppm farther upfield than those in 2 , since magnetic shielding of equatorial methyl groups on puckered cyclobutane rings is a commonly observed phenomenon. ${ }^{25}$ Further consideration of the syn isomer of 2 as the photoproduct was terminated by the discovery that, upon pyrolysis in a flow system at $380^{\circ} \mathrm{C}$ or higher with a contact time of about 3 s , both 2 and 3 were converted to a single compound with the same ${ }^{1} \mathrm{H}$ NMR spectrum as the photoproduct.

Although the finding that the photoproduct was also formed by pyrolysis of 3 eliminated on thermodynamic grounds the syn isomer of 2 as the molecule obtained from these reactions, the formation of 5 from 3 in the thermal rearrangement was, to say the least, surprising. The rearrangement of 3 to 5 , both photochemically and thermally, can be most easily rationalized, at least in a formal sense, in terms of the intermediacy of a biradical, as shown in Scheme II. A similar biradical intermediate has been suggested in the photochemical interconversion of cyclooctatetraene and semibullvalene ${ }^{26}$ and in the thermal equilibration of substituted derivatives of these molecules. ${ }^{27-29}$ The same biradical has also been postulated in the extraordinarily facile thermal transformation of bicyclo[3.3.0.0 ${ }^{2,6}$]octa-3,7-diene to semibullvalene. ${ }^{30,31}$ These transformations are shown in Scheme III. The biradicals in the two schemes differ in that the double bonds that stabilize the biradical in Scheme III are endocyclic, so the formal shift of a double bond, necessary for the conversion of cyclooctatetraene and tricyclo[3.3.0.0 $0^{2,6}$]octa-3,7-diene into semibullvalene, can occur. In contrast, in the diradical in Scheme II the stabilizing double bonds are exocyclic and so, unlike the case in Scheme III, the exit to a semibullvalene derivative is blocked. A system similar to that portrayed in Scheme II has been investigated by Stiles and Burckhardt, ${ }^{24}$ who explained the thermal and photochemical rearrangements of $1,2: 5,6-$ dibenzocyclooctatetraenes by the intermediacy of tricyclic isomers analogous to 5. However, Stiles and Burckhardt did not actually isolate the tricyclic isomers, a fact which is perhaps not surprising in view of the instability of tricyclo[3.3.0. $0^{2,6}$]octa-3,7-diene itself. ${ }^{30}$ Thus, it seemed very strange, indeed, that we obtained 5 from pyrolysis of 3 at temperatures well above that at which tricyclo[3.3.0.0 ${ }^{2,6}$]octane undergoes cleavage to 1,5 -cyclooctadiene. ${ }^{32}$ This,

Scheme III

however, was only the first of several apparently anomalous aspects of the chemistry of 5 that we encountered. ${ }^{5}$

The rearrangement of tricyclo[3.3.0.0 ${ }^{2,6}$]octa-3,7-diene to semibullvalene suggested a chemical method for proving the structure of 5 . Conversion of the exocyclic methylene groups of 5 into endocyclic double bonds should trigger rearrangement to a derivative of semibullvalene. Therefore, we investigated the reduction of 5 . Hydrogenation of 5 over a Pd / C catalyst, unlike the case in the reduction of 2 , proceeded 1,2 instead of 1,4 . Consequently, 5 was reduced using lithium in a mixture of tetrahydrofuran, ammonia, and tert-butyl alcohol at $-30^{\circ} \mathrm{C}$. The material isolated was not, however, octamethylsemibullvalene (10) but a mixture of octamethylbicyclo[3.3.0]octadienes, apparently resulting from a further two-electron reduction of 10 . This result might have been anticipated, since Schröder has reported the analogous reduction of bullvalene under similar conditions. ${ }^{21}$ Indeed, when octamethylsemibullvalene (10) was itself subjected to the conditions of the reaction, the crude product mixture showed the identical ${ }^{1} \mathrm{H}$ NMR spectrum and GLC trace as the mixture of products obtained from reduction of 5 . It seems plausible, therefore, that under the reaction conditions 5 is, in fact, reduced to octamethyltricyclo[3.3.0.0 ${ }^{2,6}$]octa-3,7-diene (9), which rearranges to 10 , and that 10 then undergoes a further two-electron reduction to give the observed products. If this is actually the course taken by the reaction, ${ }^{33}$ it indicates that 9 rearranges at a somewhat lower temperature $\left(-30^{\circ} \mathrm{C}\right)$ than the parent tricyclo[3.3.0.0 ${ }^{2,6}$]octa-3,7-diene, which apparently can be distilled at $0^{\circ} \mathrm{C} .{ }^{30}$

Another obvious method for converting the exocyclic methylenes of 5 into endocyclic double bonds is a Diels-Alder cycloaddition reaction. Besides providing further chemical proof of the structure of 5 , such a reaction labels the positions of the endocyclic double bonds present in the tricyclooctadiene that is expected to be formed initially. This labeling allowed a test of a proposed explanation for the rapid rearrangement of tricyclo[3.3.0.0 $0^{2,6}$]octa-3,7-dienes, involving a symmetry-allowed ${ }_{\sigma} 2_{\mathrm{s}}+{ }_{\sigma} 2_{\mathrm{a}}$ pathway from them to semibullvalenes. ${ }^{34}$ The results of our studies of the cycloaddition reactions of 5 and the conclusions drawn from them are contained in the accompanying paper. ${ }^{5}$

Experimental Section

1,2-Dimethyl-3,4-dimethylenecyclobutene (1). ${ }^{35}$ To a $100-\mathrm{mL}$ round bottom flask equipped with a magnetic stirrer and reflux condenser was added 17.9 g of 3,4 -dichlorotetramethylcyclobutene ${ }^{36}$ and 38 g of quinoline. The mixture was heated at $120^{\circ} \mathrm{C}$ under nitrogen for 0.5 h until two layers separated. Upon cooling, the lower layer solidified. The upper layer was decanted, water was added to the lower layer, and the resulting solution was extracted with hexane. The hexane extracts and the upper layer were combined and distilled under aspirator pressure. A colorless liquid, boiling at $35-40^{\circ} \mathrm{C}$, was collected and amounted to $6.2 \mathrm{~g}(60 \%$ yield). its NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed: $\delta 1.85(\mathrm{~s}, 6 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$; UV (hexane) $\lambda_{\text {max }} 245 \mathrm{~nm}(\log \epsilon 3.8)$. Exact mass calcd for $\mathrm{C}_{8} \mathrm{H}_{10}: 106.0783$. Found: 106.0800.
anti-1,2,5,6-Tetramethyl-3,4,7,8-tetramethylenetricyclo[4.2.0.0 ${ }^{2,5}$]octane (2). In 60 mL of benzene was dissolved 0.8 g of benzophenone, and the solution was degassed in a photolysis well by
bubbling nitrogen slowly through it for 2 h . After addition of 2.0 g of 1 , degassing was continued for another 0.5 h . The solution was photolyzed through a Pyrex filter with a 450-W Hanovia high-pressure lamp for 4 h . Although monitoring the reaction by NMR showed some starting material was still present, longer irradiation led to loss of product and lower overall yields. Upon termination of the photolysis, the solvent was removed under reduced pressure and the residue chromatographed over 30 g of neutral alumina, using pentane to elute the column. The product was collected in the first $50-75 \mathrm{~mL}$. Evaporation of the solvent gave 0.9 g of off-white cyrstalline material; NMR $\left.\left(\mathrm{CDCl}_{3}\right) \delta 1.05 \mathrm{is}, 12 \mathrm{H}\right), 4.70(\mathrm{~s}, 4 \mathrm{H}), 5.27(4 \mathrm{H})$; UV (hexane) $\lambda_{\text {max }}$ $243 \mathrm{~nm}(\log \epsilon 4.1)$. If the product was not stored under nitrogen at -78 ${ }^{\circ} \mathrm{C}$, it decomposed, apparently to a polymer. ${ }^{37}$ Polymerization also occurred rapidly when the crystals were heated to about $100^{\circ} \mathrm{C}$, so a melting point could not be obtained. Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{20}$: 212.1565. Found: 212.1558.

Reduction of 2 to anti-Octamethyltricyclo[4.2.0.0.5] octa3,7 -diene (6). (a) Catalytically. A solution of 93 mg of 2 in 3 mL of ethyl acetate was hydrogenated at room temperature and atmospheric pressure over 14 mg of a 5% palladium on carbon catalyst. During the course of 0.75 h 2 mol equiv of hydrogen were taken up. Filtration and evaporation of the solvent left 90 mg of colorless crystalline material. The product, atter purification by recrystallization from methanol and/or sublimation, had an NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ that consisted of two singlets cf equal area at $\delta 0.91$ and 1.56 (lit. ${ }^{10 \mathrm{c}} \delta 0.89$ and 1.54). Material of the highest melting point was obtained by purifying the crude product by preparative GLC at $180^{\circ} \mathrm{C}$ on a $0.375 \mathrm{in} . \times 10 \mathrm{ft}$ column of 20\% SE-30 on Chromosorb W. Only one major peak was observed with a retention time of 8.5 min at a flow rate of $180 \mathrm{~mL} / \mathrm{min}$. The crystals that were collected melted very sharply at $125^{\circ} \mathrm{C}$ (lit. ${ }^{10 \mathrm{a}}$ $127^{\circ} \mathrm{C}$).
(b) With Lithium. To a $250-\mathrm{mL}$ flask, equipped with an actonedry ice condenser and a magnetic stirrer, was added 100 mg of lithium pieces under a nitrogen atmosphere. The flask was cooled in an ace-tone-dry ice bath and 50 mL of ammonia was distilled through a KOH trap and condensed in the reaction flask. Then 25 mL of tetrahydrofuran (distilled from lithium aluminum hydride) and 10 mL of tert-butyl alcohol (distilled from sodium) were added by syringe. Finally, 55 mg cf 2 in 2 mL of tetrahydrofuran was added by syringe to the refluxing, stirred, blue solution. After 2 h the cold bath was removed and after another 0.5 h the reaction was quenched by adding a saturated aqueous solution of ammonium chloride until the blue color was discharged. Water and ether were added to the flask, which was allowed to stand at room temperature and then at $60^{\circ} \mathrm{C}$ for 1 h to complete the removal of the ammonia. Further ether was added, the two layers uere separated, the aqueous phase was extracted with more ether, and the organic layers were combined, washed with water and brine, and cried over magnesium sulfate. Removal of the solvent on a rotary evaporator left an oily solid, which was recrystallized from methanol and sublimed at 5×10^{-3} Torr at a bath temperature of 75 ${ }^{\circ} \mathrm{C}$. The NMR spectrum of this material was identical with that prepared by catalytic reduction of 2 .

Photolysis of 2. (a) Direct. To a quartz NMR tube was added a solution of 20 mg of 2 in 0.5 mL of cyclohexane. The solution was degassed for 0.75 h by bubbling nitrogen slowly through it via a syringe needle that penetrated the septum with which the tube was capped. A shorter needle provided an outlet for the nitrogen. The needles were withdrawn and the NMR tube was irradiated with a 450-W Hanovia high-pressure lamp. After 1.5 h an NMR spectrum of the contents of the tube showed roughly 50% reversion of 2 to 1,2 -dimethyl-3,4dimethylenecyclobutene (1).
(b) Sensitized. To a Pyrex NMR tube was added a solution of 50 mg of 2 and 5 mg of benzophenone in 0.75 mL of benzene. After degassing, as described above, the tube was irradiated through a Pyrex filter with a 45 C -W Hanovia high-pressure lamp. A steady decrease in the concentration of 2 was observed by NMR with an attendant increase of a broad unresolved absorption in the aliphatic region. No trace of 1 was detectable. The disappearance of 2 was nearly complete after 1.5 h of irradiation.

Pyrolysis of 2. (a) At $240^{\circ} \mathrm{C}$ to $1,2,5,6-T e t r a m e t h y l-3,4,7,8-$ tetramethylenecycloocta-1,5-diene (3). Using the flow system apparatus described previously, ${ }^{2} 50 \mathrm{mg}$ of 2 , dissolved in 0.5 mL of hexane, was added dropwise to the pyrolysis column, which was preheated to $243^{\circ} \mathrm{C}$. The nitrogen flow rate through the column was adjusted so tha: the residence time of the pyrolysate in the column was about 3 s . After the addition was complete, the column was washed with an additional 1.5 mL of hexane. The hexane solution was removed from the trap and evaporated. The NMR spectrum (CDCl_{3}) of the residue showed it to be pure $3 ; \delta 1.80(\mathrm{~s}, 12 \mathrm{H}), 4.80(\mathrm{~d}, 4 \mathrm{H}, J$ $=1.5 \mathrm{~Hz}), 5.10(\mathrm{~d}, 4 \mathrm{H}, J=1.5 \mathrm{~Hz})$.
(b) At $380^{\circ} \mathrm{C}$ to $1,2,5,6$-Tetramethyl-3,4,7,8-tetramethylenetricyclo[3.3.0.0 ${ }^{2,6}$]octane (5). A sample of 2 was pyrolyzed as described above, except that the temperature of the column was $380^{\circ} \mathrm{C}$. The NMR spectrum of the residue after solvent evaporation showed, in addition to a small amount of unresolved absorption in the aliphatic region, $\delta 0.70$ (s, 12 H), 4.83 (s, 4 H), $5.48(\mathrm{~s}, 4 \mathrm{H})$.
(c) At $300{ }^{\circ} \mathrm{C}$ to a Mixture of 3 and 5 . A sample of 2 was pyrolyzed at $300{ }^{\circ} \mathrm{C}$ as described above. The NMR of the crude pyrolysate showed it to consist of an approximately $1: 1$ mixture of 3 and 5 . The products were separated by preparative GLC on a $0.375 \mathrm{in} . \times 10 \mathrm{ft}$ column of 20% Carbowax 20 M on Chromosorb W. At $170^{\circ} \mathrm{C}$ and a flow rate of $180 \mathrm{~mL} / \mathrm{min}$ two peaks appeared with retention times of 10 and 17 min . These were collected and their NMR spectra were recorded. From the spectra the crystalline material with the shorter retention time was identified as 5 and the oily compound with the longer retention time as 3 . (Compound 5 appeared to polymerize at about $100^{\circ} \mathrm{C}$, so a melting point could not be determined). The UV spectrum (hexane) of 3 showed a single broad absorption with $\lambda_{\text {max }}$ $240 \mathrm{~nm}(\log \epsilon 4.1)$, while that of 5 showed fine structure with $\lambda_{\max } 241$ $\mathrm{nm}(\log \epsilon 4.0), 248 \mathrm{~nm}(\log \epsilon 4.1)$, and $259 \mathrm{~nm}(\log \epsilon 3.9)$. Exact masses calcd for $\mathrm{C}_{16} \mathrm{H}_{20}$: 212.1565. Found: 212.1586 for 3 and 212.1630 for 5.
(d) By Injection into a GLC Instrument. Pure samples of $\mathbf{3}$ or 5 could be obtained by injection of 2 into a GLC instrument. At a column temperature of $160^{\circ} \mathrm{C} 3$ was the product collected. However, at $210^{\circ} \mathrm{C} 5$ was the principal product. The Carbowax column described above was used for preparing 3 in this way, while the SE-30 column was used for 5.
Pyrolysis of 3 to 5. A sample of 3, prepared by pyrolysis of 2 at 240 ${ }^{\circ} \mathrm{C}$, was repyrolyzed in the flow system at $380^{\circ} \mathrm{C}$. The product was identified by NMR as 5 .

Photolysis of 3 to 5. (a) Direct. To a quartz NMR tube was added a solution of $20 \mu \mathrm{~L}$ of 3 in 0.5 mL of hexane. After degassing for 0.75 h , as described above, the solution was irradiated with a $450-\mathrm{W}$ Hanovia high-pressure lamp for 0.5 h . Evaporation of the solvent left a slightly off-white crystalline solid, which was identified by NMR as 5.
(b) Sensitized. To a Pyrex NMR tube was added a solution of 20 $\mu \mathrm{L}$ of 3 and 5 mg of benzophenone in 0.5 mL of benzene. After degassing for 1 h , the solution was irradiated through a Pyrex filter with a 450-W Hanovia high-pressure lamp. After 0.5 h the NMR spectrum showed clean and total conversion to 5.

Reduction of 5 with Lithium in Ammonia-Tetrahydrofuran-tert-Butyl Alcohol. The reduction of 26 mg of 5 was carried out essentially as described above for 2 , except that the reaction was quenched by adding saturated ammonium chloride solution until the blue color was discharged before allowing the reaction mixture to warm. The product isolated was a colorless oil whose NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed a well resolved but complex series of sharp absorptions $\delta 0.8-1.2$, a broad singlet with some fine structure $\delta 1.6$, and a broad unresolved absorption $\delta 2.2-2.6$. Integration gave the relative areas as $6: 6: 1$. The mass spectrum of the product showed the molecular ion at $\mathrm{M}^{+} / e 218$, confirming the addition of three moles of hydrogen. Analytical GLC on a $0.25 \mathrm{in} . \times 10 \mathrm{ft}$ column of 5% Carbowax 20 M at $100^{\circ} \mathrm{C}$ and a flow rate of $60 \mathrm{~mL} / \mathrm{min}$ showed three peaks with retention times $10.5,13.6$, and 15.7 min and relative areas of approximately $1: 2: 1$.
Reduction of Octamethylsemibullvalene (10). A $40-\mathrm{mg}$ sample of $10^{27 a}$ prepared by the literature procedure ${ }^{38}$ was reduced under the same conditions as 5 . The NMR and the mass spectrum of the product and its GLC trace were all superimposable upon those obtained from the product of the reduction of 5 .

Acknowledgment. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work. Financial support was also provided by E. I. du Pont de Nemours \& Co., the National Science Foundation, the Eli Lilly Co., and the Alfred P. Sloan Foundation.

Registry No.-1, 25467-12-3; 2, 34101-24-1; 3, 33507-29-8; 5, 34106-16-6; 6, 20380-33-0; 3,4-dichlorotetramethylcyclobutene, 1194-30-5.

References and Notes

(1) Address correspondence to this author at the Department of Chemistry, University of Washington, Seattle, Wash. 98195.
(2) W. T. Borden, I. L. Reich, L. A. Sharpe, R. B. Weinberg, and H. J. Reich, J. Org. Chem., 40, 2438 (1975).
(3) R. Criegee, Angew. Chem., Int. Ed. Engl., 1, 519 (1962).
(4) Preliminary communication: W. T. Borden and A. Gold, J. Am. Chem. Soc., 93, 3830 (1971).
(5) W. T. Borden, A. Gold, and W. L. Jorgensen, following paper in this issue; preliminary communication: A. Gold and W. T. Borden, J. Am. Chem. Soc., 94, 7179 (1972).
(6) W. L. Jorgensen and W. T. Borden, J. Am. Chem. Soc., 95, 6649 (1973); W. L. Jorgensen and W. T. Borden, Tetrahedron Lett., 223 (1975).
(7) See, for instance, W. T. Borden, "Modern Molecular Orbital Theory for Organic Chemists'", Prentice-Hall, Englewood Cliffs, N.J., 1975, pp 8588.
(8) W. C. Herndon, Top. Curr. Chem., 46, 141 (1974).
(9) 1,2-Dimethylenecyclobutanes generally add hydrogen 1,4 when this catalyst is used; R. Stafford, Ph.D. Thesis, Harvard University, Cambridge, Mass., 1971.
(10) (a) R. Criegee, G. Schroder, G. Maier, and H. G. Fischer, Chem. Ber., 93, 1553 (1960); (b) R. Criegee and G. Louis, ibid., 90, 417 (1957). (c) We wish to thank Professor G. Schröder for locating a sample of 6 and Professor R. Askani for sending us its NMR spectrum.
(11) See, for example, N. Turro, "Molecular Photochemistry", W. A. Benjamin, New York, N.Y., 1967, p 216.
(12) The Hückel energy of the 2 -vinylallyl radical is -0.37β greater than that of the cyclobutadienylcarbinyl radical. The π system of the former molecule can be viewed as resulting from the union of a vinyl group to C-2 of an allyl radical, while that of the latter comes from union at $\mathrm{C}-1$ and $\mathrm{C}-3$ of the allyl radical. The same perturbation argument that explains why union of a lone carbon at $\mathrm{C}-2$ of allyl (leading to trimethylenemethane) is less favorable than union at $\mathrm{C}-1$ and $\mathrm{C}-3$ (leading to cyclobutadiene) ${ }^{13}$ rationalizes this energy difference.
(13) W. T. Borden and E. R. Davidson, J. Am. Chem. Soc., 99, 4587 (1977).
(14) H.-D. Martin and E. Eisenmann, Tetrahedron Lett., 661 (1975), and references therein.
(15) Sensitized photolysis of 2 did not lead to detectable cleavage but only to its slow disappearance to products that, while uncharacterized, might reasonably be expected ${ }^{2,11}$ to be dimers of 2.
(16) R. Gleiter, E. Heilbronner, M. Hekman, and H.-D. Martin, Chem. Ber., 106, 28 (1973).
(17) This is one of the degenerate pair of HOMO's of the cyclobutane ring; J . S. Wright and L. Salem, J. Am. Chem. Soc., 94, 322 (1972).
(18) The localized transition dipoles cancel, because the transition is antisymmetric with respect to the C_{2} axis present in 2.
(19) Not only does this singlet state involve an excitation from the HOMO of 2 to the LUMO, but also the localized transition dipoles interact in an electrostatically favorable head-to-tail fashion, ${ }^{18}$ thus giving this excited singlet a relatively low Coulombic repulsion energy. See ref 7, pp 144-147, for a discussion.
(20) (a) R. B. Woodward and R. Hoffmann, Angew. Chem., Int. Ed. Engl., 8, 781 (1969). (b) Such photochemical retrograde cycloadditions upon irradiation of dienes are by no means unknown, but usually they involve excitation of a cyclohexadiene moiety with concomitant extrusion of a molecule of benzene. See, for example, ref 21.
(21) G. Schröder, Chem. Ber., 97, 3140 (1964).
(22) J. A. Elix, M. V. Sargent, and F. Sondheimer, J. Am. Chem. Soc., 92, 969 (1970).
(23) R. Srinivassan, J. Am. Chem. Soc., 85, 819 (1963); R. Srinivassan, ibid., 86, 3318 (1964)
(24) M. Stiles and U. Burckhardt, J. Am. Chem. Soc., 86, 3396 (1964).
(25) A. Suzuki and M. Itoh, Tetrahedron Lett., 1003 (1967).
(26) H. E. Zimmerman and G. L. Grunwald, J. Am. Chem. Soc., 88, 183 (1966); H. E. Zimmerman and H. I wamura, ibid., 90, 4763 (1968). A similar intermediate can be invoked in the transformation of $1,3,5$-cyclooctatriene to tricyclo [3.3.0.0 $0^{2,8}$]oct-3-ene by photolysis: J. Zirner and S. Winstein, Proc. Chem. Soc., 235 (1964); O. L. Chapman, G. W. Borden, R. W. King, and B. Winkler, J. Am. Chem. Soc., 86, 2660 (1964): W. R. Roth and B. Peltzer, Angew. Chem., 76, 378 (1964).
(27) (a) R. Criegee and R. Askani, Angew. Chem., Int. Ed. Engl., 7, 537 (1968); (b) H. E. Zimmerman and H. Iwamura, J. Am. Chem. Soc., 92, 2015 (1970); (c) L. A. Paquette, R. K. Russell, and R. E. Wingard, Jr., Tetrahedron Lett., 7113 (1973).
(28) Paquette and his co-workers have found that the parent semibullvalene is converted to cyclooctatetraene on pyrolysis. ${ }^{27 c}$ Pyrolysis of cyclooctatetraene gives dihydropentalene, whose formation has been rationalized by a mechanism involving the same type of biradical intermediate; M. Jones, Jr., and L. O. Schwab, J. Am. Chem. Soc., 90, 6549 (1968).
(29) The thermal interconversions could proceed by an allowed, concerted, $\pi^{2} a$ $+{ }_{\pi} 4_{a}$ reaction. ${ }^{20 a}$ Mechanistic variants for the photochemical transformations are also possible. For a review and discussion of $(\mathrm{CH})_{8}$ chemistry see L. T. Scott and M. Jones, Jr., Chem. Rev., 72, 181 (1972).
(30) J. Meinwald, D. Schmidt. and H. Tsuruta, J. Am. Chem. Soc., 91, 5877 (1969): H. E. Zimmerman, J. D. Robbins, and J. Schantl, ibid., 91, 5878 (1969). Alternatively, the reaction can be described as a forbidden $\pi_{\pi} 2_{\mathrm{g}}+$ ${ }_{a} 2_{\mathrm{s}}$ process.
(31) On irradiation, tricyclo[3.3.0.0 $0^{2,6}$] octadiene gives a mixture of semibullvalene and cyclooctatetraene; J. Meinwald and H. Tsuruta, J. Am. Chem. Soc., 92, 2579 (1970). Although the former product could originate from the same biradical, a concerted, photochemically allowed, 1,3 sigmatropic shift would also account for the formation of semibullvalene. A similarly allowed reaction of the ${ }_{\pi} 2_{s}+{ }_{\sigma} 2_{s}+{ }_{\pi} 2_{s}+{ }_{\sigma} 2_{s}$ type rationalizes the formation of the latter product.
(32) R. Srinivasan and A. Levi, J. Am. Chem. Soc., 86, 3756 (1964).
(33) Perhaps less likely, but nevertheless possible, is that the octamethyltricyclooctadiene (9) undergoes reduction with concomitant cleavage of the cyclobutane ring, so that rearrangement of 9 to octamethylsemibullvalene 10 is not involved.
(34) J. E. Baldwin and A. H. Andrist, J. Am. Chem. Soc., 93, 3289 (1971); M. J. Goldstein and R. Hoffmann, ibid., 93, 6193 (1971).
(35) This procedure is essentially that of R. Stafford, Ph.D. Thesis, Harvard

University, Camrbidge, Mass., 1971; and our product was indistinguishable from a sample prepared by him.
(36) R. Criegee, Org. Synth., 46, 34 (1966).
(37) In previous work ${ }^{2}$ we have observed that 1,2-dimethylenecyclobutane forms
polymeric material, unless it is stored at low temperature under an inert
(38) R. Criegee, W. D. Wirth, W. Engel, and H.-A. Brune, Chem. Ber., 96, 2230 (1963).

Cycloaddition Reactions of
 1,2,5,6-Tetramethyl-3,4,7,8-tetramethylenetricyclo[3.3.0.0 ${ }^{2,6}$]octane. Evidence for Chemical Consequences of Orbital Interactions in Molecules Containing Unsaturatively 1,3-Bridged Cyclobutane Rings

Weston Thatcher Borden, ${ }^{* 1 a}$ Avram Gold, and William L. Jorgensen ${ }^{1 b}$
Departments of Chemistry, Harvard University, Cambridge, Massachusetts 02138,
University of Washington, Seattle, Washington 98195, and Purdue University, West Lafayette, Indianc 47907

Received May 20, 1977

Abstract

The title compound (1) reacts with tetracyanoethylene and N-phenyltriazolinedione to give rearranged adducts. Bond reorganization occurs after the first cycloaddition, and the structures of the products rule out a ${ }_{\sigma} 2_{\mathrm{a}}+{ }_{\sigma} 2_{\mathrm{a}}$ mechanism for rearrangement. With the latter dienophile an unrearranged monoadduct ($7 \mathbf{b}$) has been observed by NMR at low temperatures, and the activation parameters for its rearrangement to $\mathbf{8 b}$ have been obtained. The energy of activation is consistent with that expected for a forbidden ${ }_{\sigma} 2_{8}+{ }_{\pi} 2_{8}$ process. The instability of molecules containing cyclobutane rings 1,3 -bridged by ethylene, the contrasting thermal stability of 1 , and the reluctance of 1 to undergo Diels-Alder cycloaddition reactions are all rationalized by anaysis of the interactions between the σ orbitals of the cyclobutane ring and the π orbitals of the unsaturated bridging groups. Calculations are reported that support this interpretation of the experimental results.

In the accompanying paper ${ }^{2}$ we reported the transformation of $1,2,5,6$-tetramethyl-3,4,7,8-tetramethylenetri-cycloocta-1,5-diene into $1,2,5,6$-tetramethyl-3,4,7,8-tetramethylenetricyclo[3.3.0.0 $0^{2,6}$]octane (1), either by direct or sensitized photolysis or by pyrolysis. That 1 is formed in the thermal reaction is really most surprising, since tricyclo[3.3.0. $0^{2,6}$]octa-3,7-diene (2) is a very unstable compound, undergoing rapid rearrangement to semibullvalene (3) at room temperature. ${ }^{3}$ Indeed, the thermal rearrangement of 2 to 3 is so facile for a reaction that either involves a diradical intermediate ${ }^{3}$ or proceeds by a forbidden but concerted ${ }_{\sigma} 2_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}$ mechanism ${ }^{4}$ that a novel, symmetry allowed, ${ }_{\sigma} 2_{\mathrm{s}}+{ }_{\sigma} 2_{\mathrm{a}}$ pathway was proposed for this transformation. ${ }^{5}$

The availability of 1 appeared to afford an excellent opportunity to test whether a ${ }_{\sigma} 2_{\mathrm{s}}+{ }_{o} 2_{\mathrm{a}}$ pathway was, in fact, involved in the rearrangement of 2 to 3 . Diels-Alder cycloadditions of 2 mol of a dienophile to 1 would provide 4, a derivative of 2 in which the positions of the double bonds are labeled by the six-membered rings. Rearrangement of 4 by a forbidden ${ }_{\sigma} 2_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}$ pathway, whether concerted or involving a diradical as a discrete intermediate, requires the formal shift of a double bond and leads to 5 . In contrast, since the π bonds are not involved in the ${ }_{\sigma} 2_{\mathrm{s}}+{ }_{\sigma} 2_{\mathrm{a}}$ mechanism, the labeling of the double bonds is different in the semibullvalene (6) that is the expected product if this pathway is utilized. Therefore, we undertook an investigation of the cycloaddition reactions of 1 in order to determine whether the semibullvalene formed had structure 5 or $6 .{ }^{6}$

Results

To our surprise, compound 1. proved to be a most unreactive diene. Using such dienophiles as dimethyl acetylenedicarboxylate, dicyanoacetylene, and diethyl azodicarboxylate, we were unable to obtain an adduct of 1 . Although 1 did react with tetracyanoethylene (TCNE) to give a bis adduct, even with this potent dienophile reaction was surprisingly slow, requiring 2.5 h in refluxing tetrahydrofuran for completion. For

5
comparison, the reaction of TCNE with 1,2-dimethylenecyclobutane in THF is instantaneous at room temperature.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the TCNE bis adduct of 1 was entirely consistent with the formulation of its structure as 5 $\left(\mathrm{X}=\mathrm{C}(\mathrm{CN})_{2}\right)$. Since 5 and $\mathbf{6}$ are both semibullvalenes, it was to be expected that both molecules would be rapidly fluxional at all but very low temperatures. ${ }^{7}$ Whereas Cope rearrangement of $\mathbf{6}$ is not a degenerate process, the corresponding rearrangement of 5 is. Thus, on the NMR time scale 5 , because of its fluxionali:y, acquires an effective C_{2} axis of symmetry, while 6 maintains only the plane of symmetry present in either of the nonequivalent divinylcyclopropane structures that can be written for it. Compounds $\mathbf{5}$ and $\mathbf{6}$ can, therefore, be most easily differentiated by the fact that the former should show only two types of methyl groups in its NMR spectrum, while the latter would be expected to exhibit three. At 100 MHz in acetone $-d_{6}$ the ${ }^{1} \mathrm{H}$ NMR spectrum of the TCNE bis adduct of 1 showed only two methyl resonances, thus leading to the assignment of iss structure as $5 .{ }^{2 b}$

The observation of only two types of methyl resonances, although a necessary condition for assigning structure 5 to the bis adduct, is not sufficient to exclude conclusively structure 6, for there exists the possibility that the two unique methyl groups in this latter structure might accidentally have the same chemical shift. If this were the case in one solvent, it might be that in another the accidental degeneracy would be lifted. It is also possible that the two methyl groups in one or more solvents might have slightly different chemical shifts but that higher magnetic fields are necessary to resolve them. Therefore, we obtained $220-\mathrm{MHz}$ spectra of the TC.NE bis adduct of 1 in both acetone $-d_{6}$ and pyridine- $d_{5},{ }^{8}$ but the two methyl resonances both remained sharp singlets. Al-hough this finding increased our confidence that 5 did, in fact, represent the structure of the bis adduct, the possibility that we had obtained 6 instead could not be eliminated. Indeed, while additional NMR experiments could further increase the likelihood that 5 was the compound in hand, such studies could not unequivocally rule out 6 .

At this point we carried out an experiment which indicated that 4 was not involved at all in the transformation of 1 into the TCNE bis adduct that we had isolated. When the cycloaddition reaction between 1 and TCNE was conducted using only one equivalent of the dienophile, no monoadduct was isolated. Instead, a 1:1 mixture of the bis adduct and unreacted 1 was obtained. Clearly, the second Diels-Alder reaction must have been faster than the first. However, it was hard to see why cycloaddition at one diene unit of 1 to give 7 a should enhance the reactivity of the remaining diene moiety. On the other hand, the results of the experiment with one equivalent of TCNE could be rationalized if, under the reaction conditions, it was the monoadduct (7a) that rearranged. The chemistry of 1 indicated that the diene groups in it were unusually unreactive toward Diels-Alder cycloadditions, but there was no reason to believe that the diene units in either of the two possible rearrangement products, 8 a and 9 a , would exhibit anything but the high reactivity toward TCNE, usually observed in cisoid dienes. Thus, the initial slow cycloaddition to 1 , if followed by a rapid rearrangement of 7 a to 8 a or 9 a , would be expected to lead to reaction with a second molecule of TCNE at a rate much greater than the first.

9

$$
\mathbf{a}, \mathrm{X}=\mathrm{C}(\mathrm{CN})_{2} ; \mathbf{b}, \mathrm{X}-\mathrm{X}=\sqrt{\mathrm{NCON}(\mathrm{Ph}) \mathrm{CON}}
$$

The interpretation of the experiment with one equivalent of TCNE in terms of the monoadduct (7a) as the speces that rearranged suggested an interesting possibility for unequivocally resolving the question of the mechanism of the rearrangement. Unlike the diadducts, 5 and 6 , the monoadducts, 8 and 9 , can be unambiguously differentiated by NMR spectroscopy, since prior to the second cycloaddition these molecules lack the other endocyclic double bond that is required for fluxionality. Therefore, in the product (8) expected from the ${ }_{\sigma} 2_{s}+{ }_{\pi} 2_{\mathrm{s}}$, or the equivalent diradical pathway, the formal shift required of the double bond in 7 would be signalled by the appearance in the NMR spectrum of a methyl group attached to a doubly bonded carbon. In contrast, since in the ${ }_{0} 2_{s}$
$+{ }_{0} 2_{a}$ mechanism the double bonds are not involved, all the methyl groups remain attached to saturated carbon atoms in the product (9) expected from this pathway. Thus, we sought a dienophile that would allow us to isolate the rearranged monoadduct of 1 .

Such a dienophile was found in N-phenyltriazolinedione (PTAD). At $0^{\circ} \mathrm{C}$ in CHCl_{3} equimolar amounts of 1 and PTAD reacted to give a rearranged monoadduct to which the structure $\mathbf{8 b}$ could unequivocally be assigned. In particular, a methyl group appeared at $\delta 1.51$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of this compound. Not only was the chemical shift about that expected for allylic methyl protons, but the resonance appeared as a doublet with $J=2 \mathrm{~Hz}$. The proton to which it was coupled was centered at $\delta 3.70$ and represented the upfield half of an AB quartet, $J=14 \mathrm{~Hz}$, each of the two upfield components of which were further split into quartets, $J=2 \mathrm{~Hz}$. The $2-\mathrm{Hz}$ splittings are due to coupling between the methyl group and the allylic proton that lies in the π cloud of the adjacent double bond and which is consequently shielded by it. ${ }^{9}$ The formation of $8 \mathbf{b}$ is wholly consistent with the $\sigma_{\sigma} 2_{8}+{ }_{\pi} 2_{8}$, or equivalent diradical pathway, but conclusively excludes a ${ }_{\sigma} 2_{s}$ $+{ }_{a} 2_{\mathrm{g}}$ mechanism.

Further confirmation of the structure of $\mathbf{8 b}$ came from its reaction with another equivalent of PTAD to yield the bis adduct ($\mathbf{5 b}$). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$ showed, as expected, only two methyl resonances. Interestingly, when 1 was allowed to react with 2 mol of PTAD at room temperature, the major product was not $5 \mathbf{b}$ but a triadduct to which the structure 10 was assigned on the basis of the NMR spectrum. The formation of 10 had a parallel in the reaction of octamethylsemibullvalene with azoesters and TCNE, ${ }^{10}$ and we did, indeed, find that octamethylsemibullvalene also reacted with PTAD. ${ }^{11}$ In this case, however, not only was the diazalumibullvalene derivative corresponding to 10 isolated, ${ }^{12}$ but the diazatriquinacene derivative was obtained as well. Although the former adduct might be the result of an allowed ${ }_{\sigma} 2_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}$ cycloaddition, the presence of the latter compound and the facile equilibration of the two adducts in solvents of high dielectric constant led us to postulate a common dipolar intermediate in the formation of both the "allowed" and "forbidden" PTAD adducts. ${ }^{11}$ More recently, Askani has found that PTAD adds to less alkylated semibullvalenes to give only the "forbidden" diazatriquinancene type products, and scrambling of the alkyl groups in the products again indicates the intervention of a dipolar intermediate. ${ }^{13}$ Thus, it is likely that in the formation of the triadduct (10) a similar intermediate is involved, despite the fact that 10 could, in principle, result from a concerted cycloaddition.

10

$$
\mathrm{X}-\mathrm{X}=\sqrt{\mathrm{NCON}(\mathrm{Ph}) \mathrm{CON}}
$$

The reason for the formation of the triadduct (10) when only 2 equiv of PTAD were used must be that either the cycloaddition to 1 or the rearrangement of $7 \mathbf{b}$ is slow, compared to the cycloaddition to $\mathbf{8 b}$ and the subsequent reaction of $\mathbf{5 b}$ to give 10. However, it was clear from the fact that the monoadduct ($\mathbf{8 b}$) could be isolated that the rearrangement must be the slow step. If the cycloaddition were the slow step, as it is in the reaction of TCNE with 1, we would never have been able to obtain $\mathbf{8 b}$. It seemed possible, therefore, that we might be able to observe 7b directly, before it rearranged to 8. This did, in fact, turn out to be the case.

When 1 equiv of PTAD was added to a CDCl_{3} solution of

Table I. Rate Constants for the Rearrangement of 7 b to $\mathbf{8 b}$

$T,{ }^{\circ} \mathrm{C}$	$k \times 10^{3}, \mathrm{~s}^{-1}$
16.2	0.259 ± 0.005
26.8	0.902 ± 0.030
34.4	2.36 ± 0.06
43.5	8.65 ± 0.40

1 in an NMR tube at $-40^{\circ} \mathrm{C}$, no reaction occurred until the solution was warmed to $-15^{\circ} \mathrm{C}$. At $-5^{\circ} \mathrm{C}$ the red color of the PTAD was completely discharged, and new singlets appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 0.67(6 \mathrm{H}), 1.14(6 \mathrm{H}), 4.32(4 \mathrm{H})$, $4.85(2 \mathrm{H})$, and $5.48(2 \mathrm{H}){ }^{14}$ The NMR spectrum of the unrearranged monoadduct (7b) remained unchanged for several hours at $0^{\circ} \mathrm{C}$; however, at higher temperatures transformation of $\mathbf{7 b}$ to $\mathbf{8 b}$ occurred. The rearrangement could be followed conveniently by NMR between 15 and $40^{\circ} \mathrm{C}$. The disappearance of $\mathbf{7 b}$ could be monitored quantitatively by integration of the singlet at $\delta 0.67$ and was found to follow good first-order kinetics. The rate constant for the rearrangement was obtained at four temperatures by least-squares fitting of the kinetic data. These rate constants and the probable errors in them are shown in Table I. As the temperature increased and the rearrangement became more rapid, the NMR method for following the reaction became less accurate, as indicated by the larger errors in the rate constants at the higher temperatures. A least-squares fit of the rate constants to the Arrhenius equation, $\log k=\log A-E_{\mathrm{a}} / 2.303 R T$, gave $\log A=$ 13.9 ± 1.1 and $E_{\mathrm{a}}=23.2 \pm 1.2 \mathrm{kcal} / \mathrm{mol}$.

Discussion

Not only is the labeling study indicative of a ${ }_{\sigma} 2_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}$ or equivalent diradical mechanism for the rearrangement of 7 to 8 , but the measured energy of activation is also in accord with such a pathway. Frey and Hopkins have found the activation energy for the rearrangement of tricyclo [3.3.0.0 $0^{2,6}$ octene (11) to tricyclo[3.3.0.0 $0^{2,8}$]octene (12) to be $35.3 \mathrm{kcal} /$ mol. ${ }^{15}$ Neglecting all the possible effects on the rate that the four methyl ${ }^{16}$ and two methylene ${ }^{17}$ groups present in 7 might have, as well as the additional alkyl substitution on the endocyclic double bond, and focussing only on the additional stabilization of a putative diradical intermediate by one of the exocyclic double bonds, the energy of activation for the rearrangement of 7 should be lower than that for 11 by the allylic resonance energy. ${ }^{18}$ The actual difference in activation energies of $12 \mathrm{kcal} / \mathrm{mol}$ is (probably fortuitously) close to the value of $12-13 \mathrm{kcal} / \mathrm{mol}$ for the allylic resonance energy, obtained by Doering and Beasley. ${ }^{19}$

Because 7 is transformed rapidly to 8 at room temperature by a pathway that is forbidden in the Woodward-Hoffmann sense, ${ }^{20}$ the rate of its rearrangement appears as a glaring anomaly. However, as pointed out above, the energy of activation for its rearrangement is lower than that for 11 by almost exactly the allylic resonance energy. Thus, the small magnitude of the activation energy for rearrangement of 11 is equally anomalous. Indeed, Frey has previously pointed out that the dramatic rate at which tricyclo[3.3.0.0 ${ }^{2,6}$]octadiene (2) rearranges to semibullvalene (3$)^{3}$ is consistent with an energy of activation for this process that is lower by only the allylic resonance energy than that for the transformation of 11 to 12. ${ }^{15}$ That the energy of activation for the rearrangement of 11 is, in fact, anomalously low can be judged by comparing it with that for the cleavage of tricyclo[3.3.0.0 ${ }^{2,6}$]octane (13) to

1,5 -cyclooctadiene (14). If both reactions involve biradical intermediates, then, in the absence of other effects, the energy of activation for $11 \rightarrow 12$ should be approximately $12 \mathrm{kcal} / \mathrm{mol}$ lower than that for $13 \rightarrow 14$. Since the energy of activation for the latter reaction is $56 \mathrm{kcal} / \mathrm{mol},{ }^{21}$ the actual difference is 21 $\mathrm{kcal} / \mathrm{mol}$.

A similar disparity exists between the energy of activation for the rearrangement of bicyclo[2.1.1]hexene (15) to bicyclo[3.1.0]hexene and that for cleavage of bicyclo[2.1.1]hexane (16) to 1,5 -hexadiene. Although the former process has been shown to proceed primarily by an allowed, concerted ${ }_{\sigma} 2_{\mathrm{a}}+{ }_{\pi} 2_{\mathrm{s}}$ pathway, the energetic advantage of the allowed over a forbidden or diradical pathway is known to be small. ${ }^{15,22}$ Assuming, then, that the reactions again should vary in activation energy only by the allylic resonance energy, a difference of roughly $12 \mathrm{kcal} / \mathrm{mol}$ is expected. The observed energies of activation for the rearrangement of bicyclic compounds $\mathbf{1 5} \mathbf{5}^{15}$ and 16^{23} are essentially the same as those for their tricyclic analogues, 11 and 13. Thus, the activation energy for the rearrangement of the unsaturated compound is again on the order of $8-10 \mathrm{kcal} / \mathrm{mol}$ lower than expected.

Since an activation energy represents an energy difference, the anomalously low activation energies for rearrangement of molecules containing a cyclobutane ring 1,3 -bridged by ethylene (e.g., 2, 7, 11, and 15) can be explained either by effects that lower the energy of the transition states or raise the energy of the reactants. Our labeling study, which rules out $\mathrm{a}_{\mathrm{\sigma}} 2_{\mathrm{s}}+{ }_{\sigma} 2_{\mathrm{a}}$ mechanism for the rearrangement of one of these molecules (7), is consistent with a biradical (or a forbidden but concerted $\left.{ }_{\sigma} 2_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}\right)^{4}$ pathway, and the activation energy for the rearrangenent of 7 , when compared with that for 11 , is also indicative of such a pathway. Therefore, there is little reason to believe that the anomalously low activation energies are the result of transition state stabilization. Thus, one is left with reactant destabilization as the probable cause of the rapid rearrangements. Such destabilization of molecules like 11 and 15 , relative to their saturated analogues, 13 and 16 , should be manifested in anomalously high heats of hydrogenation. Regrettably, to the best of our knowledge, no such measurements have been made to either 11 or 15 . Consequently, we must rely on the data from the kinetic studies to obtain an estimate of $8-10 \mathrm{kcal} / \mathrm{mol}$ as the apparent destabilization caused by the introduction of a double bond into 13 or 16 to give 11 or 15.

Such an est:mate is prone to error, for underlying it is the assumption that both the satuarted and unsaturated systems rearrange by transition states that may be described as biradical in nature, so that in the absence of differential reactant destabilization the unsaturated systems should have energies of activation that are lower by exactly the allylic resonance energy of $12 \mathrm{kcal} / \mathrm{mol}^{19}$ than their saturated analogues. Even if this assumption is more or less valid, it is not at all certain that the actual magnitude of differential reactant destabilization will be manifested in the comparison of activation
energies since whatever effect operates to destabilize the reactant may, to some extent, still be present in the transition state for its rearrangement. Consequently, the estimate of $8-10 \mathrm{kcal} / \mathrm{mol}$ as the destabilization resulting from the removal of two hydrogen atoms from the saturated bridges in 13 and 16 could prove to be a lower limit. ${ }^{24}$
While the estimate of $8-10 \mathrm{kcal} / \mathrm{mol}$ as the destabilization energy in trading a saturated for an unsaturated cyclobutane bridging group may have to be revised when thermodynamic measurements on 11 and 15 become available, there is qualitative evidence, independent of the data from the kinetic studies discussed above, that such destabilization exists. For instance, the introduction of a double bond into 16 proved particularly difficult. ${ }^{25}$ Enolate formation in bicyclo[2.1.1]-hexan-2-one is a factor of 10^{4} slower at room temperature than in bicyclo[2.2.2] octan-2-one, ${ }^{26}$ and enol formation is so difficult in the former ketone that it can be heated at $100^{\circ} \mathrm{C}$ in neat $\mathrm{HBr}-\mathrm{Br}_{2}$ without undergoing bromination. ${ }^{27}$

What, then, is the cause of the destabilization that results from replacing an ethano with an etheno bridge? The internal bond angles at the trigonal carbons in both 11 and 15 are about $103^{\circ} .{ }^{28}$ Clearly, the replacement of the tetrahedral carbons in 13 and 16 with trigonal centers must introduce additional angle strain. However, if this were the whole story, one would be hard pressed to explain why the tetramethylenetricyclooctane (1), which possesses four trigonal carbons, is apparently so stable, being formed from the corresponding tetramethylenecyclooctadiene at temperatures well above that at which tricyclo $\left[3.3 .0 .0^{2,6}\right]$ octane (13) undergoes cleavage to cyclooctadiene (14). ${ }^{2}$ The formation of 1 under these conditions points to the conclusion that, while introduction of ethylene as a 1,3 cyclobutane bridging group is destabilizing, in contrast, when a saturated bridge is replaced by butadiene, the result is a net stabilization. This conclusion is consistent with and supported by the lack of Diels-Alder reactivity of 1,7 , and related molecules ${ }^{29}$ since in a Diels-Alder cycloaddition a butadiene is exchanged for an ethylene bridging group.

We have previously rationalized the apparent preference for butadiene over ethylene as a cyclobutane 1,3-bridging group in terms of interactions between the σ orbitals of the ring and the π orbitals of the bridging groups. ${ }^{30}$ The cyclobutane ring possesses a degenerate pair of highest occupied MO's. ${ }^{31}$ One of these HOMO's has the correct symmetry to interact with the filled $\pi \mathrm{MO}$ of a 1,3-bridging ethylene group. This interaction results in the existence of a very high-lying filled MO in molecules containing cyclobutane rings $1,3-$ bridged by ethylene, the presence of which is indicated by the long wavelength UV absorption of such molecules ${ }^{30-32}$ and by their photoelectron spectra. ${ }^{33}$ Chemically, the interaction between filled MO's has a net destabilizing effect, as revealed by calculations that include overlap. ${ }^{30}$ Indeed, the orbital interaction between the HOMO's of the ring and bridge in a molecule like bicyclo[2.1.1] hexene (15) is reminiscent of that between the two ethylene units in cyclobutadiene, of which 15 may be considered a bis-homo derivative, and to which 15 has been compared. ${ }^{34,35}$ In contrast to the case of ethylene, a butadiene bridging group has a lowest unoccupied MO (LUMO) that can mix with one of the HOMO's of the ring. This interaction is stabilizing, ${ }^{30}$ and it is qualitatively similar to that between ethylene and butadiene in dimethylenecyclobutene, with which 2,3-dimethylenebicyclo[2.1.1]hexane (17) has been compared. ${ }^{34}$ To continue the analogy, just as dimethylenecyclobutene does not undergo Diels-Alder reactions, ${ }^{36}$ which would result in the replacement of butadiene by ethylene, so Diels-Alder reactions in molecules containing cyclobutane rings 1,3 -bridged by butadiene (e.g., 1 and 7$)^{29}$ are expected to be difficult. ${ }^{37}$
In previous studies ${ }^{30,34}$ we have semiquantitatively esti-
mated the destabilization that results from replacing a butadiene bridge with ethylene by calculating, using the extended Hückel (EH) method, ${ }^{38}$ the heats of isodesmic reactions of the type shown in eq 1.

$$
\begin{equation*}
17+\text { ethylene } \rightarrow 15+\text { cisoid-butadiene } \tag{1}
\end{equation*}
$$

The same technique can be used to investigate theoretically the consequences of replacing the saturated bridge in bicyclo[2.1.1]hexane (16) with the unsaturated one in bicyclo[2.1.1]hexene (15). We find the homodesmotic reaction ${ }^{39}$ (eq 2)

$$
\begin{equation*}
16+\text { cis-2-butene } \rightarrow 15+\text { cisoid-butane } \tag{2}
\end{equation*}
$$

to be endothermic by $20 \mathrm{kcal} / \mathrm{mol},{ }^{38,40}$ in agreement with the destabilization of 15 , relative to 16 , indicated by comparison of their energies of activation for rearrangement.

It is interesting to analyze why this reaction is unfavorable. As discussed above, angle strain must certainly contribute to destabilizing 15 relative to 16 , but there is also a contribution from orbital interactions. This is revealed by the π bond orders, ${ }^{30}$ obtained from the EH calculations. As expected, the π bond orders, computed between the p orbitals perpendicular to the plane containing the four carbon atoms in cisoid-butane, are found to be nearly zero. In fact, they are found to be slightly negative, the calculated value being -0.012 . The π bond orders between the ring and the saturated bridge in 16 are also found to be small and slightly negative, -0.007 . Despite the use of a different geometry for 15^{40} than the one employed previously, ${ }^{30}$ the π bond orders between ring and bridge are found to be almost the same, -0.009 . Where does the destabilization in 15 come from then? Its source is revealed by comparison of the π bond orders in 15 with those in cis2 -butene. In the latter olefin the π bond orders between saturated and unsaturated carbons are positive and nearly 0.05 in magnitude. They reflect a stabilizing interaction between the π orbitals of the double bond and the pseudo π orbitals of the methyl groups. ${ }^{42}$ In contrast, the π interaction between the ring and bridge in 15 is actually somewhat destabilizing. ${ }^{43}$ Consequently, the double bond in 15 is abnormal in the sense that the π interaction between it and the two carbons attached to it causes a net destabilization of the molecule ${ }^{43}$-a marked difference between this double bond and the more typical one in 2 -butene.

The energy calculated for the reaction in eq 3 should re$16+$ cisoid-2,3-dimethylbutadiene

$$
\begin{equation*}
\rightarrow 17+\text { cisoid-butane } \tag{3}
\end{equation*}
$$

flect the relative favorability of replacing the saturated bridge in 16 by butadiene, rather than by ethylene. Indeed, the computed endothermicity is reduced to only $2 \mathrm{kcal} / \mathrm{mol} .{ }^{38}$ The origin of the relative favorability of the reaction in eq 3 , compared to that in eq 2 , is again revealed by the $\mathrm{EH} \pi$ bond orders. While the calculated bond orders between the saturated and unsaturated carbons in 2,3-dimethylbutadiene are almost exactly the same as those in 2-butene, the π bond orders in 17 are, unlike those in 15, positive. In fact, they are calculated to be $0.065,{ }^{44}$ which is larger in magnitude than those in 2,3-dimethylbutadiene. This result is in accord with the expectation that, with the proper unsaturated bridging group, a cyclobutane ring should be capable of a greater stabilizing conjugative interaction than methyl. ${ }^{45}$ This fact explains why the reaction in eq 3 is calculated to be nearly thermoneutral ${ }^{38}$ despite the increase in angle strain in going from 16 to 17.
We have also used the calculated energies of homodesmotic reactions, similar to that in eq 1 , to verify that in tricyclic systems like 1,2 , and 11 , where the cyclobutane ring is spanned by two unsaturated bridges, the net effect of the
bridging groups is additive. The reaction that replaces one ethylene in tricyclo[3.3.0.0 ${ }^{2,6}$]octadiene (2) by a butadiene bridge is found to be exothermic by virtually the same amount as the reaction that replaces the remaining ethylene by a second butadiene bridge, to give the hydrocarbon of which 1 is the tetramethyl derivative. ${ }^{46}$ While this theoretical result confirms the expected additivity relationship, ${ }^{24}$ the fact that these two numbers emerge from the EH calculations as almost exactly the same ${ }^{46}$ and nearly identical with the energy now ${ }^{40}$ calculated for the reverse of the reaction in eq 1 should probably be regarded as merely fortuitous. ${ }^{47}$

Conclusions

The labeling observed in and the activation parameters found for the thermal reorganization of 7 strongly indicate that this molecule and others (e.g., 2, 11, and 15) that contain cyclobutane rings 1,3 -bridged by ethylene do not profit from any special stabilization of the transition states for their rearrangements. Instead, an ethylene bridge seems to exert a destabilizing effect in these molecules, resulting in their unusually low activation energies for rearrangement. This effect does not appear to be due entirely to angle strain since 1 , a molecule possessing two unsaturated bridging groups, is formed at temperatures where the parent tricyclo [3.3.0.0 $\left.{ }^{2,6}\right]$ octane fragments to 1,5 -cyclooctadiene. Thus, it appears that, in contrast to the destabilizing effect of ethylene, the butadiene bridges in 1 exert a stabilizing influence. The postulates of destabilization by ethylene and stabilization by butadiene bridging groups are consistent with the lack of Diels-Alder reactivity observed in molecules containing cyclobutane rings bridged 1,3 by butadiene. These two effects are also manifested in the energies of homodesmotic reactions, computed by the EH method. The experimental and theoretical results discussed in this paper provide evidence of the importance, in molecules containing unsaturatively 1,3-bridged cyclobutane rings, of interactions between the σ MO's of the ring and the π MO's of the bridging groups.

Experimental Section

Reaction of $1,2,5,6$-Tetramethyl-3,4,7,8-tetramethylenetricyclo[3.3.0.0 ${ }^{2,6}$]octane (1) with TCNE to Give 5a. A solution of 30 mg of 1 and 35 mg of tetracyanoethylene (TCNE) in 1 mL of freshly distilled tetrahydrofuran was placed in a $10-\mathrm{mL}$ round bottom flask. Since permethylated semibullvalene derivatives are known to be sensitive to oxygen, ${ }^{10}$ the solution was degassed by bubbling nitrogen slowly through it for 1.5 h . An aliquot showed no reaction between 1 and TCNE had occurred during this time. The solution was then refluxed for 2.5 h . Removal of the solvent under vacuum left a brown solid, whose NMR spectrum showed the formation of a single cycloadduct. Three recrystallizations from chloroform yielded shiny white crystals, $\mathrm{mp} 283-286^{\circ} \mathrm{C} \mathrm{dec}$. The NMR spectrum at 100 MHz (acetone- d_{6}) showed $\delta 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.80(\mathrm{~s}, 6 \mathrm{H}), 2.76(\mathrm{~d}, 2 \mathrm{H}, J=17$ $\mathrm{Hz}), 3.28(\mathrm{~s}, 4 \mathrm{H}), 3.88(\mathrm{~d}, 2 \mathrm{H}, J=17 \mathrm{~Hz})$. At $220 \mathrm{MHz}^{8}$ the broad singlet at $\delta 3.28$ was resolved into an AB quartet, $J=17 \mathrm{~Hz}$. Exact mass ${ }^{50}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{8}$: 468.1811 . Found: 468.1807 .
Reaction of 1 with PTAD to Give Rearranged Monoadduct (8 b). A solution of 59 mg of 1 in 0.5 mL of chloroform was placed in a vial containing a micro magnetic stirring bar and under an atmosphere of argon. The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath, and 49 mg (1 equiv) of N-phenyltriazolinedione (PTAD), prepared by the method of Stickler and Pirkle, ${ }^{48}$ was added dropwise by syringe in 2 mL of chloroform. The solvent was removed under vacuum and the NMR spectrum of the residue indicated the formation of only one major product, which was purified by preparative TLC on alumina, using methylene chloride as solvent. In addition to material at the baseline, bands were observed at $R_{f} 0.91$ and 0.75 . The band at $R_{f} 0.75$ yielded pure 8b as a glass: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$, 1.42 (s, 3 H), 1.51 (d, $3 \mathrm{H}, J=2 \mathrm{~Hz}$), 3.36 (d, $1 \mathrm{H}, J=12 \mathrm{~Hz}$), 3.70 (d of $\mathrm{q}, 1 \mathrm{H}, J=14$ and 2 Hz$), 3.96(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.62$ (d, $1 \mathrm{H}, J=14 \mathrm{~Hz}$), $5.02(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 7.3-7.6(\mathrm{~m}$, $5 \mathrm{H})$. Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: 387.1947. Found: 387.1950.
Reaction of $\mathbf{8 b}$ with PTAD to Give Diadduct (5b). The reaction of 20 mg of 8 b with 9 mg of PTAD in 3 mL of chloroform was carried
out as described above for the preparation of $\mathbf{8 b}$. The product was again purified by preparative TLC on alumina, and a glassy solid was again obtained from the second band. ${ }^{49}$ The NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed $\delta 1.11(\mathrm{~s}, 6 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 3.70\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{e}^{\prime}=16 \mathrm{~Hz}\right), 4.02$ (broad s, 4 H), $4.50(\mathrm{~d}, 2 \mathrm{H}, J=16 \mathrm{~Hz}$), $7.47(\mathrm{~s}, 10 \mathrm{H})$. Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{4}$: 562.2329 . Found: 562.2320 .

Reaction of 1 with 2 Equiv of PTAD at $25^{\circ} \mathrm{C}$ to Give Triadduct (10). A solution of 12 mg of 1 in 3 mL of chloroform was added by syringe to a vial containing 20 mg of PTAD under a nitrogen atmosphere. After removal of the solvent under vacuum, the crude product was recrystallized from ethyl acetate to yield colorless crystals, mp $268-269^{\circ} \mathrm{C}$. The parent ion $\left(\mathrm{M}^{+}\right)$at $m / \mathrm{e} 737$ in the mass spectrum indicated a triadcuct. The NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed $\delta 1.15(\mathrm{~s}$, $6 \mathrm{H}), 1.94(\mathrm{~s}, 6 \mathrm{H}), 4.48$ (broad s, 8 H), $7.40(\mathrm{~s}, 5 \mathrm{H}), 7.49$ (s, 10 H). The three upfield signals appeared unusually broad. On cooling the NMR sample, further broadening was observed; on heating the sample, the lines sharpened. ${ }^{12}$

Reaction of 5 b with PTAD to Give 10 . A $5-\mathrm{mg}$ sample of $\mathbf{5 b}$ was dissolved in 0.5 mL of chloroform under argon and 17 mg of PTAD in 1 mL of chloroform was added at room temperature. After 1.5 h the solvent was remcved under vacuum, and an NMR spectrum of the residue was obtained. It proved identical with that of 10 , obtained from the reactior. of 1 with 2 equiv of PTAD.

Reaction of 1 with PTAD at $-15{ }^{\circ} \mathrm{C}$ to Give Unrearranged Monoadduct (7 b). A suspension of $10 \mathrm{mg}(0.056 \mathrm{mmol})$ of PTAD in 0.5 mL of CDCl_{3} was placed in an NMR tube and frozen at $-78^{\circ} \mathrm{C}$. A solution of $15 \mathrm{mg}(0.070 \mathrm{mmol})$ of 1 in 0.2 mL of CDCl_{3} was added to the tube, which was placed in a variable temperature NMR probe at $-40^{\circ} \mathrm{C}$. The probe was slowly warmed. At $-15^{\circ} \mathrm{C}$ a reaction was evident, which was completed by warming the tube to $-5^{\circ} \mathrm{C}$. At this temperature the spectrum of 7 b was recorded: $\left(\mathrm{CDCl}_{3}\right) \delta 0.67$ (s, 6 $\mathrm{H}), 1.14(\mathrm{~s}, 6 \mathrm{H}), 4.32(\mathrm{~s}, 4 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 5$ H).

Kinetics of the Rearrangement of $\mathbf{7 b}$ to $\mathbf{8 b}$. A typical run was conducted by dissolving 10 mg of 1 in 0.2 mL of CDCl_{3}, adding the solution to an NMR tube, and cooling the tube to $-78^{\circ} \mathrm{C}$. Then 9 mg of PTAD (slightly less than 1 equiv was always used) was added to the tube with a spatula and washed down the sides with 0.5 mL of CDCl_{3}. The NMR tube was then immersed in an ice bath at $\left(1^{\circ} \mathrm{C}\right.$ and agitated frequently for $1.5-2 \mathrm{~h}$ to ensure mixing of the reactants. An NMR spectrum, taken at $0^{\circ} \mathrm{C}$, after this period showed the formation of $7 \mathbf{b}$ but no detectable rearrangement to $\mathbf{8 b}$. The kinetics were run on a Varian HA-100 NMR spectrometer, equipped with a variable temperature probe. Brfore the tube containing 7b was inserted, the probe temperature was determined, using a methanol standard and interpolating the temperature from the Varian calibration table. The instrument was tuned on a sample from a previous kinetic run, and the actual sample of 7 b was then inserted into the probe. Data collection was begun 90 s after sample insertion. The disappearance of $7 \mathbf{b}$ was followed by rapid integration of the singlet at $\delta 0.67$. The observed integrals were fitted by a standard least-squares program to the equation $\ln I=\operatorname{lr} I_{0}-k t$, where I was the observed integral at time t, I_{0} was the magnitude of the first integral. taken 90 s after sample insertion, and k was the derived rate constant, reported in Table I.

Acknowledgment. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work. Financial support was also provided by E. I. du Pont de Nemours \& Co., the National Science Foundation, the Eli Lilly Co., and the Alfred P. Sloan Foundation.

Registry No.-1, 34106-16-6; 5a, 33372-31-5; 5b, 64235-49-0; 7b, 64235-50-3; 8b, 64235-51-4; 10, 64235-52-5; TCNE, 670-54-2; PTAD, 4233-33-4.

References and Notes

(1) (a) Address correspondence to this author at the University of Washington; (b) Purdue University.
(2) (a) W. T. Borden, A. Gold, and S. D. Young, preceding paper in this issue, (b) preliminary communication: W. T. Borden and A. Gold, J. Am. Chem. Soc., 93, 3830 (1971).
(3) J. Meinwald, D Schmidt, and H. Tsuruta, J. Am. Chem. Soc., 91, 5877 (1969); H. E. Zimmerman, J. D. Robbins, and J. Schantl. ibid., 91, 5878 (1969).
(4) J. A. Berson and L. Salem, J. Am. Chem. Soc., 94, 8917 (1972).
(5) J. E. Baldwin and A. H. Andrist, J. Am. Chem. Soc., 93, 3289 (1971); M. J. Goldstein and R. Hoffmann, ibid., 93, 6193 (1971).
(6) Preliminary communication: A. Gold and W. T. Borden, J. Am. Chem. Soc., 94, 7179 (1972).
(7) H. E. Zimmerman and G. L. Grunwald, J. Am. Chem. Soc., 88, 183 (1966); F. A. L. Anet and G. E. Schenck, Tetrahedron Lett., 4237 (1970); A. K. Cheng, F. A. L. Anet, J. Mioduski, and J. Meinwald, J. Am. Chem. Soc., 96, 2887 (1974).
(8) These spectra were obtained at the Central Research Laboratories of E. I. du Pont de Nemours \& Co., through the kind cooperation of Dr. H. E. Simmons.
(9) See, for instance, R. R. Faser and B. F. Raby, J. Am. Chem. Soc., 94, 3458 (1972).
(10) R. Criegee and R. Askani, Angew. Chem., Int. Ed. Engl., 7, 537 (1968).
(11) Y. C. Toong, W. T. Borden, and A. Gold, Teirahedron Lett., 1549 (1975).
(12) One reason why we carried out the reaction of PTAD with octamethysemibullvalene was that the PTAD triadduct (10) had a temperature-dependent NMR spectrum, and we wished to investigate the origin of this phenomenon in a simpler system. Although the temperature dependence could be due to slow flipping of the urazole rings in both molecules, "there is precedent for slow methyl group rotation in related systems [G. A. Olah, V. J. S. Staral, and L. Paquette, J. Am. Chem. Soc., 98, 1267 (1976)].
(13) R. Askani, R. Kirsten, and B. Dugall, Tetrahedron Lett., 3891 (1976).
(14) From the NMR spectra of some related bicyclo[2.1.1] hexane derivatives studied by G. Capozzi and H. Hogeveen, J. Am. Chem. Soc., 97, 1479 (1975), it appears that butadiene has a larger shielding effect on a methyl group pendant over the π system than an ethylene bridge. On this basis it is possible to assign, at least tentatively, the two types of methyl resonances in 7 b .
(15) H. M. Frey and R. G. Hopkins. J. Chem. Soc. B, 1410 (1970)
(16) There is some evidence ${ }^{28}$ that suggests octamethyltricyclo[3.3.0.0 $0^{2,6}$]octadiene rearranges more rapidly than the unsubstituted hydrocarbon.
(17) Some of the stabilizing π interaction between the two exocyclic double bonds present in 7 is presumably lost in the transition state for its rearrangement, where one double bond functions to stabilize an adjacent radical. In addition, the mixing between the orbitals of the butadiene bridge and those of the cyclobutane ring in 7 (vide infra) is altered in the transition state.
(18) It should be noted that such expectations are sometimes in stark disagreement with experimental reality. See, for instance, J. J. Gajewski, J. Am. Chem. Soc., 97, 3457 (1975). The explanation, proposed in this paper by Gajewski, of the nearly equal energies of activation for degenerate rearrangement of methylenecyclobutane and 1,2-dimethylenecyc obutane has been criticized; W. T. Borden and E. R. Davidson, J. Am. Chem. Soc., 99, 4587 (1977).
(19) W. von E. Doering and G. H. Beasley, Tetrahedron, 29, 2231 (1973).
(20) R. B. Woodward and R. Hoffmann, Angew. Chem., Int. Ed. Engl., 11, 781 (1969).
(21) R. Srinivasan and A. A. Levy, J. Am. Chem. Soc., 85, 3756 (1963).
(22) W. R. Roth and A. Friedrich, Tetrahedron Lett., 2607 (1969). The effect of radical stabilizing substitutents on the rate of rearrangement also indicates that the allowed transition state has substantial biradical character; F. Scheidt and W. Kirmse, Chem. Commun., 716 (1972).
(23) R. Srinivasan and A. Levy, J. Am. Chem. Soc., 85, 3363 (1963)
(24) One might expect that removal of two more hydrogen atoms from the remaining saturated bridge in 11, to give 2, should lower the activation energy by another $19 \mathrm{kcal} / \mathrm{mol}$. Assuming that the preexponential factor is the same for both rearrangements, the anticipated activation energy of 16 kcal/ $/ \mathrm{mol}$ for transformation of $\mathbf{2}$ to $\mathbf{3}$ is incompatible with the apparent stability of 2 at $0^{\circ} \mathrm{C}^{3}$ The explanation of this discrepancy could be that less of the total reactant destabilization is released in the transition state for rearrangement of 2 than in that for 11.
(25) J. Meinwald and F. Uno, J. Am. Chem. Soc., 90, 800 (1968).
(26) G. A. Abad, S. P. Jindal, and T. T. Tidwell, J. Am. Chem. Soc., 95, 6326 (1973).
(27) F. T. Bond, C.-Y. Ho, and O. McConnell, J. Org. Chem., 41, 1416 (1976).
(28) (a) D. L. Zebelman, S. H. Bauer, and J. F. Chiang, Tetrahedron, 28, 2727 (1972); (b) C. S. Wang and M. D. Harmony, J. Am. Chem. Soc., 98, 1108 (1976).
(29) G. Capozzi and H. Hogeveen, J. Am. Chem. Soc., 97, 1479 (1975), have noted a similar lack of Diels-Alder reactivity in a derivative cf 2,3 -dimethylenebicyclo[2.1.1] hexane.
(30) W. L. Jorgensen and W. T. Borden, J. Am. Chem. Soc., 95, 6649 (1973).
(31) R. Hoffmann and R. B. Davidson, J. Am. Chem. Soc., 93, 5699 (1971).
(32) R. Glieter and T. Kobayashi, Helv. Chim. Acta, 54, 1081 (1971).
(33) P. Bischof, R. Gleiter, M. J. Kukla, and L. A. Paquette, J. Electron Spectrosc., 4, 177 (1974).
(34) W. L. Jorgensen, J. Am. Chem. Soc., 97, 3082 (1975).
(35) The net destabilization, caused by the mixing between the MO's 0^{*} the ring and bridge in 15, is smaller than the destabilization, resulting from the interaction of the double bonds, in cyclobutadiene for two reasons. First the HOMO of the cyclobutane ring has appreciable coefficients on atoms that are not adjacent to the double bond. Second, the destabilizing effect of the HOMO-HOMO interaction in 15 is partially mitigated by a stabilizing mixing of the next highest occupied MO of the ring with the LUMO of the bridge. ${ }^{30}$
(36) A. T. Bloomquist and Y. Meinwald, J. Am. Chem. Soc., 79, 5316 (1957); R. Criegee, Angew. Chem., Int. Ed. Engl., 1, 519 (1962).
(37) Further evidence of the importance of orbital interactions in inhibiting Diels-Alder cycloadditions in such molecules comes from an apparent exception. H. Hogeveen and P. W. Kwant, Tetradron Lett., 3747 (1973), have found that a molecule containing a bicyclobutane ring 2,4-bridged by butadiene readily undergoes Diels-Alder reactions. This apparent anomaly is readily understood when it is noted that there is a change in orbital ordering in going from a cyclobutane to a bicyclobutane ring. In bicyclobutane the highest occupied ring orbital that can interact with an
unsaturated 2,4-bridging group has the correct symmetry for mixing with the HOMO of a butadiene and the LUMO of an ethylene bridge. The change in symmetry of the ring HOMO in replacing cyclobutane with bicyclobutane has been used to explain the difference in Diels-Alder reactivity between molecules containing butadiene groups bridging these rings [W. L. Jorgensen and W. T. Borden, Tetrahedron Lett., 223 (1975)].
(38) The EH parameters used were taken from R. Hoffmann, S. Swaminathan B. G. Odell, and R. Gleiter, J. Am. Chem. Soc., 92, 7091 (1970). It should be noted that no quantitative significance should be attached to energies calculated by the EH method.
(39) P. George, M. Trachtman, C. W. Bock and A. M. Brett, Tetrahedron, 32, 317 (1976).
(40) The choice of geometries for these calculations presents a problem. Experimental geometries for many of the molecules are unavailable, and even when geometries have been published, some have subsequently been shown to be in error. ${ }^{28 b}$ in previous studies we selectively manipulated experimental geometries to obtain coordinates for molecules whose structures had not been determined or the accuracy of whose structure we doubted. ${ }^{30,34}$ In the calculations reported here we used MINDO/3 method [R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1285 (1975)] to find minimum energy geometries. However, as noted previously. MINDO energies for some of these molecules are expected to be even less reliable than the energies from EH calculations, because of the well-known inability of calculations that neglect overlap to account for destabilization due to interaction of filled MO's. ${ }^{30}$ Therefore, we were forced to rely on EH calculations for energies at MINDO/3 geometries-an incongruity whose potential for error we fully appreciate. However, since the EH method for the calculation of energies is at best semiquantitative anyway, this procedure for generating geometries recommended itself by virtue of its convenience and a certain measure of internal consistency If quantitatively accurate values for the energies of the isodesmic reactions reported here were desired, complete geometry optimization ${ }^{41}$ and energy calculation by a reliable ab Initio method would be the procedure of choice. The cost/benefit ratio of such an undertaking has, however, dissuaded us from pursuing such a study.
(41) It should be noted that total overlap populations between atoms in strained polycyclic systems depend much more critically on the choice of geometry than do the π bond orders that we have used to analyze our computational results. ${ }^{30,34}$ Therefore, interpretations, based on total overlap populations, of calculations that do not include geometry optimization [see, for instance, P. Th. van Duijnen, P. van der Ploeg, H. Hogeveen, and W. F. J. Hurdeman Tetrahedron Lett., 573 (1975)] should be viewed with some caution.
(42) For a recent discussion of the bonding in cis-2-butene see N. D. Epiotis R. L. Yates, and F. Bernardi, J. Am. Chem. Soc., 97, 5961 (1975).
(43) As noted previously, ${ }^{30}$ the magnitude of the destabilization is underestimated by analysis of just nearest neighbor π interactions between ring and bridge. The 1,3-r bond orders in $\mathbf{1 5}$ are also negative and much larger in magnitude, -0.208 . The reason is that the mixing of the next to highes occupied MO of the cyclobutane ring with the LUMO of the bridge, which mitigates the destabilizing HOMO-HOMO interaction between nearest neighbors, actually enhances the magnitude of $1,3 \pi$ antibonding, since the mixing involves orbitals that are antisymmetric to the plane bisecting the double bond. Although $1,3-\pi$ overlap in 15 is only about a quarter of that between atoms 1 and 2 , nevertheless the $1,3-\pi$ interaction is calculated (from comparison of the π overlap populations) to be more than five times as destabilizing as that between nearest neighbors. For similar reasons the $1,3-\pi$ bond orders in cis-2-butene are also expected to be negative as, in fact, they are found to be by an EH calculation. Nevertheless, their magnitude is computed to be only a quarter the size of the $1,3-\pi$ bond orders in 15.
(44) A previous EH calculation ${ }^{30}$ at a different geometry ${ }^{40}$ found these bond orders to be 0.078 .
(45) Ab initio calculations [W. Hehre, J. Am. Chem. Soc., 94, 6592 (1972)] on vinylcyclopropane, vinylcyclobutane, and propene confirm that the stabilizing Interaction between the four-membered ring and a double bond is greater than that of methyl but less than that of the three-membered ring.
(46) Actually, one would expect the reaction that replaces one ethylene bridge in 2 with butadiene to be more exothermic than the reaction that replaces the second since, in the molecule bridged by one butadiene and one ethylene the orbitals of the cyclobutane ring are not as contrained by symmetry as they are in the molecules that have two identical bridging groups. The energies of the two isodesmic reactions are calculated as -22.6 and -22.5 $\mathrm{kcal} / \mathrm{mol}$, respectively, ${ }^{47}$ but the difference of only $0.1 \mathrm{kcal} / \mathrm{mol}$ cannot be regarded as at all significant. It should be noted, however, that, experimentally, 1 is a more reactive diene than 7b. In fact, in the temperature range $0-15^{\circ} \mathrm{C}$ rearrangement of 7 b competes effectively with the addition of a second mole of PTAD to it.
(47) The energy of the reaction in eq 1 is now calculated as $+24 \mathrm{kcal} / \mathrm{mol}$, whereas previously it was found to be $+17 \mathrm{kcal} / \mathrm{mol}$. ${ }^{30}$ At the MINDO/3 geometries ${ }^{40} 15$ and 17 are found to be on the order of $60 \mathrm{kcal} / \mathrm{mol}$ higher in energy than previously. However, the increase in energy is greater for 15 by about $10 \mathrm{kcal} / \mathrm{mol}$, but this is partially offset by a greater decrease in the energy of butadiene than in that of ethylene. It is amusing to note that if eq 3 is subtracted from eq 2 , so that a reaction analogous to 1 is obtained but with ethylene and butadiene replaced by c / s-2-butene and 2,3 -di-
 that computed previously for eq 1 . The difference of $6 \mathrm{kcal} / \mathrm{mol}$ in the calculated energy of eq 1 , depending on whether ethylene and butadiene or their dimethyl derivatives are used as reference, stems from the fact that the reaction, cisoid-butadiene + cis-2-butene \rightarrow cisoid-2,3-dimethylbutadiene + ethylene, is computed (erroneously) to be exothermic by $6 \mathrm{kcal} / \mathrm{mol} .{ }^{40}$ The $6 \mathrm{kcal} / \mathrm{mol}$ difference in eq 1 , due solely to which alkene and diene are chosen as reference, is indicative of the quantitative significance that should be attached to the energies reported here
(48) J. C. Stickler and W. H. Pirkle, J. Org. Chem., 31, 3444 (1966).
(49) The band nearest the baseline was found to contain triadduct (10). An NMR spectrum of the crude product mixture showed 5b and 10 to be the only products formed.
(50) Repeated attempts to obtain a correct elemental analysis on 5a always
gave results that were too low in C, H, and N . Given the extreme reactivity of octamethylsemibullvalene toward oxygen, ${ }^{10}$ a reasonable hypothesis is that 5 a , itself a peralkylated semibullvalene, underwent some oxidation prior to being analyzed.

Alkyl Nitrate Nitration of Active Methylene Compounds. Nitration of Aldimines ${ }^{1}$

Arthur I. Fetell and Henry Feuer*
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Received June 20, 1977

Abstract

The alkyl nitrate nitration of aldimines 1 derived from aldehydes and aliphatic or alicyclic amines affords the corresponding 1-alkylamino-2-nitro-1-alkenes 2 . The spectral data of 2 show the presence of both the Z and E isomers, the former predominating in both the solid state and in nonpolar solvents.

In continuation ${ }^{2}$ of our studies of the alkyl nitration, we are now reporting on its application to the synthesis of 1 -alkylamino-2-nitro-1-alkenes 2 (eq 1).

Methods that have been used to prepare 2 include the condensation of sodium nitromalonaldehyde with hydrochlorides of primary and secondary amines; ${ }^{3}$ the condensation of α-nitro ketones with primary aromatic amines; ${ }^{4}$ the reaction of morpholine and piperidine with alkoxyalkylidenemalonic esters and nitromethane; ${ }^{5}$ the reaction between sodium methazonate and salts of primary ${ }^{6 \mathrm{a}}$ and secondary amines; ${ }^{6 \mathrm{~b}}$ the reaction of vicinal dinitroalkenes ${ }^{7 \mathrm{a}}$ or chloronitroalkenes ${ }^{7 \mathrm{~b}}$ with amines; and the condensation of nitroalkanes with N, N-disubstituted amide acetals ${ }^{8}$ or with amide-dimethyl sulfate complexes. ${ }^{9}$

A consideration of the available methods has shown that they are limited in scope. Moreover, they suffer from the lack of readily available starting materials and frequently from low yields.
The nitration reaction in eq 1 was studied in several basesolvent systems with N-propylidene-tert-butylamine [3, R $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}\right]$ and N-butylidene-tert-butylamine [4, $\mathrm{R}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; \mathrm{R}^{\prime}=\mathrm{C}_{2} \mathrm{H}_{5}$] as model compounds. As shown in Table I, the highest yields of 1-(tert-butylamino)-2-nitro-1-propene (5) and of 1-(tert-butylamino)-2-nitro-1-butene (6) (53 and 51%, respectively) were obtained in the potassium amide-liquid ammonia system when the molar ratio of 1 to base to nitrating agent was $1: 2: 1.5$ and when 30 min was allowed for both anion formation and nitration. It is of interest that in a control test only 18% of 3 was recovered when it was subjected to potassium amide in liquid ammonia. A considerable amount of polymeric material was formed which was not identified. Only tar-like material was obtained when 3 was nitrated in lithium amide-liquid ammonia.

Nitration of 4 in n-butyllithium-hexane did not give 6 but, instead, afforded (N-tert-butyl)-4-aminooctane (7) which arose from a nucleophilic attack of butyllithium on the azomethine carbon ${ }^{10}$ (eq 2). Nitrations of 4 with n-propyl nitrate were successful in lithium diisopropylamide employing hexane or THF as solvents, but the yield of 6 did not exceed 30%.

In order to determine the scope of the reaction, aldimines of varied structures were nitrated. Variations in the alkylamino moiety had some effect on the yield of the aminoni-

troalkenes 2 as indicated in Table II. The low yield of 1-(iso-propylamino)-2-nitro-1-propene (8) is probably due to its instability. It decomposed on recrystallization from hot hexane with the evolution of oxides of nitrogen and also on standing at ambient temperatures.

As shown in Table II, aldimines derived from primary aliphatic aldehydes underwent nitration in the potassium amide-liquid ammonia system to afford the expected aminonitroalkenes.
An interesting side reaction was observed in the nitration of N-ethylidene-tert-butylamine [$\left.9, \mathrm{R}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; \mathrm{R}^{\prime}=\mathrm{H}\right]$ with N-propyl nitrate. In addition to 1-(tert-butylamino)2 -nitroethene (10) there was also formed compound 5 in 10% yield (eq 3). Only 10 was obtained when 9 was nitrated with

9

ethyl nitrate. Traces of 5 were also found in nitrations of 4 and N-heptylidene-tert-butylamine with n-propyl nitrate.

The formation of 5 in these reactions is very likely due to aldehyde interchange between the aldimines and propanal. In a control test it was established that 3 was formed in addition to considerable amounts of aldol condensation products when 4 was treated with propanal in potassium amide-liquid ammonia (eq 4).

The formation of propanal in the nitrations with n-propyl
nitrate is not unexpected for it has been well established that primary alkyl nitrates undergo elimination reactions in alkaline media to give aldehydes. ${ }^{11}$

Alkyl nitrate nitrations of aldimines derived from α branched aldehydes did not lead to tert- α-nitroaldimines. Instead, products were obtained which resulted both from dimerization of the aldimine and aldehyde interchange. For example, nitration of cyclohexylmethylidene-tert-butylamine (11) with n-propyl nitrate afforded $1,1^{\prime}$-bis(cyclohexyl-methylidene-tert-butylamine) (12, 18\%), cyclohexanecarboxaldehyde, and compound 5 (eq 5). The structure of 12 was

assigned on the basis of its NMR spectrum which showed singlets at 1.20 and 7.34 ppm for the tert-butyl and methine protons, respectively. The cyclohexyl rings were indicated by two types of ring protons, namely, a 16 -proton multiplet at 1.80 ppm and a four-proton multiplet at 2.00 ppm . The latter is ascribed to the axial hydrogens in the 2 and 6 positions which are shielded by the imino groups.
Recently, we reported that alkyl nitrations of 2 - and 4 -isopropylpyridines led with dimerization to the 2,3-bis(pyri-dyl)-2,3-dimethylbutanes. It was shown that the nitroisopropylpyridines were intermediates in these transformations. ${ }^{12}$ It is possible, although it has not been verified, that a tertiary nitro compound such as N-(1-nitrocyclohexyl-methylidene)-tert-butylamine was the precursor in the formation of dimer 12.

Spectra of Compounds 2. A study of the NMR spectra of compounds 2 clearly confirmed their structures as aminonitro olefins. In solution, both E and Z isomers were present. The Z isomer predominated in nonpolar solvents due to its increased stability through intramolecular hydrogen bonding. The Z and E isomers were distinguishable by the different chemical shifts of the olefinic protons. For example, in CDCl_{3} they appeared in compound 5 as doublets at 7.09 and 8.41 ppm which integrated to a value of 0.9 and 0.1 protons, respectively. The E isomer absorbed ${ }^{\text {at }}$ lower field because of the de-

Z isomer

E isomer

$$
\mathrm{R}=\mathrm{alkyl} ; \mathrm{R}^{\prime}=\mathrm{H}, \text { alkyl }
$$

shielding effect of the cis-nitro group. ${ }^{13}$ The resonances appeared as doublets due to vicinal HCNH coupling between the amino and olefinic protons. The existence of the coupling was demonstrated by deuterium exchange and spin-decoupling experiments. Irradiation of the NH absorption at 9.6 ppm caused the collapse of the olefinic proton resonances to singlets. Moreover the large coupling constant of 14 Hz is indicative of the trans conformation for the amino and olefinic protons. ${ }^{14}$

Addition of $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ to a CDCl_{3} solution of 5 caused a change of the Z / E isomer ratio from 9:1 to 1:1. A similar sol-vent-promoted isomerization has also been observed with α-nitroarylidenephenylhydrazines. ${ }^{15}$
In the solid-state infrared spectra ($\mathrm{KBr}, \mathrm{CsI}$) of compounds 2, the presence of the NH group was clearly apparent as a single, moderately intense absorption at $3200 \mathrm{~cm}^{-1}$. In chlo-

Table I. Effect of Various Base-Solvent Systems on the Yield of $\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{CNHCH}=\mathbf{C}\left(\mathrm{NO}_{2}\right) \mathbf{R}\left(5, \mathrm{R}=\mathrm{CH}_{3} ; \mathbf{6}, \mathrm{R}=\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$)

Base-solvent	5, yield, \%	6, yield, \%
KNH_{2}-liquid $\mathrm{NH}_{3}{ }^{\text {a }}$	53	51
NaNH_{2}-liquid $\mathrm{NH}_{3}{ }^{\text {a }}$	44	
LiNH2-liquid $\mathrm{NH}_{3}{ }^{\text {a }}$	$0^{\text {b }}$	
n-BuLi-hexane ${ }^{\text {c }}$		$0^{\text {d }}$
$(i-\mathrm{Pr})_{2} \mathrm{NLi}$-hexane ${ }^{\text {c,e }}$		30
$(i-\mathrm{Pr})_{2} \mathrm{NLi}-\mathrm{THF}{ }^{\text {c.f }}$		28

${ }^{a}$ The molar ratio of 1 to base to n-propyl nitrate was kept at 1.0:2.0:1.5 in approximately 200 mL of solvent. Acidifications were carried out in situ with ammonium chloride. ${ }^{b}$ Extensive tar formation was observed. ${ }^{c}$ The molar ratio of 1 to base to n-propyl nitrate was $1: 1: 1.5$. The reaction mixture was acidified with hydrogen chloride. ${ }^{d}$ A 40% yield of (N-tert-butyl)-4-octanamine (7) was isolated. ${ }^{e}$ When the molar ratio of base was increased to two, the yield of 6 was only 14%. ${ }^{f}$ The reaction mixture was acidified in situ with glacial acetic acid.

Table II. Preparation of $\mathbf{R N H C H}=\mathbf{C}\left(\mathbf{N O}_{2}\right) \mathbf{R}^{\boldsymbol{\beta}, b}$

R	R^{\prime}	Yield, $\%$	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$
$t-\mathrm{C}_{4} \mathrm{H}_{9}$	H	$21^{c, d}$	$81-82$
$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	54	e
$i-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	40	$62.5-63 \mathrm{dec}$
$i-\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	70	e
$t-\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	51	$113-113.5$
$\mathrm{C}_{6} \mathrm{H}_{11}$	CH_{3}	50	$101-101.5$
$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$51 f$	$91.5-92$
$n-\mathrm{C}_{6} \mathrm{H}_{13}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	67	e
$t-\mathrm{C}_{4} \mathrm{H}_{9}$	$n-\mathrm{C}_{5} \mathrm{H}_{11}$	$46 f$	$77.5-78$

${ }^{a}$ Satisfactory analytical data were reported for all new aldimines and new alkylaminonitroalkenes. ${ }^{b}$ Nitrations were performed in $150-200 \mathrm{~mL}$ of liquid ammonia at $-33^{\circ} \mathrm{C}$, employing 0.10 mol of imine, 0.20 mol of potassium amide, and 0.15 mol of n-propyl nitrate. Anion formation and nitration times were 30 min . Acidification was performed in situ with 0.22 mol of ammonium chloride. ${ }^{c}$ About 10% of 1-(tert-butylamino)-2-nitropropene (5) was also obtained as determined by NMR. ${ }^{d}$ The yield was 13.8% when using ethyl nitrate. ${ }^{e}$ Undistillable liquid. f Traces of 5 were present in the crude reaction mixture as determined by NMR.
roform solution, this band was replaced by two weak absorptions at $3570-3330 \mathrm{~cm}^{-1}$ (concentration dependent) and at 3279-3225 cm ${ }^{-1}$ (concentration independent). These were assigned, respectively, to the free and associated (hydrogen bonded) forms of 2 . All of compounds 2 exhibited a sharp absorption at $1660-1630 \mathrm{~cm}^{-1}$. This band, which is very likely due to the $\mathrm{C}=\mathrm{C}$ vibration, possibly also reflects contribution from the $\mathrm{C}=\mathrm{N}$ stretching vibrations of the dipolar structure A. Similar absorptions have been observed in the spectra of aminonitroacroleins ${ }^{16}$ and aminonitroalkenes. ${ }^{6 a, 17}$

A
The conjugative effect of the alkylamino group was also seen in the shift to lower frequencies of the nitro group to 1371$1353 \mathrm{~cm}^{-1}$. In nitroalkenes the asymmetric stretching vibration of the nitro group occurs at $1550-1500 \mathrm{~cm}^{-1} .{ }^{18}$

The mass spectra of 2 exhibited molecular ions which corresponded to the appropriate molecular formulas. In compounds 2 which contained the tert-butylamino moiety, frag-
mentation was dominated by the loss of methyl and isobutylene. Compounds 2 which did not contain the tert-butylamino group generally exhibited one or more ions which indicated the loss of the fragments $\mathrm{OH}, \mathrm{NO}_{2}$, or HNO_{2}. The frequent occurrence of the $\mathrm{P}-\mathrm{OH}$ and $\mathrm{P}-\mathrm{HNO}_{2}$ ions suggests a molecular geometry in which the nitro group and a hydrogen atom are in close proximity, enabling the concerted loss of these fragments. This is consistent with the existence of 2 in the Z configuration.

Experimental Section

Apparatus. Nitrations were performed in a 300 - or $500-\mathrm{mL}$ fournecked flask equipped with a mechanical stirrer, dry ice condenser, thermometer, and pressure-equalizing addition funnel. The ammonia was passed through a potassium hydroxide tower prior to liquefaction.
\boldsymbol{N}-Propylideneisobutylamine. The following modification of the method of Campbell et al. ${ }^{19}$ is representative of the procedure employed for the preparation of aldimines.
To $58.0 \mathrm{~g}(1.00 \mathrm{~mol})$ of freshly distilled propanal at $-20^{\circ} \mathrm{C}$ was added dropwise, with stirring and cooling, $73.0 \mathrm{~g}(1.00 \mathrm{~mol})$ of freshly distilled isobutylamine, while maintaining the temperature below -5 ${ }^{\circ} \mathrm{C}$. Solid potassium hydroxide ($\sim 10 \mathrm{~g}$) was added, and the reaction mixture was allowed to warm to room temperature while the aqueous layer separated ($\sim 1 \mathrm{~h}$). The organic phase was stored over potassium hydroxide at $5^{\circ} \mathrm{C}$ overnight and then distilled from fresh potassium hydroxide through a $40-\mathrm{cm}$ Todd column packed with $0.25-\mathrm{in}$. glass helices to give N-propylisobutylamine ($45.8 \mathrm{~g}, 40 \%$): bp $115-116{ }^{\circ} \mathrm{C}$; $n^{21} \mathrm{D} 1.4092$; IR (CHCl_{3}) $1669 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{N}\right.$); NMR (CDCl_{3}) 0.89 [d, 6 , $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]$, 1.08 ($\mathrm{t}, 3, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.4-2.5 [m, 3, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 3.19\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{~N}\right)$, and $7.62 \mathrm{ppm}(\mathrm{t}, 1, \mathrm{CH}=\mathrm{N})$.
\boldsymbol{N}-Heptylidene-tert-butylamine (83%): bp $51-52^{\circ} \mathrm{C}(3 \mathrm{~mm}$); $n^{21}{ }^{1}$ 1.4269; IR (neat) $1667 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; NMR ($\left.\mathrm{CDCl}_{3}\right) 1.16(\mathrm{~m}, 20$, CH_{2} and $\left.\mathrm{CH}_{3}\right), 2.17\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right)$, and $7.60 \mathrm{ppm}(\mathrm{t}, 1, \mathrm{CH}=\mathrm{N})$.
\boldsymbol{N}-Butylidene- n-hexylamine (63%): bp $107-110^{\circ} \mathrm{C}(48 \mathrm{~mm})$; $n^{20}{ }^{\text {D }} 1.4290$; IR (neat) $1681 \mathrm{~cm}^{-1} ;$ NMR (CDCl_{3}) $0.90\left(\mathrm{t}, 6, \mathrm{CH}_{3}\right), 1.45$ ($\mathrm{m}, 10, \mathrm{CH}_{2}$), $2.20\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N}\right), 3.34\left(\mathrm{t}, 2, \mathrm{CH}_{2} \mathrm{~N}\right)$, and 7.60 ppm ($\mathrm{t}, \mathrm{l}, \mathrm{CH}=\mathrm{N}$).
\mathbf{N}-Cyclohexylmethylidene-tert-butylamine ($\mathbf{7 1 \%}$): bp 54-54.4 ${ }^{\circ} \mathrm{C}(3 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.4515$; IR (neat) $1669 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; NMR ($\left.\mathrm{CDCl}_{3}\right)$ 1.14 [s, $\left.9,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.2-2.2\left(\mathrm{~m}, 11, \mathrm{CH}_{2}\right.$ and CH , ring), and 7.42 ppm (d, $1, \mathrm{CH}=\mathrm{N}$).
1-(tert-Butylamino)-2-nitro-1-propene (5). The following experiment is typical of the procedure employed in the nitration of aldimines.
To 150 mL of liquid ammonia at $-33^{\circ} \mathrm{C}$ was added a catalytic amount of ferric nitrate and freshly cut potassium metal $(7.82 \mathrm{~g}, 0.20$ g -atom). After the potassium amide had formed ($15-30 \mathrm{~min}$), freshly distilled N-propylidene-tert-butylamine ${ }^{20}(11.3 \mathrm{~g}, 0.10 \mathrm{~mol})$ was added in one portion. The reaction mixture was stirred at $-33^{\circ} \mathrm{C}$ for 0.5 h and then cooled to $-60^{\circ} \mathrm{C}$, and n-propyl nitrate ($15.8 \mathrm{~g}, 0.15 \mathrm{~mol}$) was added during $5-8 \mathrm{~min}$, while maintaining the temperature below $-40^{\circ} \mathrm{C}$ (Caution: cooling must be maintained during the addition of the nitrating agent, as long as the vigorous exotherm persists). The nitration mixture was stirred for an additional 25 min at $-33^{\circ} \mathrm{C}$ and then acidified at $-40^{\circ} \mathrm{C}$ with ammonium chloride $(11.8 \mathrm{~g}, 0.22$ mol).
The ammonia was replaced with absolute ether, the inorganic salts were filtered off, and the ether was removed in vacuo to give an orange oil. The oil was triturated with hexane, cooled to induce crystallization, and filtered. The orange amorphous solid ($9.53 \mathrm{~g}, 60 \%$) was dissolved in hexane, treated with decolorizing carbon, and recrystallized to afford 1-(tert-butylamino)-2-nitro-1-propene (5) ($8.38 \mathrm{~g}, 53 \%$): yellow needles; mp 113-113.5 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}\left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right.$) 370 nm (\log $\epsilon 4.86$) and 260 (3.11); IR (CHCl_{3}) $3236(\mathrm{NH}), 1645(\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{N}$), 1355,1318 , and $1239 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) 1.38\left[\mathrm{~s}, 9,\left(\mathrm{CH}_{3}\right) \mathrm{C}\right]$, 2.06 (s, $3, \mathrm{CH}_{3}$), $7.09(\mathrm{~d}, 0.9, \mathrm{C}=\mathrm{CH}, Z$ isomer, $J=14 \mathrm{~Hz}$), 8.41 (d. 0.1 , $\mathrm{C}=\mathrm{CH}, E$ isomer, $J=14 \mathrm{~Hz}$), and $9.6 \mathrm{ppm}(\mathrm{br}, 1 \mathrm{NH})$; mass spectrum (75 eV) m / e (rel intensity) 158 (42), 143 (38), 102 (22), 84 (17), 57 (100); $\mathrm{mol} w \mathrm{t}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ calcd 158.2, found 162.0.
1-(n-Propylamino)-2-nitro-1-propene. From potassium (7.82 $\mathrm{g}, 0.20 \mathrm{~g}$-atom), N-propylidene-n-propylamine ${ }^{21}(9.90 \mathrm{~g}, 0.10 \mathrm{~mol})$, n-propyl nitrate ($15.8,0.15 \mathrm{~mol}$), and ammonium chloride ($11.8 \mathrm{~g}, 0.22$ mol), in 200 mL of liquid ammonia, there was obtained 23.5 g of a dark brown liquid which did not crystallize.
A $5.00-\mathrm{g}$ portion was chromatographed on a $13 \times 2.5 \mathrm{~cm}$ silica gel column and eluted with ether to afford 1-(n-propylamino)-2-nitro-1-propene ($1.70 \mathrm{~g}, 54 \%$): nondistillable yellow liquid; $n^{22} \mathrm{D} 1.5793$; UV
$\lambda_{\text {max }}\left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 370 \mathrm{~nm}(\log \epsilon 3.97)$ and 257 (2.90); IR $\left(\mathrm{CHCl}_{3}\right)$ $3279(\mathrm{NH}), 1660(\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{N}), 1366,1325$, and $1 £ 39 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; NMR (CDCl_{3}) $0.99\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.67\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 2.07\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.40$ $\left(\mathrm{m}, 2, \mathrm{CH}_{2}\right), 7.10(\mathrm{~d}, 0.9, \mathrm{C}=\mathrm{CH}, Z$ isomer, $J=14 \mathrm{~Hz}), 8.36(\mathrm{~d}, 0.1$, $\mathrm{C}=\mathrm{CH}, E$ isomer, $J=14 \mathrm{~Hz}$), and $9.5 \mathrm{ppm}(\mathrm{br}, 1, \mathrm{NH})$; mass spectrum (75 eV) m/e (rel intensity) 144 (31), 127 (1.1), 115 (19), 98 (1.1), 97 (9.0), 68 (23), 58 (72), 43 (100), 41 (98); mol wt [$\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]$ calcd 144.17, found 143.16 .

1-(Isopropylamino)-2-nitro-1-propene (8). From potassium ($7.82 \mathrm{~g}, 0.20 \mathrm{~g}$-atom), N-propylideneisopropylamine ${ }^{22}(9.90 \mathrm{~g}, 0.10$ mol), n-propyl nitrate ($15.8 \mathrm{~g}, 0.15 \mathrm{~mol}$), and ammonium chloride (11.8 $\mathrm{g}, 0.22 \mathrm{~mol}$), in 100 mL of liquid ammonia, there was obtained an amorphous red-orange solid ($9.53 \mathrm{~g}, 66 \%$). Recrys-allization from hexane afforded $8(5.73 \mathrm{~g}, 40 \%)$: yellow needles; $\mathrm{mp} 62.5-63^{\circ} \mathrm{C}$ dec; $\mathrm{UV} \lambda_{\text {max }}\left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 368 \mathrm{~nm}(\log \epsilon 4.21)$ and $262(3.00)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $3247(\mathrm{NH}), 1647(\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{N}), 1360,1299$, and $1235 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; NMR (CDCl_{3}) 1.28 [d, $\left.6,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 2.00\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.67$ [$\mathrm{m}, 1$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$], 7.08 (d, $0.9, \mathrm{C}=\mathrm{CH}, Z$ isomer, $J=14 \mathrm{~Hz}$), $8.33(\mathrm{~d}, 0.1$, $\mathrm{C}=\mathrm{CH}, E$ isomer, $J=14 \mathrm{~Hz}$), and 9.4 ppm (br, 1, NH; ; mass spectrum (75 eV) m/e (rel irtensity) 144 (77), 129 (43), 111 (17). 97 (20), 85 (28), 82 (41), 58 (82), 55 (41), 55 (41), 43 (100).

1-(Isobutylamino)-2-nitro-1-propene. From potassium (7.82 $\mathrm{g}, 0.20 \mathrm{~g}$-atom), N-propylideneisobutylamine ($11.3 \mathrm{~g}, 0.10 \mathrm{~mol}$), n propyl nitrate ($15.8 \mathrm{~g}, 0.15 \mathrm{~mol}$), and ammonium chloride ($11.8 \mathrm{~g}, 0.22$ mol), in 150 mL of liquid ammonia, there was obtained 24.1 g of a dark orange oil which did not crystallize. The oil was chromatographed on a $30 \times 2.5 \mathrm{~cm}$ silica gel column and eluted with ethe:. The ether was removed in vacuo and the product was rechromatographed to afford 1-(isobutylaminol-2-nitro-1-propene ($10.5 \mathrm{~g}, 70 \%$;: yellow-brown liquid; n^{21} D 1.5832 ; UV $\lambda_{\text {max }}\left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 369 \mathrm{~nm}(\log \epsilon 3.98)$ and 243 (3.15); IR (CHCl_{3}) 3270 (NH), 1658 ($\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{N}$), 1371, 1323, and $1239 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) 0.95\left[\mathrm{~d}, 6,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 1.0[\mathrm{~m}$, 1, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$), $2.05\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 3.27\left(\mathrm{t}, 2, \mathrm{CH}_{2} \mathrm{~N}\right), 7.08(\mathrm{~d}, 0.9, \mathrm{C}=\mathrm{CH}$, Z isomer, $J=14 \mathrm{~Hz}$), $8.28(\mathrm{~d}, 0.1, \mathrm{C}=\mathrm{CH}, E$ isomer, $J=14 \mathrm{~Hz}$), and 9.5 ppm (br, $1, \mathrm{NH}$); mass spectrum (75 eV) m/e (rel intensity) 158 (39), 142 (2), 125 (4), 115 (65), 111 (10), 69 (36), 58 (100).

1-Cyclohexylamino-2-nitro-1-propene. From potassium (13.1 $\mathrm{g}, 0.34 \mathrm{~g}$-atom), N-propylidenecyclohexylamine ${ }^{23}$ ($\Sigma 3.3 \mathrm{~g}, 0.17 \mathrm{~mol}$), n-propyl nitrate ($35.1 \mathrm{~g}, 0.33 \mathrm{~mol}$), and ammonium chloride (19.8 g , 0.36 mol), in 150 mL of liquid ammonia, there was obtained an amorphous yellow-orange solid ($18.3 \mathrm{~g}, 60 \%$). Recrystallization from hexane gave 1-cyclohexylamino-2-nitro-1-propene: $15.7 \mathrm{~g}(50 \%)$; lustrous yellow plates; $\mathrm{mp} 101-101.5^{\circ} \mathrm{C}$; $\mathrm{UV} \lambda_{\text {max }}\left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 370$ $\mathrm{nm}(\log \epsilon 4.09)$ and $258(2.86)$; IR $\left(\mathrm{CHCl}_{3}\right) 3225(\mathrm{NH}), 1652(\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{N}), 1364$, and $1299 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; NMR ($\mathrm{CDCl}_{3} ; 1.0-2.0(\mathrm{~m}, 10$, CH_{2}, ring), 2.04 (s, $3, \mathrm{CH}_{3}$), $3.0-3.6$ (br, $1, \mathrm{CH}$, ring), 7.03 (d, 0.9 , $\mathrm{C}=\mathrm{CH}, Z$ isomer, $J=14 \mathrm{~Hz}$), $8.32(\mathrm{~d}, 0.1, \mathrm{C}=\mathrm{CH}, E$ isomer, $J=14$ Hz), and $9.5 \mathrm{ppm}(\mathrm{br}, 1, \mathrm{NH}$); mass spectrum (75 eV) m / e (rel intensity) 184 (76), 167 (10). 149 (20), 141 (26), 138 (19), 121 (metastable), 109 (18), 103 (22), 83 (58), 67 (28), 55 (100), 41 (66), 36.5 (metastable).
2-(tert-Butylamino)nitroethene (10). From potassium (7.82 g , 0.20 g -atom), N-ethylidene-tert-butylamine ${ }^{24}(9.9 \mathrm{Cg}, 0.10 \mathrm{~mol}), n$ propyl nitrate ($15.8 \mathrm{~g}, 0.15 \mathrm{~mol}$), and ammonium chlcride ($11.8 \mathrm{~g}, 0.22$ mol), in 150 mL of liquid ammonia, there was obtained a red-brown oil ($8.41 \mathrm{~g}, 58 \%$) which did not crystallize. A 3.31 -g portion was chromatographed twice on a $30 \times 2.5 \mathrm{~cm}$ silica gel column and eluted with ether to afford 1.82 g of a yellow semisolid mixture of $10(21 \%)$ and $5(10 \%)$, as determined by NMR: IR $\left(\mathrm{CHCl}_{3}\right) 3333$ (NH) and 1645 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{N}) ;$ NMR $\left(\mathrm{CDCl}_{3}\right) 1.40\left[\mathrm{~s}, 9,\left(\mathrm{CH}_{z}\right)_{3} \mathrm{C}\right], 2.07(\mathrm{~s}, 1.0$, $\left.\mathrm{C}=\mathrm{CCH}_{3}\right), 6.52\left(\mathrm{~d}, 0.5, \mathrm{CH}=\mathrm{CHNO}_{2}\right), 7.14\left[\mathrm{~d}, 0.33, \mathrm{CH}=\mathrm{C}\left(\mathrm{NO}_{2}\right)-\right.$ $\mathrm{CH}_{3}, J=14 \mathrm{~Hz}$], 7.20 (quartet, $0.50, \mathrm{CH}=\mathrm{CHNO}_{2}, J=14,6 \mathrm{~Hz}$), and 9.6 ppm (br, 1, NH).

When ethyl nitrate was the nitrating agent, there was obtained after a similar workup $10(2 \mathrm{~g}, 13.8 \%)$: $\mathrm{mp} 81-82^{\circ} \mathrm{C}$ (hexane); UV $\lambda_{\max }(95 \%$ $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 353 \mathrm{~nm}(\log \epsilon 4.29)$ and 230 (3.26); IR $\left(\mathrm{CHCl}_{3}\right) 3257(\mathrm{NH})$, $1637(\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{N}), 1353,1319$, and $1232 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) 1.40\left[\mathrm{~s}, 9,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 6.50\left(\mathrm{~d}, 1, \mathrm{CH}=\mathrm{CHNO}_{2} J=6 \mathrm{~Hz}\right), 7.04$ ($\mathrm{q}, 1, \mathrm{CH}=\mathrm{CHNO}_{2}, J=14,6 \mathrm{~Hz}$), and 9.5 ppm (br, $1, \mathrm{NH}$); mass spectrum (75 eV) m / e (rel intensity) 144 (28), 129 (36), 115.5 (metastable), 89 (11), 72 (13), 59 (38), 41 (100); mol wt [($\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]$ calcd 144.17, found 144.01 .

1-(tert-Butylamino)-2-nitro-1-butene (6). From potassium (7.82 $\mathrm{g}, 0.20 \mathrm{~g}$-atom), N-butylidene-tert-butylamine ${ }^{20}(12.7 \mathrm{~g}, 0.10 \mathrm{~mol})$, n-propyl nitrate $15.8 \mathrm{~g}, 0.15 \mathrm{~mol})$, and ammonium chloride (11.8 g , 0.22 mol), in 150 mL of liquid ammonia, there was obtained an orange amorphous solid ($11.7 \mathrm{~g}, 68 \%$). Recrystallization from hexane afforded $6(8.69 \mathrm{~g}, 51 \%)$: pale yellow needles; $\mathrm{mp} 91.5-92^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(95 \%$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) $370 \mathrm{~nm}\left(\log \epsilon 4.13\right.$) and 259 (2.58); IR (CHCl_{3}) 3247 (NH), $1646(\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{N}), 1362,1325$, and $1235 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; NMR
$\left(\mathrm{CDCl}_{3}\right) 1.12\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.37\left[\mathrm{~s}, 9,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 2.47\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 7.05(\mathrm{~d}$, $0.9, \mathrm{C}=\mathrm{CH}, Z$ isomer, $J=14 \mathrm{~Hz}$), $8.37(\mathrm{~d}, 0.1, \mathrm{C}=\mathrm{CH}, E$ isomer, J $=14 \mathrm{~Hz}$), and $9.7 \mathrm{ppm}(\mathrm{br}, 1, \mathrm{NH})$; mass spectrum (75 eV) m / e (rel intensity) 172 (39), 157 (26), 143.1 (metastable), 116 (8), 101 (29), 72 (18), 57 (100), 41 (36).

1-(tert-Butylamino)-2-nitro-1-heptene. From potassium (7.82 $\mathrm{g}, 0.20 \mathrm{~g}$-atom), N-heptylidene-tert-butylamine ($16.9 \mathrm{~g}, 0.10 \mathrm{~mol}$), n-propyl nitrate ($15.8 \mathrm{~g}, 0.15 \mathrm{~mol}$), and ammonium chloride $(11.8 \mathrm{~g}$, 0.22 mol), in 100 mL of liquid ammonia, there was obtained an orange waxy solid ($11.1 \mathrm{~g}, 52 \%$). Recrystallization from hexane gave 1-(tert-butylamino)-2-nitro-1-heptene ($9.78 \mathrm{~g}, 46 \%$): waxy yellow plates; mp $77.5-78{ }^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}\left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 370 \mathrm{~nm}(\log \epsilon 4.20)$ and $260(3.04)$; IR $\left(\mathrm{CHCl}_{3}\right) 3247(\mathrm{NH}), 1650(\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{N}), 1368,1325,1238$, and $1227 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$; NMR ($\left.\mathrm{CDCl}_{3}\right) 0.90\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~m}, 6, \mathrm{CH}_{2}\right), 1.38$ [s, $\left.9,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 2.38\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 6.97(\mathrm{~d}, \mathrm{l}, \mathrm{C}=\mathrm{CH}, Z$ isomer, $J=14$ Hz), and 9.6 ppm (br, $1, \mathrm{NH}$).

1-(n-Hexylamino)-2-nitro-1-butene. From potassium (7.82 g , 0.20 g -atom), N-butylidene- n-hexylamine ($15.5 \mathrm{~g}, 0.10 \mathrm{~mol}$), n-propyl nitrate ($15.8 \mathrm{~g}, 0.15 \mathrm{~mol}$), and ammonium chloride ($11.8 \mathrm{~g}, 0.22 \mathrm{~mol}$), in 150 mL of liquid ammonia, there was obtained a dark red oil (17.7 g, 76\%).

A $2.67-\mathrm{g}$ portion of this oil was chromatographed on a $15 \times 2.5 \mathrm{~cm}$ silica gel column and eluted with ether. The ether was removed in vacuo and the procedure was repeated to afford 1-(n-hexylamino)-2-nitro-1-butene ($2.01 \mathrm{~g}, 67 \%$): light orange, nondistillable liquid; $n^{20} \mathrm{D}$ 1.5485 ; UV $\lambda_{\text {max }}\left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 370 \mathrm{~nm}(\log \epsilon 3.85)$ and 244 (3.00); IR $\left(\mathrm{CHCl}_{3}\right) 3247(\mathrm{NH}), 1647(\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{N}), 1362$, and $1235 \mathrm{~cm}^{-1}$ $\left(\mathrm{NO}_{2}\right) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 0.85-2.0\left(\mathrm{~m}, 14, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right), 2.45\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right)$, $3.42\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 7.00(\mathrm{~d}, 0.9, \mathrm{C}=\mathrm{CH}, Z$ isomer, $J=14 \mathrm{~Hz}$), $8.31(\mathrm{~d}$, $0.1, \mathrm{C}=\mathrm{CH}, E$ isomer, $J=14 \mathrm{~Hz}$), and $9.6 \mathrm{ppm}(\mathrm{br}, 1, \mathrm{NH})$; mass spectrum (75 eV) m / e (rel intensity) 200 (36), 185 (45), 154 (19), 129 (20), 112 (35), 72 (56), 55 (42), 43 (100), 41 (70); mol wt [($\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]$ calcd 200.28, found 200.99.

Nitration of \mathbf{N}-Cyclohexylmethylidene-tert-butylamine. From potassium ($7.82 \mathrm{~g}, 0.20 \mathrm{~g}$-atom), N-cyclohexylmethplidene-tert-butylamine ($11,16.7 \mathrm{~g}, 0.10 \mathrm{~mol}$), n-propyl nitrate ($15.8 \mathrm{~g}, 0.15$ mol), and ammonium chloride ($11.8 \mathrm{~g}, 0.22 \mathrm{~mol}$), in 200 mL of liquid ammonia, there was obtained, upon trituration with hexane and filtering, 4.22 g of a yellow-white solid: $\mathrm{mp} 119-123^{\circ} \mathrm{C}$. A $2.38-\mathrm{g}$ sample was sublimed at $65-70^{\circ} \mathrm{C}(0.4 \mathrm{~mm})$ to afford a yellow and a white fraction. These were mechanically separated and each fraction was sublimed. The procedure was repeated four times.

Fraction 1 was 1-(tert-butylamino)-2-nitro-1-propene (5, 0.36 g, 4%), mp $105-108^{\circ} \mathrm{C}$. The IR, NMR, and mass spectra were identical with those of authentic 5 .

Fraction 2 was $1,1^{\prime}$-bis(cyclohexylmethylidene-tert-butylamine) ($12,1.70 \mathrm{~g}, 18 \%$): colorless needles; mp $128.5-129{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1658 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 1.20\left[\mathrm{~s}, 9,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.8$ (m, $8, \mathrm{CH}_{2}$, ring), $2.00(\mathrm{~m}, 2, \mathrm{H}$, axial, ring), and $7.34 \mathrm{ppm}(\mathrm{s}, 1$, $\mathrm{N}=\mathrm{CH}$); mass spectrum (75 eV) m/e 332 (calcd m/e 332); mol wt [$\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]$ calcd 332 , found 320 . Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{4} \mathrm{~N}_{2}: \mathrm{C}, 79.45$; H, 12.12; N, 8.42. Found: C, 78.99; H, 11.92; N, 8.60.

Distillation of the hexane filtrate in vacuo gave a mixture of cyclohexanecarboxaldehyde ($0.28 \mathrm{~g}, 2 \%$) and recovered $11(3.73 \mathrm{~g}, 23 \%)$ as determined by GLC. Hydrolysis of the mixture in the presence of 2,4-dinitrophenylhydrazine reagent gave cyclohexanecarboxaldehyde dinitrophenylhydrazone, $\mathrm{mp} 168-169^{\circ} \mathrm{C}$. A mixture melting point determination with authentic cyclohexanecarboxaldehyde dinitrophenylhydrazone gave no depression.

Reaction of n-Butylidene-tert-butylamine (4) with n-Butyllithium. To a stirred solution of n-butyllithium (0.11 mol) in 150 mL of hexane at $-20^{\circ} \mathrm{C}$, under nitrogen, was added n-butylidene-tert-butylamine ${ }^{20}(12.7 \mathrm{~g}, 0.10 \mathrm{~mol})$. After allowing 0.5 h for anion formation, the reaction mixture was cooled to $-70^{\circ} \mathrm{C}$ and n-propyl nitrate ($15.8 \mathrm{~g}, 0.15 \mathrm{~mol}$) added dropwise to the rapidly stirred solution, while maintaining the temperature below $-40^{\circ} \mathrm{C}$ (Caution: vigorous exotherm). After 0.5 h the nitration mixture was saturated with dry hydrogen chloride at $-40^{\circ} \mathrm{C}$ to afford a gelatinous suspension. Extracting with chloroform, filtering, and removing the chloroform in vacuo gave a brown resinous material (19.8 g).

A $5.00-\mathrm{g}$ portion was chromatographed on a silica gel column and eluted with ether to afford (N-tert-butyl)-4-octylamine ($7,1.83 \mathrm{~g}$, 40%): colorless crystals; mp 99-101 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; NMR (CDCl_{3}) $0.97\left(\mathrm{~m}, 3, \mathrm{CH}_{3}\right), 1.53\left[\mathrm{~s}+\mathrm{m}, 19,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right.$ and $\left.\mathrm{CH}_{2}\right]$, 3.0 (br, 1, CH), and $8.9 \mathrm{ppm}(\mathrm{br}, 1, \mathrm{NH}$); mass spectrum (75 eV) m/e (rel intensity) 185 (8), 170 (33), 142 (94), 128 (100), 86 (81), 72 (85), 52.1 (metastable), 40.5 (metastable).

Reaction of \mathbf{N}-Butylidene-tert-butylamine (4) with Propanal in Potassium Amide-Liquid Ammonia. To a stirred suspension of potassium amide (0.20 mol) in 200 mL of liquid ammonia at $-40^{\circ} \mathrm{C}$
was added N-butylidene-tert-butylamine ${ }^{20}(4,12.7 \mathrm{~g}, 0.10 \mathrm{~mol})$. After stirring 0.5 h , the reaction mixture was cooled to $-55^{\circ} \mathrm{C}$ and propanal ($5.81 \mathrm{~g}, 0.10 \mathrm{~mol}$) added during 5 min (Caution: exotherm) while maintaining the temperature below $-40^{\circ} \mathrm{C}$. After allowing an additional 25 min for reaction, the mixture was acidified with ammonium chloride ($11.8 \mathrm{~g}, 0.22 \mathrm{~mol}$) at $-40^{\circ} \mathrm{C}$ and the ammonia replaced with absolute ether. The reaction mixture was filtered and the ethereal filtrate carefully concentrated in vacuo to a volume of $\sim 100 \mathrm{~mL}$. The remainder of the ether was removed by distillation through a $40-\mathrm{cm}$ Todd column packed with $0.25-\mathrm{in}$. glass helices. The residue remaining from the distillation was redistilled in vacuo from solid potassium hydroxide to afford two fractions.

Fraction $1\left[1.50 \mathrm{~g} ;\right.$ bp $\left.35-40^{\circ} \mathrm{C}(20 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.4120\right]$ consisted of a mixture of $4(8 \%)$ and N-propylidene-tert-butylamine (5\%), as determined by GLC.

Fraction 2 [$\left.1.92 \mathrm{~g}: \mathrm{bp} 80-90^{\circ} \mathrm{C}(10 \mathrm{~mm}) ;{ }^{20} \mathrm{D} 1.4659\right]$ consisted of at least six high boiling compounds (by GLC). The presence of olefinic protons in the NMR spectrum indicated that these compounds were products of aldol condensation. They were not identified.

Acknowledgment. The support of this investigation by a grant from Eli Lilly and Co. is greatly appreciated.

Registry No.-4, 6852-59-1; (E)-5, 64331-62-0; (Z)-5, 64331-63-1; (E)-6, 64331-64-2; (Z)-6, 64331-65-3; 7, 64331-66-4; (E)-8, 64331-67-5; (Z)-8, 64331-68-6; 10, 64331-69-7; 11, 53188-66-2; 12, 64331-70-0; N-propylideneisobutylamine, 6898-80-2; propanal, 123-38-6; isobutylamine, 78-81-9; N-heptylidene-tert-butylamine, 6852-61-5; heptanal, 111-71-7; N-butylidenehexylamine, 64331-71-1; butanal, 123-72-8; hexylamine, 111-26-2; N-propylidene-tert-butylamine, 7020-81-7; propyl nitrate, 627-13-4; N-propylidenepropylamine, 7707-70-2; (Z)-1-(propylamino)-2-nitro-1-propene, 64331-52-8; (E)-1-(propylamino)-2-nitro-1-propene, 64331-53-9; N-propylideneisopropylamine, 28916-23-6; (Z)-1-(isobutylamino)-2-nitro-1propene, 64331-54-0; (E)-1-(isobutylamino)-2-nitro-1-propene, 64331-55-1; N-propylidenecyclohexylamine, 1195-49-9; (Z)-1-cy-clohexylamino-2-nitro-1-propene, 64331-56-2; (E)-1-cyclohexylam-ino-2-nitro-1-propene, 64331-57-3; N-ethylidene-tert-butylamine, 7020-80-6; ethyl nitrate, 625-58-1; (E)-1-(tert -butylamino)-2-nitro-1-heptene, 64331-58-4; (Z)-1-(tert-butylamino)-2-nitro-1-heptene, 64331-59-5; (E)-1-(hexylamino)-2-nitro-1-butene, 64331-60-8; (Z)-1-(hexylamino)-2-nitro-1-butene, 64331-61-9; cyclohexanecarboxaldehyde dinitrophenylhydrazone, $3335-68$-0; tert-butylamine, 75 -64-9; cyclohexanecarboxaldehyde, 62043-61-0.

References and Notes

(1) Alkyl Nitrate Nitration of Active Methylene Compounds. 13. For part 12 see H. Feuer and L. F. Spinicelli, J. Org. Chem., 41, 2981 (1976).
(2) For previous publications see (a) H. Feuer and H. Friedman, J. Org. Chem., 40, 187 (1975); (b) H. Feuer, "The Alkyl Nitrate Nitration of Active Methylene Compounds'', ACS Symposium Series, No. 22, Washington, D.C., 1976, p 160.
(3) H. B. Hill and J. Torrey, Jr., Am. Chem. J., 22, 89 (1899); (b) W. J. Hale and E. M. Honan, J. Am. Chem. Soc., 41, 770 (1919); (c) J. P. Freeman and C. O. Parker, J. Org. Chem., 21, 579 (1956).
(4) C. Harries, Justus Liebigs Ann. Chem., 319, 254 (1901); (b) C. D. Hurd and M. E. Nilson, J. Org. Chem., 20, 927 (1955).
(5) C. D. Hurd and L. T. Sherwood, Jr., J. Org. Chem., 13, 471 (1948).
(6) (a) W. Meister, Chem. Ber., 40, 3435 (1907); (b) J. P. Freeman and W. D Emmons, J. Am. Chem. Soc., 8, 3405 (1956).
(7) (a) L. B. Clapp, J. F. Brown, Jr., and L. Zeftel, J. Org. Chem., 15, 1043 (1950); (b) R. Perrot and R. Berger, C. R. Hebd. Seances Acad. Sci., Paris, Ser. C, 235, 185 (1952).
(8) (a) H. Meerweln, W. Florian, N. Schön, and G. Stopp, Justus Liebigs Ann. Chem., 641, 27 (1961); (b) T. Severin and B. Brück, Chem. Ber., 98, 3847 (1965); (c) T. Severin and H. Bohme, ibid., 101, 2925 (1968); (d) T. Severin, D. Scheel, and P. Adhikary, ibid., 102, 2966 (1969).
(9) T. Severin and H. Kullmer, Chem. Ber., 104, 440 (1971).
(10) K. Harada in "The Chemistry of the Carbon-Nitrogen Double Bond", S. Patal, Ed., Interscience, New York, N.Y., 1970, Chapter 6.
(11) (a) G. R. Lucas and L. P. Hammett, J. Am. Chem. Soc., 64, 1928 (1942); (b) J. W. Baker and D. M. Eastey, J. Chem. Soc., 1193, 1208 (1952).
(12) H. Feuer, J. K. Doty, and J. P. Lawrence, J. Org. Chem., 38, 417 (1973).
(13) Yu. V. Baskov, T. Urbański, M. Witanowski, and L. Stefaniak, Tetrahedron, 20, 1519 (1964).
(14) S. Sternhell, Q. Rev. Chem. Soc., 236 (1969).
(15) H. Feuer and L. F. Spinicelli, J. Org. Chem., 41, 2981 (1976).
(16) S. M. Kvitko, Y. V. Maksimov, T. Y. Naperno, and V. V. Perekalin, J. Org. Chem. USSR, 9, 477 (1973).
(17) (a) S. M. Kvitko, V. V. Perekalin, V. N. Vasil'eva, Y. S. Bobvich, and N. A Slovokhotava, Dokl. Chem. (Engl. Transl.), 143, 193 (1962); (b) T. Y. Naperno, V. V. Perekalin, and A. S. Sopova, Zh. Prikl. Spektrosk., 19, 649 (1973).
(18) J. F. Brown, Jr., J. Am. Chem. Soc., 77, 6341 (1955).
(22) R. Tiollals and H. Guillerm, Bull. Soc. Chim. Fr., 937 (1953).
(23) G. Wittlg and H. Dieter, Chem. Ber., 97, 3548 (1964).
(24) M. D. Hurwitz, U.S. Patent 2582128 (1952); Chem. Abstr., 46, 8146 (1952).

Deprotonation of a Hindered Keteniminium Salt ${ }^{1}$

James A. Deyrup* and George S. Kuta
Department of Chemistry, University of Florida, Gainesville, Florida 32611

Received July 11, 1977

Abstract

The synthesis of di-tert-butylketene- N-methyl- N-ethyliminium fluorosulfonate (2) is described. This salt owes its unusual stability to the steric bulk of its substituents. Deprotonation of this salt with sodium bis(trimethylsilyl)amide generated the corresponding azomethine ylide 9 . In the absence of added dipolarophiles, 9 dimerizes to the piperazine 4. In the presence of norbornene, however, 9 adds in 1,3 -dipolar fashion to give 7 . The novel chemical properties of 4,7 , and 8 are discussed.

We had previously observed that deprotonation of certain iminium salts could lead to aziridines via ring closure of an intermediate 1,3 -dipolar azomethine ylide. ${ }^{2}$ Our interest in the synthesis and chemistry of methylene aziridines led us to consider an extension of this reaction to keteniminium salts.

Several procedures were tried in our attempts to prepare keteniminium salts. Although these attempts yielded interesting chemistry, the salts proved much too reactive for general use in our deprotonation studies. ${ }^{3}$ One notable exception, di-tert-butylketene- N-ethyl- N-methyliminium fluorosulfonate (2), could be prepared in high yield by alkylation of the corresponding ketenimine (1) with methyl fluorosulfonate.

Results

The sterically protected di-tert-butylketene- N-ethylimine 1 was synthesized from 2,2-di-tert-butylacetyl chloride ${ }^{4}$ via a conventional procedure (see Experimental Section). The appropriate signals and multiplicities were found in its NMR spectrum. A strong and characteristic infrared maxium at 1998 cm^{-1} assignable to the heterocumulene functionality, $\mathrm{C}=\mathrm{C}=\mathrm{N}$-, was also observed. ${ }^{5,6}$ Attempts to isolate an analytical sample of 1 completely free from di-tert-butylacetonitrile ${ }^{7}$ either by conventional distillation techniques or by column chromatography resulted in only slight purification. Nevertheless, the alkylation was performed by syringing a twofold excess of methyl fluorosulfonate ${ }^{8}$ into a stirred ethereal solution containing ketenimine 1. Keteniminium fluorosulfonate salt 2 precipitated as a white flocculent solid. This material was determined by spectroscopic analysis to be completely free of nitrile and/or alkylated nitrile by-products.

Keteniminium salt 2 proved to be remarkably stable (mp $224-228{ }^{\circ} \mathrm{C}$ with decomposition) considering the known chemistry of other heterocumulenes. ${ }^{9,10}$ It is very soluble in polar solvents such as chloroform, ethanol, or water and could be recrystallized from methylene chloride-ether. It was inert
toward neutral hydrolysis conditions and it could be recovered unchanged after stirring in water at room temperature for 2 h or more. The infrared spectrum of 2 showed a band of medium intensity at $2000 \mathrm{~cm}^{-1}$ which is at somewhat lower frequency than expected for a ketenimine with a positively charged heteroatom. Schiff bases, for example, show appreciable infrared shifts to higher frequency upon protonation or alkylation. ${ }^{6}$ Present in the NMR spectrum was a low-field tert-butyl signal at $\delta 1.39$ and a deshielded methyl singlet at $\delta 3.90$, as well as the expected ethyl pattern at $\delta 1.48$ (triplet) and 4.11 (quartet). As further structural proof, 2 was hydrolyzed in aqueous base to tertiary amide 3 (Scheme I).

The deprotonation of 2 was performed in benzene using sodium bis(trimethylsilyl)amide as a sterically hindered, nonnucleophilic strong base. ${ }^{2}$ Thus, a slurry of 2 in benzene with excess base for 24 h produced the piperazine dimer 4 in 52% yield rather than the intended aziridine 6 . The dimeric structure of 4 was confirmed by its high-resolution mass spectrum which showed a parent ion at $m / e 390.3977$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{50} \mathrm{~N}_{2}, 390.3973$). The NMR spectrum of 4 proved unexpectedly complex. The endocyclic methylene group (H_{4}, H_{5}) appeared as a sharp AB quartet (coupling constants and shifts shown in Table I).

The exocylic methylene protons ($\mathrm{H}_{6}, \mathrm{H}_{7}$) appeared as a quartet of quartets pattern which collapsed to a simple $A B$ system upon spin decoupling of the methyl protons $\left(\mathrm{H}_{1}\right)$. The geminal nonequivalence of these protons $\left(\mathrm{H}_{6}, \mathrm{H}_{7}\right)$ can be attributed to restricted rotation of the N-ethyl groups of $4 .{ }^{11}$ Inspection of molecular models shows extensive steric interaction between the N-ethyl substituent and its neighboring tert-butyl group.

Scheme I

Table I. $100-\mathrm{MHz}$ Proton Spectrum of Piperazine Dimer 4^{a}

Proton	δ	Multiplicity	$J, \mathrm{~Hz}$
H_{1}	1.07	t	$J_{1,6(7)}=7$
H_{2}	1.30	s	
H_{3}	1.33	s	$J_{4,5}=10$
H_{4}	2.60	d	$J_{5,4}=10$
H_{5}	3.35	d	$J_{6,7}=12, J_{6,1}=7$
H_{6}	3.02	d of q	$J_{7,6}=12, J_{7,1}=7$

$a \mathrm{CDCl}_{3}$ as solvent.

Although 1,4-cyclohexanedione is known to prefer a nonchair conformation, ${ }^{12}$ the NMR pattern displayed by the endocyclic methylene group argues against such a flexible conformation. Molecular models suggest that 4 probably assumes a rigid chairlike conformation in which the two N-ethyl groups occupy axial positions. This conformation is consistent with the observed NMR spectrum.

Minor components appeared in the deprotonation product mixture which showed infrared absorption bands of rather weak intensity at ca. 2000 and $1640 \mathrm{~cm}^{-1}$. These were interpreted as arising from dealkylation (to give 5) and hydrolysis (to give 3) during the prolonged reaction times. Attempts to encourage ring closure by performing the deprotonation in refluxing benzene again produced piperazine 4 in somewhat higher yield (59%). Deprotonation under the homogeneous conditions of hexamethylphosphoramide (HMPA) resulted in a drastic decrease in dimerization (21\%), but only at the expense of hydrolysis to the amide 3 (52%). Further attempts to effect cyclization to 6 were abandoned, and attention was focused on the identity of the supposed "1,3-dipolar" precursor of 4.

Stereospecific additions to 1,3-dipolarophiles have been of profound importance in establishing the intermediacy of azomethine ylides during the course of aziridine isomerizations. ${ }^{13}$ These trapping experiments are now recognized as convincing evidence for the intervention of other 1,3-dipoles as well. Unfortunately, capture of in situ generated 1,3-dipoles by conventional trapping agents was subject to major experimental problems. Most desirable dipolarophiles would hardly withstand the severity of the strongly basic conditions required for dipole formation. Norbornene, however, was found to be inert to the silylamide base under the deprotonation conditions. Treatment of 2 with sodium bis(trimethylsilyl)amide in the presence of a tenfold excess of norbornene formed the $1: 1$ adduct 7 . Attempted purification of 7 by

7
short-path distillation resulted in some sample decomposition with no substantial improvement in product quality. Spectroscopic analysis of adduct 7 before distillation revealed a parent ion at $m / e 289.2761$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}, 289.2769$). Complete analysis of the mass spectrum suggested the presence of at least one other component. The identity and relative percentage of this by-product(s), however, was not deter-

Table II. ${ }^{13}$ C Chemical-Shift Data for 7 and 8

${ }^{a}$ Chemical shifts are reported downfield from internal $\mathrm{Me}_{4} \mathrm{Si}$ with deuteriochloroform as a solvent. Some of these assignments where there are similar shifts and multiplicities may be interchanged.
mined. NMR spectral analysis showed the expected nonequivalent tert-butyl signals at $\delta 1.35$ and 1.50 , a methyl triplet at $\delta 1.00$, as well as unresolved methylene and norbornyl multiplets in the range $\delta 1.0-3.0 .{ }^{13} \mathrm{C}$ NMR (Table II) proved to be helpful in establishing the presence of the olefinic linkage carrying the tert-butyl groups. These olefinic carbons appeared as singlets at $\delta 141.6$ and 124.8 downfield from internal $\mathrm{Me}_{4} \mathrm{Si}$ and are in agreement with typical shifts for sp^{2}-hybridized carbons. The assignments made in Table II were based on the multiplicities extracted from single frequency off-resonance decoupling data together with typical chemi-cal-shift values for model norbornyl and pyrrolidine derivatives. ${ }^{14}$ The infrared spectrum contained a weak band at ca. 1625^{-1} characteristic of the enamine functionality. ${ }^{5}$

Interestingly, adduct 7 was derivatized during an attempted purification via column chromatography to a compound which gave an immediate precipitate with silver nitrate. An identical product was formed from hydrochloric acid treatment of 7. This product is assigned the hydrochloride structure 8 formed

from the protonation of the enamine moiety of 7 .
The NMR spectrum of this derivative was much more informative than that of 7. The postively charged nitrogen greatly deshields the adjacent exo- and endocyclic pairs of methylene protons while separating the $\mathrm{H}_{3 \mathrm{a}}$ and $\mathrm{H}_{7 \mathrm{a}}$ endo protons by approximately 0.75 ppm . The exo configuration of adduct 7 is based on the ample literature precedent for the preferred exo addition of 1,3 -dipoles to norbornene. ${ }^{133,13 f, 14}$ The ${ }^{13} \mathrm{C}$ spectrum provided valuable structural data. The loss of one olefinic C, the shift of the other to 195 , and the multi-

Table III. A Partial Tabulation of Mass Spectral Fragmentations Obtained from 7 and 8

Fragmentations Obtained from 7 and 8		
m / e	Rel Intensity, \%	
289	1.8	$\mathbf{8}$
274	2.6	2.0
233	13.5	3.3
232	19.6	13.4
219	17.5	16.0
218	100.0	100.0

Scheme II

8
plicity change of C_{12} from a singlet to a doublet are in agreement with C protonation of the enamine. The presence of an infrared band at $1620 \mathrm{~cm}^{-115}$ also supports the presence of the iminium functionality $\left(\mathrm{C}=\mathrm{N}^{+}\right)$. High-resolution mass spectrometry failed to show a parent ion at $m / e 326$ for the hydrochloride salt 8. Instead, a pseudo parent ion at m / e 289.2763 (calcd for $\mathrm{P}^{+}-\mathrm{HCl}, 289.2769$) was observed. The conspicuous loss of HX from salts has been noted to occur in other systems. ${ }^{3,16}$ A tabulation of the major fragmentations of 8 is given in Table III. These are compared with m / e values obtained from the mass spectral analysis of freshly prepared 7. The great similarity of these two spectra supports the proposed structural relationship.

The iminium bond of the hydrochloride salt 8 was inert toward attack by a variety of reagents, including methyllithium (addition and/or deprotonation), sodium borohydride (reduction), sodium iodide (dealkylation), and aqueous sodium hydroxide (deprotonation and/or hydrolysis). The unusual proclivity of adduct 7 to scavange HCl and the marked resistance of 8 toward deprotonation warrant further comment.

Analysis of molecular models show that extreme crowding between the tert-butyl groups and the norbornyl skeleton in 7 is unavoidable (if approximately normal enamine geometry is maintained). Substantial steric relief, though, is experienced on protonation when rotation of the carbon bearing the tertbutyl group assumes a thermodynamically more stable conformation (cf. Scheme II). Conversely, deprotonation of 8 would require rotation of the tert-butyl groups into a sterically demanding conformation in which the proton would be in a periplanar arrangement with the p orbital of the iminium bond.

Discussion

The experimental observations of dimerization and stereospecific addition to norborene can be explained in terms of intermediate ylide 9 . An alternative stepwise path to dimer

9

Scheme III

10
7 must be considered (Scheme III). Thus, stepwise addition of dipole 9 to iminium salt 2 could yield $\mathbf{1 0}$. Although deprotonation of 10 could occur at H_{a} to give 4 after cyclization, H_{a} is no longer acidic and it would appear that H_{b} would be lost with greater ease. ${ }^{17}$ We thus prefer the alternative concerted $3+3$ cycloaddition which has ample literature precedent.

The failure of 1,3 dipole 9 to cyclize to methylene aziridine 6 is surprising. ${ }^{18}$ Steric arguments would, if anything, tend to favor 6 over dimer 4. It should be noted, however, that the electrocyclic ring closure proceeds with concomitant destruction of π bending. It is known the substituents which can stabilize charge facilitate the concerted and reversible thermal ring opening of aziridines. Aziridines which lack such stabilizing substituents tend to sustain carbon-carbon or car-bon-nitrogen scission and polymerize when subjected to thermal ring-opening conditions. It is possible, therefore, that the lack of ring closure of 9 results from the lack of groups which would facilitate loss of π overlap.

It should also be noted that the intermediate 9 has a π bond orthoganal to the azomethine ylide π system. The localized π bond is directed toward the opposite partner in the cycloaddition reaction and potentially set up for weak bonding and resultant transition state energy lowering. This rationale is similar to that proposed for $2+2$ cycloadditions involving ketenes. ${ }^{21}$

Experimental Section

Melting and boiling points are recorded in degrees centigrade and are uncorrected. Melting points were determined with a ThomasHoover Unimelt capillary melting-point apparatus using 1.6-1.8 \times 90 mm Kimax capillary tubes. Boiling points were determined by conventional distillation techniques or by microcapillary methods. Infrared spectra were recorded on a Perkin-Elmer Model 137 sodium chloride prism spectrometer and calibrated at $1601 \mathrm{~cm}^{-1}$ with a polystyrene film. Nuclear magnetic resonance spectra were recorded on a Varian Model A60-A analytical spectrometer for $60-\mathrm{MHz}$ proton spectra and a Varian Model XL-100 spectrometer for $100-\mathrm{MHz}$ proton and proton-decoupled spectra. Carbon-13 nuclear magnetic resonance spectra were obtained from a Varian Model XL-100 spectrometer operating at a probe frequency of 25.16 MHz . All chemical shifts (δ) in designated solvents are reported in parts per million (ppm) downfield from tetramethylsilane as an internal standard. Routine low-resolution mess spectra, exact mass, and molecular weight data were measured on an AEI-MS-30 double-beam spectrometer at an ionizing potential of 70 eV . Microanalyses were carried out by Atlantic Microlab, Inc., Atlanta, Georgia, and in all cases are in agreement with assigned structures. Where noted, reactions and manipulations of moisture-sensitive compounds were carried out in a Labconco drybox purged with a continuous stream of nitrogen. Solvent evaporations were performed at reduced pressure on a Büchi Rotoavapor-R rotary evaporator equipped with a water aspirator.
\mathbf{N}-Ethyl-2,2-Di-tert-butylacetamide. Anhydrous ethylamine $(15.0 \mathrm{~g}, 0.333 \mathrm{~mol})$ was placed in a $2 \times 30 \mathrm{~cm}$ Fischer and Porter Carius tube previously cooled to $0-5{ }^{\circ} \mathrm{C}$ with an ice-water bath. 2,2-Di-tert-butylacetyl chloride ($8.92 \mathrm{~g}, 46.8 \mathrm{mmol}$) was added directly to the chilled ethylamine without stirring. The Carius tube was sealed, removed from the ice-water bath, shaken to effect mixing of reagents, and then positioned over a magnetic stirrer where the mixture was stirred for 84 h . The greenish product mixture was evaporated to dryness. The residue was again taken up in chloroform, washed with dilute hydrochloric acid, and then dried over anhydrous magnesium sulfate. Evaporation of the solvent left a pale-yellow solid. Recrystallization from hexane afforded N-ethyl-2,2-di-tert-butylacetamide
(7.7 g, 82\%) as colorless prisms: mp 133-134 ${ }^{\circ} \mathrm{C}$; IR (KBr) $3230(\mathrm{~N}-\mathrm{H}$, stretch), $1640(\mathrm{C}=\mathrm{O}), 1545 \mathrm{~cm}^{-1}\left(\mathrm{~N}-\mathrm{H}\right.$, bend); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.10$ $(\mathrm{s}, 18 \mathrm{H}), 1.13(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, 5.25 (br, 1 H).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 72.36 ; \mathrm{H}, 12.56 ; \mathrm{N}, 7.06$. Found: C, 72.33; H, 12.63; N, 7.02.

Di-tert-butylketene- \boldsymbol{N}-ethylimine (1). A solution of N-ethyl-2,2-di-tert-butylacetamide ($2.00 \mathrm{~g}, 10.1 \mathrm{mmol}$) in 25 mL of benzene was prepared in a $100-\mathrm{mL}$ round-bottomed flask equipped with a reflux condenser and a magnetic stirring bar. Phosphorus pentachloride ($2.29 \mathrm{~g}, 11.0 \mathrm{mmol}$) was added and the resulting suspension refluxed for approximately 30 min . Benzene and phosphoryl chloride were removed by evaporation at reduced pressure, and the remaining traces of phosphoryl chloride was chased with 20 mL of benzene. The crude imidoyl chloride was treated directly with triethylamine (5.57 $\mathrm{g}, 7.99 \mathrm{~mL}, 55.0 \mathrm{mmol}$) in 50 mL of benzene, and the resulting mixture was refluxed for 2 h . The precipitated triethylamine hydrochloride was removed by suction filtration and the filtrate concentrated at reduced pressure to a brown liquid. Vacuum distillation (Kugelrohr, $40-60^{\circ} \mathrm{C} / 0.25 \mathrm{mmHg}$) gave di-tert-butylketene- N-ethylimine (1.60 g) contaminated to the degree of approximately 25% by what appeared to be 2,2-di-tert-butylacetonitrile: IR (liquid film) $1998 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}=\mathrm{N}) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.21(\mathrm{~s}, 18 \mathrm{H}), 1.23(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 3.39$ (q, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$); MS m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}, 181.1830$; found, 181.1827.

Di-tert-butylketene- \boldsymbol{N}-methyl- \boldsymbol{N}-ethyliminium Fluorosulfonate (2). Freshly prepared di-tert-butylketene- N-ethylimine (1.60 g) was rinsed from the Kugelrohr bulb into a $100-\mathrm{mL}$ round-bottomed flask with 50 mL of anhydrous ether. The flask was then set up for magnetic stirring and protected from atmospheric moisture with a calcium sulfate drying tube. Methyl fluorosulfonate ($1.51 \mathrm{~g}, 1.02 \mathrm{~mL}$, 13.3 mmol) was syringed into the ketenimine solution, and the resulting mixture was stirred at room temperature for approximately 30 min . Precipitation of the keteniminium fluorosulfonate salt as a white flocculent suspension took place within seconds after the introduction of the methyl fluorosulfonate. The colorless solid was collected on a small Büchner funnel by suction filtration and washed several times with anhydrous ether. Recrystallization from chloro-form-diethyl ether afforded di-tert-butylketene- N-methyl- N ethyliminium fluorosulfonate (1.50 g) as a white powder: $\mathrm{mp} 224-228$ ${ }^{\circ} \mathrm{C}(\mathrm{dec})$; $\mathrm{IR}(\mathrm{KBr}) 2000 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}=\mathrm{N})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.39(\mathrm{~s}$, $18 \mathrm{H}), 1.48(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$.
\boldsymbol{N}-Methyl- \boldsymbol{N}-ethyl-2,2-di-tert-butylacetamide (3). Di-tert-butylketene- N-methyl- N-ethyliminium fluorosulfonate $(0.250 \mathrm{~g}$, 0.847 mmol) and 15 mL of distilled water were placed in a $25-\mathrm{mL}$ Erlenmeyer flask. The solution was made basic by adding 5 mL of 10% aqueous sodium hydroxide, and the resulting mixture was stirred at room temperature for approximately 10 h . Extraction into three $25-\mathrm{mL}$ portions of diethyl ether followed by drying over anhydrous magnesium sulfate and evaporation at reduced pressure produced N-methyl- N-ethyl-2,2-di-tert-butylacetamide ($0.157 \mathrm{~g}, 87 \%$) as a pale-yellow liquid. Vacuum distillation (Kugelrohr, $100-110^{\circ} \mathrm{C} / 0.3$ mmHg) gave an analytically pure sample as a colorless solid: mp $33.5-35.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CCl}_{4}\right) 1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\left(\mathrm{CDCl}_{3}\right) \& 1.07(\mathrm{~s}$, $18 \mathrm{H}), 1.20(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 0.75 \mathrm{H}), 2.49(\mathrm{~s}, 0.25 \mathrm{H}), 2.83(\mathrm{~s}$, 0.75 H), $3.0(\mathrm{~s}, 2.25 \mathrm{H}), 3.39(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$; MS m/e calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NO}, 213.2092$; found, 213.2092.

Treatment of Di-tert-butylketene- \boldsymbol{N}-methyl- \boldsymbol{N}-ethyliminium Fluorosulfonate (2) with Sodium Bis(trimethylsilyl)amide. $\boldsymbol{N}, \boldsymbol{N}^{\prime}$-Diethyl-2,5-bis(2,2,4,4-tetramethyl-3-pentylidene)piperazine (4). In a drybox, di-tert-butylketene- N-methyl $-N$-ethyliminium fluorosulfonate $(0.638 \mathrm{~g}, 2.16 \mathrm{mmol})$, sodium bis(trimethylsilyl) amide ($0.595 \mathrm{~g}, 3.25 \mathrm{mmol}$), and 25 mL of dry benzene were placed in a $100-\mathrm{mL}$ round-bottomed flask equipped with a magnetic stirring bar and a calcium sulfate drying tube. The resulting heterogeneous slurry was stirred at room temperature under nitrogen atmosphere for a period of 28 h . During this time, the mixture became somewhat more homogeneous and assumed a bright yellow appearance. The fluorosulfonate salts and excess silylamide base were removed by suction filtration through a bed of Celite, and the clear yellow filtrate evaporated at reduced pressure to a yellow oil (0.406 g). Crystallization from ethyl acetate produced colorless flakes of N, N^{\prime}-diethyl-2,5-bis(2,2,4,4-tetramethyl-3-pentylidene) piperazine in two crops $(0.2182 \mathrm{~g}, 52 \%)$: mp $154-156{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1600 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{CN})$; NMR $60 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 9$ $\mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 2.33-3.58(\mathrm{~m}, 8 \mathrm{H})$; NMR $100 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 1.07$ $(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 2.60\left(\mathrm{~d}, J_{\mathrm{AB}}=10 \mathrm{~Hz}, 2\right.$ H , endocyclic CH_{2}), 2.74 (d of $\mathrm{q}, J_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}=11.5 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{CH} 3}=7 \mathrm{~Hz}, 2 \mathrm{H}$, exocyclic CH_{2}), 3.01 (d of $\mathrm{q}, J_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}=11.5 \mathrm{~Hz}, J_{\mathrm{H}, \mathrm{CH}_{3}}=7 \mathrm{~Hz}, 2 \mathrm{H}$, exocyclic CH_{2}), $3.35\left(\mathrm{~d}, J_{\mathrm{AB}}=10 \mathrm{~Hz}, 2 \mathrm{H}\right.$, endocyclic CH_{2}); NMR ${ }^{13} \mathrm{C}$
$\left(\mathrm{CDCl}_{3}\right) \delta 13.0\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}_{3}\right), 33.8(\mathrm{q}, t-\mathrm{Bu}), 42.5$ (t, exocyclic $\left.\mathrm{CH}_{2}\right)$, 45.2 (t , endocyclic CH_{2}), 45.2 (t , endocyclic CH_{2}), 141.3 (s , exocyclic, $\mathrm{C}=\mathrm{C}$), 147.1 (s, endocyclic, $\mathrm{C}=\mathrm{C}$); MS m / e calcd for $\mathrm{C}_{26} \mathrm{H}_{50} \mathrm{~N}_{2}$, 390.3973; found, 390.3977 .

Treatment of Di -tert-butylketene- \boldsymbol{N}-methyl- \boldsymbol{N}-ethyliminium Fluorosulfonate (2) with Sodium Bis(trimethylsilyl)amide in Refluxing Benzene. In a drybox, di-tert-butylketene- N-ethyliminium fluorosulfonate $(0.500 \mathrm{~g}, 1.69 \mathrm{mmol})$, sodium bis(trimethylsilyl)amide ($0.466 \mathrm{~g}, 2.54 \mathrm{mmol}$), and 20 mL of dry benzene were combined in a $100-\mathrm{mL}$ round-bottomed flask containing a small magnetic stirring bar. The flask was removed from the drybox, positioned over a magnetic stirrer, and equipped with a reflux condenser and a nitrogen atmosphere. The reaction mixture was refluxed for 6.5 h before being filtered through a small Büchner funnel containing a bed of Celite. The yellow filtrate was evaporated to an oil (0.404 g), diluted with approximately 8 mL of ethyl acetate, and placed in a refrigerator freezer. After several hours, crystalline flakes of piperazine dimer ($0.197 \mathrm{~g}, 59.7 \%, \mathrm{mp} 154-156^{\circ} \mathrm{C}$) appeared and were collected by suction filtration. The mother liquor was examined spectroscopically and was found by comparison with an authentic sample to contain mostly N-methyl- N-ethyl-2,2-di-tert-butylacetamide.
exo- N-Ethyl-1-(2,2,4,4-tetramethyl-3-pentylidene) perhy-dro-4,7-methanoisoindole (7) and exo-N-Ethyl-1-(2,2,4,4-tetramethyl-3-pentyl)-3a,4,5,6,7,7a-hexahydro-4,7-methano$\mathbf{3} \boldsymbol{H}$-isoindolinium Chloride (8). Di-tert-butylketene- N-methyl-N-ethyliminium fluorosulfonate ($0.400 \mathrm{~g}, 1.36 \mathrm{mmol}$), norbornene $(1.28 \mathrm{~g}, 13.6 \mathrm{mmol})$, and 15 mL of dry benzene were combined in a $50-\mathrm{mL}$ round-bottomed flask equipped with a magnetic stirring bar and a calcium sulfate drying tube. The flask was transferred to a drybox and positioned over a magnetic stirrer where sodium bis(trimethylsilyl) amide ($0.75 \mathrm{~g}, 4.09 \mathrm{mmol}$) was added. The resulting suspension was then stirred at room temperature under nitrogen atmosphere for 23 h . The golden reaction mixture was passed through a filter funnel containing a bed of Celite, and the yellow filtrate was evaporated at reduced pressure to remove solvent and excess norbornene. After removing the residual traces of solvent by evaporation athigh vacuum, exo- N-ethyl-1-(2,2,4,4-tetramethyl-3-pentylidene)-perhydro-4,7-methanoisoindole ($0.386 \mathrm{~g}, 98.5 \%$) was obtained as an acid-sensitive pale-yellow oil: IR $\left(\mathrm{CHCl}_{3}\right) 1625 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{CN})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{Me}), 1.35(\mathrm{~s}, t-\mathrm{Bu}), 1.50(\mathrm{~s}, t-\mathrm{Bu}), 1.0-3.0$ (m, methylene and norbornyl); MS m/e calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}, 289.2769$; found, 289.2761.
The crude isoindole (7) was diluted with approximately 5 mL of benzene and applied to a neutral alumina column ($1.25 \times 10 \mathrm{~cm}$) packed in petroleum ether $\left(65-100^{\circ} \mathrm{C}\right)$. Five $40-\mathrm{mL}$ fractions were collected with chloroform and discarded. A sixth and final $40-\mathrm{mL}$ fraction was obtained with anhydrous methanol, evaporated to a golden oil, and then diluted with ethyl acetate which produced colorless platelets of exo- N-ethyl-1-(2,2,4,4-tetramethyl-3-pentyl)-3a,4,5,6,7,7a-hexahydro-4,7-methano-3 H -isoindolinium chloride ($0.289 \mathrm{~g}, 65.3 \%$): mp 176-179 ${ }^{\circ} \mathrm{C}(\mathrm{dec})$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1620 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.50-1.80\left(\mathrm{br} \mathrm{m}, 6 \mathrm{H}, \mathrm{H}_{5}\right.$, $\left.\mathrm{H}_{6}, \mathrm{H}_{8}\right), 1.53(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.50\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.00(\mathrm{~s}, 1 \mathrm{H}$, exocyclic CH), 3.43 (brd, $J_{3 \mathrm{a}, 7 \mathrm{a}}=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7 \mathrm{a}}$), $4.08-5.18(\mathrm{~m}, 4 \mathrm{H}$, endocyclic and exocyclic CH_{2}); MS m/e calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}, 289.2769$; found, 289.2763.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.82 ; \mathrm{H}, 11.14 ; \mathrm{N}, 4.07$. Found: C, 69.84; H, 11.15; N, 4.07.

Registry No.-1, 64200-90-4; 2, 64200-92-6; 3, 64200-93-7; 4, 64200-94-8; 7, 64200-95-9; 8, 64200-96-0; ethylamine, 75-04-7; 2,2-di-tert-butylacetyl chloride, 29571-65-1; N-ethyl-2,2-di-tert-butylacetamide, 64200-97-1; N-ethyl-2,2-di-tert-butylacetimidyl chloride, 64200-98-2; 2,2-di-tert-butylacetonitrile, 62796-07-0; methyl fluorosulfonate, 421-20-5; norbornene, 498-66-8.

References and Notes

(1) Partial support of this research by a National Science Foundation grant is acknowledged with gratitude.
(2) J. A. Deyrup and W. A. Szabo, J. Org. Chem., 40, 2048 (1975); W. A. Szabo, Ph.D. Thesis, University of Florida, 1974.
(3) G. S. Kuta, Ph.D. Thesis, University of Florida, 1976.
(4) M. S. Newman, A. Arkell, and T. Fukunaga, J. Am. Chem. Soc., 82, 2498 (1960).
(5) L. J. Bellamy. "The Infrared Spectra of Complex Molecules", 3rd ed, Wiley, New York, N.Y., 1973.
(6) D. H. Williams and I. Fleming, "Spectroscopic Methods in Organic Chemistry'", 2nd ed, McGraw-Hill, New York, N.Y., 1973.
(7) This material, although not isolated, exhibited a medium-intensity infrared absorption band at $2201 \mathrm{~cm}^{-1}$.
(8) Methyl fluorosulfonate (Magic Methyl, 97%) was purchased from Aldrich

Chemical Co., Inc. This reagent has been established to be a severe poison. All manipulations were carried out in a well-ventilated hood and protective rubber gloves were worn when making transfers.
(9) G. R. Krow, Angew. Chem., Int. Ed. Engl., 10, 435 (1971).
(10) F. Kurzer and K. Douraghi-Zadeh, Chem. Rev., 67, 107 (1967)
(11) F. A. Bovey, "Nuclear Magnetic Resonance Spectroscopy", Academic Press, New York, N.Y., 1969, p 197.
(12) C.-Y. Chen and R. J. W. LeFèure, Aust. J. Chem., 16, 917 (1963); N. L. Allinger and D. Wertz, Rev. Latinoam. Quim., 127 (1973).
(13) (a) R. Huisgen, W. Scheer, G. Szeimies, and H. Huber, Tetrahedron Lett., 397 (1966); (b) R. Huisgen. W. Scheer, and H. Mader, Angew. Chem., Int Ed. Engl., 8, 602 (1969); (c) R. Huisgen, W. Scheer, H. Mader, and E. Brunn, ibid., 8, 604 (1969); (d) H. W. Heine and R. Peavy, Tetrahedron Lett., 3123 (1965); (e) H. W. Heine, R. H. Weese, R. A. Cooper, and A. J. Durbetaki, J. Org. Chem., 32, 2708 (1967); (f) R. Huisgen, W. Scheer, and H. Huber, J. Am. Chem. Soc., 89, 1753 (1967); (g) H. W. Heine, A. B. Smith, and J. D. Bower, J. Org. Chem., 33, 1097 (1968); (h) H. W. Heine and R. P. Henzel, ibid., 34, 171 (1969): (i) J. W. Lown and K. Matsumoto, ibid., 36, 1405
(1971); (j) F. Texier and R. Carrie, Bull. Soc. Chim. Fr., 258, 2373, 2381 (1972); (k) F. Texier and R. Carrie, Bull, Soc. Chim. Fr., 310 (1974).
(14) H.C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists'", Wiley, New York, N.Y., 1972.
(15) A. Padwa, J. Smolanoff, and S. I. Wetmore, Jr., J. Org. Chem., 38, 1333 (1973); R. Huisgen, H. Stangel, H. J. Sturm, R. Raab, and K. Bunge, Chem. Ber., 105, 1253 (1972).
(16) K. Biemann, 'Mass Spectrometry-Organic Chemical Applications', McGraw-Hill, New York, N.Y., 1962
(17) Steric inhibition of deprotonation ${ }^{2}$ could inhibit loss of H_{b}. Inspection of appropriate models suggests that base attack on H_{b} would not be subject to any severe steric restraints.
(18) Dimerization o ${ }^{2}$ 1,3-dipoles is not uncommon, however. ${ }^{13 \mathrm{a}} 19.20$
(19) R. Huisgen, Proc. Chem. Soc., 357 (1961).
(20) R. Huisgen, R. Grashey, P. Lauen, and H. Leitermann, Angew. Chem., 72, 416 (1960).
(21) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry". Academic Press, New York, N.Y., 1970.

Vinylogous Systems. 4. Mass Spectra of Vinylogous Ureas and Ureides ${ }^{1}$

James S. Docken, Everin C. Houkom, Roger A. Jorgenson. Daryl L. Ostercamp,* Gloria A. Tweed, and Richard G. Werth
Department of Chemistry, Concordia College, Moorhead, Minnesota 56560

Received June 10, 1977

Abstract

The mass spectra of 16 acyclic and isocyclic vinylogous ureas 1 a and 18 acyclic, isocyclic, and heterocyclic vinylogous ureides $\mathbf{1 b}$ are reported and discussed. Preferred fragmentation pathways for both la and $1 \mathbf{b}$ are dominated by cleavage at the ends of the conjugated system, with the enaminone core ($\mathrm{N}-\mathrm{C}=\mathrm{C}-\mathrm{C}=0$) being retained within either a charged daughter ion or an ejected neutral fragment. Such decomposition usually furnishes the base peak in the mass spectrum, and is very often a primary step as well.

In continuation of our studies of elongated functional groups in which nitrogen is the electron donor and carbonyl the acceptor, we wish to report the syntheses and mass spectra of some vinylogous ureas la, β-amino α, β-unsaturated amides, and vinylogous ureides $\mathbf{1 b}, \beta$-amido α, β-unsaturated amides. Our main goal was to provide a further evidence of the importance of resonance stabilization within the enaminone core of 1 . The competing cross conjugation which exists in 1a-d is apparently minimal, as shown by spectral results for $1 a\left(U^{2}\right)$, vinylogous imide 1c (UV, ${ }^{3}$ IR, ${ }^{4}$ and mass spectra ${ }^{1}$), and vinylogous urethane $1 \mathrm{~d}\left(\mathrm{IR}^{4}\right)$.

Electron impact-induced fragmentations of vinylogous amides $1 \mathbf{e}^{5-7}$ and imides $1 \mathbf{c}^{1,8}$ have been reported, and distinct analogies between the behavior of 1 la and 1 e , and of 1 b and 1 c also, were to be expected. Thus, the formation of a relatively stable β-amino α, β-unsaturated acylium ion from la would be reasonable, although we were unsure whether oxazolium and/or isoxazolium daughter ions would be as important for 1 lb as they are in the fragmentation of $1 \mathbf{c}$. Compounds prepared for the present investigation are collected in Tables I and II.

Experimental Section

Melting and boiling points are uncorrected. Common reagents were freshly distilled (amines from BaO) under a dry atmosphere. Com-
mercial samples of anhydrous alcohol, acrylic anhydride (Aldrich Chemical Co.), and reagent grade acetic anhydride were used. Propiolamide (Terro-Marine Bioresearch) was sublimed under vacuum. Reaction progress and product purity were monitored by thin-layer chromatography Preparative chromatography was carried out on columns dry packed with Florisil. Solvents were evaporated under reduced pressure on a rotary evaporator with a bath of suitable temperature. Elemental analyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, N.Y.

Mass spectra were obtained on either an A.E.I. MS-30 or MS-902 mass spectrometer using a direct-insertion probe under the following conditions: electron voltage 70 eV , ion source temperature 200-250 ${ }^{\circ} \mathrm{C}$, probe temperature $75-230{ }^{\circ} \mathrm{C} .{ }^{9}$ Accurate mass measurements were also obtained for compounds $2 \mathrm{e}, 2 \mathrm{~h}, 2 \mathrm{k}, 8 \mathrm{a}-\mathrm{c}, 12 \mathrm{a}, 12 \mathrm{n}$, and 19 a , as well as for selected peaks of compounds 2 d and 19 d . Infrared spectra were recorded on a Beckman IR-8. Deuteration of compound $12 f$ was carried out in CDCl_{3} by shaking with $\mathrm{D}_{2} \mathrm{O}$ for 6 h , NMR measurements showing no evidence for exchange except at NH , where it was complete.

Preparation of Compounds. A number of the compounds were synthesized according to the literature, including $2 \mathbf{a},{ }^{10} 2 \mathrm{~b},{ }^{11} 2 \mathrm{c},{ }^{12} 2 \mathrm{~h},{ }^{13}$ $8 d,{ }^{14} 12 a,{ }^{15} 12 h,{ }^{15} 19 a,{ }^{16}$ and $19 b .{ }^{16}$ Such procedures were also used to prepare many of the new compounds reported in Tables I and II. The following experimental directions are illustrative.
$\boldsymbol{\beta}$-Amino- $\boldsymbol{N}, \boldsymbol{N}$-pentamethylenecrotonamide (2d). A solution of piperidine ($7.72 \mathrm{~g}, 0.0907 \mathrm{~mol}$) in dry ether (30 mL) was added dropwise under a dry atomosphere to a stirred solution of diketene $(7.63 \mathrm{~g}, 0.0907 \mathrm{~mol})$ in dry ether $(30 \mathrm{~mL})$. The reaction solution was refluxed for 45 min , cooled to ice temperature, and then saturated with NH_{3} for 4 h . Removal of the ether left a thick oil which did not solidify in the refrigerator overnight. Using Becker's ${ }^{17}$ method, a catalytic amount of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ was added to the thick liquid, and the mixture was saturated with NH_{3} for 5 h at $80^{\circ} \mathrm{C}$. Cooling gave a crystalline mass, which upon recrystallization from ethyl acetate and chromatography (ether) of the mother liquor yielded $12.59 \mathrm{~g}(83 \%)$ of $2 \mathrm{~d}, \mathrm{mp}$ $78-79^{\circ} \mathrm{C}$. Recrystallization from cyclohexane-ether and subsequent sublimation at $68^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ gave pure $2 \mathrm{~d}, \mathrm{mp} 79-80^{\circ} \mathrm{C}$.

2-Aminocyclopentene-1- \boldsymbol{N}-ethylcarboxamide (2e). A solution of 2-oxocyclopentane-1-N-ethylcarboxamide ${ }^{18}[4.10 \mathrm{~g}, 0.0264 \mathrm{~mol}$, bp $102-107^{\circ} \mathrm{C} 0.5 \mathrm{~mm}$), $\mathrm{mp} 83-84^{\circ} \mathrm{C}$, lit. ${ }^{19} \mathrm{mp} 84^{\circ} \mathrm{C}$] in absolute ethanol (50 mL i was saturated with NH_{3} for 2 h on each of five suc-

Table I. Vinylogous Ureas

Compd ${ }^{\text {a }}$	Registry no.	R^{1}	R^{2}	R^{3}	R^{4}	R^{5}	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Yield, \%	Recrystn solvent
2a	64163-94-6	H	Me	H	H	H	97-98 ${ }^{\text {b }}$	82	CHCl_{3}
2 b	64163-95-7	H	Me	H	H	$\mathrm{Me}_{2} \mathrm{CH}$	$140-142^{c}$	62	MeCN
2c	59846-47-8	H	Me	H	H	Ph	143-144 ${ }^{\text {d }}$	76	EtOAc
2d	64163-93-5	H	Me	H		-	79-80	83	$\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{Et}_{2} \mathrm{O}$
2 e	64163-92-4	H	-($\left.\mathrm{CH}_{2}\right)_{3}-$		H	Et	125-126	70	EtOAc
2 f	49786-30-3	H	$-\left(\mathrm{CH}_{2}\right)_{3}$ -		H	Ph	200-201 dec ${ }^{e}$	81	MeCN
2g	59846-79-6	H	$-\left(\mathrm{CH}_{2}\right)_{4}-$		H	Ph	108.5-110	92	
2h	64163-96-8	$\mathrm{Me}_{2} \mathrm{CH}$	Me	H	H	$\mathrm{Me}_{2} \mathrm{CH}$	93-95 ${ }^{\text {f }}$	82	$\mathrm{C}_{6} \mathrm{H}_{12}$
2 i	64163-97-9	$\mathrm{Me}_{2} \mathrm{CH}$	$-\left(\mathrm{CH}_{2}\right)_{3}-$		H	Et	111-112	80	$\mathrm{C}_{6} \mathrm{H}_{12}$
2 j	64163-98-0	$\mathrm{Me}_{2} \mathrm{CH}$	$-\left(\mathrm{CH}_{2}\right)_{3}$ -		H	Ph	121-122	81	$\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$
2 k	64163-99-1	$\mathrm{Me}_{2} \mathrm{CH}$	$-\left(\mathrm{CH}_{2}\right)_{4}-$		H	Et	108-109	84	$\mathrm{C}_{6} \mathrm{H}_{12}$

Compd ${ }^{\text {g }}$	Registry no.	n	R^{1}	R^{2}	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Yield, \%	Recrystn solvent
8 a	64164-00-7	2	H	H	202-204 dec	97	MeCN
8b	64164-01-8	3	H	H	147-148	97	EtOAc-95\% EtOH
8 c	64164-02-9	2			69-72	98	$\mathrm{Et}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{14}$
8d	64164-03-0	3			$99-100{ }^{h}$	61	$\mathrm{Et}_{2} \mathrm{O}$

${ }^{a}$ Satisfactory elemental analysis were obtained for new compounds $2 \mathrm{~d}-\mathrm{g}$ and $2 \mathrm{i}-\mathrm{k} .{ }^{b}{ }^{b}$ Lit. ${ }^{10} \mathrm{mp} 98-100^{\circ} \mathrm{C}$. ${ }^{c}$ Lit. ${ }^{11} \mathrm{mp} 144-$ $145^{\circ} \mathrm{C} .{ }^{d}$ Lit. $.^{12} \mathrm{mp} 145{ }^{\circ} \mathrm{C} . e$ Lit. $.^{20} \mathrm{mp} 203-205^{\circ} \mathrm{C}$. f Lit. ${ }^{13} \mathrm{mp} 90-93^{\circ} \mathrm{C}$. 8 Molecular weight values for new compounds8a-c from exact mass measurements were accurate to within $10 \mathrm{ppm} .{ }^{h}$ Lit. ${ }^{14} \mathrm{mp} 99-100^{\circ} \mathrm{C}$.

Table II. Vinylogous Ureides

Compd ${ }^{\text {a }}$	Registry no.	R ${ }^{1}$	$\mathrm{R}^{2} \quad \mathrm{R}^{3}$	R^{4}	R^{5}	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Yield, \%	Recrystn solvent
12a	64164-04-1	Me	$\mathrm{Me} \quad \mathrm{H}$	H	H	180-181 ${ }^{\text {b }}$	44	EtOAs
12 b	64164-05-2	Me	Me $\quad \mathrm{H}$	H	$\mathrm{Me}_{2} \mathrm{CH}$	116-118	73	EtOAc-C ${ }_{6} \mathrm{H}_{12}$
12 c	64164-06-3	Me	$\mathrm{Me} \quad \mathrm{H}$	H	Ph	148-149	73	$\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}{ }^{12}$
12d	64163-75-3	Me	$-\left(\mathrm{CH}_{2}\right)_{3}$ -	H	Et	110-111	73	$\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$
12 e	64163-76-4	Me	- $\left(\mathrm{CH}_{2}\right)_{3}$ -	H	Ph	101-105	88	MeOH
12 f	64163-77-5	Me	$-\left(\mathrm{CH}_{2}\right)_{4}$ -	H	Et	103-105	63	EtOAc-C6 H_{12}
12 g	64163-78-6	Me	$-\left(\mathrm{CH}_{2}\right)_{4}$ -	H	Ph	189-190	68	MeCN ${ }^{\text {6 }}{ }^{12}$
12h	64163-79-7	Ph	$\mathrm{Me}{ }^{\text {H }}$	H	H	148-149 ${ }^{\text {c }}$	38	MeCN
12 i	64163-80-0	Ph	$\mathrm{Me} \quad \mathrm{H}$	H	$\mathrm{Me}_{2} \mathrm{CH}$	148-149	70	EtOAc
12 j	64163-81-1	Ph	$\mathrm{Me} \quad \mathrm{H}$	Et	Et	81.5-82.5	51	MeOH
12k	64163-82-2	Ph	$\mathrm{Me} \quad \mathrm{H}$			110-110.5	65	$\mathrm{Et}_{2} \mathrm{O}$
121	64163-83-3	Ph	$-\left(\mathrm{CH}_{2}\right)_{3}$ -	H	Et	124-125	51	$\mathrm{C}_{6} \mathrm{H}_{12}$-EtOAc
12 m	64163-84-4	Ph	$-\left(\mathrm{CH}_{2}\right)_{4}$ -	H	Et	143-144	68	EtOAc
12 n	64163-85-5	Ph	$-\left(\mathrm{CH}_{2}\right)_{4}-$	H	Ph	255-256 dec	64	HCONMe_{2}

Compd ${ }^{a}$	Registry no.	R^{\prime}	R^{2}	R^{3}	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Yield, $\%$	Recrystn solvent
19 a	$63897-27-8$	H	H	H	$245-246$ dec ${ }^{d}$	44	95% EtOH
19 b	$63897-29-0$	H	H	Me	$203-204 e$	60	95% EtOH
19 c	$64163-86-6$	H	$\mathrm{Me}_{2} \mathrm{CH}$	H	$193-194$	35	95% EtOH- $\mathrm{H}_{2} \mathrm{O}$
19 d	$64163-87-7$	$-\left(\mathrm{CH}_{2}\right)_{5}-$	H	$117-118.5$	47	$\mathrm{Me}_{2} \mathrm{CO}$	

${ }^{a}$ Satisfactory elemental analysis were obtained for all new compounds listed in the table. ${ }^{b}$ Lit. $.^{15} \mathrm{mp} 176-177{ }^{\circ} \mathrm{C} . \mathrm{c}^{\mathrm{c}}$ Lit. ${ }^{15}$ $\mathrm{mp} 147-148{ }^{\circ} \mathrm{C} .{ }^{d}$ Lit. $^{16} \mathrm{mp} 241-242{ }^{\circ} \mathrm{C}$ dec. ${ }^{e}$ Lit. $.^{16} \mathrm{mp} 199-200^{\circ} \mathrm{C}$ dec.
cessive days. Removal of solvent left a white solid which was redissolved in fresh anhydrous ethanol (30 mL) prior to treatment with NH_{3} as above for 2 more days. Freed of solvent, the crude product was recrystallized from ethyl acetate to give $2.86 \mathrm{~g}(70 \%)$ of $\mathbf{2 e}$ as fine white needles, mp 123-126 ${ }^{\circ} \mathrm{C}$. Vacuum sublimation at $115^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ gave the analytical sample, $m p 125-126^{\circ} \mathrm{C}$.

2-Isopropylaminocyclopentene-1-N-ethylcarboxamide (2i). A mixture of 2 -oxocyclopentane-1- N-ethylcarboxamide ${ }^{18}$ (3.10 g , 0.0200 mol) and isopropylamine ($1.77 \mathrm{~g}, 0.0300 \mathrm{~mol}$) in anhydrous ether (80 mL) was refluxed under a dry nitrogen atmosphere until a light-yellow solution formed (2 days). Removal of solvent followed by recrystallization from cyclohexane yielded $3.12 \mathrm{~g}(80 \%)$ of white needles of $2 \mathrm{i}, \mathrm{mp} 109-111^{\circ} \mathrm{C}$. Vacuum sublimation at $100^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ provided an analytical sample, mp $111-112^{\circ} \mathrm{C}$.
β-Pyrrolidinoacrylamide (8a). A solution of pyrrolidine (1.14 g , 0.0160 mol) in anhydrous ether (15 mL) was added dropwise to a stirred solution of propiolamide $\left(1.00 \mathrm{~g}, 0.0145 \mathrm{~mol}, \mathrm{mp} 58-60^{\circ} \mathrm{C}\right)$ in ether (15 mL) under dry nitrogen. When approximately one-third of the amine solution has been added, a fine white precipitate formed. After 4 days, $1.98 \mathrm{~g}(97 \%)$ of 8 a was collected as a cream-colored powder, mp $202-204{ }^{\circ} \mathrm{C}$ dec (preheated bath). Recrystallization from acetonitrile gave the analytical sample, $\mathrm{mp} 206-207^{\circ} \mathrm{C}$ dec.
$\boldsymbol{\beta}$-Acetylamino- \boldsymbol{N}-isopropylcrotonamide (12b). A mixture of $\mathbf{2 b}(5.68 \mathrm{~g}, 0.0400 \mathrm{~mol})$ and acetic anhydride ($24.5 \mathrm{~g}, 0.240 \mathrm{~mol}$) was heated to boiling under a dry atmosphere and then allowed to stand at room temperature overnight. Acetic acid and excess anhydride were distilled off under reduced pressure (10 mm) to leave a crystalline residue. Recrystallization of the product from ethyl acetate-cyclohexane yielded white needles ($5.35 \mathrm{~g}, 73 \%$) of $12 \mathrm{~b}, \mathrm{mp} 116-118^{\circ} \mathrm{C}$.
β-Benzoylamino- \boldsymbol{N}-isopropylcrotonamide (12i). Benzoyl chloride ($4.22 \mathrm{~g}, 0.0300 \mathrm{~mol}$) was added dropwise to an ice-cold solution of $2 \mathbf{b}(4.26 \mathrm{~g}, 0.0300 \mathrm{~mol})$ in pyridine $(20 \mathrm{~mL})$. After standing at room temperature overnight, the reaction mixture was poured into ice water (150 mL). Faintly yellow $12 \mathrm{i}(5.15 \mathrm{~g}, 70 \%)$ was collected and, when recrystallized from ethyl acetate, formed white needles, mp $148-149^{\circ} \mathrm{C}$.

6-Methyl-5-pentamethylenecarbamoyl-3,4-dihydro-2-pyridone (19d). A solution of acrylic anhydride $(5.10 \mathrm{~g}, 0.0400 \mathrm{~mol})$ and $2 \mathrm{~d}(6.73 \mathrm{~g}, 0.0400 \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ was refluxed for 1 h . Solvent removal followed by addition of water $(100 \mathrm{~mL})$ yielded an aqueous solution. Four extractions of the solution with $100-\mathrm{mL}$ portions of ethyl acetate, followed by removal of organic solvent, provided a gummy residue which soon solidified. Crystallization from acetone led to $4.19 \mathrm{~g}(47 \%)$ of 19 d as white platelets, $\mathrm{mp} 117-118.5^{\circ} \mathrm{C}$.

Results and Discussion

Structural assignments for all new compounds are based upon analogy to synthetic procedures and infrared data ($1550-1750-\mathrm{cm}^{-1}$ region) in the literature. Infrared assignments for compounds in our collection ${ }^{21}$ compare favorably to published results for β-keto amides, ${ }^{22}$ vinylogous ureas,,${ }^{2,14,23}$ and vinylogous ureides. ${ }^{16}$ Conformations and configurations of compounds as shown in the tables are tentative in many instances, and questions of relative stereochemical stabilities will be dealt with in future publications. Fragmentation pathways proposed in Schemes I-IV are supported by appropriate metastable peaks and by selective high-resolution mass measurements, although ion intensities are given for selected compounds only. (See paragraph on supplementary material at the end of the paper.)
Vinylogous Ureas. We turn first to an examination of principal ions in the mass spectra of compounds 2a-k (Table I) for which the cis configuration is favored by chelation, if not indeed required by a cycloalkene unit. The fragmentation pattern of molecular ion 2 (Scheme I) is strongly influenced by bond cleavage at the carbonyl carbon (as is the case with vinylogous amides ${ }^{5-7}$), the groups ($\mathrm{R}^{1}, \mathrm{R}^{4}$, and R^{5}) attached to both nitrogens strongly influencing the relative abundances of the charged species produced upon electron impact.
Thus, the resonance-stabilized β-amino α, β-unsaturated acylium ion 5 shown in Scheme I is the base peak in most instances. Substituent effects are readily apparent, and the exceptional intensity of base peak $\mathbf{5 j}$ (25% of total ion current for $m / e>39$) is attributed to both the electron-donating power of the isopropyl group (R^{1}) and to the stability of the neutral

fragment (PhNH.) being expelled during $\mathbf{2 j} \rightarrow \mathbf{5 j}$. Loss of propylene from cation 5 yields the abundant acylium ion 7, whose structure and resonance stabilization is comparable to its progenitor. Another highly conjugated acylium ion, cation 6 , is formed by primary fission of a methyl radical $(2 \rightarrow 4)$, followed by ejection of an amine molecule. As expected, cation $6 \mathbf{i}$ is particularly favored because the competing pathway, carbonyl carbon-nitrogen bond cleavage ($2 \mathbf{i} \rightarrow 5 \mathbf{i}$), produces the relatively unstable primary amine radical EtNH.

The mass spectra of trans ${ }^{24}$ vinylogous ureas 8a-d (Table I) were examined next, and the basic fragmentation pattern (see Scheme II) is clearly related to that of Scheme I, as shown in the relative importance of acylium ion 9. Primary fission adjacent to the enamino nitrogen atom also occurs, our formulation of radical cation 10 being supported by metastable peaks, accurate mass measurements for $8 \mathbf{a}$ and $8 b$, and fragmentation modes for vinylogous amides of comparable structures. ${ }^{5-7}$ Whereas primary loss of a hydroxyl radical is very important in the mass spectra of appropriate vinylogous amides derived from piperidine, ${ }^{5,7}$ we find that both $8 a$ and 8 b prefer to oust a neutral ammonia molecule.

Vinylogous Ureides. Interpretation of mass spectral information for cis compounds 12a- \mathbf{n}^{25} (Table II) is reasonably straightforward, and is outlined in Scheme III. The presence of the acyl group $\mathrm{R}^{1} \mathrm{CO}$ evidently destabilizes fragment ion 15 (as compared to 5 in Scheme I), and the initial decomposition of vinylogous ureides $12 a-n$ produces a variety of important charged fragments. Thus, the base peak in the spectra of $12 \mathrm{c}, 12 \mathrm{e}$, and 12 g is the aniline radical cation 13 ; for compounds $12 \mathrm{~h}-\mathrm{n}$ it is the benzoyl cation 14. Oxazolinium ion 16 is of moderate importance, its abundance ranging from 45.2 (12a) to 0.3% (12c) of the appropriate base peak.

None of these pathways is particularly favored in the case

Scheme II

$11\left\{\begin{array}{r}100.0 \%(8 b) \\ 6.0 \%(8 c)\end{array}\right.$
of 12 d and 12 f . In each instance, the molecular ion expels ethylamine, affording radical cation 17 as the base peak. Removal of an allylic hydrogen atom occurs twice as often at carbon than it does at nitrogen, and the dominant path is depicted in Scheme III. This was established when mass spectra of N-deuterated vinylogous ureide $12 \mathrm{f}-d_{2}$ and the unlabeled compound were compared. ${ }^{26}$ Evidently chelation in $12 \mathbf{f}^{27}$ is not strong enough to direct attack exclusively at the ring methylene.

Finally, four heterocyclic trans compounds (Table II) were studied. The decomposition mechanism outlined in Scheme IV for 19a-d parallels the results of an earlier investigation ${ }^{8}$ of 5-acetyl-6-methyl-3,5-dihydro-2-pyridone and some substituted 3,4-dihydro-5-carbethoxy-2-pyridones. Loss of $\mathrm{Me}_{2} \mathrm{CHNH} \cdot$ rather than the poorer leaving group NH_{2}. accounts for the greater abundance of cation 20 c compared to 20 b . Allylic cleavage competes, particularly in $19 \mathrm{~b} \rightarrow 21 \mathrm{~b}$, where a methyl radical (rather than $\mathrm{H} \cdot$) is lost. Subsequent expulsion of ammonia generates even electron ion 22b.

Summary

The electron impact-induced fragmentations of both vinylogous ureas and ureides are dominated by cleavage at the ends of the conjugated system. The enaminone core (N -$\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$), a structural unit which enjoys considerable resonance stabilization, is retained within either a charged daughter ion or an ejected neutral fragment. Such decomposition usually furnishes the base peak in the mass spectrum, and is very often a primary step as well.

Thus, a β-amino α, β-unsaturated acylium ion forms readily from vinylogous ureas, unless expulsion of the relatively unstable neutral fragments NH_{2}. and EtNH. (which prefer to leave as NH_{3} and $E t \mathrm{NH}_{2}$) is required. Vinylogous ureides behave much like vinylogous imides, loss of ketene from N acetyl compounds and formation of PhCO^{+}from N-benzoyl compounds being favorable fragmentation steps. Oxazolium ions are of lesser importance in the mass spectra of vinylogous ureides compared to the imides.

Acknowledgments. The authors are indebted to Professor F. W. McLafferty and Dr. J. W. Sorum of Cornell University for furnishing a number of low-resolution spectra. We also thank Mr. P. J. Taylor and the late Mr. Michael Rix of Im-

Scheme III

Scheme IV

perial Chemical Industries Limited, Macclesfield, Cheshire, England, for high-resolution measurements of selected peaks of 2 d and 19d, plus spectral results for deuterated 12 f . Financial support from Concordia College and the National Science Foundation (COSIP grant) is gratefully acknowledged.

Registry No.-piperidine, 110-89-4; diketene, 674-82-8; 2-oxo-cyclopentane-1-N-ethycarboxamide, 64163-88-8; isopropylamine, 75-31-0; pyrrolidine, 123-75-1; propiolamide, 7341-96-0; acetic an-
hydride, 108-24-7; benzoyl chloride, 98-88-4; acrylic anhydride, 2051-76-5; 2-oxocyclopentane-1-carboxanilide, 4874-65-1; 2-oxocy-clohexane-1-carboxanilide, 51089-06-6; 2-oxocyclohexane-1- N-ethylcarboxanilide, 64163-89-9; 1- N-morpholinocyclohexene, 670-80-4; ethyl isocyanate, 109-90-0; 3-chloropropenoyl chloride, 3721-36-6; 2 -aminocyclohexene-1- N-ethylcarboxamide, 64163-90-2; N, N diethylacetoacetamide, 2235-46-3; β-amino- N, N-diethylcrotonamide, 64163-91-3.

Supplementary Material Available. Further synthetic details (7 pages) plus amplified mass spectral data and interpretation (16 pages). Ordering information is given on any current masthead page.

References and Notes

(1) Part 3, D. L. Ostercamp and R. G. Werth, J. Org. Chem., 40, 500 (1975).
(2) J. Dabrowski, K. Kamienska-Trela, and L. Kania, Tetrahedron, 32, 1025 (1976).
(3) D. L. Ostercamp, J. Org. Chem., 35, 1632 (1970).
(4) D. Smith and P. J. Taylor, Spectrochim. Acta, Part A, 32, 1489 (1976).
(5) J. J. Jakobsen, S.-O. Lawesson, J. T. B. Marshall, G. Schroll, and D. H. Williams, J. Chem. Soc. B, 940 (1966).
(6) M. Vanderwalle, N. Schamp, and M. Francque, Org. Mass. Spectrom., 2, 877 (1969).
(7) R. T. Aplin and R. Mestres, Org. Mass Spectrom., 3, 1067 (1970).
(8) A. M. Duffield, C. Djerassi, G. Schroll, and S.-O. Lawesson, Acta Chem. Scand. 20, 361 (1966).
(9) The probe temperature was essentially the same at the melting point of the solid compound. Compounds were shown to be thermally stable at 200 ${ }^{\circ} \mathrm{C}$, with the exception of 2a, 2f, 8a, and 12a. The $\mathrm{m} / \mathrm{e} 100$ peaks in the mass spectra of 12 i (26.4% of base) and $\mathbf{1 2 k}$ ($\mathbf{4 8 . 6 \%}$ of base) are the only readily apparent artifacts in our results.
(10) T. Kato, H. Yamanaka, and T. Shibita, Tetrahedron, 23, 2965 (1967).
(11) H. L. Klopping and H. M. Loux, French Patent 1394 286; Chem. Abstr., 63, 4309 (1965).
(12) L. Knorr, Chem. Ber., 25, 777 (1892).
(13) H. M. Loux, R. W. Lukenbaugh, and E. J. Sobczenski, Belgium Patent

625 897: Chem. Abstr., 60, 14519 (1964).
(14) J. B. Ellern, F. E. Ireland, and H. B. Gray. J. Org. Chem., 38, 3056 (1973).
(15) T. Kato, H. Yamanaka, and T. Shibata, Yakugaku Zasshi, 87, 955 (1967).
(16) T. Kato, H. Yamanaka, and J. Kawamata, Chem. Pharm. Bull., 17, 2411 (1969).
(17) H. G. O. Becker, J. Prakt. Chem., 12, 294 (1961).
(18) These ketoamides were prepared according to the method of S. Hunig, K. Hubner, anc E. Benzing, Chem. Ber., 95, 926 (1962).
(19) D. H. Johnson, J. Chem. Soc., 1624 (1958).
(20) W. Walter and T. Fleck, Ann. Chem., 670 (1976).
(21) For example, we have made the following spectral correlations $\left(\mathrm{CHCl}_{3}\right.$ solvent) for the sequences: 2 -oxocyclopentane- $1-\mathrm{N}$-ethylcarboxamide, 1730 (s , ring $\mathrm{C}=0$) and $1668 \mathrm{~cm}^{-1}(\mathrm{~s}$, amide $\mathrm{C}=0$); $2 \mathrm{e}, 1645(\mathrm{v} \mathrm{s} \mathrm{C}=$,O) and $1610 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{C}) ; 2 \mathrm{I}, 1630(\mathrm{v} \mathrm{s}, \mathrm{C}=\mathrm{O})$ and $1580 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{C})$; 12d, 1702 (m, MeC=O), 1643 (v s, ETNHC=O), and $1619 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{C})$; 121, 1680 ($\mathrm{m}, \mathrm{PhC}=0$), 1640 ($\mathrm{v} \mathrm{s}, \mathrm{EtNHC}=0$), and $1619 \mathrm{~cm}^{-1}$ (s, C=C).
(22) F. D. Popp, W. R. Schleigh, P. M. Froehlich, R. J. Dubois, and A. C. Casey, J. Org. Chem., 33, 833 (1968).
(23) T. Kato, H. Yamanaka, J. Kawamata, and H. Shimomura, Chem. Pharm. Bull., 17, 1889 (1969).
(24) A trans-cis structure for all four compounds is supported by previous authors, ${ }^{2,14}$ and is expected since the cis configuration would not be chelated and is sterically hindered as well.
(25) Acylation of the enamino nitrogen of a cis vinylogous urea should enhance existing chelation when possible in the vinylogous ureide product.
(26) Some reversion of the original deuteration of 121 occurred in the mass spectrometer and could not be prevented even by deuterating the probe. Correcting for natural isotopic abundances, the actual molecular ion mass ratios for "dideuterio" 12 f were 0.08:0.52: 1.00 for m / e values 210 (12f), $211 \cdot\left(121-d_{1}\right)$, and $212\left(12 f-d_{2}\right)$, respectively. Observed mass ratios of 1.00:1.18:0.13 (corrected as above) for m / e values 165 (171), 166 (15t and $171-d_{1}$), and $167\left(151-d_{1}\right)$ respectively, agree quite well with those calculated, assuming the deuterium atoms in a sample of 12t- α_{1} are divided equally between the two nitrogen atoms, and only a statistical preference exists between $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ cleavage when ethylamine is ejected by molecular ion 121.
(27) No irregularities are apparent in the $100-\mathrm{MHZ}$ NMR spectrum of 121 in CDCl_{3}, and it includes signals at $\delta 12.7$ (s, 1 H , chelated) and $6.10(\mathrm{t}, \mathrm{J}=$ $7 \mathrm{~Hz}, 1 \mathrm{H}$).

A New Reaction of Amino Acids: Conversion to Benzoxazoles

Michael C. Vander Zwan,* Frederick W. Hartner, Robert A. Reamer, and Roger Tull
Merck Sharp and Dohme Research Laboratories, Division of Merck and Co., Inc., Rahway, New Jersey 07065

Received April 8, 1977

Reaction of α-amino acids with o-benzoquinones of type 3 is unique in that the expected Strecker degradation does not occur. We have observed that a decarboxylative condensation reaction takes place affording benzoxazoles. The new reaction appears to be general for α-amino acids and specific for quinones of type 3 .

It has been reported that several diones (including o-quinones) oxidize α-amino acids to aldehydes while being reduced to α-amino carbonyls ${ }^{1}$ (see eq 1). This reaction has been

termedl the "Strecker degradation" in honor of this discoverer. ${ }^{2}$

We were interested in oxidizing the antibiotic α-amino acid 1 to the corresponding aldehyde 2 (eq 2). The Strecker deg-

radation appeared to be the most suitable method since the complexity and sensitivity of 1 warrants mild handling. Furthermore, the use of commercially available 3,5-di-tert-butylbzoquinone (3) appeared to be the most suitable dione since the steric bulk of the tert-butyl groups would prevent undesirable 1,4 addition of the amino acid, and the formation of an aromatic moiety (the reduced α-amino carbonyl now being an o-aminophenol) would provide a driving force for the oxi-dation-reduction process.

Results and Discussion

Amino acid 1 required 2 equiv of quinone 3 for complete reaction. However, instead of isolating the desired aldehyde 2 and the o-aminophenol, the benzoxazole 4 and catechol 5 were obtained (eq 3).

This oxidation reaction appears to be general for α-amino acids since alanine, α-aminoadipic acid, and phenylalanine all yielded the corresponding benzoxazoles ${ }^{3}$ when treated with 2 equiv of 3 . The reaction with phenylalanine is complicated by a few minor side reactions; however, fair to good yields of pure products may be isolated by chromatography (see Experimental Section).

Predicted 4.6

Predicted 5,7

Figure 1. Predicted ${ }^{13} \mathrm{C}$ chemical shift values for 4,6 - and 5,7 -disubstituted benzoxazoles. ${ }^{5}$ Experimental values for 6.

This unique reaction appears to be specific for 3,5 -disubstituted quinones since complex mixtures were obtained with other diones (2,3-butanedione, 1,2-cyclohexanedione, 1,2naphthoquinone, 9,10-phenanthroquinone, o-benzoquinone, and 4-tert-butylbenzoquinone). Furthermore, we were unable to obtain any evidence for oxazole formation with the above diones and alanine. The normal Strecker degradation occurs to some extent with these diones as indicated by the formation of some phenylacetaldehyde when phenylalanine was used. We feel that the propensity for amino acids to react in a 1,4 fashion with unsubstituted quinones removes the possibility for benzoxazole formation, which requires a 1,2 addition. Scheme I provides a suitable explanation for the formation of benzoxazoles from amino acids and o-quinones.

Benzoxazoles have also been prepared from primary amines of the type $\mathrm{RCH}_{2} \mathrm{NH}_{2}{ }^{4}$ and quinone 3. Thus, the reaction described herein establishes an analogy between certain pri-

Scheme I

mary amines and α-amino acids when reacted with quinone 3 (see eq 4). When 3 was allowed to react with either alanine or ethylamine, the same benzoxazole was obtained ($6, \mathrm{R}=$ CH_{3}) as shown by thin-layer chromatography, mass spectroscopy, and nuclear magnetic resonance spectroscopy, which also proves 5,7 disubstitution (see Figure 1).

The reaction may be simplified by using 1 equiv of catechol in the presence of an oxidizing agent. In this manner alanine was converted in good yield to 2 -methyl-5,7-di-tert-butylbenzoxazole by treatment of its tetraethylammonium salt with 1 equiv each of 3,5 -di-tert-butylcatechol and manganese dioxide in acetonitrile for 20 min at room temperature. This modification avoids the necessity of performing the quinone and removing the equivalent of catechol formed from the oxidation of the intermediate (see Scheme I). Furthermore, the manganese dioxide is not necessary since stirring an acetonitrile solution of the amino acid salt and quinone in an open vessel for three days affords good yields of substituted benzoxazoles (see Experimental Section).
This new reaction of α-amino acids thus constitutes a viable method for preparing disubstituted (and higher) benzoxazoles.

Experimental Section

2-Methyl-5,7-di-tert-butylbenzoxazole (6). A solution of 0.445 $\mathrm{g}(5.00 \mathrm{mmol})$ of alanine and $2.95 \mathrm{~g}(5.00 \mathrm{mmol})$ of tetraethylammonium hydroxide, 25% aqueous solution, was concentrated at reduced pressure until about 180 mg of water remained. To the concentrate were added 50 mL of acetonitrile and $1.10 \mathrm{~g}(5.00 \mathrm{mmol})$ of $3,5-\mathrm{di}-$ tert-butyl-o-benzoquinone. The dark colored solution, after being stirred 3 days unstoppered, was concentrated at reduced pressure. The residue was taken up in diethyl ether and extracted twice with $\mathrm{H}_{2} \mathrm{O}$, once with dilute HCl (aqueous), twice with $\mathrm{H}_{2} \mathrm{O}$, and twice with saturated NaCl (aqueous). The ether solution was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated at reduced pressure to give $1.09 \mathrm{~g}(80 \%)$ of 6: ${ }^{3} \mathrm{NMR}$ (acetone- d_{6}, internal $\mathrm{Me}_{4} \mathrm{Si}$) $\delta 7.39(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.55(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$; mass spectrum, m/e $245\left(\mathrm{M}^{+}, 17\right), 230(1000,174$ (15).
2-Benzyl-5,7-di-tert-butylbenzoxazole (7). A solution of 0.540 $\mathrm{g}(8.88 \mathrm{mmol})$ of 88.8% sodium methoxide and $1.467 \mathrm{~g}(8.88 \mathrm{mmol})$ of β-phenylalanine in 60 mL of methanol was concentrated at reduced pressure to $16 \mathrm{~mL} .3,5-\mathrm{Di}$-tert-butyl-o-benzoquinone ($1.954 \mathrm{~g}, 8.88$ mmol) was added, and the reaction mixture was stirred for 18 h . The reaction was partitioned between ice water and diethyl ether, the layers were separated, and the organic phase was extracted twice with 1 N NaOH , twice with $\mathrm{H}_{2} \mathrm{O}$, and once with saturated NaCl (aqueous). the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated at reduced pressure. The residue was taken up in hexane and chromatographed on silica gel (hexane-Et $2_{2} \mathrm{O}, 20: 1$) to give $0.451 \mathrm{~g}(32 \%)$ of 7: ${ }^{3} \mathrm{NMR}$ (acetone- d_{6}, internal $\mathrm{Me}_{4} \mathrm{Si}$) $\delta 7.44(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (broad s, 6 H), 4.25 (s, 2 H), 1.41 (s, 9 H), 1.34 (s, 9 H).
5,7-Bis(tert-butyl)-2-benzoxazolylbutanoic Acid (8). To a solution of 243 mg (4 mmol) of 88.8% sodium methoxide and 322 mg (2 mmol) of aminoadipic acid in 10 mL of methanol was added 441 $\mathrm{mg}(2 \mathrm{mmol})$ of 3,5 -di-tert-butyl-o-benzoquinone. After 15 min , the dark blue solution was concentrated at reduced pressure. The residue was partitioned between ice water and diethyl ether, the layers were separated, and the aqueous phase was further extracted until the ether layer was colorless. The aqueous phase was adjusted to pH 2.5 and extracted twice with diethyl ether. The latter ether extracts were dried (MgSO_{4}), filtered, and concentrated at reduced pressure to afford 330 $\mathrm{mg}(52 \%)$ of $8:^{3} \mathrm{NMR}$ (acetone- d_{6}, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 7.50(\mathrm{~d}, J=2 \mathrm{~Hz}$ $1 \mathrm{H}), 7.28$ (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (s, 3 H), 2.99 (broad t, $J=7 \mathrm{~Hz}, 2$ H), 1.90-2.60 (complex m, 4 H$), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$; mass spectrum, m/e 331 (${ }^{+}, 14$), 316 (22), 299 (22), 258 (100), 232 (45).
7-[5,7-Bis(tert-butyl)-2-benzoxazolyl]butyramido-3-hydrox-ymethyl-7-methoxy-3-cephem-4-carboxylic Acid Carbamate (4). A solution of $1.22 \mathrm{~g}(20 \mathrm{mmol})$ of 88.8% sodium methoxide in 150 mL of methanol was cooled to $-5^{\circ} \mathrm{C}$ and charged with 10.0 g (20
$\mathrm{mmol})$ of 1 . Upon dissolution, $4.41 \mathrm{~g}(20 \mathrm{mmol})$ of $3,5-\mathrm{di}$-tert-butyl-o-benzoquinone was added, the reaction stirred 1 h , an additional 4.41 g (20 mmol) of the quinone added, and stirring continued for 30 min . The reaction was partitioned between ice water and diethyl ether, the pH was adjusted to 8 , the layers were separated, and the aqueous phase was extracted three more times with ether. The combined ethyl acetate extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated at reduced pressure to yield $8.07 \mathrm{~g}(67 \%)$ of $4:{ }^{3}$ NMR (acetone- d_{6}, internal $\mathrm{Me}_{4} \mathrm{Si}$) $\delta 8.27$ (broad s, 1 H), 7.48 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (d, J $=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91($ broad $\mathrm{s}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}) .4 .86(\mathrm{AB}$ center, $J=13$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.82 (s, 3 H), 3.48 (broad s, 5 H), 3.07 (broad t, 2 H), 2.16-2.75 (complex m, 4 H), $1.47(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$; mass spectrum (methyl ester), m/e $616\left(\mathrm{M}^{+}, 11\right), 615(26), 555$ (61), 554 (100).

Registry No.-1, 64162-09-0; 3, 3383-21-9; 4, 64130-72-9; 6, 64130-73-0; 7, 64147-38-2; 8, 64130-74-1; alanine, 56-41-7; β-phenylalanine, 63-91-2; aminoadipic acid, 542-32-5.

References and Notes

(1) A. Schoenberg, R. Moubasher, and A. Mostafa, J. Chem. Soc., 176 (1948), and references therein.
(2) A. Strecker, Justus diebigs Ann. Chem., 123, 363 (1862).
(3) All products were in agreement with ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR as well as combustion analyses and mass spectroscopy.
(4) E. J. Corey and K. Achiwa, J. Am. Chem. Soc., 91, 1429 (1969). For a list of other methods available for the formation of benzoxazoles see J . W. Cornforth, in "Heterocyclic Compounds", Vol. V. R. C. Elderfield, Ed., Wiley, New York, N.Y., 1957. Chapter 6
(5) The ${ }^{13} \mathrm{C}$ NMR chemical shifts and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ coupling constants of 6 allow unequivocal assignment of the substitution pattern. Although substituent effects are not strictly additive, especially when ortho groups are present, the predicted chemical shifts using benzoxazole and tert-butylbenzene as models correlated well for a 5,7-disubstituted benzoxazole when used in conjunction with ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ coupling data. Long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ coupling constants can be structurally useful especially in aromatic systems where the most significant long-range coupling is via a three-bond pathway. ${ }^{6}$ In 6 , the aromatic carbons bearing hydrogen (113.7 and 118.7 ppm) can easily be determined from the large one-bond couplings, and they each exhibit a single three-bond coupling. The carbon resonanances at 147.2 and 133.4 ppm must be assigned to those bearing tert-butyl groups, due to long range couplings with the tert-butyl hydrogens. Of the two remaining aromatic signals, the one at 141.8 ppm shows no long-range coupling, while the signal at 147.2 ppm is a triplet $(J \cong 10 \mathrm{~Hz})$, demanding two ring hydrogens which are at a distance of three bonds. The predicted chemical shift values (see Figure 1) clearly support the 5,7 isomer while ruling out 4,6 disubstitution.
(6) (a) F. J. Weigert and J. D. Roberts, J. Am. Chem. Soc., 89, 2967 (1967); (b) L. Ernst, V. Wray, V. A. Chertkov, and N. M. Sergeyev, J. Magn. Reson., 25, 123 (1977).

Photoproducts of Thymine and Uracil. Syntheses of the Four Bipyrimidine Combinations

Jerry D. Bryant and Nelson J. Leonard*
School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

Received June 27, 1977

Abstract

Convenient first syntheses have been devised for the following bipyrimidines: 6-(2-hydroxypyrimidin-4-yl)thymine, Thy(6-4)Pyo (1); 6-(2-hydroxypyrimidin-4-yl)uracil, Ura(6-4)Pyo (2); 6-(2-hydroxy-5-methylpyrimidin-4yl)thymine, Thy (6-4) m^{5} Pyo (3); and 6-(2-hydroxy-5-methylpyrimidin-4-yl)uracil, Ura(6-4)m ${ }^{5}$ Pyo (4). The first three of these are among the non-cyclobutane photoproducts resulting from DNA or from frozen aqueous solutions of thymine, thymidine, uracil, or uridine under appropriate conditions. The synthetic methodology involved (1) the combination of 6 -lithiopyrimidines with β-alkoxyacroleins, (2) oxidation to the corresponding masked β-dicarbonyl intermediates, (3) condensation of these with guanidine carbonate to form substituted aminobipyrimidines, and (4) diazotization and hydrolysis to furnish the desired products $1-4$. The spectroscopic properties, especially the ultraviolet excitation and fluorescence emission, are of special interest within the series and in comparison with the photoproducts of natural origin.

Considerable interest has been displayed in the isolation and identification of photoproducts of DNA as a means of investigating possible photobiological implications. Along with the familiar pyrimidine photodimers of the cyclobutane structure, ${ }^{1}$ a series of bipyrimidine photoproducts has been accumulated by Wang and Varghese, exemplified by formulas 1-3. ${ }^{2}$ (As drawn, these formulas are not intended to portray

1, Thy (6-4)Pyo

3, Thy (6-4) m^{5} Pyo

2, Ura(6-4)Pyo

4, Ura(6-4) m^{5} Pyo
a preferred torsional geometry.) The first of these, Thy (64)Pyo (1), ${ }^{3}$ was identified as a product from the trifluoroacetic acid hydrolysates of DNA irradiated with far-UV light ${ }^{4-6}$ and from photolysis of a frozen solution of thymine and uracil. ${ }^{7}$ Ura(6-4)Pyo (2) was isolated from the UV irradiation of uracil in frozen aqueous solution ${ }^{8}$ and from the acid hydrolysates of uridine irradiated in frozen aqueous solution. ${ }^{9}$ Thy (6-4)m^{5} Pyo (3) was obtained from the UV irradiation of frozen solutions of thymine ${ }^{10,11}$ and of thymidine, ${ }^{12}$ followed by acid treatment.

As part of our continuing interest in the structure determination and synthesis of nucleic acid radiation products,, ${ }^{13-17}$ we have devised unequivocal syntheses of compounds 1-3 which also provide independent confirmation of their assigned structures. We have also synthesized Ura(6-4)m ${ }^{5}$ Pyo (4) as a potential photoproduct which is theoretically accessible by a photoadduction pathway similar to that suggested for Ura(6-4)Pyo. ${ }^{9}$

An examination of the literature discloses several synthetic routes to bipyrimidines. Symmetrical $2,2^{\prime}-, 4,4^{\prime}$-, and $5,5^{\prime}-$ bipyrimidines have been obtained via an Ullmann or a Busch coupling reaction. ${ }^{18,19}$ Symmetrical $4,4^{\prime}$ - and 5,5'-bipyrimidines have also been prepared via construction of the carbon backbone followed by condensation with 2 equiv of a urea derivative. ${ }^{20-23}$ Unsymmetrical $2,2^{\prime}$ - and 2,4'-bipyrimidines
were obtained via the condensation of β-dicarbonyl compounds with 2 - or 4 -amidinopyrimidines. ${ }^{24} 5$-Lithioyyrimidines were found to undergo self-reaction to form 4, 5^{\prime}-bipyrimidines, ${ }^{25}$ with attendant restriction of the substitution pattern in the two rings.

Recent work in our laboratory has demonstrated the applicability of methods employing the attachment of a carbonyl backbone for a second pyrimidine ring to an existing pyrimidine ring. ${ }^{15}$ This route was adopted in the present work. In outline, it was envisaged that the ring closure of a β alkoxy ${ }^{\prime} \alpha$-alkyl)acryloyl moiety with guanidine ${ }^{26}$ could lead to bipyrimidines that were two simple steps removed from the desired products. The major synthetic problem thus involved the attachment of a masked β-dicarbonyl precursor to the 6 position of an appropriately substituted pyrimidine ring. The approach through a combination of 6 -lithiopyrimidines ${ }^{27}$ with β-alkoxyacrylates ${ }^{28}$ was not pursued because of anticipated difficulties with a competing Michael reaction or a diaddition of the lithio derivative. Such difficulties could be avoided

9a, $\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{3} ; \mathrm{R}^{3}=\mathrm{Et}$

$10 \mathrm{a}, \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
b, $\mathrm{R}^{1}=\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{H}$
c, $R^{1}=R^{2}=H$
$\mathrm{d}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{3}$

$11 \mathrm{a}, \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
$\mathrm{b}, \mathrm{R}^{1}=\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{H}$
c, $R^{1}=R^{2}=H$
d, $R^{1}=R^{2}=\mathrm{CH}^{3}$
through reaction of the readily available β-alkoxyacroleins with the 6 -lithiopyrimidines and subsequent oxidation of the intermediate carbinols.

Langley ${ }^{27}$ previously synthesized 6 -bromo-2,4-diethoxypyrimidine (4-bromo-2,6-diethoxypyrimidine, 6a) from 2,4,6-tribromopyrimidine (5a) and described conditions for the generation of the corresponding lithio derivative by halogen-metal interchange using n-butyllithium. Using similar conditions, we obtained 6 -bromo-2,4-diethoxy-5methylpyrimidine ($\mathbf{6 b}$) from 5 -methyl-2,4,6-tribromopyrimidine (5b) and likewise observed halogen-metal interchange with n-butyllithium at low temperature. Each of the two 6lithiopyrimidines was treated separately with β-ethoxy- α methylacrolein (7a) ${ }^{29}$ and β-benzyloxyacrolein ($\left.7 \mathbf{b}\right)^{30,31}$ to yield the corresponding carbinol derivatives 8 after quenching with 20% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The pyrimidinecarbinols 8 were oxidized with activated $\mathrm{MnO}_{2}{ }^{32}$ to the corresponding acryloylpyrimidines 9 , and these were condensed with guanidine carbonate to form the substituted aminobipyrimidines 10. It was unnecessary to isolate the intermediates 8 and 9 in pure form, although this was done in the a series as a control. Diazotization of compounds 10a-d followed by hydrolysis of the intermediates 11a-d furnished the desired products 1-4.

At every stage in the unequivocal synthetic process the compounds were fully characterized by elemental analyses and by ultraviolet, nuclear magnetic resonance, and mass spectrometry. The properties of the final products could be compared with those previously reported for the corresponding photoproducts. The mass spectra determined at either 70 or 10 eV showed a predominant molecular ion for 1-4. The fragmentation pattern for Thy(6-4)Pyo (1) matched very closely the fragment ions and relative intensities in the spectrum of the photoproduct as reported by Fenselau and Wang. ${ }^{33}$ The same was generally true for the sample of Thy(6-4)m ${ }^{5}$ Pyo (3) from synthetic and photolytic sources. The fragmentation pattern for synthetic Ura(6-4)Pyo (2) exhibited parallel behavior to the fragmentations recorded for 1 and 3, as shown in eq 1 .

The fragmentation pattern for synthetic Ura(6-4) m^{5} Pyo (4) was of interest vis-à-vis that of the isomeric monomethyl Thy (6-4) Pyo (1) ${ }^{33}$ since neither exhibited an $M-15$ peak, whereas the dimethyl compound Thy (6-4) m^{5} Pyo (3) lost a methyl radical. The major fragmentation pathway that we observed at 10 eV for $\operatorname{Ura}(6-4) \mathrm{m}^{5} \mathrm{Pyo}(4)$ is shown in eq 2 .

The pair of monomethyl isomers 1 and 4 provided checks for the internal consistency of the NMR assignments throughout the synthetic series $1-4$. The NMR data for the synthetic products 1-3 were consistent with the published proton chemical shifts for the photoproducts if a correction

Table I. Corrected Fluorescence Data ${ }^{a}$

Compd	Registry no.	pH	Fluorescence excitation, nm	Fluorescence emission, $\mathrm{nm}^{\text {b }}$			Φ^{c}
				$\lambda_{\text {max }}$	$\lambda+1 / 2$	$\lambda-1 / 2$	
10a	64188-72-3	7.4	317, 278	465	522	421	0.20
b	64188-73-4	7.4	300, 272 sh	438	505	397	0.065
c	64188-74-5	7.6	312	445	500	407	0.10
d	64188-75-6	7.6	308, 275	435	505	393	0.11
11 a	64188-76-7	7.6	328, 270	475	552	415	0.049
b	64188-77-8	7.7	320, 278 sh	445	525	390	0.087
c	64188-78-9	7.8	340 sh, 315	427	480	392	0.067
d	64188-79-0	7.5	310,277 sh	405	454	373	0.045
4	64188-80-3	9.1	330, 277	513	598	454	$0.015^{\text {d }}$
		9.1	330, 277	513	587	459	0.029^{e}
1	18694-06-9	9.1	315	484 ${ }^{\text { }}$	551	430	0.016
2	35612-19-2	8.9	335, 303	471 ${ }^{6}$	552	411	0.032
3	20545-68-0	8.8	315, 270	$513{ }^{\text {h }}$	597	450	0.014

${ }^{a}$ In water at $300 \mathrm{~K} .{ }^{b}$ Wavelengths representing half-heights on each side of the maximum are given. ${ }^{c}$ Based on $\Phi=0.70^{38}$ for quinine sulfate in $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. ${ }^{d}$ Excitation at 325 nm . ${ }^{e}$ Excitation at 280 nm . ${ }^{f} \lambda_{\text {max }} 456 \mathrm{~nm}$ reported. ${ }^{36}{ }^{g} \lambda_{\max } 444 \mathrm{~nm}$ reported. ${ }^{36} h \lambda_{\max }$ 387 nm reported. ${ }^{36}$
factor was applied to the latter, as had been shown to be necessary in other analogous comparisons. ${ }^{17,34,35}$

The ultraviolet absorption spectra of the four precursors represented by formula 10 and determined at the pH of their solutions in water and in strong acid are sufficiently complex so that unperturbed transitions are not readily assignable. The probability of more coplanarity (two coplanar conformations are possible) being achieved in 10 c than in 10 d is reflected in the molar extinction coefficients and in the wavelengths of the absorption maxima. The ring to which the methyl group is attached, i.e., its position in the monomethyl isomers 10a and 10b, has a greater influence than can be accounted for simply by the steric hindrance of one o-methyl group compared with two or none. Similar statements can be made for the set of precursors 11. As for the final products, Hauswirth and Wang ${ }^{36}$ have discussed the ultraviolet absorption spectra of compounds $1-3$. A comparison of the spectra of 1 with those of its position isomer 4 indicates that such discussion should take into consideration additional factors such as tautomeric forms, coplanar conformations, and ground-state and transition dipoles, as well as torsional angles relating to simple biphenyls.

The precursors 10 and 11 are all fluorescent, with emission maxima ranging from 405 to 475 nm and quantum yields ranging from 0.04 to 0.20 . No consistent pattern over the dual a-d series was readily discernible. The data obtained at 300 K in water are assembled in Table I , along with the excitation, emission, and fluorescence yield characteristics of the highly purified, synthetic, bipyrimidines $1-4$. The corrected fluorescence excitation maxima match well with those reported by Hauswirth and Wang ${ }^{36}$ for the photoproducts 1-3. Our corrected emission maxima for 1 and 2 show some discrepancy $(+27-28 \mathrm{~nm})$ from those reported. The main point of difference is that we observe a fluorescence emission maximum at 513 nm for Thy (6-4) ${ }^{5}$ Pyo (3) in place of the reported $387-\mathrm{nm}$ value. ${ }^{36}$ Since no synthetic precursor of 3 exhibits a fluorescence maximum at such long wavelength, since great care was taken in its purification, and since the determination was readily duplicated, we have confidence in the $513-\mathrm{nm}$ value. Moreover, the fluorescence emission maximum observed for Ura(6-4) m^{5} Pyo (4) was 513 nm upon excitation at either 227 or 330 nm . As in the case of excitation, there are too many variables to be considered to define the relaxed fluorescing states (at 300 K) in simple terms. The quantum yield of fluorescence was greatest (0.032) for the unmethylated compound 2 , and the quantum yields for the mono- and dimethylated compounds 1,4 , and 3 were comparable and approximately half this value (Table I). Location of the methyl group
on the pyrimidone ring, as in $\mathrm{Ura}(6-4) \mathrm{m}^{5} \mathrm{Pyo}$ (4) and in its precursors 10a and 11a, had the greatest effect on the fluorescence properties. Accordingly, the data for compound 4 must be included in any rationalization of the absorption and emission properties of the photoproduct series 1-3 recognized at this time.

Finally, in this work we have provided "improved methods" for preparing the photoadducts of thymine and uracil "in sufficient quantities for studying their possible biological importance." ${ }^{2}$ The biological role of products such as $1-4$ is not yet clear; the data permit the interpretation that either such photoproducts (i.e., from DNA) are not lethal or that they are lethal but can be repaired under certain conditions. ${ }^{37}$ Compounds $1-4$ showed no antibacterial activity at $0.1 \mathrm{mg} / \mathrm{mL}$ against B. subtilis, E. coli, and P. atrovenatum and no bacterial mutagenic activity in the Ames test.

Experimental Section

Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Nuclear magnetic resonance spectra were recorded on Varian A-60, EM-390, or HA-100 spectrophotometers using tetramethylsilane as an internal standard. Mass spectra were run on a Varian MAT CH-5 spectrometer (10 and 70 eV), coupled with a 620 i computer and a STATOS recorder. Ultraviolet absorption spectra were obtained on a Beckman Acta M VI spectrophotometer. Corrected fluorescence emission and excitation spectra were measured on a Spex Fluorolog spectrofluorometer. Microanalyses were performed by Mr. Josef Nemeth and his staff, who also weighed samples for quantitative ultraviolet absorption studies. Thin-layer chromatographs were run on EM silica gel f-254 plates (thickness, 0.25 mm).
5-Methyl-2,4,6-tribromopyrimidine (5b). A mixture of phosphorus oxybromide ($69.6 \mathrm{~g}, 0.24 \mathrm{~mol}$), 5 -methylbarbituric acid ${ }^{39}$ (8.24 $\mathrm{g}, 0.058 \mathrm{~mol}$), N, N-dimethylaniline (16 mL), and toluene (100 mL) in a $500-\mathrm{mL}$ flask was heated at reflux for 5 h . The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and concentrated in vacuo to yellow solid $5 \mathbf{5 b}(10 \mathrm{~g}, 52 \%$ yield). An analytical sample was obtained by recrystallization from absolute ethanol: $\mathrm{mp} 136-137.5^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.52$ is $3, \mathrm{CH}_{3}$); MS m/e (rel intensity) 328 (37), 330 (100): 332 (99), 334 (53).

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Br}_{3} \mathrm{~N}_{2}: \mathrm{C}, 18.14 ; \mathrm{H}, 0.91 ; \mathrm{N}, 8.47$. Found: C, 18.35; H, 0.90; N, 8.51.

6-Bromo-2,4-diethoxy-5-methylpyrimidine (4-Bromo-2,6-diethoxy-5-methylpyrimidine, $\mathbf{6 b}$). After the addition of $\mathbf{5 b}$ (11.9 $\mathrm{g}, 0.036 \mathrm{~mol})$ to benzene (40 mL) and stirring until dissolution was complete, absolute ethanol (35 mL) was added, and the reaction flask was cooled to $5^{\circ} \mathrm{C}$. During the next 60 min a sodium ethoxide solution generated from sodium ($1.65 \mathrm{~g}, 0.072 \mathrm{~g}$-atom) in absolute ethanol (35 mL) was dripped in, and the resulting mixture was stirred overnight. Following sodium bromide precipitation through the addition of anhydrous ethyl ether (50 mL), the mixture was filtered with the aid of additional ether ($3 \times 15 \mathrm{~mL}$). Concentration of the filtrate in vacuo
left a white solid which was treated with anhydrous ethyl ether (100 mL) and then refiltered in order to remove residual salt. The removal of the filtrate solvent provided a white solid product ($8.5 \mathrm{~g}, 91 \%$ yield). From examination of the MS, NMR, and microanalytical data, it was concluded that the reaction product was a mixture of $\mathbf{6 b}$ and the isomeric 2 -bromo-4,6-diethoxy-5-methylpyrimidine in a relative proportion of $77: 23$. Repeated fractional crystallization from 50% aqueous ethanol led to an enrichment of the major isomer $\mathbf{6 b}$ to a purity of $>98 \%$ (by NMR): $4.16 \mathrm{~g}, 44 \%$ yield; mp $75-76{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.41\left(\mathrm{t}, J=7 \mathrm{~Hz}, 6,0 \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.17\left(\mathrm{~s}, 3,5-\mathrm{CH}_{3}\right), 4.42$ and 4.48 ($\mathrm{q}, J=7 \mathrm{~Hz}, 2$ each, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); MS m/e $262,260\left(\mathrm{M}^{+}\right.$).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$: C, 41.39; H, $5.02 ; \mathrm{N}, 10.73$. Found: C, 41.29 ; H, 4.94; N, 10.63 .
That the structure of the isolated major isomer was in fac $\mathbf{6 b}$ was proven through the following procedure. The major isomer (273 mg , 1.05 mmol), dissolved in freshly distilled THF (10 mL), was cooled to $-100{ }^{\circ} \mathrm{C}$ under a positive nitrogen atmosphere. A dry ice cooled solution of n-butyllithium (1 mL of a 2.4 M solution in hexane, 2.4 mmol) was added to the mixture of THF and precipitated reactant, and the resultant reaction mixture was warmed quickly to $-65^{\circ} \mathrm{C}$. At this temperature, an orange homogeneous solution resulted, and the cooling bath was replaced. After 20 min of stirring, the reaction solution was inversely quenched with a mixture of ethyl ether (50 mL) and a 20% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). Following the extraction of the aqueous layer with ethyl ether ($2 \times 50 \mathrm{~mL}$), the organic layers were combined, dried, and concentrated in vacuo to an oil $(180 \mathrm{mg}$, 94%). Analyses of the product via NMR, TLC, and MS matched in all respects an authentic sample of 2,4-diethoxy-5-methylpyrimidine.

2,4-Diethoxy-6-(1-ethoxy-3-hydroxy-2-methylpropen-3yl)pyrimidine (8a). A solution of 6 -bromo-2,4-diethoxypyrimidine (4-bromo-2,6-diethoxypyrimidine, $6 \mathbf{a})^{27}(2.0 \mathrm{~g}, 8.1 \mathrm{mmol})$ in freshly distilled THF (50 mL) was cooled to $-100^{\circ} \mathrm{C}$ under a positive nitrogen pressure. A solution of n-butyllithium (3.7 mL of a 2.4 M solution in hexane, 8.9 mmol) cooled in dry ice was added at such a rate that the internal temperature did not exceed $-90^{\circ} \mathrm{C}$. The pyrimidine solution was stirred for 5 min , and a solution of β-ethoxy- α-methylacrolein ($7 \mathrm{a},{ }^{29} 1.39 \mathrm{~g}, 12.25 \mathrm{mmol}$) in THF (5 mL) was added over a 15 -s interval. The solution was stirred at $-70^{\circ} \mathrm{C}$ for 50 min and then allowed to warm to $-20^{\circ} \mathrm{C}$ over the next 25 min . The reaction was quenched with a mixture of 50 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 75 mL of a 20% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After separation of the organic layer, the aqueous layer was extracted with 50 mL of $\mathrm{Et}_{2} \mathrm{O}$, and the ether extracts were combined and dried over magnesium sulfate. After filtration, the solvent was removed in vacuo to leave a light orange oil. Addition of 25 mL of petroleum ether and refrigeration at $-2 C^{\circ} \mathrm{C}$ for 12 h afforded white crystals (0.95 g) which, on washing with excess petroleum ether, proved to be analytically pure. Removal of the petroleum ether in vacuo, addition of 25 mL of pentane, and refrigeration at $-20^{\circ} \mathrm{C}$ provided additional, slightly yellow crystals: 0.26 g , total yield 53%; mp $61-62.5^{\circ} \mathrm{C}$; NMR (CDCl_{3}) $\delta 1.27,1.37$, and 1.44 $\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3\right.$ each, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.46\left(\mathrm{~d}, J=1 \mathrm{~Hz}, 3,=\mathrm{CCH}_{3}\right), 4.2(\mathrm{br}$ $\mathrm{s}, \mathrm{l}, \mathrm{CH}-\mathrm{OH}$), $3.85,4.39$, and 4.43 ($\mathrm{q}, J=7 \mathrm{~Hz}, 2$ each, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 4.82 (br s, 1, CH-OH), $6.25(\mathrm{q}, J=1 \mathrm{~Hz}, 1, \mathrm{CH}=), 6.3(\mathrm{~s}, 1,5-\mathrm{H}) ; \mathrm{MS}$ $m / e 282\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 59.55; H, 7.85; $\mathrm{N}, 9.92$. Found: C , 59.44; H, 7.70; N, 9.85.

2,4-Diethoxy-6-(3-ethoxy-2-methylacryloyl)pyrimidine (9a). To pyrimidinecarbinol $8 \mathbf{a}(270 \mathrm{mg}, 0.96 \mathrm{mmol})$ in benzene $(1.5 \mathrm{~mL})$ and petroleum ether (1.5 mL) was added activated $\mathrm{MnO}_{2}{ }^{32}(448 \mathrm{mg}$, $5.2 \mathrm{mmol}\rangle$, and the mixture was stirred at room temperature for 24 h. Additional $\mathrm{MnO}_{2}(200 \mathrm{mg}, 2.3 \mathrm{mmol})$ was then added. After 72 h , the reaction mixture was filtered with the aid of benzene $(2 \times 20 \mathrm{~mL})$, and the filtrate was concentrated in vacuo. The residual oil (249 mg) solidified on standing. This crude product ($<10 \%$ carbinol on the basis of NMR data) was used without purification in subsequent reactions. Analytical material could be obtained by allowing the reaction to proceed entirely to the ketone, as followed by TLC (silica gel; $\mathrm{CHCl}_{3} /$ absolute $\mathrm{EtOH}, 9: 1$) and recrystallization of this product from petroleum ether. This sequence typically required additional MnO_{2} and 6-7 days reaction time: mp $74-74.5^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right)$ 8 1.36, 1.41, and $1.45\left(\tau, 3\right.$ each, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.87\left(\mathrm{~d}, J=1 \mathrm{~Hz}, 3,=\mathrm{CCH}_{3}\right)$, 4.14, 4.46, and $4.50\left(\mathrm{q}, 2\right.$ each, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.69(\mathrm{~s}, 1,5-\mathrm{H}), 7.84(\mathrm{q}, J=1 \mathrm{~Hz}$, $1, \mathrm{CH}=)$; $\mathrm{MS} m / e 280\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 59.98; H, 7.19; N, 9.99. Found: C, 59.70; H, 6.99; N, 9.95.

6-(2-Amino-5-methylpyrimidin-4-yl)-2,4-diethoxypyrimidine (10a). The crude pyrimidinyl ketone $9 \mathrm{a}(220 \mathrm{mg})$ mixed with guanidine carbonate ($149 \mathrm{mg}, 1.24 \mathrm{mmol}$) in 10 mL of absolute ethanol was heated at reflux for 16 h . The reaction mixture was filtered, and the
filtrate was concentrated in vacuo to leave a light brown solid. Pe troleum ether (20 mL) was added and decanted off after stirring for 5 min . The solid residue was then extracted, i.e., stirred and decanted, with anhydrous ethyl ether $(2 \times 20 \mathrm{~mL})$, followed by chloroform (2 $\times 20 \mathrm{~mL}$). Evaporation of the ether layer in vacuo yielded 127 mg of analytically pure white product. Evaporation of the chloroform extracts in vacuo yielded 13 mg of additional product (total yield 65%): $\mathrm{mp} 110-111^{\circ} \mathrm{C}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 0.9\right) 325 \mathrm{~nm}(\epsilon 5610), 292 \mathrm{sh}(4900)$; (pH 8.9) 313 (5170), 271 (5140); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.42$ and $1.46(\mathrm{t}, 3$ each, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 2.42 (s, 3, $5^{\prime}-\mathrm{CH}_{3}$), 4.52 and 4.55 (q, 2 each, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 5.35 (br s, 2, NH_{2}), 7.02 ($\mathrm{s}, 1,5-\mathrm{H}$), 8.34 ($\mathrm{s}, 1,6^{\prime}-\mathrm{H}$); MS $m / e 275\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, $56.71 ; \mathrm{H}, 6.22 ; \mathrm{N}, 25.44$. Found: C, 56.43; H, 6.45; N, 25.17.

6-(2-Aminopyrimidin-4-yl)-2,4-diethoxypyrimidine (10c). The generation of 2,4 -diethoxy-6-lithiopyrimidine from 6 -bromo-2,4diethoxypyrimidine ($6 \mathrm{~b},{ }^{27} 2.0 \mathrm{~g}, 8.1 \mathrm{mmol}$) and n-butyllithium (3.5 mL of a 2.4 M solution in hexane, 8.4 mmol) in THF (50 mL) was accomplished in the manner previously described for 8a. After the addition of β-benzyloxyacrolein $7 \mathbf{b}^{30,31}(1.4 \mathrm{~g}, 8.9 \mathrm{mmol})$ in THF (5 mL), the reaction solution was stirred and quenched as described for 8 a . The concentration of the MgSO_{4}-dried ether layers left a red oil which was subsequently oxidized with activated $\mathrm{MnO}_{2}(1.5 \mathrm{~g}, 17 \mathrm{mmol})$ in 5 mL of petroleum ether/benzene (2:1). When no further oxidation was indicated by TLC (benzene/EtOAc, 4:1; I_{2} visualization), the mixture was filtered with additional benzene, and the filtrate was concentrated in vacuo. The residual oil was mixed with guanidine carbonate ($2.0 \mathrm{~g}, 16.7 \mathrm{mmol}$) in absolute ethanol (30 mL), and the mixture was heated at reflux for 16 h . After filtration and concentration in vacuo of the reaction mixture, the residual brown oil was extracted with anhydrous ethyl ether $(2 \times 100 \mathrm{~mL})$. Concentration of the ether layers produced a brown residue which was subsequently extracted with petroleum ether $(3 \times 150 \mathrm{~mL})$. On reduction of the volume of the petroleum ether extracts to $10 \mathrm{~mL}, 10 \mathrm{c}(274 \mathrm{mg}, 13 \%$ yield) precipitated from solution. Analytical material was obtained by recrystallization from ethyl ether $/ \mathrm{CHCl}_{3}$, following a decolorizing charcoal treatment: mp $137-138{ }^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 0.9\right) 330 \mathrm{~nm}$ sh ($\epsilon 7130$), 314 (7680), 302 sh (6850); (pH 9.1) 303 (6950); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40$ and 1.46 ($\mathrm{t}, 3$ each, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 4.43 and 4.47 (d, 2 each, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.2\left(\mathrm{~s}, 2, \mathrm{NH}_{2}\right), 7.29(\mathrm{~s}, 1,5-\mathrm{H}), 7.57\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 1,5^{\prime}-\mathrm{H}\right)$, $8.42\left(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 1,6^{\prime}-\mathrm{H}\right)$; MS m/e $261\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, $55.16 ; \mathrm{H}, 5.79 ; \mathrm{N}, 26.81$. Found: C, 55.45; H, 5.49; N, 26.60.

6-(2-Aminopyrimidin-4-yl)-2,4-diethoxy-5-methylpyrimidine (10b). The generation of 2,4-diethoxy-6-lithio-5-methylpyrimidine from $6 \mathbf{b}(522 \mathrm{mg}, 2.0 \mathrm{mmol})$ and n-butyllithium $(0.8 \mathrm{~mL}$ of a 2.4 M solution in hexane, 2.2 mmol) in THF (15 mL) was accomplished as previously described. A solution of β-benzyloxyacrolein ($7 \mathrm{~b}, 350 \mathrm{mg}$, 2.16 mmol) in THF (5 mL) was added, and the resultant reaction mixture was stirred at $<-80^{\circ} \mathrm{C}$ for 1.25 h . After being warmed to 0 ${ }^{\circ} \mathrm{C}$ over 30 min , the reaction solution was inversely quenched with a mixture of ethyl ether (50 mL) and a 20% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). Following the extraction of the aqueous layer with additional ethyl ether ($2 \times 40 \mathrm{~mL}$), the organic layers were combined, dried over MgSO_{4}, filtered, and concentrated in vacuo to an oil. This oil was oxidized in the manner described for 10c. On dissolution of the oxidation products in absolute ethanol (20 mL) and addition of guanidine carbonate ($450 \mathrm{mg}, 3.75 \mathrm{mmol}$), the reaction mixture was heated at reflux for 12 h . The treatment of these reaction products in a manner analogous to the procedure described for 10 c provided, on reduction of the volume of petroleum ether extracts to $10 \mathrm{~mL}, 10 \mathrm{~b}$ ($136 \mathrm{mg}, 25 \%$ yield). After treatment with decolorizing charcoal, recrystallization from CHCl_{3} /ethyl ether provided analytical material: mp 142.5-143.5 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 0.9\right) 312 \mathrm{~nm}(\epsilon 7420), 278 \mathrm{sh}(5040)$; (pH 8.9) 300 (6890), $278 \mathrm{sh}(5950)$; NMR (CDCl_{3}) $\delta 1.40\left(\mathrm{t}, 6,0 \mathrm{OH}_{2} \mathrm{CH}_{3}\right), 2.22$ (s, 3, $5-\mathrm{CH}_{3}$), 4.40 and $4.47\left(\mathrm{q}, 2\right.$ each, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.26$ (br s, 2, NH_{2}), $7.06\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 1,5^{\prime}-\mathrm{H}\right), 8.41\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 1,6^{\prime}-\mathrm{H}\right)$; MS m/e 275 $\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, $56.71 ; \mathrm{H}, 6.22 ; \mathrm{N}, 25.44$. Found: C , 56.64; H, 6.32; N, 25.21.

6-(2-Amino-5-methylpyrimidin-4-yl)-2,4-diethoxy-5-methylpyrimidine (10d). The 6 -lithio derivative was prepared from $\mathbf{6 b}$ $(1.044 \mathrm{~g}, 4 \mathrm{mmol})$ and n-butyllithium $(1.8 \mathrm{~mL}$ of a 2.4 M solution in hexane, 4.32 mmol) in THF (20 mL) as previously described. Following the addition of β-ethoxy- α-methylacrolein ($7 \mathrm{a}, 479 \mathrm{mg}, 4.2$ mmol) in THF (5 mL), the reaction mixture was stirred at $<-80^{\circ} \mathrm{C}$ for 1.5 h , with gradual warming to $0^{\circ} \mathrm{C}$ allowed over the next 40 min . The reaction solution was quenched, worked up, and oxidized in the manner of 10 c . After filtration and concentration of the oxidation products, the residual oil was dissolved in absolute ethanol (15 mL).

On the addition of guanidine carbonate $(1.0 \mathrm{~g}, 8.33 \mathrm{mmol})$, the mixture was heated at reflux for 18 h . Following a filtration with the aid of absolute ethanol (20 mL), the filtrate was concentrated in vacuo to a solid residue. The extraction of this residue with anhydrous ethyl ether $(3 \times 10 \mathrm{~mL})$ and the subsequent concentration of the ether layer provided a lighter colored solid. Extraction of this solid with petroleum ether ($4 \times 5 \mathrm{~mL}$) yielded white solid 10 d ($285 \mathrm{mg}, 25 \%$ yield) after partial concentration of the solvent. Analytical material was obtained by vacuum sublimation ($6 \mathrm{mmHg}, 155^{\circ} \mathrm{C}$): mp $152 \sim 153^{\circ} \mathrm{C}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 0.9\right) 320 \mathrm{~nm}(\epsilon 5150), 264$ (5820); (pH 9.24) 305 (5190), 272 (6370); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.38$ and 1.41 ($\mathrm{t}, 3$ each, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.91 and 2.0 (s, 3 each, $\mathrm{Ar}-\mathrm{CH}_{3}$), 4.35 and 4.47 ($\mathrm{q}, 2$ each, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.02\left(\mathrm{br} \mathrm{s}, 2, \mathrm{NH}_{2}\right), 8.23\left(\mathrm{~s}, 1,6^{\prime}-\mathrm{H}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{e} 289\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, $58.11 ; \mathrm{H}, 6.62 ; \mathrm{N}, 24.21$. Found: C, 58.26; H, 6.45; N, 24.37.

2,4-Diethoxy-6-(2-hydroxy-5-methylpyrimidin-4-yl)pyrimidine (1la). To the ice-cooled bipyrimidine $10 \mathrm{a}(360 \mathrm{mg}, 1.31 \mathrm{mmol})$ was added 1 mL of $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~mL}$ of 6 M HCl , and 0.5 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. Over a period of 10 min a solution of sodium nitrite $(360 \mathrm{mg}$, $5.22 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was dripped in, and gas evolution was evident. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 3.5 h , after which time 20 mL of $\mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was extracted with chloroform $(2 \times 20 \mathrm{~mL})$. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was evaporated in vacuo to yield a yellow solid. The solid was transferred to a sintered glass funnel with 25 mL of petroleum ether and then washed with 5 mL of benzene to give the product ($139 \mathrm{mg}, 39 \%$ yield). An analytical sample was obtained by crystallization from petroleum ether/benzene: mp 162-163 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 1.0\right) 336 \mathrm{~nm}(\epsilon 6570), 276$ (4180); (pH 8.9) 321 (6420), 272 sh (3970); (pH 13.0) 316 (5810), 268 (5420); NMR (CDCl_{3}) $\delta 1.42$ and $1.46\left(\mathrm{t}, 3\right.$ each, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.37\left(\mathrm{~s}, 3,5^{\prime}-\mathrm{CH}_{3}\right), 4.51$ and 4.53 ($\mathrm{q}, 2$ each, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $7.00(\mathrm{~s}, 1,5-\mathrm{H}), 8.0-8.8(\mathrm{br} \mathrm{s}, 1, \mathrm{OH}), 8.22$ (s, $1,6^{\prime}-\mathrm{H}$); MS m/e 276 (M^{+}).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, $56.51 ; \mathrm{H}, 5.84 ; \mathrm{N}, 20.28$. Found: C, 56.49; H, 5.84; N, 20.17.

2,4-Diethoxy-6-(2-hydroxypyrimidin-4-yl)pyrimidine (11c). To ice-cooled $10 \mathrm{c}(75 \mathrm{mg}, 0.29 \mathrm{mmol})$ was added 1 mL of $\mathrm{H}_{2} \mathrm{O}, 0.3 \mathrm{~mL}$ of 6 N HCl , and 0.15 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. Over a period of 10 min a solution of sodium nitrite $(80 \mathrm{mg}, 1.16 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was dripped in, and the reaction mixture was stirred for 1.5 h . After dilution with 20 mL of $\mathrm{H}_{2} \mathrm{O}$, an extraction with $\mathrm{CHCl}_{3}(2 \times 20 \mathrm{~mL})$ was performed, and the resultant organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo to a white solid. Washing with petroleum ether/benzene ($5: 1,2 \times 10 \mathrm{~mL}$) provided nearly pure 11 c ($53.4 \mathrm{mg}, 71 \%$ yield). Analytical material was obtained by recrystallization from benzene $/ \mathrm{CHCl}_{3}$, after treatment with decolorizing charcoal: $\mathrm{mp} 223-223.5^{\circ} \mathrm{C}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 0.9\right) 333 \mathrm{~nm}(\epsilon 7000)$, $305 \mathrm{sh}(7000) .293$ (7200); (pH 8.9) 317 (8700); (pH 13) 318 (6600), 299 (6600); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40$ and $1.46\left(\mathrm{t}, 3\right.$ each, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.47$ and 4.49 (q, 2 each, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $7.41(\mathrm{~s}, 1,5-\mathrm{H}), 7.47\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 1,5^{\prime}-\mathrm{H}\right)$, $8.13\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 1,6^{\prime}-\mathrm{H}\right)$; MS m/e $262\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 54.95; H,5.38; N, 21.37. Found: C, 54.70; H, 5.25; N, 21.39.

2,4-Diethoxy-6-(2-hydroxypyrimidin-4-yl)-5-methylpyrimidine (11b). The diazotization-hydrolysis of 10 b was carried out essentially according to the directions for 11c. The resulting solid (~ 200 mg) was washed with petroleum ether/benzene ($5: 1,2 \times 5 \mathrm{~mL}$) and 2 mL of anhydrous ethyl ether to afford IIb in 60% yield. Dissolution of this sample in hot benzene, treatment with decolorizing charcoal, filtration, and concentration gave analytically pure material: mp $181-182.5^{\circ} \mathrm{C}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 0.9\right) 306 \mathrm{~nm}(\epsilon 7700)$; (pH 8.8) 310 (8600), (pH 12.9) 300 (8030), 275 (6600); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.43(\mathrm{t}, 6$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.37\left(\mathrm{~s}, 3,5-\mathrm{CH}_{3}\right), 4.42$ and $4.48\left(\mathrm{q}, 2\right.$ each, $\left.0 \mathrm{OH}_{2} \mathrm{CH}_{3}\right)$, $7.04\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 1,5^{\prime}-\mathrm{H}\right), 8.16\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 1,6^{\prime}-\mathrm{H}\right), 9.9(\mathrm{br} \mathrm{s}, 1, \mathrm{NH})$; MS m/e $276\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, $56.51 ; \mathrm{H}, 5.84 ; \mathrm{N}, 20.28$. Found: C, 56.48; H, 5.87; N, 19.99.

2,4-Diethoxy-6-(2-hydroxy-5-methylpyrimidin-4-yl)-5-methylpyrimidine (11d). The diazotization-hydrolysis of sublimed 10d was done in the manner of 11c and, on similar workup, provided solid 11d (150 mg : 70% yield). Analytical material was obtained by washing the product with petroleum ether $(2 \times 25 \mathrm{~mL})$ and benzene $(25 \mathrm{~mL})$: $\mathrm{mp} 190.5-191.5^{\circ} \mathrm{C}$; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 0.9\right) 326 \mathrm{~nm}(\epsilon 6430), 267$ (6830); (pH 8.9) 314 (6690), 268 (5180); (pH 12.6) 308 (6740), 270 (7180); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.37$ and $1.41\left(\mathrm{t}, 3\right.$ each, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.99(\mathrm{~s}$, $6,5-$ and $5^{\prime}-\mathrm{CH}_{3}$), 4.33 and $4.45\left(\mathrm{q}, 2\right.$ each, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.99\left(\mathrm{~s}, 1,6^{\prime}-\mathrm{H}\right)$; MS m/e $290\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, $57.92 ; \mathrm{H}, 6.25 ; \mathrm{N}, 19.30$. Found: C , 57.78; H, 5.98; N, 19.58.

6-(2-Hydroxy-5-methylpyrimidin-4-yl)uracil (4). A solution
of $11 \mathrm{a}(232 \mathrm{mg}, 0.84 \mathrm{mmol})$ in $6 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$ was heated at reflux for 1 h . Removal of the solvent in vacuo left a residue which, on crystallization from $\mathrm{H}_{2} \mathrm{O}$ after a decolorizing charcoal treatment, yielded analytically pure 4: $126 \mathrm{mg}, 68 \%$ yield; $224-226{ }^{\circ} \mathrm{C}$ dec; UV $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right.$, $\mathrm{pH} 0.9) 320 \mathrm{~nm}$ ($\epsilon 6840$); (pH 7.2) 319 (6980); (pH 12.9) 299 (9760); NMR [(CD $\left.\left.{ }_{3}\right)_{2} \mathrm{SO}\right] \delta 2.06\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 5.58(\mathrm{~s}, 1,5-\mathrm{H}), 8.12\left(\mathrm{~s}, 1,6^{\prime}-\mathrm{H}\right)$; MS m/e $220\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$: C, $48.10 ; \mathrm{H}, 3.81$; N, 24.93. Found: C, 48.05; H, 3.91; N, 25.00.
6-(2-Hydroxypyrimidin-4-yl)thymine (1). A solution of 11b (170 $\mathrm{mg}, 0.62 \mathrm{mmol})$ in $6 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ was heated at reflux for a period of 1.5 h . After removal of the solvent in vacuo, the residual solid was washed with CHCl_{3} to afford 1 ($76 \mathrm{mg}, 56 \%$ yield). Analytical material was obtained by recrystallization from $\mathrm{H}_{2} \mathrm{O}$, following treatment with decolorizing charcoal: $273-275{ }^{\circ} \mathrm{C}$ dec; UV $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 0.9\right) 317 \mathrm{~nm}$ ($\epsilon 8980$); (pH 7.2) 314 (8740); (pH 12.9) 303 (11 100); NMR [(CD $\left.)_{2} \mathrm{SO}\right]$ $\delta 1.77\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right), 6.58\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 1,5^{\prime} \cdot \mathrm{H}\right), 8.18\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 1,6^{\prime}-\mathrm{H}\right)$; MS m/e $220\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 49.09; $\mathrm{H}, 3.66 ; \mathrm{N}, 25.45$. Found: C, 48.83; H, 3.56; N, 25.43.

6-(2-Hydroxypyrimidin-4-yl)uracil (2). A solution of 11c (77 $\mathrm{mg}, 0.29 \mathrm{mmol})$ in $6 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was heated at reflux for 1.5 h . Removal of the solvent in vacuo left solid 2 ($50 \mathrm{mg}, 84 \%$ yield). An analytical sample was obtained by recrystallization from $\mathrm{H}_{2} \mathrm{O}$, following a treatment with decolorizing charcoal: $242-243^{\circ} \mathrm{C} \mathrm{dec}$; UV $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 0.9\right) 336 \mathrm{~nm} \operatorname{sh}(\epsilon 6970), 314$ (9160), 303 (9360); (pH 7.2) 336 sh (6730), 314 (8300), 304 (8480); (pH 12.9) 325 (11 250); NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 6.39(\mathrm{~s}, 1,5-\mathrm{H}), 7.03\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 1,5^{\prime}-\mathrm{H}\right), 8.17(\mathrm{~d}, J=$ $\left.6 \mathrm{~Hz}, 1,6^{\prime}-\mathrm{H}\right)$; MS m/e $206\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 46.60; H, 2.93; N, 27.18. Found: C, 46.38; H, 2.82; N, 26.96.

6-(2-Hydroxy-5-methylpyrimidin-4-yl)thymine (3). A solution of $11 \mathrm{~d}(100 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $6 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was heated at reflux for a period of 2 h . After concentration of the reaction solution to an oil, $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added, and the flask was left uncovered overnight. Evaporation of the solvent during the night left a solid yellow crystalline material, which was washed with 5 mL of anhydrous ether/absolute ethanol (4:1) to leave 3 ($70 \mathrm{mg}, 87 \%$ yield). Recrystallization from absolute ethanol provided analytical 3 as a white fluffy powder: $310-312^{\circ} \mathrm{C} \mathrm{dec}$; UV $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 0.9\right) 322 \mathrm{~nm}(\in 7050), 255$ (6500); (pH 7.2) 318 (7090), 258 (6250); (pH 12.9) 302 (12 970); NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 1.57$ and 1.93 (s, 3 each, CH_{3}), 8.14 (s, $1,6^{\prime}-\mathrm{H}$); MS m/e $234\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.31 ; \mathrm{H}, 4.43$; $\mathrm{N}, 23.47$. Found: C, 50.35; H, 4.30; N, 23.58.

Acknowledgment. J.D.B. has held a Lilly Fellowship in Chemistry. This work has been supported by the National Science Foundation Research Grant CHE 76-23543.

Registry No.-5b, 64188-81-4; 6a, 64188-82-5; 6b, 64188-83-6; 7a, 42588-57-8; 7b, 4652-40-8; 8a, 64188-84-7; 9a, 64188-85-8; phosphorus oxybromide, 7789-59-5; 5-methylbarbituric acid, 2417-22-3; guanidine carbonate, 124-46-9.

References and Notes

(1) For review, see G. J. Fisher and H. E. Johns, in "Photochemistry and Photobiology of Nucleic Acids", Vol. I, S. Y. Wang, Ed., Academic Press, New York, N.Y., 1976. Chapter '5.
(2) For review, see S. Y. Wang in ref 1, Chapter 6.
(3) The symbolism employed for the bipyrimidines follows the system formally proposed for bipyrimidine photoproducts by Dr. Waldo E. Cohn, Secretary of the IUPAC-IUB Commission on Biochemical Nomenclature; see W. E. Cohn, N. J. Leonard, and S. Y. Wang. Photochem. Photobiol., 19, 89 (1974).
(4) A. J. Varghese and S. Y. Wang, Science, 156, 955 (1967).
(5) S. Y. Wang and A. J. Varghese, Biochem. Biophys. Res. Commun., 29, 543 (1967).
(6) A. J. Varghese and M. H. Patrick, Nature (London), 223, 299 (1969).
(7) D. F. Rhoades and S. Y. Wang, Biochemistry, 9, 4416 (1970).
(8) M. N. Khattack and S. Y. Wang, Science, 163, 1341 (1969).
(9) (a) A. J. Verghese, Biochemistry, 10, 4283 (1971); (b) ibid., 10, 2194 (1971).
(10) A. J. Varghese and S. Y. Wang, Science, 160, 186 (1968).
(11) A. J. Varghese and S. Y. Wang, Biochem. Biophys. Res. Commun., 33, 102 (1968).
(12) A. J. Varghese, Biochemistry, 9, 4781 (1970).
(13) N. J. Leonard, D. E. Bergstrom, and G. L. Tolman, Biochem. Biophys. Res. Commun., 44, 1524 (1971).
(14) D. E. Bergstrom and N. J. Leonard, Biochemistry, 11, 1 (1972).
(15) D. E. Bergstrom. I. Inoue, and N. J. Leonard, J. Org. Chem., 37, 3902 (1972).
(16) D. E. Bercstrom and N. J. Leonard, J. Am. Chem. Soc., 94, 6178
(1972).
(17) N. J. Leonard and D. F. Wiemer, J. Am. Chem. Soc., 98, 8218 (1976).
(18) M. P. L. Caton, D. T. Hurst, J. F. W. McOmie, and R. R. Hunt, J. Crem. Soc. C, 1204 (1967), and references cited therein.
(19) J. J. Lafferty and F. H. Case, J. Org. Chem., 32, 1591 (1967).
(20) F. Effenberger, Chem. Ber., 88, 2260 (1965).
(21) R. Pater, J. Heterocycl. Chem., 8, 743 (1971).
(22) J. A. Otterstedt and R. Pater, J. Heterocycl. Chem., 9, 225 (1972).
(23) V. Krchnak and Z. Arnold, Collect. Czech. Chem.' Commun., 39, 3327 (1974).
(24) B. A. Frit and A. Teuerstein, J. Heterocycl. Chem., 10, 47 (1973).
(25) L. Strekowski, Rocz. Chem., 48, 2157 (1974), and references cited therein.
(26) The use of guanidine with subsequent diazotization was considerec superior to direct condensation with urea, which often results in low yields.
(27) B. W. Langley, J. Am. Chem. Soc., 78, 2136 (1956)
(28) V. D. Adams, Synthesis, 4, 286 (1974).
(29) Tridom Chemical Co., U.S. representative of Fluka AG.
(30) N. N. Kalinina, V. T. Klimko, T. V. Protopopova, and A. P. Skoldinov, J. Gen. Chem. USSR (Engl. Transi.), 32, 2116 (1962).
(31) V. T. Klimko, T. V. Protopopova, N. V. Smirnova, and A. P. Skoldinov, J. Gen. Chem. USSR (Engl. Transi.), 32, 2913 (1962).
(32) J. Attenburrow, A. F. B. Cameron, J. H. Chapman, R. M. Evans, B. A. Hems A. B. A. Jensen, and T. Walker, J. Chem. Soc., 1094 (1952).
(33) C. Fenselau and S. Y. Wang, Tetrahedron, 25, 2853 (1969).
(34) L. R. Subbaraman, J. Subbaraman, and E. J. Behrman, J. Org. Chem., 38, 1499 (1973).
(35) (a) B. S. Hahn and S. Y. Wang, J. Am. Chem. Soc., 94, 4764 (1972); (b) B. S. Hahn and S. Y. Wang, ibid., 95, 3082 (1973).
(36) W. Hauswirth and S. Y. Wang, Photochem. Photobiol., 25, 161 (1977).
(37) M. H. Patrick, Photochem. Photobiol., 25, 357 (1977).
(38) T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber, J. Am. Chem. Soc., 92, 687 (1970).
(39) B. Doumas and H. G. Biggs, J. Biol. Chem., 237, 2306 (1962).

Rearrangement of Cinnamyl Groups from $\mathbf{O}^{\mathbf{6}}$ to $\mathbf{C - 8}$ in the Guanine Series

Brian N. Holmes ${ }^{1}$ and Nelson J. Leonard*

Roger Adams Laboratory, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

Received August 2, 1977
It was established in this Laboratory that displacement reactions of 2 -amino- 6 -chloropurine (1a) with the sodium salts of allylic alcohols proceed through an 0^{6} ether to yield 8substituted guanines (e.g., 2a), ${ }^{2}$ with the following stipula-

tions: (a) the O^{6} to $\mathrm{C}-8$ rearrangement occurs with overall allylic retention and is partially controlled by the degree of methyl substitution of the allylic group and by the temperature, (b) the rearrangement proceeds with greatest facility through anionic species, and (c) it occurs intramolecularly and most logically by two $[3,3]$ sigmatropic shifts via C-5.

Derivatives of allylbenzene and propenylbenzene are widely occurring plant constituents, and many which are present as major components of common spices and flavorings exhibit biological activity. ${ }^{3}$ It has been shown that allylbenzene derivatives can be oxidized metabolically to give allylic alcohols. ${ }^{4,5}$ More specifically, safrole (3,4 -methylenedioxyallylbenzene), which is a hepatotoxin and a hepatocarcinogen, is oxidized in the liver, inter alia, to 1-(3,4-methylenedioxy-phenyl)-2-propen-1-ol (3), a more potent carcinogen than the parent safrole. ${ }^{5}$ Furthermore, a University of Wisconsin group
has shown that the synthetic acetate of 3 , as a model for metabolic activation, reacts with guanosine monophosphate to give the O^{6}-allylic ether 4. These reports led us to investigate the rearrangement of O^{6}-cinnamyl ethers of guanine.

Treatment of 2-amino-6-chloropurine (1a) with the sodium salt of either cinnamyl alcohol or m-trifluoromethylcinnamyl alcohol in refluxing dioxane ($101^{\circ} \mathrm{C}$) for 4 h gave the corresponding O^{6} ether 5 or 6 , respectively, of guanine. At $101^{\circ} \mathrm{C}$,

no rearrangement product was detectable by thin-layer chromatography, even after heating at reflux for 24 h . However, when O^{6}-cinnamylguanine (5) was converted to its sodium salt with 1 equiv of sodium hydride and heated at 150 ${ }^{\circ} \mathrm{C}$ for 24 h in either anhydrous diglyme or dimethylformamide, rearrangement occurred to a mixture of 8-(3-phenyl1 -propenyl)guanine and 8-(3-phenyl-2-propenyl)guanine (7). When the m-trifluoromethyl compound 6 was treated under the same conditions at $150^{\circ} \mathrm{C}$, guanine was the only purine product that could be detected.

Electron-donating groups on the phenyl ring facilitated rearrangement. Thus, treatment of la separately with the sodium salts of p-methoxycinnamyl alcohol, ${ }^{6} 0$-methoxycinnamyl alcohol, ${ }^{6}$ and 3-(3,4-methylenedioxyphenyl)-2-propen- 1 -ol ${ }^{5}$ in refluxing dioxane ($101{ }^{\circ} \mathrm{C}$) gave the corresponding C-8 substituted guanines $8-10$. The product in each case was isolated as an approximately $1: 1$ mixture of the double-bond isomers. TLC analysis of the progress of the re-
action showed that the 0^{6} ether was formed initially and was converted slowly to the C-8 product (8-10). At the end of 24 h , no detectable 0^{6} intermediate remained in the reaction mixture. Assignment of the structure of each C-8 product was based on the absence of an 8-H signal in the NMR and on the upfield shift of the signal for the methylene hydrogens from $\delta \sim 5$ for O^{6} substitution to $\delta 3.4-3.7$ for C substitution.
We had noted earlier that γ-methyl substitution on the migrating allylic group facilitates O^{6} to $\mathrm{C}-8$ rearrangement. ${ }^{2}$ The present results support the hypothesis that γ substituents influence the ease of rearrangement through an electronic rather than a steric factor since there is little difference in bulk between the substituted phenyl rings. On a qualitative basis, these results are similar to those for the ortho Claisen rearrangement of substituted cinnamyl p-tolyl ethers, which have a negative ρ and can be correlated to $\sigma^{+} .7$
In order to evaluate the possible biological significance of the O^{6} to $\mathrm{C}-8$ rearrangement, we extended our investigations to guanosine derivatives. Since O^{6} (3-methyl-2-butenyl)guanine [O^{6} - (Δ^{2}-isopentenyl)guanine] rearranges more readily than any other allylic ether tried, we examined the stability of the related O^{6}-(3-methyl-2-butenyl)guanosine as a control for the effect of 9 -ribosyl substitution. Treatment of 2 -amino-6-chloro-9-(β-D-ribofuranosyl)purine (1b) with sodium 3 -methyl-2-butene 1 -oxide in 3 -methyl-2-buten-1-ol at 115 ${ }^{\circ} \mathrm{C}$ in 5 min gave the corresponding O^{6} ether as the sole product. In a typical experiment, O^{6} (3-methyl-2-butenyl)guanosine was treated with 1 equiv of sodium hydride in anhydrous dimethylformamide at $100^{\circ} \mathrm{C}$ for 12 h . Hydrolytic removal of the ribose in 1 M HCl and high-performance liquid chromatography of the products failed to show the presence of any detectable amount of 8-(3-methyl-2-butenyl)guanine by comparison of retention time with that of an authentic sample. Similar results were obtained using up to 4 equiv of sodium hydride and raising the temperature to $170^{\circ} \mathrm{C}$.

We have shown that O^{6}-cinnamyl ethers of guanine can rearrange to $\mathrm{C}-8$ substituted guanines and that this rearrangement is greatly facilitated by electron-donating substituents in the phenyl ring. We did not detect the parallel O^{6} to C-8 rearrangement of allylic guanosine derivatives, presumably because the ribosidated nucleus is unable to form an anion. Thus, the event of in vivo O^{6}-cinnamylation of a guanosine or guanylic unit cannot be excluded as a sufficient basis for the observed biological effect, e.g., in the case of safrole. ${ }^{5}$ O^{6}-Alkylation in a DNA template has already been implicated in miscoding operations. ${ }^{8,9}$ Were N-7 the alternative site ${ }^{9}$ of mutational cinnamylation, the formation of such 7 -substituted guanosine units would have to be sufficient to cause deletion or to effect miscoding. The possibility of a subsequent $\mathrm{N}-7$ to $\mathrm{C}-8$ [3,2]sigmatropic shift remains in chemical consideration for 7-allylated guanosines, even though 7-allylated guanines are stable, ${ }^{2 b, 10}$ and these should be explored as special cases of 7-alkylated guanosines.

Experimental Section

All melting points are uncorrected. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian Associates A-60, EM-390, or HA-100 spectrometers using tetramethylsilane as an internal standard. The ultraviolet spectra were obtained on a Beckman Acta Model M VI spectrometer. Microanalyses were performed by Mr. Josef Nemeth and associates, who also weighed samples for quantitative electronic absorption spectra. Low-resolution mass spectra were obtained on a Varian MAT CH-5 spectrometer. Field desorption and high-resolution mass spectra were obtained on a Varian MAT 731 spectrometer, coupled with a 620 i computer and STATOS recorder.
\boldsymbol{O}^{6}-Cinnamylguanine (5). A suspension of sodium hydride (283 mg of a 50% oil dispersion, 5.90 mmol), dry dioxane (24 mL), and cinnamyl alcohol ($791 \mathrm{mg}, 5.90 \mathrm{mmol}$) was stirred under a nitrogen atmosphere. After evolution of hydrogen had ceased, 2 -amino-6chloropurine ($1 \mathrm{a}, 500 \mathrm{mg}, 2.95 \mathrm{mmol}$) was added, and the mixture was heated at reflux for 4 h . The solvent was removed in vacuo. The resi-
due was dissolved in water (10 mL) and washed with ether $(2 \times 10$ mL). The water layer was acidified to pH 6 with 20% aqueous acetic acid. After cooling, the solid was removed by filtration. Recrystallization from ethanol gave $440 \mathrm{mg}(56 \%)$ of tan solid $\mathrm{mp} 165-175^{\circ} \mathrm{C}$ dec; $\lambda_{\text {max }}(0.1 \mathrm{M} \mathrm{HCl}, \mathrm{EtOH}) 281 \mathrm{~nm}$ sh $(\epsilon 10670), 274(10880), 239$ (21 760); (EtOH; 282 sh (8530), 272 (11310), 266 sh (10 990), 236.5 (24660); ($0.1 \mathrm{M} \mathrm{NaOH}, \mathrm{EtOH}$) 281 sh (9810), 273 (10990), 266 sh (10 240), 236.5 (21420); NMR [$\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] \delta 5.16$ (d, 2, $\left.\mathrm{CH}_{2}\right), 6.22$ (br, 2, NH_{2}), 6.62-7.05 (m, 2, $\mathrm{CH}=\mathrm{CH}$), $7.34\left(\mathrm{~m}, 5, \mathrm{C}_{6} \mathrm{H}_{5}\right) 7.89(\mathrm{~s}, 1, \mathrm{pu}-\mathrm{H})$; field desorption mass spectrum, $m / e 267\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 62.91 ; \mathrm{H}, 4.90 ; \mathrm{N}, 26.20$. Found: C, 62.98; H, 4.90; N, 26.04.
\boldsymbol{O}^{6}-(m-Trifluoromethylcinnamyl)guanine (6). A suspension of sodium hydride (247 mg of a 50% oil dispersion, 5.15 mmol), dry dioxane (25 mL), and m-trifluoromethylcinnamyl alcohol $(1.04 \mathrm{~g}, 5.15$ mmol) was stirred under a nitrogen atmosphere for 6 h at $25^{\circ} \mathrm{C}$. To this mixture 2 -amino- 6 -chloropurine (1a) was added, and the mixture was heated at reflux for 4 h . After cooling, glacial acetic acid (0.3 mL) was added, and the solid material was removed by filtration. The solvent was removed in vacuo, and the residue was dissolved in ethyl acetate (1 mL). The ethyl acetate solution was applied to an $8-\mathrm{g}$ silica gel column. Elution with ethyl acetate gave a fraction containing 606 $\mathrm{mg}(72 \%)$ of light yellow solid: mp $75-80^{\circ} \mathrm{C}$; $\lambda_{\max }(01 \mathrm{M} \mathrm{HCl}, \mathrm{EtOH})$ 294 nm sh ($\epsilon 700$), 285 (11030), 246 (19 500); (EtOH) 282 (10360), 244.5 (22 590); ($0.1 \mathrm{M} \mathrm{NaOH}, \mathrm{EtOH}$) 283 (9820), 247 (18 390), 227 (14660); NMR $\left.\left(\mathrm{ICD}_{3}\right)_{2} \mathrm{SO}\right] \delta 5.10\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{i}, 6.19\left(\mathrm{~b}=, 2, \mathrm{NH}_{2}\right), 6.4-7.0\right.$ ($\mathrm{m}, 2, \mathrm{CH}=\mathrm{CH}$), $7.3-7.88\left(\mathrm{~m}, 4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pu}-\mathrm{H})$; field desorption mass spectrum, $m / \mathrm{e} 335\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 53.68 ; \mathrm{H}, 3.58 ; \mathrm{F}, 17.00 ; \mathrm{N}, 20.88$. Found: C, 53.67 ; H, $3.50 ; \mathrm{F}, 16.95$; N, 20.65 .

8-(3-Phenyl-1-propenyl)guanine and 8-(3-Phenyl-2-propenyl)guanine (7). A suspension of O^{6}-cinnamylguanine ($5,100 \mathrm{mg}$, 0.374 mmol) and sodium hydride (18 mg of a 50% oi dispersion, 0.374 $\mathrm{mmol})$ in dry diglyme (3 mL) was stirred for 2 h at $25^{\circ} \mathrm{C}$. The mixture was heated at $150^{\circ} \mathrm{C}$ for 24 h under a nitrogen atmosphere and was then treated with glacial acetic acid (0.3 mL) and ether (50 mL). The solid was filtered and washed with water (5 mL). Recrystallization from 50% aquecus ethanol gave 76 mg (76%) of light tan solid, mp $>300{ }^{\circ} \mathrm{C}$. NMR showed a mixture of the double-bond isomers [$\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta 3.48-3.65\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 6.1-6.85\left(\mathrm{~m}, 4 . \mathrm{CH}=\mathrm{CH}, \mathrm{NH}_{2}\right)$, 7.1-7.5 (m, 5, $\mathrm{C}_{6} \mathrm{H}_{5}$); mass spectrum (10 eV), m/e $267\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 62.91 ; \mathrm{H}, 4.90 ; \mathrm{N}, 26.20$. Found: C, 62.68; H, 4.92; N, 25.98.

8-[3-(3,4-Methylenedioxyphenyl)-1-propenyl]guanine and 8-[3-(3,4-Methylenedioxyphenyl)-2-propenyl]guanine (10). A suspension of sodium hydride (283 mg of a 50% oil dispersion, 5.90 mmol), dry dioxane (50 mL), and 3-(3,4-methylenedioxyphenyl)-2-propen- $1-\mathrm{ol}(1.05 \mathrm{~g}, 5.90 \mathrm{mmol})$ was stirred at $25^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After evolution of hydrogen had ceased ($\sim 6 \mathrm{~h}$), 2-amino-6-chloropurine ($500 \mathrm{mg}, 2.95 \mathrm{mmol}$) was added, and the mixture was heated at reflux for 24 h . After cooling, the dioxane was removed in vacuo, and ether (50 mL) was added to the residue. Glacial acetic acid (0.5 mL) was added to the mixture with vigorous stirring. The solid was removed by filtration and washed successively with ethanol, water, and ethanol to give $605 \mathrm{mg}(66 \%)$ of light tan solid. An analytical sample was obtained by suspending 10 Cmg of the solid in refluxing ethanol and adding water until the solid dissolved. The hot solution was treated with charcoal and filtered through a Celite pad. The volume of the solution was then reduced to $\sim 15 \mathrm{~mL}$ by boiling. After cooling, the solid was collected, $\mathrm{mp} 274-£ 80^{\circ} \mathrm{C}$ dec. NMR showed a mixture of the double-bond isomers [$\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta 3.4-3.6$ ($\mathrm{m}, 2, \mathrm{CCH}_{2} \mathrm{C}$), $5.98\left(\mathrm{~s}, 2, \mathrm{OCH}_{2} \mathrm{O}\right), 6.1-6.74\left(\mathrm{~m}, 4, \mathrm{CH}=\mathrm{CH}, \mathrm{NH}_{2}\right)$, $6.75-7.05\left(\mathrm{~m}, 3, \mathrm{C}_{6} \mathrm{H}_{3}\right)$; mass spectrum (10 eV), m!e $311\left(\mathrm{M}^{+}\right)$; highresolution mass spectrum, $m / e 311.1015$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, $57.87 ; \mathrm{H}, 4.21 ; \mathrm{N}, 22.50$. Found: C, 57.78; H, 4.32; N, 22.51.

A similar procedure was used to prepare mixtures of 8 - 33 -(p -methoxyphenyl)-1-propenyl]- and 8 -[3-ip-methoxyphenyl)-2-propenyl]guanine (13) and of 8-[3-(o-methoxyphenyl)-1-propenyl]- and 8 -[3-(o-methoxyphenyl)-2-propenyl]guanine (14). Satisfactory ${ }^{1} \mathrm{H}$ NMR spectra, low-resolution mass spectra, and high-resolution mass spectra were obtained. ${ }^{11}$
\boldsymbol{O}^{6}-(3-Methyl-2-butenyl)guanosine was prejared in a manner similar to other O^{6}-substituted guanosine derivatives: ${ }^{12} \mathrm{mp} 210-215$ ${ }^{\circ} \mathrm{C}$ dec; field desorption mass spectrum, $m / e 351\left(\mathrm{M}^{+}\right)$.

Acknowledgment. This work was supported by Research Grant CHE 76-23543 from the National Science Foundation. The high-resolution mass spectrometer and data processing
equipment were provided by Grants CA 11388 and GM 16864 from the National Institute of Health.

Registry No.-1a, 10310-21-1; 5, 64189-11-3; 6, 64189-12-4; 7 (2-propenyl isomer), 64189-13-5; 7 (1-propenyl isomer), 64189-14-6; 10 (1-propenyl isomer), 64189-15-7; 10 (2-propenyl isomer). 64189-16-8; cinnamyl alcohol, 104-54-1; m-trifluoromethylcinnamyl alcohol, 64189-17-9; 3-(3,4-methylenedioxyphenyl)-2-propen-1-ol, 17531-86-1; O^{6}-(3-methyl-2-butenyl)guanosine, 64189-18-0.

References and Notes

(1) Lubrizol Co., Fellowship, 1976-1977.
(2) (a) C. R. Frihart and N. J. Leonard, J. Am. Chem. Soc., 95, 7174 (1973); (b) N. J. Leonard and C. R. Frihart, ibid., 96, 5894 (1974).
(3) (a) N. R. Farnsworth, Science, 162, 1086 (1968): (b) E. O. Oswald, L. Fishbein, B. J. Corbett, and M. P. Walker, Eiochim. Biophys. Acta, 244, 322 (1971).
(4) (a) E. Solheim and R. R. Scheline, Xenobiotica, 6, 137 (1976); (b: ibid., 3, 493 (1973).
(5) (a) P. Borchart, P. G. Wislocki, J. A. Miller, and E. C. Miller, Cancer Res., 33, 575 (1973): (b) P. Borchart, J. A. Miller, E. C. Miller, and T. K. Shires, ibid., 33, 590 (1973).
(6) D. Marshall and M. C. Whiting, J. Chem. Soc., 4082 (1956).
(7) W. N. White and W. K. Fife, J. Am. Chem. Soc., 83, 3846 (1961)
(8) P. D. Lawley, D. J. Orr, and M. Jarman, Biochem. J., 145, 73 (1975).
(9) P. D. Lawley in "Topics in Chemical Carcinıgenesis", W. Nakahara, S. Takayama, T. Sugimira, and S. Odashima, Ec., University of Tokyo Press, Tokyo, 1972, pp 237-258.
(10) B. N. Holmes and N. J. Leonard, J. Org. Che.n., 41, 568 (1976).
(11) B. N. Holmes, Ph.D. Thesis, University of Illinois, 1977.
(12) (a) J. F. Gerster and R. K. Robins, J. Am. Chem. Soc., 87, 3752 (1965); (b) J. F. Gerster, J. W. Jones, and R. K. Robins, J. Org. Chem., 28, 945 (1963).

Stereochemistry of the Furan-Maleic Anhydride Cycloaddition

Martin W. Lee ${ }^{1}$ and William C. Herndon*
Department of Chemistry, University of Texas at El Paso, El Paso, Texas 7990 8

$$
\text { Received July 14, } 1977
$$

The crystalline product from the Diels-Alder reaction of furan (F) with maleic anhydride (M) was originally formulated as endo adduct $1 .{ }^{2}$ Woodward and Baer showed that the adduct actually has the exo configuration $2 .{ }^{3}$ Anet has stated ${ }^{4}$

1

2
that the exo isomer is initially formed about twice as fast as the endo isomer, and that the endo compound initially produced quickly disappears from the reaction mixture at room temperature.

The kinetically favored formation of the exo compound is a very unusual circumstance and constitutes the only known exception to the rule of predominant endo addition ${ }^{5}$ in reactions where dienophiles and/or dienes are not heavily substituted. ${ }^{6}$ We also find that all of the usual grounds for explaining endo selectivity (maximum accumulation of unsaturation, ${ }^{7}$ secondary orbital interactions, ${ }^{8}$ primary overlap at the reaction sites, ${ }^{9}$ attractive dipole-dipole interactions, and dispersion forces ${ }^{10}$) are fulfilled in the furan-maleic anhydride cycloaddition. Consequently, we have reinvestigated this reaction using nuclear magnetic resonance spectroscopy.

In agreement with the previous work, the reaction of maleic anhydride with furan gives rise to the exo adduct 2: mp $125-126^{\circ} \mathrm{C}$; NMR bands at $\delta 6.5$ (2 H , multiplet), 5.3 (2 H , multiplet), $3.2\left(2 \mathrm{H}\right.$, singlet). In acetonitrile solution at $40^{\circ} \mathrm{C}$,
initial concentrations of reactants both equal to 1.50 M , a small amount of endo- 1 is initially formed and identified by its NMR spectrum: $\delta 6.5$ (multiplet), 5.4 (multiplet), 3.9 (multiplet). However, the initial rate of formation of endo-1 is found to be larger than that for the formation of 2 . At the end of 24 min the concentrations of 1 and 2 are the same, and the concentration of 2 exceeds that of 1 after that point. Endo adduct has essentially disappeared after 48 h , and the final concentration ratio of product to reactants is $[$ exo- 2$] /[\mathrm{M}]=$ 1.83 and $K=[\mathrm{M}][\mathrm{F}] /[2]=0.289 \mathrm{~L} \mathrm{~mol}^{-1}$. Pure exo adduct decomposes to give only the addends. With the initial concentration of 2 equal to 0.120 M , the equilibrium concentration ratio is 0.348 and $K=0.256 \mathrm{~L} \mathrm{~mol}^{-1}$.

At lower initial concentrations of reactants, the only initially discernable product is the endo adduct. With $\left[\mathrm{M}_{0}\right]=\left[\mathrm{F}_{0}\right]=$ $0.50 \mathrm{M}, 8 \%$ of the reactants are converted to 1 after 310 s , and the concentration of 1 slowly decreases after that time. Exo adduct 2 is only evident in the reaction mixture after 3000 s of reaction time. Several repetitions of all of these experiments gave congruent results.

Using the differential rate expressions directly ${ }^{11}$ we find that our data yield the rate constants shown. The rate constant for formation of the endo adduct is actually almost 500 times larger than the exo adduct formation rate constant. Assuming comparable entropies of activation, this rate constant difference corresponds to an activation energy difference of 3.8 kcal favoring the endo adduct. The exo adduct is, however, $1.9 \mathrm{kcal} / \mathrm{mol}$ more stable than the endo adduct. Since the formations of both adducts are reversible, the exo adduct is eventually the final isolated product.

$$
\begin{gathered}
\mathrm{M}+\mathrm{F} \mathrm{~F}^{7.29 \times 10^{-3} \mathrm{~L} \mathrm{~m}^{-1} \mathrm{~s}^{-1}} \underset{4.37 \times 10^{-2} \mathrm{~s}^{-1}}{\stackrel{10}{\rightleftarrows}} \text { endo-1 } \\
\mathrm{M}+\mathrm{F}{ }^{1.60 \times \underset{4.400^{-5} \mathrm{~L} \mathrm{~m}^{-1} \mathrm{~s}^{-1}}{\stackrel{100^{-6} \mathrm{~s}^{-1}}{\rightleftarrows}} \text { exo-2 }}
\end{gathered}
$$

With these results, the furan-maleic anhydride reaction can be placed within the typical kinetic and thermodynamic pattern for Diels-Alder reactions. ${ }^{5,12}$

Acknowledgment. The financial support of the Robert A. Welch Foundation is greatly appreciated.

Registry No.-1, 64113-63-9; 2, 64161-68-8; maleic "anhydride, 108-31-6; furan, 110-00-9.

References and Notes

(1) Undergraduate, Purdue University. Research carried out at University of Texas at El Paso, Summer, 1977.
(2) O. Diels and K. Alder, Chem. Ber., 62, 557 (1929).
(3) R. B. Woodward and H. Baer, J. Am. Chem. Soc., 70, 1161 (1948).
(4) F. A. L. Anet, Tetraherdon Lett., 1219 (1962).
(5) J. G. Martin and R. K. Hill, Chem. Rev., 61, 537 (1961); H. Kwart and K. King, ibid., 68, 415 (1968): S. Seltzer, Adv. Alicyclic Chem., 2, 1 (1968); J. Sauer, Angew. Chem., int. Ed. Engl., 5, 211 (1966); 6, 16 (1967); W. C. Herndon, Chem. Rev., 72, 157 (1972).
(6) J. A. Berson, A. Remanick. and W. A. Mueller, J. Am. Chem Soc., 82, 5201 (1960); J. A. Berson, Z. Hamlet, and W. A. Mueller, ibid., 84, 297 (1962): J. M. Mellor and C. F. Webb, J. Chem. Soc., Perkin Trans. 2, 17, 26 (1974).
(7) K. Alder and G. Stein, Angew. Chem., 50, 510 (1937).
(8) R. Hoffmann and R. B. Woodward, J. Am. Chem. Soc., 87, 4388 (1965).
(9) W. C. Herndon and L. H. Hall, Tetrahedron Lett., 3095 (1967).
(10) A. Wassermann. J. Chem. Soc.. 828, 1511 (1935): K. L. Williamson and Y. F. L. Hsu, J. Am. Chem. Soc., 92, 7385 (1970); Y. Kobuke, T. Fueno, and J. Furukawa, ibid., 92, 6458 (1970); T. Fueno, ibid., 94, 3633 (1972).
(11) S. W. Benson, "The Foundations of Chemical Kinetics", McGraw-Hill, New York, N.Y., 1960, pp 82, 83.
(12) H. Kwart and I. Burchuk. J. Am. Chem. Soc., 74, 3094 (1952); J. A. Berson and R. Swidler, ibid., 75, 1721 (1953); R. B. Woodward and H. Baer, ibid., 66, 645 (1944); J. E. Baldwin and J. D. Roberts, ibid., 85, 115 (1963); W. C. Herndon, C. R. Grayson, and J. M. Manion, J. Org. Chem., 32, 526 (1967).

Lewis Acid Rearrangement of 2,3-Epoxycarane. Formation of a Novel m-Menthenone

Benjamin C. Clark, Jr.,* Thomas C. Chafin, Peter L. Lee, and George L. K. Hunter
Corporate Research and Development Department, The Coca-Cola Company, Atlanta, Georgia 30301

Received August 1, 1977
Rearrangement of 2,3-epoxycarane (1) employing metatitanic acid has been previously studied ${ }^{1}$ and found to yield predominately alcohol 2 . It has also been reported ${ }^{2}$ that epoxidation of 2,3 -carene with peracetic acid leads directly, after saponification of acetates, to 2 and diol 3. Recent work, ${ }^{3}$

consistent with earlier results, has shown that epoxide 1 undergoes rearrangement to 2 and a series of allylic alcohols and hydrocarbons derived most likely from 2 . This latter work employed a wide range of solid acids and bases $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{FeSO}_{4}, \mathrm{TiO}_{2}-\mathrm{ZrO}_{2}$, and CAO , and in no case were carbonyl and/or ring-contraction products identified. Conversely, it has been found that 3,4-epoxycarane (4), using the above solid catalysts ${ }^{3}$ and also zinc bromide (ZnBr_{2}), ${ }^{4}$ gave relatively good yields of the ring-contraction product aldehyde 5 along with ketones and allylic alcohols, almost all of which could be derived from an intermediate of type 6 .

We had a need for aldehyde 7 which, in principle, could be formed from epoxide 1 by an analogous route using the strong

Lewis acid ZnBr_{2}. Accordingly, epoxide 1 was prepared essentially quantitatively from 2,3 -carene (8) using m-chloroperbenzoic acid in a two-phase system reported ${ }^{5}$ to be useful for very labile epoxide preparation. The NMR of 1 compared well to a published spectrum. ${ }^{6}$ A conventional procedure using monoperphthaiic acid gave considerable rearrangement to 2 and 3.

Only a very small amount of an aldehyde was produced (see Table I). The aldehyde had a MS almost identical to 5, which as previously discussed is formed from 3,4-epoxycarane (4). The yield could not be increased and not enough material could be isolated to determine if the aldehyde was the desired compound 7 or the known 5 . It is almost certain that the aldehyde in question is 5 derived from 3,4-epoxycarane (4), present as an approximately 2% impurity in the starting epoxide. cis-3-Caranone (11), the major product of ZnBr_{2} rearrangement of 4 , was also detected. Production of 7 would require epoxide opening without cyclopropyl participation, which apparently does not occur to any detectable extent. Rearrangement of 1 employing stannic chloride $\left(\mathrm{SnCl}_{4}\right)$ led to lower yields of ketone; results are included in Table I along with the products of the ZnBr_{2} rearrangement in benzene.

Treatment of epoxide 1 with ZnBr_{2} in refluxing toluene yielded a number of terpene hydrocarbons. The reaction products and amounts are given in Table I and are listed as they elute from the VPC. α-Terpinene, limonene, and β phellandrene are reported for the first time as products of acid rearrangement of 2,3 -epoxycarane (1). Of considerably more interest was the major product, a m-menthenone, shown to be 2 -methyl-4-isopropylcyclohex-3-en-1-one (9) amounting to 40% of the volatile products. The IR of 9 showed it to contain a nonconjugated carbonyl ($\nu=1720 \mathrm{~cm}^{-1}$). The $100-\mathrm{MHZ}$ NMR spectrum was in accord with 9 and exhibited a sharp six-proton doublet at $\delta 1.04\left(J=7 \mathrm{~Hz} ; \mathrm{CH}_{3}, 1\right.$ and 2), a three-proton doublet at $1.14\left(J=7 \mathrm{~Hz}, \mathrm{CH}_{3}, 3\right)$, a one-proton quintet centered at $2.3\left(J=7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right)$, a four-proton narrow multiplet at $2.46\left(\mathrm{H}_{\mathrm{b}}\right)$, a broad one-proton quartet with additional splitting at $2.88\left(J=7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right)$, and a one-proton doublet with additional splitting at $5.37\left(J=3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right)$. Proton

Table I. 2,3-Epoxycarane Rearrangement Products

Compound	Registry no.	Structure determined by	Area, $\%^{\text {a }}$		
			b	c	d
α-Terpinene	99-86-5	MS	0.1	0.4	0.4
Limonene	138-86-3	MS	1.9	0.4	1.1
A p-menthatriene-possibly 1,4,8-p-menthatriene	28233-65-0	MS	0.2	0.4	<0.1
β-Phellandrene and a p-menthatriene	555-10-2	MS	0.6	0.4	<0.1
p-Cymene	99-87-6	IR, MS	17.0	17.0	24.2
Terpinolene	586-62-9	IR, MS	6.0	0.5	0.1
Aldehyde (probably aldehyde 5)	13124-67-9	MS	0.7	<0.1	<0.1
p - α-Dimethylstyrene	1195-32-0	IR, NMR, MS	7.7	22.7	<0.5
2-Methyl-4-isopropylcyclohex3 -en-1-one (9)	63028-18-2	See Exptl Sect	40.4	29.1	17.1
\% total volatiles identified			74.4	70.9	43.4

${ }^{a}$ VPC peak area as a percent of total peak area. ${ }^{b} \mathrm{ZnBr}_{2}$-refluxing toluene. ${ }^{c} \mathrm{ZnBr}_{2}-$ refluxing benzene. ${ }^{d} \simeq 2 \% \mathrm{SiCl}_{4}$ in benzene cooled in ice bath.

H_{a} exhibited five lines of the theoretical septet due to the very low intensity of outer septet lines and low S / N ratio encountered in microcell techniques. Structure 9 was further confirmed by isomerization with p-toluenesulfonic acid to the known ketone $10{ }^{7}$

Formation of the major product, ketone 9, can be postulated by a mechanism outlined in Scheme I. Anti-Markovnikov opening of the epoxide ring with cyclopropyl participation could yield carbonium ion A. In the previous studies, ${ }^{1-3}$ this ion could account for the reported products without carbon rearrangement. However, by employing conventional Lewis acids (ZnBr_{2} and SiCl_{4}), it appears that a fundamental rearrangement involving both a hydride and methyl shift takes place ($\mathrm{A} \rightarrow \mathrm{B} \rightarrow 9$). The stereochemistry of the oxide and resulting carbonium ions is most likely as shown, since the stereochemistry of the starting oxide, prepared with peracid, has been shown to be trans $-1 .{ }^{6}$

The methyl ketone 12 , which could be formed from ion B by ring migration, was not detected in the reaction mixture. In contrast, a mixture of cis- and trans-limonene oxide (13) was found ${ }^{8}$ to undergo rearrangement without methyl migration but with ring contraction $(13 \rightarrow 14) .{ }^{9}$ Models show that

these results can be explained by stereochemical differences, since the axial methyl group is ideally disposed for migration (axial and parallel to the porbitals of the double bond in intermediates (A, B) leading to ketone 9.

For limonene oxide (13), both the methyl group and ring carbon are equally disposed stereochemically to migration. If it is assumed that the transition state resembles the ground state, then the group with the highest migratory aptitude (the secondary ring carbon) will undergo rearrangement.

Experimental Section

Analyses by VPC were performed on a Perkin-Elmer 900 equipped with dual 12 ft , $1 / 8 \mathrm{in}$. i.d. glass columns, modified for on-column injection and packed with 5\% Triton X-305 on Chromosorb W. H.P $80-100$ mesh. The oven temperature was programmed from 70 to 170 ${ }^{\circ} \mathrm{C}$ at $2^{\circ} \mathrm{C} / \mathrm{min}$. A flow rate of $35 \mathrm{~mL} / \mathrm{min}$ of helium was employed. Compounds were purified as clear liquids by collection in glass capillaries or $1 / 8$-in. glass tubing from an F\&M 810 GC equipped with a TC detector, $1 / 4$-in. glass column, and generally operated as above. IR spectra were determined using a PE-221 or PE-281; MS were determined using a Hitachi-RMU-6L. NMR were determined on a Varian T-60-A or JEOL-MH-100 in DCCl_{3} using $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Microanalysis was performed by Spang Microanalytical Laboratory, Ann Arbor, Mich.

2,3-Epoxycarane (1). m-Chloroperbenzoic acid ($1.28 \mathrm{~g}, 6.3 \mathrm{nmol}$) was added over 1.5 h to a mixture of $0.75 \mathrm{~g}(5.5 \mathrm{mmol})$ of 2,3 -carene (8), ${ }^{10} 18 \mathrm{~mL}$ of $0.5 \mathrm{M} \mathrm{NaHCO}_{3}$, and 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and stirred in an ice bath. The ice bath was then removed and the mixture was stirred an additional 2 h . The solution was washed with saturated $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(1 \times 20 \mathrm{~mL})$, and saturated $\mathrm{NaCl}(1 \times 20$
mL), dried over anhydrous potassium carbonate, and concentrated under reduced pressure to yield epoxide $1(0.8 \mathrm{~g})$. VPC analysis showed the material to be $>95 \%$ pure and it was used without further purification: ${ }^{11}$ IR (neat) $2940,1450,1372$, and $855 \mathrm{~cm}^{-1} ;$ NMR $\delta 0.6$ (br m, 1H) and $1.0(\mathrm{n}, \mathrm{m}, 1 \mathrm{H}$) (cyclopropyl protons), 1.07 ($\mathrm{s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CCH}_{3}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.67(\mathrm{t}, 2 \mathrm{H}$ superimposed on br m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.0(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}, \mathrm{HCO}$); MS m / e (rel intensity) 152 (7), 134 (73), 132 (19), 120 (20), 119 (100), 117 (34), 91 (67), 79 (15), 77 (23).

Rearrangement of Epoxide 1 with Zinc Bromide. Approximately 20 mg of ZnBr_{2} (Fisher certified, not fused) was added to 3 mL of toluene which had been distilled and stored over molecular sieves. The mixture was brought to reflux with vigorous stirring in an apparatus which had been well flushed with nitrogen and equipped with a drying tube. Three-quarters of a mixture of epoxide $1(150 \mathrm{mg}, 0.98$ mmol) and 3 mL of toluene was added immediately. After 10 min the remaining one-quarter was added over a $10-\mathrm{min}$ period. Forty minutes after initial oxide addition, the reaction mixture was cooled, taken up in 30 mL of ether, washed successively with water $(2 \times 10 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(1 \times 10 \mathrm{~mL})$, and saturated $\mathrm{NaCl}(1 \times 10 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Partial removal of solvent under reduced pressure afforded an oily residue from which 2 -methyl-4-iso-propylcyclohex-3-en-1-one (9) ${ }^{15}$ was isolated by preparative VPC: IR (CCL4) 2975, 1720, 1360, 1200, 1180 (d), 970 and $930 \mathrm{~cm}^{-1}$; UV (95% $\mathrm{EtOH}) \lambda_{\text {max }} 290 \mathrm{~nm}(\Sigma=90.9) ; \mathrm{NMR} \delta 1.04(\mathrm{~d}, 6 \mathrm{H}, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CCH}_{3}$), $1.14\left(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{hz}, \mathrm{CH}_{3} \mathrm{C}-\right.$), 2.3 (quintet, $1 \mathrm{H}, J=7$ Hz), 2.46 ($\mathrm{n}, \mathrm{m}, 4 \mathrm{H}$), 2.88 ($\mathrm{br} q$ with additional splitting $\mathrm{HCC}=0$), 5.37 (n, m, 1 H, HC=C); MS m/e (rel intensity) 153 (4), 152 (42), 135 (5), 100 (65), 109 (10), 96 (11), 95 (100), 81 (30), 68 (10), 67 (25), 55 (11). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$: C, 78.89; H, 10.59. Found: C, 79.08; H, 10.41.

2-Methyl-4-isopropylcyclohex-2-en-1-one (10). A mixture of ketone 9 ($4.4 \mathrm{mg}, 2.9 \times 10^{-2} \mathrm{mmol}$), a trace of p-toluenesulfonic acid monohydrate, and $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ was refluxed for 30 min , taken up in 30 mL of ether, and worked up as previously described for the ZnBr_{2} rearrangement to yield an oily residue. One major product ($>95 \%$ of total volatiles) was isolated by VPC and shown to be ketone 10: UV $(95 \% \mathrm{EtOH}) \lambda_{\text {max }} 227 \mathrm{~nm}$; $\mathrm{IR}^{12} 2950,1680(\mathrm{C}=0), 1355$ and 1375 (d), $1125,1103,1072(\mathrm{~d}) \mathrm{cm}^{-1} ; \mathrm{MS}^{13} \mathrm{~m} / \mathrm{e}$ (rel abundañce) 153 (9), 152 (57), 137 (9), 111 (10), 110 (100), 109 (58), 97 (23), 96 (19), 95 (73), 81 (43).

Acknowledgment. We thank Dr. F. Bayer for determination of the $100-\mathrm{MHz}$ NMR Spectra.

Registry No.-1, 64130-68-3; 8, 554-61-0; 10, 41469-46-9.

References and Notes

(1) J. O. Bledsoe, Jr., J. M. Derfer, and W. E. Johnson, Jr., U.S. Patent 3814733 (1974).
(2) G. Ohloff and W. Giersch, Helv. Chim. Acta, 51, 1328 (1968).
(3) K. Arata, J. O. Bledsoe, and K. Tanabe, Tetrahedron Lett., 3861 (1976).
(4) (a) V. S. Joshi, N. P. Damodaran, and S. Dev, Tetrahedron, 27,475 (1971): (b) R. L. Settine and C. McDaniel, J. Org. Chem., 32, 2910 (1967).
(5) W. K. Anderson and T. Veysoglu, J. Org. Chem., 38, 2267 (1973).
(6) B. A. Arbuzov, A. R. Vil'chinskaya, Yu. Yu. Samitov, S. G. Vul'fson, and A. N. Vereshchagin, Isv. Akad. Nauk Kaz. SSSR, Ser. Khim., 2163 (1969).
(7) L. Huang, K. Ranganayakulu, and T. S. Sorensen, J. Am. Chem. Soc., 95, 1936 (1973).
(8) R. L. Settine, G. L. Parks, and G. L. K. Hunter, J. Org. Chem., 29, 616 (1964).
(9) It should be noted that 90% of the products from this reaction are derived from normal opening of the epoxide to yield a tertiary carbonium ion.
(10) Supplied as a gift by Dr. T. F. Sanderson, Hercules, Inc., Wilmington, Del., 95% pure by VPC and contained $\simeq 2.5 \% 3,4$-carene.
(11) The oxide was very sensitive and underwent some rearrangement/decomposition when collected via VPC.
(12) The \mathbb{R} compared well to a spectra of authentic ketone 10 kindly furnished by Dr. J. G. Witteveen of Naarden International, Holland.
(13) MS was identical to authentic 10 generated with levulinic acid ${ }^{14}$ from the 2,4-dinitrophenylhydrazone supplied as a gift by Professor T. S. Sorensen, University of Calgary, Calgary, Alberta, Canada.
(14) C. H. DePuy and B. W. Ponder, J. Am. Chem. Soc., 81, 4629 (1959).
(15) Note Added In Proof. After this paper was accepted for publication we became aware of a report of menthenone 9 by W. Kraus and G. Zartner, Tetrahedron Lett., 13 (1977), in which 9 was reported in low but unspecified yield by rearrangement of fenchone. The compound was characterized only by two NMR bands and two IR bands. These spectrai data do not appear compatible with 9 . Essentially no experimental was given.

Exothermic Cyclic Peroxide Reactions. Decomposition of a $1,2,4$-Trioxane

Gary B. Schuster* and Lynn A. Bryant
Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801

Received July 12, 1977
Recent reports on the thermolysis of cyclic peroxides ${ }^{1,2}$ and the suggestion that the $1,2,4$-trioxane ring may be a key chemiluminescent intermediate ${ }^{3}$ prompt us to communicate our results on the thermolysis of trans-4,4-dimethyl-2,3,5trioxabicyclo[4.4.0]decane (1). Peroxides containing the

1,2,4-trioxane ring system have been prepared previously. ${ }^{4}$ However, the products and the kinetic behavior of this molecular class were not reported. In this note we relate our findings on the thermal behavior of 1,2,4-trioxane 1 .

Degassed solutions of peroxide 1 in octane or diphenyl ether were thermolyzed at temperatures ranging from 160 to $189^{\circ} \mathrm{C}$. Analysis of the resulting product mixture by mass and NMR spectroscopy and gas chromatography revealed acetone (2) and adipaldehyde (3) (see eq 1). The yield of acetone was essentially quantitative; however, the amount of aldehyde 3 formed was dependent upon the extent of the reaction. Extrapolation to very low conversion indicated that the adipaldehyde was formed in $\sim 95 \%$ yield. Independent control experiments confirmed that aldehyde 3 was unstable under the reaction conditions.

Investigation of the kinetics for the decomposition of peroxide 1 indicated that the rate of reaction was cleanly first order in peroxide concentration for at least four half-lives. Moreover, it was observed that the addition of n-butyl mercaptan did not inhibit the thermal decomposition of 1 (see Table I). The activation parameters for the thermal cleavage of peroxide 1 were determined by investigating the effect of temperature on the observed rate of this reaction. Leastsquares analysis of the thermal rate data indicated that ΔG^{\ddagger} for the rate-determining step of this reaction is 39.9 ± 1.4 $\mathrm{kcal} / \mathrm{mol}$ at $175^{\circ} \mathrm{C}$.

The results of the investigation of the rate and products of the thermal decomposition of peroxide 1 are consistent with the unimolecular thermal cleavage of the oxygen-oxygen bond as the initial bond-breaking step. The activation energy and the small rate enhancement in more polarizable solvents, ${ }^{5}$ as well as the products observed, are in agreement with this

Table I. Thermal Reaction Rate of Peroxide 1

Solvent a	$\mathrm{Temp},{ }^{b}{ }^{\circ} \mathrm{C}$	Added substrate	$k \times 10^{5}, \mathrm{~s}^{-1}$
Octane	188.9		48.4
Octane	181.9		22.4
Octane	180.0	n-Butyl mercaptan	
cher	16.4		
Diphenyl ether	172.0		61.6
Octane	169.4		7.54
Octane	161.0		2.73

${ }^{a}$ Peroxide concentration was typically $2.5 \times 10^{-2} \mathrm{M} .{ }^{b}$ Temperature was regulated to within $0.2^{\circ} \mathrm{C} .{ }^{c}$ The mercaptan concentration was $5 \times 10^{-2} \mathrm{M}$.
conclusion. The 1,6 diradical formed from this bond cleavage (4) has several reaction paths open to it.

Hydrogen atom abstraction through a six-membered ring transition state is a common reaction of alkoxy radicals. If this were to occur from diradical 4, we anticipate that adipoin (5) would result (see Scheme I). No 5 was found in the reaction mixture. Moreover, it was determined that the adipoin was stable under the reaction conditions. The lack of adipoin formation can be understood if the lifetime of diradical 4 is extremely short. This would be the case if a fast irreversible reaction of 4 were occurring.

A second common reaction of alkoxy radicals is α cleavage to form carbonyl compounds. Biradical 4 must break two α bonds to form the observed products. Three choices for the sequence of bond-breaking steps from this intermediate seem apparent. First, if the bond labeled a (see Scheme I) cleaves first, acetone and a 1,4 biradical will be formed. It should be noted that this 1,4 biradical is the anticipated intermediate in the chemiluminescence of the corresponding 1,2-dioxetane. ${ }^{6}$ Alternatively, initial cleavage of the bond labeled b would generate the 1,4 biradical, resulting from the as yet unknown 1,3 -dioxetane ring system. Finally, bonds a and b could cleave simultaneously, generating the observed products in one step from the 1,6 biradical. Our results cannot distinguish between these possible reaction pathways.

Peroxide 1 is potentially a chemiluminescent intermediate. ${ }^{3}$ Group equivalent calculations ${ }^{7}$ indicate that the reaction of 1 to 2 and 3 is exothermic by $\sim 37 \mathrm{kcal} / \mathrm{mol}$. Inclusion of the observed activation energy suggests that $\sim 77 \mathrm{kcal} / \mathrm{mol}$ is available for the formation of electronically excited states. This quantity is probably sufficient to populate the triplet state of simple carbonyl compounds with reasonable efficiency. Moreover, if the suspected biradical intermediate (4) goes on to product by cleaving bond a, a mechanistic pathway consistent with previous light-forming reactions is available. Unfortunately, the high temperatures required to decompose peroxide 1 mitigate against the detection of a low yield of electronically excited states. The lifetime of carbonyl excited states is shortened at high temperatures so that radiative and energy-transfer processes are at a competitive disadvantage. We did not observe any chemiluminescence that we could assign to the unimolecular decomposition of 1 .
In summary, we have observed that upon thermolysis the relatively stable cyclic peroxide 1 undergoes unimolecular cleavage to form carbonyl compounds 2 and 3 with high efficiency. In addition, the suspected intermediate biradical formed from homolysis of the oxygen-oxygen bond must rearrange rapidly (most probably) by an α-cleavage reaction. Finally, no chemiluminescence was observed during this reaction, although sufficient energy is available to form the lowest triplet state of the observed products.

Experimental Section

NMR spectra were determined with Varian T-60 and EM-390 spectrometers using tetramethylsilane as an internal standard. IR
spectra were recorded on a Perkin-Elmer 137 instrument. Analytical gas chromatography was carried out on a Varian 2700 all-glass chromatograph equipped with flame ionization detectors, using a $6 \mathrm{ft} \times$ 0.25 in. o.d. glass column with $3 \% \mathrm{SE}-30$ on Chromosorb Q at $175^{\circ} \mathrm{C}$. All solvents were Aldrich spectrophotometric grade and were used without further purification.
trans-4,4-Dimethyl-2,3,5-trioxabicyclo[4.4.0]decane (1). Peroxide 1 was prepared by the procedure of Payne and Smith. ${ }^{8} \mathrm{Pu}$ rification was accomplished by distillation [bp 45-50 ${ }^{\circ} \mathrm{C}(0.5 \mathrm{~mm})$], followed by repeated recrystallization from pentane to yield 15% of the analytically pure peroxide: $\mathrm{mp} 24-25^{\circ} \mathrm{C}$; IR $\left(\mathrm{CCl}_{4}\right) 3.3,7.3-7.4$ (gem-dimethyls), 8.2, 9.3, $10.6 \mu \mathrm{~m}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.3(\mathrm{~s}, 3 \mathrm{H}), 1.6(\mathrm{~s}$, 3 H), 3.68 (m, $J=11,8,3.5 \mathrm{~Hz}$).

Procedure for Determination of Reaction Rate. Solutions of peroxide 1, typically $2.5 \times 10^{-2} \mathrm{M}$, and an internal standard, usually decane, were prepared in Pyrex test tubes. The samples were degassed at $5 \times 10^{-4} \mathrm{~mm}$ through three freeze-pump-thaw cycles and sealed under vacuum. The tubes were then thermolyzed and analyzed at intervals by gas chromatography as described. The rate of reaction of the peroxide and appearance of acetone were both first order. The rate constants were extracted from these data by least-squares analysis and are reported in the Table I.

Acknowledgment. This work was supported in part by the Office of Naval Research and the donors of the Petroleum Research Fund, administered by The American Chemical Society.

Registry No.-1, 64235-36-5; 2, 67-64-1; 3, 1072-21-5.

References and Notes

(1) W. Adam and N. Duran, J. Am. Chem. Soc., 99, 2729 (1977).
(2) W. Adam and J. Sanabia, Angew. Chem., Int. Ed. Engl., 12, 843 (1973).
(3) T. Goto and H. Nakamura, Tetrahedron Lett., 4627 (1976).
(4) M. Schultz, unpublished data quoted in "Organic Peroxides'", Vol. 3, D. Swern, Ed., Wiley, New York, N.Y., 1972, p 116; R. M. Wilson, E. J. Gardner, R. C. Elder, R. H. Squire, and L. R. Florian, J. Am. Chem. Soc., 96, 2955 (1974); W. Adam and A. Rios, Chem. Commun., 822 (1971).
(5) C. Walling, H. P. Waits, J. Milovanovic, and C. G. Pappiaonnou, J. Am. Chem. Soc., 92, 4927 (1970)
(6) J. Y. Koo and G. B. Schuster, J. Am. Chem. Soc., 99, 5403 (1977).
(7) S. W. Benson, F. R. Cruickshank, D. B. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Walsh, Chem. Rev., 69, 279 (1969).
(8) G. B. Payne and C. W. Smith, J. Org. Chem., 22, 1682 (1957).

β Radioloysis of Crystalline ${ }^{14} \mathbf{C}$-Labeled Amino Acids

William A. Bonner,* Richard M. Lemmon, and H. Pierre Noyes

Department of Chemistry, Stanford University, Stanford, California 94305, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, and Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

Received July 5, 1977
In an investigation of the possible validity of the VesterUlbricht β-decay parity violation mechanism ${ }^{1-3}$ for the abiotic origin of molecular chirality, one of us has recently shown ${ }^{4,5}$ that $10-20 \%$ net longitudinally polarized $120-\mathrm{keV}$ electrons produced in a linear accelerator caused the asymmetric degradation of DL-leucine. "Natural" antiparallel spin-polarized electrons preferentially degraded the D-leucine component of the racemate, and parallel spin electrons selectively destroyed the L enantiomer. This was the first positive demonstration of asymmetric degradation by β particles since Garay's 1968 report ${ }^{6}$ that 0.36 mCi of ${ }^{90} \mathrm{SrCl}_{2}$ in aqueous solution caused more rapid decomposition of dissolved D-tyrosine than of L-tyrosine. Earlier studies ${ }^{1-3,7}$ and our subsequent attempts ${ }^{8,9}$ to modify and extend Garay's experiments to other amino acids, both solid and dissolved, using a $61700-\mathrm{Ci}$ ${ }^{90} \mathrm{Sr}-{ }^{90} \mathrm{Y}$ source at Oak Ridge National Laboratory led to no observable asymmetric radiolyses. More recently, Darge and co-workers ${ }^{10}$ made the remarkable report that DL-tryptophan in frozen aqueous solution suffered 33% total degradation and
(based on its optical rotation of $0.0007 \pm 0.0004^{\circ}$) a 19% optical enrichment of the D enantiomer during its 12 -week exposure to 0.63 mCi of dissolved [$\left.{ }^{32} \mathrm{P}\right]$ phosphate. In view of the several positive reports of asymmetric β radiolysis reviewed above, we have been encouraged to examine for β-induced optical activity a number of ${ }^{14} \mathrm{C}$-labeled DL amino acids of high specific radioactivity ($\sim 300-600 \mathrm{mCi} / \mathrm{mol}$) prepared $17-25$ years ago at the Lawrence Berkeley Laboratory, University of California.

The racemic amino acids studied and the radiochemical and analytical data pertaining to them are recorded in Table I. Three of the amino acids listed in Table I (DL-Ala, DL-Asp, and DL-Nva) have been examined previously ${ }^{11}$ for optical activity (using ORD measurements) and percent decomposition (using the amino acid analyzer), with the observation of no selective radiolysis. In the present study we have used quantitative gas chromatography (GC) as our analytical criterion for both the enantiomeric composition of the undercomposed amino acid residues as well as for percent degradation (using the "enantiomeric marker" technique ${ }^{12}$). GC not only provides the important advantage (over optical rotation) of looking at only the residual enantiomers of interest (uncontaminated by accompanying degradation products which may or may not be optically active) but is capable, particularly with microquantities, of superior accuracy and precision $(\sim 0.2 \%)^{13}$ in the quantitative analysis of enantiomers. The DL amino acids in Table I were converted to their N-trifluoroacetyl isopropyl esters as previously described ${ }^{13}$ and analyzed in replicate with the aid of a digital electronic integrator, ${ }^{13}$ using $150 \mathrm{ft} \times 0.02$ in stainless steel capillary GC columns ${ }^{13}$ coated with the optically active GC phases N-lauroyl- ${ }^{14}$ or N-docosanoyl-L-valine tert-butylamide. ${ }^{15}$ All GC analyses were interspersed "back-to-back" with an equal number of replicate GC analyses of the corresponding nonradioactive, authentic DL amino acid as a control. For comparison purposes, Table I also summarizes radiochemical, percent decomposition, and enantiomeric composition data, similarly obtained, for a number of labeled D and L amino acids, which had been prepared by optical resolution of several of the racemic amino acids in Table I.
The enantiomeric compositions in Table I indicate that the D / L ratios of the radioactive DL amino acids examined are 50:50, within experimental error, and that they suffered no asymmetric degradation, despite self-radiolyses as high as 67%. The enantiomeric compositions of the resolved amino acids show further that racemization does not necessarily accompany self-radiolysis in the dry state, although comparison of the enantiomeric compositions noted for D-norvaline $-3-{ }^{14} \mathrm{C}$ and D -leucine- $3-{ }^{14} \mathrm{C}$ with those estimated from the original optical rotations of the samples suggests that some racemization may be possible. From the specific radioactivity of the samples and their ages, one can calculate the number of β particles emitted during the lifetimes of the samples. From these numbers (not shown) and the percent decompositions, one can calculate the number of molecules decomposed per β particle, which proves to vary between about 6000 and 36000 among our samples. These numbers are higher than the ~ 3000 molecules decomposed per electron observed during our previously reported ${ }^{4}$ asymmetric degradations of DL-leucine with longitudinally polarized linear accelerator electrons. The variability in the percent decomposition and hence the number of molecules decomposed per electron, as well as the G values observed for comparable samples (e.g., D-, L-, and DL-valine- $4,4^{\prime}-{ }^{14} \mathrm{C}$, D-vs. DL-leucine- $3-{ }^{14} \mathrm{C}$, etc.), is noteworthy and may be due, we suspect, to the variability of trace impurities, including moisture, in the 17-25-year-old samples. Finally, the racemic nature of the radiolyzed DL amino acids in Table I further indicates that microbial degradation could not have been operative during the lifetimes

Table I

Amino acid	Registry no.	Radioactivity, $\mathrm{mCi} / \mathrm{mol}$	Age, ${ }^{a}$ years	Total dose,$\begin{gathered} \text { rads } \\ \times 10^{-7} \end{gathered}$	Percent decomposed	Molecules decomposed per electron $\times 10^{-4}$	$G^{\text {b }}$	Enantiomeric composition		
								\%D	\%L	$\mathrm{SD}^{\text {d }}$
DL-Alanine-2-14C	4548-47-4	285	15.9	5.05	26.5	2.84	56.8	$50.06{ }^{\text {c }}$	49.94	± 0.85
DL-Valine-4, 4^{\prime} - ${ }^{14} \mathrm{C}$	5776-57-8	316	25.8	6.51	30.0	1.90	38.0	$50.19^{\text {c }}$	49.81	± 0.20
DL-Norvaline-3-14C	3409-47-0	574	24.9	11.41	17.4	0.63	12.6	$49.94{ }^{\text {c }}$	50.06	± 0.18
DL-Leucine-3- ${ }^{14} \mathrm{C}$	3409-50-5	446	24.0	7.63	67.8	3.26	65.2	$50.15^{\text {c }}$	49.85	± 0.22
DL-Norleucine-3-14C	64235-74-1	551	24.9	9.78	24.1	0.90	18.0	$50.10^{\text {c }}$	49.90	± 0.17
DL-Aspartic-4- ${ }^{14} \mathrm{C}$ acid	19701-77-0	319	24.1	5.40	~ 50	3.35	67.0	$50.23{ }^{\text {c }}$	49.77	± 1.02
D-Valine-4,4'- ${ }^{14} \mathrm{C}$	64235-81-0	316	21.3	5.37	31.2	2.39	47.8	100.00	0.00	
L-Valine-4, 4^{\prime} - ${ }^{14} \mathrm{C}$	64235-72-9	316	21.3	5.37	47.1	3.62	72.4	0.00	100.00	
D-Norvaline-3- ${ }^{14} \mathrm{C}$	64235-71-8	574	20.5	9.39	21.1	0.92	18.4	93.95	6.05	± 0.21
L-Norvaline-3-14 C	64235-70-7	574	20.5	9.39	20.3	0.89	17.8	0.87	99.13	
D-Leucine-3- ${ }^{14} \mathrm{C}$	64235-69-4	446	20.6	6.55	39.5	2.22	44.4	92.55	7.45	± 0.11
D-Norleucine-3-14C	64235-68-3	551	20.6	8.09	25.9	1.17	23.4	99.80	0.20	
L-Norleucine-3-14C	64235-67-2	551	20.6	8.09	18.6	0.84	16.8	0.80	99.20	

${ }^{a}$ Between date of preparation and date of analysis. ${ }^{b}$ Molecules decomposed per 100 eV , assuming average energy per $\beta=5.0 \times$ $10^{4} \mathrm{eV} .{ }^{c}$ Corrected to a D/L ratio of 50:50 for composition of authentic DL standard. ${ }^{d}$ SD denotes standard deviation for 3-5 replicate GC analyses.
of the samples, since if it had an excess of D enantiomer it should be observed in the residual materials.

Even though ${ }^{14} \mathrm{C} \beta$ particles are relatively low energy (endpoint energy $155 \mathrm{keV},{ }^{16}$ mean energy $\sim 50 \mathrm{keV}$), their polarization is substantial. Both theoretically and experimentally, ${ }^{17} \beta^{ \pm}$particles emitted with velocity v during weak nuclear decays have a helicity (longitudinal polarization along their direction of motion) of $\mp v / c$. This is a direct consequence of the two-component neutrino theory which predicted the nonconservation of parity. ${ }^{18}$ Since the kinetic energy of the electron is related to its rest energy $m c^{2}$ by eq $1,{ }^{19}$ it follows that v / c is given by eq 2 . Since the rest energy $m c^{2}$ of the electron is $511 \mathrm{keV},{ }^{20}$ this implies a polarization for ${ }^{14} \mathrm{C}$ betas of 64.1% at the endpoint energy and 41.3% at the middle (50 keV) of the energy spectrum. Subsequent ionization processes which slow down the primary electron decrease its energy on the average only by $\sim 30 \mathrm{eV}$ per ion pair produced, ${ }^{21}$ and furthermore it is known ${ }^{22}$ that such ionizations leave the longitudinal polarization of the primary electron virtually unchanged until it has been slowed down to a few keV. ${ }^{23}$ We thus conclude that the polarization of the primary electrons available for initiating chiral destruction of the substrate in the ${ }^{14} \mathrm{C}$ experiments is somewhat greater than the polarization ($10-20 \%$) of the electrons employed in the accelerator experiments. ${ }^{4,5}$

$$
\begin{gather*}
T=m c^{2}\left[\left(1-v^{2} / c^{2}\right)^{1 / 2}-1\right] \tag{1}\\
v / c=\left(2 T / m c^{2}\right)^{1 / 2}\left(1+T / 2 m c^{2}\right)^{1 / 2} /\left(1+T / m c^{2}\right) \tag{2}
\end{gather*}
$$

Thus, the failure to observe asymmetric β radiolysis in the solid DL amino acid samples listed in Table I, as compared to the small but successful asymmetric degradations previously induced ${ }^{4,5}$ in DL-leucine by the $10-20 \%$ net longitudinally polarized linear accelerator electrons, is at first appearance puzzling. We believe, however, that the discrepancy may be rationalized as follows. As is apparent (Table I) from the large number of molecules decomposed for each ${ }^{14} \mathrm{C}$ beta emitted, the majority of the degradations must be engendered by secondary electrons produced by numerous subsequent ionizations caused by the primary ${ }^{14} \mathrm{C} \beta$ particles. The degree of polarization, if any, of such secondary electrons is not known ${ }^{3}$ but presumably it is at best considerably less than that of the primary β particles, and furthermore the energies of the secondary electrons ($\sim 30-\mathrm{eV}$ average ${ }^{21}$) are in a range more suitable for initiating chemical changes. ${ }^{24}$ For these reasons, it seems possible that the differing sample geometries in the two types of experiments might be crucial. In the accelerator
experiments the amino acid target was a thin layer in a plane perpendicular to the impinging $120-\mathrm{keV}$ electron beam, while the ${ }^{14} \mathrm{C}$ amino acids were thick bulk samples isotropically irradiated by internally produced β particles. The latter geometry clearly allows for the preferential production and intervention of less polarized (or unpolarized) secondary electrons, which in turn cause greater degradation of a less asymmetric (or totally symmetric) nature. This possibility is emphasized by the fact that up to 36000 molecules were decomposed per primary β particle in the ${ }^{14} \mathrm{C}$-labeled samples (Table I), whereas only ~ 3000 molecules per (higher energy) electron were destroyed in the accelerator experiments. ${ }^{4,5}$ Another difference of possible significance is the differing time scale involved in the two types of experiment. The accelerator samples were irradiated for a matter of hours only and were analyzed immediately thereafter, whereas the ${ }^{14} \mathrm{C}$-labeled samples suffered self-radiolysis during several decades prior to their GC analyses. Clearly the possibility of migration within the crystal lattice of the initial degradation fragments and possible secondary decompositions subsequently engendered by them is much greater in the ${ }^{14} \mathrm{C}$ samples. Such presumably symmetrical processes could conceivably reduce the net asymmetric effect to undetectable levels. It should be mentioned finally that circularly polarized bremsstrahlung produced by the initial longitudinally polarized β particles, which had been originally postulated ${ }^{1-3}$ as the source of asymmetric photochemical effects which might produce optical activity, has recently been shown ${ }^{25,26}$ on energetic grounds to be ineffective in engendering even significant gross degradation of the target sample. Other problems regarding the β-decay mechanism for the origin of optical activity involving ${ }^{14} \mathrm{C}$ and ${ }^{40} \mathrm{~K} \beta$ particles have recently been discussed by us. ${ }^{27}$
Acknowledgment. We are indebted to the National Aeronautics and Space Administration (W.A.B.) and to the Division of Biomedical and Environmental Research of the U.S. Energy Research and Development Administration (H.P.N and R.M.L.) for their partial support of the above investigation.

References and Notes

(1) F. Vester, T. L. V. Ulbricht, and H. Krauch, Naturwissenschaften, 46, 68 (1959).
(2) T. L. V. Ulbricht, Q. Rev., Chem. Soc., 13, 48 (1959).
(3) T. L. V. Ulbricht and F. Vester, Tetrahedron, 18, 629 (1962).
(4) W. A. Bonner, M. A. Van Dort, and M. R. Yearian, Nature (London), 258, 419 (1975); 264, 198 (1976).
(5) W. A. Bonner, M. A. Van Dort, M. R. Yearian, H. D. Zeman, and G. C. Li,

Israel J. Chem., 15, 89 (1976/77).
(6) A. S. Garay, Nature (London), 219, 338 (1968).
(7) V. I. Goldanskii and V. V. Khrapov, Sov. Phys. JETP (Engl. Transi.). 16, 582 (1963).
(8) W. A. Bonner, J. Mol. Evol., 4, 23 (1974)
(9) W. A. Bonner and J. J. Flores, Origins Life, 6, 187 (1975).
(10) W. Darge, I. Laczko, and W. Thiemann, Nature (London), 261, 522 (1976).
(11) W. J. Bernstein, R. M. Lemmon, and M. Calvin in "Molecular Evolution, Prebiological and Biological' ' D. L. Rolfing and A. Oparin, Ed., Plenum, New York, N.Y., 1972, pp 151-155.
(12) W. A. Bonner, J. Chromatogr. Scl., 11, 101 (1973).
(13) W. A. Bonner, M. A. Van Dort, and J. J. Flores, Anal. Chem., 46, 2104 (1974).
(14) B. Feibush, Chem. Commun., 544 (1971).
(15) R. Charles, U. Beitier, B. Feibush, and E. Gil-Av, J. Chromatogr., 112, 121 (1975).
(16) D. E. Gray, Ed., "American Institute of Physics Handbook", McGraw-Hill, New York, N.Y., 1957, pp 8-98.
(17) H. Frauenfelder, and R. Steffen in " α, β, and γ-Ray Spectroscopy' ', Vol. 2, K. Siegbahn, Ed., North-Holland Publishing Co., Amsterdam, 1965, pp 1431-1452.
(18) T. D. Lee and C. N. Yang, Phys. Rev., 104, 254 (1956).
(19) P. G. Bergmann, "Introduction to the Theory of Relativity", Prentice-Hall, New York, N.Y., 1942, p 92, eq 6.20.
(20) N. Barash-Schmidt et al., Rev. Mod. Phys., 48, 5 (1976).
(21) J. W. T. Spinks and R. J. Woods, "An Introduction to Radiation Chemistry'", New York, N.Y., 1964, p 70 ff.
(22) J. Heintze, Z. Phys., 150, 134 (1958).
(23) J. D. Jackson, private communication to H.P.N.
(24) C. E. Klots in "Fundamental Processes in Radiation Chemistry", P. J. Ausloos, Ed., Interscience, New York, N.Y., 1968, p 36.
(25) L. Keszthelyi, Nature (London), 264, 197 (1976).
(26) D. C. Walker, Origins Life, 7, 383 (1976).
(27) H. P. Noyes, W. A. Bonner, and J. A. Tomlin, Origins Llfe, 8, 21 (1977).

Abnormal Products in the Siegrist Reaction Involving Ortho-Fluorinated Intermediates ${ }^{1}$

Melvin S. Newman,* Balram Dhawan, ${ }^{2}$ and Subodh Kumar ${ }^{2}$
Chemistry Department, The Ohio State University, Columbus, Ohio 43210

Received June 3, 1977
The syntheses of trans-1-(1 fluoro-2-naphthyl)-2-phenylethylene (1) and trans-1-(1-fluoro-2-naphthyl)-2-(0-iodophenyliethylene (2) via the Wittig reaction as intermediates for the attempted photochemical synthesis of 7-fluorobenz [a]anthracene (3) have been described. ${ }^{3}$ Unfortunately, insufficient 3 was made (only via 2 as use of 1 failed) for adequate testing for possible carcinogenic activity. Because of our interest in preparing larger amounts of 3 , we wished to develop improved methods for the synthesis of 1 and 2.

A route to substituted stilbenes which involves condensation of methylated aromatic nuclei with benzalaniline (4) in the presence of potassium tert-butoxide (eq 1) has been studied ${ }^{4}$ and applied to the facile synthesis of hexahelicene and other helicenes. ${ }^{5}$ However, no example involving an ortho halogen-substituted reactant has been reported.

$$
\begin{align*}
\mathrm{ArCH}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}= & \mathrm{CHC}_{6} \mathrm{H}_{5} \\
4 & \\
& \rightarrow \mathrm{ArCH}=\mathrm{CHC}_{6} \mathrm{H}_{5}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \tag{1}
\end{align*}
$$

Consequently, we attempted to react 1-fluoro-2-methylnaphthalene (5) and 4 as above. None of the expected 1 was obtained. Instead, a complex mixture was produced from which small amounts of 2,3-dihydro-1,2-diphenylindole (6), trans-(1-anilino-2-naphthyl)-2-naphthyl)-2-phenylethylene (7), and trans-1-(1-hydroxy-2-naphthyl)-2-phenylethylene (8) were isolated. A similar reaction with 1-bromo-2-methylnaphthalene and 4 afforded trans-1-(1-bromo-2-naphthyl)-

Scheme I

A
$1, \mathrm{X}=\mathrm{F} ; \mathrm{Y}=\mathrm{H}$
, $X=F ; Y=1$
8, $\mathrm{X}=\mathrm{OH} ; \mathbf{Y}=\mathrm{H}$
9, $\mathrm{X}=\mathrm{Br} ; \mathrm{Y}=\mathrm{H}$
2-phenylethylene (9) in 58% yield with no evidence for the formation of nitrogenous products.

The formation of 6 probably occurs by intramolecular nucleophilic displacement of fluoride ion by anion A, produced by the addition of the 1 -fluoro-2-naphthylmethyl anion to 4 , as shown in Scheme I. The formation of 7 evidently involves a base-catalyzed cleavage of a $\mathrm{C}-\mathrm{N}$ bond in 6 to form 7 . We have shown that under the reaction conditions 6 is converted to 7 . The formation of 8 probably occurs by displacement of the fluorine in 5 by tert-butoxide followed by a normal Siegrist reaction and pyrolytic cleavage of the resulting tert-butyl ether.
Interestingly, the elimination of aniline to form 9 occurs more rapidly than intramolecular displacement of bromide ion in the bromo intermediate corresponding to A. Evidently, the bromine in 9 is relatively much more stable to attack by tert-butoxide ion or to intramolecular attack by a nitrogenous anion similar to A than is the fluorine in 1 (or A). To our knowledge the contrasting results in the reactions of 4 with 1 -fluoro-2-methylnaphthalene (5) and with 1-bromo-2methylnaphthalene provide the first evidence that the intramolecular nucelophilic displacement of fluoride occurs more easily than that of bromide. Some, but not all, evidence shows that aryl fluorides are more reactive than aryl bromides in intermolecular nucleophilic substitution. ${ }^{6}$ The same conclusion was reached in a study ${ }^{7}$ on the action of potassium tert-butoxide in $\mathrm{Me}_{2} \mathrm{SO}$ on chloro-, bromo- and iodonaphthalenes which showed that the reactions proceeded via 1,2 -naphthyne to give mixtures of 1 - and 2 -tert-butoxynaphthalenes, whereas both 1 - and 2 -fluoronaphthalene formed 1- and 2 -tert-butoxynaphthalenes, respectively, by direct displacement of fluoride.
In order to obtain evidence as to the mechanism of formation of 6 and 7 in the Siegrist reaction, we prepared 1 as described ${ }^{3}$ from $5,{ }^{8}$ prepared in improved yield (63%) by using the diazonium hexafluorophosphate ${ }^{9}$ instead of the diazonium tetrafluoroborate. ${ }^{8}$ On heating 1 with aniline under conditions identical to those involved in the reaction of 4 and 5 , there was obtained neither 6 nor 7 , and 85% of 1 was recovered. This fact supports the intramolecular mechanism for the formation of 6 shown in Scheme I.

When o-fluorotoluene was treated with 4 a 28% yield of 1-(o-fluorophenyl)-2-phenylethylene (10) was obtained, but no attempt to maximize the yield nor to isolate other components was made. Thus, the fluorine in 10 is less reactive than the fluorine in 1 under Siegrist conditions.

Experimental Section ${ }^{10}$

1-Fluoro-2-methylnaphthalene (5). Diazotization of 1 -amino2 -methylnaphthalene ${ }^{11}$ and conversion into the diazonium hexafluorophosphate were carried out as described. ${ }^{9}$ Pyrolysis at $170-180^{\circ} \mathrm{C}$ in mineral oil for 30 min afforded crude 5 , which on redistillation afforded 63% of twice distilled 5, bp $62{ }^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mm} .{ }^{8}$
Reaction of 5 with Benzalaniline (4). A mixture of 1.6 g of $5,1.8$ g of $4,2.8 \mathrm{~g}$ of $t-\mathrm{BuOK}$, and 15 mL of DMF was heated at $95 \pm 3^{\circ} \mathrm{C}$ for 90 min , cooled, and added to 150 mL of $10 \% \mathrm{HCl}$. The organic product, isolated as usual, was dissolved in 20 mL of ethanol. On cooling, a colorless solid separated and was recrystallized from ben-zene-petroleum ether ($30-60^{\circ} \mathrm{C}$) to yield 420 mg (18%) of $7, \mathrm{mp}$ $167-168{ }^{\circ} \mathrm{C}: \mathrm{MS} m / e ~ 321 ;^{12} \mathrm{NMR}\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}^{2} \mathrm{CHCl}_{3}\right] \delta 5.65$ ($\mathrm{s}, \mathrm{I}, \mathrm{NH}$, exchanged by $\mathrm{D}_{2} \mathrm{O}$) , $6.51-8.18(\mathrm{~m}, 18, \mathrm{ArH}, \mathrm{CH}=\mathrm{CH})$. Further crystallization of the material in the mother liequor from benzene-petroleum ether ($30-60^{\circ} \mathrm{C}$) afforded $100 \mathrm{mg}(3 \%)$ of colorless 6, mp $164-165{ }^{\circ} \mathrm{C}$, giving blue fluorescence in benzene: MS $m / e 321$; NMR $2.98\left(\mathrm{q}, 1, J_{\mathrm{ac}},-4 \mathrm{~Hz}, J_{\mathrm{bc}}=-15 \mathrm{~Hz}\right), 4.06\left(\mathrm{q}, 1, J_{\mathrm{ab}}=-10 \mathrm{~Hz}, J_{\mathrm{bc}}=\right.$ $-15 \mathrm{~Hz}), 5.15\left(\mathrm{q}, 1, J_{\mathrm{ac}}=-4 \mathrm{~Hz}, J_{\mathrm{ab}}=-10 \mathrm{~Hz}\right), 6.78-7.95(\mathrm{~m}, 16$, ArH). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}: \mathrm{C}, 89.7 ; \mathrm{H}, 5.9 ; \mathrm{N}, 4.4$. Found: C, 90.2 ; H, 5.9; N, 4.0 .
Alkaline extraction of the material remaining in the mother liquor followed by acidification of the extract and crystallization from benzene-petroleum ether ($30-60^{\circ}$) afforded $200 \mathrm{mg}(7 \%)$ of $8: \mathrm{mp}$ $150.5-151.5^{\circ} \mathrm{C}$; MS m/e 246; ${ }^{12}$ NMR 5.56 (s, 1, OH exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 6.90-8.23 ($\mathrm{m}, 13 \mathrm{H}, \mathrm{ArH}, \mathrm{CH}=\mathrm{CH}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}$: C, 87.8; H, 5.7. Found: C, 88.2; H, 5.8.
After heating a solution of 0.25 g of 1 , prepared as described ${ }^{3}$ with 0.09 g of aniline and 1.1 g of $t-\mathrm{BuOK}$ in 10 mL of DMF for 12 h at $100-110^{\circ} \mathrm{C}$, most (85%) of the 1 was recovered, and no trace of 6 or 7 was found using TLC (neutral alumina).
trans-1-(1-Bromo-2-naphthyl)-2-phenylethylene (9). A mixture of 4.4 g of 1-bromo-2-methylnaphthalne, ${ }^{11} 3.6 \mathrm{~g}$ of $4,4.5 \mathrm{~g}$ of t BuOK , and 80 mL of DMF was heated at $95^{\circ} \mathrm{C}$ for 1 h , cooled, and poured into 120 mL of $10 \% \mathrm{HCl}$. On crystallization from ethanol of the organic products, isolated as usual, there was obtained $3.6 \mathrm{~g}(58 \%)$ of $9: \mathrm{mp} 115-116^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{13} \mathrm{mp} 121-122^{\circ} \mathrm{C}\right.$); MS m/e 308, 310. ${ }^{12}$
1-(o-Fluorophenyl)-2-phenylethylene (10). In a Siegrist reaction
similar to those described above (1 h at $95^{\circ} \mathrm{C}$), o-fluorotoluene was converted in 28% yield into $10: \mathrm{mp} 103.0-103.5^{\circ} \mathrm{C}$, MS m/e $198 . .^{12}$ Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}: \mathrm{C}, 84.8 ; \mathrm{H}, 5.6 ; \mathrm{F}, 9.6$. Found: C, 84.7, H, 5.5; F, 9.6.
The mother liquor on evaporating to dryness gave an impure oil (several spots on TLC) containing nitrogen but no fluorine on elemental analysis. No further attempt was made to purify it.
Registry No.-4, 538-51-2; 5, 573-99-9; 6, 64345-68-2; 7, 64345-71-7; 8, 64345-70-6; 9, 27854-69-9; 10, 64345-69-3; 1-bromo-2-methylnaphthalene, 2586-62-1; o-fluorotoluene, 95-52-3.

References and Notes

(1) This research was supported by Research Grant CA-07394 from the National Cancer Institute, Department of Health, Education, and Welfare.
(2) Postdoctoral Research Associates.
(3) J. Blum, F. Gra ser, and E. D. Bergmann, Tetrahedron, 25, 3501 (1969).
(4) A. E. Siegrist, Helv. Chim. Acta, 50, 906 (1967). A. E. Siegrist and H. R. Meyers, ibid., 52, 1282 (1969). A. E. Siegrist, P. Liechti, H. R. Meyer, and K. Weber, ibid., 52, 2521 (1969).
(5) R. H. Martin, M. Marchant, and M. Baes, Helv. Chim. Acta, 54, 358 (1971).
(6) J. March, "Advanced Organic Chemistry"', McGraw-Hill, New York, N.Y., 1977, p 594.
(7) R. H. Hales, J. S. Bradshaw ${ }_{i}$ and D. R. Pratt, J. Org. Chem., 36, 314 (1971).
(8) J. Rigaudy and J. Barcelo, C. R. Hebd. Seances Acad. Sci., 258, 4709 (1964).
(9) K. G. Rutherford, W. Redmond, and J. Rigamonti, J. Org. Chem., 26, 5149 (1961).
(10) All melting and boiling points are uncorrected. Microanalyses were performed by M-H-W Laboratories, Gardon City, Mich. The phrase "worked up as usual" means that an ether-benzene solution of the reaction products was washed successively with dilute acid and/or alkali and saturated NaCl , and dried by passing through a cone of anhydrous MgSO_{4}. The solvent was then removed on a rotary evaporator and the product treated as described.
(11) M. S. Newmar, B. Dhawan, and A. Tuncay, J. Org. Chem., 41, 3924 (1976).
(12) Mass spectra were determined by C. R. Weisenberger on an MS 9 instrument made by A.E.I.
(13) E. V. Blackburn, C. E. Loaden, and C. J. Timmons, J. Chem. Soc., 163 (1970).

Communications

Thermal Reaction between
 5-Methylene-1,3-cyclohexadiene and Styrene ${ }^{1}$

Summary: At $80^{\circ} \mathrm{C} 5$-methylene-1,3-cyclohexadiene reacts rapidly, $t_{1 / 2} \sim 6 \mathrm{~min}$, with styrene to produce a $3: 1$ mixture of 1,2 - and 1,3 -diphenylpropane in 90% yield. The triene does not initiate the polymerization of styrene.

Sir: The proposal ${ }^{2}$ that the monoradical forming step in the thermal polymerization of styrene involves hydrogen atom transfer from a preformed dimer 1 to styrene (Scheme I) has received considerable support. ${ }^{3}$ Isolation of 1 has not been

Scheme I

\downarrow
accomplished yet, but an analogue 2 has been prepared and shown to initiate the polymerization of styrene. ${ }^{4}$

2
3
In another attempt to verify some of the chemistry attributed to 1 the corresponding parent triene, 5-methylene-1,3cyclohexadiene (3), has been prepared and some of its reactions studied. The preparation of 3 by thermolysis of an ester has been reported already. ${ }^{5}$ The search for a compound that might decompose at a much lower temperature and allow 3 to be generated slowly in styrene solution led to the alternate synthesis shown in Scheme II. Itaconic anhydride and α pyrone were heated under N_{2} in toluene at $90^{\circ} \mathrm{C}$ for 65 h to
Scheme II

$\stackrel{4}{2}$
5
Scheme III

form the adduct $4,{ }^{6,7} \mathrm{mp} 144-146{ }^{\circ} \mathrm{C}, 27 \%$. Electrolysis ${ }^{9}$ of 4 produced $5,{ }^{6} \mathrm{mp} 11-14^{\circ} \mathrm{C}, 45 \%$.

The rate of thermolysis of 5 is great enough, at $60^{\circ} \mathrm{C} k_{1} \sim$ $2.5 \times 10^{-7} \mathrm{~s}^{-1},{ }^{10}$ so that thermolysis of a $\sim 10^{-1} \mathrm{M}$ solution of 5 in styrene should result in formation of radicals at a rate greater than the thermal rate of formation of radicals in styrene, at $60^{\circ} \mathrm{C} k_{\mathrm{i}}=1.3 \times 10^{-10} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1,11}$ if hydrogen atom transfer from 3 to styrene were efficient. However, after heating styrene containing 0.1 M 5 at $80^{\circ} \mathrm{C}$ for 2 h only 80% as much of a less crystalline polymer was isolated by precipitation with ethanol as was isolated from control runs. Evaporation of styrene under vacuum left $<5 \%$ more residue, after correction for remaining 5 , than was left in control runs. Thus, 5 appears to act only as a chain transfer agent and not as an initiator.

Injection of ether solutions of 5 into a gas chromatograph (GC) produced $65 \% 3,5 \%$ toluene, and a trace of benzene. ${ }^{12}$ Pure (GC) 3^{13} was trapped from the \in ffluent of the GC. Reactions of 3 that were studied are shown in Scheme III. It is quite stable in the absence of oxygen or acid.

In degassed cyclohexane a $10^{-4} \mathrm{M}$ solution of 3 is indefinitely stable at $20^{\circ} \mathrm{C}$ and at $60^{\circ} \mathrm{C} 3$ is slowly isomerized to toluene, $t_{1 / 2} \sim 130 \mathrm{~h}$. Rapid isomerization, $t_{1 / 2}=23 \mathrm{~min}$, of 3 to toluene occurred in a cyclohexane solution containing 10^{-4} M 3 and $5 \times 10^{-4} \mathrm{M} \mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}$ at $20^{\circ} \mathrm{C}$. Atmospheric oxygen slowly oxidizes 3 to benzyl hydroperoxide. ${ }^{14}$ Photolysis ($\lambda>$ 2800 nm) of 3 in cyclohexane produced toluene as the major product. Treatment of 3 with tetracyanoethylene (TCNE) resulted in a rapid reaction to form the ene adduct $6^{6,15}$ as the only detectable adduct. Thermolysis of 5 in the presence of TCNE also formed 6.

At $80^{\circ} \mathrm{C}$ there is a rapid reaction, $t_{1 / 2} \sim 6 \mathrm{~min}$, between 3 and styrene to form 7 and 8 in a $3: 1$ ratio in 90% tota- yield. About $5-8 \%$ toluene is formed also. No extra polymer is formed in styrene containing $2 \times 10^{-3} \mathrm{M} 3$ after 12 min at 80 ${ }^{\circ} \mathrm{C}$ when $60-70 \%$ of 3 is consumed. Hydrogen atom transfer from 3 to styrene followed by coupling of the resulting benzyl and 1-phenylethyl radicals could be the route by which 7 is formed, but such a simple radical route to 8 is not available. Also, the lack of formation of extra polymer indicates that if radicals are formed they must all be consumed by coupling and disproportionation before addition to styrene can occur.

It is unlikely that this would happen. Both 7 and 8 can be formed by a concerted ene reaction. ${ }^{16}$ Reaction of unsymmetrical enophiles with alkenes has been shown to produce mixtures of products. ${ }^{17}$
The experiments reported here provide no evidence that 3 can function as an initiator of styrene polymerization. In this respect the behavior of 3 is quite different from that attributed to 1 and found for the synthetic analogue $2 .{ }^{4}$ Isolation of a trimer corresponding to the coupling product of the radicals shown in Scheme I^{18} indicates that 1 and 3 may have one reaction with styrene in common.
A careful kinetic study also has shown that 3, prepared by an independent route, does not initiate the polymerization of styrene. ${ }^{19}$

References and Notes

(1) (a) Presented at the 59th Canadian Chemical Conference of the Chemical Institute of Canada, London, Ontario, June 1976. Abstract OR-72. (b) This research was supported by a grant from the National Research Council of Canada.
(2) (a) F. R. Mayo, J. Am. Chem. Soc., 75, 6133-6141 (1953): (b) 90, 1289-1295 (1968)
(3) For a critical, comprehensive review, see W. A. Pryor and L. D. Lasswell, Adv. Free Radical Chem., 5, 27-100 (1975).
(4) W. A. Pryor, J. H. Coco, W. H. Daly, and K. N. Houk, J. Am. Chem. Soc., 96, $5591-5593$ (1974)
(5) W. J. Bailey and R. A. Baylouney, J. Org. Chem., 27, 3476-3478 (1962)
(6) Satisfactory spectral data and elemental analyses within $\pm 0.3 \%$ of theory were obtained.
(7) The structure given is tentative. It has not been determined whether the anhydride group is endo or exo. The spiro ring junction was located by analogy with other Diels-Alder reactions of reactants containing carbonyl groups. ${ }^{8}$
(8) K. Alder, M. Schumacher, and O. Wolft, Justus Liebigs Ann. Chem., 564, 79-96 (1949).
(9) M. H. Westberg and H. J. Dauben, Jr., Tetrahedron Lett., 5123-5126 (1968).
(10) Extrapolated from rates obtained at higher temperatures: $k_{1}=9.26,21.2$, and $197 \times 10^{-6} \mathrm{~s}^{-1}$ at 100,110 , and $140^{\circ} \mathrm{C}$, respectively, in $\mathrm{C}_{6} \mathrm{D}_{6}$ or CCl_{4}. Rates were determined by monitoring solutions of 5 by ${ }^{1} \mathrm{H}$ NMR. First-order kinetics were obtained over at least 3 half-lives.
(11) K. E. Russell and A. V. Tobolsky, J. Am. Chem. Soc., 75, 5052-5054 (1953).
(12) Injection port $400^{\circ} \mathrm{C}$, Carbowax 1000 column, $70^{\circ} \mathrm{C}$. Benzene was identified by its retention time and by its mass spectral cracking pattern. Its mode of formation is unknown.
(13) NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \tau 3.87-4.68(4 \mathrm{H}$, complex multiplet), $5.25(2 \mathrm{H}$, complex multiplet), 6.93 (2 H , complex multiplet); UV $\lambda_{\text {max }}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) 303 \mathrm{~nm}(\epsilon 4400)$; $\mathbb{R}_{\imath^{\prime} \max }\left(\mathrm{CCl}_{4}\right) 3075$ (m), 3035 (s), 1595 (s), 1400 (s), 863 (s), 647 (s) cm^{-1}. The UV data is the same as that previously reported, ${ }^{5}$ but the \mathbb{R} data is somewhat different. The mass spectral cracking pattern obtained on electron impact is identical with those of toluene and of cycloheptatriene. but that obtained by chemical ionization $\left(\mathrm{CH}_{5}{ }^{+}\right)$is different from that of toluene.
(14) The ${ }^{1} \mathrm{H}$ NMR signals due to 3 of a $\sim 0.1 \mathrm{M}$ solution in $\mathrm{C}_{6} \mathrm{D}_{6}$ containing a drop of $\mathrm{D}_{2} \mathrm{O}$ kept under air disappeared over a period of several days and were replaced by signals at $\tau 2.85(5 \mathrm{H}, \mathrm{m})$ and $5.31(2 \mathrm{H}, \mathrm{s})$.
(15) NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)+2.46(5 \mathrm{H}, \mathrm{s}), 4.0(1 \mathrm{H}, \mathrm{s}), 6.21(2 \mathrm{H}, \mathrm{s})$. Material of the same melting point previously isolated was formulated as the Diels-Alder adduct. ${ }^{5}$
(16) For a review of the ene reaction see H. M. R. Hoffmann, Angew. Chem., Int. Ed. Engl., 8, 556-557 (1969).
(17) K. Alder and H. von Brachel, Justus Liebigs Ann. Chem., 651, 141-153 (1962).
(18) J. Kurze, D. J. Stein, P. Simak, and R. Kaiser, Angew. Makromol. Chem., 12, 25-41 (1970).
(19) W. A. Pryor, W. D. Graham, and J. G. Green, J. Org. Chem., following communication in this issue. We thank Professor Pryor for informing us of these results before publication.

> Karl R. Kopecky,* Ming-Pui Lau
> Department of Chemistry, University of Alberta Edmonton, Alberta, Canada T6G $2 E 1$
> Received August 22,1977

Radical Production from the Interaction of
Closed-Shell Molecules. 5. The Chemistry of Methylenecyclohexadiene ${ }^{1}$

Summary: 5-Methylene-1,3-cyclohexadiene (MCH) has been studied as a model for the Diels-Alder dimer of styrene (AH), which is postulated to be involved in radical production in the

Table I. A Comparison of Data for AH and MCH in 8.35 M Styrene at $60^{\circ} \mathrm{C}$

Compd	$k_{\text {dis, }}$ $\mathrm{M}^{-1} \mathrm{~s}^{-1 a}$	$R_{\mathrm{P}} \times 10^{6 b}$	$\bar{P}_{n} \times 10^{-4 \mathrm{c}}$	C^{d}	$\% \mathrm{MAH}^{e}$
AH	$0.9 \times 10^{-5 \prime}$	2.0^{g}	1.0^{g}	1^{h}	1
MCH	$5.3 \times 10^{-5 i}$	2.0^{j}	0.2^{k}	9^{l}	<0.01

${ }^{a}$ Pseudo-unimolecular rate constant for disappearance of the compound in styrene, determined using UV absorption. ${ }^{b}$ Rate of polymerization of styrene, $\mathrm{M} \mathrm{s}^{-1}$. ${ }^{c}$ Number-average degree of polymerization. ${ }^{d}$ Transfer constant; i.e., the ratio of rate constants for chain transfer and propagation, ref $2 b$. ${ }^{e}$ Percent of the compound that disappears in reactions that produce radicals (other than by transfer) capable of initiating styrene's polymerization. ${ }^{f}$ Calculated from the rate of formation of AH assuming a steady-state concentration of $6.5 \times 10^{-5} \mathrm{M}$, ref 16 . ${ }^{\boldsymbol{g}}$ For thermal polymerization, ref 15 and 17 . ${ }^{h}$ Reference $22 .{ }^{i}$ From disappearance of MCH followed at $360 \mathrm{~nm} .{ }^{j}$ Determined by precipitation at $0.0004-0.012 \mathrm{M} \mathrm{MCH} .{ }^{k}$ At $1 \times 10^{-4} \mathrm{M} \mathrm{MCH}$. ${ }^{l}$ Approximate value, see text.
spontaneous polymerization of styrene. Attempts to rationalize the different rates of radical production from MCH and AH are presented.

Sir: The acceleration of the homolytic scission of bonds in one molecule by interaction with another molecule is of considerable theoretical ${ }^{1,2}$ and practical ${ }^{3}$ significance. Of these reactions, the molecule-assisted homolysis (MAH) of a C-H bond in the presence of olefins is the most intriguing to organic chemists, and several such processes have now been identified. ${ }^{1-4}$ With the aim of studying a particularly simple example of such a process, we have examined the reactions of 5 -methylene-1,3-cyclohexadiene (MCH) with styrene.

The synthesis of MCH (4) has been reported by Bailey and Baylouny, ${ }^{5}$ but isolation of MCH from the dilute pentane solution obtained in their method requires repetitive GLC. We sought a route involving a less tedious isolation and purification procedure; our synthesis is outlined in eq 1 . Com-

pound $1^{6,7}$ when treated with sodium and tert-butyl alcohol in tetrahydrofuran gives a 31% yield of $2 .{ }^{8}$ The ketal 2 can be hydrolyzed to 3 with $3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ at room temperature in 60% yield. ${ }^{9}$ Ketone 3 decarbonylates under a variety of conditions to give MCH. ${ }^{10}$ The most convenient method consists of a bulb-to-bulb transfer of neat ketone at 0.5 mmHg through a tube heated to $250^{\circ} \mathrm{C}$. The product was isolated by GLC. ${ }^{11}$

There is a considerable body of evidence that has been interpreted as demonstrating that the mechanism of initiation of the thermal polymerization of styrene is the MAH reaction of the styrene Diels-Alder dimer, AH, with another styrene molecule, eq $23^{3,12}$ It appeared likely that MCH would also

undergo an MAH reaction with styrene and initiate polymerization, as shown in Scheme I.

Surprisingly, however, MCH does not initiate the polymerization of styrene. Concentrations of MCH from 0.004 to 0.012 M produce rates of polymerization equal to the thermal

Scheme I

rate, within experimental error. Furthermore, methyl acrylate, which does not undergo spontaneous polymerization, is not initiated by concentrations of MCH as high as 0.01 M . However, MCH does disappear rapidly in both styrene and methyl acrylate (as monitored by UV).

Scheme I outlines possible reactions of MCH (or AH). Kopecky and Lau, ${ }^{13}$ who independently have found that MCH does not initiate the polymerization of styrene, have reported that MCH undergoes an ene reaction ${ }^{14}$ with styrene to give both 8 and 9 . Product 8 can best be rationalized by reactions b and f of Scheme I. Product 9 could arise from analogous processes, eq b^{\prime} and g ; however, since the parallel reactions of AH and related species ${ }^{4}$ lead to scavengable free radicals, product 9 might result from reactions a and c, or $b^{\prime}-d-c$ as well.

Table I shows a comparison of data for AH and MCH in styrene at $60^{\circ} \mathrm{C}$. Based on the known rate of polymerization of styrene ${ }^{15}$ and our measured rate of the pseudo-unimolecular disappearance of AH in styrene, $k_{\text {dis }}[\mathrm{AH}],{ }^{16}$ only a small

$$
\begin{equation*}
R_{\mathrm{i}}=\frac{2 k_{\mathrm{t}} R_{\mathrm{p}}^{2}}{k_{\mathrm{p}}^{2}[\mathrm{M}]^{2}}=2 k_{\mathrm{dis}} f[\mathrm{AH}] \tag{3}
\end{equation*}
$$

fraction, $f \simeq 0.011$, of the AH reacts in styrene to give scavengable radicals (cf. eq 3^{17}). Most of the AH gives ene products via reactions b, b^{\prime}, or c in Scheme I. A small amount of AH is consumed by chain transfer.

The rate constant for disappearance of MCH in styrene is six times larger than that of AH (Table I). However, a more rapid ene reaction alone cannot account for the lack of detectable free-radical production from MCH. If it is assumed that MCH undergoes an assisted homolysis with the same rate constant as does AH , then $10^{-2} \mathrm{M}$ MCH is sufficiently concentrated so that an increased rate of polymerization should be observed. This is true even if a rapid ene reaction (and/or chain transfer) of MCH consumes 99.9% of the MCH and only
0.1% undergoes an MAH reaction. In order to explain the observed lack of initiation, MCH must have a rate constant for MAH reaction that is at least 20 times smaller than that of AH. ${ }^{18}$

Two types of transition states for the MAH reaction of MCH (or AH) could be envisioned: (1) a cyclic, ene-like transition state (7) could give scavengable radicals via eq d; ${ }^{19}$ or (2) the MAH transition state might involve an open, extended conformation (5) in which the radical centers are formed far apart. Radicals formed in this process may combine to form ene-type products (eq c) or diffuse apart (eq e) and initiate polymerization.

This formulation of ene and MAH processes suggests a possible rationale for the larger yield of radicals from AHstyrene than from MCH -styrene. The ene reaction is known to be sensitive to steric effects, ${ }^{20}$ and models indicate that the repulsive interactions in transition states like 6 or 7 would be greater for AH than for MCH. This may force a larger fraction of the AH -styrene interactions to adopt the extended transition state 5 , or to have more radical character in transition state 7 , giving a greater yield of radicals via reaction d. In addition, it should be noted that the potential MAH steps involve donation of a more labile tertiary hydrogen from AH to give a secondary benzylic radical, whereas MCH would be required to donate a secondary hydrogen to give a primary benzylic radical.

As might be expected, MCH is an excellent transfer agent. The transfer constant of MCH is approximately 9 at $60^{\circ} \mathrm{C} .{ }^{21}$ This is by far the largest transfer constant ever reported for a hydrocarbon. Since the value is so large, it is difficult to measure precisely; ${ }^{21 \mathrm{~b}}$ however, there is no doubt that MCH is an excellent transfer agent, as good or better than AH (C $=1)^{22}$ or $\mathrm{BH}(\mathrm{C}=5)$, another model of AH that we reported on previously. ${ }^{4}$

BH
Finally, some comments should be made about the implications of the present work on the mechanism of the thermal polymerization of styrene. ${ }^{1 \mathrm{~b}}$ Our a priori expectation was that MCH would initiate polymerizations. The fact that it does not can be rationalized in one of two ways. (1) It can be assumed that MCH is a poor model for AH, because ene reactions involve variable transition states with differing amounts of radical character, or because AH donates a tertiary hydrogen and yields a tertiary radical whereas MCH donates a secondary hydrogen to yield a primary radical, or for some other reason. (2) Or the MAH mechanism for the initiation of polymerization of styrene by AH can be rejected. A critical review ${ }^{1 \mathrm{~b}, 3}$ of the evidence supporting the AH mechanism indicates overwhelming support for the presence of AH in thermal polymerizations of styrene and transfer by AH, but an absence of unambiguous evidence that AH undergoes an assisted homolysis step (eq 2). However, if the AH mechanism for styrene is rejected, it is difficult to suggest an alternative. ${ }^{1 \mathrm{~b}}$ (One alternative possibility is the diradical transfer mechanism that we have recently suggested for pen:afluorostyrene. ${ }^{23}$)

It seems most reasonable and economical at present to continue to accept the Diels-Alder mechanism for styrene,
but with the realization that the critical MAH step, eq 2, has not been explicitly established. Clearly, the critical experiment is the synthesis and testing of AH itself, and we are now attempting this. ${ }^{1 \mathrm{~b}}$

Acknowledgment. We wish to thank the National Science Foundation for partial support of this work and Dow Chemical Company for a grant to William A. Pryor. We also wish to express our appreciation to Dr. Masashi Iino for preliminary studies, Mary G. Sorci for polymer solution viscosity measurements, and Dr. Eric G. Olsen for helpful suggestions.

References and Notes

(1) (a) These results have been presented: W. A. Pryor, Abstracts, 174 th $\mathrm{Na}-$ tional Meeting of the American Chemical Society, Chicago, III., Sept. 1977, No. ORGN 88; (b) W. A. Pryor in "Organic Free Radicals", W. A. Pryor, Ed., American Chemical Society, Washington, D.C., In press.
(2) (a) N. N. Semenov, "Some Problems of Chemical Kinetics and Reactivity", Vol. I, translated by J. E. S. Bradley, Pergamon Press, New York, N. Y., 1958, pp 260-271; (b) W. A. Pryor, "Free Radicals", McGraw-Hill, New York. N.Y., pp 119-126, 184-186, 290.
(3) For a review see: W. A. Pryor and L. D. Lasswell in "Advances in Free Radical Chemistry", Vol. V, G. H. Williams, Ed., Academic Press, New York, N.Y., 1975, pp 27-99.
(4) W. A. Pryor, J. H. Coco, W. H. Daly, and K. N. Houk, J. Am. Chem. Soc., 96, 55591 (1974).
(5) W. J. Bailey and R. A. Baylouny, J. Org. Chem., 27, 3476 (1962).
(6) P. G. Gassman and J. L. Marshall, Org. Synth., 48, 68 (1968).
(7) W. R. Dolbier and S.-H. Dai, J. Am. Chem. Soc., 94, 3948 (1972).
(8) NMR $\left(\mathrm{CCl}_{4}\right) \delta 6.02(\mathrm{t}, 2-\mathrm{H}), 4.88(\mathrm{~m}, 1-\mathrm{H}), 4.64(\mathrm{~m}, 1-\mathrm{H}), 3.12(\mathrm{~s}, 3-\mathrm{H}), 3.05$ $(\mathrm{s}, 3-\mathrm{H}), 2.8(\mathrm{brm}, 1-\mathrm{H}), 2.6$ and $2.3(\mathrm{~m}, 1-\mathrm{H}), 1.76$ and $1.53(\mathrm{t}, 1-\mathrm{H})$.
(9) NMR $\left(\mathrm{CCl}_{4}\right) \delta 6.56(\mathrm{t}, 2-\mathrm{H}), 5.08(\mathrm{t}, 1-\mathrm{H}), 4.83(\mathrm{t}, 1-\mathrm{H}), 3.3(\mathrm{~m}, 1-\mathrm{H}), 3.0(\mathrm{~m}$, $1-\mathrm{H}), 2.9$ and $2.6(\mathrm{~m}, 1-\mathrm{H}), 2.15$ and 1.88 (t, 1-H). 2,4-DNP: mp 78-81 ${ }^{\circ} \mathrm{C}$.
(10) Identified by GC retention time, UV, and NMR. The decomposition of the ketone was first order in CCl_{4} solution with a half-life of 4440 s at 93 ± 1 ${ }^{\circ} \mathrm{C}$ and 380 s at $112 \pm 1^{\circ} \mathrm{C} . \mathrm{MCH}$ is both air and acid sensitive and must be handled accordingly.
(11) A 10% OV- 1 on Chromosorb W $60 / 80$ ($5 \mathrm{ft} \times \frac{1}{4} \mathrm{in}$.) column was used at $30-40^{\circ} \mathrm{C}$ and $20 \mathrm{~mL} / \mathrm{min} \mathrm{He} \mathrm{flow}$.
(12) F. R. Mayo, J. Am. Chem. Soc., 75, 6133 (1953); 90, 1289 (1968)
(13) K. R. Kopecky and M. P. Lau, J. Org. Chem., preceding communication in this issue. We thank Professor Kopecky for allowing us to see a preprint copy of this manuscript.
(14) For a review of the ene reaction see H. M. R. Hoffman, Angew. Chem., Int. Ed. Engl., 8, 556 (1969).
(15) R. H. Boundy and R. F. Boyer, "Styrene: Its Polymers, Copolymers, and Derivatives'', Reinhold, New York, N.Y., 1952, p 216.
(16) Both K. Buchholz and K. Kirchner [Makromol. Chem., 177, 935 (1976)] and W. A. Pryor and R. A. Patsiga [Spectrosc. Lett., 2, 61 (1969) and unpublished data] have followed the rate of appearance of AH using an absorption band at $310-320 \mathrm{~nm}$ assumed due to AH. Since the rates of appearance and disappearance of AH can be assumed to be equal at the steady state, these data can be used to calculate the total rate of AH disappearance. The data at $64^{\circ} \mathrm{C}$ of Buchholz and Kirchner were used here to obtain the pseudo-unimolecular total rate of disappearance of AH, $k_{\text {dis }}[\mathrm{AH}]$.
(17) M. S. Matheson, E. E. Auer, E. B. Bevilaqua, and E. J. Hart, J. Am. Chem. Soc., 73, 1700 (1951); W. A. Pryor, "Free Radicals', McGraw-Hill, New York, N.Y., 1966, p 237
(18) This calculation assumes no ene product results from free-radical processes; i.e., eq c, Scheme 1 , is not significant.
(19) Indeed some ene reactions appear to involve radicals, since they are sensitive to free-radical initiators and inhibitors; cf. W. A. Thaler and B. Franzus, J. Org. Chem., 29, 2226 (1964); R. Huisgen and H. Pohl, Chem. Ber., 93, 527 (1960).
(20) J. Sauer, Angew. Chem., Int. Ed. Engl., 6, 16 (1967).
(21) (a) From AIBN initiated polymerizations of styrene containing $\sim 10^{10-4} \mathrm{M}$ MCH. For treatment of data cf. E. A. Collins, J. Bares, and F. W. Billmeyer, Jr., 'Experiments in Polymer Science", Wiley, New York, N.Y., 1973, p 398; F. R. Mayo, R. A. Gregg, and M. S. Mathieson, J. Am. Chem. Soc., 73, 1691 (1951); G. Odian, "Principles of Polymerization'", McGraw-Hill, New York, N.Y., 1970, pp 205-212. (b) By parallel methods, we obtain $C=9$ for butanethiol.
(22) W. A. Pryor and J. H. Coco, Macromolecules, 3, 500 (1970)
(23) W. A. Pryor, M. lino, and G. R. Newkome, J. Am. Chem. Soc., 99, 6003 (1977).

William A. Pryor,* W. David Graham
John Glass Green
Louisiana State University, Department of Chemistry
Baton Rouge, Louisiana 70803
Received August 23, 1977

Recognized by many organic chemists as the leading American journal in the field, this biweekly publication brings subscribers over 1,000 articles, notes and communications each year-over 4,000 pages including original contributions on fundamental researches in all branches of the theory and practice of organic chemistry. Improved procedures, accounts of novel observations or compounds of special interest are

The Journal of Organic Chemistry

American Chemical Society
1978
1155 Sixteenth Street, NW
Washingtan, D.C. 20036
Yes, I would like to receive THE JOURNAL OF ORGANIC CHEMISTRY at the one-year rate checked below:

ACS Member* Nonmember	U.S $\square \quad \$ 26.00$ $\square \$ 104.00$	All Other Countries $\$ 36.00$ $\square \$ 114.00$
Bill me \square Air treight rates	$\begin{aligned} & \text { ny } \square \\ & \text { est. } \end{aligned}$	Payment enclosed \square
Name		
Street		Home \square Business \square
City	Sta	e Zip

[^3]Allow 60 days for your first copy to be mailed
-NOTE: Subscriptions at ACS member rates are for personal use only. also noted. Complete and mail the coupon NOW to join the thousands of organic chemists who find this journal vital in keeping current in the field.

AVAILABLE IN HARD COPY OR MICROFICHE.

Hybrid Hydrides

Sodium cyanoborohydride, $\mathrm{NaBH}_{3} \mathrm{CN}$, is a unique reducing agent which is

- Stable in aqueous acid to pH 3
- Highly soluble in a variety of solvents
- Hydrolyzed $\mathbf{1 0}^{\mathbf{8}}$-fold slower than NaBH_{4}

Sodium cyanoborohydride is a very mild, versatile reagent that will reduce a variety of organic functional groups with remarkable selectivity, as illustrated below:

The most useful application of $\mathrm{NaBH}_{3} \mathrm{CN}$ is the selective reduction of the iminium ion ($\mathrm{CC}=\mathrm{N}^{*}$.). The following are some specific reductions, all of which involve an intermediate iminium ion.

The stability and reactivity of the cyanoborohydride ion in aqueous systems at $\mathrm{pH} 6-8$ indicate the potential for carrying out imine reductions and carbonyl aminations on complex biological systems. For example, the imino linkage between 11-cis-retinal and the lipoprotein, opsin, was recently reduced with $\mathrm{NaBH}_{3} \mathrm{CN}$ under mild conditions (aqueous, $\mathrm{pH} 5,3^{\circ}$).

For a complete list of references, please send for a detailed technical information bulletin. The following are leading references:
R.F. Borch, M.D Bernstein, and H.D. Durst, J. Amer. Chem. Soc., 93, 2897 (1971).
R.O. Hutchins and D. Kandasamy, ibid.. 95, 6131 (1973); and references cited therein.
C.F. Lane, Synthesis. 135 (1975)

19,002-0 Sodium cyanoborodeuteride, 98 atom \% D
1g \$29.70; $5 \mathrm{~g} \$ 126.50$
15,615-9 Sodium cyanoborohydride................. $10 \mathrm{~g} \$ 6.05$
H1,160-2 Hexamethylphosphoramide 100 g g $\$ 7.15$
(HMPA) $\quad \mathbf{5 0 0 g} \$ 22.00$
13,200-4 p-Toluenesulfonhydrazide.................... 25 g \$6.35
D15,855-0 Dimethylformamide (DMF)1kg $\$ 9.35$
T2,220-9 Tetramethylene sulfone...................... 100 g \$4 90 (sulfolane) $\quad 500 \mathrm{~g} \$ 14.25$

Craftsmen in Chemistry

Corporate Offices
Aldrich Chemical Co.. Inc.
940 W. Saint Paul Ave.
Milwaukee. Wisconsin 53233
U. S. A.

Great Britain:
Aldrich Chemical Co., Lid. The Old Brickyard. New Road Gillingham, Dorset SP8 4JL England

Belgium
Continental Europe
Aldrich-Europe B-2340 Beerse Belgium

West Germany/
Continental Europe
EGA-Chemie KG
7924 Steinheim am Albuch West Germany

[^0]: * In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

[^1]: * Address correspondence to University of Southern California

[^2]:

[^3]: Journal subscriptions start in January 78

